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ABSTRACT

This dissertation consists of two original studies in social networks and one
original study in political economy. In the first two chapters, I study (i) how social
networks form, and (ii) how economic agents optimize their behaviors for a given
network structure. In the last chapter, I examine how election rules affect individual
voting decisions and ultimate election outcomes.

In Chapter 1, “Social Network Formation and Strategic Interaction in Large
Networks,” I present a dynamic network formation model that aims to explain why
some empirical degree distributions exhibit the increasing hazard rate property
(IHRP). In my model, a sequentially arriving node forms a link with one existing
node through a bilateral agreement. A newborn node prefers a highly linked node;
however, the more links an existing node has, the more the marginal return from an
additional link diminishes. I prove that the IHRP emerges if and only if the latter
effect prevails over the former. I present two implications of the IHRP for strategic
interactions in networks. First, when there is uncertainty about neighboring agents’
connectivity, the IHRP guarantees that a unique Bayesian equilibrium exists in a
network game with strategic complementarities. Second, the IHRP characterizes a
monotone revenue-maximizing mechanism with allocative externalities.

In Chapter 2, “Monopoly Pricing and Diffusion of a (Social) Network Good,”
I present a model of dynamic pricing and diffusion of a network good sold by a
monopolist. In the model, the network good is a subscription social network good.
This means that in each period, each consumer has to pay a subscription price to
use the good, and the utility derived from subscribing to the good increases as
more of her neighboring consumers subscribe. Consumers myopically optimize
their subscription decisions, and the monopolist chooses a sequence of subscription
prices that maximizes his discounted sum of per-period profits. Three main results
emerge. First, I characterize a unique steady state of the monopoly market where
both the monopolist and consumers do not change their decisions. Second, I find
that optimal sequences of subscription prices oscillate around the subscription price
at the steady state as time passes. Third, I analyze how changes in the monopolist’s
discount factor and the density of the social network affect the subscription price,
subscription rate, and deadweight loss at the steady state.

In Chapter 3, “A Model of Pre-Electoral Coalition Formation,” I study how
two different election rules, simple plurality (e.g., as in South Korea) and two-
round runoff (e.g., as in France), affect political candidates’ incentives to form
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pre-electoral coalitions (PECs). In my model, three candidates compete for a single
office, and two candidates can form a PEC. Since the candidates are both policy-
and office-motivated, one candidate can incentivize the other candidate to withdraw
his candidacy by choosing a joint policy platform. I find that PECs are more likely
to form in plurality elections than in two-round runoff elections. I further examine
how other electoral environments, such as ideological distance and pre-election
polls, influence incentives to form PECs.
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C h a p t e r 1

SOCIAL NETWORK FORMATION AND STRATEGIC
INTERACTION IN LARGE NETWORKS

1.1 Introduction
1.1.1 Overview

People are linked together through social relationships, and these relationships
influence their economic decisions. The growing literature on network games an-
alyzes various economic settings such as contagion behavior, criminal activity,
political alliances, pricing of network goods, public good provision, and so forth. In
many contexts, researchers analyze games in large networks, i.e., networks consist-
ing of a large number of agents and their relationships. Since equilibrium outcomes
depend on certain properties of the underlying network, it is important to identify
key properties of large networks and understand how the social network formation
process generates those properties.

A fundamental characteristic that represents connectivity of a large network
is its degree distribution. The value of a degree distribution at integer d is the
proportion of nodes having d links (notated as degree d). In this paper, I highlight
one crucial property of the degree distribution of large networks that has been
overlooked: whether the degree distribution satisfies the increasing hazard rate
property (IHRP). The value of the hazard rate function of a degree distribution at
d is the conditional probability that a randomly selected node has exactly d links
given that it has at least d links. The IHRP indicates that the hazard rate function is
increasing in d.

The literature on dynamic network formation, inwhich newborn nodes form links
with existing nodes, offers possible explanations for various properties observed
in real large networks.1 Most of the models in this literature tend to generate
only the degree distributions that have decreasing hazard rates. For instance, the
preferential attachment (PA) model by Barabási and Albert (1999) and the network-
based search model by Jackson and Rogers (2007a) produce strictly decreasing
hazard rate functions regardless of the model parameters.

However, empirical degree distributions exhibit both increasing and decreasing
1For example, the small-world property with high clustering and short-average path lengths

(Jackson and Rogers, 2007a), nestedness (König et al., 2014), and the scale-free property (Barabási
and Albert, 1999) are supported by this literature.
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Figure 1.1: Different patterns of hazard rate functions

patterns of hazard rates. For example, Figure 1.1 plots the empirical hazard rate
functions for four network datasets:2 (a) one social network of a rural Indian village,3
(b) a friendship network of adolescents in the United States, (c) an online friendship
network of Facebook users, and (d) the network of the webpages at Notre Dame
University.4 The hazard rate functions exhibit increasing patterns for (a) and (b),

2In a network dataset, one can identify the hazard rate at integer d as the number of nodes with d
links divided by the number of nodes having at least d links. By its definition, the degree hazard rate
at the largest degree is always one for any finite network dataset. This constraint makes the hazard
rate function tend to increase around the largest degree. Thus, in Figure 1.1, I plot the hazard rate
function only for degrees that account for the degrees of 95% of nodes.

3Source: http://web.stanford.edu/~jacksonm/Data.html. The whole dataset consists of the social
networks of 75 rural Indian villages, and the hazard function in Figure 1.1 corresponds to the 58th
village as an illustrating example. For the 75 villages as a whole dataset, I observe that increasing
hazard rates are observed at more than 75% of all points.

4Sources: http://www.cpc.unc.edu/projects/addhealth/documentation is for the friend-
ship network of adolescents in the United States; https://snap.stanford.edu/data/egonets-
Facebook.html is for the friendship network of Facebook users; and
https://www.aeaweb.org/articles.php?doi=10.1257/aer.97.3.890 is for the webpage network at
the Notre Dame University.
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but decreasing patterns for (c) and (d).
To understand the logic behind different patterns of the hazard rate function, I

consider a dynamic network formation model formed by bilateral and costly link
formations. Nodes arrive sequentially. Upon arrival, a new node randomly finds
a single existing node with a probability that is proportional to the degree of the
existing node. Once an existing node is identified, it decides whether to form a
link with the new node. Since the marginal benefit from one additional link is
decreasing but link formation is costly, the identified node is less likely to agree to
form a link as its degree increases. As such, the probability that an existing node
forms one additional link is determined by the combination of the new node’s desire
to form a link with a highly connected node, and the existing node’s decreasing
marginal utility from one additional link. When the diminishing marginal utility
from additional links is substantial, a node will be less likely to form additional links
as its degree increases.

I prove that the IHRP emerges if and only if a node is less likely to form additional
links as its degree increases (Proposition 2). This characterization directly explains
why previous models are not able to produce degree distributions having the IHRP.
The previous models mostly consider unilateral link formations: existing nodes
never reject any link formation offers by newly joining nodes. Since newborn nodes
are more willing to form links with the existing nodes having more links, a node
is more likely to form additional links as its degree increases. This is exactly the
condition for the decreasing hazard rate property of the resulting degree distribution.

There are many theoretical implications of the IHRP for modeling network
games. I consider an incomplete information setting in which agents are not aware
of the exact structure of the underlying network, but know its degree distribution. I
employ the degree independence assumption as a way to simplify uncertainty about
neighboring agents’ connectivity (e.g., Fainmesser and Galeotti, 2016; Feri and Pin,
2015; Galeotti et al., 2010; Ghiglino, 2012; Jackson and Yariv, 2007). Specifically,
under this assumption, agents believe that their shared links are independently and
randomly chosen from the underlying network. Because of independence, the only
private information that remains for the agents is their degree. Therefore, the type
distribution of the agents is the degree distribution.

I explore two particular theoretical implications of the IHRP. First, I consider a
network game in which agents interact with neighboring agents. There are strategic
complementarities between linked agents: an agent’s incentive to perform an action
increases in her neighboring agents’ actions. For example, the individual cost of
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engaging in criminal activity becomes lower as more criminal friends engage in the
same criminal activity, or the value of using a computer software becomes higher
as more acquaintances use the same software. I show that as long as the second
moment of the degree distribution is finite, a Bayesian equilibrium exists even when
the action space is unbounded (Proposition 5).

The IHRP guarantees that all moments of the degree distribution are finite
(Proposition 4), thereby an equilibrium exists. However, degree distributions gen-
erated by prominent dynamic network formation models have an infinite second
moment, and so no equilibrium exists. To see why, note first that taking a high
action is always desirable for the agents who have an enormous number of links be-
cause of strategic complementarities. The IHRP implies that the probability that an
agent is linked to such highly linked agents is very small. As such, although agents’
actions feed back into one another, their best response dynamics converges even if
the action space is unbounded. However, for many prominent degree distributions,
the probability that an agent is linked to very highly linked agents will be substantial,
and so agent’s best response dynamics diverges.

Second, I study a revenue-maximizing Bayesian incentive compatible mecha-
nism design problem. I consider an environment in which there is a single seller
who produces divisible objects at zero production cost. There are allocative exter-
nalities between linked buyers: each buyer’s valuation of her allocation depends on
allocations of neighboring buyers. This environment is relevant for many settings
such as a monopolistic telecommunications company that provides data plan ser-
vices. The better data plans friends have, the higher valuation a customer obtains.
Therefore, the company has to investigate how its sales to individual customers
generate positive network externalities to their neighbors. For a given mechanism (a
pair of allocation rule and price scheme), the induced network game with the IHRP
provides a tractable framework where the seller can take into account the amount of
network externalities generated by the equilibrium behavior of buyers.

I characterize a revenue-maximizing mechanism, assuming the IHRP of the
degree distribution. The allocation rule of an optimal mechanism maximizes the
virtual value, which is a multiplication of the usual virtual type and the social value.
The social value represents themagnitude of network externalities in the equilibrium
of the game induced by the optimal mechanism. Thus, different from a canonical
mechanism design problem (Myerson, 1981), the allocation rule that maximizes the
sum of virtual types is not necessarily optimal. By increasing allocations to every
customer, the seller can increase the social value. Since an increase of the social
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value raises the virtual value of buyers, the seller can charge a higher price to every
buyer, and it ultimately returns a higher revenue to the seller. Although a closed-
form solution of the optimal mechanism is not generally obtainable, I characterize
the optimal mechanism in a restricted environment where the seller cannot price
discriminate.

1.1.2 Related Literature
There is a large and growing literature on dynamic network formation models.

In these models, new nodes are born over time and form links to existing nodes.
The seminal model is the PA model by Barabási and Albert (1999), which attempts
to explain the scale-free property of degree distributions.5 There has been a variety
of extensions of the PA model (e.g., Cooper and Frieze, 2003; Dorogovtsev and
Mendes, 2001; Krapivsky et al., 2000). Jackson (2010) and references therein
explain network properties that emerge from those models. To the best of my
knowledge, my model is the first dynamic network formation model that identifies
a condition that produces an IHRP for the degree distribution.6

In terms of the modeling approach, the current paper takes the rate equation
approach introduced by Bollobás et al. (2001). They formalize the dynamic network
formation process generated by the PA model, and prove that the resulting degree
distribution sequence converges. In the current paper, I prove the convergence of
the degree distribution sequence in a more general setting. I find a closed-form
expression of the limiting degree distribution that provides a condition under which
the limiting degree distribution satisfies the IHRP.

Dynamic network formation models are largely mechanical in that there are few
reasons why links are formed according to their descriptions. My paper provides
a micro-foundation in which agents optimize their link formation decisions (e.g.,
Baetz, 2015; Currarini et al., 2009; Ghiglino, 2012; Jackson and Rogers, 2007a;
König et al., 2014). Ghiglino (2012) andKönig et al. (2014) are two notable dynamic
and strategic network formation models using linear utility functions. They assume
that the largest eigenvalue of the relevant network is bounded regardless of the
network size. However, my model finds that as the network size becomes large, the
largest eigenvalue of an undirected network diverges almost surely to infinity if the

5A degree distribution is said to have the scale-free property if it has a functional form of
f (d) = cd−γ where c is a normalization factor.

6Some random network formation models can generate the IHRP. Examples are the Poisson
random network model by Erdős and Rényi (1959) and the small-world model by Watts and Strogatz
(1998). Although the resulting degree distributions by these two models always generate the IHRP,
none of these models explain why this property can emerge.
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condition for the IHRP is not satisfied.7
There have been many related papers on strategic interaction in networks that

adopt the incomplete information setting introduced by Galeotti et al. (2010). Shin
(2016a) is a closely related paper. In that paper, I study optimal dynamic pricing of
a subscription network good sold by a monopolist. Each consumer’s value of the
good increases as more of her friends use the good, and consumers need to pay a
subscription price in each period. By assuming the IHRP of the degree distribution,
I characterize a unique equilibrium in which the monopolist does not change the
subscription price. In the current paper, I examine a similar problem in a static
setting where the monopolist can price discriminate consumers according to their
number of friends.

The current paper is also related to the literature on network games with strategic
complementarities. Galeotti et al. (2010) study a more general framework than my
model in that they allow correlations in the degrees of agents’ neighbors. In the
current paper, by assuming degree independence, I obtain a clear characterization
of a unique Bayesian equilibrium, and find its relation to the IHRP of the degree
distribution. Belhaj et al. (2014) examine network games with strategic comple-
mentarities when agents have complete information about the underlying network.
However, the current paper and Galeotti et al. (2010) analyze network games of
incomplete information.

One important application of the IHRP is on the mechanism design theory.
Myerson (1981) considers a problem where an auctioneer wants to sell a single
object to one of many buyers. The types of buyers are their valuations of the object.
Assuming the IHRP of the type distribution, he characterizes the seller’s optimal
mechanism. Jehiel et al. (1996) study a mechanism design problem with allocative
externalities as in the current paper. In particular, they consider a two-dimensional
type space: each buyer’s type is a pair of her value of the object and the externalities
that she generates to the other agents. I examine an environment in which buyers’
types are their degrees, and a buyer’s valuation of her allocation is endogenously
determined by her neighboring buyers’ allocations. Because of the endogenously
determined externalities, my characterization of an optimal mechanism is different
from a canonical solution in Myerson (1981).

7Since the number of nodes is fixed in König et al. (2014), the authors identify an upper bound
of the largest eigenvalue in a footnote. Ghiglino (2012) avoids this problem by considering a directed
network.
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1.2 Dynamic Network Formation
In this section, I introduce terminology and establish amodel of dynamic network

formation. Then, I derive the rate equations, which are essential to analyze the
resulting degree distribution sequence in the next section.

1.2.1 Setup
Terminology. A network is represented by G = 〈N, A〉, where N = {1, . . . , n} is a
set of nodes, and A is the adjacency matrix, an n × n symmetric matrix with each
entry in {0, 1}. Ai j = 1 indicates that nodes i and j are connected by a link. For
a given network G, Ni (G) := { j ∈ N |Ai j = 1} is the set of neighbors of node i.
di (G) := |Ni (G) | is called the degree of node i. The degree distribution is a function
f (·,G) : N→ [0, 1]with

∑∞
d=0 f (d,G) = 1, inwhich f (d,G) represents the fraction

of nodes with degree d. F (·,G) is the corresponding cumulative degree distribution
defined as F (d,G) :=

∑
d ′≤d f (d′,G). Last, F (·,G) denotes the complementary

cumulative degree distribution defined as F (d,G) :=
∑

d ′≥d f (d′,G).

Dynamic network formation. I build a model of dynamic network formation
process by recursively defining a random sequence of networks denoted by

(
Gt )

t≥1.
Nodes arrive sequentially, and only one node joins the existing network in each
period t. N t = {1, . . . , t} represents the set of nodes that have emerged by period t.
As such, t also denotes the size of the network in period t.

To make the process well-defined, I focus on formation of random networks after
t ≥ 2 with the initial conditions

A1 =
[
0

]
and A2 =

[
0 1
1 0

]
,

where A1 represents a network of one node without any link, and A2 expresses a
network of two nodes sharing one link.8 As will be explained in the following
sections, results of the current paper are independent of these initial conditions.

For a given network Gt , a network Gt+1 is randomly formed by adding one
new node t + 1 together with one link between node t + 1 and node i ∈ N t . Upon
arrival, node t + 1 randomly identifies a single existing node with a probability that
is proportional to the degree of the existing node. I call this step preferential search.
Formally, node t + 1 finds node i with probability di (Gt )∑t

j=1 d j (Gt ) .

8The dynamic network formation process is well-defined with these initial conditions in the
sense that for every period t ≥ 2, each node has at least one link, so that every node has a positive
probability of being found by new nodes after their arrival.
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Once node i is identified by the new node t + 1, node i probabilistically agrees
to form a link with node t + 1. The probability of forming a link decreases as its
degree increases. I call this step constrained match. Formally, node i agrees to
form a link with probability Φ(di (Gt )) where Φ(·) : N → (0, 1] is a decreasing
function. If node i rejects node t +1’s link formation offer, node t +1 independently
and randomly repeats the two steps until it forms one link with an existing node
successfully.9 Since trials are independent, the probability that node t + 1 forms a
link with node i is

di (Gt )Φ(di (Gt ))∑t
j=1 d j (Gt )Φ(d j (Gt ))

.

One interpretation of the above two-step process is as follows. Consider the
evolution of a collaboration network in which nodes represent researchers, and
links denote experiences of collaborations between them. Establishing a new col-
laborative relationship is clearly bilateral and costly. A researcher’s productivity
increases as she has more collaborators because she exchanges new ideas, receives
more comments about her ongoing projects, obtains other indirect benefits from her
collaborators’ colleagues, etc. When a junior researcher tries to build a new col-
laborative relationship, he is more likely to find distinguished researchers who have
many existing collaborators. Thus, more collaborations will make a researcher more
likely to attract junior researchers. However, for a senior researcher, the marginal
utility from having one additional relationship is decreasing due to constraints such
as limited time and energy as she has more existing collaborators. Therefore, more
collaborations will make a researcher reject collaboration offers more frequently.

A degree-dependent utility function provides a micro-foundation for the current
model. Suppose that new nodes find existing nodes according to the preferential
search step. Consider myopic link formation decisions in which existing nodes look
at only the marginal utility from one additional link. Let the marginal utility of a
node with degree d be

w(d) − c − η,

where w(d) is the marginal value of forming one additional link, c > 0 is the
marginal cost of forming one additional link, and η is a random factor distributed

9By repeating the two-step process, node t + 1 forms one link within a finite number of trials
almost surely. To see this, one can consider node t + 1’s trials as a Bernoulli process (X1, . . . ,Xs),
where each entry represents a Bernoulli trial, and s represents the first time that a success is achieved.
Since trials are independent and identical, the variables are independently and identically distributed
with a strictly positive probability of success. Thus, the process ends in a finite length almost surely.
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over the real numbers with full support. Assuming a decreasing marginal return
of additional links is tantamount to w(d) decreasing in d. Thus, the probability
of accepting a link formation offer is Φ(d) = P[η ≤ w(d) − c], and it is clearly
decreasing in d.

1.2.2 The Rate Equation
Following a standard approach in the literature (e.g., Bollobás et al., 2001;

Dorogovtsev et al., 2000; Ghiglino, 2012), I derive the rate equation for each degree
d, which describes the dynamics of the expected number of nodes with degree d.

I write G t for the probability space of undirected networks in which a random
networkGt has its distribution. Let (F t )t≥1 be the σ-field generated by the dynamic
network formation process. For a given network Gt , I define two random variables
N(d, t) and M(t) as

N(d, t) :=
t∑

j=1
1{d j (Gt ) = d},

M(t) :=
t∑

d=1
dΦ(d)N(d, t).

N(d, t) is the number of nodes with degree d, and M(t) is a weighted sum of
(N(d, t))d≥1.

With the above notation, for a given network Gt , I express changes in the
conditional expectations of N(d, t) from t to t + 1 by

E

[
N(d, t + 1) − N(d, t) |Gt

]

= 1{d = 1}︸    ︷︷    ︸
(i)

−
dΦ(d)
M(t)

N(d, t)︸           ︷︷           ︸
(ii)

+
(d − 1)Φ(d − 1)

M(t)
N(d − 1, t)1{d ≥ 2}︸                                           ︷︷                                           ︸
(iii)

. (1.2.1)

Each term in equation (1.2.1) represents the following:

(i) The degree of a new node is always 1. Thus, one additional node with degree
1 emerges.

(ii) If the new node in period t + 1 attaches to a node with degree d, its degree
becomes d + 1. Consequently, the number of nodes of degree d decreases by
1, but the number of nodes of degree d + 1 increases by 1. The probability of
this event is

dΦ(d)N(d, t)∑t
d=1 dΦ(d)N(d, t)

=
dΦ(d)
M(t)

N(d, t).
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(iii) If the new node in period t + 1 attaches to a node with degree d − 1, its degree
turns into d. Consequently, the number of nodes of degree d increases by 1,
but the number of nodes of degree d − 1 decreases by 1. The probability of
this event is

(d − 1)Φ(d − 1)N(d − 1, t)∑t
d=1 dΦ(d)N(d, t)

=
(d − 1)Φ(d − 1)

M(t)
N(d − 1, t).

Equation (1.2.1) is not linear with respect to N(d, t) and N(d − 1, t) because
M(t) appears in the denominators of the second and third terms. This is an obstacle
for characterizing the asymptotic degree distribution by using the rate equation
approach.

To make my analysis tractable, I introduce a technical assumption that enables
me to consider linear rate equations. Before introducing the assumption, note that
M(t) can be written as m(t)t by setting m(t) :=

∑t
d=1 dΦ(d) N(d,t)

t ∈ [Φ(1)
2 , 2]. I

assume that m(t) converges in probability to a constant:10

Assumption 1 m(t) converges in probability to µ ∈ [Φ(1)
2 , 2].

Assumption 1 enables me to consider linear rate equations with correction terms:

For d = 1:

E [N(1, t + 1)] = 1 +
(
1 −
Φ(1)
µt

)
E [N(1, t)] + ε(1, t), (2.2)

For d ≥ 2:

E [N(d, t + 1)] =
(
1 −

dΦ(d)
µt

)
E [N(d, t)] +

(d − 1)Φ(d − 1)
µt

E [N(d − 1, t)]

+ ε(d, t), (2.3)

where the correction term ε(d, t) converges to zero as the network size t becomes
large.11 Moreover, as shown in the proof of Proposition 1, I can ignore the correction
terms regardless of their convergence rates.

The previous dynamic network formation models using the rate equation ap-
proach make Assumption 1 implicitly (e.g., Bollobás et al., 2001; Dorogovtsev et
al., 2000). For instance, in the PAmodel withΦ(d) = 1, m(t) calculates the average
degree in the network at the end of period t. Since only one addition link is added

10When dΦ(d) is bounded, it suffices to assume that the expectation of m(t) converges to µ. A
proof is available upon request.

11See Section A.2 for a proof.
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in each period, m(t) converges to 2 as t → ∞, and so Assumption 1 is trivially
satisfied.

To evaluate the validity of Assumption 1, I present numerical simulation results
in Figure 1.2. In each figure, the horizontal axis is in logarithmic scale. For Φ(d) =
d−1/2, Figure 1.2(a) illustrates that m(t) converges in probability to a constant. The
average path of m(t) (the solid black line) is generated from 1000 repetitions, and it
converges to a constant as the network size t increases. The size of the 100% interval
(the dotted red lines) clearly shrinks to zero as the network size t increases. These
observations indicate that m(t) converges in probability. In Figure 1.2(b), the same
observations follow for another functional form Φ(d) = d−3/2. These simulations
illustrate that Assumption 1 reasonably holds for these parametric examples of
Φ(·).12

Network Size (t)
101 102 103 104

m
(t

)

1.21

1.26

1.31

1.36

Average path
100% interval

(a) 1000 repetitions for Φ(d) = d−1/2

Network Size (t)
101 102 103 104

m
(t

)

0.74

0.79

0.84

0.89
Average path
100% interval

(b) 1000 repetitions for Φ(d) = d−3/2

Figure 1.2: Simulation results for parametric examples of Φ(·)

1.3 Results
In this section, I define the asymptotic degree distribution and find its closed-

form expression. Then, I characterize a sufficient and necessary condition for the
IHRP of the resulting asymptotic degree distribution.

1.3.1 Characterization of the Asymptotic Degree Distribution
I define f (·, t) : N→ [0, 1] the degree distribution at the end of period t by

f (·, t) :=
(
N(1, t)

t
, . . . ,

N(d, t)
t

, . . .

)
.

12As will be shown in the next section, when Φ(d) = d−α with α ≥ 0, the hazard rate function is
strictly increasing if α > 1, strictly decreasing if α < 1, and constant if α = 1.
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f (d, t) represents a probability that one randomly selected node at the end of period
t has d links.

(
f (·, t)

)
t≥1 is the sequence of degree distributions. I define the asymp-

totic degree distribution f (·) : N → [0, 1] as the pointwise limit of
(

f (·, t)
)

t≥1: for
a fixed ε > 0,

lim
t→∞

P
(
| f (d, t) − f (d) | > ε

)
= 0 for all d ∈ N.

I define the asymptotic degree distribution as the pointwise limit because it en-
sures that the degree distribution sequence converges in distribution to the asymp-
totic degree distribution. To see this, I first clarify the notion of convergence in
distribution in the current setup. Convergence in distribution means that f (·, t) and
f (·) are approximately the samewhen the network size t is large. Since the degree of
a randomly selected node is an integer, it is natural to consider a probability density
function f (·) : N→ [0, 1] as a limit of the degree distribution sequence. Thus, both
f (·) and

(
f (·, t)

)
t≥1 are defined over the set of integers, and it implies that as the

network size t becomes infinitely large, the degree distribution sequence converges
in distribution to f (·) if and only if f (d, t) converges in probability to f (d) for all
d.13 Therefore, the asymptotic degree distribution is equivalently identified as a
pointwise limit of the sequence of degree distributions.

The following presents a closed-form expression of the asymptotic degree dis-
tribution:

Proposition 1 As the network size becomes infinitely large, the degree distribution
sequence converges in distribution to f (·), which is defined recursively as

f (1) =
µ

µ + Φ(1)
and f (d) =

(d − 1)Φ(d − 1)
µ + dΦ(d)

f (d − 1) for d ≥ 2.

Since the rate equation approach is relatively new in the economics literature,
I explain details of the proof of Proposition 1. The proof consists of two parts.14
First, by using rate equations (2.2) and (2.3), I prove that the expected proportion
of nodes with degree d converges to f (d) as the network size increases to infinity.

13See Section A.2 for a proof.
14Stationarity of the asymptotic degree distribution defined in Proposition 1 is obvious because

it is a unique solution of the following stationarity equations:

For d = 1: f (d) = 1 −
dΦ(d)
µ

f (d),

For d ≥ 2: f (d) = −
dΦ(d)
µ

f (d) +
(d − 1)Φ(d − 1)

µ
f (d − 1).
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Second, for each d, I show that the difference between the random proportion of
nodes with degree d and its expectation converges in probability to zero. These
two observations will provide that the degree distribution sequence converges in
probability to the asymptotic degree distribution. For expositional simplicity, I
consider the linear rate equations, ignoring correction terms.

For d = 1, the iterations of rate equation (2.2) provides that

E [N(1, t + 1)] = 1 +
(
1 −
Φ(1)
µt

)
+

(
1 −
Φ(1)
µt

) (
1 −

Φ(1)
µ(t − 1)

)
E [N(1, t − 1)]

=

t∑
s=1

t∏
r=s+1

(
1 −
Φ(1)
µr

)
+




t∏
r=1

(
1 −
Φ(1)
µr

)

E [N(1, 1)] .

For large t, the expected number of nodeswith degree 1 in period t+1 is approximated
as15

E [N(1, t + 1)] ≈
1

t
Φ(1)
µ

∫ t

0
s
Φ(1)
µ ds =

µt
µ + Φ(1)

.

By dividingE [N(1, t + 1)] by t +1, I find the limit of the expected fraction of nodes
with degree 1 as f (1) = µ

µ+Φ(1) .
Second, for d ≥ 2, the expected number of nodes with degree d in period t + 1

relies on E [N(d − 1, t)] as well as E [N(d, t)]:

E [N(d, t + 1)] =
(
1 −

dΦ(d)
µt

)
E [N(d, t)] +

(d − 1)Φ(d − 1)
µt

E [N(d − 1, t)] .

Assumption 1 enables me to replace E [N(d − 1, t)] by t f (d − 1) for sufficiently
large t. Hence, by following a similar procedure for d = 1, I identify the limit of the
expected fraction of nodes with degree d as it appears in Proposition 1.

The remaining step is to show that as a random variable, the proportion of nodes
with degree d is very close to its expectationwhen the network size is large. This step
is proven by applying the Azuma-Hoeffding inequality (Azuma, 1967; Hoeffding,
1963). The Azuma-Hoeffiding inequality states that the number of nodes with
degree d is located around its expectation within a bounded range. That is, for a
fixed d, there exists a constant Md > 0 such that for any εd > 0,

P

(
|N(d, t) −E [N(d, t)] | ≥ εd

)
≤ 2e

−
ε2
d

2M2
d
t .

15I use the following approximation:
t∏

r=s+1

(
1 −
Φ(1)
µr

)
≈ e−

Φ(1)
µ

∑t
r=s+1

1
r ≈

( s
t

) Φ(1)
µ

.

Since this product converges to zero as t becomes large, the second term in the previous equation is
ignored.
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By choosing εd = 2Md
√

t log t, it follows that the probability that the proportion of
nodes with degree d is different from its expectation becomes arbitrarily small as
the network size t becomes infinitely large:

P *
,

����
N(d, t)

t
−E

[
N(d, t)

t

] ���� ≥
2Md

√
t log t

t
+
-
≤ o(1).

In order to finalize that the random proportion of nodes with degree d converges
in probability to f (d), I still need to show that E

[ N(d,t)
t

]
is quite close to f (d) for

large t. In fact, Assumption 1 provides that for a given ε > 0, ��E
[ N(d,t)

t

]
− f (d)�� < ε

3
whenever the network size t is larger than some constant Tε. Thus, t ≥ Tε implies
that

P

(����
N(d, t)

t
− f (d)

���� ≥ ε
)

≤ P

(����
N(d, t)

t
−E

[
N(d, t)

t

] ���� +
����E

[
N(d, t)

t

]
− f (d)

���� ≥ ε
)

≤ P

(����
N(d, t)

t
−E

[
N(d, t)

t

] ���� ≥
2
3
ε

)
.

Therefore, since the last term converges to zero as the network size becomes infinitely
large, the randomproportion of nodeswith degree d converges in probability to f (d).

I finally note that there exists a unique choice of µ for Assumption 1. Since
the degree distribution sequence converges, I have µ = lim

t→∞E

[∑∞
d=1 dΦ(d) f (d, t)

]
.

This observation in turn implies that

1 =
1
µ

lim
t→∞

E



∞∑
d=1

dΦ(d) f (d, t)

=

1
µ
E



∞∑
d=1

dΦ(d) f (d)

=

∞∑
d=1

d∏
k=1

(
1 +

µ

kΦ(k)

)−1
.

The last expression is continuous and strictly decreasing in µ.16 Moreover, it diverges
to infinity as µ→ 0, but it converges to zero as µ→ ∞. Therefore, the choice of µ
satisfying the above equation is unique.

1.3.2 The Hazard Rate Function
I characterize a condition under which the hazard rate function of the asymptotic

degree distribution is increasing. Recall that the hazard rate function is defined as
h(d) := f (d)

F (d)
, in which F (d) is the complementary cumulative degree distribution.

This definition suggests an interpretation that the value of the hazard rate function at
d is a conditional probability: h(d) is the probability that a randomly selected node

16See Section A.2 for a proof of continuity.
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has exactly d links, given that it has at least d links. To characterize a condition for
h(d) to increase in d, I first relate the expression of the complementary cumulative
degree distribution to the hazard rate function. The hazard rate at d can be written
as h(d) = 1 − F (d+1)

F (d)
, and it implies that

F (d) =
F (d)

F (d − 1)

F (d − 1)

F (d − 2)
· · ·

F (3)

F (2)

F (2)

F (1)
=

d−1∏
k=1

(
1 − h(k)

)
.

Since f (d) = F (d) − F (d + 1), it follows that

f (d) = h(d)
d−1∏
k=1

(
1 − h(k)

)
.

Recall that the asymptotic degree distribution has the following recursive for-
mula:

f (d) =
µ

µ + dΦ(d)

d−1∏
k=1

kΦ(k)
µ + kΦ(k)

.

Since the hazard rate function is uniquely defined for the asymptotic degree distri-
bution, it directly follows that the hazard rate function is simply expressed as

h(d) =
µ

µ + dΦ(d)
.

Therefore, I characterize the increase of the hazard rates from d to d+1 as follows.17

Proposition 2 h(d) ≤ h(d + 1) if and only if dΦ(d) ≥ (d + 1)Φ(d + 1).

Proposition 2 provides a natural interpretation of the IHRP in terms of the
dynamic network formation process. Let di (t) be the degree of node i at the end of
period t. By Assumption 1, the logarithm of the probability that node i forms a link
with the new node entering in period t + 1 is approximated by

log
(
di (Gt )Φ(di (Gt ))/M(t)

)
≈ log

(
di (Gt )Φ(di (Gt ))

)
− log

(
µt

)
.

The first term on the right-hand side explains how the probability of forming one
additional link depends on node i’s degree. Therefore, Proposition 2 provides a

17The value of the hazard rate function at d is sometimes defined as h(d) := f (d)
(1−F (d)) for a

discrete probability distribution. The characterization of the IHRP by Proposition 2 is still valid for
this alternative definition as h(d) = µ

dΦ(d) .
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dynamic interpretation that the IHRP emerges if and only if a node is less likely to
form additional links with newly entering nodes as its degree increases.

The IHRP is difficult to observe in network datasets where link formation deci-
sions are unilateral. In many contexts of growing networks such as collaborations
between scholars and links between webpages, new nodes are more willing to link
to the more popular nodes. Thus, if the link formation decision is unilateral, more
links will cause a node to form more new links. For example, in the PA model, a
link formation decision is clearly unilateral because a webpage freely creates a link
from itself to an existing webpage. As a result, nodes are always more likely to form
additional links as their degree increases, and so the degree distribution generated
by the PA model satisfies the decreasing hazard rate property.

In my model, however, link formation decisions are bilateral. This feature
separates the new node’s desire to form a link with a node having many links
(preferential search) and the limitation of existing nodes to form additional links
with newly entering nodes (constrained match). The constrained match step may
cause links to make a node form fewer new links. The hazard rate function is
increasing if this limitation is so strict that it nullifies the new nodes’ desire in the
preferential search step. Therefore, one can expect the IHRP in a network dataset
where maintaining links is very costly and link formations are bilateral.

A parametric example considered in the previous section illustrates the above
discussion. Let Φ(d) = d−α be the probability that an existing node agrees to form
a link when it is identified by a new node. α ≥ 0 is the parameter that measures the
cost of forming links. The hazard rate function is strictly increasing in d if and only if
α > 1. The knife-edge case of this parametric example is α = 1, which corresponds
to the random attachment model in which link formation does not depend on the
degree of nodes.

1.4 Relations to Other Properties of Large Networks
In this section, I compare the IHRP to other properties of a large network: (i) the

size of its largest eigenvalue and (ii) heavy-tailedness of its degree distribution. I first
introduce these characteristics and explain why they have received much attention
in the literature. Then, I identify relations between these two properties and the
IHRP under the assumption that the hazard rate function is monotonically either
increasing or decreasing.
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1.4.1 Definitions
The largest eigenvalue. The largest eigenvalue of network G = 〈N, A〉 is defined
as the largest eigenvalue of its adjacency matrix A, denoted by λmax(G). Since I
focus on undirected networks, and therefore on symmetric A, λmax(G) is a positive
real number.18

The largest eigenvalue of a network has many implications for strategic inter-
actions in a network. In particular, equilibrium conditions of network games often
depend on the size of the largest eigenvalue (e.g., Ballester et al., 2006; Bramoullé
et al., 2014). For example, consider the network game in Ballester et al. (2006),
where each node i takes a positive action xi ∈ R+ and obtains the payoff

ui (xi, x−i) = xi −
1
2

x2
i + δ

n∑
j=1

Ai j xi x j .

Suppose that δ is strictly positive, which means that actions are strategic comple-
ments. As Ballester et al. (2006) show, a Nash equilibrium exists if and only if
δλmax(G) < 1.

To see why this condition is necessary, note that node i’s best response with
respect to other nodes’ action profile x−i is linear as

xB
i (x−i) = 1 + δ

n∑
j=1

Ai j x j .

Let x′ be an eigenvector corresponding to the largest eigenvalue. The vector of
nodes’ myopic best responses to x′ is

xB (x′) = 1 + δAx′ = 1 + δλmax(G)x′.

The myopic best reply dynamics constructed by repeating the above steps con-
verges if and only if the summation of externalities,

∑∞
s=0

(
δλmax(G)x′

) s, con-
verges (Ballester et al., 2006). Obviously, the summation converges if and only if
δλmax(G) < 1, which means that the maximummarginal influence of nodes’ actions
on other nodes is bounded.

The above restriction on the size of the largest eigenvalue is also required for
some strategic dynamic network formation models (e.g., Ghiglino, 2012; König
et al., 2014). For example, Ghiglino (2012) tries to explain the scale-free property

18By the Perron-Frobenius theorem, all eigenvalues of a symmetric adjacency matrix are real
numbers. Since all the diagonal entries are zero, the trace of the adjacency matrix is zero. The trace
equals the sum of all eigenvalues, and it follows that largest eigenvalue of the adjacency matrix is
strictly positive.
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of the productivity distribution. He assumes that the productivity of an idea (node)
depends on its parental and offspring ideas.19 Only one idea is newly created in
each period. Since a new idea inherits its parental idea’s productivity, it attempts to
form a link to an old idea with many offspring ideas. Specifically, the productivity
of idea i when used in knowledge creation in period t is

xt
i = θ + δ

∑
j∈Ni

θAt
i j x

t
j,

where δ > 0, and θ ∼ N (1, σθ ) with σθ � 1.20 Let xt be the t × 1 vectors with
entries xt

i . Then, xt satisfies

xt =
(
I − δθAt

)−1
θ1t×1 =

∞∑
s=0

(
δθAt

) s
θ1t×1. (1.4.1)

A new idea strategically forms a link to an old idea with the highest productivity.
This network formation process requires the productivity of ideas to be finite for all
periods; otherwise, the productivity of an idea will be infinite after some period, and
only this idea will have offsprings beyond that time. Therefore, xt in equation (1.4.1)
has to be finite with probability one for all period t. This condition is satisfied if and
only if δλmax(Gt ) < 1 with probability one for all t ≥ 1 because σθ � 1.21

Heavy-tailed degree distribution. In the Poisson random network model by Erdős
and Rényi (1959), a link between two nodes is formed independently of other pairs
of nodes with a fixed probability. The resulting degree distribution is approximated
by the Poisson distribution if the network size is infinitely large.22 The Poisson
distribution with parameter λ has the form of f (d; λ) = λde−λ

d! , and its tail decreases
at an exponential rate.

One important observation in real large networks is that their degree distributions
are heavy-tailed: there tend to be more nodes with very large degrees than the

19Node i is called a parental (offspring) node of node j if there is a link from j to i (from i to j).
20I here simplify the notation in Ghiglino (2012). In addition, note that the adjacency matrix At

is not necessarily symmetric because the author considers a directed network.
21König et al. (2014) consider a dynamic network formation model with a finite number of agents.

For any network between n agents, its largest eigenvalue has an upper bound of
√

2m(n − 1)/n
where m =

(
n
2

)
(Cvetković and Rowlinson, 1990). Thus, they explicitly assume that the parameter

representing the magnitude of positive externalities between linked agents is strictly smaller than
1√

2m(n−1)/n
.

22The Poisson random network is represented by G(n, p(n)) such that there are n nodes, and each
pair of nodes forms a link independently at random with probability p(n). The resulting degree
distribution is a binomial distribution, and it converges to the Poisson distribution with parameter
np(n) as n → ∞, assuming that np(n) is a constant.
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Poisson distribution of any parameter.23 Thus, researchers have been interested
in building dynamic network formation models that generate heavy-tailed degree
distributions (e.g., Barabási and Albert, 1999; Ghiglino, 2012; Jackson and Rogers,
2007a; König et al., 2014). The following definition formalizes the heavy-tailedness
of a degree distribution:

Definition 1 A degree distribution f (·) is said to be heavy-tailed if for all ε > 0,

lim sup
d→∞

F (d)
e−εd = ∞.

1.4.2 Relations and Implication
I find the relations between three properties of an infinitely large network: (i)

finiteness of the largest eigenvalue, (ii) heavy-tailedness of its degree distribution,
and (iii) the IHRP of its degree distribution.

I first present lower and upper bounds of the largest eigenvalue of a network that
will be useful for illustrating the relationships between the three properties under
consideration. For any finite network G, its largest eigenvalue λmax(G) satisfies√

dmax(G) ≤ λmax(G) ≤ dmax(G),

where dmax(G) is the largest degree of the network (Cvetković and Rowlinson,
1990).24 This observation suggests that the limiting behavior of the largest eigen-
value is closely related to the limiting behavior of the maximum degree.

I nowfind a relation between the finiteness of the largest eigenvalue and the IHRP.
In the current model, the hazard rate function of the asymptotic degree distribution
is decreasing if and only if a node is more likely to form additional links as its degree
increases. Suppose this, and consider the evolution of node i’s degree. Given a
network Gt , the probability that node i forms one additional link with the new node
entering in period t + 1 is at least Φ(1)

2t :

P

({
node i forms a link with node t + 1

})
=

di (Gt )Φ(di (Gt ))∑t
j=1 d j (Gt )Φ(d j (Gt ))

≥
Φ(1)

2t
.

Thus, the growth of node i’s degree is faster than its growth when new nodes
independently and randomly form a link with probability Φ(1)

2t . When this is the
case, the probability that node i forms infinitely many links becomes one by the

23See Chapter 3 in Jackson (2010) for examples and discussions.
24A proof is provided in Section A.2.
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second Borel-Cantelli lemma (Durrett, 2005).25 Therefore, the degree of node
i becomes infinitely large as the network size increases under the condition of
decreasing hazard rates.

Proposition 3 If the hazard rate function is decreasing, then the largest eigenvalue
diverges almost surely to infinity as the network size becomes infinitely large.

I now identify a relation between the heavy-tailedness of the asymptotic degree
distribution and its IHRP. From the definition of the hazard rate function, I can
express the complementary degree distribution as

F (d) =
d−1∏
k=1

(
1 − h(k)

)
=

d−1∏
k=1

(
kΦ(k)

µ + kΦ(k)

)
.

Suppose the IHRP, and so dΦ(d)
µ+dΦ(d) is decreasing in d. Then, since Φ(d)

µ+Φ(d) ≤
Φ(1)
µ+Φ(1)

for all d, the value of the complementary degree distribution F (d) decreases at least
at a geometric rate of Φ(1)

µ+Φ(1) < 1. Therefore, the asymptotic degree distribution is
not heavy-tailed if the hazard rate function is increasing.

The asymptotic degree distribution can be heavy-tailed even when its hazard
rate function strictly decreases. In particular, the asymptotic degree distribution is
heavy-tailed only if its hazard rate function not only decreases, but also converges
to zero. In the current model, the hazard rate function converges to zero whenever
dΦ(d) diverges to infinity without any bound as d becomes infinitely large.

In many models, however, the strictly decreasing hazard rate property of the
asymptotic degree distribution coincides with its heavy-tailedness. For example,
consider the parametric example of Φ(d) = d−α in the current model. dΦ(d)
becomes infinitely large as the network size increases whenever α < 1, which is
the condition for the strictly decreasing hazard rate function. Thus, the asymp-
totic degree distribution is heavy-tailed if and only if the hazard rate function is
strictly decreasing. Indeed, in other network formation models such as Barabási
and Albert (1999) and Jackson and Rogers (2007a), the resulting asymptotic degree
distributions are heavy-tailed and satisfy the strictly decreasing hazard rate property
simultaneously. The following proposition summarizes this point.

Proposition 4 If the hazard rate function is increasing, then the asymptotic degree
distribution is not heavy-tailed. If the hazard rate function is strictly decreasing and

25The second Borel-Cantelli lemma states that for a given set of independent events, say {En}
∞
n=1,

if
∑∞

n=1P
(
En

)
= ∞, then P(En i.o.) = 1. A proof is provided in Section A.2.
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converges to zero as the degree becomes infinitely large, then the asymptotic degree
distribution is heavy-tailed.

Negative implication. By Proposition 3 and Proposition 4, it follows that if a
dynamic network formation model generates a heavy-tailed degree distribution,
then the largest eigenvalue of the network becomes infinitely large as the network
size increases.

Corollary 1 If the asymptotic degree distribution is heavy-tailed, then

lim
t→∞

P

(
λmax(Gt ) < ∞

)
= 0.

Corollary 1 proves that by using a standard utility function in the literature, it
is impossible to build a bilateral dynamic network formation model that generates a
heavy-tailed degree distribution. In a bilateral dynamic network formation model,
the resulting asymptotic degree distribution is heavy-tailed only if a node is more
likely to form new links as its degree increases. Corollary 1 shows that this condition
implies that largest eigenvalue becomes arbitrarily large as the network size becomes
large. Thus, the value of forming a link to a particular node becomes arbitrarily large
beyond a certain period. As such, if nodes can strategically choose a node to link,
all nodes entering after that period will choose a particular node. Therefore, when
it comes to bilateral link formations, the strategic link formation and a heavy-tailed
degree distribution are incompatible.

1.5 Application I: Network Games
In this section, I present how the IHRP helps to characterize equilibria in network

games. I adopt the incomplete information setting introduced by Galeotti et al.
(2010), inwhich agents are not aware of the exact structure of the underlying network,
but know its degree distribution. I characterize a unique Bayesian equilibrium, and
explain how it is related to the IHRP.

1.5.1 Network Games with Incomplete Information
Network and utilities. There is a countable set of agents, N = {1, . . . , n}. Con-
nections between agents are represented by a network G = 〈N, A〉, in which A is a
symmetric matrix of size n with each entry in {0, 1}. For notational simplicity, let
Ni be the set of agent i’s neighbors. f (·) is the degree distribution of the underlying
network, which is common knowledge amongst the agents.

Each agent i simultaneously takes an action xi ∈ R+. I denote by x = (xi, x−i) ∈
Rn
+ the action profile of the agents, where x−i is the action profile of all agents except
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agent i. For an action profile x, the utility of agent i with degree di is given by

ui (xi, x−i, di) = xi −
1
2

x2
i︸    ︷︷    ︸

idiosyncratic utility

+ δxi

∑
j∈Ni

x j︸      ︷︷      ︸
network externality

,

where δ > 0 represents positive network externalities between agents’ actions. This
utility function satisfies a property in which adding a link to an agent taking action
0 generates no additional value to agent i’s utility. Note that the utility function
is independent of agent i’s identity in the network in the sense that agents i and
j obtain the same utility if their degrees are identical and their neighbors’ actions
coincide. Thus, I represent agent i’s utility by u(xi, xNi, di) where xNi ∈ R

di
+ is the

action profile of agent i’s neighbors.

Information. Before deciding on her action, the information available to agent
i is her degree di and the degree distribution f (·). Thus, each agent can update
her beliefs about the degrees of her neighbors based on her private information.
To simplify this belief updating process, I employ the assumption of degree inde-
pendence, which is quite common in the literature (e.g., Fainmesser and Galeotti,
2016; Feri and Pin, 2015; Galeotti et al., 2010; Ghiglino, 2012; Shin, 2016a). The
degree independence assumption states that agent i believes that the link between
herself and each of her neighboring agents is an i.i.d. draw from a given degree
distribution. Under this assumption, I denote by f̃ (·) : N → [0, 1] the probability
density function of a neighboring agent’s degree, which is calculated as

f̃ (d) =
df (d)
〈d〉

,

where 〈d〉 =
∑∞

d=1 df (d) is the average degree.26 I call f̃ (·) the conditional degree
distribution. The conditional degree distribution f̃ (·) captures the idea that a highly
connected agent is more likely to be an agent’s neighbor: f̃ (d) > f (d) for all
d > 〈d〉. F̃ (·) and h̃(·) are the corresponding cumulative distribution function and
the hazard rate function, respectively.

26To understand this calculation, suppose that each agent’s degree is either one or two. Let f (1)
and f (2) be the fraction of agents with degree one and two, respectively. Divide the set of links
into two categories: (i) set L1 containing links attached to an agent with degree one, and (ii) set
L2 containing links attached to an agent with degree two. Then, the fraction of links in set L1 is
proportional to f (1) and the fraction of links in set L2 is proportional to 2 f (2). Due to degree
independence, the probability that the degree of a randomly selected neighbor is d is equal to the
probability that a randomly selected link is chosen from set Ld . Thus, after normalization, f̃ (·) is
the probability density function of a neighbor’s degree.
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The degree independence assumption is plausible for large networks because the
degrees of two neighboring agents are approximately independently distributed. In-
deed, the configuration model confirms that for each agent i, knowing only agent i’s
degree provides no additional information about the degrees of her neighbors, as the
number of agents becomes large (Bender and Canfield, 1978). Therefore, a neigh-
boring agent’s degree is considered as an i.i.d. draw from the degree distribution,
and its probability density function is f̃ (·).27

The following lemma states that the conditional degree distribution satisfies the
IHRP.

Lemma 1 If f (·) satisfies the increasing hazard rate property, then f̃ (·) satisfies
the strictly increasing hazard rate property.

Partial order on degree distributions. To compare equilibria where the underlying
network changes in density, I consider a family of degree distributions

{
fθ (·)

}
θ∈Θ

indexed by an ordered setΘ in which all members have the common supportN. I use
the likelihood ratio order (Karlin and Rubin, 1956) as a partial order on

{
fθ (·)

}
θ∈Θ.

Definition 2 Degree distribution fθ (·) is said to stochastically dominate fθ ′ (·) ac-
cording to the likelihood ratio order if for all d, d′ ∈ N with d > d′,

fθ (d)
fθ ′ (d)

>
fθ (d′)
fθ ′ (d′)

.

I denote this stochastic dominance order by>LR and assume that fθ (·) >LR fθ ′ (·)
if θ > θ′.28 For each degree distribution fθ (·), let f̃θ (·) be the corresponding condi-
tional degree distribution. Similarly, I denote by hθ (·) and h̃θ (·) the corresponding
hazard rate functions.

The likelihood ratio order has the following three useful properties:

(i) The likelihood ratio order between two degree distributions is preserved for
the corresponding conditional degree distributions:29

fθ (·) >LR fθ ′ (·) implies f̃θ (·) >LR f̃θ ′ (·).
27However, many dynamic network formation models generate correlations between neighboring

nodes. In fact, real network datasets often exhibit positive or negative neighbor affiliations (Newman,
2003).

28The likelihood ratio order is not a complete ordering of an arbitrary family of degree distribu-
tions.

29For all d > d ′,

f̃θ (d)

f̃θ′ (d)
=

dfθ (d)/〈d〉θ
dfθ′ (d)/〈d〉θ′

>
d ′ fθ (d ′)/〈d〉θ
d ′ fθ′ (d ′)/〈d〉θ′

=
f̃θ (d ′)

f̃θ′ (d ′)
,
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(ii) The likelihood ratio order >LR induces the first-order stochastic dominance
order, denoted by >FOSD for the degree distributions and the conditional
degree distributions:30

fθ (·) >LR fθ ′ (·) implies fθ (·) >FOSD fθ ′ (·) and f̃θ (·) >FOSD f̃θ ′ (·).

(iii) The likelihood ratio order >LR provides the monotone hazard rate order for
the hazard rate functions of the degree distributions and the conditional degree
distributions:

fθ (·) >LR fθ ′ (·) implies hθ (d) > hθ ′ (d) and h̃θ (d) > h̃θ ′ (d) for all d.

As will be presented in later sections, the above properties are useful to analyze
comparative statics of network game outcomes.

Strategy and equilibria. A strategy for agent i is a map σi : N → 4(R+) where
4(R+) is the set of probability distributions overR+. I consider symmetric Bayesian
equilibria (equilibria). Thus, an equilibrium is represented by a strategy σ(·), and
so each agent’s equilibrium strategy depends only on her degree.

When agent i with degree di chooses action xi ∈ R+, her expected utility is

U (xi, σ, di) = xi −
1
2

x2
i + δdiẼ [σ] xi,

where Ẽ [σ] :=
∑∞

d=1 σ(d) f̃ (d) is the expected action of a neighboring agent. A
strategy σ(·) establishes an equilibrium if σ(di) is a best response for any agent
with degree di.

Definition 3 A strategy σ(·) is an equilibrium if for any agent i with degree di,

U (xi, σ, di) ≥ U (x′i, σ, di) for all x′i ∈ R+ and xi ∈ supp(σ(di)).

1.5.2 Properties of Equilibria
The expected utility of agent i with degree di is U (xi, σ, di) = xi −

1
2 x2

i +

δdiẼ [σ] xi for given strategy σ(·). Maximizing the expected utility U (xi, σ, di)
with respect to xi yields a linear best reply function:

xB (σ, di) = 1 + δdiẼ [σ] . (1.5.1)
where 〈d〉θ =

∑∞
d=1 dfθ (d) and 〈d〉θ′ =

∑∞
d=1 dfθ′ (d).

30The first-order stochastic dominance order between the degree distributions does not induce
the first-order stochastic dominance order between the conditional degree distributions. To see this,
consider two degree distributions, f1(1) = 0.30, f1(2) = 0.45, and f1(3) = 0.25; f2(1) = 0.45,
f2(2) = 0.30 and f2(3) = 0.25. Then, fθ (·) >FOSD fθ′ (·), but f̃θ (·) ≯FOSD f̃θ′ (·) because
F̃θ (1) = 0.25 > F̃θ′ (1) = 0.15 but F̃θ (2) = 0.58 < F̃θ′ (1) = 0.62.
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In any equilibrium, the corresponding equilibrium strategy σ∗(·) is a best reply
with respect to σ∗(·): xB (σ∗, ·) = σ∗(·). In any equilibrium, agents’ beliefs must
be consistent: by taking expectations of both sides in equation (1.5.1), it must hold
that

Ẽ
[
σ∗

]
= 1 + δ〈d̃〉E

[
σ∗

]
=

1
1 − δ〈d̃〉

,

where 〈d̃〉 =
∑∞

d=1 d f̃ (d) is the expectation of a neighboring agent’s degree. Thus,
an equilibrium exists if and only if δ〈d̃〉 < 1. This equilibrium condition can be
further simplified as the ratio of the first and second moments of degree distribution
f (·) as:

〈d̃〉 =
∞∑

d=1
d f̃ (d) =

∞∑
d=1

d
(

df (d)
〈d〉

)
=
〈d2〉

〈d〉
.

Thus, the sufficient and necessary condition for existence of equilibria is δ 〈d
2〉
〈d〉 < 1.

To understand the intuition behind the above equilibrium condition, consider a
myopic best reply dynamics such that σ1(·) := 1, and recursively define σn(·) :=
xB (σn−1, ·) for n ≥ 2. The initial strategy σ1(·) corresponds to a strategy in which
individuals take the minimum action. When agent i myopically best responds to
σ1(·), she assumes that her neighboring agents take action Ẽ[σ1] = 1. Thus,
when her degree is di, her best response is σ2(di) = 1 + δdi. Now, for the next
best reply, agents optimize their actions by assuming that the other agents play
strategy σ2(·). Each agent i finds the expectation of her neighboring agent’s action
as Ẽ[σ2] = 1 + δ 〈d

2〉
〈d〉 . Thus, when her degree is di, agent i’s myopic best reply

is σ3(di) = 1 + δdi + δ
2 〈d2〉
〈d〉 di. This myopic best reply dynamics continues until

it converges.31 To establish that this dynamics converges, it must hold that the
influence of the neighboring agent’s expected actions converges as δ 〈d

2〉
〈d〉 < 1.

In the above dynamics, the agents with very high degrees serve as conduits for ac-
celerating actions of other agents with low degrees. When the degree distribution is
heavy-tailed, there is a sufficient number of agents with enormouslymany neighbors.
Since the action space is unbounded, the presence of such agents will significantly
increase other agents’ actions. Thus, the above myopic best reply dynamic will

31This myopic best reply dynamics is called the mean-field dynamics and frequently used in
diffusion models (e.g., Jackson and Rogers, 2007b; López-Pintado, 2008; Shin, 2016a). These
dynamic models implicitly assume that (i) in each period, agents consider a new strategic interaction
in a network, and (ii) the stochastic dynamics is represented by a deterministic dynamics. These two
assumptions remarkably simplify the models, and allow researchers to compare diffusion outcomes
in terms of the network structure that underlies.
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diverge. For example, consider a network having a scale-free degree distribution.
Since a scale-free degree distribution has a functional form of f (d) = cd−γ where
c is a normalization factor, its second moment is infinite if and only if γ ≤ 3. The
scale parameter is frequently estimated to take values within the (2, 3) interval.32
Therefore, the empirical scale-free degree distributions predict that the myopic best
reply dynamics diverges.

However, the degree distribution of a network is not heavy-tailed if it satisfies the
IHRP. Specifically, the IHRP provides a finite second moment, and so the myopic
best reply dynamics converges as long as δ is not too large. Moreover, since the best
reply function is linear, the equilibrium is uniquely exists. The following proposition
summarizes these points.

Proposition 5 If the degree distribution satisfies the increasing hazard rate prop-
erty, then there exists an equilibrium if and only if δ 〈d

2〉
〈d〉 < 1. The equilibrium is

unique if it exists.

I finally remark on two theoretical features of the equilibrium in the current
incomplete information setting, comparing to the equilibria in a complete informa-
tion setting. First, the current equilibrium condition is less restrictive in that it is
independent of the network size that underlies. In the network games with complete
information, Nash equilibria exist if and only if δλmax(G) < 1. However, in promi-
nent dynamic network formation models, the largest eigenvalue diverges to infinity
as the size of the network increases. For example, in the PA model, it grows at the
rate of

√
n where n is the size of the network (e.g., Chung et al., 2003; Flaxman

et al., 2005). Moreover, as shown in the previous section, the largest eigenvalue
can be very large even when the IHRP is satisfied. Thus, the equilibrium condition
under complete information is more restrictive.

Second, the equilibrium under incomplete information is easier to calculate. In
the network game with complete information, the equilibrium action profile is a
function of the eigenvalues of the adjacency matrix (Ballester et al., 2006), which
are more expensive to calculate than finding the second moment of the degree
distribution. Specifically, for a given n × n adjacency matrix, the time complexity

32For example, Barabási andAlbert (1999)measure the scale-free parameter for the social network
between movie actors. Two actors share a link if they have appeared in at least one movie together.
The authors identify the scale parameter 2.3 for the degree distribution. See Chapter 1 in Durrett
(2010) for more examples of the estimated scale parameters.
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of finding the second moment is O(n2).33 On the other hand, the time complexity
of an algorithm that finds all eigenvalues is roughly tied to the complexity of matrix
multiplications, which require at least O(n2.3) time.34

1.6 Application II: Mechanism Design
I study a revenue-maximizing Bayesian incentive compatible mechanism. I

consider a monopolistic seller who determines allocations to buyers. Buyers are
connected to one another, and a buyer’s valuation of her allocation depends on her
neighbors’ allocations as well. The buyers know their degree but have incomplete
information about the degrees of their neighboring buyers. Thus, the degree distri-
bution is a type distribution of the buyers. By assuming its IHRP, I characterize an
optimal mechanism.

1.6.1 The Model
Consider the following mechanism design problem. There are n buyers indexed

by i, and N = {1, . . . , n} is the set of buyers. There is a single seller who owns an
infinite number of an object. The object is divisible and has no value for the seller.
I assume that each buyer has a unit demand for the object. The buyers and seller
know the degree distribution of the underlying network between the buyers.

Agent i’s type is her degree di ∈ D = {0, . . . , dmax}, andDn is the set of all type
profiles. By the assumption of degree independence, buyer i’s type is drawn from
the degree distribution f (·), and is independent of other buyers’ types. I assume that
each buyer’s degree is her private information. The joint type distribution, except
buyer i’s type, is f−i (d−i) =

∏
j,i f (d j ) where d−i ∈ D

n−1 is the type profile of all
buyers except buyer i’s type. Although realizations of types are independent, buyer
i’s utility has allocative externalities. Let x = (xi, x−i) ∈ [0, 1]n be an allocation
vector of the buyers, where x−i represents the allocation vector except buyer i’s
allocation. Buyer i’s value of allocation vector x is vi (xi, x−i) = xi

∑
j∈Ni

x j . I
consider buyers with a quasi-linear utility function: when buyer i pays pi to the
seller, her utility is vi (xi, x−i) − pi.

By the revelation principle, I focus on direct revelation mechanisms (mecha-
nisms): buyers directly report their types, and an allocation vector and a payment

33The computation of a degree distribution can be done in O(n2) time. For example, the naïve
algorithm, which simply iterates through each element of the adjacency matrix to count the number
of neighbors each node has, achieves the bound of O(n2) to find the degree distribution. Given a
degree distribution, one can easily calculate the second moment in O(n) time.

34For instance, Coppersmith and Winograd (1990) suggest an algorithm that achieves the bound
of O(n2.376). There is no known algorithm that achieves O(n2).
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vector are determined according to a pre-determined rule. Formally, let X = [0, 1]n

be the set of allocation vectors. The seller specifies a direct revelation mechanism
(x, p), where x is an allocation rule, and p is a payment scheme. The allocation rule
is represented by x = (x1, . . . , xn) where xi (·) : Dn → [0, 1] is an allocation rule
for buyer i. Similarly, the payment scheme is denoted by p = (p1, . . . , pn) where
pi (·) : Dn → R+ is a payment scheme for buyer i. Therefore, when the reported
profile is d = (d1, . . . , dn), buyer i obtains xi (d) unit of the object and pays pi (d) to
the seller.

Given a mechanism (x, p), I define for each buyer i the conditional expected
allocation function ξi (·) : D → [0, 1] and the conditional expected payment function
πi (·) : D → R+ as

ξi (di) :=
∑

d−i∈Dn−1

xi (di, d−i) f−i (d−i),

πi (di) :=
∑

d−i∈Dn−1

pi (di, d−i) f−i (d−i).

Suppose buyer i believes that other buyers report their types truthfully. When
her type is di, buyer i’s expected valuation by reporting type d′i is

Vi (d′i, di) = ξi (d′i )
∑
j∈Ni

Ẽ

[
ξ j (d j )

]
,

where Ẽ
[
ξ j (d j )

]
:=

∑
d∈D f̃ (d j )ξ j (d j ) is the expectation of neighbor j’s alloca-

tion.
I restrict my attention to anonymous mechanisms: if di = d j , then ξi (di) =

ξ j (d j ) and πi (di) = π j (d j ) for all i, j ∈ N . With this restriction, a mechanism is
simply expressed by a pair of two functions (ξ, π): if buyer i reports type d′i , she
receives ξ (d′i ) unit of the object and pays π(d′i ). Thus, for a buyer of type d, her
expected value from reporting d′ is

V (d′, d) = ξ (d′)d ξ̃,

where ξ̃ =
∑dmax

d=1 ξ (d) f̃ (d) is the expected allocation of a neighboring buyer.
A mechanism (ξ, π) is called incentive compatible if

V (d, d) − π(d) ≥ V (d′, d) − π(d′) for all d′, d ∈ D .

In addition, a mechanism is called (interim) individually rational if for all i ∈ N ,

V (d, d) − π(d) ≥ 0 for all d ∈ D .
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Since the seller’s per-capita expected revenue is
∑dmax

d=1 f (d)π(d), his mechanism
design problem is formulated as

maximize
(ξ,π)

dmax∑
d=1

f (d)π(d)

subject to V (d, d) − π(d) ≥ V (d′, d) − π(d′) for all d′, d ∈ D,

V (d, d) − π(d) ≥ 0 for all d ∈ D,

ξ (d) ∈ [0, 1] for all d ∈ D.

(1.6.1)

1.6.2 Revenue-Maximizing Mechanism
For any mechanism generating a positive revenue to the seller, V (·, ·) is strictly

supermodular: for all d > d′ and k > k′,

V (d, k) − V (d′, k) > V (d, k′) − V (d′, k′).

For this strict supermodularity, a mechanism (ξ, π) is incentive compatible if and
only if the allocation rule ξ (·) ismonotone: ξ (d) ≥ ξ (d′) for all d ≥ d′. The mono-
tonicity simplifies the incentive compatibility constraints by the adjacent incentive
compatibility constraints:35

V (d, d) − π(d) ≥ V (d + 1, d) − π(d + 1) for all d = 0, . . . , dmax − 1 (1.6.2)

V (d, d) − π(d) ≥ V (d − 1, d) − π(d − 1) for all d = 1, . . . , dmax. (1.6.3)

Needless to say, all the downward incentive compatibility constraints (1.6.3) must
be binding if a mechanism (ξ, π) maximizes the seller’s revenue. Since any isolated
buyerwith zero degrees takes no value fromhis allocation, I set π(0) = 0without loss
of generality. Since the downward incentive compatibility constraints are binding,
the payment scheme satisfies

π(d) = π(d − 1) +
(
V (d, d) − V (d − 1, d)

)
= ξ̃

d∑
k=1

(
ξ (k)k − ξ (k − 1)k

)
for all d ≥ 1, where ξ̃ =

∑dmax
d=1 ξ (d) f̃ (d) is the expected allocation of a neighboring

buyer. It follows that if ξ (·) is monotone, the above payment scheme provides that
all the upward incentive compatibility constraints (1.6.2) are satisfied. Thus, the
seller’s problem becomes

maximize
ξ:D→[0,1]




dmax∑
d ′=1

f̃ (d′)ξ (d′)





dmax∑
d=0

f (d)
(
ξ (d)

(
d −

1 − F (d)
f (d)

))
subject to 0 ≤ ξ (0) ≤ ξ (1) ≤ · · · ≤ ξ (dmax) ≤ 1.

(1.6.4)

35See Chapter 6 in Vohra (2011) for a proof.
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The seller’s objective function can be rewritten as

dmax∑
d=1

f (d)
(
ξ̃ξ (d)

(
d −

1 − F (d)
f (d)

))
,

where ξ̃ =
∑dmax

d=1 ξ (d) f̃ (d) is the expected allocation of a neighboring buyer. The
term presents in the summation, ξ̃

(
d− 1−F (d)

f (d)
)
, is the virtual value of a buyer of type

d. Due to the allocative externalities between neighboring buyers, the virtual value
consists of two components:

(
d − 1−F (d)

f (d)
)
and ξ̃. The first component that does

not depend on other buyers’ allocations is the virtual type (Myerson, 1981). The
second component ξ̃ newly appears in the current model, and I call this the social
value. Since the social value depends on allocation rule ξ (·), the seller takes it into
account his revenue maximization problem.

If the seller fully knows the buyers’ types, he can choose the efficient allocation
rule where ξ (d) = 1 and the payment rule π(d) = d for all d. Since every buyer
knows that the other neighboring buyers obtain one unit of the object, this allocation
rule maximizes the social value ξ as one. However, when the seller has incomplete
information, he has to incentivize the buyers to truthfully report their types.

Note that if allocative externalities do not exist, and the IHRP is satisfied, the
seller can incentivize the buyers by solving the following pointwise maximization
problem of the individual values:

maximize
ξ:D→[0,1]

dmax∑
d=1

f (d)
(
ξ (d)

(
d −

1 − F (d)
f (d)

))
subject to 0 ≤ ξ (0) ≤ ξ (1) ≤ · · · ≤ ξ (dmax) ≤ 1.

(1.6.5)

The solution of the above problemmaximizes ξ (d)
(
d− 1−F (d)

f (d)
)
for each d (Myerson,

1981). Note that the virtual type
(
d − 1−F (d)

f (d)
)
undercuts the buyers’ true types, and

so the resulting social value is strictly less than one. Since the seller’s true objective
function contains the social value, the solution of alternative problem (1.6.5) does
not maximize the seller’s true per-capita revenue in (1.6.4). This suggests that the
seller has to balance the maximization of the social value and the maximization of
the individual value. By using the example in the following section, I will clearly
illustrate the tension between these two maximizations.

Comparative statics. Although it is impossible to obtain a closed-form solution
of the optimal mechanism, it follows that the seller’s per-capita revenue monotone
increases as the density of the underlying network increases. By using the notion of
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likelihood ratio order, let fθ (·) and fθ ′ (·) be the degree distributions of two networks
with fθ (·) >LR fθ ′ (·). As shown in the previous section, fθ (d)

1−Fθ (d) <
fθ ′ (d)

1−Fθ ′ (d) for all
d, and f̃θ (·) >FOSD f̃θ ′ (·).

Suppose that the seller chooses the same allocation rule ξ (·) for both networks.
Then, as the degree distribution changes from fθ ′ (·) to fθ (·), the individual value
strictly increases as

d −
1 − Fθ (d)

fθ (d)
> d −

1 − Fθ ′ (d)
fθ ′ (d)

for all d. In addition, the first-order stochastic dominance, f̃θ (·) >FOSD f̃θ ′ (·),
implies that the social value strictly increases as

dmax∑
d=1

ξ (d) f̃θ (d) >
dmax∑
d=1

ξ (d) f̃θ ′ (d).

These two observations imply that for any given allocation rule, the seller’s objec-
tive function in (1.6.4) is strictly increasing as the underlying network changes its
density in terms of the likelihood ratio order. Therefore, the seller’s revenue strictly
increases. The following proposition summarizes this idea.

Proposition 6 If the degree distribution satisfies the increasing hazard rate prop-
erty, then there exists a monotone revenue-maximizing mechanism. The seller’s
revenue strictly increases as the degree distribution increases in terms of likelihood
ratio order.

1.6.3 Example: Uniform Pricing
I here analyze the seller’s optimal mechanism problem when he cannot price

discriminate the buyers. The seller chooses only one price π ≥ 0. Since the valuation
of the object is strictly increasing in degree, any buyer with a degree higher than a
threshold degree will be willing to pay the posted price π and obtain one unit of the
object. Thus, in any equilibrium of the game with incomplete information among
the buyers, the buyers with the threshold degree must obtain zero utility.

The above observation provides that it suffices to consider a binary allocation
rule ξ (·) characterized by a threshold degree d as ξ (d) = 1 if d ≥ d, and ξ (d) = 0
otherwise. By the incentive compatibility constraint for d, the expected utility of
the buyers with the threshold degree d must be zero. Thus, the price π satisfies
π = V (d, d) = d

(
1 − F̃ (d − 1)

)
, and the seller’s revenue function for a given

threshold degree d is

Ψ(d) = d
(
1 − F̃ (d − 1)

)︸               ︷︷               ︸
posted price

(
1 − F (d − 1)

)︸             ︷︷             ︸
demand

.
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I now characterize the seller’s optimal choice of the threshold degree. I note
that the seller’s revenue function is single-peaked if the degree distribution satisfies
the IHRP. To explain why, I define the seller’s marginal revenue by increasing the
threshold degree d to d + 1 as 4Ψ(d) := Ψ(d + 1) − Ψ(d). The marginal revenue
satisfies (i) 4Ψ(0) > 0, and (ii) a single-crossing property that 4Ψ(d) ≤ 0 implies
4Ψ(d′) < 0 for all d′ > d. In words, (i) represents that the seller excludes the
buyers who have no neighboring buyers: otherwise, the seller has to make the price
zero to sell the object to those buyers. The single-crossing property (ii) establishes
that the seller’s revenue function has a unique maximizer.

Indeed, the single-crossing property follows from the fact that both the degree
distribution and the conditional degree distribution simultaneously satisfy the IHRP.
To demonstrate, I write the marginal revenue as

4Ψ(d) =
1(

1 − F̃ (d − 1)
) (

1 − F (d − 1)
) {

1 +
(
d + 1

) (
h̃(d)h(d) − h̃(d) − h(d)

)}
.

Since h̃(d)h(d) −
(
h̃(d) + h(d)

)
is strictly decreasing by Lemma 1, the marginal

revenue satisfies the single-crossing property. The seller’s revenue is maximized at
d∗ = inf{d |4Ψ(d) ≤ 0}. By ignoring the integer-value problem, the optimal choice
of threshold degree d∗ is easily characterized by setting 4Φ(d∗) = 0:

1
d∗ + 1

= h(d∗) + h̃(d∗) − h̃(d∗)h(d∗). (1.6.6)

This characterization directly shows the existence and uniqueness of a threshold
degree: the left-hand side strictly decreases in d, but the right-hand side strictly
increases in d.

The above characterization equation has the following economic interpretation.
Suppose that the social value is fixed as ξ̃, and that the seller proposes a take-it-or-
leave-it offer to a buyer at price π. Since the buyer obtains a zero utility if she has
degree d = π/ξ̃, the probability that this buyer accepts the offer is 1−F (d−1). Thus,
the seller’s revenue function in terms of threshold degree d is ξ̃d

(
1 − F (d − 1)

)
.

The seller’s revenue is uniquely maximized at d′ satisfying 1
d ′+1 = h(d′), and it

is independent of the social value ξ̃. Therefore, the first term in equation (1.6.6)
explains the optimal choice of threshold degree when he does not take into account
the change of the social value by his mechanism. However, the seller has to consider
the social value to maximize his revenue as explained for the general model. In
equation (1.6.6), the latter term

(
h̃(d) − h̃(d)h(d)

)
captures this factor. Since

h̃(d)− h̃(d)h(d) is strictly positive, the threshold degree d∗ solving equation (1.6.6)
is strictly smaller than d′.
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The optimal choice of threshold degree d∗ as strictly smaller than d′ has the
following meaning. Let π∗ = d∗

(
1 − F̃ (d∗ − 1)

)
and π′ = d′

(
1 − F̃ (d′ − 1)

)
be

the corresponding prices. Since the degree distribution f (·) satisfies the strictly
IHRP, it follows that π∗ < π′.36 Therefore, by setting a lower price π∗, the seller
increases the demand. In turn, the lower price provides a higher return to the seller
than a price that only maximizes the individual value. The following proposition
summarizes the observations.

Proposition 7 If the degree distribution satisfies the increasing hazard rate prop-
erty, then there exists a unique threshold degree d∗ that maximizes the seller’s
revenue.

1.7 Concluding Remarks
Researchers are interested in analyzing strategic interaction in large networks. In

the modeling perspective, they often consider an incomplete information setting in
which agents know their own connections, but have uncertainty about connectivity of
their neighboring agents. In this setting, the IHRP of the degree distribution plays
a key role in characterizing equilibrium outcomes. In addition to the theoretical
implications of the IHRP, the current paper presents a dynamic network formation
model that explains why empirical hazard rates exhibit different patterns. This
network formation model with empirical observations justifies the use of the IHRP
as an assumption of network games.

One important factor should be taken into account in future research. It has
been recently shown that networks having the same degree distribution may have
very different network structures. Specifically, Bubeck et al. (2015) show that the
initial network has a great impact on the limiting graph generated by the PA model.
This is a surprising result because the degree distribution generated by the PA
model converges almost surely to a scale-free distribution regardless of the initial
network. Beyond just finding a limiting degree distribution, the dynamic network
formation literature is evolving in a direction of identifying the limiting distribution
of networks.

Therefore, in linewith the literature on strategic network formation, it is definitely
worth building a strategic dynamic network formation model that incorporates how
agents form beliefs about the future networks for a given network, and how it affects

36To see this, let d ′′ be the degree that maximizes d
(
1 − F̃ (d − 1)

)
. Since f̃ (·) satisfies the

strictly IHRP, such d ′ is unique. It follows that d ′ < d ′′ by h(d) > h̃(d) for all d. Note also that
d
(
1 − F̃ (d − 1)

)
is strictly increasing in d for d ≤ d ′′. Therefore, π∗ < π′ because d∗ < d ′ < d ′′.
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their decision on link formation. I conjecture that this approach will generate a
probability distribution over a set of multiple networks, and so it will enrich the
limiting equilibrium network structure compared to what the previous strategic
network formation models predict.
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C h a p t e r 2

MONOPOLY PRICING AND DIFFUSION OF (SOCIAL)
NETWORK GOODS

2.1 Introduction
2.1.1 Overview

There are many goods for which a consumer’s valuation is influenced by her
existing social relationships. For instance, when a consumer is thinking of joining
an online communication service (e.g., Skype or WhatsApp), she considers how
many of her friends and co-workers are currently subscribing the same service.
Because of this interdependency of valuations, demand for a good depends on social
relationships between all consumers. Social relationships between all consumers
can be represented by a social network that consists of consumers and a set of links
between them. It then follows that a monopolistic seller would factor social network
structures into his optimal marketing strategy.

In this paper, I analyze an optimal dynamic pricing strategy for a subscription
social network good sold by a monopolist. In the model, the good is a social
network good in the sense that positive network effects are generated only between
consumers sharing a link within a social network. Subscription means that in each
period, consumers need to pay a subscription price (e.g., monthly service fees of
cell phone services) to use the good. I assume that in each period, there is only
one subscription price that applies to all the consumers, and that each consumer
myopically best responds to population behavior in the previous period (mean-field
approximation). Under these assumptions, themonopolistmaximizes the discounted
sum of per-period profits by choosing a sequence of subscription prices, which I
call a pricing plan.

The current monopoly market for a subscription social network good is different
from other types of network good markets. First, in contrast with a network good
market in which each consumer benefits from all other subscribers, a consumer ben-
efits only from her neighboring consumers’ subscription. I assume that consumers
know only their own degree and are uncertain about the subscription decisions of
other consumers. Thus, other things equal, a consumer’s value from subscribing to
the good depends on her degree, the number of her neighboring consumers. For this,
in the model, consumer heterogeneity is summarized by the degree distribution of
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the social network. Thus, the monopolist takes the degree distribution into account
when determining his optimal pricing plan.

Second, in contrast with a durable goodmarket inwhich a consumer permanently
leaves the market after her initial purchase, no consumer permanently leaves the
market for a subscription good. As a consequence, the monopolist does not compete
with his future selves in demand. Rather, as a function of the degree distribution, his
dynamic problem is how to adjust the size of positive network effects by changing
subscription prices over time.

In my model, the monopolist balances an intertemporal tradeoff in each period:
maximizing the current profit versus increasing future profits by encouraging more
consumers to subscribe to the good. In period t, if the monopolist lowers the
subscription price below the price that maximizes profit in period t, more consumers
subscribe to the good. This will lead consumers to expect that their neighboring
consumers are more likely to subscribe to the good in period t + 1; the demand
shifts up, and it provides a chance for the monopolist to obtain a higher profit in
period t + 1. The monopolist balances the above tradeoff across periods in order to
maximize his discounted sum of per-period profits.

I characterize optimal pricing plans and analyze their dynamic properties. In-
terestingly, any optimal pricing plan has the property that if at some period the
subscription price is lower than its steady state level, then it will become higher than
its steady state level within finite periods, and vice versa. This pattern originates
from the fact that, for example, when the size of network effects is high due to a
high subscription rate in the previous period, the monopolist has an incentive to set
a high subscription price in order to obtain a higher profit in that period. Moreover,
since an optimal pricing plan oscillates around its steady state level, the resulting
subscription rate also exhibits oscillating patterns.

The rest of my analysis focuses on properties of the unique steady state of the
monopoly market where both the monopolist and consumers do not change their
decisions.1 First, the subscription rate at the steady state of the market is at the
highest level that is consistent with the steady state price level. Because of this, the
steady state is robust to small perturbations to consumers’ belief in the subscription
rate. Second, I find a closed-form expression for the deadweight loss from the
monopoly that consists of two parts: welfare loss from excluded consumers and
welfare loss from the lost network effects. Third, I examine the effects of changes

1Since I consider an incomplete information setting, the unique steady state can be interpreted
as a perfect Bayesian equilibrium (Jackson and Yariv, 2007).
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in the monopolist’s discount factor and the density of social networks in terms of
the likelihood ratio property.

2.1.2 Related Literature
The current paper is related to the literature on diffusion in social networks.

Bass (1969) introduces a non-strategic diffusion model of product adoptions, and
expresses changes of the adoption rate by using ordinary differential equations.
Granovetter (1978) proposes an alternative dynamic model where in each period,
each agent best responds to population behavior in the previous period. Both Bass
(1969) and Granovetter (1978) do not account for the impact of social network
structures on diffusion outcomes. Several recent papers highlight the impact of
particular social network structures (e.g., Jackson and Rogers, 2007b; Jackson and
Yariv, 2007; López-Pintado, 2008; Young, 2009). Although these models can be
used to analyze consumers’ adoption behavior, they do not introduce a firm that
might influence diffusion processes in order to maximize his profit. I take the
framework by Jackson and Yariv (2007) and consider a monopolist who changes
subscription incentives by changing subscription prices. This leads my model to
predict a unique steady state.

The current paper is also related to the growing literature on optimal marketing
strategy when consumers, connected to one another in a social network, influence
one another (e.g., Fainmesser and Galeotti, 2016; Campbell, 2013).2 Fainmesser
and Galeotti (2016) consider a static price discrimination problem rather than the
dynamic setting I consider. Specifically, they consider a monopolist who knows the
in-degree and out-degree distributions of the underlying social network. They show
that the average and variance of the two degree distributions are sufficient statistics
to characterize the optimal price discrimination rule. In contrast, in my dynamic
setting, the steady state price level depends on the hazard rate function.

Campbell (2013) models the diffusion process as a percolation process, and
finds the value of informed consumers asymptotically. A monopolist can influence
the percolation process by changing a purchasing price only at the outset of the
process. However, in my model, the monopolist optimally sets a subscription price
in every period, depending on the present subscription rate. Because of this, the

2In the computer science literature, several papers study the complexity of finding an optimal
strategy in various settings. For example, Hartline et al. (2008) and Arthur et al. (2009) consider
a setting in which a monopolist sequentially approaches consumers and offers a different price for
each consumer. Since finding an optimal strategy is NP-hard, the authors of these papers propose
an algorithm that generates a simple strategy that returns approximately the maximum expected
revenue.
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comparative static results on the steady state rely on different statistics of the degree
distribution.

Conceptually, the current paper is related to the classical literature on dynamic
pricing of subscription network goods sold by a monopolist.3 Rohlfs (1974) is one
of the first to inspect consequences of dynamic pricing and diffusion. Dhebar and
Oren (1985) show that assuming a particular subscription pattern, an optimal pricing
plan monotonically increases to the steady state price level. Similarly, Radner et al.
(2014) prove that assuming a concave distribution of consumer heterogeneity, an
optimal pricing plan monotonically decreases (increases) to the steady state price
level if the initial subscription rate is above (below) the subscription rate at the
steady state. In my model, consumer utilities derived from subscribing to the good
depend on connectivity in the social network. Moreover, my model does not assume
a particular subscription pattern, so that I obtain oscillating optimal pricing plans
instead of monotone plans in the previous papers.

2.2 The Model
Social network. I consider a finite (but large) set of consumers N = {1, . . . , i, . . . , n}.
Social relationships between the consumers are represented by a social network
〈N, L〉, where L ⊆ N × N is the set of links that represents pairwise social relation-
ships among the consumers. The social network is undirected: (i, j) ∈ L if and only
if ( j, i) ∈ L. For consumer i, N i := { j ∈ N |(i, j) ∈ L} is the set of neighbors, and
its cardinality xi := |N i | is called consumer i’s degree. As will be explained later,
a key property of the social network is its degree distribution f : N0 → R

+, where
f (x) represents the fraction of consumers with degree x.4 To obtain clear results,
I assume that the degree distribution is approximated by a continuous probability
density function, which has full support R+0 and is continuously differentiable.5 I
denote by F the corresponding cumulative degree distribution. I define a function
f̃ : R+0 → R

+
0 as f̃ (x) := x f (x)

〈x〉 , where 〈x〉 is the expected degree under the degree
3There are several papers (e.g., Bensaid and Lesne, 1996; Cabral et al., 1999) that find conditions

under which an optimal pricing of a durable network good is increasing, contrary to the Coase
theorem (Coase, 1972). Bensaid and Lesne (1996) find that if the network effect on consumer utility
is substantial, the monopolist can credibly increase prices as time passes. Cabral et al. (1999) propose
a two-period model, which shows that if consumers have incomplete information about the demand
size, there exists a unique perfect Bayesian equilibrium in which price in the second period is higher
than price in the first period. See surveys by Katz and Shapiro (1994), Farrell and Klemperer (2007),
and Shy (2011).

4I use the following notation: R+ := (0,∞) and R+0 := {0} ∪ R+.
5This approximation is reasonable when the population size n is large. For example, the degree

distribution of an undirected Erdős-Rényi graph G(n, p) is approximated by the normal distribution
N (np, np).
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distribution f . I call f̃ the conditional degree distribution, and f̃ (x) represents the
conditional probability that a consumer’s degree is x, conditional on being at the
end of a randomly and independently chosen link in the social network.

I take the following assumption of the increasing hazard rate property (IHRP):

Assumption 2 For all x ∈ R+,

d
dx

(
f (x)

1 − F (x)

)
≥ 0.

The IHRP of f indicates that, among consumers having at least x neighbors, the
conditional fraction of consumers with degree exactly x increases as x increases.
Several degree distributions exhibit the IHRP. For example, an exponential degree
distribution generated through a random attachment model satisfies the IHRP.6 A
degree distribution generated by the Watts-Strogatz model (Watts and Strogatz,
1998) also satisfies the IHRP. Moreover, several empirical degree distributions
exhibit the IHRP (Shin, 2016b).7

The following lemma provides useful properties of the hazard rate functions of
f and f̃ that will play important roles throughout the paper.

Lemma 2 If f satisfies the IHRP, then the following properties hold:

(i) The strictly IHRP of f̃ : for all x ∈ R+,

d
dx

*
,

f̃ (x)

1 − F̃ (x)
+
-
> 0. (2.2.1)

(ii) The dominance relationship: for all x ∈ R+0 ,

f (x)
1 − F (x)

>
f̃ (x)

1 − F̃ (x)
. (2.2.2)

(iii) The single crossing property: there exist x, x̃ ∈ R+ such that x < x̃ and

1
x
=

f (x)
1 − F (x)

and
1
x̃
=

f̃ ( x̃)

1 − F̃ ( x̃)
. (2.2.3)

6A simple discrete-time random attachment model generates a variant of exponential degree
distributions in expectation. In the model, nodes newly join to existing networks and form links to
the existing nodes. Then, in expectation, the resulting degree distribution becomes an exponential
distribution. See Jackson (2010) for details.

7Of course, there are some degree distributions not satisfying the IHRP. A scale-free distribution
generated by the preferential attachment model (Barabási and Albert, 1999) is an example.
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The strictly IHRP of f̃ has a probabilistic interpretation that knowing that a
consumer’s neighbor has at least x neighbors, the conditional probability that the
neighbor has degree exactly x increases as x increases. The hazard rate function
of f̃ is strictly smaller than that of f as stated in (2.2.2) because f̃ is calculated
based on additional information that a neighbor’s degree is not zero. The single
crossing property is a direct consequence of (2.2.1) and (2.2.2). The following
example illustrates a case in which the degree distribution is an exponential degree
distribution, and properties in Lemma 2 are easily illustrated.

Example (Exponential Degree Distribution) Consider the case of f (x) = e−x/ξ
ξ .

Then, f̃ (x) = xe−x/ξ
ξ2 , and the corresponding hazard rate functions are calculated as

f (x)
1 − F (x)

=
1
ξ

and
f̃ (x)

1 − F̃ (x)
=

x
ξ (ξ + x)

.
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(a) f (x) and f̃ (x)
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Figure 2.1: Illustration of Lemma 2

Figure 2.1(a) illustrates f (x) and f̃ (x) when ξ = 20. Observe that f̃ (x) (the
dotted line) dominates f (x) (the solid line) for all x ≥ 〈x〉 = ξ. This captures the
idea that in a social network, highly connected consumers are involved in a larger
fraction of the links.8 As depicted in Figure 2.1(b), the hazard rate functions of f

and f̃ satisfy properties in Lemma 2: (i) the hazard rate function of f̃ (the black
8One may interpret this result as a probabilistic version of friendship paradox in the social

network literature. Roughly speaking, the friendship paradox states that on average, most people
have fewer friends than their friends have. See Feld (1991) for introduction of the related literature
and Hodas et al. (2013) for evidence in recent social network services.
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dotted line) is strictly increasing in x, (ii) it is strictly smaller than the hazard rate
function of f (the solid line), and (iii) there are two crossing points, x and x̃.

Network good market. I consider a monopoly market for a subscription social
network good. The monopolist produces the good at zero marginal production
cost and sells it to the consumers for infinitely many periods t = 1, 2, 3, . . . . The
monopolist’s discount factor is denoted by β ∈ (0, 1). The monopolist chooses a
pricing plan, a sequence of non-negative subscription prices {pt }

∞
t=1, to maximize

his discounted sum of per-period profits. I will formulate the monopolist’s dynamic
optimization problem at the end of the current section.

The good is a subscription good, which indicates that a consumer needs to pay
a subscription price pt to use the good in each period t. Without loss of generality,
I assume that a consumer obtains a utility of zero if she does not subscribe to the
good. To qualify as a social network good, I assume that positive network effects
are generated only between consumers sharing a link. Formally, if a consumer with
degree x subscribes to the good, she gets a per-period utility of ux (m, pt ) = m − pt ,
where m (≤ x) is the number of consumers who share a link with her as well as
subscribe to the good in period t. Without loss of generality, I assume that in each
period, consumers maximize their per-period utility.9

Diffusion process and the monopolist’s problem. For a given pricing plan {pt }
∞
t=1,

I model consumers’ subscription decisions as a diffusion process on the social
network by employing the approach proposed by Jackson and Yariv (2007). In
terms of consumers’ information about the underlying social network, I assume
that the consumers know their own degrees but not their neighbors’ degrees, so
that each consumer is uncertain about interactions of other consumers including
her neighbors. Specifically, I consider consumers who believe that (i) there is no
correlation between consumers’ degrees, and that (ii) each neighbor’s degree is an
independent random draw from the conditional degree distribution across periods.10
The former means that given that two consumers i and j share a link, consumer i

believes that consumer j’s degree is x with the probability f̃ (x), and vice versa.11
9To see why this assumption can be made without loss of generality, suppose that a consumer

maximizes her discounted sum of per-period utilities. Suppose also that her per-period utility is
strictly greater than zero if she subscribes to the good in period t. In this case, cancelling her
subscription in period t strictly decreases her discounted sum of utilities because by doing so, she
obtains a utility of zero in period t, but her future utilities remain the same, independent of this
cancellation. Thus, only the per-period utility matters for her decision in each period.

10These two assumptions rule out any possibility that consumers can learn their neighbors’
degrees from realized utilities in previous periods.

11The current incomplete information setting is used to model strategic interactions in a large
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With the above incomplete information structure, I consider the followingmean-
field approximation of the diffusion process in which the consumers myopically best
respond to the population subscription rate in the previous period.12 As an initial
condition, suppose that any consumer with degree at least x0 subscribes to the good;
or equivalently, suppose that a strictly positive fraction 1 − F̃ (x0) of the consumers
is randomly chosen to subscribe to the good.13 In period t = 1, x0 and p1 are known
to all consumers. Then, consumers with degree at least x1 =

p1

1−F̃ (x0)
subscribe to

the good because the expected utility of a consumer with degree x is



x∑
m=0

(
1 − F̃ (x0)

)mF̃ (x0)x−m

− p1 = x

(
1 − F̃ (x0)

)
− p1,

presuming that each neighboring consumer subscribes to the good with probability
1 − F̃ (x0).

Degree (x)
0

Subscription Price

pt

xt!1xt

W (x; xt!1)
W (x; x)

Figure 2.2: The dynamic demand structure

Generally, for given pt and xt−1, a new threshold degree xt is uniquely determined
and satisfies pt = W (xt, xt−1), where W (x, x′) := x

(
1 − F̃ (x′)

)
is the willingness-

to-pay (or, the inverse demand) of consumers with degree x when each neighboring

social network. In fact, there is some evidence suggesting that people are not perfectly informed of
their neighbors’ connectivity even in a small world network (e.g., Kumbasar et al., 1994).

12The myopia considered in this paper is only about consumers’ beliefs on their neighbors’
decisions. As explained by Dhebar and Oren (1985), there are three factors affecting a consumers’
subscription decision in each period when population size n is sufficiently large: her degree, the
current subscription price, and her expectation about her neighbors’ current subscription decisions.
Among the three factors, the former two do not require a myopia assumption because a consumer’s
degree is time-invariant, and the current subscription price is observable.

13This can be done, for example, by distributing free units of the good to 1 − F (x0) fraction of
the consumers.
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consumer subscribes to the good with probability 1 − F̃ (x′).14 As illustrated in
Figure 2.2, this one-to-one correspondence between pt and xt for a given threshold
degree xt−1 determines the demand size as 1−F (xt ) in period t, which is the fraction
of consumers with degree at least xt .15

Note that either a pricing plan or the corresponding sequence of threshold degrees
determined by the diffusion process returns the same discounted sum of profits to
the monopolist. For this reason, I formulate the monopolist’s dynamic optimization
problem as an optimal choice of a sequence of threshold degrees {xt }

∞
t=1, which I

call a diffusion plan. Therefore, the monopolist’s dynamic optimization problem is
formulated as

maximize
{xt }∞t=1

∞∑
t=1

βt−1π(xt−1, xt ),

where π(x, y) = y
(
1 − F̃ (x)

) (
1 − F (y)

)
is the per-period profit function.

2.3 Preliminary Results
In this section, I first provide characterizations of an optimal diffusion plan and

its unique steady state level. Then, I analyze dynamic properties of optimal diffusion
and pricing plans.

2.3.1 Optimal Diffusion Plan and Unique Steady State
I find that the monopolist never chooses xt > x in any period t, so that any

optimal diffusion plan must be in a compact interval [0, x] where x solves equation
1
x =

f (x)
1−F (x) . To see why, let πi denote the partial derivative of π with respect to the

i-th variable. By the single crossing property in Lemma 2, π2(x, y) ≥ 0 if and only
if y ∈ [0, x]. This observation implies that π(x, y) is single-peaked at y = x, so that
the monopolist never chooses xt > x in any period t.16 This ensures that an optimal

14Recall that each neighbor’s degree is an independent random draw from the conditional degree
distribution across periods. In addition, there is no correlation between neighboring consumers’
degrees. Thus, for a consumer with degree x, the number of neighbors subscribing to the good in
period t follows the binomial distribution with parameters x and 1− F̃ (xt−1). Therefore, the expected
number of subscribing neighbors is x

(
1 − F̃ (xt−1)

)
.

15This mean-field approximation of the diffusion process is different from that considered in
Jackson and Rogers (2007b) and López-Pintado (2008). In these papers, the mean-field approxima-
tion does not require an incomplete information setting because agents simply myopically react to
what they observe in the previous period. In contrast, the current mean-field approximation with an
incomplete information structure corresponds to that in Jackson and Yariv (2007), which induces the
property that consumers with the same degree take the same action.

16Let a diffusion plan {xt }∞t=1 with xt′ > x for some t ′ ≥ 1 be given. Define an alternative
diffusion plan { x̂t }∞t=1 as x̂t = x if t = t ′, and x̂t = xt otherwise. Then, the alternative diffusion plan
returns a strictly greater discounted sum of per-period profits than the given diffusion plan.
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diffusion plan {x∗t }∞t=1 exists.
Moreover, an optimal diffusion plan is contained in the interior of [0, x] because

the monopolist has an incentive to sacrifice current profit for a higher future profit
by choosing xt strictly smaller than x. By doing so, the profit in period t is
not maximized, but the profit in period t + 1 increases because consumers are
more willing to subscribe to the good due to increased subscription probability of
neighboring consumers. In addition, the monopolist never chooses xt equal to zero
because it is not profitable to sell the good to the solitary consumers with degree
zero. Therefore, x∗t must be contained in (0, x) for all t ≥ 1.

Since any optimal diffusion plan is in (0, x), I characterize an optimal diffusion
plan by employing a Bellman approach as follows. A value function V : R+0 → R

+
0

is defined as

V (x) := max
y∈[0,x]

{π(x, y) + βV (y)},

where V (x) represents the maximum discounted sum of profits that the monopolist
can achieve when the consumers believe that consumers with degree at least x are
expected to subscribe to the good. Assuming that V is differentiable, x∗t solves a
first-order condition,

π2(x∗t−1, x∗t ) + βV ′(x∗t ) = 0,

for given x∗t−1. Along with an envelope condition, V ′(x∗t ) = π1(x∗t , x∗t+1), I charac-
terize an optimal diffusion plan as follows.

Proposition 8 If the value function is differentiable, then there exists an optimal
diffusion plan {x∗t }∞t=1 such that

π2(x∗t−1, x∗t ) + βπ1(x∗t , x∗t+1) = 0.

Since the per-period profit function is not necessarily concave on its whole
domain, it is not obvious whether V is differentiable. Introducing a sufficient
condition for the differentiability of V is delayed until the end of the current section
because it depends on a feature of optimal diffusion plans discussed below.

The optimality condition in Proposition 8 represents how the monopolist bal-
ances intertemporal tradeoffs. For given x∗t−1 and x∗t+1, there are two effects of a
change in xt on the monopolist’s discounted sum of profits. First, an increase of xt

within the interval (0, x) strictly increases the monopolist’s profit in period t because
π(x∗t−1, xt ) is single-peaked at xt = x. The magnitude of this effect is π2(x∗t−1, xt ).



45

Second, an increase of xt will strictly decrease the profit in period t + 1 because
consumers will be less willing to subscribe to the good. Before discounting, the
magnitude of this effect is π1(xt, x∗t+1) = − f̃ (xt )x∗t+1

(
1 − F (x∗t+1)

)
. I normalize the

magnitudes of these two effects by dividing them by f̃ (xt ). After this normalization,
I call the first effect a profit effect, which strictly decreases to zero as xt increases
to x. I call the second effect a friendship effect, which is now independent of xt .
Therefore, an optimal choice of x∗t is unique and balances the two effects:

π2(x∗t−1, x∗t )

f̃ (x∗t )︸         ︷︷         ︸
profit effect

= β x∗t+1
(
1 − F (x∗t+1)

)︸                 ︷︷                 ︸
friendship effect

. (2.3.1)

I call a fixed point of equation (2.3.1) a steady state diffusion level, which
represents that when the consumers believe that consumers with degree at least x∗

are expected to subscribe, the monopolist perfectly balances the profit effect and
the friendship effect without any change in the diffusion plan. The corresponding
steady state price level is p∗ = W (x∗, x∗) that makes a marginal consumer with
degree x∗ indifferent between subscription and non-subscription. The following
proposition finds that a unique steady state diffusion level exists, and that this level
is characterized by the hazard rate functions of f and f̃ .

Proposition 9 If the value function is differentiable, then there exists a unique
steady state diffusion level x∗ such that

1
x∗
=

f (x∗)
1 − F (x∗)

+ β
f̃ (x∗)

1 − F̃ (x∗)
. (2.3.2)

The uniqueness directly follows from the IHRPs of f and f̃ . The second term
in the right-hand side of the equation in Proposition 9 captures the magnitude of
the discounted friendship effect that the monopolist takes into account in exchange
for sacrificing the per-period profit maximization. Before discounting, this term
solely depends on f̃ because consumers’ belief about their neighbors’ subscription
probability depends on f̃ .

I finally introduce a sufficient condition under which the value function is dif-
ferentiable.17 Although the per-period profit function is not concave on its whole
domain, the current model satisfies all the conditions for Theorem 3 and Theorem 4

17A proof is provided in the proof for Proposition 8. In fact, Theorem 4 in Milgrom and Segal
(2002) provides that V is absolutely continuous, which further implies that V is differentiable except
on a set of Lebesgue measure zero.
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in Milgrom and Segal (2002). Theorem 3 confirms that directional derivatives are
well-defined at each x∗t . Theorem 4 finds that the directional derivatives equal to
each other (equivalently, V is differentiable) if and only if the diffusion policy that
maps a current threshold degree to the threshold degree in the next period is single-
valued.18 The diffusion policy is single-valued if the per-period profit function is
concave on a small region [x, x]2, where x uniquely satisfies

π2(x, x)

f̃ (x)
= β x

(
1 − F (x)

)︸         ︷︷         ︸
the maximum
friendship effect

.

Lower bound x represents a minimum threshold degree that the monopolist may
choose to maximize the friendship effect, even though only consumers with degree
at least x are currently expected to subscribe to the good.19

This concavity assumption on a small region is not too restrictive. First, the
uniqueness of steady state diffusion level is independent of this assumption. Sec-
ond, for a given degree distribution, one can calculate the two bounds and check
the concavity of the per-period profit function on [x, x]2. For example, a direct
calculation provides that when the underlying degree distribution is an exponential
degree distribution, the corresponding per-period profit function is strictly concave
on [x, x]2. Last, if the degree distribution is decreasing, then a sufficient condition
for the concavity can be written as 1

x <
| f ′(x) |

f (x) for x ∈ [x, x].

2.3.2 Dynamics
I now analyze how an optimal diffusion plan and the corresponding pricing plan

behave as time passes. For this, I first observe that when x∗t−1 and x∗t+1 are fixed, a
change in xt only influences the per-period profits in period t and t + 1. Suppose
that x∗t−1 < x∗, which means that the size of network effects in period t is larger than
that at the steady state of the market where both the monopolist and consumers do
not change their decisions. In this scenario, the only reason to set xt smaller than
x∗ is to aim for a higher profit in period t + 1 through the friendship effect, while
sacrificing profit in period t. For this higher future profit, equation (2.3.1) requires
x∗t+1 to be strictly greater than x∗. As a consequence, any optimal diffusion plan
does not contain three consecutive threshold degrees strictly smaller than the steady
state diffusion level. Similarly, it can be shown that any optimal diffusion plan does

18A correspondence k : R+0 ⇒ R+0 is said to be a diffusion policy if x∗
t+1 ∈ k (x∗t ) for all t.

19x is the unique minimum threshold degree that the monopolist might choose because π2 (x,y)
f̃ (y)

is
strictly decreasing in x, but x

(
1 − F (x)

)
is strictly increasing in x whenever x ∈ (0, x).
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not contain three consecutive threshold degrees strictly greater than the steady state
diffusion level. Therefore, optimal diffusion plans not staying at the steady state
alternate around the steady state diffusion level.

To obtain an alternating diffusion plan, the monopolist has to set a pricing plan
that alternates around the steady state price level. For example, if x∗t−1 > x∗, it
is required to set p∗t strictly smaller than p∗ to achieve x∗t < x∗. The following
proposition summarizes discussions.

Proposition 10 Any optimal diffusion plan does not contain three consecutive
threshold degrees either strictly smaller or strictly greater than the steady state
diffusion level:

x∗t < x∗ and x∗t+1 < x∗ =⇒ x∗t+2 > x∗,

x∗t > x∗ and x∗t+1 > x∗ =⇒ x∗t+2 < x∗.

Moreover, any optimal pricing plan does not contain four consecutive subscription
prices either strictly smaller or strictly greater than the steady state price level:

p∗t < p∗, p∗t+1 < p∗, and p∗t+2 < p∗ =⇒ p∗t+3 > p∗,

p∗t > p∗, p∗t+1 > p∗, and p∗t+2 > p∗ =⇒ p∗t+3 < p∗.

Proposition 10 illustrates an important difference between subscription good
markets and durable good markets. In a durable good market, a consumer perma-
nently leaves the market after her purchase. As a result, if the monopolist lowers
the purchasing price in a period, then he loses all the possible profits he can earn
from consumers who buy the good in the period. In other words, the monopolist
competes on consumer demands with his future selves. On the contrary, there is no
such self competition in a subscription good market, which in turn implies that it
is optimal for the monopolist to lower the subscription price under the steady state
price level occasionally.

2.4 Properties of the Steady State
In this section, I first study efficiency and stability of the steady state diffusion

level. Then, I find a closed-form expression for a per-period deadweight loss from
monopoly at the steady state of the market.

2.4.1 Efficiency and Stability
Recall thatW (x, x) = x

(
1−F̃ (x)

)
measures thewillingness-to-pay of consumers

with degree x when consumers with degree at least x are expected to subscribe to
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the good. By the single crossing property in Lemma 2, W (x, x) is single-peaked at
x = x̃, where x̃ solves equation 1

x =
f̃ (x)

1−F̃ (x)
. Thus, with respect to the steady state

price level, there are two distinctive degrees xH and xL satisfying xH < x̃ < xL and
W (xH, xH ) = W (xL, xL) = p∗. Since the subscription rate at xH is strictly higher
than the subscription rate at xL, there is a coordination problem between consumers
because either expectation that consumers with degree at least xH or xL subscribe
to the good is self-fulfilling.

Note that the expectation that consumers with degree at least x∗ subscribe to
the good is also self-fulfilling with respect to subscription price p∗. For this, I
call x∗ is diffusion-efficient if x∗ = xH , because x∗ = xL means that there is a
coordination failure between consumers at the steady state of the market. The
following proposition finds that the steady state diffusion level is diffusion-efficient.

Proposition 11 The steady state diffusion level is diffusion-efficient.

The proof directly follows from the dominance relationship in Lemma 2, which
implies x∗ < x < x̃. In fact, as in other models for a network good market, this
diffusion-efficiency of x∗ is equivalent to a dynamic stability: when the subscription
price is fixed at p∗, the steady state diffusion level is robust to small perturbations
to consumers’ belief in the subscription rate 1 − F̃ (x∗). Perturbations can arise, for
instance, due to incorrect reports of the subscription rate by the media, or because
the monopolist tries to exaggerate some statistics about the subscription rate. I
formally define this stability notion as the following:

Definition 4 x∗ is said to be diffusion-stable if there exists ε > 0 such that for all
x0 ∈ (x∗ − ε, x∗ + ε), a diffusion process defined as xt := p∗

1−F̃ (xt−1)
converges to x∗

as t → ∞.

To see why x∗ is called diffusion-stable, suppose that the subscription price is
fixed as p∗ and that consumers’ belief is perturbed in a way that each neighboring
consumer subscribes with probability 1 − F̃ (x0) as illustrated in Figure 2.3(a). For
this perturbed belief, the inverse demand shifts down to W (x, x0). In this shifted
inverse demand curve, consumers with degree in [x1, x0) where x1 =

p∗

1−F̃ (x0)
< x0

are still willing to subscribe at p∗. Thus, in the next period, the inverse demand
curve shifts up fromW (x, x0) toW (x, x1). This positive feedback continues until the
diffusion process reaches x∗, the steady state diffusion level. An analogous process
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(a) xt converges to x∗
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(b) x∗ is diffusion-stable iff x∗ < x̃

Figure 2.3: Illustration of the diffusion stability of x∗

with negative feedbacks takes place when consumers believe that more consumers
are subscribing than the actual subscription rate.20

However, the above convergence does not arise if x0 > xL. For example, as
illustrated in Figure 2.3(b), if consumers’ belief is perturbed in a way that each
neighboring consumer subscribes with probability less than 1 − F̃ (xL), then the
diffusion process diverges to infinity.

2.4.2 Deadweight Loss
Since the marginal production cost is zero, social surplus is maximized when

every consumer subscribes to the good at the subscription price of zero. For this,
I define the steady state deadweight loss ratio from monopoly as the ratio of the
per-period deadweight loss at the steady state of the market to the maximum social
surplus.

First note that the maximum per-period social surplus is the mean of the degree
distribution. If every consumer subscribes to the good at zero subscription price,
a consumer with degree x interacts with all of her neighbors, so that she obtains
a utility of x. Thus, the total consumer surplus is

∫ ∞
0 x f (x) dx, the mean of f .

Since the monopolist’s per-period profit is zero in this case, the mean of the degree
distribution is the maximum per-period social surplus. On the contrary, the per-

20When consumers believe that the subscription rate is higher than 1 − F̃ (x∗), some consumers
immediately cancel their subscriptions because p∗ is higher than their willingness-to-pay. This
negative feedback continues until the diffusion process converges to x∗.
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period social surplus at the steady state of the market is
∫ ∞

x∗ x
(
1− F̃ (x∗)

)
dx because

(i) each neighboring consumer is expected to subscribe with probability 1 − F̃ (x∗),
and (ii) only consumers with degree at least x∗ subscribe to the good.

Therefore, the steady state deadweight loss ratio from monopoly, denoted by
DW , is

DW :=

∫ ∞
0 x f (x) dx −

∫ ∞
x∗ x

(
1 − F̃ (x∗)

)
dx∫ ∞

0 x f (x) dx
.

The following proposition finds an expression for DW that solely depends on the
conditional degree distribution.

Proposition 12 The steady state deadweight loss ratio is

DW = F̃ (x∗)
(
1 − F̃ (x∗)

)
+ F̃ (x∗). (2.4.1)

Figure 2.4 illustrates the decomposition of two terms for given steady state dif-
fusion and price levels. The lower dark triangle depicts the first term in expression
(2.4.1) before normalization, corresponding to the classical deadweight loss gen-
erated by restricting some consumers from taking the positive network effect. If
consumers with degree in [0, x∗) were to subscribe to the good, they would derive a
positive network effect of 1− F̃ (x∗) from each neighboring consumer’s subscription.
The amount of this welfare loss is calculated by multiplying the positive network
effect and the average degree of the consumers excluded from the market.

Degree (x)
0

Subscription Price

p$

x$

W (x; x)
W (x; x$)
W (x; 0)

Figure 2.4: Illustration of two sources of welfare loss

The upper light triangle represents the other source of welfare loss. This in-
efficiency originates from the lost positive network effect at the steady state of
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the market, and it is measured by the second term in expression (2.4.1) after the
normalization. If all consumers subscribe to the good, then the inverse demand
shifts up from W (·, x∗) to W (·, 0) because every consumer can derive an additional
positive network effect of F̃ (x∗) from each neighboring consumer’s subscription.
The amount of this deadweight loss is calculated by multiplying the lost positive
network effect to the average degree of the whole population.

2.5 Comparative Statics
In this section, I investigate how the steady state diffusion level, price level, and

deadweight loss ratio from monopoly depend on two fundamentals of the monopoly
market: the monopolist’s discount factor and the social network density.

2.5.1 Changes in Discount Factor
As functions of β, I denote (i) by x∗(β) the steady state diffusion level, (ii) by

p∗(β) the steady state price level, and (iii) by DW (β) the steady state deadweight
loss ratio. I find that these quantities are decreasing in β as follows.

Proposition 13 The steady state diffusion level, price level, and deadweight loss
ratio are decreasing in the monopolist’s discount factor.

As the discount factor increases, the monopolist has an incentive to aim for
a higher friendship effect. This automatically implies that x∗(β) is decreasing in
β. Observe also that since the steady state diffusion level is diffusion-efficient,
(x∗(β), p∗(β)) is located on the graph of W where W (x, x) is increasing in x. This
means that p∗(β) is decreasing in β. In turn, that x∗(β) and p∗(β) are decreasing
in β imply that DW (β) is also decreasing in β.

This comparative static result has a policy implication. One possible interpreta-
tion of themonopolist’s discount factor β is that it represents how confident he is that
he will continue to hold exclusive rights in the market in future periods. Consider a
developing country whose government tries to introduce a newmonopoly market for
a social network good, such as landline phone service in an area. The above result
indicates that giving a strong monopoly power may be optimal for the government
if its goal is to minimize the steady state deadweight loss ratio.

2.5.2 Changes in Network Structure
I consider an increase in density of social networks in terms of the monotone

likelihood ratio property (MLRP). For this, I represent two social networks by
their degree distributions f (·, ξ0) and f (·, ξ1) satisfying all the assumptions for the
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existence of the steady state diffusion level discussed in Section 2.3. I assume the
MLRP of f (·, ξ0) and f (·, ξ1) as follows.

Assumption 3 For all x1 > x0,

f (x1; ξ1)
f (x1; ξ0)

≥
f (x0; ξ1)
f (x0; ξ0)

.

Intuitively, the assumption means that the social network represented by f (·; ξ1)
is denser than that represented by f (·; ξ0). I denote by f̃ (·, ξ0) and f̃ (·, ξ1) the cor-
responding conditional degree distributions. Assumption 3 implies the following
statistical orderings for the degree distributions and the conditional degree distribu-
tions.

(i) The MLRP of f̃ (·, ξ0) and f̃ (·, ξ1):21 for all x1 ≥ x0,

f̃ (x1; ξ1)

f̃ (x1; ξ0)
≥

f̃ (x0; ξ1)

f̃ (x0; ξ0)
. (2.5.1)

(ii) The first-order stochastic dominance property: for all x ∈ R+0 ,

1 − F (x; ξ1) ≥ 1 − F (x; ξ0) and 1 − F̃ (x; ξ1) ≥ 1 − F̃ (x; ξ0). (2.5.2)

(iii) The monotone hazard rate property: for all x ∈ R+0 ,

f (x; ξ1)
1 − F (x; ξ1)

≤
f (x; ξ0)

1 − F (x; ξ0)
and

f̃ (x; ξ1)

1 − F̃ (x; ξ1)
≤

f̃ (x; ξ0)

1 − F̃ (x; ξ0)
.

(2.5.3)

I finally denote by x∗(ξi) and p∗(ξi) the steady state diffusion and price levels
under f (·; ξi). The following proposition finds that x∗(ξi) and p∗(ξi) are increasing
in the density of the social network.

Proposition 14 The steady state diffusion and price levels increase as the density of
the social network increases in the likelihood ratio: x∗(ξ1) > x∗(ξ0) and p∗(ξ1) >
p∗(ξ0).

21Let µ(ξi) =
∫ ∞

0 x f (x; ξi)dx for i = 0, 1. Then, for all x1 ≥ x0,

f̃ (x1; ξ1)

f̃ (x1; ξ0)
=

x1 f (x1; ξ1)/µ(ξ1)
x1 f (x1; ξ0)/µ(ξ0)

≥
x0 f (x0; ξ1)/µ(ξ1)
x0 f (x0; ξ0)/µ(ξ0)

=
f̃ (x0; ξ1)

f̃ (x0; ξ0)
.
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Because of themonotone hazard rate property, other things equal, themonopolist
has an incentive to choose a larger xt under f (·; ξ1) than under f (·; ξ0) in order
to maximize the profit in period t. In addition, the friendship effect is higher
under f (·; ξ1) than under f (·; ξ0) by the first-order stochastic dominance property.
Hence, the monopolist’s former incentive to choose a higher xt does not conflict
with his latter incentive to choose a lower xt to aim for a higher friendship effect.
Therefore, the steady state diffusion level increases as the density of the social
network increases.

To see why the steady state price level also increases, note that (x∗(ξi), p∗(ξi))
is located on the upward slope of W (x, x; ξi) := x

(
1 − F̃ (x; ξi)

)
as illustrated in

Figure 2.5. This indicates that in the denser social network represented by f (·; ξ1),
consumers believe that their neighbors are more likely to have a higher degree.
Knowing this, the monopolist sets a higher subscription price for a higher profit at
the steady state of the market. Thus, the steady state price level increases in the
density of the social network as well.

Degree (x)
0

Subscription Price

p$(90)

p$(91)

x$(91)x$(90)

W (x; x; 90)
W (x; x; 91)

Figure 2.5: Monotonicity of the steady state subscription and price levels

By combining the above two monotonicity results, the following proposition
finds that the monopolist can earn a higher per-period profit at the steady state of
the market as the social network becomes denser.

Corollary 2 The per-period profit at the steady state of the market increases as the
density of the social network increases in likelihood ratio.

This comparative static result is different from Jackson and Yariv (2007), in
which monotonicity results regarding the stable steady state follows from the first-
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order stochastic dominance property of the degree distributions. On the contrary,
due to the presence of a monopolist who optimally chooses a pricing plan, the first-
order stochastic dominance property does not ensure a monotonicity of the steady
state diffusion level in the current model.

In fact, considering theMLRP has three benefits. First, theMLRP only concerns
the degree distributions, and it implies the same property for the conditional degree
distributions.22 Second, it provides monotonicity of the steady state price level as
well as of the steady state diffusion level. Third, having these two monotonicity
results leads to monotonicity of the steady state monopoly profit.

2.6 Concluding Remarks
This paper presents a novel approach for studying how a monopolist takes into

account the diffusion of subscription decisions in a social network for its optimal
dynamic pricing strategy. Depending on connections within the social network,
consumers derive heterogeneous utilities from subscribing to a network good. Due
to the presence of themonopolist who optimally balances his intertemporal tradeoffs,
I obtain optimal pricing plans exhibit oscillating patterns around the steady state
price level. I also provide monotone comparative static results concerning the
monopolist’s discount factor and the social network density in terms of monotone
likelihood ratio order.

Though the current paper has focused on a monopoly market, it might also
be worth analyzing a competitive market in which multiple firms simultaneously
optimize their pricing policies through time. Another salient extension would be
to consider consumers who have richer information about their neighboring con-
sumers’ connectivity and decisions. One drawback of the mean-field approximation
considered in this paper is that each neighboring consumer’s degree (identity) is
assumed to be independently and identically redrawn from the degree distribution
across all the periods. As a result, consumers ignore correlations between neigh-
bors’ decisions and identities. In reality, however, consumers continuously interact
with one another, so that they may better understand neighbors’ decisions based
on their information on neighbors’ identities in a social network. Analyzing how
subscription decisions diffuse within a social network and how a monopolist’s opti-
mal pricing plan changes in such a richer environment will be an interesting future
research direction.

22On the contrary, the first-order stochastic dominance property of two degree distributions does
not imply the same property for the corresponding conditional degree distributions (Shin, 2016b).
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C h a p t e r 3

A MODEL OF PRE-ELECTORAL COALITION FORMATION

3.1 Introduction
3.1.1 Overview

In many elections with three or more candidates, coalitions can form between
candidates in order to defeat a common opponent. These pre-electoral coalitions
(PECs) often require that one candidatewithdraw from the race and throwhis support
to another candidate in exchange for policy concessions from that candidate. These
types of coalitions can frequently occur in single-office elections, such as presidential
or gubernatorial elections. Bormann and Golder (2013) find that between 2001 and
2011, the average number of effective candidates in 147 worldwide presidential
elections was 3.1.1 This means that the possibility of PEC formation is quite high
in presidential elections. Indeed, PECs have formed in presidential elections in
many countries (e.g., France, Mexico, and South Korea). In France, a PEC carried
François Hollande to victory in 2012. In Mexico, winners of two of the recent
three presidential elections were also beneficiaries of PECs.2 In South Korea, every
presidential election since 1992 has included at least one PEC, and both Dae Jung
Kim and Moo-Hyun Roh won elections in 1997 and 2002 in part due to PECs.3

Previous literature on PECs has focused primarily on parliamentary democracies.
For instance, Golder (2006b) observes that in 23 parliamentary democracies between
1946 and 2002, 47.8% of the 364 legislative elections had at least one PEC.4
Moreover, she finds that 19.2% of all the elections in her data produced a government
that was based on a PEC agreement. Given their prevalence and impact, however,
the literature on PECs is surprisingly thin (Powell, 2000). Since PECs can only
exist in multi-candidate elections, the limitation might be a result of the literature’s

1The median is 2.86. The number of effective candidates in an election is calculated by 1/
∑

i q2
i ,

where qi is candidate i’s proportion of all votes in the election.
2Following the definition proposed by Bormann and Golder (2013), I include only democratic

presidential elections from 2000. Vicente Fox won the 2000 presidential election as the candidate
of Alliance for Change, which was a coalition between the National Action Party and the Ecological
Green Party of Mexico. In 2012, Enrique Peña Nieto won the election as the candidate of the
Institutional Revolutionary Party and the Ecological Green Party of Mexico.

3I focus on presidential elections taking place since 1992 because the 1992 presidential election
was the first free and fair election in which South Korea elected its first civilian president (Golder,
2006b).

4One can find more PEC examples and related empirical results in parliamentary democracies
in Bandyopadhyay et al. (2011) and references therein.
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focus on American politics, where two dominant parties competing is norm. The
assumption of two party elections is also supported by Duverger’s law, which asserts
that elections under plurality rule tend to favor a two-party system (Duverger, 1954).

From a theoretical perspective, PECs in single-office elections involve a different
set of incentives than other elections. In single-office elections, only one member
of a PEC can occupy office; this is unlike in parliamentary systems, in which a PEC
can lead to a sharing of seats. Hence, if candidates obtain utility from holding office,
utilities are not fully transferable between coalition partners. For this reason, PEC
formation incentives in presidential elections call for a model different from these
used for parliamentary elections (e.g., Bandyopadhyay et al., 2011; Golder, 2006b).
This paper investigates and compares PEC incentives in single-office elections, as
a function of electoral environments such as election rules, ideological distance
between candidates, and pre-election polls. To this end, I analyze a sequential game
in which three candidates compete in large elections for one office.

In my model, there are three candidates, L1, L2, and R, who are motivated by
both ideology and office value.5 I assume that due to their ideological similarity,
only L1 and L2 can form a PEC by nominating one representative candidate and
choosing a joint policy platform. There are n voters, and each voter is one of three
types: (i) a type tL1 voter who prefers L1 to L2, and L2 to R, (ii) a type tL2 voter who
prefers L2 to L1, and L1 to R, and (iii) a type tR voter who prefers R to L1 and L2,
but evaluates L1 and L2 equally. Types of voters are independently and identically
distributed according to a probability distribution, which is unknown to both voters
and candidates. Voters and candidates observe a set of public signals drawn from
the same distribution of voter types, which models a pre-election opinion poll result.
After observing the poll result, candidates L1 and L2 publicly decide whether to
form a PEC. Voters cast their ballots based on their private information and the PEC
outcome. Finally, one candidate is elected according to the given election rule. I
consider two election rules, plurality and the two-round runoff, which are the two
most frequently used rules for presidential elections; for instance, Bormann and
Golder (2013) find that about 87% of presidential elections between 2001 and 2011
utilized these rules.6

5There are three lines of theoretical models in terms of assumptions of political candidates’
motivations. Following Hotelling (1929), one stream assumes that candidates are purely office-
motivated. Another stream assumes that candidates are purely policy-motivated. Finally, a third
stream makes assumptions between the previous two extremes, and the current paper belongs to this
stream. See Callander (2008) and references therein for more detailed discussions.

6In their original dataset that covers worldwide presidential elections between 1946 to 2011,
76% of elections used these two rules. Among those elections, about 40% of elections were under
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This model captures the main incentives that each candidate faces. When a
candidate chooses to form a PEC in which he is not the representative candidate, he
must evaluate the tradeoff between reducing his likelihood of holding office (to zero)
and the increase in likelihood of a policy more to his liking. The latter is driven
by the fact that the PEC increases his partner’s chances of winning the election and
implementing the joint policy platform of the PEC. In my model, if candidates are
purely policy-motivated agents, then L1 and L2 always form a PEC; by doing so,
they can strictly increase their probability of winning and split additional benefits
by choosing a compromised joint policy platform. If candidates are purely office-
motivated, however, no candidate has an incentive to form a PEC. Thus, ceteris
paribus, there is a threshold office value such that L1 and L2 form a PEC whenever
the office value is lower than that threshold. The likelihood of forming a PEC under
a particular electoral environment is measured through this threshold office value.

This paper produces three main results: (i) PECs are more likely to form in plu-
rality elections than in two-round runoff elections; (ii) in two-round runoff elections,
PECs are more likely to form as the threshold for first-round victory decreases; and
(iii) conditional on divided support, PECs are more likely to form as the ideological
distance between PEC partners increases.7

3.1.2 Related Literature
There is a small but growing body of literature on PEC formation. Golder

(2006b) provides a comprehensive survey of PECs around the world. In addition,
she builds a simple bargaining model to derive a set of testable comparative static
results. Carroll and Cox (2007) and Debus (2009) find empirical evidence that PECs
significantly affect election outcomes and government formations. Bandyopadhyay
et al. (2011) compare coalition outcomes in proportional representation and plurality
voting systems under different bargaining protocols. They assume a continuum of
voters, which in turn implies that voters are not strategic because no single voter can
change election outcomes. Thus, election outcomes are purely a function of parties’
coalition decisions. In contrast, I allow strategic voting behavior so that the election
outcome depends on voters’ equilibrium voting behavior as well as candidates’ PEC
decisions.

In terms of motivation, the current paper studies PEC formation incentives in

plurality rule.
7Prediction (i) implies that under the presence of PECs, plurality elections are more likely to

include fewer candidates than two-round runoff elections. This is consistent with several empirical
findings (e.g., Bormann and Golder, 2013; Fujiwara, 2011; Golder, 2006a).
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presidential elections, which are not a primary concern of the above papers. In
particular, in my model, office value is non-transferable, and candidates are not
allowed to form a coalition after the election. This feature dramatically changes
the PEC formation incentives. In terms of results, the current paper predicts that in
presidential elections, PECs are more likely to form under plurality rule. However,
Nagashima (2011) finds the opposite result in legislative elections in which party
leaders might be able to share office value by allocating seats to other coalition
partners.

My model is related to the literature on multi-candidate elections with strategic
voters (e.g., Bouton, 2013; Cox, 1997; Hummel, 2014; Myatt, 2007). A substantial
portion of this literature is aimed at rationalizing the Duvergerian equilibria where
a Condorcet loser would be elected.8 Cox (1997) provides a good summary of
strategic voting behavior from both theoretical and empirical perspectives. Myatt
(2007) employs techniques of global games (Morris and Shin, 2003). He considers
the voters who use their private signals to infer the true relative popularity of their
favorable candidates. He proves that in a plurality election, there exists a unique
equilibrium with partial coordination. As a result, a Condorcet loser could be
elected. Bouton (2013) offers a tractable framework to study strategic voting in
two-round runoff elections by considering a Poisson voting game (Myerson, 1998;
Myerson, 2000). He shows that two-round runoff elections with a threshold below
50% may elect the Condorcet loser. In the current paper, by adopting the model by
Hummel (2014), I show that in both plurality and two-round runoff elections, the
possibility of electing the Condorcet loser remains even with PEC formation.9

Several papers compare plurality and two-round runoff rules in terms of strategic
voting behavior in multi-candidate elections (e.g., Bordignon et al., 2013; Niou,
2001). Hummel (2014) studies sequential voting in large elections, and he examines
voters’ incentives in responding to pre-election polls. I extend Hummel (2014) to
account for important electoral details (e.g., election rules, ideological distance, and
pre-election polls) that may affect strategic voting and PEC formation incentives.
Furthermore, I also analyze different strategic voting behavior in plurality elections

8A candidate is called the Condorcet loser if a majority would vote against him in a two-candidate
race between himself and any one of the other candidates (Myerson and Weber, 1993).

9Both Myatt (2007) and Hummel (2014) assume that there exists aggregate uncertainty about
the true distribution from which voters’ private signals are drawn. This assumption provides that the
odds of pivotal events do not diverge as the number of voters becomes infinitely large, so that voters
may vote strategically. Although this assumption is unusual in formal models considering strategic
voters (Hummel, 2014), there is a growing literature adopting it (e.g., Chamberlain and Rothschild,
1981; Dewan and Myatt, 2007; Ekmekci, 2009; Good and Mayer, 1975; Hummel, 2012; Hummel,
2014; Myatt, 2007).
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and two-round runoff elections.
The current paper is also broadly related to other literature on coalition formation

and bargaining (e.g., Chatterjee et al., 1993; Bandyopadhyay et al., 2011; Eraslan
and Merlo, 2002; Okada, 2011; Ray, 2008). Ray (2008) provides an excellent
survey of this literature. These models are interested in how coalition formation and
election outcomes depend on bargaining protocols, and are related to cooperative
bargaining solutions such as the Nash bargaining solution. Althoughmymodel takes
the Nash bargaining solution as a bargaining protocol, its cooperative feature is not
a driving force of the results. For example, as I will briefly discuss in Section 3.3, a
Rubinstein alternating-offersmodel with outside options, which is a non-cooperative
bargaining protocol, generates the same bargaining outcome. The main focus of the
current paper is the comparison of PEC formation incentives under different election
rules, rather than the identification of outcomes of the PEC bargaining process.

The rest of the paper is organized as follows. Section 3.2 describes a sequen-
tial game of four periods. Section 3.3 analyzes the outcomes of plurality rule.
Section 3.4 studies the outcomes of the two-round runoff rule and compares PEC
formation incentives under these two election rules. Section 3.5 analyzes voter wel-
fare. Section 3.6 presents comparative static results. Finally, Section 3.7 concludes.
All proofs are gathered in Appendix C.

3.2 The Model
Candidates and voters. C = {L1, L2, R} is a set of three candidates competing for
one office. If a candidate wins the election alone, then he obtains a utility of V + 1
whereV is the value of holding office, and 1 is the value of choosing his ideal policy.
L1 and L2 are left candidates who are similar in their ideologies; if L2 wins, L1
obtains a utility of 1/2 and vice versa.10 On the other hand, R obtains a utility of 0
if either L1 or L2 wins. Similarly, if R wins, he obtains a utility of V + 1, but both
L1 and L2 obtain a utility of 0.

N = {1, . . . , n} is a finite set of voters. T = {tL1, tL2, tR} is a set of voters’ types.
A voter is said to be of type t j if her most preferred candidate is j. Voters are only
interested in candidates’ ideologies. Thus, a type tL1 voter obtains a utility of 1 if
L1 wins, 1/2 if L2 wins, and 0 if R wins; a type tL2 voter obtains a utility of 1 if L2
wins, 1/2 if L1 wins, and 0 if R wins. Finally, a type tR voter obtains a utility of
3/2 if R wins, but 0 otherwise.11

10Section 3.6.2 presents a case where ideological distance between L1 and L2 is parameterized
by θ ∈ [0, 1].

11I assume a utility of 3/2 for a type tR voter’s utility to normalize the sum of welfare levels
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The sequential game. I consider a sequential game of four periods. At the outset of
the game, types of voters are determined as independently and identically distributed
(i.i.d.) draws from a probability distribution p, where p takes on value tL1 with
probability pL1, tL2 with probability pL2, and tR with probability pR = 1− pL1− pL2;
that is, a voter’s type is t j with probability p j . I assume that the exact value of p is
unknown, but it is common knowledge that p is distributed according to distribution f

with full support over 42 = {(pL1, pL2) ∈ R2 |0 ≤ pL1, pL2 ≤ 1 and 0 ≤ pL1 + pL2 ≤

1}.12 f is assumed to be symmetric and continuously differentiable.13 Voters know
their types but do not know any of the other voters’ types.

In period 2, voters and candidates observe the result of a single pre-election
opinion poll. I model the opinion poll as a number of public signals, each of which
is an i.i.d. draw from p. Without loss of generality, σ = (σL1/m, σL2/m) represents
a result of the opinion poll, where σ j denotes the number of j signals out of m.14
Σ = {(σL1/m, σL2/m) ∈ 42 |0 ≤ σL1, σL2 ≤ m and 0 ≤ σL1 + σL2 ≤ m} is the set
of all possible results of the opinion poll.

In period 3, bargaining between L1 and L2 takes place over whether and how to
form a PEC. In the bargaining process, they decide (i) who becomes the nominated
candidate (i.e., who withdraws from the race) and (ii) how to choose their joint
policy platform. I denote a PEC by ξ (k, λ), where k ∈ {L1, L2} represents the
nominated candidate, and λ ∈ [0, 1] measures how much the coalition reflects L1’s
ideal policy. I assume that ξ (k, λ) is determined as a Nash bargaining solution
(Nash, 1950).15 Table 3.1 summarizes the utility structure of the game. Note that
for a given ξ (k, λ), only the nominated candidate k takes the office value V .

In period 4, voters cast a ballot for a single candidate. An election rule is denoted
by E, which is either plurality (P) or the two-round runoff (R). Under plurality rule,
the candidate who obtains the relative majority in a single round wins. I assume
that if there are some candidates that tie, then each of those candidates is elected
with equal probability.

Under the two-round runoff rule, the candidate who is ranked first by taking

corresponding to all three types a constant. This normalization simplifies the welfare analysis in
Section 3.5.

12There are two degrees of freedom for the support of f because p is a probability distribution
such that pL1 + pL2 + pR = 1.

13Symmetry of f is defined as f (x, y) = f (y, x) for all (x, y) ∈ 42. All the results except the
welfare calculations in Section 3.5 do not depend on this symmetricity assumption.

14Since σL1 + σL2 + σR = m, there are two degrees of freedom for σ.
15With symmetricity of the distribution function f , the symmetry property of the Nash bargaining

solution simplifies the calculation of ex-ante payoff for the voters.
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Voter Types Candidates
Winners

tL1 tL2 tR L1 L2 R

L1 1 1/2 0 V + 1 1/2 0
L2 1/2 1 0 1/2 V + 1 0
R 0 0 3/2 0 0 V + 1

ξ (L1, λ) (1 + λ)/2 (2 − λ)/2 0 V + (1 + λ)/2 (2 − λ)/2 0
ξ (L2, λ) (1 + λ)/2 (2 − λ)/2 0 (1 + λ)/2 V + (2 − λ)/2 0

Table 3.1: The utility structure

more than or equal to 50% of the vote share in the first round wins outright, and
there is no second round.16 If everyone receives less than 50% of the vote share in
the first round, then the top two candidates who received the most votes in the first
round advance to the second round, and the candidate who obtains the majority of
the vote share in that round ultimately wins. I also assume that if there are some
candidates that tie in any round, then each of those candidates is chosen to advance
or win with equal probability.

I finally assume that each election rule nullifies any ballot for a withdrawn
candidate whenever a PEC forms. That is, for instance, if L1 and L2 decide to
form a PEC by nominating L1, but some voters vote for L2, then an election rule
excludes their ballots for L2 in calculation of the vote share. Table 3.2 summarizes
the timeline of the game.

Period 1 Types of voters are determined
Period 2 Poll result is realized
Period 3 L1 and L2 bargain over PEC formation
Period 4 Voters vote, and the election rule decides the winner

Table 3.2: The timeline of the game

Information. The election winner is determined by the exact value of p as the
number of voters n increases to infinity. For instance, suppose that p satisfies
pL1 > pL2 > pR and that voters select their most preferred candidates. Then, by the
law of large numbers, the probability that L1 wins the election converges to one as
n increases to infinity. Since voters and candidates infer the value of p from the poll
result σ, their updated beliefs on f affect their decisions.

16Section 3.6.1 studies parameterized two-round runoff rules where a candidate wins outright if
he obtains more than ζ ≤ 1/2 vote shares in the first round. This limited attention of thresholds is
empirically relevant: to the best of my knowledge, the 1996 presidential election in Sierra Leone
was the only presidential election in which the threshold was set higher than 55%.
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There are two stages in which voters update their beliefs. The first is when
voters learn their types (private information) in period 1, and the second is when
they observe the poll result (public information) in period 2. I denote by f j (·|σ)
the type t j voters’ beliefs after the second update, as a function of the poll result σ.
For example, a type tL1 voter obtains 1+m signals from realization of her own type
and m public signals until period 4. Consequently, her updated belief in period 4 is

fL1(x, y |σ) =
xσL1+1yσL2 (1 − x − y)m−(σL1+σL2) f (x, y)∫ 1

0

∫ 1−w
0 zσL1+1wσL2 (1 − z − w)m−(σL1+σL2) f (z,w) dz dw

. (3.2.1)

For candidates, there is only one stage in which beliefs are updated after observing
σ in period 2. I denote the candidates’ updated belief by fC (·|σ) defined as

fC (x, y |σ) =
xσL1 yσL2 (1 − x − y)m−(σL1+σL2) f (x, y)∫ 1

0

∫ 1−w
0 zσL1wσL2 (1 − z − w)m−(σL1+σL2) f (z,w) dz dw

. (3.2.2)

Note that since realizations of types and results of the opinion poll are independent
of election rules, f j (·|σ) and fC (·|σ) do not depend on the election rule E.

Voting strategies. I focus on symmetric pure strategies such that voters of the
same type behave in the same way. I make another weak assumption about voting
strategies that voters only make voting decisions that are weakly undominated. This
assumption requires that no voter votes for candidate j who is dominated in the sense
that there exists another candidate j′, such that voting for j′ never yields a lower
expected payoff for the voter than voting for j does, and that there exists at least one
situation that voting for j′ returns a strictly higher expected payoff for the voter than
voting for j does. As will be explained soon, this assumption characterizes a unique
equilibrium voting behavior as a function of the poll result σ under each election
rule.

Since the set of voting strategies depends on election rules, I define voting
strategies for each election rule separately. In plurality elections, a voting strategy
s is a function s : T × Σ → C; that is, a voting strategy depends on types and
results of the opinion poll. Define S as the set of all voting strategies.17 I denote by
BR : T × Σ × S → C the best response function. I impose a tie-breaking rule that if
a voter of either type tL1 or type tL2 is indifferent to candidates L1 and L2 in terms
of her expected utility, then she votes for her most preferred candidate, without loss
of further generality.

17With this notation, the following strategies are weakly dominated for all σ ∈ Σ: s(tR, σ) = L1,
s(tR, σ) = L2, s(tL1, σ) = R, and s(tL2, σ) = R. In addition, when a PEC ξ (k, λ) forms,
s(tL1, σ) = k ′ and s(tL2, σ) = k ′ are weakly dominated strategies for k ′ , k.
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In two-round runoff elections, the voting strategy is a bit complicated because
it depends not only on what voters do in the second round, but also on how voters
form their beliefs about the other voters’ decisions in the second round (if it exists).
To avoid any such complexity, I make the following assumptions about the voting
decisions in the second round. If one of the left candidates and candidate R compete,
then it is clear that type tL1 and type tL2 voters vote for the advanced left candidate,
and that type tR voters vote for R. When L1 and L2 reach the second round, it is
natural to assume that type tL1 voters vote for L1 and type tL2 voters vote for L1. For
type tR voters’ decisions, I assume that when there are r number of type tR voters
who are indifferent to L1 and L2, br/2c number of voters vote for L1 and the other
r − br/2c number of type tR voters vote for L2.18

With the simplifying assumptions described above, it suffices to consider type
L1 and type L2 voters’ voting strategies in the first round. Likewise for plurality
elections, a voting strategy is a function s : T × Σ → C. I denote by S the set of
voting strategies, and BR : T × Σ × S → C the best response function. I assume the
same tie-breaking rule for type tL1 and type L2 voters.

Equilibrium notion. I consider Bayesian equilibria (voting equilibria) that satisfy
a certain criterion. Recall that I restrict my attention to symmetric strategies, in
which voters of the same type vote in the same way. Voters know the possible types
of other voters and observe the same poll results. Given the uncertainty over other
voters’ types, however, each voter can only form beliefs about how the other voters
will vote. Thus, each voter optimizes her voting decision by taking into account this
uncertainty, depending on her own type and the poll results. Therefore, a voting
equilibrium is denoted by a voting strategy that voters play in it.

Before defining the criterion, I first define an uninformative voting strategy,
in which every voter votes for their most preferred candidate independent of their
private information. Formally, it is defined as a voting strategy s ∈ S such that
s(t j, σ) = j for all t j ∈ T and all σ ∈ Σ. I focus on a voting equilibrium in which
each voter’s decision not only best responds to the equilibrium voting strategy, but
also to the uninformative voting strategy. I call this voting equilibrium strong and
define it as follows.

18For any weakly undominated strategy for type tR voters, they always vote for R in the first round
regardless of the realization of the poll result σ. Similarly, for any weakly undominated strategy
for type tL1 and tL2 voters, they always vote for one of the left candidates. Thus, by observing an
election result of the first round, voters can figure out the exact number of type tR voters. Hence,
type tR voters are able to make decisions according to the described behavior. Alternatively, one can
simply assume that type tR voters vote for L1 with probability 1/2.
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Definition 5 A voting equilibrium s∗ is called strong if for all t j ∈ T and all σ ∈ Σ,

(i) s∗ is weakly undominated;

(ii) s∗ = BR(t j, σ, s∗);

(iii) s∗ = BR(t j, σ, s).

The concept of strong voting equilibrium captures the idea of conservative voting
behavior. In reality, peoplemight have several reasons to vote for theirmost preferred
candidates, even though voting for that candidate does not add any value in terms
of election outcome. Perhaps, voters may vote for their most preferred candidates
to express their identities rather than obtaining better election outcomes (Fiorina,
1976).19 In addition, some voters might not fully follow the opinion poll results.
These voters might be poorly informed about the population preferences and willing
to vote for their most preferred candidate based on their limited information. In this
regard, the strong voting equilibrium describes an equilibrium voting behavior in
which voters best respond to all those behaviors.

As will be shown in the following section, the strongness criterion characterizes
a unique equilibrium voting behavior as a function of the poll result when the
population size n becomes infinitely large. For this reason, I analyze the limiting
properties of strong voting equilibria for sufficiently large n. From a theoretical
perspective, the uniqueness enriches the scope of my analysis. In particular, I can
calculate the expected utility of the voters according to their types for each poll
result, which in turn enables me to find ex-ante utility of voters under each election
rule. Therefore, I compare the ex-ante utilities of voters of each type, and investigate
which election rule is more beneficial to which type of voters under the presence of
a PEC.

3.3 Plurality Elections
In this section, I analyze the game when the election is governed by plurality

rule. In the spirit of backward induction, I first characterize a unique strong voting
equilibrium in period 4. Then, I formulate and analyze the PEC formation as a Nash
bargaining problem.

19This motivation is called expressive motivation in the voting literature. See Schuessler (2000)
for more detailed discussions.
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3.3.1 Strong Voting Equilibrium
To begin, I provide a lemma that states how type tL1 and type tL2 voters best

respond to the uninformative voting strategy.20

Lemma 3 If E = P, then BR(tL1, σ, s) = L1 if and only if∫ 1/2

1/3
fL1(x, x |σ) dx +

∫ 1/2

1/3
fL1(x, 1 − 2x |σ) dx ≥

1
2

∫ 1/2

1/3
fL1(1 − 2x, x |σ) dx,

(3.3.1)

and BR(tL2, σ, s) = L2 if and only if∫ 1/2

1/3
fL2(x, x |σ) dx +

∫ 1/2

1/3
fL2(1 − 2x, x |σ) dx ≥

1
2

∫ 1/2

1/3
fL2(x, 1 − 2x |σ) dx.

(3.3.2)

To see the intuition behind Lemma 3, consider a type tL1 voter’s decision. Given
the other n − 1 voters’ decisions, there are three types of scenarios in which her
decision is pivotal: (i) L1 and L2 obtain nearly the same vote shares, (ii) L1 and R

obtain nearly the same vote shares, and (iii) L2 and R obtain nearly the same vote
shares.

For scenario (i), there are three types of events: (i-a) L1 obtains exactly one
more vote than L2, (i-b) L1 and L2 obtain exactly the same support, and (i-c) L1
obtains exactly one less support than L2. Now, if she (a type tL1 voter) votes for L1
rather than for L2, she receives additional utility of 1/4 for event (i-a), 1/2 for event
(i-b), and 1/4 for event (i-c).21 When n is sufficiently large, the probability of each
event is proportional to

∫ 1/2
1/3 fL1(x, x |σ) dx. Hence, the first term in the left-hand

side of inequality (3.3.1) represents the marginal utility of voting for L1 instead of
L2.

Similarly, when n is sufficiently large, the probabilities of scenarios (ii) and
(iii) are proportional to

∫ 1/2
1/3 fL1(x, 1 − 2x |σ) dx and

∫ 1/2
1/3 fL1(1 − 2x, x |σ) dx,

respectively. The marginal utility of voting for L1 instead of L2 is one for scenario
(ii), but−1/2 for scenario (iii). Therefore, inequality (3.3.1) represents the condition
in which voting for L1 is optimal for a type tL1 voter.

Given Lemma 3, the following lemma describes how voters take the results of
the pre-election opinion poll into account for their voting decisions.

20Since the lemma is essentially the same as Proposition 1 in Hummel (2012), I omit its proof.
21For instance, for event (i-a), a type tL1 voter obtains a utility of 1 for sure if she votes for L1,

but her expected utility becomes 3/4 if she votes for L2.



66

Lemma 4 Let E = P. For each j ∈ {L1, L2}, there exists a function γ j : [0, 1] →
[0, 1] such that BR(t j ′, σ, s) = j for all t j ′ ∈ {tL1, tL2} if and only if σ j/m >

γ j (σR/m).

The lemma states that voters who prefer the left candidates would concentrate
their support for a common left candidate if one candidate is doing significantly
better than the other left candidate. An opinion poll result σ provides information
about the expected performance of L1 in the election. For a given σR/m, the larger
σL1/m is the better expected performance of L1 in the election. Thus, if σL1/m is
larger than a threshold γL1(σR/m), then a type tL2 voter chooses L1 although she
believes that other type tL2 voters choose L2.

On the other hand, any poll result where L1 and L2 are doing almost equally
well in the poll does not encourage type tL1 or type tL2 voters to choose their
second preferred candidate. Consider the case of σL1 = σL2. Although the opinion
poll equally evaluates the expected performance of candidates L1 and L2, type tL1

and type tL2 voters differently evaluate their pivotal probabilities, and they vote for
their most preferred candidates. For instance, since a type tL1 voter has private
information from realization of her own type, she believes that L1 and R, or L1 and
L2 are more likely to compete than L2 and R. Thus, she votes for L1, her most
preferred candidate.22

Lemma 3 and Lemma 4 clearly characterize the set of opinion poll results in
which voters concentrate their support in the strong voting equilibrium. Let ΣPL1
be the set of opinion poll results where type tL1 and type tL2 voters vote for L1 as
the best responses to the uninformative voting strategy; that is, the set of opinion
poll results such that inequality (3.3.1) holds, but inequality (3.3.2) does not. To
qualify these behaviors as an equilibrium behavior, I still have to check whether
voters are best-responding to other voters’ behavior. In fact, since n is supposed
to be sufficiently large and there are only two types of left voters, no voter has an
incentive to change her mind.

Specifically, first note that type tL1 voters have no reason to switch their decisions
because the probability that L1 wins the election is maximized. For type tL2 voters,
if they believe that other type tL1 and type tL2 voter votes for L1, then any unilateral
deviation to vote for L2 is weakly dominated: L2 never wins the election whenever
there are at least three voters, but there is a possibility that R wins with one margin

22Therefore, there is no σ such that σ j/m > γj (σR/m) and σ j′/m > γj′ (σR/m). Moreover, the
impossibility of σ j/m > γj (σR/m) and σ j′/m > γj′ (σR/m) holds for asymmetric f , as shown in
Appendix C.
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of victory. Hence, for any poll result σ ∈ ΣPL1, voting for L1 is an equilibrium
behavior for both type tL1 and type tL2 voters.

Likewise, I define ΣPL2 to be the set of opinion poll results where type tL1 and
type tL2 voters vote for L2, as the best responses to the uninformative voting strategy.
For any poll result σ ∈ ΣPL2, voting for L2 is an equilibrium behavior for both type
tL1 and type tL2 voters as for ΣPL1. For any poll result σ < Σ

P
L1∪Σ

P
L2, each voter votes

for her most preferred candidate, as the best response to the uninformative voting
strategy. This is obviously an equilibrium behavior because each voter’s belief about
the other voters, voting for their most preferred candidates, is self-fulfilling.

The following proposition summarizes the strong voting equilibrium.

Proposition 15 In plurality elections, there exists a unique strong voting equilib-
rium in which

(i) type tL1 and type tL2 voters vote for L1 if σ ∈ ΣPL1;
(ii) type tL1 and type tL2 voters vote for L2 if σ ∈ ΣPL2;
(iii) type tL1 voters vote for L1, but type tL2 voters vote for L2 if σ ∈ ΣPS .

Moreover, ΣPL1, Σ
P
L2, and Σ

P
S are mutually exclusive and exhaustive.

3.3.2 Pre-Electoral Coalition Bargaining
I formulate the PEC formation bargaining process as a Nash bargaining problem.

To define a bargaining environment, I find the status quo utilities (or disagreement
utilities) of the left candidates, and the set of feasible agreements. These two
elements depend on the opinion poll result σ, which represents the information
candidates have in period 3.

The status quo utilities for the left candidates are the expected utilities when they
decline to form a PEC. Formally, for each j ∈ {L1, L2}, letΦPj (σ) be the probability
that candidate j wins the plurality election if the left candidates run independently.
Then, the status quo utility of a left candidate j is

uPj (σ) = (V + 1)ΦPj (σ) +
1
2
Φ
P
j ′ (σ),

where j′ denotes the other left candidate.
To define the set of feasible agreements, letΦPξ (σ) be the probability that a PEC

wins at σ. If ξ (L1, λ) forms and wins, for example, then L1 obtains a utility of
V + (1 + λ)/2 and L2 obtains a utility of (2 − λ)/2. The set of feasible agreements
by nominating L1 is

GPL1(σ) =
{
(x, y) ∈ R2 |(x, y) = ΦPξ (σ)(V + (1 + λ)/2, (2 − λ)/2), λ ∈ [0, 1]

}
.
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Similarly, the set of feasible agreements having L2 as the nominated candidate is

GPL2(σ) =
{
(x, y) ∈ R2 |(x, y) = ΦPξ (σ)((1 + λ)/2,V + (2 − λ)/2), λ ∈ [0, 1]

}
.

Therefore, the set of feasible agreements at σ is GP (σ) = GPL1(σ) ∪ GPL2(σ).23

(a) winning events without a PEC (b) winning events with a PEC

Figure 3.1: Illustration of the additional winning event under plurality rule

Figure 3.1 illustrates how to calculate the probabilities of winning for the left
candidates with and without forming a PEC at σ ∈ ΣPS . Under plurality rule with
large n, L1 wins the election if pL1 = max{pL1, pL2, pR}, which corresponds to the
case where p is located in the red stripped region in Figure 3.1(a). Similarly, L2
wins if p is located in the blue region, and R wins if p is located in the white region.
On the other hand, if ξ (k, λ) forms, then the coalition wins if pL1+pL2 ≥ 1/2, which
corresponds to the grey region in Figure 3.1(b). This region is strictly larger than the
union of the red stripped and blue regions in Figure 3.1(a); that is, if L1 and L2 form
a coalition, then there exists an additional winning event, which corresponds to the
bordered region in Figure 3.1(b). When p is located in this region, type tL1 voters
vote for L1, and type tL2 voters vote for L2. Since max{pL1, pL2} < pR < pL1 + pL2

in this region, R wins if and only if there is no PEC. Therefore, since f has full
support, the left candidates strictly increase their probability of winning by forming
a PEC, and they split the extra benefit by transferring utilities within the set of
feasible agreements.

23GP (σ) may not be convex as the standard Nash bargaining problem. Alternatively, one can
include coin-tossing bargaining outcomes to make the set of feasible agreements convex. In this
case, however, the same qualitative comparison of the election rules follows.
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With the above expressions, I formulate the PEC formation problem as follows:

maximize
(
uL1 − uPL1(σ)

) (
uL2 − uPL2(σ)

)
subject to (uL1, uL2) ≥ (uPL1(σ), uPL2(σ))

(uL1, uL2) ∈ GP (σ).

(3.3.3)

Figure 3.2(a) illustrates the bargaining problem when V = 0 and σ ∈ ΣPS .
The blue and red dotted lines represent the status quo utilities, and the solid line
represents the set of feasible agreements. The solid curve is the objective function
of the bargaining problem (3.3.3). Note that since the probability that a PEC wins is
strictly greater than the sum of probabilities that each left candidate wins without a
PEC, the left candidates can agree to form a PEC and obtain strictly higher payoffs
than the status quo utilities. In the figure, this fact is captured by GP (σ) intersecting
the stripped region where (uL1, uL2) ≥ (uPL1(σ), uPL2(σ)). Consequently, the left
candidates form a PEC represented by the dot in the figure.
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Figure 3.2: Illustration of the Nash bargaining problem

On the other hand, the intersection of GP (σ) with the stripped region shrinks
and eventually disappears as V increases. Figure 3.2(b) illustrates the situation
where ΦPL1(σ) > ΦPL2(σ) and V is larger than the threshold V

P
(σ). Note that

GPL1(σ) is located below the line of uL2 = uPL2. This condition corresponds to the
situation where, having L1 as the nominated candidate, there is no way to persuade
L2 to form a coalition even if the coalition chooses L2’s ideology. Of course, since
ΦPL1(σ) > ΦPL2(σ) implies uPL1(σ) > uPL2(σ), there is no way to form a PEC by
nominating L2. Therefore, the left candidates end up in disagreement. With this
observation, I formalize the condition in which (3.3.3) has a solution as follows.
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Proposition 16 In plurality elections, the left candidates form a PEC after observ-
ing opinion poll result σ if and only if the office value V is less than or equal to a
threshold V

P
(σ).

A solution of the bargaining problem (3.3.3) is unique in terms of the ex-
pected utilities of the left candidates; that is, there exists a unique pair of utilities
(u∗L1(σ), u∗L2(σ)) such that (u∗L1(σ), u∗L2(σ)) solves (3.3.3) for a given poll result σ.
However, there might be two different ways to represent the bargaining solution as
the PEC formation, say ξ (L1, λ∗) and ξ (L2, λ∗∗), that return the same utilities for the
left candidates. One pair represents a PEC having L1 as the nominated candidate,
and the other pair represents a PEC having L2 as the nominated candidate.24

To see this, suppose V > 0 and there are two bargaining representations,
ξ (L2, λ∗∗) and ξ (L2, λ∗∗). Since the office value is strictly greater than V , it
must be that λ∗ < λ∗∗; that is, by being nominated, L1 must transfer more utilities
to L2 by choosing a joint policy platform close to L2’s ideal policy. This in turn
implies that type tL1 voters obtain lower utility from the PEC of ξ (L1, λ∗∗) than
from the PEC of ξ (L2, λ∗). Therefore, when a PEC forms at σ ∈ ΣPS , there are
multiples ways to calculate type tL1 voters’ expected utility, which is problematic
for welfare analysis in Section 3.5.

To solve this multiplicity problem, I assume that the candidate who has a higher
probability of winning becomes the nominated candidate of the coalition.25 In
particular, this assumption is consistent with Proposition 16 in that when V =

V
P

(σ), the only way to form a PEC is by nominating the candidate with more
support.

I further suppose that, if vote concentration is expected, then L1 and L2 form a
trivial coalition by nominating the candidate who is expected to receive the support
and choosing his ideal policy. For example, if σ ∈ ΣPL1, then L1 and L2 form a PEC
having L1 as a nominated candidate and λ = 1. This assumption is empirically
supported by the fact that candidates often withdraw their candidacy when they are
unlikely to receive a significant amount of the vote share in elections. Theoretically,
the supported candidate can offer any arbitrarily small offer to the other candidate,
and the unappealing candidate takes it. In Proposition 16, this assumption is captured
by the fact that V (σ) is infinity at σ ∈ ΣPL1 ∪ Σ

P
L2.

24This multiplicity of PEC representation exists only when GP
L1(σ) ∩ GP

L2(σ).
25This assumption fits the PEC formation in the 2002 Korean presidential election. Two coalition

partners, Chung and Roh, used opinion polls to decide a representative candidate. As a result, Roh
obtained more support and was nominated.
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Observe that a micro-foundation for the above Nash bargaining problem is found
as follows.26 Consider a Rubinstein alternating-offers model with outside options
where there is an exogenous risk of breakdown where the left candidates will no
longer be able to continue bargaining, so that they have to run a three-way race
independently. In this case, the expected utilities from the three-way race become
the status quo utilities of the left candidates.27 As a result, the resulting (subgame
perfect) equilibrium payoffs approximate the Nash bargaining solution payoffs with
the same status quo utilities in the current section, when the risk is small and the
candidates make offers frequently.

3.4 Runoff Elections
In this section, I analyze the game under the two-round runoff rule. I then

compare the two election rules in terms of the threshold office value V to form a
PEC.

3.4.1 Voting Equilibrium
I first show that regardless of opinion poll results, the best response to the

uninformative voting strategy is to vote for the most preferred candidate in two-
round runoff elections.

Lemma 5 If E = R, then BR(t j, σ, s) = j for all t j ∈ T and all σ ∈ Σ.

To gain the intuition behind this lemma, recall that voters care only about pivotal
probabilities in the first round due to the simplifying assumptions for the second
round voting behavior. There are two types of events where a voter’s decision can
be pivotal in the first round. The first case is when one candidate obtains almost half
of the vote share and one of the other candidates obtains another half of the votes.
In this case, depending on what a voter decides, one candidate may win outright, or
the two candidates can advance to the second round. The other case is when one top
candidate obtains fewer than half of the votes, and the other two candidates obtain
almost the same vote shares. In this case, depending on a voter’s choice, only one
of the trailing candidates advances to the second round.

When n is sufficiently large, the events of the first type are negligible relative
to the events of the second type in terms of probability. To see this, first consider

26See Muthoo (1999) for a proof and more discussions about the relationships between Nash
Bargaining problems and Rubinstein alternating-offers models.

27Each left candidate’s status quo utility is the utility he obtains when the left candidates perpet-
ually disagree in the bargaining process. If p is an exogenous probability that the bargaining process
terminates, then the candidate j’s status quo utility is calculated as puPj (σ)

∑∞
s=0(1 − p)s = uPj (σ).
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an event of the first type in which L1 and L2 get fifty percent of the vote share
approximately. Then, in large elections, the probability that both L1 and L2 receive
the fraction of the vote share equal to 1/2 is close to the probability that pL1 = pL2 =

1/2, which is in turn related to the density at (pL1, pL2) = (1/2, 1/2). Consider
another event of the second type in which L1 and L2 obtain almost the same
vote share, and R takes first place. The probability of this event is close to the
probability that pL1 = pL2 ≤ pR ≤ 1/2, which is in turn related to the density at
(pL1, pL2) = (x, x) with x ∈ [1/4, 1/3].

As n increases, the probability of the first event decreases to zero at a speed of
the order of n−2, but the probability of the second event decreases to zero at a speed
of the order of n−1. The same convergence rates hold for other pivotal events of the
same types. Therefore, due to the different convergence rates, the events of the first
type are negligible in terms of a type tL1 or tL2 voter’s choice when n is sufficiently
large.

Among the events of the second type, only the event where R takes first place
(but gains less than fifty percent of the vote share) and L1 and L2 get almost half
of the remaining vote share affects decisions of type tL1 and type tL2 voters. To see
this, first observe that when n is sufficiently large, a type tL1 or type tL2 voter does
not consider the event where L1 or L2 takes first place. For instance, L1 becomes
the top candidate in the first round if pL1 > max{pL2, pR}. Then, in the second
round, L1 gets more than half of the vote share regardless which candidates advance
to the second round. Thus, only the event where R takes first place and L1 and
L2 get almost the same vote share is relevant. Given this, it is obviously optimal
for a type t j voter to vote for candidate j. Therefore, characterization of the strong
voting equilibrium under the two-round runoff rule is straightforward, and we have
the following proposition.

Proposition 17 In two-round runoff elections, there exists a unique strong voting
equilibrium in which every voter votes for her most preferred candidate for all
opinion poll results.

3.4.2 Pre-Electoral Coalition Bargaining
The probabilities of winning significantly change under the two-round runoff

rule. Consider the case where pL1 = 1/3+ ε, pL2 = 1/6, and pR = 1/2− ε for some
positive small real number ε. In this case, R wins outright under plurality rule if no
PEC forms. On the other hand, under the two-round runoff rule, R cannot obtain
majority support in the first round, and he reaches the second round with L1. In
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the second round, both type tL1 and type tL2 voters choose L1; consequently, L1
ultimately wins.

Figure 3.3 illustrates the above differences. Assuming that there is no PEC and
voters vote for their most preferred candidates, the red stripped regions represent
the winning events for candidate L1 under different election rules; likewise, the blue
regions represent the winning events for candidate L2 under different election rules.

(a) winning events under plurality rule (b) winning events under the two-round
runoff rule

Figure 3.3: Illustration of the winning events under different election rules

There are two facts to notice. First, the winning event for each left candidate
is strictly larger under the two-round runoff rule than the one under plurality rule.
This implies that each left candidate is more likely to win under the two-round rule
without a PEC. In turn, if other things remain the same, L1 and L2 are more likely
to win the election alone, and their status quo utilities are strictly greater under the
two-round runoff rule than under plurality rule. Second, the union of the red stripped
and blue regions in Figure 3.3(b) includes the bordered region in Figure 3.3(a). This
feature means that if other things remain the same, the probability that a PEC wins
the election is the same under the two election rules.

In sum, the left candidates can obtain higher utilities in the two-round runoff
elections without PEC formation, and the chances to win the elections by forming a
PEC remains the same. In terms of the bargaining environment, the two effects stated
above diminish incentives to form a PEC, which in turn means that the threshold V

decreases for each opinion poll result σ, compared to the thresholdV under plurality
rule.
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The following proposition summarizes the characterization and comparison of
PEC formation incentives under the two election rules.

Proposition 18 In two-round runoff elections, the left candidates form a PEC after
observing opinion poll result σ if and only if the office value V is less than or equal
to a threshold V

R
(σ). In addition, the threshold under plurality rule is strictly

larger than the threshold under the two-round runoff rule for any given opinion poll
result σ: V

P
(σ) > V

R
(σ) for all σ ∈ Σ.

This result induces a clear testable hypothesis: PECs are more likely to form in
plurality elections than in two-round runoff elections. This prediction is the result
of two effects. First, strategic voters merge their support only under plurality rule,
and whenever this behavior is expected, candidates form a trivial PEC. Second,
even when voters are expected not to integrate their support, it is easier for the left
candidates to form a PEC under plurality rule. These two forces have the same
impact in terms of the ex-ante likelihood of PEC formation; thus, more PECs should
be observed in presidential elections under plurality rule.

The above hypothesis is consistent with observations of French and Korean pres-
idential elections. French presidential elections are under the two-round runoff rule,
but Korean presidential elections are under plurality rule. Among the presidential
elections in these two countries, I observe that 80% of Korean presidential elections
had at least one PEC, and this fraction is significantly higher than 33% of elections
with PECs in French presidential elections.28 Thus, it is definitely worth working
on more careful empirical analysis on the relationships between election rules and
PEC formation with a richer dataset.

3.5 Welfare Analysis
In this section, I analyze which election rule is more favorable for which types of

voters under the potential presence of PECs. I define the type t j voter’swelfare as her
ex-ante utility before starting the game. Formally, I define a functionWE

j : R+ → R+
such that WE

j (V ) is the welfare of a type t j voter under election rule E at office value
V . Note that since f is symmetric and the Nash bargaining solution is symmetric,
WE

L1(V ) = WE
L2(V ) for all V . Moreover, it suffices to consider the welfare of a

28The calculations include nine French presidential elections in the period of 1965 - 2012 and five
Korean presidential elections in the period of 1992–2012. I exclude Korean presidential elections
before 1992; the 1992 presidential election was the first free and fair election in which South Korea
elected its first civilian president (Golder, 2006b)
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type tL1 voter because the sum of welfare levels corresponding to all three types is
assumed to be a constant.

The following proposition asserts that the two-round runoff elections return a
larger welfare to the type tL1 voters.

Proposition 19 The welfare of type L1 voters is higher under plurality rule than
under the two-round runoff rule: WR

L1(V ) ≥ WP
L1(V ) for all V ∈ R+.

The proposition can be understood with Figure 3.4 that depicts WR
L1(V ) and

WP
R (V ) as functions of V for m = 1 and the distribution of p is uniform. When

m = 1, voters always choose their most preferred candidate under plurality rule
for any realized opinion poll result σ because inequalities (3.3.1) and (3.3.2) are
simultaneously satisfied. This means that ΣPS = Σ, and the welfare of type tL1 voters
is solely determined by whether the left candidates form a PEC.
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Figure 3.4: Illustration of the welfare of a type tL1 voter

Consider two different office values, V = 0, 1/2. When the candidates are
purely policy-motivated (V = 0), the left candidates form a PEC regardless of the
realization of the opinion poll σ as discussed in Section 3.3.2. However, when
candidates obtain value by holding the office (V = 1/2), the left candidates do not
form a PEC if the opinion poll realizes asσ = (1, 0) because this poll result indicates
that the probability that candidate L1 wins without any PEC is substantially high,
and it is better for him to finish the race alone and try to take office value 1/2.
Likewise, if the opinion poll realizes as σ = (0, 1), then no PEC forms because L2
wants to take the office value alone.

This selfish motivation when V = 1/2 indeed decreases the welfare of type tL1

voters because voters only care about the ideal policy of the candidates. Suppose
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that p is located in the bordered region in Figure 3.3(a). When V = 0, one of the
left candidates wins for sure, but when V = 1/2, neither of them wins if the opinion
poll result realizes as σ = (1, 0), (0, 1). Hence, type tL1 voters obtain strictly less
ex-ante utility if V = 1/2. In Figure 3.4, this decrease of type tL1 voter’s welfare is
captured by a drop of WP

L1(V ) at V = 3/11.29
However, under the two-round runoff rule, the welfare of a tL1 voter is constant.

To see why, consider the situation where V = 2 and p is located in the region where
the left candidates can win only by forming a PEC under plurality rule. Regardless
of opinion poll results, no PEC forms because V is large.30 However, one left
candidate still wins the election under the two-round runoff rule because type tL1

and type tL2 voters are the majority of the population. Thus, no matter whether a
PEC forms, a type tL1 voter obtains a strictly positive payoff whenever p is located
in the union of the red and blue regions in Figure 3.3(b). Thus, the welfare of a type
tR is constant. Since f is symmetric, the ex-ante utilities of type tL1 and type tL2

voters’ welfare are the same, which in turn implies that a type tL1 voter’s welfare is
also constant.

The key factor determining welfare of voters is whether not only voters, but
also candidates correctly guess the true p and make the right decision to win.
Intuitively, as their size increases, poll results convey more accurate information on
the distribution of voters’ preferences. Thus, voters and candidates can correctly
infer the true value of p and merge their support when a PEC is necessary to win; in
turn, the welfare of the voters who prefer the left candidates increases.

To formalize the above discussion, let WP
L1(V,m) be the welfare of a type tL1

voter under plurality rule at (V,m). The following proposition states the welfare
effect of the poll size.

Proposition 20 In terms of the welfare of a type tL1 voter, plurality and the two-
round runoff rules become indifferent as the poll size increases to infinity: for a
given V ∈ R+, WP

L1(V,m) converges to WR
L1(V ) as m → ∞.

Figure 3.5 illustrates the proposition. The convergence is driven by more PEC
formations of the left candidates as well asmore vote concentrationwhen p is located
in the region where the left candidates can win only by forming a PEC. As before,
type tL1 and type tL2 voters never concentrate their support if σL1 ≈ σL2. On the
other hand, for large m, the left candidates form a PEC whenever max{σL1, σL2} <

29Another drop around V = 1 is due to no PEC formation at σ = (0, 0).
30This observation follows from Proposition 18 and the fact that no PEC forms at V = 2 for all

σ ∈ Σ under plurality rule.
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σR < σL1 + σL2; if any such opinion poll result is disclosed, the left candidates
can correctly predict that they can defeat R only by forming a PEC. Therefore, as m

increases, plurality rule and the two-round runoff rule become indifferent in terms
of welfare.
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Figure 3.5: Convergence of the welfare of a type tL1 voter

3.6 Comparative Statics
In this section, I provide two comparative static results. I first parameterize

two-round runoff elections and compare PEC incentives. Then, I study how PEC
incentives change as a function of ideological distance between the two left candi-
dates.

3.6.1 General Two-Round Runoff Elections
General two-round runoff rules can be represented by a single parameter ζ ∈

(1/3, 1/2) such that ζ is the required threshold for a candidate to win outright.31
To begin, the arguments underlying Lemma 5 imply that voters always choose their
most preferred candidates for all ζ . Thus, I focus on the threshold V to form a PEC
and obtain the following comparative static result.

Proposition 21 Let V
ζ
(σ) be the threshold office value for the left candidates to

form a PEC when ζ is the threshold for the first-round victory, after observing
opinion poll result σ. Then, the threshold office value is smaller than the threshold
under plurality, but larger than the threshold under the two-round runoff rule:

31I follow the approach of Bouton (2013). If ζ = 1/3, the corresponding two-round runoff rule is
equivalent to plurality rule. The two-round runoff rule studied in the previous sections is equivalent
to a runoff rule with ζ = 1/2.
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V
P

(σ) > V
ζ
(σ) > V

R
(σ). In addition, the threshold office value decreases as the

threshold for first-round victory increases.

Figure 3.6 illustrates the events where the left candidates can win in a two-round
runoff election with threshold ζ . The bordered region represents the set of events
such that the left candidates can win only by forming a PEC. If p is located in this
region, R obtains not only majority support in the first round, but also the support
higher than the threshold ζ . Thus, R wins outright if L1 and L2 do not form a
PEC. On the other hand, the left candidates can defeat R by forming a PEC. For
each threshold ζ , the additional event that guarantees victory of the left candidates
is strictly contained in the added winning event under plurality rule. Thus, the left
candidates are more likely to win without a PEC under any runoff rule other than
under plurality rule, and so the threshold V under plurality rule is higher than any
runoff rule.

Figure 3.6: Illustration of the winning events when E = ζ

Note that the size of this additional event decreases in ζ because the higher ζ is
in favor of the left candidates. This observation implies that the thresholdV is larger
than the threshold under the two-round runoff rule with threshold 1/2. Therefore,
in two-round runoff elections, PECs are more likely to form as the threshold for
first-round victory decreases.

3.6.2 Ideological Distance
I now parameterize the ideological distance between the left candidates by

θ ∈ [0, 1]: if L1 wins the election alone, then L2 and type tL2 voters obtain a utility
of 1 − θ, and vice versa. With this parametrization, as an extension of Lemma 3, I
have the following lemma.
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Lemma 6 If E = P, then BR(tL1, σ, s) = L1 if and only if

2θ
∫ 1/2

1/3
fL1(x, x |σ) dx +

∫ 1/2

1/3
fL1(x, 1 − 2x |σ) dx

≥ (1 − θ)
∫ 1/2

1/3
fL1(1 − 2x, x |σ) dx,

and BR(tL2, σ, s) = L2 if and only if

2θ
∫ 1/2

1/3
fL2(x, x |σ) dx +

∫ 1/2

1/3
fL2(1 − 2x, x |σ) dx

≥ (1 − θ)
∫ 1/2

1/3
fL2(x, 1 − 2x |σ) dx.

This lemma is quite intuitive because as ideological distance increases, the
marginal benefit of voting for the second preferred candidate decreases. Although
voters are less likely to merge their support, the next proposition states that the left
candidates’s incentives to merge their support increase as their ideological distance
increases.

Proposition 22 For any opinion poll result σ that predicts divided support, the
threshold office valueV

E
(σ, θ) for the left candidates to form a PEC after observing

σ increases as the ideological distance increases.

The proposition states that an increase in ideological distance has a positive
effect on the probability of winning through increasing PEC formation incentives.
To see why, first note that ideological distance has no influence on the probability of
winning. The maximum utility transfer by choosing the opponent’s ideal policy is
θ and the status quo utility is 1− θ. Hence, as θ increases, the left candidates’ status
quo utilities decrease, and the set of feasible utility transfers expands, which in turn
implies that L1 and L2 are more willing to form a PEC. Therefore, conditional on
divided support, PECs are more likely to form as the ideological distance between
potential coalition partners increases.

3.7 Concluding Remarks
Although only one coalitionmember can occupy the office, PECs have frequently

formed and influenced outcomes in single-office elections. In my model, candidates
are both office- and policy-motivated. For this reason, forming a PEC could be
beneficial to all coalition members including the one who withdraws his candidacy.
By throwing his support behind the representative candidate, the coalition becomes
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more likely to win and implement a policy more to his liking. In this setting, the
current paper provides a series of empirically testable predictions in the literature
on PEC formation.

Adding one more candidate who can form a coalition with candidate R does not
change the qualitative nature of PEC incentives. Of course, incentives to form a
PEC between coalition partners will depend on their beliefs about what candidates
of the other-side would do. For instance, if the right candidates are expected to
merge their support by forming a PEC, then the left candidates are more willing
to form a coalition. However, the comparative static results in this paper remain
the same. As an example, ceteris paribus, the increase of probability of winning
by forming a PEC under plurality rule is strictly larger than the increase under the
two-round runoff rule. Thus, PECs are more likely to form in plurality elections
than runoff elections.

With the generalization of the number of candidates, one salient extension would
be to allow some candidate to choose their coalition partners. In reality, it is easier
for ideologically moderate candidates to form a PEC with other candidates than
ideological extremists, and they utilize this flexibility as a leverage in the PEC
bargaining process. One thing to notice is that if their office motivation dominates
policy motivation, such candidates would try to be nominated and occupy the office
in exchange for implementing their ideal policy. Therefore, the resulting policy
choice by a PEC including those candidates might be more extreme than without the
possibility of PEC formation. Since this new asymmetric incentive structure affects
voter welfare, it is worth considering this extension as a future research topic.
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A p p e n d i x A

PROOFS OF CHAPTER 1: SOCIAL NETWORK FORMATION
AND STRATEGIC INTERACTION IN LARGE NETWORKS

A.1 Proofs of Results
Proof of Proposition 1
Proof. The proof consists of two parts. In Part I, by defining N(d, t) := E [N(d, t)]
for each d, I show that N(d,t)

t converges to f (d). In Part II, I prove that for each d,
N(d,t)

t converges in probability to f (d).

Part I. I first show that the expected fraction of nodes with degree d converges.

Claim 1 For each d ∈ N, N(d,t)
t converges to f (d) as t → ∞.

Proof. I start from the following rate equations:

(i) For d = 1:

N(1, t + 1) = 1 +
(
1 −
Φ(1)
µt

)
N(1, t) + ε(1, t). (A.1.1)

(ii) For d ≥ 2:

N(d, t + 1) =
(d − 1)Φ(d − 1)

µt
N(d − 1, t) +

(
1 −

dΦ(d)
µt

)
N(d, t) + ε(d, t).

(A.1.2)

I solve the rate equations inductively. By letting a(1) = Φ(1)
µ , (A.1.1) becomes

N(1, t + 1) = 1 +
(
1 −

a(1)
t

)
N(1, t) + ε(1, t)

= 1 +
(
1 −

a(1)
t

)
+

(
1 −

a(1)
t

) (
1 −

a(1)
t − 1

)
N(1, t − 1)

+ ε(1, t) +
(
1 −

a(1)
t

)
ε(1, t − 1)

=

t∑
s=1



t∏
r=s+1

(
1 −

a(1)
r

)︸                       ︷︷                       ︸
(i)

+N(1, 1)
t∏

r=1

(
1 −

a(1)
r

)
︸                       ︷︷                       ︸

(ii)
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+

t∑
s=1



t∏
r=s+1

(
1 −

a(1)
r

)
ε(1, r − 1)

︸                                      ︷︷                                      ︸
(iii)

.

For a large t, I have the following approximation:

t∏
r=s+1

(
1 −

a(1)
r

)
≈ e−

∑t
r=s+1

a(1)
r ≈ e−a(1)(log t−log s) =

( s
t

)a(1)
. (A.1.3)

By the above approximation, I find approximations for (i) - (iii) as

(i)
t∑

s=1

t∏
r=s+1

(
1 −

a(1)
r

)
≈

1
ta(1)

∫ t

0
sa(1) ds =

1
ta(1)

1
1 + a(1)

ta(1)+1 =
t

1 + a(1)
,

(ii) N(1, 1)
t∏

r=1

(
1 −

a(1)
r

)
≈ N(1, 1)

( s
t

)a(1)
,

(iii)
t∑

s=1

t∏
r=s+1

(
1 −

a(1)
r

)
ε(1, r − 1) ≈ ε(1, t − 1)

t
1 + a(1)

.

By dividing by t and taking the limit, both (ii) and (iii) become zero. Hence, it
follows that

lim
t→∞

N(1, t)
t
=

1
1 + a(1)

=
µ

µ + Φ(1)
= f (1).

Let f (d − 1) be given. Define a(d) and b(d − 1, t) as

a(d) :=
dΦ(d)
µ

and b(d − 1, t) :=
(d − 1)Φ(d − 1)

µ

N(d − 1, t)
t

.

I observe that

lim
t→∞

b(d − 1, t) =
(d − 1)Φ(d − 1)

µ
lim
t→∞

N(d − 1, t)
t

=
(d − 1)Φ(d − 1)

µ
f (d − 1).

Then, by using the approximation technique for d = 1, I rewrite equation (A.1.2) as

N(d, t + 1)

=

(
1 −

a(d)
t

)
N(d, t) + b(d − 1, t) + ε(d, t)

= b(d − 1, t) +
(
1 −

a(d)
t

)
b(d, t − 1) +

(
1 −

a(d)
t

) (
1 −

a(d)
t − 1

)
N(d, t − 1)

+ ε(d, t) +
(
1 −

a(d)
t

)
ε(d, t − 1)
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≈

t∑
s=1

b(d − 1, s)
t∏

r=s+1

(
1 −

a(d)
r

)
+ N(d, 1)

t∏
r=1

(
1 −

a(d)
r

)

+

t∑
s=1

t∏
r=s+1

(
1 −

a(d)
r

)
ε(d, r − 1).

By dividing t and taking the limit, the latter two terms become zero. In addition,
since lim

t→∞ b(d − 1, t) = (d−1)Φ(d−1)
µ f (d − 1), it follows that

lim
t→∞

N(d, t)
t
=

lim
t→∞ b(d − 1, t)

1 + a(d)
=

(d − 1)Φ(d − 1)
µ + dΦ(d)

f (d − 1) = f (d). �

Part II. For notational simplicity, I let zd = dΦ(d) for each d. I find the following
result:

Claim 2 For each d ∈ N, there exists (ν(d, t))t≥1 such that

|N(d, t) − f (d)t | ≤ ν(d, t)t,

and ν(d, t) → 0 as t → ∞.

Proof. I prove the claim inductively. For d = 1, I observe that

N(1, t + 1) = 1 +
(
1 −

z1

µt

)
N(1, t) + ε(1, t),

(t + 1) f (1) = 1 +
(
1 −

z1

µt

)
t f (1).

Let δ(1, t) := |N(1, t) − t f (1) |. Then, by setting ν(1, t) = ε(1, t) + 1
t , it follows that

����N(1, t + 1) − (t + 1) f (1)
���� ≤

����
(
N(1, t) − t f (1)

)
−

z1

µt

(
N(1, t) − t f (1)

) ���� + ε(1, t)

=

(
1 −

z1

µt

)
δ(1, t) + ε(1, t)

≤ δ(1, 1)
t∏

k=1

(
1 −

z1

µk

)
︸                    ︷︷                    ︸

→0 as t → 0

+

t∑
s=1

t∏
r=s+1

(
1 −

z1

µr

)
ε(d, r)︸                           ︷︷                           ︸

≤ε(1,t)t

≤ ν(1, t)t.

Suppose now that the statement holds for d − 1. I observe that

N(d, t + 1) = N(d, t) +
zd−1

µt
N(d − 1, t) −

zd

µt
N(d, t) + ε(d, t),
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(t + 1) f (d) = t f (d) +
zd−1

µt
t f (d − 1) −

zd

µt
t f (d).

Let δ(d, t) = |N(d, t) − t f (d) |. By setting ν(d, t) = zd−1
µ ν(d − 1, t) + ε(d, t) + 1

t , I
have

����N(d, t + 1) − (t + 1) f (d)
����

≤
����
(
N(d, t) − t f (d)

) (
1 −

zd

µt

)
+

zd−1

µt

(
N(d − 1, t) − t f (d − 1)

) ���� + ε(d, t)

≤

(
1 −

zd

µt

)
δ(d, t) +

zd−1

µ
ν(d − 1, t) + ε(d, t)

≤

(
1 −

zd

µt

) (
1 −

zd

µ(t − 1)

)
δ(d, t − 1) +

(
1 −

zd

µt

)
zd−1

µ
ν(d − 1, t − 1)

+
zd−1

µ
ν(d − 1, t) +

(
1 −

zd

µt

)
ε(d, t − 1) + ε(d, t)

≤ δ(d, 1)
t∏

k=1

(
1 −

zd

µk

)
︸                     ︷︷                     ︸

→0 as t → 0

+

t∑
s=1




[
zd−1

µ
ν(d − 1, s) + ε(d, s)

] t∏
r=1

(
1 −

zd

µr

)
︸                                                          ︷︷                                                          ︸

≤
( zd−1

µ ν(d−1,s)+ε(d,s)
)

t

≤ ν(d, t)t. �

I now show concentration of the degrees as follows.

Claim 3 Let d ∈ N be fixed. Then, there exists a constant Kd > 0 such that

P

(����N(d, t) − N(d, t)
���� ≥ Kd

√
t log t

)
≤ o(1).

Proof. I first find that a sequence of random variables (N(d, s))t
s=1 defined as

N(d, s) := E [N(d, t) |F s] is a Doob Martingale. To see why, first find that

E [|N(d, s) |] = E
[
E

[
N(d, t) |F s] ] = E [N(d, t)] ≤ t < ∞,

E

[
N(d, s) |F s−1

]
= E

[
E

[
N(d, t) |F s] |F s−1

]
= E

[
N(d, t) |F s−1

]
= N(d, s − 1).

Moreover, N(d, 0) = N(d, t) and N(d, t) = N(d, t) because

N(d, 0) = E
[
N(d, t) |F 0

]
= E [N(d, t)] ,

N(d, t) = E
[
N(d, t) |F t

]
= N(d, t).

(N(d, s))t
s=1 further has a uniformly bounded difference property: For each d ∈

N, there exists Md > 0 such that for all 1 ≤ s ≤ t, |N(d, s)−N(d, s−1) | ≤ Md . To see
why, I first note that it suffices to show it only for d ≥ 2 because one can easily repeat
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similar steps for d = 1. Now, for any given d ≥ 2, I set Md =
2
z1

max{1, zd, zd−1} and
verify the uniformly bounded difference property by using mathematical induction
in the difference k = t − s ≥ 0.

First, when k = 0, I have

|N(d, t) − N(d, t − 1) |

=
����E

[
N(d, t) |F t

]
−E

[
N(d, t) |F t−1

] ����
=

����N(d, t) −E
[
N(d, t) |F t−1

] ����
≤

����N(d, t) − N(d, t − 1)
���� +

zd
z1
2 (t − 1)

N(1, t − 1) +
zd−1

z1
2 (t − 1)

N(1, t − 1)

≤ 1 +
max{zd−1, zd }

z1
2 (t − 1)

(
N(d − 1, t) + N(d, t − 1)

)
≤ Md .

Second, suppose the property holds for all k′ ≤ k. For k ≥ 1, I have

|N(d, s) − N(d, s − 1) |

=
����E

[
N(d, t) |F s] −E [

N(d, t) |F s−1
] ����

≤ 1 +
max{zd−1, zd }

z1
2 (s − 1)

(
E

[
N(d, t) |F s] +E [

N(d, t) |F s−1
] )

≤ Md .

Having the properties of (N(d, s))t
s=1 as the above, the Azuma-Hoeffiding in-

equality states that for any εd > 0,

P

(
|N(d, t) − N(d, t) | ≥ εd

)
≤ 2e

−
ε2
d

2M2
d
t .

By choosing εd = 2Md
√

t log t, it follows that

P

(
|N(d, t) − N(d, t) | ≥ 2Md

√
t log t

)
≤ o(1). �

I finally prove that for each d, N(d,t)
t converges in probability to f (d) as follows.

Claim 4 Let d ∈ N be fixed. For any given ε > 0,

lim
t→∞

P

(����
N(d, t)

t
− f (d)

���� ≥ ε
)
= 0.
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Proof. By Claim 2, there exists T1 such that |N(d,t)
t − f (d) | < ε/3 whenever t ≥ T1.

Then, for all t ≥ T1,

P

(����
N(d, t)

t
− f (d)

���� ≥ ε
)
≤ P *

,

����
N(d, t)

t
−

N(d, t)
t

���� +
����
N(d, t)

t
− f (d)

���� ≥ ε
+
-

≤ P *
,

����
N(d, t)

t
−

N(d, t)
t

���� ≥
2
3
ε+

-
.

By Claim 3, it follows that

lim
t→∞

P *
,

����
N(d, t)

t
−

N(d, t)
t

���� ≥
2
3
ε+

-
= 0. �

I finally prove the unique choice of µ. For this, I state and prove the following
claim.

Claim 5 Let Γ(·) : R+ → R+ be a function defined as

Γ(µ) :=
∞∑

d=1
dΦ(d) f (d) =

∞∑
d=1

dΦ(d)


µ

dΦ(d)

d∏
k=1

(
kΦ(k)

µ + kΦ(k)

)
.

Then, Γ(·) is continuous in µ.

Proof. Define a function γd (·) : R+ → R+ as

γd (µ) = dΦ(d) f (d) = dΦ(d)


µ

dΦ(d)

d∏
k=1

(
kΦ(k)

µ + kΦ(k)

)
.

Note that 0 ≤ γd (µ) ≤ df (d) and
∑∞

d=1 df (d) = 2. Define a function Γn(·) :
R+ → R+ as Γn(µ) =

∑n
d=1 γd (µ). Then, Γn(·) is continuous in µ, and it converges

uniformly to Γ(·) by the Weierstrass M test. Therefore, Γ(·) is continuous. �
Therefore, the theorem is proven.

Proof of Proposition 2
Proof. The proposition is fully proven in the main text.

Proof of Proposition 3
Proof. I observe the following lower bound of λmax(Gt ):√

dmax(Gt ) ≤ λmax(Gt ),

where dmax(G) is the maximum degree of network Gt . Thus, it suffices to show that
if dΦ(d) is increasing in d, then d1(Gt ) → ∞ almost surely as t → ∞.
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Define a sequence of independent Bernoulli random variables (It )t≥1 such that

P(It = 1) :=
Φ(1)

2t
.

If the hazard rate function is not increasing, then it follows that

P
(
d1(Gt ) − d1(Gt−1) = 1|Gt−1) = d1(Gt−1)Φ(d1(Gt−1))∑t−1

s=1 ds (Gs)Φ(ds (Gt−1))

≥
Φ(1)

2t
= P(It = 1).

Thus, d1(Gt ) ≥
∑t

s=1 Is. Note that
∑∞

t=1P
(
It = 1

)
= ∞. Since (It )t≥1 is a sequence

of independent random variables, the second Borel-Cantelli lemma shows that

P
(
It = 1 i.o.

)
= 1.

Thus, P
( ∑∞

t=1 It = ∞
)
= 1, so that d1(Gt ) → ∞ almost surely as t → ∞.

Proof of Proposition 4
Proof. Suppose that the hazard rate function is increasing, which implies that
zd ≤ z1 for all d ≥ 1. Choose ε = log

(
1 + Φ(1)

4z1

)
. Then, it follows that

lim
d→∞

log
F (d)
e−εd = lim

k→∞

d−1∑
s=1

log
(

zs

µ + zs

)
+ εd

= lim
d→∞

d−1∑
s=1

(
log

(
zs

µ + zs

)
+ log

(
1 +
Φ(1)
4z1

))
+ ε

≤ lim
d→∞

d−1∑
s=1

(
log

(
z1

µ + z1

)
+ log

(
1 +
Φ(1)
4z1

))
+ ε

= lim
d→∞

d−1∑
s=1

log
(
Φ(1)/4 + z1

µ + z1

)
+ ε

< ε.

Hence, the asymptotic degree distribution is not heavy-tailed.
I now show that if the hazard rate function monotonically decreases to zero, then

the asymptotic degree distribution is heavy-tailed. By the assumption, it follows that
zd → ∞ as d → ∞. For a fixed ε > 0, there exists δ > 0 such that ε = log(1 + δ).
Then, I have

lim
d→∞

log
F (d)
e−εd = lim

k→∞

d−1∑
s=1

log
(

zs

µ + zs

)
+ εd
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= lim
d→∞

d−1∑
s=1

(
log

(
zs

µ + zs

)
+ log

(
1 + δ

))
+ ε

= lim
d→∞

d−1∑
s=1

log
(
δzs + zs

µ + zs

)
+ ε

= ∞.

Therefore, the proposition is proven.

Proof of Corollary 1
Proof. The statement directly follows by and Proposition 3 and Proposition 4.

Proof of Lemma 1
Proof. I define a sequence (a(d))d≥1 as

F (d) = 1 − *
,

d−1∑
k=1

f (k)+
-
=

d∏
k=1

a(k).

By its construction, I have

f (d) =
(
1 − a(d + 1)

) d∏
k=1

a(k),

h(d) = 1 − a(d + 1).

Thus, h(d) is increasing in d if and only if a(d) is decreasing in d for all d ≥ 2.
By the summation by parts, I find that

∞∑
k=d

k f (k) = d
d∏

s=1
a(s) +

∞∑
k=d+1

k∏
s′=1

a(s′).

Hence, the inverse hazard rate function of f̃ (·) is

1
h̃(d)

=

∑∞
k=d k f (k)
df (d)

=
d
∏d

s′=1 a(s′)

d
(
1 − a(d + 1)

) ∏d
r ′=1 a(r′)

+

∑∞
k=d+1

∏k
s=1 a(s)

d
(
1 − a(d + 1)

) ∏d
r=1 a(r)

=
1

h(d)
+

1
dh(d)

*
,

∞∑
k=d+1

k∏
s=d+1

a(s)+
-
.

Thus, it suffices to show that the inverse hazard rate function is decreasing in d.
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Since a(d) is decreasing in d,

∞∑
k=d+1

k∏
s=d+1

a(s) −
∞∑

k ′=d+2

k ′∏
s′=d+2

a(s′)

=
(
a(d + 1) + a(d + 1)a(d + 2) + · · ·

)
−

(
a(d + 2) + a(d + 2)a(d + 3) + · · ·

)
=

(
a(d + 1) − a(d + 2)

)
+

(
a(d + 1)a(d + 2) − a(d + 2)a(d + 3)

)
+ · · ·

=
(
a(d + 1) − a(d + 2)

)
+

∞∑
k=d+2

*
,

k∏
s=d+1

a(s) −
k∏

s′=d+2
a(s′)+

-
> 0.

Note here that terms in the summations are rearrangeable because each summation
is absolutely convergent. With this observation, it follows that the inverse hazard
rate function of f̃ (·) is strictly decreasing in d. Thus, the proposition follows.

Proof of Proposition 5
Proof. The proof directly follows by the equilibrium characterization.

Proof of Proposition 7
Proof. Fix amechanism (ξ, π). The social value ξ̃ = Ẽ

[
ξ (d)

]
is strictly positive if a

mechanism returns a strictly positive revenue to the seller. Thus, for any mechanism
with a positive revenue, the expected valuation V (·, ·) is strictly supermodular as

V (d′, d1) − V (d, d1) = ξ̃d1
(
ξ (d′) − ξ (d)

)
> ξ̃d2

(
ξ (d′) − ξ (d)

)
= V (d′, d2) − V (d, d2).

Then, I have the following claim:

Claim 6 Suppose that V (·, ·) is strictly supermodular. Then, the following hold:

(i) ξ (·) is incentive compatible if and only if ξ (·) is monotone.

(ii) ξ (·) is incentive compatible if the following inequalities hold:

V (d, d) − π(d) ≥ V (d − 1, d) − π(d − 1) for all d = 1, . . . , dmax,

V (d, d) − π(d) ≥ V (d + 1, d) − π(d + 1) for all d = 0, . . . , dmax − 1.

Proof. See Chapter 6 in Vohra (2011) for a proof. �
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Claim 7 For any monotone allocation ξ (·), there exists an expected payment sched-
ule π(·) such that all the incentive comparability constraints are satisfied.

Proof. Since any buyer with degree zero obtains zero utility, I set ξ (0) = 0 without
loss of generality. Define a payment schedule π(·) : D → R+ such that π(0) := 0
and

π(d) :=
d∑

k=1

(
V (d, d) − V (d − 1, d)

)
for all d ≥ 1. Then, by the previous claim, it suffices to show that all downward and
upward incentive compatibility constraints are satisfied as:

π(d) − π(d − 1) = V (d, d) − V (d − 1, d) for all d ≥ 1,

π(d + 1) − π(d) > V (d + 1, d) − V (d, d) for all d ≥ 0. �

Therefore, the claim is proven.
The previous claims imply that to solve the seller’s problem (1.6.1), it suffices to

consider monotone allocation rules and a payment schedule satisfying the adjacent
incentive compatibility constraints. Moreover, for any monotone allocation rule,
there is a payment schedule satisfying the adjacent constraints. In particular, the
payment schedule satisfies all downward incentive compatibility constraints.

Note that for any optimal mechanism (ξ, π), the downward incentive compati-
bility constraints must be binding in the seller’s problem (1.6.1). Thus, given that
ξ (0) = 0 and π(0) = 0 without loss of generality, I can fix the payment schedule de-
fined as π(d) := ξ̃

∑d
k=1

(
ξ (k)k − ξ (k − 1)k

)
. This implies that the seller’s problem

is

maximize
ξ:D→[0,1]




dmax∑
d=1

f̃ (d)ξ (d)





dmax∑
d=1

f (d)
(
ξ (d)

(
d −

1 − F (d)
f (d)

))
subject to 0 = ξ (0) ≤ ξ (1) ≤ · · · ≤ ξ (dmax) ≤ 1.

Consider two degree distributions f (·) and f ′(·) with f (·) >LR f ′(·). Assuming
the increasing hazard rate property for both degree distributions, it follows that
1−F (d)

f (d) > 1−F ′(d)
f ′(d) . Since f̃ (·) >FOSD f̃ ′(·), it also follows that

∑dmax
d=1 f̃ (d)ξ (d) ≥∑dmax

d=1 f̃ ′(d)ξ (d) for any allocation rule ξ (·). Therefore, the seller’s revenue strictly
increases as the degree distribution increases in terms of the likelihood ratio order.

Proof of Proposition 7
Proof. The proposition follows by the discussions in the main text.
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A.2 Additional Proofs
I here provide additional proofs and results in probability theory.

Approximation of Random Variables

Claim 8 Let X(t) and Y(t) be random variables such that X(t) ∈ [0, K] and
Y(t) ∈ [δ, L] with δ > 0. If

(
Y(t)

)
t≥1 converges in probability to a constant

y ∈ [δ, 1], then as t → ∞,

����E
[
X(t)
Y(t)

]
−E

[
X(t)
y

] ����→ 0.

Proof. For a given ε > 0, let Ω(t) := {ω : |Y(t) − y | < εδ2

12K }. By the assumption,
there exists T such that P

(
Ω(t)c) < εδ2

12K L whenever t ≥ T . Hence, t ≥ T implies
that

����E
[
X(t)
Y(t)

]
−E

[
X(t)
y

] ����

≤
����

∫
Ω(t)

X(t)y − X(t)Y(t)
yY(t)

dF
���� +

����

∫
Ω(t)c

X(t)y − X(t)Y(t)
yY(t)

dF
����

≤
1
δ2

(∫
Ω(t)

����X(t)y − X(t)Y(t)
���� dF +

∫
Ω(t)c

����X(t)y − X(t)Y(t)
���� dF

)
<

1
δ2

(
εδ2

12K

∫
Ω(t)
|X(t) | dF + 2L

∫
Ω(t)c

|X(t) | dF
)

<
1
δ2

(
εδ2

12
P

(
Ω(t)

)
+

(
2K L

)
P

(
Ω(t)c))

< ε.

Therefore, the claim is proven.

Convergence of Random Variables in N∞

Claim 9 Let (Xn)n≥1 be a sequence of random variables. Let X∞ be a random
variable distributed over N∞. Then, Xn converges in distribution to X∞ as n → ∞

if and only if for all x ∈ R,

lim
n→∞

P
(
Xn = x

)
= P

(
X∞ = x

)
.

Proof. Suppose that Xn converges to X∞ in distribution as n → ∞. Let (a, b) ⊂ R
such that (a, b) ∩ N = ∅. Then, it follows that

P
(
X∞ ∈ (a, b)

)
≤ lim inf

n→∞
P

(
Xn ∈ (a, b)

)
= 0.
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This part is shown in Theorem 29.1 in Billingsley (2012). Therefore, for any x < N,
there exists (a, b) such that x ∈ (a, b), (a, b) ∩ N = ∅, and P

(
X∞ = x

)
= 0 =

limn→∞P
(
Xn = x

)
.

Now fix x ∈ N. By choosing ε = 1/2, I find that

P
(
X∞ = x

)
= P

(
X∞ ∈ (x − ε, x + ε)

)
≤ lim inf

n→∞
P

(
Xn ∈ (x − ε, x + ε)

)
≤ lim sup

n→∞
P

(
Xn ∈ (x − ε, x + ε)

)
≤ lim sup

n→∞
P

(
X∞ ∈ (x − ε, x + ε)

)
= P

(
X∞ = x

)
,

where the second and the last inequalities are by Theorem 29.1 in Billingsley (2012).
Therefore, it follows that lim

n→∞P
(
Xn = x

)
= P

(
X∞ = x

)
.

To show the converse, fix z ∈ R, and assume that F∞(·) is continuous at z. Since
F∞(z) = P

(
X∞ ≤ bzc

)
, it follows that

F∞(z) =
∑

k≤bzc

P
(
X∞ = k

)
=

∑
k≤bzc

lim
n→∞

P
(
Xn = bzc

)
= lim

n→∞
Fn(bzc) = lim

n→∞
Fn(z).

Note that the above argument does not hold if the support of X∞ is not N.1

Bounds of the Largest Eigenvalue

Claim 10 Let G = 〈N, A〉 be a network with size n. Its largest eigenvalue satisfies√
dmax(G) ≤ λmax(G) ≤ dmax(G).

Proof. Throughout the proof, let node 1’s degree be the maximum degree dmax.
To prove the lower bound, note that λmax(G) satisfies

λmax(G) ≥
q′Aq
q′q

for all q ∈ Rn. Without loss of generality, suppose that nodes 2, . . . , k have,
respectively, a link to node 1, but nodes k + 1, . . . , n do not. Choose q such that

q =
(√

dmax (G), 11×(k−1), 01×(n−k−1)
)′,

1A simple counter example is a sequence of integer-valued random variables
(
Xn

)
n≥1 such that

P
(
Xn = k

)
= 1/n if and only if 1 ≤ k ≤ n. Then, lim

n→∞P
(
Xn = x

)
= 0 for all x ∈ R. Let

X∞ ∼ N (0, 1). Then, P
(
X∞ = x

)
= 0, but Xn does not converges in distribution to X∞ as n → ∞.
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where 11×k−1 is a 1×(k−1) vectorwith entries of one, and 01×(n−k−1) is a 1×(n−k−1)
vector with entries of zero. Then, q′q = 2dmax(G) and

q′Aq =
(
dmax(G)

)3/2
+

√
dmax(G)

(
d2(G) + · · · + dk (G)

)
= 2

(
dmax(G)

)3/2.

Thus, λmax(G) ≥
√

dmax(G).
To prove the upper bound, let xmax be an eigenvector corresponding to the

maximum eigenvalue λmax(G). By its definition, Ax = λmax(G)x, and so

λmax(G)x1 =
∑
j∈N1

x j,

where xi is the vector that has only one non-zero entry at the i-th entry. Hence,

|λmax(G) | |x1 | ≤
∑
j∈N1

|x j | ≤ dmax(G) |x1 |. (A.2.1)

Therefore, the claim is proven.

The Second Borel-Cantelli Lemma

Claim 11 Let (En)∞n=1 be a sequence of independent events. If
∑∞

n=1P(En) = ∞,
then

P
(
En i.o.

)
= 1.

Proof. Independence and 1 − x ≤ e−x imply that

P
(
∩∞k=n Ec

k
)
=

∞∏
k=n

(
1 −P

(
Ek

))
≤

∞∏
k=n

exp
(
−P

(
Ek

))
= exp *

,
−

∞∑
k=n

P
(
Ek

)+
-

= 0.

Thus, P
(
∪∞k=n En

)
= 1 for all n. Since ∪∞k=nEn decreases monotonically to

lim supn En as n → ∞, it follows that P
(
En i.o.

)
= 1.
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A p p e n d i x B

PROOFS OF CHAPTER 2: MONOPOLY PRICING AND
DIFFUSION OF (SOCIAL) NETWORK GOODS

Proof of Lemma 2
Proof. The strictly increasing hazard rate property of f̃ : Define a function
λ : R+ → R+ such that λ(x) := f (x)

1−F (x) , which is differentiable and λ′(x) ≥ 0 by

the IHRP assumption. Then, I can rewrite f and F as f (x) = λ(x)e−
∫ x

0 λ(s) ds and
F (x) = 1 − e−

∫ x

0 λ(s) ds. With these new expressions, it follows that

1 − F̃ (x)

f̃ (x)
=

∫ ∞
x s f (s) ds

x f (x)

=

[
s(−1 + F (s))

]∞
x
−

∫ ∞
x

(
− 1 + F (s)

)
ds

xλ(x)e−
∫ x

0 λ(s) ds

=
xe−

∫ x

0 g(s) ds +
∫ ∞

x e−
∫ y

0 λ(s) ds ds

xλ(x)e−
∫ x

0 λ(s) ds

=
1

λ(x)
+

∫ ∞
x e−

∫ s

0 λ(u) du ds

xλ(x)
.

Since λ′(x) ≥ 0,
( ∫ ∞

x e−
∫ s

0 λ(u) du ds
)′ < 0, and

(
xλ(x)

)′ > 0, the inverse hazard
rate function of f̃ is strictly decreasing.

The dominance relationship: Observe that for all x ∈ R+,

f̃ (x)

1 − F̃ (x)
=

x f (x)∫ ∞
x s f (s) ds

=
f (x)∫ ∞

x f (s) ds +
∫ ∞

x
(s−x)

x f (s) ds

=
f (x)

1 − F (x) +
∫ ∞

x
(s−x)

x f (s) ds

< λ(x) because
(s − x)

x
f (s) > 0 for all s > x.

The single crossing property: By the IHRP assumption, it suffices to show ex-
istence of crossing points. A proof for the existence is straightforward by the
intermediate value theorem as follows. Define a function ϕ : R+ → R+ as
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ϕ(x) = x
(
1−F (x)

)
, which is differentiable, ϕ(0) = 0, ϕ′(0) > 0, and lim

x→∞ ϕ(x) = 0.
Hence, there exists x ∈ R+ such that ϕ′(x) = 1 − F (x) − x f (x) = 0, which is the
desired single crossing point of λ(x) with 1

x . The same exercise with a function
ϕ̃ : R+ → R+ defined as ϕ̃(x) = x

(
1 − F̃ (x)

)
shows existence of single crossing

point x̃.

Proof of Proposition 8
Proof. I first show that an optimal diffusion policy exists. Then, assuming differ-
entiability of V , I derive the characterization equation in Proposition 8. Finally, I
provide proofs for the discussions about a sufficient condition for the differentiability
of V .

Note that π1(x, y) = y
(
− f̃ (x)

) (
1 − F (y)

)
< 0 for all x, y ∈ R+. By single

crossing property (2.2.3), it follows that for all x ∈ R+,

π2(x, y) =
(
1 − F̃ (x)

)
(1 − F (y)) + y

(
1 − F̃ (x)

) (
− f (y)

)
≥ 0 if and only if y ≤ x.

The equality holds only at y = x. Thus, for given x ∈ R+, π(x, y) is uniquely
maximized at y = x.

The following claim finds that an optimal plan must be contained a compact
interval:

Claim 12 For any t ≥ 1, it is not optimal to choose xt < [0, x].

Proof. By stationarity of the monopolist’s dynamic optimization problem, let
{xt }

∞
t=1 be a diffusion policy such that x1 > x, without loss of generality. Then, since

π1(x, y) < 0 and π2(x, y) < 0 for all y > x and x ∈ R+, I have

∞∑
t=1

βt−1π(xt−1, xt ) = π(x0, x1) + βπ(x1, x2) +
∞∑

t=3
βt−1π(xt−1, xt )

< π(x0, x) + βπ(x, x2) +
∞∑

t=3
βt−1π(xt−1, xt ). �

I prove existence of an optimal diffusion policy. By Claim 12, without loss of
generality, I define a feasible policy correspondence Γ : [0, x] → [0, x] such that
Γ(x) = [0, x] for all x ∈ [0, x]. Γ satisfies the following properties:

(i) Γ(x) is nonempty for all x ∈ [0, x],

(ii) For any feasible policy {xt }
∞
t=1, lim

n→∞

∑n
t=1 β

t−1π(xt−1, xt ) exists because π is
bounded, and

∑n
t=1 β

t−1π(xt−1, xt ) is strictly increasing in n,
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(iii) [0, x] is a convex subset of R+0 , and Γ is compact-valued and continuous, and

(iv) π : [0, x] × [0, x]→ [0, x] is continuous, and β ∈ (0, 1).

Under the above four properties, it can be shown that there exists a unique
continuous functionV : [0, x]→ R such thatV (x) = sup{y ∈ Γ(x) |π(x, y)+ βV (y)}
(Stokey andLucas, 1989). TheMaximum theoremprovides that an optimal diffusion
policy exists.

I now show that for any optimal diffusion policy {x∗t }∞t=1, it must be that x∗t ∈

(0, x). I prove it by using mathematical induction. For t = 1, I calculate

∂

∂y
*
,
π(x0, y) + βπ(y, x∗2) +

∞∑
t=3

βt−1π(x∗t−1, x∗t )+
-

=
(
1 − F̃ (x0)

) (
1 − F (y)

)
+ y

(
1 − F̃ (x0)

) (
− f (y)

)
+ βx∗2

(
− f̃ (y)

) (
1 − F (x∗2)

)
.

The value of the last expression at y = 0 is 1− F̃ (x0) > 0 because f̃ (0) = 0. Hence,
x∗1 > 0. Suppose now that x∗s > 0 for all 1 ≤ s ≤ t. Then, at y = 0,

∂

∂y
*
,

t∑
s=1

βs−1π(x∗s−1, x∗s) + βtπ(x∗t , y) + βt+1π(y, x∗t+1) +
∞∑

s=t+3
βs−1π(x∗s−1, x∗s)+

-
= βt (1 − F̃ (x∗t )

)
> 0.

This implies that x∗t+1 > 0. Therefore, x∗t > 0 for all t ≥ 1.
Similarly, at y = x, I have that since x∗2 > 0,

∂

∂y
*
,
π(x0, y) + βπ(y, x∗2) +

∞∑
t=3

βt−1π(x∗t−1, x∗t )+
-

=
(
1 − F̃ (x0)

) (
1 − F (x)

)
+ y

(
1 − F̃ (x0)

) (
− f (x)

)
+ βx∗2

(
− f̃ (x)

) (
1 − F (x∗2)

)
= βx∗2(− f̃ (x))(1 − F (x∗2)) < 0.

Hence, x∗1 < x. Suppose now that x∗s < x for all 1 ≤ s ≤ t. Then, at y = x, I have

∂

∂y
*
,

t∑
s=1

βs−1π(x∗s−1, x∗s) + βtπ(x∗t , y) + βt+1π(y, x∗t+1) +
∞∑

s=t+3
βs−1π(x∗s−1, x∗s)+

-
= βt

((
1 − F̃ (x∗t )

) (
1 − F (x)

)
− x

(
1 − F̃ (x∗t )

)
f (x) − βx∗t+2 f̃ (x)

(
1 − F (x∗t+2)

))
= −βt+1x∗t+2 f̃ (x)

(
1 − F (x∗t+2)

)
< 0.

Therefore x∗t < x for all t.
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Suppose thatV is differentiable. Then, it follows that π2(x∗t−1, x∗t )+ βV ′(x∗t ) = 0
for all t ≥ 1 because x∗ ∈ R+. By plugging V ′(x∗t ) = π1(x∗t , x∗t+1), I obtain that for
all t ≥ 1,

π2(x∗t−1, x∗t ) + βπ1(x∗t , x∗t+1) = 0.

I prove discussions about the differentiability of V . I first show that directional
derivatives arewell-defined at x∗t for all t ≥ 1 by checking conditions in the following
claim:

Claim 13 (Theorem 3 in Milgrom and Segal (2002)) Suppose that the family of
functions {π1(·, y)}y∈Γ(x) is equi-differentiable at x̂ ∈ [0, x], that supy∈Γ(x) |π1( x̂, y) | <
∞, and that k (x) = argmaxy∈Γ(x) π(x, y) + βV (y) is not empty for all x ∈ [0, x].
Then, V is left- and right-hand differentiable at x̂. For any selection y∗(x) ∈ k (x),
the directional derivatives are

V ′( x̂+) = lim
x→x̂+

π1( x̂, y∗(x)) for x̂ < x,

V ′( x̂−) = lim
x→x̂−

π1( x̂, y∗(x)) for x̂ > 0.

V is differentiable at x̂ ∈ (0, x) if and only if π1( x̂, y∗(x)) is continuous in x at
x = x̂.

I check the following three conditions:

(i) {π1(·, y)}y∈Γ(x) is equi-differentiable at x̂ ∈ Γ(x): It suffices to show that
{π11(·, y)}y∈Γ(x) is equi-continuous in x (Milgrom and Segal, 2002). Since
π11(·, y) = y

(
− f̃ ′(·)

) (
1 − F (y)

)
and f̃ ′ is continuous, {π11(·, y)}y∈Γ(x) is

equi-continuous.

(ii) supy∈Γ(x) |π1( x̂, y) | < ∞: By single crossing property (2.3), for all y ∈ Γ(x),

π1( x̂, y) = y
(
− f̃ ( x̂)

) (
1 − F (y)

)
≤ x

(
− f̃ ( x̂)

) (
1 − F (x)

)
≤ 0.

(iii) k (x) = argmax{y ∈ Γ(x) |π(x, y) + βV (y)} , ∅ for all x ∈ [0, x]: This
property is proven by the existence of an optimal diffusion policy.

In addition, it follows that π1( x̂, y∗(x)) is continuous in x at x = x̂ if k is
continuous. Moreover, k is single-valued if π is concave on [x, x]. This further
provides that k is continuous (Theorem 4 in Milgrom and Segal (2002)). Therefore,
if π is concave on [x, x], then there exists a unique optimal diffusion policy {x∗t }∞t=1
such that π2(x∗t−1, x∗t ) + βπ1(x∗t , x∗t+1) = 0 for all t ≥ 1.
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Proof of Proposition 9
Proof. Since equation (2.3.2) has a unique solution, the proposition is proven.

Proof of Proposition 10
Proof. Define two functions L : [0, x]× [0, x]→ R∪ {∞} and R : [0, x]→ [0, x] as

L(x, y) :=



(
1 − F̃ (x)

) (
1−F (y)−y f (y)

f̃ (y)

)
if x > 0,

∞ if x = 0,

R(z) := βz
(
1 − F (z)

)
.

Observe that L(x, y) is strictly decreasing in x and y, and R(z) is strictly increasing
in z.

Let {x∗t }∞t=1 be an optimal diffusion policy. Then, L(x∗t−1, x∗t ) = R(x∗t+1) for
all t ≥ 1. In addition, by the definition of x∗, L(x∗, x∗) = R(x∗). Suppose that
x∗t−1 < x∗ and x∗t < x∗. Then, it follows that

R(x∗t+1) = L(x∗t−1, x∗t ) > L(x∗, x∗) = R(x∗).

Since R(z) is strictly increasing in z, x∗t+1 > x∗t . Similarly, x∗t−1 > x∗ and x∗t > x∗

imply that x∗t+1 < x∗t . Thus, {x∗t }∞t=1 alternates around x∗ within length 3.
Let {p∗t }∞t=1 be an optimal pricing policy. In the following, I show that p∗t >

p∗, p∗t+1 > p∗, p∗t+2 > p∗ implies p∗t+3 < p∗. There are two cases to consider:
Case 1: Suppose x∗t−1 < x∗. There exists τ1 with t ≤ τ1 ≤ t + 1 such that x∗τ1 > x∗

because {x∗t }∞t=1 alternates around x∗ within length 3. Suppose τ1 = t + 1. Then,
p∗t+2 > p∗ implies x∗t+2 > x∗. It follows that x∗t+3 < x∗ because {x∗t }∞t=1 alternates
around x∗ within length 3. Therefore, p∗t+3 < p∗. Suppose τ1 = t. Then, p∗t+1 > p∗

and p∗t+2 > p∗ imply that x∗t > x∗, x∗t+1 > x∗, and x∗t+2 > x∗, which contradict that
{x∗t }

∞
t=1 alternates around x∗.

Case 2: Suppose x∗t−1 ≥ x∗. Since p∗t > p∗ and p∗t+1 > p∗, it follows that x∗t > x∗

and x∗t+1 > x∗. Now, since {x∗t }∞t=1 alternates around x∗ within length 3, it must be
that x∗t+2 < x∗, which implies that p∗t+2 < p∗.

A similar argument shows that p∗t < p∗, p∗t+1 < p∗, and p∗t+2 < p∗ imply
p∗t+3 < p∗. Therefore, {p∗t }∞t=1 alternates around p∗ within length 4.

Proof of Proposition 11
Proof. Equation (2.3.2) and x < x̃ imply that x∗ < x̃.

To prove diffusion-stability, it suffices to show that x∗ < x̃ implies the diffusion-
stability of x∗. Let ε = min{|x∗ − x̃ |, |x∗ |}/2. It follows that 0 < g(x0) < g( x̃) by
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the construction of ε for any x0 ∈ (x∗ − ε, x∗ + ε). Note that x1 < x2 is equivalent
to g(x1) < g(x2) for any x1, x2 ∈ [0, x̃].

Suppose that x∗ < x0. Then, the corresponding diffusion process {xt }
∞
t=1 is

defined as xt =
p∗

1−F̃ (xt−1)
. This diffusion process is monotone decreasing and

bounded below by x∗ as follows. First, x∗ < x1 < x0 because

x∗ < x0 ⇒ x∗ =
p∗

1 − F̃ (x∗)
<

p∗

1 − F̃ (x0)
= x1,

and

g(x∗) < g(x0) ⇒ x1 =
p∗

1 − F̃ (x0)
=

g(x∗)(
x0

( 1−F̃ (x0)
x0

)) = g(x∗)
g(x0)

x0 < x0.

Second, (ii) x∗ < xt < xt−1 implies x∗ < xt+1 < xt because

x∗ < xt ⇒ x∗ =
p∗

1 − F̃ (x∗)
<

p∗

1 − F̃ (xt )
= x1,

and

g(xt ) < g(xt−1) ⇒ xt+1 =
p∗

1 − F̃ (xt )
=

g(x∗)
g(xt )

xt =
g(xt−1)
g(xt )

g(x∗)
g(xt−1)

xt < xt .

Hence, xt decreases to x∗ as t → ∞. Similarly, for x0 < x∗, it can be shown that the
corresponding diffusion process {xt }

∞
t=1 increases to x∗.

Proof of Proposition 12
Proof. The maximum social welfare is 〈x〉, and the social welfare at the steady state
is E f [x(1 − F̃ (x∗)) |x ≥ x∗]. Thus, the deadweight loss from monopoly is

〈x〉 − E f [x(1 − F̃ (x∗)) |x ≥ x∗]

=

∫ ∞

0
x f (x) dx −

(
1 − F̃ (x∗)

) ∫ ∞

x∗
x f (x) dx

=

∫ x∗

0
x f (x) dx + F̃ (x∗)

∫ ∞

x∗
x f (x) dx

= 〈x〉
∫ x∗

0
f̃ (x) dx + 〈x〉F̃ (x∗)

∫ ∞

x∗
f̃ (x) dx

= 〈x〉F̃ (x∗) + 〈x〉F̃ (x∗)
(
1 − F̃ (x∗)

)
.

By dividing the last expression by 〈x〉, I obtain the deadweight loss ratio as

F̃ (x∗) + F̃ (x∗)
(
1 − F̃ (x∗)

)
.



105

Therefore, Proposition 12 is proven.

Proof of Proposition 13
Proof. x∗(β) is decreasing in β by equation (2.3.2). Since x∗(β) < x̃ and x∗(β) is
decreasing in β, it follows that p∗(β) is decreasing in β.

To show that the DW (β) is decreasing in β, note that F (x) is strictly increasing
in x. Thus, F (x∗(β)) is decreasing in β, so that DW (β) is decreasing in β.

Proof of Proposition 14
Proof. Monotonicity of x∗(ξ) directly follows from Proposition 9, Assumption 3,
and equation (2.5.1). To show monotonicity of p∗(ξ), observe that for all ξ1 ≥ ξ0,

p∗(ξ0)

= x∗(ξ0)
(
1 − F̃ (x∗(ξ0); ξ0)

)
≤ x∗(ξ0)

(
1 − F̃ (x∗(ξ0); ξ1)

)
because of the first-order stochastic dominance

≤ x∗(ξ1)
(
1 − F̃ (x∗(ξ1); ξ1)

)
because g(·; ξ) increases in ξ and x∗(ξ1) ≥ x∗(ξ0)

= p∗(ξ1).

Therefore, Proposition 14 is proven.

Proof of Corollary 2
Proof. Let ξ0 ≤ ξ1. Since f (·; ξ1) has first-order stochastic dominance over f (·; ξ0),
the per-period profit by charging p̂ = x∗(ξ0)

(
1 − F̃ (x∗(ξ0); ξ1)

)
is higher than the

per-period profit under f (·; ξ0) by charging p∗(ξ0) = x∗(ξ0)
(
1 − F̃ (x∗(ξ0); ξ0)

)
.

Since p∗(ξ1) ≥ p̂, the equilibrium monopoly profit under f (·; ξ1) is greater than
that under f (·; ξ0).
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A p p e n d i x C

PROOFS OF CHAPTER 3: A MODEL OF PRE-ELECTORAL
COALITION FORMATION

Proof of Lemma 4
Proof. By symmetry, I prove the lemma for j = L1. I first define int(Σ) as

int(Σ) = {(σL1/m, σL2/m) ∈ Σ |0 < σL1, σL2 < m and σL1 + σL2 < m}.

To construct γL1, I state and prove the following lemma:

Lemma 7 Let E = P. If BR(tL2, σ, s) = L1 at σ = (σL1/m, σL2/m) ∈ int(Σ),
then BR(tL2, σ

′, s) = L1 where σ′ = ((σL1 + 1)/m, (σL2 − 1)/m).

Proof. BR(tL2, σ, s) = L1 at σ ∈ int(Σ) if and only if∫ 1/2

1/3
fL2(x, x |σ) dx +

∫ 1/2

1/3
fL2(1 − 2x, x |σ) dx <

1
2

∫ 1/2

1/3
fL2(x, 1 − 2x |σ) dx.

Then, since (1 − 2x)/x ≤ 1 for all x ∈ [1/3, 1/2], I have∫ 1/2

1/3
fL2(x, x |σ′) dx +

∫ 1/2

1/3
fL2(1 − 2x, x |σ′) dx

= µ

∫ 1/2

1/3
xσL1+σL2+1(1 − 2x)σR f (x, x) dx

+ µ

∫ 1/2

1/3
(1 − 2x)σL1+1xσL2+σR f (1 − 2x, x) dx

< µ

∫ 1/2

1/3
xσL1+σL2+1(1 − 2x)σR f (x, x) dx

+ µ

∫ 1/2

1/3
(1 − 2x)σL1 xσL2+σR+1 f (1 − 2x, x) dx

<
µ

2

∫ 1/2

1/3
xσL1+σR (1 − 2x)σL2+1 f (x, 1 − 2x) dx because BR(tL2, σ, s) = L1

<
µ

2

∫ 1/2

1/3
xσL1+σR+1(1 − 2x)σL2 f (x, 1 − 2x) dx

=
1
2

∫ 1/2

1/3
fL2(x, 1 − 2x |σ′) dx,

where

µ−1 =

∫ 1

0

∫ 1−w

0
zσL1wσL2+1(1 − z − w)σR f (z,w) dz dw.
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Therefore, BR(tL2, σ
′, s) = L1, and the lemma is proven.

Define a function γ̂L1 : {0, 1/m, . . . , 1} → {0, 1/m, . . . , 1} such that

γ̂L1
(σR

m

)
= sup

{σ′L1
m

���BR(tL2, σ
′, s) = L2, σ′L1 + σ

′
L2 = m − σR

}
.

γ̂L1 is well-defined by the following lemma.

Lemma 8 {σ′L1/m |BR(tL2, σ
′, s) = L2, σ′L1 + σ

′
L2 = m − σR} , ∅ for all m.

Proof. By direct calculations, one can easily show the statement for m = 0, 1.
Thus, I prove the statement for m ≥ 2 by proving that BR(tL2, σ

′, s) = L2 for all
σ = (σL1/m, σL2/m) with σL1 = σL2. Suppose such a σ be given. Let a =∫ 1/2

1/3 fC (x, x |σ) dx, b =
∫ 1/2

1/3 fC (x, 1 − 2x |σ) dx, and c =
∫ 1/2

1/3 fC (1 − 2x, x |σ) dx.
Note that b = c > 0 because σL1 = σL2.

Since tL1 and tL2 are symmetric, it suffices to show that BR(tL1, σ, s) = L1.
Suppose, by a way of contradiction, that BR(tL1, σ, s) = L2. Then, it follows that

1
3

(a + b)

= ν

∫ 1/2

1/3

1
3

xσL1+σL2 (1 − 2x)σR f (x, x) dx

+ ν

∫ 1/2

1/3

1
3

xσL1+σR (1 − 2x)σL2 f (x, 1 − 2x) dx

< ν

∫ 1/2

1/3
xσL1+σL2+1(1 − 2x)σR f (x, x) dx

+

∫ 1/2

1/3
xσL1+σR+1(1 − 2x)σL2 f (x, 1 − 2x) dx

<
ν

2

∫ 1/2

1/3
(1 − 2x)σL1+1xσL2+σR f (1 − 2x, x) dx because BR(tL1, σ, s) = L2

<
ν

2

∫ 1/2

1/3

1
3

(1 − 2x)σL1 xσL2+σR f (1 − 2x, x) dx

=
1
6

c,

where

ν−1 =

∫ 1

0

∫ 1−w

0
zσL1+1wσL2 (1 − z − w)σR f (z,w) dz dw.

Since b = c, a + b < 2c implies a < 0, which is a contradiction. Thus,
BR(tL1, σ, s) = L1.
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I finally define γL1 : [0, 1] → [0, 1] such that γL1(z) = γ̂L1(bmzc/m). By its
construction, γL1 satisfies the desired property.

Proof of Proposition 15
Proof. For each j ∈ {L1, L2}, I define ΣPj = {σ ∈ Σ |σ j/m > γ j (σR/m)} and
ΣPS = Σ \

(
ΣPL1 ∪ Σ

P
L2

)
.

Mutual exclusiveness: For each j ∈ {L1, L2}, ΣPj ∩ Σ
P
S = ∅ by the definition of

ΣPS . I now show that ΣPL1 ∩ Σ
P
L2 , ∅. Suppose, by a way of contradiction, that

there exists σ ∈ ΣPL1 ∩ Σ
P
L2. For each j ∈ {L1, L2}, let a j =

∫ 1/2
1/3 f 2

j (x, x |σ) dx,

b j =
∫ 1/2

1/3 f 2
j (x, 1 − 2x |σ) dx, and c j =

∫ 1/2
1/3 f 2

j (1 − 2x, x |σ) dx. Since x ≥ 1 − 2x

for all x ∈ [1/3, 1/2], I have bL1 − bL2 > 0 and cL2 − cL1 > 0.
Note that σ ∈ ΣPL1 ∩ Σ

P
L2 implies that aL1 + bL1 < cL1/2 and aL2 + cL2 < bL2/2.

These two inequalities imply that

(aL1 + aL2) +
(
bL1 −

bL2

2
)
+

(
cL2 −

cL1

2
)
< 0,

which is impossible because bL1 − bL2 > 0 and cL2 − cL1 > 0. Thus, ΣPL1 ∩Σ
P
L2 = ∅.

Bayesian equilibrium: By the previous results, it follows that for all j ∈ {L1, L2},

BR(t j, σ, s) =




j if σ ∈ ΣPS ,

L1 if σ ∈ ΣPL1,

L2 if σ ∈ ΣPL2.

Define s∗ : T × Σ → C such that

s∗(t j, σ) =




j if σ ∈ ΣPS ,

L1 if σ ∈ ΣPL1,

L2 if σ ∈ ΣPL2.

Then, it suffices to show that BR(t j, σ, s∗) = BR(t j, σ, s) all j ∈ {L1, L2} and all
σ ∈ Σ.

I first observe that by the definition of s, BR(t j, σ, s∗) = BR(t j, σ, s) = j for all
σ ∈ ΣPS . To prove BR(t j, σ, s∗) = L1 for σ ∈ ΣPL1, among n − 1 voters, let a be the
number of votes for L1, b be the number of votes for L2, and c be the number of
votes for R. Then, σ ∈ ΣPL1 implies that b = 0 and

lim
n→∞

n
{ [

Pr[a = c + 1|σ, n] + Pr[a = c|σ, n]
2

]
−

[
Pr[c = 0|σ, n]

2

]}
> 0.
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Thus, BR(t j, σ, s∗) = L1 for all j ∈ {L1, L2} and all σ ∈ ΣPL1. Moreover, by
symmetry, BR(t j, σ, s∗) = L2 for all j ∈ {L1, L2} and all σ ∈ ΣPL2.

Proof of Proposition 16
Proof. By setting V

P
(σ) = ∞ for all σ ∈ ΣPL1 ∪ Σ

P
L2, it suffices to set V

P
(σ) for

σ ∈ ΣPS .
For a given σ ∈ ΣPS , a Nash bargaining solution exists if and only if GP (σ) ∩

QP (σ) , ∅ where QP (σ) = {(x, y) ∈ R2 |(x, y) ≥ (uPL1(σ), uPL2(σ))}.
If ΦPL1(σ) ≥ ΦPL2(σ), then uPL1(σ) ≥ uPL2(σ). Hence, GP (σ) ∩ QP (σ) , ∅ if

and only if ΦPξ (σ) ≥ uPL2(σ), which is equivalent to

V ≤ ṼP2 (σ) =
ΦPξ (σ) − ΦPL2(σ) − ΦPL1(σ)/2

ΦPL2(σ)
.

ṼP2 (σ) is well-defined and strictly positive because both the numerator and the
denominator are strictly positive. Similarly, if ΦPL2(σ) ≥ ΦPL1(σ), then GP (σ) ∩
QP (σ) , ∅ if and only if

V ≤ ṼP1 (σ) =
ΦPξ (σ) − ΦPL1(σ) − ΦPL2(σ)/2

ΦPL1(σ)
.

Therefore, GP (σ) ∩QP (σ) , ∅ if and only if V
P

(σ) = min{ṼP1 (σ), V̂P2 (σ)}.

Proof of Lemma 5
Proof. The proof is based on several results in the supplementary appendix for
Hummel (2012). I here assume that n = 2k, without loss of generality. I use the
following notations:

• Pr[a, b, c|σ, k]: the conditional probability that among 2k − 1 voters, there
are a number of type tL1 voters, b number of type tL2 voters, and c number of
type tR voters at σ;

• α = a/(2k − 1), β = b/(2k − 1);

• F = sup
p∈42

f j (p|σ);

• D = sup
p∈42

{
max

{
∂ f j (p|σ)
∂pL1

,
∂ f j (p|σ)
∂pL2

}}
.

With the above notations, I state the following claim, which appears in Lemma
3 in the supplementary appendix for Hummel (2012).
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Claim 14 For any ε > 0,

f j (α, β |σ) − 2Dε
2k (2k + 1)

−
Fe−2(2k−1)ε2

2
≤ Pr[a, b, c|σ, k]

≤
f j (α, β |σ) − 2Dε

2k (2k + 1)
+

Fe−2(2k−1)ε2

2
.

With this claim, I have the following two lemmas.1

Lemma 9 lim
k→∞ k Pr[a = c = k, b = 0|σ, k] = lim

k→∞ k Pr[a = k − 1, b = 1, c =
k |σ, k] = 0.

Proof. By Claim 14, it follows that for any ε > 0,

f j ( 1
2, 0|σ) − 2Dε
2k (2k + 1)

−
Fe−2(2k−1)ε2

2
≤ Pr[a = c = k, b = 0|σ, k]

≤
f j ( 1

2, 0|σ) − 2Dε
2k (2k + 1)

+
Fe−2(2k−1)ε2

2
.

Consider ε(k) = k1/3. Then, lim
k→∞ k Dε(k)

2k (2k+1) =
lim
k→∞ k Fe−2(2k−1)ε(k)2

2 = 0. Thus, it
follows that

lim
k→∞

���k
f j ( 1

2, 0|σ)
2k (2k + 1)

− k Pr[a = c = k, b = 0|σ, k]��� = 0.

Since f j (1/2, 0|σ) < ∞, lim
k→∞ k Pr[a = c = k, b = 0|σ, k] = 0. I omit the proof for

lim
k→∞ k Pr[a = k − 1, b = 1, c = k |σ, k] = 0 because it is basically identical to the
current proof.

Lemma 10 lim
k→∞ k Pr[2k/3 ≤ a = b < c ≤ k |σ, k] = 1

2

∫ 1/3
1/4 f j (x, x |σ) dx.

Proof. Observe that lim
k→∞ k Dε(k)

2k (2k+1) = 0 and lim
k→∞ k Fe−2(2k−1)ε(k)2

2 = 0. Thus, I have

lim
k→∞

k Pr
[2k

3
≤ a = b < c ≤ k ���σ, k

]
= lim

k→∞
k

k∑
l=b 2k

3 c

Pr[a = b = l |σ, k]

= lim
k→∞

k
k∑

l=b 2k
3 c

f j ( l
2k−1,

l
2k−1 |σ)

2k (2k + 1)
= lim

k→∞

1
2

k∑
l=b 2k

3 c

f j ( l
2k−1,

l
2k−1 |σ)

2k + 1

=
1
2

∫ 1/3

1/4
f j (x, x |σ) dx.

1The proofs are based on the proof of Lemma 4 in the supplementary appendix for Hummel
(2012).
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Thus, the lemma is proven.
Lemma 9 and Lemma 10 imply that for each type t j voter, the marginal utility of

voting for j is strictly positive for sufficiently large n. Therefore, Lemma 5 follows.

Proof of Proposition 17
Proof. The proposition directly follows from Lemma 5 and the second part of the
proof of Proposition 15.

Proof of Proposition 18
Proof. I omit the proof of the first part because it is essentially a replication of the
proof of Proposition 16.

To prove the second part, without loss of generality, suppose that ΦRL1(σ) ≥
ΦRL2(σ). Then, since ΦRj (σ) > ΦPj (σ) for all j ∈ {L1, L2} and all σ ∈ ΣPS , it
follows that

V
P

(σ) =
ΦPξ (σ) −

(
ΦPL2(σ) + ΦPL1(σ)/2

)
ΦPL2(σ)

>
ΦRξ (σ) −

(
ΦRL2(σ) + ΦRL1(σ)/2

)
ΦRL2(σ)

= V
R

(σ).

Therefore, the proposition is proven.

Proof of Proposition 19
Proof. Since WE

L1(V ) = WE
L2(V ) for all V , WE

R (V ) + 2WE
L1(V ) is constant for all

E = P,R. Thus, it suffices to show that (i) WP
L1(0) = WR

L1(0), (ii) WR
L1(V ) is

constant, and (iii) WP
L1(V ) is decreasing in V .

To begin, I introduce several notations for proofs. Let ΣECO (V ) = {σ ∈ ΣES |V ≤

V
E

(σ)} and ΣENC (V ) = ΣES \ Σ
E
CO (V ). Note that ΣENC (V ) is increasing in V in the

sense of set inclusion. Let ξ (k (σ), λ(σ)) be the Nash Bargaining solution at σ (if
it exists). For each j ∈ {L1, L2}, ΩEj is the subset of 42 where j wins by running
the race alone. ΩEξ = {(x, y) ∈ 42 |x + y ≥ 1/2} is the set of events where the
left candidates can win the election by forming a PEC. Note that the ex-post utility
of type tL1 voters is positive if and only if p ∈ ΩEξ : conditional on the fact that
p ∈ ΩEξ , a type tL1 voter’s utility is 1 if σ ∈ ΣEL1; 1/2 if σ ∈ ΣEL2; (1 + λ(σ))/2 if
σ ∈ ΣECO (V ); and 0 if σ ∈ ΣENC (V ). Let Pr[σ |x, y] be the conditional probability
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that σ is observed conditional on that p = (x, y):

Pr[σ |x, y] =
(

m
σL1, σL2, σR

)
xσL1 yσL2 (1 − x − y)σR .

Then, since f (x, y) = f (y, x), it follows that

∫
(x,y)∈ΩEξ

*..
,

∑
σ∈ΣE

L1

Pr[σ |x, y]
+//
-

f (x, y) dA =
∫

(x,y)∈ΩEξ

*..
,

∑
σ∈ΣE

L2

Pr[σ |x, y]
+//
-

f (x, y) dA,

and ∫
(x,y)∈ΩEξ

*..
,

∑
σ∈ΣE

CO

1 + λ(σ)
2

Pr[σ |x, y]
+//
-

f (x, y) dA

=

∫
(x,y)∈ΩEξ

*..
,

∑
σ∈ΣE

CO

3
4

Pr[σ |x, y]
+//
-

f (x, y) dA.

To show (i), recall that ΣECO (0) = ΣES . Thus, I have

WE
L1(0)

=

∫
(x,y)∈ΩEξ

*..
,

∑
σ∈ΣE

L1

Pr[σ |x, y] +
∑
σ∈ΣE

L2

1
2

Pr[σ |x, y]
+//
-

f (x, y) dA

+

∫
(x,y)∈ΩEξ

1 + λ(σ)
2

Pr[σ |x, y] f (x, y) dA

=

∫
(x,y)∈ΩEξ

*..
,

∑
σ∈ΣE

L1∪Σ
E
L2

3
4

Pr[σ |x, y] +
∑
σ∈ΣE

S

3
4

Pr[σ |x, y]
+//
-

f (x, y) dA

=
3
4

∫
(x,y)∈ΩEξ

f (x, y) dA.

Hence, it follows that WP
L1(0) = WR

L1(0) because ΩPξ = Ω
R
ξ .

To prove (ii), observe that

WR
L1(V ) =

∫
(x,y)∈ΩRξ

*..
,

∑
σ∈ΣR

L1∪Σ
R
L2

3
4

Pr[σ |x, y] +
∑

σ∈ΣR
CO

3
4

Pr[σ |x, y]
+//
-

f (x, y) dA

+

∫
(x,y)∈ΩR

L1

∑
σ∈ΣR

NC

Pr[σ |x, y] f (x, y) dA +
∫

(x,y)∈ΩR
L2

∑
σ∈ΣR

NC

1
2

Pr[σ |x, y] f (x, y) dA

︸                                                                                                     ︷︷                                                                                                     ︸
=
∫

(x,y)∈ΩR
ξ

∑
σ∈ΣR

NC

3
4 Pr[σ |x,y] f (x,y) dA because ΩRξ = Ω

R
L1 ∪Ω

R
L2 and f (x, y) = f (y, x)
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=
3
4

∫
(x,y)∈ΩRξ

f (x, y) dA.

Hence, WR
L1(V ) is constant.

To show (iii), note that

WP
L1(V ) =

∫
(x,y)∈ΩPξ

*..
,

∑
σ∈ΣP

L1∪Σ
P
L2

3
4

Pr[σ |x, y] +
∑

σ∈ΣP
CO

3
4

Pr[σ |x, y]
+//
-

f (x, y) dA

+

∫
(x,y)∈ΩP

L1

∑
σ∈ΣP

NC

Pr[σ |x, y] f (x, y) dA +
∫

(x,y)∈ΩP
L2

∑
σ∈ΣP

NC

1
2

Pr[σ |x, y] f (x, y) dA

=

∫
(x,y)∈ΩPξ

*..
,

∑
σ∈ΣP

L1∪Σ
P
L2

3
4

Pr[σ |x, y] +
∑

σ∈ΣP
CO

3
4

Pr[σ |x, y]
+//
-

f (x, y) dA

+

∫
(x,y)∈ΩP

L1

∑
σ∈ΣP

NC

3
4

Pr[σ |x, y] f (x, y) dA

+

∫
(x,y)∈ΩP

L2

∑
σ∈ΣP

NC

3
4

Pr[σ |x, y] f (x, y) dA

=
3
4

*..
,

∫
(x,y)∈ΩPξ

f (x, y) dA −
∫

(x,y)∈ΩPξ \
(
ΩP

L1∪Ω
P
L2

) *..
,

∑
σ∈ΣP

NC

Pr[σ |x, y]
+//
-

f (x, y) dA
+//
-
.

Thus, WP
L1(V ) is decreasing in V because ΣPNC (V ) is increasing in V .

Proof of Proposition 20
Proof. Let ΣPCO (m) = {σm ∈ Σ

P
S (m) |V ≤ V

P
(σ,m)} and ΣPNC (m) = ΣPS \ Σ

P
CO (m).

To economize notation, let Ω∗ = ΩPξ \
(
ΩPL1 ∪Ω

P
L2

)
. Then, it suffices to show that

lim
m→∞

Pr
[{
σ ∈ ΣPNC (m)

}���
{
p ∈ Ω∗

}]
= 0,

which is equivalent to prove that

lim
m→∞

Pr
[{
σm ∈

{
σ′m ∈ Σ(m) |V ≤ V

P
(σ′m)

}}���
{
p ∈ Ω∗

}]
= 1, (C.0.1)

where V
P

(σ′m) is the minimum of

ΦPξ (σ′m) −
(
ΦPL1(σ′m) + ΦPL2(σ′m)/2

)
ΦPL1(σ′m)

and

ΦPξ (σ′m) −
(
ΦPL2(σ′m) + ΦPL1(σ′m)/2

)
ΦPL2(σ′m)

.
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To prove (C.0.1), I first observe that since f is symmetric,

lim
m→∞

Pr
[{

p ∈ Ω∗
}���

{
σm ∈ Ω

∗
}]
= lim

m→∞

Pr
[{
σm ∈ Ω

∗
}���

{
p ∈ Ω∗

}]
· Pr

[{
p ∈ Ω∗

}]

Pr
[{
σm ∈ Ω

∗
}]

= lim
m→∞

Pr
[{
σm ∈ Ω

∗
}���

{
p ∈ Ω∗

}]
= 1.

Thus, it follows that

lim
m→∞

Pr
[{
σm ∈

{
σ′m ∈ Σ(m) |V ≤ V

P
(σ′m)

}}���
{
σm ∈ Ω

∗
}]
= 1.

Similarly, I also have that

(i) lim
m→∞ Pr

[{
σm ∈

{
σ′m ∈ Σ(m) |V ≤ V

P
(σ′m)

}}���
{
σm < Ω

∗
}]
= 0;

(ii) lim
m→∞ Pr

[{
σm ∈ Ω

∗
}���

{
p ∈ Ω∗

}]
= 1;

(iii) lim
m→∞ Pr

[{
σm < Ω

∗
}���

{
p ∈ Ω∗

}]
= 0.

Thus, since the inside of the limit expression in (C.0.1) is decomposed as

Pr
[{
σm ∈

{
σ′m ∈ Σ(m) |V ≤ V

P
(σ′m)

}}���
{
p ∈ Ω∗

}]

= Pr
[{
σm ∈

{
σ′m ∈ Σ(m) |V ≤ V

P
(σ′m)

}}���
{
σm ∈ Ω

∗
}]

Pr
[{
σm ∈ Ω

∗
}���

{
p ∈ Ω∗

}]

+ Pr
[{
σm ∈

{
σ′m ∈ Σ(m) |V ≤ V

P
(σ′m)

}}���
{
σm < Ω

∗
}]

Pr
[{
σm < Ω

∗
}���

{
p ∈ Ω∗

}]
,

it follows that

lim
m→∞

Pr
[{
σm ∈

{
σ′m ∈ Σ(m) |V ≤ V

P
(σ′m)

}}���
{
p ∈ Ω∗

}]
= 1.

Therefore, the proposition is proven.

Proof of Proposition 21
Proof. Let Φζj (σ) be the probability that candidate j wins the election alone at σ
when the election rule is the two-round runoff rule with threshold ζ . Note that if
ζ = 1/3, Φζj (σ) represents the corresponding probability under plurality rule; if
ζ = 1/2, then it represents the corresponding probability under the two-round runoff
rule. Therefore, it suffices to show that V

ζ
(σ) is strictly decreasing in ζ assuming

that a type t j voter votes for j for all j ∈ {L1, L2} at all σ ∈ Σ.
Without loss of generality, suppose that ΦζL1(σ) ≥ ΦζL2(σ). Let ζ1 > ζ0. Then,

since Φζ1
j (σ) > Φζ0

j (σ), it follows that

V
ζ1 (σ) =

Φ
ζ1
ξ (σ) −

(
Φ
ζ1
L2(σ) + Φζ1

L1(σ)/2
)

Φ
ζ1
L2(σ)
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<
Φ
ζ1
ξ (σ) −

(
Φ
ζ0
L2(σ) + Φζ0

L1(σ)/2
)

Φ
ζ1
L2(σ)

= V
ζ0 (σ).

Therefore, the proposition is proven.

Proof of Proposition 22
Proof. Let ΣPS (θ) be the set of poll results such that the inequalities in Lemma 6
are satisfied. Since ΣPS (θ) is decreasing in θ, in the sense of set inclusion, it suffices
to show that for each E, V

E
(σ, θ) is increasing in θ, assuming that voters vote for

their most preferred candidates.
Without loss of generality, suppose that ΦEL1(σ) ≥ ΦEL1(σ). Then, θ1 > θ0

implies that

V
E

(σ, θ1) =
ΦEξ (σ) −

(
ΦEL2(σ) + (1 − θ1)ΦEL1(σ)

)
ΦEL2(σ)

>
ΦEξ (σ) −

(
ΦEL2(σ) + (1 − θ0)ΦEL1(σ)

)
ΦEL2(σ)

= V
E

(σ, θ0).

Therefore, the proposition follows.
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