
Packaging and Deployment of Large Planar Spacecraft
Structures

Thesis by

Manan Arya

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2016

(Defended 2 May 2016)



ii

c© 2016

Manan Arya

All Rights Reserved



iii

Acknowledgements

Many people helped me as this work unfolded, and therefore there are many people I want to

thank. Prime among them is my adviser Professor Sergio Pellegrino; I would be entirely unraveled

without his guidance and his expertise, his advocacy and his encouragement. Thanks are also due

to members of my dissertation committee, Professor Guruswami ‘Ravi’ Ravichandran, Professor

Dennis Kochmann, and Professor Melany Hunt, for their time and their commitment.

Dr. Nicolas Lee and I conceived of the core of the ideas contained herein at the end of a wintry

day at a conference just outside Washington, D.C. in January 2014. I could not have asked for a

more creative or a more indefatigable partner in these adventures. I am greatly indebted to him.

The Space Solar Power Initiative, a collaboration between Professors Sergio Pellegrino, Harry

Atwater, and Ali Hajimiri, provided a definite direction in which to take my ideas. For this I am

greatly indebted to them. The Northrop Grumman Corporation funded my work with the Initiative.

Kate Jackson, Christine Ramirez, and Dimity Nelson keep the Pellegrino group, the Aerospace

option, and all of GALCIT running, respectively. Things would fall apart without the constant

attention of this triad; I am extremely grateful to them. I also want to thank Petros Arakelian for

his assistance in the lab, and John Van Deusen for his assistance in the machine shop.

I am also deeply grateful to Dr. Gregory Davis, Dr. Daniel Scharf, Dr. Anthony Freeman, John

Baker, Dr. Andrew Shapiro-Scharlotta, and Dr. James Breckinridge for advice and mentorship.

The workshops at the W. M. Keck Institute of Space Studies in which I was lucky enough to

participate were tremendous sources of inspiration. Many thanks to Michele Judd, Professor Tom

Prince, and Louis Friedman for these amazing workshops.

Many thanks to members of the Space Structures Laboratory for ideas, discussions, and help-

ing hands: Mélanie Delapierre, Dr. John Steeves, Kristina Hogstrom, Thibaud Talon, Dr. Keith
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Abstract

This thesis presents a set of novel methods to biaxially package planar structures by folding and

wrapping. The structure is divided into strips connected by folds that can slip during wrapping

to accommodate material thickness. These packaging schemes are highly efficient, with theoreti-

cal packaging efficiencies approaching 100%. Packaging tests on meter-scale physical models have

demonstrated packaging efficiencies of up to 83%. These methods avoid permanent deformation of

the structure, allowing an initially flat structure to be deployed to a flat state.

Also presented are structural architectures and deployment schemes that are compatible with

these packaging methods. These structural architectures use either in-plane pretension – suitable

for membrane structures – or out-of-plane bending stiffness to resist loading. Physical models are

constructed to realize these structural architectures. The deployment of these types of structures is

shown to be controllable and repeatable by conducting experiments on lab-scale models.

These packaging methods, structural architectures, and deployment schemes are applicable to a

variety of spacecraft structures such as solar power arrays, solar sails, antenna arrays, and drag sails;

they have the potential to enable larger variants of these structures while reducing the packaging

volume required. In this thesis, these methods are applied to the preliminary structural design of a

space solar power satellite. This deployable spacecraft, measuring 60 m × 60 m, and with an areal

density 100 g m−2, can be packaged into a cylinder measuring 1.5 m in height and 1 m in diameter.

It can be deployed to a flat configuration, where it acts as a stiff lightweight support framework

for multifunctional tiles that collect sunlight, generate electric power, and transmit it to a ground

station on Earth.
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Chapter 1

Introduction

The performance of many kinds of spacecraft structures depends directly on their projected area.

Solar power arrays, radio frequency antenna arrays, solar sails, and drag devices are all examples of

spacecraft structures for which increased area leads directly to increased performance. In general,

two distinct physical principles are responsible for this trend: 1) increased area leads to an increase

in the collected quantity of a flux; and 2) increased area results in increased aperture, leading to

higher spatial resolution of transmitted and received signals.

To save mass, these large-area structures tend to be thin. Thus the form of these structures

is sheet-like: planar with comparable and large dimensions in-plane, and a relatively small out-of-

plane thickness. Examples of such structures are shown in Figure 1.1, in the context of the proposed

Asteroid Redirect Mission [1] spacecraft, which, like other solar electric missions, requires large solar

arrays to generate power for propulsion, and IKAROS [2], a mission that demonstrated the use of

solar sail propulsion.

(a) Asteroid Redirect Mission [1]. (b) IKAROS [2].

Figure 1.1: Examples of spacecraft structures that require large area: (a) solar power arrays and (b)
solar sails.

Often, these large structures must be packaged to fit into a rocket vehicle for launch and then

deployed once in space. This need for packaging and deployment poses four fundamental challenges:
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first, biaxial compaction, reducing both of the large in-plane dimensions; second, making efficient

use of the stowage volume, leaving minimal voids; third, avoiding permanent deformation of the

material, i.e., remaining within the elastic limit; and, fourth, being able to deploy with small and

predictable forces, to lower the requirements on the structure that will carry out the deployment.

Individually, each of these issues has been addressed in the literature, but the search for solutions

to all four challenges combined is a problem still wide open.

This thesis describes novel families of biaxial packaging schemes for large planar structures that

fold and wrap the structure into a compact form. These packaging schemes accommodate arbitrarily

large out-of-plane thicknesses and avoid kinematic incompatibilities in the wrapping step by using

slipping folds. Without slipping folds, there would be buckles and spurious creasing during wrapping,

leading to decreased packaging efficiency, plastic deformation, and non-smooth deployment.

1.1 Outline of Thesis

Two general families of packaging methods are described: Chapter 2 discusses z-folding and wrap-

ping, and Chapter 3 discusses star folding and wrapping. In both cases, mathematical models of the

packaging process are developed, and validated through packaging experiments on physical models.

In each of these two chapters, applicable structural architectures and deployment strategies are

also described. Analytical tools are developed to aid in the design of these structures and deployment

schemes. These structural architectures and deployment strategies are experimentally demonstrated

using lab-scale models.

Chapter 4 applies these ideas to the preliminary structural design of a space solar power satellite.

Many of the analytical tools developed in Chapter 2 and Chapter 3 are leveraged here to develop

an initial design for a large, lightweight, and stiff structure that can package compactly for launch.

Finally, Chapter 5 offers some conclusions, and provides an outlook of future work that may be

conducted to further advance the ideas, concepts, and models described herein.

1.2 State of the Art in the Packaging of Large Planar Struc-

tures

Existing packaging solutions can be divided into two broad categories, those providing compaction

in one dimension, and those providing biaxial compaction.

Most solutions use folding as the basic mechanism for compaction; folding can be accomplished

either by creasing, i.e., a local bending deformation of the material, or through mechanical hinges.

Heavy creasing results in plastic deformation, and a plastically creased membrane structure cannot
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be pulled flat using in-plane tension [3, 4]. Mechanical hinges, on the other hand, may be unfolded

using in-plane tension alone, though they add mass and complexity to the structure.

1.2.1 Uniaxial Compaction

Well-known techniques for one-dimensional packaging include: z-folding, wrapping (or rolling), and

fan-folding. These techniques address three of the four packaging challenges listed above: they

provide efficient packaging, can accommodate the thickness of the material, and can avoid plastic

deformation. However, they do not provide biaxial compaction.

Deployment and pretensioning can be carried out by a simple, uniaxial deployment mechanism,

e.g., with a linear actuator such as a telescopic boom. For example, the first set of solar arrays for

the Hubble Space Telescope adopted a wrapping packaging scheme for the solar power array and

two deployable booms for each wing of the array.

However, compaction occurs in one dimension only, and hence these techniques are not applicable

when both in-plane dimensions of the deployed structure exceed the available packaging envelope.

1.2.2 Biaxial Compaction

Several solutions for biaxial compaction have been proposed; almost all of these are drawn from the

world of origami. Origami mathematics provides useful tools to describe a network of folds that can

be used for biaxial compaction.

Miura-ori [5], shown in Figure 1.2a, is a well-known scheme for biaxially packaging a structure.

It modifies the standard map folding technique (i.e., double z-folding) by skewing one set of parallel

fold lines. Both map folding and Miura-ori have been used for packaging space structures [6, 7].

(a) Miura-ori (b) Guest & Pellegrino, 1992 (c) Zirbel et. al., 2013

Figure 1.2: Fold patterns for biaxial compaction of structures. Mountain folds are shown as solid
lines, valley folds as dotted lines.

There are several techniques for wrapping a membrane around a polygonal hub using straight

creases [8, 9]. Examples of 6-fold symmetric crease patterns to wrap a flat membrane around a
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hexagonal hub are shown in Figures 1.2b and 1.2c. The curvature of the near-radial crease lines

is related to the thickness of the membrane. The coordinates of the vertices of the crease pattern

are computed such as to provide sufficient spacing between vertices that fall in the same meridional

plane, in the creased configuration. The crease lengths and angles are computed by considering

both the flat and the wrapped configurations of the membrane, i.e., neglecting the intermediate

configurations.

It is also possible to compact membranes biaxially by first folding in one direction and then

wrapping. Both z-folding and wrapping [7], and star folding and wrapping [10] have been proposed.

This approach requires the crease lines to be curved to accommodate the thickness of the membrane

[11, 12, 13], as is shown in Figure 1.3.

(a) Crease pattern (b) Physical model (c) Model, folding

Figure 1.3: Curved crease folding.

1.2.3 Thickness Effects

In general, these origami-based schemes account for material thickness by spacing apart the layers

in the folded form. The local effects of material thickness, near the fold lines and vertices where the

fold lines intersect, are not considered. There exists a growing body of literature on solutions for

adapting origami patterns, initially developed for idealized zero-thickness materials, to be realized

with finite-thickness materials. This subsection describes some of this work, using, as a simple

illustrative example, the case of z-folding.

To accommodate thickness near the fold lines, the hinge axes of the folds can be shifted to either

the top or the bottom surface of the material, as illustrated in Figure 1.4. This is known as the axis

shift method. For biaxial packaging, the amount of axis shift for each fold line at a vertex must be

determined to ensure that the vertex is not over-constrained. This amount of axis shift that allows

folding has been determined for symmetric degree-4 vertices [14] and, and indeed, for any vertex [15].

The structures with these specific hinge axis offsets have a stepped nature; different levels of panel

thickness are needed to provide the appropriate axis shifts. Since the hinge axes are not coplanar

in the fully deployed state, the kinematics of such structures are different from those of the parent

origami fold pattern.
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Figure 1.4: Hinge axis shift method for accommodating thickness.

A variant of the axis shift approach is to allow sliding along the hinge lines [16]. This enables

the hinge axis offsets to have arbitrary values. However, fully folding a vertex with sliding hinges

without allowing any deformation of the panels would require an infinite amount of sliding.

Figure 1.5: Volume trimming method for accommodating thickness.

An alternative method that preserves the kinematics of the underlying origami is called volume

trimming [17]. As shown in Figure 1.5, the hinge axes remain planar. Material close to the hinge

axes is removed to allow folding. However, this method requires variable-thickness panels, which

can be difficult to manufacture. Additionally, the amount of material removed is a function of the

final fold angle; as this angle approaches ±180◦, more and more material must be removed. In the

limit of a fully folded hinge, all material must be removed.

To address the concerns with the volume trimming method, it has been proposed to offset the

panels from the hinge axes by means of standoffs [18], as shown in Figure 1.6. The resulting panels

have uniform thickness and can be folded fully. However, at many scales, the construction of the
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Figure 1.6: Offset panel method for accommodating thickness.

standoffs may be problematic. Additionally, the unfolded structure presents no flat, planar faces.

Figure 1.7: Membrane creases for accommodating thickness.

Another approach is to connect thick panels with thinner material, leaving gaps between the

thick panels where necessary [9, 19]. This is illustrated in Figure 1.7. This technique introduces

additional compliance in the structure, and the structure does not follow the kinematics of a flat

origami during folding. Additionally, if in the packaged configuration the folds are not fully closed,

there will be some gaps between the edges of the panels. These voids lead to a loss of packaging

efficiency.

A variant of this approach is shown in Figure 1.8, and was detailed for flat-foldable origami [20].

This technique replaces the compliant membrane in the fold region by two separate hinges. The

relationship between the kinematics of such a mechanism and those of its origami counterpart is

poorly understood. Furthermore, this technique, as it currently exists, only applies to flat-foldable

origami.
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Figure 1.8: Offset creases for accommodating thickness.

In summary, even though there are a variety of origami-like biaxial packaging schemes that

account for material thickness in a global sense, accommodating material thickness locally around

folds and vertices is challenging, especially if uniform-thickness structures are desired that follow the

kinematics of the parent origami pattern.

1.2.4 Cuts and Slits

Packaging of circular thin-shell reflectors using either radial cuts [21, 22] or spiral cuts [23] has been

proposed. It was found that a wide range of packaging schemes could be enabled by introducing

localized cuts in the structure. However, these cuts and slits produce discontinuities across which

tractions cannot be transmitted. These packaging schemes utilize all kinematic degrees of freedom

introduced by cutting, and it is challenging to re-establish connectivity between separate pieces after

deployment. Some of these schemes have connected edges [21, 22], but the bulk of the structure

remains discontinuous, leading to a loss of dimensional stability.

Figure 1.9: Radial spiral cuts used to package a thin shell reflector [21].
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Chapter 2

Structures with Parallel Slipping
Folds

This chapter introduces the concept of slipping folds and describes how planar structures may be

biaxially compacted using parallel straight slipping folds. This configuration of slipping folds and

this packaging method are compatible with a pretensioning scheme that stabilizes and stiffens the

deployed structure; this pretensioning scheme is also discussed. Finally, a method of deploying such

structures is described. To validate these concepts for packaging, pretensioning, and deployment,

simple experiments were conducted; these experiments and their results are also discussed.

Parts of this chapter were previously published as [24].

2.1 Packaging Concept

Figure 2.1: The packaging concept consists of two steps: (A) z-folding and (B) wrapping. The square
structure is z-folded using n − 1 slipping folds. Then, the resulting stack of n strips is wrapped in
a 2-fold rotationally symmetric fashion. For clarity, only a single strip is shown in the wrapped
configuration.

Consider a square planar structure of side length L and thickness h as shown in Figure 2.1. The

structure is divided into n strips by n − 1 slipping folds. A slipping fold allows rotation about the

fold line as well as translation along the fold line, herein called slip. In Figure 2.1, the slipping folds
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are shown as slits, but there are many ways of realizing slipping folds, as discussed in Section 2.1.1.

The packaging concept, generally called slip wrapping, has two steps, each compacting the struc-

ture along a single dimension. First, the structure is z-folded using the parallel slipping folds, pro-

ducing a stack of n strips. Second, this stack of strips is wrapped in a 2-fold rotationally symmetric

fashion. The slipping folds are needed to accommodate the incompatibility created by wrapping the

thick strips around different radii, as seen in Figure 2.2. The 2-fold rotational symmetry imposes

zero slip at the ends of the wrapped stack, allowing the perimeter of the square to remain continuous.

Figure 2.2: Wrapping a stack of thick inextensible strips requires that the strips slip against each
other.

The slip degree of freedom is crucial; it enables the second compaction step of wrapping. As

shown in Figure 2.2, wrapping the z-folded stack of n strips leads to the outer strips going around

larger radii than the inner strips because each strip has thickness h > 0. Thus, for the same

arclength, outer strips traverse smaller wrapping angles than inner layers. If the strips cannot slip

against each other, wrapping the stack of strips will result in straining or micro-buckling.

2.1.1 Slipping Folds

The packaging concepts proposed in this thesis rely on slipping folds, which allow rotation about

the fold line, as well as translation along the fold line. These two independent kinematic degrees

of freedom of a slipping fold are shown in Figure 2.3. Ideal slipping folds allow the structure to be

folded and unfolded, and slipped and unslipped at these fold lines without plasticity or damage.

As shown below in Section 2.1.3, the amount of slip needed to package a given structure to a

certain level of compaction is finite and can be calculated. As such, a slipping fold is required to

provide only a finite amount of slip, and it can be designed to provide the necessary amount of slip.

The simplest realization of a slipping fold involves removing material at a fold line to create a

slit; a slit allows for rotation and translation without any material strain. However, it introduces
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Figure 2.3: Slipping folds have two kinematic degrees of freedom: rotation about and translation
along the fold line.

unnecessary degrees of freedom. Realizations of slipping folds have been considered that are not

simple cuts, but that include connections that allow for the transmission of tension forces and the

limited transmission of shearing forces across fold lines. Figure 2.4 illustrates two possible methods

for forming these connections.

Hinged fold A cylindrical flexible rod is located at the fold line. This rod is attached to the

material on one side of the fold using tabs. The material on the other side is attached to

the rod using a loop. This loop can rotate about the rod and slip along the rod. The gaps

between the loops and the tabs defines the maximum slip that can be obtained. Tension can

be transmitted across the fold line. In the maximum slip state, a shearing force may also be

transmitted.

Ligament fold To create a ligament fold, one or more thin strips of material are left uncut at the

fold line. The length of the ligament is chosen to allow for the required deformation along the

fold line. Like the hinged fold, a ligament fold has a state of maximum slip; beyond this state

the ligament will deform plastically. A ligament fold allows for the transmission of tension and

a limited amount of shear across the fold line.

Whereas hinged folds are more suitable for larger structures where mechanical complexity may be

appropriate, ligament folds are useful for developing structures and prototypes at small scales.

2.1.2 Volume-Based Model of Wrapping

To develop a mathematical model of the wrapped configuration of the square structure shown in

Figure 2.1, assume that in the wrapped state the mid-surface of each strip lies on a generalized

cylindrical surface (i.e., a ruled surface spanned by parallel lines, and not necessarily the common

case of a right circular cylinder). Further assume that the mid-surface of each strip is normally

separated from that of its adjacent strip by a constant distance (i.e., the mid-surfaces of the strips

are parallel). Nominally, this constant separation distance is the strip thickness h. Thus, by fixing

the shape of the mid-surface of a reference strip, the mid-surfaces of every other strip can be found.
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(a) Hinged fold. (b) Ligament fold.

Figure 2.4: Two examples of slipping folds with connections across the fold lines.

Once the configuration of the wrapped strips is known, the amount of slip between them, the

maximum strain in the strips, and the overall packaging efficiency can be determined.

The problem of determining the shape of the wrapped structure can be reduced to determining

the 2D curve produced by the intersection of the mid-surface of this reference strip and a horizontal

plane; this 2D curve is called the base curve. In general, a 2D curve produced by the intersection

of the mid-surface of a strip and a horizontal plane is said to trace that strip. The base curve is

parametrized by its arclength s:

r(s) : [−L/2, L/2]→ R2 (2.1)

As shown in Figure 2.5, the strips are indexed by positive integers on one side of the base curve,

and negative integers on the other. If n is odd, the index i takes on integer values between −(n−1)/2

and (n − 1)/2, and i = 0 corresponds to the central strip and the base curve. If n is even, i has

integer values between −n/2 and n/2, and i = 0 corresponds to the base curve, but not a strip. The

ith strip is traced by a curve r(i; s) that is offset from the base curve by q(i)n(s), where n(s) is the

normal to the base curve and q(i) is a separation distance:

r(i; s) = r(s) + q(i)n(s) (2.2)

q(i) =

iφh if n is odd

iφh− φh
2 sgn(i) if n is even

(2.3)

where h is the strip thickness, and φ ≥ 1 is strip thickness multiplier that accounts for the fact

that in the packaged configuration the mid-surfaces of the strips may be separated by some distance

φh ≥ h.
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(a) n odd

(b) n even

Figure 2.5: The strip mid-surfaces, represented by thick grey lines, have index i and are uniformly
separated from the base curve, shown as the dashed black line.

The slip l(i; s) between the ith and the (i+ 1)th strips is defined to be the difference between the

arclengths si and si+1 of the two strips, at some arclength s along the base curve.

l(i; s) ≡ si+1(s)− si(s) (2.4)

The arclength of strip i has the expression

si(s) =

∫ s

s0

‖r′(i; s̃)‖ds̃ (2.5)

where s0 is a reference point along the base curve, and s̃ is a dummy variable of integration corre-

sponding to the arclength s. The magnitude of the tangent vector ‖r′(i; s)‖ is obtained by differen-

tiating Equation (2.2) with respect to the arclength s and taking the norm:

‖r′(i; s)‖ = ‖r′(s) + q(i)n′(s)‖ (2.6)

The derivative of the normal vector, n′(s), is parallel to the tangent vector and has length |κ(s)|

[25], where κ(s) is the signed curvature of the base curve:

n′(s) = −κ(s)r′(s) (2.7)
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Substituting this into Equation (2.6) and noting that ‖r′(s)‖ = 1 gives

‖r′(i; s)‖ = 1− q(i)κ(s) (2.8)

Substituting this into Equation (2.4):

l(i; s) = [q(i)− q(i+ 1)]

∫ s

s0

κ(s̃) ds̃ = φh

∫ s

s0

κ(s̃) ds̃ (2.9)

Note how the slip l(i; s) between two adjacent strips is independent of the strip index i. Therefore

the design of the slipping folds (e.g., the length of the ligaments) can be the same from strip to strip.

(From here on, the slip will be denoted simply as l(s) without reference to the strip index i.)

Equation (2.9) provides a definition of slip that depends on the global distribution of curvature;

however, it is possible to simplify Equation (2.9) and provide a local definition of slip by noting that

κ =
dθ

ds
(2.10)

where θ(s) is the tangent angle to the base curve at s. Thus

l(s) = φh

∫ s

s0

dθ

ds
ds̃ (2.11)

= φh [θ(s)− θ(s0)] (2.12)

This implies that the slip between two points s0 and s is simply proportional to the change in tangent

angle (measured continuously) between the two points, and the constant of proportionality is the

strip separation φh.

Equation (2.9) is used to determine a condition for having zero slip at both ends of the wrapped

square structure described in Section 2.1:

∫ L/2

−L/2
κ(s) ds = 0 (2.13)

A simple way to meet this condition is to have κ(s) be an odd function of arclength, i.e., κ(−s) =

−κ(s). A base curve that has this property may be defined in a piecewise manner, using a generator

curve p(s) : [0, L/2]→ R2 and a copy of the generator curve rotated by 180◦:

r(s) =

−p(−s) if s ∈ [−L/2, 0)

p(s) if s ∈ [0, L/2]

(2.14)

This describes a wrapping with 2-fold rotational symmetry. Thus it is shown that a 2-fold rotationally
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symmetric wrapping scheme is a sufficient (though not necessary) condition for having zero slip at

both ends of the wrapped stack.

(a) Generator curve (b) Offset curves

Figure 2.6: Base curve for compact packaging. The shaded areas in (b) are the only voids that result
from this curve, and their size depends on the minimum radius of curvature Rmin.

A generator curve that allows for compact wrapping is shown in Figure 2.6a as a solid path.

It is a piecewise curve consisting of a semi-circle of radius R, a vertical line of length c, and an

involute of a circle with pitch 2πc. As shown in Appendix B, an involute of a circle is a spiral curve

with constant normal spacing 2πc = 2nφh between successive turns. This constant spacing accounts

for the thickness of the z-folded stack of strips. This generator curve is derived in more detail in

Appendix C and has the following expression:

p(s) =



R {1− cos (s/R),− sin (s/R)} if s ∈ [0, πR)

R {2, (s/R)− π} if s ∈ [πR, πR+ c)

c {− sin (α− α0) + α cos (α− α0),

cos (α− α0) + α sin (α− α0)}
if s ∈ [πR+ c, L/2]

(2.15)

α2 =
2

c
(s− πR− c) + α2

0 (2.16)

α0 =
2R

c
(2.17)

α is an angular parameter that is related to the arclength through Equation (2.16); α parametrizes

the involute more simply than the arclength s. α0 is the value of α at the starting point of the

involute, where it connects to the vertical line.
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It is not expected that a wrapped stack will follow this curve exactly; however, it is a simple

curve that may be used to estimate the maximum slip and the packaging efficiency of this concept.

The maximum bending strains in this wrapped configuration occur in the central part of the

wrapping. The radius of the semi-circle R = Rmin+φhn/2 can be designed such that the maximum

change in longitudinal curvature for an initially flat strip does exceed the limit imposed by, for

example, the Tresca yield criterion:

Rmin ≥
Eh

2σy (1− ν2)
(2.18)

where E is the material modulus, σy is the yield stress, and ν is Poisson’s ratio. Other similar

conditions may be formulated based on other failure criteria to ensure that the strip material is not

permanently damaged or deformed during packaging.

2.1.3 Maximum Slip

For this particular choice of generator curve, the profile of slip for s ∈ [0, L/2] can be calculated

using Equation (2.9):

l(s) = l(0) + φh

∫ s

0

κ(s̃) ds̃ (2.19)

Here, the slip at arclength s along the base curve is calculated with reference to the slip at the

origin l(0). Recall that the 2-fold symmetry of the base curve ensures that the curvature is an odd

function, i.e., κ(−s) = −κ(s). As such, the slip, which is proportional to the integral of curvature,

must be an even function, i.e., l(−s) = l(s). Thus, the slip profile for the other half of the wrapped

structure s ∈ [−L/2, 0) can be found through this property and Equation (2.19).

To calculate the slip, the curvature of the base curve must be found. The curvature of the semi-

circle is simply the inverse of the radius 1/R and the curvature of the line is 0. The curvature for

the involute of the circle in calculated in Appendix B. Assembling these pieces together:

κ(s) =


1/R if s ∈ [0, πR)

0 if s ∈ [πR, πR+ c)

1/[cα(s)] if s ∈ [πR+ c, L/2]

(2.20)
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Taking the integral with respect to arclength to find the slip:

l(s) = l(0) + φh

∫ s

0

κ(s̃) ds̃ = l(0) + φh


s/R if s ∈ [0, πR)

π if s ∈ [πR, πR+ c)

α(s)− α0 + π if s ∈ [πR+ c, L/2]

(2.21)

Figure 2.7a plots an example of the non-dimensional slip profile against the non-dimensional base

curve arclength. Note that the slip l(0) at s = 0 has been chosen to give zero slip at both ends of

the wrapped stack. Figure 2.7b provides a visual representation of how the slip, held to be zero at

one end of the stack, grows as the stack spirals inwards. At the origin, the curvature of the base

curve flips sign, and the slip decreases until it reaches zero again at the other end of the stack.

s/h

l/h

-1500 -1000 -500 0 500 1000 1500
0

5

10

15

20

(a) (b)

Figure 2.7: (a) plots the slip l non-dimensionalized by the structure thickness h against the non-
dimensional arclength s/h. (b) depicts the magnitude of slip over the wrapped stack. The length of
the arrows is proportional to the amount of slip.

Since the ends of the wrapped stack are not allowed to slip, the maximum slip lmax occurs at the

center of the curve at s = 0. From Equation (2.21), assuming l(L/2) = l(−L/2) = 0, |lmax| = l(0):

|lmax| = φh (αmax − α0 + π) (2.22)

Defining the non-dimensional slip χ ≡ |lmax| /h:

χ = φαmax −
2πψ

n
(2.23)

α2
max =

πλ

nφ
+

2π2ψ

nφ
− 2 +

(
2πψ

nφ

)2

(2.24)
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where ψ is the non-dimensional minimum bend radius Rmin/h, λ is the length-to-thickness ratio

L/h, and αmax is the maximum value of α, obtained by evaluating Equation (2.16) at s = L/2.

λ, the length-to-thickness ratio, is an important parameter. Low values of λ correspond to

smaller, thicker structures (e.g., blanket solar power arrays and planar antennas) and high values of

λ correspond to bigger, thinner structures (e.g., solar sails and drag sails). In general, the range of

values of λ in which aerospace engineers tend to be interested extends from λ = 103 on the lower

end (i.e., structures with L ≈ 1 m and h ≈ 1 mm) to λ = 107 (for larger, more conceptual structures

with L ≈ 100 m and h ≈ 10µm).

Figure 2.8 shows plots of the variation of the non-dimensional maximum slip χ with the length-

to-thickness ratio λ for different values of the number of strips n and the non-dimensional minimum

bend radius ψ, with the thickness multiplier φ held constant.
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(a) φ = 1, ψ = 50
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(b) φ = 1, n = 100

Figure 2.8: Non-dimensional maximum slip χ as a function of the dimensionless deployed length
λ = L/h, the dimensionless minimum bend radius ψ = Rmin/h, and the number of strips n. For
(a), φ and ψ are held constant, and for (b), φ and n are held constant.

As λ grows larger, the first term in Equation (2.24) dominates, and the non-dimensional maxi-

mum slip χ approaches the following asymptote. As λ→∞

α2
max →

πλ

nφ
(2.25)

⇒ χ→
(
πφλ

n

)1/2

(2.26)

This result implies that the proposed concept incurs a less-than-proportional increase in non-

dimensional maximum slip χ as the structure is scaled to higher λ. That is, as the structure

grows longer (while keeping constant the thickness), the maximum slip grows as the square root of

λ.
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2.1.4 Packaging Efficiency

The packaging efficiency η is the ratio of the material volume of the structure to the volume of the

container into which it is packaged. For this concept, the structure has material volume L2h and

can be contained within a cylinder of radius Rp and height Hp. Thus:

η =
L2h

πR2
pHp

(2.27)

The packaged height Hp is taken to be the width of each strip Hp = L/n. The radius Rp is the

outermost point in the wrapped configuration among any of the strips:

Rp = max
i,s
‖r(i; s)‖ (2.28)

Using Equation (2.2) and Equation (2.3),

Rp = max
i,s
‖r(s) + q(i)n(s)‖ (2.29)

= max
i
‖r
(
L

2

)
+ q(i)n

(
L

2

)
‖ (2.30)

= ‖r
(
L

2

)
+

1

2
φh(n− 1)n

(
L

2

)
‖ (2.31)

The extremal point along the base curve r(L/2) and the normal there n(L/2) can be evaluated by

considering Equation (2.15). This gives an expression for the packaged radius Rp:

Rp = φh

[(n
π

)2
+
(nαmax

π

)2
+

(
n− 1

2

)2

+
n(n− 1)

π
αmax

]1/2
(2.32)

where αmax is evaluated in Equation (2.24).

Using this, the packaging efficiency can be calculated to have the following expression:

η =
nλ

πφ2

[(n
π

)2
+
(nαmax

π

)2
+

(
n− 1

2

)2

+
n(n− 1)

π
αmax

]−1
(2.33)

Figure 2.9 shows the variation of the packaging efficiency with λ, ψ, and φ. The effect of n on the

packaging efficiency is minimal, since as n increases, the packaged height decreases but the packaged

radius increases, and thus the packaged volume varies minimally.

Figure 2.9a shows that the strip thickness multiplier φ has the greatest effect on the packaging

efficiency for large λ. In fact, in the limit of λ → ∞, η → 1/φ. This means that for very large or

very thin structures, the global packaging efficiency depends only on the local, per-strip packaging

efficiency. If φ = 1, i.e., the strips are packaged together as close as possible everywhere, the
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Figure 2.9: Packaging efficiency η as a function of the dimensionless deployed length λ = L/h, the
dimensionless minimum bend radius ψ = Rmin/h, and the strip thickness multiplier φ. For (a), n
and ψ are held constant, and for (b), n and φ are held constant.

packaging efficiency of this concept approaches 100%.

Figure 2.9b shows that the minimum bend radius of the material Rmin = hψ has the greatest

effect for small λ. As λ increases, the size of the two voids (which is determined by Rmin) shown in

Figure 2.6 shrinks in relation to the material volume and the effect of ψ decreases.

2.1.5 Compaction Ratio

The compaction ratio compares the packaged dimensions to the deployed dimensions of an unfoldable

structure. The compaction ratio and the packaging efficiency are related; whereas the packaging

efficiency measures the degree to which a structure occupies its container, the compaction ratio

indicates the size of the container.

In the case of uniaxial compaction, the compaction ratio is simply the ratio of the packaged

size and the deployed size along the compacted dimension. In the case of biaxial compaction, a

compaction ratio ζ is proposed:

ζ ≡ 1

2

(
l1
L1

+
l2
L2

)
(2.34)

where l1 and l2 are the packaged sizes along the two orthogonal compacted dimensions, and L1

and L2 are the deployed sizes. This compaction ratio discriminates between uniaxial and biaxial

compaction. In the case of uniaxial compaction (say along the 1-axis), 0 ≤ l1 < L1 and l2 = L2.

Therefore, in the case of uniaxial compaction, ζ ≥ 0.5. Thus, if packaging scheme achieves ζ < 0.5,

it must compact the structure biaxially.

In the particular case of z-folding and wrapping a square membrane, L1 = L2 = L and l1 = l2 =
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2Rp. Thus the biaxial compaction ratio is

ζ =
2Rp
L

(2.35)

This compaction ratio can be evaluated in terms of the non-dimensional parameters described

in Section 2.1.3:

ζ =
2φ

λ

[(n
π

)2
+
(nαmax

π

)2
+

(
n− 1

2

)2

+
n(n− 1)

π
αmax

]1/2
(2.36)

Figure 2.10 plots this compaction ratio as a function of λ for various values of n and ψ. As can

be seen, ζ < 0.5 for almost all plotted values, indicating a degree of compaction unachievable by

uniaxial means.

λ

ζ

10
3

10
4

10
5

10
6

10
710

-3

10
-2

10
-1

10
0

n = 50

n = 550
n = 300

(a) φ = 1, ψ = 50

λ

ζ

10
3

10
4

10
5

10
6

10
710

-3

10
-2

10
-1

10
0

ψ = 50

ψ = 350

ψ = 200

(b) φ = 1, n = 100

Figure 2.10: Compaction ratio ζ as a function of the dimensionless deployed length λ = L/h, the
dimensionless minimum bend radius ψ = Rmin/h, and the number of strips n. For (a), φ and ψ are
held constant, and for (b), φ and n are held constant.

It is illuminating to evaluate the compaction ratio ζ at values of large λ, when the second term

in Equation (2.36) dominates. Using Equation (2.25) to evaluate αmax as λ→∞:

ζ →
(

4φn

πλ

)1/2

(2.37)

2.1.6 Combined Elastic and Volume-Based Model of Wrapping

Though the spiral curves used to describe the wrapped configuration are based on an accounting

of the finite thickness of the stack of strips, the semicircles are a simple approximation to the

equilibrium shape of an unrestrained stack of folded strips in the center of the wrap. Though the

stack can be made to follow a semicircular profile by using appropriately shaped guides (as is done

in Section 2.1.7), it is useful to know the shape of the stack at the center of the wrap in the absence

of such guides.
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In this subsection, an alternative model of the wrapped structure will be developed that replaces

the semicircles with curves derived from elastica theory. The spiral section of the base curve,

however, will be used, since it offers a reasonable volume-based approach to modeling the shape of

the wrapped stack.

The problem of finding the elastica-based curve that models the unrestrained interior of the

wrapped stack can be posed as follows. Say the stack has been wrapped to follow a semicircular

profile using appropriately shaped guides. The outer diameter of this wrapped stack is then held fixed

by an external restraint. What shape does the stack take once the wrapping guides are removed?

The tightly coiled part of the stack is modeled using an involute of a circle pv with pitch 2πc = 2nφh:

pv(α) = c

 cosα+ α sinα

sinα− α cosα

 (2.38)

α ∈ [α0, αmax] (2.39)

αmax is set by the fixed outer diameter of the wrapping. As shown in Figure 2.11, at point A =

pv(α0), to be determined, the involute is attached to an elastic rod in bending, while maintaining

tangent and curvature continuity. This rod represents the stack of n strips, and has length Le. The

profile of this elastic rod is given by pe(s) : s ∈ [0, Le]→ R2. By symmetry, the elastica curve must

pass through the origin (i.e., pe(0) = {0, 0} = O) and have zero curvature there (i.e., κe(0) = 0).

Figure 2.11: A bent rod, or elastica, is used to model to the curve that traces the interior of the
wrapped stack. In the rotated frame of reference x′y′, it is acted on by horizontal end forces P .

The elastica is loaded by point forces P at either end and has bending stiffness D. (Modeling the

stack of strips that can slip with respect to each other as a single elastic rod is an approximation that
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does not account for the different curvatures of the different strips, or for the contact interactions

between the strips.) The equations that describe the shape, angle, and curvature profiles of such a

rod in bending are derived in Appendix A. Using those results, and by rotating into a frame where

the point forces P act along the rotated x′-axis, the following equations are obtained to ensure shape,

tangent angle, and curvature continuity between the elastica and the involute of the circle:

c (cos θ1 + α0 sin θ1) =
2

k
(E(ω1; q)− E(π/2; q))− Le (2.40)

c (sin θ1 − α0 cos θ1) = −2q

k
cosω1 (2.41)

q sinω1 = sin
θ1
2

(2.42)

2qkcα0 cosω1 = 1 (2.43)

where θ1 is the elastica tangent angle at point A in the rotated frame of reference, and k2 = P/D.

E is the incomplete elliptic integral of the second kind, and ω1 is a transformation variable; both are

described in detail in Appendix A. The variable q = sin θ0
2 is defined by the elastica tangent angle

at the origin θ0. The length of the elastica is constrained to be Le:

Le =
1

k
(F(ω1; q)−F(π/2; q)) (2.44)

where F is the incomplete elliptic integral of the first kind, defined in Appendix A.

The length of material available to the elastica is the length of the initially restrained interior

portion of the stack (i.e., the length of the semi-circle of radius R and a line of length c), and

whatever length is obtained from the involute of the circle by shifting the transition point A from

its original position p(α = 2R/c) = {2R, c} to its final equilibrium position. Using Equation (2.16)

to obtain an expression for this additional length, an expression for Le can be found:

Le = πR+ c+
c

2

(
α2
0 −

(
2R

c

)2
)

(2.45)

This equation ensures that the total length of the wrapped stack remains constant, without altering

the fixed outer diameter of the packaged structure.

Defining dimensionless variables τ ≡ ck, and ψ̃ ≡ Rmin/(φnh) = ψ/(φh), Equations 2.40 to 2.44
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can be non-dimensionalized:

cos θ1 + α0 sin θ1 =
2

τ
(E(ω1; q)− E(π/2; q))−

(
α2
0

2
− π2ψ̃ − 2π2ψ̃2 + 1

)
(2.46)

sin θ1 − α0 cos θ1 = −2q

τ
cosω1 (2.47)

q sinω1 = sin
θ1
2

(2.48)

2qτα0 cosω1 = 1 (2.49)(
α2
0

2
− π2ψ̃ − 2π2ψ̃2 + 1

)
=

1

τ
(F(ω1; q)−F(π/2; q)) (2.50)

Here, a non-dimensional form of Equation (2.45) has been used to substitute for the non-dimensional

length Le/c. These five equations have five variables: the elastica end angles θ0 and θ1, α0, ω1, q,

and τ . Given a single parameter ψ̃, which is the non-dimensional minimum radius of curvature,

these equations can be solved numerically to obtain the elastica shape and curvature profiles.
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Figure 2.12: The semi-circular approximation compared to an elastica solution for the shape of the
wrapped stack in the center, for three different values of the non-dimensional void radius ψ̃. The x
and y axes are non-dimensionalized by parameter c = φnh/π.

Figure 2.12 shows the non-dimensional elastica shape profile pe/c for three different values of ψ̃.

Also plotted are the profiles from the semi-circular approximation. As can be seen, the two profiles

are similar. It is also interesting to compare curvature profiles for these two different models. Figure

2.13 plots the elastica curvature κe non-dimensionalized by the semi-circular radius R against the

non-dimensional elastica arclength s/c for a variety of values of ψ̃.

As can be seen from Figure 2.13, the bent rod solution has variable radius of curvature, as

compared to the constant-curvature approximation of a semi-circle. The elastica curvature vanishes

at the origin at s = 0, reaches a maximum around 1.25 times the void radius R, and then decreases.
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Figure 2.13: Elastica curvature κe non-dimensionalized by the semi-circular radius R for a range of
non-dimensional void radii ψ̃

This result indicates that if a wrapping is done with void radius R by using appropriately

shaped guides, the outer diameter of the wrapping is held fixed, and then the guides are removed,

the resulting maximum curvature may be up to 1.25 times the initial void radius R. Thus, the

maximum bending strain may be larger than expected, and the initial void radius must be designed

to account for this increase in curvature.
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2.1.7 Packaging Experiments

To validate the packaging method four test articles were made from commercially available alu-

minized polyester (Mylarr) films, packaged according to the method, and the packaged shapes were

measured. The properties of the test articles are summarized in Table 2.1. The film thicknesses are

as specified by the manufacturers.

The slipping folds were implemented using ligaments, which were cut into the membrane substrate

using a computer-controlled laser cutter (Universal Laser Systemsr ILS9.75). The ligaments had

widths of 1.5 mm and lengths of 6.6 mm. Model A4 was too large to be cut as a single piece on the

laser cutter; it was cut in two separate parts and then joined together using lengths of Kaptonr

tape.

Model ID h (µm) L (m) log10 λ n ψ lmax (mm)

A1 50.8 0.24 3.67 6 39.4 1.2
A2 50.8 0.50 3.99 13 39.4 1.7
A3 25.4 0.50 4.29 13 78.7 1.1
A4 25.4 0.90 4.55 23 78.7 1.5

Table 2.1: Packaging Test Articles

A set of wrapping guides were made to impose the wrapping profile described in Section 2.1.2.

These guides also prevent the strips from exceeding the maximum curvature limit provided by

Equation (2.18). Using E = 3.50 GPa, σy = 100 MPa, and ν = 0.38 as the material properties

[26], Equation (2.18) requires Rmin ≥ 1.04 mm for a 50.8 µm-thick polyester membrane. The guides

consisted of two identical pieces, as shown in Figure 2.14, with Rmin = 2 mm, thereby achieving a

margin of 2 against plastic deformation. The two pieces were fabricated from UV-curable acrylic

plastic using stereolithography. A lengthwise hole in each piece was used to assemble the guides

with end plates and threaded rods. Each piece also had small pegs at either end that mate with the

two end plates. These end plates held the two guides in alignment.

Figure 2.14: Wrapping guides.

To test the packaging scheme, the four models were first folded into a stack of strips. The strips

were then pre-slipped with respect to each other at the middle of the stack by the amounts indicated

in Table 2.1. This pre-slip was calculated from Equation (2.22) and induced before the stack was

inserted into the guides. When packaging without guides, this step of pre-slipping is not required,
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since the strips are free to slip during packaging. However, since the guides tightly clamp the strips

against each other and hence prevent slip from developing during wrapping, it was necessary to

pre-slip the strips.

The strips were then manually wrapped tightly around the guides. A loop of string was used

to hold the structure wrapped, see Figure 2.15, while a digital caliper was used to measure the

maximum diameter of the cylindrical package at the middle of the wrapped stack, i.e., away from

the ligaments and close to the restraining string. The height of the package was taken to be the

strip width, which neglects any vertical shift of the individual strips due to uneven folding. Figure

2.15 shows model A2 wrapped around the guides.

Figure 2.15: Model A2 wrapped around the guides. The packaged diameter was 23.9 mm.

From the packaged dimensions and the known material volumes, the respective packaging effi-

ciencies were calculated, and the results are plotted in Figure 2.16. The highest packaging efficiency

achieved experimentally was 83% for model A4. Also plotted in Figure 2.16 are four curves generated

using the mathematical model presented in Section 2.1.4 with the same n and ψ values as the four

models, and a value of φ for which the curve passes through the experimental point. These lines

represent packaging efficiencies achievable using similar manufacturing and packaging techniques to

those used in the present study, but scaled to different values of λ.

Since the experimental models had been wrapped tightly and without gaps, a thickness multiplier

φ ≈ 1 was expected. For the two thinner models A3 and A4 with h = 25.4 µm, the experimentally

obtained values of φ = 1.057 and 1.043 confirmed this expectation. The other two measurements,

with φ = 1.139, and φ = 1.106 were obtained from the thicker models (h = 50.8 µm), which indicates

that manual packaging with small gaps is more difficult to achieve for thicker and hence stiffer models.

This trend indicates a need for method of more systematic and controlled packaging. A mechan-

ical apparatus, such as the one proposed by Lanford [27], that maintains dimensional stability of the

membrane during wrapping by inducing a degree of tension in the unwrapped membranes, would

be beneficial. The design of such a jig, however, is outside the scope of this thesis.
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2.2 Pretensioning with Scalloped Edges

The z-fold and wrapping scheme presented in Section 2.1 enforces zero slip along the edges of the

structure, and therefore, these edges be made continuous, stiff, and able to transmit tension without

excessive deflection. By shaping the edge profile, this edge tension can be used to induce a uniform

prestress in the inner part of the structure. This approach is a variation of a standard approach

in the design of suspension bridges [28]. This pretensioning approach is particularly useful when

the structure has small out-of-plane bending stiffness, as in the case of membranes, and needs to be

pretensioned to be stabilized.

Consider the structure shown in Figure 2.17, with slipping folds parallel to the y-axis, and lengths

La along the x-axis and Lb along the y-axis. It is desired that each strip has uniform pretension in the

y-direction, i.e., parallel to the slipping folds, and no pretension in the x-direction, i.e., perpendicular

to the slipping folds. (This neglects the ability of the slipping folds to transmit tension.)

Figure 2.17: A structure with parabolic edges, loaded by pairs of diagonal forces at the corners, is
subject to uniform uniaxial tension per unit width.

Consider applying corner tensioning forces Fx at [±La/2, 0] and Fy at [0,±Lb/2] (using suitable

external compression members, e.g., booms or masts), as shown in Figure 2.18. It is desired to

induce a uniform uniaxial tension per unit width P in each strip, acting in the y-direction. The

appropriate edge profile for the top-right quadrant is a parabola:

f(x) =

(
P

Fx

)
x2 −

(
PLa
2Fx

+
Lb
La

)
x+

Lb
2

(2.51)

x ∈ [0, La/2] (2.52)

The remaining edges of the membrane can be defined by reflections of f(x) through the x and y

axes. To ensure f(x) ≥ 0 over x ∈ [0, La/2], the slope at x = La/2 must satisfy the condition
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f ′(La/2) ≤ 0, and hence

PLa
2Fx

− Lb
La
≤ 0 (2.53)

This particular parabolic edge profile produces the desired tension distribution only in the limit of

inextensional materials, and does not account for the changes in geometry due to the extension of

the strips or the edges. Therefore, it is only valid for low extensions for real materials.

Additionally, strips under pure uniaxial tension will be subject to transverse compression due

to Poisson effects. If this compression is sufficiently large, it will lead to transverse buckling of

strips. As such, this formulation is only valid in the asymptotic case of large n, when the structure

is sufficiently anisotropic. This architecture will need to be modified, for example by shaping the

edges of the strips to reduce compressive stresses [29], to be applicable to structures with low values

of n.

The loading ratio σ ≡ (PLa/2Fx) and the aspect ratio γ ≡ (Lb/La) are the non-dimensional

parameters that control this design. Of interest are the membrane area A normalized by the rhombus

area (LaLb/2), denoted ρ ≡ 2A/LaLb, and the corner force ratio Fy/Fx. These are given by:

ρ = 1− γσ

3
(2.54)

Fy
Fx

= σ + γ (2.55)

Figure 2.18 shows a plot of the dimensionless area ρ as a function of the loading ratio σ and the

aspect ratio γ. Since the deployed area cannot exceed the area of the bounding rhombus, ρ ≤ 1. In

fact, ρ = 1 (i.e., the structure occupies the entirety of the bounding rhombus) requires σ = 0 (i.e.,

the strips are unstressed).

Scalloped edges have been previously used to distribute edge loads to tension membranes [30, 29].

However, the presence of slipping folds, which result in a membrane that has in-plane stiffness that

is much higher parallel to the fold lines than perpendicular to the fold lines, requires and admits a

tensioning solution wherein the membrane tension is oriented in one direction only.

2.2.1 Pretensioning Experiment

A single model was made, using the same materials and techniques as described in Section 2.1.7,

to test the pretensioning concept. It had a thickness of 50.8 µm, lengths LA = LB = 0.8 m, and

18 strips. The ligaments had lengths of 1.0 mm and widths of 4.0 mm. The parabolic edge profile

was chosen to provide a loading ratio of σ = 1 (and since the aspect ratio γ = 1, Equation (2.53) is

satisfied). For these parameters, Equation (2.55) gives a force ratio Fy/Fx = 2.

Figure 2.19 shows the model hanging on a metal-backed chalkboard using magnets. The ten-
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Figure 2.18: Structure area normalized by rhombus area ρ = 2A/LaLb as function of the aspect
ratio γ = Lb/La and the loading ratio σ = PLa/2Fx. The upper triangular region is inaccessible
because of Equation (2.53).

sioning forces were applied by hanging weights: Fy was applied by hanging a 50 g weight from the

bottom corner and holding the top corner of the membrane with a pin and Fx was applied through

a pulley by hanging a 25 g weight and pinning the right corner of the membrane.

Inspection of this model showed that each strip was in a state of tension, and that the model

was hanging flat. Some transverse curvature of the strips was observed, which could be due to the

film having been stored on a roll (though that could be avoided by starting from a membrane with

no initial curvature) or from transverse compression from Poisson effects.

Figure 2.19: Hanging model test of prestressing concept.
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2.3 Deployment of Structures with Parallel Slipping Folds

Figure 2.20 shows a two-stage deployment concept for a slip-wrapped structure with scalloped edges.

The deployment process consists of an unwrapping stage followed by an unfolding stage.

Figure 2.20: Two stages of deploying a slip-wrapped structure with parabolic edges. For clarity,
only one strip is shown for the unwrapping stage.

In the unwrapping stage, the two ends B and B′ of the wrapped stack are pulled in opposite

directions by applying forces FB and FB′ . The separation dB between B and B′ increases until

dB = LB . In the unfolding stage, the stack of strips is unfolded by applying forces FA and FA′ at

points A and A′. The separation dA between these points increases until dA = LA, at the end of

deployment.

(a) Cage (b) Clip

Figure 2.21: Components of deployment restraint concept.

The deployment restraint system consists of two elements, the cage and the clip, shown in Figure

2.21. The two-part cage, Figure 2.21a, is used to control the unwrapping process. The endpoints
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B and B′ of the packaged stack are pulled out through two slots in the cage. During the unfolding

stage, the two halves of the cage separate and move apart, as shown in Figure 2.20. The clip, shown

in Figure 2.21b, holds together the folded stack of strips, at its midpoint. It consists of four thin

flaps that manage the unfolding stage; when the endpoints A and A′ of the folded stack are pulled

apart, the flaps bend elastically and allow only a single strip to deploy at a time. Note that the

wrapped structure rotates with respect to the cage during the unwrapping stage, and hence the clip

has to rotate as well.

2.3.1 Estimating Deployment Forces

The first stage of the deployment process, the unwrapping stage, is dominated by the frictional

sliding of the stack against the cage. There are also frictional interactions between the strips as they

slip against each other. A simple model of the unwrapping stack can be obtained by modeling the

wrapped stack as an elastic rod of uniform cross-section, i.e., assuming that all strips have equal

length, as shown in Figure 2.22. It is assumed that the n strips in the stack are overlapped, and

hence follow the same curve, hence the geometrical effects of strip thickness are neglected.

Each strip has modulus E, Poisson’s ratio ν, width w, and thickness h, leading to a stack bending

stiffness of

D = nE
wh3

12(1− ν2)
(2.56)

that is uniform over the length of the rod.

Figure 2.22: Unwrapping model.

The stack is pulled at point B by a horizontal concentrated force FB = {FB , 0}, parallel to the

x-axis. It is assumed that no moments are applied at point B, to satisfy moment equilibrium for the

free body comprising the membrane stack and the cage. The stack exits the cage at point C, where

the cage applies an equal and opposite force Q = −FB . A non-zero internal bending moment at
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point C ensures moment equilibrium of the arc BC, highlighted in red in Figure 2.22.

At point C, the slope of the of the rod is denoted by θ1 (note that the rod may not be tangent

to the cage at this point), such that the rod-normal component QN and the rod-tangent component

QT of Q are related through the coefficient of friction µ, and hence

QT = µQN (2.57)

Taking components of the forces acting at C:

‖Q‖ cos (π − θ1) = µ‖Q‖ sin (π − θ1) (2.58)

and solving for θ1

θ1 = π − tan−1
(

1

µ

)
(2.59)

The problem of finding the profile of the unwrapping force can be posed as follows: given the

location of points B = {xB , 0} (determined by the imposed motion of point B) and C = {xC , yC}

(determined by the design of the slot in the cage), the bending stiffness D of the rod, find FB such

that the tangent angle is θ1 at C and the bending moment at point B is zero. This is a standard

elastica problem; its solution is derived in Appendix A:

yC =
2

k
q cosφ1 (2.60)

xB − xC =
1

k
[F(φ1; q)−F(π/2; q)]− 2

k
[E(φ1; q)− E(π/2; q)] (2.61)

where F(φ; q) is the incomplete elliptic integral of the first kind, and E(φ; q) is the incomplete elliptic

integral of the second kind. q, φ1, and k are defined as follows:

q = sin

(
θ2
2

)
(2.62)

sinφ1 =
1

q
sin

(
θ1
2

)
(2.63)

k2 =
FB
D

(2.64)

where θ2 is the tangent angle of the rod at B.

Equation (2.60) and Equation (2.61) can be solved numerically for a range of values of xB to

obtain k as a function of xB . Then, the variation of FB over the unwrapping process can be found

using Equation (2.64).

Figure 2.23 plots the predictions of this model in a non-dimensional form, for various values of the

coefficient of friction µ. The model predicts an initial smooth ramp up in force, followed by a plateau
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as the amount of total curvature in the bent stack approaches an asymptote, thus requiring less

additional work. The model predicts higher values of this force plateau as the coefficient of friction

decreases; this is because the tangent angle, θ1, at point C increases with increasing coefficient of

friction, µ, and at high values of θ1, the stack needs to bend less to accommodate the boundary

conditions. This model does not account for the final stages of unwrapping; when the stack is almost

fully unwrapped, the contact between the stack and the cage at point C is lost, and the unwrapping

force drops. This particular model described above cannot capture this behavior.
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Figure 2.23: Non-dimensional unwrapping force FBy
2
c/D with respect to non-dimensional deploy-

ment parameter (xB − xC)/yc.

Turning to the second stage of the deployment process, the deployment force FA is mainly due to

the elastic deformation of the clip; its magnitude increases as each strip is pulled out and suddenly

decreases when the clip deformation is sufficiently large. FA can be estimated from the simple two-

dimensional model in Figure 2.24, where the strips are modeled as inextensible tension elements of

equal length connected by frictionless pin joints. The strips are held in the packaged configuration

by two elastic cantilevers that represent the flaps. The thickness of the strip is small with respect

to the deployed dimensions, and hence for simplicity it is neglected in the following analysis.

There are two different configurations of this model, depending on whether the strips that have

been previously released are slack, and hence FA = 0, Figure 2.25(a), or taut, in which case FA ≥ 0

and the flap is deformed, until a maximum amount of deformation is reached and the hinge i+ 1 is

released; Figure 2.25(b).

Define as dA,i the specific value of dA that corresponds to the instance when FA first becomes

non-zero after the release of hinge i. This is the situation shown in Figure 2.25(b). From Figure
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Figure 2.24: Model to analyze deployment force FA during unfolding process.

(a) (b)

Figure 2.25: The two configurations of the unfolding model: (a) when the previously released strips
are slack and FA = 0, and (b) when the strips are taut and FA ≥ 0.

2.25(b), dA,i can be determined from Pythagoras’ theorem:

(
dA,i

2

)2

+

(
L

2n

)2

=

(
iL

n

)2

(2.65)

The condition for hinge i + 1 to snap out is that the vertical deflection of the tip of the flap,

δv, due to a tip of force of FA becomes equal to the initial overlap, Lo, between the clip and the

hinge. The vertical and horizontal deflections of the flap δv and δh can be calculated as a function

of the applied force FA by treating the flap as an inextensional elastic rod. Using the equations that
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describe the behavior of such rods from Appendix A:

δh = −2

k
[E(φ1; q)− E(π/2; q)]− Lf (2.66)

δv =
2

k
q cosφ1 (2.67)

Given a value of Fa, k can be calculated from:

k2 =
Fa
D

(2.68)

The deflected length of the flap is constrained to remain equal to Lf :

Lf = −1

k
[F(φ1; q)−F(π/2; q)] (2.69)

φ1 is defined as in Eq. 2.64, with the value of θ1 set to be π/2 because the flap is held vertical at

the root:

sinφ1 =
1

q
sin

(
θ1
2

)
=

1

q
sin
(π

4

)
(2.70)

q can be found by solving Eqs 2.69 and 2.70. Once q has been found, δv and δh can be calculated

from Eqs 2.66 and 2.67.

This model predicts a sawtooth-like force profile: a series of smooth ramps up followed by sharp

decreases in force as the flap disengages from the hinges. Figure 2.26 shows the evolution of a non-

dimensional unfolding force FAL
2
f/Df with respect to the deployment fraction dA/L for a particular

choice of model parameters.
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Figure 2.26: Non-dimensional unfolding force FAL
2
f/Df as a function of deployment fraction dA/L.
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2.3.2 Deployment Experiments

A deployment test model was made using the same materials and techniques as described in Section

2.1.7. This model had scalloped edges, with a loading parameter of σ = 1 and an aspect ratio of

γ = 1. It was made with 25.4µm-thick Mylarr, had diagonal lengths LA = LB = 1.00 m, and 26

strips. The ligaments had widths of 1.0 mm and lengths of 4.3 mm. The model was laser-cut as

three separate pieces that were spliced together using Kaptonr tape.

The deployment test apparatus shown in Figure 2.27 was used to test the deployment concept.

The apparatus consisted of four independent linear actuators to provide the deployment forces

FB , FB′ , FA, FA′ , four force sensors to measure these deployment forces, and a suspension system to

partially offload the mass of the membrane.

Each linear actuator consisted of a lead screw (with a pitch of 2.54 mm) coupled to a stepper motor

that drives a carriage back and forth along a rail. Each stepper motor (1.8◦ full step size) was driven

by a microstepping driver (AllegroTM4988 driving the motor with 1/4 steps). A microcontroller

(Arduino Leonardo based on an Atmel R© ATmega32u4) synchronized the four motors, as well as

providing logic, displacement data logging, and an interface to a laptop personal computer. One

1/4 step (corresponding to a motion of 0.003 175 mm) was taken every 500µs. Slight microcontroller

delays led to a carriage speed of 5.93 mm s−1. The motion of each carriage was controlled in open-

loop based on the number of steps commanded.

A six-axis force sensor (ATI Industrial Automation Nano17) was mounted on each carriage, to

measure the components of the deployment force with a resolution of 3.1 µN. Moment components

were also measured by the sensor, but these measurements were not used.

Note that the model was not packaged as tightly as in the packaging tests. That is, it was

packaged with a larger minimum radius of curvature Rmin than dictated by Equation (2.18) and

with gaps between layers. This is because the wrapping guides could not be included in this test;

they would have to be removed before the unfolding stage, thus introducing mechanical complexity

to the experiment. It is possible that a tightly packaged structure will deploy differently than a

loosely packaged structure. The effect of packaging tightness on the deployment behavior warrants

further experimentation.

Figure 2.28 shows the cage, with inner diameter of 37 mm and height of 49 mm, and the clip

that were used for the deployment tests. The cage consisted of two laser-cut acrylic base plates, two

127 µm-thick polyimide plates elastically bent into semicylinders by means of threaded rods that

also attached the semicylinders to the base plates. The cage was constructed in two halves, which

separate during the unfolding stage of the deployment. The inner faces of the semicylinders were

coated with a spray-on PTFE-based dry lubricant (Saint-Gobain Fluoroglide R©) to reduce friction

between the cage and the membrane during unwrapping. The location of the edge of the cage in

relation to its center was measured to be xc = 19.6 mm, yc = 4.0 mm.
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Figure 2.27: Two-axis deployment rig.
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Figure 2.28: Membrane model, wrapped and inserted into the cage. The cage had a diameter of
37 mm and a height of 49 mm.

The clip was made using two paintbrush heads (7 mm × 4 mm cross section, 11 mm length)

connected by a steel rod. The paintbrush bristles were pushed into the wrapped membrane stack,

introducing a small spacing between the membrane strips. This ensured that the membrane strips

would deploy one by one.

The membrane was deployed horizontally, minimizing the effects of gravity by suspending the

clip about 0.25 m above the base of the two-axis deployment rig. Since the clip holds the middle

of the membrane during most of the deployment, suspending the clip helped offload some of the

weight of the membrane. A 400 g weight was suspended from the bottom of the clip to stabilize its

orientation.

The deployment was displacement controlled at a rate of about 11.9 mm s−1, which was chosen

to avoid significant dynamic effects while achieving a full deployment in about 4 minutes.

The average deployment forces, (FB + FB′)/2 and (FA + FA′)/2, measured during a single de-

ployment are plotted in Figure 2.29 with respect to the unwrapping fraction bd/Lb and the unfolding

fraction ad/La. As can be seen, the radial component of the deployment forces is dominant: the

in-plane transverse deployment forces were about 20 times smaller than the radial force component,

and the out-of-plane deployment forces were about 4 times smaller than the radial forces.
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Figure 2.29: Deployment force profiles. During the first stage of unwrapping, the unfolding fraction
is fixed at 0, and during the second stage of unfolding, the unwrapping fraction is fixed at 1.

Figure 2.30 plots the radial component of the average deployment forces (FB + FB′)/2 and

(FA + FA′)/2 measured during three separate deployments, along with the predicted deployment

forces, computed using the models presented in Section 2.3.1.

For the unwrapping force prediction, the elastic modulus was chosen as E = 3.5 GPa, Poisson’s

ratio was ν = 0.38, the coefficient of friction was µ = 0.25. The elastic properties are from the

manufacturer’s specification [26].

The coefficient of kinetic friction between an aluminized Mylarr film (the model material) and

a Kaptonr film treated with the a PTFE-based dry lubricant (the material of the cage walls) was

measured in a separate experiment. In brief, a disc of aluminized Mylarr, glued to a known mass,

was dragged over a PTFE-treated flat Kaptonr sample. This was done using one of the linear

actuators described above, and the dragging forces were measured by the one of the force sensors

described above. The coefficient of kinetic friction was extracted based on the force measurements

and the known mass.

The unfolding force predictions use a clip length Lc = 11 mm, and a clip overlap Lo = 8 mm.

The clip length was measured; the clip overlap was estimated. In generating the predicted unfolding

force profile, a different clip bending stiffness D was used for each snap. This is because the clip

in the experiment was a paintbrush, and the number of paintbrush bristles engaged with the fold

increased with each snap.

Figure 2.30 shows that both the unwrapping and the unfolding force predictions capture both

the overall trends in the experimentally measured data in magnitude, and in the case of the un-
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Figure 2.30: Experimentally measured deployment forces and model predictions.

folding stage, character. The good match between predictions and experiments suggests that the

mechanisms underlying these models (that is, friction and stack bending for the unwrapping stage

and clip bending for the unfolding stage) were indeed dominant during the deployment experiments.

There are many physical effects not captured by these simple mechanical models. These effects

include gravity, contact and sliding between the strips, the non-uniform bending stiffness of the folded

stack, the snagging of the folded ligaments against each other or the cage walls, and variations in

the elastic and geometric properties of the crude clips. It is expected that these unmodeled effects

account for some of the discrepancies between the predicted and measured deployment forces.

Figure 2.31 shows views from an overhead camera at the beginning of deployment, at the end

of the unwrapping stage, during the unfolding stage, and at the end of the deployment. Controlled

deployment was observed for each of the three deployments plotted in Figure 2.30.

2.4 Summary

In this chapter, a novel packaging scheme for structures of finite thickness has been proposed. This

scheme divides the structure into parallel strips connected by slipping folds, and uses specially chosen

base curves for the wrapping profile in order to avoid slippage along the outer edges of the structure.

It has been shown that a highly efficient packaging can be achieved, and also that continuity of the

structure along the edges can be maintained.

For structures with high length-to-thickness ratios, the packaging efficiency of this concept ap-
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(a) Packaged (b) Unwrapped

(c) Unfolding (d) Deployed

Figure 2.31: Deployment test for a membrane with La = Lb = 1 m, h = 25µm viewed from an
overhead camera.
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proaches 100%. Packaging tests on meter-scale models were conducted, and packaging efficiencies

of up to 83% were demonstrated at this scale.

In the packaged configuration, the strips are pre-slipped by specific amounts and are then bent

smoothly around the chosen wrapping profile. This approach avoids plastic deformations of the

structure, and hence, after deployment, the structure can recover its initial shape.

A scheme to apply uniform uniaxial prestress to the deployed structure has also been proposed,

suitable for membrane structures. This prestressing concept exploits the edge continuity of the

structure to create a catenary-like boundary that equilibrates the internal pretension. This approach

requires curved edges which, depending on the required level of pretension, results in a reduction in

the available surface area.

A two-stage deployment process, in which the stacked strips are first unwrapped and then un-

folded, has also been proposed, analyzed in detail, and demonstrated experimentally. It has been

shown that the deployment is well controlled and that the corner forces required to deploy the

structure can be estimated analytically.
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Chapter 3

Polygonal Structures with Slipping
Folds

The concept of slip wrapping can be applied to additional fold patterns; this chapter describes

its application to a family of fold patterns known as star folds [31] where the folds are arranged in

concentric polygons. A mathematical model is developed to describe the packaged configuration and

predict packaging efficiencies. Two structural architectures are discussed; the first uses pretension

to stabilize the deployed structure and the second relies on strip bending stiffness.

The structures described in this chapter have two key advantages over those discussed in Chapter

2: these structures have straight edges (and can be used to tile 2D planes and build larger arrays)

and they admit structural architectures that reduce deployed area lost to scalloping.

Portions of this chapter were previously published as [32].

3.1 Packaging Concept

A star fold pattern, an example of which is shown in Figure 3.1, consists of two kinds of folds: 1) folds

arranged as n− 1 concentric regular N -sided polygons, alternating between mountains and valleys;

and 2) folds that run along the diagonals of the polygons that also alternate between mountains

and valleys. This fold pattern exhibits N -fold symmetry. The folds along the diagonals divide

the structure into N sectors, each of which is a copy of its neighbor, rotated through an angle of

β = 2π/N . In each sector, the fold pattern divides the membrane into n strips. The structure has

side length L, with a polygonal hole in the center with side length L0. The hole side length L0 is

given by the following geometric relation:

L0 = L− 2nw tan
β

2
(3.1)

where w is the width of each strip. Since the hole side length L0 has bounds 0 ≤ L0 ≤ L, the strip

width w has corresponding bounds L/(2n tan β
2 ) ≥ w ≥ 0.
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Figure 3.1: Star fold pattern for N = 4 and n = 5. Mountain folds are shown as solid lines, and
valley folds as dashed lines. The structure has side length L, central hole side length L0, uniform
strip width w, and sector angle β.

Folding along the fold lines produces a star-like shape with N arms, as shown in Figure 3.2a.

Then, since the fold pattern is implemented with slipping folds, these arms can be wrapped around

each other, resulting in a compact packaged cylindrical form, as shown in Figure 3.2b. There are

N + 1 voids in the packaged form; one in the center, and one associated with each wrapped arm.

Neither the folding nor the subsequent wrapping is novel. The fold pattern itself has been

described and studied for the case of N = 4 [33], and it was used, with N = 4, along with the

wrapping step, to package the IKAROS solar sail [34]. Additionally, the stripped solar sail design

[35] used an architecture consisting of strips arranged in concentric squares, and this architecture

was realized as a physical model by [36]. However, the compact packaging of this structure was not

considered.

The key innovative step here is the use of slipping folds to implement this fold pattern, which

allows for compact wrapping. Without slipping folds, this method of packaging does not accommo-

date the thickness h of the material. Slipping folds allow for adjacent strips to slide past each other,

accounting for the different radii of the strips in the wrapped configuration.

3.1.1 Volume-Based Model of Wrapping

Consider the configuration of the structure after folding but before wrapping, as depicted in Figure

3.3a. The intersection of a horizontal plane and the mid-surfaces of the strips produces a set of 2D

curves that trace the location of every strip after folding. (To say that a curve “traces” the location

of a strip is to say that the curve is the intersection of the mid-surface of the strip and a horizontal

plane.) Similar curves that trace the strips after wrapping can be used to describe the fully packaged
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(a) Folding

(b) Wrapping

Figure 3.2: Star folding and wrapping, illustrated for N = 4 and n = 5. For clarity, only the
outermost strips are shown in (b).

structure.

Note how in Figure 3.3a the strips in a single sector have different lengths. This leads to an arm

with variable thickness, and wrapping this variable-thickness arm produces a spiral-like shape where

the pitch of the spiral decreases as one moves outwards. To leverage the technique in Section 2.1.2,

where the wrapping of a stack with uniform thickness was modeled using an involute of a circle,

assume that the the strips have equal length L, as shown in Figure 3.3b. This leads to arms that

have uniform thickness, and, in the wrapped state, can be described by an involute of a circle.

The assumption of equal strip length is unphysical and incompatible with the folding pattern.

However, it simplifies the modeling of the wrapped form and, since it accounts for more material than

is physical, it provides a conservative upper bound on the packaged diameter, and a conservative

lower bound on packaging efficiency.

With this assumption, only a single 2D curve, called the base curve r(s) need be described, as

shown in Figure 3.4. All strips in a single sector are traced by curves that are parallel to this base

curve, and the strips in the other sectors are related through N -fold rotational symmetry. The base

curve is shown as the thick curve in Figure 3.4a. It consists of three parts: the dotted curve q(s),
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(a) (b)

Figure 3.3: (a) The curves that trace the paths of the strips can be generated by taking a slice
through the folded form. (b) Equal strip length L is assumed to produce arms of constant thickness
2nφh.

the solid curve p(s), and a dashed curve that is copy of p(s) rotated clockwise by the angle β.

r(s) =


Rp(−s) if s ∈ [−L/2,−(L/2 + sp))

q(s) if s ∈ [−(L/2 + sp), (L/2 + sp))

p(s) if s ∈ [(L/2 + sp), L/2]

(3.2)

where R is a rotation matrix that implements the clockwise rotation by β, and sp is the arclength

of the curve p.

The ith strip follows a curve r(i; s) that is parallel to the base curve, separated by a distance

(i− 1/2)φh:

r(i; s) = r(s) +

(
i− 1

2

)
φhn(s) (3.3)

where n(s) is the normal to the base curve, i is the integer index (between 1 and n) of the strip,

and φ ≥ 1 is a thickness multiplier that accounts for any gaps between the strips.

Figure 3.5 shows the construction of q(s) and p(s). q(s) is a circular arc AB of radius R0

centered at a point O0. It turns the base curve through an angle π − β. p(s) is constructed in a

piecewise manner; it consists of four pieces:

1. BC, a circular arc of radius R0, centered at O0, and a continuation of arc AB

2. CD, a circular arc of radius R1, centered at O1, and tangent to BC at C

3. DE, which is a vertical line segment, and

4. EF , which is an involute of a circle.
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(a) (b)

Figure 3.4: (a) Base curve r used to model the wrapped strips, which consists of three generator
curves: Rp(−s), q(s), and p(s). (b) The strips are traced by curves parallel to the base curve.

The details of this geometry and the various conditions on these pieces that ensure continuity are

discussed in Appendix C.

As shown in Figure 3.4, the spacing between the arms of the involute is 2πc = 2NH where

H = nφh is half the thickness of each arm. The factor of N accounts for the N arms being wrapped.

The radius R0 = Rmin + (n − 1/2)φh is such that the longitudinal curvature limit 1/Rmin for

an initially flat strip does not exceed the Tresca yield criterion:

Rmin ≥
Eh

2σy (1− ν2)
(3.4)

where E is the material modulus, σy is the yield stress, and ν is the Poisson’s ratio.

Note that this curve has discontinuous curvature at all points where two pieces meet. It is not

expected that a wrapped membrane will follow this curve exactly; however, it is a simple curve that

may be used to estimate key parameters. As was shown in Section 2.1.6, circular arcs can be a close

approximation of the bent equilibrium shape of the stack for the case of wrapping a structure with

parallel slipping folds.

The cross-sections of wrapped structures produced by this method have, by design, N -fold sym-

metry. Figure 3.6 shows examples of the wrapped configuration of structures with N = 3, 5, 9.

Figure 3.6 also shows the increase in the number of voids with N ; there are N voids corresponding

to the N arms, and 1 void in the very center.
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Figure 3.5: Components of the generator curves q and p. q consists of the curve AB, and p consists
of the curve BCDEF .

Figure 3.6: Wrapped configuration of structures with varying values of N . From left to right,
N = 3, 5, 9.



50

3.1.2 Estimate of Maximum Slip

The slip l(i; s) between the (i+ 1)th and the ith strip in a sector is defined as before in Section 2.1.3

as the difference between the arc lengths si+1 and si of the two curves at a point parameterized by

arclength s along the base curve:

l(i; s) ≡ si+1(s)− si(s) (3.5)

Using Equation (2.9), this slip can be expressed in terms of κ(s), the signed curvature of the base

curve:

l(s) = φh

∫ s

s0

κ(s̃) ds̃ (3.6)

where s0 is a location where the slip is identically defined to be zero. As before in Section 2.1, the

slip is independent of the strip index i.

The curvature κ(s) of the base curve can be expressed in terms of the curvature of its individual

pieces. Following Equation (3.2):

κ(s) =


−κp(−s) if s ∈ [−L/2,−(L/2 + sp))

κq(s) if s ∈ [−(L/2 + sp), (L/2 + sp))

κp(s) if s ∈ [(L/2 + sp), L/2]

(3.7)

where κp(s) is the curvature of p(s) and κq(s) is the curvature of q(s). Note that the first piece

of the base curve, Rp(−s) from Equation (3.2), has the same absolute curvature at a point −s as

p(s); curvature is unaffected by the rigid body rotation implemented by the matrix R. There is,

however, a negation since Rp(−s) is traversed in the opposite direction as p(s).

Based on Equation (3.7) and on Equation (3.6), the slip profile for a sector can be calculated:

l(s) = l(−L/2) +


−φh

∫ s
−L/2 κp(−s̃) ds̃ if s ∈ [−L/2,−(L/2 + sp))

−lp + φh
∫ s
−(L/2+sp) κq(s̃) ds̃ if s ∈ [−(L/2 + sp), (L/2 + sp))

−lp + lq + φh
∫ s
L/2+sp

κp(s̃) ds̃ if s ∈ [(L/2 + sp), L/2]

(3.8)

where lp and lq the total slips accumulated over p(s) and q(s), respectively:

lp = φh

∫ L/2

L/2+sp

κp(s̃) ds̃ (3.9)

lq = φh

∫ (L/2+sp)

−(L/2+sp)
κq(s̃) ds̃ (3.10)
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By evaluating Equation (3.8) at one end of the wrapped sector at s = L/2, a relation between

the slip at the both ends of the wrapped sector (i.e., at s = −L/2 and s = L/2) can be determined:

l(L/2) = l(−L/2)− lp + lq + φh

∫ L/2

L/2+sp

κp(s̃) ds̃ (3.11)

From Equation (3.9), the integral term in the expression above is simply the slip lp accumulated

over p(s). From this:

l(L/2)− l(−L/2) = lq 6= 0 (3.12)

This indicates that, unlike z-folding and wrapping, there cannot be zero slip at both ends of each

wrapped sector. The slip created by the curve p(s) is cancelled exactly by its rotated copy Rp(−s)

but the slip contribution of the section q(s) persists. This slip is not created during the wrapping

stage, but during the folding stage when the strips are turned through an angle of π − β. Using

Equation (2.12), this excess slip lq can be found:

lq = φh(π − β) (3.13)

A symmetric way to accommodate this slip is to allow one end of the sector to slip by −lq/2, and

the other by lq/2. Note that this excess slip depends only on β and h, and not on the size of the

structure given by strip length L. Thus a structure can be made bigger without requiring additional

strip.

The maximum slip lmax at the center of the wrapped sector is the sum of lq/2 and the slip lp

generated by the curve p(s):

lmax =
lq
2

+ lp (3.14)

lp can be calculated using Equation (2.12):

lp = φh
(
β +

π

2
+ αmax − α0

)
(3.15)

Substituting this and Equation (3.13) into Equation (3.14):

lmax = φh

(
π +

β

2
+ αmax − α0

)
(3.16)
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Define the non-dimensional maximum slip χ ≡ lmax/h. It can be calculated to be as follows:

χ = φ
(
π +

π

N
+ αmax

)
−
(a
h

) π

nN
(3.17)

α2
max =

(
π

φnN

)[
λ− 2

(
ψ +

(
n− 1

2

)
φ

)(
π +

π

N
+ ξ csc ξ

)]
+

(
π

φnN

)2 (a
h

)2
− 2 (3.18)(a

h

)
=

(
ψ +

(
n− 1

2

)
φ

)(
cot
( π
N

)
− cot ξ + 1 csc ξ

)
(3.19)

cot ξ = cot
( π
N

)
− 4φn

(
1− cos

(
2π

N

))−1(
ψ +

(
n− 1

2

)
φ

)−1
(3.20)

where αmax is the maximum value of the angular parameter of the involute of the circle, a is x-

coordinate of point D in Figure 3.5, and ξ is an angular parameter of the wrapping curve. a and

ξ are defined and evaluated, based on maintaining slope continuity between the pieces of the base

curve, in Appendix C. λ ≡ L/h is the length-to-thickness ratio, and ψ ≡ Rmin/h is the dimensionless

minimum radius of curvature.

Figure 3.7 plots this non-dimensional maximum slip χ against the length-to-thickness ratio λ,

for various values of N and ψ.
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Figure 3.7: Non-dimensional maximum slip χ as a function of the dimensionless deployed length
λ = L/h, the polygonal degree N , and the dimensionless minimum bend radius ψ = Rmin/h. For
(a), φ, ψ, and n are held constant, and for (b), φ, N , and n are held constant.

It is interesting to consider how the maximum slip grows for large λ. As λ → ∞ the first term

in Equation (3.18) and the third term in Equation (3.17) dominate and thus

α2
max →

λπ

φnN
(3.21)

χ→
(
φπλ

nN

)1/2

(3.22)
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Thus it is found that a growth in λ leads to a less-than-proportional increase in the maximum slip

required.

Note that because of the assumption of equal arm length, the maximum slip estimates given in

this subsection are lower bounds on the expected maximum slip. This is because in the physical

case, the base curve will have higher curvature at any given point than is predicted by the present

model. In the physical case, the spacing between successive turns of the base curve decreases as

the arm thickness decreases, producing higher curvatures. This results in a greater amount of slip

generated.

3.1.3 Packaging Efficiency

As in Section 2.1.4, the packaging efficiency η is defined as the ratio of the material volume Vm of

the structure to the volume of the container Vp into which it is packaged. The material volume Vm

is evaluated by multiplying the structure area A and its uniform thickness h:

Vm = Ah (3.23)

The structure area is the area of an N -sided polygon with side-length L, less the area of the central

polygonal hole with side length L0:

A =
N

4
cot

β

2

(
L2 − L2

0

)
(3.24)

Substituting Equation (3.1) for L0, and using non-dimensional terms λ the length-to-thickness ratio,

and Ω ≡ w/L the non-dimensional strip width:

Vm = h3nNλ2Ω

(
1− nΩ tan

β

2

)
(3.25)

The container that holds the packaged structure is taken to be a cylinder of height Hp and radius

Rp. The cylinder height Hp is exactly the strip width w, and the radius of the cylinder Rp is the

radius of the outermost point on any strip:

Rp = max
i,s
‖r(i; s)‖ (3.26)

This gives the container volume Vp:

Vp = πR2
pw (3.27)
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Using these, the packaging efficiency η can be calculated to be

η =
πλ

nNφ2

(
1− nΩ tan

β

2

)[
1 +

(
αmax +

π

N

)2]−1
(3.28)

To simplify this expression somewhat, consider the special case where the central hole vanishes.

Using Equation (3.1):

L0 = 0⇒ w =
L

2n tan (β/2)
(3.29)

⇒ Ωn cot
β

2
=

1

2
(3.30)

⇒ η =
πλ

2nNφ2

[
1 +

(
αmax +

π

N

)2]−1
(3.31)

Figure 3.8 plots this special case of packaging efficiency as a function of λ, for a variety of values of

N and φ.
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Figure 3.8: Packaging efficiency η as a function of the dimensionless deployed length λ = L/h, the
polygonal degree N , and the strip thickness multiplier φ. For (a), n, ψ, and φ are held constant,
and for (b), n, ψ, and N are held constant.

As can be seen Figure 3.8, for the same λ, the packaging efficiency is lower for higher values of N .

That is, for the same side length and thickness, a triangular structure will package more efficiently

than a square structure, which in turn will package more efficiently than a hexagonal structure. This

is because as N increases, the number of voids in the center of the wrapped structure increases, and

more volume is lost to these voids.

It is important to note that the packaging efficiencies plotted in Figure 3.8 are lower bounds for

the expected experimental values. This is due to the assumption of equal strip length in Section

3.1.1, which results in the mathematical model of packaging accounting for more material than is

physical. As such, the maximum packaging efficiency obtained from Equation (3.31) and plotted in

Figure 3.8 is 50%.

Intuitively, as the length-to-thickness ratio λ increases and more material is wrapped in the outer
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sections of the package, the volume lost to the central voids decreases in comparison to the material

volume and the packaging efficiency should approach 1. This asymptote to η → 1 is what was seen

in Section 2.1.4. However, it is not seen here because the present model is capable of generating

only lower bounds on packaging efficiency.

This asymptotic behavior can be recovered by accounting for the increased volume of material

considered in the mathematical model. By taking the material volume to equal that of the nN strips

of equal length L, width w, and thickness h, the corrected material volume V ′m can be calculated:

V ′m = nNLwh (3.32)

The packaged volume is still given by Equation (3.27). From this, the corrected packaging efficiency

η′ can be calculated:

η′ =
πλ

nNφ2

[
1 +

(
αmax +

π

N

)2]−1
(3.33)

This corrected expression for the packaging efficiency η′ is a factor of 2 greater than the one obtained

in Equation (3.31). Thus, it recovers the expected trend toward η′ → 1 for large λ.

3.1.4 Packaging Experiments

Three test articles, summarized in Table 3.1, were made for performing packaging experiments.

Models S1 and S2 were made from aluminized Mylarr films, and model S3 was made from uncoated

Kaptonr HN film. The slipping folds were implemented using ligaments, which were cut into the

membrane substrate using a computer-controlled laser cutter (Universal Laser Systemsr ILS9.75).

The ligament dimensions are given in Table 3.2.

For model S3, the diagonal fold lines were implemented as slipping folds with ligaments. The

diagonal fold lines in models S1 and S2 were implemented as standard non-slipping folds. These

models were able to be packaged because the amount of slip needed at the ends of the wrapped sectors

is very small, on the order of the thickness of the membrane, as indicated by Equation (3.13). These

standard fold lines were defined by perforations (with hole diameters of roughly 150µm and hole

spacing of roughly 550µm) laser-cut into the membrane substrates.

Model ID N h (µm) L (m) log10 λ n ψ

S1 4 50.8 0.99 4.29 11 29.3
S2 3 25.4 0.67 4.42 6 58.7
S3 4 50.8 0.47 3.97 5 29.3

Table 3.1: Experimental Test Articles

Model S1 was too large to be cut as a single piece on the laser cutter; it was cut in four separate
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Model ID Ligament Width (mm) Ligament Length (mm)

S1 1.0 7.3
S2 1.0 3.6
S3 2.0 5.0

Table 3.2: Ligament characteristics for the experimental test articles

parts and then joined together using lengths of Kaptonr tape.

Unlike in Section 2.1.7, where the maximum slip could be calculated and induced in the stack,

the mathematical models presented in Section 3.1.1 only provide lower bounds of the maximum slip

needed for star-folding and wrapping. As such, it was impossible to pre-slip these models to the

exact amount required for packaging.

To package, plugs with circular cross-sections were used. These plugs were steel rods with a

diameter of 2.98 mm. As the model was wrapped, initially loosely, around the plugs, the strips were

allowed to slip as needed by ensuring that the plugs did not tightly clamp the membrane strips.

As the folded arms were wrapped further, contact between the strips and the plugs was difficult to

avoid. Toward the final stages of wrapping, it was difficult to allow the strips to slip freely.

After wrapping, the membrane models were held clamped by a loop of string. The diameter of

the wrapped membrane was measured using digital calipers at the middle, away from the ligaments

and near the restraining string.

Unlike in the case of z-folded wraps, where circular plugs would have resulted in the membrane

stack following a figure-8 profile and specially shaped plugs were required, plugs with circular cross

sections were deemed to be sufficient.

The experimental packaging efficiencies are plotted in Figure 3.10. These packaging efficiencies

were calculated by assuming the height of the package to be the strip width. Also plotted are three

curves with the same N , n, ψ, and ω values, with the φ values for which the theoretical curves

pass through the experimental points. Since the predicted packaging efficiencies are conservative

upper bounds for expected experimental efficiencies, φ ≤ 1 must be chosen for the theoretical

curves to pass through the experimental points. For the three star-folded and wrapped models,

φ = 0.778, 0.700, 0.657 were obtained, indicating the degree to which the models underpredict the

packaging efficiency.

Another measure of the degree of underprediction is simply the ratio of predicted packaging

efficiency (for φ = 1) and the measured packaging efficiency. This is shown in Table 3.3.

Model ID ηpredicted ηmeasured
ηpredicted
ηmeasured

S2 53% 67% 0.79
S3 47% 64% 0.72
S4 54% 80% 0.68

Table 3.3: Measured and predicted packaging efficiencies
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Figure 3.9: Model S2 packaged to a diameter of 18 mm and a height of 30 mm.
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Figure 3.10: Packaging test results for star-folded and wrapped membrane test articles.
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3.2 Structural Architectures

3.2.1 Pretensioning with Scalloped Edges

The technique described in Section 2.2 of using scalloped edges to pretension a structure with parallel

slipping folds can be modified to work with the polygonal structures under discussion. As shown in

Figure 3.11 for an example case of N = 6, each individual sector of the structure can be implemented

with parabolic scallops. The structure as a whole can be tensioned by applying N radially outwards

forces Fc at each of the N outer corners. The parabolic edges distribute this applied tension to

uniform uniaxial distributed tension in the sector.

Due to the symmetry of this structure, the required tensioning forces are equal; this allows for

the N booms (or N/2 booms if N is even) to be identical, or, if the structure is pretensioned by

centrifugal forces [37], for the N tensioning masses to be the same.

Figure 3.11: Each sector has scalloped edges to redistribute corner tensioning forces into uniaxial
uniform tension in the arms.

Through symmetry, the profile of only one scalloped edge for a sector needs be described. The

profile of the other edge for that sector is obtained through reflection about the x axis, and the

profiles of the other sectors are obtained through N -fold symmetry. For this one sector, the edge
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profile f(x) : [0, L2 cot β2 ]→ [0, L2 ] is

f(x) =

(
2σ

L

)
x2 +

(
tan

β

2
− σ cot

β

2

)
x (3.34)

σ ≡ PL

4Fx
≥ 0 (3.35)

where σ is the dimensionless loading parameter, P is the force per unit length induced in the

structure, β = 2π
N is the sector angle, and Fx is the constant horizontal component of the tension in

the parabolic edge.

Since f(x) must remain above the x-axis, it is required that

f ′(x = 0) ≥ 0 (3.36)

⇒ σ ≤ tan2 β

2
(3.37)

This gives the upper limit for the loading parameter σ given a polygonal degree N . The maximal

value of σ for any N occurs at N = 3, for which σ ≤ 3.

The ratio between the area of the scalloped structure and the polygon area ρ ≡ A/Apolygon is

ρ = 1− σ

3
cot2

β

2
(3.38)

This area ratio depends only on the loading parameter σ and the sector angle β. As the loading

parameter σ increases, the area ratio ρ decreases. This is because as σ increases, the curvature of

the scalloped edges increases, leading to a larger degree of scalloping and more lost area. The upper

bound for σ, given by Equation (3.37), determines the lower bound for ρ:

ρ ≥ 2

3
(3.39)

From this, it can be seen that at most, a third of the polygonal area may be lost to scalloping. For

the structure area to completely fill the parent polygon (i.e., ρ = 1) requires σ = 0⇒ P = 0 which

means that that the structure is not pretensioned. Therefore, ρ < 1 and some area must always be

lost.

The magnitude of the radially outwards force applied at each outer corner is

Fc = 2Fx

(
sec

β

2
+ σ cos

β

2

)
(3.40)

Figure 3.12 shows examples of structures with N = 3, 4, 5 with scallop-edge sectors for σ =

1
2 tan2 β

2 .

As discussed in Section 2.2, the use of scalloped edges to tension membranes is not novel; the
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Figure 3.12: Examples of structures with scalloped sectors for (from left to right) N = 3, 4, 5.

novelty here lies in the highly anisotropic in-plane stiffnesses of the structure being prestressed, and

the resulting need for an anisotropic pretension field.

3.2.2 Strips with Bending Stiffness

The architecture discussed in Section 3.2.1 was developed for membrane structures, i.e., structures

with negligible out-of-plane bending stiffness. To react out-of-plane loading, these structures need

to be pretensioned. This subsection proposes a structural architecture that is intended for strips

with non-negligible bending stiffness.

The packaging schemes proposed in Section 3.1 require strips to be flattened and rolled; strips

can be designed so that when they are unrolled, they have much higher bending stiffness than when

they are flattened. The simplest example of such a strip is a carpenter’s tape measure, which is a

thin-shell structure that can be flattened and then rolled [38]. Other strip cross-sections are also

possible, with more corrugations, or with other structural elements that pop out of plane to increase

the deployed plane bending stiffness.

As shown in Figure 3.13, these bending-stiff strips can be arranged in a geometry favorable to

the packaging schemes described in Section 3.1. In this geometry, they can be configured to react a

normal pressure loading B.

The strips are pinned at either end to diagonal cords. The diagonal cords, in turn, are attached

to a central hub at one end, and to the tips of deployable booms at the other. The booms are

clamped to the hub at the center. After deployment, the diagonal cords are tensioned to a value T .

This particular arrangement of structural components was designed to be applied to space solar

power satellites; further discussion on this application is included in Chapter 4.

A simple static model of this architecture is developed below for a structure with no central

hole (i.e., L0 = 0) and for small deflections. The strips are modeled as Euler-Bernoulli beams with

uniform bending stiffness (EI)strip. The ligament connections between the strips are not accounted

for in this simplified model. The diagonal cords are modeled as lines under tension T , and the booms
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Figure 3.13: Structural architecture where the strips have bending stiffness to react out-of-plane
pressure loading B.

are modeled as beam-columns with bending stiffness (EI)boom.

The strips are simply supported and loaded normally by a distributed loading given by the

pressure loading B multiplied by the strip width w. The vertical deflection of the ith strip is

ustrip,i(x) = − BwL4
i

8(EI)strip

[
1

3

(
x

Li

)4

− 1

2

(
x

Li

)2

+
5

48

]
+ uDC,i (3.41)

where (EI)strip is the strip bending stiffness, x ∈ [−Li/2, Li/2] is a coordinate along the strip,

Li = L/n(i− 1/2) +L0 is the length of the ith strip, and uDC,i is the vertical deflection of the point

at which the strip is attached to the diagonal cord.

The distance between these attachment points is v ≡ w sec β
2 . As shown in Figure 3.14, these

attachment points are assumed to deflect only vertically; an attachment point cannot deflect in the

circumferential direction if N -fold rotational symmetry is assumed, and the deflection in the radial

direction is assumed to be negligible.

The vertical deflection of the ith attachment point on the diagonal cord uDC,i can be computed

by assuming small angles, and thus uniform tension T throughout the diagonal cord. From vertical

equilibrium at the ith attachment point:

T

(
uDC,i − uDC,i+1

v

)
+ T

(
uDC,i − uDC,i−1

v

)
= BwLi (3.42)

⇒ uDC,i+1 − 2uDC,i + uDC,i−1 = −BvwLi
T

(3.43)
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Figure 3.14: Diagonal cord equilibrium.

The innermost attachment point (i.e., i = 0) is fixed to the hub, thus uDC,0 = 0. The outermost

attachment point is pinned to the tip of the boom, thus uDC,n = uboom. The diagonal cord deflections

are computed by a shooting method to satisfy these boundary conditions.

Through global force and moment equilibrium for the diagonal cord, the end forces at the hub

Fhub and the boom tip Fboom can be found to be

Fboom = BwL
(n+ 1)(2n+ 1)

6n
(3.44)

Fhub = BwL
(n+ 1)(2n− 2)

4n
(3.45)

The booms are modeled as beam-columns, with the following relation between the end moments

M1,M2, tip shear load 2Fboom, end rotations θ1, θ2, and tip deflection uboom:
M1

M2

−2Fboom

 = K


θ1

θ2

uboom

 (3.46)

The stiffness matrix K is a function of the boom bending stiffness (EI)boom, the boom length

Lboom = L
2 cot β2 , and the axial compressive load T . It can be found in standard texts [39].

The booms are clamped at the hub and pinned to the diagonal cords; thus the boundary condi-

tions are θ1 = 0 and M2 = 0. Using these, Equation (3.46) can be reduced and inverted to find the

tip deflection uboom:  θ2

uboom

 = K̃−1

 0

−2Fboom

 (3.47)
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The stiffness and length of this boom determine its Euler buckling load [40]; this gives the upper

bound for the tension T in the diagonal cord:

T <
π2(EI)boom

4L2
boom

(3.48)

Figure 3.15 shows examples of deflected shapes obtained from this model for N = 3, 4, 6. The

construction of this simple model decouples the deflections along the diagonals and the deflections

along the strips. The diagonal cord deflections are dictated by diagonal cord tension T and the

boom stiffness alone, and the strip deflections are controlled by the strip bending stiffness alone.

(a) N = 3 (b) N = 4 (c) N = 6

Figure 3.15: Examples of deflected shapes produced by the simple static model of a polygonal
structure with strips that have finite bending stiffness. For clarity, the booms are not shown, and
the strips are represented by their midlines. The strips are shown as red lines, and the diagonal
cords are blue.
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3.3 Deployment Concept

A two-stage deployment process, consisting of an unwrapping stage followed by an unfolding stage,

is described in this section. The unwrapping stage is shown in Figure 3.16. A cage is used to

hold the packaged structure constrained. This cage has N slots through which the N ends of the

arms can protrude. Pulling at the N endpoints of these arms, labeled as A1, A2, A3, A4 for the

N = 4 example in Figure 3.16, unwraps the structure. To reduce the effects of friction between the

unwrapping structure and the cage, a set of rollers may be used, as is shown in Figure 3.16.

Figure 3.16: The first stage of deployment, unwrapping, shown for a model with N = 4. The N
ends of the arms are pulled radially outwards to unwrap. A number of rollers can be used to reduce
frictional sliding between the structure and the cage. For clarity, only one strip per sector is shown.

The second stage of deployment is unfolding, as shown in Figure 3.18. For this stage, the cage

needs to be removed from the plane of deployment. This may be done, for example, by hinging the

rollers out of the plane of deployment.

The unfolding must be sequential, from the inside out. This is a kinematic constraint on a 2D

in-plane deployment; inner polygons must be unfolded before outer polygons can be unfolded. This

can be seen by considering the intersection of the mid-surfaces of the strips in a single sector and a

horizontal plane during the unfolding process.

Consider the resulting curves for two strips indexed i and i+ 1, as depicted in Figure 3.17. Since

the length of the ith strip is smaller than the length of the (i + 1)th strip, the arclength of the ith

curve is less than the arclength of the (i + 1)th curve. The deployment is done by pulling a point

radially outwards along the diagonal. Figure 3.17 shows the structure in two states: one with this

point at position A, and the other with this point at position A′.

If the separation between the two points A and B (and correspondingly A′ and B′) remains

constant, the ith curve must straighten before the (i + 1)th curve. A strip must be straight before

it can unfold, and for it to be straight, all horizontal slices through the strip, such as the curve
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depicted in Figure 3.17, must be straight. Since the ith curve straightens before the (i+ 1)th curve,

the ith strip can unfold before the (i+ 1)th strip.

Figure 3.17: A cross-section of an unfolding sector produced by taking the intersection of the mid-
surfaces of strips i and i + 1 and a horizontal plane. The strips are shown in two states during
unfolding, showing that strip i must straighten before strip i+ 1.

To prevent the strips from unfolding rapidly, a constraining mechanism is required to hold them

folded, and release them at appropriate times as the ends of the arms A1 through A4 are pulled

further outwards. This mechanism is an analog of the clip used in the unfolding of the z-folded-and-

wrapped structure as described in Section 2.3. However, there need to be N clips, one per sector,

and each clip needs to move with the outermost strips. Figure 3.18 represents the clips as 4 red

rectangles, one per sector, that move outwards as the structure unfolds.

Figure 3.18: The second stage, unfolding, of deploying a star-folded slip wrap shown for N = 4,
n = 3. Folds must be undone sequentially, from the inside out. 4 clips, drawn as red rectangles, are
required to ensure this sequential unfolding. Alternatively, a number of constraints along the folded
arms can be used, drawn as dashed lines, that disengage in sequence to control unfolding.

An alternative method to achieve orderly unfolding is to constrain the unwrapped structure at

multiple points along the diagonal arms. During deployment, these constraints can be removed in

sequence, from the innermost to the outermost, as the ends of the diagonal arms are pulled outwards.

In the example case depicted in Figure 3.18, these constraints are shown as 12 dashed lines, 3 per
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diagonal arm. Each ring of constraints holds a number of strips in a bent configuration, preventing

them from unfolding. Once a ring of constraints is removed, the strips can straighten and unfold.

These constraints can be realized in a variety of ways, e.g., a breakable adhesive layer between

strips, straps that loop around the diagonal arms to hold them closed, or a clip-like mechanism that

pinches the strips to keep them folded. Once disengaged, a constraint is no longer required, and can

be discarded.

3.4 Physical Model with Bending-Stiff Strips

To experimentally demonstrate some of the packaging techniques, structural architectures, and de-

ployment concepts described in this chapter, a lab-scale structure was constructed using carbon fiber

reinforce plastic (CFRP) composite material. This model, dubbed C1, was square (i.e., N = 4),

with side length L = 0.60 m, 4 strips per quadrant (i.e., n = 4), and strip width w = 60 mm.

This model was built to validate, and to conceptualize at a small scale, the structural design and

deployment concept for a much larger space solar power satellite. The design of these satellites is

discussed in further detail in Chapter 4. The structural architecture of this satellite is as described in

Section 3.2.2, with the strips having bending stiffness to resist out-of-plane loading. Theses strips are

supported at their edges by TRAC booms [41], which is a type of collapsible and rollable structure

that, when unfurled, has much higher bending stiffness than when flattened. A TRAC boom cross-

section is shown in Figure 3.19a; the two curved flanges can be flattened elastically to be parallel

to the x-axis, allowing the boom to be rolled. The strips for the small-scale model were designed to

have cross sections that mimic these edge TRAC structures, as illustrated in Figure 3.19b.

(a) TRAC cross-section (b) Strip cross-section

Figure 3.19: Cross sections of (a) a TRAC boom and (b) a strip for model C1.

The physical small-scale model had strips of center thickness h ≈ 75µm, flat section width

d = 38.1 mm, flange radius Rflange = 10 mm, and flange angle θflange = 57◦.

The strips were constructed by adhering together, along the flat section, a top carbon fiber

half and a bottom carbon fiber half. Each half had an open “C” cross-section, comprising two
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circular-arc flanges and a flat section. Each half consisted of two unidirectional carbon fiber plies,

arranged in a [0◦/90◦] orientation such that when adhered together, the strip had a central layup

of [90◦/0◦/0◦/90◦], where 0◦ corresponds to the longitudinal strip direction. This layup was chosen

to reduce the longitudinal bending stiffness of the strip, and thus reduce the minimum radius of

curvature of the flattened strip.

The strips were connected to each using ligaments to implement slipping folds. The ligaments

consisted of thin polymer threads sandwiched between the top and bottom halves of the strips.

Deployment experiments were conducted according to the concept described in Section 3.3. Mech-

anisms and restraints were designed and fabricated to enable the realization of these concepts, and

then tested on the 2-axis deployment rig described in Section 2.3.2.

3.4.1 Fabrication Process

Preimpregnated tapes of unidirectional plies (Toray T800 fibers in a ThinPregTM 120EPHTg-402

epoxy resin matrix, with a fiber volume fraction of ≈ 50%) arranged in a [0◦/90◦] stack were obtained

from North Thin Ply Technologies [42]. These plies, produced using a spread-tow technique [43],

were lightweight (with per-ply areal of density of ≈ 17 g m−2 compared to traditional composites

which may be a factor 4 to 10 heavier) and thin (with ply thickness of ≈ 20µm). This material is

lightweight but has in-plane fiber-parallel stiffnesses (E1 = 128 GPa [44]) much greater than polymer

films of these thicknesses.

The fabrication process is illustrated in Figure 3.20. To produce the top and bottom halves of

the strips, these tapes were laid up on 1.5 m-long aluminum molds. The mold cross-section was

12.7 mm thick, 50.4 mm wide, and had semi-circular ends with 6.35 mm radius; this cross-section

dictated the strip cross-section. (However, due to the unbalanced layup in the flange sections, the

as-manufactured flange radius was measured to be ≈ 10 mm, larger than the mold radius.) The

halves were vacuum bagged and cured in an autoclave at 120 ◦C for 2 hours.

Figure 3.20: Strip fabrication process for the small-scale model.

After curing the top and bottom strip halves were not removed from the molds. Lengths of

braided Spectrar line (≈ 100µm diameter) were placed on the bottom half at the desired regular

spacing. A layer of Patz PMT-F4 epoxy film was applied to the flat section of the top half, and

the two strip halves were clamped together, sandwiching the ligaments. The length of the ligaments

was greater than flattened width of the strip; this allowed strips to be knotted together later. This
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assembly was vacuum-bagged and the epoxy film was cured at 120 ◦C for 2 hours. Once cured, the

extra tape width was cut off to produce flanges of the correct size. Individual trapezoidal strips were

cut from these 1.4 m-long parent structures.

The strips were connected together, as needed, by knotting ligaments together, thus forming the

individual sectors or quadrants. The quadrants were assembled together by integrating the diagonal

cords. The diagonal cords were Zebco Omniflex monofilament fishing line (279µm diameter), that

were connected to the strips using a sliding hinge connection as shown in Figure 3.21. The fishing

line was passed through 10 mm-long polyimide tubes with a 320µm inner diameter, which were

attached to the strips using polyimide tape. This design allows the diagonal cords to be tensioned

without tensioning the strips, as desired by the structural architecture described in Section 3.2.2.

Figure 3.21: Diagonal cord construction.

Figure 3.22 shows a completed 0.6 m× 0.6 m model in its unfolded state.

3.4.2 Packaging Experiment

Model C1 was packaged manually according the scheme described in Section 3.1. The three sets of

folds arranged in squares were folded one at a time, from the outside inwards. For each set of folds

arranged in a square, all four quadrants were folded simultaneously. As such, four human folders

were required to achieve this simultaneity. The folds were held closed by using standard clip-style

metal hair pins.

Once folded, the model C1 was wrapped. Four wooden dowels of 12.7 mm diameter were used

as wrapping guides, to ensure that a minimum radius of curvature was not violated. As mentioned

in Section 3.1.4, determining the exact amount of pre-slip required for star-folded structures is not

possible with the currently available analytical tools; as such, slip was allowed to develop during

wrapping by relaxing, at several points in time along the wrapping process, the pinching of the four

wooden dowels on the structure. The wrapping was done manually, with four humans wrapping the

four folded arms. The wrapped structure was restrained by a loop of string.

Figure 3.23 shows model C1 packaged to a diameter of 52 mm. The mathematical model of

wrapping presented in Section 3.1 predicts a packaged diameter (for h = 80 µm, Rmin = 6.35 mm,
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Figure 3.22: Model C1 unfolded to a size of 0.6 m× 0.6 m.

and φ = 1) of 49.6 mm. It is believed that this discrepancy between the predicted and the measured

diameter is a result of the manual method of packaging a structure with non-negligible bending

stiffness. A more systematic and controlled method of packaging (e.g., using a dedicated wrapping

jig) is likely to reduce this error.

Figure 3.23: Model C1 packaged to a diameter of 52 mm.
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3.4.3 Deployment Experiments

Deployment experiments were conducted to demonstrate feasibility of a smooth and controlled de-

ployment of a structure with strips that have non-negligible (and, indeed, variable) bending stiffness.

This behavior is different from the deployment experiments conducted in Section 2.3.2, where the

strips were made from uniform-thickness membrane material and had very small, constant, and

uniform bending stiffness.

Figure 3.24: Cage for the deployment of star-folded slip wraps.

A cage was built to hold the models in a packaged configuration and to control the unwrapping

process. The cage, shown in Figure 3.24, was constructed using laser-cut 3.18 mm-thick acrylic

plates, which were held together by a central 1/4− 20 threaded rod. 8 rollers, 2 per quadrant, were

implemented using shoulder screws and Nylon tubes of 15.9 mm outer diameter and 63.5 mm length.

These rollers constrained the packaged models circumferentially, and reduced friction between the

cage and the model during the unwrapping stage of deployment. The rollers were placed such that

the model had a packaged diameter of 85 mm.

A top plate and a bottom plate provided axial support to the models, preventing large motions

in the axial direction. The separation between these plates was 75 mm.

The rollers were hinged to the bottom plate assembly, so that they could swing out of the plane

of deployment for the second stage of unfolding. The rollers were held in a vertical orientation for

the first stage of unwrapping by a restraining elastic band; cutting this elastic band allowed the
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hinges to swing out of the plane of deployment.

To control the second stage of unfolding, 12 paper straps, 3 per arm, were used to hold the

arms folded, as described in Section 3.3. As folded arms were pulled radially outwards, tension was

transfered into these straps. These straps were notched, and broke at a certain level of tension.

Because of the geometry of this unfolding process, these straps broke in sequence, from the inside

out. As such, the strips were released in sequence, resulting in a sequential and ordered unfolding.

The 2-axis deployment rig described in Section 2.3.2 was used conduct these deployment tests.

The deployment was displacement controlled; the ends of the diagonal arms were attached to the

carriages which were moved apart at a rate of about 11.9 mm s−1.

The model was deployed in a horizontal plane about 0.25 m above the surface of the table on which

the 2-axis deployment rig rested. To do this, the cage was suspended by a string from an overhead

support. A 400 g weight was suspended from the bottom of the cage to stabilize its orientation.

Figure 3.25 plots the measured components of the average deployment forces (F1 + F3)/2 and

(F2 + F4)/2 for a single deployment. Here, F1 and F3 are the forces measured along one diagonal,

and F2 and F4 are the forces measured along the other diagonal.
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Figure 3.25: Deployment force profiles for model C1. During the first stage of unwrapping, the
unfolding fraction is fixed at 0, and during the second stage of unfolding, the unwrapping fraction
is fixed at 1.

As can be seen from Figure 3.25, the radial components of the forces are dominant. During

unwrapping, tension is being applied only along of the two diagonals; this is because the unwrapping

along the diagonals is coupled, and pulling along one diagonal also unwraps the other. Therefore,

any motion lag between the carriages on either diagonal will result in one diagonal being taut,
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and the other slack. (This is an effect of the deployment being displacement-controlled, and not

force-controlled.)

During unfolding, the deployment force profile has a sawtooth character. This corresponds to

the structure being tensioned, the tension being transmitted to the paper straps along the diagonals,

and the straps breaking, one at a time. In this particular set of experiments, 12 straps were used, 3

per diagonal, and 12 peaks can be counted in Figure 3.25.
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Figure 3.26: Deployment force profiles for model C1. Lines of the same color are from the same
deployment. Dotted and dashed lines distinguish the forces measured along the two diagonals.

Figure 3.26 shows the deployment force profiles for a set of three deployments of model C1. For

clarity, only the radial components of the average deployment forces (F1 + F3)/2 and (F2 + F4)/2

are plotted. The lag between the motion of the deployment carriages is again evident; the majority

of the work of unwrapping is being performed along the 1-3 diagonal alone.

In the unfolding stage of deployment, the force peaks are marked by dots. The shaded rectangles

group the force peaks from the three separate deployments, and show good separation between the

breaking of the straps. A grouping of the force peaks into three sets of four can be seen; each set of

four corresponds to the four straps in a single ring. This indicates, as desired, a sequential unfolding

from the inside out. For one of the deployments (indicated by the set of green lines in Figure 3.26),

the first force peak corresponds to the breaking of two straps simultaneously; this accounts for the

lack of a force peak in the second group for that particular deployment.

Figure 3.27 shows views from an overhead camera, showing the start of deployment and the

end of the unwrapping stage for model C1. In both these photographs, the 8 rollers are oriented
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vertically, and have not yet been hinged out of the plane of deployment.

(a) Packaged (b) Unwrapped

Figure 3.27: The unwrapping stage of the deployment of model C1.

Figure 3.28 shows overhead photographs of the second stage of the deployment of model C1. (a)

shows the 8 rollers having been hinged out of plane; this was done by cutting, using scissors, the

elastic band that held the rollers in their vertical positions. (b) shows the first ring of paper straps

broken, and the innermost polygon of strips unfolded. (c) shows the second ring of paper straps

broken, with two polygons of strips unfolded. Finally, (d) shows the final ring of paper straps having

been disengaged, and the model fully deployed.
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(a) (b)

(c) (d)

Figure 3.28: The unfolding stage of the deployment of model C1.
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3.5 Summary

This chapter presented a family of packaging schemes that used the essential ideas from Chapter

2 – slipping folds and slip wrapping – and applied them to another set of fold patterns. These

fold patterns consist of concentric N -sided polygons; folding produces N arms of strips, which can

be wrapped to produce a tightly packaged cylindrical configuration. Packaging was demonstrated

using physical lab-scale membrane models. The wrapping can be designed such that the maximum

bending strains are bound by predictable values and the structure is not permanently deformed.

Two structural architectures were described. One was an extension of the scalloped-edge pre-

tensioning scheme discussed in Section 2.2, and the other used bending-stiff strips. The advantage

of using the bending-stiff architecture is that deployed area is not lost to scalloping, as it is in the

pretensioned alternative.

A deployment process was proposed, in which the structure is first unwrapped and then unfolded.

A physical model of the bending-stiff structural architecture were fabricated. This was used to

successfully demonstrate the packaging and deployment schemes for such structures.
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Chapter 4

Structures for Space Solar Power
Satellites

This chapter describes the preliminary structural design of a space solar power satellite. Space solar

power is a proposed [45, 46] method of generating power for terrestrial applications: solar power is

collected in space, converted to radio frequency (RF) energy, beamed to a ground station at Earth,

where it is rectified and delivered to the power grid. This chapter describes in brief a concept for

space solar power station, and then moves on to the structural design considerations of a single

satellite that is part of this station.

The structural architecture described in Section 3.2.2 will be used here to prescribe the prelimi-

nary design of this satellite. The final sections of this chapter will use this architecture to arrive at

preliminary mass and packaged size estimates for this space solar power satellite.

Portions of this chapter were previously published as [32].

4.1 The Need for Space Solar Power

Climate change is a pressing issue; global temperatures have risen by 0.85 ◦C ± 0.20 ◦C over the

period 1880-2012 [47]. This has been attributed primarily to radiative forcing from greenhouse

gases, especially carbon dioxide, the concentration of which has increased from 278 ± 5ppm in

1750 to 390.5 ± 0.1ppm in 2011 [47]. The energy supply sector is the largest contributor to global

greenhouse gas emissions, and its contributions are growing at an accelerated pace [48]. There

is therefore a desperate need for methods of electrical power generation that do not produce, as

by-products, greenhouse gases [48].

Renewable energy sources such as terrestrial solar power systems and wind power systems pro-

duce power intermittently, and sources such as hydroelectric power and geothermal power require

geographical access to useful sites, which limits their applicability. The intermittency of terrestrial

solar power and wind power systems means that they must be paired with energy storage sys-
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tems or other power sources to provide reliable supply. Additionally, these power sources are not

dispatchable; i.e., supply cannot be adjusted quickly to match changes in demand [49].

Space solar power can be made available continuously, without being affected by the day/night

cycle, cloud coverage, seasonal variations, and atmospheric conditions. It is dispatchable: power can

be directed to one of many ground stations, where demand is highest.

Aside from the myriad technical challenges, there are two primary high-level challenges associated

with space solar power: cost and complexity. The cost is dominated by the expense of launching

the system into a geosynchronous orbit; this cost depends strongly on the total amount of mass

being launched. Complexity arises from the traditionally proposed approaches to the construction

of space solar power stations, involving assembly of systems by humans or robots in orbit. The

concept described herein addresses the issues of cost and complexity by keeping mass low and by

eliminating the need for in-space construction.

4.2 Space Solar Power Concept

The proposed space solar power station, as illustrated in Figure 4.1, comprises a large number of

independent identical spacecraft flying in formation in geosynchronous orbit. Each spacecraft is

composed primarily of a large number of independent multifunctional elements. These elements,

called tiles, are capable of photovoltaic power generation, synthesis of a microwave-frequency signal,

and wireless power transmission. This particular space solar power concept was developed as a

product of a collaboration between the Atwater, Hajimiri, and Pellegrino research groups at the

California Institute of Technology.

Figure 4.1: Overview of Space Solar Power System.

The tiles are interconnected and held in a planar configuration by a light, stiff structural frame-
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work, creating a spacecraft that measures 60 m × 60 m and carries approximately 300,000 tiles. The

geometry of this spacecraft is sheet-like: it has large in-plane dimensions (to collect solar power and

to provide sufficient aperture for microwave power transmission), but comparatively small out-of-

plane dimensions. For launch, the bulk of the spacecraft can be packaged into a ≈ 1 m diameter,

1.5 m tall cylinder.

Compaction is enabled by the ability of each tile to be flattened, and to spring back into the

original configuration when it is deployed. This flattening reduces the wrapping thickness h, as

defined in Chapter 3, thus increasing the length-to-thickness ratio λ and the packaging efficiency η.

One particular design of a multifunctional tile capable of such flattening is briefly described.

This chapter deals exclusively with the preliminary structural design of a single spacecraft. The

design of this space solar power system is a collaborative effort, and there are many aspects of the

design, construction, and operation of such a space solar power system that are outside the scope

of this chapter (e.g., the design of lightweight photovoltaic cells, large-scale phased arrays across

independent spacecraft, integrated circuits for microwave signal synthesis, and formation flying).

Similarly, there are many performance metrics that must be considered in the design of such a

system (e.g., overall system power efficiency, total mass, capacity factor, specific power). However,

the concern herein is purely structural design, and, as such, only relevant metrics will be considered.

The key structural drivers are areal density, packaged volume, deployed stiffness, and deployment

precision. Low areal density (100 g m−2) and low packaged volume are needed to reduce launch

costs. Additionally, the spacecraft must be deployed to a precise shape, and maintain this shape

within acceptable levels under applied loading. This chapter will present a preliminary structural

design of a spacecraft that has low areal density, small packaged volume, and is sufficiently stiff.

4.3 Background

This section provides a brief survey of two relevant bodies of work: the architecture and design of

structures for space solar power systems and the design of concentrating photovoltaic power systems

for spacecraft.

4.3.1 Structures for Space Solar Power Systems

Early structural concepts for space solar power systems (see Figure 4.2a) tended to be massive and

complex [46, 50]. These concepts comprise structural systems (e.g., truss systems) that are designed

to be assembled (by astronauts, robots, or a combination thereof) in orbit. The photovoltaic and

power transmission systems are physically separate; the power transmission system is mounted on

a gimbal that allows it to point to the ground station on Earth.

Later space solar power concepts have driven toward modular and lightweight structures.
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(a) NASA/DoE Reference Design [50] (b) Integrated Symmetrical Concentrator [51]

(c) NASA SunTower [52] (d) SPS-ALPHA [53]

Figure 4.2: Space solar power system concepts.

The Integrated Symmetrical Concentrator concept [51] (see Figure 4.2b) consists of two reflector

assemblies that direct sunlight to a central photovoltaic array, which is situated adjacent to the

wireless power transmitter. The reflector assemblies can rotate about the axis of the system to

direct sunlight onto the photovoltaic array. A later JAXA concept [54] envisions the reflectors and

the power-generation-and-transmission segment as separate spacecraft, flying in formation. This

reduces structural complexity by removing the gimbal system.

The NASA SunTower concept [52] (see Figure 4.2c) employs a gravity-gradient-stabilized struc-

ture that consists of a long central spine with many power-generating units arranged along its length.

Each power-generating unit consists of a thin-film Fresnel concentrator (deployed and stabilized by

an inflatable ring on the edge) and a photovoltaic unit. At the end of the spine is a wireless power

transmission unit. The ESA SailTower concept [55] is similar in architecture; however, the concen-

trating photovoltaics are replaced by thin-film photovoltaic blankets.

The SPS-ALPHA concept [53] (see Figure 4.2d) is modular and robotically assembled in space. It

comprises a large reflector system, a power-generation-and-transmission segment, and a connecting
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truss structure. The reflector system directs sunlight onto the power-generation-and-transmission

segment, which converts it to electricity, and beams it to Earth. The reflector system is composed of

many individual membrane reflective surfaces (akin to solar sails) that can be individually pointed.

(a) JAXA Tethered Design [56] (b) Multi-Tethered Design [57]

Figure 4.3: JAXA Tethered Concepts.

The tethered JAXA concept [56], shown in Figure 4.3, consists of a single square plate-like

structure that has photovoltaic elements on one side, and a phased array of antennas on the other.

The structure is stabilized by gravity gradient forces; four tethers from the corners of the square plate

are connected to a satellite bus that acts as a counterweight. The phased array can electronically

steer the microwave beam, precluding the need for a gimbal system.

A modular architecture, consisting of many tethered plates, has also been proposed [57]. It is

envisioned to launch many individual modules, deploy them separately, and then assemble them

together into a single monolithic structure by physically docking modules together.

4.3.2 Concentrating Photovoltaic Systems for Spacecraft

Using concentrating photovoltaic systems in space applications is attractive because of the potential

for mass and cost savings. Without concentration, the power collection area is filled completely

with photovoltaic cells, which are massive and expensive. Concentration reduces the cell area by the

concentration factor, and it can be achieved by optical elements that have less areal density than

photovoltaic cells. Here, a brief survey of concentrating photovoltaic systems for space applications

is provided.

The SCARLET solar array on the Deep Space 1 mission [58] uses an array of linear concentrators

to illuminate photovoltaic cells. The concentrators are arched Fresnel lenses, 1 cm wide and 4 cm long.

They operate at a concentration factor of 8. The lenses are molded silicone with glass substrates, and

are supported by graphite/epoxy frames. These frames stow against the plane of the photovoltaic

cells, and are deployed to the functional focal length by lenticular tape springs [59].
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The Stretched Lens Solar Array [60] has a similar optical configuration, but uses lighter flexible

Fresnel lenses made from silicone rubber, without the glass substrate. These lenses can be flat-

tened against the photovoltaic cells, and pop back up using spring-loaded arches at the ends of the

lenses. Additionally, the Stretched Lens Solar Array uses thin composite material to support the

photovoltaic cells, as compared to the honeycomb panel used in the SCARLET array [61]. Recent

developments [62] allow panels comprising many such refractive concentrators to be flattened and

then rolled (or folded) for additional compaction.

The FAST solar concentrator array [63] uses reflective linear concentrators to focus light onto

photovoltaic cells on the backside of the adjacent linear concentrator. These concentrators operate

at a concentration factor of 12.5. No flattening mechanism is proposed for this array, however.

4.4 Tile Design Concept

In the present satellite design concept, a tile is the basic unit of power generation and transmission.

Each tile measures 10 cm × 10 cm in plane. The out-of-plane deployed dimension has a strong

dependence on the transmitting frequency, which is as yet undecided, but is expected to be around

10 GHz. For this choice of transmission frequency, the tile has an out-of-plane dimension of around

3 cm. This tile concept was generated as a collaborative effort between the Atwater, Hajimiri, and

Pellegrino research groups at the California Institute of Technology.

As shown in Figure 4.4, each tile has five half-parabolic linear trough concentrators that focus

light onto thin-film photovoltaic cells attached to the edge of the adjacent concentrator. This op-

tical configuration is similar to that of the FAST array [63], though the tiles operate at a higher

concentration factor, and are capable of flattening. The concentrators focus light onto a narrow

photovoltaic cell, as shown in Figure 4.4. In addition to focusing light, each concentrator also acts

as a thermal conduit and radiator; the thermally conductive reflective layer transports waste heat

away from the PV cell at the tip and radiates it to space.

These concentrators are supported by a ground layer. The ground layer provides an attachment

point for the rest of the tile components, houses the antenna ground plane, and is used for routing

generated power and signals. It also holds an integrated circuit that synthesizes a microwave signal,

and amplifies it using generated power. The ground plane antenna also acts a thermal conduit and

radiator, removing waste heat from the integrated circuit at the center. Below the ground layer is

an antenna, through which the amplified signal is transmitted.

The tile can flatten for packaging. As shown in Figure 4.5, the concentrator consists of a thin,

aluminized polymer film supported at either end by carbon fiber springs. The concentrator edge

springs have the appropriate parabolic profile needed for concentration. At the top edge, there is a

thin carbon fiber rod attached to the concentrator that maintains straightness. Each concentrator
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Figure 4.4: Cross section of a single tile. Each tile has five linear parabolic trough concentrators
that focus light onto PV cells, a ground layer, and an antenna layer.

is able to elastically flatten; the edge springs deform from their unstressed parabolic shape to flat.

The patch antenna is held below the ground layer by four carbon fiber springs that have an “S”

profile, and these springs can flatten such that the patch antenna plane rests directly below the

ground layer. Figure 4.5 shows an initial mechanical mockup.

These tiles are functionally independent, and require no bulky power interconnections. Power

generated by a tile is transmitted by the same tile. Only low-power data and timing signals need to

be exchanged between tiles.

Initial tile mockups, shown in Figure 4.5, were constructed thus: the ground layer was constructed

using 7.5 µm-thick polyimide film (Dupont Kaptonr HN film), supported at the edges by a frame

of 120µm-thick pultruded carbon fiber rods. The patch antenna layer was built using a similar

technique, using 7.5µm-thick polyimide film and a pultruded carbon fiber rod frame. The ground

and antenna layers have representative conductive aluminum layers deposited on them. The “S”

springs were constructed using carbon fiber composite material.

The concentrators were made using aluminized 25µm-thick polyester film (Mylarr), supported

at the edges by carbon fiber composite springs. A pultruded carbon fiber rod was attached to

the front surface, along the top edge of the concentrator, and a strip of photovoltaic material was

attached to the back surface, along the top edge. The tile mockup can flatten and then elastically

pop back into its operational state.

This mockup includes an integrated circuit and five photovoltaic cells. However, these compo-

nents are simply mass and structural simulators, and not intended for operation.

The initial 10 cm × 10 cm tile mockup has a mass of 1.56 g. The tile mass is expected to decrease

to at least 0.8 g, allowing the overall spacecraft areal density to reach its goal of 100 g m−2.
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(a) (b)

(c) (d)

Figure 4.5: Tile design and mockup.

4.5 Space Solar Power Satellite Structural Design

The spacecraft is designed to be packaged by star folding and wrapping, as described in Section 3.1.

It consists of many strips, arranged in concentric squares, as shown in Figure 4.6. Its structural

architecture is as described in Section 3.2.2; these strips have out-of-plane bending stiffness, and

they are pinned at either end to diagonal cords. At one end, the diagonal cords are attached to a

central hub, and at the other end, the diagonal cords are connected to tips of deployable booms.

After deployment, the diagonal cords are tensioned. The booms, clamped to the hub at the center,

are located along the diagonals of the squares. In addition to supporting the diagonal cords when

deployed, these booms provide the motive action during deployment. Each strip is connected to

its neighboring strips using ligaments, which implement the slipping folds crucial to the packaging

scheme.

The strips carry the tiles; Figure 4.7 shows a segment of a strip. Two longerons run the entire

length of the strip and support its edges. Battens connect the tiles to the longerons, and the

longerons to each other. The out-of-plane bending stiffness of the strips is provided primarily by the

edge longerons. To enable the spacecraft packaging scheme, these longerons can be flattened and

rolled [64]. There are many existing structural elements that would suffice as longerons, e.g., STEM

booms [65], lenticular booms [66], and TRAC booms [41]. The current strip design calls for carbon
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Figure 4.6: Spacecraft structural architecture.

fiber reinforced polymer (CFRP) TRAC longerons, since the TRAC structure is simpler and has a

smaller packaged height.

Figure 4.7: A short segment of a single strip. The longeron has a cross-section similar to a TRAC
boom. For clarity, some of the tiles have been omitted.

As shown in the inset in Figure 4.7, the TRAC cross-section has the following controlling parame-

ters: the flange thickness hflange, the flange radius Rflange, the flange opening angle θflange, and the

bond section width dbond. Appendix D calculates the relevant properties for a TRAC cross-section.

4.5.1 Numerical Structural Model

To design the individual structural elements that comprise this architecture, the structural model

that was described in Section 3.2.2 was implemented in MATLAB. This numerical model was used
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to optimize the spacecraft structure, using a loading case and performance metric described below.

The strips were modeled as beams. The ligament connections between the strips were not

accounted for in this initial model. The diagonal cords were modeled as lines under tension, and

the booms were modeled as beam-columns. For fixed side length L = 60 m, this simplified model

has only four structural parameters that control the deflected shape of the spacecraft: the bending

stiffness of the boom EIboom, the bending stiffness of a strip EIstrip, the number of strips in a

quadrant n, and the diagonal cord tension T .

The spacecraft side length is not taken to be a design parameter; it is fixed at 60 m. This is

because the choice of this dimension has effects beyond what can be captured using the present

performance metrics. It affects, for instance, the total number of launches needed to build a 3 km×

3 km array in orbit, the attitude control strategies for each spacecraft, and the formation flying

algorithms. The effects of varying this dimension are not solely structural concerns, and they must

be captured by a system-level model, which is outside the scope of this chapter.

4.5.2 Spacecraft Loading

The loading experienced by the spacecraft during operations can be divided into two classes: dynamic

and quasi-static.

Expected sources of dynamic loading during operations are attitude control forces (e.g., impulse

thruster firings), vibrational noise from attitude control actuators (e.g., reaction wheels or control

moment gyros), and thermal shocks as the satellite moves in and out of eclipse.

Many aspects of the satellite attitude control system are not yet fully specified, and therefore

it is difficult to estimate the amplitude and frequency content of the associated loads. However, it

will be assumed that the attitude control system has been designed to decouple structural dynamics

from the spacecraft attitude dynamics, and thus the attitude control forces will be small. This is a

standard technique in the design of attitude control system for flexible spacecraft [67]. Additionally,

the actuators can be isolated from the structure using dampers, and thus the vibrational noise from

these sources can be reduced. This class of loads will not be considered for this preliminary analysis.

Thermal shocks occur each time the satellite transitions from being in the shadow of a celestial

body (e.g., the Earth or the Moon) to being in sunlight, or vice versa. For a satellite in a geo-

stationary orbit, there are two eclipse periods, situated around the vernal and autumnal equinox,

during which the satellite is in eclipse for periods up to 70 minutes. It is expected that the satellite

will not operate during these eclipses; it can also be left inoperational for a period of time following

the eclipse to return to a steady thermal state. Thus thermal shocks will not be considered for this

preliminary analysis.

Expected sources of quasi-static loading are either external, e.g., solar radiation pressure (SRP),

gravity gradient, and inertial forces produced during accelerations, or internal, e.g., thermal loads,
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mechanical loads due to manufacturing errors, or electrostatic self-attraction. The internal forces

are highly dependent on the construction of these satellites and will not be considered here. The

other three sources of loading – SRP, gravity gradient, and inertial forces – are considered below.

SRP is found to be the dominant loading case.

A perfectly reflective surface, 1 AU from the Sun, with a solar incidence angle α relative to the

surface normal, is subject to radiation pressure BSRP that acts normal to the surface [68]:

BSRP =
2Ef
c

cos2 α (4.1)

where Ef = 1361 W m−2 is the solar energy flux at 1 AU, and c = 3.00× 108 m s−1 is the speed

of light. Assuming the spacecraft surface to be a perfect reflector, and oriented normal to the sun

angle, a surface-normal SRP load of BSRP = 9.1× 10−6 Pa is obtained.

The inertial forces due to rotational acceleration can be estimated by assuming a minimum-time

acceleration profile to slew the satellite through an angle ∆θ in a given time ∆t. These calculations

are based on similar analysis performed by Dr. Nicolas Lee while he was a postdoctoral fellow at the

California Institute of Technology. For this maneuver the angular acceleration is some value θ̈max

for half the time t ∈ [0,∆t/2] and its negative −θ̈max for the other half of the time t ∈ (∆t/2,∆t]:

θ̈(t) =

θ̈max if t ∈ [0,∆t/2]

−θ̈max if t ∈ (∆t/2,∆t]

(4.2)

Integrating, this gives the following angular velocity profile (assuming no initial angular velocity,

i.e., θ̇(0) = 0):

θ̇(t) =

θ̈maxt if t ∈ [0,∆t/2]

θ̈max (∆t− t) if t ∈ (∆t/2,∆t]

(4.3)

Integrating once more to obtain the angle profile:

θ(t) =


1
2 θ̈maxt

2 + θ(0) if t ∈ [0,∆t/2]

1
2 θ̈max

(
−t2 + 2∆tt− 1

2∆t2
)

+ θ(0) if t ∈ (∆t/2,∆t]

(4.4)

The total slew angle for this maneuver ∆θ is obtained as

∆θ = θ(∆t)− θ(0) =
1

4
θ̈max∆t2 (4.5)

Given these angular acceleration and velocity profiles, the associated inertial forces acting on the
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satellite can be calculated. To compare to the SRP value obtained above, these forces are expressed

as pressures, i.e., forces per unit planar area. At a point some distance r from the axis of rotation,

the pressure due to the centrifugal forces BI,‖ = ρAθ̇
2r acts in the plane of the satellite, and the

pressure from the Euler forces BI,⊥ = ρAθ̈r acts out of the plane [69]. ρA is the satellite areal

density; it is assumed to be uniform. Maximum pressures occur at the largest distance from the axis

of rotation; this happens when the module slews about one of the diagonals, and max (r) = L/
√

2.

The maximum in-plane pressure BI,‖ occurs when angular velocity θ̇ is maximum; from Equation

(4.3) this happens at t = ∆t/2 and max (θ̇) = θ̈max∆t/2. Since
∣∣∣θ̈∣∣∣ is constant, the centrifugal

pressure is constant in time. Thus, the maximum pressures are as follows:

maxBI,‖ = ρA
L√
2

(
θ̈max∆t

2

)2

(4.6)

maxBI,⊥ = ρA
L√
2
θ̈max (4.7)

Using Equation (4.5) to substitute for θ̈max,

maxBI,‖ = ρA
L√
2

(
2∆θ

∆t

)2

(4.8)

maxBI,⊥ = ρA
L√
2

(
4∆θ

∆t2

)
(4.9)

Figure 4.8 plots these maximum pressures due to inertial forces for slew angles ∆θ ∈ [0◦, 90◦]

and slew times ∆t ∈ [0.5 h, 6 h], for a spacecraft areal density ρA = 100 g m−2 and L = 60 m. In

the current operational scenario, the spacecraft is not expected to slew by more than 45◦ in 1 h;

for these values, Equation (4.8) and Equation (4.9) provide upper bounds on in-plane pressure

maxBI,‖ = 8× 10−7 Pa and out-of-plane pressure maxBI,⊥ = 1× 10−6 Pa, respectively. These

loads are about 9 times smaller than the SRP loading.
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Figure 4.8: Inertial pressures on a spacecraft with L = 60 m and areal density ρA = 100 g m−2 for a
variety of minimum-time slew maneuvers. The pressures are plotted in logarithmic form.
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Turning to the task of estimating the gravity gradient loads, consider the spacecraft to have

tilted from the local horizontal plane by an angle θ. Again, these calculations closely follow similar

analysis performed by Dr. Nicolas Lee. As shown in Figure 4.9, this tilt produces differential gravity

at all locations that rotate out of the local horizontal plane. The center of mass of the spacecraft is

located at ~R0 relative to the center of the Earth. It is subject to gravitational acceleration ~a:

~a = GM⊕
~R0

R3
0

(4.10)

where G = 6.674× 10−11 N m kg−2 is the gravitational constant, and M⊕ is the mass of the Earth.

Define a point on the spacecraft by the vector ~r relative to the center of mass; thus its location

relative to Earth’s center is

~R = ~R0 + ~r (4.11)

The differential acceleration felt by this point at ~r is

~aGG = GM⊕

(
~R0

R3
0

−
~R

R3

)
(4.12)

Figure 4.9: A tilt θ from the local horizontal (indicated by the dashed lines) produces a gravity
gradient pressure.

Since the spacecraft is much smaller than the orbital radius (i.e., r � R0), Equation (4.12) can

be linearized. This is done by zooming into the local horizontal frame of reference, as shown in the

inset in Figure 4.9, where ~R and ~R0 are nearly parallel, and their lengths differ by r sin θ:

R = R0 + r sin θ (4.13)
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Using this, Equation (4.12) can be cast into a scalar form:

aGG = GM⊕

(
1

R2
0

− 1

(R0 + r sin θ)
2

)
(4.14)

Multiplying the above expression by the areal density ρA gives a gravity gradient pressure that can

be used to compare this loading case to SRP and rotational inertial pressures:

BGG = GM⊕ρA

(
1

R2
0

− 1

(R0 + r sin θ)
2

)
(4.15)

Decomposing this pressure into in- and out-of-plane components:

BGG,‖ = GM⊕ρA

(
1

R2
0

− 1

(R0 + r sin θ)
2

)
sin θ (4.16)

BGG,⊥ = GM⊕ρA

(
1

R2
0

− 1

(R0 + r sin θ)
2

)
cos θ (4.17)

These expressions attain their maxima at extremal points on the spacecraft, i.e., at r = L/
√

2.

The parallel component of the gravity gradient pressure, BGG,‖ is maximum at θ = 90◦, and the

perpendicular component BGG,⊥ is maximum at θ = 45◦ (for r � R0):

maxBGG,‖ = GM⊕ρA

(
1

R2
0

− 1(
R0 + L/

√
2
)2
)

(4.18)

maxBGG,⊥ =
1√
2
GM⊕ρA

(
1

R2
0

− 1

(R0 + L/2)
2

)
(4.19)

Evaluating these expressions for a geostationary orbit i.e., R0 = 42 164 km, module side length

L = 60 m, and an areal density of ρA = 100 g m−1:

maxBGG,‖ = 4.5× 10−8 Pa (4.20)

maxBGG,⊥ = 2.3× 10−8 Pa (4.21)

These gravity gradient pressures are two orders of magnitude less than the SRP. Given that the

rotational inertial pressures are also lower than the SRP, by about a factor of 9, SRP will be taken

as the dominant loading case for which the preliminary structural design will be constructed.

4.5.3 Performance Metric

A key metric in the design of the spacecraft is the specific power, which is the amount of power

delivered to the ground station per unit mass of spacecraft. Since the present exercise deals exclu-
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sively with the structural design, the effects of the structural design on the specific power will be

isolated and considered independently. In particular, the effects of structural deflections on power

generation and transmission are considered, as is the mass of the structural components.

The most efficient tile arrangement is with all tiles pointed directly at the sun (which maximizes

power generation efficiency), arrayed regularly in a single plane (which maximizes power transmission

efficiency). Any angular deviations from such an arrangement will reduce the performance of the

concentrators, and any translational deviations will reduce the performance of the microwave phased

array.

If the translational deviations are small enough and slow enough, they can be measured and

corrected for by introducing appropriate phase delays at each tile location. A system to perform

these measurements and corrections will need to be implemented. Thus, the present structural design

exercise will consider only the effect of angular deviations from the nominal planar configuration of

the tiles.

The performance metric used to evaluate the structural design is the specific concentrated power :

the total power concentrated on the photovoltaic cells divided by the total mass of the spacecraft.

The total concentrated power depends on the incoming solar power flux (taken to be constant at

1361 W m−2) and the average tile concentrating efficiency.

Figure 4.10: The sun vector at each tile is decomposed into a component in the plane of concentra-
tion, at an angle α to the tile normal, and a component perpendicular to the plane of concentration,
at an angle β.

The performance of the concentrators in the tiles depends on the local sun angle. As shown in

Figure 4.10, the local sun vector can be decomposed into a component within the plane of concen-

tration, and a component perpendicular to this plane. The optical efficiency of the concentrators

depends on the α and β angles these components make with the local tile normal. As seen in Figure

4.11, the sensitivity of the concentrating efficiency to α is much greater than the sensitivity to β.

In the present study, the concentrators across the entire spacecraft were arranged to be all
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Figure 4.11: Tile concentrating efficiency variation with incident sun angles α and β. The data for
these plots was provided by Drs. Pilar Espinet and Dennis Callahan from the research group of Dr.
Harry Atwater.

parallel. This is because the concentrators are much more sensitive to the α angle than the β angle.

Thus, the spacecraft can slew in a manner that changes the β angle without greatly affecting the

concentrating efficiency. If (as an alternative) the tiles were arranged in a 4-fold symmetric manner,

the spacecraft would have to remain very closely sun-pointed (being able to deviate less 1◦ in either

axis) to generate any power from more than half the tiles. But since the concentrators are all parallel,

the spacecraft can slew ±20◦ in the β direction allowing for operational freedom.

For this initial analysis, it is assumed that the spacecraft is pointed directly at the sun. Due

to solar radiation pressure, the structure deflects out-of-plane. To compute these deflections, the

structural model in Section 3.2.2 was used.

To find the α and β angles at a tile on the ith strip at a location x along the strip, the local tile

normal nt(x; i) was computed by tilting the undeflected normal {0, 0, 1}T through two rotations: R1

due to the diagonal cord deflections by an angle (uDC,i−1 − uDC,i) /
√

2w, and R2 due to the strip

deflections by an angle u′strip,i(x). uDC,i is the vertical deflection of the ith node of the diagonal

cord, and ustrip,i(x) is the vertical deflection of the ith strip at a point x along the strip. These

variables are defined and evaluated in Section 3.2.2.

Using the curves shown in Figure 4.11, the efficiencies due to these angular deformations were

found, and the tile concentrating efficiency was computed as the product of these efficiencies. The

average tile concentrating efficiency over the entire spacecraft was then evaluated, and multiplied

by the spacecraft area and solar flux to compute the total concentrated power.

The other component of the performance metric is the spacecraft mass m. It was estimated by

accounting for the mass of the tiles (mtiles), the hub (mhub), the strip structure (excluding the tiles)
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(mstrips), the booms (mbooms), and the diagonal cords (mcords).

m = mtiles +mhub +mstrips +mbooms +mcords (4.22)

The tile mass was calculated by multiplying the expected tile areal density of 80 g m−2 by the

total spacecraft area. The tile mass does not change with changes in the structural design of the

spacecraft:

mtiles = σtilesL
2 = 80 g m−2 × (60 m)

2
= 288 kg (4.23)

The hub mass was assumed to be fixed: mhub = 50 kg. This estimate is based on the use of

nanosatellite components and includes the propulsion system.

The mass of the strip structure was calculated by multiplying the mean linear density of the

strip λstrip and the total strip length Lstrip. The total strip length Lstrip is four times the sum of

the lengths of the n strips in a single quadrant:

Lstrip = 4
n∑
i=1

Li (4.24)

where Li is the length of the ith strip, measured at the center line of the strip. Assuming that there

is no hole in the center of the module, this length is

Li =
L

n

(
i− 1

2

)
(4.25)

By substituting Equation (4.25) into Equation (4.24), the total strip length can be calculated from

Lstrip = 2Ln (4.26)

The average strip linear density λstrip accounts for the linear density of the each longeron λlongeron,

and also the mass of the battens. The mass of a batten is λbattenw where λbatten is the linear density

of the batten, and its length is the strip width w. (For this module with no central hole, the strip

width is w = L/2n.) To include this batten mass into the strip linear density, it must be spread

out over distance between successive battens. This distance, the batten pitch pbatten, is taken to be

constant over the module. This gives the average strip linear density:

λstrip = 2λlongeron + λbatten
L

2n

1

pbatten
(4.27)

The batten linear density λbatten was taken to be 0.16 g m−1 based on a CFRP construction (with

volumetric density 1600 kg m−3) and a rectangular cross section of 100µm×1 mm. The batten pitch
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was fixed at pbatten = 30 cm. The longeron linear density λlongeron is calculated as the product

of the longeron cross-sectional area and the material volumetric density (taken to be CFRP at

1600 kg m−3). CFRP was used as a material for the battens and longerons in this initial analysis

due to its stiffness, strength, and low density.

The boom mass was estimated by using a homogenized linear density (λboom).

The diagonal cord mass was calculated by estimating an appropriate cross-sectional area (taken

to be the area that results in 0.1% strain given the desired diagonal cord pre-tension T ), and using

this area to calculate the diagonal cord linear density (using a volumetric density of 1600 kg m−3).

4.5.4 Structural Design Results

For initial modeling efforts, the booms were assumed to have the properties of the ATK Coilable

Boom for the ST8 Sailmast with (EI)boom = 8035 N m2 and λboom = 70 g m−1 [70]. Coilable booms

such as the ST8 Sailmast are attractive due to their low linear densities and design maturity; they

can serve as initial design points. Thus, the number of inputs to the optimization procedure is

reduced to three: number of strips per quadrant n, diagonal cord tension T , and strip bending

stiffness (EI)strip. Additionally, n can only take on integer values. Given this, a simple grid search

was able to find the optimal design at n = 20, diagonal cord tension T = 3.84 N, and strip bending

stiffness (EI)strip = 10.78 N m2. Figure 4.12 shows how the specific concentrated power changes

with (EI)strip and T around this optimum.
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Figure 4.12: Specific concentrated power as a function of diagonal cord tension T and strip bending
stiffness (EI)strip.
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Component Mass (kg) Mass fraction
Tiles 288.00 78%
Hub 50.00 14%
Strip structure 19.00 5%
Booms 11.88 3%
Diagonal cords 0.01 0.003%

Total 368.89

Table 4.1: Spacecraft mass breakdown.

Increasing the diagonal cord tension initially stiffens the spacecraft; after a certain point, how-

ever, increased compression in the boom reduces its effective bending stiffness, resulting in greater

deflections. Increasing the strip bending stiffness also results in initial increases in specific concen-

trated power, but after a certain point, the mass growth due to larger TRAC boom cross-sections

outpaces the growth in collected power from lower deflections.

To achieve the desired strip bending stiffness of 10.78 N m, the two longerons supporting the

strip each have a bending stiffness of half this value, i.e., 5.39 N m. Assuming a longitudinal material

modulus of 140 GPa (typical of carbon fiber composites), a TRAC cross-section with a flange radius

of 10 mm and a flange thickness of 68.5 µm was designed to provide this bending stiffness.

The mass breakdown of the spacecraft is shown in Table 4.1. This mass breakdown does not

include margins; it represents a theoretically attainable lower limit on the mass of such spacecraft.

4.6 Spacecraft Packaging

A TRAC flange thickness of 68.5 µm leads to a flattened longeron thickness of 137µm. Assuming

the flattened tiles and the flattened battens are thinner than the flattened longerons, the flattened

strip thickness can be taken to be h = 137 µm. Since L = 60 m, the length-to-thickness ratio is

λ = 105.64.

The minimum radius Rmin can be calculated by considering the maximum strain in the wrapped

longerons. The longerons are assumed to have a uniaxial strain limit of 1%, with an additional

factor of safety of 2 against material failure, thus εmax = 0.5%. This gives the minimum radius of

curvature Rmin:

Rmin
h

=
1

2εmax
= 100⇒ Rmin = 13.7 mm (4.28)

The upper bounds on the packaged dimensions of the spacecraft can be estimated using the

kinematic model presented in Section 3.1.3 for a structure with N = 4, n = 20, λ = 105.64, and

Rmin/h = 100: a cylinder with diameter of 0.92 m and a height of 1.50 m. A cross-sectional view of

this cylinder is shown in Figure 4.13. In this packaged form, the maximum slip can be estimated
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using Equation (2.22) to be at least lmax = 16.8 mm. This informs the design of the ligaments

connecting the strips, as they must be able to provide at least this degree of slip.

Figure 4.13: Cross-section of the packaged spacecraft.

4.7 Spacecraft Design Summary

This chapter has presented a preliminary structural design of a spacecraft that carries many modular

multifunctional tiles. A formation of these spacecraft is envisioned to capture solar power in space,

and transmit it to a ground station on the Earth.

A design concept for these multifunctional 10 cm× 10 cm tiles, each of which is capable of power

generation and transmission, was described. These tiles are expected to be very lightweight; an initial

mockup with a mass of 1.56 g was constructed, and this mass is expected to decrease by a factor of

about 2. A structural framework was designed, using solar radiation pressure as a loading case and

specific concentrated power as a performance metric, to hold these tiles in a planar configuration.

The final result is an ultra-lightweight spacecraft that measures 60 m×60 m, has a mass of 369 kg,

and can be packaged into a cylinder with diameter of 0.92 m and a height of 1.50 m.
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Chapter 5

Conclusions

At the outset, four challenges associated with the packaging and deployment of large planar struc-

tures were posed: biaxial compaction, efficient packaging, packaging without permanent deformation,

and deployment with low and predictable forces. This thesis presented two novel classes of methods

for packaging large planar structures that simultaneously address each of these challenges.

These methods provide biaxial compaction by packaging structures with comparable in-plane

dimensions and large area into cylindrical forms. In both of the classes of packaging methods,

slipping folds are used to fold the structure; the first class of methods uses parallel slipping folds to

z-fold the structure, and the second class uses folds arranged in concentric polygons to star-fold the

structure. Once folded, the structure can be wrapped into a cylindrical package.

These methods are highly efficient at packaging; there are minimal voids in the packaged form,

and the volume of these voids decreases in comparison to the volume of the packaged material for

very large or very thin structures. At these scales, packaging efficiencies approach 100%. These

packaging methods were demonstrated experimentally using meter-scale test articles. These tests

demonstrated the feasibility of these packaging methods and validated the analytical tools that were

developed to predict packaged shapes. Packaging efficiencies of up to 83% were obtained for these

lab-scale models.

The maximum strains in the packaged form can be predicted analytically and thus packaging

can be achieved such that the structure remains elastic throughout. This allows a structure to be

packaged and deployed without damage or permanent deformation. These packaging methods scale

according to the material thickness, and are applicable to a wide range of material thicknesses. This

allows for the packaging of not only membrane structures, but also thicker structures with finite

bending stiffness.

Methods for deploying these structures were also described. These methods were experimentally

demonstrated, showing controlled and repeatable deployment. Deployment was conducted on both

membrane test articles and test articles with thin-shell elements that provide structural bending

stiffness.
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Structural architectures were put forward that are compatible with these methods of packaging

and deployment. One set of architectures pretension the structure to obtain out-of-plane stiffness;

these architectures are suitable for membrane structures. A second type of architecture uses the

bending stiffness of strips with thin-shell elements to react out-of-plane loads. Preliminary analytical

models were constructed to describe these structural architectures. Meter-scale physical models that

typify these architectures were constructed; these models demonstrated feasibility of these structural

architectures, and their compatibility with the packaging and deployment schemes.

These concepts, analytical tools, and methods enable the design of large space structures, such as

solar power arrays, reflectarray antennas, solar sails, and drag sails. This thesis applied a particular

packaging concept and structural architecture to the initial structural design of a 60 m× 60 m space

solar power satellite. The resulting spacecraft design concept is lightweight, with areal density of

≈ 100 g m−1, stiff enough to enable operation under dominant loading conditions, and packages into

a cylindrical volume ≈ 1 m in diameter and 1.5 m in height.

5.1 Open Questions

Over the course of this study, several questions were raised that are outside the scope of this thesis.

These questions warrant further investigation.

To eye, the physical models used throughout this thesis appeared undamaged after packaging

and deployment, but the degree to which they recovered their shape and stiffness was not quanti-

tatively measured. The as-deployed shape and stiffness of these structures must be measured, and

comparisons must be made to the pre-packaged shap and stiffness.

The magnitude and distribution of forces required to hold the proposed structures in a wrapped

state ought to be calculated, simulated, and measured. The proposed structures are elastically

bent in the packaged configuration, storing strain energy, and forces must be applied to hold these

structures contained. In order to design the containers for these structures, these forces must be

known.

The packaging tests performed throughout this thesis were done, to a large extent, by hand.

This manual packaging leads to variability, uncertainty, and inefficiency. More systematic and

deterministic packaging methods, e.g., using mechanical wrapping apparatuses or jigs, ought to be

designed and used to ensure tight packaging.

The imperfection sensitivity of the packaging and deployment behavior of such structures should

be studied. For instance, the effects of the rupture of a ligament during unfolding should be consid-

ered. During deployment testing for this study, such ruptures were observed and their effects were

minimal. The degree to which these structures are robust to imperfections should be quantified.

The structural analysis used in the design of the space solar power satellites should be further
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advanced by considering non-linear effects e.g. the buckling of the TRAC longerons in bending,

dynamic loading cases, and thermo-mechanical effects.

5.2 Future Work

The wrapping geometries used here are among the simplest possible. There exists a variety of forms

into which such structures could be packaged that preserve the condition of zero-slip at the ends of

the wrapped stack. For instance, if the available packaging volume is rectangular in form, a z-folded

stack could be wrapped into a form as shown in Figure 5.1a. This form is less efficient at packaging;

it has more than two voids if packaged into a rectangular form. However, the locations where the

wrapped stack sees the highest curvature are at the ends of the stack, as opposed to the very center.

(a) (b)

Figure 5.1: Alternative wrapping geometries for (a) a z-folded structure and (b) a star-folded struc-
ture.

These alternative wrapping geometries require alternative approaches to deployment. Some of

these alternative deployment approaches may be simpler than the ones proposed here. For instance,

a star-folded structure can be wrapped as shown in Figure 5.1b. This structure, held by four

independent cages, can be unwrapped and unfolded in a single synchronous deployment stage.

A limitation of the mathematical model used to capture star folding and wrapping is the assump-

tion of equal strip length. This assumption, although useful for these initial modeling efforts, limits

the predictive power of the mathematical model; only lower bounds on packaging efficiency and

maximum slip, and upper bounds on packaged dimensions can be provided. This assumption can

be avoided by using a different kind of spiral curve that has linearly decreasing pitch with arclength,

to capture the linearly decreasing thickness of the arm.

Many of the mechanical models used herein for the wrapped stack are elastic rods in bending,

with the stiffness of the rod being the sum of the stiffnesses of the individual strips. In reality,

each strip has slightly different curvature, and the mechanical behavior of a stack of strips is more

complicated. The limits of the current modeling approach need to be identified and, if possible, a

more suitable model developed.
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Another possible area of exploration is using curved fold lines to simultaneously fold and wrap

structures. Curved creases have been demonstrated for simple wrappings [11], but using them for

symmetric wrappings would be an interesting study. Using curved fold lines may decrease the

amount of slipping required during wrapping, and allow for stronger and stiffer connections between

strips.
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Appendix A

Large Deflections of an Elastic Rod
in Bending

Several calculations in this thesis rely on the mechanics of an inextensional elastic rod bending

through large deflections. This rod is confined to a plane, pinned at one end, and clamped at the

other.

Figure A.1: An elastic rod in bending, loaded by horizontal force P .

As shown in Figure A.1, it is loaded by a point force P = {P, 0}T , P ≥ 0 at the pinned end, has

uniform bending stiffness D, and length L. The solution to this problem is given by elastica theory.

Its derivation, which closely follows that of Timoshenko and Gere [40], is presented below.

The shape of the bent rod {x(s), y(s)}T is parametrized by arclength s ∈ [0, L]. Without loss of

generality, the pinned end at s = 0 is taken to be the origin.

Moment equilibrium about {x(s), y(s)}T of a section {x(s̃), y(s̃)}T : s̃ ∈ [0, s] of the elastica

dictates that

M = −Py (A.1)



101

where M is the internal bending moment of the rod, and is related linearly to the curvature κ of the

rod:

M = Dκ = D
dθ

ds
= −Py (A.2)

θ is the tangent angle of the rod at s. Taking a derivative with respect to s, and defining k2 ≡ P
D :

d2θ

ds2
= −k2 dy

ds
(A.3)

From the theory of plane curves, dy
ds = sin θ, and thus

d2θ

ds2
= −k2 sin θ (A.4)

Taking an indefinite integral over θ:

∫
d2θ

ds2
dθ = −k2

∫
sin θ dθ (A.5)

⇒
∫

d2θ

ds2
dθ

ds
ds = k2 cos θ + C (A.6)

⇒ 1

2

(
dθ

ds

)2

= k2 cos θ + C (A.7)

where C is a constant that can be found by evaluating the above at the pinned end, dθ
ds = 0⇒ C =

−k2 cos θ0. θ0 is the tangent angle at the origin θ(s = 0). Continuing

dθ

ds
= ±
√

2k (cos θ − cos θ0)
1
2 (A.8)

Implementing, using q ≡ sin θ0
2 , a transformation from θ to angular parameter ω, defined as

q sinω = sin
θ

2
(A.9)

⇒ q cosω =
1

2
cos

θ

2

dθ

dω
(A.10)

⇒ dθ

dω
= 2q cosω

(
cos

θ

2

)−1
(A.11)

= 2q cosω

(
1− sin2 θ

2

)− 1
2

(A.12)

= 2q cosω
(
1− q2 sin2 ω

)− 1
2 (A.13)
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Using these relations to transform Equation (A.8):

dθ

ds
= ±
√

2k (cos θ − cos θ0)
1
2 = ±

√
2k

(
2 sin2 θ0

2
− 2 sin2 θ

2

) 1
2

(A.14)

= ±
√

2k
(
2q2 − 2q2 sin2 ω

) 1
2 (A.15)

= ±2kq cosω (A.16)

Integrating to solve for s, and noting that when θ = θ0, sinω0 = 1 and ω0 = π
2 :

s(θ) =

∫ θ

θ0

(
dθ

ds

)−1
dθ̃ (A.17)

=

∫ ω

π/2

(±2kq cos ω̃)
−1 dθ

dω
dω̃ (A.18)

= ±1

k

∫ ω

π/2

(
1− q2 sin2 ω̃

)− 1
2 dω̃ (A.19)

= ±1

k
(F(ω; q)−F(π/2; q)) (A.20)

where F(ω; q) is the incomplete elliptic integral of the first kind, defined as

F(ω; q) ≡
∫ ω

0

(
1− q2 sin2 ω̃

)− 1
2 dω̃ (A.21)

Now, solving for the y-coordinate of the bent rod:

dy

ds
= sin θ (A.22)

⇒ y =

∫ s

0

sin θ(s̃) ds̃ (A.23)

=

∫ θ

θ0

sin θ̃
ds

dθ
dθ̃ (A.24)

Making the transformation from θ to ω:

sin θ = 2 sin
θ

2
cos

θ

2
= 2q sinω

(
1− q2 sin2 ω

) 1
2 (A.25)

y = ±
∫ ω

π/2

2q sinω
(
1− q2 sin2 ω

) 1
2 (2kq cosω)

−1 dθ

dω
dω̃ (A.26)

⇒ y = ±2q

k

∫ ω

π/2

sin ω̃ dω̃ (A.27)

⇒ y = ∓2q

k
cosω (A.28)
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Solving for the x-coordinate of the bent rod:

dx

ds
= cos θ (A.29)

⇒ x =

∫ s

0

cos θ(s̃) ds̃ (A.30)

=

∫ θ

θ0

cos θ̃
ds

dθ
dθ̃ (A.31)

Making the transformation to ω,

cos θ = 1− 2 sin2 θ

2
= 1− 2q2 sin2 ω (A.32)

x = ±
∫ ω

π/2

(
1− 2q2 sin2 ω̃

)
(2kq cos ω̃)

−1 dθ

dω
dω̃ (A.33)

= ±1

k

∫ ω

π/2

(
1− 2q2 sin2 ω̃

) (
1− q2 sin2 ω̃

)− 1
2 dω̃ (A.34)

= ±1

k

[∫ ω

π/2

2
(
1− q2 sin2 ω̃

) 1
2 dω̃ −

∫ ω

π/2

(
1− q2 sin2 ω̃

)− 1
2 dω̃

]
(A.35)

= ±2

k
(E(ω; q)− E(π/2; q))−

[
±1

k
(F(ω; q)−F(π/2; q))

]
(A.36)

⇒ x = ±2

k
(E(ω; q)− E(π/2; q))− s (A.37)

where E(ω; q) is the incomplete elliptic integral of the second kind, defined as follows:

E(ω; q) =

∫ ω

0

(
1− q2 sin2 ω̃

) 1
2 dω̃ (A.38)

Often, it is useful to have Equation (A.20), Equation (A.37), and Equation (A.28) evaluated at the

clamped end of the rod {x(s = L), y(s = L)}T = {x1, y1}T , where the tangent angle is θ(s = L) = θ1

and ω1 = ω(s = L):

L = ±1

k
(F(ω1; q)−F(π/2; q)) (A.39)

x1 = ±2

k
(E(ω; q)− E(π/2; q))− L (A.40)

y1 = ∓2q

k
cosω1 (A.41)

q sinω1 = sin
θ1
2

(A.42)

The upper branch of these equations represents the case where the curvature κ of the rod is

positive (i.e., the angle θ is a monotonically increasing function of arclength s) and the lower branch,

the case where κ ≤ 0 (and θ is a monotonically decreasing function of s).
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Appendix B

Involute of a Circle

An involute of a circle is a plane curve used throughout to model wrapped structures. This curve is

a spiral, with each arm of the spiral parallel to adjacent arms. Here, parallelism means that for any

point on the spiral, the normally separated point on the adjacent arm is a constant distance away.

Additionally, the tangent vectors of these two points are parallel. This property is not shared by

other spiral curves; for example, in an Archimedean (or arithmetic) spiral, successive arms are not

parallel.

In general, an involute is a curve that follows the end of a taut string being unwrapped from

the surface of some generator curve. Therefore, as shown in Figure B.1, an involute of a circle is

generated by following a point c {cosα, sinα} on a circle of radius c and the unit tangent to the

circle at this point {sinα,− cosα}, which defines the direction of the taut string. The length of this

string is simply the arclength of the circle cα, giving the final equation of the involute of the circle.

Figure B.1: Involute of a circle.
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In Cartesian coordinates, an involute of a circle is described as follows:

p(α) = c

 cosα

sinα

+ cα

 sinα

− cosα

 (B.1)

The unit tangent to the involute of a circle is

t(s) =
dp

ds
=

dp

dα

dα

ds
(B.2)

= cα

 cosα

sinα

 dα

ds
(B.3)

Since ‖dpds ‖ = 1, it must be that

t(s) =

 cosα

sinα

 (B.4)

and ∣∣∣∣cαdα

ds

∣∣∣∣ = ±1 (B.5)

Taking the upper branch and integrating

dα

ds
=

1

cα
(B.6)

⇒
∫
cα dα =

∫
ds (B.7)

⇒ α2 − α2
0 =

2

c
(s− s0) (B.8)

Using the definition of signed curvature κ(s) from [25]:

κ(s) = −dn

ds
(s) · t(s) (B.9)

where n(s) is the unit normal. The normal n(s) is perpendicular to the tangent vector t(s), which
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is given by Equation (B.4), and hence:

n(s) =

 − sinα

cosα

 (B.10)

dn(s)

ds
=

dn

dα

dα

ds
(B.11)

= − 1

cα

 cosα

sinα

 (B.12)

Substituting this and Equation (B.4) into Equation (B.9):

κ(s) =
1

cα
(B.13)

To see that successive arms are parallel and constantly separated, consider p(α+ 2π):

p(α+ 2π) = c

 cos (α+ 2π)

sin (α+ 2π)

+ c(α+ 2π)

 sin (α+ 2π)

− cos (α+ 2π)

 (B.14)

= c

 cosα

sinα

+ c(α+ 2π)

 sinα

− cosα

 (B.15)

= p(α) + 2πcn(α) (B.16)

Thus, for every α, p(α) and p(α+ 2π) are normally separated by distance 2πc, and these two points

share the same normal.
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Appendix C

Generator Curves for Compact
Wrapping

C.1 Generator Curve for 2-fold Symmetry

The generator curve p(s) : [0, L/2]→ R2 consists of three pieces: a semi-circle pc(s) of radius R, a

vertical line pl(s) of some as-yet undetermined length sl, and an involute of a circle pv(s) with pitch

2πc = 2nφh. The involute of the circle is the spiral curve that accounts for the wrapped volume of

the stack of strips; the semi-circle and the line are geometric models for the inner part of the wrap.

The only requirement on this inner part of the curve is that they connect the end of the involute to

the origin in a smooth manner.

p(s) =


pc(s) if s ∈ [0, πR)

pl(s) if s ∈ [πR, πR+ sl)

pv(s) if s ∈ [πR+ sl, L/2]

(C.1)

Figure C.1 shows these three pieces of the generator curve. It is desired to connect these three

pieces in a manner that ensures slope continuity.

To ensure shape and slope continuity of the base curve r(s) as defined in Equation (2.14), the

semi-circle must begin at the origin O = {0, 0}. It terminates at some point A, which, for simplicity,

is taken to lie on the x-axis; thus A = {2R, 0}, and the center of the semi-circle lies at {R, 0}. This

gives the expression for pc(s):

pc(s) =

 R

0

−R
 cos s/R

sin s/R

 (C.2)

s ∈ [0, πR) (C.3)
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Figure C.1: Generator curve for a z-folded stack.

The tangent to the semi-circle at A is vertical, thus maintaining slope continuity with the vertical

line. The vertical line has some to-be-determined length sl, and it must be coincident with point A.

This gives its equation:

pl(s) =

 2R

0

+

 0

(s− πR)

 (C.4)

s ∈ [πR, πR+ sl] (C.5)

This gives the location of point B at {2R, sl}.

Now it is required that the involute of the circle pv(s) begin at this point B, and, to maintain slope

continuity, have a vertical tangent there. The curve of an involute of a circle is given by Equation

(B.1). However, here a counter-clockwise rotation by an angle θ is imposed on the involute; this

extra degree of freedom allows the involute to have a vertical tangent at point B. Thus the involute

is described by

pv =

 cos θ − sin θ

sin θ cos θ


c
 cosα

sinα

+ cα

 sinα

− cosα


 (C.6)

= c

 cos (α+ θ)

sin (α+ θ)

+ cα

 sin (α+ θ)

− cos (α+ θ)

 (C.7)

α ∈ [α0, αmax] (C.8)

where α is an angular parameter, related to the arclength s through Equation (B.8). The tangent
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vector to the involute is given by Equation (B.4), rotated counter-clockwise by θ:

t =

 cos (α+ θ)

sin (α+ θ)

 (C.9)

At point B, when α = α0, the tangent vector must be vertical: cos (α0 + θ)

sin (α0 + θ)

 =

 0

1

 (C.10)

⇒ α0 + θ = 2πm+
π

2
(C.11)

where m is some integer. Without loss of generality, set m = 0, which gives the value for θ:

θ =
π

2
− α0 (C.12)

For shape continuity, the starting point of the involute pv(α0) must be point B. This provides

the following condition: 2R

sl

 = c

 cos (α0 + θ)

sin (α0 + θ)

+ cα0

 sin (α0 + θ)

− cos (α0 + θ)

 (C.13)

Using Equation (C.10),  2R

sl

 = c

 0

1

+ cα0

 1

0

 (C.14)

This gives the expression for undetermined parameters α0 and sl:

α0 =
2R

c
(C.15)

sl = c (C.16)

Putting this together gives the expression for the generator curve for a wrapped stack of z-folded

strips given in Equation (2.15).
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C.2 Generator Curves for N-fold Symmetry

There are two generator curves that are used to describe the wrapped structure in Section 3.1.1,

q(s) and p(s). For a single sector, these curves exist in a wedge bound by two lines that intersect

at an angle β = 2π
N . To describe adjacent sectors, these generator curves can be rotated through an

angle β. Figure C.2 shows the pieces of these curves.

Figure C.2: Generator curve for N -fold symmetry.

q(s) is an arc AB of a circle c0 of radius R0, centered at a point O0. To ensure tangency to the

two bounding lines of the wedge (to allow slope continuity between adjacent sectors), O0 lies on the

angular bisector of the two bounding lines:

O0 = R0

 cot β2

1

 (C.17)
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From this, an equation for q(s) can be obtained:

q(s) = R0

 cot β2

1

+R0

 cos θ(s)

sin θ(s)

 (C.18)

θ(s) ∈ (π/2 + β, 3π/2] (C.19)

The generator curve p(s) is composed of four pieces: an arc BC, denoted pc0, of circle c0; a

second arc CD, denoted pc1, of circle c1 of radius R1 centered at O1; a vertical line DE, denoted

pl, of some undetermined length sl; and an involute of a circle pv with pitch 2πc = 2NH.

The vertical line pl, and the involute pv are determined exactly the same way as Section C.1; the

vertical line has length c, and the involute, which begins at point E = {a,−c}, has the expression

pv = c

 − sin (α− α0) + α cos (α− α0)

− cos (α− α0)− α sin (α− α0)

 (C.20)

α2 =
2

c
(s− s0) + α2

0 (C.21)

α0 =
a

c
(C.22)

The y-coordinate of the involute has been negated as compared to Equation (2.15) to account for

the fact that the involute here is reflected through the x-axis as compared to the one in Section C.1.

The x-coordinate of point E, denoted a, is determined by considering the other two pieces of the

generator curve.

pc0 is a continuation of the circular arc AB; as such, shape and slope continuity with q(s) are

maintained. It continues from θ = π/2 + β to an as-yet undetermined angle ξ:

pc0(s) = R0

 cot β2

1

+R0

 cos θ(s)

sin θ(s)

 (C.23)

θ(s) ∈ (ξ, π/2 + β] (C.24)

pc1 is a circular arc of a to-be-determined radius R1 that is tangent to pc0 at point C. As such,

the center of this arc O1 must lie on the line O0C. To connect to the vertical line at point D, the

circular arc pc1 must terminate at the x-axis with a vertical tangent. This locates its center O1 at

the intersection of the line O0C and the x-axis; thus O1 = {d, 0}. Its x-coordinate d can be related

to the angle ξ.
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Consider 4O1O0A. From Figure C.2,

|O0A| = R0 (C.25)

⇒ |O1A| = R0 cot ξ (C.26)

From 4OO0A

|OA| = R0 cot
β

2
(C.27)

Since d+ |O1A| = |OA|, it can be obtained that

d = R0

(
cot

β

2
− cot ξ

)
(C.28)

A similar relationship can be obtained relating R1 to R0 and ξ. Once again, consider 4O1O0A:

|O1O0| = |O0A| sec ξ = R0 sec ξ (C.29)

Since |O1C| = R1 and |O0C| = R0, it can be obtained that

|O1C| = |O1O0|+ |O0C| (C.30)

⇒ R1 = R0 sec ξ +R0 (C.31)

= R0 (sec ξ + 1) (C.32)

Thus, by fixing the value of ξ, the radius R1 and center O1 = {d, 0} of the circular arc pc1 can

be determined through Equation (C.32) and Equation (C.28), respectively. To find a suitable value

for ξ, the position of point D at {a, 0} is determined using the following argument.

Recall that the wrapped shape of these structures has N -fold symmetry. This symmetry needs

to be considered here. The sector that exists counter-clockwise to the present sector must be allowed

sufficient space so as to avoid self-intersection in the wrapped structure. Consider the part of the

generator curve labeled DEI in Figure C.3; its rotated copy D′E′I ′ must placed at a location such

that it exists some length MH away from the point G, which represents the projection of circle c1

centered at O1 onto the line OD′. Thus,

|GD′| = MH (C.33)

H = nφh is the half the thickness of each arm, and M ≥ 1 is a free parameter.
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Figure C.3: To fix the geometry of this curve, the position of point D must be determined. This is
done by considering the rotational symmetry of the problem and allowing the rotated curve D′E′I ′

enough space to avoid intersecting the original curve DEI.

From N -fold symmetry about the origin O,

|OD| = |OD′| = a (C.34)

Projected onto line OD′, the center O1 of circle c1 falls on point F . This gives

|OF | = d cosβ (C.35)

and

|FG| = R1 (C.36)
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Combining Equation (C.34), Equation (C.35), Equation (C.36), and Equation (C.33):

|OD′| = |OF |+ |FG|+ |GD′| (C.37)

⇒ a = d cosβ +R1 +MH (C.38)

From the location of point D at {a, 0}:

a = d+R1 (C.39)

Substituting Equation (C.38) into Equation (C.39):

d+R1 = d cosβ +R1 +MH (C.40)

⇒ d (1− cosβ) = MH (C.41)

Substituting Equation (C.28), and solving for ξ:

⇒ R0

(
cot

β

2
− cot ξ

)
=

MH

1− cosβ
(C.42)

⇒ ξ = arccot

[
cot

β

2
− MH

R0 (1− cosβ)

]
(C.43)

ξ must exist within the range [β/2, β + π/2]: the lower bound represents the case when center O1

of arc CD is coincident with the origin O and the arc CD in Figure C.2 spans half the wedge; the

upper bound is the case arc BC in Figure C.2 vanishes. These bounds on ξ provide corresponding

bounds on the value of M :

M ∈
[
0,
R0

H
tanβ

]
(C.44)

Within this range, M is a free tunable parameter.
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Appendix D

TRAC Cross-Section Properties

Figure D.1: TRAC longeron cross section.

The area of a TRAC section can be calculated as the sum of the areas 2A1 of the flanges (labeled

1 in Figure D.1) and the area A2 of the bonded section (labeled 2 in Figure D.1):

A = 2A1 +A2 (D.1)

A1 =
θ

2

(
(R+ h)2 −R2

)
(D.2)

=
hθ

2
(2R+ h) (D.3)

A2 = 2hd (D.4)

The second moment of area of a TRAC longeron section about the x axis can be calculated as
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the sum of the second moments of area of the flanges Ixx,1 and the bonded section Ixx,2:

Ixx = 2Ixx,1 + Ixx,2 (D.5)

Ixx,1 =

∫ ∫
y2 dA (D.6)

y = (R+ h)− r cosφ (D.7)

⇒ Ixx,1 =

∫ θ

0

∫ R+h

R

(
R+ h− r cos φ̃

)
r dr dφ (D.8)

=
h

48


−32(h+R)(h2 + 3hr + 3R2) sin θ

+6(h+ 2R)
{

(5h2 + 10hR+ 6R2)θ

+ h2 cos θ sin θ +R(h+R) sin 2θ
}
 (D.9)

Ixx,2 =
(2h)3d

12
=

2h3d

3
(D.10)
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Appendix E

Cutting Pattern

Figure E.1: Cutting pattern with 6 strips, and 3 ligament connections between adjacent strips.

Cutting along this pattern will produce a simple z-foldable structure that can be slip wrapped

as described in Chapter 2. Please note that paper ligaments are not very robust, and will likely tear

if overly stressed.
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