Chapter 8

Iodide-Mediated Gaseous Ozone Oxidation of Aerosol Bromide and Chloride as a Possible Source of Gaseous Marine Halogens

Sections reprinted with permission from Enami, S.; Vecitis, C. D.; Cheng, J.; Hoffmann, M. R.; Colussi, A. J. *Journal of Physical Chemistry A* **2007**, *111*, 8749-8752. © 2007 American Chemical Society

Abstract

A few gaseous bromine molecules per trillion (ppt) cause the complete destruction of ozone in the lower troposphere during the polar sunrise and about half of the losses associated with the 'ozone hole' in the stratosphere. Recent field measurements of BrO in the free troposphere suggest an even more global role of atmospheric bromine. Models quantifying ozone trends by assuming atmospheric inorganic bromine (Br_y) stems exclusively from long-lived bromoalkane gases significantly underpredict BrO measurements. This discrepancy implies a tropospheric background level of ~ 4 ppt Br_y of unknown origin. Here we report that I' efficiently mediates the oxidation of Br⁻ and Cl⁻ in aqueous droplets exposed to gaseous ozone. Br⁻ and Cl⁻, which are kinetically unreactive towards O₃ in comparison to Γ , and were previously deemed unlikely direct precursors of atmospheric halogens, are readily converted into IBr₂⁻ and ICl₂⁻ in the presence of Γ and gaseous ozone. Fine sea salt aerosol particles (r < 1 micron) are reported to be enriched in Γ and Br⁻ and may be a global source of photoactive gaseous halogen compounds in the atmosphere even in the absence of sunlight.

Introduction

Bromine critically affects atmospheric ozone at all altitudes, playing a crucial role in the ozone depletion events (ODEs) observed in the polar lower troposphere during early spring¹⁻³. Despite its lower abundance, bromine is 45–70 times more efficient than chlorine as a catalyst of stratospheric ozone depletion⁴. The mechanism of atmospheric bromine production from its primary seawater bromide source is not fully understood⁵. It has been generally assumed that gaseous inorganic bromine (Br_y) is released in the stratosphere by the short wavelength photolysis of long-lived source gases, such as biogenic methyl bromide and anthropogenic halons⁶. However, recent field (surface station, balloon, and satellite) BrO measurements, which are broadly consistent with each other, significantly exceed model predictions based on those BrO source assumptions^{7–9} The implication is that some Br_y is directly delivered to the free troposphere, possibly carried by sea salt aerosol itself^{8,10–12}. Marine aerosols appear to be plausible vehicles for halogen activation since a fraction of the sea spray aerosols are fine (r < 1 micron) particles that remain suspended long enough to undergo chemical processing.

Polar ODEs require the presence of appreciable levels (≥ 10 ppt) of rapidly photolyzable Br₂(g) in the boundary layer at the end of the polar winter night¹³⁻¹⁵. Since ODEs are also observed under pristine Antarctic conditions, the conversion of marine Br⁻ into Br₂(g) should involve an oxidant that persists in the dark, such as O₃. The inertness of Br⁻ and Cl⁻ towards O₃ is circumvented in sea salt as compared to NaCl and NaBr alone¹⁶. That significantly more Br₂(g) is emitted from sea salt than from pure NaBr exposed to O₃(g) implies that Br⁻ oxidation is catalyzed or mediated by a minor component of the sea salt¹⁷. I⁻ is one viable sea salt component since it reacts at diffusioncontrolled rates with ozone. Halogen activation may also occur to some extent on the surface of sea ice, which has been reported to catalyze a number of atmospherically relevant reactions.

The enrichment of seawater anions such as Br⁻ and I⁻ in fine marine aerosol particles would be expected to enhance the possible halogen activation^{18–20}. Relative anion populations, f_i , at the interface of droplets produced from equimolar solutions were recently shown to increase exponentially with ionic radius r_i , i.e.: $f_i \propto \exp(\beta r_i)$, $f_{\Gamma}/f_{Br^-} =$ 5.2, $f_{Br^-}/f_{C\Gamma} = 3.4$.²¹ This correlation reveals that anion fractionation at the air/water interface is simply another manifestation of the Hofmeister effects generally observed at aqueous interfaces in contact with less polarizable media.²² The enrichment of Br⁻ and I⁻ in fine aerosol particles of greater surface-area-to-volume ratios would be expected to enhance oxidation kinetics by ozone, which partitions weakly to the aqueous phase from the gas phase, via reactions at the air-water interface.

We investigated this possibility in laboratory experiments where the reaction products of aqueous halide droplets sprayed into an $O_3(g)$ plume are monitored via online electrospray mass spectrometry (ESMS) of the evaporated anions (Figure 6.1).

Small drops are usually charged, even when produced by fragmentation of electrically neutral liquids, due to statistical fluctuations that scale with (drop size)^{-1/2} ²³. For example, submicron marine aerosol drops are, on average, negatively charged²⁴. Water evaporation regulated by ambient relative humidity will eventually shrink the suspended droplets, subsequently increasing electrostatic repulsion among excess surface charges. Coulomb explosions may ensue if charge density is great enough and highly charged droplets lose interfacial charge and mass into smaller droplets²⁵. These events, if

replicated by the subsequent droplets, generate small particles that are enriched (i.e., net enrichment $\propto (f_i)^m$, where *m* is the number of successive Coulomb explosions) in Br⁻ and I⁻. This mechanism provides a physicochemical (i.e., abiotic)^{1,26} explanation for anion enrichment in aerosol particles, as well as for its inverse dependence on particle size and statistical variations among individual particles of similar size¹⁹. Anion enrichment may also be partially due to droplet acidification resulting in protonation and then gasification of the weaker acids. Smaller particles drawing mass and surface charge from larger units is consistent with observations that Br⁻ is enriched in submicron particles while depleted in larger specimens².

Figure 8.1a shows the extent of Γ oxidation in aqueous NaI microdroplets injected in O₃(g) gas mixtures at atmospheric pressure. Interfacial Γ concentration decreases by ~ 50% after exposure to $[O_3(g)] \approx 100$ ppm for ≈ 1 to 10 ms (i.e., Γ reacts with O₃ with an apparent pseudo-first-order rate constant, $k^{I} \sim 10^{3} \text{ s}^{-1}$, that can be formally calculated from the reaction rate constant in bulk solution: $k^{II}(\Gamma + O_3)_{aq} = 1.2 \times 10^{9} \text{ M}^{-1} \text{ s}^{-1} \text{ }^{28}$, and $[O_3(aq)] \sim 1 \ \mu\text{M}$ (from Henry's law constant $\text{H} = 0.01 \text{ M} \text{ atm}^{-1}$ for O₃ in water at 298 K). Γ oxidation proceeds at rates R_{-1}^{-1} given by: $R_{-1}^{-1} \propto [\Gamma]^n [O_3(g)]$. The actual *n* value may be obtained from the fact that at steady state: $\text{IF}[\Gamma] - [\Gamma] \tau^{-1} - \text{k}_{\text{R}} [\Gamma]^n [O_3(g)] = 0$, where $\text{IF}[\Gamma]$) is the Γ inflow to the reaction zone, i.e., the intersection between the droplets and the O₃(g) plumes in Figure 6.1, τ is the transit time through this zone, k_{R} the overall reaction rate constant, and *n* the effective kinetic order of $[\Gamma]$ in eq. 8.1²⁹. Since: $\text{IF}[\Gamma] - [\Gamma]_0 \tau^{-1} = 0$ at $[O_3(g)] = 0$, a plot of $([\Gamma]_0 - [\Gamma])/[\Gamma]^n$ vs. $[O_3(g)]$ should be linear. The data of Figure 8.1a are linearized provided that $\langle n \rangle = 0.67 \pm 0.03$ in the range $1 \le [\text{NaI}]/\mu\text{M} \le 30$ ($[\Gamma] = 0.5 \ \mu\text{M}$ in seawater) (Figure 8.1b). In this context $0.5 \le \langle n \rangle \le 1$ is an empirical parameter

that encodes the competition between mass transfer and chemical reaction at the gasliquid interface. We actually verified that $\langle n \rangle \rightarrow 1$ as $[\Gamma] \rightarrow 500 \ \mu$ M, as expected for a surface-specific gas-liquid reaction^{30,31}. From these experiments, we estimate that it takes ~ 40 minutes to oxidize 50% of the iodide contained in microdroplets suspended in typical ~ 40 ppb (parts per billion) atmospheric O₃(g) concentrations. R_{I} is independent of bulk pH in the range 4.0 to 7.0. However, this calculation assumes that ozone is only reacting with Γ in the aerosols, which is a poor assumption given that a similar or greater concentration of more surface-active organics that will also react at diffusion-controlled rates with ozone will be found in the marine aerosols.

The simultaneous detection of iodate, IO_3^- (m/z = 175), and triiodide, I_3^- (m/z = 381), as products of I⁻ oxidation by O₃ in this system implies that their putative precursor, the HOI intermediate formed in eq. 8.1

$$I^{-} + O_3 + H^{+} = HOI + O_2$$
 (8.1)

also has a reactive half-life shorter than ~ 1 to 10 ms. This finding is, however, at odds with estimates based on bulk solution kinetic data and conditions. From $k^{II}(HOI + O_3)_{aq} =$ $3.6 \times 10^4 \text{ M}^{-1} \text{ s}^{-1} \text{ s}^2$, $k^{II}(HOI + I^- + H^+)_{aq} = 4.4 \times 10^{12} \text{ M}^{-2} \text{ s}^{-1} \text{ s}^3$, $[O_3(aq)] \sim 1 \mu M$, $[I^-] \sim 10 \mu M$, at pH ~ 7 we estimate HOI half-lives toward oxidation by O₃ ($t_{1/2} = 19 \text{ s}$) and reaction with Γ ($t_{1/2} = 0.16 \text{ s}$) that are significantly longer than 1 ms. As expected from Scheme 8.1, the $[IO_3^-]/[I_3^-]$ ratio is an increasing function of $[O_3(g)]$ (Figure 8.2). Relative interfacial anion concentrations were derived from ESMS signal intensities S corrected by the response factors: $[IO_3^-]/[I^-] = 0.80 \times S(IO_3^-)/S(\Gamma)$, and $[I_3^-]/[\Gamma^-] = 0.76 \times S(I_3^-)/S(\Gamma)$, determined under present experimental conditions. Note that the detected I_3^- , which is presumably involved in the fast equilibrium: $I_2 + \Gamma \leftrightarrow I_3^-$ ($K_{eq} = 740 \text{ M}^{-1}$), must actually desorb from microdroplets in which [I⁻] necessarily exceeds the μ M range. Thus, while I⁻ is oxidized to HOI immediately after the droplets enter the O₃(g) plume, subsequent chemistry takes place in the increasingly concentrated aqueous media resulting from rapid solvent evaporation due to high (10 L/min) and hot (250° C) dry N₂ cross-flows ²⁵. Similar conditions are expected to develop, albeit at a slower pace, in the marine aerosol as they rise into the dry atmosphere³⁴. IO₃⁻ and I₃⁻ yields calculated from interfacial I⁻ losses (m/z = 127) circumstantially exceed unity, revealing that interfacial layers are competitively replenished with I⁻ from the droplets core. These results suggest that the rates and mechanisms of chemical reactions at aerosol interfaces cannot be directly inferred from those in bulk solution³⁵.

We confirmed that aqueous Br⁻ and Cl⁻ are inert toward O₃ under present conditions, in line with reported rate constants $k^{II}(Br^{-} + O_3)_{aq} = 248 \text{ M}^{-1} \text{ s}^{-1} \text{ s}^{-1}$, and $k^{II}(Cl^{-} + O_3)_{aq} = 0.1 \text{ M}^{-1} \text{ s}^{-1}$, that are $\geq 10^7$ times smaller than $k^{II}(l^{-} + O_3)_{aq}$ in bulk solution. However, ozonation experiments performed on (NaI + NaBr) and (NaI + NaCl) solutions readily yield the trihalide anions IBr₂⁻ and ICl₂⁻ (Figures 8.3a and 8.3b). IBr₂⁻ and ICl₂⁻ production rates increase with [O₃(g)] (Figure 8.4) while Br⁻ inhibits I⁻ depletion and depresses IO₃⁻ and I₃⁻ formation (Figure 8.5). IBr₂⁻ and ICl₂⁻ are, therefore, the products of Br⁻ and Cl⁻ oxidation by I-containing intermediates, such as HOI or the primary adduct I-OOO⁻, that are considerably more reactive than O₃. Since rate constants for the reactions of halide anions with HOI are similar ($\Gamma \sim Br^- \sim 10 \text{ Cl}^{-}$)³⁶ the huge selectivity of the stronger oxidizer O₃ for Γ vs. Br⁻/Cl⁻ is counterintuitive. Note that spin conservation requires the formation of excited O₂(¹Δ_g) in eq. 8.1. This restriction is more likely to be lifted by I⁻ than by Br⁻ or Cl⁻ via heavy atom enhancement of crossing rates into the triplet manifold that leads to ground state $O_2({}^{3}\Sigma_g)^{37}$. By mitigating spin conservation constraints, eq. 8.1 becomes the gateway to the Γ -mediated production of Br₂ (and Cl₂) from sea salt (Scheme 8.1). The efficiency of this cycle (i.e., the [Br₂]/[IO₃⁻] ratio) is expected to be a direct function of [Br⁻]/[O₃] at the droplets interface. Since Cl⁻ will always be present in large excess ([Cl⁻]/[Br⁻]/[I⁻] = $1.1 \times 10^{6}/1680/1$ in seawater) sea salt particles exposed to O₃(g) will generate IBr₂⁻ and ICl₂⁻ rather than I₃⁻, depending on actual interfacial halide and [O₃(g)], and some Br⁻ will remain even after extensive atmospheric processing. Scheme 8.1

Present experiments and analysis suggest that I may be the 'minor component' that enhances O₃ uptake and concomitant Br₂ formation in sea salt.¹⁷ The iodide-mediated oxidation cycle in Scheme 8.1 qualifies as the previously unidentified dark process that may liberate dihalogens such as IBr(g), ICl(g), or even $Cl_2(g)$ and $Br_2(g)$ from sea salt into the boundary layer during the polar winter night¹⁵. The accumulation of these species on aerosol surfaces or in the atmosphere would prime the sudden destruction of O_3 at polar sunrise due to their quick photolysis $(\tau_{1/2} \sim 1 \text{ to } 2 \text{ min})^1$. The proposed mechanism of marine halide ozone oxidation should operate over the oceans worldwide, rather than just around coastal regions, at rates that may be locally modulated by wind speed, relative humidity, and atmospheric ozone concentration⁸. The fast halogen activation rates demonstrated by our experiments may exceed aerosol transport rates. In summary, fine marine aerosols are expected to be naturally enriched in I and Br, and the oxidation of these species by reactive gases such as ozone may release gaseous halogen species into the atmosphere even in the absence of sunlight. Further experiments will be completed to evaluate this process under more environmental conditions.

Figures

Figure 8.1. Normalized iodide concentrations $[\Gamma]/[\Gamma]_0$ vs. $[O_3(g)] A$) (\checkmark): 1 μ M. (\bullet): 10 μ M. (\blacktriangle) : 30 μ M NaI) droplets. B) Linearized plot of the data of Figure 8.1a. See text. (\checkmark): 1 μ M; (\bullet): 10 μ M; (\bigstar) : 30 μ M NaI

Figure 8.2. $[IO_3^-]/[I_3^-]$ ratio as function of $[O_3(g)]$. (\mathbf{V}): 1 μ M; (\mathbf{O}): 10 μ M; (\mathbf{A}) :30 μ M NaI. The straight line corresponds to a linear $[IO_3^-]/[I_3^-]$ vs. $[O_3(g)]$ dependence

Figure 8.3. Aqueous NaBr-NaI or NaCl-NaI and $O_{3(g)}$ reaction products. A) Negative ion mass spectra of aqueous (10 µM NaI + 100 µM NaBr) droplets. **Blue trace**: Mass spectrum in 1 atm N₂. Peak 1: m/z = 127 (I⁻). Peak group 2: m/z = 181, 183, and 185 (NaBr₂⁻). **Red trace**: Mass spectrum in [840 ppm O₃(g) + 1 atm N₂] gas mixtures. Peak X: m/z = 175 (IO₃⁻). Peak group Y: m/z = 285 (I⁷⁹Br⁷⁹Br⁻), m/z = 287 (I⁷⁹Br⁸¹Br⁻), m/z = 289 (I⁸¹Br⁸¹Br⁻). Peak Z: m/z = 381 (I₃⁻). B) Negative ion mass spectra of aqueous (10 µM NaI + 10 mM NaCl) droplets. **Blue trace**: mass spectrum in 1 atm N₂. Peak 1: m/z = 127 (I⁻). Peak group 2: m/z = 151, 153, 155, and 157 (Na₂Cl₃⁻). Peak group 3: m/z = 209 to 217 (Na₃Cl₄⁻). **Red trace**: mass spectrum in [690 ppm O₃(g) + 1 atm N₂] gas mixtures. Peak X: m/z = 175 (IO₃⁻). Peak group W: m/z = 197 (I³⁵Cl³⁵Cl⁻), m/z = 199 (I³⁵Cl³⁷Cl⁻), m/z = 201 (I³⁷Cl⁻³⁷Cl⁻)

Figure 8.4. Aqueous NaBr-NaI or NaCl-NaI and $O_{3(g)}$ reaction products vs. $[O_{3(g)}]$. (\blacktriangle): m/z = 287 ($I^{79}Br^{81}Br^{-}$) from ([NaI] = 10 μ M + [NaBr] = 5 mM) droplets. (\triangledown): m/z = 197 ($I^{35}Cl^{35}Cl^{-}$) from (10 μ M NaI + 10 mM NaCl) droplets

Figure 8.5. Aqueous NaBr-NaI and NaI and $O_{3(g)}$ reaction products vs. $[O_{3(g)}]$. (\circ): experiments in 10 μ M NaI. (\bullet): experiments in (10 μ M NaI + 1 mM NaBr). \bigcirc : m/z = 127 (Γ); \triangle : m/z = 175 (IO_3^{-}); \bigtriangledown : m/z = 381 (I_3^{-})

Scheme 8.1. Representation of iodide-mediated ozone oxidation of chloride and bromide

References

(1) Barrie, L. A.; Bottenheim, J. W.; Schnell, R. C.; Crutzen, P. J.; Rasmussen, R. A. *Nature* **1988**, *334*, 138.

(2) Sander, R.; Keene, W. C.; Pszenny, A. A. P.; Arimoto, R.; Ayers, G. P.;
Baboukas, E.; Cainey, J. M.; Crutzen, P. J.; Duce, R. A.; Honninger, G.; Huebert, B. J.;
Maenhaut, W.; Mihalopoulos, N.; Turekian, V. C.; Van Dingenen, R. *Atmos. Chem. Phys.* 2003, 1301.

(3) Yang, X.; Cox, R. A.; Warwick, N. J.; Pyle, J. A.; Carver, G. D.; O'Connor, F.
M.; Savage, N. H. J. Geophys. Res. 2005, 110, D23311.

(4) Sinnhuber, B. M.; Sheode, N.; Sinnhuber, M.; Chipperfield, M. P. Atmos. Chem.*Phys. Discuss.* 2006, 6497.

(5) Simpson, W. R.; Von Glasow, R.; Riedel, K.; Anderson, P.; Ariya, P.;
Bottenheim, J. W.; Burrows, J.; Carpenter, L.; Friess, U.; Goodsite, M. E.; Heard, D.;
Hutterli, M.; Jacobi, H. W.; Kaleschke, L.; Neff, B.; Plane, J.; Platt, U.; Richter, A.;
Roscoe, H.; Sander, R.; Shepson, P. B.; Sodeau, J.; Steffen, A.; Wagner, T.; Wolff, E. *Atmos. Chem. Phys. Discuss.* 2007, *7*, 4285.

(6) World Metereological Organization (WMO), *Global Ozone Research and Monitoring Project, Scientific Assessment of Ozone Depletion: 2002, Report No. 47*;
 Geneva, 2003.

(7) Sioris, C. E.; Kovalenko, L. J.; McLinden, C. A.; Salawitch, R. J.; Van
Roozendael, M.; Goutail, F.; Dorf, M.; Pfeilsticker, K.; Chance, K.; von Savigny, C.; Liu,
X.; Kurosu, T. P.; Pommereau, J. P.; Bosch, H.; Frerick, J. J. Geophys. Res. 2006, 111,
D14301.

(8) Dorf, M.; Butler, J. H.; Butz, A.; Camy-Peyret, C.; Chipperfield, M. P.; Kritten,
L.; Montzka, S. A.; Simmes, B.; Weidner, F.; Pfeilsticker, K. *Geophys. Res. Lett.* 2006,
33, L24803.

(9) Schofield, R.; Johnston, P. V.; Thomas, A.; Kreher, K.; Connor, B. J.; Wood, S.;
Shooter, D.; Chipperfield, M. P.; Richter, A.; von Glasow, R.; Rodgers, D. C. J. Geophys. *Res.* 2006, 111, D22310.

(10) Salawitch, R. J. *Nature* **2006**, *439*, 275.

(11) Salawitch, R. J.; Weisenstein, D. K.; Kovalenko, L. J.; Sioris, C. E.; Wennberg, P.
O.; Chance, K.; Ko, M. K. W.; McLinden, C. A. *Geophys. Res. Lett.* 2005, *32*, L05811.

(12) von Glasow, R.; von Kuhlmann, R.; Lawrence, M. G.; Platt, U.; Crutzen, P. J.*Atmos. Chem. Phys.* 2004, *4*, 2481.

(13) Li, S. M.; Yokouchi, Y.; Barrie, L. A.; Muthuramu, K.; Shepson, P. B.;

Bottenheim, J. W.; Sturges, W. T.; Landsberger, S. J. Geophys. Res. 1994, 99, 25415.

- (14) Foster, K. L.; Plastridge, R. A.; Bottenheim, J. W.; Shepson, P. B.; Finlayson-Pitts, B. J.; Spicer, C. W. *Science* 2001, *291*, 471.
- (15) Hara, K.; Osada, K.; Matsunaga, K.; Iwasaka, Y.; Shibata, T.; Furuya, K. J. *Geophys. Res.* 2002, *107*, D4361.
- (16) Finlayson-Pitts, B. J. Chem. Rev. 2003, 103, 4801.
- (17) Mochida, M.; Hirokawa, J.; Akimoto, H. Geophys. Res. Lett. 2000, 27, 2629.
- (18) Lewis, E. R.; Schwartz, S. E. Sea Salt Aerosol Production: Mechanisms,
 Methods, Measurements and Models—A Critical Review, Vol. Geophysical Monograph
- 152; American Geophysical Union: Washington, D.C., 2004.

(19) Murphy, D. M.; Thomson, D. S.; Middlebrook, A. M. *Geophys. Res. Lett.* 1997, 24, 3197.

Murphy, D. M.; Cziczo, D. J.; Froyd, K. D.; Hudson, P. K.; Matthew, B. M.;
Middlebrook, A. M.; Peltier, R. E.; Sullivan, A.; Thompson, D. S.; Weber, R. J. J. *Geophys. Res.* 2006, 111, D23S32.

(21) Cheng, J.; Vecitis, C.; Hoffmann, M. R.; Colussi, A. J. J. Phys. Chem. B 2006, 110, 25598.

- (22) Pegram, L. M.; Record, M. T. J. Phys. Chem. B 2007, 111, 5411.
- (23) Dodd, E. E. J. Appl. Phys. 1953, 24, 73.
- (24) Reiter, R. J. Geophys. Res. 1994, 99, 10807.
- (25) Kebarle, P. J. Mass Spectrom. 2000, 35, 804.
- (26) Carpenter, L. J.; Hopkins, J. R.; Jones, C. E.; Lewis, A. C.; Parthipan, R.; Wevill,
- D. J. Environ. Sci. Technol. 2005, 39, 8812.
- (27) Simpson, W. R.; Alvarez-Aviles, L.; Douglas, T. A.; Sturm, M.; Domine, F. Geophys. Res. Lett. 2005, 32, L04811.
- (28) Liu, Q.; Schurter, L. M.; Muller, C. E.; Aloisio, S.; Francisco, J. S.; Margerum, D.
 W. *Inorg. Chem.* 2001, *40*, 4436.
- (29) Colussi, A. J.; Baghal-Vayjooee, M. H.; Benson, S. W. J. Am. Chem. Soc. 1978, 100, 3214.
- (30) Davidovits, P.; Kolb, C. E.; Williams, L. R.; Jayne, J. T.; Worsnop, D. R. *Chem. Rev.* 2006, *106*, 1323.
- (31) Hanson, D. R. J. Phys. Chem. B 1997, 101, 4998.
- (32) Bichsel, Y.; von Gunten, U. *Environ. Sci. Technol.* **1999**, *33*, 4040.

- (33) Eigen, M.; Kustin, K. J. Am. Chem. Soc. 1962, 84, 1355.
- (34) Gao, Y.; Chen, S. B.; Yu, L. E. Atmos. Environ. 2007, 41, 2019.
- (35) Hunt, S. W.; Roeselova, M.; Wang, W.; Wingen, L. M.; Knipping, E. M.; Tobias,
- D. J.; Dabdub, D.; Finlayson-Pitts, B. J. J. Phys. Chem. A 2004, 108, 11559.
- (36) Vogt, R.; Sander, R.; von Glasow, R.; Crutzen, P. J. J. Atmos. Chem. 1999, 32, 375.
- (37) Muñoz, F.; Mvula, E.; Braslavsky, S. E.; von Sonntag, C. J. Chem. Soc. Perkin Trans. 2 2001, 1109.
- (38) Bruchert, W.; Helfrich, A.; Zinn, N.; Klimach, T.; Breckenheimer, M.; Chen, H.;
- Lai, S.; Hoffmann, T.; Bettmer, J. Anal. Chem. 2007, 79, 1714.