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C h a p t e r 4

SCOTOPIC VISUAL RECOGNITION

Sequential Reasoning without the Probabilistic Model

Our second project is scotopic visual recognition, which aims to recognize objects
with as little light as possible. This project is motivated by real-world applications
ranging from biological imaging to astrophysics. Unlike visual search (Ch. 3), most
practical vision applications do not have the luxury of knowing the full probabilistic
model for the task at hand. To circumvent this problem we proposed techniques to
train a sequential algorithm directly to optimize the speed versus accuracy tradeoff
(SAT).

4.1 Motivations
Just like biological systems, computer vision systems are optimized for accuracy
and speed. Accuracy is well understood as the success rate at identifying object
classes, estimating object poses, etc. Speed depends on the time it takes to capture
an image (exposure time) and the time it takes to compute the answer. Computer
vision researchers typically assume that there is plenty of light and a large number of
photons may be collected very quickly, thus speed is limited by computation. This
is called photopic vision where the image, while difficult to interpret, is (almost)
noiseless; researchers ignore exposure time and focus on the trade-off between
accuracy and computation time (e.g. Fig 10 of [1]).

In images with eight bits per pixel of signal (i.e. SNR=256), pixels collect
104 − 105 photons [2]. In full sunlight the exposure time is about 1/1000 s
which is negligible compared to typical computation times.

Consider now the opposite situation, which we call scotopic vision, where photons
are few and precious, and exposure time is long compared to computation time.
As computation time becomes a small additive constant, the design tradeoff is
between accuracy and exposure time [3]. There are multiple situations where
trading off accuracy with exposure time is compelling. (1) One may be trying to
sense/control dynamics that are faster than the exposure time that guarantees good
quality pictures, e.g. automobiles and quadcopters [4]. (2) In competitive scenarios,
such as sports, a fraction of a second may make all the difference between defeat
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Figure 4.1: Classification with few photons and speed-accuracy tradeoff. Cu-
mulative photon count N t generated using sample images from the (a) CIFAR10
dataset and the (b)MNIST dataset with increasing average photons per pixel (PPP).
PPP is proportional to the exposure time t. The images were obtained by simulating
photon arrival times (Sec. A.2). Blue hollow arrows indicate the median PPP re-
quired for our scotopic classifier (WaldNet) to achieve comparable error rates (21%)
as the model trained and tested using images under normal lighting conditions with
about 27 ≈ 104 PPP (see Sec. A.2 for protocol). Considerable speedups, of about
two orders of magnitude, may be obtained by making classification happen as soon
as a sufficient number of photons has been collected. Considerable further speed
gainsmay be achieved by trading-off classification performancewith decision speed:
green solid arrows indicate the median PPP required to to maintain error rates below
22% for CIFAR and 1% for MNIST.

and victory [5]. (3) Sometimes prolonged imaging has negative consequences, e.g.
because phototoxicity and bleaching alter a biological sample [6] or because of health
risks in medical imaging [7]. (4) In sensor design, reduced photon counts allow
for imaging with smaller pixels and ultra-high resolution [8], [9]. (5) Sometimes
there is little light in the environment, e.g. at night, and obtaining a good quality
image takes a long time relative to achievable computational speed. Thus, it is
compelling to understand how many photons are needed for good-enough vision,
and how one can make visual decisions as soon as a sufficient number of photons
has been collected.

The term ‘scotopic / photopic vision’ literally means ‘vision in the dark / with
plenty of light’. It is usually associated to the physiological state where only
rods, not cones, are active in the retina. We use ‘scotopic vision’ to denote the
general situation where a visual system is starved for photons, regardless of the
technology used to capture the image.
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Our work is further motivated by the recent development of photon-counting imag-
ing sensors: single photon avalanche diode arrays [10], quanta image sensors [9],
and gigavision cameras [8]. Instead of returning a high-quality image after a fixed
exposure time, these sensors detect and report single photon arrival events at high
frequencies. This ability to manipulate photon acquisition with fine granularity
makes photon-counting sensors ideal for scotopic vision applications. Current com-
puter vision technology has not yet taken advantage of these sensors.

4.2 Contributions
While scotopic vision has been studied in the context of the physiology and tech-
nology of image sensing [11], [12], as well as the physiology and psychophysics
of visual discrimination [13] and visual search [14], little is known regarding the
computational principles for high-level visual tasks, such as categorization and de-
tection, in scotopic settings. Prior work on photon-limited image classification [15]
deals with a single image, and does not study the trade-off between exposure time
and accuracy. Instead, our work explore scotopic visual categorization on modern
datasets such as MNIST and CIFAR10 [16], [17].

Sequential testing has appeared in the computer vision literature [18]–[20] in order
to shorten computation time. These algorithms assume that all visual information
(‘the image’) is present at the beginning of computation, thus focus on reducing
computation time in photopic vision. By contrast, our work aims to reduce capture
time and is based on the assumption that computation time is negligible when
compared to image capture time. The similarity between the two lines of work is
therefore only superficial.

Our main contributions are:
1. We present a computational framework for scotopic classification that dynam-
ically decides the image exposure time for SAT.
2. When a probabilistic model of the classification task is given, we design a feed-
forward architecture yielding any-time, quasi-optimal scotopic classification.
3. When the probabilistic model is not available, we propose a learning algorithm
to train the architecture for optimizing the SAT.
4. We conduct a robustness analysiswith respect to sensor noise in current photon-
counting sensor prototypes.
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4.3 Framework for scotopic classification
Quantized sensory input
Our computational framework starts from a model of the sensory input. Each pixel
in an image reports the brightness estimate of a cone of visual space by counting
photons coming from that direction. The estimate improves over time.

To begin we consider a simpler version of the problem where the assumptions
(Ch. 2) are met for SPRT. We assume that 1) the world is stationary during the
imaging process (this may be justified as many photon-counting sensors sample the
world at > 1kHz [8], [9]); 2) photon arrival times follow a homogeneous Poisson
process (details below) and 3) a probabilistic classifier based on photon counts
is available. Assumption 3) may not be satisfied for practical object recognition
classification problems, therefore we discuss how to do without this assumption
in Sec. 4.3.

Poisson noise model

Sensors are corrupted by several intrinsic noise sources [21]. Shot noise: the
number of photons incident on a pixel i in the t-th time interval, Xt,i, follows a
Poisson distribution whose rate λi (Hz) depends on both the pixel intensity Ii ∈ [0, 1]
and a dark current εdc:

P(Xt,i = k) = Poisson(k |λit∆) = Poisson(k |λφ
Ii + εdc

1 + εdc
t∆), (4.1)

where λφ is the illuminance (maximum photon count per pixel) per unit time [2],
[8], [21], [22]. During readout, the photon count is additionally corrupted first by
the amplifier’s read noise, which is an additive Gaussian, then by the fixed-pattern
noise which may be thought of as a multiplicative Gaussian noise [23]. As photon-
counting sensors are designed to have low read noise and low fixed pattern noise[9],
[10], [22], we focus on modeling the shot noise and dark current only. We will show
(Sec. 4.4) that our models are robust against all four noise sources.

According to the stationary assumption there is no need to model motion-
induced blur. Additionally, for simplicity we do not model charge bleeding
and cross-talk in colored images, and assume that they will be mitigated by the
sensor community [24].

When the illuminance λφ of the environment is fixed, the amount of photons is
roughly linear in the exposure time t (Eq. 4.1). Hence we use the number of photons
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per bright pixel (PPP) interchangeably with the exposure time t. i.e.:

PPP = λφt∆. (4.2)

PPP= 1 means that a pixel with maximum intensity has collected 1 photon. Since
the information content in the image is directly related to the number of photons,
from now on we measure response time in terms of PPP instead of exposure time.
Fig. 4.1 shows a series of images from the CIFAR10 dataset [16] with increasing
PPP.

Sequential probability ratio test for scotopic classification
Assume that a probabilistic model is available to interpret the sensory input given
the class label – either provided by the application or learned from labeled data
using techniques described in Sec. 4.3 – we can apply SPRT to classify the photon
streams. Since the classification task may contain multiple categories, the SPRT
formulation Eq. 2.3 needs to be extended to handle multiple hypothesis testing [25],
[26].

Let Sc(X1:t )
4
= log P(C=c|X1:t )

P(C,c|X1:t )
denote the class posterior probability ratio of the visual

categoryC for photon count input X1:t ,∀c ∈ {1, . . . , K }, and let τ be an appropriately
chosen threshold. SPRT conducts a simple accumulation-to-threshold procedure to
estimate the category Ĉ:

Compute c∗ = argmax
c=1,...,K

Sc(X1:t )

if Sc∗ (X1:t ) > τ : report Ĉ = c∗

otherwise : increase exposure time t. (4.3)

Static versus dynamic exposure time models

In essence, SPRT decides when to respond dynamically, based on the stream of ob-
servations accumulated so far. As a result of the trial-by-trial variation of the signal,
the response time also varies trial by trial. This regime is called “ free-response”
(FR), in contrast to the “ interrogation” (INT) regime, typical of photopic vision,
where a fixed-length observation is collected for each trial [27]. The observation
length may be chosen according to a training set and fixed a priori. In both regimes,
the length of observation should take into account the cost of errors, the cost of time,
and the difficulty of the classification task.
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Despite the striking similarity between the two regimes, SPRT (the FR regime)
outperforms the INT regime, as we prove here for the case where the observations
are i.i.d., and demonstrate empirically in Sec. 4.4.

Theorem 1 Free-response is asymptotically better than interrogation. Assume
that a probabilistic model is given to compute S(X1:t ), and X t is i.i.d. in time.
Consider an FR algorithm that runs SPRT on S(X1:t ) and let εFR and TFR be its
error rate and stochastic decision time. Also consider an INT algorithm with a
fixed-length observation of t I NT that achieves an error of ε I NT . We have that the
Bayes risk (Eq. 2.1) of the FR algorithm is less than or equal to that of the INT
algorithm. In other words, as η → 0:

E[TFR] + ηεFR ≤ t I NT + ηε I NT .

Proof We prove the statement for binary classification with equal prior (K =

2, Eq. 2.3, the proof extends trivially to larger K). Consider all X1:t generated
from the positive class C = 1. Given an error rate requirement εFR, the FR algo-
rithm sets up its threshold τ such that all the trials that terminate with Ĉ = 1 must
achieve a posterior probability of 1 − εFR, i.e. P(C = 1|X1:t ) = 1 − εFR, where
P(C = 1|X1:t ) = Sigm(S(X1:t )). Therefore, the threshold satisfies Sigm(τ) =
1 − εFR.

Since X t is i.i.d. in time, S(X1:t ) =
∑

t S(Xt ). Let µ
4
= E[Xt],∀t represent the mean

evidence accumulation rate (constant over time). The expected run time for the FR
algorithm is

tFR = E[TFR] =
τ

µ
.

Now consider an INT algorithm with the same observation time as the expected
observation time for the FR algorithm, i.e. t I NT = tFR. As η → 0, εFR → 0,
tFR → ∞ and S(X1:tFR ) ≥ 0, a.s.. The error rate of the INT algorithm is

1 − ε I NT = E[Sigm(S(X1:tFR ))] ≤ Sigm(E[S(X1:tFR )]), a.s.

= Sigm(µtFR) = Sigm(µ
τ

µ
) = Sigm(τ) = 1 − εFR,

as a result of Jensen’s inequality used on Sigm(x), which is concave when x ≥ 0.

Therefore as η → 0, for any tFR = t I NT , we have εFR ≤ ε I NT, a.s.. Therefore for
any pair of {t I NT, ε I NT } that minimizes Bayes risk for the INT algorithm, we can
find an FR algorithm with {tFR, εFR} that achieves a lower or equal Bayes risk.
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Computing class probabilities over time
The challenge of applying SPRT is to compute Sc(X1:t ) for class c and the input
stream X1:t of variable exposure time t, or in a more information-relevant unit,
variable PPP levels. Thanks to the Poisson noise model (Eq. 4.1), the sufficient
statistics for observation X1:t is the cumulative count N t =

∑t
t ′=1 X t ′ (visualized in

Fig. 4.1), therefore we may rewrite Sc(X1:t ) as Sc(N t ). It is evident that counts at
different PPPs have different statistics. It would appear that a specialized system is
required for each PPP level. This leads to the naive ensemble approach. Instead, we
also propose a network called WaldNet that can process images at all PPPs and has
the size of only a single specialized system. We describe the two approaches below.

We insist on the need to distinguish between the cumulative count N t and the
conventional image, which is obtained by normalizing N t to intensities within
[0, 255]. By retaining the magnitude of the counts, N t carries the uncertainty
of the intensity estimates, which is crucial for evaluating the confidence of the
class prediction.

A naïve approach: network ensembles
The simple idea is to build a separatemodel S(N t ) for the cumulative counts for each
exposure time t (or light level PPP), either based on domain knowledge or learned
from a training set. For best results one needs to select a list of representative light
levels, and then apply each to input streams that were captured at the corresponding
light level. For cumulative counts N t ′ captured at light levels that are not on the list,
one may simply apply the model with the closest light level. We refer to this as the
‘ensemble’ predictor.

One potential drawback of this ensemble approach is that training and storing
multiple systems is wasteful. At different light levels, while the cumulative counts
change drastically, the underlying statistical structure of the task stays the same. An
approach that takes advantage of this relationship may lead to more parsimonious
algorithms.

Model-based approach: WaldNet
An alternative is to exploit the knowledge about the cumulative counts across light
levels. The variation in the input N t has two independent sources: one is the
stochasticity in the photon arrival times, and the other the intra- and inter- class
variation of the real intensity values of the object. SPRT excels at reasoning about the
first noise source while deep networks are ideal for capturing the second. Therefore
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we propose WaldNet, a deep network for speed-accuracy tradeoff (Fig. 4.2b-c) that
combines deep networks with SPRT. Standard deep networks such as convolutional
networks [17] (ConvNets) can not be applied directly as their inputs all have an
identical exposure time T (e.g. T ≈ 33ms in normal lighting conditions). Instead,
WaldNet utilizes lowlight noise statistics ( Sec. 4.4) to adjust the computation within
a deep network over exposure time t in order to compute the log class probability
ratios Sc(N t ) over time t.

We first assume that a generative model for the cumulative counts NT is available,
and use it to develop a generative model for WaldNet. Then we provide a discrimi-
native model with the identical computational form as the generative model, which
may be learned directly from data.

The generative model is rather technical. Readers who are not familiar with
the literature on restricted Boltzmann machines and deep belief networks [28],
[29] are encouraged to skip directly to the next section that discusses the
discriminative training of WaldNet.

We assume that the generative model of input photon counts takes the form of a
deep belief network [29]. The deep belief network is composed of multiple stacks.
A stack on layer l consists of an input vector v(l), a hidden vector h(l) ∈ {0, 1}nlH
and a pooling vector m(l) ∈ {0, 1}nlM . The log posterior ratio of the pooling vector

of one layer becomes the input vector of the layer above, vl+1
i = log P(m(l )

i =1)

P(m(l )
i =0)

, and

the last pooling vector encodes desired log class posterior ratio S(NT ). m(l), hl and
v(l) are connected convolutionally as in a ConvNet, as follows:

1. Each pooling unit m(l)
k oversees a non-overlapping group G(l)

k of hidden units
where at most one hidden unit is allowed to be on. m(l)

k = 1 represents the presence
of an image feature (say a 45◦ edge) anywhere within a spatial neighborhood G(l)

k

of the image, and h(l)
j = 1 indicates that the feature’s location is j. This formulation

is a generalization of probabilistic max pooling [30].

2. Each hidden unit h(l)
k connects to a small (say 5 × 5) neighborhood of input

units v(l). For layers l > 1 the hidden-input relationship is a standard RBM [28],
[30], [31]. In the first layer where the input is the photon counts (v(1) = NT ), the
hidden-input relationship is a Poisson restricted Boltzmann machine [32], described
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below. For notation simplicity we omit the layer superscript.

P(Ni,T |h) = Poiss(Ni,T | exp(
∑

j

h jWi j + bV
i )T ), (4.4)

where W ∈ RnV×nH and bV ∈ RnV are weights and biases of the model. Since the
connectivity is local, for each column in W , which corresponds to a hidden unit,
only a small set (e.g. 25) of the entries are non-zero. The hidden units collectively
model the mean firing rate λi = exp(

∑
j h jWi j + cV

i ) on location i.

Conversely conditioning on the cumulative photon count NT , the hidden units
become independent and their distribution is given by:

P(h j = 1|NT ) = Sigm(
∑

i

Ni,TWi j + bH
j ). (4.5)

Inference on the deep belief network faces one critical issue, which is that the
observations are evolving over time, i.e. we need to compute P(h j = 1|N t ) for any
t ≤ T , instead of merely the highly-exposed ‘image’ at time T . This may be done
by marginalizing out the unobserved counts ∆N 4

=
∑T

t ′=t+1 X t ′:

P(h j = 1|N t ) =
∑
∆N

Sigm(
∑

i

(Ni,t + ∆Ni)Wi j + bH
j )P(∆N |N t ) (4.6)

≈ Sigm(
∑

i

(Ni,t + (T − t)E[λi |Ni,t])Wi j + bH
j ), (4.7)

where E[λi |Ni,t] is the estimated firing rate for location i. Using a Gamma prior
Gam(µit0, t0) on λi 1 we obtain that

P(h j = 1|N t ) ≈ Sigm(α(t)
∑

i

Wi, j Ni,t + β j (t)),

where α(t) 4= T+t0
t+t0

and β j (t)
4
=

τ(T−t)
t+t0

∑
i Wi j µi+bH

j are two smooth scalar functions
in t. Detailed derivations are in Sec. A.2.

Therefore, the log posterior ratio of the hidden units at the first layer is given by:

SH
j (N t )

4
= log

P(h j = 1|N t )
P(h j = 0|N t )

≈ α(t)
∑

i

Wi, j Ni,t + β j (t). (4.8)

The log posterior ratio of the pooling unit mk is:

SM
k (N t )

4
= log

P(mk = 1|N t )
P(mk = 0|N t )

= Smax
j∈Gk

(
SH

j (N t )
)
≈ max

j∈Gk

SH
j (N t ), (4.9)

which is identical to the standard max pooling and the Maxout nonlinearity in deep
networks [33], [34].

1We use a Gamma prior because it is the conjugate prior of the Poisson likelihood.
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Figure 4.2: WaldNet for lowlight visual recognition. (a) A modified ConvNet
for computing class posterior. The first layer is adapted (Eq. 4.10) to capture
time-invariant features. From the cumulative photon counts N t from duration
[0, t∆] (visualization in Fig. 4.1), WaldNet approximately computes hidden features
SH (N t ) that marginalize over unseen photons using weights W scaled by a time-
varying scalar function α(t) (Eq. 4.8)). It then feeds the features into the remainder
of the ConvNet F to compute log class posterior ratio S(N t ). (b) Deciding when
to stop collecting photons. The class posteriors race to a common threshold to
determine the category to predict. WaldNet stops photon collection as soon as
one class crosses the threshold (Eq. 4.3). The example shows S(N t ) for three
classes where the true class is green. Using a higher threshold (blue) yields a later
but more accurate solution whereas a lower (orange) threshold is faster but risks
misclassification. (c) The SAT curve (illustration only) produced by repeating (a-
b) for multiple images and sweeping the threshold τ. (d) Learning time-varying
threshold τη (t) (when class posterior learning (Eq. 4.12) is imperfect) to optimize
Bayes risk with cost of error η (Eq. 2.1). The centipede network describes the
recurrence relationship between risk R(n)

t starting from time t of example n and the
risk R(n)

t+1 starting from time t + 1 (Eq. 4.13). q(n)
t is a gate (based on whether S(N t )

crosses threshold) that decides whether WaldNet stops at t with misclassification
risk e(n)

t or continues collecting photons with risk R(n)
t+1.

Discriminative training of WaldNet
Since the generative model may not be available in many practical applications, it
may be more convenient to train a classifier that directly predicts the log posterior
ratio S(N t ) and that shares the same computational structure as the inference pro-
cedure of the generative model. Fortunately the inference procedure bears striking
similarity to a ConvNet, so that powerful deep learning tools (e.g. provided by
the MatConvNet toolbox [35]) may be applied. Now we present the discriminative
reasoning.

Inference procedure
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Recall from the previous section that the inference procedure of WaldNet is an
adjusted version of the standard ConvNet. In ConvNet, the input is an image NT

obtained from a fixed observation time T . ConvNet contains multiple layers of
computations that may be viewed as a nesting of two transformations: (1) the first
hidden layer SH (NT ) = WNT + bH that maps the input to a feature vector, and
(2) the remaining layers S(NT ) = F (SH

T ) that map the features SH to the log class
posterior probabilities S(NT ). W ∈ RD×nH is a weight vector and bH ∈ RnH is a
bias vector.

WaldNet differs from a ConvNet in two aspects. (1) The input N t to a WaldNet is a
time-series that includes the cumulative photon counts up to a moving horizon t, and
the output S(N t ) is also a time-series, which encodes the log class posterior prob-
abilities over time. (2) The first-layer features in WaldNet are computed differently
depending on the exposure time t. The weights and biases of the transformation in
SH are adjusted smoothly over time using α(t) ∈ R and β(t) ∈ RnH (see Eq. 4.8
and Eq. 4.9):

SH (N t ) = α(t)WN t + β(t), (4.10)

while the rest of the computations stays the same: S(N t ) = F (SH (N t )).

The main intuition of our approach is that the stochasticity in photon arrivals
is addressed with an exposure-time specific transformation SH , and the intra-
and inter- class variation is captured with an exposure-time invariant transfor-
mation F. The revised network has nearly the same number of parameters
as a conventional ConvNet, but has the capacity to process inputs at different
exposure times. The adaptation is critical for performance, as will be seen by
comparison with simple rate-based methods in Sec. 4.4.

Why do we single out the first layer features SH (N t ) for adjustment? In theory
features at any layer would do but it is more convenient at the first layer. This is
because the adjustment procedure uses mean-field approximations and this (1)
becomes increasingly less accurate as the feature computation becomes more
nonlinear, and (2) requires computing the posterior mean of the feature, which
may not have a handy closed form.

Training strategy
Recall that our goal is to train WaldNet to optimize the Bayes risk [36] (Eq. 2.1). In
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scotopic vision the Bayes risk R is formulated as

R 4
= E[t] + ηE[C , Ĉt], (4.11)

where E[t] is the expected photon count required for classification, E[C , Ĉt]
is the error rate, and η describes the user’s cost of error versus time. WaldNet
asymptotically optimizes the Bayes risk provided that it can faithfully capture the log
class posterior ratio S(N t ), and selects the correct threshold τ (Eq. 2.3). Sweeping
η allows WaldNet to traverses the optimal SAT (Fig. 4.2c).

Our strategy is to separate training into two steps with distinct objectives: step one
trains a WaldNet to approximate S(N t ), and step two picks the optimal threshold
according to η to minimize the Bayes risk.

Step one: posterior learning
Given a lowlight dataset {N (n)

t ,C (n)}n,t where n indexes training examples and t

indexes exposure time, we train the WaldNet to minimize:

−
∑
n,t

log P(C = C (n) |N (n)
t ,W ) + reg(W ), (4.12)

where W collectively denote all the parameters in the WaldNet, and reg(W )
denotes L2 weight-decay on the filters. When a lowlight dataset is not available we
simulate the dataset from intensity images according to the noise model in Eq. 4.1,
where the exposure times are sampled uniformly on a logarithmic scale (seeSec. 4.4).

Step two: threshold tuning
After step one, if WaldNet captures the log class posterior ratios S(N t ), we can
simply optimize a scalar threshold τη for each tradeoff parameter η. In practice, we
may opt for a time-varying threshold τη (t) as step one may not be perfect.

For instance, consider an adapted ConvNet that perfectly captures the class
posterior. Ignoring the regularizer (right term of Eq. 4.12), we can scale
up the weights and biases of the last layer (softmax) by an arbitrary amount
without affecting the error rate, which scales the negative log likelihood (left
term in Eq. 4.12) by a similar amount, leading to a better objective value. The
magnitude of the weights are thus determined by the regularizer and may be
off by a scaling factor. We therefore need to properly rescale the class posterior
at every exposure time before comparing to a constant threshold, which is
equivalent to using a time-varying threshold τη (t) on the raw predictions.
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To learn the time-varying threshold τη (t), we need to formulate the Bayes risk
objective as a function of τη (t). Let {N (n)

t }
T
t=1 be a sequence of lowlight images

that are increasing in exposure time and generated from the n-th intensity image.
Denote q(n)

t
4
= I[maxc Sc(N t ) > τη (t)] the event that the posterior crosses decision

threshold at time t, and e(n)
t the event that the class prediction at t is wrong. Let R(n)

t

denote the Bayes risk of the sequence (indexed by n of the high-quality image X (n))
incurred from time t onwards. R(n)

t may be computed recursively:

R(n)
t = ∆ + η

(
q(n)

t e(n)
t + (1 − q(n)

t )R(n)
t+1

)
, (4.13)

where the first term is the cost of collecting photons during time interval ((t−1)∆t∆],
the second term is the expected cost of committing to a decision that is wrong, and
the last term is the expected cost of deferring the decision till more photons are
collected.

The Bayes risk is obtained from averaging multiple photon count sequences, i.e.
R = E[R(n)

0 ]. q(n)
t is non-differentiable with respect to the threshold τη (t), leading to

difficulties in optimizing R. Instead, we approximate q(n)
t with a Sigmoid function,

q(n)
t (τη (t)) ≈ Sigm

(
1

σtemp
(max

c
Sc(N t ) − τη (t))

)
, (4.14)

where Sigm(x) 4= 1/(1+exp(−x)), and anneal the temperatureσtemp of the Sigmoid
over the course of training [37] (see Sec. 4.4).

Even though we assume a certain form for the log class posterior ratio S(X1:t ),
this threshold learning procedure is very general and works for any S(X1:t ). In
particular, it may be used for learning SPRT procedures when the underlying
probabilistic distribution is not i.i.d. in time.

4.4 Experiments
Exposure time versus signal

Our experiments use PPP interchangeably with exposure time t for performance
measurement, since PPP directly relates to the number of bits of signal in each pixel
(Eq. 4.2). In practice an application may be more concerned with exposure time.
Thus it is helpful to relate exposure time, PPP and the bits of signal. Table 4.1
describes this relationship for different illuminance levels. Derivations are in the
Appendix Sec. A.2.
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Illuminance exposure time t (s)
Scene Ev (LUX) 1/500 1/128 1/8 1 8 60
Moonless 10−3 1.5 3
Full moon 1 0.5 1.5 3.5 5 6.5 8
Office 250 4.5 5.5 7.5 9 10.5 12
Overcast 103 5.5 6.5 8.5 10 11.5 13
Bright sun 105 9 10 12 13.5 15 16.5

Table 4.1: (Approximate) number of bits of signal per pixel under different illumi-
nance levels. See Appendix for full derivation. For instance, in an office scene it
takes 1/8 seconds to obtains a 7.5-bit image. Under full moon, the same high-quality
image and the same sensor needs > 8 seconds to capture.
Baseline Models
We compare WaldNet against the following baselines:

Ensemble. We construct the ensemble (Sec. 4.3) using “specialist” models. Each
specialist is a ConvNet with the same model dimensions (number of layers, number
of hidden units of each layer, nonlinearity, etc) as the WaldNet, but is trained using
only cumulative photon counts at a single PPP. We use four specialists with PPPs
from {.22, 2.2, 22, 220} respectively. To test cumulative counts NPPP′ with a PPP
that is not on the training set, we rescale NPPP′ to have the same PPP as the specialist
with the closest PPP. As the number of specialists grows, the ensemble approaches
the best achievable SAT for WaldNet.

Photopic classifier. To justify the necessity of modeling photon count statistics
in lowlight, we introduce another intuitive classifier. The classifier is a ConvNet
trained on ‘images’ NT from normal lighting conditions, and applied to properly
rescaled cumulative counts N t for t ≤ T . We choose the specialist with PPP= 220
as the photopic classifier as it achieves the same accuracy as a network trained with
8-bit images.

Rate classifier. To test the significance of the uncertainty information carried by the
cumulative counts, we train a classifier directly on the rate estimates without weight
adaptation. Formally, the hidden unit on layer one is SH (N t ) ≈ WN t/t + bH

j . Note
the similarity with our approximation used in Eq. 4.8.

We assume that all models have an internal clock, which enables the model to
estimate the expected PPP under the constant illuminance assumption. When the
illuminance changes, the model may rely on an independent external measure or the
cumulative count itself to adjust PPP.

We consider two standard datasets: MNIST [17] and CIFAR10 [16]. We simulate
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Figure 4.3: Interrogation performance comparison. Error rate plotted against
the interrogation PPP for (a) MNIST and (b) CIFAR10. Each dot is computed from
classifying 10k test examples with a fixed PPP.
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Figure 4.4: Free response performance comparison. Error rate plotted against
median PPP for ( a) MNIST and ( b) CIFAR10. 1 bootstrap ste is shown for both
the median PPP and error rate, the latter is too small to be visible.

lowlight image sequences using Eq. 4.1. MNIST contains gray-scaled 28 × 28
images of 10 hand-written digits. CIFAR10 contains 32 × 32 color images of 10
visual categories. The details of model architectures and training procedure are
found in the Appendix Sec. A.2.

Results
The SAT curves in the INT regime are shown in Fig. 4.3a and b. Median PPP
versus accuracy tradeoffs for all models in the FR regime are shown in Fig. 4.4a
for MNIST and Fig. 4.4b for CIFAR10. All models use constant thresholds for
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Figure 4.5: Effect of threshold learning (Sec. 4.3). ( a) Error rate against the
average PPP for CIFAR10 using a network with optimized time-varying threshold
τη (t). 1 bootstrapped ste is shown but not visible. ( b) Each curve shows the
Bayes risk reducation after optimization (Sec. 4.3, step two) per average PPP. ( c)
Response time (PPP) histograms under the interrogation, FR (before optimization),
and FR (after optimization) of a WaldNet that achieves 22% error on CIFAR10.

producing the tradeoff curves. In Fig. 4.5a are average PPP versus accuracy curves
when the models use the optimized dynamic thresholds (Sec. 4.3, step two).

Model comparisons
Overall, WaldNet performs well under lowlight. It only requires < 1 PPP to stay
within 0.1% (absolute) degradation in accuracy on MNIST and around 20 PPP to
stay within 1% degradation on CIFAR10, even though recognition at such light
levels (Fig. 4.1) may prove difficult for humans.

The ensemble was formed using specialists at logarithmically-spaced exposure
times, thus its curve is discontinuous in the INT regime (Fig. 4.3). The peaks
delineate transitions between specialists. The ensemble’s performance at the spe-
cialized light levels [.22, 2.2, 22, 220] also provides a proxy for the performance
upper bound by ConvNets of the same architecture (apart from overfitting and con-
vergence issues during learning). Using this proxy we see that even thoughWaldNet
uses 1/4 the parameters of the ensemble, it stays close to the performance upper
bound. In FR regime, the ensemble is outperformed by WaldNet on MNIST (due to
overfitting) and on par on CIFAR10 for lowlight conditions (< 22 PPP). This show-
cases WaldNet’s ability to handle photon counts at multiple PPPs without requiring
explicit parameters (as it is the case for the ensemble).

The photopic classifier retrofitted to lowlight applications does not work well in
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Figure 4.6: Effect of sensor noise on WaldNet. The rows correspond to datasets
MNIST and CIFAR10, and the columns correspond to parameters of noise sources,
which are the dark current εdc, the standard deviation of additive read noise σr ,
and the standard deviation of multiplicative fixed pattern noise σ f pn. The baseline
has εdc = 3% and σr = σ f pn = 0 for MNIST, and εdc = 5%, σr = 0.22 and
σ f pn = 0.03 for CIFAR10.

either dataset, which showcases the necessity of WaldNet as well as training with
scotopic input. On MNIST, the photopic classifier also underperforms WaldNet in
highlight regimes. This is because MNIST is rather easy to overfit, and training
with lowlight inputs provides a form of regularization.

The rate classifier differs from WaldNet only in how the first layer feature is com-
puted, thus the better performance of WaldNet in CIFAR10 is due solely to the
WaldNet’s time-adapted features (Eq. 4.8).

Effect of threshold learning
With constant thresholds (Fig. 4.4) WaldNet significantly outperforms the photopic
classifier. As the latter has never seen any lowlight inputs, its assessment of the
log posterior ratio is ill-suited to SPRT. Using learned dynamic thresholds (step
two of Sec. 4.3) we see consistent improvement on the average PPP required for
given error rate across all models (Fig. 4.5b), with more benefit for the photopic
classifier. Fig. 4.5c examines the PPP histograms on CIFAR10 with constant (FR)
versus dynamic threshold (optimized FR). We see with constant thresholds many
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decisions are made at the PPP cutoff of 220, so the median and the mean are vastly
different. Learning dynamic thresholds reduce the variance of the PPP but make the
median longer. This is ok because the Bayes risk objective (Eq. 2.1) concerns the
average PPP, not the median. Clearly which threshold to use depends on whether
the median or the mean is more important to the application.

Effect of INT versus FR
Cross referencingFig. 4.3 andFig. 4.4 reveals that FRwith constant thresholds often
brings 3x reduction in median photon counts. Dynamic thresholds also produce
faster average and median responses. This is consistent with our theoretical result
in Theorem. 1.

Sensitivity to sensor noise
Finally, we inspect how the network’s performance is affected by sensor noise. For
MNIST and CIFAR10, we take WaldNet and vary independently the dark current,
the read noise and the fixed pattern noise (Fig. 4.6).

First, the effect of dark current and fixed pattern noise is minimal. Even an 11%
dark current (i.e. photon emission rate of the darkest pixel is 10% of that of the
brightest pixel) merely doubles the exposure time with little loss in accuracy. The
multiplicative fixed pattern noise does not affect performance because WaldNet in
general makes use of very few photons. Second, current industry standard of read
noise (σr = 22% [9]) guarantees no performance loss. Lastly, the fact thatσr = 50%
hurts performance suggests that single-photon resolution is vital for scotopic vision
(Fig. 4.6b,e).

4.5 Chapter summary
We proposed to study the important yet relatively unexplored problem of scotopic
visual recognition. Scotopic vision is vision starved for photons. This happens
when available light is low, and image capture time is longer than computation
time. In this regime vision computations should start as soon as the shutter is
opened, and algorithms should be designed to process photons as soon as they
hit the photoreceptors. While visual recognition from limited evidence has been
studied [38], to our knowledge, our study is the first to explore the exposure time
versus accuracy trade-off of visual classification, which is essential in scotopic
vision.

We proposed WaldNet, a model that combines photon arrival events over time to
form a coherent probabilistic interpretation, andmake a decision as soon as sufficient
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evidence has been collected. The proposed algorithmmay be implemented by a deep
feed-forward network similar to a convolutional network. Despite the similarity of
architectures, we see clear advantages of approaches developed specifically for the
scotopic environment. An experimental comparison between WaldNet and models
of the conventional kind, such as photopic approaches retrofitted to lowlight images
and ensemble-based approaches agnostic of lowlight image statistics, shows large
performance differences, both in terms of model parsimony and response time
(measured by the number of photons required for decision at desired accuracy).
Finally, despite relying only on few photons for decisions, WaldNet is minimally
affected by camera noises, making it an ideal model to be integrated with the
recently-developed lowlight sensors.
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