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ABSTRACT

Active matter refers to a material that consists of individual particles or bodies

capable of propelling themselves; that is, they ‘swim’. Each active particle (or

swimmer) propels itself at some velocity U0q, where U0 is the swim velocity and

q is the swim direction, which is subject to random (Brownian) reorientation on a

time scale τR.

Despite the complex phenomena in real systems, the minimal active Brownian par-

ticle model exhibits physical behavior. In this model, the particle’s self-propulsion

velocity U0 is usually assumed to be a given constant and q is subject to rotational

Brownian diffusivity DR = 1/τR. Also, the interaction between active Brownian

particles is usually assumed to be collision only (pure repulsive) (Solon et al., 2015a)

or a pairwise additive potential (Redner et al., 2013). The behavior of this model

system can be successfully explained by thermodynamic-type models, with the in-

troduction of swim pressure as an equation of state (Takatori et al., 2014; Takatori

& Brady, 2015).

The swim pressure is analogous to the classic pressure in a gas, and more closely

analogous to the osmotic pressure of a molecular or colloidal solute, and is defined

through the swimming diffusivity Dswim and drag coefficient on each swimmer

ζ : σswim = −nζDswim. It is the pressure required to confine the active particles

within a fixed volume, and is the sum of all particles’ collisional forces exerted

on the container walls. Therefore, the swim pressure is a well-defined mechanical

pressure.

In this thesis, we shall see that the applicability of swim pressure extends beyond

the description of a homogeneous, ‘thermodynamical equilibrium’ state. It can be

used in a continuum mechanics formulation to predict the deformation and motion

of general active matter.
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Continuum mechanics is built upon the notion that the conservation of momentum

arises from a balance between surface and body forces. For active matter, the surface

force takes the form of the swim pressure (or a swim stress), while the body forces

include an extra piece that is intrinsically due to activity – the average swim force.

It is shown that the average swim force acts like a body force – an internal body

force. With properly defined surface and body forces, a continuum description is

possible when variations occur on scales much larger than the run length of the

active particles. This is verified with simulations for an active Brownian particle

system under gravity.

Below the continuum mechanics scale, at the level of the individual active particles,

the microscopic origin of the swim pressure is analyzed. A general theory is pro-

posed, as an extension of the theory for passive Brownian colloids, for determining

the force (and torque) exerted on a boundary (or body) in active matter. The theory

shows that the swim pressure is associated with the swimmer-wall collisions and

the accumulation of swimmers close to a non-penetrating boundary. Further, the

accumulation boundary layer is impacted by the detailed shape of the boundary.

With a properly designed asymmetric shape, a passive body immersed in swimmers

can achieve a net force, and that force can be calculated from the active colloidal

perspective.

The notion of swim pressure (or stress) is extended to anisotropic situation. It is

shown that, by manipulating the orientation q, active Brownian particles with a

nematic orientation field exhibit a tensorial anisotropic swimming stress σswim =

−nζDswim, i.e., the pressure on aflatwall can bewritten asΠW = (σswim·n)·n. This

tensorial continuum mechanics view is shown to be consistent with the microscopic

theory, through the formation of the accumulation boundary layer.

The discussions for the minimal active Brownian particle model constitute the

foundation of a mechanical view for general active matter. In this work, chemically
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active particles are considered as an example. They may achieve self-propulsion

by self-diffusiophoresis in a concentration gradient of chemical solutes they create

themselves by patterned surface catalytic reactions.

The chemical solute concentration field provides both self-propulsion and particle-

particle interaction. To probe the system dynamics, the particles’ trajectories and

the solute concentration field must be simultaneous solved. A simulation algorithm

– Accelerated Laplacian Dynamics (ALD) – is developed to track the system dy-

namics. With simulation results, we first clarify the notion of chemical screening

(Morris & Brady, 1995), which means the perturbation caused by each particle is

screened to an exponentially screened short-ranged perturbation.

Simulations show that uniformly reactive particles, which do not self-propel, form

clusters but no dense-dilute coexistence is observed. Janus particles with self-

propulsion show coexistence of dense and dilute regions, in agreement with the

experiments by Theurkauff et al., (2012) and Palacci et al., (2013). The steady state

structure of the dense-dilute coexistence can be explained with a continuum me-

chanics model based on a mean-field approach to swim pressure and force balance,

as established for the minimal active Brownian particles model.

The onset of the dense-dilute separation is explained by a stability theory with a

detailed solution of the Smoluchowski equation. When the particle-particle attrac-

tion is strong enough, clusters spontaneously appear from a homogeneous system

of chemically active particles. The instability threshold and spectrum are calculated

with both the detailed Smoluchowski equations and a coarse-grained continuum

approach; the two agree. Self-propulsion decreases the growth rate, but it has no

impact on the stability threshold because the effect of self-propulsion enters at a

higher order in wave number than the competition between attraction and transla-

tional Brownian motion.

Repulsive self-diffusiophoretic particles with homogeneous surface catalytic reac-
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tion are investigated with ALD simulations. By a mapping to the classic one compo-

nent plasma system, the system behavior can be described by a coupling parameter

Γc, which compares the strength of diffusiophoretic repulsion and translational

Brownian motion. When confined in a constant-volume constraint, Body-Centered

Cubic crystals may form, and the ‘melting point’is found to be ΓBCC
c ≈ 140.
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C h a p t e r 1

INTRODUCTION
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Activematter refers to amaterial that consists of individual paricles or bodies capable

of propelling themselves, that is, they ‘swim’. The concept of activity comes from

swimming micro-organisms such as E. Coli, and is extended to synthetic chemical

swimmers (Paxton et al., 2006; Ebbens et al., 2010). The artificial structures are

based on various different mechanisms, including electrophoresis (Paxton et al.,

2006), bubble-generation (Manjare et al., 2012), thermophoresis (Baraban et al.,

2013), de-mixing (Würger, 2015; Samin&vanRoij, 2015), surface tension (Kitahata

et al., 2013), self-diffusiophoresis (Theurkauff et al., 2012), biochemical reactions

(Sengupta et al., 2014) and so on. The size of swimmers can be as large as cm-sized

‘camphor boats’ (Kitahata et al., 2013; Soh et al., 2008) moving at cm s−1, and can

be as small as Å-sized biomolecules (Dey et al., 2016). In most cases, they are

µm-sized synthetic structures or micro-organisms, moving at a velocity on the order

of µm s−1. Almost all mechanisms rely on the creation of some asymmetric field by

the objects, which then push themselves through the fluid.

Each active particle propels itself at some velocity U0q, where q is the propulsion

direction, and is subject to random (Brownian) reorientation on a time scale τR.

For cm-sized ‘camphor boats’ (Kitahata et al., 2013), the rotational re-orientation

is almost absent and therefore the swimmers show directed motion. For Å-sized

biomolecules, the rotational reorientation is so fast that the swimmers are purely dif-

fusive. Theoretically, there is a transition from directed motion below the timescale

of τR to diffusive motion at timescale longer than τR. Howse et al., (2007) showed

that the translational diffusion of a single active particle is enhanced by the swim

diffusivity Dswim = U2
0 τR/6 on timescales longer than τR, due to the fluctuation

of q. The fluctuation of q can be either Brownian (thermal) for synthetic Janus

particles, or non-Brownian for micro-organisms that ‘choose’ to swim in a different

direction.

Collectively, active matter shows a lot of interesting behaviors, roughly due to three

reasons. First, they can push themselves so they keepmoving even in a very crowded
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environment, which can push the glass transition to the random close packing limit

(Berthier &Kurchan, 2013; Ni et al., 2013). Second, they swimwith some direction

q, and that can be manipulated with either the flow field or an external force field

to induce phenomena like shear-trapping (Rusconi et al., 2014), rheotaxis (Uspal

et al., 2015; Kaya & Koser, 2012) and gyrotaxis1(Durham et al., 2011; ten Hagen

et al., 2014). Last, but very importantly, they interact with each other through the

fluid medium, the field that causes self propulsion, and/or simply geometric from

non-overlapping collisions. Due to the interactions, active matter displays very

interesting phenomena, such as enhanced diffusion (Dey et al., 2016; Miño et al.,

2011), autonomous pattern-generation (Cohen&Golestanian, 2014; Delmotte et al.,

2015; Saintillan & Shelley, 2011; Wioland et al., 2013), Casimir effect (Ray et al.,

2014), and meso-scale turbulence (Wensink et al., 2012; Dunkel et al., 2013). Also,

the interaction of active matter with passive objects can be very interesting. For

example, a passive tracer body shows abnormal diffusion behavior in active matter

(Patteson et al., 2016; Peng et al., 2016).

Alongside scientific interests, some potential applications of active matter have been

investigated. They can be used for microscopic ‘cargo transportation’2 (Baraban

et al., 2012; Burdick et al., 2008; Felderhof, 2014; Popescu et al., 2011; Sasaki et al.,

2014), especially for drug delivery (Gao &Wang, 2014). When fixed in space, they

keep pushing the surrounding fluid and therefore can be used as pumps (Michelin et

al., 2015), ranging fromÅ-sized enzyme pumps (Sengupta et al., 2014), to cm-sized

ones (Zhang et al., 2015) that are able to generate finite-Reynolds-number laminar

flow. Also, their intriguing interaction with passive objects can be harnessed to

generate net motion in active matter. For example, bacteria close to a no-slip wall

may show rheotaxis due to the hydrodynamic interactions between the bacteria and

the wall (Kaiser et al., 2014).
1The directed motion due to gravitational and viscous torques in a flow.
2The movement of small objects.
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One of the most notable phenomena of active matter is that they may show coexis-

tence of dilute and dense regions in a single system at steady state. In the experiment

by Theurkauff et al., (2012), Janus particles in a solute reservoir and were kept in

evolution to a steady state under a tilted gravity acting as a sedimentation force. At

steady state the system separated into dense and dilute regions. Similar phenom-

ena is also observed in another experiment system by Palacci et al., (2013), where

the dense part forms a ‘moving-crystal’. Particles with repulsive interaction show

transition between uncorrelated motion and an ordered lattice (Soh et al., 2008).

To understand the intriguing phenomena of active matter, different models have been

proposed. The traditional approach is to track each swimmer with the probability

P(x, q, t) of finding it at location x, orientation q, at time t. P(x, q, t) can tracked

with Smoluchowski or Fokker-Planck equations (Saintillan & Shelley, 2015). This

approach is powerful in giving very detailed information of the system with the

entire trajectory in the phase-space (x, q). However, this approach is limited to a

‘mean-field’ description, since solving P(x, q, t) with particle-particle interaction

is highly challenging beyond the two-body level.

Recently, the minimum Active Brownian Particle (ABP) model exhibits profound

physical implications despite its simplicity. In ABPs, the particle’s self-propulsion

velocity U0 = U0q, where U0 is usually assumed to be a given constant and q is

subject to rotational Brownian diffusivity DR = 1/τR. Also, the interaction between

ABPs is usually assumed to be collision only (pure repulsive) (Solon et al., 2015a)

or a pairwise additive potential (Redner et al., 2013). Under these conditions,

the interaction between ABPs are short-ranged and additive, and therefore can be

successfully explained by thermodynamic-type models, such as the φ4 field theory

(Wittkowski et al., 2014), density functional theory (Menzel & Löwen, 2013),

and motility-induced-phase-separation (Stenhammar et al., 2013; Cates & Tailleur,

2015). For example, the dilute-dense coexistence of active matter can be explained

as a first-order gas-liquid phase transition, with the introduction of swim pressure



5

as the Equation of State (Takatori et al., 2014; Takatori & Brady, 2015).

The swim pressure is an analogy to the classical gas pressure, and is defined through

the swimming diffusivityDswim and drag coefficient on each swimmer ζ : σswim =

−nζDswim. The swim pressure is the pressure required to confine the active particles

within a fixed volume, and is the sumof all particles’ collisional force on the container

wall. It is in essence the counterpart to the osmotic pressure σ = −nζD = −nkBT

in passive Brownian particles. Therefore, swim pressure is a well posedmechanical

pressure, and is therefore fully compatible with classic continuummechanics. From

a thermodynamic perspective, the swim pressure can be written as σswim = −nksTs,

where ksTs corresponds to kBT . For swimmers subject to translational Brownian

motion, swim pressure and osmotic pressure are additive, and the total pressure

(stress) is σ = −n(kBT + ksTs).

The classical ideal gas pressure is defined on the macroscopic scale, i.e., the length

scale larger than the molecules’ mean free path, and the time scale longer than

molecules’ collisions. It is also true for swim pressure, but the length and time

scales are different because swimmers’ direction q may change due to Brownian

motion instead of particle-particle collisions, and q keeps changing on the reorient

time τR. On time scales longer than τR, the motion of swimmers become diffusive

with run-length ` = U0τR. Therefore, swim pressure is only meaningful on length

scales longer than the run-length ` and time scales longer than τR.

In this thesis, we shall see that the applicability of swim pressure is beyond the

description of a homogeneous, ‘thermodynamical equilibrium’ state. It can be used

in a continuum mechanics formulation to predict the deformation and motion of

general active matter. Continuum mechanics for general active matter is further

discussed in the following chapters. In Chapter 2, the net (as opposed to random)

motion of active matter resulting from an average swim (or propulsive) force is

discussed, as the introduction of ‘swim force’. It is shown that the average swim
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force acts like a body force – an internal body force. As a result, the particle-

pressure exerted on a container wall is the sum of the swim pressure (Takatori et al.,

2014) and the ‘weight’ of the active particles. A continuum description is possible

when variations occur on scales larger than the run length of the active particles and

gives a Boltzmann-like distribution from a balance of the swim force and the swim

pressure. Active particles may also display ‘action at a distance’ and accumulate

adjacent to (or be depleted from) a boundary without any external forces.

In Chapter 3, themicroscopic origin of the swim pressure at the sub-continuum scale

is analyzed. A general theory is proposed for determining the force (and torque)

exerted on a boundary (or body) in active matter. The theory extends the description

of passive Brownian colloids to self-propelled active particles and applies for all

ratios of the thermal energy kBT to the swimmer’s activity ksTs = ζU2
0 τR/6, where

ζ is the Stokes drag coefficient, U0 is the swim speed and τR is the reorientation

time of the active particles. The theory, which is valid on all length and time scales,

has a natural microscopic length scale over which concentration and orientation

distributions are confined near boundaries, but the microscopic length does not

appear in the force. The swimpressure emerges naturally and dominates the behavior

when the boundary size is large compared to the swimmer’s run length ` = U0τR.

The theory is also used to predict the motion of bodies of all sizes immersed in

active matter.

In Chapter 4, the results from Chapter 3 are extended to boundaries of arbitrary

shape. In the absence of translational Brownian motion, a swimmer is trapped for a

time τR on the wall until it reorients. When DT > 0, the swimmer is able to leave

the wall with a Brownian hop on a microscopic length scale δ =
√

DTτR within τR.

On the thickness of δ near the wall, swimmers accumulate and form a concentration

boundary layer. The boundary layer strucutre is solved to calculate the swimpressure

distribution and the total force (torque) on an arbitrarily shaped body immersed in

swimmers, with a general scaling of the curvature effect Πswim ∼ λδ2/L, where
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λ =
√

2
(
1 + `2

6δ2

)
/δ.

In Chapter 5 Active Brownian Particles (ABPs) with a nematic orientation field

are shown to exhibit greatly enhanced anisotropic swimming diffusivity Dswim.

More importantly, the anisotropicDswim leads to a tensorial anisotropic swimming

stress σswim = −nζDswim, i.e., the pressure on a flat wall can be written as ΠW =

(σswim ·n) ·n. Further, this tensorial continuum mechanics view is consistent with

the microscopic view ofΠW = nwallζDT , through the formation of a boundary layer

discussed in Chapter 3 and 4. This work extends the notion of swim pressure to a

tensorial swim stress.

The discussions in these chapters are for a simple ABP model with excluded volume

interactions only, but that constitutes the foundation of a mechanical view for general

active matter. The mechanical view is a powerful tool to understand chemically

active particles driven by diffusiophoresis.

Diffusiophoresis refers to themotion of small particles resulting froma concentration

gradient of a chemical solute. It is a fundamental process that occurs in both

natural and engineering settings (Anderson, 1989). Traditionally, the concentration

gradient of a chemical solute is imposed externally in diffusiophoretic problems. In

the context of active particles driven by self-diffusiophoresis, the particles create the

concentration gradient themselves through surface catalytic reactions. Particles are

usually synthesized with patterned asymmetry, i.e., patterned particle shape (Wei

& Jan, 2010) and/or patterned particle surface reactivity (Ebbens & Howse, 2011).

Usually they are synthesized to be reactive on one half while non-reactive on the

other, and therefore are named Janus particles (Theurkauff et al., 2012; Howse et al.,

2007).

On the single particle level, Córdova-Figueroa & Brady, (2008) and Brady, (2011)

showed that a particle’s motion can be determined by solving the solute concentra-

tion field c(r) around the particle. To leading order, the swim velocityU0 ∝ c. They
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swim faster with more ‘fuel’ concentration c. In the presence of many particles, the

disturbance on c(r) caused by each particle propagates, and causes not only changes

of swim velocity, but also particle-particle attraction or repulsion due to diffusio-

phoresis ∝ ∇c. In fact, in a many-body system, the interaction is more complicated

than a simple sum of all 1/r perturbations. As directed by the boundary condition

of solute on the particle’s surface (1.3), the particles may adjust their perturbations

to the field and can therefore compensate for the fluctuations in perturbation, as

described with the chemical screening theory (Morris & Brady, 1995). This com-

plicated ‘field-driven’ nature results in fundamentally different system behaviors

from the ABPs.

In fact, such ‘field-driven’ systems are common in active matter. The swimmers

may interact with each other through some fields, including the Stokes flow field u

(hydrodynamics) (Berke et al., 2008), chemical solutes concentration field c (diffu-

siophoresis) (Theurkauff et al., 2012; Derjaguin & Golovanov, 1984), temperature

field T (thermophoresis) (Baraban et al., 2013), electrostatic field Φ, an so on. Al-

most every field φ is governed by a transport-type equation (Bonnecaze & Brady,

1990):

∂φ

∂t
+ ∇ · jφ =0, (1.1)

jφ = uφ−D∇φ, (1.2)

where D can be diffusivity of c, conductivity of T , electrical conductivity of Φ,

and so on. And it is well known that the disturbance caused by one swimmer

in that field φ propagates as 1/r; for example, the potential of a point charge is

Φ = e/(4πε0r). More importantly, the above field is subject to the boundary

condition on each swimmers’ surface, and is dependent on the local value of φ and

the surface property:

jφ(r on swimmer) ∼ φ. (1.3)
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This means, in general, that the swimmers’ disturbances cannot be treated as a

prescribed ‘fixed charge’ e, but should be found as a solution to the transport

equation. Therefore, the interactions between swimmers is neither short-ranged

nor pairwise-additive. Instead, the entire field φ must be solved, following the

swimmers’ motion.

In this thesis, diffusiophoresis in a chemical solute concentration field is chosen as

an example, because self-diffusiophoresis is one of the most common experimental

realizations of self-propulsion mechanisms, and because a thorough understanding

of the diffusion field is portable to other physical settings. In diffusiophoresis,

the field φ is the concentration field c, D is the diffusivity of the solutes, and the

boundary condition (1.3) is assumed to be a first order reaction jc ∝ c. To solve

that field, we improve the method by Bonnecaze & Brady, (1990, 1991a,b), with a

matrix-free formulation as the Accelerated Stokesian Dynamics (Sierou & Brady,

2001). The method is implemented with GPU and is highly efficient.

The efficient simulation method allows us to investigate the most fundamental ques-

tions for active matter: the coexistence (separation, clustering) of dense and dilute

regions at steady state. When does the separation start from a homogeneous state?

When does the coexistence reach a steady state? What is the role of the solute

concentration field c? Is the theory applicable to generalized active matter?

To answer these questions, in Chapter 6, the simulation algorithm is introduced. It

allows tracking of thousands of chemically active particles, with simultaneous solu-

tion of the chemical solute field c in a multipole expansion method. With simulation

results, we first clarify the notion of chemical screening (Morris & Brady, 1995).

It fundamentally changes the particle-particle interactions in chemically active sus-

pensions. Then, the dynamics of both uniformly reactive and Janus particles are

discussed. Simulations show that uniformly reactive particles, which do not self-

propel, form clusters but no coexistence is observed. It indicates that an instability
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threshold of the clustering process may exist. Janus particles show coexistence, and

a continuum mechanics model is proposed to explain the ‘equilibrium’ condition.

In Chapter 7, the question of when chemically active particles separate into dense

and dilute parts is answered with an analytic solution of a linear instability analysis.

The instability threshold and the orientation order in the development are calculated

for geometries of both monolayer and 3D periodic systems. We found a universal

instability threshold M∗C = 1 independent of geometry, self-propulsion, and particle

number density in the dilute limit. The effect of self-propulsion is found to be

on the order of O(−q3), a higher order of wavenumber q than the translational

diffusion and down-gradient diffusiophroesis at O(q2). Coarse-grained models are

also discussed, and their connections to the continuum mechanics of active matter

are clarified. Theories are verified by detailed particle-tracking simulations.

In Chapter 8, the analysis is extended from attractive chemically active particles to

repulsive ones. Repulsive self-diffusiophoretic particles with homogeneous surface

catalytic reaction are investigated with simulations. By a mapping to the classical

one component plasma (OCP) system, the system behavior can be described by a

coupling parameter Γc, which compares the strength of diffusiophoretic repulsion

and translational Brownian motion. When confined in a constant-volume constraint,

Body-Centered Cubic crystals may form, and the ‘melting point’ of the ‘liquid-

crystal transition’ is ΓBCC
c ≈ 140. The Face-Centered Cubic lattice is also stable

above ΓFCC
c ≈ 140.

The thesis concludes with a brief summary of the key results and a discussion of

future directions of this work.
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C h a p t e r 2

THE SWIM FORCE AS A BODY FORCE

1. Yan, W. & Brady, J. F. The swim force as a body force. Soft Matter 11,
6235–6244 (2015).
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2.1 Introduction

The soft matter community has proposed several theoretical approaches to inves-

tigate the behavior of active matter systems. Thermodynamic-type models, such

as the φ4 field theory (Wittkowski et al., 2014), motility-induced-phase-separation

(MIPS) (Stenhammar et al., 2013; Cates & Tailleur, 2015), and density functional

theory (Menzel & Löwen, 2013), treat active matter as a single substance and try to

fit it into the classical framework of the states of matter. For example, the dilute-

dense coexistence of active matter can be formulated as a first-order gas-liquid phase

transition (Takatori et al., 2014; Takatori & Brady, 2015).

Despite their success in explaining some states of active soft matter, thermodynamic

models are not sufficient when the detailed dynamics, structure and deformation are

of interest, especially when external perturbations are applied. In these situations,

Fokker-Planck or Smoluchowski equations are often used as they directly relate the

individual swimmer’s Langevin equation to the position-orientation (x, q) phase

space probability density P(x, q, t), which gives all the detailed information of

interest. Active matter under an external force (Hennes et al., 2014), polarization

(Takatori & Brady, 2014), and rectification (Tailleur & Cates, 2009) have been

investigated with this approach. When the detailed chemical propulsion mechanism

or hydrodynamic interaction are considered, P(x, q, t) can be solved together with

the conservation equation for chemical species concentration c(x, t) or the flow field

u(x, t), allowing detailed knowledge of the dynamics, such as the system’s stability

(Lushi et al., 2012).

The Smoluchowski approach, however, is not able to treat concentrated systems

where particle-particle interactions are important, even for the simplest excluded

volume interactions. For dense active matter, simulation is the standard approach.

Active Brownian dynamics simulations of as many as 107 particles have been

reported in order to investigate phase behavior (Stenhammar et al., 2014). A few
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simulations of active matter with hydrodynamic interactions have also been reported

(Lefauve & Saintillan, 2014; Li et al., 2015).

Even with a wealth of simulation data, some fundamental questions remain. For

example, how does one predict the force exerted on a boundary by (dense) active

matter? Simulations give an a posterior determination of the force (Yang et al.,

2014; Mallory et al., 2014), while the Smoluchowski approach can be used but only

for dilute systems when particle-particle interactions are ignored (Fily et al., 2014a).

For conventional atomic or molecular matter, at the particle level there are Newton’s

laws of motion and their phase-space equivalent the Liouville equation. For active

colloids, the corresponding particle-level equations are the Langevin equation and

the Smoluchowski equation. Thermodynamics, whether for conventional or active

matter, does not permit any spatial or temporal variation in properties and thus,

while powerful, has its limitations. To bridge the gap between the detailed particle

and the thermodynamic levels, conventional matter employs continuum mechanics

which applies out of equilibrium for slow spatial and temporal variations. The

purpose of thiswork is to investigate and develop an analogous continuummechanics

description for active matter.

In conventional matter, forces at the particle level do not manifest themselves in the

continuum momentum balance unless they are external body forces. Interparticle

forces contribute to the continuum stress, but do not act as net forces at the continuum

level. For active matter the situation is more complex and more interesting. As we

show, the propulsive swim force acting at the particle level that causes particles to

move is part of the hydrodynamic force the particles exert on the fluid, and thus when

considering the momentum balance for the suspension – the mixture of particles

plus fluid – there is no net hydrodynamic force and thus no net swim force acting

on the mixture; only external body forces appear. However, the suspension is a

two-phase mixture of active particles and fluid and in the continuum momentum
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balance for the particle phase we show that a net swim force appears directly and

acts as an internal body force. This net swim force is crucial for describing the

dynamics of active matter and for computing forces exerted on boundaries.

The swim force plays a pivotal role in the swim pressure (Takatori et al., 2014), the

introduction of which provided a new approach to understanding the behavior of

active matter. Active Brownian Particles (ABPs) that separate into dilute and dense

regions are now understood as a ‘gas-liquid’ coexistence. The decrease in the swim

pressure with concentration destabilizes the system resulting in phase separation

(Takatori et al., 2014; Takatori & Brady, 2015). The swim pressure is analogous

to the osmotic pressure of a chemical solute or of passive Brownian particles and

is the pressure needed to confine the active particles. In the dilute limit the “ideal

gas” swim pressure is Πswim = nζU2
0 τR/6 (in 3D), where n is the number density

of active particles, ζ is their drag coefficient, U0 is the swim speed, and τR is their

reorientation time (Takatori et al., 2014).

While the swim pressure can be understood solely in terms of this entropic con-

finement pressure and is independent of the size of the swimmers (Takatori et al.,

2014), micromechanically, the swim stress is given by the moment of the swim force

〈σswim〉 = −n〈xF swim〉, where F swim = ζU0q, with q the orientation vector of the

swimmer and x its position. The position is simply x(t) =
∫ t U0q(t′)dt′, and thus,

σswim = −nζU2
0
∫ t
〈q(t)q(t′)〉dt′ = −nζU2

0 τR/6 I (for times t � τR), arising from

the random reorientation of the swimmer: 〈q(t)q(t′)〉 = (I/3) exp{−2(t − t′)/τR}.

The ‘moment arm’ for the swim stress is the swimmer’s run length, ` = U0τR.

The micromechanical definition of the swim stress thus involves the swim force,

which leads to questions about the ‘force-free’ nature of low-Reynolds number

swimming. Furthermore, the swim stress sparked some recent discussion (Solon

et al., 2015a) about whether it is a true stress – is it equal to the force per unit area

on the bounding walls? – especially when the dynamics give rise to polar order: a
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non-zero average orientation of the particles, 〈q〉 , 0.

In this chapter we first show the origin and definition of the swim force that is

consistent with the notion of ‘force-free’ motion. We then establish the global force

(or momentum) balance for active matter, focusing on the case when there is net

polar order 〈q〉, which corresponds to an average swim force 〈F swim〉. We show

that in the momentum balance for the active particles the average swim force acts

just like a body force, with the result that the force/area exerted by active matter on a

boundingwall is the sumof the swimpressure and the ‘weight’ of the active particles.

Thus, the questions raised in Solon et al (Solon et al., 2015b) are straightforwardly

resolved and in a manner completely consistent with one’s intuition about forces and

pressures.

Further, we show that a sedimentation-like system is achieved for 〈F swim〉 , 0

without any external body force and a continuum Boltzmann distribution holds just

as for passive Brownian particles in a gravitational field. Active particles may also

accumulate adjacent to (or be depleted from) a boundary, for example in response

to an external stimulus (chemical, light, etc.). The interesting aspect is that this

accumulation (depletion) occurs without there being any external force acting on

the particles; it is a true ‘action at a distance’.

Although an average swim force acting like a body force arises naturally from the

particle-level dynamics, it is nevertheless surprising since, as mentioned before, it

does not appear in the macroscopic momentum balance for the entire suspension,

or mixture, of particles plus fluid.

2.2 The swim force

In self-propulsion at low Reynolds number by ‘force-free’ one means that there is no

external force causing the body to move. The ‘internal’ forces that cause it to move

arise from deformation of the body surface and are part of the total hydrodynamic
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force (and torque), which, from the linearity of Stokes flow, can be written as

F H = −RFU · U︸      ︷︷      ︸ −RF E : Es −RF B �B
s − · · ·︸                                 ︷︷                                 ︸

= F drag + F swim , (2.1)

wherewehave grouped the force/torque together as a single vector,F H = (F H,LH ),

and similarly for the translational/rotational velocities: U = (U,Ω). The hydro-

dynamic tensors RFU , RF E , etc. are functions of the body geometry only and

couple the force to the velocity, to the ‘squirming set’ Es (t),Bs (t), etc., which

characterize the ‘slip’ velocity at the body surface. A derivation of (2.1) can be

found in Appendix A.

In (2.1) the hydrodynamic force/torque is written as a sum of two terms: (i) the

hydrodynamic drag F drag and (ii) the propulsive or ‘swim’ force F swim. Equa-

tion (2.1) provides the definition of the swim force. That it is a real measurable force

can be appreciated by recognizing that if one wanted to keep the swimmer from

moving, say by trapping it with optical tweezers, the force/torque the trap would

exert is precisely F swim.

In addition to the hydrodynamic drag and swim force, active particles can also be

subject to thermal Brownian motion (F B = 2kBTRFUδ(t)), external forces such

as buoyancy (F ext), and interparticle forces, for example repulsive interactions to

prevent overlap at finite concentrations (F P)1.

In the simplest model of active particles the hydrodynamic resistance tensor is an

isotropic drag tensor RFU = ζI and the swim force is F swim = ζU0q. This is the

‘Active Brownian Particle’ (ABP) model:

0 = −ζU + F swim + F B + F ext + F P. (2.2)

The orientation vector q is subject to run-and-tumble or rotational Brownian dif-

fusion (DR = 1/τR), which are equivalent (Cates & Tailleur, 2013), and follows
1Hydrodynamic shear forces can also be present, but are not considered here; they enter in

Eq. (2.1).
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Figure 2.1: Active Brownian Particles (ABPs) in a container of height L in the
z-direction and periodic in the x- and y-directions. Each active particle experiences
a swim force F swim = ζU0q, with q(t) the direction of swimming. An external
gravitational (Ĝ) and polarization (Ĥ) field may also be applied. The top and
bottom boundaries do not allow the particles to escape (no flux), but the flow of
fluid u f is unimpeded – they are osmotic barriers. The horizontal plane S(z) is the
cross-section considered in global force balance (2.4).

directly from the torque balance. For a spherical swimmer, ζ = 6πηa, where a is

the particle size and η the viscosity of the suspending Newtonian fluid. A more

detailed derivation of (2.2) can be found in Appendix B.

In this chapter we focus on the ABP (Active Brownian Particle) model (Eq. (2.2)),

with both translational and rotational diffusion: DT, DR. The reorientation time is

τR = 1/DR. The relative importance of advection by swimming to translational

swim diffusion is given by the reorientation Péclet number (Takatori et al., 2014)

PeR = U0a/(6Dswim) = a/U0τR, and is also the ratio of the particle size to the

swimmer’s run length.
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2.3 The global force balance

Consider a very simple geometry where N swimmers are placed between two

parallel walls separated by a distance L whose normals are along the z-direction

as illustrated in Fig. 2.1. The walls are of large extent (infinite) and system can

be taken to be periodic in the x- and y-directions. The walls are non-penetrating

to swimmers but allow the solvent to pass through unimpeded – they are osmotic

barriers. Each swimmer i experiences a wall force FW
i when it “collides” with a

wall. The separation L between the walls is sufficiently large so that the swimmers

are able to execute their random swim motion before colliding with the walls – the

swimmer’s size a and run length ` are both small compared to L.

The global force balance is the sum over all swimmers of each individual Langevin

equation (2.2). At steady state
∑

i Ui = 0 and

0 = NζU0〈q〉 + N〈F ext〉 + FW
Top + F

W
Bot, (2.3)

where 〈q〉 = 1
N

∑
i qi, 〈F ext〉 = 1

N
∑

i F
ext

i , and FW
Top =

∑
i∈T F

W
i is the force on

the top wall and involves only those particles interacting with that wall; a similar

expression applies to the bottom wall. The Brownian and interparticle forces in

(2.2) make no contribution to the global balance. Brownian forces, by definition,

have zero average, while the interpaticle forces are equal and opposite when two

particles interact.

The net force on the walls is balanced by the total external body force acting on the

particles within the volume plus the total average swim force. As far as the particles

are concerned, an average swim force, 〈F swim〉 = ζU0〈q〉, acts like just like a body

force – an internal body force.

Now consider a control volume composed of the bottom wall and a horizontal plane

at an arbitrary location z above the wall (cf. Fig. 2.1). The global force balance is

0 =
∫

V (z)
(F swim + F ext )dV + FW

Bot +

∫
S(z)

σ(p) · ndS, (2.4)
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where S(z) is the horizontal surface at z and σ(p) is the force per unit area or stress

exerted on the material (i.e. particles) within the control volume. (There is no

contribution from the surfaces in the x- and y-directions because of the assumed

periodicity.)

The surface S(z) is of large horizontal extent and therefore forms an average. If

the variation in properties in the z-direction is slow on the scale of the particle size

and/or run length, we may replace the surface stress with the particle-phase stress

(at z) found by standard averaging of the microscale dynamics (2.2) viz:

〈σ(p)〉 = −nkBTI − n〈x(F swim)′〉 − n〈xF P〉 , (2.5)

where the first term on the RHS is the ideal gas Brownian osmotic pressure and the

last term is the collisional pressure from the interactive forces. For the swim stress,

the average swim force must be removed when computing the stress: (F swim)′ =

F swim − 〈F swim〉.

The z-component of the force balance in (2.4) is

Π
W
Bot = Π

(p) (z) −
∫ z

0
(n〈Fext

z 〉 + n〈F swim
z 〉)dz , (2.6)

whereΠW
Bot = FW

z /A is the pressure on the bottomwall of area A,Π(p) is the pressure

of the active suspension at z, and the averages under the integral sign are number

averages in the horizontal plane. The force balance (2.6) requires no knowledge of

the distribution of active particles n(z), nor how or why there may be an average

swim force. The pressure on the wall differs from the pressure of the active particles

if there is a body force – external or internal – acting on the particles. Indeed, in

general, if the pressure differs between two horizontal planes, then either (i) the

material between the planes must be accelerating, or (ii) the pressure difference

must be balanced by shear stresses at the boundaries as in flow in a tube, or (iii)

there must be body forces acting throughout the volume.
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The effect of an external body force is well-known, and our derivation shows that

an average swim force has the same effect. An average swim force could exist

throughout the volume if the swimmers had a biased swimming, say due to a

gradient in a stimulant (chemical, light, etc.), or it can arise from the boundary if

the boundary were to promote a local orientational order.

Recently, Solon et al., (2015a) derived the dilute limit expression for the wall

pressure when an external torque is applied to each ABP that collides with the

wall and found that ΠW depends on the form of the torque and therefore concluded

that the swim pressure was ill-defined because, according to them, it depended on

the nature of the wall and therefore was not a ‘true’ pressure. A nonzero torque

induces a local 〈q〉 and therefore a nonzero swim force that must be included in the

momentum balance.

When this internal body force is included the global force balance (2.6) is satisfied

and the swim pressure is indeed well-defined and independent of the boundaries2.

2.4 Particle-phase momentum balance

Straightforward averaging of themicroscale dynamics (2.2) results in themomentum

balance for the particle phase:

0 = −ζ〈jrel〉 + n〈F swim〉 + n〈F ext〉 + ∇ · 〈σ(p)〉 . (2.7)

In (2.7) 〈jrel〉 = n(〈up〉 − 〈u〉) is the particle flux relative to the suspension average

velocity. Here, 〈up〉 =
1
N

∑
i Ui, and 〈u〉 = φ〈up〉+ (1− φ)〈u f 〉, with φ the volume

fraction of particles and 〈u f 〉 the average fluid velocity. Equation (2.7) should

apply locally at each ‘continuum point,’ provided, as is standard in any continuum

description, that there is a separation in scales with the macroscopic variations

occurring on scales large compared to the microstructural length scales, importantly

the run length ` = U0τR.
2The body force contribution is identical to the second term in Eq. (7) of Solon et al., (2015b).
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The momentum balance is used with the conservation of particle number density:

∂n
∂t
+ ∇ · 〈u〉n + ∇ · 〈jrel〉 = 0 , (2.8)

to determine the spatial distribution of active particles. In general, an equation for the

orientation distribution 〈q〉 is needed, which can be found from the Smoluchowski

equation equivalent to the microscale dynamics (2.2). In the problems discussed

here it is not needed.

The global force balance, (2.3) or (2.4), applies quite generally. In contrast, the con-

tinuum mechanics description, (2.7)-(2.8), requires a separation of scales between

the microscale and the macroscale. While this separation is almost always true for

passive Brownian particles, it requires careful examination for active matter, and is

discussed in a future work.

This completes the general discussion of the balance laws for active particles. We

now demonstrate by a few illustrative examples that the average swim force acts as

an internal body force and that the particle-phase momentum balance can accurately

predict the concentration distributions and the forces on the walls.

2.5 The effect of internal and external body forces

Passive particles with gravity

We first consider a suspension of passive Brownian particles in a container as

illustrated in Fig. 2.1. The swim force is zero, F swim = 0, and, when dilute, the

particle phase stress is simply the Brownian osmotic pressure 〈σ(p)〉 = −nkBTI;

the collisional stress is O(n2). In the absence of gravity, the number density

is uniform with height n(z) = n0 and the pressure on walls from (2.6) is the

osmotic pressure ΠW
Bot = Π

W
Top = n0kBT . With gravity, F ext = ∆ρVpg; the buoyant

force is given by the density difference ∆ρ = ρp − ρ f times the volume of a

particle VP and the acceleration of gravity g. The passive Brownian particles

behave like an isothermal ideal gas in an external potential. At steady state there
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Figure 2.2: Active particles with gravity. The local area fraction φA vs
height z/a in 2D. The symbols are simulation results and the solid lines are
solutions to the continuum description (2.7). The log plot shows the same
data as the linear plot. The dashed line corresponds to Boltzmann distribution
n ∝ exp

(
−∆ρVpgz/(kBT + ksTs)

)
, that is, exp (−0.04z/a); here ksTs = ζU2

0 τR/2.
N = 1000 particles are simulated in a square box of size 250a and φ0

A = 0.05. The
box is periodic in the x-direction but confined by two no-flux walls located at z = 0
and z = L. The inset compares the force on the bottom wall from the particle-wall
interactions in simulation with the buoyant weight of the particles.

is no suspension velocity, 〈u〉 = 0, and the particles cannot escape the container,

〈jrel〉 = 0. From (2.7) in the dilute limit, n(z) has a Boltzmann distribution:

n(z) = n0(L/LG) exp(−z/LG)/(1 − exp(−L/LG)), where LG = kBT/∆ρVpg is the

sedimentation length. The pressures at the walls are ΠW
Bot = n(z = 0)kBT and

ΠW
Top = n(z = L)kBT , and their difference, ΠW

Bot − Π
W
Top = n0∆ρVpgL, is the total

buoyant weight of the particles in the container, in agreement with the global force

balance (2.6).

Active particles with gravity

We now examine a similar system of swimmers (ABPs) under gravity. Provided

the gravitational forcing is not too strong no polar order will be induced by the

no flux boundary at the bottom (Hennes et al., 2014; Tailleur & Cates, 2009;

Enculescu & Stark, 2011). In 2D for a dilute system the swim stress 〈σswim〉 =

−nζU2
0 τR/2I , and the total particle-phase stress is 〈σ(p)〉 = −n(kBT + ksTs)I ,
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where we define the swimmer ‘activity’ ksTs ≡ ζU2
0 τR/2. We perform active

Brownian dynamics simulations in 2D with periodic boundary conditions in x and

with a hard-particle potential when particles collide with each other or with either

the top or bottom walls. Equation (2.7) predicts a Boltzmann distribution: n(z) ∝

exp
(
−∆ρVpgz/(kBT + ksTs)

)
in the dilute limit, which is verified by simulation over

a wide range of (dilute) area fractions φ0
A = n0πa2, reorientation Péclet numbers

PeR = a/(U0τR) ∈ (0.2, 5.0), with or without translational diffusion, DT , and not

too large gravity (∆ρVpg/(ζU0) < 0.2) as shown in Fig. 2.2. The global force

balance (2.3) (and (2.6)) is verified by measurement of the force on the bottom wall

in the simulations.

Orienting field to cancel gravity

From the global force balance (2.3), if 〈F ext〉 and 〈F swim〉 cancel each other, then

ΠW
Bot = Π

W
Top and the continuum theory (2.7) predicts a uniform distribution of active

particles. To test this, a non-zero 〈q〉 can be induced by an external polarization

field as discussed by Takatori & Brady, (2014). An external field Ĥ applies a

torque Ωcq × Ĥ to each swimmer and therefore the orientation vector q aligns in

the field direction and diffuses around it through DR = 1/τR. The strength of the

applied field is governed by the nondimensional field strength χR = ΩcτR. When

χR → 0 the structure is isotropic, whereas when χR → ∞ all particles align and

move in the direction Ĥ . Each swimmer has a net average velocity U0〈q〉( χR) due

to the field, which can be canceled by F ext/ζ . With an orienting field the swim

stress is anisotropic and given in the work of Takatori & Brady, (2014) in 3D and in

Appendix B for 2D.

Simulations were conducted in the same bounded geometry with Ĥ and gravity

both perpendicular to the walls for a wide range of χR and F ext . The systems are

homogeneous at steady state when gravity cancels the field (Fig. 2.3), and the wall

pressures are equal as the global force balance (2.3) requires.
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Figure 2.3: Orienting field to cancel gravity. The wall pressure vs simulation time.
Here, PeR = a/(U0τR) = 0.2, DT = 0, χR = ΩcτR = 1 and ∆ρVPgτR/(ζa) =
2.23 = 〈qz〉U0τR/a. The insert shows the local area fraction φA as a function of
height z, sampled by Voronoi cells. N = 1668 particles are simulated in a square
box of size 512a at φ0

A = 0.02. The data are averaged over 16 realizations. The
system is periodic in the x-direction but confined by two no-flux walls located at
z = 0 and z = L. The theory for the dilute limit and can be found in Appendix B.

Theory (Takatori & Brady, 2014) predicts anisotropic stresses, and simulations were

conducted at low area fraction (φA ≈ 0.02) without translational Brownian motion

so that 〈σ(p)〉 = nksTs (σ̂swim
‖

ĤĤ + σ̂swim
⊥ (I − ĤĤ )), where σ̂swim

‖
and σ̂swim

⊥

are nondimensional functions of χR. To measure σ̂swim
⊥ , the Ĥ field is applied

parallel to the walls (Case A in Fig. 2.4); and for σ̂swim
‖

, Ĥ and the gravity field are

perpendicular to the walls and cancel each other (Case B in Fig. 2.4). Figure 2.4

shows that the pressures on the walls determined in simulation agree with the theory.
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Figure 2.4: The anisotropic wall pressures compared with the dilute 2D theory
(Appendix B). The circles are ABP simulations for PeR = a/(U0τR) = 0.2, DT = 0,
φ0

A = 0.02 and N = 1668. (A) For σ̂⊥ the Ĥ field is applied in the x-direction,
whereas (B) for σ̂‖ the Ĥ is applied in the z-direction and canceled by F ext . The
square box of size 512a is periodic in the x direction and confined by no-flux walls
located at z = 0 and z = L.

No gravity but with an orienting field

The resemblance of a swim force to an external body force is further illustrated by

a system under a polarization field but no gravity. A constant downward Ĥ field

gives a ‘sedimentation-like’ system with swimmers accumulating near the bottom

wall as shown in Fig. 2.5. The measured bottom wall pressure is equal to the total

‘weight’ of the particles (divided by length Lx in 2D): N〈F swim〉/Lx , as the global

force balance (2.3) requires. Solving (2.7) with 〈F swim〉 = ζU0〈q〉( χR) gives a

Boltzmann distribution where the concentration is dilute with the ‘sedimentation

length’ L‖ = (kBT + ksTsσ̂
swim
‖

)/〈F swim〉. The only difference compared to normal

gravity is the anisotropic swim stress manifested by σ̂swim
‖

. As shown in Fig. 2.5 the
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Figure 2.5: No gravity but with an orienting field. The local area fraction φA vs
height z/a with the Ĥ field applied downward andF ext = 0. The symbols are simu-
lation results and the solid line is the solution to the the continuum description (2.7).
The dashed line is a Boltzmann distribution φA ∝ exp{−〈F swim〉z/(kBT+ksTsσ̂‖)} =
exp(−0.04z/a), where ksTs = ζU2

0 τR/2. N = 1000 particles are simulated in a
square box of size 250a at φ0

A = 0.05. The box is periodic in x but confined by
no-flux walls at z = 0, L. The inset compares the force on the bottom wall from the
particle-wall interactions in simulation with the ‘weight’ of the particles due to the
swim force.
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calculated Boltzmann distribution n ∝ exp(−z/L‖) agrees with the simulations. In

the simulations shown in Fig. 2.5, χR is adjusted according to (B.7), covering the

range χR ∈ (0, 3).

Comparing the n(z) distributions and the ΠW
Bot of passive Brownian particles

(Fig. 2.2) with swimmers under gravity (Fig. 2.5), one sees clearly that with a

non-zero 〈q〉 swimmers behave as if acted upon by a body force. An internal body

force F int = ζU0〈q〉 = 〈F
swim〉 acts on each particle.

Depletion zone

Up to nowwe have considered the simplest cases inwhich polar orderwas induced by

an orienting field homogeneously throughout the region between the two bounding

walls. But this is not necessary. Suppose that the orienting field only acts only over

a length ∆ < L. The effect of this field will lead to a depletion (or an accumulation)

of active particles near the boundary depending on whether the field causes the

particles to swim away from or towards the boundary. If the swimming is strong

enough, there will be no particles contacting the wall and thus ΠW
Bot in (2.6) will be

zero. For z > ∆ there is no field and 〈F swim
z 〉 = 0, while for z < ∆, n ≈ 0, and since

the swim pressure far from the wall is Π(p) = nζU2
0 τR/6, the global force balance

(2.6) shows that there must be a transition region of thickness O(` = U0τR) of high

concentration of active particles near ∆. A particle swimming into the exclusion

region z < ∆ will, for a reorientation time, be unaware of the field and continue

traveling at the swim speed. Fig. 2.6 demonstrates this behavior where a polarization

field Ĥ is applied only in the region z < L/4. If the field is strong enough, χR > 1,

there are no particles adjacent to the wall.

This is a very interesting result in that there are no external forces acting on the

particles, yet they move away from from the wall. Passive particles cannot do this.

By sensing their environment (light, chemical, etc. stimuli) active particles can

adjust their internal swimming mechanisms and behave as if they experienced an
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Figure 2.6: A depletion zone induced by polarization. The local area fraction φA
vs height z/a with the Ĥ field applied upward in the region z < L/4 and F ext = 0.
The solid lines are simulation. N = 1668 particles are simulated in a square box of
size 512a at φ0

A = 0.02. The box is periodic in x but confined by no-flux walls at
z = 0, L. PeR = 0.2, DT = a2/τR. The inset checks the global force balance (2.3)
and (2.4).

actual repulsive (or attractive) force. Note that we modeled the orientation process

as resulting from an external torque due to the field, but this is not necessary. All

that is necessary is that the active particles adjust their swimming in response to

their environment and they can do this completely internally by simply ‘choosing’

to swim towards or away from the stimulus. No external torque (or force) is needed.

It is truly an ‘action at a distance.’

2.6 Suspension momentum balance

We have discussed the global force balance for the particle phase, but have not yet

addressed the macroscopic momentum balance for the entire suspension, or mixture,

– the particles plus the fluid. For the mixture it must be appreciated that F drag and
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F swim at the particle level are both parts of the hydrodynamic force F H exerted by

the fluid on the particles (Eq. (2.1)). The particles in turn exert the same force on the

fluid, and thus only the external body force appears in the macroscopic momentum

balance for the suspension:

0 = n〈F ext〉 + ∇ · 〈σ〉. (2.9)

The average suspension stress is given by

〈σ〉 = −〈p f 〉I + 2η〈e〉 + 〈σ(p)〉, (2.10)

where 〈e〉 = 1/2(∇〈u〉 + (∇〈u〉)†) is the average rate of strain tensor and 〈p f 〉 is

the average pressure in the fluid3. The fluid pressure distribution does whatever

is necessary to ensure the incompressibility of the suspension average velocity,

∇ · 〈u〉 = 0. For example, when polar order exactly balances gravity (Fig. 2.3),

〈σ(p)〉 is spatially constant, there is no flux of suspension (〈u〉 = 0) or particles

(〈jrel〉 = 0) and the fluid pressure gradient is equal to the external body force,

∇〈p f 〉 = n〈F ext〉.

In the case where the orienting field gave rise to a depletion zone adjacent to the

bottom wall, the suspension momentum balance shows that there will be a jump in

the fluid pressure across the transition region from no particles to bulk behavior of

magnitude ∆〈p f 〉 = −
∫O(`) n〈F swim〉dz.

Computational continuum-scale studies of active suspensions (Lushi et al., 2012)

employ the momentum balance (2.9).

2.7 Conclusions

Interpreting an average swim force as a body force was done at two levels of

description: (i) the global force balance (2.3), and (ii) the continuum description

(2.7). The global force balance looks trivial because it involves only a simple sum
3There may also be a hydrodynamic stresslet contribution that takes the form: n〈SH 〉 ∝

nζU0a〈qq〉.
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of each swimmer’s translational Langevin equation (2.2). The sum is performed

without any knowledge of how swimmers interact with the boundary, how they orient

in q-space, or how they are distributed in physical space. Also, no assumption of a

‘continuum’ is necessary and therefore (2.3) is quite general.

With the continuum approach, however, the difficult problem of determining the

deformation and stress of active matter is greatly simplified to solving (2.7) along

with the conservation equation for the particle number density (2.8). Further, the

constitutive equation for the active stress, 〈σ(p)〉(φ, PeR, . . .), is determined from

homogeneous activematter systems (Takatori&Brady, 2015) and can then be used to

predict the behavior in inhomogeneous situations, just as is done, for example, for the

Navier-Stokes equations – the viscosity is measured in a uniform simple shear flow

and then used in any flow geometry no matter how complex. When 〈F swim〉, 〈F ext〉

are specified, the continuum equations are closed and the concentration and stress,

φ(x, t) and 〈σ(p)〉(x, t), can be determined everywhere. The force on a boundary

then follows from the standard continuum expression
∫

S〈σ
(p)〉 · ndS.

The continuum description, which predicted the Boltzmann distributions for dilute

systems, requires a separation of scales between the variation in macroscopic prop-

erties, such as n(z), etc., and the microscale, which for active matter is set by the

swimmer’s run length, ` = U0τR (and/or particle size a). In very dilute systems the

run length can become large and if significant polar order is induced at a boundary,

a continuum description may not be possible.

As a final remark, we have considered average swim forces that are the result of

polar order, 〈q〉 , 0, as this is the most obvious case. However, what is important

is that there is average swim force, 〈F swim〉 , 0, not that there is polar order.

Recently it was shown (Takatori & Brady, 2015) that if there is a spatial variation

in the intrinsic swim speed U0(x) or reorientation time τR(x), as might happen if

the local fuel concentration varies, to leading order there is an average swim force:
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n〈F swim〉 = −〈σswim〉 · ∇ ln(U0τR). This average swim force must then appear in

the global force balance (2.3) or (2.6) and in the continuum description (2.7).
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C h a p t e r 3

THE FORCE ON A BOUNDARY IN ACTIVE MATTER

1. Yan, W. & Brady, J. F. The force on a boundary in active matter. J. Fluid
Mech. 785, R1 (2015).
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3.1 Introduction

The behavior of self-propelled objects such as bacteria, algae, and synthetic Janus

particles has become a dynamic field of research, both for the ‘swimming’ of

individual particles (Lauga & Powers, 2009), and for the collective behavior of

active suspensions (Toner et al., 2005). Owing to the particles’ self motion, active

matter can spontaneously phase separate into dense and dilute regions (Takatori

et al., 2014; Takatori & Brady, 2015; Palacci et al., 2013; Stenhammar et al., 2013,

2014; Cates et al., 2010; Bialké et al., 2013; Buttinoni et al., 2013; Wysocki et al.,

2014; Fily & Marchetti, 2012; Fily et al., 2014b) and can move collectively under

an orienting field (Takatori & Brady, 2014).

Recently, the swim pressure (Takatori et al., 2014; Fily et al., 2014b) was introduced

as a new perspective on the behavior of active matter. The swim pressure is the

pressure needed to confine active particles and is analogous to the osmotic pressure

of Brownian colloids. The dilute limit ‘ideal gas’ swim pressureΠswim = nζU2
0 τR/6

(in 3D), where n is the number density of active particles, ζ is their drag coefficient,

U0 is the swim speed, and τR is their reorientation time. The swim pressure, or

stress, is defined as the moment of the swim force 〈σswim〉 = −n〈xF swim〉, where

F swim = ζU0q, with q the orientation vector of the swimmer and x its position.

The ‘moment arm’ for the swim stress is the swimmer’s run length, ` = U0τR.

The swim pressure is an average over the reorientation time τR, which implies an

average over the run length `. The swim pressure is only defined on, and applies for,

lengths greater than the run length. And its use to compute forces on boundaries

necessitates that the boundary or macroscopic length scale, L, be much larger than

the run length (Yan & Brady, 2015a). What happens when the length scale of

interest is not large compared to the run length? Can we extend the notion of the

swim pressure to such situations? Or more generally, how does the swim pressure

emerge from a more microscopic description?



34

In this paper we provide such a microscopic theory and show how the swim pres-

sure arises naturally as the characteristic macroscopic length scale becomes large

compared to the run length. The theory is an extension of the well-known dynamics

of passive colloidal particles to active colloidal particles, and will allow us to com-

pute forces and torques on bodies and thus predict their motion in response to the

swimmers’ activity.

3.2 Theory

For active colloidal particles there are three characteristic lengths: (i) the macro-

scopic length scale L, (ii) the run length ` = U0τR and (iii) a microscopic length

δ =
√

DTτR, where DT is the translational diffusivity of the active particles. Al-

though in a typical application we expect L > ` � δ, the theory we present is valid

for any ratio of length scales.

Active Brownian particles (ABP) are governed by the Smoluchowski equation for

the probability density for finding a swimmer of radius a at x with orientation q:

∂P(x, q, t)
∂t

+ ∇ · jT + ∇R · j
R = 0 . (3.1)

The translational and rotational fluxes are: jT = (U0q + F
P/ζ − DT∇ ln P)P, and

jR = −DR∇RP , where ∇R = q × ∇q is the orientational gradient operator. For a

spherical swimmer of radius a in a Newtonian solvent of viscosity η, ζ = 6πηa,

DT = kBT/ζ = kBT/6πηa, DR(= 1/τR) = kBT/8πηa3 and δ =
√

DT/DR =
√

4/3a.

At a boundary surface the normal component of the translational flux must vanish,

n · jT = 0. If there were no translational Brownian motion or boundary force

(F P = 0), then U0(n · q)P = 0, which means that either (i) U0 = 0 or (ii) n · q = 0

or (iii) P = 0 at the surface; none of which is true in general. It is essential

to have a strong enough boundary force or translational Brownian diffusion (or

both, or hydrodynamics) to prevent particle crossing. As is well known in colloidal

dynamics, a hard-particle repulsive force is infinite and nonzero only at the boundary
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surface and the no flux condition is satisfied via the Brownian flux.

Rather than having a finite range and amplitude boundary force or hydrodynamic

lubrication interactions to prevent particle flux, we choose to use DT as this is the

simplest to implement theoretically and most easily reveals the underlying physics.

It is important to note that whatever means are used to prevent active particles from

crossing a boundary it will introduce a microscopic length scale δ. As we shall see,

for pressures and forces, δwill not appear in the final results. Any of themechanisms

would produce the same behavior.

Indeed, (Ezhilan et al., 2015) recently examined active particles in 2D confined

between two walls without translational Brownian motion (DT ≡ 0) and showed that

the problem could be modeled with two regions: freely swimming bulk behavior

connected to a singular surface layer of particles in contact with the walls. The

action of translational Brownian motion is to spread this singular surface layer over

the microscopic thickness δ adjacent to the walls, as is standard in boundary-layer

theory. Our planar 2D results are in agreement with their findings.

Although we speak in terms of translational Brownian motion and forces propor-

tional to kBT , this is not necessary. One can simply replace kBT with ζDT and the

results are unchanged; the translational diffusion, like the rotary diffusion DR, need

not be thermal in origin. The Smoluchowski equation only requires that the random

‘Brownian’ displacements be small compared to any other length scale (e.g. the

swimmer size).

The Smoluchowski equation applies for all length and time scales but its solution

in any but the simplest situations is challenging. We need a simplified description

that captures the essential physics, and, more importantly, provides insight into the

general behavior and can explain phenomena without detailed calculations.

Consider a body immersed in a dilute suspension of ABPs. With F P = 0, the force

the active colloidal particles exert on the body is given exactly by (Brady, 1993;
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Squires & Brady, 2005) F = −kBT
∫

SB P(x, q, t)ndS , where n is the outer normal

to the body surface as shown in Fig. 3.3. The force averaged over the orientation of

the active particles is

〈F 〉q = −kBT
∫

SB
n(x, t)ndS , (3.2)

where n(x, t) ≡
∫

P(x, q, t)dq is the number density of swimmers.

The conservation equations for the zeroth and first moments of the Smoluchowski

equation are (Saintillan & Shelley, 2015):

∂n
∂t
+ ∇ · jn = 0 , jn = U0m − DT∇n , (3.3)

∂m

∂t
+ ∇ · jm + 2DRm = 0 , jm = U0Q +

1
3U0n I − DT∇m , (3.4)

where m(x, t) =
∫
qP(x, q, t)dq is the polar order field, and Q(x, t) =

∫
(qq −

1
3I)P(x, q, t)dq is the nematic order field. Since the force on a body only involves

the number density at the surface, we can use the simplest closure of the hierarchy

Q = 0. We show below (and discuss in Appendix C) that this closure is sufficient

to achieve good accuracy and reveals the essential physics.

Two remarks will help understand the structure of the moment equations. First,

when departures from uniformity vary slowly, them-field equation has a balance

between the ‘sink’ term and the gradient in the concentration, 2DRm ≈ −
1
3U0∇n,

which gives a diffusive flux in the concentration field that incorporates the swim

diffusivity: jn ≈ −(DT +
1
6U2

0 τR)∇n. Second, at the other extreme when variations

are rapid, them-field has a natural screening length where diffusion balances the

sink: DT∇
2m ≈ 2DRm. This screening length is proportional to the microscopic

length δ =
√

DT/DR. The screening length plays a fundamental, but unusual, role

in active matter—it is essential in order to have a well-posed problem and there will

be rapid variations in properties on the scale of δ, but in the limit where δ � `, L,

the microscopic length does not appear in the active pressure or in the forces and

torques on boundaries. The athermal limit (DT → 0) is singular and DT (or kBT)
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can only be set to zero after the limit is taken; the force from (3.2) will then be

independent of kBT .

3.3 Examples

First, we consider an infinite flat plate with normal along the z-direction; there is

no macroscopic length scale. The n- andm-fields are subject to no flux at z = 0:

n · jn,m = 0 and a uniform concentration and no polar order as z → ∞: n ∼ n∞ and

m ∼ 0. The concentration and polar order fields are simple exponentials decaying

on the screening length

n = n∞
(
1 + 1

6 (`/δ)2e−λz
)
, mz = −n∞ 1

6 (λ`)e−λz , (3.5)

where λ =
√

2(1 + 1
6 (`/δ)2)/δ is the inverse screening length.

The concentration at the wall, n(0) = n∞(1+ 1
6 (`/δ)2), is independent of the closure

(which follows directly from (3.1) in 1D), always exceeds that far away, and can

become very large as (`/δ) → ∞. This ‘infinite’ concentration applies for a dilute

suspension. It is not a build-up associated with a finite concentration of active

particles. Rather, it is the singularity alluded to earlier that results if translational

Brownian motion (or a microscopic length) is not considered.1

Even though the concentration can become arbitrarily large, the force per unit area

or pressure on the wall from the microscopic force definition (3.2) is finite and

independent of δ: ΠW = n(0)kBT = n∞(kBT + ksTs), where we have defined the

swimmer’s ‘activity’ ksTs = ζU2
0 τR/6 = kBT (`/δ)2/6. We recognize the pressure

on the wall as the active pressure—the sum of the osmotic pressure of Brownian

particles plus the swim pressure. And note that this is true regardless of the relative

magnitudes of kBT and ksTs (including the singular athermal limit kBT = 0).2 Also,

the ratio (`/δ)2 = 6Dswim/DT = U0`/DT = Pe` is a Péclet number based on the run

length measuring the relative importance of swimming to Brownian diffusion.
1The active particle size a must be taken into account in defining the no flux surface z = 0.
2This same independence of kBT occurs in the analogous hard-sphere rheology problem at high

Péclet numbers (Squires & Brady, 2005; Brady & Morris, 1997).
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The second problem is active Brownian particles confined between two parallel

plates separated by a distance H . The concentration distribution is

n(z)
n0
= 1 +

1
6

(
`

δ

)2 sinh(λz) + sinh(λ(H − z))
sinh(λH)

, (3.6)

where the constant n0 is related to the average number density of ABPs in the channel

〈n〉 =
∫ H

0 n(z)dz/H . The concentration is identical at both walls and is the same as

for a single wall with n0 replacing n∞. In the limit of large λH , corresponding to

δ � H , and when δ � `, n0 ∼ 〈n〉[1 + (`/H)/
√

3]−1 and the pressure at the walls

becomes

Π
W = 〈n〉

(
kBT +

ksTs

1 + (`/H)/
√

3

)
. (3.7)

As for a single wall the pressure is independent of the microscopic length scale δ but

now depends on the ratio of the run length to the macroscopic scale `/H . We shall

see that the this behavior is generic—the influence of the run length enters as `/L.

In a simulation study by Ray et al., (2014) observed that the pressure in a channel

depends on the gap spacing as predicted by (3.7). (In 2D the coefficient is 1/
√

2.)

Figure 3.1 compares the concentration profile and pressure for a channel from

the theory with results from ABP dynamic simulations. When a swimmer hits a

boundary, it experiences a hard-particle force F P to prevent it from penetrating the

boundary. (Following Foss & Brady, (2000) a potential-free hard particle force is

implemented.) Also shown are the theoretical predictions from closing the hierarchy

at the next level including the nematic order field Q as described in Appendix C.

Them-field closure is sufficient, both qualitatively and quantitatively.

The next problems are the concentration and pressure distribution in 3D outside

and inside a sphere, and in 2D outside and inside a circle, of radius R. Symmetry

dictates that n(x) = n∞ f (r) andm(x) = n∞xg(r), where f (r) and g(r) are scalar

functions of r . The exterior solution in 3D has the form of an exponentially screened
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Figure 3.1: ΠW of ABPs confined between parallel walls in 2D. The inset shows the
area fraction distribution φ(z). Here, ` = U0τR is the run length and δ =

√
DTτR is

the microscopic length. The swimmer radius is a. H is the width of the channel.

concentration reminiscent of Debye screening

n(r)
n∞
= 1 +

1
6

(
`

δ

)2 1
1 + (1 + λR)(δ/R)2

R
r

e−λ(r−R) , (3.8)

and similarly for them-field. In 2D Bessel functions replace the exponential:

n(r)
n∞A
= 1 +

2(`/δ)2K0(λ′r)
K0(λ′R)[2 − (`/δ)2] + K2(λ′R)[2 + (`/δ)2]

, (3.9)

where the 2D inverse screening length λ′ =
√

1 + 1
2 (`/δ)2/δ, K0,2 are the modified

Bessel functions and n∞A is the area number density at infinity. For large λ′r the

concentration disturbance decays as ∼ e−λ
′r/
√

r .

The pressure at the sphere surface in the dual limits δ � ` and δ � R, but for
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Figure 3.2: ΠW of ABPs outside and inside a circle. Legends are as in Fig. 3.1.

arbitrary `/R, is

Π
ext (R) = n∞

(
kBT +

ksTs

1 + (`/R)/
√

3

)
, (3.10)

while for the circle

Π
ext
2D (R) = n∞A

(
kBT +

ksT ′s
1 + (`/R)/

√
2

)
, (3.11)

where ksT ′s = ζU2
0 τR/2 is the activity in 2D. We again see the effect of the finite run

length entering as `/R.

For the spherical interior problem the concentration field is given by

n(r)
n(0)

= 1 +
1
6 (`/δ)2(sinh(λr)/(λr) − 1)

1
6 (`/δ)2 + (1 + (δ/R)2) sinh(λR)/(λR) − (δ/R)2 cosh(λR)

, (3.12)

while for the interior problem in 2D

n(r)
nA(0)

= 1 +
2(`/δ)2(I0(λ′r) − 1)

2(`/δ)2 +
(
2 − (`/δ)2) I0(λ′R) +

(
2 + (`/δ)2) I2(λ′R)

, (3.13)

with I0,2 modified Bessel functions. In the dual limits δ � ` , δ � R, the interior

pressure in 2D is identical to (3.11) with 〈nA〉 replacing n∞A .

Fig. 3.2 compares the predicted results in 2D for the exterior and interior problems

with ABP simulations and the next level Q theory. (By symmetry Q = h(r)I +
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Figure 3.3: Theoretical predictions of the force on an asymmetric body in 2D with
curvatures R and 2R compared to ABP simulations. The symbols are simulation
results and the solid lines were obtained by numerically solving for the n,m fields.
The force is calculated from (3.2) with body normal n and is scaled by the bulk
active pressure Π∞ = n(kBT + ksTs).

s(r)xx.) Again, the m-level theory is quantitatively accurate unless R/δ < 5,

which is not unexpected.

By symmetry there is no net force on a sphere or a circle in an active suspension.

The Brownian osmotic pressure is independent of both δ and ` (as it must be) and

thus the integral of the constant Brownian osmotic pressure over the surface of any

body will be zero.

From the examples the swim pressure has a correction due to the finite run length,

Πswim ∼ ksTs/[1 + α(`/R)], where α is a constant and R is the curvature of the

body. Thus, in the limit `/R � 1 the swim pressure is a constant at each point on

the body surface and there will again be no force no matter what its shape. This is

as one would expect from the pressure for a macroscopic object. Only when the run

length is comparable to the local radius of curvature of a body is it possible to have

a net force from the swimmers’ activity.

Equation (3.2) for the force applies to any body shape and for any size body. Fig. 3.3

compares the force on an axisymmetric body in 2D determined by solving the
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n,m fields numerically3 with ABP simulations. The agreement is excellent. If the

body were free to move, its speed would result from the balance of its Stokes drag,

−RFU ·U , with the active force, whereRFU is the hydrodynamic resistance tensor

for the body. A body may also rotate if the active pressure exerts a net torque on

the body, which is given by 〈L〉q = −kBT
∮

SB (x − x0) × nndS, where x0 is the

point about which the torque is taken. The angular velocity then follows from the

hydrodynamic resistance tensor coupling torque and rotation, −RLΩ ·Ω.

3.4 Discussion

From the structure of the concentration distribution and its dependence on the ratios

`/δ and `/L we can readily predict if a given body will experience a net force.

For example, a long thin rectangle will experience no net force or torque as the

active pressures are equal on both faces. If, however, we add a side arm to create

a ‘T’-shaped particle, there will be a force in the direction to the top of the ‘T’.

To a first approximation at each point of the surface there will be a concentration

boundary layer as in (3.5) for a flat wall and thus the active pressure will be the same

at all points on the body surface. However, where the top meets the side arm, the

two solutions will superimpose giving an increased concentration in the ‘corners’

and thus a net force (and torque if the side arm is not at the midpoint). Similarly,

a wedge-shaped particle will experience a force towards the point of the wedge

from the overlapping of the concentration boundary layers on the inside corners.

This reasoning can be continued for bodies composed of straight segments joined at

angles (Fily et al., 2014a). The precise magnitude of the force, of course, requires a

solution of (3.3)-(3.4) for the given body geometry as done in Fig. 3.3, but the fact

that there should be a force can be simply reasoned.

We can also reason about the interaction between two bodies through their dis-
3The unsteady equations (3.3)-(3.4) were solved numerically with a standard Galerkin P2-FEM

method with adaptive mesh refinement. Implicit time-stepping was used to ensure solution stability,
and the solution is tracked long enough (∼ 150τR) to reach a steady state.
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turbance to the concentration and polar-order fields. Two bodies will experience

a depletion-like attraction due to the exclusion of active particles between them.4

When bodies are far apart the attractive force is very weak and decays exponentially

with separation according to (3.8); this exponential dependence was seen in the

simulations of (Ray et al., 2014). Outside the screening length the concentration

is undisturbed and the depletion interaction will be the same as for passive col-

loidal particles where the exclusion zone is geometric (Asakura & Ooswa, 1954);

the Brownian osmotic pressure on the exposed surfaces is replaced by the active

pressure that includes the run length (3.10). Note that the exclusion occurs on the

microscopic scale δ (or swimmer size a), not on the scale of the run length. Even

when the gap between two particles is less than ` the active particles can still access

this space and exert their swim pressure.

In the examples we have considered there was no polar order far from the boundary,

nor a gradient in the concentration of swimmers, and thus force or motion can only

arise if the run length is on the order of the body size, `/L ∼ O(1), and if the

symmetry is broken by the body shape. With macroscopic polar order, which can

result from an orienting field applied to the swimmers (Takatori & Brady, 2014),

even a spherical particle will experience a net force and move due to the imbalanced

active pressure. We also used the simplest no-flux boundary condition on the polar

order field at the body surface, but this condition can be modified. For example, a

portion of the body surface may be treated such that the active particles achieve a

preferred orientation or experience a localized orienting field. Such a ‘Janus’ particle

may have a net force due to a spatially varying polar order boundary condition.

Indeed, a localized boundary orienting field was used by (Solon et al., 2015b) to

argue that the pressure of active matter is not a ‘state’ function, as the force per unit

area on a wall is no longer equal to the swim pressure far from the surface. As our
4The force can be estimated from (3.8): F ∼ −kBTV∇n, where V is the volume of particle i and

the concentration gradient due to particle j is evaluated at the center of i.
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microscopic theory shows, this is to be expected in general: boundary curvature,

the detailed flux conditions at the surface, etc. can all affect the value of the

concentration at the surface and thus the force on the boundary. We showed recently

(Yan & Brady, 2015a) that the polar order induced by an orienting field acts like a

body force on the active material, and when this ‘internal’ body force is included in

the momentum balance, the force per unit area on the wall plus the integral of the

internal body force is equal to the active pressure far from the surface, thus restoring

the active pressure as a state function.

With an external field that tends to align the swimmers and biases their motion,

for example, an external torque or hydrodynamic shearing flows, the conservation

equation form now has an additional ‘sink’ term, which can be written as 2DR[m−

m∞] wherem∞ is the polar order far from the boundary induced by the field. The

equation forQwill have a similarQ∞ term. One nowwrites conservation equations

for the departures of the polar order and nematic fields from their undisturbed values,

m′ =m−m∞ andQ′ = Q−Q∞, and then closes the disturbance equations along

the lines done here. It is not known if this simple closure proves as accurate when

there is net bulk polar order.

Since the behavior is dominated by the rapid variations that occur on the screen-

ing length adjacent to the body surface, the situation has features in common with

phoretic-like problems where a thin layer near the surface dominates the motion

and hydrodynamic fluid motion can be incorporated in a manner similar to diffusio-

phoresis (Anderson, 1989; Brady, 2011; Shklyaev et al., 2014).

The theory we have developed and applied for dilute active matter can be extended

to higher concentrations of swimmers. The N-particle Smoluchowski equation

for passive Brownian particles including excluded volume and full hydrodynamic

interactions is well known, as is the form of the many-body hydrodynamic swim

force (Yan & Brady, 2015a). Reduction to the lowest moments, n andm, is certain
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to give rise to new phenomena since the swim diffusivity, which enters the flux

expressions, can be a decreasing function of the swimmer concentration (Takatori

et al., 2014).
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C h a p t e r 4

THE CURVED KINETIC BOUNDARY LAYER OF ACTIVE
MATTER



47

Swimming micro-organisms may accumulate near a non-penetrating boundary due

to hydrodynamic interactions (Berke et al., 2008). The accumulation may also arise

from ‘kinematic’ origins, e.g., elongated bacteria cannot freely swim on a surface

due to a geometric constraint with the wall (Li & Tang, 2009; Li et al., 2011). The

accumulation due to wall-swimmer interaction gives rise to interesting behaviors;

e.g., rheotaxis (Uspal et al., 2015; Kaya & Koser, 2012) and circular motion (Lauga

et al., 2006). Also, an asymmetric macroscopic body can harvest energy from the

bacteria solution and achieve net motion simply due to its shape (Kaiser et al., 2014).

In fact, the swimmers need not be elongated to exhibit the kinetic accumulation (Yan

& Brady, 2015a; Ezhilan et al., 2015). It may be simply due to the fact that when a

swimmer hits a wall, it may persist with its swim orientation q for a finite reorient

time τR. In this case, the interaction with a non-penetrating boundary can be

modeled by an Active Brownian Particle (ABP). Each ABP propels itself at a fixed

swim velocityU0q, where q is subject to rotational Brownian diffusivity DR = 1/τR.

ABPs may also be subject to translational Brownian motion DT , with ζ = kBT/DT

the (isotropic) drag coefficient.

When an ABP is stuck on the wall, it transmits to the wall a force −ζU0q · n

because it cannot cross the wall, where n is the wall surface normal vector. That

force accumulates over time and space, and the net effect constitutes a pressure

on the wall higher than the ‘passive’ osmotic pressure n∞ζDT = n∞kBT . That

simple process is exactly the microscopic origin of the ‘swim pressure’ (Takatori

et al., 2014). In the absence of hydrodynamic interactions, Yan & Brady, (2015b)

showed that the pressure of ABPs follow a natural extension of the Passive Brownian

Particles (PBP):Πwall = nwallζDT = nwall kBT , where nwall is the number density of

particles on the wall, and it decreases to the bulk n∞ on the microscopic length scale

δ =
√

DTτR. nwall for various geometries can be simply calculated with the moment

expansion method (Saintillan & Shelley, 2015), and including high order moments

is usually not necessary (Yan & Brady, 2015b). The general result naturally extends
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to the singular limit δ → 0 in the absence of translational Brownian motion DT → 0

(Fily et al., 2014a; Ezhilan et al., 2015).

It has been shown (Fily et al., 2014a; Yan & Brady, 2015b; Smallenburg & Löwen,

2015) that the accumulation at the boundary is significantly impacted by the bound-

ary curvature. Therefore, an asymmetric macroscopic body immersed in ABPs can

achieve a net force (Yan & Brady, 2015b), simply due to its asymmetric shape. In

general, nwall is higher in dent regions on a shape and the higher Πwall = nwallζDT

in this region pushes the shape. Since ABPs are assumed to convey no friction on

a boundary, the net force due to asymmetric shape can be calculated by an integra-

tion of the pressure distribution ΠW = nW ζDT around the shape, and nW can be

numerically solved with Smoluchowski equations.

Although the above numerical approach works well case by case, an analytical

prediction of the net force is missing. In general, three length scales appear in this

problem: the macroscopic length scale of the body L, the microscopic length scale

δ, and the particles’ run-length ` = U0τR. Usually δ is on the order of the ABP’s

size, and δ � L, but ` can be arbitrary, and it leads to various scenarios. Therefore,

a general analytical theory covering all scenarios is favorable.

When ` � δ, the particles are simply passive Brownian particles and the net

force should varnish. When δ � ` � L, the particles show significant activity,

and numerical results (Yan & Brady, 2015b) show significant net forces, but the

swimmer number density is only perturbed in a small region close to the body.

When the run-length ` is further increased to be comparable with L, the net force is

greatly increased and the perturbation on swimmer number density propagates far

away from the body (Yan & Brady, 2015b).

Physically, when ` � L, the particles may spend many τR without leaving a local

region on the shape, and therefore they may establish a ‘local equilibrium’ of

number density distribution governed by the local curvature. Therefore, following
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the moment expansion approach (Yan & Brady, 2015b), the local solution of nwall

may be solved everywhere around the arbitrarily shaped body, and all local solutions

can be matched to the global Smoluchowski equation of ABPs. This constitutes a

standard boundary-layer approach, where the inner (local) and outer (global) solution

should be matched to give the distribution of Πwall everywhere, and the net force

can be calculated with a surface integral. Since the moment expansion approach is

general for arbitrary δ and `, the solution is expected to cover both the limits δ � `

and δ � ` with a universal scaling. The scaling will be shown to be related to the

inverse screening length of the number density λ =
√

2
(
1 + 1

6 (`/δ)2
)
/δ.

When ` is comparable to L, the ABPs ‘sample’ the shape of the entire shape in a

single run-length U0τR. In this case nW is no longer determined only by the local

curvature – the variation of the curvature must be considered. Therefore the above

local boundary layer solution for ` � L is no longer true. However, we shall see

that the universal scaling based upon λ is still valid.

In this chapter, we shall start from the Smoluchowski equation for ABPs with

its moment-hierarchy expansion. Then we discuss the separation of scales in the

governing equation. That is, the emergence of the boundary layer of accumulation

and its connection to the outer solution. By building a local curvilinear coordinate

system with the principal curvature, we seek a leading order analytical solution to

the boundary layer equation. Further, we match the local boundary-layer equation

to the outer solution to calculate the net force on an arbitrarily shaped body. The

analytical solutions are then compared to simulations. Finally, we discuss the effect

of different length scales, the connection to a continuum mechanics point of view

(Yan & Brady, 2015a) in an analogy to rarefied gas dynamics, and the formulation

to include full hydrodynamics into this pure kinetic boundary layer analysis.
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4.1 Problem formulation

From a kinetic point of view, there are three characteristic lengths for ABPs: (i)

the macroscopic length scale L for the body, (ii) the run length ` = U0τR and (iii)

a microscopic length δ =
√

DTτR, where DT is the translational diffusivity of the

active particles. For a typical swimming micro-organism or a synthesized Janus

particle, τR ∼ 1 s , δ ∼ 1 µm, and ` ∼ 1 − 10 µm.

ABPs are governed by the Smoluchowski equation for the probability density for

finding a swimmer at x with orientation q, at time t:

∂P(x, q, t)
∂t

+ ∇ · jT + ∇R · j
R = 0. (4.1)

Consider a single particle without particle-particle collisions in the dilute limit. The

translational and rotational fluxes are:

jT = (U0q − DT∇ ln P)P, (4.2)

jR = −DR∇RP, (4.3)

where∇R = q×∇q is the orientational gradient operator (Brenner & Condiff, 1972).

For a spherical swimmer of radius a in aNewtonian solvent of viscosity η, ζ = 6πηa,

DT = kBT/ζ = kBT/6πηa, DR = 1/τR = kBT/8πηa3 and δ =
√

DT/DR =
√

4/3a.

In this chapter we develop a general theory for arbitrary DT and DR.

At a boundary, the normal component of the translational flux must vanish:

n · jT = 0. (4.4)

At infinity, we assume the swimmers are unperturbed at n∞, with an unbiased

orientation distribution. The conservation equations for the zeroth and first moments

of the Smoluchowski equation are (Saintillan & Shelley, 2015):

∂n
∂t
+ ∇ · jn = 0, jn = U0m − DT∇n, (4.5)

∂m

∂t
+ ∇ · jm + 2DRm = 0, jm = U0Q +

1
3

U0n I − DT∇m, (4.6)
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where m(x, t) =
∫
qP(x, q, t)dq is the polar order field, and Q(x, t) =

∫
(qq −

1
3I)P(x, q, t)dq is the (zero-traced) nematic order field. The hierarchy can be

continued to include an extra equation for jQ, allowing the variation of the nematic

orderQ in space. It has been shown (Yan & Brady, 2015b) that including a nematic

order does not significantly improve the accuracy of the boundary-layer solution,

assuming no nematic order appears. One can appreciate that truncation by thinking

about the asymmetry induced by awall on the ABPs’motion. Thewall introduces an

asymmetry that is either towards the wall or directed away from the wall. Therefore,

the polar order is naturally the most effective one. Including higher moments only

slightly improves the solution in the limit of ` � δ and ` ∼ L.

We then non-dimensionalize the equations with length scale L and timescale τR.

Consider the steady state only:

∇̂ · jn = 0, (4.7)

∇̂ · jm + 2m = 0, (4.8)

with flux:

jn =
`

L
m −

δ2

L2 ∇̂n, (4.9)

jm =
`

3L
nI −

δ2

L2 ∇̂m. (4.10)

The truncationQ = 0 allows a simple mathematical manipulation of the equations.

Set f = ∇̂ ·m. Take the divergence of (4.8) and eliminate ∇̂2n with (4.7). We have

(
∇̂2 − λ2L2

)
f = 0, (4.11)

∇̂2n =
L`
δ2 f , (4.12)

where

λ =

√
2
(
1 + 1

6 (`/δ)2
)
/δ (4.13)

is the inverse screening length (Yan & Brady, 2015b).
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Equation (4.11) is a homogeneous Helmholtz equation, which has a ‘screened’

solution. Since we know in free space n = n∞ = const andm = 0, f∞ = 0 and f

must decay exponentially on the length scale λL away from the boundary.

Equation (4.12) is an inhomogeneous Laplace equation, and the solution can be de-

composed into a homogeneous general solution nH and an inhomogeneous particular

solution nP:

n = nH + nP, (4.14)

∇̂2nH = 0, ∇̂2nP =
L`
δ2 f . (4.15)

Therefore, we know that nH decays as 1/r governed by the Laplace’s equation, and

nP decays at the same rate as f = ∇̂ ·m.

Once we know n = nH + nP, we can put it back into the equation to solve form:

δ2

L
∇̂2m − 2m =

l
3L
∇n. (4.16)

Again, due to the structure of this inhomogeneous Helmholtz equation,m can be de-

composed into a homogeneous general solution and a particular solution depending

on ∇n: m =mH +mP.

δ2

L2 ∇̂
2mP − 2mP =

l
3L
∇̂n, (4.17)

δ2

L2 ∇̂
2mH − 2mH = 0. (4.18)

With some mathematical construction, we can explicitly calculate the particular

solutions nP andmP:

nP =
`

δ2λ2L
∇̂ ·m, (4.19)

mP =
1

λ2L2 ∇̂(∇̂ ·m) −
l

6L
∇̂nH, (4.20)

wheremP contains the long-ranged, or unscreened part proportional to ∇̂nH .

In sum:
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Figure 4.1: The formation of the boundary layer on the body surface. When a
swimmer comes to the surface, it transmits a force to the wall of F = −ζU0 · n.
The swimmers form an accumulation boundary layer, with thickness on the order
of δ =

√
DTτR. The inner solution is solved in the local coordinate system q⊥, q2,

depending on the local curvature. The definition of the local curvature is shown in
Fig. 4.2.

• f = ∇̂ ·m exponentially decays as exp (−λLr̂).

• nH is long ranged as n∞ +O(1/r̂).

• nP ∼ f exponentially decays as exp (−λLr̂).

• mH exponentially decays as exp (−Lr̂/δ).

• mP contains both an exponential exp (−λLr̂) and a long ranged O(1/r̂2)

component.

Physically, the exponetially decaying components will be ‘screened’ to the body

surface. When δ � L, the solutions can be split in the (exponential) inner region

and the O(1/r̂) outer region. The boundary layer is illustrated in Fig. 4.1. Only
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Figure 4.2: The local representation of an arbitrary curved surface. The two
principal curvature directions are located in the two perpendicular planes. The local
curvilinear coordinate system q1, q2, q⊥ is build on the surface, where locally it is
orthogonal. q⊥ aligns with the normal vector n pointing toward the outside of the
shape at that point. The sign of principal curvatures κ1 and κ2 follows the convention
shown here.

nH and the corresponding component in mP extend to the outer region, and are

governed by a simple Laplace’s equation (4.12). Inside the boundary layer, due to

the separation of scales, the outer solution nH can be considered as linear or even

a constant. Therefore, in this case we can split the problem into an inner region

and an outer region. The inner region is attached to the body surface and can be

considered as a 1D (curved) boundary layer. After the boundary layer is solved, the

solution can be used as the boundary condition for the Laplace equation in the outer

region. The final solution can be determined by matching the flux jn, jm between

these two regions, which is a standard boundary-layer approach.

Recall that λ =
√

2
(
1 + 1

6 (`/δ)2
)
/δ. When ` ∼ δ, λ ∼ 1/δ, and nP andmH decay

at comparable rate. When ` � δ, λ ∼ `/δ2 � 1/δ, and nP decays much faster than
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mH . In this case, the inner region of thickness δ further splits into two regions of

different scales, and form ‘a boundary layer inside a boundary layer’. Our analysis

in the following section, however, is a general approach and applies to both cases.

In sum, we shall solve the boundary layer structure with the assumption that δ � L,

` � L, but we do not specify the relation between δ and `.

4.2 Analytical solution

Inside the boundary layer, the solution is exponential and depends on the local

geometry only. We can split the solution into the inner region nin,min and outer

nout,mout . We shall scale all lengths with the macroscopic length scale L. As

discussed in the last section, the outer region is governed by a Laplace’s equation:

∇̂2nout = 0, (4.21)

while in the inner region we shall solve the full equations, starting with (4.11). In the

simplest case for a flat plate κ̂1 = κ̂2 = 0, the boundary layer has been solved (Yan

& Brady, 2015b). Inside the boundary layer, we rescale Z = q⊥/ (δ/L) = q⊥/ε ,

where ε = δ/L → 0:

f0

n∞
=
`L
δ2

6δ2 + `2

18δ2 e−λδZ, (4.22a)

n0

n∞
= 1 +

`2

6δ2 e−λδZ, (4.22b)

m⊥,0
n∞
= −

`λ

6
e−λδZ, m‖,0 = 0, (4.22c)

where the subscript 0 means zero curvature of the wall. For a flat wall geometry,

above that boundary layer the outside solution is simply nout = n∞ = const. Nowwe

consider an arbitrary shaped macroscopic body. To zeroth order, the flat boundary

layer solution gives the pressure on the wall:

Π
wall = nwallζDT =

(
1 +

`2

6δ2

)
n∞ζDT,

= ζn∞
(
DT + Dswim

)
= n∞ (kBT + ksTs) . (4.23)
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Therefore to zeroth order of curvature, the pressure on a macroscopic body is the

same everywhere on the surface regardless of the body shape. The net force on

any shape given by this homogeneous pressure is zero, just as a macroscopic body

submersed in the atmosphere does not get any net force from the homogeneous

isotropic atmospheric pressure. For a classical ideal gas, the pressure on a boundary

would deviate from the ideal gas limit when the mean free path is comparable to

the macroscopic body length. For ABPs, the pressure is applied to the body surface

through the formation of the kinetic boundary layer, so the pressuremay deviate from

the isotropic swim pressure n∞ (kBT + ksTs) when the boundary layer thickness is

comparable to the body’s lengthscale.

The boundary-layer thickness is governed by the microscopic length δ =
√

DTτR;

therefore we shall improve the zero-curvature solution to the leading order curvature.

We locally build a curvilinear coordinate system as shown in (4.2). The local

arbitrary curved surface is represented by a second order curvature (mathematically,

the second fundamental form). Coordinate axes q1, q2 are attached to the curvature

surface and q⊥ is perpendicular to it. q1, q2 are along the two principal curvature

directions. q⊥ is aligned with the normal vector n. Mathematically, we can assume

that locally q1, q2, q⊥ are orthogonal.

In the curvilinear coordinate system, the Cartesian nabla operator ∇̂ in (4.11) should

be replaced by the curvilinear operator ∇̂∗. The details can be found in Appendix D,

and to the leading order of O(δ/|R|) we need only consider a constant JS = 2H ,

where H = 1
2 ( κ̂1 + κ̂2) is the mean curvature. Also, the first order effects give only

a correction to the normal direction. The tangential direction solution appears at

second order.

Herewe consider a smooth body, andwe assume the curvature radii R̂ = 1/κ̂ ∼ O(1),

also non-dimensionalized by L everywhere. If there is a sharp corner on the body, the

curvature radii |Rcorner | � L, and the boundary-layer assumption might no longer
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be valid there, so a leading order curvature solution is not sufficient. Physically,

swimmers with orientation q , −n have a tangential swim velocity and are about to

leave that sharp corner easily. This is also true for a passive particle with significant

translational diffusivity DT . Therefore, the kinetic accumulation on a sharp corner

or tip is very weak, and the pressure there significantly decreases with increasing

`/|R| and δ/|R| (Yan & Brady, 2015b).

Inner solution

In the boundary layer, we shall use ntop to denote the number density at the top

of the boundary layer, and ntop is a local value of the outer solution, which is not

necessarily a constant as n∞:

(
∇̂2
∗ − λ

2L2
)

f = 0, (4.24)(
−JS

∂

∂q⊥
+

∂2

∂q⊥2 − λ
2L2

)
f = 0, (4.25)

where JS ∼ O(1/(R/L)) ∼ O(1). Inside the boundary layer we rescale Z = q⊥/ε .

Here ε ∼ δ/L � 1 and Z ∼ O(1):(
−JSε

∂

∂Z
+

∂2

∂Z2 − 2
(
1 +

`2

6δ2

))
f = 0. (4.26)

The leading order effects of the curvature are captured by this asymptotic expansion:

f = f0 + ε f1 + ..., (4.27)

n = n0 + εn1 + ..., (4.28)

m⊥ = m⊥,0 + εm⊥,1 + ..., (4.29)

where the leading order f0, n0,m⊥,0 are just the flat surface solution (4.22).

If `/δ ∼ O(1), then f0/ntop ∼ L/δ, n0/ntop ∼ O(1), m⊥,0/ntop ∼ O(1). If ` � δ,

then f0/ntop ∼ `
3L/δ4, n0/ntop ∼ `

2/δ2, and m⊥,0/ntop ∼ `
2/δ2 are not on the same

order, due to the different prefactors in (4.22). So we should be very careful when

going to the next order without losing the scalings. Also, due to geometry (D.3),
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the divergence operator at the first order includes a contribution from the curvature

JS:

f0 =
L
δ

∂m⊥,0
∂Z

, (4.30a)

f1 =
L
δ

(
−JSm⊥,0 +

∂m⊥,1
∂Z

)
. (4.30b)

Therefore we can solve at first order:(
∂2 f1

∂Z2 − λ
2δ2

)
f1 = JS

∂ f0

∂Z
. (4.31)

The solution is:

f1

ntop
= C1eδλZ + C2eδλ(−Z )

+
1

12
`JSλ

2LZeδλ(−Z ) +
`JsλL

24δ
eδλ(−Z ), (4.32)

where C1 and C2 are constants to be determined. As discussed in the last section, f

is screened so all components of f1 are exponential. We can determine that C1 = 0

because in the final step the solution, the limit Z → ∞ will be applied to attach the

inner and the outer solution.

Then we can solve the first curvature correction n1 in the normal direction:

∂2n1

∂Z2 =
`

L
f1 + JS

∂n0

∂Z
, (4.33)

giving:

n1

ntop
=

C1`eδλZ

δ2λ2L
+

C2`eδλ(−Z )

δ2λ2L
+ C3 + C4Z

+
`2 JSeδλ(−Z )

24δ3λ
+
`2 JS Zeδλ(−Z )

12δ2 . (4.34)

The last step is to solve for m⊥:

−JS
∂m⊥,0
∂Z

+
∂2m⊥,1
∂Z2 − 2m⊥,1 =

`

3L
L
δ

∂n1

∂Z
. (4.35)
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The solution is:

m⊥,1
ntop

=
C1eδλZ

λL
−

C2eδλ(−Z )

λL
−

1
12
`JSλZeδλ(−Z )

+
`JSeδλ(−Z )

24δ
−

`

6δ
C4. (4.36)

By definition f = ∇̂∗ ·m, and the solution m⊥,1 is compatible with (4.30).

The structure of f1, n1,m⊥,1 follows exactly the separation of scales as discussed

in the last section. Particularly, the C3 + C4Z part in n1 represents the long-range

solution nH . The −`C4/(6δ) part in m⊥,1 is also the long-ranged part −`∇̂nH/(6δ)

inmP. Inside the very thin boundary layer, the variation of nH is very slow, and is

simplified to a linear function of Z in the first order solution n1.

Matching the boundary condition & the flux

First, the exponentially growing part C1 must be zero. On the surface Z = 0, the

boundary condition is simply non-penetrating:

jn · nZ = `m⊥ −
δ2L
Lδ

∂n
∂Z
= 0, (4.37)

jm · nZ =
n
3
` −

δ2L
Lδ

∂m⊥
∂Z
= 0. (4.38)

Part 1, jn:

jn · nZ = `

(
m⊥,0 +

δ

L
m⊥,1

)
−
δ2

L
L
δ

∂

∂Z

(
n0 +

δ

L
n1

)
,

= −
C4δ

2

L
ntop. (4.39)

It is a constant, and to satisfy the boundary condition jn · nZ = 0, C4 must be

zero. So the perpendicular component of flux jn,⊥ = jn · nZ = 0 throughout the

boundary layer. Therefore by the continuity of flux from the outer solution to the

inner solution, this zero-flux boundary condition is also the boundary condition for

the outer solution ∇̂2nout = 0.
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Part 2, jm:

By setting jm · nZ = 0 at Z = 0 in (4.36), we can find:

C2 = C3
`L

(
6δ2 + `2

)
18δ4 +

`JS L
(
9δ2 + 2`2

) √
`2

δ2 + 6

72
√

3δ4
, (4.40)

where C3 should be matched by the outer solution: as Z → ∞,

n
ntop

→ n0(Z → ∞) +
δ

L
n1(Z → ∞) = 1 +

δ

L
C3. (4.41)

Part 3, ∇ · jn:

∇ ·jn does not work as a boundary condition, but we demonstrate that at steady state

it is zero, as required by the governing equation (4.5). The two leading orders to the

flux jn are:

∇ · jn = `
L
δ

∂m⊥,0
∂Z

− L
∂2n0

∂Z2

+ `

(
−JSm⊥,0 +

∂m⊥,1
∂Z

)
− δ

(
∂2n1

∂Z2 − JS
∂n0

∂Z

)
, (4.42)

and we know that m⊥,0 =
δ

`

∂n0

∂Z
; therefore,

∇ · jn = `

(
∂m⊥,1
∂Z

)
− δ

(
∂2n1

∂Z2

)
. (4.43)

So by the solution (4.34) and (4.36), ∇ · jn = 0 everywhere inside the boundary

layer, as required by the governing equations.

From inner to outer: continuity of jn,⊥

Remember that, as discussed in the last section, the solution to n can be decomposed

to a homogeneous solution nH and a particular solution nP. From an inner-outer

boundary layer point of view, nH satisfies the Laplace’s equation and is just the outer

solution nout . In the outer region,

∇2nout = 0, (4.44)

nout (r̂ → ∞) = n∞, (4.45)

boundary condition (4.39): jn,⊥ = jn · n = 0. (4.46)
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According to (4.9) and (4.19), in the outer regionm = −`∇̂nH/(6L), therefore:

jn =
`

L
mP −

δ2

L2 ∇̂nout = −
`

L
`

6L
∇̂nout −

δ2

L2 ∇̂nout,

∼ −
(
Dswim + DT

)
∇nout = 0. (4.47)

Then on the boundary of the outer region ∇̂nout ·n = 0. Therefore, by the uniqueness

theorem of the Laplace’s equation subject to Neumann boundary condition, the

unique solution to nout is simply:

nout = const = n∞. (4.48)

It gives a very simple boundary-layer solution structure. The outer solution nout is

simply a constant everywhere, and so at the top of the boundary layer everywhere,

ntop is a universal constant: ntop = n∞. The inner solutions are given as (4.34)

and (4.36), which decay exponentially from the surface and scale as n∞.

As shown in Fig. 4.3, when λ′δ2/|R| = 1
2
√

6
→ 0, the swimmers form an accumu-

lation boundary layer, and the solution nout = const is valid. When ` is increased

so that λ′δ2/|R| = 1
2
√

6
∼ 1, the boundary layer still exists but the solution nout is no

longer a constant.

4.3 Results

Analytical results

With the solution ntop = n∞ and (4.34) & (4.36), we can calculate the swim pressure

exerted by the kinetic boundary layer everywhere on an arbitrary shaped body with

Πwall = ζDT nwall :

nwall

n∞
= n0(Z = 0) +

δ

L
n1(Z = 0),

= 1 +
`2

6δ2 +
`2λ

12L
JS . (4.49)
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Figure 4.3: The number density n/n∞ in two systems. In the left, λ′δ2/|R| =
1

2
√

6
≈ 0.204, and the outer solution nout = const = n∞ still holds. In the right,

λ′δ2/|R| = 1
2

√
3
2 ≈ 0.612, and the outer solution nout = const = n∞ is invalid. The

left case is located at the O(δ/|R|)2 regime in Fig. 4.5, while the right case is located
at the linear regime.

So to the first order of curvature JS:

Πwall = n∞ζDT + n∞ζDswim
(
1 +

λδ2

2L
JS

)
,

= n∞kBT + n∞ksTs

(
1 +

λδ2

2L
JS

)
. (4.50)

Obviously, for passive Brownian particles Dswim = 0 and Πwall is not impacted by

the curvature JS. For swimmers, the swim pressure is impacted by the curvature

scaled as JSλδ
2/(2L).

In the limit of very fast swimmers ` � δ, λ → `√
3δ2 :

nwall → 1 +
`2

6δ2

(
1 +

1
2
√

3

[
`

R1
+

`

R̂2

])
, (4.51)
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and the pressure:

Πwall → n∞kBT + n∞ksTs

(
1 +

1
2
√

3

[
`

R1
+

`

R2

])
. (4.52)

For swimmers outside a sphere with radius |R|, the signed curvature radii R1 =

R2 = −|R| following the sign convention in Fig. 4.2, therefore the pressure on

the wall decreases as the sphere decreases in size. This is consistent with the

exact solution for the swim pressure inside and outside a spherical & cylindrical

container, presented in a Padé form (Yan & Brady, 2015b): 1/
[
1 + (`/|R|)/

√
3

]
. It

is also consistent with the results for the singular limit of no translational Brownian

motion DT → 0 (Fily et al., 2014a; Smallenburg & Löwen, 2015), where the result

depends only on the ratio of run length to curvature radii `/|R|. The above analytical

solutions are for the first order where the microscopic length δ and the run length `

are both much smaller than the macroscopic body length L, and therefore they are

accurate only to the O(`/L) and O(δ/L). The derivation gave us a universal scaling

λδ2/L:

` ∼ δ : λδ2/|R| ∼ δ/L, (4.53a)

` � δ : λδ2/|R| ∼ `/L, (4.53b)

therefore our theory works in the limit where λδ2/|R| → 0. In the following, we

shall use this universal scaling.

Equation (4.50) gives the pressure distribution everywhere on an arbitrary shaped

body. With surface integration, we can get the net force and torque applied on a

body. Trivially, the integration of the constant part of pressure n∞kBT + n∞ksTs

does not give a net force. To leading order:∮
Π

swimdS = n∞ksTsL2
∮ (

1 +
λδ2

2L
JS

)
dŜ, (4.54a)

F net = n∞ksTsL2
∮
−
λδ2

2L
JSndŜ, (4.54b)

Lnet = n∞ksTsL2
∮
−
λδ2

2L
JSr × ndŜ. (4.54c)
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Here,
∮
ΠswimdS is a scalar ‘total’ integration of the swim pressure on the body. It

is of no dynamic importance, but can be easily measured from a particle-tracking

Brownian dynamics simulation to verify the boundary-layer solution. F net andLnet

are the first order net force and torque applied on a macroscopic body solely due to

its asymmetric shape.

Equation (4.54) involves the pure geometric integral of JSn on the surface. By

definition:

JS = 2H = ( κ̂1 + κ̂2) = ∇̂ · n. (4.55)

It is well-known that for a smooth closed simply-connected surface:
∮

(∇ · n)ndS = 0. (4.56)

Therefore, we conclude that to first order O(λδ2/L):

F net = 0, (4.57)

for a smoothed body of arbitrary shape. A net force would appear to the second

order O(λδ2/L)2.

Physically, to first order, F net = 0 also means that theLnet is actually a force couple,

which does not depend on the choice of the center of the torque. In fact, if we shift

the torque moment center by r0 in (4.54c):

Lnet
0 = n∞ksTsL2

∮
−
λδ2

2L
JS (r + r0) × ndŜ,

= r0 × F
net +Lnet = Lnet . (4.58)

The equality holds at leading order O(λδ2/L). In fact due to the special form of

the geometric integral
∮

JSr×ndŜ, there is some mathematical evidence (Sullivan,

2007) that Lnet = 0 to leading order, too.
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Verification

To verify our analytical solution, especially the surprising result that to leading order

the net force is zero, we perform Brownian dynamics simulations with ABPs and

numerically solve the equations (4.7) and (4.8) with a Finite Element solver. The

simulations require as many as 40, 000 particles and as long as 3000τR to capture

the very weak signal of F net in the tremendous amount of Brownian noise. Also

the Finite Element solver is expansive to solve due to the very thin boundary layer

on the small scale δ. Limited by computing resources, we perform simulations and

numerical solutions on a 2D geometry, for ABPs with 2D in-plane rotations.

In this case, we can repeat the solution and find the same result:

n2D
wall

n∞
= 1 +

`2

2δ2 +
`2λ′

L
J′S, (4.59)

where J′S = κ̂ is simply the (non-dimensionalized) curvature of the 2D curved

boundary. For a curved boundary in 2D, there is only one curvature and there is no

need to define a ‘mean curvature’ H . The inverse screening length in 2D (Yan &

Brady, 2015b): λ′ =
√(

1 + 1
2 (`/δ)2

)
/δ. So to leading order O(λδ2/L):

Π
2D
wall = n∞ζDT + n∞ζDswim

(
1 +

λ′δ2

L
J′S

)
,

= n∞kBT + n∞ksT ′s

(
1 +

λ′δ2

L
J′S

)
, (4.60)

where ksT ′s = ζU2
0 /(2DR). Also in the limit of ` � δ, similar to (4.52) the

perturbation on swim pressure scales as `/L:

Π
2D
wall → n∞kBT + n∞ksT ′s

(
1 +

`
√

2L
J′S

)
. (4.61)

Again we take the surface integrals to get the net force:∮
Π

swimdL = n∞ksT ′s L
∮ (

1 +
λ′δ2

L
J′S

)
dL̂, (4.62a)

F net = n∞ksT ′s L
∮
−
λ′δ2

2L
J′SndL̂, (4.62b)

Lnet = n∞ksT ′s L
∮
−
λ′δ2

2L
J′Sr × ndL̂. (4.62c)
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Similarly, we get F net = 0 and Lnet is a force couple in the first order.

In this case, we can further simplify (4.62a), with a special case of Gauss-Bonnet

theorem for a smooth 2D simple curve:∮
κdL̂ = −2π. (4.63)

Here the negative sign appears due to our convention of sign as illustrated in Fig. 4.2.

Mathematically speaking, the ‘total curvature’ is −2π for a closed immersed plane

curve. As a result: ∮
Π

swimdL = n∞ksT ′sC
(
1 − 2π

λ′δ2

C

)
, (4.64)

where C is the circumference of that 2D shape, on the scale of the macroscopic

length L. Remember that λ′δ has dimension 1, so the factor λ′δ2/L is on the order

O(λ′δ2/L), not a second order correction.

The 2D Brownian dynamics simulation is done with the discretized Langevin equa-

tion of ABPs, with its orientation q = (cos θ, sin θ):

∆X = U0q∆t + ∆X B + F C/ζ∆t, (4.65)

∆θ = ∆θB . (4.66)

〈∆X B〉 = 0, 〈∆X B∆X B〉 = 2DT∆t, and 〈∆θB〉 = 0, 〈∆θB∆θB〉 = 2DR∆t. Particle-

particle collision is ignored as that effect is not included in the kinetic boundary

layer solution. The ABPs have radius a, and the swimmer-body collision force F C

is applied through the excluded volume interaction which occurs at the contact line

calculated with the potential-free algorithm (Foss & Brady, 2000; Yan & Brady,

2015b). Due to the finite ABP radius a, the effective body shape is the original body

shape plus a excluded volume layer of distance a. We use the effective body shape

in all data we present.

The body shape is shown in Fig. 4.3. We purposely constructed the body shape with

four circular arcs, to simplify the algorithm and to minimize the numerical error in
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Figure 4.4: The scalar integration of pressure
∮
ΠswimdL on an asymmetric body

immersed in ABPs. The dashed line is equation (4.67). The symbols are simulation
results for N = 40000 particles equilibrated for 3000τR, and the solid lines are Finite
Element solution for up to 104τR to ensure a steady state is reached.

the contact detection process in simulations. For each combination of δ and |R|, we

vary `/δ ∈ (1, 10) to cover both cases δ ≈ ` and δ � `.

Here we choose the inner radius |R| of the shape as the macroscopic length scale

L, and for the shape we used the circumference C = 3π |R|. So (4.64) becomes a

simple straight line for this particular shape:∮
ΠswimdL

n∞ksT ′sC
= 1 −

2
3
λ′δ2/|R|. (4.67)

Fig. 4.4 compares (4.67) with simulation results and PDE solutions. The dashed line

is calculated with (4.67). The theoretical solution applies for δ � |R| and ` � |R|,

and it works well in the limit λ′δ2/|R| → 0 as illustrated by Fig. 4.4.

Next, we compare the theoretical estimation of net force with the simulation results
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Figure 4.5: The net force F net on an asymmetric body immersed in ABPs. The
body shape is shown in (4.3). The data is collected from the same simulations and
PDE solutions in Fig. 4.4. The O(δ/|R|)2 and O(δ/|R|) asymptotic lines are for
ease of view.

in Fig. 4.5. As shown in (4.60) and the definition of curvature sign in Fig. 4.2, a dent

in the body means positive curvature J′S > 0 and increases the swim pressure on the

wall by n∞ksT ′s (λ′δ2/L)J′S. Therefore the shape shown in Fig. 4.3 experience a net

force towards the right. Also, because F net = 0 to the order λ′δ2/|R|, asymptoticly

F net ∼ O(λ′δ2/|R|)2, which is verified by the results shown in Fig. 4.5.

The simulations and numerical solutions in Fig. 4.5 show that all data and theoretic

predictions of Fnet collapse on a single line, for a wide range of δ, |R|, and ` :

Fnet

n∞ksTs |R|
= f

(
λδ2

|R|

)
, (4.68)

where f (x) is a function determined by the shape, satisfying f (x → 0) → x2,

because we have shown with the analytic solution that for small λδ2/|R|, asymp-

toticly F net ∼ O(λ′δ2/|R|)2. Also, when λδ2/|R| is large, f (x) transits to a linear
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function. We have shown in (4.53) that our boundary solution is no longer valid in

the limit where λδ2/|R| ∼ 1, this may happen when ` ∼ |R|.

In Fig. 4.3, the different cases where λ′δ2/|R| → 0 and λ′δ2/|R| → 1 are compared.

It is clear that in the limit of λ′δ2/|R| ∼ O(1), our boundary layer solution is valid.

Meanwhile in the other limit, the number density n still shows a boundary layer at

the microscopic length δ close to the boundary, but the outer solution nout = const

is no longer valid. There is a clear wake (low density region) close to the concave

portion of the body.

In the limit of λ′δ2/|R| → 1, one can still take the surface integral of Πwall =

nwallζDT over the surface to get the net force, but it is no longer correct to use

the constant outer solution nout = const = n∞. In that case, the global transport

equations (4.5) must be solved to get the correct number density field to calculate the

net force, as we did in Fig. 4.4 and Fig. 4.5 with the PDE solver. Physically, when

` ∼ |R|, in a single run-length a swimmer does not only sample a local geometry,

but actually experiences the global shape. Therefore, our solution of a completely

localized boundary layer is invalid.

4.4 Discussion & Conclusions

In this chapter, we solved for the general case where δ/L and `/L are both small, but

the relation between δ and ` can be arbitrary. With the solution, we found a universal

scaling emerges as λδ2/L, and our analytical solution for the boundary layer is valid

for λδ2/L � 1. When λδ2/L is not small, we showed by simulations and PDE

solutions that the scaling and the boundary layer structure still holds, but the outer

solution nout is no longer a constant n∞. Also, in analytical and PDE solutions

the moment expansion is truncated atm level with an assumption of isotropic Q,

and the solution matches the Brownian simulations well. It has been discussed

and quantitatively compared by Yan & Brady, (2015b), and we shall not repeat the

discussion here. The details can be found in Chapter 3.
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Figure 4.6: The origin of a non zero flux jn,⊥. In the left, curvature is symmetric.
On the right, the curvature is asymmetric.

Our solution is not limited to an exterior problem, it is also applicable to an interior

problem where swimmers are confined in an arbitrarily shaped container and form

a boundary layer on the walls.

Practically, δ � L is almost always satisfied in experiments, and most interest in

swimmers concerns the fast swimming case where ` � δ. In the following, we shall

discuss ` relative to the macroscopic length L.

Case 1, ` � L: F net ∼ O(λδ2/L)2.

In this case, the disappearance of a net force at first order in λδ2/L is due to the

fact that the outer solution is constant: n = n∞ = const. Since the outer solution

is governed by the Laplace equation, the constant solution is determined by the no

flux boundary condition: jn,⊥ = 0. This is due to the continuity of the flux across

the boundary layer.

The leading order expansion in the body shape is the curvature constant JS. We

expanded the boundary-layer solution on the surface with a geometric constant JS,

but JS is only themean curvature, and it does not take into consideration any variation

of that curvature. That means, physically, in the leading order we approximated the

surface with a curvature with constant curvature, which means the local solution
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is the same at that point, and at its neighbor points. As a result, it includes no

tangential flux of the swimmers. Then by the continuity of flux across the boundary

layer, there is no flux coming or leaving this boundary-layer region, and j⊥ = 0.

When we allow the curvature to vary, a non-zero tangential flux is allowed. By

continuity, a normal flux of outer solution can come into the boundary layer and

flow tangentially somewhere. A non-zero normal flux jn,⊥ therefore gives a non-

constant outer solution nout . However, when the boundary layer assumption holds,

the variation of curvature appears at second order in the expansion of the curvilinear

operator ∇̂∗, as discussed in Appendix D. That is, the deviation of n from a constant

outer solution n∞ occurs at the second order O(λδ2/L)2. Therefore, we observe a

second order net force as shown in (4.68) and Fig. (4.5). An analytical theory for

the second order boundary condition would require all 21 geometric constants for

curvature and curvature variations to be included, and is unnecessarily complicated

(Panaras, 1987).

When δ � `, we have λδ2/L ∼ `/L, as shown in (4.53), (4.52) and (4.61). This

corresponds to the singular limit of no translational Brownian diffusion DT , and it

explains the appearance of the `/|R| scaling in literature (Fily et al., 2014a; Smallen-

burg & Löwen, 2015). However, it is important that in this case the boundary-layer

thickness goes to zero, and one should not simply put the Smoluchowski equation

into a PDE solver with a finite minimum mesh size lm. In fact, in this case the num-

ber density n behaves as a δdirac function on the wall, and it cannot be appropriately

captured by any finite mesh size. The proper solution for zero δ between a parallel

wall configuration (Ezhilan et al., 2015) must mathematically split the particles ‘on

the wall’ from the bulk to appropriately capture the number density n solution. If

one blindly chooses some lm it is equivalent to specifying a finite microscopic length

δ, and may lead to a mysterious constant in front of the scaling `/L. Also, it is

not legitimate to attach a numerically fitted high order inner solution with a leading

order constant outer solution to calculate the net force. The inner and the outer



72

solutions must be resolved to the same order.

Case 2, ` ∼ L: F net ∼ O(λδ2/L) ∼ O(`/L)

In this case, since we assumed δ � L, effectively we have Fnet ∼ O(`/L). As

shown in Fig. 4.3, there is also a boundary layer governed by the microscopic length

δ, but on large scales the outer solution shows a clear convection-like wake structure.

The physics is very similar to the ` � L limit. When ` � L, swimmers explore the

local curvature variations to induce a second order perturbation to nout . However,

when ` ∼ L, the swimmers experience the variation of curvature over the entire

body within a single run-length and cause the deviation of nout from a constant n∞.

More specifically, in this case only a few swimmers with preferred orientation q

can enter the concave portion of the macroscopic body, and therefore a long range

orientation fieldmout = −
`

6L ∇̂nout appears together with a non constant nout . In this

case, the swimmers still show an accumulation boundary layer as shown in Fig. 4.3,

and simulations with full PDE solutions all collapse on a universal scaling (4.68)

Fnet/ (n∞ksTs |R|) = f
(
λδ2/|R|

)
, and the function f (x) is determined by the shape.

Also in this limit, for a regular shaped circle or sphere the exact full solution (Yan

& Brady, 2015b) shows that the Padé form:

Πwall → n∞kBT + n∞ksTs
1

1 − 1
2
√

3

[
`

R1
+ `

R2

] , (4.69)

is the exact analytic solution and it works well even when `/L ∼ 5. The linear ex-

pansion of this Padé form is the first order boundary layer solution (4.52). However,

we cannot write (4.50) into this Padé form and attach it to the constant outer solution

nout = n∞ to calculate the force, because it inherently requires a second order outer

solution.

The difference between the limits ` � L and ` ∼ L can also be appreciated from

a continuum mechanics point of view. We have shown that, for swimmers with no

orientation bias or body force, on large scales where L � ` continuum mechanics
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describes the number density flux very well (Yan & Brady, 2015a):

jn = −
1
ζ
∇ · σtot, (4.70)

where if the swimmer-swimmer interaction is ignored (the dilute limit):

σtot = nζ
(
DT + Dswim

)
I . (4.71)

In this formulation, any non-continuum effects are only important on a very thin

layer attached to the body surface. The thin layer is the boundary layer we analyzed

in this chapter. The continuummechanics flux (4.70) is exactly the outer flux (4.47).

Also, the non-dimensionalized parameter λδ2/L is the counterpart to the Knudsen

number mean free path to body size ratio Kn = λMFP/L in rarefied gas dynamics.

When Kn . 0.1 the Navier-Stokes equation is still applicable in the bulk, with its

boundary condition modified by the Knudsen layer close to the wall. In our solution,

Fig. 4.4 and Fig. 4.5, we also observed that the first order boundary layer solution is

valid when λδ2/L . 0.2.

However when ` ∼ L, the continuum mechanics transport equation can only be

used in regions very far away from the body, and we need to solve for the detailed

Smoluchowski equations in the vicinity. It is similar to the transition regime Kn ≈ 1

in rarefied gas dynamics, where detailed dynamics must be solved.

General solution: spherical harmonics

The decoupled structure (4.11) allows us to construct the general solution for f =

∇̂ · m, first by spherical harmonics (similar in 2D), and then by matching the

boundary conditions to get the general solution without going to the details of the

curvature expansion. However, in the case where λδ2/L � 1, numerically the series

constants are highly sensitive to numerical errors, and for a body of complex shape

the general solution is effectively useless. Here we just present the general structure

for an axisymmetric body to complete our mathematical discussion.
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For a general body in 3D axisymmetric about the z-axis:

∇̂ ·m =
∞∑

l=0
Bl

√
2

πλLr
Kl+ 1

2
(λLr)Pl (cos θ), (4.72)

n = nH + nP

= n∞ +
∞∑

l=0
glr−(l+1) Pl (cos θ) +

`

δ2λ2L
∇̂ ·m,

(4.73)

m =mH +mP

=

∞∑
l=0
Cl (θ)

√
2
παr

Kl+ 1
2
(αr)

+
1

λ2L2 ∇̂(∇̂ ·m) −
l

6L
∇̂nH,

(4.74)

where Kl+ 1
2
(z) are the cylindricalmodified Bessel functions. For interior problems,

Kl+ 1
2
(z) should be replaced by Il (z). Pl (x) is the Legendre polynomial. Bl, gl,Cl

should be matched by the no-flux boundary condition.

For a general shape in 2D, similarly we can just replace the Legendre polynomials

by a Fourier mode cos nθ + sin nθ, and replace the Kl+ 1
2
(z) with its integer order

version Kl (z), to construct the general solution. The constants should also be

adjusted accordingly.

Formula for hydrodynamics

In this chapter we discussed the kinetic limit, where the boundary layer emerges

solely due to the run length ` = U0τR and the microscopic length δ =
√

DTτR. In this

case, we showed that the interaction is completely determined by the distribution of

swimmers around the body: the distribution function P(x, q, t).

It is also true for swimmers with full hydrodynamics in Stokes flow. As shown by

the equation (4.19) in Brady, (2011), the hydrodynamic force applied on the body is

completely determined by the distribution function pi j (r) of a swimmer j relative

to a macroscopic body i, and the full mobility matrixMi j (r). In Brady, (2011), i

is termed as the ‘particle’ and j is termed as the ‘solute’.
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In the limit where the excluded volume interaction is effective on a range much

longer than hydrodynamic interactions, the hydrodynamic mobility is simplified to

the isotropic Stokes drag, and the interaction is simplified to the sum of individual

Brownian collisions discussed in this chapter.

When hydrodynamic interaction is effective, the distribution function pi j (r) must be

solved case by case to find the correct interaction and boundary layer form. Due to

the complicated general form ofMi j (r), we do not know whether a simple general

solution for the boundary layer structure exists. We shall leave it for future studies.

Wen Yan thanks Eric W. Burkholder for the mathematical construction (4.11). This

work is supported by NSF-CBET 1437570.
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C h a p t e r 5

ACTIVE MATTER WITH NEMATIC ORIENTATION:
ENHANCED ANISOTROPY AND TENSORIAL SWIM STRESS
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5.1 Introduction

Each individual particle in active matter propels itself with some orientation q, and

therefore by manipulating q interesting phenomena happen, such as shear trapping

(Rusconi et al., 2014), rheotaxis (Kaya & Koser, 2012), action-at-distance (Yan &

Brady, 2015a), and so on. Those phenomena can mostly be explained by solving

the Smoluchowski equations for the Active Brownian Particles (ABPs) model, and

continuum mechanics naturally arises as a large-scale limit of the detailed Smolu-

chowski mechanics.

From a continuum perspective, the continuum mechanics relies on the balance

of surface and body forces. The surface force of active matter has been defined

as the swim pressure (Takatori et al., 2014), which is the pressure required to

confine the swimmers within some fixed volume, and is therefore dependent on

the swim diffusivity σswim = −nζDswim, where n is the number density and ζ

is the drag. If the orientation q is governed by unbiased rotational Brownian

diffusivity DR = 1/τR, Dswim = U2
0 τR/6I and remains isotropic. With polar-

ization in some particular direction Ĥ , the stress is in general anisotropic as

σswim = −nζU2
0 τR/6

(
σ̂swim
‖

ĤĤ + σ̂swim
⊥ Ĥ⊥Ĥ⊥

)
, where σ̂swim

‖
and σ̂swim

⊥ are

both functions of the field strength, and are equal to 1 without the field (Takatori &

Brady, 2014).

An anisotropic swim stress is unusual, but one must think of active matter in an

external field. With polarization, it is clear that the ‘equilibrium’ stress is anisotropic.

In this work, we consider a fundamental problem, that is, the force on a flat wall

applied by anisotropic swimmers. We show that the anisotropic swim stress on a

wall may actually be a real tensorial stress, based on a microscopic understanding of

how the swim pressure in the bulk is transmitted to the wall (Yan & Brady, 2015b).

We would first discuss the anisotropic swim stress σswim for ABPs with a nematic

order, showing that the anisotropy σ̂swim
‖

/σ̂swim
⊥ can be greatly enhanced by the
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orientation field. Then, we examine the force on a wall, with its normal vector

n in an arbitrary angle to the field direction Ĥ . With that model, we show that

the (normal) pressure on the wall can be calculated simply as (σswim · n) · n, in

agreement with classical continuummechanics. That is, the swim stress is tensorial.

5.2 Nematic orientation order: anisotropic swim diffusivity

We consider ABPs with a bi-stable orientational potential energy:

V (q) = −ε
(
q · Ĥ

)2
, (5.1)

where ε is an energy scale, q is the orientation vector and Ĥ is the direction of

the field. Energy is minimized for both q = ±Ĥ . Such a potential is often seen

in magnetic nanoparticles (Coffey & Kalmykov, 2012). With V (q), the swimmers

tend to swim in the directions of ±Ĥ and show different swim diffusivity in Ĥ and

Ĥ⊥ directions. The swim diffusivity comes from the fluctuations in orientation q,

propagated to the translational space x through the self-propulsion U0q on a time

scale longer than the reorientation time τR = 1/DR.

ε in (5.1) controls the strength of the field. When ε � kBT , the orientation field

is weak in comparison to the Brownian reorient, and the equilibrium distribution

of q just slightly deviates from the isotropic distribution. When ε � kBT , the

orientation field significantly deviates the equilibrium distribution of q. However,

the potential (5.1) is a bi-stable potential, and during theBrownian reorient events the

particles occasionally get enough energy to climb over the energy barrier between

the two directions with lowest energy. This behavior will later be analyzed by

Kramers’ hopping theory, and we shall see that it is the hopping that induces the

greatly enhanced diffusivity in the direction of Ĥ .

This enhancement of diffusivity is different from the polarization discussed by

Takatori & Brady, (2014), where the orientation potential energy shows a single

minimum. In that case, under a strong polarization field all partilces align with the
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field, and net motion of particles at the velocity of 〈q〉U0 is induced, and 〈q〉 is in

the same direction of the field. The particles still show some diffusivity superposed

to the average directed motion, but the diffusivity is greatly decreased because the

fluctuation in q is limited to only the vicinity of Ĥ .

Case 1. Swimmers in 3D space

The orientation is analyzed in the spherical coordinate system (r, θ, φ), assuming the

θ = 0 axis is aligned with Ĥ . q is confined in the angles (0 < θ < π, 0 < φ < 2π).

The orientational distribution of q obeys the Boltzmann distribution, no matter the

location x of the swimmer:

P∞0 (dΩ(θ, φ)) ∝ exp (−V (q)/kBT )dΩ, (5.2)

where dΩ is the solid angle. Therefore the equilibrium distribution is:

P∞0 =
√
χRe χR

2π3/2 Erfi
(√
χR

) exp
(
−χR sin2 θ

)
. (5.3)

Here Erfi is the ‘imaginary error function’, and χR =
ε

kBT
is the dimensionless field

strength. When χR = 0, the orientational potential V disappears and P∞0 =
1

4π .

The effect of the polarization can be quantified by the nematic order parameter

Q̃ = 〈qq〉, as shown in Fig. 5.1. When χR = 0, Q̃⊥ = Q̃‖ = 1/3. When χR → ∞,

all particles with q = ±Ĥ , and therefore Q̃‖ = 1 and Q̃⊥ = 0:

〈q‖q‖〉 =
exp( χR)

√
π
√
χR Erfi

(√
χR

) − 1
2χR

, (5.4a)

〈q⊥q⊥〉 =
1
2

(
1 − 〈q‖q‖〉

)
. (5.4b)

Here by definition Tr Q̃ = 1. By definition, the zero-traced nematic order parameter

Q = Q̃ − 1
3I , and Q̃‖ = 〈q‖q‖〉 − 1/3, Q̃⊥ = 〈q⊥q⊥〉 − 1/3.

For ABPs with nematic order, their motion is governed by the translational velocity

U0q, related by the orientational order of q. The orientational fluctuation around the
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Figure 5.1: The nematic order parameter Q̃ = 〈qq〉 as a function of field strength
χR = ε/kBT .

equilibrium P∞0 leads to the diffusivity Dswim in translational space. To calculate

this, we can either use Brenner’s B-field theory (Frankel & Brenner, 1989) or

Brady’sk-field theory (Takatori &Brady, 2014). The detailed calculation procedure

has been reported before (Yan & Brady, 2015a) and the process is briefly derived

here.

With the notation introduced in the Appendix B, the steady state Smoluchowski

equation can be written as

∇ · j + ∇R · jR = 0, (5.5)

j = U0qP − DT∇P, jR = ω(q)P − DR∇RP. (5.6)

ω =
1
ζR

(−∇RV ) = −
ε

ζR
eφ sin 2θ. (5.7)

Here DR = 1/τR = kBT/ζR.
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Following theB-field route, we have:

B‖ (θ) =
∫ cos θ

0

1 − e χR−χRk2

2χR
(
k2 − 1

) dk, (5.8a)

B⊥(θ) = cos φ sin θg(cos θ), (5.8b)

where the function g(x) is the solution of the ODE:

(
x2 − 1

)
g′′(x) + 2x

(
χR

(
x2 − 1

)
+ 2

)
g′(x)

+ 2
(
χRx2 + 1

)
g(x) − 1 = 0, (5.9)

g(x) = g(cos θ) satisfies (i) no singularities at x = cos θ → ±1, and (ii) well-

defined as χR → 0. Here the B-field is quantitatively the orientational fluctuation

of q around the equilibrium P∞0 . The fluctuation in q induces the diffusivity in

translational space. The velocity of net motion is defined as:

〈U 〉 =

∫
q

P∞0 (q)U (q)dq. (5.10)

For the bistable potential (5.1) discussed here, the distribution P∞0 (q) is symmetric.

As a result, 〈U 〉 = 0, and there is no net motion.

By decomposing ∆U (q) = U (q) − 〈U 〉, the effective diffusivity on top of the

averaged directed motion 〈U 〉 is given by

Dswim =

∫
q

P∞0 (q)B(q)∆U (q)dq. (5.11)

More details about the B-field route can be found in Appendix B. The results for

Dswim:

D̂swim
‖
=

Dswim
‖

U2
0 τR/6

= 12π
∫ π

0
P∞0 cos θ sin θ

∫ cos θ

0

1 − e χR−χRk2

2χR
(
k2 − 1

) dk dθ, (5.12a)

D̂swim
⊥ =

Dswim
⊥

U2
0 τR/6

= 6
∫ 2π

0

∫ π

0
P∞0 sin3 θg(cos θ) cos2 φ dθ dφ. (5.12b)

The results for D̂‖ and D̂⊥ are shown in Fig. 5.2.
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Figure 5.2: Dswim in the directions parallel and perpendicular to the field Ĥ in 3D
space. The solid lines are analytic solutions (5.12).

Then, σ̂swim
‖

and σ̂swim
⊥ can be calculated from σswim = −nζDswim:

σ̂swim
‖
=

σ‖

−nζU2
0 /6
= D̂swim

‖
, (5.13)

σ̂swim
⊥ =

σ⊥

−nζU2
0 /6
= D̂swim

⊥ . (5.14)

The weak-field limit

When the field is weak, the system just shows a small polarization, and by a simple

series expansion of (5.12), we find easily:

σ̂swim
‖

≈ 1 +
2χR

3
+O( χ2

R), (5.15a)

σ̂swim
⊥ ≈ 1 −

χR

3
+O( χ2

R). (5.15b)

As was the case for polar order aligned with Ĥ induced by a potential with a

single position of minimum energy (Takatori & Brady, 2014), the swim pressure is
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decreased in the Ĥ⊥ direction, because the energy barrier decreases the fluctuation

of q in that direction. The difference is, here the stress in the Ĥ direction is enhanced

by the field. This is due to the bistable structure of the orient potential (5.1), and we

shall see a more significant effect in the strong-field limit.

The strong-field limit

The strong-field limit is very interesting. In this case, the swimmers may all align

with either Ĥ or −Ĥ , and only occasionally ‘jump’ between these two states. It

is physically the same as the famous Kramers’ escaping rate process (Kramers,

1940), where a Brownian particle may jump out of a potential well slowly due to

diffusion. As q is diffusive in the rotation space, the jumping probability is modified

from Kramers’ original 1D estimation. The average jumping time between the two

directions are estimated to be (Coffey et al., 2001):

τj =

√
π exp( χR)

2χ3/2
R

τR. (5.16)

Physically, the swimmer may move in a direction with U0 for τj and then jump to

the other direction and move again with U0 for τj on average. Therefore on the long

diffusion timescale, the diffusivity is simple a 1D random-walk:

σ̂swim
‖
=

Dswim
‖

U2
0 τR/6

→
3
√
π exp( χR)

2χ3/2
R

. (5.17)

Besides moving in ±Ĥ directions, the swimmers also move in the perpendicular to

the Ĥ direction, due to small fluctuations around ±Ĥ driven by DR. Following this

route, the distribution of the fluctuation field B⊥ can be approximated with a singular

‘boundary layer’ around the parallel direction. After the tedious mathematics is

properly handled, the result is very simple:

σ̂swim
⊥ =

Dswim
⊥

U2
0 τR/6

→
3

2χ2
R

, (5.18)

as χR → ∞. The asymptotic predictions are shown in Fig. 5.2.
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Case 2. Swimmers in a 2D layer: in-plane rotation

For 2D in-plane rotation, the rotational space is greatly simplified to a single angle

θ. We define cos θ = q · Ĥ , as in the 3D case. At steady state, the equilibrium

orientation distribution is:

P∞0 (θ) =
1

2πI0
(
χR
2

) e
1
2 χR cos(2θ) . (5.19)

Here, I0 is the Bessel function, normalized so that
∫ π
−π P∞0 dθ = 1. Similar to the 3D

case, the nematic order parameter Q̃ is:

〈q‖q‖〉 =
1
2

*.
,

I1
(
χR
2

)
I0

(
χR
2

) + 1+/
-
, (5.20a)

〈q⊥q⊥〉 =
1
2

*.
,
−

I1
(
χR
2

)
I0

(
χR
2

) + 1+/
-
. (5.20b)

Here we also have Tr Q̃ = 1, similar to the 3D case. The zero-traced nematic order

parameter Q is defined as Q = Q̃ − 1
2I for the 2D case. The order parameter Q̃ is

shown in Fig. 5.1.

TheB field route in the 2D case is:

B‖ (θ) = C1 −

∫ θ

0

√
πe χR sin2 κ Erf

(√
χR sin κ

)
2√χR

dκ, (5.21a)

B⊥(θ) =
∫ θ

0

FD
(√
χR cos κ

)
√
χR

dκ, (5.21b)

where FD (z) is the Dawson-F integral function:

FD (z) = e−z2
∫ z

0
ey

2
dy. (5.22)

Similar to the 3D case, the swim diffusivity comes from the orientational fluctuation

B:

D̂swim
‖
=

Dswim
‖

U2
0 /2

= −2
∫ π

−π

∫ θ

0

√
πe χR sin2 κ Erf

(√
χR sin κ

)
2√χR

dκP∞0 (θ) cos θdθ,

(5.23a)

D̂swim
⊥ =

Dswim
⊥

U2
0 /2

= 2
∫ π

−π

∫ θ

0

F
(√
χR cos κ

)
√
χR

dκP∞0 (θ) sin θdθ, (5.23b)
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Figure 5.3: Dswim in the directions parallel and perpendicular to the field Ĥ in a
2D layer. The solid lines are analytic solutions (5.26).

which are shown in Fig. 5.3.

Then, σ̂swim
‖

and σ̂swim
⊥ can be calculated similar to the previous 3D case.

σ̂swim
‖
=

σ‖

−nζU2
0 /2
= D̂swim

‖
, (5.24)

σ̂swim
⊥ =

σ⊥

−nζU2
0 /2
= D̂swim

⊥ . (5.25)

The difference is that, for 2D in plane rotations the isotropic swim pressure is

nζU2
0 /2, in stead of nζU2

0 /6.
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The weak field limit

In this limit, by direct expansion of (5.23):

σ̂swim
‖

≈ 1 +
3χR

4
+O( χ2

R), (5.26a)

σ̂swim
⊥ ≈ 1 −

3χR

4
+O( χ2

R). (5.26b)

The strong field limit

In this case, Kramers’ escaping rate theory can be directly used since the orientation

space involving θ is a 1D space,

For a potential V (θ), the escape rate out of its minimum is

rK =
1

2π
√

V ′′(θmin) |V ′′(θmax) |e−
V (θmax )−V (θmin )

ζD

=
χRDR

π
e−χR, (5.27)

where V (θmin) and V (θmax) are minimum and maximum of the potential V , re-

spectively. D‖ is the result of the ‘flipping 1D’ random walk in the direction of

Ĥ .

σ̂swim
‖
=

Dswim
⊥

U2
0 τR/2

→
π

2
e χR

χR
. (5.28)

D⊥ also forms a ‘boundary layer’ around the equilibrium position q ·Ĥ = 0. For 2D

rotation, it can be directly calculated from the integral. We can make the ‘boundary

layer’ approximation: θ ≈ sin θ, cos θ ≈ 1 − θ2/2.

Therefore, the integral is explicitly integrable:

Dswim
⊥

U2
0 τR/2

≈ 8
∫ π

2

0

e
1
2 χR cos(2θ) sin2 θ

4π χRI0
(
χR
2

) dθ, (5.29)

=

1 −
I1

( χR
2

)
I0

( χR
2

)
2χR

→
1

2χ2
R

. (5.30)
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Finally:

σ̂swim
⊥ =

Dswim
⊥

U2
0 τR/2

→
1

2χ2
R

. (5.31)

5.3 Force on a boundary: the tensorial swim stress

The pressure of isotropic swimmers on a flat wall is the swim pressure (Yan&Brady,

2015b), ΠW,swim = n∞ζU2
0 τR/6. Throughout this section, n∞ is used to stress that

it is the number density in the homogeneous bulk system. From a tensorial stress

point of view, we can simply write FW = −(σ · n)dS, following the convention of

continuum mechanics where n is the wall normal vector and dS is unit wall area.

For swimmers with an unbiased orientation distribution, FW contains no tangential

or shear component, and we can write it as:

Π
W = −(σswim · n) · n. (5.32)

For swimmers with anisotropic orientational order, does this apply to arbitrary

directions?

A true tensorial stress σswim must satisfy (5.32) for any surface with normal vector

n:

Π
W,swim = −(σswim · n) · n

= n∞ksTs
(
σ̂swim
‖

ĤĤ + σ̂swim
⊥ Ĥ⊥Ĥ⊥

)
: nn

= n∞ksTs
(
σ̂swim
‖

(Ĥ · n)2 + σ̂swim
⊥ (Ĥ⊥ · n)2

)
, (5.33)

where ksTs = ζU2
0 τR/6 for 3D swimmers and ζU2

0 τR/2 for 2D swimmers (Takatori

et al., 2014). Here, σ̂swim
‖

and σ̂swim
⊥ are analytically calculated in the last section.

In the presence of translational diffusivity DT = kBT/ζ , the total pressure on the

wall also contains the osmotic pressure contribution:

Π
W = ΠW,swim + n∞kBT . (5.34)

From a colloidal perspective as shown byYan&Brady, (2015b), the pressure applied

by swimmers on a wall is due to the formation of a boundary layer on concentration
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of swimmers on the microscopic length scale δ =
√

DTτR. For hard spheres, the

Smoluchowski equation gives

Π
W = ζDT nW, (5.35)

where nW is the number density on the wall. In the absence of a bulk polarization

field, the boundary layer is such that nW/n∞ = 1+ ksTs/kBT , and (5.35) is consistent

with (5.34).

When χR = 0, (5.33) and (5.35) give exactly the same pressure on the wall, and

in this section we will show that this is also true for swimmers with nematic order.

That is, σswim is a true tensorial stress.

For simplicity, we consider 2DABPs between two parallel walls separated by L, and

the nematic field direction is applied at an angle ϕ with the wall normal vector n,

cos ϕ = n · Ĥ . Fluid is assumed to flow freely across the wall, and the wall-particle

collision is assumed to be excluded-volume only. The configuration is similar to the

sedimentation problem (Yan & Brady, 2015a), except that in this work we consider

the dilute limit so swimmer-swimmer interactions are completely ignored to be

compatible with the diffusivity calculations in the last section. L/` → ∞ is also

imposed to eliminate any confinement effect (Ezhilan et al., 2015; Yan & Brady,

2015b).

In this geometry, the motion of swimmers between the walls is completely de-

termined by the Smoluchowski equation, tracking the probability P(x, q, t) of a

swimmer appearing at x with orientation q at time t. We define the microscopic

length δ =
√

DTτR, and the run length ` = U0τR. All lengths are nondimensionalized

with `, and time is scaled with τR, and we have:

∂P
∂t
+ ∇ · jT +

∂

∂θ
jR = 0, (5.36)

jT = cos θP −
δ2

`2
∂P
∂x
, (5.37)

jR = χR sin 2(θ − ϕ)P −
∂P
∂θ

. (5.38)
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Figure 5.4: Ĥ is the external field direction, and U0q is the swim velocity of each
ABP. q · ẑ = cos θ, Ĥ · ẑ = cos ϕ. The normal vector of the bottom wall n = ẑ.

Those equations can be easily solved with a FEM PDE solver with non-penetrating

boundary conditions on the top and bottom walls as illustrated in Fig. 5.4. After

steady state is reached, nW =
∫

P(xW, q, t)dq, and the pressure on the wall can be

calculated from the microscopic colloid perspective (5.35).

From the tensorial perspective (5.33), we can also analytically calculate the pressure

on the wall:

Π
W,swim = n∞ksT ′s

(
σ̂swim
‖

cos2 ϕ + σ̂swim
⊥ sin2 ϕ

)
. (5.39)

Here, ksT ′s = ζU2
0 τR/2 is defined for the 2D geometry with 2D rotations.

Also, Brownian dynamics simulations are performed to compare with both the

colloid perspective (5.35) and the tensorial perspective (5.39). In the Brownian

Dynamics simulations, the pressure is determined from the force exerted by each
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Figure 5.5: Comparison between the colloidal perspective and the continuum me-
chanics tensorial perspective. The solid lines are calculated analytically from (5.39),
the open symbols are calculated from (5.36), solved by FEM solver with δ2/`2 = 0.2
and L = 20`. The cross symbols aremeasured from particle-wall collisions in Brow-
nian dynamics simulations, with ` = 4a and δ = 0, in a box with L = 128a = 32`
and periodic in the horizontal direction.

particle-wall collision.

Part 1. The normal component of stress

The comparison between the colloid perspective and the tensorial perspective is

shown in Fig. 5.5. The calculation for (5.39) is analytic and is valid for arbitrary

ratio of swimming to diffusion, `/δ ∈ (0,∞).

The pressure from the colloid perspective is calculated with δ2/`2 = 0.2 and then

the pressure of passive Brownian motion (osmotic pressure) n∞kBT = n∞ζDT is

subtracted from the result of (5.35). Also L = 20` is used to guarantee that there

are no confinement effects. The Brownian dynamic simulations are conducted with
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DT = 0, and we find that all three methods agree with each other.

The comparison clearly shows that the mechanical swim pressure on a wall can be

strongly anisotropic as shown with the case χR = 6.4. Actually, based on (5.33) we

have that

for n = Ĥ: ΠW,swim = n∞ksT ′sσ̂
swim
‖

∼ n∞ksT ′s
π

2
e χR

χR
, (5.40)

for n = Ĥ⊥: ΠW,swim = n∞ksT ′sσ̂
swim
⊥ ∼ n∞ksT ′s

1
2χ2

R

. (5.41)

The anisotropy σ̂swim
‖

/σ̂swim
⊥ ∼ π χRe χR , growing very fast with the field strength

χR.

Again, it is important that the number density n∞ in Fig. 5.5 and Fig. 5.6 is the

‘bulk’ value, that is, n at the center between the two walls. It should not be confused

with the nW in (5.35).

Part 2. The tangential component of stress

In continuum mechanics, σswim · n is the stress on a plane with normal n, and the

tangential component (σswim · n) · t is the shear stress applied on that plane, i.e.,

the friction between the two continuum media. When σswim is isotropic, the shear

component is simply always zero for any surface normal n. For anisotropic σswim,

however, the tangential component is not necessarily zero. However, there cannot be

any shear stress (friction) in the ABP model, because the wall-swimmer interaction

is excluded volume only; that is, a force is transmitted only in the normal direction

to prevent the swimmer from crossing the wall.

In fact, when a swimmer swims towards a wall, it is trapped on the wall for a period

of time until the q is relaxed to a different direction so it can leave the wall. For the

period of time when the particle stays on the wall, the normal component of swim

force (Yan & Brady, 2015a)n · ζU0q is transmitted to the wall and contributes to the

normal pressure ΠW . The tangent component is not transmitted to the wall and the

swimmer is actually ‘sliding’ along the wall. Therefore, the tangential component
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Figure 5.6: Comparison between the colloidal perspective and the continuum me-
chanics tensorial perspective for the shear component, and the corresponding flux
along the wall. The solid lines are calculated analytically from (5.39); the open
symbols are data calculated from the same FEM solution as in Fig. 5.5.

of swim stress is a net flow of ABPs sliding along the wall in the tangential direction.

The direction of the net flux is towards the left on the bottom wall and towards the

right on the top wall for the Ĥ shown in Fig. 5.4. The flux on the bottom and the top

walls are of the same magnitude but in the opposite directions. They cancel each

other so there is no net overall motion in the domain.

For the 2D geometry shown in Fig. 5.4, the tensorial stress predicts the flow as:

ζ

∫
jW,swim

T dz · t = nksT ′s
(
σ̂swim
‖
− σ̂swim

⊥

)
cos ϕ sin ϕ. (5.42)

Here the subscript T represents the ‘translational’ flow along the wall. It is clear

that if χR = 0, σ̂swim
⊥ = σ̂swim

‖
and the flux is always zero; only an anisotropic stress

drives a flux. Here,
∫
jW,swim

T dz has the dimension of the total flow rate along the
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boundary, per unit boundary length (area if in the 3D case), while ζ
∫
jW,swim

T dz · t

has the dimension of pressure.

Figure 5.7: The boundary layer structure for the case of χR = 1.6 (left column) and
χR = 0.4 (right column), taken from the same data as shown in Fig. 5.5. Here n∞

is the number density in the bulk, corresponding to the n in Fig. 5.5 and Fig. 5.6. z
represents the height in this boundary layer. mt =m · t is the tangential component
of polar orderm. For the Ĥ in Fig. 5.4, mt is towards the left on the bottom wall.
For ϕ = 0, mt = 0 everywhere as estimated by (5.42) and Fig. 5.6.

From the microscopic colloid perspective, the swimmers now form a kinetic bound-

ary layer (Yan & Brady, 2015b) on the wall, with directed motion as shown in

Fig. 5.7. More specifically, on a microscopic scale close to the wall, there is net

polar order m =
∫

Pqdq , 0, even though the nematic orientation field has no

polar order in the bulk. By solving the Smoluchowski equation (5.36), the flux is
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obtainable by integrating mt , the component ofm parallel to the wall:∫
jW,swim

T dz · t =
∫
m · tdz. (5.43)

Also, here the total stress includes the osmotic pressure kBT contribution: σtot =

σswim − nkBTI . Since kBTI = ζDTI is always isotropic, it does not contribute to

the tangential component:

(σtotal · n) · t = (σswim · n) · t. (5.44)

The comparison between the colloidal perspective and the continuum mechanics

tensorial perspective for the shear component, and the corresponding flux along the

wall is shown in Fig. 5.6, and the tensorial stress perspective (5.42) agrees very well

with the detailed microscopic colloidal perspective (5.43).

5.4 Conclusions & Discussions

In this chapter we discussed an example, designed to extend the notion of the swim

pressure to a true tensorial swim stress, for a special case of swimmers in a nematic

orientation field.

Swimmers under a nematic orientational potential show significantly enhanced dif-

fusivity parallel to the field direction Ĥ , and significantly reduced diffusivity in the

perpendicular direction. Under a strong field χR → ∞, the orientation is trapped in

the ±Ĥ directions, and only occasionally does a Kramers’ hopping event happen.

Therefore, the strongly anisotropic diffusivity is induced by a strongly anisotropic

orientational fluctuation field B. This is in contrast to the polarization case (Taka-

tori & Brady, 2014; Yan & Brady, 2015a), where all swimmers are directed towards

the same direction and the diffusivity in the Ĥ and Ĥ⊥ directions both decay

algebraically with increasing χR.

The anisotropic swimdiffusivity gives an anisotropic swim stressσswim = −nζDswim.

Using a parallel-wall geometry, we showed that an anisotropic swim stress is truly a
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stress in the continuum mechanics sense – the pressure on a boundary with nematic

field is ΠW = (σswim · n) · n. The tangential component gives not a shear stress

(friction) in the absence of hydrodynamics, but a net flow of ABPs along the wall.

This is because the interaction between the ABP and the wall is assumed to be

frictionless. In the presence of hydrodynamics, this flux of swimmers along the

wall would likely drag some fluid with it, and likely induce a net flow of the sus-

pension parallel to the wall. From a continuum perspective, the swim stress σswim

contributes no shear component to the total stress of suspension 〈σ〉. So the flow

must be balanced by the viscous shear stress 2η〈e〉, where 〈e〉 = 1
2

(
∇〈u〉 + ∇〈u〉T

)
.

Further below the continuum scale, if the detailed swimmer-wall hydrodynamic

interaction is considered, the net flow of swimmers along the wall may be quanti-

tatively changed. The details in the presence of hydrodynamics is left for a future

study.

It is important to realize that the tensorial stress perspective is on the continuum scale

L � `, where the detailed interaction structure of swimmerswith thewall is ignored,

as that happens on the microscopic scale δ as shown in Fig. 5.7. The microscopic

colloid perspective (5.35) explained the tensorial stress in the bulk through the

formation of a kinetic boundary layer shown in Fig. 5.7. It actually extends the

discussion of the kinetic boundary layer of swimmers on the wall (Ezhilan et al.,

2015; Yan & Brady, 2015b; Smallenburg & Löwen, 2015) to the case of swimmers

with torques.

In this work we discussed the system with nematic order, and it is a special case

because nematic order is symmetric and gives no net motion or net swim force

〈F swim〉, in contrast to polar ordered swimmers (Takatori & Brady, 2014; Yan &

Brady, 2015a). For polar ordered swimmers, however, the notion of a tensorial

swim stress is still applicable if we apply a body force to cancel the swim force and

therefore to cancel the net motion. In fact, when 〈F swim〉 is canceled by a body
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force, polarized swimmers exhibit a stress exactly in the form of (5.33). That is, the

tensorial perspective makes no assumption of how the anisotropic stress is induced.

In fact, it assumes that all information has been contained in the stress itself: n∞,

ksTs, σ̂swim
⊥ and σ̂swim

‖
are sufficient from a continuum mechanics perspective.

For swimmers with arbitrary orientational torques, the Smoluchowski equation is:

∂P
∂t
+ ∇ · jT + ∇R · jR = 0, (5.45)

jR = ω(θ − ϕ)P −DR · ∇RP, (5.46)

jT = U0P + F cP − DT∇P, (5.47)

where ω(θ − ϕ) is the angular velocity induced by some external torque, as a

function of the swimmer’s orientation angle θ and the field orientation ϕ. F c is

the body force to cancel the swim force and any bulk net motion: F c + F swim = 0

for each particle to keep the system in a homogeneous state. It is unclear at this

stage whether, for arbitrary ω, the stress can still be treated generally as a true

tensorial stress. Rigorous mathematical proof requires solution of the boundary

layer with arbitrary orientation order and is usually very difficult. The orientation

order expansion method (Saintillan & Shelley, 2015; Yan & Brady, 2015b) may be a

possible route towards a general proof, but it is subject to proper orientation closure

relations. We shall leave it for a future study.

The tensorial view of swimmers has more profound use than simply to estimate the

pressure on a flat wall for swimmers without net motion. We showed with General-

ized Taylor Dispersion Theory (Frankel & Brenner, 1989) that in a general transport

problem such as sedimentation or active micro-rheology, the large scale motion and

deformation of swimmers can simply solved with the continuum mechanics flux

with tensorial stress, body force, and swim force (Yan & Brady, 2015a):

jcm =
1
ζ

(
∇ · σtot + F g + 〈F swim〉

)
. (5.48)
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The boundary condition for this large-scale transport equation must be properly

constructed from the detailed near-wall dynamics on the small scale. This is very

similar to the rarefied gas dynamics, where the non-continuum effects must be

resolved on the scale of a few mean free paths at the boundary, and then a proper

boundary condition for Navier-Stokes equation in the outer region can be constructed

from the ‘inner’ solution. Similar outer-innermatching scheme is also true for ABPs,

as discussed in Chapter 4.
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C h a p t e r 6

A METHOD TO DETERMINE THE BEHAVIOR OF ACTIVE
DIFFUSIOPHORETIC SUSPENSIONS: ACCELERATED

LAPLACIAN DYNAMICS
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6.1 Introduction

Active diffusiophoretic suspensions refer to those colloidal particles which are able

to convert chemical energy to self-propulsion, usually through patterned surface

reactivity (Ebbens et al., 2010). Experimentally, active particles exhibit very inter-

esting behaviors. Howse et al., (2007) showed that the translational diffusion of a

single active particle is enhanced byU2
0 τR/6 on timescales longer than the rotational

Brownian motion timescale τR, where U0 is the active velocity. The collective mo-

tion is more intriguing. Active particles with attractive interactions were observed to

exhibit dynamic clustering and phase behavior in experiments by Theurkauff et al.,

(2012) and Palacci et al., (2013). Particles with repulsive interaction show transition

between uncorrelated motion and an ordered lattice (Soh et al., 2008).

The Active Brownian Particle (ABP) model is proposed to understand the phase

separation. In ABPs, the particle’s self-propulsion velocity U0 = U0ξ, where U0

is usually assumed to be a given constant and ξ is subject to rotational Brownian

motion. Also, the interaction between ABPs is usually assumed to be collision

only (pure repulsive) (Solon et al., 2015a) or a pairwise additive potential (Redner

et al., 2013). Under this circumstance, the interaction between ABPs is short-ranged

and additive, and therefore can be successfully explained by thermodynamic-type

models, such as the φ4 field theory (Wittkowski et al., 2014), density functional the-

ory (Menzel & Löwen, 2013), and motility-induced-phase-separation (Stenhammar

et al., 2013; Cates & Tailleur, 2015). For example, the dilute-dense coexistence

of active matter can be explained as a first-order gas-liquid phase transition, with

the introduction of swim pressure as the equation of state (Takatori et al., 2014;

Takatori & Brady, 2015).

However, the applicability of thermodynamics on the active diffusiophoretic sus-

pensions is questionable in the presence of the chemical solute concentration field

c. On the single particle level, Brady and Córdova-Figueroa (Córdova-Figueroa &
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Brady, 2008; Brady, 2011) showed that a particle’s motion can be determined by

solving the solute concentration field c(r) around the particle. To leading order,

the swim velocity U0 ∝ c. They swim faster with more ‘fuel’ concentration c. In

the presence of many particles, the disturbance on c(r) caused by each particle

propagates, and causes not only changes of swim velocity, but also particle-particle

attraction or repulsion due to diffusiophoresis ∝ ∇c. In fact, the self-propulsion

and particle-particle interactions are not separable because they come from the

same field c. The Damköhler number Da describes how fast the reaction is, and

therefore how fast the particle swims (Córdova-Figueroa & Brady, 2008) and how

significant the perturbation c′ is. As we shall see, the system behavior is controlled

by the dimensionless ‘fuel concentration’ SD ∝ cEa3, where cE is the imposed

solute reactant concentration. At higher SD, both the swimming ∝ c and attraction

∝ ∇c are enhanced and so the system has more chance to form clusters, overcoming

the translational Brownian motion randomizing the system towards a homogeneous

state.

This ‘field-driven’ nature results in the fundamentally different system behavior from

the ABPs. To probe the system dynamics, the field c must be solved simultaneously

with the particles’ motion, and it must be done efficiently so that the collective

motion of a large amount of particles can be probed. In the continuum limit where

solute molecules are much smaller than particles, the governing equation of c(r) can

be reduced to Laplace’s equation. It is a valid assumption, compared to experiments

(Palacci et al., 2013). For a Laplace’s equation, it is well known that a source

or sink induces a perturbation c′ ∝ 1/r similar to electrostatics. However, one

should not simply impose a fixed 1/r interaction between particles, as seen in some

simulation work (Palacci et al., 2013; Pohl & Stark, 2014), because the chemical

reaction on each particle is proportional to the local concentration c, and should not

be treated as a fixed ‘charge’ in an electrostatic system. Instead, we show in this

chapter that the interaction is governed by Brinkman-like chemical screening. It
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is a static screening and solely due to the fact that neighbor particles are changing

their reactivity ∝ c to compensate for every particle’s perturbation, and it takes a

exponential Yukawa form. However, it is also illegitimate to prescribe a Yukawa

form pairwise potential, because the screened effect can only be correctly accounted

for after the full Laplace’s equation governing c is solved.

We should determine the motion by solving the Laplace’s equation governing c(r),

with each particle’s reactivity serving as a boundary condition. However, solving a

Laplace’s equation for N particles is never an easy task because it usually requires

O(N2) or even O(N3) operations to apply the mesh-based Finite Difference or

Finite Volume method. Bonnecaze & Brady, (1990) developed a method to solve

the many-body Laplace’s equation by a multipole scattering method. Their method

achieves significant improvement by avoiding the use of mesh, but still requires

O(N2),O(N3) explicit matrix construction and inversion. In this work we combine

Bonnecaze & Brady’s method with the Accelerated Stokesian Dynamics (ASD) by

Sierou & Brady, (2001), achieving a matrix-free, O(N log N ) method.

We shall show that our Accelerated Laplacian Dynamics can efficiently track the

dynamics of an active diffusiophoretic system. In § 6.2 we formulate the problem,

and derive the method in § 6.3. Then in § 6.4 we clarify the concept of chemical

screening with both theories and simulations. It is also a verification of our sim-

ulation method. Results for attractive particles in a periodic setting and results for

attractive Janus particles in a confined monolayer setting are reported in § 6.4. In

those parts we analyze the simulation results to address the two fundamental ques-

tions of chemically active diffusiophoretic suspensions: when does the clustering

process start (the unstable criteria) and when does it stop (the steady state criteria)?

We also propose a self-consistent continuum mechanical model based on the con-

cept of swim force (Takatori et al., 2014) and swim force (Yan & Brady, 2015a) as

a partial answer.
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6.2 Problem formulation

Small colloidal particles can move in response to a concentration gradient of a

chemical solute. If the gradient is externally imposed the process is referred to

as diffusiophoresis; if the particle generates the gradient itself via, e.g., a surface

chemical reaction, it is called self-diffusiophoresis. Following the approach and

notation of Brady, (2011) (which has been shown to agree with more conventional

approaches (Anderson, 1989)), in both cases the velocity of a spherical colloidal

particle of radius a can be written as

U = −
L(∆)
6πηa

∮
n kBTc(x, t)dS, (6.1)

where the dimensionless hydrodynamic mobility function L(∆) = (3/2)∆2(1 +
2
3∆)/(1 + ∆)3, with ∆ = δ/a, measures the flow of fluid with viscosity η in a layer

of thickness δ adjacent to the colloidal particle where the particle-solute interactive

force is operative, c.f. Fig. 6.1. Here we have taken the simplest form of interactive

force between the solute and the colloidal particle, namely a hard-sphere repulsive

force at a distance rc = a + δ (and δ need not be small compared to the particle

size a, although typically it is so). More general interactive forces will only have

a quantitative effect; the work of Brady, (2011) details how to include these (and

other) effects. Generalizations to non-spherical particles are also possible (Shklyaev

et al., 2014).

The solute concentration enters the expression for the particle velocity multiplied

by the thermal energy kBT , which we recognize as the local osmotic pressure of

the solute Π(x, t) ≡ kBTc(x, t). This permits the interpretation of the velocity

as the result of a force balance between the Stokes drag of the solvent and the

osmotic force of the solute: F drag + F osmo = 0, with F drag = −6πηaU and

F osmo = −L(∆)
∮
n kBTc(x, t)dS. That the osmotic force is a real, measurable,

force can be appreciated by realizing that if one wanted to stop the colloidal particle

from moving, say by optical tweezers, then the force the tweezers would need to
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Figure 6.1: (A) The uniformly reactive sink particle and the Janus particle with
orientation vector ξ. Both particles have radius a, interaction layer thickness δ and
surface normal vector n. A reactive surface is colored green and a non-reactive
surface is blue. Motion (∆X) of each Janus particle in a system is governed by
the over-damped Langevin equation (6.6). (B) The concentration field c of reactive
solute molecules (shown by the red dots) is solved simultaneously with the motion
of the active particles.

exert is precisely F osmo.

For chemically active particles the catalytic reaction at the particle surface can be

expressed as R → θP, where R is the reactant, P is the product, and θ is the

stoichiometry of the chemical reaction. In general, one needs the osmotic force

arising from both the reactants and products, but, as shown by Córdova-Figueroa &

Brady, (2008), one only needs to scale (6.1) by the factor (1 − θDR/DP), where DR

and DP are the diffusivities of the reactants and products, respectively, to account

for both reactants and products.
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The reactant concentration satisfies the usual advection-diffusion equation

∂c
∂t
+ ∇·jR = 0 , (6.2)

where the reactant solute flux is given

jR = uc − DR∇c , (6.3)

and u is the velocity of the suspending fluid. In this study any fluid motion is the

result of the motion of the colloidal particles and thus the relative importance of

advection to diffusion is governed by the Péclet number Pe = Ua/DR. Typical

phoretic or self-propulsive velocities are of order 1µm/s for a micron-sized particle,

while solute diffusivities are of order 103µm2/s so that the Péclet number is very

small and fluid advection can be neglected. Similarly, the time scale to establish a

steady solute concentration profile, a2/DR, is much faster than the time scale for

the motion of the particle, either due to diffusiophoresis or to its intrinsic Brownian

motion, so that the reactant/solute concentration distribution satisfies Laplace’s

equation

∇2c = 0 . (6.4)

We model the catalytic reaction at the particle surface as first order and, making use

of the stochiometry/diffusivity factor (1 − θDR/DP), the reaction can be taken to be

irreversible:

n·jR = −κ0h(n)c, (6.5)

where κ0 is the surface reaction rate constant (units of length/time) and the nondi-

mensional function h(n) describes the patterned reactivity on the particle surface

whose outer normal isn. For uniformly reactive particles h(n) = 1, while a particle

with h(n) = Heaviside(n · ξ) describes the pattern of a Janus particle with orienta-

tion vector ξ: h = 1 on the reactive hemisphere and h = 0 on the passive hemisphere,

see Fig. 6.1. Particles for which (1 − θDR/DP) > 0 reduce the concentration of
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reactant near their surface, and will attract a second particle by diffusiophoresis;

such particles act as chemical sinks; those with (1 − θDR/DP) < 0 act as sources.

The diffusiophoretic system shares many similarities with electrostatics: both are

governed by Laplace’s equation with the reactant concentration being the analog

of the electrostatic potential, and chemical sink/source particles are analogous to

negative/positive charges, etc. There is, however, an important difference. In an

electrostatic system the electric field does not disappear if charges are not destroyed.

In a diffusiophoretic system, on the other hand, the concentration of reactant is

subject to chemical reaction, and when all the reactant (or fuel) is consumed by the

particles the concentration goes to zero and all motion (apart from the particles’

intrinsic Brownian motion) ceases. Thus, to achieve a steady state with reactive

particles, we need to supply reactant (and remove product) at the same rate at which

it is consumed (produced) by the particles. In experiments with a monolayer of

active particles (Theurkauff et al., 2012), reactant is provided by diffusion from a

reservoir above the monolayer.

In this work, we shall consider two types of systems: finite and periodic. For finite

systems, we have a finite number of particles moving in an infinite bath of solute

(reactant and product), and we specify a boundary condition of a constant reactant

concentration c∞ as the distance goes to infinity. Physically, reactant diffuses from

infinity to the particle region to compensate for the consumption by the active parti-

cles; no other reactant sources are needed. For a periodic system there is no ‘infinity,’

and the condition to have a steady state is for a homogeneous generation of reactant

at a rate 〈s〉 that balances the rate of consumption so that the volume average solute

concentration 〈c〉 is a spatial (unit cell average) constant. This makes the system

as a whole ‘chemically neutral’ – the positive uniform chemical source balances

the negative reactive sink particles – and ensures that the long-range interactions

typical in Laplace systems are convergent. The uniform source of reactant is the

counterpart of the constant negative ‘electrostatically neutralizing background’ in
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a one component plasma. Also, similar (but not identical) to electrostatic systems,

diffusiophoretic interactions are screened – a phenomenon known as Brinkman

screening (Morris & Brady, 1995), which we discuss in § 6.4.

The problem is now the following: for a system of active particles at locations

X (t) we need to solve for the reactant concentration field governed by the steady

Laplace’s equation (6.4) at all field points r outside the particles subject to a first

order surface reaction boundary condition (6.5) for either (or both) uniform reactive

particles (h(n) = 1) or (and) Janus particles (h(n) = Heaviside(n ·ξ)) for either

a finite number of active particles or in an infinite periodic system. From the

solution for c(r;X (t)), we determine the phoretic velocity U of an active particle

from (6.1) for a given interactive length∆ = δ/a and stoichiometry/diffusivity factor

(1 − θDR/DP). The active particles are then advanced to a new location from the

overdamped Langevin equation incorporating Brownian translation (and rotation in

the case of Janus particles):

∆X = U∆t + ∆XB + ∆XP, (6.6)

where the Brownnian displacement has zero mean, ∆XB = 0 and covariance

∆XB∆XB = 2D∆t, where D = kBT/6πηa is the translation Brownian diffusivity

of an active particle. A hard-sphere displacement ∆XP is implemented to prevent

particles from overlapping determined from a potential-free algorithm (Foss &

Brady, 2000; Heyes&Melrose, 1993). Once the active particles have been advanced

to their new location, a new concentration field c(r;X (t)) must be found and the

process repeated until a steady state is reached. For Janus particles, rotational

Brownian motion (Drot = kBT/8πηa3) is included as a diffusive reorientation event

at each timestep and calculated with the unbiased move method (Beard & Schlick,

2003). Equation (6.6) employs a simple Euler scheme for clarity; higher order

schemes such as fifth order Adams-Bashforth multi-step scheme are also used in

simulation.
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In writing the displacements (6.6) we have neglected any hydrodynamic interac-

tions (HI) among the active particles. HI can be included by combining the method

developed in this chapter with Stokesian dynamics (Sierou & Brady, 2001) for

hydrodynamically interacting colloidal particles. It should be noted that the hydro-

dynamic flow field created by a phoretic particle typically corresponds to a force

quadrupole with a velocity field decaying as 1/r3 or, for Janus particles, as a force

dipole or stresslet, decaying as 1/r2.

6.3 Method for solution of Laplace’s equation

The disturbance to the concentration field caused by a single reactive particle decays

as q/r , where q is the net reactant consumption rate, which is the counterpart of

the electrostatic charge qe. Despite the simple form of the potential disturbance

the difficulty of solving the Laplace problem for a system of interacting particles is

three-fold.

First, the particles have finite size and the concentration or potential field has a

distribution on the surface of a particle; thus, the perturbed concentration field

induced by an active particle must be considered to a higher order than simply

a point sink or source. Second, the 1/r interaction is long-ranged and must be

properly summed for both finite and periodic systems. Third, to solve for the

collective dynamics, the motion of hundreds or thousands of particles must be

followed, which requires a highly-efficient solution methodology.

The strategy adopted here is to split the problem into three parts. First, we follow

the approach of Bonnecaze & Brady, (1990) and represent the field induced by

each particle by a multipole expansion, including the monopole q (scalar), dipole S



108

(vector), and quadrupoleQ (second order tensor), defined as:

qβ =
∫

Sβ
jR ·n dS , (6.7)

Sβ =

∫
Sβ

(xjR + DRcI) · n dS , (6.8)

Qβ =

∫
Sβ

( [
xx − 1

3 (x · x)I
]
jR · n

+
[
xn + nx − 2

3 (n · x)I
]

DRc
)
dS , (6.9)

where Sβ is the surface of particle β, x is a vector pointing from the particle center

to its surface, and I is the identity tensor. The quadrupole Qβ is defined to have

zero trace.

Each particle β creates a disturbance concentration field that takes the form:

c′(r) = c(r) − cE (r)

=
1

4πDR

( qβ
|r − rβ |

+ Sβ · ∇β
1

|r − rβ |

+
1
2
Qβ : ∇β∇β

1
|r − rβ |

+ ...
)
,

(6.10)

where r is the field point, rβ is the center of particle β, and ∇β = ∂/∂rβ. The

gradients∇c, and∇∇c can also be constructed in the same fashion. In (6.10) cE refers

to the externally imposed concentration that is either c∞ in the case of a finite system

or the average 〈c〉 in the case of a periodic system. The expansion (6.10) follows

directly from the integral representation for the solution to Laplace’s equation and

is the same as one would do for the electrostatic potential with the exception that the

source strengths, qβ, Sβ and Qβ, are not given but must be found as a solution to

the many-body Laplace problem. (Note that the finite volume of a particle has been

included in the definition of the multipoles and thus no longer appears in (6.10).)

Although truncated at this level, themultipole description preserves all the important

aspects of the problem and also proves to be accurate even when particles are close

to one another.
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Next, we need to determine the source strengths of a particle in response to the

concentration field in which it finds itself. This can be accomplished by so-called

Faxen laws, which relate the multipoles qα,Sα,Qα of particle α to the concentration

field c(rα) = cE + c′, where c′(rα) is the disturbance field caused by all the other

particles β. Faxen laws follow from the reciprocal theorem for Laplace’s equation

and allow one to bypass the detailed solution for the concentration field and proceed

directly to the moment strengths. Because the reaction boundary condition at a

particle surface is first order and linear, the Faxen laws take a linear form:

*......
,

qα

Sα

Qα

+//////
-

= C ·

*......
,

c(rα)

∇c(rα)

∇∇c(rα)

+//////
-

, (6.11)

where the concentration field c is evaluated at the center of particle α and origi-

nates from each particle β as given by (6.10). The matrix C is the analog of the

‘capacitance matrix’ for electrostatics.

Faxen laws for reactive particles

For a uniform reactive particle, h(n) = 1, the Faxen laws take a rather simple block

diagonal form resulting from the particle’s symmetry:

qα = −
Da

1 + Da
4πa DR c(rα), (6.12)

Sα = −
Da − 1
Da + 2

4πa3DR∇c(rα), (6.13)

Qα = −
Da − 2

3Da + 9
4πa5DR∇∇c(rα), (6.14)

where the Damköhler number Da = κ0a/DR measures the rate of the chemical

reaction to diffusion of the reactant. The derivation of the Faxen laws is given in

Appendix F. For slow reaction rates or small Damköhler number the sink strength

qα is linear in Da, while the dipole and quadrupole remain finite. At the other

extreme of fast reactions, all multipoles are finite as Da → ∞. The concentration
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field c(rα) (which is due to all particles other than α) and its gradients are evaluated

at the center of particle α.

It is important to note that even though the dipole and quadrupole do not vanish as

Da → 0, since there is no macroscopically imposed concentration gradient, when

the reaction rate goes to zero the monopole of each particle vanishes and there are no

gradients induced by the particles. As Da → 0 the concentration becomes uniform

everywhere and all reaction-induced motion ceases.

For Janus particles, h(n) = Heaviside(n · ξ), and in this case the Faxen law matrix

C is not diagonal. The asymmetric surface reaction requires all multipoles even

when the concentration field is a constant. The relation cannot be expressed in

closed analytical form because all multipole moments recursively relate to each

other. We use the Boundary Element Method (BEM) to numerically solve for the

Faxen laws. The single particle response is truncated at dipole level for simplicity:

*..
,

qα

Sα

+//
-
= C (Da, ξ) ·

*..
,

c(rα)

∇c(rα)

+//
-
. (6.15)

Here the matrix is not only a function of Da as it was for the uniform reaction case,

but is also dependent on the particle orientation vector ξ due to the asymmetry

of Janus particles. The BEM formulation and the detailed matrix entries can be

found in Appendix G. For a single particle, the solution given by C at the dipole

level matches previous work very well (Córdova-Figueroa & Brady, 2008). The

asymptotic dependence of C (Da, ξ) for small and large Da is the same as for the

uniform reactive particle.

In addition to the Faxen laws for the sink and dipole strength, for the particle

dynamics we need the phoretic velocity of an active particle given by (6.1), which

is proportional the integral

Bα =

∫
Sα
nc dS. (6.16)
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For the uniform reaction caseB is simply related to the dipole moment S:

Bα =
1

DR

(
1

1 − Da

)
Sα =

1
2 + Da

4πa3∇c(rα), (6.17)

showing that there is no self-motion for a homogeneous reactive particle; reaction-

induced motion arises from the concentration gradient created by the other particles,

corresponding to normal diffusiophoresis.

Note that from (6.1) the particle velocity is proportional to −Bα so that the phoretic

particlemoves down the concentration gradient of solute or reactant and that gradient

is provided by the other active particles. The motion is down the concentration

gradient because we have assumed repulsive interactions between the solute and the

particle at the length δ; attractive interactions would give motion in the opposite

direction. And, in general, it is possible to have a mixture of repulsive and attractive

phoretic particles. We consider only repulsive particles in this work. It is a simple

matter to extend the method presented here to attractive particles or to mixtures of

repulsive and attractive particles.

For a Janus particle there is net motion both due to the nonuniform reaction on

the particle surface, i.e. proportional to c(rα), and due to phoretic motion down a

concentration gradient. Thus,Bα takes the form

Bα =MB (Da, ξ) ·
*..
,

c(rα)

∇c(rα)

+//
-
. (6.18)

The phoretic mobility matrixMB is related to C and is given in Appendix G.

The concentration disturbance fromother particles: finite and periodic systems

One can find particle α’s multipoles, qα, Sα, and Qα, from their response to

other particles β , α, each of which creates the disturbance (6.10) at the particle

α’s center rα. In this subsection we describe how to formulate and compute the

disturbance field for both finite and periodic systems. In a finite system, the external

field cE = c∞ = const. is specified as the boundary condition at infinity. Despite the



112

long-range nature of particle disturbances, no convergence problem arises because

the sum is over a finite number of particles and no cutoff is necessary nor employed.

For N particles the many-body concentration disturbances can be written in the

matrix form:
*......
,

c′

∇c′

∇∇c′

+//////
-

= E ·

*......
,

q

S

Q

+//////
-

, (6.19)

where q is now a vector of sink strengths q = {q1, q2, . . . qN }, as is the concen-

tration disturbance c′ = {c′(r1), c′(r2), . . . c′(rn)}, and similarly for the dipole and

quadrupole. The (11N × 11N) matrix E is the counterpart to the ‘potential matrix’

in many-body electrostatic problems (Bonnecaze & Brady, 1990). The entries in E

follow directly from (6.10), and note that the self-terms in E are zero because the

matrix sums over all particles β , α for each particle α.

In a periodic system c(r) = cE (r) + c′(r) still holds, but there is no boundary

condition at infinity. Rather, cE = 〈c〉, the volumetric average in the unit cell, as

discussed in the previous section. In general, 〈c〉 can consist of a constant plus a

term linear in r, i.e. G · r where G is a constant gradient. The gradient term

is necessary when determining, e.g., the effective conductivity of a distribution of

particle inclusions as done by Bonnecaze &Brady, (1991a). Here, we do not impose

any macroscopic concentration gradient and shall take 〈c〉 to be a constant. (Note,

there are microscopic concentration gradients induced by the active particles.)

For the periodic case, the linear relation (6.19) remains valid, but the explicit

construction of the matrix elements is not as straightforward as one now has a

periodic sum of long-range multipole interactions, which are computed using the

Ewald summation technique. The convergence of the Ewald sum is guaranteed by

the homogeneously distributed source 〈s〉 that provides the ‘chemically neutralizing

background.’ Physically, the distributed source must be included in the system.

Otherwise the reactant concentration field governed by Laplace’s equation would be
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c = 0 everywhere – the only periodic solution possible would be the consumption

of all reactant.

Bonnecaze & Brady, (1990) have a thorough discussion of the Ewald sum and the

convergence in the presence of distributed sources, and their approach can be used

here with only a slight modification. In the work of Bonnecaze & Brady, (1990)

the neutralizing source was distributed uniformly throughout both the fluid and the

particles. Here, however, the source is only in the fluid phase Vf and contributes

to the concentration at a point an amount proportional to
∫

Vf
(〈s〉/r) dV , which

can be rewritten as an integral over all space minus the value within the particles:∫
Vf

(〈s〉/r) dV =
∫

V (〈s〉/r) dV −
∑
β

∫
Vβ (〈s〉/r) dV . Thus, the ‘charge’ of each

particle β can be replaced with an effective charge qe f f
β = qβ − Vβ〈s〉, where Vβ is

the volume of particle β. One can now follow Bonnecaze & Brady, (1990) where it

was shown that the concentration field at any point in the fluid (outside the particles)

can be written without approximation as

c(r) − 〈c〉 =
a2〈s〉
2DR

+
1

4πDR

∑
β

*.
,

qe f f
β

|r − rβ |
+ Sβ · ∇β

1
|r − rβ |

+
1
2
Qβ : ∇β∇β

1
|r − rβ |

+ ...
+/
-

−
1

4πDR

∫
V

(
〈s〉
|r − r′|

+ n〈S〉 · ∇′
1

|r − r′|
+ n

1
2
〈Q〉 : ∇′∇′

1
|r − r′|

)
dV ′.

(6.20)

And, the condition of chemical neutrality relates the average effective charge to the

uniform source:

n〈qe f f 〉 = 〈s〉 = n〈q〉/(1 + φ), (6.21)

and particle β’s effective charge is

qe f f
β = qβ + φ〈q〉/(1 − φ), (6.22)
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where n is the number density of particles and φ = 4πa3n/3 their volume fraction

(all particles have been taken to have the same volume).

Equation (6.20) is an absolutely convergent expression for the concentration field

for any distribution – periodic or random – of reactive particles. A check on the

correctness of this can be seen by ensemble averaging the concentration at r over

all possible realizations of the reactive particles β. The discrete sum
∑
β qe f f

β ⇒∫
n〈qe f f 〉 showing that the sum and the ‘backflow’ integral over 〈s〉 cancel, as

do the dipole and quadrupole terms. Almost cancel that is, because the particles

are excluded from being any closer to the field point r than their radii a and thus

there is a contribution from the uniform source in the excluded region from 0 to

a: −(1/4πDR)
∫ a

0 〈s〉/(|r − r′|)dV ′ = −a2〈s〉/2DR, which precisely cancels the

constant source term in (6.20). (The dipole and quadrupole contributions from this

excluded volume region are zero.)

We now use this convergent formulation for simulation with periodic boundary

conditions. Both the particle positions and the concentration field are periodic, and

we consider a periodic cubic cell defined by cell vectors (a1,a2,a3) with N particles

(r1, r2, · · · , rN ) in the primitive cell. The cell volume V0 = (a1 ×a2)·a3 = a1a2a3.

On the unit cell the Fourier expansion follows the convention:

f (x) =
∑
k

f̂ (k)e−2πik·x,

f̂ (k) =
1
V0

∫
cell

f (x)e2πik·xdx.
(6.23)

To calculate the periodic sum efficiently the Ewald summation technique is used

(Toukmaji & Board, 1996; Darden et al., 1993). For r , rβ, i.e., for any spatial

point not on a particle position we write:

c(r) = 〈c〉 + c′real (r) + c′wave(r), (6.24)
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where

c′real (r) =
1

4πDR

∑
β

qe f f
β

Erfc(
√
π/ζ |r − rβ |)
|r − rβ |

, (6.25)

c′wave(r) =
1

4πDRV0

∑
k,0

∑
β

qe f f
β e2πik·rβ e−ζπk2

πk2 e−2πik·r . (6.26)

Here ζ is the splitting parameter that controls the rate of convergence of real- and

wave-space sums; the optimal choice of ζ has been thoroughly discussed (Darden

et al., 1993). We have only written the ‘charge’ terms in (6.25)-(6.26) to illustrate

the procedure. The dipole and quadrupole terms can be found in Appendix H or in

Bonnecaze & Brady, (1990). Note that the removal of the k = 0 term in the wave-

space sum follows directly from the ‘backflow’ integral over the uniform source

distribution 〈s〉 in (6.20).

Equations (6.25) and (6.26), when added together, give the solution c(r) for any

spatial point. From the definition of E in (6.19) and the formulation of Faxen laws,

we need the field that any particular particle responds to, excluding the contribution

from the particle α itself, and the field is to be evaluated at the particle’s center rα.

Thus, an additional ‘self correction’ must be added to the sum.

The necessity of a self term can also be appreciated by an analogy to the energy

calculation in an electrostatic system. In that case, it is well known that the energy

contribution from each charge qi is qiφ[i]/2, where φ[i] is the electrostatic potential at

the location of qi excluding the contribution from the charge qi itself. Therefore, the

contribution from particle α must be removed from the Ewald sum. For example,

relating q to c′ the self term is −qe f f
α /2πDR

√
ζ .

To complete the calculation, we need all the elements of the potential matrix E:

E =

*......
,

Ecq E∇q E∇∇q

EcS E∇∇S E∇∇S

EcQ E∇∇Q E∇∇Q

+//////
-

. (6.27)
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Equation (6.25) and (6.26), with the self term−qe f f
α /2πDR

√
ζ gives the contribution

Ecq. The other terms can be found in Appendix H.

Problem closure: iterative solver

Combining all particles’ response to their environment via the Faxen laws (6.11) we

can form a ‘grand capacitance’ matrix C:

*......
,

q

S

Q

+//////
-

= C ·



*......
,

cE

∇cE

∇∇cE

+//////
-

+

*......
,

c′

∇c′

∇∇c′

+//////
-



, (6.28)

where C depends on the Damköhler number and, in the Janus case, the particle

orientation vector ξ. Combining (6.28) with (6.19) we have:

(I − C · E) ·

*......
,

q

S

Q

+//////
-

= C ·

*......
,

cE

∇cE

∇∇cE

+//////
-

. (6.29)

For a given configuration of particles, C and E are known, as is the ‘imposed’

concentration field cE .

A standard GMRES (Generalized minimal residual method) iterative solver can be

applied to solve for the unknown multipole moments q, S and Q. In GMRES, the

linear system Ax = b is solved in such a way that A appears only as an operator;

the operator returns a new vector Ax for any given vector x. Such an operator

nature allows us to employ iteration without explicitly building the matrixA. Here,

A = (I − C · E), x = (q,S,Q), and b = C · (cE,∇cE,∇∇cE ).

After the iterative solver converges, the solution vector (q,S,Q) for each particle is

known and, from the single particle capacitance matrices C and mobility matrices

MB, the osmotic driving force on each particle is:

F osmo
β = −kBT L(∆)MB ·C

−1 ·

*......
,

qβ

Sβ

Qβ .

+//////
-

. (6.30)
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Computational cost for computing F osmo
β is negligible compared with that for com-

puting the moments. The inversion of C requires O(113) (or only 43 at the dipole

level), and thus computing F osmo requires N × O(113) operations, not O((11N )3)

operations.

Matrix-free implementation

Computationally, C is diagonal for homogeneously reactive particles and block

diagonal in the Janus case, and only requires O(N ) operations. However, E is dense

because of the long-range nature of Laplace’s equation. Explicit construction and

storage of the matrix E requires a large amount of memory and slow operations

(O(N2) matrix-vector multiplication). Therefore, the key step to achieving an

efficient solver is to eliminate the explicit large matrix operations. Below we briefly

describe the implementation utilizing the matrix-free operator nature of a GMRES

solver.

For a finite number of particles with an imposed concentration field the strategy is

straightforward: (c′(rα),∇c′(rα),∇∇c′(rα)) for each particle α in (6.19) is directly

summedwith the tile algorithm used in the self-gravitating N-body problem utilizing

GPU shared memory (Nguyen, 2007). Compared to explicitly building and storing

the matrix C with the CPU (3.1GHz 2nd-gen Intel Core i), the GPU (nVidia GTX

580 & GTX 680, Fermi & Kepler architecture) method used here is able to achieve

an increased speed by a factor of 100 and uses about 1% of memory.

For the periodic case of equation (6.19), which includes Ewald summation, the

calculations are done on the GPU via the Particle Mesh Ewald (PME hereafter)

method (Darden et al., 1993). Successful PME relies on the choice of the splitting

parameter ζ such that the real-space sum is convergent within several neighboring

particles’ contributions. Thus, the real-space sum is reduced from a dense matrix-

vector multiplication to a sparse one. GPU performs well in such situations.

The wave-space sum is efficiently calculated with Fast Fourier Transforms (FFT) in
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PME (Deserno & Holm, 1998). For future compatibility to include hydrodynamics,

we follow the PME convention of the Accelerated Stokesian Dynamics (Sierou &

Brady, 2001), which uses 5× 5× 5 mesh and 5× 5× 5 Lagrangian interpolation for

each particle by ensuring for each particle β:

∑
m

qme2πik·(rm−r) = qe f f
β e2πik·(rβ−r), (6.31)

∑
m

qme2πik·(rm−r) = 2πiSβ · ke2πik·(rβ−r), (6.32)

∑
m

qme2πik·(rm−r) = −2π2Qβ : kke2πik·(rβ−r), (6.33)

where m refers to point charges on the mesh points. The full Ewald sum given

in (H.2), including all qe f f
β ,Sβ,Qβ and rβ terms, is now equal to and can be replaced

by a sum of qm terms on a regular mesh filling the entire periodic simulation box:

c′wave(r) =
1

4πDRV0

∑
k,0

∑
m

qme2πik·rm e−ζπk2

πk2 e−2πik·r, (6.34)

which can be efficiently summed by 3D-FFT with O(M log M) operations for M

mesh points. The ∇c′wave(r) and ∇∇c′wave(r) terms can be written in the same

fashion with an extra 2πk factor, and can also be calculated by 3D-FFT. GPU is also

used to achieve better performance.

6.4 Results

We demonstrate the methodology and the physics of chemically active particles

by two studies. In the first study we give a thorough discussion of the screening

that occurs in Laplace problems. Three separate cases are considered: 1) Debye

screening of a charged particle in an electrically neutral system, 2) Debye screening

in a one component plasma (OCP) in which rapidly moving electrons screen the

interactions between the slowly moving positive ions, and 3) systems in which the

‘charge’ on a particle is proportional to the local potential, which results in so-called

Brinkman screening. This last case is relevant for chemically active particles.
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The second study applies the methodology to systems of chemically interacting

phoretic particles where the system’s evolution is tracked by simulations, as for-

mulated in the methodology section. In this study we show the onset of instability

in a periodic domain when the phoretic velocity of particles is high and show that

self-phoresis, as occurs for Janus particles, is necessary ingredient to have a stable

distribution. We also study a finite 2D system in which active Janus particles are

confined to a monolayer and constrained to lie within a circle of large radius. In

this case we show how the distribution of particles can be predicted analytically via

a coupled set of continuum-scale conservation equations for the suspensions stress,

particle flux and reactant concentration.

Screening in Laplace systems

Screening occurs in Laplace problemswhen the long-ranged 1/r interactions change

over to an exponentially screened interaction e−r/LB/r , where the screening length

LB depends on the number density (or concentration) of ‘charged’ particles. This

only occurs in an ‘infinite’ system; a finite number of charged particles does not

(formally) exhibit screening. We first discuss the familiar Debye screening.

There are a number of ways to derive the Debye screening and the approach we

take here allows us to discuss all three screening cases from the same perspective

and so highlights their similarities and differences. We start from Hinch’s averaged-

equation method (Hinch, 1977) to describe a dilute electrostatic system consisting

of point charges qα and a uniformly distributed charge density ρ (which is equivalent

to 〈s〉). The ensemble average of any quantity is computed by multiplying by the N-

particle configurational probability distribution function PN (XN ) and integrating

over particle positions XN . For a dilute system only the two-body conditional

distribution function Pβ |α is required, which gives the probability density for finding

particle β relative to α (averaged over all possible configurations for the N −2 other

particles). Particle α can be considered as fixed in space because only the relative
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configuration is relevant for a statistically homogeneous system. The ensemble

averaged Laplace’s equation becomes:

λ∇2〈ϕ〉α (r) = Pβ |α (rβ − rα)〈qβ〉α + 〈ρ〉, (6.35)

where λ stands for the permitivity ε for an electrostatic system and the solute

diffusivity DR for a reactive system, and ϕ denotes the electrostatic potential or

the solute concentration. Finally, 〈 〉α denotes the conditional average with the

α-particle fixed at rα. Equation (6.35) applies outside the particle α.

Debye screening

Debye screening applies to a neutral electrolyte in which there are as many positive

as negative charges and therefore 〈ρ〉 ≡ 0. Furthermore, the particle charges are

fixed, which for simplicity, we take to be±q. In (6.35)wemust distinguish separately

the probability density for finding positive and negative charges outside the particle

α (which itself could be either ±) and thus (6.35) becomes

λ∇2〈ϕ〉α (r) = [P+|α (rβ − rα) − P−|α (rβ − rα)] q . (6.36)

The charged particles move freely and their distribution is governed by the competi-

tion between the electrostatic energy and the thermal energy kBT . At equilibrium the

Boltzmann distribution holds with P+|α ∼ n+e−q〈ϕ〉α/kBT and P−|α ∼ n−e+q〈ϕ〉α/kBT ,

with n+ = n− = n. Thus, the RHS of (6.36) becomes

[P+|α (rβ − rα) − P−|α (rβ − rα)] q (6.37)

= nq [e−q〈ϕ〉α/kBT − e+q〈ϕ〉α/kBT ]

= −2nq sinh(q〈ϕ〉α/kBT ), (6.38)

which for small potentials gives,

∇2〈ϕ〉α (r) + 〈ϕ〉α/L2
D = 0 , (6.39)

with Debye screening length LD = (2nq2/εkBT )−1/2. The potential now behaves as

e−r/LD/r outside the particle α.
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One Component Plasma (OCP)

A one component plasma typically consists of positive ions surrounded by an equal

number of negative electrons. While the system is overall electrically neutral, the

electronsmovemuchmore quickly than the positive ions and they form a background

sea of uniform negative charge. The interest then is in the interaction between the

positive ions and how their interaction is modified by the negative background.

Equation (6.35) applies to this case, where now all particles α, β, etc. are the

positively charged ions and the average charge density 〈ρ〉 = −n〈q〉 corresponds to

the uniform sea of negative charge. Again, the ions are distributed according to the

Boltzmann distribution and thus (6.35) becomes

λ∇2〈ϕ〉α (r) = nq [e−q〈ϕ〉α/kBT − 1] , (6.40)

where for simplicity we have taken all ions to have the same charge. For small

potentials we have again Debye screening with the same screening length as we did

for the neutral system.

In both of these systems, electrically neutral and the OCP, the screening is of a

dynamic origin – the particles are Boltzmann distributed in response to the con-

ditionally averaged potential. In the case of chemically active particles, a similar

screening takes place, but it is static in origin and due to the fact that the ‘charge’ of

a reactive particle depends on the concentration field in which it finds itself.

Chemically active particles – Brinkman screening

The screening that takes place for chemically active particles will have the same

exponential form as for Debye screening, but its origin is different. First, the

screening is present even though the reactive particles can be uniformly distributed

in space with a constant number density Pβ |α = n. For Debye screening it was

essential that the probability for finding a second particlewas given by theBoltzmann

distribution with an energy that was proportional to the conditionally averaged
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potential Pβ |α ∼ e−〈ϕ〉α/kBT . For chemically active particles the screening arises

because the reaction rate 〈r β〉α (equivalent to the charge) is proportional to the local

concentration. This screening is due to Brinkman who first showed the analogous

screening for fluid flow through a dilute fixed bed of particles (Brinkman, 1949).

Brinkman screening in reactive systems has been discussed in detail by Morris &

Brady, (1995). Here we briefly show how this comes about. We first rewrite (6.35)

in terms of the concentration and reaction rate rather than potential and charge:

DR∇
2〈c〉α (r) = Pβ |α (rβ − rα)〈r β〉α − 〈s〉 . (6.41)

If we average (6.41) over all positions of particle α, we have the unconditionally

averaged equation – no particles fixed – for the average concentration field 〈c〉. Since

∇2〈c〉 = 0 in the statistically homogeneous suspension, the average of (6.41) shows

that n〈r β〉 = 〈s〉 – the average reaction rate is equal to the uniform average source of

reactant. When particle β is far from particle α in (6.41) the conditionally averaged

reaction rate must approach the bulk value, 〈r β〉α → 〈r β〉, and thus the RHS forcing

in (6.41) is n(〈r β〉α − 〈r β〉), for a uniform distribution of particles β. For a first

order surface chemical reaction (c.f. (6.5)) the reaction rate is proportional to the

concentration, and thus to leading order in the number density of reactant particles

(6.41) can be written as

DR∇
2〈c〉α (r) = −na2κ0(〈c〉α (r) − 〈c〉) . (6.42)

The disturbance concentration c′ = 〈c〉α−〈c〉 is the relevant quantity and is screened:

c′ ∼ e−r/LB/r , where, as is the case for Debye screening, the Brinkman screening

length is proportional to n−1/2. Specifically, for uniformly reactive sink particles

LS
B/a =

√
1 + Da
3φDa

, (6.43)

where the Damköhler number Da = κ0a/DR. For half reactive Janus particles

LJ
B/a =

√
4π
−3φ f q

c
, (6.44)



123

where f q
c is the response function given in Appendix G. Here, φ = 4πa3n/3 is

the volume fraction of reactant particles. A more complete derivation of LB, with

corrections for higher volume fractions and including many-body effects, can be

found in Morris & Brady, (1995).

In the simulation method described in this work we solve for the concentration field

by summing all the long-ranged multipole interactions among particles. Therefore,

that we recover Brinkman screening is a validation that our simulationmethodworks

properly. To test this, we generate a random but homogeneous configuration of N

particles (r1, r2, · · · , rN ) in a periodic box, and solve for the particle multipoles

with their positions fixed. Then one particle, denoted as particle 0, is randomly

chosen and removed from the system, while the other particles are held fixed in

space at their original positions. For the N − 1 particles remaining after removal,

their multipoles (qβ,Sβ, · · · ) change. There is less competition for the reactant,

and hence the particle reactivity is higher: qi,after < qi,before < 0. We calculate the

change in monopole strength ∆qi = qi,before − qi,after of each (not removed) particle

i and plot this against the distance of particle i from the removed particle 0. In the

case of Janus particles, the orientation of each particle is randomly chosen and also

fixed before and after removal.

When a particle is removed, the other particles feel the screened disturbance. Ac-

cording to Faxen laws (6.12) & (6.15), and screening lengths (6.43) & (6.44), qi

changes according to:

For Sink: ∆qi = −
Da

1 + Da
q0e−r0,i/LS

B/r0,i, (6.45)

For Janus: ∆qi =
f q
c

4π
q0e−r0,i/LJ

B/r0,i, (6.46)

where r0,i is the distance between particles i and 0. The results are presented in

Fig. 6.2 and clearly show Brinkman screening. Outside the Brinkman screening

length the particle monopole strength qi hardly changes no matter whether particle

0 is in the system or not.
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Figure 6.2: Change of particle reactivity ∆qi in the vicinity of the removed test sink
particle. Markers are simulation data and solid lines are the theoretical predictions
for Brinkman screening (6.45). Simulation data are from a single configuration with
N = 625, φ = 0.01 (cubic periodic box = 64 × 64 × 64a3). Particles are randomly
distributed.

Our method thus resolves Brinkman screening properly, but before we proceed

to the results for dynamic systems it must be remarked that Brinkman screening

arises only after the many-body concentration field c(r) is computed properly. This

means that one cannot simply prescribe a Yukawa-type interaction potential, e−αr/r ,

between the reactive particles and bypass the solution for the concentration field.

By contrast, in an electrostatic system pairwise Yukawa potentials can sometimes

be applied when the counter-ions are much smaller and more mobile than the

macro-ions, because under these conditions the fast counter-ions are subject to the

Boltzmann distribution and are ‘dragged’ along by the macro-ions to screen the

electrostatic field between them. Therefore, the electrostatic system can be modeled
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Figure 6.3: Change of particle reactivity∆qi in the vicinity of the removed test Janus
particle. Markers are simulation data and solid lines are the theoretical predictions
for Brinkman screening (6.45). Simulation data are from a single configuration with
N = 625, φ = 0.01 (cubic periodic box = 64 × 64 × 64a3). Particles are randomly
distributed.

as consisting of only macro-ions with pairwise Yukawa potentials to simplify the

calculation of macro-ion motion. This is not possible for for chemically active

particles.

Moreover, a dynamic diffusiophoretic system is even more difficult to probe from

the one-particle fixed average equation (6.35) point of view. In a dynamic system,

not only is qα (or qβ) changing, but also the distribution Pβ |α is altered by both

diffusiophoresis and by Brownian motion (6.6). Although Brownian motion is

thermal and by itself obeys the kBT Boltzmann statistics, the Boltzmann distribution

does not apply in general for Pβ |α. There is no Hamiltonian or interaction energy
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for the the diffusiophoretic problem.

Dynamic evolution of reactive particles

We first discuss the scalings for the diffusiophoretic system to introduce the im-

portant nondimensional parameters and the physically realistic parameter space to

be explored. We choose the particle radius a as the length scale and the particle

translational diffusion time a2/D as the time scale, where D = kBT/6πηa is the

reactive particle’s translational diffusivity from the Stokes-Einstein-Sutherland re-

lation. (Not to be confused with the solute reactant diffusivity DR � D.) Reactant

concentration (expressed as number density) is scaled by cE , the externally imposed

concentration: cE = c∞ for the finite case and cE = 〈c〉 for the periodic case, respec-

tively. With these chosen scalings the non-dimensional variables follow: particle

velocity, Û = Ua/D; concentration, ĉ = c/cE; and multipoles: q̂ = q/DRacE ,

Ŝ = S/DRa2cE , and Q̂ = Q/DRa3cE . The nondimensional particle velocity due

to the osmotic force from equation (6.1) then becomes

Û = −SD

∫
Ŝ

ĉn dŜ , (6.47)

where

SD = (1 − θDR/DP) L(∆)cEa3 , (6.48)

which is the ratio of the speed due to phoresis, U ∼ L(∆)kBTcEa2/6πηa, to the

characteristic velocity due to Brownian motion, U B ∼ D/a = kBT/6πηa2. We

shall refer to SD as the ‘fuel strength.’ Recall that (1 − θDR/DP) is the scaling

factor for the reaction R → θP, while L(∆) measures hydrodynamic flow in the

region of size ∆ = δ/a adjacent to the particle where the solute-particle interaction

is operative. The imposed concentration cE is taken to be constant in time. Thus, for

a given concentration level, stoichiometry and interactive length, SD is prescribed

and fixed. The concentration field ĉ is also dependent on the Damköhler number,

Da = κ0a/DR, which thus indirectly affects a reactant particle’s velocity.
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The particle displacement from (6.6) in each timestep is:

∆X̂ = Û∆t̂ + ∆X̂B + ∆X̂HS

= − SDB̂∆t̂ + ∆X̂B + ∆X̂HS ,

(6.49)

where B̂α = Bα/a2cE from (6.16).

As discussed in Section 6.2, for repulsive source particles (1 − θDR/DP) < 0,

while for attractive chemical sinks (1 − θDR/DP) > 0. Therefore according to the

definition of SD in (6.48), for SD > 0 we simulate the motion of attractive chemical

sinks, while SD < 0 corresponds to repulsive sources. If SD = 0, there is no

reaction-induced motion and the system degenerates to Brownian hard spheres as

seen from (6.49).

In experiments the particles are typically micron-sized and (1 − θDR/DP) ∼ O(1).

In this work we consider the limit where solute or reactants are much smaller

than the phoretic particles. For instance, in the experiments of Theurkauff et al.,

(2012), the solutes are hydrogen peroxide and oxygen molecules, both of which are

at the nano-scale. In this limit L(∆)a3 ∼ δ2a, where δ ∼ O(10−9m). Therefore

SD ∼ L(∆)a3cE ∼ O(0.1) for cE ∼ 1mMol/L ∼ 1023/m3, and SD ∼ O(100) for

cE ∼ 1Mol/L. We shall focus on the fuel strength range, 0.1 < SD < 10, which

appears to be sufficient to cover the important system behavior.

For negative SD < 0, the diffusiophoretic particles repel each other and, when the

repulsion is strong enough, a crystalline structure may form. Such diffusiophoretic

repulsive ‘crystals’ have been observed by Derjaguin & Golovanov, (1984). From

the ensemble average equation perspective of (6.35), when repulsion is strong Pβ |α

is ‘frozen’ to a fixed point and qα (and qβ) also approach constants. Therefore,

the system becomes similar to an OCP. A detailed discussion of the crystallization

behavior for repulsive diffusiophoretic particles will be reported elsewhere.

In an atomic or molecular system with short-range attractive interaction potentials,

a gas-liquid phase transition can occur. For Active Brownian Particles (ABPs) a
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gas-liquid phase transition can also occur even though the interactions are repulsive

(hard-sphere collisions). Each ABP propels itself at a given velocity U0ξ, and the

direction ξ is subject to rotational Brownian motion. The translational random walk

that results from the rotational Brownian motion generates a unique swim pressure

(Takatori et al., 2014), analogous to the osmotic pressure of Brownian solutes.

However, unlike the osmotic pressure, the swim pressure is a decreasing function

of the active particle concentration, which can destabilize the system. Even though

the ABPs are intrinsically non-equilibrium, a ‘thermodynamic’ (Takatori & Brady,

2015) description is possible with the active pressure providing an equation of state.

However, in chemically active particle systems the long-range and non-pairwise

additive nature of the phoretic interactions calls into question the notion of a ‘phase.’

We show below that in certain situations the dilute region outside a dense cluster

has an inhomogeneous active particle concentration. Thus, ‘thermodynamic-like’

approaches may not be appropriate. Instead, a mechanical approach based on the

swim pressure (Takatori et al., 2014) and the swim force (Yan & Brady, 2015a) is

shown to apply and to enable predictions of the distribution of active particles in

both the dense and dilute regions.

In the following two sections we discuss the system dynamics via a particle-tracking

simulation that solves the concentration field c(r;XN (t)) at each and every time

step and evolves the particle positions according to (6.49).

Attractive sink particles: periodic system

Attractive (non Janus) sink particles show very interesting dynamics. In the limit of

SD → 0, the system reduces to passive Brownian particles, and remains a random

but statistically homogeneous distribution of particles until the freezing density

(φ ≈ 0.5). At the other extreme of high SD, the fuel concentration is high and

particle-particle attractions are strong and clusters form. In this section we focus
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on the range of SD where the long-time or steady-state structure transitions from

homogeneous to clustering.

All simulations start from a random configuration of 2503 particles in a cubic unit

cell of 64× 64× 64a3 with periodic boundary conditions. Results will be presented

for a single volume fraction, φ = 0.04, and a single Damköhler number, Da = 2.0,

but for SD ranging from 0.3 to 6.0. The multipole moment expansion is truncated

at the dipole level. For analysis purposes the particle reactivity q is compared to the

isolated single particle reactivity from (6.12): q0 = −4πDRacEDa/(1 + Da). The

‘reactivity’ ratio, q/q0, shows the effect of particle clustering as a particle in the

center of a cluster must compete with its neighbors for the reactant and its reactivity

decreases. The clustering behavior is also analyzed by defining a local volume

fraction, φp, which is the ratio of particle volume 4πa3/3 to the Voronoi cell volume

Vvoro formed by the particle with its surrounding neighbors.

Fig. 6.4 shows the average reactivity 〈q〉/q0 as the system evolves in time. At SD =

0.3, the average reactivity 〈q〉/q0 is unchanged, showing only small fluctuations.

Particles remain randomly distributed, and a snapshot at steady state (A) shows

that each particle has almost the same reactivity q. The statistics of φp in Fig. 6.5

show a narrow distribution around the imposed global volume fraction φ = 0.04.

Here 〈q〉/q0 > 1 because the average reactivity is increased by many-body effects

as φ increases for a homogeneous infinite suspension. The dependence 〈q〉 ∼ φ is

discussed in Bonnecaze & Brady, (1991a).

When SD is increased to 0.9 clusters form. The reactivity 〈q〉/q0 gradually decays

and almost reaches a steady state by t = 300a2/D. The simulation was continued to

t = 700a2/D to ensure that the system did reach a steady state. As seen in Fig. 6.4,

local fluctuations in volume fraction first form (B1), and the cluster continues to

grow until limited by reaction and the size of the periodic unit cell. At steady state

(B2) all particles in the box form a single cluster. The particle reactivity is very
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Figure 6.4: Reactivity 〈q〉/q0 of the sink system for different values of the fuel
strength: (A) SD = 0.3, (B) SD = 0.9, and (C) SD = 6.0 for φ = 0.04, and Da = 2.0.
There are N = 2503 particles in the cubic periodic unit cell. All cases start from
a randomly distributed particle configuration. Particles are colored by reactivity
〈q〉/q0. (A) is a system snapshot at steady state. (B1) and (C1) are snapshots in
transient states and (B2) & (C2) are at the steady states, respectively.

low inside the cluster, although the φp measurement in Fig. 6.5 shows that the local

density is not high, φp ≈ 0.08. Only a few particles near the cluster surface (the

green ones) maintain a significant reactivity near q0.

When SD is increased further to 6.0, the system evolves very quickly. In a very short

time, t ≈ 4a2/D, a transient gel-like structure (C1) forms, and the average reactivity

〈q〉/q0 reaches a very low level. Such a short evolution timemeans that the particles’

diffusive motion, which is on the time scale a2/D, has almost no effect on the initial

evolving transient structure. The clustering process continues and reaches a steady

state at about t = 100a2/D. At steady state (t = 300a2/D, C2), all particles collapse
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Figure 6.5: Probability distribution of local particle volume fraction φp at the steady
state. Here φ = 0.04, Da = 2.0, N = 2503 and the periodic box = 64 × 64 × 64a3.
The steady state configurations are A, B2 and C2 in Fig. 6.4.

into a single cluster; there is no coexistence phenomena – no dilute single particles.

The statistics of φp show that the local volume fraction is around 0.2, still very far

from the close packing limit where φ > 0.5. It is important to note that the peak

close to φp = 0 corresponds to those particles on the cluster surface, rather than a

dilute phase, as is clear from C2 in Fig. 6.4.

Such a field-driven clustering behavior is quite different from that which occurs in

a pairwise short-ranged system, e.g., Lennard-Jones particles. In a Lennard-Jones

system (Santos et al., 2010; Lodge &Heyes, 1998), the potential is fixed so that once

a cluster starts to form, the clustering process continues until the particle-particle

separation reaches the repulsive range of the pairwise potential. In a reactive sink

system, however, the attraction, which is due to the reactivity, is neither prescribed
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nor fixed but is a solution to the many-particle Laplace equation. Hence, when

clusters start to form particles get close to each other and, for not too small Da

(fast reaction), the reactant concentration can be locally depleted in a cluster and an

individual particle’s reactivity can become small, qα ∼ 0. Sink particles thus lose

their attraction and the clustering process stops, leaving a loosely packed structure.

Due to this depletion effect for diffusion-limited (high Da) particles, at intermediate

SD the system may lose its stability and collapse into a cluster, but the cluster is

loosely packed because the translational Brownian motion tends to drive the system

towards a homogeneous state. The steady structure is always a balance between the

translational Brownian motion and the attraction. The higher SD, the denser the

cluster. Recall that SD measures the fuel strength and is proportional to the reactant

concentration 〈c〉.

The system behavior is quite different from a classical first order gas-liquid phase

transition where a dense phase coexists with a dilute phase. In the sink system no

coexistence was observed for all cases studied, which were in the range 0.1 < Da <

10, φ < 10% and SD < 10.

Compared to the experiments of Theurkauff et al., (2012) which seem to show phase

separation and coexistence, the key difference is that reactive sink particles cannot

propel themselves; their motion is due to diffusiophoresis in the concentration

gradient of the other particles. We repeated the simulation for Janus particles

that undergo self-diffusiophoresis in 3D periodic systems and confirmed that self-

propulsion is the vital component for coexistence of chemically active suspensions.

However, the 3D simulation is expensive due to the summation of all the long-ranged

contributions in the algorithm, and our largest simulations are limited to a box of

128× 128× 128a3 with about 8000 Janus particles. This is sufficient for qualitative

observations but not to carry out a detailed study. Therefore, we shall discuss the

steady state structure of Janus particles in a monolayer geometry in the next section.

In a monolayer, we can easily extend the system to 512×512a2 and generate reliable
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statistics.

Our findings for reactive (non Janus) sink systems suggest that there is a threshold

S∗D, below which the system is stable, while for SD > S∗D the system is unstable and

collapses into a cluster, which eventually extends to encompass all particles. Linear

stability analysis of a similar system can be found in Karpov & Oxtoby, (1997),

where they analyzed a system of ‘growing and decaying’ particles and predicted

the existence of a threshold. In a more recent work Saha et al., (2014) gave a

linear stability analysis of chemically active particles with self-propulsion, phoretic

response and chemotaxis based on a Smoluchowski mean-field description, and

predicted that an instability threshold exists, which depends on the fuel concentration

〈c〉, the self-propulsion, Brownianmotion, and the attraction due to diffusiophoresis.

These predictions have not yet been verified by simulation or experiment. The

simulation algorithm presented in this work would allow one to extract the detailed

information of the clustering process in various geometries and test the theoretical

predictions.

We have also completed a detailed theoretical analysis and found that an instability

does exist as predicted in the literature, but the threshold S∗D is independent of self-

propulsion – the instability growth rate becomes positive when attraction overcomes

translational Brownian diffusivity, which differs from the prediction by (Saha et al.,

2014). In our theory self-propulsion quantitatively reduces the growth rate but has no

impact on the threshold, because its effects appear at a higher order in wave number

than the competition between diffusiophoretic attraction and Brownian diffusion.

We also show that, by properly accounting for the flux of active particles in the

presence of the solute concentration gradient (Takatori & Brady, 2015), a simple

coarse-grained continuum mechanics theory predicts the instability very well. Our

theory is verified by simulations conducted with themethod described in this chapter

and will be presented in a future work.
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Attractive Janus particles: a finite system

In this section we study a second case of Janus particles that both self-propel

and attract each other via diffusiophoretic interactions. Similar to the monolayer

experiments of Theurkauff et al., (2012) we simulate a finite number of particles

confined in a monolayer in 3D space surrounded by a porous circular wall. The

porous wall does not allow the Janus particles to escape (hard-sphere collision with

the wall), but it has no effect on the reactant concentration field. The simulations

are truncated at the dipole level. Further, the Brownian reorientation is assumed to

be a 2D in-plane rotation; there is no motion out of the plane.

A snapshot from the steady-state distribution for a system with N = 2048, SD = 30,

Da = 5, Rwall = 128a is shown in Fig. 6.6. Here, the non-reactive and reactive

hemispheres are colored blue and green, respectively. In contrast to reactive sink

particles that all collapse into a single large cluster, the snapshot clearly shows a

steady coexistence between a dense cluster and dilute ‘gaseous’ particles. Quantita-

tive statistics are generated with a larger system, Rwall = 256a, N = 2048, SD = 60,

Da = 5, equilibrated for a very long time t = 5000a2/D.

Fig. 6.7 shows the particle area fraction in the monolayer φA = nAπa2. The most

striking feature is that the dilute region is not uniform in concentration; there is a

very long decaying tail. The non-homogeneous structure of the dilute part is also

evident from Fig. 6.8, which shows the reactant concentration and average swim

speed as a function of r . Inside the cluster (approximately r < 60a) the reactant

is depleted and the particles are not able to propel themselves. The reactive cluster

is a large chemical sink that induces a net flux of reactant towards the cluster.

Therefore, in the dilute part 1− c/c∞ ∼ 1/r . Also, to leading order in the fuel level,

Ua/D ≈ (−gz
c )SDc/c∞, where gz

c is the dominant entry in the mobility matrixMB.

The long tail in φA, c, andU differs from a ‘thermodynamic’ system inwhich a phase

is a homogeneous component, and thus prohibits the use of a phase-equilibrium
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Figure 6.6: Snapshot at steady state of a monolayer of Janus particles. Blue is
the non-reactive part and green is the reactive hemisphere. The Janus particles are
confined within the circular wall shown in the figure. The wall has no effect on the
solute concentration field. N = 2048, SD = 30, Da = 5, Rwall = 128a. Only 1/4 of
the simulated system is shown.
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Figure 6.7: The area fraction φA measured from simulation (black symbols), φA
predicted by the model (red curve), and the average osmotic force 〈Fosmo〉 (blue
symbols) as defined in (6.30). Since the orientation distribution is still isotropic,
the osmotic force is dominated by the diffusiophoretic force: 〈Fosmo〉 ≈ 〈F∇c〉. A
negative diffusiophoretic force means a force directed towards the center r = 0; the
solid blue line is the reference for n〈F∇c〉 = 0. N = 2048, SD = 60.0, Da = 5.0,
rwall = 256a. Data is collected from a steady state period of t = 5000a2/D.

theory to predict this behavior. In principle, this situation can be described from the

detailed many-particle Smoluchowski equation, but such a solution is not possible

for dense systems where particle-particle collisions are important. Fortunately,

however, the recent discovery of the swim pressure (Takatori et al., 2014) as a

surface force and the swim force (Yan & Brady, 2015a) as a body force enables a

simple approach based on a continuum mechanics description.

At the continuum level, the flux of active particles is driven by stress gradients and

‘body’ forces. The ‘surface’ forces give rise to the total active stress σact , while the

body forces are twofold: (i) the intrinsic self-propulsive velocity U0(c) is a function

of the reactant concentration which varies spatially and this gives rise to an ‘activity-



137

Figure 6.8: Reactant concentration c and velocity Pep = Ua/D along the radial
direction. The boundary condition is c/c∞ = 1 as r → ∞. Data is collected from
the same simulation as in Fig. 6.7.

gradient swim force’ (Takatori &Brady, 2015): n〈F ∇U0〉 = −σswim ·∇ ln U0, and (ii)

the down-gradient diffusiophoretic force arises from the average propulsive force in

(6.30): n〈F ∇c〉 = −nkBT L(∆)〈MB ·C
−1〉·∇c. It is important to appreciate that these

are two separate and distinct body forces. A non active (non swimming) particle

can still be subject to a diffusiophoretic force, and an active non-diffusiophoretic

particle can still experience the spatial variation in the fuel concentration and thus

have a variable swim speed.

The number density n of active particles is conserved

∂n
∂t
+ ∇ · j = 0, (6.50)

where the flux is determined form a momentum balance for the active particles (Yan

& Brady, 2015a)

0 = −ζj + n〈F ∇U0〉 + n〈F ∇c〉 + ∇ · σact ; (6.51)
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the left-hand-side is zero because the motion is at low Reynolds number. Here,

ζ = 6πηa, is the Stokes drag coefficient (and is not to be confused with the spitting

parameter for the Ewald sums). The active stress, σact , includes the swim stress,

the collisional stress, and the Brownian osmotic pressure as discussed below.

At steady state the number density is radially symmetric and since the flux must

be finite at r = 0, from (6.50) the radial flux is zero everywhere, jr = 0, and the

momentum balance (6.51) becomes simply

ζ jr =
∂σact

rr

∂r
+ n〈F∇U0〉r + n〈F∇c〉r = 0 , (6.52)

where we have neglected the normal stress difference term (σact
rr − σ

act
θθ )/r . The

active stress could be anisotropic due to an anisotropic distribution of orientation

ξ (Takatori & Brady, 2014). In the system discussed here, however, no significant

anisotropy was detected in the simulation data and therefore the normal stress

difference is taken to be zero.

In a continuum description one determines both the stress tensor and the body

force in a homogeneous state and then uses them to predict the behavior in an

inhomogeneous state. For example, to predict the flow of an ideal gas, we have the

Navier-Stokes equations, the continuity equation, and the equation of state (EOS)

relating the pressure to the density, p = ρRT , from thermodynamics. Chemically

active particles can spontaneously separate into dilute and dense regions, as shown

in Fig. 6.6, and obtaining the stress as a function of n, SD and Da for a homogeneous

state poses a challenge. A similar challenge arises in classical thermodynamics

when phase separation occurs, but at least in this case one can construct the free

energy for a homogeneous system via a Monte Carlo method because a conserved

energy exists and gives rise to a Boltzmann distribution. No such conserved function

exists for active matter and a different approach is needed.

For Active Brownian Particles (ABPs) an accurate EOS has been determined from

the micromechanical definition of the stress (Takatori & Brady, 2015), which has
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been validated in a sedimentation system (Yan & Brady, 2015a). ABPs do not have

phoretic interactions and the swim speed is assumed constant, which corresponds

to a uniform fuel concentration or very slow reaction, i.e. Da → 0. We shall use

the model proposed for ABPs, acknowledging that even in a homogeneous state the

microstructure with phoretic interactions and for a finite Da may differ from that for

ABPs. The dependence on Da will enter through the reactant concentration field

and the body forces. As we show below, this model captures the essential physics,

is robust and is accurate.

For ABPs in a monolayer with self-propulsion velocity U0, drag coefficient ζ , and

in-plane diffusive reorientation time τR, the dilute Brownian osmotic pressure and

swim pressure are:

Π
B = nkBT, (6.53)

Π
swim = n〈x · F swim〉 = nksTs Π̂

swim(φA) , (6.54)

where the swim force on each particle is F swim = ζU0ξ, and the ‘activity’ ksTs =

ζU2
0 τR/2 in 2D. The nondimensional function of area fraction,

Π̂
swim(φA) = (1 − φA −

1
5φ

2
A) , (6.55)

gives the reduction in the swim pressure due to the hindering effect of other particles

(Takatori & Brady, 2015).

The collisional pressure arises from the hard-disk collisions between particles that

prevent particle overlap (c.f. Eq.(6.49)) and is given by

Π
P = n〈x · F P〉 = n

(
kBT + ksTs

4
π

PeR

)
φAΠ̂

P(φA) , (6.56)

where the reorientation Péclet number PeR = a/U0τR. The collisional pressure

arises from the ‘collision’ of two particles and thus is O(n2) in the dilute limit,

in contrast to the ‘ideal gas’ Brownian and swim pressures which are both O(n).

For Brownian hard disks, the collisional pressure is nkBTφAΠ̂
P(φA), and thus the
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nondimensional function Π̂P(φA) gives the hard-disk EOS. We take the simplest

form for the EOS (Wang, 2010), which gives

Π̂
P(φA) =

2 − φA

(1 − φA)2 . (6.57)

In (6.56) we have also supposed that the collisional pressure due to the activity has

the same area-fraction dependence as that for Brownian hard-disks and that the two

effects are additive. When activity is a small correction to Brownian motion, the

additional randomwalk due to swimming allows one to replace kBT with kBT+ksTs,

which is reflected in (6.56). (Note, that the collisional swim stress is transmitted

over the particle size a upon collision, not over the run length ` = U0τR as for the

swim stress; hence the factor of 4PeR/π.) When swimming dominates, the activity

is the sole source of particle-particle collisions and the collisional pressure has the

same area fraction dependence as for Brownian (or molecular) hard disks (Takatori

& Brady, 2015). Thus, (6.56) is correct in the two limits of weak and strong activity

and should be a reasonable approximation over the entire range of activity (Takatori

& Brady, 2015). (Given the other approximations already made, this is not a critical

one.)

Thus, the total active stress is modeled as

σact = −ΠactI = −(ΠB + Πswim + ΠP)I , (6.58)

and σact
rr = −Π

act , which is what is needed in the particle flux balance (6.52).

To check the applicability of (6.58) for diffusiophoretic interacting Janus parti-

cles with a reactant concentration-dependent swim velocity, Fig. 6.9 compares

the collision pressure ΠP measured from simulation to the estimation given sep-

arately by the Brownian and active contributions to the collisional pressure cal-

culated at the corresponding φA measured at every location r . Inside the cluster

U0 ≈ 0, and the Brownian collisional pressure dominates and is a good estimation

of ΠP ≈ ΠP
B = nkBTφAΠ̂

P. In the gaseous region, swimming dominates and (6.56)
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Figure 6.9: The collision pressure ΠP and swim pressure Πswim. Data is collected
from the same simulation of Fig. 6.8.

gives ΠP ≈ nksTsφA4PeR/π because the concentration is dilute. However, this

estimate is much smaller than ΠP measured in the simulation. The difference in the

dilute region can be explained by the diffusiophoretic particle-particle attraction,

which causes more collisions among nearby particles. Nevertheless, when dilute,

the ‘ideal gas’ swim pressure dominates: Πswim = nζU2
0 τR/2 ≈ 102nkBT � ΠP,

and the collisional contribution is not important. In summary, inside the cluster

Πact ≈ ΠP
B , and outside the cluster Π

act ≈ Πswim, and the EOS of ABPs can be used

as an approximation for diffusiophoretic interacting Janus particles for nonzero Da.

To complete the model for the particle flux, the diffusiophoretic body force 〈F ∇c〉

is needed. For chemically active particles, the diffusiophoretic force arises from

the average osmotic propulsive force in (6.30), which includes both the autonomous

motion driven by fuel concentration c and diffusiophoresis driven by ∇c. Because

the mobilityMB depends on the orientation ξ of the swimmers, the diffusiophoretic
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force need not be solely in the direction of ∇c. However, as shown in Fig. 6.7, in

the dilute part the slightly negative 〈F ∇c〉 is along ∇c (c.f. Fig. 6.8), and we found

that the distribution of ξ is unbiased in that region. Thus the orientation-average of

MB can be used, and the diffusiophoretic force is given by

n〈F∇c〉r = −nkBT SD
1
2

(
gx

cx + g
z
cz

) ∂ĉ
∂r
, (6.59)

where we have made the concentration dimensionless and so recover the fuel level

SD from (6.48). The diffusiophoretic force is directed towards the center of the

cluster, because SD > 0,
(
gx

cx + g
z
cz

)
> 0 (which are given in Appendix G), and ĉ

increases with r .

Finally, with the swim pressure, the activity-gradient swim force becomes

n〈F∇U0〉r = Π
swim ∂ ln U0

∂r
. (6.60)

An examination of the various contributions to the active pressure and the body

forces shows that all terms can be scaled with the thermal energy kBT at which

point it drops out, leaving two dimensionless groups: PeR = a/U0τR and the ratio

of activity to thermal energy ksTs/kBT . The reorientation time is due to rotary

Brownian motion, τR = 4/3 a2/D, and thus

PeR =
a

U0τR
=

3
4

aD
U0
=

3
4

1
SD (−gz

c )ĉ
, (6.61)

where we have used (6.47) to for the swim speed U0 in terms of the reactant

concentration. Similarly, the activity to thermal energy ratio can be expressed in

terms of SD and ĉ:

ksTs

kBT
=
ζU2

0 τR/2
kBT

=
Dswim

D
=

3
8

1
Pe2

R

=
2
3

S2
D (−gz

c )2ĉ2 , (6.62)

where gz
c is given in Appendix G. Also, the gradient of the swim stress can be

combined with the activity-gradient swim force (6.60) to give

−
∂Πswim

∂r
+ Πswim ∂ ln U0

∂r
= −Πswim ∂ ln(Πswim/U0)

∂r
. (6.63)
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We are now in a position to bring all the contributions together into the flux expres-

sion for an equation for the area faction of active particles:

0 = −
∂

∂r

(
φA + φ

2
AΠ̂

P(φA)[1 + 2
π βSD ĉ]

)
− 3

8 β
2S2

D ĉ
∂(φAΠ̂

swim ĉ)
∂r

− γSDφA
∂ĉ
∂r
, (6.64)

where β = (−gz
c )2 gives the reactivity-induced self-propulsive motion, while γ =

(gx
cx + gz

cz)/2 gives the diffusiophoretic motion; both are functions of Da and can

be found in Appendix G.

Before applying (6.64) to the monolayer, we show that it reduces to the expected

behavior in special cases. First, note that SD and ĉ always appear together; the

product, SD ĉ, is the actual reactant connection at location r . When there is no fuel,

SD = 0, (6.64) reduces to

∂

∂r

(
φA + φ

2
AΠ̂

P(φA)
)
= 0 , (6.65)

which just says the the total thermodynamic pressure for the passive Brownian

particles is a constant. The area fraction is uniform and given by the constraint that

all particles are contained within the circle∫ R

0
φA(r)rdr =

Na2

2
, (6.66)

where N is the total number of particles in the circle.

When there is no phoretic attraction, γ = 0 and the reaction rate is slow (Da → 0)

so that the fuel concentration is approximately uniform, ĉ ≈ 1, (6.64) reduces to the

condition that the total active pressure is constant:

∂

∂r

(
φA +

3
8 β

2S2
DφAΠ̂

swim + φ2
AΠ̂

P(φA)[1 + 2
π βSD]

)
= 0 , (6.67)

and we recover the behavior of ABPs. Depending on the imposed area fraction from

(6.66) and βSD, the area fraction may remain uniform or the system may phase
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separate into dense and dilute regions. When activity dominates, βSD � 1 the

critical point for phase separation in 2D is approximately (Takatori & Brady, 2015)

φc
A ≈ 0.58, βSc

D ≈ 16.3.

When the particle are not Janus and therefore have no self-propulsion, β = 0, (6.64)

reduces to a balance between the osmotic pressure of the passive Brownian particles

and the diffusiophoretic attraction

∂

∂r

(
φA + φ

2
AΠ̂

P(φA)
)
+ γSDφA

∂ĉ
∂r
= 0 , (6.68)

which, provided φA is everywhere small so that φ2
AΠ̂

P(φA) � φA, gives aBoltzmann-

like distribution for the area fraction

φA(r) ∼ e−γSD ĉ(r) . (6.69)

The concentration field ĉ is the ‘potential energy’ for the diffusiophoretic force, just

like the electrostatic potential for attractive ions. The area fraction is largest where

the concentration is smallest – where the ‘energy’ is lowest.

Returning to the full flux balance (6.64) we see that it anticipates the simulation

behavior in both the dense cluster and the surrounding dilute region. In the dense

region near the center (r < 40a in Figs. 6.7, 6.8, 6.9), the fuel concentration goes

to zero, ĉ ≈ 0, and (6.64) reduces the passive Brownian osmotic pressure balance

(6.65), which predicts a constant φA. At the other extreme in the dilute region, since

SD � 1 and the area fraction is small, (6.64) reduces to

∂(φAĉ)
∂r

= 0 ⇒ φAĉ = const. (6.70)

Even though there is a concentration gradient the diffusiophoretic force scales as

SD and thus is smaller than the O(S2
D) swim pressure and variable swim speed. As

shown in Fig. 6.10 the prediction from the model matches the simulation data very

well. This steady state condition, ∂(nU0)/∂r = 0 is universal and does not depend

on the details of the propulsion mechanism (Takatori & Brady, 2015).
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Figure 6.10: The product φAc/c∞ as a function of r . Data is collected from the same
simulation as Fig. 6.8. It is clear that in the dilute region φAc/c∞ is approximately a
constant. The fluctuation is due to the noise in the c(r)/c∞ measurement in Fig. 6.8.

Up to now we have discussed the behavior of the system without actually knowing

much about ĉ. However, the concentration distribution is not given, but must be

solved for simultaneously with the area fraction field. Further, there is no length

scale in the flux balance (6.64); the particle size a only enters through the parameters

SD and Da. The characteristic length scale is set by the concentration distribution,

which is governed by the Brinkman equation (6.42), and which for the monolayer

can be written as

∇2ĉ = f q
c nA κe f f (φA)ĉδ(z) , (6.71)

where δ(z) means the particles are distributed in amonolayer on the z = 0 plane only.

In (6.71), f q
c (c.f. Appendix G) is the nondimensional reaction rate that depends on

the Damkholer number, and the nondimensional function κe f f (φA) describes the

enhancement to the reactivity due to the increased area fraction and is similar to the
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3D case discussed by Bonnecaze & Brady, (1991a).

Even though the reactive particles all lie in a 2D plane, the reactant concentration

field is fully three dimensional and thus the solution to (6.71) is not a simple

exponential as is the case for the fully 3D problem. The concentration field is still

screened, but the screening length for themonolayer is not the same as the expression

(6.44), LJ
B = a

√
4π/(−3φ f q

c ), in a 3D system. Thus, we have chosen to compare

the predictions of the model for φA as a function of r/a for easier comparison with

the simulation data.

The continuum model is now (almost) complete. The particle area fraction, φA(r),

and reactant concentration field, ĉ(r, z), must be determined simultaneously from

(6.64) and (6.71), along with the conservation of particles (6.66) and a uniform

reactant concentration for large distance ĉ ∼ 1 as |r | → ∞. The last missing

constitutive function is the effective reaction rate κe f f (φA). Unfortunately, because

the monolayer is neither a strictly 2D nor 3D problem, we cannot simply take the

known behavior of κe f f in 3D and use it for the monolayer geometry. Furthermore,

even in the dilute limit, the solution to (6.71) is mathematically involved, and thus we

proceeded as follows: we take the ĉ(r) and n〈F ∇c〉(r) measured in the simulation

(c.f. Figs. 6.8 and 6.7) as input to (6.64) to predict the area fraction profile, ensuring

no flux at r = R and for N = 2048 in (6.66). As shown in Fig. 6.7, the model

matches the simulations very well for all r without any fitting parameters.

As a final remark, it should be appreciated that no ‘surface tension’ term has been

added to the above mechanical model, although a peculiar ‘negative surface tension’

has been reported in literature (Bialké et al., 2015). In ourmodel, the diffusiophoretic

force, n〈F ∇c〉, is directed towards the cluster center at the interface and is enough to

stabilize the the cluster. Also, at the interface we found a slightly biased distribution

of ξ towards the cluster center. The biased ξ may also contribute to n〈F ∇c〉. For

ABPs the autonomous bias of ξ has been discussed at an interface (Redner et al.,
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2013) and in a force field (Hennes et al., 2014; Enculescu & Stark, 2011). Here,

in the presence of the reactant concentration field the details are more complicated

but the mechanism is similar. In a strongly biased environment (due to either an

interface or a force field), some active particles with favorable orientation (e.g.

pointing away from the cluster) can escape from the environment more quickly and

thus the particles left behind exhibit a biased distribution of ξ (e.g. pointing towards

the cluster). In the model in this work we did not include the effects of an anisotropic

swim stress, σswim, which is a good approximation when the orientational bias is

weak (Takatori & Brady, 2014; Yan & Brady, 2015a). However, the normal stress

differences that arise from a bias, if localized in a thin region, may act like surface

tension. We leave this for a future study.

6.5 Conclusions

In this work an efficient computational method is introduced to explore the chem-

ically active system by particle-tracking simulations. It is based on multipole

expansion, with flexibility to deal with both uniformly reactive sink and Janus par-

ticles. In fact, particles that have more complicated reactive patterns can be easily

simulated, by using the appropriate fitting functions f s and gs in matrices C and

MB. It could be easily done with the same BEM method as used in Appendix G.

Our method is also flexible to deal with different geometries, including periodic 3D

& monolayer boxes, and finite 3D & monolayer systems. Further, our multipole

method can also be extended to simulate the systems on a flat solid boundary which

is non-penetrating or absorbs the solutes, as seen in the experiments (Theurkauff

et al., 2012). One only need to add the ‘reflected’ multipoles due to the presence of

the solid boundary, as the familiar method of image charges in electrostatics or the

image method in Stokes flow. The simulations presented in this chapter utilizes only

one CPU & GPU, but it can be easily extended to utilize parallel machines, with the

help of distributed FFT & sparse matrix libraries. After the field c is solved, other
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operations are for each particle only and are independent of each other, so there

is no extra barriers to parallelization due to data racing. To further improve our

method, the Ewald sum done with FFT may be improved with the Fast Multipole

Method, to avoid the large amount of memory required by the FFT on a regular

mesh. The multipole method may also be combined with the immersed boundary

method (Bhalla et al., 2013) to offer the flexibility to accommodate simulations in

domains of complex geometry.

With the simulation method, we clarified the notion of chemical screening. It

is a static self-screening, which is fundamentally different from Debye screening.

The screening means a shortened range of perturbation propagation instead of an

interaction potential. Also, it is the result after the correct full solution of the

Laplace’s equation, and should not be prescribed as seen in some previous work

(Pohl & Stark, 2014). Besides, this screening is fundamentally different from the

Keller-Segel model in which the chemical solutes are assumed to be absorbed by

the medium (fluid). Experimentally (Theurkauff et al., 2012), the chemical solutes

such as H2O2,O2 are not absorbed by the medium. Therefore, in our model the

chemical screening is solely due to the fact that the chemical reaction rate on a

particle’s surface is proportional to the local solute concentration. This screening

has a key role in the determination of the instability threshold S∗D, because without

the screening, the absolutely long-ranged interaction∼ q/r is well-known to result in

the collapse of all particles into a big single cluster. Mathematically, it corresponds

to the finite time blow-up discussed in some variations of the Keller-Segel model

(Horstmann, 2001; Horstmann & Winkler, 2005). S∗D has been briefly discussed in

the work by Saha et al., (2014), and shall be discussed in detail in our future work.

Further, we demonstrated examples of simulation to address the two most important

questions, when the clustering process starts and when the process stops.

For sink particles we showed that the system is stable and remains random at small
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SD but forms a cluster at higher SD. The particles compete for reactant so when they

get close to each other their reactivities q are reduced and thus exert less attraction

to each other. Therefore at the intermediate range of SD where the system loses

stability and collapses to a cluster, the structure remains loosely packed. More

importantly, no coexistence behavior is observed for the sink system. We always

observe a large cluster occupying the entire simulation box. It can be understood by

diffusiophoresis. When a cluster forms, it acts as a large sink and forces a net flux

of solutes into the cluster. This flux induces a gradient ∇c, which is long-ranged

and every particle is pushed toward the cluster by diffusiophoresis ∇c. Then at

steady state, the system shows a balance between translational Brownian motion

and diffusiophoresis attraction.

For Janus particles we observed similar coexistence behavior as observation in ex-

periments (Theurkauff et al., 2012). Inside the cluster, reactant is also depleted:

U0 ∝ c → 0, and therefore the behavior is close to a pure Brownian hard disk system:

ΠP ≈ ΠP
D. Outside the cluster, the particle distribution is not homogeneous: φA(r)

exhibits a long decaying tail, and U0 ∝ c remains true. In the gaseous part, we

showed that collision pressure ΠP is increased by both self-propulsion and diffusio-

phoretic attraction. The inhomogeneity of the dilute part forbids a thermodynamic

equilibrium description of the steady state, because thermodynamic argument is

based upon the equilibrium of two homogeneous phases. In fact, the dense and the

dilute parts seen in our simulations should not be termed as phases. Instead, we pro-

posed a mechanical model which is built upon swim pressure and swim force, which

are counterparts of ideal gas pressure and gravity in classical Navier-Stokes equa-

tions. Our self-consistent mechanical model successfully explained the steady state

coexistence structure without any fitting parameters. The model can be improved to

be a predictive model, with proper extensions to solve (i) the c(r) distribution from

many-body reactions and (ii) the 〈F swim〉 of the interface.

In this chapter, we focused on the most fundamental aspects of chemically active
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suspensions, and a lot of interesting systems can be investigated with proper exten-

sions. For example, under some conditions the solutes may also apply a torqueL on

the particles, and it can be easily implemented by an equation L ∼ (c,∇c), similar

to (6.30). Some interesting results of dumbbell-shaped (sphere-dimer) active parti-

cles have also been discussed (Thakur & Kapral, 2012). In our algorithm, two or

more particles can be either rigidly or flexibly connected to create such swimmers,

with some minor modifications of the Faxen Laws and a proper treatment of the

binding force (Swan et al., 2011).

Hydrodynamics is a more important component, and can be added to this simulation

with themethod of Accelerated Stokesian Dynamics (ASD) (Sierou&Brady, 2001).

With the assumption that solutes diffuse very fast, DR � D, the Stokes flow has no

effect on the c field. So the calculation of c equation is mostly decoupled from the

Stokes flow. In a rough approximation, the boundary condition for the Stokes flow

is still no-slip, and in this case the Stokes flow and solutes transport are completely

decoupled. All we need to do in this case is to replace the Stokes drag 6πηa

in (6.1) by the full resistance matrix RFU . A more satisfactory approximation is

that the boundary condition for the Stokes flow should be determined by the local

concentration field c, in the presence of a surface slip velocity (Anderson, 1989;

Brady, 2011). In this case, the Stokes flow can be solved after the solution of the

solute field c. This is one-way coupling and still solvable by the method of ASD,

with some minor modifications due to slip velocity on the lubrication correction and

the Faxen laws relating Stokes flow multipoles (force F , torque L, and stresslet S)

to the surrounding flow. At this stage, the role of hydrodynamics in the clustering

process and the steady state structure is unclear. In principle it increases the drag

when clustering happens and slows down both translational and rotational motion.

A particle-tracking simulation is necessary to probe the systems and it is one of our

future topics.

AcknowledgmentsWen Yan thanks MuWang, Charles Slominski and James Swan



151

for the documents and discussions on Accelerated Stokesian Dynamics. This work

is supported by NSF CBET-1437570.



152

C h a p t e r 7

CLUSTERING OF CHEMICALLY ACTIVE PARTICLES:
STABILITY ANALYSIS WITH THE MATRIX PERTURBATION

METHOD
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Active matter refers to a system made of many objects, each of which achieves self-

propulsion by converting energy into motion, like swimming bacteria suspensions

(Rusconi et al., 2014). Active diffusiophoretic suspensions are a common artificial

realization, referring to those colloidal particles which are able to convert chemical

energy to self-propulsion, usually through patterned surface reactivity. They are

synthesized to be reactive on one half while non-reactive on the other, and such

asymmetric pattern allows them to achieve self-diffusiophoresis by creating a solute

concentration gradient (Theurkauff et al., 2012; Palacci et al., 2013; Howse et al.,

2007). They are termed Janus particles in literature because of the asymmetric

surface reactivity pattern.

Active matter displays interesting collective behavior, such as a glass transition

(Berthier & Kurchan, 2013), Casimir effect (Ray et al., 2014), and bacteria turbu-

lence (Wensink et al., 2012). One of the most notable features of active matter is

that it may show coexistence of dilute and dense components in a single system.

In the experiment by Theurkauff et al., (2012), Janus particles are confined on a

surface with a large reservoir above evolved to a non-uniform steady state under a

tilted gravity acting as a sedimentation force. At steady state the system separates

into dense and dilute regions. In another experiment by Palacci et al., (2013), the

system shows a similar coexistence behavior.

Many models have been proposed to explain the coexistence. A minimal model is

called theActiveBrownian Particle (ABP)model, inwhich each particle takes a fixed

swim velocity U0 while the direction ξ is subject to run-and-tumble or rotational

Brownian diffusion. The particle-particle interaction is assumed to be hard-sphere

collisions in the simplest case. For this model, the swim pressure defined by Takatori

et al., (2014), gives an Equation of State, and Takatori & Brady, (2015) proposed

a successful thermodynamic-like theory to describe the coexistence as a classical

first order gas-liquid phase transition. Simulations and models are also proposed for

particles with short-ranged pairwise additive interactions, e.g., the Lennard-Jones
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potential (Redner et al., 2013; Buttinoni et al., 2013). Generally, in active matter

showing coexistence under short-ranged interactions, the effect of the interface is

limited to the short range of a pair-wise potential and therefore both dense and

dilute regions are identifiable as a ‘pure substance’ in contact with one another,

which allows a thermodynamic phase-equilibrium approach (Solon et al., 2015a;

Wittkowski et al., 2014; Menzel & Löwen, 2013).

Despite its success, the thermodynamic approach may not be applicable in a realistic

systemwhere the objects interact with each other by a continuous field rather than via

a short-ranged pairwise potential. To appreciate the ‘field-drive’ nature of a realistic

model, one can consider that in the continuum limit where the solute molecules are

much smaller than the moving particle, the active particle’s propulsion velocity is

given by Brady, (2011):

U0 = −
L(∆)kBT

6πηa

∮
c(x, t)ndS, (7.1)

where L(∆) = (3/2)∆2(1+ 2
3∆)/(1+∆)3, with ∆ = δ/a measuring the flow of fluid

with viscosity η in a layer of thickness δ adjacent to the colloidal particle where a

particle-solute interactive force is operative. Here, we have taken the simplest form

of interactive force between the solute and the colloidal particle, namely a hard-

sphere repulsive force at a distance rc = a + δ (and δ need not be small compared

to the particle size a, although typically it is so). More general interactive forces

will only have a quantitative effect, as detailed in Brady, (2011). Generalizations to

non-spherical particles are also possible as shown by Shklyaev et al., (2014).

Thus, to determine the particle’s velocity we need to solve for the solute concentra-

tion field c(x, t) field that enters Equation (7.1). Typical phoretic or self-propulsive

velocities are of order 1µm/s for a micron-sized particle, while nano-sized solute

diffusivities are of order 103µm2/s so that the Péclet number Pe = U0a/DR � 1

and advection can be neglected. Similarly, the time scale to establish a steady solute

concentration profile a2/DR is much faster than the time scale for the motion of
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the colloidal particles, either due to diffusiophoresis or to their intrinsic Brownian

motion, so that the solute concentration distribution satisfies Laplace’s equation:

∇2c = 0. (7.2)

In this realistic model, the particles’ swim velocity U0 is proportional to c, while

c is governed by Laplace’s equation and each particle acts as a sink on the solute

field. It is similar to the famous chemotaxis model (Keller & Segel, 1971) but more

complicated because the dynamics in the swim orientation space must also be re-

solved. At steady state particles show coexistence between a dilute and a dense part.

However, in this case, due to the long-range nature of Laplace’s equation, neither

part can be identified as a homogeneous ‘pure substance’ and the thermodynamic

approach is called into question.

In this work, linear stability analysis is applied to a dilute homogeneous state, to

find when and how particles cluster. To match existing experiments (Theurkauff

et al., 2012; Palacci et al., 2013) we shall consider mainly particles moving in a

monolayer geometry. Our model describes both the particles and solute molecules

as a continuum, and we shall treat the particles as in the dilute limit φ→ 0.

The major difficulty of the stability analysis comes from the swimming orientation

space. A common approach utilized in the literature is to attain a linear dynamical

system by expanding the orientation space in a hierarchy of moments (Saintillan

& Shelley, 2015), truncated at some finite level. Then the eigensystem can be

numerically solved (Ezhilan et al., 2013; Saintillan & Shelley, 2008). But with this

approach it is difficult to probe the entire parameter space. The analytical approach

common in literature is to close the hierarchy expansion with a hypothetical closure

relation, usually at the dipole or quadrupole level due to algebraic complexity (Saha

et al., 2014). Such a moment hierarchy method usually involves tedious algebra and

assumes the moments relax to isotropy fast enough. However, with this assumption
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information about the orientation during the development of instability is lost, which

is actually an interesting behavior of chemical swimmers, as shown in §7.2 and §7.3.

In this work we follow a similar orientation moments approach to formulate the

growth of a perturbation b in an infinite dimensional linear dynamical system ḃ =

M∞
insb. However, we take the matrix perturbation method to find the eigensystem

ofM∞
ins, without any assumption of a closure. This approach is a systematic and

straightforward technique, as detailed in Appendix K. Analytical results are also

verified by simulation in which the field c(x, t) is solved in detail and each particle

motion is tracked over time.

After the detailed analysis, we propose a simple coarse-grained model to reproduce

the detailed solution in the limit of fast rotational relaxation Drot → ∞. In thismodel,

we consider the large-scale dynamics via a continuum mechanics description of the

active particles. Yan & Brady, (2015a,b) have discussed the continuum mechanics

of active Brownian particles by defining the swim pressure (Takatori et al., 2014)

as a surface force and the swim force as a body force, for particles with constant

swim velocity U0. In this work, by analyzing the detailed solution, we extend the

continuum mechanics to system where the intrinsic swim velocity U0 is dependent

on c(x, t), and therefore varies from place to place.

We formulate the model and describe the analytical and simulation methods in §7.1.

In §(7.1) we introduce the linear stability analysis for monolayer geometry, and we

briefly describe the simulation method to verify our theory. The solutions are given

in §7.2 for homogeneously reactive particles, and in §7.3 for Janus particles with

the matrix perturbation analysis. The detailed solution gives a general result about

the ‘active flux’ in active matter and is discussed in §7.4. Based on the detailed

solution and active flux, coarse-grained models are also discussed in §7.2 and §7.4.

Calculation details can be found in Appendix K and L.
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7.1 Problem formulation & methodology

The solute field c(x, t)

The reaction of solutes on particles’ surfaces is assumed to be first order R →

θP, where R is the reactant, P is the product, and θ is the stoichiometry of the

chemical reaction. In general, one needs to solve for both the reactant and product

concentrations, but as shown by Córdova-Figueroa & Brady, (2008), one only needs

to scale the governing equations by the factor (1 − θDR/DP), where DR and DP are

the diffusivities of the reactants and products, respectively. After the scaling, one

only needs to solve for the reactant concentration field. Therefore, we consider the

reactant field only and denote its concentration field by c(x, t) and its diffusivity by

DR.

The reactivity on the particle surface serves as a boundary condition for c(x, t):

jR = −DR∇c, (7.3)

n · jR = −κ0h(n)c, (7.4)

where h(n) is a function to describe the reactivity pattern on the particle surface,

and κ0 is the reaction rate constant. TheDamköhler number Da = κ0a/DR compares

the reaction rate to diffusion of reactant. Da → ∞ is diffusion limited and Da → 0

is reaction limited. For uniformly reactive particles h(n) = 1, while a particle with

h(n) = Heaviside(n · ξ) describes the pattern of a Janus particle with orientation

vector ξ: h = 1 on the reactive hemisphere and h = 0 on the passive hemisphere.

Particles always decrease the reactant concentration and increase the product con-

centration near their surfaces, and the prefactor θDR/DP describes the relative effect

of reactant and product. When θDR/DP > 1, the products push the particles more

effectively than the reactants do and the particles can be considered as sources releas-

ing the products, and therefore they repel each other, according to (7.1). Therefore,

when (1 − θDR/DP) < 0 particles repel each other and do not show clustering

behavior. They are discussed in Chapter 8. Sinks with (1 − θDR/DP) > 0 show a
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clustering process when attraction wins. In the following sections we focus on sinks

and seek to understand the initial stage of their clustering process through a stability

analysis.

Each active particle disturbs the solute field c(x), which can be represented by a

multipole expansion (q,S,Q, . . . ). Here q denotes the monopole (scalar), S rep-

resents the dipole (vector), and Q represents the quadrupole (2nd order tensor).

Physically, the monopole q represents the net consumption of reactants on a parti-

cle, and higher order moments describing the non-uniform consumption of solute

reactants on the particle surface.

Due to the first order surface reaction, all the moments are linearly dependent on c,

such as q = −κc, etc. Here κ is the reactivity of the entire particle, which depends

on Da. The detailed derivations can be found in Chapter 6. Thus to leading order

we can write the equation for c as:

DR∇
2c = S − κnc, (7.5)

where n is the number density of particles, and S is the source of solutes to com-

pensate for the consumption and keep the system evolving.

In this many-body problem, each particle’s disturbance shall be properly summed to

achieve a solution c(x, t). The sum depends on the particles’ configuration, and is

not straightforward because c is governed by Laplace’s equation and the particles’

multipoles induce long-ranged disturbances such as 1/r, 1/r2, . . . . In this work, we

shall considermainly amonolayer geometry and also a full 3D one. In themonolayer

case, we consider a statistically uniform infinite monolayer of particles moving in

an infinite 3D bath of reactive solutes, and we specify a boundary condition of a

constant reactant concentration c(x, t) → c∞ as z → ±∞, where z is the distance

to the monolayer. Particles are free to move on the z = 0 plane, and 2D in-plane

Brownian reorientation of ξ is be considered. c∞ is imposed as the ‘propulsion fuel
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concentration’. Physically, reactant diffuses from infinity to the particle region to

compensate for the consumption by the active particles.

There is a subtlety, which comes from the ‘infinite monolayer’ and Laplace’s equa-

tion. The particles consume reactants (as sinks), and there a statistically uniform

monolayer applies a uniform flux of reactants 〈jc〉 ∝ ∇c , 0 on large scale toward

the z = 0 plane. When the monolayer is finite, Laplace’s equation ∇2c = 0 is

well-posed. However when the monolayer is infinitely large, it would demand a

constant flux boundary condition to the entire half space, and it is well-known that

in this case the Laplace equation allows only the trivial solution c = 0 everywhere,

where particles consume all solutes and all dynamics stop.

To mathematically allow for a non-trivial solution c(x, t) and to physically keep

the system evolving, the large scale boundary condition must be fixed to 〈jc〉 = 0,

which requires a homogeneous generation of reactant at a rate S in the monolayer

that balances the consumption so that the average solute consumption rate on the

monolayer is zero. The result is that the large scale averaged solute concentration

〈c〉(x, y, z) is a spatial constant not only along x, y direction in the z = 0 plane, but

also a constant at any z. Similarly, in the 3D case a homogeneous generation of solute

is also required. This makes the system ‘chemically neutral’ – the positive uniform

chemical source balances the consumption of reactants on reactive sink particles

– and ensures that the long-ranged interactions in Laplace systems are convergent

(Bonnecaze & Brady, 1990). By analogy, the uniform source of reactant S is the

counterpart of the constant negative ‘electrostatically neutralizing background’ in

one component plasma.

Motion of active Janus particles

After the solute field c(x, t) is appropriately solved, we need to determine each

particle’s propulsion velocity according to (7.1). The propulsion velocity of particle



160

α is given by

U0,α = − (1 − θDR/DP) L(∆)〈c〉a3Bα
DT

a
, (7.6)

with Bα =

∫
Sα
ncdS. (7.7)

Here DT = kBT/(6πηa) is the particle Brownian translational diffusivity. As

discussed in Chapter 6, Bα can also be linearly related to the environment of the

particle α:

Bα =MB (Daα, ξα) ·
*..
,

c(rα)

∇c(rα)

+//
-
. (7.8)

For uniformly reactive particles the linear relation is simple:

Bα =
1

DR

(
1

1 − Da

)
Sα =

1
Da + 2

4πa3∇c(rα), (7.9)

where the concentration gradient is evaluated at the center of particle α. This is

classical diffusiophoresis.

For Janus particles an accurate representation would require all gradients of the

c field and that is both physically unnecessary and computationally intractable.

Therefore the matrix MB is numerically solved by BEM and truncated at dipole

level, which is the minimum set to capture the self-propulsion and many-body

attraction features. MB is linearly dependent on the orientation ξ = (ξx, ξy, ξz) and

the reaction pattern functions gz
c, g

z
cz, g

x
cx . Details about the g functions and detailed

derivations can be found in Chapter 6. Combining (7.1) and (7.8), the velocity of a

single particle is given by:

U0 = Pξc − (MI + Aξξ) · ∇c, (7.10)

where P, M, A are proportionality constants describing the self-propulsion, migra-

tion down ∇c, and asymmetric migration. In dimensionless form:

U0

DT/a
= SD P̂ξ

c
〈c〉
− SD

(
M̂I + Âξξ

)
· ∇c
〈c〉/a

, (7.11)
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Figure 7.1: Motion functions of a Janus particle P̂, M̂, Â and a uniformly reactive
particle M̂u.

where 〈c〉 is the average solute concentration (the ‘fuel’) in the system, and SD =

(1 − θDR/DP)L(∆)a3〈c〉, is the non-dimensionalized ‘fuel concentration’. P̂ = gz
c ,

M̂ = gx
cx , and Â = gz

cz − gx
cx are shown in Fig. 7.1. Also for a uniformly reactive

particle, P̂ = Â = 0 and M̂u = 4π/(Da + 2), analytically calculated with the first

order reaction constants.. When Da→ 0, the reaction is so slow that both Janus and

uniform particles approach the passive (no reaction) limit, where M̂ → M̂u → 2π.

Active particles are also subject to translational and rotational Brownian diffusivity

characterized by DT and Drot , respectively. For a single free particle in 3D space

Drot = (3/4)DT/a2. In this work we consider the general case where Drot and

DT are free to change, though they should be on the same order due to their same

physical origin. For a single particle with constant propulsion velocity U0, and for

times longer than the reorientation time τR = 1/Drot , the motion is diffusive; the

long time diffusivity Dl is enhanced by self-propulsion. For free motion in 3D

space, Dl = DT +U2
0 /6Drot , while for 2D in plane rotation Dl = DT +U2

0 /2Drot .
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Instability in a monolayer geometry: governing equations

In this section we establish the governing equations for a chemically active system in

a monolayer geometry, and we assume that the diffusive reorientation process is in

the xy-plane. The orientation vector ξ = (cos θ, sin θ) is set by the orientation angle

θ. We also consider the dilute limit where a one-particle Smoluchowski equation for

phase space density P (x, y, θ) describes the particles’ motion well. The solute field

c(x) is governed by Laplace’s equation as discussed before, while the c(x) field

extends to the entire space c(x, y, z). The concentration is altered by the reactive

particles, each serving as a sink, and the P (x, y, θ) field feels a ‘feed-back’ from the

c(x) equation. With this model we try to describe the experimental geometry where

a layer of particles are immersed in a large reservoir of solutes, and to analytically

capture the linear stability.

As discussed by Morris & Brady, (1995) and in Chapter 6, a key feature in such

systems is Brinkman screening. That is, the long-ranged perturbation is screened to

short range Brinkman length LB, because the particles can compensate for the per-

turbation caused by one particle. It is a many-body effect. In 3D space the screening

takes an explicit exponential form c′ ∼ e−r/LB . For the monolayer geometry the

physics is the same. In fact, the chemical screening information is contained in the

‘feedback factor’ Fc and F3D
c , which describes the response of solute concentration

to perturbations in particle number density. Fc and F3D
c are expressed in the waves-

pace depending on q and are derived later. The screening length LB also sets an

intrinsic length scale to the Laplace’s equation. Outside this length, the particles

cannot feel the perturbations, as shown in Chapter 6. So when individual particles

move closer and induce a perturbation on the n field, those particles outside the

screening length LB do not feel the attraction coming from the cluster, while trans-

lational Brownian motion now has a chance to bring the system back to equilibrium.

This competition gives a stability threshold, which will be thoroughly discussed in

this work. Without screening, particles always feel attraction no matter how far they
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are from the cluster and the system is unconditionally unstable.

We define the probability density in phase space as P (x, y, θ), and the particle vol-

ume fraction (area fraction in monolayer) in the xy plane φA(x, y) = πa2nA(x, y) =

πa2 ∫ 2π
0 P (x, y, θ)dθ. nA(x, y) is the number density (per unit area) in xy plane.

Utilizing (7.10), the governing equations are:

−DR(∇2
xy +

∂2

∂z2 )c =
(
S − κc(z = 0)

∫ 2π

0
P (x, y, θ)dθ

)
δ(z), (7.12)

∂P

∂t
+ ∇ · (U0P) − DT∇

2
xyP − Drot

∂2

∂θ2P = 0. (7.13)

Here DR is the solute diffusivity,∇2
xy = ∂

2/∂x2+∂2/∂y2. S is the strength of the dis-

tributed source, which should satisfy
∫

Sdxdy =
∫ (

κc(z = 0)
∫ 2π

0 P (x, y, θ)dθ
)

dxdy

to balance the consumption of the solute by particles. κ represents a single parti-

cle’s consumption rate, and depends on Da. A delta function δ(z) appears because

the sources S and particles are restricted on the monolayer z = 0 only. U0 is

the propulsion velocity in (7.10), and its components in phase space (x, y, θ) are

(U0 cos θ,U0 sin θ, 0).

Generally, each particle’s effect on the c(x) field is not only a reactive monopole κc,

but also includes a dipole, quadrupole, etc., as discussed in §7.1. However here the

higher moments are all ignored in the analytical analysis as their effects are weak.

This is validated by the simulation results which include the dipoles.

Also, in the n equation (7.13), a single particle’s propulsion U0 is used to represent

the collective motion of a continuum field P (x, y, θ), where we neglected any

inter-particle collisions at finite φ and any possible many-body effects on particles’

mobility. Hydrodynamic interactions are also completely ignored. The above two-

equation system is the minimum form for the active particles’ stability problem.

Nevertheless, it preserves all the interesting aspects of the problem and also allows

an elegant analytical solution with the matrix perturbation method.
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Equations (7.12) and (7.13) permit a homogeneous steady state: P = P0 and c = c0

everywhere. Linear stability analysis will be considered based on this homogeneous

steady state: P = P0+P
′(x, y, θ, t) and c(x, y, z) = c0+c′(x, y, z, t), whereP′ � P0

and c′ � c0. Without losing generality, a plane wave perturbation in the x direction

q = (q, 0, 0) in the monolayer will be considered, which is then decomposed into

Fourier modes in θ space:

P′ =
∑
q,m

bq,m(t) exp(−imθ) exp(−iqx), (7.14)

where m takes integer values: m = 0, 1, 2, · · · . By definition of the Fourier series,

bq,0(t) = 1
2πnA,q(t).

At t = 0 the initial perturbation is bq,m(0), and the development of these bq,m

modes to t → ∞ will determine the stability of the system. Physically, an initial

perturbation in n field will cause a change in c field, then through U0 ∼ (c,∇c) a

‘feedback’ from c field controls the future development of the P′ perturbation.

The ‘feedback’ of the solute field can be determined from Equation (7.12) by Fourier

transform in the z direction combined with a Fourier expansion in the x direction.

The process is detailed in Appendix I. The result is:

c′(x, y, z = 0) =
∑

q

(
−

c0κπ

P0κπ + DRq

)
bq,0(t)e−iqx =

∑
q

Fcbq,0(t)e−iqx, (7.15)

where we define Fc = −c0κπ/
(
P0κπ + DRq

)
< 0 as the ‘c-feedback factor’, which

determines the perturbation in c induced by a perturbation in P.

Equation (7.13) is then linearized for P′ and c′:

∂P′

∂t
+P0

(
P sin θ

∂c′

∂y
−

(
M + A sin2 θ

) ∂2c′

∂y2 − A cos θ sin θ
∂2c′

∂x∂y

)
+P0

(
P cos θ

∂c′

∂x
−

(
M + A cos2 θ

) ∂2c′

∂x2 − A cos θ sin θ
∂2c′

∂x∂y

)
+
∂P′

∂x
(Pc0 cos θ) +

∂P′

∂y
(Pc0 sin θ)

−DT∇
2
rP
′ − Drot

∂2

∂θ2P
′ = 0.

(7.16)
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Then we convert cos θ and sin θ to exponential form (equivalent to taking a Fourier

series again), and substitute (7.14) and (7.15). The development of all b modes is

described by a linear dynamical system:

d
dt
b(t) =M∞

insb(t), (7.17)

where b(t) = (. . . , bq,−1, bq,0, bq,1 . . . , ) is an infinite dimensional vector consisting

of all the Fourier modes in (7.14), whose initial condition will be denoted as

b0 = b(t = 0). M∞
ins is also of infinite dimension and the entries are known

from (7.16). By the general theory briefly described in Appendix J, the eigenvalues

of matrixM∞
ins control the growth rate and each corresponding eigenvector governs

a eigenmode of the instability. When all eigenvalues are negative, the homogeneous

P0, c0 state is stable.

M∞
ins can be decomposed into three parts: M∞

ins = M
∞
P +M

∞
M A +M

∞
D , where

they represent contributions from propulsion, migration, and diffusion respectively.

M∞
M A is the simplest one with only three non-zero entries: −1

2P0Fc(A + 2M)q2 at

(0, 0) and −1
4P0Fc Aq2 at (0,±2). M∞

D occupies the major diagonal entries, with

the (m,m) entry being −m2Drot − DT q2. M∞
P puts 1

2ic0Pq at each sub-diagonal

and super-diagonal entry.

When P = M = A = 0 from (7.10), the particles achieve no motion from the c

field and are merely passive Brownian particles in this case. M∞
ins =M

∞
D , which

is diagonal, and all entries are negative. The solution for each mode is decoupled:

bq,m(t) ∝ exp(σq,mt) and σq,m = −m2Drot − DT q2. The passive Brownian system

is thus unconditionally stable, as expected.

When P = 0 but M, A , 0, M∞
ins = M

∞
M A +M

∞
D . In this case the only off-

diagonal entry appears at (0,±2) and depends on A. It forms the basis for the matrix

perturbation analysis, and is solved in §7.2.

When P , 0, the system becomes complicated because the subdiagonal entries
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imply coupling between those θ-modes and make the eigensystem not analytically

solvable.

In this work we shall analytically calculate the eigensystem of M∞
ins by matrix

perturbation technique, based on the results for P = 0 case in §7.2. The eigenvalues

and eigenvectors for the general case λm(P) and vm(P) are then represented by

λm(q; P) = λ (P0)
m + Pλ (P1)

m + P2λ (P2)
m + · · · , (7.18)

vm(q; P) = v(P0)
m + Pv(P1)

m + P2v(P2)
m + · · · , (7.19)

where for clarityvm will be represented as sumof basis vectorsei = (. . . , 0, 0, 1, 0 . . . ),

with 1 at the ith position. A similar expansion on powers of q in the long-wave

length limit q → 0 is also calculated for verification and greater insight.

Simulation: accelerated Laplacian dynamics

To verify the analytical results, a Brownian dynamics simulation is utilized to track

the system’s evolution. We consider N particles in an L-by-L square periodic box

and L is guaranteed to be much larger than the wavelength corresponding to the

maximum growth rate.

The problem is now the following: for a system of active particles at locations

X (t), we need to solve the propulsion velocityU0 according to orientation ξ, which

by equation (7.1) requires a solution of the reactant concentration field governed

by the steady Laplace’s equation at all field points x outside the particles, subject

to a first order surface reaction boundary condition for either (or both) uniformly

reactive particles and Janus particles. The active particles are then advanced to

a new location from the overdamped Langevin equation incorporating Brownian

translation and rotation:

∆X =U∆t + ∆XB + ∆XHS, (7.20)

∆θ =∆θB, (7.21)
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where the Brownnian displacement has zero mean, 〈∆XB〉 = 0 and covariance

〈∆XB∆XB〉 = 2DT∆t. ∆XHS is a hard-sphere displacement to prevent particles

from overlapping, determined by a potential-free algorithm (Foss & Brady, 2000;

Heyes & Melrose, 1993). ∆θB is the rotational Brownian motion in xy plane,

satisfying 〈∆θB〉 = 0, and 〈∆θB∆θB〉 = 2Drot∆t. Once the active particles have

been advanced to their new locations and orientations, a new concentration field

c(x) must be found and the process is repeated until a steady state is reached. ∆θ is

a diffusive reorient event at each timestep and is calculated with the unbiased move

method (Beard & Schlick, 2003). Equation (7.21) employs a simple Euler scheme,

for clarity. Higher order schemes such as the Adams-Bashforth multi-step scheme

are also easy to include in the simulation. In our tests, using an Euler scheme has

no impact on the system dynamics.

The difficulty lies in the accurate & efficient solution of c(x) at each timestep.

The method originates from Bonnecaze & Brady, (1990) and is detailed as the

Accelerated Laplace’s Dynamics (ALD) in Chapter 6. Each particle’s velocity U

is calculated at each timestep with ALD, as driven by the solute concentration field

c(r).

Instability dispersion relation σ(q) is then extracted from the wave-space number

density profile n̂A(k), by an ensemble average of simulations. In each ensemble,

a large number (usually 1200) of systems are simulated starting from the same

homogeneous but random positions of particles. However, the orientation of each

particle is differently randomized from system to system. In this way, the ensemble

average of initial perturbation is only on the isotropic mode m = 0, and no average

orientation distribution is perturbed. Mathematically it means 〈n̂A(k, t = 0)〉 ,

0 and 〈b0
m,0〉 = 0. Also, the random number seeds to calculate the Brownian

translation and rotation are different from system to system. In thisway, the ensemble

explores different trajectories starting from the same initial configuration. The large

number of systems allows us to average out the tremendous noise resulting from
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Brownian motion. Also importantly, the simulations track the system for a short

time (about 10a2/DT ) to make sure we are capturing the linear stability regime. In

fact, when the simulation is stopped the particles barely move so perturbation P′ is

guaranteed to be small.

The number density in (x, y) space nA(x, y) is transformed to wave space n̂A(k, t),

where k = (kx, ky) is the discretized wave space vector. FromHansen&McDonald,

(2013), n̂A(k, t) =
∑
β rβ (t) · k, for each particle β. Then 〈n̂A(k, t)〉 ∝ exp(σ(k)t)

is fitted from simulation data for each discrete k to getσ(k). We observed thatσ(k)

is isotropic in all our simulations, i.e., σ is a function of |k| only, independent of

the direction of k. Therefore an isotropic dispersion relation σ(q = |k|) is averaged

for each ensemble, and is compared with analytical solution.

With this method, we are able to extract the developing perturbation n′A(x, y, t),

which corresponds to the development of m = 0 mode bq,0(t) in the analytic result.

7.2 The base case: P = 0

In this caseM∞
ins =M

∞
M A +M

∞
D allows an analytical solution of the eigensystem,

and the parameters (M, A, DR, κ, DT, Drot, c0,P0) are arbitrary and none of them is

required to be small. The eigensystem solution for m , 0 is:

λm = −m2Drot − q2DT, (7.22)

vm = em, (7.23)

where em = (..., 0, 0, 1, 0, ...) is the basis vector in the linear space and 1 appears on

the mth position. For m = 0:

λ0 = −q2DT − q2
(
M +

1
2

A
)
P0Fc, (7.24)

v0 = e0 +
πAc0κP0q2

2
(
πc0κP0q2(A + 2M) + 8Drot (DRq + πκP0)

) (e2 + e−2) . (7.25)

It is clear from the eigenvector v0 that the only coupling should appear at m = 0 and

m = ±2 because v0 and v±2 are linearly dependent, and it is induced by asymmetric
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down-gradient diffusiophoresis represented by A.

The general solution for b(t) is straightforward for m , ±2:

bq,m(t) = exp (λmt) b0
q,m. (7.26)

The coupling between m = 0 and m = ±2 appears at bq,±2:

bq,±2(t) = exp (λ±2t) b0
q,±2 +

exp(λ0t) − exp(λ±2t)

2 + 4M
A −

16Drot

Aq2P0Fc

b0
q,0

= exp (λ±2t) b0
q,±2 + v0 · e±2

(
exp(λ0t) − exp(λ±2t)

)
b0

q,0.

(7.27)

For uniformly reactive particles, A = 0, v0 = e0 and the θ modes are completely

decoupled. Note that λm is symmetric for positive and negative m. One can

appreciate the symmetry in ±m by realizing that the exp(±imθ) modes can be

rearranged into cos mθ and sin mθ, which are equivalent with only a phase shift π/2.

Based on the above exact solution, we can discuss the instability and orientational

order.

The instability threshold and growth rate σ(q)

When λm < 0 for any m, q, the system is stable. By (7.22) and (7.24), λm,0 is always

negative, and λ0 < 0 is guaranteed when DT > (M + 1
2 A)P0Fc for any q. Note that

by definition (7.15) Fc also depends on q. The dispersion relation of growth rate

σ(q) is given by λ0:

σ = λ0 =
−2DRDT q3 − 2 (DT − c0 (M + A/2)) κP0πq2

κP0π + DRq
, (7.28)

where one should remember that 2πP0 = nA0 = φ0/πa2. The instability threshold

is very simple. Realizing that by definition all parameters in (7.28) are positive,

σ < 0 is guaranteed by ensuring:(
M + 1

2 A
)

c0

DT
< 1. (7.29)

We can define dimensionless MC =
(
M + 1

2 A
)

c0/DT as the strength of phoretic

migration relative to Brownian diffusion, and the instability threshold is M∗C = 1.
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When phoretic migration wins, MC > 1 and the system is unstable. In a particular

system, M and A are determined by Da, and therefore MC is controlled by solute

concentration c0. From this perspective, MC is the scaled ‘fuel’ concentration.

When the system is unstable, the growth rate consists of a positive q2 term and a

negative q3 term. Thus there is a maximum growth rate σmax with corresponding

qmax:

qmax =
πκP0

4DR

(
MC +

√
MC (MC + 8) − 4

)
, (7.30)

σmax =
π2DT κ

2P0
2

8D2
R

(
−
√

MC (MC + 8) + 3MC
) (

MC +
√

MC (MC + 8) − 4
)2

MC +
√

MC (MC + 8)
.

(7.31)

Both qmax and σmax are monotonically increasing with MC . Around the stability

boundary M∗C = 1, we can calculate the leading order dependence on the ‘instability

driving force’ MC − 1:

qmax ≈
2πκP0

3DR
(MC − 1) +O(MC − 1)2, (7.32)

σmax ≈
8π2DT κ

2P0
2

27D2
R

(MC − 1)3 +O(MC − 1)4. (7.33)

As the system approaches the stability boundary (MC → 1), both qmax and σmax

are asymptotically zero.

Uniformly reactive particles (P = 0, A = 0) are used in simulation to check the

validity of the growth rate (7.28). Also the L-by-L square periodic simulation box is

guaranteed to be large enough: L � 2π/qmax . The comparison is shown in Fig. 7.2.

Orientation-order induced by the particle asymmetry A

Equation (7.27) shows that when the initial perturbation is isotropic, i.e., the per-

turbation b0
q,m = 0 for all m , 0, the development bq,±2(t > 0) can be non-zero.

Beyond that simple coupling, (7.27) also shows that nematic order is induced.

Remember that λ±2 < 0 is always true and λ0 depends on MC . Therefore, when

MC > 1, λ0 can be positive for some q, and then bq,±2 will be exponentially
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Figure 7.2: The instability dispersion relation σ(q) for uniformly reactive particles
P = A = 0 at Da = 2. The theory is given by (7.28), and the simulation is extracted
from an ensemble of 1200 systems with N = 1668 particles in a periodic box size
L = 512a. φ = 0.02 and Mc0/DT = 2.

increasing until the perturbation develops beyond the linear stability regime. When

MC < 1, λ0 is always negative, but we can show that |λ0 | < |λ±2 | is guaranteed.

Therefore when the system approaches the homogeneous steady state, bq,±2 first

grows to non-zero and eventually decays to zero by rotational Brownian motion.

By the definition (7.14) of the Fourier expansion, bq,±2 represents quadrupolar order

sin 2θ, cos 2θ in the diffusiophoresis front of the particles. It is also clear from (7.27)

that this θ-order is proportional to A, the asymmetric diffusiophoretic migration.

This originates from Aξξ∇c in the equation (7.10) which is nematic ordered. When

a gradient ∇c is imposed, some particles with favorable orientation (ξ = ±∇c/|∇c |)

will move faster than other particles, so in the moving front the nematic order

emerges. If A = 0, particles are symmetric and there is no such effect.

This θ-order is one of the distinguishing features of asymmetric self-propulsion

particles, and we shall see it again when we solve the general case P , 0 in §7.3.
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Coarse-grained model & chemical screening

In this part we briefly discuss a coarse-grained model and discuss the connection

between the instability and chemical screening.

We assume that the rotational diffusivity Drot is large enough so that the particles

are isotropic in θ-space. In this regime we directly work with the number density

field nA(x, y) =
∫ 2π

0 P (x, y, θ)dθ:

∂nA

∂t
− DT∇

2
xynA = −∇xy · (〈U0〉ξnA), (7.34)

without invoking the full Smoluchowski equation (7.13) of P (x, y, θ). Here 〈U0〉ξ

is the coarse-grained velocity of particles under the chemical field c. The c(x, y, z)

field equation is the same as (7.12). Here, because we have assumed P = 0,

according to (7.10) we must have 〈U0〉ξ ∝ ∇c. The linear stability analysis of the

density field nA(x, y) follows the similar route as for P (x, y, θ):

σ(q) = −DT q2 + q2Fc
(
−〈U0〉ξ/∇c

)
. (7.35)

〈U0〉ξ can be calculated by an isotropic average of (7.10), setting P = 0:

〈U0〉ξ =

∫
− (MI + Aξξ) · ∇cdξ∫

1dξ
= −(M + 1

2 A)∇c, (7.36)

which shows a simple down-gradient diffusiophoresis. Substituting this into (7.35),

the coarse-grained approach gives exactly the same solution as the exact approach, (7.28),

with P0 replaced by nA0 = 2πP0.

With this coarsed-grained model, we can easily extend our discussion from a mono-

layer to a full 3D system, without solving the detailed rotational diffusion in 3D

orientation space. In this case n(x, y, z) and c(x, y, z) both extend to the entire 3D

space and are governed by:

∂n
∂t
− DT∇

2n = − ∇ · (〈U0〉ξn), (7.37)

−DR∇
2c =S − κcn. (7.38)
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In this case, the linear perturbation analysis proceeds with n = n0 + n′, and can be

solved with the same method. n′ induces a change c′ to the homogeneous c0 field,

and c′ is solvable as the counterpart of (7.15) in the 3D case:

c′(x, y, z) =
∑

q

(
−

κc0

κn0 + DRq2

)
n′q(t)e−iqx =

∑
q

F3D
c n′q(t)e−iqx, (7.39)

The instability growth rate is the same as (7.35), with only Fc and 〈U 〉ξ replaced by

their 3D counterparts:

σ3D =
−DT q4 + κn0

(
c0

(
−〈U0〉

3D
ξ
/∇c

)
− DT

)
q2

DRq2 + κn0
. (7.40)

For 3D rotational diffusivity, 〈U0〉
3D
ξ
= −(M + 1

3 A)∇c, averaged on the spher-

ical space of ξ. In this case, the instability threshold for the 3D system is

M3D∗
C = c0(M + 1

3 A)/DT = 1, the same as the monolayer case. As discussed

in § 7.1, the existence of a threshold is due to chemical Brinkman screening.

Here, the chemical screening information is contained in the feedback factor Fc and

F3D
c , expressed in the wavespace depending on q. F3D

c = −κc0/(κn0 + DRq2) =

−c0/n0(1 + L2
Bq2), which is the wavespace form of the exponentially screened

attraction exp (−r/LB). In wavespace, the competition between screened diffusio-

phoretic attraction and the translation Brownian −DT q2 gives an stability threshold

MC = c0
(
−〈U0〉ξ/∇c

)
/DT .

For Janus particleswith P , 0, whichwill be discussed in §7.3, chemically screening

is still applicable and to the leading order the screening length for P = 0 particles

is still applicable, as shown in Chapter 6. As a result, we shall see that the solution

structure of instability growth rate σ(q) and the instability threshold M∗C are very

similar to the P = 0 case.

7.3 The general case with propulsion: P , 0

When P , 0,M∞
P introduces nonzero entries ic0Pq/2 on sub- and super-diagonals

of the instability matrixM∞
ins, so the eigenvalues are modified and the eigenvectors
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are no longer perpendicular to each other. Physically, M∞
P induces an O(c0P)

coupling between those θ-modes, and may change the dispersion relation σ(q).

Also by (7.10), one can appreciate that the coupling just scales as the swim velocity

U0 = c0P in the initial homogeneous state (P0, c0).

Due to the coupling themmodes in θ space no longer behave as bq,m(t) ∝ exp(σq,mt).

Instead, they form ‘eigenmodes’, where several bq,m modesmay develop together and

this ‘eigenmode’ is given by the eigenvectors ofM∞
ins. The coupling is determined

by the entry 1
2ic0Pq. When we perturb the system with some monochromatic

perturbation where b0
q,m = 0 except for some m = ms, all m modes will be excited

by this ms initial perturbation in the developing fluctuation P′. Qualitatively in

M∞
ins =

1
2ic0Pq, the imaginary unit i means a phase shift of π/2 in wave form and

c0Pq governs the magnitude of the excited modes.

In this caseM∞
ins becomes an infinite dimensional matrix and the analytical solution

for eigenvalues and eigenvectors is not possible. Since we are interested in the role of

propulsion on the stability threshold M∗C and the dispersion relation, we can expand

the eigensystem ofM∞
ins as the perturbation series of this propulsion parameter P.

Mathematically, this can be done by matrix perturbation theory, with P a perturbing

variable. Note that choosing P as the perturbation parameter is equivalent to

choosing c0P or c0Pq since they always appear together inM∞
P . Nevertheless by

choosing P we can utilize the exact solution for the P = 0 case in (7.24). The

eigenvalue λ0(q; P) and eigenvector v0(q; P) can be expanded as series of P. The

dispersion relation σ(q; P) is still governed by the 0 mode eigenvalue λ0(q; P),

because those m , 0 modes are all governed by −m2Drotq2 and are almost always

negative. By calculating v0(q; P) we can work out the coupling of θ modes due to

propulsion.

The detailed procedures are described in Appendix K, and the full solutions are

complicated and included in Appendix L for reference. In this section we focus
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on the physical effects and compare the analytical solution σ(q; P) with simulation

results.

Eigensystem expansion for small P

At small P, the O(P) and O(P3) corrections to instability λ0 are both zero:

λ0(q; P) ≈ λ0 −O *
,

c2
0 P2q3DR

Drot κP0
+
-
−O *

,

c3
0 AP2q4

D2
rot

+
-
+O(P4), (7.41)

where the two terms represent effect of self-propulsion P and effect of the coupling

between propulsion and asymmetric migration A. Note that the effect of coupling

occurs at q4, which is one order higher than the propulsion’s q3 dependence. The

full solution can be found in Appendix L. Also we shall see that this coincides with

the long wavelength limit q → 0 result in §7.3 and implies important physics for

active matter, which shall be addressed later in §7.4 when we build a coarse-grained

model.

The expansion of eigenvector v0(P) at small P, starting from (7.22) can also be

calculated. The full analytic expression can also be found in Appendix L. Here, we

discuss the leading order perturbation v0(q; P) = v(P0)
0 + Pv(P1)

0 + P2v(P2)
0 + . . . :

v(P1)
0 =O

(
ic0DRq2

Drot κP0

)
(e1 + e−1) +O *

,

iAc2
0q3

D2
rot

+
-

(e3 + e−3), (7.42a)

v(P2)
0 = −O

(
q3c0

2DR

D2
rot κP0

)
(e2 + e−2) −O *

,

q4 Ac3
0

D3
rot

+
-

(e4 + e−4). (7.42b)

According to the general theory detailed in Appendix J, an arbitrary initial pertur-

bation b(t = 0) develops as follows:

b(t) = C0 exp(λ0(P)t)v0 +C−1 exp(λ−1(P)t)v−1 +C1 exp(λ1(P)t)v1 + ..., (7.43)

where Cis are constants determined by initial condition t = 0 in the above equation.

Similarly, the other eigenvalues and eigenvectors are all perturbed: λm(q; P) ∼

λm+O(P2)+ ... ∼ −DT q2−Drotm2+O(P2) < 0, and vm(q; P) ∼ vm+O(iP)+ ... =
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Figure 7.3: The instability dispersion relation σ(q) for Da = 5 Janus particles. The
theory is (7.28) with the first correction of O(P2), and the simulations are averaged
over an ensemble of 1200 systems. N = 1668 particles are simulated with periodic
box size L = 512a. φ = 0.02. MC = (M + A/2)c0/DT = 12 � M∗C = 1 to ensure
that instability is significant for quantitative measurement, but not too large to go
beyond the linear instability regime.

em + O(iP) + .... Thus in the vicinity of P = 0 these m , 0 modes are controlled

by rotational diffusivity m2Drot , and thus for all m , 0 modes Cm exp(λm(P)t)vm

quickly disappears and only theC0 exp(λ0(P)t)v0 governs the growth of b(t). So the

dispersion relation σ(q; P) can be described by λ0(q; P). σ(q; P) with the leading

orderO(P2) correction agrees well with the simulation measured dispersion relation

σ(q; P), as shown in Fig. 7.3.

The growth of the leading mode C0 exp(λ0(P)t)v0 also shows the coupling between

the m-modes. We shall briefly discuss the role of propulsion P in the coupling by

setting A = 0, as the A , 0 case has been discussed in §7.2. In this case, to leading
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order:

v0(q; P) = e0 +O
(
ic0Pq2DR

Drot κP0

)
(e1 + e−1) −O *

,

c2
0 P2q3DR

D2
rot κP0

+
-

(e2 + e−2), (7.44)

where by definition e0 represents an isotropic distribution in θ-space, e±1 means

polar order and e±2 means quadrupolar order. Such coupling means an isotropic

perturbation will develop together at growth rate σ(q; P) with θ-order perturbation.

Such θ-order coupling comes solely from the propulsion P. It can be understood

by considering the simplest model with only two points r1 and r2, where particles

isotropically swim at velocity Pc1 , Pc2. When n1 = n2 = n, the flux of particles

from r1 to r2 will be j12 ∝ nPc1 and j21 ∝ nPc2. At next instant of time, particles

with orientation r1 → r2 move to r2 and vice versa. Because the flux j12 , j21

since Pc1 , Pc2, the θ distribution at both points is no longer isotropic, except when

rotational diffusivity is infinitely fast (Drot → ∞) to retain the isotropic distribution.

Faster swimming and slower rotational diffusivity means more θ order emerges in

the form of coupling between the orders, and this explains the scaling in (7.44).

Eigenvalue solution for arbitrary P: the long wavelength limit q → 0

When P is not close to zero, the above perturbation solution for small P is no longer

valid. Nevertheless, we can proceed analytically for arbitrary P but small q, by

realizing thatM∞
P is also linearly dependent on wavenumber q, and the instability,

as a collective behavior, usually happens at the long wavelength limit where the

length scale of collective motion is far larger than single particle radius. In fact,

since translational Brownian motion is a stabilizing effect as −DT q2 < 0, for large q

the system is aways stable. Thus the small q limit gives enough relevant information

about the system stability in σ(q).

Starting from (7.19), it is straightforward to solve the equation such that λ (q0)
0 = 0,

and the perturbation series for arbitrary P, M, A is:

λ0(q) = λ (q0)
0 + qλ (q1)

0 + q2λ
(q2)
0 + · · · , (7.45)



178

where λ (q0)
0 = 0 and

λ
(q1)
0 = 0, (7.46a)

λ
(q2)
0 = −DT + c0

(
M +

A
2

)
, (7.46b)

λ
(q3)
0 = −

c0DR(A + 2M)
2πκP0

−
c0

2DRP2

2πDrot κP0
, (7.46c)

λ
(q4)
0 = −

Ac3
0 P2

32D2
rot
+

c0D2
R(A + 2M)

2κ2P0
2π2

+
c2

0 D2
RP2

2Drot κ2P0
2π2

. (7.46d)

At leading order, σ(q) ∼ O
(
−DT + c0

(
M + A

2

))
q2, while the first correction given

by propulsion P is negative and at a higher order of q: O(−P2q3). This is exactly

the same result as given by the P perturbation we showed in (7.41): self-propulsion

P stablizes the system, but it appears at a higher order of wave number O(q3).

More importantly, the above expansion in q allows us to locate the instability

threshold in the parameter space. In fact, the instability threshold depends only on

the sign of the second order correction λ (q2)
0 . When λ (q2)

0 > 0, no matter how λ
(q3)
0

and higher order terms change, the growth rate λ0(q) must be positive around the

q → 0 limit. The boundary is thus located at M∗C = c0(M + A/2)/DT = 1, the

same value we have seen in the P = 0, non-swimming case (7.29), as shown in

Fig. 7.4. As we increase MC and P(Da), the particles swim faster but the boundary

is unchanged. Drot is irrelevant in the diagram because rotational Brownian motion

appears together with self-propulsion, which is on a higher order of wave number

and has no impact on the stability threshold. Physically, it means that the isotropic

diffusiophoretic attraction and Brownian motion governs the threshold. The number

density P0 also does not matter. If we extend our analysis to finite number density,

many-body effects on the reactivity κ, the swim velocity (7.10), and particle-particle

collisions must be properly included, which is beyond the scope of the current work.

Nevertheless, those effects can usually bewritten as a series as a0+a1φ+a2φ
2+... and

thus can be included in principle with the current matrix-perturbation framework,

by writingM∞
ins (φ) as series of φ.
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Figure 7.4: The parameter space (MC,Da) and the instability threshold M∗C = 1.
The threshold is the same for arbitrary Drot and arbitrary number density as long
as it is dilute P0 → 0. The colormap is for a single particle’s non-dimensionalized
swim velocity c0P/(DT/a). Faster chemical reaction (larger Da) and more ‘fuel’
(higher c0) gives higher swim velocity.

Effect of propulsion P: fast and slow reactions

In §7.3, the stability dispersion relation σ(q) is given as series of both P and q.

The effect of self-propulsion P, as well as rotation Drot , appears at λ
(q3)
0 , while the

instability threshold is determined by λ (q2)
0 . At q3, propulsion P does not change

the boundary MC∗ = 1, but it does strongly affect the shape of the dispersion relation

σ(q; P). As shown in Fig. 7.1, P, M, A are all controlled by chemical reaction rate

Da.

When Da → 0, the reaction is so slow that particles cannot generate significant

propulsion, and so P → 0. In this case, the third order correction is asymptotically

zero as P2, also physically the particles behave very similarly to those passive

particles (P = 0): σmax and qmax are monotonically increasing as MC increases.

In the other limit where Da → ∞, self-propulsion approaches its diffusion-limited
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Figure 7.5: The instability dispersion relation σ(q) for Da = 0.02 and Da = 5
Janus particles. The symbols are numerical results forM∞

ins truncated at 15 × 15.
The solid lines σ(q) and the σmax are calculated with the O(P3) full solution in
Appendix (L). a2Drot = DT and φ0 = 0.02 is fixed.

value P ∼ Da/(1 + Da) ∼ O(1). In this case the negative O(q3) term shows

significant effect: σ(q) is stabilized by this negative O(q3) term, meanwhile the

σmax and qmax are no longer monotonically increasing. They show a peak at some

MC and then are quickly suppressed towards zero by self-propulsion. In fact we can

show that they both approach zero when MC → ∞, in the limit Da→ ∞.

A comparison of σ(q; P) for Da = 0.02 and Da = 5 is shown in Fig. 7.5. The σ(q)

and σmax are calculated based on the full solution (L.3), up to P2, and thus are not

limited to the small q limit. The behavior shows clearly what we have estimated.

Finite self-propulsion P does not change the boundary M∗C = 1 as σmax > 0 is

guaranteed for MC > 1 no matter what P. Meanwhile σmax can be suppressed by
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self-propulsion. It can be understood that Janus particles with P > 0 can escape the

attraction by self-propulsion, if the orientation is different from the ∇c direction.

We also compared the result given by the above perturbation method and the nu-

merical solution, in which the eigenvalues of M∞
ins are calculated numerically by

an eigensystem solver for a truncated finite dimensionalM∞
ins. We used a 15 × 15

truncation, which is tested and guaranteed to be large enough. The comparison

result is also shown in Fig. 7.5.

7.4 Active flux and continuum mechanics

In last section we solved the detailed model for M∞
ins. In sum, we calculated the

σ(q) up to O(P3) and O(q4), and the two different expansion series agree with each

other. We showed the coupling between different θ-modes by calculating v0(P)

up to O(P2). The instability threshold is found at M∗C = 1. Also we discussed

the stabilization effect of propulsion P on σmax . In this section, we seek a simpler

solution based on the continuum mechanics of active matter (Takatori et al., 2014;

Yan & Brady, 2015a) without invoking the fullM∞
ins including all θ-modes.

We shall start from the coarse-grained P = 0 case described in §7.2, and proceed in

the Drot → ∞ limit. We assume that the rotational diffusion is fast enough so that

the θ distribution is always homogeneous.

Coarse-grained model for P , 0

In this regime, there are two timescales: rotational diffusion scale 1/Drot and the

instability growth timescale 1/σmax , andwehave showed that the latter is on the same

scale as translational diffusivity a2/DT . It is well known that for self-propulsion

particles with velocity U0 and rotational diffusivity Drot , on timescale τ � 1/Drot ,

the motion becomes diffusive and the effective translational diffusivity is enhanced

by U2
0 /2Drot for 2D rotation and U2/6Drot for 3D rotation. Therefore in the current

limit, 1/Drot � a2/DT , we can ignore the detailed θ-modes and simply replace the
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translational diffusivity DT in § 7.2 by the effective diffusivity DT +U2
0 /2Drot .

By (7.10),U0 ∼ Pc. Therefore the governing equations for a monolayer system with

2D rotation is similar to (7.34):

−DR(∇2
xy +

∂2

∂z2 )c =(S − κnAc(z = 0))δ(z), (7.47)

∂nA

∂t
− (DT +

P2c2

2Drot
)∇2

xynA = − ∇xy ·
(
nA〈U 〉ξ

)
. (7.48)

To finish the coarse-graining process we also need a governing relation for 〈U 〉ξ.

We have showed in § 7.2 that when P = 0 the averaged 〈U 〉ξ = (M + A/2)∇c. To

include the effect of P , 0, physically we are searching for the flux of Janus particles

in a homogeneous n(x, y) = nA0 density field, in the presence of ∇c. Here we first

heuristically derive the expression of j based on the exact solution in last section,

then we discuss the physical implications.

Assume that j = n〈U 〉ξ = n (FP + M + A/2) ∇c, where FP is a function of P to be

determined. Combined with (7.47), we can solve for the dispersion relation σ(q):

σ(q) = − *
,
DT +

c2
0 P2

2Drot
+
-

q2 +

(
FP + M +

A
2

) (
c0κnA0q2

nA0κ + 2qDR

)
. (7.49)

Remember that by definition n(x, y) =
∫ 2π

0 P (x, y, θ)dθ, so nA0 = 2πP0. Here we

have an O(q2) dependence in the diffusion term. However we know from the last

section that the leading order contribution of P to σ(q) is O(q3). Therefore the only

allowed solution is that FP cancels exactly with the c2
0 P2/2Drot term.

Thus, we reach the full expression of j = nA〈U 〉ξ, for a monolayer system:

j = nA〈U 〉ξ = n
(
−

P2c
2Drot

+ M +
A
2

)
∇c. (7.50)

The coarse-grained σ(q) is therefore easy to calculate:

σcg (q) =
(

A
2
+ M

) c0κn2
A0q2

2qDR + κnA0
−

c2
0 P2q3DR

Drot
(
2qDR + κnA0

) − q2DT, (7.51)
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where the three terms are the diffusiophoresis down ∇c, the negative self-propulsion

term, and the translational diffusion term.

We can compare this coarse-grained simple theory with the analytic solution in

Appendix L up to P2 order. Due to the ‘fast rotation’ assumption, σcg (q) is expected

to show some difference from the exact solution when P and σ are both significant,

and Drot is small. We specifically choose Da = 5 to achieve fast propulsion and

MC = 10 so that the growth rate is around its maximum as shown in Fig. 7.5. We

find that σcg works very well in tracking the maximum growth rate as shown in

Fig. 7.6, even for Drot as small as 0.02.

Further, we show that the full 3D simulation can also be solved easily by this coarse-

grained procedure. We have the governing equation for a full 3D case, with the

effective translational diffusivity DT + P2c2/6Drot . Also the coarse-grained flux is

slightly modified:

−DR∇
2c =S − κnc, (7.52)

∂n
∂t
− (DT +

P2c2

6Drot
)∇2n = − ∇ ·

(
n〈U 〉ξ,3D

)
, (7.53)

n〈U 〉ξ,3D =n
(
−

P2c
6Drot

+ M +
A
3

)
∇c. (7.54)

Following the route similar to §7.2, we get σ3D
cg (q):

σ3D
cg (q) =

(
A
3
+ M

)
c0κnA0q2

q2DR + κnA0
−

c2
0 P2q4DR

6Drot
(
q2DR + κnA0

) − q2DT, (7.55)

where the three terms are respectively diffusiophoresis, self-propulsion, and transla-

tional diffusivity. Simple calculation reveals an instability threshold at M3D∗
C =

c0(M + A/3)/DT = 1. Here the leading order contribution of propulsion is

O(−P2q4/6Drot ), still on a higher order of diffusiophoresis, so is expected to have

no effect on the instability threshold.

σcg and σ3D
cg are rather general results. When P = 0 and A = 0, where particles are

uniformly reactive, the system degenerates to the ‘growing and decaying particles’
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Figure 7.6: Comparison between the coarse-grainedmonolayer solutionσcg (q) with
the exact solution. The symbols are calculated from the coarse-grained model and
the solid lines are the analytical solutions up to O(P2) solved in §7.3, corresponding
to different value of Drot . Da = 5, MC = 10, φA = πa2n = 0.02 are fixed.

discussed by Karpov & Oxtoby, (1997). When A = 0, it agrees with the result

given by Saha et al., (2014), derived by the traditional moment hierarchy method

of Smoluchowski equations. However we should point out that here σ3D
cg (q) ∼

O(−P2q4/6Drot ) while in Saha et al., (2014) the authors ignored the Brinkman

screening length ∼ q2 too early so their result scales as O(−P2q2/6Drot ).

Active flux jact

In this subsection we briefly extend our discussion from chemically active particles

to general active matter, with the important knowledge j = n〈U 〉ξ in the presence

of ∇c derived from a stability analysis. In general, a ∇c means simply a gradient

of swim velocity ∇U0, by (7.10). We shall discuss the simplest Active Brownian
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Particle (ABP) system, governed by the followingLangevin equations, in the absence

of translational Brownian motion and any external forces or torques:

Ẋ = U0ξ +
1
ζ
F P, (7.56)

where U0 is the intrinsic self-propulsion velocity, ζ is an isotropic drag, and F P

is the particle-particle collision force. F P can be ignored in the dilute limit. For

simplicity DT is ignored here and in the following flux analysis. In the dilute limit

discussed in this work, F P → 0 and can be ignored in discussing the flux. ξ is

subject to rotational Brownian motion.

The flux due to self-propulsion under ‘fuel gradient’ c,∇c is j = −nP2c∇c/dDrot ,

where d = 2 for 2D system and d = 6 for a 3D system. By (7.10) U = ξPc, so

we can relate j directly to the self-propulsion velocity of general active matter. It is

important that this flux is for a homogeneous density field n and comes solely from

∇U0, the ‘activity’ gradient. Therefore we shall denote it as the ‘active flux’:

jact = −nU0∇U0/dDrot, (7.57)

which allows us to discuss the steady state distribution φ(x) of active matter, under

a propulsion velocity gradient ∇U0. This jact corresponds to the ‘drift velocity’ in

Cates & Tailleur, (2015).

Consider an initially homogeneous system with swimming U0 and gradient of ac-

tivity ∇U0, there will generally be a volume fraction gradient ∇φ at steady state in

response to ∇U0. The flux must be zero at steady state: jact + j∇φ = 0, where jact

is calculated as (7.57) and j∇φ = −U2
0 /dDrot∇φ is the diffusion flux down the φ

gradient, where−U2
0 /dDrot is the effective translational diffusivity due to swimming

at timescale τ � 1/Drot . jact + j∇φ = 0 requires that ∇(φU0) = 0 and therefore

φ ∝ 1/U0. This is confirmed by 2D simulations of ABPs, as shown in Fig. 7.7.

Importantly, jact and j∇φ are both established in the dilute limit φ → 0 and fast

rotational diffusion limit Drot → ∞. At finite φ, F P must be included and the fluxes
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Figure 7.7: Comparison between the φ ∝ 1/U0 theory and the simulation measure-
ment. ∇U0 is applied in the y direction. N = 1000 ABPs are simulated in a periodic
box Lx = Ly = 250a. φ0

A = 0.02. Local φA is extracted by building Voronoi cells
of each particle and is averaged for 500 snapshots of the steady state. DT = 0.

must be modified accordingly. If Drot is not fast enough, the distribution is no longer

isotropic everywhere and the detailed calculation in §7.3 must be considered.

A continuum mechanics view on the coarse-grained model

In the last subsections we deduced the form of ‘active flux’ in the coarse-grained

model (7.48) and (7.54), to reproduce the full analytical solution. In fact, if we

consider the active particles as a continuum, Yan & Brady, (2015a) have shown that

the flux of ABPs with constant swimming velocity U0 can be written as:

jcm =
1
ζ
∇ · σact +

1
ζ

n〈F swim〉, (7.58)
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where σact is the active pressure defined as σact = nζDact (Takatori et al., 2014).

In the dilute limit Dact = DT +
1
2U2

0 /Drot for 2D rotation. 〈F swim〉 is the average

swim force, with the definition F swim = ζU0 per particle. ζ is the drag coefficient,

and is assumed to be 1
6πηa in this work. For dilute chemically active particles, to

leading order U0 = Pc so σact = nζDact = nζ (DT +
1
2 P2c2/Drot ). The swim force

is simply an orientation average of (7.10): 〈F swim〉 = −ζ
(
M + 1

2 A
)
∇c. Since we

considered the fast rotation case Drot → ∞, 〈F swim〉 = 0 due to isotropic orientation

distribution.

Also, the perturbed c(x) field gives non-constant U0, and there is an extra piece of

flux due to a varying U0 (Takatori & Brady, 2015):

jcm =
1
ζ

(
∇ · σact − σswim · ∇ ln U0 + n〈F swim〉

)
(7.59)

In the dilute limit, σswim = σact = nζ (DT +
1
2U2

0 /Drot ). Combining all the

components, the particle phase equation is:

∂n
∂t
+ ∇ · jcm = 0. (7.60)

It reproduces exactly the same result as (7.48). For the full 3D system, we can

simply replace 1
2U2

0 /Drot by 1
6U2

0 /Drot and replace M + 1
2 A by M + 1

3 A, and again

we reproduce exactly the same result as (7.54).

The continuum mechanics view seems trivial in this dilute system because the

diffusion-convection equations (7.48) and (7.54) work very well. However, the

continuummechanics view is amore fundamental perspective to describe themotion

and deformation of active matter, and its application is far beyond the dilute limit. It

works well in predicting the equilibrium dense-dilute coexistence system, for both

chemically active particles and ABPs with hard-sphere collision only (Takatori &

Brady, 2015; Yan & Brady, 2015a).
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7.5 Discussion & Conclusions

When active matters separate from a homogeneous state is one of the most fun-

damental questions in this area. In this work we found an analytical solution for

chemically active particles by linear stability analysis. We calculated the stability

dispersion relationσ(q; P) for both non-propulsion P = 0 and self-propulsion P , 0

cases, and the results match the simulation very well. In the P = 0 case, instability

is governed by MC = c0(M + A/2)/DT and M3D
C = c0(M + A/3)/DT , which is

the ‘scaled fuel concentration’ depending on diffusiophoresis parameters M, A and

translational diffusivity DT . We showed that for Janus particles the asymmetric

diffusiophoresis down ∇c induces quadrupolar orders in the developing or decaying

instability modes. In the P > 0 case, we show that self-propulsion P suppresses

the growth rate σ(q), but this ‘stabilizing’ effect is on a higher order (∼ O(q3) in

monolayer and ∼ O(q4) in 3D) of the governing order of MC (∼ O(q2)), so the

stability threshold M∗C = 1 is not changed. We also demonstrated that for Janus par-

ticles with weak reaction Da → 0, the swimming velocity is almost zero and σmax

monotonically increases with MC as in the P = 0 case, while for diffusion-limited

reactions Da → ∞, the instability is strongly suppressed by propulsion so when

MC → ∞, σmax → 0.

We explained the instability by chemical screening, where the long-ranged 1/r per-

turbation governed by Laplace’s equation ∇2c = 0 is screened to a short-ranged

potential on length scale LB and therefore an instability threshold comparing chem-

ical attraction and diffusion M∗C = 1 exists, for both P = 0 and P , 0 cases.

We deduced the active flux jact = −nU0∇U0/dDrot , where d is a constant depending

on dimension, by comparing the analytic results with the coarse-graining procedures

in the fast rotation regime Drot → ∞, and we showed that with jact the coarse-

grained results σcg (q) works very well, compared to the exact solution σ(q; P).

We also showed that it is actually governed by the continuum mechanics of active
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matter, and built upon surface forces (the swim pressure) and body forces (the swim

force). The continuum mechanics perspective is also valid at finite number density,

where the particle-particle collisions are not negligible. We leave this case for a

future study.

Last, we also demonstrated matrix perturbation as a systematic method to calculate

the eigensystem of amatrix, whichmay be very difficult to analytically calculate with

old methods. This method applies to arbitrarily large matrices, and can overcome

the complex coupling between different orientational θ-modes. Also the results are

calculated in block-matrix fashion and therefore do not require a finite truncation at

some particular dimension N × N of an infinite linear instability dynamic system;

any N will give the same results. This method can be used to calculate a lot more

cases and to extract more information of the chemically active system. For example,

beyond the dilute limit of particles, the many body effect would make the reactivity

κ in (7.13) a function κ(n), whose effect on the eigensystem can be expanded as

O(n = 0) +O(n) +O(n2) + ..., and all orders can be calculated systematically with

the matrix perturbation method.
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C h a p t e r 8

ANTI-SWARMING: STRUCTURE AND DYNAMICS OF
REPULSIVE CHEMICALLY ACTIVE PARTICLES



191

8.1 Introduction

Chemically active particles suspended in fluids may achieve self-propulsion by

surface catalytic reactions of chemical solutes (Ebbens & Howse, 2010). One

commonmechanism is self-diffusiophoresis, whereby the motion of a particle is due

to the asymmetric solute concentration field c(x, t) it creates. Usually reactants are

consumed on the surface of a chemically active particle, and when a second particle

appears in the vicinity, it is attracted by a diffusiophoretic velocityU ∼ −∇c. Active

particles with attractive interactions are observed to exhibit dynamic clustering and

gas-liquid phase transition (Theurkauff et al., 2012; Palacci et al., 2013; Buttinoni

et al., 2013). Thermodynamic-like theories (Takatori & Brady, 2015) utilizing the

swim pressure (Takatori et al., 2014) as an equation of state, and some other theories

based on similar thermodynamic-like models (Stenhammar et al., 2013; Cates &

Tailleur, 2015; Solon et al., 2015b) work well in describing the phase separation

phenomena.

However, few studies have investigated active particles with repulsive interactions.

In fact, if the surface chemical reactions release solutes instead of consuming them,

the solute concentration c(x, t) is increased in the vicinity of each particle, and the

diffusiophoretic velocity is now repulsive between particles. Repulsive particles, if

confined in a constant volume container, may overcome the randomizing thermal

Brownian motion and form a crystal lattice (Soh et al., 2008). Derjaguin & Golo-

vanov, (1984) observed the formation of periodic crystal-like structures in living

cells and suggested that it is due to the repulsive diffusiophoretic interaction.

A classical example of repulsive particles that show a liquid-crystal transition is the

so-called One Component Plasma (OCP). In an OCP, moving positive charges are

immersed in a uniform, rigid, and neutralizing background sea of negative electrons,

and the system behavior is governed by the coupling parameter Γe, which measures

the electrostatic energy relative to thermal energy (Brush et al., 1966). It is well
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known that the liquid-like structure at small Γe transforms to BCC (body-centered

cubic) for Γe & 175 (Gillan, 1974; Rogers, 1974; Stroud & Ashcroft, 1976; Itoh &

Ichimaru, 1977; Bernu, 1979; Baus & Hansen, 1980; Tan et al., 1995; DeWitt et al.,

2001; Chugunov et al., 2003; Daligault, 2006).

In this chapter we explore the collective motion of repulsive active particles by

simulations, with a full solution of the diffusiophoretic interactions as described in

Chapter 6. We show that repulsive chemically active particles exhibits a ‘liquid-

crystal’ phase transition, similar to an OCP. Quantitatively, we define a coupling

parameter Γc for the chemically active system by mapping it to Γe in an OCP by a

simple analogy.

8.2 Problem formulation

First order surface catalytic reaction R → θP is assumed to occur homogeneously

on the particle surface. Making use of the stoichiometry/diffusivity factor (1 −

θDR/DP), the reaction can be taken to be irreversible: jR · n = −κc(n) on the

boundary, where c is the reactant concentration, κ is the reaction rate constant andn

is the surface normal vector pointing outward. TheDamkhöler number Da = aκ/DR

governs the reaction rate, where DR is the reactant diffusivity: Da→ ∞ is diffusion

limited due to fast reaction, and Da→ 0 is the slow reaction limit.

When the chemical solutes are much smaller in size compared to the particles, each

chemically active particle is driven by the osmotic pressure of the reactant solute

concentration kBTc(x, t) integrated over the particle’s surface (Córdova-Figueroa

& Brady, 2008; Brady, 2011):

U0 = −(1 − θDR/DP)
L(∆)
6πηa

∮
n kBTc(x, t)dS, (8.1)

where a is the particle radius, η is the solution viscosity, DR, DP are diffusivity of

reactants and products, and the nondimensional hydrodynamic mobility function

L(∆) = (3/2)∆2(1 + 2
3∆)/(1 + ∆)3, with ∆ = δ/a, measures the flow of fluid with
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viscosity η in a layer of thickness δ adjacent to the colloidal particle where the

particle-solute interactive force is operative. Here we have taken the simplest form

of interactive force between the solute and the colloidal particle, namely a hard-

sphere repulsive force at a distance rc = a+ δ (and δ need not be small compared to

the particle size a, although typically it is so). More general interactive forces will

only have a quantitative effect and the details are discussed in Brady, (2011). The

prefactor (1 − θDR/DP) scales the solution of reactant concentration c(x, t) to the

total solute concentration of both reactant and products. When θDR/DP > 1, the

products push the particles more effectively than the reactants do and the particles

can be considered sources releasing the products and therefore they repel each other.

The governing equation for c(x, t) is the classic convection-reaction-diffusion equa-

tion. The convection is controlled by particle Peclet number Pe = U0a/DR. In

diffusiophoresis, the particle velocity U0 is usually so small that Pe � 1 (Córdova-

Figueroa&Brady, 2008), and therefore the convection of c can be ignored. Diffusion

of c is fast enough for c to achieve a steady state, instantaneously following the par-

ticle motion. In this case, the governing equation for the reactant can be reduced

to Laplace’s equation, ∇2c = 0, similar to an electrostatic field. To leading order,

the disturbance to the solute concentration field induced by one reactive particle is

c′ ∼ q/r , where q is the particle reactivity; that is, how many molecules are con-

sumed on the particle surface in unit time, which is an analogy to the electrostatic

charge Ze.

The active particles are assumed to be confined in a constant volume three di-

mensional space, and the reactant is assumed to be released by distributed sources

throughout the space to maintain the system as ‘chemically neutral’. Therefore the

volume average reactant concentration is maintained at constant 〈c〉. Without the

chemically neutralizing condition, the particles eventually consume all the reactant

and no steady state can be achieved. Experimentally, Theurkauff et al., (2012) has

demonstrated a 2D implementation of a chemically neutral suspension, in which
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the solutes diffuse to the colloid monolayer reaction zone from a large reservoir and

the system is kept evolving for many hours to reach a steady state. The chemically

neutral assumption is also common for 3D reactive suspension system (Bonnecaze

& Brady, 1991b).

An analogy to an OCP can be made. The repulsive active particles resemble the

positive ions in an OCP, and the chemically neutralizing sources are similar to

the electrostatically neutralzing background. By analogy, active particles should

be liquid-like when the repulsion is weak, and be solid-like when the repulsion is

strong enough to align the particles into a periodic lattice.

A key difference, however, is that moving ions in an OCP are point charges and the

charges are fixed at Ze, while the reactivity q of a chemically active particle changes

in response to the local concentration of reactant, due to the chemical reaction on

the particle’ surface. Also, the reactivity shows some distribution on the particles’

spherical surface: the particle is more than merely a ‘point charge’. The changing

reactivity results in changing interactions, which is fundamentally different from

the additive pairwise potential assumption employed in previous simulation work

on attractive active particles (Redner et al., 2013; Palacci et al., 2013). The changing

reactivity also poses a great difficulty in thermodynamic-like treatments. Even if

we define a mean-field effective pairwise potential, it is state-dependent, and it is

known that some thermodynamic inconsistencies and peculiarities may appear for

density-dependent pairwise interactions (Louis, 2002; Tejero & Baus, 2003).

In this work, we simulate the system with the Accelerated Laplacian Dynamics

method described in Chapter 6. All computational details can be found in Chapter 6,

andweonly briefly describe the approachwithoutmathematical details. The reaction

on each particle is represented by a multipole expansion: the monopole q and the

dipole S, similar to electrostatics. Here q is the net consumption rate of reactant

and S is the asymmetry of the consumption on the particle surface. Second,
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the perturbation c′ of each particle to the average 〈c〉 field is calculated from q,

which propagates as 1/r , and S, which propagates as 1/r2. Third, With the first

order reaction condition, the monopole and dipole strength of particle α follow a

Faxen-type law qα ∝ 〈c〉 + c′(xα),Sα ∝ ∇〈c〉 + c′(xα), where c′(xα),∇c′(xα) are

perturbations due to all particles β , α and are evaluated at the center of α. In this

way, the equations for the c field are closed and can be solved iteratively at each

timestep for different configurations of particles.

The diffusiophoretic velocity is then determined with the solution of solute con-

centration field c at each timestep. The velocity U0 in (8.1) can be calculated

analytically utilizing the first order reaction boundary condition jR · n = −κc(n):

U0,α

D/a
= − (1 − θDR/DP) L(∆)〈c〉a3 4πa∇c(xα)

(Da + 2) 〈c〉
. (8.2)

The system dynamics is integrated by overdamped Brownian dynamics: ∆X =

U0∆t + ∆X B + ∆X HS, where ∆X B is the translational Brownian motion satisfy-

ing 〈∆X B〉 = 0, 〈∆X B∆X B〉 = 2D∆t, and ∆X HS is the non-overlapping collision

displacement calculated with the potential free algorithm (Foss & Brady, 2000).

We nondimensionalize the system with particle radius a, particle diffusion time

τD = a2/D = a2/(kBT/6πηa) and the imposed reactant concentration 〈c〉. Then

U0 ∝ −SD∇ (c/〈c〉), where SD = (1 − θDR/DP) L(∆)〈c〉a3 is the nondimensional

concentration, i.e., the ‘fuel concentration’. Increasing |SD | is equivalent to increas-

ing hydrogen peroxide concentration in the experiments (Theurkauff et al., 2012;

Howse et al., 2007). In this chapter, we report only the result of the repulsive case

SD < 0. The attractive case is discussed in Chapter 6 and Chapter 7.

8.3 The weak repulsion regime: fluctuating interaction

In simulations covering a wide range of volume fraction and Damköhler 0.001 <

φ < 0.15, 0.1 < Da < 10, we found that under weak repulsion (small |SD |), the

system remains randomly distributed due to the Brownian motion. Voronoi cells
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Figure 8.1: The distribution of particle reaction q and local volume fraction φp, and
their correlation. A: The snapshot of the equilibrium structure of system in a periodic
box of 42a×42a×42a, with φ = 4.88%, Da = 2.0, N = 864, SD = −15.0, Γc ≈ 20.
Each particle is colored by q/q0. B: The same system, but equilibrated with stronger
repulsion SD = −60.0, Γc ≈ 80.

are built with all particles to analyze the structure, and each particle’s local volume

fraction is defined as φp =
4
3πa3/Vp, where Vp is the volume of the Voronoi cell

occupied by that particle.

The first order reaction R→ θP gives that reactivity q0 = −4πDRa〈c〉Da/(1+Da) in

an infinitely dilute system φ→ 0. At a finite φ, it is well known that the many-body

effect of reactive particles increases the average reactivity 〈q〉/q0 > 1 (Bonnecaze

& Brady, 1991b), as shown in Fig. 8.1. We also found that although in principle

〈q〉/q0 should also be related to whether the specific structure is random or some

crystal, the dependence is very weak (Lebenhaft & Kapral, 1979), especially in the
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regime where φ is far from the closed-packing limit φRCP ≈ 0.64. We have found

that with B = 1.62, in the following equation, it is a universal fit to 〈q〉/q0 for all

structures and all (Da, φ) ranges we investigated in this chapter.

〈q〉
q0
=

1
1 − Bφ1/3Da/(1 + Da)

. (8.3)

Fig. 8.1 shows the statistics between q and φp for an example system of Da = 2, φ =

0.0488, at different repulsion strengths. The correlation shows that q ∝ φ−1/2
p ,

because when particles get closer they compete for reactant so their reactivity

decreases with local volume density. Also under strong repulsion the particle

reactivity q is narrowly distributed around 〈q〉, because the strong repulsion keeps

the structure almost always homogeneously distributed.

Therefore, in the strong repulsion case, we can ignore the fluctuations of q and define

a parameter based on 〈q〉 to quantify the leading order effect of repulsion vsBrownian

motion, again by an analogy to an OCP. In an OCP, the controlling parameter is Γe =

(Ze)2/(4πε0LkBT ), where Ze is the ion charge, ε0 is the electrostatic conductivity,

and L is a length scale determined by ion number density n: L = (3/4πn)1/3. Γe

actually measures the electrostatic potential energy of two ions separated at L to the

thermal kinetic energy kBT . Similarly, we can define Γc as the ratio of repulsion

to Brownian motion, where subscript c denotes chemically active particles. To

leading order, the repulsive diffusiophoretic velocity U0 ∼ −SD∇c, as shown in

equation (8.2), and in the overdamped limit F ∝ 6πηaU0 ∼ ∇1/r . Then, we can

define an ‘average potential’ Φ according to F = −∇Φ. We use the same length

scale L = (3/4πn)1/3 as in an OCP, but replace the number density n with particle

volume fraction φ, since particles are not point charges. We also scale 〈q〉 with

q0, as the scaling in (8.3). Therefore, we haveΦL = SDkBT〈q〉/ [(Da + 2)〈c〉DRL].

Then Γc can be defined in the nondimensionalized form:

Γc = −4π
Da

1 + Da
SD

Da + 2
φ1/3 〈q〉

q0
. (8.4)
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Figure 8.2: The measurement of structural change of BCC and FCC crystals, both
for Da = 2.0. φ = 3.88% for BCC system and φ = 4.88% for FCC system.

The thermal energy kBT does not appear in Γc because both the repulsive force (in

equation (8.1)) and thermal motion scale linearly as kBT .

8.4 The strong repulsion regime: ‘liquid-crystal’ phase transition

The analogy to an OCP and the similar definition of Γc implies the existence of a

liquid-crystal phase transition, which is confirmed by our simulations. In an OCP,

BCC is considered the stable crystal structure. However, the free energy difference

betweenBCC and FCC is very small, and FCC can alsomaintain its structure, similar

to diamond and graphite. The melting point of both FCC and BCC are reported

(Dubin, 1990; Stringfellow et al., 1990) to be: ΓBCC
e ≈ 175 and ΓFCC

e ≈ 185.

For chemical active particles, we conducted the simulation in 3D cubic periodic

boxes with approximately N = 1000 particles, with very large SD (Γc ∼ 800),

starting from a random particle distribution, and track the structure evolution for a

very long time ∼ 1000τD. The simulation process is equivalent to suddenly cooling

a liquid to very low temperature, and allowing it to relax to equilibrium. BCC
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crystals formed in all “cooling” simulations, with inevitable distortion and defects.

The formation of a BCC lattice is similar to the experiments (Tan et al., 1995) and

simulations (Daligault, 2006) of an OCP.

In order to accurately locate the transition, i.e., the “melting point” of the repulsive

active particle crystal, “melting simulations” are conducted. Melting, instead of

cooling, is chosen because in the liquid-solid phase transition the cooling process

usually requires a large amount of sub-cooling to provide the crystallization with

enough ‘driving force’, while the melting usually occurs immediately at the melting

point. From the definition of Γc, increasing the “temperature” is equivalent to

decreasing Γc. We start from 3D periodic systems of perfect crystal structures

and run simulation cases covering a wide range of Γc, for sufficiently long time

∼ 1000τD.

We use both the dynamic criterion Dl/D (Löwen et al., 1993) and the static criterion

Q6 to quantify the structure, and they give consistent results for the melting point.

Dl is the long time diffusivity of particles, and Q6 is the order parameter to measure

the structure order of a particle’s neighbors (ten Wolde et al., 1995) As shown in

Fig. 8.2, Q6 and Dl/D give consistent results in quantifying the system ‘melting

point’, for both BCC and FCC structures. However, the calculation of Dl/D requires

significantly more computational power because we must track the system for a very

long time to calculate Dl . Limited by computing resource, we calculate Q6 only

when mapping the entire phase diagram for the range of 0.001 < φ < 0.15, 0.1 <

Da < 10, N ≈ 1000. When calculating Q6 (ten Wolde et al., 1995) we include

approximately the second shell of neighbors in a lattice. If we include only the first

shell of neighbors, value of Q6 would change due to smaller number of neighbors,

but the measured transition point does not change. Test runs show that a simple

cubic lattice spontaneously transforms to a distorted BCC lattice. Therefore we

search for the melting point of BCC and FCC lattices only. As shown in Fig. 8.3

and Fig.8.4 all the melting simulation shows the same sharp jump of Q6, and the
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Figure 8.3: ThemeasurementQ6 ofBCC. For each combination of φ (shape) andDa
(color), simulations of different SD are conducted so that a range of 100 < Γc < 250
is covered. The melting point ΓBCC

c ≈ 140.

transition point for both BCC and FCC is ΓBCC,FCC
c ≈ 140.

8.5 Conclusions & Discussion

We explored repulsive chemically active particles with simulations, and showed that

the system behavior can be determined by a single parameter Γc. The ‘liquid-crystal’

phase transition is located at ΓBCC,FCC
c ≈ 140, which differs from the OCP results

ΓBCC
e ≈ 175, ΓFCC

e ≈ 185. The difference may come from three effects. First,

although for repulsive chemically active particles the almost homogeneous local

structure allows us to define Γc based on 〈q〉, all fluctuations are ignored, which is

greatly different from an OCP system with fixed point charges. More importantly,

the changing reactivity leads to Brinkman screening (Morris & Brady, 1995), which

changes the long-ranged 1/r interaction to a screened exp(r/LB)/r , where LB is the

screening length. The role of screening in repulsive active matter is a complicated

issue and it is unclear whether it causes the differences in the melting point of

Γc compared to Γe. Second, limited by computing resources, in simulations we
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Figure 8.4: ThemeasurementQ6 of FCC. For each combination of φ (shape) andDa
(color), simulations of different SD are conducted so that a range of 100 < Γc < 250
is covered. The melting point ΓFCC

c ≈ 140.

truncate the particle multipole expansion at the dipole level limited by computing

resources, so some inaccuracy is inevitable. Third, the transition point of an OCP

system is solved in literature by searching for the free energy cross-over calculated

withMonte-Carlomethods. However, thermodynamics for repulsive active particles

are not yet defined, and so we have to search for a transition point with dynamic

simulations, which may give ∼ 10% error depending on the system property and

methodology (Hoffmann & Löwen, 2001).

Further, as regards the common experiment realizations with giving hydrogen per-

oxide and oxygen molecules as the fuel, both are at the nano-scale, and in this limit

L(∆)a3 ∼ δ2a, where δ ∼ 10−9m. Therefore, SD ∼ O(100) for 〈c〉 ∼ 1Mol/L,

and Γc ∼ O(100). So the estimated phase-transition at ΓBCC,FCC
c ∼ 140 is within

the reach of experiments. If the particles are confined on a monolayer by gravity

and geometry, similar repulsive crystals should form, which should be hexagonal

because the repulsion to leading order is isotropic.
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In this chapter we investigated homogeneously reactive particles. In addition to

particle-particle interaction, active Janus particle with a reactive hemisphere also

achieve self-propulsion given by (8.1). For Janus particles no repulsive crystal

formation is observed in simulations, because Janus particles can achieve a much

larger velocity,U0, so the long-ranged repulsion due to diffusiophoresis is not strong

enough to trap them in a lattice. Also, it is not legitimate to define a ΓJ
c by simply

replacing the diffusivity DT = kBT/ζ with the swim-diffusivity Dswim for Janus

particles and then determine the system dynamics with ΓJ
c , because Dswim only

appears at a time longer than the reorient time τR, and the short time dynamics is

also important in many cases, such as the crystal formation. In fact, it is not clear

that whether a meaningful parameter ΓJ
c could be defined similar to Γc for Janus

particles. Moreover, swimming pressure and thermodynamic-like theories (Takatori

et al., 2014; Takatori & Brady, 2015) describe the attractive active swimmers very

well, but it is also not clear whether a similar non-equilibrium thermodynamic

argument can be conducted to estimate the melting point ΓBCC,FCC
c . A discussion

for repulsive Janus particles is left for a future study.
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C h a p t e r 9

CONCLUSIONS AND OUTLOOK
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In this thesis the dynamics of chemically active suspensions is discussed. The

solute reactant is consumed at the particles’ surface, and each particle generates

a perturbation to the reactant concentration field c(r). The active particles are

modeled as osmotic motors (Córdova-Figueroa & Brady, 2008) and achieve self-

propulsion and particle-particle interactions from the solute field c(r). This is

an example of a ‘field-driven’ system. Understandings of the behavior of this

system can also be applied to other systems because the concentration field obeys

a reaction-advection-diffusion equation, the same equation as for other fields, such

as electrostatic, temperature, and so on (Bonnecaze & Brady, 1990). In ‘field-

driven’ problems, the particle-particle interactions are generally not described by

additive potentials and thermodynamics may not be valid. However, a mechanical

perspective offers a sound framework for analysis.

A detailed theoretical continuummechanics foundation for activematter is examined

in Chapters 2 to 5, focusing on the ABP model as a general model for active

matter. With the surface force defined as the swim pressure (or stress) in the

work of Takatori et al., (2014), the swim force is defined in Chapter 2, and is

explained as a body force in the continuummechanics formulation. Themicroscopic

mechanism of mechanical swim pressure (or stress) is explained in Chapter 3 as an

extension from the traditional passive Brownian particles colliding with a passive

macroscopic body. The microscopic theory is extended to a general curved body in

Chapter 4 and the resulting boundary layer is analogous to the Knudsen layer seen

in rarefied gas-dynamics. When the mean-free-path is small but non-zero, far from

the macroscopic body the Navier-Stokes equations can be solved in the bulk, with a

boundary condition modified from the Knudsen layer. For active matter, it is shown

in Chapter 4 that the kinetic accumulation boundary layer plays the same pivoting

role as a Knudsen layer, connecting the sub-continuum and continuum scales. Based

on microscopic understandings, Chapter 5 extends the notion of the swim stress to

the anisotropic and tensorial cases, incorporating the manipulation of swimming
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orientation q in the continuum mechanics framework of active matter.

With the mechanical understandings for the minimal ABP model, the dynamics of

the ‘field-driven’ chemically active suspensions is discussed from Chapters 6 to 8.

In Chapter 6 an algorithm – Accelerated Laplacian Dynamics – is introduced as a

tool to probe the detailed system dynamics. The notion of chemical screening is

clarified by simulation and analysis, and the steady-state structure of the coexistence

between dense and dilute regions is explained from a continuum mechanics model.

More importantly, the steady state structure does not show a homogeneous dilute

region. Instead, the properties of the dilute regions vary as a function of the distance

to the dense cluster. This is because the cluster consumes reactants and induces a

net flux proportional to the reactant concentration gradient ∇c towards the cluster

center. Thus the reactant gradient does not vanish, even if the simulation zone is

extended to infinitely large, to maintain the continuity of the solute flux. This is

a key difference between a coexistence in a field driven system and a short-ranged

pairwise additive potential system. In the latter, outside some length prescribed

by the short-ranged attraction potential, the swimmers do not feel the existence of

the cluster, and remain in a homogeneous state, and therefore a thermodynamic

equilibrium theory between two phases is possible.

The steady state of the clustering is explained in Chapter 6 with an approximation to

ABP continuum mechanics. The stress induced by particle-particle diffusiophoretic

attraction is found to be weak and small compared to the swim pressure (or stress)

induced by self-propulsion. Based on that, the equilibrium structure is explained

with a mean-field assumption, where the stress is fully described by the ABPmodel,

and chemical concentration appears indirectly as U0 ∝ c, and a diffusiophoretic

〈F swim〉 ∝ ∇c. Also, the ‘activity-gradient swim force’ −σswim · ∇ ln U0 plays an

important role in the presence of a self-propulsion velocity gradient ∇U0 ∝ ∇c. In

fact, for fast swimmers in the dilute region where the collisional pressure and the
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osmotic pressure nkBT are negligible compared toσswim, at steady state nU0 = const

is satisfied. For chemical swimmers φAc = const because U0 ∝ c.

The onset of the clustering behavior is found from a linear stability analysis on

the chemical concentration field c and the swimmer probability density P (x, q, t).

The instability threshold is found to give M∗C = Mc0/DT as a competition between

attraction and translational diffusion, independent of self propulsion. The effect of

self propulsion is found to be a stabilizing effect, appearing at a higher order wave

number. The threshold is universal for either a monolayer or a periodic 3D system,

and is consistent with a coarse-grained, continuum mechanical description which

neglects the detailed orientational coupling by assuming that rotational diffusivity

is always strong enough such that the instability growth happens on a timescale

longer than τR, as required by the continuum mechanical theory so that there is

a separation-of-scales. The matrix-perturbation technique is applied to solve the

detailed instability dynamics. It is a systematic method, and beyond the cases

discussed in this work, can also probe the effect of many-body reactivity, many-

body collisions, many-body transport coefficients, etc, as a series expansion of

volume fraction φ or the reactivity.

This thesis constitutes a quantitative research on chemically active suspensions, as

an example system of field-driven active matter systems. Also, substantial attention

is paid to continuum mechanics as a tool to explain the dynamics of chemically

active particles. However, this work is by no means comprehensive nor complete.

First, the role of hydrodynamic interactions (HI) is not included in this discus-

sion. Including HI requires more than a integration of the algorithm in Chapter 6

with Accelerated Stokesian Dynamics (Sierou & Brady, 2001). Since in self-

diffusiophoresis the particles achieve self-propulsion with a surface slip velocity

that fundamentally changes the boundary condition and near-field lubrication in HI,

they must be jointly solved. That coupling increases the complexity of including
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HI, and a thorough examination is required to avoid exponentially increasing the

complexity of the algorithm.

Also, the simulation method in this work solves the chemical field efficiently with a

multipole expansion method to avoid the use of mesh, but the drawback is that the

multipoles are analytically coded in the algorithm. That strategy limits the capability

of this algorithm to model simple geometries, including periodic, monolayer, and

possibly confinement between parallel walls. To enable explorations in flexible

geometries, the algorithm discussed here may be extended in an immersed boundary

method fashion (Hoppensteadt & Peskin, 2002), which may also be combined with

the HI effects.

On the physical side, the research on the continuum mechanics for active matter is

still in its infancy. One of the key properties in continuummechanics, the (shear and

bulk) viscosity, is missing from the current formulation, because only dilute or sed-

imentation systems have been examined. In the dilute limit, the swimmer-swimmer

interaction is absent, so the viscosity (with hydrodynamic interactions) is missing.

In a sedimentation system, there is no shearing motion and the viscosity is not im-

portant. To build a consistent and useful continuum mechanics, the viscosity must

be properly included in a fashion compatible with the thermodynamic constructions

built for active matter (Takatori & Brady, 2015). To achieve that, the complete

framework from Liouville equations to Boltzmann equation and Chapman-Enskog

expansion in classical kinetic theory may be a viable route.

Beyond fundamental theories for simple model systems, many physical problems in

the real world can be understood in the framework of active matter. For example,

recently, Shelley, (2016) summarized the application of active matter theories to

the understanding of the dynamics of micro-tubule/motor-protein assemblies. With

a deeper understanding of the mechanics of active matter and a more powerful

computational framework, many similar biological and synthetic systems can be



208

addressed.
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A p p e n d i x A

THE SWIM FORCE OF ACTIVE MATTER

There is a recurring discussion in the literature about the nature and origin of

the force causing self-propelled bodies to move at low Reynolds number. The

discussion revolves about the notion that since self-propulsion is a ‘force-free’

motion, one cannot say that a self-propelled body experiences a Stokes drag. Or that

the propulsive force can be written as a swim force F swim = ζU0. And if it is, this

swim force is not a ‘true’ force. However, this is a misunderstanding about what is

force-free motion and the nature of hydrodynamics at low Reynolds numbers.

The steady, non-accelerating motion of any body is force-free. At low Reynolds

numbers Re = ρUa/η � 1, where ρ is the density of the fluid, η is its viscosity, and

U and a are the characteristic velocity and length scales of the motion, respectively,

the acceleration of the fluid is negligible compared to the viscous and pressure forces

and all motion is thus force-free. (We also specify that the inertia of the particle is

negligible, which is characterized by the Stokes number St = ρp/ρ × Re � 1, with

ρp the particle density.) What is meant when one says that self-propulsion at low

Reynolds number is force-free is that there is no external force causing the body to

move. There are, however, internal forces that cause it to move.

In the simplest description of self propulsion, consider a body of fixed overall shape

but whose surface can deform – a ‘squirmer.’ A paramecium is the classic biological

example and phoretic colloidal particles can also be modeled as being propelled by

a local slip velocity at their surface (Anderson, 1989; Blake, 1971). At a point x

on the surface of a the body, the fluid velocity u(x) = U +Ω × (x −X) + us (x),

whereus is the ‘slip’ velocity,X is the body center, andU andΩ are the rigid-body

translational and rotational motion of the body about its center. The slip velocity
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can be expanded in moments us (x′) = Es ·x′+Bs :
(
x′x′ − I (x′)2

)
+ · · · , where

x′ = x −X , and the tensors Es (t), Bs (t), etc. are, in general, functions of time

and are determined by the swimming gait. Here x′ is the point in the swimmer’s

surface. The linearity of low-Reynolds number or Stokes flow allows a familiar

moment expansion (Kim & Karrila, 2005) of the total hydrodynamic force/torque

F H on the swimmer

F H = −RFU · U −RF E : ES −RF B �B
S − · · · , (A.1)

where we have grouped the force/torque together as a single vector in the same

fashion as in Stokesian dynamics (Durlofsky et al., 1987), F H = (F H,LH ), and

similarly for the translational/rotational velocities: U = (U,Ω). The hydrodynamic

resistance tensors RFU , RF E , etc. are functions of the body geometry only and

couple the force to the velocity, to the ‘squirming set’ Es (t),Bs (t), etc.

In the Stokes flow regime, the rigid body’s motion is overdamped and thus force-

free: F H +F ext = 0, where F ext is any external force such as gravity or an external

torque. For a passive (i.e. non-swimming or non-active) body when F ext = 0,

F H = 0 and there is no motion. For a swimmer when F ext = 0, F H = 0 is

still true, but U , 0 in (A.1); the drag, −RFU · U , cancels the swimming part,

−RF E : ES −RF B �B
S − · · · . Indeed, we can define

F swim = −RF E : ES −RF B �B
S − · · · , (A.2)

and

F drag = −RFU · U , (A.3)

and then the required force-free motion F H = F drag + F swim = 0 gives

U = R−1
FU
· F swim . (A.4)

Equation (A.2) is the definition of the swim force (and torque). The reorientation of

a nonBrownian swimmer that gives rise to its randomwalk arises from the squirming
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set Es (t), etc. changing direction (relative to the body fixed coordinate system).

That the swim force is a real measurable force can be appreciated by recognizing

that if one wanted to keep the swimmer from moving, the force required is F swim.

We have considered the simplest model for self-propulsion, namely a squirmer.

However, as shown by Swan et al., (2011) the exact same structure applies for

swimmers that propel by large deformations of their body shape – the hydrodynamic

resistance tensors are now also functions of time but the definitions, (A.1) - (A.3),

apply at each instant.

It is important to note that a nonzero swim force does not imply that the fluid

velocity disturbance caused by the swimmer decays as 1/r as it would for a body

with a nonzero hydrodynamic force. This is most clearly seen from the integral

representation for the solution to the Stokes equations. The velocity field outside a

particle in Stokes flow can be expanded in force moments to give

ui (x) = − Ji j FH
j −

1
2ε i j k∇k Jil LH

j

− 1
2

(
∇k Ji j + ∇ j Jik

)
SH

jk

− 1
2∇ j∇k JilQH

jkl − · · · ,

(A.5)

where the Stokeslet, 8πη Ji j (x) = δi j/r + xi x j/r3, is evaluated at the particle

center. The hydrodynamic force and torque are given by their usual expres-

sions: F H =
∫
σ · ndS, LH =

∫
x′ × σ · ndS, and the stresslet is given by

SH = 1
2
∫ [
x′σ ·n + σ ·nx′ − 2η(usn + nus)

]
dS, with σ the fluid stress tensor;

there is a corresponding expression for the hydrodynamic quadrupoleQH , etc.

Since the drag force F drag balances the swim force there is no hydrodynamic

force or torque on the swimmer: F H = 0 (F H = 0, LH = 0), and the velocity

disturbance decays at leading order as 1/r2 coming from the stresslet SH . If the slip

velocity does not generate a stresslet, then the leading order velocity disturbance

decays as 1/r3 corresponding to the quadrupole QH . And so on depending on the

nature of the propulsivemechanism and the body geometry. There is no difficulty (or
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ambiguity) in speaking about a swim force and a drag force for a self-propelled body

and the velocity disturbance generated by the swimming body decaying faster than

1/r . In fact, Blake, (1971) and Ishikawa et al., (2006) expanded the hydrodynamic

interactions between two squirmers in a series of surface radial and tangential

velocity modes. These modes may cancel such that the velocity disturbance decays

as 1/rn, which can be very fast for large n.

Even for a single particle, hydrodynamics can also generate a single particle contri-

bution to the active stress σh ∼ nζU0a〈qq〉, which scales as nζU0a, as opposed to

the swim stress that scales as nζU2
0 τR. As discussed by Takatori et al., (2014) for

fast swimmers (PeR → 0), σh/σ
swim ∼ U0a/(U2

0 τR) = a/(U0τR) = PeR → 0.

Considering other forces that affect the motion of active particles, the overdamped

Langevin equation of a set of swimmers can be written as,

0 = F drag + F swim + F B + F ext + F P, (A.6)

where F B = 2kBTRFUδ(t) is a Brownian force with zero mean, F ext is any

external force, and F P is a particle-particle interactive or collision force. The

resistance tensors are now functions of both the individual swimmer body shape

and the relative separation and orientation of all the swimmers, as is standard in

Stokesian dynamics.

In the simplest case where the hydrodynamic interactions among the swimmers are

neglected and only translational swimming is relevant, the hydrodynamic resistance

tensorRFU can be simplified to an isotropic drag tensor ζI , so that F drag = −ζU ,

F swim = ζU0q, and we have the ‘Active Brownian Particle’ (ABP) model in the

main text. Here, q(t) is the orientation vector for the swimming direction and

is subject to run-and-tumble motion or rotational Brownian diffusion, which are

equivalent (Cates & Tailleur, 2013), and comes from the torque balance in (A.6).

For a spherical swimmer, ζ = 6πηa and the swim force arises from the quadrupole

squirming setBs (t).
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In this work we focus on this ABPmodel, with both translational (DT ) and rotational

(DR) diffusivity. In this case the time scale is set by 1/DR (= τR), and the reorien-

tation Péclet number (Takatori et al., 2014) PeR = aDR/U0 = a/` controls how far

the swimmer travels in one reorientation time – its run length ` = U0τR – compared

to its size a. The ratio DT/(a2DR) controls the relative strength of translational

Brownian diffusion and reorientational diffusion.

With F swim defined in (A.2), the suspension stress (Brady, 1993; Batchelor, 1970)

in the absence of macroscopic shearing and external torques is:

〈σ〉 = −〈p f 〉I + 〈σ
swim〉 + 〈σB〉 + 〈σP〉 , (A.7)

where −〈p f 〉I is the isotropic (incompressible) fluid pressure, 〈σswim〉 is the swim

stress, 〈σB〉 = −nkBTI is the Brownian stress (Brady, 1993), and 〈σP〉 is the particle

collision stress. The swim stress 〈σswim〉 can be anisotropic if the swimmers’

reorienting process is biased by, for example, an external torque. For the ABP

model, 〈σswim〉 has been thoroughly discussed in both the isotropic (Takatori et al.,

2014) and anisotropic (Takatori & Brady, 2014; Yan & Brady, 2015a) cases. In

the text, we have written the ‘particle stress’ 〈σ(p)〉 = 〈σswim〉 + 〈σB〉 + 〈σP〉 as is

customary in colloidal dynamics.
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A p p e n d i x B

ANISOTROPIC STRESS UNDER Ĥ FIELD

In this section we follow the convention by Frankel & Brenner, (1989) to derive the

anisotropic swim diffusivityDswim and ideal gas swim stress σswim = −nζDswim.

Similar methods have also been used in Zia & Brady, (2010) and Takatori & Brady,

(2014). In the theory by Frankel & Brenner, (1989), q is a local degree of freedom.

For the swimmers considered here, q is the orientation vector of each swimmer. The

steady state distribution, P∞0 (q), is analytically solvable from the Langevin equation

for q:
dq
dt
= Ωcq × Ĥ + η̇, (B.1)

where Ĥ is the unit vector in the direction of the orienting field,Ωc is its magnitude,

and η̇ is the rotational Brownian motion characterized by DR.

The oreintation-average velocity is defined as:

〈U 〉 =

∫
q

P∞0 (q)U (q)dq. (B.2)

By decomposing ∆U (q) = U (q) − 〈U 〉, the effective diffusivity is given by

Dswim =

∫
q

P∞0 (q)B(q)∆U (q)dq, (B.3)

where theB field is the solution to

∇q ·
[
uP∞0 B − d · ∇q (P∞0 B)

]
= ∆UP∞0 , (B.4)∫

q
P∞0 Bdq = 0, (B.5)

with appropriate BC in q space. Here u and d are velocity and (intrinsic) diffusivity

in q space, respectively. For swimmers in this work, u is the torque applied by the

Ĥ field, and d = DRI is the rotational diffusivity.
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In a 2D system, q = (cos θ, sin θ), and we define Ĥ = (0, 1). The steady probability

distribution P∞0 (θ) is:

P∞0 (θ) =
exp(−χR cos θ)

πI0( χR)
, (B.6)

and the average orientation is

〈qz〉 =
I1( χR)
I0( χR)

, (B.7)

where χR = ΩcτR = Ωc/DR, and I0, I1, In, . . . are Bessel functions.

With the mathematical expansion

exp(z cos θ) = I0(z) + 2
∞∑

n=1
In(z) cos(nθ), (B.8)

we have

Dswim
⊥ = 2

∞∑
n=1

In( χR)
nχRI0( χR)

×

∫ π

−π

exp
(
−χR cos θ

)
sin θ sin(nθ)

2πI0( χR)
dθ. (B.9)

The parallel diffusivity, Dswim
‖

, is more complicated. First define

f (p) = − (p + π)I1( χR) − sin pI0( χR)+

I1( χR)
(
p + π + 2

I1( χR) sin p
I0( χR)

+ cos p sin p
)

+

∞∑
n=2

In(−χR)
(
−

I1( χR) sin(np)
nI0( χR)

+
cos(np) sin p − n cos p sin(np)

n2 − 1

)
(B.10)

and

B‖ (θ) =
∫ θ

−π
exp( χR cos p) f (p)dp . (B.11)

Finally,

Dswim
‖
=

∫ π

−π

(
cos θ +

I1( χR)
I0( χR)

)
×

exp(−χR cos θ)
2πI0( χR)

B‖ (θ)dθ. (B.12)

These expressions are used for the anisotropic swim stress in the text.
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A p p e n d i x C

CLOSURE OF THE SMOLUCHOWSKI EQUATION

The moment expansion of the Smoluchowski equation for the probability density

for finding a swimmer at x with orientation q is:

∂n
∂t
+ ∇ · jn = 0 , jn = U0m − DT∇n , (C.1)

∂m

∂t
+ ∇ · jm + 2DRm = 0 , jm = U0Q̃ − DT∇m , (C.2)

∂Q̃

∂t
+ ∇ · jQ̃ + 6DR[Q̃ − 1

3 nI] = 0 , jQ̃ = U0B̃ − DT∇Q̃ . (C.3)

Here, we have written the second moment as Q̃(x, t) =
∫
qqP(x, q, t)dq, and

B̃ =
∫
qqqPdq is the third moment.

In the simplest situation of no temporal or spatial variation, a uniform concentration

n and no polar orderm = 0 are solutions of (C.1)-(C.2), and the second moment

has solution Q̃ = 1
3 n I . This leads to the natural definition of the nematic order field

Q̃ = Q + 1
3 nI , or Q(x, t) =

∫
(qq − 1

3I)P(x, q, t)dq. The conservation equation

forQ is
∂Q

∂t
+ ∇ · jQ + 6DRQ = 0 , (C.4)

which now does have the solution of no nematic order Q = 0 in the uniform case.

The flux expressions now become: jn = U0m−DT∇n, jm = U0Q+
1
3U0n I−DT∇m

and jQ = U0B̃ −
1
3U0mI − DT∇Q.

We shall discuss the B̃-field and its closure in a moment, but we can already

appreciate why closing the equations with Q = 0 leads to a very good approx-

imation as demonstrated by the results presented in the main text. First, we are

not setting the second moment to zero; we are approximating the second moment

with the ‘isotropic’ distribution Q̃ ≈ 1
3 n I . Second, (C.4) shows that the Q-field
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is screened like the m-field, but with a temporal decay that is 3-times faster and

a screening length that is
√

3 shorter. Third, as we show below, when variations

are slow, like the m-field where m ∼ −1
6 (U0/DR)∇n, the nematic order goes as

Q ∼ −(U0/DR)∇m ∼ (U0/DR)2∇∇n, and thus Q ∼ O(`/L)2n which is small.

Finally, for the 1D flat wall problem, the value of the concentration at the surface,

n∞(1 + 1
6 (`/δ)2), follows directly from the full Smoluchowski equation and is in-

dependent of the closure. Thus, it is perhaps not surprising that the simple closure

Q = 0 works very well except when the body curvature is on the order of the

microscopic length δ =
√

DTτR.

The equation for the third moment is

∂B̃

∂t
+ ∇ · jB̃ + 12DR[B̃ − 1

6α ·m] = 0 , jB̃ = U0C̃ − DT∇B̃ , (C.5)

where αi j kl = δi jδkl + δikδ jl + δilδ j k is the fourth order isotropic tensor and C̃ =∫
qqqqP(x, q)dq is the fourth moment.

The proper ‘isotropic’ B̃ field is B̃ = B + 1
5α ·m, and the equation forB becomes

∂B

∂t
+ ∇ · jB + 12DRB = 0 , jB = U0C̃ −

1
5U0α · [Q + 1

3 nI] − DT∇B . (C.6)

In the examples where we included the nematic field Q, we closed the equations

by setting B = 0, which follows the same reasons as for setting Q = 0. With this

closure theQ-field flux is

jQ =
1
5U0[α − 5

3II] ·m − DT∇Q , (C.7)

which was used in the examples presented in the main text. With this constitutive

equation for the flux, for slow variations we see thatQ ∼ (`2/135)(∇∇ − 1
3I∇

2)n.
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A p p e n d i x D

PRINCIPAL CURVATURES

For a curve on a 2D plane, described by a parametrized curve (x(t), y(t)), the

curvature is well-known:

κ = −
|x′y′′ − x′′y′|(
x′2 + y′2

)3/2 . (D.1)

For a smooth surface in 3D space, at any point the planes of two principal curvatures

and the tangent plane are perpendicular to each other (Edwards et al., 2013). The

mean curvature non-dimensionalized by L is simply determined by the surface

normal vector n:

H =
κ̂1 + κ̂2

2
= −

1
2
∇̂ · n. (D.2)

The details about how to build a curvilinear coordinate system and all the expansion

of operators can be found in the Appendix of the work by Edwards et al., (2013).

Without going to the tedious algebraic details, here we only include the relevant

leading order expansion of operators:

∇̂∗ f =
∂ f
∂q⊥

n +O
(
δ

|R|

)2
, (D.3a)

∇̂∗ · f = − (JS) f +
∂ f
∂q⊥
+O

(
δ

|R|

)2
, (D.3b)

∇̂2
∗ f = − (JS)

∂ f
∂q⊥
+
∂2 f
∂q⊥2 +O

(
δ

|R|

)2
, (D.3c)

where JS = 2H , and ∇̂∗ is the nabla operator in the (orthogonal) curvilinear co-

ordinate system q1, q2, q⊥, defined on the curved surface shown in Fig. 4.2. q⊥

follows the direction of the surface normal vector n. q1 and q2 are on the curved

surface, and are located in the two planes associated with the two principal vectors,

respectively. It is clear that to leading order O(δ/|R|), there is no need to deal with
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the gradients on q1, q2 directions. The formulation of (D.3) is consistent with the

work in literature (Cox, 1997; Yariv, 2009) in solving the curved boundary layers.

The expansion of operator ∇̂∗ beyond the leading order relies on a rigorous algebra

of the full curvilinear space. Mathematically, the second order expansion relies not

only on the mean curvature H , but also on the variations of curvatures. The full

expansion may include up to 21 curvature coefficients (Panaras, 1987), and probably

forbids any analytical work.
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A p p e n d i x E

THE NOTATION FOR ROTATIONAL FLUX IN 3D SPACE

Rotation is mathematically challenging to describe. In this work we follow the

convention of Brenner & Condiff, (1972), by defining a nabla operater in orientation

space ∇R. The evolution of a spherical ABP with orientation q by torque and

Brownian motion can be described in a spherical coordinate system (0 < θ < π, 0 <

φ < 2π):

q = sin θ cos φex + sin θ sin φey + cos θez . (E.1)

The rotational gradient operator ∇R = q ×
∂

∂q
. Here we have:

∂ f (θ, φ)
∂q

=eθ
∂ f
∂θ
+

1
sin θ

eφ
∂ f
∂φ
, (E.2)

∇R = q ×
∂ f
∂q
=eφ

∂ f
∂θ
−

1
sin θ

eθ
∂ f
∂φ

. (E.3)

Also, the operators are usually used with its derivatives:

∂

∂q
q =I − qq, (E.4)

q ·
∂

∂q
=
∂

∂q
· q = 0,

∂

∂q
× q = 0, (E.5)(

q ×
∂

∂q

)
× q = − 2q, (E.6)

q ×

(
q ×

∂

∂q

)
= −

∂

∂q
, (E.7)

∇R · ∇R =
1

sin θ

(
∂

∂θ
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2 . (E.8)

For a orientational potential energy U (q), the torque and angular velocity are:

L = − ∇RU, ω =
1
ζR
L, (E.9)
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where we assumed the isotropic orientational drag ζR. The general case comes from

linearity of stokes flow: ω =MΩL · L. The angular velocity is interpreted as:

q̇ = −q × ω. (E.10)
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A p p e n d i x F

FAXEN LAWS FOR A HOMOGENEOUSLY REACTIVE
PARTICLE

Consider uniform reaction everywhere on the particle surface, h(n) = 1. With the

first order reactive boundary condition (6.5) for n ·jR, the multipoles of particle α

become:

qα = − κ
∫

S
cdS, (F.1)

Sα =(DR − κaR)
∫

S
ncdS, (F.2)

Qα =
(
2aRDR − κa2

R

) (∫
S
nncdS −

1
3

∫
S
IcdS

)
. (F.3)

Thus, we need 3 surface integrals of c:
∫

S cdS,
∫

S ncdS and
∫

S nncdS.

For any point x on the surface S of some particle α, the integral (Bonnecaze &

Brady, 1990) that represents the solution to Laplace’s equation can be written as:

c(x) − c′(x) − cE (x) (F.4)

=
1

4π

∫
Sy

(
jR(y)

1
DR |x − y |

+ c(y)
x − y

|x − y |3

)
·nydSy . (F.5)

Here c denotes the actual field value, c′ and cE refer to other particles’ perturbation

and the imposed external field respectively, and y is a vector on the particle surface.

Take integral
∫

Sx dS of both sides. For the left side we have
∫

Sx

[
c(x) − c′(x) − cE (x)

]
dS (F.6)

=

∫
S

cdS − 4πa2(c′ + cE ) |rα, (F.7)

where (c′ + cE ) |rα means that the value of c′ and cE are evaluated at the center of

particle α, rα. The right side becomes a double integral over both x and y on the
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surface. By exchanging the order of integration, we have:
∫

S
cdS − 4πa2(c′ + cE ) |rα (F.8)

=
a

DR

∫
S
jR ·ndS =

a
DR

q, (F.9)

from which we get the Faxen laws for monopole q. One can easily check that if

we put only one particle in infinite field with condition c∞, the Faxen laws give

q = − [4πDa/(1 + Da)] DRac∞, which is the consumption rate of reactant on the

particle surface and coincides with solution given by traditional methods, e.g.,

separation of variables.

The Sα and Qα relations can also be derived in the same way, but require some

lengthy math. We shall not repeat the process here. Also, the factor Da/(1 + Da)

covers both reaction-limited and diffusion-limited cases. In the diffusion-limited

case (Da→ ∞), Da/(1+Da) → 1 and the Faxen laws reduces to the relations given

by Bonnecaze & Brady, (1990). In the reaction-limited case Da → 0 and therefore

Da/(1 + Da) → Da, so that qα ∝ Da.
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A p p e n d i x G

FAXEN LAWS FOR A JANUS REACTIVE PARTICLE

For Janus particles, the Boundary Element Method (BEM hereafter) is used to

calculate the Faxen laws matrix. We follow the standard BEM convention, and the

problem of a singularity on the boundary, which often occurs in the BEM method,

is appropriately handled (Pozrikidis, 2002).

The numerical solution is conducted for a Janus particle with its orientation vector

ξ = ẑ. Due to symmetry, C (truncated at dipole level) takes the following form:

*..........
,

q

Sx

Sy

Sz

+//////////
-

=

*..........
,

f q
c 0 0 f q

cz

0 f sx
cx 0 0

0 0 f sy
cy 0

f sz
c 0 0 f sz

cz

+//////////
-

*..........
,

c

(∇c)x

(∇c)y

(∇c)z

+//////////
-

, (G.1)

where Sx , Sy and Sz are components of vector S. (∇c)x , (∇c)y and (∇c)z are

components of ∇c. The five response functions, f q
c , f q

cz, f sx
cx , f sz

c , f sz
cz , are functions

ofDa only. TheBEMsolution is done forDa in the range (0.01, 100.0), covering both

reaction-limited (Da → 0) and diffusion-limited (Da → ∞) cases. The reactivity

f functions are fitted by an interpolation form to allow each f to be evaluated for

arbitrary Da:

f q
c = −

4πDa
1 + Da

0.72Da2 + 1.98Da + 1
Da2 + 3.26Da + 2

, (G.2)

f q
cz = −

4πDa
1 + Da

0.46Da2 + 0.36Da + 0.38
Da2 + 0.82Da + 1

, (G.3)

f sx
cx = − 2π

Da − 2.76
Da + 2.76

, (G.4)

f sz
c = −

4πDa
1 + Da

0.46Da2 + 0.39Da + 0.38
Da2 + 0.87Da + 1

, (G.5)

f sz
cz = − 2π

Da − 7.77
4.50Da + 7.70

. (G.6)
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The typical error of these fitting functions is around 2%. Here, we do not pursue

the absolute accuracy because our interest is in the correct scaling of the response

and the correct features of propulsion and interaction.

For particles with ξ , ẑ, rotation can be applied to the matrices C:

C =
*..
,

f q
c f q

czξ
T

f sz
c ξ f sx

cx I + ( f sz
cz − f sx

cx )ξξ

+//
-
, (G.7)

where ξ is a 3 × 1 column vector.

Similarly,MB is calculated from the orientation ξ and the fitted functions gz
c , gz

cz

and gx
cx:

MB =

(
gz

cξ gx
cxI + (gz

cz − g
x
cx)ξξ

)
, (G.8)

where

gx
cx =2π

0.36Da2 + 2.55Da + 1
Da2 + 2.65Da + 1

, (G.9)

gz
c = −

4πDa
1 + Da

0.16Da2 + 0.094Da + 0.13
Da2 + 0.60Da + 1

, (G.10)

gz
cz =4π

0.30Da2 + 0.95Da + 0.5
Da2 + 2.05Da + 1

. (G.11)
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A p p e n d i x H

ALL CONTRIBUTIONS OF E IN THE EWALD SUM

For compactness of the equations, we define:

f (r) =
Erfc

(√
π/ζr

)
r

, (H.1)

and r = x − y. Suppose that x is at the location of particle 1, x = y1. In the

summation, yother means all other particles in space. r = x − yβ = y1 − yβ, and β

denotes the other particles. In this context, ∇ = ∇1 = ∂/∂y1, ∇2 = ∇β = ∂/∂yβ.

The realspace sum, wavespace sum, and the self-correction terms are:

c(y1) =〈c〉 (H.2a)

+
1

4πDR

∑
β,1

(qe f f
β − Sβ ·∇1 +

1
2
Qβ : ∇(2)

1 ) f (r) (H.2b)

+
1

4πDRV0

∑
k,0

∑
β

(qe f f
β − Sβ ·∇1 +

1
2
Qβ : ∇(2)

1 )

e2πik·(yβ−y1) e−ζπk2

πk2 (H.2c)

+ (−
1

2πDR
√
ζ

)qe f f
1 +

1
6DRζ3/2 TrQ1, (H.2d)

∇c(y1) =
1

4πDR

∑
β,1

(qe f f
β ∇1 − Sβ ·∇

(2)
1 +

1
2
Qβ : ∇(3)

1 ) f (r) (H.2e)

+
1

4πDRV0

∑
k,0

∑
β

(qe f f
β ∇1 − Sβ ·∇

(2)
1 +

1
2
Qβ : ∇(3)

1 )

e2πik·(yβ−y1) e−ζπk2

πk2 (H.2f)

+ (−
1

3DRζ3/2 )S1, (H.2g)
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and ∇∇c(y1) =
1

4πDR

∑
β,1

(qe f f
β ∇

(2)
1 − Sβ ·∇

(3)
1 +

1
2
Qβ : ∇(4)

1 ) f (r) (H.2h)

+
1

4πDRV0

∑
k,0

∑
β

(qe f f
β ∇

(2)
1 − Sβ ·∇

(3)
1 +

1
2
Qβ : ∇(4)

1 )

e2πik·(yβ−y1) e−ζπk2

πk2 (H.2i)

+ (
1

3DRζ3/2Iqe f f
1 ) + (−

π

5DRζ5/2 )T : Q1. (H.2j)

Here ∇(i) means to take ∇ operator i times, which gives the correct tensor structure.

Tr is the trace operator, and T is the 4th order isotropic tensor: Ti j kl = (δi jδkl +

δikδ jl + δilδ j k ).
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A p p e n d i x I

FEEDBACK FACTOR FC

In this part, the ‘feedback factor’ Fc from c is derived. It is, the perturbation c′ as a

function of the perturbation in numberdensityP′, controlled by the c equation (7.12):

−DR(∇2
xy +

∂2

∂z2 )c =
(
S − κc(z = 0)

∫ 2π

0
P (x, y, θ)dθ

)
δ(z). (I.1)

The perturbation in number density in phase space is (7.14). Here because only∫
ndθ appears in the above equation, only the m = 0modematters: bq,0 =

1
2π

∫
Pdθ.

Also for the simplicity of notion, here we take an arbitrary mode q:

P′ = bq,0(t) exp(−iqx), (I.2)

and the response of c′ is assumed to be:

c′(x, y, z, t) = A(z)bq,0(t) exp(−iqx). (I.3)

In the following, the Fourier transform in the z axis and in the xy plane will be

considered independently, to overcome the difficulty due to the monolayer geometry.

In short, A(z = 0) is solved.

Substitute c′ into (7.12), and the perturbation around the steady state c0,P0 satisfies:

−DR
(
−q2 A(z)e−iqx + A′′(z)e−iqx

)
= −δ(z)

(
κ2πP0 A(z)e−iqx + 2πκbq,0(t)c0e−iqx

)
,

(I.4)

where we used the fact that in linear perturbation, change in S is on second order,

thus negligible.

Take Fourier transform of A(z) in above equation, follow the convention:

f̂ (ω) =
∫

f (z)e−2πiωzdz, (I.5)

f (z) =
∫

f̂ (ω)e2πiωzdω. (I.6)
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We get:

DR
(
q2 Â(ω) + 4π2ω2 Â(ω)

)
= −2πP0κA(z = 0) − κc02πbq,0(t), (I.7)

with solution:

Â(ω) = −
2πκ
DR

P0 A(z = 0) + bq,0(t)c0

q2 + 4π2ω2 . (I.8)

Transform back to real space with ω → z:

A(z) = −
2πk
DR

(
P0 A(z = 0) + bq,0(t)c0

) e−qz

2q
, (I.9)

which means, high frequency (large q) components decay faster away from the z = 0

plane.

Let z = 0, we get:

A(z = 0) = −
κc0π

DRq + πκP0
bq,0(t) = Fcbq,0(t), (I.10)

where Fc = −
κc0π

DRq+πκP0
is the ‘feedback factor’ defined in the main text.
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A p p e n d i x J

LINEAR DYNAMIC SYSTEM

The general theory of linear dynamic systems (Guckenheimer & Holmes, 2013, ch.

1) is briefly reviewed here for reference. A linear dynamical system is a group of

first order ODEs which can be represented by a linear algebraic form:

d
dt
x(t) = Ax(t), (J.1)

where x(t) is an N-dimensional vectorial function of time t and A is a constant

N × N matrix. The initial condition is x(t = 0) = x0. The matrix A is also called

the operator of that dynamical system. In this work ‘matrix’ and ‘operator’ are used

interchangeably.

WhenA has N eigenvalues (λ1, λ2, . . . , λN ) and N linear independent eigenvectors

(v1, v2, . . . , vN ), a general solution to (J.1) exists:

x(t) =
N∑

i=1
Ci exp(λit)vi, (J.2)

where Cis are constants and should satisfy the initial condition:

x0 =

N∑
i=1

Civi . (J.3)

Cis can be uniquely determined because eigenvectors (v1, v2, . . . , vN ) are assumed

to be linearly independent.

When all eigenvalues (λ1, λ2, . . . , λN ) have negative-valued real part, x(t) → 0 as

t → ∞. Therefore the stability of the system (J.1) is completely determined by the

sign of the real part of the eigenvalues.
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A p p e n d i x K

PERTURBATION OF EIGENVALUES & EIGENVECTORS OF A
COMPLEX MATRIX: GENERAL THEORY.

In this section the general theory developed byKato, (1995) is briefly described here,

following Kato’s notations. The detailed theory can also be found in Baumgärtel,

(1985).

Definitions

Resolvent

If λ is not an eigenvalue ofA, then λI −A is invertible. In this case, λ is called a

regular point. The set of all regular points is called the resolvent set and is denoted

by resA. One writes

R(λ) = R(λ,A) = (A − λI)−1. (K.1)

For λ1 , λ2, R commutes: R(λ1)R(λ2) = R(λ2)R(λ1). Also R(λ) is an

operator-valued, differentiable function of λ.

Eigenprojection

For an eigenvalue λ j of matrix A, we define the eigenprojection corresponding to

λ j :

P j = −
1

2πi

∫
Cj

R(λ,A)dλ, (K.2)

where Cj is a positively oriented sphere with center λ j , which consists of regular

points and is such that no other eigenvalue lies inside Cj .
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Eigennilpotent

For an eigenvalue λ j of matrixA, we define the eigennilpotent:

D j = (A − λ jI)P j . (K.3)

D j has only one eigenvalue: 0. The number m satisfying Dm
j = 0, Dm−1

j , 0 is

called the index of the eigenvalue λ j .

Canonical form

A matrix A can be represented by A = S +D, where S =
∑

h λhPh and D =∑
hDh.

Perturbation

This part is adapted from Kato’s work (Kato, 1995, ch. 2).

Assume T (x) = T + xT1 + x2T2 + · · · . We may suppose that a matrix-valued

function T (x) is given, which is holomorphic in a given domain D0 of the complex

x-plane. x is the perturbation variable. The unperturbed symbols are denoted as

T, λ, etc. The perturbed ones are denoted as a function of x as T (x), λ(x), etc.

It can be proved that the number of eigenvalues of T (x) is a constant s independent

of x, with the exception of some special values of x. There are only a finite number

of such exceptional points x in each compact subset of D0. This number s is equal to

dimension N if these analytic functions (if there are more than one) are all distinct;

in this case T (x) is simple and therefore diagonable for all non-exceptional X . If,

on the other hand, there happen to be identical ones among these analytic functions,

then we have s < N ; in this case T (x) is said to be permanently degenerate.

It can be proved that each eigenvalue function λ j (x), j ∈ [1, s] is a continuous

function of x.

In general there are several cycles with the same center. All the eigenvalues belong-

ing to cycles with center λ are said to depart from the unperturbed eigenvalue λ by
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splitting at x = 0. The set of these eigenvalues will be called the λ-group, since

they cluster around λ for small x.

Let λ be one of the eigenvalues of T , with algebraic multiplicity m. Let Γ be a

closed positively-oriented curve, say a circle, in the resolvent set P (T ) enclosing λ

but no other eigenvalues of T . Define

P = −
1

2πi

∫
Cj

R(λ,A)dλ, (K.4)

which is a projection and is equal to the sum of the eigenprojections for all the

eigenvalues of T (x) lying inside Γ. It follows that the eigenvalues of T (x) lying

inside Γ form exactly the λ-group. For brevity we call P (m) the total projection,

for the λ-group.

The foregoing general results are somewhat simplified in the case in which T (x) is

linear in x. Then T (x) is defined in the whole complex plane, which will be taken

as the domain D0. The algebraic functions λ j (x) (perturbed eigenvalues) have no

pole at a finite value of x. At x = ∞ they have at most a pole of order 1.

The eigenvalue λ will in general split into several eigenvalues of T (x) for small

x , 0 (the λ-group). The total projection P (x) for this λ-group is holomorphic at

x = 0:

P (x) =
∞∑
0
P (n) (x),P (0) = P , (K.5)

where

P (n) = −
1

2πi

∫
Γ

R(n) (λ,A)dλ. (K.6)

It follows that, the weighted mean λ̂(x) of the λ-group eigenvalues of T (x):

λ̂(x) = m Tr(T (x)P (x)) = λ + m Tr((T (x) − λI)P (x)). (K.7)

If there is no splitting of λ so that the λ-group consists of a single eigenvalue λ(x)

with multiplicity m, we have λ̂ = λ, which is always true for m = 1
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These series give a complete solution to the eigenvalue problem for the λ-group in

the case of no splitting, λ(x), P (x) andD(x) being all holomorphic at x = 0.

If in particular λ is a semisimple eigenvalue of T (x), we have D = 0 and the first

terms of series expansion can be explicitly given:

P (1) = − PT (1)S − ST (1)P , (K.8)

P (2) = − PT (2)S − ST (2)P + PT (1)ST (1)S + ST (1)PT (1)S

+ ST (1)ST (1)P − PT (1)PT (1)S2 − PT (1)S2T (1)P − S2T (1)PT (1)P ,

(K.9)

P (3) = · · · . (K.10)

Under the same semisimple condition, with algebraic multiplicity m, the equations

for

λ̂ = λ + x λ̂ (1) + x2λ̂ (2) + x3λ̂ (3) + x4λ̂ (4) + · · · , (K.11)

are:

λ̂ (1) =
1
m

TrT (1)P , (K.12)

λ̂ (2) =
1
m

Tr
[
T (2)P − T (1)ST (1)P

]
, (K.13)

λ̂ (3) =
1
m

Tr
[
T (3)P − T (1)ST (2)P − T (2)ST (1)P

+ T (1)ST (1)ST (1)P − T (1)S2T (1)PT (1)P
]
, (K.14)

λ̂ (4) =
1
m

Tr
[
T (4)P − T (1)ST (3)P − T (2)ST (2)P − T (3)ST (1)P

+ T (1)ST (1)ST (2)P + T (1)ST (2)ST (1)P + T (2)ST (1)ST (1)P

− T (1)S2T (1)PT (2)P − T (1)S2T (2)PT (1)P − T (2)S2T (1)PT (1)P

− T (1)ST (1)ST (1)ST (1)P + T (1)S2T (1)ST (1)PT (1)P

+ T (1)ST (1)S2T (1)PT (1)P + T (1)S2T (1)PT (1)ST (1)P

− T (1)S3T (1)PT (1)PT (1)P
]
, (K.15)
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Here S refers to the reduced resolvent of T , with respect to the eigenvalue λ.

We denote it by S(ζ ), which is the holomophic part of resolvent R(ζ ) in the

neighborhood of the considered eigenvalue λ:

R(ζ ) = −
P

ζ − λ
−

ν(λ)∑
k=2

Dk−1
λ

(ζ − λ)k + S(ζ ). (K.16)

Perturbation of eigenvectors

Kato points out that (Kato, 1995, p. 92) ‘Since the eigenvectors are not uniquely

determined, however, there are no definite formulas for the eigenvectors v(x) of

T (x) as functions of x’. However a special case is enough for the instability

problem considered in this work. When multiplicity m = 1 and T (x) is linear in x

(see Kato, 1995, p. 93),

v(x) = v − xST (1)v + x2S(T (1) − λ (1))ST (1)v + · · · . (K.17)
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A p p e n d i x L

PERTURBATION SERIES: FULL SOLUTION

The expansion series for small P is presented here.

λ0(P) = λ (P0)
0 + Pλ (P1)

0 + P2λ (P2)
0 + · · · , (L.1)

v0(P) = v(P0)
0 + Pv(P1)

0 + P2v(P2)
0 + · · · . (L.2)

Here λ (P0)
0 and v(P0)

0 are solved in (7.28) and (7.24). The series for λ0(P) are:

λ (P1)
0 =0, (L.3a)

λ (P2)
0 = −

c2
0 DRq3

πc0κP0q2(A + 2M) + 2Drot (DRq + πκP0)

−
πAc3

0κP0q4

(DRq + πκP0)
(
πc0κP0q2(A+2M)

DRq+πκP0
+ 2Drot

) (
2πc0κP0q2(A+2M)

DRq+πκP0
+ 16Drot

) ,
(L.3b)

λ (P3)
0 =0. (L.3c)

The full analytical expression of λ (P4)
0 is too complicated to be listed here. In the

special case of M = A = 0:

λ (P4)
0 = −

c0
2q4

(
7c0

2 + 15c0FcP0 + 8Fc
2P0

2
)

32Drot
3

=
c0

4DRq5(πκP0 − 7DRq)
32Drot

3(DRq + πκP0)2
.

(L.4)

The leading order contributions of M and A are on O(q6) and O(q7):

λ (P4)
0 ≈O *

,

17c4
0 D3

Rq7

32π3D3
rot κ

3P3
0
−

9c4
0 D2

Rq6

32π2D3
rot κ

2P2
0
+

c4
0 DRq5

32πD3
rot κP0

+
-

+O *
,

*
,

5c5
0q6

2304D4
rot
−

167c5
0 DRq7

2304πD4
rot κP0

+
-

A+
-

+O *
,
−

9c5
0 DRq7

128πD4
rot κP0

M+
-
.

(L.5)
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The series for the eigenvector v0(P) are:

v(P1)
0 = f1(e1 + e−1) + g1(e3 + e−3), (L.6a)

v(P2)
0 = f2(e2 + e−2) + g2(e4 + e−4), (L.6b)

where

f1 ∼ O(ic0DRq2/Drot κP0π), f2 ∼ O(−c2
0 DRq3/D2

rot κP0),

g1 ∼ O(iAc2
0q3/D2

rot ), g2 ∼ O(Ac3
0q4/D3

rot ).
(L.7a)

The full solution is:

f1 =
ic0q2

(
πDRκP0

(
c0q2(3A + 4M) + 16Drot

)
+ π2 Ac0κ

2P2
0 q + 16D2

RDrotq
)

2
(
πc0κP0q2(A + 2M) + 2Drot (DRq + πκP0)

)
×

1
πc0κP0q2(A + 2M) + 8Drot (DRq + πκP0)

,

(L.8a)

g1 =
iπAc2

0κP0q3(DRq + πκP0)

2
(
πc0κP0q2(A + 2M) + 8Drot (DRq + πκP0)

)
×

1
πc0κP0q2(A + 2M) + 18Drot (DRq + πκP0)

,

(L.8b)
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and

f2 = −
1(

πc0κP0q2(A + 2M) + 2Drot (DRq + πκP0)
)

×
1(

πc0κP0q2(A + 2M) + 18Drot (DRq + πκP0)
)

×
1(

πc0κP0q2(A + 2M) + 8Drot (DRq + πκP0)
)3

×

(
1152π4q3c2

0 DRD3
rot κ

4P4
0

+ 16π3c2
0 D2

rot κ
3P3

0 q4(
(
5π2 Ac0κ

2P2
0 + 288D2

RDrot
)
)

+ 16π2c2
0 DRD2

rot κ
2P2

0 q5
(
11π2c0κ

2P2
0 (3A + 4M) + 432D2

RDrot
)

+ 3πc2
0 Drot κP0q6

(
3π4 Ac2

0κ
4P4

0 (A + 4M)

+ 16π2c0D2
RDrot κ

2P2
0 (23A + 44M) + 1536D4

RD2
rot

)
+ c2

0 DRDrotq7
(
π4c2

0κ
4P4

0

(
35A2 + 192AM + 136M2

)
+ 16π2c0D2

RDrot κ
2P2

0 (59A + 132M) + 1152D4
RD2

rot

)
+

1
2
πc3

0κP0q8
(
2π2c0D2

RDrot κ
2P2

0

(
43A2 + 276AM + 272M2

)
+ π4 Ac2

0κ
4P4

0 (A + 2M)(A + 4M) + 64D4
RD2

rot (9A + 22M)
)

+ π2c4
0 DRκ

2P2
0 q9

(
π2c0κ

2P2
0 (A + 2M)

(
A2 + 6AM + 4M2

)
+ D2

RDrot
(
17A2 + 120AM + 136M2

) )
+

1
2
π3c5

0 D2
Rκ

3P3
0 (A + 2M)q10

(
A2 + 8AM + 8M2

) )
,

(L.9a)

g2 = −
πAc3

0κP0q4(DRq + πκP0)2

2
(
πc0κP0q2(A + 2M) + 8Drot (DRq + πκP0)

)
×

1(
πc0κP0q2(A + 2M) + 18Drot (DRq + πκP0)

)
×

1
πc0κP0q2(A + 2M) + 32Drot (DRq + πκP0)

.

(L.9b)
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