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ABSTRACT

Molecular simulation provides a powerful tool for connecting molecular-level pro-
cesses to physical observables. However, the facility to make those connections
relies upon the application and development of theoretical methods that permit ap-
propriate descriptions of the systems or processes to be studied. In this thesis, we
utilize molecular simulation to study and predict two phenomena with very different
theoretical challenges, beginningwith (1) lithium-ion transport behavior in polymers
and following with (2) equilibrium isotope effects with relevance to position-specific
and clumped isotope studies. In the case of ion transport in polymers, there is moti-
vation to usemolecular simulation to provide guidance in polymer electrolyte design,
but the length and timescales relevant for ion diffusion in polymers preclude the use
of direct molecular dynamics simulation to compute ion diffusivities in more than a
handful of candidate systems. In the case of equilibrium isotope effects, the thermo-
dynamic driving forces for isotopic fractionation are often fundamentally quantum
mechanical in nature, and the high precision of experimental instruments demands
correspondingly accurate theoretical approaches. Herein, we describe respectively
coarse-graining and path-integral strategies to address outstanding questions in these
two subject areas.
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C h a p t e r 1

INTRODUCTION

Given for one instant an intelligence which could
comprehend all the forces by which nature is animated and
the respective situation of the beings who compose it - an
intelligence sufficiently vast to submit these data to
analysis - it would embrace in the same formula the
movements of the greatest bodies of the universe and those
of the lightest atoms, nothing would be uncertain and the
future, as the past, would be present to its eyes.

Philosophical Essays on Probability
Pierre-Simon Laplace, 1814

Over the last few decades, molecular simulation–in its many forms–has become one
of the most important tools to understand simple and complex physical phenomena,
and its use is now pervasive in all branches of physical sciences and engineering.1,2

To a large extent, its significance is derived as a computational realization of statis-
tical mechanics. And through the intelligence that is modern computation, we are
able to connect molecular-level processes to physical observables, predicting static
and dynamic system properties from microscopic descriptions and interactions. Of
course, in practice, there are many challenges to making these connections that
depend on the problem or system of interest. In some cases, the pertinent length
and timescales may not be accessible via standard simulation approaches, such as
for protein aggregation.3 In others, there may be strict demands on the requisite
accuracy for describing a system, such as for the electronic properties of perovskites
for solar cell applications.4 These and related problems require the ingenuity to ap-
ply, develop, and/or combine theoretical methods that make their study practically
realizable and useful.

In this thesis, we utilize molecular simulation to study and predict (1) lithium-ion
transport behavior in polymers and (2) equilibrium isotope effects with relevance
to atmospheric, geochemical, and biological processes. In the first case, the essen-
tial questions are how the mechanisms underlying ion transport in polymers affect
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ionic conductivity and how this information might be used to design new polymer
electrolyte materials. In the second case, the essential questions are how the ar-
rangement of isotopes within a molecule influences their equilibrium abundances
in nature and how different theoretical models correctly predict these abundances.
Obtaining answers to these questions essentially reduces to using theory and simula-
tion to bridge the gap from microscopic to macroscopic realms. Nevertheless, these
clearly represent two problems with challenges that necessitate different theoretical
approaches befitting the research objectives. Thus, this thesis is laid out in two
parts–each briefly described below.

In Part I, we focus on the application of molecular dynamics simulations and coarse-
grained models to study ion transport in polymer electrolytes.

Solid polymer electrolytes (SPEs) are attractive alternatives to liquid electrolytes
that are typically used in secondary∗ lithium-ion batteries. SPEs are largely non-
flammable, have good mechanical properties, offer easy processibility, and are
adaptable to a variety of form factors.5–10 The base performance of an SPE is in
part controlled by its ionic conductivity, which in turn depends on the diffusivity of
lithium ions within the polymer host.11 However, even state-of-the art SPEs exhibit
conductivities (and lithium-ion diffusivities) that are too low formany applications.12

The guiding principles behind the studies included in this part are that the de-
sign of improved SPEs would be facilitated by (1) a better, general understanding
of lithium-ion transport in SPEs and (2) computational tools that enable efficient
characterization of ion transport in diverse sets of polymers. Whereas extensive ex-
perimental7,12–26 and theoretical27–38 characterization has been performed on SPEs
based on poly(ethylene oxide) (PEO), little is known regarding the mechanisms of
ion transport in other polymer classes, and attempts to design polymers based on
heuristic knowledge of PEO have been mostly unsuccessful. Therefore, we em-
phasize understanding ion transport in polymers other than PEO and developing
analysis strategies that do not overly rely on specific mechanistic knowledge of any
one polymer.

Our study begins in Chapter 2 with a combined experimental and theoretical investi-
gation of lithium-ion transport mechanisms in a systematic series of polyester-based
polymer electrolytes. The trends in conductivity between simulation and experiment
agree well but cannot be explained based on canonical interpretations of lithium-ion
transport in polymers. We therefore propose a new paradigm for understanding the

∗rechargeable
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trends in conductivity using the notion of solvation-site connectivity–the degree that
solvation sites in the polymer are proximate and accessible–as an essential aspect of
ion transport that has been largely neglected in the literature.

In Chapter 3, we demonstrate an experimental manifestation of the effects of
solvation-site connectivity using a systematic set of polyethers. After account-
ing for confounding factors, such as relative differences in the glass-transition
temperature, we compute an experimental quantity that strongly correlates with
simulation-derived metrics of the solvation-site connectivity. This correlation is
shown to hold across various temperatures and salt concentrations, even though the
simulation metrics depend only on properties of the neat polymer melt. Based on
this correlation, we generate an equation that can be used to predict the conductivity
as a function of temperature and concentration for this class of polyethers.

In Chapter 4, we leverage the insights developed from earlier mechanistic studies
and analysis to propose a new, general coarse-grained model for ion transport in
polymer electrolytes. The model treats ion diffusion in terms of hopping transitions
on a fluctuating lattice and utilizes inputs from short-timescale trajectories to obtain
system-specific parameters. This chemically specific dynamic bond percolation
(CS-DBP) model provides a general framework for characterizing long-timescale
diffusivity of ions that also reflects the underlying chemistry of the polymer. We
show that the CS-DBP model provides semi-quantitative predictions of lithium-
ion diffusivity for a range of polymers at a small fraction of the cost of long-
timescale molecular dynamics trajectories, illustrating its potential as a tool for the
computational screening of polymer electrolytes.

In Chapter 5, we then provide a brief discussion regarding the application of the CS-
DBP model for high-throughput screening of polymer electrolytes. Key challenges
are also discussed.

In Part II, we focus on the application of path-integral methods to predict equilibrium
enrichment of isotopologues† in the context of position-specific and clumped isotope
studies.

Stable isotope analyses are used both to characterize materials and to understand
environmental, geochemical, astrochemical, or biological processes.39 Most stable
isotope analysis centers on the abundance of heavy isotopes to light isotopes, such
as comparing oxygen-18 to oxygen-16 to reconstruct past ocean temperatures,40

†Molecular species that differ in their isotopic composition and/or arrangement
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deuterium to hydrogen to source petroleum hydrocarbons,41 or carbon-13 to carbon-
12 to report on the dietary habits of animals.42 However, precise measurements on
the ordering of isotopes within a molecule are becoming increasingly possible and
attractive means to provide direct information or constraints on the origins, sources,
and histories of natural materials.43–54

Two factors that influence the ordering of isotopes within a molecule, and thus
the relative enrichment of isotopologues, are the thermodynamic driving forces
for heavy isotopes to occupy particular positions and for multiple heavy isotopes
to aggregate to nearby positions within a molecule.55–57 Theoretical quantification
of these effects can aid in understanding the formation of isotopologues and their
abundances in nature;39,55,58–62 theory may also serve very practical roles in es-
tablishing absolute reference frames for experimental measurements,55 confirming
laboratory protocols, or identifying new targets for stable isotope analysis. The
motivation behind the studies here is that the widely used Urey model63,64 may
become an unreliable or ill-suited complement to experimental efforts as analyti-
cal instrumentation improves and more complex systems are studied. In contrast,
path-integral methods could provide a rigorous and scalable methodology for stable
isotope studies.

We begin in Chapter 6 by explicitly comparing Urey model and path-integral Monte
Carlo approaches to computing the enrichment of select isotopologues ofCO2, N2O,
methane, and propane. The path-integral calculations are converged to the same
level of precision as the best precisions of analytical instrumentation and provide
reliable benchmarks for future studies. In addition, these results show that the
Urey-model approaches often rely on a nontrivial cancellation of errors in their
computation of equilibrium constants for isotope-exchange reactions, leading to
experimentally resolvable errors in apparent equilibrium temperatures of up to 35
K for the isotopologues considered. In contrast, the use of path-integral methods
neither relies on any cancellation of errors nor requires any a priori assumptions
about the relative importance of effects such as anharmonicity and rovibrational
coupling.

In Chapter 7, we employ path-integral calculations to quantify 13C-13C, 13C-D,
and D-12C-D clumping effects in five isotope-exchange reactions involving doubly-
substituted isotopologues of ethane. The calculations make use of a new, high-
quality potential energy surface as well as a recently developed path-integral esti-
mator for isotopic fractionation. These calculations are used to quantify the strength
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of isotopic clumping in the various isotopologues. Furthermore, comparison be-
tween the path-integral results and those of the Urey model illustrates an ambiguity
in the latter when dealing with isotopologues with distinct rotameric states that may
obfuscate its application in more complex systems.
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C h a p t e r 2

SYSTEMATIC COMPUTATIONAL AND EXPERIMENTAL
INVESTIGATION OF LITHIUM-ION TRANSPORT
MECHANISMS IN POLYESTER-BASED POLYMER

ELECTROLYTES

Understanding the mechanisms of lithium-ion transport in polymers is crucial for
the rational design of polymer electrolytes. Although lithium-ion transport in
poly(ethylene oxide) (PEO) has been extensively studied both experimentally and
theoretically, mechanistic knowledge is generally lacking for polymers with other
chemistries and architectures.

In this chapter, we combine modular synthesis, electrochemical characterization,
and molecular simulation to investigate lithium-ion transport in a new family of
polyester-based polymers and in PEO. Theoretical predictions of glass-transition
temperatures and ionic conductivities in the polymers agree well with experimental
measurements. Interestingly, both the experiments and simulations indicate that the
ionic conductivity of PEO, relative to the polyesters, is far higher than would be
expected from its relative glass-transition temperature. The simulations reveal that
diffusion of the lithium cations in the polyesters proceeds via a different mechanism
than in PEO, and analysis of the distribution of available cation solvation sites in the
various polymers provides a novel and intuitive way to explain the experimentally
observed ionic conductivities. This work provides a platform for the evaluation and
prediction of ionic conductivities in polymer electrolyte materials.

The experimental synthesis featured in this chapter was performed by Dr. Yuki
Jung under the direction of Prof. Geoffrey W. Coates at Cornell University, and the
preparation and characterization of the polymer electrolytes was performed by Ms.
Danielle M. Pesko under the direction of Prof. Nitash P. Balsara at the University of
California, Berkeley. Data and content in this chapter have been published as M.A.
Webb, Y. Jung, D.M. Pesko, U. Yamamoto, G.W. Coates, N.P. Balsara, Z.-G. Wang,
T.F. Miller III. “A Systematic Computational and Experimental Investigation of
Lithium-ion Transport Mechanisms in Polyester-based Polymer Electrolytes.” ACS
Cent. Sci., 1, 198-205 (2015).
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2.1 Introduction
Solvent-free, solid polymeric electrolytes1 (SPEs) are of interest for the development
of safe, stable, and cost-effective battery technologies. Candidate SPEs typically
require both a strong coordinating affinity for the conducting cation and also a suit-
able distance between coordinating centers.2,3 Consequently, poly(ethylene oxide)
(PEO) and PEO-based polymers have been extensively characterized, although am-
bient temperature ionic conductivities in such polymers are not satisfactory for many
practical applications.4,5

Significant theoretical evidence suggests that ion transport in polymers is intrinsi-
cally coupled to polymer motion.6–15 In particular, numerous theoretical studies of
ion transport in PEO-based SPEs have shown that lithium cations are typically co-
ordinated by four to seven oxygen atoms (from one or two independent chains) and
diffuse via three principal mechanisms: inter-chain hopping, intra-chain hopping,
and co-diffusion with short polymer chains (<10,000 g/mol). Efforts to improve
lithium-ion conductivity in PEO-based polymers have thus mainly focused on dis-
rupting polymer crystallinity and lowering the glass-transition temperature Tg, such
as through the use of plasticizing additives;16–18 cross-linked, comb, or graft polymer
architectures;19–23 incorporation of comonomers into the PEO backbone;24–31 and
polymer blends.32,33 Despite these efforts, ionic conductivities in state-of-the-art,
PEO-based SPEs remain limited at ambient temperatures.22

Non-PEO-based polymer architectures provide new opportunities for enhancing
ionic conductivity by altering ion-polymer and polymer-polymer interactions and
are thus of interest for the design of next-generation SPEs. Ionic conductivity
characteristics have been experimentally investigated in several novel polymers that
include polyesters, polyphosphazenes, polyamines, polysilanes, polysiloxanes, and
polycarbonates.34–40 However, few theoretical studies on the mechanisms of ion
transport in such polymers have been performed, and it is not known to what extent
the transport mechanisms present in PEO are shared in other polymer architectures.
The design of new SPEs requires an improved understanding of the mechanisms that
facilitate lithium-ion transport in polymers and the identification of new polymer
architectures that efficiently realize these mechanisms.

Here, experimental synthesis and electrochemical characterization are combined
with long-timescale molecular dynamics (MD) simulations to investigate lithium-
ion transport in six new SPEs. Figure 2.1 illustrates a schematic overview of this
approach. Modular synthesis produces six polyesters that have either of two back-
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Figure 2.1: A schematic overview of the study.

bone motifs and one of three side chains (Figure 2.1, top). These polymers are then
characterized using both simulation and experiment (Figure 2.1, middle), which
demonstrates the effect of polymer composition and architecture on ionic conduc-
tivity (Figure 2.1, bottom). By comparing experimental observables with the corre-
sponding quantities from simulation, we identify the primary trends regarding poly-
mer architecture and conductivity. Agreement between simulation and experiment
then provides a connection between macroscopic properties and molecular-level
processes, which enables a detailed theoretical analysis of the molecular processes
that give rise to the observed trends. This complementary approach provides a better
understanding of ion transport in novel polymer electrolytes than would be obtained
from either an independent experimental or theoretical study.

2.2 Polymer Structures
Six aliphatic polyesters with two different backbone motifs and three different side
chains are studied (Figure 2.2). The repeat unit for each is an ester with a pendant
side chain. For ease of reference, the polymers are indexed by number according to
the side chain and by letter according to the backbone motif. Polymers are indexed
as type-1 for a methyl side chain, type-2 for an allyl side chain, and type-3 for an
ethylene-oxide oligomer (n = 2) side chain. The backbone motifs are indexed as
type-a for polymers with a methylene between the two carbonyl groups and type-b
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for polymers with an oxygen between the two carbonyl groups. Comparison between
type-a and type-b polymers probes the effect of adding a binding site for the lithium
cation in the backbone. Similarly, comparison of type-1, -2, and -3 polymers probes
the effect of including additional binding sites in the side chain.

Figure 2.2: Repeat units for polyesters. Oxygen atoms are colored according to type:
double-bonded carbonyl oxygens are green, ester oxygens are orange, ether oxygens in the
backbone are purple, and ether oxygens in side chains are blue.

2.3 Methods

Table 2.1: Summary of polymer properties.

Simulation Experiment
Mn (kDa) a Nc Tg (℃) br 〈Mn〉 (kDa) PDI Tg (℃)

1a 2.54 11 35 0.0062 8.8 1.90 −29
1b 2.57 11 47 0.0062 8.0 1.72 12
2a 2.45 12 37 0.0077 10.4 2.00 −44
2b 2.47 12 49 0.0077 8.9 1.45 −15
3a 2.57 11 39 0.0103 4.2 1.30 −48
3b 2.59 11 41 0.0103 6.1 1.77 −26
PEO 2.38 12 2 0.0139 c5 n/a −60
a Number of polymer chains
b Number of lithium cations per nine polymer backbone atoms
c The measurements for Tg and conductivity in PEO employ molecular weights of 4.6 kD
and 5.0 kDa, respectively

2.3.a Synthesis
The polyesters are synthesized using the transition metal-catalyzed alternating
copolymerization of epoxides and cyclic anhydrides.41–43 The polyester backbone
structure is varied by copolymerizing glutaric anhydride (type-a) or diglycolic an-
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hydride (type-b) with S-propylene oxide (type-1), allyl glycidyl ether (type-2), or
2-((2-(2-methoxyethoxy) ethoxy) methyl) oxirane (type-3) as shown in Figure 2.1
(top). Table 2.1 provides the number-averaged molecular weight 〈Mn〉 and polydis-
persity index (PDI) for each polymer; the polymers in this study exhibit molecular
weights that are sufficiently high to expect that variation in 〈Mn〉 among the consid-
ered samples leads to only minor effects on conductivity and Tg.44,45

2.3.b Simulation
All MD simulations employ a united-atom force field, with bonding parameters
taken from CHARMM46 and all other parameters taken from the TraPPE-UA force
field;47–50 compatible lithium-ion parameters are obtained from previous simulation
studies.51 All simulations are performed using the LAMMPS simulation package52

with GPU acceleration.53,54 The equations of motion are evolved using the velocity-
Verlet integrator with a 1 fs timestep. Particle-particle-mesh Ewald summation is
used to compute all non-bonded interactions beyond a 14Å cutoff. TheNosé-Hoover
thermostat (100 fs relaxation) is used for all NVT simulations, and the Nosé-Hoover
barostat (1000 fs relaxation) is used for all NPT simulations. Results in the dilute-
ion limit are obtained from simulations of a single lithium cation diffusing in the
polymer.

2.3.c Characterization
For each polymer, Tg measurements of the neat polymer are made using differen-
tial scanning calorimetry. Polymer electrolytes are then prepared by mixing neat
polymer sample with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt and
anhydrous N-methyl-2-pyrrolidone (NMP) in an argon glovebox until dissolution at
90℃ and drying under vacuum at 90℃ to remove excess NMP. Ionic conductivities
of the polymer electrolytes are determined from ac impedance spectroscopy.

2.4 Results
2.4.a Ionic Conductivities
Using both simulation and experiment, we examine the ionic conductivities of each
polymer in the dilute-ion limit, which minimizes complications associated with ion
pairing and aggregation.

Figures 2.3(a-c) present MD simulation results for the mean square-displacement
(MSD) of the lithium cation at 363 K. The slopes of the MSDs on a log-log scale are
less than unity, indicating that the transport is not yet in the fully diffusive regime
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Figure 2.3: Ion transport properties in the dilute-ion limit at 363 K. Lithium-ion mean
square-displacement (MSD) from MD simulations in PEO and the (a) type-1 polymers, (b)
type-2 polymers, and (c) type-3 polymers. The data for PEO are reproduced in each panel.
(d) A comparison of experimental and simulated ionic conductivities; both sets of data are
normalized by the corresponding conductivity in PEO. The error bars in (a)-(c) report the
standard error of the mean obtained from block-averaging four 500 ns trajectories for each
polymer; error bars in (d) report the sample standard deviation.
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even after 150 ns. Comparison of polymers 1a and 1b (Figure 2.3a) reveals that
lithium-ion diffusion is slowed by the presence of the ether oxygen on the backbone.
However, this effect is largely mitigated by the presence of side chains with oxygen
atoms, as seen by comparing polymer 2a and 2b (Figure 2.3b), and likewise for
polymer 3a and 3b (Figure 2.3c). Comparison of polymer 3a and 1b shows that the
differences in polymer architecture considered here at most affect the lithium-ion
diffusion by a factor of about 3.75. In contrast, the rate of lithium-ion transport
is at least an order-of-magnitude faster in PEO than in any of the polyesters. In
particular, the relative span of the sub-diffusive regime, which is the near-plateau
region in the MSD plots, reveals that the lithium cation is restricted to its local
solvation environment for substantially longer times in the polyesters compared to
PEO.

For comparison with experiment, the MSD results in Figure 2.3(a-c) are used to
compute approximate lithium-ion conductivities using the Nernst-Einstein equa-
tion55 and the apparent lithium-ion diffusivity6 evaluated at 150 ns. Figure 2.3d
compares these results with experimental dilute ionic conductivities at the same
temperature and effective concentration as the simulations (Table 2.1).

Figure 2.3d reveals good agreement between dilute-ion conductivities obtained us-
ing experiment and those obtained from MD simulations. This correlation for the
relative ordering of conductivities suggests that the lithium-ion dynamics are mech-
anistically similar between simulation and experiment. However, the dilute-ion con-
ductivities obtained from simulation are systematically lower than the corresponding
experimental measurements; for example, the conductivity for PEO obtained from
simulation is (9 ± 4)×10−6 compared to (2 ± 1)×10−4 S/cm. This is possibly due to
the fact that the MD conductivity results reflect only contributions from the lithium
cation whereas the experimental measurements include both cation and anion con-
tributions; of course, it is also possibly due to inaccuracies of the employed MD
force field. Furthermore, the molecular weights of the polymer chains are smaller
in the simulations than in the experimental samples, though we do not expect this
difference to have a substantial effect on conductivity based on our knowledge of the
molecular weight-dependence on polymer electrolyte conductivity.44,45 Polymer 1b
is the only qualitative outlier in the correlation between experimental and simula-
tion results. This is likely due to the fact that polymer 1b is notably more solid in
experiment, whereas this is not the case for the MD simulations. Even so, the ex-
perimental conductivities are all within a factor of three and an order-of-magnitude
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smaller than PEO. Thus, both experimental and simulation results indicate that the
effect of varying polymer architecture in the polyesters is somewhat minor compared
to the mechanistic advantage that apparently exists for PEO. In the next section, we
investigate how differences in Tg affect the conductivity in these polymers.

2.4.b Correlating Tg with Conductivity
Figure 2.4a and Table 2.1 provide both experimental and simulated values of Tg,
which is often used as a proxy for the segmental mobility of polymer chains.2,56

Figure 2.4a illustrates that the experimental and simulation data are qualitatively
similar by plotting the data relative to the glass-transition temperature for PEO,
Tg,PEO. Consistently, Tg is lower for type-a polymers relative to type-b polymers,
which suggests that adding a polar ether oxygen between the two carbonyls decreases
segmental mobility. The experimental data also show a weak but consistent side-
chain dependence. Namely, increasing side-chain length (type-1 < type-2 < type-3)
leads to a slight reduction in Tg, possibly due to a plasticizing effect by the side
chains or simply because the flexible side chains constitute a larger volume fraction
of the polymer;2,22,57 this particular trend is not as evident in the simulated Tg data.

For the experimental data, Figure 2.4b reveals the degree of correlation between
ionic conductivity and Tg by plotting the dilute-ion conductivities (on a logarithmic
scale) against 1000(T − Tg)−1. This analysis is similar to a typical Vogel-Fulcher-
Tammann ionic conductivity plot,2,58 except that a range of polymers (and thus a
range ofTg) is examined at a fixed temperature rather than the conductivity of a given
polymer over a range of temperatures. The dashed line is the linear fit of the data for
the polyesters only. Although there is an overall tendency for polymers with lower
Tg to have higher ionic conductivities, the correlation is not well-characterized by a
single line. In particular, the figure shows strikingly that PEO exhibits anomalously
high conductivity among this set of polymers when only the effects associated with
changes in Tg (i.e., polymer segmental mobility) are considered. We emphasize
that the corresponding analysis performed using the simulation data yields identical
conclusions. In the following section, we demonstrate that this apparent anomaly
in the conductivity of PEO can be understood if the connectivity of lithium-ion
solvation sites is additionally considered.

2.4.c Lithium-ion Coordination Dynamics
Using the results from the MD simulations, we now investigate the mechanistic
features of lithium-ion solvation and diffusion in the various polymer electrolytes to
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Figure 2.4: (a) Tg obtained via experiment using DSC (open symbols) and via MD using
simulated dilatometry (filled symbols). (b) Correlation between dilute-ion conductivity and
the inverse temperature difference from Tg at T = 363 K (experimental measurements). The
dashed line indicates the linear fit of the data for the polyesters.

better understand the anomalously high conductivity of PEO.

Figure 2.5 presents an analysis of the lithium-ion coordination environments that
are observed in the MD simulations. Representative MD snapshots of common
lithium-ion coordination environments are shown in Figure 2.5a for each polymer.
It is well-known from previous MD studies that lithium cations are coordinated by
one or two contiguous chain segments in PEO;6,7 examples of both of these binding
motifs are shown at the top of Figure 2.5a. Interestingly, PEO is the only polymer
among those studied here for which the lithium cation is frequently solvated by
a single contiguous chain segment. This is surprising, given that the backbone
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Figure 2.5: Analysis of lithium-ion coordination data from MD simulations at 363 K. (a)
Representative snapshots of lithium-ion binding motifs observed in the MD simulations.
The lithium cation is shown in silver, carbon atoms are black, and the oxygen atoms are
colored according to the scheme in Figures 2.2 and 2.6b. (b) The average number of oxygen
atoms (left y-axis) and polymer chains (right y-axis) in the first solvation shell of the lithium
cation. Vertical bars report the number of different oxygen types; markers report the number
of coordinating chains in the solvation shell. Note that backbone ether contributions to the
type-a polymers arise due to interactions with the terminal groups of the polymer chains.
(c) Frequency of occurrence for lithium-ion binding motifs, where the binding motifs are
according to the number of each oxygen type and the number of coordinating chains. The first
three numbers refer to the number of carbonyl, ester, and ether oxygen atoms, respectively;
the number following the dash refers to the number of different contiguous polymer chain
segments (i.e., 402-2 indicates a motif with four carbonyl oxygens, zero ester oxygens, and
two ether oxygens from two different chains). Only binding motifs that constitute more than
5% of the ensemble are explicitly listed; the remainder are included in ?other.? (d) Cation-
oxygen radial distribution functions g(Li+,O)(r) for different oxygen types in the type-a
polymers and in PEO. The g(Li+,O)(r) for each oxygen type is normalized with respect to
the total oxygen number density in the polymer. Following the dataset for polymer 1a, each
subsequent dataset is shifted vertically (by five units) and horizontally (by 1 Å) for clarity.
All statistical properties are calculated from snapshots taken at 100-ps intervals during the
MD trajectory. A threshold distance of 3.25 Å from the lithium cation is used to identify
constituents of the first lithium-ion solvation shell.
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composition for the type-b polymers is similar to PEO. Figure 2.5a also reveals
that the ester oxygens on the backbone are not typically present in the lithium-ion
solvation shell for any of the polyesters. Comparison of the type-1, -2, and -3
polymers reveals that the side chain can drastically alter how the lithium cation is
solvated by the polymer chain. For type-1 polymers, the side chain has no affinity for
the lithium cation, and the cation predominantly coordinates with carbonyl oxygens
on the polymer backbone. For type-2 and -3 polymers, oxygen atoms on the side
chain do interact with the lithium cation. In fact, type-3 polymers coordinate lithium
cations entirely with the PEO-like side chains.

To provide a more quantitative view of the lithium-ion solvation environments,
Figure 2.5b shows the average composition of the lithium-ion coordination environ-
ment in each polymer. Interestingly, the statistics for the type-3 polymers are nearly
identical to each other and similar to those of PEO. There is also marked similarity
between the PEO snapshot with two coordinating chains and the snapshots for the
type-3 polymers in Figure 2.5a. Whereas PEO coordinates the lithium cation with
one or two chains, two to four polymer chains typically coordinate the lithium cation
in the polyesters. Compared to the other polyesters, the type-3 polymers require
fewer chains to coordinate the lithium cation, likely due to the coordinating ability
of the PEO-like side chains. Additionally, a comparison of polymer 1a with 1b, and
likewise for polymer 2awith 2b, indicates that fewer chains participate in lithium-ion
coordination when polymers have an additional oxygen atom in the backbone. It is
worth noting that the only ether contribution for the type-a polymers is due to the
terminal groups of the polymer chain. However, additional simulations reveal that
this is a minor effect.

To elucidate the compositional differences in the lithium-ion coordination environ-
ment for each polymer, Figure 2.5c presents the frequency with which different
lithium-ion binding motifs are observed in the simulations. The binding motifs
are identified by the number of each type of oxygen in the lithium-ion solvation
shell and by the number of chains that participate in lithium-ion coordination. An
array of binding motifs is observed in the type-1 and -2 polymers. In contrast, only
one or two binding motifs are observed for polymers 3a, 3b, and also PEO. These
results reveal a trend in which lithium cations that coordinate with more polymer
chains also have more diversity in the observed binding motifs. It is interesting
that the major binding motif for both the type-3 polymers and PEO is 006-2, or six
ether oxygen atoms from two different polymer chains, even though PEO exhibits
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substantially higher conductivity. These results indicate that the composition of the
first lithium-ion solvation shell does not fully explain the trends in Figure 2.3d.

To characterize the lithium-ion solvation environment beyond the first lithium-ion
solvation shell, Figure 2.5d presents pair radial distribution functions (RDFs) for
the lithium cation and each type of oxygen atom in the type-a polymers and in PEO.
Figure 2.5d reveals that the types of oxygen atoms that are present in the first peak,
which is the lithium-ion solvation shell as discussed for Figures 2.5(a-c), are absent
or depleted in the second peak. For the type-1 and -2 polymers, the first peak, which
occurs at approximately 2 Å, has only backbone contributions from carbonyl and
ether oxygens; the second peak, which occurs at 4-4.5 Å, is mostly comprised of
ester oxygens. For type-3 polymers, side-chain ether oxygens are found in the first
peak but not in the second. This difference in composition between the first and
second solvation shells suggests one reason for the faster lithium-ion diffusion in
PEO. Namely, diffusion events in which the lithium cation escapes from its existing
coordination environment to a neighboring environment are more likely to occur in
PEO because the composition of atoms in the second solvation shell is similar to
the first. Consequently, a binding motif comprised of atoms in the first solvation
shell is roughly equal in free energy to a binding motif that has some atoms in
the first solvation shell exchanged for atoms in the second. In contrast, for the
polyesters, atoms in the second peak are not typically represented in the binding
motifs enumerated in Figure 2.5c, which indicates that binding motifs with those
atoms are energetically less favorable.

To understand how these differences in lithium-ion solvation affect the conductivity,
Figure 2.6 illustrates the displacement and coordination environment of the lithium
cation in a long MD simulation for PEO and for polymer 3b. Figures 2.6(a,b)
illustrate changes in lithium-ion coordination environment by tracking the indices
of oxygen atoms that are within 3.25 Å of the lithium cation. In particular, each
oxygen atom in the system is labeled sequentially, starting at one end of a polymer
chain and continuing to the end of that chain before proceeding to the next; the oxygen
atoms are consecutively labeled from 1-648 for PEO and from 1-759 for polymer
3b. What appear as solid lines in the figure are actually formed from the markers
of contiguous oxygen indices, as seen in the inset; thicker lines typically consist of
five or six markers, and thinner lines typically consist of three markers. Figures
2.7(c,d) show changes in the lithium-ion position by tracking the net displacement
of the lithium cation from its initial position.
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Figure 2.6: Analysis of changes in lithium-ion coordination with changes in lithium-ion
position. Lithium-ion coordination environment for (a) PEO and (b) polymer 3b (markers
denote coordination with oxygen for at least half of a 100-ps interval). The horizontal gray
lines demarcate separate polymer chains. The inset in (a) illustrates the coordination over a
40 ns segment in the trajectory. Lithium-ion displacement from initial position in (c) PEO
and (d) polymer 3b. The gray curve indicates the instantaneous displacement from the initial
position, and black curve indicates the rolling average over 100-ps intervals. Vertical, red
lines highlight inter-chain hopping events.

From Figures 2.6(a,b), it is clear that one characteristic of PEO is that the lines
fluctuate and drift during the simulation, whereas the lines for polymer 3b are
comparatively static. This drift in oxygen indices is a signature of intra-chain
hopping of the lithium cation to adjacent monomers along the polymer backbone.
Notably, PEO is the only polymer studied that illustrates this behavior. Intra-chain
hopping events are not observed in the type-3 polymers because the lithium cation
is localized to the side chains. Similarly, the lithium cation is localized between the
two carbonyl groups on the backbone for the type-1 and -2 polymers, which also
do not exhibit significant intra-chain hopping events. Because intra-chain hopping
is not a viable mechanism in the polyesters, lithium cations are limited to diffusion
via inter-chain hopping events and co-diffusion with the polymer chains. Changes
in coordination that correspond to inter-chain hopping events are highlighted by the
vertical, red dashed lines in Figure 2.6. Figures 2.2(c,d) illustrate that significant
lithium-ion displacements often coincide with these events. However, the lithium
cation in polymer 3b is limited to local fluctuations during time intervals between
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inter-chain hopping events. It is evident that inter-chain hopping is a rare event
that occurs on the 100-nanosecond timescale, even in PEO. Thus, the presence of
intra-chain hopping in PEO is the primary reason for the faster lithium-ion diffusion
compared to the polyesters.

To illustrate why thesemechanistic differences arise, Figure 2.7a shows viable cation
solvation sites in polymer 3a, 3b, and PEO, which are obtained from snapshots of
the corresponding MD simulations for each polymer. Here, viable solvation sites
are considered to be arrangements of atoms in the polymer that are consistent with
common binding motifs found in Figure 2.5c; for the polymers in Figure 2.7a, sites
are defined as the centroid of a set of five or more ether oxygen atoms if each oxygen
is also within 3.7 Å of that centroid. Sites are connected in the figure if they are
closer than 3 Å to provide a qualitative understanding of available hopping events.
It is clear that far fewer viable solvation sites are identified in the type-3 polymers
than for PEO; similarly sparse networks characterize the type-1 and -2 polymers.
In contrast to the isolated clusters in the polyesters, PEO features a well-connected
network of viable solvation sites by virtue of the compositional overlap between first
and second solvation shells for the lithium cation (Figure 2.5d).

To quantify the degree to which the various polymers exhibit connected networks of
solvation sites, Figure 2.7b provides the density of 3Åconnections between solvation
sites, termed the connectivity, for each polymer. It is evident that the connectivity
for PEO is an order-of-magnitude greater than any of the polyesters. The similarity
between Figure 2.7b and Figure 2.3d is striking, indicating a strong relationship
between connectivity and lithium-ion conductivity. The concept of connectivity
provides an intuitive and potentially powerful explanation for the efficiency of the
intra-chain hopping mechanism in PEO. In an intra-chain hopping event, the lithium
cation effectively migrates up or down one polymer chain by exchanging a small
number of solvating oxygen atoms. Here, this process is represented as a transition
along an edge in the solvation-site network. Unlike the polymer architecture of the
polyesters, the topology of PEO facilitates these transitions among solvation sites.
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2.5 Conclusions
This study combines experimental and theoretical approaches to investigate the
mechanisms of lithium-ion transport in six newpolyester-based polymer electrolytes,
as well as PEO. The modifications to polymer architecture considered are shown
to significantly alter the lithium-ion solvation environment and effectively change
whether the lithium-ion transport is side-chain- or backbone-mediated. These
changes affect the ionic conductivity by a factor of three. In contrast, the ionic
conductivities of the polyesters are about an order-of-magnitude lower than in PEO
(Figure 2.3d). Because the glass-transition temperature of PEO is only modestly
lower than that of some of the polyesters, the observed trends with ionic conductivity
are not adequately explained on the basis of polymer segmental mobility (Figure
2.4b).

To understand the anomalous diffusivity of PEO, the MD simulations are employed
to perform an extensive analysis of the lithium-ion solvation and diffusion mech-
anisms in the various polymers. We find that PEO is the only polymer studied
that frequently coordinates a lithium cation with a single chain or exhibits signifi-
cant intra-chain hopping of the lithium cations. This is primarily because the first
and second lithium-ion solvation shells differ significantly in composition for all
of the polyesters (Figure 2.5d). Lithium-ion diffusion in the polyesters thus relies
upon inter-chain hopping events, which occur infrequently on the 100-nanosecond
timescale, and co-diffusion with the polymer chains, which is intrinsically slow
(Figure 2.6).

This analysis reveals that the anomalously high conductivity of PEO (Figure 2.3d)
can be easily understood in terms of a description of lithium-ion diffusion based
on the density and proximity of viable solvation sites (Figure 2.7a). Whereas PEO
features a well-connected network of viable solvation sites, the polyesters have
isolated clusters of sites that hinder efficient lithium-ion conduction. A simple
metric of connectivity predicts an order-of-magnitude higher conductivity for PEO
than the polyesters (Figure 2.7b). Knowledge of the solvation structure, including
attributes of the second solvation shell, the connectivity between solvation sites, and
the number of chains involved in the coordination appears to provide a powerful tool
for the design of future SPEs.
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C h a p t e r 3

RELATIONSHIP BETWEEN CONDUCTIVITY AND
SOLVATION-SITE CONNECTIVITY IN ETHER-BASED

POLYMER ELECTROLYTES

In Chapter 2, we found that the notion of solvation-site connectivity provided a pow-
erful and intuitive explanation for the observed disparities in conductivity between
PEO and a family of polyesters. Although the glass-transition temperature is known
to play an important role in conductivity, this observation is historically unique,
and the agreement between Figures 2.3d and 2.7b is suggestive of direct correla-
tion between ionic conductivity and solvation-site connectivity. Nevertheless, that
correlation was conflated with other effects and not systematically investigated.

In this chapter, we systematically investigate the correlation between conductivity,
σ, and theoretical metrics for the solvation-site connectivity through combined ex-
perimental and computational analysis of ion transport in a set of linear polyethers
synthesized via Acyclic Diene Metathesis (ADMET) polymerization. Here, the
ADMET synthesis enables a tunable methodology to modulate the solvation-site
connectivity by adding aliphatic linkers to a poly(ethylene oxide) (PEO) backbone;
The addition of these aliphatic linkers lowers Tg and dilutes the polar groups; both
factors influence ionic conductivity. To isolate these effects, a two-step normal-
ization scheme is used. In the first step, Vogel-Fulcher-Tammann fits are used to
calculate a temperature-dependent reduced conductivity, σr (T − Tg), which is de-
fined as the conductivity of the electrolyte of interest at a fixed value of T − Tg and
Li:O ratio. In the second step, we compute a dimensionless parameter fexp, defined
as the ratio of the reduced ionic mobility of the polymer electrolyte of interest to that
of a reference polymer electrolyte (PEO). For the polymers studied, fexp correlates
well with oxygen mole fraction, xO, and is, to a good approximation, independent of
temperature and salt concentration. Molecular dynamics simulations are performed
on neat polymers to quantify the occurrences of solvation motifs that are similar to
those obtained in the vicinity of isolated lithium ions, and various theoretical metrics
are reported for the solvation-site connectivity. We show that fexp is a linear function
of the simulation-derived connectivity metrics. From the relationship between σr

and fexp, a universal equation is proposed to predict the conductivity of ether-based
polymer electrolytes at any salt concentration and temperature.
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The experimental synthesis featured in this chapter was performed by Dr. Yuki
Jung and Mr. Qi Zheng under the direction of Prof. Geoffrey W. Coates at Cornell
University, and the preparation and characterization of the polymer electrolytes was
performed by Ms. Danielle M. Pesko under the direction of Prof. Nitash P. Balsara
at the University of California, Berkeley. Data and content in this chapter have been
submitted for publication as D.M. Pesko,* M.A. Webb,* Y. Jung,* Q. Zheng, T.F.
Miller III, G.W. Coates, N.P. Balsara. “The Relationship between Connectivity and
Conductivity in Polymer Electrolytes.”

3.1 Introduction
As the size and energy density of rechargeable lithium batteries continues to in-
crease, the safety of the technology is of growing concern.1,2 Solvent-free polymer
electrolytes (SPEs) are of considerable interest as they offer improved thermal stabil-
ities and reduced flammabilities compared to those of conventional organic solvent
electrolytes.3,4 The vast majority of research in the field of SPEs has focused on
polyethers such as poly(ethylene oxide) (PEO),5–8 which form stable complexes with
alkali metal ions such as Li+.9–11 Amorphous mixtures of PEO and lithium salts
exhibit reasonable ionic conductivities on the order of 10−3 S/cm at 90 ℃.

Substantial effort has been directed towards improving the conductivity of PEO
through the incorporation of nanoparticles,12–15 plasticizers,16–21 or a second poly-
mer blended into the PEOmatrix.20,22,23 Alternative approaches involve altering the
chemical structure of PEO by adding cross-links,24–26 changing the monomer chem-
istry,27–29 incorporating co-monomers into the PEO backbone,30–32 and modifying
the architecture of the polymer chain.26,32–34 However, these materials have not re-
sulted in significant improvement of electrolyte performance or commercial impact,
due in part to limited understanding of the molecular mechanisms underpinning ion
transport.

In Chapter 2 and supporting publications,35,36 we identified that the addition of
groups that do not interact with the lithium ion can dilute and alter the sites in which
a lithium ion can be solvated, leading to overall reductions in ionic conductivity.
The significantly higher conductivity of PEO relative to that of a set of polyesters
was explained using the concept of solvation-site connectivity, quantified using
molecular simulation by the number and proximity of solvation sites in the polymer
matrix.35 For a series of polyethers (also studied in Chapter 4), a low density of
solvation sites resulted in slow rates of lithium-ion hopping.36 The role of spacing
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between coordinating centers has also been alluded to recently in the context of
poly(ether-thioethers).37

Here, both experiments and simulations are used to quantify the relationship be-
tween conductivity and solvation-site connectivity in a set of polyethers in which
ethylene oxide (EO) segments are regularly interrupted with carbon linkers of vary-
ing lengths (Figure 3.1). The polymers, labeled as CxEOy, are distinguished by x,
the number of carbon atoms in the carbon linker, and y, the number of consecutive
ethylene oxide (EO) monomers in the PEO segment. The conductivity of the CxEOy

electrolytes can be calculated using the known conductivity of PEO electrolytes and
a multiplicative correction factor that depends largely on oxygen mole fraction. The
same correction factor applies to the entire set of electrolytes, irrespective of tem-
perature and salt concentration. Simulations show that introducing carbon linkers of
varying lengths and frequencies affects solvation-site connectivity, and the relation-
ship between the experimentally determined correction factor and the connectivity
is explored.
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Figure 3.1: Structure of the CxEOy polyethers synthesized and characterized in this study.
The naming convention specifies x, the length of the carbon linker, and y, the number of
consecutive ethylene oxide units in each repeat unit.

3.2 Methodology
3.2.a Polymer Synthesis and Characterization
The polyethers shown in Figure 3.1 were synthesized via Acyclic Diene Metathesis
(ADMET) polymerization,31 followed by hydrogenation with Crabtree’s catalysts
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(Figure 3.2). The diene terminated monomers were synthesized in one step from
the facile substitution reaction of the commercially available poly(ethylene glycol)
(PEG) oligomers (tri-, or tetraethylene glycol) with allyl bromide and 5-bromo-
1-pentene to yield the C2EOy and C6EOy monomers respectively. The C4EOy

monomers were synthesized by mesylating PEG oligomers first and subsequently
reacting with 3-butene-1-ol. This alternative procedure was used because the elimi-
nation reaction between PEG oligomers and 4-bromo-1-butene significantly lowered
the yields of the desired product. The CxEOy monomers were then polymerized
with Grubbs’ first generation catalyst. The Grubbs’ catalyst was used because of
its high functional group tolerance and reduced propensity for olefin isomeriza-
tion reactions.38 The synthesized unsaturated polyethers were hydrogenated using
Crabtree’s catalyst to yield the saturated polyethers for this study.

NaH 

THF, 22 °C, 20 min 

allyl bromide 

THF, 22 °C, 16 h 

NaH 

CH2Cl2, 0-22 °C, 16 h THF, 22 °C, 16 h 

NaH 
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Polymer	synthesis:	

Monomer	synthesis:	

Figure 3.2: Synthesis of CxEOy monomers and polymers via Acyclic Diene Metathesis
(ADMET) polymerization followed by hydrogenation.

The CxEOy polymers synthesized in this study are characterized with gel perme-
ation chromatography (GPC) for the number-averaged molecular weight (Mn) and
polydispersity index (Ð). Thermal properties of the CxEOy polymers are measured
with differential scanning calorimetry. The results are summarized in Table 3.1,
along with the properties of PEO, which was commercially purchased from Polymer
Source. The Mn of the polymers range from 4.7 up to 19.0 kDa (Table 3.1), such
that the ionic conductivities are expected to be independent of Mn.39 The reactivity
of the monomers showed some dependence on the number of carbons in the linker
with the longest linker (C6) yielding the polymer with highest Mn. This trend is con-
sistent with the literature on ADMET polymerization of oxygen-containing dienes
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using Schrock-type catalysts.40,41 The glass transition temperatures, Tg, of C2EO5

(-72.8 ℃) and C2EO5 (-67.0 ℃) are lower than that of PEO (-60.0 ℃) likely due to
the increased chain flexibility of the carbon linkers. The level of crystallinity in the
neat C4EOy and C4EOy precluded the observation of a Tg, but we expect that those
values would decrease as the linker length increases. All of the CxEOy polyethers
synthesized have a significantly lower Tm relative to PEO.

The mole fraction of oxygen, xO, in each polymer is calculated using

xO =
oxygen atoms in repeat unit
total atoms in repeat unit

, (3.1)

where the number of atoms in the repeat unit excludes hydrogen atoms. Values for
xO for each polymer are shown in Table 3.1.

Table 3.1: Summary of polymer properties.

Polymer Mn (kg/mol) Ð Tg (℃) Tm (℃) xO
PEOa 5.0 1.1 −60.0 60.0 0.333
C2EO4 7.4 1.3 −72.8 −2.8 0.286
C2EO5 6.7 1.5 −67.0 −4.5, 9.0 0.294
C4EO4 4.7 1.4 n.d.b 13.4 0.250
C4EO5 7.1 1.6 n.d.b 8.0 0.263
C6EO4 12.9 1.8 n.d.b 24.7, 33.4 0.222
C6EO5 19.0 1.8 n.d.b 23.4 0.238

a Tg and conductivity measurements are performed on 4.6 kg/mol and 5.0
kg/mol PEO, respectively.
b No signature detected.

3.2.b Electrolyte Characterization
Electrolyte preparation took place inside an argon glovebox (MBraun) in order to
maintain water and oxygen levels below 1 ppm and 10 ppm respectively. The
polyethers synthesized in this study, along with PEO, are dried under vacuum at
90 ℃ for 12 h prior to entering the glovebox. Mixtures of polymer and lithium
bis(trifluoromethanesulfonyl) imide (LiTFSI) salt (Novalyte) are dissolved in anhy-
drous dimethylformamide (DMF) and stirred at 90 ℃ for a minimum of 3 h to form
a homogeneous solution. The DMF is then evaporated from the solution, and the
polymer/salt mixture is transferred to the glovebox antechamber and dried under
vacuum for 8 h at 90 ℃ to remove any excess solvent. Electrolytes are prepared at
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varying salt concentrations, ranging from r = 0.06 to r = 0.14, where r = nLi/nO
is the molar ratio of lithium ions to oxygen atoms in the polymer.

Stainless steel symmetric cells are prepared for ionic conductivity measurements of
electrolytes using ac impedance spectroscopy. Samples are made by pressing the
polymer electrolyte into a 254 µm thick silicone spacer and sandwiching between
two 200 µm stainless steel electrodes. With the exception of crystalline PEO, all
electrolytes are in the form of highly viscous liquids and are soft enough to be pressed
at room temperature. The silicone forms a good seal with stainless steel thereby
preventing the electrolytes from leaking out of the cell during characterization. A
micrometer is used to obtain the thickness of the electrolyte by measuring thickness
of the cell and subtracting the thickness of the electrodes. Aluminum tabs are
secured to the electrodes to serve as electrical contacts. The assembly is vacuum
sealed in a laminated aluminum pouch material (Showa-Denko) before removing
from the glovebox for electrochemical characterization.

All reported conductivity results are based on ac impedance spectroscopy performed
with a Biologic VMP3 potentiostat which acquires complex impedance measure-
ments for a frequency range of 1 Hz to 1 MHz at an amplitude of 80 mV. The
low-frequency minimum on the Nyquist impedance plot is taken to be the electrolyte
resistance, R, which is used along with electrolyte thickness, l, and electrolyte area,
a, to calculate the electrolyte conductivity, σ, according to

σ =
l

aRb
, (3.2)

where a = 3.175 mm is the inner diameter of the spacer and l is taken to be the
final thickness of the electrolyte, measured after conductivity measurements are
completed. On average, the electrolyte thickness decreased 3.5% after annealing.
The symmetric cells are disassembled to allow for visual inspection of the electrolyte.
Any samples that exhibited bubbles or voids in the polymer are discarded from
the set, as such defects would alter the electrolyte volume and produce inaccurate
conductivity results. Fewer than 5% of samples prepared in this study exhibited such
characteristics. The conductivity for each electrolyte is determined by averaging the
results from three different samples, and the error bars signify the standard deviation
of these measurements.

DSC experiments are performed on a TA Instruments DSC Q200 instrument to
obtain the Tg and Tm of each electrolyte. DSC samples are prepared inside the
glovebox, where aluminum pans are filled with 1-5 mg of electrolyte and hermeti-
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cally sealed before removing from the glovebox. The following protocol is used for
the temperature scan: heat to 110 ℃ at 20 ℃/min, cool to -90 ℃ at 5 ℃/min, heat
to 110 ℃ at 20 ℃/min. Values for Tg and Tm are obtained from the second heating
scan. DSC measurements are repeatable within 1.0 ℃.

3.2.c Molecular Dynamics Simulations
AllMD simulations employ a united atom force field, with bonding parameters taken
fromCHARMM42 and all other parameters taken from the TraPPE-UA force field;43

compatible lithium ion parameters are obtained from a previous simulation study.44

All simulations are performed using the LAMMPS simulation package45 with GPU
acceleration.46,47 The equations of motion are evolved using the velocity-Verlet
integrator with a 1 fs time step. Particle-particle-particle mesh Ewald summation47

is used to compute all nonbonded interactions beyond a 14 Å cutoff. The Nosé-
Hoover (100 fs relaxation) and Nosé-Hoover barostat (1000 fs relaxation) are used
in all simulations to control the temperature and pressure.

Two sets of simulations are performed for the CxEOy polymers. For polymers with
x = 2, 4, and 6 and y = 3-8, neat-polymer simulations are used to obtain polymer
properties and solvation-site connectivity metrics. For polymers with x = 2 and
y = 3-8, simulations of a single lithium cation diffusing in a polymer are used to
investigate the lithium-ion solvation environment.

For the neat-polymer simulations, four independent copies of the simulation cell are
generated for each polymer studied. Each copy consists of a single, long polymer
chain (Mn 25000 g/mol) with an initial configuration generated via a self-avoiding
randomwalk. For the ion-containing simulations, the same procedure is used, except
that a single lithium cation is randomly placed in the simulation cell, and the total
charge of the system is neutralized with a uniform background charge.48 To generate
starting configurations for MD production runs, the systems are equilibrated in five
steps. In step 1, the initial configuration is relaxed for 10,000 steps with non-
periodic boundary conditions using steepest descent energy minimization with the
maximum atom displacement limited to 0.1 Å for any given step. In step 2, the
system is annealed at 726.85 ℃ with periodic boundary conditions using 100,000
steps of Langevin dynamics with a 100 fs damping factor. In step 3, the simulation
cell is adjusted at a constant rate over 500 ps at 226.85 ℃ to achieve a cubic
simulation cell with a density of 1.0 g/cm3. In step 4, the system is annealed for 1.5
ns at 226.85 ℃ and 1 atm. In step 5, the system is equilibrated for 10 ns at 90 ℃
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and 1 atm.

Following equilibration, production runs of 10 ns for the neat-polymer simulations
and of 150 ns for the ion-containing systems are performed at 90 ℃ and 1 atm.

3.3 Results
3.3.a Experimental Conductivity
The ionic conductivity, σ, of the CxEOy polyethers and PEO was measured as a
function of temperature, T , in the range of 27-110 ℃. Figure 3.3 shows the results at
a fixed salt concentration, r = 0.08, which is in the vicinity where PEO conductivity
is maximized.5 Results from Figure 3.3 indicate that the σ of the CxEOy polyethers
are within one order of magnitude of PEO at all temperatures. The relative ordering
of the polymers does not change significantly as T is varied. We observe that at any
given T , C2EO5 and PEO exhibit the highest σ, which are comparable within error.
Of the polyethers synthesized in this study, C2EO5 has the shortest carbon linker
(two) and the longest consecutive segment of ethylene oxide (EO) monomers (five);
thus, C2EO5 has the largest mole fraction of oxygen, xO (Table 3.1), of the CxEOy

polymers. Similarly, C6EO4 has the lowest xO and exhibits the lowest σ. As might
be anticipated, results from Figure 3.3 suggest that there is a relationship between
the xO and σ.

Figure 3.3: Conductivity, σ, with increasing temperature at r =0.08.

To further explore this relationship, Figure 3.4a shows σ of the CxEOy polyethers
and PEO as a function of xO at r =0.08 and 90 ℃. The measured conductivities of
the polymers are within a narrow range between 6.5×10−4 S/cm and 1.7×10−3 S/cm.
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In some cases increasing the linker length increases σ (C2EO4 vs. C4EO4), while in
other cases it decreases σ (C2EO5 vs. C4EO5). Similarly, an additional consecutive
EO unit in the monomer may either increase σ (C2EO4 vs. C6EO4) or decrease σ
(C4EO4 vs. C4EO5). The lack of clear trends in this data most likely results from
two competing effects upon the addition of carbon linkers. Namely, the presence
of the linkers dilutes the density of lithium-ion solvation sites (making hopping
between sites less probable) but simultaneously changes the thermal properties of
the polymer melt. Figure 3.4b shows the glass transition temperature, Tg, of the
CxEOy and PEO electrolytes at a salt concentration of r =0.08. It is evident that
decreasing xO decreasesTg due to increased chain flexibility. It is generally accepted
that more flexible chains promote ion transport due to rapid segmental motion.49–51

To decouple the effects of solvation site density and segmental motion, we calculate
a reduced conductivity, σr . This approach has been used previously in analysis
of experimental data from polymer electrolytes.5,52,53 To calculate σr , we use a
modified Vogel-Fulcher-Tammann (VFT) equation where the temperature is defined
such that it is a fixed distance, T∗, above the measured Tg of the electrolyte,

σr (T∗) = A(Tg + T∗)−1/2 exp
(

−Ea
R(Tg + T∗ − T0)

)
, (3.3)

where T0 = Tg − 50℃ is the traditional VFT reference temperature. The two dotted
curves in Figure 3.3 show VFT fits for C2EO5 and C6EO4 (other fits are omitted
for clarity). These fits enable estimation of a pseudo-activation energy, Ea, and a
prefactor, A. Figure 3.4c shows σr of the CxEOy polyethers and PEO as a function
of xO for T∗ = 75 K. Once the contribution from Tg differences is corrected for, it
becomes clear that the reduced conductivity is a monotonically increasing function
of xO. In other words, decreasing the linker length or the addition of an EO unit
leads to an increase in σr . Since the VFT curves for the polymers are essentially
parallel, the dependence of σr on xO is qualitatively similar to that seen in Figure
3.4c at all values of T − Tg. All the electrolytes in Figure 3.4c have a fixed salt
concentration of r =0.08; consequently, electrolytes with a lower xO will typically
have less salt per unit volume. Therefore, it is unclear whether the trend observed in
Figure 3.4c is due to changes in molecular structure or simply results from changes
in volumetric density of charge carriers in the electrolytes.

To isolate the effect ofmonomer structure on conductivity, we define an experimental
connectivity, fexp:

fexp =
(

σr

σr,PEO

)
T∗

xO,PEO
xO

. (3.4)
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Figure 3.4: (a) Conductivity, σ, at 90 ℃ and (b) glass transition temperature, Tg, and (c)
reduced conductivity, σr , with increasing mol fraction of oxygen atoms, xO, on the polymer
backbone. All data is collected at a salt concentration of r =0.08.

The ratio of σr/σr,PEO at a given r and T∗ = T − Tg quantifies the conductivity of a
CxEOy electrolyte relative to that of PEO, correcting for the differentTg values of the
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CxEOy electrolyte. The ratio of xO,PEO / xO approximately corrects for differences
in the volumetric density of salt. In Eq. (3.4), fexp is somewhat analogous to the
morphology factor used to describe the constraints on ion transport imposed by the
geometry of the conducting phase in block copolymer systems.54

Figure 3.5 shows fexp as a function of xO. This plot shows that fexp increases
monotonically with increasing xO. These effects are attributed to changes in the
local environment of the lithium ion. As xO is decreased, there are likely more
carbon linker segments and fewer EO segments in the vicinity of each solvated
lithium ion. Assuming the carbon linkers are ionically insulating, polymers with a
lower xO are expected to exhibit slower lithium-ion diffusion, as it takes longer for the
ion to hop to an adjacent solvation site. Thus, fexp, is an experimentally determined
quantity that is expected to report on the proximity of lithium-ion solvation sites.

Figure 3.5: Experimental solvation-site connectivity, fexp, with increasing xO at r =0.08
and T − Tg=75 K.

In Figure 3.6a, fexp as a function of xO is calculated at r =0.08 and various reduced
temperatures. The data for a salt concentration of r = 0.08 exhibit strong linear
correlation with the equation,

fexp = 5.39xO − 0.86. (3.5)

To investigate the behavior of fexp across different salt concentrations, the analysis
was repeated at different values of r , and the results for fexp values are shown in
Figure 3.6b. In Figure 3.6c, results are shown for fexp at all values of r and T − Tg.
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Although there is some scatter about the reference line in the figures, the data in
Figure 3.6b and 6c are also largely consistent with Eq. (3.5).

Figure 3.6 provides justification for the normalization scheme employed in this chap-
ter. Namely, Figure 3.6 demonstrates that when polymer electrolytes are compared
using σr and differences in charge carrier concentration are factored out using xO,
ion transport is related to a parameter (fexp) that is largely independent of tem-
perature and salt concentration. This supports the notion that fexp is an intrinsic
property of the neat polymer rather than a quantity that strongly depends on salt
concentration.

Figure 3.6: Experimental solvation-site connectivity, fexp, with increasing xO at varying
(a) T − Tg, (b) r , and (c) T − Tg and r . The green diamonds in (a) and (c) and the white
diamonds in (b) show the data from Figure 3.5 with r =0.08 and T − Tg=75 K; error bars
are only shown for this set of data. The dashed line is the same in all three figures and
represents the best linear fit of the data in (c), given by Eq. 5. The correlation coefficients
for the linear fits are 0.87, 0.90, and 0.85 for (a-c), respectively.

3.3.b Theoretical Solvation-site Connectivity
We now use MD simulations to further understand how varying the composition of
the CxEOy polymers affects lithium-ion solvation and polymer properties, including
the connectivity between possible lithium-ion solvation sites.

Figure 3.7 presents an analysis of the lithium-ion solvation environments observed
duringMD simulations of the C2EOy polymers in the presence of an isolated lithium
ion. Representative snapshots of the lithium-ion solvation shell are shown in Figure
3.7a. In all cases, the lithium ion coordinates with one or two contiguous sequences
of oxygen atoms, which is similar to coordination environments previously observed
in PEO.8,35,55 While complexation by a single contiguous sequence of oxygen atoms
might be expected to be difficult in the presence of carbon linkers, the snapshots
for C2EO3 and C2EO4 depict configurations for which the lithium cation indeed
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coordinates with oxygen atoms separated by a linker. In general, the snapshots
display strikingly similar solvation environments in terms of the number of coor-
dinating oxygen atoms despite the changing frequency of the C2 linker. This is
confirmed in Figure 3.7b, which shows the lithium-oxygen cumulative distribution
function (CDF), and in Figure 3.7c, which presents the frequency with which dif-
ferent lithium-ion binding motifs are observed in the simulations. Both Figure 3.7b
and Figure 3.7c indicate that lithium ions in the C2EOy polymers are coordinated by
five or six oxygen atoms, irrespective of the number consecutive EO units; similar
findings are anticipated for the C4 and C6 linkers based on previous simulation
studies.35,36

Figure 3.7: Analysis of the lithium-ion solvation environment for polymers with C2 linkers
between EO repeat units. (a) Simulation snapshots of representative lithium-ion solvation
structures in polymers with different numbers of repeating EO units. The boxed snapshots
correspond to polymers that have experimental data. (b) The cumulative number of oxygen
atoms as a function of distance from the lithium ion, given by the lithium-oxygen cumulative
distribution function (CDF). (c) Frequency of occurrence of observed lithium-ion binding
motifs. The first number indicates the number of oxygen atoms that are within 3.25 Å of the
lithium ion; the number after the dash refers to the number of different contiguous polymer
chain segments.

We now focus on neat-polymer simulations, i.e., in the absence of the lithium ion,
to examine how the addition of carbon linkers affects both the thermal properties
of the polymer as well as the distribution of lithium-ion solvation sites. Figure 3.8
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compares these two properties obtained for the expanded set of polymers (CxEOy for
x = 2, 4, and 6 and y = 3-8). Figure 3.8a shows that the bulk modulus, B, at 90 ℃ for
the polymers generally increases with increasing xO. The polymers with C2 linkers
have larger bulk moduli than those with C4 and C6 linkers, and PEO (black square)
possesses the largest bulk modulus among all the polymers characterized. These
results are qualitatively consistent with the experimental observations in Figure
3.4b that the Tg of the electrolytes generally increases with xO and decreases with
increasing linker length.

In contrast to Figure 3.8a, Figure 3.8b shows that the average nearest-neighbor dis-
tance, 〈rnn〉, between lithium-ion solvation sites generally decreases with increasing
xO. Here, a solvation site is defined at the centroid of a set of five or more oxygen
atoms if each oxygen is also within 3.5 Å of the centroid; two sites are combined if
the distance between their centroids is less than rmin = 1 Å. The figure shows that
modifying the number of contiguous EO units and the length of the linker directly in-
fluences the number and proximity of solvation sites. Notably, PEO has the shortest
average distance between neighboring lithium-ion solvation sites. Figure 3.8a and
3.8b combine to highlight a difficulty in designing polymers with enhanced cation
diffusivity since increasing the number and proximity of lithium-ion solvation sites
often increases polymer stiffness, in accordance with the experimental observations
in Figure 3.4a.

Previous work introduced solvation-site connectivity as an intuitive means of ex-
plaining trends in conductivity.35 To examine this effect for the CxEOy polymers,
Figure 3.9 compares the distribution and proximity of solvation sites for PEO, which
is the most conductive polymer in Figure 3.4c, and C6EO4, which is the least con-
ductive. Figures 3.9a and 3.9d depict representative snapshots of the neat PEO
and C6EO4 melts, respectively. Solvation sites in these snapshots are depicted as
blue spheres in Figures 3.9b (PEO) and 3.9e (C6EO4). Figures 3.9c and 3.9f depict
edges connecting the solvation sites within a cutoff distance, rcut = 3 Å. Comparing
Figure 3.9b and 3.9e reveals that introduction of the C6 linker decreases the density
of solvation sites in the polymer. Moreover, comparing Figure 3.8c and 3.8f illus-
trates that C6EO4 has far fewer edges than PEO. Because hopping among solvation
sites is a primary mode of lithium-ion transport and hopping is typically limited to
distances less than 3 Å,8,35 having fewer edges between solvation sites is expected
to reduce the overall rate of lithium-ion diffusion.

From Figures 3.6, 3.8b, and 3.9, it is clear that xO plays an important role in both
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Figure 3.8: Variation of (a) the polymer bulk modulus, B, at 90 ℃ and (b) the average
nearest-neighbor separation distance between solvation sites, 〈rnn〉, as a function of xO for
polymers with different linkers. In both (a) and (b), polymers with different linkers are
denoted by different symbols. Markers with bold outlines indicate polymers that were also
experimentally characterized.

the solvation-site connectivity as well as fexp. To further establish the relationship
between solvation-site connectivity and fexp, we examine three possible metrics for
characterizing the solvation-site connectivity from the simulations, including κ (the
volumetric density of edges between solvation sites), λ (the linear density of edges
projected along a given linear direction), and exp[−〈rnn〉] (a proportionality to a
characteristic hopping rate). Figure 3.10 provides a visual representation of these
metrics for PEO. The first metric, κ (Figure 3.10a), is computed using

κ =
1
V

∑
i< j

H (rcut − ri j ), (3.6)

where V is the volume of the simulation cell, the summations run over pairs of
solvation sites in the simulation cell, and H (r) is the typical Heaviside step function.
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Figure 3.9: A comparison between simulation snapshots for (a-c) PEO and (d-f) C6EO4
showing (a, d) a representative configuration of the neat polymer melt; (b, e) possible
lithium-ion solvation sites within the melt; and (c, f) edges less than 3 Å in length between
the solvation sites in (b, e). In (a, d) carbon atoms are gray, and oxygen atoms are red. In (b,
e), all polymer atoms are light gray while the solvation sites are depicted as blue spheres. In
(c, f), edges between solvation sites are depicted as purple bonds while the polymer is not
shown for clarity. The various simulation snapshots have the same size scale; the difference
in size between the simulation box for PEO and that of C6EO4 is due to the latter having a
larger number of atoms and a lower density.

Similarly, the second metric, λ (also shown in Figure 3.10a), is computed using

λ =
1
Lu

∑
i< j

H (rcut −
√ri j · u), (3.7)

where Lu is the length of a given linear dimension in the simulation cell, u is a unit
vector in the direction of that linear dimension, and √ri j · u is the magnitude of the
distance vector ri j projected onto u. The third metric, exp[−〈rnn〉] (Figure 3.10b), is
expected to be proportional to a characteristic hopping rate between solvation sites
separate by 〈rnn〉, which is computed using

〈rnn〉 =
1
N

∑
i

min j>i
[
ri j

]
, (3.8)

where N denotes the number of solvation sites in the simulation cell. All three
quantities are likely to increase if the number of sites increases or the distance
between solvation sites decreases, and so each reasonably reports on the concept of
connectivity.
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Figure 3.10: The relationship between connectivity metrics in PEO. (a) Edges between
solvation sites in the simulation cell, which defines the volumetric edge density κ, and
projections of the edges in the x-, y-, and z- directions, which define the linear edge density
λ. (b) The distribution of nearest-neighbor separation distances, which defines the average
nearest-neighbor separation distance, 〈rnn〉, used to compute a characteristic hopping rate,
exp [−〈rnn〉].

Figure 3.11 presents the dependence of all three metrics for characterizing the
connectivity on xO. All of the metrics, which are normalized with respect to PEO,
increase with increasing xO for a given linker. This is sensible because the number
of consecutive EO units is increasing, making lithium-ion solvation sites more
prevalent. It is interesting to note that polymers with C6 linkers are characterized
by higher connectivity than polymers with C4 or C2 linkers when the oxygen mole
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fraction is comparable, up to xO=0.27. This is likely because the C6EOy polymers
require more contiguous EO units to achieve the same oxygen mole fractions as the
polymers with shorter linkers.

Figure 3.11: Analysis of simulated connectivity metrics as a function of xO for polymers
with different linkers, including (a) κ, the volumetric connectivity (number of edges between
solvation sites per unit volume), (b) λ, the linear connectivity (number of edges between
solvation sites per unit length), and (c) exp [−〈rnn〉], a characteristic distance-dependent
proportionality for the lithium-ion hopping rate. Each metric is normalized by the cor-
responding value for PEO. In all panels, polymers with different linkers are denoted by
different symbols. Markers with bold outlines indicate polymers that were also experimen-
tally characterized.

3.3.c Comparison between Experiment and Simulation
Figure 3.12 directly examines the correlation between the experimentally calcu-
lated fexp and the theoretically derived connectivity metrics. The linear fits shown
in Figure 3.12a-c quantify the relationship between fexp and connectivity. The
relationships thus obtained are

fexp = ai + miCi, (3.9)

whereCi can be any of three connectivity metrics (C1 = κ/κPEO,C2 = λ/λPEO,C3 =

exp
[
−〈rnn〉

]
/ exp

[
−〈rnn〉PEO

]
). The fits give (a1 = 0.34, m1 = 0.69), (a2 = 0.31,

m2 = 0.72), and (a3 = 0.30,m3 = 0.71). To a good approximation the relationship
between fexp and the connectivity metrics is linear with an intercept of 0.32 and a
slope of 0.71 (average values of aiand mi, respectively). The behavior of the ether-
based electrolytes in the low Ci limit remains an interesting open question. One
expects that the lithium-ion diffusivity will tend to zero as Ci approaches zero, but
how the anion and the mutual diffusion of the anion and cation are affected in this
limit is not clear. While the data in Figure 3.12 extrapolates to a finite positive value
(0.32) as Ci approaches 0, it is possible that the linear relationships in Figure 3.12
break down at 0 < Ci < 0.15, perhaps due to a change in ion-hopping mechanism
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in the low connectivity limit (Ci < 0.15) or due to the neglect of anion transport
or ion-ion interactions in our simulations. Regardless, Figure 3.12 makes clear that
fexp, which is obtained from analysis of experimentally measured conductivities of a
series of ether-based polymer electrolytes, is strongly correlated with the solvation-
site connectivity that manifests in simulations of neat polymers. For other classes
of polymers, we have found that the calculated solvation site connectivity does not
necessarily correlate directly with xO,35 andwe likewise do not expect that in general
for fexp; in this sense, the results in Figures 3.5 and 3.6 are likely a special feature
of the class of polyethers considered here. Nonetheless, generally across polymers,
we do expect a strong correlation between the experimental and calculated metrics
of connectivity, as shown in Figure 3.12.

Figure 3.12: Correlation of experimental solvation-site connectivity, fexp, and the theoret-
ical connectivity metrics in Figure 3.11a-c. The dashed line shows the linear fit to the data.
The correlation coefficients for the linear fits are 0.91, 0.89, and 0.98 for a-c, respectively.

3.4 Conclusions
The role of polymer segmental motion and the glass-transition temperature on the
conductivity of polymer electrolytes has long been appreciated. When comparing
polymers with different monomer chemistries, the nature and distribution of ion
solvation sites may also play an important role. To investigate these effects, a
combined experimental and computational study of ion transport is performed on
a systematic set of polymer electrolytes in which aliphatic linkers have been added
to a PEO backbone. Experiments are conducted on mixtures of the ether-based
polymers and LiTFSI over a wide range of salt concentrations, while the simulations
focus on the solvation of lithium ions in the dilute-salt limit and the distribution of
available lithium-ion solvation sites in neat polymers.

The experimentally measured conductivities are affected by a variety of often com-
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peting factors, including Tg and also the density of available ion solvation sites. To
isolate the effects of these factors, we employ a two-step normalization scheme.
In the first step, VFT fits are used to calculate a temperature-dependent reduced
conductivity, σr (T − Tg), which is defined as the conductivity of the electrolyte of
interest at a fixed value of T −Tg. This step mitigates differences in the conductivity
of polymers that arise due to disparities in Tg. In the second step, we compute a
dimensionless parameter fexp, defined as the ratio of the reduced ion mobility of
the electrolyte of interest to that of a reference polymer (PEO). This parameter is
used to assess to what extent changes in conductivity can be attributed to factors
other than Tg, such as those due to differences in the connectivity of solvation sites.
Remarkably, within the set of polyethers studied, fexp is shown to depend only on
oxygen mole fraction, xO, and is largely independent of temperature and salt con-
centration. This suggests that fexp is an intrinsic property of the neat polymer that
distinguishes the conductivity of polymers at a given concentration and T − Tg.

Molecular dynamics simulations conducted on neat polymers and polymers in the
presence of an isolated lithium ion are used to develop molecular insight for fexp
and its dependence on xO. The latter simulations are used to identify the nature
of lithium-ion solvation sites, and the distribution of such sites is examined in
simulations of neat polymer systems. We introduce three metrics for quantifying the
connectivity among solvation sites using simulation (C1 = κ/κPEO, C2 = λ/λPEO,
C3 = exp

[
−〈rnn〉

]
/ exp

[
−〈rnn〉PEO

]
). In the range 0.2 < xO < 1, we find that fexp is

correlated with the various connectivity metrics according to fexp = 0.32 + 0.71Ci.
The simulations thus provide molecular insight into the underpinnings of fexp.
Namely, fexp reports on the proximity of lithium-ion solvation sites in the polymer,
which is essential in facilitating lithium-ion diffusion in polymer electrolytes.
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C h a p t e r 4

CHEMICALLY SPECIFIC DYNAMIC BOND PERCOLATION
MODEL FOR ION TRANSPORT IN POLYMER ELECTROLYTES

Chapter 2 provided the foundation for solvation-site connectivity as a polymer-
specific property that plays an essential role for ion transport in polymer electrolytes.
Meanwhile, in Chapter 3, we demonstrated a direct correspondence between exper-
imental conductivity and solvation-site connectivity, resulting in an equation that
would facilitate predictions of conductivity for a particular class of polymers. This
success invites us to speculate on how the conceptual notion of solvation-site con-
nectivity might be leveraged as a general predictive tool for polymer electrolyte
performance.

In this chapter, we introduce a coarse-grained approach for characterizing the long-
timescale dynamics of ion diffusion in general polymer electrolytes using input
from short molecular dynamics trajectories. The approach includes aspects of the
dynamic bond percolation model [J. Chem. Phys. 1983, 79, 3133-3142] by treating
ion diffusion in terms of hopping transitions on a fluctuating lattice. We extend
this well-known approach by using short (i.e., 10 ns) molecular dynamics (MD)
trajectories to predict the distribution of ion solvation sites that comprise the lattice
and to predict the rate of hopping among the lattice sites. This yields a chemically
specific dynamic bond percolation (CS-DBP) model that enables the description
of long-timescale ion diffusion in polymer electrolytes at a computational cost that
makes feasible the screening of candidate materials. We employ the new model
to characterize lithium-ion diffusion properties in six polyethers that differ by oxy-
gen content and backbone stiffness: poly(trimethylene oxide), poly(ethylene oxide-
alt-trimethylene oxide), poly(ethylene oxide), poly(propylene oxide), poly(ethylene
oxide-alt-methylene oxide) and poly(methylene oxide). Good agreement is ob-
served between the predictions of the CS-DBP model and long-timescale atomistic
MD simulations, thus providing validation of the model. Among the most strik-
ing results from this analysis is the unexpectedly good lithium-ion diffusivity of
poly(trimethylene oxide-alt-ethylene oxide) by comparison to poly(ethylene oxide),
which is widely used. Additionally, the model straightforwardly reveals a range of
polymer features than lead to low lithium-ion diffusivity, including the competing
effects of the density of solvation sites and polymer stiffness. These results illustrate
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the potential of the CS-DBP model to screen polymer electrolytes on the basis of
ion diffusivity and to identify important design criteria.

Data and content in this chapter have been published as M.A. Webb, B.M Savoie,
Z.-G. Wang and T.F. Miller III. “Chemically Specific Dynamic Bond Percolation
Model for Ion Transport in Polymer Electrolytes.” Macromolecules, 48, 7346-7358
(2015).

4.1 Introduction
Rechargeable lithium-ion batteries are important for many technological applica-
tions.1 Since the discovery that polyethers like poly(ethylene oxide) (PEO) provide
an ion-conducting medium,2,3 there has been interest in developing solid polymeric
electrolytes as a replacement for liquid electrolytes for safe, stable, and cost-effective
batteries.4,5 However, the ionic conductivities of such materials remain insufficient
for many practical applications, despite research focus on both the synthesis of novel
polymers6–14 and additives.15,16 Indeed, the most studied and widely employed poly-
mer electrolytes continue to be based on PEO.17–33 The design of more conductive
polymer electrolytes requires both a better understanding of ion-transport mech-
anisms in polymers as well as the development of tools for screening candidate
polymers prior to synthesis and characterization.

Molecular simulation provides a powerful tool for studying ion transport in poly-
mers, for predicting transport properties, and for developing design principles based
onmechanistic insight. Significant theoretical and computational effort has been de-
voted to the study of ion conduction in PEO and PEO-based systems.34–48 Through
these efforts, a number of transport mechanisms in PEO-based polymers have been
identified, including both intra- and inter-segmental hopping events, as well as the
co-diffusion of cations and polymer chains.38,49 However, even long molecular dy-
namics (MD) trajectories (i.e., in excess of 100 ns) may reveal only a small number
of the rare events associated with ion transport and may not report on the diffu-
sive regime,48 thus necessitating the development of less computationally intensive
theoretical models to study ion transport properties in other polymers.

A number of theories and models have been developed for ion transport in amor-
phous polymers.38,50–54 Some models based on the specific mechanisms of ion
transport observed in PEO38,54 have been successfully applied in several PEO-based
electrolyte systems38,49,54–57. However, these models are not immediately general-
izable to other polymers, which can exhibit different ion transport mechanisms,48
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and they require long (up to 700 ns)56 MD trajectories to determine necessary model
parameters. In contrast, the dynamical bond percolation (DBP) model50–53 provides
a general, phenomenological approach that treats ion transport in terms of hopping
transitions on a fluctuating lattice. Although this framework is quite general, the
DBP model has been practically implemented with a number of simplifying as-
sumptions, including that the array of sites is uniform and that the hopping rate is
identical among all neighboring sites;53 as such, the DBP model has been limited to
the description of generic aspects of ion diffusion in polymers,50–53,58,59 rather than
addressing detailed aspects of specific polymer systems. Another possible approach
is the trajectory-extending kinetic Monte Carlo (TEKMC) method, which extrap-
olates transport properties based on the construction of a transition matrix with
statistics generated from MD trajectories.45,47,60 Although TEKMC can be used to
obtain long-timescale diffusion coefficients from shorter trajectories, it is not directly
connected to an underlying model for ion transport in polymer electrolytes, which
would be useful for future polymer design. We aim to build upon this earlier work by
establishing a framework for ion transport that is both computationally tractable and
generally applicable to a wide range of polymer classes, while also incorporating
sufficient chemical specificity to enable the identification of promising candidate
polymers for ion-transport applications.

Figure 4.1: Polymers considered in this chapter.

In this paper, we present a chemically specific DBP (CS-DBP) model for ion trans-
port in polymer electrolytes. We begin by presentingMD simulations of lithium-ion
transport in PEO to illustrate general features of ion transport in polymers. These
features are then distilled into a framework in which ion diffusion occurs via hopping
transitions on a dynamical network of ion solvation sites. In the CS-DBP model, the
hopping rates depend on the distribution and connectivity of solvation sites, which
are obtained from short-timescale (1-10 ns) MD trajectories and which account
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for the effects of detailed molecular properties of the polymer, such as monomer
topology, composition, and flexibility. The model is employed to predict the rate
of lithium-ion diffusion in a range of polymers, including poly(trimethylene oxide),
poly(ethylene oxide-alt-trimethylene oxide), poly(ethylene oxide), poly(propylene
oxide), poly(ethylene oxide-alt-methylene oxide) and poly(methylene oxide). For
the remainder of the chapter, these polymers are referred to respectively as PTMO,
P(EO-TMO), PEO, PPO, P(EO-MO), and PMO as indicated in Figure 4.1. The CS-
DBP model predictions are compared to those of long-timescale MD simulations of
lithium-ion transport in the same polymers to evaluate the performance of the new
model.

4.2 Characteristics of Ion Transport in Polymers
In this section, atomistic MD simulations of lithium-ion diffusion in PEO are used
to illustrate fundamental mechanistic features of ion transport in polymers and to
motivate the development of the CS-DBP model in the following sections. Four
independent MD trajectories of a single lithium cation diffusing in PEO at 400 K
and 1 atm are each run for 300 ns, following system preparation and equilibration.
To simulate diffusion in a high-molecular-weight polymer, to mitigate potential
artifacts associated with ends of the polymer chains, and to suppress co-diffusion
of the lithium cation with the polymer chain (i.e., rafting), a single PEO chain with
640 monomer units (approximately 29,000 g/mol) is used as the electrolyte solvent.
Full details regarding the simulation methodology are provided in Section 4.4.a.

Figures 4.2A and 4.2B feature trajectory snapshots that illustrate inter- and intra-
segmental hopping events of the lithium cation. For the inter-segmental hopping
event depicted in Figure 4.2A, the lithium cation is initially coordinated by six
oxygen atoms from a single contiguous polymer chain segment (i.e., an unbroken
sequence of adjacent monomers). Two oxygen atoms that initially coordinate the
lithium cation are then exchanged for two others from nonadjacent monomers, such
that, after the hopping event, the lithium cation is coordinated by oxygens from
two different chain segments. For the intra-segmental hopping event depicted in
Figure 4.2B, the lithium cation is again initially coordinated by six oxygen atoms
from a single contiguous chain segment. A torsional flip at the end of this segment
breaks the contact between the lithium cation and one oxygen, allowing the lithium
cation to form a new coordinating contact with an oxygen on a monomer that is
adjacent to the original chain segment. After this intra-segmental hop, the lithium
cation remains coordinated by oxygens that form a single contiguous chain segment;
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the lithium cation has effectively “slid” along the backbone of the PEO chain. Both
inter- and intra-segmental hopping events have been discussed in the context of
PEO,34–38,41–43,48,50,51 and we also discussed them in a range of different polymers
in Chapter 2.
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Figures 4.2C and 4.2D reveal how hopping events like those depicted in Figures 4.2A
and 4.2B lead to changes in the lithium-ion coordination environment and position
during a simulation trajectory. In Figure 4.2C, the lithium cation is monitored by
tracking its net displacement (∆x, ∆y, and ∆z) as a function of simulation time. The
lithium-ion motion is characterized by local fluctuations on the 1-10 ns timescale,
interspersed with larger displacements that occur on the 10-100 ns timescale. In
Figure 4.2D, the lithium-ion coordination environment is monitored by tracking the
oxygen atoms in the first lithium-ion solvation shell; specifically, each PEO oxygen
atom is sequentially labeled according to its position in the polymer chain (oxygen-1
and oxygen-640 are at the two endpoints of the polymer chain), and markers are
plotted for oxygen atoms that are within 3.25 Å of the lithium cation for at least
half of a given 50 ps time interval. The figure inset shows that four to seven oxygen
atoms (from one or two chain segments) typically coordinate the lithium cation at
any given time, which is consistent with previous studies of lithium-ion transport
in PEO-based polymers.34–38,41–44,48 Here, a drift in oxygen indices is indicative
of the lithium-ion hopping to adjacent monomer units, as in the event depicted
in Figure 4.2B, which occurs in the blue-boxed time interval. Alternatively, the
appearance or disappearance of lines in Figure 4.2D is indicative of the lithium-
ion hopping to nonadjacent parts of the polymer chain, as in the event depicted in
Figure 4.2A, which occurs in the red-boxed time interval. Similar events of this type
are observed at around 198 ns and 228 ns in this particular MD trajectory.

Although the two molecular events highlighted in Figure 4.2 are typically regarded
as distinct ion-transport mechanisms, they have common features that suggest a
more general view of ion transport in polymers.48 In particular, both events involve
a hopping transition between ion solvation sites that is accompanied by both reorga-
nization of the polymer environment and exchange of atoms that directly coordinate
the ion. In the following section, we develop a model for ion transport in polymers
that incorporates this more general view of lithium-ion diffusion mechanisms in
polymers.

4.3 Chemically Specific Dynamic Bond Percolation Model
4.3.a Overview of Model Strategy
In this section, we present a chemically specific dynamic bond percolation (CS-DBP)
model for ion transport in polymers. Figure 4.3 illustrates the overall strategy for cal-
culating lithium-ion transport properties in polymers from a small number (less than
five) of short-timescale (10 ns) MD trajectories using the CS-DBP model, in con-
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Figure 4.3: Alternative strategies for obtaining ion-transport properties in polymers. The
dashed arrow indicates the conventional brute-force approach, in which transport properties
are obtained by running long and computationally expensive MD trajectories. The black
arrows indicate the approach of the CS-DBP model, in which short MD trajectories are used
to obtain parameters for kinetic Monte Carlo simulations that predict transport properties at
reduced computational cost.

trast to performing computationally expensive, microsecond-timescale trajectories
that are needed to directly simulate ion transport in polymers using MD. Obtaining
transport properties from the CS-DBP model consists of three main stages. We first
briefly describe each stage and then elaborate on them in the following sections.

In stage (1), polymer configurations taken from short MD simulations are scanned
to find viable ion solvation sites in the polymer on the basis of the arrangement of
lithium-coordinating atoms, such as oxygen atoms in PEO. Details of the solvation
sites and the site-identification protocol are provided in Section 4.3.b.

In stage (2), properties obtained from short MD simulations are used to estimate
hopping rates between the lithium-ion solvation sites found in stage (1). Details of the
transition-rate expression and the relevant quantities are provided in Section 4.3.c.

In stage (3), the solvation sites and hopping rates obtained in the previous two
stages are used in kinetic Monte Carlo (KMC) simulations to study long-timescale
lithium-ion diffusion properties in the polymer. Details of the KMC simulations are
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provided in Section 4.3.d.

The strategy outlined incorporates system-specific details in a DBP framework.
As such, this approach could also be applied to study various particle transport
phenomena in disorderedmedia, while simultaneously including important atomistic
details for system specificity; however, here, we focus on lithium-ion transport in
polymers.

4.3.b Solvation Site Identification
As outlined in Section 4.3.a, the first stage in the CS-DBP model is to identify
lithium-ion solvation sites. Lithium-ion solvation sites are identified in three steps
for a given polymer configuration, as depicted in Figure 4.4.

Clustered  
Sites 

Relaxed 
Sites 

Initial 
Sites 

Clustering MD Test 
Relaxation 

Initial Site 
Identification 

Figure 4.4: The protocol for finding lithium-ion solvation sites. Starting from a polymer
configuration, a geometric search enables the identification of initial sites (blue rings).
Clustering is used to eliminate sites with significant spatial overlap, which then yields
clustered sites (filled blue circles). MD simulations are run with a lithium cation placed
at the position of the clustered sites to determine if the site survives polymer relaxation,
yielding the relaxed sites.

First, the polymer configuration is scanned to find sets of oxygen atoms that resemble
a lithium-ion solvation shell. In particular, a solvation site is identified at the centroid
of a set of oxygen-atom positions that fall within a threshold distance of the centroid.
Here, the threshold distance is the size of the first lithium-ion solvation shell (the
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distance to the first minimum of the lithium-oxygen radial distribution function).
The sites identified in this step are termed “initial sites.”

Second, initial sites are clustered to identify spatially distinct sites. Specifically,
initial sites are clustered into a single site if the distance between them is less than
the van der Waals radius of the lithium cation,42 σLi = 1.4 Å; the position of the
clustered site is at the centroid of its constituent initial sites. An additional check
confirms that no set of oxygen atoms associated with one clustered site is a subset of
the oxygen atoms associated with another, such that all sites correspond to a unique
list of associated oxygen atoms.

Third, the stability of each clustered site is tested using short MD trajectories.
Specifically, a lithium cation is placed at the coordinates of the clustered site, and
multiple picosecond-timescaleMD trajectories are run from this configuration using
randomized initial velocities. If the oxygen atoms associated with the clustered site
remain within the first lithium-ion solvation shell, then the site is kept; otherwise it
is discarded. The sites remaining after this step are termed “relaxed sites.”

Solvation site densities and distribution functions are then calculated using the
relaxed sites. For a given pair of particle types (either atoms or sites), we compute
the pair number distribution function (NDF)

nαβ (r) =
1

Nα

〈∑
i∈α

∑
j∈β

δ(r − ||ri − r j | |)
〉
, (4.1)

and the associated pair radial distribution function (RDF)

gαβ (r) =
V
Nβ

nαβ (r), (4.2)

where r is a given separation distance, rk is the position vector of particle k, δ(· · · )
is the Dirac delta function, V is the volume of the periodic simulation cell, | | · · · | |
denotes the Euclidean distance, and 〈· · · 〉 denotes an average over an ensemble of
configurations.

Although the protocol has been discussed for the case in which oxygen atoms are the
coordinating atoms, the protocol is easily generalized to account for the possibility
that other atom types (such as nitrogen or sulfur) coordinate the lithium cation.

4.3.c Transition Rates Between Solvation Sites
As outlined in Section 4.3.a, the second stage in the CS-DBP model is to estimate
the rate of lithium-ion hopping between solvation sites. During a hopping event
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between solvation sites, a lithium cation exchanges at least one coordinating atom
and translates some distance in the polymer medium. In principle, MD simulations
could be used to calculate the classical mechanical rate associated with the hopping
transition; however, such calculations are computationally intensive,61 and would
prohibit most materials-screening applications of the model. Instead, we propose a
simple transition state theory expression for the hopping rates that uses information
that is accessible from short-timescale MD trajectories. In particular, the rate
constant k0 associated with hopping between solvation sites that are separated by a
distance r is

k0(r) = τ−1e−βEdis(r)e−βEλ(r), (4.3)

where β = 1/kBT is the inverse thermodynamic temperature, τ−1 is an attempt
frequency related to the timescale on which an ion collides with its solvation shell,
Edis(r) is a dissociation energy related to the lithium-oxygen contacts that are broken
during the hop, and Eλ (r) is a reorganization energy related to the polymer rear-
rangement that facilitates the displacement of the lithium cation. Eq. (4.3) is of the
same form as that originally proposed for DBP50, except that we explicitly partition
the activation energy into Edis(r) and Eλ (r). Each term in Eq. (4.3) corresponds
to a feature of the underlying physical process but is accessible from short MD
simulations.

Since the attempt frequency τ in eq. (4.3) corresponds to the timescale for attempting
a transition between solvation sites, it is approximated as twice the time of the first
zero in the lithium-ion velocity autocorrelation function (VACF), which corresponds
to the period of oscillation of the lithium cation in its solvation shell and occurs on
the picosecond timescale.

The dissociation energy Edis(r) in Eq. (4.3) is calculated as the work required
to replace favorable lithium-oxygen interactions in the solvation shell with corre-
sponding bulk-type interactions. In practice, we obtain this from the reversible work
theorem,62 which relates the potential of mean force between two particles to the
corresponding pair RDF. For a lithium-oxygen interaction, this gives

E0
dis = kBT ln

[
gLi,O(rp)

]
, (4.4)

where rp is distance of separation associated with the first peak of the pair RDF,
gLi,O(r). The distance-dependent Edis(r) is subsequently computed using

Edis(r) = z(r)E0
dis, (4.5)
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where z(r) is the site-overlap function, which reports the number of lithium cation-
oxygen atom interactions that are broken, on average, for hopping events of length
r .

The reorganization energy Eλ (r) in Eq. (4.3) corresponds to the work required to
create a cavity with volume large enough for the lithium cation to move between
two solvation sites. Specifically, we assume that Eλ (r) = Mvact(r), where M is
an energy density and vact is an activation volume, which is a form that appears in
the treatment of various activated-hopping processes.63–67 In the theory of small-
lengthscale hydrophobic solvation, the free energy associated with spontaneous
cavity formation is proportional to density fluctuations in the liquid and the cavity
volume.68–71 Similarly, we approximate M using the bulk modulus, which is pro-
portional to density fluctuations in the polymer, and vact is calculated as the volume
of a cylinder with a cross-sectional area equal to that of the lithium cation, such that

Eλ (r) = Bπσ2
Lir, (4.6)

where B is the bulk modulus of the polymer. We note that Eq. (4.6) is one of
multiple possible estimates for the reorganization energy, but it provides a simple and
physically reasonable relation that is easily accessible from short MD simulations.

4.3.d Kinetic Monte Carlo
As outlined in Section 4.3.a, the final stage in the CS-DBP algorithm is to model
the lithium-ion dynamics on the network of solvation sites. Given the distribution
of lithium-ion solvation sites (Section 4.3.b) and the hopping rates between them
(Section 4.3.c), KMC simulations72–75 are used to predict lithium-ion diffusivities
in polymers. At each time step of a KMC trajectory, the lithium cation occupies
a solvation site, and one of two types of moves is allowed. The first type involves
hopping of the lithium cation to another available solvation site; each transition to
a site has an associated rate, which is given by Eq. (4.3). The second type is a
complete “refresh” of the site network, in which case the existing distribution of
sites to which a lithium cation can hop is replaced by a new distribution. Here, the
timescale for refreshing the site network is governed by the rate ν, which is based
on the characteristic lifetime of solvation sites. After a move is selected, time is
evolved according to the residence-time algorithm73,

tk = tk+1 +
ln(1/u)

ν +
∑N

i=1 k (i)
0

, (4.7)
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where tk denotes the time after the kth KMC step, u is a uniform random number
from 0 to 1, N is the number of available solvation sites, and k (i)

0 is the rate constant
given by Eq. (4.3) associated with a hopping transition to the ith site. Technical
details regarding the KMC simulations are provided in Section 4.4.b.

4.4 Calculation Details
The lithium-ion transport characteristics are assessed in the six polymers shown
in Figure 4.1 using the CS-DBP model and long-timescale MD simulations. A
description of the MD simulations is given in Section 4.4.a. Model inputs for the
CS-DBP model are obtained using short segments taken from the beginning of the
MD production runs, as described in Section 4.4.b. Details regarding the KMC
simulations are provided in Section 4.4.c.

4.4.a Molecular Dynamics Simulation Details
All polymers are simulated using a united-atom description with bonding param-
eters taken from the CHARMM76 force field and all other parameters taken from
the TraPPE-UA force field;77 compatible lithium-ion parameters are obtained from
previous simulation studies.42 Although polarizable force fields have been shown
to be quantitatively more accurate for simulating ion dynamics in polymer elec-
trolytes in some cases,78 our primary interest is the relative performance of polymer
electrolytes rather than a quantitative comparison to experiment; furthermore, we
note that the CS-DBP model depends mostly on neat-polymer properties or static
distribution functions, for which non-polarizable force fields are expected to be
sufficiently accurate. Regardless, the use of polarizable force fields in the CS-DBP
model would be straightforward.

All MD simulations are performed using the LAMMPS simulation package79 with
GPU acceleration.80,81 The equations of motion are evolved using the velocity-Verlet
integrator with a 1 fs time step. Particle-particle-particle-mesh Ewald summation81

is used to compute non-bonded interactions beyond a 14 Å cutoff for all periodic
simulations. A Nosé-Hoover thermostat (100 fs relaxation) and barostat (1000 fs
relaxation) are used to control the temperature and pressure, unless otherwise noted.

Four independent copies of the simulation cell are generated for each polymer stud-
ied. Each copy consists of a single long polymer chain (Mn ≈ 30, 000 g/mol) and
a single lithium cation to mimic a high-molecular-weight polymer electrolyte in the
dilute-ion limit. Because no explicit anion is included, the system is neutralized with
a uniform background charge.82 Initial polymer chain configurations are generated
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via a self-avoiding random walk according to the rotational isomeric state approx-
imation,83 and the lithium cation is placed randomly in the polymer-containing
simulation cell.

To generate starting configurations for MD production runs, the systems are equili-
brated in five steps. In step (1), the initial configuration is relaxed for 10,000 steps
with non-periodic boundary conditions using steepest descent energy minimization
with the maximum atom displacement limited to 0.1 Å for any given step. In step
(2), the system is annealed at 1000 K with periodic boundary conditions using
100,000 steps of Langevin dynamics with a 100 fs damping factor. In step (3), the
simulation cell is adjusted at a constant rate over 500 ps at 500 K to achieve a cubic
simulation cell with a density of 1.0 g/cm3. In step (4), the system is annealed for
1.5 ns at 500 K and 1 atm. In step (5), the system is equilibrated for 25 ns at 400
K and 1 atm. Despite being prepared in an amorphous state, we find that the struc-
tures of PTMO and PMO exhibit significant orientational order upon equilibration;
this result is reproducible across various initialization protocols; we note that this
propensity towards ordering does not prevent the comparison of results from the
CS-DBP model and results from MD simulations.

For each polymer system, a single average density is computed after step (5) by
averaging the last 5 ns of the trajectories. Using this fixed density, NVT production
runs of 300 ns are performed at 400 K.

4.4.b CS-DBP Model Calculation Details
To obtain the lithium-oxygen NDF, the first 10 ns of each production run is used to
compute the ensemble average in Eq. (4.1); the RDF is then obtained using Eq. (4.2).

To obtain the site-site NDF and RDF, polymer configurations are taken after 5, 10,
and 15 ns from each MD production run (a total of twelve configurations for each
polymer system). In each configuration, initial sites are identified at the centroid
of sets of three oxygen-atom positions. Clustering proceeds as in Section 4.3.b to
identify clustered sites that have at least four oxygen atoms. To test the stability of
each clustered site, four MD trajectories are run for 5 ps at 400 K with different
randomized initial velocities. Sites that have had four or more oxygen atoms present
in the first lithium-ion coordination shell for at least 80% of the last 4 ps are used
as relaxed sites. The coordinates of the relaxed sites are used to compute the NDF
and RDF for lithium-site and site-site pairs using Eqs. (4.1) and (4.2).

To obtain the site-overlap function, z(r) in Eq. (4.5), the twelve configurations with
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relaxed sites are used to compute a histogram of the overlap between two sets of
oxygen atoms associated with different relaxed sites at a given distance from one
another. Specifically, the overlap between two sites i and j separated by distance r

is computed using
zi j (r) = |Si − S j |, (4.8)

where Si and S j denote the sets of associated oxygen atoms, Si − S j is the relative
complement of S j in Si, and | · · · | reports the number of elements in the set. Then,
z(r) is calculated as 〈zi j (r)〉, which is averaged over all pairs at a given distance
r and over all polymer configurations. Occasionally no samples are obtained for
zi j (r), in which case z(r) is linearly interpolated between the two nearest nonzero
entries in the histogram.

To obtain the attempt frequency, τ, the VACF of the lithium cation is computed
from the first 1 ns of each production run. The time at the first zero of the VACF is
obtained by linear interpolation.

To obtain the bulk modulus, B, initial configurations for the production runs are
copied, and the lithium cation is removed. MD trajectories are run for these neat-
polymer systems at 400 K and 1 atm for 10 ns to obtain statistics on the relative
volume fluctuations in the NPT-ensemble, which are used to compute B.84

To obtain the polymer-specific site-refresh rate, ν, a continuous indicator function
hi (t) ∈ (0, 1] is defined that reports on the extent to which any site spatially overlaps
with a given site i after time t. A relaxation time for hi (t) is then computed using
the normalized site autocorrelation function,

SACF(t) =
〈hi (t)hi (0)〉 − 〈hi (t → ∞)hi (0)〉

1 − 〈hi (t → ∞)hi (0)〉
, (4.9)

which yields a relaxation time via

τsite =

∫ ∞

0
SACF(t)dt, (4.10)

and finally the site-refresh rate via ν = τ−1
site. Here, a single relaxation time is used to

characterize ν, which is consistent with the implementation of a “renewal time” in
the original DBPmodel;50 however, this implementation could easily be generalized
to account for a distribution of site-refresh rates due to the internal modes of the
polymer. In practice, Eq. (4.9) is calculated using the coordinates of the clustered
sites that are found between 1.5 Å and 2.5 Å of the lithium cation, which are easily
extracted as a function of time from the trajectories, and the integral in Eq. (4.10)
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is performed by fitting the results to a stretched exponential function. Note that
the choice to use the stretched exponential fit is purely based on mathematical
convenience; in the approximation of a single relaxation time, the specific form of
SACF(t) is unimportant since only its integral is needed. The first 10 ns of each
production run are used for ensemble averaging.

4.4.c Kinetic Monte Carlo Simulation Details
For each polymer, 160 independent KMC trajectories are run until the simulation
time reaches 5 µs or until 2.5× 106 KMCmoves have been performed. Explicit site
networks are modeled with cubic periodic boundary conditions and 512 sites per
periodic cell; the side length of the simulation cell is adjusted to match the average
site density obtained from the twelveMD configurations used to identify lithium-ion
solvation sites (Section 4.4.b). Prior to each KMC trajectory, iterative Boltzmann
inversion85 (IBI) is used to obtain five realizations of the site network that reflect the
site-site RDFs obtained from the MD configurations. In the KMCmoves associated
with refreshing the site network, three steps are performed. First, one of the five
realizations is randomly chosen. Second, the orientation of the chosen network is
randomized by applying (with equal probability) a 0°, 90°, 180°, or 270° rotation
about the x-, y-, and z-axis, in random order. Third, the simulation cell is shifted
such that a randomly selected site coincides with the coordinates of the lithium
cation.

4.5 Results
In this section, we illustrate the application of the CS-DBP model to the set of
polyethers in Figure 4.1. Additionally, the results of the CS-DBP model are com-
pared to those of long-timescale atomistic MD simulations.

4.5.a Site Distributions
Webegin by demonstrating the implementation of stage (1) of the CS-DBPmodel, in
which the solvation-site distribution functions are obtained. Figure 4.5A illustrates
the solvation sites in a representative MD configuration for each polymer considered
in this study. As expected, polymers with less oxygen content are typically populated
with fewer sites, such that PTMO exhibits the smallest number of solvation sites
and PMO exhibits the largest. Interestingly, PPO has more sites than PTMO, even
though the ratio of carbon to oxygen atoms is 3:1 in both cases; this suggests that
the arrangement of oxygen atoms in PPO, which is similar to that of PEO, leads to
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more viable solvation sites.

Figure 4.5B makes a quantitative comparison of the site densities in the various
polymers, which are obtained by averaging over twelve MD configurations for each
polymer. An unexpected result is that the the site density of P(EO-TMO) is nearly
identical to that of PEO, even though it is an alternating copolymer of PTMO and
PEO repeat units; the same is true for P(EO-MO) with respect to PEO and PMO.
These results indicate a non-trivial relationship between the density of solvation
sites and the density of oxygen atoms in these polyethers.

Figure 4.5C compares the lithium-site and site-site NDFs. Both plots in Figure 4.5C
exhibit similar trends with respect to the different polymers, although comparison
between the lithium-site and site-site NDF for a given polymer reveals some minor
differences. For example, the lithium-site NDF is relatively enriched compared to
the site-site NDF at distances less than about 4 Å, whereas the lithium-site NDF is
relatively depleted by comparison to the site-site NDF at distances between 4-6 Å.
This suggests a “site recruitment” effect, in which the lithium cation attracts nearby
coordinating atoms, resulting in an increase in the number of viable solvation sites
in the vicinity of the oxygen atoms that coordinate the lithium cation. Due to a
significant amount of self-averaging across the configurations, the errors associated
with the site-site NDFs are much smaller than those in the lithium-site NDFs.

4.5.b Site Hopping Rates
We now illustrate the computations required in stage (2) of the model, in which
the hopping rates among solvation sites are determined. As described in Sec-
tion 4.3.c, these rates are obtained from atomistic MD simulations that account for
polymer-specific properties, including the lithium-oxygen dissociation energy and
the polymer reorganization energy.

Figure 4.6 provides the data required to calculate the dissociation energy contribution
to the hopping rate (Eq. (4.5)). Figure 4.6A shows that gLi,O(r) is strongly peaked
for polymers with less oxygen content, which indicates that the relative cost of
disrupting a single lithium-oxygen interaction in PTMO is greater than that for a
more oxygen-rich polymer like PMO. However, Figure 4.6B reveals that this effect
is small, as the intrinsic dissociation energy E0

dis varies by less than 1 kcal/mol
across the set of polyethers. Figure 4.6C provides the site-overlap function z(r) for
each polymer, which also impacts the dissociation energy contribution according
to Eq. (4.5). Note that the trends in Figure 4.6C are nearly inverted compared to
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Figure 4.6: Analysis of the dissociation energy contribution to the model. (A) Lithium-
O pair radial distribution functions in each polymer, (B) the intrinsic dissociation energy
E0

dis determined via Eq. (4.4), (C) the average number of oxygen atoms displaced during
transition as a function of distance z(r), and (D) the computed dissociation energy computed
using (B) and (C). The inset shows the relative ordering of the curves around 2 Å

those observed in Figure 4.6B; although individual lithium-oxygen interactions are
somewhat easier to break in oxygen-rich compared to oxygen-poor environments, a
larger number of interactions must be broken in oxygen-rich environments to move
between sites at a given distance. Using Eq. (4.5), the results of Figure 4.6B and 4.6C
are combined to compute the final dissociation energy contribution to the hopping
rate, which is given in Figure 4.6D. Despite the trend in Figure 4.6B, Figure 4.6D
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indicates that the dissociation energy generally increases with oxygen content.
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Figure 4.7 presents the data needed to compute the reorganization energy contri-
bution to the hopping rate using Eq. (4.6). Figure 4.7A reports the values of the
bulk modulus for each polymer, which is well-converged after approximately 5 ns
of simulation time. PMO and P(EO-MO) have the largest bulk moduli, which cor-
relates with their high polymer density and oxygen content. PTMO has a larger
bulk modulus than expected, which may be the result of its ordered structure, as
noted in Section 4.4.a. Figure 4.7B shows the reorganization energy computed
using Eq. (4.6). Both Figure 4.6D and Figure 4.7B illustrate energetic penalties that
disfavor long-ranged hopping events.

Figure 4.8 displays the final intrinsic hopping rate constant k0(r) computed from
Eq. (4.3) using the data from Figures 4.6 and 4.7 and the attempt frequencies taken
from the lithium-ion VACF; a summary of the contributions is provided in Table 4.1.
Due to a combination of large bulk moduli and rapidly increasing z(r), P(EO-MO)
and PMO have small k0(r) relative to the other polymers. Conversely, k0(r) for
PPO is the largest among the polymers considered, due to its low bulk modulus and
correspondingly small reorganization energy. Note that the rates in Figure 4.8 do not
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Figure 4.8: Intrinsic hopping rates between sites at a given distance for each polymer.

entirely determine the lithium-ion diffusivity since they do not contain information
regarding the distribution of available lithium-ion solvation sites nor the site-refresh
rate; to model lithium-ion diffusion, these distance-dependent rates are employed in
KMC simulations that explicitly account for the fluctuating distribution of solvation
sites.

Table 4.1: Summary of various CS-DBP model inputs for the polyethers.

Polymer ρsite (nm−3)a,b E (0)
dis ( kcal

mol )b B (GPa)b τ (ps−1) ν (ns−1)

PTMO 1.33(5) 2.84(4) 1.8(1) 29.1 2.9
P(EO-TMO) 6.60(9) 2.85(5) 1.10(1) 28.7 8.1

PPO 1.95(5) 2.8(2) 0.68(1) 26.5 1.2
PEO 8.12(3) 2.62(8) 1.29(1) 27.8 6.1

P(EO-MO) 23.8(4) 2.4(1) 2.25(5) 29.0 0.6
PMO 44.1(3) 2.1(1) 4.9(5) 26.7 0.3

a Density of solvation sites in polymer
b Statistical errors of the final digit are indicated in parentheses

4.5.c KMC Simulation Results
In stage (3) of the CS-DBP model, the results of Sections 4.5.a and 4.5.b are used
in KMC simulations to obtain long-timescale lithium-ion diffusion properties in
each polymer. To make predictions for a given polymer, it is necessary that the
KMC simulations utilize polymer-specific solvation-site distributions. Figure 4.9
illustrates a comparison between the reference site-site RDFs obtained directly from
MD and those generated via the IBI procedure for the CS-DBP model. Although
IBI reproduces the site-site RDFs for all polymers well, we find that this inversion is
less robust for the lithium-site RDFs. Due to these results, as well as the similarity
between the lithium-site and site-site NDFs in Figure 4.6, all CS-DBP model results
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are obtained using the site-site RDFs.
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Figure 4.10: Mean square-displacement (MSD) of a lithium cation obtained from KMC
trajectories using the CS-DBP model.

Figure 4.10 presents the final mean-square displacements associated with lithium-
ion diffusion as predicted by the CS-DBP model for the polymers studied. As
expected, lithium-ion diffusion is much faster in PEO than in many of the other
polyethers such as PPO and PTMO, which are known to exhibit small experimental
conductivities.86 The CS-DBP model also predicts slow lithium-ion diffusion for
P(EO-MO) and PMO, though the conduction properties of these polymers have yet
to be experimentally studied. A surprising prediction of the model is that P(EO-
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TMO) exhibits faster lithium-ion diffusion than even PEO. This is unexpected since
P(EO-TMO) is an alternating copolymer of the repeat units in PEO and PTMO, and
the latter homopolymer is characterized by very slow lithium-ion diffusion.

Importantly, the CS-DBP model enables a qualitative understanding of the results
of Figure 4.10. For example, sparse site distributions limit lithium-ion diffusion
in PPO and PTMO, and large reorganization energies limit diffusion in P(EO-MO)
and PMO. Furthermore, we note that neither P(EO-TMO) nor PEO has the best site
distribution (Figure 4.5) or the fastest hopping rates (Figure 4.8), yet the combination
of average properties leads to faster lithium-ion diffusion by comparison to the other
polyethers. The results also suggest that the site-refresh rate plays a role in lithium-
ion diffusion, as the site-refresh rate for PEO exceeds that of all others except for
P(EO-TMO).
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Figure 4.11: Mean square-displacement (MSD) of a lithium cation obtained from KMC
trajectories using (A) ν = 0 and (B) ν = 2000 ns−1. Note the change in scale of the y-axis
in the different panels.

To illustrate the effect of the site-refresh rate on the lithium-ion diffusivity, Fig-
ure 4.11A and 4.11B show limiting cases obtained using infinitely slow (ν = 0 ns−1)
and very fast (ν = 2000 ns−1) refresh rates for each polymer. In both cases, the mag-
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nitude and ordering of the results are somewhat different than those in Figure 4.10.
In Figure 4.11A, all lithium-ion diffusion is slowed, but P(EO-MO) and PMO ac-
tually exhibit the fastest lithium-ion diffusion. Here, lithium cations in polymers
like PPO and PTMO are largely confined to hopping within a local cluster with few
sites or forced to make long-range hops, which limits the diffusivity and indicates
that the site distribution primarily controls lithium-ion diffusion in this regime. In
Figure 4.11B, lithium-ion diffusion is faster than that shown in Figure 4.10, but the
hopping rates among sites becomes increasingly important, as evidenced by the rate
of lithium-ion diffusion in PPO. Thus, all three factors in the model–the site distri-
butions, hopping rates, and refresh rates–are important in determining the overall
rate of lithium-ion diffusion.

4.5.d Comparison to Molecular Dynamics
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Figure 4.12: Mean square-displacement of lithium cation obtained from (A)MD simulation
and (B) the CS-DBP model. Note that the data in (B) are the same as in Figure 4.10, but the
limits of the axes are changed.

To validate the predictions of the CS-DBP model, we now compare the results
of direct simulations of lithium-ion diffusivity from long MD trajectories of the
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polymer systems (Figure 4.12A) with the results of the CS-DBPmodel (Figures 4.10
and 4.12B). The results in Figure 4.12B are identical to those from Figure 4.10,
although they are presented for the shorter timescales associated with the atomistic
MD simulations. We emphasize that whereas the results from the CS-DBP model
required MD trajectories of only 10 ns or less, the corresponding model results in
Figure 4.12A required multiple MD trajectories of 300 ns and still do not indicate
fully diffusive behavior (see Figure S5 of the SI for an indication of the power-law
scaling between MSD and time). Nonetheless, the relative ordering of the MSDs
predicted by the CS-DBPmodel is very similar to that given by the MD simulations.
It is particularly notable that the MD results predict that lithium-ion diffusion is
faster in P(EO-TMO) compared to PEO and that the diffusivities of P(EO-TMO)
and PEO are well-separated from those of the other polymers. It is also encouraging
that the order of magnitude of the MSDs is comparable between Figure 4.12A and
those of Figure 4.12B, despite the approximations of the CS-DBP model. Overall,
the correlation between the MD and the CS-DBP model results suggests that the
CS-DBP model provides a reasonable physical picture for lithium-ion transport in
polymers and also incorporates sufficient chemical detail to distinguish transport
characteristics in different polymers.

4.6 Additional Considerations
The good agreement between the results of the CS-DBPmodel (Figure 4.10) and that
of brute-force MD simulations (Figure 4.12A) offers encouraging validation of the
newmodel. Nonetheless, several refinements and future developments are of interest
to extend the scope of model. Firstly, no explicit counter-ion is currently included in
themodel, such that ion-pairing and aggregation effects are ignored; anionsmight be
incorporated into themodel as additional, specialized sites in the network. Secondly,
cation-cation interactions associated with finite lithium-ion concentrations are not
included; while we expect lithium-ion diffusivities at dilute-salt concentrations to
correlatewith ionic conductivities at higher salt concentrations, such effectsmight be
incorporated by self-consistently includingmultiple cations on the same site network
or by extracting model inputs from MD simulations that have multiple cations.
Thirdly, while polymer dynamics are included in the model via the reorganization
energy Eλ (r), the dissociation energy Edis(r), and the site-refresh rate ν, both co-
diffusion of the cation with the entire polymer chain and local segmental diffusion
with coordinating chains is neglected. Although co-diffusionwith the entire polymer
is expected to be negligible in applications that feature polymer chains in excess
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of 10,000 g/mol,49,87,88 local segmental motion can contribute to the lithium-ion
diffusivity even in high-molecular weight polymers due to coupling to higher-order
Rousemodes.49 In the future, local segmental diffusion could potentially be included,
as in other theoretical models.54 but it would require extraction of timescales that are
not accessible in our current parameterization protocol. The inclusion of diffusive
dynamics due to co-diffusion with polymer chain segments on timescales accessible
in our protocol is the subject of current investigation. Finally, we note that the
model can immediately be applied to systems that exhibit similar features of ion
transport, including random copolymers and polymers with cross-linked, comb,40,41

or graft polymer architectures,43,48 and may additionally be applicable to polymeric
single-ion conductors39,44 andmixtures of polymers and ionic liquids55,56 with some
modification.

4.7 Conclusions
In this study, we present and apply a chemically specific (CS) extension to the dy-
namic bond percolation (DBP) model for ion transport in polymer electrolytes. As
in the original model, the CS-DBP model characterizes ion diffusion in polymers
as hopping transitions on a fluctuating lattice of solvation sites. However, the CS-
DBP model additionally incorporates the molecular details of the polymer systems,
including solvation-site distributions, site-hopping rates, and site-refresh rates. Al-
though local segmental diffusion with coordinating chains is not presently included
in the CS-DBP model, we note that polymer dynamics are reflected through the
polymer reorganization energy, the dissociation energy, and the site-refresh rate.
Importantly, all of the inputs for the CS-DBP model are physically motivated and
accessible through short-timescale (1-10 ns) MD simulations, thus enabling predic-
tions of long-timescale ion transport properties at reduced computational cost.

To demonstrate the CS-DBP model, it is applied to characterize the relative rate of
lithium-ion diffusion in six polyethers, which exhibit a range of conductivity. Good
agreement between results of the model (Figure 4.10) and those of the MD simu-
lations (Figure 4.12A), both in terms of relative ordering and magnitude, suggest
that the essential features of ion transport in polymers are included in the model and
provide confidence in the calculation procedures (Section 4.3).

A notable advantage of the model is that it provides mechanistic insight for ion
diffusion in polymer electrolytes, since the model characterizes ion diffusion in
terms of the physical properties of the polymer. For example, the CS-DBP model
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reveals that the origin of the slow lithium-ion diffusion in P(EO-MO) and PMO is the
reorganization energy associated with lithium-ion hopping. In contrast, the origin
of the slow lithium-ion diffusion in PPO and PTMO is due to the low density of
solvation sites. These results support conventional efforts to design flexible polymers
with low glass-transition temperatures, which correlates with lower reorganization
energies, but it also motivates the design of polymers with polymer architectures that
feature percolating networks of solvation sites. Additionally, themodel demonstrates
that efficient lithium-ion diffusion should occur through short hopping events that
exchange only one or two lithium-oxygen solvating contacts as opposed to more
long-ranged hopping events,48 since the latter are more energetically costly.

Finally, the CS-DBP model yields the prediction of a new candidate polymer elec-
trolyte, P(EO-TMO), that exhibits faster lithium-ion diffusion than PEO; this unin-
tuitive prediction is confirmed via long-timescale MD simulations. This prediction
illustrates that the CS-DBPmodel is well-suited for screening future candidate poly-
mer electrolytes with semi-quantitative accuracy at reduced computational cost.
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C h a p t e r 5

HIGH-THROUGHPUT SCREENING OF POLYMER
ELECTROLYTES

In Chapter 4, we introduced a chemically specific dynamic bond percolation (CS-
DBP) model for estimating lithium-ion diffusivities in polymer electrolytes. The
power of the CS-DBP model is three-fold. First, it utilizes an abstraction of ion
transport, i.e., hopping on a dynamical lattice of sites, which makes it generically
applicable to many classes of polymer electrolytes. Second, the parameters de-
scribing the transition rates, lattice fluctuations, and lattice arrangement are derived
from polymer-specific properties such that the predictions reflect the underlying
chemistry of the polymer. Third, obtaining the requisite parameters for the CS-DBP
model requires only short (<10 ns) molecular dynamics (MD) trajectories, which
enables semi-quantitative predictions at near-trivial computational cost compared
to equivalent MD trajectories.

In this chapter, we discuss the potential application of the CS-DBP model to high-
throughput screening of polymer electrolyte materials. We discuss the scope and
scale of studies for which the CS-DBP model is immediately suitable. In addition,
some key challenges for these efforts are discussed.

5.1 Introduction
Rechargeable lithium-ion batteries are widely viewed as potential contributors to en-
ergy storage problems.1,2 Lithium-ion batteries have found a number of applications
as modern portable devices and even electric vehicles; applications in load-leveling
for large-scale energy generation may also be an eventual possibility.3–5 However,
recent years have seen a litany of notable lithium-ion battery failures, including
those in electric vehicles like the Chevy Volt6 and Tesla Model S,7 the 787 Boeing
Dreamliner,8 and the Hoverboard toy.9 These examples highlight safety and perfor-
mance issues that must be addressed before secondary lithium-ion technology can
be reliably and practically implemented for high energy content usage.3,10,11

A critical problem with even state-of-the-art lithium-ion batteries is that the elec-
trolyte solvent is typically a flammable, liquid mixture of alkyl carbonates that
additionally exhibits limited operating temperatures, electrode corrosion, and metal
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dendrite growth during cycling. Any one or combination of these issues may lead
to early catastrophic failure of the entire battery system.12 Solid polymer elec-
trolytes (SPEs) are non-flammable, non-volatile alternatives to liquid electrolytes
that may exhibit superior mechanical and processing properties.3,13–17 Interest in
SPEs stems from the discovery in 1973 that alkali salts could dissolve and conduct
in poly(ethylene oxide) (PEO).18 Studies later suggested that ionic conductivity in
polymer electrolyteswas intrinsically coupled to the polymer dynamics,14,19–22moti-
vating significant research effort on strategies to improve conductivity by (1) avoid-
ing crystallization to and (2) lowering the glass-transition temperature Tg.15,23–37

Nevertheless, conductivities in SPEs remain limited to about 10−4 S/cm at ambient
temperatures, and remarkably, the best SPEs also remain based on PEO.29

The historical precedent set by the extensive characterization of PEO-based SPEs
suggests that the next-generation polymer electrolytes will require new chemistries
and/or new topologies to achieve substantial gains in conductivity. However, initial
efforts to design SPEs with chemistries more varied than simple polyethers,38–45

have not resulted in significant improvements in conductivity, in part due to a
fundamental lack of understanding regarding the molecular underpinnings of ion
transport in such systems. In previous chapters, we proposed a new framework for
analyzing ion transport in polymer electrolytes that considers not only the polymer
dynamics but also the solvation-site connectivity, which is a notion not articulated
in earlier design efforts. These insights led to the development of a coarse-grained
model (chemically specific dynamic bond percolation model, or CS-DBP) that
should be widely applicable to predicting lithium-ion diffusivities in diverse sets of
polymer electrolytes. Here, we provide a brief and speculative discussion on using
the CS-DBP model for high-throughput screening of polymer electrolytes.

5.2 Scope
The CS-DBP model is particularly well-suited to study the influence of systematic
variations on lithium-ion diffusivity for multiple reasons. First, its computational
efficiency permits examination of a large number of small topological perturbations.
Second, the semi-quantitative nature of the predictions are likely more robust in cap-
turing trends due to systematic changes than in making one-off predictions. Third,
the framework of CS-DBP, which transparently depends on a set of defined parame-
ters, lends itself to straightforward identification of structure-function relationships.
Chapters 3 and 4 provide examples of pseudo-systematic studies on a small scale,
but CS-DBP is likely capable of much larger characterization efforts.
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Figure 5.1: (A) Heat map of lithium-ion diffusivities obtained from the CS-DBP model in
site-refresh rate/site density/bulk modulus (νρB) space. The positioning of each point in
the diagram indicates the input properties for the CS-DBP model, and the color intensity
indicates the predicted diffusivity relative to that in PEO. The pentagrams indicate results
obtained using parameters that were determined from short MD simulations of the labeled
polymers. The remaining spheres indicate results obtained using simple parameter combi-
nations and do not represent the diffusivities of any particular polymer. (B) Heat map of
lithium-ion diffusivities in select polyethers projected onto the ρB-plane. Note that y-axis
is in a reversed orientation. The diffusivity for each point is computed as an average over
160 trajectories, each 10 µs in length.

Figure 5.1A presents a heat map of lithium-ion diffusivities in a simplified, three-
dimensional parameter space of site-refresh rate, site density, and bulk modulus,
henceforth referred to as νρB-space; as explained in Chapter 4, these parameters
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reflect much of the essential physics of the ion transport process. The figure shows
data for the polyethers studied in Chapter 4 (pentagrams) in addition to data obtained
from 378 unique parameter combinations (spheres) that all assume the same generic
site-site radial distribution function. Consequently, the different parameter combi-
nations cannot be linked back to physical polymer chemistries. Nonetheless, the
figure illustrates an idealized application of the CS-DBPmodel to easily characterize
large numbers of polymers at very little computational cost.

By construction, the data for the aphysical∗ polymers span a significant portion
of νρB-space and exhibit a range of diffusivities. In Figure 5.1A, the data for
the polyethers, which have some variation in topology but feature the same ion-
solvating groups (oxygen atoms), appear to be confined to a small sub-volume of
νρB-space. In particular, site-refresh rates for the polyethers are within a narrow
range. One possibility is that physical polymers cannot attain very high site-refresh
rates; perhaps a more interesting possibility is that this particular class of polymers
cannot attain very high site-refresh rates. The latter situation implies a pertinent
application of the CS-DBPmodel–to perform systematic class-based screening. Al-
though the polymer electrolytes studied in this thesis all feature oxygen atoms as
the primary ion-solvating group, nothing in the CS-DBP coarse-graining approach
precludes analysis of other solvating groups. Thus, CS-DBP could be used to exam-
ine polymer electrolytes based on polythioethers, polyamines, polyphosphazenes, or
polyboranes, among other possibilities. If such studies were confined to a small set
of topological variants but included broad chemical diversity, the results could be
used as a low-resolution map to identify the promising regions of chemical design
space for future synthetic efforts. It will be generally interesting to understand how
changing polymer chemistry enables access to different regions of νρB-space.

Beyond a broad characterization of chemical design space, CS-DBP also provides
a framework to interrogate systematic changes in polymer topology. To illustrate
this idea, Figure 5.1B shows a projection of Figure 5.1A onto the site-density/bulk
modulus plane with the results of the aphysical polymers removed and data for
random copolymers of ethylene oxide and trimethylene oxide, P(EO-co-TMO),
added. The dataset, which is shown as a contour with points, includes random
copolymers with average ethylene oxide comonomer ratios ranging from x = 0.0 to
x = 0.9 in increments of 0.1. For each x studied, eight independent MD trajectories
of 10 ns are run to obtain parameters for the CS-DBP model with a protocol similar

∗without physical representation
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to that described in Chapter 4. The longtime lithium-ion diffusivities are then
obtained from 160 kinetic Monte Carlo trajectories of 10 µs based on the CS-
DBP model. Figure 5.1B shows how tuning x in this case, which corresponds
to fractional perturbations to polymer topology, nearly reflects moving along a
diagonal in νρB-space and a corresponding “hyper” contour in diffusivity-νρB-
space. In particular, decreasing x leads to tandem decreases in site density and
bulk modulus, which is an effect that we have qualitatively identified and expected
in previous chapters. We suspect that a similar characterization for P(EO-co-MO),
i.e., random copolymers of ethylene oxide and methylene oxide, would trace a
contour that roughly links the pentagrams labeled PEO and P(EO-MO) and extends
into regions not shown. Studies of this kind would enable clear identification of
structure-function relationships, demonstrating how structural changes manifest in
material properties that in turn affect the diffusivity. Moreover, these finer-resolution
systematics could be used for design optimization.

5.3 Challenges
In a screening application, the CS-DBPmodel would make use of properties derived
fromMD simulations, and for the foreseeable future, those MD simulations will use
parameterized force fields. Therefore, a major obstacle to high-throughput, compu-
tational screening of polymer electrolytes, or even small-scale systematic studies,
is the availability of reliable force-field parameters to study polymers with diverse
chemistries. The extent that CS-DBP can make predictions that usefully guide de-
sign efforts assumes that the MD simulations reasonably reflect the properties of
real chemical systems. Unfortunately, parameters to study even simple polymers of
interest, like polyphosphazenes, do not exist, andmoreover, there is little consistency
in the way that existing parameters are obtained, which naturally limits the efficacy
of comparative studies. We are actively working to develop consistent force-field
parameterization strategies that enable MD simulations of polymer electrolytes for
any desired chemistry and topology, but this remains an existing limitation.

Another question related to the efficacy of CS-DBP model predictions is its applica-
bility to higher concentration regimes and its capability to describe ion-ion correla-
tions. In many cases, understanding lithium-ion transport in the dilute regime may
be sufficient to provide guidance of design efforts and general design principles.
Nevertheless, the nature of ion diffusion at higher concentrations is of interest, and
atomistic MD is extremely limited in its capacity to study such regimes. Therefore,
it would be valuable if the CS-DBP framework could be extended to provide insights
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regarding ion-transport phenomena in high-concentration regimes.

5.4 Conclusions
To conclude, the CS-DBP model seems well-suited to (1) assay the general effect
of polymer chemistry on ion transport through systematic variations in solvating
groups and (2) provide systematic characterization of topological effects within a
given chemical space. The viability of CS-DBP for these applications derives from
its general description of ion transport in disordered systems and its computationally
efficient coarse-graining approach to obtain system-specific properties. A signifi-
cant obstacle for computational screening of polymer electrolytes in general is the
availability of methodologically consistent force fields. For the existing CS-DBP
model, it is most important that the force fields provide a reasonable description
of neat-polymer properties, but accurate descriptions of ion-ion interactions will be
of general interest to understanding ion transport at high salt concentrations, which
was not anywhere a focus in this thesis. A related point is that predictions of the
CS-DBP model are limited to the dilute-ion limit, neglecting ion-ion correlations
and property changes induced by salt loading. For high-throughput screening ap-
plications, it may be that predictions in the dilute-ion limit are sufficient to direct
synthetic efforts with efficacy. However, the possibility that some candidate mate-
rials would perform exceptionally well in certain concentration regimes and worse
in others makes screening at finite concentrations a desirable capability.
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C h a p t e r 6

COMPARISON OF THE UREY AND PATH-INTEGRAL
APPROACHES FOR ISOTOPOLOGUES OF CARBON DIOXIDE,

NITROUS OXIDE, METHANE, AND PROPANE

The theoretical foundation of the Urey model for computing equilibrium isotope ef-
fects is the rigid-rotor, harmonic oscillator approximation. Although this approach
is expected to yield reasonably accurate estimates for the free energies of isotopo-
logues in many molecular systems, the essential question asked in this chapter is “is
it accurate enough?” The increasing accuracy and precision of analytical instru-
mentation to measure isotopic enrichment demands an answer, and if the answer
is no, then different approaches are required to provide calculations of accuracy
commensurate to that of experimental observables.

In this chapter, we combine path-integral Monte Carlo methods with high-quality
potential energy surfaces to compute equilibrium isotope effects in a variety of
systems relevant to ‘clumped’ isotope analysis and isotope geochemistry, includ-
ing CO2, N2O, methane, and propane. Through a systematic study of heavy-atom
isotope-exchange reactions, we quantify and analyze errors that arise in the widely
used Urey model for predicting equilibrium constants of isotope-exchange reactions
using reduced partition function ratios. These results illustrate that the Urey model
relies on a nontrivial cancellation of errors that can shift the apparent equilibrium
temperature by as much as 35 K for a given distribution of isotopologues. The
calculations reported here provide the same level of precision as the best exist-
ing analytical instrumentation, resolving free-energy differences to within 6 × 10−6

kcal/mol. These findings demonstrate path-integral methods to be a rigorous and
viable alternative to more approximate methods for heavy-atom geochemical appli-
cations.

Data and content in this chapter have been published as M.A. Webb and T.F. Miller
III. “Position-Specific and Clumped Stable Isotope Studies: Comparison of the
Urey and Path-Integral Approaches for Carbon Dioxide, Nitrous Oxide, Methane,
and Propane.” J. Phys. Chem. A, 118, 467-474 (2014).
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6.1 Introduction
Stable isotope analyses are essential for the understanding of many atmospheric,
environmental, biological, and geochemical processes.1–9 Recently developedmeth-
ods for experimental analysis of isotopic enrichment can detect the enhanced ther-
modynamic stability of a specific placement or ‘clumping’ of rare isotopes.10–15

Position-specific or clumped isotope enrichment results from homogeneous iso-
topic fractionation, which is quantified by

∆i = 1000
[ (xi/x0)eq

(xi/x0)r
− 1

]
, (6.1)

the degree towhich a given isotopologue is enriched in the equilibrium ensemble due
to its relative thermodynamic stability.16 Here, xi/x0 is the abundance of a particular
isotopologue, i, relative to that with no rare isotope substitutions; (· · · )eq indicates
quantities obtained from the equilibrium thermal distribution; and (· · · )r indicates
quantities obtained from the stochastic distribution, in which the abundances of
isotopologues are strictly determined by the abundances of their composite isotopes.

Though the effects of homogeneous isotopic fractionation may be subtle, modern
instruments can determine ∆i to precisions of 0.01 − 0.02h.12,17–19 Relating the
enrichment of isotopologues to their thermal populations (Eq. (6.1)) enables the cor-
relation of measurements of isotopic enrichment with temperatures in the geological
record, thus facilitating applications that include the reconstruction of ancientmarine
ocean temperatures, the determination of body temperatures of extinct vertebrates,
and the assessment of hydrocarbon deposits and organic matter.10,20–24 Clumped
and position-specific isotope analyses are also used to characterize the production
and consumption mechanisms of greenhouse gases.5,11,13,14,25,26

Theoretical methods are essential for both understanding and predicting stable iso-
tope fractionation.16,23,27–32 In particular, theoretical predictions regarding isotopic
clumping can be used to establish an absolute reference frame for standardizing
isotope ratio measurements, which assist in inter-laboratory reproducibility.17 For
decades, the primary theoretical framework for characterizing equilibrium isotope
effects has been the Urey model.16,23,32–34 In this approach, however, effects associ-
ated with vibrational anharmonicity and rovibrational coupling are ignored, which
may become problematic as analytical instruments resolve increasingly smaller tem-
perature differences. Although anharmonic and other corrections to the Urey model
have been developed,35,36 the correction terms are generally complicated and have
not been widely employed.
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The Feynman path-integral (PI) formulation of quantum statistical mechanics37 pro-
vides a useful framework for calculating equilibrium isotope effects. By exploiting
the mathematical isomorphism between the quantum Boltzmann statistics of a given
system and the classical Boltzmann statistics of its ring-polymer representation, PI
methods have been applied to study equilibrium isotope effects, particularly for

Here, PI Monte Carlo (PIMC) is used to predict the temperature-dependence of
equilibrium constants in isotope-exchange reactions featuring heavy-atom isotope
exchange between isotopologues of CO2, N2O, methane, and propane. The reported
calculations resolve the enrichment of isotopologues to the same level as experimen-
tal resolution, while employing accurate, isotopically-independent potential energy
surfaces for CO2, N2O, and methane. These simulations are used to identify and
examine breakdowns in the assumptions of the Urey model. The impact of these
potential errors on the determination of apparent equilibrium temperatures is further
explored.

6.2 Methodology
We aim to investigate the relative enrichment of isotopologues that are of primary
interest in clumped and position-specific isotope analysis.

For clumped isotope analysis, we assess the balance of thermodynamic equilibrium
in isotopic clumping reactions that principally influence the abundance of clumped
isotopologues, such as

XY + X′Y′
K

 XY′ + X′Y, (6.2)

where K = QXY′
QXY

QX′Y
QX′Y′

. Here, X′ and Y′ are rare isotopes of X and Y, respectively,
and X′Y′ is the isotopically clumped species. The equilibrium constant for Eq. (6.2)
can be connected to the experimentally measurable enrichment of X′Y′ as given by
Eq. (6.1), ∆X′Y′, via the relationship16

∆X′Y′ = −1000 ln(K/Kr), (6.3)

where Kr is the equilibrium constant in Eq. (6.2) for the stochastic distribution; this
relation has a leading-order error of O(∆X′Y+∆XY′), which is generally small when
there are no structural isotopomers for singly-substituted species (i.e., isomers with
the same number of each isotope), as is the case for the specific reactions considered
here.16,32

For position-specific isotope analysis, we assess the balance of thermal equilibrium
in isotopomerization reactions that influence the relative isotopic enrichment of
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specific positions in a molecule, such as

(Xm−1X′Yn)i
Ki j


 (Xm−1X′Yn) j , (6.4)

whereKi j =
Q(Xm−1X′Yn )j
Q(Xm−1X′Yn )i

. Here, (Xm−1X′Yn)i and (Xm−1X′Yn)i indicate isotopomers
of XmYn with a single X′ substitution. The relative enrichment of (Xm−1X′Yn)i for
a set of t possible isotopomers is given by the expression32

∆(Xm−1X′Yn)i = 1000
[ mSi

1 +
∑t

j,i Ki j
− 1

]
, (6.5)

where Si = σi/σ0 is the ratio of the symmetry number for the isotopologue
(Xm−1X′Yn)i and for that with no rare isotopes; the symmetry number is defined as
the number of configurations that are indistinguishable by rotation.38 This relation
has a leading-order error that is proportional to the relative abundances of minority
isotopes,32 which are negligible for the specific reactions considered here.

Eqs. (6.3) and (6.5) have a clear connection to the temperature of the thermal
ensemble through the various equilibrium constants. Differences between PI and
Urey-model calculations of the equilibrium constant can thus be used to identify
errors in the determination of apparent equilibrium temperatures using the Urey
model.

6.2.a Urey Model
The Urey model uses the rigid-rotor and harmonic-oscillator approximations to
compute partition function ratios (PFRs) that determine the relative abundances
of isotopologues. By treating the rotational motions classically, the Teller-Redlich
product rule38,39 is applied to avoid explicitly calculating the molecular moments of
inertia, such that the total PFR between two isotopologues is

Q′

Q
=
σ

σ′
e−β(E ′0−E0)

N∏
i=1

(m′i
mi

)3/2 α∏
j=1

ω′j

ω j

1 − exp[−β~ω j]
1 − exp[−β~ω′j]

, (6.6)

where σ and σ′ again indicate the rotational symmetry numbers, β = 1/(kBT ) is
the inverse temperature, E0 is the zero-point energy, mi is the mass of the ith atom in
a molecule of N atoms, ω j is the harmonic frequency of the jth normal mode, and
α is the total number of normal vibrational modes (α = 3N − 5 for linear molecules
and 3N − 6 for nonlinear molecules).

The utility of Eq. (6.6) is that it reduces the problem of calculating PFRs to that
of determining the relative harmonic vibrational frequencies for different isotopo-
logues. The zero-point energy is typically calculated from harmonic vibrational
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contributions, such that E0 =
1
2
∑α

j=1 ~ω j , although anharmonic and other contri-
butions can also be approximately included.36,40 In the following, calculations that
employ the Urey model with a harmonic treatment of the zero-point energy are
denoted Urey-HO; Urey-model calculations that include anharmonic corrections to
the zero-point energy are denoted Urey-AHO.

6.2.b Path Integral Statistics
The quantum mechanical canonical partition function is given by the trace of the
equilibrium density operator, Q = Tr

(
e−βĤ )

.37 The primitive, discretized PI repre-
sentation of the partition function for a system of N distinguishable particles takes
the form of a classical configuration integral,

Q(N, β) = lim
P→∞

1
σ

N∏
i=1

( mi P
2π β~2

)3P/2 ∫ N∏
j=1

P∏
k=1

dr (k)
j e−βPUP ({r (k)

j }). (6.7)

Here, P indicates the number of ring-polymer beads, r (k)
j indicates the position of the

jth atom in the kth ring-polymer bead, and βP = β/P. The effective ring-polymer
potential is

UP({r (k)
j }) =

N∑
j=1

P∑
k=1

[ 1
2

m jω
2
P
(
r (k)

j − r (k−1)
j

)2
]
+

P∑
k=1

U (r (k)
1 , . . . , r (k)

N ), (6.8)

where ωP = 1/(βP~) is the intra-bead vibrational frequency, r (0) = r (P), and
U (r1, . . . , rN ) is the Born-Oppenheimer PES for the system. To enable direct
comparison with the Urey model, the indistinguishability of identical nuclei in
the PI calculations is treated in Eq. (6.7) using the classical, rotational symmetry
number, σ. However, we note that PI descriptions that explicitly account for nuclear
exchange statistics have been previously developed.41

6.3 Calculation Details
6.3.a Systems
We perform calculations on four molecules that are of current interest in stable
isotope studies: CO2, N2O, methane, and propane. In a first application, the
enrichment of 16O13C18O, which dominates the mass-47 experimental signature
in clumped isotope studies of CO2,5 is investigated using the isotopic-clumping
reaction

16O12C16O +16 O13C18O
K

 16O13C16O +16 O12C18O. (6.9)

The equilibrium constant for this reaction is K =
R16O12→13C16O
R16O12→13C18O

, where R16O12→13C16O =

Q(16O13C16O)
Q(16O12C16O) and R16O12→13C18O =

Q(16O13C18O)
Q(16O12C18O) .
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In a second application, the enrichment of 14N15N16O, which is a primary contrib-
utor to the overall enrichment of 15N at the central position of N2O and is thus a
potentially useful tool for characterizing origin processes,4,26 is investigated using
the isotopomerization reaction

14N15N16O
K

 15N14N16O. (6.10)

The equilibrium constant for this reaction is K =
R14→15N14N16O
R14N14→15N16O

, where R14→15N14N16O =

Q(15N14N16O)
Q(14N14N16O) and R14N14→15N16O =

Q(14N15N16O)
Q(14N14N16O) .

In a third application, the enrichment of 13CH3D, a clumped isotopologue ofmethane
with relevance to isotope studies of natural gas,23 is investigated using the isotopic-
clumping reaction

12CH4 +
13 CH3D

K

 13CH4 +

12 CH3D. (6.11)

The equilibrium constant for this reaction is K =
R12→13CH4

R12→13CH3D
, where R12→13CH4 =

Q(13CH4)
Q(12CH4) and R12→13CH3D =

Q(13CH3D)
Q(12CH3D) .

In a fourth application, the enrichment of 12CH3
13CH2

12CH3, a 13C-substituted
isotopomer of propane, is investigated using the isotopomerization reaction

12CH3
13CH2

12CH3
K

 13CH3

12CH2
12CH3. (6.12)

The equilibrium constant for this reaction is K =
R12→13Ct
R12→13Cc

, where R12→13Ct
=

Q(13CH3
12CH2

12CH3)
Q(12CH312CH212CH3) and R12→13Cc

=
Q(12CH3

13CH2
12CH3)

Q(12CH312CH212CH3) .

In a final application, the enrichment of 12CH3
12CHD12CH3, a deuterium-substituted

isotopomer of propane, is investigated using the isotopomerization reaction

12CH3
12CHD12CH3

K

 12CH2D12CH2

12CH3. (6.13)

The equilibrium constant for this reaction is K =
R1→2Ht

R1→2Hc

, where R1→2Ht
=

Q(12CH2D12CH2
12CH3)

Q(12CH312CH212CH3) and R1→2Hc
=

Q(12CH3
12CHD12CH3)

Q(12CH312CH212CH3) .

6.3.b Potential Energy Surfaces
The simulations forCO2 andN2O use intramolecular PESs fromZúñiga and cowork-
ers42–44 for which the coefficients of a fourth-order Morse-cosine expansion are
determined using spectroscopic data. The simulations for methane utilize a PES
computed at the CCSD(T) level of theory.45,46 The simulations for propane use
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the empirical CHARMM PES with general force field parameters;47 although the
propane PES is significantly lower in quality than those used for the other systems,
it nonetheless enables us to identify deviations between PI calculations and those
based on the Urey model.

6.3.c PI Calculations
PIMC sampling trajectories are performed in Cartesian coordinates with an explicit
staging transformation.48 The staging length, j, is set such that 35 − 45% of all
proposed staging moves are accepted. Prior to any data collection, each sampling
trajectory is equilibrated for 107 MC steps, with P/ j staging moves (rounded up to
the nearest integer) attempted per MC step. Thereafter, ring-polymer configurations
are sampled every 25 MC steps for the duration of the sampling trajectory, which is
sufficient for achieving nearly uncorrelated MC samples. The number of MC steps
run for each sampling trajectory is detailed in Table 6.1.

The equilibrium constants and PFRs defined in Eqs. (6.9)-(6.12) are computed at
T = 300, 400, 500, and 600 K using the weighted histogram analysis method
(WHAM).49 Each PFR calculation requires several independent sampling trajec-
tories. The ring-polymer potentials employed for these sampling trajectories are
identical except for the isotope masses that appear in Eq. (6.8). For each PFR calcu-
lation, the independent sampling trajectories employ atomic masses that correspond
to the two ‘endpoint’ isotopologues, as well as fractional atomic masses that lie
intermediate to these endpoint isotopologues; the endpoint isotopologues are those
that define the PFR. For example, to compute R14→15N14N16O, the different sampling
trajectories utilize masses in the ring-polymer potential that are evenly-spaced from
14N to 15N. Nine sampling trajectories are used to compute the PFRs detailed
in Eqs. (6.9), (6.10), and (6.13); five sampling trajectories are used to compute
the PFRs in Eqs. (6.11) and (6.12). The convergence of the WHAM calculations
is tested with multiple sensitivity checks. In particular, the PFR calculations are
repeated after removing/adding entire sampling trajectories at some of the inter-
mediate isotope masses to check that the PFRs are converged with respect to the
overlap of neighboring probability distributions. Additionally, the PFR calculations
are repeated with different histogram resolutions to confirm that the bin sizes do not
bias the results.

To ensure that the number of ring-polymer beads is sufficiently large to converge
the PI calculations, tests are performed in which the analytical expression for the
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primitive PI discretization of the partition function for a simple harmonic oscilla-
tor50 is used to compute PFRs and equilibrium constants. The harmonic oscillator
frequencies that are employed in these convergence tests correspond to the normal
mode vibrational frequencies for each molecule, and the number of beads, P, that
are required to converge the PFRs or equilibrium constants to within a specified tol-
erance of the exact result is determined. In general, PI calculations of equilibrium
constants converge more rapidly than PFRs as a function of P, due to a systematic
cancellation of errors in the equilibrium constant calculation. These tests indicate
that equilibrium constants can be computed using fewer ring-polymer beads in the
following applications, resulting in less statistical variance and computational cost.
The bead number for each PIMC sampling trajectory is detailed in Table 6.1.

Two sets of sampling trajectories are employed for calculating the equilibrium
constant for the isotopic-clumping reaction for CO2 (Eq. (6.9)). The first, denoted
HB, uses values of P needed to converge the PFRs to within 5×10−6; the second set,
denoted LB, uses values of P needed to converge the equilibrium constant to within
10−5. PFR convergence tolerances of 5 × 10−6, 6 × 10−5, 10−4, and 4 × 10−3 are
used for the PIMC calculations pertaining to Eq. (6.10), Eq. (6.11), Eq. (6.12), and
Eq. (6.13), respectively. These parameters are based on the limiting experimental
precision of 0.01 − 0.2h in the measurement of ∆i.12,14,18,23

The Urey-HO calculations employ vibrational frequencies obtained from the PESs
described in Section 6.3.b. Anharmonic corrections to the zero-point energy are
obtained from the literature16,32,44 and used to compute Urey-AHO results for CO2,
N2O, and methane.
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6.4 Results
6.4.a Carbon Dioxide, Nitrous Oxide, and Methane
We begin by considering the isotopic enrichment of 16O13C18O, 14N15N16O, and
13CH3D. Figure 6.1 presents ∆16O13C18O, ∆14N15N16O, and ∆13CH3D as functions of
temperature, computed with both PIMC and Urey-model calculations; detailed
numerical results are reported in Table 6.2. Statistical uncertainties for the PIMC
calculations are reported as the standard error of the mean obtained from block-
averaging.51 With the exception of the HB simulations for CO2, the statistical errors
of the PIMC calculations are better than or comparable to the resolving power of
analytical instrumentation, demonstrating the capability to precisely determine ∆i

using PI methods.

Figure 6.1 illustrates that the Urey-HO results agree well with PIMC calculations
for some of the systems considered, but not for others. For ∆16O13C18O, the results
for both the Urey-HO and Urey-AHO methods are in good agreement with the
PIMC calculations, with Urey-AHO results deviating from the PIMC calculations
by less than 0.01h. In contrast, the Urey-HO andUrey-AHO calculations are clearly
different for both ∆14N15N16O and ∆13CH3D. For ∆14N15N16O, only the Urey-AHO results
agree with the PIMC calculations to within statistical error; the Urey-HO results are
in error by 0.3 − 0.6h. For ∆13CH3D, the reverse is true; only the Urey-HO results
are within statistical error of the PIMC calculations.

The uneven performance of the Urey model can be understood by examining errors
in the Urey-HO calculation of the PFRs. For a given PFR, R, the relative error (per
mil) in the Urey-HO calculation with respect to the corresponding PIMC calculation
is

MR = 1000
( R(Urey−HO)

R(PIMC) − 1
)
, (6.14)

where R(PIMC) and R(Urey−HO) are the PFRs computed using PIMC and the Urey-
HO method, respectively. Figure 6.2 reports this quantity for a variety of PFRs.
Interestingly, it is evident from the figure that the predictions for theUrey-HOmethod
have errors that range from 1− 5h. These PFR errors are very large in comparison
to the experimental resolution on ∆i and the statistical uncertainty of the PIMC
calculations. For CO2 and methane, these relatively large PFR errors precisely
cancel when calculating the equilibrium constant, giving rise to the agreement
between the Urey-HO and PIMC calculations of ∆i in Figure 6.1. In contrast, the
errors for R14→15N14N16O and R14N14→15N16O differ inmagnitude such that the errors only
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Figure 6.1: ∆16O13C18O, ∆14N15N16O, and ∆13CH3D as functions of 1000/T . PIMC results
are indicated by circles; the error bars are smaller than the symbol size. PIMC results for
∆16O13C18O correspond to the set of calculations that employ a lower number of ring-polymer
beads (LB). The solid and dashed lines correspond to the Urey-HO and Urey-AHO results,
respectively. Note that the scaling of the y-axis differs above and below ∆ = 6h.

partially cancel when computing the equilibrium constant in Eq. (6.10), resulting in
the residual difference between the Urey-HO and PIMC calculations of ∆14N15N16O.

Inaccurate estimates of ∆i values based on Urey-model calculations result in errors
in determination of the apparent equilibrium temperature. Figure 6.3 quantifies
these temperature errors by comparing the apparent equilibrium temperature for a
given ∆i, as determined from Urey-model calculations versus the PIMC results. As
expected from Figure 6.1, the temperature errors associated with Urey-HO calcula-
tions are negligible for ∆13CH3D and small for ∆16O13C18O. In contrast, temperature
errors as large as 15 K are observed for the Urey-HO calculation of ∆14N15N16O.
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Figure 6.2: The relative error (per mil) of Urey-HO calculations of PFRs for the isotope-
exchange reactions given by Eqs. (6.9)-(6.11). The error bars are smaller than the symbol
size.

For the Urey-AHO calculations, the predicted values of ∆16O13C18O and ∆14N15N16O

do not result in statistically significant temperature errors; however, the tempera-
ture errors for ∆13CH3D are found to be as high as 35 K. We emphasize that the
errors for the Urey-HO calculations of ∆14N15N16O and the Urey-AHO calculations
of ∆13CH3D are both clearly larger than the statistical error of the PIMC calculations
and the associated resolution of experimental measurements.12,14,23 Taken together,
Figures 6.1-6.3 combine to illustrate potential pitfalls of inherent approximations
in Urey-model calculations for predicting ∆i values even in simple molecules, irre-
spective of whether higher-order corrections are applied.

6.4.b Propane
To test the assumptions of the Urey model in a molecule that exhibits torsional
motions, we investigate the isotopic enrichment of the propane isotopologues
12CH3

12CHD12CH3 and 12CH3
13CH2

12CH3. Figure 6.4 presents PIMC and Urey-
HO calculations for ∆12CH313CH212CH3 and ∆12CH312CHD12CH3 as functions of tempera-
ture; detailed numerical results are reported in Table 6.3. Statistical uncertainties for
the PIMC calculations are again reported as the standard error of the mean obtained
from block-averaging. For the 12CH2D12CH2

12CH3 isotopologue, deuterating the
terminal methyl group can result in trans, gauche-plus, and gauche-minus rotamers
with respect to the carbon backbone. Although these rotamers have identical equi-
librium geometries, the trans and gauche rotamers have different normal vibrational
frequencies. Consequently, the reported Urey-HO results for ∆12CH312CHD12CH3 are
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Figure 6.3: Errors in the apparent equilibrium temperature obtained for ∆16O13C18O,
∆14N15N16O, and ∆13CH3D using (a) Urey-HO calculations and (b) Urey-AHO calculations.

obtained by Boltzmann-averaging R1→2Ht
over these rotamers.52

Table 6.3: ∆i values for propane. Statistical errors
are in parentheses and apply to the last digit.

T (K)
∆12CH312CHD12CH3 ∆12CH313CH212CH3

PIMC Urey PIMC Urey
300 72.1(3) 69.1 9.74(2) 9.58
400 40.5(2) 39.6 5.42(1) 5.29
500 25.4(1) 24.9 3.09(1) 3.07
600 16.7(1) 16.7 1.90(1) 1.84

In Figure 6.4, the Urey-HO results for both ∆12CH313CH212CH3 and ∆12CH312CHD12CH3

display very little deviation from PIMC for T ≥ 500 K; however, larger deviations
are found at lower temperatures. Figure 6.5 illustrates that the good agreement in
Figure 6.4 is once again due to a cancellation of errors during the the Urey-HO
calculation of the equilibrium constant. For the calculation of ∆12CH312CHD12CH3 , the
errors in R1→2Ht

and R1→2Hc
are determined to be nearly 20h. Nevertheless, the

error in the Urey-HO calculation of ∆12CH312CHD12CH3 is determined to be only as
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Figure 6.4: ∆12CH312CHD12CH3 and ∆12CH313CH212CH3 as functions of 1000/T , with PIMC
results given by circles and Urey-HO results given by the solid lines. Note that the scaling
of the y-axis differs above and below ∆ = 11h.

large as 2h, which is smaller than might be anticipated. For R12→13Ct
and R12→13Cc

,
the associated errors in the Urey-HO model are less than about 2h, and they too
mostly cancel when calculating the equilibrium constant for Eq. (6.12).

Errors in the apparent equilibrium temperature when determined with the Urey
model are shown in Figure 6.6. The temperature errors for the Urey-HO calcula-
tions of both ∆12CH313CH212CH3 and ∆12CH312CHD12CH3 are observed to be near to or
less than 5 K. This is partially due to the fact that large changes in ∆12CH313CH212CH3

and ∆12CH312CHD12CH3 correspond to small changes in the apparent equilibrium tem-
perature when the temperature is low. Consequently, the errors in ∆12CH313CH212CH3

and ∆12CH312CHD12CH3 at low temperatures do not drastically change the apparent
equilibrium temperature.
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Figure 6.6: Errors in the apparent equilibrium temperature obtained for ∆12CH312CHD12CH3
and ∆12CH313CH212CH3 using Urey-HO calculations.

6.5 Conclusions
In this work, we utilize path-integral methods to accurately characterize the equi-
librium enrichment of certain isotopologues, ∆i, in four molecules: CO2, N2O,
methane, and propane. It is shown that PIMC methods combined with high-quality
potential energy surfaces enable the determination of ∆i to the same level of pre-
cision as the best analytical instrumentation currently available. These capabilities
are used to demonstrate that the Urey-HO model relies upon a substantial can-
cellation of errors in partition function ratios to calculate ∆i. Errors in ∆i are
observed when partition function ratio errors do not precisely cancel, as shown for
∆14N15N16O. We additionally find that adopting corrections to the Urey model, such
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as including anharmonic contributions to the zero-point energy, does not reliably
improve results. Using Urey-model predictions for ∆i, with or without anharmonic
corrections, is found to lead to experimentally resolvable errors in the apparent
equilibrium temperature of up to 35 K for the isotopologues studied here. The use
of path-integral methods neither relies on any cancellation of errors nor requires any
a priori assumptions about the relative importance of effects such as anharmonicity
and rovibrational coupling. These results demonstrate that PIMC is an accurate and
feasible method for clumped and position-specific isotope analyses, as well as other
heavy-atom geochemical applications.
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C h a p t e r 7

EQUILIBRIUM CLUMPED-ISOTOPE EFFECTS IN
DOUBLY-SUBSTITUTED ISOTOPOLOGUES OF ETHANE

In Chapter 6, we found that path-integral methods could provide accurate predictions
of equilibrium isotopologue enrichment with similar or better precision than analyti-
cal instrumentation, while the Urey model exhibited uneven performance even in the
simple systems studied. Meanwhile, clumped-isotope analyses are becoming more
widespread and sophisticated, such that the analysis of more complex systems is an
inevitability. Effects such as anharmonicity are likely to play a greater role in such
systems, making path-integral methods a natural choice for theoretical predictions.

In this chapter, we combine path-integral Monte Carlo methods with a new, high-
quality intramolecular potential energy surface to quantify the equilibrium enrich-
ment of doubly-substituted ethane isotopologues due to clumped-isotope effects.
Ethane represents the simplest molecule to simultaneously exhibit 13C-13C, 13C-
D, and D-D clumped-isotope effects, and the analysis of corresponding signatures
could be a useful geochemical and biogeochemical proxy to constrain formation
temperatures or reaction pathways. By utilizing the path-integral formalism, the
calculated enrichment factors provide equilibrium reference values that fully in-
corporate nuclear quantum effects such as anharmonicity and rotational-vibrational
coupling, which are typically neglected by the widely used Urey model. Compari-
son among the various enrichment factors reveals that thermodynamic enrichment
due to isotopic clumping is observed if rare isotope substitutions are separated by
three or fewer chemical bonds. We additionally find that the Urey model system-
atically underestimates enrichment due to 13C-D and D-D clumped-isotope effects
in ethane, leading to errors in the apparent equilibrium temperature as large as 30
K at 873.15 K and less severe errors at lower temperatures. Notably, the Urey
model ambiguously treats enrichment for isotopologues that have distinct rotamers,
whereas the path-integral calculations provide consistent results due to configura-
tional sampling. These findings may have implications in future clumped-isotope
studies of more complex systems.

Data and content in this chapter is in preparation as M.A. Webb, Y. Wang, B.
Braams, J. Bowman, and T.F. Miller III. “Equilibrium Clumped-Isotope Effects in
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Doubly-substituted Isotopologues of Ethane.”

7.1 Introduction
The isotopic composition of a material embeds a wealth of information regarding its
origin and history.1–5 Although stable isotope analysis typically focuses on the bulk
isotopic composition of materials, which is often dominated by the concentration
of molecules containing only one rare isotope, recent advancements in analytical
methods enable the explicit and precise measurement of multiply-substituted iso-
topologues (isotopologues with two or more rare isotope substitutions) at natural
abundances.6–9 The rich diversity of both equilibrium and non-equilibrium fraction-
ation behavior of multiply-substituted isotopologues could help to identify or place
additional constraints on formation temperatures, sources, or reaction pathways in
a variety of systems.10

Mostmeasurements ofmultiply-substituted isotopologues are of isotopically ‘clumped’
species, in which rare isotopes are grouped to be nearby in a molecule.7 At equi-
librium, this grouping of rare isotopes leads to relative enrichment of clumped
isotopologues compared to what would be expected from stochastic formation from
the composite isotopes at natural abundance.11 Importantly, this enrichment is a
direct function of temperature at equilibrium that depends only on the homoge-
neous isotope exchange among isotopologues and not on external environmental
conditions. Therefore, a major application of clumped-isotope measurements is as
a paleothermometer based on the extent of 13C-18O ordering in carbonate ions,12,13

which has been employed to reconstruct ancient marine ocean environments,14,15

estimate mountain uplift rate,16 characterize diagenesis,17 and understand the ther-
mal physiology of extinct vertebrates.18,19 More applications of clumped-isotope
measurements are emerging, as recent studies have demonstrated capabilities to
source methane7,20–23 and to identify biological signatures in molecular oxygen.24

A natural extension of existing clumped-isotope applications would be utilization of
clumped-isotope signatures in hydrocarbon exploration or stable isotope studies of
other forms of organic matter. Carbon and hydrogen isotope ratios have long been
used to unravel the complex origins or source processes of samples in geochemistry
and biogeochemistry,1,25–29 and clumped-isotope measurements could add addi-
tional constraints and dimensions to their analysis.4,22,30 Ethane is the simplest
molecule that feasibly exhibits 13C-13C, 13C-D, and D-12C-D (henceforth referred
to simply as D-D) clumping effects that could be used to probe fractionation history.
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Clumping effects in ethane could potentially indicate the balance of thermodynamic
and kinetic factors affecting the distribution of isotopes in kerogen, coal, petroleum,
and natural gases,31–33 and may additionally provide insights into the chemistry of
more complex organic molecules. Although gas wetness, diffusion, maturation,
and degradation are all likely to affect observed experimental signatures, measure-
ments of 13C-D and D-D clumping in methane do indicate isotopic equilibrium or
partial equilibrium conditions for a range of natural samples while deviations also
provide evidence of kinetically controlled formation pathways.21–23 Therefore, a
natural starting point for ethane is to quantify the enrichment of isotopologues due
to isotopic clumping under equilibrium conditions.

In this work, we rigorously and accurately compute equilibrium clumped-isotope
effects in ethane using path-integral Monte Carlo methods and a new high-quality,
isotopically independent intramolecular potential energy surface. In particular,
we compute equilibrium constants for five double-isotope exchange reactions of
ethane as functions of temperature. The path-integral calculations are converged
to within anticipated experimental precisions of high-resolution mass spectrome-
try, and comparison among the various equilibrium constants reveals the effect of
isotopic clumping on the enrichment of doubly-substituted ethane isotopologues.
The results of the path-integral calculations are further compared to those obtained
within the harmonic approximation via the widely used Urey model,34,35 and the
size and nature of the errors are discussed.

7.2 Methodology
7.2.a Enrichment of Doubly-Substituted Isotopologues
The relative enrichment of an isotopologue is quantified as

∆i = 1000
[ (xi/x0)sam

(xi/x0)r
− 1

]
, (7.1)

where xi/x0 is the abundance of an isotopologue, i, relative to that with no rare
isotope substitutions, (· · · )sam indicates quantities measured for a sample, and (· · · )r

indicates quantities obtained from the stochastic distribution, in which the composite
isotopes are distributed randomly among all isotopologues.6,7,11 For the special case
that the sample is at a thermal equilibrium, ∆i for a doubly-substituted isotopologue
is primarily controlled by isotope exchange reactions of the form

XY + X′Y′
K

 XY′ + X′Y, (7.2)
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where X′ and Y′ are rare isotopes of X and Y, and K = QXY′
QXY

QX′Y
QX′Y′

is the equilibrium
constant. As shown, the equilibrium constant can be computed from partition
functions, denoted by Q, of the various isotopologues in Eq. (7.2). Although there
is some variability in the definition of ∆i,6,11,22 an approximate relationship between
∆X′Y′ and K can be derived as

∆X′Y′ = 1000
[
1 −

K
Kr

]
, (7.3)

where Kr is the equilibrium constant in Eq. (7.2) for the stochastic distribution of
isotopologues.9,11,36,37 Eq. (7.3) has a leading-order error of O(∆X′Y+∆XY′), which
is generally small when there are no structural isotopomers for singly-substituted
species11,36 (as is the case for the specific reactions considered in this study) and
will partially cancel with higher order error terms.37 Eq. (7.3) should in principle
account for the indistinguishability of identical nuclei. However, symmetry does not
by itself result in thermodynamic isotopic enrichment,35 and so we instead report
thermodynamic enrichment factors

∆
∗
X′Y′ = 1000(1 − α), (7.4)

where α = K σXY′σX′Y
σXYσX′Y′

is the fractionation factor with the σ denoting the various
symmetry numbers for reactant and product species. Although the equilibrium abun-
dances of all isotopologues can be computed upon consideration of all homogeneous
isotope exchange equilibria,11 we focus on the enrichment of doubly-substituted iso-
topologues as quantified by the right-hand side of Eq. (7.4).

7.2.b Path Integral Calculations
The Feynman path-integral (PI) formulation of quantum statistical mechanics38

provides a rigorous framework that has been widely employed to include nuclear
quantum effects in the computation of equilibrium isotope effects in many gas-
phase and condensed-phase systems.39–66 Under the PI formalism, the quantum
mechanical canonical partition for a system of N distinguishable particles can be
expressed as a classical configuration integral,67,68

Q(N, β) = lim
P→∞

N∏
i=1

( mi P
2π β~2

)3P/2 ∫ N∏
j=1

P∏
k=1

dr (k)
j e−βPUP ({r (k)

j }). (7.5)

Through Eq. (7.5), the quantum Boltzmann statistics of the system are obtained
from the classical statistics of a ring-polymer with P beads at inverse temperature
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βP = β/P that interact via an effective potential:

UP({r (k)
j }) =

N∑
j=1

P∑
k=1

[ 1
2

m jω
2
P
(
r (k)

j − r (k−1)
j

)2
]
+

P∑
k=1

U (r (k)
1 , . . . , r (k)

N ). (7.6)

Here, r (k)
j indicates the position of the jth atom in the kth ring-polymer bead, ωP =

1/(βP~) is the intra-bead vibrational frequency, r (0) = r (P), and U (r1, . . . , rN ) is
the Born-Oppenheimer potential energy surface, or the physical potential, for the
system.

There are a variety of path-integral free-energy methods and estimators available for
computing isotopic fractionation.49,50,52,59,61–63,69 Here, we compute the fractiona-
tion factors for reactions in the form of Eq. (7.2) as

αX′Y′ =
〈ZX′,X〉X′Y

〈ZX′,X〉X′Y′
, (7.7)

where 〈· · · 〉X′Y and 〈· · · 〉X′Y′ denote ensemble averages obtained from simulation
of X′Y and X′Y′, respectively, and ZA′,A is a direct scaled-coordinates estimator
involving the exchange of an isotope A′ for that of A.63 In particular,

ZA′,A ≡ exp


−βP

P∑
k=1

[
U (q(k)

1 , . . . , q(k)
N ) −U (r (k)

1 , . . . , r (k)
N )

] 

, (7.8)

is an estimator involving the difference in physical potential between the given ring-
polymer configuration and that with scaled-coordinates, q(k)

j = r̄ j+
√

mA

mA′
(r (k)

j − r̄ j ),

where r̄ j =
∑P

k=1 r
(k)
j is the position of the ring-polymer centroid for the jth atom,

and mA′ and mA are masses of the isotopes A′ and A.

We note that Eqs. (7.7) and (7.8) are written such that simulations are performed on
isotopologues with more rare isotope substitutions, which should generally lead to
smaller statistical errors than performing the opposite substitution.63 As previously
discussed, none of the equations account for the indistinguishability of identical
nuclei. However, PI descriptions that explicitly account for nuclear exchange statis-
tics have been previously developed,70 or symmetry factors might be appropriately
used.50,71

7.2.c Urey Model
To compare with PI calculations, we also compute equilibrium constants for isotope
exchange reactions using the Ureymodel (or Bigeleisen-Mayer equation).34,35 Using
the rigid-rotor, harmonic-oscillator approximation and the Teller-Redlich product
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rule,71,72 the Ureymodel provides a convenient way to compute the reduced partition
function ratio37 between two isotopologues as

Q′

Q
= e−β[E ′(0)−E (0)]

N∏
i=1

(m′i
mi

)3/2 α∏
j=1

ω′( j)

ω( j)

1 − exp[−β~ω( j)]
1 − exp[−β~ω′( j)]

, (7.9)

where β = 1/(kBT ) is the inverse temperature, E (0) is the zero-point energy, mi is
the mass of the ith atom in a molecule of N atoms, ω( j) is the harmonic frequency
of the jth normal mode, and α is the total number of normal vibrational modes
(α = 3N − 5 for linear molecules and 3N − 6 for nonlinear molecules). The mass
terms precisely cancel in calculating fractionation factors, such that

αX′Y′ = e−β∆E (0)
α∏

j=1

ω
( j)
X′Yω

( j)
XY′

ω
( j)
X′Y′ω

( j)
XY

1 − exp[−β~ω( j)
XY]

1 − exp[−β~ω( j)
X′Y]

1 − exp[−β~ω( j)
X′Y′]

1 − exp[−β~ω( j)
XY′]

, (7.10)

where ∆E (0) is the zero-point energy change for Eq. (7.2). If the zero-point energy
is calculated purely from harmonic vibrational contributions, i.e., E0 =

1
2
∑α

j=1 ~ω j

for each isotopologue, then Eq. (7.10) depends only on variation of the harmonic
frequencies among the isotopologues.

It is possible to include higher-order, perturbative corrections to Eq. (7.10), such as
those due to vibrational anharmonicity, rovibrational coupling, quantum mechan-
ical rotations, and centrifugal distortion.36,37,73–75 Such corrections may possibly
improve and converge calculations of partition function ratios and equilibrium con-
stants.37,75 However, including only partial corrections to Eq. (7.10) can be detri-
mental to the overall accuracy of Eq. (7.3) due to a nontrivial cancellation of errors,62

and the corrections generally require computation of a large number of molecular
constants such that they are not easily or widely employed.37,75 Therefore, we only
compare the PI results with those based on the pure rigid-rotor, harmonic oscillator
approximation.

7.3 Calculation Details
7.3.a Double Isotope Exchange Reactions in Ethane
Isotopologues featuring two rare isotope substitutions will have the most practical
relevance for near-term clumped-isotope studies of ethane.31–33 To quantify the
equilibrium enrichment of doubly-substituted isotopologues and the strength of
isotopic clumping, we focus on five isotope-exchange reactions featuring distinct,
doubly-substituted ethane isotopologues.
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The first reaction is given by

12CH3
12CH3 +

13CH3
13CH3

α1

 2 · 12CH3

13CH3. (7.11)

The enrichment factor for this reaction is α1 = R12→13CH312CH3/R12→13CH313CH3 where
R12CH312→13CH3 = Q12CH313CH3/ Q12CH312CH3 and R12→13CH313CH3 = Q13CH313CH3/

Q12CH313CH3 . Eq. (7.11) is expected to dominate the equilibrium signature of the
13C-13C clumped-isotope effect.

The second reaction is given by

12CH3
12CH3 +

12CH3
13CH2D

α2

 12CH3

12CH2D + 12CH3
13CH3. (7.12)

The enrichment factor for this reaction is α2 = R12CH312→13CH3/R12CH312→13CH2D where
R12CH312→13CH2D = Q12CH313CH2D/Q12CH312CH2D . Eq (7.12) is expected to dominate
the signature for the 13C-D clumped-isotope effect.

The third reaction is given by

12CH3
12CH3 +

13CH3
12CH2D

α3

 12CH3

12CH2D + 12CH3
13CH3. (7.13)

The enrichment factor for this reaction is α3 = R12CH312→13CH3/ R12→13CH312CH2D

where R12→13CH312CH2D = Q13CH312CH2D/ Q12CH312CH2D . Eq (7.13) features the same
singly-substituted isotopologues as Eq. (7.12), but the two isotope substitutions are
separated by an additional bond. Thus, a comparison of the equilibrium constants for
Eqs. (7.12) and (7.13) implicitly assesses the strength of the 13C-D clumped-isotope
effect.

The fourth reaction is given by

12CH3
12CH3 +

12CH3
12CHD2

α4

 2 · 12CH3

12CH2D. (7.14)

The enrichment factor for this reaction is α4 = R12CH312CH2(H→D)/ R12CH312CHD(H→D)

where R12CH312CH2(H→D) = Q12CH312CH2D/ Q12CH312CH3 and R12CH312CHD(H→D) =

Q12CH312CHD2/Q12CH312CH2D . Eq. (7.14) is expected to dominate the signature of the
D-D clumped-isotope effect.

The fifth reaction is given by

12CH3
12CH3 +

12CH2D12CH2D
α5

 2 · 12CH3

12CH2D. (7.15)

The enrichment factor for this reaction isα5 = R12CH312CH2(H→D)/ R12CH2D12CHD(H→D)

where R12CH2D12CHD(H→D) = Q12CH2D12CH2D/ Q12CH312CH2D .
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Similarly to Eq. (7.13) with respect to Eq. (7.12), Eq. (7.15) features the same
singly-substituted isotopologues as Eq. (7.14), and a comparison of equilibrium
constants for Eqs. (7.14) and (7.15) implicitly assesses the strength of the D-D
clumped-isotope effect.

In Eq. (7.15), the isotopologue 12CH2D12CH2D has distinct trans and gauche ro-
tamers (with respect to the positioning of the deuterium atoms) at its minimum
energy configuration that exhibit different normal-mode vibrational frequencies and
thus different results for Eq. (7.9).62,76 In this case, the results for the two rotamers
are presented separately rather than combined via averaging. In text, the trans
rotamer will be referred to as t-(CH2D)2 and the gauche rotamer as g-(CH2D)2.

7.3.b Potential Energy Surface
All calculations employ a permutationally invariant potential energy surface ob-
tained at the DFT-B3LYP/aug-pVTZ level of theory. The full global PES is ex-
pressed as a four-mode multinomial expansion in Morse variables. The coefficients
for the expansion are obtained by least-squares fit of energies obtained on a mesh of
the internal coordinates. Additional details on the PES will be provided in a future
publication.

7.3.c PI Calculations
The enrichment factors for Eqs. (7.11)-(7.15) are computed from T = 273.15 K
to 873.15 K in increments of 100 K. Each enrichment factor is computed using
Eqs. (7.7) and (7.8), where the average scaled-coordinates estimator is obtained
from sampling configurations of the heavy isotopologue for each partition function
ratio defined in Section 7.3.a using path-integral Monte Carlo (PIMC).

All PIMC sampling trajectories are performed in Cartesian coordinates with an
explicit staging transformation.68 The staging length, j, is set such that 38-42% of
all staging moves are accepted for trajectories of 12CH2D12CH2D; that same j is
used in simulations of all other isotopologues at a given temperature. Prior to any
data collection, each sampling trajectory is equilibrated for 106 MC steps, with P/ j

staging moves (rounded up to the nearest integer) attempted per step. Thereafter,
Eq. (7.8) is evaluated from ring-polymer configurations every 10 MC steps. In
some cases, isotopologues have multiple equivalent sites for isotope exchange, i.e.,
12CH2D12CH2D going to 12CH3

12CH2D, in which case Eq. (7.8) is evaluated for
both equivalent exchanges at the same ring-polymer configuration. An aggregate
total of 2.1 × 108 MC steps are run to compute all estimators at each temperature,
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except for estimators associated with Eq. (7.15). For Eq. (7.15), two separate sets
of sampling trajectories are run for 12CH2D12CH2D, one set with configurations
initialized in approximately trans configurations and another with configurations
initialized in approximately gauche configurations. After this initialization, the
rotamers are allowed to interconvert during the sampling trajectories. Estimators
for both sets are obtained independently with each set being run for an aggregate
total of 4.2 × 108 MC steps. Statistical uncertainties for the PIMC calculations are
reported as the standard error of the mean obtained from bootstrap error estimation
after partitioning the data into sample points where each sample point is an average
of 104 estimator values.

To ensure that the PI calculations are sufficiently converged with respect to the
number of ring-polymer beads, the equilibrium constant for Eq. (7.14) is computed
at T = 273.15 K for P = 8, 16, 32, 64, 96 and 128. We choose Eq. (7.14) because
it involves two H-D exchanges, and tests using the analytical expression for the
primitive PI discretization of the partition function for a simple harmonic oscillator67

suggest that it is the most stringent test for convergence based on differences in
harmonic frequencies between reactant and product isotopologues.62 Figure 7.1
illustrates the convergence of 1000(1 − α4) as a function of P. The figure shows
that the results are statistically indistinguishable when using 32 beads compared
to using 128 beads. In addition, the calculations are converged within anticipated
experimental precisions for D-D clumping of about 1h, and the calculations are
likely even more accurate for the heavier isotope substitutions. Based on these tests,
we employ P = 64 for all calculations discussed in the remainder of the text.

7.4 Results
We begin by considering the relative enrichment of the doubly-substituted isotopo-
logues of ethane–13CH3

13CH3, 12CH3
13CH2D, 13CH3

12CH2D, 12CH3
12CHD2, and

12CH2D12CH2D–as functions of temperature. Figure 7.2 shows the enrichment
factors 1000(1 − αi) for the respective double isotope-exchange reactions in Sec-
tion 7.3.a as predicted by PIMCand theUreymodel; detailed numerical comparisons
are provided in Table 7.1. The PI calculations are the more rigorous and accurate
of the two sets of calculations, and so we first discuss the results in the context of
the PI calculations and later consider comparisons with the Urey model.
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Figure 7.1: Convergence of the enrichment factor for the isotope exchange reaction given
by Eq. (7.14) at T = 273.15 K as a function of the number of ring-polymer beads, P. Error
bars indicate the standard error of the mean obtained from bootstrap error estimation.

Table 7.1: Values of 1000(1 − α) for 13CH3
13CH3, 12CH3

13CH2D,
13CH3

12CH2D, 12CH3
12CHD2, and 12CH2D12CH2D. Statistical errors

for PIMC calculations are in parentheses and apply to the last reported
number(s) of the estimate.

T (K)
13CH3

13CH3
12CH3

13CH2D 13CH3
12CH2D

PIMC Urey PIMC Urey PIMC Urey
273.15 0.29(3) 0.295 6.46(3) 6.288 0.58(3) 0.480
373.15 0.11(2) 0.131 3.85(2) 3.741 0.28(2) 0.212
473.15 0.06(1) 0.064 2.45(1) 2.391 0.12(1) 0.101
573.15 0.039(9) 0.034 1.67(1) 1.593 0.09(1) 0.051
673.15 0.013(7) 0.020 1.148(8) 1.092 0.050(8) 0.027
773.15 0.00(1) 0.012 0.812(6) 0.766 0.022(6) 0.015
873.15 0.008(4) 0.008 0.588(4) 0.548 0.023(4) 0.008

T (K)
12CH3

12CHD2 t-(CH2D)2 g-(CH2D)2
PIMC Urey PIMC Urey PIMC Urey

273.15 22.9(2) 22.382 0.68(18) 1.443 0.61(20) 0.078
373.15 11.8(2) 11.335 0.31(13) 0.741 0.37(13) 0.027
473.15 6.4(1) 6.080 0.27(10) 0.394 0.24(10) 0.013
573.15 3.88(9) 3.453 0.18(8) 0.221 0.25(8) 0.006
673.15 2.24(7) 2.068 0.06(6) 0.130 0.04(6) 0.002
773.15 1.43(6) 1.299 −0.01(5) 0.081 0.00(5) 0.000
873.15 0.97(5) 0.850 0.06(4) 0.053 0.00(4) 0.001

Among the isotopologues considered, the enrichment factors most amenable to ex-
perimental measurement are those for 13CH3

13CH3 (gray diamonds), 12CH3
13CH2D

(blue squares), and possibly 12CH3
12CHD2 (green circles). Perhaps unsurprisingly,
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Figure 7.2: Enrichment factors of doubly-substituted isotopologues of ethane given by
1000(1−αi) for Eqs. (7.11)-(7.15) as a function of 1000/T . Results from PIMC calculations
are given by symbols and corresponding Urey-model calculations are given by lines. Panel
(b) shows the same data as panel (a) on a different scale. For the results for Eq. (7.15), the
solid line and the left-facing triangle indicate results for t-(CH2D)2, for which the deuterium
isotopes are in a trans conformation; the dashed line and the right-facing triangle indicate
results for g-(CH2D)2, for which the deuterium isotopes are in a gauche conformation.



121

Figure 7.2 indicates that the enrichment factors order according to the total relative
mass difference of both isotope substitutions. The largest enrichment factor is for
the doubly-deuterated 12CH3

12CHD2 due to the D-D clumping effect, while the the
next largest enrichment is due to the 13C-D clumping effect for 12CH3

13CH2D. At
T = 273.15 K, the enrichment factor for 12CH3

12CHD2 is about 3.5 times larger
than that of 12CH3

13CH2D, which is in turn larger than that of 13CH3
13CH3 by a

factor of nearly 23. To first order, this indicates that the isotope masses are more
important than their relative proximity for thermodynamic stability. However, the
indirect nature of the D-D coupling in 12CH3

12CHD2 likely plays some role, as
the difference in enrichment factor moving from 13C-D to 13C-13C clumping is
larger than from the indirect D-D to 13C-D clumping. Although it is not an ideal
comparison, it is interesting to note that the enrichment factor for doubly deuter-
ated molecular hydrogen D2 at 273.15 K,34,61 which involves a direct D-D bond, is
about 29 times larger than that of 12CH3

13CHD2 and remarkably similar to what we
observe between 12CH3

13CHD2 and 13CH3
13CH3.

The enrichment factors for both 12CH3
12CHD2 and 12CH3

13CH2D bear strong re-
semblance to their their methane analogues, 12CH2D2 and 13CH3D.9,21–23,30,37,62,77

In both cases, the enrichment factors for the ethane isotopologues are slightly smaller
than those of the methane isotopologues. We suspect that this behavior will be
somewhat general for comparison of enrichment factors across structurally similar
molecular species. For comparison between methane and ethane, one of the methyl
groups of ethane might be considered as a large pseudo-atom approximately in the
position of one of the hydrogen atoms in methane. The 13C-D clumping effect
in methane with a large pseudo-atom should be smaller than in regular methane
because the isotope substitutions are proportionally smaller perturbations. Like-
wise, we anticipate that the enrichment factor for 12CH3

13CH2D12CH3 (the 13C-D
clumped-isotope effect at the central position in propane) will be smaller than for
12CH3

13CH2D. This similarity in equilibrium signatures may be interesting when
considering natural gas mixtures and discerning the extent to which two molecular
species record different fractionation histories.

As previously noted, another factor influencing the enrichment of doubly-substituted
isotopologues is the relative proximity of the two rare isotopes. Figure 7.2B shows
that isotope substitution at separate methyl groups results in positive enrichment, but
the effect is significantly diminished compared to isotope substitution at the same
methyl group. Interestingly, enrichment factors for 13CH3

13CH3, 13CH3
12CH2D,
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and 12CH2D12CH2D are all fairly comparable over the entire temperature range
despite the variation in the isotope substitutions. This illustrates the competition be-
tween mass perturbation and isotope proximity, as the two deuteriums are separated
by three bonds, the deuterium and 13C separated by two, and the 13C and 13C directly
bonded. It is expected that the clumped-isotope effect will diminish as dual isotope
substitution occurs at more distal locations in the molecule, and these results provide
a sense for the strength of the coupling between different dual isotope substitutions
and how these will affect thermodynamic enrichment in more complex molecules.
In particular, enrichment due to deuterium/deuterium substitutions separated by four
bonds, deuterium/13C separated by three bonds, or 13C/13C by two bonds will be
virtually indistinguishable from expectations from the stochastic distribution.

Having examined the general enrichment behavior of the doubly-substituted isotopo-
logues of ethane, we now compare the results of the Urey model to those obtained
from PIMC. Figure 7.2 shows that results of the Urey model, without any addi-
tional corrections, are generally in good agreement with those obtained from PIMC.
The Urey-model results for 13CH3

13CH3 are statistically indistinguishable from the
PIMC calculations. However, there are statistically resolvable errors in the Urey-
model results for the enrichment factors of both 13CH3

12CH2D and 12CH2D12CH2D.
In both cases, the Urey-model predictions are systematically lower over the temper-
ature range studied, with the largest error in the enrichment factor being about 0.5
for 12CH2D12CH2D at 273.15 K. A recent study on the enrichment of 13CH3D illus-
trated small systematic errors in the same direction after including various correc-
tions to the Urey model, including an anharmonic correction for zero-point energy,
anharmonic correction for vibrational excited states, rotation-vibration coupling cor-
rection for zero-point energy, rotation-vibration coupling correction for vibrational
excited states, quantum mechanical correction to rotation, and centrifugal distortion
correction.37 Including perturbative corrections to these ethane isotopologues may
result in similar convergence behavior with respect to the PIMC calculations.

Although the errors in Figure 7.2 are relatively small, they can manifest as somewhat
large deviations in the apparent equilibrium temperature. Figure 7.3 indicates the
differences in apparent equilibrium temperatures obtained from theUreymodel com-
pared to PIMC for given enrichment factors of 13CH3

12CH2D and 12CH2D12CH2D.
The data show that temperature errors of about 20-30 K are feasible when using
the Urey model for these isotopologues. It is interesting that the largest errors in
the apparent equilibrium temperature occur at high temperatures, where the errors
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Figure 7.3: Errors in the apparent equilibrium temperature from Urey-model calculations
of the enrichment factors for Eqs. (7.12) and (7.14). Taking the PIMC calculations as a
reference, temperature errors are computed as the difference in temperature for a given
enrichment factor.

in enrichment factors are smallest. On the other hand, such deviations may also
be within the uncertainty of experimental measurements. Nonetheless, Figure 7.2
indicates that single-point or two-point temperature calibrations employing the Urey
model could lead to unnecessary systematic errors.

In Figure 7.2, the most significant deviations between the Urey-model and PIMC
results are for the enrichment factor of 12CH2D12CH2D. As noted earlier,
12CH2D12CH2D has distinct rotamers, t-(CH2D)2 and g-(CH2D)2, with different
normal-mode, harmonic frequencies that yield different Urey-model predictions
of 1000(1 − α). This leads to potential ambiguities when considering the actual
observed enrichment of the doubly-substituted isotopologue. While it may be pos-
sible to compute the partition function using a more sophisticated formalism78 or
obtain estimates based on some averaging scheme, it is appealing that the PIMC
calculations do not require exceptional treatments and evidently converge to a com-
mon result with sufficient sampling of the proper Boltzmann-weighted ensemble of
configurations.

Finally, we note that previous theoretical studies on ethane have determined absolute
free-energy errors associated with harmonic approximation of ethane using rigor-
ous PI41,79 and vibrational configuration interaction approaches.80 While the Urey
model often benefits from a substantial cancellation of errors in its computation
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of fractionation factors,62 the small deviations observed here and in other studies
of ethane may manifest as larger errors when considering more complex systems
for which anharmonicity and other quantum effects may play a more substantial
role.41,43,47,79

7.5 Conclusions
In this study, we rigorously compute enrichment factors for all doubly-substituted
isotopologues of ethane using path-integral Monte Carlo and a new, high quality
potential energy surface. The accuracy and precision of the PIMC calculations
are practically converged with consideration of anticipated experimental precisions,
and they can be appropriately used as reference data for calibrating experimental
measurements or benchmarking other theoretical approaches. By consideration
of all the doubly-substituted isotopologues, we quantify the the strength of the
clumped-isotope effect, finding that the degree of enrichment decreases in order of
deuterium/deuterium, deuterium/13C, and 13C/13C isotope substitutions if the sub-
stitutions have similar spatial separation. However, thermodynamic enrichment due
to isotopic clumping will be negligible if the isotope substitutions sites are separated
by four, three, or two bonds for respectively deuterium/deuterium, deuterium/13C,
and 13C/13C dual isotope substitutions. While difficult to interrogate experimentally,
these insights may have general implications for modeling behavior in more com-
plex molecules, perhaps obviating the need to examine clumped-isotope behavior
beyond a certain distance threshold. Finally, we find that Urey-model predictions
for 13C-13C clumping are statistically indistinguishable from the PIMC calculations,
but results for 12CH3

13CH2D and 12CH3
12CHD2 systematically underestimate the

enrichment. This underestimation leads to errors in the apparent equilibrium tem-
perature as large as 30 K at higher formation temperatures. In addition, comparing
the two methods reveals an inherent issue with the Urey model in predicting enrich-
ment for isotopologues with rotamers. Whereas the PIMC calculations converge
to a single result for 12CH2D12CH2D, the Urey model provides distinct results for
t-(CH2D)2 and g-(CH2D)2 rotamers, leading to ambiguity in predicting the relative
enrichment of 12CH2D12CH2D. While ethane is a simple molecule, this issue re-
quires careful consideration for isotope studies of more complex systems, but PI
methods are a tractable way forward.
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