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C h a p t e r 6

OPTIMALITY ANALYSIS OF SEQUENTIAL PROBABILITY
RATIO TEST

Strictly Optimal Sequential Tests

The sequential probability ratio test (SPRT) is asymptotically optimal in the speed
versus accuracy tradeoff (SAT) for problems such as visual search (Ch. 3) and
scotopic object recognition (Ch. 4), but how close to optimal is SPRT in the non-
asymptotic case, i.e. when the cost of error η or the expected response time is small?
We numerically compare SPRT and the optimal strategy on the homogeneous visual
search (Sec. 3.4) problem and propose alternative test forms that may be optimal in
non-asymptotic scenarios.

6.1 Optimal decision strategy for homogeneous search
Recall that the goal of homogeneous visual search is to detect whether a target
appears anywhere in a field of display (C = 1 if target present, and C = 0 other-
wise). All locations contain either a target or a distractor, and at most one target
appears at a time. The target may be separated from a distractor using unique fea-
tures (orientation). The observations are the action potentials X1:t = {X

l
1:t }

M
l=1 V1

orientation-tuned hypercolumns from all M display locations.

A decision strategy for homogeneous visual search aims to minimize Bayes risk
(Eq. 2.1):

Risk = E[T] + ηE[ĈT , C],

where ĈT ∈ {0, 1} is the observer’s decision at decision time T , η is the relative cost
of error with respect to time. The optimal test achieves the lowest risk among all
tests.

For simplicity we assume that false positives and false negatives have the same
cost, and so do the response times under each class. Different costs can be
easily accommodated without affecting the overall analysis.

Two components are necessary to describe the optimal test: a state space Z (t) over
time and a decision strategy that associates each state and time with an action. One
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Figure 6.1: Decision strategies for homogeneous visual search. To perform
probabilistic inference, a sequential test computes for each location the local log
likelihood ratio Zl = log P(X l |Cl=1)

P(X l |Cl=0)
over time: (a) Zl at a distractor location, (b) Zl

at the target location. (c,d) Two decision strategies that make use of the probabilistic
interpretation for a two-dimensional visual search problem. SPRT (c) thresholds
the one-dimensional log likelihood ratio S(X1:t ) (Eq. 3.7), whereas the optimal (d)
uses a decision boundary in the joint space of {Z1, Z2}. Time in (d) is color-coded,
cooler colors means earlier.

common constraint on the state space is that it must beMarkov in time: Z (t) must be
sufficient in summarizing past observations so that given Z (t), future observations
become independent from the past (see Appendix Sec. A.4). Once this constraint is
satisfied, the problem may be formulated as a partial observation Markov decision
process (POMDP)[1], and the optimal strategy may be solved exactly using dynamic
programming.

We choose Z (t) to be the collection of log posterior ratios from all locations:
Z (t) = {Zl (t)}Ml=1 and

Zl (t)
4
= S(X l

1:t ). (6.1)

For simplicity we consider the most common formulation of input as a Gaussian
random walk at each location (e.g. [2], [3]). This approximates the Poisson model
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used inCh. 3, which ismore expensive to simulate. The input is parameterized by the
drift-rate µC,l , which depends on the stimulus classC and the location l (Fig. 6.1a,c).
A larger drift-rate difference between the two classes |µ1,l − µ0,l | implies a higher
signal-to-noise ratio, or equivalently, an easier discrimination problem at location l.

Computational solution for low-dimensional problems
The optimal decision may be computed numerically using dynamic program-
ming [1], [4]. Define R(Z (t), t) as the lowest total risk an observer could incur
starting from state Z (t) at time t. The optimal risk is equivalent to R(~0, 0), the total
risk from time 0 onwards with a flat prior. R(Z, t) is recursively given by:

R(Z (t), t) = min




η(1 − P0(Z (t))) D = 0: declare target absent
ηP0(Z (t)) D = 1: declare target present

∆ + EZ (t+∆) |Z (t) R(Z (t + ∆), t + ∆) D = ∅: wait.
(6.2)

At any time t and any state Z (t), the ideal observer picks the action D ∈ {∅, 0, 1}
that yields the lowest risk. If declaring target-absent, the observer makes a false
rejection mistake. The false reject probability can be computed from the state Z (t)
and is denoted P0(Z (t)) (see Appendix Sec. A.4). If waiting for more evidence, the
observer trades off the cost Ctime∆ for a new observation of duration ∆, and access
to the cumulative risk at time (t + 1).

The optimal decision strategy is defined over an M +1 dimensional state-space. The
state space is separated by decision boundaries/surfaces into three different decision
regions [5]. Furthermore, the recurrence equation 6.2 is time invariant. As a result,
the optimal decision is constant in time (see [1]) and the decision surfaces have
M − 1 dimensions.

Conjecture for high-dimensional problems
Recall that the optimal decision strategy for homogeneous visual discrimination
(between two simple alternatives), is SPRT. We conjecture that the optimal decision
strategy for homogenous visual search is similar to SPRT: it uses two SPRTs defined
on scaled log posterior ratios.

Conjecture 1 (Uniform drift-rates) If all locations share the same drift-rate (µ1,l =
−µ0,l = µ,∀l), let τ+ and τ− be the optimal upper and lower thresholds for visual
discrimination at location l associated to a cost of error of η, then the optimal
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decision surfaces for homogeneous visual search with the same cost of error η are:

S+(Z (t)) =
1
a+
Smax
l=1,...,M

(
a+(Zl (t) − log(M))

)
≥ τ+, (6.3)

S−(Z (t)) =
1
a−
Smax
l=1,...,M

(
a−(Zl (t) − log(M))

)
≤ τ−, (6.4)

where a+ and a− are unknown parameters.

Conj. 1 states that the optimal decision strategy is to wait until either S+(X (t)) ≥ τ+
to declare Ĉ = 1 or S−(X (t)) ≤ τ− to declare Ĉ = 0. The thresholds τ+ and τ− are
obtained easily by solving a one-dimensional dynamic programming problem [3].
The thresholds are chosen to guarantee asymptotic optimality. Intuitively, when
there is only one location (M = 1), the problem reduces to visual discrimination and
Conj. 1 reduces to SPRT, which is optimal for visual discrimination. For M > 1,
asymptotically one “winner” will emerge from the M locations, and Zl (t) at other
locations become negligible compared to that of the winner location l∗. The decision
is effectively reduced to concerning only the winner location l∗. In this case:

S+(Z (t)) =
1
a+
Smax
l=1,...,M

(
a+(Zl (t) − log(M))

)
≈ Zl∗ (t) − log(M),

S−(Z (t)) ≈ Zl∗ (t) − log(M).

Any location could be the winner location with a probability 1/M , hence asymp-
totically the visual search problem reduces to a visual discrimination problem at
location l∗ with a log prior ratio of log(1/M). This reduced problem may be solved
optimally using adjusted thresholds τ+ + log(M) and τ− + log(M) (for proof see
Appendix Sec. A.4), which matches the asymptotic behavior of the conjecture.

Fig. 6.2(a-b) and Fig. 6.3 show excellent empirical match between the conjectured
thresholds and the optimal thresholds in 2D.

Our conjecture can be extended to cases where the drift-rates are different across
locations.

Conjecture 2 (Non-uniform drift-rates) Let τ(l)
+ and τ(l)

− be the optimal upper and
lower thresholds for visual discrimination at location l associated with a cost of
error of η, define c(l)

+ = τ
(M)
+ /τ(l)

+ and c(l)
− = τ

(M)
− /τ(l)

− , the optimal decision surface
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Figure 6.2: Optimal sequential test for 2D visual search. (a-b) Optimal deci-
sion thresholds and approximations for different costs of errors η =∈ {2, 5, 10, 20})
in homogeneous search. Decision boundaries are approximated using Eq. 6.5
and 6.6 with a+ = 1.50 and a− = 4.61. (c-d) Optimal decision thresholds and
approximations for heterogeneous drift-rate search. Drift-rates are (a-b) ±2/sec, (c)
{±8,±3}/ms and (d) {±15,±3}/sec.

for visual search with the same time cost is:

S+(Z (t)) =
1
a+
Smax
l=1,...,M

(
c(l)
+ a+(Zl (t) − log(M))

)
≥ τ(M)
+ , (6.5)

S−(Z (t)) =
1
a−
Smax
l=1,...,M

(
c(l)
− a−(Zl (t) − log(M))

)
≥ τ(M)
− . (6.6)

Conj. 2 only differs from Conj. 1 for uniform drift-rate (Eq. 6.5) in that the local
diffusions are scaled by a location-dependent factor c(l)

+ . and c(l)
− . These factors

normalize the diffusion at each location by its efficiency. The normalization is with
respect to a reference location, which is arbitrarily chosen to be location M . In the
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asymptotic case where only one location l∗ is relevant,

S+(Z (t)) ≈ τ(M)
+ (Zl∗ (t) − log(M))/τ(l∗)

+ , (6.7)

S−(Z (t)) ≈ τ(M)
− (Zl∗ (t) − log(M))/τ(l∗)

− , (6.8)

and the visual search problem reduces to visual discrimination at location l∗. Since
τ(l∗)
+ and τ(l∗)

− are the optimal thresholds for visual discrimination, visual search
should be optimal when S+(Z (t)) reaches τ(l∗)

+ or when S−(X (t)) reaches τ(l∗).
Substituting Eq. 6.8 we obtain thresholds τ(M)

+ for S+(Z (t)) and τ(M)
− for S−(Z (t))

(Eq. 6.5).

Conj. 2 only requires solving M one-dimensional dynamic programming problems
for τ(l)

+ and τ(l)
− , which is more scalable than the optimal procedure (Eq. 6.2) that

scales exponentially with M . Fig. 6.2(c-d) shows that the predicted thresholds from
Conj. 2match the optimal thresholds from dynamic programming in 2D for a variety
of costs of time and drift-rates.

6.2 Optimality analysis of current search models
How are existing visual search strategies compare against the optimal? For fairness
we compare only approaches that perform probabilistic inference on the graphical
model in Fig. 3.1b. These approaches, listed below, differ only in the decision
strategy [6]:

a-SPRT (Fig. 6.1d): our two-SPRT approach that uses two decision surfaces pre-
scribed in Conj. 1 and Conj. 2 to approximate the ideal observer.

SPRT [7] (Fig. 6.1b): a Bayesian extension of Ward’s SPRT [8] into testing com-
posite hypotheses. SPRT compares the log likelihood ratio of target-present versus
target-absent S(X1:t ) (Eq. 3.7) against a pair of thresholds. Since the SPRT is sub-
ject to the same asymptotic analysis in Conj. 1, it uses the same thresholds τ− and
τ+ as does the a-SPRT. Essentially, SPRT is a special case of Eq. 6.3 and Eq. 6.4
where a+ = a− = 1.

SPRT-opt: the same as SPRT above except that it optimizes the upper and lower
thresholds tominimize the risk function (Eq. 2.1). Since SPRT-optmay use different
thresholds from those in the regular SPRT, it may not be asymptotically optimal.
However, this does not prevent SPRT-opt from outperforming the regular SPRT
(which is asymptotically optimal). This is because the asymptotic (i.e. long)
decisions may only take up a tiny fraction of all the decisions (especially in easy
tasks), and SPRT-opt may do better by focusing on the risk for shorter decisions.
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Figure 6.3: Sequential testing strategies for homogeneous visual search in two-
dimensions. The optimal and various alternative decision strategies are compared in
terms of (a) the lower and (b) the upper threshold in the joint space of {Z1, Z2}. The a-
SPRT thresholds are obtained from Eq. 6.3 and Eq. 6.4with a+ = 1.5 and a− = 3.9;
both SPRT and Hardmax use the optimal threshold for visual discrimination so that
asymptotically they are consistent with the optimal strategy. Input to each display
location has a drift-rate of ±4/sec. (c-d) Each panel shows the log likelihood ratio
S(X1:t ) distribution at the time of decision under the optimal decision strategy from
1k Monte-Carlo simulations. As references, the distribution of S− when target is
absent (c) and of S+ when present (d) are shown. S± is not deterministic because
time is discretized in the simulation, which causes the log likelihood ratios to have
finite-sized jumps. Standard deviations of the jumps are shown as another reference.
Drift-rate of the observation is ±2/sec.

Hardmax [7], [9]: an efficient approximation to SPRT. Each location decides
whether it contains a target (Cl = 1) or a distractor (Cl = 0) based solely on the
local belief S(X l

1:t ). The observer declares target-present when any location reports
a target detection, declares target-absent when all locations report a distractor, and
waits for more information otherwise. Hardmax is also a special case of Eq. 6.3
and Eq. 6.4 where a+ = a− = ∞.
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Decision surfaces comparison.
We want to see how these approaches differ from the optimal in various aspects.
First, how different are their decision surfaces? InFig. 6.3(a-b), we compare them on
a visual search task with two display locations where it is computationally feasible
to solve for the optimal decision boundary using dynamic programming. Since the
decision boundaries are constant in time, they can be visualized in the 2-D space of
Z1 and Z2 only. Each decision boundary is of the form {(Z1, Z2) |S(Z1, Z2) = τ}, i.e.
all pairs of Z1 and Z2 that could make the log likelihood ratio S reach a threshold of
τ.

We observe that both the Hardmax and SPRT differ significantly from the optimal in
terms of the decision surfaces (Fig. 6.3(a-b)). SPRT is conservative, because both
thresholds bend outwards with respect to the optimal thresholds, which translates to
longer decision times for both target-present and target-absent runs. Hardmax, on the
other hand, is faster in declaring target-absent but slower in declaring target-present.

Can time-varying threshold make SPRT optimal?
A common practice in modeling decision making in visual discrimination is to
employ a time-varying threshold. Can the optimal decision mechanism for visual
search also be implemented using SPRT-opt with a time-varying threshold? We
reject this hypothesis by computing the S(X1:t ) distribution at the time of decision
under the optimal test (Fig. 6.3(c-d)). If a time-varying threshold exists on S(X1:t )
to recover the optimal strategy, the S(X1:t ) values should be unique at the time of
decision. Instead, we observe a wide spread in the S(X1:t ) distribution. Therefore,
S(X1:t ) is not a sufficient statistic to implement the optimal test, and SPRT is
sub-optimal in visual search [8].

Risk comparison.
The decision surfaces comparison above has one caveat: we consider all places
on the decision boundary where decisions could be taken, ignoring the fact that
some places on the boundary are more likely to be reached than others in an actual
decision task. E.g., consider Fig. 6.3b, when the search task is easy, the diffusions
when the target is present will most likely fall in the region of {Z2 > 0, Z1 � 0}
and {Z2 � 0, Z1 > 0}, and rarely visit the region of {Z1 > 0, Z2 > 0} where the
difference among the strategies is the most noticeable. This reasoning suggests that
we should compare these strategies in terms of their actual risk value.

The risks for the strategies in a homogeneous search task are shown in Fig. 6.4.
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Hardmax and SPRT are highly sub-optimal. SPRT-opt is almost indistinguishable
from a-SPRT in the low time-cost scenario, but becomes sub-optimal when the cost
of error becomes very small, i.e. when the decision time is short. Although we have
not yet proven that a-SPRT is optimal, it is sufficient to conclude that any model that
underperforms it is sub-optimal.

For search tasks where the drift-rates are non-uniform in space (Fig. 6.5), we see that
even with two display locations, both SPRT-opt and Hardmax1 are suboptimal when
the drift-rates differ significantly across locations. The sub-optimality becomes
progressively more pronounced as the heterogeneity of drift-rates increases. Behav-
iorally, when the drift-rate heterogeneity is large, Hardmax achieves near-identical
ER vs RT trade-offs at both locations, whereas SPRT-opt and a-SPRT learn to
sacrifice the ER at the low drift-rate location for a faster RT overall (Fig. 6.5c).

In conclusion, decision strategies employed by existing search models are sub-
optimal. Hardmax, where one combines local decisions to reach a global decision,
is sub-optimal in almost all scenarios. The SPRT-opt, where one executes a one-
dimensional SPRT with optimized thresholds, is near-optimal in low cost, homo-
geneous search scenarios. When the cost of error is small and when the drift-rate
is heterogeneous across locations, the SPRT-opt becomes sub-optimal, but remains
similar to the optimal SATstrategy.

6.3 Chapter summary
We conjecture a novel procedure, a-SPRT, to compute the optimal decision strategy
for high-dimensional visual search with uniform and non-uniform drift-rates in
space. The a-SPRT makes use of two one-dimensional SPRTs with different scaling
factors, andwith thresholds that are constant in time. In two dimensions, the resultant
decision boundary matches closely that of the optimal strategy. The conjecture is
preferred over the standard dynamic programming procedure, which does not scale
to high (more than three) dimensions.

We compare commonmodels of visual search in their optimality in SAT.We discover
that most of them are sub-optimal. While SPRT behaves similarly as the optimal
strategy in homogeneous search tasks with uniform drift-rates, it is sub-optimal once
the drift-rates become heterogeneous across locations.

1We do not include SPRT because it is not clear how to condense the M asymptotically optimal
thresholds, one for each decision surface, into just one for the SPRT. Instead we trust that SPRT-opt,
with the ability to optimize the thresholds, should always outperform any SPRT.
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Figure 6.4: Risk comparison of common decision strategies in homogeneous
visual search. a-SPRT, SPRT-opt, SPRT andHardmax are compared under different
costs of errors: (a) η = 5, (b) η = 2, and (c) η = 1 with a drift-rate of ±12/sec.
Hardmax is sub-optimal in all cases. Regular SPRT is sub-optimal in the high cost
scenario. SPRT-opt slightly under-performs a-SPRT in terms of the risk. a-SPRT
and SPRT-opt are similar in terms of the RT during target-present (TP) and target-
absent (TA), as well as the false positive rate and the false negative rate. Error bars
are one standard error computed from 10k runs.

We highlight several unsolved issues for future work. First, it remains an open ques-
tion why the optimal decision boundaries for homogeneous search can be described
by two scaled-SPRTs. Second, we do not know how the scaling factors a+ and
a− depend on search parameters, and therefore must search numerically for their
values to minimize the risk. A better understanding is required to generalize ideal
observers of visual search into greater dimensionality and heterogeneity. Third, in
light of the marked difference between alternative models and the optimal strategy
in the case of non-uniform drift-rates, it would be interesting to test subjects in this
case to see which model best captures human behavior, and whether humans are
optimal.
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Figure 6.5: Risk comparison of common decision strategies in heterogeneous
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small to be visible. Both SPRT-opt and Hardmax underperform the optimal test.
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C h a p t e r 7

DISCUSSION AND CONCLUSIONS

The central thesis of this work is that the quantization of visual signals should be
accounted for in vision algorithms. Information in the visual world does not become
available all at once to an observer. Rather, it trickles in one quantum at a time:
photons, action potentials, etc. Modeling the quantized sensory input provides a
fine-grained control over the amount of information required to solve the task at
hand. This granularity coupled with optimal modeling (Ch. 2) can reduce evidence
accumulation time while maintaining accuracy in many applications, such as (1)
lowlight object recognition in Ch. 4, (2) modeling decision making processes in
biological mechanisms in situations where both time and accuracy are important,
e.g. Ch. 3 and Ch. 5, and (3) preparing algorithms for next generation sensors that
faithfully report the quantized signal.

Our analysis focuses on producing a correct decision as quickly as possible from
quantized sensory inputs. We rely on the sequential probability ratio test (SPRT)
for optimizing the speed versus accuracy tradeoff (SAT). Standard SPRT assumes
that a probabilistic model is available to interpret the sensory inputs and that the
model is constant over time (Ch. 2). We demonstrate three examples where these
assumptions are satisfied to different extents. (1) In visual search (Ch. 3), both
assumptions are satisfied, and SPRT is applied directly to account for ideal search
performance and human behavior across different search environments. (2) In
scotopic visual recognition (Ch. 4), the probabilistic model is constant in time but
not available. This is common among practical applications that involve images,
language and sound. We develop strategies to learn SPRT discriminately from data,
and demonstrate that 1 photon per pixel is required for classifying black and white
images of digits and about 20 are required for classifying color images of common
objects (cats, dogs, cars, airplanes, etc). (3) In ecological situations such as visual
discrimination with unknown onset (Ch. 5), the probabilistic model is known but not
constant over time. We demonstrate methods to jointly infer the model and perform
SPRT. We also discover that humans do not behave according to this model, but
rather rely on a sub-optimal model with a simpler architecture.

In all applications, the quantized inputs are assumed to be Poisson in nature: pho-
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tons that arrive at camera sensors and action potentials generated by orientation /
motion-tuning neurons in earlier sensory systems both follow a homogeneous Pois-
son distribution. For Poisson distributed events (photons, action potentials), the
sufficient statistics are the mean event rate, and the events are uncorrelated in time.
It is therefore tempting to conclude that no algorithm can do better than the one
that takes the mean event rate as input (which corresponds to the intensity image
estimated from photon counts, and the neuron firing rate profile estimated from
trains of action potentials). We demonstrate that this is not true, as this algorithm
fails to consider the uncertainty associated with the mean estimates. For example,
one may estimate a 10Hz firing rate from having observed two action potentials
in 20ms, but the [10%, 90%] confidence region of the estimate is [26, 200]Hz,
meaning that repeating the same observation may result in a rate estimate that is an
order of magnitude larger. Therefore an algorithm that is aware of this uncertainty
is likely to do better. Indeed, SPRT relies on the uncertainty to decide when a
sufficient amount of evidence has been collected (Ch. 2), and empirically in the
scotopic vision application Sec. 4.4, the WaldNet algorithm that incorporates the
uncertainty outperforms the rate-based algorithm that does not. One ramification
of the comparison is that images may not be the best medium for representing the
visual world. This is because (1) images throw away the uncertainty information,
and (2) in situations that demand fast and accurate decisions, acquisition time of the
image may be undesirably long. Therefore, the computer vision community should
not fixate on images, and instead start to consider photon streams, which are made
available by recent sensor technologies [1]–[3].

Quantization occurs not just in the sensory inputs, but also on the internal compu-
tations of vision systems. We show that SPRT for visual search Sec. 3.6 admits
a spiking implementation. Log likelihoods of internal variables of the SPRT are
represented as neurons that compute and communicate using action potentials. The
computation is incremental: as quantized input comes in, only a sparse set of changes
propagate through the network. The spiking implementation makes use of a small
number of action potentials in total, and approximates SRPT well.

Many issues remain for future investigation. First, there lacks a hardware implemen-
tation that connects SPRT with photon counting sensors. The sensors may report
photon counts at high spatial frequencies (e.g. a Single-Photon-Avalanche-Diode
operates [1] at 109Hz), but current hardware implementations of convolutional net-
works are at the level of kHz [4]. While quantization of computation may be key
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to further accelerate the system, there may also be an intermediate level of granu-
larity between single photons and the high-quality image that makes sense for most
lowlight vision applications.

Second, we have only explored learning algorithms (Sec. 4.3) for static models. In
problems where the probabilistic models are unknown and non-static, one needs to
simultaneously learn the model and apply optimal sequential testing accordingly.
This is similar in the visual discrimination with unknown stimulus onset exam-
ple Ch. 5, where the non-static model is parameterized by the stimulus onset, there-
fore SPRT addresses this issue by jointly estimating the onset timing and classifying
the stimulus class. We are currently investigating scotopic tracking applications [5]
where the dynamical model is fully parameterized by its initial conditions.

Lastly, active sensing may further improve the trade off between evidence accumula-
tion cost and accuracy. We have so far assumed that the camera collects information
passively for every pixel, whereas the camera could actively shut down pixels de-
pending on their significance towards decision accuracy. The passive scheme makes
sense when the goal is to minimize acquisition time, as we would like to maximize
the amount of exposure for all pixels. However, if the goal is to minimize the total
photon exposure, e.g. in biological imaging and surveillance applications, then it
is reasonable to only collect from pixels that are most relevant to reach a decision.
We speculate an algorithm that runs SPRT at every single pixel to determine the
evidence accumulation time, in conjunction with the SPRT based on their outputs
to compute the final decision. In either case, as we venture deep into the realm of
quantized computation, the conventional notation of image becomes increasingly
obsolete, and we should start to embrace the visual world as what it truly is – an
ocean of photons. The image is just the waves that carry shells to the shore, the
ocean is where the real treasures are.

References

[1] F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-
photon avalanche diode arrays,” Sensors and Actuators A: Physical, vol. 140,
no. 1, pp. 103–112, 2007.

[2] L. Sbaiz, F. Yang, E. Charbon, S. Süsstrunk, and M. Vetterli, “The gigavision
camera,” in Acoustics, Speech and Signal Processing, 2009. ICASSP 2009.
IEEE International Conference on, IEEE, 2009, pp. 1093–1096.

[3] E. Fossum, “The quanta image sensor (qis): Concepts and challenges,” in
Imaging Systems and Applications, Optical Society of America, 2011, JTuE1.



98

[4] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. S. Chung,
“Accelerating deep convolutional neural networks using specialized hard-
ware,” Microsoft Research Whitepaper, vol. 2, 2015.

[5] B. Chen and P. Perona, “Vision without the image,” Sensors, vol. 16, no. 4,
pp. 484–484, 2016.

1



99

A p p e n d i x A

APPENDIX

A.1 Visual search
Orientation log likelihood Lθ
We first derive how to compute the log likelihood for each task-relevant orientation
from evidence X1:t (in this sectionwe are concernedwith one location only, therefore
we omit the location superscript l to simplify notation), which is a set of spike trains
from N orientation-tuned neurons (which can be generalized to be sensitive to color,
intensity, etc) collected during the time interval [0, t∆]. Let X (i)

1:t be the set of spikes
from neuron i in the time interval [0, t∆], N i

t the number of spikes from neuron i in
X i

1:t , and Nt the total number of spikes, then the likelihood of X (i)
1:t when stimulus

orientation is θ is given by a Poisson distribution:

P(X (i)
1:t |Y = θ) = Poiss(N i

t |λ
i
θt) = (λi

θt)
N i
t
exp(−λi

θt)

N i
t !

, (A.1)

where λi
θ is the firing rate of neuron i when the stimulus orientation is θ.

The observations from the hypercolumn neurons are independent from each other,
thus the log likelihood of X1:t is given by:

Lθ (X1:t )
4
= log P(X1:t |Y = θ) = log

N∏
i=1

P(X (i)
1:t |Y = θ)

=

nH∑
i=1

log *
,
(λi

θt)
nH

i
t
exp(−λi

θt)

N i
t !

+
-

=

Nt∑
s=1

W i(s)
θ − t

nH∑
i=1

λi
θ + const, (A.2)

where W i
θ = log λi

θ is the contribution of each action potential from neuron i to the
log likelihood of orientation θ, and “const” is a term that does not depend on θ and is
therefore irrelevant for the decision. The first term is the “diffusion” that introduces
jumps in Lθ (X1:t ) whenever a spike occurs. The second term is a “drift” term that
moves Lθ (X1:t ) gradually in time. When the tuning curves of the neurons tessellate



100

regularly the circle of orientations, as is the case in our model (Fig. 3.4a), the
average firing rate of the hypercolumn under different orientations is approximately
the same, and the drift term may be safely omitted from models.

Review: Bayesian inference for discrimination and homogeneous search
We first re-derive the log likelihood ratio S(X1:t ) for visual discrimination. For all
derivations below we show how to compute log P(X1:t |C=1)

P(X1:t |C=0) from the orientation log
likelihoods Lθ (X1:t ), keeping in mind that

S(X1:t ) = log
P(C = 1|X1:t )
P(C = 0|X1:t )

= log
P(X1:t |C = 1)
P(X1:t |C = 0)

+ log
P(C = 1)
P(C = 0)

.

In homogeneous discrimination, the target and distractor have distinct and unique
orientations θT and θD, therefore:

log
P(X1:t |C = 1)
P(X1:t |C = 0)

= log
P(X1:t |θ = θT )
P(X1:t |θ = θD)

= LθT (X1:t ) − LθD (X1:t ), (A.3)

which proves Eq. 3.3.

In heterogeneous discrimination, θT ∈ ΘT and θD ∈ ΘD. For simplicity assume
uniform prior on both target and distractor orientation, i.e. P(θ |C = 1) = 1/nT,∀θ ∈

ΘT and P(θ |C = 0) = 1/nD,∀θ ∈ ΘD:

log
P(X1:t |C = 1)
P(X1:t |C = 0)

= log
P(X1:t |θ ∈ ΘT )
P(X1:t |θ ∈ ΘD)

= log *.
,

∑
θ∈ΘT

P(X1:t |θ)P(θ |C = 1)+/
-
− log *.

,

∑
θ∈ΘD

P(X1:t |θ)P(θ |C = 0)+/
-

= log *.
,

∑
θ∈ΘT

exp(Lθ (X1:t ))
nT

+/
-
− log *.

,

∑
θ∈ΘD

exp(Lθ (X1:t ))
nD

+/
-

= Smax
θ∈ΘT

(
Lθ (X1:t ) − log(nT )

)
− Smax

θ∈ΘD

(
Lθ (X1:t ) − log(nD)

)
,

(A.4)

which proves Eq. 3.5.

Nowwe re-derive S(X1:t ) for homogeneous visual search (M = L > 1, nT = nD = 1)
from the local orientation log likelihoods Lθ (X l

1:t ) from each of the L locations.
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Call lT ∈ {1, 2, . . . , L} the target location and assume uniform prior on lT . Eq. 3.3
is proved below:

log
P(X1:t |C = 1)
P(X1:t |C = 0)

= log
∑

lT P(X1:t |lT )P(lT |C = 1)
P(X1:t |C = 0)

= log
1
L

∑
lT

P(X1:t |lT )
P(X1:t |C = 0)

= log
1
L

∑
lT

P(X lT
1:t |θT )

∏
l,lT P(X l

1:t |θD)∏
l P(X l

1:t |θD)

= log
1
L

∑
lT

P(X lT
1:t |θT )

P(X lT
1:t |θD)

= Smax
lT

(
LθT (X lT

1:t ) − LθD (X lD
1:t ) − log(L)

)
.

(A.5)

Formulating common search problems using the general model
The heterogeneous visual search model is a general model for explaining a wide
range of search tasks. The general model captures the variability in set-size and
orientation contrast using CDD, which is the distribution P(Y l |Cl = 0) of stimulus
orientation at a non-target location. Below are three examples:

Mixed contrast (Exp. 2): the distractor orientation is sampled uniformly from
{20◦, 30◦, 45◦}, and all the distractors must have the same orientation.

In this case a CDD is a three dimensional vector of

φ = [P(Y l = 20◦ |Cl = 0), P(Y l = 30◦ |Cl = 0), P(Y l = 45◦ |Cl = 0)].

We will employ three CDDs:

φ(1) = [1, 0, 0]; φ(2) = [0, 1, 0]; φ(3) = [0, 0, 1];

with equal prior probability P(φ(i)) = 1/3,∀i.

This setup exactly describes the probabilistic structure of Exp. 2. Since each
CDD is a delta function at a single orientation, distractors at all locations will be
identical, and the distractor orientations will be chosen uniformly at random from
{20◦, 30◦, 45◦}.

I.i.d. distractor heterogeneous search: the distractor orientation is sampled inde-
pendently at each location from {20◦, 30◦, 45◦} with probability [0.2, 0.5, 0.3].

This is precisely the i.i.d. distractor heterogeneous search task (Eq. 3.9). Only one
CDD is needed, and φ = [0.2, 0.5, 0.3].
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Mixed set-size (Exp. 3): the distractor orientation is 30◦. The set-size M is sampled
uniformly from {3, 6, 12}. The total number of display locations is L = 12.

In this case, denote Y l = ∅ that a non-target location is blank. If there are M display
items, then the probability of any non-target location being blank is (L − M)/L. A
CDD is a two dimensional vector of

φ = [P(Y l = 20◦ |Cl = 0), P(Y l = ∅|Cl = 0)],

and the three different set-sizes may be represented by three CDDs of equal proba-
bility:

φ(1) = [3/12, 9/12], φ(2) = [6/12, 6/12], φ(3) = [1 − ε, ε], (A.6)

where ε is a small number to prevent zero probability.

Note that the setup in Eq. A.6 only approximates the probabilistic structure
of Exp. 3. This is because the blank placements are not independent of one
another. In other words, for a given set-size M , only M locations can contain a
distractor. If we place a distractor at each location with probability M/L, we do
not always observe M distractors. Instead, the actual set-size follows a binomial
distributionwithmean M . However, this is a reasonable approximation because
the human visual system can generalize to unseen set-sizes effortlessly. In
addition, the values of M used in our experiments are often different enough
{3, 6, 12} that the i.i.d. model is equally effective in inferring M .

Bayesian inference for heterogeneous visual search
SPRT relies on computing S(X1:t ) from the orientation log likelihoods Lθ (X l

1:t )
from all locations l, whichwe show below. The target-present likelihood P(X1:t |C =

1) is given by marginalizing out the target location lT ∈ {1, 2, . . . , L}, CDD φ, as
well as the target and distractor orientations. DenoteCl ∈ {0, 1} the stimulus class at
location l: Cl = 1 if and only if location l contains a target. In light of the graphical
model in Fig. 3.1b:
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P(X1:t |C = 1) =
∑
lT ,φ

P(X1:t |lT, φ,C = 1)P(φ)P(lT |C = 1)

=
∑
lT

P(lT |C = 1)
∑
φ

P(φ)
∑

~Y={Y 1,...,Y L }

P(X1:t |~Y )P(~Y |lT, φ,C = 1)

=
∑
lT

P(lT |C = 1)
∑
φ

P(φ)
∑
~Y

∏
l

(P(X l
1:t |Y

l )P(Y l |lT, φ,C = 1))

=
∑
lT

P(lT |C = 1)
∑
φ

P(φ)
∏

l

∑
Y l

(P(X l
1:t |Y

l )P(Y l |lT, φ,C = 1))

=
∑
lT

P(lT |C = 1)
∑
φ

P(φ)P(X lT
1:t |C

lT = 1)
∏
l,l

P(X l
1:t |φ,C

l = 0)

=
∑
lT

P(lT |C = 1)
∑
φ

P(X lT
1:t |C

lT = 1)

P(X lT
1:t |φ,C

lT = 0)
P(φ)

∏
l

P(X l
1:t |φ,C

l = 0),

(A.7)

where

P(X l
1:t |C

l = 1) =
∑
θ∈ΘT

P(X l
1:t |Y

l = θ)P(θ |Cl = 1),

P(X l
1:t |φ,C

l = 0) =
∑
θ∈ΘD

P(X l
1:t |Y

l = θ)φθ .

Similarly, the target-absent likelihood is:

P(X1:t |C = 0) =
∑
φ

P(φ)
∏

l

P(X l
1:t |φ,Cl = 0). (A.8)

Note that Eq. A.8 may be thought of as computing a normalization of the term
P(φ)

∏
l P(X l

1:t |φ,C
l = 0) that is used to weight the local log likelihood ratios in

Eq. A.7. This normalized weight turns out to be the posterior of CDD: P(φ|X1:t ).
Define the log posterior of CDD as:

Qφ(X1:t )
4
= log P(φ|X1:t ) = log

P(φ)
∏

l P(X l
1:t |φ,C

l = 0)∑
φ′ P(φ′)

∏
l P(X l

1:t |φ
′,Cl = 0)

. (A.9)

Then the log likelihood ratio is
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log
P(X1:t |C = 1)
P(X1:t |C = 0)

= log
∑

l

P(lT = l |C = 1)P(X l
1:t |C

l = 1)
∑
φ

P(φ|X1:t )
P(X l

1:t |φ,C
l = 0)

.

Recall that: Smax
i∈A

(xi) = log
∑
i∈A

exp(xi), (A.10)

log
P(X1:t |C = 1)
P(X1:t |C = 0)

= Smax
l=1,...,L

(
log P(lT = l |C = 1) + log P(X l

1:t |C
l = 1) + Smax

φ∈Φ

(
Qφ(X1:t ) − log P(X l

1:t |φ,C
l = 0)

))
.

(A.11)

Assuming uniform prior on the target location P(lT = l |C = 1) and on the target
type P(Y l = θ |Cl = 1),

log
P(X1:t |C = 1)
P(X1:t |C = 0)

=Smax
l=1...,L

(A + B) − log(L),

where A = Smax
θ∈ΘT

(
Lθ (X l

1:t ) − log(nT )
)
,

B = Smax
φ∈Φ

(
−Smax

θ∈ΘD

(
Lθ (X l

1:t ) + log φθ
)
+Qφ(X1:t )

)
,

(A.12)

which proves Eq. 3.10-3.11.

Mean-field approximation to SPRT
Instead of inferring the CDD on a trial-by-trial basis, a simpler alternative is to use
its average value without looking at the stimulus. For example, in the mixed set-size
example with M ∈ {3, 6, 12}, SPRT estimates the value of M given X1:t for each
trial, whereas the simple model assumes a set-size of E(M) = 7 for all the trials.

In detail, the simplemodel essentially uses the ‘mean-field’ approximation onEq.A.12:

log
P(X1:t |C = 1)
P(X1:t |C = 0)

≈ Smax
l=1,...,L

(
Smax
θ∈ΘT

(
Lθ (X l

1:t )
)
− Smax

θ∈ΘD

(
Lθ (X l

1:t ) + log φ̄θ
))
− log(nT L),

(A.13)

where φ̄θ =
∑
φ∈Φ φθP(φ) is the mean CDDwith respect to the its prior distribution.

The prediction of the simple model on a mixed-set-size search problem is shown
in Fig. 3.8b.
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Search with correlated target and distractor orientations
SPRT for heterogeneous visual search Eq. A.12 assumes that the properties of
the scene, namely the set-size and the scene-complexity, only affects the distractor
orientation distribution. In this section we relax this assumption and let φ encode
both the target and distractor orientation distribution: φ = {φ(T ), φ(D)}, where
φ(T )
θ = P(Y l = θ |Cl = 1) and φ(D)

θ = P(Y l = θ |Cl = 0). The log likelihood of
target-present in Eq. A.7 now becomes:

P(X1:t |C = 1) =
∑
lT

P(lT |C = 1)
∑
φ

P(X lT
1:t |φ

(T ),ClT = 1)

P(X lT
1:t |φ

(D),ClT = 0)
P(φ)

∏
l

P(X l
1:t |φ

(D),Cl = 0).

The log likelihood ratio of target-present versus target-absent is:

log
P(X1:t |C = 1)
P(X1:t |C = 0)

= log
∑

l

P(lT = l |C = 1)
∑
φ

P(X l
1:t |φ

(T ),Cl = 1)

P(X l
1:t |φ

(D),Cl = 0)
P(φ|X1:t )

= Smax
l=1,...,L

(
Smax
φ∈Φ

(
A(l, φ)

))
− log(L),

where A(l, φ) = Smax
θ∈ΘT

(
Lθ (X l

1:t ) + log φ
(T )
θ

)
− Smax

θ∈ΘD

(
Lθ (X l

1:t ) + log φ
(D)
θ

)
+Qφ(X1:t ).

(A.14)

This formulation encompasses the formulation in Eq. A.12 where the target and the
distractor orientations are distributed independently with respect to each other. To
see this, assume φ(D) and φ(T ) vary independently, then:

P(X1:t |C = 1)

=
∑
lT

P(lT |C = 1)
∑

φ(T ),φ(D)

P(X lT
1:t |φ

(T ),ClT = 1)

P(X lT
1:t |φ

(D),ClT = 0)
P(φ(T ))P(φ(D))

∏
l

P(X l
1:t |φ

(D),Cl = 0)

=
∑
lT

P(lT |C = 1)
∑
φ(D)

∑
φ(T ) P(φ(T ))P(X lT

1:t |φ
(T ),ClT = 1)

P(X lT
1:t |φ

(D),ClT = 0)
P(φ(D))

∏
l

P(X l
1:t |φ

(D),Cl = 0)

=
∑
lT

P(lT |C = 1)
∑
φ(D)

P(X lT
1:t |φ̄

(T ),ClT = 1)

P(X lT
1:t |φ

(D),ClT = 0)
P(φ(D))

∏
l

P(X l
1:t |φ

(D),Cl = 0),

(A.15)

where φ̄(T ) =
∑
φ(T ) φ(T ) P(φ(T )) is the expected value of φ(T ). Eq. A.15 is equivalent

to Eq. A.12 with a different prior (φ̄(T )) on target orientation.
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A.2 Scotopic visual recognition
Time-adaptation of hidden features (Eq. 4.8)
We explain how to compute hidden features SH (N t ) from partial observations
N t , where t ≤ T and T is the exposure time required to obtain a high-quality
image. In order to compute h we need to marginalize out the unobserved photons
∆N =

∑T
t ′=t+1 X t ′:

SH
j (N t ) =

∑
∆N

SH
j (W j (N t + ∆N ) + b j )P(∆N |N t ). (A.16)

To approximate the marginalization above, we put a Gamma prior on the photon
emission rate λi at pixel i:

P(λi) = Gam(µiσλ, σλ ). (A.17)

After observing the cumulative count Ni,t of pixel i in time [0, t∆], the posterior
estimate for the photon emission rate is:

P(λi |Ni,t ) ∝ P(Ni,t |λi)P(λi) (A.18)

= Gam(µiσλ + Ni,t, σλ + t), (A.19)

which has a posterior mean of:

λ̂i
4
= E[λi |Ni,t] =

µiσλ + Ni,t

σλ + t
. (A.20)

Intuitively, the emission rate is estimated via a smoothed-average of the observed
counts.

Therefore the marginalization step in Eq. A.16 may be approximated up to second
order accuracy using:

P(h j = 1|N t ) ≈ P(h j = 1|E[∆N |N t] + N t ) (A.21)

= Sigm(
∑

i

W ji
(
(T − t)λ̂i + Xi,t

)
+ b j ) (A.22)

= Sigm(W j
T + σλ
t + σλ

N t + σλ
T − t
σλ + t

W j µ + b j ) (A.23)

= Sigm(α(t)W jN t + β j (t)), (A.24)

where α(t) 4=
T + σλ
t + σλ

, (A.25)

β j (t)
4
= σλ

T − t
σλ + t

W j µ + b j, (A.26)
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thus the log posterior ratio is:

SH
j (N t ) = log

P(h j = 1|N t )
P(h j = 0|N t )

≈ α(t)W jN t + β j (t), (A.27)

which proves Eq. 4.8.

The derivation above was done for the W j-th feature only. In ConvNet, the features
are localized (e.g. occupying only a 5 × 5 region), and organized into groups (e.g.
the first layer in WaldNet for CIFAR10 uses 32 features groups), which means that
we need to learn one β j (t) for each spatial location and each feature group. For
simplicity we assume that the mean image µ is translational invariant within 5 × 5
regions, so that we only need to model one scalar β j (t) for each of the 32 feature
maps.

Relationship between exposure time and number of bits of signal (Table 4.1)
Bits of signal and photon counts are equivalent concepts. Furthermore, the photon
counts are linearly related to exposure time. Here we derive the relationship between
exposure time and the number of bits of signal. To simplify the analysis we will
make the assumption that our imaging setup has a constant aperture.

What does it mean for an image to have a given number of bits of signal? Each
pixel is a random variable reproducing the brightness of a piece of the scene up to
some noise. There are two main sources of noise: the electronics and the quantum
nature of light. We will assume that for bright pixels the main source of noise is
light. This is because, as will be clear from our experiments, a fairly small number
of bits per pixel are needed for visual classification, and current image sensors and
AD converters are more accurate than that.

According to the Poisson noise model (Eq. 4.4 in main text), each pixel receives
photons at rate λ. The expected number of photons collected during a time t is
λt and the standard deviation is σ =

√
λt. We will ignore the issue of quantum

efficiency (QE), i.e. the conversion rate from photons to electrons on the pixel’s
capacitor, and assume that QE=1 to simplify the notation (real QEs may range from
0.5 to 0.8). Thus, the SNR of a pixel is SN R = λt/

√
λt =

√
λt and the number of

bits of signal is b = log2
√
λt = 0.5 log2 λ + 0.5 log2 t.

The value of λ depends on the amount of light that is present. This may change
dramatically: from 10−3 LUX in a moonless night to 105 LUX in bright direct
sunlight. With a typical camera one may obtain a good quality image in a well lit



108

indoor scene (Ev ≈ 300 lux) with an exposure time of 1/30s. If a bright pixel has 6.5
bits of signal, the noise is 2−6.5 ≈ 1% of the dynamic range and λt/

√
λt = 100, i.e.

λ ≈ 3 · 105 ≈ 103Ev ≈ 210Ev. Substituting this calculation of λ into the expression
derived in the previous paragraph we obtain b ≈ 5 + 1

2 log2 t + 1
2 log2 Ev, which is

what we used to generate Table 4.1 in the main text.

Datasets
MNIST contains gray-scaled 28 × 28 images of 10 hand-written digits. It has
50k training and 10k test images. We treat the pixel values as the ground truth
intensity1. Dark current εdc = 3%. Weuse the default ‘LeNet’ from theMatConvNet
package [1]. The architecture is 784-20-50-500-102 with 5 × 5 receptive fields and
2 × 2 pooling.

CIFAR10 contains 32× 32 color images of 10 visual categories. It has 50k training
and 10k test images. We use the same synthesis procedure as above for each color
channel3. We use the default 1024-32-32-64-10 LeNet architecture [2] with batch
normalization [3] after each convolution layer. We use the same setting prescribed
in [2] to achieve 18% test error on normal lighting conditions. [2] uses local contrast
normalization and ZCA whitening as preprocessing steps. We estimate the local
contrast and ZCA from normal lighting images and transform them according to
the lowlight model to preprocess scotopic images. We use batch-normalization to
accelerate learning. All models are trained for 75 epochs, where the learning rate is
0.05 for 30 iterations, 0.005 for the next 25 then 0.0005 for the rest.

Implementation

In step one of learning, the scalar functions α(t) and β(t) in Eq. 4.8 are learned as
follows. As the inputs to the network are preprocessed, the preprocessing steps alter
the algebraic form for α and β. For flexibility we do not impose parametric forms on
α and β, but represent themwith piecewise cubic Hermite interpolating polynomials
with four end points at PPP= [.22, 2.2, 22, 220]. We learned the adapted weights at
these end-points by using a different batch normalization module for each PPP. At

1The brightest image we synthesize has about 28 photons, which corresponds to a pixel-wise
maximum signal-to-noise ratio of 16 (4-bit accuracy), whereas the original MNIST images has an
accuracy of 7 to 8 bits, which corresponds to 214 ∼ 216 photons.

2The first and last number represent the input and output dimension, each number in between
represents the number of feature maps used for that layer. The number of units is the product of the
number of feature maps with the size of the input.

3For simplicity we do not model the Bayer filter mosaic.
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test time the parameters of the modules are interpolated to accommodate other PPP
levels.

In step two of learning, we compute Sc(N t ) for 50 uniformly spaced PPPs in
log scale, and train thresholds τ(t) for each PPP and for each η. A regularizer
0.01

∑
t | |τ(t) − τ(t + 1) | |2 is imposed on the thresholds τ(t) on the log posterior

ratios to enforce smoothness. InEq. 4.14, the steepness of Sigmoid Sigm is annealed
over 500 iterations of gradient descent, with initial value 0.5, a decay rate of 0.99
and a floor value of 0.01.

A.3 Visual discrimination with unknown stimulus onset
Log posterior ratios based on momentary observations
Consider a visual display at time interval ofmotion coherence z over the time interval
[t∆, (t + 1)∆]. We make the simplifying assumption that each dot has probably z

of moving along the coherent direction that is independent of the motion direction
of the other dots. This means that there will be zM dots moving coherently on
average, but at any point time, the actual number of coherently moving dots follows
a multinomial distribution centered at zM . This is ok because the visual system
should still function when it sees a slightly different number of moving dots than
the expected value.

Let Y and Yi ∈ [0◦, 360◦] denote, respectively, the direction of coherent motion and
the direction of local motion at location i. Z denotes the coherence. Xi is the
instantaneous firing pattern of all locations and all hypercolumn neurons, and Xi,t

the pattern for location i. The likelihood of observing a firing pattern X of dots
moving towards direction θ at coherence level z is:

P(X |Y = θ, Z = z) =
∑

Y1,Y2,...,YM

P(X |Y1,Y2, . . . ,YM )P(Y1,Y2, . . . ,YM |Z = z,Y = θ)

(A.28)

=
∑

Y1,Y2,...,YM

*
,

∏
i

P(Xi |Yi)+
-

*
,

∏
i

P(Yi |Z = z,Y = θ)+
-

(A.29)

=
∏

i

∑
Yi

P(Xi |Yi)P(Yi |Z = z,Y = θ). (A.30)

Note that Eq. A.29 makes critical use of the independence assumption of motion
directions across locations, without which the computation would be intractable.
Consider the term P(Yi |z,Y = θ): the local direction Yi should be θ if the dot is in
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the coherent set and sampled uniformly from [0◦, 360◦] otherwise, thus:

P(Yi |Z = z,Y = θ) = zI[Yi=θ] ((1 − z)Uniform(Yi |[−180, 180]))I[Yi,θ] . (A.31)

Making use of the fact that for all the incoherent directions the local direction prior
is identical:

P(X |Z = z,Y = θ) =
∏

i

∑
Yi

P(Xi |Yi)P(Yi |p,Y = θ)

=
∏

i

(
(1 − z)EYi [P(Xi |Yi)] + zP(Xi |Yi = θ)

)
. (A.32)

Therefore, the log likelihood ratio r1,0 4= log P(X |Y=θ,Z=z)
P(X |Z=0) between coherence z and

coherence 0 is given by:

r1,0 =
∑

i

Si (Xi) (A.33)

where Si (Xi)
4
= log

(
(1 − z)EYi [P(Xi |Yi)] + zP(Xi |Yi = θ)

)
EYi [P(Xi |Yi)

. (A.34)

When ∆ is sufficiently short (say < 1ms) we can assume that there is at most one
action potential in each hypercolumn. Let I (Xi) ∈ {0, . . . , K } denote the index of
the firing neuron at location i. I (Xi) = 0 means there are no spikes. Here I (Xi)
and Xi are two representations of the same variable. According to Eq. 5.7, the
probability of observing a spike from neuron k is P(I (Xi) = k |Yi = θ) = λθk∆, and
the probability for no spike is: P(I (Xi) = 0|Yi = θ) = 1 −

∑
k λ

θ
k∆. We have for

k > 0:

W1,0
k
4
= Si (Xi : I (Xi) = k) = log

(
(1 − z)EYi [λ

Yi
k ∆] + zλθk∆

)
EYiλ

Yi
k ∆

= log
(1 − z)λ̄ + zλθk

λ̄
,

(A.35)

where λ̄ 4
= Ed[λθk] is a neuron’s average firing rate over all directions. Since this

average rate is identical across neurons, λ̄ does not have a neuron index. In the same
fashion, W1,0

k
4
= Si (I (Xi) = k) does not have a location index.

When k = 0, we have:

W1,0
0
4
= Si (Xi : I (Xi) = 0) = log

(1 − z)EYi [1 −
∑

k λ
Yi
k ∆] + z(1 −

∑
k λ

θ
k∆)

EYi [1 −
∑

k λ
Yi
k ∆]

= 0.

(A.36)
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Putting Eq. A.35 and Eq. A.36 together we have proven Eq. 5.9:

r1,0 =
∑

i

W1,0
I (Xi )
=

∑
i

∑
k

W1,0
k X (i, k). (A.37)

Similar derivations on r1,2 4= log P(X |D=θ1,Z=z)
P(X |Z=θ2,Z=z) proves Eq. 5.12.

Log posterior ratios based on spike trains
Now we discuss how to compute Sc,0

t
4
= log P(Ct=c |X1:t )

P(Ct=0|X1:t )
based on observations from

the entire duration of [0, t∆]. For now let us assume that there is only one coherent
motion class c. We can compute the enumerator by marginalization over the change
point tδ:

P(Ct = c |X1:t ) =
t∑

td=1
P(tδ = td |X1:t ) (A.38)

=

t∑
td=1

P(X1:t |tδ = td)P(tδ = td)/P(X1:t ) (A.39)

=

t∑
td=1

*.
,

td−1∏
i=1

P(Xi |Ci = 0)+/
-

*.
,

T∏
j=td

P(X j |Cj = c)+/
-

P(tδ = td)/P(X1:t ).

(A.40)

Similarly,

P(tδ = 0|X1:t ) = *
,

t∏
i=1

P(Xi |Ci = 0)+
-

P(tδ > t)/P(X1:t ). (A.41)

Taking the ratio between Eq. A.40 and Eq. A.41 gives:

Sc,0
t = log

P(Ct = c |X1:t )
P(Ct = 0|X1:t )

= log *.
,

t∑
td=1

*.
,

t∏
i=td

P(Xi |Ci = c)
P(Xi |Ci = 0)

+/
-

P(tδ = td)
P(tδ > t)

+/
-
, (A.42)

which admits the following recursive computation:

Sc,0
t = log *.

,

t−1∑
td=1

*.
,

t−1∏
i=td

P(Xi |Ci = c)
P(Xi |Ci = 0)

+/
-

P(Xt |Ct = c)
P(Xt |Ct = 0)

P(tδ = td)
P(tδ > t − 1)

P(tδ > t − 1)
P(tδ > t)

+
P(Xt |Ct = 1)
P(Xt |Ct = 0)

P(tδ = t)
P(tδ > t)

)
(A.43)

= log
((
exp(St−1)

P(tδ > t − 1)
P(tδ > t)

+
P(tδ = t)
P(tδ > t)

)
P(Xt |Ct = 1)
P(Xt |Ct = 0)

)
(A.44)

= log
(
exp

(
St−1 − log

P(tδ = t)
P(tδ > t − 1)

)
+ 1

)
+ log

P(tδ = t)
P(tδ > t)

+ rc,0
t (A.45)

= Srec
(
St−1 − log αt

)
+ log

αt

1 − αt
+ rc,0

t , (A.46)



112

which, recalling that αt
4
= P(κ = t |κ > t − 1), proves Eq. 5.10.

To relax the unique coherent motion assumption, one can simplify offset Sc,0
t by the

log prior log P(C = c) for the class c. To compute ratios between the two coherent
motions (Eq. 5.1):

Si, j
t
4
= log

P(Ct = i |X1:t )
P(Ct = j |X1:t )

= log
(

P(Ct = i |X1:t )
P(Ct = 0|X1:t )

/
P(Ct = j |X1:t )
P(Ct = 0|X1:t )

)
= Si,0

t − S j,0
t .

(A.47)

Lastly, Rt,t ′ (Eq. 5.2) the log posterior ratios for post-change observations is simply:

Rt,t ′
4
= log

P(C′t = 1|Xt:t ′, κ ≤ t
P(C′t = 2|Xt:t ′, κ ≤ t

= log
P(C = 1)
P(C = 2)

+
∑

i

log
P(Xi |Ci = 1)
P(Xi |Ci = 2)

= log
P(C = 1)
P(C = 2)

+

t ′∑
i=t

r1,2i ,

(A.48)

which proves Eq. 5.13.

A.4 Optimality analysis
State formulation in visual search
Wehave chosen the log posterior ratios at all locations: ~Z : Zl (t) = log P(X l

1:t |C
l=1)

P(X l
1:t |C

l=0)
, l =

1 . . . M , to be the state of our model because the resultant system is Markov: i.e. ~Z
is a sufficient statistic to compute both the overall log likelihood ratio Shomo-search
and likelihood of future observations.

First, as shown in [4], [5]

S(X1:t ) = log
P(C = 1|X1:t )
P(C = 0|X1:t )

= Smax
l=1...M

(Zl ) − log(M).

Second, the likelihood of new observation X t+1 at time t+1 is obtained by marginal-
izing the target location lT . Denote lT = 0 the target-absent event:

P(lT = 0|X1:t ) = P(C = 0|X1:t ) =
1

1 + exp(S(X1:t ))
=

1
1 +

∑
l exp(Zl )/M

,

P(lT, lT > 0|X1:t ) =
exp(Zl (t))/M

1 +
∑

l exp(Zl (t))/M
.

For notational convenience, define Z0 = log(M), then the equations above simplify
to:

P(lT |X1:t ) =
exp(Zl (t))∑M

l=0 exp(Zl (t))
.
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The posterior on lT is sufficient to compute likelihood of X t+1:

P(X t+1 |X1:t ) = P(X t+1,C = 0|X1:t ) + P(X t+1,C = 1|X1:t ),

where P(X t+1,C = 0|X1:t ) = P(X t+1 |C = 0)P(C = 0|X1:t ) = P(lT = 0|X1:t )
∏

l

P(X l
t+1 |C

l = 0),

P(X t+1,C = 1|X1:t ) =
∑
lT

P(X t+1 |lT )P(lT |X1:t )

=
∑
lT

P(X lT
t+1 |C

lT = 1)
∏
l,lT

P(X l
t+1 |C

l = 0)P(lT |X1:t ).

Translating optimal thresholds for discrimination to asymptotic thresholds for
search
We discuss how to design thresholds for visual search that asymptotically achieve
the best ER vs RT trade-off (as inConj. 1 and Eq. 6.3 and Eq. 6.4). This is done by
relating the asymptotically optimal visual search thresholds {τvs

− , τ
vs
+ } to two other

pairs of thresholds:

• {τ−, τ+}: the optimal thresholds for discrimination with an even prior ratio
(i.e. P(C = 1)/P(C = 0) = 1),

• {τ′−, τ′+}: the optimal thresholds for discrimination with a biased prior ratio of
1/M .

(I) {τvs
− , τ

vs
+ } = {τ

′
−, τ
′
+}: the asymptotic search thresholds are identical to the

discrimination threshold with a 1/M prior ratio. The asymptotic case is where
the locations l , l∗ are absolutely sure that they do not contain any target, i.e.
Zl (t) → −∞,∀l , l∗. Asymptotically (i.e. after collecting a significant amount of
information) this always happens when the target is absent, and happens with prob-
ability 1/M when the target is present (when l∗ is the target location). Therefore,
the asymptotic search problem can be reduced to a visual discrimination problem
with a prior ratio of 1/M .

(II) {τ′−, τ′+} + log(1/M) = {τ−, τ+}: log prior ratio causes an additive change to the
optimal discrimination thresholds. Let γ+ and −γ− (note that γ+, γ− > 0) be the
upper and lower thresholds for visual discrimination with a prior of p for target-
present. Let RTC and ERC be the expected response time and error rate when the
stimulus type is C ∈ {0, 1}. The error rates, assuming the two thresholds are far
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apart, are given by (see summary in [6]):

RT1(γ+, γ−) ≈ RT1(γ+) =
k
η
γ+,

RT0(γ+, γ−) ≈ RT0(γ−) =
k
η
γ−,

ER1(γ+, γ−) ≈ ER1(γ−) =
1

1 + eγ−
,

ER0(γ+, γ−) ≈ ER0(γ+) =
1

1 + eγ+
,

where k is an unknown constant that is inversely proportional to the drift-rate. The
total risk R (γ+, γ−) is given by:

R (γ+, γ−) = pRT1(γ+) + (1 − p)RT0(γ−) + pER1(γ−) + (1 − p)ER0(γ+).

At the optimal thresholds γ∗+ and γ∗−, it must be that the local derivatives of the risk
function w.r.t. the thresholds are zero:

∂R

∂γ+

���γ+=γ∗+ = 0 =⇒
k
η
=

(1 − p)e−γ
∗
+

p(1 + e−γ∗+ )2
≈

1 − p
p

e−γ
∗
+ = e−

(
γ∗++log

p
1−p

)

=⇒ γ∗+(p) = − log(
k
η

) − log
p

1 − p
,

∂R

∂γ−

���γ−=γ∗− = 0 =⇒ γ∗−(p) = − log(
k
η

) + log
p

1 − p
.

Setting p = 1/2 (or equivalently, log p
1−p = 0) and p = 1/(1 + M) (or equivalently,

log p
1−p = − log(M)) respectively, we have:

τ+ = γ
∗
+(

1
2

) = − log(
k
η

),

τ′+ = γ
∗
+(

1
1 + M

) = − log(
k
η

) + log(M)

=⇒τ′+ = τ+ + log(M).

Similarly,

=⇒τ′− = −γ
∗
−(

1
1 + M

) = −(γ∗−(
1
2

) − log(M)) = τ− + log(M).

Therefore, the optimal thresholds {τ′−, τ′+} with a biased prior ratio may be obtained
by offsetting the optimal thresholds {τ−, τ+} with the log prior ratio.

Combining (I) and (II), see see that the asymptotic visual search thresholds are given
by {τvs

− , τ
vs
+ } = {τ−, τ+} + log(M).
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