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ABSTRACT

Visual inputs to artificial and biological visual systems are often quantized: cameras
accumulate photons from the visual world, and the brain receives action potentials
from visual sensory neurons. Collecting more information quanta leads to a longer
acquisition time and better performance. In many visual tasks, collecting a small
number of quanta is sufficient to solve the task well. The ability to determine
the right number of quanta is pivotal in situations where visual information is
costly to obtain, such as photon-starved or time-critical environments. In these
situations, conventional vision systems that always collect a fixed and large amount
of information are infeasible. I develop a framework that judiciously determines
the number of information quanta to observe based on the cost of observation and
the requirement for accuracy. The framework implements the optimal speed versus
accuracy tradeoff when two assumptions are met, namely that the task is fully
specified probabilistically and constant over time. I also extend the framework to
address scenarios that violate the assumptions. I deploy the framework to three
recognition tasks: visual search (where both assumptions are satisfied), scotopic
visual recognition (where the model is not specified), and visual discrimination
with unknown stimulus onset (where the model is dynamic over time). Scotopic
classification experiments suggest that the framework leads to dramatic improvement
in photon-efficiency compared to conventional computer vision algorithms. Human
psychophysics experiments confirmed that the framework provides a parsimonious
and versatile explanation for human behavior under time pressure in both static and
dynamic environments.
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C h a p t e r 1

INTRODUCTION

1.1 Quantized visual information
Images are the dominant medium through which we make sense of the world. Com-
puter vision systems analyze images to extract information about the environment
(e.g. understanding the identities of and relationships between people in a meeting
room); neuroscientists and psychophysicists study the primate vision system using
image stimuli (e.g. study human gaze patterns in response to an image of the beach).
The use of images divides visual perception into two stages: information acquisition
(forming the image) and analysis (understanding what is inside the image).

We study a different type of vision systemwhere information acquisition and analysis
are not divided but intertwined. These vision systems collect visual information
one small quantum at a time, and analyze the quanta as they arrive. For example, a
camera senses photons from the surrounding environment. Every photon falling on
a particular pixel contains information about the visual area corresponding to the
pixel, and thus can update the vision system’s belief aboutwhat is in the environment.
The photon is thus an indivisible piece of visual information, which we refer to as
a “visual quantum”. The use of visual quanta as an alternative medium to images
may be justified in the following examples.

First, acquiring images may be quite expensive in low light environments, and the
long exposure is often undesirable: in biological imaging, prolonged exposure could
cause health risks [1] or sample bleaching [2]; in autonomous driving, the delay
imposed by image capture could affect a vehicle’s ability to stay on-course and avoid
obstacles [3]; in surveillance, long periods of imaging could delay response, produce
smeared images, or compromise stealth. In these scenarios, instead of waiting for a
high-quality image after a long exposure, visual systems should process every single
photon as it arrives, and make a decision as soon as sufficient photons have been
collected.

Second, the quantized view is consistent with the information processingmechanism
of biological visual systems. To transmit information from one area to the next (e.g.
from the retina to the visual cortex), the visual system uses action potentials or
“spikes” [4]. Action potentials, like the photons, are quantized: the impulses have a
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stereotypical shape, and information resides in the timing and the counts. Similarly,
the quantization becomes useful when time is critical. When the visual system is
under time-pressure (e.g. search for predator or prey), it must exploit every single
action potential to make a decision as quickly and as accurately as possible [5].
Hence modeling the quantized signal may help neuroscientists and psychophysicists
understand visual perception in humans and other animals.

Lastly, the quantized reasoning is consistent with the trend of development in sensor
technology. Next-generation visual sensors will be equipped with photon-counting
capabilities. For example, the Quanta Image Sensor [6] and the Giga-vision sen-
sors [7] will detect and report single photon arrival events. The original goal of
designing photon-counting sensors was to increase the signal-to-noise ratio as well
as the spatial and temporal resolution for imaging. Serendipitously, the photon-
counting capability also enabled vision applications to sense and compute with
quantized visual information.

Moreover, quantization does not stop at the level of the sensory input – the entire
computation pipeline from sensory inputs to a decision may be quantized as well. It
is the case for biological visual systems, where quantized communication in the form
of action potentials occur throughout all stages of computation. The quantization
of the thought process may then aid neuroscientists in understanding the functional
roles played by different components in the system. It is also sensible for computer
vision systems to discretize computation. Since the input signals are quantized, the
changes in the internal states of the system should be discretized. When the changes
are sparse, a discrete implementation may be more efficient than a continuous
implementation in terms of the computation time, communication cost, and energy
consumption. This observation has become more relevant recently thanks to the
return of artificial neural networks as the workhorse for visual recognition tasks, for
which the changes are sparse and the energy is key in low light environments.

1.2 The speed versus accuracy tradeoff
Information about the world trickles in one quantum (photon, action potential, etc)
at a time. It is up to the observer to decide how many quanta to collect. Collecting
more information requires time while collecting too little information subjects the
observer to errors. The key is to collect just the right amount of information while
maintaining certain accuracy guarantees (see Fig. 1.1 for illustration). The balance
between the amount of information and the quality of the decision is called the speed
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versus accuracy tradeoff (SAT).

time

PresentPast

Decision

Stop  
observation

Future 

Figure 1.1: Quantized vision. Information trickles into a vision system (through
blue arrows) one quantum at a time. The vision system may also be quantized in
that computation flows through the system in small packets (through orange arrows).
The quantization in the input provides flexibility to stop collecting information
(through grey arrow) as soon as a decision is reached with sufficient certainty. The
quantization in the internal computation provides efficiency in computation.

This thesis is about the theory and practice of SAT in visual perception tasks for
biological and artificial systems. Critically, the information processing pipeline is
quantized from sensory input collection to decision computation. To optimize SAT
it is imperative to know how each quantum of information contributes to the task at
hand, and when the cumulative information is ripe for decision. Ch. 2 lays down the
theoretical framework for answering these questions. The framework assumes that
the task is fully specified by a probabilistic model that is static in time, and Ch. 3
gives an example using visual search where both assumptions are met. In practical
and ecological conditions, a probabilistic model is often not available and the vision
system must learn the decision rules for optimizing SAT. Thus Ch. 4 discusses the
issue of learning with the application of visual classification in lowlight. Ch. 5
describes a visual discrimination example where where the probabilistic model
changes over time. Lastly Ch. 6 studies the optimality of our framework in SAT,
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and Ch. 7 offers the final remarks.

The chapters are self-contained. All readers are encouraged to start from Ch. 2
(framework). Readers with a psychophysics and neuroscience background may
read only Ch. 3 (search) and Ch. 5 (discrimination with unknown stimulus
onset); computer vision readers may start from Ch. 4 (classification); Ch. 6
(optimality analysis) is reserved for the mathematically-inclined. You will find
more helper texts like this that explain how to navigate the thesis and why I
have done things one way instead of another.
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C h a p t e r 2

SEQUENTIAL PROBABILITY RATIO TEST

A framework for Analyzing Quantized Visual Input

We discuss the theoretical framework that optimizes the speed versus accuracy
tradeoff (SAT) for systems with quantized visual inputs. The framework is based
on a mature idea in statistics called the sequential probability ratio test (SPRT, [1]).
The main goal of this chapter is to review the assumptions and optimality guarantees
of SPRT.

2.1 Input assumptions
We start with the assumptions regarding the quantized inputs. These assumptions
are used to develop the basic form of our framework and will be relaxed in later
chapters.

Assumption 1: known probabilistic model
The first piece of the puzzle is understanding what the input is and how it is
generated. Our assumption is that there exists a statistical generative model that
relates the quantized inputs to important variables for solving the task at hand.

For example, when a lioness peruses a herd of buffalos on an open meadow at night,
every part of visual scene conveys information – the locations of the patriarch, the
calfs, the elders and the injured are useful for planning an attack. Nature communi-
cates this information using the spatial and temporal arrangement of photons and the
law of physics: the brighter a visual location is, the more photons will be reflected
to hit the lioness’ retina in a given amount of time. This physical law fits precisely
our assumption: the inputs (photons) are generated according to physical variables
(attributes of buffalo), which is useful to solve the problem (planning an attack).

This assumption also works phenomenologically: it does not require precise knowl-
edge of the physical generative process between task-relevant properties and sensor
inputs. Take a look inside the lioness’ visual system. Information processing here
involves neurons and action potentials, which appears completely different from the
information processing that involves the retina and photons, but actually also fits
the assumption. A subset of neurons in the system are selective towards elementary
shapes such as edges and curves [2]. Neurons in this area will each be triggered by a
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Chapter / Assumption Known probabilistic model Time-homogeneity
Visual search (Ch. 3) X X
Scotopic vision (Ch. 4) × X

Visual discrimination (Ch. 5) X ×

Table 2.1: The set of assumptions satisfied by each application.

specific patch of the visual world to emit action potentials, where the emission rate
reflects the shape information of the patch. If we consider the action potentials from
these neurons as inputs of the visual system, it holds that the inputs (action poten-
tials) are statistically characterized by properties of the physical world (shapes in the
visual world). Therefore, despite lacking a complete understanding of the physical
process of how light goes through the retina and the lateral geniculate nucleus, and
then triggers the shape-selective neurons to fire (which may be quite intricate [3]),
our assumption stands as long as the statistical dependency between the inputs and
the properties of interest is known.

Assumption 2: time-homogeneity
Our second assumption is that the statistical model is constant over time. If both the
lioness and the herd are steady enough, the photons reflected from the scene should
have the same statistics regardless of how long the lioness has been scrutinizing. As
a coarse approximation, the train of action potentials in the orientation-selective area
of the primate visual cortex also follow the same statistics within typical durations
for making a quick decision [4]. Essentially, time-homogeneity ensures that the
number of observations regarding any visual property is potentially infinite, and the
uncertainty around the visual property will vanish over time.

Table. 2.1 outlines the set of assumptions satisfied by the problems in each coming
chapter.

2.2 Notation
Formally, the quantized inputs are the time series X1:t = {X1, . . . , X t }, where time
has been judiciously discretized into bins of size ∆, and the observation X t spans the
duration ((t − 1)∆, t∆]. Each X t ∈ [Z+]D is a D-dimensional vector. An element in
X t counts the number of visual quanta from one of D input channels. For images, X t

could be photon count and D is the number of pixels; for neurons, X t could be spike
counts and D is the number of neurons. Generally speaking, we use the subscripts
to represent the channel and time i.e. Xi,t denotes the count at neuron i and time
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bin t. We also use boldface for vectors and matrices and regular font for scalars.
An object of interest in the visual world (e.g. a buffalo) could be characterized as
one of K categories (e.g. K = 2 for the categories { “weak”, “strong” } ). Let
C ∈ {1, 2, . . . , K } denotes the category of the object. The visual system is free to
report at any time t a class estimate Ĉt ∈ {1, 2, . . . , K }. For simplicity we only
consider classification tasks: the task is to identify the class of the object, which
maps one-to-one to a decision. In other words we assume that the lioness will always
commit to a chase once she identifies the prey as weak, and skip the prey she deems
strong.

One might argue that identifying the category of the object and deciding on
an action should be two separated tasks. For example identifying the strength
of prey and deciding to give chase have different semantics. This is true,
but semantic difference may be all there is. In the lioness’ problem we can
reformulate the categories to “attackable” and “to be avoided”, and then the
classification and the actions would agree.

2.3 Optimality
Now that we have specified the assumptions regarding sensory input, we are ready to
define optimality. As soon as the stream of sensory input pours in, an observer faces
a double decision. First, at each time instant it has to decide whether the information
in the input collected so far is sufficient to reach a decision. Second, once information
is deemed sufficient, it has to pick what decision to make. Moreover, the decisions
must “optimally” trade off reaction time (RT), the amount of time the observer spends
to collect information, with error rate (ER), the frequency of making mistakes.

Optimality is defined with respect to the Bayes risk [5], [6]:

BayesRisk = E[T] + ηE[ĈT , C], (2.1)

where E[T] is the expected reaction time, and E[ĈT , C] is the probability of the
observer committing to a wrong prediction. η is a parameter that specifies the cost
of making mistakes (in seconds). For example, η might be quantified in terms of
the time wasted failing to overpower a strong buffalo. The relative cost of errors and
time is determined by the circumstances in which the observer operates. η may be
higher if the lioness is hungry (catching the prey has higher value), or lower if the
lioness is well hidden (sustained observation is more feasible).
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Why are RT and ER combined linearly in the Bayes risk? The expression
originates from the general description of the observer’s objective:

minE[T], s.t.E[Ĉt , C], ≤ maxerr (2.2)

wheremaxerr is the upper bound on themisclassification error. This constrained
cost function may be concerted to an unconstrained objective via Lagrange
multipliers, and the result is precisely the Bayes risk.

Thus, the Bayes risk measures the combined RT and ER costs of a given search
mechanism. For now we assume that misclassification errors of different kinds all
have the same cost, but this is only for simplicity and will be relaxed in future
chapters.

Next we will present an efficient and popular statistical technique called the Sequen-
tial Probability Ratio Test [1] as our main algorithm for SAT optimization.

2.4 Sequential probability ratio test
SPRT is an algorithm that takes an endless streams of evidence X1:t and decides
(1) when to stop observing and (2) what decision to make. The classic SPRT
discriminates between two classes (K = 2). Crucially SPRT relies on a probabilistic
model that relates the class C to the observations. SPRT takes the following form
(see Fig. 2.1 for illustration):

S(X1:t )
4
= log

P(C = 1|X1:t )
P(C = 0|X1:t )




≥ τ Declare Ĉt = 1
≤ −τ Declare Ĉt = 0
otherwise t ← t + 1.

(2.3)

It considers S(X1:t ), the log likelihood ratio between the two classes with respect to
the observations X1:t . The observer declares class 1 as soon as S(X1:t ) crosses an
upper threshold τ, and declares class 0 as soon as S(X1:t ) crosses a lower threshold
−τ. Until either event takes place, the observer waits for further information. For
convenience we use base 10 for all our logarithms and exponentials, i.e. log(x) 4=
log10(x) and exp(x) 4= 10x .
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Figure 2.1: The sequential probability ratio test (SPRT). SPRT Eq. 2.3 computes
the log class posterior ratio S(X1:t ) = log P(C=1|X1:t )

P(C=0|X1:t )
and compares to a pair of

constant thresholds (assumed symmetrical here) for deciding whether to continue
collecting observations and if not, which class prediction to make. The key in most
applications is to compute S(X1:t ).

Here we assume that the two classes share the same prior probability of 0.5,
hence the log posterior ratio log P(C = 1|X1:t )/P(C = 0|X1:t ) is identical to
the log likelihood ratio log P(X1:t |C=1)

P(X1:t |C=0) . If the prior probability is not uniform,
one can obtain the log posterior ratio by adding the log prior ratio log P(C=1)

P(C=0) ,
a simple application of Bayes’ rule. Thus for simplicity, it is sufficient to be
concerned with computing the log likelihood ratio S(X1:t ) only.

The thresholds τ and −τ are symmetrical as the class distributions and costs of
errors are symmetrical. The threshold τ controls the maximum tolerable error rates.
For example, if τ = 2, i.e. predicting C = 1 when the object is > 102 times more
likely to be in class 1 than in class 0, then the maximum error rate for misclassifying
class C = 1 is 1%. Similarly If τ = 3 then class 0 will be < 103 times more likely
than class 1 when C = 0 is predicted, and the error rate for misclassifying C = 0 is
at most 0.1%. τ is judiciously chosen by the observer to minimize the Bayes risk in
Eq. 2.1, and hence is a function of the cost of error η.

To conclude, SPRT [1] essentially compares the log likelihood ratio S(X1:t ) between
the two classes to a pair of thresholds τ and −τ that are constant over time. This
simple algorithm enjoys optimality guarantees for a variety of classification tasks,
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as we discuss below.

2.5 Optimality guarantees of SPRT
Simple hypothesis testing: strict optimality
SPRT is renowned for its optimality in “simple binary sequential testing” prob-
lems [1]. In these problems, the visible object belongs to one of two classes
(K = 2), and given the classY , the observations over time are independent and iden-
tically distributed (i.i.d.), i.e. P(X1:t |C) =

∏t
t ′=1 P(X t ′ |C). In this case Wald [1]

proved that SPRT minimizes Bayes risk, i.e. any other sequential testing algorithm
will either require longer reaction time or incur more error.

Composite hypothesis testing: asymptotic optimality
For more complex problems, SPRT has not been proven strictly optimal, but it
often ensures “asymptotic” optimality, namely that its Bayes risk will be closer to
optimal as error becomes more important (i.e. as η → ∞). One such complex
problem is binary composite hypothesis testing, where the object categories contain
subclasses, and observations are i.i.d. given the subclasses, not the categoryC. In the
lioness’ problem, both categories (“weak” or “strong”) are composite, e.g. a buffalo
may be weak due to young/old age or past injuries, and the animal’s appearance
depends on these fine-grained subclasses. Composite hypothesis testing has been
studied by many [7], [8] and shown to be asymptotically optimal: Lai [9] proves
asymptotic optimality for a frequentist counterpart of the SPRT, andDarkhovsky [10]
proves strict optimality in the minimax Bayesian setup. The other class of complex
sequential testing problems is multi-hypothesis testing (K ≥ 2, [11]–[13]), where
SPRT has been shown to be asymptotic optimal[14].

How close to optimal is SPRT in non-asymptotic scenarios, i.e. (for finite η)?
Strict optimality for SPRT in complex problems has not been obtained. Numerical
simulations are therefore used to assess the performance of SPRTs on a problem
specific basis (e.g. [8]). In Ch. 6, we provide optimality analysis of SPRT for the
visual search problem (to be formally discussed in Ch. 3), and show that SPRT is
near-optimal for most common settings.

2.6 Chapter summary
Our theoretical framework of choice is the sequential probability ratio test (SPRT).
SPRT relies on thresholding a one-dimensional signal (the log posterior ratio) to de-
termine the length of evidence accumulation and the final decision. SPRT achieves
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impressive optimality guarantees for hypothesis testing problems where the hy-
potheses are (1) fully specified probabilistically and (2) static over time. In future
chapters we will apply SPRT to vision problems with quantized inputs.
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C h a p t e r 3

VISUAL SEARCH

Sequential Reasoning with a Time-Homogeneous Probabilistic Model

We present a psychophysics study of visual search, which is concerned with explain-
ing and assessing the optimality of human speed versus accuracy tradeoff (SAT). The
advantage of psychophysics is that the experimenters, not nature, design the task,
and therefore the probabilistic structure of the task is known. This project therefore
showcases the power of our theoretical framework, the sequential probability ratio
test (SPRT), when its assumptions are met (see Ch. 2), i.e. when the tasks can be
fully specified probabilistically in a static environment.

3.1 The psychophysics of visual search
Visual search is the problem of looking for a target object amongst clutter or distrac-
tors. It is a common task for our everyday life (looking for keys on a desk, friends in
a crowd or signs on a map) and a vital function for animals in the wild (searching for
food, mate, threats). Visual search is difficult and error-prone: the sensory signal is
often noisy; the relevant objects, and their appearance may not be entirely known in
advance, are often embedded in irrelevant clutter, whose appearance and complex-
ity may also be unknown. Thus to reduce detection errors the visual system must
account for the noise structure of the sensors and the uncertainty of the environment.
In addition, time is of the essence: the ability to detect quickly objects of interest is
an evolutionary advantage. Speed comes at the cost of making more errors. Thus,
it is critical that each piece of sensory information is used efficiently to produce a
decision in the shortest amount of time while maintaining the probability of errors
within an acceptable limit.

There are two crucial quantities in visual search: the response time (RT, how long
after an observer is exposed to a scene before it generates a response) and the error
rate (ER). The error rate includes the false positive rate (FPR), which is the fraction
of times when the observer claims to have found a target even though the scene does
not contain any, and the false negative rate (FNR), which is the fraction of times
when the observer claims no target when there is one. We are interested in how
these quantities are affected by the structure of the search task.
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Figure 3.1: Visual search setup (a) Each trial starts with a fixation screen. Next,
the “stimulus” is displayed. The stimulus is an image containing M oriented bars
that are positioned in M out of L possible display locations (M = 6, L = 12 in this
example). One of the bars may be the target. The stimulus disappears as soon as
the subject responds by pressing one of two keys, to indicate whether a target was
detected or not. Feedback on whether the response was correct is then presented
on the screen, which concludes the trial. The subjects were instructed to maintain
center-fixation at all times and respond as quickly and as accurately as possible. (b)
A generative model of the stimulus. The stimulus class C and a prior distribution on
the stimulus orientation P(Y l |Cl ) decide, for each display location l, the orientation
Y l (may be blank). The orientation Y l determines in turn the observations X l

1:t ,
which are firing patterns from a hypercolumn of V1 orientation-selective neurons
at location l over the time window [0, t∆] (The firing patterns of four neurons are
shown at each location).

Psychologists have characterized human visual search performance [1]–[11] in rela-
tion to properties of the search environment such as the distinctiveness of the target
against the background clutter [2], [3], the complexity of the image [4], [5] and the
likelihood that an object of interest may be present [7], [9]. However, it is unknown
what the optimal RT versus ER tradeoff should be in a given environment. It is also
unknown whether human visual search performance is optimal.

Models of visual search fall into two categories. Stochastic accumulators were
introduced to model discrimination [12]–[17] and visual search [18], [19]. The de-
cision signal is either obtained from electrophysiological recordings from decision-
implicated areas, e.g. frontal eye field [19]–[21] and lateral intraparietal area [22],
[23]), or the result of an educated guess to fit the phenomenology [24], [25].
Stochastic accumulator models are appealing because of their conceptual simplicity
and because they fit behavioral data well. However, these models do not attempt to
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explain search performance in terms of the underlying primary signals and neural
computations.

Ideal observer models have been developed to study which computations and mech-
anisms may be optimal for visual discrimination [24], [26] and visual search under
fixed time presentations [27]–[31] using signal detection theory [32]. This line of
work leads us to the question of whether it is possible to derive the optimal decision
strategy for visual search that may predict simultaneously both RT and ER.

3.2 Contributions
We take the Bayesian point of view: we model a system that through experience (or
through evolution) is familiar with the statistics of the scene. The input to our system
is an array of idealized cortical hypercolumns that, in response to a visual stimulus,
produce firing patterns that are Poisson and conditionally independent. After this
assumption is made the model that characterizes the optimal ER vs RT tradeoff is
derived with no additional assumptions and no additional free parameters.

Our main contributions are:

1. We propose a principled and parsimoneous model for studying the optimal SAT
of visual search.
2. Our model can predict the observer’s performance in novel tasks once some
intrinsic properties of the input hypercolumn have been estimated.
3. We are interested in understanding whether such observer might be plausibly
implemented by neural mechanisms such as a network of spiking neurons.
4. We assess the optimality of humans at visual search SAT. We collected psy-
chophysics data and compare human performance with the optimal model and its
spiking implementation.

3.3 Problem setup
The general set-up of a visual search task is as shown in Fig. 3.1a. An observer sits
down in front of a computer monitor. The monitor displays a series of images that
consists of distractors and sometimes targets. The goal of the observer is to decide
whether a target object is present in a cluttered image as quickly and accurately
as possible while maintaining fixation at the center of the image. The decision is
binary, and the two categories of stimuli are: target-present (C = 1) and target-
absent (C = 0), as shown in Fig. 3.2a. When the target is present, its location is not
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known in advance; it may be one of L locations in the image. The observer only
reports whether the target appears, but not where. For now, we limit the number of
targets to be at most one.

In our experiments the target and distractor objects appear at M locations (M ≤ L)
in each image where M reflects the complexity of the image and is known as the
set-size. The objects are simplified to be oriented bars, and the only feature by which
the target and distractor differ is orientation. Target distinctiveness is controlled by
the difference in orientation between target and distractors, the orientation contrast
∆θ. Prior to image presentation, the set of possible orientations for the target and the
distractor is known, whereas the set-size and orientation contrast may be unknown,
and may change from one image to the next (see Fig. 3.2c-d for examples).

In this design we strive to have the simplest experiment that captures all the
relevant variables, namely the dependent variables RT and ERs, as well as the
independent variables the set-size M and the orientation contrast ∆θ. To do so
we first simplify the appearance of the stimuli so that we can focus on modeling
search strategies instead of building classifiers. Second, we eliminate eye-
movements by forcing fixation at the center of the image at all times because
saccade planning is a rich phenomenon on its own that many are struggling
to explain. Third, we have randomized the placement of the targets and the
distractors (details in Sec. 3.5), duration between trials, and stimulus orientation
etc. to eliminate potential biases.

The visual search literature records a rich set of phenomena regarding the RT and
ERs of human observers. We list three in Fig. 3.3. An intuitive phenomenon is
the “set-size effect”. As the amount of clutter increases in the display, the subject
tends to take longer to respond. The slope of RT with respect to the set-size M

depends on the distinctiveness between the target and the distractor ∆θ. The smaller
∆θ is, the more difficult the task becomes and the larger the slope. A less intuitive
phenomenon is the “search asymmetry effect” that the slope for target-absent is
roughly twice the slope for target-present (many other dependent variables display
the set-size effect and search asymmetry, the interested reader is referred to [4]).
Lastly, the RT distributions is heavy-tailed: the log RTs roughly follow a Gaussian
distribution. The list of phenomena goes on.

Existing visual search models [18], [19], [27], [28] describe a subset of the phe-
nomena fairly well, but most fall short in accounting for phenomena across different
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Figure 3.3: Selected list of visual search phenomena (a) The “set-size” effect.
Median RT increases linearly with set-size. The slope depends on the trial type
(target-absent trials have roughly twice the slope) and task difficulty. The two tasks
are searching for a red bar among green bars (easy) and searching for a “2” among
“5”s (hard). (b) RT histograms for different set-sizes ({3, 6, 12, 18}), plotted in log
domain based 10.

search environments. Describing all phenomena in one model is a challenging task.
The model needs to be flexible enough to accommodate changes of the environment,
e.g. different set-sizes, or different probability distributions on the set-sizes, etc. In
addition, the model needs to be efficient enough so that it can be easily transferred
from one environment to the next. Furthermore, there are countless unintended
events, such as the subject blinking, getting fatigued or being distracted, that could
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pollute the behavioral data.

Therefore, instead of describing human behaviors in a variety of visual search
problems, we seek to study the optimal behavior on a per-situation basis. The
optimal behavior can be used as a gold standard to measure human performance.
Given input observations and prior knowledge about the task, we are interested in
the best achievable ER versus RT tradeoff measured in Bayes risk (Eq. 2.1).

3.4 Asymptotically optimal search model
Quantized sensory input
The first step towards studying optimal SAT is to identify the input to the prob-
lem. We consider sensory input from the early stages of the visual system (retina,
lateral geniculate nucleus (LGN) and primary visual cortex), where raw images
are processed and converted into a stream of quantized events, aka action poten-
tials. The anatomy, as well as the physiology, of these stages are well character-
ized [33]. These mechanisms compute local properties of the image, such as color
contrast, orientation, spatial frequency, stereoscopic disparity and motion flow[34],
and communicate these properties to downstream neurons for further processing.
The communication takes on the forms of sequences of action potentials / spikes
from orientation-selective neurons in V1 [33].

The firing patterns of the neurons aremodeledwith an homogeneous Poisson process
[35]. This means that each neuron fires at a fixed rate of λ spikes / second given
the input image, and the timings of the spikes are independent of each other. More
specifically, the number n of events (i.e. action potentials) that will be observed
during one second is distributed as

P(n|λ) = λne−λ/n!.

The firing patterns X1:t are produced over the time interval [0, t∆] by a population
of nH neurons, also known as a hypercolumn, from each of the L display locations.
We model each neuron using the Linear Nonlinear Poisson (LNP) model [36], [37],
which is commonly used to model neural responses. Each neuron has a localized
spatial receptive field and is tuned to local image properties [33], which in our
case is the local stimulus orientation; the preferred orientations of neurons within a
hypercolumn are distributed uniformly in [0◦, 180◦). λi

θ , the expected firing rate of
the i-th neuron, is a function of the neuron’s preferred orientation θi and the stimulus
orientation θ ∈ [0◦, 180◦):
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λi
θ = (λmax − λmin) exp *

,
−
||θ − θi | |

2

σ2
Y

+
-
+ λmin, (3.1)

(in spikes per second, or Hz) where λmin and λmax are a neuron’s minimum and
maximumfiring rates, | |θ−θi | | denotes theminimum angular distance between θ and
θi, andσY ∈ (0◦, 180◦) is the half tuning width. Fig. 3.4a shows the tuning functions
of a hypercolumn of eight neurons, Fig. 3.4b shows the spatial organization of the
hypercolumns, and Fig. 3.4c-d shows the sample spike trains from two locations
with different local stimulus orientations.
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Figure 3.4: V1 Hypercolumns (a) Orientation tuning curves λi
θ (Eq. 3.1) of

a hypercolumn consisting of nH = 8 neurons with half tuning width σY = 22◦,
minimum firing rate λmin = 1Hz and maximum firing rate λmax = 10Hz. (b) V1
hypercolumns tessellate the input space, one for each visual location where an object
(oriented bar) may appear. (c-d) Spike trains X l

1:t at the target location (marked
with green star in (b)) and a distractor location (red star).

Why do we select the response of V1 hypercolumn neurons to be our input?
Indeed there are multiple alternatives: the raw image, the response of the retina
or LGN, and high-level signals that directly encode information regarding target
presence. Our choice is based on flexibility and efficiency. Since the search
problems considered here all involve a simple scenario of oriented bars placed
certain distances apart, it would be redundant to model the neuronal hardware
that gives rise to orientation-selectivity at this stage. Therefore, our level of
abstraction should start at least from V1. On the other hand, although most
visual search models assume high-level input signals [18], [19], [27], [28], they
are not concerned with behaviors across multiple visual search tasks. As we see
later, we will interpret the input fromV1 neurons depending on the probabilistic
structure of the task, which is key for SPRT to generalize across tasks.
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Why do we use LNP to model the V1 spike trains? While Gaussian firing
rate models [28] have also been used in the past, the Poisson model represents
more faithfully the spiking nature of neurons [35], [38], [39]. Second, the
LNP model is simple and parsimonious: it is well studied in the literature [40],
and its limitations are increasingly well understood [40]. Lastly, we do not
use electrophysiological recordings from V1 neurons [39] because large-scale
recordings from the entire V1 are not currently possible. Nonetheless, it may
be possible to bootstrap from a well-represented population of V1 neurons.

Sequential probability ratio test for visual search
Since the problem is binary, SPRT (Eq. 2.3) applies directly to the quantized spike-
train input X1:t of V1 hypercolumn neurons from all display locations over duration
[0, t∆]:

S(X1:t )
4
= log

P(C = 1|X1:t )
P(C = 0|X1:t )




≥ τ1 Declare target present
≤ τ0 Declare target absent
otherwise Postpone decision,

(3.2)

where S(X1:t ) is the log likelihood ratio of target-present (C = 1) vs. target-absent
(C = 0) probabilities with respect to the observations X1:t . τ1 and τ0 together control
the maximum false positive and false negative rates. The key to applying SPRT is
to compute S(X1:t ), which may be systematically constructed from the visual input
according to the graphical model in Fig. 3.1b, and can account for a wide variety of
visual search tasks.

We derive a general model that is capable of handling unknown set-sizes and
orientation contrasts. To build up the concept, we start by reviewing models
for simpler tasks including visual discrimination and visual search with known
set-sizes and orientation contrasts, both of which have already been explored in
the literature [29], [41], [42]. Readers only interested in this general model are
encouraged to skip these models. Table 3.1 provides a roadmap for the models.

Chapter-specific notations
Let X l

t denote the activity of the neurons at location l during the time interval
[0, t∆] in response to a stimulus presented at time 0. X1:t = {X

l
t }

L
l=1 is the ensemble

responses of all neurons from all locations. Let Lθ (X l
1:t )

4
= log P(X l

1:t |Y
l = θ)

denote the log likelihood of the spike train data X l
1:t when the object orientation
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Task L M ∆θ CCD Expression
Homogeneous discrimination 1 M = 1 known known Eq. 3.3
Heterogeneous discrimination 1 M = 1 unknown known Eq. 3.5

Homogeneous search > 1 M = L known known Eq. 3.7
I.i.d-distractor hetero-search > 1 M = L unknown known Eq. 3.8

Heterogeneous search > 1 unknown unknown unknown Eq. 3.10

Table 3.1: List of visual discrimination and visual search tasks. Our contribution
is developing models for tasks colored in blue. In addition, our general model
accounts for the heterogeneous search task, which subsumes all other tasks on the
list. L is the number of total display locations. M is the number of display items. θT
and θD are the target and distractor orientations, respectively. We use “known” and
“unknown” to refer to whether a quantity is known at stimulus onset. In many tasks,
θT and θD are unknown, but sampled according to a distribution. The distribution
φ of the distractor orientation is called a conditional distractor distribution (CDD ,
see the i.i.d-heterogeneous search section), where φθ = P(Y l = θ |Cl = 0) for any
location l. S(X1:t ) = log P(C = 1|X1:t )/P(C = 0|X1:t ) is the class log posterior
ratio that SPRT computes.

Y l at location l is θ (degrees). When there is only one location (as in visual
discrimination as below), the location superscript is omitted. The target orientation
and the distractor orientation are denoted respectively by θT and θD. In many cases,
the target orientation is not unique, but sampled from a setΘT = {θ1, θ2, . . .} of many
possible values. Simiarly ΘD is the domain for the distractor orientation. nT = |ΘT |

and nD = |ΘD | are the number of candidate target and distractor orientations,
respectively.

Homogeneous visual discrimination
First consider the case where either the target or the distractor can appear at only
one display location (L = M = 1), and the target and distractor have distinct and
unique orientations, θT and θD, respectively. The visual system needs to determine
whether the target or the distractor is present in the test image. The log likelihood
ratio in this case is well known [41] (re-derived in the Appendix (Eq. A.3)):

(Homogeneous Discrimination) S(X1:t ) = LθT (X1:t ) − LθD (X1:t ), (3.3)

which, as first pointed out by [43], may be computed by a diffuse-to-bound mecha-
nism [12]. S(X1:t ) is a ‘diffusion’, i.e. it can be updated additively (see Eq. 3.13):



22

S(X1:t ) = S(X1:t−1) +
(
LθT (Xt ) − LθD (Xt )

)
, (3.4)

and a decision is taken whenever the diffusion hits one of two boundaries, hence
the name “diffuse-to-bound”. In addition, as shown by [41], SPRT is optimal in
minimizing the Bayes risk in Eq. 2.1.

Heterogeneous visual discrimination
In a more general setting, both the target and the distractor could take one of multiple
orientations. We call heterogeneous visual discrimination the case where the target
and distractors could take on one of multiple orientations, i.e. nT > 1 and/or nD > 1.
The log likelihood ratio is [29] (re-derived in Appendix (Eq. A.4)):

How much does the form of S(X1:t ) depend on the observations X1:t being
Poisson? Only Lθ (X1:t ) makes use of the Poisson likelihood, the derivation of
S(X1:t ) based on Lθ (X1:t ) simply follows Bayesian inference and is therefore
independent of the form of the observation likelihood.

(Heterogeneous Discrimination) S(X1:t ) = Smax
θ∈ΘT

(
Lθ (X1:t ) − log(nT )

)
− Smax

θ∈ΘD

(
Lθ (X1:t ) − log(nD)

)
, (3.5)

where Smax (·) is the “softmax” function. For a vector v and a set of indices I:

Smax
i∈I

(v) 4= log
∑
i∈I

exp(vi). (3.6)

Softmax can be thought of as the marginalization operation in log probability space:
it computes the log probability of a set of mutually-exclusive events from the log
probabilities of the individual events. For example, for two mutually-exclusive
events, A1 and A2, we have P(A1

⋃
A2) = P(A1) + P(A2), then log P(A1

⋃
A2) =

Smax
i=1,2

(
log P(Ai)

)
. Since the different target orientations are mutually-exclusive,

their log likelihoods should be combined using the softmax function to compute the
log likelihood for the target. The same argument applies to the distractor.
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It is important to note that the log likelihood ratio for heterogenous discrimination
is not a diffusion, as Eq. 3.5 does not admit an additive update formulation as
in Eq. 3.4. Rather, it combines diffusions in a non-linear fashion (via a softmax).
Diffuse-to-bound [12] does not give the optimal decision mechanism here, nor in
any of the settings we will discuss later. Moreover, while a diffusion model may
require additional parameters specifying how the statistics of the diffusions relate
to the task parameters (set-size in this case) [24], [25], the construction of SPRT is
parameter-free. Later in Fig. 3.10c-f we will see that SPRT can generalize to novel
experimental settings. The generalizability is non-trivial for diffusion models.

Homogenous search
Now that we have analyzed the case of discrimination (one item visible at any time)
we will explore the case of search (multiple items present simultaneously, one of
which may be the target). Consider the case where all the L display locations are
occupied by either a target or a distractor (i.e. L = M > 1) and the display either
contains one target or none. The target orientation θT and the distractor orientation
θD are again unique and known, i.e. nT = nD = 1. The log likelihood ratio of
target-present vs target-absent is given by [42] (re-derived in Appendix Eq. A.5):

(Homogeneous Search) S(X1:t ) = Smax
l=1,...,L

(
S(X l

1:t ) − log(L)
)
, (3.7)

where S(X l
1:t ) = LθT (X l

1:t ) − LθD (X l
1:t ) is the log likelihood ratio for homogenous

discrimination at location l (see Eq. 3.3). S(X1:t ) combines the local log likelihood
ratio S(X l

1:t ) from all locations using a softmax because the target can only appear
at one of L disjoint locations.

I.i.d.-distractor heterogeneous search
Now we describe our general model of visual search. We start with the simple
case where the set-size is known (M = L > 1) but the orientation contrast is not
(nT > 1, and/or nD > 1). In addition, we assume target and distractor orientations
are sampled i.i.d. in space according to some distribution. We refer to this as the
i.i.d.-distractor heterogeneous search.

We call a “conditional distractor distribution” (CDD) the distribution of orientation
Y l at any non-target location l, i.e. P(Y l |Cl = 0). We denote CDD with φ where
φθ
4
= P(Y l = θ |Cl = 0). Thus φ is a nD-dimensional probability vector. i.e. each
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Figure 3.5: SPRT for heterogeneous visual search. (a) SPRT for heterogeneous
visual search is implemented by a five-layer network. It has two global circuits, one
computes the global log likelihood ratio S(X1:t ) (Eq. 3.10) from local circuits that
compute log likelihood ratios {S(X l

1:t )}l (Eq. 3.11), and the other estimates scene
complexity Qφ(X1:t ) (Eq. A.9) via gain-control. Qφ(X1:t ) feeds back to the local
circuit at each location. (b) The local circuit that computes the log likelihood ratio
S(X l

1:t ). Spike trains X1:t from V1/V2 orientation-selective neurons are converted
to log likelihood for task-relevant orientations Lθ (Eq. 3.13). The log likelihoods of
the distractor LD (second line of Eq. 3.9) under every putative CDD are compiled
together, sent (blue outgoing arrow) to the global circuit, and inhibited (green
incoming arrow) by the CDD estimate Qφ (details in Eq. A.9).

element of φ is non-negative, and all elements sum to one. We introduce CDD here
because it is a key element in the general model of visual search, as will become
clear later. In contrast, the conditional target distribution P(Y l = θ |Cl = 1) is not
as vital and is assumed uniform for notation clarity (see Appendix Eq. A.11 for
cases with general target distributions and different CDDs over locations, and see
Appendix Sec. A.1 for how to formulate common search problems such as those
illustrated in Fig. 3.2b-d in the framework using CDDs.).

The log likelihood ratio may be computed as:



25

(I.i.d.-Distractor Heterogeneous Search) S(X1:t ) = Smax
l=1...L

(
S(X l

1:t ) − log(L)
)
,

(3.8)

where S(X l
1:t ) = Smax

θ∈ΘT

(
Lθ (X l

1:t ) − log(nT )
)

− Smax
θ∈ΘD

(
Lθ (X l

1:t ) + log φθ
)
.

(3.9)

The log likelihood ratio expressions (Eq. 3.8 -3.9) are obtained by nesting appro-
priately the models of homogeneous search and heterogeneous discrimination. At
the highest level is the softmax over locations as in Eq. 3.7. At each location l,
S(X l

1:t ) is obtained as the difference between the log likelihood of the target with
that of the distractor (Eq. 3.9), which is reminiscent of Eq. 3.5. Computing the
target log likelihood requires marginalizing over the unknown target orientation with
a softmax (again assuming uniform prior over possible target orientations in ΘT ).
Similarly, the distractor log likelihood marginalizes over the distractor orientation
according to the CDD.
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Figure 3.6: An instantiation of the signals propagating through the network
in Fig. 3.5a. The orientation contrast is 45◦ and there are two possible set-sizes, 1
and 3. (a) The orientation log likelihoods Lθ (X1:t ) (Eq. 3.13) at the target location
(green box in Fig. 3.5a). Lighter colors correspond to the analog signal and darker
colors correspond to the spiking network approximation. (b) Local log likelihood
ratios S(X l

1:t ) (Eq. 3.11) for the four color-coded locations in Fig. 3.5a. (c) the
log likelihood ratio S(X1:t ) (Eq. 3.10) computed using SPRT (black line) and the
spiking implementation (gray line) reach the identical decision at similar response
times (350ms).
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Heterogeneous search
Finally, in the most ecologically relevant situations the complexity and target dis-
tinctiveness are not known in advance. In other words, all search parameters M , θT

and θD are stochastic (nT and/or nD > 1). This scenario may be handled using the
mechanisms for i.i.d. distractor heterogeneous search above as building blocks. For
example, for a fixed set-size, each non-target location has a certain probability of
being blank (as oppose to containing a distractor), which is captured by the CDD.
When set-size changes, CDD will change correspondingly. Therefore, knowing the
CDD effectively allows us to infer the set-size, and vice versa. Our strategy is to
infer the CDD along with the class variables using Bayesian inference.

Let P(φ) be the prior distribution over the CDDs φ. Note that, technically, P(φ)
is a “distribution over distributions”. Computing the log likelihood ratio requires
marginalizing out φ according to P(φ) and the observation X1:t . We assume that the
observer has been exposed to this task for some time and has estimated P(φ). We
also assume that the target distribution is independent of the CDD (and relax this
assumption in the Appendix Eq. A.14). The log likelihood ratio is (see derivations
in Appendix Eq. A.14):

(General Model: Heterogeneous Search) S(X1:t ) = Smax
l=1...L

(
S(X l

1:t ) − log(L)
)
,

(3.10)

where S(X l
1:t ) = Smax

θ∈ΘT

(
Lθ (X l

1:t ) − log(nT )
)

+ Smax
φ∈Φ

(
−Smax

θ∈ΘD

(
Lθ (X l

1:t ) + log φθ
)
+Qφ(X1:t )

)
, (3.11)

where Qφ(X1:t )
4
= log P(φ|X1:t ) is the log posterior of the CDDs given the observa-

tions X1:t (see below). The only difference between the equationsEq. 3.10 -3.11 and
those describing the i.i.d.-distractor heterogeneous search (Eq. 3.8 -3.9) is the sec-
ond line of Eq. 3.11, where the CDD is marginalized out with respect to Qφ(X1:t ).
Since both the CDD φ and the distractor orientation Y l must be marginalized, two
softmaxes are necessary (the second line of Eq. 3.11). The equations do not ex-
plain how to compute Qφ(X1:t ). It may be estimated simultaneously with the main
computation by a scene complexity mechanism that is derived from first principles
of Bayesian inference (see Appendix Eq. A.9). This mechanism extends across the
visual field and may be interpreted as wide-field gain-control (see Fig. 3.5a).
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A simpler alternative to inferring the CDD on a trial-by-trial basis is to ignore its
variability completely by always using the same CDD obtained from the average
complexity and target distinctiveness. More specifically, the approximated log
likelihood ratio is:

S̃(X1:t ) ≈ Smax
l=1,...,L

(
Smax
θ∈ΘT

(
Lθ (X l

1:t )
)
− Smax

θ∈ΘD

(
Lθ (X l

1:t ) + log φ̄θ
))
− log(nT L),

(3.12)

where φ̄θ = E(φθ ) is the mean CDD for orientation θ with respect to the its prior
distribution. This approach is suboptimal. Intuitively, if the visual scene switches
randomly between being cluttered and sparse, then always treating the scene as if
it had medium complexity would be either overly-optimistic or overly-pessimistic.
Crucially, the predictions of this simple model are inconsistent with the behavior of
human observers, as we shall see later in Fig. 3.8.

3.5 Model prediction and human psychophysics
Now that we have seen how to implement SPRT given a visual search task, we
show that it can predict existing phenomena in the literature and data collected by
ourselves.

Qualitative fits
A first test of our model is to explore its qualitative predictions of RT and ER in
classical visual search experiments (Fig. 3.1a).

In a first simulation experiment (Sim. 1), we used a “blocked” design (Fig. 3.2b),
where the orientation of targets and distractors as well as the number of items do
not change from image to image within an experimental block. Thus, the observer
knows the value of these parameters from experience. Accordingly, we held these
parameters constant in the model. We assume that the costs of error are constant,
hence we hold the decision thresholds constant as well. What changes from trial to
trial is the presence and the location of the target, and the timing of individual action
potentials in the simulated hypercolumns. Since we do not model eye-fixations,
we assume that the observer can see all the items equally (which corresponds to
enforcing fixation at the center of the screen for human subjects).

The model makes three qualitative predictions: (a) The RT distribution predicted
by the model is heavy-tailed: it is approximately log-normal in time (Fig. 3.7b).
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Figure 3.7: Qualitative predictions of SPRT (Sim. 1-2). (a) Set-size effect on
median RT under the blocked design (Sim. 1). The ideal observer predicts a linear
RT increase with respect to set-size when the orientation contrast ∆θ is low (10◦,
left) and a constant RT when the orientation contrast is high (60◦, right). The
target-absent (TA) RT slope is roughly twice that of target-present (TP). (b) RT
histogram under the blocked design with a 10◦ orientation contrast and a set-size of
12 items. RT distributions are approximately log-normal. (c) Median RT (upper)
and ER (lower) for visual search with heterogenous target/distractor, mixed design
(Sim. 2).

(b) The median RT increases linearly, as a function of M , with a large slope for
hard tasks (small orientation contrast between target and distractor), and almost flat
for easy tasks (large orientation contrast) (Fig. 3.7a). The median RT is longer for
target-absent than for target-present, with roughly twice the slope (Fig. 3.7a). The
three predictions are in agreement with classical observations in human subjects
(Fig. 3.3) [1], [44].

In a second experiment (Sim. 2) we adopted a “mixed” design, where the distractors
are known, but the orientation contrast is sampled from100, 200 and 600, randomized
from image to image (Fig. 3.2c). The subjects (and our model) do not know which
orientation contrast is present before stimulus onset. The predictions of the model
are shown in Fig. 3.7c. When the target is present both RT and ER are sensitive
to the orientation contrast and will decrease as the orientation contrast increases,
i.e. the model predicts that an observer will trade off errors in difficult trials (more
errors) with errors in easy trials (fewer errors) to achieve an overall desired average
performance, which is consistent with psychophysics data.

In Sim. 3 we explored which one of two competing models best accounts for visual
search when scene complexity is unknown in advance Fig. 3.7d). Recall that in
discussing the heterogeneous search we proposed two models, one that estimates
scene complexity (Eq. 3.10) and is optimal, and a simplifiedmodel (Eq. A.13) that is
sub-optimal. The optimal model predicts that ERs are comparable for different set-
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Figure 3.8: Qualitative model predictions and psychophysics data on visual
search with unknown set-size (Sim. 3). Median RT (upper) and ER (lower): false-
positive-rate (FPR) and false-negative-rate (FNR), of visual searchwith homogenous
target/distractor and unknown set-sizes (Sim. 3) under two models: SPRT (a) that
estimates the scene complexity parameter φ (essentially the probability of a blank at
any non-target location) on a trial-by-trial basis (Eq. 3.10) using a wide-field gain-
control mechanism (Eq. A.9); and a simplified observer (b) that uses average scene
complexity φ̂ for all trials (Eq. A.13). Psychophysical measurements on human
observers (Wolfe et al. [9], spatial configuration search in Fig. 2-3, reproduced
here as (c)) are consistent with the optimal model (a). Simulation parameters are
identical to those used in Fig. 3.7.

sizes while RTs show strong dependency on set-size when the orientation contrast
is small (Fig. 3.8a). The simplified model, where scene complexity is assumed
constant (Eq. A.13), predicts the opposite, i.e. that ER will depend strongly on set
size, while RT will be almost constant when the target is present (Fig. 3.8b). Human
psychophysics data ([9], reproduced inFig. 3.8c) show a positive correlation between
RT and set-size and little dependency of ER on set-size, which favor the optimal
model and suggest that the human visual system estimates scene complexitywhile
it carries out visual search.
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Quantitative fits
In order to assess our model quantitatively, we compared its predictions with data
harvested from human observers who were engaged in visual search (Fig. 3.1a).
Three experiments were conducted to test both themodel and humans under different
conditions. The conditions are parameterized by the orientation contrast chosen
from {20◦, 30◦, 45◦} and the set-size chosen from {3, 6, 12}. The blocked design
was used in the first experiment (Exp. 1), where all 3 × 3 = 9 pairs of orientation
contrast and set-size combinations were tested in blocks. The second experiment
randomized orientation contrast from trial to trial while fixing the set-size at 12
(Exp. 2). The third randomized the set-size while holding the orientation contrast
fixed at 30◦ (Exp. 3). The subjects were instructed to maintain eye-fixation at all
times, and respond as quickly as possible and were rewarded based on accuracy.

We fit our model to explain the full RT distributions and ERs for each design
separately. In order to minimize the number of free parameters, we held the number
of hypercolumn neurons constant at nH = 16, their minimum firing rate constant at
λmin = 1Hz, and the half-width of their orientation tuning curves at 22◦ (full width
at half height: 52◦) [39]. Hence we were left with only three free parameters: the
maximum firing rate of any orientation-selective neuron λmax controls the signal-
to-noise ratio of the hypercolumn; the upper and lower decision thresholds τ0 and τ1
control the frequency of false alarm and false reject errors. Once these parameters
are given, all the other parameters of our model are analytically derived.

While our model takes care of the perceptual computational time, human response
times also include a non-perceptual motor and neural conduction delay [44]. There-
fore, we also use two additional free parameters per subject to account for the
non-perceptual delay. We assume that the delay follows a log-normal distribution
parameterized by its mean and variance.

In the blocked design experiment Exp. 1, the hypercolumn and the motor time
parameters were fit jointly across all blocks (about 1620 trials); the decision thresh-
olds were fit independently on each block (180 trials/block). In the mixed design
experiments Exp. 2-3, all five parameters were fit jointly across all conditions for
each subject because all conditions are mixed (440 trials/ condition). See Fig. 3.9
for data and fits of a randomly selected individual, and Fig. 3.10a-b for all subjects
in the blocked condition. In each experiment the model is able to fit the subjects’
data well. The parameters that the model estimated (the maximum firing rate of
the neurons λmax , the decision thresholds τ0, τ1 are plausible [45]). Each subject
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displays different ERs for different conditions (see Fig. 3.11), and thus the decision
thresholds are indeed not constant.

It may be possible to model the inter-condition variability of the thresholds as
the result of the subjects minimizing a global risk function [25]. Therefore for
each subject in the blocked design experiment Exp. 1 we have tried fitting a
commonBayes risk function (Eq. 2.1), parameterized by the two costs of errors,
η0 and η1, across all blocks, and solving for the optimal thresholds for each
block independently. This assumption reduces the number of free parameters
for the blocked condition from 21 (2 thresholds × 9 conditions + 1 SNR + 2
motor parameters) to 5 (2 costs of errors + 1 SNR + 2 motor parameters), but
at the cost of marked reduction in the quality of fits for some of the subjects.
Therefore as far as our model is concerned, there was some block-to-block
variability of the error costs.

Finally, we test our model’s generalization ability. We used the signal-to-noise ratio
parameter (themaximumfiring rate λmax) and the twonon-decision delay parameters
estimated from the blocked experiment (Exp. 1) to predict the mixed experiments
(Exp. 2-3). Thus for each mixed experiment only two parameters, namely the
decision thresholds τ0 and τ1, were fit. Despite the parsimony in parameterization,
the model shows good cross-experiment fits (see Fig. 3.10c-f), suggesting that the
parameters of the model refer to real characteristics of the subject.

In conclusion, SPRT both prescribes the optimal behavior given task structure and
predicts human visual search behavior. SPRT has a compact parameterization: on
average, three parameters are needed to predict each experimental condition and
many parameters (the signal-to-noise ratio of the hypercolumn and the motor time
distribution) generalize across different experimental conditions.

Biological plausibility of parameters
The agreement between the optimal model predictions and the data collected from
our subjects suggests that the human visual system may be optimal in visual search.
Our model uses nH = 16 uncorrelated, orientation-tuning neurons per visual loca-
tion, each with a half tuning width of 22◦ and a maximum firing rate (estimated from
the subjects) of approximately 17Hz. The tuning width agrees with V1 physiology
in primates [39]. While our model appears to have underestimated the maximum
firing rate of cortical neurons, which ranges from 30Hz to 70Hz [39], and the pop-
ulation size nH (which may be in the order of hundreds), actual V1 neurons are



32

Mixed
20 25 30 35 40 45

500

600

700

800

900

1000

∆θ (°)

R
T 

(m
s)

M=12 TA(data)
TA(fit)
TP(data)
TP(fit)

20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

∆θ (°)

ER

Subj=bc

1030

2

4

6

RT (ms)

fre
q

M=12,TC=20 TA(data)
TA(fit)
TP(data)
TP(fit)

1030

2

4

6 M=12,TC=30

1030

2

4

6 M=12,TC=45

4 6 8 10 12
500

600

700

800

900

1000

M

R
T 

(m
s)

4 6 8 10 12
0

0.05

0.1

0.15

0.2

M

ER

∆θ=30 FPR(data)
FPR(fit)
FNR(data)
FNR(fit)

Subj=bc

1030

2

4

6

RT (ms)

fre
q

M=3,∆θ=30 TA(data)
TA(fit)
TP(data)
TP(fit)

1030

2

4

6 M=6,∆θ=30

1030

2

4

6 M=12,∆θ=30

Er
ro

r r
at

e

4 6 8 10 12
500

600

700

800

900

1000

M

R
T 

(m
s)

∆θ=30 TA(data)
TA(fit)
TP(data)
TP(fit)

4 6 8 10 12
0

0.05

0.1

0.15

0.2

M

ER

Subj=bc

1030

2

4

6

RT (ms)

fre
q

M=3,∆θ=30 TA(data)
TA(fit)
TP(data)
TP(fit)

1030

2

4

6 M=6,∆θ=30

1030

2

4

6 M=12,∆θ=30

TA (data)
TA (fit)
TP (data)
TP (fit)

FPR (data)
FPR (fit)
FNR (data)
FNR (fit)

M
ed

ia
n 

RT
 (m

s)
ER

Set-size

Subject bc

4 6 8 10 12
500

600

700

800

900

M
R

T 
(m

s)

4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

M

ER

∆θ=20

Subject bc

4 6 8 10 12
500

600

700

800

900

4 6 8 10 12
0

0.05

0.1

0.15

0.2
∆θ=30

Subject bc

4 6 8 10 12
500

600

700

800

900

4 6 8 10 12
0

0.05

0.1

0.15

0.2

∆θ=45

FPR(data)
FPR(fit)
FNR(data)
FNR(fit)

Subject bc

4 6 8 10 12
500

600

700

800

900

M
R

T 
(m

s)

∆θ=20

4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

M

ER

Subject bc

4 6 8 10 12
500

600

700

800

900 ∆θ=30

4 6 8 10 12
0

0.05

0.1

0.15

0.2

Subject bc

4 6 8 10 12
500

600

700

800

900

∆θ=45

TA(data)
TA(fit)
TP(data)
TP(fit)

4 6 8 10 12
0

0.05

0.1

0.15

0.2

a)

b)

20 25 30 35 40 45
500

600

700

800

900

1000

∆θ (°)
R

T 
(m

s)

20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

∆θ (°)

ER

M=12 FPR(data)
FPR(fit)
FNR(data)
FNR(fit)

Subj=bc

1030

2

4

6

RT (ms)

fre
q

M=12,TC=20 TA(data)
TA(fit)
TP(data)
TP(fit)

1030

2

4

6 M=12,TC=30

1030

2

4

6 M=12,TC=45

c)

Fr
eq

ue
nc

y

20 25 30 35 40 45
500

600

700

800

900

1000

∆θ (°)

R
T 

(m
s)

M=12 TA(data)
TA(fit)
TP(data)
TP(fit)

20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

∆θ (°)

ER

M=12 FPR(data)
FPR(fit)
FNR(data)
FNR(fit)

Subj=bc

fre
q

RT (log scale, ms)
103102

�� =20o

Mixedd)

ER

M
ed

ia
n 

RT
 (m

s)

M
ed

ia
n 

RT
 (m

s)

�� =30o

�� =45o

��

Set-size Set-size

��Mixed Set-size

Set-sizeSet-size �� ��

�� =20o

�� =20o �� =30o

�� =30o

�� =45o

�� =45o

Figure 3.9: Behavioral data of a randomly selected human subject and fits (ER,
median RT andRT distributions) using SPRT. (a)Exp. 1: “Blocked" design. All
set-size M and orientation contrast ∆θ combinations share the same hypercolumn
and non-perceptual parameters; the decision thresholds are specific to each ∆θ-M
pair. Fits are shown for RTs (first row) and ER (second row). (b-c) RT and ER for
Exp. 2, the“mixed set size" (b) and Exp. 3, the “mixed contrast" design (c). (d) RT
histogram for the "mixed contrast" design, grouped by orientation contrast.

correlated, hence the equivalent number of independent neurons is smaller than the
measured number. For example, take a population of nH = 16 independent Poisson
neurons, all with a maximum firing rate of 17Hz, and combine every group of three
of them into a new neuron. This will generate a population of 560 correlated neurons
with a maximum firing rate of 51Hz and a correlation coefficient of 0.19, which is
close to the experimentally measured average of 0.17 [39] (see [45] for a detailed
discussion on the effect of sparseness and correlation between neurons). Therefore,
our estimates of the model parameters are consistent with primate cortical param-
eters. The parameters of different subjects are close but not identical, matching
the known variability within the human population [44], [46]. Finally, the fact that
estimating model parameters from data collected in the blocked experiments allows
the model to predict data collected in the mixed experiments does suggest that the
model parameters mirror physiological parameters in our subjects.
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Figure 3.10: Synopsis of fits to nine individual subjects. The rows correspond
respectively to three designs: Exp. 1 (blocked), Exp. 2 (mixed contrast) and Exp. 3
(mixed set size). The maximum firing rate of the hypercolumn λmax and the two
non-decision parameters for each subject are fitted using only the blocked design
experiment, and used to predict median RT and ER for the two mixed design
experiments. Colors are specific to subject. The small, medium and large dots
correspond, respectively, to the orientation contrast of 20◦, 30◦, and 45◦ in (c-d),
and to the set-sizes 3, 6, and 12 in (e-f).

3.6 Spiking network implementation
Finally, we explore the physical realization of SPRT and show that a simple network
of spiking neurons may implement a close approximation to the decision strategy.

Local log likelihoods

We first explain how to compute Lθ (X1:t ), the local log likelihood of the stimulus
taking on orientation θ, from spiking inputs X1:t from V1. Lθ (X1:t ) is the building
block of S(X1:t ) (Eq. A.3). Consider one spatial location, the log likelihood is
(derived in Appendix Eq. A.2):

Lθ (X1:t ) =
Kt∑
s=1

W i(s)
θ + const. (3.13)

The first term is a diffusion, where each spike causes a jump in Lθ . Due to this
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similar estimated internal parameters, as well as of SPRT (Eq. 3.2) and the spiking
network implementation (Sec. 3.6) using the same internal parameters. The set-size
takes value from {3, 6, 12}, and the orientation contrast is fixed at 30◦.

property any linear combination of the diffusions, such as that of Eq. 3.3, is also
a diffusion. This term can be implemented by integrate-and-fire [47] neurons, one
for each relevant orientation θ ∈ ΘT

⋃
ΘD, that receive afferent connections from

all hypercolumn neurons with connection weights wi
θ = log λi

θ . The constant term
is computationally irrelevant because it does not depend on the stimulus orientation
θ; it may be removed by a gain-control mechanism to prevent the dynamic range of
membrane potential from exceeding its physiological limits [48]. Specifically, one
may subtract from each Lθ a common quantity, e.g. the average value of the all the
Lθ’s without changing S(X l

1:t ) in Eq. 3.11.

Average gain-control Average gain-control is the process of subtracting the mean
from the Lθ’s to remove unnecessary constants for decision and maintaining mem-
brane potentials within physiological limits. Average gain-control may be conve-
niently done at the input using feedforward connections only. Specially, let yθ (t)
denote the mean-subtracted Lθ signal, wi

θ = log λi
θ denote the weights in Eq. 3.13,

and Xi,t ∈ {0, 1} denote the instantaneous firing event during time (t − 1)∆ to t∆

from neuron i. The desired gain-controlled signal yθ (t) may be computed by linear
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integration, as shown in Fig. 3.12a:

ẏθ (t) =
∑

i

*
,
wi
θ −

∑
θ ′ w

i
θ ′

nH
+
-

Xi,t . (3.14)

Signal Transduction

The log likelihood Lθ must be transmitted downstream for further processing.
However, Lθ is a continuous quantity whereas the majority of neurons in the central
nervous system are believed to communicate via action potentials. We explored
whether this communication may be implemented using action potentials [49] emit-
ted from an integrate-and-fire neuron. Consider a sender neuron communicating its
membrane potential to a receiver neuron. The sender may emit an action potential
whenever its membrane potential surpasses a threshold τs. After firing, the mem-
brane potential drops to its resting value, and the sender enters a brief refractory
period whose duration (about 1ms) is assumed to be negligible (in our simulations,
time is discretized into ∆ = 1ms bins, so we can model the refractory period by
enforcing the condition that at most one spike can happen per bin for the sender
neuron). If the synaptic strength between the two neurons is also τs, the receiver
may decode the signal by simply integrating such weighted action potentials over
time. This coding scheme loses some information due to discretization. Varying
the discretization threshold τs trades off the quality of transmission with the number
of action potentials: a lower threshold will limit the information loss at the cost
of producing more action potentials. Surprisingly, we find that the performance of
the spiking network is very close to that of the Bayesian observer, even when τs is
set high, so that a small number of action potentials is produced (see Fig. 3.12d,f
for the quality of approximation for a toy signal and Fig. 3.6a-c for the quality of
approximation for actual signals in SPRT). The network behavior is quite insensitive
to τs, thus we do not consider τs as a free parameter, and set its value to τs = 0.5 in
our experiments.

Softmax

One of the fundamental computations in Eq. 3.10 is the softmax function (Eq. 3.6).
It requires taking exponentials and logarithms, which have not yet been shown to
be within a neuron’s repertoire. Fortunately, it has been proposed that softmax
may be approximated by a simple maximum [29], [42], and implemented using a
winner-take-all mechanism [50], [51]with spiking neurons [52]. Through numerical
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experiments we find that this approximation results in almost no change to the
network’s behavior (see Fig. 3.12e). This suggests that an exact implementation of
softmax is not critical, and other mechanisms that may be more neurally plausible
have similar performances.

One common implementation [50] of the softmax is described as follows. For a set
of nH spiking neurons, let Xi,t ∈ {0, 1} denote whether neuron i has spiked in time
((t − 1)∆, t∆]. We introduce an additional nH neurons {yi}

nH

i=1, where yi (t) denotes
the membrane potential of the i-th additional neuron at time t. The desired quantity
is the softmax over the cumulative signal in X1:t , denoted by z(t). In other words

z(t) 4= Smax
i=1,...,nH

*
,
wi

t∑
t ′=1

Xi,t ′+
-
,

and z(t) may be approximated by z̃(t) using the following neuron equations (derived
from Taylor expansion):

˙̃z(t) =
∑

i

yi (t)wi Xi,t, (3.15)

˙yi (t) = yi (t)(wi Xi,t − ˙̃z(t)). (3.16)

Fig. 3.12e shows that z̃(t) approximates z(t) well in a simple setup of seven neurons
with a common and small incoming weights wi = 0.05 across all neurons.

The time it takes for the winner-take-all network to converge is typically small (on
the ms level for tens of neurons, scaling logarithmically with the number of neurons
[50]) compared to the inter-spike-intervals of the input neurons (around 30ms per
neuron, and 12ms for a hypercolumn of nH = 16 neurons per visual location [45]).

Decision

Finally, the log likelihood ratio S(X1:t ) is compared to a pair of thresholds to
reach a decision (Eq. 3.2). The positive and negative parts of S(X1:t ), (S(X1:t ))+

and (−S(X1:t ))+, may be represented separately by two mutually inhibiting neu-
rons [53], where (·)+ denotes halfwave-rectification: (x)+ 4= max(0, x). We can
implement Eq. 3.2 by simply setting the firing thresholds of these neurons to the
decision thresholds τ1 and −τ0 respectively.

Alternatively, S(X1:t ) may be computed by a mechanism akin to the ramping neural
activity observed in decision-implicated areas such as the frontal eye field [19]–[21].



37

Time (ms)

x2x1 x3

yθ y

x+ x-

�s y2y1

z

x2x1

0 100 200 300 400 500
−4

−2

0

2

4

6

Time (ms)

Z

 

 

Softmax
WTA

a) b) c)

e)d)

f)

Time (ms) Time (ms)

Lѡ

0 100 200 300 400 500

0 100 200 300 400 500
−6

−4

−2

0

2

Time (ms)

D
iff

us
io

n

 

 

τs=0.1

Diffusion
Spikified

0 100 200 300 400 500

0 100 200 300 400 500
−6

−4

−2

0

2

Time (ms)

D
iff

us
io

n

τs=0.3

0 100 200 300 400 500

0 100 200 300 400 500
−6

−4

−2

0

2

Time (ms)

D
iff

us
io

n

τs=0.5

0 100 200 300 400 500

0 100 200 300 400 500
−6

−4

−2

0

2

Time (ms)

D
iff

us
io

n

τs=0.7

0 100 200 300 400 500

0 100 200 300 400 500
−6

−4

−2

0

2

Time (ms)

D
iff

us
io

n

τs=0.9

a b c

d e

0 100 200 300 400 500

0 100 200 300 400 500
−6

−4

−2

0

2

Time (ms)

D
iff

us
io

n

 

 

τs=0.1

Diffusion
Spikified

0 100 200 300 400 500

0 100 200 300 400 500
−6

−4

−2

0

2

Time (ms)

D
iff

us
io

n

τs=0.3

0 100 200 300 400 500

0 100 200 300 400 500
−6

−4

−2

0

2

Time (ms)

D
iff

us
io

n

τs=0.5

0 100 200 300 400 500

0 100 200 300 400 500
−6

−4

−2

0

2

Time (ms)

D
iff

us
io

n

τs=0.7

0 100 200 300 400 500

0 100 200 300 400 500
−6

−4

−2

0

2

Time (ms)

D
iff

us
io

n

τs=0.9

a b c

d e

�s�s

��s

Figure 3.12: Spiking implementation (a) A feedforward network implemented
the average gain-controlled network of Eq. 3.14. (b) Signal transduction. The
positive and negative parts of the signal in x are encoded with integrate-and-fire
neurons and transmitted to the receiver neuron y. (c) Winner-take-all circuit for
computing the softmax (Eq. 3.15 and Eq. 3.16). (d-e, Top) Two sender neurons
communicate their membrane potentials using spike trains to a receiver neuron (only
the negative neurons are shown). (d-e, Bottom) The receiver reassembles the spike
trains (thick lines) and reconstructs the senders’ membrane potentials (thin lines).
(f) Comparison between the ground-truth and the WTA implementation of softmax
of seven neurons over time.

(S(X1:t ))+ and (−S(X1:t ))+ could be converted to two trains of action potentials
using the same encoding scheme described above in the Signal Transduction sec-
tion. The resultant spike trains may be the input signal of an accumulator model
(e.g. [16]). The model has been shown to be implementable as a biophysically
realistic recurrent network [23], [54], [55] and capable of producing and threshold-
ing ramping neural activity to trigger motor responses [19]–[22], [56]. While both
neural implementations of S(X1:t ) are viable options, in the simulations used in this
study we opted for the first.
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Network structure

If we combine the mechanisms discussed above, i.e. local gain-control, an approx-
imation of softmax, a spike-based coding of analog log likelihood values as well
as the decision mechanism, we see that the mathematical computations required
by the SPRT can be implemented by a deep recurrent network of spiking neurons
(Fig. 3.5a).

The overall network structure is identical to the diagram (Fig. 3.5b). It is composed
of local “hypercolumn readout” networks (Fig. 3.5b), and a central circuit that
aggregates information over the visual field. The local network computes the
local log likelihood ratio Sl (X l

1:t ) (Eq. 3.11) and simultaneously computes the
local log likelihood for each CDD. The CDD log likelihoods are aggregated over
all locations and sent to a gain-control unit to estimate the posterior of the CDD,
Qφ = log P(φ|X1:t ), which captures the most likely set-size and orientation contrast.
At each time instant this estimate is fed back to the local networks to compute S(X l

1:t )
(Eq. 3.11).

It is important to note that both the structure and the synaptic weights of the visual
search network described above were derived analytically from the hypercolumn
parameters (the shape of the orientation-tuning curves), the decision thresholds, and
the probabilistic description of the task. The network designed for heterogeneous
visual search could dynamically switch to simpler tasks by adjusting its priors (e.g.
P(φ)). The network has only three degrees of freedom, rather than a large number
of network parameters [29], [57].

As shown in Fig. 3.11, the spiking implementation approximates SPRT very well,
indicating that the brain can implement optimal Bayesian sequential reasoning using
simple neural mechanisms.

3.7 Chapter summary
Searching for objects amongst clutter is one of the most valuable functions of our
sensory systems. Best performance is achieved with fast response time (RT) and low
error rates (ER); however, response time and error rates are competing requirements
which have to be traded off against each other. The faster one wishes to respond, the
more errors one makes due to the limited rate at which information flows through
the senses. Conversely, if one wishes to reduce error rates, decision times become
longer. In order to study the nature of this trade-off we derived SPRT for visual
search; the input signal to the model is action potentials from orientation-selective



39

hypercolumn neurons in primate striate cortex V1, the output of the model is a
binary decision (target-present versus target-absent) and a decision time.

Five free parameters uniquely characterize the model: the maximum firing rate
of the input neurons and the maximum tolerable false-alarm and false-reject error
rates, as well as two parameters characterizing response delays that are unrelated to
decision. Once these parameters are set, RT histograms and ER may be computed
for any experimental condition. Our model may be implemented by a deep neural
network composed of integrate-and-fire and winner-take-all mechanisms. The net-
work structure is completely deterministic given the probabilistic structure of the
search task. Signals propagate from layer to layer mostly in a feed-forward fashion;
however, we find that two feedback mechanisms are necessary: (i) gain control (lat-
eral inhibition) that is local to each hypercolumn and has the function of maintaining
signals within a small dynamic range, and (ii) global inhibition that estimates the
complexity of the scene. Qualitative comparison of model predictions with human
behavior suggests that the visual system of human observers indeed does estimate
scene complexity as it carries out visual search, and that this estimate is used to
control the gain of decision mechanisms.

Despite the parsimony, our model is able to quantitatively predict human behavior
in a variety of visual search conditions. Without physiological measurements of
the hypercolumn parameters (number of neurons, maximum firing rate, etc) directly
from human subjects, one can not assess optimality. After all, we may be over-
estimating the signal-to-noise ratio in the front-end while humans are sub-optimal.
Nonetheless, the estimated hypercolumn parameters are plausible, suggesting that
humans may employ an optimal strategy for visual search.
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