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ABSTRACT

The current dissertation proposes three manners in which findings about the neu-
roscience of decision-making can inform traditional questions in economics that
historically has been investigated using choice data alone, and without delineating
the mechanism of choice.
The first chapter investigates the origins of a critical component of both economic
and perceptual decision-making under uncertainty: the belief formation process.
Most research has studied belief formation in economic and perceptual decision-
making in isolation. One reason for this separate treatment may be the assumption
that there are distinct psychological mechanisms that underlie belief formation in
economic and perceptual decisions. An alternative theory is that there exists a
common mechanism that governs belief formation in both domains. Here,we test
this alternative theory by combining a novel computational modeling technique with
two well-known experimental paradigms. I estimate a drift-diffusion model (DDM)
and provide an analytical method to decode prior beliefs from DDM parameters.
Subjects in our experiment exhibit strong extrapolative beliefs in both paradigms.
In line with the common mechanism hypothesis, we find that a single computational
model explains belief formation in both tasks, and that individual differences in
belief formation are correlated across tasks. These results suggest that extrapolative
beliefs in economic decision-making may stem from low-level automatic processes
that also play a role in perceptual decision-making, and therefore might be difficult
to suppress.
The second chapter investigates the role of the sex steroid hormone testosterone as
a biological mediator that translates environmental changes into shifts in cognition,
that influence decision-making. Correlational studies have linked testosterone with
aggression and disorders associated with poor impulse control, but corresponding
mechanisms are poorly understood and there is no evidence of causality. Building
on a dual-process framework, I identify a mechanism for testosterone’s behavioral
effects in humans: reducing cognitive reflection. In the largest testosterone admin-
istration study to date, 243 men received either testosterone or placebo and took the
Cognitive Reflection Test (CRT) that estimated their capacity to override incorrect
intuitive judgments with deliberate correct responses. Testosterone administration
reduced CRT scores. The effect was robust to controlling for age, mood, math skills,
treatment expectancy, and 14 other hormones. The effects were enhanced in subjects
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with high cortisol and estradiol levels. These findings suggest a unified mechanism
underlying testosterone’s varied behavioral effects in humans and provide novel,
clear, and testable predictions.
In the third chapter, I study dynamic unstructured bargaining with deadlines and
one-sided private information about the amount available to share (the “pie size").
Using mechanism design theory, I show that given the players’ incentives, the equi-
librium incidence of bargaining failures (“strikes”) should increase with the pie size,
and I derive a condition under which strikes are efficient. In our setting, no equi-
librium satisfies both equality and efficiency in all pie sizes. I derive two equilibria
that resolve the trade-off between equality and efficiency by either favoring equality
or favoring efficiency. Using a novel experimental paradigm, I confirm that strike
incidence is decreasing in the pie size. Subjects reach equal splits in small pie games
(in which strikes are efficient), while most payoffs are close to either the efficient or
the equal equilibrium prediction when the pie is large. I employ a machine learn-
ing approach to show that bargaining process features recorded early in the game
improve out of sample prediction of disagreements at the deadline. The process
feature predictions are as accurate as predictions from pie sizes only, and adding
process and pie data together improve predictions even more. As process data can
be much richer than the series of cursor locations that we have used (for example,
by including skin conductance, pupil dilation or facial expressions), better inference
of outcome variables is likely feasible. Thus, if a policy maker or a mediator can
access an independent measure of private information, an arbitration mechanism
may allow boosting efficiency by taking this measurement into account.
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C h a p t e r 1

INTRODUCTION

A multi-disciplinary effort has led to impressive progress in the field of decision
neuroscience (Neuroeconomics) over the past decade (Glimcher and Fehr, 2013).
It remains to be seen whether new discoveries in the field will translate into major
contribution to the disciplines fromwhich it has emerged. More specifically, there’s a
need to evaluate how promising findings about the neuroscience of decision-making
can inform traditional questions in economics that historically have been investigated
using choice data alone and without delineating the mechanism of choice.

An optimistic view describing the potential contribution of "opening the black box"
of the human mind to standard economics is described by C. Camerer, Loewenstein,
and Prelec, 2005; C. F. Camerer, Loewenstein, and Prelec, 2004 and C. Camerer,
2008. Some economists greet this proposition with skepticism and argue that
economists should, in principle, ignore non-choicemeasurements because economic
theories make no testable predictions about such data (Gul and Pesendorfer, 2008).
Other economists philosophically accept that non-choice data should not be ignored
in principle, but take a practical "wait and see" approach (Marchionni and Vromen,
2010; Rubinstein, 2008; Rubenstein, 2013). Bernheim, 2008, for example, noted
that neural models of decision-making are also black boxes: "We are not dealing
with a single box, but rather with a Russian doll. Do we truly believe that a good
economist requires mastery of string theory?"

This chapter discusses three manners in which Neuroeconomics can contribute stan-
dard economics. The remaining three dissertation chapters are proofs of concepts,
demonstrating how investigating the computational and biological basis of human
decision-making can enrich traditional economic theories.

1.1 Understanding the origins of decision biases
Research in behavioral economics over the past few decades has shown that people’s
decisions often deviate from those of "homo-economicus", the selfish rational agent
who is the hero of most economic theory textbooks (Gintis, 2000; Henrich et al.,
2001; R. H. Thaler, 2000). These deviations ("decision biases") often lead to sub-
optimal outcomes in the individual and the societal levels (C. F. Camerer, 2004;
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C. Camerer, Babcock, et al., 1997; DellaVigna and Malmendier, 2006) and have
become the target of various policy interventions (Leonard, 2008). Examples of such
interventions are the introduction of mandatory retirement saving plans (Statman,
2013; Bateman and Piggott, 1998), shifting people towards more desirable choices
by setting them as "defaults" (Johnson and Goldstein, 2003; Choi et al., 2004)
and mandatory information disclosure policies (Caswell and Mojduszka, 1996;
Welker, 1995). Finding the balance between limiting people’s freedom of choice
and protecting them from the consequences of poor decision-making is an important
challenge for policy makers (C. Camerer, Issacharoff, et al., 2003; Loewenstein,
Brennan, and Volpp, 2007; Hausman and Welch, 2010). It is therefore crucial
to understand whether and how people are capable of overcoming decision-biases
without having their freedom of choice limited.

Behavioral economists have characterized many systematic decision biases that
unlikely reflect arbitrarymistakes, taking the initial step towards understanding these
anomalies (Kahneman, 2003). But what is causing them? Arguably, contemporary
humans face decision problems that are quite different from those that our ancestors
had encountered (Rubin and Capra, 2011). Deciding whether to go hunting or
foraging for grains is different from choosing between 30 types of barbecue source
on the supermarket shelf; forecasting tomorrow’s rainfall based on today’s weather
is not the same as predicting tomorrow’s stock prices based on today’s trades. As
our brains have evolved in environments that do not resemble modern markets, we
might rely on assumptions that are no longer valid when making economic decisions
(McDermott, Fowler, and Smirnov, 2008; Chen, Lakshminarayanan, and Santos,
2005; Li et al., 2012).

In contrast to economic decision-making, humans seem to make reliable judgments
and decisions in the perceptual domain. Although sensory illusions are pervasive in
carefully controlled experiments under unnatural settings (Gregory, 1968), people
are remarkably good at making sense of perceptual information as they navigate
the world outside the laboratory. A recent documentation of a visual illusion
in the field, a photo of a blue dress that seemed white to the majority of the
population (Lafer-Sousa, Hermann, and Conway, 2015), was regarded with so much
astonishment, that it became a world-wide internet sensation overnight. As our
brains have evolved in an environment governed by the same regularities that operate
today (i.e., mechanical, optical, and acoustic physical laws), we still benefit from
relying on the same computations that our ancestors’ brains had used when making
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decisions that translate sensory information into perceptual judgments and motor
actions.

Many decision biases in the economic domain have parallel phenomena in the per-
ceptual domain. Our sensitivity to light intensity and auditory loudness follows
logarithmic laws (Reichl, Tuffin, and Schatz, 2013; Drago et al., 2003; Palmer,
1999) that resemble the manner in which we encode monetary rewards. We per-
ceive the luminance and size of objects in relation to their surroundings (Palmer,
1999), in a manner that resembles framing effects in economic decision-making
(Levin, Schneider, and Gaeth, 1998). Even the compromise and the attraction ef-
fects, two well-documented phenomena in consumer decision-making (Simonson,
1989), were recently documented in the perceptual domain (Trueblood et al., 2013).
These findings suggest that decision biases might arise because our brains apply
computational techniques that successfully solve perceptual problems when making
economic decisions.

Chapter 2 of this dissertation is concerned with a specific decision bias in economic
decision-making, extrapolative beliefs, also known as the belief in the “hot hand”
(Bloomfield and Hales, 2002; Rabin, 2000). People often rely on past observations
when forecasting the future, even when they contain no credible information. This
tendency is thought to underlie market-level phenomena such as over-reaction to
news (Bondt and R. Thaler, 1985). Extrapolative belief formation is also an empir-
ical regularity in lab experiments of perceptual decision-making (Cho et al., 2002;
Huettel, Mack, and McCarthy, 2002): people respond faster and more accurately
to sensory stimuli that continue an apparent pattern, even when explicitly told that
the sequence is completely randomized. We investigate whether people use a com-
mon computational mechanism of belief formation when making perceptual and
economic decisions in a within-subject design, where each participants took part in
decision-making tasks from both domains.

People have no conscious representation of their perceptual beliefs, as perceptual
judgments occur fast and automatically (Nissen and Bullemer, 1987; Curran and
Keele, 1993). Researchers typically use response-times and accuracy rates as prox-
ies of perceptual beliefs, but contrasting these measures with economic beliefs is
comparing apples and oranges, as they are not calibrated to a probabilistic scale.
Further, response times and accuracy rates are sensitive to many factors other than
beliefs, such as the quality of sensory input, the time it takes to make a motor
movement, and the speed-accuracy trade-off.



4

Chapter 2 provides the computational framework for decoding perceptual beliefs
from response times and accuracy rates. By applying the drift diffusion model,
a widely used computational technique from the literature on perceptual decision-
making (Ratcliff andMcKoon, 2008), we show theoretically that beliefs are encoded
in the ratio between two parameters of the model, the initial point and boundary.
This allows us to walk the extra mile and compare the belief formation process
across the perceptual and economic domains in a within-subject design. We find
a reliable correlation between the degree of extrapolative beliefs across the per-
ceptual and economic decision task. Furthermore, calibrating a single parameter
computational model based on the perceptual decision-making task further allows
out of sample predicting the belief formation process in the economic task. These
results show that extrapolative beliefs in economic decision-making may stem from
low-level automatic processes that also play a role in perceptual decision-making,
and therefore might be difficult to suppress. Therefore, non-paternalistic policies,
such as mandating information disclosure (Brav and Heaton, 2002), might not be as
effective as one might hope for reducing welfare losses associate with this decision
bias.

1.2 Biological state influences decision-making
Traditional economic theories assume that humans make decisions based on com-
plete preferences that are stable across time. This presumption makes theories
parsimonious and tractable, but sits uneasily with much empirical evidence. For
example, experimentally induced incidental emotions were shown to carry over to
unrelated tasks and influence subsequent consumer decisions systematically (Lerner,
Small, andLoewenstein, 2004; Loewenstein andLerner, 2003). Acute stress induced
by dipping hands in icy water increased framing effects in an unrelated financial
decision-making task that followed it (Porcelli and Delgado, 2009). Few would dis-
agree with the premise that economically relevant constructs such as productivity,
sociability, or confidence are influenced by intake (or avoidance) of substances like
caffeine, alcohol, antidepressants, and other therapeutic or recreational drugs.

Hormones are chemical signals that are released into the blood stream and in the
brain in response to internal states and environmental cues. The degree of hormonal
responses to an environmental change might be moderated by various factors: ge-
netic, demographics, personality, and more (see Figure 1.1). Many brain regions
involved in social behavior and decision-making contain hormonal receptors. Hor-
mones affect information processing in these brain regions in long lasting way, from
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seconds to hours, making them immediate candidate biological mediators for trans-
lating environmental changes into shifts in cognition, motivation, and emotion that
influence decision-making.

Figure 1.1: A framework for studying hormonal influences on decision-making. The
interaction of environmental factors and the organism’s inherent characteristics (e.g.,
genes) leads to hormonal variations that cause shifts in cognition, motivation and
emotions and influence decision-making. Decisions might generate behaviors that
influence the organism’s hormonal levels (either directly or through environmental
changes), as implied by the feedback arrow.

Traditionally, hormones had been “unobservables” to the economist, but this reality
is changing. The development of relatively cheap and easy to perform hormonal
assay methods and techniques for delivering pharmacological treatments (C. Wang
et al., 2004; Bos et al., 2012) has made it possible to measure and manipulate
hormonal levels in the lab and observe how they are linked to behaviors. In the
near future, portable hormonal assay kits that connect to mobile devices will allow
conducting fast and cheap hormonal measurements in the field as well (Ehrenkranz,
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2013).

Chapter 3 uses a dual process framework (Evans, 2003) to study how exogenous
administration of testosterone, the male sex steroid hormone influences the decision-
making process in men. We show that testosterone impairs males’ performance in
the cognitive reflection tes , abbreviated CRT (Frederick, 2005). The CRT estimates
one’s capacity to override incorrect intuitive judgments that effortlessly “jump” into
one’s mind, in favor of accurate answers that require deliberate, yet easy to perform
arithmetic calculations. Despite being only 3-items long, the CRT is a predictor of
various behavioral outcomes, from the preference of an immediate gratification over
a larger future reward, to reliance on sub-optimal on judgmental heuristics (e.g.,
the conjunction fallacy) and formation of asset market bubbles (Toplak, West, and
Stanovich, 2011; Bosch-Rosa, Meissner, and Bosch i Domènech, 2015).

Various environmental factors influence testosterone levels in men. The presence of
an attractive female (Ronay and Hippel, 2010), a win of one’s favorite soccer team
(Bernhardt et al., 1998), graduation (Allen Mazur and Lamb, 1980), and divorce
(Booth and Dabbs, 1993; Allan Mazur and Michalek, 1998; Gettler et al., 2011)
increase testosterone. Becoming a father (Gettler et al., 2011), losing a competition
(Booth, Shelley, et al., 1989; Allan Mazur, Booth, and Dabbs Jr, 1992), and a
decrease in female to male ratio (Miller, Maner, and McNulty, 2012) decrease
testosterone. Testosterone could be a hidden variable that translates transitions in
these environmental factors and many others into behavioral changes.

Understanding how testosterone causally influences decision-making may allow
generating behavioral predictions under novel environmental conditions. For exam-
ple, the one child policy in China - a nation of billion people - caused an increase of
the sex ratio between male and female births (Cameron et al., 2013). Thirty million
more men than women will live in China by 2020, potentially leading to social
instability and courtship-motivated emigration (Ding and Hesketh, 2006; Zhu, Lu,
and Hesketh, 2009). Studying the effects of testosteroneon decision-making could
bring about non-obvious predictions on how unprecedented circumstances would
influence the local and global economy.

1.3 Imputation of private information
Asymmetrical access to information is a feature of many economic environments
and a major cause of inefficiencies. A famous example is the “market for lemons”
problem (Akerlof, 1995). Consider a second hand vehicles market, where there are
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two types of goods: damaged (“lemons”) and well maintained cars (“cherries”).
Sellers know how reliable their cars are, but cannot prove it to the buyers. Buyers
are willing to pay more for cherries. In such settings, sellers have strong financial
incentives to convince the buyers that they are selling “cherries”, regardless of the
true state of the car. Theoretical and experimental investigations show that buyers
might be especially reluctant to pay the price premium for purchasing a cherry in
such markets. The result is an inefficient equilibrium, where only lemons are sold
for low prices (Lynch et al., 1986).

Non-choice measures can allow meaningful inferences of private information (Da-
vatzikos et al., 2005; Farwell and Donchin, 1991; Meijer et al., 2007). Neuroeco-
nomic methods are often criticized for being unnatural, costly, and inconvenient.
This criticism might hold for methods such as functional MRI that require having
subjects motionlessly lie inside a thunderous magnet. But fMRI is only one of many
possible sources of non-choice data. Involuntary (autonomic) biological responses
such as response times, heart rate, pupil dilation, changes in electro dermal activ-
ity, and facial expressions can be measured rapidly and with low marginal costs.
These measures are linked with mental states (e.g., anxiety, cognitive difficulty or
arousal) that may correlate with private information (J. T.-y. Wang, Spezio, and
C. F. Camerer, 2010).

In the final chapter, I investigate unstructured dynamic bargaining with private in-
formation. Experimental economists have neglected this important topic for many
years, perhaps because a lack of adequate behavioral paradigms and analytical tech-
niques for exploiting the richness of unstructured bargaining data. In the game,
only one party knows the surplus available to both players (“pie size”). Partici-
pants bargain on the payoff of the uninformed party and communicate offers using
mouse clicks whenever they please. The game abstracts wage negotiations, where
employees do not know the exact monetary value of their work to the firm. Under
informational asymmetry, willingness to endure a strike might be the only credible
means of the employers to convey their incapacity to pay a high wage (Kennan
and Wilson, 1993). As a result, disagreements arise even when both parties act
rationally given to their information and beliefs.

Using a game-theoretic framework, I show theoretically and empirically that dis-
agreements arise in such settings, and the realization of the pie size is a strong
predictor of their occurrences. Further, many deals are made in the last seconds of
bargaining, a phenomenon previously termed as the “deadline effect”. These results
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highlight a great challenge to econometricians in the real world: the occurrence of a
strike in any given negotiation is difficult to predict, as it depends on unobservable
private information.

But what if we could observe correlates of the private information? As a proof of
concept, I used a machine-learning algorithm to test whether the temporal dynamics
of players’ bargianing positions can predict disagreements before the deadline has ar-
rived. Indeed, a rich set of behavioral features (“process data”) is highly informative
about bargaining outcomes. By using process data, one can predict disagreements
just as accurately as when having access to the pie size realization. Combining the
pie size information with process features improves predictions even further. As
process data can be much richer than the series of cursor locations that we have used
(e.g., by including skin conductance, pupil dilation, or facial expressions), better
inference of outcome variables is likely feasible.

From a practical perspective, the premise of using process data to predict disagree-
ments and reveal private information has the potential to reduce inefficiencies. A
proof of concept was demonstrated by Krajbich et al., 2009, in a study that ad-
dressed the mechanism design problem of "free riders" while allocating costs of
public goods among group members. When the true values of each member for the
public good is private information, economic theory predicts that it is not feasible
to achieve an allocation of costs in which each individual’s benefit is greater than
his costs. Using machine-learning techniques, the researchers showed theoretically
and experimentally that a mechanism for allocating costs as a function of both an-
nouncements and neural proxies for private information could overcome the "free
riders" barrier. Thus, if a policy maker or a mediator can access an independent
measure of private information, an arbitration mechanism can boost efficiency by
taking this measurement into account.
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ABSTRACT

A critical component of both economic and perceptual decision-making under un-
certainty is the belief formation process. However, most research has studied belief
formation in economic and perceptual decision-making in isolation. One reason for
this separate treatment may be the assumption that there are distinct psychological
mechanisms that underlie belief formation in economic and perceptual decisions.
An alternative theory is that there exists a common mechanism that governs belief
formation in both domains. Here, we test this alternative theory by combining a novel
computational modeling technique with two well-known experimental paradigms.
We estimate a drift-diffusion model (DDM) and provide an analytical method to
decode prior beliefs from DDM parameters. Subjects in our experiment exhibit
strong extrapolative beliefs in both paradigms. In line with the common mechanism
hypothesis, we find that a single computational model explains belief formation in
both tasks, and that individual differences in belief formation are correlated across
tasks.
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2.1 Introduction
A common goal of economics and psychology is to understand the mechanisms that
govern decision-making in uncertain environments (Platt and Huettel, 2008). This
is an ambitious goal that seeks to explain the computational processes underlying
both (i) perceptual decisions – those that are determined by judgments about objec-
tive states of the world, and (ii) value-based (economic) decisions – those that are
determined by subjective beliefs and preferences. Over the past several decades a
vast amount of research has been devoted to studying these two types of decision-
making. Most of this research has proceeded along two parallel tracks, perhaps
because of an implicit assumption that the psychological mechanisms governing
perceptual and economic decisions are distinct.
However, a small but growing body of literature has begun to investigate the links be-
tween economic and perceptual decision-making (Summerfield and Tsetsos, 2012;
Summerfield and Tsetsos, 2015). For example, the evidence accumulation process
that is used to describe perceptual decision-making can also explain the dynamics
in simple economic decisions (Krajbich and Rangel, 2011; Tsetsos, Chater, and
Usher, 2012; Polania et al., 2014). Furthermore, robust decision biases from eco-
nomic decision-making, such as context effects, have recently been uncovered in
perceptual decision-making (Trueblood et al., 2013). There is also evidence of
an interaction between the two domains, as visual saliency can systematically bias
economic decisions (Mormann et al., 2012; Towal, Mormann, and Koch, 2013).
However, despite this growing evidence, it is unknown whether there is a similar
link between dynamic (across-trial) aspects of perceptual and economic decision-
making. In other words, does a common belief formation mechanism across these
two domains exist?
The answer to this question is important because it can shed light on the origins and
mechanisms of belief-based biases in judgment and decision-making. Moreover,
these biases are key ingredients in many behavioral models in finance (Barberis,
Shleifer, and Vishny, 1998; Hong and Stein, 1999; Barberis, Greenwood, et al.,
2015), and thus understanding the micro-foundation of such biases may be useful in
building more psychologically realistic models of financial markets. For example,
recent survey evidence shows that many investors hold extrapolative beliefs, where
they expect stock prices to continue rising after they have previously risen, and to
fall after they have previously fallen (Greenwood and Shleifer, 2014). If these ex-
trapolative beliefs are driven by the same mechanism that governs belief formation
in lower level perceptual processes, characterizing this common mechanism can be



17

useful in modeling higher-level economic expectation formation.
In this paper, we combine two well-known experimental paradigms with compu-
tational modeling to investigate whether belief formation is governed by the same
psychological mechanism in economic and perceptual decision-making. Before
investigating the relationship between belief formation in each domain, it is first
necessary to precisely measure beliefs. Fortunately, economists have long since
provided incentive-compatible experimental methods for measuring beliefs in eco-
nomic decisions (Brier, 1950; Becker, DeGroot, and Marschak, 1964; Selten, 1998;
Karni, 2009). Less work has been devoted to developing incentive compatible
methods for eliciting beliefs in perceptual decision-making, but we do so here by
building on previous work that uses computational modeling to decode beliefs from
choice and response-time (RT) data. Specifically, our technique builds on the large
literature of sequential sampling models (SSMs) in perceptual decision-making
(Townsend and Ashby, 1985; Usher and McClelland, 2001; Ratcliff and Smith,
2004; Bogacz et al., 2006; A. R. Teodorescu and Usher, 2013) and, more recently,
in value based decision-making (Fehr and Rangel, 2011; Webb, 2013; Woodford,
2014).
Most studies that use SSMs manipulate an attribute of the environment (e.g., stimu-
lus motion coherence or subjective value) and test which computational parameters
encode the change in environment (Klauer et al., 2007; Mulder et al., 2012; White
and Poldrack, 2014). In contrast, the computational technique we employ to mea-
sure beliefs focuses on decoding perceived changes in the environment (i.e., changes
in subjective beliefs) from an SSM. In particular, we show theoretically how the
estimated initial point and boundary parameters of a drift diffusion model can be
used to infer a subject’s prior belief. Our study therefore provides a novel example
of how neuro-computational models can be used to measure a subject’s belief for-
mation process.
To demonstrate this, we recruited subjects to participate in two separate tasks:
an economic decision-making task (EDT) and a perceptual decision-making task
(PDT). While each task has been used several times in its own literature separately
(Bloomfield and Hales, 2002; Cho et al., 2002; Huettel, Mack, and McCarthy,
2002; Asparouhova, Hertzel, and Lemmon, 2009), in the current study we have
subjects participate in both the EDT and PDT in the same experimental setting.
This within-subject design allowed us to measure and compare the computations
governing belief formation across different decision domains. We hypothesized
that if a single psychological mechanism governs belief formation across economic
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and perceptual decision domains, then (i) a common computational model should
explain belief-updating (across trials) in both tasks and (ii) individual differences in
the degree to which subjects rely on recent stimulus history to update beliefs should
be correlated across tasks.

2.2 Methods
Subjects
Thirty-eight subjects (17 females) aged 17-29 (mean: 20.24 SD: 3.11) participated
in the study. Subjects were students at Caltech or at a nearby community college
and the sample size was chosen to match the exact sample size employed in previous
work with the same task (Bloomfield and Hales, 2002). The California Institute
of Technology and University of Southern California Institutional Review Boards
approved this study, and the subjects gave informed consent.

perceptual decision task
The PDT consisted of four blocks of 300 trials each, preceded by 5 training trials.
Each trial began with the appearance of a white fixation cross in the center of a black
screen; after 800 milliseconds, either a white circle (diameter: 10.5 cm) or a blue
square (width: 10.5 cm) appeared in the place of the cross. Subjects were instructed
to respond by either pressing the “right arrow” key when a circle appeared or the
“left arrow” key when a square appeared (Figure 2.1a). Subjects were told that
they would receive one cent for each correct response, and their earnings would be
reduced by 0.05 cents for every 100 milliseconds of delay in their response. If the
response was slower than 2 seconds they would receive 0 cents. A new trial started
immediately following a response, with the appearance of a new fixation cross on
the screen. Subjects were told that there were only two possible stimuli (a circle or
a square), that the probability of seeing either shape was 0.5, and that the stimuli
of previous trials had no influence on future trials. The actual sequence of stimuli
was an independent and identically distributed pseudo-random binary process, such
that the stimuli sequence was identical for all subjects. Subjects had a break of 20
seconds between blocks, during which they received feedback about the number of
correct responses they made, but did not receive feedback about their mean RT. The
task instructions are available in the appendix.
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Economic decision task
In the EDT, subjects were told that data from publicly traded firms was used to
create a model that generated sequences of “performance surprises” – a time series
of actual performance minus predicted performance (Bloomfield and Hales, 2002;
Asparouhova, Hertzel, and Lemmon, 2009). Subjects were presented with a se-
quence of performance surprises from a typical firm, and were instructed to predict
whether the next performance surprise would be positive or negative. In each pe-
riod, subjects saw a history chart of performance surprises from the last 14 periods
plotted in yellow on a black screen (see Figure 2.1b). Each period, subjects were
endowed with 100 units of experimental cash and were asked to state the maximum
price at which they would be willing to buy a share of stock in the company. To elicit
an incentive-compatible measure of a subject’s willingness to pay (WTP) for the
stock, we used a Becker–DeGroot–Marshak (BDM) auction (Becker, DeGroot, and
Marschak, 1964). Thus, after the subject stated hisWTP, the actual price was drawn
from a uniform distribution between 0 and 100, and the stock would be purchased
at the price drawn if and only if its price was less than the WTP. If the subject
purchased the stock, it would return 100 units of experimental cash in the case of a
positive surprise and 0 units of experimental cash otherwise. The WTP measures
the expected value of the stock, and therefore, for a risk neutral subject, it provides
a measure of the subjective belief of a positive performance surprise. Subjects were
explicitly told that in order to make the most money in the task, they should set the
price equal to the probability of seeing a positive surprise. After stating their WTP,
subjects received feedback about the price drawn, the stock performance, and their
financial outcome. The task consisted of a single block of 400 trials preceded by 10
training trials, where each period started at the same point in the sequence where the
previous trial had ended. The actual sequence was a pseudo-random independent
and identically distributed binary process (the stimuli were identical for all subjects).
After every 50 trials, subjects saw their accumulated payoff and were allowed to
take a short break. At the end of the experiment, subjects were paid for all of their
trials, using a conversion rate of 5,000 units of experimental cash = 1 USD. The
task instructions are available in the appendix.

Experimental Procedures
The data was collected over three experimental sessions, all conducted at the Caltech
Social Science Experimental Laboratory (SSEL). At the beginning of each session,
participants were randomly allocated to cubicles in the lab, where they could not see
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or interact with each other. Before each task, subjects received printed instructions
that were also read out loud by the experimenter, and subjects subsequently had an
opportunity to ask questions. Each session started with the PDT, followed by the
EDT (this design choice is discussed in the appendix). Both tasks were programmed
using Matlab Psychtoolbox (Brainard, 1997).

2.3 Results
Basic results from the perceptual decision-making task
We found that RTs and error rates systematically varied as a function of recent
stimulus history, despite the fact that subjects were explicitly told the probability of
displaying a circle was 0.5 on all trials, in accordance with previous studies (Cho
et al., 2002; Huettel, Mack, and McCarthy, 2002). On trials where the stimulus
continued the recent streak (“continuation” trials), RTs decreased with streak length
(p < 0.001, see Table 2.3). In contrast, Figure 2.2a shows that on trials where
the stimulus violated the recent streak (e.g. 3 circles followed by a square), RTs
moderately increase with streak length (p < 0.001, see Table 2.3). Figure 2.2b
displays error rates as a function of streak length, where an error is defined as
misclassifying the stimulus. We found that as the streak length increases, error rates
decrease for continuation trials, but they increase for violation trials (both p < 0.001,
see Table 2.4).

The perceptual decision-making literature has highlighted twomain types of sequen-
tial effects on response times and error rates. First, automatic facilitation (AF) effects
occur when response times following a certain streak length are faster regardless of
whether the current trial extends the streak or not. For example, after the sequence,
{square, square, square}, an AF effect predicts that the response on the subsequent
trial to either a circle or square will be faster than after the sequence {circle, square,
square}. This type of effect could be driven by post-response residual activity (Roit-
man and Shadlen, 2002) depending on the decay rate of neuronal activity in the
motor cortex. In contrast, strategic expectancy (SE) effects occur when response
times following a certain streak length are faster only when the current trial extends
the streak. This implies that after the sequence, {square, square, square}, an SE
effect predicts that the response on a square trial will be faster than on a circle trial.
The results in Figure 2.2a are inconsistent with AF effects because the mean RT for
each streak length depends on the stimulus identity of the current trial. However,
they are consistent with SE effects, which can be interpreted as effects driven by
expectations about future stimuli. This finding is consistent with an extensive body
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Figure 2.1: Experimental design of the task (EDT) and perceptual decision-
makingtask (PDT). (A) PDT: Following a display of a fixation cross at the center
of the screen (800 milliseconds), either a circle (p=.5) or a square was presented in
random order over the course of 1200 trials. Subjects were incentivized to respond
to each shape with a different key press as quickly and as accurately as possible.
A new trial started immediately following the response, with the appearance of a
new fixation cross. (B) EDT: On each of 400 trials, subjects entered the price, p,
at which they would be willing to buy a stock. A price x was then randomly drawn
and if x<p, the subject purchased the stock at a price of x on that trial. The stock
then paid $100 if there was a positive performance surprise, and $0 otherwise.

of literature showing that AF effects do not occur when the response-stimulus inter-
val (RSI) is greater than 250 milliseconds (e.g., Soetens, Boer, and Hueting, 1985).
Indeed, as the objective of this study was to investigate expectation formation, we
intentionally designed the experiment with an RSI of 800 milliseconds in order to
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minimize AF sequential effects (Cho et al., 2002; Gao et al., 2009).

Basic results from the economic decision-making task
Consistent with previous research, we found substantial evidence of extrapolation
based on the previous history of stimuli in the EDT (Bloomfield andHales, 2002; As-
parouhova, Hertzel, and Lemmon, 2009). Specifically, as shown in Figure 2.2c, we
found that the longer the current streak of positive (negative) performance surprises,
the higher the reported probability of a subsequent positive (negative) performance
surprise (p < 0.001, see Table 2.6).

Figure 2.2: Basic experimental results (A)Average RT as a function of current streak
length (PDT), where streak length is defined as the number of consecutive identical
stimuli. Continuations are those trials where the streak continues; violations are
those trials where the steak is violated. Data is shown only for correct trials (94%
of the data) (B) Error rate as a function of current streak length (PDT). (C) Average
reported beliefs (EDT) that the current streak would continue as a function of streak
length. All error bars represent standard errors clustered at the subject level.

Structural model of decision-makingin the PDT
Drift Diffusion Model Overview

In order to investigate whether there is a common link between belief formation in
the EDT and the PDT,we needed to first transform the RT and accuracy data from the
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PDT into probabilities (prior beliefs), allowing us to compare them with the beliefs
elicited in the EDT. This is a non-trivial exercise, but we were able to overcome
this obstacle by estimating a structural model of the decision-making process in the
PDT. While there is a variety of structural models of perceptual decision-making
in the psychology and neuroscience literature, we chose to model our data using a
drift-diffusion model (DDM) for twomain reasons. First, in addition to providing an
accurate description of perceptual decision-making data, recent work has shown that
this model can also provide a good fit for behavior and response times in economic
decision-making tasks (Fehr and Rangel, 2011; Krajbich and Rangel, 2011). As our
goal is to investigate the link between belief formation in perceptual and economic
decision-making, it is valuable to use a structural model that can explain the data
well in both domains. Second, there are specific parameters of the DDM that have
been shown to map on to changes in prior beliefs, which is the key object in our
study (Mulder et al., 2012; A. R. Teodorescu and Usher, 2013; White and Poldrack,
2014).1

The DDM was originally developed to explain the response times and accuracy of
perceptual decisions in binary choice tasks (Ratcliff, 1978; Ratcliff and McKoon,
2008). The basic assumptions of this model are that incoming sensory evidence
about the identity of a stimulus (e.g., a circle or square) is noisy and decision time
is costly. The DDM implements a choice algorithm that minimizes the decision
time for a given level of accuracy (Bogacz et al., 2006).2 A brief description of the
DDM as applied in our experimental setting is useful to understand the analytical
technique we use to decode prior beliefs from the PDT. The DDM assumes that
the brain computes a relative decision value (RDV) that measures the accumulated
relative “evidence” in favor of the correct option, and this RDV evolves over time
until a choice is made (Figure 2.3).3 The RDV follows a diffusion process:

dRDV (t) = Mdt + sdW, (2.1)

with initial point RDV (0) = ci, for condition i. A choice is made once the RDV
reaches one of two thresholds, where we normalize the lower threshold to zero and

1In the next sub-section, we test which specific parameters from the DDM encode changes in
prior beliefs.

2Conversely, it can be seen as solving the dual optimization problem of maximizing decision
accuracy for a given amount of decision time.

3See A. R. Teodorescu, Moran, and Usher, 2015 for a recent discussion on the comparison
between relative and absolute decision values.
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the upper threshold to a constant, a. In this model, M is the drift rate and represents
the strength of incoming sensory information that a subject uses to infer the identity
of the current shape. When the discriminability between the two possible stimuli is
high, the drift rate is large; if instead, the two shapes are difficult to discriminate,
then the incoming sensory evidence in favor of one option versus the other is low and
the drift rate will be small. The variable ci represents the initial point in condition i

and can parameterize the prior bias towards selecting the correct alternative (we use
the convention that the upper boundary is associated with the correct alternative).
Finally, s represents the standard deviation of mean-zero Gaussian distributed noise,
which we set to s = 0.1 without loss of generality, and dW is a Weiner process.4

Figure 2.3: A graphical illustration of the drift diffusion process. The bold path
indicates the evolution of the relative decision value (RDV) that tracks the relative
evidence in favor of the alternative associated with the upper boundary. TE denotes
the time required for encoding the stimulus, TMdenotes the time required formaking
the motor response (such that the non-decision time, T , equals to the sum of TE
and TM). c denotes the initial point that captures prior bias, a denotes the upper
boundary that captures the speed-accuracy trade-off, and M denotes the drift rate
that represents the quality of sensory input. When the RDV reaches a boundary,
the process terminates and a decision is made. Without loss of generality, the lower
boundary is set to zero.

The non-decision time, denoted by T , represents the time required to encode the
4Because the noise parameter s, drift rate M , and boundary separation a, are only defined up to

positive affine transformations, one could fix any of these three parameters and estimate the remaining
two. We choose to follow the convention of the studies that fix the noise parameter and estimate the
boundary and drift rate (Ratcliff and Smith, 2004). The boundary and drift rate are then interpreted
in units of standard deviation of noise.
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stimulus (T E) and implement the motor action (T M). In addition to the four
parameters (M, a, ci, and T) we include three additional across trial variability
parameters that have been shown to improve the accuracy of describing observed
RT distributions (Ratcliff and McKoon, 2008). First, a variance parameter Mσ2 ,
characterizes the distribution from which the drift rate is sampled in each trial, such
that M is normally distributed with mean Mµ and variance Mσ2 . Second, a range
parameter Tσ2 characterizes the distribution from which the non-decision time is
sampled in each trial, such that T ∼ U[Tµ−T

σ2
2 ,

Tµ+T
σ2

2 ]. Finally, a range parameter
cσ2 characterizes the distribution of the initial point, such that in condition i ci ∼

U[ ciµ−c
σ2

2 ,
ciµ+c

σ2
2 ]. We estimated the DDM at the individual subject level using the

DMA-Toolbox (Vandekerckhove and Tuerlinckx, 2008). This toolbox estimates the
DDM parameters by minimizing the multinomial log-likelihood function:

LL(xt, bt |θi) = −2
C∑

c=i

Ti∑
t=1

log(L(xt, bt |θi)), (2.2)

where L(xt, bt |θi) is the likelihood of observing, on trial t, a response (correct or
incorrect) xt and RT in bin bt , conditional on parameters θi, where i denotes the
experimental condition for trial t. Following the literature on sequential effects
in perceptual decision-making we define an experimental condition by the 4-back
history of repetitions (R) and alternations (A), thus setting C = 16 total conditions
(Soetens, Boer, and Hueting, 1985; Cho et al., 2002; Yu and Cohen, 2009; Jones
et al., 2013; M. H. Wilder et al., 2013).

Priors can be encoded by other DDM parameters
Our baseline model defines the parameter vector θi = [M, a, ci,T, Mσ2,Tσ2, cσ2]
which implies that only the initial point is allowed to vary across the C experimental
conditions. This parameter restriction assumes that if prior probabilities vary across
conditions, they must be encoded in the initial point. This baseline model is moti-
vated by recent work showing that variation in prior beliefs is explained by variation
in initial points, instead of by drift rates (Mulder et al., 2012; A. R. Teodorescu and
Usher, 2013; White and Poldrack, 2014). However, the debate on whether priors are
encoded in the initial point or the drift rate is still ongoing (Gao et al., 2009; Rorie
et al., 2010; Ravenzwaaij et al., 2012) and recent work has developed experimental
paradigms to examine this particular issue (Mulder et al., 2012; A. R. Teodorescu
and Usher, 2013). Because this remains an open question in the literature, we esti-
mated several additional versions of the DDM to investigate whether allowing drift
rates to vary across experimental conditions yielded a better fit to our data. When



26

comparing the baseline model to a model where both drift rates and initial points
are allowed to vary, θi = [Mi, a, ci,T, Mσ2,Tσ2, cσ2], we find that the baseline model
performs better in 37 of 38 subjects according to the Akaike Information Criterion
(AIC). Furthermore, when comparing the baseline model to a model where only
the drift rate is allowed to vary, we find that the baseline model performs better in
31 of 38 subjects. Another analysis that can help distinguish whether prior bias is
encoded in the drift rate or initial point investigates the difference in average RTs
on correct and incorrect trials. In particular, we followed Mulder et al., 2012 and
defined (i) a valid prior trial as a trial where either a stimulus repetition had followed
two or more repetitions, or an alternation had followed two or more alternations;
(ii) an invalid prior trial as a trial where stimulus alternation had followed two or
more repetitions, or repetition had followed two or more alternations; and (iii) a
neutral prior trial as all other trials. The key prediction is that on valid trials where
subjects respond incorrectly, RTs should be fast if prior bias is encoded in the drift
rate and slow if prior bias is encoded in the initial point. In line with this hypothesis,
we found that when making correct responses, subjects were fastest in trials with
valid priors compared to neutral priors, and slowest in trials with invalid priors;
critically, the opposite pattern was found for incorrect trials (see Figure 2.4). These
results support the notion that for the PDT in our setting, changes in the prior are
better captured by changes in the initial point of evidence accumulation rather than
changes in the drift rate.
Finally, although previous research on sequential effects in binary perceptual decision-
making tasks often sets the number of conditions to C=16 (Cho et al., 2002; Yu and
Cohen, 2009), this itself is a parameter that is set by the researcher. To investigate
this parameter choice, we re-estimated the baseline DDM allowing C to vary over
the set [2, 4, 8, 16] by collapsing the number of repetition and alternation histories
accordingly. We find that the baseline DDM that uses 16 conditions performs better
in 35 of 38 subjects (according to AIC) than the baseline DDM that use 2, 4, or 8
conditions. Similarly, when comparing a model where only the drift rate is allowed
to vary across conditions, the model with 16 conditions performs best according to
the AIC in 36 of 38 subjects. Taken together, the baseline model where only initial
points are allowed to vary across 16 experimental conditions is the best fit, and we
therefore use this model in all subsequent analyses.
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Figure 2.4: Average response times of correct and incorrect responses following
“valid”, "neutral" and "invalid" cues.
Valid cues are repetition following two or more repetitions or alternation following
two or more alternations). Invalid cues (i.e., alternation following two or more

repetitions or repetition following two or more alternations) and ‘neutral’ cues are
all other trials.

Decoding prior beliefs using the DDM
Using the estimated DDM parameters, we decoded the prior probability for each
subject and condition. To understand how the decoding process works, recall that
the drift rate of the DDM, M , encodes the informativeness of the sensory signals in
discriminating between the two shapes. At every instant within a trial, a new noisy
signal is sampled where the noise is governed by the volatility of the process, s2. All
else equal, when M decreases, the signal to noise ratio decrease and a subject must
rely more heavily on his prior belief. In the limit, when the drift rate goes to zero,
the subject relies exclusively on his prior. In the appendix, we analytically solve for
the probability of hitting the upper boundary when the drift rate goes to zero, and
find that, in condition i, this prior equals ci

a . Using this analytical result, we then
collapsed the data from 16 to 8 conditions, because the identity of the current trial
does not vary with the prior (e.g., trials in condition AAAR and trials in condition
AAAA provide information only about Pr (A|AAA) = 1− Pr (R|AAA)). Figure 2.5
plots the average priors for each of the eight conditions (all possible three element
histories) for both the PDT and EDT. The Figure shows that prior probabilities are
indeed a function of the recent stimulus history, and that these priors are highly
correlated across the PDT and EDT (r = 0.90, p < 0.005).
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Figure 2.5: Average priors for the EDT and PDT as a function of the four most recent
stimuli history. For each of the eight different conditions, the black line shows the
average belief that a repetition will occur on the subsequent trial in the EDT, elicited
using the BDM procedure. The gray line shows the average prior that a repetition
will occur on the subsequent trial in the PDT, decoded from the initial point and
boundary parameters of the DDM.

Individual differences in belief formation across tasks
Using our decoding strategy, we found significant individual differences in the extent
to which priors in the PDT deviated from the rational prior of 0.5. To quantify this
deviation, for each subject u, we computed the sum of squared deviations from 0.5
and define this as the irrationality index (II):

I Iu =
1
8

8∑
i=1

(pi,u − 0.5)2. (2.3)

Because subjects were explicitly told that the probability of seeing either shape was
0.5, independent of the stimulus history, a fully rational subject would exhibit an
irrationality index of 0 in the PDT. Instead, we found that the average II across
subjects was 1.93 (SD: 0.391), which is significantly greater than the optimal level
of 0 (p < 0.001, Tobit regression left-censored at 0). If the extrapolative beliefs
from the EDT are driven by the same psychological mechanism that generated the
irrationality in the PDT, then the II should explain a portion of the cross-subject
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heterogeneity in the extrapolation of beliefs in the EDT (Appelt et al., 2011). To
test this, we defined an Extrapolation Index (EI) for each subject u, as

EIu =
1

400

400∑
t=1

(bt,u − 0.5)2, (2.4)

where bt,u is the belief reported by subject u in trial t of the EDT that a repetition
would occur on trial t + 1. As illustrated in Figure 2.6a, we found a significant
positive correlation (r (38) = 0.57, p < 0.001) between the II and the EI.

One potential alternative explanation for the correlation between the EI and the II
is that it is driven by task engagement. In particular, subjects who exhibit a high
level of engagement in each task might also exhibit a greater tendency to perceive
local patterns in recent stimulus history, which can then generate both a high EI
and a high II. To rule out this alternative explanation, we use the estimated within
trial noise parameter from the full DDM, denoted by s in equation 2.1, as a measure
of subject-specific task engagement.5 We then regressed the EI on the II while
including each subject’s within trial noise parameter, s, as a control variable. As
column (1) of Table 2.1 shows, the II was still a significant predictor of the EI
(p < 0.001), while the within trial noise parameter was not a significant predictor
(p = 0.651). As an additional robustness check, we estimated an OLS model that
included the across trial variability in drift rate Mσ2 as a control. This approach
was motivated by recent experimental work showing that the across trial variability
parameter in drift rate, Mσ2 , provides a good proxy of arousal during perceptual
decision-making (Murphy, Vandekerckhove, and Nieuwenhuis, 2014). As task
engagement is typically a quadratic function of arousal, we include both Mσ2 and
the quadratic term M2

σ2 , in a multiple regression. Column (2) of Table 2.1 shows
that the II was a significant predictor of the EI (p<0.001), but neither Mσ2 nor M2

σ2

predicted the EI (p = 0.322 and p = 0.360, respectively). Column (3) provides an
analogous regression using the standard deviation of RTs from the PDT as a control
for task engagement, and column (4) includes all controls in a single model. Again,
we found that the II remained a significant predictor of the EI after including these
additional controls.

5In our original estimation of the full DDM, we set s = 0.1 (because core model parameters are
only defined up to ratios of one another). We therefore re-estimate the full DDM parameters when
fixing the boundary parameter a = 0.1, and allowing s to be a free parameter.
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Table 2.1: OLS regression of extrapolation index (EI) on the irrationality index (II)
and controls. The within trial and across trial noise parameters – estimated at the
individual level from the DDM – are used to control for levels of task engagement.
Standard errors are clustered by subject.

Dependent variable: Extrapolation index
Irrationality index 0.635∗∗∗ 0.649∗∗∗ 0.613∗∗∗ 0.611∗∗∗

(0.155) (0.157) (0.150) (0.152)

Within trial noise 0.005 0.005
(0.012) (0.013)

Across trial noise 0.308 −0.118
(0.307) (0.121)

Across trial noise2 −0.749
(0.807)

Standard deviation of RT 0.183 0.269
(0.104) (0.139)

Constant −0.088∗∗ −0.094∗∗ −0.101∗∗ −0.107∗∗
(0.038) (0.039) (0.037) (0.038)

Observations 38 38 38 38
R2 0.328 0.344 0.379 0.398

Note: ∗p < 0.1 ∗∗p < 0.05 ∗∗∗p < 0.01

Finally, we investigated whether individual differences in the payoff from the EDT
can be explained by the II from the PDT. After all, if subjects hold extrapolative
beliefs in the EDT, this should lead to low overall payoffs in the EDT since there is no
predictability in the actual process that generated the EDT performance surprises.6
If these extrapolative beliefs are governed by the same mechanism that generates the
II in the PDT, then subjects with a higher II should have lower payoffs in the EDT.
Consistent with this hypothesis, we found a significant negative correlation between
the II and the payoff in the EDT, demonstrating that irrational behavior in the
perceptual domain predicts performance in the economic domain (r = −0.47, p <

0.01, Figure 2.6b).7
6In line with this hypothesis, there was a strong negative correlation between payoffs in the EDT

and the extrapolation index (r = −0.73, p < 0.001).
7Although we find a significant correlation between the irrationality index and payoffs in the
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Figure 2.6: Individual differences. (A) Correlation across subjects between the
extrapolation index and the irrationality index. (B) Correlation across subjects
between the irrationality index and the EDT payoffs. Each point represents a single
subject.

EDT, we do not find a significant correlation between the irrationality index and payoffs in the PDT.
We reason that this may be because error rates were very low across all participants, and a significant
component of the payoff structure for the PDTwas based on error rates. Thus, the lack of a significant
correlation between the II and PDT payoffs is most likely driven by the low variation across subjects
in PDT payoffs.



32

A common dynamic belief model
So far we have shown that (i) conditional on recent stimulus history, the average
beliefs in the EDT and PDT are correlated (Figure 2.5) and (ii) individual differences
in the degree to which beliefs deviate from the 0.5 benchmark in the EDT and
PDT are correlated across subjects (Figure 2.6A). These two pieces of evidence
suggest that a common belief formation mechanism governs subjects’ responses
in both tasks. To further investigate this conjecture, we use a Bayesian model
from the computational neuroscience literature, the Dynamic Belief Model (DBM)
(Yu and Cohen, 2009; M. Wilder, Jones, and Mozer, 2009; Zhang, Huang, and
Angela, 2014). The DBM relies on two key assumptions. First, the agent believes
that the probability of observing a repetition on trial t (i.e., the stimulus on trial
t matches the stimulus on trial t − 1) is governed by a parameter γt . Second, the
parameter γt is time-varying and changes on each trial with a constant probability α.
These assumptions are motivated by empirical evidence in cognitive neuroscience,
showing that the brain is well adapted to learning in non-stationary environments
(Behrens et al., 2007; Nassar et al., 2012). Furthermore, the DBM can be well
approximated by an exponential filter (Yu and Cohen, 2009), which has received
empirical support both at the behavioral and neurophysiological levels (Sugrue,
Corrado, and Newsome, 2004). To fix ideas, we describe the model in the context
of the PDT. Let Xt ∈ {Square,Circle}, and suppose the agent believes that the state
of the world is captured by γt , which represents the time-varying repetition rate,
Prt (Xt = Xt−1). On each trial, with probability α, γt is resampled from a reset prior
P0 that is uniform over [0, 1] (Fox and Rottenstreich, 2003). Formally, let zt = 1
if Xt = square, and let zt = 0 if Xt = circle, so that the probability that the next
instance, Xt , is a square is as follows:

Pr (Xt = square|Xt−1, Xt−2, ..., X1) =

Pr (Xt = square|γt, Xt−1) =

zt−1γt + (1 − zt−1)(1 − γt ).

(2.5)

The model’s prediction depends explicitly only on the most recent observation,
Xt−1 and on the current estimate of γt . The DBM algorithm operates iteratively by
maintaining a prior distribution over γt , Pr (γt, Xt−1, γt−1). After observing a new
stimulus, the posterior, P̂(γt |Xt, γt−1) is computed using Bayesian updating:

P̂(γt |Xt ) ∝ P(Xt |γt, Xt−1)P(γt |Xt−1). (2.6)
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The posterior of the current trial is then used to compute the prior for the next trial,
as a sum of the posterior weighted by (1 − α) and the reset prior weighted by α:

P(γt+1 |Xt ) = (1 − α)P̂(γt |Xt ) + αP0(γt+1). (2.7)

The model generates predictions, P(Xt |Xt−1), by integrating Eq. 2.7 over the prior
on γt . In our simulations, we maintain a discrete approximation to the continuous
prior by dividing the interval [0, 1] into 100 equally spaced bins, where expectations
are computed by summing over the discrete probability mass function. To test
whether the DBM provides a common computational model of belief formation
across both the EDT and PDT, we estimated α at the subject level for the PDT
and found that the mean level was α?. We then used α? to calibrate a DBM for
the EDT, and computed the DBM predicted time series of beliefs for the EDT.
Figure 2.7 shows the DBM theoretical predictions plotted against the actual average
beliefs from the EDT. The two time series exhibit a strong positive correlation
(r (400) = .66, p < 0.001).8 Moreover, the mean level of α from the EDT is 0.46
- almost identical to the mean level of α from the PDT of 0.44. Figure 2.8 shows
the sum of squared errors from the EDT estimation as a function of α, and indicates
that the global minimum is indeed at 0.44.

To provide a more formal statistical analysis of this result, we ran an OLS regression,
where the dependent variable is subject i’s response on trial t in the EDT. In column
(1) of table 2.2, we specify a model with a single independent variable (and a
constant), defined by the EDT predicted time series calibrated from the average α
of the PDT (this calibrated time series is illustrated by the dark gray time series
in Figure 2.7). Consistent with the result displayed in Figure 2.7, we find that
the average predicted time series is a strong predictor of observed behavior in the
EDT (p < 0.001). In column (2), we also included the individual EDT predicted
time series, calibrated from the individually estimated subject level α’s from the
PDT. The individually calibrated EDT predictions explain additional variation in
observed EDT behavior, even after controlling for the average EDT predicted time
series (p = 0.035). Furthermore, the model that included the individual specific
EDT predictions provided a better fit to the data than the model that only included

8We ran an additional analysis where we first computed the thirty-eight predicted time series for
the EDT using the thirty-eight individually estimated alphas, and then averaged these time series.
This average time series exhibits a 0.686 correlation with the actual average time series from the
EDT, thus serving as a robustness check.
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the average predictions, as indicated by the lower AIC in model (2) compared to that
of model (1).

Figure 2.7: Out of sample DBM-based predictions of the average EDT beliefs. The
predictions are calibrated from the PDT priors. A DBMmodel is estimated for each
subject from the PDT. We then input the stimuli from the EDT into the DBM using
the average α across subjects from the PDT, and generate a time series of theoretical
predictions (red). The empirical average beliefs from the EDT are plotted in blue.
The correlation between the two time series is .66(p < 0.001).

2.4 Discussion
Our experimental results support the hypothesis that belief formation in perceptual
and economic decision-making is governed, at least in part, by a common psycho-
logical mechanism that is rooted in Bayesian models of decision-making (Chater,
Tenenbaum, and Yuille, 2006; Oaksford and Chater, 2009). Intriguingly, the use of
the DBM as a computational strategy in the PDT is sub-optimal, because subjects
are explicitly told the data generating process, and hence there is no reason to learn
the underlying model parameters. When viewed separately, the results from the
PDT and EDT are successful replications of several studies that have employed
similar tasks, as RTs and error rates in the PDT and subjective beliefs in the EDT
are heavily dependent on recent stimulus history (Bloomfield and Hales, 2002; Cho
et al., 2002; Huettel, Mack, and McCarthy, 2002; Asparouhova, Hertzel, and Lem-
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Figure 2.8: The sum of square errors of the DBM prediction for the average reported
beliefs in the EDT, as a function of parameter α. The mean parameter found in the
PDT, α∗, is marked by the dashed line.

Table 2.2: Individual differences in PDT predict behavior in EDT. The dependent
variable is subject i’s response on trial t of the EDT. “Average prediction” is the
model prediction using the mean α from the PDT. “Individual prediction” is the
model prediction using individual estimates of α from the PDT. Standard errors are
in parentheses and are clustered by subject.

Dependent variable: Beliefs (EDT)
Average prediction 1.06∗∗∗ 0.900∗∗∗

(0.142) (0.145)

Individual prediction 0.333∗
(0.152)

Constant −0.005 −0.130
(0.073) (0.089)

Observations 15, 200 15, 200
AIC 791 747
R2 0.080 0.083

Note: ∗p < 0.1 ∗∗p < 0.05 ∗∗∗p < 0.01

mon, 2009). However, by employing a within-subject design, we were also able to
compare the computational processes underlying belief formation across the tasks.
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Because subjects were explicitly told that the probability of seeing a square on each
trial in the PDT was 0.5, an optimal Bayesian agent using the DBM would set α
equal to zero (i.e., the autocorrelation parameter would change with 0 probability
on each trial). Instead, we found the average level of α in our subject pool was
0.44. This suggests that subjects may have a strong prior on a non-stationary model
of the world, and they have difficulty adjusting their belief formation mechanism
in the face of explicit information that would increase earnings (Yu and Cohen,
2009). Moreover, the average value of α in the EDT was 0.46, nearly identical to
the parameter’s average value in the PDT (see Figure 2.8). This similarity in α rules
out the possibility that working memory constraints are responsible for subjects’
strong reliance on recent stimulus history; because we display the previous fourteen
stimuli in the EDT and we display no previous stimuli in the PDT, we would expect
differences in average α if behavior was driven by working memory constraints, but
we do not find this. Moreover, the fact that individual differences in α from the PDT
(in which no historical data is available at the time of decision-making) can explain
behavior in the EDT also casts doubt on the working memory hypothesis.

It is important to highlight that the combination of the DDM with the DBM is just
one of many models that can be used to explain sequential effects in perceptual
decision-making at long RSIs. For example, another candidate model is proposed
byGao et al., 2009 and allows for a unified explanation of both within and across trial
dynamics over a broad range of RSIs. While thismodel surely provides a generalized
and detailed account of the sequential effects in our data, we choose tomodel our data
with a joint DBM-DDM because the DBM is a portable model that can be applied
directly to many other settings, including the EDT. As the core question in our study
is concerned with the relationship between belief formation across domains, the
ability to use the same single parameter model across separate tasks is especially
useful. Moreover, the DDM is increasingly being used tomodel economic decisions,
and we therefore believe it is valuable to use a model that has been shown to explain
data well in both perceptual and tasks (Fehr and Rangel, 2011). Furthermore, the
key feature of the DBM that enables it to flexibly explain sequential effects is the
assumption that the autocorrelation parameter is perceived to be time varying, and
that subjects use Bayesian inference to update their estimate of this parameter. While
it may be difficult for subjects to implement these precise Bayesian computations, it
has been shown theoretically that the DBM is well approximated by an exponential
filter (Yu and Cohen, 2009), which has received empirical support both at the
behavioral and neurophysiological levels (Sugrue, Corrado, and Newsome, 2004).
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This property is especially relevant to the current study because recent theories
of belief formation in economics and finance explicitly use this exponential decay
property (Camerer and Hua Ho, 1999; Malmendier and Nagel, 2009; Malmendier
and Nagel, 2015; Barberis, Greenwood, et al., 2015).

At a methodological level, one contribution of our study is to provide the analytical
framework that enabled us to measure the trial-by-trial subjective beliefs in the
PDT. In particular, we develop a new methodology that can be used in future
work on perceptual decisions to elicit prior probabilities. While most previous
DDM research has focused on estimating computational parameters as a function
of experimental conditions, we instead use the estimated computational parameters
to reverse-engineer the belief formation process. While response time and accuracy
data have been used for decades to infer mental representations of the environment
(Luce, 1986; Achtziger andAlós-Ferrer, 2013; Jones et al., 2013), our study provides
the extra structure necessary to map RTs into exact probabilities, thus providing a
common framework for studying beliefs in perceptual and economic decisions.

One potential concern about our experimental design is that the EDT and PDT are
not substantially different from each other. Indeed, the stimuli in both the EDT
and PDT are binary processes and both tasks require making judgments about the
underlying state of the world. However, the tasks do differ on three fundamental
dimensions. First, in the EDT subjects are asked to make judgments about the
likelihood of a future event (a firm’s performance) whereas in the PDT subjects are
asked to make fast motor responses about the identity of the currently displayed
stimulus. In other words, the subjects in the EDT rely on cognitive resources to
predict the future whereas in the PDT they rely on perceptual resources to classify
the present state of the world. Another major difference between the two tasks is the
information that is given to subjects about the underlying data generating process.
In the PDT subjects are explicitly informed that the probability of observing each
stimuli is 0.5, whereas subjects are not told anything about the process governing
the stimuli in the EDT. Finally, the tasks differ with respect to the information that
is available to subjects about the stimulus history. In the EDT, subjects are given
access on-screen to a history of the previous fourteen stimuli; in the PDT, only the
current stimulus is displayed.

One could also argue that because of these different aspects across the two tasks, the
individual differences in behavior that we document may be driven by two distinct
mechanisms. Perhaps the strongest alternative hypothesis is that the sequential



38

effects we observe in the PDT are not driven by expectation formation, but are
instead driven by post-response residual activity of the motor cortex. This type
of effect has indeed been documented in the sequential effects literature, but it is
most prevalent in tasks that features RSIs that are no longer than 250 milliseconds
(Soetens, Boer, and Hueting, 1985). Because the goal of this study is to examine
expectation formation explicitly, we designed the PDT with a long RSI of 800
milliseconds, for which expectation formation effects have been shown to dominate
lower level AF effects that are driven by post-response residual activity (Gao et
al., 2009). Our results also relate to the literature on belief-based decision biases
in judgment and decision-making and behavioral economics. Numerous studies
have documented that after seeing a sequence of identical stimuli (e.g. successful
basketball shots or positive stock returns), humans have a tendency to extrapolate the
past and believe that the streak will continue (Gilovich, Vallone, and Tversky, 1985;
Greenwood and Shleifer, 2014). The origin of these extrapolative beliefs – also
known as the “hot hand fallacy” – is still not completely understood, and multiple
models have been proposed to explain it and its implications for financial markets
(Rabin, 2000; Massey andWu, 2005; Oskarsson et al., 2009; Asparouhova, Hertzel,
and Lemmon, 2009; Barberis, Shleifer, and Vishny, 1998; Miller and Sanjurjo,
2014).9

Because of the common computational processes and the similar belief in continuing
streaks across the two tasks, our results suggest that the extrapolative beliefs in
economic decision-making may stem from low-level perceptual processes instead
of deliberative analytical judgments. One possible interpretation is that the inability
to maintain a constant initial point across trials in the PDT is driven by the fact that it
is optimal to flexibly change the initial point from decision to decision in many other
environments. This inability tomaintain a constant initial pointmay then be inherited
by the belief-formation mechanism deployed in economic decision-making, though
we emphasize this is just a conjecture. Because subjects are explicitly told that
the data generating process in the PDT does not contain any predictability, these
perceptual pattern recognition processesmay be difficult to suppress. Understanding
whether extrapolative beliefs, and judgment biases in general, arise from deliberate

9While we focus on the tendency of humans to believe that a streak of identical stimuli will
continue, there are also situations in which humans believe the streak will reverse, also known as the
“gambler’s fallacy.” While the two effects may seem opposite of one another, theoretical work has
shown that the gambler’s fallacy can endogenously generate the hot hand fallacy through a reliance
on the “law of small numbers” (Rabin, 2000). For a recent overview of both effects, see (Plonsky,
K. Teodorescu, and Erev, 2015).
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analytical processes or from bottom-up perceptual processes is important because
the distinction has implications for policy-makers. If some biases are driven by
low level processes, as our data suggests, then a policy that mandates additional
information disclosure may not be effective at impacting decision-making (Brav
and Heaton, 2002). While we examine only one specific decision bias in this study,
future work may benefit from linking perceptual and economic decision-making
via computational models to better understand the origins of other well-known
behavioral biases (Tsetsos, Chater, and Usher, 2012).
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APPENDIX

2.A Data preprocessing and order of experimental tasks
Preprocessing of reaction time data.
The PDT consisted of 4 blocks of 300 trials each. RTs and error rates systematically
increased over the course of each block, likely due to subjects’ fatigue (See Figures
2.9 and 2.10). To control for this, we removed a linear time trend, within each block,
for each subject. All results and analyses in the text use this de-trended RT data and
are robust to exclusion of the de-trending step.

Figure 2.9: Average reaction times across subjects and across four blocks of trials
(each data point is the average of four blocks across all subjects).

On the ordering of the tasks in the experimental session.
In our within-subjects design, the ordering of the tasks was not randomized and
the PDT always took place first. We began the experiment with the PDT for all
subjects because during pilot testing we observed a sharp fatigue effect in subjects’
response times in this task (see Figures 2.9-2.11). We were therefore concerned
that this fatigue effect would vary between subjects if the PDT was administered



41

Figure 2.10: Average reaction times across subjects for each of the four blocks of
trials (grouped by trials of 10).

Figure 2.11: Average rate of correct responses across subjects for each of the four
blocks of trials (grouped by trials of 10).

later in the session for a subset of subjects. Furthermore, because subjects in the
PDT were explicitly informed that the probability of seeing either shape was 0.5,
we believe that any possible spillover effects between the two tasks should bias us
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against finding the extrapolation effect observed in the EDT (where subjects were
not explicitly informed about the underlying random process).

2.B Robustness checks and extended statistical tests
The tables below summarize mixed model regressions estimating the effects of
streak length on response times and error rates (PDT) and subjective beliefs (EDT).

Table 2.3: Mixed model linear regression (subject random intercepts and slopes),
PDT response times (correct)

Dependent variable:
Adjusted RT (Correct trials)

Streak Length 0.002∗∗∗
(0.001)

Continuation 0.020∗∗∗
(0.004)

Streak Length x Continuation −0.015∗∗∗
(0.001)

Constant 0.394∗∗∗
(0.008)

Observations 42, 476
Log likelihood 36, 134.610
AIC −72, 663.220

Note: ∗p < 0.1 ∗∗p < 0.05 ∗∗∗p < 0.01
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Table 2.4: Mixed model logistic regression (subject random intercepts and slopes),
PDT accuracy

Dependent variable:
Correct = 1

Streak Length −0.136∗∗∗
(0.028)

Continuation −1.129∗∗∗
(0.103)

Streak Length x Continuation 0.642∗∗∗
(0.042)

Constant 3.240∗∗∗
(0.100)

Observations 44, 992
Log likelihood −9, 327.701
AIC 18, 677.400

Note: ∗p < 0.1 ∗∗p < 0.05 ∗∗∗p < 0.01

Table 2.5: Mixed model linear regression (subject random intercepts and slopes),
PDT response times (incorrect)

Dependent variable:
Adjusted RT (Incorrect trials)

Streak Length −0.001∗∗∗
(0.006)

Continuation −0.037∗∗∗
(0.020)

Streak Length x Continuation 0.011∗∗∗
(0.010)

Constant 0.394∗∗∗
(0.021)

Observations 2, 516
Log likelihood −274.151
AIC 572.303

Note: ∗p < 0.1 ∗∗p < 0.05 ∗∗∗p < 0.01
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Table 2.6: Mixed model linear regression (subject random intercepts and slopes),
EDT beliefs

Dependent variable:
Beliefs (continuation)

Streak Length 4.463∗∗∗
(0.586)

Constant 48.613∗∗∗
(0.669)

Observations 15, 580
Log likelihood −71, 203.040
AIC 142, 420.100

Note: ∗p < 0.1 ∗∗p < 0.05 ∗∗∗p < 0.01
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2.C Derivation of prior decoding technique
The equation that we use to derive the prior probability from the DDM parameters is
based on the basic DDM, but it can be extended to the full DDM in a straightforward
manner by integrating the original equation against the across trial variability pa-
rameters. In particular, we start from equation (A3) from Ratcliff and Smith, 2004,
which provides the probability of hitting the upper boundary in the basic DDM. In
our setting, this corresponds to the probability of making the “correct” response:

qbasic(c, a, b, M, s) =
e
−2Mc

s2 − e
−2Mb

s2

e
−2Ma

s2 − e
−2Mb

s2
. (2.8)

In this expression, c represents the initial point which always lies between the lower
boundary, b, and the upper boundary, a. The prior probability of choosing the
correct response can be computed by assuming that the drift rate, M, tends to 0.
In this case, the stimulus contains no decision-relevant information, and therefore
the probability of responding correctly is a function of the prior probability and
the noise alone. Calculating the limit as the drift rate approaches zero by applying
L’Hopital’s rule, we find that,

lim
M→0

qbasic(c, a, b, M, s) =
c − b
a − b

. (2.9)

Using this result, we can then compute the prior probability of hitting the upper
boundary for the extended DDM by integrating qbasic(c, a, b, M, s) against the
across trial variability parameters, and then allowing M to get arbitrarily small. In
particular, the probability of crossing the upper boundary under the extended DDM
is:

qadvanced (c, a, b, M, s) =$
qbasic(c, a, b, M, s) f (c)g(M)h(T )dcdMdT,

(2.10)

where f , g, and h represent the probability density functions of the initial point, drift
rate, and non-decision time, respectively. To compute the prior probability, we take
the limit as the drift rate goes to 0.



46

lim
M→0

qadvanced (c, a, b, M, s) =

lim
M→0

$
qbasic(c, a, b, M, s) f (c)g(M)h(T )dcdMdT =

lim
M→0

$
c − b
a − b

f (c)g(M)h(T )dcdMdT =

lim
M→0

ˆ
c − b
a − b

f (c)dc =

c − b
a − b

.

(2.11)

The second equality is justified by the Dominated Convergence Theorem, which
allows us interchange the order of the limit and the integration. The fifth equality
is based on the facts that c is uniformly distributed and the integrand (c−b)

(a−b) , is linear
in c. Finally, for the case at hand, since we set the lower boundary b to zero, the
prior probability of reaching the upper boundary under the extended DDM is given
by c

a . Figure 2.12 provides results from simulations for three different levels of c
a ,

and shows that the probability of choosing the correct alternative does converge to
c
a as the drift rate approaches zero.

2.D Instructions
Thank you for participating in this experiment. For your participation you have
already made $5. During the rest of the experiment you have the chance to make
more money. Your final payoff for participating depends on your decisions in Parts
I, II.

Part I:
In this part of the task, you will see a sequence of shapes; each element of the
sequence will be displayed one at a time. There are only two possible shapes: a
white circle and a white square. Your task is to accurately classify which shape is
currently being presented, as quickly as possible. If you see the circle, press the
right arrow button, and if you see the square, press the left arrow button. The trials
will be broken up into 4 separate blocks of 300 trials; after each block, you will have
a 20 second break. Please use only one hand to enter both buttons.
For every shape you correctly classify, you will be paid 1 cent. If you classify all
the shapes correctly, you will make 1200*0.01=$12.00. However, for every 0.05
second it takes you to respond, you will lose 0.1 cents. (you will have a maximum
of 2 seconds/trial to respond). Therefore, to make the most money possible, you
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Figure 2.12: Simulations of choosing the “correct” alternative as a function of the
drift rate. For a given level of within trial noise, as the drift rate tends to zero, the
probability of choosing the correct alternative converges to c

a . Three different levels
of c

a are shown: 0.5, 0.75, and 0.83.

should answer as quickly and as accurately as you can.
In each trial, the chance that you will see a circle is 1

2 , and the chance that you will
see a square is 1

2 . Shapes on previous trials have no influence on the shape in the
current trials; in other words the shape you see on the current trial is completely
independent of all other shapes you’ve already seen. Before the real task starts, you
will start with 5 practice trials.

Part II (instructions were given only after part I was completed)
We have studied large numbers of publicly traded companies, and constructed
models of their performance patterns. Using these models, we created sequences to
represent patterns of “surprises” (actual performanceminus predicted performance).
An upward movement indicates a “positive surprise,” which results when the firm
performs better than expected, and a downward movement indicates a “negative
surprise” when the firm performs worse than expected.
In this task, you will see a sequence of 400 performance surprises from a typical
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company, and your job is to estimate whether the next performance surprise will
be positive or negative. For each of the 400 periods, you will see the performance
surprises of the last 14 periods on the screen.
In each period, you will be asked to give a price at which you would be willing to
buy a share of stock in this company. If you buy the stock and see a positive surprise,
the stock will pay you $100. If you buy the stock and see a negative surprise, the
stock will pay you $0. The important thing to understand is the following: the price
you are willing to pay will, in general, not be the price you actually pay for the stock.
Instead, the actual price of the stock will be drawn randomly between $0 and $100.
If your willingness to pay is above this random price, you will pay the random price
and receive a share of the company. If your willingness to pay is below the random
price, you do not buy the share of the company. In order to make the most money
under this rule, the best thing for you to do is set the price equal to probability you
think there will be a positive surprise.

Examples
1. Suppose you believe that there will be a positive earnings surprise with 75%
chance. You should then be willing to pay exactly $75 for this share; if the actual
price is $50, then you will pay $50 for something that has a 75% chance of winning
$100 which on average, will make you money. If instead the random price drawn
was $90, the rule says that you will not buy this stock since $75<$90. This is good
because you avoid paying $90 for something that has only a 75% chance of paying
you $100.

2. Suppose you are certain (a 100% chance) that there will be positive perfor-
mance surprise. Then you would be willing to pay any price between $0-$100 to
buy this stock. The only way to guarantee that you buy this stock is to set your price
exactly equal to $100. If you made a mistake and set the price of the stock to $90,
then if the random price drawn is $92, you would not be able to buy the $92 stock,
which has a 100% chance to pay $100.

3. Suppose you are certain that there will be negative performance surprise (0%
chance of a positive surprise). Then you are not willing to pay any price to buy this
stock. The only way to guarantee that you don’t end up paying something for this
stock is to set your price exactly equal to $0. If instead, you made a mistake and
entered $10, then if the actual price drawn was $8, you would end up paying $8 for
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a stock that has 0% chance of paying you.
In each period, you will be given $100 in experimental currency to buy a share of
the stock. Since the maximum price you would ever pay for a share is $100, you
will always have enough cash to buy a share of this stock, since you receive a new
$100 endowment each period. Your payoff in each period will depend on the three
things: your willingness to pay, the actual price, and whether there was a positive
or negative surprise. To illustrate your payoffs consider the two scenarios.
If you believe there will be a positive surprise for sure, and your willingness to pay
is $100, and the actual price drawn is $0, and there is actually a positive surprise,
then you will end the period with $100 – $0 + $100= $200. That is, you will end the
period with the $100 you started with, you don’t pay any cost since the price was
$0, and you earn $100 for buying the stock and having a positive earning surprise.
If you believe there will be a positive surprise with 60% chance, the actual price
drawn is $30, and there is a positive surprise, then your total earnings this period
will be $100-$30+$100=$170.
Your final earnings will be the sum of each of your individual period earnings, di-
vided by 5,000. It is important to emphasize once more: the only way to maximize
your final earnings is to enter your willingness to pay equal to the probability you
think there will be a positive surprise.
After every 50 trials, you will see your accumulated payoff, and will be allowed to
take a short break. Before the real task starts, you will start with 5 practice trials.
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C h a p t e r 3

TESTOSTERONE IMPAIRS COGNITIVE REFLECTION IN MEN
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ABSTRACT

The sex steroid testosterone regulates instinctive behaviors such as fighting and mat-
ing in non-humans. Correlational studies have linked testosterone with aggression
and disorders associated with poor impulse control, but corresponding mechanisms
are poorly understood and there is no evidence of causality. Building on a dual-
process framework, we identified a mechanism for testosterone’s behavioral effects
in humans: reducing cognitive reflection. In the largest testosterone administra-
tion study to date, 243 men received either testosterone or placebo and took the
Cognitive Reflection Test (CRT) that estimated their capacity to override incorrect
intuitive judgments with deliberate correct responses. testosterone administration
reduced CRT scores. The effect was robust to controlling for age, mood, math skills,
treatment expectancy and 14 other hormones. The effects were enhanced in subjects
with high cortisol and estradiol levels. Our findings suggest a unified mechanism
underlying testosterone’s varied behavioral effects in humans and provide novel,
clear and testable predictions.
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3.1 Introduction
The androgenic hormone testosterone (abbreviated “T”) is produced in the male
testes and in smaller quantities in female ovaries. T affects physiology, brain
development, and behavior throughout life. T is released into the bloodstream and
in the brain in response to external stimuli, such as the presence of an attractive
mate or winning a competition, modulating physiological and cognitive processes
in a context-sensitive manner (Mazur, 2005; Archer, 2006; Ronay and Hippel,
2010; Eisenegger, Haushofer, and Fehr, 2011). In many non-human species, T
levels rise amid breeding season and facilitate instinctive behaviors such as intra-
male fighting and mating (Edwards, 1969; Wingfield et al., 1990; Mazur, 2005;
Archer, 2006). Laboratory studies have further shown that T administration causally
induces aggression, mating, and behavioral disinhibition in rodents (Edwards, 1969;
Wingfield et al., 1990; Bing et al., 1998; Archer, 2006).

A largely open question is how T affects human cognition and decision-making
across the lifespan. T affects neurotransmitter and receptor production, as well as
long- and shot-term changes in synaptic configuration, that might be involved in
aging-related cognitive change (J. S. Janowsky, 2006). Studies in younger popula-
tions found correlations between endogenous T and physical aggression, sensation
seeking and impulse control disorders such as drug abuse, bulimia, and borderline
personality disorder (Daitzman and Zuckerman, 1980; Dabbs et al., 1995; Cotrufo
et al., 2000; Martin et al., 2002; J. Janowsky, 2006; Reynolds et al., 2007; Campbell
et al., 2010). Moreover, prefrontal brain regions involved in impulse control contain
androgen receptors (Finley and Kritzer, 1999) and an imaging study showed that de-
creased prefrontal activity mediated the correlation of endogenous T with rejections
of unfair ultimatum bargaining offers (Mehta and Beer, 2010), a behavior that can
be interpreted as impulsive based on other behavioral studies (Grimm and Mengel,
2011). To date, all the evidence for T’s influence on impulse control in humans is
solely correlational. Due to the bi-directional influences between hormone levels
and organisms’ environment and behavior, cause and effect is conflated in correla-
tional studies. Therefore, we test whether T causally influences impulsive cognition
in humans through a randomized, placebo-controlled exogenous pharmacological
manipulation.

Our study builds on the dual-process framework (Evans, 2003), according to which
humans employ two types of information processing mechanisms in the course of
decision-making. “System 1” (intuitive) processes occur automatically, rapidly,
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and effortlessly, but might provide sub-optimal responses. “System 2” (deliberate)
processes are relatively slow and computationally demanding, but more likely to
produce optimal responses with greater accuracy. An important function of system
2 is monitoring system 1 responses and overriding them when needed (akin to
‘checking your work’ on an algebra problem). The dual system framework is not
necessarily a reflection of actual algorithmic or neural implementation, and there are
several different theories that might be more neurally plausible, e.g., model based vs.
model free (Gläscher et al., 2010), or goal directed vs. habitual responses (Balleine
and O’Doherty, 2010; Redgrave et al., 2010). Yet, it is a useful abstraction that
provides sharp behavioral predictions in situations where relying on easy to compute
heuristics might lead to sub-optimal outcomes.

Based on T’s well-established role in instinctive behaviors in non-human animals
and the correlational evidence of relation between T and impulsivity in humans, we
propose that T biases human decision-making towards rapid, instinctive system 1
responses. We tested this hypothesis by randomly administering a single dose of
either T or placebo to a sample of 243males andmeasuring the treatment’s influence
on performance in the Cognitive Reflection Test (CRT, Frederick, 2005). The CRT
is a widely used 3-item questionnaire that assesses one’s capacity to monitor his or
her intuitive judgments and override them when appropriate. CRT scores predict
diverse behavioral outcomes, including preference of immediate gratification over
greater delayed rewards and display of various decision-making biases such as the
conjunction fallacy (Toplak, West, and Stanovich, 2011).

Here is an illustrative CRT question:

A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. How
much does the ball cost? When faced with this question, an immediate incorrect
answer (10 cents) automatically arises in most people’s minds. Obtaining the correct
answer (5 cents) requires actively checking the validity of the intuitive answer and
engaging in deliberate, yet easy to perform arithmetic calculations (i.e., checking
that the bat – ball difference is not $1 if the ball costs $.10 and the bat costs $1).
We hypothesized that T administration would increase subjects’ tendency to rely on
their intuitive incorrect judgments, and therefore impair the CRT performance of
subjects who received T relative to those who received a placebo. To rule out various
confounding factors, namely T’s potential influences on engagement, motivation or
arithmetic skills, subjects also took part in an additional math task as a control.
Subjects also provided pre- and post-treatment saliva samples that were assayed by
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liquid chromatography tandem mass spectrometry (LC-MS/MS) as manipulation
checks and to control for levels of other hormones that might influence the task
(e.g., cortisol), Margittai et al., 2016.

3.2 Methods
Subjects
Two hundred and forty three males (mostly college students, see Table 3.2 for
demographic details) were randomly administered either T (n=125) or placebo
(n=118) topical gel under a double blind between-subjects protocol. Sample size
was chosen to be as large as possible given the study’s budget constraints, making it
the largest T administration experiment conducted to date. The institutional review
boards of Caltech and Claremont University approved the study, and all subjects
gave informed consent.

Procedure
The timeline of our experimental procedure is illustrated in Figure 3.1. Subjects
first arrived at the lab at 9:00am in the morning of their experimental session. They
signed an informed consent form and proceeded to a designated room where their
hands were scanned, to obtain digit ratio measurement - a possible proxy of prenatal
T that was previously associated with the dependent variable (Bosch-Domenech,
Branas-Garza, and Espin, 2014). Then, subjects were randomly assigned to private
cubicles where they completed demographic and mood questionnaires and provided
an initial baseline saliva sample. Afterwards, subjects proceeded to a designated
room forT or placebo gel application. All subjects returned to the lab at 2:00pm (with
no incidents of lateness), provided a second saliva sample and began the behavioral
experiment at the same cubicle they were assigned in the morning session. The time
frame between gel application and behavioral experiment was chosen so that tasks
took place when the T group subjects experienced elevated and stable blood T levels
following drug administration (Eisenegger, Eckardstein, et al., 2013).

The experiment consisted of a battery of seven behavioral tasks; none included
feedback about the subjects’ monetary payoffs (to avoid endogenous changes in
T from changes in payoff). Only the final task included feedback regarding the
subjects’ performance relative to other participants (also to avoid outcome-related
changes in T). The rationale for conducting a battery of tasks (compared to a
single experiment) is maximizing the knowledge gained from each human subject
undergoing a pharmacological manipulation, a practice which is standard (Zethraeus
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et al., 2009; Kocoska-Maras et al., 2011) and looked favorably upon by Institutional
Review Boards. Accordingly, we ensured that statistical tests for the CRT task alone
survived correction for multiple comparisons (choosing only CRT out of the seven
tasks for analysis) to avoid increased type-I error rate from multiple comparisons.

To maintain high-resolution monitoring of hormonal changes during the experi-
ment and control for their influences, a total of four saliva samples were collected
throughout the experiment (further details of collection frequency and time below).
The accuracy and consistency of sampling times is crucial because the measured
hormones have unique diurnal cycles which complicates comparing samples taken
at different times of day. In order to standardize hormonal measurements among
all subjects, we did not randomize the order of the behavioral tasks, in a similar
fashion to previous studies (Zethraeus et al., 2009; Kocoska-Maras et al., 2011).
The behavioral battery lasted approximately two hours. Both of the behavioral tasks
reported here were computerized and occurred in the first hour of the experiment,
between the second and third saliva samples. Following the experiment, subjects
completed an exit survey, where they indicated their expectancies about which of
the two treatments they had received, and then were privately paid in cash according
to their performance.

Treatment administration
Participants were escorted in groups of 2-6 to a semi-private room where a research
assistant provided a small plastic cup containing clear gel and stated it was equally
likely to containTor placebo (the cupswere filled in advance by the labmanager, who
did not interact with subjects and did not reveal the contents of the cup to the research
assistant, so that the treatment was double-blind between assistant and subject).
These cups contained either 10g of topical T 1% (2 x 50 mg packets Vogelxo®
by Upsher-Smith) or volume equivalent of an inert placebo of similar texture and
viscosity (80% alcogel, 20% Versagel®). We chose to administer T using topical
gel, as this is the only T administration method for which the pharmacokinetics of
a single dose administration (i.e., time-course of post-treatment T levels change)
has been investigated in healthy young men (Eisenegger, Eckardstein, et al., 2013).
The single-dose study demonstrated that plasma T levels peaked 3 hours following
exogenous topical administration, and that T measurements stabilized at high levels
during the time window between 4 and 7 hours following administration. Therefore
we had all subjects return to the lab 4.5 hours after receiving gel, when androgen
levels were higher and stable.
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Figure 3.1: Experiment timeline and salivary testosterone levels. Subjects arrived at
the lab at 9 am, had their hands scanned, filled an intake survey, and gave a baseline
saliva sample “A” before application of either testosterone or placebo topical gel.
After a four-hour loading period, subjects came back to the lab and took part in a
battery of behavioral tasks. Three additional saliva samples (“B”, “C” and “D”)
were collected during the experiment, all of which indicated elevated T levels in the
treatment group compared to placebo. The CRT and math tasks took place between
saliva sample B and C.

Subjects were instructed to remove upper body clothing and apply the entire contents
of the gel container to their shoulders, upper arms, and chest as demonstrated by
the research assistant. During application they were told to wait until the gel fully
dried before putting clothes back on, refrain from bathing, or any activity that might
cause excessive perspiration before the afternoon session, finish eating no later than
1:00pm, and return to the lab promptly at 1:55pm. After self-administering the
gel under the supervision of the research assistant, participants were instructed to
thoroughly wash their hands with warm water and soap, avoid touching any part of
their body before thorough washing, and abstain from all skin-to-skin contact with
females, as recommended by the gel manufacturers. All surfaces in the administra-
tion room were covered with medical grade isolation sheets and surfaces in the gel
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application area were cleaned with alcohol swabs after each experimental session.
The adjacent bathroom where the sink was located was also thoroughly wiped, as
were doorknobs and handles.

Measures
Saliva sampling

Each subject provided four saliva samples at predetermined sampling times through-
out the study: (1) Before treatment administration (all samples took place between
9:25 and 9:34 am) (2) upon return to the lab, just prior to starting the behavioral
tasks (all samples took place between 1:55 and 2:15 pm); (3) in the middle of the
behavioral tasks battery (between 3:02 and 3:38 pm) (4) a final sample following
the one and only task involving performance feedback at the end of the experiment
(between 4:10 and 4:44 pm). We chose to use saliva samples to avoid potential
stress that might be induced by multiple blood draws throughout the experimental
session. Each saliva sample was time stamped. No food or drinks were allowed into
the laboratory, and the only water given to the participants was after their 3rd saliva
draw (an hour before the 4th and final saliva draw).

Hormonal assays

Salivary steroids (estrone, estradiol, estriol, testosterone, androstenedione, DHEA,
5-alpha DHT, progesterone, 17OH-progesterone, 11-deoxycortisol, cortisol, corti-
sone, and corticosterone) were measured by LC-MS/MS using an AB Sciex Triple
Quad 5500. Further details about the assay procedure are available in the appendix.
A series of one-sample Kolmogorov-Smirnov tests for conformity to Gaussian (Ta-
ble 3.3 in the appendix) indicated that all hormonal measurement distributions
were better approximated by a Gaussian following a log-transformation, as indi-
cated by higher p-values (i.e., the Gaussian normality hypotheses were less likely
to be rejected after log-transformations). Thus, all hormonal measurements were
log-transformed prior to data analysis in order to make their distributions closer to
Gaussian.

Mood questionnaire
Subjects completed the PANAS-X scale (Watson and Clark, 1999), both pre-
treatment (in the morning) and post-treatment (in the afternoon). Three subjects did
not answer all of the negative affect items in their questionnaires, and five subjects
did not complete all of the positive affect items; these subjects were excluded from
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analyses that include these scales as control variables.

Digit ratio measurement

The ratio of second (index) finger length to fourth (ring) finger (abbreviated 2D:4D)
is considered a proxy for pre-natal T exposure, and a previous study suggested that
the measure correlates with CRT performance (Bosch-Domenech, Branas-Garza,
and Espin, 2014). Subjects’ 2D:4D ratios were measured by two independent raters
using hand scans and digital calipers (correlation between the two raters was .95).
The right hand digit ratio was not calculated for one subject due to a broken finger,
and therefore he was excluded from all analyses that use the right hand digit ratio
as control. Correlation between the digit ratios of the left and right hands was 0.64,
p=0.0001. Regression models (tables 3.6, 3.7, 3.8) are reported using the right hand
measurements. All of the results hold when replacing the right hand 2D:4D by
either the left hand digit ratio or the averaged digit ratio of both hands.

Cognitive reflection test (CRT)

The CRT is designed to assess a specific cognitive function: the ability to suppress
an intuitive and spontaneous ("system 1") incorrect answer in favor of a reflective
and deliberative ("system 2") correct answer.

The test consists of the following three questions:

1. A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. How
much does the ball cost?

2. If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100
machines to make 100 widgets?

3. In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it
takes 48 days for the patch to cover the entire lake, how long would it take for the
patch to cover half of the lake?

Participants solved the CRTwithout time pressure, and were told they would be paid
$1 for each correct answer and an additional bonus of $2 if they correctly solved all
three questions. Thus, they could have earned as much as $5 in just a few minutes
(to put this amount in perspective, the minimumwage in California, which is typical
for student jobs, is $9 / hour). The CRT has never been conducted in this subject
pool, mitigating the concern that subjects were previously exposed to the questions
(Toplak, West, and Stanovich, 2014).
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Math task

Participants completed a math task to control for their arithmetic skills, engagement
levels, attention, andmotivation. They had fiveminutes to correctly add asmany sets
of five two-digit numbers as possible. Subjects could use pen and paper but were not
allowed to use a calculator. The two-digit numbers in each problem were randomly
drawn and presented in the following way on the computer screen (participants
entered their summation of the five numbers in the blank box on the right):

Table 3.1: math task question example.

21 35 48 29 83

Once a participant submitted an answer, a new problem appeared. Participants
received $1 for each correct answer and $0 for an incorrect answer.

Treatment expectancy

One previous study indicated an effect of subjects’ beliefs about the treatment they
had received on behavior (Eisenegger, Naef, et al., 2010). We therefore asked
subjects to indicate their expectancy about whether they had received placebo or T
using a 5-point scale. There were no significant differences between the groups on
this expectancy measure (see Table 3.2). Two subjects did not report their treatment
expectancy and therefore were excluded from all analyses in which this measure was
used as a control.

3.3 Results
We observed elevated levels of T and its metabolites (e.g., dihydrotestosterone) in
the saliva measurements of the T group but not in the placebo group (Figure 3.1).
There were no treatment effects on either mood, treatment expectancy, or levels of
all other measured hormones, ruling out these potential indirect treatment influences
on the task; see appendix for further details.

We tested our hypothesis using linear regression models; full analysis detail and
all models are summarized in the appendix. In line with our main hypothesis, the
T group had significantly lower CRT scores compared to placebo, with 20% fewer
correct answers (β=-0.43, 95% confidence interval (CI)= [-0.72 -0.16], t(241)=-
3.07, p=0.002, Cohen’s d: -0.42, CI = [-0.70 -0.15]; see Figure 3.2a). Moreover,
incorrect intuitive answersweremore common, and correct answers less common, in
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the T group for each of the three CRT questions analyzed separately (see Figure 3.2c-
e and appendix). Subjects who received T also gave incorrect answers more quickly,
and correct answers more slowly, than subjects who received placebo (Appendix
Table 3.11). These differences are consistent with T-induced bias toward system 1
intuitions and a degradation of system 2 processing speed. The negative influence
of T administration on the CRT was stronger in subjects with either high cortisol or
estradiol saliva levels (see Table 3.10). Previous research had suggested that these
hormones moderate the behavioral influence of T (for reviews, see Liening and
Josephs, 2010; Mehta, Mor, et al., 2015). More specifically, studies reported that
T’s influences on cognition (J. S. Janowsky, 2006) and aggression (Trainor, Kyomen,
and Marler, 2006) are mediated by properly aromatized estradiol. Furthermore, the
interaction between elevated endogenous T and high cortisol levels correlated with
reactive aggression as a response a social provocation in females (Denson, Mehta,
and Tan, 2013) and reduced earnings and increased conflict between financial and
social motives in bargaining among MBA students (Mehta and Prasad, 2015).

Several factors other than reduced cognitive reflection might have lowered CRT
scores following T treatment: it is possible that T affected participants’ engagement,
motivation or arithmetic skills. To control for these potential influences, subjects
performed a separate arithmetic task of adding sequences of five two-digit numbers
under time pressure (5 minutes) with the incentive of $1 for each correct answer.
While arithmetic scores explained much of the between-subjects variance in CRT
scores (β=0.08, CI= [0.04 0.11], t(240)=4.69, p<0.001), they were unaffected by
T administration (β=0.04, CI= [-1.01 1.08], t(241)=0.07, p=0.94, Cohen’s d: 0.01,
CI = [-0.25 0.26]). Crucially, the effect of T on CRT scores remained highly
significant after controlling for arithmetic performance, age, treatment expectancy,
affective state, 2D:4D digit ratio (a potential proxy for pre-natal T exposure that
has been previously associated with CRT performance (Bosch-Domenech, Branas-
Garza, and Espin, 2014), and the levels of all other measurable hormones that were
not affected by the pharmacological manipulation (Appendix, Table 3.6). Further
analysis corroborated that CRT scores were influenced by levels of T, rather than by
other metabolites that were affected by T treatment (appendix Table 3.7).

3.4 Discussion
Wehave demonstrated a causal effect of T on human cognition and decision-making.
We now relate this effect to previous findings in the literature. First, there is
extensive evidence that T increases instinctive responses with sensitivity to context.



66

Figure 3.2: Testosterone’s influence on CRT and math performance: behavioral
results. (a) Mean CRT scores under placebo and testosterone treatments. (b) Mean
arithmetic scores under placebo and testosterone treatment (c-e) proportions of
answers given to each of the CRT questions separately. The left bar represents the
correct, deliberate answer; the middle bar represents the incorrect intuitive answer;
the right bar represent incorrect answers that are different from the intuitive one.
Error bars denote 95% confidence intervals.

In non-human species, T levels typically rise during breeding season to facilitate
instinctive behaviors such as mating and intra-male aggression (Edwards, 1969;
Wingfield et al., 1990; Mazur, 2005; Archer, 2006; Eisenegger, Haushofer, and
Fehr, 2011). In humans, the analogous effects are release of T and its precursors
during competition, challenge, presence of an attractive mate, and in anticipation
of sexual activity (Mazur, 2005; Archer, 2006; Eisenegger, Haushofer, and Fehr,
2011; Miller and Maner, 2009).

Our result fits the T-initiates-instinctive-behavior neurobiological pathway if one
thinks of intuitive CRT responses as unsuppressed cognitive instincts. In this
account, T’s effect on cognition is an evolutionary vestige (or repurposing) that
blunts more careful deliberation in favor of rough and rapid processing. A second,
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more specific suggestion is that T affects cognition by inducing over-confidence,
which is empirically linked to status enhancement (Von Hippel and Trivers, 2011).
T is clearly associated with aggression and dominance in many non-human species
(Archer, 2006), in whom aggressive behavior is typically the only way to promote
hierarchical status. In humans, however, dominance or status can be established
without physical aggression via displays of resources, talent, and culturally valued
behaviors (Eisenegger, Naef, et al., 2010; Eisenegger, Haushofer, and Fehr, 2011).
In this account, T induces a status-seekingmotivational state that elevates confidence
in the intuitive system 1 response, leading to faster and more frequent commission
of errors.

Collateral support for this hypothesis comes from three sources. Early propositions
and recent experimental studies suggest that judgmental over-confidence enhances
status in long- and short-term groups (Anderson et al., 2012; Burks et al., 2013),
and invoking status motives increases over-confidence (Kennedy, Anderson, and
Moore, 2013). These effects can persist even when confident individuals are shown
to be wrong (Anderson et al., 2012). A large-sample study with truckers showed
that over-confidence about cognitive skill is higher in those who are higher in
“social potency”, an MMPI scale associated with dominance-seeking (Burks et
al., 2013). This evidence suggests a causal pathway in which T increases status-
seeking motivation, which is behaviorally implemented by acting over-confidently
and reducing cognitive reflection. This proposition is further supported by a recent
T administration study, showing that T made females less likely to incorporate the
opinions of others in a cooperative perceptual decision-makingtask (Wright et al.,
2012).

At the population level, many studies indicate that men (who have much higher T
levels than women) are overconfident compared to women about the accuracy of
their judgments and their relative standing on positive traits (Lundeberg, Fox, and
Punćcohaŕ, 1994; Barber and Odean, 2001); these differences are even manifested
in different actions by male and female CEOs (Huang and Kisgen, 2013). Thus,
there appear to be population-wide correlations between T (higher in men) and
overconfidence.

Most speculatively, there is evidence of correlation between T and certain kinds
of financial trading performance that require rapid intuitions. One study found
correlation between endogenous T and daily profit (Coates and Herbert, 2008). A
second study found a correlation between prenatal T, proxied by 2D:4D digit ratios,
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and profitability and longevity of high frequency traders (HFT, Coates, Gurnell, and
Rustichini, 2009). HFT requires rapid processing of visuospatial information to
detect temporary mispricing between markets on the scale of seconds to minutes.
HFT is very likely a domain in which rapid system 1 responses are optimal. Indeed,
the co-existence of systems 1 and 2 strongly suggests that system 1 responses are
not always wrong or suboptimal (keeping in mind that the CRT was specifically
designed to show system 1 flaws). In HFT, traders who deliberate too long will see
the mispricing disappear as faster traders profitably erase it.

The hypothesis that T reduces cognitive reflection to enhance status has many
testable implications. Conditions known to elevate T, such as winning contests and
presence of attractive mates, should reduce cognitive reflection. In tasks where
rapid intuitions are useful (e.g., HFT) increased T will boost performance, and
in tasks where deliberation is needed, T will reduce performance. Finally, our
study has important public health implications. Western society has experienced
an exogenous T ‘shock’ over the past decade from a rapidly growing T replacement
therapy industry, with annual sales estimated at over $2B USD in 2013 (Von Drehle,
2014). Demand for T prescriptions has also become a trend on Wall Street, where
financial professionals have come to believe that high T levels turn them into “alpha
males”, yield greater financial gains, and increase professional status (Wallace,
2012). The possibility that T might have deleterious influences on judgments and
decision-making, should be investigated further and taken into account by users,
therapists, and policy makers.
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APPENDIX

3.A Subjects
There were n=243 male-only participants. Most (217, 89%) were students from a
southern Californian college. Non-student participants were community members
from surrounding cities. n=125 of subjects were randomly assigned to receive a
standard dose of T and n=118 received placebos of matched viscosity in a double
blind exogenous administration paradigm.

Pre-screening criteria excluded everyone with relevant medical and psychological
conditions (5α-reductase deficiency, Klinefelter’s syndrome, brain tumor, cancer,
psychiatric diagnosis/diagnoses, high blood pressure, liver disease, kidney disease,
angina, cancer, hepatitis, renal/kidney impairment, history of epileptic seizures, and
hypersensitivity to soy/ alcohol), subjects using prescription drugs that may interfere
with the study (oxyphenbutazone, insulin, corticosteroids, opioids), subjects who
self reported consuming illegal drugs or excessive alcohol in the last 24 hours, and
non-native English speakers.

Personal, demographic, and treatment expectancy characteristics of the two treat-
ment groups are summarized in Table 3.2 (note that 5 subjects did not report their
age and were therefore excluded from all analyses in which age is used as a control
variable). The right column of Table 3.2 also reports the p-value of two sample t-tests
for differences between T and placebo group characteristics (a check on whether
random assignment resulted in balance on all such variables). Two subjects (one
from each treatment group) self reported taking T treatment on a regular basis; all
analyses include these subjects and are robust to excluding them. In order to reduce
the potential effect of a female experimenter’s presence on T-related behaviors, male
researchers conducted all of the experimental sessions.

3.B Hormonal assay procedure
Salivary steroids (estrone, estradiol, estriol, testosterone, androstenedione, DHEA,
5-α DHT, progesterone, 17OH-progesterone, 11-deoxycortisol, cortisol, cortisone,
and corticosterone) were measured by LC-MS/MS using an AB Sciex Triple Quad
5500. Internal standards were added to 1 ml of saliva and the steroids then extracted
byC18 column chromatographywith 0.1MNH4OHwash followed by 10% acetone.
Steroids were eluted from the SPE with 10% methanol in acetone and dried under
nitrogen. The dried samples were subjected to derivatization—the process of trans-
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Table 3.2: Self-reported demographic data summary (standard errors in parentheses)

forming a compound into a derivative product of similar chemical structure—with
pyridine-3-sulfonyl chloride for the estrogens (estrone (E1), estradiol (E2), and es-
triol (E3)) as outlined by Xi and Spink (2008). 40 µL sodium bicarbonate (50mM,
pH 10) and 40 µL pyridine-3-sulfonyl chloride (3 mg/mL in acetonitrile) were added
to the dried samples, and incubated at 60oC for 10 minutes. After derivatization,
the samples were diluted with 80 µL of water and injected for LC-MS/MS analysis
with analytical separation performed on an Agilent Poroshell 120 EC-C8 column
and ionization by atmospheric pressure chemical ionization (APCI) in the positive
ionization mode.

Table 3.3 lists each analyte along with its validation results for the lower limit of
quantitation (LLOQ is jargon for the lowest level of detection with coefficients
of variation (CVs) < 20% over the linear range), linear range, and the inter-assay
precision from the highest concentration to the LLOQwithin the linear range. When
salivary hormone levels of participants were below their LLOQ, we assigned values
halfway between zero and their respective LLOQ (note that the true quantities of the
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Table 3.3: Detection levels, precision and normality tests of hormonal assays

hormone in the sample are never zero, even when they do not reach the detection
threshold)

3.C Hormonal changes following treatment and manipulation check
As expected, there were significant post-treatment differences between groups with
respect to all hormones influenced by T treatment, either as an upstream (androstene-
dione) or downstream (5-α DHT) metabolite of T (Horton and Tait, 1966). There
was also a decrease in progesterone 170H resulting from an increase in T (which is
common, according to personal communication from ZRT Laboratories chief sci-
entist Dr. David Zava). The changes in saliva T measures were similar in magnitude
to those reported in previous studies following topical gel administration of T and
progesterone (e.g. Mayo et al., 2004; Du et al., 2013).

We observed no significant differences between treatment groups in hormones that
were not expected to change following short-term T treatment (e.g., aldosterone,
cortisol, cortisone, melatonin) in all four saliva measurements throughout the ex-
periment (i.e., the pre-treatment and the three post-treatment measurements). The
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pre-treatment and first post-treatment mean hormonal saliva levels are summarized
in table 3.4; note that differences between morning and afternoon hormonal lev-
els were affected by diurnal cycles in both treatment groups (Nomura et al., 1997;
Hurwitz, Cohen, and Williams, 2004; Hucklebridge et al., 2005). From assays
conducted during the first 13 (out of 17) sessions of the study, we noted that 72 out
of 184 pre-treatment baseline saliva samples (in both treatment groups) presented
measurements with higher T level that are expected in normal young men (greater
than 400 pg/mL). All other measurements (including T metabolites) were hormon-
ally typical. The effects of T on the CRT were robust to excluding the subjects with
abnormal measurements (see below).

We traced the cause of these abnormal measurements to T gel transfer to common
surfaces (e.g., door knobs, mouse pads). Crucially, the high measurements were
caused by local spread of T into saliva tubes, but physiological levels were unaffected
by superficial contact with the dry nuisance T gel, as (a) we observed normal pre-
treatment levels of T metabolites, namely DHT and androstenedione in all subjects;
(b) none of the placebo group participants showed abnormally high values of T
metabolites in any of the post-treatment measurements; (c) only five out of 118
subjects from the placebo group showed consistently elevated T measurements in
all of the three post-treatment saliva samples; (d) previous investigations found that
interpersonal T transfer is highly unlikely even with skin-to-skin contact, (Rolf et
al., 2002). Thus, we found convergent evidence that biofluid levels were unaffected
by superficial contact. This conclusion was supported by ZRT Laboratories chief
scientist Dr. David Zava.

In response to this finding during the course of the experimental period, we identified
all surfaces and objects through which T could spread in the facility and improved
sterile isolation protocol to eliminate the spread of the dried T gel. This protocol
included thorough cleaning of keyboards, computer mice, chair backs, displays,
and all doorknobs with a bleach-alcohol solution after each session as well as
asking subjects to carefully wipe hands with a wet tissue before collecting each
saliva sample. New pens were used for each session while all previously used
pens were removed from the testing area. Clipboards and other miscellaneous
objects that participants did or could interact with were cleaned, and an aerosol "air
sanitizer" that bonds to VOCs (volatile organic compounds) was sprayed into the
air. Following the adoption of this strict sterilization protocol, we found a drastic
reduction in incidence of high T samples in the pre-treatment measurements, to a
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total of five participants out of 58 in the following four sessions (sessions 14-17).

Finally, we conducted additional robustness checks by examining the effects of T
on the CRT when (a) excluding subjects with pre-treatment saliva T of greater than
400 pg/ml from both treatment groups; (b) excluding placebo subjects with post-
treatment saliva T (sample B) greater than 400 pg/ml; (c) excluding all subjects in
either condition (a) or (b); and (d) repeating the analysis with a more conservative
cutoff of 250 pg/ml. We found that the effect of T administration on the CRT was
highly significant (all p’s<0.02) regardless of the exclusion criteria used.

3.D Results
Mood questionnaire
Table 3.5 shows a modest decrease in both affect measures over time (morning vs.
afternoon), and no treatment or time x treatment interaction, indicated by the output
of 2-way analysis of variance (ANOVA) with an interaction term, ruling out this
indirect way in which T might affect cognition and behavior. Three subjects did
not answer all of the negative affect items in their questionnaires, and five subjects
did not complete all of the positive affect items; these subjects were excluded from
analyses that include these scales as control variables.

Cognitive reflection test
CRT scores were comparable to those previously found in equivalent samples
(Brañas-Garza, Kujal, and Lenkei, 2015), although at the high end of the range.
This is likely due to high analytical skill in the sampled college population (con-
ducted in one of the top ranked schools in the US) and the use of monetary incentives
(the task is typically non-incentivized). We tested our main hypothesis by estimat-
ing linear regression models with the three-item total CRT score as the dependent
variable (DV). All of the analyses were conducted using the function ‘lm’ imple-
mented in ‘R’ and the results are summarized in table 3.6. Model A1 included only
treatment (testosterone=1, placebo=0) as an independent variable (IV); Model A2
also included the math task performance. Model A3 also included age, positive and
negative affect (measured using the PANAS-X scale), treatment expectancy and the
right hand digit ratios (the results hold when the left hand or the average between the
two hands are used). Model A4 included all of the IVs of model A3with the addition
of all of the hormonal levels that were not affected by the treatment, as measured
from the first post-treatment saliva sample (i.e., the second overall sample); all of
the results hold when the measurements are replaced with the second post-treatment
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Table 3.4: Hormone panel data measurements log(pg/mL) summary statistics (stan-
dard errors in parentheses)

Table 3.5: Positive and negative affect (PANAS-X) summary statistics
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saliva sample (i.e., the third overall measurement; see table 3.8).

In models (B1-B4), summarized in table 3.7, we repeated the analyses of models
(A1)-(A4), where the binary treatment variable was replaced by the measurements
of the hormones that are affected by the treatment (T, DHT, androstenedione, and
progesterone 170H).

Finally, models (C1-C2) in Table 3.8 replicate the results of models (A4) and (B4)
using the hormonal measurements extracted from the second post-treatment (and
third overall) saliva sample.
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Table 3.6: Linear regression, dependent variable: CRT score. Hormonal measure-
ments are log transformed and taken from the first post-treatment saliva sample.
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Table 3.7: Linear regression, dependent variable: CRT score. Hormonal measure-
ments are log transformed and taken from the first post-treatment saliva sample.



78

Table 3.8: Linear regression, dependent variable: CRT score. Hormonal measure-
ments are log transformed and taken from the second post-treatment saliva sample.
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Table 3.9: CRT score response frequencies and statistics by question

CRT, question level
We further examined the effect of T on each of the three CRT questions separately.
For each question, we classified the responses as either (a) an intuitive incorrect
answer, i.e., 10 cents in the “bat and the ball” question, 100 minutes in the “widgets”
question, 24 in the “lily pads” question; (b) the reflective, correct answer, i.e., 5
cents in the “bat and the ball” question, 5 minutes in the “widgets” question, 47 in
the “lily pads” question; or (c) another incorrect answer, i.e., different than in (a) or
(b).

We estimated two logistic regressions for each question, one that included a binary
DV that was equal “1” for incorrect intuitive answers and the other included a
binary DV that was equal “1” for correct answers. The analyses revealed that the
likelihood of the incorrect intuitive response was significantly greater in the T group
for each one of the three questions and that the proportion of correct answers was
greater in the placebo group for each of the CRT questions in isolation (see Figure
3.1 and Table 3.9). Intriguingly, both of the subjects who self-reported taking T
supplements regularly (one from each group) scored 0 out of 3 in the CRT, and
all of their answers were the incorrect intuitive ones. Although the latter finding
suggests that long term T treatment might have larger effects on CRT performance
compared to a single dose, the small number of such subjects does not allow for
making inferences that can be considered more than anecdotal. Moreover, as the
long-term treatment was not assigned at random, causality cannot be inferred from
these two data points (e.g., it is possible that subjects with low CRT scores are more
likely to use T supplements, rather than vice versa).
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Dual hormone interactions
To formally test whether T’s causal effects on theCRT aremoderated by estradiol and
cortisol, we estimated five additional linear regression models with the CRT score as
the DV, summarized in table 3.10. Model (D1) included T, estradiol and T x estradiol
interaction as DV.Model D2 included the same IVs as model (D1), with the addition
of controls for all of the other hormonal measurements and the other controls used
in the main analysis. Models (D3) and (D4) repeated the analyses of (D1) and (D2),
this time including cortisol and T x cortisol interaction terms. Finally, model (D5)
included both interactions in addition to all other control variables. These analyses
(table 3.10) revealed that the coefficients of T, T x estradiol and T x cortisol were all
negative and reliably different from zero in all of the models. These results imply
that T’s negative effect on the CRT was enhanced in subjects with higher levels of
both estradiol and cortisol. Moreover, themodel that included both interaction terms
(D5) had the highest predictive power compared to all other models, demonstrated
by highest value of adjusted R2.
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Table 3.10: Linear regression with dual hormone interactions. Dependent variable:
CRT score. Hormonal measurements are log transformed and taken from the second
post-treatment saliva sample.
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Response times
The T group responded 6 seconds slower on average when making correct answers
(T: 50.97s, placebo: 44.23s) and 7 second faster on average when providing incor-
rect answers (T: 51.35s, placebo: 58.46s). A Kolmogorov-Smirnov test revealed
that the response times (RT) were highly non-Gaussian (p<10-18). Therefore the
values were log-transformed for normalization purpose before statistical tests (post-
transformation Kolmogorov-Smirnov test, p=0.25). To formally examine the treat-
ment’s effect on RT, we estimated a linear mixed model regression with log(RT) as
the dependent variable (DV), and treatment (binary variable), error indicator (in-
correct=1, correct=0) and the interaction between those binary treatment and error
dummies as independent variables (fixed effects). Random effects of subject and
question number were also included (see table 3.11). The main treatment coefficient
was insignificant, implying that T subjects did not differ in their general response
times relative to placebo. However, the interaction between treatment and incorrect
answers was negative and significant (p=.06). That is, T group subjects adopted
their incorrect intuitions more rapidly when providing incorrect answers in the CRT.
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Table 3.11: Mixed model linear regression. Dependent variable: log(response
times), with subject and question random intercept
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C h a p t e r 4

UNSTRUCTURED BARGAINING WITH PRIVATE
INFORMATION: THEORY AND EXPERIMENT
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ABSTRACT

We study dynamic unstructured bargaining with deadlines and one-sided private
information about the amount available to share (the “pie size"). Using mechanism
design theory, we show that given the players’ incentives, the equilibrium incidence
of bargaining failures (“strikes”) should increase with the pie size, and we derive a
condition under which strikes are efficient. In our setting, no equilibrium satisfies
both equality and efficiency in all pie sizes. We derive two equilibria that resolve
the trade-off between equality and efficiency by either favoring equality or favoring
efficiency. Using a novel experimental paradigm, we confirm that strike incidence
is decreasing in the pie size. Subjects reach equal splits in small pie games (in
which strikes are efficient), while most payoffs are close to either the efficient or
the equal equilibrium prediction when the pie is large. We employ a machine
learning approach to show that bargaining process features recorded early in the
game improve out of sample prediction of disagreements at the deadline. The
process feature predictions are as accurate as predictions from pie sizes only, and
adding process and pie data together improves predictions even more.
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4.1 Introduction
bargaining is everywhere in economic activity: from price haggling in flea markets,
to wage negotiations between unions and firms, to high-stakes diplomacy. Even in
competitive, large-scale markets, sequences of market trades often result from indi-
vidual buyer-seller partners bargaining over a range of mutually-agreeable contract
terms, knowing their outside options from the market. Bargaining failures such
as holdouts and strikes - due to disputes over what each side should get - are also
common and reduce welfare.

Strikes are surprising because in almost every case, the bargain that was eventually
struck after a costly strike could have been agreed to much earlier in the bargaining,
which would have saved lost profits, legal bills, and many other collateral costs.
Then why do strikes happen? The standard approach in the game theory of private-
information bargaining is that the willingness to endure a strike is the only way
for one side to credibly convince the bargaining partner that their existing offer is
inadequate. Although making a deal appears to be a better outcome for both sides,
when players’ incentives and information are taken into account strikes are not only
efficient but can also be unavoidable (Kennan and R. Wilson, 1990).

Private information bargaining theories, and tests of these theories, have developed
in two ways:

(1) The most popular way is bargaining theories based on highly structured settings,
e.g., Ståhl (1972) or Rubinstein (1982); for a review see Ausubel, Cramton, and
Deneckere (2002). “Structure” means that the rules of how bargaining proceeds are
clearly specified in the theory. The rules typically define when bargaining must be
completed (either a deadline or an infinite horizon), who can offer or counteroffer
and at what time, when offers are accepted, whether communication is allowed (and
in what form), and so on. Theoretical predictions of outcomes and payoffs depend
sensitively on these structural features (see Cramton, 1984; Fudenberg, Levine, and
Tirole, 1985; Rubinstein, 1985; Grossman and Perry, 1986; Gul and Sonnenschein,
1988; Ausubel and Deneckere, 1993). Following the burst of progress in game
theory on structured private-information bargaining, a large experimental literature
emerged testing these theories (Ochs and Roth, 1989; Camerer et al., 1993; Mitzke-
witz and Nagel, 1993; Güth, Huck, and P. Ockenfels, 1996; Kagel, Kim, and Moser,
1996; Güth and Van Damme, 1998; Rapoport, Daniel, and Seale, 1998; Kagel and
Wolfe, 2001; Srivastava, 2001; Croson, Boles, andMurnighan, 2003; Johnson et al.,
2002; Kriss, Nagel, and Weber, 2013).
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The clear assumptions about structure in the theory made experimental design and
theory-testing straightforward.

(2) The less popular way of theorizing and experimentation in economics is based
on unstructured bargaining. Our paper returns to this less popular route, exploring
unstructured bargaining with one-sided private information in an experiment.

There are three good reasons to study unstructured bargaining.

First, most natural two-player bargaining is not highly structured. Conventional
methods for conducting bargaining do emerge in natural settings, but these methods
are rarely constrained, because there are no penalties for deviating from conven-
tions. Studying unstructured bargaining is of particular importance, as strategic
behavior may substantially differ between static and dynamic environments that
allow continuous-time interaction (Friedman and Oprea, 2012). There may also
be clear empirical regularities in unstructured bargaining– such as deadline effects
(Roth, Murnighan, and Schoumaker, 1988; Gächter and Riedl, 2005) – that are
evident in the data but not predicted by theory. Establishing these regularities can
lead theorizing, rather than test theory.

Second, unstructured bargaining creates a large amount of interesting data during
the bargaining process. Players can make offers at any time, retract offers, and
so on. Of course, theories can gain precision by ignoring these process data.
However, if process variables are systematically associated with outcomes, these
empirical regularities both challenge simple equilibrium theories and invite new
theory development. Indeed, we use process data in a new way: To predict which
bargaining trials will results in deals and strikes. We use a penalized regression
approach from machine learning, to select those features from a large number of
process features and make out of sample, cross-validated predictions (guarding
against overfitting). The process features can predict strikes about as accurately
as the pie sizes can; adding both process and pie size together makes even better
predictions.

Process data are also useful because practical negotiation advice often consists of
simple heuristics about how to bargain well (Pruitt, 2013). For example, negotiation
researchers have long ago postulated that initial offers might serve as bargaining
anchors and that various psychological manipulations, such as perspective taking,
could potentially bias bargaining outcomes (Kristensen and Gärling, 1997; Galinsky
and Mussweiler, 2001; Van Poucke and Buelens, 2002; Mason et al., 2013; Ames
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and Mason, 2015). Advice like this can be easily tested by carefully controlled
experimental designs that allows structure-free bargaining while keeping the process
fully tractable, such as our paradigm.

Third, even when bargaining is unstructured, theory can still be applied to make
clear interesting predictions. A natural intuition is that when bargaining methods
are unstructured, no clear predictions can be made, as if the lack of structure in the
bargaining protocol must imply a lack of structure (or precision) in predictions. This
intuition is just not right. In the case we study, clear predictions about unstructured
bargaining do emerge, thanks to the wonderful “revelation principle” (Myerson,
1979; Myerson, 1984). This principle has the useful property of implying empirical
predictions for noncooperative equilibria, independently of the bargaining protocol,
based purely on the information structure. For example, the application of the
revelation principle in our setting leads to the prediction that strikes will become
less common as the amount of surplus the players are bargaining over grows. This
type of prediction is non-obvious and can be easily tested. Furthermore, if additional
assumptions are made about equilibrium offers, and combined with the revelation
principle, then exact numerical predictions about offers and strike rates can be made.
That is, even if the bargaining protocol lacks structure, predictions can have plenty
of restricted “structure” thanks to the beautiful game theory.

4.2 Background
The experimental literature on bargaining is vast, so below we only focus studies
closely related to ours.1 Before theoretical breakthroughs in understanding struc-
tured bargaining, most experiments used unstructured communication. The main
focus of interest was process-free solution concepts such as the Nash bargaining
solution (Nash Jr, 1950), and important extensions (e.g. Kalai and Smorodinsky,
1975). We will refer to the amount of surplus available to share as the “pie”. Many
bargains (Nydegger and Owen, 1974; Roth and Michael W Malouf, 1979) led to
an equal split of the pie. Roth suggested that “bargainers sought to identify initial
bargaining positions that had some special reasons for being credible... that served
as focal points that then influenced the subsequent conduct of negotiation” (Roth,
1985). Under informational asymmetries, disagreements may arise due to coordina-
tion difficulties. Several papers by Roth and colleagues then explored what happens
when players bargain over points which have different financial value to players

1For reviews, see Kennan and R. B. Wilson, 1993; Ausubel, Cramton, and Deneckere, 2002;
Thompson, J. Wang, and Gunia, 2010
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(Roth and Michael W Malouf, 1979; Roth, Michael WK Malouf, and Murnighan,
1981; Roth and Murnighan, 1982; Roth, 1985). In theory, there should be no dis-
agreements in these games but a modest percentage of trials (10-20%) did result
in disagreement. Many of the disagreements could be traced to self-serving differ-
ences between which of two focal points should be adopted– whether to allocate
points equally, or to allocate the money, resulting from points, equally. Focal points
have remained an important theme in more recent work (Schelling, 1960; Roth,
1985; Kristensen and Gärling, 1997; Janssen, 2001; Binmore and Samuelson, 2006;
Janssen, 2006; Bardsley et al., 2010; Isoni et al., 2013a; Isoni et al., 2013b; Harg-
reaves Heap, Rojo Arjona, and Sugden, 2014). Roth, Murnighan, and Schoumaker,
1988, also drew attention to the fact that the large majority of agreements are made
just before a (known) deadline, an observation called the “deadline effect.”

Several experiments have observed what happens in unstructured bargaining with
two-sided private information (K. Valley et al., 2002). The typical finding is that in
face-to-face and unstructured communication via message-passing, there are fewer
disagreements than predicted by theory.2 However, when players bargaining can
only make a single offer, disagreements are more common, and the key predictions
of theory hold surprisingly well (Radner and Schotter, 1989; Rapoport, Erev, and
Zwick, 1995; Rapoport and Fuller, 1995; Daniel, Seale, and Rapoport, 1998).

The closest precursor to our design is Forsythe, Kennan, and Sopher (henceforth
FKS), who studied unstructured bargainingwith one-sided private information about
the sizes of two possible pies (Forsythe, Kennan, and Sopher, 1991). They used
mechanism design to identify properties shared by all Bayesian equilibria of any
bargaining game, using the revelation principle (Myerson, 1979; Myerson, 1984).
This approach gives a “strike condition” predicting when disagreements would
be ex-ante efficient. They tested their theory by conducting several experimental
treatments, with free-form communication. The results qualitatively match the
theory. We generalize their earlier model to capture any finite number of pie sizes.
Because there are several different pie sizes, equilibria which maximize efficiency
or equality create different predictions, which we test. Our experimental design uses
6 pie sizes with rapid bargaining (10 seconds per trial), where bargaining occurs
only through visible offers and counter-offers, with no other restrictions. They also
did not analyze their process data at all, whereas we use machine learning analysis

2A comparable finding in sender-receiver games is that senders willingly share more private
information than is selfishly rational; see Crawford, 2003; Cai and J. T.-Y. Wang, 2006; J. T.-y.
Wang, Spezio, and Camerer, 2010.
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of the process features to predict strikes on a trial-by-trial basis.

From the literature studying structured bargaining, Mitzkewitz and Nagel, 1993
(henceforth MN) is a closely related design. They study ultimatum bargaining with
incomplete information. MN use the same distribution over pie sizes in ultimatum
bargaining that we employ in unstructured bargaining. The pattern of payoffs and
disagreements in our results is similar to that of MN’s “offer” game, in which
the informed player makes an ultimatum proposal. Our results generalize their
conclusion that fairness and equality concerns matter in asymmetric information
ultimatum bargaining to a less structured environment.

Another branch of literature that is related to our study is the experimental work
investigating how humans resolve tradeoffs between equality and efficiency. While
this question is still under a (heated) debate (Kritikos and Bolle, 2001; Charness and
Rabin, 2002; Engelmann and Strobel, 2004; Engelmann and Strobel, 2006; Fehr,
Naef, and Schmidt, 2006; Bolton and A. Ockenfels, 2006; El Harbi et al., 2015), it
is largely accepted that people are heterogeneous with respect to how they prioritize
these factors.3

A few recent papers have investigated highly structured strategic interactions (De
Bruyn and Bolton, 2008; Blanco, Engelmann, and Normann, 2011; López-Pérez,
Pintér, and Kiss, 2013; Jacquemet and Zylbersztejn, 2014), and some have examined
free form bargaining with full information (Herreiner and Puppe, 2004; Galeotti,
Montero, and Poulsen, 2015). We extend this literature by deriving theoretical
predictions and test empirically how humans resolve the equality-efficiency trade-
off in a dynamic strategic environment with informational asymmetry.

Finally, our study closely relates to negotiation research (Pruitt, 2013), a branch of
social psychology and organizational behavior research. In contrast to economic
theories that typically describe behavior in equilibrium (i.e., when players best re-
spond to each other’s actions), negotiation theories assume that bargainers are not in
equilibrium and focus on prescriptive models, in which adopting certain strategies
improves negotiation outcomes. Negotiation researchers take into account the pro-
cess of bargaining by studying psychological constructs such as aspirations, defined
as “the highest valued outcome at which the negotiator places a non-negligible likeli-
hood that that value would be accepted by the other party” (White and Neale, 1994).

3For example, economics students are inclined to favor efficiency over equality, females are
more egalitarian than males, and political preferences do not seem to have an effect (Engelmann and
Strobel, 2004; Fehr, Naef, and Schmidt, 2006).
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Aspirations play an important role in determining the bargainers’ initial offers, and
were shown to influence bargaining outcome variables such as disagreement rates
and surplus division (Yukl, 1974; White and Neale, 1994; White, K. L. Valley, et al.,
1994; Kristensen and Gärling, 1997; Galinsky and Mussweiler, 2001; Van Poucke
and Buelens, 2002; Buelens and Van Poucke, 2004; Mason et al., 2013; Ames and
Mason, 2015).

The reminder of this paper is organized as follows. In section 4.3, we usemechanism
design theory to derive general qualitative properties of bargaining in equilibrium.
We show that in our setting, no equilibrium satisfies both equality and efficiency in
all sates of the world, and propose two equilibria that solve this tradeoff by either
favoring the former or the latter. We present a novel experimental design in section
4.4, and summarize its general results in section 4.5. We use machine learning to
examine how bargaining process data can be associated with bargaining outcome
variables in section 4.6, and conclude in section 4.7.

4.3 Theory
In this section we develop a theory that provides testable predictions of disagreement
rates and surplus division. Our model combines two methods to analyze bargaining:
mechanism design and focal points. We extend the model of strikes developed
in Kennan, 1986 and Forsythe, Kennan, and Sopher, 1991 to an arbitrary finite
number of states. This extension yields non-obvious predictions of the frequency of
disagreement (the strike rate) in each state, using only the game structure, rationality,
and incentive-compatibility constraints. Assuming ex-ante efficiency allows further
predictions. We then suggest a focal point approach to the problem of equilibrium
selection. Combining these two approaches yields testable predictions about both
strike rates and payoffs in each state.

Game and notation
Two players must agree on how to split a surplus (or “pie”), a random variable
denoted by π. The informed player knows the actual size of the pie. The uninformed
player knows that the informed player knows the pie size. States of the world are
indexed by k ∈ {1, 2, . . . , K }, and the pie size in state k is πk . Without loss of
generality, we assume πk > π j when k > j. The probability distribution of pie
sizes Pr(πk ) = pk is commonly known. The players have a finite amount of time
T , which is commonly known, to reach an agreement. They bargain over the payoff
of the uninformed player, denoted by w, by continuously communicating their bids.
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Players cannot commit to a particular bargaining position. In case of agreement on
an uniformed player’s payoff w, the informed player gets y = π − w. If no deal is
made by time T , both players’ payoffs are zero.

The direct bargaining mechanism
By the revelation principle (Myerson, 1979; Myerson, 1984), for any Nash equi-
librium in the bargaining game, there exists a payoff-equivalent equilibrium of a
simplified game (“a direct mechanism”) in which the informed player truthfully
reveals the pie size to a neutral “mediator” who determines the payoffs and the
probability of a strike based on that report (Forsythe, Kennan, and Sopher, 1991).
Following FKS, we assume that bargainers negotiate inscrutably over the set of
direct mechanisms of the following type.

In the direct mechanism, the informed player announces the true size of the pie, πk .
The pie is then decreased by a known fraction, 1 − γk , which can be interpreted as
the strike probability in state k, leaving an expected pie size of γkπk . We refer to γk

as the deal probability and 1−γk as the strike probability. The uninformed bargainer
receives xk , and the informed player gets the rest of the pie, γkπk − xk . To make
predictions regarding observed behavior, we rely on the fact that the payoff xk in the
direct mechanism is tantamount to the expected payoff of the uninformed player in
state k of the bargaining game: xk = γkwk such that wk is the uninformed payoff
conditional upon a deal in state k. A mechanism therefore involves 2K parameters,
{γk, xk }

K
k=1.

Individual rationality (IR)

Individual rationality requires that both players prefer to participate in the mecha-
nism. Therefore, the IR requirement is that for all k

γkπk − xk ≥ 0 (4.1)

xk ≥ 0. (4.2)

Incentive compatibility (IC)

A mechanism is IC if it is optimal for the informed player to tell the truth, i.e., her
expected payoff is (weakly) maximized when she announces the true size of the pie.
This requires

γkπk − xk ≥ γ jπk − x j for all k, for all j , k . (4.3)



98

The IR and IC conditions together lead to the following result.

Lemma 1. If the bargaining mechanism satisfies IR and IC:

1. Deal rates are monotonically increasing in the pie size πk .

2. The uninformed player’s payoffs are monotonically increasing in the pie size.

3. The uninformed player’s payoff is identical for all states in which the deal
probability is 1.

Proof: See the Appendix, section 4.A

Efficiency

In our setting a mechanism is efficient (more precisely, is “interim-incentive effi-
cient”, Holmström and Myerson (1983)) if it is Pareto optimal for the set of K + 1
agents: the K informed players in each of the different states k, and the uninformed
player.

Lemma 2. The strike condition: For IR and IC mechanisms, strikes in state k are
ex-ante efficient if

πk

πk+1
<

(1 −
∑k

j=1 p j )

(1 −
∑k−1

j=1 p j )
=

Pr(π ≥ πk+1)
Pr(π ≥ πk )

. (4.4)

Proof: See section 4.A of the Appendix.

The relations between pie size ratios and conditional probabilities of pie size in Eq.
4.4 are called “strike conditions”.

By Lemma 1 (result 1), if there exists a cutoff state, πc, in which γc = 1 (no strikes),
then strikes are inefficient in all states πk such that k ≥ c. Furthermore, as the
uninformed player’s payoff must be the same in all states where no disagreements
occur (result 3), this implies that if strikes are inefficient in more than a single state,
there exists no equilibrium where both efficiency and payoff equality hold for all
states. Thus, there is a built-in tension between efficiency and equality under some
informational settings.
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Equilibrium selection using focal points
In theory, the IR and IC constraints limit the scope of possible bargaining outcomes
and predict when strikes are likely to occur. This is remarkable considering that the
bargaining protocol is unstructured. However, these conditions do not precisely pin
down the numerical strike rates 1− γk and the equilibrium payoffs (conditional on a
deal being reached) wk for each state. There are many such sets of parameter values
that will satisfy IR and IC, and are equilibrium outcomes.

Tomake amore precise prediction, we incorporate an equilibrium selection approach
that relies on the extensive literature emphasizing the importance of focal points in
bargaining games (Schelling, 1960; Roth, 1985; Kristensen and Gärling, 1997;
Janssen, 2001; Binmore and Samuelson, 2006; Janssen, 2006; Bardsley et al., 2010;
Isoni et al., 2013a; Isoni et al., 2013b).

Absent other salient features of bargaining, the natural focal point is an equal split
(i.e., wk = πk/2). Indeed, equal splits often emerge in bargaining experiments
(e.g. Roth and Michael W Malouf, 1979; Roth and Murnighan, 1982).4 Note that
equal sharing is also common in sharecropping contracts (Young and Burke, 2001),
corporate budget allocations to divisions (Bardolet, Fox, and Lovallo, 2011) and
bequests to heirs (Menchik, 1980; Behrman and Rosenzweig, 2004). Regardless
of the source of equal sharing, here we simply use this regularity as a basis for
generating precise numerical predictions of the strike rates.

In practice, we propose that the equilibrium payoff of the uninformed player, con-
ditional on a deal, will equal half of the pie size (wk = πk/2) as long as an equal
split satisfies the IR and IC conditions (Lemma 1). We use this premise to calibrate
our model and derive two competing predictions that resolve the tension between
efficiency and equality (discussed in section 4.3) by either prioritizing the former or
the latter.

The efficient equilibrium

To prioritize efficiency over equality, we set the deal rate to 1 whenever the strike
condition (lemma 2) does not hold (i.e., whenever strikes are inefficient). Then, we
split the pie equally given this constraint. Suppose that strikes are inefficient for all
pies that are greater than πc. As discussed above, this implies that the uninformed

4Many possible explanations have been proposed to the prevalence of equal-splitting, includ-
ing social norms (Andreoni and Bernheim, 2007), pure dislike of unequal distributions (Fehr and
Schmidt, 1999) or beliefs about the preferences of one’s partner (Chmura et al., 2005).
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player’s payoff must be the same for all πk ≥ πc (lemma 1, result 3). In order to
yield a clear prediction about the equilibrium uninformed payoffs w∗k , we divide the
pie equally in lower-value pie states given this constraint:

w∗k =




πk
2 ∀πk ≤ πc

πc
2 ∀πk > πc.

(4.5)

In our experiment, π takes on values which are the integer dollar amounts between
$1-6 with equal likelihood. It follows numerically that the strike condition (lemma
2) holds for pies of size 1 and 2. When π = 3, the two sides of the inequality are
equal so the strike rate is indeterminate. When π ≥ 4 there should be no strikes.
Combining this constraint with the focal principle of equal splitting implies that an
equal split of π = 4 (i.e., the uninformed player’s payoff is 2) can be an equilibrium,
but then the same amount ($2) must also be the equilibrium payoff of the uninformed
player for the larger pie sizes 5 and 6.

The efficiency constraint (Eq. 4.4) and the use of focal payoffs (Eq. 4.5) enable us to
pin down the exact numerical strike rates for all pie sizes. We set γ4 = γ5 = γ6 = 1,
as required by the strike condition when pie sizes are uniformly distributed over
{$1, 2, 3, 4, 5, 6}. Noting again that the uninformed player’s payoff in each state xk

in the direct bargaining mechanism is equal to the payoff in case of a deal times
the strike rate, we fix xk = γk (0.5πk ) for all k < 4, and xk = 2 for all k ≥ 4.
Consequently, we can use the IC condition (Eq. 4.3) to make explicit predictions of
the strike rates in the efficient equilibrium:




γ j ≤
0.5πk

πk−0.5π j γk ∀ k ≤ 4, j , k

γk = 1 ∀k ≥ 4.
(4.6)

Solving this set of inequalities numerically (see Section 4.A of the Appendix)
and picking the highest possible values of γk (for maximal efficiency) yields the
prediction of

[γ1, γ2, γ3, γ4, γ5, γ6] = [0.4, 0.6, 0.8, 1, 1, 1]. (4.7)
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The equal split equilibrium

As discussed in section 4.3, some efficiency must be sacrificed in order to achieve
equality for every pie size. In the equal split equilibrium, we first impose equal
splits and only then maximize efficiency given this constraint:

w∗k =
πk

2
. (4.8)

As the deal rates are increasing with the pie size (Lemma 1.1), and as the uninformed
payoff must be identical in all states where there are no strikes (Lemma 1.3), full
equality implies that efficiency (i.e., no strikes) can only be achieved in the largest
pie (for formal proof, see section 4.A of the appendix). Thus, to pin down exact
numerical predictions of deal rates in the equal equilibrium, we set γ6 = 1. Then,
we use the IC inequalities (Eq. 4.3) to make explicit predictions of the strike rates:




γ j ≤
0.5πk

πk−0.5π j γk ∀ j , k

γk = 1 k = 6.
(4.9)

Solving this set of inequalities numerically and picking the highest possible values
of γk (for maximal efficiency) yields the prediction of

[γ1, γ2, γ3, γ4, γ5, γ6] = [0.3583, 0.5250, 0.6917, 0.8167, 0.9167, 1]. (4.10)

4.4 Experiment
In this section, we present a novel experimental paradigm of dynamic bargain-
ing, which allows both parties to communicate offers whenever they please, while
keeping their behavior tractable.

Design
Our design is a continuous-time bargaining gamewith one-sided private information.
At the start of each session, participants were randomly divided into two equally-
sized type groups, informed and uninformed. The types were fixed for the session’s
120 bargaining periods. Each period had the following steps:

1. Each player was randomly matched with a partner from the other group in a
stranger protocol (to prevent sequential effects such as reputation building).
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2. In each game, an integer pie size, π ∈ {$1, 2, 3, 4, 5, 6}, was drawn from a
commonly known discrete uniform distribution:

Pr(πk ) =
1
6
∀π ∈ {$1, 2, 3, 4, 5, 6}.

3. The informed player was told the true value of π for that period.

4. Each pair bargained over the uninformedplayer’s payoff, denoted byw. Players
communicated their monetary offers, in multiples of $0.2, using mouse clicks
on a graphical interface that was designed for this purpose by z-tree software
(Fischbacher, 2007)5 (see Figure 4.1). The offer values were between $0 and
$6.

5. During the first two seconds of bargaining, both players fixed their initial
offers, without seeing the offers of their partner (see Figure 4.1a).

6. Once the initial offers were set, players bargained continuously for 10 seconds
using mouse clicks (see Figure 4.1b).

7. When players’ positions matched each other, visual feedback was given to
both of them in the form of a vertical stripe connecting their offer lines (see
Figure 1c). If none of the players changed their position for the next 1.5
seconds following the offer-match feedback, a deal was made. Thus, in order
to make a deal, the latest time in which players’ bids could match was t = 8.5
seconds.

8. If no deal had been made within 10 seconds of bargaining, both players’
payoffs from that period were $0.

9. After each game, both players were told their payoffs and the actual pie size
(see Figure 4.1d).

Methods
We conducted eight experiment sessions, five at the Caltech SSEL and three at the
UCLA CASSEL labs. There were a total of N=110 subjects (mean age: 21.3 SD:

5A video demonstration of the task is available on https://www.youtube.com/watch?v=
y7pKh1EJsvM&.
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Figure 4.1: Bargaining interface. (a) initial offer screen: in the first two seconds
of bargaining, players set their initial position, oblivious to the initial position of
their partner. The pie size at the top left corner appears only for the informed type.
(b) Players communicate their offers using mouse click on the interface. (c) When
demands match, feedback in the form of a green vertical stripe appears on the screen.
If no changes are made in the following 1.5 seconds, a deal is made. (d) Following
the game, both players are notified regarding their payoffs and the pie size.

2.4; 47 females). The number of subjects varied slightly across sessions due to show-
up differences (see Appendix 4.B for details)6. In the beginning of each session,
subjects were randomly assigned to isolated computer workstations andwere handed
printed versions of the instructions (see Appendix 4.D). The instructions were also
read aloud by the experimenter (who was the same person in all sessions). All of
the participants completed a short quiz to check their understanding of the task.
Subjects played 15 practice rounds in order to become familiar with the game and
the interactive interface before the actual play of 120 periods. Participants’ payoffs
were based on their profits in randomly chosen 15% of the periods, plus a show-up
fee of $5. Each session lasted approximately 90 minutes.

6There is a negative correlation (r = −0.49) between session size and overall deal rate, which
is largely due to smaller high-deal rate sessions being conducted at Caltech (controlling for location
reduces the correlation to −0.09). The difference between (regression-predicted) average deal rates
in the smallest and largest session sizes is also not large in magnitude, dropping from 65% to 58%.
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Table 4.1: Average payoffs* and deal rates by pie size**, standard errors in paran-
theses

Pie size 1 2 3 4 5 6 Mean
Informed payoff 0.37 0.95 1.56 2.23 3.07 3.87 2.01

(0.03) (0.04) (0.04) (0.03) (0.05) (0.06)
Uninformed payoff 0.63 1.05 1.44 1.77 1.93 2.13 1.49

(0.03) (0.04) (0.04) (0.03) (0.05) (0.06)
deal rate 0.42 0.48 0.54 0.69 0.73 0.81 0.61

(0.06) (0.05) (0.03) (0.02) (0.02) (0.02)
Surplus Loss 0.58 1.04 1.39 1.25 1.36 1.16 1.13

(0.06) (0.10) (0.10) (0.10) (0.10) (0.11)
Information value*** -0.11 -0.05 0.05 0.31 0.83 1.39 0.40

(0.03) (0.03) (0.04) (0.04) (0.07) (0.10)

* Averages are calculated for deal games only.
** Means and standard errors are calculated by treating each session’s mean as a single
observation.
*** Information value = the mean difference between the informed and uninformed payoffs.

4.5 Results
Main findings
The data are each subject’s bargaining positions and the outcomes of 120 periods.7
We first note that strike rates and offer amounts were not significantly different in the
two subject groups (Caltech vs. UCLA). Strike rates do appear to decline somewhat
with experience, but we report results across all periods and include controls for
period number (see Appendix 4.B for details). Therefore, we pool these data across
subject groups.

We observed the following empirical regularities:

Result 1. deal rates are increasing with the pie size.

The mean deal rates for pie are summarized in Table 4.1 and Figure 4.2A. While the
probability of disagreement decreased with the pie size, the mean amount of surplus
lost due to strikes (Table 4.1) was positively correlated with the pie, as relatively
small amounts of money are lost when strikes occur in small pie games.

Result 2. When the pie is small or medium (π ≤ $4), the modes of the uninformed
players’ payoffs distribution are half of the pie; in large pie games (π > $4) the

7A small fraction (less than 2.5 percent) of the games were excluded from analysis, due to a
software bug in the first sessions conducted
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Figure 4.2: Deal rates and mean payoffs across pie sizes. Standard errors are
calculated at the session level.

(a) deal rates by pie size

(b) Mean payoffs by pie size and subject type, periods ending in a deal. Standard errors are
calculated at the session level.

modes are $2 and there are local maxima at the half of the pie.

The distributions of uninformed players’ payoffs are in Figure 4.3. The mean payoffs
(conditional upon a deal being reached) are in Figure 4.2B.

Result 3. The informed players’ offers increase, and the uninformed players’ de-
mands decrease with time (within a trial).

Result 3 is illustrated by the plots of mean bargaining positions shown in Figure 4.4.

Result 4. Most deals are made close to the deadline.

More than half of the deals were made in the last two seconds of bargaining. Figure
4.5 shows the cumulative distribution function (CDF) of deals over time, which
sharply increased as the deadline approached for all pies. Generally, deals were
reached sooner when the pie was larger. This result is in line with the “deadline
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Figure 4.3: Uninformed player’s payoff relative frequencies (deal games, binned in
a $0.25 resolution). The green bar locates the half of the pie in each distribution.

effect” reported in previous studies of unstructured bargaining with full information
(Roth, Murnighan, and Schoumaker, 1988; Gächter and Riedl, 2005).

Comparison with focal equilibria
We now turn to testing the qualitative and quantitative predictions derived from the
bargaining theory. In particular, we test the predictions of the efficient and equal-
split equilibria. For convenience, we refer to the informed and uninformed players’
bargaining positions as ‘offers’ and ‘demands’, respectively.

Payoff distributions

Overall, 82% of the payoffs, conditional upon a deal being reached, match values
that are halves of one of the six possible pies.8 Equal splits are the most prevalent

8In our experimental interface, players communicated their bids in integer multiples of 0.2, and
therefore could not make offers of exactly 0.5, 1.5 or 2.5. We consider offers that are within 0.1 of
these values (that are as close as one could get to them) as matching half of integer pies.
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Figure 4.4: Mean bargaining position for all pie sizes (all periods pooled)

Figure 4.5: Cumulative distribution of deal times by pie size. Median deal times
are marked by an asterisk
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outcomes (54%) of small and medium pie games (π ≤ 4), where the predicted
payoffs of the efficient and equal equilibria coincide (Figure 4.3, top two rows).
These results confirm that equality concerns did influence bargaining outcomes,
generalizing the experimental literature studying complete information bargaining
(Nydegger and Owen, 1974; Roth and Michael W Malouf, 1979) and ultimatum
bargainingwith private information (Mitzkewitz andNagel, 1993) to an unstructured
environment with informational asymmetry.

In large pie games (π ≥ 5), equality and efficiency are in discord. The payoff
distributions of these games (Figure 4.3, bottom row) have modes at the efficient
(but unequal) uninformed payoff of 2 (31% of payoffs), and local maxima (19% of
payoffs) at the equal (but inefficient) payoffs of 2.5 (π = 5) and 3 (π = 6). Thus,
about half of the bargaining payoffs match one of the two equilibria.

To further illuminate the role of equality and efficiency in large pie games, we in-
vestigate the uninformed players’ initial bargaining positions (Figure 4.6). Many
negotiation researchers see these initial demands as reflecting the players’ aspira-
tional payoffs, i.e., the most desirable payoffs that they can achieve, according to
their beliefs (Yukl, 1974; White and Neale, 1994; Kristensen and Gärling, 1997;
Galinsky and Mussweiler, 2001; Van Poucke and Buelens, 2002). The mode of the
initial demands distribution (pooled across all pie sizes9 ) was 3 (31%)– matching
the highest possible equal equilibrium payoff. An additional local maxima at 2
(19%) matched the highest possible payoff in the efficient equilibrium. Thus, the
majority of the uninformed players’ initial demands exactly match their maximal
payoffs in either the efficient or equal equilibria, with a greater proportion matching
the equal-split equilibrium.

Deal rates

Empirical deal rates rise smoothlywith increasing pie size, in linewith the qualitative
prediction derived using the IC condition (lemma 1). However, strikes occur in all
pie sizes, in contrast to the efficiency condition (Lemma 2); see Table 4.1, Figure 4.2.
This finding is not surprising in light of the uninformed players’ initial bargaining
positions (discussed just above), most of which reflect the equal, rather than efficient
equilibrium payoffs.

9Pooling the demandsmakes sense because the uninformed players have no information regarding
the realization of the pie that might be deduced from the behavior of the informed player at the initial
offer stage.
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Figure 4.6: Uninformed player’s initial demands (pooled across all games, binned
in a $0.25 resolution).

strikes are common (19%), even at the largest pie size of 6– in contrast to the
predictions of both equilibria. It is important to note that in some interesting
models, and under certain experimental conditions, strikes can occur even with
complete information (e.g. Roth and Michael W Malouf, 1979; Roth, Michael WK
Malouf, and Murnighan, 1981; Roth and Murnighan, 1982; Roth, 1985; Haller and
Holden, 1990; Herreiner and Puppe, 2004; Gächter and Riedl, 2005; Gachter and
Riedl, 2006; Embrey, Hyndman, and Riedl, 2014). If the forces operating in such
models and environments also apply in our private-information settings, the strike
rates could be larger than those predicted by the mechanism design approach.

One factor that might account for disagreement rates that are higher than predicted
is false revelations made by the informed players (i.e., offers that are too low). To
assess the role of this factor, we estimated three logistic regression models with the
dependent measure deal = 1 (i.e., strike = 0), that included subject-level dummy
variables (for both informed and uninformed players) and control for period.10 We
estimated a model that includes the pie size alone (Model A), the final offer made
by the informed player alone (B) 11, and both pie size and final offers (C). Our
analysis (Table 4.2) reveals that Model B, which includes the final offers, fits the
data better than Model A which includes the pie size, as implied by a lower Akaike
Information Criterion (AIC) score. Furthermore, when including both the pie size

10The regression effects are robust to inclusion/exclusion of these controls.
11All bargaining positions lacked the players’ ability to commit, with the exception of (a) positions

at the deadline (i.e., 8.5 seconds into the bargaining process); (b) positions at the time a deal is made,
1.5 seconds after the positions’ initial match had occurred. We refer to these bargaining positions as
"final offers". We successfully replicated all of the analyses while setting the time of the final offers
to 8 and 9 seconds into the bargaining process.
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and the final offers in the model, the marginal effect of the latter was almost 6 times
greater.12 These results show that bargaining process (in this case the information
revealed by the informed player’s behavior) plays an important role in determining
whether a deal is reached, beyond the actual realization of the pie size. As private
information might be unobservable to an econometrician in more realistic settings,
this finding has important practical implications, that we further discuss in the
following sections.

We estimated the empirical deal rates (across all pie sizes) as a function of the
informed player’s final offers (see Figure 4.7) and found that the empirical likelihood
of reaching a deal was 74% and 94% when the final offers of the informed players
matched the halves of the large pies ($2.5 and $3). The deal rate was 79% when the
final offer was $2, lower than the efficient strike condition prediction (of no strikes),
but very close to the deal rate predicted by the equal split equilibrium. In smaller
pie-sizes ($1, 2, 3), disagreement rates were also closer to the prediction of the equal
split equilibrium (Figure 4.7).

In summary, we find support for the qualitative prediction that deal rates increase
with the pie size. Disagreement rates match the equal split equilibrium better than
the efficient one. Further investigation of the initial demands suggests that the
uninformed players aspire to an equal split in all pies; therefore, striking in high
stake games might implement the uninformed players’ strategy to enforce equal
splits. The payoff distribution modes in small pie games are at the equal split (in
accordance both equilibria). In large pie games, where there is a conflict between
efficiency and equality, the payoff distributions are bi-modal, with the global mode
matching efficient equilibrium and a second local mode matching the equal split
equilibrium.

Our results demonstrate that theoretical predictions, derived frommechanism design
models which assume risk-neutral, selfish players, can take us a long way even in
unstructured settings, but also reveal the limitations of this approach. Bargaining
outcomes match a mix of two equilibrium patterns and some game outcomes match
neither equilibria. Furthermore, theoretical predictions critically depend on the
pie size– which is private information that would typically be unobservable to
econometricians in field data. In the next section, we use bargaining process data to
overcome some of these limitations.

12The regression results are robust to the inclusion of quadratic terms for the pie size and period
(which effects are statistically insignificant) and to variation in the definition of final offer, by setting
its time to t = 8 and t = 9.
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Figure 4.7: Empirical and theoretical deal rates for informed player’s final offer
matching pie halves (standard errors are clustered at the session level)

.

Table 4.2: Logistic regression - simple predictors of deals.
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4.6 Using process data
Our unstructured paradigm records bargaining process data that could be associated
with outcome variables. This process data may be used to predict disagreements
before the deadline has arrived. For example, suppose that at the 5 second mark,
neither player has changed her offer for more than 3 seconds. This mutual stub-
bornness might be associated with an eventual strike. Our approach is to consider
a large number of such candidate observable features in search of a small set that
is predictive, using cross-validation (Stone, 1974) to control for overfitting. This
machine learning approach has been used in many, many applications in computer
science and neuroscience, and is beginning to be more widely used in economics
(Krajbich et al., 2009; Belloni, Chen, et al., 2012; Einav and Levin, 2014; Varian,
2014; Smith et al., 2014; Mullainathan, 2014; Bajari et al., 2015).

One possibility is that there is little predictive information in such features, after
controlling for overfitting. Indeed, if players know what the predictive features are,
they should alter their behavior in order to avoid costly disagreements, erasing the
features’ predictive power.13 Another possibility is that there are numerous small
influences on disagreement that the players simply do not notice and which may be
picked up by our modeling.

Predicting disagreements using bargaining process data
We chose 34 behavioral features recorded during bargaining and randomly split the
entire set of trials into ten groups. Examples of features are the current difference
between the offer and demand and the time since the last position change. The full
list is in an Appendix 4.C. For each of the 10 holdout groups, we trained a model
to classify trials into disagreements or deals, using the remaining 90% of the data,
by estimating a logistic regression with a Least Absolute Shrinkage and Selection
Operator (LASSO) penalty (Tibshirani, 1996).14 By applying these trained models,
we then made out-of-sample predictions of the binary bargaining outcomes for each
of the 10 holdout samples.15

13By the revelation principle, every equilibrium in our setting has a payoff-equivalent equilibrium
of the direct mechanism. As the direct mechanism is "process free", process features should not have
predictive power in equilibrium after controlling for pie size.

14A LASSO-penalized logistic regression maximizes the standard logistic regression log-
likelihood function minus a penalty term equal to the the sum of their absolute values of the
regression coefficients (their L1 norm) to overcome potential overfitting of the training data. The
procedure includes a pre-processing stage of standardizing the dependent variables to have mean 0
and standard deviation 1.

15We use cross-validation to determine the weight placed on the penalty term in the LASSO
regression. In our setting cross-validation involves partitioning the training data into k subsets,
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As noted above, the pie size is a strong predictor of disagreements. The challenges
for our machine learning approach are two-fold. First, we investigate whether
process features have predictive power similar to the pie size when studied alone.
In other words, we test whether process data allows predicting bargaining outcomes
when the pie size, which is private information, is treated as if it was unobservable.
Second, we investigate whether process features add predictive power when used
together with the pie size.

To assess the predictive power of process data, we estimated three strike prediction
models at eight different points in the bargaining process, separated by 1 second
intervals (i.e. 1, 2, . . . , 8 seconds after bargaining started). One model relies only
on the pie size, the second uses only process features, and the third uses both pie
size and process features.16

We evaluate our results using “Receiver Operating Characteristic" (ROC) curves
(Hanley and McNeil, 1982; Bradley, 1997). ROC is a standard tool in signal
detection theory, used for quantifying the performance of a binary classifier under
different trade-offs between type I and type II errors. A familiar example is a
household smoke alarm: the alarm can be tuned to be very sensitive, indicating a
fire when a burnt toast creates too much smoke. Or it can be tuned to be insensitive,
ignoring the smoke from burnt toast, but also possibly ignoring smoke from a
genuine fire caused by a half-lit cigar accidentally knocked onto a copy of the Daily
Prophet newspaper.

The use of an ROC curve reflects the fact that one can always create more true
positives (in our example, predicting more strikes) but doing so comes at the cost
of then predicting more false positives (predicting strikes that don’t happen). When
using these methods, one would often like to know the tradeoff between correctly
detecting true positives more accurately and also reducing the probability of false
positives. A curve mapping all pairs of true and false positive levels therefore allows
choosing an optimal policy for every given relative cost of the two types of errors.

To calculate the ROC, we subjected the out-of sample predicted deal probabilities
(calculated by applying the estimated logistic LASSO regression weights to the out-
holding out one of the subsets, and calculating coefficient values (models) over a range of penalty
weights. For each penalty weight, the model’s out-of-sample predictive performance is calculated
on the hold-out sample. The process is then repeated by holding out each of the other k − 1 subsets,
and the final penalty weight is chosen as the value of the penalty that results in the best out-of-sample
predictive performance over all k hold-out samples.

16We included only trials that were still in progress (when a deal has not yet been achieved), and
excluded trials in which the offer and demand were equal at the relevant time stamp.
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of-sample process data) to different decision thresholds, i.e., for a decision threshold
τ ∈ [0..1], all predicted values less than τ were classified as “strike’ where predicted
values greater than or equal to τ were classified as “deal”.17 Every point on the
ROC, therefore, represents a decision threshold, such that its coordinates represent
the empirical false positive and true positive rates, calculated using the threshold.

For a random classifier, the true positive and false positive rates are identical (the
45-degree line in Figure 4.8). A good classifier increases the true positive rate
(moving up on the y-axis) and also decreases the false positive rate (moving left
on the x-axis). The difference between the ROC and the 45-degree line, in the
upper-left direction, also known as the “area under the curve’ (AUC, Bradley, 1997)
is an index of how well the classifier does.18

The ROC analysis shows that process data does better than random for every time
stamp (for illustration, see Figure 4.8). Furthermore, the mean out of sample
prediction accuracy of the classifier, using solely process features, is as high as
a classifier using solely the pie size, for times greater than 5 seconds into the
bargaining process. Combining pie size and process features improves accuracy
further: a classifier using both pie size and process data outperforms the classifier
using the pie size alone as early as 2 seconds into the bargaining process (Figure
4.8).

Which bargaining process features predict disagreements?
To further investigate which behavioral process features predict disagreements, we
used a “post-LASSO” procedure (Belloni and Chernozhukov, 2009; Belloni, Chen,
et al., 2012).19 Figure 4.9 summarizes the marginal effects of the most predictive
process features (z-scored for every intra-trial, i.e, within period, time point), such
that an “interaction” represents a multiplification of two variables. The marginal
effects of all process features investigated are reported in appendix 4.C.

Not surprisingly, the most predictive process features are the current informed
player’s offer (positively associated with a deal) and the current difference between

17We used decision threshold between 0 and 1 on a grid with a resolution of 0.01.
18The AUC is closely related to the Mann-Whitney-Wilcoxon U-statistic (Hanley and McNeil,

1982).
19The “post-LASSO” procedure consisted of three steps. First, we optimized the LASSO tuning

parameter λ using 10-fold cross validation on the entire data set. Second, we conducted model
selection by fitting a logistic LASSO regression using the optimized tuning parameter to the data.
Finally, we fitted an ordinary logistic regression to the data, using the features with non-zero LASSO
coefficients from the second stage.
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Figure 4.8: Strike prediction using bargaining process data, Receiver Operating
Characteristic (ROC). The dashed lines represent the false and true positive rates of
a random classifier.

Figure 4.9: Bargaining process features selected by the classifier for outcome pre-
diction (deal=1) and their estimated marginal effects. (Pie sizes are excluded.)
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the players’ bargaining positions (positively associated with a strike). More sur-
prisingly, the players’ initial bargaining positions contain predictive information
regarding the chance of reaching a deal, even as the deadline approaches, and even
after controlling for current offers. The informed player’s initial offer is positively
associated with a chance of a deal, and the effect is moderated by the uninformed
player’s initial demand, as implied by a negative interaction between the two factors.
Thus, initial offers are mostly associated with deals when the initial demands are
low. There was also an intriguing negative interaction between the initial and current
offers: the current offer becomes particularly associated with a deal when the initial
offer is low. This result is consistent with an idea from negotiation research that
initial offers serve as reference points in bargaining. When initial offers are low, they
make later, more generous offers seem more attractive, and increase the chances of
a deal (Galinsky and Mussweiler, 2001).

Our analyses further revealed a rich set of behavioral features that reliably predicted
disagreements throughout the bargaining process, even after controlling for the
current bargaining positions. For example, an increased activity on the informed
player side (i.e., many position changes) is a precursor of an upcoming deal, as early
as two seconds into the bargaining process. The use of focal points (i.e., offers and
demands that match halves of the integer pies) was positively associated with an
upcoming deal, unless both players’ positionsmatch different focal points, as implied
by a negative marginal interaction effect. This finding suggests that disagreements
may arise as a result of a coordination failure when players use different focal points
to communicate their claims, in line with Roth’s focal theory of bargaining (Roth,
1985). However, one must keep in mind that despite the substantial predictive power
of all process data features jointly, the marginal effect of most features alone was
relatively small (less than 5%, see appendix 4.C for all marginal effects).

Using bargaining process data for statistical mediation
The statistical value of process measures is important for studying bargaining in
naturalistic settings. The accuracy of features alone for predicting strikes (even
without pie size) suggests that it could be possible to use this type of analysis to
do statistical mediation. That is, an important and often overlooked body of theory
in mechanism design showing that if the designer has an independent measure of
private information (which the informed player cannot manipulate or hide), effi-
ciency can be enhanced by conditioning mechanism outcomes on this independent
measure.
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Intuitively, suppose in our setting the pie size is $6. For the IC constraint to bind,
the mechanism must impose strikes when a lower pie size is (untruthfully) reported,
to prevent an informed player from misreporting that the pie is worth less than $6.
But what if there were another indicator measure of pie size which is sufficiently
accurate and not manipulable? Then the mechanism could combine this indicator
with the reported pie size, penalizing the informed player if her report and the
indicator disagree.

A proof of principle that such a mechanism can work was offered by Krajbich et al.,
2009. They used neural measures of private value for a public good in a threshold
public goods game. In their domain, it was shown that the mechanism satisfies
the voluntary participation (IR) constraint provided the mechanism is sufficiently
accurate and agents are not too risk-averse.

In future work, process measures could be used as indicators of likely strikes, or
as indicators of pie sizes, to create behaviorally-enhanced mechanisms which avoid
disagreements. Such a process-informedmechanism can, in principle, reduce strikes
and improve efficiency, while also satisfying voluntary participation constraints so
that bargainers will agree to use them.

4.7 Conclusion
Much of the recent literature on bargaining has studied structured bargaining. We
reiterate here our motivations for studying unstructured bargaining in dynamic and
uncertain environments. First, much real-world bargaining is unstructured and
involves private information; unstructured bargaining generates process data that
can be used to predict strikes ahead of time; and theory can be used to make precise
predictions even with minimal structure.

In this paper we study dynamic unstructured bargaining in a game with one-sided
private information. We combine mechanism design theory with an equilibrium
selection approach that builds on a well documented empirical regularity: the appeal
of an equal split as a bargaining focal point. Our approach is agnostic regarding the
driving force behind equal splits. A large theoretical literature attempts to address
the question of why equal splits are focal; equal splits might result, for example, from
inequality aversion, concerns about fairness, or social norms. Another explanation
might be lying aversion, and our experimental design, which incorporates feedback
after each round of bargaining, may encourage truthful revelation. However, our
design also involves random, anonymous re-matching of bargaining partners after
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each game, which might be expected to act in the opposite direction.

Our theoretical model predicts that the rate of bargaining failures will be decreasing
in the pie size. The additional assumption of interim incentive efficiency implies that
the distribution of surplus will favor the informed player when the pie size crosses
a threshold. We find support for both of these hypotheses in our data. However, we
also observe an interesting departure from the “efficient” benchmark: bargaining
failures arise even at the highest pie levels and even after many rounds of play, and
the surplus is divided equally in many high stake games, in contrast to the efficient
equilibrium prediction.

In theory, the uninformed players’ payoffs must be identical in all pies where no
disagreements occur, generating an inherent trade-off between efficiency and equal-
ity. We propose two ways to resolve this tension, by either favoring efficiency and
dividing the pie equally given the efficiency constraint (“efficient” equilibrium) or
by imposing equal splits and only then maximizing efficiently (“equal split” equi-
librium). While the modes of the distributions of the informed player’s final offers
more closely match the efficient equilibrium, deal rates more closely match the
the equal-split equilibrium. Further, the uninformed players’ initial offers reflect
aspirations of equal splits in the largest pie. The latter two patterns suggest that the
uninformed players use disagreements as means to impose equal splits despite the
loss of efficiency.

Although our results show that theoretical predictions go a long way even in an
unstructured setting, they also highlight their limitations. The data qualitatively
match the mix of the two equilibria patterns, but some games do not match either.
Further, the theoretical prediction depends on the realization of the pie size, which
is private information, and therefore might not be observable in many realistic
circumstances. We propose to overcome this obstacle by analyzing bargaining
process data.

Our machine learning approach shows that process data is incrementally informative
for predicting strikes when the pie size is included in the model, and is as just
as informative as knowing the pie size when the latter is unobservable (before
the deadline has arrived). These results suggest that some bargaining failures
may result from process “mistakes” that could have been avoided if players had
behaved differently. Process data may be used to avert strikes and other inefficient
disagreements by offering ‘course corrections’ in the bargaining process. Bargaining
process data could potentially be much richer, and therefore substantially more
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informative, than the series of cursor locations that our exploratory investigation
has focused on. Our results should therefore be considered as a lower bound
regarding the predictive power of process data. Incorporating bargaining features
such as verbal communication, non-verbal gestures (e.g., facial expressions, body
language), and physiological responses (e.g., skin conductance, pupil dilation, brain
activity) are likely to improve predictive performance. These biomarkers could be
informative for understanding the origins of costly disagreements in bargaining.

Finally, we acknowledge that our laboratory bargaining institution deliberately omits
many features of natural bargaining. Lifelike bargaining is often face-to-face, has
little anonymity, uses natural language, includes repetition and resulting reputations,
and typically has two-sided private information. Adding more lifelike features can
also be easily done step-by-step, as part of a research program reviving interest in
unstructured bargaining. Typically, adding natural institutional properties makes it
harder to Figure out theoretically what behavior will result. The opposite is true
when machine learning is used: adding more natural institutional properties simply
adds more “features" that can be used for prediction.
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APPENDIX

4.A Mathematical Appendix
Proof of Lemma 1
As noted in the main text (Equation 4.3) individual rationality (IR) and incentive
compatibility (IC) for the informed player imply that:

γkπk − xk ≥ γ jπk − x j for all j , k .

We restate Lemma 1 here:

Lemma 1. If the bargaining mechanism satisfies IR and IC:

1. deal rates are monotonically increasing in the pie size k.

2. The uninformed player’s payoffs are monotonically increasing in the pie size.

3. The uninformed player’s payoff is identical for all states in which the deal
probability is 1.

We first show that γk is decreasing in k (Lemma 1.1), and then rely on Lemma 1.1
for the proofs of Lemmas 1.2 and 1.3.

Proof. Consider πk and πk+1. Incentive compatibility requires

γkπk − xk ≥ γk+1πk − xk+1

γk+1πk+1 − xk+1 ≥ γkπk+1 − xk .

These two equations imply that

(γk+1 − γk )πk+1 ≥ xk+1 − xk ≥ (γk+1 − γk )πk (4.11)

and therefore
(γk+1 − γk )(πk+1 − πk ) ≥ 0. (4.12)

By definition, πk+1 ≥ πk , so then γk+1 ≥ γk , and therefore the disagreement (or
strike) rate 1 − γk is monotonically decreasing in the pie size.

The remaining results follow directly from Equations 4.11 and Lemma 1.1. By
Lemma 1.1, (γk+1 − γk )πk ≥ 0, so by Equation 4.11 xk+1 − xk ≥ 0, and therefore
the uninformed player’s payoffs are monotonically increasing in the pie size (Lemma
1.2). Furthermore, replacing γk = γk+1 = 1 in the righthand inequality of Equation
4.11, it immediately follows that xk = xk+1 (Lemma 1.3). �
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Proof of Lemma 2: The strike Condition
A mechanism is interim-efficient if it is Pareto optimal for the set of K + 1 agents:
the informed player for each pie size, and the uninformed player.

Following FKS, we first show that strikes in the “best” pie size πK are never efficient
for the class of direct mechanisms that we consider. That is, if the mechanism
µ = {γk, xk }

K
k=1 is efficient, then it must be the case that γK = 1.

If µ is an efficient mechanism, then the incentive compatibility conditions must hold
and so by Lemma 1 γK ≥ γk for all k ≤ K . If γK = 1 − δ < 1, we can define
a new mechanism µ∗ with γ∗K = 1, γ∗k = γk + δ, for all k < K , and x∗k = xk , for
all k. The mechanism µ∗ does not affect the uninformed player’s expected payoff,
but it increases the informed player’s payoff by δπK in state K and by δπk in states
1, . . . , K − 1, so the original mechanism cannot be efficient.

Next, if γk , k < K , can be increased without violating the IC constraint, the
uninformed bargainer is unaffected as is the informed bargainer in states j , k,
while player Ik , the informed bargainer in state k, is made better off. Therefore,
efficiency requires that right-hand side of Equation 4.11 holds at equality:

xk+1 − xk = (γk+1 − γk )πk+1. (4.13)

We make use of Equation 4.13 to derive Lemma 2, the strike condition, below.

Lemma 2. The strike condition: For IR and IC mechanisms, strikes in state k are
ex-ante efficient if

πk

πk+1
<

(1 −
∑k

j=1 p j )

(1 −
∑k−1

j=1 p j )
=

Pr(π ≥ πk+1)
Pr(π ≥ πk )

. (4.14)

Proof. To derive the strike condition, consider mechanisms µ = {γk, xk }
K
k=1 and

µ∗ = {γk + δk, xk + dk }
K
k=1 which satisfy IR and IC, and assume that both satisfy

4.13. Since µ∗ satisfies 4.13, we have

(xk+1 + dk+1) − (xk + dk ) = ((γk+1 + δk+1) − (γk + δk ))πk+1. (4.15)

By subtracting 4.13 from 4.15, we find a useful condition that

dk+1 − dk = (δk+1 − δk )πk+1. (4.16)
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Next, assume that strikes are not efficient in states k + 1, . . . , K , so that γ j = 1 if
j > k, but assume that that γk < 1. This implies that dk+1 = . . . = dK .

Let∆Vk and∆U represent the difference in payoffs between µ∗ and µ for the informed
player in state k and the uninformed player, respectively. If µ∗ dominates µ, then
∆Vk ≥ 0 for all k, and ∆U ≥ 0, and at least one of these inequalities is strict.

First, consider the K conditions for the informed player:

∆V1 = δ1π1 − d1 ≥ 0
...

...

∆Vj = δ jπ j − d j ≥ 0, j < k

∆Vk = δkπk − dk ≥ 0

∆Vj = δkπk+1 − dk ≥ 0, j > k .

Multiplying the conditions for players I1, . . . , Ik by p j and summing them up gives

k∑
j=1

p jπ jδ j ≥

k∑
j=1

p j d j .

Multiplying the equation for player k by (1 −
∑k−1

j=1 p j ) gives

(1 −
k−1∑
j=1

p j )δkπk ≥ (1 −
k−1∑
j=1

p j )dk .

Adding up these two conditions gives:

k∑
j=1

p jπ jδ j + (1 −
k−1∑
j=1

p j )δkπk ≥

k∑
j=1

p j d j + (1 −
k−1∑
j=1

p j )dk . (4.17)

Next we consider the uninformed player. If µ∗ dominates µ, it must be the case that
the uninformed player’s payoff from µ∗ is at least as large as in µ:

∆U =
K∑

j=1
p j d j =

k∑
j=1

p j d j + (1 −
k∑

j=1
p j )dk+1 ≥ 0
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k∑
j=1

p j d j + (1 −
k∑

j=1
p j )(dk − δkπk+1) ≥ 0

k−1∑
j=1

p j d j + pk dk + (1 −
k∑

j=1
p j )dk − (1 −

k∑
j=1

p j )δkπk+1 ≥ 0

k−1∑
j=1

p j d j + (1 −
k−1∑
j=1

p j )dk − (1 −
k∑

j=1
p j )δkπk+1 ≥ 0

k−1∑
j=1

p j d j + (1 −
k−1∑
j=1

p j )dk ≥ (1 −
k∑

j=1
p j )δkπk+1.(4.18)

Combining Equations 4.17 and 4.18 gives

k−1∑
j=1

p jπ jδ j + (1 −
k−1∑
j=1

p j )δkπk ≥

k−1∑
j=1

p j d j + (1 −
k−1∑
j=1

p j )(dk ) ≥ (1 −
k∑

j=1
p j )δkπk+1.

(4.19)

And this implies that

k−1∑
j=1

p jπ jδ j + (1 −
k−1∑
j=1

p j )δkπk ≥ (1 −
k∑

j=1
p j )δkπk+1. (4.20)

To examine whether strikes are efficient in state k, suppose µ∗ and µ have identical
strike rates in all states j < k. Then δ j equals 0 for all j < k, implying that

(1 −
k−1∑
j=1

p j )δkπk ≥ (1 −
k∑

j=1
p j )δkπk+1. (4.21)

Then δk > 0 implies that strikes are inefficient in state k if

πk

πk+1
≥

(1 −
∑k

j=1 p j )

(1 −
∑k−1

j=1 p j )
,

implying that strikes are efficient in state k if

πk

πk+1
<

(1 −
∑k

j=1 p j )

(1 −
∑k−1

j=1 p j )
,

or alternatively
πk

πk+1
<

Pr(π ≥ πk+1)
Pr(π ≥ πk )

. (4.22)

�
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Calculating strike rates using focal points: efficient equilibrium
The strike condition implies that disagreement is inefficient when the pie size is
4, 5 or 6, so we first fix γ4 = γ5 = γ6 = 1. Based on the strike condition and the
equal split principle, payoffs conditional on a deal are x6 = x5 = x4 = 2, x3 = 1.5,
x2 = 1 and x1 = 0.5. As no disagreement should occur for π ∈ {$4, 5, 6} and as the
predicted equilibrium payoff is x4 = $2 for these pies, it follows that the informed
player’s payoff for π ∈ {$5, 6} is always greater than for π = $4. Therefore, we set
xk = 0.5γkπk and then solve the IC inequalities for π ≤ $4:

γ j ≤
0.5πk

πk − 0.5π j
γk for all k ≤ 4, j , k . (4.23)

Solving the inequalities for k = 4 and j = 3, 2, 1 yields

γ3 ≤
2

2.5
(4.24)

γ2 ≤
2
3

(4.25)

γ1 ≤
2

3.5
. (4.26)

Solving the inequalities for k = 3 and j = 4, 2, 1 yields

γ3 >
2
3

(4.27)

γ2 <
1.5
2
γ3 (4.28)

γ1 <
1.5
2.5

γ3. (4.29)

Solving the inequalities for k = 2 and j = 4, 3, 1 yields

γ2 > 0 (4.30)

γ2 > 0.5γ3 (4.31)

γ2 > 1.5γ1. (4.32)

Finally, for k = 1 it is always optimal to report the truth if γ1 > 0, as offers exceeding
1 would generate a non-positive payoffs.

Maximal efficiency requires the largest possible values of γ1, γ2, γ3 which are com-
patible with the IC inequalities. The only upper constraint on γ3 is equation (4.24);
thus, we set γ3 =

2
2.5 = 0.8. The lowest upper constraint on γ2 is equation

(4.28); accordingly we set γ2 =
1.5
2 γ3 = 0.6. The value of γ1 is constrained by

equation(4.28), to be less than .8 ∗ 1.5
2.5 = .48 and is constrained by equation(4.32) to

be γ1 < γ2/1.5 = 0.4.Therefore, the maximal value is γ1 = .4.
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Calculating strike rates using focal points: equal split equilibrium
We first show that we can increase efficiency for every equal-split equilibrium
that has strikes in the “best” pie size πK . That is, if an equal-payoff mechanism
µ = {γk, xk }

K
k=1 maximizes efficiency (given equality constraints), then it must be

the case that γK = 1. Note that the analogous proof for the efficient equilibrium
(see Appendix 4.A) does not hold for the qual split equilibrium, as in the latter the
uninformed player’s expected payoff immediately depends on the deal rate.

If µ is amaximal efficiency equal payoffmechanism, then the incentive compatibility
conditions must hold and so by Lemma 1 γK ≥ γk for all k ≤ K . If γK = 1− δ < 1,
we can define a new equal-payoff mechanism µ∗ with γ∗K = 1, γ∗k = γk + δγk , for
all k < K , x∗K = xk +

δ
2 , and x∗k = xk +

δγk
2 for all k. The mechanism µ∗ increases

both players’ expected payoffs by δ
2πK in state K and by δγk

2 πk in states 1, . . . , K −1.
Further, µ∗ is an equal-split incentive compatible (i.e., complies with Eq. 4.9), as
the addition to both player’s expected payoffs is equal (compared to µ) and the ratio
between γk and γ j is identical to µ for all k, j. Thus the original mechanism cannot
be efficient maximizing equal-split equilibrium.

It follows that for maximizing efficiency (given equal splits) we must set γ6 = 1.
Then, we set for all k wk = 0.5πk and solve the IC inequalities for all π < 6:

γ j ≤
0.5πk

πk − 0.5π j
γk for all k < 6, j , k . (4.33)

Numerically solving this set of inequalities and taking the highest possible deal
rates (for maximal efficiency, in a similar manner to the solution of the efficient
equilibrium), we get exact numerical predictions of the deal rate for every given pie
size in the equal split equilibrium:

[γ6, γ5, γ4, γ3, γ2, γ1] = [1, 0.9167, 0.8167, 0.6917, 0.5250, 0.3583] (4.34)

4.B Pooling data
Caltech SSEL vs. UCLA CASSEL
Summary information of all of the experimental sessions (location, number of
subjects and gender by role) is recapitulated in Table 4.3. For comparing the
sessions taking places at Caltech vs. UCLA, we first calculated the mean deal rates
and payoffs (in case of a deal) for each subject and pie size, and contrasted the group
averages (see Table 4.4). Qualitatively, deal rates and payoff were monotonically
increasing with the pie for both groups. The most significant difference observed
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Table 4.3: Session information, I-Informed, U-Uninformed

Session No. Location Date N I Male I Female U Male U Female
1 Caltech 12/1/2011 10 3 2 3 2
2 Caltech 12/8/2011 10 2 3 2 3
3 Caltech 1/9/2012 8 3 1 2 2
4 Caltech 1/11/2012 16 5 3 5 3
5 Caltech 2/28/2012 8 3 1 1 3
6 UCLA 5/11/2012 18 6 3 6 3
7 UCLA 5/11/2012 20 4 6 6 4
8 UCLA 5/11/2012 20 6 4 6 4

Total 110 32 23 31 24

Table 4.4: Average payoffs (case of deal) and deal rates by pie size, Caltech vs.
UCLA

Pie size Venue 1 2 3 4 5 6

deal rates Caltech 0.43 0.50 0.56 0.71 0.75 0.84
UCLA 0.34 0.42 0.51 0.63 0.71 0.76
p-value* 0.14 0.29 0.42 0.11 0.36 0.03

Payoff, informed Caltech 0.39 0.98 1.60 2.23 3.02 3.83
UCLA 0.36 0.95 1.55 2.31 3.19 4.06
p-value* 0.67 0.61 0.56 0.40 0.05 0.05

Payoff, uninformed Caltech 0.61 1.05 1.45 1.82 2.01 2.19
UCLA 0.66 1.12 1.50 1.75 1.85 2.01
p-value* 0.44 0.21 0.40 0.37 0.04 0.03

c *Two-sided t-tests, uncorrected for multiple comparisons.

between the groups was a 9 percent increase of deal rates in the largest pie ($6)
at Caltech sessions. We used a 2-sided t-test to compare Caltech and UCLA
subjects; while for some of the pies we found statistically significant differences at
the 0.05 level, none of the differences survived correction for multiple hypothesis
(pmax = 0.096 using the Bonferroni correction, for deal rates at $6 pie).

First vs. second half of the trials
To compare the first and second halves of bargaining periods, we calculated the
mean deal rates and payoffs (in case of a deal) for each subject at any given pie size,
and contrasted the averages of the first and second halves of the periods (see Table
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4.5). Qualitatively, deal rates and payoff were monotonically increasing with the pie
for both groups. The largest difference observed was 8 percent increase of efficiency
(deal rates) in the second half compared to the first one, when the pie was $6. We
further used a 2-sided t-test to compare the two halves. While for some of the pies
we found statistically significant differences at the 0.05 level (in particular, deal
rates were higher and informed players’ payoffs in case of a deal were lower at the
Caltech pool), none of the differences survived correction for multiple hypothesis
(pmax = 0.24 using Bonferroni correction).

Table 4.5: Average payoffs (case of deal) and deal rates by pie size, first vs. second
half of the trials

Pie size 1 2 3 4 5 6

deal rates First 60 0.38 0.47 0.49 0.63 0.72 0.76
Last 60 0.39 0.45 0.58 0.70 0.73 0.84
p-value* 0.97 0.61 0.07 0.09 0.68 0.02

Payoff, informed First 60 0.43 1.02 1.63 2.32 3.17 4.03
Last 60 0.31 0.91 1.52 2.23 3.05 3.89
p-value* 0.08 0.03 0.08 0.15 0.10 0.13

Payoff, uninformed First 60 0.60 1.04 1.41 1.74 1.88 2.00
Last 60 0.68 1.13 1.53 1.82 1.99 2.17
p-value* 0.14 0.07 0.04 0.15 0.10 0.02

*Two-sided t-tests, uncorrected for multiple comparisons.

4.C List of process features and associated marginal effects
Figure, 4.10 summarizes all of the process features used to predict bargaining
outcomes. We provide further details of calculating some of the features below.

Initial difference negative? A binary indicator that equals one if the initial offer of
the informed player is greater than the initial uninformed player’s demand and zero
otherwise.

Positions ever matched? A binary indicator that equals one if the players’ bargain-
ing positions had previously matched and they later changed their minds.

Informed/ uninformed first change T. The first time in the game in which the
informed / uninformed player has updated his or her initial bargaining position.
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Figure 4.10: bargaining process features used for outcome prediction (deal=1) and
their estimated marginal effects.
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T since informed/ uninformed last change T. The time since the last time in which
the informed / uninformed player has updated his or her bargaining position.

Informed/ uninformed first/last change mag. The magnitude of the last informed
/ uninformed position change.

# informed/ uninformed changes. The number of times that the informed / un-
informed player has changed his or her bargaining position since the start of the
game.

Informed/ mean change mag. The mean magnitude of change in the informed /
uninformed player when he or she changed bargaining positions.

first change T. The first time in the game in which either player has updated his or
her initial bargaining position.

T since last change. The time since the last time in which wither player has updated
his or her bargaining position.

Informed / uninformed moved first? A binary indicator that equals one if the
informed / uninformed player was the first to change his or her bargaining position
in the game.

Informed / uninformed weighted avg. A weighted sum of the informed/ unin-
formed bargaining positions across time.

T∑
t=0

wt xt, (4.35)

such that t denotes time (between 0 and the current time T , sampled in a 0.1sec

resolution) and xt is bargaining position in time t. The weight wt equals

wt =
t2∑T

q=0 q2
. (4.36)

This results a linear combination where later bargaining positions are weighted more
heavily than earlier ones.

Current informed / uninformed / both are focal? A binary indicator that equals
one if the informed / uninformed / both players bargaining positions match the half
of either possible pie size (i.e., 0.4, 0.6, 1, 1.4, 1.6, 2, 2.4, 2.6, 3).
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4.D instructions
This is an experiment about bargaining. You will play 120 rounds of a bargaining
game.

In the game, one participant (the informed player) is told the total amount of money
(pie size) in each round. This amount will be $1, 2, 3, 4, 5, or 6, chosen randomly in
each trial. The amount will appear on the top left corner of the screen.

The other player is not informed of the pie size.

During each round, participants bargain over the uninformed player’s payoff.

The roles are randomly selected and fixed for the duration of the experiment. Before
each round, informed and uninformed players are randomly matched.

Participants negotiate by clicking on a scale from $0 to 6 (see Figure 1). Amounts
on the scale represent the uninformed player’s payoff.

During the first 2 seconds, participants select their initial offers. Note that the
initial location of the cursors is random. In the following 10 seconds, the partici-
pants bargain, using the mouse to select payoffs for the uninformed player. Clicking
the mouse on a different part of the scale moves the cursor.

A deal occurs when the cursors are in the same place for 1.5 seconds. When
both cursors are in the same place on the scale, a green rectangle will appear (see
Figure 2).

If a deal is made, the informed player’s payoff is equal to the pie size minus the
negotiated uninformed player’s payoff. If the agreement exceeds the total amount
of money, the payoff will be negative.

If no deal has been made after 10 seconds of bargaining, both participants get
$0.

Following each trial, the uninformed player will be shown of the pie size.
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The game has total 120 trials.

Before the experiment begins there will be 15 training trials, to allow you to practice.

At the end of the game, you will receive payment based on randomly selected
10% of your trials.

You will receive a $5 participation fee in addition to whatever you earn from playing
the game.

Quiz

Total amount is $3. Cursors were matched in $1. How much money does the
informed participant get? How much does the uninformed participant get?

Total amount is $2. Cursors were matched in $4.1. How much money does
the informed participant get? How much does the uninformed participant get?

One second before the end of the trial, both participants have agreed on payoff
of $2 and the green rectangle appears. What is going to happen when the trial ends?

Both participants have agreed on payoff of $2 and the green rectangle appears.
After one second, the uninformed player changed his offer to $2.5. What is going
to happen?
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C h a p t e r 5

CONCLUSION

Over the past few decades, research in the field of Behavioral Economics has led
to extensive documentation of systematic biases from the "rational" benchmark in
human decision-making. Many biases persist in seemingly efficient market environ-
ments, and endure even when incentives are high and learning is beneficial. These
findings have challenged many core assumptions underlying traditional economic
models, and their impact has been far reaching.

An important catalyst of Behavioral Economics research was the development of
experimental methodologies for quantifying and describing human behavior in the
laboratory. In this sense, behavioral economics’ role in advancing the understanding
of how humans make decisions is akin to the role that Psychophysics had in the
progress of vision research. Much of what we know about vision today had emerged
from extensive documentation of perceptual biases in carefully controlled laboratory
settings, along with the development of metrics and experimental methodologies in
the field of Psychophysics.

Behavioral Economics offers a descriptive level of analysis, which is an essen-
tial step towards understanding the phenomena it studies. For the case of vision
research, much of the impetus that followed required two additional levels of anal-
ysis, originally suggested by David Marr (Marr and Poggio, 1976). In Marr’s
framework, Psychophysics served as the “computational” level of analysis, mapping
the correspondence between a visual environment and a psychological representa-
tion. Psychophysics was combined with an “algorithmic” level analysis, aiming to
reverse-engineer the process that generates the mapping in a formal mathematical
fashion, and an “implementation” level analysis designed to test the feasibility of
the algorithmic hypotheses using biological and neural data.

We are now in the point in history when our understanding of human decision
making can benefit from combining the three levels of analysis together in a similar
fashion. Technological and methodological developments allow measuring, ma-
nipulating and modeling human behavioral and biological variables, enriching the
descriptive mapping between stimulus and response. Non-choice measurements,
such as brain activity, eye tracking, skin conductance, response times, facial expres-
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sions, hormonal levels, and more, allow generalizing Marr’s framework to studying
the mechanisms underlying economics choice in a tri-level analysis:

Computational: finding the correspondence between stimulus and actions, as
traditionally studied by experimental and behavioral economists.

Algorithmic: reverse-engineering the cognitive processes that might generate the
observed computational correspondence, taking into account biological aspects
(e.g., computational constraints, processing speed) and the type of problems that the
human brain has honed to solve over the coarse of evolution.

Implementation: testing the feasibility of the algorithmic hypothesis, using bio-
logical and neural models and data.

The current dissertation demonstrates the potential contribution of this tri-level
framework. The first chapter illuminates a well-documented decision bias, extrap-
olative belief formation. In contrast to the traditional economic approach of deriving
predictions that are based on ad-hoc axiomatic statements (Rabin, 2000), I propose
a neurally plausible algorithm (Yu and Cohen, 2009), which theoretical predictions
closely match the behavioral data. The two other chapters further demonstrate how
biological variables (hormonal levels) and non-choice measurements (bargaining
process data), that are traditionally ignored by economists, can be used for predict-
ing meaningful economic outcomes. I am hopeful that this work will set the grounds
for further investigations at the algorithmic level, that will shed further light on how
these “hidden” variables influence welfare loss due to inaccurate responses (e.g.,
incorrect CRT answers) and costly disagreements in bargaining.

Pasadena, California, May 2016.
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