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ABSTRACT

Visual inputs to artificial and biological visual systems are often quantized: cameras
accumulate photons from the visual world, and the brain receives action potentials
from visual sensory neurons. Collecting more information quanta leads to a longer
acquisition time and better performance. In many visual tasks, collecting a small
number of quanta is sufficient to solve the task well. The ability to determine
the right number of quanta is pivotal in situations where visual information is
costly to obtain, such as photon-starved or time-critical environments. In these
situations, conventional vision systems that always collect a fixed and large amount
of information are infeasible. I develop a framework that judiciously determines
the number of information quanta to observe based on the cost of observation and
the requirement for accuracy. The framework implements the optimal speed versus
accuracy tradeoff when two assumptions are met, namely that the task is fully
specified probabilistically and constant over time. I also extend the framework to
address scenarios that violate the assumptions. I deploy the framework to three
recognition tasks: visual search (where both assumptions are satisfied), scotopic
visual recognition (where the model is not specified), and visual discrimination
with unknown stimulus onset (where the model is dynamic over time). Scotopic
classification experiments suggest that the framework leads to dramatic improvement
in photon-efficiency compared to conventional computer vision algorithms. Human
psychophysics experiments confirmed that the framework provides a parsimonious
and versatile explanation for human behavior under time pressure in both static and
dynamic environments.
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C h a p t e r 1

INTRODUCTION

1.1 Quantized visual information
Images are the dominant medium through which we make sense of the world. Com-
puter vision systems analyze images to extract information about the environment
(e.g. understanding the identities of and relationships between people in a meeting
room); neuroscientists and psychophysicists study the primate vision system using
image stimuli (e.g. study human gaze patterns in response to an image of the beach).
The use of images divides visual perception into two stages: information acquisition
(forming the image) and analysis (understanding what is inside the image).

We study a different type of vision systemwhere information acquisition and analysis
are not divided but intertwined. These vision systems collect visual information
one small quantum at a time, and analyze the quanta as they arrive. For example, a
camera senses photons from the surrounding environment. Every photon falling on
a particular pixel contains information about the visual area corresponding to the
pixel, and thus can update the vision system’s belief aboutwhat is in the environment.
The photon is thus an indivisible piece of visual information, which we refer to as
a “visual quantum”. The use of visual quanta as an alternative medium to images
may be justified in the following examples.

First, acquiring images may be quite expensive in low light environments, and the
long exposure is often undesirable: in biological imaging, prolonged exposure could
cause health risks [1] or sample bleaching [2]; in autonomous driving, the delay
imposed by image capture could affect a vehicle’s ability to stay on-course and avoid
obstacles [3]; in surveillance, long periods of imaging could delay response, produce
smeared images, or compromise stealth. In these scenarios, instead of waiting for a
high-quality image after a long exposure, visual systems should process every single
photon as it arrives, and make a decision as soon as sufficient photons have been
collected.

Second, the quantized view is consistent with the information processingmechanism
of biological visual systems. To transmit information from one area to the next (e.g.
from the retina to the visual cortex), the visual system uses action potentials or
“spikes” [4]. Action potentials, like the photons, are quantized: the impulses have a
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stereotypical shape, and information resides in the timing and the counts. Similarly,
the quantization becomes useful when time is critical. When the visual system is
under time-pressure (e.g. search for predator or prey), it must exploit every single
action potential to make a decision as quickly and as accurately as possible [5].
Hence modeling the quantized signal may help neuroscientists and psychophysicists
understand visual perception in humans and other animals.

Lastly, the quantized reasoning is consistent with the trend of development in sensor
technology. Next-generation visual sensors will be equipped with photon-counting
capabilities. For example, the Quanta Image Sensor [6] and the Giga-vision sen-
sors [7] will detect and report single photon arrival events. The original goal of
designing photon-counting sensors was to increase the signal-to-noise ratio as well
as the spatial and temporal resolution for imaging. Serendipitously, the photon-
counting capability also enabled vision applications to sense and compute with
quantized visual information.

Moreover, quantization does not stop at the level of the sensory input – the entire
computation pipeline from sensory inputs to a decision may be quantized as well. It
is the case for biological visual systems, where quantized communication in the form
of action potentials occur throughout all stages of computation. The quantization
of the thought process may then aid neuroscientists in understanding the functional
roles played by different components in the system. It is also sensible for computer
vision systems to discretize computation. Since the input signals are quantized, the
changes in the internal states of the system should be discretized. When the changes
are sparse, a discrete implementation may be more efficient than a continuous
implementation in terms of the computation time, communication cost, and energy
consumption. This observation has become more relevant recently thanks to the
return of artificial neural networks as the workhorse for visual recognition tasks, for
which the changes are sparse and the energy is key in low light environments.

1.2 The speed versus accuracy tradeoff
Information about the world trickles in one quantum (photon, action potential, etc)
at a time. It is up to the observer to decide how many quanta to collect. Collecting
more information requires time while collecting too little information subjects the
observer to errors. The key is to collect just the right amount of information while
maintaining certain accuracy guarantees (see Fig. 1.1 for illustration). The balance
between the amount of information and the quality of the decision is called the speed
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versus accuracy tradeoff (SAT).

time

PresentPast

Decision

Stop  
observation

Future 

Figure 1.1: Quantized vision. Information trickles into a vision system (through
blue arrows) one quantum at a time. The vision system may also be quantized in
that computation flows through the system in small packets (through orange arrows).
The quantization in the input provides flexibility to stop collecting information
(through grey arrow) as soon as a decision is reached with sufficient certainty. The
quantization in the internal computation provides efficiency in computation.

This thesis is about the theory and practice of SAT in visual perception tasks for
biological and artificial systems. Critically, the information processing pipeline is
quantized from sensory input collection to decision computation. To optimize SAT
it is imperative to know how each quantum of information contributes to the task at
hand, and when the cumulative information is ripe for decision. Ch. 2 lays down the
theoretical framework for answering these questions. The framework assumes that
the task is fully specified by a probabilistic model that is static in time, and Ch. 3
gives an example using visual search where both assumptions are met. In practical
and ecological conditions, a probabilistic model is often not available and the vision
system must learn the decision rules for optimizing SAT. Thus Ch. 4 discusses the
issue of learning with the application of visual classification in lowlight. Ch. 5
describes a visual discrimination example where where the probabilistic model
changes over time. Lastly Ch. 6 studies the optimality of our framework in SAT,
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and Ch. 7 offers the final remarks.

The chapters are self-contained. All readers are encouraged to start from Ch. 2
(framework). Readers with a psychophysics and neuroscience background may
read only Ch. 3 (search) and Ch. 5 (discrimination with unknown stimulus
onset); computer vision readers may start from Ch. 4 (classification); Ch. 6
(optimality analysis) is reserved for the mathematically-inclined. You will find
more helper texts like this that explain how to navigate the thesis and why I
have done things one way instead of another.
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C h a p t e r 2

SEQUENTIAL PROBABILITY RATIO TEST

A framework for Analyzing Quantized Visual Input

We discuss the theoretical framework that optimizes the speed versus accuracy
tradeoff (SAT) for systems with quantized visual inputs. The framework is based
on a mature idea in statistics called the sequential probability ratio test (SPRT, [1]).
The main goal of this chapter is to review the assumptions and optimality guarantees
of SPRT.

2.1 Input assumptions
We start with the assumptions regarding the quantized inputs. These assumptions
are used to develop the basic form of our framework and will be relaxed in later
chapters.

Assumption 1: known probabilistic model
The first piece of the puzzle is understanding what the input is and how it is
generated. Our assumption is that there exists a statistical generative model that
relates the quantized inputs to important variables for solving the task at hand.

For example, when a lioness peruses a herd of buffalos on an open meadow at night,
every part of visual scene conveys information – the locations of the patriarch, the
calfs, the elders and the injured are useful for planning an attack. Nature communi-
cates this information using the spatial and temporal arrangement of photons and the
law of physics: the brighter a visual location is, the more photons will be reflected
to hit the lioness’ retina in a given amount of time. This physical law fits precisely
our assumption: the inputs (photons) are generated according to physical variables
(attributes of buffalo), which is useful to solve the problem (planning an attack).

This assumption also works phenomenologically: it does not require precise knowl-
edge of the physical generative process between task-relevant properties and sensor
inputs. Take a look inside the lioness’ visual system. Information processing here
involves neurons and action potentials, which appears completely different from the
information processing that involves the retina and photons, but actually also fits
the assumption. A subset of neurons in the system are selective towards elementary
shapes such as edges and curves [2]. Neurons in this area will each be triggered by a
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Chapter / Assumption Known probabilistic model Time-homogeneity
Visual search (Ch. 3) X X
Scotopic vision (Ch. 4) × X

Visual discrimination (Ch. 5) X ×

Table 2.1: The set of assumptions satisfied by each application.

specific patch of the visual world to emit action potentials, where the emission rate
reflects the shape information of the patch. If we consider the action potentials from
these neurons as inputs of the visual system, it holds that the inputs (action poten-
tials) are statistically characterized by properties of the physical world (shapes in the
visual world). Therefore, despite lacking a complete understanding of the physical
process of how light goes through the retina and the lateral geniculate nucleus, and
then triggers the shape-selective neurons to fire (which may be quite intricate [3]),
our assumption stands as long as the statistical dependency between the inputs and
the properties of interest is known.

Assumption 2: time-homogeneity
Our second assumption is that the statistical model is constant over time. If both the
lioness and the herd are steady enough, the photons reflected from the scene should
have the same statistics regardless of how long the lioness has been scrutinizing. As
a coarse approximation, the train of action potentials in the orientation-selective area
of the primate visual cortex also follow the same statistics within typical durations
for making a quick decision [4]. Essentially, time-homogeneity ensures that the
number of observations regarding any visual property is potentially infinite, and the
uncertainty around the visual property will vanish over time.

Table. 2.1 outlines the set of assumptions satisfied by the problems in each coming
chapter.

2.2 Notation
Formally, the quantized inputs are the time series X1:t = {X1, . . . , X t }, where time
has been judiciously discretized into bins of size ∆, and the observation X t spans the
duration ((t − 1)∆, t∆]. Each X t ∈ [Z+]D is a D-dimensional vector. An element in
X t counts the number of visual quanta from one of D input channels. For images, X t

could be photon count and D is the number of pixels; for neurons, X t could be spike
counts and D is the number of neurons. Generally speaking, we use the subscripts
to represent the channel and time i.e. Xi,t denotes the count at neuron i and time
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bin t. We also use boldface for vectors and matrices and regular font for scalars.
An object of interest in the visual world (e.g. a buffalo) could be characterized as
one of K categories (e.g. K = 2 for the categories { “weak”, “strong” } ). Let
C ∈ {1, 2, . . . , K } denotes the category of the object. The visual system is free to
report at any time t a class estimate Ĉt ∈ {1, 2, . . . , K }. For simplicity we only
consider classification tasks: the task is to identify the class of the object, which
maps one-to-one to a decision. In other words we assume that the lioness will always
commit to a chase once she identifies the prey as weak, and skip the prey she deems
strong.

One might argue that identifying the category of the object and deciding on
an action should be two separated tasks. For example identifying the strength
of prey and deciding to give chase have different semantics. This is true,
but semantic difference may be all there is. In the lioness’ problem we can
reformulate the categories to “attackable” and “to be avoided”, and then the
classification and the actions would agree.

2.3 Optimality
Now that we have specified the assumptions regarding sensory input, we are ready to
define optimality. As soon as the stream of sensory input pours in, an observer faces
a double decision. First, at each time instant it has to decide whether the information
in the input collected so far is sufficient to reach a decision. Second, once information
is deemed sufficient, it has to pick what decision to make. Moreover, the decisions
must “optimally” trade off reaction time (RT), the amount of time the observer spends
to collect information, with error rate (ER), the frequency of making mistakes.

Optimality is defined with respect to the Bayes risk [5], [6]:

BayesRisk = E[T] + ηE[ĈT , C], (2.1)

where E[T] is the expected reaction time, and E[ĈT , C] is the probability of the
observer committing to a wrong prediction. η is a parameter that specifies the cost
of making mistakes (in seconds). For example, η might be quantified in terms of
the time wasted failing to overpower a strong buffalo. The relative cost of errors and
time is determined by the circumstances in which the observer operates. η may be
higher if the lioness is hungry (catching the prey has higher value), or lower if the
lioness is well hidden (sustained observation is more feasible).
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Why are RT and ER combined linearly in the Bayes risk? The expression
originates from the general description of the observer’s objective:

minE[T], s.t.E[Ĉt , C], ≤ maxerr (2.2)

wheremaxerr is the upper bound on themisclassification error. This constrained
cost function may be concerted to an unconstrained objective via Lagrange
multipliers, and the result is precisely the Bayes risk.

Thus, the Bayes risk measures the combined RT and ER costs of a given search
mechanism. For now we assume that misclassification errors of different kinds all
have the same cost, but this is only for simplicity and will be relaxed in future
chapters.

Next we will present an efficient and popular statistical technique called the Sequen-
tial Probability Ratio Test [1] as our main algorithm for SAT optimization.

2.4 Sequential probability ratio test
SPRT is an algorithm that takes an endless streams of evidence X1:t and decides
(1) when to stop observing and (2) what decision to make. The classic SPRT
discriminates between two classes (K = 2). Crucially SPRT relies on a probabilistic
model that relates the class C to the observations. SPRT takes the following form
(see Fig. 2.1 for illustration):

S(X1:t )
4
= log

P(C = 1|X1:t )
P(C = 0|X1:t )




≥ τ Declare Ĉt = 1
≤ −τ Declare Ĉt = 0
otherwise t ← t + 1.

(2.3)

It considers S(X1:t ), the log likelihood ratio between the two classes with respect to
the observations X1:t . The observer declares class 1 as soon as S(X1:t ) crosses an
upper threshold τ, and declares class 0 as soon as S(X1:t ) crosses a lower threshold
−τ. Until either event takes place, the observer waits for further information. For
convenience we use base 10 for all our logarithms and exponentials, i.e. log(x) 4=
log10(x) and exp(x) 4= 10x .
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Figure 2.1: The sequential probability ratio test (SPRT). SPRT Eq. 2.3 computes
the log class posterior ratio S(X1:t ) = log P(C=1|X1:t )

P(C=0|X1:t )
and compares to a pair of

constant thresholds (assumed symmetrical here) for deciding whether to continue
collecting observations and if not, which class prediction to make. The key in most
applications is to compute S(X1:t ).

Here we assume that the two classes share the same prior probability of 0.5,
hence the log posterior ratio log P(C = 1|X1:t )/P(C = 0|X1:t ) is identical to
the log likelihood ratio log P(X1:t |C=1)

P(X1:t |C=0) . If the prior probability is not uniform,
one can obtain the log posterior ratio by adding the log prior ratio log P(C=1)

P(C=0) ,
a simple application of Bayes’ rule. Thus for simplicity, it is sufficient to be
concerned with computing the log likelihood ratio S(X1:t ) only.

The thresholds τ and −τ are symmetrical as the class distributions and costs of
errors are symmetrical. The threshold τ controls the maximum tolerable error rates.
For example, if τ = 2, i.e. predicting C = 1 when the object is > 102 times more
likely to be in class 1 than in class 0, then the maximum error rate for misclassifying
class C = 1 is 1%. Similarly If τ = 3 then class 0 will be < 103 times more likely
than class 1 when C = 0 is predicted, and the error rate for misclassifying C = 0 is
at most 0.1%. τ is judiciously chosen by the observer to minimize the Bayes risk in
Eq. 2.1, and hence is a function of the cost of error η.

To conclude, SPRT [1] essentially compares the log likelihood ratio S(X1:t ) between
the two classes to a pair of thresholds τ and −τ that are constant over time. This
simple algorithm enjoys optimality guarantees for a variety of classification tasks,
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as we discuss below.

2.5 Optimality guarantees of SPRT
Simple hypothesis testing: strict optimality
SPRT is renowned for its optimality in “simple binary sequential testing” prob-
lems [1]. In these problems, the visible object belongs to one of two classes
(K = 2), and given the classY , the observations over time are independent and iden-
tically distributed (i.i.d.), i.e. P(X1:t |C) =

∏t
t ′=1 P(X t ′ |C). In this case Wald [1]

proved that SPRT minimizes Bayes risk, i.e. any other sequential testing algorithm
will either require longer reaction time or incur more error.

Composite hypothesis testing: asymptotic optimality
For more complex problems, SPRT has not been proven strictly optimal, but it
often ensures “asymptotic” optimality, namely that its Bayes risk will be closer to
optimal as error becomes more important (i.e. as η → ∞). One such complex
problem is binary composite hypothesis testing, where the object categories contain
subclasses, and observations are i.i.d. given the subclasses, not the categoryC. In the
lioness’ problem, both categories (“weak” or “strong”) are composite, e.g. a buffalo
may be weak due to young/old age or past injuries, and the animal’s appearance
depends on these fine-grained subclasses. Composite hypothesis testing has been
studied by many [7], [8] and shown to be asymptotically optimal: Lai [9] proves
asymptotic optimality for a frequentist counterpart of the SPRT, andDarkhovsky [10]
proves strict optimality in the minimax Bayesian setup. The other class of complex
sequential testing problems is multi-hypothesis testing (K ≥ 2, [11]–[13]), where
SPRT has been shown to be asymptotic optimal[14].

How close to optimal is SPRT in non-asymptotic scenarios, i.e. (for finite η)?
Strict optimality for SPRT in complex problems has not been obtained. Numerical
simulations are therefore used to assess the performance of SPRTs on a problem
specific basis (e.g. [8]). In Ch. 6, we provide optimality analysis of SPRT for the
visual search problem (to be formally discussed in Ch. 3), and show that SPRT is
near-optimal for most common settings.

2.6 Chapter summary
Our theoretical framework of choice is the sequential probability ratio test (SPRT).
SPRT relies on thresholding a one-dimensional signal (the log posterior ratio) to de-
termine the length of evidence accumulation and the final decision. SPRT achieves
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impressive optimality guarantees for hypothesis testing problems where the hy-
potheses are (1) fully specified probabilistically and (2) static over time. In future
chapters we will apply SPRT to vision problems with quantized inputs.
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C h a p t e r 3

VISUAL SEARCH

Sequential Reasoning with a Time-Homogeneous Probabilistic Model

We present a psychophysics study of visual search, which is concerned with explain-
ing and assessing the optimality of human speed versus accuracy tradeoff (SAT). The
advantage of psychophysics is that the experimenters, not nature, design the task,
and therefore the probabilistic structure of the task is known. This project therefore
showcases the power of our theoretical framework, the sequential probability ratio
test (SPRT), when its assumptions are met (see Ch. 2), i.e. when the tasks can be
fully specified probabilistically in a static environment.

3.1 The psychophysics of visual search
Visual search is the problem of looking for a target object amongst clutter or distrac-
tors. It is a common task for our everyday life (looking for keys on a desk, friends in
a crowd or signs on a map) and a vital function for animals in the wild (searching for
food, mate, threats). Visual search is difficult and error-prone: the sensory signal is
often noisy; the relevant objects, and their appearance may not be entirely known in
advance, are often embedded in irrelevant clutter, whose appearance and complex-
ity may also be unknown. Thus to reduce detection errors the visual system must
account for the noise structure of the sensors and the uncertainty of the environment.
In addition, time is of the essence: the ability to detect quickly objects of interest is
an evolutionary advantage. Speed comes at the cost of making more errors. Thus,
it is critical that each piece of sensory information is used efficiently to produce a
decision in the shortest amount of time while maintaining the probability of errors
within an acceptable limit.

There are two crucial quantities in visual search: the response time (RT, how long
after an observer is exposed to a scene before it generates a response) and the error
rate (ER). The error rate includes the false positive rate (FPR), which is the fraction
of times when the observer claims to have found a target even though the scene does
not contain any, and the false negative rate (FNR), which is the fraction of times
when the observer claims no target when there is one. We are interested in how
these quantities are affected by the structure of the search task.
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Figure 3.1: Visual search setup (a) Each trial starts with a fixation screen. Next,
the “stimulus” is displayed. The stimulus is an image containing M oriented bars
that are positioned in M out of L possible display locations (M = 6, L = 12 in this
example). One of the bars may be the target. The stimulus disappears as soon as
the subject responds by pressing one of two keys, to indicate whether a target was
detected or not. Feedback on whether the response was correct is then presented
on the screen, which concludes the trial. The subjects were instructed to maintain
center-fixation at all times and respond as quickly and as accurately as possible. (b)
A generative model of the stimulus. The stimulus class C and a prior distribution on
the stimulus orientation P(Y l |Cl ) decide, for each display location l, the orientation
Y l (may be blank). The orientation Y l determines in turn the observations X l

1:t ,
which are firing patterns from a hypercolumn of V1 orientation-selective neurons
at location l over the time window [0, t∆] (The firing patterns of four neurons are
shown at each location).

Psychologists have characterized human visual search performance [1]–[11] in rela-
tion to properties of the search environment such as the distinctiveness of the target
against the background clutter [2], [3], the complexity of the image [4], [5] and the
likelihood that an object of interest may be present [7], [9]. However, it is unknown
what the optimal RT versus ER tradeoff should be in a given environment. It is also
unknown whether human visual search performance is optimal.

Models of visual search fall into two categories. Stochastic accumulators were
introduced to model discrimination [12]–[17] and visual search [18], [19]. The de-
cision signal is either obtained from electrophysiological recordings from decision-
implicated areas, e.g. frontal eye field [19]–[21] and lateral intraparietal area [22],
[23]), or the result of an educated guess to fit the phenomenology [24], [25].
Stochastic accumulator models are appealing because of their conceptual simplicity
and because they fit behavioral data well. However, these models do not attempt to
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explain search performance in terms of the underlying primary signals and neural
computations.

Ideal observer models have been developed to study which computations and mech-
anisms may be optimal for visual discrimination [24], [26] and visual search under
fixed time presentations [27]–[31] using signal detection theory [32]. This line of
work leads us to the question of whether it is possible to derive the optimal decision
strategy for visual search that may predict simultaneously both RT and ER.

3.2 Contributions
We take the Bayesian point of view: we model a system that through experience (or
through evolution) is familiar with the statistics of the scene. The input to our system
is an array of idealized cortical hypercolumns that, in response to a visual stimulus,
produce firing patterns that are Poisson and conditionally independent. After this
assumption is made the model that characterizes the optimal ER vs RT tradeoff is
derived with no additional assumptions and no additional free parameters.

Our main contributions are:

1. We propose a principled and parsimoneous model for studying the optimal SAT
of visual search.
2. Our model can predict the observer’s performance in novel tasks once some
intrinsic properties of the input hypercolumn have been estimated.
3. We are interested in understanding whether such observer might be plausibly
implemented by neural mechanisms such as a network of spiking neurons.
4. We assess the optimality of humans at visual search SAT. We collected psy-
chophysics data and compare human performance with the optimal model and its
spiking implementation.

3.3 Problem setup
The general set-up of a visual search task is as shown in Fig. 3.1a. An observer sits
down in front of a computer monitor. The monitor displays a series of images that
consists of distractors and sometimes targets. The goal of the observer is to decide
whether a target object is present in a cluttered image as quickly and accurately
as possible while maintaining fixation at the center of the image. The decision is
binary, and the two categories of stimuli are: target-present (C = 1) and target-
absent (C = 0), as shown in Fig. 3.2a. When the target is present, its location is not
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known in advance; it may be one of L locations in the image. The observer only
reports whether the target appears, but not where. For now, we limit the number of
targets to be at most one.

In our experiments the target and distractor objects appear at M locations (M ≤ L)
in each image where M reflects the complexity of the image and is known as the
set-size. The objects are simplified to be oriented bars, and the only feature by which
the target and distractor differ is orientation. Target distinctiveness is controlled by
the difference in orientation between target and distractors, the orientation contrast
∆θ. Prior to image presentation, the set of possible orientations for the target and the
distractor is known, whereas the set-size and orientation contrast may be unknown,
and may change from one image to the next (see Fig. 3.2c-d for examples).

In this design we strive to have the simplest experiment that captures all the
relevant variables, namely the dependent variables RT and ERs, as well as the
independent variables the set-size M and the orientation contrast ∆θ. To do so
we first simplify the appearance of the stimuli so that we can focus on modeling
search strategies instead of building classifiers. Second, we eliminate eye-
movements by forcing fixation at the center of the image at all times because
saccade planning is a rich phenomenon on its own that many are struggling
to explain. Third, we have randomized the placement of the targets and the
distractors (details in Sec. 3.5), duration between trials, and stimulus orientation
etc. to eliminate potential biases.

The visual search literature records a rich set of phenomena regarding the RT and
ERs of human observers. We list three in Fig. 3.3. An intuitive phenomenon is
the “set-size effect”. As the amount of clutter increases in the display, the subject
tends to take longer to respond. The slope of RT with respect to the set-size M

depends on the distinctiveness between the target and the distractor ∆θ. The smaller
∆θ is, the more difficult the task becomes and the larger the slope. A less intuitive
phenomenon is the “search asymmetry effect” that the slope for target-absent is
roughly twice the slope for target-present (many other dependent variables display
the set-size effect and search asymmetry, the interested reader is referred to [4]).
Lastly, the RT distributions is heavy-tailed: the log RTs roughly follow a Gaussian
distribution. The list of phenomena goes on.

Existing visual search models [18], [19], [27], [28] describe a subset of the phe-
nomena fairly well, but most fall short in accounting for phenomena across different
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Figure 3.3: Selected list of visual search phenomena (a) The “set-size” effect.
Median RT increases linearly with set-size. The slope depends on the trial type
(target-absent trials have roughly twice the slope) and task difficulty. The two tasks
are searching for a red bar among green bars (easy) and searching for a “2” among
“5”s (hard). (b) RT histograms for different set-sizes ({3, 6, 12, 18}), plotted in log
domain based 10.

search environments. Describing all phenomena in one model is a challenging task.
The model needs to be flexible enough to accommodate changes of the environment,
e.g. different set-sizes, or different probability distributions on the set-sizes, etc. In
addition, the model needs to be efficient enough so that it can be easily transferred
from one environment to the next. Furthermore, there are countless unintended
events, such as the subject blinking, getting fatigued or being distracted, that could
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pollute the behavioral data.

Therefore, instead of describing human behaviors in a variety of visual search
problems, we seek to study the optimal behavior on a per-situation basis. The
optimal behavior can be used as a gold standard to measure human performance.
Given input observations and prior knowledge about the task, we are interested in
the best achievable ER versus RT tradeoff measured in Bayes risk (Eq. 2.1).

3.4 Asymptotically optimal search model
Quantized sensory input
The first step towards studying optimal SAT is to identify the input to the prob-
lem. We consider sensory input from the early stages of the visual system (retina,
lateral geniculate nucleus (LGN) and primary visual cortex), where raw images
are processed and converted into a stream of quantized events, aka action poten-
tials. The anatomy, as well as the physiology, of these stages are well character-
ized [33]. These mechanisms compute local properties of the image, such as color
contrast, orientation, spatial frequency, stereoscopic disparity and motion flow[34],
and communicate these properties to downstream neurons for further processing.
The communication takes on the forms of sequences of action potentials / spikes
from orientation-selective neurons in V1 [33].

The firing patterns of the neurons aremodeledwith an homogeneous Poisson process
[35]. This means that each neuron fires at a fixed rate of λ spikes / second given
the input image, and the timings of the spikes are independent of each other. More
specifically, the number n of events (i.e. action potentials) that will be observed
during one second is distributed as

P(n|λ) = λne−λ/n!.

The firing patterns X1:t are produced over the time interval [0, t∆] by a population
of nH neurons, also known as a hypercolumn, from each of the L display locations.
We model each neuron using the Linear Nonlinear Poisson (LNP) model [36], [37],
which is commonly used to model neural responses. Each neuron has a localized
spatial receptive field and is tuned to local image properties [33], which in our
case is the local stimulus orientation; the preferred orientations of neurons within a
hypercolumn are distributed uniformly in [0◦, 180◦). λi

θ , the expected firing rate of
the i-th neuron, is a function of the neuron’s preferred orientation θi and the stimulus
orientation θ ∈ [0◦, 180◦):
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λi
θ = (λmax − λmin) exp *

,
−
||θ − θi | |

2

σ2
Y

+
-
+ λmin, (3.1)

(in spikes per second, or Hz) where λmin and λmax are a neuron’s minimum and
maximumfiring rates, | |θ−θi | | denotes theminimum angular distance between θ and
θi, andσY ∈ (0◦, 180◦) is the half tuning width. Fig. 3.4a shows the tuning functions
of a hypercolumn of eight neurons, Fig. 3.4b shows the spatial organization of the
hypercolumns, and Fig. 3.4c-d shows the sample spike trains from two locations
with different local stimulus orientations.
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Figure 3.4: V1 Hypercolumns (a) Orientation tuning curves λi
θ (Eq. 3.1) of

a hypercolumn consisting of nH = 8 neurons with half tuning width σY = 22◦,
minimum firing rate λmin = 1Hz and maximum firing rate λmax = 10Hz. (b) V1
hypercolumns tessellate the input space, one for each visual location where an object
(oriented bar) may appear. (c-d) Spike trains X l

1:t at the target location (marked
with green star in (b)) and a distractor location (red star).

Why do we select the response of V1 hypercolumn neurons to be our input?
Indeed there are multiple alternatives: the raw image, the response of the retina
or LGN, and high-level signals that directly encode information regarding target
presence. Our choice is based on flexibility and efficiency. Since the search
problems considered here all involve a simple scenario of oriented bars placed
certain distances apart, it would be redundant to model the neuronal hardware
that gives rise to orientation-selectivity at this stage. Therefore, our level of
abstraction should start at least from V1. On the other hand, although most
visual search models assume high-level input signals [18], [19], [27], [28], they
are not concerned with behaviors across multiple visual search tasks. As we see
later, we will interpret the input fromV1 neurons depending on the probabilistic
structure of the task, which is key for SPRT to generalize across tasks.
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Why do we use LNP to model the V1 spike trains? While Gaussian firing
rate models [28] have also been used in the past, the Poisson model represents
more faithfully the spiking nature of neurons [35], [38], [39]. Second, the
LNP model is simple and parsimonious: it is well studied in the literature [40],
and its limitations are increasingly well understood [40]. Lastly, we do not
use electrophysiological recordings from V1 neurons [39] because large-scale
recordings from the entire V1 are not currently possible. Nonetheless, it may
be possible to bootstrap from a well-represented population of V1 neurons.

Sequential probability ratio test for visual search
Since the problem is binary, SPRT (Eq. 2.3) applies directly to the quantized spike-
train input X1:t of V1 hypercolumn neurons from all display locations over duration
[0, t∆]:

S(X1:t )
4
= log

P(C = 1|X1:t )
P(C = 0|X1:t )




≥ τ1 Declare target present
≤ τ0 Declare target absent
otherwise Postpone decision,

(3.2)

where S(X1:t ) is the log likelihood ratio of target-present (C = 1) vs. target-absent
(C = 0) probabilities with respect to the observations X1:t . τ1 and τ0 together control
the maximum false positive and false negative rates. The key to applying SPRT is
to compute S(X1:t ), which may be systematically constructed from the visual input
according to the graphical model in Fig. 3.1b, and can account for a wide variety of
visual search tasks.

We derive a general model that is capable of handling unknown set-sizes and
orientation contrasts. To build up the concept, we start by reviewing models
for simpler tasks including visual discrimination and visual search with known
set-sizes and orientation contrasts, both of which have already been explored in
the literature [29], [41], [42]. Readers only interested in this general model are
encouraged to skip these models. Table 3.1 provides a roadmap for the models.

Chapter-specific notations
Let X l

t denote the activity of the neurons at location l during the time interval
[0, t∆] in response to a stimulus presented at time 0. X1:t = {X

l
t }

L
l=1 is the ensemble

responses of all neurons from all locations. Let Lθ (X l
1:t )

4
= log P(X l

1:t |Y
l = θ)

denote the log likelihood of the spike train data X l
1:t when the object orientation
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Task L M ∆θ CCD Expression
Homogeneous discrimination 1 M = 1 known known Eq. 3.3
Heterogeneous discrimination 1 M = 1 unknown known Eq. 3.5

Homogeneous search > 1 M = L known known Eq. 3.7
I.i.d-distractor hetero-search > 1 M = L unknown known Eq. 3.8

Heterogeneous search > 1 unknown unknown unknown Eq. 3.10

Table 3.1: List of visual discrimination and visual search tasks. Our contribution
is developing models for tasks colored in blue. In addition, our general model
accounts for the heterogeneous search task, which subsumes all other tasks on the
list. L is the number of total display locations. M is the number of display items. θT
and θD are the target and distractor orientations, respectively. We use “known” and
“unknown” to refer to whether a quantity is known at stimulus onset. In many tasks,
θT and θD are unknown, but sampled according to a distribution. The distribution
φ of the distractor orientation is called a conditional distractor distribution (CDD ,
see the i.i.d-heterogeneous search section), where φθ = P(Y l = θ |Cl = 0) for any
location l. S(X1:t ) = log P(C = 1|X1:t )/P(C = 0|X1:t ) is the class log posterior
ratio that SPRT computes.

Y l at location l is θ (degrees). When there is only one location (as in visual
discrimination as below), the location superscript is omitted. The target orientation
and the distractor orientation are denoted respectively by θT and θD. In many cases,
the target orientation is not unique, but sampled from a setΘT = {θ1, θ2, . . .} of many
possible values. Simiarly ΘD is the domain for the distractor orientation. nT = |ΘT |

and nD = |ΘD | are the number of candidate target and distractor orientations,
respectively.

Homogeneous visual discrimination
First consider the case where either the target or the distractor can appear at only
one display location (L = M = 1), and the target and distractor have distinct and
unique orientations, θT and θD, respectively. The visual system needs to determine
whether the target or the distractor is present in the test image. The log likelihood
ratio in this case is well known [41] (re-derived in the Appendix (Eq. A.3)):

(Homogeneous Discrimination) S(X1:t ) = LθT (X1:t ) − LθD (X1:t ), (3.3)

which, as first pointed out by [43], may be computed by a diffuse-to-bound mecha-
nism [12]. S(X1:t ) is a ‘diffusion’, i.e. it can be updated additively (see Eq. 3.13):
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S(X1:t ) = S(X1:t−1) +
(
LθT (Xt ) − LθD (Xt )

)
, (3.4)

and a decision is taken whenever the diffusion hits one of two boundaries, hence
the name “diffuse-to-bound”. In addition, as shown by [41], SPRT is optimal in
minimizing the Bayes risk in Eq. 2.1.

Heterogeneous visual discrimination
In a more general setting, both the target and the distractor could take one of multiple
orientations. We call heterogeneous visual discrimination the case where the target
and distractors could take on one of multiple orientations, i.e. nT > 1 and/or nD > 1.
The log likelihood ratio is [29] (re-derived in Appendix (Eq. A.4)):

How much does the form of S(X1:t ) depend on the observations X1:t being
Poisson? Only Lθ (X1:t ) makes use of the Poisson likelihood, the derivation of
S(X1:t ) based on Lθ (X1:t ) simply follows Bayesian inference and is therefore
independent of the form of the observation likelihood.

(Heterogeneous Discrimination) S(X1:t ) = Smax
θ∈ΘT

(
Lθ (X1:t ) − log(nT )

)
− Smax

θ∈ΘD

(
Lθ (X1:t ) − log(nD)

)
, (3.5)

where Smax (·) is the “softmax” function. For a vector v and a set of indices I:

Smax
i∈I

(v) 4= log
∑
i∈I

exp(vi). (3.6)

Softmax can be thought of as the marginalization operation in log probability space:
it computes the log probability of a set of mutually-exclusive events from the log
probabilities of the individual events. For example, for two mutually-exclusive
events, A1 and A2, we have P(A1

⋃
A2) = P(A1) + P(A2), then log P(A1

⋃
A2) =

Smax
i=1,2

(
log P(Ai)

)
. Since the different target orientations are mutually-exclusive,

their log likelihoods should be combined using the softmax function to compute the
log likelihood for the target. The same argument applies to the distractor.
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It is important to note that the log likelihood ratio for heterogenous discrimination
is not a diffusion, as Eq. 3.5 does not admit an additive update formulation as
in Eq. 3.4. Rather, it combines diffusions in a non-linear fashion (via a softmax).
Diffuse-to-bound [12] does not give the optimal decision mechanism here, nor in
any of the settings we will discuss later. Moreover, while a diffusion model may
require additional parameters specifying how the statistics of the diffusions relate
to the task parameters (set-size in this case) [24], [25], the construction of SPRT is
parameter-free. Later in Fig. 3.10c-f we will see that SPRT can generalize to novel
experimental settings. The generalizability is non-trivial for diffusion models.

Homogenous search
Now that we have analyzed the case of discrimination (one item visible at any time)
we will explore the case of search (multiple items present simultaneously, one of
which may be the target). Consider the case where all the L display locations are
occupied by either a target or a distractor (i.e. L = M > 1) and the display either
contains one target or none. The target orientation θT and the distractor orientation
θD are again unique and known, i.e. nT = nD = 1. The log likelihood ratio of
target-present vs target-absent is given by [42] (re-derived in Appendix Eq. A.5):

(Homogeneous Search) S(X1:t ) = Smax
l=1,...,L

(
S(X l

1:t ) − log(L)
)
, (3.7)

where S(X l
1:t ) = LθT (X l

1:t ) − LθD (X l
1:t ) is the log likelihood ratio for homogenous

discrimination at location l (see Eq. 3.3). S(X1:t ) combines the local log likelihood
ratio S(X l

1:t ) from all locations using a softmax because the target can only appear
at one of L disjoint locations.

I.i.d.-distractor heterogeneous search
Now we describe our general model of visual search. We start with the simple
case where the set-size is known (M = L > 1) but the orientation contrast is not
(nT > 1, and/or nD > 1). In addition, we assume target and distractor orientations
are sampled i.i.d. in space according to some distribution. We refer to this as the
i.i.d.-distractor heterogeneous search.

We call a “conditional distractor distribution” (CDD) the distribution of orientation
Y l at any non-target location l, i.e. P(Y l |Cl = 0). We denote CDD with φ where
φθ
4
= P(Y l = θ |Cl = 0). Thus φ is a nD-dimensional probability vector. i.e. each
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Figure 3.5: SPRT for heterogeneous visual search. (a) SPRT for heterogeneous
visual search is implemented by a five-layer network. It has two global circuits, one
computes the global log likelihood ratio S(X1:t ) (Eq. 3.10) from local circuits that
compute log likelihood ratios {S(X l

1:t )}l (Eq. 3.11), and the other estimates scene
complexity Qφ(X1:t ) (Eq. A.9) via gain-control. Qφ(X1:t ) feeds back to the local
circuit at each location. (b) The local circuit that computes the log likelihood ratio
S(X l

1:t ). Spike trains X1:t from V1/V2 orientation-selective neurons are converted
to log likelihood for task-relevant orientations Lθ (Eq. 3.13). The log likelihoods of
the distractor LD (second line of Eq. 3.9) under every putative CDD are compiled
together, sent (blue outgoing arrow) to the global circuit, and inhibited (green
incoming arrow) by the CDD estimate Qφ (details in Eq. A.9).

element of φ is non-negative, and all elements sum to one. We introduce CDD here
because it is a key element in the general model of visual search, as will become
clear later. In contrast, the conditional target distribution P(Y l = θ |Cl = 1) is not
as vital and is assumed uniform for notation clarity (see Appendix Eq. A.11 for
cases with general target distributions and different CDDs over locations, and see
Appendix Sec. A.1 for how to formulate common search problems such as those
illustrated in Fig. 3.2b-d in the framework using CDDs.).

The log likelihood ratio may be computed as:
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(I.i.d.-Distractor Heterogeneous Search) S(X1:t ) = Smax
l=1...L

(
S(X l

1:t ) − log(L)
)
,

(3.8)

where S(X l
1:t ) = Smax

θ∈ΘT

(
Lθ (X l

1:t ) − log(nT )
)

− Smax
θ∈ΘD

(
Lθ (X l

1:t ) + log φθ
)
.

(3.9)

The log likelihood ratio expressions (Eq. 3.8 -3.9) are obtained by nesting appro-
priately the models of homogeneous search and heterogeneous discrimination. At
the highest level is the softmax over locations as in Eq. 3.7. At each location l,
S(X l

1:t ) is obtained as the difference between the log likelihood of the target with
that of the distractor (Eq. 3.9), which is reminiscent of Eq. 3.5. Computing the
target log likelihood requires marginalizing over the unknown target orientation with
a softmax (again assuming uniform prior over possible target orientations in ΘT ).
Similarly, the distractor log likelihood marginalizes over the distractor orientation
according to the CDD.
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Figure 3.6: An instantiation of the signals propagating through the network
in Fig. 3.5a. The orientation contrast is 45◦ and there are two possible set-sizes, 1
and 3. (a) The orientation log likelihoods Lθ (X1:t ) (Eq. 3.13) at the target location
(green box in Fig. 3.5a). Lighter colors correspond to the analog signal and darker
colors correspond to the spiking network approximation. (b) Local log likelihood
ratios S(X l

1:t ) (Eq. 3.11) for the four color-coded locations in Fig. 3.5a. (c) the
log likelihood ratio S(X1:t ) (Eq. 3.10) computed using SPRT (black line) and the
spiking implementation (gray line) reach the identical decision at similar response
times (350ms).
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Heterogeneous search
Finally, in the most ecologically relevant situations the complexity and target dis-
tinctiveness are not known in advance. In other words, all search parameters M , θT

and θD are stochastic (nT and/or nD > 1). This scenario may be handled using the
mechanisms for i.i.d. distractor heterogeneous search above as building blocks. For
example, for a fixed set-size, each non-target location has a certain probability of
being blank (as oppose to containing a distractor), which is captured by the CDD.
When set-size changes, CDD will change correspondingly. Therefore, knowing the
CDD effectively allows us to infer the set-size, and vice versa. Our strategy is to
infer the CDD along with the class variables using Bayesian inference.

Let P(φ) be the prior distribution over the CDDs φ. Note that, technically, P(φ)
is a “distribution over distributions”. Computing the log likelihood ratio requires
marginalizing out φ according to P(φ) and the observation X1:t . We assume that the
observer has been exposed to this task for some time and has estimated P(φ). We
also assume that the target distribution is independent of the CDD (and relax this
assumption in the Appendix Eq. A.14). The log likelihood ratio is (see derivations
in Appendix Eq. A.14):

(General Model: Heterogeneous Search) S(X1:t ) = Smax
l=1...L

(
S(X l

1:t ) − log(L)
)
,

(3.10)

where S(X l
1:t ) = Smax

θ∈ΘT

(
Lθ (X l

1:t ) − log(nT )
)

+ Smax
φ∈Φ

(
−Smax

θ∈ΘD

(
Lθ (X l

1:t ) + log φθ
)
+Qφ(X1:t )

)
, (3.11)

where Qφ(X1:t )
4
= log P(φ|X1:t ) is the log posterior of the CDDs given the observa-

tions X1:t (see below). The only difference between the equationsEq. 3.10 -3.11 and
those describing the i.i.d.-distractor heterogeneous search (Eq. 3.8 -3.9) is the sec-
ond line of Eq. 3.11, where the CDD is marginalized out with respect to Qφ(X1:t ).
Since both the CDD φ and the distractor orientation Y l must be marginalized, two
softmaxes are necessary (the second line of Eq. 3.11). The equations do not ex-
plain how to compute Qφ(X1:t ). It may be estimated simultaneously with the main
computation by a scene complexity mechanism that is derived from first principles
of Bayesian inference (see Appendix Eq. A.9). This mechanism extends across the
visual field and may be interpreted as wide-field gain-control (see Fig. 3.5a).
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A simpler alternative to inferring the CDD on a trial-by-trial basis is to ignore its
variability completely by always using the same CDD obtained from the average
complexity and target distinctiveness. More specifically, the approximated log
likelihood ratio is:

S̃(X1:t ) ≈ Smax
l=1,...,L

(
Smax
θ∈ΘT

(
Lθ (X l

1:t )
)
− Smax

θ∈ΘD

(
Lθ (X l

1:t ) + log φ̄θ
))
− log(nT L),

(3.12)

where φ̄θ = E(φθ ) is the mean CDD for orientation θ with respect to the its prior
distribution. This approach is suboptimal. Intuitively, if the visual scene switches
randomly between being cluttered and sparse, then always treating the scene as if
it had medium complexity would be either overly-optimistic or overly-pessimistic.
Crucially, the predictions of this simple model are inconsistent with the behavior of
human observers, as we shall see later in Fig. 3.8.

3.5 Model prediction and human psychophysics
Now that we have seen how to implement SPRT given a visual search task, we
show that it can predict existing phenomena in the literature and data collected by
ourselves.

Qualitative fits
A first test of our model is to explore its qualitative predictions of RT and ER in
classical visual search experiments (Fig. 3.1a).

In a first simulation experiment (Sim. 1), we used a “blocked” design (Fig. 3.2b),
where the orientation of targets and distractors as well as the number of items do
not change from image to image within an experimental block. Thus, the observer
knows the value of these parameters from experience. Accordingly, we held these
parameters constant in the model. We assume that the costs of error are constant,
hence we hold the decision thresholds constant as well. What changes from trial to
trial is the presence and the location of the target, and the timing of individual action
potentials in the simulated hypercolumns. Since we do not model eye-fixations,
we assume that the observer can see all the items equally (which corresponds to
enforcing fixation at the center of the screen for human subjects).

The model makes three qualitative predictions: (a) The RT distribution predicted
by the model is heavy-tailed: it is approximately log-normal in time (Fig. 3.7b).



28

a)
��

Set-size
0 10 20

0

1000

2000

Set size

M
ed

ia
n 

re
sp

on
se

 ti
m

e 
(m

s)

 

 
TC=10o

TA
TP

0 10 20

TC=20o

0 10 20

TC=60o

0 10 20
0

1000

2000

Set size

M
ed

ia
n 

re
sp

on
se

 ti
m

e 
(m

s)

 

 
TC=10o

TA
TP

0 10 20

TC=20o

0 10 20

TC=60o

1000

2000

0 10 20 0 10 20

M
ed

ia
n 

RT
 (m

s)
= 10o = 60o

1020

2

4
TC=10o
TC=20o
TC=60o

Target Absent

1020

1

2

3
TC=10o
TC=20o
TC=60o

Target Present

Response Time (ms, logscale)

N
or

m
al

iz
ed

 C
ou

nt
s

1030

1

2

3

Response Time (ms, logscale)

N
or

m
al

iz
ed

 C
ou

nt
s

RT (log scale, ms)

Frequency

0 50
0

500

1000

1500

Target Contrast (o)

M
ed

ia
n 

re
sp

on
se

 ti
m

e 
(m

s)

 

 
Set size=3

TA
TP

0 50

Set size=6

0 50

Set size=12

��

Set-size = 3

0 500

0.01

0.02

0.03

Target Contrast (o)

Er
ro

r R
at

e

 

 
Set size=3

FPR
FNR

0 50

Set size=6

0 50

Set size=12Set-size = 3

ER

M
ed

ia
n 

RT
 (m

s)

Set-size

b) c)

��

��

Figure 3.7: Qualitative predictions of SPRT (Sim. 1-2). (a) Set-size effect on
median RT under the blocked design (Sim. 1). The ideal observer predicts a linear
RT increase with respect to set-size when the orientation contrast ∆θ is low (10◦,
left) and a constant RT when the orientation contrast is high (60◦, right). The
target-absent (TA) RT slope is roughly twice that of target-present (TP). (b) RT
histogram under the blocked design with a 10◦ orientation contrast and a set-size of
12 items. RT distributions are approximately log-normal. (c) Median RT (upper)
and ER (lower) for visual search with heterogenous target/distractor, mixed design
(Sim. 2).

(b) The median RT increases linearly, as a function of M , with a large slope for
hard tasks (small orientation contrast between target and distractor), and almost flat
for easy tasks (large orientation contrast) (Fig. 3.7a). The median RT is longer for
target-absent than for target-present, with roughly twice the slope (Fig. 3.7a). The
three predictions are in agreement with classical observations in human subjects
(Fig. 3.3) [1], [44].

In a second experiment (Sim. 2) we adopted a “mixed” design, where the distractors
are known, but the orientation contrast is sampled from100, 200 and 600, randomized
from image to image (Fig. 3.2c). The subjects (and our model) do not know which
orientation contrast is present before stimulus onset. The predictions of the model
are shown in Fig. 3.7c. When the target is present both RT and ER are sensitive
to the orientation contrast and will decrease as the orientation contrast increases,
i.e. the model predicts that an observer will trade off errors in difficult trials (more
errors) with errors in easy trials (fewer errors) to achieve an overall desired average
performance, which is consistent with psychophysics data.

In Sim. 3 we explored which one of two competing models best accounts for visual
search when scene complexity is unknown in advance Fig. 3.7d). Recall that in
discussing the heterogeneous search we proposed two models, one that estimates
scene complexity (Eq. 3.10) and is optimal, and a simplifiedmodel (Eq. A.13) that is
sub-optimal. The optimal model predicts that ERs are comparable for different set-
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Figure 3.8: Qualitative model predictions and psychophysics data on visual
search with unknown set-size (Sim. 3). Median RT (upper) and ER (lower): false-
positive-rate (FPR) and false-negative-rate (FNR), of visual searchwith homogenous
target/distractor and unknown set-sizes (Sim. 3) under two models: SPRT (a) that
estimates the scene complexity parameter φ (essentially the probability of a blank at
any non-target location) on a trial-by-trial basis (Eq. 3.10) using a wide-field gain-
control mechanism (Eq. A.9); and a simplified observer (b) that uses average scene
complexity φ̂ for all trials (Eq. A.13). Psychophysical measurements on human
observers (Wolfe et al. [9], spatial configuration search in Fig. 2-3, reproduced
here as (c)) are consistent with the optimal model (a). Simulation parameters are
identical to those used in Fig. 3.7.

sizes while RTs show strong dependency on set-size when the orientation contrast
is small (Fig. 3.8a). The simplified model, where scene complexity is assumed
constant (Eq. A.13), predicts the opposite, i.e. that ER will depend strongly on set
size, while RT will be almost constant when the target is present (Fig. 3.8b). Human
psychophysics data ([9], reproduced inFig. 3.8c) show a positive correlation between
RT and set-size and little dependency of ER on set-size, which favor the optimal
model and suggest that the human visual system estimates scene complexitywhile
it carries out visual search.
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Quantitative fits
In order to assess our model quantitatively, we compared its predictions with data
harvested from human observers who were engaged in visual search (Fig. 3.1a).
Three experiments were conducted to test both themodel and humans under different
conditions. The conditions are parameterized by the orientation contrast chosen
from {20◦, 30◦, 45◦} and the set-size chosen from {3, 6, 12}. The blocked design
was used in the first experiment (Exp. 1), where all 3 × 3 = 9 pairs of orientation
contrast and set-size combinations were tested in blocks. The second experiment
randomized orientation contrast from trial to trial while fixing the set-size at 12
(Exp. 2). The third randomized the set-size while holding the orientation contrast
fixed at 30◦ (Exp. 3). The subjects were instructed to maintain eye-fixation at all
times, and respond as quickly as possible and were rewarded based on accuracy.

We fit our model to explain the full RT distributions and ERs for each design
separately. In order to minimize the number of free parameters, we held the number
of hypercolumn neurons constant at nH = 16, their minimum firing rate constant at
λmin = 1Hz, and the half-width of their orientation tuning curves at 22◦ (full width
at half height: 52◦) [39]. Hence we were left with only three free parameters: the
maximum firing rate of any orientation-selective neuron λmax controls the signal-
to-noise ratio of the hypercolumn; the upper and lower decision thresholds τ0 and τ1
control the frequency of false alarm and false reject errors. Once these parameters
are given, all the other parameters of our model are analytically derived.

While our model takes care of the perceptual computational time, human response
times also include a non-perceptual motor and neural conduction delay [44]. There-
fore, we also use two additional free parameters per subject to account for the
non-perceptual delay. We assume that the delay follows a log-normal distribution
parameterized by its mean and variance.

In the blocked design experiment Exp. 1, the hypercolumn and the motor time
parameters were fit jointly across all blocks (about 1620 trials); the decision thresh-
olds were fit independently on each block (180 trials/block). In the mixed design
experiments Exp. 2-3, all five parameters were fit jointly across all conditions for
each subject because all conditions are mixed (440 trials/ condition). See Fig. 3.9
for data and fits of a randomly selected individual, and Fig. 3.10a-b for all subjects
in the blocked condition. In each experiment the model is able to fit the subjects’
data well. The parameters that the model estimated (the maximum firing rate of
the neurons λmax , the decision thresholds τ0, τ1 are plausible [45]). Each subject
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displays different ERs for different conditions (see Fig. 3.11), and thus the decision
thresholds are indeed not constant.

It may be possible to model the inter-condition variability of the thresholds as
the result of the subjects minimizing a global risk function [25]. Therefore for
each subject in the blocked design experiment Exp. 1 we have tried fitting a
commonBayes risk function (Eq. 2.1), parameterized by the two costs of errors,
η0 and η1, across all blocks, and solving for the optimal thresholds for each
block independently. This assumption reduces the number of free parameters
for the blocked condition from 21 (2 thresholds × 9 conditions + 1 SNR + 2
motor parameters) to 5 (2 costs of errors + 1 SNR + 2 motor parameters), but
at the cost of marked reduction in the quality of fits for some of the subjects.
Therefore as far as our model is concerned, there was some block-to-block
variability of the error costs.

Finally, we test our model’s generalization ability. We used the signal-to-noise ratio
parameter (themaximumfiring rate λmax) and the twonon-decision delay parameters
estimated from the blocked experiment (Exp. 1) to predict the mixed experiments
(Exp. 2-3). Thus for each mixed experiment only two parameters, namely the
decision thresholds τ0 and τ1, were fit. Despite the parsimony in parameterization,
the model shows good cross-experiment fits (see Fig. 3.10c-f), suggesting that the
parameters of the model refer to real characteristics of the subject.

In conclusion, SPRT both prescribes the optimal behavior given task structure and
predicts human visual search behavior. SPRT has a compact parameterization: on
average, three parameters are needed to predict each experimental condition and
many parameters (the signal-to-noise ratio of the hypercolumn and the motor time
distribution) generalize across different experimental conditions.

Biological plausibility of parameters
The agreement between the optimal model predictions and the data collected from
our subjects suggests that the human visual system may be optimal in visual search.
Our model uses nH = 16 uncorrelated, orientation-tuning neurons per visual loca-
tion, each with a half tuning width of 22◦ and a maximum firing rate (estimated from
the subjects) of approximately 17Hz. The tuning width agrees with V1 physiology
in primates [39]. While our model appears to have underestimated the maximum
firing rate of cortical neurons, which ranges from 30Hz to 70Hz [39], and the pop-
ulation size nH (which may be in the order of hundreds), actual V1 neurons are
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Figure 3.9: Behavioral data of a randomly selected human subject and fits (ER,
median RT andRT distributions) using SPRT. (a)Exp. 1: “Blocked" design. All
set-size M and orientation contrast ∆θ combinations share the same hypercolumn
and non-perceptual parameters; the decision thresholds are specific to each ∆θ-M
pair. Fits are shown for RTs (first row) and ER (second row). (b-c) RT and ER for
Exp. 2, the“mixed set size" (b) and Exp. 3, the “mixed contrast" design (c). (d) RT
histogram for the "mixed contrast" design, grouped by orientation contrast.

correlated, hence the equivalent number of independent neurons is smaller than the
measured number. For example, take a population of nH = 16 independent Poisson
neurons, all with a maximum firing rate of 17Hz, and combine every group of three
of them into a new neuron. This will generate a population of 560 correlated neurons
with a maximum firing rate of 51Hz and a correlation coefficient of 0.19, which is
close to the experimentally measured average of 0.17 [39] (see [45] for a detailed
discussion on the effect of sparseness and correlation between neurons). Therefore,
our estimates of the model parameters are consistent with primate cortical param-
eters. The parameters of different subjects are close but not identical, matching
the known variability within the human population [44], [46]. Finally, the fact that
estimating model parameters from data collected in the blocked experiments allows
the model to predict data collected in the mixed experiments does suggest that the
model parameters mirror physiological parameters in our subjects.
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Figure 3.10: Synopsis of fits to nine individual subjects. The rows correspond
respectively to three designs: Exp. 1 (blocked), Exp. 2 (mixed contrast) and Exp. 3
(mixed set size). The maximum firing rate of the hypercolumn λmax and the two
non-decision parameters for each subject are fitted using only the blocked design
experiment, and used to predict median RT and ER for the two mixed design
experiments. Colors are specific to subject. The small, medium and large dots
correspond, respectively, to the orientation contrast of 20◦, 30◦, and 45◦ in (c-d),
and to the set-sizes 3, 6, and 12 in (e-f).

3.6 Spiking network implementation
Finally, we explore the physical realization of SPRT and show that a simple network
of spiking neurons may implement a close approximation to the decision strategy.

Local log likelihoods

We first explain how to compute Lθ (X1:t ), the local log likelihood of the stimulus
taking on orientation θ, from spiking inputs X1:t from V1. Lθ (X1:t ) is the building
block of S(X1:t ) (Eq. A.3). Consider one spatial location, the log likelihood is
(derived in Appendix Eq. A.2):

Lθ (X1:t ) =
Kt∑
s=1

W i(s)
θ + const. (3.13)

The first term is a diffusion, where each spike causes a jump in Lθ . Due to this
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similar estimated internal parameters, as well as of SPRT (Eq. 3.2) and the spiking
network implementation (Sec. 3.6) using the same internal parameters. The set-size
takes value from {3, 6, 12}, and the orientation contrast is fixed at 30◦.

property any linear combination of the diffusions, such as that of Eq. 3.3, is also
a diffusion. This term can be implemented by integrate-and-fire [47] neurons, one
for each relevant orientation θ ∈ ΘT

⋃
ΘD, that receive afferent connections from

all hypercolumn neurons with connection weights wi
θ = log λi

θ . The constant term
is computationally irrelevant because it does not depend on the stimulus orientation
θ; it may be removed by a gain-control mechanism to prevent the dynamic range of
membrane potential from exceeding its physiological limits [48]. Specifically, one
may subtract from each Lθ a common quantity, e.g. the average value of the all the
Lθ’s without changing S(X l

1:t ) in Eq. 3.11.

Average gain-control Average gain-control is the process of subtracting the mean
from the Lθ’s to remove unnecessary constants for decision and maintaining mem-
brane potentials within physiological limits. Average gain-control may be conve-
niently done at the input using feedforward connections only. Specially, let yθ (t)
denote the mean-subtracted Lθ signal, wi

θ = log λi
θ denote the weights in Eq. 3.13,

and Xi,t ∈ {0, 1} denote the instantaneous firing event during time (t − 1)∆ to t∆

from neuron i. The desired gain-controlled signal yθ (t) may be computed by linear
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integration, as shown in Fig. 3.12a:

ẏθ (t) =
∑

i

*
,
wi
θ −

∑
θ ′ w

i
θ ′

nH
+
-

Xi,t . (3.14)

Signal Transduction

The log likelihood Lθ must be transmitted downstream for further processing.
However, Lθ is a continuous quantity whereas the majority of neurons in the central
nervous system are believed to communicate via action potentials. We explored
whether this communication may be implemented using action potentials [49] emit-
ted from an integrate-and-fire neuron. Consider a sender neuron communicating its
membrane potential to a receiver neuron. The sender may emit an action potential
whenever its membrane potential surpasses a threshold τs. After firing, the mem-
brane potential drops to its resting value, and the sender enters a brief refractory
period whose duration (about 1ms) is assumed to be negligible (in our simulations,
time is discretized into ∆ = 1ms bins, so we can model the refractory period by
enforcing the condition that at most one spike can happen per bin for the sender
neuron). If the synaptic strength between the two neurons is also τs, the receiver
may decode the signal by simply integrating such weighted action potentials over
time. This coding scheme loses some information due to discretization. Varying
the discretization threshold τs trades off the quality of transmission with the number
of action potentials: a lower threshold will limit the information loss at the cost
of producing more action potentials. Surprisingly, we find that the performance of
the spiking network is very close to that of the Bayesian observer, even when τs is
set high, so that a small number of action potentials is produced (see Fig. 3.12d,f
for the quality of approximation for a toy signal and Fig. 3.6a-c for the quality of
approximation for actual signals in SPRT). The network behavior is quite insensitive
to τs, thus we do not consider τs as a free parameter, and set its value to τs = 0.5 in
our experiments.

Softmax

One of the fundamental computations in Eq. 3.10 is the softmax function (Eq. 3.6).
It requires taking exponentials and logarithms, which have not yet been shown to
be within a neuron’s repertoire. Fortunately, it has been proposed that softmax
may be approximated by a simple maximum [29], [42], and implemented using a
winner-take-all mechanism [50], [51]with spiking neurons [52]. Through numerical



36

experiments we find that this approximation results in almost no change to the
network’s behavior (see Fig. 3.12e). This suggests that an exact implementation of
softmax is not critical, and other mechanisms that may be more neurally plausible
have similar performances.

One common implementation [50] of the softmax is described as follows. For a set
of nH spiking neurons, let Xi,t ∈ {0, 1} denote whether neuron i has spiked in time
((t − 1)∆, t∆]. We introduce an additional nH neurons {yi}

nH

i=1, where yi (t) denotes
the membrane potential of the i-th additional neuron at time t. The desired quantity
is the softmax over the cumulative signal in X1:t , denoted by z(t). In other words

z(t) 4= Smax
i=1,...,nH

*
,
wi

t∑
t ′=1

Xi,t ′+
-
,

and z(t) may be approximated by z̃(t) using the following neuron equations (derived
from Taylor expansion):

˙̃z(t) =
∑

i

yi (t)wi Xi,t, (3.15)

˙yi (t) = yi (t)(wi Xi,t − ˙̃z(t)). (3.16)

Fig. 3.12e shows that z̃(t) approximates z(t) well in a simple setup of seven neurons
with a common and small incoming weights wi = 0.05 across all neurons.

The time it takes for the winner-take-all network to converge is typically small (on
the ms level for tens of neurons, scaling logarithmically with the number of neurons
[50]) compared to the inter-spike-intervals of the input neurons (around 30ms per
neuron, and 12ms for a hypercolumn of nH = 16 neurons per visual location [45]).

Decision

Finally, the log likelihood ratio S(X1:t ) is compared to a pair of thresholds to
reach a decision (Eq. 3.2). The positive and negative parts of S(X1:t ), (S(X1:t ))+

and (−S(X1:t ))+, may be represented separately by two mutually inhibiting neu-
rons [53], where (·)+ denotes halfwave-rectification: (x)+ 4= max(0, x). We can
implement Eq. 3.2 by simply setting the firing thresholds of these neurons to the
decision thresholds τ1 and −τ0 respectively.

Alternatively, S(X1:t ) may be computed by a mechanism akin to the ramping neural
activity observed in decision-implicated areas such as the frontal eye field [19]–[21].
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Figure 3.12: Spiking implementation (a) A feedforward network implemented
the average gain-controlled network of Eq. 3.14. (b) Signal transduction. The
positive and negative parts of the signal in x are encoded with integrate-and-fire
neurons and transmitted to the receiver neuron y. (c) Winner-take-all circuit for
computing the softmax (Eq. 3.15 and Eq. 3.16). (d-e, Top) Two sender neurons
communicate their membrane potentials using spike trains to a receiver neuron (only
the negative neurons are shown). (d-e, Bottom) The receiver reassembles the spike
trains (thick lines) and reconstructs the senders’ membrane potentials (thin lines).
(f) Comparison between the ground-truth and the WTA implementation of softmax
of seven neurons over time.

(S(X1:t ))+ and (−S(X1:t ))+ could be converted to two trains of action potentials
using the same encoding scheme described above in the Signal Transduction sec-
tion. The resultant spike trains may be the input signal of an accumulator model
(e.g. [16]). The model has been shown to be implementable as a biophysically
realistic recurrent network [23], [54], [55] and capable of producing and threshold-
ing ramping neural activity to trigger motor responses [19]–[22], [56]. While both
neural implementations of S(X1:t ) are viable options, in the simulations used in this
study we opted for the first.
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Network structure

If we combine the mechanisms discussed above, i.e. local gain-control, an approx-
imation of softmax, a spike-based coding of analog log likelihood values as well
as the decision mechanism, we see that the mathematical computations required
by the SPRT can be implemented by a deep recurrent network of spiking neurons
(Fig. 3.5a).

The overall network structure is identical to the diagram (Fig. 3.5b). It is composed
of local “hypercolumn readout” networks (Fig. 3.5b), and a central circuit that
aggregates information over the visual field. The local network computes the
local log likelihood ratio Sl (X l

1:t ) (Eq. 3.11) and simultaneously computes the
local log likelihood for each CDD. The CDD log likelihoods are aggregated over
all locations and sent to a gain-control unit to estimate the posterior of the CDD,
Qφ = log P(φ|X1:t ), which captures the most likely set-size and orientation contrast.
At each time instant this estimate is fed back to the local networks to compute S(X l

1:t )
(Eq. 3.11).

It is important to note that both the structure and the synaptic weights of the visual
search network described above were derived analytically from the hypercolumn
parameters (the shape of the orientation-tuning curves), the decision thresholds, and
the probabilistic description of the task. The network designed for heterogeneous
visual search could dynamically switch to simpler tasks by adjusting its priors (e.g.
P(φ)). The network has only three degrees of freedom, rather than a large number
of network parameters [29], [57].

As shown in Fig. 3.11, the spiking implementation approximates SPRT very well,
indicating that the brain can implement optimal Bayesian sequential reasoning using
simple neural mechanisms.

3.7 Chapter summary
Searching for objects amongst clutter is one of the most valuable functions of our
sensory systems. Best performance is achieved with fast response time (RT) and low
error rates (ER); however, response time and error rates are competing requirements
which have to be traded off against each other. The faster one wishes to respond, the
more errors one makes due to the limited rate at which information flows through
the senses. Conversely, if one wishes to reduce error rates, decision times become
longer. In order to study the nature of this trade-off we derived SPRT for visual
search; the input signal to the model is action potentials from orientation-selective
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hypercolumn neurons in primate striate cortex V1, the output of the model is a
binary decision (target-present versus target-absent) and a decision time.

Five free parameters uniquely characterize the model: the maximum firing rate
of the input neurons and the maximum tolerable false-alarm and false-reject error
rates, as well as two parameters characterizing response delays that are unrelated to
decision. Once these parameters are set, RT histograms and ER may be computed
for any experimental condition. Our model may be implemented by a deep neural
network composed of integrate-and-fire and winner-take-all mechanisms. The net-
work structure is completely deterministic given the probabilistic structure of the
search task. Signals propagate from layer to layer mostly in a feed-forward fashion;
however, we find that two feedback mechanisms are necessary: (i) gain control (lat-
eral inhibition) that is local to each hypercolumn and has the function of maintaining
signals within a small dynamic range, and (ii) global inhibition that estimates the
complexity of the scene. Qualitative comparison of model predictions with human
behavior suggests that the visual system of human observers indeed does estimate
scene complexity as it carries out visual search, and that this estimate is used to
control the gain of decision mechanisms.

Despite the parsimony, our model is able to quantitatively predict human behavior
in a variety of visual search conditions. Without physiological measurements of
the hypercolumn parameters (number of neurons, maximum firing rate, etc) directly
from human subjects, one can not assess optimality. After all, we may be over-
estimating the signal-to-noise ratio in the front-end while humans are sub-optimal.
Nonetheless, the estimated hypercolumn parameters are plausible, suggesting that
humans may employ an optimal strategy for visual search.
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C h a p t e r 4

SCOTOPIC VISUAL RECOGNITION

Sequential Reasoning without the Probabilistic Model

Our second project is scotopic visual recognition, which aims to recognize objects
with as little light as possible. This project is motivated by real-world applications
ranging from biological imaging to astrophysics. Unlike visual search (Ch. 3), most
practical vision applications do not have the luxury of knowing the full probabilistic
model for the task at hand. To circumvent this problem we proposed techniques to
train a sequential algorithm directly to optimize the speed versus accuracy tradeoff
(SAT).

4.1 Motivations
Just like biological systems, computer vision systems are optimized for accuracy
and speed. Accuracy is well understood as the success rate at identifying object
classes, estimating object poses, etc. Speed depends on the time it takes to capture
an image (exposure time) and the time it takes to compute the answer. Computer
vision researchers typically assume that there is plenty of light and a large number of
photons may be collected very quickly, thus speed is limited by computation. This
is called photopic vision where the image, while difficult to interpret, is (almost)
noiseless; researchers ignore exposure time and focus on the trade-off between
accuracy and computation time (e.g. Fig 10 of [1]).

In images with eight bits per pixel of signal (i.e. SNR=256), pixels collect
104 − 105 photons [2]. In full sunlight the exposure time is about 1/1000 s
which is negligible compared to typical computation times.

Consider now the opposite situation, which we call scotopic vision, where photons
are few and precious, and exposure time is long compared to computation time.
As computation time becomes a small additive constant, the design tradeoff is
between accuracy and exposure time [3]. There are multiple situations where
trading off accuracy with exposure time is compelling. (1) One may be trying to
sense/control dynamics that are faster than the exposure time that guarantees good
quality pictures, e.g. automobiles and quadcopters [4]. (2) In competitive scenarios,
such as sports, a fraction of a second may make all the difference between defeat
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Figure 4.1: Classification with few photons and speed-accuracy tradeoff. Cu-
mulative photon count N t generated using sample images from the (a) CIFAR10
dataset and the (b)MNIST dataset with increasing average photons per pixel (PPP).
PPP is proportional to the exposure time t. The images were obtained by simulating
photon arrival times (Sec. A.2). Blue hollow arrows indicate the median PPP re-
quired for our scotopic classifier (WaldNet) to achieve comparable error rates (21%)
as the model trained and tested using images under normal lighting conditions with
about 27 ≈ 104 PPP (see Sec. A.2 for protocol). Considerable speedups, of about
two orders of magnitude, may be obtained by making classification happen as soon
as a sufficient number of photons has been collected. Considerable further speed
gainsmay be achieved by trading-off classification performancewith decision speed:
green solid arrows indicate the median PPP required to to maintain error rates below
22% for CIFAR and 1% for MNIST.

and victory [5]. (3) Sometimes prolonged imaging has negative consequences, e.g.
because phototoxicity and bleaching alter a biological sample [6] or because of health
risks in medical imaging [7]. (4) In sensor design, reduced photon counts allow
for imaging with smaller pixels and ultra-high resolution [8], [9]. (5) Sometimes
there is little light in the environment, e.g. at night, and obtaining a good quality
image takes a long time relative to achievable computational speed. Thus, it is
compelling to understand how many photons are needed for good-enough vision,
and how one can make visual decisions as soon as a sufficient number of photons
has been collected.

The term ‘scotopic / photopic vision’ literally means ‘vision in the dark / with
plenty of light’. It is usually associated to the physiological state where only
rods, not cones, are active in the retina. We use ‘scotopic vision’ to denote the
general situation where a visual system is starved for photons, regardless of the
technology used to capture the image.
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Our work is further motivated by the recent development of photon-counting imag-
ing sensors: single photon avalanche diode arrays [10], quanta image sensors [9],
and gigavision cameras [8]. Instead of returning a high-quality image after a fixed
exposure time, these sensors detect and report single photon arrival events at high
frequencies. This ability to manipulate photon acquisition with fine granularity
makes photon-counting sensors ideal for scotopic vision applications. Current com-
puter vision technology has not yet taken advantage of these sensors.

4.2 Contributions
While scotopic vision has been studied in the context of the physiology and tech-
nology of image sensing [11], [12], as well as the physiology and psychophysics
of visual discrimination [13] and visual search [14], little is known regarding the
computational principles for high-level visual tasks, such as categorization and de-
tection, in scotopic settings. Prior work on photon-limited image classification [15]
deals with a single image, and does not study the trade-off between exposure time
and accuracy. Instead, our work explore scotopic visual categorization on modern
datasets such as MNIST and CIFAR10 [16], [17].

Sequential testing has appeared in the computer vision literature [18]–[20] in order
to shorten computation time. These algorithms assume that all visual information
(‘the image’) is present at the beginning of computation, thus focus on reducing
computation time in photopic vision. By contrast, our work aims to reduce capture
time and is based on the assumption that computation time is negligible when
compared to image capture time. The similarity between the two lines of work is
therefore only superficial.

Our main contributions are:
1. We present a computational framework for scotopic classification that dynam-
ically decides the image exposure time for SAT.
2. When a probabilistic model of the classification task is given, we design a feed-
forward architecture yielding any-time, quasi-optimal scotopic classification.
3. When the probabilistic model is not available, we propose a learning algorithm
to train the architecture for optimizing the SAT.
4. We conduct a robustness analysiswith respect to sensor noise in current photon-
counting sensor prototypes.
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4.3 Framework for scotopic classification
Quantized sensory input
Our computational framework starts from a model of the sensory input. Each pixel
in an image reports the brightness estimate of a cone of visual space by counting
photons coming from that direction. The estimate improves over time.

To begin we consider a simpler version of the problem where the assumptions
(Ch. 2) are met for SPRT. We assume that 1) the world is stationary during the
imaging process (this may be justified as many photon-counting sensors sample the
world at > 1kHz [8], [9]); 2) photon arrival times follow a homogeneous Poisson
process (details below) and 3) a probabilistic classifier based on photon counts
is available. Assumption 3) may not be satisfied for practical object recognition
classification problems, therefore we discuss how to do without this assumption
in Sec. 4.3.

Poisson noise model

Sensors are corrupted by several intrinsic noise sources [21]. Shot noise: the
number of photons incident on a pixel i in the t-th time interval, Xt,i, follows a
Poisson distribution whose rate λi (Hz) depends on both the pixel intensity Ii ∈ [0, 1]
and a dark current εdc:

P(Xt,i = k) = Poisson(k |λit∆) = Poisson(k |λφ
Ii + εdc

1 + εdc
t∆), (4.1)

where λφ is the illuminance (maximum photon count per pixel) per unit time [2],
[8], [21], [22]. During readout, the photon count is additionally corrupted first by
the amplifier’s read noise, which is an additive Gaussian, then by the fixed-pattern
noise which may be thought of as a multiplicative Gaussian noise [23]. As photon-
counting sensors are designed to have low read noise and low fixed pattern noise[9],
[10], [22], we focus on modeling the shot noise and dark current only. We will show
(Sec. 4.4) that our models are robust against all four noise sources.

According to the stationary assumption there is no need to model motion-
induced blur. Additionally, for simplicity we do not model charge bleeding
and cross-talk in colored images, and assume that they will be mitigated by the
sensor community [24].

When the illuminance λφ of the environment is fixed, the amount of photons is
roughly linear in the exposure time t (Eq. 4.1). Hence we use the number of photons
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per bright pixel (PPP) interchangeably with the exposure time t. i.e.:

PPP = λφt∆. (4.2)

PPP= 1 means that a pixel with maximum intensity has collected 1 photon. Since
the information content in the image is directly related to the number of photons,
from now on we measure response time in terms of PPP instead of exposure time.
Fig. 4.1 shows a series of images from the CIFAR10 dataset [16] with increasing
PPP.

Sequential probability ratio test for scotopic classification
Assume that a probabilistic model is available to interpret the sensory input given
the class label – either provided by the application or learned from labeled data
using techniques described in Sec. 4.3 – we can apply SPRT to classify the photon
streams. Since the classification task may contain multiple categories, the SPRT
formulation Eq. 2.3 needs to be extended to handle multiple hypothesis testing [25],
[26].

Let Sc(X1:t )
4
= log P(C=c|X1:t )

P(C,c|X1:t )
denote the class posterior probability ratio of the visual

categoryC for photon count input X1:t ,∀c ∈ {1, . . . , K }, and let τ be an appropriately
chosen threshold. SPRT conducts a simple accumulation-to-threshold procedure to
estimate the category Ĉ:

Compute c∗ = argmax
c=1,...,K

Sc(X1:t )

if Sc∗ (X1:t ) > τ : report Ĉ = c∗

otherwise : increase exposure time t. (4.3)

Static versus dynamic exposure time models

In essence, SPRT decides when to respond dynamically, based on the stream of ob-
servations accumulated so far. As a result of the trial-by-trial variation of the signal,
the response time also varies trial by trial. This regime is called “ free-response”
(FR), in contrast to the “ interrogation” (INT) regime, typical of photopic vision,
where a fixed-length observation is collected for each trial [27]. The observation
length may be chosen according to a training set and fixed a priori. In both regimes,
the length of observation should take into account the cost of errors, the cost of time,
and the difficulty of the classification task.
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Despite the striking similarity between the two regimes, SPRT (the FR regime)
outperforms the INT regime, as we prove here for the case where the observations
are i.i.d., and demonstrate empirically in Sec. 4.4.

Theorem 1 Free-response is asymptotically better than interrogation. Assume
that a probabilistic model is given to compute S(X1:t ), and X t is i.i.d. in time.
Consider an FR algorithm that runs SPRT on S(X1:t ) and let εFR and TFR be its
error rate and stochastic decision time. Also consider an INT algorithm with a
fixed-length observation of t I NT that achieves an error of ε I NT . We have that the
Bayes risk (Eq. 2.1) of the FR algorithm is less than or equal to that of the INT
algorithm. In other words, as η → 0:

E[TFR] + ηεFR ≤ t I NT + ηε I NT .

Proof We prove the statement for binary classification with equal prior (K =

2, Eq. 2.3, the proof extends trivially to larger K). Consider all X1:t generated
from the positive class C = 1. Given an error rate requirement εFR, the FR algo-
rithm sets up its threshold τ such that all the trials that terminate with Ĉ = 1 must
achieve a posterior probability of 1 − εFR, i.e. P(C = 1|X1:t ) = 1 − εFR, where
P(C = 1|X1:t ) = Sigm(S(X1:t )). Therefore, the threshold satisfies Sigm(τ) =
1 − εFR.

Since X t is i.i.d. in time, S(X1:t ) =
∑

t S(Xt ). Let µ
4
= E[Xt],∀t represent the mean

evidence accumulation rate (constant over time). The expected run time for the FR
algorithm is

tFR = E[TFR] =
τ

µ
.

Now consider an INT algorithm with the same observation time as the expected
observation time for the FR algorithm, i.e. t I NT = tFR. As η → 0, εFR → 0,
tFR → ∞ and S(X1:tFR ) ≥ 0, a.s.. The error rate of the INT algorithm is

1 − ε I NT = E[Sigm(S(X1:tFR ))] ≤ Sigm(E[S(X1:tFR )]), a.s.

= Sigm(µtFR) = Sigm(µ
τ

µ
) = Sigm(τ) = 1 − εFR,

as a result of Jensen’s inequality used on Sigm(x), which is concave when x ≥ 0.

Therefore as η → 0, for any tFR = t I NT , we have εFR ≤ ε I NT, a.s.. Therefore for
any pair of {t I NT, ε I NT } that minimizes Bayes risk for the INT algorithm, we can
find an FR algorithm with {tFR, εFR} that achieves a lower or equal Bayes risk.
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Computing class probabilities over time
The challenge of applying SPRT is to compute Sc(X1:t ) for class c and the input
stream X1:t of variable exposure time t, or in a more information-relevant unit,
variable PPP levels. Thanks to the Poisson noise model (Eq. 4.1), the sufficient
statistics for observation X1:t is the cumulative count N t =

∑t
t ′=1 X t ′ (visualized in

Fig. 4.1), therefore we may rewrite Sc(X1:t ) as Sc(N t ). It is evident that counts at
different PPPs have different statistics. It would appear that a specialized system is
required for each PPP level. This leads to the naive ensemble approach. Instead, we
also propose a network called WaldNet that can process images at all PPPs and has
the size of only a single specialized system. We describe the two approaches below.

We insist on the need to distinguish between the cumulative count N t and the
conventional image, which is obtained by normalizing N t to intensities within
[0, 255]. By retaining the magnitude of the counts, N t carries the uncertainty
of the intensity estimates, which is crucial for evaluating the confidence of the
class prediction.

A naïve approach: network ensembles
The simple idea is to build a separatemodel S(N t ) for the cumulative counts for each
exposure time t (or light level PPP), either based on domain knowledge or learned
from a training set. For best results one needs to select a list of representative light
levels, and then apply each to input streams that were captured at the corresponding
light level. For cumulative counts N t ′ captured at light levels that are not on the list,
one may simply apply the model with the closest light level. We refer to this as the
‘ensemble’ predictor.

One potential drawback of this ensemble approach is that training and storing
multiple systems is wasteful. At different light levels, while the cumulative counts
change drastically, the underlying statistical structure of the task stays the same. An
approach that takes advantage of this relationship may lead to more parsimonious
algorithms.

Model-based approach: WaldNet
An alternative is to exploit the knowledge about the cumulative counts across light
levels. The variation in the input N t has two independent sources: one is the
stochasticity in the photon arrival times, and the other the intra- and inter- class
variation of the real intensity values of the object. SPRT excels at reasoning about the
first noise source while deep networks are ideal for capturing the second. Therefore
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we propose WaldNet, a deep network for speed-accuracy tradeoff (Fig. 4.2b-c) that
combines deep networks with SPRT. Standard deep networks such as convolutional
networks [17] (ConvNets) can not be applied directly as their inputs all have an
identical exposure time T (e.g. T ≈ 33ms in normal lighting conditions). Instead,
WaldNet utilizes lowlight noise statistics ( Sec. 4.4) to adjust the computation within
a deep network over exposure time t in order to compute the log class probability
ratios Sc(N t ) over time t.

We first assume that a generative model for the cumulative counts NT is available,
and use it to develop a generative model for WaldNet. Then we provide a discrimi-
native model with the identical computational form as the generative model, which
may be learned directly from data.

The generative model is rather technical. Readers who are not familiar with
the literature on restricted Boltzmann machines and deep belief networks [28],
[29] are encouraged to skip directly to the next section that discusses the
discriminative training of WaldNet.

We assume that the generative model of input photon counts takes the form of a
deep belief network [29]. The deep belief network is composed of multiple stacks.
A stack on layer l consists of an input vector v(l), a hidden vector h(l) ∈ {0, 1}nlH
and a pooling vector m(l) ∈ {0, 1}nlM . The log posterior ratio of the pooling vector

of one layer becomes the input vector of the layer above, vl+1
i = log P(m(l )

i =1)

P(m(l )
i =0)

, and

the last pooling vector encodes desired log class posterior ratio S(NT ). m(l), hl and
v(l) are connected convolutionally as in a ConvNet, as follows:

1. Each pooling unit m(l)
k oversees a non-overlapping group G(l)

k of hidden units
where at most one hidden unit is allowed to be on. m(l)

k = 1 represents the presence
of an image feature (say a 45◦ edge) anywhere within a spatial neighborhood G(l)

k

of the image, and h(l)
j = 1 indicates that the feature’s location is j. This formulation

is a generalization of probabilistic max pooling [30].

2. Each hidden unit h(l)
k connects to a small (say 5 × 5) neighborhood of input

units v(l). For layers l > 1 the hidden-input relationship is a standard RBM [28],
[30], [31]. In the first layer where the input is the photon counts (v(1) = NT ), the
hidden-input relationship is a Poisson restricted Boltzmann machine [32], described
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below. For notation simplicity we omit the layer superscript.

P(Ni,T |h) = Poiss(Ni,T | exp(
∑

j

h jWi j + bV
i )T ), (4.4)

where W ∈ RnV×nH and bV ∈ RnV are weights and biases of the model. Since the
connectivity is local, for each column in W , which corresponds to a hidden unit,
only a small set (e.g. 25) of the entries are non-zero. The hidden units collectively
model the mean firing rate λi = exp(

∑
j h jWi j + cV

i ) on location i.

Conversely conditioning on the cumulative photon count NT , the hidden units
become independent and their distribution is given by:

P(h j = 1|NT ) = Sigm(
∑

i

Ni,TWi j + bH
j ). (4.5)

Inference on the deep belief network faces one critical issue, which is that the
observations are evolving over time, i.e. we need to compute P(h j = 1|N t ) for any
t ≤ T , instead of merely the highly-exposed ‘image’ at time T . This may be done
by marginalizing out the unobserved counts ∆N 4

=
∑T

t ′=t+1 X t ′:

P(h j = 1|N t ) =
∑
∆N

Sigm(
∑

i

(Ni,t + ∆Ni)Wi j + bH
j )P(∆N |N t ) (4.6)

≈ Sigm(
∑

i

(Ni,t + (T − t)E[λi |Ni,t])Wi j + bH
j ), (4.7)

where E[λi |Ni,t] is the estimated firing rate for location i. Using a Gamma prior
Gam(µit0, t0) on λi 1 we obtain that

P(h j = 1|N t ) ≈ Sigm(α(t)
∑

i

Wi, j Ni,t + β j (t)),

where α(t) 4= T+t0
t+t0

and β j (t)
4
=

τ(T−t)
t+t0

∑
i Wi j µi+bH

j are two smooth scalar functions
in t. Detailed derivations are in Sec. A.2.

Therefore, the log posterior ratio of the hidden units at the first layer is given by:

SH
j (N t )

4
= log

P(h j = 1|N t )
P(h j = 0|N t )

≈ α(t)
∑

i

Wi, j Ni,t + β j (t). (4.8)

The log posterior ratio of the pooling unit mk is:

SM
k (N t )

4
= log

P(mk = 1|N t )
P(mk = 0|N t )

= Smax
j∈Gk

(
SH

j (N t )
)
≈ max

j∈Gk

SH
j (N t ), (4.9)

which is identical to the standard max pooling and the Maxout nonlinearity in deep
networks [33], [34].

1We use a Gamma prior because it is the conjugate prior of the Poisson likelihood.
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Figure 4.2: WaldNet for lowlight visual recognition. (a) A modified ConvNet
for computing class posterior. The first layer is adapted (Eq. 4.10) to capture
time-invariant features. From the cumulative photon counts N t from duration
[0, t∆] (visualization in Fig. 4.1), WaldNet approximately computes hidden features
SH (N t ) that marginalize over unseen photons using weights W scaled by a time-
varying scalar function α(t) (Eq. 4.8)). It then feeds the features into the remainder
of the ConvNet F to compute log class posterior ratio S(N t ). (b) Deciding when
to stop collecting photons. The class posteriors race to a common threshold to
determine the category to predict. WaldNet stops photon collection as soon as
one class crosses the threshold (Eq. 4.3). The example shows S(N t ) for three
classes where the true class is green. Using a higher threshold (blue) yields a later
but more accurate solution whereas a lower (orange) threshold is faster but risks
misclassification. (c) The SAT curve (illustration only) produced by repeating (a-
b) for multiple images and sweeping the threshold τ. (d) Learning time-varying
threshold τη (t) (when class posterior learning (Eq. 4.12) is imperfect) to optimize
Bayes risk with cost of error η (Eq. 2.1). The centipede network describes the
recurrence relationship between risk R(n)

t starting from time t of example n and the
risk R(n)

t+1 starting from time t + 1 (Eq. 4.13). q(n)
t is a gate (based on whether S(N t )

crosses threshold) that decides whether WaldNet stops at t with misclassification
risk e(n)

t or continues collecting photons with risk R(n)
t+1.

Discriminative training of WaldNet
Since the generative model may not be available in many practical applications, it
may be more convenient to train a classifier that directly predicts the log posterior
ratio S(N t ) and that shares the same computational structure as the inference pro-
cedure of the generative model. Fortunately the inference procedure bears striking
similarity to a ConvNet, so that powerful deep learning tools (e.g. provided by
the MatConvNet toolbox [35]) may be applied. Now we present the discriminative
reasoning.

Inference procedure



54

Recall from the previous section that the inference procedure of WaldNet is an
adjusted version of the standard ConvNet. In ConvNet, the input is an image NT

obtained from a fixed observation time T . ConvNet contains multiple layers of
computations that may be viewed as a nesting of two transformations: (1) the first
hidden layer SH (NT ) = WNT + bH that maps the input to a feature vector, and
(2) the remaining layers S(NT ) = F (SH

T ) that map the features SH to the log class
posterior probabilities S(NT ). W ∈ RD×nH is a weight vector and bH ∈ RnH is a
bias vector.

WaldNet differs from a ConvNet in two aspects. (1) The input N t to a WaldNet is a
time-series that includes the cumulative photon counts up to a moving horizon t, and
the output S(N t ) is also a time-series, which encodes the log class posterior prob-
abilities over time. (2) The first-layer features in WaldNet are computed differently
depending on the exposure time t. The weights and biases of the transformation in
SH are adjusted smoothly over time using α(t) ∈ R and β(t) ∈ RnH (see Eq. 4.8
and Eq. 4.9):

SH (N t ) = α(t)WN t + β(t), (4.10)

while the rest of the computations stays the same: S(N t ) = F (SH (N t )).

The main intuition of our approach is that the stochasticity in photon arrivals
is addressed with an exposure-time specific transformation SH , and the intra-
and inter- class variation is captured with an exposure-time invariant transfor-
mation F. The revised network has nearly the same number of parameters
as a conventional ConvNet, but has the capacity to process inputs at different
exposure times. The adaptation is critical for performance, as will be seen by
comparison with simple rate-based methods in Sec. 4.4.

Why do we single out the first layer features SH (N t ) for adjustment? In theory
features at any layer would do but it is more convenient at the first layer. This is
because the adjustment procedure uses mean-field approximations and this (1)
becomes increasingly less accurate as the feature computation becomes more
nonlinear, and (2) requires computing the posterior mean of the feature, which
may not have a handy closed form.

Training strategy
Recall that our goal is to train WaldNet to optimize the Bayes risk [36] (Eq. 2.1). In
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scotopic vision the Bayes risk R is formulated as

R 4
= E[t] + ηE[C , Ĉt], (4.11)

where E[t] is the expected photon count required for classification, E[C , Ĉt]
is the error rate, and η describes the user’s cost of error versus time. WaldNet
asymptotically optimizes the Bayes risk provided that it can faithfully capture the log
class posterior ratio S(N t ), and selects the correct threshold τ (Eq. 2.3). Sweeping
η allows WaldNet to traverses the optimal SAT (Fig. 4.2c).

Our strategy is to separate training into two steps with distinct objectives: step one
trains a WaldNet to approximate S(N t ), and step two picks the optimal threshold
according to η to minimize the Bayes risk.

Step one: posterior learning
Given a lowlight dataset {N (n)

t ,C (n)}n,t where n indexes training examples and t

indexes exposure time, we train the WaldNet to minimize:

−
∑
n,t

log P(C = C (n) |N (n)
t ,W ) + reg(W ), (4.12)

where W collectively denote all the parameters in the WaldNet, and reg(W )
denotes L2 weight-decay on the filters. When a lowlight dataset is not available we
simulate the dataset from intensity images according to the noise model in Eq. 4.1,
where the exposure times are sampled uniformly on a logarithmic scale (seeSec. 4.4).

Step two: threshold tuning
After step one, if WaldNet captures the log class posterior ratios S(N t ), we can
simply optimize a scalar threshold τη for each tradeoff parameter η. In practice, we
may opt for a time-varying threshold τη (t) as step one may not be perfect.

For instance, consider an adapted ConvNet that perfectly captures the class
posterior. Ignoring the regularizer (right term of Eq. 4.12), we can scale
up the weights and biases of the last layer (softmax) by an arbitrary amount
without affecting the error rate, which scales the negative log likelihood (left
term in Eq. 4.12) by a similar amount, leading to a better objective value. The
magnitude of the weights are thus determined by the regularizer and may be
off by a scaling factor. We therefore need to properly rescale the class posterior
at every exposure time before comparing to a constant threshold, which is
equivalent to using a time-varying threshold τη (t) on the raw predictions.
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To learn the time-varying threshold τη (t), we need to formulate the Bayes risk
objective as a function of τη (t). Let {N (n)

t }
T
t=1 be a sequence of lowlight images

that are increasing in exposure time and generated from the n-th intensity image.
Denote q(n)

t
4
= I[maxc Sc(N t ) > τη (t)] the event that the posterior crosses decision

threshold at time t, and e(n)
t the event that the class prediction at t is wrong. Let R(n)

t

denote the Bayes risk of the sequence (indexed by n of the high-quality image X (n))
incurred from time t onwards. R(n)

t may be computed recursively:

R(n)
t = ∆ + η

(
q(n)

t e(n)
t + (1 − q(n)

t )R(n)
t+1

)
, (4.13)

where the first term is the cost of collecting photons during time interval ((t−1)∆t∆],
the second term is the expected cost of committing to a decision that is wrong, and
the last term is the expected cost of deferring the decision till more photons are
collected.

The Bayes risk is obtained from averaging multiple photon count sequences, i.e.
R = E[R(n)

0 ]. q(n)
t is non-differentiable with respect to the threshold τη (t), leading to

difficulties in optimizing R. Instead, we approximate q(n)
t with a Sigmoid function,

q(n)
t (τη (t)) ≈ Sigm

(
1

σtemp
(max

c
Sc(N t ) − τη (t))

)
, (4.14)

where Sigm(x) 4= 1/(1+exp(−x)), and anneal the temperatureσtemp of the Sigmoid
over the course of training [37] (see Sec. 4.4).

Even though we assume a certain form for the log class posterior ratio S(X1:t ),
this threshold learning procedure is very general and works for any S(X1:t ). In
particular, it may be used for learning SPRT procedures when the underlying
probabilistic distribution is not i.i.d. in time.

4.4 Experiments
Exposure time versus signal

Our experiments use PPP interchangeably with exposure time t for performance
measurement, since PPP directly relates to the number of bits of signal in each pixel
(Eq. 4.2). In practice an application may be more concerned with exposure time.
Thus it is helpful to relate exposure time, PPP and the bits of signal. Table 4.1
describes this relationship for different illuminance levels. Derivations are in the
Appendix Sec. A.2.
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Illuminance exposure time t (s)
Scene Ev (LUX) 1/500 1/128 1/8 1 8 60
Moonless 10−3 1.5 3
Full moon 1 0.5 1.5 3.5 5 6.5 8
Office 250 4.5 5.5 7.5 9 10.5 12
Overcast 103 5.5 6.5 8.5 10 11.5 13
Bright sun 105 9 10 12 13.5 15 16.5

Table 4.1: (Approximate) number of bits of signal per pixel under different illumi-
nance levels. See Appendix for full derivation. For instance, in an office scene it
takes 1/8 seconds to obtains a 7.5-bit image. Under full moon, the same high-quality
image and the same sensor needs > 8 seconds to capture.
Baseline Models
We compare WaldNet against the following baselines:

Ensemble. We construct the ensemble (Sec. 4.3) using “specialist” models. Each
specialist is a ConvNet with the same model dimensions (number of layers, number
of hidden units of each layer, nonlinearity, etc) as the WaldNet, but is trained using
only cumulative photon counts at a single PPP. We use four specialists with PPPs
from {.22, 2.2, 22, 220} respectively. To test cumulative counts NPPP′ with a PPP
that is not on the training set, we rescale NPPP′ to have the same PPP as the specialist
with the closest PPP. As the number of specialists grows, the ensemble approaches
the best achievable SAT for WaldNet.

Photopic classifier. To justify the necessity of modeling photon count statistics
in lowlight, we introduce another intuitive classifier. The classifier is a ConvNet
trained on ‘images’ NT from normal lighting conditions, and applied to properly
rescaled cumulative counts N t for t ≤ T . We choose the specialist with PPP= 220
as the photopic classifier as it achieves the same accuracy as a network trained with
8-bit images.

Rate classifier. To test the significance of the uncertainty information carried by the
cumulative counts, we train a classifier directly on the rate estimates without weight
adaptation. Formally, the hidden unit on layer one is SH (N t ) ≈ WN t/t + bH

j . Note
the similarity with our approximation used in Eq. 4.8.

We assume that all models have an internal clock, which enables the model to
estimate the expected PPP under the constant illuminance assumption. When the
illuminance changes, the model may rely on an independent external measure or the
cumulative count itself to adjust PPP.

We consider two standard datasets: MNIST [17] and CIFAR10 [16]. We simulate
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Figure 4.3: Interrogation performance comparison. Error rate plotted against
the interrogation PPP for (a) MNIST and (b) CIFAR10. Each dot is computed from
classifying 10k test examples with a fixed PPP.
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Figure 4.4: Free response performance comparison. Error rate plotted against
median PPP for ( a) MNIST and ( b) CIFAR10. 1 bootstrap ste is shown for both
the median PPP and error rate, the latter is too small to be visible.

lowlight image sequences using Eq. 4.1. MNIST contains gray-scaled 28 × 28
images of 10 hand-written digits. CIFAR10 contains 32 × 32 color images of 10
visual categories. The details of model architectures and training procedure are
found in the Appendix Sec. A.2.

Results
The SAT curves in the INT regime are shown in Fig. 4.3a and b. Median PPP
versus accuracy tradeoffs for all models in the FR regime are shown in Fig. 4.4a
for MNIST and Fig. 4.4b for CIFAR10. All models use constant thresholds for
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Figure 4.5: Effect of threshold learning (Sec. 4.3). ( a) Error rate against the
average PPP for CIFAR10 using a network with optimized time-varying threshold
τη (t). 1 bootstrapped ste is shown but not visible. ( b) Each curve shows the
Bayes risk reducation after optimization (Sec. 4.3, step two) per average PPP. ( c)
Response time (PPP) histograms under the interrogation, FR (before optimization),
and FR (after optimization) of a WaldNet that achieves 22% error on CIFAR10.

producing the tradeoff curves. In Fig. 4.5a are average PPP versus accuracy curves
when the models use the optimized dynamic thresholds (Sec. 4.3, step two).

Model comparisons
Overall, WaldNet performs well under lowlight. It only requires < 1 PPP to stay
within 0.1% (absolute) degradation in accuracy on MNIST and around 20 PPP to
stay within 1% degradation on CIFAR10, even though recognition at such light
levels (Fig. 4.1) may prove difficult for humans.

The ensemble was formed using specialists at logarithmically-spaced exposure
times, thus its curve is discontinuous in the INT regime (Fig. 4.3). The peaks
delineate transitions between specialists. The ensemble’s performance at the spe-
cialized light levels [.22, 2.2, 22, 220] also provides a proxy for the performance
upper bound by ConvNets of the same architecture (apart from overfitting and con-
vergence issues during learning). Using this proxy we see that even thoughWaldNet
uses 1/4 the parameters of the ensemble, it stays close to the performance upper
bound. In FR regime, the ensemble is outperformed by WaldNet on MNIST (due to
overfitting) and on par on CIFAR10 for lowlight conditions (< 22 PPP). This show-
cases WaldNet’s ability to handle photon counts at multiple PPPs without requiring
explicit parameters (as it is the case for the ensemble).

The photopic classifier retrofitted to lowlight applications does not work well in
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Figure 4.6: Effect of sensor noise on WaldNet. The rows correspond to datasets
MNIST and CIFAR10, and the columns correspond to parameters of noise sources,
which are the dark current εdc, the standard deviation of additive read noise σr ,
and the standard deviation of multiplicative fixed pattern noise σ f pn. The baseline
has εdc = 3% and σr = σ f pn = 0 for MNIST, and εdc = 5%, σr = 0.22 and
σ f pn = 0.03 for CIFAR10.

either dataset, which showcases the necessity of WaldNet as well as training with
scotopic input. On MNIST, the photopic classifier also underperforms WaldNet in
highlight regimes. This is because MNIST is rather easy to overfit, and training
with lowlight inputs provides a form of regularization.

The rate classifier differs from WaldNet only in how the first layer feature is com-
puted, thus the better performance of WaldNet in CIFAR10 is due solely to the
WaldNet’s time-adapted features (Eq. 4.8).

Effect of threshold learning
With constant thresholds (Fig. 4.4) WaldNet significantly outperforms the photopic
classifier. As the latter has never seen any lowlight inputs, its assessment of the
log posterior ratio is ill-suited to SPRT. Using learned dynamic thresholds (step
two of Sec. 4.3) we see consistent improvement on the average PPP required for
given error rate across all models (Fig. 4.5b), with more benefit for the photopic
classifier. Fig. 4.5c examines the PPP histograms on CIFAR10 with constant (FR)
versus dynamic threshold (optimized FR). We see with constant thresholds many
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decisions are made at the PPP cutoff of 220, so the median and the mean are vastly
different. Learning dynamic thresholds reduce the variance of the PPP but make the
median longer. This is ok because the Bayes risk objective (Eq. 2.1) concerns the
average PPP, not the median. Clearly which threshold to use depends on whether
the median or the mean is more important to the application.

Effect of INT versus FR
Cross referencingFig. 4.3 andFig. 4.4 reveals that FRwith constant thresholds often
brings 3x reduction in median photon counts. Dynamic thresholds also produce
faster average and median responses. This is consistent with our theoretical result
in Theorem. 1.

Sensitivity to sensor noise
Finally, we inspect how the network’s performance is affected by sensor noise. For
MNIST and CIFAR10, we take WaldNet and vary independently the dark current,
the read noise and the fixed pattern noise (Fig. 4.6).

First, the effect of dark current and fixed pattern noise is minimal. Even an 11%
dark current (i.e. photon emission rate of the darkest pixel is 10% of that of the
brightest pixel) merely doubles the exposure time with little loss in accuracy. The
multiplicative fixed pattern noise does not affect performance because WaldNet in
general makes use of very few photons. Second, current industry standard of read
noise (σr = 22% [9]) guarantees no performance loss. Lastly, the fact thatσr = 50%
hurts performance suggests that single-photon resolution is vital for scotopic vision
(Fig. 4.6b,e).

4.5 Chapter summary
We proposed to study the important yet relatively unexplored problem of scotopic
visual recognition. Scotopic vision is vision starved for photons. This happens
when available light is low, and image capture time is longer than computation
time. In this regime vision computations should start as soon as the shutter is
opened, and algorithms should be designed to process photons as soon as they
hit the photoreceptors. While visual recognition from limited evidence has been
studied [38], to our knowledge, our study is the first to explore the exposure time
versus accuracy trade-off of visual classification, which is essential in scotopic
vision.

We proposed WaldNet, a model that combines photon arrival events over time to
form a coherent probabilistic interpretation, andmake a decision as soon as sufficient
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evidence has been collected. The proposed algorithmmay be implemented by a deep
feed-forward network similar to a convolutional network. Despite the similarity of
architectures, we see clear advantages of approaches developed specifically for the
scotopic environment. An experimental comparison between WaldNet and models
of the conventional kind, such as photopic approaches retrofitted to lowlight images
and ensemble-based approaches agnostic of lowlight image statistics, shows large
performance differences, both in terms of model parsimony and response time
(measured by the number of photons required for decision at desired accuracy).
Finally, despite relying only on few photons for decisions, WaldNet is minimally
affected by camera noises, making it an ideal model to be integrated with the
recently-developed lowlight sensors.
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C h a p t e r 5

VISUAL DISCRIMINATION WITH UNKNOWN STIMULUS
ONSET

Sequential Reasoning with a Nonstationary Probabilistic Model

Our last project is a psychophysics study of visual discrimination with uncertain
stimulus onset. Unlike the previous problems, in this problem a probabilistic model
is given, but the model is not stationary over time.

5.1 Motivation
An organism’s survival is critically dependent on its ability to detect change (e.g.
the sound/sight of something moving in the distance), and classify its nature (e.g.
a predator, prey, or meaningless clutter). In ecological conditions, change detec-
tion and object classification frequently co-occur: approaching animals need to be
detected and classified as friend or foe. Despite the ecological significance of con-
sidering detection and classification jointly, the two tasks are typically studied in
isolation. Consequently, it remains unknown how humans jointly perform classifi-
cation and detection, and whether and how humans trade off speed and accuracy.

Psychologists have studied the phenomenology of visual discrimination as well as
computational approaches [1]–[3]. We have reviewed that the optimal model for
trading off speed and accuracy is the sequential probability ratio test (SPRT) [4].
When the discrimination is between two simple templates, the diffuse-to-bound
process [5] is also optimal. These discrimination models require knowing when
change happens, i.e. when to start accumulating evidence, which is not a realistic
hypothesis in most ecological conditions.

The phenomenology of change point detection is relatively less explored. Earlier
studies examine whether change occurred [6]–[9], and, more recently, when it
occurred [10], [11]. The optimal model for minimizing detection error and reaction
time [12] dates back to the cumulative sum control chart (CUSUM) [13], [14], which
utilizes a diffuse-to-bound mechanism with only one absorbing boundary. When
the change could bring the world into one of multiple states, a network of diffusions
is required [15] to integrate changes attributable to different categories optimally.
Despite addressing the uncertainty in change onset, these models do not consider
the question of classification.
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Contributions
(1) We study the the joint detection and classification task (the ‘dual task’ for
brevity). Our experiment is a variant of random dot motion discrimination [2]
where the motion is completely incoherent at first. After a random delay it becomes
coherent in one of two directions. The subject is asked to both detect change and
classify the coherent motion. We manipulated the motion directions to control the
relative difficulty of detection and classification.

(2) We developed three computational models for the dual task. The first model
‘Classifies and then Detects’ (CD), which is optimal [16]. CD applies SPRT on the
probabilisticmodel of both classification and detection. The second and thirdmodels
are computationally simpler and sub-optimal, where they apply SPRT separately on
the detection and the classification problem. The two models differ in the temporal
order in which the SPRT modules are executed. Model two conducts ‘Detection
and Classification in Parallel’ (DCP), while the third model conducts ‘Detection and
Classification in Series’ (DCS).

(3) We test human subjects on the dual task as well as a pure detection task. Fitting
the parameters of our models to data collected from both tasks reveals that the only
model that is consistent with human SAT behavior is the conceptually simple but
sub-optimal DCS model. Primates have been found to be near-optimal in detection
and classification [11], [17]–[19] and our findings deviate from this pattern.

(4) To fit our models on random-dot motion patterns, we develop a simple model
of early vision [20], [21] based on quantized sensory input, which are action po-
tentials from motion-tuning neurons in area MT [22]. This model is parsimonious
and versatile: with one free parameter it simulates sensory inputs for detection
tasks and dual tasks with arbitrary coherent strengths and motion directions. This
generalization ability is an improvement over other decision models of random dot
motion discrimination [3], [23], [24], which typically are independently parame-
terized across tasks and only generalize across the level of coherence of motion
stimuli.

5.2 Framework for visual discrimination with unknown onset
Chapter-specific notations

Formally in the dual task, the world exists in one of three states at any given time
bin t: Ct ∈ {0, 1, 2}, where time bin t represents the duration ((t − 1)∆, t∆], where 0
is the initial state (e.g. incoherent motion), 1 and 2 are two post-change states to be
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distinguished (e.g. coherent motion along one of two directions). The world always
starts from C0 = 0 and changes to either class 1 or class 2 at a random time tδ . The
change occurs only once. The observer has information regarding the distribution
of the change time tδ, but not the actual value of tδ. The goal is to infer the stimulus
category C ∈ {1, 2} as quickly as possible, but not earlier than tδ, in which case the
response is considered a false detection error. Fig. 5.1a illustrates the setup for the
dual task in the context of random dot motion discrimination (see Sec. 5.3).

Models
Our three models (CD, DCP, and DCS) vary in optimality and simplicity. CD is
optimal. The initial incoherent motion and the two coherent motions are modeled
as three separate stimulus categories, and the dual task is reduced to a multi-
category classification task, which may be solved optimally [16]. DCS and DCP
are computationally simpler and sub-optimal. Both use a detector to identify any
kind of coherent motion, and a classifier to distinguish between the two motion
directions. In DCP, the detector and the classifier operate simultaneously, and as
soon as the detector reveals a change, the classifier is consulted to reveal the nature
of the change. In DCS, the coherent motion detector triggers the integration time
for a classical diffuse-to-bounds classifier which eventually reaches a decision.

Our models of the dual task assume optimal evidence accumulation from input sen-
sors [21]: all models have access to the following two statistics computed according
to Bayesian inference. The first statistic is the log posterior ratio between any pair
of classes (derived in Eq. 5.10):

Si, j
t
4
= log

P(Ct = i |X1:t )
P(Ct = j |X1:t )

, (5.1)

where Si, j
t is the log posterior ratio between class i and j (i, j ∈ {0, 1, 2}) given

evidence X1:t collected up to time t. We overload this notation to represent ratios
between sets of classes. For example, S1,1̄

t means the log posterior ratio of class 1
versus ‘not 1’, which contains class 2 and class 0.

The other important statistics is the log posterior ratio between the coherent motion
classes (class 1 and 2) assuming that the change has occurred at time t (derived
in Eq. 5.13):

Rtδ,t
4
= log

P(Ct = 1|X tδ :t )
P(Ct = 2|X tδ :t )

, (5.2)

where the log posterior ratio is conditioned on observations in the time interval
[tδ, t], e.g. from the time of change tδ and a later time t.
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Figure 5.1: Random dot motion discrimination with unknown stimulus onset.
(a) Stimulus setup. A trial beginswith a central fixation cross. After 500ms a display
of dots moving incoherently in all directions is displayed. After a random delay tδ,
a fraction z of the dots start moving coherently along one of two directions {θ1, θ2}.
As quickly as possible the subject presses on a button to indicate the direction of
motion. The trial ends with auditory feedback. The direction of coherent motion
controls the relative difficulty between classification and detection. (b) Stimulus for
coherent motion 0◦ and 180◦ (classification is easier than detection). (c) Stimulus
for coherent motion 60◦ and 120◦ (detection easier than classification).

Both log posterior ratio statistics may be computed directly from the firing patterns
of motion-tuning neurons in MT, to be discussed in the MT front-end section
(e.g. Eq. 5.10 and Eq. 5.13). Based on these statistics, we present three plausible
models for the dual task.

Classify then Detect (CD)
The first system (Fig. 5.2a,b) is based on the posterior probability ratio of classes 1
and 2. The system employs two accumulators Sc,c̄

t , one for each class c ∈ {1, 2}, that
race to reach a threshold τdis. The class of the winner is the predicted class Ĉ. Since
in our tasks the two classes are completely symmetrical the same threshold τdis

is set for both accumulators. Distinct thresholds may be necessary in asymmetric
scenarios (e.g. one class is more frequent than the other). Let td denote the time of
decision (td − tδ is the reaction time). The CD procedure is:

tc = first time t that Sc,c̄
t > τdis, c ∈ {1, 2}

Ĉ = arg min
c∈{1,2}

tc, td = tĈ . (5.3)
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Figure 5.2: Three models of joint detection and discrimination. (a) CD – The
world is assumed to be in one of three states: initial state (incoherent motion) and
two post-change states (motion 1 and motion 2). The posterior probability of each
state is computed. (b) (Top) In CD, log posterior ratios S1,1̄

t and S2,2̄
t (Eq. 5.1) race

to a common discrimination threshold. (Bottom) An equivalent depiction showing
the trajectory of the posterior over time (time direction indicated by the blue arrow)
visualized in the probability simplex. When the posterior reaches one of the two
lower corners the system declares motion 1 (left corner) or 2 (right corner). (c)DCP
– A detector for coherent motion and a classifier of motion direction are computed
in parallel. (d) The detector computes the log posterior ratio S0̄,0

t of any coherent
motion vs. incoherent motion. The classifier computes the log posterior ratio R1,t of
motion 1 vs. motion 2, which races towards a pair of thresholds (upper for motion 1,
lower for motion 2). Until the detector fires at tdet , the classifier cannot fire (despite
crossing dashed green threshold). After tdet , the classifier carries over signals prior
to tdet . (e) DCS employs a detector and a classifier in series. (f) The classifier starts
only after the detector fires and does not retain information prior to tdet . This lossy
integration causes DCS to make a different (wrong in this example) decision than
DCP.

This procedure is a Bayesian version of the multi-class CUSUM procedure [13] and
proven optimal by [16]. Here optimality means that given a requirement on the
false detection rate and the misclassification rate, the procedure above achieves the
shortest response time on average.

Detection and Classification in Parallel (DCP)
The second model (Fig. 5.2c,d) separately and simultaneously performs detection
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and discrimination. A detector performs a one-sided test on S0̄,0
t , the log posterior

ratio of ‘coherent motion’ (state 1 and 2) against state 0 of incoherent motion,
to detect whether any coherent motion is present. Meanwhile, running in the
background is a classifier that is concerned only with distinguishing between the
two coherent motion classes R1,t . The classifier is suppressed from firing until the
detector fires at time tdet .

The decision process is parameterized by the threshold τdet for detection, and the
threshold τdis for classification. Again the discrimination threshold τdis is shared
between classes for simplicity.

tdet = first time t that S0̄,0
t > τdet

tc = first time t ≥ tdet that R1,t > τdis, c ∈ {1, 2}

Ĉ = arg min
c∈{1,2}

tc, td = tĈ (5.4)

Here the detector and classifier run in parallel, and the detector functions as a gate
that guards the classifier against fluctuations. Both the detector and the classifier
are lossless in information integration, but the classifier is used sub-optimally since
the information accumulated prior to stimulus onset is invalid.

The DCPmodel may seem redundant as it is not optimal. It is included because
of reverse compatibility and model complexity. First, DCP contains special-
ized and optimal components for detection and classification, respectively.
By selecting the corresponding component DCP can solve pure detection or
pure discrimination tasks. Second, DCP contains two independent decision
thresholds, making it as complex as DCS (next subsection). Therefore any per-
formance discrepancy between the two is directly attributable to model biases,
not complexity.

Detection and Classification in Series (DCS)
In the third model, the last we consider, model detection and classification proceed
in succession (Fig. 5.2e,f). After the detector identifies a coherent motion at time
tdet , the classifier comes online assuming that the change has already happened
(tδ ≤ tdet). This assumption reduces the problem to pure classification starting at
time tdet , whichmay be solved by the classical sequential probability test (SPRT [4]).
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tdet = first time t that S0̄,0
t > τdet

tc = first time t that Rtdet,t > τdis, c ∈ {1, 2}

Ĉ = arg min
c∈{1,2}

tc, td = tĈ (5.5)

DCS essentially concatenates the optimal detector (CUSUM) and the optimal classi-
fier (SPRT) in time. It is lossy and potentially slower because the classifier does not
consider any evidence before the detector fires. However it also providesmodularity,
as it completely separates the detection problem from discrimination. Mathemat-
ically, the subtle difference between DCS (Equation set 5.5) and DCP (Equation
set 5.4) is the lossy evidence accumulation by the classifier. DCS discards all obser-
vations prior to detector firing, while DCP maintains them. Therefore, comparing
DCP and DCP allows us to understand whether the detector functions as a gate or a
trigger.

Quantized sensory input
To apply the aforementioned models on the random dot motion detection and dis-
crimination task, we need to compute the log posterior ratios between pairs of classes
(Eq. 5.1 and Eq. 5.2). We chose a probabilistic strategy based on a front-end of
direction tuning neurons. The front-end converts a visual stimulus (a length-∆
video segment of dots moving in space) into a set of action potentials, which are
interpreted probabilistically to produce the log posterior ratios, as we see below.

λk
θ
4
= λmin + (λmax − λmin) exp *

,
−
1
2
‖θk − θ‖

2

σ2
Y

+
-
, (5.6)

where λmax and λmin are the maximum and minimum firing rates of a neuron (in
Hz), and σY is the tuning width, and the notation ‖θk − θ‖ indicates the minimal
angular distance between θk and θ.

Here we have chosen a Gaussian tuning curve. This choice is not critical, e.g.
a von Mises function [25] works equally well.

Within a unit interval ((t − 1)∆, t∆], the number of spikes X k
i,t emitted from neuron

k at location i in response to motion θ is (Fig. 5.3b):

P(X k
i,t = n) = Poisson(n|λk

θ∆). (5.7)
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Figure 5.3: From front-endMTneurons to log posterior ratios. (a) Turing curves
of a hypercolumn of 8 MT motion-tuning neurons (Eq. 5.6). (b) A hypercolumn
of neurons activate in response to random dot motion at their receptive field (red
dashed circle). Raster plot shows simulated homogeneous Poisson spike trains
(Eq. 5.7) with max rate λmax = 20Hz. (c) Two downstream neurons compute log
posterior ratios from the spikes. S1,0

t , the log posterior ratio between motion 1 and
incoherent motion, may be computed by adding W1,0-weighted spikes to a recurrent
unit (Eq. 5.10). R1,t , the log posterior ratio motion 1 and 2 after change onset, is a
linear combination of the spike trains weighted by W1,2 (Eq. 5.13). W1,0 and W1,2

depend on themotion coherence andmotion directions, and are given in closed-form
(Eq. 5.9 and Eq. 5.12).

Log posterior ratios for detecting coherent motion from spikes
Consider a visual display with M moving dots. The dots are spaced sufficiently far
apart such that each dot is monitored by a unique hypercolumn. At any point in
time, a random fraction z (‘coherence’, 0 ≤ z ≤ 1) of the M dots are moving along
the same direction, and the remaining along random directions. Let λ̄ 4

= Eθ[λk
θ ]

be a neuron’s average firing rate over all stimulus directions. λ̄ should be roughly
identical for all neurons thanks to symmetry.

The log likelihood ratio rc,0
t between z fraction of coherent motion along direction

θc of class c ∈ {1, 2} and incoherent motion (class 0) is given by (derived in
Methods Eq. A.37):

rc,0
t
4
= log

P(Xt |Ct = c)
P(Xt |Ct = 0)

=
∑

i

∑
k

W c,0
k X k

i,t, (5.8)

where W c,0
k
4
= log

(1 − z)λ̄ + zλk
θc

λ̄
. (5.9)

The log posterior ratio Sc,0
t between coherent motion in θc and incoherent motion

may be computed recursively as (see Methods Eq. A.46 for detailed derivations)

Sc,0
t = Srec

(
St−1 − log αt

)
+ log

αt

1 − αt
+ rc,0

t , (5.10)
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where Srec (x) 4= log(1 + exp(x)) ≈ max(0, x) is the ‘soft-rectifier’ function and
αt is the probability of a change happening now knowing that it has definitely
not happened prior to t: αt

4
= P(tδ = t |tδ ≥ t). The initial condition is S0

4
=

log P(tδ≤0)
P(tδ>0) = log 0 = −∞. See figure Fig. 5.4 for an example of Sc,0

t .

The hardmax approximation gives an intuition for Sc,0
t . If past evidence util t − 1

suggests that the likelihood for coherent motion is so low that Sc,0
t−1 − log αt < 0,

then the system should “forget” about past evidence and reset to the log prior ratio
log αt

1−αt
instead. log αt thus is a threshold for triggering the forgetting mechanism.

The forgetting mechanism allows Sc,0
t to discard noisy observations in the distant

past while taking in new evidence into consideration. For example, in Fig. 5.4 we
simulate the log posterior ratio Sc,0

t for exponentially distributed change time. Sc,0
t

behaves almost like a memoryless system before the change occurs, which is crucial
for an organism to detect changes whose arrival time spans a long duration.

500 1000 1500
-5

0

5

time (ms)

S1,0
t

Figure 5.4: The log posterior ratio Sc,0
t for detecting coherent motion. Log pos-

terior ratio S1,0
t over 100 trials of Monte-Carlo simulations with mean and standard

deviation overlaid. Unbeknown to the model, stimulus onset in all trials is tδ = 1
sec. The model instead uses an exponential prior for tδ. The dash line shows the log
prior ratio log αt

1−αt
. As we see from Eq. 5.10, the log prior ratio gives a lower bound

for S1,0
t and cues the observer when to ‘pay attention’ and when to let go the past.

r1,0t is modeled by a Gaussian random walk r1,0t ∼ N (µC∆, σ
2∆) with µC = ±14

and σ = 3.5.

Log posterior ratios for classifying coherent motion from spikes
Using the same analysis we can compute the log likelihood ratio r1,2t of the obser-
vation at time t between two different directions of coherent motion, θ1 and θ2, at
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coherence level z.

r1,2t
4
= log

P(Xt |Ct = 1)
P(Xt |Ct = 2)

=
∑

i

∑
k

W1,2
k X k

i,t, (5.11)

where W1,2
k
4
= log

(1 − z)λ̄ + zλk
θ1

(1 − z)λ̄ + zλk
θ2

. (5.12)

The log posterior ratio between coherent motions conditioning on post-change evi-
dence is (derived in Methods Eq. A.48):

Rt,t ′ =

t ′∑
i=t

r1,2i . (5.13)

We assume even class priors P(C = 1) = P(C = 2). Uneven prior may be
incorporated by a simple shift of Rt,t ′. See figure Fig. 5.3c for an example of Rt,t ′.

The expressions of the log posterior ratios in Eq. 5.10 and Eq. 5.13 suggest
straightforward spiking implementations. The mechanisms are similar to those
discussed in Sec. 3.6.

5.3 Psychophysics
Design
To test which of the proposedmodels (CD,DCP,DCS) bestmatches human detection
and discrimination behavior, we recruited human subjects to participate in two
experiments. Both experiments employed a dynamic random-dot display [2], where
white dots were randomly distributed on a black background. All dots moved
randomly except for a random fraction z that moved along a consistent direction. The
direction could be one of two directions θ1 and θ2. The average of the two directions
was always 90◦, so we chose to represent them using the direction discrepancy
∆θ = |θ2 − θ1 |. See Fig. 5.1a-c.

Details of the display: the random dots with a density of 16.7dots/deg2/s were
displayed with a 5◦ diameter circular aperture about the fixation center. Each
dot was a white square of 5 × 5 pixels (0.14◦). For the stimulus, on each video
frame the coherentlymoving dots were shifted 0.125◦ from their positions 25ms

earlier (three video frames, refresh rate = 120Hz), corresponding to a speed of
5◦/s, while others were randomly repositioned.

The first experiment was dual detection and classification (Fig. 5.1a). The stimulus
motion started incoherent (z = 0) and changed to one of two coherent directions
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(z > 0) after a stochastic delay tδ. tδ followed an exponential distribution with a
mean of 800ms. Subjects indicated the direction of coherentmotion by button-press.
Responses earlier than tδ were considered false detections. Subjects were instructed
to minimize both misclassification errors and response time while maintaining the
false detection rate below 20%.

The second experiment was pure detection. With the identical setup as the dual
experiment, here subjects were instructed to press a button as soon as they perceived
coherent motion regardless of motion direction. The goal was to minimize response
time while keeping the false detection rate below 20%.

We systematically varied the coherence level z and the direction discrepancy ∆θ
for each experiment. z is chosen randomly from {1.6%, 3.2%, 6.4%, 12.8%, 25.6%}
and ∆θ from {180◦, 60◦}. Both z and ∆θ were fixed within a block of consecutive
trials and varied between blocks (i.e. the subjects know the coherence level z and
∆θ).

Model fitting
We fit each model to the data that was collected in both experiments. The models
were parameterized by (1) signal-to-noise ratio of the front-end and (2) decision
thresholds. The front-end had four parameters: the minimum and maximum firing
rates λmin and λmax , the tuning width w, and the number of neurons N . We fixed
λmin = 1Hz and w = 25◦ according to their physiological values in the macaque
monkey [22]. Since N and λmax have similar effects on the signal-to-noise ratio we
did not fit both; rather, we fixed N = 16 neurons, and only fit the maximum firing
rate λmax . (2) CD only has one decision threshold τdis, whereas both DCP and
DCS have two thresholds, τdet and τdis, for their detector and classifier components,
respectively.

We selected λmax and the threshold(s) of each model and each subject to maximize
themodel prediction’s agreement with the data in terms of themedian response time,
the misclassification rate and the false detection rate. The same λmax parameter
was used across different “conditions”, parameterized by the coherence level z, the
motion discrepancy ∆θ and the experiment type (dual versus detection only). This
parameter-sharing was made possible by the generalizability of our front-end model.
By contrast, we did not share the thresholds, yielding one threshold in CD and two
in DCP and DCS for each condition.

Human decision-making involves a perceptual component (evidence accumulation
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to decision threshold) and a non-perceptional delay (axonal propagation, motor
delays, etc). Our model only accounts for the perceptual component. The non-
perceptional component was modeled phenomenologically with a log-normal dis-
tribution with two additional parameters (mean and variance) per subject.

Fitting results
The fits for the response time, misclassification and detection errors of a randomly
sampled subject are shown in Fig. 5.5 and Fig. 5.6. All three models qualitatively
explain subjects’ performance, although DCS is the most faithful to the error data.
Despite the parsimonuous parameterization, the models predict the key performance
metrics (Fig. 5.5) as well as the full response time histograms (Fig. 5.6) of the
subjects. The overall scores of fitting the dual task and for fitting both tasks are
in shown Fig. 5.8a and b. Both plots show significantly higher fitting errors of
the optimal CD model compared to the sub-optimal models, within which the DCS
perform better. This trend is also consistent across all 10 subjects except one (subject
JD).

To further separate the two sub-optimal models, we also visualized the posterior
estimates of the parameters in Fig. 5.7. The posterior weights the parameter values
according to their agreement with the data. The signal-to-noise parameter λmax

estimate is correlated with the mean non-perceptual delay. This is not surprising as
higher signal-to-noise ratio means shorter perceptual times, which leaves a shorter
time to be explained by the non-perceptual delay. We see qualitatively that DCP
produces less consistent estimates between the two experiments than does DCS.
A quantitative comparison in Fig. 5.8c confirms that DCS is significantly more
consistent across all subjects.

5.4 Discussion and summary
Plausible model for human behavior
We proposed three candidate mechanisms for joint detection and discrimination,
and we explored whether any of them can account for human performance. Our first
observation is that the optimal model CD underperforms the sub-optimal models in
explaining human behaviors. This trend is significant and consistently observed in
the dual tasks and joint fitting of both the dual and the detection tasks. However,
the discrepancy between CD and the other models may be a consequence of the
degree of freedom (DoF), as CD only has one threshold while DCP and DCS each
independently manipulate two thresholds. To remove DoF as a confound, we re-
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Figure 5.5: Fitting results for a randomly selected subject. The median response
times, misclassification errors and false detection rates of a random subject (BW)
and the fitted model predictions in the dual task and the detection task. The columns
represent the three methods (CD, DCP and DCS). Solid lines show subject’s data
with 1 ste and dashed lines show the predictions. The direction discrepancy is
∆θ = 180◦.

fitted the experiments while manipulating the parameter sharing across conditions.
Even with more free parameters per condition, CD is less consistent with the data
than the sub-optimal models are. Therefore, CD may not be the strategy of choice
for humans.

DCS and DCP have the same DoF, hence may be compared fairly. The data suggests
that DCS may be closer to the strategy for humans. A first clue is that DCS
outperforms DCP in both fitting experiments across all subjects (Fig. 5.8a and b).
A second cue comes from comparing the posteriors (Fig. 5.7). In the pure detection
experiment, DCS and DCP reduce to the same algorithm, hence their parameter
estimates should also be the same. In the dual task, however, DCP and DCS should
produce different estimates, as explained below. DCS discards information prior to
detector activation and thus requires longer evidence accumulation to achieve the
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Figure 5.6: Fitting results for a random subject (cont’d). The response time
histograms and fits for the dual task (first row) and the detection task (second row)
of a randomly selected subject (BW). Only a subset of the data, with coherence
levels {1.6%, 3.2%, 6.4%} and direction discrepancy ∆θ = 180◦, are shown. Each
color denotes a different coherence level. The solid lines are fits from the model
and the filled regions show the mean ±1 bootstrapped standard error of the subject’s
data. Each column shows the fit of one model (CD, DCP and DCS).

same level of accuracy as does DCP. Therefore, to explain the same data DCS must
compensate with a higher λmax estimate, a shorter motor delay estimate, or both. As
a result, comparing the posteriors between the two tasks will expose the incorrect
model. In the case of Fig. 5.7and Fig. 5.8c, we see that DCS produces consistent
parameter estimates, while DCP does not and should therefore be eliminated.

Sub-optimal information processing
Our analysis suggests that humans are sub-optimal in the dual detection-decision
task; however, this conclusion is not inconsistent with previous findings [11], [17]–
[19] that the human visual system is near-optimal in evidence accumulation. In the
DCS model sub-optimality resides in the decision strategy rather than in evidence
accumulation.

We speculate that the human visual system may use the DCS strategy for two
reasons. 1) Modularity. DCS may be adapted to tackle a pure detection tasks by
simply setting the classification threshold τdis to zero. Similarly, setting τdet = −∞

would tune DCS for a pure classification task. The flexibility to switch between tasks
is a desirable property. For instance, sound cues may sometimes permit detection,
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Figure 5.7: Posterior distribution of parameters for a random subject. The
posterior of the signal-to-noise parameter (λmax) and the non-perceptual delay pa-
rameter (motor time) for DCP (first row) and DCS (second row) for a random subject
(BW). The three columns represent posteriors obtained from (a) the dual task, (b)
the detection task, and (c) both tasks. For each panel in (a) and (b) the ellipse and
the cross represent a Gaussian approximation to the posterior and its mean. In (c)
the two ellipses from (a) and (b) are superimposed.
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Figure 5.8: Fitting performance. (a) Fitting scores (lower means better) of the
three models CD, DCP and DCS on the dual task. (b) Same as (a) except that the
score is computed jointly over the dual and the detection-only task. (c) Distances
(lower means better) between the posterior obtained from the dual task and that
from both tasks. Colored dashed lines show performance for different subjects (see
legend). Bars show average performance over 10 subjects with 1 ste. ‘**’ represents
p ≤ 0.01 and ‘****’ represents p < 10−4.

which renders visual detection unnecessary. As a result, the visual system would
need to switch from the dual task mode to pure classification mode. 2) Power
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efficiency. While the classifiers in CD are bombarded with sensory inputs all the
time, the classifier in DCS only activates for brief moments when a change in the
environment has been confirmed. In other words, the classifier in DCS may be
dormant most of time to conserve energy. This advantage may be more pronounced
for discrimination tasks with a large number of categories, as the relative energy
reduction from CD to DCS is proportional to the number of categories. On the
other hand, in situations when changes happen frequently and only a small number
of classes are involved, CD may be a viable strategy for humans.
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C h a p t e r 6

OPTIMALITY ANALYSIS OF SEQUENTIAL PROBABILITY
RATIO TEST

Strictly Optimal Sequential Tests

The sequential probability ratio test (SPRT) is asymptotically optimal in the speed
versus accuracy tradeoff (SAT) for problems such as visual search (Ch. 3) and
scotopic object recognition (Ch. 4), but how close to optimal is SPRT in the non-
asymptotic case, i.e. when the cost of error η or the expected response time is small?
We numerically compare SPRT and the optimal strategy on the homogeneous visual
search (Sec. 3.4) problem and propose alternative test forms that may be optimal in
non-asymptotic scenarios.

6.1 Optimal decision strategy for homogeneous search
Recall that the goal of homogeneous visual search is to detect whether a target
appears anywhere in a field of display (C = 1 if target present, and C = 0 other-
wise). All locations contain either a target or a distractor, and at most one target
appears at a time. The target may be separated from a distractor using unique fea-
tures (orientation). The observations are the action potentials X1:t = {X

l
1:t }

M
l=1 V1

orientation-tuned hypercolumns from all M display locations.

A decision strategy for homogeneous visual search aims to minimize Bayes risk
(Eq. 2.1):

Risk = E[T] + ηE[ĈT , C],

where ĈT ∈ {0, 1} is the observer’s decision at decision time T , η is the relative cost
of error with respect to time. The optimal test achieves the lowest risk among all
tests.

For simplicity we assume that false positives and false negatives have the same
cost, and so do the response times under each class. Different costs can be
easily accommodated without affecting the overall analysis.

Two components are necessary to describe the optimal test: a state space Z (t) over
time and a decision strategy that associates each state and time with an action. One
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Figure 6.1: Decision strategies for homogeneous visual search. To perform
probabilistic inference, a sequential test computes for each location the local log
likelihood ratio Zl = log P(X l |Cl=1)

P(X l |Cl=0)
over time: (a) Zl at a distractor location, (b) Zl

at the target location. (c,d) Two decision strategies that make use of the probabilistic
interpretation for a two-dimensional visual search problem. SPRT (c) thresholds
the one-dimensional log likelihood ratio S(X1:t ) (Eq. 3.7), whereas the optimal (d)
uses a decision boundary in the joint space of {Z1, Z2}. Time in (d) is color-coded,
cooler colors means earlier.

common constraint on the state space is that it must beMarkov in time: Z (t) must be
sufficient in summarizing past observations so that given Z (t), future observations
become independent from the past (see Appendix Sec. A.4). Once this constraint is
satisfied, the problem may be formulated as a partial observation Markov decision
process (POMDP)[1], and the optimal strategy may be solved exactly using dynamic
programming.

We choose Z (t) to be the collection of log posterior ratios from all locations:
Z (t) = {Zl (t)}Ml=1 and

Zl (t)
4
= S(X l

1:t ). (6.1)

For simplicity we consider the most common formulation of input as a Gaussian
random walk at each location (e.g. [2], [3]). This approximates the Poisson model
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used inCh. 3, which ismore expensive to simulate. The input is parameterized by the
drift-rate µC,l , which depends on the stimulus classC and the location l (Fig. 6.1a,c).
A larger drift-rate difference between the two classes |µ1,l − µ0,l | implies a higher
signal-to-noise ratio, or equivalently, an easier discrimination problem at location l.

Computational solution for low-dimensional problems
The optimal decision may be computed numerically using dynamic program-
ming [1], [4]. Define R(Z (t), t) as the lowest total risk an observer could incur
starting from state Z (t) at time t. The optimal risk is equivalent to R(~0, 0), the total
risk from time 0 onwards with a flat prior. R(Z, t) is recursively given by:

R(Z (t), t) = min




η(1 − P0(Z (t))) D = 0: declare target absent
ηP0(Z (t)) D = 1: declare target present

∆ + EZ (t+∆) |Z (t) R(Z (t + ∆), t + ∆) D = ∅: wait.
(6.2)

At any time t and any state Z (t), the ideal observer picks the action D ∈ {∅, 0, 1}
that yields the lowest risk. If declaring target-absent, the observer makes a false
rejection mistake. The false reject probability can be computed from the state Z (t)
and is denoted P0(Z (t)) (see Appendix Sec. A.4). If waiting for more evidence, the
observer trades off the cost Ctime∆ for a new observation of duration ∆, and access
to the cumulative risk at time (t + 1).

The optimal decision strategy is defined over an M +1 dimensional state-space. The
state space is separated by decision boundaries/surfaces into three different decision
regions [5]. Furthermore, the recurrence equation 6.2 is time invariant. As a result,
the optimal decision is constant in time (see [1]) and the decision surfaces have
M − 1 dimensions.

Conjecture for high-dimensional problems
Recall that the optimal decision strategy for homogeneous visual discrimination
(between two simple alternatives), is SPRT. We conjecture that the optimal decision
strategy for homogenous visual search is similar to SPRT: it uses two SPRTs defined
on scaled log posterior ratios.

Conjecture 1 (Uniform drift-rates) If all locations share the same drift-rate (µ1,l =
−µ0,l = µ,∀l), let τ+ and τ− be the optimal upper and lower thresholds for visual
discrimination at location l associated to a cost of error of η, then the optimal
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decision surfaces for homogeneous visual search with the same cost of error η are:

S+(Z (t)) =
1
a+
Smax
l=1,...,M

(
a+(Zl (t) − log(M))

)
≥ τ+, (6.3)

S−(Z (t)) =
1
a−
Smax
l=1,...,M

(
a−(Zl (t) − log(M))

)
≤ τ−, (6.4)

where a+ and a− are unknown parameters.

Conj. 1 states that the optimal decision strategy is to wait until either S+(X (t)) ≥ τ+
to declare Ĉ = 1 or S−(X (t)) ≤ τ− to declare Ĉ = 0. The thresholds τ+ and τ− are
obtained easily by solving a one-dimensional dynamic programming problem [3].
The thresholds are chosen to guarantee asymptotic optimality. Intuitively, when
there is only one location (M = 1), the problem reduces to visual discrimination and
Conj. 1 reduces to SPRT, which is optimal for visual discrimination. For M > 1,
asymptotically one “winner” will emerge from the M locations, and Zl (t) at other
locations become negligible compared to that of the winner location l∗. The decision
is effectively reduced to concerning only the winner location l∗. In this case:

S+(Z (t)) =
1
a+
Smax
l=1,...,M

(
a+(Zl (t) − log(M))

)
≈ Zl∗ (t) − log(M),

S−(Z (t)) ≈ Zl∗ (t) − log(M).

Any location could be the winner location with a probability 1/M , hence asymp-
totically the visual search problem reduces to a visual discrimination problem at
location l∗ with a log prior ratio of log(1/M). This reduced problem may be solved
optimally using adjusted thresholds τ+ + log(M) and τ− + log(M) (for proof see
Appendix Sec. A.4), which matches the asymptotic behavior of the conjecture.

Fig. 6.2(a-b) and Fig. 6.3 show excellent empirical match between the conjectured
thresholds and the optimal thresholds in 2D.

Our conjecture can be extended to cases where the drift-rates are different across
locations.

Conjecture 2 (Non-uniform drift-rates) Let τ(l)
+ and τ(l)

− be the optimal upper and
lower thresholds for visual discrimination at location l associated with a cost of
error of η, define c(l)

+ = τ
(M)
+ /τ(l)

+ and c(l)
− = τ

(M)
− /τ(l)

− , the optimal decision surface
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Figure 6.2: Optimal sequential test for 2D visual search. (a-b) Optimal deci-
sion thresholds and approximations for different costs of errors η =∈ {2, 5, 10, 20})
in homogeneous search. Decision boundaries are approximated using Eq. 6.5
and 6.6 with a+ = 1.50 and a− = 4.61. (c-d) Optimal decision thresholds and
approximations for heterogeneous drift-rate search. Drift-rates are (a-b) ±2/sec, (c)
{±8,±3}/ms and (d) {±15,±3}/sec.

for visual search with the same time cost is:

S+(Z (t)) =
1
a+
Smax
l=1,...,M

(
c(l)
+ a+(Zl (t) − log(M))

)
≥ τ(M)
+ , (6.5)

S−(Z (t)) =
1
a−
Smax
l=1,...,M

(
c(l)
− a−(Zl (t) − log(M))

)
≥ τ(M)
− . (6.6)

Conj. 2 only differs from Conj. 1 for uniform drift-rate (Eq. 6.5) in that the local
diffusions are scaled by a location-dependent factor c(l)

+ . and c(l)
− . These factors

normalize the diffusion at each location by its efficiency. The normalization is with
respect to a reference location, which is arbitrarily chosen to be location M . In the
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asymptotic case where only one location l∗ is relevant,

S+(Z (t)) ≈ τ(M)
+ (Zl∗ (t) − log(M))/τ(l∗)

+ , (6.7)

S−(Z (t)) ≈ τ(M)
− (Zl∗ (t) − log(M))/τ(l∗)

− , (6.8)

and the visual search problem reduces to visual discrimination at location l∗. Since
τ(l∗)
+ and τ(l∗)

− are the optimal thresholds for visual discrimination, visual search
should be optimal when S+(Z (t)) reaches τ(l∗)

+ or when S−(X (t)) reaches τ(l∗).
Substituting Eq. 6.8 we obtain thresholds τ(M)

+ for S+(Z (t)) and τ(M)
− for S−(Z (t))

(Eq. 6.5).

Conj. 2 only requires solving M one-dimensional dynamic programming problems
for τ(l)

+ and τ(l)
− , which is more scalable than the optimal procedure (Eq. 6.2) that

scales exponentially with M . Fig. 6.2(c-d) shows that the predicted thresholds from
Conj. 2match the optimal thresholds from dynamic programming in 2D for a variety
of costs of time and drift-rates.

6.2 Optimality analysis of current search models
How are existing visual search strategies compare against the optimal? For fairness
we compare only approaches that perform probabilistic inference on the graphical
model in Fig. 3.1b. These approaches, listed below, differ only in the decision
strategy [6]:

a-SPRT (Fig. 6.1d): our two-SPRT approach that uses two decision surfaces pre-
scribed in Conj. 1 and Conj. 2 to approximate the ideal observer.

SPRT [7] (Fig. 6.1b): a Bayesian extension of Ward’s SPRT [8] into testing com-
posite hypotheses. SPRT compares the log likelihood ratio of target-present versus
target-absent S(X1:t ) (Eq. 3.7) against a pair of thresholds. Since the SPRT is sub-
ject to the same asymptotic analysis in Conj. 1, it uses the same thresholds τ− and
τ+ as does the a-SPRT. Essentially, SPRT is a special case of Eq. 6.3 and Eq. 6.4
where a+ = a− = 1.

SPRT-opt: the same as SPRT above except that it optimizes the upper and lower
thresholds tominimize the risk function (Eq. 2.1). Since SPRT-optmay use different
thresholds from those in the regular SPRT, it may not be asymptotically optimal.
However, this does not prevent SPRT-opt from outperforming the regular SPRT
(which is asymptotically optimal). This is because the asymptotic (i.e. long)
decisions may only take up a tiny fraction of all the decisions (especially in easy
tasks), and SPRT-opt may do better by focusing on the risk for shorter decisions.
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Figure 6.3: Sequential testing strategies for homogeneous visual search in two-
dimensions. The optimal and various alternative decision strategies are compared in
terms of (a) the lower and (b) the upper threshold in the joint space of {Z1, Z2}. The a-
SPRT thresholds are obtained from Eq. 6.3 and Eq. 6.4with a+ = 1.5 and a− = 3.9;
both SPRT and Hardmax use the optimal threshold for visual discrimination so that
asymptotically they are consistent with the optimal strategy. Input to each display
location has a drift-rate of ±4/sec. (c-d) Each panel shows the log likelihood ratio
S(X1:t ) distribution at the time of decision under the optimal decision strategy from
1k Monte-Carlo simulations. As references, the distribution of S− when target is
absent (c) and of S+ when present (d) are shown. S± is not deterministic because
time is discretized in the simulation, which causes the log likelihood ratios to have
finite-sized jumps. Standard deviations of the jumps are shown as another reference.
Drift-rate of the observation is ±2/sec.

Hardmax [7], [9]: an efficient approximation to SPRT. Each location decides
whether it contains a target (Cl = 1) or a distractor (Cl = 0) based solely on the
local belief S(X l

1:t ). The observer declares target-present when any location reports
a target detection, declares target-absent when all locations report a distractor, and
waits for more information otherwise. Hardmax is also a special case of Eq. 6.3
and Eq. 6.4 where a+ = a− = ∞.
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Decision surfaces comparison.
We want to see how these approaches differ from the optimal in various aspects.
First, how different are their decision surfaces? InFig. 6.3(a-b), we compare them on
a visual search task with two display locations where it is computationally feasible
to solve for the optimal decision boundary using dynamic programming. Since the
decision boundaries are constant in time, they can be visualized in the 2-D space of
Z1 and Z2 only. Each decision boundary is of the form {(Z1, Z2) |S(Z1, Z2) = τ}, i.e.
all pairs of Z1 and Z2 that could make the log likelihood ratio S reach a threshold of
τ.

We observe that both the Hardmax and SPRT differ significantly from the optimal in
terms of the decision surfaces (Fig. 6.3(a-b)). SPRT is conservative, because both
thresholds bend outwards with respect to the optimal thresholds, which translates to
longer decision times for both target-present and target-absent runs. Hardmax, on the
other hand, is faster in declaring target-absent but slower in declaring target-present.

Can time-varying threshold make SPRT optimal?
A common practice in modeling decision making in visual discrimination is to
employ a time-varying threshold. Can the optimal decision mechanism for visual
search also be implemented using SPRT-opt with a time-varying threshold? We
reject this hypothesis by computing the S(X1:t ) distribution at the time of decision
under the optimal test (Fig. 6.3(c-d)). If a time-varying threshold exists on S(X1:t )
to recover the optimal strategy, the S(X1:t ) values should be unique at the time of
decision. Instead, we observe a wide spread in the S(X1:t ) distribution. Therefore,
S(X1:t ) is not a sufficient statistic to implement the optimal test, and SPRT is
sub-optimal in visual search [8].

Risk comparison.
The decision surfaces comparison above has one caveat: we consider all places
on the decision boundary where decisions could be taken, ignoring the fact that
some places on the boundary are more likely to be reached than others in an actual
decision task. E.g., consider Fig. 6.3b, when the search task is easy, the diffusions
when the target is present will most likely fall in the region of {Z2 > 0, Z1 � 0}
and {Z2 � 0, Z1 > 0}, and rarely visit the region of {Z1 > 0, Z2 > 0} where the
difference among the strategies is the most noticeable. This reasoning suggests that
we should compare these strategies in terms of their actual risk value.

The risks for the strategies in a homogeneous search task are shown in Fig. 6.4.
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Hardmax and SPRT are highly sub-optimal. SPRT-opt is almost indistinguishable
from a-SPRT in the low time-cost scenario, but becomes sub-optimal when the cost
of error becomes very small, i.e. when the decision time is short. Although we have
not yet proven that a-SPRT is optimal, it is sufficient to conclude that any model that
underperforms it is sub-optimal.

For search tasks where the drift-rates are non-uniform in space (Fig. 6.5), we see that
even with two display locations, both SPRT-opt and Hardmax1 are suboptimal when
the drift-rates differ significantly across locations. The sub-optimality becomes
progressively more pronounced as the heterogeneity of drift-rates increases. Behav-
iorally, when the drift-rate heterogeneity is large, Hardmax achieves near-identical
ER vs RT trade-offs at both locations, whereas SPRT-opt and a-SPRT learn to
sacrifice the ER at the low drift-rate location for a faster RT overall (Fig. 6.5c).

In conclusion, decision strategies employed by existing search models are sub-
optimal. Hardmax, where one combines local decisions to reach a global decision,
is sub-optimal in almost all scenarios. The SPRT-opt, where one executes a one-
dimensional SPRT with optimized thresholds, is near-optimal in low cost, homo-
geneous search scenarios. When the cost of error is small and when the drift-rate
is heterogeneous across locations, the SPRT-opt becomes sub-optimal, but remains
similar to the optimal SATstrategy.

6.3 Chapter summary
We conjecture a novel procedure, a-SPRT, to compute the optimal decision strategy
for high-dimensional visual search with uniform and non-uniform drift-rates in
space. The a-SPRT makes use of two one-dimensional SPRTs with different scaling
factors, andwith thresholds that are constant in time. In two dimensions, the resultant
decision boundary matches closely that of the optimal strategy. The conjecture is
preferred over the standard dynamic programming procedure, which does not scale
to high (more than three) dimensions.

We compare commonmodels of visual search in their optimality in SAT.We discover
that most of them are sub-optimal. While SPRT behaves similarly as the optimal
strategy in homogeneous search tasks with uniform drift-rates, it is sub-optimal once
the drift-rates become heterogeneous across locations.

1We do not include SPRT because it is not clear how to condense the M asymptotically optimal
thresholds, one for each decision surface, into just one for the SPRT. Instead we trust that SPRT-opt,
with the ability to optimize the thresholds, should always outperform any SPRT.
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Figure 6.4: Risk comparison of common decision strategies in homogeneous
visual search. a-SPRT, SPRT-opt, SPRT andHardmax are compared under different
costs of errors: (a) η = 5, (b) η = 2, and (c) η = 1 with a drift-rate of ±12/sec.
Hardmax is sub-optimal in all cases. Regular SPRT is sub-optimal in the high cost
scenario. SPRT-opt slightly under-performs a-SPRT in terms of the risk. a-SPRT
and SPRT-opt are similar in terms of the RT during target-present (TP) and target-
absent (TA), as well as the false positive rate and the false negative rate. Error bars
are one standard error computed from 10k runs.

We highlight several unsolved issues for future work. First, it remains an open ques-
tion why the optimal decision boundaries for homogeneous search can be described
by two scaled-SPRTs. Second, we do not know how the scaling factors a+ and
a− depend on search parameters, and therefore must search numerically for their
values to minimize the risk. A better understanding is required to generalize ideal
observers of visual search into greater dimensionality and heterogeneity. Third, in
light of the marked difference between alternative models and the optimal strategy
in the case of non-uniform drift-rates, it would be interesting to test subjects in this
case to see which model best captures human behavior, and whether humans are
optimal.
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Figure 6.5: Risk comparison of common decision strategies in heterogeneous
drift-rate visual search. a-SPRT, SPRT-opt and Hardmax are compared under
various costs of time. The first row shows the overall risk versus the cost of error.
The second row shows the ER vs RT tradeoff under different costs of errors (dots)
and under three separate conditions (lines): target-absent (TA), target-present (TP)
at the location with a larger drift-rate (easy) and target-present at the hard location.
Drfit-rates are (a) {±5,±1}/sec, (b) {±10,±1}/sec and (c) {±20,±1}/sec. One
standard error in both RT and ER computed from 1k runs are shown but are too
small to be visible. Both SPRT-opt and Hardmax underperform the optimal test.
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C h a p t e r 7

DISCUSSION AND CONCLUSIONS

The central thesis of this work is that the quantization of visual signals should be
accounted for in vision algorithms. Information in the visual world does not become
available all at once to an observer. Rather, it trickles in one quantum at a time:
photons, action potentials, etc. Modeling the quantized sensory input provides a
fine-grained control over the amount of information required to solve the task at
hand. This granularity coupled with optimal modeling (Ch. 2) can reduce evidence
accumulation time while maintaining accuracy in many applications, such as (1)
lowlight object recognition in Ch. 4, (2) modeling decision making processes in
biological mechanisms in situations where both time and accuracy are important,
e.g. Ch. 3 and Ch. 5, and (3) preparing algorithms for next generation sensors that
faithfully report the quantized signal.

Our analysis focuses on producing a correct decision as quickly as possible from
quantized sensory inputs. We rely on the sequential probability ratio test (SPRT)
for optimizing the speed versus accuracy tradeoff (SAT). Standard SPRT assumes
that a probabilistic model is available to interpret the sensory inputs and that the
model is constant over time (Ch. 2). We demonstrate three examples where these
assumptions are satisfied to different extents. (1) In visual search (Ch. 3), both
assumptions are satisfied, and SPRT is applied directly to account for ideal search
performance and human behavior across different search environments. (2) In
scotopic visual recognition (Ch. 4), the probabilistic model is constant in time but
not available. This is common among practical applications that involve images,
language and sound. We develop strategies to learn SPRT discriminately from data,
and demonstrate that 1 photon per pixel is required for classifying black and white
images of digits and about 20 are required for classifying color images of common
objects (cats, dogs, cars, airplanes, etc). (3) In ecological situations such as visual
discrimination with unknown onset (Ch. 5), the probabilistic model is known but not
constant over time. We demonstrate methods to jointly infer the model and perform
SPRT. We also discover that humans do not behave according to this model, but
rather rely on a sub-optimal model with a simpler architecture.

In all applications, the quantized inputs are assumed to be Poisson in nature: pho-
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tons that arrive at camera sensors and action potentials generated by orientation /
motion-tuning neurons in earlier sensory systems both follow a homogeneous Pois-
son distribution. For Poisson distributed events (photons, action potentials), the
sufficient statistics are the mean event rate, and the events are uncorrelated in time.
It is therefore tempting to conclude that no algorithm can do better than the one
that takes the mean event rate as input (which corresponds to the intensity image
estimated from photon counts, and the neuron firing rate profile estimated from
trains of action potentials). We demonstrate that this is not true, as this algorithm
fails to consider the uncertainty associated with the mean estimates. For example,
one may estimate a 10Hz firing rate from having observed two action potentials
in 20ms, but the [10%, 90%] confidence region of the estimate is [26, 200]Hz,
meaning that repeating the same observation may result in a rate estimate that is an
order of magnitude larger. Therefore an algorithm that is aware of this uncertainty
is likely to do better. Indeed, SPRT relies on the uncertainty to decide when a
sufficient amount of evidence has been collected (Ch. 2), and empirically in the
scotopic vision application Sec. 4.4, the WaldNet algorithm that incorporates the
uncertainty outperforms the rate-based algorithm that does not. One ramification
of the comparison is that images may not be the best medium for representing the
visual world. This is because (1) images throw away the uncertainty information,
and (2) in situations that demand fast and accurate decisions, acquisition time of the
image may be undesirably long. Therefore, the computer vision community should
not fixate on images, and instead start to consider photon streams, which are made
available by recent sensor technologies [1]–[3].

Quantization occurs not just in the sensory inputs, but also on the internal compu-
tations of vision systems. We show that SPRT for visual search Sec. 3.6 admits
a spiking implementation. Log likelihoods of internal variables of the SPRT are
represented as neurons that compute and communicate using action potentials. The
computation is incremental: as quantized input comes in, only a sparse set of changes
propagate through the network. The spiking implementation makes use of a small
number of action potentials in total, and approximates SRPT well.

Many issues remain for future investigation. First, there lacks a hardware implemen-
tation that connects SPRT with photon counting sensors. The sensors may report
photon counts at high spatial frequencies (e.g. a Single-Photon-Avalanche-Diode
operates [1] at 109Hz), but current hardware implementations of convolutional net-
works are at the level of kHz [4]. While quantization of computation may be key
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to further accelerate the system, there may also be an intermediate level of granu-
larity between single photons and the high-quality image that makes sense for most
lowlight vision applications.

Second, we have only explored learning algorithms (Sec. 4.3) for static models. In
problems where the probabilistic models are unknown and non-static, one needs to
simultaneously learn the model and apply optimal sequential testing accordingly.
This is similar in the visual discrimination with unknown stimulus onset exam-
ple Ch. 5, where the non-static model is parameterized by the stimulus onset, there-
fore SPRT addresses this issue by jointly estimating the onset timing and classifying
the stimulus class. We are currently investigating scotopic tracking applications [5]
where the dynamical model is fully parameterized by its initial conditions.

Lastly, active sensing may further improve the trade off between evidence accumula-
tion cost and accuracy. We have so far assumed that the camera collects information
passively for every pixel, whereas the camera could actively shut down pixels de-
pending on their significance towards decision accuracy. The passive scheme makes
sense when the goal is to minimize acquisition time, as we would like to maximize
the amount of exposure for all pixels. However, if the goal is to minimize the total
photon exposure, e.g. in biological imaging and surveillance applications, then it
is reasonable to only collect from pixels that are most relevant to reach a decision.
We speculate an algorithm that runs SPRT at every single pixel to determine the
evidence accumulation time, in conjunction with the SPRT based on their outputs
to compute the final decision. In either case, as we venture deep into the realm of
quantized computation, the conventional notation of image becomes increasingly
obsolete, and we should start to embrace the visual world as what it truly is – an
ocean of photons. The image is just the waves that carry shells to the shore, the
ocean is where the real treasures are.
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A p p e n d i x A

APPENDIX

A.1 Visual search
Orientation log likelihood Lθ
We first derive how to compute the log likelihood for each task-relevant orientation
from evidence X1:t (in this sectionwe are concernedwith one location only, therefore
we omit the location superscript l to simplify notation), which is a set of spike trains
from N orientation-tuned neurons (which can be generalized to be sensitive to color,
intensity, etc) collected during the time interval [0, t∆]. Let X (i)

1:t be the set of spikes
from neuron i in the time interval [0, t∆], N i

t the number of spikes from neuron i in
X i

1:t , and Nt the total number of spikes, then the likelihood of X (i)
1:t when stimulus

orientation is θ is given by a Poisson distribution:

P(X (i)
1:t |Y = θ) = Poiss(N i

t |λ
i
θt) = (λi

θt)
N i
t
exp(−λi

θt)

N i
t !

, (A.1)

where λi
θ is the firing rate of neuron i when the stimulus orientation is θ.

The observations from the hypercolumn neurons are independent from each other,
thus the log likelihood of X1:t is given by:

Lθ (X1:t )
4
= log P(X1:t |Y = θ) = log

N∏
i=1

P(X (i)
1:t |Y = θ)

=

nH∑
i=1

log *
,
(λi

θt)
nH

i
t
exp(−λi

θt)

N i
t !

+
-

=

Nt∑
s=1

W i(s)
θ − t

nH∑
i=1

λi
θ + const, (A.2)

where W i
θ = log λi

θ is the contribution of each action potential from neuron i to the
log likelihood of orientation θ, and “const” is a term that does not depend on θ and is
therefore irrelevant for the decision. The first term is the “diffusion” that introduces
jumps in Lθ (X1:t ) whenever a spike occurs. The second term is a “drift” term that
moves Lθ (X1:t ) gradually in time. When the tuning curves of the neurons tessellate
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regularly the circle of orientations, as is the case in our model (Fig. 3.4a), the
average firing rate of the hypercolumn under different orientations is approximately
the same, and the drift term may be safely omitted from models.

Review: Bayesian inference for discrimination and homogeneous search
We first re-derive the log likelihood ratio S(X1:t ) for visual discrimination. For all
derivations below we show how to compute log P(X1:t |C=1)

P(X1:t |C=0) from the orientation log
likelihoods Lθ (X1:t ), keeping in mind that

S(X1:t ) = log
P(C = 1|X1:t )
P(C = 0|X1:t )

= log
P(X1:t |C = 1)
P(X1:t |C = 0)

+ log
P(C = 1)
P(C = 0)

.

In homogeneous discrimination, the target and distractor have distinct and unique
orientations θT and θD, therefore:

log
P(X1:t |C = 1)
P(X1:t |C = 0)

= log
P(X1:t |θ = θT )
P(X1:t |θ = θD)

= LθT (X1:t ) − LθD (X1:t ), (A.3)

which proves Eq. 3.3.

In heterogeneous discrimination, θT ∈ ΘT and θD ∈ ΘD. For simplicity assume
uniform prior on both target and distractor orientation, i.e. P(θ |C = 1) = 1/nT,∀θ ∈

ΘT and P(θ |C = 0) = 1/nD,∀θ ∈ ΘD:

log
P(X1:t |C = 1)
P(X1:t |C = 0)

= log
P(X1:t |θ ∈ ΘT )
P(X1:t |θ ∈ ΘD)

= log *.
,

∑
θ∈ΘT

P(X1:t |θ)P(θ |C = 1)+/
-
− log *.

,

∑
θ∈ΘD

P(X1:t |θ)P(θ |C = 0)+/
-

= log *.
,

∑
θ∈ΘT

exp(Lθ (X1:t ))
nT

+/
-
− log *.

,

∑
θ∈ΘD

exp(Lθ (X1:t ))
nD

+/
-

= Smax
θ∈ΘT

(
Lθ (X1:t ) − log(nT )

)
− Smax

θ∈ΘD

(
Lθ (X1:t ) − log(nD)

)
,

(A.4)

which proves Eq. 3.5.

Nowwe re-derive S(X1:t ) for homogeneous visual search (M = L > 1, nT = nD = 1)
from the local orientation log likelihoods Lθ (X l

1:t ) from each of the L locations.
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Call lT ∈ {1, 2, . . . , L} the target location and assume uniform prior on lT . Eq. 3.3
is proved below:

log
P(X1:t |C = 1)
P(X1:t |C = 0)

= log
∑

lT P(X1:t |lT )P(lT |C = 1)
P(X1:t |C = 0)

= log
1
L

∑
lT

P(X1:t |lT )
P(X1:t |C = 0)

= log
1
L

∑
lT

P(X lT
1:t |θT )

∏
l,lT P(X l

1:t |θD)∏
l P(X l

1:t |θD)

= log
1
L

∑
lT

P(X lT
1:t |θT )

P(X lT
1:t |θD)

= Smax
lT

(
LθT (X lT

1:t ) − LθD (X lD
1:t ) − log(L)

)
.

(A.5)

Formulating common search problems using the general model
The heterogeneous visual search model is a general model for explaining a wide
range of search tasks. The general model captures the variability in set-size and
orientation contrast using CDD, which is the distribution P(Y l |Cl = 0) of stimulus
orientation at a non-target location. Below are three examples:

Mixed contrast (Exp. 2): the distractor orientation is sampled uniformly from
{20◦, 30◦, 45◦}, and all the distractors must have the same orientation.

In this case a CDD is a three dimensional vector of

φ = [P(Y l = 20◦ |Cl = 0), P(Y l = 30◦ |Cl = 0), P(Y l = 45◦ |Cl = 0)].

We will employ three CDDs:

φ(1) = [1, 0, 0]; φ(2) = [0, 1, 0]; φ(3) = [0, 0, 1];

with equal prior probability P(φ(i)) = 1/3,∀i.

This setup exactly describes the probabilistic structure of Exp. 2. Since each
CDD is a delta function at a single orientation, distractors at all locations will be
identical, and the distractor orientations will be chosen uniformly at random from
{20◦, 30◦, 45◦}.

I.i.d. distractor heterogeneous search: the distractor orientation is sampled inde-
pendently at each location from {20◦, 30◦, 45◦} with probability [0.2, 0.5, 0.3].

This is precisely the i.i.d. distractor heterogeneous search task (Eq. 3.9). Only one
CDD is needed, and φ = [0.2, 0.5, 0.3].
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Mixed set-size (Exp. 3): the distractor orientation is 30◦. The set-size M is sampled
uniformly from {3, 6, 12}. The total number of display locations is L = 12.

In this case, denote Y l = ∅ that a non-target location is blank. If there are M display
items, then the probability of any non-target location being blank is (L − M)/L. A
CDD is a two dimensional vector of

φ = [P(Y l = 20◦ |Cl = 0), P(Y l = ∅|Cl = 0)],

and the three different set-sizes may be represented by three CDDs of equal proba-
bility:

φ(1) = [3/12, 9/12], φ(2) = [6/12, 6/12], φ(3) = [1 − ε, ε], (A.6)

where ε is a small number to prevent zero probability.

Note that the setup in Eq. A.6 only approximates the probabilistic structure
of Exp. 3. This is because the blank placements are not independent of one
another. In other words, for a given set-size M , only M locations can contain a
distractor. If we place a distractor at each location with probability M/L, we do
not always observe M distractors. Instead, the actual set-size follows a binomial
distributionwithmean M . However, this is a reasonable approximation because
the human visual system can generalize to unseen set-sizes effortlessly. In
addition, the values of M used in our experiments are often different enough
{3, 6, 12} that the i.i.d. model is equally effective in inferring M .

Bayesian inference for heterogeneous visual search
SPRT relies on computing S(X1:t ) from the orientation log likelihoods Lθ (X l

1:t )
from all locations l, whichwe show below. The target-present likelihood P(X1:t |C =

1) is given by marginalizing out the target location lT ∈ {1, 2, . . . , L}, CDD φ, as
well as the target and distractor orientations. DenoteCl ∈ {0, 1} the stimulus class at
location l: Cl = 1 if and only if location l contains a target. In light of the graphical
model in Fig. 3.1b:
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P(X1:t |C = 1) =
∑
lT ,φ

P(X1:t |lT, φ,C = 1)P(φ)P(lT |C = 1)

=
∑
lT

P(lT |C = 1)
∑
φ

P(φ)
∑

~Y={Y 1,...,Y L }

P(X1:t |~Y )P(~Y |lT, φ,C = 1)

=
∑
lT

P(lT |C = 1)
∑
φ

P(φ)
∑
~Y

∏
l

(P(X l
1:t |Y

l )P(Y l |lT, φ,C = 1))

=
∑
lT

P(lT |C = 1)
∑
φ

P(φ)
∏

l

∑
Y l

(P(X l
1:t |Y

l )P(Y l |lT, φ,C = 1))

=
∑
lT

P(lT |C = 1)
∑
φ

P(φ)P(X lT
1:t |C

lT = 1)
∏
l,l

P(X l
1:t |φ,C

l = 0)

=
∑
lT

P(lT |C = 1)
∑
φ

P(X lT
1:t |C

lT = 1)

P(X lT
1:t |φ,C

lT = 0)
P(φ)

∏
l

P(X l
1:t |φ,C

l = 0),

(A.7)

where

P(X l
1:t |C

l = 1) =
∑
θ∈ΘT

P(X l
1:t |Y

l = θ)P(θ |Cl = 1),

P(X l
1:t |φ,C

l = 0) =
∑
θ∈ΘD

P(X l
1:t |Y

l = θ)φθ .

Similarly, the target-absent likelihood is:

P(X1:t |C = 0) =
∑
φ

P(φ)
∏

l

P(X l
1:t |φ,Cl = 0). (A.8)

Note that Eq. A.8 may be thought of as computing a normalization of the term
P(φ)

∏
l P(X l

1:t |φ,C
l = 0) that is used to weight the local log likelihood ratios in

Eq. A.7. This normalized weight turns out to be the posterior of CDD: P(φ|X1:t ).
Define the log posterior of CDD as:

Qφ(X1:t )
4
= log P(φ|X1:t ) = log

P(φ)
∏

l P(X l
1:t |φ,C

l = 0)∑
φ′ P(φ′)

∏
l P(X l

1:t |φ
′,Cl = 0)

. (A.9)

Then the log likelihood ratio is
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log
P(X1:t |C = 1)
P(X1:t |C = 0)

= log
∑

l

P(lT = l |C = 1)P(X l
1:t |C

l = 1)
∑
φ

P(φ|X1:t )
P(X l

1:t |φ,C
l = 0)

.

Recall that: Smax
i∈A

(xi) = log
∑
i∈A

exp(xi), (A.10)

log
P(X1:t |C = 1)
P(X1:t |C = 0)

= Smax
l=1,...,L

(
log P(lT = l |C = 1) + log P(X l

1:t |C
l = 1) + Smax

φ∈Φ

(
Qφ(X1:t ) − log P(X l

1:t |φ,C
l = 0)

))
.

(A.11)

Assuming uniform prior on the target location P(lT = l |C = 1) and on the target
type P(Y l = θ |Cl = 1),

log
P(X1:t |C = 1)
P(X1:t |C = 0)

=Smax
l=1...,L

(A + B) − log(L),

where A = Smax
θ∈ΘT

(
Lθ (X l

1:t ) − log(nT )
)
,

B = Smax
φ∈Φ

(
−Smax

θ∈ΘD

(
Lθ (X l

1:t ) + log φθ
)
+Qφ(X1:t )

)
,

(A.12)

which proves Eq. 3.10-3.11.

Mean-field approximation to SPRT
Instead of inferring the CDD on a trial-by-trial basis, a simpler alternative is to use
its average value without looking at the stimulus. For example, in the mixed set-size
example with M ∈ {3, 6, 12}, SPRT estimates the value of M given X1:t for each
trial, whereas the simple model assumes a set-size of E(M) = 7 for all the trials.

In detail, the simplemodel essentially uses the ‘mean-field’ approximation onEq.A.12:

log
P(X1:t |C = 1)
P(X1:t |C = 0)

≈ Smax
l=1,...,L

(
Smax
θ∈ΘT

(
Lθ (X l

1:t )
)
− Smax

θ∈ΘD

(
Lθ (X l

1:t ) + log φ̄θ
))
− log(nT L),

(A.13)

where φ̄θ =
∑
φ∈Φ φθP(φ) is the mean CDDwith respect to the its prior distribution.

The prediction of the simple model on a mixed-set-size search problem is shown
in Fig. 3.8b.
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Search with correlated target and distractor orientations
SPRT for heterogeneous visual search Eq. A.12 assumes that the properties of
the scene, namely the set-size and the scene-complexity, only affects the distractor
orientation distribution. In this section we relax this assumption and let φ encode
both the target and distractor orientation distribution: φ = {φ(T ), φ(D)}, where
φ(T )
θ = P(Y l = θ |Cl = 1) and φ(D)

θ = P(Y l = θ |Cl = 0). The log likelihood of
target-present in Eq. A.7 now becomes:

P(X1:t |C = 1) =
∑
lT

P(lT |C = 1)
∑
φ

P(X lT
1:t |φ

(T ),ClT = 1)

P(X lT
1:t |φ

(D),ClT = 0)
P(φ)

∏
l

P(X l
1:t |φ

(D),Cl = 0).

The log likelihood ratio of target-present versus target-absent is:

log
P(X1:t |C = 1)
P(X1:t |C = 0)

= log
∑

l

P(lT = l |C = 1)
∑
φ

P(X l
1:t |φ

(T ),Cl = 1)

P(X l
1:t |φ

(D),Cl = 0)
P(φ|X1:t )

= Smax
l=1,...,L

(
Smax
φ∈Φ

(
A(l, φ)

))
− log(L),

where A(l, φ) = Smax
θ∈ΘT

(
Lθ (X l

1:t ) + log φ
(T )
θ

)
− Smax

θ∈ΘD

(
Lθ (X l

1:t ) + log φ
(D)
θ

)
+Qφ(X1:t ).

(A.14)

This formulation encompasses the formulation in Eq. A.12 where the target and the
distractor orientations are distributed independently with respect to each other. To
see this, assume φ(D) and φ(T ) vary independently, then:

P(X1:t |C = 1)

=
∑
lT

P(lT |C = 1)
∑

φ(T ),φ(D)

P(X lT
1:t |φ

(T ),ClT = 1)

P(X lT
1:t |φ

(D),ClT = 0)
P(φ(T ))P(φ(D))

∏
l

P(X l
1:t |φ

(D),Cl = 0)

=
∑
lT

P(lT |C = 1)
∑
φ(D)

∑
φ(T ) P(φ(T ))P(X lT

1:t |φ
(T ),ClT = 1)

P(X lT
1:t |φ

(D),ClT = 0)
P(φ(D))

∏
l

P(X l
1:t |φ

(D),Cl = 0)

=
∑
lT

P(lT |C = 1)
∑
φ(D)

P(X lT
1:t |φ̄

(T ),ClT = 1)

P(X lT
1:t |φ

(D),ClT = 0)
P(φ(D))

∏
l

P(X l
1:t |φ

(D),Cl = 0),

(A.15)

where φ̄(T ) =
∑
φ(T ) φ(T ) P(φ(T )) is the expected value of φ(T ). Eq. A.15 is equivalent

to Eq. A.12 with a different prior (φ̄(T )) on target orientation.
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A.2 Scotopic visual recognition
Time-adaptation of hidden features (Eq. 4.8)
We explain how to compute hidden features SH (N t ) from partial observations
N t , where t ≤ T and T is the exposure time required to obtain a high-quality
image. In order to compute h we need to marginalize out the unobserved photons
∆N =

∑T
t ′=t+1 X t ′:

SH
j (N t ) =

∑
∆N

SH
j (W j (N t + ∆N ) + b j )P(∆N |N t ). (A.16)

To approximate the marginalization above, we put a Gamma prior on the photon
emission rate λi at pixel i:

P(λi) = Gam(µiσλ, σλ ). (A.17)

After observing the cumulative count Ni,t of pixel i in time [0, t∆], the posterior
estimate for the photon emission rate is:

P(λi |Ni,t ) ∝ P(Ni,t |λi)P(λi) (A.18)

= Gam(µiσλ + Ni,t, σλ + t), (A.19)

which has a posterior mean of:

λ̂i
4
= E[λi |Ni,t] =

µiσλ + Ni,t

σλ + t
. (A.20)

Intuitively, the emission rate is estimated via a smoothed-average of the observed
counts.

Therefore the marginalization step in Eq. A.16 may be approximated up to second
order accuracy using:

P(h j = 1|N t ) ≈ P(h j = 1|E[∆N |N t] + N t ) (A.21)

= Sigm(
∑

i

W ji
(
(T − t)λ̂i + Xi,t

)
+ b j ) (A.22)

= Sigm(W j
T + σλ
t + σλ

N t + σλ
T − t
σλ + t

W j µ + b j ) (A.23)

= Sigm(α(t)W jN t + β j (t)), (A.24)

where α(t) 4=
T + σλ
t + σλ

, (A.25)

β j (t)
4
= σλ

T − t
σλ + t

W j µ + b j, (A.26)
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thus the log posterior ratio is:

SH
j (N t ) = log

P(h j = 1|N t )
P(h j = 0|N t )

≈ α(t)W jN t + β j (t), (A.27)

which proves Eq. 4.8.

The derivation above was done for the W j-th feature only. In ConvNet, the features
are localized (e.g. occupying only a 5 × 5 region), and organized into groups (e.g.
the first layer in WaldNet for CIFAR10 uses 32 features groups), which means that
we need to learn one β j (t) for each spatial location and each feature group. For
simplicity we assume that the mean image µ is translational invariant within 5 × 5
regions, so that we only need to model one scalar β j (t) for each of the 32 feature
maps.

Relationship between exposure time and number of bits of signal (Table 4.1)
Bits of signal and photon counts are equivalent concepts. Furthermore, the photon
counts are linearly related to exposure time. Here we derive the relationship between
exposure time and the number of bits of signal. To simplify the analysis we will
make the assumption that our imaging setup has a constant aperture.

What does it mean for an image to have a given number of bits of signal? Each
pixel is a random variable reproducing the brightness of a piece of the scene up to
some noise. There are two main sources of noise: the electronics and the quantum
nature of light. We will assume that for bright pixels the main source of noise is
light. This is because, as will be clear from our experiments, a fairly small number
of bits per pixel are needed for visual classification, and current image sensors and
AD converters are more accurate than that.

According to the Poisson noise model (Eq. 4.4 in main text), each pixel receives
photons at rate λ. The expected number of photons collected during a time t is
λt and the standard deviation is σ =

√
λt. We will ignore the issue of quantum

efficiency (QE), i.e. the conversion rate from photons to electrons on the pixel’s
capacitor, and assume that QE=1 to simplify the notation (real QEs may range from
0.5 to 0.8). Thus, the SNR of a pixel is SN R = λt/

√
λt =

√
λt and the number of

bits of signal is b = log2
√
λt = 0.5 log2 λ + 0.5 log2 t.

The value of λ depends on the amount of light that is present. This may change
dramatically: from 10−3 LUX in a moonless night to 105 LUX in bright direct
sunlight. With a typical camera one may obtain a good quality image in a well lit
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indoor scene (Ev ≈ 300 lux) with an exposure time of 1/30s. If a bright pixel has 6.5
bits of signal, the noise is 2−6.5 ≈ 1% of the dynamic range and λt/

√
λt = 100, i.e.

λ ≈ 3 · 105 ≈ 103Ev ≈ 210Ev. Substituting this calculation of λ into the expression
derived in the previous paragraph we obtain b ≈ 5 + 1

2 log2 t + 1
2 log2 Ev, which is

what we used to generate Table 4.1 in the main text.

Datasets
MNIST contains gray-scaled 28 × 28 images of 10 hand-written digits. It has
50k training and 10k test images. We treat the pixel values as the ground truth
intensity1. Dark current εdc = 3%. Weuse the default ‘LeNet’ from theMatConvNet
package [1]. The architecture is 784-20-50-500-102 with 5 × 5 receptive fields and
2 × 2 pooling.

CIFAR10 contains 32× 32 color images of 10 visual categories. It has 50k training
and 10k test images. We use the same synthesis procedure as above for each color
channel3. We use the default 1024-32-32-64-10 LeNet architecture [2] with batch
normalization [3] after each convolution layer. We use the same setting prescribed
in [2] to achieve 18% test error on normal lighting conditions. [2] uses local contrast
normalization and ZCA whitening as preprocessing steps. We estimate the local
contrast and ZCA from normal lighting images and transform them according to
the lowlight model to preprocess scotopic images. We use batch-normalization to
accelerate learning. All models are trained for 75 epochs, where the learning rate is
0.05 for 30 iterations, 0.005 for the next 25 then 0.0005 for the rest.

Implementation

In step one of learning, the scalar functions α(t) and β(t) in Eq. 4.8 are learned as
follows. As the inputs to the network are preprocessed, the preprocessing steps alter
the algebraic form for α and β. For flexibility we do not impose parametric forms on
α and β, but represent themwith piecewise cubic Hermite interpolating polynomials
with four end points at PPP= [.22, 2.2, 22, 220]. We learned the adapted weights at
these end-points by using a different batch normalization module for each PPP. At

1The brightest image we synthesize has about 28 photons, which corresponds to a pixel-wise
maximum signal-to-noise ratio of 16 (4-bit accuracy), whereas the original MNIST images has an
accuracy of 7 to 8 bits, which corresponds to 214 ∼ 216 photons.

2The first and last number represent the input and output dimension, each number in between
represents the number of feature maps used for that layer. The number of units is the product of the
number of feature maps with the size of the input.

3For simplicity we do not model the Bayer filter mosaic.
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test time the parameters of the modules are interpolated to accommodate other PPP
levels.

In step two of learning, we compute Sc(N t ) for 50 uniformly spaced PPPs in
log scale, and train thresholds τ(t) for each PPP and for each η. A regularizer
0.01

∑
t | |τ(t) − τ(t + 1) | |2 is imposed on the thresholds τ(t) on the log posterior

ratios to enforce smoothness. InEq. 4.14, the steepness of Sigmoid Sigm is annealed
over 500 iterations of gradient descent, with initial value 0.5, a decay rate of 0.99
and a floor value of 0.01.

A.3 Visual discrimination with unknown stimulus onset
Log posterior ratios based on momentary observations
Consider a visual display at time interval ofmotion coherence z over the time interval
[t∆, (t + 1)∆]. We make the simplifying assumption that each dot has probably z

of moving along the coherent direction that is independent of the motion direction
of the other dots. This means that there will be zM dots moving coherently on
average, but at any point time, the actual number of coherently moving dots follows
a multinomial distribution centered at zM . This is ok because the visual system
should still function when it sees a slightly different number of moving dots than
the expected value.

Let Y and Yi ∈ [0◦, 360◦] denote, respectively, the direction of coherent motion and
the direction of local motion at location i. Z denotes the coherence. Xi is the
instantaneous firing pattern of all locations and all hypercolumn neurons, and Xi,t

the pattern for location i. The likelihood of observing a firing pattern X of dots
moving towards direction θ at coherence level z is:

P(X |Y = θ, Z = z) =
∑

Y1,Y2,...,YM

P(X |Y1,Y2, . . . ,YM )P(Y1,Y2, . . . ,YM |Z = z,Y = θ)

(A.28)

=
∑

Y1,Y2,...,YM

*
,

∏
i

P(Xi |Yi)+
-

*
,

∏
i

P(Yi |Z = z,Y = θ)+
-

(A.29)

=
∏

i

∑
Yi

P(Xi |Yi)P(Yi |Z = z,Y = θ). (A.30)

Note that Eq. A.29 makes critical use of the independence assumption of motion
directions across locations, without which the computation would be intractable.
Consider the term P(Yi |z,Y = θ): the local direction Yi should be θ if the dot is in
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the coherent set and sampled uniformly from [0◦, 360◦] otherwise, thus:

P(Yi |Z = z,Y = θ) = zI[Yi=θ] ((1 − z)Uniform(Yi |[−180, 180]))I[Yi,θ] . (A.31)

Making use of the fact that for all the incoherent directions the local direction prior
is identical:

P(X |Z = z,Y = θ) =
∏

i

∑
Yi

P(Xi |Yi)P(Yi |p,Y = θ)

=
∏

i

(
(1 − z)EYi [P(Xi |Yi)] + zP(Xi |Yi = θ)

)
. (A.32)

Therefore, the log likelihood ratio r1,0 4= log P(X |Y=θ,Z=z)
P(X |Z=0) between coherence z and

coherence 0 is given by:

r1,0 =
∑

i

Si (Xi) (A.33)

where Si (Xi)
4
= log

(
(1 − z)EYi [P(Xi |Yi)] + zP(Xi |Yi = θ)

)
EYi [P(Xi |Yi)

. (A.34)

When ∆ is sufficiently short (say < 1ms) we can assume that there is at most one
action potential in each hypercolumn. Let I (Xi) ∈ {0, . . . , K } denote the index of
the firing neuron at location i. I (Xi) = 0 means there are no spikes. Here I (Xi)
and Xi are two representations of the same variable. According to Eq. 5.7, the
probability of observing a spike from neuron k is P(I (Xi) = k |Yi = θ) = λθk∆, and
the probability for no spike is: P(I (Xi) = 0|Yi = θ) = 1 −

∑
k λ

θ
k∆. We have for

k > 0:

W1,0
k
4
= Si (Xi : I (Xi) = k) = log

(
(1 − z)EYi [λ

Yi
k ∆] + zλθk∆

)
EYiλ

Yi
k ∆

= log
(1 − z)λ̄ + zλθk

λ̄
,

(A.35)

where λ̄ 4
= Ed[λθk] is a neuron’s average firing rate over all directions. Since this

average rate is identical across neurons, λ̄ does not have a neuron index. In the same
fashion, W1,0

k
4
= Si (I (Xi) = k) does not have a location index.

When k = 0, we have:

W1,0
0
4
= Si (Xi : I (Xi) = 0) = log

(1 − z)EYi [1 −
∑

k λ
Yi
k ∆] + z(1 −

∑
k λ

θ
k∆)

EYi [1 −
∑

k λ
Yi
k ∆]

= 0.

(A.36)
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Putting Eq. A.35 and Eq. A.36 together we have proven Eq. 5.9:

r1,0 =
∑

i

W1,0
I (Xi )
=

∑
i

∑
k

W1,0
k X (i, k). (A.37)

Similar derivations on r1,2 4= log P(X |D=θ1,Z=z)
P(X |Z=θ2,Z=z) proves Eq. 5.12.

Log posterior ratios based on spike trains
Now we discuss how to compute Sc,0

t
4
= log P(Ct=c |X1:t )

P(Ct=0|X1:t )
based on observations from

the entire duration of [0, t∆]. For now let us assume that there is only one coherent
motion class c. We can compute the enumerator by marginalization over the change
point tδ:

P(Ct = c |X1:t ) =
t∑

td=1
P(tδ = td |X1:t ) (A.38)

=

t∑
td=1

P(X1:t |tδ = td)P(tδ = td)/P(X1:t ) (A.39)

=

t∑
td=1

*.
,

td−1∏
i=1

P(Xi |Ci = 0)+/
-

*.
,

T∏
j=td

P(X j |Cj = c)+/
-

P(tδ = td)/P(X1:t ).

(A.40)

Similarly,

P(tδ = 0|X1:t ) = *
,

t∏
i=1

P(Xi |Ci = 0)+
-

P(tδ > t)/P(X1:t ). (A.41)

Taking the ratio between Eq. A.40 and Eq. A.41 gives:

Sc,0
t = log

P(Ct = c |X1:t )
P(Ct = 0|X1:t )

= log *.
,

t∑
td=1

*.
,

t∏
i=td

P(Xi |Ci = c)
P(Xi |Ci = 0)

+/
-

P(tδ = td)
P(tδ > t)

+/
-
, (A.42)

which admits the following recursive computation:

Sc,0
t = log *.

,

t−1∑
td=1

*.
,

t−1∏
i=td

P(Xi |Ci = c)
P(Xi |Ci = 0)

+/
-

P(Xt |Ct = c)
P(Xt |Ct = 0)

P(tδ = td)
P(tδ > t − 1)

P(tδ > t − 1)
P(tδ > t)

+
P(Xt |Ct = 1)
P(Xt |Ct = 0)

P(tδ = t)
P(tδ > t)

)
(A.43)

= log
((
exp(St−1)

P(tδ > t − 1)
P(tδ > t)

+
P(tδ = t)
P(tδ > t)

)
P(Xt |Ct = 1)
P(Xt |Ct = 0)

)
(A.44)

= log
(
exp

(
St−1 − log

P(tδ = t)
P(tδ > t − 1)

)
+ 1

)
+ log

P(tδ = t)
P(tδ > t)

+ rc,0
t (A.45)

= Srec
(
St−1 − log αt

)
+ log

αt

1 − αt
+ rc,0

t , (A.46)
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which, recalling that αt
4
= P(κ = t |κ > t − 1), proves Eq. 5.10.

To relax the unique coherent motion assumption, one can simplify offset Sc,0
t by the

log prior log P(C = c) for the class c. To compute ratios between the two coherent
motions (Eq. 5.1):

Si, j
t
4
= log

P(Ct = i |X1:t )
P(Ct = j |X1:t )

= log
(

P(Ct = i |X1:t )
P(Ct = 0|X1:t )

/
P(Ct = j |X1:t )
P(Ct = 0|X1:t )

)
= Si,0

t − S j,0
t .

(A.47)

Lastly, Rt,t ′ (Eq. 5.2) the log posterior ratios for post-change observations is simply:

Rt,t ′
4
= log

P(C′t = 1|Xt:t ′, κ ≤ t
P(C′t = 2|Xt:t ′, κ ≤ t

= log
P(C = 1)
P(C = 2)

+
∑

i

log
P(Xi |Ci = 1)
P(Xi |Ci = 2)

= log
P(C = 1)
P(C = 2)

+

t ′∑
i=t

r1,2i ,

(A.48)

which proves Eq. 5.13.

A.4 Optimality analysis
State formulation in visual search
Wehave chosen the log posterior ratios at all locations: ~Z : Zl (t) = log P(X l

1:t |C
l=1)

P(X l
1:t |C

l=0)
, l =

1 . . . M , to be the state of our model because the resultant system is Markov: i.e. ~Z
is a sufficient statistic to compute both the overall log likelihood ratio Shomo-search
and likelihood of future observations.

First, as shown in [4], [5]

S(X1:t ) = log
P(C = 1|X1:t )
P(C = 0|X1:t )

= Smax
l=1...M

(Zl ) − log(M).

Second, the likelihood of new observation X t+1 at time t+1 is obtained by marginal-
izing the target location lT . Denote lT = 0 the target-absent event:

P(lT = 0|X1:t ) = P(C = 0|X1:t ) =
1

1 + exp(S(X1:t ))
=

1
1 +

∑
l exp(Zl )/M

,

P(lT, lT > 0|X1:t ) =
exp(Zl (t))/M

1 +
∑

l exp(Zl (t))/M
.

For notational convenience, define Z0 = log(M), then the equations above simplify
to:

P(lT |X1:t ) =
exp(Zl (t))∑M

l=0 exp(Zl (t))
.
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The posterior on lT is sufficient to compute likelihood of X t+1:

P(X t+1 |X1:t ) = P(X t+1,C = 0|X1:t ) + P(X t+1,C = 1|X1:t ),

where P(X t+1,C = 0|X1:t ) = P(X t+1 |C = 0)P(C = 0|X1:t ) = P(lT = 0|X1:t )
∏

l

P(X l
t+1 |C

l = 0),

P(X t+1,C = 1|X1:t ) =
∑
lT

P(X t+1 |lT )P(lT |X1:t )

=
∑
lT

P(X lT
t+1 |C

lT = 1)
∏
l,lT

P(X l
t+1 |C

l = 0)P(lT |X1:t ).

Translating optimal thresholds for discrimination to asymptotic thresholds for
search
We discuss how to design thresholds for visual search that asymptotically achieve
the best ER vs RT trade-off (as inConj. 1 and Eq. 6.3 and Eq. 6.4). This is done by
relating the asymptotically optimal visual search thresholds {τvs

− , τ
vs
+ } to two other

pairs of thresholds:

• {τ−, τ+}: the optimal thresholds for discrimination with an even prior ratio
(i.e. P(C = 1)/P(C = 0) = 1),

• {τ′−, τ′+}: the optimal thresholds for discrimination with a biased prior ratio of
1/M .

(I) {τvs
− , τ

vs
+ } = {τ

′
−, τ
′
+}: the asymptotic search thresholds are identical to the

discrimination threshold with a 1/M prior ratio. The asymptotic case is where
the locations l , l∗ are absolutely sure that they do not contain any target, i.e.
Zl (t) → −∞,∀l , l∗. Asymptotically (i.e. after collecting a significant amount of
information) this always happens when the target is absent, and happens with prob-
ability 1/M when the target is present (when l∗ is the target location). Therefore,
the asymptotic search problem can be reduced to a visual discrimination problem
with a prior ratio of 1/M .

(II) {τ′−, τ′+} + log(1/M) = {τ−, τ+}: log prior ratio causes an additive change to the
optimal discrimination thresholds. Let γ+ and −γ− (note that γ+, γ− > 0) be the
upper and lower thresholds for visual discrimination with a prior of p for target-
present. Let RTC and ERC be the expected response time and error rate when the
stimulus type is C ∈ {0, 1}. The error rates, assuming the two thresholds are far
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apart, are given by (see summary in [6]):

RT1(γ+, γ−) ≈ RT1(γ+) =
k
η
γ+,

RT0(γ+, γ−) ≈ RT0(γ−) =
k
η
γ−,

ER1(γ+, γ−) ≈ ER1(γ−) =
1

1 + eγ−
,

ER0(γ+, γ−) ≈ ER0(γ+) =
1

1 + eγ+
,

where k is an unknown constant that is inversely proportional to the drift-rate. The
total risk R (γ+, γ−) is given by:

R (γ+, γ−) = pRT1(γ+) + (1 − p)RT0(γ−) + pER1(γ−) + (1 − p)ER0(γ+).

At the optimal thresholds γ∗+ and γ∗−, it must be that the local derivatives of the risk
function w.r.t. the thresholds are zero:

∂R

∂γ+

���γ+=γ∗+ = 0 =⇒
k
η
=

(1 − p)e−γ
∗
+

p(1 + e−γ∗+ )2
≈

1 − p
p

e−γ
∗
+ = e−

(
γ∗++log

p
1−p

)

=⇒ γ∗+(p) = − log(
k
η

) − log
p

1 − p
,

∂R

∂γ−

���γ−=γ∗− = 0 =⇒ γ∗−(p) = − log(
k
η

) + log
p

1 − p
.

Setting p = 1/2 (or equivalently, log p
1−p = 0) and p = 1/(1 + M) (or equivalently,

log p
1−p = − log(M)) respectively, we have:

τ+ = γ
∗
+(

1
2

) = − log(
k
η

),

τ′+ = γ
∗
+(

1
1 + M

) = − log(
k
η

) + log(M)

=⇒τ′+ = τ+ + log(M).

Similarly,

=⇒τ′− = −γ
∗
−(

1
1 + M

) = −(γ∗−(
1
2

) − log(M)) = τ− + log(M).

Therefore, the optimal thresholds {τ′−, τ′+} with a biased prior ratio may be obtained
by offsetting the optimal thresholds {τ−, τ+} with the log prior ratio.

Combining (I) and (II), see see that the asymptotic visual search thresholds are given
by {τvs

− , τ
vs
+ } = {τ−, τ+} + log(M).
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