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ABSTRACT 

Nitrogenase is the only known enzyme capable of nitrogen fixation, the reduction of 

dintrogen to ammonia, a metabolically available form of nitrogen. Developing an 

understanding of the complex mechanism required for biological nitrogen fixation requires 

that the enzyme be characterized in catalytically relevant states, such as those involving 

ligand binding and reduction. Nitrogenase catalyzes this reaction through the cyclic 

interaction of two metalloproteins, the Fe-protein and the MoFe-protein which contain 

three distinct metalloclusters, in an ATP-hydrolysis dependent electron transfer reaction. 

The binding and subsequent reduction of substrates requires multiple electrons donated 

from the Fe-protein to the MoFe-protein, in which the active site is located. In this study, 

we have structurally characterized the binding of two inhibitors to the FeMo-cofactor, CO 

and the Se of SeCN-. Both interactions involve the displacement of a single S, and the Se 

was used as a label to follow the interchange of three S sites within the FeMo-cofactor 

during catalysis. These finding change any future approaches to characterize the 

mechanism of biological nitrogen fixation, requiring that structural changes be considered 

for substrate binding and reduction. 
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1 
I n t r o d u c t i o n  

Summary 

Nitrogenase is the only known enzyme capable of reducing dintrogen to ammonia in a 

process called biological nitrogen fixation. This step within the nitrogen cycle is key to 

transforming inert dintrogen into a metabolically available form due to the immense 

nitrogen requirement by all biological systems in the production of amino acids and nucleic 

acids. Nitrogenase is composed of two proteins, the Fe-protein and the MoFe-protein. The 

two component proteins contain three metalloclusters central to the reduction of substrates. 

The Fe-protein contains a single [4Fe:4S] cluster responsible for electron transfer to the 

MoFe-protein. The MoFe-protein contains two unique metalloclusters: the P-cluster 

[8Fe:7S], and the nitrogenase active site, the FeMo-cofactor [7Fe:9S:Mo:C]-R-homocitrate. 

The nitrogenase mechanism is not well-understood, which is reflective of the complex 

nature of this catalytic process and the poorly characterized electronic structure of the 

FeMo-cofactor. 

 

The work described herein focused on the characterization of CO-ligand binding and 

catalytically-dependent selenium incorporation and migration in the FeMo-cofactor. X-ray 

crystallography, kinetic analysis, continuous-wave electron paramagnetic resonance (cw-

EPR) spectroscopy, and electron spin echo envelope modulation (ESEEM) spectroscopy 

were used to explore the properties of these states. 

 

A crystallographic structure was refined from data collected on crystals of CO-inhibited 

MoFe-protein. Characterization of this ligand-bound state required the preparation of a CO-

inhibited sample for protein crystallization from a heterogeneous mix of both component 

proteins in an assay containing an ATP-regeneration system. The data resulted in the first 

ligand-bound structure of the FeMo-cofactor, demonstrating that the active site undergoes 

structural changes upon ligand binding, replacing a bridging sulfur with a CO. Upon 

reactivation of the CO-inhibited MoFe-protein, the CO dissociated and the site was re-



 

 

2 
occupied with a sulfur, demonstrating that the structure of the CO-inhibited protein was of 

mechanistic relevance for ligand binding. 

 

 Following the recognition of a sulfur dissociating from the FeMo-cofactor upon ligand 

binding, we identified and characterized a selenium containing inhibitor of substrate 

reduction, SeCN-, and determined the structure of the inhibited MoFe-protein.  The SeCN- 

inhibited MoFe-protein structure, Av1_Se2B, showed that the same site where CO binds to 

the cofactor had a selenium atom, site specifically incorporated.  Determination of the 

catalytic activity of the Se-incorporated FeMoco and structural characterization of the 

protein following catalytic turnover resulted in migration of the selenium through three 

sulfur sites. Time-dependent analysis of turnover-dependent migration culminated in a 

series of structures showing migration to the three FeMo-cofactor sites, indicating 

structural rearrangements occurring that involved the labilization of three sulfur atoms 

during catalysis. 

 

Additionally, inspection of the CO-inhibited structure revealed electron density at a pocket 

in the MoFe-protein possibly corresponding to the binding site for a sulfur species. The 

pocket is lined with positively charged amino acids, making it a possible anion-binding 

site. Non-specific anion binding at this site was tested by co-crystallization of the MoFe-

protein with NaBr, NaI, and KSCN, revealing no increased density at the site with NaBr or 

NaI, but analysis of both electron density and anomalous difference density maps indicated 

that a SCN- anion could occupy this site. Inspection of the Av1_Se2B structures resulted in 

identification of increased electron density at this site, possibly by a low-occupancy Se 

atom, although no Se was identified at this site in the Se-migration freeze-quench 

experiments.  The biological relevance of this site is not clear from these experiments. 

Further experiments must be run to identify if it is a sulfur-binding pocket used to store a 

sulfur atom to bind at the FeMo-cofactor after dissociation of ligands. 

 

Due to the unique crystallographic and spectroscopic properties of selenium, cw-EPR and 

ESEEM measurements were performed in collaboration with the Weber and Einsle labs, at 



 

 

3 
Albert-Ludwigs-Universität Freiburg, on Av1_Se2B samples with natural abundance and 
77Se isotopically labeled selenium. Initial spectral analysis indicates zero-field splitting of 

the principal g-values, and identification of peaks only present in the isotopically labeled 

ESEEM spectra indicate hyper fine coupling. The physical characteristics resulting in this 

data are not determined, although these experiments provide important information to 

determine electronic and magnetic details of the FeMo-cofactor. 
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The Nitrogen Cycle 

Nitrogen is essential to all living organisms, as a necessary component of amino acids and 

nucleic acids, the building blocks of life. Despite the fact that our atmosphere contains 

approximately 78% nitrogen, atmospheric dinitrogen is inert under most conditions, 

making it unavailable for uptake into biological systems. In order to ensure bioavailability 

of nitrogen compounds, many enzymes have evolved to interconvert different forms of 

nitrogen for use in various metabolic pathways in a process called the nitrogen cycle. 

 

The Nitrogen Cycle involves the chemical transformations that dinitrogen undergoes in the 

ecosystem. This cycle includes multiple steps that reduce and oxidize nitrogen compounds 

in order to introduce nitrogen into systems and return it to the atmosphere in the form of 

N2. The main processes involved include: nitrogen fixation, nitrification (ammonia 

oxidation, nitrite oxidation), denitrification, and anaerobic ammonium oxidation (anamox) 

[4] (see fig 1). 

 
Figure 1: Major reactions in the nitrogen cycle. (this figure is based upon figure 1 in [4]) 
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5 
Nitrogen fixation is the reduction of inert dinitrogen to produce ammonia, a chemically 

and metabolically available form of nitrogen, and is the only process capable of introducing 

N2 into the Nitrogen cycle. 

The overall chemical equation describing nitrogen fixation is:  

N2 + 6H+ + 6e- à 2NH3 

This reaction is thermodynamically favorable (the overall Gibbs free energy of NH3 

formation from N2 is -16 kJ/mol), but kinetically unfavorable (at ambient temperatures) due 

to the strong NN triple bond (the bond dissociation enthalpy for N2 is 941 kJ/mol) that 

creates an insurmountable activation energy when not in the presence of a catalyst (see 

figure 2). The catalyzed formation of NH3 may to occur through the formation of 

intermediates through 2- and 4- proton and electron N2 reduced species (diazene and 

hydrazine) which both have enthalpies of formation that require energy input (diazene: 

+212 kJ/mol, hydrazine: +95 kJ/mol). [5] 

 

 
Figure 2: The energy barrier for reducing N2 to produce NH3 [6]. 

 

Nitrification (aerobic) 

From ammonia, nitrates can be formed via oxidation, in a process called nitrification. In 

this multistep process, ammonia, NH3, is converted to nitrite, NO2
-, and then finally to 

nitrate, NO3
- [4]. 
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The enzymatic conversion of NH3 to NO2

- involves a two-step process in which ammonia 

is first oxidized to hydroxylamine by the enzyme ammonia monooxygenase, followed by a 

second oxidation step converting hydroxylamine to nitrite by the enzyme hydroxylamine 

oxidoreductase. The overall reactions for nitrification are: 

1) NH3 + O2 + 2e- + 2H+à NH2OH + H2O 

2) NH2OH + H2O à NO2
- + 5H+ + 4e- 

Nitrite oxidation to produce nitrate is performed by nitrite-oxidizing bacteria. The overall 

chemical reaction is:  NO2
- + ½ O2 à NO3

- 

 

Anammox (anaerobic ammonia oxidation) 

Anammox is the anaerobic oxidation of ammonia by anammox bacteria that uses nitrite as 

an electron acceptor, with N2 and water as the end products [4]. The bacteria responsible 

for anammox are of the phylum Plantomycetes [7]. The overall chemical reaction occurring 

during anammox is:  

NH4
+ + NO2

- à N2 + 2H2O 

 

Denitrification (anaerobic) 

Denitrification is the process by which nitrate is converted back to dinitrogen. The 

multistep denitrification process also produces other gaseous nitrogen species such as NO 

and N2O. The overall reaction steps for denitrification are: 

1) NO3
- à NO2

- à NO + N2O à N2 

The complete redox reaction of denitrification is: 

2) 2NO3
- + 10e- + 12H+ à N2 + 6H2O 

 

The Nitrogen Cycle is a very important part of the biogeochemical system. The production 

and consumption of such a variety of nitrogen compounds highlights the complexity and 

necessity of this delicately balanced process. The global nitrogen cycle has been altered 

significantly due to human activity, with benefits deriving from increased food production, 

and drawbacks from negative human health issues, decreased biodiversity, and climate 

change. Due to the enormous impacts from anthropomorphic influence, developing a 
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greater understanding of this cycle as a whole and the individual reactions within it are 

important for maintaining sustainability [8]. 

 

Nitrogen Fixation 

Nitrogen Fixation is the only step in the nitrogen cycle in which N2 is introduced into the 

cycle as a metabolically available and chemically active form. Due to the significant 

biological requirements for nitrogen, nitrogen fixation is one of the most impactful 

biochemical processes.  

 

There are two main sources for producing ammonia: nitrogenase, and the industrial Haber-

Bosch process. Nitrogenase is a two-component metalloenzyme, and is produced in a small 

group of mainly bacteria, and some archaea, called diazotrophs. Nitrogenase carries out 

biological nitrogen fixation in an ATP hydrolysis-dependent reaction at physiological 

temperatures and pressures (~25°C, 1 atm) in the absence of oxygen (it should be noted 

that the enzyme is oxygen sensitive, but diazotrophs survive in a variety of conditions).  

 

The Haber-Bosch process utilizes an iron catalyst and high temperatures (300-500°C) and 

high pressures (15-25 MPa) to carry out industrial nitrogen fixation. This process provides 

nitrogen for fertilizers and is used in producing ~50% of the world food supply, making it 

incredibly important for supporting the current world population [9]. Unfortunately, the 

extreme conditions required for this process lead to many consequences including 

consumption of approximately 1-2% of world energy production [8, 9]. In addition, the 

application of nitrogen fertilizer has not been limited, and so additional consequences 

derive from widespread overuse of nitrogen rich fertilizer and consequent leakage into 

soils, vegetation, and water. Denitrification of these sources leads to the production of 

many reactive species (i.e. NOx into the atmosphere) and long term increased 

concentrations of nitrogen species (such as in the oceans where nitrogen species can easily 

accumulate) [8]. 
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Developing an understanding of biological nitrogen fixation provides a pathway to 

address energy concerns related to the Haber-Bosch process by providing biological 

inspiration for the synthesis of nitrogen-fixing analogs. 

 

Diazotrophs 

Diazotrophs are organisms capable of nitrogen fixation; of the nitrogen-fixing organisms 

known, most are bacteria and some are archaea.  Diazotrophs exist as both free-living 

organisms and in symbiotic systems. Free-living diazotrophs include both anaerobic (such 

as Clostridium) and aerobic (such as Azotobacter) bacteria as well as photosynthetic 

bacteria (such as cyanobacteria; these include aerobic and anaerobic photosynthetic 

systems). Symbiotic diazotrophs include organisms such as rhizobia, found in nodules of 

legume plant roots, and symbiotic cyanobacteria that associate with fungi as lichens or with 

ferns and cycads. 

 

Azotobacter vinelandii 

Of the diazotrophs, Azotobacter vinelandii is the best characterized with respect to 

nitrogenase production, and thus is an excellent model for studying biological nitrogen 

fixation. Azotobacter vinelandii is an obligate aerobe, gram-negative soil bacterium of the 

class Gammaproteobacteria [10]. It produces Mo-dependent nitrogenase, but under 

conditions of limited Mo, will produce the V- and Fe-only- dependent nitrogenase [11, 12]. 

 

Nitrogenase is an anaerobic enzyme, and is irreversibly inactivated by contact with O2. Due 

to this caveat for enzymatic activity, Azotobacter vinelandii has a high rate of oxidative 

respiration, thus providing an anoxic environment within the cell. Azotobacter vinelandii 

produces five terminal oxidases in combination with multiple NADH-dependent 

respiratory complexes to ensure high respiration and ATP production rates [13]. 

Additionally, oxidases from Azotobacter vinelandii have increased affinity for oxygen 

relative to other organisms [14]. 

 

Azotobacter vinelandii requires a complex set of maturation proteins with approximately 82 
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genes associated with the formation and regulation of nitrogenase production [15]. The 82 

genes associated with nitrogenase production are organized into 16 different gene clusters, 

with specific genes associated with production of the nitrogenase enzyme with 

molybdenum, vanadium, or iron-only, termed “Nif”, “Vnf”, and “Anf”, respectively. These 

genes encode proteins associated with nitrogenase production and assembly, regulation, 

and housekeeping, indicating a complex system for performing nitrogen fixation [15]. 

 

Nitrogenase 

Nitrogenase is the only known enzyme capable of biological nitrogen fixation, the 

reduction of N2 to produce NH3. The stoichiometric biological reduction of nitrogen is: 

N2 + 8H+ + 8e- + 16ATP + à 2NH3 + 16ADP + 16Pi 

 

 

 
Figure 3: Nitrogenase complex. [from PDB: 1N2C] 

A) The nitrogenase complex shown in ribbon diagram. In green is the Fe-protein dimer, and in blue and red is 

the MoFe-protein α2β2 heterotetramer.  B) The nitrogenase complexes are shown with the metal clusters 

highlighted. In the Fe-protein (green), two ADP·AlF4 are shown bound to each dimer and the Fe4S4 cluster is 

at the dimer interface. In the MoFe protein, the P-cluster and FeMo-cofactor are highlighted, with one set of 

metalloclusters per αβ unit. 

 

Nitrogenase utilizes two proteins (which contain three different metalloclusters), ATP, and 

endogenous ferredoxins/flavodoxins to ultimately reduce N2 under ambient conditions. 

Nitrogenase consists of two proteins, the MoFe protein and the Fe protein; the Fe protein is 

A 

 [4Fe:4S] 
 P-cluster 

 FeMo-cofactor 

B 



 

 

10 
a homodimer with a [4Fe:4S] cluster at the interface between the two subunits, and the 

MoFe protein is an α2β2 heterotetramer with each αβ dimer forming a single catalytic unit 

containing two unique metalloclusters, the P-cluster and the FeMo-cofactor (see figure 3). 

The P-cluster [8Fe:7S] acts as an intermediate electron acceptor/donor, receiving electrons 

from the Fe-protein and delivering them to the FeMo-cofactor, the active site for substrate 

reduction. The FeMo-cofactor is the most complex metallocluster known in biology, 

consisting of a three-fold symmetric [7Fe:9S:Mo:C]-R-homocitrate complex. During 

biological nitrogen fixation, ferredoxins/flavodoxins deliver initial electrons to the Fe-

protein, followed by an ATP-hydrolysis dependent electron transfer from the Fe-protein to 

the MoFe-protein.  

  

Iron Protein 

 

 
Figure 4: Fe-Protein structure (PDB: 2N1P): from top view down the 2-fold molecular symmetry axis (left), 
side view (right). 
 
The iron protein is the only known reductant of the MoFe-protein capable of driving NH3 

production. The iron protein is a 60 kDa homodimer (γ2), and has a single [4Fe:4S] cluster 

at the interface between the two monomers, coordinated by two cysteines in each subunit 

(Cys97 and Cys132) (see figure 4) [16]. The iron protein is a member of the MinD family 

of the SIMIBI (Signal Recognition Particle, MinD and BioD) class of NTPases which all 

contain a deviant Walker A motif [17], demonstrating a KGG signature sequence. The iron 

protein binds two MgATP per dimer, with the ATPs oriented parallel to the dimer interface 

with the phosphate groups bound at the Walker A motif [18]. The Fe-protein interacts with 
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and transfers electrons to the MoFe-protein. Upon binding, the Fe protein undergoes 

structural changes, including a ~13 degree rotation of each monomer, and a shift of the 

[4Fe:4S] cluster ~4 Å towards the surface of the complex [19].  

 

 Each monomer contains some common elements of nucleotide binding proteins, including: 

predominant beta-sheets flanked by alpha helices, a Walker-A motif, and two switch 

regions (switch I and switch II) that interact with the gamma phosphate of bound ATP (see 

figure 5) [20]. Each monomer has a structure described as an eight stranded β-sheet flanked 

by nine α-helices. The β-sheet core is composed of seven parallel and one anti-parallel 

strands [21]. Upon ATP hydrolysis, the two switch regions undergo conformational 

changes resulting in dissociation with the gamma phosphate. In this way, the two switch 

regions act as conformational change relays, inducing changes to other molecules bound in 

these regions dependent upon the bound nucleotide state [20]. 
 

 
Figure 5: Fe-protein monomer (from PDB: 
1N2C): highlighted are Walker-A motif (cyan) 
corresponding with residues 9-16, switch I region 
(orange) corresponding to residues 38-43, and 
switch II region (purple) corresponding to 
residues 125-135. 
 

 

 

 

 

 

 

 

 

In addition to participating as a reductase, the Fe protein has also been shown to act as a 

Mo-homocitrate insertase, participating in the maturation of the FeMo-cofactor. [22]. In 

vitro, the Fe protein inserts molybedenum and the homocitrate moiety in an ATP-
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dependent reaction, with the pre-formed Mo-free precursor metallocluster on NifEN 

(NifEN is the maturase protein for the FeMo-cofactor). After Fe-protein dependent 

maturation, the active FeMo-cofactor is transferred into the MoFe-protein [7]. Where 

molybdenum and homocitrate bind and how they are inserted remain unknown. 

 

[4Fe:4S] Cluster 

[4Fe:4S] clusters are ubiquitous within biological systems, participating in redox reactions 

and exhibiting a broad range of midpoint potentials, making them very versatile [23]. These 

iron-sulfur clusters can occupy four oxidation states, between 0 and +3, with the +1 and +3 

oxidation states being spin active for analysis by EPR (the 0 state in nitrogenase Fe-protein 

has a S=4 spin and is EPR active [24, 25]), whereas the +2 state is EPR silent. The +1 state 

exhibits an axial spectrum, and is not heavily influenced by the polypeptide environment. 

In contrast, the +3 state exhibits a rhombic signal, and demonstrates variability due to the 

polypeptide environment.  

 

The [4Fe:4S] cluster of the nitrogenase Fe protein (left) is coordinated by 

the thiol groups of two cysteines from each monomer (Cys97 and 

Cys132), and is solvent accessible. Upon interaction with the MoFe 

protein (and MgATP binding), it is shifted toward the surface of the MoFe 

protein, making the distance between the [4Fe:4S] cluster and the P-

cluster 14 Å, providing strong evidence for electron transfer from the [4Fe:4S] cluster to 

the P-cluster [18]. It is debated within the field if the cluster cycles between a +1/+2 

oxidation state, or if an all-ferrous state is biologically relevant [26]. The cycling between 

an all-ferrous state and the +2 state could imply a 2 e- transfer for every two ATP 

hydrolyzed, whereas the +1/+2 cycling would imply a single electron transferred per two 

ATP hydrolyzed [26]. Differences in measured midpoint potentials for each oxidation state 

are likely affected by structural rearrangements occurring upon complex formation between 

the Fe- and MoFe- proteins, and electrochemical measurements may have been affected by 

the reductants (i.e. dithionite or Ti(III)citrate) used in each experiment [26]).  
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Figure 6: Nitrogenase single catalytic unit modeled in cartoon. (from PDB: 1N2C) 
 

MoFe-protein 

  
Figure 7: MoFe protein crystal structure modeled in cartoon, at right it is shown in transparency to highlight 
the location of the metalloclusters (from PDB: 3U7Q) 
 

The MoFe protein is an α2β2 heterotetramer of molecular weight ~230 kDa, with two αβ 

catalytic units per protein (see figure 7). Within each αβ catalytic unit, there is a single P-

cluster and FeMo-cofactor [27-29]. The P-cluster lies at the interface between the α- and β- 

subunits, approximately 10 Å from the surface, and approximately 14 Å from the FeMo-

cofactor, located in the α-subunit [27]. The α- and β- subunits have similar secondary 

structures consisting of three domains, but show minimal sequence homology [27]. The 

three domains composing each subunit form a cleft at the center, and in the α-subunit, this 

is the site where the FeMo-cofactor resides [27].  The αβ-subunit pair has extensive 

contacts between the subunits, especially in the region surrounding the P-cluster (see figure 

8). 
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 Figure 8: The αβ-subunit pair as seen 
from the MoFe-protein two-fold axis 
relating the α- and β- subunits. The α-
subunit is shown in red, and the FeMo-
cofactor can be seen sitting near the 
center of the α-subunit. The β-subunit is 
shown in blue. The P-cluster can be seen 
sitting at the interface between the two 
subunits. (from PDB: 3U7Q) 
 

 

 

 

 

 

 

P-Cluster 

The P-cluster is a complex [8Fe:7S] metal center, with redox properties capable of 

regulating multiple electron transfer reactions to reduce the FeMo-cofactor during catalysis.  

The P-cluster likely acts at an electron “gatekeeper” between the [4Fe:4S] of the Fe protein 

and the FeMo-cofactor, and ensures that electron flow is one-directional [30-33]. 

In the as-isolated, dithionite reduced state, the P-cluster is in an all-ferrous diamagnetic 

state, PN, but it can achieve multiple oxidation states.  In [33], the P2+/P1+ redox couple was 

characterized to involve a proton coupled e- transfer at physiological pH, whereas the 

P1+/PN redox couple does not involve a coupled proton transfer. Additionally, they 

measured the midpoint potential of these two redox pairs, identifying the P2+/P1+ midpoint 

potential to be pH dependent and ranging between -224 mV at pH=6.0 to -348 mV at 

pH=8.5. The P1+/PN midpoint potential was determined to be -290 mV and non-pH 

dependent. The spin states of the oxidation states were identified as: PN S=0, P+1 S=3, P+2 

S=1/2 and S=7/2, and P3+ S>2 [34]. The P2+ and PN states additionally have been proposed 

to display different structural conformations (see figure 9). 
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Figure 9: Putative Oxidation-state P-Cluster conformational changes. At left is the Pox 2+ oxidized structure 
(from PDB: 2MIN), at right is the PN all-ferrous structure (from PDB 3U7Q). 
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FeMo-cofactor 

The FeMo-cofactor is the most elaborate metal-cofactor known in biology. It is an 

approximately three-fold symmetric [7Fe:9S:C:Mo]-R-homocitrate cluster. The central 6 

iron atoms form a trigonal-prism with one iron and one molybdenum at the peak of the two 

prisms. Each metal atom is coordinated by three sulfides, and the entire cluster is 

coordinated to the protein by two ligands in the α-subunit: α-Cys275 at Fe1 and α-His442, 

with the R-homocitrate moiety, at the Mo (see figure 10). 

 

 

Figure 10: FeMo-cofactor. At left the position of the FeMo-cofactor at a cleft in the α-subunit (colored in 
blue) of the MoFe-protein. At right, a view of the FeMo-cofactor with the coordinating residues α-Cys275 
and α-His442, and the R-homocitrate moiety. Color scheme is as follows: Fe atoms are orange, S atoms are 
yellow, Mo atom is cyan, the interstitial carbide is dark grey, all other carbons are green, oxygens are red, 
and nitrogen is blue. 

 

The first structural characterization of Av1 at 2.72 Å, by Kim and Rees in 1992 [35], 

determined that the FeMo-cofactor is an iron-sulfur-molybdenum metal cluster, with a 

composition of [7Fe:9S:Mo]. Then, in 2002, Einsle et al. [36] published a much higher 

α-Cys
275

  

α-His
442

  R-homocitrate 
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resolution Av1 structure at 1.16 Å, revealing that the FeMo-cofactor contained a 

central atom, sitting within the metal cluster. The identity of the central atom was not 

determined, but analysis showed consistency with a light element, C, N, or O. Following 

the identification of a light atom present in the FeMo-cofactor, in 2011 Spatzal et al. [37] 

characterized an atomic-resolution structure of Av1 at 1.0 Å, thereby providing 

significant improvement in the data to allow for integration of the sphere radius to 

identify the central atom as C. Spatzal et al. complimented the atomic resolution 

crystallographic data with ESEEM data of uniformly-isotopically labeled Av1 (13C, 15N), 

demonstrating unequivocally that the identity of the central atom was indeed carbon. 

Also in 2011, Lancaster et al [38] published a paper in which they also identified the 

central atom as a carbon using X-ray emission spectroscopy. In 2012, Wiig et al [39] 

showed that the interstitial carbon originates from a methyl group of S-

adenosylmethionine (SAM), inserted into a FeMo-cofactor precursor, by a maturation 

protein, nifB. 

Many efforts have been made to identify the electronic and magnetic properties of the 

FeMo-cofactor. Analysis of the electronic and magnetic properties of the FeMo-cofactor 

has focused on the as-isolated, dithionite-reduced, state. The as-isolated FeMo-cofactor, 

FeMocoN, reduced by the presence of dithionite, has an S=3/2 spin state, and has been 

analyzed using a variety of spectroscopic methods including Mössbauer, EPR, XANES, 

ENDOR, and EXAFS [40-44]. Several oxidation state assignments have been made for 

the metals in the FeMocoN in the S=3/2 spin state: 2FeII5FeIIIMoIV over 4FeII3FeIIIMoIV 

to 6FeII1FeIIIMoIV [44-49]. A study in 2014 identified the Mo to be a MoIII, requiring that 

the oxidation states be reconsidered [49], such as in [50] in which the likely oxidation 

state identified was 3FeII4FeIIIMoIII.  

In addition to the FeMocoN state, other states have been also been characterized, namely, 

FeMocoR and FeMocoox [34, 41, 46]. The FeMocoR state is the 1 e- reduced state, which 

was freeze trapped under turnover conditions (the Fe protein is the only physiological 

reductant). The FeMocoR state has been heavily analyzed using EPR and ENDOR [51-54], 
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exhibiting spin states S ≥ 1 [41, 46, 55]. The likelihood of freeze quenching a single 

electronic state within a mixture seems unlikely, making these samples most assuredly a 

mixture of states.  Due to difficulty in reducing the FeMo-cofactor, and the action by the P-

cluster as a electron shuttle between the [Fe4:S4] and FeMo-cofactor, the redox potential of 

the FeMocoR-FeMocoN pair is unknown. In addition to FeMocoR, a 1 e- oxidized state, 

FeMocoox, has also been characterized. The FeMocoox state has S = 0 spin state, and the 

FeMocoN- FeMocoox pair has a redox potential of -42 mV [56, 57]. The FeMocoox state 

may not have a physiological role, but it provides more details regarding the complex redox 

and electronic states of the FeMo-cofactor. 

CO was first identified by Lind and Wilson [58] as a potent and specific inhibitor of 

nitrogenase activity. Since then, many studies have characterized various aspects of 

substrate and inhibitor binding to the FeMo-cofactor. CO-binding to the cofactor has 

been of especial interest since CO is isoelectronic to N2 and serves as a strong reversible 

inhibitor of nitrogenase activity, excluding proton reduction [59, 60]. EPR techniques and 

FTIR have been popular techniques applied to the analysis of CO binding in nitrogenase. 

The identification of the “lo-CO” and “hi-CO” signals [61] have led to many 

spectroscopic characterizations of these states, along with modeling to identify where the 

CO was bound [62-67] . These studies produced multiple proposed binding states, and 

resulted in analyses that concluded that the “lo-CO” state represented a single CO bound 

at the “waist” of the FeMo-cofactor possibly in a bridging manner, and the “hi-CO” state 

represented two CO terminally bound [64, 66]. Unfortunately, without either the 

possibility of spatially characterizing the binding of CO, nor the ability to identify if 

multiple species were present in a sample, determination of exactly how and where the 

CO were bound has not been possible. In 2012, a study used extended x-ray absorption 

spectroscopy (EXAFS) and nuclear resonance vibrational spectroscopy (NRVS) to study 

binding of propargyl alcohol to the FeMo-cofactor and determined that the substrate was 

binding at an iron, not molybdenum, and that a µ-2 Fe-S-Fe bond was broken in the 

process [67]. Also in 2014, a study combining NRVS, EXAFS, and density functional 

theory (DFT) looked at binding of CO to the FeMo-cofactor and the role of the interstitial 
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carbon [68]. In this study, the authors concluded that the 6-Fe core of the FeMo-

cofactor is distorted upon CO binding, and the interstitial carbon acts to modulate the 

chemical reactivity of atoms within the metallocluster. Unfortunately, without the 

possibility of spatially characterizing the binding of CO, or the ability to identify if 

multiple species were present in a sample, determination of exactly how and where the 

CO were bound was not possible. 

Previous data have revealed unexpected structural rearrangement in the cofactor, building 

on the intrinsic complexity of this two-protein, three-metal cluster, ATP-dependent 

process. Understanding the structural, electronic configuration, and redox activity of the 

enigmatic FeMo-cofactor and its mechanism are difficult but important tasks.  

The Lowe-Thorneley Model 

The Lowe-Thorneley model (LT-model) is a kinetic description of the catalytic cycle for 

nitrogenase based upon a series of stop-flow and rapid-quenched spectrophotometry kinetic 

experiments.  In this model, the Fe-protein and the MoFe-protein undergo a series of 

interactions involving ATP-hydrolysis coupled electron transfer, with proton transfer also 

occurring during catalysis [69-73]. The stoichiometric equation for nitrogen fixation is 

considered in this model, with 2NH3 and one H2 produced per N2 reduced. The requirement 

for 8 e- requires multiple electron transfer events from the Fe-protein, thereby requiring 

multiple Fe-MoFe-protein binding and dissociation events [74].  Here, in figure 11, the LT 

model is simplified, and shown in two parts, the Fe-protein cycle and the MoFe protein 

cycle. In the Fe-protein cycle, the Fe-protein goes through several states: a reduced state 

from reduction by endogenous ferredoxin (Fd) or flavodoxin (Fld), a reduced ATP bound 

state, binding with the MoFe-protein followed by electron transfer, followed by 

dissociation producing an oxidized ADP-bound state. The MoFe-protein cycle is coupled to 

the Fe-protein cycle through the ATP-hydrolysis coupled electron transfer from the 

[4Fe:4S] cluster to the MoFe-protein. The MoFe-protein is modeled as going through eight 

states (E0-E7) in which it is reduced by an electron (from the Fe-protein) each time, with 

protons coupled reactions [41]. In the LT model, N2 binds at the E3 or E4 reduced state, and 
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NH3 is produced subsequently in the more reduced states, from E5 on (see figure 11) [41, 

75].  

 

 
Figure 11: The Nitrogenase cycle without proton binding and hydrogen release states  
The Nitrogenase cycle can be broken down into two coupled parts, the Fe-protein cycle, and the MoFe-protein 
cycle. In the Fe-protein cycle, the Fe-protein is reduced by ferredoxins (Fd) or flavodoxins (Fld), and binds 
two ATP, which are hydrolyzed and an electron is transferred to the MoFe-protein. In the MoFe-protein cycle, 
the MoFe-protein is reduced by eight electrons, taking it through eight different states (E0-E7), during which it 
reduces N2. The likely parts of the cycle for N2 to bind (E3-E4) are highlighted in green, and the likely parts for 
NH3 release are highlighted in blue. This figure is based upon figures in [2, 76] 
 

A full characterization of the nitrogenase cycle will require that the electronic and magnetic 

properties of the metal centers be characterized, and the binding mode of substrates, along 

with intermediates and inhibitors, be determined. 
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X-ray Crystallography 

X-ray crystallography is a light scattering (diffraction) technique in which elastic scattering 

of light (with a wavelength in the x-ray region) produces “reflections” that are detected and 

used to determine the structure of the material analyzed.  

 

Light in the x-ray region of the electromagnetic spectrum is ideal for determining structures 

because the wavelength of x-rays  is comparable to the distances between atoms. For 

instance, most interatomic distances for covalently bonded atoms are in the 10-10 m 

(Ångstrom) range (for instance, a C-H covalent bond is approximately 1Å and a C-C single 

bond is approximately 1.5Å) making the interaction of light at these wavelengths optimal 

for studying structures. 

 

Crystals are periodic structures composed of repeating units in a 3-D lattice. A crystal can 

diffract incoming radiation in a regular manner when Bragg’s Law is satisfied (see below). 

Crystals give sample density and periodicity to effectively amplify the signal through the 

reflections created from the lattice structure. 

 

Protein Crystallization 

Crystallization is a phase dependent process, by which crystals are formed when 

supersaturation is achieved dependent upon optimized parameters, including concentration, 

pH, temperature, and various other parameters [77, 78] (see figure I). The three stages of 

crystallization growth are nucleation, crystal growth, and cessation of growth [79]. This 

process is energetically favorable because as the proteins nucleate and crystallize, they shed 

part of their hydration shell, increasing the overall entropy and therefore a more negative 

free energy [2, 80]. There are various methods for achieving supersaturation such as 

microbatch, vapor diffusion, dialysis, and free interface diffusion (see figure 12) [77]. 

 

In practice, protein crystallization is achieved based upon crystallization screens during 

which a wide variety of crystallization conditions, protein concentrations, methods, and 

temperatures are tested. Crystal growth depends on many factors such as sample 
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concentration, temperature, pH, precipitants chosen, buffer, additives, detergents, and 

various other parameters [79].   

 
Figure 12: Schematic illustration of protein crystallization phase diagram. Crystals are formed in the 
supersaturation zone when the protein concentration is above the solubility curve. Crystallization methods are 
represented: a) microbatch, b) vapor diffusion, c) dialysis, d) free-interface diffusion. This figure was prepared 
based upon figure 1 of [77] 
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Bragg’s Law 

Bragg’s law gives a mathematical description of the interaction of coherent light with 

material in a lattice that is spaced in a way to give optimal constructive interference of light 

dependent upon the angle of incidence of the incoming light (see figure 13) [81]. 

Bragg’s law is:                            𝑛𝜆 = 2𝑑 sin𝜃 

 n is a positive integer 

λ is the wavelength of incoming radiation 

d is the lattice space distance 

and θ is the angle between the lattice and the incoming light 

 

 
Figure 13: Scattering of X-rays in a lattice with d-spacing 
At left is a schematic demonstrating Bragg’s law, with the incoming beams scattering and only providing 
positive interference if they obey Bragg’s law. At right is a drawing of a lattice with three d-spacing options 
highlighted. 
 

Ewald’s Sphere and Reciprocal space 

Due to the nature of light diffraction, the diffraction pattern produced is not representative 

of real space, but represents “reciprocal space”. Ewald’s sphere is employed in this 

analysis. Ewald’s sphere is a geometric construct that relates the wavevector of the 

incoming and refracted light, the diffraction angle of the refracted light, and the reciprocal 

lattice of the crystal. 

 

An Ewald’s construction can be used to relate the planes in a crystal lattice to the 

reflections present in a diffraction pattern (see figure 14). By combining Bragg’s law and 
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the Ewald construction, we can determine the position for reflection spots on a detector if 

we know the cell dimensions. The diffraction pattern (without consideration of spot 

intensities) contains information of the unit cell dimensions, and the spot intensities contain 

information about the distribution and identity of the atoms in the unit cell. 

 

 

  
Figure 14: Ewald Construction. Created based upon figure in [82] 

 
By looking at the elements of Ewald’s sphere and comparing it to Bragg’s law, we can 
determine that the distance of the reflection from the origin in reciprocal space is equal to:  

1
𝑑 =

2 sin𝜃
𝜆  

Considering the elements of Bragg’s law in reciprocal space, we can define the vector s has 

a length of: 

𝑠 = 2𝑟𝑠𝑖𝑛𝜃 

with r being the radius of the Ewald’s sphere, 1/λ, reflecting the position of spot from 

higher resolution reflections being farther away from the origin. 
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Structure Factors, Atomic scattering factors, and Electron density  

The structure factor is a mathematical description of the amplitude and phase of light 

scattering. It provides a description of how the atomic arrangement in a crystal will 

influence the intensity of the scattered x-ray beam [81, 83]. The structure factor can be 

written:                                            𝐹!!" = 𝐹!!" 𝑒!!!!" 

 𝐹!!" = 𝐹!!" 𝑒!!!!" 

for which the first term, 𝐹!!" , represents the 

amplitude and the second term, 𝑒!!!!", represents 

the phase of the reflection. 

The intensity of spots is dependendt upon the 

contents (electron density) of the unit cell, and 

proportional to the square of the amplitude: 

𝐼 ∝ 𝐹!!" ! 

Using the Argand diagram (left), the structure can 

be represented as a vector plotted on axes 

representing the real and imaginary components [84]. 

The structure factor can also be written as the sum of all electron density in the unit cell: 

𝐹!!" = 𝑉 𝜌!"# 𝑒!!"(!!!!"!!")𝑑𝑥𝑑𝑦𝑑𝑧 

This representation considers the electron density over the whole cell unit without 

accounting for distinct atoms and their individual scattering. 

 

In order to consider individual atoms, the structure factor can be written as a sum of all N 

atoms in the unit cell, including angle dependent scattering amplitudes (i.e., atomic 

scattering factors: 

𝐹!!" = 𝑓!

!

!

𝑒!!"(!!!!!!!!!!!)𝑒!!!
!"#! !
!  

𝑓! represents the atomic scattering factor for each atom in the unit cell 

𝐵! represents the Debye-Waller factor (also referred to as the “B-factor” or “temperature 

factor”) which considers attenuation of x-ray scattering caused by thermal motion [84]. 

Im
ag

in
ar

y 

Real 
 φ 

 



 

 

26 
 

The Fourier transform of the structure factor defines the electron density: 

𝜌!,!,! =
1
𝑉 𝐹!,!,!

!!

!

!!!!

𝑒!!!"(!!!!"!!") 

 

The phase problem 

In crystallography, the diffraction pattern contains information about the unit cell and the 

distribution of atoms in the unit cell. 

 

Each spot in a diffraction pattern corresponds to a point in the reciprocal lattice, and 

represents a wave with amplitude and a phase. Unfortunately, the spots in a diffraction 

pattern only have a position and intensity, but do not include the phase information, and so 

much information regarding the structure is lost through the experiment.  

 

In order to overcome this problem, several methods are commonly employed; molecular 

replacement (MR), multi-wavelength anomalous dispersion (MAD), and single-wavelength 

anomalous dispersion (SAD). 

 

Anomalous Scattering 

Anomalous scattering is the scattering of light at an absorption edge. The amount of energy 

absorbed by an atom is dependent upon its atomic number, and thus heavy atoms display 

easily detectable anomalous scattering near their absorption edge (see figure 16 for 

examples) [85]. 

The total scattering factor of an atom is: 

𝑓 𝜆 = 𝑓! + 𝑓! 𝜆 + 𝑖𝑓!!(𝜆) 

The normal scattering factor, f 0, is independent of wavelength and provides “normal” 

diffraction. The anomalous scattering factors, f ‘ and f “, are the real and imaginary parts of 

the scattering factor, and are wavelength dependent. The f0 + f’ term represents real, 

dispersive scattering, and the f” term of the scattering factor represent imaginary, 

absorptive scattering. [81, 84] 
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X-ray photons interact with the electrons of atoms, and produce an oscillation of the 

electrons, resulting in the emission of radiation with the same frequency as the incident 

beam. Coherent scattering, the basis for normal diffraction experiments, produces a set of 

reflections from the lattice planes. The intensities of reflections from the h,k,l lattice plane 

are identical to those of -h, -k, -l, resulting in the structure factors having identical 

amplitudes, with opposite phase angles. This relationship is described in Friedel’s law: 

𝐹(ℎ, 𝑘, 𝑙) =  𝐹(−ℎ,−𝑘,−𝑙)  
 

Friedel’s law can be broken when the incident X-ray beam is close to the absorption edge 

of an atom in the structure. Interaction at the absorption edge causes a phase shift of the 

emitted radiation, breaking the phase relationship between the incident and emitted 

radiation. Energies near the radiation edge produce anomalous scattering as a significant 

part of the total scattering. This produces an atomic scattering factor that is composed of a 

real, dispersive term (f0 + f’(λ)) and an imaginary, absorptive term (if”(λ)). As a result, 

Friedel’s law is broken, and the scattering pairs contain an anomalous difference, Δanomalous: 

∆!"#$!%#&'=  |𝐹(ℎ, 𝑘, 𝑙)|− |𝐹(−ℎ,−𝑘,−𝑙)| 

This is demonstrated in figure 15. 
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Figure 15: Friedel’s Law. The Symmetry of Friedel’s pairs for wavelength independent scattering (f0) is 
shown in blue (i.e. for a protein containing no heavy atoms). Anomalous contribution to the scattering from a 
heavy atom is shown in red (darker red for 𝐹 ℎ, 𝑘, 𝑙  and lighter red for |𝐹(−ℎ,−𝑘,−𝑙)|) with the heavy 
atom component for anomalous scattering shown in black (in dashed grey arrows are the f0+f’ and f” 
contributions from the heavy atom scattering, notice the +90° phase difference between these two 
components). ∆!"#$!%#&' is shown as the difference between the red and dark red curves demonstrating the 
difference in the magnitudes of the vectors. 
 

The anomalous scattering factors, f ‘ and f “, are the wavelength-dependent real and 

imaginary parts of the scattering correction. The i preceding f” is indicative of there being a 

+90 degree phase shift between f” and the real component of f. Their relationship is 

described in the Kramers-Kronig relationship: 

𝑓! 𝜆 =
2
𝜋

𝜆′𝑓"(𝜆′)
(𝜆! − 𝜆!!)

𝑑𝜆′
!

!
 

The 𝑓!! portion of the scattering factor can be determined experimentally using 

fluorescence or absorbance measurements (theoretical measurements are available, but 

during experimentation, measurements must be taken to consider the protein environment), 
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and f’ can then be determined through application of the Kramers-Kronig relationship. 

(see figure 16 and table 1 for f’ and f” for Se, S, Fe, Mo) 

 

Anomalous scattering of light atoms, such as C, N, or O, is not analyzed using x-ray 

crystallography because the energies required are not attainable within the energy range 

accessible, and thus experimental anomalous scattering is done with heavy atoms (i.e. Se, 

Fe, Mo, Hg, etc.). Anomalous scattering by heavy atoms in crystal samples is the basis for 

Multiple Anomalous Diffraction (MAD) and Single Anomalous Diffraction (SAD) 

experiments for phasing to determine unknown structures. 

 

Analysis of anomalous scattering data collected for a protein crystal structure allows for 

determination of the phase angles for the heavy atoms in the sample. By using this 

information, the “substructure” of the heavy atoms can be used to determine the phasing of 

the entire protein structure [2]. This phasing is applied in MAD and SAD experiments. 

MAD employs, as indicated by the name, multiple wavelengths for collecting data, 

including data collected at the absorption edge of a heavy atom, whereas with SAD, a 

single wavelength at the absorption edge is used for phasing. This technique requires the 

presence of heavy atoms, which may include natural sites (as found in metalloenzymes), 

soaking/co-crystallization in a solution including heavy atoms, or incorporation of a heavy 

atom (for instance by introducing mutations within the protein to incorporate 

selenocysteine or selenomethionine).  
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Figure 16: f’ and f” values for S, Se, Fe, Mo (top to bottom) plotted vs energy (eV) from 1000 to 25000. In 
grey is the accessible energy range at the SSRL beamline 12-2. The values of f’ and f” used in this figure are 
theoretical values, and are from [86] 
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Table 1: X-ray absorption edges for Se, S, Fe, and Mo.    
1a: lists the edge name, the keV corresponding to the absorption edge, and the Å equivalent to the energy 
1b: lists the f” contribution for each element, Se, S, Fe, and Mo at the absorption edge for each of the 
corresponding elements. 
All values in tables 17a and 17b are from [86] 
 
 

1a 

*All absorption edges listed are theoretical, and do not take into consideration  
molecular environments that may alter experimental values 

 

1b 

 

 

In addition to providing data for phasing, due to the characteristic f” signal, anomalous 

maps can also be used to quantify occupancies of heavy atoms if a fixed signal (i.e. internal 

standard) is available in the protein. In the MoFe-protein, there are 32 Fe atoms which all 

have an occupancy of 1 (assuming 100% occupancy of the metalloclusters) due to the FeS-

clusters present (the P-cluster [8Fe:7S], the FeMo-cofactor [7Fe:9S:Mo:C], and Fe16). 

Replacement of a sulfur in the FeMo-cofactor with a selenium can then be analyzed to 

identify the efficiency of replacement of the sulfur by selenium using the anomalous signal 

produced by the Se, and applying the Fe f” contribution and the S f” contribution at this 

energy as internal standards (see table 1a and 1b for these values). B-factors must be taken 

into consideration as well as sphere radius of integration for these calculations [2, 37]. 

X-ray Absorption edges * 

element edge keV Å 
Se K-edge 12.6578 0.9795 
S K-edge 2.4720 5.0155 
Fe K-edge 7.1120 1.7433 
Mo K-edge 19.9995 0.6199 

  L-I edge 2.8655 4.3268 

f" contribution, e-  
  Se K-edge S K-edge Fe K-edge Mo K-edge 

element 12567.8 eV 2472 eV 7112 eV 19999.5 eV 
Se 3.8464 (12660) 8.1604 (2500) 1.3868 (7200) 1.7753 (20000) 
S 0.2333 (12700) 4.1043 (2475) 0.6853 (7200) 0.0944 (20000) 
Fe 1.4915 (12700) 2.9072 (2500) 3.9501 (7115) 0.6613 (20000) 
Mo 1.2256 (12700) 3.0643 (2473) 3.3166 (7200) 3.6976 (20000) 

*in parentheses are the actual energies for these f" values 
values are from: [86] 
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Molecular replacement (MR) is another method for determining the phases for a 

structure. It uses the phases from a previously determined, homologous structure and 

applies them to the diffraction data collected. MR compares a determined structure with an 

experimentally-determined Paterson map, an interatomic vector map produced by squaring 

the structure factor amplitudes while setting the phases to zero [87]. The Patterson function, 

P(x), is a Fourier transform of the intensities, setting all phases to zero, and may be 

expressed as: 

𝑃 𝑥 =  
1
𝑉 𝐹(ℎ) !

!
𝑒!!!"!! 

 

Patterson maps for the known and unknown structures then go through a series of rotational 

and translations functions to match them as closely as possible. Alignment of the two 

Patterson maps allows for the phase angles from the known structure to be applied to the 

collected data, providing information for solving the structure. The Patterson function does 

not describe the positions of atoms in a structure, but rather the vectors between all pairs of 

atoms. Thus, proteins with similar structures also have similar Patterson maps [2]. 
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EPR and ESEEM theory 

Electron Paramagnetic Resonance (EPR) 

EPR is dependent upon the interaction of a paramagnetic electron (unpaired) with an 

applied magnetic field to provide information regarding the chemical environment. The 

electronic configuration within materials determines their structure and reactivity, and so, 

employing a technique that provides information regarding the electronic state, and 

changes to it, is of great use in the study of materials used in chemical reactions.  

 

Biological EPR is an important technique for characterizing metallocenters. EPR can be 

used to identify the chemical make-up, oxidation state, coordination sphere, atomic 

distances, and electronic states within these metallocenters. 

 

Electrons have a spin quantum number, s= ½, and a magnetic moment, with magnetic 

components of ms= +/- ½. In the presence of an external magnetic field, B0, the magnetic 

moment of an electron will align itself parallel (-1/2) or antiparallel (+1/2) to the magnetic 

field (see Figure 17). 

 
Figure 17: Electron spin magnetic moment alignment with an external magnetic field, B0. Figure adapted from 

[3] 

 

The spin Hamiltonian for a single unpaired electron is: 

𝐻! =  𝜇!𝐵! ⋅ 𝑔!  ⋅ 𝑆 

    

B
0
 - 1/2 + 1/2 
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Elements of the spin Hamiltonian are: 𝜇! is the Bohr magneton, B0 is the strength of the 

magnetic field, ge is the Landé g-value for a free electron, and S is the spin quantum 

number.  

 

The alignment of the magnetic moment with the magnetic field correlates to a specific 

energy, due to the Zeeman effect (see figure 18) [3, 88]. According to Plank’s law, 

electromagnetic radiation will be absorbed if the energy difference between two states is 

related to the frequency of the radiation. The resonance condition required for inducing 

Zeeman splitting is:  

Δ𝐸 = ℎ𝜈 = 𝑔!𝜇!𝐵! 

Where ge is the electron g-factor (ge is 2.0023 for a free electron). 

The g value is also called the dimensionless magnetic moment, and is a dimensionless 

value that describes the magnetic moment and gyromagnetic ratio of a particle. 

E is the energy, B0 is the magnetic field strength, h is Planck’s constant, and µβ is the Bohr 

magneton. 

  
 

Figure 18: Zeeman 
splitting occurs due 
to magnetic field 
separation of 
electron spin 
energies as a 
function of B

0 
Figure adapted from 
[2, 3] 
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Absorption of this energy causes a transition in the electron from the lower energy state 

to the higher one (see figure 18).  EPR radiation is in the gigahertz range (microwave 

radiation). 

When an electron interacts with one or more positively charged nuclei (see figure 19), it 

experiences an internal magnetic field in addition to the applied external magnetic field, B0. 

This can be represented as a “shift” in the g-value proportionality constant, expressed as: 

ℎ𝜈 = (𝑔! + Δ𝑔)𝛽𝐵 

or,                                                            ℎ𝜈 = (𝑔)𝛽𝐵 

where                                                     𝑔 = (𝑔! + Δ𝑔) 

Δ𝑔 gives us chemical information about the molecular structure. [89] 

 

 
Figure 19: Spin-orbit coupling. When an electron is rotating around a nucleus in a molecule, its total angular 
momentum results from the addition of orbital angular momentum (L) with the intrinsic spin angular 
momentum (S). Figure adapted from [3] 
 

The g-value 

The g-value for an electron contains information about the electronic environment. 

Deviation from the value of a free electron is characteristic of the electron interactions with 

its environment, e.g. , splitting of the g-value into the principal g-values, gx, gy, and gz, due 

to anisotropy of the environment, or splitting of the signal from interactions with other 

electrons and nuclei provides information about the molecular environment in which the 

unpaired electron resides. Analysis of these changes allows for determination of the 

magnetic and electronic state of the sample. 

The g-value is a tensor, described by a 3 x 3 matrix, that includes three orientational 

parameters describing the orientation of the paramagnetic center with respect to the 

magnetic field [88] :    
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𝑔!! 𝑔!" 𝑔!"
𝑔!" 𝑔!! 𝑔!"
𝑔!" 𝑔!" 𝑔!!

 

Orbitals are directionally dependent, resulting in anisotropy of the g-value tensor. In 

oriented samples, such as in single-crystal EPR, the g-factor of the EPR spectrum changes 

as the sample is rotated due to g-value anisotropy. However, in solution samples, the 

anisotropy from orbital orientation is averaged out, resulting in the diagonalization of the 

3x3 matrix can be due to symmetry of the matrix elements (gxy = gyx, gzx = gxz, etc.), 

minimalizing the matrix to the principal g-values:  
𝑔!!   

 𝑔!!  
  𝑔!!

 

In non-oriented samples, the principal g-values (from here on written simply as gx, gy, and 

gz) dominate the spectrum, and reflect the environment of the magnetic moment (see figure 

20). 

 

 
Figure 20: Line Shape and g-value anisotropy. At the top are the different g-tensor shapes, in the middle are 
the absorption curves for each g-tensor; at the bottom are first derivative spectra for each class g-tensor of 
anisotropy. Adapted from [3]. 
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Continuous wave EPR (cw-EPR) 

In cw-EPR experiments, the frequency is held constant while the magnetic field is varied. 

EPR energies employed are listed in Table 2, with the most common being X-band (8-12 

GHz). Many smaller features are commonly lost in cw-EPR experiments, due to 

unresolvable, overlapping spectral peaks. 

 

EPR Spectrometer 
Frequencies 

L band 1-2 GHz 
S band 2-4 GHz 
C band 4-8 GHz 
X band 8-12 GHz 
K Band 18-26.5 GHz 
Q band 30-50 GHz 
U band 40-60 GHz 
V band 50-75 GHz 
E band 60-90 GHz 
W band 75-110 GHz 
F band 90-140 GHz 
D band 110-170 GHz 

 
Table 2: EPR spectrometer bands and the corresponding frequency ranges. 
 

In practice, features in an EPR spectrum can be complicated due to several common effects 

[89]: 

a) g-anisotropy: the orientation of a non-spherical molecule affects the Zeeman 

energy, resulting in three principal g-values: gx, gy, and gz (see figure V). 

b) zero-field splitting: interactions between the observed and surrounding electrons 

causes splitting of the signal due to the magnetic field produced by the electrons. 

c) hyperfine splitting: interactions between the observed electrons and magnetic 

nuclei create further splitting of the signal. 
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Zero-field Splitting 

Systems with n unpaired electrons have a spin, S = n/2, and systems with more than one 

electron have spin multiplicity, resulting in a greater number of spin energy levels: 

𝑀! = 2𝑆 + 1 

and the spin-Hamiltonian becomes: 

𝐻! = 𝛽𝐵 ⋅ 𝑔 ⋅ 𝑆 + 𝑆 ⋅ 𝐷 ⋅ 𝑆 

where D is the zero-field interaction parameter (see figure 21). 

 
Figure 21: Zero-field Splitting for a 3/2 spin system. This produces two energy levels when there is no 
external magnetic field, and results in four energy levels in the presence of an external magnetic field, B0. 
Figure adapted from [3]. 
 
Unpaired electrons in systems with a spin multiplicity S > 1/2 are subject to a magnetic 

field from electron-electron interactions that results in splitting of the signal equivalent to 

the value of Ms (i.e., a system with spin 3/2 results in splitting into 4 peaks).The splitting 

due to electron-electron interactions is called zero-field splitting, because this splitting 

occurs even in the absence of an external magnetic field. 

 

Spin systems can be broken down into Kramers systems (half-integer systems, S= 1/2, 3/2, 

5/2, etc.) and non-Kramer’s systems (integer systems, S = 1, 2, 3, etc.) [3] Spectra of 

Kramer’s systems display peaks with distinct splitting, producing doublets of peaks, 

Magnetic Field (B0) 

En
er

gy
 

ms = ±3/2 >  

ms = ±1/2 >  

zfs 

2D 
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although the transitions are of different levels due to EPR selection rules, ∆ 𝑚! = 1. 

Each Kramer’s pair has a specific g-value, and can be described as an effective g-value:  

 ℎ𝜈 = 𝑔!""𝛽𝐵 

 

The zero-field interaction parameter, D, can be anisotropic, having three values, Dx, Dy, Dz, 

which are not independent, but are related by: 

𝐷!! + 𝐷!! + 𝐷!! = 1 

so the terms can be redefined to produce two independent terms: 

𝐷 =
3𝐷!
2  

𝐸 =
𝐷! − 𝐷!

2  

These terms can then be used to define the rhombicity, η, of the electron distribution due to 

orbital directionality and shape:  

𝜂 = 𝐸
𝐷     (0 ≤ 𝜂 ≤ 1

3) 

Non-Kramer’s systems are rarely identified in biological systems, and are difficult to detect 

in X-band radiation because their splitting is often greater than the X-band energy 

(although higher energy wavebands can be used). Transitions between the doublet energy 

levels are greater than ±1, making them forbidden, and producing very weak signals. [3] 

 

Hyperfine Splitting 

Hyperfine splitting is caused by interaction of the unpaired electron with a magnetic 

nucleus. This interaction causes a splitting of the g-values, which is anisotropic, as in the 

case of  Zeeman-splitting. The Hamiltonian becomes: 

 

𝐻! =  𝛽𝐵 ∙ 𝑔 ∙ 𝑆 + 𝑆 ∙ 𝑆 ∙ 𝐼 

 

and the resonance condition can then be written as: 

ℎ𝜈 = 𝑔𝛽𝐵! + ℎ𝐴𝑚! 

 



 

 

40 
for which A is the hyperfine coupling constant (in Gauss), and ml is the magnetic 

quantum number for the nucleus (there are 2l + 1 possible values of ml; this corresponds to 

the hyperfine splitting of the Zeeman transition into 2l + 1 lines of  equal intensity), see 

figure 23 for a diagram showing hyperfine splitting in a ms = 1/2 and ml = 1/2 system.  

 

Pulsed EPR 

Pulsed EPR techniques focus spectral features using short pulses of microwave radiation 

while maintaining a constant magnetic field strength. Short pulses of microwave radiation 

are applied to induce transitions between energy levels, with the magnetic moment 

eventually returning to the initial state. This behavior is referred to as relaxation, and can be 

split into two components: spin-lattice relaxation and spin-spin relaxation. Spin-lattice 

relaxation (T1) refers to the dissipation of energy from unpaired electrons to the 

surrounding molecules via vibrational, rotational, or translational energy. Rapid spin-lattice 

relaxation is essential for maintaining a population difference of the spin-state. Spin-spin 

relaxation (T2), or cross relaxation, is the transfer of energy from an electron in a higher 

energy state to electrons or magnetic nuclei in lower energy states, without transfer to the 

lattice. The experimental pulse sequence chosen generates a spin echo (shown in figure Y), 

which shows an exponential decay determined by the spin-lattice and spin-spin relaxation 

behavior related to the hyperfine interactions of the system of interest. The spin echo 

intensity is measured as a function of time, and the Fourier transform of the modulated 

echo provides information about the electron-nuclear coupling [90]. 

 

Electron Spin Echo Envelope Modulation (ESEEM) 

ESEEM is a commonly used pulsed EPR technique that allows for detection of hyperfine 

couplings of nuclear-electron spin interactions [3]. Measuring hyperfine interactions can 

provide detailed information about electron spin density distribution, distances, and angles. 

These aspects make ESEEM especially useful when studying metal-ligand interactions, 

such as those occurring in metalloproteins. 



 

 

41 

 
Analyzing pulsed EPR data requires that the spin Hamiltonian be expanded: 

𝐻! = 𝛽!𝐵 ∙ 𝑔! ∙ 𝑆 −  𝛽!𝐵 ∙ 𝑔! ∙ 𝐼 + 𝑆 ∙ 𝐴 ∙ 𝐼 + 𝑆 ∙ 𝐷 ∙ 𝑆 

where βe and βn are the electron and nuclear magnetons, ge and gn are the electron and 

nuclear g-tensors, and A is the anisotropic hyperfine tensor for the electron-nuclear 

interaction. 𝛽!𝐵 ∙ 𝑔! ∙ 𝑆 is the electronic Zeeman interaction, 𝛽!𝐵 ∙ 𝑔! ∙ 𝐼 is the nuclear 

Zeeman interaction, 𝑆 ∙ 𝐴 ∙ 𝐼 is the hyperfine interaction, and 𝑆 ∙ 𝐷 ∙ 𝑆 is the zero-field 

interaction. The energies can be expressed as: 

𝐸 𝑚!𝑚! = 𝑔!𝛽!𝑚! − 𝑔!𝛽!𝐵𝑚! + ℎ𝐴𝑚!𝑚! 

The modulation effect in ESEEM derives from mixing of allowed and semi-forbidden 

transitions between the energy levels in an electron-nuclear coupled system, thereby 

providing detection of weak nuclear-electron couplings (See Figure 23). 

Hyperfine Sublevel Correlation (HYCORE) is a two-dimensional ESEEM experiment. By 

placing the data in two-dimensions, HYSCORE allows for very complicated spectra to 

become more easily interpreted. [3] 

               

 

    

  

    
    

 

90° 180° 

π/2 π 

time 
Figure 22: Two-pulse EPR experiment to produce a spin echo. This pulse sequence uses two different 
pulses, one that is π/2 and causes the magnetic moment to rotate by 90°, followed by a brief relaxation 
period, and a π pulse that rotates the magnetic moment by 180°. This causes the spin magnetic moment 
to relax back to the initial state in a focused manner, thus achieving a sharper spectral peak. 
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Figure 23: Energy level 
scheme for a m

s
=1/2 and 

m
l
=1/2 system 

Solid lines indicate allowed 
transitions, and dotted lines 
represent semi-forbidden 
transitions. The energy 
difference between the 
doublets of each electron 
spin level represent the 
energy required for pulses 
that mix the transition 
levels. 
Figure modified from figure 
1 of [1] 
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F o c u s  o f  t h i s  S t u d y  

Understanding the mechanism by which the FeMo-cofactor binds to and reduces N2 

requires the characterization of substrate binding modes and intermediates. Due to the 

transient nature of N2 binding, characterization of inhibitor bound states is an excellent 

alternative for identifying binding sites and modes. Nitrogenase has a wide variety of 

substrates and inhibitors including CO, HCN, SCN-, and N3
- [91, 92]. Ligand binding 

characterization at the FeMo-cofactor has relied mainly upon amino acid mutations in the 

region near the cofactor to alter substrate reduction properties [93-95]. 

 

Spectroscopic characterization of ligand binding requires detailed electronic and magnetic 

characterization of the FeMo-cofactor, and without these parameters, these experiments are 

riddled with uncertainty due to the complex electronic state and three-fold-symmetry. 

Structural characterization is a requirement for identification of the exact location of 

substrate binding, but the requirement for multiple electron transfer reactions from the Fe-

protein to the MoFe-protein makes structural characterization of substrate binding quite 

challenging. 

 

The goal of this work was to identify how and where ligands bind at the FeMo-cofactor 

using X-ray crystallography. Sample preparation for accomplishing a ligand-bound state is 

a difficult hurdle due to the requirement of the Fe-protein and ATP in all conditions to 

reduce the FeMo-cofactor in order to bind ligands. This required optimization of 

crystallization conditions for obtaining high quality crystals from activity assay samples 

and characterization of optimal inhibitor binding for sample preparation.  

 

A second goal of this work was to characterize the FeMo-cofactor after alteration due to 

site-specific labeling with selenium, replacing a single belt-sulfur. EPR and ESEEM were 

chosen for this analysis because of the possibility to identify spin-coupling effects between 

the irons and the selenium in the cofactor. This provides a basis for further characterization 

of the electronic state of the FeMo-cofactor due to the loss of three-fold symmetry and the 
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ability to selectively alter the active site without diminishing its capacity to catalyze 

reactions. 
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M a t e r i a l s  a n d  M e t h o d s  

Cell growth  

Azotobacter vinelandii was grown in modified Burke’s medium (pH 7.5) bubbled with air 

[96]. Pre-culture medium was inoculated with Azotobacter glycerol stocks (1:1 v/v cell 

solution (OD=3-4) with 80% aqueous glycerol), and the 50 and 500 mL preculture 

contained 10 mM NH4Cl as the nitrogen source. Precultures were grown at 30° C shaking 

at 180 rpm for aeration. Main cultures (60 L) were complemented with 1.3 mM NH4Cl 

resulting in short-term repression of nitrogenase gene expression, reversible upon 

ammonium depletion (based upon optimization in [2]). The main culture was grown in a 60 

L fermentor at 30° C with stirring of 180 rpm and air bubbled through media at 50 L/min. 

Cells were harvested by centrifugation at an optical density (OD600nm) of 2.0.  

Cell Growth Medium 

Component     Concentration 
Sucrose   20 g/L 

FeSO4 7H2O   0.2 mM 
Na2MoO4 2H2O   3 µM 

MgSO4   1.67 mM 
CaCl2   0.9 mM 

KH2PO4/K2HPO4, pH 7.5   10 mM 
NH4Cl  pre-culture 10.5 mM 

  final-culture 1.3 mM 

* the final-culture cell growth is done in a 60L fermentor, with constant 
stirring, so 1/2 mL of PEG 1000 is added as an anti-foaming agent 

 

Nitrogenase Component Proteins Purification 

All protein-handling steps were performed anaerobically. The protein purification was 

modified from [2, 97, 98] (see figure 24 for a schematic overview of the purification). 

Buffers were degassed using Ar-gas (vacuum-Ar purge cycles) followed by addition of 5 

mM Na2S2O4 at pH 7.5. Cells were ruptured in a high-pressure homogenizer (Emulsiflex 
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C5, Avestin) under Ar atmosphere. The cell lysate was centrifuged at 18,900 x g 

(14,000rpm, JA-14 rotor) for 30 min and the supernatant was loaded onto a HiTrap Q anion 

exchange column (GE Healthcare) pre-equilibrated with 50 mM Tris/HCl, 100mM NaCl 

buffer at pH 7.5. MoFe protein was eluted with a linear NaCl gradient at approximately 350 

mM, and Fe protein was eluted at approximately 475 mM. After collection, each protein 

sample was concentrated and loaded onto a size exclusion column (S200, 26/60, GE 

Healthcare) equilibrated with 50 mM Tris/Cl (pH=7.5), 200 mM NaCl, buffer. Pure MoFe 

protein was concentrated to ~60 mg mL–1 using an Amicon concentrator (100,000 kDa 

MWCO, Millipore Ultracell) under 5 bar Ar pressure. Fe Protein was concentrated to ~50 

mg mL-1 using an Amicon concentrator (30 kDa MWCO, Millipore Ultracell) under 5 bar 

Ar pressure. Nitrogenase activity was assayed by monitoring acetylene reduction 

(described in the acetylene reduction assay section). 

Protein  

Protein Purification Buffers 
Ion Exchange Chromatography 

Loading buffer   Elution Buffer 
Component Concentration   Component Concentration 

Tris/HCl, pH 7.5 50 mM   Tris/HCl, pH 7.5 50 mM 
NaCl 100 mM   NaCl 1 M 

Na2S2O4 5 mM   Na2S2O4 5 mM 

     
Size Exclusion Chromatography    

 Running Buffer    
Component Concentration    

Tris/HCl, pH 7.5 50 mM    
NaCl 200 mM    

Na2S2O4 5 mM    
 

Protein concentrations were determined using UV-vis absorbance at 410 nm, based upon 

absorption by the metalloclusters. The extinction coefficients used were 76mM-1cm-1 for 

Av1 and 9.4 mM-1cm-1 for Av2. 
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Figure 24:  Overview of nitrogenase protein purification scheme (based upon figure 32 
of [2]). 
 

 
 

Pure MoFe-protein Pure Fe-protein 
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Cell suspension 
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MoFe-protein Fe-protein 

Resuspension in anaerobic ion 
exchange running buffer 

(10g/100mL) by stirring 30 
min 

Homogenation using hand 
held homogenizer with teflon 

plunger, 3x 

Cell rupture using Emulsiflex-
C5 homogenizer , collection 
on ice into anaerobic round 

bottom flask 

Cetrifugation in JA-14, 
14,000rpm for 30 min 

Av1  Av2 

Ion Exchange 
Chromatography 

HiTrap-Q HP 
NaCl gradient 

	 	 Size Exclusion 
Chromatography 

Superdex 200 

Size Exclusion 
Chromatography 
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Acetylene Reduction Assay 

Nitrogenase activity was determined by monitoring the reduction of acetylene to ethylene 

in the headspace (9 mL) of reaction mixtures (1 mL) that consisted of 20 mM creatine 

phosphate, 5 mM ATP, 5 mM MgCl2, 25 units mL-1 phosphocreatine kinase, and 25 mM 

Na2S2O4, in 50 mM Tris/Cl (pH 7.5) buffer [99, 100]. All reaction mixtures were made 

anaerobic (Schlenk line technique) and kept under an Ar-atmosphere. 1 mL of the 

headspace was replaced by 1 mL acetylene, followed by incubation for 5 minutes at 30o C. 

The reaction was initiated by addition of the nitrogenase component proteins 

(Av2:Av1=2:1, active site ratio: 1:1, 0.25 mg Av1 / 0.27 mg Av2 per assay) and terminated 

at specific time points by the addition of 1 mL 3M citric acid. Ethylene and acetylene in the 

assay headspace were measured by gas chromatography (activated alumina 60/80 mesh 

column, flame ionization detector), with the column oven set at 110°C, and the detector set 

at 150°C. Peak integration was done using the Peak Simple program (SRI Instruments). 

Calibration curves were constructed using defined amounts of acetylene in the headspace 

of protein-free assay mixtures. 

 

N2 Reduction Assay.  

N2 reduction was monitored by determining ammonia formation, based on a modification 

of the previously described fluorescence method using an o-phthalaldehyde 

mercaptoethanol reagent [101, 102]. The 1.0 ml assay contained 20 mM creatine 

phosphate, 5 mM ATP, 5 mM MgCl2, 25 units/mL phosphocreatine kinase, and 25 mM 

Na2S2O4, in MOPS buffer (pH=7.5). The headspace (9 mL) of the assay vial was flushed 

with N2 before incubation for 5 min at 30°C. Reactions were initiated by addition of the 

nitrogenase component proteins (Av2:Av1=2:1, active site ratio: 1:1), and terminated at 

specific time points by the addition of 300 µL 0.5M EDTA (pH=8.0). The liquid 

chromatography step in the previously described method was replaced by filtering the 

assay mixture (Amicon Ultra 3kDa centrifugal filter) and collecting the filtrate, 

subsequently used for fluorescence measurement. The fluorescence reaction mixture was 

composed of 20 mM phthalic dicarboxyaldehyde, 3.5 mM 2-mercaptoethanol, 5% v/v 

ethanol, and 200 mM potassium phosphate (pH 7.3). Fluorescence samples were prepared 
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by adding 25 uL of sample to 1 mL of the fluorescence reaction mixture, mixed by 

inverting the solution several times, and allowed to react in the dark for 30 minutes. 

Fluorescence measurements were performed using a Flexstation 3 plate reader (λexcitation = 

410 nm, λemission = 472 nm) with SoftMax Pro Microplate Data Acquisition & Analysis 

Software (Molecular Devices). A calibration curve was generated using NH4Cl standards 

from 0.1-10 mM. 

 

Proton Reduction Assay.  

Dihydrogen from proton reduction was measured by gas chromatography (molecular sieve 

5A-80/100 column) equipped with a thermal-conductivity detector. The assay was identical 

to the acetylene reduction with the acetylene omitted. Ar was used as the reference/carrier 

gas. Calibration curves were prepared using 10% H2 (balance Ar) as a standard by 

replacing 1 mL of the head space of a standard assay with the standard and injecting 30-50 

uL of the head space into the gas chromatogram. 

 

CH4 production based on KSeCN and KSCN.  

Methane, one product of KSeCN and KSCN reduction, was determined by gas 

chromatography in the headspace of the assay as described above for the acetylene assay. 

The assay mixture was identical to the acetylene assay except that the acetylene was 

omitted and KSeCN or KSCN (0.05, 0.1, 0.2, 0.5, 1, 2, 5 mM), as a substrate, was added. 

Calibration curves were determined with pure methane gas. 

 

Se2B-Labeling of Av1.  

Av1-Se2B was prepared based on the above described proton reduction activity assay 

protocol in the presence of 25 mM KSeCN, providing conditions commensurate with full 

inhibition of acetylene to ethylene reduction. Av1-Se2B was isolated from the assay 

mixtures by ultrafiltration using a 100kDa cut-off membrane and washed two times 

(dilution ratio of 1:100 each) with 200 mM NaCl, 50 mM Tris/Cl buffer pH=7.5 containing 

5 mM Na2S2O4 to remove excess KSeCN. The protein was further purified by size-

exclusion chromatography (Superdex-200, 450mL, 50 mM Tris/Cl buffer pH=7.5 
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containing 200 mM NaCl and 5 mM Na2S2O4). The final protein concentration was 

adjusted to 30 mg/mL.  

 

Freeze quench sample preparation.  

Av1-Se freeze quenched samples were obtained by applying the above described acetylene 

reduction activity assays, with replacement of wild-type Av1 with Av1-Se2B. Termination 

of protein activity at distinct time points (correlating with numbers of acetylene reduced per 

active site of: 2, 46, 341, 921, 1785, 2141, and 5361) was achieved by rapid freezing the 

activity assay mixtures in liquid nitrogen. The samples were subsequently processed at 3oC. 

Av1 was isolated by ultrafiltration using 100 kDa cut-off membranes and twice was 

washed with 200 mM NaCl, 50 mM Tris/Cl pH=7.5, 5 mM Na2S2O4 buffer to remove other 

assay components. The final protein concentration was adjusted to 30 mg/mL and 21°C for 

crystallization. 

 

CO-inhibition sample preparation 

For the preparation of CO-inhibited samples, CO-inhibited activity assays were prepared 

by saturating the assay mixture with CO, and initiated by addition of Av1 and Av2 (the 

concentrations of Av1 and Av2 were doubled to provide enough material for crystallization 

and activity analysis.). After incubating the CO-inhibited assay mixtures for 10 min after 

protein addition, the assays were combined and concentrated under a CO overpressure of 

15 psi in an Amicon ultrafiltration cell with a molecular weight cut-off of 100,000 Da. All 

subsequent protein-handling steps were carried out under a CO atmosphere. Av1-CO and 

Av1-Se-CO were prepared in the same way, with the appropriate initial protein sample 

used (Av1 or Av1-Se2B). Complete CO-inhibition of acetylene reduction was 

demonstrated by the absence of ethylene production in the assay headspace when both CO 

and acetylene were present in the headspace. 

 

Reactivation of the CO-inhibited samples  

A) A portion of the concentrated CO-inhibited mixture, used to obtain the CO-inhibited 

structure, was flushed with Ar followed by transfer into a fresh assay mixture containing 
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the original Av2 assay concentration as well as 1 mL acetylene in the headspace. The 

MoFe-protein concentration was re-adjusted to its original value by diluting it with 150 

mM NaCl, 50 mM Tris/Cl buffer (pH 7.5). Recovery of activity was followed by the 

production of ethylene in the headspace. The assay mixture was concentrated under Ar and 

subsequently used for crystallization. 

B) CO-inhibited MoFe-protein crystals were harvested and dissolved in 150 mM NaCl, 

50 mM Tris/Cl buffer (pH 7.5). The MoFe-protein concentration was re-adjusted to its 

original assay concentration and transferred into a fresh assay mixture as described in A). 

Recovery of activity was followed by the production of ethylene in the headspace. 

 

MoFe-protein Crystallization  

All Av1 (MoFe-protein) samples (Av1, Av1_CO, Av1_Se2B, Av1_Se freeze-quench, 

Av1_Se_CO) were crystallized based on the sitting drop vapor diffusion method at 21° C 

in an anaerobic chamber containing a 95% Ar / 5% H2 atmosphere. The reservoir solution 

contained 24-28% PEG 8000 (v/v), 0.75-0.85 M NaCl, 0.1 M imidazole/malate (pH 7.5), 

1% glycerol (v/v), 0.5 % 2,2,2-trifluoroethanol (v/v) and 2.5 mM Na2S2O4. Samples with 

CO-inhibition were crystallized with reservoir solutions saturated with CO. Seeding was 

used to accelerate the crystallization process and to optimize crystal shape. Crystallization 

drops containing SeCN and/or CO became cloudy upon exposure to the chamber 

environment (95% Ar/5% H2), and so crystal looping was difficult, and required quick 

handling. Cryo-protection was achieved by transferring crystals into a 5 uL drop of 

reservoir solution containing 8-12 % MPD (v/v).  Crystals were looped, and after 

cryprotection, frozen immediately in liquid nitrogen. These crystallization conditions were 

based on conditions found in [2, 37]. 

 

Co-crystallization with KSCN, NaI, NaBr, or KSeCN. 

All co-crystallized MoFe protein samples were crystallized in conditions identical to those 

described in MoFe-protein Crystallization, but with 10 mM concentration of the desired 

anion (5 mM and 20 mM were also tested). Crystallization drops became cloudy upon 
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exposure to the chamber environment (95% Ar/5% H2), and so crystal looping was 

difficult, and required quick handling. 

 

Data Collection 

Diffraction data were collected at 7100 keV (1.746257 Å, experimentally determined f’’ 

peak position of the Fe-K edge) 12400 (0.999872 Å), and 12662 eV (0.97918 Å, 

experimentally determined f’’ peak position of the Se-K edge) at the Stanford Synchrotron 

Radiation Lightsource (SSRL) beamline 12-2 equipped with a Dectris Pilatus 6M detector. 

 

Structure Solution and Refinement.  

Data were indexed, integrated and scaled using iMosflm, XDS and Scala [103-105]. 

Phase information were obtained by molecular replacement using the 1.0 Å resolution 

structure (PDB: 3U7Q) as a model (see figure 25). Structural refinement and rebuilding 

was carried out in REFMAC5 and COOT [106, 107]. Se-anomalous electron density 

maps were calculated based on the data collected at 12662 eV, and S-anomalous electron 

density maps were calculated based on data collected at 7100 eV, using a combination of 

CAD and FFT embedded in the CCP4 program suite [108].  
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Figure 25: Flow Chart for Molecular Replacement 

 
 

Quantification of Se/Fe/S anomalous electron densities (f’’12662eV(Se)=3.84e; 

f’’12662eV(Fe)=1.50e; f’’12662eV(S)=0.24e) based on the refined structural models was 

performed using a MAPMAN-dependent script, allowing a free choice of radius of 

integration and B-factor cut-off [28, 37, 109]. All protein and active site structures were 

rendered in PYMOL.  

* All crystallographic data was collected and refined with Dr. Thomas Spatzal 
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CW-EPR Spectroscopy 

All cw-EPR data was collected with, and analyzed in collaboration with the group of Dr. 

Stephan Weber (Albert-Ludwigs-Universität Freiburg, Germany) by Lorenz Heidinger and 

Dr. Erik Schleicher. 

 

Samples were prepared as described in Av1_Se2B labeling, followed by an additional 

purification step using size-exclusion chromatography (Superdex-200 column material), 

then concentrated to ~70-100 mg/mL by ultrafiltration with a 100 kDa cutoff membrane. 

Samples were prepared with both natural abundance selenium KSeCN, and K77SeCN, 

synthesized from 99% enriched 77Se (Cambridge Isotope Laboratories, Inc) and KCN 

(prepared by J. Rittle).  Protein was then transferred to an EPR tube (both X-band and Q-

band tubes were filled) in an anaerobic chamber (95% Ar/5% H2 atmosphere), and frozen 

in liquid nitrogen. 

 

All data was recorded using a cw- X-band EPR-spectrometer (ELEXSYS E500, 10” 

ER073 Electromagnet, Super High Q resonator cavity; Bruker Biospin GmbH) equipped 

with a continuous-flow liquid helium cryostat (ER 4112HV; Oxford Instruments). Spectra 

were recorded at temperatures of 4-10 K and microwave power of 10 mW. Microwave 

frequencies were all ~9.37 GHz, modulation amplitude 6 G, modulation frequency 100 

kHz, and receiver gain 47 dB. 

 

Analysis of the distribution of rhombicity in the EPR spectra required application of a 

Tikhonov regularization. Each cw spectra for the kernel was calculated by using the 

Easyspin algorithm, “pepper” [110].  
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ESEEM spectroscopy 

All ESEEM data was collected with and analyzed in collaboration with the group of Dr. 

Stephan Weber (Albert-Ludwigs-Universität Freiburg, Germany) by Lorenz Heidinger and 

Dr. Erik Schleicher. 

 

Samples for ESEEM were identical to samples prepared for cw-EPR measurements.  

 

All 3-pulsed ESEEM data was recorded using a pulsed EPR-spectrometer (ELEXSYS 

E580, 3W Q-band solid state amplifier, Q-band ENDOR Resonator EN 5107D2; Bruker 

Biospin GmbH) equipped with a continuous-flow liquid helium Q-band Cryostat (CF935; 

Oxford Instruments). Spectra were recorded at temperatures of 4.5 K and microwave 

frequency 33.8116 GHz, with the magnetic field swept from 440 mT to 1340 mT (220 data 

points). The π/2 pulses were set  16 ns and four-step phase cycling was applied. All 3-pulse 

ESEEM experiments were recorded with a detection bandwidth of 20 MHz and repetition 

time of 50 µs. The initial T-value was set to 120 ns with 12 ns stepping. The data was 

processed by subtracting a bi-exponential decay using a hamming window function and a 

zero-filling factor of 3 before Fourier-transformation. 
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R e s u l t s  

Structural Characterization CO-inhibited MoFe-protein 

Crystallographic analysis of a CO-inhibited nitrogenase MoFe-protein required 

identification of conditions capable of fully inhibiting the enzyme (except for proton 

reduction), and to ensure that the CO remained bound to the FeMo-cofactor. This was 

accomplished through protein handling under a CO atmosphere during each step in 

crystallization sample preparation, and preparing crystallization conditions saturated with 

CO. 

 

Through optimization of protein handling and crystallization conditions with CO, we were 

able to isolate the CO-inhibited MoFe-protein and crystallize it to obtain a 1.50 Å 

resolution structure, revealing a single CO bound in a µ2-bridging mode, and displacing a 

belt sulfur atom, S2B (see figure 26). 

 

Analysis of the CO-inhibited structure revealed that the CO sits at a distance of 1.86 Å 

from Fe2 and Fe6, with the structure slightly “bending” with the Fe2-Fe6 distance 

changing from 2.6 Å to 2.5 Å, and a 6° tilt along the Fe1-C-Mo axis towards the CO 

(figure 26 C). 

 

Complete S2B displacement was determined using anomalous difference Fourier maps 

calculated with data collected at 7100eV; this energy was chosen as S has a f” contribution 

of ~0.7 e-, and this energy is below the K-edge for Fe, ensuring a substantial anomalous 

signal from S (see figure 26 b). CO electron density was determined based upon 

comparison to all other C and O electron density in the protein structure (i.e. as internal 

standards), applying integration spheres of radius 1 Å, and exclusion of atoms with a B-

factor >25 (see figure 27). This analysis showed good agreement with the S2B site being 

occupied with a single CO bound with the C binding to Fe2 and Fe6. 
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Figure 26: CO-inhibited MoFe-protein: Refined structure of the CO-bound FeMo-cofactor at a resolution of 
1.50 Å. Irons are shown in orange, sulfur in yellow, molybdenum in cyan, nitrogen in blue, carbon in grey, 
and oxygen in red. (this figure is from [109]) 

A) view along the Fe1-C-Mo axis of the FeMo-cofactor The 2Fobs-Fcalc map is contoured at 4.0 σ and 
shown as blue mesh. 

B) same orientation as A), superimposed with the 7100 eV anomalous density map, shown as a green 
mesh, at a resolution of 2.1 Å and contoured at 4.0 σ showing the absence of S anomalous 
scattering at the S2B site, indicating replacement by CO. 

C) side view of the FeMo-cofactor highlighting the CO-binding geometry. The electron density map, 
in blue mesh, surrounding CO-Fe2-Fe6-C is contoured at 1.5 σ.  

D) Same orientation as in C), highlighting the ligand environment of the FeMo-cofactor. The 
catalytically relevant side chains, α-Val70 and α-His195, are both in close proximity to the bound 
CO. 
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Table 3: X-ray data Collection Statistics for the Av1_CO structure at a resolution of 1.50 Å (table is from 

[109]) 

Av1-CO 

Data collection statistics 

 

High resolution 

 

Anomalous (sulfur)  

Wavelength (Å) 0.99987 1.74626 

Resolution range (Å) 49.56 – 1.57 (1.66 – 1.57) 38.77 – 2.1 (2.21 – 2.10) 

Unique reflections 271,948 (37,922) 118,541 (16,880) 

Completeness (%) 95.4 (91.2) 97.5 (95.5) 

Multiplicity 6.0 (5.4) 6.5 (6.1) 

Space group P21 P21 

Unit cell parameters   

a, b, c 81.23, 130.75, 107.07 81.23, 130.71, 107.06 

α, β, γ 90.0, 110.67, 90.0 90.0, 110.64, 90.0 

Rmerge 0.118  (0.667) 0.041 (0.111) 

Rp.i.m. 0.051 (0.282) 0.017 (0.048) 

I / σ(I) 10.0 (2.3) 33.1 (13.9) 

Data processing statistics   

Rcryst (%) 13.91 14.27 

Rfree (%) 15.54 16.26 

r.m.s.d. bond lengths (Å) 0.011 0.011 

r.m.s.d. bond angles (°) 1.721 1.640 

Average B-factor (Å2) 

Ramachandran: allowed (outliers) (%) 

13.67 

99.4 (0.6) 

13.29 

99.35 (0.65) 
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Figure 27: Electron density analysis of carbon monoxide displacement of sulfur at the S2B site. (this figure is 
from [109]) 

A) Average electron densities for carbon, nitrogen, oxygen, and sulfur determined by applying a 1 Å 
radius integration sphere to each atom of (atoms with a B-factor >25 Å2 were excluded from the 
analysis). Obtained values are plotted against the number of observations and plotted as 
histograms. Peak positions represent average electron density for each king of atom, and represent 
Gaussian fits to the data. The CO electron density is in agreement with the average values for 
carbon (carbonyl-C) and oxygen. 

B) Side view of the CO-inhibited FeMo-cofactor superimposed with the electron density (2Fobs-Fcalc) 
contoured at 4.0 σ (shown as blue mesh). The CO electron density is equivalent to that seen in the 
carbonyl-bonds in the R-homocitrate ligand. 

C) Electron density histogram for carbonyl and non-carbonyl carbons. At 1.50 Å resolution, the 
higher electron density for carbonyl bonds can be discriminated from non-carbonyl carbons. Two 
histograms can be fit for the two carbon classes, and comparison made with the CO ligand. The 
CO carbon is in agreement with the electron density for carbonyl carbons in the molecule. 
Deviation from the peak can be explained by proximity to Fe2 and Fe6 
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D) Electron density (2Fobs-Fcalc), in blue mesh, and difference electron density (Fobs-Fcalc) , in green 

mesh, map of the CO-inhibited FeMo-cofactor contoured at 4.0 σ. Strong positive difference 
density peak is indicated at the position of the oxygen atom of CO in green mesh. 

 

Reactivation of the CO-inhibited MoFe-protein 

After characterizing the CO-inhibited state, we sought to identify if the protein had been 

irreversibly modified, or if reactivation was possible. In order to do this, two approaches 

were taken: CO-inhibited crystals were dissolved in a complete assay mixture with added 

Fe-protein, and CO-inhibited MoFe protein was isolated from CO-saturated assay and then 

added back to CO-free assays containing acetylene. For both activity measurements, 

ethylene production was measured, and showed that the CO-inhibition was reversible with 

near-quantitative recovery (94 ± 4 %) of normal activity (table 4). Reactivated CO-

inhibited MoFe-protein was isolated from the activity mixture and crystallized, yielding a 

1.43 Å resolution structure. The reactivated structure revealed that the S2B sulfur was 

regained at full occupancy (figure 28), leaving the FeMo-cofactor in the resting state. 
 

 

Sample 
Specific Acetylene Reduction Activity 

nmol C2H4/min/mg Av1 Percent (%) 
Av1 1930 ± 90 100 ± 5 

Av1-CO inhibited < 2 ± 2 < 0.1 ± 0.1 
Av1-reactivated 1820 ± 80 94 ± 4 

 
Table 4: Comparison of acetylene reduction activity for Av1, CO-inhibition of Av1, and reactivation of Av1-
CO. Errors represent standard deviations based upon three measurements. (this figure is from [109]) 
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Figure 28: Reactivated MoFe-protein. Refined structure of the reactivated FeMo-cofactor at a resolution of 
1.43 Å. Color scheme is according to Figure CO. (this figure is from [109]) 

A) view along the Fe1-C-Mo axis of the FeMo-cofactor The 2Fobs-Fcalc map is contoured at 4.0 σ and 
shown as blue mesh. Electron density at the S2B site is in agreement with a sulfur at this site. 

B) same orientation as A), superimposed with the 7100 eV anomalous density map, shown as a green 
mesh, at a resolution of 2.15 Å and contoured at 4.0 σ showing the presence of S anomalous 
density at the S2B site. 
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Table 5: X-ray Data collection Statitstics for the Reactivated CO-inhibited Nitrogenase at a resolution of 1.43 

Å. (this table is from [109]) 

Av1-reactivated 

Data collection statistics 

 

High resolution 

 

Anomalous (sulfur) 

Wavelength (Å) 0.99987 1.74626 

Resolution range (Å) 39.76 – 1.50 (1.58 – 1.50) 38.69 – 2.15 (2.27 – 2.15) 

Unique reflections 321,467 (46,413) 107,219 (14,923) 

Completeness (%) 96.9 (95.9) 94.6 (90.2) 

Multiplicity 7.0 (7.0) 6.8 (6.8) 

Space group P21 P21 

Unit cell parameters   

a, b, c 80.94, 130.79, 107.00 81.05, 130.86, 107.07 

α, β, γ 90.0, 110.58, 90.0 90.0, 110.56, 90.0 

Rmerge 0.121  (0.647) 0.068 (0.107) 

Rp.i.m. 0.049 (0.260) 0.028 (0.044) 

I / σ(I) 11.0 (2.8) 20.7 (13.8) 

Data processing statistics   

Rcryst (%) 13.05 13.49 

Rfree (%) 15.42 15.64 

r.m.s.d. bond lengths (Å) 0.010 0.010 

r.m.s.d. bond angles (°) 1.683 1.566 

Average B-factor (Å2) 

Ramachandran: allowed (outliers) (%) 

9.42 

99.52 (0.48) 

11.55 

99.52 (0.48) 
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Site-specific Labeling and Migration of Se in the FeMo-cofactor 

Characterization of KSeCN inhibitory properties 

SeCN- was identified as a potent inhibitor and weak substrate of nitrogenase based upon 

previously identified inhibitory and substrate properties of SCN- [111]. The inhibitory 

properties of SeCN- and SCN- were characterized, finding the inhibition constant, Ki, for 

SeCN- to be thirty times lower than that of SCN-, with Ki values of 410 ± 30 µM and 12.7 ± 

1.2 mM respectively (see figure 29, and 30a). Additionally, SeCN- was identified as a weak 

substrate by methane production, also a product observed from reduction of thiocyanate 

(see figure 31) [111] and cyanide [112]. Proton reduction activity was retained in the 

presence of SeCN-, although at a decreased level (figure 30b). 
 

 
Figure 29: Inhibition constant characterization for acetylene reduction by KSeCN and KSCN 
Inhibitory properties of KSeCN and KSCN were determined using a modified acetylene reduction assay. 
Concentrations for substrate (C2H2) were below saturation and concentrations for inhibitors (KSCN, KSeCN) 
were at low inhibition to allow for analysis. Dixon plots were prepared by plotting 1/v versus inhibitor 
concentration. Ki was determined from the intersection point derived from unrestrained linear fits of data 
points.  
A) Dixon plot for KSCN, showing a Ki of 12.7 ± 1.2 mM KSCN. Concentrations of C2H2 were varied as 
follows: 20 (grey), 30 (red), 40 (blue), 60 (magenta), 100 (green), and 500 (teal) µL per 9 ml total headspace 
volume. Concentrations of KSCN were: 0, 1, 2, 3, 4 mM.  
B) Dixon plot for KSeCN, showing a Ki of 410 ± 30 uM KSeCN. Concentrations of C2H2 were varied as 
follows: 20 (grey), 30 (red), 40 (blue), 60 (magenta), 100 (green), and 500 (teal) µL. Concentrations of 
KSeCN were: 0, 50, 100, 200, 500 µM. 
Error bars represent standard deviations from three measurements. (this figure is from [113]) 
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Figure 30: Nitrogenase activity in the presence of KSeCN or KSCN 

A) Acetylene reduction activity in the presence of KSeCN (black) or KSCN (red) at varied 
concentrations: 50 µM, 75 µM, 100 µM, 500 µM, 1 mM, 5 mM, 10 mM, 15 mM, and 20 mM. 

B) Proton reduction activity as a function of KSeCN (black) or KSCN (red) concentrations (0, 0.5, 1, 
5, 10 mM). Green bars represent ratios between H2 production in the presence of KSeCN versus 
KSCN. H2 production in the presence of 10 mM KSeCN is approximately 65% when compared to 
10 mM KSCN, and approximately 38% in comparison to the KSCN/KSeCN free reduction 
activity.  

Error bars represent standard deviations from three measurements. (this figure is from [113]) 
 

 

 
Figure 31: Methane production based upon KSeCN and KSCN as substrates 
Methane production was determined based on 0.05, 0.1, 0.2, 0.5, 1, 2, 5 mM KSCN (red) or KSeCN (black) 
as substrates. Maximum CH4 production from KSeCN was obtained at a concentration of 1 mM, whereas CH4 
production from KSCN does not reach maximum within the tested range. Green bars represent ratios between 
CH4 production in the presence of KSeCN versus KSCN. Error bars represent standard deviations from three 
measurements. (this figure is from [113]) 
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Site-specific Se-incorporation into the FeMo-cofactor 

Investigation into a 1.60 Å structure of the SeCN- inhibited MoFe-protein led to 

identification of site-specific catalysis-dependent Se insertion into the S2B site of the 

FeMo-cofactor (Av1_Se2B) (see figure 32), as was seen with CO (see figure Se2B). 

Quantitative Se displacement of the S2B sulfur was characterized by analysis of the 

anomalous difference density map at the Se-K edge f” peak at 12662 eV, using the Fe 

atoms of the FeMo-cofactor and P-cluster as internal references. The overall geometry of 

the FeMo-cofactor in Av1_Se2B did not show any perturbation at this resolution, reflecting 

the small increase in the ionic radius of Se (3.8%) as compared to S [114]. 

 
Figure 32: Site-Selective Se-incorporation into the FeMo-cofactor 

A) Side view of the Se-incorporated FeMo-cofactor (FeMoSeco [7Fe:8S:Se:Mo:C]-R-homocitrate) 
within Av1_Se2B at a resolution of 1.60 Å highlighting the S2B sulfur replacement by Se. 

B) View along the Fe1-C-Mo axis of FeMoSeco. The electron density (2Fobs-Fcalc) map, shown as a 
grey mesh, is contoured at 5.0 σ. Electron density of the incorporated Se is significantly higher 
than that at the S3A and S5A sites, correlating with the higher electron density of Se. 

C) FeMoSeco in the same orientation as B) superimposed with the anomalous difference Fourier map 
calculated at 12662 eV, shown as a green mesh, at a resolution of 1.60 Å and contoured at 5.0 σ 
showing the anomalous Se density at the S2B site arising from the presence of a Se. Fe atoms are 
shown in orange, S in yellow, Se in green, Mo in cyan, C in grey, and O in red. 

D) Acetylene reduction assay of wt-Av1 (black) compared with Av1_Se (blue). Inset: product 
formation during the first 10 s shows a comparative lag for acetylene reduction by Av1_Se 
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E) Ammonia formation from reduction of N2 determined for Av1_wt (black) as compared with 

Av1_Se. Error bars represent standard deviations from three measurements.  
(this figure is from [113]) 

 

Av1_Se2B Substrate Reduction Activity 

Upon establishing that the S2B sulfur was displaced by a Se, analysis of the activity of the 

Se-labeled MoFe-protein Av1-Se2B) was tested to ensure that the enzyme had not been 

irreversibly inhibited or significantly altered. When compared to native MoFe-protein, the 

Av1-Se2B retained substrate (acetylene, proton and dinitrogen) reduction activity. Analysis 

of the substrate reduction activity revealed a longer initial lag phase than with the wild type 

protein (figure 32 d,e) 

 

Se-migration in the FeMo-cofactor 

Characterization of Av1-Se2B after acetylene reduction demonstrated that the site-

specifically inserted Se was not simply ejected from the FeMo-cofactor, as had been 

hypothesized with the Av1-CO, but had partially migrated to the other two belt-sulfur sites, 

S3A and S5A. This led to development of a method to freeze-quench (fq) acetylene 

reduction assays in order to trace the Se-label at specific time points for crystallographic 

investigation. 

 

Crystallographic characterization of seven fq MoFe-protein samples (Av1-Se-fq) at time 

points corresponding to 2 to 5360 acetylene reduced per FeMo-cofactor (designated Av1-

Se-fq-2 to Av1-Se-fq-5360). The structures, at resolutions of 1.32 – 1.66 Å, represent the 

first example of time-dependent structural snapshots of the nitrogenase active site during 

turnover (figure 33). The structures demonstrate a relationship between enzyme catalysis 

and migration from the Se at the S2B site into the S5A and S3A belt sulfur sites.  
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Figure 33: Catalysis dependent Se migration in the FeMo-cofactor 

A) Se-occupancy in the active site as a function of numbers of acetylene reduced per cofactor. Se 
occupancy of S2B shown in dark grey, S5A in blue, and S3A in red. The sum of Se-occupancy 
(Se2B + Se3A + Se5A) is shown in light grey. 

B) Structural models of Se-incorporated FeMo-cofactor during turnover. 1) FeMoSe-cofactor resting 
state in Av1_Se2B. 2-8) Cofactor structures obtained at seven time points according to the number 
of acetylene reduced per active site: 2, 46, 341, 921, 1785, 2141, and 5361. Crystal-structure 
resolutions (in the order 1-8): 1.60 Å, 1.50 Å, 1.45 Å, 1.32 Å, 1.64 Å, 1.66 Å, 1.65 Å, and 1.48 Å 
respectively. Anomalous Fourier difference maps calculated at 12662 eV and contoured at 5.0 σ, 
shown as green mesh, allowed for quantification of Se-occupancy. Color scheme is according to 
figure Se2B. 

(this figure is from [113]). 
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CO-inhibition of Av1_Se2B 

The previously characterized CO inhibited FeMo-cofactor identified replacement of the 

S2B sulfur with CO [109]. This led us to characterize the structure of the CO-inhibited 

Av1_Se2B (Av1_Se_CO) in order to determine the location of the displaced Se2B atom. 

The Av1_Se_CO structure was refined to a resolution of 1.53 Å, and revealed that the 

Se2B atom was ca. 90% replaced by a µ2-bridging CO (see figure 34), as in the Av1_CO 

structure [109] (see figure 26). Additionally, the Se was not expelled from the FeMo-

cofactor, but migrated to the S3A and S5A belt sulfur sites with ca 88% overall retention 

(the S3A site had a Se-occupancy of ~35% and the S5A site had a Se-occupancy of ~44%) 

(see figure 34). 

 

 
Figure 34: Se-migration upon CO binding to Av1_Se2B 
Structure of Av1_Se_CO at a resolution of 1.53 Å, highlighting the Se-migration from the S2B site to the S3A 
and S5A sites. 

A) View along the Fe1-C-Mo axis of the active site. The electron density (2Fobs-Fcalc) map, shown as 
a grey mesh, is contoured at 5.0 σ. Electron density of the bound CO is significantly lower than 
that at the S3A and S5A sites. 

B) Same orientation as A) superimposed with the anomalous difference Fourier map calculated at 
12662 eV, shown as a green mesh, at a resolution of 1.53 Å and contoured at 5.0 σ showing the 
anomalous Se density at the S3A and S5A sites arising from the presence of Se, and very low 
anomalous density at the S2B site, indicative of the CO bound. Numbers in parentheses represent 
the occupancy of the specified group. 

(this figure is from [113]) 
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Investigation into the potential Sulfur-binding Site 

Upon identification of the S2B sulfur being displaced by CO, the question of where the 

sulfur had migrated to arose [109]. Upon careful inspection of the 7100 eV anomalous 

different Fourier map, a potential sulfur binding site (pSBS) was identified. The pSBS is 

positioned ~22 Å away from the S2B site in the FeMo-cofactor, and is located at the 

interface between the α- and β- subunits forming a pocket formed by side chain residues of 

α-Arg93, α-Thr104, α-Thr111, α-Met111, β-Asn65, β-Trp428, β-Phe450, and β-Arg453 

(fig 35). The pocket has a positive surface charge, which would be amenable to 

accommodation of an anionic species such as HS- or S2-. Additionally, this site is connected 

to the FeMo-cofactor through a discontinuous water channel. 

 

Further investigation into the pSBS led us to experimentally test if this site is a generic 

anionic binding site, or if it is specific to binding a sulfur species. Co-crystallization with 

varied concentrations (5-20 mM) NaI and NaBr did not result in I- or Br- species present in 

the pSBS, with inspection of the electron density map (2Fcalc-Fobs) for increased electron 

density reflective of an I- species, and of the anomalous Fourier difference density map at 

13481 eV for Br-. Co-crystallization with SCN- resulted in increased electron density and 

the presence of anomalous density from the anomalous Fourier difference density at 7100 

eV, indicating that a SCN- was bound at this site, but due to the similar anomalous 

scattering factor and ubiquitous presence of Cl- species, could not be defined as one or the 

other, although modeling of SCN- at this site is in good agreement with the electron density 

(see figure 36). Analysis of the SeCN- inhibited Av1_Se2B structure, as well as a MoFe-

protein sample co-crystallized with KSeCN, revealed a low occupancy (varying between 0-

20%, dependent upon SeCN- concentration, 10-25mM) anomalous density in the 12662 eV 

anomalous Fourier difference density map, although at this low occupancy conclusive 

analysis is not possible. 
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Figure 35: Potential Sulfur-binding site (pSBS) in the CO-inhibited MoFe-protein 

A) Location of the potentially bound sulfur in a cavity at the interface between the α- and β- subunits. 
The pSBS is located 22 Å from the S2B site of the FeMo-cofactor. 

B) Enlarged representation of the pSBS cavity. Positive surface charge is represented in blue, 
negative in red. The 7100 eV anomalous density map at a resolution of 2.1 Å is represented as a 
green mesh and contoured at 4.0 σ, showing the presence of an anomalous density in the pSBS. 
The side chain sulfur of α-Met112 acts as an internal standard for full occupancy.  

(this figure is from [109]) 

 
 

Figure 35: Potential Sulfur Binding site from crystals co-crystallized with 10 mM SCN- 
The pSBS pocket is shown here with a SCN- ligand fit to the electron density and the 12662 eV anomalous 
Fourier difference density. The position of the S from SCN- is approximately at the same site as the proposed 
sulfur species identified in the pSBS of the CO-inhibited MoFe structure (see figure pSBS). 
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Table 6: Data collection and refinement statistics for the SCN- co-crystallized (10mM) MoFe-protein (Av1-
SCN). Values in parentheses represent the highest resolution shell. 
 

Av1-SCN                             
Data collection statistics High resolution Anomalous 

Wavelength (Å) 0.99987 1.74626 

Resolution Range (Å) 38.64 - 1.28 (1.35 - 1.28) 40.08 - 2.05 (2.16 - 2.05) 

Unique reflections 4997130 (622666) 119405 (14482) 

Completeness (%) 95.9 (84.5) 94.7 (82.9) 

Multiplicity 6.6 (5.9) 6.4 (5.6) 

Space group P21 P21 

Unit cell parameters   

a, b, c 77.34, 130.84, 107.00 77.34, 130.84, 107.00 

α, β, γ 90.0, 108.94, 90.0 90.0, 108.94, 90.0 

Rmerge 0.094 (0.732) 0.055 (0.090) 

Rp.i.m 0.039 (0.322) 0.023 (0.040) 

I/σ(I) 11.9 (2.2) 24.3 (14.1) 

Data processing statistics     

Rcryst (%) 12.87 15.03 

Rfree (%) 15.54 17.12 

r.m.s.d. bond length (Å) 0.015 0.012 

r.m.s.d. bond angles (°) 1.772 1.661 

 

 

 

 

 

 

CW-EPR of Av1_Se2B: X-band EPR 



 

 

72 
Isolation of a site-specific alteration of the FeMo-cofactor with incorporation of selenium 

led to an investigation of the altered active site by EPR. X-band cw-EPR of the resting state 

wt-Av1 showed the as-expected rhombic signal expected for the 3/2 spin state, with the 

lower Kramer’s doublet dominating the spectrum with fictitious principal g-values of [gx, 

gy, gz] = [4.31, 3.65, 2.01] (see figure EPR A) [2, 37]. X-band cw- EPR of resting state 

Av1_Se2B and isotopically labeled Av1_77Se2B showed significant splitting of the g-

values remaining the same.  The natural abundance vs isotopically labeled samples show 

similar splitting with differences in peak intensities. 

 

For the lower Kramer’s doublet, the fictitious g-values are dominated by the rhombicity (λ 

= E/D) [citation]. To obtain the distribution of rhombicity, a Tikhonov regularization was 

applied, giving rise to quite good peak fitting (shown in figure 37 A, B, C in green, with 

experimentally recorded spectra in blue). Analysis of the E-values gave a single peak for 

the wild-type Av1, but gave ~5 peaks indicating a distribution of E-values for the selenium 

incorporated samples (see insets for figure 37). Applying different λ-values while keeping 

the g-values constant in the cw-EPR spectra regularization indicate that the spectra are 

dominated by the rhombicity of the whole cluster, indicating that the zero-field splitting 

parameters are significant in the Se-incorporated FeMo-cofactor. Interpretation of the 

meaning of this analysis is difficult, and will require more experiments analyzing the 

influence of Se in the FeMo-cofactor. 

 

*All EPR experiments and analysis were done in collaboration with the research group of 

Prof. Dr. Stephan Weber (Albert-Ludwigs-Universität Freiburg, Germany) by Lorenz 

Heidinger and Dr. Erik Schleicher. 
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Figure 37: X-band cw-EPR spectra of: A) Av1 (wild type), B) Av1_Se2B, C) Av1_77Se2B taken at 6K. The 
expected g-values for Av1 (wild type) are shown. Insets show the E-value determination showing a number of 
peaks for λ-values fit for the two Se-incorporated samples. 
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3-Pulse ESEEM of site-specifically Se-incorporated MoFe-protein 

 

 
Figure 38: 3-Pulsed ESEEM of: A) Av1_wt, B) Av1_Se2B (natural abundance), C) Av1_77Se2B (isotopically 
labeled), and D) Difference spectrum for the 3P-ESEEM of Av1_Se2B – Av1_77Se2B. The difference 
spectrum in D) shows the hyper-fine coupling between the 77Se (I = 1/2) and, presumably, electrons coupled 
to FeMo-cofactor. 
 
Analysis of 3-pulsed ESEEM experiments demonstrate the presence of hyperfine coupling 

when isotopically labeled 77Se is site-specifically incorporated into the FeMo-cofactor.  

Comparison of the wild-type and selenium-labeled samples shows similar frequencies. 

Signals at frequencies below 8 MHz correspond to nitrogens in the sample, and above 20 

MHz correspond to protons present.  

A peak located at ~12 MHz (B0 = 660 mT) seen in the Av1_77Se2B spectrum is expected to 

have originated from the presence of 77Se, and analysis of the difference spectrum shows a 

blue/green area corresponding with this peak, indicative of hyperfine coupling derived 

from 77Se (as it is not present in the natural abundance Av1_Se2B spectrum, it is expected 
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that it corresponds with the I = ½ nucleus) (see figure 38 a-c for plotted spectra and d for 

difference spectrum). 

 

*All ESEEM experiments and analysis were done in collaboration with the research group 

of Prof. Dr. Stephan Weber (Albert-Ludwigs-Universität Freiburg, Germany) by Lorenz 

Heidinger and Dr. Erik Schleisser. 
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D i s c u s s i o n  

Structural Characterization CO-inhibited and Reactivated MoFe-protein 

Determination of ligand binding to the FeMo-cofactor has been an arduous process due to 

requirements including reduction of the FeMo-cofactor by 2- to 4- electrons delivered by 

the Fe-protein [41], and the ubiquitous reduction of protons, indicative of transient 

intermediate states. Trapping intermediate substrate bound states is additionally difficult 

due to the requirement of both the Fe- and MoFe- proteins, making samples not only 

heterogeneous with regard to proteins present, but also making the electronic states of the 

metals in the proteins likely mixed. The resulting distribution of intermediates makes both 

structural and spectroscopic investigations non-trivial. 

 

Due to these difficulties, inhibitors are potentially powerful tools for stably trapping ligand 

bound states that can provide insight into the substrate binding and reduction mechanism. 

Structural characterization of the FeMo-cofactor with a bound substrate/inhibitor provides 

direct insight into previously unknown information regarding the ligand binding site and 

mode. Carbon monoxide (CO) is a potent non-competitive inhibitor for all substrates, 

except protons [59, 115], and is especially attractive because it is isoelectronic to N2, is a 

reversible inhibitor, and only binds to partially reduced MoFe-protein generated under 

turnover conditions.  Although noncompetitive inhibitors are traditionally considered to 

bind at distinct sites from the native substrate, the complexity of catalysis by nitrogenase, 

including multiple oxidation states and potential binding modes, makes this distinction less 

relevant [61]. Recent investigations have shown that CO is also a weak substrate, which 

during reduction undergoes C-C bond formation to form hydrocarbons, in a reaction 

reminiscent of Fischer-Tropsch synthesis [116, 117]. CO binding has been investigated 

using spectroscopic techniques, most notably EPR and IR spectroscopies, which have 

revealed a variety of CO-bound species dependent upon the partial pressure of CO present 

[61, 63, 66, 115, 118-120]. Despite the numerous studies that have been carried out, a 

structurally explicit characterization of any CO-bound state has not been accomplished 

previously. 
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Based upon this background, we have developed a method for preparing CO-inhibited 

samples and prepared crystal samples optimized for X-ray crystallographic analysis. 

Optimization of CO-inhibited sample preparation and crystallization led to the refinement 

of a structure of 1.50 Å resolution. Analysis of the electron density (2Fobs-Fcalc) and the 

anomalous different density map calculated at 7100 eV (this energy was chosen because it 

is below the K-edge for Fe, and S has a comparably significant anomalous contribution at 

this energy) demonstrated that the CO bound to the FeMo-cofactor in a µ2-bridging mode, 

displacing the S2B belt-sulfur, and causing the FeMo-cofactor to lose its intrinsic three-fold 

symmetry (see figure 26). This is the first experimental evidence that the FeMo-cofactor 

undergoes structural changes during catalysis.  

 

Considering the complete displacement of the S2B sulfur, we assessed whether the CO-

inhibited protein was irreversibly inactivated or could be reactivated. Reactivation was 

accomplished by placing the CO-inhibited protein in activity assays containing acetylene, 

and activity was measured through the production of ethylene. Reactivation was possible 

with both CO-inhibited protein crystals, and with CO-inhibited MoFe-protein isolated from 

CO-saturated activity assays.  Re-isolation and crystallization of the reactivated MoFe-

protein resulted is a 1.43 Å resolution structure that displayed complete return of a sulfur in 

the S2B site. The ability to reactivate the protein and the return of the ejected sulfur 

indicates that the CO-bound state is a relevant catalytic species. 

 

The crystallographic structures of the CO-bound, and reactivated, FeMo-cofactor has 

important implications for the mechanism of substrate reduction by nitrogenase. The CO-

binding site is adjacent to two side chains that were previously shown to alter substrate 

reduction activity; α-His195 is 2.8 Å away (NE2–OC distance) and α-Val70 is 3.4 Å 

(closest methyl–OC distance). An α-His195 mutation to α-Gln195 resulted in the loss of 

N2 reduction activity, and mutations to the α-Val70 to α-Ala70 and α-Gly70 enabled 

reduction of longer hydrocarbon substrates and indicated the involvement of Fe6 in 

substrate reduction [94, 121-124]. In the structure of the CO-inhibited MoFe-protein α-
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His195 is in hydrogen bonding distant to the oxygen of CO, and α-Val70 directly flanks 

the binding site (Figure 26D) 

 

Displacement of the S2B sulfur could be facilitated by protonation from α-His195, yielding 

a HS– or H2S species, which would generate a better leaving group than S2-. Dissociation of 

a sulfur atom opens the possibility for binding at the iron atoms, which are shielded while 

the belt sulfur is present [92], and provides a reactive site for substrates to bind and be 

reduced. This also represents a change to the view of the FeMo-cofactor as being 

structurally inert, and protonation of the belt-sulfur atom could partially account for the 

required electron donation required for substrate binding.  

 

The CO-bound FeMo-cofactor not only loses the three-fold symmetry due to displacement 

of the belt-sulfur, but the Fe1-Mo-C axis is no longer aligned, creating an additional 

asymmetry (figure 26). These adjustments to the structure suggest that the interstitial 

carbon [125, 126] may act to stabilize the FeMo-cofactor during structural rearrangements 

and substitutions without loss of structural integrity. 

 

The experimental sample preparation used in these experiments is distinct from that 

reported in previous spectroscopic studies, precluding assignment of our structure to 

previous spectroscopic states identified not possible. It is important to note that many of the 

previously identified states undergo dynamic interchanges, including photoinduced 

transitions between states [119]. Like the structure presented here, the spectroscopically 

identified “lo-CO” state has been proposed to involve one molecule of CO bound to the 

active site in a bridging mode [64, 120]. A state with two CO bound to Fe2 and Fe6 could 

correspond to the “high-CO” form [66, 118] and might represent an intermediate relevant 

to the C–C coupling reaction. 

 

The CO-bound and reactivated MoFe-protein structures determined in this crystallographic 

study demonstrate the structural flexibility of the FeMo-cofactor and provide a detailed 

view of a ligand bound to the nitrogenase active site. The observations that CO is 
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isoelectric to N2, is a potent yet reversible inhibitor of substrate reduction without 

impeding proton reduction to dihydrogen, and is bound in close proximity to previously 

determined catalytically important residues emphasize the relevance of the CO-bound 

structure toward understanding dinitrogen binding and reduction. This sheds light on N2 

activation based on a diiron edge of the FeMo-cofactor and in this respect resembles the 

Haber-Bosch catalyst that also uses an iron surface to break the N–N triple bond. The 

demonstrated structural accessibility of CO-bound MoFe-protein opens the door for 

comparable studies on a variety of inhibitors and substrates, with the goal of understanding 

the detailed molecular mechanism of dinitrogen reduction by nitrogenase. 
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Site-specific Se-incorporation and Migration in the FeMo-cofactor 

Following the CO-inhibition study, which produced structures of the CO-inhibited and 

reactivated FeMo-cofactor [109], we applied an alternative approach to analyze ligand 

binding by site specifically introducing a reporter into the FeMo-cofactor. Due to the 

reversible displacement of the S2B sulfur by CO [109], its replacement by other 

substrates/inhibitors was investigated. Potential candidates for inhibitors included Se 

containing compounds due to its application as a structural surrogate for S in [Fe:S] clusters 

[114, 127], and its unique crystallographic and spectroscopic properties. 

 

We identified the new inhibitor, SeCN-, and characterized its kinetic properties as an 

inhibitor and weak substrate in comparison to an analogous, previously identified, inhibitor 

and substrate, SCN- [111]. The Ki for SeCN- was determined to be thirty times lower than 

SCN- (410 ± 30 µM vs 12.7 ± 1.2 mM) (figure 29), and crystallographic analysis 

demonstrated site-specific insertion of a Se from SeCN- into the S2B site, the site at which 

CO was shown to bind [109]. The determination that Se, from SeCN-, and CO both bind at 

this site, displacing a sulfur, highlights the likely role of the Fe2-Fe6 edge as a primary 

interaction site for substrates and inhibitors.  The differences in chemical properties of CO 

and SeCN- indicate that this is not simply a specific binding site for a single class of 

inhibitors or substrates. Our findings substantiate previous evidence that identified the side 

chains flanking this site as catalytically important through mutagenesis studies [128, 129]. 

 

Following the site-specific labeling of the MoFe-protein, we investigated the activity of the 

Se-incorporated protein and the structural changes induced. Assays measuring substrate 

reduction by Av1_Se2B (of acetylene, dinitrogen, and protons) showed comparable activity 

to the wild type protein, with a slight lag phase during the first ten seconds for acetylene 

reduction (see figure 32), confirming that the incorporated Se had not irreversibly 

inactivate the enzyme. The slight lag observed at early time points may be due to the 

difference in producing a labile Se atom as compared to a S atom. Isolation of samples 

from acetylene reduction assays demonstrated that the Se at the S2B site migrated to the 

other belt sulfur sites during turnover. This provided the starting point for a time-dependent 
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analysis of the active site during acetylene turnover. Time dependent analysis of the Se-

labeled MoFe-protein required the development of crystallographic sample preparation 

involving freeze-quench of acetylene reduction assays at specific time points. The resulting 

crystallographic structures indicate a catalytically dependent migration from the S2B site to 

the S3A and S5A sites. Early time points imply a preferential migration to the S5A site 

(figure 33), but whether this is reflective of an ordered sequence or a more complex 

mechanism cannot be determined from this data. The migration of Se through the S2B, 

S3A, and S5A sites indicates that these sulfur atoms can interchange and exchange with 

exogenous ligands during catalysis. These results suggest that substrates may also migrate 

to different sites of the trigonal six-iron prism during catalysis, exchanging binding 

positions with the belt-sulfurs. Additionally, complete loss of Se, and replacement with S, 

is accomplished after a sufficient number of catalytic cycles (Figure 33), although the 

source of sulfur cannot be determined in these experiments due to multiple sulfur species 

present, including dithionite and the nitrogenase proteins. The observation that the Se in the 

S2B site can migrate to the S3A and S5A sites, and ultimately be chased from the FeMo-

cofactor during acetylene reduction, indicates that all three belt-sulfur positions are 

labilized during catalysis. In contrast, no migration was observed during proton reduction. 

 

Elaborating upon our previous study structurally characterizing the CO-inhibited MoFe-

protein [109], we sought to similarly CO-inhibit the Av1_S2B protein. The structure of the 

CO-inhibited Av1_Se2B provided the potential to identify both the reactivity at the S2B 

site, and the location of the displaced chalcogen. The structure identified that the Se was ca 

90% replaced by a CO in a binding geometry nearly identical to that observed in the CO-

inhibited Av1 structure [109]. Unexpectedly, the Se at the S2B site was not expelled from 

the FeMo-cofactor, but had migrated to the S3A and S5A sites (10% remained at the S2B 

site, 35% migrated to the S3A site, and 44% at the S5A site) (see figure 34). This result 

supports our findings from the Se-migration during acetylene reduction activity, further 

indicating that the FeMo-cofactor undergoes structural rearrangements upon binding 

substrates/inhibitors. Migration from the S2B site into the S3A and S5A sites also indicates 

that path of net loss of sulfur from the FeMo-cofactor is through either one or both of these 
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belt-sulfur positions, not simply through simple expulsion as previously indicated [109]. 

 

Our results indicate that the resting state structure of the FeMo-cofactor does not represent 

the catalytic state, and that key features for the substrate interaction (other than protons) 

require structural changes. Development of a detailed understanding of nitrogenase 

catalysis must consider cofactor rearrangements during turnover. Furthermore, the ability to 

site-specifically incorporated selenium into the FeMo-cofactor provides a novel route to 

probe the substrate reduction mechanism of nitrogenase by exploiting the unique 

spectroscopic and crystallographic properties of selenium. 
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Investigation into the potential Sulfur-Binding Site (pSBS) 

Upon identification of a potential sulfur species bound in a pocket located at the interface 

between the α- and β- subunits of the MoFe-protein in the Av1-CO structure [109], we 

sought to further characterize the binding properties of this pocket. Due to the similar 

anomalous scattering properties of S and Cl at 7100 eV (0.70 e- for S and 0.88 e- for Cl 

[86], the identity of the anomalous density identified in the Av1-CO structure at the pSBS 

was not certain. In an attempt to identify this species, we co-crystallized the MoFe-protein 

with several different anionic species. 

 

In order to determine if this pocket binds sulfur species, we co-crystallized it with SCN-, 

and analyzed the electron density (2Fobs-Fcalc) map and the anomalous density difference 

map at 7100 eV. We observed electron density present at this site that indicates the 

presence of an SCN- anion (see figure 36), but the mechanistic relevance cannot be fully 

determined based upon crystallographic data due to the same issues identified in the Av1-

CO structure. 

 

Addressing the possibility that this pocket, which has a positive surface charge (see figure 

35), is a simple anionic binding pocket, we co-crystallized it with varying concentrations of 

NaI and NaBr which resulted in no increased electron density from Br- or I- at this site, 

indicating that it is not an indiscriminate anionic binding pocket.  

 

Additionally, we approached our analysis by co-crystallization with KSeCN and analysis of 

the Av1_Se2B structure. The data for both indicate a low-occupancy selenium (0-20% 

dependent upon SeCN- concentration, 10-25 mM) at this site. Unfortunately, the analysis is 

complicated by the background signal and the electron density observed cannot be fully 

characterized due to the assigned low occupancy. 

 

The presence of electron density at this site under conditions in which the MoFe-protein is 

inhibited with CO or SeCN-, and with co-crystallization with SCN-, indicates that this site 
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may bind sulfur species, but due to the lack of concrete evidence, it cannot be determined 

whether it is catalytically relevant at this time.  

 

EPR and ESEEM of Av1_Se2B and Av1_77Se2B 

Crystallographic characterization of the site-specific insertion of Se into the FeMo-cofactor 

provides a pathway to characterize this species using spectroscopic techniques. Firstly, the 

site-specific incorporation effectively “breaks” the three-fold symmetry of the FeMo-

cofactor, and provides a structurally specific identification for spectral analysis, and 

secondly, selenium has a stable isotope, 77Se, that has a nuclear spin of 1/2, making it 

appropriate for application of resonance techniques. 

 

Nitrogenase has been studied using a variety of spectroscopic techniques including FTIR, 

EPR, ENDOR, and Mössbauer spectroscopies [38, 57, 63, 66, 130-134]. The three-fold 

symmetry of the FeMo-cofactor, its complex and poorly understood electronic and 

magnetic properties, and a mechanism that requires multiple association-dissociation cycles 

between the two component proteins have made analysis of spectroscopic data quite 

complicated. Sample preparation alone has proven to be difficult due to the requirement for 

both component proteins often resulting in samples with mixed species. 

 

By utilizing the site-specificity of the Se-labeling scheme, we have prepared a sample in 

which we have structurally identified where our label is, and can exploit that to identify 

changes to the spectrum with comparison to the wild-type MoFe-protein.  

 

In the cw-EPR spectra of the Se-labeled proteins, we see splitting of each g-value (see 

figure 37) indicative of a zero-field splitting distribution. An analysis of the rhombicity (λ), 

of the resting-state FeMo-cofactor, resulted in a single peak for the wild-type protein, but 

analysis of the Se-labeled FeMo-cofactor resulted in five or more peaks. Regularization of 

the spectra recorded with the applied λ values resulted in good agreement with the spectra, 

indicating that the rhombicity of the FeMo-cofactor dominates the spectra, implying that 

zero-field splitting distribution is present in the Se-incorporated samples. This provides a 
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first look at the effect of Se-incorporation into the FeMo-cofactor, and towards a more 

detailed analysis of the magnetic and electronic structure. 

 

3-Pulse ESEEM was applied to the Se-incorporated (natural abundance and 77Se 

isotopically labeled) and wild-type MoFe-protein and was compared with the wild type. 

Analysis of the spectra show differences between all three samples, with peaks appearing 

in the Se-labeled sample not apparent in the wild-type spectrum, which is indicative of the 

zero-field splitting distribution (see figure 38). Analysis of the 77Se labeled sample, and of a 

difference spectrum comparing the natural abundance Se and 77Se samples highlights peaks 

at the frequency for 77Se which can be assigned to hyper-fine coupling between the 77Se 

nucleus unpaired electrons, presumably associated with the FeMo-cofactor.   

 

These EPR and ESEEM spectral data provide the first examples of these experiments on a 

Se-incorporated FeMo-cofactor. Analysis of the data is preliminary, and requires further 

examination with varied parameters and samples, but is promising for revealing more 

information about the complex magnetic and electronic structure of the FeMo-cofactor, 

which will further this field in unraveling the mechanism of nitrogenase. 
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