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Abstract 

Recent developments in micro- and nanoscale 3D fabrication techniques have enabled the 

creation of materials with a controllable nanoarchitecture that can have structural features 

spanning 5 orders of magnitude from tens of nanometers to millimeters. These fabrication 

methods in conjunction with nanomaterial processing techniques permit a nearly unbounded 

design space through which new combinations of nanomaterials and architecture can be realized. 

In the course of this work, we designed, fabricated, and mechanically analyzed a wide range of 

nanoarchitected materials in the form of nanolattices made from polymer, composite, and hollow 

ceramic beams. Using a combination of two-photon lithography and atomic layer deposition, we 

fabricated samples with periodic and hierarchical architectures spanning densities over 4 orders 

of magnitude from 𝜌𝜌 = 0.3 − 300 𝑘𝑘𝑘𝑘/𝑚𝑚3  and with features as small as 5nm. Uniaxial 

compression and cyclic loading tests performed on different nanolattice topologies revealed a 

range of novel mechanical properties: the constituent nanoceramics used here have size-

enhanced strengths that approach the theoretical limit of materials strength; hollow aluminum 

oxide (Al2O3) nanolattices exhibited ductile-like deformation and recovered nearly completely 

after compression to 50% strain when their wall thicknesses were reduced below 20nm due to 

the activation of shell buckling; hierarchical nanolattices exhibited enhanced recoverability and a 

near linear scaling of strength and stiffness with relative density, with 𝐸𝐸 ∝ �̅�𝜌1.04 and 𝜎𝜎𝑦𝑦 ∝ �̅�𝜌1.17 

for hollow Al2O3 samples; periodic rigid and non-rigid nanolattice topologies were tested and 

showed a nearly uniform scaling of strength and stiffness with relative density, marking a 

significant deviation from traditional theories on “bending” and “stretching” dominated cellular 

solids; and the mechanical behavior across all topologies was highly tunable and was observed to 

strongly correlate with the slenderness 𝜆𝜆 and the wall thickness-to-radius ratio 𝑡𝑡/𝑎𝑎 of the beams. 

These results demonstrate the potential of nanoarchitected materials to create new highly tunable 

mechanical metamaterials with previously unattainable properties. 
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Chapter 1: Introduction to Nanoarchitected 
Materials 
1.1. Overview of Architected Materials 

1.1.1. What is an Architected Material? 

Architected materials are “combinations of two or more materials, or of materials and 

space, configured in such a way as to have attributes not offered by any one material alone” (1). 

The guiding philosophy behind architected materials is that combinations of material and 

architecture can give rise to new materials with previously unattainable properties. Architecture 

has long been used to enhance the performance of engineering materials; foams are used to make 

lightweight materials with a range of mechanical properties (2), composites can have mechanical 

properties like strength and toughness well exceeding that of their constituents (3), and 

honeycomb sandwich panels maintain very high stiffness at low weights (4). All these materials 

have a controllable architecture that gives them properties superior to their bulk constituents. 

Traditionally, architected materials use simple design methodologies like layering, sandwiching, 

corrugating, and adding porosity as a means to control their properties (5, 6).  

1.1.2. Recent Developments in Architected Material Fabrication and Design 

The rapid expansion of 3D manufacturing technologies over the past few decades has 

enabled the creation of complex structures with features that can span across multiple length 

scales. The most interesting architected material fabrication techniques are those that enable 

fabrication at the micro- and nanoscale; these include self-propagating photopolymer waveguides 

(7), microstereolithography (8), two-photon lithography (9), and holographic lithography (10). 

These techniques are often used in combination with other advanced manufacturing techniques 
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and have led to the creation of many new materials with unprecedented levels of performance 

like strong and ultralight metal- and ceramic-based microlattices (11–13), nanolattices with 

features sufficiently in the nanometer regime to capitalize on size-affected material properties 

(14–16), and light weight meso-lattices with strengths in excess of their bulk constituents (17). 

They have also provided the unique opportunity to create meta-materials with previously 

unobtainable properties like negative Poisson’s ratios (18, 19), near infinite bulk-to-shear 

modulus ratios (20, 21), and negative effective mass-density (22). Some other notable examples 

of 3D architected materials like carbon nanotube foams (23–25), graphene foams (26), inverse 

opals (27, 28), and biomimetic composites (29, 30) are also being actively pursued thanks to 

advances in nanoscale fabrication and metrology techniques. 

1.1.3. Hierarchical Architectures 

Hierarchical architectures are those with distinct structural features that span multiple 

length scales (31). This hierarchy can manifest in a self-similar manner, e.g. a lattice structure 

with beams made of lattices, or with discrete hierarchical elements, e.g. a lattice with composite 

beams. Hierarchically engineered structures have long been used in architecture, with notable 

examples found in the Eiffel tower and the Garabit viaduct (32); today hierarchy is seen 

commonly in construction cranes and building scaffolding. Both natural and engineered 

structures use the concept of hierarchical design to minimize material use while optimizing 

structural integrity. Design principles and theories describing hierarchical structural materials 

exist (31, 33), and macroscopic 2nd and 3rd order 2D cellular solids, like honeycombs (34, 35) 

and corrugated core sandwich panels (36–38), have been designed and tested experimentally. 

Theories that describe the design and optimization of 3D hierarchical trusses have been proposed 

(39–42), but until recently their fabrication presented a challenge.  
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1.2. Nature’s Architected Materials 

Natural materials are frequently used as a source of inspiration for the design of 

architected materials; many have evolved to have novel mechanical properties and enhanced 

mechanical performance using simple materials like ceramics – such as hydroxyapatite, silica, 

and aragonite – and biopolymers such as collagen, chitin, keratin, and elastin. Hard biological 

materials such as bone, antler, shell, nacre, and wood are known to have exceptional hardness 

and toughness and have been reported to have higher fracture toughness than man-made 

composites of the same composition (43–52). Porous hard biological materials such as sea 

sponges, diatoms, and radiolarians are simultaneously stiff, tough, and lightweight (53–58), 

properties that have been shown to contribute to their effective defense against predators.  

The novel combination of mechanical properties in natural materials is thought to be 

achieved through their hierarchical design (44). Natural materials have characteristic dimensions 

that can span from nanometers to micrometers to centimeters and larger. Their structure can take 

on periodic or stochastic arrangements, often with ordered and disordered phases across different 

levels of hierarchy. Nature’s motivation for using these carefully chosen discrete length scales 

may stem from the advantageous properties offered by the interplay of individual biological 

constituents. Because hierarchy is so ubiquitous in the natural world, characterizing it, 

understanding its origins, and discovering its role in enhancing material properties can greatly 

benefit the design of new advanced materials.  

1.3. Size Effects in Nanomaterials 

The enhanced mechanical performance of natural materials is often attributed to features 

at the lowest level of hierarchy, normally on the order of nanometers. It is well known that the 
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mechanical properties of materials undergo a size-affected transition when their ultimate 

dimensions are reduced to sufficiently small length scales. These size-affected properties include 

the power-law strengthening of single-crystalline metals (59, 60), suppression of catastrophic 

failure in metallic glasses (61, 62), Weibull strengthening in ceramics (63, 64), and enhanced 

toughness in brittle materials (65, 66). When a structure contains micro- and nanoscale 

components, as is the case in hard biological materials, size-dependent mechanical properties of 

constituent materials may play a key role in the enhancement of the overall strength, stiffness 

and fracture resistance, and need to be incorporated into models to accurately predict the 

structural response. 

The efficient design of architected materials must incorporate knowledge of how 

materials will behave across different length scales and how different mechanical behaviors will 

enhance or detract from the overall performance. For example, many bulk monolithic materials 

with high strength-to-weight (𝜎𝜎𝑦𝑦𝑦𝑦/𝜌𝜌) and stiffness-to-weight (𝐸𝐸/𝜌𝜌) ratios – such as technical 

ceramics, diamond, and metallic glasses – have excellent potential for use as strong and 

lightweight structural materials but are suboptimal because of their low toughness and brittle, 

flaw-sensitive nature (67–70). Metals, which generally have high strength and toughness, can 

become insensitive to flaws at the nanoscale (71) but they can also become weaker when their 

dimensions are significantly reduced depending on their microstructure (72). A full 

characterization and understanding of a constituent material’s properties are crucial for the 

design of advanced architected materials.  

1.4. Architecture and Mechanical Properties 

Bulk mechanical properties of cellular solids, i.e. foams and lattices, have been studied in 

great detail over a number of decades (2, 6, 56, 73–76). The mechanical properties of cellular 
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solids are generally characterized by their constituent material properties, geometry, and relative 

density ( �̅�𝜌 = 𝜌𝜌/𝜌𝜌𝑦𝑦 ). Two principal mechanical properties, Young’s modulus (𝐸𝐸 ) and yield 

strength (𝜎𝜎𝑦𝑦), are known to scale with the relative density as  

 𝐸𝐸 ∝ 𝐸𝐸𝑦𝑦�̅�𝜌𝑚𝑚 (1) 

 𝜎𝜎𝑦𝑦 ∝ 𝜎𝜎𝑦𝑦𝑦𝑦�̅�𝜌𝑛𝑛 (2) 

Here, 𝐸𝐸𝑦𝑦  and 𝜎𝜎𝑦𝑦𝑦𝑦  are the Young’s modulus and the yield strength of the constituent 

material, and the exponents 𝑚𝑚 and 𝑛𝑛 are defined by the cell geometry (2). Classical theories of 

the mechanics of cellular solids generally assume that the constituent material properties are 

scale-invariant, meaning that any structures with the same geometry and material composition 

will have the same relative moduli and strengths regardless of their absolute size. 

To predict the mechanical behavior of architected materials, it is first necessary to 

understand the role of architecture in governing mechanical properties. Traditional cellular-solids 

theories state that there are two main classes of geometries that can be designed to elicit different 

mechanical responses: those that are bending-dominated and those that are stretching-dominated. 

Stretching-dominated structures are those that have no intrinsic mechanisms (77) that allow for 

bending deformation, and as a result their strength and stiffness will scale linearly with relative 

density as 𝜎𝜎𝑦𝑦 ∝ �̅�𝜌  and 𝐸𝐸 ∝ �̅�𝜌  (73, 74, 78). Bending-dominated structures are those with 

deformation mechanisms that allow for bending of beams, and their strength and modulus will 

scale as 𝜎𝜎𝑦𝑦 ∝ �̅�𝜌1.5  and 𝐸𝐸~�̅�𝜌2  for periodic structures or 𝐸𝐸~�̅�𝜌3  for stochastic structures, 

respectively (74). A more in-depth discussion on mechanisms and rigidity can be found in 

Section 5.2.  
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1.5. Outline and Objectives  

The focus of this dissertation is on developments that we have made in the field of 

nanoarchitected materials over the past few years. In the following sections, it is shown that 

nanomaterials with advantageous properties like high strength and flaw tolerance can be used in 

nanoarchitected materials in the form of nanolattices. These have highly tunable mechanical 

properties, and it is shown that shell buckling can be used to make nanolattices that are ductile 

and recoverable even when made from intrinsically brittle ceramics. The addition of hierarchy to 

nanolattice design is demonstrated to enhance mechanical properties like strength, stiffness, and 

recoverability. Finally, the mechanical properties of rigid and non-rigid nanolattice topologies 

are examined and shown to have performance that significantly deviates from the predictions of 

classical cellular solids theories.  

The goal of this dissertation is to provide a framework for the design and fabrication of 

new nanoarchitected materials. There is currently a practically unbounded design space through 

which new architected materials can be created, but there are very few guiding principles for the 

design of new nanoarchitectures. I believe the developments in nanoarchitected material design, 

fabrication, and mechanical properties shown in this work can provide guidance for the further 

development of the field. 
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Chapter 2: Mechanical Characterization of 
Hollow Ceramic Nanolattices 
2.1. Chapter Summary 

This work presents the development of a multi-step nanofabrication process to create 

three-dimensional hollow titanium nitride (TiN) nanolattices. The relative density of the samples 

is on the order of �̅�𝜌 = 0.0136 (similar to aerogels) and their characteristic material length scales 

span from tens of nanometers (wall thickness) to several microns (tube diameter) to tens of 

microns (unit cell) to over 100 𝜇𝜇𝑚𝑚 for the entire structure. In-situ nanomechanical experiments 

and finite element simulations revealed the constituent TiN to have a remarkably high tensile 

yield strength of 1.75 𝐺𝐺𝐺𝐺𝑎𝑎, which represents close to half of the theoretical strength of TiN. This 

high tensile strength, coupled with a lateral-torsional buckling instability observed during the 

uniaxial compression of a single unit cell, gave rise to a hyperelastic deformation response in the 

beams. Compression experiments performed on full nanolattices gave a structural modulus of 

𝐸𝐸 = 61.8 𝑀𝑀𝐺𝐺𝑎𝑎 and yield strength of 𝜎𝜎𝑦𝑦 = 0.873 𝑀𝑀𝐺𝐺𝑎𝑎.  

The attainment of exceptionally high strength in TiN is attributed to the low probability 

of having pre-existing flaws in nanosized solids. Failure in nanoscale ceramics initiates at a 

weakest link, which is determined by the competing effects of stress concentrators at surface 

imperfections and local stresses within the microstructural landscape. These findings may offer 

the potential of applying hierarchical design principles offered by hard biological organisms to 

creating damage-tolerant lightweight engineering materials. 
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2.2. 3D Nanolattice Design and Fabrication  

The geometry used in these experiments is derived from a series of tessellated regular 

octahedron unit cells connected at their vertices (Figure 1d, e, h, & i). An octahedron is an 

inherently rigid geometry, which has no collapse mechanisms (74, 77). The octahedra in the 

nanolattices were arranged into a structure with a relatively low connectivity (𝑍𝑍 =  8) and 

formed a non-rigid structure with periodic collapse mechanisms (74). Each octahedron is 

composed of approximately 7 𝜇𝜇𝑚𝑚 long hollow struts with vertically oriented elliptical cross-

sections and wall thicknesses of 75 𝑛𝑛𝑚𝑚 (see inset in Figure 1i). The resulting structure is an 

approximately 100 𝜇𝜇𝑚𝑚 cube composed of a 10x10x10 array of octahedron unit cells.  

 
Figure 1: Structure and Design of TiN nanolattices.  
a,b) Computer-aided design of octahedron nanolattices. c,d) SEM image of a fabricated nanolattice with a 3D 
Kagome unit cell. e-g) SEM (e, f) and transmission electron microscope dark-field (g) images of an engineered 
hollow nanolattice synthesized with TiN. The inset in f shows the cross-section of a strut. h) Schematic 
representation of the relevant dimensions of such fabricated nanolattices. Scale bars: 20 µm (e), 5 µm (c,d), 1 µm 
(inset of f), 20 nm (g). 
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Nanolattices were created using a multi-step negative pattern fabrication process 

involving direct laser writing (DLW), two-photon lithography (TPL), atomic layer deposition 

(ALD), and O2 plasma etching (Figure 2). A polymer scaffold was fabricated through a TPL 

DLW process in IP-Dip 780 photoresist with a speed of 50 𝜇𝜇𝑚𝑚 𝑠𝑠−1 and laser power of 10 mW 

using the Photonic Professional DLW system (Nanoscribe). This scaffold was conformally 

coated with TiN using a plasma enhanced ALD process in the Oxford OpAL ALD system 

(Oxfordshire, UK). The deposition was performed by sequentially cycling through the following 

steps: flowing the reactant dose of titanium tetrachloride (TiCl4) precursor for 30 𝑚𝑚𝑠𝑠, purging 

the system for 5 𝑠𝑠, plasma treatment with an N2/H2 gas mixture (25 𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚/25 𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚) for 10 𝑠𝑠, 

and purging the system for an additional 5 𝑠𝑠. This process was repeated until a 75 𝑛𝑛𝑚𝑚 thick layer 

was deposited. The internal polymer was then exposed using focused ion beam (FIB) milling in 

the FEI Nova 200 NanoLab and etched out in a barrel oxygen plasma etcher for 3 ℎ  under 

100 𝑊𝑊 and 300 𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 oxygen flow, leaving behind a hollow truss structure. (Figure 1f, g: 3D 

Kagome unit cell, Figure 1h, i: octahedron unit cell).  

 
Figure 2: Nanolattice fabrication process. 
a,b) Schematic representation of the writing process of the lattice unit cells using two-photon lithography direct 
laser writing. c) Structure is coated using an atomic layer deposition (ALD) process. d) One edge of the sample is 
milled using a focused ion beam (FIB) to expose the polymer. e) The internal polymer is etched away using an O2 
plasma. f) Final product: a hollow tube nanolattice. 
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Careful imaging of the fabricated structures revealed that the truss beams had elliptical 

cross-sections with a major axis of 𝑎𝑎 =  600 𝑛𝑛𝑚𝑚, a minor axis of 𝑏𝑏 =  134 𝑛𝑛𝑚𝑚, and a thickness 

𝑡𝑡 =  75 𝑛𝑛𝑚𝑚. The characteristic nanostructural length scale of TiN, represented by its grain size, 

was between 10 and 20 𝑛𝑛𝑚𝑚, as can be seen in the dark-field transmission electron microscope 

image in Figure 1j. Figure 1 also contains scale bars showing all relevant sizes within these 

structures. The effective length of the beams was taken to be 𝐿𝐿 =  6.5 𝜇𝜇𝑚𝑚 based on the geometry 

of the unit cell. The modulus of elasticity used was 𝐸𝐸 =  98 𝐺𝐺𝐺𝐺𝑎𝑎, which was approximated by 

matching the stiffness calculated through the FEM simulations with that of the experiments. 

When this modulus was taken with a Poison’s ratio of 𝜈𝜈 =  0.295 for titanium nitride, the shear 

modulus of the beam was calculated to be 𝐺𝐺 =  37.8 𝐺𝐺𝐺𝐺𝑎𝑎.  

2.3. Experimental Setup  

Individual unit cells and the full nanolattice structures were quasi-statically compressed 

to failure in an in-situ nanomechanical testing instrument InSEM (Nanomechanics, Inc., 

Tennessee) previously referred to as SEMentor (see (59) for a specification of the instrument). 

Individual unit cells were compressed using a flat punch tip by applying a load at their apex 

along their vertical axis (see Figure 3) at a constant prescribed displacement rate of 10 𝑛𝑛𝑚𝑚 𝑠𝑠−1; 

cyclic experiments consisted of 11 loadings to total displacements (beam deformation + medial 

node deflection) of 350 𝑛𝑛𝑚𝑚 followed by unloading to 10% of the maximum load in the previous 

cycle. Full structures were compressed using a flat punch tip at 250 𝑛𝑛𝑚𝑚 𝑠𝑠−1 also along their 

vertical axis. Before the tests, the instrument was stabilized for at least 12 ℎ to minimize thermal 

drift. The typical thermal drift rate of this instrument is below 0.05 𝑛𝑛𝑚𝑚 𝑠𝑠−1 , which would 

contribute less than 0.5% to the total displacement. 
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2.4. Monotonic Compression of a Single Unit Cell 

2.4.1. Experimental Results 

Figure 3 shows the results of in-situ monotonic loading experiments on a single 

octahedron unit cell of the fabricated hollow nanolattice (Movie 1). The load-displacement curve 

for monotonic loading (Figure 3f) shows that the sample deformed elastically until the onset of 

nonlinearity (indicated by the arrow) and subsequently failed at a maximum load of ∼ 150 𝜇𝜇𝜇𝜇 

(marked by II). Figure 3e shows that the final axial displacement of the structure was roughly 

420 𝑛𝑛𝑚𝑚, which includes both the compression of the upper four beams and the deflection of the 

surrounding structure. This load-displacement data was subsequently corrected to only account 

for the vertical compression of the upper four beams, measured to be approximately 200 𝑛𝑛𝑚𝑚 

based on in-situ SEM video frames. In the correction, it was assumed that the displacement of 

the surrounding structure remained in the linear elastic regime. This net displacement of the 

upper beams was used as the boundary condition in the simplified four-beam model in the finite-

element analysis. 

 
Figure 3: Monotonic compression of a single unit cell.  
a–c) SEM images captured during the monotonic compression experiment, showing the progressive buckling of 
the unit cell. These snapshots are correlated to positions I, II, and III in the load–displacement curve in f. d) The 
arrows shown here point to local fracture points. It should be noted that the fracture positions closely match the 
stress concentrations seen in the FEM simulations (Figure 5). e) Load–displacement data is corrected to only 
account for the deflection of the upper 4 bars of the unit cell. The red x indicates the point of failure. f) Zoom in 
of the load–displacement plot showing the initial linear behavior and subsequent deviation from linearity. 
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The SEM images in Figure 3a-d depict the deformation morphology evolution during the 

experiment: Figure 3a corresponds to point I in the load–displacement data shown in Figure 3f 

and depicts the initial structure before any load was applied; Figure 3b corresponds to II, the 

point of maximum applied load; and Figure 3c corresponds to III, the point after failure. These 

images show that the deformation was accommodated mostly by bending and twisting of the 

diagonal truss members until the unit cell failed catastrophically at the nodes and along the mid-

sections of the struts, noted by the arrows in Figure 3d. There was a notable deviation from linear 

behavior in the load-displacement data, as is indicated in Figure 3f. In-situ video analysis 

confirmed that this deviation likely coincides with the initiation of lateral-torsional buckling in 

the struts. 

2.4.2. Finite Element Simulation 

FEM simulations of the uniaxial compression of the top four beams of a single unit cell 

were performed in the finite element software ABAQUS. A non-linear elastic geometry solver 

was implemented in the simulations to account for the significant deflection of the beams. A 

linear elastic solver would have been sufficient to model the stress and deformation of the beams 

up to the point of buckling but would have been unable to capture the elastic instability and the 

large post-buckling deformation. The structure was modeled using the CAD program 

SolidWorks to obtain a geometry that precisely reflected that of the real structure. A simplified 

model of the unit cell consisting of only the upper four beams was used in order to better isolate 

the beam buckling response (Figure 4a, b) and to create a better analog to the analytical buckling 

model. All four beams were modeled to ensure that the resulting behavior was due to structural 

interactions and not to any imposed symmetry boundary conditions. 
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Figure 4: Unit cell design and modeling setup. 
a) Computer-aided design of the simplified 4-bar structure used in FEM simulations. b) Diagram showing the 
force and moment balance on the simplified 4-bar unit cell. c, d) Computer-aided design of 20- and 40-nm offset 
structures tested in FEM simulations. e) SEM top view of actual unit cell showing the offset. 

A rigid boundary condition was applied to the lower end of each of the four beams of the 

unit cell to simplify the FEM model (Figure 4b). A stiff elastic boundary condition would most 

accurately represent the unit cell, but it is difficult to determine the exact stiffness of the lower 

boundary due to the complex geometry and nodal connectivity. Instead, an FEM model of a full 

unit cell was made and tested for the sake of validating the simplified model, and the buckling 

response and stress concentrations were found to be nearly identical, giving validation to both 

the simplified unit cell and the fixed lower boundary. Only the results of the simplified unit cell 

are shown here for the sake of isolating the behavior of the beams in buckling. 

A displacement boundary condition was applied to the top face of the structure to match 

the experimental conditions. No lateral constraint was placed on the top face, so the structure 

was free to translate and rotate about the central node. A tetrahedral mesh was used to 
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accommodate the complex geometry of the unit cell. The mesh was manually refined until the 

maximum stresses observed in the structure had fully converged at a final average mesh density 

of 400,000 𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡𝑠𝑠 µ𝑚𝑚−3, with a higher concentration of elements toward the central node of 

the structure. 

To explore the role that imperfections in the geometry of the unit cell have on the 

resulting deformation and to better mimic the geometry of the actual unit cell (Figure 4e), a 

number of different beam models with varying degrees of offset in the central node of the 

structure were created and compressed using a non-linear elastic FEM solver in ABAQUS. First, 

an ideal beam model with no offset in the central node of the structure was tested. The resulting 

deformation was linear and did not reproduce the lateral deflection seen in the experiments. 

Several beam models with systematically varying degrees of central offset were then created in 

an attempt to better match the actual geometry of the structure (Figure 4c-e). In the deformation 

response of these offset FEM models, the beams first displayed a linear elastic behavior that 

continued up to a displacement of 30 − 40 𝑛𝑛𝑚𝑚 and then rapidly began to twist and bend (Figure 

5), which very closely matched the behavior observed experimentally. Exploring a variety of 

beams with systematically varying degrees of offset in the central node of the structure revealed 

that any degree of offset qualitatively reproduced an identical bending and twisting response. 

The final deformed state of the structure and the final stresses in the beams were similar for the 

entire array of central offsets used, which ranged from one tube with a 20 𝑛𝑛𝑚𝑚 offset to four tubes 

each with a 40 𝑛𝑛𝑚𝑚 offset. 
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Figure 5: Finite element analysis of a 4-bar simplified unit cell.  
a) Uncompressed FEM model of a 4-bar structure. b) 4-bar structure under compression before the initiation of 
buckling. This corresponds to the bifurcation point in d. c) Fully compressed 4-bar structure showing the full 
extent of deflection. This corresponds to the end of the FEM load displacement curve. d) The load displacement 
response of the FEM simulations on the small and large-offset beams. e) Fully overlaid unit cell compression 
results showing experimental, FEM, and analytic data. The green X indicates the point of failure. 

The vertical reaction force, defined here as the sum of the forces on the nodes at the top 

face of the structure, was measured for different beam models. As the degree of offset in the 

central nodes became greater, it was observed that the onset of non-linear behavior occurred at a 

lower load (Figure 5d). The resulting load-displacement data for two structures, one with a 

20 𝑛𝑛𝑚𝑚 offset of a single beam (small-offset) and one with a 40 𝑛𝑛𝑚𝑚 offset of all of the beams 

(large-offset), is presented alongside the experimental data (Figure 5e). The critical load at which 

the bifurcation occurred was found to be 𝐹𝐹 = 0.152 𝑚𝑚𝜇𝜇  in the small-offset beam and 𝐹𝐹 =

0.135 𝑚𝑚𝜇𝜇  for the large-offset beam. The peak load in the small-offset beam was 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 =

0.157 𝑚𝑚𝜇𝜇 and  𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = 0.154 𝑚𝑚 for the large-offset beam. 

2.4.3. Analytical Modeling 

To capture the physical foundation for the observed deformation response, it is helpful to 

define and to quantify the resultant forces and moments acting on individual beams. The analysis 

here is done using the same four beam structure that is used in the FEM simulations and with 

identical boundary conditions. The only external load acting on the structure is the vertical force 
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applied to the top face (𝐹𝐹). In a pin jointed structure, this force is evenly distributed among the 

four beams and can be expressed by: 

 𝐺𝐺 =
𝐹𝐹

4 sin(𝜃𝜃) (3) 

Here, 𝐹𝐹 is the vertical load on the unit cell, 𝐺𝐺 is the resolved axial load in the beams, and 

𝜃𝜃 = 45° is the angle between the beams and the plane normal to the loading direction (Figure 

4b). In the idealized pin jointed structure with no offset at the central node, the only resulting 

load on a beam is this axial load. In the actual structure, the fixed boundary condition on the 

lower face of the beam causes it to undergo a vertical bending following a displacement 

condition on the top face that is proportional to its axial deflection. A displacement equation that 

accurately predicts the actual beam deflection can be found using classical beam bending models 

(79), as can the moment (𝑀𝑀2) and shear force (𝑄𝑄). This shear force and moment play a minimal 

role in the final deformation, so their derivation is omitted here.  

In an ideal structure, the axial load and the bending moment are the only resultant forces 

that act on the beams. Any imperfection in the beams or misalignment between the beams will 

lead to an additional torsional moment that acts at the central node of the structure. It is 

reasonable to assume that this moment 𝑀𝑀 is generated solely by a misalignment in the central 

node of the structure and can therefore be approximated by multiplying the horizontal 

component of the axial load in the beams by the sum of the offset of each of the beams: 

 𝑀𝑀 =
𝐺𝐺

tan(𝜃𝜃)�𝑑𝑑𝑖𝑖

4

𝑖𝑖=1

 (4) 

This moment can then be taken and resolved into each of the beams as a bending moment 

and a torsional moment as  
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 𝑀𝑀1 = 𝑀𝑀 cos(𝜃𝜃) =
𝐺𝐺 cos2(𝜃𝜃)

sin(𝜃𝜃) �𝑑𝑑𝑖𝑖

4

𝑖𝑖=1

 (5) 

 𝑇𝑇 = 𝑀𝑀 sin(𝜃𝜃) = 𝐺𝐺 cos(𝜃𝜃)�𝑑𝑑𝑖𝑖

4

𝑖𝑖=1

 (6) 

It is important to impose proper boundary conditions for the deformation in this direction 

of the beam. The lower end of the beam was assumed to be rigid. If the unit cell were perfect, the 

symmetry of the unit cell would force the upper node to remain in the center of the structure. The 

deformed structure shown in Figure 3c and Figure 5c demonstrates that the beams were able to 

pivot about the central node. While all of the beams in the structure provide some torsional 

resistance to buckling, due to the symmetry of the beam buckling, the effect is minimal. 

Therefore, the top node is assumed to have a pinned boundary condition, making the beam 

deflection governed by a fixed-pinned boundary condition. This is a critical consideration in 

calculating the overall strength of the structure. 

Experimental and computational observations suggest that a buckling instability is the 

cause of the observed deflection of the beams. The complex loading and boundary conditions 

render a simple uniaxial buckling model incapable of characterizing the deformation of 

nanolattices observed here. A fundamental set of coupled differential equations, defined by (80), 

is used to characterize the deflection. 

 𝐸𝐸𝐼𝐼𝑦𝑦
𝑑𝑑4𝑢𝑢
𝑑𝑑𝑥𝑥4

+ 𝐺𝐺
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑥𝑥2

− 𝑀𝑀1
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑧𝑧2

= 0 (7) 

 𝐸𝐸𝐼𝐼𝑧𝑧
𝑑𝑑4𝑣𝑣
𝑑𝑑𝑥𝑥4

+ 𝐺𝐺
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2

+ 𝑀𝑀2
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑧𝑧2

= 0 (8) 

 𝐶𝐶1
𝑑𝑑4𝜙𝜙
𝑑𝑑𝑥𝑥4

− �𝐶𝐶 − 𝐺𝐺
𝐼𝐼𝑜𝑜
𝐴𝐴
�
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑥𝑥2

− 𝑀𝑀1
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑧𝑧2

+ 𝑀𝑀2
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑧𝑧2

= 0 (9) 
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Here, 𝑢𝑢 is the deflection of the beam in the z-direction, 𝑣𝑣 is the deflection of the beam in 

the y-direction, and 𝜙𝜙 is the twist of the beam. 𝐺𝐺 is the axial load in the beam, 𝑀𝑀1 is the lateral 

bending moment and linearly dependent on 𝐺𝐺, 𝑀𝑀2 is the vertical bending moment, and 𝐴𝐴 is the 

area of the ellipse (Figure 4b). 𝐼𝐼𝑦𝑦, 𝐼𝐼𝑧𝑧, and 𝐼𝐼𝑜𝑜 are the second moments of area about the major and 

minor axis and the polar moment of inertia of the ellipse, respectively. 𝐶𝐶1 is the warping constant 

of the beam, which can be taken to be zero for an elliptical beam, and 𝐶𝐶 is the torsional constant. 

The equations for these variables in the context of a thick walled hollow elliptical cylinder are 

 𝐴𝐴 = 𝜋𝜋�𝑎𝑎𝑏𝑏 − (𝑎𝑎 − 𝑡𝑡)(𝑏𝑏 − 𝑡𝑡)� (10) 

 𝐼𝐼𝑦𝑦 =
𝜋𝜋
4

(𝑎𝑎𝑏𝑏3 − (𝑎𝑎 − 𝑡𝑡)(𝑏𝑏 − 𝑡𝑡)3) (11) 

 𝐼𝐼𝑧𝑧 =
𝜋𝜋
4
�𝑎𝑎3𝑏𝑏 − (𝑎𝑎 − 𝑡𝑡)3(𝑏𝑏 − 𝑡𝑡)� (12) 

 𝐼𝐼𝑜𝑜 =
𝜋𝜋
4

[𝑎𝑎𝑏𝑏(𝑎𝑎2 + 𝑏𝑏2) − (𝑎𝑎 − 𝑡𝑡)(𝑏𝑏 − 𝑡𝑡)((𝑎𝑎 − 𝑡𝑡)2 + (𝑏𝑏 − 𝑡𝑡)2)] (13) 

 𝐶𝐶 = 𝜋𝜋𝐺𝐺 �
𝑎𝑎3𝑏𝑏3

𝑎𝑎2 + 𝑏𝑏2
−

(𝑎𝑎 − 𝑡𝑡)3(𝑏𝑏 − 𝑡𝑡)3

(𝑎𝑎 − 𝑡𝑡)2 + (𝑏𝑏 − 𝑡𝑡)2
� (14) 

In these equations, 𝑎𝑎 and 𝑏𝑏 are the principal axes of the ellipse, as defined in previous 

sections. Based on these equations, the area of the beam is 𝐴𝐴 = 1.78 × 10−13𝑚𝑚2, the moment of 

inertia about the vertical axis is 𝐼𝐼𝑦𝑦 = 1.19 × 10−27𝑚𝑚4 , the moment of inertia about the 

horizontal axis is 𝐼𝐼𝑧𝑧 = 2.47 × 10−26𝑚𝑚4 , and the polar moment of inertia is 𝐼𝐼𝑜𝑜 = 3.57 ×

10−26𝑚𝑚4 . The torsion constant was calculated to be 𝐶𝐶 = 1.73 × 10−16𝜇𝜇𝑚𝑚2 . The horizontal 

moment of inertia of the beam (𝐼𝐼𝑧𝑧) is roughly one order of magnitude greater than the vertical 

moment of inertia (𝐼𝐼𝑦𝑦), which suggests that buckling will likely only occur in the horizontal 

direction. This simplifies the deflection equations from three sets of coupled ODEs to two 

equations of the form 
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 𝐸𝐸𝐼𝐼𝑦𝑦
𝑑𝑑4𝑢𝑢
𝑑𝑑𝑥𝑥4

+ 𝐺𝐺
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑥𝑥2

− 𝑀𝑀1
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑧𝑧2

= 0 (15) 

 �𝐶𝐶 − 𝐺𝐺
𝐼𝐼𝑜𝑜
𝐴𝐴
�
𝑑𝑑2𝜙𝜙
𝑑𝑑𝑥𝑥2

− 𝑀𝑀1
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑧𝑧2

= 0 (16) 

The fixed-pinned boundary condition of the beam for deflection in the z-direction leads 

to the following forms for the deflection and twisting equations of the beam: 

 𝑢𝑢(𝑥𝑥) = 𝐴𝐴1(sin(𝜅𝜅𝑥𝑥) − 𝜅𝜅𝑥𝑥 cos(𝜅𝜅)) (17) 

 𝜙𝜙(𝑥𝑥) = 𝐴𝐴2(sin(𝜅𝜅𝑥𝑥) − 𝜅𝜅𝑥𝑥 cos(𝜅𝜅)) (18) 

Here, 𝜅𝜅𝐿𝐿 = 4.493 , which is the first solution to the inequality 𝜅𝜅𝐿𝐿 = tan(𝜅𝜅𝐿𝐿)  (79). 

Inserting these equations into Equations 15 and 16 results in a matrix with the coefficients 𝐴𝐴1 

and 𝐴𝐴2:  

 �
𝐸𝐸𝐼𝐼𝑦𝑦𝜅𝜅2 − 𝐺𝐺 𝑀𝑀1

𝑀𝑀1 𝐶𝐶 −
𝐼𝐼𝑜𝑜
𝐴𝐴
𝐺𝐺
� �𝐴𝐴1𝐴𝐴2

� = 𝑩𝑩𝑩𝑩 = 0 (19) 

To obtain a nontrivial solution, the determinant of the 𝑩𝑩 matrix must be zero.  

 𝐷𝐷𝑒𝑒𝑡𝑡(𝑩𝑩) = �𝐸𝐸𝐼𝐼𝑦𝑦𝜅𝜅2 − 𝐺𝐺� �𝐶𝐶 −
𝐼𝐼𝑜𝑜
𝐴𝐴
𝐺𝐺� −𝑀𝑀1

2 = 0 (20) 

The only unknown variable in this equation is the load 𝐺𝐺 , which means that it is a 

quadratic that is solvable both analytically and numerically. In the case of 𝑀𝑀1 = 0, the classical 

Euler buckling and torsional buckling solutions for a beam are obtained (80). In the presence of 

an additional bending moment, buckling will occur at a lower load. 

A larger lateral offset of the beams from the central node of the structure generates a 

higher bending moment, which effectively lowers the force necessary to initiate buckling. In the 

ideal case where 𝑀𝑀1 = 0 , it was calculated that the minimum load required to buckle an 

individual strut is 𝐺𝐺𝑐𝑐𝑐𝑐 = 55.5 𝜇𝜇𝜇𝜇 . When this calculation is performed using a moment 𝑀𝑀1 =
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1.13 × 10−7 𝜇𝜇 𝑚𝑚 , which corresponds to the approximate moment induced during the 

compression of the large-offset structure, the critical load drops down to 𝐺𝐺𝑐𝑐𝑐𝑐 = 55.0 𝜇𝜇𝜇𝜇. Using 

Equation 57, these loads are multiplied by 2√2 to calculate the effective resolved load in the 4-

bar setup of the compression of a unit cell. The resulting applied force 𝐹𝐹 that is needed to buckle 

the struts in the full unit cell structure is 0.157 𝑚𝑚𝜇𝜇 for a structure with no central moment, 

meaning no offset, and 0.155 𝑚𝑚𝜇𝜇 for the beam with a central moment of 𝑀𝑀1.  

2.4.4. Comparison between Experimental, Simulation, and Modeling Results 

There is a strong agreement between the experimental results and the FEM simulations, 

both qualitatively in the observed deflection (Figure 3a-c and Figure 5a-c) and quantitatively in 

the load-displacement data (Figure 5e). The close agreement between the experimental results 

and the FEM result indicates that the elastic model was able to sufficiently replicate the behavior 

seen experimentally. This correlates well with the fact that the TiN in the experiment was 

nanocrystalline, meaning that there are few mechanisms for plasticity (81).  

The maximum load obtained in the FEM simulations of the small-offset and the large-

offset structures closely matched the load obtained in the analytical buckling analysis. The 

initiation of buckling in the FEM model occurred at a lower load than the theoretical buckling 

load for both structures (Figure 5e), with the large-offset structure displaying a greater deviation 

from the theoretical buckling load than the small-offset one. This implies that the effect of the 

offset can be explained in the context of a structural imperfection. In a perfect beam, when the 

structure reaches the critical buckling load, there is a sudden jump to the buckled state that 

corresponds to a bifurcation in the load. Any imperfection in the beam, such as a bend, surface 

roughness, or waviness, facilitates a more gradual transition to the buckled state because the 

beam has been locally pre-bent, with larger imperfections leading to greater deviations from 
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perfect buckling. This behavior is described in detail in (82), where the degree of deviation from 

the perfect beam buckling response is directly related to a parameter 𝑘𝑘 = 𝑎𝑎/𝑟𝑟. Here, 𝑎𝑎 is the 

lateral offset of the bent beam from the perfect structure and 𝑟𝑟 is the radius of gyration, defined 

as 𝑟𝑟 = �𝐼𝐼/𝐴𝐴, where 𝐼𝐼 is the second moment of area in the buckling direction and 𝐴𝐴 is the cross-

sectional area of the beam. The analytic buckling model does not account for any imperfections, 

which means it is predicting the critical load necessary to initiate buckling in a perfect beam and 

is not able to account for any imperfections. 

The close agreement between the deflection behavior observed experimentally, the FEM 

modeling, and the analytic beam buckling approach strongly suggests that the observed 

deflection of the structure was due to a buckling instability. Equations 15 and 16 show that 

lateral and torsional buckling are coupled due to the additional central moment in the structure. 

Therefore, any lateral buckling of the beam will couple with torsional buckling resulting in 

lateral-torsional buckling (83, 84), as was observed in both the experimental results and the FEM 

model. The values for these three results are plotted in Figure 5e. 

2.5. Cyclic Compression of a Single Unit Cell  

Figure 6a-c shows SEM images of the deformed octahedron unit cell subjected to cyclic 

compression, and Figure 6d-f shows the corresponding load–displacement data (Movie 2-Movie 

4). Three consecutive sets of 11 load-unload cycles were performed on a single unit cell. The 

data shown was corrected to account for the vertical deflection of the lower nodes of the 

structure in the same manner as for the monotonic compressions.  
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Figure 6: Cyclic compression of unit cell.  
a–c) Images showing progressive bowing of beams during cyclic compressive loading. The bowing gives rise to a 
weakened load displacement response, as shown in the graph in g. Each image corresponds to an additional ten 
cycles of unloading–reloading. d–f) Three rounds of cyclic loading experiments that were performed on a single 
unit cell of the structure. g) The weakened load displacement response of the first compression in each of the 
cyclic loading experiments. This graph is shown to demonstrate the progressively earlier onset of nonlinearity, a 
response which closely matches that of a pre-bent beam buckling. 

The unit cell survived cyclic compression loading of up to 95% of the maximum load 

prescribed in the uniaxial test without failure. The loading data in each cycle are characterized by 

elastic loading followed by a nonlinear response, whose onset occurred at progressively lower 

applied forces: from 114 to 84 𝜇𝜇𝜇𝜇 after 11 cycles, and to 41 𝜇𝜇𝜇𝜇 after 22 cycles (Figure 6g). The 

extent of the nonlinear response increased from 125 𝑛𝑛𝑚𝑚 after the first set of cycles to 160 𝑛𝑛𝑚𝑚 

after the last. The large strain recovery seen during cyclic loading (Figure 6d-e) implies that the 

deformation was primarily elastic. Although there is some permanent deformation observed, it is 

minimal and only observed after many compression cycles at loads close to the failure limit.  

The observed hyperelasticity in the loading and unloading cycles is likely the result of a 

bifurcation caused by torsional buckling within the tubes (83, 84), and the load-displacement 

response corresponds well with the fully elastic FEM that were performed on a single unit cell. 

The progressively lower loads for the initiation of non-linear behavior during cycling can then be 
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explained in the context of buckling, because buckling will initiate at a lower load for a beam 

that is pre-bent. The hysteresis observed in the cyclic load displacement data may be explained 

by accounting for the friction between the top surface of the structure and the indenter tip. The 

steep inclination of the beams means that friction will play a lesser effect on the onset of 

buckling because it does not act as directly in the direction of the buckling. The unbuckling 

response will still have a hysteresis, as demonstrated experimentally in (85, 86). 

2.6. Monotonic Compression of a Full Nanolattice 

2.6.1. Experimental Results 

Figure 7 shows video stills from the compression of a full nanolattice structure along with 

the corresponding experimental stress-strain data. The stress-strain data shows that the sample 

initially deformed in a linear-elastic manner followed by a brittle catastrophic collapse at the 

peak stress. The large strain burst indicates that the nanoindenter controller was unable to 

maintain the prescribed loading displacement rate; this is likely due to the inertia of the system. 

There is a sparse set of data that was collected after the yield point (Figure 7c), but the exact 

values of the data may be an artifact of the system. The post-deformed image of the structure 

(Figure 7b) shows the six topmost unit cells were fully compressed to failure. A full collapse of 

the structure was prevented due to a limitation in the travel distance of the indenter. The stress 

and strain at failure were estimated to be 𝜎𝜎𝑦𝑦 = 0.873 𝑀𝑀𝐺𝐺𝑎𝑎 and 𝜀𝜀𝑦𝑦 = 0.0218 using a measured 

top surface area 𝐴𝐴 = 8588 𝜇𝜇𝑚𝑚2 and a height ℎ = 88.0 𝜇𝜇𝑚𝑚 . The elastic modulus, calculated to 

be 𝐸𝐸 = 61.8 𝑀𝑀𝐺𝐺𝑎𝑎,  was found using the loading slope of the stress-strain data.  

The failure mode of the 4-bar unit cell structure was elastic buckling followed by fracture 

near the midpoints of the beams, but this failure mode cannot be generalized to the entire 
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structure, which experiences a more complex stress state. Additional failure modes might be 

activated as a result of bending and twisting actions of the beams. The experiments performed on 

the individual unit cells allow us to gain some insight into the possible failure mechanisms, and 

additional studies on the entire structure are necessary to fully understand the range of possible 

failure modes. 

 
Figure 7: Monotonic compression of a full nanolattice. 
a) Full structure at the beginning of a compression test. b) Structure after the yield point indicated in the graph. 
c) Stress–strain data from the compression of the above structure. 

2.6.2. Cellular Solid Model 

The octahedron geometry of the nanolattice fabricated in this study is a bending-

dominated structure, and it can be compared to the classical model for open-cell foams. It is 

therefore possible to approximate the strength and modulus of the nanolattice using classical 

Gibson-Ashby cellular mechanics relations derived for open-cell foams (2). For a brittle, open-

cell foam, the modulus and strength scale with the relative density of the structure, defined as 

�̅�𝜌 = 𝜌𝜌/𝜌𝜌𝑦𝑦, as  
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 𝐸𝐸 ≈ 𝐸𝐸𝑦𝑦�̅�𝜌2 (21) 

 𝜎𝜎𝑐𝑐𝑐𝑐 ≈ 0.2𝜎𝜎𝑓𝑓𝑦𝑦�̅�𝜌3/2 (22) 

Here, 𝐸𝐸𝑦𝑦 is the Young’s modulus of the constituent material. 𝜎𝜎𝑓𝑓𝑦𝑦 is the modulus of rupture 

of the constituent material, which is defined as the maximum tensile stress achievable before 

failure. The relative density scaling relations for the strength and modulus arise because of the 

bending dominated nature of the structure, and the coefficient of 0.2 for the strength relation is 

due to the fact that the nanolattice is composed of a brittle material. The relative density of the 

structure in this work was computed to be �̅�𝜌 = 0.0136, which was found using a computer aided 

design (CAD) of the structure, and is similar to the relative density of other ultra-light materials 

like aerogels (87).  

Using this model with a constituent material modulus of 𝐸𝐸𝑦𝑦 = 98 𝐺𝐺𝐺𝐺𝑎𝑎 and a modulus of 

rupture of 𝜎𝜎𝑓𝑓𝑦𝑦 = 1.75 𝐺𝐺𝐺𝐺𝑎𝑎 as obtained from finite element experiments, the structural stiffness 

and strength were calculated to be 𝐸𝐸 = 18.39 𝑀𝑀𝐺𝐺𝑎𝑎 and 𝜎𝜎𝑐𝑐𝑐𝑐 = 0.559 𝑀𝑀𝐺𝐺𝑎𝑎. 

2.6.3. Comparison between Experimental and Modeling Results  

The strength and modulus of the nanolattice are underestimated by the classical Gibson 

and Ashby scaling laws by a factor of 1.56 and 3.35 times, respectively. The classical cellular 

solids models given by Gibson and Ashby (2) have been analytically derived for an isotropic, 

open cell material with solid walls, where a bending of the beams gives rise to high stress 

concentrations near the nodes of the structure. The nanolattice material, which is a bending 

dominated structure with hollow thick walled beams, has similar conditions to those used in the 

analytic derivation, and it is therefore reasonable that they would follow a similar, although not 

identical, scaling law. The biggest difference comes from the large anisotropy of the elliptical 
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tubes, which have an aspect ratio of 4.5:1. This high aspect ratio gives the tubes a moment of 

inertia in the vertical direction that is roughly one order of magnitude higher than that in the 

horizontal direction. Because the analytic model for a bending dominated structure assumes 

isotropic beam bending, it is insufficient to perfectly analyze the structure, although it still can be 

used to obtain a reasonable approximation.  

The difference between the experimental and analytic results for the strength and 

modulus can be explained using anisotropy results that have been derived previously for 

anisotropic structures with elongated unit cells. It is shown in (2) that the degree of anisotropy in 

the modulus and strength can be quantified using an anisotropy ratio 𝑅𝑅, defined as the ratio 

between vertical and transverse dimensions of a unit cell. In these equations, the anisotropy in 

the modulus scales approximately with 𝑅𝑅2 , and the strength anisotropy scales approximately 

with 𝑅𝑅, meaning that the modulus is much more sensitive to the anisotropy than the strength. 

While the scaling equations used in (2) do not directly apply to anisotropic beam members, they 

do suggest that the discrepancy observed between the experimental and analytic results follows 

the correct trend. A more in-depth derivation is needed to properly account for the anisotropy of 

the beams in an analytical model. 

2.7. Understanding Material Properties – Titanium Nitride 

2.7.1. Experimental Results and Characterization 

Bulk titanium nitride is typically a brittle ceramic, whose failure is governed by 

microstructural flaws (88). The tensile yield strength of 1.75 𝐺𝐺𝐺𝐺𝑎𝑎 obtained from FEM modeling 

in this work appears to be 1-2 orders of magnitude higher than values reported for typical bulk 

ceramics, which generally range from tens to hundreds of MPa (89). The high tensile yield 
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strength in the ALD-deposited TiN is attributed to the competition between internal 

(microstructural) heterogeneities like grain boundaries and constituent material defects. Recent 

work by Gu, et al reported that failure in nanocrystalline platinum nanostructures was not 

governed by the presence of external notches but was driven by microstructural heterogeneities 

(71). This transition coincides with a yield strength that is governed by grain boundary failure 

and represents a significant fraction of the theoretical material fracture strength, approximated to 

be between 𝐸𝐸/2𝜋𝜋 and 𝐸𝐸/30 (65, 90).  

The Young’s modulus of 98 𝐺𝐺𝐺𝐺𝑎𝑎 found in the experiments is on the lower end of the 

range of the reported values for bulk TiN (67, 89). The most likely causes of the reduced 

Young’s modulus are the porosity of ALD-deposited material and the grain size of 10 − 20 𝑛𝑛𝑚𝑚 

in the TiN films, the most critical of which being the porosity of the sample. The modulus of a 

material is highly dependent on density, and lower relative density materials can have 

considerably reduced Young’s moduli (91). The modulus has been shown to decrease linearly 

with relative density for a number of materials. For example, in work by Andrievski (67), it was 

shown that the modulus of TiN had a strong linear scaling with relative density, with a porosity 

of 20% corresponding to an 80% reduction in the modulus. It has been shown that atomic layer 

deposition (ALD) onto polymers may result in lower film densities because the gas-phase 

reactants can diffuse into the polymer (92). While the porosity of the constituent TiN was not 

thoroughly investigated, it is likely a major contributor to the observed reduction in modulus. 

The other important factor in the modulus reduction is the nanocrystalline microstructure of the 

TiN in this work, with the grains on the order of 10 − 20 𝑛𝑛𝑚𝑚 (Figure 1j). For materials with 

nanocrystalline grains, a larger volume fraction of the material is comprised of grain boundaries, 

which have been shown to be less dense than a regular crystal lattice, and therefore have a lower 
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Young’s modulus (91). When the grain size of iron, copper, and palladium samples was reduced 

to 10 − 20 𝑛𝑛𝑚𝑚  in (91), a decrease of up to 26% in the Young’s modulus was reported and 

explained through the increased volume fraction of grain boundaries. This combination of high 

porosity and nanometer-sized grains may explain the reduction in the modulus from a maximum 

of ~490 𝐺𝐺𝐺𝐺𝑎𝑎 reported in literature for fully dense bulk TiN (67) to the 98 𝐺𝐺𝐺𝐺𝑎𝑎 found in this 

study. 

2.7.2. Theoretical Material Model 

Failure in ceramics generally initiates at an imperfection with the highest stress 

concentration, such as a crack or a void. Fracture strength of typical ceramics is a few orders of 

magnitude lower than those predicted theoretically for a perfect material (90). The observed high 

tensile strength of 1.75 𝐺𝐺𝐺𝐺𝑎𝑎 and the bending strain of 1.8% that were attained by the TiN struts 

in this work are unusually high for a nanocrystalline ceramic. This high strength might be 

understood by considering the competing effects of microstructural and external local stress 

fields on strength and failure initiation (71). In macroscopic brittle materials, the fracture 

strength, 𝜎𝜎𝑓𝑓, is defined by the crack geometry and size,  

 𝜎𝜎𝑓𝑓 =
𝐾𝐾𝑐𝑐
√𝜋𝜋𝑎𝑎

 (23) 

where 𝐾𝐾𝑐𝑐 is the fracture toughness and 𝑎𝑎 is the initial flaw size (90). Equation 23 shows 

that the strength of materials is inversely proportional to the square root of the size of pre-

existing flaws, which serve as weak spots for failure initiation and reduce material strength. In 

large samples, the wide statistical distribution of flaw sizes leads to a relatively high probability 

of finding a weak spot, and the material will break at a relatively low applied stress. In smaller 

samples, the distribution of flaw sizes is narrower, which lowers the probability of finding a 
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large flaw and shifts the strength of the weakest link up. In sufficiently small nanocrystalline 

samples, the low probability of finding a weak external flaw and the blunting of the notch tip by 

nucleated dislocations render the stress concentration at the external flaws comparable to those 

within the microstructure, that is, grain boundary triple junctions (71). In these small samples, 

usually with nanometer dimensions, failure has been shown to initiate at the location with the 

highest stress concentration, internally or externally (71). Fracture strength of materials whose 

failure is described by the weakest link theory is commonly explained by Weibull statistics (90). 

The probability of finding the weakest spot inversely scales with the sample volume, 𝑉𝑉. Weibull 

analysis predicts the fracture strength to be proportional to 1/𝑉𝑉1/𝑚𝑚 . Here, 𝑚𝑚  is the Weibull 

modulus, a measure of statistical variability where higher 𝑚𝑚 corresponds to a wider statistical 

distribution of strength (90). The volume of hollow TiN nanolattices can be approximated to be 

𝑉𝑉 ∼  𝐴𝐴𝑡𝑡, where 𝐴𝐴 is the total surface area and 𝑡𝑡 is the wall thickness. When the wall thickness of 

hollow TiN tubes is the only varying geometric dimension, the fracture strength of TiN walls 

becomes  

 𝜎𝜎𝑓𝑓 ∝ �
1
𝑡𝑡
�
1
𝑚𝑚

 (24) 

Equation 24 implies that nanolattices with thinner walls are expected to be stronger up to 

a critical length scale, 𝑡𝑡, because the attainable stress in any material is bounded by a theoretical 

upper limit, often called the ideal fracture strength. A reasonable approximation of this strength 

may be between 𝐸𝐸/2𝜋𝜋 and 𝐸𝐸/30 (65, 90, 93), which represents the atomic bond strength of a 

material along the tensile loading direction, and is independent of sample size (90). Figure 8 

depicts an illustrative plot of strength as a function of sample thickness, which shows the 

intersection of the theoretical strength and that described by Equation 24 at the critical thickness 
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of 𝑡𝑡. This plot illustrates the saturation of the fracture strength at the theoretical upper limit in 

samples with dimensions lower than 𝑡𝑡.  

 
Figure 8: Schematic representation of theoretical strength. 
Theoretical strength is independent of sample size, and fracture strength described by Weibull statistics. 

FEM simulations on samples with the same material properties and of the same geometry 

as in the experiments predict the maximum tensile stresses in the TiN struts to be 1.75 𝐺𝐺𝐺𝐺𝑎𝑎, 

close to the theoretical elastic limit of 3.27 𝐺𝐺𝐺𝐺𝑎𝑎 (estimated by 𝐸𝐸/30 with 𝐸𝐸 = 98 𝐺𝐺𝐺𝐺𝑎𝑎), which 

suggests that the wall thickness of 75 𝑛𝑛𝑚𝑚 in the hollow TiN nanolattices might be close to the 

critical length scale. This line of reasoning serves as a phenomenological first-order type of 

model, which may help explain the attainment of unusually high tensile strengths in the thin TiN 

walls without failure. Rigorous theoretical studies on uncovering the deformation mechanisms in 

nanosized solids, which may or may not contain internal stress landscapes, are necessary to 

capture the complex physical phenomena associated with their deformation and failure. 
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Chapter 3: Strong, Lightweight, and Recoverable 
3D Ceramic Nanolattices 
3.1. Chapter Summary 

This work investigates the creation of an ultralight hollow-tube nanolattice with an octet-

truss geometry that consists solely of a brittle ceramic, aluminum oxide (alumina/Al2O3), and 

exhibits nearly full recoverability after compressions in excess of 50%  strain. The samples 

shown in this work are able to absorb energy, recover after significant compression, and reach an 

untapped strength and stiffness material property space. This is achieved using high-strength 

ALD alumina engineered into a thin-walled nanolattice that is capable of deforming elastically 

via shell buckling. Nanomechanical experiments reveal that the Young’s modulus of the 

nanolattices scales with relative density as 𝐸𝐸~�̅�𝜌1.61, and failure strength scales as 𝜎𝜎𝑦𝑦𝑦𝑦~�̅�𝜌1.73, 

which differ from the analytical scaling for both stretching- and bending-dominated structures 

because of the hollow tubes and nodes. The ultralight ceramic nanolattices represent the concept 

of materials by design, where it is possible to transform a strong and dense brittle ceramic into a 

strong, ultralight, energy-absorbing, and recoverable metamaterial. These results serve to 

emphasize the critical connection between material microstructure, hierarchical architecture, and 

mechanical properties at relevant length scales. 

3.2. Al2O3 Nanolattice Structure and Fabrication  

Nanolattices in this work were designed in an octet-truss geometry (Figure 9), which is a 

fully rigid topology with an average beam connectivity of 𝑍𝑍 =  12. The tubes were designed to 

be hollow with wall thicknesses 𝑡𝑡  of between 5 −  60 𝑛𝑛𝑚𝑚 , tube major axis 𝑎𝑎  of between 

0.45 − 1.38 𝜇𝜇𝑚𝑚 , and unit cell widths 𝐿𝐿  of between 5 − 15 𝜇𝜇𝑚𝑚  (Figure 9B and C), spanning 



32 
 

length scales that can be controlled across four orders of magnitude. The relative densities of 

samples in this work spanned 𝜌𝜌 =  0.21% − 8.6%. Using a reported value for the density of 

ALD alumina, 𝜌𝜌𝑦𝑦 = 2900 𝑘𝑘𝑘𝑘 𝑚𝑚−3 (94), the absolute densities of nanolattices were calculated to 

be 𝜌𝜌 =  6.1 − 249 𝑘𝑘𝑘𝑘 𝑚𝑚−3, which places the lightest ones into the ultralight regime, defined as 

materials with densities ≤  10 𝑘𝑘𝑘𝑘 𝑚𝑚−3 (11). This density range is comparable to that of aerogels 

(87) and other ultralight materials (11, 12). Transmission electron microscopy (TEM) analysis 

revealed ALD alumina to contain 2 − 10 𝑛𝑛𝑚𝑚  nanocrystalline precipitates intermixed in an 

amorphous matrix (Figure 9F). A list of the parameters and relative densities of samples tested in 

this work is provided in Table 3.  

 
Figure 9: Design and microstructure of octet-truss alumina nanolattices.  
A) CAD image of the octet-truss design used in the study. The blue section represents a single unit cell. B) 
Cutaway of hollow octet-truss unit cell. C) Hollow elliptical cross section of a nanolattice tube. D) SEM image of 
alumina octet-truss nanolattice. E) Zoomed-in section of the alumina octet-truss nanolattice. The inset shows an 
isolated hollow tube. F) TEM dark-field image with diffraction grating of the alumina nanolattice tube wall. 
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Octet-truss polymer nanolattice scaffolds are written using a two photon lithography 

direct laser writing process in IP-Dip photoresist using the Photonic Professional lithography 

system (Nanoscribe GmbH). Structures are written using laser powers in a range from 6 −

14 𝑚𝑚𝑊𝑊 and a writing speed of ~50 𝜇𝜇𝑚𝑚 𝑠𝑠−1. The laser power is used to control the diameter of 

the tubes, and the speed varies slightly during the writing process to control the quality of the 

structure. After a polymer scaffold is created, the structures are conformally coated in alumina 

using atomic layer deposition (ALD). ALD allows for the deposition of conformal coatings on 

complex 3D geometries with angstrom-level thickness control, resulting in high quality finished 

structures (63, 95). Deposition is done at 150°C in a Cambridge Nanotech S200 ALD system 

using the following steps: H2O is pulsed for 15 𝑚𝑚𝑠𝑠, the system is purged for 20 𝑠𝑠, trimethyl 

aluminum (TMA) is pulsed for 15 𝑚𝑚𝑠𝑠, the system is purged for 20 𝑠𝑠, and the process is repeated. 

The carrier gas is nitrogen, which is used at a flow rate of 20 𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 (standard cubic centimeters 

per minute). The process was cycled for between 50 and 600 cycles to obtain the desired 

thickness coatings on the nanolattices. The thickness of the coatings was verified using 

spectroscopic ellipsometry with an alpha-SE Ellipsometer (J.A. Wollam Co., Inc.). After 

deposition, two outer edges of the coated nanolattice are removed using focused ion beam (FIB) 

milling in an FEI Nova 200 Nanolab system in order to expose the polymer to air. Once the 

polymer is exposed, the samples are placed into an O2 plasma barrel asher for between 50 −

75 ℎ𝑜𝑜𝑢𝑢𝑟𝑟𝑠𝑠, depending on the overall size of the sample, with a 300 𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 flow rate of O2 under 

100 𝑊𝑊 of power in order to fully remove the polymer. Structures that had been etched were cut 

open using FIB milling to ascertain whether the polymer had been fully removed (Figure 10B 

and C). It is also possible to discern the amount of polymer that has been etched away by looking 

at the change in contrast of the nanolattices (Figure 10A). 
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Figure 10: Illustration of the nanolattice etching process.  
A) Half-etched nanolattice showing the contrast change of the etched vs unetched portions. (B) Cross section 
from the partially etched section of the structure. C) Cross section of the fully etched section of the structure. 

3.3. Nanolattice Compression Experiments 

3.3.1. Experimental Setup and Data Analysis 

Monotonic and cyclical uniaxial compression experiments were performed on 

nanolattices in a G200 XP Nanoindenter (Agilent Technologies). In the first set of experiments, 

structures were compressed uniaxially to ~50% strain at a rate of 10−3 𝑠𝑠−1 to determine their 

yield stress and overall deformation characteristics (Figure 11A, Figure 12 and Figure 14A-D). 

In the second set of experiments, structures were cyclically loaded and unloaded three times to 

~70% of their failure load, and unloading slopes from each cycle were averaged to estimate 

Young’s modulus (Figure 11B). Unloading rather than loading moduli were used to mitigate the 

possible effects of loading imperfections such as misalignment and partial initial contact. 

Effective stress and strain data was calculated by normalizing the load and displacement data by 

the footprint area and sample height respectively. The Young’s modulus and yield strength data 

reported are the effective structural properties of the nanolattices.  
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Additional samples were compressed in an in-situ nanomechanical instrument, InSEM 

(Nanomechanics Inc.), to observe local and global deformation characteristics and to investigate 

the failure modes that occurred during deformation (Movie 5 to Movie 7). Stress-strain data and 

still frames of the in-situ compression experiments are shown in Figure 12. 

 
Figure 11: Representative stress-strain curves of nanolattice compression experiments.  
A) Example of one of the compression experiments on a thick-walled nanolattice showing the loading slope, the 
yield strength, and the deformation characteristic. B) Example of a cyclic loading test on a nanolattice showing 
the unloading modulus fit used to measure the Young’s modulus. 

3.4.2. “Thick-walled” Structure Compression 

Two distinct deformation signatures were observed during nanolattice compressions. 

These are best characterized using the thickness-to-radius ratio of the tubes, 𝑡𝑡/𝑎𝑎, as a figure of 

merit. Structures with 𝑡𝑡/𝑎𝑎 ≥  0.03, referred to here as thick-walled, demonstrate linear elastic 

loading followed by catastrophic brittle failure (Figure 14A, B, E, and F). An example of a 

typical deformation and corresponding stress-strain data are shown in Figure 12F-J and in Movie 

7. Compressive stress-strain data for thick-walled structures show large strain bursts, with burst 

magnitude increasing at greater t/a; structures with 𝑡𝑡/𝑎𝑎 =  0.032 have bursts of ~10% strain 

(Figure 14B), whereas structures with 𝑡𝑡/𝑎𝑎 =  0.067 show bursts of ~80% strain (Figure 14A). 

This observed increase in burst magnitude is probably driven by greater elastic strain energy 

stored in thicker-walled structures during deformation. Each strain burst corresponds to a 

discrete brittle failure event, which leads to permanent damage of the structure (Figure 12J and 

Figure 14E and F). This type of catastrophic failure has been observed in previous experiments 
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on hollow ceramic nanolattices (96) and ceramic composites (14) and is typical of ceramic foams 

(2). 

3.4.3. “Thin-walled” Structure Compression 

Thin-walled nanolattices, defined as those with 𝑡𝑡/𝑎𝑎 ≤  0.02, did not exhibit catastrophic 

failure or discrete strain bursts. Samples in this regime first deformed elastically, where stress 

increased linearly with strain, followed by a ductile-like, controlled deformation, with stress 

plateauing after yielding (Figure 14C and D). An example of a typical deformation and 

corresponding stress-strain data are shown in Figure 12A-E and in Movie 5. As the 𝑡𝑡/𝑎𝑎 of the 

samples decreased, the serrated burst behavior seen in the thick-walled structures was 

suppressed, and stress-strain data became smooth (Figure 14C and D). After yielding, all ensuing 

deformation was accommodated through wrinkling and local buckling of the tube walls (Figure 

12D and E and Movie 5). All thin-walled ceramic nanolattices exhibited notable recovery after 

deformation, with some recovering up to ~98% of their original height after compression to 

50% strain (Figure 12E and Figure 14H) and others recovering by ~80% after compression to 

85% strain (Figure 15). Structures with smaller unit cells demonstrated greater recoverability, 

each recovering to at least 95%  of its original height. Nanolattices with larger unit cells 

recovered less on average, but all recovered to at least 75% of their original height. SEM images 

of post-deformed structures revealed localized cracking on and around the nodes (Figure 14J), 

implying that the failure of ALD alumina remained brittle and that the observed deformability 

and recoverability probably emerged from structural effects. 

Nanolattices with 0.02 ≤  𝑡𝑡/𝑎𝑎 ≤  0.03 exhibited a combination of the two described 

deformation signatures. In these samples, both brittle and ductile-like deformation took place; 

several minor strain bursts were present, and marginal recovery occurred after compression to 
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50% strain (Figure 14C, G, and I and Movie 6). The in-situ deformation Movie 6 shows that 

each strain burst correlates with discrete local brittle fracture events in the tubes, and post-yield 

ductile-like behavior corresponds to buckling and wrinkling of the tube walls. The transition 

between these two deformation modes is probably driven by an energetic competition between 

elastic and brittle failure. 

 
Figure 12: Compression experiments on thick- and thin-walled nanolattices.  
A-E) Mechanical data and still frames from the compression test on a thin-walled (L = 5 mm, a = 650 nm, t = 10 
nm) nanolattice demonstrating the slow, ductile-like deformation, local shell buckling, and recovery of the 
structure after compression. F-J) Mechanical data and still frames from the compression test on a thick-walled (L 
= 5 mm, a = 790 nm, t = 50 nm) nanolattice showing catastrophic brittle failure and no post-compression 
recovery. 

3.4. Failure and Recoverability Model Formulation 

Three competing failure mechanisms exist for hollow-tube lattice structures: fracture of 

the tube wall, Euler (beam) buckling of a truss member, and local (shell) buckling of the tube 

wall (97). A failure mechanism (or failure mode) is defined here to be any event that causes a 

loss of structural integrity of the nanolattice. Different combinations of these mechanisms can 

occur during deformation depending on the stress state that arises in the beams during loading. 

Elastic deformation will occur in a structure when the stress necessary to initiate buckling, which 

is an elastic process, is less than the critical stress required for fracture.  

By equating the stresses necessary to initiate each failure mechanism, it is possible to 

obtain an expression for the critical transition point between fracture and elastic failure in a truss 
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structure. The following section details the derivation of these expressions. The three potential 

failure modes in a lattice structure – fracture, Euler (beam) buckling, or local (shell) buckling – 

can be defined respectively from (98) as 

 𝜎𝜎𝑓𝑓𝑐𝑐𝑚𝑚𝑐𝑐𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓 = 𝜎𝜎𝑓𝑓𝑦𝑦 (25) 

 𝜎𝜎𝑏𝑏𝑓𝑓𝑐𝑐𝑏𝑏𝑏𝑏𝑓𝑓 =
𝜋𝜋2𝐸𝐸𝐼𝐼

(𝑘𝑘𝐿𝐿)2𝐴𝐴𝑓𝑓𝑓𝑓𝑏𝑏𝑓𝑓
 (26) 

 𝜎𝜎𝑦𝑦ℎ𝑓𝑓𝑏𝑏𝑏𝑏 =
𝐸𝐸

�3(1 − 𝜈𝜈2)
�
𝑡𝑡
𝑟𝑟
� (27) 

Here, 𝐸𝐸 is the Young’s modulus, 𝜎𝜎𝑓𝑓𝑦𝑦 is the fracture strength, and 𝜈𝜈 is the Poisson’s ratio 

of the constituent material. 𝑡𝑡 is the wall thickness, 𝑟𝑟𝑐𝑐 is the radius of curvature and 𝐿𝐿 is the length 

of a beam. 𝑘𝑘 is a constant based on the boundary condition, which, for the stretching dominated 

geometry used here, can be taken to be 1/2 for a pinned-pinned boundary. 𝐼𝐼 and 𝐴𝐴𝑓𝑓𝑓𝑓𝑏𝑏𝑓𝑓 are the 

area moment of inertia and cross sectional area, respectively. Taking the beams to be elliptical 

with a major and minor axis of 𝑎𝑎  and 𝑏𝑏 , respectively, a first order approximation of these 

parameters is found to be 

 𝐼𝐼 =
𝜋𝜋
4

(3𝑎𝑎 + 𝑏𝑏)𝑏𝑏2𝑡𝑡 (28) 

 𝐴𝐴𝑓𝑓𝑓𝑓𝑏𝑏𝑓𝑓 = 𝜋𝜋(𝑎𝑎 + 𝑏𝑏)𝑡𝑡 (29) 

The radius of curvature 𝑟𝑟𝑐𝑐  of an elliptical beam varies from 𝑟𝑟𝑐𝑐 = 𝑎𝑎2/𝑏𝑏  to 𝑟𝑟𝑐𝑐 = 𝑏𝑏2/𝑎𝑎 , 

depending on the position along the ellipse. The initiation point for shell buckling will occur 

where 𝜎𝜎𝑦𝑦ℎ𝑓𝑓𝑏𝑏𝑏𝑏/𝜎𝜎𝑏𝑏𝑜𝑜𝑐𝑐𝑚𝑚𝑏𝑏  is at a maximum, meaning it will happen at the highest local stress 

concentration with the smallest local radius of curvature. The largest radius of curvature is at the 

minor axis of the ellipse, and the maximum stress, which arises from a combination of uniaxial 

compression and vertical bending, concentrates toward the major axes of the ellipse. To simplify 
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the analysis, the radius of curvature at the point of shell buckling will be approximated here to be 

𝑟𝑟𝑐𝑐  =  𝑎𝑎 given the distribution of stresses in the beams. The diagonal tubes of the nanolattice are 

elliptical with an aspect ratio of ~3:1 (𝑎𝑎 = 3𝑏𝑏). From this, the buckling failure criteria of the 

beams can be derived in terms of the major axis a of the ellipses to be 

 𝜎𝜎𝑏𝑏𝑓𝑓𝑐𝑐𝑏𝑏𝑏𝑏𝑓𝑓 = 𝜋𝜋2𝐸𝐸 �
3𝑎𝑎 + 𝑏𝑏
𝑎𝑎 + 𝑏𝑏

� �
𝑏𝑏
𝐿𝐿
�
2

=
5

18
𝜋𝜋2𝐸𝐸 �

𝑎𝑎
𝐿𝐿
�
2
 (30) 

 𝜎𝜎𝑦𝑦ℎ𝑓𝑓𝑏𝑏𝑏𝑏 =
𝐸𝐸

�3(1 − 𝜈𝜈2)
�
𝑡𝑡
𝑎𝑎
� (31) 

For the nanolattice structures, there are two competing sets of failure modes: yielding vs 

shell buckling and yielding vs Euler buckling. These competing modes can act independently or 

in combination. Yielding of the tubes will occur in tension, and Euler and shell buckling will 

occur in compression. In an idealized pin-jointed stretching-dominated structure, the beams are 

assumed to only experience uniaxial tensile or compressive stresses, and it is the stretching of the 

horizontal members in tension that will govern the strength and stiffness of the lattice (99) 

(Figure 13A). When the tubes are made to be hollow, load transfer at the nodes is governed by 

shell wall bending, and the resulting bending and ovalisation of the beam near the node will 

govern the strength and stiffness. A simplified representation of the stress concentrations that 

arise due to the hollow nodes is shown in Figure 13B.  

If the compressive stresses and tensile stressed generated in the sample are assumed to be 

roughly equal, which is reasonable for a beam in bending, a critical transition between the modes 

can be found by setting the failure equations equal to each other. From this, the critical transition 

values are determined to be 

 �
𝑡𝑡
𝑎𝑎
�
𝑐𝑐𝑐𝑐𝑖𝑖𝑓𝑓

=
𝜎𝜎𝑓𝑓𝑦𝑦
𝐸𝐸
�3(1 − 𝜈𝜈2) (32) 
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=
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𝜋𝜋
�2

5
𝜎𝜎𝑓𝑓𝑦𝑦
𝐸𝐸

 (33) 

Both of these relations are functions only of the constituent properties of the materials. 

Using mechanical property data reported for 75 𝑛𝑛𝑚𝑚  thick ALD alumina, 𝐸𝐸 =  164 𝐺𝐺𝐺𝐺𝑎𝑎 , 

𝜎𝜎𝑓𝑓𝑦𝑦  =  1.57 − 2.56 𝐺𝐺𝐺𝐺𝑎𝑎 , 𝜈𝜈 =  0.24 (68), and Equations 32 and 33, the critical thickness-to-

radius ratio that induces a transition from yielding to shell buckling in the nanolattices was 

calculated to be between (𝑡𝑡/𝑎𝑎)𝑐𝑐𝑐𝑐𝑖𝑖𝑓𝑓  ≈  0.0161 − 0.0262, and the critical radius-to-length ratio 

that denotes transition from yielding to Euler buckling was between (𝑎𝑎/𝐿𝐿)𝑐𝑐𝑐𝑐𝑖𝑖𝑓𝑓 ≈ 0.0591 −

 0.0755. The property space of all nanolattices studied here, along with their 𝑡𝑡/𝑎𝑎, 𝑎𝑎/𝐿𝐿, and 

predicted failure modes are shown in Table 3. The experimentally observed deformation 

behavior of each sample is also noted in the table. 

 
Figure 13: Simplified representation of stress state in nanolattices.  
A) Idealized stress state in a solid tube, pin-jointed lattice structure. B) Schematic representation of a realistic 
stress state in a hollow tube lattice structure arising due to bending of the hollow beams near the nodes. 
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3.5. Comparison between Experimental Results and Failure Model 

The thickness-to-diameter ratios of the nanolattices ranged from 𝑡𝑡/𝑎𝑎 = 0.0059 −

0.0862 , which overlaps the range of (𝑡𝑡/𝑎𝑎)𝑐𝑐𝑐𝑐𝑖𝑖𝑓𝑓  predicted by Equation 32. For thick-walled 

structures, whose 𝑡𝑡/𝑎𝑎 ≥ 0.030 > (𝑡𝑡/𝑎𝑎)𝑐𝑐𝑐𝑐𝑖𝑖𝑓𝑓 , the model predicts that failure of the beams is 

dominated by brittle fracture within the alumina tubes. Fractured segments of tubes are unable to 

carry any load, so every failure event will cause a strain burst whose magnitude depends on the 

amount of strain energy stored in the system before failure. These predictions are corroborated 

by experimental stress-strain data for the thick-walled structures (Figure 12I and J, Figure 14E 

and F and Movie 7). 

Failure in the thin-walled structures, whose 𝑡𝑡/𝑎𝑎 ≤ (𝑡𝑡/𝑎𝑎)𝑐𝑐𝑐𝑐𝑖𝑖𝑓𝑓 ≤ 0.020 , is predicted to 

occur primarily via shell buckling, which is an elastic failure mode. This type of failure 

corresponds to a plateau in the stress-strain data caused by a gradual drop in load-carrying 

capacity of the beams (98), in contrast to the immediate drop in load-carrying capacity associated 

with fracture. Bending of an isolated thin-walled hollow beam often leads to shell buckling 

bifurcation, which can cause a jump in displacement (100). In a truss structure, the interactions 

and nodal support among all the beams delay the onset of bifurcation and allow the beams to 

gradually settle into a new mode. Shell buckling in thin-walled nanolattices is manifested as 

wrinkling and warping of the tubes near the nodes (Figure 12D and E, Figure 14H and J and 

Movie 5). The ductile-like deformation and recoverability observed in the experiments on the 

thin-walled nanolattices probably arise as a result of such shell buckling. 

The proposed shell buckling model does not take into account the microstructural or 

material details, nor is it capable of predicting the deformation of structures in the transition 

regime of 0.020 ≤ 𝑡𝑡/𝑎𝑎 ≤ 0.030. It is helpful in qualitatively explaining deformation in this 
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regime, where nanolattices experience a complex stress state with compressive, tensile, and shear 

components. Fracture occurs primarily under tension, and shear and buckling occur only in 

compression, which means that the stress state within the beams can simultaneously satisfy 

fracture and buckling conditions. This is observed experimentally as a mixing of fracture and 

buckling failure modes, along with suppressed strain burst behavior and some recoverability 

(Figure 14G and I and Movie 6). 

 
Figure 14: Mechanical tests on hollow octet-truss samples with varying 𝒕𝒕 and 𝝆𝝆�.  
A-D) Stress-strain plots of structures with varying wall thicknesses showing the transition from brittle to ductile-
like deformation in thinner-walled structures. E-H) Post-compression images of the nanolattices showing the 
recoverability as wall thickness is reduced. I-J) Zoomed sections of post-compression nanolattices. 

3.6. Discussion on Recoverability 

Elastic recovery has been studied previously in metallic and polymer lattices, and models 

have been proposed for their recoverability (11, 101–103). None of these works account for the 

observed ductile-like behavior of the ceramic nanolattices, and elastically deformable structures 

composed of intrinsically brittle materials such as ceramics are virtually unexplored. It is 

postulated that reducing the t/a ratio to below (𝑡𝑡/𝑎𝑎)𝑐𝑐𝑐𝑐𝑖𝑖𝑓𝑓 derived in Equation 32 enables failure 
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via shell buckling, an elastic failure mode that causes minimal damage to the beams and nodes 

and allows the structure to recover. The transition to elastic failure is a necessary condition to 

prevent initial yielding or fracture of the constituent material but not a sufficient condition to 

ensure recovery of the structure. Figure 12D shows that during shell buckling, the global 

deformation is accompanied by localized wrinkling and warping of the tube walls. This results in 

confined regions of high stress that can subsequently lead to localized fracture (Figure 12E and 

Figure 14J). The propagation of these localized microcracks depends on the overall stress 

landscape and flaw distribution. If a crack extends into a region of high tensile stresses, or if 

numerous flaws reside near a crack tip, it is likely to propagate through the node and can 

potentially result in fracture of the tube. If an existing crack extends into a region of compressive 

stress, or if the stress field is insufficient to continue the crack extension, its propagation will be 

suppressed so that the tubes may never fully fracture. In this mechanism, a sufficient number of 

nodal connections remain intact to enable the structure to recover nearly fully to its original 

shape. The applied compressive load reduces the local tensile stresses within the tube walls that 

are generated by bending of the beams, which generates a compressive stress state at the nodes 

that can impede the propagation of a crack. As the 𝑡𝑡/𝑎𝑎 is reduced, shell buckling will commence 

at a lower applied load, which lowers the probability of initiating and/or propagating an existing 

crack. The wall thicknesses of alumina are on the order of tens of nanometers, a length scale that 

has been shown to exhibit enhanced strengths and damage tolerance caused by a statistically 

lower probability of finding a weak defect (63). These are some of the phenomena that 

collectively give rise to recoverability of the alumina nanolattices (Figure 12E, Figure 14H and 

Figure 15). 
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Figure 15: Compression of a thin-walled octet-truss nanolattice to high strain. 
A) Pre-compression, B) 35% strain, C) 85% strain, and D) post-compression recovered nanolattice. Structural 
parameters are L=10µm, a=750nm, and t=10nm. 

3.7. Strength and Stiffness Scaling with Density 

The strength and Young’s modulus of all the octet-truss nanolattices follow a power law 

scaling with relative density as 𝜎𝜎𝑦𝑦~�̅�𝜌1.73  and 𝐸𝐸~�̅�𝜌1.61  (Figure 16A and B). This scaling 

outperforms traditional lightweight and ultralight bending-dominated structural materials, whose 

properties scale as 𝐸𝐸~𝜌𝜌2 or 𝐸𝐸~𝜌𝜌3 (11), but does not follow the analytic prediction for an ideal 

stretching-dominated structure, 𝜎𝜎𝑦𝑦~𝜌𝜌  and 𝐸𝐸~𝜌𝜌  (78). Such a deviation from the analytic 

prediction can be explained, in part, by factors such as the ellipticity of the tubes, structural 

imperfections, and non-idealities of the experimental setup. This deviation is attributed primarily 

to the hollowness of the tubes, which affects the structural integrity of the nodes, where the 

highest stress concentrations will occur (101, 102). The strength and deformation of an ideal, 

monolithic, stretching-dominated cellular solid is governed by stretching of the beams, with the 

nodes acting as rigid pin-jointed elements that perfectly transfer load between truss members 

(78). In a hollow lattice, the nodes are constrained only by the shell walls, which has a 

detrimental effect on strength and stiffness because load transfer at the nodes occurs via shell 

wall bending. This, together with the sharp angles between the tubes, leads to an uneven 

distribution of stress and induces large stress concentrations in the vicinity of the nodes (Figure 

9B and E). Bending of the tubes also causes large deflections and additional ovalization at the 

nodes, which further increases the compliance and stress concentrations. In-situ experiments and 



45 
 

post-compression analysis revealed that most of the deformation is localized to the nodes (Figure 

12D and E and Figure 14J), which implies that improving nodal strength is a critical factor in 

enhancing the scaling of strength and stiffness with density. 

 
Figure 16: Strength and stiffness versus density of alumina nanolattices.  
A-B) Stiffness and strength plotted against relative density for all tested samples. Data clearly obey a power law, 
with little deviation across wall thicknesses and failure modes. C-D) Material property plots (Materials Property 
CES Selector software by Granta Design) of the experimental stiffness and strength data against density for 
existing materials, showing that the materials created in this work reach a new niche in the high-strength and -
stiffness lightweight material parameter space. 
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Chapter 4: Hierarchical 3D Nanoarchitected 
Materials 
4.1. Chapter Summary 

This work investigates the fabrication, mechanical characterization, and computational 

analysis of hierarchical nanolattices made out of three different materials: (1) solid polymer IP-

Dip (Nanoscribe GmbH), (2) a core-shell composite with a polymer core and a 20 𝑛𝑛𝑚𝑚 thick 

Al2O3 coating, and (3) hollow 20 𝑛𝑛𝑚𝑚 thick Al2O3. The hierarchical architectures in this study 

demonstrated exceptional strength, stiffness, and damage tolerance over simple periodic ones. In-

situ nanomechanical deformation experiments were performed on a number of different 

geometries and revealed a range of tunable deformation and recoverability mechanisms, along 

with a nearly linear scaling of yield strength and stiffness with relative density. It is further 

shown that the incorporation of multiple levels of self-similar hierarchy does little to improve the 

mechanical properties and in some cases degrades them. Simulations were performed to further 

elucidate the local stress distributions within the nanolattices, which confirm the effective 

experimental nanolattice response and help shed light on the distribution of load bearing 

components that are responsible for the overall observed nanolattice performance. This ability to 

engineer material structure on the most fundamental length scales opens up a new design space 

where material properties—mechanical, thermal, electrical, photonic, etc.—can be controlled and 

tuned independently by properly choosing atomic-level microstructure, critical material 

dimensions, and architecture. 
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4.2. Hierarchical Nanolattice Design and Fabrication 

Various sample geometries were tested to quantify the effect of architecture and relative 

density on mechanical behavior. The hierarchical nanolattices fabricated in this work are 

designed using a recursive method that combines different unit cells into hierarchical geometries. 

The design process takes place as follows: (1) two (unique or identical) unit cell geometries are 

prescribed, (2) one unit cell is designated 1st order and the other 2nd order, and (3) the 1st order 

unit cell is patterned along the length of the 2nd order unit cell with 𝜇𝜇 repeating units, resulting in 

a fractal-like geometry. These steps can be repeated iteratively to create a fractal of any order, 

and the method is sufficiently general that it can be repeated for a wide range of unit cell 

geometries (Figure 17). For the samples tested in this work, 1st order axial support beams are 

added along the length of the 2nd order beam to ensure that the hierarchical beams form a 

stretching-dominated geometry. A more thorough explanation of the design process can be found 

in Appendix A. This design concept can be extended to create hierarchical metamaterials of any 

order with previously unobserved combinations of properties across multiple length scales—for 

example, high strength to weight ratios, tunable mass density, near-infinite bulk to shear modulus 

ratios (20, 21), and negative Poisson’s ratios (18, 19).  

Hierarchical nanolattices were fabricated from solid polymer, ceramic–polymer core-

shell composites, and hollow ceramic tubes. Solid polymer lattices were written in negative 

photoresist (IP-Dip 780) using the Photonic Professional TPL-DLW System (Nanoscribe 

GmbH). Core-shell composites were created by depositing a conformal coating of 20 𝑛𝑛𝑚𝑚 Al2O3 

onto the polymer nanolattices using atomic layer deposition in a Cambridge Nanotech S200 

ALD System with H2O and trimethylaluminum (TMA) precursors. Hollow structures were made 

by removing the edges of the coated nanolattices using focused ion beam milling with the FEI 
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Nova 200 Nanolab and then etching out the internal polymer structure with oxygen plasma using 

the Zepto Plasma Etcher (Diener GmbH), resulting in the hollow ceramic nanolattice.  

 
Figure 17: CAD and SEM images of hierarchical nanolattices.  
A) CAD images illustrating the process of making a third-order hierarchical nanolattice. A 0th order repeating unit, an elliptical 
beam, is arranged into a 1st order octahedron; it becomes the repeating unit for a 2nd order octahedron-of-octahedra, which is 
then arranged to create a 3rd order octahedron-of-octahedra-of-octahedra. B-E) CAD and SEM images of the various 2nd order 
samples. (Scale bars: 20μm.) F) SEM image of a 2nd order octahedron-of-octahedra lattice. (Scale bar: 50μm.) G) A zoomed-in 
image of the 2nd order octahedron of octahedra lattice showing the 1st order repeating units that make up the structure. (Scale 
bar: 10μm.) H) SEM image of a 3rd order octahedron-of-octahedra-of-octahedra. (Scale bar: 25μm.) 

Two sets of samples were created: half-unit cells (half-cells) and full nanolattices. Three 

different types of half-cells were fabricated and tested: a 2nd order octahedron-of-octahedra 

(Figure 17B), a 2nd order octahedron-of-octets (Figure 17C), and a 3rd order octahedron-of-

octahedra-of-octahedra (Figure 17H). For the 2nd order structures, two different base unit cell 

sizes (𝐿𝐿) were used (8 and 12 𝜇𝜇𝑚𝑚), with three numbers of unit cells per fractal beam (𝜇𝜇): 10, 15, 

and 20. For the 3rd order samples, two different octahedra-of-octahedra-of-octahedra were 

fabricated and tested with different geometric configurations: a unit cell with 𝐿𝐿 = 3𝜇𝜇𝑚𝑚  and 

𝜇𝜇 = 10 and one with 𝐿𝐿 = 8𝜇𝜇𝑚𝑚 and 𝜇𝜇 = 5. Three different 2nd order octahedron of octahedra 

full nanolattices were fabricated and tested: a unit cell with 𝐿𝐿 = 8 and 𝜇𝜇 = 10, one with 𝐿𝐿 = 6 
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and 𝜇𝜇 = 15 , and one with 𝐿𝐿 = 4  and 𝜇𝜇 = 20 . The inherent limitations of the two-photon 

lithography fabrication methodology used to create the nanolattices render it impractical to create 

materials with more than three orders of structural hierarchy. A full list of samples and structural 

parameters can be found in Table 10 to Table 12.  

4.3. Experimental Setup 

In-situ nanomechanical experiments were performed in a Quanta SEM (FEI Co.) using an 

InSEM Nanomechanical Module (Nanomechanics Inc.). All samples were compressed to ~50% 

strain at a strain rate of 10−3 𝑠𝑠−1. The load displacement data for each of the samples showed an 

initial linear region from which the effective loading stiffness was determined followed by an 

inelastic region with behavior that varied depending on the constituent material (Figure 18 and 

Figure 19). The structural stiffness was estimated based on the loading slope of the load 

displacement curve in the linear regime, and failure strength was taken to be the peak applied 

load before failure. The effective Young’s modulus was calculated by normalizing the measured 

loading stiffness by the sample height divided by the footprint area. The effective yield strength 

was determined by dividing the measured peak load by the sample footprint area. Scaling 

relations were obtained using an exponential best fit of the stiffness data; the scaling is computed 

as the average of the fits of the two 2nd order half-cell geometries: the octahedron-of-octets and 

the octahedron-of-octahedra. 

4.4. Hierarchical Nanolattice Deformation, Failure, and Recoverability 

The characteristic failure and post-yield deformation of each sample were observed to 

correlate with material system and architecture. It was found that the material system (i.e., 

polymer vs. composite vs. hollow alumina) most strongly influenced the global deformation 
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behavior and that the architecture directly affected the localization of failure within the 

hierarchical beams and the global recoverability of the samples. Of all material systems, the 

hollow ceramic samples had the highest average recovery, with samples recovering up to 85–

98% of their original height after compressions exceeding 50% strain (Figure 18A-C and Figure 

19A-C). Polymer sample deformed in a ductile and continuous manner and samples recovered to 

∼ 75– 90% of their original height after unloading (Figure 18G-I and Figure 19G-I). All of the 

composite samples demonstrated brittle catastrophic failure, with a majority exhibiting little to 

no recovery (Figure 18D-F and Figure 19D-F). More in-depth results from all the materials 

systems tested in this work are discussed in the following sections. 

 
Figure 18: Compression of 2nd order octahedron-of-octet half-cells.   
All samples shown here have N = 15 and L = 8. A-C) Compression and recovery of hollow 20-nm walled Al2O3. Inset 
corresponds to 50% strain. D-E) Compression of composite sample. Inset corresponds to the sample after the occurrence of a 
strain burst. G-I) Compression and recovery of polymer sample. Inset corresponds to 50% strain. (Scale bars: 20μm.) 
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Figure 19: Compression of 3rd order octahedron-of-octahedra-of-octahedra half-cells. 
All samples shown have N = 5 and L = 8. A-C) Compression and recovery of hollow 20-nm walled Al2O3. Inset corresponds to 
50% strain. D-E) Compression of composite sample. Inset corresponds to the sample after the occurrence of a strain burst. G-I) 
Compression and recovery of polymer sample. Inset corresponds to 50% strain. (Scale bars: 20μm.) 

4.4.1. Hierarchical Slenderness Ratios 

The critical dimensionless geometric parameter for a beam, hierarchical or otherwise, is 

its slenderness ratio, defined as 

 𝜆𝜆 = �𝐴𝐴𝐿𝐿
2

𝐼𝐼
 (34) 

Here, 𝐴𝐴 is the cross sectional area of a beam, 𝐿𝐿 is its length, and 𝐼𝐼 is the area moment of 

inertia. For a hierarchical beam, slenderness ratios can be defined at each level of hierarchy: 

𝜆𝜆1,  𝜆𝜆2, … 𝜆𝜆𝑛𝑛 . This slenderness ratio can be directly related to the critical stress required for 

buckling as  

 𝜎𝜎𝑐𝑐𝑐𝑐 =
𝜋𝜋2𝐸𝐸𝐼𝐼
𝑘𝑘𝐿𝐿2

= 𝐸𝐸𝑦𝑦 �
𝜋𝜋
𝑘𝑘𝜆𝜆
�
2
 (35) 
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Here, 𝑘𝑘 is a coefficient determined by the boundary conditions and 𝐸𝐸𝑦𝑦  is the Young’s 

modulus of the constituent material. This equation shows that a beam with higher slenderness is 

more likely to buckle than one with lower slenderness, as long as the slenderness is sufficiently 

high to initiate buckling.  

There are two important characteristic parameters related to the slenderness ratio: the 

ratio between the slenderness of the beams and the average slenderness, defined as  

 𝐻𝐻𝑖𝑖𝑖𝑖 =
𝜆𝜆𝑖𝑖
𝜆𝜆𝑖𝑖

 (36) 

 𝜆𝜆𝑚𝑚𝑎𝑎𝑎𝑎 =
𝜆𝜆1 + 𝜆𝜆2 + ⋯+ 𝜆𝜆𝑛𝑛

𝑛𝑛
 (37) 

These parameters don’t relate directly to analytic equations that dictate failure behavior 

like the slenderness does in Equation (35), but they are used here to quantify different 

combinations of structural parameters in the hierarchical architectures. Many of the results 

shown in the following sections will be discussed in terms of the relative slenderness ratios for 

each respective geometry and material system. The full derivation of the hierarchical slenderness 

for each individual sample tested in this work can be found in Appendix D below. 

4.4.2. 2nd Order Polymer Samples 

2nd order polymer half-cells deformed in a continuous ductile manner throughout their 

compression and recovered to ~75 − 90% of their original height when unloaded from 50% 

strain (Figure 18G-I and Movie 8). Most samples exhibited an additional 5 − 10% recovery after 

being left in an unstressed state for an extended period of time. 2nd order polymer full nanolattice 

samples recovered immediately to 65 − 85% of their original height (Figure 20), with additional 

viscoelastic recoveries of 5 − 20% after unloading. This reduced recovery is largely due to the 
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emergence of a layer-by-layer collapse mechanism that led to highly localized strains and in turn 

large local deformations. 

Failure in 2nd order polymer samples occurred primarily via a mix of localized Euler 

buckling in the 1st order beams and global buckling of the 2nd order beams. The beam with the 

highest slenderness 𝜆𝜆 will buckle at the lowest applied load, meaning that the failure can be well 

explained using the ratio between hierarchical slendernesses 𝐻𝐻12. Samples with 𝐻𝐻12 < 1 failed 

via global buckling of the 2nd order beams because their relative slenderness was higher (Figure 

20C, E-F). Samples with 1 < 𝐻𝐻12 < 1.5 had a mix of local Euler and global buckling of the 

higher order beams indicating a transition between buckling in the 1st and 2nd order beams 

(Figure 20A, D, K). All samples with 𝐻𝐻12 > 1.5 failed via Euler buckling in the 1st order beams 

and displayed a short initial strain burst upon loading caused by the collapse of the top-most 2nd 

order node (Figure 18H-I and Figure 20B, G-I, L). Increasing 𝐻𝐻12 𝑡𝑡𝑜𝑜 > 2.25 led to a second 

burst via collapse of top-most 2nd order node (Figure 20G-H, K). This localized top node 

collapse can be explained by considering the higher stress concentration in the 1st order beams 

near the top. All of the parameters for the samples tested can be found in Table 10. 

The polymer used to fabricate the hierarchical nanolattices is viscoelastic (IP-Dip, 

Nanoscribe GmbH), which gives rise to their ductile post-yield load-displacement behavior. The 

hierarchy leads to an enhanced recovery because failure is generally localized to buckling in 

highly strained 1st order beams while the majority of the beams deform elastically. In samples 

with buckling in 1st order beams, the area moment of inertia in the buckled section is reduced, 

which creates a compliant hinge that accommodates most of the deformation and results in 

greater local strains (Figure 18H, Figure 19H, Figure 20A-B, D, F-I). In samples with buckling 

in 2nd order beams, a characteristic buckling stiffness drop occurs without any localization of 
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strain in the 1st order beams (Figure 20C, E). After the onset of buckling, highly strained buckled 

regions deform plastically, which causes local residual strains that prevents global recovery. 

Some of this residual strain can be alleviated via viscoelastic recovery, which may explain the 

observed additional 5 − 10%  recovery after the removal of the load. In the 2nd order full 

nanolattices, failure occurs through layer-by-layer collapse via buckling and the activation of 

different structural mechanisms. This deformation mode leads to high local stresses in the beams 

and in the nodes and reduces the global recoverability. 

 
Figure 20: All compression experiments on 2nd order polymer half-cells.  
All figures show the samples in an undeformed configuration, at 50% strain, and unloaded, along with the corresponding load 
(mN) vs. displacement (µm) data. Samples (A-F) are octahedrons-of-octahedra half-cells, and samples (G-L) are octahedrons-of-
octets. The samples shown have the following structural parameters: A) L=8μm and N=10, B) L=12μm and N=10, C) L=8μm 
and N=15, D) L=12μm and N=15, E) L=8μm and N=20, F) L=12μm and N=20, G) L=8μm and N=10, H) L=12μm and N=10, 
I) L=8μm and N=15, J) L=12μm and N=15, K) L=8μm and N=20, and L) L=12μm and N=20. 

4.4.3. 2nd Order Composite Samples 

2nd order composite half-cells underwent a linear elastic deformation and then failed via a 

catastrophic brittle collapse with little to no post-yield recovery (Figure 18 and Movie 9). This 

behavior was replicated in the full 2nd order nanolattices. Three characteristic failure modes were 

observed: (1) complete catastrophic collapse, (2) gradual brittle crushing, and (3) partial 

collapse. These characteristic failure modes are well quantified using the slenderness of the 1st 

and 2nd order beams 𝜆𝜆1 and 𝜆𝜆2 and the average slenderness ratio 𝜆𝜆𝑚𝑚𝑎𝑎𝑎𝑎.  
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In the sample, beams are subjected to a mix of compressive and bending stresses. The 

bending moment 𝑀𝑀  scales with length as 𝑀𝑀 ∝ 𝐿𝐿−2 , meaning less slender beams will have a 

greater stress concentration. In a hierarchical beam this means a smaller fraction of the bars carry 

the load, so failure of a single bar will leads to a more catastrophic failure. This is exemplified in 

samples with average slenderness  𝜆𝜆𝑚𝑚𝑎𝑎𝑎𝑎 < 36, which experienced a complete catastrophic failure 

of all four 2nd order beams with no recovery (Figure 18E-F and Figure 21A, C, G-I, K). In these 

samples, failure was localized to the lowest section of the 2nd order beams, which is the region of 

highest stress concentration (Figure 26). Samples with average slenderness 36 < 𝜆𝜆𝑚𝑚𝑎𝑎𝑎𝑎 < 40 

experienced a small catastrophic collapse followed by a gradual brittle crushing of the 2nd order 

beams with marginal recovery of ~5% (Figure 21B, J, L). In these samples 𝜆𝜆2 is at least a factor 

of 2 lower than 𝜆𝜆1, which drives the failure towards 2nd order beams and gives rise to a gradual 

brittle crushing that is localized to the upper- and lowermost regions of the 2nd order beams. 

Samples with average slenderness 𝜆𝜆𝑚𝑚𝑎𝑎𝑎𝑎 > 40  exhibited catastrophic failure with a complete 

fracture of two of the 2nd order beams and a partial fracture of the other two; the two surviving 

beams remained intact throughout their compression and recovered to 80 − 95%  of their 

original height (Figure 21D-F). In these samples both 𝜆𝜆1  and 𝜆𝜆2  are large, so stress is more 

evenly distributed throughout the beams and failure of a single beam re-distributes the applied 

load among the remaining beams, preventing global failure in the sample. In all the composite 

samples there was no observable correlation between the failure mode and 𝐻𝐻12. 

All of composite samples exhibited brittle failure mechanisms and had no observed 

buckling in any beams despite both the constituent materials exhibiting buckling behavior when 

isolated. This lack of observed buckling suggests that the presence of the polymer-ceramic 

interfaces suppresses Euler buckling failure in the polymer and the shell bending and local 
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buckling in the hollow samples. Failure in the composite samples appears to be governed by 

fracture of the ceramic tube walls, which experience greater stress than the polymer in the given 

isostrain loading configuration. At their yield point the ceramic walls will fracture, after which 

the isolated polymer is unable to support the high local loads and also fails. The strength and 

stiffness of the composite samples exceed the rule-of-mixtures sum of pure polymer and hollow 

alumina samples with the same geometry on average by a factor of 2 and 3 respectively (Figure 

18E and Figure 19E), which implies that the hierarchical nanolattices are non-linear with respect 

to their mechanical properties.  

 
Figure 21: All compression experiments on 2nd order composite half-cells.  
All figures show the samples in an undeformed configuration, at 50% strain, and unloaded, along with the corresponding load 
(mN) vs. displacement (µm) data. Samples (A-F) are octahedrons-of-octahedra half-cells, and samples (G-L) are octahedrons-of-
octets. The samples shown have the following structural parameters: A) L=8μm and N=10, B) L=12μm and N=10, C) L=8μm 
and N=15, D) L=12μm and N=15, E) L=8μm and N=20, F) L=12μm and N=20, G) L=8μm and N=10, H) L=12μm and N=10, 
I) L=8μm and N=15, J) L=12μm and N=15, K) L=8μm and N=20, and L) L=12μm and N=20. 

4.4.4. 2nd Order Hollow Al2O3 Samples 

2nd order hollow half-cells deformed in a ductile-like manner with serrated continuous 

post-yield load-displacement data, and recovered to 85 − 98%  of their original height after 

compression to 50% strain (Figure 18A-C and Movie 10). Failure occurred either by localized 

crushing of the 2nd order topmost node or localized Euler buckling of the 1st order beams, the 

initiation and progression of which was found to depend on the average slenderness 𝜆𝜆𝑚𝑚𝑎𝑎𝑎𝑎 and the 
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ratio between beam slendernesses 𝐻𝐻12. Similar to the failure in the polymer samples, 𝐻𝐻12 will 

dictate the competition in failure between 1st and 2nd order beams and change the localization of 

failure; similar to the failure in the composite samples, 𝜆𝜆𝑚𝑚𝑎𝑎𝑎𝑎 will dictate stress concentrations in 

the beams and will alter how the surrounding structure responds when a single beam fails. This is 

exemplified in samples with 𝐻𝐻12 > 1, which generally experienced little to no failure along the 

length of the 2nd order beams and instead accommodated deformation through 1st order beam 

buckling and crushing of the topmost node (Figure 22B, G-H, J, and L). In samples with 𝐻𝐻12 <

1, 2nd order beams bend to accommodate the applied load, and failure localizes via buckling in a 

1st order beam along the length of a higher order beam (Figure 18B and Figure 22A, C-F, I, K). 

Failure in samples with 𝜆𝜆𝑚𝑚𝑎𝑎𝑎𝑎 < 35  initiated via Euler buckling in the top-most node and 

manifested as 1-2 small strain bursts during loading (Figure 18B-C and Figure 22A-C, G-L). 

 
Figure 22: All compression experiments on 2nd order hollow Al2O3 half-cells.  
Figures show the samples in an undeformed configuration, at 50% strain, and unloaded, along with the corresponding load (mN) 
vs. displacement (µm) data. Samples (A-F) are octahedrons-of-octahedra half-cells, and samples (G-L) are octahedrons-of-
octets. The samples shown have the following structural parameters: A) L=8μm and N=10, B) L=12μm and N=10, C) L=8μm 
and N=15, D) L=12μm and N=15, E) L=8μm and N=20, F) L=12μm and N=20, G) L=8μm and N=10, H) L=12μm and N=10, 
I) L=8μm and N=15, J) L=12μm and N=15, K) L=8μm and N=20, and L) L=12μm and N=20. 

The brittleness of the Al2O3 causes large local strains to be relieved either by elastic 

buckling or fracture, meaning there is no residual strain in the beams after unloading, enabling 

samples to globally recover virtually to their original shape after unloading. Further, in samples 



58 
 

that undergo local buckling in the 1st order beams, the locally buckled regions act as a compliant 

pivot point that accommodates large local strains and allows more of the structure to remain 

intact, which suppresses failure and enhances the recoverability of the samples.  

As discussed in Section 3.4, shell buckling in a hollow ceramic tube ceramic can become 

a dominant deformation mechanism over brittle fracture when the wall-thickness-to-tube-radius 

ratio is below a critical transition value of (𝑡𝑡/𝑎𝑎)𝑐𝑐𝑐𝑐 = 𝜎𝜎𝑓𝑓𝑦𝑦/𝐸𝐸�3(1 − 𝜈𝜈2) ≈ 0.03. The 𝑡𝑡/𝑎𝑎 values 

for samples in this work range from 0.0163 to 0.0536, with most being below the critical 

transition ratio in the shell buckling regime (Table 10 to Table 12), meaning that shell buckling 

will dominate over brittle fracture as the constituent material failure mechanism. This is what 

gives rise to the ductile-like deformation observed in nearly all of the hollow samples.  

Equating the shell buckling stress 𝜎𝜎𝑦𝑦𝑏𝑏 = 𝐸𝐸/�3(1 − 𝜈𝜈2)(𝑡𝑡/𝑎𝑎) to the Euler buckling stress 

𝜎𝜎𝐸𝐸𝑏𝑏 = 𝜋𝜋2𝐸𝐸(𝑏𝑏/𝐿𝐿)2 for a hollow elliptical beam, a critical buckling-transition ratio is obtained of  

 �
𝑡𝑡𝐿𝐿2

𝑎𝑎𝑏𝑏2
�
𝑐𝑐𝑐𝑐

= 𝜋𝜋2�3(1 − 𝜈𝜈2) ≈ 16.3 (38) 

Samples with critical buckling ratios  > 16.3 will preferentially Euler buckle; those with 

lower ratios will shell buckle. Buckling ratios for samples in this work range from 15.3 to 137.1, 

with most falling above the 16.3 transition value. This means a majority of failure will initiate 

via Euler buckling. This does not preclude shell buckling as a failure mode, and samples whose 

𝑡𝑡/𝑎𝑎 is lower than the critical buckling ratio will shell buckle after a beam has undergone Euler 

buckling.  

2nd order full Al2O3 nanolattice samples underwent layer-by-layer collapse and recovered 

to only 60 − 75% of their original height. All 2nd order full nanolattices had values of 𝐻𝐻12 < 1, 
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and failed nearly identically to the half-cells. During deformation, full nanolattices experienced 

layer-by-layer collapse which led to highly locally strained regions where the buckled beams 

partially fractured without complete failure (Figure 23C, F). The bifurcated beams likely 

experienced marginal recovery due to the residual strain energy being insufficient to return the 

sample to its original configuration. Preventing layer-by-layer collapse would improve recovery 

but requires a more efficient hierarchical geometry to optimize load distribution. 

 
Figure 23: All compression experiments on 2nd order full-lattices. 
Figures show the samples in an undeformed configuration, at 50% strain, and unloaded, along with the corresponding load (mN) 
vs. displacement (µm) data. All samples are octahedra-of-octahedra. Samples (A-C) have L=8μm and N=10, and samples (D-F) 
have L=6μm and N=15. Samples A and D are pure polymer, B and E are polymer-ceramic core-shell composites, and C and F 
are hollow Al2O3. 

4.4.5. 3rd Order Samples 

The deformation behavior of 3rd order half-cells closely matches that of the 2nd order 

samples within each material system. Polymer 3rd order samples with 𝐻𝐻12 > 1 failed via local 

buckling in the 1st order beams (Figure 19h, Figure 24A and Movie 11); samples with 𝐻𝐻12 < 1 

failed via local buckling in the 2nd order beams (Figure 24D). The relative 3rd order slenderness 

was never high enough to induce failure via buckling in 3rd order hierarchical beams. All 3rd 

order polymer samples were ductile during compression and showed some permanent residual 

strain after unloading (Figure 19I and Figure 24A, D). All 3rd order composite samples failed 

catastrophically. Samples with 𝜆𝜆𝑚𝑚𝑎𝑎𝑎𝑎 < 20 completely collapsed (Figure 19F, Figure 24B, Movie 

11); samples with 𝜆𝜆𝑚𝑚𝑎𝑎𝑎𝑎 > 20  had two of the four 3rd order beams remain intact after the 
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catastrophic event (Figure 24E). Hollow 3rd order samples with 𝐻𝐻12 > 1  experienced local 

buckling and crushing of the topmost 3rd order node (Figure 19B and Figure 24C); samples with 

𝐻𝐻12 < 1 locally buckled in the 2nd order beams along the length of the 3rd order beam (Figure 

24F). All hollow samples had ductile-like load-displacement behavior during compression and 

recovered to ~100% over multiple loading cycles (Figure 19B, C, Figure 24C and Movie 13). 

 
Figure 24: All compression experiments on 3rd order half-cells.  
Figures show the samples in an undeformed configuration, at 50% strain, and unloaded, along with the corresponding load (mN) 
v displacement (µm) data. All samples are octahedra-of-octahedra-of-octahedra. Samples (A-C) have L=8μm and N=5, and 
samples (D-F) have L=3μm and N=10. Samples A and D are pure polymer, B and E are polymer-ceramic core-shell composites, 
and C and F are hollow Al2O3. 

Figure 19A–C shows cyclic experiments on a third-order hollow ceramic half-cell, which 

revealed, after the initial loading cycle, that the stiffness dropped from 420 to 39 𝜇𝜇 𝑚𝑚−1 and that 

the applied load at yield decreased from 0.77 to 0.089 𝑚𝑚𝜇𝜇. In the first loading cycle, the sample 

recovered to 96%  of the original height on unloading; all subsequent cycles showed nearly 

complete 100% recovery to this initial deformed height. The load displacement data quickly 

reached a stable hysteretic cycling behavior, with minimal degradation after the second loading 

cycle (Figure 19A–C and Movie 13). 

4.4.6. Discussion on Recoverability 

The underutilization of non-axially oriented beams plays a significant role in the ability 

of hierarchical nanolattices to recover. Axially oriented beams undergo failure at the point of 

highest stress in a sample; in the absence of a catastrophic failure event, non-axially oriented 

beams are able to remain intact. Under global compression, the undamaged non-axially oriented 



61 
 

first-order beams either efficiently distribute strain through bending or undergo local elastic 

buckling to accommodate large global deformation without failure. Having a large number of 

elastically deformed first-order beams enables the hierarchical samples to globally recover.  

In the absence of residual strain in the buckled beams, such as is the case in hollow 

nanolattices, samples show excellent recovery behavior. The residual plastic strain in the buckled 

beams of polymer nanolattices impedes their ability to fully recover. In samples that undergo 

multiple loading cycles, most of the first-order beam buckling modes are activated in the first 

loading cycle; multiple loading cycles serve to reactivate the same buckling modes, which leads 

to near perfect recoverability of the initially deformed samples (Figure 19A-C). It may be 

possible to remove underused beams through better optimization of the hierarchical geometries, 

but such a reduction in the nonloadbearing beams may reduce the post-yield recoverability by 

impeding the recovery mechanism.  

4.5. Strength and Stiffness Scaling with Density 

4.5.1. Experimental Results 

Second-order half-cell samples of varying material compositions were tested with 

densities spanning over two orders of magnitude from 𝜌𝜌 =  0.30 − 33.2 𝑘𝑘𝑘𝑘 𝑚𝑚−3 . Individual 

material systems had relative densities that spanned more than one order of magnitude. Strength 

and modulus in architected materials scale with relative density as  

 𝐸𝐸 = 𝐵𝐵𝐸𝐸𝑦𝑦�̅�𝜌𝑚𝑚 (39) 

 𝜎𝜎𝑦𝑦 = 𝐶𝐶𝜎𝜎𝑦𝑦𝑦𝑦�̅�𝜌𝑛𝑛 (40) 

Here, 𝐸𝐸𝑦𝑦  and 𝜎𝜎𝑦𝑦𝑦𝑦  are the constituent material’s Young’s modulus and yield strength, 

respectively; 𝐵𝐵 and 𝐶𝐶 are geometry-dependent proportionality constants, and 𝑛𝑛 and 𝑚𝑚 are scaling 
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constants (74). The experimentally measured stiffness in the hollow second-order half-cells was 

found to scale nearly linearly, with relative density as 𝐸𝐸 = 0.015𝐸𝐸ℎ�̅�𝜌1.04  and strength as 

𝜎𝜎𝑦𝑦 = 0.026𝜎𝜎𝑦𝑦ℎ�̅�𝜌1.17. Similar scaling relations were found for polymer and composite second 

order half-cell samples. Table 1 provides a full list of the constituent material properties used and 

the observed scaling parameters; polymer and composite properties can be found in Section 4.5.5 

and Al2O3 properties were taken from (64, 68, 104–106).  

Material Type 𝑬𝑬𝒔𝒔 (GPa) 𝝈𝝈𝒚𝒚𝒔𝒔 (MPa) 𝑩𝑩 (𝑩𝑩∗) 𝒎𝒎 (𝒎𝒎∗) 𝑪𝑪 𝒏𝒏 

Polymer 2.10 62.7 
0.110 

(0.071) 
1.12 

(1.05) 
0.316 1.36 

Polymer + 
20nm Al2O3 

15.8 509 
0.050 

(0.062) 
1.07 

(1.04) 
0.236 1.32 

20nm Al2O3 165 5200 
0.015 

(0.036) 
1.04 

(1.00) 
0.026 1.17 

Table 1: Hierarchical nanolattice scaling relationships. 
Material properties and proportionality and scaling constants for 2nd order half-cells as obtained from 
experiments and simulations. Stiffness constants in parenthesis represent simulation results. 

The strength and stiffness of the second-order hierarchical half-cells follow analytical and 

computational predictions for stretching-dominated cellular solids (74). These results show a 

factor of 1.5 improvement in the scaling relationship for strength and a factor of 1.6 

improvement in modulus over nonhierarchical hollow Al2O3 nanolattices (Figure 25). The 

strength and stiffness of the equivalently dense hollow third-order half-cell samples were found 

to be approximately a factor of two lower than those of second-order half-cells; under the same 

metric, polymer and composite samples had equivalent strength and stiffness for second- and 

third-order samples. Experimental and computational results for all second- and third order half-

cells are summarized in Figure 25. Experiments on full second-order nanolattices revealed that 

the strength and stiffness align with second-order half-cell experiments.  
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Figure 25: Comprehensive data plot of all tested hierarchical nanolattices. 
A) Effective Young’s modulus of the hierarchical structures plotted against their relative density. Data are plotted for 
experimental (slope values are in bold) and refined node simulations (slope values are italicized) results. B) Experimentally 
derived effective yield strength of the hierarchical nanolattices plotted against their relative density. 

4.5.2. Computational Multiscale Modeling   

In collaboration with Alex Zelhofer and Dennis Kochmann, numerical simulations were 

performed to measure the elastic response of second-order hierarchical nanolattices from all 

three material systems. Simulations revolved around a two-step computational strategy involving 



64 
 

Abaqus and an in-house variational-based solid mechanics code. In this method, first a 

characteristic stiffness of individual beams and lattice junctions was determined using finite 

element calculations with linear elastic shell and solid elements. It is assumed that the cross-

sections of both ends of a beam deform rigidly through kinematic constraints, meaning the 

deformation of each beam and joint depend only on the displacements and rotations of its end 

points. Second, the thus-obtained load-displacement relations and stiffness matrices are input 

into an efficient simulation of the complete hierarchical structure based on the reduced degrees 

of freedom of all beam members and junctions in the lattice.  

 
Figure 26: Model flowchart showing truss and refined model generation.  
A) Representative lattice geometry section. B) Creation of a truss model lattice. C) Example compression of truss model half-cell 
nanolattices. Stress is normalized by the maximum compressive stress in the sample, and stresses |σ| ≤ 15% of the maximum 
stresses have been grayed out to help illustrate the beams with high stresses. D) Refined model creation process containing 
geometrically unique supernodes (SN) and superbeams (SB). E) Example refined model half-cell nanolattice colored by unique 
geometry beam or node. 

The response of 12 second-order lattices of varying architecture was modeled by the 

aforementioned procedure. Computed scaling exponents are included in Table 1 and show good 
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agreement with experiments, differing by only 6.1%, 3.3%, and 3.9% for polymer, composite 

and hollow trusses, respectively. The absolute computed stiffnesses were, on average, 10.7% 

lower for polymer, 30.2% higher for composite, and 68.5% higher for hollow samples compared 

with experimental data, which hints that geometric and/or material imperfections contribute 

significantly to a reduction in the effective stiffness. A summary of the results is shown in Figure 

25. 

4.5.3. Comparison between Experimental Results and Multiscale Modeling 

Simulations reveal the local stress distribution and expose the load-carrying members of 

the hierarchical nanolattices. One prominent feature revealed by computations is that the first 

order axially oriented beams, which comprise ∼ 8.1%  of all of the beams in an individual 

sample, carry an average of 91% of the load. This has multiple implications for the global 

mechanical behavior of the hierarchical nanolattices. First, it is postulated that the near-linear 

strength and stiffness scaling observed arises from the combination of axially loaded first-order 

beams and the reduced effects of bending on global compliance. Because most of the load is 

carried in compression – which scales linearly with relative density – the global stiffness trends 

will also be linear with respect to their relative density. Second, this low percentage of load 

carrying beams suggests that the remaining beams within the structure are underused. The 

underutilization of non-axially oriented beams is likely a major factor in the observed reduction 

of the proportionality constants 𝐵𝐵  and 𝐶𝐶  (Equations 39 and 57) from what is predicted 

analytically for an ideal stretching-dominated solid, which have 𝐵𝐵 =  𝐶𝐶 ≈  0.3  (74). The 

negative impact of underused beams could be improved through better optimization of the 

hierarchical geometries. 
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Figure 26C illuminates the regions of high local stress revealed by computations in 

second-order samples with varying degrees of slenderness. Samples with low slenderness have 

stress concentrations highly localized to the topmost first-order beams and are more likely to 

experience failure there. Samples with high slenderness have a more even stress distribution 

throughout their length and are more likely to have failure initiate away from the topmost region. 

This stress localization trend agrees well with experimentally observed locations of failure. 

Failure in the structure will manifest itself as buckling, which is normally non-linear with respect 

to relative density, but because the relative density of the sample can be tuned relatively 

independently of the slenderness of the 1st order beams, the global strength scaling can be greatly 

improved over that of a traditional buckling dominated solid.  

4.5.4. The Role of Imperfections 

The marked overestimation of the absolute stiffness obtained by the refined model 

simulations compared with experiments can be explained by the presence of geometric 

imperfections in the fabricated samples. Defects, like misaligned nodes, prebending of the beams 

and variations in the wall thickness negatively impact the mechanical performance of 

nanolattices (96, 107). One dominant imperfection that was observed in all tested samples is 

sinusoidal waviness of the first order beams caused by the external vibrations during the two 

photon writing process. Simulations of the compression of beams with varying degrees of 

waviness and material compositions showed that, for a wave amplitude of 50 𝑛𝑛𝑚𝑚  and a 

wavelength of 1𝜇𝜇𝑚𝑚, the calculated effective stiffness of polymer beams decreased by 5%, that of 

the ceramic–polymer composites decreased by 32% , and that of the hollow ceramic beams 

decreased by 70%, which serve to illustrate the increased sensitivity to defects in the composite 

and hollow beams. The simulations over-predicted the stiffnesses of composite and hollow 
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ceramic hierarchical lattices by 30.2% and 68.5%, respectively, which suggests that waviness-

induced defects significantly contribute to this reduction. Model inaccuracy in under-predicting 

solid polymer stiffness by 10.7%  can likely be attributed to the uncertainty in the polymer 

modulus. 

4.5.5. Constituent Material Properties 

Mechanical characterization of the IP-Dip polymer was performed through micropillar 

compression experiments in a nanomechanical testing device (TI 950 Triboindenter, Hysitron 

Inc.). Micropillars were compressed using a 20 𝜇𝜇𝑚𝑚 diamond flat punch tip to 10 − 15% strain at 

a rate of 10−3 𝑠𝑠−1 then held at their peak displacement for 50 𝑠𝑠 before unloading. Samples were 

fabricated out of IP-Dip photoresist using an identical DLW method to that described above for 

hierarchical nanolattices. Samples were fabricated and tested with diameters between 2 −

10 𝜇𝜇𝑚𝑚, and length-to-diameter (𝐿𝐿/𝐷𝐷) ratios between 2 and 4. 

For each micropillar, stress-strain data was obtained and used to determine the Young’s 

modulus (𝐸𝐸) and compressive yield strength (𝜎𝜎𝑦𝑦). The Young’s modulus is calculated using the 

slope of the linear regime of the stress-strain curve. The compressive yield strength is calculated 

by finding the intersection of the stress-strain data with a 0.2% strain offset curve from the linear 

regime. Three representative data sets along with their corresponding yield strength and 

stiffnesses are shown in Figure 27. The stress-strain data has an initial toe region followed by a 

linear regime and then a plastic flow region. The toe region is likely due to improper alignment 

or contact of the indenter tip with the sample, and was consequently ignored in the calculation of 

the Young’s modulus. From the stress-strain data, it was found that the IP-Dip polymer had an 
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average modulus of 𝐸𝐸 = 2.1 ± 0.3 𝐺𝐺𝐺𝐺𝑎𝑎 and an average yield strength of 𝜎𝜎𝑦𝑦 = 67.2 ± 4.7 𝑀𝑀𝐺𝐺𝑎𝑎. 

These values are shown in Figure 27.  

 
Figure 27: Representative stress-strain curves for polymer pillar compression.  
Curves show each slenderness ratio tested (L/D = 2, 3, 4) with various radii. The arithmetic mean of the Young’s modulus (E) 
and compressive yield strength (σy) are plotted. The inset image shows a set of pre-compression micropillar samples (scale bar: 
50 µm). 

The properties of the composite were calculated using a Voigt model rule of mixtures, 

with the properties of the ALD Al2O3 taken from (64, 68, 104–106). In the 2nd order half cells, 

the polymer beams have dimensions of 𝑎𝑎 = 753𝑛𝑛𝑚𝑚  and 𝑏𝑏 = 317𝑛𝑛𝑚𝑚 , where 𝑎𝑎  and 𝑏𝑏  are the 

major and minor radii of the ellipse respectively. The ceramic shell has a thickness of 𝑡𝑡 = 20𝑛𝑛𝑚𝑚, 

meaning the volume fraction of polymer in the beams can be calculated to be 𝑓𝑓 = 𝐴𝐴𝑝𝑝𝑜𝑜𝑏𝑏𝑦𝑦𝑚𝑚𝑓𝑓𝑐𝑐/

(𝐴𝐴𝑝𝑝𝑜𝑜𝑏𝑏𝑦𝑦𝑚𝑚𝑓𝑓𝑐𝑐 + 𝐴𝐴𝑐𝑐𝑓𝑓𝑐𝑐𝑚𝑚𝑚𝑚𝑖𝑖𝑐𝑐) = 91.6% . Given the polymer properties of 𝐸𝐸𝑝𝑝 = 2.1 ± 0.3 𝐺𝐺𝐺𝐺𝑎𝑎  and 

𝜎𝜎𝑦𝑦𝑝𝑝 = 67.2 ± 4.7 𝑀𝑀𝐺𝐺𝑎𝑎, and the ceramic properties of 𝐸𝐸ℎ = 165 𝐺𝐺𝐺𝐺𝑎𝑎 and 𝜎𝜎𝑦𝑦ℎ = 5.2 𝐺𝐺𝐺𝐺𝑎𝑎, the 

core shell composite properties are found to be 𝑓𝑓𝐸𝐸𝑝𝑝 + (1 − 𝑓𝑓)𝐸𝐸ℎ = 𝐸𝐸𝑐𝑐 = 15.8 𝐺𝐺𝐺𝐺𝑎𝑎  and 

𝑓𝑓𝜎𝜎𝑦𝑦𝑝𝑝 + (1 − 𝑓𝑓)𝜎𝜎𝑦𝑦ℎ = 𝜎𝜎𝑦𝑦𝑐𝑐 = 509 𝑀𝑀𝐺𝐺𝑎𝑎.  



69 
 

Chapter 5: Mechanical Performance of Rigid vs. 
Non-Rigid Nanolattice Topologies 
5.1. Chapter Summary 

Traditional theories on the strength and stiffness of cellular solids indicate that there is a 

strong connection between the rigidity of a sample and the mechanical properties. In this work, a 

systematic series of mechanical tests were performed on rigid, periodically-rigid, and non-rigid 

truss topologies made from solid polymer and hollow aluminum oxide (Al2O3) beams to study 

their strength, stiffness, and deformation response. Across all topologies and the two material 

systems, a near identical scaling of strength and stiffness with relative density was found, 

diverging from previous theories on the strength and stiffness of “bending” and “stretching” 

dominated topologies. The mechanical behavior of polymer samples across all topologies was 

found to correlate strongly with the slenderness of the beams, and there was an observed 

transition between yielding-dominated and buckling-dominated samples. The mechanical 

behavior of Al2O3 samples across all topologies was found to correlate with the wall thickness-

to-radius ratio (𝑡𝑡/𝑎𝑎) of the beams, and there was an observed transition between yielding-

dominated and shell buckling-dominated behavior. Nanolattice samples were also made to study 

the effect of angle changes, missing beams, and offset nodes on the mechanical properties. 

5.2. Defining Rigidity of a Structure 

A structure comprised of bars connected by pin-jointed links is defined to be ‘rigid’ if 

any shape change of the structure requires a corresponding increase in the strain energy. 

Structures that are non-rigid are kinematically indeterminate because they can change shape 

without any applied load in their members. Any motion that is able to change the shape of a 
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structure without increasing strain energy is known as a structural mechanism. Structures that are 

rigid can be statically determinate or statically indeterminate. A structure is statically determinate 

if the force in every bar can be coupled by a set of equilibrium equations to the force in every 

other bar; in this case, the number of equilibrium equations is equal to the number of unknowns. 

A structure is statically indeterminate if there is redundancy in the structure and there is a non-

unique solution to the force in the bars; in this case, there are more equilibrium equations than 

unknowns. A force that can be applied in a structure without a corresponding shape change is 

referred to as a state of self-stress.  

The first attempt at describing the rigidity of a structure came in 1864 from James 

Maxwell (108). In this, he considered a structure with 𝑗𝑗 joints and 𝑏𝑏 bars subject to 𝑘𝑘 kinematic 

constraints in 𝑑𝑑 dimensions. With these, a structure has the potential to be rigid if it satisfies the 

equation 

 𝑑𝑑𝑗𝑗 − 𝑏𝑏 − 𝑘𝑘 ≤ 0 � 𝑑𝑑 = 2 in 2D
𝑑𝑑 = 3 in 3D (41) 

This equation is necessary but not sufficient to determine the rigidity of a structure. In 

order to make the equation more accurate, structural mechanisms and states of self-stress must 

first be accounted for. For a structure with 𝑚𝑚 mechanisms and 𝑠𝑠 states of self-stress, Equation 41 

can be generalized to  

 𝑑𝑑𝑗𝑗 − 𝑏𝑏 − 𝑘𝑘 = 𝑚𝑚 − 𝑠𝑠 (42) 

A structure that is rigid will have 𝑚𝑚 = 0, and a structure that is non-rigid will have 

𝑚𝑚 > 0. It isn’t possible to determine the number of mechanisms or states of self-stress from this 

equation, but if either is known it is possible to determine the other. Examples of structures with 

different numbers of mechanisms and states of self-stress are shown in Figure 28 below.  
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Figure 28: Examples of rigid and non-rigid structures 
A-D) are examples of how bars can be arranged in a 2D structure with the same number of joints and kinematic 
constraints to give rise to different numbers of mechanisms and states of self-stress. E-F) are an example of how 
the position of joints in a 3D structure can change the number of mechanisms and states of self-stress even for 
structures with the same number of bars, joints, and kinematic constraints. 

To obtain a more mathematically rigorous definition of the rigidity of a structure, one 

must formulate an equilibrium matrix that relates the forces at the nodes to the displacement of 

the bars, as was shown by Pellegrino and Calladine in 1986 (77). In this analysis, a vector 

𝒇𝒇 ∈ R𝑑𝑑𝑖𝑖−𝑏𝑏  can be defined that represents the force in each dimension 𝑑𝑑  at the nodes 𝑗𝑗  of a 

structure. The force on a node with a kinematic constraint 𝑘𝑘 in that direction is ignored. It is also 

possible to define a vector 𝒕𝒕 ∈ ℝ𝑏𝑏 that represents the tension (or compression) in each of the bars 

of a structure. Correspondingly, a vector 𝒅𝒅 ∈ ℝ𝑑𝑑𝑖𝑖−𝑏𝑏  can be defined that represents the 

displacements at the nodes of a structure and a vector 𝒆𝒆 ∈ ℝ𝑏𝑏 that represents the elongations of 

the bars. These vectors can be related to each other using an equilibrium matrix 𝑩𝑩 ∈ ℝ3𝑖𝑖−𝑏𝑏 x 𝑏𝑏 

representing a force balance between bars and joints and an equilibrium matrix 𝑩𝑩 ∈ ℝ𝑏𝑏 x 3𝑖𝑖−𝑏𝑏 

representing a displacement balance between joints and bars as 

 𝒇𝒇 = 𝑩𝑩𝒕𝒕 (43) 

 𝒆𝒆 = 𝑩𝑩𝒅𝒅 (44) 
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These equilibrium matrices 𝑩𝑩 and 𝑩𝑩 can be used to determine the number of mechanisms 

and states of self-stress. If there is a nullity in matrix 𝑩𝑩, there is set of bar tensions 𝒕𝒕 that can be 

applied that don’t change the forces or corresponding displacements of the nodes, meaning it is a 

state of self-stress. If there is a nullity in matrix 𝑩𝑩, that means a displacement 𝒅𝒅 can be applied to 

the nodes without a corresponding stretch in the bars, meaning there is a structural mechanism. It 

is possible to show that 𝑩𝑩 = 𝑩𝑩𝑇𝑇, so the rank of 𝑩𝑩 is equal to the rank of 𝑩𝑩. From linear algebra, 

the dimension of the nullspace of a matrix 𝑪𝑪 ∈ ℝ𝑝𝑝 x 𝑞𝑞 with rank 𝑟𝑟 is 𝑞𝑞 − 𝑟𝑟 and the dimension of 

the nullspace of 𝑪𝑪𝑇𝑇 is 𝑝𝑝 − 𝑟𝑟. Therefore, the number of mechanisms and states of self-stress can 

be defined to be 

 𝑚𝑚 = (3𝑗𝑗 − 𝑘𝑘) − 𝑟𝑟𝐴𝐴 (45) 

 𝑠𝑠 = 𝑏𝑏 − 𝑟𝑟𝐴𝐴 (46) 

Here, 𝑟𝑟𝐴𝐴 is the rank of the equilibrium matrices. It is therefore possible to determine the 

rigidity of a structure through setting up an equilibrium matrix and finding its rank, thereby 

determining the number of mechanisms in a structure.  

5.3. Design of Rigid and Non-Rigid Nanolattice Topologies 

Four different nanolattice topologies were designed and fabricated in this work using two 

different constituent materials, hollow Al2O3 and solid polymer, as model systems. The four 

topologies and corresponding average nodal connectivities 𝑍𝑍  are: octet-truss ( 𝑍𝑍 = 12 ), 

cuboctahedron (𝑍𝑍 = 8), 3D Kagome (𝑍𝑍 = 6), and tetrakaidecahedron (𝑍𝑍 = 4). An octet-truss is a 

fully rigid topology composed of a close packing of octahedrons and tetrahedrons. A 

cuboctahedron is a periodically rigid topology composed of octahedrons connected at their 

nodes. A 3D Kagome lattice is a periodically rigid topology composed of tetrahedrons connected 

at their nodes. A tetrakaidecahedron, also commonly known as a Kelvin foam, is a fully non-
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rigid topology. The cuboctahedron and 3D Kagome lattice are periodically rigid because their 

constituent sub-units, an octahedron and a tetrahedron respectively, are rigid and periodically 

organized in the structure, meaning that most deformation modes will involve a periodic 

deformation of the rigid sub-units.  

 
Figure 29: Rigid and non-rigid nanolattice topologies. 
These figures show each of the four nanolattice topologies tested in this work: an octet-truss, cuboctahedron, 3D 
Kagome, and tetrakaidecahedron. Figures A, F, K, and P are CAD models of the full structures, B, G, L, and Q 
are SEM images of the full structures, C, H, M, and R are CAD models of the unit cells, D, I, N, and S are 
representative nodes showing the average nodal connectivity, and E, J, O, and T are SEM images from the top of 
the structures. The scales bars in B, G, L, and Q are 10µm, and the scale bars in E, J, O, and T are 5 µm. 

Each of the four nanolattice topologies were created with solid polymer beams and 

hollow Al2O3 beams. All of the samples had relative densities that spanned at least one order of 

magnitude. In polymer samples, the relative density was tuned by changing the size of the unit 

cell and the diameter of the beams. A full list of polymer samples tested can be found in Table 7. 

In hollow Al2O3 samples, the relative density was tuned by changing the size of the unit cell, the 
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beam diameter and the wall thickness. A full list of hollow octet-truss samples tested can be 

found in Table 3, hollow cuboctahedrons are in Table 4, all three variants of hollow 3D Kagome 

lattices are in Table 5, and hollow tetrakaidecahedrons are in Table 6. All of the topologies were 

made with regular polyhedra, meaning they had beams of equal length. Two additional 3D 

Kagome lattices were made with shortened and elongated unit cells having a tetrahedron edge-

face angle of 45° and 65° respectively (a regular tetrahedron has an edge-face angle of ~54.7°).  

In addition to the normal topologies, polymer octet-truss lattices were created with two 

types of intentionally introduced imperfections: missing beams and offset nodes. In the missing 

beam samples, beams were removed randomly from only horizontal members, only diagonal 

members, and from the entire structure. In the offset-node samples, the connectivity of the 

structure was left the same but the nodes were displaced in a random direction by a distance 

defined by a uniform random distribution. A full list of these fabricated samples can be found in 

Table 8 and Table 9 for the missing beam and offset-node structures respectively.  

The fabrication of the samples was done with a combination of two-photon lithography 

and atomic layer deposition in a manner identical to that described in Section 3.2. Mechanical 

testing of all samples was performed in a manner identical to that described in Section 3.3.1. 

5.4. Deformation Behavior and Transition between Failure Modes 

5.4.1. Polymer Nanolattices  

When investigating the deformation and failure of polymer nanolattices, it is first useful 

to define the slenderness ratio 𝜆𝜆 and the critical beam buckling stress 𝜎𝜎𝑏𝑏 of an elliptical beam. 

The slenderness ratio is defined as 𝜆𝜆 = �𝐴𝐴𝐿𝐿2/𝐼𝐼, where 𝐴𝐴 is the cross sectional area, 𝐿𝐿 is the 
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length, and 𝐼𝐼 is the area moment of inertia of a beam. For an elliptical beam with semi-major and 

semi-minor axes 𝑎𝑎 and 𝑏𝑏 respectively, the maximum slenderness ratio can be found to be 

 𝜆𝜆 =
2𝐿𝐿
𝑏𝑏

 (47) 

The critical beam buckling stress 𝜎𝜎𝑏𝑏 = 𝜋𝜋2𝐸𝐸𝐼𝐼/𝐴𝐴𝑘𝑘2𝐿𝐿2  can be defined in relation to the 

slenderness ratio as 

 𝜎𝜎𝑏𝑏 =
𝜋𝜋2𝐸𝐸

(𝜆𝜆𝑘𝑘)2 (48) 

Here, 𝐸𝐸 is the Young’s modulus of the constituent material, and 𝑘𝑘 is a constant that varies 

depending on the boundary condition. For a beam with a fixed-fixed boundary, 𝑘𝑘 = 1/2 , and for 

a beam with a pinned-pinned boundary, 𝑘𝑘 = 1. In a lattice structure, beams are supported by a 

rigid elastic boundary at the nodes and the actual value of 𝑘𝑘 likely lies somewhere between 1/2 

and 1.  

In a polymer lattice structure, the failure and subsequent deformation behavior is 

governed by a competition between beam buckling and yielding. Taking the yield strength of the 

constituent polymer to be 𝜎𝜎𝑦𝑦 , a transition between the two failure modes will occur at a 

slenderness value of 

 𝜆𝜆𝑐𝑐𝑐𝑐 =
𝜋𝜋
𝑘𝑘 �

𝐸𝐸
𝜎𝜎𝑦𝑦

 (49) 

Using constituent values of the polymer as found in Section 4.5.5, taking 𝑘𝑘 = 1/2 gives a 

critical slenderness of 𝜆𝜆𝑐𝑐𝑐𝑐 ≈ 35 , and taking 𝑘𝑘 = 1  gives a critical slenderness of 𝜆𝜆𝑐𝑐𝑐𝑐 ≈ 17 . 

Different topologies are observed to have different critical slenderness ratio transitions between 

failure and deformation behaviors. In octet-truss samples, the transition between buckling- and 

yielding-dominated behavior occurs at a slenderness of 𝜆𝜆 ≈ 35, which corresponds to a structure 
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with beams that have a fixed-fixed boundary condition (𝑘𝑘 ≈ 1/2). In cuboctahedron samples, the 

transition occurs at 𝜆𝜆 ≈ 30 (𝑘𝑘 ≈ 0.6), in the 3D Kagome it occurs at 𝜆𝜆 ≈ 25 (𝑘𝑘 ≈ 0.7), and in 

the tetrakaidecahedrons it occurs at 𝜆𝜆 ≈ 22 (𝑘𝑘 ≈ 0.8). This indicates there is a gradual shift 

between an effective fixed-fixed and an effective pinned-pinned boundary correlating with the 

rigidity of the structure. A fully rigid topology has no mechanisms that allow for local 

deformation of the structure, causing the node to behave more like a fixed boundary, while non-

rigid topologies have more mechanisms that allow for local deformations of the structure, 

allowing the nodes to behave more like a pinned boundary. Example stress-strain curves showing 

the deformation of various nanolattice topologies and their transition between failure modes are 

shown in Figure 30 below, and a full list of all the geometries tested with their corresponding 

observed failure modes are in Table 7. 

The competition between buckling and yielding manifests itself in the nanolattice 

behavior in two ways: in the initial yielding behavior and in the post-yield deformation behavior. 

With regard to the initial yielding behavior, samples that undergo buckling-dominated failure 

have a sharp transition between their elastic and post-yield states and also have a negative post-

yield stiffness (Figure 30 A, B, E, F, I, J, M, and N). Buckling is a bifurcation event that 

corresponds to a beam snapping between two deformed states (80, 82), and this snapping gives 

rise to the sudden change in the observed loading stiffnesses. While buckling generally doesn’t 

give rise to a negative stiffness, beams in the nanolattices are subject to combined axial loading 

and bending and failure in the samples occurs as a whole layer. The cumulative effect of these 

two factors leads to a catastrophic layer failure that results in a negative stiffness. Samples that 

undergo yielding-dominated failure have a gradual transition between their elastic and post-yield 

states and maintain a positive post-yield stiffness throughout compression (Figure 30 C, D, G, H, 
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K, L, O, and P). This behavior more closely matches the yielding behavior of a fully dense 

material, as would be expected for the less slender and denser samples. 

 
Figure 30: Stress-strain curves of different polymer nanolattice topologies. 
These stress-strain plots show the transition between buckling-dominated and yielding-dominated failure for 
octet-truss (A-D), cuboctahedron (E-H), 3D Kagome (I-L), and tetrakaidecahedron (M-P) nanolattice topologies. 
The dashed lines and red X indicate the measured Young’s modulus and yield strength respectively for each 
sample.  

With regard to the post-yield deformation behavior, samples that undergo buckling-

dominated failure have a serrated stress-strain response with a series of linear loading sections 

followed by drops in the stress. This serrated behavior corresponds with a periodic layer 

buckling, and larger strain bursts correspond to more layers failing simultaneously. Samples that 

undergo yielding-dominated failure will either plateau or gradually increase their stress until 

densifying. This densification occurs when the sample is effectively fully compressed and the 

stress-strain response is dominated by uniaxial beam-on-beam crushing instead of uniaxial beam 

compression, bending, and tension. A full list of the samples tested and their corresponding 

observed failure modes can be found in Table 7, and examples of the compression of different 

topologies can be found in Movie 14–Movie 17. 
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5.4.2. Hollow Al2O3 Nanolattices  

There are two parameters that can be used to characterize the constituent structure of the 

hollow nanolattices: the wall thickness-to-radius ratio (𝑡𝑡/𝑎𝑎 ) and the slenderness ratio. The 

slenderness of a hollow thin walled beam can be calculated to be  

 𝜆𝜆ℎ =
2𝐿𝐿
𝑏𝑏
� 𝑎𝑎 + 𝑏𝑏

3𝑎𝑎 + 𝑏𝑏
 (50) 

The deformation and failure behavior of the hollow nanolattices is observed to correlate 

strongly with the 𝑡𝑡/𝑎𝑎 ratio of the samples and has little to no correlation with the slenderness 

ratio. As discussed in Section 3.4, the failure of the hollow samples is primarily governed by a 

competition between shell buckling and brittle fracture. This competition can be expressed using 

the equation (𝑡𝑡/𝑎𝑎)𝑐𝑐𝑐𝑐𝑖𝑖𝑓𝑓 = 𝜎𝜎𝑓𝑓𝑦𝑦/𝐸𝐸�3(1 − 𝜈𝜈2) to relate the critical wall thickness-to-radius ratio at 

which shell buckling will be the dominant failure mode over fracture, where here 𝜎𝜎𝑓𝑓𝑦𝑦  is the 

fracture strength of the constituent material. This critical wall thickness-to-radius transition will 

range between (𝑡𝑡/𝑎𝑎)𝑐𝑐𝑐𝑐𝑖𝑖𝑓𝑓 ≈ 0.0161 − 0.0262 depending on the exact mechanical properties of 

the constituent Al2O3 (68). 

There are four characteristic deformation signatures observed in the hollow nanolattices 

that are repeated across all topologies: gradual ductile-like failure, intermittent ductility with 

periodic strain bursts, multiple catastrophic strain bursts, and a single catastrophic strain burst. 

The transitions between these behaviors occur at approximately the same 𝑡𝑡/𝑎𝑎 values across all 

four topologies tested. Samples are observed to undergo gradual ductile-like failure when they 

have a 𝑡𝑡/𝑎𝑎 ≥ 0.02, which coincides well with the transition into a shell buckling-dominated 

failure. The post-yield stress-strain profile of the ductile-like samples either plateaus (Figure 

31A), which corresponds to a uniform crushing of the entire structure, or exhibits periodic 
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oscillations in the stress (Figure 31 D, G and J), which corresponds to a localized layer-by-layer 

failure. Both failure types are observed in all the different topologies to varying degrees, with 

octet-truss samples showing the most demonstrable plateauing behavior. Samples with 0.02 ≤

𝑡𝑡/𝑎𝑎 ≤ 0.03 are observed to have an intermittent ductile-like behavior with non-linear loading 

sections followed by small strain bursts (Figure 31B), which implies that this 𝑡𝑡/𝑎𝑎 ratio range is a 

transition region between shell buckling and fracture behavior. In these samples, the non-linear 

loading sections correspond to local shell buckling events, and the strain bursts correspond to 

brittle failure events in a layer of the sample. 

 
Figure 31: Stress-strain curves of different hollow Al2O3 nanolattice topologies. 
These stress-strain plots show the transition between shell buckling-dominated and yielding-dominated failure for 
octet-truss (A-C), cuboctahedron (D-F), 3D Kagome (G-I), and tetrakaidecahedron (J-L) nanolattice topologies. 
The dashed lines and red X indicate the measured Young’s modulus and yield strength respectively for each 
sample.  

Samples with a larger 𝑡𝑡/𝑎𝑎 > 0.03 experience either multiple small strain bursts or a 

single large strain burst to failure (Figure 31 C, E, F, H, I, K, and L). These samples are strongly 

in a fracture-dominated failure regime, and all the strain bursts occur rapidly and with little to no 

recovery of the structure after yielding. There is no distinct range of 𝑡𝑡/𝑎𝑎 values or 𝜆𝜆ℎ values that 

corresponds to the transition between having multiple strain bursts and a single catastrophic 
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strain burst, but in general samples that have a lower 𝑡𝑡/𝑎𝑎 value or a higher 𝜆𝜆ℎ value are more 

likely to experience multiple strain bursts. This implies that the existence of a single strain burst 

or multiple strain bursts is likely due to a combination of structural parameters and imperfections 

in the samples.  

These behaviors are similar to ones that have been described earlier in Section 3.3, and a 

more complete description of the behavior observed in the octet-trusses can be found there. A 

full list of the samples tested and their corresponding observed failure modes in the hollow 

samples can be found in Table 3–Table 6, and examples of the compression of different 

topologies can be found in Movie 18–Movie 21. 

5.4.3 Discussion on Recoverability 

A recoverability figure of merit, the percent strain recovery 𝜑𝜑𝑐𝑐, will be used here in order 

to better characterize the recovery of different nanolattice topologies and different material 

systems. This is defined here to be the ratio between the strain recovered upon unloading and the 

maximum strain a sample is subjected to. This is equivalently defined as the maximum strain 

minus the residual strain divided by the maximum strain. Expressed as an equation, this becomes 

 𝜑𝜑𝑐𝑐 =
𝜀𝜀𝑐𝑐𝑓𝑓𝑐𝑐𝑜𝑜𝑎𝑎𝑓𝑓𝑐𝑐𝑓𝑓𝑑𝑑
𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚

=
𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜀𝜀𝑐𝑐𝑓𝑓𝑦𝑦𝑖𝑖𝑑𝑑𝑓𝑓𝑚𝑚𝑏𝑏

𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚
 (51) 

This ratio means that if a sample is compressed to 50% strain and recovers to 95% of the 

original height, it will have a 𝜑𝜑𝑐𝑐  of 90%, and if a sample is compressed to 50% strain and 

recovers to 55%  of the original height, it will have a 𝜑𝜑𝑐𝑐  of 10% . This ratio is defined to 

minimize the effect of variations in maximum applied strain on the recoverability of the samples.  

All the polymer samples were observed to have recoveries upon unloading of between 

𝜑𝜑𝑐𝑐 = 25% − 86%, with an additional 𝜑𝜑𝑐𝑐 = 5 − 15% after being allowed to settle for 1-2 hours. 
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The additional recovery arises due to the viscoelastic nature of the constituent polymer. The 

percent strain recovered generally correlates with the relative density, with structures that have 

lower relative densities recovering more on average. The structures with the highest relative 

densities also recovered slightly more than average, but there is not a strict relationship between 

recoverability and relative density (Figure 32A). There is also a slight correlation between 

slendernesses and recoverability; samples with a higher slenderness recovered more on average, 

but there was a very weak correlation (Figure 32B). There wasn’t a notable deviation in the 

recoverability of any of the topologies except for the tetrakaidecahedron, which had higher 

average recoverability, although this may be related to the lower average relative density of the 

samples. A full list of the polymer recoverabilities can be found in Table 7. 

 
Figure 32: Recoverability of polymer nanolattice topologies. 
A) Percent strain recovery φr  versus the relative density ρ�  plotted on a log scale for all of the nanolattice 
topologies. B) Percent strain recovery φr versus the slenderness ratio 𝛌𝛌 also for all of the nanolattice topologies. 

The recoverability of the polymer samples can be explained by considering two factors: 

the localization of strain in the beams and the localization of strain in the full nanolattices. In 

samples with beams that have a high slenderness, the beams are more likely to undergo buckling-

dominated failure. Buckling is an elastic phenomenon, but high local strains in a post-buckled 

beam can lead to plastic deformation. If a beam is highly slender it will likely buckle and remain 
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entirely in the elastic regime throughout its deformation; if a beam is less slender but still 

undergoes buckling it is more likely to have high local stresses in its post-buckled state, leading 

to permanent plastic strain and less recovery. Buckling also generally localizes itself to an entire 

layer in the nanolattices. This leads to high local strains and as a result less global recovery. The 

greatest amount of permanent strain in a structure is observed to occur in regions that have 

localized collapse (Figure 34). If beams in a sample are less slender there will inherently be more 

plastic deformation, but the strain distribution in the samples may be more uniform, thereby 

leading to better recovery. This is likely the cause of the improved recovery of the samples with 

the highest relative density. Examples of the compression of different polymer nanolattices from 

each of the four topologies tested with their corresponding 𝜑𝜑𝑐𝑐 can be found in Figure 34. 

All the hollow Al2O3 samples were observed to have recoveries upon unloading between 

𝜑𝜑𝑐𝑐 = 2% − 92%. This recoverability was observed to strongly correlate with the 𝑡𝑡/𝑎𝑎 ratio of the 

samples, with samples that have 𝑡𝑡/𝑎𝑎 < 0.02 generally exhibiting much higher recovery than 

samples with 𝑡𝑡/𝑎𝑎 > 0.02. While there are still samples that have 𝑡𝑡/𝑎𝑎 < 0.02 that don’t exhibit a 

significant recovery, all samples that had 𝜑𝜑𝑐𝑐 ≥ 50%  fell within the 𝑓𝑓
𝑚𝑚

< 0.02 regime (Figure 

33A). There was a general correlation of relative density with the recoverability (Figure 33B), 

but that correlation likely arises because of the strong connection between relative density and 

the wall thickness to radius ratio of the structure (Appendix B).  There was a weak correlation 

between slenderness and relative density, and structures with a lower slenderness had a slightly 

higher average recoverability, although the effect is minimal (Figure 33C). The recoverability 

was not observed to vary significantly between different topologies with the same 𝑡𝑡/𝑎𝑎. A full list 

of the recoverability of the samples tested can be found in Table 3-Table 6.  
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The failure of samples with a 𝑡𝑡/𝑎𝑎 < 0.02 is primarily dominated by shell buckling. Shell 

buckling is an elastic phenomenon, and in theory, samples that strictly undergo shell buckling 

with no plastic yielding or fracture should experience 100% recovery. In real samples, shell 

buckling leads to local stress concentrations that cause cracking in the shell, particularly near the 

nodes (Section 3.6). If the 𝑡𝑡/𝑎𝑎 ratio is sufficiently small to prevent a complete fracture of the 

node in the post-buckled state, the structure will be able to recover. The biggest factor that will 

inhibit the recoverability of a shell buckling-dominated structure is the localization of strain 

during compression. A greater amount of strain localization during compression leads to locally 

failed regions that experience more cracking and an effective reduced recovery (Figure 34 B and 

F). When strains are more evenly distributed throughout the samples, there will be less local 

failure and a better global recovery after compression (Figure 34 D and H). The degree of strain 

localization can loosely be correlated with the slenderness ratio 𝜆𝜆ℎ, as samples with more slender 

beams are more likely to have failure localize in the structure. Examples of the compression of 

different thin-walled hollow nanolattices from each of the four topologies tested with their 

corresponding 𝜑𝜑𝑐𝑐 can be found in Figure 34. 

 
Figure 33: Recoverability of hollow Al2O3 nanolattice topologies. 
A) Percent strain recovery φr versus the t/a ratioof the beams for all of the nanolattice topologies B) Percent 
strain recovery φr versus the relative density ρ�  plotted on a log scale for all of the nanolattice topologies. C) 
Percent strain recovery φr versus the slenderness ratio λ also for all of the nanolattice topologies. 
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As the 𝑡𝑡/𝑎𝑎 ratio becomes greater, samples are less likely to experience shell buckling, 

and if they do, the shells are more likely to experience local cracking in their post-buckled states, 

leading to less recovery. In samples with 𝑡𝑡/𝑎𝑎  well outside of the shell buckling-dominated 

failure regime, there is still some marginal observed recovery (Figure 33A). This arises because 

even in structures that are yielding-dominated there can be a small number of beams that 

undergo shell buckling. This marginal recovery manifests in the stress-strain data as a small non-

linear region in the unloading region, as seen most pronounced in Figure 31B. A more in-depth 

discussion on the recovery of hollow Al2O3 samples can be found in Section 3.6. 

 
Figure 34: Compression of various polymer and thin-walled Al2O3 nanolattice topologies. 
The figures above are still frames from videos of the compression of the four different nanolattice topologies and 
two material systems tested in this work. Each set of three images represents the uncompressed, fully compressed, 
and fully unloaded state. The structure and parameters are as follows: AI-AIII) polymer octet-truss, 10µm unit 
cell, φr = 83.8%; BI-BIII) Al2O3 octet-truss, 10µm unit cell, φr = 76.2%; CI-CIII) polymer cuboctahedron, 10µm 
unit cell, φr = 81.1%; DI-DIII) Al2O3 cuboctahedron, 10µm unit cell, φr = 91.3%; EI-EIII) polymer 3D Kagome, 
4µm unit cell, φr = 78.7% ; FI-FIII) Al2O3 3D Kagome, 4µm unit cell, φr = 68.1% ; GI-GIII) polymer 
tetrakaidecahedron, 10µm unit cell, φr = 72.6%; HI-HIII) Al2O3 tetrakaidecahedron, 10µm unit cell, φr = 91.5%. 
All scale bars are 20µm. 
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5.5. Strength and Stiffness Scaling with Relative Density 

5.5.1. Strength and Stiffness of Rigid and Non-Rigid Topologies  

As has been discussed in previous sections, the strength and stiffness of a cellular solid 

can be best characterized using the mechanical properties of the constituent material and the 

relative density of the sample. Here, stiffness and strength will scale with relative density as  

 𝐸𝐸 = 𝐵𝐵𝐸𝐸𝑦𝑦�̅�𝜌𝑚𝑚 (52) 

 𝜎𝜎𝑦𝑦 = 𝐶𝐶𝜎𝜎𝑦𝑦𝑦𝑦�̅�𝜌𝑛𝑛 (53) 

In these equations, 𝐸𝐸𝑦𝑦  and 𝜎𝜎𝑦𝑦𝑦𝑦  are the Young’s modulus and yield strength of the 

constituent material respectively, 𝐵𝐵 and 𝐶𝐶 are proportionality constants, and 𝑛𝑛 and 𝑚𝑚 are scaling 

constants (74). In the analytic formulation of these equations for different topologies, structures 

are assumed to have slender, pin-jointed beams with relative densities scaling as �̅�𝜌 ∝ (𝑅𝑅/𝐿𝐿)2. In 

structures that are rigid, it is assumed that the strength and stiffness are dominated by uniaxial 

compression and tension of beams (stretching-dominated). The strength and stiffness of a unit 

cell with beams in uniaxial compression will scale as 𝜎𝜎𝑦𝑦 ∝ (𝑅𝑅/𝐿𝐿)2 and 𝐸𝐸 ∝ (𝑅𝑅/𝐿𝐿)2, which gives 

rise to a linear scaling of strength and stiffness with relative density (𝑚𝑚 = 𝑛𝑛 = 1 ) and 

proportionality constants of 𝐵𝐵 = 𝐶𝐶 = 0.3 (78). In structures that are non-rigid, it is assumed that 

the strength and stiffness are dominated by bending of the beams (bending-dominated). The 

strength and stiffness of a unit cell with beams in bending will scale as 𝜎𝜎𝑦𝑦 ∝ (𝑅𝑅/𝐿𝐿)3  and 

𝐸𝐸 ∝ (𝑅𝑅/𝐿𝐿)4, which gives rise to scaling constants of 𝑚𝑚 = 2 and 𝑛𝑛 = 3/2 and proportionality 

constants of 𝐵𝐵 = 𝐶𝐶 = 1 (74). 

The strength and stiffness scaling relationships of the nanolattices in this work across all 

topologies and material systems fail to match those that are predicted analytically for their 
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respective rigidities. An in-depth explanation for the measurement of the mechanical properties 

of polymer and Al2O3 nanolattices can be found in Appendix C. In the polymer samples, the 

stiffness scaling constants range between 𝑚𝑚 = 1.41  (3D Kagome) and 𝑚𝑚 = 1.83 

(cuboctahedron), and the strength scaling constants range between 𝑛𝑛 = 1.63 

(tetrakaidecahedron) and 𝑛𝑛 = 1.92 (cuboctahedron). In the hollow Al2O3 samples, the stiffness 

scaling constants range between 𝑚𝑚 = 1.46 (3D Kagome) and 𝑚𝑚 = 1.73 (tetrakaidecahedron), 

and the strength scaling constants range between 𝑛𝑛 = 1.45  (3D Kagome) and 𝑛𝑛 = 1.77 

(tetrakaidecahedron). The scaling and proportionality constants for all the topologies and 

material systems tested in this work are shown in Table 2. Despite the small variations in the 

scaling constants for each of the topologies, the strength and stiffness data for each material 

system are observed to effectively collapse onto each other, as shown in Figure 35. This is due to 

the fact that for each larger or smaller scaling constant, there is a respective smaller or larger 

proportionality constant that counteracts it, effectively causing all of the strength and stiffness 

data to converge in the tested range of relative densities.  

Material Topology 𝑩𝑩 𝒎𝒎 𝑪𝑪 𝒏𝒏 

Polymer 

Octet-truss 0.815 1.77 1.313 1.88 
Cuboctahedron 1.092 1.83 1.588 1.92 

3D Kagome 0.427 1.41 0.973 1.68 
Tetrakaidecahedron 0.566 1.60 0.835 1.63 

Al2O3 

Octet-truss 0.387 1.63 1.139 1.71 
Cuboctahedron 0.519 1.69 0.823 1.64 
3D Kagome 45º 0.149 1.55 0.387 1.55 

3D Kagome 0.262 1.46 0.435 1.45 
3D Kagome 65º 1.797 1.65 3.039 1.77 

Tetrakaidecahedron 0.953 1.73 0.669 1.55 
Table 2: Scaling and proportionality constants for different nanolattice topologies. 
Scaling constants (m and n) and the proportionality constants (B and C) of the stiffness and strength scaling 
relationships respectively for each topology and each material system tested. 
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Figure 35: Strength and stiffness vs. density of different nanolattice topologies. 
Logarithmic plots of A) the Young’s modulus vs. relative density and B) yield strength vs relative density of every 
sample tested from all four regular topologies and both material systems. The values of the fully dense 
constituent materials are also plotted. Trend lines for each set of samples are meant to graphically illustrate the 
scaling relationships from Table 2. 

From these results, it is apparent that in the range of relative densities tested for both 

material systems there is little to no correlation between the rigidity of the samples and the 

strength and stiffness scaling. The 3D Kagome and tetrakaidecahedron samples, which have the 

two lowest rigidities, also generally have lowest scaling coefficient values. In no case do the 

octet-truss samples, the only fully rigid topology, have the lowest scaling coefficient values. 
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None of the topologies approach a linear scaling with relative density for strength or stiffness, 

and none appear to approach the analytical scaling for a purely bending-dominated solid.  

The convergence of the strength and stiffness data of the four regular topologies suggests 

that there are common underlying deformation and failure mechanisms in each of the structures. 

The mechanical properties of a lattice structure can be understood by characterizing the behavior 

of the constituent beams and nodes. In a structure with rigid (non-pin-jointed) nodes, all beams 

will be subject to a combination of bending and stretching, and the stiffness will scale as  

 𝐸𝐸 ∝ 𝐶𝐶1(𝑅𝑅/𝐿𝐿)2 + 𝐶𝐶2(𝑅𝑅/𝐿𝐿)4 (54) 

Here, the first term is the contribution to stiffness from stretching and the second term is 

the contribution from bending. The contribution to stiffness from stretching and bending will 

depend on the slenderness in two ways. First, the slenderness of the beams will affect the node 

behavior; low slenderness beams will have nodes that act as a stiff elastic boundary, while 

slender beams will have nodes that act more like ideal pin-joints. Having less slender beams will 

also result in a larger volume contribution from the node, which will lead to an increased 

stiffness of the structure. Second, the magnitude of the beam slenderness will determine the 

relative contribution from the higher order terms; the stiffness of a structure with low slenderness 

beams will have a higher contribution from the quartic bending term, while for slender beams the 

quadratic term will dominate.  

In order to determine the scaling relationship between stiffness and relative density, the 

relative density must first be fully defined. As is shown derived in Appendix B, for any lattice 

with circular beams, the relative density will scale as 

 �̅�𝜌 ∝ 𝐶𝐶3(𝑅𝑅/𝐿𝐿)2 + 𝐶𝐶4(𝑅𝑅/𝐿𝐿)3 (55) 
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The stiffness follows a quartic scaling while the relative density follows a cubic scaling, 

showing that there is inherently a non-linear relationship between the two. For structures with 

less slender beams, the higher order terms will play a more dominant role (Figure 50A). Relating 

the stiffness and relative density using a power law relationship as 𝐸𝐸 ∝ �̅�𝜌𝑛𝑛 will result in a scaling 

constant between 1 ≤ 𝑛𝑛 ≤ 2. For a structure with more slender beams, the higher order terms of 

relative density can be ignored and the relationship will converge to the analytical relationships 

for stretching and bending dominated structures shown before.  

All of the samples tested in this work have relatively low slenderness values, meaning 

they are likely in a regime where the traditional analytic linear scaling relationships break down. 

In collaboration with Greg Phlipot and Carlos Portela, fully meshed finite element (FE) 

simulations were run on octahedron samples with solid beams and a wide range of slenderness 

values (Figure 36). From these, it is shown that FE octahedra with low slenderness beams (high 

relative density) have stiffness values that closely match experimental results. These higher 

density FE samples also quantitatively reproduce the scaling relations found experimentally. For 

FE samples with highly slender beams (low relative density), there is a transition to a linear 

scaling between stiffness and relative density that matches well with analytic predictions for 

rigid topologies. This transition in scaling behavior arises because the features in highly slender 

samples qualitatively reproduce the assumptions that are made in the derivation of the analytical 

stiffness scaling relationships. This analysis was done for structures with solid beams, but a 

similar argument can be made for structures with hollow beams, with the stiffness and relative 

density proportionalities modified to account for their dependence on wall thickness. 
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Figure 36: Stiffness of experimental data and FEM data for polymer octahedron nanolattices. 
This figure shows the transition in stiffness-density scaling behavior from a linear relationship at low densities to 
a nearly quadratic scaling relationship at high densities. 

The strength scaling with relative density can be explained in part using a similar 

proportionality analysis as was shown for the stiffness, but it will be influenced by additional 

factors like stress concentrations and buckling failure modes. The experimental scaling 

relationships between strength and relative density fall below what is analytically predicted for 

even a bending-dominated structure, suggesting that simply considering bending and stretching 

of the beams is inadequate. The strength of a buckling-dominated structure is known to scale 

with relative density as 𝜎𝜎𝑦𝑦 ∝ �̅�𝜌2.5 (109). As discussed in previous sections, beam buckling in the 

polymer structures is a dominant failure mode for many of the samples tested. While there was 

no indication that the strength scaling followed the analytical buckling-dominated relationship, 

the strength of the lower density samples was likely affected by it, and there may have simply 

been an insufficient range of relative densities tested to fully observe a manifestation of it.  

The stress concentrations near the nodes of the samples are likely the major factor that 

affects the strength. All of the beams terminate at the nodes at a sharp angle, meaning there will 



91 
 

inherently be stress concentrations. For a beam in bending with a fixed boundary, the highest 

moment and corresponding highest stress will be at the fixed boundary, which in this case is the 

node, meaning there will be additional stress concentrations at the node from bending. In 

polymer samples, failure is often observed to initiate near the nodes, and in the hollow samples, 

nearly all of the deformation and failure occurs at or near the nodes. There is currently no work 

that fully investigates the effect of stress concentrations near nodes on the strength of lattice 

structures, and it is a subject that merits a much more in-depth analysis to fully understand. 

Regardless of the exact mechanism, the strong coalescence of the strength data across the range 

of relative densities tested suggests that there is common failure mechanism between the 

different topologies that governs the strength behavior.  

There are many additional factors that will affect the exact strength and stiffness of a 

nanolattice. These include imperfections like waviness in the beams, misalignment at the nodes, 

improper measurement of the sample dimensions which leads to incorrect relative density 

calculations, variable effects of different wall thicknesses, and different material properties of the 

polymer given different laser exposures. Many of these factors require a much more in-depth 

analysis to fully quantify the effect of, and while there is no attempt to do so in this work, they 

are important factors to consider in the scope of the results shown here.  

5.5.2. The Effect of Angle Changes on Strength and Stiffness  

Three variants of hollow 3D Kagome lattices were tested to study the effect of changing 

the angles of the beams on the strength and stiffness scaling. These three had tetrahedron face-

edge angles of 45°, 54.7° (regular tetrahedron), and 65°, and were designed with their respective 

compression  or elongation axis in the z-direction. CAD models of the three unit cells can be 

shown in Figure 37A. 
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The strength and stiffness of a structure with varying beam angles has been studied both 

analytically and experimentally (7, 15, 110), and it has been found that for a structure with a 

beam angle of 𝜃𝜃 from the plane perpendicular to the compression axis, they will follow a scaling 

relationship of 

 𝐸𝐸 = 𝐵𝐵𝐸𝐸𝑦𝑦�̅�𝜌𝑚𝑚 sin4(𝜃𝜃) (56) 

 𝜎𝜎𝑦𝑦 = 𝐶𝐶𝜎𝜎𝑦𝑦𝑦𝑦�̅�𝜌𝑛𝑛 sin2(𝜃𝜃) (57) 

From these equations, there should be no deviation of the scaling behavior with changes 

in angle but instead only a change in the magnitude of the scaling data. The effect of the angle 

change should also be a more amplified in the stiffness data than the strength data. For the angle 

range tested here, these equations predict the 45° 3D Kagome samples will be 1.8 times more 

compliant and 1.3 times weaker than the regular samples, and the 65° samples should be 1.5 

times stiffer and 1.2 times stronger than the regular samples.  

These predictions are very well matched by the experimental results found here. There 

were some small variations between the scaling coefficients of the three topologies, but they 

generally followed the same scaling law behavior. The 65° samples were stiffer and stronger 

than the regular samples on average, and the 45° samples were weaker and more compliant on 

average. As seen in Figure 37, the increase or decrease in the stiffness data with angle changes 

was more pronounced than the change in strength. At very low densities, the 65° sample strength 

began to converge with that of the regular samples, but that may be due simply to an increased 

effect of imperfections. The scaling and proportionality constants for each of the 3D Kagome 

geometries can be found in Table 2, and a full list of the structural parameters and mechanical 

data can be found in Table 5. 
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Figure 37: Strength and stiffness vs. density of 3D Kagome lattices with varying angle.  
Logarithmic plots of A) the Young’s modulus vs. relative density and B) yield strength vs relative density of all 
3D Kagome samples tested in this work. 

5.5.3. The Role of Imperfections – Missing Beams 

To study the role of imperfections in nanolattices, polymer octet-truss samples were 

made with beams that were removed randomly from the structure (16.7%, 33.3%, and 50% 

removed), randomly only from the diagonal beams (25%, 50%, and 75% removed), and 

randomly only from the horizontal beams (50% and 100% removed). Examples of some of these 

are found in Figure 39A. All of the samples were made with an 8µm unit cell and with beams of 

slenderness 𝜆𝜆 ≈ 46, meaning they are in a buckling-dominated failure regime. In an octet-truss 

structure, the horizontal beams make up 1/3 of the sample and diagonal beams make up 2/3, so 

removing 100% of the horizontal beams equates to removing 33.3% of the total beams in the 

structure. Equivalent percentages of different types of beams were removed from the sample to 

study their respective role in governing the mechanical properties. In the analytical formulation 

of an octet-truss structure, the strength and stiffness are governed by uniaxial tension and 

compression of the horizontal and diagonal beams respectively, and by systematically removing 

horizontal and diagonal beams it is possible to study their relative contribution to the mechanical 

properties. 

As seen in Figure 38, a removal of any of the beams leads to a rapid decrease in both the 

strength and the stiffness of the structure, and the removal of identical percentages of different 
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types of beams elicits a very similar mechanical response. The full octet-truss sample (0% beams 

removed) is observed to undergo a single large buckling failure event. Periodically removing 

larger numbers of the beams results in a gradually smaller initial burst with either periodic 

buckling oscillations or a plateauing behavior afterward. Removing 50% of the beams in the 

structure results in the elimination of any bursting behavior, and the subsequent deformation is 

ductile-like with a plateau in the stress. Removing 50% of the beams in an octet-truss sample 

results in a structure with the same number of beams as a cuboctahedron; the mechanical 

properties of the missing beam samples are much lower than they would be in an equivalently 

dense cuboctahedron, which are observed to be similar to that of an octet-truss with the same 

slenderness of the beams (Figure 30). The absence of burst behavior in the octet-truss samples 

with 50% of the beams removed suggests that local bending is dominating the deformation and 

precluding the occurrence of buckling. This likely occurs due to poor load transfer in the missing 

beam samples caused by the stochastic nature of the structure.  

 
Figure 38: Stress-strain data of polymer octet-trusses with missing beams 
Stress-strain plots of the three classes of octet-truss structures with missing beams. A) Randomly missing, B) 
missing diagonal beams and C) missing horizontal beams. 

Plotting the strength and modulus against the relative density of each of the missing beam 

samples reveals the relative influence of the horizontal and diagonal beams on the mechanical 

performance. As can be seen in Figure 39, for samples with a high percentage of removed 

beams, removing the diagonally oriented beams has a more significant effect on the mechanical 
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properties, but for low percentages of beams removed, the relative influence of removing beams 

from diagonal or horizontal regions is much less significant. Diagonal beams are more closely 

aligned with the compression axis and are responsible for the load transfer to horizontal beams. 

The octet-truss structure is highly redundant, so when only a few beams are removed there are 

still enough diagonal beams to effectively transfer the load. When a large percentage of the 

diagonal beams are removed, there is poor load transfer vertically in the structure and bending 

begins to dominate the deformation. This also suggests that structures with less redundancy, like 

the tetrakaidecahedron, would be much more sensitive to missing beam imperfections.  

The strength and stiffness scaling trends with relative density for the missing beam 

samples range between 𝑛𝑛 = 3.0 − 3.8  for the strength scaling and 𝑚𝑚 = 3.1 − 4.3  for the 

stiffness scaling, meaning the mechanical performance of structures with randomly removed bars 

degrades much more quickly than that of periodic structures. This also supports the argument 

that beams are in the samples are underutilized due to the stochastic nature of the structure. A 

full list of the structures tested and their mechanical properties can be found in Table 8. 

 
Figure 39: Strength and modulus of polymer octet-trusses with missing beams 
A) Yield strength vs. relative density and B) Young’s modulus vs. relative density of polymer octet-truss samples 
with beams that have been randomly removed from the entire structure, only the diagonal beams, and only the 
horizontal beams. Trend lines are fit to show the scaling behavior.  
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5.5.4. The Role of Imperfections – Offset Nodes 

To further study the role of imperfections in nanolattices, polymer octet-truss samples 

were made with randomly offset nodes. The magnitude of the offset was controlled by a uniform 

random distribution between 0 and a prescribed maximum; the prescribed maximum offsets were 

made in 0.5µm increments from 0 to 4µm. Examples of these are shown in Figure 41A. The 

direction of the offsets were made to be random in all except the topmost and bottommost nodes 

of the samples, which were only allowed to displace in the x and y directions to mitigate the 

effect of misalignments with the indenter tip during compression. Samples were made with an 

8µm unit cell the same beam dimension as in the missing node samples. The exact slenderness of 

the beams will vary in the samples because the offset of the nodes results in variable beam 

lengths, but the average slenderness in each sample will remain comparable. The connectivity 

and relative density are effectively identical across different offset node samples. While there 

have been no analytic formulations on the role of offset node imperfections on 3D octet-truss 

structures, modeling has been done previously and predicted little to no change in the stiffness 

and a sigmoid decrease before a plateau in the strength (12).  

As seen in Figure 40, increasing the degree of the offset in the samples results in a 

gradual decrease in the yield strength but causes no significant deviation in the stiffness. The 

lower offset samples fail via a single large buckling event that manifests as a strain burst. As the 

degree of offset increases, the magnitude of the initial burst event decreases and samples 

experience additional smaller buckling events with some post-burst densification. If samples 

were made with larger degrees of offset nodes the burst behavior may gradually be eliminated, 

but the maximum offset in the samples tested here is ~71% of the beam length, so increasing the 
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offset further may result in a change in the topology from an unforeseen intersection of beams or 

an elimination of some beams entirely due to intersecting nodes. 

 
Figure 40: Stress-strain data of offset-node octet-trusses. 
Representative stress vs. strain plots of polymer octet-trusses with varying degrees of nodal offsets.  

Plotting the yield strength and Young’s modulus against the relative offset (max 

offset/beam length), it is more apparent that the modulus is almost entirely unaffected by the 

offset, and the variations in stiffnesses are statistically insignificant. The strength experiences a 

sigmoidal decrease, with initially very little change then a more significant decrease and finally a 

slight plateau toward higher offsets. The strength of the sample with the largest maximum offset 

is ~22% lower than the strength of the sample with the least amount of offset. Stiffness is a 

purely elastic property; from these results it is apparent that it is primarily affected by the 

topology, connectivity, and relative density of the samples and it is relatively insensitive to nodal 

offset imperfections. The stiffness of a lattice structure is governed primarily by beam bending, 

compression, and tension, and the average contribution from each of these isn’t as affected by 

changes in nodal positions. The strength is more sensitive to stress concentrations and will be 

reduced if even a small number of beams in the sample are subject to higher stresses from 
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additional bending. Failure is also observed to localize to whole layers in samples that are 

buckling-dominated, so if local beams have higher slendernesses it may result in the earlier 

initiation of buckling, thereby reducing the strength of the whole sample.  

 
Figure 41: Strength and modulus of offset-node polymer octet-trusses. 
A) Yield strength vs. relative nodal offset and B) Young’s modulus vs. relative nodal offset of polymer octet-
truss samples with offset nodes.  
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Chapter 6: Summary and Outlook 
This dissertation is a review of some of the progress that has been made in the creation of 

new materials developed through the integration of nanomaterials into 3D nanoarchitectures. It 

has been shown here that it is possible to reliably incorporate high strength nanomaterials into a 

3D architected material with features as small as 5nm. This is primarily accomplished through 

the use of two-photon lithography, which is used to create polymer 3D truss scaffolds with 

micro- and nanoscale features, in combination with atomic layer deposition (ALD), which allows 

for a conformal thin-film deposition of ceramics like titanium nitride and aluminum oxide. 

Ceramics experience size-affected strengthening due to a statistical reduction in the number of 

intrinsic flaws when their thickness is reduced; the nanoscale ceramics used in this work are 

sufficiently small that their strengths approach the theoretical limits of material strength.  

The combination of high strength nanomaterials and architecture allows for the 

exploitation of mechanical phenomena that give rise to novel material properties. Here, shell 

buckling in hollow thin walled ceramic tubes is used to create ductile and recoverable ceramic 

metamaterials. In a bulk ceramic, the low relative strength to modulus ratio makes it 

prohibitively difficult to make thin-walled hollow tube lattices that are able to have shell 

buckling as a dominant failure mechanism. By using nanoscale ceramics with enhanced strength, 

it becomes possible to utilize shell buckling as a reliable design feature. Shell buckling is 

observed throughout the course of this work in numerous nanolattice topologies, and it is 

consistently used to bring about ductile-like behavior and recoverability in what would otherwise 

be an intrinsically brittle material.  
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The fabrication techniques employed here allowed for the design and creation of 

structures with arbitrary geometries, enabling the study of many previously unexplored 

architectures. In the course of this work, hierarchical nanolattices were designed and fabricated 

for the first time. They were demonstrated to have enhanced recoverability and a near linear 

scaling of strength and stiffness with relative density, all despite not having any optimization in 

their design. Four types of periodic lattices with varying degrees of rigidity were also studied, 

and their strength and stiffness were found to be nearly identical when normalized across relative 

densities, showing a marked deviation from their predicted strength and stiffness scaling with 

relative density. This suggests a need to reevaluate currently existing scaling relationships for 

cellular solids and reconsider new architectures that may engender enhanced mechanical 

property relationships.  

I believe the work presented here demonstrates the incredible potential of 

nanoarchitectures to make new materials with unprecedented mechanical properties. There is 

now the capability to reliably create three-dimensional architectures with features well into the 

nanosized regime. There are two major obstacles that nanoarchitected materials currently face: 

the ability to create them on large scale (i.e. the ability to scale them up), and the ability to 

efficiently optimize their mechanical properties. To the first point, without the ability to scale up 

fabrication, nanoarchitected materials will likely be relegated to niche engineering applications. 

These “niche” applications may be far reaching, especially as the technological world continues 

to miniaturize, but unless large scale samples can be made, many of the new material properties 

discovered here and elsewhere may simply remain laboratory novelties. To the second point, 

there is a demonstrable gap in our knowledge of both nanomaterials and architecture that must be 

overcome in order to efficiently design new nanoarchitected materials. There is and has been a 
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large body of effort toward understanding the mechanics of nanomaterials, but this must now be 

extended to study the mechanics of nanomaterials with complex architecture. Topology 

optimization techniques exist and have been shown to be incredibly useful and versatile, but new 

computational techniques must be developed that accurately capture the complexity of 

nanoarchitected systems while remaining computationally efficient. I hope the work presented 

here proves to be a useful foundation for the further design and fabrication of nanoarchitected 

materials, but there is much progress to be made before the large scale utilization of 

nanoarchitected materials in real world engineering applications.  
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Appendices 
Appendix A. Nanolattice Design Methodologies 

Periodic Lattice Design  

A majority of the samples fabricated in this work were periodic lattices; these are lattices 

that can be characterized by a single repeating unit cell that has been patterned in space. A range 

of different unit cells have been designed and fabricated in this work, some of which are shown 

in Figure 42 below. A majority of these unit cells were designed as cubic unit cells for simplicity 

of patterning, but some, like the 3D Kagome lattice, were designed with hexagonal symmetry.  

 
Figure 42: Single Unit Cell Designs. 
The figures above are examples of unit cells with cubic symmetry that can easily be tessellated in 3D. 

The fabrication capabilities provided by the Nanoscribe system used in this work allow 

for arbitrary writing in three-dimensions and are not limited to the layer-by-layer fabrication that 

most 3D printing systems are. As such, periodic lattices created with this system can be 

fabricated in a number of ways. The simplest fabrication method is to take single unit cells and 
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pattern them one at a time in their symmetry directions. This is a slow and inefficient fabrication 

method, but it is very versatile because any unit cell can easily be substituted in. If a unit cell has 

a beam that lies on its outermost face, it will be double written using this fabrication scheme, but 

it is possible to write a method that finds and eliminates double written beams. This fabrication 

scheme is shown in Figure 43 below.  

 
Figure 43: Periodic Lattice Fabrication - Tessellation. 
This figure shows the design scheme for creating an octet-truss periodic lattice by tessellating a single unit cell. 

A more efficient but more individualized design scheme is a “layer-by-layer” type 

fabrication. In this, beams that are connected in a straight line are written as one continuous 

element and the structure is gradually built up in layers starting at the bottom. This fabrication 

scheme eliminates the inefficiencies in the fabrication of tessellating a single unit cell because 

fewer pauses are made between writing individual beam segments. It also automatically 

eliminates redundant beam elements. The downside is that the method is not conducive to 

substituting a different base unit cell and each lattice generally must be individually designed. 

An example of this fabrication process can be seen in Figure 44 below. 

 
Figure 44: Periodic Lattice Fabrication – “Layer-by-Layer”. 
This figure shows the design scheme for creating an octet-truss periodic lattice by writing connected beams 
as a single element and writing an entire layer of sample at once. 
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Hierarchical Lattice Design 

A hierarchical lattice is defined here to be one that is composed of beams that have a 

lattice substructure, i.e. a hierarchical lattice is one with beams made of beams. The hierarchical 

order of a lattice is defined as the number of distinct structural length scales that it contains; as an 

example, a regular periodic lattice is a 1st order structure, a lattice made of lattices is 2nd order, a 

lattice made of lattices made of lattices is 3rd order, etc. Defining hierarchical lattices under this 

schema allows for the creation of lattices of arbitrary order and therefore arbitrary complexity. 

As a means of limiting the number of potential designs, hierarchical lattices in this work are 

created using repeating unit cells with cubic symmetry. 

The hierarchical nanolattices fabricated in this work are designed using a recursive 

method, meaning their final structure is dependent on the structure that is defined in each 

previous step, effectively allowing the structure to have infinite dimensionality. The design 

scheme for a hierarchical lattice takes place in the following steps: (1) an array of unit cells are 

defined; (2) the first unit cell in the array is designated the primary structure; (3) the second unit 

cell in the array is designated the secondary structure and is patterned 𝜇𝜇 times along the length of 

the primary structure; (4) the resulting hierarchical unit cell is designated the new primary 

structure and the third unit cell in the array is patterned 𝜇𝜇 times along the length of it; (5) this 

process is repeated until the designated order of hierarchy is reached. If the hierarchical order of 

the lattice is greater than the number of unit cells in an array, the array will be looped through. 

Secondary unit cells that are patterned along the beams of the primary structure are placed one at 

a time; an illustration of the fabrication of an octahedron-of-octahedra is shown in Figure 45A. 

To ensure the rigidity of the constituent hierarchical beams, reinforcing beams are often added 
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after the tessellation of the secondary unit cell, examples of which are shown in Figure 45 B and 

C below. 

 
Figure 45: Hierarchical nanolattice design process. 
A) Construction of an octahedron-of-octahedra unit cell. B) Example of unreinforced vs. reinforced octahedron fractal beam.   
C) Example of unreinforced vs. reinforced octet-truss fractal beam. 

This design scheme is sufficiently general to create a wide range of hierarchical unit cells 

with varying topology, slenderness, and hierarchical order. Examples of a range of example unit 

cells fabricated are shown in Figure 46. Once hierarchical unit cells have been created, they can 

be tessellated in 3D in the same manner described for the periodic lattices to create a hierarchical 

lattice structure.  

 
Figure 46: Hierarchical nanolattice unit cells.  
Example geometries of: A) a cage of crosses, B) a cube of reinforced-BCC unit cells, C) an octet-truss of octahedra, and D) a 
cuboctahedron of embedded-octahedra. 

Layer-by-Layer Design 

Another fabrication method developed in the course of this work is layer-by-layer 

writing. In this, a lattice structure is defined and its beams are sliced for writing in a layer-by-
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layer fashion. Once a lattice structure has been created, a series of x-y planes are defined at 

evenly spaced intervals along the z-axis. Individual beams are checked for whether they intersect 

with a given plane; if they are found to intersect, the angle that they intersect at is determined. A 

circular beam with diameter 𝑅𝑅 that intersects a plane at angle 𝜃𝜃  will have an elliptical cross 

section with semi-minor axis 𝑅𝑅 and semi-major axis 𝑅𝑅/ sin(𝜃𝜃). Once the intersections have been 

determined, an elliptical profile is written for each beam centered at the intersection point of the 

beam with the plane. The elliptical profiles are then filled (hatched) with horizontal lines. Any 

beams that are found to lie in the x-y plane and are within a certain distance of the given slicing 

plane are taken, their beam width at that particular height is calculated, and a series of horizontal 

lines is written to fill them. This x-y plane slicing is repeated until the maximum height of the 

sample is reached. An example of this process for a single octet-truss unit cell is shown in 

Figure 47 below. 

 
Figure 47: Layer-by-layer Nanolattice Fabrication. 
Still images showing the layer-by-layer fabrication of an octet-truss unit cell with circular beams. 

One major consideration that must be made when writing with two-photon lithography is 

that the constituent building block of the samples is an elliptical voxel. Writing a perfect circular 

beam with an elliptical voxel is effectively impossible, but methods can be taken to ensure that 

the resulting beam is more circular that it would have been otherwise. In order to write a circular 

beam of radius 𝑅𝑅 with a circular voxel of radius 𝑟𝑟, a circle must be written with radius 𝑅𝑅 − 𝑟𝑟. In 
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order to write a circular beam of radius 𝑅𝑅 at an angle 𝜃𝜃 with respect to the horizontal plane using 

a vertically oriented elliptical voxel with semi-major and semi-minor axes of 𝑎𝑎 and 𝑏𝑏, an ellipse 

must be written with semi-major and semi-minor axes 𝑅𝑅 − 𝑏𝑏 and (𝑅𝑅 − 𝑠𝑠)/ sin(𝜃𝜃) respectively, 

where here 𝑠𝑠  is the angle corrected height of the ellipse, which can be shown to be 𝑠𝑠 =

�𝑎𝑎2 cos2(𝜃𝜃) + 𝑏𝑏2 sin2(𝜃𝜃). An example of this concept is shown in Figure 48. Regardless of 

the exact correction, an elliptical beam patterned to approximate a circle will always have some 

overshoot; as the aspect ratio of the ellipse increases and the height approaches the radius of the 

circle, the beam will get progressively more rectangular.  

 
Figure 48: Writing Circular Beams with Elliptical Voxels. 
A) Writing a circular horizontal beam with a spherical voxel vs. B) a circular horizontal beam with an elliptical voxel. C) 
Writing a circular diagonal beam with a circular voxel vs. D) a circular diagonal beam with an elliptical voxel.  
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Appendix B. Analytic Calculation of Relative Density 

It is possible to derive an analytical expression for the relative density of a circular beam 

lattice. It we assume there are 𝜇𝜇 beams with radius 𝑅𝑅 and length 𝐿𝐿 that form a cubic unit cell 

with width 𝑊𝑊, the relative density can be estimated to be  

 �̅�𝜌 =
𝜇𝜇𝜋𝜋𝑅𝑅2𝐿𝐿
𝑊𝑊3  (58) 

For small tube radius to length (𝑅𝑅/𝐿𝐿) ratios this equation is approximately correct, but as 

the 𝑅𝑅/𝐿𝐿  increases the nodal interference has a greater effect on the relative density and the 

equation will be inaccurate. The interference area between circular tubes at a node is a 

cylindrical wedge (Figure 49), the volume of which can be found to be 𝑉𝑉 = 2
3
ℎ𝑅𝑅2. For two 

beams that intersect at an angle 𝜃𝜃, the height of the cylindrical wedge is ℎ = 𝑅𝑅 cot(𝜃𝜃/2). While 

it would be possible to sum all the cylindrical wedge interferences between beams, there are 

additional wedge-wedge interferences that are difficult to account for. However, all these 

interferences scale as 𝑅𝑅3, so a corrected version of relative density can be expressed as 

 �̅�𝜌 =
𝜇𝜇𝜋𝜋𝑅𝑅2𝐿𝐿 − 𝐶𝐶𝑅𝑅3

𝑊𝑊3  (59) 

 
Figure 49: Beam Nodal Interference 
Illustration showing the interference of two cylindrical beams forms a cylindrical wedge. 
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Here, 𝐶𝐶 is a constant that accounts for the sum of all the nodal interferences. For hollow 

structures, there are additional factors that must be included. The correction for hollow cylinders 

and spheres with a wall thickness 𝑡𝑡, respectively, are 𝑓𝑓 �𝑓𝑓
𝑅𝑅
� = 2 �𝑓𝑓

𝑅𝑅
� − �𝑓𝑓

𝑅𝑅
�
2
,and 𝒈𝒈�𝑓𝑓

𝑅𝑅
� = 3 �𝑓𝑓

𝑅𝑅
� −

3 �𝑓𝑓
𝑅𝑅
�
2
− �𝑓𝑓

𝑅𝑅
�
3
. If we include these in the relative density, we get the modified equation. 

 �̅�𝜌ℎ =
𝜇𝜇𝜋𝜋𝑅𝑅2𝐿𝐿𝑓𝑓 �𝑡𝑡𝑅𝑅� − 𝐶𝐶𝑅𝑅3𝑘𝑘 �𝑡𝑡𝑅𝑅� 

𝑊𝑊3  (60) 

We will now look at an example unit cell with an inscribed octahedron (Figure 50A). 

There are 12 beams in the structure at 6 identical nodes with beams that meet at 60° and 90° 

angles with respect to each other. The unit cell is cubic, and we can take it to have width 𝐿𝐿. All 

the beams therefore have a length 𝐿𝐿/√2. We can define the relative density to be 

 
�̅�𝜌 =

12𝜋𝜋𝑅𝑅2 � 𝐿𝐿
√2
� − 𝐶𝐶𝑅𝑅3

𝐿𝐿3
 

(61) 

Here, 𝐶𝐶 ≅ 61.82, which accounts for the intersections at the 6 corners, the two types of 

angles, and the number of intersections at each corner. We can also define the density of the 

hollow structure (Figure 50B) to be 

 
�̅�𝜌ℎ =

12𝜋𝜋𝑅𝑅2 � 𝐿𝐿
√2
� 𝑓𝑓 �𝑡𝑡𝑅𝑅� − 𝐶𝐶𝑅𝑅3𝑘𝑘 �𝑡𝑡𝑅𝑅�

𝐿𝐿3
 

(62) 

This is a cubic equation, and by taking a derivative we can find a critical radius where the 

relative density is at a maximum. This occurs at 

 𝑅𝑅𝑐𝑐 =
4√2𝜋𝜋𝐿𝐿 + 𝐶𝐶𝑡𝑡

2𝐶𝐶
 (63) 
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The maximum possible radius of the structure before multiple beams begin to overlap is 

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐿𝐿/2√6, so this critical radius may be outside of the possible range of relative densities 

(𝑡𝑡 < 𝑅𝑅 < 𝐿𝐿/2√6). 

 
Figure 50: Octahedron Unit Cell Relative Density 
Analytical models for the relative density of an octahedron unit cell. A) shows the relative density for a unit cell 
with solid beams, and B) shows the relative density for a unit cell with hollow beams both with and without 
corrections for nodal interferences. 
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Appendix C. Data Analysis Methods 

The data obtained from nanolattice compression experiments performed in this work has 

a wide range of stress-strain responses, and as such, it is necessary to formulate a consistent 

method to measure meaningful Young’s modulus (𝐸𝐸) and yield strength (𝜎𝜎𝑦𝑦) data. In every 

sample tested, the stress-strain data was comprised of a toe region, a linear region, and a failure 

region. The toe region is a non-linear segment of data at the beginning of loading, and in this 

work it generally corresponds to slight misalignments and imperfections between the sample and 

the indenter axis. For each sample, a subset of stress-strain data was taken starting at the 

beginning of loading and going to the onset of failure (shown in blue in Figure 51). The 

maximum slope of this data subset is measured and taken to be the Young’s modulus 𝐸𝐸. This is 

done to mitigate the effect of the toe region on the stiffness measurement. In polymer samples, or 

any sample with ductile yielding, a line with slope 𝐸𝐸 is taken with a 0.02% strain offset from the 

obtained Young’s modulus fit, and the intersection of this line and the stress-strain data is taken 

to be the yield strength 𝜎𝜎𝑦𝑦 (Figure 51A). In hollow Al2O3 samples, or any sample with a brittle 

yielding, the yield strength is taken to be the peak stress before failure (Figure 51B). 

 
Figure 51: Yield Strength and Young’s Modulus Measurement. 
The Young’s modulus and yield strength measurement for A) a polymer nanolattice and B) a hollow Al2O3 
nanolattice.  

The biggest factor that impacts the reliability stress-strain data is the compliance of the 

indenter loading spring. Most nanoindenters are designed to operate in a small displacement 
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region where the loading spring compliance is linear and can easily be subtracted. In this work, 

samples were tested to large displacements, which, in samples with a low peak load, resulted in a 

noticeable non-linear contribution to the stress from the loading spring compliance. This spring 

compliance had to be corrected in order to properly analyze the data. The samples that were most 

affected by indenter spring compliances were those tested in-situ with the InSEM (SEMentor) 

system, which has a much smaller travel range than the G200 nanoindenter. In order to correct 

for the spring compliance, a curve was fit to the unloading region of the sample after the indenter 

had lost contact and this fit was subtracted from the original stress data. The exact type of fit 

depended on the displacement range that was tested, but it was generally between a quadratic and 

a cubic fit. To determine the correct fit, different weights of quadratic and cubic fits were made 

to the unloading data until the corrected stress-strain data looked reasonable. While this does 

mean that the magnitude of the stress at the largest displacement values may be inaccurate, the 

Young’s modulus and yield strength are unlikely to be significantly affected, and the stress-strain 

behavior after the onset of failure is only studied qualitatively to understand the response of the 

sample.   

 
Figure 52: Spring Correction for a Highly Compliant Sample 
A) The uncorrected stress-strain data from a nanolattice compression experiment. B) Plot showing different fits 
to the unloading data. C) The corrected stress-strain data. 
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Appendix D. Slenderness Ratio Formulations 

The slenderness ratio of a beam is the most important dimensionless geometric parameter 

in determining mechanical performance. It can be defined as 

 𝜆𝜆 = �𝐴𝐴𝐿𝐿
2

𝐼𝐼
 (64) 

Here, 𝐴𝐴 is the cross sectional area, 𝐿𝐿 is the length, and 𝐼𝐼 is the area moment of inertia of a 

beam. In a beam with a non-circular cross-section, there can be multiple area moments of inertia, 

leading to multiple slenderness ratios. In this work, due to the elliptical cross section of the 1st 

order beams and non-uniform cross section of the higher order beams, we will calculate the 

slenderness in the x and y-directions and take the maximum of those two slenderness ratios to be 

the slenderness of the beam. 

There are multiple hierarchical orders of beams in each sample, and there are a 

corresponding number of slenderness ratios. The slenderness ratios for each beam have a 

subscript denoting their order: 𝜆𝜆1 is a 1st order slenderness, 𝜆𝜆2 is a 2nd order slenderness, and 𝜆𝜆𝑛𝑛 

is an nth order slenderness. For higher order beams, there is a non-uniform cross sectional area 

and area moment of inertia. A majority of the load is carried by the 1st order beams that are 

oriented along the axis of the 2nd order beam (Figure 26), so for simplification, those will be the 

only ones used in the area and area moment of inertia calculations.  

The area moment of inertia of a beam with moment of inertia 𝐼𝐼0 and area 𝐴𝐴 that has a 

center of gravity a distance 𝑟𝑟  away from the principal axis of rotation can be found to be 

𝐼𝐼 = 𝐼𝐼0 + 𝐴𝐴𝑟𝑟2. For the hierarchical beams in this work, there are multiple beams whose center of 
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gravity is not at the principal axis of rotation. The area moment of inertia of these beams can be 

calculated to be  

 𝐼𝐼 = �𝐼𝐼𝑏𝑏

𝑏𝑏

𝑏𝑏=1

+ 𝐴𝐴𝑏𝑏𝑟𝑟𝑏𝑏2 (65) 

The calculations for 1st, 2nd, and 3rd order solid and hollow beams are shown below. 

1st Order Beam 

In the samples fabricated in this work, the characteristic length dimension is the size of a 

unit cell 𝐿𝐿. For octahedron and octet unit cells, the beam length can be found to be 𝐿𝐿1 = 𝐿𝐿/√2. 

For an elliptical beam with major axis 𝑎𝑎  and minor axis 𝑏𝑏  (Figure 53A), the area and area 

moments of inertia can be found to be 

 𝐴𝐴1 = 𝜋𝜋𝑎𝑎𝑏𝑏 (66) 

 𝐼𝐼1𝑚𝑚 =
𝜋𝜋
4
𝑎𝑎3𝑏𝑏 (67) 

 𝐼𝐼1𝑦𝑦 =
𝜋𝜋
4
𝑎𝑎3𝑏𝑏 (68) 

From here, the slenderness ratios can be calculated to be 

 𝜆𝜆1𝑚𝑚 =
𝐿𝐿√2
𝑎𝑎

 (69) 

 𝜆𝜆1𝑦𝑦 =
𝐿𝐿√2
𝑏𝑏

 (70) 

For a hollow beam with a wall thickness 𝑡𝑡 (Figure 53B), the area and area moment of 

inertia to a first order approximation with wall thickness can be found to be 

 𝐴𝐴1ℎ = 𝜋𝜋𝑡𝑡(𝑎𝑎 + 𝑏𝑏) (71) 

 𝐼𝐼1𝑚𝑚ℎ =
𝜋𝜋
4
𝑎𝑎2𝑡𝑡(𝑎𝑎 + 3𝑏𝑏) (72) 
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 𝐼𝐼1𝑦𝑦ℎ =
𝜋𝜋
4
𝑏𝑏2𝑡𝑡(3𝑎𝑎 + 𝑏𝑏) (73) 

From here, the slenderness ratios can be calculated to be 

 𝜆𝜆1𝑚𝑚ℎ =
𝐿𝐿√2
𝑎𝑎

� 𝑎𝑎 + 𝑏𝑏
𝑎𝑎 + 3𝑏𝑏

 (74) 

 𝜆𝜆1𝑦𝑦ℎ =
𝐿𝐿√2
𝑏𝑏

� 𝑎𝑎 + 𝑏𝑏
3𝑎𝑎 + 𝑏𝑏

 (75) 

2nd Order Octahedron Beam 

For a 2nd order octahedron beam, there are four 1st order beams that are aligned with the 

2nd order beam and make up the hierarchical geometry, the dimensions of which can be seen in 

Figure 53C. A hierarchical beam is made up of 𝜇𝜇 unit cells, and in turn has a length of 𝐿𝐿2 =

(𝜇𝜇 − 1)𝐿𝐿/√2. The (𝜇𝜇 − 1) term is due to the fact that half of a hierarchical unit cell is shared 

with the closest neighbor. For a 2nd order hierarchical beam comprised of octahedra with solid 1st 

order beams, the area and area moment of inertia can be calculated to be 

 𝐴𝐴2 = 4𝜋𝜋𝑎𝑎𝑏𝑏 (76) 

 𝐼𝐼2𝑚𝑚 = 4𝐼𝐼1𝑚𝑚 + 2𝐴𝐴1 �
𝐿𝐿

2√2
�
2

= 𝜋𝜋𝑎𝑎𝑏𝑏 �𝑎𝑎2 +
𝐿𝐿2

4
� (77) 

 𝐼𝐼2𝑦𝑦 = 4𝐼𝐼1𝑦𝑦 + 2𝐴𝐴1 �
𝐿𝐿
2
�
2

= 𝜋𝜋𝑎𝑎𝑏𝑏 �𝑏𝑏2 +
𝐿𝐿2

2
� (78) 

From here, the slenderness ratios can be calculated to be 

 𝜆𝜆2𝑚𝑚 = �8𝐿𝐿2(𝜇𝜇 − 1)2

4𝑎𝑎2 + 𝐿𝐿2
 (79) 

 𝜆𝜆2𝑦𝑦 = �4𝐿𝐿2(𝜇𝜇 − 1)2

2𝑏𝑏2 + 𝐿𝐿2
 (80) 
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For a 2nd order hierarchical beam comprised of octahedra with hollow 1st order beams, 

the area and area moment of inertia can be calculated to be 

 𝐴𝐴2ℎ = 4𝜋𝜋𝑡𝑡(𝑎𝑎 + 𝑏𝑏) (81) 

 𝐼𝐼2𝑚𝑚ℎ = 4𝐼𝐼1𝑚𝑚ℎ + 2𝐴𝐴1ℎ �
𝐿𝐿

2√2
�
2

= 𝜋𝜋𝑡𝑡 �𝑎𝑎2(𝑎𝑎 + 3𝑏𝑏) +
𝐿𝐿2

4
(𝑎𝑎 + 𝑏𝑏)� (82) 

 𝐼𝐼2𝑦𝑦ℎ = 4𝐼𝐼1𝑦𝑦ℎ + 2𝐴𝐴1ℎ �
𝐿𝐿
2
�
2

= 𝜋𝜋𝑡𝑡 �𝑏𝑏2(3𝑎𝑎 + 𝑏𝑏) +
𝐿𝐿2

2
(𝑎𝑎 + 𝑏𝑏)� (83) 

From here, the slenderness ratios can be calculated to be 

 𝜆𝜆2𝑚𝑚ℎ = �
8(𝑎𝑎 + 𝑏𝑏)𝐿𝐿2(𝜇𝜇 − 1)2

4𝑎𝑎2(𝑎𝑎 + 3𝑏𝑏) + 𝐿𝐿2(𝑎𝑎 + 𝑏𝑏) (84) 

 𝜆𝜆2𝑦𝑦ℎ = �
4(𝑎𝑎 + 𝑏𝑏)𝐿𝐿2(𝜇𝜇 − 1)2

2𝑏𝑏2(3𝑎𝑎 + 𝑏𝑏) + 𝐿𝐿2(𝑎𝑎 + 𝑏𝑏) (85) 

2nd Order Octet Beam 

For a 2nd order octet beam, there are eight 1st order beams that are aligned with the 2nd 

order beam and make up the hierarchical geometry, the dimensions of which can be seen in 

Figure 53D. A hierarchical beam is made up of 𝜇𝜇 unit cells, and in turn has a length of 𝐿𝐿2 =

(𝜇𝜇 − 1)𝐿𝐿/√2. The (𝜇𝜇 − 1) term is due to the fact that half of a hierarchical unit cell is shared 

with the closest neighbor. For a 2nd order hierarchical beam comprised of octets with solid 1st 

order beams, the area and area moment of inertia can be calculated to be 

 𝐴𝐴2 = 8𝜋𝜋𝑎𝑎𝑏𝑏 (86) 

 𝐼𝐼2𝑚𝑚 = 8𝐼𝐼1𝑚𝑚 + 2𝐴𝐴1 �
𝐿𝐿

2√2
�
2

+ 4𝐴𝐴1 �
𝐿𝐿
√2
�
2

= 𝜋𝜋𝑎𝑎𝑏𝑏 �2𝑎𝑎2 +
9𝐿𝐿2

4
� (87) 

 𝐼𝐼2𝑦𝑦 = 8𝐼𝐼1𝑦𝑦 + 6𝐴𝐴1 �
𝐿𝐿
2
�
2

= 𝜋𝜋𝑎𝑎𝑏𝑏 �2𝑏𝑏2 +
3𝐿𝐿2

2
� (88) 
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From here, the slenderness ratios can be calculated to be 

 𝜆𝜆2𝑚𝑚 = �16𝐿𝐿2(𝜇𝜇 − 1)2

8𝑎𝑎2 + 9𝐿𝐿2
 (89) 

 𝜆𝜆2𝑦𝑦 = �8𝐿𝐿2(𝜇𝜇 − 1)2

4𝑏𝑏2 + 3𝐿𝐿2
 (90) 

For a 2nd order hierarchical beam comprised of octets with hollow 1st order beams, the 

area and area moment of inertia can be calculated to be 

 𝐴𝐴2ℎ = 8𝜋𝜋𝑡𝑡(𝑎𝑎 + 𝑏𝑏) (91) 

 𝐼𝐼2𝑚𝑚ℎ = 8𝐼𝐼1𝑚𝑚ℎ + 2𝐴𝐴1ℎ �
𝐿𝐿

2√2
�
2

+ 4𝐴𝐴1ℎ �
𝐿𝐿
√2
�
2

= 𝜋𝜋𝑡𝑡 �2𝑎𝑎2(𝑎𝑎 + 3𝑏𝑏) +
9𝐿𝐿2

4
(𝑎𝑎 + 𝑏𝑏)� (92) 

 𝐼𝐼2𝑦𝑦ℎ = 8𝐼𝐼1𝑦𝑦ℎ + 6𝐴𝐴1ℎ �
𝐿𝐿
2
�
2

= 𝜋𝜋𝑡𝑡 �2𝑏𝑏2(3𝑎𝑎 + 𝑏𝑏) +
3𝐿𝐿2

2
(𝑎𝑎 + 𝑏𝑏)� (93) 

From here, the slenderness ratios can be calculated to be 

 𝜆𝜆2𝑚𝑚ℎ = �
16(𝑎𝑎 + 𝑏𝑏)𝐿𝐿2(𝜇𝜇 − 1)2

8𝑎𝑎2(𝑎𝑎 + 3𝑏𝑏) + 9𝐿𝐿2(𝑎𝑎 + 𝑏𝑏) (94) 

 𝜆𝜆2𝑦𝑦ℎ = �
8(𝑎𝑎 + 𝑏𝑏)𝐿𝐿2(𝜇𝜇 − 1)2

4𝑏𝑏2(3𝑎𝑎 + 𝑏𝑏) + 3𝐿𝐿2(𝑎𝑎 + 𝑏𝑏) (95) 

3rd Order Octahedron Beam 

For a 3rd order octahedron beam, there are sixteen 1st order beams that are aligned with 

the 3rd order beam and make up the hierarchical geometry, the dimensions of which can be seen 

in Figure 53E. A hierarchical beam is made up of 𝜇𝜇 unit cells, and in turn has a length of 

𝐿𝐿3 = (𝜇𝜇 − 1)2𝐿𝐿/√2. The (𝜇𝜇 − 1)2 term is due to the fact that half of a 2nd order hierarchical 

unit cell is shared with the closest neighbor. For a 3rd order hierarchical beam comprised of 
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octahedra-of-octahedra with solid 1st order beams, the area and area moment of inertia can be 

calculated to be 

 𝐴𝐴3 = 16𝜋𝜋𝑎𝑎𝑏𝑏 (96) 

 𝐼𝐼3𝑚𝑚 = 4𝐼𝐼2𝑚𝑚 + 2𝐴𝐴2 �
𝐿𝐿(𝜇𝜇 − 1)

2√2
�
2

= 𝜋𝜋𝑎𝑎𝑏𝑏[4𝑎𝑎2 + 𝐿𝐿2 + 𝐿𝐿2(𝜇𝜇 − 1)2] (97) 

 𝐼𝐼3𝑦𝑦 = 4𝐼𝐼2𝑦𝑦 + 2𝐴𝐴2 �
𝐿𝐿(𝜇𝜇 − 1)

2
�
2

= 2𝜋𝜋𝑎𝑎𝑏𝑏[2𝑏𝑏2 + 𝐿𝐿2 + 𝐿𝐿2(𝜇𝜇 − 1)2] (98) 

From here, the slenderness ratios can be calculated to be 

 𝜆𝜆3𝑚𝑚 = �
8𝐿𝐿2(𝜇𝜇 − 1)4

4𝑎𝑎2 + 𝐿𝐿2 + 𝐿𝐿2(𝜇𝜇 − 1)2 (99) 

 𝜆𝜆3𝑦𝑦 = �
4𝐿𝐿2(𝜇𝜇 − 1)4

2𝑏𝑏2 + 𝐿𝐿2 + 𝐿𝐿2(𝜇𝜇 − 1)2 (100) 

For a 3rd order hierarchical beam comprised of octahedra-of-octahedra with hollow 1st 

order beams, the area and area moment of inertia can be calculated to be 

 𝐴𝐴3ℎ = 16𝜋𝜋𝑡𝑡(𝑎𝑎 + 𝑏𝑏) (101) 

 𝐼𝐼3𝑚𝑚ℎ = 4𝐼𝐼2𝑚𝑚ℎ + 2𝐴𝐴2ℎ �
𝐿𝐿(𝜇𝜇 − 1)

2√2
�
2

= 𝜋𝜋𝑡𝑡[4𝑎𝑎2(𝑎𝑎 + 3𝑏𝑏) + 𝐿𝐿2(𝑎𝑎 + 𝑏𝑏)(1 + (𝜇𝜇 − 1)2)] (102) 

 𝐼𝐼3𝑦𝑦ℎ = 4𝐼𝐼2𝑦𝑦ℎ + 2𝐴𝐴2ℎ �
𝐿𝐿(𝜇𝜇 − 1)

2
�
2

= 2𝜋𝜋𝑡𝑡[2𝑏𝑏2(3𝑎𝑎 + 𝑏𝑏) + 𝐿𝐿2(𝑎𝑎 + 𝑏𝑏)(1 + (𝜇𝜇 − 1)2)] (103) 

From here, the slenderness ratios can be calculated to be 

 𝜆𝜆3𝑚𝑚ℎ = �
8(𝑎𝑎 + 𝑏𝑏)𝐿𝐿2(𝜇𝜇 − 1)4

4𝑎𝑎2(𝑎𝑎 + 3𝑏𝑏) + 𝐿𝐿2(𝑎𝑎 + 𝑏𝑏)(1 + (𝜇𝜇 − 1)2) (104) 

 𝜆𝜆3𝑦𝑦ℎ = �
4(𝑎𝑎 + 𝑏𝑏)𝐿𝐿2(𝜇𝜇 − 1)4

2𝑏𝑏2(3𝑎𝑎 + 𝑏𝑏) + 𝐿𝐿2(𝑎𝑎 + 𝑏𝑏)(1 + (𝜇𝜇 − 1)2) (105) 
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Figure 53: Hierarchical cross-sections.  
A) solid 1st order beams, B) hollow 1st order beams, C) 2nd order hierarchical beams comprised of octahedra, D) 2nd 
order hierarchical beams comprised of octet unit cells, and E) a 3rd  order hierarchical beam composed of 
octahedrons-of-octahedra 
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Appendix E. Data Tables 

Unit Cell 
Size W 
(µm) 

Wall 
Thickness t 

(nm) 

Major 
Axis 2a 

(µm) 

Minor 
Axis 2b 

(µm) 

Relative 
Density 𝝆𝝆� t/a Slenderness 

Ratio 𝝀𝝀 

Observed 
Deformation 

Behavior 

Percent 
Strain 

Recovery 

Young's 
Modulus 

(MPa) 

Yield 
Strength 
(MPa) 

5 

5 1.08 0.37 0.656% 0.007 24.2 DL 13.2% 29.9 0.60 

10 
0.93 0.32 1.204% 0.016 28.0 DL 80.5% 31.7 1.00 

1.08 0.37 1.322% 0.014 24.2 DL 77.3% 29.3 1.13 

20 

0.77 0.265 2.120% 0.038 33.8 ID 29.9% 90.9 3.46 

0.93 0.32 2.424% 0.031 28.0 ID 43.7% 95.5 3.63 

1.08 0.37 2.647% 0.027 24.2 ID 29.8% 130.4 4.22 

1.22 0.42 2.853% 0.024 21.3 ID 30.2% 118.6 4.09 

30 
0.93 0.32 3.646% 0.047 28.0 SSB 17.2% 217.8 8.15 

1.08 0.37 3.993% 0.041 24.2 MSB 19.9% 312.2 9.25 

40 
0.93 0.32 4.876% 0.063 28.0 MSB 12.7% 414.1 12.42 

1.08 0.37 5.336% 0.054 24.2 SSB 11.9% 513.5 14.20 

50 
0.93 0.32 6.122% 0.078 28.0 SSB 12.3% 607.2 19.94 

1.08 0.37 6.680% 0.068 24.2 MSB 12.8% 802.1 24.05 

60 
1.08 0.37 8.038% 0.081 24.2 SSB 10.0% 1136.5 32.05 

1.22 0.42 8.593% 0.071 21.3 SSB 9.0% 1157.7 37.23 

10 

5 1.22 0.42 0.214% 0.006 42.7 DL 75.9% 3.8 0.09 

10 
1.08 0.37 0.393% 0.014 48.5 DL 44.5% 6.9 0.18 

1.22 0.42 0.435% 0.012 42.7 DL 44.8% 6.6 0.21 

20 

1.08 0.37 0.788% 0.027 48.5 ID 22.8% 26.9 0.72 

1.22 0.42 0.875% 0.024 42.7 ID 25.3% 23.1 0.77 

1.37 0.47 0.958% 0.021 38.1 ID 26.0% 22.2 0.81 

30 
1.22 0.42 1.323% 0.036 42.7 MSB 14.9% 56.0 1.50 

1.37 0.47 1.446% 0.032 38.1 MSB 15.9% 81.8 2.30 

40 
1.08 0.37 1.605% 0.054 48.5 SSB 10.9% 106.9 2.52 

1.22 0.42 1.777% 0.048 42.7 SSB 11.6% 108.0 2.74 

50 
1.08 0.37 2.017% 0.068 48.5 SSB 10.5% 148.8 3.67 

1.22 0.42 2.232% 0.060 42.7 SSB 13.5% 161.6 3.99 

60 

0.93 0.32 2.178% 0.094 56.0 SSB 10.5% 202.7 3.66 

1.08 0.37 2.437% 0.081 48.5 SSB 11.2% 186.9 4.51 

1.22 0.42 2.689% 0.071 42.7 SSB 10.2% 269.6 11.73 

15 

10 1.92 0.66 0.300% 0.008 40.7 DL 59.9% 3.8 0.10 

20 1.92 0.66 0.604% 0.015 40.7 DL 32.7% 12.2 0.26 

30 1.75 0.6 0.839% 0.025 44.8 ID 16.5% 25.1 0.50 

40 1.75 0.6 1.130% 0.033 44.8 MSB 12.2% 51.1 0.95 

50 1.92 0.66 1.527% 0.038 40.7 MSB 12.3% 69.7 1.49 

60 1.92 0.66 1.839% 0.045 40.7 SSB 10.0% 101.9 2.16 

Table 3: Hollow Al2O3 Octet-truss Data 
List of hollow Al2O3 octet-truss structures fabricated, their relative densities, t/a and slenderness ratios, 
observed deformation behavior, percent strain recovery (final strain/maximum strain), Young’s modulus, and 
yield strength. 
Key: DL = ductile-like deformation; ID = intermittent ductile-like behavior with some bursts; MSB = multiple 
strain bursts; SSB = single catastrophic strain burst. 
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Unit Cell 
Size W 
(µm) 

Wall 
Thickness t 

(nm) 

Major 
Axis 2a 

(µm) 

Major 
Axis 2a 

(µm) 

Relative 
Density 𝝆𝝆� t/a Slenderness 

Ratio 𝝀𝝀 

Observed 
Deformation 

Behavior 

Percent 
Strain 

Recovery 

Young's 
Modulus 

(MPa) 

Yield 
Strength 
(MPa) 

5 

10 
1.22 0.42 0.774% 0.012 21.3 DL 22.0% 29.1 0.59 

1.37 0.47 0.831% 0.011 19.1 DL 30.0% 32.4 0.70 

40 
1.37 0.47 3.366% 0.043 19.1 SSB 10.2% 419.3 9.22 

1.57 0.54 3.622% 0.037 16.6 MSB 10.8% 492.6 9.81 

70 
1.37 0.47 5.928% 0.074 19.1 SSB 6.4% 831.2 19.67 

1.57 0.54 6.359% 0.065 16.6 SSB 7.3% 1018.5 20.43 

100 
1.37 0.47 8.539% 0.106 19.1 SSB 6.5% 1817.7 38.52 

1.57 0.54 9.106% 0.093 16.6 MSB 6.2% 2076.5 39.50 

8 

10 1.22 0.42 0.403% 0.012 34.1 DL 61.3% 4.4 0.14 

50 
1.36 0.465 1.902% 0.054 30.8 SSB 7.5% 88.9 2.04 

1.60 0.55 2.140% 0.045 26.1 SSB 9.3% 85.1 2.47 

90 1.22 0.42 3.796% 0.107 34.1 SSB 8.2% 155.6 6.17 

120 1.22 0.42 5.118% 0.143 34.1 SSB 4.5% 420.9 11.16 

10 

10 1.37 0.47 0.246% 0.011 38.1 DL 56.7% 3.5 0.093 

40 1.57 0.54 1.132% 0.037 33.2 MSB 8.8% 45.0 1.13 

70 
1.22 0.42 1.808% 0.083 42.7 SSB 5.4% 86.8 2.39 

1.37 0.47 2.014% 0.074 38.1 SSB 5.7% 73.8 2.54 

100 1.37 0.47 2.639% 0.106 38.1 SSB 4.0% 132.5 3.67 

100 1.57 0.54 2.922% 0.093 33.2 SSB 5.3% 153.9 3.93 

12 

10 1.57 0.54 0.140% 0.009 39.8 DL 47.4% 2.1 0.062 

50 
1.60 0.55 1.041% 0.045 39.1 MSB 9.2% 32.8 0.70 

1.81 0.6225 1.150% 0.040 34.6 MSB 9.7% 39.6 0.76 

90 1.57 0.54 1.293% 0.083 39.8 MSB 7.0% 66.5 1.86 

120 1.57 0.54 1.736% 0.111 39.8 SSB 3.7% 133.6 3.20 

Table 4: Hollow Al2O3 Cuboctahedron Data 
List of hollow Al2O3 cuboctahedron structures fabricated, their relative densities, t/a and slenderness ratios, 
observed deformation behavior, percent strain recovery (final strain/maximum strain), Young’s modulus, and 
yield strength. 
Key: DL = ductile-like deformation; MSB = multiple strain bursts; SSB = single catastrophic strain burst. 
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Diagonal 
Beam 
Angle 

Unit 
Cell Size 
W (µm) 

Wall 
Thickness t 

(nm) 

Major 
Axis 2a 

(µm) 

Minor 
Axis 2b 

(µm) 

Relative 
Density 

𝝆𝝆� 
t/a Slenderness 

Ratio 𝝀𝝀 

Observed 
Deformation 

Behavior 

Percent 
Strain 

Recovery 

Young's 
Modulus 

(MPa) 

Yield 
Strength 
(MPa) 

45º 

4 

10 1.34 0.488 0.580% 0.011 17.0 DL 47.4% 8.6 0.29 

50 
1.36 0.465 2.300% 0.054 17.8 SSB 9.4% 78.8 2.53 

1.60 0.55 2.503% 0.045 15.1 SSB 15.1% 60.1 2.78 

90 1.34 0.488 5.252% 0.098 17.0 SSB 11.5% 212.3 9.02 

120 1.34 0.488 7.028% 0.131 17.0 SSB 5.7% 535.5 14.04 

6 

10 1.94 0.706 0.363% 0.008 17.7 DL 64.0% 4.0 0.12 

50 
1.60 0.55 1.320% 0.045 22.6 MSB 8.2% 40.2 1.07 

1.81 0.6225 1.429% 0.040 20.0 SSB 9.3% 37.1 1.23 

90 1.94 0.706 3.378% 0.068 17.7 SSB 11.4% 99.3 3.19 

120 1.94 0.706 4.524% 0.091 17.7 SSB 5.0% 232.1 6.02 

54.7º 
(Regular) 

3 50 
1.21 0.465 2.820% 0.054 16.5 SSB 7.2% 214.9 5.67 

1.41 0.55 3.065% 0.045 14.0 SSB 8.6% 163.7 5.81 

4 

10 1.20 0.488 0.419% 0.011 21.1 DL 48.9% 15.3 0.31 

50 
1.21 0.465 1.766% 0.054 22.0 SSB 5.1% 138.9 2.95 

1.41 0.55 1.966% 0.045 18.6 SSB 8.1% 112.9 3.28 

90 1.20 0.488 3.928% 0.098 21.1 SSB 5.9% 340.3 9.16 

120 1.20 0.488 5.292% 0.131 21.1 SSB 3.3% 840.1 13.14 

5 50 
1.41 0.55 1.355% 0.045 23.3 SSB 6.5% 94.4 1.92 

1.58 0.6225 1.472% 0.040 20.6 SSB 6.0% 85.9 2.07 

6 

10 1.68 0.706 0.280% 0.008 21.9 DL 71.2% 7.1 0.17 

50 
1.41 0.55 0.985% 0.045 27.9 MSB 4.6% 64.0 1.08 

1.58 0.6225 1.081% 0.040 24.7 MSB 5.4% 60.1 1.20 

90 1.68 0.706 2.630% 0.068 21.9 MSB 2.9% 167.9 3.12 

120 1.68 0.706 3.538% 0.091 21.9 SSB 3.9% 419.8 5.85 

65º 

4 

10 1.00 0.488 0.324% 0.011 29.3 DL 83.7% 23.9 0.26 

50 
1.00 0.465 1.340% 0.054 30.6 SSB 3.0% 205.4 3.02 

1.15 0.55 1.490% 0.045 25.9 SSB 3.8% 193.3 3.48 

90 1.00 0.488 3.103% 0.098 29.3 SSB 3.3% 582.1 14.95 

120 1.00 0.488 4.208% 0.131 29.3 SSB 1.2% 3218.2 32.26 

6 

10 1.35 0.706 0.186% 0.008 30.5 DL 67.4% 11.4 0.095 

50 
1.15 0.55 0.742% 0.045 38.9 MSB 3.7% 93.5 1.14 

1.27 0.6225 0.813% 0.040 34.4 MSB 4.6% 87.7 1.36 

90 1.35 0.706 1.786% 0.068 30.5 SSB 3.1% 352.1 4.35 

120 1.35 0.706 2.416% 0.091 30.5 SSB 1.1% 771.3 6.09 

Table 5: Hollow Al2O3 3D Kagome Data 
List of hollow Al2O3 45º, 54.7º(regular tetrahedron), and 65º 3D Kagome structures fabricated, their relative 
densities, t/a and slenderness ratios, observed deformation behavior, percent strain recovery (final 
strain/maximum strain), Young’s modulus, and yield strength. 
Key: DL = ductile-like deformation; MSB = multiple strain bursts; SSB = single catastrophic strain burst. 
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Unit Cell 
Size W 
(µm) 

Wall 
Thickness t 

(nm) 

Major 
Axis 2a 

(µm) 

Minor 
Axis 2b 

(µm) 

Relative 
Density 𝝆𝝆� t/a Slenderness 

Ratio 𝝀𝝀 

Observed 
Deformation 

Behavior 

Percent 
Strain 

Recovery 

Young's 
Modulus 

(MPa) 

Yield 
Strength 
(MPa) 

5 

10 

0.66 0.225 0.485% 0.022 19.9 DL 59.9% 9.5 0.29 

0.80 0.275 0.570% 0.018 16.3 DL 60.5% 16.8 0.31 

0.95 0.325 0.644% 0.015 13.8 DL 56.2% 21.2 0.39 

45 
 

0.66 0.225 2.231% 0.100 19.9 SSB 6.9% 223.3 5.03 

0.80 0.275 2.590% 0.082 16.3 MSB 6.3% 361.1 5.25 

0.95 0.325 2.921% 0.069 13.8 MSB 7.0% 394.3 6.91 

1.09 0.375 3.220% 0.060 12.0 MSB 8.0% 394.4 7.16 

90 
 

0.66 0.225 4.822% 0.200 19.9 SSB 2.9% 754.5 12.02 

0.80 0.275 5.530% 0.164 16.3 SSB 3.7% 967.8 17.10 

0.95 0.325 6.173% 0.138 13.8 SSB 3.4% 1502.3 19.45 

1.09 0.375 6.744% 0.120 12.0 SSB 5.2% 1355.1 25.40 

10 

10 

0.95 0.325 0.180% 0.015 27.6 DL 49.2% 2.0 0.080 

1.09 0.375 0.202% 0.013 23.9 DL 56.8% 2.3 0.079 

1.24 0.425 0.220% 0.012 21.1 DL 40.1% 3.4 0.089 

45 
 

0.66 0.225 0.607% 0.100 39.8 MSB 3.9% 22.5 0.53 

0.80 0.275 0.718% 0.082 32.6 MSB 5.1% 34.2 0.79 

0.95 0.325 0.825% 0.069 27.6 MSB 5.0% 38.4 0.91 

1.09 0.375 0.928% 0.060 23.9 MSB 6.7% 46.5 1.03 

1.24 0.425 1.028% 0.053 21.1 MSB 7.4% 57.6 1.11 

90 
 

0.95 0.325 1.774% 0.138 27.6 SSB 5.2% 109.8 2.08 

1.09 0.375 1.982% 0.120 23.9 SSB 4.4% 126.6 2.48 

1.24 0.425 2.185% 0.106 21.1 SSB 4.8% 178.3 3.30 

15 

45 
 

0.80 0.275 0.330% 0.082 48.9 MSB 7.6% 8.5 0.22 

0.95 0.325 0.384% 0.069 41.4 MSB 6.5% 11.2 0.28 

1.09 0.375 0.434% 0.060 35.9 MSB 5.7% 12.6 0.31 

1.24 0.425 0.484% 0.053 31.6 MSB 7.3% 14.7 0.37 

90 
 

0.66 0.225 0.611% 0.200 59.8 MSB 4.1% 16.3 0.31 

0.80 0.275 0.719% 0.164 48.9 MSB 5.7% 20.2 0.44 

0.95 0.325 0.825% 0.138 41.4 MSB 4.3% 35.8 0.65 

1.09 0.375 0.925% 0.120 35.9 SSB 3.2% 39.7 0.80 

1.24 0.425 1.026% 0.106 31.6 SSB 2.9% 42.7 0.94 

Table 6: Hollow Al2O3 Tetrakaidecahedron Data  
List of hollow Al2O3 Tetrakaidecahedron structures fabricated, their relative densities, t/a and slenderness ratios, 
observed deformation behavior, percent strain recovery (final strain/maximum strain), Young’s modulus, and 
yield strength. 
Key: DL = ductile-like deformation; MSB = multiple strain bursts; SSB = single catastrophic strain burst. 
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Cell Type 
Unit 

Cell Size 
L (µm) 

Major 
Axis 2a 

(µm) 

Minor 
Axis 2b 

(µm) 

Relative 
Density 

𝝆𝝆� 

Slenderness 
Ratio 𝝀𝝀 

Observed 
Deformation 

Behavior 

Percent 
Strain 

Recovery 

Young's 
Modulus 

(MPa) 

Yield 
Strength 

(MPa) 

Octet-Truss 

4 

1.52 0.38 30.65% 29.80 D 35.6% 377.4 12.42 
1.96 0.49 46.62% 23.14 D 37.2% 882.4 28.26 
2.38 0.59 62.55% 19.04 D 41.5% 807.9 38.49 
2.90 0.73 80.30% 15.58 D 51.0% 1039.3 49.47 

6 

1.52 0.38 14.90% 44.70 SB+D 42.7% 73.0 2.750 
1.96 0.49 23.48% 34.71 D 25.4% 151.3 5.227 
2.38 0.59 34.12% 28.56 D 25.2% 303.3 11.50 
2.90 0.73 45.77% 23.37 D 33.3% 578.2 22.48 

8 

1.52 0.38 8.74% 59.60 SB 61.2% 36.7 1.168 
1.96 0.49 13.98% 46.28 SB 35.8% 65.2 2.348 
2.38 0.59 19.91% 38.08 SB+D 30.0% 104.4 3.811 
2.90 0.73 28.28% 31.16 D 29.9% 187.6 6.459 

10 
1.96 0.49 9.25% 57.85 SB 39.4% 31.1 1.043 
2.38 0.59 13.28% 47.59 SB 32.2% 42.3 1.523 
2.90 0.73 19.07% 38.96 SB+D 23.4% 71.4 2.757 

Cuboctahedron 

4 

1.52 0.38 16.08% 29.80 D 41.0% 106.5 3.380 
1.96 0.49 24.98% 23.14 D 34.7% 237.6 8.111 
2.38 0.59 34.35% 19.04 D 34.9% 554.9 17.32 
2.90 0.73 46.41% 15.58 D 39.9% 756.1 29.37 

6 

1.52 0.38 7.69% 44.70 SB 27.3% 32.26 1.101 
1.96 0.49 12.22% 34.71 SB 34.3% 48.11 1.708 
2.38 0.59 17.35% 28.56 D 59.5% 90.54 2.980 
2.90 0.73 24.40% 23.37 D 23.9% 150.0 5.405 

8 1.52 0.38 4.48% 59.60 SB 65.4% 12.53 0.357 
1.96 0.49 7.20% 46.28 SB 32.3% 17.68 0.540 

10 
1.96 0.49 4.73% 57.85 SB 54.9% 13.01 0.369 
2.38 0.59 6.84% 47.59 SB 27.4% 16.87 0.530 
2.90 0.73 9.86% 38.96 SB 27.5% 24.79 0.784 

3D Kagome 

3 

1.29 0.32 5.33% 37.21 SB 69.2% 32.91 1.168 
1.85 0.46 10.33% 25.93 SB+D 46.7% 54.56 1.775 
2.31 0.58 15.29% 20.75 D 39.2% 88.85 2.974 
2.79 0.70 21.04% 17.19 D 37.8% 143.3 4.976 

4 

1.29 0.32 3.11% 49.61 SB 76.2% 14.18 0.371 
1.85 0.46 6.11% 34.58 SB 33.0% 18.12 0.554 
2.31 0.58 9.18% 27.67 SB+D 40.0% 28.04 0.981 
2.79 0.70 12.87% 22.92 D 36.9% 51.36 1.881 

5 
1.85 0.46 4.03% 43.22 SB 33.8% 9.88 0.240 
2.31 0.58 6.12% 34.58 SB 44.7% 16.07 0.444 
2.79 0.70 8.63% 28.65 SB 39.7% 28.40 0.994 

6 
1.85 0.46 2.85% 51.86 SB 48.8% 6.31 0.117 
2.31 0.58 4.35% 41.50 SB 38.5% 9.51 0.207 
2.79 0.70 6.18% 34.38 SB 41.9% 17.75 0.452 

Tetrakaidecahedron 

5 

1.00 0.25 4.14% 28.28 SB+D 51.4% 11.41 0.458 
1.35 0.34 8.92% 20.95 D 54.5% 35.12 1.453 
1.70 0.43 13.56% 16.64 D 43.2% 59.05 2.457 
2.05 0.51 18.84% 13.80 D 47.5% 107.5 4.061 

10 

1.00 0.25 1.36% 56.57 SB 86.2% 1.71 0.087 
1.35 0.34 2.38% 41.90 SB 83.3% 5.21 0.186 
1.70 0.43 3.65% 33.28 SB 62.0% 8.20 0.257 
2.05 0.51 5.17% 27.59 SB 52.3% 9.49 0.306 
2.40 0.60 6.93% 23.57 SB 39.8% 18.44 0.558 

15 
1.35 0.34 1.08% 62.85 SB 81.5% 1.33 0.041 
1.70 0.43 1.67% 49.91 SB 79.2% 1.33 0.041 
2.05 0.51 2.38% 41.39 SB 64.4% 2.89 0.079 

Table 7: Polymer Nanolattice Data 
List of solid polymer structures fabricated, their relative densities, slenderness ratios, observed deformation 
behavior, percent strain recovery (final strain/maximum strain), Young’s modulus, and yield strength. 
Key: D = densification; SB = strain bursts; SB+D = strain bursts then densification 
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Bar Type 
Removed 

Percentage 
Removed 

Relative 
Density 

Young's Modulus 
(MPa) 

Yield Strength 
(MPa) 𝒎𝒎 𝒏𝒏 

None 0% 13.53% 58.16 1.951 - - 

Horizontal 
50% 11.27% 36.34 1.012 

3.09 3.03 
100% 9.02% 16.96 0.558 

Diagonal 

25% 11.27% 34.18 1.014 

4.26 3.81 50% 9.02% 14.47 0.454 

75% 6.76% 2.58 0.132 

All 

17% 11.27% 36.01 1.049 

3.46 3.35 33% 9.06% 18.50 0.527 

50% 6.76% 5.315 0.189 
Table 8: Missing Bar Polymer Octet-truss Data. 
List of solid polymer octet-truss structures fabricated with randomly removed bars, their relative densities, 
Young’s modulus, yield strength, and stiffness and strength vs density scaling coefficients 𝐦𝐦 and 𝐧𝐧. 
 

Normalized Node Offset 
(Offset/Beam Length) Young's Modulus (MPa) Yield Strength (MPa) 

0.088 58.40 1.466 

0.177 59.28 1.459 

0.265 59.47 1.436 

0.354 59.35 1.381 

0.442 58.87 1.310 

0.530 58.97 1.243 

0.619 59.40 1.186 

0.707 59.50 1.144 
Table 9: Offset Node Polymer Octet-truss Data. 
List of solid polymer octet-truss structures fabricated with offset-nodes, their relative densities, Young’s modulus, 
and yield strength. 
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Composition Geometry 
Unit 

Cell Size 
L (µm) 

Fractal 
Number 

N 

Major 
Axis a 
(µm) 

Relative 
Density 

Observed 
Failure Mode 

Young's 
Modulus 

(MPa) 

Yield 
Strength 

(MPa) 
𝑯𝑯𝟏𝟏𝟏𝟏 𝝀𝝀𝒂𝒂𝒂𝒂𝒈𝒈 

Solid 
Polymer 

Octahedron
-of-

Octahedra 

8 10 0.753 1.03% EB 1.63 0.069 1.42 30.4 
8 15 0.753 0.45% GB 0.66 0.023 0.91 37.4 
8 20 0.753 0.25% GB 0.38 0.009 0.67 44.4 

12 10 0.753 0.48% 1L + EB 0.64 0.018 2.11 39.4 
12 15 0.753 0.21% EB 0.28 0.0073 1.36 46.5 
12 20 0.753 0.12% EB + GB 0.14 0.0031 1.00 53.5 

Octahedron
-of-Octets 

8 10 0.753 2.10% 2L + EB 2.92 0.109 2.43 25.2 
8 15 0.753 0.95% 1L + EB/GB 1.24 0.045 1.56 29.3 
8 20 0.753 0.53% 1L + EB/GB 0.68 0.024 1.15 33.3 

12 10 0.753 0.98% 2L + EB 1.18 0.025 3.64 34.1 
12 15 0.753 0.44% 2L + EB 0.45 0.011 2.34 38.2 
12 20 0.753 0.25% 1L + EB 0.25 0.0059 1.73 42.3 

Composite 

Octahedron
-of-

Octahedra 

8 10 0.773 1.12% CC 7.28 0.440 1.33 29.4 
8 15 0.773 0.49% CC 2.97 0.137 0.86 36.4 
8 20 0.773 0.27% PC 1.61 0.050 0.63 43.4 

12 10 0.773 0.52% BC 2.97 0.126 1.99 37.8 
12 15 0.773 0.23% PC 1.40 0.051 1.28 44.9 
12 20 0.773 0.13% PC 0.79 0.021 0.94 51.9 

Octahedron
-of-Octets 

8 10 0.773 2.28% CC 13.91 0.606 2.29 24.1 
8 15 0.773 1.03% CC 5.93 0.262 1.47 28.2 
8 20 0.773 0.58% CC 3.21 0.161 1.08 32.3 

12 10 0.773 1.07% CC 5.61 0.180 3.43 32.5 
12 15 0.773 0.48% BC 2.20 0.071 2.20 36.6 
12 20 0.773 0.27% BC 1.28 0.040 1.62 40.7 

Hollow 
Al2O3 

Octahedron
-of-

Octahedra 

8 10 0.773 0.089% 1L + CNC/EB 2.02 0.049 0.89 23.6 
8 15 0.773 0.039% 1L + CNC/EB 0.92 0.021 0.57 30.6 
8 20 0.773 0.022% EB 0.51 0.011 0.42 37.5 

12 10 0.773 0.043% 1L + CNC 0.90 0.018 1.32 29.3 
12 15 0.773 0.019% EB 0.44 0.008 0.85 36.3 
12 20 0.773 0.010% EB 0.23 0.004 0.63 43.3 

Octahedron
-of-Octets 

8 10 0.773 0.182% 2L + CNC 2.72 0.065 1.52 18.5 
8 15 0.773 0.084% 2L + EB 1.46 0.031 0.98 22.5 
8 20 0.773 0.049% 2L + EB 0.91 0.018 0.72 26.6 

12 10 0.773 0.088% 1L + CNC 1.48 0.024 2.27 24.0 
12 15 0.773 0.040% 2L + EB/CNC 0.38 0.010 1.46 28.1 
12 20 0.773 0.024% 1L + EB 0.36 0.006 1.08 32.2 

Table 10: 2nd Order Hierarchical Half-cell Data 
Full list of fabricated 2nd order half-cell geometries with corresponding relative density, observed failure modes, 
Young’s modulus, yield strength, and slenderness ratios.  
Key: 1L = 1st layer collapse; 2L = 2nd layer collapse; EB = Euler buckling (1st order beams); GB = Global 
buckling (2nd order beams); CC = Catastrophic collapse; BC = Brittle crushing; PC = Partial collapse; CNC = 
Central node crushing 
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Composition 
Unit 

Cell Size 
L (µm) 

Fractal 
Number 

N 

Major 
Axis a 
(µm) 

Relative 
Density 

Observed 
Failure 
Mode 

Young's 
Modulus 

(MPa) 

Yield 
Strength 

(MPa) 
𝑯𝑯𝟏𝟏𝟏𝟏 𝑯𝑯𝟏𝟏𝟏𝟏 𝑯𝑯𝟏𝟏𝟏𝟏 𝝀𝝀𝒂𝒂𝒂𝒂𝒈𝒈 

Solid 
Polymer 

8 5 1.180 2.32% EB1 3.90 0.144 3.47 9.90 2.85 17.8 
3 10 0.670 0.36% EB2 0.34 0.014 1.05 1.74 1.66 21.4 

Composite 
8 5 

1.025 1.83% CC 14.48 0.487 3.97 11.39 2.87 19.7 
1.200 2.50% CC 28.62 0.804 3.41 9.73 2.85 17.5 

3 10 0.480 0.21% PCC+R 0.78 0.031 1.43 2.42 1.70 24.9 

Hollow 
Al2O3 

8 5 1.225 0.18% 1L+CNC 1.26 0.033 2.15 2.14 1.00 15.1 
3 10 0.480 0.047% EB2 0.26 0.0078 0.92 0.89 0.97 24.1 

Table 11: 3rd Order Hierarchical Half-cell Data 
Full list of fabricated 3rd order octahedron half-cell geometries with corresponding relative density, observed 
failure modes, Young’s modulus, yield strength, and slenderness ratios. 
Key: 1L = 1st layer collapse; EB1 = Euler buckling (1st order beams); EB2 = Euler buckling (2nd order beams); 
CC = Catastrophic collapse; BC = Brittle crushing; PCC = Partial catastrophic collapse; CNC = Central node 
crushing. 
 

Composition 
Unit 

Cell Size 
L  (µm) 

Fractal 
Number 

N 

Major 
Axis a 
(µm) 

Relative 
Density 

Observed 
Failure 
Mode 

Young's 
Modulus 

(MPa) 

Yield 
Strength 

(MPa) 
𝑯𝑯𝟏𝟏𝟏𝟏 𝝀𝝀𝒂𝒂𝒂𝒂𝒈𝒈 

Solid 
Polymer 

8 10 0.733 1.03% EB 2.47 0.100 1.51 31.7 

6 15 0.533 0.50% GB 1.13 0.028 0.87 36.8 

4 20 0.333 0.33% GB 1.09 0.026 0.54 41.0 

Composite 
8 10 0.773 1.12% CC 11.38 0.440 1.33 29.4 

6 15 0.573 0.55% CC 6.51 0.223 0.75 34.4 

Hollow 
Al2O3 

8 10 0.773 0.09% EB + NR 0.83 0.026 0.89 23.7 

6 15 0.573 0.053% EB + PR 0.60 0.016 0.51 29.5 

4 20 0.373 0.047% EB + NR 0.38 0.010 0.31 34.7 

Table 12: 2nd Order Hierarchical Nanolattice Data 
Full list of fabricated 2nd order octahedron full-lattice geometries with corresponding relative density, observed 
failure modes, Young’s modulus, yield strength, and slenderness ratios. 
Key: EB = Euler buckling (1st order beams); GB = Global buckling (2nd order beams); CC = Catastrophic 
collapse; NR = No recovery; PR = Partial recovery. 
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Appendix F. Movies 

Movie 1 

In-situ video of a uniaxial compression test on a titanium nitride octahedron nanolattice unit cell. 

Video is played at 5 times the actual speed. 

Movie 2 

In-situ video of the first round of 10 cyclic compression loading cycles on a titanium nitride 

octahedron nanolattice unit cell. Video is played at 15 times the actual speed. 

Movie 3 

In-situ video of the second round of 10 cyclic compression loading cycles on a titanium nitride 

octahedron nanolattice unit cell. Video is played at 15 times the actual speed. 

Movie 4 

In-situ video of the third round of 10 cyclic compression loading cycles on a titanium nitride 

octahedron nanolattice unit cell. Video is played at 15 times the actual speed 

Movie 5 

In-situ compression video (played at 40x speed) of a thin-walled nanolattice (5µm unit cell, 

10nm wall thickness, t/a = 0.0133) to ~40% strain. Deformation is homogenous and localized to 

shell buckling events near the nodes. The nanolattice demonstrates an almost complete recovery 

after compression. 

Movie 6 

In-situ compression video (played at 40x speed) of a nanolattice in the transition regime between 

thin- and thick-walled (5µm unit cell, 20nm wall thickness, t/a = 0.0233). The nanolattice is 

compressed to ~55% strain. It can be seen that strain bursts are associated with brittle failure 

events, and ductile-like deformation coincides with local buckling in the beams. The nanolattice 

partially recovers after compression. 

Movie 7 

In-situ compression video (played at 20x speed) of a thick-walled nanolattice (5µm unit cell, 

60nm wall thickness, t/a = 0.0667). There is a single strain burst event to ~85% strain correlating 

with the catastrophic failure of the nanolattice, and no subsequent recovery after compression. 
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Movie 8  

In-situ compression experiment on an octahedron-of-octets 2nd order polymer half-cell with 

𝐿𝐿 = 8𝜇𝜇𝑚𝑚 and 𝜇𝜇 = 15. The sample is displaced uniaxially to 50% strain at a rate of 10-3 s-1, and 

shows recovery to 85% of the original height after unloading. The sample is ductile throughout 

the compression experiment. 

Movie 9 

In-situ compression experiment on an octahedron-of-octets 2nd order core-shell ceramic-polymer 

composite half-cell with 𝐿𝐿 = 8𝜇𝜇𝑚𝑚 and 𝜇𝜇 = 15. The sample is compressed at a strain rate of 10-3 

s-1 until the onset of brittle failure, wherein the sample catastrophically fails and demonstrates no 

recovery. 

Movie 10 

In-situ compression experiment on an octahedron-of-octets 2nd order hollow Al2O3 half-cell with 

𝐿𝐿 = 8𝜇𝜇𝑚𝑚 and 𝜇𝜇 = 15. The sample is displaced uniaxially to 50% strain at a rate of 10-3 s-1, and 

shows recovery to 90% of the original height after unloading. The sample displays ductile-like 

behavior throughout the compression experiment with a serrated load-displacement curve. 

Movie 11 

In-situ compression experiment on an octahedron-of-octahedra-of-octahedra 3rd order polymer 

half-cell with 𝐿𝐿 = 8𝜇𝜇𝑚𝑚 and 𝜇𝜇 = 5. The sample is displaced uniaxially to 50% strain at a rate of 

10-3 s-1, and shows recovery to 88% of the original height after unloading. The sample is ductile 

throughout the compression experiment. 

Movie 12 

In-situ compression experiment on an octahedron-of-octahedra-of-octahedra 3rd order core-shell 

ceramic-polymer composite half-cell with 𝐿𝐿 = 8𝜇𝜇𝑚𝑚 and 𝜇𝜇 = 5. The sample is compressed at a 

strain rate of 10-3 s-1 until the onset of brittle failure, wherein the sample catastrophically fails 

and demonstrates no recovery. 

Movie 13 

Cyclic in-situ compression experiment on an octahedron-of-octahedra-of-octahedra 3rd order 

hollow Al2O3 half-cell with 𝐿𝐿 = 8𝜇𝜇𝑚𝑚 and 𝜇𝜇 = 5. The sample is displaced uniaxially to 50% 

strain at a rate of 10-3 s-1, and shows recovery to 98% of the original height after unloading 
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during the first cycle, with nearly 100% recovery for each subsequent cycle. The sample displays 

ductile-like behavior throughout the compression experiment. 

Movie 14 

In-situ compression experiment on a polymer octet-truss nanolattice with a 𝐿𝐿 = 10𝜇𝜇𝑚𝑚 unit cell. 

The sample is compressed to approximately 50% strain and shows a 𝜑𝜑𝑐𝑐 = 83.8% percent strain 

recovery.  

Movie 15 

In-situ compression experiment on a polymer cuboctahedron nanolattice with a 𝐿𝐿 = 10𝜇𝜇𝑚𝑚 unit 

cell. The sample is compressed to approximately 50% strain and shows a 𝜑𝜑𝑐𝑐 = 81.1% percent 

strain recovery.  

Movie 16 

In-situ compression experiment on a polymer 3D Kagome nanolattice with a 𝐿𝐿 = 4𝜇𝜇𝑚𝑚 unit cell. 

The sample is compressed to approximately 50% strain and shows a 𝜑𝜑𝑐𝑐 = 78.7% percent strain 

recovery.  

Movie 17 

In-situ compression experiment on a polymer tetrakaidecahedron nanolattice with a 𝐿𝐿 = 10𝜇𝜇𝑚𝑚 

unit cell. The sample is compressed to approximately 50% strain and shows a 𝜑𝜑𝑐𝑐 = 72.6% 

percent strain recovery.  

Movie 18 

In-situ compression experiment on a hollow Al2O3 octet-truss nanolattice with a 𝐿𝐿 = 10𝜇𝜇𝑚𝑚 unit 

cell and 𝑡𝑡 = 10𝑛𝑛𝑚𝑚 wall thickness. The sample is compressed to approximately 50% strain and 

shows a 𝜑𝜑𝑐𝑐 = 76.2% percent strain recovery.  

Movie 19 

In-situ compression experiment on a hollow Al2O3 cuboctahedron nanolattice with a 𝐿𝐿 = 10𝜇𝜇𝑚𝑚 

unit cell and 𝑡𝑡 = 10𝑛𝑛𝑚𝑚 wall thickness. The sample is compressed to approximately 50% strain 

and shows a 𝜑𝜑𝑐𝑐 = 91.3% percent strain recovery.  

 



131 
 

Movie 20 

In-situ compression experiment on a hollow Al2O3 3D Kagome nanolattice with a 𝐿𝐿 = 4𝜇𝜇𝑚𝑚 unit 

cell and 𝑡𝑡 = 10𝑛𝑛𝑚𝑚 wall thickness. The sample is compressed to approximately 50% strain and 

shows a 𝜑𝜑𝑐𝑐 = 68.1% percent strain recovery.  

Movie 21 

In-situ compression experiment on a hollow Al2O3 tetrakaidecahedron nanolattice with a 

𝐿𝐿 = 10𝜇𝜇𝑚𝑚 unit cell and 𝑡𝑡 = 10𝑛𝑛𝑚𝑚 wall thickness. The sample is compressed to approximately 

50% strain and shows a 𝜑𝜑𝑐𝑐 = 91.5% percent strain recovery.  
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