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ABSTRACT

£,

In this thesis we are concerned witk

£

o - ] Lo A
representing an element of a

lattice as an irredundant meet of elements which are irreducible in the

PR

sense that they are not proper meets, and with certain arithmetical proe

perties of these decompositions. A theory is developed for the class of
compactly generated atomic lattices which extends the classical thecry for
finite dimensional lat

very element of an arbitrary compactly generated atomic lattice has an

irredundant meet decomposition into irreducible elements. These decompo-
sitions are unique in distribubtive lattices. In a modular lattice the
decompositions of an element have the Kurosh-Ore replacement property, that

is, for any two decompositions of an element, each irreducible in the first

Y

composition can be replaced by a suitable irreducible in the second

@

decomposition. Moreover, characterizations are obitained of those lattices

%

having unique decompositions and those lattices having the replacement

property.
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o INTRODUCTION
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his thesis, lattice join, meet,

o

NOTATION AND TERMINOLOGY. Throughout
inclusion, snd proper inclusion are denoted by the symbols o, 0 <,
and <, respectively. Set union and intersection are dencted by the darker
symbols U and n , respectively, with set inclusion and proper inclusion
denoted by € and €. If S and T are sets, then S - T denotes the
set {x :+x€3, x ¢ T} 3 4f T contains s single element t, then S = 7
is also written S - L.

For every pair of elements a, b in a2 latbtice 1L such that b 2 a,

the guotient sublattice bfa is defined by

4,

If a8, b are elements of g lattice 1L, then b is said tc cover a

if b >a &and b2>x>a implies b =x for all x € L. This covering

relation is denoted by b r a. A lattice L is called atomic if for
every palir of elements g, b€ L with b > a there exists an slement o

€ L sueh that b > p » ae In a complete atomic lattice 1 the element
u, is defined for each a8 € L by
u&wU{pSLQp‘ra}@
If ¢ is an element of a complete lattice L, then ¢ is compact

if for every subset S C L with ¢ € U3 there exists a finite subset

[

5% €5 such that ¢ € US'. A lattice 1L is called compactly genersted

if L is complete and for every element x € L

ket
i

LJ{G : ¢ <x, ¢ compact in L} .
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Distributive and modulay lattices are defined as usuzl. A lattice L
is called gemimodular (more precisely upper-semimodular) if x » X0y

implies xuy »y for every x, v € L. A lattice L is lower-semimodular

if xvy »y implies x y xny. If L is a complete atomic lattice, then

L is locally distributive if the sublattice ua/a is distributive for

every a € L. Local modularity is analogously defined.

An element r in a lattice is said to be irreducible if r = xny
implies r =x or r =y. MAn element g in a complete lattice L is

completely irreducible if for every subset S C L, g =MNS implies g € S.

A representation of an element as a meet of completely irreducible elements

is said to be a decomposition of the element. A decomposition a = NQ

of an element a is irredundsnt if N{(Q - q) # a for each g € Q.

DISCUSSION AND SUMMARY OF RESULTS. A very natural problem that often
arises in the study of an algebraic system is that of representing the
elements of the system as images of some cononical subset under a specific
operation of the system. Usually the cononical subset is taken to be the
set of those elements which can not be further represented by means of the
operation. The most elementary example of this is the representation of
rational integers as products of primes.

Another fundamental problem is that of representing the algebraic
system as a whole as a direct or subdirect product of simpler systems.
This second problem is not unrelated to the first. For the congruence
relations of any algebraic system form a lattice in a natural way, and the
representations of the system as direct or subdirect products correspond
with meet representations of the null element in the lattice of congruence

relations. In particular, the representations of the system as a subdirect
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product of subdirectly irreducible systems correspond with the representa-
tions of the null congruence as z meeb of completely irreducible congruences.

For these reasons, guestlons concerning the arithmetical properties of
meet representations of an element in z lattice have been among the most
fundamental latiice theoretic guestions.

During the period from 1935 to 1945 a rather satisfactory theory was
developed concerning the representation of an slement in a lattice as a
Finite meet of irreducible elements. Briefly the main resulls are as
follows. I a latbice L satisfies ithe ascending chain condition, then it
is an ilmmediate conseguence of the chain condition that every element of L
hag a representation as g finite ilrredundant meet of irreducible elements.
Birkhof? [1] showed that every element of a distributive lattice satisfying
the ascending chain condition has a unique representation. Kurosh [10] ana
Ore [11] independently showed that in a modular lattice, the finite meet
representations have the replacement property, that is, if an elament has
two representations as a finite meet of irré&uciblesﬁ then each irreducible
in one representation can be replaced by a suiiable irreducible in the other
representation. This implies that the number of irreducibles in a finite
irredundant representation of an element in a modular lattice is unigue.
Stronger versions of the Kurosh-Ore Theorem were obtained by Dilworth [5].
He showed that if an element in a wodular lattice has two representations
a3 a finite irvredundant meet of irreducibles, then each irreducible in the
first repressntation can be replaced by and at the same time replace a
sulitable irveducible in the second reoresentation. He further showed that
the two representaticns can be put into a one-one correspondence such that
each irreducible in the Tirsit representation can be replaced by the corres-

ponding irreducible in the second representation. 1In a series of papers
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EZQ 3y 4] Dilworth took up the important problem of characterizing those
lattices having unigue and replaceable representations. Principally he
obhtained two fundamental results: every element of a finite dimensional
lattice L has a unigque representation as an irredundant meet of irredu-
cibles if and only if L is locally distributives and the conclusion of the
Kurcsh=-0Ore Theorem always holds in a finite dimensional semimodular lattice
I if and only if L is locally modular.

As indicated above, the thecry of finite meetl representations depends
hesvily on very restrictive chain conditions. However, certain lattices
appropriate for a representation theory, specifically lattices of congruence
relations, do not satisfy chain conditions, and yelt they suggest that some
more general representation theory exists. For example, it is well known
that an arbitrary sbstract algebra A is a subdirect product of subdirectly
irreducible algebras, and hence the null congruence of A is a meet of
completely irreducible congruence relations. On the other hand, a repre-
sentation theory for a general lattice is ciearly impossible. An atomless
Boolean algebra contains no irreducible elements, and hence az theory of
meet representations for this lattice would really be meaningless. OSome
restrictions are needed, therefore, to provide an adaguate theory of meet
representations. Moreover, it is desirable that the class of lattices
satisfying these restrictions contains the finite dimensional lattices as
well as the lattices of congruence relations. The compactly generated
lattices form such a classe.

Examples of compactly genersted lattices abound in mathematics. If 4
is any abstract algebra, then the lattice of congruence relations of A 1is
compactly generated; the compact congruences are those generated by identi-

fying a finite number of pairs of elements of A. Similarly, the lattice
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of subalgebras of A 1is compactly generated, the compact elements being the
finitely generated subalgebras. If L 1is any lattice, then the latlice of
ideals of L 1is compactly generated; in this case the compact elements are
the principal ideals. Thus if L satisfies the ascending chain condition,
then every element of L is compact and L 1s necessarily compactly
generated.

It ig easily seen that every element of a compactly generated lattice
can be represented as a meet of completely irreducible elements. But in
general, since these representations are infinite, they are not irredundant.
If in addition the lattice is assumed to be atomic, then irredundant decom-
positions exist for every element. Atomicity is not an unnatural condition
if one expects to develop a theory of irredundant decompositions, for in a
modular iaﬁti@e the existence of irredundant decomp@siti@ng and atomicity
are eguivalent conditions. Also, campactly generated atomic lattices
generalize finite dimensional lattices, in thal compact generation gener-
glizes the ascending chain condition and at%mi@iiy generalizes the descending
chain condition. Some important examples of compactly generated atomic
lattices are the following: the lattice of subgroups of a torsion abelian
group, the lattice of pure subgroups of a torsionfree abelian group, the
lattice of subspaces of a vector space, the lattice of congruences of a
weakly atomic modular lattice, and any exchange lattice.

In this thesis a theory of irredundant decompositions is developed for
compactly generated atomic lattices which extends the thecory for finite
dimensional lattices. As mentioned in the preceding paragraph, one of the
principal resulits is the proof that every element of an arbitrary compactly
generated atomic latiice has an irredundant decompesition. Unlike the

existence theorem in the finite dimensional case, this result is one of the
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most difficult hurdies of the theory. The analogues of Birkhoff's theorem
and the Korosh-UOre Theorem are shown to hold in the morve general case. In
connection with the latter result, a fundamentsl difference from the finite
dimensiocnal case is encountered. Since the decompositions are infinite, the
replacement property dqes not imply that two irredundant decompositions have
the same cardinality. In faclt the decompositiocns of an element in a modular
lattice fall naturally into equiﬁalence classes, and the cardinglities of
the decompositions as well as the stronger replacement properties analogous
to those of Dilworth [ 5] depend on the classes involved. It is further
shown that a compactly gensrated atomic lattice has unigue lrredundant
decompositions if and only if the latiice is locally distributive, thus
extending Dilworth's result directly. A condition is found which is neces-
sary and sufficient for an arbitrary compactly generated atomic lattice to
have the Kurosh-UOre replacement property. This condition is a modification
of lower-semimodularity, and in the presence of (upper) semimodularity is
easily seen to be eguivalent to local modalé?iiye Hence Dilworth's charac-
terization of the Kurosh=Ore Theorem in finite dimensional semimodular

lattices also carries over.

The problem of develowing a decomposition theory for compacily generated

.

atomic lattices was first concelved by Professor Dilworth about five vears
ago. In the course of the 1956-57 lattice theory seminar at Caltech, he
presented three initisl results, the existence of irredundant decompositions
in semimodular lattices (essentially Theorem 5.3 below), the unigueness of
the decompositions in distributive lattices (corcllary to Theorem 4.2), and
the replacement property in modular lattices (2 slightly less general form

:’"’\

of Theorem 5.1}. He also raised the question whether or not twe irredundant

decompositions of an element in a modular lattice have the same cardinality.
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My interest in the problem began with an attempt to answer this question.
Bventually the guestion was answered in the negative, and then most of the
results of section 5 were developed in an attempt to salvage for the general
case the primary results concerning the decompositions in finite dimensional
modular lattices. Professcr Dilworth and T then began working more or less
together on the decomposition theory. Two results were discovered: that the
existence of unique decompositions is eguivalent to local distributivity
(Theorem 4.2), and that the replacement property in a semimodular lattice

is equivalent to local modularity (ecorollary to Theorem 6.2). At this point
two fundamental guestions remsined open. The first was: does an arbitrary
compactly generated atomic lattice have irredundant decompositions? And

the second: what is a characterization of those (nonsemimodular) latiices
having the replacement property? Subsequently these questions were resolved,
and their solultions comprise a major part of this thesis. In section 3 the
general existence theorem is presented, and in section 4 this result is
applied to give a new and more succincet development of Dilworth's results

on unigue deccmpositions. It is further applied in section & to obtain the

characterization of those lattices with the replacement property.
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2. PRELIMINARTES

This section gathers together a few imporbtant elementary lemmas
concerning compactly generated lattices and applies these lemmas to charac-

terizations of modularity and semimodularity.

LEMMA 2.1. Let L be a compactly generated lattice. If {x,}is a

chain of L and a €L, then anUx, = Uanx .

Since in any complete lattice an U,x, > U anx, holds trivially,
it is enough to show that an Ugx, < Uqamxa o And since L is compactly
generated, it suffices to show that if ¢ is a compact element and ¢ <
an U, x, , ‘then ¢ < U‘,‘ahxoﬁ » LIf ¢ is such an element, then ¢ £
anU x, implies ¢ < a and e¢<g U x, . However, ¢ is compact, whence

ey

C < XygqU ero VX, for some finite subset {Fags oo v x 3 C {x,}. But

[+

[

the elements Xy.s coe » X form a chain, and hence if x . 1is the largesi
- J
of these elements, then ¢ £ xdj@ Thus ¢ £ anx,, € U anx_ , completing
J

the proof of the lemma.

LEMMA 2.2. If a, b are elements of a compaetly generated lattice L

and if a > b, then there exist elements p, g € L such that a > p » q

= 5
>bn

s

For since L 1is compactly generated, there is a compact element ¢ € L
such that ¢ <a but ¢ $b. Let p = coub. Consider now the collection
T={x:tp>x2b}. Tis nonempty since b € T. Let {x,} be a chain
of elements in T. Then clearly p2> Ux . If p< Uyx, , then ¢ £

Ug Eo o and since ¢ is compact and {Xd} is a chain, it follows that



c ﬁvxdﬁ for some de € {x4} - But then p=bucg< X 39 contrary to

Xys € Te Hence p > U,x, , and thus U x,€ T. It now follows by the

o §
oJ

Maximal Principle (Zorn's Lemma) that T contains a maximsl element q.
Because of the maximality of g we must have p b g, and hence the lemma

is proved.

LEMMA 2.3 If a, b are elements of a compactly generated lattice 1L,
then there exists a maximal element m € L such that m > a and mab =

anbe

Consider the collection T = {3{: X >a, Xnb= ar\b} « T is nonempiy
since a € Te If {x_,} is a chain of T, then by Lemma 2.1 we have
baUyx, = Ujbnx, = anb, and hence U,x, € T. Therefore, by the Maximal

Principle, T contains a maximal element 1w,

LEMMA 2.4. If a, b are elements of a compactly generated lattice and

f b>a, then bfa is compactly generated. Moreover, if b > p % a, then

g,...h

p is compact in b/a.

If =x € bfa, then x =U{ave : ¢ €%, ¢ compact}. Suppose ¢ is
compact and avc € US for some subset S C bfa. Then ¢ € US and hence
¢ < US? for some finite subset S' € S. Since US! > &, we have auc
< USY, whence auc is compact in b/a. Thus bfa 1is compactly generated.
If b> p» a, then there is a compact element ¢ such that ¢ < p, ¢ ﬁ S

But then p = suec, and thus p is compact in bfa.

We now proceed with the characterizations of modularity and semi-
modularity.
It is a2 well known property of a modular lattice L that if a, b € L,

then the quotient sublattices avb/a and bfanb are isomorphic. The
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converse in general is not true, that is, there are simple examples of non-
modular lattices in which avbfa and bfanb are always isomorphic.
However, for lattices satisfying a chain condition, Ward [12] has shown
that the isomorphism property is equivalent to modularity. The following

theorem extends Ward's result to compactly generated lattices.

THEOREM 2.1. Let L be a compactly generated lattice. If avb/a

and bfanb are isomorphic for all a, b € L, then L is modular.

Proof. Suppose L 4is a compactly generated lattice satisfying the
hypothesis of the theorem, but L is not modular. Then L contains a
five-element sublattice {a, b, %, u, v} such that a>b and tuva =1tvb
=y, toa=+tnb=v, If a does not cover b, then by lLemms 2.2 there
exist elam@nts P, @ €L such that a2 p » g > b. Clearly tuvp = tug
=y and tonp = tng =v. Thus the sublattice { Dy G, By u, v} is a non-
modular five-element sublatiice in which p » g. Hence we may assume that
the sublatiice {«% b, £, u, v} was @z‘iginélly picked in such a way that
a % be

Let T be the set of all ordered triples (%X, ¥, 2)s X, ¥y 2 € L,
such that x> a, y>b, 2z > v, and such that the following relations hold:

(1) tuy = w

{(11) tox = gz,

(i11) x » ¥,

(iv) any = be
T is nonempty since the triple (a, b, v) is in T. Now partially order
T by defining (%, v, z) < {(x', y', 2') if and only if x<x', y <y’
and z < z'e Suppose { (X,, ¥u» 2.)} is a chain of T. Let X = Ux,,

7= UyTus and z = Uy2ze o By infinite associativity and Lemma 2.1 we
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have, tuy =tuly« = Utuy, =u, tnx=tnUx, =Usgtax, = U, 2z,

ot
b3

=7, and any = an U, ¥, = Ugany, = b HNote that for each index o ,
aUT, T Xy sinee x, 2 a and Xy > Yeo Thus avy =au Uy, = Ujauy,
= Uy Xy = X. Hence x/y =avy/y 2 alany = a/b by hypothesis, and since
a» b wermust have X yy. Thus the triple (X, ¥, 2) € T, and every chain
of T has un upper bound. By the Maximal Principle, 7T contains a maximal
element (ags bys Vgle

The remainder of the proof uses the following lemma which is an imme-
diate consequence of the fact that the latltice is both upper and lower

semimodular.

LEMMA. Let L be a lattice such that avbfa % bfanb for all a, b

et

& Le Then if p, g, € L and p % ¢, either rnp =rng or rnp

»rng. The dual statement also holds.

v

Continuing with the proof of the theorem, notice that ufb, = tv bcf be
¥ t/tnby = t/vy. Thus, since u > ag» by, there must exist an element
vy € L such that t> vy » vye Let a; =a,vvy and by = b,V Voo We

shall show that the triple (alg o, vl} satisfies conditions (1) - (iv).

T+ 5 ; ot O] = 11e  NOY y Is) = °
It is clear that tub; =u. Now a ¥ vy since tna, =v_. Thus

a1 ¥ ayu vy % A,V Y, F ags and hence by the lemma, a1 » a, since vy " Ve

Computing further, 'tﬂal 2 vy >V, = tna,, and hence by the lemma, tr\al

Qﬁ

@ ‘::'S "n == ] T‘E pi
>-V® Thu T a}. vy Just as al>~ a,

it follows that b1 IS b@“ Henee

39 # "blg for otherwise bl > N > b@* contrary to b, > bOe Thus by the

1

lemma and the fact that a, > b, we must have ay » by, Finally, consider

anbj. BSince a 2 a>Db and by > b, it follows that aﬂbz <€ agnby =

R

b,e Hence b < anby £anb, = b; whence anb, = b. Thus the triple

s by

10 Vl} satisfies conditions (i) - (iv), and hence {ay b1, Vi> € Te
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But (a,s by, vq) is properly bigger than (a,. b

10 By o* Vo)s and since

{acg by v,) was picked to be a maximal element of T, we have a contra-
diction. Thus L must be modular, and the proof of the theorem is complete,
In the proof of Theorem 2.1, every application of the assumpbtion av b/b
> b/anb, with one exception, actually requires only the weaker hypothesis |
that avb v a if and only if b % anb. The exception ceccurs in proving
the existence of Vqe However, if the lattice is atomic, then the existence

5

of v, follows from atomicity. Hence we have the following corollary.
Ao

CORCLLARY. If a compactly generated atomic lattice L  is both upper

and lower semimodular, then L is modular.

THEOREM 2.2. Let L be a compactly generated atomic lattice. IF

Xe ¥ » XNY imply xVy » X, ¥y, then L is semimedular.

Proof. Suppose a, b € L are such that a »>anb. Let T = {x:
anb <« x<h, avi +x

Then clearly anb < U, € be Suppose there is an element v € L with

e

}« Then anb € T.. Let {x,} be a chainof T.
Xd

avU,x, >y > U,x, . Since y¥a and avx, } x ,we have

y=ynlavUpx,) =ynYaux, = U ynlavux,) =U x

and hence av U x » U,x, . Thus U_x < & T, and by the Maximal Principle,
T contains a maximal element me If m <€ b, then by the atomicity of L,
there is an element p with b2 py me 4nd since pn(avnm) =m and

Py avnm v m, it follows that avmup ¥ 20p % p. But this contradicis
the maximal choice of m. Hence b =m, and avb % b Thus L is

semimodular.

3

COROLLARY. Every locally modular, compactly generated, atomic lattice

is semimodular.
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We close this section with two lemmas on independent sets of covering
elements.

If a is an element of a compactly generated stomic latitice and J is
a set of elements covering a, then J 1s said to be independent if

U(d = p) ¥ p for each p € J.

3

LEMUA 2.5, Let s be an element of a semimodular, compactly genersied,
atomic lattice and let J be an independent set of elemenis covering a.
Then J 1is a maximal independent subset of the elements covering s if

and only if UJ = U, e

If VUd = Uy

then J is clearly a maximasl independent subset of the
elements covering a. Suppose then that J  is maximal and that p % 2.
Then either U J > p or there exists p' € J such that U (J - p'jup

> p'. In the second case U (J - p') ¥ p, since otherwise U(J - p*) > p!
contrary to the independence of J. Thus we have U(J = p')up » U{J ~ p?)
by semimodularity. But U(J = p'lup > U‘i(J - piupt = UJ » U - p').
Thus UJ = U(J = p'jup 2 p. Hence UJ > p in either case, and it

follows that UJd > u .

[

LEMMA 2.6, Let =2 be an element of a semimodular, compactly generated,
atomic lattice and let J be an i.ndépen&ent set of elements covering a.
Then the elements of ua/a which are joins of subsets of J form a complete
sublattice of uaf a which is isomorphic with the Boolean algebra of all

subsets of J.

Consider the mapping S — US as S ranges over the subsels of J.
The independence of J implies that this mapping is one~one. Let {Sd} be
a collection of subsets of J. Clearly U, (US,) =U(V,S,), and hence

the mapping preserves joins. Let b =U(0,5,). If M {(US,) » b, then
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there is an element r such that US, > r» b for all the indices « .

Consider a particular index B « Then USg = boU(8p « M 5,), and since

r is compact in /b there is a minimal finite subset {Pys eee s B} E

@ g ‘ ¥ 193 7 ® @ Neve PR 1 3
Sp - O, 5, such that by pyY °ce VP, > r. HNow bv PqU VP, 3 2 T and
hence by semimodularity bv Ppu cceuUp, 40T bu PV fceUD g Similarly

bUr ee e bhup.U eee e % LEXNY) s ] ~ so0
buUpqL Py - D 1 ©Py 10 and since bup,L P 2 bLU DL

) i -%‘r”" ‘}.-Au U1 [GEEXERVESY et e ee > °
U T v r, it follows that b Py pg:»iur buplu UP, 2 Py

\
Rew .

=~

Since p, ¢ Oy Sy, there is a set S, with p_ ¢ S,o But then P, <

1 5 eoe = Y - o < ] = o y t g e
bu Py U vp, quroUs, PV cceupy quUS, < U(J pk> This contra

i

dicts the independence of J, whence M {US,) = U(A,S,). The mapping

therefore preserves meets, and the lemma follows.
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3. THE EXISTENCE OF IRREDUNDANT DECOMPCSITIONS

The aim of this section is to prove the existence of irredundant
decompositions in any compactly generated atomic latiice. First, two

lemmas are nesded,

LEMMA 3.1e An'element g in s complele atomic lattice 1L is com~

pletely irreducible if and only if at most one element of L covers do

Por ifT g 1is covered by only one element s, then since L is atomic,
¥ »q implies x > s. Hence f\{x s x> q} =5 g, and it follows that ¢
is completely irreducible. On the other hand, 1f ¢ is covered by iwo
distinct elements s and s', then g = sns', and g is not irreducible.

This shows that in az complete atomic lattice every irreducible element
is completely irreducible. Therefore we may refer to completely irreducible

elements in these lattices simply as Yirreducibles',

LEMMA 3.2, If a, b are elements of a compactly generated lattice L
and a é b, then there exists & completely irreducible element g € L such

that g > a and q # b.

Since a ﬁ b and L is compactly generated, there is a compact
element ¢ € L such that ¢ <b and ¢ £ a. Let {X«} be a chain of

elements in L such that % > 2 and x, ¥ ¢. If U,x_ 2> ¢, then since

«

¢ 1s compact and {xd} is a chaln, there is an element X&j

that Xy > ¢. This contradiction shows that U x_ ¥ co By the Maximal

S{Kd} such

Principle there exists a maximal element g > a such that g i C. Suppose

g = S, Then for some s € S we must have s ¥ c. Put then by the
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wmximality of g it follows that g = s. Hence q is completely irredu-
cible, and the lemmz follows.

The existence theorem is now the following.

THEOREM 3.l. Every element of a compactly generated ztomic lattice has

an irredundant decomposition into completely irreducible elements.

Proof. lLet L be a compactly generated atomic lattice, and let a be
an element of L. If p > a, then by Lemma 3.2 thers exists a completely
irreducible element q € L such that g>a and g %,pa Hence a = g0yg,

and thus to prove the theorem it is sufficient to prove the following lemms.

LEMMA 3.3. Let L be z compactly generated latiice. Then every
element of L has an irredundant decomposition if and only if for each
a €L (a distinct from the unit element of L) there exist a completely

irreducible element q and an element % > a such that 2 = gnx.

The necessity is clear. To prove the éﬁf?i@iencyg let 2 € L be an
element which is not completely irreducible.

Let W be the collection of all ordered pairs (R, x) such that R
is a set of cowpletely irreducible elements of L, x € L, and such that
the following conditions are satisfied:

i} xa NR = g,
(i1) NR ®a, and xAnN(R =qg) > 2a for all g € R.

Partially order W by defining (R, x) = (R', x') if and only if the

1%}

following two conditions hold:
(iii} R 2 RY,
(iv) xnN(R « R'} > %',
¥ow since a 1s not completely irreducible, by the assumption of the

lemms there exist an element x . € L and a completely irreducible element

@
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9, € L such that x,, q, > 2 and a =x_nq,. Then with R = {q@} s the

ordered pair (R, %X,/ 1s a member of W, and hence W 1is nonempty. By the

Maximal Prineciple, W contains a2 maximal chain {{R «r X d)} e

Define

(V} N Q=¥ Ro( 2
of

(V1> ¥y = U Xye
o

Suppose ynMNQ > a. Then since L 1is compactly generated, there exists a
compact element ¢ € L such that ynNQ > cua >a, Therefors, g > cua

for all q€Q, and y 2 cva 2 ¢. But since {x,} forms a chain by (iv)

i

and ¢ is compact, U x > ¢ implies that for some index o« we must
i & Tl

have x, > c. This implies that x,~0R, > cua > a, contrary to (i).
Thus yn NQ = a. Now let g be any element of Q. Then for some index
« we have g € R, . By conditions (iii), (v), and (iv), if q' is any

other element of Q, then either ¢' € R, or q' 2 x_, . Since clearly

vy 2 x,, it follows that ynMN(Q =« Ry) > x_ .« Thus

]

yaN(@Q-q) =[ynN{Q =RIINN(R, = a) 2x,nN(R, = q) > a.

In particular, M(Q - g} > a for every q € Q.

i

If NQ=a, then a has an irredundant decomposition and the lemma is
proved. We may suppose, therefore, that MNQ » a. Since ynMNQ = a, by
Lemma 2.3 there exists a maximal element 2z € L such that 2z >y and
2nMNQ = a. 3Suppose 2 1is not a completely irreducible element of L.

Then by the assumption of the lemma there exist an element > 2 and a

completely irreducible element r > z such that tnar =2z. Let Q =Qu {r}

We then have

%nn@zli tanrAaNGg = 2aMNG = g,



- L8 -
If g is any element of Q, then
taN{Q =a) =2aN(Q =a) 2ynaN{Q =g} > a.
Since 1, r > 7, the maximal property of 2z implies that
tnﬂ(@i w ) = tnNQ >z, and f\@:i = rAaNQ > a.

Hence (Q,, t) € Wo Furthermore, if <Ras x,) is any element of the chain

{(Re %0} » then @ D Q 2R, and
tan(Q - R) =2aN@Q-R) 2yoN{Q-R) 2x,.

But this implies that {(R,. x )jw{(Q, t)} 4s a chain of W properly
containing the maximal chain {{Rxg Xd>} » Since this is impossible, it
fellows tha@ 2z must be completely irreducible. Hence a = zn/NQ is an
irredundsnt decomposition of & into completely irreducible elements, and
the proof is complete.

From the proof of Theorem 3.1 we have the following corollary.

COROLLARYs If a is an element of a compactly generated atomic lattice
and ¢ 1is an irreducible with g 2 a, then ¢ appears in at least one

irredundant decomposition of a if and only if g

In the proof of the preceding theorem the Axiom of Choice (in the form
of the Maximal Principle) was used several times. It is perhaps interesting
that

by

Theorem 3.1 is squivalent to the Axiom of Choice.

To prove this assertion, let P be an arbitrary partially ordered set.

Let L denote the set of all chains of P together with the null set and
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P itgell, partially ordered by set inclusion. Since 1. has a largest
element and is closed under set intersection, L 1is a complete laitice.
Suppose S is a subset of L. If the set sum of the elements of § is a
chain X, then the lattice join US = X, If the set sum is not a chain,
that is, if the set sum of § contains twe noncomparable elements, then
Us = P. It follows that every element of L is the join of one-element
chains. Thus to show that L is compactly generated, it suffices to show
that each one-glement chain is compact. Let p € P and let SC L be
such that ‘{p} ¢ US. If US is a chain, then it follows that {p} ¢ X
for some chain X € S. If US is not a chain, then there are two chains
X, Y € 5 whose set sum is not a chain, so that {p} ¢ P = Xv¥. Thus {p}
is compact, and hence L 1is compactly generated. If X, ¥ are chains in
L and X ? Yy then with p € X Y we have X 2 Y up r ¥, and hence L
is atomic. Now suppose Theorem 3.J holds. Then there is a completely
irreducible element Z € L such that 2 # P. By the atomicity of L therse
is an element Y € L such that Y » Z EfL ¥ =P, then 7 is a maximal

chain. Suppose Y # Po If Y 4is not maximal, then there is a chain X

i

such that X2 ¥ D2%2. With p€Y¥ -2, g€ XY, and U=Zup, V
Zogqg, it follows that U, V# 2 and Z = UnV. But this contradicts the
irreducibility of 2, whence Y must be maximal. Thus P contains a
maximal chaln, and hence the Axiom of Choise follows from Theorem 3.l.

The existence of irredundant decompositions and atomicity appear to be

closely related. In a modular lattice these conditions are equivalent.

THEOREM 3.2. If every element of a modular compactly generated lattice

L has an irredundant decomposition, then L is atomic.

Proof. Let = be sn element of L distinct Tfrom the unit element.
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Since every element of L has an irredundant decompositicn, it follows
from Lewma 3.3 that there exist o completely irreducible element g and an

element x > a such that s = gnx. B8Since g 1is completely irreduci

e
[oy
o
@

¢

N{y s y>a}= 5% q, and hence qux > s. Applying modularity,
guisnx) = snlgux) =5 % q,

whenee sn¥x y»gnsnx = gnx = g. Thus every element of L 1is covered by
at least one elsment.

Suppose b > a. From the first paragraph of the nroof, v € L exists
such that p +a. If b # p, then bnp = a, and by Lemma 2.3 there is a
maximal element m > p such that mnab = a. Again there is an element s
such that s » m, and the maximality of m implles that bns > a. Hence
{(bnsjum = s+ m, whence bns y bnsam = a. Thus, under any circumstances,
there exists r € L such that b > r » a, and hence L is atomic,

Without modularity the existence of irredundant decompositions no longer
implies atomicd ty@ The following is an @Xézrs;@}.e of g nonstomic semimodular
lattice satisfying the ascending chalin condition in which each elemsnt is

uniquely the meet of at most two completely irreducible elements.
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Lo UNIQUE DECOMPOSITIONS AND THE DISTRIBUTIVE CASE

Here we are concerned with the existence of unigue decompositions and
the characterization of those lattices having unigue decompositions. In
particular, it will follow that every element of a distributive, compactly
generated, atomic latltice has a unigue irredundant decomposition.

We begin with z theorem describing those irreducibles which appear in

every decomposition of an element.

THECREM 4.1, Let s be an element of a compactly generated atomic
lattice. Then an irreducible ¢ = 2 appears in every irredundant decompo-
sition of a if and only if anp = a for some element p % a such that

1) xznp =a implies xup &y %, and (2) pnixvy) = (pnx)uv(pny), for

Ve

all %, ¥ 2 a.

Proof. Suppose g is an irreducible for which such an element p > 2
exists., Let q' be any other irreducible such that o'np = a. Then since
g and g' are completely irreducible, there exist unique elements g, s!
such that s + g and s' » g'. Moreover, by (1) we have pug = s and
pug' = s's Now if q # g', then either qug' > s or gug® > s'. In
either case qug' 2 o, contrary to pn(guagl) = (pag)uvpag') = a.

Thus q = ¢g', and it follows that ¢ appears in every decomposition of a.
let g now be an irreducible that appears in every irredundant
decomposition of a. Let p be any element covering a such that g % Do
We shall show that p satisfies (1) and (2).
Suppose there is an element x such that xnp = a bul xup doss

not cover x. Let ¥ be such that xvup >y > x. By Lemma 3.2 there
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exist irreducibles q; and q, such that q, 2%, q, ? 7y, and 4,27
a, # xup. Observe that q,n P =g,Nnp = a. Hence there exist maximal
elements my, M, > p such that Q0 1y = g,nm, = a. It m = an and
m, = (\RZ are irredundant decompositions of the elements 0y Mo then the
maximality of these elements implies that a = 90 (\Rl = g,n (\RZ are two
irredundant decompositions of a. Since ('\Rl, ﬁRZ > p we must have
qf R and q ¢ R,. And since q, # q,» it follows that at least one of
the decompositions a = gq;n ﬂRl = gyn ﬂRZ does not contain g. This is
contrary to thé assumption that g appears in every irredundant decomposi-
tion of a, whence xvp} %, and (1) holds.

To show (2) it suffices to show that if x, y ¥ p, then xuy ¥ .
Let x, y be elements containing a but not p. By Lemma 3.2 there exist
irreducibles g, and a such that q > x, a >y, and q, ay # p. Now
q.np = qyn p = a. Hence if ml, m, > p are maximal elements with Q. .nmy
= q_yn m2 = g, and m:L = (\Rl, mn, = ('\Rz are irredundant decompositions of
my and My ’then a= qxn f\Rl = qyn N Rz are irredundant decompositions
of a. But q appears in every such decomposition and g f_ P, Whence q =
A = qye Thus q > XUy, and hence xuy ¥ p. (2) therefore holds, and
the procf is complete.

We now turn to the characterization of those lattices with unique

decompositions. The following preliminary lemma is needed.

LEMMA 4.1. If a, b are elements of a locally modular, compactly
generated, atomic lattice and py, Py % 3, then bn (plu p2) = g and

Py b= P, b imply Py ¥ Poe

Suppose the conditions of the lemma hold, but Py # Poe Let T =

{x : xup, 7 Pye b0 (pyupyux) = x} . T is nonempty since a € T. If
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{x«} is a chain of T, then by Lemma 2.1, ba (plu Dy U U, X)) =
U.‘bn(plu P,y x,) = UgX, » and the compactness of p, in b/a implies

that p.v U,x, ¥ pye Hence U,x, € T, and therefore T contains a max-

O
1
imal element m. Since by the corollary to Theorem 2.2 the lattice is semi-
modular, m # py» P, implies that mop;, mup, » m, and mup, # mop,.
Thus m < b, and hence there is an element p such that b > p » m. Since
pjopum % p, it follows that P{UP,UP ¥ PJUDLUM ¥ Py, PoU T ¥ M.

Now since %/m is modular by assumption, it follows that puDPy r Poe
Because of the modularity of pyup,u p/m, either PiU DU D+ DO (pyv pyu p)
or bn (plu Pyu p) = p. If the first alternative holds, then the modularity
of pju P, p/m implies that bn (pyu pyuP)N (plu Pyu m) = ba(pyju pyom)

»m, contrary to m € T. The second alternative contradicts the maximal
choice of m. Hence we must have Py = Pye and the lemma is proved.

Notice that the lemma shows the following: if a is an element of a
locally modular, compactly generated, atomic lattice and g 1is an irredu-
cible with q > a, then ¢ i u, implies u, F qnu,. For if u, does not

cover qnu,, then there are two distinct elements Pys Do such that u_ >

a
P1s Pp r QNU,, and since ¢q is irreducible and hence covered by a unique

element, Piu g T ppuq v a, contrary to the lemma.

THEOREM 4.2. EHvery element of a compactly generated atomic lattice L
has a unique irredundant decomposition into irx:educibles if and only if L

is locally distributive.

Proof. Suppose L has unique irredundant decompositions. Then it
follows from the proof of Theorem 4.1 that conditions (1) and (2) of Theorem
4.1 hold for every a € L and every p %» a. Consider a particular element

a € L. Let Xeua/a,andset b=U{p:pra p<x}. If x>0
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then there is an element r such that x> r » b. By condition (1), if
pra and p{ b, then pub + b. Moreover, r # puvb for every p » a.
Now U{pub t:pP-a, D ﬁ p} =u, 21 and since r is compact in ua/b
it follows that r < pjU ***up, ub for some finite subset {pl. cee pk}

c{p:pta p{fb}. But then by (2),
r=raf(ppob)luceru(pub)] =[ra(pub)]u ***u[ra(p uLb)] = b,

a contradiction. Hence x = b, and every element of ua/a is a join of
elements coverihg a. Thus, since the elements covering a are indepen-
dent by (2), it follows from Lemma 2.6 that ua/a is a Boolean algebra.
Suppose now that L 1is loeally distributive. Then L is semimodular,
and hence (1) holds throughout L. Suppose a, p € L with p » a, and
suppose that pn(xvy) # (pax)u (pny) for some x, y> a. By Lemma
3.2 there is an irreducible q > x such that q ¥ p. Note that pu(qny)
»qNy. Furthermore, if p' is such that y > p'% gny, then q ¥ p', and

pu(gny) # p*. If we set 2z = gnu___, then by the remark following the

any
proof of Lemma 4.1 we have Ugay F Ze But then znp' = zn[pu(gny)l=

gny, and zup! = zu[pv (gny)]= uqny, contrary to the distributivity of
uqny/qn y. Thus (2) holds for every a € L and every p + a, and hence by

Theorem 4.1 every element of L has a unique irredundant decomposition.

COROLLARY. BEvery element of a distributive, compactly generated, atomic

lattice has a unique irredundant decomposition.
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5. THE MODULAR CASE

Even though modular lattices in general do not have unique decompo-
sitions, they enjoy a weak form of uniqueness, the Kurosh-Ore replacement
property. Moreover, the decompositions of a particular element fall
naturally into equivalence classes, and the cardinalities of the decompo-
sitions as well as stronger replacement properties depend upon the classes
involved.

The fundamental replacement property is illustrated by the following.

THEOREM 5.,1. If a 1is an element of a complete modular lattice and
a=NQE=NQ' are two decompositions of a, then for each q € Q there
exists q' € Q' such that a = g'~N(Q - q). If the decomposition a =
NQ is irredundant, then the decomposition a = gq!'nN(Q - q) is also

irredundant.

Proof. Let g € Q. For each q' € Q', define rq. by

Tgr = A0 N(Q - q).

Then a = r\q'EQ gt and a < T < N(Q = q) for each q' € Q'. By
modularity, the quotient sublattices qu N(Q - g)/g and N(Q - g)/a =
N(Q - q)/anN(Q - q) are isomorphic. q is completely irreducible in
the lattice, and hence it is also completely irreducible in the sublattice
quN(Q - g)f/ge Thus a is completely irreducible in the sublattice

N(Q - q)/a. 8ince a =N ¢ T is a representation of a as a meet of
elements of N(Q - gq)/a, it follows that a = rq, = q'ﬁ N(Q -q) for

some q' € Q'.
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Suppose the decomposition a = MQ 1is irredundant. Then N(Q - q) #
a, and therefore if a = g'nN(Q - q) 1is a redundant decomposition, there
is an element q; € Q - q such that a = N@Q -{a ql})r\q‘. Now in this
decomposition, q' can be replaced by some ap € Q giving a decomposition
of a. But then either N(Q -q) =a or N(Q - ql) = a, contrary to the
irredundance of the decomposition a = MNQ. Hence the decomposition a =
a’*n N (Q - q) is also irredundant. |

The following example shows that in spite of Theorem 5.1 two irredun-
dant decomposifions need not have the same cardinality.

For each integer i, let Ai be a group isomorphic with the additive
group of integers modulo a fixed prime p, and let G be the complete
direct sum of the groups Ai, that is, the set of all functions f on the
integers such that f(i) € Ay, with addition defined componentwise. Then
G is an (additive) abelian group every element of which has order p. Let
L be the lattice of subgroups of G. L is then a modular, compactly
generated, atomic lattice. For each i, let Qi be that subgroup of G
consisting of all functions f € G for which f(i) is the zero element of
Ai' Then G/Qi is isomorphic with Ai, and hence Qi is a maximal subgroup
of G. In particular Qi is a completely irreducible element of L for
each 1i. Since G 1is the complete direct sum of the groups Ai, it follows
that 0 = f\i Qi’ where 0 denotes the zero subgroup of G. Moreover, it
is clear that f\jfi Qj # 0 for every i, and hence the decomposition 0 =
{\i Qi is irredundant. Now G can be considered as a vector space over
the field of integers modulo p, and accordingly G has a basis {:fd} .
Since G has cardinality 2§z°, he number of basis elements £, must
also be 23109 For each index o , let QY be that subgroup of G gener-

ated by the set {f pt fs%a} . Then each Q! is a maximal subgroup of G,
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and just as above, it follows that 0 =M _ Q! is an irredundant decompo-
sition of 0. Thus 0 € L has two irredundant decompositions with
different cardinalities.

This example indicates that an element in a modular lattice may have
different kinds of irredundant decompositions. The remainder of this

section explores this idea more completely. Throughout the section, L

will denote a modular, compactly generated, atomic lattice.

LEMMA 5.l. For each a € L, the sublattice ua/a is complemented,

and every element of ua/a is a Join of elements covering a.

Let x G‘ua/a. If S is a maximal independent subset of {p : P oa,
p < x}., then by the Maximal Principle S can be extended to a maximal
independent subset T of the elements covering a. Set b=US, d=
U(T = S). Then by Lemma 2.5, u, =bud = xud, and by Lemma 2.6, bnd
= a. Since x> p, pra imply b > p, it follows that xnd = a. Thus
by modularity x = b. Hence every element of ua/a has a complement and

is a join of elements covering a.

LEMMA 5.2, Let a € L and let p, p' be two distinct elements
covering a. If q is an irreducible such that q > a and q % p, D',

then qn (pup') ¥+ a.

For since g i ps p' we have pmnqg = p'ng = a, and hence pug, plug
*q. OSince q is covered by a unique element, puq = p'ug = pupluqg.
Thus (pup')uq * q, and hence pup' + go(pup'). Now pup'y p » a,

whence it follows that gn (pup!) » a.

Suppose now that a = MQ is an irredundant decomposition of a € L.

Then for each q € Q we have N(Q - q) > a, and hence there is an element
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p »a such that M(Q = gq) > p. Note that p is unique; for if N(Q - q)
>p'ra and p' #p, then a=NQ=qgnN(Q-q)>qgn(pup') > a, con-
trary to Lemma 5.2. Let HQ be the collection of all such elements p.

Pick a particular element p € Hq, and let N(Q-q) >p. If p'€H =-p

Q
and N(Q - q') >p', then q # q', and hence q > N(Q - q') > p'. Thus
q>VU (HQ - p), and since q ¥ p, it follows that U(HQ - p) ¥ p. Hence

HQ is independent.

Let us then ldefine for each a € L and each irredundant decomposition

a=MNQ the set HQ and the element hQ by

‘HQ= {pra:N(Q-q)=p some qGQ},
hQ = UHQ.
Summarizing the remarks above we therefore have

THEOREM 5.2. If a €L and a = N\Q is an irredundant decomposition
of a, then H_ is an independent set of elements covering a, and for each

Q
q € Q there is precisely one element p € HQ such that N(Q - q) > p.

We may now prove two stronger versions of Theorem 3.1.

THEOREM 5.3, If a € L and J is a maximal independent set of elements
covering a, then there exists an irredundant decomposition a = M\Q such

that HQ = dJe

Proof. For each p € J, let sy = U(J - p)e Then by Lemma 2.6 it

follows that (\p s. = a. By Lemma 2.5, UJ = u . Hence sp i p implies

€J P
pu sp = Ug = u, ¥ sp for each p € J. Therefore by Lemma 3.2 there exists
an irreducible qp such that qpn u, = sp for each p€ J. lLet Q= {qp :

p € J}. Then since unNQ= Npgy Ya" 9 = M ey Sp = @ the atomicity
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of L implies that MNQ =a. Since MN(Q - q,) > ps the decomposition a =

NQ is irredundant, and HQ = J.

THEOREM 5.4. lLet a € L and a = NQ be an irredundant decomposition
of a. If J is an independent set of elements covering a with J 2 HQ

then there exists an iri'edundant decomposition a = MNQ' such that J = HQ"

Proof. By the Maximal Principle J can be extended to a maximal inde-
pendent subset M of the elements covering a. Let Jl = J - HQ and Ml =

M-dj. Ifweset b= UJl and ¢ = UMl, then by Lemma 2.5 we have buc

= UM = LA and by Lemma 2.6 we have bnc = a. For each p € HQ let g

be the unique element of Q such that N (Q - qp) > p. Then a, # p, and
hence qQpu P - - Since qp is irreducible and therefore covered by a

unique element, qpu p' = qpu p for any other p' € M. such that qp 2 p'.

1

Thus qpu c = qpu UMl =gup 4t qp, and hence by modularity we have ¢ %

p
enq . Now bu(ecn qp) # u,, since otherwise

<==cnua=cwﬂbu(cn%))=(cnb%9®hqp)=00qy

contrary to ¢ caqye Thus u, = buc k bv (e nqp). Let us set s, =

bu (cnqp). 5. is then a maximal element of ua/a for each p € HQ.

p

Now for each p € J; let us set Sp = L)(Jl - p)uc, Clearly u, s,

for each p € Jl. Furthermore, since J1 is independent, it follows from
Lemma 2.6 that N pEdq U(Jl - p) = a. Since L is modular, the mapping

X—> xuvc maps the sublattice bfa = b/bnc isomorphically onto the sub-

s. * ¢. Thus we have

lattice buc/c::ua/c. Hence np€J1 b

it

N s N s_.n s _=cal) boleng )= N cn(bulecng))
peJ P pegy P peHy P pEH, p peH, P

]

N (eob)uleng )=\ cang =cnNQ = a.
peHy P PEH,, P
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It follows immediately that if p € J; ‘then sp'_>_ c > UHQ, and if p € Hy

1 P
and if p € HQ then sp > coqy > U(HQ - p)e Thus for each p € J we

then S, 2 b>UJ;. On the other hand, if p € J; then s > U(J1 - p)

have Syt >p all p' # p, and hence (\{sp, : p' €J - p} > p. By Lemma

3.2 there exists an irreducible q{a such that q}‘)n u, = sp, for every p

€ J. Let Q' = {ql; : p€J } . Then it follows as in the proof of the pre-

ceding theorem that a = MNQ' 4is an irredundant decomposition and HQ' = Je
For finite irredundant decompositions it is easily verified that

qu Q NQ - q)._>_ u,e This property no longer holds for general decompo-

sitions. We shall show that wu,n UqGQ NQ-q) = hQ.

LEMMA 5,3, lLet a € L and a NQ be an irredundant decomposition
of a. Let s = {ql, ces s qn} be a finite subset of Q, and let
r\(Q-qi)Zpi}-a for each 1 =1, eee , no Then N(Q -S) >p % a

implies that pyY *etup, 2 Pe

For n =1 the lemma follows from Theorem 5.2. Suppose then that the
lemma is true for n = k - 1, and suppose that for some p +a, MN(Q -
{ags +ee v q.}) 2pe If q 2 p, then N(Q-{ays oo s q 1} 2 p, and
hence by ';nduction we have plu *reupy 2 ppveuy Pr_1 > p. If Q. é_ o}
and p # Dyt then since 9 i Py it follows from Lemma 5.2 that q, 0 (pupk)
»a. Now M(Q - {ql, cee o qk-l}) 2 q.n (pupk), and hence by induction we

have pyu**°up, 1 2 qeo(pop,). Thus, since puq. = P L > Q.
pv **rup 2 peulga(pup)) = (poq) 0 (popy) = (pug)nlpup,) 2 p,
and hence the lemma follows.

THEOREM 5.5. If a € L and a = \Q is an irredundant decomposition

of a, then uar\&quQ N@Q-q) = hy.
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Proof. Suppose UqGQ N(Q -qg) >2p» a. Then since p is compact in
ua/a, there exists a finite subset {a;, «+. , q } S Q such that
n
Uiz N Q- qi) >p. Thus N(Q - {ql, ces » ) > Uy N(Q - qi) > p.
If O(@Q - qi) 2p;roa then p; € HQ, and it follows from Lemma 5.3 that

pyVerrup > p. Hence hQ = L)HQ > p for all p such that qume -q
> p » a. But then by Lemma 5.1, hQ > quQ N@Q - q) nu . Since

un UqGQ N@Q -q) > hQ holds trivially, the theorem follows.

In the succeeding theorems it will be shown that the replacement
properties of irredundant decompositions are determined by the order
properties of the elements hQ. The first theorem shows that hQ is

invariant under a finite number of replacements.

THEOREM 5.6. Let a € L and a = MNQ be an irredundant decomposition
of a. If a=NQ' where Q' is obtained from Q by replacing an

o - g

i

element gq € Q by an irreducible q', then h

i

Proof. By Theorem 5.1 the decomposition a = MNQ' is irredundant.
Let p be the unique element of HQ such that N (Q = q) > p. For each

p* € HQ - p let g* be that element of Q such that MN(Q - g*)

v

¥,

and let p* be the unique element of H,, such that M (Q' - g*) > p*.

Q

The correspondence p*—» 5"‘ is then z one-one mapping of HQ - p onto

v

Hyr = P- If q' 2p* then N(Q' - q*) =q'nN(Q - {a, ¢¥}) 2 p*, and
hence p*¥ = p*. Thus p* # p* implies that q' ¥ p*. Now q' ¥ p, and
thus if p* # 5* it follows from Lemma 5.2 that a'o (pup*) * a. But then
NEQ* - q*ﬂ) = N(Q - {a, a*}) ng’ > q'n (pup*), and thus p* = g'n (pup*).

Hence if p* # p* we have

pup* = pulato (pup*)) = (pug')o (pup*) = pup*.
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Since pup* = pup* holds trivially when p* = p*, it follows that

o)

hyy = UHg = U (pop*) = U (pup*) = UH

Q! o - By

This completes the proof.

THEOREM 5.7. If a €L and a = MNQ= NQ' are two irredundant
decompositions of a with hQ > hQ,, then for each q' € Q' there exists

q€Q such that a=gq'n0N(Q-q) =gnN(Q' - q').

Proof. Let q' € Q', and let p' € HQ, be such that M (Q' - q*) > p'.

Since LJHQ > UH,; > p', there is a minimal finite subset {_pl, see 2 P}

HQ such that pjo <+ vp 2 p'. If q; €Q is such that ﬂ(Q-qi)Zpi

(i = l, eee ¢ n), then m (Q "{_ql, eee 9 qn}) zplu 'OOUan pl. If qj

> p' then N(Q - {ql, see 0 Q490 Qyuge vee o qn}) > p', and hence by

Lemma 5.3 it follows that plL)°'°L)pj-lL)pj+1L>"'L:pn > p', contrary to

the minimality of {pl, eee s P} Thus q # p' for each i=1, eue ,n.
Now q! i p', and hence there exists Py € {pl, vee 3 pn} such that q' ¥
Py Thus it follows from Theorem 5.2 and the atomicity of L +that a =

qlo O(Q - qk) = qkru(\(Q‘ - q'), completing the proof.

COROLLARY. Let a €L and a = MNQ be an irredundant decomposition
of a. Then for every irredundant decomposition a = NQ' and every q' €

Q' there exists q € Q such that a = q'nMN(Q - q) if and only if hQ

= ua.

Proof. If hQ =, then for any irredundant decomposition a = MQ!

we have hQ =u, > hQ., and hence Theorem 5.7 holds for the decompositions

a=NQ=NQ'. Suppose h L <u_. Then H._ is not a maximal independent

Q a Q

set of elements covering a, and hence there is an independent subset J of
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the elements covering a such that J 2 HQ. By Theorem 5.4 ﬁhere exists
an irredundant decomposition a = NQ' such that H,, = J. Let p€ J = HQ,
and let q' € Q' be such that N(Q' - q*) > p. Then q' > L)Hq, and hence
a'aN(Q - q) >a forall q € Q. Therefore q' can replace none of the
irreducibles in the decomposition a = MQ.

let a =MQ be an irredundant decomposition of a € L, and let S be
a subset of Q. A set T of irreducibles of L is said to be Q-equivalent

to S if there is a one-one mapping f of S onto T such that a =

£(g)nMN(Q ~ q) for each q € S.

THEOREM 5.8. Let a € L and a = MQ = NQ' be two irredundant decom=
positions of a. Then for each finite subset S € Q@ there exists a subset
T c Q' such that T is Q-equivalent to S. If hQ > hnte then for each
finite subset T € Q' there exists a subset S ¢ Q such that T 1is

Q-equivalent to S.

Proof. Let {ql, cos 5 qn} be a finite subset of Q. For each i =1,
e s n let S, ={q'€Q": a=g'n N(Q - qi)} . Suppose for some k-
element Subset {qil’ see 3 qik} E_ {ql’ cee g qn} ® Silu ces gy Sik Contains

Q

2 Py (3= «oe s k), and let pl € Hy, be such that N (@' - a}) 2 p}

(j =1, vee » m)s Then for each q' € Q' - {qi, ses o qé} s a'oN(Q - qi)

m < k elements, say qi, eve qé. Let pij € H. be such that N (Q - qij)

> a, and hence q' > Py for each 1 =1, cse , k, since M (Q = qi) con-
tains a unique element covering a. Thus () (Q' - {qi, sss 3 q&}) >
pln)"'u>pk. and it follows from Lemma 5.3 that pju*e*upy 2 Pju ** U DP,.
But this is impossible since the dimension m of the sublattice
piL)“‘L)pé/a is less that the dimension k of the sublattice plL,-o-L)pk/a.
Hence for every k-element subset {qil, ens 3 qik} < {ql, cos g qn} we have

that 54.9 ***0 Sy

1 contains at least k distinct elements. It now follows

k
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from the Hall theorem [9] on representatives of subsets that there are
distinct elements qi, coe o qr‘1 € Q' such that qjl" € Si for each 1 = 1,
ese » N, completing the proof of the first part.

Suppose now that hQ 2 hgie Let {qi, cee s qr'lj be a finite n-element
subset of Q', and let T; ={q€Q:a= qi”m (Q-aq)] . Inview of the
preceding paragraph, to prove the second part of the theorem it suffices to
show that Tlv teru Tn contains at least n distinct elements. Suppose
Tlv seerw Tn contains m < n elements, say Qys oo s Qe For each i =1,
ces » m, let pi € Hy be such that n(Q - Q) 2 p;. Then if p€ Hy -

1, e s n, and hence qjn***ngql

il

{pl' vee 3 pm} s q::- > p for each i

v

‘ - ' -
> U(HQ -{pl, ees pm}). Since hQ > UHQ, and q! is covered by a unique

element, hQu q:.'L s- q_,;_, and hence hQ b hQn qj". Furthermore, if k < n, then

(hQﬂ 4 V***0af) Vaksy * Gkeys and hence hynaqjaccrngl v hgnajne--

¢
agqy,
now we have a contradiction since the sublgttice hQ/ U(HQ - {pl, coe s pm'})

o Thus the sublattice hQ/hQn qin "'nqr'1 is of dimension n. But

is of dimension m < n. Hence Tlu vee gy ‘I‘n contains at least n distinect

elements, and the proof is complete.

COROLLARY. If a €L and a= NQ = NQ' are two irredundant decom-

positions of a with hQ < hQ,, then there exists a subset T C Q' such

that T is Q-equivalent to Q.

Proof. For each q € Q let S, = {a' €Q': a=q'n N(Q - q)} . Then
from the theorem above it follows that for any finite subset {ql, ene 3 qn}
<Q, Sqlu ‘"Usqn contains at least n distinct elements. Now suppose
that g € Q and p € HQ is such that MN(Q - q) > p. Then p _<_hQ < hQ. =

8 cee ! 3 ] ]
UHQ,, and hence p < plu 0P, for some finite subset { Pis ees s pk} -

HQ,. If q:.:. is such that M(Q' - q;_) _>_p:.:‘ (1 =1, eee , k), then
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N(Q! - {qi’ cee s qf{}) > p, and hence {q_{, ces s q&}asq. Thus Sq is
finite for each q € Q. The corollary now follows from the Hall theorem [9].
COROLLARY. If a €Ll and a= NQ = NQ' are two irredundant decom-

positions of a with hy = hy,, then Q and Q' have the same cardinality.
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6. LATTICES WITH REPLACEABLE DECOMPOSITIONS

Aside from uniqueness, the most fundamental arithmetical property of
irredundant decompositions is the replacement property. Therefore, if L is
a compactly generated atomic lattice and a € L, we shall say that a has

replaceable irredundant decompositions if for every pair of irredundant

decompositions a = MNQ = NQ' and each q € Q there exists an element

q' € Q' such that a = q'n((Q - g), and this decomposition is irredundant.
The principal theorem of this section characterizes those lattices L which
have replaceable irredundant decompositions.

For every pair of elements x, y € L. define the element ux/y by

u

x/y = Ufp:p<x, pry}.

THEOREM 6.l1. Every element of a compactly generated atomic lattice L
has replaceable irredundant decompositions if and only if L satisfies the
" following condition:

() If x, y €L, then u,

» X implies g > X0Ye

oy/x [xoy

Notice that condition (p) may be stated alternatively as follows. If
X, ¥y are any two elements of L, and the quotient sublattice xuvy/x con-
tains a unique element covering x, then the sublattice y/xoy contains a
unique element covering xny.

Proof of Theorem 6.1l. The proof of the theorem is based on the

following lemmas.

LEMMA 6.1. An element a € L has replaceable irredundant decompo-

sitions if and only if q(W(plu p2) = g implies PL = Py for every
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irreducible q > a and every pair of atoms Pys Py * Be

Let a € L be an element for which the condition of Lemma 6.1 is
satisfieds Let a = MQ = NQ' be two irredundant decompositions of a,
and let q € Q. Since a =gnMN(Q - q), it follows from the condition of
the lemma that there is a unique element p » a such that N (Q - g) > p.
Because (\ Q' = a, there is an element q' € Q' such that q' # p, and
hence it follows from the atomicity of L that q'n M(Q - g) = a. Suppose
this decomposition is redundant. Then there exists an element 9 € Q=g
such that a = q'ea (O (Q - {q, ql}). Again since q'a M (Q - {q, ql}) =g
and a satisfies the condition of the lemma, it follows that there is a
unique element P, r a such that N (Q - {aq, ql}) 2Py But since
N(Q - {as ql}) > N(Q - q) > p, we must have p = p;- This implies that
qnN(Q - {a, ) = N(Q - ;) = a, contrary to the irredundance of the
decomposition a = Q. Hence the decomposition a = q'0 N(Q - q) 1is
irredundant, and a has replaceable irredundant decompositionse.

Suppose now that a € L has replaceable irredundant decompesitions.
Let g > a be an irreducible and Py» Py % a be elements such that a =
qn (plu pz). By Lemma 2.3 there exists a maximal element m > P, P, such
that gom = a. Let m =R be an irredundant decomposition of m. Then
because of the maximality of m it follows that a = gn/)R is an irre=-
dundant decomposition of a. If p:L # pz, then by Lemma 3.2 there exists
an irreducible g, » p; such that g ¥ Py, and hence g,np, = a. Let

m 2 P, be a maximal element such that q;nmy = 8, and let m = le be

1
an irredundant decomposition of mye Then again it follows from the maxi-
mality of my that a = qpn ﬂRl is an irredundant decomposition of a.
But now it follows that gq;n MR > P, > a, and q'nR> p, > a for every

q! € Rl' Since this is contrary to the assumption that a has replaceable
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irredundant decompositions we must have Py = Pos and hence the lemma

follows.

LEMMA 6.2. If an element a € L has replaceable irredundant decompoe
sitions in L, then a has replaceable irredundant decompositions in the

sublattice x/a for every x > a.

For suppose r 1is a completely irreducible element of the quotient
sublattice x/a and rrw(plu pz) = a for elements Pys Py such that x>
Py» Py & @e If r=MNQ 1is a decomposition of r into elements which are
completely irreducible in 1L, then’

r=xn0NQ= N xngq,
qeQ
and since r 1is completely irreducible in x/a it follows that r = xng

for some irreducible g € Q. Hence
a0 (p,v py) = anxn(pup,) = ro(pup,) = a,

and since a has replaceable irredundant decompositions in L it follows
from Lemma 6.1 that Py = Poe Thus a has replaceable irredundant decompo-
sitions in the sublattice x/a.

Proceeding now with the proof of the theorem, let L be a compactly
generated atomic lattice satisfying condition (p). Let a €L, g > a be

an irreducible of L, and pl, p.+ a be elements such that qr\(plu:pz) =

2
a. Since ¢ 1is completely irreducible in 1L, there is a unique element s
coverin o Thus u

& 1 P1v Pou afq

follows that u ¥ a. This implies that Py = Pos and hence by Lemma
PlUpzl/a

6.1 every element of L has replaceable irredundant decompositions.

= s » g, and hence by condition (r) it

Suppose every element of L has replaceable irredundant decompositions.
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Let x, y € L be such that u

xoy/x »x. If u /xny does not cover xny,

then there are two distinct elements Pys Py such that ¥y > Py Dy » XOY.
Since uxuy/x #x it follows that x 1is completely irreducible in the
quotient sublattice xuy/xoy. And since xf\(plh>p2) = xay for two
distinct elements Py Py ¥ XY, it follows from Lemma 6.1 that xny does
not have replaceable irredundant decompositions in the sublattice xu)y/xr\y;
But then by Lemma 6.2 it follows that xoy does not have replaceable
decompositions in L. This contradiction implies that uy/xny,¥ x0y. Thus
L satisfies (P), and the proof of Theorem 6.1 is complete.

It is clear that if L is a point lattice, that is, if x is the

join of elements covering y for every pair of elements x >y in L, then
condition (P) is equivalent to lower-semimodularity. Therefore a compactly
generated point lattice has replaceable irredundant decompositions if and

only if the lattice is lower-semimodular.

THEOREM 6.2, If L 4is a semimodular, compactly generated, atomic
lattice, then L satisfies condition (#) if and only if L is locally

modular.

Proofe If L is locally modular, then () follows immediately from
Lemma 4.1. Suppose then that L satisfies condition (). If a € L and
every element of ua/a is a join of elements covering a, then ua/a is a
point lattice. For if x >y in ua/a, then x=U{puy : p» a, p<x,
D ﬁ y} , and since »p ﬁ y implies puy » y, the assertion follows. Hence,
in view of the corollary to Theorem 2.1 and the remark following the proof
of Theorem 6.1, to show that L is locally modular it suffices to show that
every element of ua/a is a join of elements covering a for each a € L.

Since ua/a is compactly generated we need only show that each compact
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element is a join of elements covering a. If ¢ 1is a compact element of
ua/a, then there is a minimal finite number of elements pl, see s Dy * a
such that plk""t>pk > ¢c. In a semimodular lattice two finite maximal
chains between a pair of elements of the lattice have the same length. Thus,
if Py Y *ecup, >c and t 1is such that p,L *Trup, ¥t >c, then t is
not a join of elements covering a. Let tl =&,%{p a:pX t}-. Then
since Ppu *°cuU pk/tl has dimension at least two, there are two distinct
elements p, p' % a such that PV **tu Py > p, p'y tl i ps P!y and tlu o)
ﬁ p's Now puplut = pqv °*cup t, and hence by condition (p) it follows
that to(pup') > a. Since every chain in pg;p'/a has length at most

two, we must have ton(pup') ¢ a. But since pu(ta(pup')) = pup' > p',
it follows that tl ¥ to(pup'), contrary to the definition of tl' Hence

¢ = py0 ***0 D, and Theorem 6.2 follows.

COROLLARY. Every element of a semimodular, compactly generated, atomic
lattice L has replaceable irredundant decompositions if and only if L 1is

locally modular.

Observe that a compactly generated atomic lattice L has unique irre-
dundant decompositions if and only if ua/a has this property for each
a € L. Similarly if L is semimodular, then L has replaceable irredundant
decompositions if and only if every ua/a has replaceable decompositions.
Therefdre the uniqueness of decompositions in a general lattice and the
replacement property in a semimodular lattice are "local" properties in the
sense that they are determined by the sublattices ua/a.

In passing to the question of replaceable decompositions in a general
compactly generated atomic lattice L a different situation is encountered.

If L is finite dimensional, then it follows almost trivially that L
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satisfies condition (p) if and only if ua/a satisfies (p) for each a € L.
If finite dimensionality is dropped, however, then L need not satisfy (r)
even though ua/a satisfies (p) for every a € L. Thus, unlike that of

unique decompositions, the property of replaceable decompositions is funda-
mentally different in the general case than in the finite dimensional case.

The following example illustrates this.

Fig. 2.

Let L, be that lattice comprised of two infinite chains ay < a, Seoo

1

PRPE coe & Cooe >
< a; < and bl < b2 < bi s, such that bi 3y and such that
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the sublattice bi+l/ai is isomorphic with the lattice of Fig. 2. for each
i=1, 2, eeo o Notice that the lattice of Fig. 2. has the property that

=D nd hence = b and 1T = b .
Py, 1Y %4~ Dyuqr NG EHCE Py 08 TR 1, 1Y %44 T Pin

Now let L Tbe the lattice of ideals of Ll‘ BEvery nonprincipal ideal of
Ll necessarily contains the ideal A = (al, EPY a3, «es ) o Suppose B is
an ideal of Ll with B> A. Then B must contain one of the elements

or which cover a.. Thus B contains either Py Y3 =
1 4

1, k 1 k
bk+l’ and hence B > (bl, bo, b3. cee ) = L,. Thus

P1, x
B OF Ty VA T
A and Ll are the only two nonprincipal ideals, whence L is compactly
generated and atomic. Now the only elements covered by more than two
elements are the elements a,. Thus if x # ay (1=1, 2, ees), then ux/x

satisfies (p). On the other hand, uai/a:.L = bi+l/ai’ and it is apparent

from Fige 2. that uai/ai also satisfies (). But L does not satisfy

(p), since ublU A/A » A and ubl/bln L= ubl/al does not cover a,.

- We may also consider the stronger replacement property described in
Theorem 5.7. With this in mind, let us define an element a in a compactly

generated atomic lattice L to have simultaneously replaceable irredundant

decompositions if for every pair of irredundant decompositions a = NQ =NQ*

and each q € Q there exists q' € Q' such that a =qg'aMN(Q - q) =
an N(Q' - q').

THEOREM 6.3. Every element of a semimodular, compactly generated, atomic
lattice L has simultaneously replaceable irredundant decompositions if and
only if ua/a is a direct product of finite dimensional modular lattices

for every a € L.

Proof. If ua/a is a direct product of finite dimensional modular

lattices, then it is easily checked that hQ = U, for every irredundant
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decomposition a = MQ. Hence the sufficiency follows from Theorem 5.l.
The proof of the necessity depends on the following well known lemma

essentially due to Frink [8].

LEMMA. If K is a complete, atomic, complemented, modular lattice
with a null element 2z, then K is a direct product of quotient sublattices
e,/z, where each sublattice eq/z has the property that the join of any
pair of distinct elements covering a contains a third distinet element

covering a.

Now suppose every element of a semimodular, compactly generated, atomic
lattice L has simultaneously replaceable decompositions. Then by the
corollary to Theorem 6.2 it follows that L is locally modular. Let a € L.
Since ua/a is complemented by Lemma 5.1, it follows by the preéeding lemma
that ua/a is a direct product of sublattices ed/a each of which has the
property expressed in the lemma. Suppose one of the sublattices, say eﬁ/a,
is not finite dimensional. Then eﬂ/a contains an infinite independent set
J of elements covering a. We may assume that J is a maximal independent
subset of {p a:ipg ep} » Pick P, € Jo Then for each p€ J = P,

there is an element 5 + a such that P,YUP 2 5 and 5 % Pys Do Define
sp =poU(J - {p,» P}

for each p€ J - j and define Sp = {sp t p€Jd = po} o Then e, \ sp
and s, % pys p for each p€ J - p,e Suppose NSg > a. Then NS, 2 p'
for some p' % a. Since UJ = ep > p!, there is a minimal finite subset
J' ¢ J such that UJ!' > p's If P, € J', then as in the proof of Lemma
2.7, p' £ UJ' implies p, £ p'v U - po). Since J is infinite,

there exists p € J - J', whence
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Po £ P V(I - p)) £p'0 VW = {p,s P]) S5,

a contradiction. If p_ ¢ J', then with p € J' we again have

p2plo U -p) oUW - {p,: p}) <5

a contradiction. Hence () Sy = a, and clearly N (S‘3 - sp) > p for each
Pp€d - Poe

For every o #f , let S, be a collection of maximal elements of
e /a such that (NS, =a, and N(S, - s) >a forall s€5, . If & is
any index { including o« = p ) and s €5, ., then u ¥ SkJ\JK#d.eg, and
hence there is an irreducible qg such that q nu = s«JL)(#“ ey. Let
Q= {qs : s €V, S&} . It then follows that a = ()Q 1is an irredundant
- decomposition of a.

Ir po'g hQ’ then there is a minimal finite subset .{pl, cee o pk} c
HQ such that p,u 0P 2D Observe that if s € S, where o # P .
then qg > p . Hence if N (Q - qsi) > p,» then {sl, cos s sk} ¢ Sp .
This implies that {pl, cee pk} CJ - p,» contrary to the independence of
Js. Hence P, ﬁ hQ. But now it fellows from the corollary to Theorem 5.7
that a cannot have simultaneously replaceable decompositions, contrary to

assumption. Thus each eﬁ/a is finite dimensional, and the proof is

complete,
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