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C h a p t e r 5

VISUAL DISCRIMINATION WITH UNKNOWN STIMULUS
ONSET

Sequential Reasoning with a Nonstationary Probabilistic Model

Our last project is a psychophysics study of visual discrimination with uncertain
stimulus onset. Unlike the previous problems, in this problem a probabilistic model
is given, but the model is not stationary over time.

5.1 Motivation
An organism’s survival is critically dependent on its ability to detect change (e.g.
the sound/sight of something moving in the distance), and classify its nature (e.g.
a predator, prey, or meaningless clutter). In ecological conditions, change detec-
tion and object classification frequently co-occur: approaching animals need to be
detected and classified as friend or foe. Despite the ecological significance of con-
sidering detection and classification jointly, the two tasks are typically studied in
isolation. Consequently, it remains unknown how humans jointly perform classifi-
cation and detection, and whether and how humans trade off speed and accuracy.

Psychologists have studied the phenomenology of visual discrimination as well as
computational approaches [1]–[3]. We have reviewed that the optimal model for
trading off speed and accuracy is the sequential probability ratio test (SPRT) [4].
When the discrimination is between two simple templates, the diffuse-to-bound
process [5] is also optimal. These discrimination models require knowing when
change happens, i.e. when to start accumulating evidence, which is not a realistic
hypothesis in most ecological conditions.

The phenomenology of change point detection is relatively less explored. Earlier
studies examine whether change occurred [6]–[9], and, more recently, when it
occurred [10], [11]. The optimal model for minimizing detection error and reaction
time [12] dates back to the cumulative sum control chart (CUSUM) [13], [14], which
utilizes a diffuse-to-bound mechanism with only one absorbing boundary. When
the change could bring the world into one of multiple states, a network of diffusions
is required [15] to integrate changes attributable to different categories optimally.
Despite addressing the uncertainty in change onset, these models do not consider
the question of classification.
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Contributions
(1) We study the the joint detection and classification task (the ‘dual task’ for
brevity). Our experiment is a variant of random dot motion discrimination [2]
where the motion is completely incoherent at first. After a random delay it becomes
coherent in one of two directions. The subject is asked to both detect change and
classify the coherent motion. We manipulated the motion directions to control the
relative difficulty of detection and classification.

(2) We developed three computational models for the dual task. The first model
‘Classifies and then Detects’ (CD), which is optimal [16]. CD applies SPRT on the
probabilisticmodel of both classification and detection. The second and thirdmodels
are computationally simpler and sub-optimal, where they apply SPRT separately on
the detection and the classification problem. The two models differ in the temporal
order in which the SPRT modules are executed. Model two conducts ‘Detection
and Classification in Parallel’ (DCP), while the third model conducts ‘Detection and
Classification in Series’ (DCS).

(3) We test human subjects on the dual task as well as a pure detection task. Fitting
the parameters of our models to data collected from both tasks reveals that the only
model that is consistent with human SAT behavior is the conceptually simple but
sub-optimal DCS model. Primates have been found to be near-optimal in detection
and classification [11], [17]–[19] and our findings deviate from this pattern.

(4) To fit our models on random-dot motion patterns, we develop a simple model
of early vision [20], [21] based on quantized sensory input, which are action po-
tentials from motion-tuning neurons in area MT [22]. This model is parsimonious
and versatile: with one free parameter it simulates sensory inputs for detection
tasks and dual tasks with arbitrary coherent strengths and motion directions. This
generalization ability is an improvement over other decision models of random dot
motion discrimination [3], [23], [24], which typically are independently parame-
terized across tasks and only generalize across the level of coherence of motion
stimuli.

5.2 Framework for visual discrimination with unknown onset
Chapter-specific notations

Formally in the dual task, the world exists in one of three states at any given time
bin t: Ct ∈ {0, 1, 2}, where time bin t represents the duration ((t − 1)∆, t∆], where 0
is the initial state (e.g. incoherent motion), 1 and 2 are two post-change states to be
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distinguished (e.g. coherent motion along one of two directions). The world always
starts from C0 = 0 and changes to either class 1 or class 2 at a random time tδ . The
change occurs only once. The observer has information regarding the distribution
of the change time tδ, but not the actual value of tδ. The goal is to infer the stimulus
category C ∈ {1, 2} as quickly as possible, but not earlier than tδ, in which case the
response is considered a false detection error. Fig. 5.1a illustrates the setup for the
dual task in the context of random dot motion discrimination (see Sec. 5.3).

Models
Our three models (CD, DCP, and DCS) vary in optimality and simplicity. CD is
optimal. The initial incoherent motion and the two coherent motions are modeled
as three separate stimulus categories, and the dual task is reduced to a multi-
category classification task, which may be solved optimally [16]. DCS and DCP
are computationally simpler and sub-optimal. Both use a detector to identify any
kind of coherent motion, and a classifier to distinguish between the two motion
directions. In DCP, the detector and the classifier operate simultaneously, and as
soon as the detector reveals a change, the classifier is consulted to reveal the nature
of the change. In DCS, the coherent motion detector triggers the integration time
for a classical diffuse-to-bounds classifier which eventually reaches a decision.

Our models of the dual task assume optimal evidence accumulation from input sen-
sors [21]: all models have access to the following two statistics computed according
to Bayesian inference. The first statistic is the log posterior ratio between any pair
of classes (derived in Eq. 5.10):

Si, j
t
4
= log

P(Ct = i |X1:t )
P(Ct = j |X1:t )

, (5.1)

where Si, j
t is the log posterior ratio between class i and j (i, j ∈ {0, 1, 2}) given

evidence X1:t collected up to time t. We overload this notation to represent ratios
between sets of classes. For example, S1,1̄

t means the log posterior ratio of class 1
versus ‘not 1’, which contains class 2 and class 0.

The other important statistics is the log posterior ratio between the coherent motion
classes (class 1 and 2) assuming that the change has occurred at time t (derived
in Eq. 5.13):

Rtδ,t
4
= log

P(Ct = 1|X tδ :t )
P(Ct = 2|X tδ :t )

, (5.2)

where the log posterior ratio is conditioned on observations in the time interval
[tδ, t], e.g. from the time of change tδ and a later time t.
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Figure 5.1: Random dot motion discrimination with unknown stimulus onset.
(a) Stimulus setup. A trial beginswith a central fixation cross. After 500ms a display
of dots moving incoherently in all directions is displayed. After a random delay tδ,
a fraction z of the dots start moving coherently along one of two directions {θ1, θ2}.
As quickly as possible the subject presses on a button to indicate the direction of
motion. The trial ends with auditory feedback. The direction of coherent motion
controls the relative difficulty between classification and detection. (b) Stimulus for
coherent motion 0◦ and 180◦ (classification is easier than detection). (c) Stimulus
for coherent motion 60◦ and 120◦ (detection easier than classification).

Both log posterior ratio statistics may be computed directly from the firing patterns
of motion-tuning neurons in MT, to be discussed in the MT front-end section
(e.g. Eq. 5.10 and Eq. 5.13). Based on these statistics, we present three plausible
models for the dual task.

Classify then Detect (CD)
The first system (Fig. 5.2a,b) is based on the posterior probability ratio of classes 1
and 2. The system employs two accumulators Sc,c̄

t , one for each class c ∈ {1, 2}, that
race to reach a threshold τdis. The class of the winner is the predicted class Ĉ. Since
in our tasks the two classes are completely symmetrical the same threshold τdis

is set for both accumulators. Distinct thresholds may be necessary in asymmetric
scenarios (e.g. one class is more frequent than the other). Let td denote the time of
decision (td − tδ is the reaction time). The CD procedure is:

tc = first time t that Sc,c̄
t > τdis, c ∈ {1, 2}

Ĉ = arg min
c∈{1,2}

tc, td = tĈ . (5.3)
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Figure 5.2: Three models of joint detection and discrimination. (a) CD – The
world is assumed to be in one of three states: initial state (incoherent motion) and
two post-change states (motion 1 and motion 2). The posterior probability of each
state is computed. (b) (Top) In CD, log posterior ratios S1,1̄

t and S2,2̄
t (Eq. 5.1) race

to a common discrimination threshold. (Bottom) An equivalent depiction showing
the trajectory of the posterior over time (time direction indicated by the blue arrow)
visualized in the probability simplex. When the posterior reaches one of the two
lower corners the system declares motion 1 (left corner) or 2 (right corner). (c)DCP
– A detector for coherent motion and a classifier of motion direction are computed
in parallel. (d) The detector computes the log posterior ratio S0̄,0

t of any coherent
motion vs. incoherent motion. The classifier computes the log posterior ratio R1,t of
motion 1 vs. motion 2, which races towards a pair of thresholds (upper for motion 1,
lower for motion 2). Until the detector fires at tdet , the classifier cannot fire (despite
crossing dashed green threshold). After tdet , the classifier carries over signals prior
to tdet . (e) DCS employs a detector and a classifier in series. (f) The classifier starts
only after the detector fires and does not retain information prior to tdet . This lossy
integration causes DCS to make a different (wrong in this example) decision than
DCP.

This procedure is a Bayesian version of the multi-class CUSUM procedure [13] and
proven optimal by [16]. Here optimality means that given a requirement on the
false detection rate and the misclassification rate, the procedure above achieves the
shortest response time on average.

Detection and Classification in Parallel (DCP)
The second model (Fig. 5.2c,d) separately and simultaneously performs detection
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and discrimination. A detector performs a one-sided test on S0̄,0
t , the log posterior

ratio of ‘coherent motion’ (state 1 and 2) against state 0 of incoherent motion,
to detect whether any coherent motion is present. Meanwhile, running in the
background is a classifier that is concerned only with distinguishing between the
two coherent motion classes R1,t . The classifier is suppressed from firing until the
detector fires at time tdet .

The decision process is parameterized by the threshold τdet for detection, and the
threshold τdis for classification. Again the discrimination threshold τdis is shared
between classes for simplicity.

tdet = first time t that S0̄,0
t > τdet

tc = first time t ≥ tdet that R1,t > τdis, c ∈ {1, 2}

Ĉ = arg min
c∈{1,2}

tc, td = tĈ (5.4)

Here the detector and classifier run in parallel, and the detector functions as a gate
that guards the classifier against fluctuations. Both the detector and the classifier
are lossless in information integration, but the classifier is used sub-optimally since
the information accumulated prior to stimulus onset is invalid.

The DCPmodel may seem redundant as it is not optimal. It is included because
of reverse compatibility and model complexity. First, DCP contains special-
ized and optimal components for detection and classification, respectively.
By selecting the corresponding component DCP can solve pure detection or
pure discrimination tasks. Second, DCP contains two independent decision
thresholds, making it as complex as DCS (next subsection). Therefore any per-
formance discrepancy between the two is directly attributable to model biases,
not complexity.

Detection and Classification in Series (DCS)
In the third model, the last we consider, model detection and classification proceed
in succession (Fig. 5.2e,f). After the detector identifies a coherent motion at time
tdet , the classifier comes online assuming that the change has already happened
(tδ ≤ tdet). This assumption reduces the problem to pure classification starting at
time tdet , whichmay be solved by the classical sequential probability test (SPRT [4]).
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tdet = first time t that S0̄,0
t > τdet

tc = first time t that Rtdet,t > τdis, c ∈ {1, 2}

Ĉ = arg min
c∈{1,2}

tc, td = tĈ (5.5)

DCS essentially concatenates the optimal detector (CUSUM) and the optimal classi-
fier (SPRT) in time. It is lossy and potentially slower because the classifier does not
consider any evidence before the detector fires. However it also providesmodularity,
as it completely separates the detection problem from discrimination. Mathemat-
ically, the subtle difference between DCS (Equation set 5.5) and DCP (Equation
set 5.4) is the lossy evidence accumulation by the classifier. DCS discards all obser-
vations prior to detector firing, while DCP maintains them. Therefore, comparing
DCP and DCP allows us to understand whether the detector functions as a gate or a
trigger.

Quantized sensory input
To apply the aforementioned models on the random dot motion detection and dis-
crimination task, we need to compute the log posterior ratios between pairs of classes
(Eq. 5.1 and Eq. 5.2). We chose a probabilistic strategy based on a front-end of
direction tuning neurons. The front-end converts a visual stimulus (a length-∆
video segment of dots moving in space) into a set of action potentials, which are
interpreted probabilistically to produce the log posterior ratios, as we see below.

λk
θ
4
= λmin + (λmax − λmin) exp *

,
−
1
2
‖θk − θ‖

2

σ2
Y

+
-
, (5.6)

where λmax and λmin are the maximum and minimum firing rates of a neuron (in
Hz), and σY is the tuning width, and the notation ‖θk − θ‖ indicates the minimal
angular distance between θk and θ.

Here we have chosen a Gaussian tuning curve. This choice is not critical, e.g.
a von Mises function [25] works equally well.

Within a unit interval ((t − 1)∆, t∆], the number of spikes X k
i,t emitted from neuron

k at location i in response to motion θ is (Fig. 5.3b):

P(X k
i,t = n) = Poisson(n|λk

θ∆). (5.7)
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Figure 5.3: From front-endMTneurons to log posterior ratios. (a) Turing curves
of a hypercolumn of 8 MT motion-tuning neurons (Eq. 5.6). (b) A hypercolumn
of neurons activate in response to random dot motion at their receptive field (red
dashed circle). Raster plot shows simulated homogeneous Poisson spike trains
(Eq. 5.7) with max rate λmax = 20Hz. (c) Two downstream neurons compute log
posterior ratios from the spikes. S1,0

t , the log posterior ratio between motion 1 and
incoherent motion, may be computed by adding W1,0-weighted spikes to a recurrent
unit (Eq. 5.10). R1,t , the log posterior ratio motion 1 and 2 after change onset, is a
linear combination of the spike trains weighted by W1,2 (Eq. 5.13). W1,0 and W1,2

depend on themotion coherence andmotion directions, and are given in closed-form
(Eq. 5.9 and Eq. 5.12).

Log posterior ratios for detecting coherent motion from spikes
Consider a visual display with M moving dots. The dots are spaced sufficiently far
apart such that each dot is monitored by a unique hypercolumn. At any point in
time, a random fraction z (‘coherence’, 0 ≤ z ≤ 1) of the M dots are moving along
the same direction, and the remaining along random directions. Let λ̄ 4

= Eθ[λk
θ ]

be a neuron’s average firing rate over all stimulus directions. λ̄ should be roughly
identical for all neurons thanks to symmetry.

The log likelihood ratio rc,0
t between z fraction of coherent motion along direction

θc of class c ∈ {1, 2} and incoherent motion (class 0) is given by (derived in
Methods Eq. A.37):

rc,0
t
4
= log

P(Xt |Ct = c)
P(Xt |Ct = 0)

=
∑

i

∑
k

W c,0
k X k

i,t, (5.8)

where W c,0
k
4
= log

(1 − z)λ̄ + zλk
θc

λ̄
. (5.9)

The log posterior ratio Sc,0
t between coherent motion in θc and incoherent motion

may be computed recursively as (see Methods Eq. A.46 for detailed derivations)

Sc,0
t = Srec

(
St−1 − log αt

)
+ log

αt

1 − αt
+ rc,0

t , (5.10)
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where Srec (x) 4= log(1 + exp(x)) ≈ max(0, x) is the ‘soft-rectifier’ function and
αt is the probability of a change happening now knowing that it has definitely
not happened prior to t: αt

4
= P(tδ = t |tδ ≥ t). The initial condition is S0

4
=

log P(tδ≤0)
P(tδ>0) = log 0 = −∞. See figure Fig. 5.4 for an example of Sc,0

t .

The hardmax approximation gives an intuition for Sc,0
t . If past evidence util t − 1

suggests that the likelihood for coherent motion is so low that Sc,0
t−1 − log αt < 0,

then the system should “forget” about past evidence and reset to the log prior ratio
log αt

1−αt
instead. log αt thus is a threshold for triggering the forgetting mechanism.

The forgetting mechanism allows Sc,0
t to discard noisy observations in the distant

past while taking in new evidence into consideration. For example, in Fig. 5.4 we
simulate the log posterior ratio Sc,0

t for exponentially distributed change time. Sc,0
t

behaves almost like a memoryless system before the change occurs, which is crucial
for an organism to detect changes whose arrival time spans a long duration.

500 1000 1500
-5

0

5

time (ms)

S1,0
t

Figure 5.4: The log posterior ratio Sc,0
t for detecting coherent motion. Log pos-

terior ratio S1,0
t over 100 trials of Monte-Carlo simulations with mean and standard

deviation overlaid. Unbeknown to the model, stimulus onset in all trials is tδ = 1
sec. The model instead uses an exponential prior for tδ. The dash line shows the log
prior ratio log αt

1−αt
. As we see from Eq. 5.10, the log prior ratio gives a lower bound

for S1,0
t and cues the observer when to ‘pay attention’ and when to let go the past.

r1,0t is modeled by a Gaussian random walk r1,0t ∼ N (µC∆, σ
2∆) with µC = ±14

and σ = 3.5.

Log posterior ratios for classifying coherent motion from spikes
Using the same analysis we can compute the log likelihood ratio r1,2t of the obser-
vation at time t between two different directions of coherent motion, θ1 and θ2, at
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coherence level z.

r1,2t
4
= log

P(Xt |Ct = 1)
P(Xt |Ct = 2)

=
∑

i

∑
k

W1,2
k X k

i,t, (5.11)

where W1,2
k
4
= log

(1 − z)λ̄ + zλk
θ1

(1 − z)λ̄ + zλk
θ2

. (5.12)

The log posterior ratio between coherent motions conditioning on post-change evi-
dence is (derived in Methods Eq. A.48):

Rt,t ′ =

t ′∑
i=t

r1,2i . (5.13)

We assume even class priors P(C = 1) = P(C = 2). Uneven prior may be
incorporated by a simple shift of Rt,t ′. See figure Fig. 5.3c for an example of Rt,t ′.

The expressions of the log posterior ratios in Eq. 5.10 and Eq. 5.13 suggest
straightforward spiking implementations. The mechanisms are similar to those
discussed in Sec. 3.6.

5.3 Psychophysics
Design
To test which of the proposedmodels (CD,DCP,DCS) bestmatches human detection
and discrimination behavior, we recruited human subjects to participate in two
experiments. Both experiments employed a dynamic random-dot display [2], where
white dots were randomly distributed on a black background. All dots moved
randomly except for a random fraction z that moved along a consistent direction. The
direction could be one of two directions θ1 and θ2. The average of the two directions
was always 90◦, so we chose to represent them using the direction discrepancy
∆θ = |θ2 − θ1 |. See Fig. 5.1a-c.

Details of the display: the random dots with a density of 16.7dots/deg2/s were
displayed with a 5◦ diameter circular aperture about the fixation center. Each
dot was a white square of 5 × 5 pixels (0.14◦). For the stimulus, on each video
frame the coherentlymoving dots were shifted 0.125◦ from their positions 25ms

earlier (three video frames, refresh rate = 120Hz), corresponding to a speed of
5◦/s, while others were randomly repositioned.

The first experiment was dual detection and classification (Fig. 5.1a). The stimulus
motion started incoherent (z = 0) and changed to one of two coherent directions
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(z > 0) after a stochastic delay tδ. tδ followed an exponential distribution with a
mean of 800ms. Subjects indicated the direction of coherentmotion by button-press.
Responses earlier than tδ were considered false detections. Subjects were instructed
to minimize both misclassification errors and response time while maintaining the
false detection rate below 20%.

The second experiment was pure detection. With the identical setup as the dual
experiment, here subjects were instructed to press a button as soon as they perceived
coherent motion regardless of motion direction. The goal was to minimize response
time while keeping the false detection rate below 20%.

We systematically varied the coherence level z and the direction discrepancy ∆θ
for each experiment. z is chosen randomly from {1.6%, 3.2%, 6.4%, 12.8%, 25.6%}
and ∆θ from {180◦, 60◦}. Both z and ∆θ were fixed within a block of consecutive
trials and varied between blocks (i.e. the subjects know the coherence level z and
∆θ).

Model fitting
We fit each model to the data that was collected in both experiments. The models
were parameterized by (1) signal-to-noise ratio of the front-end and (2) decision
thresholds. The front-end had four parameters: the minimum and maximum firing
rates λmin and λmax , the tuning width w, and the number of neurons N . We fixed
λmin = 1Hz and w = 25◦ according to their physiological values in the macaque
monkey [22]. Since N and λmax have similar effects on the signal-to-noise ratio we
did not fit both; rather, we fixed N = 16 neurons, and only fit the maximum firing
rate λmax . (2) CD only has one decision threshold τdis, whereas both DCP and
DCS have two thresholds, τdet and τdis, for their detector and classifier components,
respectively.

We selected λmax and the threshold(s) of each model and each subject to maximize
themodel prediction’s agreement with the data in terms of themedian response time,
the misclassification rate and the false detection rate. The same λmax parameter
was used across different “conditions”, parameterized by the coherence level z, the
motion discrepancy ∆θ and the experiment type (dual versus detection only). This
parameter-sharing was made possible by the generalizability of our front-end model.
By contrast, we did not share the thresholds, yielding one threshold in CD and two
in DCP and DCS for each condition.

Human decision-making involves a perceptual component (evidence accumulation
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to decision threshold) and a non-perceptional delay (axonal propagation, motor
delays, etc). Our model only accounts for the perceptual component. The non-
perceptional component was modeled phenomenologically with a log-normal dis-
tribution with two additional parameters (mean and variance) per subject.

Fitting results
The fits for the response time, misclassification and detection errors of a randomly
sampled subject are shown in Fig. 5.5 and Fig. 5.6. All three models qualitatively
explain subjects’ performance, although DCS is the most faithful to the error data.
Despite the parsimonuous parameterization, the models predict the key performance
metrics (Fig. 5.5) as well as the full response time histograms (Fig. 5.6) of the
subjects. The overall scores of fitting the dual task and for fitting both tasks are
in shown Fig. 5.8a and b. Both plots show significantly higher fitting errors of
the optimal CD model compared to the sub-optimal models, within which the DCS
perform better. This trend is also consistent across all 10 subjects except one (subject
JD).

To further separate the two sub-optimal models, we also visualized the posterior
estimates of the parameters in Fig. 5.7. The posterior weights the parameter values
according to their agreement with the data. The signal-to-noise parameter λmax

estimate is correlated with the mean non-perceptual delay. This is not surprising as
higher signal-to-noise ratio means shorter perceptual times, which leaves a shorter
time to be explained by the non-perceptual delay. We see qualitatively that DCP
produces less consistent estimates between the two experiments than does DCS.
A quantitative comparison in Fig. 5.8c confirms that DCS is significantly more
consistent across all subjects.

5.4 Discussion and summary
Plausible model for human behavior
We proposed three candidate mechanisms for joint detection and discrimination,
and we explored whether any of them can account for human performance. Our first
observation is that the optimal model CD underperforms the sub-optimal models in
explaining human behaviors. This trend is significant and consistently observed in
the dual tasks and joint fitting of both the dual and the detection tasks. However,
the discrepancy between CD and the other models may be a consequence of the
degree of freedom (DoF), as CD only has one threshold while DCP and DCS each
independently manipulate two thresholds. To remove DoF as a confound, we re-
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Figure 5.5: Fitting results for a randomly selected subject. The median response
times, misclassification errors and false detection rates of a random subject (BW)
and the fitted model predictions in the dual task and the detection task. The columns
represent the three methods (CD, DCP and DCS). Solid lines show subject’s data
with 1 ste and dashed lines show the predictions. The direction discrepancy is
∆θ = 180◦.

fitted the experiments while manipulating the parameter sharing across conditions.
Even with more free parameters per condition, CD is less consistent with the data
than the sub-optimal models are. Therefore, CD may not be the strategy of choice
for humans.

DCS and DCP have the same DoF, hence may be compared fairly. The data suggests
that DCS may be closer to the strategy for humans. A first clue is that DCS
outperforms DCP in both fitting experiments across all subjects (Fig. 5.8a and b).
A second cue comes from comparing the posteriors (Fig. 5.7). In the pure detection
experiment, DCS and DCP reduce to the same algorithm, hence their parameter
estimates should also be the same. In the dual task, however, DCP and DCS should
produce different estimates, as explained below. DCS discards information prior to
detector activation and thus requires longer evidence accumulation to achieve the
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Figure 5.6: Fitting results for a random subject (cont’d). The response time
histograms and fits for the dual task (first row) and the detection task (second row)
of a randomly selected subject (BW). Only a subset of the data, with coherence
levels {1.6%, 3.2%, 6.4%} and direction discrepancy ∆θ = 180◦, are shown. Each
color denotes a different coherence level. The solid lines are fits from the model
and the filled regions show the mean ±1 bootstrapped standard error of the subject’s
data. Each column shows the fit of one model (CD, DCP and DCS).

same level of accuracy as does DCP. Therefore, to explain the same data DCS must
compensate with a higher λmax estimate, a shorter motor delay estimate, or both. As
a result, comparing the posteriors between the two tasks will expose the incorrect
model. In the case of Fig. 5.7and Fig. 5.8c, we see that DCS produces consistent
parameter estimates, while DCP does not and should therefore be eliminated.

Sub-optimal information processing
Our analysis suggests that humans are sub-optimal in the dual detection-decision
task; however, this conclusion is not inconsistent with previous findings [11], [17]–
[19] that the human visual system is near-optimal in evidence accumulation. In the
DCS model sub-optimality resides in the decision strategy rather than in evidence
accumulation.

We speculate that the human visual system may use the DCS strategy for two
reasons. 1) Modularity. DCS may be adapted to tackle a pure detection tasks by
simply setting the classification threshold τdis to zero. Similarly, setting τdet = −∞

would tune DCS for a pure classification task. The flexibility to switch between tasks
is a desirable property. For instance, sound cues may sometimes permit detection,
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Figure 5.7: Posterior distribution of parameters for a random subject. The
posterior of the signal-to-noise parameter (λmax) and the non-perceptual delay pa-
rameter (motor time) for DCP (first row) and DCS (second row) for a random subject
(BW). The three columns represent posteriors obtained from (a) the dual task, (b)
the detection task, and (c) both tasks. For each panel in (a) and (b) the ellipse and
the cross represent a Gaussian approximation to the posterior and its mean. In (c)
the two ellipses from (a) and (b) are superimposed.
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Figure 5.8: Fitting performance. (a) Fitting scores (lower means better) of the
three models CD, DCP and DCS on the dual task. (b) Same as (a) except that the
score is computed jointly over the dual and the detection-only task. (c) Distances
(lower means better) between the posterior obtained from the dual task and that
from both tasks. Colored dashed lines show performance for different subjects (see
legend). Bars show average performance over 10 subjects with 1 ste. ‘**’ represents
p ≤ 0.01 and ‘****’ represents p < 10−4.

which renders visual detection unnecessary. As a result, the visual system would
need to switch from the dual task mode to pure classification mode. 2) Power
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efficiency. While the classifiers in CD are bombarded with sensory inputs all the
time, the classifier in DCS only activates for brief moments when a change in the
environment has been confirmed. In other words, the classifier in DCS may be
dormant most of time to conserve energy. This advantage may be more pronounced
for discrimination tasks with a large number of categories, as the relative energy
reduction from CD to DCS is proportional to the number of categories. On the
other hand, in situations when changes happen frequently and only a small number
of classes are involved, CD may be a viable strategy for humans.
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