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ABSTRACT

We study the behavior of granular crystals subjected to impact loading that creates
plastic deformation at the contacts between constituent particles. Granular crystals
are highly periodic arrangements of spherical particles, arranged into densely packed
structures resembling crystals. This special class of granular materials has been
shown to have unique dynamics with suggested applications in impact protection.
However, previous work has focused on very low amplitude impacts where every
contact point can be described using the Hertzian contact law, valid only for purely
elastic deformation. In this thesis, we extend previous investigation of the dynamics
of granular crystals to significantly higher impact energies more suitable for the
majority of applications. Additionally, we demonstrate new properties specific to
elastic-plastic granular crystals and discuss their potential applications as well. We
first develop a new contact law to describe the interaction between particles for large
amplitude compression of elastic-plastic spherical particles including a formulation
for strain-rate dependent plasticity. We numerically and experimentally demonstrate
the applicability of this contact law to a variety ofmaterials typically used in granular
crystals. We then extend our investigation to one-dimensional chains of elastic-
plastic particles, including chains of alternating dissimilar materials. We show that,
using the new elastic-plastic contact law, we can predict the speed at which impact
waves with plastic dissipation propagate based on the material properties of the
constituent particles. Finally, we experimentally and numerically investigate the
dynamics of two-dimensional and three-dimensional granular crystals with elastic-
plastic contacts. We first show that the predicted wave speeds for 1D granular
crystals can be extended to 2D and 3D materials. We then investigate the behavior
of waves propagating across oblique interfaces of dissimilar particles. We show that
the character of the refracted wave can be predicted using an analog to Snell’s law
for elastic-plastic granular crystals and ultimately show how it can be used to design
impact guiding "lenses" for mitigation applications.
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C h a p t e r 1

INTRODUCTION

This thesis is an investigation of the dynamics of high energy impacts on densely-
packed arrangements of spherical metallic particles that cause plastic deformation
at the contact points between granules. We call these arrangements of particles
“granular crystals” because of the discrete nature of the grains that compose them
and because their highly-organized periodic arrangements mimic the structures of
crystals. Over the course of this work, we systematically progress from creating
a description of the interaction between individual grains, through to the design
of heterogeneous 2D and 3D granular crystals with specific applications in impact
protection and mitigation. First, this introduction illustrates some of the motivation
for investigating these material systems, describes the foundation laid by previous
work upon which we build, and then lays out the goals and organization of this thesis
as a whole.

1.1 Background and Previous Work
Because of their subtle complexity, the details of the dynamics of granular

materials have long been an active field of research inmechanics. Granular materials
like sand, soils, or even grains of rice often behave differently than most solids and
can sometimes act more like liquids or gases with surprising results [1, 2]. Because
granular materials are so ubiquitous but also so intricately complex, there are many
ways to approach the problem of better understanding their dynamic properties and
many ways in which new understandings could be beneficial to society. As an
example, there are many industries in which the manipulation of granular materials
is the key to efficiency, such as farming, mining, pharmaceuticals, and construction.
Additionally, planetary science relies heavily on knowledge of the behaviors of
granular materials, particularly in simulations of collisions of smaller planetary
bodies such as asteroids or in the large collision between the early Earth and an
unknown body that formed the Moon. Finally, we often rely on granular materials
to provide protection from high velocity impacts. Sand bags are most often used to
protect against bullets and other ballistics. Granular materials are typically effective
at absorbing the energy of impact through the crushing of individual grains and
rearranging of the grains within the bulk material.
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1.1.1 Contact Behavior
The key feature that imbues granular materials with their unique properties

as well as their complexity is the interactions between the grains. Their interac-
tions are typically highly non-linear, leading to dynamics that are both dissimilar
to typical linear continuum mechanics and often dissimilar among different classes
of granular materials. One non-linearity stems from the fact that many granular
materials cannot support tension. Grains are typically free to separate from their
neighbors without any adhesion, so bulk materials behave differently in tension than
in compression. However, the arguably more consequential non-linearity is in the
force-displacement relationship; forces between grains often do not increase linearly
with increased overlap between them. The contact behavior in the simplest possible
granularmaterial—spherical particles with a linear elasticmaterial model—was first
postulated by Hertz in 1881 [3]. He showed analytically and experimentally that the
force between spherical elastic particles increased as the displacement between the
particles to the 3/2 power. Beginning from a point contact, the contact area between
the particles expands into a circle and grows as they are compressed together, contin-
ually increasing the amount of force required to incrementally increase the particles’
overlap. He also determined that the radial distribution of forces within the contact
area was parabolic with a maximum at the center of the contact, going to zero around
the edges. The behavior of particles and the character of the non-linear interaction
can be significantly altered by changing the shape or the material properties of the
constituent grains. With each increase in complexity, their dynamics can be wholly
different in order to be more suitable for a specific type of application or material
system.

While the contact interaction for elastic bodies was analytically solved and ex-
perimentally verified by Hertz [3], the elastic-plastic contact deformation of spheres
is still not well characterized. A fully analytical solution for stresses during the com-
pression of two spheres has not been obtained even for bi-linear, elastic-perfectly
plastic materials, disregarding any strain-hardening or more complicated material
model. Therefore, many models have been made for the dynamic compression of
elastic-plastic spheres that incorporate a mix of analytical, numerical, and experi-
mental methods.

Thornton’s initial model applied a Von Mises criterion to the stresses between
two elastic spheres, capping the parabolic pressure distribution in the contact area
[4]. Using this pressure distribution, Thornton was able to model the coefficient of



3

restitution for elastic-plastic collisions between particles; however the predictions
did not suitably match experimental results in many cases. From this pioneering
work, there were many subsequent extensions in order to create a model that was
applicable for various geometries, materials, or loading cases as needed [5–9].
Many finite element method (FEM) studies modeled the loading of elastic-plastic
hemispheres on a rigid wall or conversely a rigid hemisphere compressed into an
elastic-plastic half-space [10–13]. However, these models were not general enough
to be suitable for design of granular systems with a wide variety of constituent
materials or for a suitable variety of loading amplitudes and rates.

Because this work is motivated by understanding impact protection for high ve-
locity impacts, the strain rate dependent plasticity behavior of many of the materials
typically used in granular crystals is of great importance. Strain rate dependence
has been previously noted in the experimental observation of collisions between
spheres, as well as in Hopkinson bar experiments involving hemispherical contacts
[14–16]. The Hopkinson bar experiments, performed by Wang et al. to experimen-
tally measure the dynamic force-displacement response of the contact between two
metallic hemispheres, showed that strain rate dependence was particularly important
for steels [17]. It was demonstrated that existing models do not correctly predict the
strain rate dependent behavior without additional empirical constraints. However,
attempts to do so were performed by tuning existing models for the specific loading
rates needed to satisfy experimental conditions instead of attempting to incorporate
existing models for strain rate dependent plastic behavior, such as the relatively
simplistic Johnson-Cook model [18].

1.1.2 Dynamics of 1D Granular Crystals
In recent years, there has been extensive investigation into the behavior of 1D

chains of particles with non-linear contact interactions, beginning with Nesterenko
demonstrating the formation of solitary waves in Hertzian granular chains [19,
20]. Solitary waves, or "solitons," are steady non-linear waves that do not exhibit
dispersion, i.e. the pulse shape does not change as the wave propagates through the
granular material. In an uncompressed chain of elastic particles, there is initially no
stiffness because each contact is a point and therefore the sonic wave speed is zero.
After an impact, a soliton, or train of solitons, will form and travel at a speed that is
frequency independent, but amplitude dependent. This wave speed can be written
as [21]:
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VH,1D = 0.68
(

E∗

r∗ρ3/2

)1/3

F1/6
M , (1.1)

where E∗ and r∗ are functions of the particles’ elastic properties and radius respec-
tively, ρ is the density of the constituent material and FM is the maximum force
experienced at the contacts. Because no energy is dissipated at the elastic Hertzian
contacts, Fm (and therefore VH,1D) remains constant.

Many subsequent studies demonstrated dynamic properties of elastic 1Dmateri-
als which seemed useful for impact protection applications. These studies typically
use a combination of experimental investigations with numerical simulations us-
ing discrete element method (DEM) simulations [22]. Using precompression the
wave speed can be tuned [23]. Branching and recombining of 1D chains allowed
for further manipulation of how energy propagates, selectively directing energy by
choosing materials in each branch and branch angles [24, 25]. Additionally, the
dynamics of heterogeneous chains of particles, particularly alternating chains of
two materials often called "dimer chains," have been shown to enhance the impact
protection applications. At the interfaces between chains of different constituent
particle materials within a 1D chain, reflected waves can appear in order to trap
energy and dissipate shock-type waves [22, 26–29]. In dimer chains, local reso-
nances of the different phases have been shown to further slow the transmission
of energy [30–34]. For acoustic and harmonic excitations, dimer chains have been
used to create materials with tunable band gaps with proposed applications in vi-
bration isolation and acoustic filters [35–41]. However, these effects, for uniform
and dimer chains, were all demonstrated at significantly lower forces than useful
for most impact applications because they relied on the materials remaining elastic
throughout the impacts [42].

Because of the enticing properties of 1D granular crystals for impact mitigation,
attempts to extend these investigations to include the inevitable plasticity at the
contacts have more recently been attempted. The dynamics of chains of elastic-
plastic particles has been investigated with numerical and experimental approaches
[29-34]. The Hopkinson bar experiments used to obtain force-displacement data
from single contacts were extended to experiments of longer 1D chains [43, 44].
However, because a significant portion of the impact energy is dissipated through
plastic deformation at the contacts, the experiments were very limited in length of
the 1D chain in order to obtain meaningful measurements from the transmitted wave
through the chain. Numerical studies were also performed usingDEM incorporating
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various simplified models for the elastic-plastic contact behavior [45–48]. These
studies began to describe the types of waves that form after impacts in elastic-plastic
granular materials and their characteristic properties such as energy dissipation and
wave speed. In these studies, simulations showed that the leading plastic wave
propagating through elastic-plastic granular chains traveled slower than subsequent
unloading and reloading waves due to residual plastic deformations changing the
geometry of the contacts [45, 47]. In these events, the unloading and reloading
waves following the first compressive wave operate in the elastic regime and exhibit
the same properties as waves in elastic Hertzian granular chains. However, the
initial plastic wave exhibits a different dynamic response governed by its unique
contact law. Work by Pal el al. described the energy dissipation of a short impulse
inducing plasticity in the initial particles of a long chain and the dependence of the
wave speed on the excitation amplitude [45], but the dependence of the wave speed
on the particles’ material properties was not investigated.

1.1.3 2D and 3D Granular Crystals
As in the one-dimensional case, work in 2D and 3D granular crystals has mostly

focused on experimental and numerical investigation without plasticity at the con-
tacts. Recent work has extended many of the findings in 1D towards understanding
non-linear wave propagation in elastic 2D and 3D granular crystals with Hertzian
contacts. Much of the research has focused on the differences in how waves prop-
agate through 2D and 3D materials due to the geometry of their crystal structure.
In 2D, Leonard el al. investigated the nature of waves in square packings versus
in hexagonal packings [49–51], as well as square packings with intruder particles
embedded [52–54]. Anisotropic control over how waves propagated radially out
from an elastic impact was demonstrated by choosing the materials used in 2D
geometries [55]. Incorporating randomness and disorder into 2D granular crystals
has also been shown to significantly influence the propagation of waves [25, 56].
The focus on crystal structure has been particularly dominant in 3D because there
is a much greater variety of crystals than in 2D [57–59]. The dynamic responses of
hexagonal close packed (HCP), face centered cubic (FCC) or body centered cubic
(BCC) are distinguished by the number of neighboring contact particles, the angles
between each contact, and the bulk density of the particle packing.

A recent development in the investigation of 2D and 3D granular crystals showed
that with some scaling, the results for 1D chains of elastic particles could be applied
to higher dimensional systems. Manjunath et al. showed that the predicted solitary
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wave speed given in Equations 1.1 could be directly related to planar wave speed
propagation through 2D and 3D lattices [60]. By using a scaling that took into
account both the effects of stiffness changes due to contact geometry and density
changes due to packing density, it was shown that:

VH,2D =
3

2
√

2
VH,1D

VH,3D =
2
√

3
VH,1D,

(1.2)

where VH,1D was the solitary wave speed through 1D Hertzian granular chains from
Equations 1.1. For this scaling, the 2D granular crystals were hexagonally packed
and the 3D crystal structure was HCP. In all cases investigated, the plane waves were
excited only along the close packed direction.

Tichler et al. recently showed that for 2D elastic granular crystals, an analog
to Snell’s law for optics can be written to describe the behavior of solitary plane
waves impinging on oblique interfaces between two materials [61]. Snell’s law can
be derived for any type of wave from the geometry of the interface and knowledge of
the speed at which waves travel on either side of the interface. In its simplest form,
Snell’s law allows us to find the angle of refraction, the angle at which transmitted
waves are bent with respect to the interface between materials, to be:

sinΘinc

sinΘref
=

V1

V2
, (1.3)

where V1 and V2 are the wave speeds in each of the materials and Θinc and Θref are
the incident and refracted wave angles with respect to the angle of the interface.
Their finding that Snell’s law can be applied to elastic granular crystals reveals
two important things: first, it could only be valid if the solitary wave speed was
independent of the angle the plane wave was propagating in with respect to the
close packed direction. Second, many of the lessons and practices from optics, lens
design, and optical metamaterials could possibly be applied to rationally designing
heterogeneous granular crystals. If so, these materials be used for controlling
the propagation of impact energy in the same fashion as light is manipulated in
optics. However, as with most of the previous research, these findings were only
demonstrated for elastic granular crystals with no plasticity at the contacts, and
therefore the findings were not previously assumed to be applicable for impact
protection applications.

Experimental investigations of high speed impacts on 2D and 3D granular mate-
rials have taken a variety of approaches. Initially work focused on using photoelas-
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ticity to observe how polarized light is affected by stresses in soft transparent circular
grains in 2D arrays of disk [62–64]. The experiments provided initial validation
of the DEM approach to simulations of impact on granular materials. For elastic
impacts on 2D granular crystals, embedded piezo-electric sensors within the parti-
cles were used to measure compressive forces along with embedded accelerometers
[49, 50, 53, 54]. For much higher velocity impacts, others used impacts on beds of
granular materials to observe the ejecta and the craters left behind [65–67]. Using
high speed photography to track particles or even to do digital image correlation
in order to observe strain fields within the particles has also been used on drop
weight tower experiments or similar experiments using a small explosion to create
an impulse [68].

1.1.4 Granular Metamaterials
While the complexities of the non-linear particle interactions and complicated

geometries of the crystal structures are typically considered problems to be overcome
through research, they can alternatively be thought of as parameters with which to
rationally modify the dynamic behavior of these materials. With a deeper under-
standing of the contact law’s effect on the dynamics, one can imagine designing a
material to have a specific response to an excitation. Engineered materials are often
described as “metamaterials” and are most frequently discussed when referring to
optical metamaterials. Optical metamaterials have been used to demonstrate "nega-
tive refraction" of electromagnetic waves, controlling light in ways not possible with
natural materials by introducing microstructure which manipulates the waves on the
length-scale of its wavelength [69]. Metamaterials have now been investigated heav-
ily for acoustic waves as well as other linear elastic waves [70–72]. This preliminary
work led to more recent analytical, experimental, and numerical findings showing
that layered composites comprised of thin plates can be used to effectively bend
linear-elastic plane waves around a spherical obstacle [73–75]. In non-linear wave
dynamics, materials with “tunable” properties are often discussed with an emphasis
on controlling the nature of waves as they propagate through granular materials [23,
35]. In nearly all such metamaterials, the material is precisely designed for a known
input and is often dependent on the frequency content or amplitude of the excitation.
This makes many metamaterial designs less useful for real-world applications where
the exact nature of the excitation isn’t always known, especially for cloaking and
protection applications.

As mentioned, granular materials inherently exhibit many properties that are
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useful for impact protection and therefore disorganized random granular materials
like sand and soil are the current standard in many applications. Because of their
unique dynamics and opportunities for tunable properties, granular materials are
also of great interest to the engineered materials community. However, there are
still many unknowns as to the dynamic behavior of these materials in the higher-
energy regimes applicable to impact protection applications. Furthermore, any
designed material must have demonstrated use in "real-world" scenarios with real-
istic uncertainties, rather than be exclusively applicable to a specific case for which
it is designed. With a greater fundamental understanding of the dynamics of these
materials, perhaps it would be possible to replace a conventional sandbag with a
system whereby the material properties and arrangement of each grain within the
material is specifically chosen. Perhaps then the flow of energy within the material
after an impact could be engineered and designed to achieve a specific goal. Impact
energy could be directed away from sensitive regions of the material that we’d like
to protect, towards less critical regions where damage could be localized.

1.2 Goals and Conceptual Organization
The goal of this research is to investigate the behavior of granular crystals after

impacts at high pressures and strain-rates, in particular, for impacts that create
plastic deformation at the contacts. Higher energy impacts represent a regime that
has previously been avoided by a significant portion of granular crystal research
because of the dramatically different dynamics that occur upon the initiation of
plasticity. While previous work has discussed the applicability of designing granular
crystals for use in impact protection, it has yet to be investigated whether the useful
properties exhibited in the elastic-only cases remain in the elastic-plastic regime
as well. Given that plasticity occurs at very low forces when dealing with the
stress concentration between two spherical particles, it is nearly impossible to avoid
plasticity when dealing with the types of impact problems for which protection is
required. In this work, we present a systematic investigation of the dynamics of
granular crystals composed of elastic-plastic particles.

This thesis has been organized to systematically build up the complexity of the
dynamics being investigated in the same fashion as the logical progression occurred
during the research. As discussed in the motivation, the key to understanding
granular materials is characterizing the contact behavior. Therefore, we begin with
a new description of the contact between elastic-plastic spherical particles. From
there, we move to the simplest geometry of granular crystals, one-dimensional (1D)
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chains of particles. After presenting somedesign considerations for 1Dmaterials, we
increase the complexity further and discuss the dynamics of impactwave propagation
in two-dimensional (2D) and three-dimensional (3D) granular crystals.

Chapter 2 describes all the numerical and experimental tools that were used
throughout this thesis. Numerical simulations were used as the main method of
investigation of the dynamics of granular materials. Experiments were performed
to validate the simplest cases of each type ofmaterial system (1D, 2D, homogeneous,
heterogeneous, etc.). After validation, simulations allowed us to open up the design
space and predict the behavior of materials which would have been prohibitively
expensive, time consuming, or complicated to test experimentally.

In Chapter 3, we delve into a detailed description of individual contacts between
elastic-plastic spherical particles used in this work. We present a new model for
the force-displacement relationship and show that it is valid for a wide range of
metallic spheres including materials with strain-rate dependent plasticity. The wide
applicability of the model is necessary for facilitating the design of materials using
elastic-plastic particles as building blocks as it allows us to choose frommany useful
materials. We experimentally validate this model using Hopkinson bar experiments
at a variety of strain-rates and forces.

In Chapter 4, we increase complexity from single contacts to one-dimensional
(1D) chains of particles. We investigate the properties of waves through elastic-
plastic particles for both uniform chains of a single materials and dimer chains of
two alternating materials. We experimentally validate our simulations again using
the Hopkinson bar, but with the addition of a laser vibrometer to measure small
oscillations of the particles towards the end of the long chains of particles. A key
result from this chapter is a model for the speed at which waves travel through 1D
chains of elastic-plastic particles and its sole dependence on the material properties
of the constituent particles.

In Chapter 5, we discuss higher dimensions and investigate impacts on larger
arrays of elastic-plastic particles. We present experiments to validate 2D and 3D
simulations of impacts on uniform and heterogeneous arrays of elastic-plastic parti-
cles. Using the experimentally validated simulations, we extend the results obtained
for 1D materials into higher dimensions. We also present models for how waves
behave in heterogeneous granular crystals, particularly across angled interfaces be-
tween twomaterials. Finally, we show that these results allow us to apply knowledge
from optics to create impact guiding lenses with applications in impact protection,
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mitigation, and control of the flow of impact energy within a granular material.

In the final chapter, we summarize the findings presented in this thesis. We also
provide a perspective on how this work could be extended and open questions that
could be pursued in future work.
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C h a p t e r 2

METHODS

In this chapter we discuss the various numerical and experimental tools developed
to support the findings of this thesis. Simulations allows us to quickly and efficiently
explore the details of the dynamics of elastic-plastic granular materials, particularly
for complex geometries and exotic materials. However, without experimental vali-
dation of the numerical tools, simulations cannot be assumed to be reliable proxies
for the realities of the physics involved. Therefore, in this work, we use numer-
ical simulations as our main method of investigation into the dynamics of waves
in elastic-plastic behavior, but continually provide experiments to verify that the
physics are being sufficiently captured and that all assumptions are valid.

2.1 Numerical Methods
2.1.1 Finite Elements Modeling of Elastic-Plastic Contact Behavior

In the simplest case, conventional tools used in continuummechanics are helpful
in initially understanding the behavior of single contacts between individual grains.
Because the stresses in elastic-plastic spheres are not fully analytically solved, we
must use finite element methods to simulate their response and extract the forces
and displacements from the simulations.

In order to investigate the dependence of the force-displacement response on
the material properties and sphere radius, we used a finite element model devel-
oped in ABAQUS. This allowed us to easily vary parameters over ranges that could
not always be explored experimentally. We used an elastic-perfectly plastic con-
stitutive model for the spheres materials and included a Johnson-Cook model for
the strain-rate dependence. For quasistatic and constant strain-rate simulations we
used ABAQUS/Standard, a non-linear implicit integrator, while for impact simula-
tions we used ABAQUS/Explicit, a time-stepping non-linear explicit integrator. In
quasistatic simulations, truncated spheres (Figure 2.1) were placed in hard contact
between two rigid analytic surfaces without friction. Displacements of the rigid
surfaces were prescribed such that the spheres would achieve about twice the dis-
placement needed to reach the fully plastic region, but before finite deformations
would induce any building up or sinking in of material around the contact surface.
The total duration of the displacement of the rigid surface was varied in constant
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strain-rate simulations in order to achieve the desired deformation rate. In dynamic
simulations, an initial velocity was provided to the entire first sphere with the second
sphere free. 1000 time steps were used in all simulations.

Taking advantage of radial symmetry, 6.35 mm diameter hemispheres were
modeled as quarter circles comprised of around 2500 axisymmetric quad elements
with nodes at the contact areas spaced 0.025 mm. This mesh was found to be of
suitable accuracy through mesh convergence studies. With the very closely spaced
nodes in the initial contact region, we were able to very accurately recover the
Hertzian force-displacement predictions before plasticity initiated and resolve the
initiation of plasticity below the contact surface as shown in Figure 2.1. With a
coarser mesh away from the initial contact area, the force-displacement relation
became scalloped because of the curved geometry; as each subsequent node came
down to meet the contact surface, the force would appear to reach a minimum before
ballooning up again after the node was in contact with the other surface. Significant
increases in the mesh density all along the surface of the sphere successfully reduced
the magnitude of these numerical oscillations. However, the force-displacement
FEM results in the plastic region converged to a line which could also be obtained
through a linear regression of the results with the oscillations. Because the mesh
refinement required a significant increase in simulation time and the coarse results
yielded the same fitted results, the mesh used was most suitable.

Figure 2.1: Schematics from ABAQUS showing the setup of the quasistatic com-
pression experiments of the elastic-perfectly plastic hemispheres with colors rep-
resenting the Von Mises stresses within the material. Three images showing the
various regions involved in the development of plasticity I) before plasticity initi-
ates, II) at the onset of plasticity while the plastic region is contained within elastic
regions, and III) fully plastic regime where the contact area is fully plastic.
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2.1.2 Discrete Element Method Modeling
Due to the curved geometry and varying contact area inherent in this problem,

a fine mesh and small time steps are required for accurate FEM results. Therefore,
FEMquickly becomes very computationally expensive even for just two particles. To
extend simulations to allow for more complicated systems, particularly simulations
of many spheres, we used a discrete element model (DEM), which is a technique
that is often used in investigations of granular mechanics. DEM was first described
by Cundall and Strack in 1979 and has been extensively used in the granular material
since [19, 22, 34, 76]. DEM assumes particles to be rigid bodies which interact
via nonlinear springs governed by a contact interaction model. Writing Newton’s
Second Law for each of the particles and contacts determines a system of coupled
differential equations that can be solved with conventional numerical methods like
Runge-Kutta integration. DEM sacrifices knowledge regarding local deformations,
strains, and stresses within the particles in order to achieve its speed. However, it
relies on the contact model to capture the intricacies of the interaction and is only
as accurate as the contact law it incorporates. Each particle in the simulation is
given three positional degrees of freedom and no angular rotations are allowed or
considered. In many DEM codes, including the one developed here, there are no
tangential forces (friction) applied between particles; only normal forces are applied.

The DEM approach developed in this work can be used for any suitable contact
law to describe the interaction between particles. In this section, we’ll describe how
the DEM simulations were performed and how the code was organized. The details
and formulation of the elastic-plastic contact model used for many of the simulations
discussed in this chapter will be described in Chapter 3.

Description of General Discrete Element Method Implementation

Our implementation of the discrete element method was written in MATLAB. It
consisted of three basic pieces: 1) initialization, 2) time integration of Newton’s
2nd Law, and 3) post-processing. The key aspect of this code which necessitated
creating a custom tool instead of using existing software such as LAAMPS was
the incorporation of plastic deformation. In order to model plasticity, at each time
step we were required to know whether this contact had been plasticity deformed
previously in the simulation. In order to allow for loading, unloading, and reloading
of elastic-plastic particles, the history of plastic deformation must be recorded for
each contact pair after each time step. In our code, the history of plasticity, including
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the maximum deformations and forces experienced by each particle previously in
the simulation, is stored as global variables and continuously updated. Access to
global variables is not readily available in any other code and so a new tool had to
be developed.

At each time step in the simulations, the forces on every particle are summed and
Newton’s 2nd Law is numerically integrated to estimate the positions and velocities
of each particle in the next time step. For the 1D case for a single particle, Newton’s
2nd law represents a 2nd order ODE that can be written as two coupled first order
ODEs as follows:

ẍi =
Ftotal,i

mi
⇒




ẋi = vi

v̇i = Ftotal,i/mi,
(2.1)

where xi is the positions of the i-th particle, vi is its velocity, dots represent time
derivatives, Ftotal,i is the sum of all forces on that particle, and mi is its mass.
Ftotal,i can include prescribed forces over time as well as all interparticle forces.
The specific model of the interparticle forces developed for the elastic-plastic case
will be discussed in Chapter 3; however, it is a function of the displacements and
velocities of the i-th particle and its contacts’ displacement and velocity, and also a
function of the time history of plasticity at the contacts between the particles. The
MATLAB function used to calculate the interparticle forces is given in Appendix
A.2.1 for the specific elastic-plastic contact law discussed in Chapter 3. For the
3D case, we must write Equation 2.1 for each of the three directional degrees of
freedom giving us six ODEs total for each particle in the simulation. The ODEs
for each particle given in Equation 2.1 for each directional degree of freedom can
be combined into a single 6N-element (where N is the number of particles) vector
representing the time derivative of the state of the system of particles:

dX
dt
=



ẋ1,x

ẋ1,y

ẋ1,z

ẋ2,x
...

v̇1,x

v̇1,y

v̇1,z

v̇2,x
...



=



v1,x

v1,y

v1,z

v2,x
...

Ftotal,1,x/m1

Ftotal,1,y/m1

Ftotal,1,z/m1

Ftotal,2,x/m2
...



(2.2)
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The MATLAB script used to calculate the above derivative of the state vector in
Equation 2.2 is given in Appendix A.2.2 for the 3D case.

By discretizing the time step, numerical integration can be used to calculate
the state of the simulation at time t, for a given set of initial conditions for which
each particles position and velocity at the initial time are specified in the vector
X0. The integration was performed using MATLAB’s ode4 function, a 4th order
Runge-Kutta (RK4) method with a fixed time step. The MATLAB script for the
RK4 method used is given in Appendix A.2.3. A fixed time step was necessary
versus a more efficient adaptive time step method like ode45 in order to allow for
saving the plastic deformation histories into global variables correctly after each
time step.

The real materials used throughout this thesis and their material properties used
in simulations are given in Table 2.1. Material properties were chosen from within
the range given by the manufacture’s specifications in order to most closely match
preliminary experimentally measured values. The DEM implementation allows for
a real material to be specified for each individual particle or a custommodel material
to be applied to groups of particles upon initialization.

Material Density
(kg/m3)

Young’s Modulus
(GPa)

Yield Strength
(MPa)

Stainless steel 440c 7650 200 1900

Stainless steel 302/304 7860 200 600

Aluminum 2017 2700 75 400

Brass 260 8530 110 670

Table 2.1: Material properties of the constituent materials used in DEM simulations.

Discrete Element Method Modeling for Single Elastic-Plastic Contacts

The first DEM simulations performed were used to test the model for the com-
pression of elastic-plastic spherical particles and compare the simulations results to
Hopkinson bar experiments. Samples comprised of two hemispherical particles (one
contact point) were dynamically compressed at various strain-rates using Hopkinson
bar experiments described further in Subsection 2.2.1. By varying the materials and
the forces, the DEM simulations incorporating the model of the compression of
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elastic-plastic spheres were experimentally validated over the range of cases needed
for design of new granular crystals. From the experiments, the velocity profile over
time measured from the end of the Hopkinson bar was applied as the velocity profile
of the first particle in the simulation. The second particle was assumed to be in
perfect contact with a 1D linear medium having the same properties as the trans-
mission bar used in experiments (i.e., wave speed, density, area). This numerical
setup allowed the experimental strain-rate to be replicated in simulations to validate
the strain-rate dependence of the elastic-plastic contact model. The details of the
contact law and the results of the experimental and numerical comparisons will be
discussed in Chapter 3.

For simulations of contact behavior, particleswere onlymoving in one-dimension
along the axis of the excitation. Therefore, it was assumed that the particles do not
rotate or translate off-axis, reducing the dynamics to fully 1D interactions. The
additional degrees of freedom were removed from simulations in order to dramati-
cally decrease computational time. Time step convergence studies were performed
and a time step of 5 × 10−8 seconds was used for all one-dimensional simulations.
When the time steps were halved again, numerical values changed by no more than
0.1%. In DEM studies of elastic particles, time steps are typically determined by
checking that energy is conserved; if the numerical errors are too large then there
will be artificial loss of energy. For the elastic-plastic particles simulated in this
work, we are intentionally dissipating energy, and therefore we cannot use energy
conservation as a means of determining a suitably small time step and we must use
a convergence study instead.

Discrete Element Method Modeling for One-Dimensional Granular Chains

DEM simulations were also used to simulate long chains of spherical particles in
one-dimension. The results of all simulations and experiments of 1D chain will be
discussed in Chapter 4. In DEM simulations of 1D chains of spheres, the initial
conditions selected specified either the velocity or the force profile of the first sphere
in the chain. When simulating Hopkinson bar experimental tests, we again used the
velocity profiles measured experimentally at the end of the incident bar as initial
conditions for the first particle in the chain. Additional simulations were performed
to investigate the general properties of waves in elastic-plastic granular crystals. For
these simulations, it was desirable to use a more regular square velocity or force
pulse applied to the first sphere. By applying a known force for a specified duration,
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we could more easily compare the dynamics of wave propagation between granular
chains with particles comprised of different constituent materials. After the initial
pulse was applied, the particle could move freely like the other particles in the
simulations. The final sphere was again assumed to be in contact with a 1D linear
medium having the same properties as the transmission bar used in experiments.
When processing the numerical results, we calculated the local wave speeds by
taking the difference in the arrival times of the stress wave at each subsequent
particle and dividing it by the distance between those particles. The arrival time for
each particle was defined as the time for which the particle reached 1% of the initial
velocity of the first particle, or 1% of the maximum velocity of the first particle.

For simulations of 1D chains of particles, it was again assumed that the particles
do not rotate or translate off-axis, allowing the extra degrees of freedom to be
removed from simulations to improve simulation speed. The same time step of
5 × 10−8 seconds was used for all one-dimensional simulations as was used in the
single contact simulations. The same convergence test was used to find a suitable
time step as for the single contact simulations. This time step was found to be
appropriate to minimize the numerical error for all materials and particle sizes
simulated in this work and was therefore used for all further simulations.

Discrete Element Method Modeling for Higher Dimensional Granular
Crystals

While it is trivial to extend the 1D DEM approach to two and three dimensions,
some of the assumptions required do not necessarily hold in higher dimension.
For example, in our formulation there is no consideration of friction between the
particles. In 1D, the particles cannot slide past one another, whereas oblique impacts
will often occur in 2D and 3D. We also assumed that particles would not turn and
that they would always contact each other at the same point, which might not remain
valid with more degrees of freedom. In order to ensure that the neglected effect
were indeed negligible in the dynamics of these materials, we performed multiple
types of experimental validation on a variety of types of granular crystals. All
experimental validation and additional simulations of 2D and 3D granular crystals
will be discussed in Chapter 5.

The first 2D simulations required replicating an experiment involved a sliding
impacting rig for 2D arrays of elastic-plastic particles which will be described in
Subsection 2.2.3. These experiments involved hexagonally packed particles with



18

material properties of the types of materials used in experiments. The boundary
conditions of the experiment are applied to the simulations by placing rigid walls on
3 sides of the simulated particles. Due to symmetry, compressing a particle against
the rigid wall requires the same force as compressing two identical particles by twice
the displacement between the particle and the wall. The impactor bar is treated as
a rigid flat particle whose force-displacement relationship is the same as the rigid
walls, but whose mass, positions and velocity are tracked in the same fashion as the
other particles. Because no particles can rotate in the simulations, the impactor bar
is also assumed to always remain horizontal relative to the sample’s front face. The
impactor bar is given the measured mass and initial velocity extracted from each
experiment.

Additional experiments were performed for validation of 3D DEM as well using
a drop weight tower experiment which will be described in Subsection 2.2.4. For
these simulations, two layers of 3D hexagonally close packed (HCP) spheres of the
materials used in experiments were simulated during an impact of a rigid polygonal
surface with the mass of the weight used in experiment. Interactions between
particles and rigid boundaries have the same force-displacement relation as a particle
interacting with an identical particle due to symmetry. Rigid flats were incorporated
into the numerical system by defining a polygonal boundary, a mass, and an initial
velocity. The base was given no initial velocity and an infinite mass, forcing it to
remain stationary throughout simulations, while the impacting tip was given the
same mass and velocity as the experimental impactor. No boundary conditions were
applied to any of the individual particles and they were free to escape after impact
of the rigid surface in any direction as in the experimental setup.

For general investigations of wave propagation properties in uniform 1D, 2D,
and 3D systems, the impacts on semi-infinite half spaces of model materials were
simulated using periodic boundary conditions. In the 1D, 2D, and 3D systems, 50
layers of close-packed particles were arranged in the z-direction. A schematic of
the arrangements for 1D, 2D, and 3D simulations is shown in Figure 2.2. For 1D, a
single chain of 50 particles was used. In the 2D and 3D systems, periodic boundary
conditions were implemented into the numerical scheme by assigning particles on
the boundary a periodic complement on the opposite boundary with which inter-
particle forces were shared. The 2D simulations consisted of 50 hexagonally packed
layers in the z-direction with five particles across the width in the direction of
periodicity. The 3D simulations consisted of 50 layers of HCP spheres in the z-



19

direction with hexagons of three particles per side in the plane of periodicity. No
boundary conditions were applied to the bottom layer.

x

z
y

Figure 2.2: Schematics of numerical setup of particles for investigation of wave
properties in 1D, 2D, and 3D materials composed of elastic-plastic particles. For
all simulations, waves propagated in the z direction. In 2D simulations, hexagonal
packing was used and periodic boundary conditions were applied in the x direction.
In 3D simluations, hexagonally closed packed (HCP) crystal structure was used and
periodic boundary conditions were applied in the x and y directions.

For these simulations, force pulses of a material dependent amplitude were
applied to each particle in the top layer: a single particle for 1D, 5 particles for 2D,
and 17 particles for 3D. Local wave speeds after impacts were calculated by taking
the arrival time of the wave to each layer divided by z-distance between subsequent
layers. Arrival times at a given particle were taken to be when the particle’s velocity
reached 1% of its maximum velocity during the initial impact.

2.2 Experimental Methods
2.2.1 Hopkinson Bar Experiments for Single Contacts

In order to experimentally validate the model at intermediate strain-rates, we
used a split Hopkinson compression bar [16, 17, 77]. A schematic diagram of the
experimental setup is presented in Fig. 2.3. Maraging steel bars of 19.05 mm
diameter were used for the incident, transmission, and striker bars. Copper pulse
shapers were sometimes used in order to vary the strain rate and a clay momentum
trap was used to prevent reflections of the stress waves after completion of the
experiment. Two identical partial spheres (either hemispheres and 3/4 spheres) of
diameter 6.35 mm were placed in contact between the incident and transmission
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bars. In experiments to determine the behavior of individual contacts between
particles, partial spheres of stainless steel 440c, stainless steel 302, and aluminum
2017 were tested under various loadings with the amplitude of the incident stress
wave controlled by varying the pressure driving the striker bar. Using a 10 cm
striker bar, pressures varied from 50 kPa to 125 kPa, inducing striker bar velocities
of around 10 to 25 m/s before impact.

Gas gun
Pulse 

shaper

Striker bar Incident bar Transmission barSample

Strain 

Gauge1

Strain 

Gauge2

Figure 2.3: A schematic of the Hopkinson bar setup used to experimentally obtain
the force-displacement relation at the contact between two hemispherical particles.

The velocity profile at the end of the Hopkinson bar is given as a function of
the strains measured by the incident strain gauge during the incident and reflected
pulses:

vbar(t) = ci
(
− εi (t) + εr (t)

)
, (2.3)

where ci is the elastic wave speed in the Hopkinson bar and εi and εr are the
strains during the incident and reflected pulses. The incident strain is translated
forward in time by c1 times the distance from the gauge to the end of the bar, while
the reflected strain is translated backwards in time by the same amount such that they
are summed when both are at the end of the bar. A dispersion correction was applied
to the incident and reflected waves as in [77] in order to account for dispersion in
the 1D bar, yielding smoother applied velocity profiles. This velocity profile versus
time is then applied to the first particle in simulations of the contact behavior of
two particles. The materials properties of the transmission bar are used to define
the infinite 1D material which is assumed to be in contact with the 2nd particle in
simulations.
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2.2.2 Hopkinson Bar and Laser Vibrometer Experiments for 1D Elastic-
Plastic Chains

The Hopkinson pressure bar was also used to impact chains of metallic spheres.
A schematic of the experimental setup is shown in Figure 2.4. Strain gauges on
the incident and transmission bars measured the incident, reflected, and transmitted
stress waves. The spheres were held between the bars and confined to move only
along the axis of the chain by a 3D printed plastic tube. A truncated (3/4) sphere
was used as the first particle in flat contact with the end of the incident bar. This
ensured that the first particle had the same velocity profile as the end of the incident
bar, as measured by the strain gauges, and that all energy was dissipated in the
contacts between spheres. The flat side of the first particle remained in contact with
the incident bar through the duration of the data acquisition. A copper pulse shaper
was used between the striker and incident bar to ensure repeatable impacts for all
experiments.

Air pressure 
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Figure 2.4: A schematic of the Hopkinson bar setup used to investigate the behavior
of 1D chains of elastic-plastic particles. A laser vibrometer was used to measure
the particle velocity of a particle towards the end of the chain. Most of the impact
is dissipated within the chain and so very little is observed in the strain gauge on
the transmission bar, requiring the laser vibrometer to extract information about the
character of the wave within the material.

The spherical particles used in experiments had a diameter of 6.35 mm and were
made of stainless steel 440c, stainless steel 302, aluminum 2017 and brass 260,
purchased from McMaster-Carr. Truncated (3/4) spheres of the same materials
were purchased from BalTec. Sample holders were 3D printed with an Objet500
Connex printer using a rigid plastic, VeroBlack, and were designed to have an inner
diameter the same as the spheres. The tubes ensured that the chains of spheres
remained aligned along the axis of the Hopkinson bar without rattling, but did not
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create appreciable friction. The 3D printed inner surface was thoroughly cleaned
after printing and spheres could slide freely within the tube without the need for
lubrication. To avoid the transmission of stress waves through the holder, the length
of the tube was made slightly shorter than the chain of spheres, forming a small gap
between the holder and the bars (see inset of Figure 2.4). Because the stress waves
were not transmitted through the plastic holder, the holder was not included in the
simulations. Vaseline was used to adhere the truncated spheres to the incident and
transmission bars to ensure they were centered and aligned. The tube containing
the remaining spheres was then placed between the two aligned truncated spheres.
The rigid plastic tube was stiff enough but light enough that it could support its own
weight without sagging while held firmly between the incident and transmission
bars, ensuring no gaps between spheres. During the experiments, it was observed
that the initial axial pressure wave was fully transmitted through the 1D chain before
any off-axis motion occured due to buckling of the sample. It required multiple
reflections of the wave for the equilibrium forces from the Hopkinson bar to reach
the force required to buckle the sample, at which time, data was no longer being
collected.

We used strain gauges on the incident and transmission bars to detect the incom-
ing, reflected and transmitted waves after interaction with the granular chains. In
addition, a Polytech laser vibrometer was used to measure the velocity profile of one
of the spheres in the chain. This direct measurement of the dynamics of particles
inside the sample allowed testing longer chains and enabled a more direct compar-
ison of the experimental results with numerical simulations. The laser vibrometer
data and strain gauge data were both supplied to a data acquisition computer such
that they were triggered together, ensuring that the time recorded by all sensors was
synchronized. We tested chains of fifty spheres and twenty five spheres, consisting
of identical particles (i.e., uniform chains) and periodic arrangements of particles
alternating between spheres of two different materials (i.e., dimer chains). In all
configurations studied, the length of the chains was such that the forces transmitted
through the chains were significantly reduced, and the signal measured by the strain
gauges in the transmission bar could be indistinguishable from the experimental
noise. Therefore, the laser vibrometer was used to measure the particle velocity of
the 40th sphere throughout the impact for 50-particle chains and 15th sphere for
25-particle chains. The laser was focused through a narrow gap in the 3D printed
tube holder onto a small piece of reflective tape adhered to the surface of the sphere.
The laser was aligned along the axis of the chain such that it could measure the
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velocity of the sphere as it displaced during the experiment. Any off-axis motion
would have destroyed the signal to the laser, which verified that our experiment
remained one-dimensional during the measurement period and any buckling of the
sample occurred after the initial wave passed.

2.2.3 Sliding Rig for Impacts on 2D Arrays
A sliding impactor rig was designed in order to perform impact experiments on

a 2D array of metallic spheres. The entire experiment lay flat on the surface of an
optical table. The slider was guided by Teflon linear bearings along two aluminum
t-slotted beams. It was propelled by four stiff elastic bands, two on each side of the
linear bearings in order to apply forces symmetrically. The sample sat in a holder
rigidly attached to the optical table between the two t-slotted beams. Attached below
the slider, was a hardened stainless steel 440c impacting bar which was aligned with
the front edge of the sample and would detach from the slider upon impacting the
sample. By detaching from the slider, the impact energy could be characterized
with just the mass of the impactor bar and its speed just before the impact.

Using a winch, the slider was retracted 1 m and secured using a Sea Catch toggle
release [ref] mounted to the optical table. The elastic bands were each rated to 280
N/m and therefore the four bands provided 1120 N of force on the sliding rig at full
extension. When the Sea Catchmechanismwas released, the slider would accelerate
to around 20 m/s before the impacting bar struck the sample with some variation
due to friction in the Teflon linear bearings, initial alignment of the sliding rig, and
differences in the stiffness of the four bands. In order to measure the exact velocity
of the slider at the time of the impact, two pairs of infrared LEDs and detectors on
a breadboard mounted to the optical table were used as timing gates. The drop in
voltage of each infrared detector as the sliding rig passed in front of the LED was
amplified and measured on an oscilloscope giving the travel time between gates.
The infrared gates were separated by 2.5 cm with the second gate aligned with the
location of the impact. Therefore, the average speed of the impacting rig could be
calculated over the 2.5 cm before impacting the sample and assumed to be the speed
of the impacting bar at the time of impact. Figure 2.5a shows a schematic of the
sliding 2D impactor rig along with a photograph in Figure 2.5b.

The samples consisted of 263 hexagonally-packedmetallic sphereswith diameter
6.35 mm. The spheres were arranged into 15 rows such that the final sample
measured 11.4 cm across and 8.3 cm deep. Spheres of multiple materials were
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Figure 2.5: (a) Schematic of experimental setup. (b) Photograph showing the
experimental setup with extension springs stretched.

tested including stainless steel 440c, stainless steel 304, and brass 260 purchased
from McMaster-Carr. Experiments were performed on uniform arrays of a single
material as well as arrays containing a wedge of spheres of another material in order
to test the behavior of the impact wave impinge on an oblique interface between
two materials. The spheres of the alternate material were placed in the bottom right
corner of the sample array in an equilateral triangle with 10 spheres per side. The 2D
array sat on an aluminum plate and was constrained on three sides by stainless steel
440c bars that could be individually aligned and tightened in order to ensure that the
2D array was fully close-packed. The sample was enclosed on top by a thin clear
acrylic window. All sample supports were positioned such that the leading half first
row of spheres was fully exposed to the oncoming impactor bar with supports just
reaching the mid-section of the spheres. In order to ensure that the sample remained
intact and fully close-packed before the impact a thin strip of electrical tape was
placed along the front surface of the acrylic window and onto the tops of the first
row of spheres, but without covering the contact point between the impactor bar and
the particles. Figure 2.6a shows a schematic of the sample including the location
of the oblique wedge of the alternate material and the supporting walls along with
a photograph of a sample in Figure 2.6b.

A Shimadzu HPV-X camera was used to observe the positions of about half
the spheres in the sample. The camera was mounted on an arm approximately 1 m
directly above the sample with a 90 mm lens, such that the field of view was about



25

(a) (b)

Figure 2.6: (a) Schematic showing details of sample container with spheres arranged
in 60 degree wedge of brass spheres within an array of stainless steel 440c spheres.
(b) A photograph showing the details of the sample and slider.

half the size of the sample. The high-speed camera was able to record 256 frames
of 400 x 250 pixel images at a frame rate of 333,333 frames per second with each
particle about 30 pixels across (225 µm/pixel). A representative frame taken by
the high-speed camera just before an impact is shown in Figure 2.7a. Because the
exposure time is so small, a short-duration, high-intensity flash lighting system was
required. Triggering of the high-speed camera and flash system were performed by
grounding the impactor bar and having the bar make contact with wires precisely
placed in front of the sample. When the impactor bar made contact with each of
these wires, the trigger signal was driven from +5V to ground at the correct time.
The flash system required approximately 1 ms to reach full intensity and could stay
illuminated for around 5 ms before beginning to dim. Therefore, the trigger wire for
the flash was placed 4 cm in front of the sample such that 2 ms would pass between
triggering the flash and the impact assuming the bar was traveling 20 m/s. The
high-speed camera continuously records into a buffer, but only saves the 256 frames
immediately following the trigger signal. The trigger wire for the camera was placed
on the sample holder about 1 mm from the front of the sample. Therefore, about
50 µs was recorded before the impact allowing the speed of the impacting bar to
be verified prior to impact. Depending on the constituent materials, the experiment
duration could be up to 400 µs; the 768 µs total recording duration (256 frames
at 333,333 frames per second) was therefore enough to capture the full experiment
duration with enough margin to account for any error in the timing of the triggering.

Positional data from each particle in each frame is extracted by performing 2D
image correlation using a 30x30 pixel kernel comprised of a representative particle
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(b) (d)(a)

(c)

Figure 2.7: (a) A representative frame from the high-speed camera taken just before
an impact. (b) The image of a particle used as the kernel for 2D correlation.
(c),(d) Surface of the 2D correlation matrix overlaid onto the frame from which the
correlation was calculated.

from the initial frame. An image of the kernel particle used for the analysis of
one experiment is shown in Figure 2.7b. Using MATLAB’s corr2 function, the
2D correlation for every 30 x 30 subimage centered within the image is calculated
to obtain a 2D correlation matrix. The 2D correlation matrix of the frame shown
in Figure 2.7a is shown as a surface plotted above the frame in Figure 2.7c and
2.7d. The centroid of each peak within the correlation matrix was calculated to get
the positions of each of the particles in the image. Each particle was then tracked
through each of the 256 frames to get the time history of the positions of the particles.

2.2.4 Drop Weight Tower Experiments for 2-Layer 3D Granular Crystals
Increasing dimensionality from 1D to 2D introduced the possibility of tangential

forces between particles requiring significant experimental validation. However,
increasing the dimensionality again from 2D to 3D does not actually introduce
new physics. It does, however, introduce many added complexities in the possible
geometric crystal arrangements and significant added difficulty in instrumentation
for experiments. It is very difficult to probe the interior of a three-dimensional
material because it is surrounded by more material. Nevertheless, we performed
preliminary experiments towards the investigation of 3D granular materials using
a drop weight tower on two stacked layers of particles. Because there are multiple
ways to densely pack spheres in 3D we performed experiments on two layers of both
hexagonally close packed (HCP) and face centered cubic (FCC) crystal arrangements
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of particles. A schematic of the HCP arrangement of particles is shown in Figure
2.8a. We also performed experiments on arrangements of particles with two types
of materials. However, due to limitation of the experimental setup, only brass and
softer stainless steel 304 could be used and their properties are relatively similar. A
hexagonal impactor tip was used to impact the center of the 2-layer crystal with an
area 5 particles wide. The layers were wide enough (21 particles across) such that
the impact wave did not reach the sides of the particles during the experiments so
boundary effects would not affect the behavior.

Impactor mass

Dynamic load cell

Rigid impactor tip

Initial velocity 

measurement

Foam board

Impact region

Rigid base

Top layer

Bottom layer

Impact region

(a) (b)

Figure 2.8: (a) A schematic showing one quarter of the arrangement of both layers
of particles for the drop tower experiments as well as the location in which the
impactor makes contact. (b) A schematic of the drop tower setup.

A drop weight tower at NASA Langley was used from heights of 0.46 m and
0.81 m to impact the granular crystals with impact velocities of 3 m/s and 4 m/s
as measured directly above the sample with some variation due to friction losses
during operation. A schematic of the experimental setup is shown in Figure 2.8b.
The 2.3-kg impactor consisted of a cylindrical mass attached to an Instron Dynatup
90 kN load cell with flat tips made of hardened stainless steel 15-5. The weight of
the impactor tips was minimized in order to reduce the internal vibrations measured
by the load cell. The impactor tip section was hexagonal with side lengths of 12.7
mm in order to impact the selected area on the sample as shown in Figure 2.8a
shaded in green color.

The materials used in experiments were 6.35 mm diameter spheres of Brass 260
and Stainless Steel 302 purchased from McMaster Carr. Foam board was used to
contain the spheres such that all spheres would be in initial contact without providing
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any significant structural stiffness during the impact. The spheres were arranged on
a large stainless steel 15-5 base which was rigid compared to the softer spheres.
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C h a p t e r 3

CONTACT MODEL

Earlier work on elastic-plastic contact deformation focused on the contact of a
sphere and a rigid half-space to analyze contact between identical spheres [10–13].
This approach is useful for many practical applications of spheres impacting flat
surfaces and also, by symmetry, the collision of identical spheres. These works
used various simplifying assumptions for the changes in the distribution of pressure
over the contact surfaces to develop empirical force-displacement models. In these
models, several empirical parameters are typically used to fit experimental curves
and capture aspects of the deformation process that cannot be directly derived
analytically. Such models have been used to inform experiments in a limited range
of material properties, geometries, or loading cases [5–9], but their restrictive
assumptions make them unsuitable for a general predictive analysis. Furthermore,
a model that is dynamically valid for materials that exhibit strain rate dependence
has been elusive.

In this chapter, we describe the elastic-plastic contact model we developed to
describe the compression of elastic-plastic spherical particles, which incorporates
material strain rate dependence. The model extracted the quasistatic contact re-
sponse from finite element (FEM) analysis by inputting only the material properties
and geometry of the spheres. The strain rate dependence was incorporated in the
model by introducing a Johnson-Cook type strain-rate dependence into the elastic-
perfectly plastic material model determined through FEM analysis. We validated
this model with experiments where the contact between two spheres was excited
dynamically in a Hopkinson bar. We tested the model for a range of materials and
loading conditions, varying the spheres material properties and impact velocities.

The content of this chapter has been partially adapted from:
Hayden A. Burgoyne and Chiara Daraio. "Strain-rate dependent model for the
dynamic compression of elastoplastic spheres." Physical Review E 2014, 89(3). p.
032203.
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3.1 Model Description
The quasistatic compression of an elastic-plastic spherical contact has three dis-

tinct regimes (Figure 3.1a): an elastic region (Region I), a region with a constrained
plastic zone (Region II), and a region with unconstrained plasticity (Region III)
[8]. In Region I, no part of the sphere has yielded and the force-displacement
relationship is fully captured by the Hertzian description of the contact between
two elastic spheres. Region II begins when yield first occurs in the sphere at a
relative approach between the centers of the spheres δy. The plastic region develops
initially below the surface and is fully contained within regions of deformation that
are still elastic [78]. The force-displacement response in Region II can no longer
be captured by the Hertzian description, but is not yet linear as initially assumed
by early models [4]. Region III begins when the plastic region reaches the edge of
contact surface and becomes unconstrained, at a displacement δp. When the contact
region is fully plastic, the pressure is nearly constant and we therefore observe a
linear force-displacement response [8, 78]. The plastic zone in each of the three
regions is shown with representative FEM results in Figure 3.1b.

I II III

δy δp

F
o

rc
e

Displacement

(a)

(b)

Figure 3.1: Plot of force versus displacement showing the three distinct regions
during the deformation process. The dotted line is a plot of the Hertzian solution
for elastic spheres. (b) Representative diagrams (obtained via finite element simu-
lations) of the stress distributions in each of the three deformation regions. Gray
represents the plastic zone.

In Region I, before the initiation of plasticity, the behavior is accurately described
by the analytical solution found by Hertz [79]. The pressure over the contact area is
proportional to

√
a2 − r2, where a is the contact radius and r is the polar coordinate.
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Integrating the pressure field over the contact region shows that the applied normal
force, F, is proportional to the distance between the centers of the spheres, δ, to the
three-halves power. The force in Region I is given by [79]:

F =
4
3

E∗
√

r∗δ3/2, (3.1)

with the effective Young’s Modulus:

E∗ = *
,

1 − ν2
1

E1
+

1 − ν2
2

E2
+
-

−1

,

where E1, E2, ν1, ν2 are the Young’s Moduli and the Poisson’s Ratio of the two
materials and the effective radius as:

r∗ =
(

1
r1
+

1
r2

)−1

,

where r1, r2 are the radii of the two spheres [79]. In this work, we’ve only considered
the contact between spheres of identical radius, R, and therefore the effective radius
always reduces to r∗ = R/2. The Hertzian region ends when plasticity is first
observed, which is determined using the VonMises criterion to be at a displacement
δy and force Fy given by [10]:

δy =
1
4

r∗

E∗2
(1.6πσy)2,

Fy =
1
6

(
r∗

E∗

)2

(1.6πσy)3.

(3.2)

Here, σy is the yield stress of the material and the constant 1.6 is determined by
maximizing the J2 invariant of the axisymmetric stress distribution with respect to
both angle and depth below the surface.

The onset of plasticity defines the beginning of Region II, where the contact
area is still mixed elastic and plastic. The pressure field for this mixed region
was proposed by Stronge [78] and can be integrated over the contact area to get a
force-displacement relation of the form:

F = δ(α + β log δ). (3.3)
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Here, α and β are obtained imposing continuity of the force at the boundaries
between Region I and III:

α =
δpFy log δp − δyFp log δy
δyδp

(
log δp − log δy

) ,

β =
δyFp − δpFy

δyδp
(
log δp − log δy

) .
Since the pressure distribution in Region III is nearly constant, the force is equal

to the pressure times the area of the contact:

F = p0πa2, (3.4)

where p0 is the constant pressure and a is the contact radius. We model a2 by taking
its elastic definition andmodifying it with an empirical parameter, c2, that represents
the effect of plasticity on the contact radius. Because yield causes the contact area
to increase more slowly with increasing force than in the elastic case, we expect c2

to be negative. It is given by the following relationship described by Brake [80]:

a2 = 2r∗δ + c2.

In previous studies, p0 was assumed to be 2.8σy [14, 80, 81]. FEM observations
show that this is a reasonable assumption for many cases, but it is not valid for all
materials. In this model, we take the ratio of p0 to the yield stress to be the second
empirical parameter,

p0 = c1σy .

We take the displacement at which Region III begins, δp, to be the model’s
third empirical parameter. From δp, we can calculate the force at which Region III
begins, Fp, to be:

Fp = p0π(2r∗δp + c2). (3.5)

In order to determine the empirical parameters, material properties were varied
within the FEM simulations over a range that includes most metals and common
materials (Figure 3.2a). The quasistatic model presented here was then fit to the
force-displacement results from the FEM simulations. To determine the empirical
parameters, we chose an arbitrary δp and performed a linear regression on the FEM
data for δ > δp in order to determine the constants c1 and c2. We calculated the
least-square error in the model versus the FEM results for all possible choices of
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δp, and took the empirical constants for which this error was minimized (further
described in Section 3.2).

The quasistatic model for compressive loading can be summarized in the fol-
lowing piecewise force-displacement relationship:

F (δ) =




4
3 E∗
√

r∗δ3/2 for 0 < δ < δy

δ(α + β log δ) for δy < δ < δp

p0π(2r∗δ + c2) for δ > δp.

(3.6)

Unloading was shown to be a purely elastic process in previous works [17, 81–
83] and here we take the formulation where the unloading force is given as:

Fun =
4
3

E∗
√

rp(δ − δr )3/2.

rp is the contact radius after plastic deformation, given by:

rp =
4E∗

3Fmax

(
2Fmax + Fy

2π(1.6σy)

)3/2

,

and δR is the residual permanent deformation, given by:

δR = δmax −

(
3Fmax

4E∗√rp

)2/3

.

Fmax and δmax are the force and displacement at which unloading begins [17].

When considering strain-rate dependentmaterials, previous FEManalysis showed
that Johnson-Cook strain-rate dependence captures the behavior of moderate-speed
sphere impact experiments [14, 15]. The Johnson-Cook material model relates the
yield stress to the strain-rate, with dependence given by:

σ∗y = σy (1 − C log (ε̇/ε̇0)). (3.7)

Here ε̇ is the strain rate, ε̇0 is the quasistatic strain rate at which σy is measured,
and C is an empirical parameter determined experimentally [18].

There were two considerations in order to incorporate strain-rate dependence
into the quasistatic contact model presented above: first, we had to define strain-rate
in the contact problem and, second, we also needed to determine the dependence
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of the model’s parameters on the yield stress of the material. No previous attempt
had been made to incorporate rate dependence into an analytical model for the
force-displacement relationship, since all knowledge of local strain-rates is lost in
the analytical description. Here, we defined strain-rate by considering the relative
velocity of approach between the two spheres at each time step, as:

ε̇ =
v2 − v1

r1 + r2
, (3.8)

where v2 and v1 are the velocities of the centers of mass of the two spheres and
r1 and r2 are the radii of the spheres. We then calculated a new σ∗y at every time
step that was modified by the rate at which the spheres were moving together. Once
the dependence on the yield stress was determined, σ∗y could be used to calculate
new dynamic empirical parameters and update the contact model as the simulation
progresses.
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Figure 3.2: (a) Plot of the model’s three empirical parameters versus the ratio E∗/σy

with markers showing the results of FEM and the curve fittings used in the model.
(b) Multiple plots of force versus displacement taken from FEM results and the
results of the model for different 4 different values of the ratio E/σy, normalized
by the force and displacement at which Region III begins. (c) Plots of force versus
displacement taken from FEM results and results of the model for three different
sphere diameters, 6.35 mm, 9.525 mm, and 12.7 mm, normalized by the force and
displacement at which Region III begins.

3.2 Experimental Validation and Modeling Results
Using FEM, we performed quasistatic compression of 6.35 mm diameter hemi-

spheres for a variety of material parameters. The simulations were performed for
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the following cases: (i) spheres with identical Young’s Modulus, yield stress and
radius; (ii) spheres with different Young’s modulus, but identical yield stress and
radius; and (iii) spheres with different yield stress, but identical Young’s modulus
and radius. The force-displacement data obtained with FEM were then fitted to the
model from Equation 3.6 to extract empirical parameters for each simulation. The
process for fitting the model to the FEM data was as follows: first, each of the 1000
displacement steps taken by the FEM simulations was considered as a possible δp.
Because the model is linear after δp, a linear regression was fit to all data for which
δ > δp. This linear regression was used to calculate the c1 and c2 for that choice δp

using Equation 3.6. Using these three possibilities for the empirical parameters, the
least-square error of the model versus the FEM simulation data was calculated over
the entire data from the simulation. Finally, the set of parameters with the smallest
least-square error was taken as the appropriate empirical parameters for that set of
material properties. The empirical constants for each set of material properties are
represented by the markers in Figure 3.2a.

The results of these studies showed that the values of the empirical constants did
not depend on the magnitude of material properties, but rather on the ratio of the
effective Young’s modulus to the yield stress. After fitting the model to a number
of FEM simulations as previously described, we performed a regression analysis to
find general empirical functions to describe the parameters’ dependence on the ratio
of Young’s modulus to yield stress (see solid lines in Figure 3.2a). These empirical
functions for the compression of 6.35 mm diameter hemispheres are given as:

δp = *
,
0.00428

(
E∗

σy

)−1

+ 1.47 × 10−5+
-

(
r∗

0.00159

)
,

c1 = −6.76
(

E∗

σy

)−0.137

+ 6.30,

c2 = *
,
−3.99 × 10−6

(
E∗

σy

)−1

+ 1.01 × 10−9+
-

(
r∗

0.00159

)2

,

(3.9)

where E∗/σy is the non-dimensional ratio of effective Young’s modulus to yield
stress and r∗ is the effective radius of the sphere (in meters) given earlier in the model
description. The empirical parameters scale with the effective radius as predicted
by dimensional analysis, allowing for the FEM results to be scaled to other sphere
sizes.

Using this set of empirical functions, we modeled the quasi-static compression
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of spheres with different material properties and sizes. Figure 3.2b shows the FEM
results and the model for four different values of the ratio of effective Young’s
modulus to yield stress, normalized by the force and displacement at which Region
III begins. In each case, the FEM results and the model are nearly indistinguishable.
Figure 3.2c shows the normalized FEM and model results for three different sphere
radii. In these cases the same empirical functions derived for the 6.35 mm spheres
were used with the simple scaling given in Equation 3.9. Again the model results
are nearly indistinguishable from the FEM simulations.

With the empirical functions in Equation 3.9 and the elastic-plastic contactmodel
given in Equation 3.6, we had an explicit relation for the yield stress of the material
on the force. Therefore, we could use Equation 3.7 and Equation 3.8 to modify
the model based on velocity of approach of the two spheres. We performed FEM
simulations for the compression of two hemispheres with Johnson-Cook strain-rate
dependence at a constant relative velocity and compared it with model’s predictions.
Figure 3.3a shows the results of constant strain-rate FEM analysis versus the ana-
lytical model using the same velocity of approach and Johnson-Cook parameters.
This figure shows the simulation of 6.35 mm Stainless Steel 440c hemispheres with
material properties given in Table 1 and Johnson-Cook parameters: C = 0.04 and
ε̇0 = 0.001. The inset in Figure 3.3a shows the same plots normalized by the force
and displacement at which Region III begins (in this case all curves are overlapping).
The model accurately captured the FEM behavior over an extreme range of effective
strain-rates, from 0.001 (quasistatic) to 10,000 (Figure 3.3a). Despite losing the
information about local deformations and local strain-rates, the global strain-rate
defined above, captured the dynamics suitably.

Because this model remained valid over a range of strain rates, we could apply
it to simulate dynamic events that typically have large variations in strain rates like
impacts of two spheres and Split Hopkinson Bar experiments. Figure 3.3b shows
the results of FEM analysis of two identical 6.35 mm Stainless Steel 440c spheres
impacting with various initial velocities and compares the force-displacement re-
lationship with a DEM simulation of the same event using the model including
strain-rate dependence and the model without strain-rate dependence.

During a Hopkinson bar compression test, strain rate varies greatly. In order to
simulate the event in DEM using the strain-rate dependent empirical model, force
versus time measurements taken directly from the experiments were applied to the
first particle. The second particle was assumed to be in perfect contact with a
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Figure 3.3: (a) Plot of force versus displacement for compression at various constant
strain rates. Green lines represent the FEM results and blue lines and crosses
represent the results from the model. The inset shows the same plots normalized by
the force and displacement atwhichRegion III begins. (b) Force versus displacement
plots during the impact of two identical spheres with various initial velocities. Red
lines represent the FEM data, blue is the DEM model with strain rate dependence,
and black lines represent results from theDEMmodelwithout strain rate dependence
assuming quasistatic loading.
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Figure 3.4: Plots of force versus displacement for experimental results (red), results
using the strain rate dependent model for DEM (blue), and results using the model
without strain rate dependence (black). Materials used are (a) Stainless Steel 440c,
(b) Stainless Steel 302, and (c) Aluminum 2017.

one-dimensional linear media with the wave speed and density properties of the
experimental transmission bar. The full experimental and numerical setup was
discussed in Chapter 2.

We compared theDEMsimulation’s force-displacement results to theHopkinson
bar experimental results for a number of different strain rates and for a number of
differentmaterials. Figure 3.4 shows the results of the comparison. The two stainless
steels tested (302 and 440c) exhibited relatively large strain-rate dependence while
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aluminum (2017-T4) showed very little. The Johnson-Cook parameter was chosen
in order to capture the rate dependence of the given material and was the same
throughout the entire simulations. By including dependence on the relative velocity
of the two particles, we see that we could effectively simulate the behavior of
strain-rate dependent materials during dynamic events.

Figure 3.5 shows two stainless steel 440c hemispheres after a hopkinson bar
experiment such as those shown in Figure 3.4a. The permanent damage is clearly
visible on the top surface surface of each of the hemispheres demonstrating the
extent to which plastic deformation occurs and energy is dissipated.

Figure 3.5: Photograph of two stainless steel 440c hemisphere after a hopkinson
bar compression experiment. Permanent plastic deformation is visible on the top
surfaces of the hemispheres.

3.3 Summary of Chapter
We have presented a new model for the compression of elastic-plastic spheres.

Once the model’s dependence on the yield stress was determined using FEM results,
a Johnson-Cook strain rate dependence was used to modify the effective yield stress
based on the relative velocity of the two spheres. This method was shown to agree
with both dynamic FEM simulations and experimental results using a Hopkinson
bar. Our model captures well the response of the compression of spheres for a
number of materials, different radii spheres, and a range of loading conditions.
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C h a p t e r 4

DYNAMICS OF ONE-DIMENSIONAL ELASTIC-PLASTIC
GRANULAR CHAINS

This work focuses on the properties of the leading wave, traveling through uniform
and periodic granular chains consisting of alternating particle types, in response to
a long duration impact. In such a loading scenario, plasticity continues to dissipate
energy at each contact, significantly affecting the dynamics of wave propagation.
We also investigate the effect of plasticity on wave propagation through dimer chains
of alternating materials. Recent experiments have suggested that dimer chains of
elastic-plastic spheres do not exhibit the same local resonances as elastic dimer chain
[44]. It was observed that the amount of energy transmitted did not depend on the
mass ratio of the particles and was dominated by plasticity effects instead of local
resonances.

We simulate the response of these systems using a discrete element method
(DEM), which includes a strain-rate dependent model for the dynamic contact
interaction of elastic-plastic spheres given in Chapter 33. We determine how the
properties of the initial wave in the elastic-plastic granular chains compare to those
in Hertzian chains and in chains described by a simplified linear contact law. We
validate the model experimentally using a Hopkinson pressure bar coupled with a
laser vibrometer. From the experimentally validated simulation results, we extract
a model that relates the particles material properties to the leading wave velocity. In
the dimer chains, we show the effect of local resonances on the energy transmission.
We use the models to define design constraints for the creation of novel materials
with engineered wave propagation properties.

The content of this chapter has been partially adapted from:
Hayden A. Burgoyne and Chiara Daraio. "Elastic-plastic wave propagation in
uniform and periodic granular chains." Journal of Applied Mechanics 2015, 82(8).
p. 081002.

4.1 Experimental Validation of 1D Simulations
Hopkinson bar experiments were performed in order to verify that DEM simula-

tions captured the leadingwave velocity and energy dissipation properties of long 1D
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chains of spheres governed by the elastic-plastic contact law show in Chapter 3. The
raw forces in the incident and transmission bars as measured with the strain gauges
are shown in Figure 4.1 for uniform chains of twenty five and fifty stainless steel
440c spheres. The incident and reflected force pulses were nearly identical between
each experiment comprised of stainless steel 440c spheres. Stainless steel 440c had
the highest yield stress of any of the materials used and therefore transmitted the
most force through the chain. The transmitted force through the shorter, twenty-five
particle chains demonstrated the repeatability between experiments. However, for
fifty spheres, the transmitted force was attenuated to the point where noise in the
strain gauges becomes very significant, as seen in the green curve in Figure 4.1. The
forces were even more greatly attenuated in chains of other materials and therefore
the use of the laser vibrometer was necessary to measure particle velocity late in the
long chains of particles.

Figure 4.1: Experimentally measured forces within the incident and transmission
bars of the Hopkinson bar setup as measured by the strain gauges for 25 and 50
particle chains of uniform stainless steel 440c spheres. For the two experiments
with 25 particles chains, the cyan and yellow curves show the forces in the incident
bar while the blue and red curves show the forces in the transmission bar. For the
experiment with a fifty particle chain, the magenta curve shows the forces in the
incident bar while the green curve shows the forces in the transmission bar. The
inset shows the transmitted forces for the three experiments zoomed in to show
repeatability between experiments as well as the influence of experimental noise.

Uniform chains of aluminum, brass, stainless steel 302 and stainless steel 440c
particles were impacted using the Hopkinson bar and measured with a laser vibrom-
eter. Both fifty particle chains and twenty five particle chains were tested. Addi-
tionally, alternating dimer chains of aluminum/stainless steel 302, aluminum/brass,
brass/stainless steel 302, and brass/stainless steel 440c were tested. The velocity
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profile reaching the end of the incident bar, in contact with the first sphere, was
calculated from the incident and reflected waves measured by the strain gauge on
the incident bar. The experimental velocity profiles are shown as the blue curves
in all figures. For fifty particle chains, the velocity profile of the 40th particle was
measured by the laser vibrometer. For twenty five particle chains the velocity pro-
file of the 15th particle was measured by the laser vibrometer. All laser vibrometer
measurements are shown as the yellow curve in subsequent figures. Using DEM,
we simulated the response of these chains applying the experimentally measured
incident velocity profiles to the first sphere in the chain. The subsequent simulated
velocities of the 10th, 20th, 30th, and 40th spheres are shown as the green, red, cyan,
and magenta curves, respectively, for fifty particle chains. For twenty-five particle
chains, the subsequent simulated velocities of the 5th, 10th, and 15th spheres are
shown as the green, red, and magenta curves, respectively.
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Figure 4.2: Experimental results obtained with the Hopkinson bar setup compared
with corresponding numerical simulations for (a) uniform chains of fifty aluminum
particles, and (b) uniform chains of fifty brass particles. The blue and red curves
represent experimentally measured velocities for the 1st (blue) and the 40th (yellow)
spheres. The green, red, cyan, and magenta curves represent numerical simulation
for the 10th, 20th, 30th, and 40th particles in the chains.

The results of Hopkinson bar experiments on 50-particle chains of uniform
aluminum and brass are shown in Figure 4.2, while the results of experiments
of 25-particle chains of the same materials are shown in Figure 4.3. The DEM
simulations predict the particle velocity profile of the particles observed using the
laser vibrometer extremely well, capturing correctly the magnitude of the particle’s
velocity, the arrival time of the leading plastic wave, the arrival of the reflected wave
off the end of the sample, and the local oscillations of particle. DEM using the
elastic-plastic model for the contact between the spheres successfully captures the
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Figure 4.3: Experimental results obtained with the Hopkinson bar setup compared
with corresponding numerical simulations for (a) uniform chains of twenty five
aluminum particles, and (b) uniform chains of twenty-five brass particles. The blue
and red curves represent experimentally measured velocities for the 1st (blue) and
the 40th (yellow) spheres. The green, red, and magenta curves represent numerical
simulation for the 5th, 10th, and 15th particles in the chains.

behavior of both the 15th and 40th particles, demonstrating that the contact law is
applicable for a range of forces, strain rates, and material properties. However, both
aluminum and brass are nearly strain-rate independent.

P
a

rt
ic

le
 V

e
lo

c
it
y
 

(5
 m

/s
 p

e
r 

d
iv

.)

Time (s)
1 2 3 4 5 6

x10-4

0

P
a

rt
ic

le
 V

e
lo

c
it
y
 

(5
 m

/s
 p

e
r 

d
iv

.)

Time (s)
1 2 3 4 5 6

x10-4

0

Particle number:  Steel 440c

1     (Hopkinson bar data)

10 20

30 40

40   (laser measurement)

(Numerical 

Simulations)

Particle number: Steel 302

1     (Hopkinson bar data)

10 20

30 40

40  (laser measurement)

(Numerical 

Simulations)

40  (no rate dependence)

(a) (b)

Figure 4.4: Experimental results obtained with the Hopkinson bar setup compared
with corresponding numerical simulations for (a) uniform chains of fifty stainless
steel 302 particles, and (b) uniform chains of fifty stainless steel 440c particles.
The blue and red curves represent experimentally measured velocities for the 1st
(blue) and the 40th (yellow) spheres. The green, red, cyan, and magenta curves
represent numerical simulation for the 10th, 20th, 30th, and 40th particles in the
chains. The dashed dark-gray line in (a) shows the numerical results obtained when
strain-rate dependence is ignored and the yield stress is assumed to be the same as
the quasi-static yield stress of stainless steel 302.

The results of Hopkinson bar experiments on 50-particle chains of uniform



43

P
a
rt

ic
le

 V
e
lo

c
it
y
 

(5
 m

/s
 p

e
r 

d
iv

.)

Time (s)
1 2 3

x10-4

0

Particle number:    Steel 302

(Hopkinson bar data):        1

5 10 15

(Laser measurement):       15  

(Numerical Simulations):

0.5 1.5 2.5

P
a
rt

ic
le

 V
e
lo

c
it
y
 

(5
 m

/s
 p

e
r 

d
iv

.)

Time (s)
1 2 3

x10-4

0

Particle number:    Steel 440c

(Hopkinson bar data):        1

5 10 15

(Laser measurement):       15  

(Numerical Simulations):

0.5 1.5 2.5

(a) (b)

Figure 4.5: Experimental results obtained with the Hopkinson bar setup compared
with corresponding numerical simulations for (a) uniform chains of twenty five
aluminum particles, and (b) uniform chains of twenty five brass particles. The blue
and red curves represent experimentally measured velocities for the 1st (blue) and
the 40th (yellow) spheres. The green, red, and magenta curves represent numerical
simulation for the 5th, 10th, and 15th particles in the chains.

stainless steel 302 and stainless steel 440c are shown in Figure 4.4, while the results
of experiments of 25-particle chains of the same materials are shown in Figure
4.5. Unlike the aluminum and brass particles, the yield stresses of the two stainless
steels are highly strain-rate dependent. The importance of including strain-rate
dependence in materials like stainless steel 302 is evident in Figure 4.4a. When the
quasi-static yield stress is used in the model without utilizing the Johnson-Cook type
rate dependence, the velocity profile of the 40th sphere is not predicted correctly by
the simulations, as shown by the dashed gray line in Figure 4.4a. For rate-dependent
simulations of stainless steel 302, a Johnson-Cook parameter of 0.025 was used,
while 0.035 was used for stainless steel 440c.

Next, in order to validate heterogeneous simulation involving multiple mate-
rials, we performed experiments on alternating chains of two materials. In this
arrangement, every contact is between dissimilar materials, so it represents the most
difficult case for the 1D DEM to capture. The results of Hopkinson bar experiments
on 50-particle chains of alternating aluminum and stainless steel 302 particles and
alternating aluminum and brass particles are shown in Figure 4.6. The results of
Hopkinson bar experiments on 50-particle chains of alternating brass and stainless
steel 440c particles and alternating brass and stainless steel 302 particles are shown
in Figure 4.6. The vertical dashed lines in Figure 4.6a represent the arrival time of
the wave for uniform aluminum, uniform stainless steel 302, and the dimer as you
move from left to right. The arrival time in the dimer is slower than in the uniform
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Figure 4.6: Experimental results obtained with the Hopkinson bar setup compared
with corresponding numerical simulations for (a) alternating chains of fifty alu-
minum and stainless steel 302 particles, and (b) alternating chains of fifty aluminum
and brass particles. The blue and red curves represent experimentally measured
velocities for the 1st (blue) and the 40th (yellow) spheres. The green, red, cyan, and
magenta curves represent numerical simulation for the 10th, 20th, 30th, and 40th
particles in the chains.
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Figure 4.7: Experimental results obtained with the Hopkinson bar setup compared
with corresponding numerical simulations for (a) alternating chains of fifty brass and
stainless steel 440c particles, and (b) alternating chains of fifty brass and stainless
steel 302 particles. The blue and red curves represent experimentally measured
velocities for the 1st (blue) and the 40th (yellow) spheres. The green, red, cyan, and
magenta curves represent numerical simulation for the 10th, 20th, 30th, and 40th
particles in the chains.

chains of either of the constituents. The shape of the laser-measured and DEM
simulated particle velocity curves match extremely well for all types of dimers even
though the curves appear different in Figure 4.6 and 4.7. In the experiments shown
in Figure 4.6, we do not see the very regular oscillations that we saw in experiments
of uniform chains of particle or still observed in Figure 4.7. In Figure 4.6, the
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aluminum is the lighter material and the softer material in which yield occurs, while
in Figure 4.7, the brass is the softer material in which yield occurs but is the heavier
of the two materials. This change in whether the heavier or lighter materials is
the material in which yield occurs seems to control whether we see local the local
particle oscillations or whether we see the flatter, less predictable particle velocity
profile.
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Figure 4.8: Plot of the simulated contact force between the first and second particles
after the experimentally measured velocity profile is applied, and the simulated force
profile of the final bead in fifty sphere chains of aluminum particles (blue), stainless
steel 302 particles (green), and an alternating dimer (red).

Figure 4.8 shows the simulated force at the first contact versus simulations of the
force felt by the 50th (final) sphere, after the velocity profile of the incident bar as
measured by the strain gauges during the experiment was applied to the first sphere.
While the incident velocity profile was nearly identical between experiments, the
applied force was material dependent and varied between experiments due to the
differences in stiffness of the contacts between particles and masses of the particles.
The maximum force after traveling through chains of 50 spheres was reduced by
49.6% in the stainless steel 302, 39.7% in the aluminum, and 57.0% in the alternating
dimer chain. The forces on the final bead in the dimer chains, as shown by the
red curve in Figure 4.8, are spread over a longer time period and have a smaller
transmitted maximum force. In many impact protection applications, the ratio of
the input force to the maximum transmitted force is the most crucial measure of
protection.
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4.2 Properties of Waves in 1D Elastic-Plastic Chains
4.2.1 Contact Model Descriptions

Having verified that DEM captures the dynamics of 1D chains of elastic-plastic
granular materials, we performed rigorous numerical investigations of the properties
of waves traveling through these materials. In order to elucidate which aspects of
the contact law control the various properties of these waves, we compared the
elastic-plastic contact law to other model contacts laws which eliminated some of
the features of the contact law. We performed additional simulations using a purely
elastic (Hertzian) contact law, eliminating the linear plastic regime, and performed
simulations on a purely linear contact law, eliminating the non-linear initial regime.
A schematic of the elastic-plastic contact law is shown again in Figure 4.9.
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Figure 4.9: Schematics of the three force-displacement relations used in the numer-
ical simulations: elastic-plastic (blue), Hertzian, elastic (green), and linear (red).
Dotted vertical lines show transitions between regions in the elastic-plastic model
with δy representing the displacement at which plasticity initiates and δp represent-
ing the displacement at which the linear regime begins.

Without plasticity, the contact between metallic spheres is captured by the
Hertzian contact law, given again as:

FH (δ) = (4/3)E∗δ3/2 = KHδ
3/2, (4.1)

with the effective Young’s Modulus:

E∗ = *
,

1 − ν2
1

E1
+

1 − ν2
2

E2
+
-

−1

,

where E1, E2, ν1, ν2 are the Young’s Moduli and the Poisson’s Ratio of the two
materials and the effective radius r∗ = R/2 for identical spheres with radius R.
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[3, 19, 79]. We define KH as the Hertzian stiffness. The Hertzian contact law is
equivalent to the initial region of the elastic-plastic contact before plasticity initiates.
The Hertzian contact law is shown in Figure 4.9 as the green curve.

In order to isolate the contribution of the nonlinear region in the elastic-plastic
contact law to the dynamics of the chain, we compared the full elastic-plastic contact
model with a contact model that includes only the linear contribution of the plastic
region:

FL (δ) = c1σY (2r∗δ) = KLδ, (4.2)

where we define KL as the linear stiffness. The stiffness of this linear model is the
same as the elastic-plastic model given in Equation (1) when δ > δP. For the linear
contact-law, the same formulation for unloading was used as in the elastic-plastic
model. The linear contact-law is shown in Figure 4.9 as the red curve.

4.2.2 Properties of Waves
Prior studies of wave propagation in elastic-plastic 1D chains of spheres focused

on the energy dissipation of short impulses and on the effects of impact amplitude
and duration on the wave speed [45–47]. However, the experiments reported in
these studies are limited to testing short chains, and can only characterize the
transmitted waves after the impact. In this work, we study long chains of particles,
and focus on the understanding of the dynamics of wave propagation while plasticity
is occurring at the contacts, the most relevant regime for energy dissipations during
an impact. Our approach also allows a more direct comparison of the experiments
with numerical simulations.

To understand the effect of plasticity and nonlinearity on the wave propagation,
we performed simulations of the dynamics of 1D chains of 50 particles with elastic-
plastic, Hertzian and linear models describing their contacts (Figure 4.10). In these
simulations, we applied a 20 m/s step change in initial velocity to the first particle
in the chain, and observed the wave front as it propagated through the materials.
The dynamic response of both Hertzian and harmonic linear chains to such initial
conditions are well known. Hertzian chains support the formation and propagation
of a steady front that, after some initial transient effects, propagates through the
chains without changing shape due to dispersion [19, 31]. The evolution of the
wave front shape is shown in Figure 4.10a for a Hertzian material. In this figure, the
different curves represent the velocities of all particles, superimposed and translated
based on the arrival time of the wave. The arrival time of the wave front at each
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Figure 4.10: Numerical simulations comparing the dynamic response of chains of
50 particles, subjected to a 20 m/s constant velocity, governed by different contact
dynamics. The different color curves represent all particle velocities after the arrival
of the initial wave front. The velocities curves were translated based on the arrival
time of the wave on each particle. (a) Response of a Hertzian chain; (b) response of a
harmonic chain of linear springs; (c) response of a chain of elastic-plastic particles.
Red arrows indicate the movement of the velocity wave front at progressively later
positions in the chain. The arrow points towards the steady wave front that is
formed in (a) and (c) in the Hertzian and elastic-plastic cases, respectively, while in
the linear case the wave front continues to spread in the direction of the arrow due
to dispersion.

particle was defined as the time at which the particle reached 1% of the applied
initial velocity (0.2 m/s). Although the speed of nonlinear waves in Hertzian chains
is frequency independent, it is amplitude dependent. The leading wave speed, VH ,
is given by [21]:

VH = 0.68
(

E∗

r∗ρ3/2

)1/3

F1/6
M , (4.3)

where ρ is the density of the constituent material and FM is the maximum contact
force. The velocity can also be rewritten to show the dependence of the wave speed
on the Hertzian stiffness as defined in Equation 4.1 as [21]:

VH = 0.87
K1/3

H
√

r∗ρ
F1/6

M . (4.4)

In harmonic lattices with linear force-displacement relations, the dispersion
relation describes the speeds at which the various frequency components of the
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initial disturbance move through the chain [84–86]. Because the different frequency
components move at different velocities, a steady front is not formed in linear
materials and the pulsewidens as it travels down the chain. The evolution of thewave
front shape for a chain of masses with linear contact interactions is shown in Figure
4.10b. Again in this figure the particle velocities of each particle were superimposed
and translated based on the arrival time of the wave as defined previously. The
frequency content separates due to dispersion and the peak of the wave appears to
arrive at progressively later times after the initial arrival as the wave spreads. While
the speeds of linear waves are dependent on the frequency content, there is no direct
dependence on the amplitude of the initial excitation because the stiffness of the
contact is constant for all amplitudes. The phase velocity of frequency component
is VL = ω/k, where ω and k are the frequency and wave number, respectively, of
the normal modes of the linear lattice. ω and k are related by the dispersion relation
[84]:

ω(k) = 2
√

KL

M
|sin kR| =

√
3KL

πR3ρavg
|sin kR| , (4.5)

where M is the average mass of the particles, R is the average radius of the spheres,
and ρavg is the average density of the constituent materials. The maximum phase
velocity for any frequency component,VL,max, occurs for longwave length excitations
in the limit as k goes to 0 and is given by:

VL,max =

√
3KL

πRρavg
. (4.6)

In elastic-plastic chains the dynamics are different. When the initial impact is
large enough to induce plasticity at the contacts, the particle’s loading begins in
the nonlinear region described by the Hertzian contact, while the maximum force
occurs in the linear regime. The shape of the wave front after a velocity pulse in
the elastic-plastic case exhibits unique features compared to waves in the other two
types of materials. The evolution of the wave front shape is shown in Figure 4.10c.
After an initial transient region (~5 particles long), in which dispersion seems to
occur, a steady wave front forms and continues to propagate unperturbed.

Plasticity has a major effect on the wave’s propagation in 1D granular systems.
Defining a realistic elastic-plastic contact model is essential to capture the correct
dynamic behavior of such systems. Both the nonlinear and linear regimes play
essential roles in the unique dynamics of these granular systems. The initial contact
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nonlinearity, before the onset of plasticity, plays an important role in determining
the chain’s dispersion behavior, and controlling the frequency and amplitude de-
pendence of the leading wave velocities, while the linear regime determines the
apparent stiffness of the chain during plastic deformation.
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Figure 4.11: Numerical results of parametric studies of the propagating wave speed
as a function of (a) the density and (b) stiffness of the particles material. The plots
compare the results obtained for chains with elastic-plastic contacts (blue curves),
hertzian contacts (green curves), and linear contacts (red curves), subjected to a
2Fp impulse. (a) Markers represent the average wave speed observed in each DEM
simulation with solid lines showing the wave speed dependence on the square root
of the inverse of density. (b) Markers represent the average wave speed observed
in each DEM simulation with solid lines showing the wave speed dependence on
either the square root or the cube root of the stiffness.

We performed parametric studies usingDEM to determine how, in elastic-plastic
chains, the leading wave speed depends on the material properties of the constituent
particles. We compared the results with similar ones obtained for Hertzian and
linear chains. First, the density of the constituent particles was varied while the
Young’s modulus and yield stress of the material were kept constant. We excited
the 50-particle chains with an impulse of 100 × 10−6 seconds with constant force
amplitude of twice the force required to reach the linear plastic regime in the elastic-
plastic contact law (2FP). In all simulations, the chains consisted of particles with
a Young’s modulus of 100 GPa and a yield stress of 500 MPa, while the density
was varied in ten steps from 1000 kg/m3 to 15,000 kg/m3. For each chain, local
wave velocities of each particle were calculated and then averaged over all particles
between the 10th and the 40th particle. The results are shown in Figure 4.11a.
Fitting curves (solid lines in Figure 4.11a) show that all three contact models share
an inverse square root dependence on the density of the constituent material.
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Next, we performed parametric studies using DEM to obtain the leading wave
velocity’s dependence on the stiffness of the contact. The yield stress of the con-
stituent particles was varied while the Young’s modulus and density of the material
were kept constant. As before, an impulse of 100 × 10−6 seconds with amplitude
of 2FP was applied to 50-particle chains of each material for all three contact laws.
A Young’s modulus of 100 GPa and a density of 5000 kg/m3 was used for all
simulations, while the yield stress was varied in ten steps from 100 MPa to 2500
MPa. For each material, local wave velocities of each particle were calculated and
then averaged over all particles between the 10th to the 40th particles. The results
are shown in Figure 4.11b. Fitting curves (solid lines in Figure 4.11b) show that the
Hertzian material has a cube root dependence on the stiffness as predicted in Equa-
tion 4.4, while both the linear and elastic-plastic materials exhibit the square root
dependence predicted in Equation 4.6. Therefore, we see that the leadingwave speed
of elastic-plastic chains scales in the same fashion as the simplified linear-chains.
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Figure 4.12: Numerical results showing the dependence of the normalized wave
velocity on the normalized applied force, plotted on a logarithmic scale. Markers
represent the average wave speed observed in each DEM simulation. The green
curve shows the dependence of the wave speed in the hertzian material on F1/6.
The red line is the maximum velocity component of a harmonic chain given by
Equation 4.6. The black, vertical, dashed line shows Fp, the force at which the
linear regime begins in the elastic-plastic material and the local wave speed begins
to asymptotically approach the bound, as the amplitude increases.

In the plastic region the stiffness of the contact is not amplitude dependent;
however, in elastic-plastic chains the wave speed is amplitude dependent. This is
due to the fact that before reaching the plastic zone, the contact force rises through
the Hertzian region, which is amplitude dependent. To investigate the effect of the
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excitation amplitude on the wave speed in elastic-plastic chains in comparison with
Hertzian and linear chains, we calculated the response of the different contact laws
after the application of impulses with greatly varying amplitude. Impulses with
duration 100 × 10−6 seconds and amplitudes ranging from 10 N to 10 kN were
simulated on chains of 50 particles. The particles’ material properties were kept
constant with a Young’s modulus of 100 GPa, yield stress 500 MPa, and density
5000 kg/m3 (FP = 584N). The simulated leading wave speeds are shown versus
the logarithm of the applied force, normalized by Fp, as the blue and green markers
in Figure 4.12 for elastic-plastic and Hertzian granular chains, respectively. The
green curve in Figure 4.12 shows the dependence of the wave speed in the Hertzian
material on F1/6 as predicted in Equation 4.4. The red line in Figure 4.12 shows
predictions for the maximum velocity component of the harmonic linear material
given in Equation 4.6. As the force increases, the elastic and elastic-plastic wave
speeds diverge. Once the amplitude of the force reaches Fp, the leading wave speed
of the elastic-plastic material begins to asymptotically approach the prediction of the
fastest component of a harmonic lattice with the same stiffness as the elastic-plastic
linear regime. Therefore, Equation 4.6 represents a bound of the leading wave speed
in the elastic-plastic 1D material, although the required force to reach this bound
is highly material dependent. Figure 4.12 shows that for large amplitude impacts
(inducing forces greater than the force required to reach the plastic regime, Fp) the
leading wave velocity changes by only 10% over an order of magnitude change in
the force. For impacts in which the plastic regime is reached, 1D elastic-plastic
chains exhibit unique dynamics where the leading wave velocity has no frequency
dependence, relatively little amplitude dependence, and is almost solely a function
of the material properties of the constituent particle. Combining the velocity bound
in Equation 4.6 with the elastic-plastic contact law presented in Chapter 3 it is
possible to derive a model to predict the maximumwave speed (Vmax) in 1D granular
materials when plastic deformation is occurring. Vmax can be expressed in terms of
the material properties of the constituent particles for high amplitude impulses as:

Vmax =

√
3KL

πRρavg

KL = 2πr∗σy


−6.76

(
E∗

σy

)−0.14

+ 6.30

.

(4.7)

In order to gain further insights into the details of the dynamics observed in the
simulations and experiments of these materials, particularly the dimer materials,
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Figure 4.13: X-T diagrams showing the wave propagation in time through chains
of fifty particles, assembled with particles of different materials. All chains were
excited by a pulse of amplitude 2FP and 100 × 10−6 sec duration. The color scale
represents the contact forces between particles, normalized by the applied force. (a)
Chain of aluminum particles. (b) Chain of stainless steel 302 particles. (c) Dimer
chain consisting of alternating stainless steel 302 and aluminum.

we simulated a 100 × 10−6 second impulse of amplitude 2Fp on 50-particle chains
of steel 302, aluminum, and an alternating dimer chain. X-T diagrams showing
particle position over time are shown in Figure 4.13, with colors scale depicting the
magnitude of the contact force between each particle, normalized by the applied
force. For each material we observe the initial pulse traveling at a nearly constant
speed determined by the stiffness in the linear regime for that material. Once the
initial force is removed after 100×10−6 seconds, the unloading wave travels through
the chain at a faster speed, governed by the elastic unloading of the particles, followed
by subsequent reloading waves as the particles continue to collide within the chain.

The dynamics of the non-uniform chain (Figure 4.13c) are visibly different
than the behavior of the single material chains. Heterogeneous chains of Hertzian
materials have been shown to have wave speed dependence on the mass ratio of the
constituent spheres, whereas wave speeds in the harmonic linear chains only depend
on the average density of the constituents [30–32, 84–86]. For chains of spheres
with identical radii but two alternating materials, the leading wave velocity in the
dimer elastic-plastic materials shown in Figure 4.13c does not show any dependence
on the mass ratio, only the average of the densities of the two materials (also shown
experimentally [44]). After the arrival of initial plastic wave, trailing waves operate
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within the elastic regime, and internal reflections associated with local resonances
are visible in the XT diagram of the dimer chain (Figure 4.13c), behind the leading
plastic wave. These elastic internal reflections depend on the particles mass ratio
and slow the transfer of energy to the leading plastic front [30–32]. Therefore, the
two types of waves in these materials exhibit inherently different behaviors: the
leading wave which causes plasticity does not excite local resonances and its speed
depends only on the average mass, while the trailing elastic waves do excite local
resonances and cause internal reflections. In dimer chains, this results in more
collisions, sustained for longer times, after the initial impact has passed. The forces
transmitted at the end of the chain are spread over a longer time period and more
uniformly (confirming the experimental velocity measurements in Figure 4.7 and
simulation of transmitted force in Figure 4.8). Other periodic compositematerials for
impact applications have also demonstrated wave propagation properties that exceed
those of either constituent component. For example, the shock speed through layered
polycarbonate/stainless steel 304 and polycarbonate/aluminum was also shown to
be significantly slower than shocks in the constituent materials also due to internal
reflections [87].
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Figure 4.14: (a) Arrival speed of the wave front as it travel through chains of
fifty particles of various materials. Numerical results (lines) are compared with
experiments (markers) for the particle’s velocity measured by the laser vibrometer
in the 40th particle. Solid lines represent the arrival speeds in uniform chains.
Dashed lines show the same results for dimer chains. (b) Numerical results showing
the local wave speed as it travel through the fifty particle chains, normalized by the
wave speed bound given in Equation 4.7.

All of the Hopkinson bar experiments with uniform and dimer chains are com-
pared with DEM simulations in Figure 4.14. The markers in Figure 4.14a show the
arrival speed measured experimentally on the 40th sphere in all 50 particle chain
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experiments. The arrival speed is defined for each sphere as the total distance of the
center of the sphere from the end of the incident bar divided by the time at which
the particle velocity reaches 1% of the applied velocity (typically 0.12 m/s for these
experiments). The arrival speed of the wave to a point in the chain is therefore
the average of the local wave speed between each particle before that point. This
measure was used instead of the local wave speed used in Figures 4.11 and 4.12
because the laser vibrometer measured the cumulative arrival time to the 40th sphere
and not the subsequent arrival time between adjacent spheres. We compared the
experimentally measured arrival speeds at the 40th particles to the predicted arrival
speeds throughout the chain for each of the experiments. Solid lines in Figure
4.14a represent uniform materials while dashed lines represent the different dimer
combinations. The simulations capture the leading wave speed and particle velocity
amplitude for a wide range of different types of metallic spheres and for dimer
chains of alternating material. For the uniform chains, the average error between
the measured and simulated arrival velocities was 1.15%, likely due to variability
in the material properties of the spheres. For the dimer chains, simulated arrival
times were all consistently underestimated by an average of 3.13%. This suggests
that the contact between dissimilar materials is slightly stiffer than predicted, and
this is most likely a consequence of the assumption in the model that stiffness in the
linear regime is solely a function of the softer material’s properties.

Figure 4.14b shows the leading wave velocities after a 2FP impulse was applied
to each of the material combinations shown in Figure 4.14a. The leading wave
velocities are normalized as: Vnorm = V/Vmax where Vmax is given by Equation
4.7. The vertical dashed line represents the approximate location at which the
contact forces drop below FP and stiffness becomes amplitude dependent once
again. Before this line, when the contact forces are all in the plastic linear regime,
the normalization causes all curves to overlap and we observe nearly no amplitude
change. All curves converge to around 90% of the maximum possible wave speed
because of the amplitude dependence demonstrated in Figure 4.12. The alternating
dimer combinations show significant variations in the arrival times between heavy
versus soft constituents, but the average still falls on the normalized curve. As stated
earlier for chains of particles of equal radius with alternating material properties,
there is no dependence of the leading wave velocity on the mass ratio of the particles
that comprise the dimer, only on their average density. Once the contact forces drop
below the purely linear regime, the leading wave speed becomes more amplitude
dependent, as seen in Figure 4.12, and the curves diverge slightly and begin to slow
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as energy continues to be dissipated in the intermediate regime between the Hertzian
and plastic zones in the elastic-plastic contact law.

4.3 Designing 1D Wave Properties by Choosing Material Properties
We have shown that the leading plastic wave in elastic-plastic granular chains

forms a steady propagating wave front, with a speed that is dependent on amplitude,
but is independent of frequency content of the excitation and is bounded by the long-
wavelength speed of a simplified linear model with the same stiffness. We have also
shown that our model predicts correctly the leading wave properties for both uniform
and dimer chains. These foundations provides the necessary insight to predict the
behavior of new uniform materials, new combinations of dimer materials, and
new rationally designed particles to obtain materials with unique wave propagation
properties. Figure 4.15 shows a design surface, which relates the linear stiffness and
the average density of constituent particles with the predicted bound of the leading
wave speed given by Equation 4.7. We can use this surface to design 1D materials
for which the speed of plastic stress waves cannot exceed the predicted value. The
real materials used in experiments, as well as others, like tungsten carbide, are
shown by markers with blue stems. Brass has the lowest predicted wave speed with
833 m/s, while stainless steel 440c has the highest with 1347 m/s, a factor of 1.6
larger. Alternating dimers using the same materials are shown by markers with
red stems. Chain consisting of a combination of aluminum and tungsten carbide
particles have the lowest predicted wave speed, with 629 m/s, a factor of 2.14 lower
than the uniform stainless steel 440c wave speed. By using alternating dimers, the
design space of wave speeds has been expanded.

Additionally, the surface plot in Figure 4.15 allows predicting the behavior of
engineered particles. For example, we see that materials with the highest density
and lowest stiffness lead to the slowest leading wave velocity. If we were to coat a
tungsten carbide particle with aluminum, such that the final particle had the stiffness
of aluminum but a density five times higher, Equation 4.7 predicts that we would
obtain a wave speed of 489 m/s. If we were to create a hollow particle of tungsten
carbide such that the stiffness properties were not changed, but the final particle
density was five times less, Equation 4.7 predicts that we would obtain a wave
speed of 3011 m/s. These two engineered materials are shown by the markers with
black stems in Figure 4.15. Such particles increase the design space such that we
obtain a factor of 6.2 between the fastest and slowest materials. However, these
hollow/coated particle chains would have to be used within a range of impacts that
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Figure 4.15: Surface plot relating the maximum wave front speed as a function of
the linear stiffness of the contact and the average density of the constituent particles,
calculated using Equation 4.7. Markers and stems show locations of uniform chains
of various types of particles (blue), alternating dimers of those materials (red), and
engineered particles such as heavy core aluminum and hollow tungsten carbide
(black).

do not violate certain assumptions: first that the plastic region is small enough that
it is not altered by the presence of another material in the core of the particle, and
second that the wave speed is much slower than the time it takes for the stresses to
travel from one end of the particle to the other. These assumptions are unlikely to
be valid for very large amplitude impacts, but the design surface allows us to easily
visualize how new combinations of materials or engineered particles are likely to
dynamically behave.

4.4 Summary of Chapter
We investigated the dynamics of high-amplitude stresswaves propagating through

1D chains of spherical particles. In order to understand the effect of each regime of
the piece-wise nonlinear, elastic-plastic contact law, we compared chains of elastic-
plastic spheres, with chains of purely elastic particles interacting via the Hertzian
contact law, as well as with harmonic chains having the same linear stiffness as
the one found in the linear regime of the elastic-plastic model. We reported that
the elastic-plastic chains showed no dispersion even when forces reached the fully
plastic linear regime. As in a chain of Hertzian particles, the frequency components
of the wave all propagated at the same velocity, unlike in a typical linear material.
However, by varying the density and contact stiffness of the constituent particles,
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we found that while plasticity is occurring at the contacts, the speed of the leading
wave in the elastic-plastic chain scales with the material properties in the same
manner as wave velocities in a harmonic chain of particles with linear contacts. We
showed that the harmonic prediction of velocity of the frequency component with
highest speed represented an amplitude-dependent bound on the maximum possible
velocity in the elastic-plastic chain.

For high amplitude, long duration impacts, for which plastic dissipation contin-
ues as the wave propagates, the leading wave travels without dispersion at nearly
constant amplitude predicted by the upper bound. This upper bound depends solely
on the material properties of the constituent particles. We use these findings to
predict the wave propagation properties of chains of uniform materials, new com-
binations of materials, and chains of engineered particles. We support our finding
with experimental tests performed in a Hopkinson bar setup equipped with a laser
vibrometer.
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C h a p t e r 5

HIGHER DIMENSIONAL GRANULAR CRYSTALS

In this chapter, we study the dynamics of elastic-plastic granular arrangements of
spherical particles in higher dimensions, more suitably called granular crystals.
While 1D materials are useful as models and simplified cases, most of the applica-
tions for granular crystals, particularly impact protection applications, require 2D
and 3D materials. The addition of more dimensions also increases the ability to
introduce more heterogeneity. In higher dimensional materials, impact energy can
be directed away from the sensitive areas of the material whereas in 1D, energy can
only be dissipated or reflected. Here we investigate the behavior of impact waves
propagating through 2D and 3D materials. First we provide experimental validation
of our DEM simulations for higher dimensional materials. We show that DEM is a
suitable approach to studying uniform and heterogeneous granular crystals in 2D and
3D despite the assumptions required neglecting interparticle friction and angular
rotation. Then we show how we can extend the elastic-plastic wave speed findings
in Chapter 4 to 2D and 3D granular crystals. And finally, we demonstrate the abil-
ity to use interfaces between particles of dissimilar materials to create systems of
elastic-plastic granular crystals suitable for impact protection applications.

Some content of this chapter has been partially adapted from:
Hayden A. Burgoyne et al. "Guided impact mitigation in 2D and 3D granular
crystals" Procedia Engineering 2015, 103. p. 52-59.

5.1 Experimental Validation of Simulations of 2D and 3D Granular Crystals
In Chapter 4, we experimentally validated the DEM approach to model one-

dimensional granular crystals. However, with all particles aligned along one axis,
tangential forces could not play a role in the dynamics. In the DEM approach to
simulating large systems of particles in 2D and 3D, a simplifying assumption is
that the interactions between particles can be fully described by the normal force-
displacement relationship. Friction can be ignored if either the tangential motion
of the particles is negligible or if the magnitude of frictional forces is negligible
compared to other forces on the particles. If friction were to play a significant role,
it would contribute to additional stiffness by preventing particles from sliding past
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one another. Rotational motion of the spheres is also neglected. Angular motion can
only be ignored if the energy lost to rotating the spheres is negligible compared to the
energy lost due to plastic dissipation, and if each pair of particles always contacts at
the same point during the impact. A series of experiments were performed in order
to experimentally validate theDEMapproach for 2D and 3D simulations, as previous
described in Chapter 2. First, a sliding impactor rig was designed and built to test 2D
arrays of particles. Next, drop weight tower experiments were performed to impact
a two-layer arrangement of particle as a first step toward 3D experimentation. The
ultimate goal of both experiments was to investigate if our numerical approach can
predict the behavior of elastic-plastic granular crystals given these assumptions and
ensure that none of the neglected effects play a significant role in the dynamics.
The 2D and 3D experiments performed on uniform granular crystals of a single
type of particle provided the validation required for the numerical analysis shown
subsequently in Section 5.2, where we show how our understanding of elastic-plastic
wave propagation in 1D from Chapter 4 can be extended to 2D and 3D granular
crystals. Then, the 2D and 3D experiments performed on heterogeneous granular
crystals with particles of different types provided the validation required for the
numerical analyses and discussions of applications for impact protection in Section
5.3.

5.1.1 Impacts on 2D Arrays of Particles Using Sliding Rig
Previous experiments on 2D granular crystals have been used to validate DEM

simulations for very low amplitude impacts in which every contact point remained
elastic and no energy was dissipated within the crystal [25, 50, 51, 53]. Using the
sliding 2D impacting rig described previously in Chapter 2, impacts on 2D granular
crystals were performed at significantly higher impact energies for which plastic
deformation occurred at the contact between every layer throughout the crystal. In
order to validate the 2D DEM simulations, we compared the arrival time of the wave
through subsequent layers for the experimental and numerical data. Arrival time
for both the experiments and the simulations was defined as the time at which the
particle moved 3/4 of a full pixel’s width (approximately 191 µm) from its original
location. By using nearly one pixel’s width as the threshold distance for arrival time
of the wave, the effect of noise and changes in the lighting as the particles displace
is reduced in experimental images. The same threshold distance is used to calculate
arrival time for simulations for the sake of comparison although the arrival of wave
can be more accurately resolved in simulations.
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Uniform Granular Crystals of a Single Material
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Figure 5.1: (a) Surfaces of arrival time, experimental (solid, red contours) and
simulated (transparent, blue contours), of the impact wave through a uniform array
of brass spheres, shown from two angles. Arrival time for both the experiments and
the simulations was defined as the time at which the particle moved 3/4 of a full
pixel’s width. (b) Plots of impact wave depth from the front of the sample versus
arrival time of the wave averaged horizontally across the blue strip shown in the
schematic to the right of the plot. Dashed line shows simulation while the solid
line shows the experimental results. Shaded regions on the plots represent arrival
times if we assume the largest magnitude errors for the experimental displacement
measurements (+/- half a pixel’s width).

Figure 5.1a shows surfaces of the arrival time of the impact waves through a 2D
array of uniform brass spheres for the experimental data and the simulation using the
experimentally measured initial impactor bar velocity. These surfaces are analogous
two-dimensionalXT-diagrams. We see qualitative agreement between the numerical
and experimental results. Experimental error due to the limited resolution of the
high-speed camera at such high frame rates is seen in Figure 5.1a as the random
bumps on the experimental surface. Error due to slight misalignments of impactor
bar are seen in Figure 5.1a as tilt in the horizontal direction. To alleviate some
experimental error and make a more quantitative comparison between experiment
and simulation data, arrival times were averaged horizontally across particles within
the same layer of the array. By plotting the arrival time along vertical strips of the
array through the depth of the sample, as shown in the schematic on the right of
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Figures 5.1b, we can compare experimentally measured and simulated arrival times
for the uniform arrays and for different regions of the heterogeneous 2D arrays. The
plots on the left of Figure 5.1b show the arrival time of the wave through vertical
strips of the arrays, averaged horizontally across a 6-particle wide strip, versus depth
from the front of the array. Shaded regions on the plots bound the arrival times if we
assume the largest possible magnitude of experimental errors for the displacement
measurements, plus or minus one-half of a pixel width. The slope of the curves in
Figure 5.1b represent the local impact wave speed at that depth in the array. For
the uniform array of brass particles, we see that the simulated arrival times and
wave speed matches the experimentally measured data within the bounds of the
experimental error quantification.

Figure 5.2: Photograph of a brass sphere after impact in a 2D sliding rig experi-
ment. Permanent plastic deformation is visible on the top surface of the sphere.
Damage is uniform, symmetric and shows no sliding or transverse movement during
compression.

Figure 5.2 shows a photograph of a brass sphere from the 12th row of a sliding
impact rig experiment. There is an approximately 1 mm permanently deformed area
visible, as well as similar deformed areas at the other contact points. These areas of
deformation are all uniform, symmetric suggesting no transverse motion during the
impact.

Figure 5.3a shows surfaces of arrival time for a uniform array of stainless steel
304 particles. The higher reflectivity of the steel spheres leads to more uncertainty
in the particle tracking due to experimental lighting conditions. However, Figure
5.3a still shows qualitative agreement between the simulated arrival surface and the
experimentallymeasured displacements from the sliding impactor rig. Furthermore,
5.3b again shows plots of arrival time versus depth averaged horizontally across
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Figure 5.3: (a) Surfaces of arrival time, experimental (solid, red contours) and
simulated (transparent, blue contours), of the impact wave through a uniform array
of brass spheres, shown from two angles. Arrival time for both the experiments and
the simulations was defined as the time at which the particle moved 3/4 of a full
pixel’s width. (b) Plots of impact wave depth from the front of the sample versus
arrival time of the wave averaged horizontally across the blue strip shown in the
schematic to the right of the plot. Dashed line shows simulation while the solid
line shows the experimental results. Shaded regions on the plots represent arrival
times if we assume the largest magnitude errors for the experimental displacement
measurements (+/- half a pixel’s width).

each layer for the stainless steel 304 array in order to alleviate some experimental
error. Again, we see good agreement in the arrival times and wave speeds for the
simulations versus the experiments.

Using the 2D sliding impactor rig, we showed that our DEM approach to mod-
eling 2D granular crystals captured the behavior of impact waves causing plastic
deformation at the contacts despite assumptions neglecting tangential forces and
rotational motion of the particles. By measuring the displacement of each particle
in the field of view of the camera, we showed that our predictions for the particle
displacements, particle velocities, and speed of the wave front match between exper-
iments and simulations. This result provides the validation required to perform the
numerical analyses of the general properties of elastic-plastic waves in 2D granular
crystals shown in Section 5.2.
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Heterogeneous Granular Crystals with an Interface Between Two Materials
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Figure 5.4: (a) Surfaces of arrival time, experimental (solid, red contours) and
simulated (transparent, blue contours), of the impact wave through an array of
stainless steel 440c particles with a wedge of brass particles at a 60◦ interface. (b)
Plots of impact wave depth from the front of the sample versus arrival time of the
wave averaged horizontally across the red and blue strips shown in the schematic to
the right of the plot. The two strips correspond to one region which mostly remains
in the first material (red region) and another region which mostly transitions to
the second material (blue region). Dashed lines show simulation while the solid
lines show the experimental results. Shaded regions on the plots represent arrival
times if we assume the largest magnitude errors for the experimental displacement
measurements (+/- half a pixel’s width).

In order to experimentally validate simulations ofwaves traveling through hetero-
geneous granular crystals, particularly through oblique interfaces of heterogeneous
particles, experiments were performed on samples with a wedge of a secondmaterial
in the 2D array. A schematic of the experimental setup for the heterogeneous sam-
ples is depicted in Figure 5.4b. Figure 5.4a shows the surface of arrival time through
a 2D array of stainless steel 440c particles with an intruding wedge of brass particles
with a 60◦ interface. Because the wave travels more slowly through the brass particle
in the wedge, the arrival times are slowed and the wave appears bent upwards. The
nature and applications of this bending across heterogeneous interfaces will be more
heavily investigated in Section 5.3.2; however, here were experimentally validated
that the bending behavior is captured by the DEM simulations. The shape of the
simulated surfaces again match qualitatively with the experimentally measured sur-
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faces with surfaces of experimental arrival time showing the distribution of random
errors due to limitations of the resolution of the high-speed camera. To alleviate
some of the experimental error, Figure 5.4b again shows the arrival time of an impact
wave averaged horizontally across layers of the sample; for heterogeneous samples,
two vertical strips were used. The strips were chosen such that one contained nearly
uniform stainless steel particles (red) while the other includes the interface with the
brass particles part way through the strip (blue). Figure 5.4b shows plots for an
impact on the array of stainless steel 440c particles with a wedge of brass particles
with a 60 degree interface. Although, stainless steel particles introduce more exper-
imental error due to their surface finish, the arrival times in the two strips in Figure
5.4b diverge as one travels through the brass with a slower wave speed, matching
the numerical predictions.
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Figure 5.5: (a) Surfaces of arrival time, experimental (solid, red contours) and
simulated (transparent, blue contours), of the impact wave through an array of brass
particles with a wedge of stainless steel 440c particles at a 60◦ interface. (b) Plots
of impact wave depth from the front of the sample versus arrival time of the wave
averaged horizontally across the red and blue strips shown in the schematic to the
right of the plot. The two strips correspond to one region which mostly remains
in the first material (red region) and another region which mostly transitions to
the second material (blue region). Dashed lines show simulation while the solid
lines show the experimental results. Shaded regions on the plots represent arrival
times if we assume the largest magnitude errors for the experimental displacement
measurements (+/- half a pixel’s width).

Additionally, Figure 5.5a, shows the surface of arrival time through a 2D array
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of uniform brass particles with an intruding wedge of stainless steel 440c particles
with a 60◦ interface. Figure 5.5b shows plots for an impact on an array of brass
particles with a wedge of stainless steel 440c particles with a 60 degree interface.
Simulations of the brass array with a stainless steel 440c wedge do not predict much
change in the arrival time. Because the displacement threshold must be high enough
to accommodate experimental limitations, we can’t observe a lot of the nature of the
initial wave behavior. However, we can see in Figure 5.5b that the experimentally
measured arrival time is very accurately predicted by simulations for the chosen
threshold.

These experiments further demonstrate that DEM simulations capture the be-
havior of impact waves propagating through 2D array of elastic-plastic spheres. For
both uniform 2D granular crystals and heterogeneous granular crystals with inter-
faces between dissimilar materials, we were able to accurately capture the behavior
of impacts causing plastic deformation. These experiments demonstrating the bend-
ing of impact waves as the transition from an area of higher wave speed to an area of
lower wave speed provide validation for the analysis of Snell’s law in elastic-plastic
granular crystals which will be discussed in Section 5.3.

5.1.2 Impacts on 2-Layer, 3D Granular Crystals using Drop Tower
Drop weight tower experiments were performed in order to begin to investigate

if our numerical approach could predict the behavior of elastic-plastic granular
crystals in 3D as well and verify again that none of neglected effects played a role
in the dynamics, particularly on the forces experienced by the impactor. Because of
limitations of the experimental equipment, difficulty instrumenting a 3D sample, and
the amount of time required to setup the 3D samples, only two layers of particleswere
stacked. While the transition from 1D to 2D required new assumptions regarding
the interactions between particles in the tangential directions, there are no new
fundamental assumptions required in transitioning from 2D to 3D. Therefore, the
experimental validation of the 2D arrays using the sliding impacting rig also provides
validation that the DEM approach can be extended to 3D granular crystals as well.
However, with the additional dimension, there is grater variety of crystal structures
in 3D, even for densely packed crystals. Therefore, we first used the drop tower
experiments discussed in this section to further validate the DEM approach for
uniform 3D granular crystals in order to support numerical analyses in Section 5.2.
Additionally, we then performed experiments on 2-layer 3D granular crystals in a
face-centered-cubic (FCC) configuration to show that our approach can be extended
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to investigations of increasingly complex heterogeneous granular crystals.
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Figure 5.6: Plots of forces versus time on the impactor during impacts performed
on two-layer crystals of uniform materials. The plots compare the experimental and
numerical forces on the impactor as a function of time (a) Impacts on arrangement of
brass particles. (b) Impacts on arrangement of stainless steel 302 particles. Different
initial velocities are shown in various colors, and experimental data is shown with
dashed lines while numerical predictions are shown as solid lines.

Figure 5.6 shows the comparison of experimental and numerical forces on the
impactor for the two-layer HCP packing described in Chapter 2, for both uniform
brass and uniform stainless steel 302 systems. Despite only describing the normal
interactions, the 3D DEM simulations predict correctly the magnitude of the forces
and the impact duration, describing well the overall behavior of the system (e.g., the
overall system’s stiffness and energy transferred). From these results, we deduce
that friction, tangential forces, and angular momentum play a secondary role in
the dynamics of these systems. The experimental results typically show more
oscillations after the peak force than predicted by the numerical simulations, this is
likely a result of the mass of vibrations in the impactor.

In addition to the uniform 2-layer HCP crystals, we performed experiments on
2-layer crystals using combinations of brass and stainless steel 302 particles. Figure
5.7 shows the experimentally measured and simulated forces in the impactor versus
time for drop tower experiments on composite crystals of the two materials. The
blue curves correspond to experiments in which the entire top layer was comprised
of brass spheres while the entire bottom layer was composed of stainless steel 302
spheres. The green curves correspond to an arrangement of the twomaterials where,
within both the layers, concentric hexagons are formed by alternating between the
brass and stainless steel 302. This arrangement is shown in Figure 5.7a as the
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Figure 5.7: (a) Schematic diagram showing a top down view of one quarter of the
experimental arrangements of the spheres as well as the arrangement of particles for
simulations of the experiment. Light blue and darker blue circles represent differ-
ent materials used in the composite experiment described as concentric hexagons.
Shaded green area (bottom left) is the impacted region. (b) Plots of forces versus
time on the impactor during impacts performed on two-layer crystals comprised of
both brass and stainless steel 302. Blue curves represent an experiment where the
entire top layer was brass particles and bottom layer was stainless steel 304 particles.
Green curves represent the arrangement shown in (a) with alternating hexagons of
the two materials within the two layers.

lighter and darker blue spheres. We see good agreement between the durations and
magnitudes of the experimental and 3D DEM simulated forces on the impacting
mass for composite crystals of two materials as well.

Lastly, in order to gain more insight into the effects of different contact geome-
tries, a different crystal packing arrangement was used for drop tower experiments
of uniform brass. Instead of a 2-layer HCP crystal, a 2-layer FCC crystal was used
to change the number of contact points between the spheres in the top and bottom
layers. In the HCP crystal, a sphere in the top layer sat in contact with three in the
bottom. As shown in the schematic of the experimental and numerical arrangement
of spheres in Figure 5.8, in the FCC arrangement, each sphere in the top layer is in
contact with four spheres in the bottom layer. Figure 5.8b shows the experimentally
measured and simulated forces on the impacting weight for this arrangement. The
blue curve in Figure 5.8b can be directly compared to the green and red curves
in Figure 5.6a. We see that the FCC crystal packing leads to higher forces in the
impactor and a shorter duration of impact. Despite the modification in the contact
geometry and arrangement of materials, 3D DEM is still able to capture the duration
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Figure 5.8: (a) Schematic diagram showing a top down view of one quarter of the
FCC experimental arrangement of the spheres as well as the arrangement of particles
for simulations of the experiment. Shaded green area (bottom left) is the impacted
region. (b) Plots of forces versus time on the impactor during impacts performed
on two-layer FCC crystals of uniform brass particles. Experimental data is shown
with dashed lines while numerical predictions are shown as solid lines.

and magnitude of the forces on the impactor for all cases.

5.2 Properties of Waves in Uniform 2D and 3D Granular Crystals
With the experimentally validated 2D and 3DDEM approach, we can investigate

the general properties ofwaves in higher dimensional elastic-plastic granular crystals
like we did for 1D chains in Chapter 4. For 2D and 3D lattices of elastic particles
with Hertzian contact interactions, Manjunath showed that predicted velocities of
solitary waves in 1D could be scaled to 2D and 3D by taking into account packing
density and the angle between contacts [60]. It was shown that:

VH,2D =
3

2
√

2
VH,1D

VH,3D =
2
√

3
VH,1D,

(5.1)

where VH,1D was the solitary wave speed through 1D Hertzian granular chains.

The wave speed of elastic-plastic granular crystals was previously shown to be
somewhat amplitude dependent because the initial non-linearity determines how
quickly the linear regime is reached. Therefore, in our numerical investigation the
applied force on each particle in the first layer was always fixed such that 2Fp,
twice the required force to reach the linear region for that material, was initially
experienced at each contact between the first and second layers. By fixing the
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relative initial contact force, the wave speeds’ dependence on the material properties
is decoupled from the amplitude dependence. For the subsequent numerical studies,
simulations were performed on 50 layers of 1D, 2D, and 3D densely packed granular
crystals as discussed in Chapter 2. The 2D and 3D simulations were performed with
periodic boundary conditions on the sides.
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Figure 5.9: (a) DEM results of a parametric study of initial stress wave speed versus
the density of the material used in 1D, 2D, and 3D close-packed arrangements of
particles. Markers represent thewave speed observed inDEM simulationswith solid
lines showing thewave speed dependence on the square root of the inverse of density.
Dashed lines (yellow and purple) show this fit scaled by the factor determined by the
geometry and are nearly indistinguishable and overlap with 1D results (blue). (b)
DEM results of a parametric study of initial stress wave speed versus the stiffness
of the material used in 1D, 2D, and 3D close-packed arrangements of particles.
Markers represent the wave speed observed in DEM simulations with solid lines
showing the wave speed dependence on the square root of the stiffness. Dashed
lines show this fit scaled by the factor determined by the geometry.

A parametric study was done by varying the density of the constituent material
and the yield stress of a model material independently. In order to determine the
dependence of the wave speed on the density of the particle material, simulations
of impacts on 1D, 2D, and 3D systems were performed with 10 densities between
2000 kg/m3 and 16000 kg/m3. For these simulations, the Young’s modulus and
yield stress were fixed at 100 GPa and 500 MPa, respectively. The simulated speed
of the stress wave traveling though the material was averaged over 20 layers for each
density and each geometry and shown as markers in Figure 5.9a. By fitting curves to
the numerical data we see that the wave speed of 2D and 3D elastic-plastic granular
crystals continues to be inversely proportional to the square root of the density of
the particle material. Furthermore, if we scale the fitting curves using the same c
constants as Equation 5.1 based on the changes in stiffness and packing densities in
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the manner demonstrated by Manjunath in the elastic case [60], all the fits collapse
to a single curve. Therefore, despite the additional piece-wise non-linearities in the
elastic-plastic case, the density dependence exhibited by 1D granular chains can still
be scaled to 2D and 3D granular crystals.

Next, in order to determine the dependence of the wave speed on the stiffness of
the contact between particles, simulations of impacts on 1D, 2D, and 3D systems
were performedwith 10 yield stresses between 100MPa and 2500MPa. In the linear
region of the elastic-plastic model, the stiffness of the contact, K1D, is a function of
the yield stress of the particle materials and is repeated from Chapter 4 again as

K1D = 2πr∗σy


−6.76

(
E∗

σy

)−0.14

+ 6.30

. (5.2)

For these simulations, the Young’s modulus and density were fixed at 100 GPa
and 5000 kg/m3 respectively. Therefore, using Equation 5.2, the range of yield
stresses used corresponds to a range of stiffness from 3.5 × 106 N/m to 4.8 × 107

N/m. The simulated speed of the stress wave traveling though the material was
averaged over 20 layers for each stiffness and each geometry and shown as markers
in Figure 5.9b. By again fitting curves to the numerical data we see that the wave
speed of 2D and 3D elastic-plastic granular crystals continues to be proportional
to the square root of the 1D contact stiffness. Now if we again scale the fittings
based on the geometrical correction factors in Equations 5.1, the parameter fittings
all collapse to a single curve. Just as with the density, the stiffness dependence
exhibited by 1D granular chains can be easily scaled to 2D and 3D granular crystals.

As shown in the 1D case, knowing how the wave speed scales with the density
and yield stress of the constituent materials, allows us to predict the stress wave
propagation properties of new combinations of materials. We have now shown that
this approach can be scaled to close packed 2D, and 3D granular crystals and allow
us to predict the properties of increasingly complex systems of real materials. The
predicted wave speeds through each layer in 1D, 2D and 3D granular crystals of
four real materials are shown in Figure 5.10a. If we then take these wave speeds and
normalize them both by materials properties and geometry according to Equation
5.1, we can define the following wave velocities for 2D and 3D elastic-plastic
granular crystals:
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Figure 5.10: (a) Plots of the simulated local speed of the wave as it travel through 1D,
2D, and 3D arrangements of particles of real materials. (b) Plots of the simulated
local speed of the wave as it travel through 1D, 2D, and 3D arrangements of particles
of real materials normalized by the dependence on the stiffness, density, and the
geometry.

Vmax = A

√
3K1D

πRρavg
,

A =




1 for 1D
3

2
√

2
for 2D

2√
3

for 3D,

(5.3)

where, as given in Chapter 4, K1D is the stiffness in the elastic-plastic region given in
Equation 5.2, R is the radius of particle, and ρavg is the average density of constituent
particles.

The results of this scaling for the real materials used are shown in Figure 5.10b.
We see that by normalizing by this predicted wave speed, all systems comprised of
just one material collapse to a single curve. Therefore, by knowing the density of
the constituent material and using Equation 5.2 to get the linear stiffness of the 1D
contact, we can predict the initial wave velocity of 1D, 2D, and 3D close-packed,
elastic-plastic granular crystals. It was previously shown in Chapter 4 that the
normalization was also valid for 1D granular crystals with alternating materials.
2D and 3D granular crystals with alternating layers of 2 materials appear to have a
slightly different normalized wave speed. This is perhaps due to a new deformation
mechanism between hard and soft layers that violate the quasi-one dimensional
nature of the previous periodic simulations, i.e., soft particles being pushed aside
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by harder particles and moving in other dimensions which don’t exist in 1D.

5.3 Heterogeneous Granular Crystals and Applications
5.3.1 Guided Impact Applications

We have shown that speed of stress waves due to impacts in elastic-plastic
granular crystals is determined by the materials properties of the local constituent
particles. Because granular systems give us the freedom to choose the materials
properties of each individual particle we can create highly anisotropic materials with
designed geometries. Using our understanding of the wave propagation properties
in elastic-plastic granular crystals, we can create materials with designed responses
to various impacts.
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Figure 5.11: (a), (b) Depictions of the location, velocity, and force on each particle at
different times following an impact on a system (a) with plasticity and (b) assuming
only elastic (Hertzian) interactions between particles. Initial color represents the
particle material with dark particles being stainless steel 440 and light particles
being aluminum. Red color depicts force on the particle relative to the maximum
forces experienced during the impact. Red and blue lines show the direction of
the velocity of steel and aluminum particles respectively with the length of the line
normalized by the maximum velocity in any of the particles at that time step. (c)
Depiction of the maximum force felt by each particle during the impact for both
contact laws.
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An example is shown in Figure 5.11 where arrangements of stainless steel 440c
and aluminum are used to create a change in the direction of particle velocities
within a material. An initial impulse of 2Fp for the stainless steel 440c was applied
to 25 layers of hexagonally close packed spheres which are 15 particles wide in the
periodic direction. After 10 layers of stainless steel 440c, we introduced stripes of
alternating aluminum and stainless steel 440c at a 60◦ interface angle. In Figure
5.11a, we see that as the wave entered into the striped region, after a few layers of
transition, the particle velocities aligned with the stripes and traveled along the 60◦

interface. However, when only elastic interactions were assumed, the new geometry
created some local oscillations in direction of the particle velocities, but the wave
generally continued in the z-direction as seen in Figure 5.11b. Because the elastic-
plastic particle systems allow us to control the local particle velocity, we can design
materials with anisotropic and inhomogeneous wave propagation properties where
impacts can be directed away from sensitive areas of materials and towards less
sensitive areas. In Figure 5.11c we can also see that, in the elastic-plastic case,
forces were dissipated within the material due to permanent plastic deformations
and the maximum forces were lower in each subsequent layer of material. After just
a few layers of heterogeneous elastic-plastic granular crystals, the direction of the
particle velocities can be modified and controlled.

5.3.2 Snell’s Law for Elastic-Plastic Granular Crystals
Previous work in the elastic regime has demonstrated that granular crystals

in 2D and 3D allow for enhanced control of how energy propagates through a
material after an impact [55, 57–59]. Various approaches have been explored to
rationally designing impact protecting devices through numerical optimization [28,
54], randomization [29, 56], and adapting techniques from other fields such as
optics and optical metamaterials [70]. In optics, lens are routinely used to focus
electromagnetic energy and control the shape of an incoming wave. Based on
curved interfaces between materials at which light waves travel at different speeds,
the waves can be focused down to a point and concentrated as demonstrated by a
magnifying glass lighting a piece of paper on fire using sunlight.

In order to focus a wave, the geometric shape of a lens can be calculated using
Snell’s Law. It says that the ratio of the angle of an incident plane wave to the angle
of the transmitted wave which has been bent (refracted) after passing through an
interface between two materials is equal to the ratio of the speeds at which the waves
travel in the two materials. Therefore in order to design a lens, all that is needed is
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knowledge of the wave speeds on either side of an interface. Electromagnetic waves
travel at different speeds in air, glass, or plastic, and furthermore different frequencies
of light travel at different speeds. If the wave speed’s frequency dependence varies
differently within the twomaterials, the different frequencies of the light will be bent
at different angles. This creates "chromatic aberrations" where the various colors
of light separate and focus differently creating a prismatic effect. Therefore, a lens
is designed for a range of frequencies of electromagnetic waves.

Previous work showed that an analog to Snell’s law could be obtained for oblique
interfaces of particles of different mass in elastic granular crystals and depends on
the ratio of solitary wave speeds in the two materials [61]. As previously discussed,
the wave speed in elastic granular crystals is amplitude dependent. Therefore, waves
of different amplitude would behave differently across an interface in an analog to
the chromatic aberration in optical lens. However, by only varying the masses
of the particles across the interface, the amplitude dependence on either side of
the interface is equivalent and ratio of the wave speeds remains the same at any
amplitude. Therefore, the refracted angle is predictable for that specific subset of
elastic granular crystals.

For elastic-plastic granular crystals, we have previously shown that over a large
range of forces, the speed at which plane waves travel is neither frequency dependent
or amplitude dependent and is controlled by thematerial properties of the constituent
particles. Therefore, we investigate here whether Snell’s law is valid for general
elastic-plastic granular crystals and, in the subsequent subsection, whether lenses
can be designed to demonstrate the focusing of an impact wave.

Snell’s law is typically written in the following form derived purely from geo-
metric considerations:

sinΘinc

sinΘref
=

V1

V2
, (5.4)

where, in this case,V1 andV2 were the solitarywave speed in each of thematerials and
Θinc and Θref were the incident and refracted wave angles with respect to the angle
of the interface [61]. We can rewrite Snell’s law in more general and convenient
form in terms of the interface angle with respect to an arbitrary horizontal axis, θi,
and the angles of the incoming and bent waves, θ1 and θ2 respectively:

θ2 = θi − arcsin
(V2

V1
sin(θi − θ1)

)
. (5.5)

The angles involved in this formulation for Snell’s law are shown in Figure 5.12.
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Figure 5.12: Schematic defining the angles involved in defining Snell’s Law for
elastic-plastic granular crystals. All angles are defined with respect to the 2D
hexagonal-packing’s horizontal direction. The blue line shows the interface between
two types of dissimilar particles with angle θi. The incoming wave, making angle θ1
with the horizontal, is shown to the left of the interface, propagating in the direction
of the arrow. The transmitted (refracted) wave is shown to the right of the interface
with angle θ2 to the horizontal. (a) For waves traveling across an interface from
faster wave speed to slower wave speed, θ2 will be positive and the wave will be bent
backwards. (b) For waves traveling across an interface from slower wave speed to
faster wave speed, θ2 will be negative and the wave will be bent forwards.

When V2 is less than V1, the transmitted wave is bend backwards with respect
to the interface and θ2 is positive for θi between 0◦ and 90◦. When V2 is greater
than V1, the transmitted wave is bend forwards with respect to the interface, up to a
critical angle. At the critical interface angle, θ2 becomes imaginary and total internal
reflection of the wave is observed with no transmission into the second material.
In the elastic case, the ratio of the wave speeds could be given as a function of
the mass ratio of the two materials. However, in the elastic case, this relationship
no longer generally held for interfaces between particles of both dissimilar masses
and stiffness properties. For larger amplitude impacts in which plasticity occurs, it
has been previously shown that the wave speeds in elastic-plastic granular materials
can be estimated knowing solely the material properties of the constituent particles
(Chapter 4). As amplitude of the initial impact grows the speed of the wave traveling
through an elastic-plastic granular crystal approaches Equation 5.3. Therefore, we
investigated whether the analog to Snell’s law would hold for interfaces of arbitrary
elastic-plastic granular crystals.

In order to determine how material parameters affect the refraction angle of the
transmitted wave through oblique interfaces in elastic-plastic granular crystals, we
performed simulations varying the density of the constituent particles, their yield
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stress, and the amplitude of the excitation. First, we considered the case where V2

is less than V1 in which the wave is bent backwards with respect to the interface.
A schematic of the numerical setup for these simulations is shown in Figure 5.13a.
A representative surface of the simulated particle velocity is shown at a fixed time
with contour lines of constant velocity showing the bend angle, overlaid above the
arrangement of 6.35 mm diameter particles of the two materials (red and yellow
spheres) arranged in a 60◦ wedge. The inset shows a top down view of the area
over which the angle of the bent wave was calculated by averaging the slope of
linear regressions of particle velocity contour lines. In all simulations, θ1 is equal
to zero because the initial wave is horizontal. θi is defined as the angle of the
interface between the two types of particles with respect to the horizontal and θ2 is
the angle made by the contours of constant velocity with respect to the horizontal.
In these simulations, the spheres in which the wave was initially excited (shown
as red spheres in Figure 5.13a) were composed of a model material with Young’s
Modulus of 100 GPa, density of 5000 kg/m3, and yield stress of 1000 MPa. The
second materials’ properties were individually varied in order to achieve the desired
ratio of predicted wave speeds using Equation 5.3. Unless otherwise specified, a
force pulse was applied to each of the particles in the first row with constant force
amplitude of twice the force required to reach the linear plastic regime of the first
particles as given by the elastic-plastic contact law (F0/FP = 2) and duration of
20 × 10−6 seconds.

Figure 5.13b shows the calculated angle of the bent wave through a 60◦ interface
versus the predicted ratio ofwave speeds for simulations varyingmaterial parameters
as well as with combinations of real materials. Similar to the elastic case presented
by Tichler el al. [61], Snell’s law (the green curve) predicts the refracted wave’s
behaviormost accurately when themass of the two particles are variedwhile keeping
stiffness properties the same across the interface (the blue curve). However, in
previous work in the elastic regime, Snell’s law was not used to predict the behavior
of non-linearwaves traveling across interfaces ofmaterialswhose stiffness properties
vary. For uniform elastic-plastic granular crystals, the wave speed approached a
constant value as amplitude increased predicted only by materials properties of the
constituent particles. We see that for waves traveling across interfaces between
elastic-plastic materials with dissimilar stiffness properties, the bend angle also
tends towards the predicted value from Snell’s law as amplitude increases (red curve
and shaded region). Additionally, in order to investigate the effect of the initial
non-linearity in the elastic-plastic contact law, a linear contact law with stiffness
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Figure 5.13: (a) Schematic of the numerical setup showing the arrangement of
particles in a 60◦ wedge, a surface of particle velocity at a representative time, and
contours of constant particle velocity from which the angles are computed. Inset
shows the region over which the bend angle of the wave is computed by averaging
the slopes of linear regressions of contour lines over time as the wave passes. (b)
Plots showing the resulting angle of the wave after a horizontal wave passes through
a 60◦ interface between dissimilar particles versus the ratio of the predicted wave
speeds in uniform arrays of each particle for ratios of wave speeds less than one
(V2/V1 < 1). The dashed green curve shows the prediction using Snell’s law. The
blue curve shows the resulting angle from simulations in which only the density
was modified across the interface while keeping stiffness the same. Red lines show
the the resulting angle from simulations in which only the yield stress was modified
across the interface while keeping mass the same for 3 different amplitudes of
applied force. Yellow markers show the resulting angle from simulations using
various combinations of particles with the material properties of real materials. (c)
Plots showing the resulting angle of the wave after a horizontal wave passes through
a 30◦ interface between dissimilar particles versus the ratio of the predicted wave
speeds in uniform arrays of each particle.

equivalent to the stiffness in the linear regime of the elastic-plastic contact law was
used in simulations. In all cases, the bend angle across interfaces between dissimilar
linear materials exactly coincided with the blue curve in Figure 5.13b, regardless
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of amplitude or whether density or stiffness was varied. Therefore, the amplitude
dependence and differences between angles observed in simulations and angles
predicted by Snell’s law when yield stress is varies must be a result of differences in
the transition from elasticity to plasticity and the force required to reach the linear
plastic regime between the two materials. Figure 5.13b also shows the simulated
bend angle for different combinations of real materials and their predicted ratio of
wave speeds.

In addition to the behavior of 60◦ interfaces, interfaces between materials at
other angles to the hexagon packing were investigated. Figure 5.13c shows the
calculated angle of the bent wave through a 30◦ interface while varying the same
parameters and compares them to the prediction from Snell’s law. We see the same
trends as discussed for the previous figure.

Figure 5.14: Plots showing the resulting angle of the wave after a horizontal wave
passes through a 60◦ interface between stainless steel 440c particles into brass
particles versus the amplitude of the applied force, normalized by the force required
to reach the linear plastic regime in the steel particles. The green curve shows the
prediction using Snell’s law. The blue curve and markers show the resulting angle
from simulations involving the fully strain-rate dependentmodel of the elastic-plastic
contact law. The red curve and markers show the resulting angle of simulations
where the contact law is not strain-rate dependent. The purple curve shows the
resulting angle from simulations involving a linear contact lawwith the same stiffness
as the linear regime in the elastic-plastic contact law. The orange curve shows
the resulting angle from simulations using a purely elastic (Hertzian) contact law
neglecting plasticity.

To investigate how amplitude affects the accuracy of Snell’s law in predicting the
bend angle of waves across the oblique interface of dissimilar materials, simulations
were performed on a 60◦ interface of stainless steel 440c and brass particles with
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different amplitude force pulses applied to the first row of particles, all of 20× 10−6

second duration. Figure 5.14 shows plots of the bend angle of the transmitted
wave versus the applied amplitude (normalized by the force required to reach the
linear plastic regime in the first material, Fp). Various modifications to the contact
law were made in order to investigate which aspects of the contact law affect the
applicability of Snell’s law. With no plasticity (orange curve), Snell’s law differs
greatly from the simulated angle, suggesting that it does not apply in the elastic
regime for materials with different stiffnesses as shown previously [61]. The purely
elastic granular crystals do not exhibit amplitude dependence, as observed by Tichler
el al., because the wave speed scales with amplitude equivalently between the two
materials (although the scaling in non-linear). Using a linearmodel (cyan curve), the
wave speeds are amplitude independent and therefore the angle is also constant and
nearly the value predicted by Snell’s law (green curve). The constant discrepancy of
approximately 2◦ is most likely caused by the discretization of particles (the angled
line is approximated by a series of steps) or possibly because the particles cannot
carry tension, allowing gaps to form, although further investigation is required. With
a strain-rate independent elastic-plastic contact law, the wave speeds in the material
approached a constant as the amplitude increases past the amplitude required to
reach the linear plastic regime in the contact law. Analogously, the bend angle also
approaches a constant (red curve) identical to the constant angle exhibited by the
linear contact law simulations. Because these simulations involve stainless steel
440c particles which are highly strain-rate dependent, the most realistic model is the
full strain-rate dependent elastic-plastic model (chapter 33). The wave speed in the
stainless steel particles continues to increase with amplitude due to the strain rate
dependence while the wave speed in the brass particles approaches a steady value.
Therefore, the angle continues to grow with increasing amplitude and eventually
exceeds the value predicted by Snell’s law (blue curve). However, for over an order
of magnitude, the angle is within a few degrees of the angle predicted by Snell’s
law.

Next, we investigated the case where V2 is greater than V1 and the transmitted
wave is bent forwards with respect to the interface. In order to avoid reaching the
critical angle at which total internal reflection occurs, smaller interface angles where
used in this case. A schematic of the numerical setup is shown in Figure 5.15a with
an inset showing the region over which the bend angle was calculated from contours
of constant particle velocity. Figure 5.15b shows the calculated angle of the bent
wave through simulations of a 15◦ interface while varying the density and compares
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Figure 5.15: (a) Schematic of the numerical setup showing the arrangement of
particles in a 30◦ wedge, a surface of particle velocity at a representative time, and
contours of constant particle velocity from which the angles are computed. Inset
shows the region over which the bend angle of the wave is computed by averaging
the slopes of linear regressions of contour lines over time as the wave passes. (b)
Plots showing the resulting angle of the wave after a horizontal wave passes through
a 15◦ interface between dissimilar particles versus the ratio of the predicted wave
speeds in uniform arrays of each particle for ratios of wave speed greater than one
(V2/V1 > 1). The dashed green curve shows the prediction using Snell’s law. The
blue curve shows the resulting angle from simulations in which only the density
was modified across the interface while keeping stiffness the same. Yellow marker
shows the resulting angle from simulations of a brass array with a wedge of stainless
steel 440c particles in a 15◦ wedge. (c) Plots showing the resulting angle of the wave
after a horizontal wave passes through a 30◦ interface between dissimilar particles
versus the ratio of the predicted wave speeds in uniform arrays of each particle.

them to the prediction from Snell’s law. Snell’s law accurately predicts the bend
angle for the model materials of varied density as well as for the simulation of
brass particles with a 30◦ wedge of stainless steel 440c particles (yellow marker).
Figure 5.15c shows the calculated angle of the bentwave through simulations of a 30◦

interface while varying the density and compares them to the prediction from Snell’s
law. Again we see good predictions from Snell’s law for model materials as well
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as the brass/stainless steel 440c particles (yellow marker) although the predictions
begin to diverge at higher wave speed ratios. For a 30◦ interface, the θ2 becomes
imaginary (total internal reflection and zero transmission) at a wave speed ratio of 2.
Therefore, the predictions become less accurate because the amplitude of the forces
is significantly decreased in the second material and the wave speed prediction is no
longer accurate as the contact do not reach the fully plastic regime.

5.3.3 Impact Lens Design
Because we can predict the angle of refraction of the impact wave across any

angled surface, we can also calculate the shape of the wave across more complex
non-linear interfaces. This allows us to create useful wave shapes for impact pro-
tection such as spherically converging or diverging waves. Using Snell’s law as an
estimate for bending angle of a wave after transmission through an oblique interface,
we can design heterogeneous elastic-plastic granular crystals that behave as impact
lenses and provide control over the flow of energy within the material. Despite the
inconsistencies in the predictions given by Snell’s law and the actual simulated bend-
ing angle attributed to amplitude dependence, discreteness, and the non-linearity of
the contact law, the simple impact lenses designed here demonstrates the capability
to direct significant portions of the impact forces and energy toward a desired focal
region.

Using circular interfaces between two dissimilar materials with large differences
in wave speed, we can imitate spherical lenses used in optics to focus impact forces.
Figures 5.16 and 5.17 show the focusing of an impact wave through a lens composed
of brass spheres embedded in an array of stainless steel 440c spheres. This lens
is designed to have the shortest focal length given some restrictions of the system.
Specifically, for wave speed ratios greater than one, we observed that if the interface
angle becomes too high, we approach the critical angle at which we see total internal
reflection and Snell’s law becomes inaccurate. To avoid this situation, we minimize
the curvature of the back face of the spherical lens and allow significant curvature of
the front face up to a maximum interface angle to 60◦. This creates a plano-convex
lens in which the radius of the back face approaches infinity (becomes flat). A force
pulse of five times the force required to reach the linear plastic regime in the steel
spheres (5Fp, approximately 26 kN per sphere) with a duration of 20×10−6 seconds
is applied to the first row of particles. The arrangement of the steel and brass
particles is shown in Figure 5.16a with a surface of the maximum kinetic energy
of each particle during the initial impact wave overlaid above the particles. The
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Figure 5.16: Surfaces of the maximum kinetic energy of each particle during initial
impact overlaid above a schematic of the impact lens arrangement of stainless steel
440c (black circles) and brass (orange circles) particles. Thick blue lines show the
ideal circular lens interfaces and red lines show the path of rays calculated using
Snell’s law at each face of the lens. (a) Kinetic energy of particles after a force pulse
of amplitude 5Fp with duration of 20×10−6 seconds. (b) Kinetic energy of particles
after a force pulse of amplitude 2Fp with duration of 20 × 10−6 seconds.

simulations are performed with symmetric boundary conditions on the sides. The
circular surfaces of the lenses are approximated by the circular interface between
the particles (shown as the thick blue lines in Figure 5.16a). The red lines show the
path of ray traces calculated using Snell’s law given in Equation 5.5 across the ideal
circular lenses. The kinetic energy is successfully concentrated near the focal region
predicted by the ray tracing and directed away from the opposite side of the sample.
Despite the discrete nature of the interface that restricts our ability to accurately
reproduce circular interfaces between materials, the impact lens designed using
elastic-plastic granular crystals is effective at focusing impact energy. Figure 5.16b
shows a surface of the maximum kinetic energy of each particle during a smaller
impact wave with initial force amplitude of just twice the force required to reach the
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linear plastic regime in the steel spheres (2Fp, approximately 10.5 kN per sphere)
with a duration of 20 × 10−6 seconds. We do not observe any major differences
in the focusing of the impact energy based on the amplitude of the impact wave as
expected. Therefore, we do not need much advance knowledge of the character of
the wave in order to design an effective lens.
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(Normalized across each layer)

Figure 5.17: (a) Surface of maximum forces experienced during the initial impact
by each particle, again overlaid above the schematic of the lens with predicted ray
paths. (c) Surface of maximum forces experience by each particle normalized by
the highest maximum force within that particle’s layer, again overlaid above the
schematic of the lens with predicted ray paths.

Additionally, Figure 5.17a shows surfaces of the forces experienced by each
particle overlaid over the arrangement of particles and the ray tracing derived from
the ideal spherical lens. As with the kinetic energy of the particles, the forces are
also higher in the focal region although it is masked by the dissipation of forces
as the wave travels through each subsequent layer. In order to show the effect of
the focusing, we can normalize the force in each layer by the maximum force in
that layer, as shown in the surface in Figure 5.17b. We can see that, within the
layers in the focal region, the forces are directed towards the focus and then begin to
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diverge after passing through and continuing to dissipate. Furthermore, the forces
are directed away from the side of the sample opposite the focal region showing that
the lens would provide protection to that area from the forces of the impact.
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Figure 5.18: (a) Surface of approximate energy dissipated by plastic deformation
at each contact point after an impact, overlaid above the schematic of the lens with
predicted ray paths. (b) Schematic of the approximate of the energy dissipated by
plastic deformation based on the area under the red curve defined by the maximum
force and displacement experienced at each contact point. The blue curve shows the
elastic-plastic contact law.

To display the lens’s effect on the localization of impact damage, Figure 5.18a
shows a surface of the approximate energy dissipated through plastic deformation at
each contact point. The approximate plastic energy dissipation, PE, is defined as:

PE =
1
2
δmaxFmax, (5.6)

where δmax and Fmax are the maximum displacement and force experienced at
each contact respectively during the simulation. A schematic of energy dissipation
as it relates to the force-displacement relationship between the particles in shown
in Figure 5.18b. In the surface of plastic dissipation in Figure 5.18a, we see that
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significantly more energy is being dissipated in the focal region corresponding to
more damage through plastic deformation being done in that region. Conversely,
there is very little dissipation occurring in the region opposite the focal region where
very little damage is observed after the wave passes.

(a) (b) (c) (d) (e)

Elastic-Plastic Elastic-Plastic

(strain rate 

independent)

No Plasticity Linear Linear 

(strain rate 

independent)

Figure 5.19: Surfaces of the maximum kinetic energy (normalized) of each particle
during initial impact overlaid above a schematic of the impact lens arrangement
of stainless steel 440c (black circles) and brass (orange circles) particles. Thick
blue lines show the ideal circular lens interfaces and red lines show the path of
rays calculated using Snell’s law at each face of the lens. Each subfigure shows the
kinetic energy of particles whose contact interaction is defined by a different model:
(a) elastic-plastic model, (b) strain rate independent elastic-plastic model, (c) no
plasticity (Hertzian), (d) linear with stiffness equivalent to stiffness in the plastic
regime of the elastic-plastic model, and (e) linear with no strain rate dependence.

Next, we compared the results of simulations of the impact lens using the strain
rate dependent elastic-plastic model to describe the interactions between particles
to other simplified contact models in order to observe the contribution of each
aspect of the contact law to the overall behavior and performance of the impact lens.
Figure 5.19 shows the focusing on kinetic energies after passing through the impact
lens arrangement of stainless steel 440c and brass particles for different contact
laws: (a) elastic-plastic model presented in Chapter 3, (b) an elastic-plastic model
with strain rate dependence neglected, (c) a purely elastic model with plasticity
neglected (Hertzian contact), (d) a linear contact law with the strain rate dependent
stiffness equivalent to the stiffness in the fully plastic regime of the elastic-plastic
contact law, and (e) a linear contact law neglecting strain rate dependence. We
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showed previously that Snell’s law was more predictive for some contact laws than
for others. Snell’s law was most accurate for the elastic-plastic and linear contact
laws however the focusing power of the lens also depends on energy dissipation
as well. The elastic-plastic law that neglects strain rate dependence has unrealistic
dissipation in the stainless steel particles and therefore has more mild focusing. The
same effect can be seen in the linear strain rate dependent and independent models.
It was previously shown that Snell’s law does not accurately predict the behavior
of interfaces between dissimilar elastic particles and therefore. This is also evident
in Figure 5.19c. Instead of kinetic energy being focused along the ray trace paths
predicted by Snell’s law in the lens, the kinetic energy is more controlled by the
underlying arrangement of particles and shows a significant drop in energy to the
left of the dashed line identifying a 60◦ interface from the corner of the lens. The
simulations with elastic-plastic and linear contact laws defining particle interactions
appear insensitive to the underlying arrangement of particles and their behavior
depends instead on the profile of the interface as desired, but the systems with
elastic particles remains dependent on the particles’ packing.

The effect of the contact model on the behavior of the impact lens systems is
shown again in Figure 5.20. Figure 5.20a shows a schematic of the lens arrangement
and a legend describing the different contact models used: blue represents the
elastic-plastic contactmodel, red represents the strain rate independent elastic-plastic
contact model, green represents an elastic (Hertzian) contact, orange represents a
linear contact model, and magenta represents a strain rate independent linear contact
model. Figure 5.20b, Figure 5.20c, and Figure 5.20d show the kinetic energy
distribution within each of the the layers shown in Figure 5.20a, normalized by the
maximum kinetic energy of any particle within that layer. Because no energy is
dissipated in the elastic-only materials, without normalization, the kinetic energies
widely vary between material models. Therefore, the normalization allows us
to observe the impact of the contact model on the focusing ability of the realistic
impact lens. In the focusing region shown in Figure 5.20c, we see that themodels that
include the realistic strain rate dependence are able to direct more of the energy to the
focus region and away from the opposite side of the layer. As shown qualitatively, the
strain rate independent materials (red and magenta curves) unrealistically dissipate
more energy reducing the focus of energy. We also see in Figure 5.20c and 5.20d,
that the elastic model (green curve) does not "focus" until much later because it
is being influenced by the hexagonal particle packing and not by the shape of the
interface between materials.
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Figure 5.20: (a) Schematics of the particle arrangement used in simulations of
performance of the impact lens for different contact models as well as dashed lines to
show the vertical locations of the layers used in (b),(c), and (d). In all subfigures, blue
corresponds to particles interacting via the elastic-plastic model, red corresponds to
the strain rate independent elastic-plastic model, green corresponds to no plasticity
(Hertzian), orange corresponds to linear with stiffness equivalent to stiffness in the
plastic regime of the elastic-plastic model, and magenta corresponds to linear with
no strain rate dependence. (b) Plot of the kinetic energy of each particle across
the 22nd layer (before the focal region) of particles, normalized by the maximum
kinetic energy within that layer for each of the five contact models. (c) Plot of the
normalized kinetic energy of each particle across the 32nd layer (within the focal
region). (d) Plot of the normalized kinetic energy of each particle across the 42nd
layer (past the focal region).

In order to evaluate the effectiveness of the impact lens composed of elastic-
plastic particles, we also performed simulations using uniform arrangements of brass
and stainless steel 440c particles as well as an arrangement with a flat brass strip
with the same height of the lens. Schematics of the arrangements of the particles in
these additional simulations are shown in Figure 5.21a. The kinetic energy across
horizontal layers of each simulation are shown in Figure 5.21b, 5.21c, and 5.21d.
Figure 5.21b shows the kinetic energy for each simulation across a layer before the
focal region, while Figure 5.21c shows the kinetic across a layer within the focal
region, and Figure 5.21d shows the kinetic energy across a layer after the focal
region. We observe a very clear peak of the kinetic energy within the focal region
and see that the minimum kinetic energy on the side opposite the focus is less than
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Figure 5.21: (a) Schematics of the particle arrangements used in simulations as
well as dashed lines to show the vertical locations of the layers used in (b),(c), and
(d). In all subfigures, blue corresponds to the simulation results for the impact
lens arrangement, orange to a section of brass with flat interfaces with the same
height as the lens, green to an arrangement with only brass particles, and red to an
arrangement with only stainless steel 440c particles. (b) Plot of the kinetic energy
of each particle across the 22nd layer (before the focal region) of particles for each
of the four simulated arrangements. (c) Plot of the kinetic energy of each particle
across the 32nd layer (within the focal region). (d) Plot of the kinetic energy of each
particle across the 42nd layer (past the focal region).

the kinetic energy at the same region for any of the other particle arrangements.
Not only is the kinetic energy lower than the arrangement with flat interfaces where
the lens is replaced with a brass strip, it is also lower than the arrangement with all
brass where energy continues to be dissipated more quickly as the wave continues to
propagate in the brass. Therefore, the impact lens is effectively focusing the impact
energy towards the focal region and away from the areas away from the focus.
After focusing, the impact energy begins to diverge again the energy becomes more
uniform across the width of the sample. However, the energy still remains lower
in most regions than for the uniform brass arrangement because the concentration
of forces in one region led to more plasticity and more energy dissipation than in
the uniform arrangement. While dissipation was concentrated into specific regions
after the wave passed through the lens, more total energy was dissipated than when
it was dissipated evenly in the uniform arrangements.
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We also compared the impact lens with random arrangements of particles. In
one arrangement, just the layers which comprise the lens are replaced by randomly
distributed brass and stainless steel 440c particles. In the second arrangement, every
subsequent layer after the layer at which the lens begins are replaced with a random
distribution of particles. For both such arrangements, five independent trials were
simulated and compared with simulation results from the impact lens. Figure 5.22
shows schematics of the arrangements and plots of kinetic energy at different layers
after an initial force pulse. The blue curves in Figure 5.22b, 5.22c, and 5.22d
show the kinetic energy across the layers of the impact lens shown in the schematic
in Figure 5.22a. The thick green curves show the average kinetic energy at each
location across those same layers averaged over the five independent trials of the
arrangement with only the lens-area replaced with randomly distributed particles.
The green shaded area bounds the maximum and minimum kinetic energies of any
one particle at any location within that layer for any of the five simulations for that
arrangement. The thick red curves show the average kinetic energy at each location
across those same layers averaged over the five independent trials of the arrangement
with the entire area replaced with randomly distributed particles. Again the shaded
area bounds the maximum and minimum kinetic energies for that arrangement.

In Figure 5.22b, before the focusing region, we see that there is a very broad
distribution of kinetic energies within the random layers (represented by the shaded
regions), but that the averages are fairly similar, showing that a similar amount of
energy has been dissipated in the layers containing the lens. The kinetic energies
within the focal region show in Figure 5.22c, shows that the random arrangement of
particles is very effective at continuing to dissipate more energy than the uniform
arrangements of particles. Within the focal layer, the minimum kinetic energy
almost exactly matches the minimum kinetic energy for the impact lens opposite
the focal region. However, the maximum kinetic energy of the random arrangement
is nearly double the minimum and the distribution of the kinetic energies within
the layer is inherently random. Therefore, the impact lens matches the energy
dissipation performance of a random distribution of the same type of particles with
the added spatial control over where the minimum and maximum kinetic energies
occur. However, it is evident in Figure 5.22d, that the random arrangements of
particles continues to be effective at dissipating energy as the wave propagated
farther while the impact lens does not dissipate as much energy after the focal
region. Therefore, the impact lens is most effective at quickly controlling the spatial
distribution of kinetic energy within the particle system, while a random distribution
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Figure 5.22: (a) Schematics of the particle arrangements used in simulations of
performance of the impact lens versus random arrangements of particles as well
as dashed lines to show the vertical locations of the layers used in (b),(c), and (d).
In all subfigures, blue corresponds to the simulation results for the impact lens
arrangement, green corresponds to an arrangement in which the layers containing
the lens are replaced with a random assortment of brass and stainless steel 440c
spheres, and red corresponds to an arrangement in which all layers are comprised
of a random assortment of brass and stainless steel 440c particles. For each random
assortment, five different trials were run. Thick lines represent the average kinetic
energy at each location over the five trials for each arrangement, while thin lines
and shaded regions represent the maximum and minimum kinetic energies of any
particle within the layer over all of the five trials for each arrangement. (b) Plot of
the kinetic energy of each particle across the 22nd layer (before the focal region) of
particles for each of the three types of arrangements. (c) Plot of the kinetic energy of
each particle across the 32nd layer (within the focal region). (d) Plot of the kinetic
energy of each particle across the 42nd layer (past the focal region).

of particle would be more effective at continual dissipation over long distances.

This simple impact lens could be improved in a number of ways. Because
spherical interfaces were used, this lens introduced spherical aberration visible in
the ray tracing in Figures 5.16 and 5.17. Rays emitted from a highly curved spherical
lens do not converge to a single point. Exact surfaces to focus all rays to a single point
can be calculated numerically using Snell’s laws. We also observed that Snell’s law
was more accurate for smaller ratios of wave speeds and for smaller interface angles.
Therefore, materials could be chosen to minimize the differences in wave speed and
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many stages of impact lenses could be used. The lens demonstrated here only used
two types of materials, but many subsequent layers of materials could be combined
to more slowly and accurately control the flow of energy. Finally, by expanding the
width of the lens (or equivalently shrinking the particle size), the effective distance
between the edge of the lens and the center where the energy is focused can be
grown. The size of this lens was chosen due to limitations on simulation duration,
not optimization of focusing power.

5.4 Summary of Chapter
In this chapter, we began by experimentally validating our approach to simulat-

ing impact waves through 2D and 3D granular crystals composed of elastic-plastic
spherical particles. Using a sliding rig to impact 2D arrays of hexagonally packed
particles and a drop tower to do preliminary experiments on 3D arrays of densely-
packed particles, we showed that the assumptions required to efficiently simulate
large heterogeneous systems of particles captured the relevant physics. These sim-
ulations allowed us to investigate the properties of waves propagating through these
materials and extend the observations made about the wave speed in 1D materials
to higher dimensional, 2D and 3D granular crystals. Additionally, we showed that
by knowing the wave speed, we can use an analog of Snell’s law for electromagnetic
waves to design materials to control the propagation of impact energy like a lens.
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C h a p t e r 6

SUMMARY AND FUTURE DIRECTIONS

6.1 Summary
In this thesis, we studied the effects of plastic deformation on the dynamics of

impacts on single contacts between grains, and on 1D, 2D, and 3D granular crystals.
For small impacts in which all particles remained elastic at the contact, granular
crystals have demonstrated unique properties which could be applicable to impact
protection. Therefore, our aim was to extend previous work into new regimes that
would be more suitable and realistic for these applications. We developed a model
for incorporating plasticity into the contact behavior and revealed the details of
dynamic wave propagation in elastic-plastic granular materials. Through extensive
experimentally validated simulations, we revealed the unique properties of these
materials, distinct even from our understanding of elastic granular crystals. We
used this understanding to begin to show how this approach can be used to design
new material systems for applications in impact mitigation.

In Chapter 3, we presented a new model for the dynamic compression of elastic-
plastic spherical particles. We designed this model to be valid for a wide variety
of types of materials to facilitate a large design space. Through parametric FEM
studies, we were able to describe the remaining empirical parameters of the model
purely as functions of the material properties of the constituent particles. Further-
more, by incorporating a description of the strain-rate dependence into the yield
stress ensured that the model was valid for all types of loading. We experimen-
tally validated the model using Hopkinson bar experiments on contacts between
two hemispherical particles. By varying the amplitude and loading rate in these
experiments, we showed that the model remains valid for any dynamic event through
loading and unloading, as well as for a variety of materials.

In Chapter 4, we studied long 1D chains of particles with elastic-plastic contacts.
Using theHopkinson bar again, we experimentally validated our dynamic simulation
approach as well as provided further validation of the elastic-plastic contact law.
Because much of the impact energy was dissipated within the chain by plastic
deformations, a laser vibrometer was used to measure the particle vibrations at the
end of the chain which were then compared with results from simulations. Of
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particular interest was understanding the speed at which waves traveled with plastic
deformation. We showed that over a large range of impacts, the wave speed can be
predicted solely by the material properties of the constituent particles, including for
heterogeneous chains of alternating particles. The wave speed and dissipation of
the dimer chains were even shown to exceed the bounds of uniform chains of the
constituent materials.

InChapter 5, we extended our simulation approach to 2D and 3Darrangements of
densely packed elastic-plastic particles. First, we provided experimental validation
of the simulations using a sliding rig to impact 2D arrays and a drop weight tower to
impact two-layer 3D arrangements of spherical particles. These experiments showed
that the assumptions made in the simulations were valid and that the dynamics
were not significantly influenced by tangential forces between the particles. With
simulations of 1D, 2D, and 3D granular crystals, we showed that the descriptions
of the wave speed in 1D can be scaled to 2D and 3D. Lessons from optics show
that, with knowledge of the speed at which waves travel in a material, the geometry
of the interfaces between materials can be designed to influence the propagation of
waves. Therefore, we applied Snell’s law to show that lenses can be designed to
focus impact wave energy in an analogous fashion to lenses. We compared the 2D
lens with elastic-plastic contacts to other particle arrangements to demonstrate the
capability to focus impact energy. A 3D version of the impact lens arrangement
simulated in 2D is shown in Figure 6.1.

6.2 Future Directions
In this work, we restricted our study of 3D granular crystals to dense packings

of spherical particles. We observed in 2D hexagonal packing that direction of wave
propagation through the crystal did not affect the velocity of elastic-plastic waves
and assumed that this would also be true of densely packed 3D materials. However,
non-dense materials could be made by incorporating a compliant support structure
to initially hold particles in place but not interfere with contact properties during
an impact. Using non-dense anisotropic particle packings, the wave speeds could
be tuned in different directions allowing for increased control over anisotropic wave
speeds within the material.

In our work, we only used readily available, spherical particles comprised of
commonmaterials available from commercial suppliers. As we saw, every change in
contact behavior leads to dramatically different dynamics and therefore even slightly
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Figure 6.1: Rendering of a 3D impact lens comprised of stainless steel 440c and
brass spheres.

modifying the particles shape and material properties could unlock entirely new and
unique dynamics not explored in this thesis. For example, hollow particles could be
incorporated in order to dissipate more energy locally through crushing of particles.
Cylindrical elastic particles have a different power law dependence in the force-
displacement law which depends on the alignment of particles [88]. Elastic-plastic
cylinders would also have a modified contact-law and could allow for additional
tuning of impact wave propagation properties. Also, shape memory alloys could
be used to tune the particles’ force-displacement response through precisely chosen
phase changes in the material during deformation.

We demonstrated that elastic-plastic waves travel through these materials have
a very specific speed that is dominated by the material properties of the constituent
particles. Future work could experimentally investigate the nature of shocks in
elastic-plastic granular materials when the impact velocity exceeds the characteris-
tic wave speed in the material. What would be the shock speed in these materials?
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How would plastic dissipation occur? Would any of the spatial control over the
distribution of energy still occur with these types of shocks? If the particle veloc-
ity directions still respond to interfaces between materials as we showed with the
elastic-plastic version of Snell’s law, then perhaps similar impact lens designs could
be obtained for very high velocity impacts beyond the characteristic wave speed
determined in this work. Even if Snell’s law does not remain valid, perhaps the
direction of the particle velocity in the material can still be influenced by material
choices at extremely high velocity. If possible, possibly with a composite of con-
tinuum and granular materials, spallation from the back surface can be influenced
and controlled. Micrometeor and orbital debris protection systems on spacecraft
typically use a Whipple shield to stop small debris by using layered aluminum and
Kevlar with gaps between. While the debris might penetrate some of the layers,
the goal is to break up the impact into smaller and smaller bits of debris through
subsequent layers in order to prevent them from fully penetrating the shield. With
more control over the direction of the particle velocities of debris after an impact, the
obliquity of the cloud of debris could be increased through each subsequent layer,
decreasing the angle at which it impacts the next layer and increasing the chances
that it will not penetrate.



97

BIBLIOGRAPHY

[1] Heinrich M. Jaeger, Sidney R. Nagel, and Robert P. Behringer. “Granular
solids, liquids, and gases”. In: Reviews of Modern Physics 68.4 (Oct. 1996),
pp. 1259–1273. doi: 10.1103/RevModPhys.68.1259. url: http://
journals.aps.org/rmp/abstract/10.1103/RevModPhys.68.1259.

[2] P. G. de Gennes. “Granular matter: a tentative view”. In: Reviews of Modern
Physics 71.2 (Mar. 1999), S374–S382. doi: 10.1103/RevModPhys.71.
S374. url: http://journals.aps.org/rmp/abstract/10.1103/
RevModPhys.71.S374.

[3] H Hertz. “Ueber die Berührung fester elastischer Körper”. In: Journal für die
reine und angewandte Mathematik 92 (1881), pp. 156–171.

[4] C Thornton. “Coefficient of restitution for collinear collisions of elastic per-
fectly plastic spheres”. In: Journal of Applied Mechanics-Transactions of
the Asme 64.2 (1997), pp. 383–386. doi: 10 . 1115 / 1 . 2787319. url:
%3CGo%20to%20ISI%3E://WOS:A1997XH19800019.

[5] Robert L Jackson, Itzhak Green, and Dan B Marghitu. “Predicting the coef-
ficient of restitution of impacting elastic-perfectly plastic spheres”. In: Non-
linear Dynamics 60.3 (2010), pp. 217–229. doi: 10.1007/s11071-009-
9591-z.

[6] Goro Kuwabara and Kimitoshi Kono. “Restitution Coefficient in a Collision
between Two Spheres”. In: Japanese Journal of Applied Physics 26.Part 1,
No. 8 (1987), pp. 1230–1233.

[7] Chuan-Yu Wu, Long-Yuan Li, and Colin Thornton. “Energy dissipation dur-
ing normal impact of elastic and elastic–plastic spheres”. In: International
Journal of Impact Engineering 32.1–4 (2005), pp. 593–604. doi: http://
dx.doi.org/10.1016/j.ijimpeng.2005.08.007. url: http://www.
sciencedirect.com/science/article/pii/S0734743X05001223.

[8] K L Johnson. “Normal contact of inelastic solids”. In: (1985), pp. 153–201.
doi: 10.1017/cbo9781139171731.007.

[9] Xiang Zhang and Loc Vu-Quoc. “Modeling the dependence of the coefficient
of restitution on the impact velocity in elasto-plastic collisions”. In: Interna-
tional Journal of Impact Engineering 27.3 (2002), pp. 317–341. doi: http:
//dx.doi.org/10.1016/S0734-743X(01)00052-5. url: http://www.
sciencedirect.com/science/article/pii/S0734743X01000525.

[10] Robert L Jackson and ItzhakGreen. “A Finite Element Study of Elasto-Plastic
Hemispherical Contact Against a Rigid Flat”. In: Journal of Tribology 127.2
(2005), p. 343. doi: 10.1115/1.1866166.



98

[11] L Kogut and I Etsion. “Elastic-Plastic Contact Analysis of a Sphere and
a Rigid Flat”. In: Journal of Applied Mechanics 69.5 (2002), p. 657. doi:
10.1115/1.1490373.

[12] Fan Li, Jingzhe Pan, and Csaba Sinka. “Contact laws between solid particles”.
In: Journal of the Mechanics and Physics of Solids 57.8 (2009), pp. 1194–
1208. doi: 10.1016/j.jmps.2009.04.012.

[13] H Peng, Z S Liu, and G H Zhang. “A study of overall contact behavior of
an elastic perfectly plastic hemisphere and a rigid plane”. In: Proceedings
of the Institution of Mechanical Engineers Part J-Journal of Engineering
Tribology 227.J3 (2013), pp. 259–274. doi: 10.1177/1350650112460799.
url: %3CGo%20to%20ISI%3E://WOS:000316639700007.

[14] Hirofumi Minamoto and Shozo Kawamura. “Effects of material strain rate
sensitivity in low speed impact between two identical spheres”. In: Interna-
tional Journal of Impact Engineering 36.5 (2009), pp. 680–686.doi:http://
dx.doi.org/10.1016/j.ijimpeng.2008.10.001. url: http://www.
sciencedirect.com/science/article/pii/S0734743X0800239X.

[15] Hirofumi Minamoto and Shozo Kawamura. “Moderately high speed impact
of two identical spheres”. In: International Journal of Impact Engineering
38.2–3 (2011), pp. 123–129. doi: http://dx.doi.org/10.1016/j.
ijimpeng.2010.09.005. url: http://www.sciencedirect.com/
science/article/pii/S0734743X10001375.

[16] E. Wang, T. On, and J. Lambros. “An Experimental Study of the Dynamic
Elasto-Plastic Contact Behavior of DimerMetallic Granules”. In: Experimen-
tal Mechanics 53.5 (Dec. 2012), pp. 883–892. doi: 10.1007/s11340-012-
9696-z. url: http://link.springer.com/10.1007/s11340-012-
9696-z.

[17] Erheng Wang, Philippe Geubelle, and John Lambros. “An Experimental
Study of the Dynamic Elasto-Plastic Contact Behavior of Metallic Granules”.
In: Journal of Applied Mechanics 80.2 (Jan. 2013), p. 21009. doi: 10.1115/
1.4007254.url:http://appliedmechanics.asmedigitalcollection.
asme.org/article.aspx?articleid=1661200.

[18] G R Johnson and W H Cook. “A constitutive model and data for metals
subjected to large strains, high strain rates and high”. In: Proceedings of the
7th International Symposium on Ballistics (1983), pp. 541–547.

[19] Vitali Nesterenko. Dynamics of Heterogeneous Materials. Springer New
York, 2011, p. 510. url: https://books.google.com/books/about/
Dynamics%7B%5C_%7Dof%7B%5C_%7DHeterogeneous%7B%5C_%7DMaterials.
html?id=iqFxcgAACAAJ%7B%5C&%7Dpgis=1.

[20] Stéphane Job et al. “Solitary wave trains in granular chains: experiments,
theory and simulations”. In: Granular Matter 10.1 (Sept. 2007), pp. 13–20.



99

doi: 10.1007/s10035-007-0054-2. url: http://link.springer.
com/10.1007/s10035-007-0054-2.

[21] C Daraio et al. “Strongly nonlinear waves in a chain of Teflon beads.” In:
Physical review. E, Statistical, nonlinear, and soft matter physics 72.1 Pt
2 (July 2005), p. 016603. doi: 10.1103/PhysRevE.72.016603. url:
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.72.
016603.

[22] V F Nesterenko et al. “Anomalous wave reflection at the interface of two
strongly nonlinear granular media.” In: Physical review letters 95.15 (Oct.
2005), p. 158702. doi: 10.1103/PhysRevLett.95.158702. url: http:
//journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.
158702.

[23] C Daraio et al. “Tunability of solitary wave properties in one-dimensional
strongly nonlinear phononic crystals.” In: Physical review. E, Statistical,
nonlinear, and soft matter physics 73.2 Pt 2 (Feb. 2006), p. 026610. doi:
10.1103/PhysRevE.73.026610. url: http://journals.aps.org/
pre/abstract/10.1103/PhysRevE.73.026610.

[24] D Ngo, F Fraternali, and C Daraio. “Highly nonlinear solitary wave propaga-
tion in Y-shaped granular crystals with variable branch angles.” In: Physical
review. E, Statistical, nonlinear, and soft matter physics 85.3 Pt 2 (Mar.
2012), p. 036602. doi: 10.1103/PhysRevE.85.036602. url: http://
journals.aps.org/pre/abstract/10.1103/PhysRevE.85.036602.

[25] Andrea Leonard, Laurent Ponson, and Chiara Daraio. “Wave mitigation in
ordered networks of granular chains”. In: Journal of the Mechanics and
Physics of Solids 73 (Dec. 2014), pp. 103–117. doi: 10.1016/j.jmps.
2014.08.004. url: http://www.sciencedirect.com/science/
article/pii/S0022509614001719.

[26] Robert L. Doney, Juan H. Agui, and Surajit Sen. “Energy partitioning and
impulse dispersion in the decorated, tapered, strongly nonlinear granular
alignment: A systemwithmany potential applications”. In: Journal of Applied
Physics 106.6 (Sept. 2009), p. 064905. doi: 10.1063/1.3190485. url:
http://scitation.aip.org/content/aip/journal/jap/106/6/10.
1063/1.3190485.

[27] C Daraio et al. “Energy Trapping and Shock Disintegration in a Composite
Granular Medium”. In: Physical review letters 96.5 (Feb. 2006), p. 058002.
doi: 10.1103/PhysRevLett.96.058002. url: http://journals.aps.
org/prl/abstract/10.1103/PhysRevLett.96.058002.

[28] Fernando Fraternali, Mason A. Porter, and Chiara Daraio. “Optimal Design
of Composite Granular Protectors”. In:Mechanics of Advanced Materials and
Structures 17.1 (Dec. 2009), pp. 1–19. doi: 10.1080/15376490802710779.



100

url:http://www.tandfonline.com/doi/abs/10.1080/15376490802710779%
7B%5C#%7D.VsUdlvkrKCg.

[29] Jongbae Hong. “Universal power-law decay of the impulse energy in granular
protectors.” In: Physical review letters 94.10 (Mar. 2005), p. 108001. doi:
10.1103/PhysRevLett.94.108001. url: http://journals.aps.org/
prl/abstract/10.1103/PhysRevLett.94.108001.

[30] K R Jayaprakash, Yuli Starosvetsky, and Alexander F Vakakis. “New family
of solitary waves in granular dimer chains with no precompression.” In:
Physical review. E, Statistical, nonlinear, and soft matter physics 83.3 Pt
2 (Mar. 2011), p. 036606. doi: 10.1103/PhysRevE.83.036606. url:
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.83.
036606.

[31] AlainMolinari and Chiara Daraio. “Stationary shocks in periodic highly non-
linear granular chains.” In: Physical review. E, Statistical, nonlinear, and soft
matter physics 80.5 Pt 2 (Nov. 2009), p. 056602. doi: 10.1103/PhysRevE.
80.056602. url: http://journals.aps.org/pre/abstract/10.
1103/PhysRevE.80.056602.

[32] Mason A Porter et al. “Highly nonlinear solitary waves in periodic dimer
granular chains.” In:Physical review. E, Statistical, nonlinear, and soft matter
physics 77.1 Pt 2 (Jan. 2008), p. 015601. doi: 10.1103/PhysRevE.77.
015601. url: http://journals.aps.org/pre/abstract/10.1103/
PhysRevE.77.015601.

[33] Eduardo André de F. Bragança, Alexandre Rosas, and Katja Lindenberg.
“Binary collision approximation for multi-decorated granular chains”. In:
Physica A: Statistical Mechanics and its Applications 392.24 (Dec. 2013),
pp. 6198–6205.doi:10.1016/j.physa.2013.07.076.url:http://www.
sciencedirect.com/science/article/pii/S0378437113007073.

[34] S SEN et al. “Solitary waves in the granular chain”. In: Physics Reports 462.2
(June 2008), pp. 21–66. doi: 10.1016/j.physrep.2007.10.007. url:
https://www.researchgate.net/publication/243311638%7B%5C_
%7DSolitary%7B%5C_%7Dwaves%7B%5C_%7Din%7B%5C_%7Dthe%7B%5C_
%7Dgranular%7B%5C_%7Dchain.

[35] N.Boechler et al. “Tunable vibrational band gaps in one-dimensional diatomic
granular crystals with three-particle unit cells”. In: Journal of Applied Physics
109.7 (Apr. 2011), p. 074906. doi: 10.1063/1.3556455. url: http:
//scitation.aip.org/content/aip/journal/jap/109/7/10.1063/
1.3556455.

[36] C. Hoogeboom et al. “Hysteresis loops and multi-stability: From periodic
orbits to chaotic dynamics (and back) in diatomic granular crystals”. In: EPL
(Europhysics Letters) 101.4 (Feb. 2013), p. 44003. doi: 10.1209/0295-



101

5075/101/44003. url: http://iopscience.iop.org/article/10.
1209/0295-5075/101/44003.

[37] E. B. Herbold et al. “Pulse propagation in a linear and nonlinear diatomic
periodic chain: effects of acoustic frequency band-gap”. In: Acta Mechanica
205.1-4 (Apr. 2009), pp. 85–103. doi: 10.1007/s00707-009-0163-6.
url: http://link.springer.com/10.1007/s00707-009-0163-6.

[38] Alexander Breindel, Diankang Sun, and Surajit Sen. “Impulse absorption
using small, hard panels of embedded cylinders with granular alignments”.
In: Applied Physics Letters 99.6 (Aug. 2011), p. 063510. doi: 10.1063/1.
3624466. url: http://scitation.aip.org/content/aip/journal/
apl/99/6/10.1063/1.3624466.

[39] VTournat,VEGusev, andBCastagnède. “Self-demodulation of elasticwaves
in a one-dimensional granular chain.” In: Physical review. E, Statistical,
nonlinear, and soft matter physics 70.5 Pt 2 (Nov. 2004), p. 056603. doi:
10.1103/PhysRevE.70.056603. url: http://journals.aps.org/
pre/abstract/10.1103/PhysRevE.70.056603.

[40] R Ganesh and S Gonella. “Invariants of nonlinearity in the phononic charac-
teristics of granular chains.” In: Physical review. E, Statistical, nonlinear, and
soft matter physics 90.2 (Aug. 2014), p. 023205. doi: 10.1103/PhysRevE.
90.023205. url: http://journals.aps.org/pre/abstract/10.
1103/PhysRevE.90.023205.

[41] JérémyCabaret,Vincent Tournat, andPhilippeBéquin. “Amplitude-dependent
phononic processes in a diatomic granular chain in the weakly nonlinear
regime.” In: Physical review. E, Statistical, nonlinear, and soft matter physics
86.4 Pt 1 (Oct. 2012), p. 041305. doi: 10.1103/PhysRevE.86.041305.
url: http://journals.aps.org/pre/abstract/10.1103/PhysRevE.
86.041305.

[42] C. Coste and B. Gilles. “On the validity of Hertz contact law for granular
material acoustics”. In: The European Physical Journal B 7.1 (Jan. 1999),
pp. 155–168. doi: 10.1007/s100510050598. url: http://dx.doi.org/
10.1007/s100510050598.

[43] Tommy On, Peter A. LaVigne, and John Lambros. “Development of plastic
nonlinear waves in one-dimensional ductile granular chains under impact
loading”. In: Mechanics of Materials 68 (Jan. 2014), pp. 29–37. doi: 10.
1016/j.mechmat.2013.06.013. url: http://www.sciencedirect.
com/science/article/pii/S016766361300149X.

[44] TommyOn,ErhengWang, and JohnLambros. “Plasticwaves in one-dimensional
heterogeneous granular chains under impact loading: Single intruders and
dimer chains”. In: International Journal of Solids and Structures 62 (June
2015), pp. 81–90. doi: 10.1016/j.ijsolstr.2015.02.006. url: http:
//www.sciencedirect.com/science/article/pii/S0020768315000463.



102

[45] Raj Kumar Pal, Amnaya P. Awasthi, and Philippe H. Geubelle. “Wave prop-
agation in elasto-plastic granular systems”. In: Granular Matter 15.6 (Oct.
2013), pp. 747–758. doi: 10.1007/s10035-013-0449-1. url: http:
//link.springer.com/10.1007/s10035-013-0449-1.

[46] Raj Kumar Pal, Amnaya P Awasthi, and Philippe H Geubelle. “Characteri-
zation of wave propagation in elastic and elastoplastic granular chains.” In:
Physical review. E, Statistical, nonlinear, and soft matter physics 89.1 (Jan.
2014), p. 012204. doi: 10.1103/PhysRevE.89.012204. url: http://
journals.aps.org/pre/abstract/10.1103/PhysRevE.89.012204.

[47] M. Shoaib and L. Kari. “Discrete element simulation of elastoplastic shock
wave propagation in spherical particles”. In: Advances in Acoustics and Vi-
bration 2011 (2011). doi: 10.1155/2011/123695.

[48] Raj Kumar Pal and Philippe H. Geubelle. “Impact response of elasto-plastic
granular and continuum media: A comparative study”. In: Mechanics of
Materials 73 (June 2014), pp. 38–50. doi: 10.1016/j.mechmat.2014.02.
006. url: http://www.sciencedirect.com/science/article/pii/
S0167663614000349.

[49] A. Leonard, F. Fraternali, and C. Daraio. “Directional Wave Propagation in a
Highly Nonlinear Square Packing of Spheres”. In: Experimental Mechanics
53.3 (Oct. 2011), pp. 327–337. doi: 10.1007/s11340-011-9544-6. url:
http://link.springer.com/10.1007/s11340-011-9544-6.

[50] A. Leonard et al. “Traveling waves in 2D hexagonal granular crystal lattices”.
In: Granular Matter 16.4 (Apr. 2014), pp. 531–542. doi: 10.1007/s10035-
014-0487-3. url: http://link.springer.com/10.1007/s10035-
014-0487-3.

[51] MasahiroNishida andYusukeTanaka. “DEMsimulations and experiments for
projectile impacting two-dimensional particle packings including dissimilar
material layers”. In: Granular Matter 12.4 (Mar. 2010), pp. 357–368. doi:
10.1007/s10035-010-0173-z. url: http://link.springer.com/10.
1007/s10035-010-0173-z.

[52] A Leonard and C Daraio. “Stress wave anisotropy in centered square highly
nonlinear granular systems.” In: Physical review letters 108.21 (May 2012),
p. 214301. doi: 10.1103/PhysRevLett.108.214301. url: http://
journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.
214301.

[53] I Szelengowicz, P G Kevrekidis, and C Daraio. “Wave propagation in square
granular crystals with spherical interstitial intruders.” In: Physical review. E,
Statistical, nonlinear, and soft matter physics 86.6 Pt 1 (Dec. 2012), p. 061306.
doi: 10.1103/PhysRevE.86.061306.url: http://journals.aps.org/
pre/abstract/10.1103/PhysRevE.86.061306.



103

[54] I. Szelengowicz et al. “Energy equipartition in two-dimensional granular
systems with spherical intruders”. In: Physical Review E 87.3 (Mar. 2013),
p. 032204.doi:10.1103/PhysRevE.87.032204.url:http://journals.
aps.org/pre/abstract/10.1103/PhysRevE.87.032204.

[55] Amnaya P.Awasthi et al. “Propagation of solitarywaves in 2Dgranularmedia:
A numerical study”. In: Mechanics of Materials 54 (Nov. 2012), pp. 100–
112. doi: 10.1016/j.mechmat.2012.07.005. url: http://www.
sciencedirect.com/science/article/pii/S0167663612001317.

[56] Mohith Manjunath, Amnaya P. Awasthi, and Philippe H. Geubelle. “Wave
propagation in 2D random granular media”. In: Physica D: Nonlinear Phe-
nomena 266 (Jan. 2014), pp. 42–48. doi: 10.1016/j.physd.2013.10.004.
url: http : / / www . sciencedirect . com / science / article / pii /
S0167278913002807.

[57] Nathan W Mueggenburg, Heinrich M Jaeger, and Sidney R Nagel. “Stress
transmission through three-dimensional ordered granular arrays”. In:Physical
Review E 66.3 (Sept. 2002), p. 031304. doi: 10.1103/PhysRevE.66.
031304. url: http://journals.aps.org/pre/abstract/10.1103/
PhysRevE.66.031304.

[58] J Anfosso and V Gibiat. “Elastic wave propagation in a three-dimensional
periodic granular medium”. In: Europhysics Letters (EPL) 67.3 (Aug. 2004),
pp. 376–382. doi: 10 . 1209 / epl / i2004 - 10085 - 9. url: http : / /
iopscience.iop.org/article/10.1209/epl/i2004-10085-9.

[59] Franck Bourrier, François Nicot, and Félix Darve. “Physical processes within
a 2D granular layer during an impact”. In: Granular Matter 10.6 (June 2008),
pp. 415–437. doi: 10.1007/s10035-008-0108-0. url: http://link.
springer.com/10.1007/s10035-008-0108-0.

[60] Mohith Manjunath, Amnaya P. Awasthi, and Philippe H. Geubelle. “Plane
wave propagation in 2D and 3D monodisperse periodic granular media”. In:
Granular Matter 16.1 (Jan. 2014), pp. 141–150. doi: 10.1007/s10035-
013-0475-z. url: http://link.springer.com/10.1007/s10035-
013-0475-z.

[61] A M Tichler et al. “Transmission and reflection of strongly nonlinear solitary
waves at granular interfaces.” In: Physical review letters 111.4 (July 2013),
p. 048001. doi: 10.1103/PhysRevLett.111.048001. url: http://
journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.
048001.

[62] A. Shukla and C. Damania. “Experimental investigation of wave velocity
and dynamic contact stresses in an assembly of disks”. In: Experimental
Mechanics 27.3 (Sept. 1987), pp. 268–281. doi: 10.1007/BF02318093.
url: http://link.springer.com/10.1007/BF02318093.



104

[63] A. Shukla,M. H. Sadd, and H.Mei. “Experimental and computational model-
ing of wave propagation in granular materials”. In: Experimental Mechanics
30.4 (Dec. 1990), pp. 377–381. doi: 10.1007/BF02321508. url: http:
//link.springer.com/10.1007/BF02321508.

[64] B. Glam et al. “Dynamics of stress wave propagation in a chain of photoelastic
discs impacted by a planar shock wave; Part I, experimental investigation”.
In: Shock Waves 17.1-2 (July 2007), pp. 1–14. doi: 10.1007/s00193-007-
0094-x. url: http://link.springer.com/10.1007/s00193-007-
0094-x.

[65] A. Seguin et al. “Sphere penetration by impact in a granular medium: A col-
lisional process”. In: EPL (Europhysics Letters) 88.4 (Nov. 2009), p. 44002.
doi: 10.1209/0295-5075/88/44002. url: http://iopscience.iop.
org/article/10.1209/0295-5075/88/44002.

[66] ASeguin et al. “Experimental velocity fields and forces for a cylinder penetrat-
ing into a granularmedium.” In:Physical review. E, Statistical, nonlinear, and
soft matter physics 87.1 (Jan. 2013), p. 012201. doi: 10.1103/PhysRevE.
87.012201. url: http://journals.aps.org/pre/abstract/10.
1103/PhysRevE.87.012201.

[67] A Valance and J Crassous. “Granular medium impacted by a projectile:
experiment and model.” In: The European physical journal. E, Soft matter
30.1 (Sept. 2009), pp. 43–54. doi: 10.1140/epje/i2009-10504-9. url:
http://www.ncbi.nlm.nih.gov/pubmed/19760440.

[68] Yan Zhu et al. “Propagation of Explosive Pulses in Assemblies of Disks
and Spheres”. In: Journal of Engineering Mechanics 123.10 (Oct. 1997),
pp. 1050–1059. doi: 10.1061/(ASCE)0733-9399(1997)123:10(1050).
url: http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-
9399(1997)123:10(1050).

[69] J. B. Pendry. “NegativeRefractionMakes a Perfect Lens”. In:Physical Review
Letters 85.18 (Oct. 2000), pp. 3966–3969. doi: 10.1103/PhysRevLett.
85.3966. url: http://journals.aps.org/prl/abstract/10.1103/
PhysRevLett.85.3966.

[70] GraemeW.Milton. “The Theory of Composites”. In: The Theory of Compos-
ites (2002). url: http://adsabs.harvard.edu/abs/2002thco.book.
....M.

[71] R S Lakes et al. “Extreme damping in composite materials with negative-
stiffness inclusions.” In: Nature 410.6828 (Mar. 2001), pp. 565–7. doi: 10.
1038/35069035. url: http://dx.doi.org/10.1038/35069035.

[72] Graeme W Milton. “New metamaterials with macroscopic behavior outside
that of continuum elastodynamics”. In: New Journal of Physics 9.10 (Oct.
2007), pp. 359–359. doi: 10.1088/1367-2630/9/10/359. url: http:
//iopscience.iop.org/article/10.1088/1367-2630/9/10/359.



105

[73] Mohamed Farhat, Sebastien Guenneau, and Stefan Enoch. “Ultrabroadband
elastic cloaking in thin plates.” In: Physical review letters 103.2 (July 2009),
p. 024301. doi: 10.1103/PhysRevLett.103.024301. url: http://
journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.
024301.

[74] Nicolas Stenger, Manfred Wilhelm, and Martin Wegener. “Experiments on
elastic cloaking in thin plates.” In: Physical review letters 108.1 (Jan. 2012),
p. 014301. doi: 10.1103/PhysRevLett.108.014301. url: http://
journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.
014301.

[75] Mohamed Farhat, Sebastien Guenneau, and Stefan Enoch. “Broadband cloak-
ing of bending waves via homogenization of multiply perforated radially
symmetric and isotropic thin elastic plates”. In: Physical Review B 85.2 (Jan.
2012), p. 020301. doi: 10.1103/PhysRevB.85.020301. url: http://
journals.aps.org/prb/abstract/10.1103/PhysRevB.85.020301.

[76] P A Cundall and O D L Strack. A discrete numerical model for granular
assemblies. 1979. doi: 10.1680/geot.1979.29.1.47.

[77] G T Gray. “Classic Split-Hopkinson Pressure Bar Testing”. In: ASM Hand-
book Volume 8, Mechanical Testing and Evaluation (2000), pp. 462–476.

[78] W J Stronge. “Continuum Modeling of Local Deformation Near the Contact
Area”. In: (2000), pp. 116–145. doi: 10.1017/cbo9780511626432.007.

[79] K L Johnson. Contact Mechanics. Cambridge University Press, 1987. url:
http://books.google.com/books?id=Do6WQlUwbpkC.

[80] M R Brake. “An analytical elastic-perfectly plastic contact model”. In: Inter-
national Journal of Solids and Structures 49.22 (2012), pp. 3129–3141. doi:
10.1016/j.ijsolstr.2012.06.013.

[81] Chuan-yu Wu, Long-yuan Li, and Colin Thornton. “Rebound behaviour of
spheres for plastic impacts”. In: International Journal of Impact Engineering
28.9 (2003), pp. 929–946. doi: 10.1016/s0734-743x(03)00014-9.

[82] Sinisa Dj Mesarovic and K L Johnson. “Adhesive contact of elastic–plastic
spheres”. In: Journal of the Mechanics and Physics of Solids 48.10 (2000),
pp. 2009–2033. doi: http://dx.doi.org/10.1016/S0022-5096(00)
00004-1. url: http://www.sciencedirect.com/science/article/
pii/S0022509600000041.

[83] J H Zhao, S Nagao, and Z L Zhang. “Loading and unloading of a spherical
contact: From elastic to elastic–perfectly plastic materials”. In: International
Journal of Mechanical Sciences 56.1 (2012), pp. 70–76. doi: 10.1016/j.
ijmecsci.2012.01.006.

[84] N.W. Ashcroft and N.D. Mermin. Solid State Physics. Sauders College Pub-
lishing, 1976.



106

[85] Erwan Hascoët, Hans J. Herrmann, and Vittorio Loreto. “Shock propagation
in a granular chain”. In: Physical Review E 59.3 (Mar. 1999), pp. 3202–3206.
doi: 10.1103/PhysRevE.59.3202. url: http://journals.aps.org/
pre/abstract/10.1103/PhysRevE.59.3202.

[86] James Tasi. “Evolution of shock waves in a one-dimensional lattice”. In:
Journal of Applied Physics 51.11 (July 1980), p. 5804. doi: 10.1063/1.
327538. url: http://scitation.aip.org/content/aip/journal/
jap/51/11/10.1063/1.327538.

[87] Shiming Zhuang, Guruswami Ravichandran, and Dennis E. Grady. “An
experimental investigation of shock wave propagation in periodically lay-
ered composites”. In: Journal of the Mechanics and Physics of Solids 51.2
(Feb. 2003), pp. 245–265. doi: 10.1016/S0022- 5096(02)00100- X.
url: http : / / www . sciencedirect . com / science / article / pii /
S002250960200100X.

[88] Feng Li et al. “Tunable phononic crystals based on cylindrical Hertzian
contact”. In: Applied Physics Letters 101.17 (Oct. 2012), p. 171903. doi:
10.1063/1.4762832. url: http://scitation.aip.org/content/
aip/journal/apl/101/17/10.1063/1.4762832.



107

A p p e n d i x A

NUMERICAL CODE

A.1 Outline of Numerical Code
The general outline of the code demonstrating all options and capabilities is as

follows:

1. Initialization:

a) Initial positions of each particle are specified.

b) Material for each particle are chosen from a library of materials (or
custom material properties specified).

c) Boundary conditions are specified.

i. Particles can be restricted to have a permanently fixed position.

ii. Particles along a line of symmetry can be specified.

iii. Pairs of particles can be specified to be periodic compliments and
transfers forces to one another.

iv. Polygons representing walls or flat impactors (flats) can be specified
with prescribedmasses (or infinitemass if they’re immovablewalls).

v. Particles can be assumed to be in contact with an infinite, 1D linear
medium.

d) Initial conditions are specified.

i. Particle can be given initial velocities.

ii. Flats can be given initial velocities.

iii. Force pulses or experimentally measured forces over time can be
prescribed for particles or flats.

iv. Velocity pulses or experimentally measured velocities over time can
be prescribed for particles or flats.

e) Global variables are initialized in which the history of plastic deforma-
tion at each contact point will be stored after each time step.

f) Time steps, total time of the simulation, and number of time steps
between intermediate data saves are specified.
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g) Details about the contact law can specified.

i. Certain pieces of the physics can be neglected in order to observe
their effect of dynamics.

ii. Experimentally measured contact responses or any tabular force-
displacement law can be substituted (at the expense of simulation
speed).

2. Time integration of Newton’s 2nd Law. For each time step:

a) Inter-particle forces for each particle are calculated

i. The distance between the centers of every possible pair of particles
is calculated. If this distance is less than the sum of the radii of the
particles, the force between them is calculated using a contact law.

ii. The calculated force is applied in opposite directions to both of the
particles along the axis between the center of the two particles.

iii. The calculated forces are also applied to particles’ periodic comple-
ments if they are on a periodic boundary.

b) Applied forces are summed with inter-particle forces

c) Forces between flats and particles are calculated

i. The distance between each flat and the center of every particle is
calculated. If the distance is less than the radius of the particle, then
the force is calculated

ii. The force between a particle and a rigid flat is, by symmerty, the
force required to compress two identical particles by twice the dis-
tance between the particle and rigid flat.

d) Prescribed velocities or displacements are applied to particles, overruling
any applied forces on those particles

e) Particles on lines of symmetry are restricted to only move along the
axis of symmetry and forces in that direction are doubled to account for
forces from the opposite side of the line of symmetry.

f) History of maximum overlap between every possible pairs of particles
and flats are updated and stored in global variables to allow for correct
behavior of plasticity in future time steps.

g) Forces and masses are used to calculate accelerations of each particle
using Newton’s 2nd Law.
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h) A 4th order Runge-Kutta method is used to integrate the accelerations
and determine the initial conditions for the next time step.

i) After a chosen number of time steps, intermediate results are saved to
database to allow for restarts and

3. Post-processing:

a) Particle positions and velocities over time are saved

b) Forces on each particle and contact forces at each pair of particles are
saved

c) Positions, velocities and forces of any flats are saved

A.2 Matlab Scripts
A.2.1 Strain-Rate Dependent Contact Model for Elastic-Plastic Spheres

Below is the function used to calculate the interparticle forces using the strain-
rate dependent elastic-plastic model for the compression of two spherical metallic
particles. The inputs of the function are the relative displacement between the two
particles, the relative velocity between the two particles, the material properties of
the two particles, and the previous maximum displacements and forces experienced
between the two particle due to plasticity. The output is the magnitude of the
interparticle force.

1 function [f] = f_3Dcontact(i,j,d,v,var,dmax,Fmax)

2 % i,j - indicies of the particles in contact

3 % d - overlap between the two particles i,j

4 % v - velocities of particles i,j

5 % var - struct with material properties (E_star, r_star, sig_y) for i,j

6 % dmax - maximum displacements previously experienced between i,j

7 % Fmax - maximum force previously experienced between i,j

8
9 %Johnson-Cook strain rate dependence

10 if isequal(var.rate_dependent ,’yes’)

11 sr=max(0,v)/(var.r(i)+var.r(j));

12 sr_factor = max(1,(1+var.K_star(i,j)*log(sr/.001)));

13 else

14 sr_factor = 1;

15 end

16 sy = var.sy_star(i,j)*sr_factor;

17
18 ratio = var.E_star(i,j)/sy;

19 %Empirical functions derived from FEM parameteric studies

20 deltap = (.00428*ratio.^(-1) + 1.47e-5)*(var.r_star(i,j)/(.0635*.0254));

21 c1 = -6.76*ratio^(-0.137) + 6.304;

22 c2 = (-3.99e-6*ratio^(-1) + 1.01e-9)*(var.r_star(i,j)/(.0635*.0254))^2;
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23
24 %Von Mises criterion for initiation of plasticity

25 deltay=(1/4)*(var.r_star(i,j)/var.E_star(i,j)^2)*(pi*1.6*sy)^2;

26 p0 = c1*sy;

27
28 if d <= deltap && d > deltay && isequal(var.plasticity ,’yes’)

29 %intermediate region: f = d [A + B log(d)]

30 Fy = (4/3)*var.E_star(i,j)*sqrt(var.r_star(i,j))*deltay^(3/2);

31 a(1) = c2*p0*pi;

32 a(2) = p0*2*pi*var.r_star(i,j);

33 Fp = a(1) + a(2)*deltap;

34
35 f = d*(deltap*Fy*log(deltap)-deltay*Fp*log(deltay)+(deltay*Fp-deltap*

Fy)*(log(d)))/((deltay*deltap)*(log(deltap)-log(deltay)));

36 elseif d > deltap && isequal(var.plasticity ,’yes’)

37 %plastic region: f = A + B*d

38 a(1) = c2*p0*pi;

39 a(2) = p0*2*pi*var.r_star(i,j);

40 f = a(1) + a(2)*d;

41 else

42 %elastic loading: f = A*d^(3/2)

43 f = (4/3)*var.E_star(i,j)*sqrt(var.r_star(i,j))*d^(3/2);

44 end

45
46
47 % UNLOADING and RELOADING

48 %(unloading occurs when velocity is less than 0, spheres are moving away

49 %from each other. However, we follow the unloading curve back up upon

50 %reloading until f > Fmax or d > dmax)

51 if v < 0 || f < Fmax || d < dmax

52 if isequal(var.plasticity ,’yes’)

53 %elastic unloading with plasticity

54 Fy = (4/3)*var.E_star(i,j)*sqrt(var.r_star(i,j))*deltay^(3/2);

55 Rp = 4*var.E_star(i,j)*((2*Fmax+Fy)/(2*pi*1.6*var.sy_star(i,j)))

^(3/2)/(3*Fmax);

56 deltar = dmax -(3*Fmax/(4*var.E_star(i,j)*sqrt(Rp)))^(2/3);

57 d_un = (d-deltar)*((d-deltar)>=0);

58
59 f_un =(4/3)*var.E_star(i,j)*sqrt(Rp*(d_un).^3);

60 else

61 %elastic unloading without plasticity

62 f_un = (4/3)*var.E_star(i,j)*sqrt(var.r_star(i,j))*d^(3/2);

63 end

64 f = min(Fmax,f_un);

65 end

66
67 end
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A.2.2 Function to Calculate dX/dt for Use in Numerical Integrator
Below is a Matlab function used to calculate the velocities and accelerations

of each particle for each degree of freedom. These velocities and accelerations
compose the vector which defines the many coupled, first-order ODEs which must
be solved to numerically calculate the particles’ displacements and velocities over
time.

1 function dydt = odefunc(t,y,var)

2 % t: current time

3 % y: vector of all positions and velocities from previous time step

4 % var: struct containing material properties , boundary, applied forces

and

5 % other information required to calculate forces

6 %dydt: vector of all velocities and accelerations from this time step as

7 % calculated from all forces on each particle

8
9 global g

10 dydt = zeros(size(y));

11
12 %Get positions and velocities of last time step

13 X = vec2array(y(1:3*var.n));

14 V = vec2array(y(3*var.n+1:2*3*var.n));

15
16 %number of particles (not including any flat impactors)

17 N = length(var.particles);

18
19 %define dmax and Fmax matrices from global memory

20 dmax = g.dmax;

21 Fmax = g.Fmax;

22
23 A = zeros(size(X));

24 d = zeros(var.n);

25 f = zeros(var.n);

26 %calculate forces from particle interactions

27 for i = 1:N

28 for j = i+1:N

29 %overlap between particles i and j

30 d(i,j) = var.r(i) + var.r(j) - norm(X(j,:)-X(i,:));

31
32 %if overlap is positive, calculate the force between the pair

33 if d(i,j) > 0

34 %unit vector from i to j

35 e = (X(j,:)-X(i,:))/norm(X(j,:)-X(i,:));

36 %relative velocity along vector e, don’t need to save

37 v = dot(V(i,:),e) - dot(V(j,:),e);

38 %force magnitude between particles i and j

39 f(i,j) = f_3Dcontact(i,j,d(i,j),v,var,dmax(i,j),Fmax(i,j));

40
41 %acceleration vectors after applying forces on particles i, j

42 A(i,:) = A(i,:) - f(i,j)*e/var.m(i);
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43 A(j,:) = A(j,:) + f(i,j)*e/var.m(j);

44 end

45 end

46 end

47
48 %save dmax, Fmax in global variable

49 if g.flag == 1

50 g.t = [g.t; t];

51 g.dmax = max(g.dmax,d);

52 g.Fmax = max(g.Fmax,f);

53 end

54
55 dydt(1:3*var.n) = vec2array(V); %Store velocities in dydt

56 dydt(3*var.n+1:2*3*var.n) = vec2array(A); %Store accelerations in dydt

57 %Return dydt vector

58 end

A.2.3 4th Order Runge-Kutta Solver
Below the the Matlab function which uses a 4th-order Runge-Kutta solver to

integrate dX/dt over discretized time and calculate the displacement and velocity
of each particle in each degree of freedom. A key modification to the typical RK4
solvers used, it an additional evaluation of the function odefun, which calculates
dX/dt again for each time step. The extra evaluation is used to store the plasticity
histories of each contact between particles. The maximum interparticle overlap and
interparticle forces for each set of contacts is stored in a global variable after each
time step and used in subsequent time steps to calculate forces at later times.

1 function Y = ode4(odefun,tspan,y0,varargin)

2 %ODE4 Solve differential equations with a non-adaptive method of order

4.

3 %

4 % odefun: the matlab function to calculate the vector X_dot representing

5 % the 2nd order ODEdescribed inChapter 2

6 % tspan: the vector of equally spaced time steps

7 % y0: the initial conditions (positions and velocities) for each particle

8 % for each degree of freedom

9 % varargin: struct containing material properties , boundary conditions ,

10 % applied forces and other information required to calculate

11 % X_dot in odefun

12 %

13
14 global g %initiate global struct "g"

15
16 h = diff(tspan); % get time step

17 f0 = feval(odefun,tspan(1),y0,varargin{:}); %evaluate initial conditions

18 y0 = y0(:); % Make a column vector.

19
20 N = length(tspan);
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21 Y = zeros(length(y0),N);

22 F = zeros(length(y0),4);

23
24 Y(:,1) = y0;

25 %For each time step:

26 for i = 2:N

27 %Flag is used to instruct odefun not to store plasticity history for

28 %intermediate evaluations

29 g.flag = 0;

30
31 %4th Order Runge-Kutta Method

32 ti = tspan(i-1);

33 hi = h(i-1);

34 yi = Y(:,i-1);

35 F(:,1) = feval(odefun,ti,yi,varargin{:});

36 F(:,2) = feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,1),varargin{:});

37 F(:,3) = feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,2),varargin{:});

38 F(:,4) = feval(odefun,tspan(i),yi+hi*F(:,3),varargin{:});

39 Y(:,i) = yi + (hi/6)*(F(:,1) + 2*F(:,2) + 2*F(:,3) + F(:,4));

40
41 %Flag is turned on and forces are calculated using the final

42 %displacements and velocities in order to store histories of

43 %plasticity after each time step to be used in the next time step

44 g.flag = 1;

45 feval(odefun,tspan(i),Y(:,i),varargin{:});

46 end

47 Y = Y.’;


