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C h a p t e r 4

EFFECT OF FABRIC ON SHEAR WAVE VELOCITY IN
GRANULAR MATERIALS

[1] U. Mital, R.Y. Kawamoto, and J.E. Andrade. “Effect of fabric on shear wave
velocity in granular materials”. submitted. 2016.

4.1 Introduction
The small-strain elastic shear wave velocity (VS) is a basic mechanical property of
soils and is an important parameter in geotechnical engineering. Together with the
results of standard and cone penetration tests, it helps model the response of geoma-
terials to dynamic loading processes such as earthquakes and vibrations. Recently,
VS has been adopted as one of the indices (in addition to penetration resistance) for
development of liquefaction charts [5, 34, 88]. Liquefaction charts are developed
using the “simplified procedure” and are used to evaluate liquefaction resistance of
soils in earthquake-prone regions [71].

The use of VS as an index to quantify liquefaction resistance is based on the fact
that both VS and liquefaction resistance are similarly affected by many of the same
parameters (such as void ratio, stress state, stress history and geologic age) [5].
Therefore, an understanding of how such parameters affect VS helps in understand-
ing the effect of such parameters on liquefaction resistance of soils. For instance,
the effect of parameters such as relative density, stress state, and geologic age on soil
resistance indices such as VS are accounted for, and consequently their effects are
incorporated in the evaluation of liquefaction resistance [34, 88]. Another impor-
tant parameter whose effect is widely acknowledged to have a significant influence
on liquefaction resistance is grain arrangement, or fabric [34]. Experiments have
shown that the method of sample preparation, or the depositional environment, can
significantly affect soil fabric and cause soils with the same stress states and relative
densities to behave differently [46, 47, 62]. In fact, the effect of fabric has been es-
tablished as a major concern when it comes to testing field samples in the laboratory,
on account of sampling disturbance destroying the grain fabric. Quantification of
in-situ fabric is still an open problem, and hence considerable judgement is needed
in order to map laboratory test results to field conditions.
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Given the effect of fabric on liquefaction resistance, it seems reasonable to expect
that fabric also affects VS. Indeed, Stokoe et al [75] proposed empirical correlations
relating VS to confining stresses where the proportionality constant is believed to be
a function of soil fabric. Micro-mechanical studies have also been conducted that
explore the effect of soil structure or fabric on small-strain shear modulus Gmax,
which is proportional to VS [1, 63, 89]. Such studies are important in order to quan-
tify the effect of fabric while assessing liquefaction resistance.

In this paper, we conduct numerical simulations to investigate the effect of fabric
on shear wave velocity (VS) of soils. We use the ‘level set discrete element method’
(LS-DEM) [39, 41] and show that two granular assemblies, with the same stress
state and void ratio but different fabric, can exhibit different liquefaction behavior.
Subsequently, via a numerical implementation of the bender element test [49, 64,
74], we also obtain different VS estimates for the two assemblies. Our results sug-
gest how fabric can affect both liquefaction behavior and VS of a granular assembly,
suggesting that VS can act as a proxy to account for the fabric effect while eval-
uating liquefaction resistance. We observe a possible correlation between fabric
anisotropy and VS anisotropy, quantification of which could imply that a knowledge
of VS anisotropy in the field would give us insight regarding the micro-mechanical
structure of in-situ soil. For laboratory testing or simulation of soils, this could help
in selection or development of a sample preparation technique that yields a similar
VS anisotropy as that in the field. Furthermore, a comparison of in-situ fabric and
laboratory fabric could aid researchers in more accurately mapping laboratory or
simulation results to field conditions.

4.2 Simulation Methodology
Our numerical investigation was conducted using the ‘level set discrete element
method’ (LS-DEM) [39, 41]. LS-DEM is a variant of the discrete element method
(DEM), which is a numerical method that describes the mechanics of an assembly
of particles [17]. LS-DEM enables an accurate depiction of irregular particle shapes
using level sets. In this work, we used a 2D level set representation of caicos ooid
grains as obtained by Lim et al [52], following the characterization methodology
proposed by Vlahinic et al [83]. The caicos ooid grains were obtained in dimensions
of pixels. These were rescaled assuming a pixel size of 0.10952 mm2, yielding a



48

mean grain area of 5.4 mm2. Thickness of grains was assumed to be 1 pixel length.
Table 4.1 outlines the values of model parameters used in the LS-DEM model. Our
time step was equal to 1.36 µs, which is smaller than the critical time step required
for stable DEM analysis [77].

Table 4.1: Model parameters and values used in the LSDEM model

Model parameters Values
Inter-particle friction 0.3
Wall friction 0
Normal contact stiffness 2.74 × 108 N/m
(Particle and wall)
Particle shear contact stiffness 2.47 × 108 N/m
Particle density 2.7 × 103 kg/m3

Global damping 5 × 103 s−1

Contact damping 0
Time step 1.36 × 10−6 s

Fabric quantification
We quantified fabric using the classic 2nd order fabric tensor based on contact nor-
mals [40]:

Fi j =
1
N

N∑
c=1

nc
i nc

j (4.1)

where nc
i is the i−th component of contact normal at contact c. The fabric anisotropy

A is defined as:
A = 2(F1 − F2) (4.2)

where F1 and F2 are the major and minor principal values, respectively, of the fabric
tensor. The orientation (θF ) of F1 may be used to define the orientation of fabric
anisotropy A. We can use a 2nd order Fourier expansion to obtain the probability
density P(θ) of contact normals [12]:

P(θ) =
1

2π
{1 + A cos 2(θ − θF )} (4.3)

where θ is the orientation of a contact normal. A perfectly isotropic fabric will
be circular in polar coordinates, whereas an anisotropic fabric will tend towards a
‘peanut’ shape.

There are many different ways to quantify fabric. Kuhn et al [45] provides a good
review. The anisotropic stiffness of a granular assembly is inherently linked to the
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directionality of force chains. Therefore, choosing contact normals as a basis for
fabric quantification seems justified.

Granular assembly generation
Our objective here was to obtain two granular assemblies with similar stress states
and void ratio but different fabric. Figure 4.1 summarizes our methodology to ob-
tain an initial assembly. Computational limitations necessitated the use of an un-
conventional approach to assembly generation. An initial assembly of 800 grains
was first developed (explained below) which was duplicated and placed in a 2x2
grid, resulting in 3200 grains. This resulted in clear interfaces visible at the bound-
aries of the individual 800 grain assemblies. To remove the interfaces, the assembly
was first isotropically consolidated to 100 kPa, then a central bin of grains was per-
turbed at an angle of 45 degrees. The inter-particle friction was then temporarily
turned off, and the assembly allowed to relax, resulting in a stress-free assembly
with grains densely packed together. The inter-particle friction was turned back on
and the assembly was isotropically consolidated to 100 kPa.

To obtain the 800 grain assembly, grains were placed in a hexagonal packing such
that no two particles were in contact with each other. The aspect ratio of the packing
was approximately 1:2, with the approximate dimensions being 5 cm × 10 cm. The
assembly was then isotropically consolidated to 5 MPa, then unloaded to 100 kPa,
and then subjected to constant volume biaxial loading to change the aspect ratio to
1:1. The resultant assembly had a predominantly vertical fabric (not shown). The
inter-particle friction was then temporarily turned off, and the assembly allowed to
relax, resulting in a stress-free assembly with grains densely packed together. This
assembly was then duplicated to generate the 3200 grain assembly (as described
above).

The resultant 3200 grain assembly, isotropically consolidated to 100 kPa, was then
subjected to two different loading histories, in order to generate two assemblies
with similar stress states and void ratio, but different fabric anisotropy. The initial
fabric of the assembly is shown in Figure 4.2. We refer to the two assemblies as
‘assembly 1’ and ‘assembly 2’. The loading history for assembly 1 involved simple
shear loading, sheared to an angle of 20 degrees, and subsequently sheared back to
0 degrees. This gave the assembly a pronounced diagonal anisotropy (Figure 4.2),
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800 GRAIN ASSEMBLY 
(2:1 ASPECT RATIO)

800 GRAIN ASSEMBLY 
(1:1 ASPECT RATIO)

3200 GRAIN ASSEMBLY 
(2X2 GRID OF 800 GRAIN 
ASSEMBLY)

3200 GRAIN ASSEMBLY 
(AFTER PERTURBATION)

Figure 4.1: Initial assembly generation

with the fabric oriented at an angle of 34 degrees clockwise with the vertical. The
assembly had a resultant void ratio of e = 0.17, and a stress state of p = 85 kPa,
and q = 30 kPa. Here, p = (σ1 + σ2)/2 is the volumetric stress (or pressure), and
q =

√
(σ2 − σ1)2 + 2σ2

12 is the deviatoric stress. σ1 is the lateral stress, σ2 is the
axial stress, and σ12 is the shear stress.

The loading history for assembly 2 involved two stages of loading to match the
stress state of the first assembly. First stage was isotropic unloading, and second
stage was axial loading at constant lateral stress, resulting in the same p and q as
assembly 1. The fabric anisotropy of the second assembly was predominantly ver-
tical, oriented at an angle of 5 degrees counter-clockwise with the vertical. This
was very similar to the initial assembly, oriented at an angle of 7 degrees counter-
clockwise with the vertical (Figure 4.2). The assembly had a resultant void ratio of
e = 0.15 (which is very similar to the void ratio of assembly 1).
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Figure 4.2: Fabric anisotropies of different assemblies. (a) Initial assembly with A
= 0.19, θF = -7 degrees. (b) Assembly 1 with A = 0.34, θF = 34 degrees, Assembly
2 with A = 0.25, θF = -5 degrees. Here A is fabric anisotropy and θF is fabric
orientation measured clockwise from the vertical, as defined in section 4.2.

4.3 Liquefaction behavior
Liquefaction behavior is associated with undrained, or constant volume loading.
Here, the assemblies were subjected to biaxial loading, with axial compression un-
der constant volume constraint. Results are shown in Figure 4.3. Assembly 2,
whose fabric anisotropy is largely aligned with the direction of axial compression
(vertical) shows stable strain-hardening behavior. However, assembly 1, whose
fabric anisotropy is oriented at angle of 34 degrees to the vertical, shows extensive
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strain-softening associated with liquefaction behavior. Figure 4.3 clearly demon-
strates how two assemblies with the same stress state and void ratio can exhibit
different behavior if their fabric is different.
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Figure 4.3: Liquefaction behavior results. (a) deviatoric stress (q) vs volumetric
stress (p). (b) deviatoric stress (q) vs axial strain (ε2). Assembly 1 exhibits ex-
tensive strain-softening associated with liquefaction behavior, whereas assembly 2
shows stable strain-hardening behavior.

The high strength of assembly 2 is expected in light of contact orientations as visu-
alized in Figure 4.2. A high contact anisotropy in the direction of loading facilitates
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load transmission through the granular assembly, and makes the assembly more
dilatant. [50, 67].

4.4 Shear velocity estimation
Having seen the two assemblies show distinct liquefaction behaviors, we now seek
to estimate the small-strain shear velocities of the two assemblies. From the preva-
lent understanding of VS-based liquefaction correlations, we expect assembly 2 to
have a higher vertical VS than the assembly 1.

Different approaches exist to estimate the shear velocity or shear modulus of a gran-
ular assembly. From a theoretical standpoint, early investigations studied the be-
havior of two equal spheres pressed together by a normal force and then subjected
to a shearing force [56, 57]. Subsequent theoretical investigations considered an
aggregate of equal spheres in a cubic packing [23] and in a face-centered cubic
lattice [26]. Experiments on a rod of steel spheres [26] demonstrated that shear
velocity predictions obtained from theories of perfect spheres can not be expected
to agree closely with experiments on real granular soils. Early experimental inves-
tigations to study wave propagation in sands involved the ‘resonant-column test’
[30, 35]. This test subjected a vertical column of sand to longitudinal or torsional
oscillations. More recently, an alternate experimental technique called the ‘bender
element test’ [49, 74] was developed. Over the years, the bender element test has
gained popularity owing to its simplicity and ease of use, and has also been imple-
mented numerically using the discrete element method [54, 64, 65]. This makes the
numerical bender element test an excellent candidate to estimate shear velocities in
our granular assemblies.

Numerical bender element test
The bender element test consists of a transmitter element that generates a shear
wave, and a receiver element that detects the transmitted disturbance. We chose a
bin of particles as the transmitter element. In simulations, as opposed to experi-
ments, it is possible to know the displacement of each particle. Therefore, instead
of having a single particle act as a receiver, we tracked the shear displacement for a
central column of grains (away from the boundaries) along the entire length of the
assembly (denoted by grains colored with a black to white gradient in Figure 4.4).
This simplified the analysis as it became convenient to identify shear waves. The
assembly was discretized into bins with approximate dimensions 40 × 40 pixels,



54

or 4.4 × 4.4 mm2. We plotted two-dimensional contours of the central column of
particle displacements along the direction of propagation. In the contour plot, the
zero crossings of the received signals were clearly visible as a distinct contour line.
The average slope of this line was then taken as the shear wave velocity [65]. Figure
4.5 shows the bender element test results for an 800 grain assembly, isotropically
consolidated to 50 kPa. The transmitter bin was the bottom-most bin of the central
column. The slope of the zero contour line yielded a shear velocity estimate of VS

= 202 m/s.

TRANSMITTER 
BIN

CENTRAL COLUMN 
WITH RECEIVER BINS

Figure 4.4: Illustration of how shear displacement is tracked for a central column
of grains. The central column is denoted by grains that are colored with a black to
white gradient.

We used a square wave input with a rise time of 100 time steps and amplitude of 1
pixel. A square wave is a robust input signal that contains all the frequencies [49].
A drawback of the square wave is that the system response necessarily exhibits a
‘near-field’ effect due to faster moving compressional waves [68]. As a result, it
is often not straightforward to determine the arrival of the shear wave. Although
the point of first inflection is sometimes considered to be a fair estimate of shear
wave arrival [82], research suggests that the arrival of the shear wave does not
correspond to a distinctive point in the signal [54]. Various signal interpretation
techniques exist to aid in estimating shear wave velocity in an experimental bender
element test[65, 87]. For our purpose, since we have access to displacement of each
particle, we tracked the shear displacement for a central column of grains along the
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Figure 4.5: Shear velocity estimate for the assembly in Figure 4.4. The blue line
in the contour plot in (b) is the average slope estimate for the zero crossing of the
received signal, yielding VS = 202 m/s. 1 bin ≈ 40 × 40 pixels, 1 pixel length =

0.1095 mm, 1 time step = 1.36 µs.

entire length of the assembly. Note that the area on the contour plot between the
initial noise and the zero contour line corresponds to the near field effect.

Verification exercise
In order to verify our implementation of the bender element test, we also estimated
the shear wave velocity VS by calculating Gmax in a biaxial test. The two quantities
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are related as:

VS =

√
Gmax

ρ
(4.4)

where ρ is the density of the granular assembly. To measure Gmax, an assembly in
an isotropic stress state can be subjected to an axial strain of 10−4. This value of
strain coincides with the value of ‘threshold strain’, as defined by Dobry et al [25].
The threshold strain is the strain value till which all the deformations in the gran-
ular assembly can be assumed to be elastic. In our 3200 grain assembly, isotropic
consolidation also resulted in shear stresses on the walls, typically of the order of
about 1% of the confining pressure. Such a small amount of shear stress was suffi-
cient to generate non-linear stress-strain curves, which disabled the approximation
of elastic constants. Therefore, we resorted to the smaller 800 grain assembly, pre-
pared as described in section 4.2. When the smaller assembly was consolidated to
a pressure of 50 kPa, shear stresses on the wall were negligible (∼ 0.2% of confin-
ing pressure). Axial loading to threshold strain yielded a linear stress-strain curve
(Figure 4.6), making it suitable for computing Gmax, and consequently VS, enabling
a comparison with the VS estimate obtained in Figure 4.5.

Following the approach by O’Donovan et al [64], we conducted a biaxial stress at
constant lateral stress, till an axial strain of 10−4 was achieved. As shown in Figure
4.6, the plot of deviator stress q vs axial strain ε2 is a straight line. The slope of
the plot, which is within the limit of threshold strain, yields the elastic Young’s
Modulus E:

E =
dq
dε2

= 237 MPa (4.5)

where dq is the increment in deviatoric stress, and dε2 is the increment in axial
strain. Note that deviatoric stress q = σ2 − σ1. Furthermore, by monitoring the
lateral strain ε1, we also obtained the poisson’s ratio ν, as shown in Figure 4.6:

ν =
−dε1

dε2
= 0.21 (4.6)

where dε1 is the increment in lateral strain. Gmax was then calculated as:

Gmax =
E

2(1 + ν)
= 97.9 MPa (4.7)

To obtain VS, we need the density ρ of the granular assembly, which was calculated
as:

ρ =
ρgrains × Agrains

Atot
= 2.33 × 103 kg/m3 (4.8)
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Figure 4.6: Biaxial test at constant lateral stress for the 800 grain assembly, up to
an axial strain corresponding to threshold value of 10−4. (a) deviator stress vs axial
strain, yielding an elastic Young’s modulus of 237 MPa. (b) Lateral strain vs axial
strain, yielding a poisson’s ratio of 0.21.

where ρgrains = 2.7 × 103 kg/m3 is the density of grains as specified in Table 4.1,
Agrains = 4.3 × 103 mm2 is the total area of grains in the assembly, and Atot = 4.99
× 103 mm2 is the total area of the assembly. Finally using equation 4.4, the shear
velocity was found to be VS = 205 m/s, which is in good agreement with the VS

estimate obtained in Figure 4.5.

Shear Velocity results
Once verified, we used the numerical bender element test technique to obtain VS

estimates for the two 3200 grain assemblies. The assemblies were discretized into
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bins with similar dimensions as those specified in Figure 4.5, and the transmitter
bin was perturbed horizontally with a square input wave, that had the same rise
time and amplitude as in the 800 grain example used for verification. Since VS is
a proxy for liquefaction resistance, it is reasonable to expect that in the vertical
direction, assembly 1, which showed extensive strain-softening associated with liq-
uefaction, should have a lower vertical VS than assembly 2, which exhibited stable
strain-hardening behavior. We consider VS in the vertical direction since that is the
direction in which the two assemblies were subjected to axial compression. Subse-
quently, we also estimate VS in different directions to investigate the correlation of
anisotropy of VS with the fabric.

Figure 4.7 shows contour plots with average slope estimates, for the 3200 grain as-
sembly 1 and 3200 grain assembly 2. For these plots, the transmitter bin was not
the bottom-most bin of the central column. Different locations of the transmitter
bin along the central column yielded slightly different VS estimates, owing to the
inherent heterogeneity of the assembly. Therefore, multiple tests (at least three)
were simulated with transmitter bins placed at different locations along the central
column in order to obtain statistical estimates of VS.

It is possible that our technique of assembly generation induced significant hetero-
geneities in the grain fabric. For certain tests, contour plots did not yield distinct
contour lines corresponding to zero crossing. Figure 4.8 shows one such test, where
there is a high signal dissipation resulting in the lack of a distinct contour line be-
yond the first few receiver bins. A distinct contour line is necessary in order to
estimate its average slope, and consequently VS. While estimating the slope, we
considered a subset of the contour line to ensure that the average slope line (dashed
blue line in Figures 4.5 and 4.7) passes the transmitter bin near the time step corre-
sponding to initiation of the input wave.

Table 4.2 shows the test results for VS in the vertical direction for assemblies 1 and
2, along with the computed mean values. The paucity of results for assembly 1 is
due to the fact that a lot of tests produced contour plots similar to those in Figure
4.8, and were unable to yield VS estimates. The statistics show that on average,
estimates of vertical VS for assembly 2 are higher than those of assembly 1. Table
4.2 clearly shows that the difference in liquefaction resistance of assemblies 1 and
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Figure 4.7: Contour plots for transverse displacement. (a) assembly 1. (b) assembly
2. The dashed blue line on the plots is the average slope estimate for the zero
crossing of the received signal, which yields a VS estimate (110 m/s for assembly 1
and 148 m/s for assembly 2). 1 bin ≈ 40 × 40 pixels, 1 pixel length = 0.1095 mm,
1 time step = 1.36 µs.

2 (as shown in Figure 4.3), is also accompanied by a difference in their vertical VS.
The assembly that is resistant to liquefaction shows a higher vertical VS, something
that is also expected from the current understanding of VS-based liquefaction corre-
lations [34, 88].
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Figure 4.8: Contour plot for transverse displacement, for assembly 1 with transmit-
ter at bin 7. Note the high signal dissipation and the lack of a distinct contour line
beyond the first few receiver bins, which disables a VS estimation. 1 bin ≈ 40 × 40
pixels, 1 pixel length = 0.1095 mm, 1 time step = 1.36 µs.

Table 4.2: Test results for VS in the vertical direction for assemblies 1 and 2

Bin location Assembly 1 Assembly 2
(Transmitter) VS (m/s) VS (m/s)

1 - 113
2 - -
3 115 -
4 - -
5 - -
6 - 122
7 - -
8 - 148
9 110 142
10 105 136
11 - 126

Mean 110 131

Correlation of VS anisotropy with fabric anisotropy

In addition to obtaining estimates for vertical VS for assemblies 1 and 2, we also
obtained estimates for VS in different directions. This was done to investigate a pos-
sible correlation between anisotropy of shear-stiffness or VS and fabric anisotropy.
We conducted an ‘angle sweep’, i.e., we conducted tests where the transmitter bin
was sheared at an angle to the horizontal to transmit a shear wave at an angle.
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Figure 4.9 illustrates one such test configuration. The central column (denoted by
grains with a black to white gradient) which acted as the receiver was inclined, or
rotated, at the same angle with the vertical. Furthermore, the transmitter bin was
placed away from the boundaries to prevent wave reflections from corrupting the
test results. As observed for vertical VS estimates, different locations of the trans-
mitter bin along the central column yielded slightly different VS estimates, owing to
the inherent heterogeneity of the assembly. Therefore, multiple tests (at least three)
were simulated with the transmitter bin placed at different locations along the cen-
tral column to obtain statistical estimates of VS. As with the vertical VS tests, not all
tests yielded contour plots with distinct contour lines corresponding to zero cross-
ing. For the ‘angle sweep’, the inclination angle θ of the central column was varied
from (−90,90] degrees, in increments of 30 degrees. The angle is positive when
measured clockwise from the vertical. This yielded VS estimates for the entire rota-
tion of 360 degrees since the central column is the same for rotation of θ and θ + 90
(degrees). Figure 4.10 shows the results of the ‘angle sweep’ for assemblies 1 and 2.

TRANSMITTER BIN

SHEAR INPUT 
DIRECTION

Figure 4.9: Illustration of how VS estimates are obtained in different directions. The
central column (denoted by grains that are colored with a black to white gradient)
is rotated at a desired angle with the vertical. The transmitter bin is located in the
central column and is sheared perpendicular to the inclination of the central column.

A comparison of anisotropic VS estimates for assembly 1 (Figure 4.10a) with its
fabric anisotropy (Figure 4.2b) suggests a strong influence of contact anisotropy on
VS. Assembly 1 has the majority of contacts aligned at angle of 34 degrees from
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Figure 4.10: Results of VS ‘angle sweep’, giving estimates of VS in different di-
rections. (a) Assembly 1, (b) Assembly 2. Left: Polar plot with the radius corre-
sponding to VS, and angle corresponding to angle with vertical (clockwise). Right:
Linear plot of VS vs angle with vertical. The error bars correspond to one standard
deviation.

the vertical, and also has the highest VS in the corresponding orientation, suggesting
a strong dependence of shear-stiffness on contact normals. This is not surprising,
since the assembly was subjected to simple shear loading (section 4.2), causing the
contacts to preferentially align along the principal direction of loading.

The anisotropic VS estimates for assembly 2 (Figure 4.10b) do not seem to corre-
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late well with its fabric anisotropy (Figure 4.2b). There is an anomalous peak in
VS at a direction of 60 degrees counter-clockwise from the vertical. While a de-
tailed investigation of this anomaly is beyond the scope of current work, a cursory
investigation suggests a plausible answer. Firstly, it may be noted from Figure 4.2
that while generating assembly 2, the change in fabric from the initial configuration
was minimal. Therefore, as opposed to assembly 1, assembly 2 did not experi-
ence large-scale destruction and creation of contacts. Secondly, we investigated the
fabric anisotropy of increasingly strong contacts. A strong contact is one whose
contact force is higher than the mean contact force of the assembly [12]. Interest-
ingly, for the initial assembly, the fabric anisotropy of the ten strongest contacts
was largely aligned with the horizontal (Figure 4.11a). Furthermore, the fabric
anisotropy of the 10 strongest contacts for assembly 2 was aligned at about 20
degrees counter-clockwise from the vertical (Figure 4.11b). Such anomalous orien-
tation of the strongest contacts was not prevalent in assembly 1 (not shown). This
suggests the possibility of assembly 2 having contacts with high compressive forces
along the horizontal axis as well as along 60 degrees counter-clockwise from the
vertical, which contributed to the high stiffness and consequently high VS estimates
in those directions. Since our fabric quantification did not account for the magni-
tude of contact forces, the aforementioned contacts were averaged out. It is possible
that a more sophisticated fabric estimate that can better capture this effect.
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Figure 4.11: Fabric anisotropies of the ten strongest contacts. (a) Initial assembly
with A = 0.43, θF = 97 degrees. (b) Assembly 2 with A = 1.38, θF = -20 degrees.
The small lobe perpendicular to the main lobe is a numerical artifact caused by
using the Fourier fit as defined in equation 4.3. Here A is fabric anisotropy and θF
is fabric orientation measured clockwise from the vertical, as defined in section 4.2.
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4.5 Conclusions
Figure 4.3 shows that the two 3200 grain assemblies behave differently under con-
stant volume biaxial compression. Table 4.2 shows that the two assemblies also
have different vertical VS estimates, with the strain-hardening assembly having a
higher vertical VS than the strain-softening assembly. In addition, Figure 4.10 shows
that the two assemblies also yield distinct anisotropic estimates of VS. Although
there is some uncertainty in measurements of VS, the trends are clear. Both as-
semblies have the same initial stress state characterized by the volumetric stress p,
deviatoric stress q, as well as a similar void ratio e. The only difference is fab-
ric, which we quantify on the basis of contact normals. This suggests that while
assessing liquefaction potential in the field, VS might serve as a suitable proxy to
estimate not just the prevailing stress state and relative density, but also the pre-
vailing soil fabric. Our results suggest the existence of a correlation between VS

anisotropy and fabric anisotropy—a correlation that can be explored with more de-
tailed micro-mechanical investigations. Such investigations may benefit by the use
of periodic boundary conditions. Results of such future investigations could imply
that a knowledge of VS anisotropy in the field would give us insight regarding the
micro-mechanical structure of in-situ soil. For lab testing or simulation of soils,
this could help in selection or development of a sample preparation technique that
yields a similar VS anisotropy as that in the field. Furthermore, a comparison of in-
situ fabric and laboratory fabric could aid researchers in more accurately mapping
laboratory or simulation results to field conditions.
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