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ABSTRACT 
 

Interfaces or phase boundaries are a unique chemical environment relative to 

individual gas, liquid, or solid phases.  Interfacial reaction mechanisms and kinetics are 

often at variance with homogeneous chemistry due to mass transfer, molecular 

orientation, and catalytic effects.  Aqueous interfaces are a common subject of 

environmental science and engineering research, and three environmentally relevant 

aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry 

(bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic 

hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). 

Direct interfacial analysis under environmentally relevant conditions is difficult, since 

most surface-specific techniques require relatively ‘extreme’ conditions.  Thus, the 

experimental investigations here focus on the development of chemical reactors and 

analytical techniques for the completion of time/concentration-dependent measurements 

of reactants and their products.  Kinetic modeling, estimations, and/or correlations were 

used to extract information on interfacially relevant processes. 

We found that interfacial chemistry was determined to be the rate-limiting step to a 

subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic 

cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and 

perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during 

sonolysis was the rate-determining step in transformation to their inorganic constituents 

CO, CO2, and F-; 2) O3(g) oxidation of I-
(aq) to HOI(aq) at the aerosol-gas interface is the 

rate-determining step in the oxidation of Br-
(aq) and Cl-

(aq) to dihalogens; 3) Electrolytic 

formation of >TiOH• groups at the BiOx-TiO2/Ti anode is rate-limiting for the overall 
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oxidation of organics by the dichloride radical, Cl2
•-.  We also found chemistry unique to 

the interface, for example: 1) Adsorption of dilute PFOS(aq) and PFOA(aq) to acoustically 

cavitating bubble interfaces was greater than equilibrium expectations due to high-

velocity bubble radial oscillations; 2) Relative O3(g) oxidation kinetics of I-
(aq) and SO3

2-

/S2O3
2- were at variance with previously reported bulk aqueous kinetics; 3) Organics that 

directly chelated with the BiOx-TiO2/Ti anode were oxidized by direct electron transfer, 

resulting in immediate CO2 production but slower overall oxidation kinetics.  Chemical 

reactions at aqueous interfaces can be the rate-limiting step of a reaction network and 

often display novel mechanisms and kinetics as compared to homogeneous chemistry. 
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