
Chapter 1

Analysis of Cell Divisions Patterns

in the Arabidopsis Shoot Apical

Meristem

1.1 Introduction

The Arabidopsis SAM is a structure at the tip of the shoot that is responsible for generating almost

all of the above-ground tissue of the plant[1]. Its epidermal and subepidermal cells are organized into

layers with very few cells moving between layers[2, 3]. When these cells expand they do so laterally,

pushing other cells towards the periphery of the meristem. Division in these cells is anticlinal such

that each layer remains one cell thick. Since plant cells are bound to each other by common walls

and can’t move past each other, the position of the walls created during cytokinesis is critical to

patterning and morphogenesis at the tissue and organ level.

1.1.1 Qualitative Observations

While the underlying mechanisms that control positioning of the cell plate are not completely known

(discussed in detail later), the qualitative properties of meristematic cell division are well docu-

mented. Perhaps the three most well known of these observations are those of the 19th century
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botanists Wilhelm Hofmeister, Léo Errera, and Julius von Sachs.

1. Errera observed that soap bubbles and plant cells often divide in much the same way; the

plane of division corresponds to the shortest path that will halve the volume of the mother

cell[4]. According to Errera (1888, section IV) the new wall will be a surface "mit constanter

mittlerer Krümmung (= Minimalfläche) [with constant average curvature (minimal area)]".

Since then, other authors have also compared plant tissue to soap foam, often suggesting that

since the outcome is qualitatively similar, plant cells and soap bubbles may share a common

underlying mechanism[5, 6, 7, 8]. In foams, surface tension causes the volume to be maximized

while being bound by the least amount of material. Whether plant cells also use mechanical

forces to govern locations of new walls has yet to be determined 125 years after Errera’s initial

observation. Nevertheless, Errera’s rule is still used to describe plant cell division patterns.

But since this rule does not specify a single, unique location for the new cell wall, more recent

authors have added to this that the mother cell divides evenly[9, 10]. With these modifications,

Errera’s rule is easily quantifiable.

2. Hofmeister observed that new cell walls usually form in a plane normal to the principal axis

of cell elongation[11]. This rule is more difficult to quantify because the principal axis of cell

elongation is often confused with the direction of growth. Cells are asymmetrical and hence a

principal direction of cell elongation can easily be calculated (e.g., the principal axis of inertia

or principal component of a segmentation). The assumption is often made that because the

cell is more elongated in one direction that the primary growth of the cell has been along that

direction, but this is not necessarily the case, as the elongation may be derived from a prior cell

division. For example, if a symmetrical square divides into two rectangular cells, this does not

mean that the two daughter cells have grown primarily along their longer axis. Quantification

of cell growth direction is much more difficult: it requires the observation of matching points

over time and varies with the internal and external tensile forces on the cell. It is not clear

whether or not the instantaneous direction of cell growth or the longer-term average (e.g., as

measured over a significant fraction of a cell generation) is more directly relevant to forming

the division plane. Under compression, single cells tend to divide in a plane perpendicular to

the long axis of the cell[12] which, similar to Errera’s rule, could indicate a mechanical basis

for cell wall placement.

3. Sachs observed that new cell walls form in a plane perpendicular to existing cell walls and that

the daughter cells are of equal volume[13]. These rules are an accurate description of cells that
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have already divided but do not necessarily allow one to predict the plane of division in a cell

that has yet to divide since there are often multiple wall positions that fulfil Sachs’ rules as

illustrated by Minc and Piel[14] in Figure 1.

Other qualitative observations are that cell walls tend to avoid four-way junctions[15] and that cell

division planes tend to be staggered, like bricks in a wall[16]. Since chemical signals can be induced

by physical interactions such as mechanical stress and strain it is conceivable that these geometric

indicators are merely emergent properties of the underlying physico-chemical interaction processes

that drives cell division. While most of the geometric observations tend to be true most of the time,

none of them are true all of the time, and it is not possible for all of them to be true at once.

For example, the actual growth direction is rarely in alignment with the principal geometric axis of

the cell and hence the division cannot simultaneously satisfy shortest length and perpendicularity

requirements. Such conflicting results can in principle be resolved by minimizing a sum of potential

functions[17], and insight into the underlying mechanisms can often be gained by examining the

results of the optimization.

1.1.2 Mechanism of Cell Plate Positioning

The earliest work to determine the mechanism of division plane formation in plant cells were ob-

servations of (what would be later known as) the mitotic spindle and phragmoplast (the scaffold

for the cell plate that eventually becomes the wall)[18, 19, 20]. These early observations lead to

the discovery of the preprophase band, which is the earliest known indication of the future location

of the phragmoplast[21]. The preprophase band is a gathering of microtubules into a circular (not

spherical) structure at the periphery of the cell, just inside the plasma membrane. The accumulation

of micorubules forms bundle structures[22, 23] that probably also include γ-tubulin ring complex

elements as well as other microtubule binding proteins[24, 25, 26].

Though there is still not much evidence that the preprophase band is directly responsible for po-

sitioning the phragmoplast, it has been shown to be necessary for non-random positioning in most

Arabidopsis cell types aside from endosperm[27] and meiocites[28]. In tissue culture Arabidopsis

cells often lack a preprophase band and exhibit random phragmoplast positioning [29]. Addition-

ally, tissue treated with small molecules that depolymerize microtubules and tissue with genetically

inhibited microtubules also exhibit random phragmoplast positioning [30, 31, 32, 33, 34].

So the cell plate, in most cases, is positioned by the organization of the preprophase band. But this
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changes the question "how is the cell plate positioned?" to "how is the preprophase band positioned?"

This is accomplished through a variety of proteins homologous to those in animal centrosome com-

plexes even though plant cells lack centrosomes. For example, the TON1 proteins interact with

the preprophase band, the cortical microtubules and the CEN proteins[35]. TON2 mutants display

disorganization of the interphase cortical microtubule array and also lack a preprophase band[36].

MOR1, a microtubule binding protein of the MAP25 class, is also required for orderly cortical mi-

crotubule arrays and mutants display random phragmoplast orientation[37]. CLASP is typically

found along microtubules enriched at the positive end of microtubules[38] and near the plasma

membrane and prevents edge-induced microtubule depolymerization, a process that occurs when a

microtubule oriented perpendicular to the plasma membrane encounters a sharp cell edge such as

those found at a three way junction[39]. Other plant-specific proteins (non-homologous to animal

proteins) are involved as well, such as many members of the TRM family which link the TON1

proteins to microtubules[40].

These proteins are all necessary parts of a system guiding the cytoskeleton of Arabidopsis cells but

still don’t provide a mechanism by which positioning of the preprophase band and phragmoplast

are controlled. For a short time CLASP looked like a possible master regulator of preprophase

band positioning. It was thought to localize laterally within growing cells and be necessary for the

maintenance of the cortical microtubules in such a way that promotes anticlinal (parallel to the apical

basal axis) divisions, at least within the meristem. Further, it was suggested that MAP65 expression

causes CLASP to relocate within the cell and subsequently causes periclinal (perpendicular to the

apical basal axis) divisions[41]. This provided a direct link between the transcription of a gene and

the positioning of the division plate and provided an obvious mechanism for different cell types to

alter their division patterns. But this paper as well as another related paper[42] were retracted

because the data were faked so I find it unlikely that this particular connection is true.

While we still don’t have a molecular mechanism for the positioning of the cell plate, it is evident that

microtubules play a major part in the process. And since there is strong evidence that mechanical

forces experienced by cells can influence the position of the cytoskeleton, it is tantalizing to think

stress or strain act as regulators of the cell plate positioning process.
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1.1.3 Stress and Strain as Controlling Factors in Cell Division

If mechanical forces are the significant driver of wall placement this would suggest that (a) the

plant cells can somehow detect and respond to mechanical stress/strain, perhaps through some

intermediary signalling mechanism, and that (b) the geometric observations are indicators that

emerge as a consequence of the physically induced signalling and not the ultimate cause of cell

division. None of these observations are sufficient to predict the orientation of the division plane

with any confidence; in fact, they are sometimes in conflict, e.g., the current growth direction at

any given time results from a complex interaction of mechanical stresses and strains and is not

necessarily in alignment with the principal geometric axis of the cell and hence the division cannot

simultaneously satisfy shortest length and perpendicularity requirements. Conflicting results can in

principle be resolved by minimizing a sum of potential functions[17].

1.1.4 Modeling

Additionally, recent work by Besson and Dumais suggests that cell division in plants is inherently

random[9]. The new wall tends to find a global minimum length but in situations where there are

multiple similar local minima the global minimum is not necessarily chosen.

Previously we looked at cell divisions in the shoot meristem using two dimensional maximum inten-

sity projections[43]. Some of the results from that work may have been biased due to the inconsistent

perspective on cells in the peripheral zone compared to the center created by projecting a 3D object

into 2D space. Since the meristem is dome-shaped, when projecting the meristem from the top the

cells in the center are viewed perpendicularly while the cells towards the edges are viewed at an

angle. This non-perpendicular viewing angle distorts the lengths of the cell walls and the angles at

which the walls join each other. To rectify that problem the geometry of the cells must be examined

in 3D. Here we expand on earlier work with new image processing techniques to analyze the division

patterns in 3 dimensions. By using the image processing software MorphoGraphX[44] we were able

to reconstruct the cell boundaries in the first layer of a growing SAM [44].

Having a 3-dimensional model of the structure of the L1 layer over time allowed us to generate a

model composed of a set of functions, each incorporating a different feature from the observed cell

divisions. The functions each contribute a single term to a greater potential function and new walls

are predicted to form where the combined potential is reduced. This model also brought to light

some of the shortcomings of previously proposed plant cell division rules. Additionaly, these data
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allowed us to make new observations of the dynamics of cell expansion and division in different

regions of the SAM.

1.2 Methods

1.2.1 Plants

Seeds from the pUBQ::tdTomato-29-1 line in the L-er background were sterilized with 70% ethanol

and added to agar plates containing MS and sucrose (30g/L). After a 3-day vernalization at 4°C,

seeds were germinated under constant light at room temperature. 10 days after germination, plants

were transferred to boxes containing solid growth medium and grown under constant light at room

temperature. Plastic boxes 4cm high were prepared under sterile conditions and filled 1cm high

with a growth media consisting of MS, MS vitamins, and agar. 1 thin layer of agar without MS was

poured on top of the solid MS agar.

1.2.2 Time-Series Images

Laser scanning confocal images of four different Arabidopsis meristems were taken at 2 hour intervals

during which 207 cell divisions were observed. To image the meristems, the boxes containing the

plants were filled with sterile water and placed under the microscope objective. A 63x 0.95NA

Achroplan objective was used for imaging. Z-stacks containing 20 optical sections were acquired

using a Zeiss LSM 510 with 543nm laser, 543nm dichroic mirror, 560nm longpass filter, 2µs second

scan time per pixel, a resolution of 0.25um(X) by 0.25um(Y) by 1.0um(Z) creating images of 512x512

pixels.

1.2.3 Static Images

For comparison geometric statistics were also measured on a collection of 12 additional images of

four different meristems at different time points (approximately 200 cells per image). Arabidopsis

seeds of the L-er background were germinated on soil under constant light at room temperature.

When the shoots bolted, flowers and flower primordia were dissected from the inflorescence. The

meristems were cut from the shoot 1cm below the top and inserted into dishes of solid agar. The

meristems were stained with 10uM FM4-64 (Invitrogen) at 4°C for 15 minutes. The meristems were
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then washed with distilled water to remove the excess stain and the dishes were filled with distilled

water. The same microscope parameters from the time series imaging were used here.

1.2.4 Image Processing

Z-stacks in LSM format were first converted into a TIF series using ImageJ[45] and the LSMToolbox

plugin. The functions performed in ImageJ were

1. Import (LSMToolbox plugin)

2. Conversion to 8-bit from 12-bit (Zeiss LSM510 by default captures images in 12-bit)

3. Reverse the image order so the first image is now the last image

4. Save as TIF series

These series of TIF images were then imported into MorphoGraphX. The cell boundaries of the L1

were extracted and segmented using the general methods described previously[44].

Z-stacks in LSM format were first converted into TIF series using ImageJ[45] and the LSMToolbox

plugin. These series of TIF images were then imported into MorphoGraphX[44]. The surface of the

meristem was extracted using the Closing, Edge_Detect, and Marching_Cubes_Surface functions.

The surface mesh was then smoothed and subdivided to around 500,000 vertices. The fluorescent

signal from 0 to 3µm below the surface was projected onto the surface mesh. Segmentation seeds

were added by manually clicking in the center of each cell. The surface image was then segmented

using the seeds. Cells were created from the segmented boundaries with a minimum of 1µm between

vertices. The full Python code used to automate this method is as follows.

The Python code to generate the 3D mesh was as follows:

Stack.Resize_Canvas("Yes","Yes",0,0,20)

Stack.Shift_Stack(0,0,10)

Stack.Average(1,1,1,1)

Stack.Closing(15,15,3)

Stack.Edge_Detect(50000,2,0.3,30000)

Mesh.Marching_Cubes_Surface(5,5000)

Mesh.Smooth_Mesh(1)

Mesh.Subdivide()
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Mesh.Smooth_Mesh(3)

Mesh.Subdivide()

Mesh.Smooth_Mesh(1)

Mesh.Subdivide()

Mesh.Subdivide()

Mesh.Project_Signal("No",1,2,0,50000)

Manual seeding of each cell in the image was then performed followed by this Python code

Mesh.Segment_Mesh(20000)

count = 0

while count < 2:

try:

Mesh.Make_Cells(1)

break

except:

Mesh.Fix_Corners()

Mesh.Smooth_Mesh(1)

Mesh.Segment_Mesh(20000)

count += 1

The cells generated by this were exported to a text file for further analysis.

1.2.5 Projection to Local Euclidean Plane

A local Euclidean plane was fit to each cell before division, and to the pair of cells after division.

The least squares fit to z = Ax+By + C is described by the normal equations:
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Each raw data point (pi, qi, ri) was then projected to the local Euclidean by dropping a perpendicular.

Let the nearest point in the projection be (xi, yi, zi), where zi = Axi + Byi + C; the coordinates
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(xi, yi) are found by minimizing the square distance function

f = (pi − xi)2 + (qi − yi)2 + (ri −Axi −Byi − C)2 (1.2)

which can be reduced to solving the linear system

A2 + 1 AB

AB B2 + 1


xi

yi

 =

Ari + pi −AC

Bri + qi −BC

 (1.3)

Once the point (xi, yi) is known, zi = Axi +Byi +C. Both the normal equations for the least squares

fit and the projection to the plane are solved using the Mathematica function LinearSolve.

1.2.6 Alignment of Principal Axes

After translation to the local coordinate system each cell is represented by a matrix of data points

X =


x1 − xc y1 − yc

...
...

xn − xc yn − yc

 (1.4)

where xc and yc are the means of the x and y coordinates. The covariance matrix is calculated using

the Mathematica function Covariance as

M = 1
n− 1X

TX (1.5)

The eigenvectors of this matrix give the principal directions.

Each cell is rotated into a new coordinate system with x′ oriented along the eigenvector first principal

component (the one with the larger eigenvalue), y′ along the second principal component, and

oriented so that x′y′ points outward from the meristem. The angle of rotation between the before

and after coordinate systems is

tanΘx′A · y′B
x′A · x′B

(1.6)

in terms of the unit vectors x′A,y′A,x′B ,y′B in the after and before Euclidean planes. The after-cells

can be aligned with the before-cells by rotating through an angle Θ. Finally, each cell is translated
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to the center of mass frame[46],

xi = 1
6

n∑
j=0

(xj + xj+1)(xjyj+1 − xj+1yj) (1.7)

yi = 1
6

n∑
j=0

(yj + yj+1)(xjyj+1 − xj+1yj) (1.8)

where the vertices are numbered counter clockwise and vertex 0 is associated with vertex n.

1.3 Results

A total of 207 cell divisions were observed from four Arabidopsis thaliana L-er pUBQ1::2x-tdTomato-

29-1 meristems observed from live imaging using laser scanning confocal microscopy. Since the

original segmentation was performed in three dimensions the segmentation points for any given cell

do not lie precisely in a plane. To perform subsequent analysis, a best fit local Euclidean plane (see

Supplemental Information “Projection to Local Euclidean Plane”) was found using the method of

least squares, and each point was then projected to the local Euclidean plane by dropping the local

perpendicular to the plane. The mean offset was 0.07±0.05±6.2µm2 (Figure 1.1a). The mean area

of the cells before division was 40.0±6.2µm2 (mean ± standard deviation). The mean area of the

daughter cells was 21.0±5.5±6.2µm2. Mean cell perimeter before division was 24.9±2.1±6.2µm, and

of the daughter cells was 18.2±2.4µm (Figure 1.1b). The distribution of areas was more symmetric

for the parent cell than the daughter cells (skewness of 0.22 vs 0.71). For comparison a study of 4

meristems showed cells areas with mean, sd, skewness. This more closely resembles the skewness

in the areas as distributed across the entire SAM (Figure 1.1c) in which the average area was

22.6±6.5µm2.

1.3.1 Cell Expansion and Division in Space and Time

It is known that cells must expand and divide to maintain the amount of tissue in the SAM as

groups of cells are incorporated into flower primordia around the periphery and exit the SAM. To

quantify this phenomenon we measured the expansion of each cell over each two hour period. The

cell expansion occurs in waves as can be seen in Figure 1.2a. This wave phenomenon is also observed

in the quantity of divisions over time. Over the observed 38 hours the average expansion rate and
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Figure 1.1: (a) Distribution of mean error (mean of the absolute value of perpendicular distance)
in fit to local Euclidean. (b) Distribution of parent cell areas before division (white, dashed) and
child cell areas after division (gray, solid). (c) Distribution of areas globally across the SAM L1 layer
(excluding floral meristems) (4 meristems, 200±26 cells per meristem) and one-sigma errors.
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quantity of divisions gradually decreases possibly due to the exposure to laser light, dissection of

surrounding flowers, or the repeated submersion in water, all of which effect the health of the plant.

It should be noted that while the waves of expansion and division are approximately in phase with

each other, the cells that are dividing are not necessarily the same cells that expand the most during

any 2 hours.

As shown in Figure 1.2b, cells in the center of the meristem expand very little and in some cases

shrink between time points. This phenomenon is observed at all time points and does not fluctuate

with the waves of expansion observed elsewhere in the meristem.

To quantify the relation of expansion and division we measured the expansion ratio of cells that

divided and cells that did not divide separately, the results of which are shown in the Figure 1.2c.

The mean expansion ratio of the 207 dividing cells barely different from that of the nondividing

cells: the variance of both populations is too large to differentiate statistically. This suggests that

expansion and division are not directly coupled, at least in the two hours prior to division. Given

that the cells are all of similar sizes, expansion over the entire cell cycle must be correlated with

division.

While rapidly expanding cells have no correlation to dividing cells, there is a bias in the spatial

location of the rapidly dividing cells. As seen in the Figure 1.2b, cells towards the top of the meristem

are dividing more slowly than those toward the bottom, but there is no clear boundary between

rapidly and slowly expanding regions. This phenomenon was observed at all time points.

1.3.2 Analysis of Traditional Heuristics of Cell Division

Many rules about cell division have been reported and widely quoted. Care must be taken in

applying these rules as they are all only valid in an approximate sense (as will be shown below) and

are often in conflict with one another. Since they are only generally (but not absolutely) valid and

are only applicable in the proper context, we refer to them as the heuristics (rather than laws or

rules) as they are experience-based guidelines that will often, but not always, work. In addition to

the three heuristics that we address below, we also analyzed Hoffmeister’s Rule, new walls forming

perpendicular to existing walls, and growth immediately after division in the supplementary text

(see section “More Heuristics”).
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Figure 1.2: (a) Solid line indicates the quantity of cells dividing within a given period. Dotted line
indicates the mean ratio of cell expansion within a 2 hour period. (b) Heat map on the left shows
the amount of cell expansion between the time points at 2 and 4 hours as a ratio. Stars indicate
cells that divided during this time period. (c) Histogram on the right shows the mean expansion of
cells that divided during any 2h period compared to cells that did not divided.
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Heuristic 1: The new wall is a minimal surface that divides the mother cell equally

Errera’s rule (1888) states that the cell divides along a surface that minimizes the area of the new

wall[4]. Errera did not specify the position of the new cell wall (the intersection of the new wall

with the cortex). If the wall position is not specified, its minimum area could approach zero in

cells of many shapes (conical or spherical for example). To make a predictive model we add as do

other modern authors[9, 47, 48, 49] that the division halves the volume of the mother cell. We thus

are not testing Errera’s actual rule; rather, we are testing the heuristic that modern authors call

Errera’s rule. For cells in the L1 layer, with uniform depth and anticlinal divisions, we can make a

two-dimensional equivalent of this heuristic in which the cell divides along a curve that minimizes

the length of the new wall, and that halves the mother cell.

The cells in the 207 cell division sibling pairs ranged from 24 percent to 76 percent of the total area,

with a standard deviation of 9.3% within the full range (0.0 to 1.0), as illustrated in Figure 1.3a,

which shows the ratio r = Ai/(A1 + A2), where Ai is the projected area of the cell in the tangent

plane

The divisions that fit this heuristic the worst (bottom 20 percentile) were not evenly distributed

throughout the meristem. As it can be seen in Figure 1.3b, in one of the meristems we investigated

many of the divisions most poorly predicted occur in the periphery of the meristem. In fact, 72%

of the divisions in the bottom 20 percentile occur within three cells of the edge of the meristem. If

these uneven divisions are occurring in regions that eventually become primordia, the unevenness

of the division might be due to the previously reported phenomenon of a change in the polarity of

divisions within founder cells in vegetative meristems [50, 51].

Heuristic 2: The new cell wall passes through the center of the cell

The shortest distance from the new cell wall to the centroid of the cell was determined by (a)

fitting a least-squares quadratic to the new cell wall, and (b) finding the minimum distance between

the quadratic and the centroid of the combined pair of cells immediately after cell division. The

quadratic fit was used to smooth the segmentation which would otherwise be composed of a joined

sequence of line segments (Figure 1.4a). To obtain a size-independent (dimensionless) measure, the

distance was measured in units of P/2π, where P is cell perimeter, which would correspond to an

effective radius for a spherical cell (illustrated on the right side of figure 5). Some 30%, 50%, and 88%

of the cell walls passed within 0.05, 0.1 , and 0.2 effective radii, respectively (Figure 1.5a).
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Figure 1.3: (a) Distribution of daughter cells as a fraction of the total area. The total area is defined
as the sum of the areas of the two siblings. (b) Division of area of mother cell. (c) How well each
division matches the modern interpretation of Errera’s rule ranked by percentile and grouped into
10 bins indicated by colors.

(a)

(b) (c)
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Figure 1.4: (a) Left: Definition of shortest distance of new cell wall from centroid, for a typical cell.
Right: Illustration of the units for values of r=0.05 ,0.1, 0.2, 0.3, and 0.4 for a circular cell. The
dashed circles would correspond to a typical cell nucleus that is just skirted by the tangential curved
new cell wall. (b) Closest approach of new cell wall to centroid, relative to r = P/2π, where P is
the cell perimeter. Left: distribution; Right: cumulative distribution.

A B

A second measure of how nearly the new cell wall passes through the center of the cell is to measure

the angle ∆Θ subtended between vectors from the center to the endpoints of the new wall (Fig. 4).

In this measure, a straight line wall that passes through the centroid would subtend an angle of 180

degrees. With one exception (at ∆Θ = 88deg) virtually every cell division subtended an angle of

more than 100 deg. As illustrated in Figure 1.5b, 130 deg is exceeded over 90% of the time, 140 deg

is exceeded over 80% of the time, 150 deg is exceeded two thirds of the time, and over half the cell

division had a central angle exceeding 160 deg, or within 20 degrees of the maximum 180 degrees to

make a stright line.

Heuristic 3: The plane of cell division is the shortest path (Soap Bubble Dynam-

ics)

The modern interpretation of Errera’s rule (translated to the tangent plane of the L1 layer) sug-

gests that a new cell wall should form along the shortest path that divides the cell evenly. This

prediction cannot completely dissociate into two independent heuristics of length minimization and

area equalization, in that it minimizes wall length subject to the constraint that the wall divides

the cell evenly. However, to assess the significance of a wall shortness constraint we compared
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Figure 1.5: (a) Closest approach of new cell wall to centroid relative to r = P/2π, where P is the
cell perimeter. (b) Distribution of new cell wall central angles.

A B

the actual wall lengths to the minimum and maximum diameters of each cell with the statistic

drel = (d− dmin)/(dmax − dmin). A cell diameter is defined as the length of a line segment passing

through the centroid from one cell wall to the opposite cell well. As this line segment is rotated

about the centroid its length will change. We call its maximum and minimum values the maximum

and minimum diameters. When drel = 0, the wall has the same length as the minimum diameter;

when drel = 1, the wall has the same length as the maximum diameter (Figure 1.6). A value of

drel < 0 indicates that the actual wall length is shorter than the minimum diameter, because the

actual wall does not pass directly through the center but is skewed somewhat. The wall length

was defined as the length of the quadratic fit to the new wall (so as to eliminate noise from the

image segmentation, see Figure 1.4), and the diameters were defined as the lengths of line segments

through the centroid that spanned the entire cell. We found that in 49% of the cell divisions the

relative wall length fell within 10% (|drel| < 0.1) of the minimum diameter, and that in 69% of the

cell divisions it was within 20% of the minimum diameter. The longest wall had drel = 0.67. More

notably, in 76% of the cases, the actual wall length was shorter than the minimum diameter (Figure

1.7).

Heuristic 4: The cell divides perpendicular to the main axis of growth (Hofmeister’s

Rule)

The difficulty with applying this rule is that it is difficult to calculate the main axis of growth without

a fine time-resolution set of live images. Hofmeister (1863) emphasized that the axis of growth is not

necessarily the longest diameter of the cell. The instantaneous direction of growth can be defined
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Figure 1.6: Definition of cell coordinates in local frame (left) and various parameters used in the
definitions of fitness measure (right). The reference axes for definition of angles are the principal
components of the segmentation.

mathematically as the principal axis of the velocities of the vertices (corresponding to the eigenvector

with largest eigenvalue of the covariance matrix of the velocities of the vertices)[52]. Alternatively,

one might conjecture that since more material will accumulate in the principal direction of growth,

that the cell will be extended primarily along that direction. This would imply that the principal axis

of the cell (corresponding to the eigenvector with the largest eigenvalue of the covariance matrix of

the vertices of the cell, or of the segmentation points, or the principal axis of inertia) should be used

to define this main axis of growth. It is challenging to measure the instantaneous direction (despite

the algorithm given by [52]) because (1) matching vertices at two different time points assumes that

the material at the vertex at one time point should be matched to the vertex at the succeeding time

point, and (2) we have observed that cells often shrink (see cell growth heuristic, below) during the

time around cell division so it is difficult to assign a meaning to the growth direction in these cells.

Because the change in area over the few hours around cell division is very small, and sometimes

negative, small errors in segmentation can lead to significant differences in determination of the

velocity axis.

Hofmeister’s rule (using cell elongation for principal axis) is supported by a change in the distribution

of the isoperimetric ratios before and and after cell division. This ratio is i = 4πA2/P 2, where A

is the area and P is the cell perimeter. It gives a size-independent measure of the elongation of

a polygon. A value of i = 1 indicates that the cell is nearly circularly shaped; all other closed

curves will have a value of less than 1. The further away from 1, the more elongated the cell is. The

inequality 4πA ≤ P 2 has been attributed to the ancient Greek geometer Zenodorus, in the sense that

a circle has greater area than any other regular polygon of equal perimeter. Using the Calculus of

Variations it was proven for any closed curve by Jakob Steiner 1836[53]. The typical distribution of
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Figure 1.7: Distribution of new wall length. New wall length is expressed as a ratio of the difference
between the observed wall length and the minimal wall length to the difference between the maximum
wall length and the minimum wall length.
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isoperimetric ratio in the L1 layer is illustrated in Figure 1.8a. In Figures 1.8b and 1.8c we compare

the isoperimetric ratios before and after cell division. Statistically there is very little difference in

the average value of isoperimetric ratio before and after cell division, but the distribution is tighter

after division (i = 0.78±0.07) (identical to the global surface average) than before (i = 0.76±0.10).

Furthermore, the skewness of the distribution as evident in the overall data is reproduced by the

cells after division, but is not as evident in the cells before division. In other words, cells that are

about to divide are shaped differently than typical cells. However, this difference does not indicate

any particular body shape as the data spread is fairly wide.

The angle between the new cell wall and the principal cell axis is heavily weighted towards perpen-

dicularity (90 degrees), with a differentiation from perpendicular of less than 10 degrees in 30% of

the data, less than 20 degrees in 55% of the data, and less than 30 degrees in 75% of the data. This

supports the notion that cell elongation should be used to determine new cell wall direction. The

actual distribution of these angles is shown in Figure 1.9a. The principal axis is determined as the

eigenvector, corresponding to the largest eigenvalue, of the covariance matrix of the projection of

the segmentation to the least-squares local Euclidean plane. The direction of the cell wall is found

from a least-squares parabolic fit to the new cell wall, as illustrated in Figure 1.9e.

Heuristic 5: The new cell wall forms in a plane that is perpendicular to existing cell

walls

To quantify how often the new cell wall forms in a plane perpendicular to existing cell walls the

angle between the new cell wall and the existing wall was measured (Figure 1.10). Because the

segmentation is pinched in around the intersection, a short arc of the segmentation (up to around

30 degrees central angle in either direction) was fit with a parabola, and the intersection between

that parabola and a similar quadratic least squares fit to the new cell wall was used to determine

the angle of intersection. The measure used was the smaller of the two interior angles formed

by the intersection of the two tangent lines. Some 25% of the intersections were within 5 deg of

perpendicular 52% within 10 deg of perpendicular, and 84% within 20 deg of perpendicular when

measured in this manner. This is consistent with Sachs’ observation, as an emergent property in a

statistical sense.

20



Figure 1.8: (a) Distribution of isoperimetric ratio over 12 timepoints from four different meristems
having 200±28 cells in each meristem. (b,c) Distribution of isoperimetric ratios over 207 cell division
events for the parents in the last observation before cell division (b) and the first observation after
cell division (c). (d) Distribution of angle between new cell wall and normal to principal axis of cell
extension (e) Projection of typical segmentation to local Euclidean. The arrow shows the direction
of the new cell wall.

(a)

(b) (c)
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Figure 1.9: (a) Distribution of angle θ between new cell wall and normal to principal axis of cell
elongation. (b) Long arrow indicates primary direction of elongation. Theta is the angle of this
direction with respect to the new wall. (c) Least squares fit to vertices.

(a)

(b) (c)
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Figure 1.10: The angle between existing cell wall and new cell wall, degrees. (a) Least-squares
quadratics used to calculate angles so as to reduce noise from the segmentation – see dotted line),
for a typical cell. (b) Distribution of angle between new wall and existing wall for all cell divisions.

Heuristic 6: The cell continues to grow immediately after cell division

In only 65% of the 207 cell divisions was the area, as measured in the first time point after cell

division, greater than the area as measured at the last time point before cell division. The ratio of

the area after cell division (Aafter = A1 +A2, where A1 and A2 are the areas of the sibling pair) to

the area before cell division (Abefore) is illustrated in Figure 1.11. While this may be partially due

to an artifact of the image segmentation algorithm (which may favor “pinching” in the corners near

the new wall), it may also indicate that perhaps the additional tension added by the new wall may

inhibit additional growth for a short period of time after cell division. The various heuristics fall

into two categories: those that determine the cell wall completely, and those that put constraints on

the optimization process, but do not fully determine wall position on their own.

1.3.3 Model

Four potential functions Vi were defined (see equations (4.5), (1.10), (1.11), (1.12), and (1.13)).

For any given weight vector w = (w1, w2, w3, w4) the cell division potential function V (Θ1,Θ2) =∑
A,L,g

wiVi(Θ1,Θ2) will describe a landscape in (Θ1,Θ2) space such that the lowest point of this

landscape corresponds to the predicted wall location, with Θ1 and Θ2 given the central angles of

the two end points of the wall as measured from the cell centroid. When plotted as a function of

(Θ1,Θ2), this landscape is symmetric about the 45 degree line Θ1 = Θ2 and hence only points above

(or below) the line need be considered, as the data are duplicated in both parts of the plot. This

landscape may be represented by a contour plot, analogous to a topographic map (see Figure 1.13).
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Figure 1.11: Distribution of areas after as compared to before cell division. The ratio of the area
after cell division to the area before cell division is shown.

The object of the optimization process is then to find a weight vector that works best in as many

cells as possible. Thus the potential is minimized for each cell and each possible weight vector; for

each w, the prediction errors are calculated (as a fitness function) for each cell and combined to

produce a net fitness for that weight vector.

The cell division model defines a potential function[43, 54]

V (Θ1,Θ2) =
∑

A,L,e,g

wiVi(Θ1,Θ2) (1.9)

where Θ1 and Θ2 give the central angles of the end points of the new wall measured from the

cell center of mass (Figure 1.6), w is a weight vector, and Vi represents each contributor to cell

division.

Four components were include in the sum (4.5): an area potential, a length potential, a perpendic-

ularity potential, and a growth direction potential.
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Figure 1.12: (a) Angles θ of new wall from growth direction in 15 degree bins. (b) Relationship
between growth axis and plane of cell division, measured by angle θ. (c) θ from all 207 cell divisions.

(a)

(b) (c)

25



Figure 1.13: Example of potential function landscape, shown for cell 25 using a weight vector
w = (1, 1, 0, 0). Darker regions correspond to higher altitudes and light regions to valleys. The
global minimum is show with an open circle and the actual wall endpoints by a dot. The two axes
give the angle of Θ1 and Θ2 in degrees, and the inset shows an outline of the actual and predicted
cell walls.
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1. The area potential VA is minimized when the two daughter cells are equal in area:

VA =
(
A1 −A2

A

)2
(1.10)

The function is squared to improve computational stability near the minimum (which would

otherwise have a non-differentiable corner there). The disadvantage of this potential is that

it does not have a unique global minimum, i.e., any line of cell division will that divides the

area in half will give a value of zero. Thus the area potential must be tempered by either

an additional potential function (such as the perpendicularity and/or length potential) or

an additional heuristic to select the desired minimum value that does not require a unique

minimum (e.g, randomly select division direction from amongst all equivalent minima).

2. The length potential VL is:

VL = (d− dmin)2 + cL∆2

(d+ dmin)2 (1.11)

where d is the actual wall length and dmin is the minimum length diameter. Thus VL will be

minimized when the cell wall is most closely aligned with the shortest possible diameter.

3. The extension potential Ve is minimized when the new wall is perpendicular to the direction

of maximal cell extensionsion potential Ve is minimized when the new wall is perpendicular

the direction of maximal cell extension e:

Ve = (w · e)2 + εg∆
d

(1.12)

4. The growth direction parameter Vg is minimized when the new wall is perpendicular to the

vector of maximal cell growth g:

Vg = (w · g)2 + εg∆
d

(1.13)

Maximal cell growth direction is calculated using the method described in [52].

The parameter ∆ in (1.11), (1.12) and (1.13) gives the shortest distance between the wall and the

cell center, with weighting factors εe and εg. In (1.12) d is the actual wall length. The purpose of

the ∆ term is to help distinguish between different walls of the same length (for VL) or direction (for

Vg): one that passes closer to the center is more likely than of the same length (or direction) that

skirts the edge of the cell; such “skirting” walls would otherwise be predicted by VL or Vg, especially

27



in more oblong cells.

The cell division potential was minimized and the fitness function calculated for each of the six

methods described in the sup. An average value (corresponding to the fitness function averaged

over all 207 cell divisions) was assigned to each value of the weight vectors. Since only the direction

of the weight vector, and not its actual length, is important in finding the minimum value, the

four component weight vector w = (w1, w2, w3, w4) can be represented by a unit vector in the same

direction; e.g., the weight vector (1, 1, 0, 0) is completely equivalent to a weight vector (
√

2,
√

2, 0, 0).

The four dimensional weights were found by taking three dimensional slices along two planes, holding

parameter three fixed and holding parameter four fixed. With this constraint, each three component

weight vectors in a slice can be described by two angles (α, δ), giving the azimuth and elevation in w

space, where wx = cosδcosα, wy = cosδsinα, and wz = sinδ. A global search of weight vector space

was then performed at approximately 3 degree increments (620 values) to obtain a coarse description

of the fitness. A spatial resolution of 3 degrees was also used. For computational efficiency only

cell walls with a minimum central angle of 90 degrees were considered during the optimization (as

suggested by Figure 1.4). Predictions were made using the pre-division observations (“before" data)

obtained at the start of a two hour window during which cell division took place, and evaluated in

comparison to the observed location of the cell wall as determined from post-division observations

(“after" data) obtained at the end of the same window. For comparison, a second set of predictions

were calculated using only the "after" data (“hindsight” predictions). In the hindsight predictions the

outer boundary of the pair of daughter cells was used to represent the pre-division cell wall.

1.3.4 Fitness Functions

We asked the question whether any weight vector w could be found such that V (Θ1,Θ2) is minimized

when the predicted angle pair matches the actual cell division plane. To determine the weights we

performed a coarse global search on the first quadrant of the global hyper-sphere |w| = 1. For each

w value, the location of the minimum potential in (Θ1,Θ2)-space was determined and subjected to

a fitness measure. For any given cell i, the following fitness measures were considered:

1. Error in distance between endpoints of actual and predicted wall, as measured along the

circumferential path of the boundary, measured relative to the maximal cell diameter:

fi,boundary =
n∑

j=1

d1 + d2

d
(1.14)
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2. Actual distance between endpoints of actual and predicted cell wall, relative to maximal cell

diameter:

fi,boundary =
n∑

j=1

d1 + d2

d
(1.15)

3. Area of the convex hull of the four endpoints of the actual and predicted cell wall, relative to

the total cell area:

fi,area = Aconvexhull

Acell
(1.16)

4. Smaller of the two angles between the diagonals of the convex hull of the four endpoints,

divided by 90 degrees; if on of the endpoints falls inside the convex hull of the other three

points, this devolves to the angle between the actual and predicted cell wall

fi,angle = ϕ

90 (1.17)

5. Relative Euclidean distance in angle space; if the actual and predicted walls have endpoints at

central angles (ΘA,1,ΘA,2) and (ΘA,1,ΘA,2) measured in degrees, then

fi,Θ =
√

(ΘA,1 −ΘP,1)2 + (ΘA,2 −ΘP,2)2

90
√

2
(1.18)

6. The Hausdorff distance between the actual and predicted cell division line. The Hausdorff

distance between two sets gives the maximum distance in the first set to the nearest point in

the second set. Hausdorff distances were estimated numerically by computing distances at 100

equally spaced points along each wall.

Each fitness measure was averaged over all 207 cell division. The results were sorted by fitness (lower

is better) and clustered by location in -space to find a best fit vector, which could be used to, for

example, to predict cell division, as implemented in Cellzilla.

1.3.5 Cellzilla Growth Model

Cell growth is described by a Hooke’s law spring potential φ = 1
2
∑
kij(|∆xij |−`ij)2 applied to each

pair of vertices, and summed over all adjacent vertices. Here kij is a constant assigned to the wall

joining vertex i with vertex j, and ∆xij is an extension or compression of a virtual spring beyond

its equilibrium length `ij . The net force will pull vertex vi towards vj if if the spring is extended,
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and push the vertices apart if the spring is compressed, as described below by (1.19). Pressure is

described as a force per unit wall length, so that it can be applied equally at each vertex.

Cellzilla is a two-dimensional tissue growth simulation extension for Cellerator[55]. Each cell is

described as a single polygonal compartment. Growth occurs via dynamics assigned to each vertex

vi as
dvi

dt
= −

∑
j

kij

(
vi − vj

|vi − vj |

)
(|vi − vj | − `ij) + 1

2P
∑

j

∑
a

nij,a|vi − vj | (1.19)

where the sums over j are over all vertices that are connected to i and the sum over a is over all cells

that abut the edge connecting vertices i and j. The first term describes a weak spring dynamics,

where kij and `ij are the spring relaxation constant and resting length for the edge connecting

vertices i and j. The second term describes an internal turgor pressure P in each cell that is

applied normal to the cell wall (normal vector nij,a and divided equally between the vertices; similar

dynamics have been used by others, e.g.[56, 57]). Isotropic linear growth is described by increasing

the resting length of cells:
`ij

dt
= µΘ (|vi − vj | − `ij) (1.20)

where

Θ(x) = x+ |x|
2 (1.21)

Cell division occurs when the cell passes a mass threshold. Each cell is randomly assigned a unique

mass threshold at creation, with the population of thresholds distributed normally. The placement of

the new cell wall may be assigned either by the modern interpretation of Errera’s rule or a potential

model as described elsewhere in the paper.

We optimized a the third component of the weight vector for growth direction rather than the

geometrical prinicipal axis using a subset of cell divisions (14) using the protocol of Goodall and

Green[52] to determine cell growth direction over a two hour period. The optimal weight vector

shifted to w=(0.9, 0.4, 0). There was very little difference as either of the first two components (area

and length) are varied. However, optimality rapidly decreases as the third component becomes non-

zero. This would indicate that the actual instantanteous direction of growth (as measured over a

two-hour period) is not a significant predictor of cell division.

The minimum fitness results were clustered around a weight vector of w = (0.68, 0.73, 0, 0), where

the three values represent the relative importance of area equalization, length minimization, and

perpendicularity to cell elongation (Figure 1.14). Variations in the first component have very little
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Figure 1.14: Result of optimization of potential.

effect, except as w1 → 1, where it becomes rapidly worse for w1/w2 > 19. The fitness decreases

gradually as w3 increases from zero. There were no significant differences between the different types

of fitness measure. All of our fits indicate that the third component in w is zero. This indicates that

neither geometrical elongation nor instantaneous direction of growth (as measured over a two-hour

period) are significant predictors of cell division.

When the constants c1 and c2 were relaxed to zero in (11) and (12) the minimum moved to w =

(1, 0.6, 0), with the valley of minimums spread widely along the equator (Figure 1.14c), indicating

that almost any combination of area equalization and and length minimization will work so long

as both factors are taken into account (i.e., avoiding the end-points of pure-length and pure-area).

In the first set of optimization runs, area equalization was not so important because the length-

potential forced the new wall to pass near the center. When this restriction is removed, a delicate

balancing between length-minimization and area-equalization is required to compensate for this.

The direction of cell elongation did not appear to be a significant driving factor in either situation;

in fact, incorporation of this factor with c2 = 0 seemed to make matters worse.

This result would, indeed, suggest that when the different predictors are dissociated in this manner,

that the best predictor is the shortest length wall that passes near the center. This prediction is very

similar to the modern interpretation of Errera’s rule that the wall will form in the shortest path that

divides the cell in half. To compare these statements, the predicted wall location according to this

rule were computed for all 207 cell divisions. The distribution of fitnesses for a potential function

minimization with w = (0.68, 0.73, 0, 0) were slightly better than for the modern interpretation of

Errera’s rule (Figure 1.16). Thirteen of the 14 worst cases were the same cells for both methods.

Visually there is very little difference between the two methods of prediction. Using a distance

fitness measure, the potential method gave a better fit in 68 of the 207 cell division, the modern

interpretation of Errera’s method in 40 cases, and both had identical fitnesses in two cases. In the

hindsight model the numbers were 36 (Errera), 2 (tie), and 72 (potential) (see supplemental material
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Figure 1.15: Simulated z-projection of meristem grown from a single cell in Cellzilla after 1000 cell
divisions. (a) The modern interpretation of Errera’s Rule used for cell division. (b) Optimized
potential model using w = (0.1, 1, 0) (area, length, cell extension).

A B

items 1 - 3).

Simulation results for both the modern interpretation of Errera’s model and the optimized potential

model are illustrated in Figure 1.15 after 1000 cell division have occurred (see also the movies in

supplemental material 4 and 5). The tissues were grown in-silico from single quadrilateral cells and

projected onto a parabolic surface. The resulting cell division patterns in both cases are evocative

of observed data.

Cell Division is a Boltzmann Distribution

Following the work of Besson and Dumais[9] we evaluated the hypothesis that selection of cell division

surface may follow a Boltzmann distribution

Prsurface = exp(−β∆Vsurface)
Z(β) (1.22)

where X(β) normalizes the distribution and beta is the inverse of temperature) in a phenomeno-

logical potential function, rather than actually minimizing the potential function for each cell all
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the time. In the limit of zero temperature such a model is equivalent to minimizing the potential;

nonzero temperatures (finite betas) record departures from minimality. In this analysis we applied

the prior authors’ concept of a thermodynamic model to our data; we applied their model to our

data to see how their potential function ∆V = lp compared with ours (4.5) in a thermodynamic

analysis. We evaluated the Besson & Dumais model against our data, as our model uses straight

lines for cell division and theirs uses arcs of circles. When we evaluated their model we used arcs of

circles. Figure 1.17 supports this hypothesis with quantitative evidence from SAM cell images, both

for our potential function (Equation (4.5) and Figure 1.17a) and for the Besson-Dumais potential

function (Supplement Equation (1.13) and Figure 1.17a), though with a substantially lower effective

temperature for our proposed potential function.

1.3.6 Model Predictions

The minimum fitness results were clustered around a weight vector of w = (0.68, 0.73, 0, 0), where

the four values represent the relative importance of area equalization, length minimization, perpen-

dicularity to cell elongation and perpendicularity to growth direction (Figure 1.14). Variations in

the first component have very little effect,except as w1 → 1, where it becomes rapidly worse for

w1/w2 > 19. The fitness decreases gradually as w3 increases from zero. There were no significant

differences between the different types of fitness measure. All of our fits in the primary cluster indi-

cate that the third component in w is zero. This indicates that neither geometrical elongation nor

instantaneous direction of growth (as measured over a two-hour period) are significant predictors

of cell division. A second cluster of minima occurs around (0.02, 0.81, 0.58, 0) in the case where

cp = 0 in (1.12) corresponding to cell extension. No significant change was observed in changing the

constant cp corresponding to cell growth direction, nor with any change with any change observed

when the constant cL in (1.11) was changed.

This result would, indeed, suggest that when the different predictors are dissociated in this manner,

that the best predictor is the shortest length wall that passes near the center. This prediction is very

similar to the modern interpretation of Errera’s rule that the wall will form in the shortest path that

divides the cell in half. To compare these statements, the predicted wall location according to this

rule were computed for all 207 cell divisions. The distribution of fitnesses for a potential function

minimization with w = (0.68, 0.73, 0, 0) was slightly better than for the modern interpretation of

Errera’s rule (Figure 1.16). Thirteen of the 14 worst cases were the same cells for both methods.
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Figure 1.16: Comparison of predictions between the length-minimization potential, and the Besson-
Dumais model. Dotted lines: actual new wall. Solid lines: predicted new wall.

Visually there is very little difference between the two methods of prediction. Using a distance

fitness measure, the potential method gave a better fit in 68 of the 207 cell division, the modern

interpretation of Errera’s method in 40 cases, and both had identical fitnesses in two cases. In the

hindsight model the numbers were 36 (Errera) 2 (tie), and 72 (potential).

Simulation results for both the modern interpretation of Errera’s model and the optimized potential

model are illustrated in Figure 1.15 after 1000 cell division have occurred (see also the movies in

supplemental material 4 and 5). The tissues were grown in-silico from single quadrilateral cells and

projected onto a parabolic surface. The resulting cell division patterns in both cases are evocative

of observed data.
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1.3.7 Comparison to the Besson-Dumais Model

We evaluated the Besson-Dumais model on our data set by calculating the most likely wall location

from among all allowed wall locations, where a wall location was allowed if its endpoints subtend

a minimum central angle, as measured from the cell centroid, of 135 degrees (a restriction we have

justified by the histogram in Figure 1.8c). In Figure 1.17 we compare the results of our model with

the Besson-Dumais model. In order to make a valid comparison we computed the loghistogram of

|∆V |, the difference between the predicted and actual potential used by the cell, for each model. For

our model we plotted the log-histogram of |∆V |, where V is computer by (4.5) and for the Besson-

Dumais model we plotted the log-histogram of |∆V | where V = l/p. In each case we computed the

weighted least squares fit:

logN = a|∆V |+ b (1.23)

where the slope b and intercept a are solutions of the normal equations

〈|∆V |2〉 |∆V |
|∆V | 1


a
b

 =

6 |δV | logN〉

〈logN〉

 (1.24)

The expectations are computed by defining a normalized weight vector w = 1
N n, where n is the

vector of counts in each bin, and N =
∑
ni. Then

〈|∆V |〉 =
∑

wi|∆V |i (1.25)

〈|∆V |〉 =
∑

wi|∆V |2i (1.26)

〈|∆V | logN〉 =
∑

wi|∆V |i logni (1.27)

〈| logN |〉 =
∑

wi logni (1.28)

The negative of the slope corresponds to inverse temperature, the parameter β in the Besson-Dumais

model. As can be seen the resulting distributions are similar. The corresponding fits (the straight

lines in Figures 1.17 A and B) have slope -10.4 (Besson-Dumais) and -62.1 (Potential Model). When

a similar least squares fit was computed without the weighting the corresponding slopes were -9.0
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(Besson-Dumais) and -45.9 (Potential Model). By comparison, the similar empirical fits by Besson-

Dumais of a Boltzmann distribution with energy function VBD = l/p, on their data in their figure

6B for four species (Coleochaete, Microsorum, Dionaea, and Zinnia) resulted in a slope of with

a “universal” or cross-species best fit slope β of 20.6. This difference of results for the potential

function VBD may be accounted for by the different ways we and Besson-Dumais use the same

potential function. Besson-Dumais consider just a few cell division surfaces between pairs of cell

sides, allowing arcs; we consider straight lines, specified by two continuous intersection angles finely

discretized into 10000 angle pairs, and restricted by central angle as above. Thus, in the direct

comparisons that have been made, we find a substantially lower effective temperature 1/β and thus

substantially less randomness, using our proposed potential function rather than that of Besson-

Dumais.

1.4 Discussion

Previous work in this field has shown that rules must exist to control the positioning of new cell

walls in the meristem in order to produce the patterns (size, shape, and connectedness) that are

observed[43, 56]. Here we determined that the rules are not simple, and in fact the rules seem to

be different depending on the location in the meristem. This might be a result of flower founder

cells changing their “preferred” division polarity prior to the rapid growth characteristic of flower

primordia. This is similar to the observation in vegetative meristems of pea plants where leaf founder

cells often divide periclinally (parallel to the surface of the meristem) about one half plastochron

before primordial growth where non-founder cells would usually divide anticlinally (perpendicular

to the surface)[58, 59]. This is different than the phenomenon observed in Arabidopsis inflorescence

meristems where periclinal divisions are not observed, but similar in that the divisions which don’t

abide by the modern interpretation of Errera’s rule or our potential minimization rule are found

preferentially near the edge, possibly in regions of flower founder cells. One explanation for the

deviation from the rules near the perimeter of the meristem is that it helps make the elongated cells

commonly observed in the boundary region of new primordia.

Explanations for these rules get more complicated when we consider the underlying mechanisms

controlling plant cell divisions. Prior to cell division actin filaments and microtubules expand out-

ward from the nuclear to the cellular membrane, in a pattern that resembles a concentric spoked

wheel[60]. Following this, the region defined by the ends of the spokes develops the preprophase

36



Figure 1.17: Comparison of our model with that of Besson and Dumais [9]. Histograms show
log|∆V |, the difference between the predicted and actual potential used by the cell, for each model.
The negative of the slope corresponds to inverse temperature, and the parameter β in the Besson-
Dumais model.
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band of microtubules, which defines the position of the new cell wall. If the shape of the spoked

wheel is then perturbed somewhat from circular, and the inner wheel is perturbed somewhat from

the center of mass, we have an oblong cell with an off-center nucleus. Presuming that multiple

spokes grow outward from the inner wheel, starting at the same time, the first spokes to reach the

outer wheel will be the ones that have to travel the shortest distance. Reaching the outer membrane

will induce a change in tensile forces and this could be transmitted as a signal back to the nuclear

end of the spoke. In this model a new cell wall would be represented by the first two spokes to reach

the outer wall, together with a collection of filaments tangent to inner circle (e.g., near the nuclear

membrane) that connect them. At this point the full PPB has not coalesced yet and the filaments

of the new proto-wall are free to increase their tension, forming into a more smoothly aligned curve

that connects the two endpoints, perhaps tangent to the inner circle or even forming a straight

line.

This argument would support a model in which shortest distance paths that pass close to the cell

nucleus dominate (as suggested by a weight vector heavily dominated by the length potential).

Since lines that pass through the center of the cell will, on the average, divide the cell in half, a rule

stating that a new wall be the shortest path that divides the cell in half will emerge as a consequence.

Furthermore, since the shortest distance from a point (e.g., the nucleus) to a line (e.g., the outer cell

wall) is along a perpendicular path, Sachs’ observation that new walls are perpendicular to existing

walls and daughter cells are equal in volume[13] will also emerge. Finally, since the principal axis of

elongation is, by definition, the longest axis of the cell, there paths will cluster about the shortest

path normal to the principal axis that passes through (or nearly through) the cell center. Thus

Hofmeister’s Rule[11] is also emergent.

Nevertheless, the modern interpretation of Errera’s rule is a poor predictor in a number of cases.

In many of these cases the actual wall forms closer to the longest wall that divides the cell in half

rather than the shortest. This may indicate that additional dynamic forces are involved in these

cells that are not accounted for by a minimum length heuristic.

The model of shortest path that passes nearly through the cell center thus eliminates the need for

the cellular machinery to somehow “sense” either the cellular orientation (elongation) or direction of

growth. That biomechanical forces could affect the growth of the microtubules is nevertheless likely,

perhaps changing their growth rate or causing a preferential growth direction. This could possibly

explain the cases in which none of the traditional rules are followed.
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It should be noted that this study only considered the first layer of cells in the meristem which have

a uniform thickness and divide only periclinally. More could be learned about the mechanisms of

cell division if divisions were observed in tissues that divide in all directions and the images were

processed in 4D (3D z-stacks over time) using the methods of Fernandez et. al., for example[60].

Such a study would be indicative of how universal or narrow our rules are throughout plant tissues in

general. Additional studies should also look at how cell divisions planes are affected by mechanical

perturbations of the tissue prior to division.
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