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ABSTRACT

Two trends are emerging from modern electric power systems: the growth of re-
newable (e.g., solar and wind) generation, and the integration of information tech-
nologies and advanced power electronics. The former introduces large, rapid, and
random fluctuations in power supply, demand, frequency, and voltage, which be-
come a major challenge for real-time operation of power systems. The latter creates
a tremendous number of controllable intelligent endpoints such as smart buildings
and appliances, electric vehicles, energy storage devices, and power electronic de-
vices that can sense, compute, communicate, and actuate. Most of these endpoints
are distributed on the load side of power systems, in contrast to traditional control
resources such as centralized bulk generators. This thesis focuses on controlling
power systems in real time, using these load-side resources. Specifically, it studies
two problems.

Distributed load-side frequency control: We establish a mathematical framework
to design distributed frequency control algorithms for flexible electric loads. In this
framework, we formulate a category of optimization problems, called optimal load
control (OLC), to incorporate the goals of frequency control, such as balancing power
supply and demand, restoring frequency to its nominal value, restoring inter-area
power flows, etc., in a way that minimizes total disutility for the loads to participate
in frequency control by deviating from their nominal power usage. By exploiting
distributed algorithms to solve OLC and analyzing convergence of these algorithms,
we design distributed load-side controllers and prove stability of closed-loop power
systems governed by these controllers.

The general framework above is adapted and applied to different types of power
systems described by different models, or to achieve different levels of control goals
under different operation scenarios. We first consider a dynamically coherent power
system which can be equivalently modeled with a single synchronous machine.
Decentralized controllers are derived through a dual gradient algorithm for the
OLC problem on this single-machine system, where the dual gradient, which is
indeed the total mismatch between load and generation, is calculated at each load
by an input estimator using local frequency measurements. Adding neighborhood
communication between the loads can improve robustness of the controllers to the
noise in local frequency measurements. Through analysis and simulations, we
also investigate various practical issues that affect the performance of the proposed
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control scheme, such as asynchronous measurements and actuations, robustness to
model inaccuracies, and scalability of performance.

We then extend our framework to a multi-machine power network. We prove that
the dynamics of these machines and the linearized power flows between them can
be identified as part of a real-time primal-dual algorithm to solve the OLC problem.
Then we implement the other part of the primal-dual algorithm as distributed con-
trollers. With this method, we design completely decentralized primary frequency
control where every controllable load only measures its local frequency without
communicating with any other, and prove global asymptotic stability of the closed-
loop system. The controller design and stability analysis are then extended to the
scenarios with a more accurate nonlinear power flow model, generator dynamics
and control, and secondary frequency control, et cetera. For the case with non-
linear power flows, the controllers designed from the OLC framework guarantee
local stability. We also design a different version of secondary frequency control
through local integral of frequency deviation, which ensures global convergence
of the closed-loop system. The OLC problem can be solved by adding distributed
averaging filters to the local integral controllers.

Two-timescale voltage control: The voltage of a power distribution system must
be maintained closely around its nominal value in real time, even in the presence
of highly volatile power supply or demand. For this purpose, we jointly control
two types of reactive power sources: a capacitor operating at a slow timescale, and
a power electronic device, such as a smart inverter or a D-STATCOM, operating
at a fast timescale. Their control actions are solved from optimal power flow
problems at two timescales. Specifically, the slow-timescale problem is a chance-
constrained optimization, which minimizes power loss and regulates the voltage at
the current time instant while limiting the probability of future voltage violations
due to stochastic changes in power supply or demand. This control framework forms
the basis of an optimal sizing problem, which determines the installation capacities
of the control devices by minimizing the sum of power loss and capital cost. We
develop computationally efficient heuristics to solve the optimal sizing problem and
implement real-time control. Numerical experiments show that the proposed sizing
and control schemes significantly improve the reliability of voltage control with a
moderate increase in cost.
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C h a p t e r 1

INTRODUCTION

The evolution of electric power systems has never stopped since it started in the
late 19th century. In the upcoming decades, this evolution will be driven by two
major forces. The first is the growth of renewable generation, especially solar and
wind generation. In 2000, renewable generation in US was about 350 billion kWh,
or 9% of all the US electricity generation. This consists of mostly hydro power
with negligible solar and wind generation. However, it is anticipated that, under
the current energy policies, renewable generation will increase to about 900 billion
kWh, or 18% of all the US electricity generation, by 2040. In particular, wind and
solar generation will account for nearly 50% of the total renewable generation [1].
Some regional power systems have set more ambitious goals for their integration of
renewable energy. For example, California targets 50% of renewable generation by
2030, with an emphasis on solar power [2]. Hawaii plans to generate 100% of its
electricity from wind, solar, and geothermal power, by 2045 [3].

The second major force that drives the evolution of power systems is the integration
of sensing, computation, and communication technologies, as well as advanced
power electronics. These are some of the key factors that will lead to a “smart
grid” in the future. Examples of the integration of sensing and communication
technologies include the increase of total installation of phasor measurement units
in US from 166 in 2009 to more than 1000 by 2015 [4], and the projected rise of
global market for smart meters from $4 billion in 2011 to around $20 billion in 2018
[5]. As a result of this technology integration, a tremendous number of controllable
intelligent endpoints, such as smart buildings and appliances, electric vehicles, and
energy storage devices, are emerging rapidly. For example, the global shipments
of smart appliances are predicted to grow from fewer than 1 million units in 2014
to more than 223 million units by 2020 [6]. The annual sales of plug-in electric
vehicles in US are forecast to increase from 17,821 in 2011 to 360,000 in 2017 [7].
The annual installation of energy storage capacity in US is projected to increase
from 62MW in 2014 to 861 MW in 2019 [8].

The confluence of these two forces above brings both a risk and an opportunity
to future power systems. The risk is that the intermittent renewable (e.g., solar
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and wind) generation introduces large, rapid, and random fluctuations in power
supply, which will further cause fluctuations in frequency and voltage. In power
systems, frequency and voltage must be controlled tightly around their nominal
values, since severe frequency and voltage deviations can degrade power quality
and load performance, damage the equipment, or cause blackouts. Traditional
frequency and voltage control schemes mainly rely on a small number of large
units, such as bulk generators for frequency control, and large transformers and
capacitor banks for voltage control. To avoid excessive wear and tear, these units
usually have limited speed of response and ramp rate, which make it difficult for
them to follow fast changes in renewable generation. Also, the generators to be
controlled must be partially loaded to reserve sufficient control capacity, which
reduces their fuel efficiency and increases their emission [9]. The incurred costs
will only increase with higher renewable portfolio, and may essentially neutralize
the benefits of renewables.

Fortunately, we are also provided an opportunity to improve power system robust-
ness, security, and efficiency. This opportunity lies in controlling the intelligent
endpoints introduced above, which can sense, compute, communicate, and actuate,
and therefore actively participate in power system control. Unlike the traditional
control units which are mainly concentrated in a few locations, these endpoints are
mostly distributed on the load side, and therefore can provide spatially more precise
response to changes in demand, or disturbances from distributed renewable energy
resources that are also located on the load side. These endpoints are ubiquitous and
come in large numbers with each of them relatively small, so a system is more robust
to the loss of one of them than the loss of a big unit. These endpoints are mostly
driven by power electronics, and therefore can respond quickly to a disturbance, and
can be continuously adjusted in real time. Moreover, controlling the electric loads
is much cleaner than controlling the fossil-fuel generators [9].

This thesis addresses two key challenges for controlling these load-side endpoints
in real time. The first challenge is that the large number and distributed nature of
these endpoints may need us to design novel control schemes that are more scalable
than the traditional schemes, especially centralized ones, on a small number of
units. Specifically, we are interested in designing distributed control schemes which
rely on local sensing, local computation, and neighborhood communication. The
second challenge is to coordinate controls across multiple timescales, especially a
traditional control scheme at a slow timescale and a load-side control scheme at
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a fast timescale. We tackle the first challenge in distributed load-side frequency
control, and the second in two-timescale voltage control.

1.1 Distributed load-side frequency control
The idea of ubiquitous continuous fast-acting distributed load participation in fre-
quency control dates back to the late 1970s [10]. In the last decade or so, there
have been several simulation studies and small-scale field trials demonstrating ef-
fectiveness of this idea. However, there is not much analytic study that relates the
behavior of the loads and the equilibrium and dynamic behavior of power systems.
Indeed this has been recognized, e.g., in [11], [12], [13], as a major unanswered
question that must be resolved before ubiquitous continuous fast-acting distributed
load participation in frequency control becomes widespread. Even though classical
models for power system dynamics [14], [15], [16], [17] that focus on the generator
control can be adapted to include load control, they do not consider the cost, or
disutility, to the loads in participating in frequency control, an important aspect of
such an approach [9], [10], [12], [18]. To overcome these hurdles, our work in this
thesis allows the loads to choose their consumption pattern based on their need and
the global power imbalance in the system, attaining an equilibrium that benefits both
the utilities and their customers [10]. To the best of our knowledge, this is the first
analytic study of large-scale distributed load-side frequency control.

Background and literature
Frequency control is traditionally implemented on the generation side and consists
of three mechanisms that work at different timescales in concert [14], [15], [16],
[17]. The primary frequency control operates at a timescale of up to low tens of
seconds and uses a speed governor to adjust, around a setpoint, themechanical power
input to a generator based on the local frequency deviation. It is called the droop
control and is completely decentralized. The primary control can rebalance power
and stabilize the frequency but does not in itself restore the nominal frequency.
The secondary frequency control, also called automatic generation control (AGC),
operates at a timescale of up to a minute or so and adjusts the setpoints of speed
governors in a control area in a centralized fashion to drive the frequency back to its
nominal value and the inter-area power flows to their scheduled values. Economic
dispatch, also called tertiary control, operates at a timescale of several minutes and
up and schedules the output levels of generators that are online and the inter-area
power flows. See [19], [20] for a hierarchical model of these three mechanisms and
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its stability analysis.

The needs and technologies for ubiquitous continuous fast-acting distributed load
participation in frequency control have started to mature in the last decade or so. The
idea, however, dates back to the late 1970s. Schweppe et al. advocate its deployment
to “assist or even replace turbine-governed systems and spinning reserve” [10].
Remarkably it was emphasized back then that such frequency adaptive loads will
“allow the system to accept more readily a stochastically fluctuating energy source,
such aswind or solar generation” [10]. This point is echoed recently in, e.g., [9], [11],
[18], [21], [22], [23], [24], [25], [26], that argue for “grid-friendly” appliances, such
as refrigerators, water or space heaters, ventilation systems, and air conditioners, as
well as plug-in electric vehicles and energy storage devices to help manage energy
imbalance. For further references, see [9]. Simulations in all these studies have
consistently shown significant improvement in performance and reduction in the
need for generator-side spinning reserves. The benefit of this approach can thus be
substantial as the total capacity of grid-friendly appliances in the U.S. is estimated
in [21] to be about 18% of the peak demand, comparable to the required operating
reserve, currently at 13% of the peak demand. The feasibility of this approach is
confirmed by experiments reported in [23] that measured the correlation between
the frequency at a 230kV transmission substation and the frequencies at the 120V
wall outlets at various places in a city in Montana. They show that local frequency
measurements are adequate for loads to participate in primary frequency control as
well as in the damping of electromechanical oscillations.

Indeed a small scale demonstration project has been conducted by the Pacific North-
west National Lab during early 2006 to March 2007 where 200 residential appli-
ances participated in primary frequency control by automatically reducing their
consumption (e.g, the heating element of a clothes dryer was turned off while the
tumble continued) when the frequency of the household dropped below a threshold
(59.95Hz) [12]. Field trials are also carried out in other countries around the globe,
e.g., the U.K. Market Transformation Program [13]. Even though loads do not
yet provide second-by-second or minute-by-minute continuous regulation service
in any major electricity markets, the survey in [27] finds that they already provide
50% of the 2,400 MW contingency reserve in ERCOT (Electric Reliability Council
of Texas) and 30% of dispatched reserve energy (in between continuous reserve
and economic dispatch) in the U.K. market. Long Island Power Authority (LIPA)
developed LIPA Edge that provides 24.9 MW of demand reduction and 75 MW of
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spinning reserve by 23,400 loads for peak power management [28].

There are three other categories of work related to our analytic work on load-side
frequency control. The first category is the design and analysis of generator-side
frequency (and voltage) control, which focuses on stabilizing multi-machine power
networks [29], [30], [31], [32], [33], [34], [35]. The second category includes
studies, e.g., [36], [37], [38], on transient stability of power networkswith frequency-
dependent uncontrollable loads. The third category of studies integrate functions
traditionally realized by slower-timescale economic dispatch with faster-timescale
frequency control, as renewable generation introduces large and fast fluctuations in
real power and frequency. Examples of these studies range from primary and/or
secondary frequency control on the generator side [39], [40], [41], [42], [43], [44],
or the load side [45], [46], to microgrids where controllable inverters interfacing
distributed energy resources have similar dynamic behavior to generators [47], [48].

Summary of this work
We formulate a category of optimization problems, called optimal load control
(OLC), which informally takes the following general form:

min
d

c(d)

subject to power rebalance

physical constraints

operational constraints

(1.1)

where d is the vector of load power consumption and c measures the disutility
to loads for participating in control. The power rebalance constraint is necessary
for stabilizing frequency after a disturbance in power supply or demand. The
physical constraints, such as power flow equations, Kirchhoff’s Laws, and Ohm’s
Law, describe the natural behavior of electricity. The operational constraints can
be chosen to incorporate specific goals we want to achieve in (different levels
of) frequency control. For example, these goals may include restoring frequency
to its nominal value, restoring inter-area power flows to their scheduled values,
respecting control capacity limits, and enforcing thermal limits on power lines.
Then, from a distributed algorithm that solves OLC (and its dual problem), we
develop distributed load-side controllers. Moreover, convergence of the distributed
optimization algorithm ensures asymptotic stability of the closed-loop system under
these controllers.
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The general framework above is studied from two different aspects. The first is to
deal with complexity of power system dynamics, and the second is to understand
the impact of power network structures. We address them separately by considering
the following two scenarios, described by different power system models.

Single-machine systems: In our papers [49], [50], [51], we consider a tightly
coupled power system, e.g., a control area or balancing authority out of a huge inter-
connection, in which the electrical distances between geographically different parts
are negligible [52]. Such a power system has coherent frequency everywhere even
during transient, and therefore can be modeled as a single synchronous machine
(generator) connected to a group of loads. To accurately capture the frequency
dynamics of such a system under small disturbances, we use a high-order linear gen-
erator model which characterizes the details of various components, like governor,
turbine, power system stabilizer, exciter, and automatic voltage regulator.

Decentralized load controllers are derived as a gradient algorithm to solve the dual
of the OLC problem on this single machine system. It turns out that the gradient
of the dual OLC problem is the mismatch between total load and generation across
the system, and can be calculated at each load with an input estimator using local
frequency measurements.

We further study some practical issues associated with the proposed control scheme.
First, this scheme is robust to modeling inaccuracies in the sense that it performs
well even when the controllers use a simplified and less accurate system model to
estimate the dual gradient [49], [50], [51]. Second, to alleviate the degradation of
control performance caused by stochastic noise in local frequency measurements,
we add neighborhood communication between the loads. Simulations show that a
moderate amount of such communication is enough to ensure good performance
[51]. Third, we prove stability of the closed-loop system under asynchronous fre-
quencymeasurements and control actions with bounded time delays [49]. Moreover,
we show with simulations that the proposed scheme is scalable to a large number of
loads, since its performance does not degrade as more loads participate [51].

Multi-machine networks: We apply our framework to a multi-machine power
network, where different nodes may have different frequencies and are connected
by lines transmitting power flows. In our papers [53], [54], we consider simple
linearized swing dynamics for generator buses and linearized power flows. Our
goal for OLC is primary frequency control, i.e., to rebalance power and stabilize
frequency after a disturbance, without restoring the frequency to its nominal value.
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We show that local frequency deviations emerge as a measure of the cost of power
imbalance on the corresponding buses, and power flow deviations as a measure of
frequency asynchronism across different buses. More strikingly the swing dynamics,
power flow dynamics, and local frequency-based load control together serve as
a distributed primal-dual algorithm to solve the dual of OLC. This primal-dual
algorithm is globally asymptotically stable, steering the network to the unique
global optimal of OLC.

These results have four important implications. First the local frequency deviation
on each bus conveys exactly the right information about the global power imbalance
for the loads themselves to make local decisions that turn out to be globally optimal.
This allows a completely decentralized control without explicit communication to
or among the loads. Second the global asymptotic stability of the primal-dual
algorithm of OLC suggests that ubiquitous continuous decentralized load participa-
tion in primary frequency control is stable, addressing a question raised in several
prior studies, e.g. [10], [11], [12], [13]. Third we present a “forward engineer-
ing” perspective where we start with the basic goal of load control and derive the
frequency-based controller and power system dynamics as a distributed primal-dual
algorithm to solve the dual of OLC. In this perspective the controller design mainly
boils down to specifying an appropriate optimization problem (OLC). Fourth the
opposite perspective of “reverse engineering” is useful as well where, given an
appropriate controller design, the network dynamics will converge to a unique equi-
librium that inevitably solves OLC with an objective function that depends on the
controller design. For instance the linear controller in [11], [23] implies a quadratic
disutility function and hence a quadratic objective in OLC.

In [55], we analyze stability of the controller above when it is applied to a more
accurate nonlinear power flow model, generator control, and generator turbine and
governor dynamics. A Lyapunov function for the nonlinear system is constructed to
prove local asymptotic stability of the closed-loop system. In [56], we extend the
approach and results in [55] to secondary frequency control, which not only stabilizes
frequency, but also restores frequency to its nominal value and restores inter-area
power flows to their scheduled values. The secondary frequency control not only
needs local frequency measurements as in the primary control, but also requires
real-time communication between neighboring buses connected by power lines. A
modified version of secondary frequency control in our work [57] can also enforce
thermal limits on power lines, such that the N − 1 security criterion and chance
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constraints associated with thermal limits may be relaxed in economic dispatch,
resulting in significant savings. Performance improvement fromour control schemes
is shown by simulations of IEEE test cases on a realistic power network simulator
Power System Toolbox [58].

It is worth remarking that the OLC framework above is not the only way to design
distributed load-side frequency control. In [59], we design a different version of
secondary frequency control based on completely decentralized integral of local fre-
quency deviations. We prove global convergence of the closed-loop system under
such control in a model with nonlinear power flows. Then, by adding distributed
averaging filters which perform real-time communication between neighboring in-
tegrators, we obtain a distributed averaging-based proportional integral (DAPI)
control which is locally asymptotically stable around an equilibrium that also solves
the OLC problem.

1.2 Two-timescale voltage control
The effect of intermittent generation or load on the quality of voltage control in
distribution systems has recently received significant attention [60]. Much of this
focuses on the design of control algorithms for adjusting the reactive power injections
along a distribution feeder to maintain voltage within acceptable bounds. The
reactive power injections may be derived from spatially concentrated sources such
as fixed and switchable capacitors [61], [62] and distributed static compensators
(D-STATCOMs) [63], or distributed sources such as photovoltaic (PV) inverters
[60], [64], [65], [66], [67], [68], [69], [70], [71] or inverters interfacing other
distributed generation [72]. There are also various mechanisms to jointly control
two or more kinds of devices, e.g., [73], [74], [75], [76] for switchable capacitors
and tap-changing voltage regulators, [77] for switchable capacitors and inverters,
and [78] for capacitors, reactors and static var compensators, et cetera. Meanwhile
the problem of optimal placement and sizing of capacitors has been extensively
studied using analytical methods [73], [74], [75], [79], [80], numerical programming
[61], [62], [81], and probabilistic meta-heuristics like simulated annealing [82] and
genetic algorithm [83], [84]; see [85] for more.

However, most of the work above considered voltage control either at a slow
timescale (e.g., using switchable capacitors and tap-changing regulators) or at a fast
timescale (e.g., using inverters), without combining the controls at two timescales
for better performance. An exception is [77] where capacitors are controlled at a
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slow timescale and inverters at a fast timescale. However the assumption in [77] that
the load changes gradually over time and is well predicted does not hold for the case
with highly intermittent generation or load. Moreover, absent in much of the work
above are methods by which to size different reactive power sources that are jointly
controlled. To the best of our knowledge, our work is the first to optimally control
and size reactive power sources operating at different timescales, by incorporating
statistical characterization of rapid and large changes in load.

While small distributed PV has stimulated much of the research in this area, large
and highly intermittent load or generation can create similar, or perhaps more
difficult, voltage problems. One such example is a large (several MW) PV generator.
However, the motivating example for us is a high-performance computing (HPC)
load at Los Alamos National Lab. Power consumption of a modern HPC load can
easily swing by several MWs in a few seconds or less, as shown by Fig. 1.1.
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Figure 1.1: A four-day real power consumption profile (sampled every five seconds)
of the high performance computing load studied in this thesis.

Fig. 1.1 shows a pattern that large transitions in the load are typically separated by
minutes or hours, while relatively small fluctuations continuously occur during the
period of time, called stage, between two consecutive large transitions. A voltage
control scheme, which combines small, frequently controlled devices such as a
D-STATCOM or a PV inverter, and large, infrequently controlled devices such as
a switchable capacitor, is suitable for such a load pattern. Moreover, conditioned
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on the current-stage average power, the probability distribution of the next-stage
average power reveals information about the direction and size of voltage change
thatmay occur in the next stage. We leverage this information to develop an improved
voltage control scheme for distribution systems with large and rapid changes in load
or generation. We then embed the proposed control into an optimal sizing problem
for reactive power sources, which balances the capital cost of the devices with the
expected cost due to power losses.

Specifically, the slow-timescale capacitor control is implemented by solving a
chance-constrained optimal power flow (OPF) problem which minimizes power
loss, regulates the current-stage voltage, and limits the probability of voltage viola-
tions in the next stage. At the fast timescale, we control a D-STATCOMwithout loss
of generality, by solving an OPF problem with deterministic constraints. The con-
trol scheme above forms the basis of an optimal sizing problem, which determines
the sizes of the two control devices above as well as a fixed capacitor to minimize
the sum of the cost of expected power loss and the capital cost of all the devices.
Exploiting structures of the chance-constrained OPF, we develop a computationally
efficient heuristic based on simulated annealing to solve the sizing problem, and a
heuristic for simpler real-time implementation of voltage control. Simulations on
the realistic HPC load in Fig. 1.1 have shown that the proposed control and sizing
schemes achieve a desired tradeoff between voltage safety and cost. In particular,
voltage violations are significantly reduced with a moderate increase in cost.

1.3 Thesis outline
The rest of this thesis is organized as follows.

1. In Chapters 2 and 3 we design and analyze load-side distributed frequency
control. Chapter 2 focuses on single-machine power systems [49], [50], [51],
and Chapter 3 on multi-machine power networks. In Chapter 3, we work on
the cases of load-side primary frequency control under a linearized power flow
model [53], [54], and generator and load-side primary [55] and secondary [56]
frequency controls under a nonlinear power network model. We also design
a completely decentralized frequency integral control, as well as a distributed
averaging-based proportional integral control [59].

2. In Chapter 4, we develop a voltage control scheme combining slow and fast
reactive power sources, and develop efficient heuristics to optimally solve the
sizes of these resources [86].
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C h a p t e r 2

LOAD-SIDE FREQUENCY CONTROL IN SINGLE-MACHINE
SYSTEMS

We consider a dynamically coherent power system that can be equivalently modeled
with a single synchronous machine connected to a group of loads. We propose
a decentralized load-side frequency control scheme that stabilizes frequency after
a sudden change in generation or load. The proposed scheme exploits flexibil-
ity of frequency responsive loads and neighborhood area communication to solve
an optimal load control (OLC) problem that rebalances load and generation while
minimizing end-use disutility of participating in load control. Local frequency
measurements enable individual loads to estimate the mismatch between load and
generation across the whole system. Neighborhood area communication alleviates
performance degradation caused by frequency measurement noise. We also ana-
lyze convergence of the proposed scheme under asynchronous measurements and
actuations with bounded time delays. Simulations show that the proposed scheme
is robust to model inaccuracies, and its performance is scalable with the number of
participating loads. Moreover, a moderate amount of neighborhood communication
is enough to achieve significant performance improvement.

This chapter is organized as follows. Section 2.1 introduces the power systemmodel
and formulates the OLC problem. Section 2.2 introduces the approach of estimating
total load-generation mismatch from local frequency measurements, a key part of
our control algorithm. Section 2.3 presents the decentralized load-side frequency
control algorithm and proves its convergence. Section 2.4 proves convergence of the
decentralized load-side frequency control under asynchronous measurements and
actuations. Section 2.5 shows simulation results. Finally, Section 2.6 concludes this
chapter. The proofs of propositions, theorems, etc. are provided in the Appendices.

2.1 System model and problem formulation
We now introduce a dynamic power system model in which frequency responsive
loads are controlled. We then formulate the OLC problem, which is to be solved by
the load control scheme later.
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Figure 2.1: The single-machine power systemmodel where ∆g denotes a generation
drop and ∆ω denotes the frequency deviation. Load i obtains a measured value of
the frequency deviation which may differ from ∆ω by a stochastic noise ξi. Based
on the measured frequency deviation, load i is reduced by ∆di.

Power system model
We consider the power system model in Fig. 2.1. We assume that the electrical
distances between geographically different parts of the system are negligible, and so
are the differences in frequencies between them [52]. Therefore, the whole system
has a universal frequency which can be equivalently regarded as the frequency of
a single generator. A number of controllable loads are connected to the generator
and consume the generated power. A controllable load may also be an aggregate of
multiple, smaller controllable loads [9][24].

Let V = {1, 2, . . . , N } denote the set of loads. Suppose the system is working at an
operating point where the total load and generation are balanced. Then suddenly
a generation drop denoted by ∆g occurs. To compensate for ∆g, load i is reduced
by ∆di through load control to be designed. Let ∆ω denote the universal frequency
deviation from its nominal value. Load i measures the frequency deviation locally,
and gets a measured value ∆ωi, which may differ from ∆ω by a stochastic noise ξi.

We assume the loads measure the frequency deviation and make decisions simul-
taneously and synchronously at time instances 0,∆t, 2∆t, . . . , and we denote these
time instances by t = 0, 1, 2, . . . for simplicity. This assumption will be relaxed
by studying asynchronous measurements and actuations in Section 2.4. Let ∆di (t)
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stand for the reduction of load i at time t. Then, the total mismatch between load
and generation at time t is

u(t) := −
∑

i=1,...,N
∆di (t) + ∆g(t). (2.1)

Without loss of generality, we let ∆di (t) > 0 denote load reduction and ∆g(t) > 0
generation drop, and therefore u(t) is the load surplus. We consider a dynamic
model of the power system, which takes u as the input and ∆ω and ∆ωi as the
output. To simplify the analysis, we use a linearized model around the operating
point [14], [16]. Let x(t) ∈ Rn denote the system state at time t. The elements in
x depend on the specific power system model used in the algorithm. For example,
they may include the valve position of the turbine, the mechanic power and the
output voltage of the generator, and the frequency deviation ∆ω. We consider a
stochastic disturbance to system state caused by environmental factors, e.g., change
in temperature [87]. Such a disturbance is denoted by ζ ∈ Rn. Moreover, for every
load i, the stochastic frequency measurement noise ξi is also considered. Then, the
power system dynamic model is

x(t + 1) = Ax(t) + Bu(t) + ζ (t),

∆ω(t) = Cx(t),

∆ωi (t) = ∆ω(t) + ξi (t).

(2.2)

In this model, the frequency deviation ∆ω is one element in the state x, and therefore
the matrix C ∈ R1×n has one element 1 and other elements 0.

We assume, for all t, s ≥ 0 and all i, j ∈ V , that the process disturbance ζ and the
measurement noise ξi have zero mean, and are uncorrelated spatially and temporally
and with each other, i.e., their covariances satisfy

E
[
ζ (t)ζ (s)T

]
= Qδts,

E
[
ξi (t)ξ j (s)

]
= Wδtsδi j,

(2.3)

where Q ∈ Rn×n is positive semi-definite, W ≥ 0, and δts and δi j denote the
Kronecker delta function. Here we assume that every load performs frequency mea-
surement independently at every time step, so the measurement noise is independent
across the loads and not correlated over time. Moreover, we assume the noises at
different loads have the same variance.

Remark 2.1. There are power systems in which the electrical distances between
different parts are not negligible. These systems cannot be accurately modeled by
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a single generator. In Chapter 3, we model such a system as a network of multiple
generators connected by transmission lines. In the multi-machine model, we mainly
focus on the effects of network structure on load control; therefore, we will consider
a simple swing dynamic model of generators, in contrast to the more general model
in (2.2). We also ignore the process disturbance and the measurement noise for
multi-machine networks. In the current chapter, however, we focus on capturing the
underlying dynamics in more detail.

Optimal load control
Without loss of generality, suppose the generation drops by a positive constant ∆g
at time 0. In response, load i will be reduced by ∆di (t) for t ≥ 0. As t → ∞, we
want ∆di (t) to converge to some ∆d∗i ∈ [0, di], where di is the maximum reduction
of load i allowed by appliance specification or user preference. Moreover, we desire
∆d∗i to be an optimal solution to the following optimization problem:

OLC (single machine):

min
∆di∈[0,di]

N∑
i=1

ci (∆di)

subject to ∆g −

N∑
i=1
∆di = 0,

(2.4)

where ci (∆di) is the disutility due to interrupting the normal usage and compromising
the end-use function of appliances [9][28]. By solving OLC (2.4), the total load and
generation is rebalanced, which essentially stabilizes and restores the frequency to
its nominal value, in a manner that minimizes the total end-use disutility.

For feasibility of OLC, we assume
∑N

i=1 di − ∆g > 0. This assumption holds if a
large enough group of loads participate in frequency control. Wemake the following
assumptions on the disutility functions ci such that OLC is a convex problem.

Assumption 2.1. For all i = 1, . . . , N , the function ci is increasing, strictly convex,
and twice continuously differentiable, on [0, di].

Assumption 2.2. For all i = 1, . . . , N , there exists αi > 0, such that c′′i (∆di) ≥ 1/αi

for all ∆di ∈ [0, di]. Let α := maxi=1,...,N αi.

Remark 2.2. The choice of disutility functions is based on physical characteristics of
loads and user comfort levels. Example functions can be found for air conditioners
in [88] and plug-in electric vehicles in [89]. See, e.g., [19], [90], [91], [92] for other
disutility functions that satisfy Assumptions 2.1 and 2.2.
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Solving OLC using a traditional centralized scheme requires a control center and
two-way communication between the loads and the center: load-to-center com-
munication to collect information like disutility functions and capacities of load
reduction, and center-to-load communication to send the control signals ∆di (t).
This centralized scheme has the following limitations in implementation. First, it
requires the center to maintain connections with all the loads and perform com-
putation for the whole system-level problem. If a fault occurs to the center or the
communication infrastructure, the whole system control function may fail. Second,
due to privacy issues, the users may not want to reveal information about their power
usage to the system operator in the control center.

As an alternative, we design a more robust, scalable, and privacy-preserving decen-
tralized scheme where every load computes a small piece of the overall problem,
and exchanges information with a small number of its neighbors. For the purpose
of such a design, we consider solving the dual problem of OLC. Taking p as the
dual variable, the dual problem of OLC is

max
p∈R
Ψ(p) :=

N∑
i=1
Ψi (p) + p∆g (2.5)

where

Ψi (p) := min
∆di∈[0,di]

ci (∆di) − p∆di . (2.6)

Under Assumption 2.1, given p ∈ R, the problem

min
∆di∈[0,di]

ci (∆di) − p∆di (2.7)

has a unique minimizer

∆di (p) = min
{
max{(c′i )

−1(p), 0}, di
}
. (2.8)

Note that the inverse function of c′i exists over [c′i (0), c′i (di)] since c′i is continuous
and strictly increasing by Assumption 2.1. Since ci is convex for all i = 1, . . . , N

and OLC has affine constraints, Slater’s condition implies that there is zero duality
gap between OLC and its dual (2.5), and the optimal solution of (2.5), denoted by
p∗, is attained [93, Sec. 5.5.3]. It follows that ∆d(p∗) := [∆d1(p∗), . . . ,∆dN (p∗)]T

is primal feasible and optimal [93, Sec. 5.5.2]. Moreover, it is easy to show that,
for any given p and p such that p ≤ min

i
c′i (0) and p ≥ max

i
c′i (di), the problem
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(2.5) has at least one optimal point p∗ ∈ [p, p]. Hence, we can constrain p to [p, p].
Therefore, instead of solving OLC directly, we solve its modified dual problem

Dual OLC:

max
p∈[p,p]

Ψ(p) =
N∑

i=1
Ψi (p) + p∆g. (2.9)

Informally, the decentralized algorithm is as follows (see Section 2.3 for a formal
treatment). Each load i updates its value of dual variable p at time t as

pi (t) = max
{
min{pi (t − 1) + γ(t)u(t − 1), p}, p

}
, (2.10)

where γ(t) > 0 is some stepsize, and u(t − 1) = ∆g −
∑N

i=1 ∆di (t − 1) is the
mismatch between load and generation at time (t − 1). Then, load i calculates its
load reduction at time t as ∆di (t) = ∆di (pi (t)),1 where ∆di (·) is defined in (2.8). It
can be observed from (2.5)–(2.6) that u(t − 1) is the gradient of the dual objective
function Ψ in (2.9), if the dual variable p = p1(t − 1) = · · · = pN (t − 1). Therefore,
this decentralized algorithm is essentially a gradient projection method [93] applied
to Dual OLC. To implement this algorithm with frequency responsive loads, loads
should be able to estimate u from local frequency measurements. Our estimation
method is introduced in the next section.

2.2 Estimating load-generation mismatch
In Section 2.1, we informally introduced a decentralized algorithm to solve the
optimal load control problem OLC. The algorithm requires every load to know
u = ∆g −

∑N
i=1 ∆di, the total mismatch between load and generation. We now

introduce a method for individual loads to estimate u from local measurements of
frequency deviation. Since u is the input to the state-space model (2.2), we call this
method input estimation.

In input estimation, load i uses frequency measurements ∆ωi (1), . . . ,∆ωi (t) to
estimate u(0), . . . , u(t−1). In (2.2), we use x̂i (t |s) and ûi (t |s) respectively to denote
the estimates of x(t) and u(t) with frequency measurements up to time s. Starting
from x̂i (1|0), the input estimation is recursively [94]:

ûi (t − 1|t) = M
(
∆ωi (t) − Cx̂i (t |t − 1)

)
,

x̂i (t |t) = x̂i (t |t − 1) + Bûi (t − 1|t),

x̂i (t + 1|t) = Ax̂i (t |t),

(2.11)

1We abuse notation by letting ∆di (·) be either a function of time t or a function of the dual
variable pi , depending on the context.
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where M := (CB)−1. Note that B ∈ Rn×1 and both u(t) and CB are scalars.
Therefore we only need the following assumption to ensure the existence of M .

Assumption 2.3. The matrices C and B satisfy CB , 0.

Assumption 2.3 holds for many practical power systems, including the one we will
use in the case studies in Section 2.5.

The input estimation (2.11) gives an unbiased and minimum variance estimate of
the state and the input. The covariance of xi (t |t), denoted by Σi

t |t ∈ R
n×n, is given

recursively by

Σ
i
t+1|t+1 = (In − BMC)(AΣi

t |t AT +Q)(In − BMC)T + BMW MT BT, (2.12)

where Q and W are defined in (2.3). Denote the input estimate error by ei (t) :=
ûi (t |t+1)−u(t). Define theσ-algebra Ft−1 := σ (ei (τ − 1); i = 1, . . . , N, 1 ≤ τ ≤ t)
which includes the historical information before time t for all the loads. The
expectation and variance of ei (t) conditioned on Ft−1 are [94]:

E [ei (t) |Ft−1] = 0 (2.13)

and

E
[
(ei (t))2 |Ft−1

]
=

C AΣi
t |t ATCT +W

(CB)2 . (2.14)

The following proposition provides a condition under which E
[
(ei (t))2 |Ft−1

]
con-

verges to a constant as t → ∞.

Proposition 2.1. Denote the eigenvalues of (In − B(CB)−1C)A by λs, s = 1, . . . , n.
If |λs | < 1 for all s = 1, . . . , n, then

lim
t→∞
E

[
(ei (t))2 |Ft−1

]
= σ2

∞ (2.15)

where σ2
∞ is a constant determined by A, B, C, Q, and W , and independent of i.

Proof. See Appendix 2.A.

For any power system model in the form of (2.2), we can check a priori whether the
condition in Proposition 2.1 is satisfied. However, the implications of this condition
still need to be understood in future studies.

The following corollary, which is a straightforward consequence of Proposition 2.1,
gives a bound on the variance of the input estimate error.
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Corollary 2.1. If the condition for Proposition 2.1 holds, then E
[
(ei (t))2 |Ft−1

]
≤

σ2 for all i = 1, . . . , N and all t ≥ 0, where σ2 is a constant which depends on A, B,
C, Q, W , and the initial covariance Σi

0|0 for all i = 1, . . . , N .

With the input estimation (2.11), every load can get a local estimate of u. The
estimates of different loads i may not be the same, due to different realizations of
measurement noise ξi for different i. By (2.10), the inconsistencies of estimates of u

lead to inconsistencies of pi between different loads i. However, in the decentralized
algorithm informally given in Section 2.1, we desire pi to converge to the optimal
point of Dual OLC for all i = 1, . . . , N . Therefore, the inconsistencies of pi between
the loads should be eliminated or mitigated. In Section 2.3 below, we will introduce
a method to mitigate such inconsistencies. Then, we will formally propose the
decentralized load control algorithm and prove its convergence.

2.3 Decentralized load control: algorithm and convergence
In this section, we introduce a method to mitigate the inconsistencies of pi between
different loads, and describe formally the decentralized, frequency-based algorithm
that solves the optimal load control problem OLC. Then, we discuss the communi-
cation architecture that supports this algorithm. We also present convergence results
of the proposed algorithm.

Decentralized load control algorithm
The decentralized algorithm was informally discussed in Section 2.1. The dual
variable update in (2.10) requires estimating u locally. As shown in Section 2.2,
there may be inconsistencies between local estimates of u, and hence between pi,
for different loads i.

We use neighborhood communication between the loads to mitigate such incon-
sistencies. The information flow of such communication can be regarded as an
undirected graph, since the communication is in two ways. In this graph, denote the
set of neighbors of load i at time t as N (i, t). Load i is assigned a weight ri j (t) for
all j ∈ N (i, t), and a weight rii (t) for itself. Note that if j ∈ N (i, t) then i ∈ N ( j, t).
We make ri j (t) = r ji (t), and can always find the weights that satisfy∑

j=i, j∈N (i,t)

ri j (t) = 1,
∑

j=i, j∈N (i,t)

r ji (t) = 1. (2.16)

Other conditions on the weights will be discussed later in this section. Through
neighborhood communication, load i receives the values p j (t) of the dual variable
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from all j ∈ N (i, t), and calculates their average value, denoted by qi (t), as

qi (t) =
∑

j=i, j∈N (i,t)

ri j (t)p j (t). (2.17)

This averaging procedure is typically used in consensus algorithms [95]. Consensus,
in our problem,means that the loads seek agreement on the values of the dual variable
p. In (2.17), qi is an auxiliary variable which denotes a local average of the values
of the dual variable across load i and its neighbors. As the algorithm iterates, this
local averaging propagates to a global agreement on the values of the dual variable
throughout the network. Combining such a consensus procedure with the estimation
of u in Section 2.2, we have the following decentralized algorithm to solve OLC
(2.4) and its dual (2.9).

Algorithm 2.1. Decentralized load-side frequency control for single-machine sys-
tems

At time t = 0, the following information is known to all loads i = 1, . . . , N : the
matrices A, B and C in system model (2.2), the lower bound p and upper bound
p defined in Section 2.1, and a sequence of positive stepsizes {γ(t), t = 1, 2, . . . }
which is the same for all the loads. Each load i starts from an arbitrary initial state
estimate x̂i (1|0) and an initial value of dual variable qi (0).

At time instants t = 1, 2, . . . , every load i:

1. Measures the frequency deviation ∆ωi (t), and calculates ûi (t − 1|t) using the
input estimation (2.11).

2. Updates the value of dual variable according to

pi (t) = max
{
min{qi (t − 1) + γ(t)ûi (t − 1|t), p}, p

}
(2.18)

and transmits pi (t) to all of its neighbors j ∈ N (i, t).

3. Receives the p j (t) from all j ∈ N (i, t), and calculates qi (t) as (2.17).

4. Computes load reduction ∆di (t) = ∆di (qi (t)) where ∆di (·) is defined in (2.8).

Before proving the convergence of Algorithm 2.1, we first introduce the neigh-
borhood communication supporting the information exchange in (2.17), and other
conditions on ri j (t) besides (2.16), which are necessary for the convergence of
Algorithm 2.1.
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Neighborhood area communication
As an example, we take the smart grid communication architecture proposed by
Trilliant, Inc. [96] shown in Fig. 2.2.

Wide Area Network

Neighborhood Area Network

Home Area Network

Figure 2.2: The home area network (HAN) supports the communication between
appliances and smart meters. The neighborhood area network (NAN), which is used
in our load control, aids the communication between utilities and smart meters. The
wide area network (WAN) aids the long range communication between substations.
This figure is a slightly modified version of a similar figure in [96].

The load control scheme given by Algorithm 2.1 does not rely on communication
between all the loads and a control center. Instead, it uses communication between
each load and its neighbors. This neighborhood communication uses mainly a
neighborhood area network (NAN). In NAN, reliable, scalable, fast responding and
cost-effective communication technologies such as 802.2.15.4/ZigBee are widely
used to facilitate the implementation of the decentralized load control.

For the convergence proof of Algorithm 2.1, we make the following assumption on
the weights ri j (t) in (2.17).

Assumption 2.4. There exists a scalar 0 < η < 1 such that for all i = 1, . . . , N and
all t ≥ 0, we have ri j (t) ≥ η if j = i or j ∈ N (i, t), and ri j (t) = 0 otherwise.

With Assumption 2.4, equation (2.17) simplifies to

qi (t) =
N∑

j=1
ri j (t)p j (t). (2.19)
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Moreover, in order to make the information at load j affect load i infinitely often, we
assume that within any fixed period of time, the set of communication links which
have appeared form a connected, undirected graph. Define Et := {(i, j) |ri j (t) > 0}
to be the set of undirected links at time t. The connectivity requirement above is
formally stated in the following assumption.

Assumption 2.5. There exists a integer Q ≥ 1 such that the graph (V,
⋃

τ=1,...,Q
Et+τ−1)

is connected for all t.

In reality, the NAN may have specific topologies, e.g., bus, ring, star, linear topol-
ogy, or mixed topologies, as discussed in [97], [98]. All these topologies satisfy
Assumption 2.5. However, the convergence analysis does not require any additional
assumptions on the topology beyond Assumption 2.5. We will consider a realistic
topology in case studies in Section 2.5.

Define R(t) to be thematrixwith (i, j)-th entry ri j (t), and defineΦ(t, s) := R(t)R(t−
1) . . . R(s + 1). The following result given by [95, Lemma 3.2] will be used in the
convergence proof of Algorithm 2.1:

�����
[Φ(t, s)]i j −

1
N

�����
≤ θ βt−s, (2.20)

where

θ =
(
1 −

η

4N2

)−2
, β =

(
1 −

η

4N2

) 1
Q

. (2.21)

Convergence of Algorithm 2.1
Now we present results regarding the convergence of Algorithm 2.1. We first
consider the case where the sequence {γ(t), t = 1, 2, . . . } of stepsizes converges to
some nonnegative constant. Theorem 2.1 gives a bound on the difference between
the maximal expected value of the dual objective function Ψ and the optimal value
of Dual OLC, denoted by Ψ∗.

Theorem 2.1. Suppose Assumptions 2.1–2.5 hold. If lim
t→∞

γ(t) = γ ≥ 0 and
∞∑

t=1
γ(t) = ∞, then, for all i = 1, . . . , N ,

lim sup
t→∞

E[Ψ(pi (t))] ≥ Ψ∗ −
γ(G2 + σ2)

2
− γG(αN L + G)

(
2 +

Nθ β
1 − β

)
, (2.22)

where G := max
{�����

N∑
i=1

di − ∆g
�����
, |∆g |

}
, σ is the bound on input estimate error in

Corollary 2.1, α is defined in Assumption 2.2, N is the number of loads, and
L := p − p.
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Proof. See Appendix 2.B.

Taking γ = 0 in (2.22), we have the following corollary, which is straightforward
from Theorem 2.1.

Corollary 2.2. Suppose Assumptions 2.1–2.5 hold. If lim
t→∞

γ(t) = 0 and
∞∑

t=1
γ(t) =

∞, then, for all i = 1, . . . , N ,

lim sup
t→∞

E
[
Ψ

(
pi (t)

)]
= Ψ∗.

Define ∆d(t) = [∆d1(t), . . . ,∆dN (t)]T . With further restrictions on the stepsize
γ(t), the sequence {∆d(t), t = 1, 2, . . . } produced by Algorithm 2.1 converges
almost surely to the optimal point of OLC, as stated in Theorem 2.2.

Theorem 2.2. Suppose Assumptions 2.1–2.5 hold,
∞∑

t=1
γ(t) = ∞, and

∞∑
t=1

γ(t)2 < ∞.

Then, for all i = 1, . . . , N , the sequence {qi (t)} converges to the same optimal point
ofDual OLCwith probability 1 and inmean square. Moreover, the sequence {∆d(t)}
converges to the optimal point of OLC with probability 1.

Proof. See Appendix 2.C.

In Algorithm 2.1, neighborhood communication is used to mitigate the effect of
measurement noise. Now we consider a special case where the process disturbance
ζ and the measurement noise ξi for all i = 1, . . . , N are zero. In this case, the
following theorem shows that OLC can be solved by using a simplified version of
Algorithm 2.1 which does not need neighborhood communication.

Theorem 2.3. Suppose Assumptions 2.1–2.3 hold, and the following conditions are
satisfied:

1. ζ (t) = 0 and ξi (t) = 0 for all i = 1, . . . , N and t ≥ 0.

2. In Algorithm 2.1, for all i = 1, . . . , N , x̂i (1|0) = x(1), and qi (0) are the same.

3. For all i = 1, . . . , N and all t ≥ 0, rii (t) = 1, and N (i, t) = ∅.

4. Constant stepsize γ(t) = γ, where γ satisfies 0 < γ < 2/(αN ), is used.

Then, for all i = 1, . . . , N , any limit point (at least one exists) of the sequence
{
(
∆d(t), qi (t)

)
, t = 1, 2, . . . } is primal-dual optimal for OLC and Dual OLC.
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Proof. See Appendix 2.D.

The algorithm and convergence proof above are based on an underlying assumption
that all the loads simultaneously and synchronously measure their local frequency
deviations and take control actions. In practice, this is obviously not the case.
In the next section we will investigate convergence of the proposed scheme under
asynchronous measurements and actuations with bounded time delays.

2.4 Asynchronous measurements and actuations
In this section, we ignore stochastic process disturbance and measurement noise, by
assuming ζ (t) = 0 and ξi (t) = 0 for all i = 1, . . . , N and t ≥ 0.

In the asynchronous setting, the frequency deviation ∆ω(t) at time t is accurately
measured by load i = 1, . . . , N at some time within the interval [t + r (i, t) −
1, t + r (i, t)), where r (i, t) ∈ N is an arbitrary fixed number. In the time inter-
val [t − 1, t), load i measures a set of frequency deviation signals, denoted by
Ωi,t = {∆ω̂

1
i,t, ...,∆ω̂

Ki,t

i,t }, where Ki,t is the number of measured frequency deviation
samples (Ωi,t = ∅ and Ki,t = 0 means no frequency deviation signal is measured
during [t−1, t)). Moreover, load i is able to change its power only at a subset of time
instants, denoted by Ti ⊆ {0, 1, 2, . . . }. For the asynchronous algorithm to converge,
we make the following assumptions on r (i, t) and Ti.

Assumption 2.6. For all i = 1, . . . , N , t ≥ 0, l ∈ {1, . . . , Ki,t } and s ∈ {1, . . . , t},
if ∆ω̂l

i,t is the measurement of ∆ωs, then ∆ω̂l+1
i,t is the measurement of ∆ωs+1.

Moreover, there exists r ∈ N such that r (i, t) ≤ r for all i = 1, . . . , N and t ≥ 0.

Assumption 2.7. For all i = 1, . . . , N , the difference between any two consecutive
elements in Ti is bounded.

Assumption 2.6 says that the delayed frequency measurements arrive in order. In
other words, the frequency deviation signal that occurs first is sensed first by the
load. Moreover, the time delays in frequency measurement are bounded by r .
Assumption 2.7 says that the time between any consecutive change of any load is
bounded.

With the settings above, we present the asynchronous algorithm as follows.

Algorithm 2.2. Asynchronous decentralized load-side frequency control
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Suppose all loads i = 1, . . . , N know the matrices A, B and C in system model (2.2).
Choose the same stepsize γ > 0 for all of them. At time t = 0, initialize each load i

with x̂i
0 = x(0),2 and pi (0) = 0.

In the time interval [t − 1, t) for t = 1, 2, . . . , every load i:

1. At time (t − 1), sets x̂i
t−1(0|0) = x̂i

t−1, pi
t−1(0) = pi (t − 1).

2. Once load i measures a new frequency deviation signal ∆ω̂k
i,t ∈ Ωi,t for

k = 1, . . . , Ki,t , it calculates ûi
t−1(k) by

x̂i
t−1(k |k − 1) = Ax̂i

t−1(k − 1|k − 1),

ûi
t−1(k) = (CB)−1(∆ω̂k

i,t − Cx̂i
t−1(k |k − 1)),

x̂i
t−1(k |k) = x̂i

t−1(k |k − 1) + Bûi
t−1(k),

(2.23)

and updates the value of p by

pi
t−1(k) = pi

t−1(k − 1) + γûi
t−1(k). (2.24)

3. At time t, sets x̂i
t = x̂i

t−1(Ki,t |Ki,t ) and pi (t) = pi
t−1(Ki,t ).

4. If load i is able to change its power at time t, i.e., if t ∈ Ti, it determines this
change as ∆di (t) = ∆di (pi (t)) where ∆di (·) is defined in (2.8); otherwise,
∆di (t) = ∆di (t − 1).

The following theorem states the convergence of Algorithm 2.2.

Theorem 2.4. Suppose Assumptions 2.1–2.3, 2.6, and 2.7 hold, and the stepsize γ
satisfies

0 < γ <
1

αN/2 + 2r
.

Then for all i = 1, . . . , N , any limit point (at least one exists) of the sequence
{
(
∆d(t), pi (t)

)
, t = 1, 2, . . . } is primal-dual optimal for OLC and Dual OLC.

Proof. See Appendix 2.E.
2Assume the initial state of the system is known to all the loads.
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2.5 Simulations
We take a relatively detailed example of the power system model introduced in (2.2)
for simulation-based experiments. We use Algorithm 2.1 to control the loads when
a sudden generation drop occurs, and observe frequency, load reduction and total
end-use disutility to evaluate its performance. Additionally, we test the robustness
of Algorithm 2.1 to model inaccuracies by letting the loads use a simplified, less
accurate model to estimate the mismatch between total load and generation. We
also discuss tradeoffs between the amount of communication and the performance
of the proposed scheme, and the effect of the number of participating loads.

System settings
We consider an example of the single generator model (2.2), as shown in Fig. 2.3.
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Figure 2.3: A single-machine power system model used in simulations.

This generator has a speed governor with the transfer function

Ggov (s) = −
1

R(1 + sTG)
,

a turbine with the transfer function

Gturb(s) =
(1 + sFHPTRH )

(1 + sTCH )(1 + sTRH )
,

and a power system stabilizer (PSS) with the transfer function

Gstab(s) =
sKw (1 + sT1)(1 + sT3)

(1 + sTw)(1 + sT2)(1 + sT4)
.
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The output voltage of the generator is regulated by an IEEE AC4A exciter [14],
which has the transfer function

Gx (s) =
KA(1 + sTC)

(1 + sTA)(1 + sTB)
.

Moreover, the flux decay transfer function of the generator is

G f lux (s) =
K3

1 + K3τ
′
d0s

.

Table 2.1 gives the values of parameters used in the transfer functions above.

Param. Value Param. Value (s) Param. Value (s)
KA 200 H 5 T1 0.2
K1 1.0755 TA 0.04 T2 0.02
K2 1.2578 TB 12 T3 0.4
K3 0.3072 TC 1 T4 0.04
K4 1.7124 τ′d0 5.9 Tw 10

Param. Value Param. Value (s) Param. Value (pu)
K5 -0.0409 TG 0.2 D 1
K6 0.4971 TCH 0.3 R 0.05
Kw 20 TRH 7 FHP 0.3

Table 2.1: Parameters used in the simulations of the single-machine system.

The continuous-time state-space form of the model above is

ẋ = Ac x + Bcu,

∆ω = Cc x.

Then, taking a sample time ∆t = 0.5 s, we get the matrices A, B and C in (2.2) using
the following equations:

A = eAc∆t,

B = A−1
c (A − In)Bc,

C = Cc.

There are N controllable loads, which are placed and connected using a linear
topology, the most commonly seen real-world topology for power distribution sys-
tems [98]. Each load i communicates directly with loads from max{i − K, 1} to
min{i + K, N }, as shown in Fig. 2.4.
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Communication links connected to i 

Figure 2.4: An example communication graph of loads.

Load i has a disutility function ci (∆di) = (∆di)2/(2αi). In this section, we pick αi

subject to the uniformdistribution on [1, 3]. The baseline power is Pbase = 200MVA.
For i = 1, . . . , N , we have ∆di ∈ [0, di]. We choose di to be positive numbers such
that

∑N
i=1 di = 0.30 per unit (pu). Generation drop ∆g(t) makes two step changes

resembling sudden generation loss events:

∆g(t) =




0 0 ≤ t < 20 s

0.05 pu 20 s ≤ t < 50 s

0.15 pu t ≥ 50 s.

The process disturbance ζ has covarianceQ = B(0.002 pu)2BT for B obtained above.
The measurement noise ξi for all i = 1, . . . , N has variance W = (0.001 pu)2. In
Algorithm 2.1, all the loads use a diminishing stepsize γ(t) = γ(0)/(t0.8) for some
arbitrarily selected γ(0) > 0, so that

∑∞
t=1 γ(t) = ∞ and

∑∞
t=1 γ(t)2 < ∞. Therefore,

all the conditions in Theorems 2.1 and 2.2 are satisfied.

Robustness to model inaccuracies
We compare the performance of the load control scheme Algorithm 2.1 between
the two settings: “accurate modeling” and “simplified modeling.” Under accurate
modeling, loads use the accurate model given by matrices A, B and C for input
estimation. Under simplified modeling, loads use a simplified, less accurate model,
due to the practical consideration that the system operator or utility company may
not reveal the exact system information to users because of privacy issues. There
are multiple ways to simplify the system model. For example, in the model given
by Fig. 2.3, we consider the swing dynamics only and ignore all the other parts,
and, with the values of parameters given in Table 2.1, we have a simplified transfer
function

G̃(s) = −
0.1555s + 0.0222

s2 + 0.9918s + 0.4666

such that ∆ω(s) = G̃(s)u(s).
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Figs. 2.5–2.7 respectively show the frequency, the total load reduction and the total
end-use disutility with loads using different models. There are N = 100 loads, and
every load communicates with K = 5 neighbors (except the loads at the two ends of
the linear graph in Fig. 2.4).
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Figure 2.5: The frequency (N=100, K=5). The dash-dot line is the frequency
without load control. The solid and dashed lines are those with load control where
loads use different models.
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Figure 2.6: The total load reduction (N=100, K=5). The dash-dot line is the
generation drop. The solid and dashed lines are total load reductions by load control
where loads use different models.
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Figure 2.7: The total end-use disutility (N=100, K=5). The dash-dot line is the
minimal disutility. The solid and dashed lines are trajectories of the disutility with
load control where loads use different models.

In both scenarios of load control using different models, the frequency is recovered
to 60 Hz faster than in the case without load control. The total load reduction follows
the generation drop, and the total end-use disutility converges to the minimum, both
within a short time. It takes 7 iterations (3.5 seconds) for the disutility to achieve and
stay within ±5% of the new steady-state (minimum) value after the first generation
drop, and 8 iterations (4 seconds) after the second. Moreover, all the results under
the simplified model are close to those under the accurate model, which suggests
the proposed scheme is robust to model inaccuracies considered here.

Tradeoffs between communication and performance
Theorem 2.3 states the convergence of Algorithm 2.1 without communication be-
tween loads, when there is no process disturbance or measurement noise in the
system. Otherwise, communication is required to guarantee satisfactory perfor-
mance of the proposed scheme. To demonstrate this, Figs. 2.8–2.10 respectively
show the frequency, the total load reduction and the total end-use disutility when
loads perform Algorithm 2.1 with K = 0, i.e., no communication between the loads.
Constant stepsize γ = 1.4/(αN ) is used to satisfy the condition in Theorem 2.3.

Results show that without measurement noise, Algorithm 2.1 performs well without
communication, as stated in Theorem 2.3. We relax the assumption in Theorem
2.3 by allowing non-zero process disturbance, and Algorithm 2.1 still works well
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Figure 2.8: The frequency when there is no communication in load control (N=100,
K=0). The dash-dot line is the frequency without load control. The solid and dashed
lines are respectively the frequencies without and with measurement noise in load
control.
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Figure 2.9: The total load reduction when there is no communication in load control
(N=100, K=0). The dash-dot line is the generation drop. The solid and dashed lines
are respectively the load reductions without and with measurement noise in load
control.

without communication. However, when there is measurement noise, Algorithm
2.1 produces a lower nadir in frequency, a larger delay in load adjustment, and a
disutility much higher than the minimum.

We further discuss tradeoffs between the amount of communication and the per-
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Figure 2.10: The total disutility when there is no communication in load control
(N=100, K=0). The dash-dot line is the minimal disutility. The solid and dashed
lines are respectively the disutility without and with measurement noise in load
control.

formance of Algorithm 2.1. In the communication graph we use, as K grows, the
connectivity gets stronger and more communication is used. We show the total
end-use disutility with K = 0, 1, 40, in Fig. 2.11.

20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 x 10−4

t: Time (sec)

To
ta

l E
nd

−U
se

 D
is

ut
ili

ty
 

 

 

minimum
K=0
K=1
K=40

Figure 2.11: The total end-use disutility with different numbers K of neighbors in
the load control (N=100).

We see fromFig. 2.11 and Fig. 2.7 (inwhich K = 5) that, withmore communication,
Algorithm 2.1 performs better by producing a total disutility closer to the minimum.
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On the other hand, the results are significantly improved when K increases from 0
to 1, but not so distinguishable when increasing K from 5 to 40. It implies that the
proposed scheme can effectively address frequency measurement noise, and receive
most of its benefit, using a moderate amount of neighborhood communication.

Effects of the number of loads
We consider the effects of different numbers of loads that implement the decentral-
ized load control Algorithm 2.1. Fig. 2.12 shows the total end-use disutility with
N = 10, N = 100, and N = 1000. In all the three cases, every load communicates
with the same number of neighbors K = 5. Moreover, the values of parameters in
different cases are scaled so that they have the same minimal disutility.
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Figure 2.12: The total end-use disutility with different numbers N of loads (K=5).

We can see that the difference is negligible between different cases, which means
the performance of the proposed scheme does not degrade as more and more loads
participate. This result implies that the frequency-based, decentralized load control
is suitable for large-scale deployment.

2.6 Conclusion
We proposed a decentralized optimal load control (OLC) scheme that rebalances
power, stabilizes frequency, and restores frequency to 60 Hz, in a manner that mini-
mizes total disutility, after a change in generation or load in a single-machine power
system. In the proposed scheme, loads estimate the total load-generation mismatch
from local frequency measurements. Neighborhood communication between loads
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is added to mitigate the performance degradation caused by frequency measurement
noise. Convergence of the proposed algorithm was proved, under synchronous and
asynchronous measurements and actuations. Simulation-based experiments showed
effectiveness of the proposed scheme, even when the loads use a simplified, less
accurate system model to estimate the total load-generation mismatch. We also
showed with simulations that the performance of the proposed scheme can be sig-
nificantly improved with a small amount of communication, and is scalable to a
large number of loads.
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APPENDICES

2.A Proof of Proposition 2.1
Recall that M = (CB)−1. The matrix (In − BMC)Q(In − BMC)T + BMW MT BT

is positive semi-definite, since both Q and W are positive semi-definite. Then, if
|λs | < 1 for all s = 1, . . . , n, the equation

Σ =(In − BMC) AΣAT (In − BMC)T

+ (In − BMC)Q(In − BMC)T + BMW MT BT

has a unique, positive semi-definite solution Σ∗ [99]. Additionally, lim
t→∞
Σi

t |t exists
and is Σ∗. By (2.14), we have

lim
t→∞
E

[
(ei (t))2 |Ft−1

]
=

C AΣ∗ATCT +W
(CB)2 ,

where the right-hand-side is independent of i and can be determined by A, B, C, Q,
and W .

2.B Proof of Theorem 2.1
We first show two lemmas as a preparation for proving Theorem 2.1. Define
y(t) := 1

N
∑N

i=1 pi (t).

Lemma 2.1. Suppose Assumptions 2.4 and 2.5 hold. Then for all i = 1, . . . , N and
t ≥ 0,

|y(t) − pi (t) | ≤θ βt
N∑

j=1
|p j (0) | + θ

t−1∑
τ=1

γ(τ) βt−τ
N∑

j=1
(G + |e j

τ−1 |)

+
γ(t)
N

N∑
j=1

(G + |e j
t |) + γ(t)(G + |ei

t |),

(2.25)

where G = max{|
∑N

i=1 di + ∆g |, |∆g |}, and θ, β are defined in (2.21).

Proof. By the fact that ∆di ∈ [0, di] for i = 1, . . . , N , we have

������

N∑
i=1
Ψ
′
i (qi (t − 1)) − ∆g

������
=

������
−

N∑
i=1
∆di (qi (t − 1)) − ∆g

������
≤ G.

Following [95, Lemma 4.1], we get Lemma 2.1.
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Lemma 2.2. Suppose Assumptions 2.1–2.5 hold. Then for all t ≥ 0 and any
x ∈ [p, p], we have

N∑
i=1

(
qi (t + 1) − x

)2
≤

N∑
i=1

(
qi (t) − x

)2
+ 2γ(t + 1)

N∑
i=1

ei
t
(
qi (t) − x

)
+ 2γ(t + 1)N

(
Ψ(y(t)) − Ψ(x)

)
+ 2γ(t + 1)NαL

N∑
i=1
|y(t) − pi (t) |

+ γ2(t + 1)
N∑

i=1
(G + |ei

t |)
2,

(2.26)

where L = p − p.

Proof. By (2.19) and the convexity of squared norm, we have

N∑
i=1

(
qi (t + 1) − x

)2
≤

N∑
i=1

N∑
j=1

ri j (t + 1)
(
p j (t + 1) − x

)2

=

N∑
j=1

(
p j (t + 1) − x

)2
.

(2.27)

Moreover, by (2.18) and the projection property, we have

(
pi (t + 1) − x

)2
≤

*.
,
qi (t) + γ(t + 1)(

N∑
j=1
Ψ
′
j (qj (t)) − ∆g + ei

t ) − x+/
-

2

=
(
qi (t) − x

)2
+ 2γ(t + 1)ei

t
(
qi (t) − x

)
+ 2γ(t + 1) *.

,

N∑
j=1
Ψ
′
j (qj (t)) − ∆g+/

-

(
qi (t) − x

)
+ γ2(t + 1) *.

,

N∑
j=1
Ψ
′
j (qj (t)) − ∆g + ei

t
+/
-

2

.

(2.28)

By mean value theorem [100], we have

*.
,

N∑
j=1
Ψ
′
j (qj (t)) − ∆g+/

-

N∑
i=1

(qi (t) − x)

= N *.
,
Ψ
′(y(t)) +

N∑
j=1
Ψ
′′
j (z j (t))(qj (t) − y(t))+/

-

(
y(t) − x

)
,

(2.29)
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where zi (t) is some value between qi (t) and y(t).3 To obtain (2.29), we use the fact
y(t) = 1

N
∑N

i=1 qi (t). By (2.27)–(2.29), we have

N∑
i=1

(
qi (t + 1) − x

)2
≤

N∑
i=1

(
qi (t) − x

)2

+ 2γ(t + 1)N *.
,
Ψ
′(y(t)) +

N∑
j=1
Ψ
′′
j (z j (t))(qj (t) − y(t))+/

-

×
(
y(t) − x

)
+ 2γ(t + 1)

N∑
i=1

ei
t
(
qi (t) − x

)
+ γ2(t + 1)

N∑
i=1

*.
,

N∑
j=1
Ψ
′
j (qj (t)) − ∆g + ei

t
+/
-

2

.

(2.30)

By concavity of Ψ, we have

Ψ
′(y(t))(y(t) − x) ≤ Ψ(y(t)) − Ψ(x). (2.31)

We also have

*.
,

N∑
j=1
Ψ
′′
j (z j (t))(qj (t) − y(t))+/

-
(y(t) − x)

≤ αL
N∑

j=1
|y(t) − qj (t) | ≤ αL

N∑
j=1
|y(t) − p j (t) |,

(2.32)

where the first inequality is due to Ψ′′j (z j (t)) ≤ αi ≤ α (by Assumption 2.2) and the
fact that |y(t) − x | ≤ L. The second inequality is due to convexity of the absolute
value function. Moreover, since G is the bound on |u(t) | for all t, we have

*.
,

N∑
j=1
Ψ
′
j (qj (t)) − ∆g + ei

t
+/
-

2

= (−u(t) + ei
t )

2

≤ (G + |ei
t |)

2.

(2.33)

Incorporating (2.31)–(2.33) into (2.30), we get Lemma 2.2.

With Lemmas 2.1 and 2.2, we can complete the proof of Theorem 2.1. In (2.26), we
take x as p∗, which is an optimal point of Dual OLC. We then add up (2.26) over

3At the point where Ψ′i is not differentiable, Ψ
′′
i should be replaced by the subgradient of Ψ′i ,

without influencing the proof.
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t = 0, . . . ,T − 1, which leads to

N∑
i=1
E[

(
qi (T ) − p∗

)2] ≤
N∑

i=1
E[

(
qi (0) − x

)2]

+ 2N
T−1∑
t=0

γ(t + 1)
(
E[Ψ(y(t))] − Ψ∗

)
+ 2NαL

T−1∑
t=0

γ(t + 1)
N∑

i=1
E( |y(t) − pi (t) |)

+ N (G2 + σ2)
T−1∑
t=0

γ2(t + 1).

It follows that

2N
T−1∑
t=0

γ(t + 1)


E[Ψ(y(t))] − Ψ∗+αL

N∑
i=1
E(|y(t) − pi (t) |)+

γ(t + 1)(G2 + σ2)
2




≥ −

N∑
i=1
E[

(
qi (0) − x

)2].

Then, with limt→∞ γ(t) = γ and
∑

t γ(t) = ∞, we have

lim sup
t→∞

E[Ψ(y(t))] ≥ Ψ∗ − αL
N∑

i=1
lim sup

t→∞
E(|y(t) − pi (t) |) −

γ(G2 + σ2)
2

.(2.34)

On the other hand, we have

E[Ψ(pi (t)) − Ψ(y(t))] ≥ −E[Ψ′(zi (t))(pi (t) − y(t))]

≥ −G E(|y(t) − pi (t) |),
(2.35)

where zi (t) is some value between between pi (t) and y(t). Moreover, taking the
expectation on both sides of (2.25) and considering E(|ei (t) |) = 0 from (2.13), we
have

E(|y(t) − pi (t) |) ≤ θ βt
N∑

j=1
|p j (0) | + θNG

t−1∑
τ=1

γ(τ) βt−τ + 2γ(t)G. (2.36)

By [95, Lemma 3.1(a)], we have lim
t→∞

t−1∑
τ=1

γ(τ) βt−τ =
βγ

1−β . Therefore,

lim
t→∞
E(|y(t) − pi (t) |) ≤ γG

(
2 +

Nθ β
1 − β

)
. (2.37)

Incorporating (2.35)(2.37) into (2.34), we have (2.22), i.e., Theorem 2.1 is proved.
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2.C Proof of Theorem 2.2
With Assumptions 2.1–2.5, Equation (2.13), and Corollary 2.1, all the conditions for
[95, Theorem 6.2] are satisfied. Hence for all i = 1, . . . , N the sequence {qi (t), t =
1, 2, . . . } converges to the same optimal point of Dual OLC with probability 1 and
in mean square. Define ∆d(q(t)) = [∆d1(q1(t)), . . . ,∆dN (qN (t))]T . By the result
in Section 2.1, {∆d(q(t)), t = 1, 2, . . . } converges to the optimal point of the primal
problem OLC with probability 1. Since ∆d(t) = ∆d

(
q(t)

)
, Theorem 2.2 holds.

2.D Proof of Theorem 2.3
It is easy to show that, for all i = 1, . . . , N and t ≥ 0, if ζ (t) = 0, ξi (t) = 0,
and x̂i (1|0) = x(1), then ûi (t − 1|t) = u(t − 1). Moreover, since rii (t) = 1, and
N (i, t) = ∅, by (2.17), qi (t) = pi (t) for all i = 1, . . . , N and all t ≥ 0. Then,
since qi (0) are the same for all i, equation (2.18) implies that there is a sequence
{q(t), t = 1, 2, . . . } such that qi (t) = q(t) for all i = 1, . . . , N and t ≥ 0.

To complete the proof of Theorem 2.3, we give two lemmas regarding the properties
of Ψ. We skip their proofs since Lemma 2.3 follows directly from Assumption 2.1,
and the proof of Lemma 2.4 uses the same technique as [101, Lemma 2-3].

Lemma 2.3. Suppose Assumption 2.1 holds. Then Ψ is concave, continuously
differentiable and bounded on

[
p, p

]
.

Lemma 2.4. Suppose Assumptions 2.1–2.2 hold. Then for any p, q ∈
[
p, p

]

|Ψ′(q) − Ψ′(p) | ≤ αN |q − p|.

Given Lemma 2.3, Lemma 2.4, and 0 < γ < 2/(αN ), by [102, Proposition 3.4],
any limit point of the sequence {q(t), t = 1, 2, . . . } (if one exists) is an optimal point
of Dual OLC. Moreover, since q(t) ∈

[
p, p

]
lies in a compact set for all t, there

exists at least one limit point of {q(t), t = 1, 2, . . . } denoted by q∗. By (2.8), ∆di (·)
is continuous on

[
p, p

]
, and thus ∆d(q∗) is a limit point of {∆d(t), t = 1, 2, . . . }.

By strong duality between OLC and Dual OLC, ∆d(q∗) is primal optimal.

2.E Proof of Theorem 2.4
To prove Theorem 2.4 (convergence of Algorithm 2.2), we first show that Algorithm
2.2 is a special case of the asynchronous flow control algorithm [101, Algorithm
A2].

In Algorithm 2.2, load i = 1, . . . , N generates a sequence

Ui,t := ûi
0(1), . . . , ûi

0(Ki,1), . . . , ûi
t−1(1), . . . , ûi

t−1(Ki,t )
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and a sequence

Pi,t := pi
0(1), . . . , pi

0(Ki,1), . . . , pi
t−1(1), . . . , pi

t−1(Ki,t ).

We formulate another sequence {p(t), t ≥ 0} starting from p(0) = 0 such that

p(t) = p(t − 1) + γu(t − 1). (2.38)

Define τ(i, t) := max{τ = 0, 1, . . . |τ + r (i, τ) = t} where r (i, τ) is load i’s measure-
ment delay for ∆ω(τ). It is easy to prove that when all the process disturbance and
measurement noise are ignored, i.e., ζ (t) = 0 and ξi (t) = 0 for all i = 1, . . . , N and
t ≥ 0, the input estimator (2.11) generates precise estimate ûi (t − 1|t) = u(t − 1).
Then the following lemma is straightforward from (2.24)(2.38).

Lemma 2.5. The sequence Ui,t is exactly u(0), . . . , u(τ(i, t) − 1), and the sequence
Pi,t is exactly p(1), . . . , p(τ(i, t)).

Recall that in Algorithm 2.2, pi (t) = pi
t−1(Ki,t ). Now we can consider p(t), u(t),

pi (t) and ∆di (t) respectively as the link price pl (t), the estimate of gradient λl (t),
the estimate of link price p̂s (t) and the transmission rate xs (t) in the asynchronous
flow control algorithm [101, Algorithm A2]. We can see that Algorithm 2.2 is a
special case of the asynchronous flow control algorithm. By the proof of [101,
Theorem 2], if Assumptions 2.1–2.3, 2.6, and 2.7 hold and the stepsize γ satisfies
0 < γ < 1/((αN/2) + 2r), any limit point (at least one exists) of the sequence
{
(
∆d(t), p(t)

)
, t = 1, 2, . . . } (and hence the sequence {

(
∆d(t), pi (t)

)
, t = 1, 2, . . . }

for all i = 1, . . . , N) is primal-dual optimal for OLC and Dual OLC.
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C h a p t e r 3

LOAD-SIDE FREQUENCY CONTROL IN MULTI-MACHINE
NETWORKS

Not all power systems are tightly electrically coupled, and therefore have coherent
frequency and can be modeled as single-machine systems as in Chapter 2. In the
current chapter, we study load-side frequency control in a multi-machine power
network, where different nodes may have different frequencies. Under a linearized
power networkmodel, we develop decentralized load-side primary frequency control
by exploiting power network dynamics as part of a primal-dual algorithm that solves
an optimal load control (OLC) problem. Such a control scheme rebalances power
and stabilizes frequency after a change in generation or load, in a manner that
minimizes total disutility for load control. We then extend controller design and
stability analysis to the case with a nonlinear power flow model and generator
dynamics and control. We also design and analyze stability of distributed secondary
frequency control which, using local frequency and power flow measurements and
communication between neighboring nodes, can restore frequency and inter-area
power flows to their nominal values. Moreover, we design a completely decentralized
frequency integral control that restores frequency to its nominal value and ensures
global convergence of the system, and a distributed averaging-based PI control that
makes the system locally asymptotically stable at an OLC solution.

This chapter is organized as follows. Section 3.1 introduces the power network
model and formulates the OLC problem. Section 3.2 presents the decentralized
load-side primary frequency control algorithm, whose convergence is proved in
Section 3.3 under a linearized power flow model. Sections 3.4 and 3.5 design and
analyze generator and load-side distributed control under a nonlinear power flow
model, where Section 3.4 is for primary frequency control, and Section 3.5 is for
secondary. Section 3.6 introduces the completely decentralized frequency integral
control, which, in Section 3.7, is modified to a distributed control to solve OLC by
adding averaging filters. Section 3.8 shows simulation results which demonstrate
effectiveness of the proposed control schemes. Section 3.9 concludes this chapter.
The Appendices provide a table of frequently used notations, a simulation result to
validate our model, and proofs of some lemmas in this chapter.
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3.1 System model and problem formulation
Let R denote the set of real numbers and N denote the set of non-zero natural
numbers. For a finite set N ⊂ N, let |N | denote its cardinality. For a set of scalar
numbers {ω j ∈ R | j ∈ N }, we useωN to denote the column vector ofω j for j ∈ N ;
we usually drop the subscript N when N is clear from the context, e.g., ω := ωN
if N is the set of all the buses in a network. For two vectors a ∈ R|G| and b ∈ R|L|,
(a, b) ∈ R|G|+|L| is a column vector. For two vectors a, b ∈ R|N |, a ≥ b (a ≤ b)
means a j ≥ b j (a j ≤ b j) for all j ∈ N .

For a matrix A, we use AT to denote its transpose, and Ai to denote its i-th row.
We use AG to denote the submatrix of A composed only of the rows Ai for i ∈ G.
The diagonal matrix of a sequence {a j, j ∈ N } is represented by diag(aN ) =
diag(a j, j ∈ N ), or aN for short when its meaning is clear. We use 1(0) to
denote the vector/matrix of all ones (zeros), whose dimension is understood from
the context. For a square matrix A, the expression A � 0 (A ≺ 0) means it is positive
(negative) definite, A � 0 (A � 0) means it is positive (negative) semi-definite.

For a, b ∈ R, a ≤ b, let [·]b
a denote max {min{·, b}, a}. For a signal ω(t) of time,

let ω̇ denote its time derivative dω
dt .

Power network model
We consider a power transmission network described by a graph (N , E) where
N = {1, . . . , |N |} is the set of buses and E ⊆ N ×N is the set of transmission lines
connecting the buses. We make the following assumptions:1

• The lines (i, j) ∈ E are lossless and characterized by their reactances xi j .

• The voltage magnitudes |Vj | of buses j ∈ N are constants.

• Reactive power injections at the buses and reactive power flows on the lines
are ignored.

We assume that (N , E) is directed, with an arbitrary orientation, so that if (i, j) ∈ E
then ( j, i) < E. We use (i, j) and i → j interchangeably to denote a link in E, and
use “i : i → j” and “k : j → k” respectively to denote the set of buses i that are
predecessors of bus j and the set of buses k that are successors of bus j. We also
assume without loss of generality that (N , E) is connected.

1These assumptions are similar to the standard DC approximation except that we do not assume
the nominal phase angle difference is small across each link.
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The network has two types of buses: generator buses and load buses. A generator
bus not only has loads, but also an AC generator that converts mechanical power
into electric power through a rotating prime mover. A load bus has only loads but
no generator. We assume that the system is three-phase balanced. For a bus j ∈ N ,
its phase a voltage at time t is

√
2|Vj | cos(ω0t+θ0

j +∆θ j (t)) whereω0 is the nominal
frequency, θ0

j is the nominal voltage phase angle, and ∆θ j (t) is the time-varying
phase angle deviation. The frequency at bus j is defined as ω j := ω0 + ∆θ̇ j , and
we call ∆ω j := ∆θ̇ j the frequency deviation at bus j. We assume that the frequency
deviations ∆ω j are small for all the buses j ∈ N and the differences ∆θi − ∆θ j

between phase angle deviations are small across all the links (i, j) ∈ E. We adopt a
standard dynamic model, e.g., in [16, Section 11.4].

Generator buses. We assume coherency between the internal and terminal (bus)
voltage phase angles of a generator; see our technical report [103, Sec. VII-C] for
a detailed justification. Then the dynamic on a generator bus j is modeled by the
swing equation

Mj∆ω̇ j + D′j∆ω j = Pm
j
′
− P0

loss, j − Pe
j ,

where Mj > 0 is the inertia constant of the generator. The term D′j∆ω j with D′j > 0
represents the (first-order approximation of) deviation in generator power loss due to
friction [16] from its nominal value P0

loss, j :=
(
D′jω

0
)
/2. Here Pm

j
′ is the mechanical

power injection to the generator, and Pe
j is the electric power export of the generator,

which equals the sum of loads at bus j and the net power flow from bus j to the rest
of the network.

In general, load power may depend on both the bus voltage magnitude (which is as-
sumed fixed) and frequency. We distinguish between three types of loads, frequency-
sensitive, frequency-insensitive but controllable, and uncontrollable loads. We
assume the power consumptions of frequency-sensitive (e.g., motor-type) loads
increase linearly with frequency deviation and model the aggregate power con-
sumption of these loads by d̂0

j +D′′j ∆ω j with D′′j > 0, where d̂0
j is its nominal value.

We assume frequency-insensitive loads can be actively controlled and our goal is
to design and analyze these control laws. Let d j denote the aggregate power of the
controllable (but frequency-insensitive) loads at bus j. Finally let Pl

j denote the
aggregate power consumption of uncontrollable (constant power) loads at bus j that
are neither of the above two types of loads; we assume Pl

j may change over time but
is pre-specified. Then the electric power Pe

j is the sum of frequency-sensitive loads,
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controllable loads, uncontrollable loads, and the net power injection from bus j to
other buses:

Pe
j := d̂0

j + D′′j ∆ω j + d j + Pl
j +

∑
k: j→k

Pj k −
∑

i:i→ j

Pi j,

where Pj k is the branch power flow from bus j to bus k.

Hence the dynamics on a generator bus j is

Mj∆ω̇ j = −
(
D j∆ω j + d j − Pm

j + Pout
j − Pin

j

)
,

where D j := D′j + D′′j , Pm
j := Pm

j
′ − P0

loss, j − d̂0
j − Pl

j , and Pout
j :=

∑
k: j→k Pj k

and Pin
j :=

∑
i:i→ j Pi j are respectively the total branch power flows out of and

into bus j. Note that Pl
j is integrated with Pm

j
′ into a single term Pm

j , so that
any change in power injection, whether on the generation side or the load side,
is considered a change in Pm

j . Let d0
j , P

m,0
j , P0

i j denote the nominal (operating)
point at which d0

j − Pm,0
j + Pout,0

j − Pin,0
j = 0. Let d j (t) = d0

j + ∆d j (t), Pm
j (t) =

Pm,0
j + ∆Pm

j (t), Pi j (t) = P0
i j + ∆Pi j (t). Then the deviations satisfy

Mj∆ω̇ j = −
(
D j∆ω j + ∆d j − ∆Pm

j + ∆Pout
j − ∆Pin

j

)
. (3.1)

Fig. 3.1 is a schematic of the generator bus model (3.1).
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Figure 3.1: Schematic of a generator bus j, where ∆ω j is the frequency deviation;
∆Pm

j is the change inmechanical powerminus aggregate uncontrollable load; D j∆ω j
characterizes the effect of generator friction and frequency-sensitive loads; ∆d j is
the change in aggregate controllable load; ∆Pi j is the deviation in branch power
injected from another bus i to bus j; ∆Pj k is the deviation in branch power delivered
from bus j to another bus k.

Load buses. A load bus that has no generator is modeled by the following algebraic
equation that represents power balance at bus j:2

0 = D j∆ω j + ∆d j − ∆Pm
j + ∆Pout

j − ∆Pin
j (3.2)

2There may be load buses with large inertia that can be modeled by swing dynamics (3.1) as
proposed in [104]. We will treat them as generator buses mathematically.
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where ∆Pm
j represents the change in the aggregate uncontrollable load.

Branch flows. The deviations ∆Pi j from the nominal branch flows follow the (lin-
earized) dynamics

∆Ṗi j = Bi j
(
∆ωi − ∆ω j

)
, (3.3)

where

Bi j := 3
|Vi | |Vj |

xi j
cos

(
θ0

i − θ
0
j

)
(3.4)

is a constant determined by the nominal bus voltages and the line reactance. The
same model is studied in the literature [15], [16] based on quasi-steady-state as-
sumptions. In [103, Section VII-A] we derive this model by solving the differential
equation that characterizes the dynamics of three-phase instantaneous power flow
on reactive lines, without explicitly using quasi-steady-state assumptions. Note that
(3.3) omits the specification of the initial deviations in branch flows ∆P(0). In
practice ∆P(0) cannot be an arbitrary vector, but must satisfy

∆Pi j (0) = Bi j
(
∆θi (0) − ∆θ j (0)

)
(3.5)

for some vector ∆θ(0) of phase angles. In Remark 3.6 we discuss the implication
of this omission on the convergence analysis.

Dynamic network model. We denote the set of generator buses by G, the set of
load buses by L, and use |G| and |L| to denote the number of generator buses and
load buses respectively. Without loss of generality label the generator buses so that
G = {1, ..., |G|} and the load buses so that L = {|G| + 1, ..., |N |}. In summary the
dynamic model of the transmission network is specified by (3.1)–(3.3). To simplify
notation we drop the ∆ from the variables denoting deviations and write (3.1)–(3.3)
as:

ω̇ j = −
1

Mj
(D jω j + d j − Pm

j + Pout
j − Pin

j ) for all j ∈ G, (3.6a)

0 = D jω j + d j − Pm
j + Pout

j − Pin
j for all j ∈ L, (3.6b)

Ṗi j = Bi j
(
ωi − ω j

)
for all (i, j) ∈ E, (3.6c)

where Bi j are given by (3.4). Hence for the rest of this thesis all variables represent
deviations from their nominal values. Wewill refer to the term D jω j as the deviation
in the (aggregate) frequency-sensitive load even though it also includes the deviation
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in generator power loss due to friction. We will refer to Pm
j as a disturbance whether

it is in generation or load.

An equilibrium point of the dynamic system (3.6) is a state (ω, P) where ω̇ j = 0
for j ∈ G and Ṗi j = 0 for (i, j) ∈ E, i.e., where all power deviations and frequency
deviations are constant over time.

Remark 3.1. The model (3.6) captures the power system behavior at the timescale of
seconds. In this thesis we only consider a step change in generation or load (constant
Pm), which implies that the model does not include the actions of the governor
and turbine that change the mechanical power injection in response to frequency
deviation to rebalance power. Nor does it include any secondary frequency control
mechanism such as automatic generation control that operates at a slower timescale
to restore the nominal frequency. This model therefore explores the feasibility of
fast timescale load control as a supplement to the turbine-governor mechanism to
resynchronize frequency and rebalance power.

We use a much more realistic simulation model developed in [58], [105] to validate
our simple analytic model. The detailed simulations can be found in [103, Section
VII]. We summarize the key conclusions from those simulations as follows.

1. In a power network with long transmission lines, the internal and terminal
voltage phase angles of a generator swing coherently, i.e., the rotating speed
of the generator is almost the same as the frequency at the generator bus even
during transient.

2. Different buses, particularly those in different coherent groups [105] and
far apart in electrical distance [52], may have different local frequencies for
a duration similar to the time for them to converge to a new equilibrium,
as opposed to resynchronizing almost instantaneously to a common system
frequency. This particular simulation result justifies a key feature of our
analytic model and is included in Appendix 3.B.

3. The simulation model and our analytic model exhibit similar transient behav-
iors and steady state values for bus frequencies and branch power flows.

Optimal load control
Suppose a constant disturbance Pm = (Pm

j , j ∈ N ) is injected to the setN of buses.
How should we adjust the controllable loads d j in (3.6) to rebalance power in a way
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that minimizes the aggregate disutility of these loads? In general we can design
state feedback controllers of the form d j (t) := d j (ω(t), P(t)), prove the feedback
system is globally asymptotically stable, and evaluate the aggregate disutility to the
loads at the equilibrium point. Here we take an alternative approach by directly
formalizing our control goals as an optimal load control (OLC) problem and derive
the feedback controller as a distributed algorithm to solve OLC.

Remark 3.2. In this thesis, OLC refers to a class of optimization problems which
take the general form (1.1). Depending on the types of frequency control (primary,
secondary, etc.) and system model (single or multiple machines), we choose a
specific OLC problem to solve. For example, we use OLC (2.4) in Chapter 2 to
restore frequency to its nominal value in a single-machine system, OLC (3.7) below
for load-side primary frequency control in amulti-machine network, andOLC (3.49)
in Section 3.5 for generator and load-side secondary frequency control.

The objective function of OLC consists of two costs. First suppose the (aggregate)
controllable load at bus j incurs a cost (disutility) c̃ j (d j ) when it is changed by d j .
Second the frequency deviation ω j causes the (aggregate) frequency-sensitive load
at bus j to change by d̂ j := D jω j . For reasons that will become clear later, we
assume that this results in a cost to the frequency-sensitive load that is proportional
to the squared frequency deviation weighted by its relative damping constant:

κD j∑
i∈N Di

ω2
j =:

κ

D j
(∑

i∈N Di
) d̂2

j

where κ > 0 is a constant. Hence the total cost is∑
j∈N

(
c̃ j (d j ) +

κ

D j
(∑

i∈N Di
) d̂2

j

)
.

To simplify notation, we scale the total cost by 1
2κ

∑
i∈N Di without loss of generality

and define c j (d j ) := c̃ j (d j ) · 1
2κ

∑
i∈N Di. Then OLC minimizes the total cost over

d and d̂ while balancing generation and load across the network:

OLC (network, load-side primary control):

min
d≤d≤d, d̂

∑
j∈N

(
c j (d j ) +

1
2D j

d̂2
j

)
(3.7a)

subject to
∑
j∈N

(
d j + d̂ j

)
=

∑
j∈N

Pm
j (3.7b)

where −∞ < d j ≤ d j < ∞.
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Remark 3.3. Note that (3.7b) does not require the balance of generation and load at
each individual bus, but only balance across the entire network. This constraint is
less restrictive and offersmore opportunity tominimize costs. Additional constraints
can be imposed if it is desirable that certain buses, e.g., in the same control area,
rebalance their own supply and demand, for economic or regulatory reasons.

We make the following assumption regarding OLC (3.7).

Assumption 3.1. OLC (3.7) is feasible. The cost functions c j are strictly convex and
twice continuously differentiable on

[
d j, d j

]
.

See Remark 2.2 for examples of practical load control cost functions that satisfy
Assumption 3.1.

3.2 Load control and system dynamics as primal-dual algorithm
We present the main results of this chapter, and prove them in Section 3.3.

Main results
The objective function of the dual problem of OLC is∑

j∈N

Φ j (ν) :=
∑
j∈N

min
d j≤d j≤d j,d̂ j

(
c j (d j ) − νd j +

1
2D j

d̂2
j − νd̂ j + νPm

j

)
where the minimization can be solved explicitly as

Φ j (ν) := c j (d j (ν)) − νd j (ν) −
1
2

D jν
2 + νPm

j (3.8)

with

d j (ν) :=
[
c
′−1
j (ν)

] d j

d j

. (3.9)

This objective function has a scalar variable ν and is not separable across buses
j ∈ N . Its direct solution hence requires coordination across buses. We propose the
following distributed version of the dual problem over the vector ν :=

(
ν j, j ∈ N

)
,

where each bus j optimizes over its own variable ν j , which are constrained to be
equal at optimality:

DOLC:

max
ν

Φ(ν) :=
∑
j∈N

Φ j (ν j ) (3.10a)

subject to νi = ν j for all (i, j) ∈ E . (3.10b)
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The following two results are proved in Appendices 3.C and 3.D. Instead of solving
OLC directly, they suggest solving DOLC and recovering the unique optimal point
(d∗, d̂∗) of OLC from the unique dual optimal ν∗.

Lemma 3.1. The objective function Φ of DOLC is strictly concave over R|N |.

Lemma 3.2. 1. DOLC has a unique optimal point ν∗ with ν∗i = ν
∗
j = ν

∗ for all
i, j ∈ N .3

2. OLC has a unique optimal point (d∗, d̂∗) where d∗j = d j (ν∗) and d̂∗j = D jν
∗

for all j ∈ N .

To derive a distributed solution for DOLC, consider its Lagrangian

L(ν, π) :=
∑
j∈N

Φ j (ν j ) −
∑

(i, j)∈E

πi j (νi − ν j ), (3.11)

where ν ∈ R|N | is the (vector) variable for DOLC and π ∈ R|E | is the associated
dual variable for the dual of DOLC. Hence πi j , for all (i, j) ∈ E, measure the cost of
not synchronizing the variables νi and ν j across buses i and j. Using (3.8)–(3.11) a
partial primal-dual algorithm for DOLC takes the form

ν̇ j = γ j
∂L
∂ν j

(ν, π) = −γ j
(
d j (ν j ) + D jν j − Pm

j + π
out
j − π

in
j

)
(3.12a)

for j ∈ G,

0 =
∂L
∂ν j

(ν, π) = −
(
d j (ν j ) + D jν j − Pm

j + π
out
j − π

in
j

)
for j ∈ L, (3.12b)

π̇i j = −ξi j
∂L
∂πi j

(ν, π) = ξi j (νi − ν j ) for (i, j) ∈ E, (3.12c)

where γ j > 0, ξi j > 0 are stepsizes and πoutj :=
∑

k: j→k π j k , πinj :=
∑

i:i→ j πi j . We
interpret (3.12) as an algorithm iterating on the primal variables ν and dual variables
π over time t ≥ 0. Set the stepsizes to be:

γ j = M−1
j , ξi j = Bi j .

Then (3.12) becomes identical to (3.6a)–(3.6c) if we identify ν with ω and π with
P, and use d j (ω j ) defined by (3.9) for d j in (3.6a)–(3.6b). This means that the
frequency deviations ω and the branch flows P are respectively the primal and dual
variables of DOLC, and the network dynamics, together with frequency-based load
control, execute a primal-dual algorithm for solving DOLC.

3For simplicity, we abuse the notation and use ν∗ to denote both the vector
(
ν∗j , j ∈ N

)
and the

common value of its components. Its meaning should be clear from the context.
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Remark 3.4. Note the consistency of units between the following pairs of quantities:
1) γ j and M−1

j , 2) ξi j and Bi j , 3) ν and ω, 4) π and P. Indeed, since the unit of D j is
[watt · s] from (3.6a), the cost (3.7a) is in

[
watt · s−1

]
. From (3.8) and (3.11), ν and

π are respectively in
[
s−1

]
(or equivalently

[
rad · s−1

]
) and [watt]. From (3.12a), γ j

is in
[
watt−1 · s−2

]
which is the same as the unit of M−1

j from (3.6a). From (3.12c),
ξi j is in [watt] which is the same as the unit of Bi j from (3.6c).

For convenience, we collect here the system dynamics and load control equations:

ω̇ j = −
1

Mj

(
d j + d̂ j − Pm

j + Pout
j − Pin

j

)
for all j ∈ G (3.13a)

0 = d j + d̂ j − Pm
j + Pout

j − Pin
j for all j ∈ L (3.13b)

Ṗi j = Bi j
(
ωi − ω j

)
for all (i, j) ∈ E (3.13c)

d̂ j = D jω j for all j ∈ N (3.13d)

d j =
[
c
′−1
j (ω j )

] d j

d j

for all j ∈ N . (3.13e)

The dynamics (3.13a)–(3.13d) are automatically carried out by the power system
while the active control (3.13e) needs to be implemented at each controllable load.
Let (d(t), d̂(t), ω(t), P(t)) denote a trajectory of (deviations of) controllable loads,
frequency-sensitive loads, frequencies and branch flows generated by the dynamics
(3.13) of the load-controlled system.

Theorem 3.1. Starting from any feasible4 initial point (d(0), d̂(0), ω(0), P(0)),
every trajectory (d(t), d̂(t), ω(t), P(t), t ≥ 0) generated by (3.13) converges to a
limit (d∗, d̂∗, ω∗, P∗) as t → ∞ such that

1. (d∗, d̂∗) is the unique vector of optimal load control for OLC;

2. ω∗ is the unique vector of optimal frequency deviations for DOLC;

3. P∗ is a vector of optimal branch flows for the dual of DOLC.

We will prove Theorem 3.1 and other results in Section 3.3.

Implications
Our main results have several important implications:

4A point is feasible for (3.13) if it satisfies the algebraic equations (3.13b), (3.13d), and (3.13e).
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1. Ubiquitous continuous load-side primary frequency control. Like the generator-
side droop control, frequency-adaptive loads can rebalance power and resyn-
chronize frequencies after a disturbance. Theorem 3.1 implies that a multi-
machine network under such control is globally asymptotically stable. The
load-side control is often faster because of the larger time constants asso-
ciated with valves and prime movers on the generator side. Furthermore
OLC explicitly optimizes the aggregate disutility using the cost functions of
heterogeneous loads.

2. Complete decentralization. The local frequency deviations ω j (t) at each bus
convey exactly the right information about global power imbalance for the
loads to make local decisions that turn out to be globally optimal. This allows
a completely decentralized solution without explicit communication among
the buses.

3. Equilibrium frequency. The frequency deviations ω j (t) at all the buses are
synchronized to ω∗ at optimality even though they can be different during
transient. However ω∗ at optimality is in general nonzero, implying that
the new common frequency may be different from the common frequency
before the disturbance. Mechanisms such as isochronous generators [15] or
automatic generation control are needed to drive the new system frequency to
its nominal value, usually through integral action on the frequency deviations.
We develop distributed control schemes to restore frequency to its nominal
value, in Sections 3.5, 3.6, and 3.7.

4. Frequency and branch flows. In the context of optimal load control, the
frequency deviations ω j (t) emerge as the Lagrange multipliers of OLC that
measure the cost of power imbalance, whereas the branch flow deviations
Pi j (t) emerge as the Lagrange multipliers of DOLC that measure the cost of
frequency asynchronism.

5. Uniqueness of solution. Lemma 3.2 implies that the optimal frequency devi-
ation ω∗ is unique and hence the optimal load control (d∗, d̂∗) is unique. As
shown below, the vector P∗ of optimal branch flows is unique if and only if
the network is a tree. Nonetheless Theorem 3.1 says that, even for a mesh
network, any trajectory of branch flows indeed converges to a limit point. See
Remark 3.6 for further discussion.
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3.3 Convergence analysis
This section is devoted to the proof of Theorem 3.1 and other properties as given by
Theorems 3.2 and 3.3 below. Before going into the details we first sketch out the
key steps in establishing Theorem 3.1, the convergence of the trajectories generated
by (3.13).

1. Theorem 3.2: The set of optimal points (ω∗, P∗) of DOLC and its dual and
the set of equilibrium points of (3.13) are nonempty and the same. Denote
both of them by Z∗.

2. Theorem 3.3: If (N , E) is a tree network, Z∗ is a singleton with a unique
equilibrium point (ω∗, P∗), otherwise (if (N , E) is a mesh network), Z∗ has
an uncountably infinite number (a subspace) of equilibria with the same ω∗

but different P∗.

3. Theorem 3.1: We use a Lyapunov argument to prove that every trajectory
(ω(t), P(t)) generated by (3.13) approaches a nonempty, compact subset Z+

of Z∗ as t → ∞. Hence, if (N , E) is a tree network, then Theorem 3.3
implies that any trajectory (ω(t), P(t)) converges to the unique optimal point
(ω∗, P∗). If (N , E) is a mesh network, we show with a more careful argument
that (ω(t), P(t)) still converges to a point in Z+, as opposed to oscillating
around Z+. Theorem 1 then follows from Lemma 3.2.

We now elaborate on these ideas.

Given ω, the optimal loads (d, d̂) are uniquely determined by (3.13d)–(3.13e).
Hencewe focus on the variables (ω, P). DecomposeωT :=

[
ωT
G
ωT
L

]
into frequency

deviations at generator buses and load buses. LetC be the |N |× |E| incidencematrix
with Cje = 1 if e = ( j, k) ∈ E for some bus k ∈ N , Cje = −1 if e = (i, j) ∈ E
for some bus i ∈ N , and Cje = 0 otherwise. We decompose C into an |G| × |E|
submatrix CG corresponding to generator buses and an |L| × |E| submatrix CL
corresponding to load buses, i.e., C =

[ CG
CL

]
. Let

ΦG (ωG) :=
∑
j∈G

Φ j (ω j ) and LG (ωG, P) := ΦG (ωG) − ωT
G

CGP,

ΦL (ωL) :=
∑
j∈L

Φ j (ω j ) and LL (ωL, P) := ΦL (ωL) − ωT
L

CLP.
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Identifying ν withω and π with P, we can rewrite the Lagrangian for DOLC defined
in (3.11), in terms of ωG and ωL , as

L(ω, P) = Φ(ω) − ωTCP = LG (ωG, P) + LL (ωL, P). (3.14)

Then (3.13) (equivalently, (3.12)) can be rewritten in the vector form as

ω̇G = ΓG

[
∂LG
∂ωG

(
ωG, P

)]T

= ΓG *
,

[
∂ΦG

∂ωG

(
ωG

)]T

− CGP+
-
, (3.15a)

0 =
∂LL
∂ωL

(
ωL, P

)
=

[
∂ΦL
∂ωL

(
ωL

)]T

− CLP, (3.15b)

Ṗ = −Ξ

[
∂L
∂P

(ω, P)
]T

= ΞCTω, (3.15c)

where ΓG := diag(γ j, j ∈ G) and Ξ := diag(ξi j, (i, j) ∈ E). The differential
algebraic equations (3.15) describe the dynamics of the power network.

A pair (ω∗, P∗) is called a saddle point of L if

L(ω, P∗) ≤ L(ω∗, P∗) ≤ L(ω∗, P) for all (ω, P). (3.16)

By [93, Section 5.4.2], (ω∗, P∗) is primal-dual optimal for DOLC and its dual if
and only if it is a saddle point of L(ω, P). The following theorem establishes the
equivalence between the primal-dual optimal points and the equilibrium points of
(3.15).

Theorem 3.2. A point (ω∗, P∗) is primal-dual optimal for DOLC and its dual if
and only if it is an equilibrium point of (3.15). Moreover, at least one primal-dual
optimal point (ω∗, P∗) exists and ω∗ is unique among all points (ω∗, P∗) that are
primal-dual optimal.

Proof. Recall that we identified ν with ω and π with P. In DOLC, the objective
function Φ is (strictly) concave over R|N | (by Lemma 3.1), its constraints are linear,
and a finite optimal ω∗ is attained (by Lemma 3.2). These facts imply that there is
no duality gap between DOLC and its dual, and there exists a dual optimal point
P∗ [93, Section 5.2.3]. Moreover, (ω∗, P∗) is optimal for DOLC and its dual if and
only if the following Karush-Kuhn-Tucker (KKT) conditions [93, Section 5.5.3] are
satisfied:

Stationarity:
∂Φ

∂ω
(ω∗) = (CP∗)T, (3.17)

Primal feasibility: ω∗i = ω∗j for all (i, j) ∈ E . (3.18)
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On the other hand (ω∗, P∗) = (ω∗
G
, ω∗
L
, P∗) is an equilibrium point of (3.15) if and

only if
[
∂ΦG

∂ωG

(
ω∗
T

)]T

= CGP∗,

[
∂ΦL
∂ωL

(
ω∗
L

)]T

= CLP∗,

ΞCTω∗ = 0,

which are identical to (3.17)–(3.18). Hence (ω∗, P∗) is primal-dual optimal if and
only if it is an equilibrium of (3.15). The uniqueness of ω∗ follows from Lemma
3.2.

From Lemma 3.2, we denote the unique optimal point of DOLC byω∗1N =
[
ω∗1G
ω∗1L

]
,

where 1N ∈ R|N | , 1G ∈ R|G| and 1L ∈ R|L| have all their elements equal to 1.
From (3.17)–(3.18), define the nonempty set of equilibrium points of (3.15) (or
equivalently, primal-dual optimal points of DOLC and its dual) as

Z∗ :=



(ω, P) | ω = ω∗1N , CP =
[
∂Φ

∂ω

(
ω∗1N

)]T 

. (3.19)

Let (ω∗1N , P∗) = (ω∗1G, ω∗1L, P∗) ∈ Z∗ be any equilibrium point of (3.15). We
consider a candidate Lyapunov function

U (ω, P) =
1
2

(
ωG−ω

∗1G
)T
Γ
−1
G

(
ωG−ω

∗1G
)
+

1
2

(
P−P∗

)T
Ξ
−1 (

P−P∗
)
. (3.20)

Obviously U (ω, P) ≥ 0 for all (ω, P) with equality if and only if ωG = ω∗1G and
P = P∗. We will show below that U̇ (ω, P) ≤ 0 for all (ω, P), where U̇ denotes the
derivative of U over time along the trajectory (ω(t), P(t)).

Even though U depends explicitly only on ωG and P, U̇ depends on ωL as well
through (3.15c). However, it will prove convenient to express U̇ as a function of
only ωG and P. To this end, write (3.15b) as F (ωL, P) = 0. Then ∂F

∂ωL
(ωL, P) =

∂2ΦL
∂ω2
L

(ωL) is nonsingular for all (ωL, P) from the proof of Lemma 3.1 in Appendix
3.C. By the inverse function theorem [106], ωL can be written as a continuously
differentiable function of P, denoted by ωL (P), with

∂ωL
∂P

(P) = *
,

∂2ΦL

∂ω2
L

(
ωL (P)

)+
-

−1

CL . (3.21)
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Then we can rewrite the Lagrangian L(ω, P) as a function of (ωG, P) as

L(ω, P) = LG (ωG, P) + LL
(
ωL (P), P

)
=: L̃

(
ωG, P

)
. (3.22)

We have the following lemma, proved in Appendix 3.E, regarding the properties of
L̃.

Lemma 3.3. L̃ is strictly concave in ωG and convex in P.

Rewrite (3.15) as

ω̇G = ΓG

[
∂ L̃
∂ωG

(
ωG, P

)]T

, (3.23a)

Ṗ = −Ξ

[
∂ L̃
∂P

(
ωG, P

)]T

. (3.23b)

Then the derivative of U along any trajectory (ω(t), P(t)) generated by (3.15) is

U̇ (ω, P) =
(
ωG − ω

∗1G
)T
Γ
−1
G
ω̇G +

(
P − P∗

)T
Ξ
−1Ṗ

=
∂ L̃
∂ωG

(ωG, P)
(
ωG − ω

∗1G
)
−
∂ L̃
∂P

(ωG, P)
(
P − P∗

)
(3.24)

≤ L̃
(
ωG, P

)
− L̃

(
ω∗1G, P

)
+ L̃(ωG, P∗) − L̃

(
ωG, P

)
(3.25)

= L
(
ωG, ω

∗1L, P∗
)
− L̃

(
ω∗1G, P

)
(3.26)

≤ L
(
ω∗1N , P

)
− L̃

(
ω∗1G, P

)
(3.27)

= LG
(
ω∗1G, P

)
+ LL

(
ω∗1L, P

)
−

[
LG

(
ω∗1G, P

)
+ LL

(
ωL (P), P

)]
≤ 0. (3.28)

Here (3.24) follows from (3.23). The inequality in (3.25) results from Lemma 3.3.
The equality in (3.26) holds since ωL (P∗) = ω∗1L by (3.17). The inequality in
(3.27) is due to L

(
ωG, ω

∗1L, P∗
)
≤ L (ω∗1N , P∗) ≤ L (ω∗1N , P) by the saddle

point condition (3.16). The inequality in (3.28) follows since ωL (P) is the max-
imizer of LL (·, P) given P, by the concavity of LL in ωL and the definition of
ωL (P).

The next lemma, proved in Appendix 3.F, characterizes the set in which the value
of U does not change over time.

Lemma 3.4. U̇ (ω, P) = 0 if and only if either of the following two conditions holds:

1.

ωG = ω∗1G and CLP =
[
∂ΦL
∂ωL

(
ω∗1L

)]T

, (3.29)
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2.

ωG = ω∗1G and ωL (P) = ω∗1L . (3.30)

Lemma 3.4 motivates the definition of the set

E := {(ω, P) | U̇ (ω, P) = 0}

=



(ω, P) | ω = ω∗1N , CLP =
[
∂ΦL
∂ωL

(
ω∗1L

)]T 

,

(3.31)

in which U̇ = 0 along any trajectory (ω(t), P(t)). The definition of Z∗ in (3.19)
implies that Z∗ ⊆ E, as shown in Fig. 3.2. As shown in the figure, E may contain

P

E

Z *Z

Z 

 (0), (0)P

 * *P

 (0), (0)P

 ( ) ( )t P t


 ,P  ( ), ( )t P t

Figure 3.2: E is the set on which U̇ = 0, Z∗ is the set of equilibrium points of (3.15),
and Z+ is a compact subset of Z∗ to which all solutions (ω(t), P(t)) approach as
t → ∞. Indeed every solution (ω(t), P(t)) converges to a point (ω∗, P∗) ∈ Z+ that
is dependent on the initial state.

points that are not in Z∗. Nonetheless every accumulation point (limit point of any
convergent subsequence) of a solution (ω(t), P(t)) of (3.15) is in Z∗, as the next
lemma shows.

Lemma 3.5. Starting from any feasible initial point (ω(0), P(0)), every trajectory
(ω(t), P(t)) of (3.15) approaches a nonempty, compact subset (denoted Z+) of Z∗

as t → ∞.

The proof of Lemma 3.5 is given in Appendix 3.G. The sets Z+ ⊆ Z∗ ⊆ E are
illustrated in Fig. 3.2. Lemma 3.5 only guarantees that (ω(t), P(t)) approaches Z+

as t → ∞, but does not guarantee that it converges to any point in Z∗. We now
show that (ω(t), P(t)) indeed converges to an equilibrium point in Z+. Indeed the
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convergence is immediate in the special case when Z∗ is a singleton, but needs a
more careful argument when Z∗ has multiple points. The next theorem reveals the
relation between the number of points in Z∗ and the network topology.

Theorem 3.3. 1. If (N , E) is a tree then Z∗ is a singleton.

2. If (N , E) is a mesh (i.e., contains a cycle if regarded as an undirected graph)
then Z∗ has an uncountably infinite number of points with the same ω∗ but
different P∗.

Proof. From (3.19), the projection of Z∗ on the space of ω is always a singleton
ω∗1N , and hence we only look at the projection of Z∗ on the space of P, which is

Z∗P :=
{
P | CP = h∗

}
where h∗ :=

[
∂Φ
∂ω (ω∗1N )

]T
. By Theorem 3.2, Z∗P is nonempty, i.e., there is P∗ ∈ Z∗P

such that CP∗ = h∗ and hence 1T
N

h∗ = 1T
N

CP∗ = 0. Therefore we have

Z∗P :=
{
P | C̃P = h̃∗

}
, (3.32)

where C̃ is the ( |N |−1)×|E| reduced incidencematrix obtained fromC by removing
any one of its rows, and h̃∗ is obtained from h∗ by removing the corresponding row.
Note that C̃ has a full row rank of |N |−1 [107]. If (N , E) is a tree, then |E | = |N |−1.
Hence C̃ is square and invertible, so Z∗P is a singleton. If (N , E) is a (connected)
mesh, then |E | > |N | −1, so C̃ has a nontrivial null space and there are uncountably
many points in Z∗P.

With all the results above we can now finish the proof of Theorem 3.1.

Proof of Theorem 3.1. For the case in which (N , E) is a tree, Lemma 3.5 and
Theorem 3.3(1) guarantees that every trajectory(ω(t), P(t)) converges to the unique
primal-dual optimal point (ω∗, P∗) of DOLC and its dual, which, by Lemma 3.2,
immediately implies Theorem 3.1.

For the case in which (N , E) is a mesh, since U̇ (ω, P) ≤ 0 for all (ω, P), any solution
(ω(t), P(t)) for t ≥ 0 stays in the compact set {(ω, P) |U (ω, P) ≤ U (ω(0), P(0))}.
Hence there exists a convergent subsequence {(ω(tk ), P(tk )), k ∈ N}, where 0 ≤
t1 < t2 < ... and tk → ∞ as k → ∞, such that limk→∞ω(tk ) = ω∞ and
limk→∞ P(tk ) = P∞ for some (ω∞, P∞). Lemma 3.5 implies that (ω∞, P∞) ∈
Z+ ⊆ Z∗, and hence ω∞ = ω∗1N by (3.19). Recall that the Lyapunov function U
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in (3.20) can be defined in terms of any equilibrium point (ω∗1N , P∗) ∈ Z∗. In
particular, select (ω∗1N , P∗) = (ω∗1N , P∞), i.e.,

U (ω, P) :=
1
2

(
ωG−ω

∗1G
)T
Γ
−1
G

(
ωG−ω

∗1G
)
+

1
2

(
P−P∞

)T
Ξ
−1 (

P−P∞
)
.

Since U ≥ 0 and U̇ ≤ 0 along all trajectories (ω(t), P(t)), U (ω(t), P(t)) must
converge as t → ∞. Moreover it converges to 0 due to the continuity of U in both ω
and P:

lim
t→∞

U (ω(t), P(t)) = lim
k→∞

U (ω(tk ), P(tk )) = U
(
ω∞, P∞

)
= 0.

Due to the form of U, the equation above implies that the trajectory (ω(t), P(t))
converges to (ω∞, P∞) ∈ Z+ ⊆ Z∗, a primal-dual optimal point for DOLC and its
dual. Theorem 3.1 then follows from Lemma 3.2.

Remark 3.5. The standard technique of using a Lyapunov function that is quadratic
in both the primal and the dual variables was first proposed by Arrow et al. [108],
and has been revisited recently, e.g., in [109], [110]. We apply a variant of this
technique to our problem with the following features. First, because of the algebraic
equation (3.15b) in the system, our Lyapunov function is not a function of all the
primal variables, but only the part ωG corresponding to generator buses. Second, in
the case of a mesh network when there is a subspace of equilibrium points, we show
that the system trajectory still converges to one of the equilibrium points instead of
oscillating around the equilibrium set.

Remark 3.6. Theorems 3.1–3.3 are based on our analytic model (3.13) which omits
an important constraint on the initial condition on the branch flows P(0). As
mentioned earlier, in practice, the initial branch flowsmust satisfy (3.5) for some θ(0)
(with ∆ dropped). With this requirement the branch flow model (3.3)–(3.5) implies
P(t) ∈ Col(BCT ) for all t, where Col denotes the column space, B is the diagonal
matrix with entries Bi j , and C is the incidence matrix. Indeed P(t) ∈ Col(BC̃T )
since CT1N = 0 and C̃T with one column from CT removed has a full column rank.
A simple derivation from (3.32) shows that Z∗P∩Col(BC̃T ) =

{
BC̃T

(
C̃BC̃T

)−1
h̃∗

}
is a singleton, where C̃BC̃T is invertible [107]. Then by Lemma 3.5, P(t) →
BC̃T

(
C̃BC̃T

)−1
h̃∗ as t → ∞. In other words, though for a mesh network the

dynamics (3.13) have a subspace of equilibrium points, all the practical trajectories,
whose initial points (ω(0), P(0)) satisfy (3.5) for some arbitrary θ(0), converge to
a unique equilibrium point.
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3.4 Generator and load-side primary control with nonlinear power flow
The linearized model (3.6) is a reasonably accurate approximation of power network
behavior when the disturbance is sufficiently small. To deal with large disturbances
from, e.g., increased penetration of renewable generation, in this section we consider
a more realistic nonlinear power flow model. Moreover, in previous sections we
only consider load control and ignore generator control. In practice, both generators
and loads can participate in frequency control, and their interactions remain to be
studied. In this section, we include generator dynamics in our model, and extend the
decentralized primary frequency control developed in Section 3.2 to the generator
side as well. In Section 3.5, we will develop and analyze a distributed secondary
frequency control under nonlinear power flows and generator dynamics and control.

Power network model
Wemodify the power network model (3.6) by using nonlinear power flows, and also
include the generator speed governor and turbine models from [16], [19], [20], [31],
[32], [33]. The modified power network model is

Mjω̇ j = r j + Pm
j − d j − D jω j − Pout

j + Pin
j for all j ∈ G, (3.33a)

0 = r j − d j − D jω j − Pout
j + Pin

j for all j ∈ L, (3.33b)

Pi j = Bi j sin
(
θi − θ j

)
for all (i, j) ∈ E, (3.33c)

θ̇ j = ω j for all j ∈ N , (3.33d)

Tg, j ȧ j = −a j + p j for all j ∈ G, (3.33e)

Tb, j Ṗm
j = −Pm

j + a j for all j ∈ G. (3.33f)

In equations (3.33a)–(3.33b), variables r j represent uncontrollable generations or
loads which, at time 0, make a step change on an arbitrary subset of buses, as
the disturbance to the system. Note that r j replaces the uncontrollable Pm

j in
(3.6), since Pm

j in (3.33) is a variable driven by generator control. Equations
(3.33c) are the nonlinear power flows, and (3.33d) are the relation between voltage
phase angle (with respect to the rotating framework of nominal frequency) θi and
frequency deviation ωi from its nominal value. Equations (3.33e) and (3.33f) are,
respectively, the dynamics of speed governors and turbines, where a j is the valve
position of the turbine, p j is the control command to the generator, and Pm

j is
the mechanical power injection to the generator. The time constants Tg, j and Tb, j

characterize respectively the time-delay in governor actuations and the approximated
fluid dynamics in turbines. Traditionally, there is a frequency feedback term − 1

Rj
ω j

on the right-hand-side of (3.33e), known as the droop control. Here we ignore this
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term to allow for a general form of feedback control p j on generators. In Sections
3.4–3.7, since we are considering a nonlinear model, all the variables in (3.33)
represent their full quantities, instead of deviations from their nominal values as in
Sections 3.1–3.3.5 An exception is ωi, which is still the frequency deviation from
its nominal value.

The state variables of the dynamical system (3.33) are x := (θ, ω, P, Pm
G
, aG), the

disturbance is r . The controls include generator control pG on all the generator
buses G and load control d on both generator buses G and load buses L. We make
the following two definitions related to our frequency control goals.

Definition 3.1. A frequency-synchronized point of the dynamical system (3.33) is
a solution (x∗, p∗

G
, d∗) of (3.33), where ω∗i = ω

∗
j for all i, j ∈ N , and ω̇∗j = ȧ∗j =

Ṗm,∗
j = 0 for all j ∈ G.

Definition 3.2. An equilibrium point of the dynamical system (3.33) is a solution
(x∗, p∗

G
, d∗) of (3.33), where θ̇∗j = 0 for all j ∈ N , and ω̇∗j = ȧ∗j = Ṗm,∗

j = 0 for all
j ∈ G.

Remark 3.7. As is clear from (3.33) and Definitions 3.1 and 3.2, ω∗, P∗, Pm,∗
G

, a∗
G
,

p∗
G
, d∗ are all constant at both a frequency-synchronized point and an equilibrium

point. The difference between them is that an equilibrium point not only requires
ω∗j to be the same across all j ∈ N , but also requires them to be all zero such that
θ∗j for all j ∈ N are constant.6 We focus on driving the dynamical system (3.33)
to a frequency synchronized point through primary frequency control in the current
section, and an equilibrium point through secondary frequency control in Section
3.5.

Primary frequency control problem and decentralized algorithm
As in Section 3.1, given step changes r j in generation or load on an arbitrary subset
of buses at time 0, the goal of primary frequency control is to drive the system (3.33)
to a frequency-synchronized point that is optimal for:

5In (3.33d), the constants are Bi j = 3 |Vi | |Vj |

xi j
if full quantities of P and θ are considered, different

from the values of B in (3.4) when deviations are considered.
6However, in Sections 3.1–3.3, we called a point where ω∗j for all j ∈ N are the same but not

zero as an equilibrium point, since phase angle θ is ignored in the dynamical system (3.6).
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OLC (network, generator and load-side primary control):

min
p
G
≤pG≤pG

d≤d≤d, d̂

∑
j∈G

cp
j (p j ) +

∑
j∈N

cd
j (d j ) +

∑
j∈N

1
2D j

d̂2
j (3.34a)

subject to
∑
j∈N

d j +
∑
j∈N

d̂ j =
∑
j∈N

r j +
∑
j∈G

p j, (3.34b)

where −∞ < p
j
≤ p j < ∞ for j ∈ G and −∞ < d j ≤ d j < ∞ for j ∈ N specify

generator and load control capacities, respectively, and cp
j for j ∈ G and cd

j for j ∈ N

are cost functions for generator and load control, respectively. The motivation of
(3.34) is the same as (3.7), except that (3.34) includes generator control pG . Note that
at any frequency-synchronized point, the generator control pG , the valve positions
aG , and the actual mechanical power input Pm

G
to the generators are the same.

We make the following assumptions regarding OLC (3.34).

Assumption 3.2. OLC (3.34) is feasible. The cost functions cp
j for j ∈ G and cd

j

for j ∈ N are strictly convex and twice continuously differentiable on
[
p

j
, p j

]
and

[
d j, d j

]
, respectively.

Remark 3.8. Assumption 3.2 extends Assumption 3.1 to include generator control.
The cost functions for various generator control schemes in, e.g., [19], [39], [40],
[41], [43], [48] all satisfy Assumption 3.2.

Based on Assumption 3.2 we have Lemma 3.6 below, which can be proved in a
similar way that Lemma 3.2 is proved in Appendix 3.D. We define functions

p j (ω j ) :=
[(

cp
j

)′−1
(−ω j )

] pj

p
j

for all j ∈ G, (3.35a)

d j (ω j ) :=
[(

cd
j

)′−1
(ω j )

] d j

d j

for all j ∈ N , (3.35b)

which are indeed the primary frequency control law we will discuss later.

Lemma3.6. SupposeAssumption 3.2 holds. There exist a unique optimal (p∗
G
, d∗, d̂∗)

for OLC (3.34) and a unique optimal ω∗ for its dual, with zero duality gap. More-
over, we have p∗j = p j (ω∗) for all j ∈ G, and d∗j = d j (ω∗) and d̂∗j = D jω

∗ for all
j ∈ N , where functions p j (·) and d j (·) are defined in (3.35).

Lemma 3.6, however, guarantees neither existence nor uniqueness of phase angles θ∗

and power flows P∗ that, together with (ω∗, Pm,∗
G
= a∗

G
= p∗

G
, d∗), form a frequency-

synchronized point of (3.33). In particular, power engineers are interested in θ∗
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inside the principal region, i.e., |θ∗i − θ
∗
j | <

π
2 for all (i, j) ∈ E, for stability of the

power network [111]. Therefore we make the following assumption.

Assumption 3.3. For any optimal (p∗
G
, d∗, d̂∗ = Dω∗) of OLC (3.34), there exist

θ∗ ∈ R|N | where ���θ
∗
i − θ

∗
j
��� <

π
2 for all (i, j) ∈ E, and P∗ ∈ R|E |, such that

0 = r j + p∗j − d∗j − D jω
∗
j − Pout,∗

j + Pin,∗
j for all j ∈ G, (3.36a)

0 = r j − d∗j − D jω
∗
j − Pout,∗

j + Pin,∗
j for all j ∈ L, (3.36b)

P∗i j = Bi j sin
(
θ∗i − θ

∗
j

)
for all (i, j) ∈ E . (3.36c)

A lot of work, e.g., [111], studies conditions for feasibility of power flow equations
(3.36), which are beyond the scope of this thesis. Using a common practice in these
previous studies, we treat θ1 and θ2 as the same point if

(
θ1

j − θ
2
j

)
mod 2π are the

same across all j ∈ N .7 With this definition of the uniqueness of θ, it is shown in
[111] that, given (p∗

G
, d∗, d̂∗ = Dω∗), the power flow solution (θ∗, P∗) of (3.36) is

unique in the principal region. Then the following lemma follows from Lemma 3.6.

Lemma 3.7. Suppose Assumptions 3.2 and 3.3 hold. Then there is a unique
(θ∗, ω∗, P∗, p∗

G
, d∗) that satisfies all of the following:

• (θ∗, ω∗, P∗, p∗
G
, d∗) is a solution of (3.36);

• ���θ
∗
i − θ

∗
j
��� <

π
2 for all (i, j) ∈ E; and

• (p∗
G
, d∗, d̂∗ = Dω∗) and ω∗ are optimal for OLC (3.34) and its dual.

We design the generator and load-side primary frequency control as (3.35), which
extends the load control in Section 3.2 to generator control as well. The following
theorem states our main result regarding the frequency-synchronized point of the
closed-loop system (3.33)(3.35). We skip its proof since it is straightforward from
Lemma 3.7 and Definition 3.1.

Theorem 3.4. Suppose Assumptions 3.2 and 3.3 hold. Then the closed-loop system
(3.33)(3.35) has a unique frequency synchronized point (θ∗, ω∗, P∗, Pm,∗

G
= a∗

G
=

p∗
G
, d∗) which satisfies both of the following:

• ���θ
∗
i − θ

∗
j
��� <

π
2 for all (i, j) ∈ E; and

• (p∗
G
, d∗, d̂∗ = Dω∗) andω∗ are the unique optimal for OLC (3.34) and its dual.

7This treatment can be formally defined using an equivalent class of θ; see [112] for details.
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Stability analysis
Now we study stability of the closed-loop system (3.33)(3.35) at the frequency-
synchronized point in Theorem 3.4, denoted (x∗, p∗

G
, d∗) in the rest of this section.

Our approach for stability analysis is compositional [113], in that we find Lyapunov
function candidates separately for the power network and the generators, and add
them up to construct a Lyapunov function for the entire system.

We make the following assumption for our main result Theorem 3.5 regarding
stability of (3.33)(3.35).

Assumption 3.4. The following is satisfied in a neighborhood of (x∗, p∗
G
, d∗):

For all j ∈ G, there are positive constants β
j
and L j such that the load control cost

functions satisfy
(
cd

j

)′′
(d j ) ≤ 1

β
j

and the generator control cost functions satisfy(
cp

j

)′′
(p j ) ≥ 1

L j
. Moreover, L j < D j + β j

if d j < d∗j < d j , and L j < D j if d∗j = d j

or d∗j = d j .

In Assumption 3.4, the condition on L j is less stringent when load control d∗j in
equilibrium stays strictly within its capacity limit, than when d∗j reaches its limit.

Theorem 3.5. Suppose Assumptions 3.2, 3.3, and 3.4 hold. Then the closed-
loop system (3.33)(3.35) has a unique frequency-synchronized point (x∗, p∗

G
, d∗)

characterized in Theorem 3.4, which is locally asymptotically stable.

Proof. We use the following energy function [36] as part of the Lyapunov function
candidate for the closed-loop system (3.33)(3.35):

U0 =
1
2

∑
j∈G

Mj (ω j − ω
∗)2 +

∑
(i, j)∈E

∫ θi j

θ∗i j

Bi j (sin u − sin θ∗i j )du, (3.37)

where θi j := θi − θ j . For θi j in a neighborhood of θ∗i j , the integral in (3.37) is
nonnegative, and zero if and only if θi j = θ

∗
i j , since |θ

∗
i j | < π/2 for all (i, j) ∈ E.

Let ( x̃, p̃G, d̃) := (x, pG, d)− (x∗, p∗
G
, d∗). For all j ∈ G, let β′

j
= β

j
if d j < d∗j < d j ,

and β′
j
= 0 if d∗j = d j or d∗j = d j . The time derivative of U0 (3.37) along any
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trajectory of the system (3.33)(3.35) is

U̇0 =
∑
j∈G

Mjω̃ jω̇ j +
∑

(i, j)∈E

Bi j (sin θi j − sin θ∗i j )(ωi − ω j )

=
∑
j∈G

ω̃ j (r j + Pm
j − d j − D jω j − Pout,∗

j + Pin,∗
j )

+
∑
j∈L

ω̃ j (r j − d j − D jω j − Pout,∗
j + Pin,∗

j ) (3.38)

= −
∑
j∈N

D jω̃
2
j +

∑
j∈G

ω̃ j P̃m
j −

∑
j∈N

ω̃ j d̃ j (3.39)

≤ −
∑
j∈L

D jω̃
2
j +

∑
j∈G

(
ω̃ j P̃m

j − (D j + β
′

j
)ω̃2

j

)
, (3.40)

where we have (3.38) from (3.33a)–(3.33c), (3.39) from (3.36a)–(3.36b), and (3.40)
from

−(ω j − ω
∗)(d j (ω j ) − d j (ω∗)) ≤ −β′

j
(ω j − ω

∗)2 for all j ∈ G,

−(ω j − ω
∗)(d j (ω j ) − d j (ω∗)) ≤ 0 for all j ∈ L

due to Assumption 3.4 for j ∈ G and the fact that d j (·) in (3.35b) is monotonically
increasing for j ∈ N .

The other parts of the Lyapunov function candidate are constructed from turbine-
governor dynamics of generators j ∈ G. We rewrite (3.33e)–(3.33f) as

˙̃y j = A j ỹ j + B j p̃ j j ∈ G (3.41)

where ỹ j :=
[
ã j, P̃m

j

]T
, and p̃ j := p j (ω j ) − p j (ω∗), and

A j :=


− 1
Tg, j

0
1

Tb, j
− 1

Tb, j


B j :=



1
Tg, j

0


.

A Lyapunov function candidate for the linear subsystem (3.41) takes the form

Uj =
1
2
ỹT

j Q j ỹ j j ∈ G

where Q j ∈ R
2×2 is positive definite. The time derivative of Uj along the trajectory

of (3.33)(3.35) is

U̇j =
1
2
ỹT

j (Q j A j + AT
j Q j ) ỹ j + ỹT

j Q j B j p̃ j j ∈ G. (3.42)



64

For all j ∈ G we claim (and will soon prove) that there exist Q j � 0 and constant
α j , β j , γ j , and η j that satisfy

α j > 0, γ j > 0, (3.43a)

β j < D j + β
′

j
, (3.43b)

4α j (D j + β
′

j
− β j ) > 1 (3.43c)

and

U̇j ≤ −α j
(
P̃m

j

)2
+ β jω̃

2
j − γ j

(
ã j + η j P̃m

j

)2
. (3.44)

Then, by (3.38)–(3.40), the time derivative of U := U0 +
∑

j∈GUj satisfies

U̇ ≤ −
∑
j∈L

D jω̃
2
j −

∑
j∈G

γ j
(
ã j + η j P̃m

j

)2

+
∑
j∈G

(
−(D j + β

′

j
− β j )ω̃2

j + ω̃ j P̃m
j − α j

(
P̃m

j

)2)
,

where, by (3.43), the third summation is non-positive, and zero only if ω̃ j = P̃m
j = 0

for all j ∈ G. It is straightforward that U ≥ 0 and U̇ ≤ 0 in a neighborhood
of (x∗, p∗

G
, d∗), with both zero only at (x∗, p∗

G
, d∗), which implies local asymptotic

stability of (x∗, p∗
G
, d∗). In the rest of this proof, it is sufficient to find Q j � 0 and

constant α j , β j , γ j , and η j which satisfy (3.43)–(3.44) for all j ∈ G.

We choose Q j to be diagonal with positive entries Q j,11 and Q j,22. To ensure
Q j A j + AT

j Q j ≺ 0, we require

Q j,22

Tg, j
>

Q j,22

4Tb, j
.

A calculation from (3.42) gives

U̇j = −
Q j,22

Tg, j
ã2

j −
Q j,22

Tb, j

(
P̃m

j

)2
+

Q j,22

Tb, j
ã j P̃m

j +
Q j,22

Tg, j
ã j p̃ j

= − *
,

Q j,22

Tb, j
−

Q2
j,22

4γ jT2
b, j

+
-

(
P̃m

j

)2
+

Q2
j,22

4Tg, j (Q j,22 − γ jTg, j )

(
p̃ j

)2

−γ j

(
ã j −

Q j,22

2γ jTb, j
P̃m

j

)2
−

(
Q j,22

Tg, j
− γ j

) (
ã j −

Q j,22 · p̃ j

2(Q j,22 − γ jTg, j )

)2
(3.45)

for arbitrary γ j ∈

(
Q j,22
4Tb, j

,
Q j,22
Tg, j

)
. By Assumption 3.4 and the function p j (·) in (3.35a),

we have
(
p̃ j

)2
≤ L2

j ω̃
2
j in a neighborhood of ω

∗. Take

α j =
Q j,22

Tb, j
−

Q2
j,22

4γ jT2
b, j

, β j =
Q2

j,22L2
j

4Tg, j (Q j,22 − γ jTg, j )
, η j = −

Q j,22

2γ jTb, j
.



65

Note that α j and γ j satisfy (3.43a). By (3.45) we have (3.44). We still need to show
(3.43b)–(3.43c). To this end, we make the following transformation

ξ j =
Q j,22

4Tb, j
, σ j =

ξ j

γ j
, z j =

Tg, jγ j

Q j,22
, (3.46)

so that

ξ j > 0, 0 < σ j < 1, 0 < z j < 1. (3.47)

Hence (3.43b)–(3.43c) become

D j + β
′

j
−

L2
j ξ j

4σ j z j (1 − z j )
> 0 (3.48a)

16ξ j (1 − σ j ) *
,
D j + β

′

j
−

L2
j ξ j

4σ j z j (1 − z j )
+
-

> 1. (3.48b)

Subject to (3.47)(3.48a), the maximum of the left-hand-side of (3.48b) is(
D j + β

′

j

)2
/L2

j,

attained at z j = 1/2, ξ j = σ j

(
D j + β

′

j

)
/
(
2L2

j

)
, and σ j =

1
2 . By Assumption 3.4

we have
(
D j + β

′

j

)2
/L2

j > 1, i.e., there exists a (ξ j, σ j, z j ) that satisfies (3.47)–
(3.48). Through inverse transformation of (3.46), we can find positive definite,
diagonal matrices Q j and constant α j , β j , γ j , and η j that satisfy (3.43)–(3.44), and
hence finish the proof.

Remark 3.9. The local asymptotic stability in Theorem 3.5 means that any trajectory
of (3.33) and (3.35) starting within a region of attraction around the frequency-
synchronized point (x∗, p∗

G
, d∗) will converge to (x∗, p∗

G
, d∗). This region of attrac-

tion can be estimated using the methods in, e.g., [114], [115], [116] and taking into
consideration the region where Assumption 3.4 holds.

We prove local asymptotic stability in Theorem 3.5 using a Lyapunov function for
the nonlinear dynamics, instead of the common approach based on linearization
[117]. Theorem 3.5 provides a sufficient condition, which may not be necessary,
for stability, since our proof assumes the particular (diagonal) structure of Q j and
constructs the particular bound (3.44) of U̇j . In future work we would like to
understand how conservative the sufficient stability condition in Theorem 3.5 is,
and derive less conservative conditions.
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3.5 Generator and load-side secondary control with nonlinear power flow
As in Section 3.4, we use the power network model (3.33) which includes nonlinear
power flow and generator dynamics and control. In this section, we develop and
analyze distributed secondary frequency control to restore frequency to its nominal
value and inter-area power flows to their scheduled values.

Secondary frequency control problem
Given step changes r j in generation or load on an arbitrary subset of buses at
time 0, the goal of secondary frequency control is to drive the system (3.33) to an
equilibrium point (defined by Definition 3.2) that is optimal for:

OLC (network, generator and load-side secondary control):

min
p
G
≤pG≤pG

d≤d≤d, P

∑
j∈G

cp
j (p j ) +

∑
j∈N

cd
j (d j ) (3.49a)

subject to r j + p j = d j + Pout
j − Pin

j for all j ∈ G, (3.49b)

r j = d j + Pout
j − Pin

j for all j ∈ L, (3.49c)∑
j∈N

Ek j
(
Pout

j − Pin
j

)
= P̂k for all k ∈ K . (3.49d)

Now we explain (3.49) by comparing it with the primary OLC problem (3.34).

The first difference is that the variables d̂ j for j ∈ N do not appear in (3.49). Indeed,
at any equilibrium point of (3.33), we have d̂∗j = D jω

∗ = 0 which means frequencies
at all the buses are restored to their common nominal value.

The second difference is that the branch power flows Pi j for all (i, j) ∈ E are
explicitly included in (3.49) as optimization variables. Moreover, the per-bus power
balance constraints (3.49a)–(3.49b), where branch power flows play an important
role, are considered instead of the network-wide power balance (3.34b). Including
branch flows is a prerequisite for introducing the third difference below.

The third difference lies in the additional constraint (3.49d), which is called the inter-
area flow constraint. In practice, the power network (N , E) is often partitioned into
several control areas, i.e., subgraphs. Let K be the set of control areas, and define
matrix E ∈ {0, 1} |K |×|N | such that Ek, j = 1 if bus j lies in area k, and Ek, j = 0
otherwise. Then (3.49d) says that the net power flows out of areas k ∈ K must
be equal to their pre-scheduled (at a slower time scale in, e.g., the tertiary control)
values P̂k .
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Remark 3.10. In our work [57], which is not included in this thesis, we develop
a modified version of the secondary frequency control in this section to enforce
thermal limits, i.e., maximum branch power flows allowed. The control scheme
in [57] extends those in [45], [46] to include generator dynamics, while all of
these studies are based on the linearized power flow model (3.3)–(3.5). Under the
nonlinear power flow model (3.33c), we can enforce thermal limits on a subset of
lines where each line forms a cutset of the graph. We do this by generalizing the
constraint (3.49d) in the following way. For any given subset M ⊆ N of buses,
define a row vector EM ∈ {0, 1}1×|N | such that its j-th component EM, j = 1 if bus
j ∈ M, and EM, j = 0 otherwise. Then the inequality constraint

p
M
≤ EMCP ≤ pM, (3.50)

where C is the incidence matrix of graph (N , E), limits the net power flow out of
M within [p

M
, pM]. If the branch power flow Pi j can be expressed as Pi j = EMCP

for someM, then (3.50) actually imposes thermal limit constraint p
M
≤ Pi j ≤ pM .

This is the case if and only if line (i, j) itself forms a cutset of graph (N , E).

We make the following assumptions regarding OLC (3.49).

Assumption 3.5. OLC (3.49) is feasible. The cost functions cp
j for j ∈ G and cd

j

for j ∈ N are strictly convex and twice continuously differentiable on
[
p

j
, p j

]
and

[
d j, d j

]
, respectively.

Assumption 3.6. There exists an optimal (p∗
G
, d∗, P∗) of OLC (3.49) and θ∗ ∈ R|N |

where ���θ
∗
i − θ

∗
j
��� <

π
2 for all (i, j) ∈ E, such that8

r j + p∗j = d∗j + Pout,∗
j − Pin,∗

j for all j ∈ G, (3.51a)

r j = d∗j + Pout,∗
j − Pin,∗

j for all j ∈ L, (3.51b)

P∗i j = Bi j sin
(
θ∗i − θ

∗
j

)
for all (i, j) ∈ E . (3.51c)

As a result of these assumptions, we have the following lemma.

Lemma 3.8. Suppose Assumptions 3.5 and 3.6 hold. Then there is a unique
(θ∗, P∗, p∗

G
, d∗) that satisfies all of the following:

• (θ∗, P∗, p∗
G
, d∗) is a solution of (3.51);

• ���θ
∗
i − θ

∗
j
��� <

π
2 for all (i, j) ∈ E; and

8(3.51a)–(3.51b) repeat constraints (3.49a)–(3.49b).
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• (p∗
G
, d∗, P∗) is optimal for OLC (3.49).

We skip the proof of Lemma 3.8 since it uses a similar technique to the proof of
Lemma 3.7

Distributed secondary frequency control algorithm
Traditionally the goals of secondary frequency control formalized in (3.49) are
achievedwith automatic generation control (AGC), a centralized (within each control
area) generator control scheme [14], [16], [17]. For scalability to a large number
of participants, especially controllable loads, we design the following distributed
control algorithm written in the vector form:

pG = pG (λG + ωG), d = d(λ + ω), (3.52a)

λ̇ = Kλ
(
Mω̇ + Dω + CP − CB sin(CTφ)

)
, (3.52b)

π̇ = Kπ
(
ECB sin(CTφ) − P̂K

)
, (3.52c)

φ̇ = λ − ETπ, (3.52d)

where pG (λG +ωG) and d(λ +ω) are vector valued functions (p j (λ j +ω j ), j ∈ G)
and (d j (λ j +ω j ), j ∈ N ) with p j (·) and d j (·) defined in (3.35). Diagonal matrices
Kλ ∈ R|N |×|N | and Kπ ∈ R|K |×|K | are positive constant control gains, diagonal
matrices M = diag(MG, 0L), D = diag(Di, i ∈ N ), and B = diag(Bi j (i, j) ∈ E)
are system parameters, and C is the incidence matrix of graph (N , E).

The control algorithm (3.52) computes auxiliary variables λ, φ ∈ R|N | and π ∈ R|K |

in real time. It is a distributed algorithm in that it operates via local measurements
and computations, as well as communication between neighbors. In (3.52b), each
bus j ∈ N computes λ j by local measurements of ω j and the total power flow out
of j, and by receiving φi from all of its neighbors i. In (3.52c), each area k ∈ K

computes πk by monitoring the differences of φ across lines connecting area k with
other areas. The signal πk is then broadcast to all the buses in area k. In (3.52d),
each bus j ∈ N computes φ j from its local λ j and the signal πk it receives.

Next we study the equilibrium and stability of the closed-loop system (3.33)(3.52).

Equilibrium analysis
We have the following theorem regarding the equilibrium point of the closed-loop
dynamical system (3.33)(3.52). For convenience, let y := (λ, π, φ).
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Theorem 3.6. Suppose Assumptions 3.5 and 3.6 hold. Then the closed-loop system
(3.33)(3.52) has a unique equilibrium (θ∗, ω∗, P∗, Pm,∗

G
= a∗

G
= p∗

G
, d∗) that satisfies

all of the following:

• ω∗ = 0;

• ���θ
∗
i − θ

∗
j
��� <

π
2 for all (i, j) ∈ E; and

• (p∗
G
, d∗, P∗) is optimal for OLC (3.49).

Proof. (Existence.) OLC (3.49) has differentiable objective and constraint functions
and satisfies Slater’s condition [93, Ch. 5.2.3]. Therefore a point (p∗

G
, d∗, P∗) is

optimal for OLC (3.49) if and only if there is a (λ∗, π∗) which, together with
(p∗
G
, d∗, P∗), satisfies the (equivalently modified version of) KKT conditions:9

0 = r + p∗ − d∗ − CP∗, (3.53a)

0 = ECP∗ − P̂K , (3.53b)

p∗
G
= pG (λ∗

G
), d∗ = d(λ∗), (3.53c)

0 = CT ETπ∗ − CTλ∗, (3.53d)

where (3.53a)–(3.53b) are primal feasibility, and (3.53c)–(3.53d) combine stationar-
ity, dual feasibility, and complementary slackness. By Lemma 3.8, there is a unique
(θ∗, P∗, p∗

G
, d∗) which satisfies ���θ

∗
i − θ

∗
j
��� <

π
2 for all (i, j) ∈ E, equation (3.51), and

(3.53) with some (λ∗, π∗). These (θ∗, P∗, p∗
G
, d∗) and (λ∗, π∗), together withω∗ = 0,

Pm,∗
G
= a∗

G
= p∗

G
, and φ∗ = θ∗, form an equilibrium (x∗, y∗, p∗

G
, d∗) of (3.33)(3.52)

by Definition 3.2.10

(Uniqueness.) At any equilibrium (x∗, y∗, p∗
G
, d∗), equation (3.53) must be satisfied

as part of the definition for an equilibrium. Therefore (p∗
G
, d∗, P∗) is optimal for

OLC (3.49). Moreover, since ���θ
∗
i − θ

∗
j
��� <

π
2 for all (i, j) ∈ E and (3.51) is satisfied

at this equilibrium, by Lemma 3.8, θ∗ is also unique. Uniqueness of ω∗, Pm,∗
G

, and
a∗
G
is straightforward.

The uniqueness in Theorem 3.6 is only for physical quantities in equilibrium, such
as generation Pm,∗

G
, load d∗, power flows P∗, frequencies ω∗, and phase angles θ∗.

9For convenience, let Pm
L
= pL ≡ 0 through out this section.

10It is easy to check that λ̇ = 0 and π̇ = 0 at this point. However, by (3.52d)(3.53d) we have
φ̇ = λ∗−ET π∗ ∈ span(1), which means φ∗ at y∗ is not a constant but instead rotates at a synchronized
speed. We still call such (x∗, y∗, p∗

G
, d∗) an equilibrium point.
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It does not guarantee the uniqueness of auxiliary variables y∗ = (λ∗, π∗, φ∗) in
equilibrium. Let Z∗ be the set of all equilibrium points of (3.33)(3.52). In the
stability analysis below, we will consider the following subset of Z∗:

Z∗φ :=
{

(x∗, y∗, p∗
G
, d∗) ∈ Z∗ | ���φ

∗
i − φ

∗
j
��� <

π

2
, ∀(i, j) ∈ E

}
. (3.54)

Due to the uniqueness of P∗, the fact that CP∗ = CB sin(CTφ∗) (from (3.52b)), and
the uniqueness of the power flow solution in the principal region [111], there must
be a unique φ∗ = θ∗ for all the points in Z∗φ.

Stability analysis
Now we study stability of the closed-loop system (3.33)(3.52) at the set Z∗φ of
equilibrium points.

We make the following assumptions for our main result Theorem 3.7.

Assumption 3.7. For all j ∈ N , load control action d∗j in equilibrium stays strictly
within its capacity limit, i.e., d j < d∗j < d j .

Assumption 3.8. The following is satisfied in a neighborhood of (x∗, p∗
G
, d∗):

For all j ∈ G, there are constants β
j
> L j > 0, such that the load control cost

functions satisfy
(
cd

j

)′′
(d j ) ≤ 1

β
j

and the generator control cost functions satisfy(
cp

j

)′′
(p j ) ≥ 1

L j
.

Theorem 3.7. Suppose Assumptions 3.5–3.8 hold. Then any trajectory (x(t), y(t),
pG (t), d(t), t ≥ 0) of the closed-loop system (3.33)(3.52), as t → ∞, converges to
an equilibrium (x∗, y∗, p∗

G
, d∗) ∈ Z∗φ, given that (x(0), y(0), pG (0), d(0)) lies in a

neighborhood11 of Z∗φ.

Proof. Fix any equilibrium (x∗, y∗, p∗
G
, d∗) in Z∗φ. Let

( x̃, ỹ, p̃G, d̃) := (x, y, pG, d) − (x∗, y∗, p∗
G
, d∗).

Let θi j := θi − θ j and φi j := φi − φ j for all (i, j) ∈ E. Consider the following
Lyapunov function candidate:

U = U0 +
∑
j∈G

Uj, (3.55)

11See Remark 3.9 regarding estimation of this neighborhood.
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where

U0 =
1
2
ω̃T
G

MGω̃G +
∑

(i, j)∈E

Bi j

∫ θi j

θ∗i j

(sin u − sin θ∗i j )du

+
∑

(i, j)∈E

Bi j

∫ φi j

φ∗i j

(sin u − sin φ∗i j )du

+
1
2
λ̃T (Kλ )−1λ̃ +

1
2
π̃T (Kπ)−1π̃ (3.56)

and

Uj =
1
2

[
ãi, P̃m

j

]
Q j

[
ãi, P̃m

j

]T
for all j ∈ G (3.57)

for some positive definite matrices Q j ∈ R
2×2.

In a neighborhood of the equilibrium (x∗, y∗, p∗
G
, d∗), the Lyapunov function candi-

date U (3.55) is nonnegative, and zero only at (x∗, y∗, p∗
G
, d∗). Moreover, the time

derivative of U0 along any trajectory of the system (3.33)(3.52) is

U̇0 = ω̃T
G

{
rG + Pm

G
− DGωG − dG − CGB sin(CTθ)

}

+ω̃T
{
CB sin(CTθ) − CB sin(CTθ∗)

}

+(λ̃ − ET π̃)T
{
CB sin(CTφ) − CB sin(CTφ∗)

}

+λ̃T
{
r + Pm − d − CB sin(CTφ)

}

+π̃T
{
ECB sin(CTφ) − P̂K

}
(3.58)

= ω̃T
{
r + Pm − Dω − d − CB sin(CTθ∗)

}

+λ̃T
{
r + Pm − d − CB sin(CTφ∗)

}

+π̃T
{
ECB sin(CTφ∗) − P̂K

}
(3.59)

= −ω̃T Dω̃ − (ω̃ + λ̃)T d̃ + (ω̃G + λ̃G)T P̃m
G
, (3.60)

where we get (3.58) by system dynamics (3.33)(3.52) and the fact that λ∗ − ETπ∗ ∈

span(1), get (3.59) by (3.33b), and get (3.60) by the definition of an equilibrium
point. By Assumption 3.8 and d j (·) in (3.35b) we have

−(ω̃ + λ̃)T d̃ = −
∑
j∈N

(ω̃ j + λ̃ j )(d j (ω j + λ j ) − d j (ω∗j + λ
∗
j ))

≤ −
∑
j∈N

β
j

(
ω̃ j + λ̃ j

)2
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in a neighborhood of (ω∗, λ∗). Moreover, we constructUi (3.57) using the approach
in the proof of Theorem 3.5, and get

U̇ = U̇0 +
∑
j∈G

U̇j

≤ −ω̃T Dω̃ −
∑
j∈L

β
j

(
ω̃ j + λ̃ j

)2

+
∑
j∈G

{
−(β

j
− β j )

(
ω̃ j + λ̃ j

)2
+

(
ω̃ j + λ̃ j

)
P̃m

j − αi
(
P̃m

j

)2}
−

∑
j∈G

γ j
(
ã j + η j P̃m

j

)2
,

where constant α, β, γ, and ηmake U̇ non-positive, and zero if and only if ω̃ = λ̃ = 0
and P̃m

G
= ãG = 0. Hence U is a Lyapunov function. The rest of the proof uses the

same approach as the proofs of Lemma 3.5 and Theorem 3.1.

Theorem 3.7 states the stability result for closed-loop equilibrium points in Z∗φ which
satisfy θ∗ = φ∗ both in the principal region. In practice, the initial values of θ and
φ can be configured such that their trajectories are close enough to or lie in the
principal region, if the disturbance is sufficiently small. Moreover, the conditions in
Theorem 3.7 are satisfied in practice in the following manner: (i) the controllable
loads have large enough control capacities such that they do not hit their bounds in
equilibrium; (ii) around the equilibrium, the gains for fast-acting load control are
large enough; (iii) around the equilibrium, the gains for generator control (which is
slower than load control due to governor and turbine dynamics) are small enough.
We remark that the condition in Theorem 3.7 is sufficient but may not be necessary
for stability. It is our future work to find less conservative stability conditions.

3.6 Decentralized frequency integral control
Till now, all of our distributed frequency control schemes have been developed
using the optimal load control (OLC) framework. Indeed, there is more than one
way to design a distributed control scheme that stabilizes frequency and restores
frequency to its nominal value. In this section, we show such an example design, a
decentralized frequency integral control. This control ensures global convergence
of the closed-loop system to a set of equilibrium points, whereas the schemes in
Sections 3.4 and 3.5 only guarantee local asymptotic stability, under the nonlinear
power flow model.
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We consider the following power network model

Mjω̇ j = r j + p j − D jω j − Pout
j + Pin

j for all j ∈ G, (3.61a)

0 = r j + p j − D jω j − Pout
j + Pin

j for all j ∈ L, (3.61b)

Pi j = Bi j sin
(
θi − θ j

)
for all (i, j) ∈ E, (3.61c)

θ̇ j = ω j for all j ∈ N , (3.61d)

which is a simplified version of (3.33). First, we ignore the generator governor and
turbine dynamics (3.33e) and (3.33f). Second, we do not distinguish between gen-
erator and load controls, but instead consider a single control p j in power injection
at every bus j ∈ N .

Our goal in this section is to design a distributed control scheme which, given step
changes r j in generation or load on an arbitrary subset of buses at time 0, can
drive the system (3.61) to a new equilibrium point where frequency everywhere is
restored to its nominal value. In this section, we do not require the new equilibrium
to be an optimal point of any OLC problem. To this end, we propose the following
decentralized integral (DI) control:

p j = −K j s j for all j ∈ N , (3.62a)

ṡ j = ω j for all j ∈ N , (3.62b)

where K j > 0 for all j ∈ N are arbitrarily selected constant control gains. The
control scheme (3.62) is completely decentralized in that every participating unit
only takes integral of the frequency deviation measured on its local bus, and does not
require any explicit communication with other buses or a control center. Without
loss of generality, we take s j (0) = 0 for all j ∈ N , and then have

p j (t) = −K j

∫ t

0
ω j (τ)dτ = −K j

(
θ j (t) − θ j (0)

)
for all j ∈ N . (3.63)

Let K := diag(K j, j ∈ N ), θ0 := (θ j (0), j ∈ N ), and

F (θ) := r − K (θ − θ0) − CB sin(CTθ). (3.64)

Then the set of equilibrium points of the closed-loop system (3.61)–(3.62) is12

Θ
∗ :=

{
(θ, ω) ∈ R2|N | | ω = 0, F (θ) = 0

}
. (3.65)

We have the following theorem regarding existence and stability of Θ∗.
12For simplicity, we omit variables p and s from the definition of equilibrium points.
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Theorem 3.8. The closed-loop system (3.61)–(3.62) has a nonempty set Θ∗ of
equilibrium points. Moreover, starting from any feasible initial point (θ(0), ω(0)) ∈
R2|N |, every trajectory (θ(t), ω(t), t ≥ 0) generated by (3.61)–(3.62) approaches Θ∗

as t → ∞.

Proof. By (3.61b)(3.63)(3.64) we have

ωL ≡ D−1
L

FL (θ),

i.e., ωL is a continuous function of θ. Therefore we only need to show that

Θ
∗
G

:=
{
(θ, ωG) ∈ R|N |+|G| | ωG = 0, F (θ) = 0

}

is nonempty and any trajectory (θ(t), ωG (t)) of (3.61)–(3.62) globally converges to
Θ∗
G
as t → ∞. Consider the Lyapunov function13

U (θ, ωG) =
1
2
ωT
G

MGωG + V (θ) +
1
2

(θ−θ0)T K (θ−θ0) (3.66)

where

V (θ) :=
∑

(i, j)∈E

Bi j
(
1 − cos(θi − θ j )

)
−

∑
j∈N

r jθ j . (3.67)

The time derivative of U (3.66) along any trajectory of (3.61)–(3.62) is

U̇ (θ, ωG) = ωT
G

MGω̇G +
∑

(i, j)∈E

Bi j sin(θi − θ j )(ωi − ω j )

−
∑
j∈N

r jω j + ω
T K (θ − θ0)

= −ωT
G

DGωG + ωT
G

FG (θ) − ωT F (θ) (3.68)

= −ωT
G

DGωG − ωT
L

(θ)DLωL (θ) ≤ 0, (3.69)

where the equality in (3.68) is from (3.61a) and (3.64), and the equality in (3.69) is
from (3.61b). Take arbitrary (θ(0), ωG (0)) ∈ R|N |+|G|. Then the set

Ω :=
{
(θ, ωG) | U (θ, ωG) ≤ U (θ(0), ωG (0))

}
is compact. Indeed Ω is closed due to continuity of U (3.66), and is bounded since
U (3.66) is radially unbounded due to the dominating quadratic terms in ωG and θ.

13Alternatively, one could construct a strictly decreasing Lyapunov function (outside equilibria)
by applying Chetaev’s trick [118] and adding the cross-term ε

(
∇GV (θ)−∇GV (θ∗)

)T MGωG to
U (θ, ωG ) in (3.66), for ε > 0 sufficiently small.
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Also Ω is invariant since U̇ ≤ 0. Define

E :=
{
(θ, ωG) ∈ R|N |+|G| | U̇ (θ, ωG) = 0

}

=
{
(θ, ωG) ∈ R|N |+|G| | ωG = 0, ωL (θ) = 0

}
, (3.70)

where the equality in (3.70) is from (3.69). Define EΩ := E ∩ Ω, and let L+
Ω
be

the largest invariant subset of EΩ. By [117, Theorem 3.3], the system (3.61)–(3.62)
has a unique trajectory (θ(t), ωG (t), t ≥ 0), starting from (θ(0), ωG (0)), and by
LaSalle’s theorem [117, Theorem 4.4], as t → ∞, (θ(t), ωG (t)) converges to a
nonempty, compact, invariant limit set which is a subset of L+

Ω
. Hence it is sufficient

to show L+
Ω
⊆ Θ∗

G
. Consider any point (θ′, ω′

G
) ∈ L+

Ω
. Due to the invariance of

L+
Ω
, the trajectory (θ(τ), ωG (τ)) starting from (θ′, ω′

G
) must stay in L+

Ω
and hence

must stay in EΩ. Therefore, by (3.70) we have ωG (τ) ≡ 0 and hence ω̇G (τ) ≡ 0,
and ωL (θ(τ)) ≡ 0. It follows that F (θ(τ)) ≡ 0, and in particular (θ′, ω′

G
) ∈ Θ∗

G
(at

τ = 0). Hence L+
Ω
⊆ Θ∗

G
as we wanted to show.

In Theorem 3.8,Θ∗ is nonempty essentially because F (θ) = 0 always has a solution,
even though the open-loop system (3.61) with some fixed p may not have an equi-
librium due to insolvability of power flow. When Θ∗ is composed of a finite number
of isolated equilibrium points, which occurs with measure one on the set of system
parameters [119], Theorem 3.8 implies that the system (3.61)–(3.62) globally con-
verges to an equilibrium point. Unfortunately, it is in general not possible to control
the final equilibrium to which the system will converge. In the corollary below, we
show that Θ∗ contains a unique equilibrium which is globally asymptotically stable
when a condition on the integral gains K and line parameters B is satisfied. For
convenience, let N ( j) := {i ∈ N | (i, j) ∈ E or ( j, i) ∈ E} be the set of neighboring
buses of j, and B ji := Bi j for all (i, j) ∈ E.

Corollary 3.1. If Ki > 2
∑

j∈N (i) Bi j for all i ∈ N , then the closed-loop system
(3.61)–(3.62) has a unique and globally asymptotically stable equilibrium.

Proof. The Jacobian matrix of function F (3.64) is

∂F
∂θ

(θ) = −K − CB · diag
(
cos(CTθ)

)
CT, (3.71)

where cos(·) is a vector-valued function with component-wise cos(·). We drop the
argument θ of ∂F

∂θ , and denote the (i, j)-th entry of ∂F
∂θ by

(
∂F
∂θ

)
i j
. By Gershgorin
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circle theorem [120], for any eigenvalue λ of ∂F
∂θ , there exists i ∈ N such that

�����
λ −

(
∂F
∂θ

)
ii

�����
≤

∑
j∈N , j,i

������

(
∂F
∂θ

)
i j

������
. (3.72)

By assumption we also have

Ki > 2
∑

j∈N (i)

Bi j ≥
∑

j∈N (i)

Bi j (| cos θi j | − cos θi j ) for all i ∈ N

where θi j := θi − θ j , which, by (3.71), implies(
∂F
∂θ

)
ii
+

∑
j∈N , j,i

������

(
∂F
∂θ

)
i j

������
< 0 ∀i ∈ N . (3.73)

By (3.72)–(3.73), we have ∂F
∂θ (θ) ≺ 0 for all θ ∈ R|N |. Now suppose there are

θ∗, θ′ ∈ R|N | such that θ∗ , θ′ and F (θ′) = F (θ∗) = 0. Then we have, by the
fundamental theorem of calculus [121], that

0 = F (θ′) − F (θ∗)

=

[∫ 1

0

∂F
∂θ

(θ∗ + h∆θ)dh
]
∆θ, (3.74)

where ∆θ := θ′ − θ∗ , 0. Note that the integral term in (3.74), denoted by intF ,
is negative definite since ∂F

∂θ (θ∗ + h∆θ) ≺ 0 for all h ∈ [0, 1]. Hence we have
∆θT · intF · ∆θ < 0. However we have from (3.74) that ∆θT · intF · ∆θ = 0 which
leads to a contradiction. Therefore, by Theorem 3.8 and the definition of Θ∗ in
(3.65), the system (3.61)–(3.62) has a unique equilibrium (θ∗, ω∗ = 0) to which all
of its trajectories converge globally. Indeed, the unique global minimum ofU (3.66)
is attained at (θ∗, ω∗

G
), due to the facts that U̇ ≤ 0, that (θ(t), ωG (t)) → (θ∗, ω∗

G
)

as t → ∞, and that no solution can stay identically in the set E (3.70) except
(θ(t), ωG (t)) ≡ (θ∗, ω∗

G
). Therefore [117, Theorem 4.1] implies global asymptotic

stability of (θ∗, ω∗
G

) and hence that of (θ∗, ω∗).

An important implication of Theorem 3.8 and Corollary 3.1 is that the completely
decentralized integral (DI) control (3.62) achieves global asymptotic stability for a
nonlinear power flowmodel, without requiring any knowledge of system parameters
in the controller design. However, DI (3.62) may result in an equilibrium which
is neither optimal nor feasible in the sense of OLC, and may lead to impractically
large or fast-varying control actions especially under the parametric condition in
Corollary 3.1, i.e., large control gains Ki. This issue is addressed in the next section,
by adding distributed averaging filters to the decentralized integrators.



77

3.7 Distributed averaging-based proportional integral control
In this section, we still use the power network model (3.61). By modifying the
completely decentralized integral control (3.62), we develop a distributed control
scheme, which relies on local frequency sensing and communication between neigh-
bors, to restore the frequency to its nominal value with minimum disutility. After
step changes r j in generation or load on an arbitrary subset of buses at time 0, we
desire the closed-loop system to converge to a new equilibrium point which solves
the following optimization problem.

OLC (network, secondary frequency control):

min
p

∑
j∈N

1
2
α j p2

j (3.75a)

subject to
∑
j∈N

(
r j + p j

)
= 0, (3.75b)

which is a simplified version of (3.49) by considering a quadratic objective function
(3.75a) where constants α j > 0 for j ∈ N , consolidating controls (pG, d) into p,
and ignoring capacity limits [p

j
, p j], branch power flows Pi j , and the inter-area flow

constraint (3.49d). Obviously OLC (3.75) is feasible and has a unique optimal p∗

which satisfies

αi p∗i = α j p∗j for all i, j ∈ N (3.76)

due to the KKT (stationarity) condition. We make the following assumption that
a power flow solution (θ∗, P∗) exists in the principal region at the optimal of OLC
(3.75).

Assumption 3.9. For the unique optimal p∗ of OLC (3.75), there exist P∗ ∈ R|E | and
θ∗ ∈ R|N | where ���θ

∗
i − θ

∗
j
��� <

π
2 for all (i, j) ∈ E, such that

r j + p∗j = Pout,∗
j − Pin,∗

j for all j ∈ N , (3.77a)

P∗i j = Bi j sin
(
θ∗i − θ

∗
j

)
for all (i, j) ∈ E . (3.77b)

As is proved in Lemma 3.7, there is a unique point (θ∗, P∗, p∗) satisfyingAssumption
3.9. Indeed, this (θ∗, P∗, p∗) is also an equilibrium of (3.61). To drive (3.61) to
this equilibrium, we design the following distributed averaging-based proportional
integral (DAPI) control:

p j = −K j (s j + qj ) for all j ∈ N , (3.78a)

ṡ j = ω j for all j ∈ N , (3.78b)

q̇j = α j

∑
k∈N

Yj k (α j p j − αk pk ) for all j ∈ N , (3.78c)
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where K j for j ∈ N are constant control gains, and the weights Yj k ≥ 0 for j, k ∈ N

induce an undirected and connected communication graph, i.e., Yj j = 0 for j ∈ N ,
Yj k = Yk j > 0 when the local controllers at buses j and k communicate, and
Yj k = Yk j = 0 otherwise. Compared to the decentralized integral control (3.62),
distributed averaging filters (3.78c) on q are added to form the DAPI control. We
remark that the DAPI control (3.78) includes the control scheme proposed in [47],
[48], which makes the additional parametric assumption D = diag(α)−1 and merges
the variables s j + qj .

In the principal region where ���θ
∗
i − θ

∗
j
��� <

π
2 for all (i, j) ∈ E, the closed-loop system

(3.61)(3.78) has a unique equilibrium (θ∗, ω∗ = 0, P∗, p∗).14 We have the following
theorem regarding stability of the closed-loop system (3.61)(3.78).

Theorem 3.9. Suppose Assumption 3.9 holds. Then any trajectory (θ(t), ω(t), P(t),
p(t), t ≥ 0) of the closed-loop system (3.61)(3.78), as t → ∞, converges to the
unique (θ∗, ω∗ = 0, P∗, p∗) satisfying Assumption 3.9, given that (θ(0), ω(0), P(0),
p(0)) lies in a neighborhood of (θ∗, ω∗, P∗, p∗).

Proof. Consider the following incremental Lyapunov function candidate inspired
by [43]:

U (θ, ωG, p) =
1
2
ωT
G

MGωG + V (θ) − V (θ∗)

−∇V (θ∗)(θ − θ∗) +
1
2

(p − p∗)T K−1(p − p∗), (3.79)

where V (θ) is defined in (3.67). Note that, within a neighborhood of θ∗,

V (θ) − V (θ∗) − ∇V (θ∗)(θ − θ∗)

is nonnegative, and zero only at θ∗,15 due to the convexity of V (θ) in the princi-
pal region of θ. Therefore U (3.79) is locally nonnegative, and zero only at the

14Though s∗ + q∗ is also unique by (3.78a), each of s∗ and q∗ is not unique.
15We ignore the rigid rotation of θ j for all j ∈ N by the same amount.
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equilibrium. The derivative of U (3.79) along any trajectory of (3.61)(3.78) is

U̇ (θ, ωG, p)

= ωT
G

MGω̇G +
(
∇LV − ∇LV ∗

)T θ̇L

+
(
∇GV − ∇GV ∗

)T θ̇G + (p − p∗)T K−1 ṗ

= −ωT
G

DGωG − ωT
G

(
∇GV − ∇GV ∗

)
+ ωT

G
(pG − p∗

G
)

−
(
∇LV − ∇LV ∗

)T D−1
L

(
∇LV − ∇LV ∗

)
+

(
∇LV − ∇LV ∗

)T D−1
L

(pL − p∗
L

)

+
(
∇GV − ∇GV ∗

)T ωG − (pG − p∗
G

)TωG

+(pL − p∗
L

)T D−1
L

(
∇LV − ∇LV ∗

)
−(pL − p∗

L
)T D−1

L
(pL − p∗

L
) − (p − p∗)TαLYα(p − p∗)

= −ωT
G

DGωG − (p − p∗)TαLYα(p − p∗)

−
(
∇LV − ∇LV ∗ − (pL − p∗

L
)
)T

D−1
L

(
∇LV − ∇LV ∗ − (pL − p∗

L
)
)

= −ωT Dω − (p − p∗)TαLYα(p − p∗)

≤ 0, (3.80)

where ∇V and ∇V ∗ denote ∇V (θ) and ∇V (θ∗) respectively, and LY is the Laplacian
matrix [107] of the communication graph with weights Yi j . Therefore U is non-
increasing along any trajectory of (3.61)(3.78), and zero only when ω = 0 and
αp ∈ span(1). The rest of the proof is straightforward.

Compared to the distributed secondary frequency control (3.52), the communication
graph in the DAPI control (3.78) does not need to be the same as the power network,
which allows for more flexibility in implementation. Simulations in Section 3.8
show that DAPI (3.78) works well even when not all the buses are controlled.

3.8 Simulations
Through simulations with more realistic models than those used in our design and
analysis, we test performance of the control schemes developed in this chapter.

Load-side primary frequency control
We first illustrate performance of the load-side primary frequency control in Section
3.2, through simulations of the IEEE 68-bus New England/New York interconnec-
tion test system [105]. The single line diagram of the 68-bus system is given in
Figure 3.3. We run the simulation on Power System Toolbox [58]. Unlike our
analytic model, the simulation model is much more detailed and realistic, including
a two-axis subtransient reactance generator model, IEEE type DC1 exciter model,
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Figure 3.3: Single line diagram of the IEEE 68-bus test system [105].

classical power system stabilizer model, AC (nonlinear) power flows, and non-zero
line resistances. The detail of the simulation model, including parameter values,
can be found in the data files of the toolbox. It is shown in [103] that our analytic
model is a good approximation of the simulation model.

In the test system there are 35 load buses serving different types of loads, including
constant active current loads, constant impedance loads, and induction motor loads,
with a total real power of 18.23 GW. In addition, we add three loads to buses 1, 7 and
27, each making a step increase of real power by 1 pu (based on 100 MVA), as the
Pm in previous analysis in Sections 3.1–3.3. We also select 30 load buses to perform
OLC. In the simulation we use the same bounds

[
d, d

]
with d = −d for each of

the 30 controllable loads, and call the value of 30 × d the total size of controllable
loads. We present simulation results belowwith different sizes of controllable loads.
The disutility function of controllable load d j is c j (d j ) = d2

j /(2α), with identical
α = 100 pu for all the loads. The loads are controlled every 250 ms, which is a
relatively conservative estimate of the rate of load control in an existing testbed [25].

We look at the impact of OLC on both the steady state and the transient response
of the system, in terms of both frequency and voltage. We present the results with
a widely used generation-side stabilizing mechanism, known as a power system
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stabilizer (PSS), either enabled or disabled. Fig. 3.4a and 3.4b respectively show
the frequency and voltage at bus 66, under four cases: (i) no PSS, no OLC; (ii) with
PSS, no OLC; (iii) no PSS, with OLC; and (iv) with PSS and OLC. In both cases
(ii) and (iv), the total size of controllable loads is 1.5 pu.
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Figure 3.4: The (a) frequency and (b) voltage at bus 66, under four cases: (i) no
PSS, no OLC; (ii) with PSS, no OLC; (iii) no PSS, with OLC; (iv) with PSS and
OLC, where the OLC is for primary frequency control.

We observe in Fig. 3.4a that whether PSS is used or not, adding OLC always
improves the transient response of frequency, in the sense that both the overshoot and
the settling time (the time after which the difference between the actual frequency
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and its new steady-state value never goes beyond 5% of the difference between
its old and new steady-state values) are decreased. Using OLC also results in a
smaller steady-state frequency error. Cases (ii) and (iii) suggest that using OLC
solely without PSS produces a much better performance than using PSS solely
without OLC. The impact of OLC on voltage, with and without PSS, is qualitatively
demonstrated in Fig. 3.4b. Similar to its impact on frequency, OLC improves
significantly both the transient and steady-state of voltage with or without PSS. For
instance the steady-state voltage is within 4.5% of the nominal value with OLC and
7% without OLC.

To better quantify the performance improvement due to OLC we plot in Fig. 3.5
the new steady-state frequency, the lowest frequency (which indicates overshoot)
and the settling time of frequency at bus 66, against the total size of controllable
loads. PSS is always enabled. We observe that using OLC always leads to a
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Figure 3.5: The (a) new steady-state frequency, (b) lowest frequency, and (c) settling
time of frequency at bus 66, against the total size of controllable loads.
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higher new steady-state frequency (a smaller steady-state error), a higher lowest
frequency (a smaller overshoot), and a shorter settling time, regardless of the total
size of controllable loads. As the total size of controllable loads increases, the
steady-state error and overshoot decrease almost linearly until a saturation around
1.5 pu. There is a similar trend for the settling time, though the linear dependence
is approximate. In summary OLC improves both the steady-state and transient
performance of frequency, and in general deploying more controllable loads leads
to a bigger improvement.

To verify the theoretical result thatOLCminimizes the aggregate cost of load control,
Fig. 3.6 shows the cost of OLCover time, obtained by evaluating the quantity defined
in (3.7a) using the trajectory of controllable and frequency-sensitive loads from the
simulation. We see that the cost indeed converges to the minimum cost for the given
change in Pm.
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Figure 3.6: The cost trajectory of OLC compared to its minimum.

Generator and load-side primary control
We now illustrate performance of the generator and load-side primary frequency
control in Section 3.4, through simulations of the IEEE 39-bus New England test
system shown in Fig. 3.7. This system has 10 generators and 39 buses, and a total
load of about 60 per unit (pu) where 1 pu represents 100 MVA. Details about this
system including parameter values can be found in the Power System Toolbox [58].

The primary frequency control of generator or load j is designed with the cost
function cp

j (p j ) =
Rj

2

(
p j − psetj

)2
, where psetj is the power injection at the setpoint,
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Figure 3.7: Single line diagram of the IEEE 39-bus test system [58]. Dashed lines
are communication links used in the simulations of DAPI control.

an initial equilibrium point solved from static power flow problem. By choosing
this cost function, we try to minimize the deviations of power injections from the

setpoint, and have the control p j =

[
psetj −

1
Rj
ω j

] pj

p
j

from (3.35).16. We consider

the following two cases in which the generators and loads have different control
capabilities and hence different [p

j
, p j]:

1. All the 10 generators have [p
j
, p j] = [psetj (1− c), psetj (1+ c)], and all the loads

are uncontrollable;

2. Generators 2, 4, 6, 8, 10 (which happen to provide half of the total generation)
have the same bounds as in case (1). Generators 1, 3, 5, 7, 9 are uncontrollable,
and all the loads have [p

j
, p j] = [psetj (1 + c/2), psetj (1 − c/2)], if we suppose

psetj ≤ 0 for loads j ∈ L.
16Only the generator control pj is written since the load control d j takes the same form.
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Hence cases (1) and (2) have the same total control capacity across the network.
Case (1) only has generator control while in case (2) the set of generators and the
set of loads each have half of the total control capacity. We select c = 10%, which
implies the total control capacity is about 6 pu. For all j ∈ N , the feedback gain
1/R j is selected as 25psetj , which is a typical value meaning a frequency change
of 0.04 pu (2.4 Hz) causes the change of power injection from zero all the way to
the setpoint. Note that this control is the same as frequency droop control, which
implies that indeed frequency droop control implicitly solves an OLC problem with
quadratic cost functions we use here. However, our controller design is more flexible
by allowing a larger set of cost functions.

In the simulation, the system is initially at the setpoint with 60 Hz frequency. At
time t = 0.5 second, buses 4, 15, 16 each make 1 pu step change in their real power
consumptions, causing the frequency to drop. Fig. 3.8 shows the frequencies of
all the 10 generators under the two cases above, (1) with red and (2) with black.
We see in both cases that frequencies of different generators have relatively small
differences during transient, and are synchronized towards the new steady-state
frequency. Compared with generator-only control, the combined generator-and-
load control improves both the transient and steady-state frequency, even though the
total control capacities in both cases are the same.
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Figure 3.8: Frequencies of all the 10 generators under two cases of primary control:
(1) only generators are controlled (dashed) and (2) both generators and loads are
controlled (solid). The total control capacities are the same for both cases.
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Generator and load-side secondary control
We now illustrate performance of the generator and load-side secondary frequency
control in Section 3.5, through simulations of a four-machine network in Fig. 3.9,
on Power System Toolbox. Network parameters are slightly modified from [58].

LoadFlow 

There are step down under-load tap changing transformers between bus 3 and bus 4, and bus 13 and bus 
14. The tap settings are changed during a load flow solution so that the load bus voltages are maintained 
between the limits set in columns 14 and 15 of the bus matrix . 
 
 
The generators at buses 2, 11, and 12  have reactive power limits set to -2pu to 5pu. The swing bus 
generator and the  reactive power source at bus 101 has limits -99pu to 99pu. 
 
The rated voltage (kV) for each bus is specified in column 13 of bus. This is not used in an ac power flow, 
but we will see later, that in a dc power flow the information is necessary, since the dc system is modelled 
in natural units rather than in per unit. 

1.4 Load Flow  
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Figure 1 Single Line Diagram Two Area System 
 
The script file lfdemo is an ac load flow driver. When lfdemo is typed at the MATLAB command , you are 
asked to choose a data file which contains the bus and line load flow specification files. In our example 
case, these are specified in data2a.m. If your choice of file contains valid load flow data, you will be asked 
whether you wish to have a load flow report. Entering ‘y’ opens a diary file in the current MATLAB 
directory with the name lf_report.txt. type ‘n’ or press enter if you do not want a report. As the solution 
progresses (a Newton_Raphson algorithm performed by loadflow) the voltages at the load buses are found 
to be out-of-limits. The corresponding transformer taps are adjusted to bring the load voltage back in 
range. At the end of the solution, either the solution has converged, or the number of allowed iterations has 
been exceeded. In either case, the user is given a list of solution viewing options.  

5 

Figure 3.9: A four-machine network. This figure is from [58].

We use generation cost functions cp
j (p j ) = a j (p j )2, and user utility functions

cd
j (d j ) = a j (d j − d j )2 − a j (d j − d j )2, for constant a j > 0. Then the control

functions are p j (x) = −x/(2a j ) for x ∈ [−2a j p j,−2a j p j
] for generators, and

d j (x) = x/(2a j ) + d j for x ∈ [2a j (d j − d j ), 0] for controllable loads. We set
[p

j
, p j] and [d j, d j] such that the generators and controllable loads do not hit their

capacity limits. Let the load on bus 14 make a step increase at t = 2 s. In different
cases below, we implement different control strategies. Generators and loads are
controlled once per second in all the cases.

We first compare the proposed OLC scheme with traditional automatic generation
control (AGC) [14], [16], [17]. For simplicity, we regard the network as a single area
and ignore the inter-area flow constraints, in which case AGC becomes a centralized
control. For both OLC and AGC, all the bus frequencies are restored to 60 Hz.
Fig. 3.10 shows the frequency of bus 12 under AGC and OLC. The control gains
of AGC and OLC are tuned such that the frequency shows the best transient within
each case. We see that OLC improves transient frequency compared to AGC.

We then look at the impact of load participation in OLC. Fig. 3.11 shows the
frequency of bus 12 under two cases: (1) all the four generators are controlled, and
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Figure 3.10: Frequency of bus 12 under AGC and OLC. Control gains are tuned for
best transient frequency within each case. All the four generators and two loads are
controlled in both cases.

(2) generators G1 and G3 and two loads on buses 4 and 14 are controlled. In both
cases, constant a j are tuned such that the aggregate control gain across the network
is the same. We see that load participation in OLC improves transient frequency.
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Figure 3.11: Frequency of bus 12 under cases (1) only generators are controlled
and (2) both generators and loads are controlled. Both cases use OLC, and have the
same aggregate control gain.
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Frequency integral and DAPI controls
We evaluate performance of the frequency integral and DAPI controls in Sections
3.6 and 3.7, through simulations of the IEEE 39-bus system shown previously in Fig.
3.7. The generator inertia moments Mj and line susceptances Bi j are obtained from
[58]. We choose uniform droop coefficients D j = 1 pu for all the buses. Although
the theoretical analysis requires controllers at every bus of the network, here we only
control the generators and loads on buses 3, 4, 7, 15, 16, 21, 23, 24, 26, 28. We also
relax our controller (3.78) to the form

p j = −K j s j − R jqj for all j ∈ N ,

ṡ j = ω j for all j ∈ N ,

q̇j = Q j

∑
k∈N

Yj k (α j p j − αk pk ) for all j ∈ N ,

using gains K j = 60 pu, R j = 1 pu for all the controlled buses j. For the DAPI
control, a communication graph connecting generators and controllable loads is
shown in Fig. 3.7, with Yi j = 1 for all connected pairs (i, j). We select controller
gains Q j = 50/degree( j) where degree( j) denotes the degree of bus j in the com-
munication graph. The coefficients α j of OLC are generated uniformly randomly
from [0, 1].

In the simulation, the system is initially at a setpoint where supply and demand
are balanced and the frequency is 60 Hz (nominal). At time t = 1 second, buses
4, 12, 20 each make a 33 MW step change in real power consumption, causing
bus frequencies to drop. Fig. 3.12 shows the frequencies of five generators, under
cases with different control schemes: droop control, the completely decentralized
integral control, and DAPI. It can be seen that while droop control synchronizes bus
frequencies to lower than 60 Hz, both the decentralized integral control and DAPI
recover bus frequencies to 60 Hz, with similar transients.

Fig. 3.13 shows the trajectories of marginal costs a j p j , under the completely
decentralized integral control and the DAPI control. While at the equilibrium
of the decentralized integral control the marginal costs are different across the
generators and controllable loads, they are the same under DAPI, which implies
that the OLC is solved by DAPI. Moreover, for most of the displayed generators
and controllable loads, DAPI reduces both transient and steady-state control actions
compared to the decentralized integral control.

In Fig. 3.14 we compare the objective values of OLC, i.e., the control costs, along
trajectories of control actions of the completely decentralized integral control and
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Figure 3.12: Frequencies of generators 2, 4, 6, 8, 10, under droop control, the
completely decentralized integral control, and DAPI control.

DAPI, and compare them with the minimum objective value of OLC for a given step
change in load. We see that DAPI, compared to the decentralized integral control,
has a smaller control cost both during the transient and at the new equilibrium, and
indeed converges to the optimal of OLC.

3.9 Conclusion
We have presented a systematic method to design ubiquitous continuous fast-acting
distributed load control for primary frequency regulation in power networks, by for-
mulating an optimal load control (OLC) problem where the objective is to minimize
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Figure 3.13: Marginal costs a j p j for generators 2, 4, 6, 8, 10 and controllable loads
on buses 4, 15, 21, 24, 28, under the completely decentralized integral control in (a)
and the DAPI control in (b).

the aggregate control cost subject to power balance across the network. We have
shown that the swing dynamics and the linearized branch power flows, coupled with
a frequency-based load control, serve as a distributed primal-dual algorithm to solve
the dual problem of OLC.

We then extend our framework to include generator dynamics and control, nonlinear
power flows, and secondary frequency control. We also developed a completely
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Figure 3.14: Trajectories of the OLC objective value under the completely decen-
tralized integral control and DAPI control. The blue dotted line is the minimum
OLC objective value.

decentralized frequency integral control to restore frequency to its nominal value,
and a distributed averaging-based proportional integral (DAPI) control to solveOLC.
Simulations with more realistic models have shown effectiveness of various control
schemes we developed. In particular, both transient and steady-state frequencies are
improved by our schemes.
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APPENDICES

3.A Frequently used notations

θ := (θ j, j ∈ N ) bus voltage phase angles with respect to the rotat-
ing frame at the nominal frequency.

ω := (ω j, j ∈ N ) deviations of bus frequencies from their nominal
value

Pm := (Pm
j , j ∈ N ) mechanical power injections to the generators, or

uncontrollable load if j ∈ L.
p := (p j, j ∈ G) generator control.
a := (a j, j ∈ G) generator/turbine valve positions.
d := (d j, j ∈ N ) load control.
D jω j , j ∈ N aggregate power of generator friction and

frequency-dependent loads like induction motors
Mj > 0, j ∈ G inertia constant of generators.
C ∈ R|N |×|E| incidencematrix: Cj,e = 1 if line e = ( j, k) is from

bus j to some bus k, Cj,e = −1 if line e = (i, j) is
from some bus i to bus j, and Cj,e = 0 otherwise.

B := diag(Bi j, (i, j) ∈ E) line parameters that depend on line susceptances
and voltage magnitudes (assumed fixed).

Table 3.A.1: Frequently used notations in Chapter 3.

3.B Frequency behavior of the test system
Akey assumption underlying the analyticmodel (3.6) is that different busesmay have
their own frequencies during transient, instead of resynchronizing almost instanta-
neously to a common system frequency which then converges to an equilibrium.
Simulation of the 68-bus test system confirms this phenomenon. Fig. 3.B.1 shows
all the 68 bus frequencies from the simulation with the same step change Pm as that
in Section 3.8 but without OLC. To give a clearer view of the 68 bus frequencies,
they are divided into the following 4 groups.

1. Group 1 has buses 41, 42, 66, 67, 52, and 68;

2. Group 2 has buses 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 53, 54, 55, 56, 57, 58, 59, 60, and 61;

3. Group 3 has buses 1, 9, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45,
46, 47, 48, 49, 51, 62, 63, 64, and 65;
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4. Group 4 has bus 50 only.
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Figure 3.B.1: Frequencies at all the 68 buses shown in four groups, without OLC.

We see that, during transient, the frequencies at buses within the same group are
almost identical, but the frequencies at buses fromdifferent groups are quite different.
Moreover the time it takes for these different frequencies to converge to a common
system frequency is on the same order as the time for these frequencies to reach
their (common) equilibrium value.

3.C Proof of Lemma 3.1
From (3.9), either c′j (d j (ν)) = ν or d′j (ν) = 0. Hence, in (3.8) we have

d
dν

(
c j (d j (ν)) − νd j (ν)

)
= c′j (d j (ν))d′j (ν) − d j (ν) − νd′j (ν) = −d j (ν)

and thus

∂Φ

∂ν j
(ν) = Φ′j (ν j ) = −d j (ν j ) − D jν j + Pm

j .
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Hence the Hessian of Φ is diagonal. Moreover, since d j (ν j ) given by (3.9) is
nondecreasing in ν j , we have

∂2Φ

∂ν2
j

(ν) = Φ′′j (ν j ) = −d′j (ν j ) − D j < 0.

Hence Φ is strictly concave over R|N |.

3.D Proof of Lemma 3.2
Let g denote the objective function of OLC with the domain D :=

[
d1, d1

]
× · · · ×[

d
|N |
, d |N |

]
× R|N |. Since c j is continuous on [d j, d j],

∑
j c j (d j ) is lower bounded,

i.e.,
∑

j c j (d j ) > C for some C > −∞. Let (d′, d̂′) be a feasible point of OLC
(which exists by Assumption 3.1). Define the set

D′ :=
{

(d, d̂) ∈ D��� d̂2
j ≤ 2D j (g(d′, d̂′) − C) for all j ∈ N

}
.

Note that for any (d, d̂) ∈ D\D′, there is some i ∈ N such that d̂2
i > 2Di (g(d′, d̂′)−

C), thus

g(d, d̂) > C +
d̂2

i

2Di
> g(d′, d̂′).

Hence any optimal point of OLC must lie in D′. By Assumption 3.1 the objective
function g of OLC is continuous and strictly convex over the compact convex set
D′, and thus has a minimum g∗ > −∞ attained at a unique point (d∗, d̂∗) ∈ D′.

Note that OLC has a feasible point (d, d̂) ∈ relint D, where relint denotes the
relative interior [93]. Indeed, let (d′, d̂′) ∈ D be a feasible point of OLC, then we
can obtain (d, d̂) by letting d j =

(
d j + d j

)
/2, d̂ j = d̂′j − d j + d′j . Moreover the

only constraint of OLC is affine. Hence there is zero duality gap between OLC
and its dual, and a dual optimal ν∗ is attained since g∗ > −∞ [93, Section 5.2.3].
By Appendix 3.C,

∑
j∈N Φ

′′
j (ν) = −

∑
j∈N

(
d′j (ν) + D j

)
< 0, i.e., the objective

function of the dual of OLC is strictly concave over R, which implies the uniqueness
of ν∗. Moreover, by the definition of dual problem, the optimal point (d∗, d̂∗) of
OLC satisfies d∗j = d j (ν∗) given by (3.9) and d̂∗j = D jν

∗ for all j ∈ N .

3.E Proof of Lemma 3.3
From the proof of Lemma 3.1, the Hessian ∂2 L̃

∂ω2
G

(ωG, P) = ∂2ΦG
∂ω2
G

(ωG) is diagonal and

negative definite for all ωG ∈ R|G|. Therefore L̃ is strictly concave in ωG . Moreover
from (3.22) and the fact that ∂LL

∂ωL

(
ωL (P), P

)
= 0, we have

∂ L̃
∂P

(ωG, P) = −ωT
G

CG − ωT
L

(P)CL . (3.82)
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Therefore we have (using (3.21))

∂2 L̃
∂P2 (ωG, P) = −CT

L

∂ωL
∂P

(P) = −CT
L

*
,

∂2ΦL

∂ω2
L

(
ωL (P)

)+
-

−1

CL .

From the proof of Lemma 3.1, ∂2ΦL
∂ω2
L

is diagonal and negative definite. Hence
∂2 L̃
∂P2 (ωG, P) is positive semidefinite and L̃ is convex in P (L̃ may not be strictly
convex in P because CL is not necessarily of full rank).

3.F Proof of Lemma 3.4
The equivalence of (3.29) and (3.30) follows directly from the definition of ωL (P).
To prove that (3.30) is necessary and sufficient for U̇ (ω, P) = 0, we first claim
that the discussion preceding the lemma implies that (ω, P) =

(
ωG, ωL, P

)
satisfies

U̇ (ω, P) = 0 if and only if

ωG = ω
∗1G and

∂ L̃
∂P

(ωG, P)
(
P − P∗

)
= 0. (3.83)

Indeed if (3.83) holds then the expression in (3.24) evaluates to zero. Conversely,
if U̇ (ω, P) = 0, then the inequality in (3.25) must hold with equality, which is
possible only if ωG = ω∗1G since L̃ is strictly concave in ωG . Then we must have
∂ L̃
∂P (ωG, P) (P − P∗) = 0 since the expression in (3.24) needs to be zero. Hence we
only need to establish the equivalence of (3.83) and (3.30). Indeed, withωG = ω∗1G ,
the other part of (3.83) becomes

∂ L̃
∂P

(ω∗1G, P)
(
P − P∗

)
= −

[
ω∗1T

G
ωT
L

(P)
]

C(P − P∗) (3.84)

= −
[
0 ωT

L
(P) − ω∗1T

L

]
C(P − P∗) (3.85)

= −
(
ωL (P) − ω∗1L

)T
[
∂ΦL
∂ωL

(
ωL (P)

)
−
∂ΦL
∂ωL

(ω∗1L)
]T

, (3.86)

where (3.84) follows from (3.82), and (3.85) follows from 1T
N

C = 0, and (3.86)
follows from (3.15b) and (3.17). Note that ΦL is separable over ω j for j ∈ L and,
from (3.8), Φ′j (ω j ) = −d j (ω j ) − D jω j + Pm

j . Writing DL := diag(D j, j ∈ L) we
have

∂ L̃
∂P

(ω∗1G, P)
(
P − P∗

)
=

(
ωL (P) − ω∗1L

)T DL
(
ωL (P) − ω∗1L

)
+

∑
j∈L

(
ω j (P)−ω∗

) (
d j

(
ω j (P)

)
− d j (ω∗)

)
. (3.87)
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Since d j (ω j ) given by (3.9) is nondecreasing in ω j , each term in the summation
above is nonnegative for all P. Hence (3.87) evaluates to zero if and only if
ωL (P) = ω∗1L , establishing the equivalence between (3.83) and (3.30).

3.G Proof of Lemma 3.5
The proof of LaSalle’s invariance principle in [117, Theorem 3.4] shows that
(ω(t), P(t)) approaches its positive limit set Z+ which is nonempty, compact, in-
variant, and a subset of E, as t → ∞. It is sufficient to show that Z+ ⊆ Z∗, i.e.,
considering any point (ω, P) =

(
ωG, ωL, P

)
∈ Z+, to show that (ω, P) ∈ Z∗. By

(3.19), (3.31) and the fact that (ω, P) ∈ E, we only need to show that

CGP =

[
∂ΦG

∂ωG

(
ωG

)]T

. (3.88)

Since Z+ is invariant with respect to (3.15), a trajectory (ω(t), P(t)) that starts in
Z+ must stay in Z+, and hence stay in E. By (3.31), ωG (t) = ω∗1G for all t ≥ 0,
and therefore ω̇G (t) = 0 for all t ≥ 0. Hence, by (3.15a), any trajectory (ω(t), P(t))
in Z+ should satisfy

CGP(t) =
[
∂ΦG

∂ωG

(
ωG (t)

)]T

for all t ≥ 0, which implies that (3.88) holds for any (ω, P) ∈ Z+.
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C h a p t e r 4

TWO-TIMESCALE VOLTAGE CONTROL

Chapters 2 and 3 focus on frequency control, which is a major problem for wide-
area power transmission systems. In this chapter, we will study the voltage control
problem in power distribution systems that are closer to the users.

The voltage of a power distribution system must be maintained closely around its
nominal value in real time, even in the presence of highly volatile power supply or
demand. For this purpose, we jointly control two types of reactive power sources:
a capacitor operating at a slow timescale, and a power electronic device, such
as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control
actions are solved from optimal power flow problems at two timescales. Specifically,
the slow-timescale problem is a chance-constrained optimization, which minimizes
power loss and regulates the voltage at the current time instant while limiting the
probability of future voltage violations due to stochastic changes in power supply
or demand. This control framework forms the basis of an optimal sizing problem,
which determines the installation capacities of the control devices by minimizing
the sum of power loss cost and capital cost. We develop computationally efficient
heuristics to solve the optimal sizing problem and implement real-time control.
Numerical experiments with a high-performance computing (HPC) load show that
the proposed sizing and control schemes significantly improve the reliability of
voltage control with a moderate increase in cost.

This chapter is organized as follows. Section 4.1 describes the model of the dis-
tribution circuit and the HPC load. Section 4.2 formulates the control and sizing
problems. Section 4.3 describes our heuristics to solve the sizing problem and im-
plement real-time control. Section 4.4 presents the results of optimal sizing as well
as simulations of the real-time control. Finally, Section 4.5 concludes this chapter.

4.1 Distribution circuit and load models
We consider a high-performance computing (HPC) load, whose trajectory is shown
in Fig. 1.1, as the motivating example for this chapter. Modern HPC platforms
are typically supplied by multiple distribution circuits to ensure a redundant power
supply. Here we simplify this configuration by considering a single radial circuit
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(see Fig. 4.1) with a single HPC load concentrated at its end. A single branch of

0v

HPC load

fixed 

capacitor switchable 

capacitor

slack bus

v

jqp 

0C

jxr 

D-STATCOM

sC
K

k

],[ ff qq

jQP 

i controller

Figure 4.1: Schematic of the simplified circuit with resistance r and reactance x
supplying an HPC load at a voltage magnitude of v from a slack bus at a voltage
magnitude of v0. Variables P and Q are real and reactive power injections from the
slack bus, and p and q are real and reactive power consumed by the HPC load. The
current magnitude in the circuit is i. Three reactive power sources and a controller
are installed near the load. Black lines are actual circuit lines and red lines represent
signal flows.

resistance r and reactance x connects the HPC load to a slack bus of fixed voltage
magnitude and phase angle. Without loss of generality, the voltage phase angle at
the slack bus is set to zero. We denote the voltage magnitude at the slack bus by v0,
the voltage magnitude at the HPC load by v, the current magnitude on the branch
by i, the real and reactive powers sent from the slack bus by P and Q, and the real
and reactive power consumptions of the HPC load by p and q. We assume

q = φp, (4.1)

where φ is a positive constant. The constant load power factor represented by (4.1)
is typical of the HPC power consumptions.

The following devices are installed at the end of the circuit for voltage control.
First, a fixed capacitor with capacitanceC0 injects voltage-dependent reactive power
v2 f0C0, where f0 is the frequency of the circuit and is assumed to be constant.
Second, a switchable capacitor can take a small number K + 1 of discrete values of
capacitance cs ∈

{
k
K Cs |k = 0, ..., K

}
. Inmost distribution circuits, capacitors switch

only a few times each day to adapt to the gradual changes of the aggregate load,
due to their limited life cycles [77]. In the specific system we consider, however,
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the capacitor switches more frequently than a few times a day to adapt to the highly
intermittent HPC load, but still much less frequently than the changes in HPC load
to avoid excessive wear and tear. Moreover, the capacitor cannot switch as fast as the
changes in HPC load since the mechanical switching time of the capacitor will delay
the implementation of control by many AC cycles even if a change in load is detected
instantaneously. In this work, as explained below, we determine when to switch the
capacitor in real time based on the actual load and take into account the switching
time delay. Third, a D-STATCOM injects reactive power q f ranging continuously
within a preset range

[
−q f , q f

]
. A D-STATCOM is much more expensive than a

capacitor with the same maximum reactive power injection, but can respond within
an AC cycle to a change in load and does not suffer fromwear and tear from frequent
changes in q f . We call

(
C0,Cs, q f

)
the sizes of reactive power sources and

(
cs, q f

)
the control variables. A real-time feedback controller is installed at the load side
of the circuit, which measures variables such as load power, voltage and current,
takes them as input, and computes the values of control variables and sends them to
various control devices.

Suppose the parameter values
(
r, x, f0, v0, φ

)
are given and fixed. Then, incorporat-

ing (4.1), the real power p of HPC load, the size C0 of fixed capacitor, the control(
cs, q f

)
and the state variables (v, i, P,Q) satisfy

i2 =
P2 +Q2

v2
0

, (4.2a)

P = p + i2r, (4.2b)

Q = φp − v2 f0 (C0 + cs) − q f + i2x, (4.2c)

v2 = v2
0 − 2(rP + xQ) + i2(r2 + x2). (4.2d)

The equations are known as the DistFlow equations [61]. Note that i2r and i2x

in (4.2b) and (4.2c) are respectively the real and reactive power losses. With
(p,C0, cs, q f ) specified, the four variables (v, i, P,Q) can be solved from the four
equations (4.2). Indeed, there are two solutions (both with nonnegative values of
v and i), one with v close to v0, small i and hence small power loss, and the other
with v close to zero, large i and hence large power loss. We only care about the first
one and take it as the unique solution because we desire good voltage control and
minimized power loss [122], [123]. Hence v, i, P, Q can be written as functions of
(p,C0, cs, q f ), e.g., v = v

(
p,C0, cs, q f

)
and i = i

(
p,C0, cs, q f

)
.1

1We abuse notations by using v and i to denote either the variables or the functions.
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Equations (4.2) describe the behavior of the circuit at a particular instant. In practice,
the real power p of HPC load constantly changes over time, and so may the control
(cs, q f ) and state variables (v, i, P,Q). Here, we focus on characterizing the changes
in p over time. As an example, we consider the real power usage recorded at a large
HPC platform at the Los Alamos National Laboratory.

Fig. 1.1 shows the time-series trace of p over four days, sampled every 5 seconds.
The minimum and maximum values of the trace in the four days are p = 2150 kW
and p = 3650 kW, and we assume p ∈

[
p, p

]
always holds. Let τ ∈ N0 = {0, 1, ...}

index the time at which the (real) power is sampled and p(τ) denote the power
sampled at time τ. We see from Fig. 1.1 that |p(τ + 1) − p(τ) | are relatively small
(less than 200 kW) for most of the time while large changes from p(τ) to p(τ + 1)
are infrequent and usually separated by minutes or even hours.

To capture this pattern, we divide the sequence {p(τ), τ ∈ N0} into stages. A stage,
indexed by t ∈ N0, is a subsequence {p(τt ), p(τt + 1), ..., p(τt+1 − 1)} where τt and
τt+1 are the times of two consecutive large changes in p. The average power of
stage t is p[t] := 1

Tt

(
p(τt ) + p(τt + 1) + ... + p(τt+1 − 1)

)
where Tt := τt+1−τt is the

duration of stage t. In Section 4.3 we propose a method to determine the durations
and average powers of different stages for a given sequence {p(τ), τ ∈ N0}.

We assume the sequence of (average load powers of) stages {p[t], t ∈ N0} forms
a first-order homogeneous Markov chain characterized by transition probability
π(p+ | p), where p is the average power of the current stage and p+ is the average
power of the next stage. The formal validation of this assumption is our future
work, and here we give a partial justification. We determine the sequence of stages
from the time-series in Fig. 1.1 using the method in Section 4.3, and measure
the probability density of the next-stage power p+ conditioned on the current-stage
power p and the last-stage power p−, across all the transitions of stage powers.
Fig. 4.2 shows two examples in which, given p, the probability density of p+ is
approximately independent of p−, which hints that the sequence of stages may have
a first-order homogeneous Markovian property. We also assume the sequence of
samples {p(τ), τ ∈ N0} has a stationary distribution ρ(·). Note that ρ is different
from the stationary distribution of the Markov chain of average stage powers.

4.2 Optimal voltage control and device sizing
Suppose the number K + 1 of switchable capacitor levels is fixed, and the sizes
(C0,Cs, q f ) of reactive power sources are given. We design a real-time voltage
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Figure 4.2: Examples of probability density of p+ conditioned on p and p−. Sub-
figures (a) and (b) are for different p, and the legends label different p−.

control which, at every time τ, takes a new input p(τ) and computes optimal output
(c∗s (τ), q∗f (τ)).

The control is performed at two timescales: at slow timescale the capacitor cs is
switched at most once per stage, and at fast timescale the D-STATCOM q f may
be adjusted at every time τ when a new sample p(τ) is measured. We assume
there is a fixed time delay d ∈ N in capacitor switching, and d < Tt for all t. This
delay complicates the control time line, as demonstrated in Fig. 4.3. During the
bulk of stage t − 1, the control output of the switchable capacitor is a constant,
c∗s [t − 1]. At the beginning time τt of the next stage t, a large change in p occurs. A
new control output c∗s [t] of the switchable capacitor is computed using the average
load power p[t] of stage t (which is assumed to be known at τt if we consider the
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Figure 4.3: Time line of voltage control, which is broken into stages with signif-
icantly different average load power p[t]. The transition between stages t − 1 and
t occurs at time τt . Following this transition, a new optimal output c∗s [t] of the
switchable capacitor is computed but not implemented until a time delay d after the
transition. The D-STATCOM output q∗f (τ) is computed and implemented at every
time when p(τ) changes, which is especially important for voltage control during
the interval from τt to τt + d.

problem offline; see Section 4.3 for the online case). However, due to the delay
in switchable capacitor operation, cs (τ) cannot change from c∗s [t − 1] to c∗s [t] until
τt + d. A similar delay will occur after the transition from stage t to t + 1. For
the D-STATCOM, however, a control output q f (τ) is computed based on p(τ) and
c∗s (τ) and implemented instantaneously at every time τ.

In the time line depicted in Fig. 4.3, the control of cs is coupled across every
two consecutive stages. Specifically, the computation of c∗s [t] should incorporate
a prediction about the behavior of p[t + 1] to limit the probability of unacceptable
voltage deviations during the capacitor switching delay period τt+1 to τt+1 + d,
otherwise the uncertainty in p[t + 1] and the finite output range of q f could easily
lead to a situation where the voltage at the load exceeds acceptable bounds in this
period. Given p[t], the prediction of p[t + 1] is based on the transition probability
π

(
· | p[t]

)
introduced in Section 4.1.

For simplicity, we write p[t], p[t + 1], cs[t] as p, p+, cs. Then (the offline version
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of) the slow-timescale capacitor control problem, denoted Cs (p,C0,Cs, q f ), is

min
cs,qf ,q+f

[i
(
p,C0, cs, q f

)
]2r (4.3a)

subject to −ε ≤ [v
(
p,C0, cs, q f

)
]2 − v2

0 ≤ ε, (4.3b)

Pr
{
[v(p+,C0, cs, q+f )]2 − v2

0 ≥ ε | p
}
≤ δ, (4.3c)

Pr
{
[v(p+,C0, cs, q+f )]2 − v2

0 ≤ −ε | p
}
≤ δ, (4.3d)

cs ∈

{
k
K

Cs |k = 0, ..., K
}
, (4.3e)

−q f ≤ q f ≤ q f , −q f ≤ q+f ≤ q f , (4.3f)

where i and v as functions of (p,C0, cs, q f ) or (p+,C0, cs, q+f ) are specified by the
DistFlow equations (4.2). With respect to the average load power of the current stage,
the objective (4.3a) minimizes real power loss, and the deterministic constraint
(4.3b) regulates voltage. Chance constraints (4.3c)(4.3d) limit the probability of
voltage violations during the capacitor switching delay period of the next stage, by
incorporating transition probability from p to p+. Instead of limiting the voltage
magnitude, we choose to limit its square, which simplifies the analysis below.
Constraint (4.3e) specifies a discrete feasible set of cs. Note that the optimal
solutions (q∗f , q

+,∗
f ) of the problem Cs (p,C0,Cs, q f ) (4.3) will not be applied to the

D-STATCOM.The actual control actions of theD-STATCOMwill be determined by
a separate problem C f (p,C0, c∗s, q f ) (4.4) below. The variables q f , q+f are included
in Cs (p,C0,Cs, q f ) (4.3) to guarantee the existence of feasible (satisfying (4.3f))
operation points of the D-STATCOM in the current stage and in the capacitor
switching delay period of the next stage, when we optimize over cs.

At time τt , problem Cs (p[t],C0,Cs, q f ) is solved for c∗s [t]. The actions of the
switchable capacitor are c∗s (τ) = c∗s [t] for τt + d ≤ τ < τt+1 + d. Then at ev-
ery time τ, with c∗s (τ) known, a fast-timescale D-STATCOM control problem
C f (p(τ),C0, c∗s (τ), q f ) is solved for q∗f (τ). For simplicity, write p(τ), c∗s (τ), q f (τ)
as p, c∗s , q f . Then C f (p,C0, c∗s, q f ) is

min
qf

[i
(
p,C0, c∗s, q f

)
]2r (4.4a)

subject to −ε ≤
[
v
(
p,C0, c∗s, q f

)]2
− v2

0 ≤ ε, (4.4b)

−q f ≤ q f ≤ q f , (4.4c)

where q f is chosen tominimize power loss while regulating the voltage at the current
instant. While Cs in (4.3) is a chance-constrained OPF problem, C f in (4.4) is a
simpler OPF problem without chance constraints.
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For both the capacitor and the D-STATCOM control problems above, the objec-
tive is to minimize power loss as long as voltage violations are avoided, which
is common in practice and also makes sense for this specific system with a large
HPC facility (potentially large associated power loss) and a simple circuit. Indeed,
different control objectives might be chosen for different systems. For example, in
a more complex distribution network with multiple loads, the objective might be
finding a particular voltage profile across the network to minimize the total energy
consumption, through mechanisms such as Conservative Voltage Reduction [69],
[77], [124].

The optimal objective value of Cs (p,C0,Cs, q f ), i.e., the minimum power loss with
respect to the average load power p of a stage, is denoted by L(p,C0,Cs, q f ). When
planning the sizes of reactive power devices that will be installed in the circuit, we
need to account for the cost of the expected minimum power loss and the capital
cost of devices. Hence, an optimal sizing problem is formulated as

min(
C0,Cs,q f

)
∈X

kp

∫ p

p
L(p,C0,Cs, q f )ρ(p)dp + L0(C0) + Ls (Cs) + L f (q f ). (4.5)

The integral term in (4.5) is the expectation of minimum power loss resulting from
the capacitor control Cs. Note that though Cs takes average load powers of stages
as input, the integral in (4.5) is taken over the stationary distribution ρ(·) of load
powers sampled at a 5-second timescale, since the stationary distribution of average
stage powers does not include information of durations of stages.

In (4.5), the coefficient kp converts the expected power loss into a cost which has the
same unit as the capital costs, L0, Ls and L f , of the fixed capacitor, the switchable
capacitor and the D-STATCOM. LetR+0 denote the set of non-negative real numbers.
The domainX of the optimal sizing problem is the set of points (C0,Cs, q f ) ∈

(
R+0

)3

such that Cs (p,C0,Cs, q f ) is feasible for all p ∈ [p, p].

4.3 Heuristic solution and implementation
We formulated our control problem as two OPF problems on a one-branch, single-
phase circuit, which are usually simple to solve. The optimal sizing problem,
however, is more difficult to solve analytically, since neither its objective function
(4.5) nor its domain X has a closed-form expression. Probabilistic metaheuristics,
e.g., simulated annealing, genetic algorithm and particle swarm optimization, are
considered good candidate numerical methods to search for a (usually approximate)
globally optimal solution for the sizing problem. In the rest of this paper we use
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simulated annealing (SA) [125], but the techniques we develop can be applied to
other metaheuristics in a similar way.

A key process in SA is to evaluate the objective value and, in particular, the in-
tegral term in (4.5) for any given (C0,Cs, q f ). In practice, we use the numerical
approximation

N∑
n=1

L(pn,C0,Cs, q f ) ρ̃n, (4.6)

where p = p0 < p1 < ... < pN = p is a partition of the interval
[
p, p

]
, and

ρ̃n =
∫ pn

pn−1
ρ(p)dp is the probability that the real power load lies in the subin-

terval
[
pn−1, pn

]
. If Cs (pn,C0,Cs, q f ) is infeasible for any n ∈ {1, ..., N }, then

(C0,Cs, q f ) < X and is assigned an infinitely high objective value for the sizing
problem. If

(
C0,Cs, q f

)
∈ X, evaluation of the integral term in (4.5) requires solv-

ing Cs for N times, one for each bin in the approximation in (4.6). If N is large, the
computation of the objective value becomes expensive. Moreover, the chance con-
straints (4.3c)(4.3d) do not have closed-form expressions, making it more complex
to solve Cs (pn,C0,Cs, q f ).

To reduce the computational burden in our SA-based approach, we make simpli-
fications for the underlying capacitor control problems and develop a heuristic to
approximately solve them by exploiting the structure of the simplified problems. By
doing this the evaluation of the integral term in (4.5) is simplified, and we develop
a computationally efficient heuristic to solve the optimal sizing problem. We also
design a heuristic to implement the voltage control proposed in Section 4.2 in an
online manner in real time. Below we describe in detail our approach.

Heuristic for capacitor control
Indeed, from (4.2) one can solve for v and i explicitly in closed forms of (p,C0, cs, q f ),
using the classic formula of roots of quadratic equations. However, these explicit
solutions still take such complicated forms that solving for Cs is computationally
expensive. Hence we perform the following approximations to obtain a simplified
version of Cs, which has a clearer structure of how the solution depends on the input.

First, we simplify the expression of i2. In a realistic distribution circuit, the real and
reactive power losses i2r and i2x are much smaller than the sending-end real and
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reactive powers P and Q, respectively. Hence by (4.2a)–(4.2c) we have

i2 ≈
p2 +

(
v2 f0(C0 + cs) + q f − φp

)2

v2
0

. (4.7)

Second, we convert constraint (4.3b) into affine inequalities in (cs, q f , p, i2). From
(4.2b)–(4.2d) we have

v2 =
v2

0 − 2(r + φx)p + 2xq f − i2(r2 + x2)
1 − 2x f0 (C0 + cs)

. (4.8)

We only consider 1 − 2x f0 (C0 + cs) > 0 since it is a stability requirement that an
increase in reactive power injection (or equivalently, in C0, cs or q f ) results in an
increase in voltage magnitude [123]. Substituting (4.8) into (4.3b), we have

qvc,1
(
cs, q f

)
:= f0

(
v2

0 + ε
)

(C0 + cs) + q f

≤

( r
x
+ φ

)
p +

ε

2x
+

i2
(
r2 + x2

)
2x

=: g1(p, i2), (4.9)

qvc,2
(
cs, q f

)
:= f0

(
v2

0 − ε
)

(C0 + cs) + q f

≥

( r
x
+ φ

)
p −

ε

2x
+

i2
(
r2 + x2

)
2x

=: g2(p, i2), (4.10)

where the left-hand-sides and right-hand-sides are affine functions of (cs, q f ) and
affine functions of (p, i2).

Third, we convert chance constraints (4.3c)(4.3d) into simpler deterministic con-
straints. Similar to how we obtained (4.9)(4.10) from (4.3b), we have, from
(4.3c)(4.3d), that

Pr
(
qvc,1(cs, q+f ) ≥ g1(p+, (i+)2) | p

)
≤ δ, (4.11)

Pr
(
qvc,2(cs, q+f ) ≤ g2(p+, (i+)2) | p

)
≤ δ, (4.12)

where i+ denotes i(p+,C0, cs, q+f ). Given the current-stage average load power p,
find two powers h̃1 and h̃2 as

h̃1(p) := sup



h ∈ [p, p]���

∫ h

p
π

(
p+ |p

)
dp+ ≤ δ



,

h̃2(p) := inf



h ∈
[
p, p

] ���

∫ p

h
π

(
p+ |p

)
dp+ ≤ δ



.
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Then from (4.11)(4.12), the chance constraints are converted into deterministic
constraints:

qvc,1(cs, q+f ) ≤

( r
x
+ φ

)
h̃1(p) +

ε

2x
+

r2 + x2

2x
(i+)2

=: h1
(
p, (i+)2

)
, (4.13)

qvc,2(cs, q+f ) ≥

( r
x
+ φ

)
h̃2(p) −

ε

2x
+

r2 + x2

2x
(i+)2

=: h2
(
p, (i+)2

)
. (4.14)

Fourth, we approximate the
(
p,C0, cs, q f

)
-dependent argument i2 in g1(p, i2) and

g2(p, i2) in (4.9)(4.10) with a constant l̃.2 Moreover we replace the (p+,C0, cs, q+f )-
dependent argument (i+)2 in h1(p, (i+)2) in (4.13) with its estimated lower bound
l+, and replace (i+)2 in h2(p, (i+)2) in (4.14) with its estimated upper bound l

+
,

where both l+ and l
+
are constant. Section 4.3 explains the way we obtain l̃, while

l+ and l
+
are estimated as follows. Suppose (4.3b)(4.9)(4.10) are also satisfied when

(p, q f ) is replaced by (p+, q+f ) (which indeed occurs with a high probability 1− 2δ).
Then (4.7), which also holds when (i, p, q f ) is replaced by (i+, p+, q+f ), implies

(i+)2 ≥
1
v2

0


p2 +

*.
,

r
x
· p −

ε

2x
+

(
r2 + x2

)
2x

(i+)2+/
-

2
≈

1
v2

0

[
p2 +

( r
x
· p −

ε

2x

)2]
=: l+,

(i+)2 ≤
1
v2

0


p2 +

*.
,

r
x
· p +

ε

2x
+

(
r2 + x2

)
2x

(i+)2+/
-

2
≈

1
v2

0

[
p2 +

( r
x
· p +

ε

2x

)2]
=: l

+
,

where the approximate equalities result from dropping the term associated with
relatively small power loss. A significant component of these simplifications is that
g1(p, l̃), g2(p, l̃), h1(p, l+), h2(p, l

+
) are known a priori when p is given. Hence, with

those terms on the right-hand-sides, inequalities (4.9)(4.10)(4.13)(4.14) become
simple affine constraints in (cs, q f , q+f ).

The four approximation steps above render us a simple way to approximately solve
Cs, which becomes to minimize (4.7) subject to (4.9)(4.10) (with i2 replaced by a

2We abuse the notation by letting l̃ denote a vector in Section 4.3. Its meaning should be clear
given the context.
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constant l̃), and (4.13)(4.14) (with (i+)2 replaced by constants l+ and l
+
, respec-

tively), and (4.3e)(4.3f). A further observation is that the objective (4.7) of the
simplified problem is decreased by decreasing cs and q f . Indeed, in practice ε is
selected to be much smaller than 2rp, which makes v2 f0(C0 + cs) + q f > φp by
(4.3b)(4.10). Moreover, decreasing cs and q f results in decrease in v2 by (4.8).

Hence we design the following heuristic Hs to approximately solve the capacitor
control problem Cs (p,C0,Cs, q f ) and get L̃(p,C0,Cs, q f ; l̃), an approximation of the
actual optimal objective L(p,C0,Cs, q f ). Moreover, a variable “feasibility_flag” is
set to be 1, which means Cs (p,C0,Cs, q f ) is feasible, if a c∗s is found by the heuristic,
and 0 otherwise.

Heuristic. Hs(p,C0,Cs, q f ; l̃): capacitor control
feasibility_flag = 0;
for k = 0, 1, ..., K do
if qvc,1

(
k
K Cs,−q f

)
≤ min

(
g1(p, l̃), h1(p, l+)

)
and qvc,2

(
k
K Cs, q f

)
≥ max

(
g2(p, l̃), h2(p, l

+
)
)
do

feasibility_flag = 1;
c∗s =

k
K Cs;

q∗f = max
(
−q f , g2(p, l̃) − f0 (v0 − ε )

(
C0 + c∗s

))
;

L̃(p,C0,Cs, q f ; l̃) = [i(p,C0, c∗s, q
∗
f )]2r;

return;3
end if;
end for;
return;

Note that the result of Hs depends on the constant l̃, whose selection will be
explained below. The heuristic Hs forms a basis for developing the heuristic to
solve the optimal sizing problem.

Heuristic for optimal sizing
Suppose a partition p = p0 < p1 < ... < pN = p is given and fixed, and for
every n ∈ {1, ..., N } the probability ρ̃n of load power lying in the subinterval[
pn−1, pn

]
is known. When solving the optimal sizing problem with SA, the

function Ẽ(C0,Cs, q f ; l̃) below is used to approximate the objective value (4.5)
at a given point (C0,Cs, q f ), where l̃ is a vector (l̃1, ..., l̃N ) of constants used to

3In the pseudo code of this chapter, “return”means terminating the current heuristic and returning
the values of all variables computed.
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approximate the minimum value of i2 for each input pn to the underlying problem
Cs. Note that Ẽ(C0,Cs, q f ; l̃) is assigned an extremely high value as +∞, i.e.,
(C0,Cs, q f ) is marked as infeasible, if Hs(pn,C0,Cs, q f ; l̃n) for any n ∈ {1, ..., N }

returns feasibility_flagn = 0.

Heuristic. Ẽ(C0,Cs, q f ; l̃): approximate sizing objective
for n = 1, ..., N do
RunHs(pn,C0,Cs, q f ; l̃n);
if feasibility_flagn == 0 do
Ẽ(C0,Cs, q f ; l̃) = +∞;
return;
end if;
end for;
Ẽ(C0,Cs, q f ; l̃) = kp

N∑
n=1

L̃(pn,C0,Cs, q f ; l̃n) ρ̃n + L0(C0) + Ls (Cs) + L f (q f );
return;

Based on the approximate objective function above, an iterative heuristic Hosz is
developed to approximately solve the optimal sizing problem. In the j-th iteration,
Hosz runs SA with objective function Ẽ(·; l̃∗, j ) to obtain an optimal (C∗, j0 ,C∗, js , q∗, jf ).
Based on the outputs of underlyingHs heuristics, l̃∗, j is updated to l̃∗, j+1.

Heuristic. Hosz: optimal sizing
j = 0; l̃∗,0 = 0;
while termination condition == false do
Run SA with Ẽ(·; l̃∗, j ) and get (C∗, j0 ,C∗, js , q∗, jf );
for n = 1, ..., N do
l̃∗, j+1
n = 1

r · L̃(pn,C
∗, j
0 ,C∗, js , q∗, jf ; l̃∗, jn );

end for;
j = j + 1;
end while;
(C∗0,C

∗
s , q
∗
f ) = (C∗, j0 ,C∗, js , q∗, jf );

return;

An example of the termination condition is that some norms ‖ l̃∗, j+1− l̃∗, j ‖, ‖C∗, j+1
0 −

C∗, j0 ‖, etc. are smaller than certain thresholds. In the numerical experiments in
Section 4.4 this condition is always satisfied within a small number of iterations.
The fact that only a small number of iterations are required and each iteration
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works on SA with a simple objective function indicates thatHosz is computationally
efficient in solving the optimal sizing problem.

Heuristic for real-time control
Now we suppose reactive power sources of optimal sizes

(
C∗0,C

∗
s , q
∗
f

)
have been

installed in the circuit and look at the implementation of real-time control. Recall
that we formulated the capacitor control problem in Section 4.2 in an offline manner,
i.e., by assuming that the average load power p[t] of stage t is known at the beginning
τt of stage t. This assumption, however, does not hold in practice since p[t] also
depends on inputs p(τ) for τ > τt . Therefore the heuristic for real-time control
should be implemented online for sequential arrivals of input {p(τ), τ ∈ N0}.

To this end, we develop a heuristic Hrt which determines the start of a new stage
online, estimates the average load powers of the new stage, solves Cs for capacitor
control at every stage and solves C f for D-STATCOM control at every time when the
load power is sampled. Specifically, a threshold pth is used to determine the starting
time τt of a stage t. At τt the controller takes p(τt ) as an estimate of p[t] and solves
Cs (p(τt ),C∗0,C

∗
s , q
∗
f ) for c∗s (τt + d), due to the operation delay d of the switchable

capacitor. The estimate of p[t] is updated for τ = τt +1, ..., τt +Tt −1. Whenever the
updated estimate of p[t] deviates from the previous input to Cs by more than a preset
threshold pest, problem Cs needs to be solved again with the updated estimate of p[t]
as a new input. The D-STATCOM control problem C f is a simple OPF problem and
can be solved using standard techniques, which are beyond the scope of this paper.
Details ofHrt are given below. SupposeHrt has been running for τ < 0 so that the
values of t, p[t], p̃[t], Tt and c∗s (τ), ..., c∗s (τ + d − 1) are known at τ = 0.

Heuristic. Hrt: real-time voltage control
for τ = 0, 1, 2, ... do
if |p(τ) − p[t]| > pth do
t = t + 1; p[t] = p(τ); p̃[t] = p[t]; Tt = 1;
Solve Cs

(
p̃[t],C∗0,C

∗
s , q
∗
f

)
for c∗s (τ + d);

else do
p[t] = p[t]×Tt+p(τ)

Tt+1 ; Tt = Tt + 1;
if |p[t] − p̃[t]| > pest do
p̃[t] = p[t];
Solve Cs

(
p̃[t],C∗0,C

∗
s , q
∗
f

)
for c∗s (τ + d);

else do
c∗s (τ + d) = c∗s (τ + d − 1);
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end if;
end if;
Solve C f (p(τ),C∗0, c

∗
s (τ), q∗f );

end for;

Note that the previous process of running Hosz for optimal sizing has provided us
with a great deal of information to simplify computations inHrt. For example, for all
n ∈ {1, ..., N } we have l̃∗n, g1(pn, l̃∗n), g2(pn, l̃∗n), h1(pn, l+), h2(pn, l

+
) and c∗s,n. When

solving Cs
(
p̃[t],C∗0,C

∗
s , q
∗
f

)
in real-time controlHrt, if it happens that p̃[t] = pn for

some n, then we know its solution is c∗s,n without actually solving it. Otherwise it can
be solved by running Hs(p̃[t],C∗0,C

∗
s , q
∗
f ; l̃∗[t]), in which l̃∗[t], g1(p̃[t], l̃∗[t]), etc.

can be obtained through interpolation of l̃∗n, g1(pn, l̃∗n), etc. for pn neighboring p̃[t].
Such simplifications can accelerate the computations in real-time control. Indeed,
in the numerical experiments in Section 4.4, the computation time of runningHrt is
negligible compared to the time step between consecutive control actions.

As an additional remark to this section, the multiple heuristics proposed above
are inspired by the insight we obtain from the structure of the simplified problem
resulting from a series of approximations to the original capacitor control problem.
Rigorous analysis of the impact of those approximations and the performance of the
proposed heuristics, e.g., sub-optimality bounds of Hs and Hosz and convergence
rate ofHosz, is our future work.

4.4 Numerical results
We solve the optimal sizing problemwith the proposed heuristic and run simulations
to test the proposed real-time control. We also study the dependence of the optimal
device sizes and the performance of the proposed control on the choice of parameter
δ, the tolerable probability of voltage violations due to transitions of load power.

We take the model in Fig. 4.1 with the following parameter values. The per unit
base power is 1 kW, v0 = f0 = 1 pu, φ = 0.2, and r = x = 1.1 × 10−5 pu. The
parameter ε for voltage control is 0.02 pu, which allows the voltage magnitude v to
fluctuate between 0.99 pu and 1.01 pu.4 Suppose the capital costs of reactive power
sources are

L0(C0) = k0v
2
0 f0C0, Ls (Cs) = ksv

2
0 f0Cs, L f (q f ) = k f q f .

4We make the acceptable voltage range very tight to exercise the proposed schemes. Larger
loads (or distributed generation) will cause larger voltage swings that are closer to realistic limits.
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The price of energy (that supplies the real power loss) is $50/MWh. Both the prices
of the fixed capacitor and the switchable capacitor, in terms of dollars spent on per
unit reactive power injection under nominal voltage and frequency, are $1000/Mvar.
The price of D-STATCOM, in terms of dollars spent on per unit reactive power
injection, is $100, 000/Mvar. Suppose all the reactive power devices can be used
for 30 years. The prices above are then converted to values of kp, k0, ks and k f such
that the objective (4.5) of the optimal sizing problem measures the cost in dollars
every day. For the switchable capacitor K = 1, i.e., it can switch to either 0 or Cs.

From the four-day trace of load power in Fig. 1.1, we use samples in the first three
days as the training set to measure the transition probabilities π between stages and
the stationary distribution ρ of load power samples. We use different values of
parameter δ in different cases of the experiments, where a case means the process of
solving the optimal sizing problem using Hosz and then, with the resulting optimal
sizes of the devices, implementing the real-time controlHrt on the load power trace
in the last day from Fig. 1.1.

Fig. 4.4 shows the dependence of optimal device sizes on δ. Fig. 4.4a shows
C∗0 and C∗0 ± q∗f , i.e., the range of reactive power injection5 when the switchable
capacitor control cs = 0, which usually happens under low load power. On the
other hand, Fig. 4.4b shows C∗0 + C∗s and C∗0 + C∗s ± q∗f , i.e., the range of reactive
power injection when cs = C∗s , which usually happens under high load power. We
see in both subfigures that the range of reactive power injection gets broader as δ
decreases, since with less tolerance of probabilistic voltage violations (smaller δ),
the D-STATCOM is required to have larger control capacity q∗f to regulate voltage
more safely when cs cannot switch immediately following a large transition of load
power. Another observation is that the lower bound C∗0 − q∗f of the total control is
almost constant for δ ≤ 0.9. Indeed, for those δ, when cs = 0, the chance constraint
(4.3c) is not binding in any capacitor control problem underlying the sizing problem.
For a similar reason C∗0 + C∗s + q∗f is almost constant for δ ≥ 0.4.

Note that we implement δ = 1 by removing the chance constraints (4.3c)(4.3d) in all
the capacitor control problems underlying the sizing problem. Hence in Fig. 4.4a
there is a significant drop of the whole range of reactive power injection when δ is
increased from 0.9 to 1. Indeed, after removing (4.3d) it is no longer necessary to
maintain a high level of C∗0 + q∗f for voltage control during the capacitor switching

5The capacitance C0 and its nominal reactive power injection v2
0 f0C0 have the same per unit

value, since f0 = v0 = 1 pu.
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Figure 4.4: Sizes of control devices as functions of δ. The range of aggregate
reactive power injection of the fixed capacitor and the D-STATCOM is plotted for
(a) cs = 0 and (b) cs = C∗s , respectively.

delay period immediately after any possible large load increase, and thus the range
of reactive power injection can be moved down to decrease power loss as well as
capital cost. This decrease in power loss and capital cost, however, is obtained by
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suffering a higher risk of voltage violations, as shown in Figs. 4.5 and 4.6 below.

As sketched above we run the real-time control heuristic Hrt for many cases, each
with a different δ and different device sizes depending on that δ. For two of the cases
with δ = 0.1 and δ = 1, the real-time traces of voltage magnitude and real power
loss are shown in Fig. 4.5. The traces of voltage and power loss are also plotted
for a benchmark case with only a fixed capacitor (whose size equals C∗0 + C∗s + q∗f
when δ = 0.1) and no control. We see that, in the benchmark case with only a
fixed capacitor, the larger time-independent reactive power injection from the fixed
capacitor results in higher voltages and losses at nearly all times compared to the two
cases with controls. The case δ = 0.1 generally biases the voltage above the case
δ = 1 (no chance constraints). This bias protects the system against experiencing
an undervoltage when the load suddenly increases, as revealed near the end of the
day when the voltage in the case δ = 1 dips below 0.99 pu. This extra voltage safety
provided by the chance constraints incurs increased power loss during periods when
the case δ = 0.1 biases the voltage up with additional reactive power injections.

For each case with different δ, we record the proportion of 5-second samples in
one day at which the voltage drops below 0.99 pu (indeed the voltage never swings
above 1.01 pu so those recorded are all the samples with voltage violations). We
also sum up the real-time power loss over one day, and add up the cost of that
power loss and the average capital cost in one day. Fig. 4.6 shows the proportion
of samples with voltage violations and the one-day total (capital plus power-loss-
induced) cost for different δ. As δ is decreased, the voltage control becomes more
reliable as demonstrated by the significantly decreasing proportion of samples with
voltage violations in the upper subfigure. The increased reliability only brings a
modest increase in cost, as shown in the lower subfigure. Not shown in Fig. 4.6
is a benchmark case with only a fixed capacitor and no control. In that case the
fixed capacitor is set high enough so that the voltage never drops below 0.99 pu,
but the cost is as high as $215/day due to the high power loss. We also consider
another benchmark case in which there is only a D-STATCOMand there are no fixed
and switchable capacitors. In this case the deterministic-constrained OPF problem
C f (p,C0, c∗s, q f ) is solved every 5 seconds in real time with C0 = c∗s = 0 and q f

being the minimum value such that C f is feasible for the peak load (and hence
feasible all the time). The total cost is as high as $207/day due to the high capital
cost of the D-STATCOM. Therefore the cost for either benchmark case is much
higher than the cost under the proposed control, which ranges within $182–184/day
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Figure 4.5: Real-time traces of (a) voltage magnitude and (b) power loss for different
δ, and a benchmark case with only a fixed capacitor and no control.

as the value of δ changes.

As a main result of the experiments above, with the proposed heuristics to solve the
optimal sizing problem and implement real-time control, the reliability of voltage
control is significantly improved with moderate increase in cost, and hence a desired
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Figure 4.6: Upper: the proportion of samples with voltage violations, which drops
to zero when δ < 0.2. Lower: cost of the system in one day, including cost of power
loss and capital cost.

tradeoff can be achieved between performance of voltage control and cost efficiency.

4.5 Conclusion
We have formulated a two-timescale optimization problem for joint control of a
switchable capacitor and a D-STATCOM for voltage control in a distribution circuit
with intermittent load. The slow-timescale capacitor control problem solves a
chance-constrained OPF, which balances power loss with the probability of future
voltage violations, by incorporating statistics of load changes over time. Wehave also
integrated the result of the control problem into a sizing problem that determines the
optimal sizes of reactive power sources. The optimal sizing problem allows a tradeoff
between the expected cost due to power loss and the capital cost. We developed
computationally efficient heuristics to solve the sizing problem and implement real-
time control. In numerical experiments these heuristics were applied to measured
data from an HPC load that routinely undergoes large and fast changes in power
consumption. The results demonstrate the ability of the proposed schemes in
improving the reliability of voltage control with a modest increase in cost.
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