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ABSTRACT 

 The Late Cretaceous to Modern tectonic evolution of central and eastern California 

has been studied for many decades, with published work generally focusing on specific 

geographic areas and time periods.  The resulting literature leaves the reader, whether graduate 

student, faculty member, or layperson, wondering what a coherently integrated tectonic 

evolution might look like, or if it would be at all possible to undertake such a task.  This 

question is the common thread weaving together the four studies presented in this work.  

Each of the individual chapters is targeted at a specific location and time period which I have 

identified as a critical yet missing link in piecing together a coherent regional tectonic story.  In 

the first chapter, we re-discover a set of major west down normal faults running along the 

western slope of the southern Sierra, the western Sierra fault system (WSFS).  We show that 

one of these faults was offset by roughly a kilometer in Eocene time, and that this activity 

directly resulted in the incision of much of the relief present in modern Kings Canyon.  The 

second chapter is a basement landscape and thermochronometric study of the hanging wall of 

the WSFS.  New data from this study area provide a significant westward expansion of 

basement thermochronometric data from the southern Sierra Nevada batholith.  Thermal 

modeling results of these data provide critical new constraints on the early exhumation of the 

Sierra Nevada batholith, and in the context of the results from Chapter I, allow us to piece 

together a coherent chronology of tectonic forcings and landscape evolution for the southern 

Sierra Nevada.  In the third chapter, I present a study of the surface rupture of the 1999 

Hector Mine earthquake, a dextral strike slip event on a fault in the Eastern California Shear 

Zone (ECSZ).  New constraints on the active tectonics in ECSZ will help future studies better 

resolve the enigmatic mismatch between geologic slip rates and geodetically determined 



 vii 
regional rates.  Chapter IV is a magnetostratigraphic pilot study of the Paleocene Goler 

Formation. This study provides strong evidence that continued investigation will yield new 

constraints on the depositional age of the only fossil-bearing Paleocene terrestrial deposit on 

the west coast of North America.  Each of these studies aims to provide important new data at 

critical missing links in the tectonic evolution of central and eastern California. 
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1 
I n t r o d u c t i o n  

 California is one of the most geologically diverse places on Earth.  Geologists have 

long striven to understand such features as the Sierra Nevada Mountains, the Great Valley 

basin, the Mojave Desert plateau, and the San Andreas Fault.  Over the last 50 years our 

knowledge of the kinematic history and dynamic forcings responsible for the genesis and 

evolution of these regional features has mimicked global advancements in the earth sciences.  

With the dawn of the plate tectonic paradigm the San Andreas fault was understood to be a 

major plate boundary transform fault.  The development of U-Pb geochronology allowed 

researchers to determine that the Sierra Nevada batholith was formed by a magmatic arc which 

migrated eastward during Cretaceous time.  Geophysical advancements led to several 

fundamental discoveries including that the deepest part of the Great Valley basin is underlain 

by one of the largest vertically oriented blobs of anomalously high velocity upper mantle 

material on Earth, and that the highest parts of the Sierra Nevada Mountains are underlain by 

30 km thick crust.  The inception of (U-Th)/He thermochronometry and igneous 

geobarometry allowed for the discovery that the southernmost Sierra Nevada and Mojave 

segments of the Cretaceous arc were very rapidly exhumed to extreme depths (greater than 30 

km) shortly before the cessation of arc magmatism about 85 million years ago. 

 The progressive development of a regional geologic framework for the geologic 

evolution of California has resulted in a complex set of individual studies of varied geographic 

extent.  Some of these studies claim to disagree with others, and some claim to integrate 

several of the others.  In my experience, many of these studies generally lack a clear 



 

 

2 
explanation of how each fits into a coherent regional framework.  With this in mind, I 

undertook the studies presented in this thesis (Figure 1). 

 Chapter I utilizes apatite (U-Th)/He (Ap-He) data and apatite 4He/3He data along 

with a newly available software package which applies a Bayesian Monte Carlo Markov Chain 

inverse thermal modelling approach.  In this study we re-discover a kilometer-scale west-down 

normal fault cutting across Kings Canyon, California, and conclude that Eocene activity on 

this fault was directly responsible for incision of roughly 80% of the relief in modern Kings 

Canyon. 

 In Chapter II a new horizontal transect of apatite (U-Th)/He, Zr (U-Th)/He and Ap 

4He/3He data are presented.  This data is a fundamental contribution to the body of published 

basement thermochronometric data from the Sierra Nevada batholith, and includes the oldest 

average Sierran Ap-He age ever published, from near Friant, California.  Thermal modelling 

results constrain Late Cretaceous rapid exhumation of the southern Sierra Nevada foothills 

during the same time period when the southernmost Sierra Nevada – Mojave segment of the 

Cretaceous arc was profoundly exhumed.  This allows us to hypothesize a dynamic link 

between these events, and to develop a chronology of tectonic forcings and landscape 

evolution of the southern Sierra Nevada which is complete and consistent with all previously 

published data. 

 Chapter III focuses on the Hector Mine earthquake surface rupture.  This earthquake, 

which shook southern California in October 1999, occurred on a series of dextral strike-slip 

faults in the Eastern California Shear Zone (ECSZ).  This zone of distributed right-lateral 

shear is the central link between active oceanic rifting in the Sea of Cortez to the south, and 

the incipient continental rifting ongoing in the eastern Sierra-Walker lane area to the north.  By 



 

 

3 
understanding the small-scale offsets across this surface rupture, we contribute to the body of 

geologic offset data across the ECSZ, which are enigmatically mismatched with geodetically 

estimated rates across the region. 

 In Chapter IV, we present a pilot magnetostratigraphic study of the Paleocene Goler 

Formation, El Paso Mountains, California.  Due to the paucity of Paleocene terrestrial 

sediments in California, the Goler Formation is a critical datum for this time period.  Despite 

the very thick sedimentary accumulation (4,000 meters) of Goler Formation, the only good age 

constraints published to date are from the upper member.  By getting a magnetostratigraphic 

foothold at a Tiffanian mammal fossil locality, we are able to tentatively calculate a sediment 

accumulation rate for the Goler Formation.  This pilot study strongly suggests that continued 

magnetostratigraphic study of the Goler Formation will yield a better depositional age model 

for the fossil-bearing Paleocene sediments and help to constrain the age of the lower part of 

the section. 

 Each of these studies provides important regional geologic data.   Together, these 

studies aim to contribute to an integrated regional geologic understanding of the kinematic and 

dynamic evolution of central and eastern California. 
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Figure 1.  Regional overview map showing the locations of each of the Chapters of this thesis, 

as well as the locations of three pig roasts, Open Ted (May 2015), Open Jeff (December 2015), 

and Open Frank (May 2016). 
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C h a p t e r  1  

Eocene activity on the Western Sierra Fault System 

and its role incising Kings Canyon, California 

 

Francis J. Sousaa, Kenneth A. Farleya, Jason Saleebya, Marin Clarkb 

 

aDivision of Geological and Planetary Sciences, California Institute of Technology, 1200 East 

California Blvd, Pasadena, California, 91125 

bEarth and Environmental Sciences, University of Michigan, 1100 North University Avenue, 

Ann Arbor, MI, 48109 

 

KEYWORDS 

Apatite 4He/3He thermochronometry; Sierra Nevada tectonics; Kings River canyon incision; 

Bayesian Monte Carlo Markov Chain modeling 

 

ABSTRACT 

Combining new and published apatite (U-Th)/He and apatite 4He/3He data from along the 

Kings River canyon, California we rediscover a west-down normal fault on the western slope 

of the southern Sierra Nevada, one of a series of scarps initially described by Hake (1928) 

which we call the Western Sierra Fault System.  Integrating field observations with apatite (U-

Th)/He data, we infer a single fault trace 30 kilometers long, and constrain the vertical offset 

across this fault to be roughly a kilometer.  Thermal modeling of apatite 4He/3He data 



 

 

6 
documents a pulse of footwall cooling near the fault and upstream in the footwall at circa 45-

40 Ma, which we infer to be the timing of a kilometer-scale incision pulse resulting from the 

fault activity.  In the context of published data from the subsurface of the Sacramento and San 

Joaquin Valleys, our data from the Western Sierra Fault System suggests an Eocene tectonic 

regime dominated by low-to-moderate magnitude extension, surface uplift, and internal 

structural deformation of the southern Sierra Nevada and proximal Great Valley forearc. 

 

1. INTRODUCTION 

Distinguishing actively developing topographic features from landforms that evolved under 

earlier tectonic and climatic regimes is often a difficult, if not impossible, task.  It has long been 

known that this challenge is confounded by changes in the climate system that can force cycles 

of erosion and aggradation.  The more recent geodynamic realization that vertical displacement 

transients may migrate rapidly through regions due to redistributions in lower crust and upper 

mantle loads (Loomis and Glazner, 1986; Saleeby et al., 2013a) now adds additional complexity 

to the problem.  This raises a number of fundamental questions: What controls the initial 

formation of a landscape? To what extent can early landforms influence topographic patterns 

forced under subsequent regimes? 

 

We pursue these questions, which through a long history of studies have been posed for the 

southern Sierra Nevada, California. We focus on the Kings River canyon (Kings Canyon), 

which has the greatest local relief of all Sierra canyons, with maximum vertical relief of about 

2,500 meters (vertical relief is about 2,000 meters at our study location). Previous studies argue 

that at least two or three distinct erosional cycles have carved the canyon (House et al., 1998, 
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2001; Stock et al., 2004; Clark et al., 2005; McPhillips and Brandon, 2012; Pelletier, 2007).  

However, important details of the earlier cycles, such as timing and relative magnitude, elude 

us. 

 

A three-dimensional array of apatite 4He/3He (Ap-4He/3He) and bulk apatite (U-Th)/He (Ap-

He) data clarifies an early Cenozoic phase of southern Sierra landscape evolution.  New Ap-He 

data constrain a discrete, kilometer scale exhumation difference across a topographic step, 

which we interpret as a west-down normal fault.  This fault is one of a set running along the 

western slope of the southern Sierra initially described by Hake (1928), and was dismissed 

(Wahrhaftig, 1965) and neglected in the literature for most of the last century.  We herein 

name this the Western Sierra Fault System (WSFS). 

 

Bayesian Monte Carlo Markov Chain (MCMC) modeling of the thermal history of a sample 

from just upstream of the inferred fault scarp constrains fault activity to be circa 45-40 Ma.  

Additional thermal modeling of data from high relief topography of Kings Canyon east of the 

fault, but below the region of clearly recognizable glacial erosion, indicates that this Eocene 

fault activity also corresponds to a kilometer-scale pulse of incision in the Kings Canyon.  Data 

and thermal modeling presented here elucidate an Eocene tectonic regime during which the 

WSFS played a critical role in generating much of the relief present along the modern Kings 

River.  This analysis raises the question of the potential importance of similar early Cenozoic 

activity on other scarps of the WSFS, which are identified along the length spanning from the 

San Joaquin River to the Kern River (Hake, 1928), as well as the question of potentially 

important Eocene incision events along other major southern Sierran trunk channels. 
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2. OVERVIEW OF THE PROBLEM  

In the southern Sierra Nevada, deep fluvial canyons separate high elevation, low relief 

interfluves. Together these geomorphic zones define regional longitudinal topographic profiles 

marked by large amplitude (greater than 1 km), long wavelength (greater than 10 km) relief. 

Debate over the timing of the generation of this regional relief lies at the core of an unsettled 

question: How old are the southern Sierra river canyons? 

 

Several diverse views summarize the current understanding of this issue. The first claims that 

modern relief was generated primarily in late Cenozoic time.  Several workers argue for this by 

long distance extrapolation of limited geomorphic and stratigraphic data, which is only 

available in the northern Sierra and its western foothills (Huber, 1981; Unruh, 1991; 

Wakabayashi and Sawyer, 2001).   Gabet (2014) discusses a number of weaknesses in the 

conclusions of this view.  The second concept utilizes horizontal transects of Ap-He data to 

contend that longitudinal relief was greater in Late Cretaceous than at present (House et al., 

1998, 2001).  A third idea argues for a rapid pulse of Plio-Pleistocene uplift and incision across 

the central Sierra, documented by cosmogenic radionuclide burial dating of sediments 

deposited on abandoned fluvial-cut cave terraces (Stock et al., 2004). Yet a fourth idea argues 

for a significant pulse of mid-Cenozoic uplift and incision based on different datasets including 

Ap-He data coupled to geomorphic analysis (Clark et al., 2005), a numerical landscape 

evolution model integrating multiple data types (McPhillips and Brandon, 2012), and stream 

incision data extrapolated from the northern Sierra combined with published 

thermochronology and geomorphic data from the southern Sierra (Wakabayashi, 2013). 
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Despite the vast temporal and spatial differences amongst these concepts, they have been 

generally treated as being in competition (e.g. is relief Late Cretaceous? or late Cenozoic?).  

This approach confuses attempts to integrate the different models.  However, none of the 

concepts preclude the validity of the others.  Thus we try to interpret these concepts as 

complementary rather than competitive. 

 

2.1 Previous work 

The assumption of Cenozoic rigid-block behavior for the Sierra Nevada mountain range 

underpins the analysis presented in several previous studies.  Many of these studies explicitly 

state this assumption, and some use its implications to extrapolate geologic data over long 

distances and argue for late Cenozoic origin of most of the present-day topography, 

particularly north of the Kings River canyon (Huber, 1981; Unruh, 1991; Wakabayashi and 

Sawyer, 2001).  This assumption of rigid behavior has also been extended westward into the 

Great Valley, where sedimentation has been used to balance erosion of the southern Sierra 

uplands during rigid west tilting (Wakabayashi and Sawyer, 2001). 

 

On the other hand, vertical transects of Ap-He data from the southern Sierra show a 

consistent age-elevation slope of 0.04 – 0.06 mm/year and lack clear inflections that would 

record canyon incising events.  This implies that the high elevation, low relief interfluvial 

plateaus mimic the landscape that developed in the Late Cretaceous and was slowly exhumed 

at roughly this same rate throughout the Cenozoic (Clark et al., 2005; Maheo et al., 2009, 

House et al., 1997, 2001).  Furthermore, analysis of Ap-He data from two horizontal transects 
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along the axis of the central Sierra supports a Late Cretaceous antiquity of the large 

amplitude, long wavelength longitudinal pattern (House et al., 1998, 2001; Braun 2002a, 

2002b). Together these interpretations imply that low relief highlands and high relief canyons 

were both part of the Late Cretaceous landscape.  In this view, it has been argued that much of 

the form of the modern landscape mimics regional Late Cretaceous geomorphology. 

 

In contrast, Stock et al. (2004) identify a pulse of late Cenozoic river incision across the central 

Sierra using cosmogenic radionuclide burial dates from vertical transects of quartz-bearing 

sediment deposited on abandoned fluvial-cut terraces in carbonate caves.  These data resolve 

late Pliocene to Pleistocene incision of the lowest 20% of total relief of several central Sierra 

river canyons (approximately 400 m in Kings Canyon).  As Stock et al. (2004) point out, the 

question of the antiquity of the upper 80% of relief (approximately 1600 m in Kings Canyon) 

is left unconstrained. 

 

In another study, Clark et al. (2005) identify two knickpoints in stream long profiles of the 

main trunks and tributaries of the Kings and Kern rivers and argue that these knickpoints 

correspond to two pulses of incision responsible for most of the relief in these canyons.  It is 

asserted that these events must post-date the youngest Ap-He age on the Kings River (circa 32 

Ma).  Pelletier (2007) uses a numerical model to test different bedrock erosion models in the 

southern Sierra, and the results of his preferred model (sediment-flux driven) indicate that the 

southern Sierra Nevada experienced range-wide surface uplift in the latest Cretaceous and late 

Miocene. 
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McPhillips and Brandon (2012) integrate published Ap-He and apatite fission track 

thermochronometry, and aluminum-in-hornblende igneous geobarometric data into a 

numerical landscape evolution model encompassing much of the modern Sierra.  Their 

preferred model finds onset of range-wide uplift and incision at circa 30 – 10 Ma. 

 

Studies in the western foothills and eastern San Joaquin Valley subsurface report direct 

measurements of minimum Paleogene paleo-relief.   500 meters of such minimum relief is 

identified in the Kaweah River drainage near the Sierra-Great Valley transition based upon 

interpretation of Ap-He data and bedrock pediment geomorphology (Saleeby et al., 2013b; 

Sousa et al., 2013, 2014). Reid (1988) measures the same scale (500 m) of relief on the Upper 

Cretaceous basement nonconformity in the San Joaquin Valley subsurface. 

 

We next move on to presenting our new data and analysis from Kings Canyon.  In the context 

of the studies discussed above, we constrain an Eocene tectonic regime that provides insights 

into the early Cenozoic evolution of the southern Sierra.  In doing so, we hope to move 

toward a more complete story of southern Sierra Nevada landscape evolution. 

 

3. MATERIAL AND METHODS 

3.1 Analytical methods 

Samples were taken from outcrops of felsic granitoids of the Sierra Nevada Batholith along the 

North Fork Kings River, the main trunk of the Kings River, and near the confluence of the 

Middle and South Forks of the Kings River (FIGURE 1).  After crushing, sieving, and 

standard heavy mineral separation, a stereoscopic microscope was used to select apatite grains 
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from each sample for analysis.  Euhedral grains were selected and checked to exclude any 

grains with birefringent inclusions (examined with cross-polarized light and immersed in 

ethanol).  The dimensions of each grain were then measured and recorded.  For each sample, 

four to ten individual grains were first analyzed for bulk Ap-He age determination.  A Pfeiffer 

Prisma quadrupole mass spectrometer was used for measuring helium by isotope dilution with 

3He.   U, Th, and Sm concentrations were measured via isotope dilution on an Agilent 7500 

ICP-MS (e.g. Farley, 2002).  An alpha-ejection corrected age for each grain was calculated 

using the Ft parameter based on the measured grain dimensions (after Farley et al., 1996).   

 

For each sample chosen for 4He/3He analysis, additional grains were subjected to a fluence of 

1015 protons/cm2 with an energy of 220 MeV at the Francis H. Burr Proton Therapy Center of 

Massachusetts General Hospital to make a uniform distribution of 3He (Shuster and Farley, 

2004; 2005).  Individual grains were picked using the same criteria as for bulk age 

determination, with particular attention paid to the lack of birefringent inclusions.  Each 

individual grain was step-wise degassed using a halogen lamp as heat source (Farley et al, 

1996). 4He and 3He were measured at each degassing step using either a MAP215-50 or GV-

SFT sector field mass spectrometer.  The Ap-He and Ap-4He/3He data used in our analysis are 

presented in TABLE 1 and SUPPLEMENTAL DATA. 

 

Because isochrones (surfaces of equal cooling age) are not horizontal in the Sierra, but are 

tilted, previous studies utilizing Ap-He data from the Sierra have made a correction to allow 

samples taken at different distances from the range axis to be compared.  This is done by 

applying a tilt-correction of a few degrees (House et al. 1997, 1998, 2001; Maheo et al. 2009).  
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McPhillips and Brandon (2010) explicitly model isochronal tilt based on published Ap-He 

data and conclude a larger tilt value of 3.4°. In general these studies have explained isochronal 

tilting as the result of late Cenozoic tectonics, assuming rigid body behavior of the Sierra (none 

of the tilting is due to local rotation) and original isochrone horizontality (none of the tilting is 

due to tilt at time of cooling).  Because of the proximity of all our data, particularly within the 

individual vertical transects, this type of correction has only a minor effect on our study.  

However we do apply a correction by measuring the distance of each sample to a line parallel 

to the local axis of the southern Sierra, and then reversing a 2° down-to-the-west tilt according 

to this measured distance.  Modern elevation and tilt corrected elevation are both reported for 

each sample in TABLE 1.  

 

3.2 Ap-He and Ap-4He/3He data 

Any single Ap-He age is generally compatible with a wide range of thermal histories.  A 

considerably more restricted range is permitted when a bulk Ap-He age is combined with a 

4He rim-to-core concentration profile.  This is because different time-temperature (t-T) paths 

result in significantly different 4He concentration profiles based on the time-integrated balance 

between alpha-particle in-growth and loss by both ejection and diffusion.  This balance can be 

conceptually grasped by considering the amount of time that the sample spent in the partial 

retention zone (PRZ).  For example, a sample that was in the PRZ for a relatively long time 

will have a diffusively rounded 4He profile, whereas a sample that cooled rapidly would have a 

squarer 4He profile.  The Ap-4He/3He method allows us to mine this 4He rim-to-core 

concentration profile (Shuster and Farley, 2004, 2005).   
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3.3 QTQt Modeling 

To extract t-T information from both bulk ages and 4He/3He spectra, we utilize the 

thermochronologic modeling software, QTQt (Gallagher, 2012) to model thermal histories of 

samples with Ap-He and Ap-4He/3He data.  QTQt employs a trans-dimensional Bayesian 

(MCMC) statistical approach to find the best t-T paths for a sample by employing a large 

number of iterative perturbations in t-T space (we use at least 106 iterations).  After each 

perturbation, the proposed path is compared to the initial path and the better-fitting of the two 

is chosen according to a specific acceptance criterion (Gallagher, 2012).  The model converges 

on the best fit t-T path through this process during what is referred to as the “burn in” period 

(Gallagher, 2012).  For each of our model runs the “burn in” period consists of at least 5 x 105 

iterations.  After the model has converged on the best fit t-T path, we run a set of 5 x 105 

“post-burn in” model iterations which are used to document the distribution of best fit t-T 

histories.  The result of this “post-burn in” period is represented in the model outputs.     

 

In addition to applying this iterative process to a single sample, QTQt is designed to 

simultaneously apply this iterative process to find a set of most likely t-T paths comprising a 

vertical transect.  In doing so, QTQt employs a linear thermal gradient that can be prescribed 

to be a fixed value, or allowed to vary with time. 

 

For each model run we impose the same set of manually controlled thermal history 

constraints.  The age of youngest local plutonism at 86 Ma (Chen and Moore, 1982; Moore 

and Nokleberg, 1992) is used as a high temperature constraint (650º C +/- 100º C, 86 Ma +/- 

1 my).  A reasonable bounding box of temperature and time is assigned for the model to 
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explore (85º C +/- 70º C, 90 Ma to present).  A rough estimate of modern mean annual 

surface temperature (20º C +/- 5º C) is also utilized.  All of the input data are listed in TABLE 

1 and SUPPLEMENTAL DATA. 

 

4. AP-HE DATA  

We present nine new Ap-He bulk ages ranging from 34.7 Ma to 64.6 Ma at modern day 

elevations of 402 meters to 1426 meters above sea level.  Five of these new Ap-He ages are 

accompanied by 4He/3He spectra.  In addition to these nine samples, we utilize three 

published bulk Ap-He ages from House et al. (1998) and one published bulk Ap-He age from 

House et al. (1997).  The location of each of the samples is shown on FIGURE 1 and the 

details are tabulated in TABLE 1.  KR1, KR2, KR3, and KR4 comprise a vertical transect near 

the confluence of the Middle and South Forks Kings River spanning modern day elevations of 

660 m to 1430 m above sea level (ASL).  At this location the total vertical relief is about 2,000 

meters (Stock et al., 2004).    KR5, KR6, and KR7 comprise a second vertical transect on the 

North Fork Kings River spanning modern day elevations of 540 m to 1230 m ASL, and 

together with KR8 and 13SS6, are located farther west, and at lower elevation than previously 

published Ap-He data from the area.  KR8 and 13SS6 are from within roughly 10 meters of 

the modern river level of the main trunk Kings River.  Because of the distance of some of our 

samples from the fault (up to a few kilometers) we rule out the possibility that cooling due to 

fluid flow rather than exhumation may play a role in our Ap-He data. 

 

Several published datasets of bulk Ap-He data from the southern Sierra include vertical 

transects that consistently form a linear trend in age-elevation space with a slope of 0.04-0.06 
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mm/yr (House et al., 1997; 1998, 2001, Clark et al., 2005; Maheo et al., 2009).  This age-

elevation relationship is generally invariant in time and space, and generally extends down to an 

age of approximately 40 Ma; younger ages are very sparse.  The slope of the age-elevation 

relationship is interpreted to represent the regional long-term Cenozoic erosion rate (House et 

al., 1997; 1998; Maheo et al., 2009; Clark et al., 2005).  To compare our data with this regional 

relationship we plot Ap-He age versus corrected elevation for each of the two new vertical 

transects (FIGURE 2A, B).  Because of its location close to KR 1-4, we include the high 

elevation sample KC4 (from House et al., 1997).  On both of the new vertical transects, the 

higher elevation samples are in good agreement with the regional age-elevation relationship 

discussed above, as shown by the slopes of the linear regressions shown on FIGURES 2A and 

B.  However, the lowest samples on both vertical transects (KR1, KR3, and KR7) clearly 

deviate from this trend.  This deviation is greatest on the KR5-7 vertical transect (FIGURE 

2B), where the bulk Ap-He age of KR7 is 20 m.y. older than expected, and is older than either 

of the Ap-He ages from higher elevations on the same transect (KR5 and KR6).  On the KR1-

4 vertical transect the deviation of the low elevation samples is of lesser magnitude but in the 

same direction, with the ages of KR1 and KR3 each about 5 m.y. older than expected 

(FIGURE 2A).   

 

These deviations from the expected age-elevation trend comprise a local breakdown of the 

expected pattern of predominantly slow Cenozoic cooling. Furthermore, the large deviation 

within the KR5-7 vertical transect suggests the possibility that a fault offsets it (e.g. Maheo et 

al. 2009).  In the next section we investigate the KR5-7 vertical transect for potential geologic 

structures. 
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5. FAULT IDENTIFICATION 

Field reconnaissance along the KR5-7 vertical transect led to the discovery of several 

curvilinear, approximately northwest-striking, steeply west-dipping topographic steps.  One of 

these steps crosses the vertical transect between KR5-6 and KR7 and preserves approximately 

100 meters of modern relief (FIGURE 3).  Immediately to the east of the vertical transect is a 

larger (500 m) topographic step, sub-parallel to the step crossing the vertical transect. 

 

Considering the large offset in age-elevation space and the topographic step crossing the 

vertical transect between KR5-6 and KR7, we infer this west dipping topographic step to be a 

significant west-down normal fault at this location.    In 1928, Hake studied the 

geomorphology of the southern Sierra Nevada and interpreted a series of topographic steps as 

west-down normal fault scarps stepping southward from the San Joaquin River to the Kern 

River.  Despite the descriptive detail and mapping with which Hake documents the fault 

scarps, his study has been disregarded in the literature (e.g. Wahrhaftig, 1965). 

 

In the vicinity of the Kings River canyon, Hake (1928) described a set of en echelon faults, 

including one along the North Fork Kings River in the immediate vicinity of KR5-7, but the 

map scale used by Hake (1928) does not allow for more precise location.  We hypothesize that 

the modern topographic step is an erosional remnant of a west-down normal fault which 

intersects the KR5-7 vertical transect, and is responsible for the age-elevation offset between 

KR5-6 and KR7.   
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5.1 Confirmation of a fault scarp with Ap-He data 

We hypothesize that the age-elevation offset along the KR5-7 vertical transect is due to offset 

on a discrete west-down normal fault.  In this scenario, the cooling ages were already set at the 

time of the faulting, and the age-elevation slope on either side of the fault was the same, as 

controlled by slow pre-40 Ma cooling.  Under this interpretation, timing of faulting is required 

to post-date the bulk Ap-He age of sample KR8 (42.5 Ma).  The footwall of the fault (east-

side) was uplifted and exhumed relative to the hanging wall (west-side) and Ap-He data from 

each side of the fault should fall on two vertically-offset, parallel age-elevation lines.  The 

vertical offset between these parallel lines should represent the exhumation difference across 

the fault and therefore approximate the total vertical component of offset along the fault.  To 

test this hypothesis we layer more Ap-He data onto the KR5-7 age-elevation plot (FIGURE 

2C).  As predicted, all of the other Ap-He data from nearby the fault, including our new data 

(KR8, 13SS6) as well as data from House et al. (1998) fall consistently on two subparallel, 

vertically-offset age-elevation arrays.  Linear regression of the data show a vertical offset of 

roughly 1000 meters.  Combining the eight Ap-He data points with geomorphic control from 

our field reconnaissance, we infer a fault trace over 30 km long (FIGURE 1).  With 

recognition to the mapping and description in Hake (1928), this consistent offset in Ap-He 

age-elevation data is strong evidence for kilometer-scale, west-down normal faulting spanning 

at least from the North Fork Kings River across the main trunk of the Kings River (FIGURE 

1). 

 

A pulse of footwall incision must have initiated where this fault crossed any streams, and this 

pulse would have subsequently migrated upstream.  In the next section we constrain the timing 
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of faulting by modeling the t-T paths of samples from the locations most affected by this 

fault-related footwall incision. 

 

6. THERMOCHRONOLOGIC MODELLING 

A number of questions arise from the identification of kilometer-scale normal fault scarps on 

the western slope of the southern Sierra Nevada.  When was the fault active?  How does the 

magnitude of fault offset compare to the total relief of Kings Canyon?  Did this fault play a 

role in range-wide uplift and incision?  What is the relationship between the fault-related pulse 

of incision and the relief of the modern Kings River canyon?  

 

6.1 Footwall low elevation sample: KR8 

A major pulse of footwall incision by the Kings River would have immediately followed the 

fault activity discussed above.  In our first set of QTQt model runs we constrain the timing of 

this pulse of footwall incision, and thus the timing of fault activity, by modeling the thermal 

history of the footwall sample that is closest to the fault and at the lowest elevation.  This 

sample, KR8, comes from the main trunk of the Kings River approximately 500 m east of the 

fault and a modern day elevation of 402 m ASL (FIGURE 1).  KR8 was the deepest and 

warmest sample prior to faulting, and thus most likely to record cooling from the post-faulting 

incision pulse.  There is no break in slope in the age-elevation plot of KR8 (FIGURE 2C), 

indicating that faulting must post date 42.5 Ma.  However, modelling the more sensitive Ap-

4He/3He data allows us to much more tightly constrain the cooling history of this sample. 

 



 

 

20 
QTQt model parameters are summarized in SUPPLEMENTAL DATA and model results 

are shown in FIGURE 4.  The upper panel shows the t-T probability distribution of accepted 

thermal histories from the post-burn in phase of the model run.  The model result requires 

that KR8 cooled from greater than 80º C to less than 30º C between 45 Ma and 40 Ma, 

suggesting that the fault was active during, or immediately prior to this time. 

 

6.2 South-Middle Fork Kings River Vertical Transect: KR1-4 

If the fault offset and rapid cooling identified above was accompanied by uplift across the 

southern Sierra, then the pulse of incision should also be recorded upstream from the fault 

scarp.  One would expect this incision pulse to be recorded as rapid cooling of samples in the 

KR1-4 vertical transect, possibly at a later date.  The incipient break in slope at roughly 40 Ma 

on this vertical transect qualitatively confirms this (FIGURE 2A).  With our next QTQt model 

runs, we aim to quantitatively constrain the timing of this incision pulse at the location of the 

KR1-4 vertical transect. 

 

As a start, we first model the thermal histories of each sample in this vertical transect 

individually.  Results of this modeling show that each of KR1-4 require rapid cooling around 

45-40 Ma to temperatures consistent with their location in the vertical transect, about 50º - 60º 

C for the lowest sample and below 30º C for the upper sample (FIGURE 5A-D). This rapid 

cooling is roughly contemporaneous with footwall incision closer to the fault, confirming that 

the major fault-related incision pulse was not spatially limited to the immediate vicinity of the 

fault scarp, but is also recorded about 10 km upstream.  These results demonstrate the 

potential for using thermochronometric data to constrain knickpoints’ migration rates.  
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However, due to the uncertainties and the distance between our samples, we do not 

calculate knickpoints’ migration rates here. 

 

For the lowest sample in the vertical transect, KR1, the individual QTQt model predicts 

cooling to about 50-60º C circa 45-40 Ma, followed by slow cooling at roughly 0.8º/m.y. 

throughout much of the rest of the Cenozoic.  Combined with a reasonable Sierran 

geothermal gradient of 25ºC/km, this corresponds to about 1,200 -1,600 meters of total 

exhumation at a rate of 0.04 mm/year, which is 60-80% of total vertical relief at the location of 

the vertical transect, and about 50-60% of maximum relief in modern Kings Canyon.  This 

suggests that after the pulse of fault-related cooling occurred, the southern Sierra returned to a 

state of slow exhumation and cooling similar to the pre-faulting scenario. 

 

Next we model as a composite vertical transect all four of these samples and a fifth high 

elevation sample, KC4 from House et al (1997), all of which are on the same fault block.  

QTQt simultaneously seeks a t-T path for each of the input data points, which are linearly 

offset by a temperature value that is optimized by the model at each 1 m.y. time increment.  

For this model we input Ap-He ages and Ap-4He/3He spectra for each of KR1-4, and an Ap-

He age for the high elevation sample (KC4; no 4He/3He data exist for this sample).  The 

model result agrees with the individual models for each sample, showing a rapid cooling event 

circa 45-40 Ma, after which the upper samples remain below 30º C and the lower samples 

slowly cool (FIGURE 6).  Unsurprisingly, this model is not able to fit the data as well as the 

individual model runs do (see SUPPLEMENTAL DATA for results from the composite 

vertical transect QTQt model run).  This is at least partly because QTQt requires a linear 



 

 

22 
thermal offset across the entire vertical transect at each 1 m.y. time increment, an imperfect 

simplification of the way a rapid cooling pulse would propagate downward through the upper 

crust.  However, the internal consistency of this composite model result with the prediction of 

rapid cooling from the individual model runs as well as the KR8 model further supports the 

hypothesis of a major pulse of footwall incision and cooling following fault activity circa 45-40 

Ma. 

 

7. DISCUSSION 

7.1 Implications for incision of Kings River canyon  

We posit that the major pulse of footwall incision that resulted from fault activity circa 45-40 

Ma incised about 60-80% of Kings Canyon at the location of the KR1-4 vertical transect.  

Multiple model results support the specific prediction of rapid cooling of footwall samples at 

this time.  These results include thermal models for KR8, the closest sample to the fault and at 

lowest elevation on the footwall, as well as individual and composite vertical transect thermal 

models from roughly 10 km east of the inferred fault trace, near the confluence of the Middle 

and South Forks Kings River (FIGURE 1).  This result strongly supports the conclusion that 

kilometer-scale west-down normal faulting created a large amount of relief across the paleo-

Kings River, and that the pulse of incision triggered by this event is directly responsible for 

much of the relief that comprises modern day Kings Canyon. 

 

In contrast to the rapid Eocene cooling required by our vertical transect data, samples from 

higher elevations of Kings Canyon, as well as from the hanging wall of the fault, contain little 

to no information regarding this event.  This is consistent with the idea that these rocks were 
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already cooled through the PRZ by Eocene time.  Accordingly, our data constrains a major 

phase of relief generation in the Kings Canyon circa 45-40 Ma, but also are consistent with 

previous workers’ conclusions that the low-relief high-elevation interfluves mimic the Late 

Cretaceous landscape, eroded slowly until circa 45 Ma. 

 

7.2 Integrating the different stories 

As we point out in SECTION 2, considering previous published data as complementary rather 

than competitive shows that our data, and the Eocene incision pulse that it requires, is also in 

agreement with the analyses of House et al (1998, 2001).  With two horizontal transects of Ap-

He data, both of which are located upstream of the sampling from our study, House et al. 

(1998, 2001) argue that long wavelength relief of San Joaquin and Kings River canyons was 

greater in Late Cretaceous time than in the modern.  In accord with this result, we propose 

that Late Cretaceous relief slowly decreased through the Paleogene until it was rejuvenated 

circa 45-40 Ma by the tectonic regime resolved in this paper. 

 

Thermochronologic data and thermal modeling with QTQt presented in this study constrain 

the timing and magnitude of this phase of southern Sierra relief generation.  In total the 

incisional response to west-down normal faulting on the WSFS circa 45-40 Ma has accounted 

for over 50% of maximum vertical relief of Kings Canyon, and 60 - 80% of vertical relief at 

the location of our samples.  We suggest that this event accounts for the pulse of Cenozoic 

relief generation in the southern Sierra argued for by previous studies (Clark et al., 2005; 

McPhillips and Brandon, 2012; Wakabayashi, 2013), none of which were able to precisely 

constrain the timing or mechanism in the way we have done here.  After faulting occurred, the 
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southern Sierra returned to a background erosion rate of roughly 0.04-0.06 mm/year until 

late Cenozoic time when another pulse of uplift and incision occurred, resulting in incision of 

inner slot canyons that are present in many southern Sierra river canyons on the order of 

hundreds of meters (Stock et al, 2004).  By treating these different stories as complementary 

rather than competitive, we are able to integrate them together and form a mutually consistent 

timeline. 

 

7.3 Eocene faulting and Great Valley Sedimentation Patterns 

While evidence for similar events has not been found elsewhere along the western slope of the 

southern Sierra, several studies have documented a parallel style and similar magnitude of 

Eocene tectonic activity in the Great Valley subsurface (FIGURE 7). 

 

In the northern San Joaquin Valley, flanking the Stockton Arch and Diablo uplift, the deep-

marine Kreyenhagen shale is conformably overlain by the late-Middle Eocene Poverty Flat 

Sandstone, a conglomerate-bearing, shallowing upwards unit comprised of marine-shelf to 

fluvial deposits (Bartow, 1992).  In this area the Kreyenhagen and Poverty Flat are 

unconformably overlain by the Oligocene to Miocene Valley Springs formation, suggesting an 

extended period of erosion and/or non-deposition following deposition of the Poverty Flat 

Sandstone.  To the north in the Sacramento Valley (FIGURE 7), the steeply dipping, north-

northwest striking Midland and Kirby Hills Fault systems created a kilometer-scale Early to 

Middle Eocene deep-marine structurally-controlled graben depocenter (Imperato, 1995 and 

references therein; Sullivan and Sullivan 2012, 2013).  Tectonic activity on the Midland Fault is 

further associated with Middle Eocene submarine canyons (Sullivan and Sullivan, 2012; 2013).  
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The location of these vertically stacked, southwestwardly trending submarine canyons is 

interpreted to be structurally controlled by the Midland and Kirby Hills fault systems, while the 

timing of erosion and filling of the canyons is interpreted to be due to sea level variations.  

These submarine canyons include the Sidney Flat Canyon and Markley Canyon, which reach 

maximum depths of 500 meters to 750 meters in the Sacramento Valley subsurface (Sullivan 

and Sullivan, 2012; 2013).  To the south this graben system continues into the Mount Diablo 

area, where the Kirby Hills fault joins the Kirker fault on the west side of the graben, and the 

Midland fault terminates into the Brushy Creek fault on the east side (Unruh et al., 2007).  

Deposition of growth strata within this structurally controlled graben occurred during Eocene 

deposition (unit EP2 of Unruh et al., 2007).  

 

These data from the Great Valley subsurface suggest control of deep marine depocenters 

along high angle extensional faults contemporaneous with proximal marine shallowing 

(Kreyenhagen-Poverty Flats deposition).  Combined with our findings of erosional and 

implicit tectonic activity circa 45-40 Ma in the southern Sierra, data from the Great Valley 

subsurface suggest an Eocene east-west extensional tectonic regime marked by 

contemporaneous uplift and erosion of the southern Sierra, shallowing of the proximal Great 

Valley forearc, and complex structural control of deeper marine depocenters.   

 

The Eocene was a transitional time period in the evolution of western North America, 

between Late Cretaceous-early Cenozoic Sevier-Laramide crustal shortening and mid to late 

Cenozoic initiation and growth of the San Andreas transform plate boundary.  At this time the 

Sierra Nevada was the western flank of an erosional highland spanning much of the western 
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United States, commonly referred to as the Nevadaplano (DeCelles, 2004; Henry et al., 

2012).  To the south was the Late Cretaceous gravitationally collapsed southernmost Sierra 

Nevada and Mojave-Salinia batholiths (Saleeby, 2003; Chapman, 2012).  However, the lack of 

early Cenozoic deposits from the southern Sierra kept previous workers from constraining the 

tectonic activity of this time period.  By utilizing the Ap-4He/3He method, we are able to 

discern evidence for Eocene tectonics in the southern Sierra, and find it to be consistent with 

evidence from the Great Valley subsurface.   

 

8. CONCLUSIONS 

Ap-He data from high elevation samples on vertical transects along the North Fork and main 

trunk of the Kings River are consistent with regionally interpreted slow erosion at a rate of 

0.04-0.06 mm/year during Late Cretaceous to early Cenozoic time.  However, low elevation 

samples from these same vertical transects are too old to be explained by this trend.  Along the 

North Fork Kings River, this large deviation led us to identify a northwest striking, west-down 

normal fault, corroborating the presence of a system of faults, the WSFS, which has been 

neglected or dismissed (Wahrhaftig, 1965) in the literature since discovery by Hake (1928).  

Combining Hake’s (1928) early description with new Ap-He data and field reconnaissance, we 

infer a fault trace and constrain the vertical offset on this fault to be on the order of a 

kilometer.  Thermal modeling of individual samples and a composite vertical transect of Ap-

He and Ap-4He/3He data constrain the timing of fault activity to circa 45-40 Ma.  

Furthermore, this fault activity was contemporaneous with, or immediately followed by, a 

major incision pulse on the main trunk of the Kings River, which corresponds to 60 – 80% of 

vertical relief of modern Kings Canyon at the location of the samples.  By integrating this fault 
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activity and subsequent incision with other published work, we present a coherent 

framework for the Cenozoic evolution of the southern Sierra Nevada. 

 

This new Eocene erosional regime is broadly consistent with previous studies of Sierra Nevada 

topographic evolution, including arguments for Late Cretaceous large-magnitude long-

wavelength relief on the Kings River canyon (House et al., 1998) as well as Plio-Pleistocene 

rapid incision (Stock et al., 2004).  Considered in conjunction with other studies from the 

Great Valley subsurface, our data suggest a previously unconstrained Eocene tectonic regime 

for the southern Sierra Nevada-Great Valley forearc system.  This regime is marked by uplift, 

erosion, and internal structural deformation of both the southern Sierra Nevada mountain 

range and proximal Great Valley forearc, and deep marine depocenters structurally controlled 

by east-west extensional tectonics. 

 

Thermal modelling of Ap-4He/3He data from the Kings River canyon has allowed us to 

constrain the timing and magnitude of incision of much of the relief present in the modern 

canyon.  However, this was not the first version of this landscape, rather this Eocene incision 

was superimposed on older relief (e.g. House et al. 1998).  We have shown that this incision 

was directly controlled by a kilometer-scale west-down normal fault located along the western 

slope of the southern Sierra. 
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FIGURE AND TABLE CAPTIONS 

Figure 1.  Overview map of study area along the Kings River Canyon, Sierra Nevada, 

California.  Inferred trace of normal fault scarp constrained by Ap-He data is shown as dashed 

black line with ticks.  Approximate location of scarp mapped by Hake (1928) is shown as gray 

dashed line.  Locations of Ap-He data constraining the fault location are plotted as squares 

(hanging wall) and circles (foot wall).  Locations of Ap-He data comprising the KR1-4, KC4 

vertical transect are plotted as triangles.  Base imagery is a hillshade derived from USGS 

national elevation dataset 10 m digital elevation model.  Inset at upper right shows location of 

San Joaquin (SJ), Kings, and Kern Rivers, as well as outline of the Figure 1 extent on California 

state boundary. 

 

Figure 2.  Ap-He age versus corrected elevation for each vertical transect and across inferred 

normal fault trace.  A. KR1-4, KC4 vertical transect.  Linear regression is plotted through the 

three samples above the break in slope (slope = 0.04 mm/yr).    B. KR5-7 vertical transect.  

Line is drawn through KR5 and KR6 (slope = 0.05 mm/yr).  C. Plot of all Ap-He data near 

the inferred fault trace (this study and House et al. 1998).  Lines shown for each fault block 

(hanging wall vs. foot wall) are linear regressions through the data.  Slopes are 0.05 mm/yr 

(hanging wall) and 0.06 mm/yr (footwall).  As described in the text, a minor correction is 

applied to the elevation of samples based on their perpendicular distance to the axis of the 

range (referred to as tilt corrected, or TC elevations in TABLE 1). 

 

Figure 3.  Field photo of KR5-7 vertical transect, view to the NW from Blackrock Road pull 

out at 36.904° N, 119.070°W.  Arrows point to topographic steps discussed in the text.  A is 
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approximately 100 m step and is the location of the inferred normal fault trace (red line with 

tick marks).  B is approximately 500 m high step east of vertical transect.  Balch penstock is 

shown as faint gray line for reference. 

 
Figure 4.  Results from thermal modelling of sample KR8 done using QTQt (Gallagher, 2012).  

Upper panel shows the probability at each 1 Ma time step of the thermal history of the sample 

passing through each pixel in temperature space.  Thin line shows the best fit t-T path (Max 

Posterior), which resulted in the model fit 4He/3He spectrum plotted in middle panel.  Middle 

panel shows measured 4He/3He spectrum (black boxes) and model fit spectrum (maximum 

posterior, gray line).  Lower panel shows measured age and uncertainty plotted over histogram 

of accepted model ages.  Total number of model iterations during post burn-in phase is 5 x 

105. 

 

Figure 5.  Individual results from KR1, KR2, KR3, and KR4 thermal modeling with QTQt 

(Gallagher, 2012).  Upper panel of each shows the probability at each 1 Ma time step of the 

thermal history of the sample passing through each pixel in temperature space.  The thin black 

line on each upper panel shows the best fit t-T path (Max Posterior) which resulted in the 

model fit 4He/3He spectrum plotted in middle panel. Middle panel of each shows measured 

4He/3He spectrum (black boxes) and model fit spectrum (maximum posterior, thick gray 

lines).  Lower panel of each shows measured ages and uncertainties plotted over histogram of 

accepted model ages.  Total number of model iterations during post burn-in phase of each 

model run is 5 x 105. 
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Figure 6.  Time-temperature results of composite QTQt thermal modeling of the KR1-4, 

KC4 vertical transect.  The model optimizes a time-variable linear thermal gradient (different 

at each 1 Ma time step) across the entire vertical transect. 

 

Figure 7.  Regional map showing geographic context of study area and the location of data 

from the Great Valley subsurface discussed in text.  BCF = Brushy Creek Fault.  KF = Kirker 

Fault.  KHF = Kirby Hills Fault.  MF = Midland Fault.  SF = Stockton Fault.  PFS = Poverty 

Flat Sandstone.  WSFS = Western Sierra Fault System.  Base image is a hillshade derived from 

USGS 10 m national elevation dataset digital elevation model. 

 

Table 1.  Ap-He and Ap-4He/3He data used in this study. KR1-KR8 and 13SS6 are newly 

reported here.  The four remaining samples are taken from previously published studies.  

aSingle outlier apatite is excluded from mean.  bN is number of single grain He analyses used 

for each sample. cr is average equivalent spherical radius. dNR is "not reported."  Where radius 

not reported, sphere equivalent radius is estimated from average Ft (Farley, 1996). eeU is 

effective uranium concentration, weights U and Th for their a productivity, computed as (U + 

(0.235 * Th)). fUncorrected date is corrected for a-ejection using Farley et al., (1996). 

gUncertainty on the mean He dates reported here as the 1 sigma standard error of the mean, 

except for samples taken from (2), where standard deviation is reported. hData sources: (1) this 

study; (2) House et al. 1998; (3) House et al., 1997; (4) Chen and Moore, 1982; (5) Moore and 

Nokleberg, 1992.  kTC Elevation is tilt corrected elevation, based on the perpendicular distance 

of each sample to a line parallel to the range axis, as described in the text. 
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Sample Nb 
r 
(um)c 

eU 
(ppm)e 

Raw 
Age 
(Ma) 

± 1 st 
err g 

Corr 
Age 
(Ma) f 

± 1 st 
err 

Data 
Sourceh 

4He/3H
e Datah 

plutonh 

UTM Zone 11 

Elevation 
TC 
Elevation k 

E N 

KR1 4 64 43 27.2 1.76 34.7 2 (1) (1) 
QD of Yucca Point (5). 110 
Ma (4). 330649 4079476 658 281 

KR2 4 62 39 28.9 1.1 37.2 1.3 (1) (1) 
QD of Yucca Point (5). 110 
Ma (4). 330946 4079974 987 596 

KR3 3a 66 48 29.3 1.9 37.1 2.2 (1) (1) 
QD of Yucca Point (5). 110 
Ma (4). 332120 4078503 745 343 

KR4 4 68 42 39.1 0.9 49 1.1 (1) (1) 
QD of Yucca Point (5). 110 
Ma (4). 330586 4077995 1426 1080 

KR5 3a 62 42 45.7 3.8 60.1 4.7 (1) no Unmapped 314403 4088026 1231 1217 

KR6 4 66 64 41.9 1.9 54.1 2.3 (1) no Unmapped 314564 4087333 930 925 

KR7 3a 68 64 50.4 2.7 64.6 3.3 (1) no Unmapped 313825 4086827 536 560 

KR8 4 62 38 32.5 0.7 42.5 0.7 (1) (1) Unmapped 318786 4081525 402 378 

13SS6 9a 49 8 44.1 1.5 62.8 1.6 (1) no Unmapped 313781 4081334 345 472 

96-1 NRd 97d 47 68.2 NRd 80.3 4.6g (2) no 
Giant Forest GD (5). 97-
102 Ma (4). 332656 4073310 1829 1506 

95-15 NRd 77d 37 68.5 NRd 84.6 8.5g (2) no 
Granite of Grant Grove 
(5). 106 Ma (4). 325237 4073927 1768 1655 

95-14 NRd 81d 21 54.4 NRd 66.3 4.7g (2) no 
Giant Forest GD (5). 97-
102 Ma (4). 333459 4073818 1829 1468 

KC4 NRd 48d 10 49.4 NRd 70.6 3.5g (3) no 
GD of Brush Canyon (5). 
86 Ma (4). 330899 4085954 2490 2001 

 
Table 1. 
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APPENDIX A 
 
This supplemental contains the apatite (U–Th)/He and apatite 4He/3He data used for QTQt 
modeling presented in the paper, the modeling parameters used for the QTQt models, and the 
modeling results figures for the composite KR1–KR4, KC4 vertical transect. 
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KR8 
Sph. radius (um)  52 
U (ppm)    29.6 
Th (ppm)   37 
Raw Age (Ma)  32.5 
+/- 1 s.e. (Ma) 0.7 
      
step Σ3He   N 4He/3He +/- 
1 0.015428  0.305841 0.015292     
2 0.044299  0.557113 0.027856     
3 0.069982  0.547639 0.027382     
4 0.10227  0.638896 0.031945     
5 0.141581  0.729078 0.036454     
6 0.210443  0.819043 0.040952     
7 0.303688  0.878743 0.043937     
8 0.442346  1.084389 0.054219     
9 0.542094  1.043772 0.052189     
10 0.625117  0.988693 0.049435     
11 0.696785  1.072571 0.053629     
12 0.802021  1.178205 0.05891     
13 0.848785  0.955233 0.047762     
14 0.899869  1.199502 0.059975     
15 0.944222  1.085165 0.054258     
16 0.983343  1.092101 0.054605   
17 1.000000  0.995731 0.049787  
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KR1 
Sph. radius (um)  60 
U (ppm)    30 
Th (ppm)   55 
Raw Age (Ma)  27.2 
+/- 1 s.e. (Ma) 2 
      
step Σ3He   N 4He/3He +/- 
1 0.012018  0.110627 0.015036       
2 0.025678  0.225639 0.029043       
3 0.044074  0.339343 0.045904       
4 0.071182  0.388423 0.018695       
5 0.105912  0.466368 0.030545       
6 0.153091  0.503128 0.042399       
7 0.217621  0.63146 0.035188       
8 0.291802  0.748834 0.070863       
9 0.388529  0.774588 0.064039       
10 0.457855  0.942191 0.052495       
11 0.508476  1.105046 0.062996       
12 0.554222  1.132868 0.06534        
13 0.593765  1.227864 0.074284       
14 0.633431  1.183792 0.074393       
15 0.669754  1.221483 0.096092       
16 0.733779  1.280304 0.061099       
17 0.798255  1.325782 0.131198       
18 1.000000  1.344588 0.079645      
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KR2 
Sph. radius (um)  67 
U (ppm)    26.9 
Th (ppm)   53.2 
Raw Age (Ma)  28.9 
+/- 1 s.e. (Ma) 1.3 
      
step Σ3He   N 4He/3He +/- 
1 0.011767   0.372768  0.032236       
2 0.016859   0.453916  0.056049       
3 0.02599     0.52728   0.030643       
4 0.037519   0.576034  0.046464       
5 0.056256   0.576224  0.028959       
6 0.082869   0.667975  0.02953       
7 0.128588   0.714464  0.061104       
8 0.179102   0.814121  0.029167       
9 0.245289   0.804827  0.037284       
10 0.313651  0.886437  0.072041       
11 0.389735  1.023002  0.037745       
12 0.460258  1.022009  0.062381       
13 0.498242  1.1819    0.045275       
14 0.53294    1.116721  0.102564       
15 0.560545  1.09396   0.09746       
16 0.579555  1.243131  0.081481       
17 0.608638  1.218442  0.116717       
18 0.899125  1.113326  0.044393       
19 1.000000  1.193551  0.033777     
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KR3 
Sph. radius (um)  57 
U (ppm)    30.3 
Th (ppm)   61.1 
Raw Age (Ma)  29.3 
+/- 1 s.e. (Ma) 2.2 
      
step Σ3He   N 4He/3He +/- 
1 0.016098   0.223886 0.117243       
2 0.060073   0.451867 0.112552       
3 0.094057   0.449147 0.081738       
4 0.133671   0.599268 0.137044       
5 0.234819   0.712401 0.107709       
6 0.316672   0.867208 0.103905       
7 0.407154   0.99118 0.138219       
8 0.479328   1.120591 0.196737       
9 0.553975   1.030103 0.151697       
10 0.614232  1.224406 0.222117       
11 1.000000  1.271407 0.079599     
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KR4 
Sph. radius (um)  79 
U (ppm)    28.3 
Th (ppm)   59 
Raw Age (Ma)  31.1 
+/- 1 s.e. (Ma) 1.1 
      
step Σ3He   N 4He/3He +/- 
1 0.006527   0.376541 0.099       
2 0.015329   0.418881 0.051141       
3 0.028631   0.484669 0.06157       
4 0.04316    0.607524 0.043221       
5 0.06762    0.587896 0.084473       
6 0.099368   0.602211 0.031644       
7 0.139499   0.723717 0.045451       
8 0.18883    0.780072 0.04141       
9 0.245145   0.804415 0.038053       
10 0.293373  0.891484 0.048415       
11 0.339394  0.876951 0.040329       
12 0.380764  0.903407 0.036452       
13 0.417548  0.977253 0.057977       
14 0.453245  1.00149 0.049905       
15 0.485498  0.972831 0.113114       
16 0.533684  1.092897 0.048002       
17 0.583825  1.202417 0.121111       
18 0.646595  1.150761 0.040785       
19 0.689932  1.168049 0.045493       
20 0.724483  1.208124 0.086054       
21 0.735736  0.983663 0.090373       
22 0.885543  1.171208 0.03534       
23 1.000000  1.261504 0.039488       
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KC4 
Sph. radius (um)   48 
U (ppm)   7 
Th (ppm)   12 
Raw Age (Ma)   49.4 
+/- 1 s.d. (Ma)   3.5 
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MODELING PARAMETERS 
 
Modeling information     
 Modeling code: QTQt v5.3.1   
 Kinetic model: RDAAM Flowers et al. 2009 
 Geothermal gradient: variable    
 Surface temperature: 20°C +/- 5°C   
 Thermal constraints: 86 Ma +/- 1 Ma  
    650°C +/- 100°C  
 Range for general prior: 0 Ma - 90 Ma   
    85°C +/- 70°C   
Statistical fitting criteria:     
 Move Parameters auto    
 Birth Parameters auto    
 MCMC Chain Perturbations     
  Burn-in: ≥ 500k    
  Post burn-in: 500k    
  Thinning: 1    
        
 Resample He Age? Y    
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FIGURE S1. 

Summary of KR1 results from composite vertical transect QTQt thermal modeling.  Three 

panels show the same relevant information as in Figures 4 and 5 in main text. 
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FIGURE S2. 

Summary of KR3 results from composite vertical transect QTQt thermal modeling.  Three 

panels show the same relevant information as in Figures 4 and 5 in main text. 
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FIGURE S3. 

Summary of KR2 results from composite vertical transect QTQt thermal modeling.  Three 

panels show the same relevant information as in Figures 4 and 5 in main text. 
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FIGURE S4. 

Summary of KR4 results from composite vertical transect QTQt thermal modeling.  Three 

panels show the same relevant information as in Figures 4 and 5 in main text. 
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FIGURE S5. 

Summary of KC4 results from composite vertical transect QTQt thermal modeling.  Two 

panels show the same relevant information as the upper and lower panels in Figures 4 and 5 

in main text.  No 4He/3He model fit data is available because no Ap 4He/3He data exists for 

this sample. 
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ABSTRACT 

 We present stratigraphic constraints, observations of bedrock pediment morphology, 

and palesol and mineralogical occurrences along the western foothills of the southern Sierra 

Nevada, central California.  These data show that the modern bedrock landscape from 

Fountains Springs to Friant, California is a fossil pre-40 Ma landscape, which we call the 

southern Sierra Nevada pediment.  Thermochronologic data from a new horizontal transect of 

apatite (U–Th)/He and zircon (U-Th)/He data along the length of this study area, as well as 

apatite 4He/3He data from the northern and southern ends, allow us to model the time-

temperature history of this swath of Sierran basement.  Results of thermal modeling are all 

consistent with a three-phase cooling history for the bedrock along the study area.  Rapid 

exhumation circa 95-85 Ma resulted in cooling to between 55° C and 100° C.  Following this, 

slow cooling to surface conditions occurred from 85 Ma to 40 Ma at rates consistent with 

those estimated for the axial southern Sierra during the same time period by previous studies.  

Little if any additional cooling occurred post-40 Ma.  We hypothesize that a thin sedimentary 
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cover protected the 40 Ma bedrock landscape through much of the last 40 million years, and 

that this cover was eroded away post-10 Ma, re-exhuming the southern Sierra Nevada 

pediment as a fossil pre-40 Ma landscape.  The three phases of cooling are linked to regional 

tectonic events, including the extreme tectonic disruption of the southernmost Sierra Nevada 

– Mojave segment of the Cretaceous arc due to subduction of a large oceanic plateau 

(Chapman et al., 2012), the formation of the low-relief landscape of the high elevation areas of 

the southern Sierra Nevada (Clark et al., 2005), and the Eocene activity on the western Sierra 

fault system (Sousa et al., 2016). 

 

INTRODUCTION 

Basement outcrops along the boundary between the southern Sierra Nevada foothills 

and the San Joaquin Valley expose a bedrock pediment landscape that we refer to as the 

southern Sierra Nevada pediment (SSNP).  We will first introduce the long history of studies 

using low temperature thermochronologic data to constrain the evolution of the southern 

Sierra Nevada, and then describe the SSNP by presenting field, geochemical, and mineralogical 

data.  Next, we use this data to constrain a chronology of landscape evolution and tectonic 

activity along the SSNP.  Finally, we will interpret this chronology within the broader context 

of the southern Sierra Nevada-Great Valley system and discuss its implications for regional 

tectonics and landscape evolution. 

The datasets presented in this study include a new application of the (U-Th)/He 

chronometer to the TiO2 mineral anatase.  We also present regional additions to basement 

thermochronologic data from the southern Sierra that improve our understanding of the post-

magmatic evolution of the southern Sierran arc.  These include new bulk apatite (U-Th)/He 

data (Ap-He), apatite 4He/3He data (Ap-4He/3He), and zircon (U-Th)/He data (Zr-He), all 
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from locations significantly farther west than any previously published data from this part of 

the mountain range (FIGURE 1).  This spatial expansion of basement thermochronometric 

data bears importantly on the debate in the literature about the geomorphic evolution of the 

southern Sierra Nevada (House et al., 1998, 2001; Clark et al., 2005; McPhillips and Brandon, 

2012; Wakabayashi and Sawyer, 2001; Wakabayashi, 2013; 2015), and more importantly, on the 

assumptions that underlie the key arguments in these studies.  In the context of the large body 

of research regarding the topographic evolution of the southern Sierra and recent constraints 

on Eocene uplift (Sousa et al., 2016), we piece together a chronology of tectonic and landscape 

evolution of the southern Sierra Nevada. 

 

GEOLOGIC SETTING 

The SSNP runs approximately 150 kilometers along the western edge of the southern 

Sierran foothills from near 36º N at Fountain Springs, California in the south to near 37º N at 

Friant, California in the north (FIGURE 1).  Along the pediment, bedrock lithology consists 

of plutonic rocks of the composite Sierra Nevada batholith as well as pre-batholithic wallrocks.  

Locally the batholith is composed of Early Cretaceous plutonic rocks emplaced circa 115 Ma 

+/- 10 Ma (Chen and Moore, 1982; Saleeby and Sharp, 1980; Lackey et al, 2005; Clemens-

Knott and Saleeby, 1999) at pressures of 3-4 kilobars (Ague and Brimhall, 1988; Ague, 1997; 

Nadin et al., 2016).   Secondary to plutonic rocks are pre-batholithic wallrocks of the Kings-

Kaweah Ophiolite Belt that runs along nearly the entire length of the SSNP and consists of the 

Paleozoic Kings River ophiolite and Kaweah serpentinite mélange, which encloses ophiolitic 

blocks, and infolds of nonconformably overlying lower Mesozoic slaty marine strata (Saleeby 

and Sharp, 1980; Saleeby, 2011). 
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North of the SSNP, a section of Eocene and younger deposits known as the 

Superjacent Series nonconformably overly Sierran basement (Bateman and Wahraftig, 1966).  

The southernmost outcrops of the Superjacent Series (FIGURE 1), which consist of the 

Eocene Ione formation, occurs at the northernmost end of our study area near Friant 

(Lindgren, 1911; Bates, 1945; Creely and Force, 2007; Palmer, 1978; Palmer and Merril, 1982).  

At this location, the Eocene Ione formation (FIGURE 2B) sits directly on the 114 Ma tonalite 

of Blue Canyon (Busacca, 1982; Bateman et al., 1983), which is locally deeply weathered 

beneath the Eocene nonconformity (FIGURE 2D).   

Over 150 kilometers to the south, the southern terminus of the pediment abuts the 

northernmost edge of the Kern Arch, a crescent shaped active uplift along the boundary 

between the San Joaquin Valley and the southern Sierran foothills (Cecil et al, 2014; FIGURE 

1).  Analogous to the stratigraphic relationship at the north end of the pediment, Cenozoic 

strata of the Kern Arch are Eocene and younger, with the basal Walker Formation, containing 

a 40.1 +/- 0.3 Ma tuff (Saleeby et al., in review) that was deposited nonconformably on deeply 

weathered Sierran basement (FIGURE 2A and 2C). 

Along the western edge of the SSNP, soils and sediments of the eastern San Joaquin 

Valley shallowly cover low relief bedrock outcrops, with soil depths on the order of meters to 

tens of meters (Sousa et al., 2013; Saleeby et al., 2013; this study).  This area hosts widespread 

agriculture, which makes detailed geological observations difficult.  Nonetheless, field and 

remote sensing observations of bedrock tors interspersed amongst orchards, as well as shallow 

depths-to-basement in local water wells confirm that this boundary is generally a low relief 

bedrock landscape (this study).  A few kilometers farther west, in the San Joaquin Valley 

subsurface, Late Cretaceous to Eocene sedimentary rocks overlie Sierran basement (Reid, 

1988).  The sub-Late Cretaceous basement nonconformity is marked by a deeply weathered 
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zone tens of meters thick and up to hundreds of meters of relief in the form of east-west 

trending channels (Reid, 1988). 

East of the SSNP, the southern Sierra rise rapidly to ~ 2000 m elevation across a series 

of topographic steps.  Sousa et al. (2016) showed that one of these steps is an eroded fault 

scarp of the western Sierra fault system (WSFS), and posited that the rest of the system was 

also active at the same time, circa 45-40 Ma (FIGURE 1). 

 

PREVIOUS WORK 

Southern Sierra Nevada Pediment 

Prior to this study, much of the research in the southern Sierra Nevada foothills 

focused on pre- and syn-batholithic petrology, geochemistry, and tectonics (e.g. Saleeby and 

Sharp 1980; Clemens-Knott and Saleeby, 1999; Saleeby, 2011).  However, some studies have 

considered the geomorphology of the southern Sierran foothills (Hake, 1928; Wahrhaftig, 

1965; Saleeby and Foster, 2004; Pelletier, 2007; Figueroa and Knott, 2010).  While Figueroa 

and Knott (2010) and Pelletier (2007) each focus on much larger areas than the SSNP, Saleeby 

and Foster (2004) do focus on this area.  They interpret this segment of the southern Sierran 

foothills as dominated by steep faceted topography buried by active sedimentation in the 

eastern San Joaquin Valley.  This description does not bear out fully; rather than active burial 

of steep topography, the topographic features within this landscape commonly rise from a low 

relief bedrock peneplain where it is only shallowly, if at all, covered by sediments (Sousa et al., 

2013; Saleeby et al., 2013; this study).  Saleeby and Foster (2004) contend that the geomorphic 

differences between this and other segments of the Sierran foothills result from the surficial 

response to the actively foundering mantle lithospheric phenomenon known as the Isabella 

Anomaly, which lies beneath this segment of the southern Sierra foothills (e.g. Zandt et al., 
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2004). The findings of this current study, as well as more recent modeling work on the surficial 

effects of mantle lithospheric dynamics beneath the SSNP support this interpretation 

(LePourhiet el al., 2006; Saleeby et al, 2012; Saleeby et al., 2013b). 

 

Western Sierran Slope 

A fundamental topographic characteristic of the Sierra Nevada is the fact that in the 

north, the western slope is a continuous ramp, while the southern Sierra rapidly attains an 

elevation of 2000 meters across a set of roughly range-parallel topographic steps.  An early 

study by Hake (1928) described a set of these steps running from the San Joaquin to Kern 

Rivers as intra-batholihic west-down normal fault scarps (FIGURE 1).  However, this idea has 

been neglected in the literature since Wahrhaftig (1965) dismissed it with very little mention.  

Without addressing the descriptions presented by Hake (1928), Wahrhaftig argued that the 

steps of the southern Sierra are of a purely erosional origin.  Jessup et al. (2011) tested this 

conclusion by measuring cosmogenic erosion rates on step treads versus risers, and found their 

data generally inconsistent with Wahrhaftig’s interpretation.  In 2016, Sousa et al. used 

thermochronometric data from the main trunk and north fork of the Kings River to show that 

at least one of the steps described by Hake (1928) is an eroded fault scarp.  This fault 

accommodated kilometer scale west-down displacement in Eocene time, and is a part of the 

WSFS.  In this context, the swath of Sierran basement that comprises the SSNP is the hanging 

wall of the WSFS.  FIGURE 1 shows that with the exception of Sousa et al. (2016), all of the 

previous Ap-He studies in the southern Sierra are entirely east of the WSFS. 

 

Southern Sierra Region 
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Although many models have been proposed for the antiquity and evolution of 

southern Sierra Nevada topography, little consensus has emerged in the literature regarding the 

timing of generation of the high elevations and large relief canyons that comprise the modern 

southern Sierra. 

The assumption of Cenozoic rigid-block down-to-the-west tilt the Sierra Nevada 

mountain range underpins the analysis presented in several previous studies.  Some of these 

studies explicitly state this assumption, and some use its implications to extrapolate geologic 

data over long distances and argue for late Cenozoic origin of most of the present-day 

topography, particularly north of the Kings River canyon (Huber, 1981; Unruh, 1991; 

Wakabayashi and Sawyer, 2001).  This assumption of rigid behavior has also been extended 

westward into the Great Valley, where sedimentation has been used to balance erosion of the 

Sierra uplands during rigid west tilting (Wakabayashi and Sawyer, 2001). 

On the other hand, the correlation of Ap-He ages with the location of major river 

canyons along two horizontal transects from the axial Sierra supports a Late Cretaceous 

antiquity of the large-amplitude, long-wavelength relief pattern common to these river canyons 

(House et al., 1998, 2001; Braun, 2002a, 2002b).  Furthermore, vertical transects of Ap-He data 

from the southern Sierra show a consistent age-elevation slope of 40 – 60 m/m.y. and lack 

clear inflections that would record canyon incising events.  This implies that the high elevation, 

low relief interfluvial plateaus mimic the landscape that developed in the Late Cretaceous and 

was slowly exhumed at roughly this same rate until at least roughly 40 Ma (Clark et al., 2005; 

Maheo et al., 2009, House et al., 1997, 2001).  Together these interpretations imply that low 

relief highlands and high relief canyons were both part of the Late Cretaceous landscape.  In 

this view, much of the form of the modern Sierran landscape mimics regional Late Cretaceous 
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morphology (e.g. House et al., 1998), at which time the Sierra Nevada Mountains were the 

western flank of a high elevation plateau referred to as the Nevadaplano (DeCelles, 2004). 

In contrast, Stock et al. (2004) identify a pulse of late Cenozoic river incision in the 

southern Sierra using cosmogenic radionuclide burial dates from vertical transects of quartz-

bearing sediments deposited on abandoned fluvial-cut terraces in carbonate caves.  These data 

resolve late Pliocene to Pleistocene incision of the lowest ~20% of total relief of several central 

Sierra river canyons (e.g. 400 m in Kings Canyon).  Stock et al. (2004) point out that the 

question of the age of the upper 80% of relief (e.g. 1600 m in Kings Canyon) is unconstrained 

by their study. 

Clark et al. (2005) identify two knickpoints in stream long profiles of the main trunks 

and tributaries of the Kings and Kern rivers, and argue that these knickpoints correspond to 

two pulses of incision responsible for most of the relief in these canyons.  It is asserted that 

these events must post-date the youngest Ap-He age on the Kings River (circa 32 Ma).  

Pelletier (2007) uses a numerical model to test different bedrock erosion models in the 

southern Sierra, and the results of his preferred model indicate that the southern Sierra Nevada 

experienced range-wide surface uplift in the latest Cretaceous and late Miocene. 

McPhillips and Brandon (2012) integrate published Ap-He and apatite fission track 

thermochronometry, and igneous geobarometric data, into a numerical landscape evolution 

model encompassing much of the modern Sierra.  Their preferred model finds onset of range-

wide uplift and incision at circa 30 – 10 Ma. 

Studies in the western foothills and eastern San Joaquin Valley subsurface report direct 

measurements of Late Cretaceous and Paleogene paleo-relief.   A minimum of 500 meters of 

relief is identified in the Kaweah River drainage near the Sierra-Great Valley transition based 

upon interpretation of Ap-He data and bedrock pediment geomorphology (Saleeby et al., 
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2013b; Sousa et al., 2013, 2014; this study). Reid (1988) measures the same scale (500 m) of 

relief on the Late Cretaceous basement nonconformity in the eastern San Joaquin Valley 

subsurface.   

The recent documentation of normal faulting along the western slope of the southern 

Sierra (Sousa et al., 2016) undermines the fundamental assumption of down-to-the-west rigid 

tilt included in many of these previous studies.  This assumption is most critical in the western 

foothills, where data has been lacking, and long distance extrapolation using the rigid-block 

model has been necessary.  By filling this gap in the basement thermochronometric data along 

the SSNP, we obviate the need for such an assumption, and test the new model put forth by 

Sousa et al. (2016) for Eocene faulting, extension, and uplift.   

In summary, previous studies clearly require a polyphase evolution of southern Sierra 

topography, with distinct topographic patterns linked to specific periods of tectonic activity 

and erosion.  This includes large relief river canyons dating back to Late Cretaceous time, and 

two Cenozoic phases of uplift and incision of these canyons in Eocene (circa 45-40 Ma; Sousa 

et al., 2016) and Plio-Pleistocene time (Stock et al., 2004; 2005).   

In the next section we introduce our methods for data collection, and then proceed to 

data presentation. 

 

METHODS 

Bedrock Pediment Morphology 

Observations of bedrock pediment morphology along the SSNP were made using 

multiple methods.  We made field observations where access was possible.  These observations 

are the basis for the mapping shown in FIGURE 1.  These specifically include observations of 

1) low relief bedrock outcrops within the pediment landscape that we refer to as the bedrock 
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peneplain, 2) bedrock hillslopes rising from the bedrock peneplain by meters to hundreds of 

meters, and 3) the transition between these two zones, where slope rapidly changes in the 

absence of any clear lithologic or structural boundary, which is referred to as the piedmont 

angle (Oberlander, 1974; Twidale, 1981; Pelletier, 2010, Strudley et al, 2006).  We 

complemented field work with aerial and satellite images, hillshade models derived from a 10 

meter USGS digital elevation model, and published geologic maps (Matthews and Burnett, 

1965; Clemens-Knott, 2011; Macdonald, 1941; Saleeby and Sharp, 1980; Saleeby, 2011; 

Busacca, 1982; Bateman et al., 1983). 

We use depth-to-basement data from shallow water wells to extend our mapping of 

the SSNP beyond the accessible exposures and into the subsurface west of the foothills-to-

basin transition.  Individual water well data was averaged over one square mile sections and 

compiled into five cross sections covering a large portion of our study area. The locations of 

these cross sections are shown on FIGURE 1.  The cross sections are included in the 

Supplemental File. 

 

Clumped Isotope Thermometry and Stable Isotope Methods 

We measured the clumped isotope composition of carbonate from an altered bedrock 

sample (11SS1) using a well-documented general procedure for determination of the ∆47 value 

of carbonate samples by automated digestion, online purification, and measurement by dual-

inlet gas-source mass spectrometry (e.g. Eiler, 2011; Dennis et al., 2011).  Two samples of 

whole rock material, 63.0 and 99.7 mg, were powdered to < 106 µm and reacted under 

vacuum in separate McCrea-style vessels with 10% phosphoric acid for 24 hours at 25°C to 

react all calcite in the sample (McCrea, 1950). Evolved CO2 was extracted from the vessels and 

separated from water by conventional cryogenic methods on a glass vacuum line. A second 
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reaction step for 24 hours at 50° C yielded no CO2, indicating that no dolomite was present in 

the sample (Al-Aasm et al., 1990). Based on manometric measurements of CO2, carbonate 

contents of the 63.0 mg aliquot and the 99.7 mg aliquot were calculated to be 3.39% and 

3.35% by weight, respectively. This calculation assumes that all carbonate was stoichiometric 

calcite and digestion of calcite proceeded to completion. Due to the excellent agreement of the 

percent carbonate values, we conclude these assumptions are correct.   

In order to obtain sufficient CO2 for a single mass-spectrometric measurement, these 

separate gas aliquots were combined into a single break-seal.  The composite sample CO2 was 

purified on an automated system that includes multiple cryogenic steps and a pass through a 

Poropak-Q 120/80 GC column in a He carrier gas to remove potential organic contaminants, 

and measured on a Thermo Scientific MAT 253 gas-source mass spectrometer at Caltech. The 

results were projected into the absolute reference frame using standard equilibrated gases 

measured during the same week-long analytical session (Dennis et al., 2011). 

 

Thermochronometric Methods 

Samples were taken from outcrops of Early Cretaceous plutonic rocks of the Sierra 

Nevada batholith along the westernmost bedrock outcrops of the Sierran foothills from the 

towns of Fountain Springs to Friant (FIGURE 1).  After crushing, sieving, and standard heavy 

mineral separation, a stereoscopic microscope was used to select apatite and zircon grains from 

each sample for analysis.  Euhedral grains were selected and checked to exclude any grains 

with birefringent inclusions (examined with cross-polarized light and immersed in ethanol).  

The dimensions of each grain were then measured and recorded.  For each sample, four to 

seven individual grains were first analyzed for bulk (U-Th)/He age determination.  Helium was 

measured with a Pfeiffer Prisma quadrupole mass spectrometer.   After standard mineral 
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digestions, parent concentrations were measured via isotope dilution on an Agilent 7500 ICP-

MS (e.g. Farley, 2002).  An alpha-ejection corrected age for each grain was calculated using the 

Ft parameter based on the measured grain dimensions (after Farley et al., 1996).  Average bulk 

Ap-He and Zr-He ages are presented in TABLE 1. 

For the samples chosen for 4He/3He analysis (11SS1 and 11SS6), additional apatite 

grains were proton irradiated to make a uniform distribution of 3He (Shuster and Farley, 2004; 

2005).  Individual grains were picked using the same criteria as for bulk age determination, 

with particular attention paid to the absence of birefringent inclusions and complete euhedral 

morphology.  Each individual grain was step-wise degassed using a halogen lamp as heat 

source (Farley et al., 1999). 4He and 3He were measured at each degassing step using a GV-

SFT sector field mass spectrometer at Caltech.  Ap-4He/3He data are presented in the 

Supplemental File. 

 

Anatase (U-Th)/He Methods 

One of our samples (11SS1) is an altered granitic rock hosting a mineral assemblage of 

quartz, plagioclase, calcite, chlorite, anatase, and brookite.  Crystalline anatase (TiO2) grains 

were separated from this sample using the same procedures as for apatite.  Individual grains 

roughly 100 microns wide and 200 microns long were picked with a stereomicroscope and 

chosen based on size, morphology, and lack of visible inclusions.  Euhedral grains had a 

tetragonal dipyramidal morphology and an orange color. Individual grains were degassed using 

the same procedure as for bulk apatite analyses.  Due to our inability to recover individual 

grains after degassing, separate grains were used for measuring U and Th content, which was 

accomplished using the same dissolution and measurement procedure as for zircon.  A raw age 

was calculated using the average helium, uranium, and thorium concentrations determined 
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from several aliquots. An alpha correction was then applied using Ft calculated using a surface 

area to volume ratio determined from the grains used for the analyses, a density of ~ 3.9 

g/cm3, and our calculated Th/U ratio (after Farley et al., 1996; Ketcham et al., 2011).  The He 

diffusion kinetics of anatase are presently unknown, so we treat this as a minimum anatase 

formation age. U, Th, and He data are presented in TABLE 2. 

 

(U-Th)/He and Ap-4He/3He data 

A single grain (U-Th)/He age is generally compatible with a diversity of thermal 

histories.  A more restricted range of thermal histories can be identified by combining multiple 

bulk ages from different minerals like apatite and zircon (e.g. Reiners et al., 2000), multiple 

grains with variations in effective U concentration (eU ) (e.g. Flowers et al., 2009), or when a 

4He rim-to-core concentration profile is measured via a 4He/3He study (Shuster and Farley, 

2005).  Variations in radiation damage result in closure temperatures that vary with eU, and 

different time-temperature (t-T) paths result in significantly different 4He concentration 

profiles based on the time-integrated balance between alpha-particle in-growth and loss by 

both ejection and diffusion.  The Ap-4He/3He method allows us to mine the 4He rim-to-core 

concentration profile (Shuster and Farley, 2004, 2005), and subsequent thermal modeling 

allows us to constrain time-temperature paths.   

 

QTQt Modeling 

To extract quantitative information from the helium data, we utilize the 

thermochronologic modeling software, QTQt to obtain time-temperature (t-T) histories of 

individual samples (Gallagher, 2012).  QTQt employs a trans-dimensional Bayesian Monte 

Carlo Markov Chain (MCMC) statistical approach to find the best t-T paths for a sample by 
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employing a large number of iterative perturbations (we use at least 106 iterations).  After each 

perturbation, the proposed path is compared to the initial path and the better-fitting of the two 

is chosen according to an acceptance criterion (Gallagher, 2012).  The model converges on the 

best-fit t-T path through this process during what is referred to as the “burn in” period 

(Gallagher, 2012).  For each of our model runs the “burn in” period consists of at least 5 x 105 

iterations (after Vermeesch and Tian, 2014).  After the model has converged on the best fit t-T 

path, we run a set of 5 x 105 “post-burn in” model iterations which are used to document the 

distribution of best fit t-T histories.  The result of this “post-burn in” period is represented in 

the model outputs.  QTQt is designed to simultaneously apply this iterative process to find a 

most likely t-T path with multiple different data inputs (Ap-He, Zr-He, Ap-4He/3He).  For 

each sample we input all of the available helium data into QTQt. For a detailed review of the 

QTQt and its relation to other thermal modelling software packages see Vermeesch and Tian 

(2014). 

We also impose a minimal set of manually-controlled thermal history constraints.  

Where available, a published zircon U-Pb age from nearby was used as a high temperature 

constraint (650º C +/- 100º C), elsewhere we used 115 Ma +/- 10 Ma, which encompasses the 

observed range of U-Pb zircon ages.  A reasonable bounding box of temperature and time is 

assigned for the model to explore (150º C +/- 135º C, 120 Ma to present).  A rough estimate 

of modern mean annual surface temperature (20º C +/- 5º C) is utilized as a present day 

temperature constraint.  For samples 11SS1 and 11SS6 we also input a low temperature 

constraint corresponding to the age of the overlying rock units (40 Ma +/- 5 Ma; 20º C +/- 5º 

C).  The details of the inputs for each model run are included in TABLE 3.   

 

DATA PRESENTATION 
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We will next describe the new data presented in this paper as well as some published 

data relevant to our study.  These datasets include: 1) single grain Ap-He ages, some of which 

are accompanied by Ap-4He/3He data; 2) Zr-He ages; 3) a bulk anatase (U-Th)/He age and 

calcite clumped isotope data from 11SS1; 4) stratigraphic constraints from overlying deposits 

at the northern and southern termini of the pediment; 5) chrysoprase and ferruginous silcrete 

occurrences along the SSNP; and 6) observations of bedrock pediment morphology.  For 

clarity, we present these data based on their geographic location, starting at the northern end 

of the SSNP (TABLE 1). 

 

Sample 11SS6, near Friant 

At the northern end of the study area, the southernmost outcrops of the Eocene Ione 

formation overlie Sierran basement at an elevation of 165 meters.  At this location, the SSNP 

is preserved as the sub-Ione nonconformity.  Where this nonconformity outcrops, bedrock is 

deeply weathered and nearly unrecognizable as a plutonic rock (FIGURE 2D).  Basement at 

this location is the 114 Ma tonalite of Blue Canyon (Busacca et al., 1982; 1983).  The mean 

zircon (U-Th)/He age from this sample is 97 Ma +/- 5 Ma (1 s.e., n = 4), and the mean apatite 

(U-Th)/He age is 92 Ma +/- 4 Ma (1 s.e., n = 7) with eU ranging from 21 ppm to 66 ppm.  It 

is worth noting that to our knowledge, sample 11SS6 is the oldest Ap-He age from the Sierra 

Nevada batholith.   Ap-4He/3He data from this sample is presented later in the paper together 

with thermal modelling results. 

 

Sample 11SS1, near Fountain Springs 

Our southernmost sample is from near Fountain Springs at an elevation of 290 meters.  

Bedrock outcrops at 11SS1 include meter to ten-meter scale corestones eroding out of the 
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landscape, a distinct element of deeply weathered granitic rocks (FIGURE 2C; e.g. Shaw, 

1997).  As describe above, 11SS1 is an altered felsic plutonic rock (FIGURE 3).  The nearest 

published U-Pb zircon age is from a 102 Ma quartz diorite a few kilometers to the east (Lackey 

et al, 2005; Saleeby and Sharp, 1980).  A few kilometers south of this location along the White 

River, a tuff deposited on deeply weathered basement is dated at 40.1 Ma +/- 0.3 Ma (LA 

ICP-MS zircon U-Pb from Saleeby et al., in review). The mean Zr-He age from 11SS1 is 85 

Ma +/- 5 Ma (1 s.e., n =4), and the mean Ap-He age is 66 Ma +/- 4 Ma (1 s.e., n = 7), with 

eU ranging from 13 ppm to 38 ppm.  Ap-4He/3He data from this sample are presented later in 

the paper together with thermal modelling results.  The bulk anatase (U-Th)/He age from this 

sample is 97 +/- 13 Ma.  The composition of carbonate in the sample is: δ13Cvpdb = -10.70 ± 

0.01 ‰, δ18Ovsmow = 14.22 ± 0.01 ‰ (using the carbonate-acid fractionation from Swart et al. 

(1991)), and ∆47 = 0.509 ± 0.012 ‰ (all 1σ standard errors). Using our in-house high-

temperature calibration, this corresponds to a crystallization temperature of 103 ± 8 °C 

(Bonifacie et al., 2011).  We infer from the texture of sample (FIGURE 3) that the calcite, 

anatase, and brookite likely grew together during the same period of alteration.  Assuming that 

this is true, we can use calcite crystallization temperature as a rough estimate for the 

temperature of anatase formation.  In conjunction with the Zr-He age from this sample 85 Ma 

+/- 5 Ma, the anatase (U-Th)/He age of 97 +/- 13 Ma suggests fast cooling of 11SS1 circa 90 

– 85 Ma. 

 

The horizontal transect 

Bulk (U-Th)/He analyses were performed on eight additional samples from along the 

SSNP between Fountain Springs in the south and Friant in the north (FIGURE 4).  The 

samples were all taken from plutonic outcrops near the western edge of the southern Sierra 
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foothills.  Some samples are from isolated bedrock outcrops interspersed amongst shallow 

soils of the San Joaquin Valley, and others are slightly farther east in the Sierran 

foothills.  Widespread agricultural land use in this area commonly masks the foothills-to-basin 

transition, but in several locations, sampling was made possible by isolated bedrock outcrops 

scattered amongst orchards.  Published U-Pb zircon ages along this transect are generally 115 

Ma +/- 10 Ma, and range from 102 Ma to 125 Ma (Saleeby and Sharp, 1980; Chen and Moore, 

1982; Clemens-Knott and Saleeby, 1999; Lackey et al., 2005).  

Average bulk Ap-He ages along this transect range from 69 Ma to 80 Ma (FIGURE 4), 

with an overall average of 74 Ma +/- 4 Ma (1 s.d.).  Average eU amongst these samples is 

unusually high: 116 ppm.  A few samples contained grains with highly divergent eU 

concentrations (Supplemental File).  The best such example is sample 11SS9, which includes 

four individual ages averaging 75 Ma +/- 2 Ma (1 s. e.), with a range in eU from 42 ppm to 

447 ppm (FIGURE 5).  According to the RDAAM model (Flowers et al., 2009) the large 

difference in eU amongst these grains means that they must have substantially different closure 

temperatures owing to variations in accumulated radiation damage.  On its face the agreement 

amongst the ages of 11SS9 apatite grains (all are within ~ 10 % of the mean; Supplemental 

File) suggests that cooling through the HePRZ occurred quickly.  However, even though the 

range is small, 11SS9 is in fact the only sample in our suite that shows a compelling age versus 

eU correlation (FIGURE 5).  We incorporate the RDAAM model into our thermal modelling 

to extract detailed t-T information from the large variation in eU of individual grains from this 

sample.  The results of this modeling are presented in a later section of this paper. All 

individual grain zircon and apatite (U-Th)/He data are tabulated in the Supplemental File. 

Mean Zr-He ages from these samples fall into two distinct populations (FIGURE 

4).  The first (n=4) has an average age of 91 Ma +/- 8 Ma (1 s. d.) and is significantly younger 



 

 

76 

than the local pluton ages (TABLE 1).  The second group (n=3) has average Zr-He age of 

around 123 Ma.  Two of these samples come from Early Cretaceous plutons with 

emplacement age around 120 Ma, and the third is not near a published Zr U/Pb age. We 

assume that these Early Cretaceous helium ages were set during conductive cooling of their 

host plutons (circa 120 Ma), and remained cooler than the Zr-He PRZ during the later 

plutonism (circa 115-105 Ma). 

 

Mineralogical and Paleosol Occurrences 

In the southern portion of the SSNP where bedrock lithology locally includes Kaweah 

serpentinite mélange, there are several mineralogical and paleosol occurrences that are 

distinctive of nickel laterites formed by chemical weathering of serpentinites (e.g. Vasconcelos 

and Singh, 1996; Eggleton et al., 2011).  At Chrysoprase Hill, Venice Hills, and Stokes 

Mountain (FIGURE 6), nickel-rich chalcedony (the gemstone chrysoprase; FIGURE 7) occurs 

in conjunction with deeply weathered and silicified bedrock that outcrops as an erosion-

resistant ferruginous silcrete (FIGURE 7).  At several of these locations there are also 

occurrences of hydrous Ni-Mg rich silicates (garnierite), a nickel ore common to lateritically 

weathered ultramafic rocks (e.g. Thorne et al., 2012).  Prior to this study, mentions of these 

occurrences in the literature had been limited to bulletins and reports of the mineral resources 

of California (e.g. Goodwin, 1958; Pemberton, 1983), and popular mention of chrysoprase as 

an economic gemstone mined along the SSNP for several decades in the late 19th and early 20th 

centuries (NYTimes, 1902). 

 

Bedrock pediment morphology 
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The primary geomorphic observation we report along the study area is bedrock 

pediment morphology.  In contrast to other types of pediments that form due to differences in 

erodibility caused by lithologic or structural boundaries, bedrock pediments form within 

monolithologic areas (Oberlander, 1974; Twidale, 1981).  This type of morphology remains 

unexplained by theory, but modelling efforts to understand bedrock pediment formation agree 

that an extended period (roughly 106- 107 years) of erosion and tectonic quiescence is required 

(e.g. Pelletier, 2010, Strudley et al, 2006).  

The principal components of a bedrock pediment are a low relief peneplain, hillslopes 

rising from the peneplain, and most critically, the piedmont angle where slope changes rapidly 

from peneplain to hillslope without any structural or lithologic boundary (Oberlander, 1974; 

Twidale, 1981; Pelletier, 2010, Strudley et al, 2006).  Local exposures along the length of the 

SSNP exhibit this morphology where Sierran bedrock outcrops as Early Cretaceous plutonic 

rocks (FIGURE 6; Supplemental File). 

A good example of this is immediately upstream of Terminus Dam along the Kaweah 

River.  At an elevation of about 210 meters near the Horse Creek Campground (FIGURE 8), 

the current channel of the Kaweah River opens onto a bedrock peneplain averaging 500 to 

1000 meters wide.  Seasonally and in wet years this area is flooded by Lake Kaweah, but when 

the water level in Lake Kaweah is low (e.g. during drought years) the low relief bedrock 

peneplain is exposed.  Around the edge of the bedrock peneplain a transition to hillslope 

occurs without any lithologic or structural boundary and rises over 500 meters to local peaks. 

A series of cross sections compiled from shallow water well depth-to-basement data 

along the SSNP extend our mapping of this bedrock pediment into the subsurface west of the 

foothills-to-basin transition.  These cross sections generally support our field based 

observations of the SSNP, documenting areas where the floors of small valleys along the 
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foothills-to-basin transition are low relief bedrock landscapes covered by only tens of meters 

of regolith (e.g. near the town of Orange Cove, California, and in the valley of Cottonwood 

Creek, cross sections B-B’ and C-C’, respectively; Supplemental File).  

In the following section, we will present the thermal modeling results of our 

thermochronometric data from along the SSNP, and then discuss the links between the 

thermochronologic data and the other geologic expressions of the bedrock pediment. 

 

RESULTS OF THERMAL MODELING 

For samples 11SS1 and 11SS6, we input the mean Zr-He age as well as the Ap-

4He/3He data linked to the mean Ap-He age into the QTQt model (TABLE 3).  The thermal 

modeling results from sample 11SS6 show rapid cooling circa 95-85 Ma to < 55° C followed 

by slow cooling to surface conditions by 40 Ma (FIGURE 9).  This period of slow cooling 

occurred at a rate of roughly 30 m/m.y. (55° C to 20° C from 85-40 Ma with an assumed 

geothermal gradient of 25° C/km (Brady et al., 2006)).  The model for 11SS1 is consistent with 

rapid cooling from 95-85 Ma to about 100° C and slow cooling from ~ 100° C to ~ 20° C 

from 85 Ma to 40 Ma, implying an erosion rate of roughly 70 m/m.y. (FIGURE 9).  Both of 

these model results are consistent with zero additional cooling after exhumation to the surface 

circa 40 Ma. 

We ran an individual model for each of the other eight samples along the SSNP, none 

of which have Ap-4He/3He data.  Individual single grain Ap-He ages and the mean Zr-He age 

for each sample was used as the inputs to these models (TABLE 3).  Results from these 

individual models and their fits to Ap-He data are included in the Supplemental File, and a 

compilation of the acceptable t-T paths for each of these model runs is shown in FIGURE 10.  

The model results are consistent with the results of 11SS1 and 11SS6, with samples cooled 
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rapidly from hotter than the Zr-He closure temperature (~190° C) to between 100° C (11SS1) 

and 55 °C (11SS6) from 95-85 Ma.  Slow cooling to the surface at rates comparable with the 

rates determined from 11SS1 and 11SS6 (30-70 meters per million years) occurred from 85 Ma 

to 40 Ma.   

 

DISCUSSION 

Bedrock pediment geomorphology, mineralogical and paleosols occurrences 

Geologic mapping of plutons and ophiolitic wallrocks exposed along the SSNP 

(Saleeby and Sharp, 1980, Clemens-Knott and Saleeby, 1999; Saleeby, 2011, Saleeby et al., 

2013a), in conjunction with our geomorphic mapping of the pediment surface show that the 

area lacks transverse faults, indicating structural continuity along this swath of Sierran 

basement.  In this light, we conclude that the bedrock exposed as the sub-Eocene 

nonconformities near Fountain Springs and Friant is two ends of a single strip of basement 

that comprises the SSNP.  We interpret the bedrock pediment geomorphology and the 

distinctive lateritically-weathered paleosols and mineralogical occurrences along the SSNP to 

be remnant elements of a pre-40 Ma (sub-Ione and Walker) landscape. 

 

North and South Ends of the Horizontal Transect 

Sample 11SS6 

Thermochronometric and stratigraphic data tightly constrain the thermal history of the 

bedrock exposed at the north end of the horizontal transect near Friant (11SS6).  Initial 

emplacement of the tonalite of Blue Canyon occurred circa 114 Ma (Chen and Moore, 1982).  

Thermal modelling results are consistent with rapid cooling through Zr-He and Ap-He partial 

retention zones circa 95-85 Ma.  From 85 Ma to 40 Ma slow cooling to the surface occurred at 
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a rate of roughly 30 m/m.y..  Around 40 Ma this bedrock was deeply weathered and at earth 

surface conditions when nonconformable deposition of the Ione formation began.  Since 40 

Ma, zero net basement exhumation has occurred at this location.  The modeling results 

(FIGURE 9) and the lack of age versus eU correlation (Supplemental File) within Ap-He data 

at this location are strong evidence that the overlying Tertiary section at this location was never 

thick enough to disturb Ap-He ages in the underlying bedrock.  Thermal modelling shown in 

FIGURE 9 indicates that samples could not have been heated above 40° – 50° C after 40 Ma, 

which corresponds to a maximum possible thickness of roughly one kilometer of cover. 

 

Sample 11SS1 

Data from the southern end of the horizontal transect near Fountain Springs similarly 

constrain the thermal history of the bedrock at this location.  Pluton emplacement occurred at 

around 102 Ma, followed by rapid cooling to about 100° C circa 85 Ma, after which slow 

cooling to surface conditions occurred at a rate of roughly 70 m/m.y. until 40.1 Ma +/- 0.3 

Ma (Saleeby et al., in review), when the overlying tuff was deposited. 

 

Sample 11SS6 versus Sample 11SS1 

 The bulk ages from samples at the northern and southern ends of the SSNP are quite 

different (average Ap-He is 92 Ma at 11SS6 and 66 Ma at 11SS1).  Despite this difference, the 

QTQt thermal modelling allows us to interpret them both in the context of the same general t-

T history. In conjunction with Ap-4He/3He data for each sample, the models reveal that their 

thermal histories are both consistent with the same three phases: rapid cooling 95 – 85 Ma, 

slow cooling 85 – 40 Ma, and no cooling 40 Ma – 0 Ma.  The thermal modelling indicates that 

the significant divergence in their ages is due to the different rates of slow cooling from 85 Ma 
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– 40 Ma (~ 70 m/m.y. in the south and ~ 30 m/m.y. in the north), rather than a different 

timing of rapid cooling.  These different slow erosion rates resulted in about two additional 

kilometers of erosion at 11SS1 from 85 – 40 Ma compared to 11SS6.  Furthermore, these 

erosion rates bracket the estimates from the axial part of the southern Sierra during the same 

period of time, 40 – 60 m/m.y. (House et al., 1997, 2001; Clark et al., 2005; Maheo et al., 2009; 

Sousa et al., 2016). 

 

Thermal History of the Southern Sierra Nevada Pediment 

All of the thermal modelling results are consistent with the same three-phase style of 

cooling history.  Our primary conclusion about this history is that the SSNP was rapidly cooled 

to between 100° C and 55° C around 95 – 85 Ma, and then slowly cooled and exhumed to 

near the surface by 40 Ma.  On average, if the entire length of the pediment were at the surface 

around 40 Ma, then the cooling rate from 85 Ma to 40 Ma would have been roughly 30-70 

meters per million years (35° to 80° of cooling over 45 million years with a geothermal 

gradient of 25º C/km). 

In our interpretation, the same batholithic swath that was exposed for an extended 

period of erosion and chemical weathering prior to 40 Ma is again exposed as the modern 

bedrock landscape, i.e., it is a Paleogene fossil landscape.  This raises the question of how this 

landscape could have survived this time interval without significant erosion occurring? 

The climatic conditions conducive to the chemical weathering required to form the 

types of nickel laterite occurrences along the SSNP are roughly > 1000 mm/year annual 

precipitation with cold month mean temperature ranging from 15 - 27°C (Thorne et al., 2012).  

Modern conditions along our study area are not warm or wet enough to meet these criteria.  

However, warmer and wetter global conditions in the Eocene (Pearson et al., 2007) have been 
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invoked to explain the formation of middle Eocene paleo-Oxisols within the Ione formation 

in central California (Yapp, 2004) and developed on bedrock beneath middle Eocene section 

in Baja California, Mexico (Abbot, 1976).  In drier and cooler climates, these paleosols can be 

resistant to weathering, and could potentially last for millions of years at earth’s surface (e.g. 

Bierman and Turner, 1995).  However, where plutonic bedrock outcrops we expect that 

erosion would be too fast to preserve the landscape for ~ 107 years.  In other words, if this 

landscape had been exposed consistently since 40 Ma we would expect the Ap-He ages to be 

younger due to continued cooling. 

Because of the old Ap-He ages and the presence of 500 m scale relief within the 

modern landscape, we prefer a different model.  Integrating the results of Saleeby and Foster 

(2004), Stock et al. (2004, 2005), Saleeby et al. (2012, 2013a), and Cecil et al. (2014), we 

hypothesize that circa 40 Ma, Cenozoic sediments covered the SSNP and preserved the circa 

40 Ma landscape.  A sedimentary thickness on the order of several hundred meters could have 

complete buried the modern relief without resetting Ap-He ages.  This is the same order of 

magnitude of the Cenozoic section in the foothills of the northern Sierra (Bateman and 

Wahrhaftig, 1966).   

The overlying sediments were likely removed during Late Pliocene-Pleistocene erosion 

as predicted by Saleeby at al. (2012; 2013a) and documented by Stock et al. (2004, 2005).  This 

erosion may have been due to a combination of factors including climate change related to ice 

age onset (e.g. Bintanja and van der Wal, 2008) and the surficial effects resulting from dynamic 

mantle lithospheric processes of foundering dense sub-batholithic eclogitic material recognized 

today as the Isabella anomaly (Zandt et al., 2004).  This erosion revealed the more resistant 

bedrock pediment and its ferruginous silcrete carapace preserved as the fossil landscape below, 

re-exposing it as the modern landscape. 
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Potential Cause and Mechanism of Early Rapid Exhumation 

 The southernmost Sierra Nevada – Mojave segment of the Cretaceous arc was 

tectonically disrupted circa 95-85 Ma, resulting in gravitational collapse and rapid deep 

batholithic exhumation to depths equivalent to ~10 kilobars (e.g. Chapman et al., 2012; 

Saleeby, 2003; Saleeby et al., 2007).  Liu et al. (2010) argue that this event was dynamically 

linked to the subduction of a large oceanic plateau which impinged on the Cretaceous 

subduction zone circa 90 Ma.  Based on the mating of basement core petrography and 

geochronology, and deep seismic data for the Great Valley subsurface immediately west of the 

SSNP, Saleeby et al. (2010) hypothesized that circa 90 Ma rapid exhumation along the west 

margin of the Sierra Nevada batholith was driven by major west-dipping low-angle normal 

faults.  The rapid exhumation required by our thermal modelling from 95 – 85 Ma is in clear 

agreement with the timing of the hypothesis of Saleeby et al. (2010).  Together these multiple 

lines of evidence suggest that the profound tectonic event that disrupted the Cretaceous arc to 

the south was not spatially limited to the southernmost Sierra – Mojave region.  We 

hypothesize that rapid exhumation of the SSNP from 95 – 85 Ma was dynamically linked to 

this tectonic disruption, and is in fact a more northern, lower magnitude component of this 

same event. 

 

Implications of Calcite Stable Isotope Data from sample 11SS1 

The occurrence of anatase and calcite in sample 11SS1 from the southernmost 

exposures of the SSNP surface offer another datum for the time-temperature history of the 

surface. δ18O of carbonate is dependent on growth temperature and the δ18O of the water 

from which it grew.  Assuming that the ∆47 value of this sample was not modified by burial 
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heating or rock-buffered recrystallization, this calcite was in equilibrium with a fluid with a 

δ18Ovsmow of -0.5 to -2.4 ‰ (Kim and O'Neil, 1997). Such a composition is intermediate 

between low-latitude meteoric water (~-10 to -5 ‰; Sheppard, 1986) and plutonic rocks (5-12 

‰; Taylor Jr, 1968), and could be produced by isotopic exchange of meteoric water with 

bedrock. The temperature of calcite formation and the isotopic composition of the 

carbonating fluid strongly suggest that the sample was subject to substantial alteration through 

interaction with a hot fluid of meteoric origin. This is consistent with the mineralogy and fabric 

of the sample, which is highly altered, hosting a mineral assemblage of quartz, plagioclase, 

chlorite, and calcite intergrown with anatase, and brookite (FIGURE 3). 

We interpret this hydrothermal alteration to be related to the early rapid exhumation of 

the sampled area circa 95-85 Ma. Our field observations and those of Saleeby and Sharp (1980) 

indicate structural and petrologic continuity between the 11SS1 sample site and the sites of the 

102 Ma U-Pb zircon ages for the Fountain Springs tonalite (Lackey et al, 2005; Saleeby and 

Sharp, 1980). If we then bracket this igneous crystallization age with the 97  13 Ma anatase U-

Th/He age and the 85  5 Ma Zr-He age we find that based on thermal modeling of the 

conductive cooling of the Sierra Nevada batholith (Barton and Hanson, 1989), the hosting 

tonalite pluton (at 3-4 kb conditions) retained enough primary heat to render the thermal 

conditions for anatase + calcite formation and Zr-He closure during 95 – 85 Ma rapid 

exhumation. As discussed above, Saleeby et al. (2010) hypothesized that circa 90 Ma rapid 

exhumation along the west margin of the Sierra Nevada batholith was driven by major west-

dipping low-angle normal faults. We further posit that such an extensional regime would foster 

hydrothermal alteration of the actively exhuming basement surface as large normal faults 

penetrated plutons along the west margin of the batholith that were still warm from primary 

heat, and such faults climbed further upwards in the crust to tap meteoric water sources. 
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We will now move from presenting our new data from the SSNP to discuss the 

relationship between our dataset and published data and models for southern Sierran 

evolution.   

 

Regional Implications for Southern Sierra Nevada Evolution 

With the exception of the area south of the Kern River (Maheo et al., 2009), prior to 

this study no low temperature thermochronometric data was published from the southern 

Sierra foothills.  The westernmost published data are available for the region between 36º N 

and 37º N are a few Ap-He ages along the main trunk and north fork of the Kings River, 

about 30 kilometers east of our study area (Sousa et al., 2016), and a horizontal transect (T1) 

between the Kaweah and San Joaquin drainages running ~45 kilometers east of our study area 

(House et al. 1998). 

The southern Sierra Nevada is significantly different from the northern Sierra, both 

geologically and physiographically.  With the exception of the Eocene rocks near Friant and 

Fountain Springs, the southern Sierra almost completely lacks the Paleogene deposits that are 

common in the northern Sierra (e.g. Busby et al., 2016). The southern Sierra also lacks the 

distinctive western ramp morphology that characterizes the north.  Instead, the southern Sierra 

rapidly attains elevations of roughly 2000 meters across a series of topographic steps (e.g. 

Hake, 1928). Despite these differences between the northern and southern Sierra, and the 

complete lack of thermochronometric data from the western foothills, previous workers 

leaned on the assumption that throughout the Cenozoic, the southern Sierra has behaved 

similarly to the northern Sierra, as a rigid west-down tilt block with a hinge line lying close to 

the western foothills-San Joaquin Valley boundary (e.g. Wakabayashi and Sawyer, 2001, House 

et al., 1998).  Sousa et al. (2016) showed that the rigid-block assumption is incorrect in the 
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vicinity of Kings Canyon, where a kilometer-scale west-down normal fault was active in 

Eocene time, and suggest that the WSFS was likely active in 45 – 40 Ma along the entire span 

of the southern Sierra from the San Joaquin River to the Kern River.  This fault activity was 

part of a tectonic regime marked by uplift and extension within the coupled Sierra Nevada-

Great Valley region, including uplift of the axial southern Sierra and shallowing of the 

proximal Great Valley forearc (Bartow, 1992; Sousa et al., 2016). 

What was happening in the foothills during this time?  We hypothesize that 

contemporaneous with this regional tectonic event circa 45-40 Ma, some uplift and 

exhumation should have occurred in the foothills.  Because our helium ages are all older than 

the time of this hypothesized exhumation, we conclude that this exhumation was not of 

sufficient magnitude to noticably disturb the Ap-He and Ap-4He/3He data along the bedrock 

pediment.  Based on the QTQt modeling for samples 11SS1 and 11SS6, we estimate that there 

could not have been more than roughly 500 meters of exhumation circa 45-40 Ma.   

The overlying Eocene rocks at the northern and southern termini of our study area 

closely follow the timing of this event (deposition beginning circa 40 Ma).  Combining the 

thermal modelling and the evidence from the overlying Eocene deposits, we conclude that a 

few hundred meters of exhumation could have occurred in the foothills circa 45-40 Ma in 

conjunction with shallowing of the proximal Great Valley forearc to the west and axial Sierran 

fault-controlled uplift to the east (Bartow, 1992; Sousa et al., 2016). 

 

Summary of the Chronology of Southern Sierra Nevada Landscape Evolution and 

Tectonic Forcing 

Integrating our new data with Eocene activity on the WSFS, as well as other previously 

published data, we piece together a chronology of tectonic and landscape evolution for the 
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southern Sierra Nevada that is outlined in FIGURE 11.  The first phase of this chronology is 

the emplacement of the southern Sierra Nevada batholith circa 115 +/- 10 Ma in our study 

area, and ending at 85 Ma in the eastern part of the range.  During the final stages of 

magmatism (95-85 Ma), the bedrock swath along our study area was rapidly exhumed (shown 

in red tones on FIGURE 11) to ~3-4 kb levels and ~55° C (in the north) and 100° C (in the 

south).  This exhumation is roughly contemporaneous with, and likely genetically related to, 

the profound tectonic exhumation and gravitational collapse of the southernmost Sierra – 

Mojave region to the south (Chapman et al., 2012).  After the cessation of magmatism and 

early rapid exhumation, the entire SSNP slowly cooled at rates roughly the same as the axial 

part of the range from 85-40 Ma to near surface conditions (shown in brown tones on 

FIGURE 11).  Combined with igneous barometric emplacement pressures of 3-4 kb (Ague 

and Brimhall, 1988; Nadin et al., 2016), the thermochronologic data indicate that the early 

rapid exhumation (95-85 Ma) accounted for about 8-9 kilometers of exhumation, while the 

slow erosion from 85-40 Ma accounted for the final 2-3 km of exhumation.  Previously 

published thermochronometric and igneous barometric data (House et al., 1997, 1998, 2001; 

Clark et al., 2005; Ague and Brimhall, 1988) from higher elevations along the axial southern 

Sierra Nevada further suggest that the early phase of exhumation also included most of the rest 

of the southern Sierra Nevada batholith (roughly 3-4 kilometers of early exhumation in the 

axial part of the range). 

In the axial Sierra, the extended period of slow erosion (85-40 Ma) resulted in the 

initial form of the modern Sierra, including the low relief interfluvial highlands (Clark et al., 

2005), and the long wavelength (> 10 km) large amplitude (> 1 km) topographic relief that is 

visible on DEMs (e.g. FIGURE 6; House et al., 1998, 2001).  In the foothills, this resulted in 
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formation of bedrock pediment morphology as well as the distinctive nickel laterite 

occurrences discussed earlier in this paper.   

Around 45-40 Ma, activity on the WSFS resulted in extension and uplift of the axial 

southern Sierras and kilometer-scale incision in the major southern Sierran trunk river canyons 

(shown in green tones on FIGURE 11; Sousa et al (2016)).  To the west of the WSFS, in the 

foothills, a small amount of exhumation may have occurred (roughly a few hundred meters), in 

conjunction with shallowing of the proximal Great Valley forearc (Bartow, 1992; Sousa et al., 

2016).  From 40 Ma through the late Neogene, slow erosion continued in the axial southern 

Sierras, and a shallow cover of Cenozoic deposits likely armored the SSNP.  Post-10 Ma, as a 

result of convective removal of dense sub-batholithic eclogitic material in the mantle 

lithosphere, epeirogenic tectonics disrupted the landscape (shown in yellow tones on FIGURE 

11).  The shallow cover armoring the SSNP was eroded, exposing the ancient bedrock 

landscape, and uplift in the axial southern Sierra resulted in the incision of the inner slot 

canyons common to the major Sierran trunk rivers (Stock et al., 2004).  Active upper mantle 

dynamic processes are resulting in Pleistocene to Holocene uplift of the Kern Arch and 

coupled subsidence of the Tulare basin (FIGURE 1) as the most recent phases of epeirogenic 

deformation (Zandt et al., 2004; Saleeby et al, 2012, 2013a; Saleeby and Foster, 2004; Cecil et 

al., 2014). 

 

CONCLUSIONS 

Multiple types of data including Ap-He, Ap-4He/3He, Zr-He, stratigraphic constraints, 

geomorphic observations, and distinct mineralogical and paleosol occurrences indicate that the 

bedrock landscape exposed along the southern Sierra Nevada pediment is a Late Cretaceous to 

early Cenozoic landscape.  This landscape evolved during a prolonged period of erosional 
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modification and chemical weathering from circa 85 Ma to 40 Ma following a phase of rapid, 

probably tectonic exhumation along the western Sierra Nevada batholith between 95-85 Ma. 

Little to no net erosion has occurred along the length of the pediment over post-40 Ma time. 

In the context of previously published constraints, we have pieced together a 

chronology of tectonic and landscape evolution composed of the following phases (FIGURE 

11): 

1)  Cretaceous batholithic emplacement that began in the current Great Valley subsurface at ca. 

140 Ma, and which migrated eastwards ending at circa 85 Ma along the eastern Sierra Nevada 

(Saleeby and Sharp. 1980; Chen and Moore, 1982; Saleeby et al., 2010). At ca. 115 – 100 Ma 

the principal locus of magmatism corresponded to the area that was to subsequently be 

exhumed to the SSNP. 

2)  Early batholithic rapid exhumation occurred circa 95 – 85 Ma, on the order of 8-9 

kilometers along the western foothills, and 3-4 kilometers in the axial part of the range.  This 

was likely dynamically linked to the contemporaneous profound tectonic exhumation and 

gravitational collapse of the southernmost Sierra – Mojave region, immediately south of our 

study area. 

3)  From 85 – 40 Ma, slow erosion and chemical weathering in the foothills, and initial 

formation of the axial Sierra low relief highland plateau and major trunk river canyons (e.g. 

House et al., 1998, 2001; Clark et al., 2005). 

4) Circa 45 – 40 Ma, extensional tectonics and uplift of the southern Sierra Nevada and Great 

Valley region resulting in kilometer scale incision of major Sierran river canyons and high angle 

normal faulting on the WSFS (Sousa et al., 2016).  At this time no more than a few hundred 

meters of exhumation occurred along the foothills. 
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5) Post-40 Ma, likely shallow depositional cover of the SSNP and slow erosion of the axial 

southern Sierra Nevada batholith. 

6) Post-10 Ma, surficial deformation due to epeirogenic transients caused by mantle 

lithospheric dynamics resulted in re-exposure of the SSNP, uplift of the modern southern 

Sierra peaks, and subsidence of the Tulare basin. 
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FIGURE CAPTIONS 

Figure 1.  Overview map of southern Sierra Nevada region.  Previously published apatite (U-

Th)/He data (Ap-He) from House et al., 1997, 1998, 2001; Clark et al., 2005; Maheo et al., 

2009) are plotted as white circles.  Scarps of the western Sierra fault system (WSFS) are 

mapped as black lines.    Extent of the Superjacent Series is mapped in light gray with dashed 

outlines, after Batman and Wahrhaftig (1966). The locations of new Ap-He data presented in 

this paper are plotted as black circles.  Friant, California is located with a white F at 37° N, 

and is adjacent to sample 11SS6 at the north end of our study area.  Fountain Springs, 

California is located with a white FS, and is adjacent to sample 11SS1 at the south end of our 

study area.  New mapping of bedrock peneplain exposures is shown in dark gray along the 

foothills-to-basin transition.  Locations of cross section A-A’ through E-E’ are shown (cross 

sections are included in the Supplemental File).  For geographic reference, the San Joaquin 

Valley, Kern Arch, Tulare Basin (TB), and the San Joaquin, Kings, and Kern Rivers are 

located.  An inset map of a California DEM outlining the figure extent is shown at upper 

right.  Base imagery is a hillshade DEM derived from 10 m USGS National Elevation 

Dataset. 

 

Figure 2. A.  Field photo of 40.1 +/- 0.3 Ma tuff from the Walker Formation along the 

White River, a few kilometers SE of 11SS1.  Outcrop is about 2 meters in total height.  B. 

Field photo of laterically-weathered unit at the base of the Ione Formation, deposited on 

deeply weathered basement near Friant, California.  Outcrop is in road cut along CA-145 

just west of Little Table Mountain.  C.  Weathered granitic outcrop from the vicinity of 

11SS1.  Corestone weathering out on the right side of the frame is about 2 meters across.  D.  
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Deeply weathered basement at the nonconformity beneath the Ione formation at the same 

outcrop as B.  Scale shown is in millimeters.   

 

Figure 3.  A and B.  Thin section photographs of sample 11SS1 which is an altered felsic 

granitic rock.  Mineral assemblage is quartz, plagioclase (plag), calcite (cc), chlorite (chl), 

anatase (an), and brookite (brk).  Photos were taken with crossed polarizers and ambient 

light flooding the field of view to highlight the orange anatase.  Tetragonal cross section of 

anatase is visible in central portion of B, where anatase (blocky) and brookite (blady) are in a 

calcite matrix.  Stable and clumped isotope data from this sample are discussed in the text.  

 

Figure 4.  New Ap-He and Zr-He data with 1σ standard errors are plotted versus distance 

along the length of the SSNP.  Distances are projected directly from oblique google earth 

aerial image of the southern Sierra Nevada with locations of samples (e.g. 1 = 11SS1, 6 = 

11SS6).  View is to the northeast.  Squares show Ap-He data, circles show Zr-He data, with 

closed circles representing samples with Zr-He age significantly less the local pluton ages, 

and open circles representing ages overlapping with local pluton ages (circa 120 Ma), as 

discussed in the text. 

 

Figure 5.  Age versus effective Uranium (eU) concentration for individual grain analyses 

from sample 11SS9.  Note the very large spread in eU concentration and positive correlation 

between age and eU.  Raw data are discussed in the text, and included in the Supplemental 

File. 

 



 

 

104 

Figure 6.  Map of our study area.  Yellow stars indicate locations of deeply weathered 

basement exposures (see text for details).  Purple shading shows new bedrock pediment 

mapping.  Black circles show new sample locations and names, and white circles show the 

locations of previously published Ap-He data (same as FIGURE 1).  Scarps of the western 

Sierra fault system are drawn as black lines.  The San Joaquin, Kings, Kaweah, and Tule 

Rivers are located for geographical reference, as well as an inset California DEM at upper 

right outlining the figure extent.  Base imagery is an overlay of a hillshade and elevation-

classified DEM from the USGS National Elevation Dataset colored according to the scheme 

shown at right. 

 

Figure 7.  A.  Photograph of thick section cut through ferruginous silcrete sample taken 

from Venice Hills, California near the Kaweah River.  B.  Photograph of Tulare County 

chrysoprase from the Caltech mineral collection.  Chrysoprase forms during deep weathering 

of ultramafic rocks (Vasconcelos and Singh, 1996) and was mined as a gemstone from 

beneath ferruginous silcrete outcrops along the SSNP in the late 19th and early 20th centuries 

(e.g. NYTimes, 1902). 

 

Figure 8.  Bedrock pediment exposure just upstream of Lake Kaweah, California.  Terminus 

Dam is visible in the background in the central region of the figure.  Bedrock pediment 

morphology is annotated showing the low relief bedrock peneplain, hillslope relief (locally > 

500 meters), and the piedmont angle where slope rapidly changes in the absence of any 

structural or lithologic boundary. 
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Figure 9.  QTQt thermal model results from 11SS6 (left) and 11SS1 (right).  The upper 

panels show the probability of passing through each pixel in time-temperature (t-t) space as 

determined by the acceptable t-T paths during the post-burn in phase of the model run.  As 

discussed in the text, light blue shaded regions at right of each upper panel indicates the 

possibility of some amount of reheating after 40 Ma (up to 40° C for 11SS6 and 50° C for 

11SS1).   The black lines plotted on the upper panels shows the average t-T path resultant 

from the model.  This average t-T path directly results in the model fit Ap-4He/3He spectra 

shown as thick lines in the middle panels.  For comparison with the model fit, black outlined 

boxes show the measured spectra.  The lower panels show the histograms of the accepted 

ages during the post-burn in model iterations (each totals 500,000 iterations).  For 

comparison, the average bulk apatite (U-Th)/He age for the sample is overlain as a vertical 

black line with 2 standard error bars plotted as dashed black lines. 

 

Figure 10.  Compilation of t-T regions acceptable to each of the individual sample model 

runs.  Gray areas Compilation of t-T regions acceptable to each of the individual sample 

model runs.  Gray areas on the plot show the +/- 2 standard deviation interval around the 

expected t-T path of the model result for each of the samples along the southern Sierra 

Nevada pediment, excluding the two ends (11SS1 and 11SS6).  For each of these two ends, 

the average expected t-T path for each is overlain (same as plotted in the upper panels of 

FIGURE 9).  Black arrows annotated below the plot show the three main phases consistent 

to all of our thermal modelling results:  rapid cooling circa 95 – 85 Ma, slow cooling 85 – 40 

Ma, and very little to no cooling 40 – 0 Ma.  See text for further discussion. 
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Figure 11. Cartoon of the summary chronology of tectonic and landscape evolution of the 

southern Sierra Nevada as described in the text.  Erosion (arrows), structures (lines), and 

relief (shaded areas) are color coded according to which phase of southern Sierra Nevada 

evolution each is related.  Color codes, as shown in explanation at lower right are red = 95 – 

85 Ma rapid cooling (this study), brown = slow cooling 85 – 40 Ma (this study), green = 

WSFS activity 45 – 40 Ma (Sousa et al., 2016), and yellow = post-10 Ma mantle lithospheric 

dynamics (Saleeby et al., 2013a; Stock et al., 2004). A.  Late Cretaceous magmatism and 

pluton emplacement migrating eastward from 140 Ma beneath the great valley to 85 Ma in 

the axial southern Sierra, with the locus of magmatism passing the SSNP circa 115-110 Ma.  

Rapid exhumation and initial generation of large relief river canyons (e.g. House et al., 1998) 

occurs between A and B.  B.  From 85 – 40 Ma, slow erosion of the axial southern Sierra and 

foothills.  Low relief highland plateaus (Clark et al., 2005) and denudation of main trunk 

river canyons. C.  Circa 45-40 Ma, kilometer-scale west-down normal fault activity on the 

western Sierra fault system (WSFS).  Fluvial incision resultant from this faulting occurs 

between C and D.  D.  Circa 40 Ma, depositional armoring of the foothills, and continued 

slow erosion of the axial southern Sierra.  E.  Post 10 Ma, erosional removal of depositional 

armoring of the SSNP and rapid incision of inner slot canyons resultant from mantle 

lithospheric dynamics and possible Plio-Pleistocene climate change related to ice age onset.  

The axial part of the range includes main trunk river canyons originally established in Late 

Cretaceous but rejuvenated in both Eocene and late Cenozoic.  Topographic steps 

separating the axial part of the range from the foothills are eroded fault scarps of the WSFS.  

The southern Sierra Nevada pediment was exhumed and eroded pre-40 Ma, armored in mid-

Cenozoic time, and re-exhumed as a fossil landscape post-10 Ma. 
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TABLE 1.  AVERAGE BULK AP-HE AND ZR-HE DATA 

Sample  Na 

eU rangeb 

(ppm) 
Avg. Raw Age 
(Ma) 

Avg. Corrc Age 

(Ma) 

4He/3H
e pluton Lat (°N)          Lon (°W) 

Elevation 
(m) 

11SS1 
ap 6 13-38 44.2 +/- 3.7 66.0 +/- 3.5 yes 102 Ma Quartz Diorite  

(Lackey et al, 2005) 
35.889 118.939 239 

zr 4 59-216 74.8 +/- 4.1 84.9 +/- 4.9   

11SS2 
ap 4 98-118 45.3 +/- 1.6 70.4 +/- 2.4 -- 

unmapped 36.144 118.958 182 
zr 4 59-119 67.9 +/- 7.3 86.6 +/- 6.5   

11SS4 
ap 4 29-43 49.5 +/- 3.0 78.0 +/- 3.9 -- 120 Ma Granodiorite  

(Lackey et al, 2005) 
36.268 118.995 198 

zr 4 50-102 67.1 +/- 2.3 83.3 +/- 1.9   

11SS5 
ap 7 201-383 46.8 +/- 3.2 69.1 +/- 4.0 -- 120 Ma bt-hbl tonalite  

Saleeby and Sharp, 1980) 
36.473 119.156 137 

zr 4 64-171 105.4 +/- 4.8 122.8 +/- 4.6   

11SS6 
ap 7 21-66 63.1 +/- 3.3 91.6 +/- 4.4 yes 114 Ma Tonalite of Blue Canyon 

(Bateman et al, 1983) 
37.011 119.772 165 

zr 4 32-116 80.3 +/- 4.8 97.3 +/- 4.8   

11SS7 
ap 4 39-202 51.4 +/- 2.5 74.7 +/- 2.1 -- 120 Ma Academy norite  

(Saleeby and Sharp, 1980) 
36.905 119.518 195 

zr 4 22-31 102.9 +/- 5.3 123.1 +/- 8.6   

11SS8 
ap 4 30-66 50.0 +/- 1.8 80.1 +/- 2.2 -- 114 Ma hbl-bt tonalie  

(Saleeby and Sharp, 1980) 
36.814 119.493 152 

zr 3 86-194 76.4 +/- 9.7 91.2 +/- 12.8   

11SS9 
ap 4 42-447 51.2 +/- 3.4 75.2 +/- 2.1 -- 

unmapped 36.716 119.354 153 
zr 4 32-143 105.9 +/- 9.9 122.1 +/- 8.3   

11SS10 ap 4 25-29 47.1 +/- 0.9 70.9 +/- 1.2 -- 
114 Ma Quartz Diorte  
(Chen and Moore, 1982) 

36.668 119.305 143 

11SS11 
ap 4 15-29 41.2 +/- 3.0 70.1 +/- 4.0 -- 120 Ma Gabbro (Clemens-Knott and 

Saleeby, 1999) 
36.598 119.287 136 

zr 4 43-65 90.9 +/- 5.2 102.5 +/- 5.5   

 
a N is number of single grain He analyses used for each sample. 
b eU is U (ppm) + 0.235 * Th (ppm). 
c Uncorrected age is corrected for alpha-ejection after Farley et al. (1996). 
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TABLE 2. ANATASE (U-Th)/He DATA 

Uranium (ppm) Thorium (ppm) 
Helium 
(nmol/g) Raw Age (Ma) 

sph. eq. radius    
(um) Ft 

Corr. Age 
(Ma) 

18.7 13.2 8.7 72 +/- 10 44.7 0.74 97 +/- 13 
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TABLE 3.  SUMMARY INFORMATION FOR ALL QTQt MODEL RUNS  

Sample  Na 4He/3He 
time-temperature 
bounding box 

high temperature 
constraints low temperature constraints 

modern 
temperature 
constraints 

# of pre "burn-in" 
iterations 

# of post "burn-in" 
iterations 

11SS1 
ap avg of 6 yes 120 Ma - 0 Ma 102 +/- 5 Ma 40 +/- 5 Ma (Walker Fm.) 

20° +/- 5° ≥ 500,000 500,000 
zr avg of 4 -- 150° +/- 135° 650° +/- 100° 20° +/- 5° 

11SS2 
ap 4 grains -- 120 Ma - 0 Ma 115 +/- 10 Ma 

None 20° +/- 5° ≥ 500,000 500,000 
zr avg of 4  150° +/- 135° 650° +/- 100° 

11SS4 
ap 4 grains -- 120 Ma - 0 Ma 120 +/- 5 Ma 

None 20° +/- 5° ≥ 500,000 500,000 
zr avg of 4  150° +/- 135° 650° +/- 100° 

11SS5 
ap 7 grains -- 120 Ma - 0 Ma 110 +/- 5 Ma 

None 20° +/- 5° ≥ 500,000 500,000 
zr avg of 4  150° +/- 135° 650° +/- 100° 

11SS6 
ap avg of 7 yes 120 Ma - 0 Ma 114 +/- 5 Ma 40 +/- 5 Ma (Ione Fm.) 

20° +/- 5° ≥ 500,000 500,000 
zr avg of 4  150° +/- 135° 650° +/- 100° 20° +/- 5° 

11SS7 
ap 4 grains -- 120 Ma - 0 Ma 120 +/- 5 Ma 

none 20° +/- 5° ≥ 500,000 500,000 
zr avg of 4  150° +/- 135° 650° +/- 100° 

11SS8 
ap 4 grains -- 120 Ma - 0 Ma 114 +/- 5 Ma 

none 20° +/- 5° ≥ 500,000 500,000 
zr avg of 3  150° +/- 135° 650° +/- 100° 

11SS9 
ap 4 grains -- 120 Ma - 0 Ma 115 +/- 10 Ma 

none 20° +/- 5° ≥ 500,000 500,000 
zr avg of 4  150° +/- 135° 650° +/- 100° 

11SS10 ap 4 grains -- 
120 Ma - 0 Ma       
150° +/- 135° 

114 +/- 5 Ma         
650° +/- 100° 

none 20° +/- 5° ≥ 500,000 500,000 

11SS11 
ap 4 grains -- 120 Ma - 0 Ma 120 +/- 5 Ma 

none 20° +/- 5° ≥ 500,000 500,000 
zr avg of 4  150° +/- 135° 650° +/- 100° 

a N is number of single grain He analyses used for each sample. 
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APPENDIX B 

 
Figure S1. 
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Figure S2. 
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Figure S3. 
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Figure S4. 
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Figure S5 
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Sample 
Site 

Average 
Corr. Age 

Std. 
Err. Easting Northing 

Corr 
Age  

Error 
1s 

U 
ppm 

1s 
ppm 

Th 
ppm 

1s 
ppm eU 

He 
nmol/g 

mass 
(ug) Ft r um l um 

Sm 
ppm 

Raw 
Age  

11SS1 66.0 3.2 324989 3973346 

66.1 3.0 26 0.9 28.1 1 32.6 7.1 0.9 0.6 33 123 209 39.7 

73.0 2.4 10.9 0.3 8 0.2 12.8 4 4.6 0.78 70 184 25 57.2 

62.9 2.4 21.5 0.6 32.7 0.7 29.2 6.7 1.8 0.66 40 156 228 41.6 

68.9 2.6 30.8 0.8 29.6 0.8 37.8 9.4 1.4 0.65 37 189 269 45.3 

51.9 2.8 9.3 0.4 21.7 0.9 14.4 2.6 0.9 0.63 38 142 116 33.1 

73.0 2.9 21.7 0.6 30 0.8 28.7 7.7 1.5 0.66 40 148 274 48.3 

11SS2 70.4 2.1 323866 4001732 

70.5 2.5 82.9 1.8 110 2 109 27.1 0.9 0.64 40 125 220 45.5 

76.0 2.6 76.1 1.4 97.1 1.5 98.9 26.6 1.5 0.64 39 139 189 49.1 

65.9 2.2 89.7 1.7 118 1.9 118 27.9 1.2 0.66 42 128 225 43.4 

69.1 2.6 67.3 1.7 130 2.3 97.9 23 0.8 0.62 37 125 238 43.0 

11SS4 78.0 3.4 320834 4015518 

81.8 3.5 22.2 0.8 29.2 1 29.1 8.6 0.9 0.66 44 108 69 54.0 

69.4 3.2 21 0.7 32.5 1.1 28.6 6.7 0.8 0.61 35 128 81 42.6 

84.7 3.6 34.4 1.1 38.5 1.2 43.4 12.6 0.8 0.62 38 108 154 52.9 

76.4 3.2 32.1 1 30.5 0.9 39.2 10.4 1.0 0.63 37 125 187 48.3 

11SS5 69.1 3.7 306799 4038554 

68.4 2.2 245 2.7 167 2.4 284 67.5 1.1 0.63 35 172 191 43.6 

52.2 1.4 281 1.5 411 3.8 377 74.5 2.0 0.69 47 150 215 36.2 

63.6 1.9 177 1.8 102 1.5 201 47.5 1.8 0.68 47 113 152 43.3 

67.8 2.2 336 3.9 203 3.1 384 90.9 0.8 0.64 38 123 203 43.4 

84.0 2.2 186 1.3 97.9 1.3 209 69.5 2.6 0.72 50 181 227 60.8 

72.7 2.2 213 2.1 105 1.6 237 63.3 1.6 0.67 39 210 163 48.8 

75.0 2.1 248 1.9 152 2 283 79.8 1.7 0.69 44 152 150 51.5 

11SS6 91.6 4.1 253356 4099704 

98.0 3.3 19.1 0.5 21.1 0.5 24.1 9.4 2.6 0.73 53 171 62 71.5 

112.6 4.9 19.7 0.7 22.6 0.9 25 10 1.0 0.65 38 157 55 73.3 

81.2 3.5 20 0.7 29 0.9 26.8 7.5 1.1 0.63 37 139 61 51.2 

86.9 3.2 51.4 1.3 63.4 1.4 66.3 20.5 1.0 0.65 39 138 114 56.5 

86.5 2.9 16 0.4 23.1 0.5 21.4 7.4 2.9 0.72 51 182 56 62.7 

83.2 2.8 29.3 0.8 43.1 0.9 39.5 12.8 1.7 0.71 49 170 76 59.3 

93.1 2.8 35 0.7 52.6 0.8 47.4 17.5 2.9 0.72 50 205 84 67.3 

11SS7 74.7 1.8 275644 4087244 

77.9 2.2 120 1.2 214 2.2 171 51.5 2.7 0.71 49 164 170 55.2 

76.0 2.5 26.7 0.6 51.1 0.9 38.7 11.4 2.4 0.7 47 175 226 53.5 

75.2 2.3 126 2 303 3.6 197 55 1.2 0.68 46 136 123 51.2 

69.6 2.3 128 2.5 316 4.2 202 50.1 0.8 0.65 43 114 145 45.5 

11SS8 80.1 1.9 277658 4077151 

77.6 3.5 58.7 1.7 24.3 1.3 64.5 16.1 0.6 0.59 33 98 167 45.7 

84.3 3.8 26.4 0.9 14.7 0.8 29.8 8.6 0.9 0.62 35 125 170 52.5 

76.2 2.9 53.6 1.4 27.1 0.9 60 16.3 1.0 0.65 41 108 188 49.6 

82.2 3.2 59.4 1.5 27.8 1 66 18.9 0.9 0.63 39 109 181 52.4 

11SS9 75.2 1.8 289720 4065898 

72.2 2.4 166 2.7 397 4.8 259 66.3 0.9 0.65 43 110 113 46.9 

75.4 2.5 163 2.9 392 4.9 255 67.1 0.8 0.64 43 100 133 48.2 

73.1 2.5 25 0.6 72.5 1.1 42 11.5 2.2 0.68 44 172 193 49.8 

80.3 2.0 323 1.1 529 3.8 447 146.4 3.0 0.75 59 174 117 60.0 

11SS10 70.9 1.0 294044 4060507 

70.6 3.0 20.8 0.7 31.9 1 28.3 7.2 1.0 0.65 43 107 273 46.1 

68.1 2.4 18.3 0.5 28.4 0.7 25 6.8 1.9 0.72 55 142 240 49.5 

72.8 3.0 20.8 0.7 36.1 0.9 29.2 7.5 1.2 0.63 37 136 302 46.3 

72.0 3.2 19 0.7 36.7 1.1 27.6 7.1 0.8 0.64 41 113 330 46.4 

11SS11 70.1 3.5 295452 4052766 

65.9 3.0 19.1 0.7 40.6 1.3 28.6 6.5 0.7 0.62 38 116 307 41.3 
72.5 4.2 15.2 0.7 42.1 1.8 25.1 5.8 0.4 0.56 33 88 412 41.4 
63.1 4.4 14 0.7 37.9 2.3 22.9 4.4 0.3 0.54 32 82 378 34.7 
78.8 4.8 9.4 0.4 25.6 1.3 15.4 4.1 0.6 0.59 35 100 382 47.3 

 

Table S1.  Individual grain apatite (U-Th)/He data 

 



 

 

127 

Samplle 
Site  

avg 
age 

std 
err Easting Northing 

Corr 
Age 

Error 
1s 

U 
ppm 

1s 
ppm 

Th 
ppm 

1s 
ppm eU 

He 
nmol/g 

mass 
(ug) Ft 

r 
um 

l 
um 

Raw 
Age  

11SS1 84.9 4.3 324989 3973346 

73.2 1.5 118.1 0.4 44.6 0.5 128.6 45.6 55.4 0.89 100 301 64.9 
84.9 1.7 57.8 0.2 25.0 0.3 63.7 26.3 58.2 0.89 97 336 75.3 
87.9 1.8 193.9 0.7 92.0 0.9 215.5 90.8 43.4 0.87 87 312 76.9 
93.6 2.0 50.1 0.3 39.6 0.5 59.4 26.7 51.5 0.87 82 417 81.9 

11SS2 86.6 5.6 323866 4001732 

87.2 2.1 87.2 1.0 39.1 0.7 96.4 37.9 15.8 0.82 58 252 57.0 
70.5 1.8 108.1 1.4 46.2 0.8 119.0 37.0 10.7 0.81 56 183 57.0 
93.4 2.2 52.0 0.7 30.0 0.5 59.1 25.5 22.4 0.84 67 268 78.8 
95.4 2.3 82.9 0.9 43.9 0.7 93.2 40.2 16.5 0.82 59 259 78.7 

11SS4 83.3 1.7 320834 4015518 

85.8 2.7 43.0 1.0 31.4 0.8 50.4 18.5 7.5 0.78 49 172 67.1 
78.7 2.1 79.7 1.3 96.8 1.4 102.4 34.7 9.5 0.79 49 218 62.0 
85.6 2.1 48.5 0.7 33.6 0.5 56.4 22.1 19.7 0.84 65 251 71.6 
83.1 2.3 51.0 0.9 23.9 0.5 56.6 20.9 12.0 0.81 57 202 67.5 

11SS5 122.8 4.0 306799 4038554 

117.5 2.4 99.8 0.3 60.8 0.6 114.1 64.8 55.7 0.88 86 405 103.5 
132.5 2.8 55.0 0.2 37.1 0.4 63.7 40.8 60.0 0.88 82 486 116.4 
126.3 3.2 44.7 0.7 89.7 1.1 65.8 37.9 17.1 0.83 81 142 105.2 
115.1 2.5 142.5 0.5 122.2 1.2 171.2 90.6 29.4 0.84 59 454 96.5 

11SS6 97.3 4.2 253356 4099704 

108.6 2.5 103.7 0.9 52.4 0.8 116.0 57.6 17.8 0.83 63 245 90.5 
88.5 2.5 53.7 1.0 29.2 0.6 60.6 23.3 10.6 0.79 48 247 70.3 
95.6 2.3 29.7 0.4 11.7 0.2 32.5 14.6 33.6 0.86 70 374 82.0 
96.6 2.8 38.1 0.8 12.8 0.4 41.1 17.6 11.6 0.81 56 199 78.4 

11SS7 123.1 7.4 275644 4087244 

118.2 3.4 20.9 0.4 9.4 0.3 23.2 12.6 20.0 0.84 64 263 99.1 
136.6 4.4 26.5 0.7 17.7 0.5 30.6 18.3 10.1 0.79 50 222 108.8 
104.4 2.4 27.7 0.3 12.9 0.2 30.8 15.5 46.0 0.88 90 309 91.8 
133.3 3.8 18.9 0.4 13.0 0.3 22.0 13.5 22.7 0.84 63 313 111.9 

11SS8 91.2 10.4 277658 4077151 
82.3 1.8 98.6 0.6 24.8 0.4 104.5 39.9 27.6 0.85 65 351 69.8 
79.4 1.7 185.1 0.6 38.6 0.6 194.2 71.5 24.3 0.85 67 296 67.3 
112.0 2.7 80.0 1.0 26.6 0.5 86.2 43.6 15.7 0.82 57 265 92.2 

11SS9 122.1 7.2 289720 4065898 

111.5 2.7 127.3 1.4 66.6 1.1 142.9 70.4 11.0 0.80 54 206 89.9 
124.3 2.7 39.8 0.3 25.9 0.3 45.9 27.6 49.2 0.88 97 281 109.7 
141.7 3.0 26.5 0.2 21.3 0.2 31.5 22.3 100.7 0.90 118 392 128.3 
111.0 2.3 108.3 0.5 60.7 0.7 122.6 64.3 28.9 0.86 83 228 95.6 

11SS11 102.5 4.8 295452 4052766 

103.7 2.1 57.6 0.2 31.7 0.4 65.0 32.9 74.1 0.89 94 451 92.4 
95.1 2.0 45.1 0.2 23.3 0.3 50.6 23.6 71.9 0.89 107 341 85.2 
95.7 2.2 38.9 0.4 19.3 0.3 43.4 19.7 35.5 0.87 81 291 83.0 
115.5 2.4 46.1 0.2 29.4 0.3 53.0 30.0 70.4 0.89 99 386 103.1 

 

Table S2.  Individual grain zircon (U-Th)/He data 
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11SS1-Zircon 
0 0 1 
0 0 0 0 0 0 
105 
0 2.000 0.000 
1 16.3 
-1 
0 
1 
0.00 0 
0.00 0 
0.000 0 
1 
3 
4.0725 20 25 0 -74.80 3.740 94.7 0 0 
Z 16.27 19.3188 165000 3 2 
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11SS1-Apatite 
0 0 12 
0 0 0 0 0 0 
105 
0 2 0 
1 16.3 
-1 
0 
1 
0.00 0 
0.00 0 
0.000 0 
1 
2 
2.7065 105 50 0.00 -74.80 3.740 57.5 0.00 0.00 
A 19.26 2.0e-7 109200. 2 2 
 

 
11SS1-Ap4He/3He Data 
 
1 0.031139  0.001  0.321664  0.016083  
2 0.047039  0.001  0.440130  0.022007  
3 0.061651  0.001  0.593186  0.029659  
4 0.081630  0.001  0.561046  0.028052  
5 0.105135  0.001  0.594927  0.029746  
6 0.129076  0.001  0.721225  0.036061  
7 0.156876  0.001  0.748166  0.037408  
8 0.189531  0.001  0.771960  0.038598  
9 0.221026  0.001  0.888147  0.044407  
10 0.255225  0.001  0.916051  0.045803  
11 0.292711  0.001  0.945182  0.047259  
12 0.328968  0.001  0.948270  0.047414  
13 0.365498  0.001  1.077929  0.053896  
14 0.405178  0.001  1.059856  0.052993  
15 0.446455  0.001  1.076258  0.053813  
16 0.488953  0.001  1.117050  0.055853  
17 0.530903  0.001  1.144415  0.057221  
18 0.575670  0.001  1.088567  0.054428  
19 0.619833  0.001  1.114505  0.055725  
20 0.662343  0.001  1.094394  0.054720  
21 0.699047  0.001  1.238062  0.061903  
22 0.733547  0.001  1.228688  0.061434  
23 0.809182  0.001  1.048968  0.052448  
24 1.000000  0.001  1.172617  0.058631  
24 1.000000  0.001  1.172617  0.058631  
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11SS6-Zircon 
0 0 1 
0 0 0 0 0 0 
105 
0 2 0 
1 16.3 
-1 
0 
1 
0.00 0 
0.00 0 
0.000 0 
1 
3 
3.14 56.00 27.00 0.00 -80.31 4.8 64.20 0.00 0.00 
Z 15.93 19.3188 165000 3 2 
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11SS6-Apatite 
0 0 12 
0 0 0 0 0 0 
105 
0 2 0 
1 16.3 
-1 
0 
1 
0.00 0 
0.00 0 
0.000 0 
1 
2 
0.6755 27.00 36.00 0.00 -63.10 3.3 57.00 0.00 0.00 
A 19.71 2.0e-7 109200. 2 2 
 

 
 
11SS6-Ap4He/3He Data 
             
1 0.024286  0.01  0.366901  0.018345 
2 0.035755  0.01  0.369037  0.018452 
3 0.04782   0.01  0.432538  0.021627 
4 0.062692  0.01  0.463785  0.023189 
5 0.079753  0.01  0.512887  0.025644 
6 0.099623  0.01  0.559808  0.02799 
7 0.123089  0.01  0.604201  0.03021 
8 0.151223  0.01  0.614283  0.030714 
9 0.181118  0.01  0.708289  0.035414 
10 0.217936  0.01  0.702624  0.035131 
11 0.257557  0.01  0.755084  0.037754 
12 0.298684  0.01  0.817937  0.040897 
13 0.339127  0.01  0.844178  0.042209 
14 0.382566  0.01  0.922632  0.046132 
15 0.429297  0.01  0.990542  0.049527 
16 0.471684  0.01  1.07764   0.053882 
17 0.521972  0.01  1.044823  0.052241 
18 0.575754  0.01  1.101157  0.055058 
19 0.631436  0.01  1.176686  0.058834 
20 0.687071  0.01  1.248764  0.062438 
21 0.74366   0.01  1.215869  0.060793 
22 0.795066  0.01  1.296935  0.064847 
23 1.000000  0.01  1.333582  0.066679 
23 1.000000  0.01  1.333582  0.066679 
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11SS2-Apatite all grains 
0 0 2 
0 0 0 0 0 0 
105 
0 2.000 0.000 
1 16.3 
-1 
0 
1 
0.00 0 
0.00 0 
0.000 0 
4 
2 
0.471 67 130 0 -43.02 2.151 41 0 0 
A 19.96 2.0e-7 109200. 2 2 
0.6845 90 118 0 -43.40 2.170 43.5 0 0 
A 19.70 2.0e-7 109200. 2 2 
0.5936 76 97 0 -49.10 2.455 42.2 0 0 
A 19.68 2.0e-7 109200. 2 2 
0.606 83 110 0 -45.51 2.275 42.2 0 0 
A 19.71 2.0e-7 109200. 2 2 
 
 
 
 
 
 
11SS2-Zircon 
0 0 3 
0 0 0 0 0 0 
105 
0 2 0 
1 16.3 
-1 
0 
1 
0.00 0 
0.00 0 
0.000 0 
1 
4 
3.78 82.5 39.8 0 -67.89 3.394 63.5 0 0 
Z 15.93 19.3188 165000 3 2 
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11SS4-Apatite all grains 
0 0 4 
0 0 0 0 0 0 
105 
0 2.000 0.000 
1 16.3 
-1 
0 
1 
0.00 0 
0.00 0 
0.000 0 
4 
2 
0.21 22 29 0 -53.98 2.699 43.6 0 0 
A 19.70 2.0e-7 109200. 2 2 
0.1478 21 33 0 -42.61 2.131 42 0 0 
A 19.81 2.0e-7 109200. 2 2 
0.2563 34 39 0 -52.90 2.645 41 0 0 
A 19.62 2.0e-7 109200. 2 2 
0.216 32 31 0 -48.30 2.415 41.2 0 0 
A 19.53 2.0e-7 109200. 2 2 
 
 

 
11SS4-Zircon 
0 0 5 
0 0 0 0 0 0 
105 
0 2 0 
1 16.3 
-1 
0 
1 
0.00 0 
0.00 0 
0.000 0 
1 
4 
1.975 55.5 46.4 0 -67.10 3.355 57.2 0 0 
Z 16.10 19.3188 165000 3 2 
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11SS5-Apatite all grains 
0 0 5 
0 0 0 0 0 0 
105 
0 2 0 
1 16.3 
-1 
0 
1 
0.00 0 
0.00 0 
0.000 0 
7 
2 
1.42 245.00 167.00 0.00 -43.60 2.180 41.30 0.00 0.00 
A 19.38 2.0e-7 109200. 2 2 
2.539 281.00 412.00 0.00 -36.20 1.810 48.50 0.00 0.00 
A 19.77 2.0e-7 109200. 2 2 
1.333 177.00 102.00 0.00 -43.31 2.165 45.50 0.00 0.00 
A 19.32 2.0e-7 109200. 2 2 
1.936 336.00 203.00 0.00 -43.41 2.171 41.50 0.00 0.00 
A 19.33 2.0e-7 109200. 2 2 
3.03 186.00 98.00 0.00 -60.82 3.041 52.70 0.00 0.00 
A 19.29 2.0e-7 109200. 2 2 
1.651 213.00 105.00 0.00 -48.79 2.439 44.40 0.00 0.00 
A 19.27 2.0e-7 109200. 2 2 
2.406 248.00 152.00 0.00 -51.50 2.575 46.60 0.00 0.00 
A 19.34 2.0e-7 109200. 2 2 

 
 
 
 
 
11SS5-Zircon 
0 0 5 
0 0 0 0 0 0 
105 
0 2 0 
1 16.3 
-1 
0 
1 
0.00 0 
0.00 0 
0.000 0 
1 
4 
15.9 85.5 77.5 0 -105.44 5.272 84.9 0 0 
Z 16.13 19.3188 165000 3 2 
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11SS7-Apatite all grains 
0 0 7 
0 0 0 0 0 0 
105 
0 2 0 
1 16.3 
-1 
0 
1 
0.00 0 
0.00 0 
0.000 0 
4 
2 
0.2744 120.40 214.10 170.00 -55.21 2.760 49.10 54.00 0.00 
A 19.88 2.0e-7 109200. 2 2 
0.395 26.70 51.10 226.00 -53.49 2.675 48.80 0.00 0.00 
A 19.88 2.0e-7 109200. 2 2 
1.4 125.50 303.30 123.00 -51.20 2.560 44.00 0.00 0.00 
A 20.11 2.0e-7 109200. 2 2 
0.889 127.60 316.20 145.00 -45.51 2.275 39.00 0.00 0.00 
A 20.13 2.0e-7 109200. 2 2 
 

 
 
 
11SS7-Zircon 
0 0 7 
0 0 0 0 0 0 
105 
0 2 0 
1 16.3 
-1 
0 
1 
0.00 0 
0.00 0 
0.000 0 
1 
4 
2.326 23.5 13.2 0 -102.87 5.144 71 0 0 
Z 15.97 19.3188 165000 3 2 
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11SS8-Apatite all grains 
0 0 8 
0 0 0 0 0 0 
105 
0 2 0 
1 16.3 
0 
0 
1 
0.00 0 
0.00 0 
0.000 0 
4 
2 
0.1515 58.70 24.30 167.00 -45.70 2.285 31.60 0.00 0.00 
A 19.19 2.0e-7 109200. 2 2 
0.1189 26.40 14.70 170.00 -52.53 2.626 35.90 0.00 0.00 
A 19.25 2.0e-7 109200. 2 2 
0.246 53.60 27.10 188.00 -49.59 2.480 37.00 0.00 0.00 
A 19.24 2.0e-7 109200. 2 2 
0.27 59.40 27.80 181.00 -52.44 2.622 36.30 0.00 0.00 
A 19.22 2.0e-7 109200. 2 2 
 
 
 
 
11SS8-Zircon 
0 0 8 
0 0 0 0 0 0 
105 
0 2 0 
1 16.3 
0 
0 
1 
0.00 0 
0.00 0 
0.000 0 
1 
4 
7.72 121.20 30.00 0.00 -76.40 3.82 69.30 0.00 0.00 
Z 15.80 19.3188 165000 3 2 0 
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11SS9-Apatite all grains 
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0.00 0 
0.00 0 
0.000 0 
4 
2 
1.105 166.00 397.00 113.00 -46.89 2.344 38.20 0.00 0.00 
A 20.10 2.0e-7 109200. 2 2 
0.935 163.00 392.00 133.00 -48.17 2.408 36.00 0.00 0.00 
A 20.11 2.0e-7 109200. 2 2 
0.3417 25. 73.00 193 -49.80 2.490 46.3 0 0 
A 20.21 2.0e-7 109200. 2 2 
7.81 323.00 529.00 117.00 -60.00 3.000 56.30 0.00 0.00 
A 19.84 2.0e-7 109200. 2 2 
 
 
 
 
 
11SS9-Zircon 
0 0 9 
0 0 0 0 0 0 
105 
0 2 0 
1 16.3 
-1 
0 
1 
0.00 0 
0.00 0 
0.000 0 
1 
4 
13.72 75.5 43.6 0 -105.90 5.295 86 0 0 
Z 15.97 19.3188 165000 3 2 
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11SS10-Apatite all grains 
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105 
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1 16.3 
-1 
0 
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0.00 0 
0.00 0 
0.000 0 
4 
2 
0.1143 20.80 31.90 273.00 -46.12 2.306 37.60 0.00 0.00 
A 19.69 2.0e-7 109200. 2 2 
0.241 18.30 28.40 240.00 -49.47 2.473 49.10 0.00 0.00 
A 19.70 2.0e-7 109200. 2 2 
0.1247 20.80 36.10 302.00 -46.32 2.316 38.20 0.00 0.00 
A 19.77 2.0e-7 109200. 2 2 
0.115 19.00 36.70 230.00 -46.47 2.323 37.90 0.00 0.00 
A 19.86 2.0e-7 109200. 2 2 
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11SS11-Apatite all grains 
0 0 11 
0 0 0 0 0 0 
105 
0 2 0 
1 16.3 
-1 
0 
1 
0.00 0 
0.00 0 
0.000 0 
4 
2 
0.0973 19.10 40.60 307.00 -41.31 2.066 36.80 0.00 0.00 
A 19.91 2.0e-7 109200. 2 2 
0.0466 15.20 42.10 412.00 -41.37 2.069 30.00 0.00 0.00 
A 20.04 2.0e-7 109200. 2 2 
0.0306 14.00 37.90 378.00 -34.72 1.736 28.50 0.00 0.00 
A 20.03 2.0e-7 109200. 2 2 
0.0436 9.40 25.60 382.00 -47.28 2.364 32.90 0.00 0.00 
A 19.94 2.0e-7 109200. 2 2 
 
 
 
11SS11-Zircon 
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11.324 46.9 25.9 0 -90.90 4.545 99.7 0 0 
Z 15.96 19.3188 165000 3 2 
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Figure S6. 
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Figure S7. 
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Figure S8. 
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Figure S9. 
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Figure S10. 
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Figure S11. 
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Figure S12. 
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Figure S13. 
  



 

 

148 

 



 

 

149 

C h a p t e r  3  

Re-evaluating offset measurements in the maximum slip zone 

of the 1999 Hector Mine Earthquake surface rupture 

 

 

aFrancis J. Sousa,  aJoann M. Stock, bKatherine Scharer, bKenneth W. Hudnut, cSinan O. Akciz, 

aRyan D. Witkosky, Janet Harvey 

 

a Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, 

CA 91125 

b United States Geological Survey, Pasadena Field Office, 535 South Wilson Ave, Pasadena, 

CA 91106 

c Department of Earth, Planetary, and Space Science, University of California, Los Angeles, 

595 Charles Young Drive East, Los Angeles, CA 90095 

 

Summary of supplemental information:  Table S1, table of lidar-based measurements from 

Chen et al. (2015) removed from database during field checking. Figure S1 and Figure S2, 

results of 2000 vs 2012 ALS comparison on the alluvial fan on the northern flank of the 

Bullion Mountains and at Lavic Lake, respectively.   Figure S3 and S4, plot of 1999-field versus 

2012-lidar and 1999-field vs 2014-field, respectively.  Figure S5, slip variability at Lou’s Pass 

with uncertainties and color coding.  Google Earth File S1, KML of GeoXH linework.  Access 

information for archive of field-based offset measurement documentation, screenshot 
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documentation of new lidar-based measurements, and field observations of published lidar 

measurements.  

ABSTRACT 

The Mw 7.1 Hector Mine earthquake produced a complex surface rupture through a military 

base in the Mojave Desert, California in 1999.  The location limited access to the area 

immediately after the earthquake, but it also limited anthropogenic alteration of the scarp, 

making this earthquake a good candidate for field and lidar study of rupture characteristics.  

We present new observations of the rupture based on field mapping and a new airborne laser 

scan dataset covering the entire surface rupture.  Our field study focused on an eight-

kilometer-long maximum slip zone and resulted in observations of offset features not 

previously reported during the immediate post-event field response (Treiman et al., 2002).  The 

increased density of measurements along a 300 meter segment of bedrock rupture shows 

along-strike slip-variability of roughly 25%, consistent with other estimates for strike-slip 

ruptures. Field and lidar-based observations provide new sets of co-located horizontal offset 

measurements, allowing for direct comparison of measurements from both the new and 

previously published datasets (Treiman et al., 2002; Chen et al., 2015).  This analysis provides 

new insights into the methodology used for making such measurements, and highlights the 

importance of measuring geomorphically simple features. This study also demonstrates the 

utility of 4D lidar surveys for studying modification of offset features along the entire length of 

a major earthquake surface rupture. 

 

INTRODUCTION 

The Mw 7.1 Hector Mine Earthquake occurred on 16 October 1999 with an epicenter in the 

Bullion Mountains, California in the Eastern California Shear Zone tectonic province (USGS, 
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1999; see Figure 1).  Co-seismic offsets were dominantly dextral horizontal along the 

approximately 40-kilometer-long surface rupture, with a maximum horizontal offset of 5-6 

meters (Treiman et al., 2002).  The surface rupture cuts a range of lithologic units and 

geomorphic terrains, including Quaternary basalt flows of Pisgah Crater and Sunshine Peak, an 

endorheic playa at Lavic Lake, active alluvial fans on the north and south flanks of the Bullion 

Mountains, and the locally deformed Neogene volcanic section making up the core of the 

Bullion Mountains (Dibblee, 1966). The vast majority of the rupture occurred within a rarely 

traveled part of the Rainbow Canyon section of a military base that has tightly regulated access, 

the United States Marine Corps Air Ground Combat Center at Twentynine Palms, CA 

(MCAGCC, Figure 1). This location is fortuitous, as it limited anthropogenic modification of 

the fault scarps to a few small areas of MCAGCC traffic; however, it has limited the scope of 

previous field studies. Natural modification is also expected to be limited in this remote desert 

area; rain and wind events only slightly degraded and modified the fault scarps.  Consequently, 

much of the surface rupture and many of the offset geomorphic features including channels 

and spurs remain in nearly pristine condition, providing an excellent natural laboratory for 

studying surface rupture characteristics.  This includes the measurement of offset geomorphic 

features, the natural modification of such features on decadal timescales, and slip variability 

along straight, single-stranded segments of bedrock rupture.  

 

Paleoseismic studies of earthquakes (hundreds to thousands of years old) play an important 

role in our understanding of active tectonics and seismic hazards.  Field and lidar-based 

measurements of offset geomorphic features commonly form a central component of these 

studies (e.g. Akciz et al., 2010; Zielke et al., 2010; Haddad et al., 2012).  Prior to the advent of 

lidar, which allows for quick, precise documentation of topography, it was not possible to 
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study the 4D evolution of geomorphic features along large swaths of an earthquake surface 

rupture on the decadal or longer timescales relevant to studies of ancient earthquakes.  The 

HM earthquake was the first major surface rupture to be fully documented using airborne lidar 

(in 2000 by Hudnut et al., 2002).  It is also the first to be eligible for a comprehensive study of 

post-event, decadal-scale topographic modification.  We evaluate the lithologic control on 

scarp degradation, evaluate potential for postseismic slip, and evaluate lidar-differencing results 

for a test section of the rupture. 

 

The HM rupture is unique in that field measurements were made immediately after the event, 

and lidar was initially collected six months later in April 2000 via an airborne laser scanning 

(ALS) system mounted in a commercial helicopter (Hudnut et al., 2002).  Lidar-based offset 

measurements were then made using this dataset and later published (Chen et al., 2015).  In 

May 2012 a repeat lidar dataset was collected with a higher precision updated ALS system 

mounted in a propeller powered airplane (NCALM, 2012; this study).  New field and lidar-

based measurements were then made between 2012 and 2014 (this study).  

 

In the context of these different datasets, a number of questions motivate this study: (1) Do 

different types of measurements made at different times agree?  What data or technique issues, 

or natural processes, are responsible for any differences?  We examine these issues by 

comparing the multiple datasets of field and lidar-based offset measurements.  (2) How does 

increasing the density of field-based measurements change our understanding of slip variability 

along a straight, single-stranded bedrock rupture? This is investigated by increasing the 

measurement density along a 300 m long segment of surface rupture. (3) How reliable are 

lidar-based measurements of offset geomorphic features?  How do they compare to field 
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measurements? To other lidar-based measurements made with different lidar datasets and by 

different users? Comparison of the field measurements (this study) with published lidar-based 

offset measurements (Chen et al., 2015) addresses these questions.  (4) To what extent can we 

constrain post-seismic slip?  We consider all of the published and new offset data to answer 

this question. 

 

Previous Work 

Various methods were used to assess the coseismic slip distribution following the 1999 HM 

earthquake.  Space-based interferometric synthetic aperture radar, GPS measurements, and 

satellite optical imagery were used to derive surface displacement fields for time intervals 

spanning the earthquake (Fialko et al., 2001; Peltzer et al., 2001; Simons et al., 2002; Jonsson et 

al., 2002; LePrince et al., 2007; Ayoub et al., 2009). A field response team was granted access to 

the surface rupture by MCAGCC, resulting in a published map of field-based offset 

measurements made within the weeks following the mainshock (Treiman et al., 2002).  

Uncertainties and geolocations are not tabulated in Treiman et al. (2002) for the entire dataset, 

but work by Kendrick et al. (USGS Open-File Report, in preparation) includes a digital 

compilation which we utilize in this study, and refer to as 1999-field. 

 

In April 2000, an ALS survey was performed, creating the first high resolution lidar coverage 

of topography along the entire extent of a major earthquake surface rupture (Hudnut et al., 

2002).  Chen et al. (2011, 2015) and Chen (2014) used this ALS dataset to measure over 250 

individual offsets along the surface rupture with LaDiCaoz, a Matlab-based cross-correlation 

tool for measuring offset topographic features from digital elevation models (Zielke and 

Arrowsmith, 2012).  We refer to that dataset as 2000-lidar.  The technique requires five choices 
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on the digital elevation model (DEM): the fault location and orientation; the location and 

length of two fault-parallel profile lines used to determine the shape of the offset feature on 

either side of the fault; and two projection directions on each side of the fault used to project 

the offset feature at the profile line to the fault.   All of the previous studies are generally in 

good agreement regarding the amount of maximum horizontal offset (5.5 - 6.5 m dextral 

horizontal) and the location of a maximum slip zone (MSZ) within the Bullion Mountains 

section of the surface rupture (Figure 1) where dextral horizontal offsets exceed four meters 

(Fialko et al. 2001; Peltzer et al., 2001; Treiman et al., 2002; Simons et al., 2002; Jonsson et al. 

2002; LePrince et al., 2007; Ayoub et al., 2009; Chen et al., 2015). 

 

DATA AND METHODS  

Throughout this paper we refer to four different MSZ datasets, two lidar-based and two field-

based.  To help clarify the different datasets and their references, and avoid confusion 

regarding where the different datasets overlap, we include a data matrix that identifies each 

dataset and the number of co-located observations that we evaluated in each (Table 1).  1999-

field and 2000-lidar were collected prior to our study.  Datasets 2014-field and 2012-lidar are 

reported for the first time here. 

 

2014-field: new field-based offset measurements 

A primary focus of the field study was to increase the number and density of offset 

measurements within the MSZ.  During our field study, we made 55 new measurements.  For 

the remainder of this paper we refer to this dataset of new field-based offset measurements as 

2014-field. Assessment at each location included identification of an offset feature and 

recording the location from a handheld Garmin GPS unit (WGS84 UTM 11N), followed by 
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group discussion of a number of observations including local strike of fault, fault zone width, 

offset feature width and obliquity, and local geomorphology and lithology.  After considering 

and recording these observations, the offset amount was determined with a measuring tape.  

Offset measurement uncertainty was assessed in the field based on the width of the fault zone, 

the width of the offset feature, local lithology and geomorphology, and any identifiable 

modification that occurred in the years since the earthquake (e.g. local rock falls, erosion or 

slumping of channel walls).  Measurements and uncertainties were recorded either as a best 

value plus or minus the limiting uncertainty value (e.g. 3 m +/- 1 m) or as a range establishing 

the minimum and maximum values (e.g. 2 m – 4 m), depending on which characterization was 

judged to be most appropriate by the field team.  In general, the best value +/- uncertainty 

method was used to describe uncertainty in cases where a single best value was preferred by 

the field team, and the range method was used where there was no such best value.   Based on 

our subjective assessment of the offset measurement based on factors such as straightness of 

the feature, certainty of the pre-event geomorphology, and agreement amongst the members 

of the field team, a quality rating was assigned on a scale of poor, fair, good, or very good. 

 

Outside the MSZ, we found that the faulted and offset features mapped immediately after the 

earthquake (Treiman et al., 2002) were generally no longer distinct enough to measure. In 

other words, within 12-14 years, features offset laterally by less than about four meters have 

become indistinct within parts of this desert environment, despite the minimal human 

disturbance due to its remote location. Although the rupture trace outside of the MSZ has 

certainly not been erased from the landscape, one no longer has the ability to uniquely or 

confidently measure discrete offset features either by lidar or field work. Chen et al. (2015) did 

measure offsets outside the MSZ using the 2000 ALS data.  Due to landform degradation and 
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logistical constraints, we were not able to validate or verify any of those observations outside 

the MSZ during our field work in 2012 and 2014. 

 

2012 Airborne Laser Scan (ALS) 

On May 27, 2012 the National Center for Airborne Laser Mapping (NCALM) field team 

acquired the 2012 ALS data set using an Optech Gemini Laser Terrain Mapper (Figure 1). This 

flight resulted in a point cloud covering a ~ 1.3 km wide swath along the entire length of the 

surface rupture.  These ALS data average a density of 8.5 pts/m2 and allow for a systematic 

production of a 35 cm digital elevation model. This survey represents a significantly wider 

swath and improvement in both resolution and data quality over the 2000 ALS of Hudnut et 

al. (2002).  Details of the survey methods are summarized by NCALM (2012). 

 

2012-lidar: new lidar-based offset measurements at 2014-field sites 

No new offset locations were identified using the 2012 ALS data alone.  However, after the 

2014 field work was completed, lidar-based horizontal offset measurements were made by 

cross correlation of fault-parallel topographic profiles using LaDiCaoz (Zielke and 

Arrowsmith, 2012), obtaining the offset measurement from the best fit value of the cross 

correlation following the technique of Chen et al. (2015).  A measurement was attempted at 

each of the 55 locations in 2014-field using hillshades derived from a DEM based on the 2012 

ALS data.  We first made a preliminary assessment of geomorphic features by examining the 

hillshade models to evaluate whether an offset could be reconstructed. Curved, bifurcating, or 

otherwise nonlinear offset features were rejected because different choices of profile locations 

and projection directions alter the results significantly (Zielke et al., 2015), sometimes changing 

the resulting measurement by over 100%. More details regarding this issue are discussed later 
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in case study #2 at a site we informally named Lou’s Pass (see Figure 2 for location).  This 

process resulted in exclusion of 24 out of the 55 field locations.  At the remaining 31 locations, 

straight segments of offset features were considered close enough to the fault to be projected 

into the surface rupture.  For each of these locations we chose fault-parallel topographic 

profiles, determined an offset measurement, and assigned a subjective quality rating on a scale 

of poor, fair, good, or very good (Table 2).  Throughout this paper we refer to this dataset of 

new lidar measurements as 2012-lidar.  Particular attention was paid to the dependence of the 

final measurement value on the proximity of the topographic profiles to the defined fault line, 

and the projection directions chosen.  As much as possible, we chose geomorphic profiles 

close to the defined fault line and projection directions parallel to each other.  Each offset 

measurement was documented with screen captures of both the measurement inputs and 

figure outputs.  Access information for archives of all of these screenshots is provided in the 

electronic supplement.  

 

After the method used by Chen et al. (2015), we assigned an uncertainty for each measurement 

by using the backslipping tool in LaDiCaoz to estimate the range of acceptable offsets.  

Because the resolution of the base imagery for the lidar measurements was ~ 0.35 m, we 

report our uncertainty estimates in increments of 0.4 meters. 

 

Differencing ALS data 

Previous studies have explored the application of lidar differencing techniques to constrain 

coseismic displacement (e.g. Borsa and Minster, 2012; Glennie et al. 2014; Nissen et al. 2012, 

2014; Oskin et al. 2012).  Given the two postseismic ALS datasets covering the extent of the 

HM surface rupture, we explore the amount of modification that occurred in the 12 years 
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between the acquisitions.  The two datasets were geolocated using the WGS84 geographic 

coordinate system and IGS08 geoid heights (NCALM, 2012; Chen et al., 2015).  At one 

location where 2000 and 2012 ALS data quality was sufficient, a one square km segment of the 

two datasets was globally coregistered using an iterative closest point algorithm in the open 

source Cloud Compare software (CloudCompare, 2015).  The higher density 2012 ALS point 

cloud was then meshed into a triangulated irregular network (TIN), and topographic change 

between the 2000 ALS point cloud and 2012 ALS TIN was quantified with the cloud-to-mesh 

distance tool.  The 2000 ALS dataset was state of the art at the time it was collected, but 

continued methodological and instrumental improvements have been made since that time.  

The configuration of the data collection system of the 2000 ALS, including the helicopter 

mounted platform and inertial monitoring unit, contributed to a noise level in the data that 

limits our ability to quantify post-earthquake topographic change along large areas of the 

rupture. 

 

2014-recon: field checking of 2000-lidar measurements 

Because the 2000-lidar measurements were completed based only on 2000 ALS data, we 

visited the locations of 87 of these measurements to evaluate their accuracy.  For the 

remainder of the paper, we refer to the results of the field checking process as 2014-recon.  At 

each location we had a summary image of the 2000-lidar measurement, including a screen 

capture of the features annotated by Chen et al. (2015; archival access is described in the 

electronic supplement of that paper), the offset value, and uncertainty.  Using a Garmin 

handheld GPS unit we first verified and recorded the location where the offset measurement 

in the screenshot was made.  Examination of each offset location followed a series of 

questions: 
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1) Was the measurement made on a once-contiguous geomorphic feature that was offset by 

the surface rupture? 

2) Were the orientation and extent of the profiles used in the measurement appropriate?  

Asking this question resulted in a discussion of the location and orientation of the topographic 

profiles chosen for the 2000-lidar measurement.  At each location we tried to discern if the 

geologic context available in the field corroborated the chosen topographic profiles from the 

2000-lidar measurement or if different locations would be better.  

3) Were the projection orientations used in the measurement correct?  While asking this 

question in the field we scrutinized the azimuths chosen in the 2000-lidar measurement to 

project the topographic profiles to the fault plane.  We used the geological context available in 

the field to determine field-based projection orientations and then compared these to the 

azimuths chosen in the 2000-lidar measurement.  At this point, we assigned a subjective quality 

rating to each 2000-lidar measurement (poor, fair, good, very good) that we were field-

checking.  These results are included in Table 2. 

4) Could we confidently make a new field based measurement at the same location? If so, we 

made such a measurement and added it to out 2014-field dataset. 

Access information for field notes from this field checking is provided in the electronic 

supplement.  In the following section we present and describe each of our new datasets. 

 

RESULTS 

2014-field: new field-based offset measurements 

2014-field includes 55 new field-based horizontal offset measurements made with tape 

measure during field work in 2012 and 2014.  The locations, magnitudes, and uncertainties of 

each measurement are plotted on Figure 2 and listed in Table 2.  To see if uncertainties varied 
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with offset magnitude, we plot offset versus uncertainty for 2014-field (Figure 3(a)), and find a 

weak correlation that indicates larger offsets can have larger uncertainties.  We discuss one of 

these specific examples later in the paper in case study #2.  In general, we found that the fault 

trace was clearly visible but eroded.  For example, scarps that were likely a few tens of 

centimeters wide with sharp vertical features on the day of the earthquake were broader in 

2014.  We do not report any new vertical offset measurements.  Access information for 

archive of field notes is provided in the electronic supplement. 

 

2012-lidar: lidar-based offset measurements at 2014-field locations 

2012-lidar includes 31 new lidar-based offset measurements made with LaDiCaoz using the 

2012 NCALM ALS data at the locations where 2014-field measurements were made.  The 

locations, magnitudes, and uncertainties of each are plotted on Figure 2 and listed in Table 2.  

We did not make new lidar measurements of 24 of the 2014-field locations because 

considering the lidar alone, the surface morphology was too complicated and we could not 

confidently reconstruct the pre-event feature (see detailed discussion of similar problems in 

Zielke et al., 2015).  The more detailed nature of the observations we could make in the field 

allows us to be confident of the field measurements we made in these locations.  Plotting 

2012-lidar offset versus uncertainty shows a correlation that indicates that larger offsets have 

larger uncertainty (Figure 3(b)). 

 

2014-recon: field checking of 2000-lidar measurements  

Based on visiting 87 locations of the 2000-lidar offset measurements, we omit 23 of them from 

our analyses because we determined problems with the features, including the choice of 

piercing lines that were not originally contiguous, general misinterpretation of geomorphology, 
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and the projection of topographic profiles over large distances from the fault zone (up to 10 m 

in each direction).  Table S1 lists these measurements and summarizes the reasons for omitting 

each.   

 

Dependence of fault scarp modification on lithology 

Four lithologic zones were traversed by the rupture, each of which exhibits qualitative 

differences in the modification of offset features along the fault scarp.  Where the rupture 

passes through an active alluvial fan complex on the north side of the Bullion Mountains 

(Figure 1), erosion and deposition on the fan in the decade since the earthquake have degraded 

offset features.  Ponding of fine sediments in near-fault depressions is commonly the only 

evidence of the rupture.  In contrast, where the rupture crosses Lavic Lake, an endorheic playa, 

the fault scarp is well preserved within unconsolidated fine sediments. 

 

On the north side of Lavic Lake where the rupture intersects Quaternary basalt flows from 

Pisgah Crater, we observed no offset features, likely because the length scale of offsets at the 

northern end of the surface rupture and the chaotic surface texture of a’a’ flows are similar (< 

50 cm).  In the Bullion Mountains (the location of the MSZ), where the HM rupture crosses 

consolidated Neogene volcanic rocks, the fault scarp is still visible in nearly all locations.  

Preserved offset features include steeply dipping scarps over one meter high produced by 

horizontal offset of steep topography, meter-scale en-echelon pull apart basins, and common 

sub-meter-scale scarps cutting across landscape surfaces. 

 

4D topography from repeat postseismic ALS 
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Topographic change documented by repeat postseismic ALS acquisitions (Figure 4, S1, S2) 

shows decadal scale modification of the actual fault scarp and other near-fault geomorphic 

features.  Mass transfer from the upper to lower segment of the subvertical fault scarp is 

clearly shown in the top half of the frame in Figure 4.  Where the scarp crosses an active wash, 

near-fault erosion and ponding are visible.  These types of active processes are important in 

the decades following any earthquake surface rupture, and thus are important for paleoseismic 

studies in general.  The newly available repeat postseismic ALS data makes it easier to 

document some of these processes.  As this type of high resolution postseismic data becomes 

more ubiquitous in the coming decades, more complete and quantitative studies of these 

processes will be possible. More research in this direction is currently being pursued (e.g. 

Zhang et al., 2014).  Poor lidar resolution and quality of the 2000 ALS data precluded us from 

calculating topographic change along other large swaths of the surface rupture.  However, we 

did complete this process in a few other small areas along the surface rupture (Figures S1 and 

S2).  On the alluvial fan north of the Bullion Mountains, erosion and depositional processes 

have resulted in near fault ponding on the western side of the fault and incision on the east.  

This allows detailed identification of the surface rupture location and reveals subtle features 

that were not obvious in the original rupture mapping.  Because of poor resolution of the 2000 

ALS data we are only able to generate a 1-m topographic change map, and due to poor quality 

of this early data, some of the topographic change calculated is artifact (Figure S1). 

 

Fault Trace Mapping 

In order to document decadal scale changes in the surface trace of the rupture, we used a 

Trimble GeoXH handheld GPS unit to trace 20 km of fault scarps along most of the MSZ and 

northwards across the majority of the active alluvial fan and Lavic Lake.  Our mapping 
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provides less detail than Treiman et al.’s (2002) original line work because many elements have 

been washed away or degraded.  Post-processed location uncertainties are typically 10 cm 

horizontal and 20 cm vertical.  The resultant rupture map is presented in .kmz format in the 

electronic supplement (Google Earth file S1).  

 

DISCUSSION 

The variety of observations of fault offsets in space and time using different techniques allows 

us to evaluate several aspects of fault studies.  We address three types of issues, and discuss 

each in the context of other major earthquake surface ruptures globally:  1) the potential for 

constraining postseismic displacements, 2) variations in approaches to identifying and 

measuring the offsets and how these differences affect the results, and 3) small-scale variability 

in slip along the surface trace of the fault.  We also include two case studies where we focus on 

multiple different measurements of a single offset and constraining along-strike variability of 

horizontal offsets along a single stranded, straight segment of the rupture. 

 

Evaluation of possible postseismic displacements 

Many faults are known to experience surface slip at times other than during a mainshock 

earthquake rupture.  For example, steady-state creep, episodic creep, postseismic afterslip, 

triggered slip, and precursory slip have all been observed on faults in California (Bilham et al., 

2004). In the region, triggered slip has occurred on several major faults as well as on minor 

faults following recent large earthquakes (e.g., Hudnut and Clark, 1989; Rymer et al., 2011).  

One global study of 17 large (M>6) and 4 of small (M≤6) earthquakes found an average 

aseismic energy release of 16%, and the amount was greater in the smaller events (Fattahi et al., 

2015).  Even for large events however, the amount, distribution, and timing of afterslip may 
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vary, sometimes lasting for over a decade.  For example, the 1973 Mw 7.6 Luhuo earthquake on 

the Xianshuihe fault in Sichuan Province, China, experienced 6 mm/yr of postseismic creep in 

one location that continued for at least 13 years (Allen et al., 1991), and the Izmit-Akyazi 

segment of the North Anatolian Fault has exhibited multiple episodes of creep with an offset 

of ~20 mm each over more than a decade (Cakir, et al., 2015).  More commonly, postseismic 

displacement decays exponentially over much shorter timescales, and may preferentially occur 

in regions with thicker sedimentary cover (Marone et al., 1991).  The 1992 Mw 7.3 Landers 

rupture had coseismic displacement of up to 6 m (e.g. Sieh et al., 1993), but horizontal afterslip 

measured by geodetic arrays (Sylvester, 1993) was limited to < 10 mm total, decreasing 

exponentially over a period of 5 months after the mainshock, except for one location with 40 

mm of afterslip attributed to possible large aftershocks.    

 

Because this issue was not generally appreciated at the time of the HM earthquake in 1999, 

many of the publications discussing its “coseismic” displacements are actually reporting 

displacements over a time interval that include both coseismic and up to several years 

postseismic slip if it occurred (e.g. Ayoub et al., 2009).  Recently, as more detailed, rapid 

response studies of surface ruptures have been conducted, timescales of this behavior, as well 

as its spatial variability, have been better resolved. For example, along the fault rupture of the 

2014 Mw 6 South Napa Earthquake, in some locations virtually all of the slip was coseismic; in 

other locations nearly all of the slip occurred after the main shock, and segments of the 

rupture were still slipping, albeit at a slower rate, 89 days later (Hudnut et al., 2014; Wei et al., 

2015). 
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One scientific question concerning our data sets is whether we can resolve any change in 

horizontal slip on the fault between the year 2000 and the year 2012.  When the uncertainties 

of the lidar-based measurements are considered, we find that if any postseismic slip did occur, 

it is too small to detect by comparing these lidar data sets.  The two postseismic ALS datasets 

available for the HM earthquake do not show visible differences that clearly correspond to 

strike-slip afterslip along the surface rupture.  We estimate that this afterslip would need to be 

on a larger scale than the raster resolution (35-50 cm) in order to be measurable (Figure 4).  A 

more quantitative analysis of afterslip measurement was undertaken previously using COSI-

Corr analysis, and concluded that no horizontal afterslip greater than 13 cm occurred between 

the times of the ALS data acquisitions (Sousa et al., 2012).  This value is much smaller than 

either the raster resolution or the uncertainty values of our new field and lidar measurements, 

and therefore our new offset measurements do not further constrain post-seismic 

displacement.   

 

However, our data do not rule out the possibility of afterslip in the immediate aftermath, or 

even in the following few months, of the HM earthquake.  The 1999-field observations were 

made within the first few weeks following the earthquake but greater than 48 hours after the 

mainshock. The 2000 ALS dataset was acquired roughly six months later.  The published 

observations of 1999-field (Treiman et al., 2002) therefore could include short timescale 

postseismic deformation.  In theory, comparison of the 1999-field measurements with 2000-

lidar measurements might constrain afterslip that occurred between roughly one week and six 

months after the earthquake.  In practice, as we will discuss below, the large uncertainties in 

offset measurements from the 2000-lidar dataset hinder our ability to see these details.  In the 

fault slip distribution determined from regional geophysical and geodetic observations (e.g., 
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Fialko et al., 2001; Simons et al., 2002), there is no obvious temporal variation, suggesting that 

afterslip in the 2000 to 2012 timeframe was likely small.  Furthermore, there were no major 

aftershocks near the surface rupture that could have triggered afterslip (Hauksson et al., 2002).  

Therefore, we rule out the possibility of measurable postseismic fault slip affecting our 

observations, and we evaluate other processes that may contribute to the observed differences 

in the topography and measurements derived from the different data sets. 

 

Comparison of field and lidar-based offset measurements 

Published studies report large numbers of offset measurements for the HM surface rupture, 

including 125 field-based measurements (Treiman et al., 2002) and 254 lidar-based 

measurements (Chen et al., 2015).  With many field and lidar-based measurements that are co-

located, our new data allow for direct comparison of measurements made by the two different 

methods (e.g. Salisbury et al., 2012) and from data collected at two different times.  In total, 

there are four databases of horizontal offset measurements from the HM rupture: 1) 1999-field 

(Treiman et al., 2002), 2) 2000-lidar (Chen et al., 2015), 3) 2014-field (this study), and 4) 2012-

lidar (this study).  The following sections discuss our field-checking of 2000-lidar 

measurements (2014-recon) and the direct comparisons of the different sets of measurements 

within the MSZ in the context of other previously published studies from different major 

earthquake surface ruptures globally. 

 

2014-recon: field checking of 2000-lidar measurements 

The Chen et al. (2015) study did not include any component of field work during the 

generation of the 2000-lidar database. Our field examination of those lidar-based 

measurements within the MSZ resulted in removing 23 out of 87 of the measurements (Table 
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S1).  While it is disconcerting that the number is so large (about 25%), we consider that these 

offset measurements removed from 2000-lidar during 2014-recon field work are easily 

avoidable.  If the user rejects sites that are geomorphically complicated when choosing lidar 

measurement locations and only makes measurements at locations with straight and 

uncomplicated offset geomorphic features, the user avoids difficult and likely incorrect choices 

during the lidar measurement process.  Our study emphasizes the importance of field 

validation of offset measurements made only using high resolution topographic data.  We 

encourage future lidar data users to be critical of their choice of piercing points. In the next 

section we will compare co-located field and lidar-based offset measurements, which highlights 

another set of erroneous measurements that are more serious than these because they are 

more difficult to avoid. 

 

2000-lidar versus 2012-lidar 

The locations of measurements in 2000-lidar and 2012-lidar were chosen independently.  

However, of the 31 offset measurements in 2012-lidar, 25 prove to be co-located with 

measurements in 2000-lidar.   The mean offset value for 2000-lidar and 2012-lidar are in close 

agreement, differing by less than one standard deviation (Figure 5(a)). For co-located 

measurements, reported uncertainties in the 2012-lidar data are generally larger than those in 

2000-lidar.  We interpret this to be due to erosional modification of features during the decade 

between the two ALS acquisitions.  The means of each dataset are within one standard 

deviation of each other, which we interpret as a general agreement between the two datasets.  

Despite this, a clear majority of the data are visually clumped below the 1:1 line, indicating 

lower offset values measured in 2012-lidar versus 2000-lidar.   We attribute this to the 

distances of the profile lines to the fault.  In the 2012-lidar measurements the profile lines are 
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systematically closer to the fault, possibly removing some distributed deformation the 

measured offset values (e.g. Milliner et al., 2015). 

 

These datasets were made by different single users and on different ALS base imagery. Higher 

resolution of the 2012 ALS (35 cm DEM) versus 2000 ALS (50 cm DEM) results in visibly 

sharper hillshade imagery (e.g. Figure 6(c) versus Figure 6(d)).  This sharpness difference is due 

to a combination of DEM resolution and choice of hillshade parameters, resulting in a minor 

effect on reported offset measurements.  However, this is not our preferred explanation for 

the disparity between the measurement values.  After consideration of the supplemental data 

from Chen et al. (2015) during field inspection of the locales, we attribute most of this 

mismatch to the different choices of profile lines and projection directions made by the users 

during the measurement.  The choices varied enough to result in discrepant final 

measurements.  Additionally, although the 2014-recon field notes were not studied when the 

2012-lidar measurements were made, observations and experience mapping the terrain in the 

field likely improved the assessment of feature quality and choice of measurement parameters.    

Confirmation bias is well-known and difficult to avoid when choosing locations to measure 

offset measurements along a surface rupture (e.g. Weldon et al., 1996; Salisbury et al., 2015).  

When making the 2012-lidar measurements, we only considered locations where 2014-field 

measurements had been made as potential sites.  Though we cannot rule out confirmation bias 

during the process of making the field measurements, we are confident that there was not a 

confirmation bias introduced during the process of making 2012-lidar measurements. 

 

2000-lidar versus 1999-field and 2014-field 
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The 13 co-located measurements in the MSZ common to 2000-lidar and 1999-field show most 

of the measurements visibly clumped near the 1:1 line between three and five meters of offset, 

resulting in a correlation coefficient R2= 0.47 (Figure 5(b)).  The mean offset values for co-

located measurements between each sets of these measurements are in close agreement.  They 

differ by less than one standard deviation.  The measurement with the single largest deviation 

from unity (2000-lidar = 6.6 m +/- 1.1 m) is at the location we refer to as the Armory (UTM 

11N: 567433 E, 3823508 N) and was previously the largest published horizontal offset for the 

HM surface rupture (Chen et al., 2015).  A more detailed examination of this specific location 

is presented in case study #1, below. 

 

Plotting the 26 measurements common to 2000-lidar and 2014-field shows that many of the 

2014-field measurements are different than the 2000-lidar measurements (Figure 5(c)).  Unlike 

the avoidable user errors discussed earlier in regards to 2014-recon, we believe the poor 

correlation shown in Figures 5(a) and 5(c) is due to a class of 2000-lidar measurements that 

were not omitted during 2014-recon field observations because the geomorphic configuration 

was considered acceptable by the field team, but report systematically different offset values 

than co-located offset measurements in the other datasets (this study; Treiman et al., 2002).  

We attribute this difference to geomorphic misinterpretation manifest as errant choices of 

profile locations and projections directions during the 2000-lidar measurement.  Reported 

uncertainties of co-located measurements in the 2014-field data are generally larger than those 

in 2000-lidar.  We interpret this to be due in part to erosional modification during the decade 

between the two ALS acquisitions. 
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Recent studies have examined the challenges of offset measurements.  Scharer et al. (2014) 

reported on variations in field measurements by different groups making repeat measurements 

of offset geomorphic features along the Mojave segment of the San Andreas Fault.  Gold et al. 

(2013) studied the variability of repeat measurements by a single user on the same offset 

feature using lidar data from the 2010 El Mayor-Cucapah surface rupture. Both of these 

studies show that some variation, on the order of 20%, is typical for these measurements. 

Salisbury et al. (2015) explore the reproducibility of measurements by users of different skill 

level and present an analysis of the factors controlling the validity of meter scale geomorphic 

offset measurements.  The comparison of our new datasets 2014-field and 2012-lidar with 

2000-lidar requires that we further investigate reasons for poor correlation amongst co-located 

offset measurements.  Our experience with these particular datasets positions us to 

qualitatively discuss areas where we see the greatest risk of erroneous offset measurements.   

 

Salisbury et al. (2015) conclude that “measurement discrepancies often involve 

misinterpretation of the offset geomorphic feature and are a function of the investigators 

experience.” Our primary concern based on our field observations (2014-recon) is geomorphic 

misinterpretation, manifest as an improper selection of measurement parameters.  We find this 

to be in close agreement with the conclusion of Salisbury et al. (2015).  Choices made by a user 

regarding visualization method (hillshade angles and/or use of contours), distance from 

topographic profiles to the fault, and the projection directions on either side of the fault are 

critical to the final offset measurements.  Poor choices of location and orientation of 

measurement parameters are the most common factors responsible for inaccurate final 

measurements when compared to both co-located lidar measurements and independent field-

based measurements. 
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2012-lidar versus 2014-field 

In contrast to the disparity between the other datasets, 2012-lidar and 2014-field correlate with 

higher fidelity (Figure 5(d), R2 = 0.75).  The mean offset values for 2012-lidar and 2014-field 

are in close agreement.  They differ by less than one standard deviation.  We explain this 

correlation by our decision not to make lidar measurements at locations that require difficult 

geomorphic interpretation, particularly areas of local nonlinearities like bends and bifurcations, 

as well as our familiarity with the fault and measurement locations due to the field mapping.  

Out of the 55 locations of field-based measurements where we attempted to make a new lidar-

based offset measurement, only 31 locations had offset features considered sufficient to make 

a clear reconstruction using the lidar data.  We note that a single user made the 2012-lidar 

measurements, while groups of 3-4 people completed each of the 2014-field measurements, 

usually including the user who subsequently made the 2012-lidar measurements.  17 out of 

these 31 measurement locations were rated as poor or fair field measurements, while the 

remaining 14 were rated good or very good.  There is no clear relationship between subjective 

field quality rating and our ability to confidently make a lidar measurement (Figure 5). 

 

1999-field versus 2012-lidar and 2014-field 

Due to the limited number of co-located measurements, we are unable to generally compare 

offset measurements co-located between 1999-field and either 2012-lidar (n = 4) or 2014-field 

(n = 8).  For reference, plots of each of these co-located datasets are shown in Figure S3 and 

Figure S4, respectively.  We next present two case studies which deal with two specific areas 

along the HM surface rupture MSZ.  In examining each we will discuss a few of the potential 

problems in 2000-lidar dataset, and address how we tried to avoid them.  
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Example #1: Measurement variability at the Armory 

The Armory site (“ARMORY, CT167” in Table 2) is located within the central portion of the 

MSZ in the Bullion Mountains (Figure 2).  At this location, an active alluvial channel truncates 

a terrace cut into a felsic volcanic tuff, with a surficial deposit of large mafic boulders.  A 

piercing line is provided by the curvilinear transition from channel (south) to older hillslope 

grading up onto the terrace (north).  On the east (upstream) side of the fault, the piercing line 

is straight; on the west (downstream) side of the fault it is curved and covered where erosion 

and deposition have resulted in scarp colluvium within about two meters of the scarp (Figure 

6).  In the vicinity of this offset location Treiman et al. (2002) report a dextral offset value of 

4.85 m +/- 0.65 m.  We infer that this measurement is the Armory location as no other 

features were found within 50 m of this location during the field mapping in 2012 (handheld 

GPS accuracy in 1999 was typically worse than +/- 20 m).  The 2000-lidar analysis reports a 

dextral offset of 6.6 m +/- 1.1 m at the Armory, while 2014-field concluded the dextral offset 

is 4.5 m - 8.5 m and the 2012-lidar measurement is 5.2 m +/- 2.4 m (Figure 6). 

 

1999-field [4.85 m +/- 0.65 m] 

We consider the 1999-field measurement of 4.85 m +/- 0.65 m to be the most reliable 

measurement because it was measured within a week of the earthquake and thus was less 

affected by subsequent surface processes.  It is likely that the near-fault colluvium responsible 

for large uncertainties in all of the later measurements was not yet present within the first few 

days after the event when this measurement was made, although we were not able to examine 

field photos of the site immediately after the earthquake.  1999-field also has generally smaller 

uncertainties than 2014-field (Figure S4).  
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2014-field [4.5 m - 8.5 m] 

The field observations used to determine our reported offset at this location are annotated on 

low altitude helicopter imagery in Figure 6(b).  The large uncertainty is due to the curvature of 

the piercing line on the west side of the fault under colluvium within about two meters of the 

surface rupture.  As a result, we report a range of values expressing the minimum and 

maximum offsets based on different projections of the piercing line under the colluvium (more 

curvature = smaller offset). Excavation to resolve this was not possible due to the presence of 

potentially hazardous military detritus.  The reported field measurement from Treiman et al. 

(2002) of 4.85 m +/- 0.65 m is similar to the lower end of our field measurement range and 

suggests the curved projection and smaller offset is a better estimate of the displacement at this 

location.  This is important as it illustrates the effect of projection uncertainties on the 

measurement value. 

 

2000-lidar [6.6 m +/- 1.1 m] 

The shapes of the piercing lines on either side of the rupture are visible in the screen capture 

of the 2000-lidar dataset (Figure 6(c)).  The piercing line on the east side (upstream) of the fault 

is straight but appears to intersects the fault at a much higher angle than is used for the 2000-

lidar measurement (~ 30°, Figure 6(c)).  The 2000-lidar measurement assumes that the piercing 

line on the west side of the fault is straight, but in reality it curves as it approaches the fault (as 

annotated in Figure 6(b)) and may have been lost under colluvium near the scarp.  It is 

important to note that the 2000-lidar base imagery is less clear than the 2012-lidar base imagery 

(Figure 6), and this may have played a role in the placement of the piercing lines in the 2000-

lidar analysis.   
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*FOOTNOTE* While the bearings of the piercing lines similar to that of 2012-lidar were 

noted at the time that the 2000-lidar measurement was made, these orientations were 

attributed to fault zone shearing as they changed their orientations within 6 m of the fault 

zone and they did not create a linear pre-rupture piercing line.  However, if piercing lines were 

defined 6 m away from the fault zone on either side, a straighter pre-earthquake piercing line 

was established. In the absence of field based observations clearly showing that the the piercing 

line was indeed curved, this interpretation of the curvature as shearing led to the erroneously 

large measurement. 

 Consequently, we attribute the larger value of the 2000-lidar measurement (6.6 m +/- 1.1 m) 

to unclear hillshade imagery, choice of projection directions (arrows), and a large distance from 

the fault to the topographic profiles (6 m).  

 

2012-lidar [5.2 m +/- 2.4  m] 

The improved resolution of the 2012-lidar measurement more clearly defines the piercing lines 

on both sides of rupture, especially the slight curvature on the downstream (W) side of the 

fault (Figure 6(d)).  For this reason, and because of our pre-existing knowledge of the 

curvature from field observations, we carefully chose the projection directions and distance 

from topographic profile to fault to match our geomorphic interpretation. Although we 

intended to make this offset measurement independent of all the previous measurements, the 

experience of having visited the site in the field prior to making the lidar-based offset 

measurement did play a role in the geomorphic interpretation, and the choice of measurement 

parameters. 

 

Example #2: Slip variation at Lou’s Pass 
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Our next case study site is a 300-meter long segment of the rupture in the northern portion of 

the MSZ which we name here Lou’s Pass (LP, see Figure 2 for location; Rows CT128-RCN30 

in Table 2).  This segment of rupture is straight, largely confined to a single strand, and has 

many geomorphic features offset along its length.  For these reasons, Hudnut et al. (2002, 

figure 4 therein) utilized the 2000 ALS data to study the rupture.  Hudnut et al. (2002) drew a 

300 m long topographic profile on either side of the fault (two to four meters from the fault) 

and inverted for the slip vector that optimized the cross correlation between the two profiles.  

They found an optimum dextral horizontal offset value of 4.2 m +/- 0.5 m.  Hudnut et al. 

(2002) also show three field-based dextral horizontal offset measurements from this area 

(citing Treiman et al., 2002), ranging from 3.5 m +/- 0.3 m to 5.1 m +/- 0.3 m. 

 

In Lou’s Pass, there are nine lidar-based dextral horizontal offset measurements in the 2000-

lidar dataset, ranging from 2.6 m +/- 0.4 m to 5.5 m +/- 1 m.  Four of these measurements 

were removed based on field observations (2014-recon) and are not included here (Table S1), 

and two of them were not evaluated due to logistical constraints. Along this 300-meter 

segment of straight, single-stranded bedrock rupture we report fourteen new 2014-field 

measurements ranging from 1.9 m +/- 0.5 m to 4.5 m +/- 2.0 m, seven of which were also 

measured using new 2012-lidar data.  These range from 2.6 m +/- 1.2m to 3.9 m +/- 1.6 m. 

 

Several interesting patterns emerge from visualization of all the offset measurements within the 

Lou’s Pass study area (Figure 7).  Slip decreases from 3-4 m to less than 2 m at the south end 

where the rupture bends southward into a zone (tens of meters wide) of distributed faulting 

(see Figure 2).  Lidar-based offset measurements from the two datasets plotted on Figure 7(b) 

generally show a good correlation.  One outlying 2000-lidar measurement (5.5 m offset at 275 
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m along strike) is an example of interpretation errors.  In this case the feature is a linear ridge 

nearly perpendicular to the surface rupture (Figure 8(a)).  Closer inspection, however, shows 

that the ridge top is broad and increases in width from west to east, which led to the large 

uncertainties reported in the 2014-field and 2012-lidar measurements (4 m +/- 3 m and 3.3 m 

+/- 2 m, respectively).  The 2000-lidar measurement (5.5 m) is based on a cross correlation of 

projected profiles which fail to properly capture the complex ridge top form, resulting in an 

overestimate of the offset compared to later investigations.  The associated uncertainty 

estimation (+/- 1.0 m) is based on backslipping of hillshaded DEM imagery during the 

measurement.  The remaining four 2000-lidar measurements in LP were made on straight 

segments of channels or linear ridge crests, some of which appear similar to the example in 

Figure 8(a) when viewed on a hillshade DEM, but are much better features to measure (e.g. 

Figure 8(b)). 

 

The distance from the fault to the topographic profiles chosen for the 2000-lidar 

measurements (3 meters on each side) is particularly important in the specific case of the ridge 

in Figures 8(a) and 8(c).  We illustrate this by reproducing the projection directions and 

topographic profile lengths used in the 2000-lidar measurement and then repeatedly making 

the measurement with a series of different distances from fault to profile using the 2012 ALS 

data (Figure 9).  If the feature captured by the profiles were straight, changing the fault to 

profile distance should have little effect on the final measurement.  If a feature is not straight, 

the apparent offset can increase with distance from the fault, and the change is not linear 

(Figure 9).  The 2000-lidar and 2012-lidar measurements show that the difference in reported 

offset (Figure 8(a) versus 8(c)) can be entirely explained by the different distances chosen from 

fault to profile.  The very large uncertainty (+/- 3 m) assigned to the 2014-field measurement 
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captures the offset and uncertainty of both of the lidar-based measurements, indicating that 

the curvature of the ridge top was considered in that measurement. 

 

Resolution of small-scale slip variability 

The data allow us to address the question of variability in the horizontal offsets at short length 

scales along the fault rupture.  The horizontal offset values from multiple data sources (Figure 

7(b)) suggest that slip varies along the LP segment of the rupture on the order of one meter (~ 

25% of total slip) along about 300 meters of straight, single-stranded  rupture in bedrock.  This 

is the only segment of the rupture where we consider that the offset measurements are dense 

enough (25 measurements in 300 m of rupture) to reliably assess along-strike variability. 

 

The HM earthquake had a complex rupture geometry, including a bifurcation of the 

seismogenic fault system near the bend in the rupture trend and a possible asperity causing 

high frequency seismic radiation at this location (Ji et al., 2002).  This bend occurs over a long 

zone (about a kilometer) located immediately south of Lou’s Pass, and may be associated with 

such an asperity.  The only other location along the surface rupture where another such bend 

in the rupture trend occurs is to the south of the Bullion Mountains and outside the MSZ.  We 

do not have enough data around this other location to assess if a similar pattern of offset 

variability exists there.   

 

Many studies of major earthquake surface ruptures over the past few decades have recognized 

the presence of lateral variability in horizontal displacement along major earthquake surface 

ruptures (Rockwell et al. 2002; Ammon et al. 2005; Langridge et al. 2002; Haeussler et al. 2004; 

McGill and Rubin, 1999; Milliner et al. 2015).  These studies typically recognize large changes 
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in displacement at rupture segment boundaries (e.g. major bends in rupture or a shift from 

single strand to distributed faulting).  This observation was corroborated by a detailed analysis 

of several hundred offset measurements made using post-event air photos from the 1940 

Imperial Valley earthquake by Rockwell and Klinger (2013).  Their study quantifies the typical 

displacement variability on the order of 30% along an agricultural section (measurements are 

made on soil regolith, not bedrock) of the 1940 Imperial Valley Earthquake surface rupture.  

Similarly, Rockwell and Klinger (2013) also observe larger discrete changes in displacement 

corresponding to segmentation of the rupture process.  We find our results to be in good 

agreement with both the more general observations of multiple workers and the more focused 

study of Rockwell and Klinger (2013).  Within Lou’s Pass we observe variation on the order of 

25% along a single bedrock segment of the HM rupture, with a larger discrete change (2 m - 

2.5 m) in displacement at the south end of the section where the rupture transitions to a 

segment of more distributed faulting. 

 

Our observations provide new constraints on the physics of earthquake rupture.  It is clear that 

this variability is present in the bedrock along this 300-meter segment of rupture.  Because 

earlier studies were in regolith or soil, there was always some doubt as to whether this 

variability represented the offset in the bedrock below the sediments.  The presence of this 

variability in bedrock opens up the possibility that offset variability along strike may be the 

source of high frequency seismic energy whose source is not well explained by smooth and 

continuous fault ruptures (e.g. Ji et al., 2002).   

 

CONCLUSIONS 
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During the decades and centuries after an earthquake, modification of offset landforms 

becomes a major obstacle to paleoseismologists desiring to measure displacement along faults.  

As a result, understanding the processes of geomorphic modification is important to making 

accurate measurements.  The advent of lidar technology made possible the rapid creation of 

high-resolution topographic maps over large areas, and its widespread availability is a major 

advance for measuring offset geomorphic features using computer-based technologies (e.g. 

LaDiCaoz) as well as studying offset feature modification in the years and decades after 

earthquakes occur.  An obvious place to explore this new tool is the location of the first ever 

ALS coverage of an entire major earthquake surface rupture, the HM earthquake surface 

rupture (Hudnut et al., 2002).  Using this early study as a baseline, a repeat postseismic ALS 

acquisition (NCALM, 2012) allows for 4D comparison of the two ALS datasets and provides 

for the first time a local snapshot of near-fault topographic modification in the decade 

immediately following a major earthquake rupture.  We demonstrate this by calculating 4D 

change using the open access Cloud Compare software (Figure 4). 

 

Our field results complement this 4D topographic study by documenting lithologic 

dependence of offset feature modification in the years since the earthquake.  On Lavic Lake 

and in the Bullion Mountains, only minor erosional modification of offset geomorphic features 

has occurred since 1999.  In contrast, offset geomorphic features are now highly degraded or 

destroyed where the rupture cuts across the active alluvial fan on the north flank of the Bullion 

Mountains. 

 

New field and lidar-based datasets presented here significantly increase the number of offset 

geomorphic feature measurements within the MSZ of the HM surface rupture and allow us to 
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compare observations over multiple years.  This helps us to better understand the surface 

rupture, for example in the Lou’s Pass segment of the MSZ, a straight, single-stranded, 300-

meter long segment of bedrock surface rupture where we compile 26 field and lidar-based 

offset measurements (Figure 7).  This compilation reveals local slip variation on the order of 

25% of average slip.  This finding is in agreement with previously published estimates from 

other historic surface ruptures (e.g. Rockwell and Klinger, 2013; Milliner et al. 2015).  

Measurement uncertainties were large and thus limit our ability to see any post-seismic slip 

between these two lidar epochs that is less than ~1.4 m.  COSI-corr analysis estimates the total 

is less than roughly 13 centimeters (Sousa et al., 2012). 

 

Our field-based study of previously published lidar-based offset measurements finds a number 

of issues that can occur during the process of making the measurements, and show that these 

errors are sometimes common (greater than 25% of offset measurements in 2000-lidar).  

Direct comparison of the co-located offset measurements within the MSZ show numerous 

instances where lidar-based measurements deviate from field-based measurements on the 

order of 20% - 100% of offset value.  These errors are generally attributable to choices made 

by the user during the process of making the measurement, primarily manifest as incorrect 

choices of profile locations and projection directions, and illustrate that careful choice of these 

parameters reduces this problem.  The 2012-lidar offset measurements recognized these 

problems and demonstrate that better measurements can be obtained by making the clearest 

possible hillshade visualizations, avoiding complex geomorphic interpretation, and pursuing 

straight offset geomorphic features.  We conclude that measurements made during field work, 

where careful and geologically informed decisions can be made, are more reliable than 
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measurements made using lidar only. In locations where field work is impossible, stringent site 

selection criteria are required to ensure accuracy of lidar-only measurements.   
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DATA AND RESOURCES 

The 1999 HM earthquake focal mechanism was accessed online from the USGS earthquake 

catalog (http://earthquake.usgs.gov/earthquakes/eqinthenews/1999/ushector/, last accessed 

26 January 2016).  2012 NCALM ALS data are available on OpenTopography website 

(www.opentopography.org, last accessed 26 January 2016.  CloudCompare (version 2.5) 

software is available at www.cloudcompare.org (last accessed 26 January 2016).   
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TABLES 

Table 1.  Data matrix of MSZ measurements 

  1999-field  2000-lidar  2012-lidar  2014-field 

2014-field 
8 
Figure S4 

26 
Figure 5(c) 

31 
Figure 5(d) 

55 

2012-lidar  
4 
Figure S3 

25 
Figure 5(a) 

31   

2000-lidar  
13 
Figure 5(b) 

64*     

1999-field  26       

 

Footnote for Table 1: 

Numbers in bold represent the total numbers of measurements in each database.  The number 

of co-located measurements in the intersection of each of the corresponding pairs is listed in 

each of the other boxes.  For plots of each pair of datasets see Figure 5, except for two pairs 

where n is less than 10 data points, which are plotted in Figure S3 and S4.  Data sources: 1999-

field (Treiman et al., 2002), 2000-lidar (Chen et al., 2015), 2012-lidar (this study) and 2014-field 

(this study).  *64 represents the number of MSZ measurements in 2000-lidar after 

groundtruthing in 2014-recon (this study).  
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Table 2.   86 new offset measurements.  2014-field (55) and co-located 2012-lidar (31). 

Field (lidar) 
Designation 

2014-field 
(meters) 

2014-field 
Rating 

1999-field 
(meters) 

2012-lidar 
(meters) 

2012-lidar 
Rating 

2000-lidar 
Rating 

North/East 
UTM11 

CT101 1.7 - 2.9 V-Good - 2.3 +/- 0.8 Fair Poor 3827460 565185 

CT102 1.1 - 1.5 Good - 2.6 +/- 0.8 V-Good Poor 3827435 565204 

CT103 1.2 +/- 0.5 Good - 1.2 +/- 0.8 Good Poor 3827393 565233 

RCN15 (CT104) 1.6 - 2.47 Good - 1.4 +/- 0.8 Fair Fair 3827372 565251 

CT111 1.6 +/- 0.5 Good - 1.0 +/- 0.4 Good Good 3826839 565723 

CT112 2.0 - 2.2 Fair - - - - 3826798 565769 

CT114 2.6 +/- 0.5 V-Good - 2.6 +/- 0.4 Fair Fair 3826756 565824 

CT115 1.5 - 3.5 Poor 4.0 +/- 1.0 2.0 +/- 0.8 Poor Fair 3826743 565847 

CT118 1.2 - 2.5 Good - 0.9 +/- 0.4 Good Good 3826676 565931 

CT119 1.2 +/- 0.5 Good - 0.9 +/- 0.8 Fair Good 3826653 565960 

RCN13 0.8 - 3.33 Fair - - - - 3826398 566148 

CT123 4.0 +/- 1.5 Good - 2.8 +/- 0.8 Good Good 3826216 566244 

CT128 3.6 +/- 3.0 Poor - 2.6 +/- 1.2 Good Poor 3825816 566512 

RCN12 (2014-7) 4.5 +/- 2.0 Good - 3.9 +/- 1.6 Fair - 3825750 566561 

RCN27 2.9 +/- 0.5 Good - - - - 3825706 566587 

RCN9/26 (CT131) 2.8 +/- 1.0 Fair - 2.7 +/- 1.2 V-Good Good 3825689 566598 

RCN25 (CT132) 3.7 +/- 0.5 Fair - 3.1 +/- 0.8 Good Good 3825675 566605 

RCN24 1.9 +/- 0.5 Good - - - - 3825662 566612 

RCN8 (CT134) 4.0 +/- 3.0 Good - 3.3 +/- 2.0 Good Good 3825655 566616 

RCN22 3.8 +/- 0.5 Good 5.1 +/- 0.3 - - - 3825614 566637 

CT135 2.8 - 3.7 Good 5.1 +/- 0.3 - - - 3825611 566642 

RCN21 (2014-5) 3.5 +/- 0.5 Good 5.1 +/- 0.3 3.0 +/- 1.2 Fair - 3825608 566641 

RCN33 (2014-4) 2.9 +/- 0.5 Fair - 2.9 +/- 1.2 Poor - 3825568 566665 

RCN32 3.5 +/- 0.5 Fair - - - - 3825562 566669 

RCN31 2.4 +/- 0.5 Fair - - - - 3825554 566674 

RCN30 2.9 +/- 0.5 Good - - - - 3825549 566676 

RCN1 1.65 +/- 0.3 Good - - - - 3825484 566707 

RCN2 1.3 - 1.65 Good - - - - 3825478 566711 

RCC7A 5.5 +/- 0.5 Good - - - - 3824108 567281 

148-LM 4.4 +/- 1.2 Good - - - - 3824274 567235 

148-JK 4.1 +/- 0.7 Good - - - - 3824261 567240 

148-HI (CT148) 4.3  +/- 1.2 Good - - - Poor 3824255 567241 

149-EF 4.4 +/- 2.0 Fair - - - - 3824247 567243 

149-CD 4.3 +/- 1.6 Good - - - - 3824235 567247 

149-AB 4.3 +/- 1.6 Good - - - - 3824232 567248 

RCC7B (CT155) 5.7 +/- 0.7 V-Good - 5.4 +/- 1.2 Fair Poor 3824097 567285 

RCC7D 1.4 - 4.9 Good - - - - 3824078 567289 

RCC6A 4.4 - 4.7 Good - - - - 3824071 567291 

RCC6B (2014-3) 2.7 - 3.4 Fair - 3.8 +/- 1.2 Fair - 3824061 567294 

RCC6C (CT156) 2.7 - 4.0 Good 3.63 +/- 0.45 3.8 +/- 1.2 Good Good 3824055 567296 

RCC6D (2014-2) 0.5 - 2.4 Fair 3.63 +/- 0.45 1.3 +/- 0.8 Poor - 3824047 567309 

RCC6E (CT157) 3.7 - 4.3 Fair - 3.2 +/- 1.2 V-Good Good 3824037 567303 

RCC2 2.8 - 3.8 Fair 4.55 +/- 0.3 - - - 3823590 567412 

RCC1 (CT166) 1.5 - 3.0 Poor - 2.3 +/- 1.2 Good Poor 3823566 567419 

ARMORY (CT167) 4.5 - 8.5 Fair - 5.2 +/- 2.4 Fair Poor 3823515 567431 

233A 3.2 +/- 0.5 Fair - - - - 3823375 567471 

LM4 (CT177) 1.1 - 2.7 Fair - 2.4 +/- 0.8 Fair Fair 3822253 567637 

LMM (CT178) 5.7 - 6.5 Poor - 6.2 +/- 1.6 Good Good 3822207 567646 

LM3 (CT182) 3.1 +/- 1.2 Good - 4.6 +/- 1.2 Fair Poor 3821808 567696 

LM1 (CT183) 3.5 +/- 1.0 V-Good - 3.8 +/- 1.6 Good V-Good 3821640 567748 

LM2 (2014-1) 3.3 +/- 1.5 Good - 4.0 +/- 1.2 Fair - 3821536 567752 

HSZ6 (CT186) 6.7 +/- 0.5 V-Good - 5.1 +/- 1.6 Fair Poor 3821355 567789 

HSZ3 (CT191) 3.1 +/- 1.0 Good - 3.8 +/- 1.2 Fair Poor 3820232 568080 

HSZ1 3.9 +/- 0.2 Good 4.0 +/- 0.5 - - - 3820110 568119 

HSZ2 4.2 +/- 1.0 Fair - - - - 3820079 568127 
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Footnote for Table 2: 

Two different methods were used to assign uncertainties in field measurements.  Subjective 

quality ratings were given for each field and lidar measurement, as well as for each 2000-lidar 

measurement that was field checked.  See DATA AND METHODS for explanation. 
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FIGURE CAPTIONS 

Figure 1. 

Overview map of the 1999 HM Earthquake surface rupture.  Map shows extent of the 2000 

airborne laser scan (ALS) and 2012 ALS. The maximum slip zone (MSZ) and the HM surface 

rupture trace from Treiman et al. (2002).  Inset shows regional context outlining the 

MCAGCC base boundary (thick line) and the HM surface rupture.  Extent of Figure 2 is 

outlined near the center of the rupture. The locations of Figure S1 and S2 are shown for 

reference.  Focal mechanism from USGS earthquake catalog is plotted at the location of the 

epicenter of HM earthquake.  ECSZ: Eastern California Shear Zone.  LA: Los Angeles.  SS: 

Salton Sea.  SAF: San Andreas Fault.  GF: Garlock Fault.  SSN: Southern Sierra Nevada.  Base 

imagery for main figure and inset are from ESRI global imagery dataset. 

 

Figure 2. 

At left, hillshade image derived from 2012 NCALM ALS data of the entire maximum slip zone 

(MSZ) of the HM surface rupture showing locations of new offset measurements (white 

circles = 2014-field only, black circles = 2014-field and 2012-lidar co-locations).  Figures 4, 6, 

7, 8, and 9 are labelled.  Linework is 1999 surface rupture as mapped by Treiman et al (2002).  

Focal mechanism from USGS earthquake catalog is plotted at the location of the epicenter of 

HM earthquake.  At right, 2014-field and 2012-lidar within the MSZ are plotted.  Vertical axis 

is distance along surface rupture, increasing south to north, starting at 0 km at the northern 

end of the rupture (after Treiman et al. 2002).   

 

Figure 3. 
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Reported offset versus uncertainty within the MSZ for each new dataset.  See text for further 

discussion.  (a) 2014-field (this study).  (b) 2012-lidar (this study). 

 

Figure 4. 

4D topography at Armory offset location (see Figure 2) comparing 2000 and 2012 ALS 

surveys showing areas of erosion and deposition of surficial deposits. Poor lidar resolution and 

data quality elsewhere along the surface rupture precluded us from calculating topographic 

change along other large swaths of the surface rupture.  However, we were able to complete 

this process in a few other small areas on Lavic Lake (Figure S1) and the alluvial fan north of 

the Bullion Mountains (Figure S2). 

 

Figure 5.  

Comparisons of datasets of co-located offset measurements within the MSZ of the HM 

surface rupture.  A 1:1 line is plotted as dashed line, and a linear regression and associated R2 is 

shown.  For (a), (b), and (c) data is shown based on subjective quality rating assigned to each 

2000-lidar measurement during new field work (gray = poor or fair, black = good or very 

good).  Mean (µ) and standard deviation (σ) of each set of measurements is listed on the axis.  

Means are plotted as a star.  Two other possible combinations with few data points (n = 4 for 

2012-lidar versus 1999-field and n = 8 for 2014-field versus 1999-field) are included in the 

electronic supplement (Figure S3 and S4).  (a) 2000-lidar versus 2012-lidar (Chen et al., 2015; 

this study).  No distinct trend between mean offset and subjective quality is apparent.  Four 

measurements from 2000-lidar are not shown because they were not considered to be 

originally contiguous features during the field study.  (b) 2000-lidar versus 1999-field (Chen et 

al., 2015; Treiman et al., 2002).  Two measurements are not plotted because they were 
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removed from database based on field observations in this study.  (c) 2000-lidar versus 2014-

field (Chen et al., 2015; this study).  Four measurements are not plotted because they were 

removed from database during field study.  (d) 2012-lidar versus 2014-field (this study). Data is 

shown based on subjective quality rating assigned to each 2012-lidar measurement (gray = 

poor or fair, black = good or very good).   

 

Figure 6.  

Offset at the Armory site with annotations drawn on low altitude helicopter photo from 2012.  

The HM surface rupture cuts diagonally across the middle of each frame from northwest to 

southeast.  (a) Photo only without annotation.  (b) Same base imagery as (a) but annotated with 

overlay of 2012 field observations.  Colluvium at the foot of the scarp conceals the original 

piercing line; thin dashed lines show two options for continuation of the piercing line, a 

minimum which continues the curvature of the piercing line towards the fault and a maximum 

which terminates the piercing line at its contact with the colluvium.  (c) Screen capture of lidar-

based measurement including hillshade visualization, topographic profile location (thick lines), 

fault orientation (dashed), and projection directions (arrows) are reproduced from Chen et al. 

(2015) supplementary material.  (d) Screen capture of hillshade, topographic profile locations, 

and projection directions chosen for the 2012-lidar measurement at this location.  The SE 

arrow (lower left) is not located on obvious lineation immediately to its left because that 

lineation does not correspond to the piercing line, rather it is the erosional cut of a post-1999 

active channel.  We are certain of this as a result of field observations in 2012 and 2014. 
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Figure 7. 

(a) Oblique 3D view of the Lou’s Pass segment of the MSZ derived from the 2012 ALS data.  

Extent of plot in (b) is shown as line along the west side of the rupture.  View is roughly to the 

west.  (b)  Slip distribution along the Lou’s Pass segment of the MSZ.  Three 2014-field 

measurements and one 2000-lidar measurement are plotted for reference but are crossed out 

in grey and not included in the analysis of variability along this straight segment because of 

their correspondence to a segment boundary in the surface rupture (two at the left edge of 

figure) or problems with lidar measurements (see Figure 8).  The COSI-Corr result for this 

location along the rupture is about 4.5 – 5 meters of right lateral offset (LePrince et al., 2007). 

 

Figure 8.  

Lidar screen captures of two adjacent offset ridges in Lou’s Pass. (a) and (b) are taken directly 

from 2012-lidar (corresponding to sites RCN8 (CT134) and RCN25 (CT132) in Table 2, 

respectively).  (c) and (d) can be accessed from information provided in the electronic 

supplement to Chen et al. (2015).  See Figure 6 caption for description of the other types of 

lines. 

 

Figure 9.  

Screen capture of lidar-based measurement at site RCN8 (CT134), same location as Figure 

8(a), with fault-to-profile distance drawn at 7 meters on either side of the fault (left).  See Table 

2 for location details.  Plot generated by making measurements using different fault-to-profile 

distances ranging from one meter to seven meters but no change in the projection directions 
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(arrows).  A is 2000-lidar reported measurements, B is 2012-lidar reported measurement, C is 

2014-field measurement for the same ridge. 

 

Figure 1. 

  



 

 

199 

 

 

 

 

Figure 2. 

 

 

 

 



 

 

200 

 

 

 

 

 

 

 

 

 

Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

201 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 

 
 
 
 
 
 
 
 
 
 
 
 



 

 

202 

 
 
Figure 5. 
 

 



 

 

203 

 

 

Figure 6. 

 

 

 

 



 

 

204 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. 

 

 

 



 

 

205 

 

 

 

 

 

 

 

 

 

 

Figure 8. 

 

 

 

 

 
 
 
 
 
 
 
 
 



 

 

206 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. 
 
 
 
 
 
 
 
 
 
 
  



 

 

207 

APPENDIX C 
 
This supplement includes one data table of offset measurements which were removed from 

database during field checking of offset measurements and and five supplemental figures. 

 

List of figure captions: 

Figure S1.  (a) Left panel shows aerial imagery of part of the 1999 HM surface rupture along 

the alluvial fan on the northern flank of the Bullion Mountains.  Six locations are labelled with 

P or A identify the location of near fault ponding and data artifacts, respectively.  Linework is 

from 1999 rupture trace from Treiman et al (2002).  Base imagery is from ESRI global imagery 

dataset.  (b)  Right panel shows same extent as (a), with topographic change raster (1 m) 

overlain.  Three locations deposition is evident in the topographic change raster are due to 

near fault ponding are labelled (P).  At these locations local depressions near the surface 

rupture were filled in with new deposits between 2000 and 2012.  The sharp curvilinear edge 

on the right side of these zones of ponding is the surface rupture location.  Several elements of 

the apparent topographic change are data artifacts and difficult to discern from real signal. We 

note three where the different tones in the topographic change raster shows clear areas of data 

artifact (A).  Two of these (the two to the northwest) show terraces which appear to have 

shifted east or southward.  This is due to a common data artifact internal to the 2000 ALS data 

which we are unable to remove during our data processing routine.  The third location in the 

southeast corner of the frame show a rounded set of bands cutting across the A label.  This is 

due to another artifact in the 2000 ALS data of which we are unable to determine the cause.  

Ponding on the west side of the fault and incision on the east side is visible in a few locations.   
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Figure S2.  (a) Left panel shows aerial imagery of part of the Lavic Lake section of the 1999 

HM surface rupture.  Linework is from 1999 rupture trace from Treiman et al. (2002).  Base 

imagery is from ESRI global imagery dataset.  (b)  Right panel shows exact same extent as (a), 

with topographic change raster (0.5 m) overlain.   No clearly discernible patterns emerge from 

this topographic change calculation.  Small patchy areas across the image show the locations of 

bushes, small man-made holes, and small outcrops of basalt.  The dark grainy area near the 

bottom of the frame is a larger outcrop of basalt.  The topographic change calculated at each 

of these locations may be due in part to near fault erosion and deposition, or data artifacts.  

However, we are unable to discern a signal from the noise. 

 

Figure S3.  Comparison of likely collocated 1999-field versus 2012-lidar offset measurements 

(Treiman et al., 2002; this study).  These features are considered “likely co-located” because the 

locations derived from handheld GPS during the 1999 measurement is located within 20 

meters of a 2012-lidar measurement.  For likely co-located measurements, reported 

uncertainties in the 2012-lidar data are generally larger than those in 1999-field.  We interpret 

this to be due in part to erosional modification during the decade between the two ALS 

acquisitions, and also in part due to the different methods of uncertainty estimation used for 

the two studies.  A 1:1 line is plotted as a dashed line, and a linear regression and associated R2 

are shown.  Mean (µ) and standard deviation (σ) of each set of measurements are listed on the 

axis.  Means are plotted as a star.   

 

Figure S4. Comparison of likely collocated 1999-field versus 2014-field offset measurements 

(Treiman et al., 2002; this study).  A 1:1 line is plotted as dashed line, and a linear regression 

and associated R2 is shown.  Mean (µ) and standard deviation (σ) of each set of measurements 
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is listed on the axis.  Means are plotted as a star.  Since no additional description of each of the 

field offset measurements were included in Treiman et al. (2002), we used a 20 meter search 

radius to select these data, but we are not certain that they are truly co-located. GPS locations 

from the 1999-field database are very poor due to the timing of the 1999-field study before 

selective availability was turned off in 2000.  The average measured distance between each 

1999-field measurement and the 2014-field measurements plotted here is 16 meters.  Note that 

three data points plotted with same y-value only correspond to a single measurement from 

Treiman et al. (2002), because one 1999-field measurement is within 20 meters of three 

different 2014-field measurements.  For likely co-located measurements, reported uncertainties 

in the 2014-field data are generally larger than those in 1999-field.  We interpret this to be due 

in part to erosional modification during the decade between the two ALS acquisitions, and also 

in part due to the different methods of uncertainty estimation used for the two studies. 

 

Figure S5.  Slip variability along the Lou’s Pass segment of the surface rupture showing 

different datatypes by color and showing reported uncertainty measurements for each.  Axes 

are the same as for Figure 7(b) from the main text. 

 

 

List of table captions: 

Table S1, table of lidar-based measurements from Chen et al. (2015) removed from database 

during field checking. 

 

Description of KMZ file: 



 

 

210 

Google Earth File S1.  This is a KMZ of GeoXH linework showing the location of the Hector 

Mine surface rupture as documented during 2012-2014 field work. 

 

Field-based offset measurement documentation, screenshot documentation of new lidar-based 

measurements, and field notes from field checking of published lidar based measurements 

from Chen et al. (2015) are permanently digitally archived at Caltech 

(http://dx.doi.org/10.7907/Z9CJ8BF4) 
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Table S1.  21 measurements removed from 2000-LiDAR database during new field work 

 

 

 

  

LiDAR 

Designation 

North and East 

UTM 11(meters) 
Explanation 

CT106 3827033 565554 
Profiles do not span a single channel that is  

offset by the rupture, they both cross the fault obliquely. 

CT109 3826941 565637 
Significant curvature prior to 99 event.   

Projection directions are wrong. 

CT110 3826905 565661 
Offset feature is a hillslope of rounded  

geomorphic bowl. 

CT112 3826798 565769 
Profiles do not capture an offset feature.  Downstream profile is 

located in a depression parallel to shutter ridge. 

CT113 3826770 565814 
Profiles do not capture an offset feature.  Red profile is located 

on the fault. 

CT116 3826732 565854 Repeat measurement, same as # 115. 

CT117 3826723 565876 
Profiles do not capture an offset feature. Channels are very 

oblique to the fault rupture. 

CT120 3826590 566027 Profiles do not capture an offset feature. 

CT124 3826188 566263 Projection directions are erroneous.  No clear offset feature. 

CT129 3825767 566551 Profiles do not capture an offset feature. 

CT130 3825749 566561 No measurement documented in screenshot. 

CT133 3825667 566604 Profiles are not capturing an offset feature. 

CT135 3825611 566642 Projection directions are erroneous.  No clear offset feature. 

CT144 3824655 567096 Profiles do not capture an offset feature. 

CT159 3823939 567326 Profiles do not capture an offset feature. 

CT163 3823783 567372 Profiles do not capture an offset feature. 

CT170 3823033 567543 Profiles do not capture an offset feature. 

CT172 3822845 567577 Profiles do not capture an offset feature. 

CT180 3822036 567641 Profiles do not capture an offset feature. 

CT181 3821899 567669 Profiles do not capture an offset feature. 

CT188 3820711 567913 Profiles do not capture an offset feature. 
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Figure S1. 
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Figure S2. 
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Figure S3. 
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Figure S4. 
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Figure S5. 
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C h a p t e r  4  

A magnetostratigraphic pilot study of the Paleocene Goler Formation, 

El Paso Mountains, California 

 

Francis Sousa1, Joseph Kirschvink1, Sarah Slotznick1, Leah Sabbeth1 

1Caltech Division of Geological and Planetary Sciences 

 

ABSTRACT 

 The Paleocene Goler Formation in the El Paso Mountains, California is a 4,000 meter 

thick clastic sedimentary sequence composed of mainly continental sedimentary rocks, as well 

as a marine incursion near the top of the section.  Published depositional age constraints for 

the Goler Formation are limited to biostratigraphic data which include early Eocene marine 

foraminifera and vertebrate fauna from the marine section in the uppermost part of the 

section, as well as Tiffanian mammalian fossils from the lower part of the member 4.    

Minimal paleomagnetic data from fossil localities in member 4 are sparse, isolated, and 

incomplete, and the lower 2,500 meters of section beneath the Paleocene fossil localities is of 

unknown age.  In order to better constrain the depositional age of the fossil bearing 

sedimentary rocks, as well as lay the groundwork for continued magnetostratigraphic studies 

lower in the Goler Formation, we have completed a pilot study at one of the lowest fossil 

localities in member 4a (Grand Canyon locality).  At the top of a new magnetostratigraphic 

section, a magnetic reversal is recorded, which is either the C26r-C26n boundary or the C27r-

C27n boundary.  At the bottom of the section, a single reversed sample indicates that our 

section may capture an entire normal chron (either C26n or C27n).  The similar durations of 
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these normal chrons (300,000 to 400,000 years) allow us to calculate a tentative sediment 

accumulation rate for the Goler Formation of ~ 1.0 m – 1.3 meters per thousand years, a rate 

that is generally consistent with fluvial deposition.  The results of this pilot study strongly 

indicate that further magnetostratigraphic study of the Goler Formation will significantly 

strengthen constraints on the depositional age model for the fossil bearing upper member 4, as 

well as the lower members and base of the Goler Formation. 

 

INTRODUCTION 

Due to the limited number of Paleocene terrestrial deposits in California, the Goler 

Formation in the El Paso Mountains, California is an important regional geologic datum for 

this time period.  Previous workers have undertaken detailed studies including geologic 

mapping, stratigraphy and basin analysis, and biostratigraphy of the Goler formation (Cox, 

1982, 1987; Dibblee, 1967; Albright et al., 2009; McKenna et al., 1987; Lofgren et al., 2014).  

The total sedimentary thickness of the Goler formation is in excess of four kilometers and is 

divided into four members by Cox (1982, 1987).  Members 1-3 consist of a 2500-meter-thick, 

generally upward fining section composed mostly of granitoid and metasedimentary detritus 

interpreted to be derived from nearby sources to the north (Cox, 1982).  The upper member 4 

consists of a 1500-meter-thick, westward fining section that contains abundant detritus of 

silicic volcanic rocks and quartzite interpreted to be derived from distant eastern sources (Cox, 

1982).  Biostratigraphic studies have been mostly limited to member 4, where decades of 

sustained field efforts have led to the discovery of multiple fossil localities and the recovery of 

dozens of eutherian mammal specimens, representing 18 species (Lofgren et al., 2014).  These 

fossils constrain the depositional age of the lower part of member 4 to be Tiffanian (North 

American Land Mammal Ages, circa 61.5 – 57 Ma; Secord, 2006).  While the Goler Formation 



 

 

220 

is almost entirely of terrestrial origin (Cox, 1982), the upper part of member 4 includes a 

marine section.  Foraminiferal studies of this section indicate that the uppermost Goler 

Formation (member 4d) is of early Eocene age (McDougall, 1987).  In conjunction with the 

biostratigraphic studies, a few studies have reported limited magnetostratigraphic data from 

member 4a.  These studies include small numbers of isolated samples from a few fossil-bearing 

localities (Albright et al., 2009).  To date no detailed magnetostratigraphic studies of the Goler 

Formation have been undertaken. 

 Other than a few fossil fragments of little chronological significance from member 3 

(Lofgren et al., 2014) and the age constraint from the overlying middle Paleocene mammalian 

fauna of member 4, members 1-3 of the Goler Formation comprise a 2500 m thick 

sedimentary section of completely unconstrained depositional age.  Furthermore the base of 

the section is a deeply altered basement nonconformity, hosting significant alteration including 

what has been described as a laterite (Cox et al., 1979; Cox, 1982, 1987).  Considering these 

factors together, the question arises of whether the lower part of the section could potentially 

be Late Cretaceous in age, and possibly include a new K-T boundary section.   

 In this context, I undertook a pilot study to constrain the magnetostratigraphy of one 

of the stratigraphically lowest mammal fossil localities reported in the Goler Formation 

member 4a.  From this starting point, future magnetostratigraphic studies could both move 

further down in the section in search of an age model for the deposition of the lower 2500 

meters and base of the Goler Formation, and also continue further up in the section to better 

constrain a depositional age model for ongoing detailed biostratigraphic studies (e.g. Lofgren et 

al, 2014).  

 

GEOLOGIC SETTING 
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 The Goler Formation is deposited nonconformably on Permo-Triassic plutonic rocks 

and associated wallrocks of the El Paso Terrane (Carr et al., 1997; Saleeby and Dunne, 2015).  

Significant paleo-relief exists on this basement nonconformity, as evidenced by the presence of 

paleochannels filled by the lower members of the Goler Formation, as well as basin analysis 

undertaken by Cox (1982, 1987).  Elsewhere along this basement nonconformity, bedrock 

exposures are deeply weathered, including zones tens of meters thick of weathered plutonic 

rock, and Fe-oxide rich paleosols which have been described as being lateritic (Cox et al., 1979; 

Cox, 1982).  Overlying the Goler Formation is a Neogene section composed primarily of 

volcanic and lacustrine sedimentary rocks.  The lowest part of the Neogene section, the early 

Miocene Cudahy Camp Formation overlies the Goler Formation in angular unconformity 

(Cox et al., 1982). 

 The El Paso Mountains are located in central-east California, separated from the 

southern Sierra Nevada to the north and the Tehachapi Mountains to the west, by Indian 

Wells Valley.  The southern edge of the El Paso Mountains is truncated by the Garlock and El 

Paso faults.  The Garlock fault started its history as a Neogene north up normal fault circa 20 

Ma (Blythe and Longinotti, 2013), and has been active as a sinistral strike-slip fault in post early 

Miocene time (e..g. Monastero et al., 1997). 

 About 20 kilometers west of the El Paso Mountains in the southernmost Sierra 

Nevada – Tehachapi Mountains area, the pre-Miocene Witnet Formation outcrops as a 

sedimentary section greater than 1,000 meters thick.  Described first by Buwalda (1934) and 

later by Buwalda and Lewis (1955) and Wood and Saleeby (1997), the age of the Witnet is 

relatively unconstrained, with estimates ranging from Late Cretaceous to Oligocene.  However, 

the sedimentology of the Witnet matches well with that of the Goler (Cox, 1982), and it has 

been posited that they are likely correlable (Dibblee, 1967; Cox, 1982). 
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METHODS 

Sample Collection and Preparation 

 Along the length of an approximately 400-meter-thick sedimentary section running up 

Grand Canyon, El Paso Mountains, California, we collected 115 oriented 2.5 cm core samples 

from mudstone and sandstone outcrops.  Some sandstone samples were taken from carbonate 

cemented concretions which were generally 10 – 50 cm in diameter.  Many of the samples that 

were not from concretions were poorly consolidated, requiring that care be taken in the field 

to maintain the structural integrity of the samples during collection.  A PomeroyTM orienting kit 

was used to orient the cores in the field, and for redundancy orientations were recorded using 

a magnetic compass and sun compass when available.  All core orientation measurements were 

taken relative to magnetic north.  Bedding directions measured at multiple locations along the 

section were in close agreement and thus we applied a single average bedding correction to the 

all samples.  The stratigraphic height of each sample, in meters above the base of the section, 

was recorded in the field while the stratigraphic section was measured. 

 About half of the cores were too poorly cemented to maintain structural integrity 

during the demagnetization process.  To consolidate these samples, a mixture of sodium 

silicate solution and diatomaceous earth (AF demagnetized) was packed around the samples 

and they were allowed to dry for several days in a magnetically shielded room. 

 

Paleomagnetic remanence 

 Characteristic remanent magnetization (ChRM) of each sample was determined by 

measuring the magnetization of the samples at each of a number of demagnetization steps that 

progressively erased the natural remanent magnetization (NRM) of the sample.  Step-wise 



 

 

223 

destruction of the magnetic field of each sample was carried out through low-temperature 

cycling, low alternating field cleaning (AF), and thermal demagnetization. 

 Remanence measurements were made at Caltech on a 2G Enterprises SQuID 

magnetometer equipped with an automatic sample changer in a µ-metal magnetically shield 

room (RAPID consortium; Kirschvink et al., 2008).  The demagnetization sequence started 

with measurement of the NRM followed by two low temperature cycling steps, each of which 

involved thermal equilibrium at 77K in a liquid nitrogen bath in a Styrofoam dewar inside a 

secondary µ-metal shield inside the magnetically shielded room housing the magnetometer.  

This cooling was maintained for about 15 minutes, after which the samples were allowed to 

warm to room temperature.  These low temperature thermal cycling steps cool the samples 

below the Verwey transition (about 120 K) and remove magnetic components from multi-

domain magnetite (Ozdemir et al., 2002; Ozima et al., 1964; Schmidt, 1993).  Following the 

low temperature steps, a series of three low-AF cleaning steps at 25, 50, and 75 mT were 

carried out. 

 Thermal demagnetization steps were carried out using a computer controlled oven in 

the same magnetically shielded room as the magnetometer with a slow trickle of N2
 to prevent 

oxidation.  Thermal steps increased at 25° C intervals from 75° C to 450° C.  The step size was 

reduced near the magnetite Curie temperature (~585° C).  Thermal steps were carried out up 

to 625° C.   Magnetic remanence vectors were measured in the magnetometer after each 

thermal demagnetization step.  Least squares fitting of high temperature (generally ~ 500° C) 

and low temperature (<300° C) stable linear components was carried out using the statistical 

approach of Kirschvink (1980) employed in the PaleoMagv3 software package (Jones, 2002). 

 

Rock Magnetics 
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 For a small number of samples, core end-chips were used to carry out rock magnetic 

experiments to characterize magnetic mineralogy and grain size.  The dIRM shows the 

derivative of isothermal remanent magnetization (IRM) acquisition spectra and illustrates the 

presence of different magnetic minerals based on their coercivity of remnance (Cisowski, 1981; 

Peters and Dekkers, 2003; Kirschvink et al., 2008).  Calculating the ratio of demagnetization of 

the NRM or anhysteretic remanent magnetization (ARM) to the IRM demagnetization allows 

us to identify the mechanism of imparting the ChRM (Cisowski et al., 1990; Fuller et al., 2002).  

The Lowrie-Fuller plot shows AF demagnetization of an IRM with AF demagnetization of 

anhysteretic remanent magnetization (ARM; Xu and Dunlop, 1995; Lowrie and Fuller, 1971).  

This test allows for discrimination between single and multi-domain magnetite. 

 

Thermal susceptibility 

Another tool for characterizing the magnetic mineralogy of a sample is the variation of 

magnetic susceptibility with temperature.  Thermal variation allows us to test for the Verwey 

transition, a large decrease in magnetic susceptibility below about 120 K and to measure the 

Curie temperature of the magnetic minerals in the sample (e.g. ~ 585° C for magnetite).   

An AGICO MFK1_FA Kappabridge with high temperature furnace and low 

temperature cryostat were used with the SUFYTE5W software at Caltech to measure thermal 

susceptibility curves.  Sample holder blanks were first measured on the cryostat and furnace.  

Low temperature susceptibility spectra were measured by cooling the sample to 77 K with LN2 

and then slowly allowing it to warm back to room temperature.  The high temperature steps 

involved a furnace used to heat the samples to ~ 700° C and then allowed to cool to room 

temperature.  A low flow of argon was passed over the sample during the high temperature 
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step to minimize oxidation.  Susceptibility measurements were made throughout this process, 

during both the heating and cooling segments. 

 

RESULTS 

Paleomagnetic Remanence 

 Tilt-corrected inclinations from linear least squares fitting of high and low temperature 

components are plotted versus stratigraphic height on FIGURE 3.  At the very bottom of the 

section, the lowest sample has a negative inclination, indicating a Reversed polarity.  Above 

this sample up to about the 400-meter stratigraphic level, all of the high temperature 

components have positive inclination (Normal polarity).  Most of the low temperature 

components also have positive inclination (Normal polarity), except for a few which record an 

inclination between -10° and 0°.  At the very top of the section, four samples have high 

temperature components of Reversed polarity.  These four samples at the top of the section 

pass the reversal test when compared to the Normal polarity samples lower in the section (p-

value = 0.05, after Fisher et al., 1987). 

 To test whether the low temperature components may be a modern overprint, I 

calculate the Fisher mean of all of the low temperature components (dec. 0.4°, inc. 53.1°, α95 

3.7) and compare this to the modern field (dec. 12.3°, inc. 60.3°).  The angle between these 

vectors is 9.7°, which is well outside the α95 for the low temperature mean.  Based on this 

analysis we conclude that the low temperature components are not modern field overprints 

(FIGURE 4). 

 We show characteristic demagnetization paths for two samples.  Each shows a clear 

linear component, either low temperature (FIGURE 5A) or high temperature (FIGURE 5B).  

On average total magnetic moment loss at the end of our thermal degmagnetization was 94%.   
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Rock Magnetics 

 Results of rock magnetic experiments are shown on FIGURE 6.  The plot of 

derivative of IRM acquisition spectra clearly shows multiple mineralogical components.  This 

plot indicates the presence of (titano) magnetite and hematite, and an absence of goethite 

(Peters and Dekkers, 2003).  The Fuller plot shows ratios of NRM to IRM demagnetization 

that indicate that the ChRM of these samples is a detrital remanent magnetization (DRM).  

The Lowrie-Fuller plot includes evidence for both single and multi-domain magnetite.  This is 

consistent with our findings of loss of magnetic moment during the low temperature cycling 

steps, which removed this signal during our demagnetization process.  On average the low 

temperature cycling steps removed 44% of the NRM moment. 

 

Thermal Susceptibility 

FIGURE 7 shows a characteristic set of thermal susceptibility measurements.  The Verwey 

transition and magnetite Curie temperature are the dominant components of this data, both 

indicating that magnetite is the dominant magnetic mineral in this sample. 

 

DISCUSSION 

The Goler Formation of the El Paso Mountains, California consists of a 3-kilometer-

thick clastic section which is broken out into four distinct members by Cox (1982).  

Constraints on the depositional age of the Goler come mostly from biostratigraphy of the 

upper member 4 (summarized in Lofgren et al., 2014).  These include early Eocene 

foraminifera and other marine fauna from a marine part of the member 4d (McDougall, 1987; 

Cox and Diggles, 1986; Lofgren et al., 2010), as well as Paleocene vertebrate fossils, including 



 

 

227 

mammals of Tiffanian Age from member 4a.  Lofgren et al. (2014) conclude that the 

Paleocene Goler mammalian fauna from member 4a are likely from North American Land 

Mammal Age Ti-3 – Ti-4a, which is in the upper half of chron 26r (Secord et al., 2006).  If this 

is so, then the reversal we have documented at the Grand Canyon locality could be either the 

C26n-C25r or the C27n-C26r boundary.  Furthermore, data at the very bottom of our 

stratigraphic section indicate another reversal.  Due to the fact that only our lowest sample is 

reversed, we interpret this reversal as tentative, pending more data from lower in the section.  

However, if this reversal is present, it would either represent the C26r-C26n boundary or the 

C27r-C27n boundary.  Because of the known duration of C27n and C26n, we can calculate a 

tentative average sediment accumulation rate.  C27n lasted 300,000 years and C26n lasted 

400,000 years (after Lofgren et al., 2014), and the stratigraphic height between our reversed 

samples is 392 meters.  This works out to a sediment accumulation rate of 1.0 to 1.3 meters 

per thousand years.  This rate is generally consistent with other fluvial sediment accumulation 

rates (e.g. Sadler, 1981).  While this accumulation rate is tentative pending confirmation of the 

reversal at the bottom of our section, it is noteworthy that this is the first deposition rate 

calculated for the Goler Formation. 

Because of the paucity of fossils in the lower members 1-3, the age of the lower part of 

the Goler Formation is unknown.  If the sediment accumulation rate of ~ 1.0 m per thousand 

years is confirmed, and we assume that this rate applies to the lower parts of the Goler 

Formation as well as member 4, we can estimate an age of the bottom of the section.  There 

are roughly 2500 m of total section below member 4a.  At a rate of 1.0 – 1.3 m per thousand 

years, this corresponds to 1.9 – 2.5 million years of deposition.  If these assumptions are true, 

then we can estimate that the lowest Goler Formation is between 60.7 Ma (if we have 
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measured C26n and rate is 1.3 m/ky) and 64.5 Ma (if we have measured C27n and rate is 1.0 

m/k.y.). 

These tentative calculations show that further paleomagnetic study in the Goler 

Formation could be very useful.  More sampling at the bottom of our section could confirm 

the reversal that we tentatively identify here, and constrain a sediment accumulation age with 

higher certainty than we have now.  Furthermore, continued sampling both above and below 

our section could help constrain whether it is C27n or C26n, as well as the age of the older 

members of the Goler Formation.    

 

CONCLUSIONS 

 This pilot study established a significant dataset of magnetostratigraphic data tied 

directly to biostratigraphic constraints at a mammalian fossil locality called Grand Canyon, in 

member 4a of the Paleocene Goler Formation, El Paso Mountains, California (Lofgren et al., 

2014).  I have demonstrated with rock magnetic experiments and thermal susceptibility studies 

that the sedimentary rocks of the Goler Formation are a good target for a paleomagnetics 

study.  Magnetite is the primary magnetic mineral and the ChRM of the samples was acquired 

during sedimentary deposition (DRM).  Furthermore, the current data set clearly includes a 

reversal which, when combined with biostratigraphy, helps constrain the age of deposition of 

member 4a of the Goler Formation.  The data presented here also suggest that another 

reversal is recorded at the bottom of the measured section.  Assuming this is true, I have 

calculated a tentative sediment accumulation rate and rough range in possible age for the 

bottom of the very thick section (total section is 4000 meters).  This pilot study very strongly 

argues that further paleomagnetic investigation of the section currently being studied, as well as 

elsewhere in the Goler Formation, will yield important new geological constraints on the 
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depositional age model for the Goler Formation, and on the Paleocene mammalian fauna 

reported by previous studies. 
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FIGURE CAPTIONS 

 

Figure 1. 

Overview map of the El Paso Mountains, California showing outcrop extent of the Goler 

Formation, after Cox (1982).  Individual members (1-4) are labelled in black lettering and color 

coded as shown at left.  Location of new magnetostratigraphy section shown as black line, as 

well Grand Canyon fossil locality.  Regional location is shown on inset California state DEM at 

upper left. 

 

Figure 2. 

Stratigraphic section measured at Goler Grand Canyon in conjunction with 

magnetostratigraphic sampling.  Black tick marks to right of the section show the location of 

paleomag core samples. 

 

Figure 3.  

Plot of tilt corrected inclination of least squares line fits versus stratigraphic height.  Errors 

plotted are mean angular deviation from the least squares analyses.  Open circles represent low 

temperature (<300° C).  Closed circles represent high temperature components (~500° C). 

 

Figure 4.   

Stereonet plot of declination and inclination of least squares line fits plotted in geographic 

coordinates.  Green circle shows modern magnetic field direction.  Red circle shows fisher 

mean of all low temperature components.  Closed circles are lower hemisphere projections, 

open circles are upper hemisphere projections. 
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Figure 5.   

Characteristic demagnetization paths for A.  A sample with low temperature component only.  

B.  High temperature component.  Several demagnetization steps are labelled.  Both A. and B. 

are N-S orthographic projection in geographic coordinates.  Blue boxes show declination, red 

boxes show inclination.  Clumping around the origin on A. shows sample has lost all coherent 

magnetic signal by the 300° C and jumps randomly around the origin at higher temperature 

thermal steps. 

 

Figure 6.   

Rock magnetics plots.  Upper panel shows derivative of IRM acquisition spectra, clearly 

showing the presence of multiple components which we interpret as the presence of (titano) 

magnetite and hematite and the absence of goethite (after Peters and Dekkers, 2003). Middle 

panel shows the Fuller plot, where the ratio of ARM and NRM to IRM demagnetization are 

shown.  Ratios of NRM to IRM demagnetization at 1:1000 show the ChRM of NRM for our 

samples is a DRM as expected.  Lower panel shows Lowrie-Fuller test.  AF demagnetization 

of an IRM greater than AF demagnetization of ARM of some samples indicates the presence 

of multi domain magnetite, which is consistent with the loss of total moment during low 

temperature cycling (average loss is 44%).  Low temperature cycling removes this multi-

domain magnetic component. 

 

Figure 7.   
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Thermal susceptibility data from one characteristic sample.  Large losses of susceptibility at the 

Verway transition (-150° C) and magnetite Curie temperature (585° C) indicate that the 

primary magnetic mineralogy is magnetite. 
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