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ABSTRACT 

At the broadest scale, this thesis is an investigation of how life modulates the movement of 

essential elements (carbon, sulfur, nitrogen, and silicon) on modern and geologic 

timescales.  Chapters 1 and 2 explore carbon and sulfur cycling microbial communities 

found centimeters below the seafloor in hydrocarbon-rich methane seep ecosystems.  At the 

Hydrate Ridge methane seep, we investigated how microbial partnerships direct the flow of 

methane and sulfide in these benthic oases by using identity-based physical separation 

methods developed in our lab (Magneto-FISH) in conjunction with community profiling 

and metagenomic sequencing.  This method explores the middle ground between single 

cell and bulk sediment analysis by separating target microbes and their physically 

associated community for downstream sequencing applications.  Magneto-FISH captures 

were done at a range of microbial taxonomic group specificities and sequenced with both 

clone library and next-gen iTag 16S rRNA gene methods.  Chapter 1 provides a 

demonstration of how FISH probe taxonomic specificity correlates to resultant Archaeal 

taxonomic diversity in Magneto-FISHed seep sediments, with specific attention to 

preparation of Archaea-enriched samples for downstream metagenomic sequencing.  In 

Chapter 2, a Bacteria-focused parallel environmental isolation and sequencing effort was 

subjected to co-occurrence analyses which suggested there may be far more microbial 

associations in methane seep systems than are currently appreciated, including partnerships 

that do not involve the canonical anaerobic methane oxidizing archaea and sulfate reducing 

bacteria.  With samples from IODP Expedition 337 Shimokita coalbed biosphere, Chapter 

3 provides evidence for an active microbial assemblage kilometers below the sea floor in 

the deepest samples ever collected by marine scientific ocean drilling. Using in situ 

temperature Stable Isotope Probing (SIP) incubations and NanoSIMS, we investigated 

whole community activity (with the passive tracer D2O) and substrate specific activity with 

C1-carbon compounds methylamine and methanol.  We found deuterium-based turnover 

times to be faster (years) than previous deep biosphere estimates (hundreds to thousands of 

years), but methylotrophy rates to be slower than previous carbon metabolic rates.   
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1 
I n t r o d u c t i o n  

 

While not unified by a single method or 

study location, this thesis provides four 

examples of how targeted methods are 

uniquely able to resolve the character of 

biologically-mediated carbon, sulfur, 

silicon, and nitrogen cycling.  Discerning 

the biological component of the systems 

explored herein is fraught with difficulty 

stemming from their complexity (Chapters 1 

and 2), age (Appendix A and B), or 

metabolic reticence (Chapter 3). 

Chapters 1 and 2 provide a method 

(Magneto-FISH) and an application (modern 

methane seep sediments) for dealing with 

complex microbial communities where 

multiple species may have, at least 

superficially, similar roles, such as sulfate 

reducing bacteria and anaerobic methane-oxidizing archaea, but yet certain partnerships appear 

preferred over others.  By a phylogenetically-selective mechanism, we are able to enrich for target 

microbes and their physically associated microbial partners to explore spatial arrangement and 

sequence space in tandem.  It is an attractive method for any environment with physically 

associated microorganisms that can bridge work done at the single-cell and bulk microbial 

community levels to provide a more holistic framework for microbial interactions.  

The Appendices address more historical geobiological questions of how the evolution of land plants 

may have affected global silicon and carbon cycling (Appendix A) and if microorganisms may be 

responsible for the structures preserved in microbial mats from the rock record (Appendix B).  In 

both of these systems the original biomaterial is a palimpsest – no longer present or too altered to 

cm	below	
seafloor	…	

to	km	below	seafloor	

Coalbeds 

From	cm	…	



 

 

2 
directly address our research questions.  To overcome the effects of time, we utilized comparative 

biology methods to determine how extant plants (early evolving land plant lineages) and mats 

(modern carbonate platform analogs) create the biominerals and biostructures, respectively, that we 

may see preserved.  The applications herein provide application and integration of modern biology 

to Earth history questions that exemplifies the toolbox of geobiology. 

The final chapter (3) interrogates a unique deep biosphere sedimentary environment where 

terrestrial organic matter from a paleo-swamp has been buried for millions of years under what has 

now transitioned to an open marine environment.  Initial genetic and geochemical results from 

IDOP Expedition 337 indicate an active assemblage of microbes similar to a modern swamp 

community (Inagaki et al. 2015), but cell abundances lower than retrieved from any other IODP 

cruise (1-100 cells/cm3), despite the extremely high cell abundances at the sediment surface (109 

cells/cm3).  This extremely low biomass provides a technical challenge to both measuring activity 

and ensuring the measured activity reflects that of the in situ community, rather than any of the 

myriad contamination sources from drilling to sequencing or an overprinting abiotic process.  One 

could even argue that deep sea drilling is even harder than detecting life in Martian samples, as the 

contamination on the Earth’s surface is so much higher.   

As we abut the limit of cell detection, we can no longer hope that the in situ cell concentration will 

be above the background contamination signal.  One of the biggest sources of contamination, 

drilling mud, is also required for the riser drilling technology that allows deep core recovery.  

Stringent contamination control, such as identification of samples with high porosity and fracture 

planes via onboard tomography (CAT scan), can aid in determining the most pristine samples in 

real-time to avoid using them for stable isotope probing (SIP) incubations.  However, it was not 

possible to remove all sources of contamination from all samples.  Therefore, tracking 

contamination is a more viable pursuit than attempting to remove it completely.  This can be done 

onboard by adding chemical tracers like perfluorocarbon (PFC) to drilling mud and monitoring its 

concentration, or performing sequencing assays for known microbial contaminants such as water 

column marine organisms for all downstream biological samples.  In addition to these 

microstructural, chemical, and genetic contamination identification methods, hydrogenase 

enzymatic and SIP-NanoSIMS activity-based controls showed that when putative contaminant cells 

did come into contact with samples, they were “dead on arrival,” making our activity based 

measures robust even to contaminant cells for determining viability of in situ populations.  While it 



 

 

3 
cannot be ignored that contaminant cells may provide a potential organic carbon source, we did 

not determine that any contaminant cells were present (based on expected size for deep biosphere 

cells) in the incubations discussed in this thesis.   

In addition to tracking, technological advancements in sample collection were also used to reduce 

contamination.  Cruises rely heavily on porewater data to determine potential metabolisms, activity 

profiles, effects of transition from in situ to incubation, or even simply concentrations to use for 

incubation conditions, but we were either unable to recover any porewater, or what was recovered 

was too contaminated with drilling mud, through traditional onboard squeezing methods from the 2 

km below seafloor coalbeds.  To overcome porewater exposure to drilling mud, Exp. 337 was able 

to use a specialized formation water-sampling device, Schlumberger’s Quicksilver probe, for a few 

select horizons.  This allowed us to recover more pristine interstitial water at formation pressures, 

which is extremely important for gaseous substrate concentration measurements.  These Qucksilver 

probe samples allowed us to confirm the high (mM) levels of ammonium measured in our SIP 

incubations, highlighting a conundrum of the deep biosphere that has also been found in other 

studies: Why do deep biosphere cells show a clear preference for nitrogen incorporation over 

carbon, if they live an ammonium replete environment?  The cause of this phenomenon should be a 

high priority for future deep biosphere research and emphasizes how much remains to be discovered 

about deep biosphere physiology.   

Another approach to understanding deep life physiology has been through attempting to constrain 

metabolic rates and relating them to turnover of elements deep essential for life (i.e. hydrogen, 

nitrogen, and carbon).  The deep biosphere literature has gravitated toward using a discussion of 

turnover time, as opposed to growth rate or doubling time, since production of new biomass cannot 

be predominantly attributed to production of new cells (doubling) over maintenance in energy 

limiting environments.  There is also evidence that deep life is good at recycling biomaterials as a 

potential energy conservation technique (Takano et al. 2010), which provides an additional caveat 

to turnover calculations that requires further exploration.  However, Morono et al. 2011 showed that 

most deep biosphere cells were viable, if not actively replicating.  At its base level, turnover is the 

reciprocal rate of some process, be it sulfate reduction coupled to acetate oxidation or amino acid 

degradation.  Converting these rates to turnover times enables comparison to geologic processes, 

such as sedimentation rate or thermal degradation of organic matter. Previously published deep 

biosphere biomass turnover times have all been upwards of thousands of years before SIP-
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NanoSIMS based times, which appear to be months to years based on our findings that those of 

Morono et al.  SIP-NanoSIMS provides powerful, single-cell resolution of minimal microbial 

activity that is not possible with bulk geochemical or SIP-RNA/DNA methods.  Our study was also 

able to show that microbial assemblages appear to have different modes of activity within these 

viable populations and different biosynthesis rates between hydrogen, nitrogen, and carbon, as 

discussed in Chapter 3. The 2 kmbsf biosynthesis-based turnover times are slower than times for 

shallower samples that were provided more substrates (Morono et al. 2011), but we do not know if 

this is an effect of substrates provided and/or differences in the microbial potential for activity from 

200 m to 2000 m below seafloor.  As we continue to use SIP-NanoSIMS to study the deep 

biosphere, these distinctions may become more resolved.  The continued application of deuterated 

water as a passive tracer can also provide a baseline metric for unamended, or minimally amended, 

activity conditions in each new system to connect all future SIP-NanoSIMS experiments, and better 

determine what is unique to a new environment and what may be universal to deep life.   

Finally, the results from Exp. 337 have opened new avenues for conceptualizing the residence time 

of carbon in coals that have never reached sterilization conditions.  With global lignite reserves 

estimated at 839 Gt (Killops & Killops 2013), understanding what portion of this carbon, assumed 

stabilized in the lithosphere, may be biologically mobilized and potentially returned to the surface 

biosphere is important for understanding both deep life and global carbon cycle regulation.  Initial 

investigations into carbon isotopic composition of methoxy-groups in Exp. 337 coal samples are 

order 50 per mil enriched over the bulk coal carbon values, which provides the tantalizing prospect 

of a signal for microbial distillation over millions of years.  While at the same time, other work 

suggests that high-pressure environments cause a significant     (–20 ‰) depletion in biomass 

carbon from their carbon source (Fang et al. 2006).   

Even with a high-resolution, single-cell activity technique, we must know more about microbial 

physiology under high pressure, high temperature, and slow growth conditions to be able to 

contextualize in situ deep biosphere measurements and tease apart what is physiology versus 

environmental in future deep biosphere SIP-NanoSIMS incubations.  Target questions include: 

Why do microbial populations appear to show different physiological modes, even when in 

theoretically uniform conditions (Kopf et al. 2015)? How does high pressure affect both natural and 

labeled isotopic enrichments?  What are reasonable water assimilation constants for slow growth 

conditions, and archaea in general?  Can we overcome limitations of deep biosphere biomass and 



 

 

5 
develop methods to discern biosynthesis of new biomass from microbial maintenance and repair or 

recycling of necromass?  These constraints on biomass turnover, along with technological 

advancements in three-dimensional imaging of deep biosphere spatial relationships, will then lay 

the groundwork for myriad other deep biosphere constraints, such as genetic exchange and 

evolution rates.  

The more we know about how life thrives and survives in the present, the more we can plan for our 

future and interpret our past.  The deep biosphere provides a unique environment that blends active 

biological processes operating in geologic time capsules that are isolated from solar primary 

production.  Through the combination of additional microbially–motivated IODP cruises to more 

environments and carefully cultivated laboratory experiments, we have much to explore in the years 

to come that will advance our understanding of life’s most extraordinary forms on our planet and 

maybe others. 
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