
11

C h a p t e r 2

MECHANICS OF ORIGIN OF FLOW LIQUEFACTION
INSTABILITY UNDER PROPORTIONAL STRAIN TRIAXIAL

COMPRESSION

[1] U. Mital and J.E. Andrade. “Mechanics of origin of flow liquefaction in-
stability under proportional strain triaxial compression”. In: Acta Geotech-
nica (2016), pp. 1–11. doi: 10.1007/s11440-015-0430-8. url: http:
/ / link . springer . com / article / 10 . 1007 / s11440 - 015 - 0430 -
8/fulltext.html.

2.1 Introduction
Liquefaction is a field-scale phenomenon, typically associated with earthquake-
induced shaking, that causes a loss of strength of saturated cohesionless granular
media. It can lead to catastrophes such as landslides, tilting and settlement of build-
ings, and failure of dams, bridges, and retaining walls [27]. Typically, liquefaction
can be divided into flow liquefaction and cyclic mobility [27, 44]. The US National
Academy of Science’s National Research Council [27] defined flow liquefaction as,
“the condition where a a soil mass can deform continuously under a shear stress less
than or equal to the static shear stress applied to it.” Flow liquefaction is the more
devastating manifestation of liquefaction that can lead to field-scale catastrophes.
Cyclic mobility, on the other hand, is a more benign form of liquefaction which
does not lead to loss of stability.

Although primarily associated with earthquakes, flow liquefaction has been shown
to occur under both static and dynamic loading [36, 44, 48, 79]. It occurs when the
shear stress required for static equilibrium of a soil mass is greater than the shear
strength of the soil in its liquefied state [44]. Given its consequences, it is important
to not only understand this phenomenon, but also what causes it in the first place.
Although progress has been made in understanding the macro and micro mechanics
at the onset of flow liquefaction instability [3, 19, 20, 22, 42, 66], our understand-
ing of the origin of this phenomenon is still incomplete. For instance, why are
loose sands susceptible to flow liquefaction under undrained conditions [44]? How
much increase in pore pressure is sufficient to induce liquefaction, and why does
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the amount vary under different initial conditions [44]?. In addition, it is usual to
assume that flow liquefaction instability occurs under completely undrained or con-
stant volume conditions. However, there is evidence [27, 53, 69, 84] to suggest that
soil may undergo volume changes during earthquake shaking. Under static loading,
a soil may be experiencing volume changes due to unequal pore pressure generation
in adjacent soil layers of different densities [80, 84]. Flow liquefaction under such
conditions cannot be attributed to constant volume deformations. Our central ob-
jective is to address the aforementioned issues by investigating the origins of flow
liquefaction instability under proportional strain triaxial compression conditions.

We start by defining a flow liquefaction potential for determining flow liquefaction
susceptibility during proportional strain triaxial compression. A proportional strain
triaxial test is one in which the imposed volume change (or the imposed dilatancy)
is proportional to the axial strain on the soil specimen. If the volume is imposed
to be constant (isochoric strain compression), then the test becomes an undrained
triaxial test [21]. The flow liquefaction potential is a function of inconsistency be-
tween the natural dilative tendency of the soil and the imposed dilatancy during
proportional strain triaxial compression. Such a potential has been used previously
[21]. Previous works also imply that [19–22, 42] that given the right conditions,
a loose soil that contracts during drained triaxial compression and liquefies under
undrained triaxial compression may be stable under proportional strain triaxial com-
pression. Conversely, a dense soil that dilates during drained triaxial compression
and is stable under undrained triaxial compression may liquefy under proportional
strain triaxial compression. The undrained loose case is a special case of propor-
tional strain triaxial compression under which a soil can liquefy. By analyzing the
defined flow liquefaction potential, we provide an interpretation about the micro-
mechanics at play which make a soil susceptible to flow liquefaction. Furthermore,
we also analyze stress evolution during proportional strain triaxial compression and
discuss the mechanics of the test leading up to flow liquefaction instability. We
arrive at a necessary precursor for instability, which can serve as a warning sign for
flow liquefaction instability under proportional strain triaxial compression, whilst
the soil is still stable. It is important to note that the precursor is not a condition
of sufficiency and should also not be confused with the onset of instability itself.
The same loading must be applied continuously to induce flow liquefaction insta-
bility. This provides further insight into the mechanics of origin of flow liquefaction
instability under proportional strain triaxial compression.
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2.2 Soil response under proportional strain triaxial compression
In a proportional strain triaxial compression test, the volumetric strain increment
is proportional to the axial strain increment. The undrained triaxial compression
test is a special case where the proportion is equal to zero, resulting in a constant
volume test. The behavior of soil under proportional strain triaxial compression can
be either ‘stable’ or ‘unstable’. Figure 2.1 presents a typical response of soil under
proportional strain triaxial compression conditions.
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Figure 2.1: Effective stress paths of stable and unstable sands under proportional
strain triaxial compression. The total stress path (TSP) and critical state line (CSL)
are also sketched for reference. A = start, B = Instability, C = phase transformation,
D = critical state. In unstable sands, points C and D are often indistinguishable [36].
A′, C′, and D′ are the corresponding points in a stable sand.

Instability or unstable behavior is characterized by loss of deviatoric strength when
a soil is subjected to deviatoric strain increments. In case of an undrained triaxial
test on a loose sand, this loss of deviatoric strength coincides with the vanishing of
second order work, which has been shown to be associated with bursts in kinetic
energy and extensive strain softening [19, 22]. This is accompanied by a large pore
pressure build up. Under proportional strain triaxial conditions, however, loss of
deviatoric strength and vanishing of second order work do not necessarily coincide.
To that effect, some investigators have proposed an alternate response parameter
whose peak coincides with the vanishing of second order work [19, 20, 22, 42]. In
any case, experimental and numerical results of the aforementioned investigators
also suggest that along with the vanishing of second order work, loss of deviatoric
strength is also a necessary condition for flow liquefaction under proportional strain
conditions in a triaxial test. We will briefly discuss the alternate response parameter
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in section 2.4. Presently, for the sake of simplicity, we consider the deviatoric stress
as a response parameter in our work. Once the soil specimen reaches the peak in
effective stress space (characterized by peaking of deviatoric stress), it advances to
flow liquefaction failure, assuming that the same loading path is applied continu-
ously. Therefore, a necessary condition for unstable flow liquefaction behavior can
be expressed as:

q̇ < 0 (2.1)

where q̇ is the deviatoric invariant of the stress rate tensor.

In case of stable behavior, the soil specimen may initially exhibit behavior remi-
niscent of a loose sand under undrained triaxial compression. However, before the
soil specimen reaches the peak in effective stress space, it undergoes a phenomenon
called ‘phase transformation’ [36], whereby it starts exhibiting behavior reminis-
cent of a dilative sand under undrained triaxial compression. This phenomenon
ostensibly provides stability, whereby the pore water pressure build-up and strain
softening are kept in check.

In what follows, σ̇ is the stress increment tensor and ε̇ is the strain increment tensor.
We use subscripts a and r to denote the axial and radial components respectively.
ṗ = (σ̇a + 2σ̇r )/3 and q̇ = (σ̇a − σ̇r ) are the volumetric and deviatoric invariants
of stress increment (σ̇), respectively. ε̇v = (ε̇a + 2ε̇r ), and ε̇ s = 2(ε̇a − ε̇r )/3 are the
volumetric and deviatoric invariants of strain increment (ε̇), respectively.

2.3 Flow Liquefaction Potential
In order to determine whether the behavior of a soil specimen under proportional
strain triaxial compression will be stable or unstable, we define a flow liquefaction

potential L. For a soil to be susceptible to unstable flow liquefaction behavior, we
postulate that:

L > 0 (2.2)

Conversely, for stable soil behavior, we postulate that L < 0. The condition when
L = 0 will be discussed later. We define the functional form of L as:

L = β − βp (2.3)

where β is the natural dilative tendency of the soil specimen, and βp is the imposed

dilatancy on the specimen during proportional strain triaxial compression. Natural
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dilative tendency may be defined as the volume change that a soil specimen must
undergo such that pore pressure does not evolve. The natural dilative tendency of a
soil specimen can be determined from its behavior under fully drained conditions.
A soil that contracts during drained triaxial compression has β > 0, while a soil
that dilates during drained triaxial compression has β < 0. On the other hand,
imposed dilatancy is the volume change imposed on a soil specimen during a pro-
portional strain triaxial test, which is normally different from the natural dilative
tendency and leads to an evolution in pore pressure. Equation 2.3 is similar to a
liquefaction potential defined by Darve and Pal [21]. While Darve and Pal [21] de-
rived the potential using ideas from continuum plasticity, it will become apparent
that our potential has been derived by considering imposed radial strain increments.

Mathematically, natural dilative tendency β can be defined as [85]:

β =
ε̇v
ε̇ s

(2.4)

where we have assumed elastic strain increments to be negligible. We define im-
posed dilatancy βp as:

βp =
ε̇

p
v

ε̇
p
s

(2.5)

where the superscript p denotes imposed proportional strain triaxial compression.
Note that for imposed dilatancy, we are concerned with total strain increments.

We now take a closer look at drained and proportional strain triaxial compression
in order to understand why L > 0 makes a soil susceptible to flow liquefaction
instability.

Drained Triaxial Compression
Drainage of pore water ensures that pore pressures do not evolve. It also implies
that the granular assembly undergoes changes in volume. Using the definition of
β, volumetric strain increment ε̇v can be expressed as a function of shear strain
increment ε̇ s:

ε̇v = βε̇ s (2.6)

Using the definitions of ε̇v and ε̇ s from section 2.2, we can obtain the radial strain
increment ε̇r consistent with the natural dilative tendency of the assembly, given an
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applied axial strain increment ε̇a:

ε̇r = αε̇a =: ε̇d
r (2.7)

where α is function of natural dilative tendency β:

α =
2β − 3
2β + 6

(2.8)

Note that α < 0. This is because soil has a positive poisson’s ratio, implying
that compressing the granular assembly in the axial direction will make it expand
or stretch out in the radial direction. We have assumed the usual geomechanics
convention of compression being positive.

Proportional Strain Triaxial Compression
However, in a proportional strain triaxial compression test, the volumetric strain in-
crement ε̇v is constrained to be proportional to the axial strain increment ε̇a. Equiv-
alently, we may say that given an applied axial strain increment ε̇a, the radial strain
increment ε̇r is:

ε̇r = αpε̇a =: ε̇ p
r (2.9)

where αp may or may not be constant. For simplicity, it is often imposed as a
constant. It may be noted that αp is similar to R defined in literature [19–22, 42].
Several investigators have devised experimental programs whereby for axisymmet-
ric conditions prevalent in a triaxial test, such strain paths can be imposed [15, 19,
80]. For a saturated sample, volume changes imposed during such strain paths can
be associated with injection or extraction of water in the soil sample [20], such that
the drainage is incompatible with that during a drained test, leading to pore pressure
variation. Such a test has also been referred to as a partially drained test in the past
[80].

In any case, the relation between αp and βp is same as the relation between α and β

(equation 2.8). Therefore, by inverting equation 2.8, the imposed dilatancy βp can
be obtained as a function of αp:

βp =
3(1 + 2αp)
2(1 − αp)

(2.10)

The undrained test is a special case where αp = −1/2, yielding βp = 0.
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We are now in a position to understand how the flow liquefaction potential L can
help in evaluating flow liquefaction susceptibility of a soil subjected to proportional
strain triaxial compression. Using equation 2.10, L can be expressed as a function
of α and αp:

L =
9(α − αp)

2(1 − α)(1 − αp)
(2.11)

Note that a positive poisson’s ratio implies α < 0. In addition, proportional strain
triaxial compression tests are conducted such that αp < 0. Therefore, the denomi-
nator in equation 2.11 above is a positive quantity. This means that:

sign(L) = sign(α − αp) (2.12)

Equivalently, since both α and αp are negative:

sign(L) = sign(|αp | − |α |) (2.13)

For a soil to be susceptible to flow liquefaction during proportional strain triaxial
compression, we postulated that L > 0. This implies that given an axial strain
increment ε̇a, the radial strain increments for proportional ε̇ p

r and drained ε̇d
r triaxial

compression are related as:
|ε̇

p
r | > |ε̇

d
r | (2.14)

where we have used equations 2.7 and 2.9. Equation 2.14 implies that the im-
posed proportional radial strain increment is more expansive than the drained ra-
dial strain increment. Micro-mechanically, this may be interpreted as soil grains
pushing outwards and spreading more intensely than the natural dilative tendency.
This increases the load on pore water, causing pore water pressure to rise during
proportional strain triaxial compression, making the assembly susceptible to flow
liquefaction.

Conversely, for a soil to exhibit stable behavior during proportional strain triaxial
compression, we postulated that L < 0. This implies that given an axial strain
increment ε̇a, the radial strain increments for proportional (ε̇ p

r ) and drained (ε̇d
r )

triaxial compression are related as:

|ε̇
p
r | < |ε̇

d
r | (2.15)

Equation 2.15 implies that the imposed proportional radial strain increment is less
expansive than the drained radial strain increment. Micro-mechanically, this may
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be interpreted as soil grains pushing outwards less intensely than the natural dilative
tendency. The grains tend to coalesce together, creating a pulling or suction effect
on the pore water, that causes pore water pressure to fall during proportional strain
triaxial compression, making the assembly stable. See Figure 2.2 for a cartoon of
the discrepancy in radial strain increments for both L > 0 and L < 0.

ǫ̇a ǫ̇a

ǫ̇d
r

ǫ̇d
r

ǫ̇p
r

UNSTABLE ASSEMBLY STABLE ASSEMBLY

(NOT TO SCALE)

L > 0 ⇒ θ̇ > 0 L < 0 ⇒ θ̇ < 0

Figure 2.2: Cartoon showing the mismatch between the imposed proportional (ε̇ p
r )

and the drained (ε̇d
r ) radial strain increments, given an axial strain increment (ε̇a). In

an unstable assembly,L > 0, which means that the imposed radial strain increments
are more expansive than the natural dilative tendency. As a result, soil grains push
outward and spread more intensely than the natural dilative tendency. This increases
the load on pore water, causing pore water pressure to rise (θ̇ > 0). Conversely, for
a stable assembly, L < 0, which means that soil grains push outwards less intensely
than the natural dilative tendency. The grains tend to coalesce together, creating a
pulling or suction effect on the pore water, which causes pore water pressure to fall
(θ̇ < 0).

Undrained Triaxial Compression
As we mentioned earlier, undrained triaxial compression is a special case of pro-
portional strain triaxial compression where βp = 0, implying L = β. Therefore, a
soil that contracts during drained triaxial compression (β > 0) is susceptible to flow
liquefaction under undrained triaxial compression, whereas a soil that dilates dur-



19

ing drained triaxial compression (β < 0) exhibits stable behavior under undrained
triaxial compression.

Discussion
It is important to note that given the right conditions, a loose soil that contracts dur-
ing drained triaxial compression and liquefies under undrained triaxial compression
may be stable under proportional strain triaxial compression. Conversely, a dense
soil that dilates during drained triaxial compression and is stable under undrained
triaxial compression, may liquefy under proportional strain triaxial compression.
Such loading conditions can occur in the field when there are soil layers of differ-
ent densities adjacent to each other. Susceptibility to flow liquefaction instability is
determined not by the sign of β, but by the sign of L. Depending on the imposed
βp, the sign of L can change. Figure 2.3 shows how negative (or expansive) values
of βp increase L, while positive (or contractive) values of βp reduce L. It just so
happens that during undrained triaxial compression, since βp = 0, the sign of β
determines the sign of L. Stable response of loose sands and unstable response of
dense sands under proportional strain triaxial compression have been observed in
experimental and numerical studies in the past [15, 19–22, 42, 80]. Note that L > 0
signifies a potential to liquefy. It does not sufficiently imply occurrence of flow liq-
uefaction. Sustained loading with L > 0 is necessary for the soil to encounter flow
liquefaction instability. Finally, note that L = 0 implies that the imposed dilatancy
βp on the soil specimen is equal to the natural dilative tendency β of the assem-
bly. If such a situation arises, the specimen will behave as if under drained triaxial
compression, and pore pressure will not change.

2.4 Necessary precursor for onset of flow liquefaction instability
As mentioned in the introduction, the central objective of this paper is to investigate
the origins of flow liquefaction instability. We do so by analyzing the phenomenon
under proportional strain triaxial compression. We discussed that if L > 0, then
the imposed radial strain increment is more expansive than the drained radial strain
increment, which has the effect of increasing the pore pressure. However, it is well
known that rise in pore pressure is necessary but not sufficient to cause flow lique-
faction instability. For instance, in the case of a dense sand subjected to undrained
triaxial compression, pore pressure initially rises, but following phase transforma-
tion, L < 0 and pore pressure falls. To address this issue, we now analyze the
stress evolution during proportional strain triaxial compression and arrive at a nec-
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Figure 2.3: Dilative tendencies of loose and dense sand during drained triaxial com-
pression. A = start, C = Phase Transformation, D = Critical state. The primes in-
dicate similar stages for dense sand. β > 0 indicates contraction during drained
triaxial compression, β < 0 indicates dilation during drained triaxial compression.
Proportional strain triaxial compression imposes a volume change that is inconsis-
tent with the natural dilative tendency. If βp = 0, a loose soil is susceptible to flow
liquefaction while a dense soil exhibits stable behavior. For βp < 0, even a dense
soil can become susceptible to flow liquefaction. For βp > 0, even a loose soil can
exhibit stable behavior.

essary precursor for the origin of flow liquefaction instability. This provides further
insight into the mechanics of origin of flow liquefaction instability under propor-
tional strain triaxial compression. We first consider the special case of an undrained
triaxial compression test, for which the onset of flow liquefaction instability (equa-
tion 2.1) can be expressed as a function of total axial (σ̇a) and radial stress (σ̇r)
increments, as well as effective axial (σ̇′a) and radial stress (σ̇′r) increments:

q̇ < 0 ⇒ σ̇a − σ̇r < 0 ⇒ σ̇′a − σ̇
′
r < 0 (2.16)

Boundary condition imposes constant total radial stresses (σ̇r = 0). This implies:

σ̇′r = ��̇σr − θ̇ ⇒ σ̇′r = −θ̇ (2.17)

where θ̇ is the pore pressure increment. The instability criterion can now be ex-
pressed as:

σ̇′a + θ̇ < 0 (2.18)

Note that L > 0 implies θ̇ > 0. Therefore, we need σ̇′a < 0 to satisfy the above
equation. We now arrive at a necessary precursor for flow liquefaction instability
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during undrained triaxial compression:

σ̇′a < 0 (2.19)

Equation 2.19 suggests that during an undrained triaxial compression test, a soil
specimen may encounter flow liquefaction instability only if it is undergoing a re-
duction in effective axial stress, hereby referred to as axial softening. Prevalence of
axial softening prior to onset of instability has been documented in the past [21].

Remark 1: It must be noted that equation 2.19 by itself is necessary but not a
sufficient condition for flow liquefaction instability under proportional strain triaxial
compression. It is possible for the assembly to be softening axially, yet still be
stable. As long as q̇ > 0, an assembly will be stable despite axial softening. Onset
of axial softening can be thought of as a warning sign. If the same loading is applied
continuously (sufficiency condition) despite axial softening (necessity condition),
then as long as L > 0, pore pressure will continue to rise and onset of instability
is inevitable. If loading conditions are changed such that L < 0, pore pressure will
drop and the soil will exhibit stable behavior. Also, note that in this context, axial
softening should not be confused with the vanishing of hardening modulus as in
elasto-plasticity theory.

Remark 2: It must also be noted that not all soils are capable of existing in liquefi-
able states. Clays, for instance, are inherently non-liquefiable [44]. Axial softening
in clays should not be taken as a precursor to flow liquefaction instability. Care
must be taken to ensure that the soil in question satisfies the compositional criteria
[44] that make it capable of existing in a liquefiable state.

Geometrical argument for necessity of σ̇′a < 0

To get a more geometrical perspective of equation 2.19, we refer to Figure 2.4a
that shows the evolution of various stress parameters, when a sand is subjected to
undrained triaxial compression such that L > 0. Note that for q̇ = 0, we need
σ̇′a = σ̇′r . This means that we need the slopes of σ′a and σ′r to be equal. From
equation 2.17, we know that the slope of σ′r is always negative. Therefore, the only
way the two slopes can be equal is if the slope of σ′a becomes negative at some
point.
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Figure 2.4: Undrained triaxial compression behavior when L > 0. A = start, P =

Precursor to instability (q̇ ≤ θ̇, σ̇′a ≤ 0), B = Instability, D = Critical State. (a)
Evolution of total and effective axial and radial stresses. Before P: σ̇′a > 0. After
P: σ̇′a < 0. (b) Evolution of deviatoric invariant q and pore pressure θ. Before P:
q̇ > θ̇. After P: q̇ < θ̇.

Extension to proportional strain triaxial compression test
As mentioned earlier, some investigators [19, 20, 22, 42] prefer the use of an al-
ternate response variable to mark the onset of instability for a proportional strain
triaxial test. The alternate response variable can be expressed as ξ = σ′a + 2αpσ

′
r

such that ξ̇ = 0 coincides with the loss of second order work and marks the onset
of flow liquefaction instability; here αp < 0 and is defined in section 2.3. Un-
der undrained conditions, ξ reduces to q. Since the total radial stress is constant,
σ̇′r = −θ̇ and it can be easily shown that even for ξ̇ < 0 to be true, σ̇′a < 0 is a
necessary precursor. Therefore, σ̇′a < 0 is a necessary precursor for onset of flow
liquefaction stability in a proportional strain triaxial compression test.

Excess pore pressures
Since σ̇r = 0, we get q̇ = σ̇a. We can thus express σ̇′a as:

σ̇′a = q̇ − θ̇ (2.20)

Axial softening (σ̇′a < 0) implies:

q̇ < θ̇ (2.21)

Equation 2.21 presents an alternative form of the necessary precursor for flow liq-
uefaction instability under proportional strain triaxial compression. It suggests that
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axial softening or loss of effective axial stress occurs when the pore pressure in-

crement is greater than the increment in deviatoric strength (Figure 2.4b). Note
that as long as q̇ > θ̇, pore pressure rise will be in check and there will be no ax-
ial softening. This can be also be seen in the experimental results of Castro [13].
Mathematically, equations 2.19 and 2.21 are equivalent. Also, note that while de-
riving equation 2.21 from equation 2.19, we did not make any assumptions about
the imposed strain path. Therefore, equation 2.21 holds for any proportional strain
path in a triaxial test, not just the isochoric (or undrained) strain path.

Discussion
We belabor the importance of equation 2.19 (or 2.21) with some historical perspec-
tive. We refer to Figure 2.4. In the past, liquefaction was analyzed at point D.
Thereafter, the concept of flow liquefaction instability was defined whereby point
B was thought to be crucial to understanding liquefaction. The instability concept
has proven to be very useful and a lot of progress has been made in understanding
the macro and micro mechanics at the onset of flow liquefaction instability [3, 19,
20, 22, 42, 66]. Now, we propose that significance should also be given to point P
since attainment of point P is a necessary precursor for getting to point B, assuming
the same loading is applied continuously (sufficiency condition). The concept of a
precursor has potential to further improve our understanding of origin of flow lique-
faction. For instance, equation 2.21 sheds some light on the stable behavior of soil
when L < 0 (such as dilative assemblies under undrained conditions). In such as-
semblies, pore pressures drop (θ̇ < 0). Since the assembly continues to strengthen,
q̇ > θ̇ is always true and the necessary precursor for onset of instability is not met.

Remark 3: Note that the proposed necessary precursor is only applicable under
idealized condition of proportional strain triaxial compression. An understanding
of the physics underlying the origin of flow liquefaction instability under idealized
conditions provides us with motivation to look for precursors to instability under
different loading conditions, such as soil subjected to constant deviator stress load-
ing, or a soil under more complex and general field conditions. Such a concept
could prove to be very useful while monitoring static liquefaction in the field such
as slope stability and landslides.

Remark 4: Although Figure 2.4 assumes an isotropic initial state of stress, the
result should apply to anisotropic initial state of stress as well, since no assump-
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tions were made about the initial stress state. However, in the case of an anisotropic
initial stress state, it is possible that the soil may be susceptible to spontaneous liq-
uefaction, whereby there is a rapid drop in deviator stress at the onset of undrained
or proportional strain loading (e.g. [80]). In such a case it may not be possible to
detect the aforementioned precursors. Although equations 2.19 and 2.21 will still
be satisfied, they may not be able to serve as precursors or warning signs.

2.5 DEM Simulations
The objective of this section is to present simulation results to support our analysis.
To that effect, we performed discrete element method (DEM) simulations. DEM is
a numerical model that describes the mechanics of an assembly of particles [17].
We’ll first briefly describe the contact model and then describe our simulations.

Description of the contact model
Figure 2.5 shows the schematics of the model employed to describe the contact
between two particles. The microscopic constants used in the simulations are sum-
marized in table 2.1.

Normal 
Spring Dashpot

No-tension Joint

Tangential 
Spring

Shear Slider

Rolling Spring

Rolling 
Slider

NORMAL CONTACT TANGENTIAL CONTACT ROLLING CONTACT

Figure 2.5: DEM contact model

The simulations were modeled after [29]. We employed the MechSys programming
library to implement our DEM simulations.

Simulations
We simulated a polydisperse assembly of 1290 particles. The radii of the particles
were uniformly distributed within a range of 0.05 to 0.5 cm. We simulated loose
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Table 2.1: Microscopic constants used in the simulations.

Constant Description

Kn = 5000 kN/m Contact normal stiffness
Kt = 2500 kN/m Contact tangential stiffness
µ = 0.3 Microscopic friction coefficient
Gn = 0.16 s−1 Normal viscous coefficient
Gt = 0.0 s−1 Tangential viscous coefficient
ξ = 0.12 Rolling resistance stiffness
η = 1.0 Plastic moment coefficient

assemblies and dense assemblies. All assemblies were prepared by subjecting a
virgin assembly to isotropic consolidation under drained conditions. Loose assem-
blies were obtained by isotropically consolidating an assembly to 100 kPa. Dense
assemblies were obtained by isotropically consolidating an assembly to 700 kPa
and then unloading it back to 100 kPa (giving us an over-consolidated assembly).
All tests were conducted using dry spheres. Drained triaxial compression condi-
tions were approximated by imposing a constant total radial stress (σr = 100 kPa),
and subjecting the assembly to axial strain increments. Proportional strain triaxial
compression conditions were simulated by subjecting the assembly to an imposed
dilatancy βp, wherein the radial strain increment is proportional to the axial strain
increment. Equivalent pore pressures were inferred using equation 2.17.

Results
Figure 2.6 shows the stress-path of ‘loose’ and ‘dense’ soil under drained and
undrained triaxial compression conditions. Undrained triaxial compression is a spe-
cial case of proportional strain triaxial compression where the imposed dilatancy
βp = 0. As expected, under undrained triaxial compression, loose sands exhibit
unstable behavior, whereas dense sands exhibit stable behavior.

In addition to undrained triaxial compression, we also simulated proportional strain
triaxial compression tests with an imposed dilatancy of (i) βp = 0.6, and (ii)
βp = −0.43. We verify that given the right conditions, a loose soil that lique-
fies under undrained triaxial compression, may be stable under proportional strain
triaxial compression. Conversely, a dense soil that is stable under undrained triaxial
compression may liquefy under proportional strain triaxial compression. Figure 2.7
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Figure 2.6: Evolution of stresses in the four sets of assemblies. UL: undrained
loose, UD: undrained dense. Note the occurrence of instability and phase transfor-
mation in the UL and UD assemblies respectively.

shows the volume change or natural dilative tendency β of the ‘loose’ and ‘dense’
assemblies under drained triaxial compression. In addition, it also shows the im-
posed dilatancy βp during proportional strain triaxial tests. Note that for βp = 0.6,
the flow liquefaction potential L reduces for both loose and dense assemblies. Con-
versely, for β = −0.43, L increases for both assemblies. The imposed dilatancy
line forms a datum from which one can determine L. If L > 0, pore pressures
rise. If L < 0, pore pressures drop. Figure 2.7 also shows that the loose sample has
a much higher susceptibility for liquefaction, something well known from experi-
mental observations, but that can be clearly quantified by measuring the dilatancy
inconsistency β − βp, which we call the flow liquefaction potential L. L helps to
visualize how a dense sample can become susceptible to liquefaction, and how a
loose sample can exhibit stable behavior.

Figure 2.8 shows the behavior of ‘loose’ and ‘dense’ assemblies under proportional
strain triaxial compression. As expected from Figure 2.7, βp = 0.6 stabilizes the
assemblies, while βp = −0.43 makes them unstable.

Finally, we demonstrate the plausibility of axial softening (or reduction of effective
axial stress) as a necessary precursor for onset of instability. Figure 2.9 shows the
evolution of total and effective axial and radial stresses for an unstable assembly.
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Figure 2.7: Natural dilative tendency (β) in loose and dense assemblies vs imposed
dilatancy (βp). DL: drained loose, DD: drained dense. Note the inconsistency of
βp with β. For βp = 0.6, the flow liquefaction potential L reduces for both loose
and dense assemblies. Conversely, for β = −0.43, L increases for both assemblies.
The imposed dilatancy line forms a datum from which one can determine L. If
L > 0, pore pressures rise, making an assembly susceptible to flow liquefaction. If
L < 0, pore pressures drop and the assembly exhibits stable behavior. We also see
that the loose sample has a higher susceptibility to flow liquefaction.

In this case, it is a loose assembly under undrained conditions. Figure 2.10 shows
likewise for a stable assembly, in this case, a dense assembly under undrained condi-
tions. Note the occurrence of axial softening in the unstable assembly (Figure 2.9a)
and lack of it in the stable assembly (Figure 2.10a). Applying the same loading con-
tinuously (sufficiency condition) caused the assembly in Figure 2.9 to experience
flow liquefaction. The stress evolution in Figures 2.9 and 2.10 occur for any sta-
ble/unstable assembly under proportional strain triaxial compression. For instance,
a dense assembly that is unstable (for example, if βp = −0.43) has stress evolu-
tion corresponding to Figure 2.9. A loose assembly that is stable (for example, if
βp = 0.6) has stress evolution corresponding to Figure 2.10. Furthermore, Figures
2.9b and 2.10b show the clear difference that induces liquefaction in unstable sands
and not in stable sands. It is clear that the increment of pore pressures becomes
greater than the increment of shear strength at point P, which marks the onset of
axial softening as a necessary condition for liquefaction. In stable samples, such as
that shown in Figure 2.10, pore pressures rise initially, but not at a rate sufficiently
high to provoke axial softening. Note that we have presented simulations only for
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Figure 2.8: Evolution of stresses under proportional strain triaxial compression. (a)
Loose assembly. (b) Dense assembly. Note how βp = 0.6 stabilizes the assemblies,
while βp = −0.43 makes them unstable.

samples with an isotropic initial state of stress. Although our theoretical analysis
did not make any assumptions about the initial state, behavior of samples with dif-
ferent initial conditions must still be verified experimentally or numerically.

Remark 5: For the simulation shown in Figure 2.9, axial softening occurs at about
10% of the strain needed for onset of flow liquefaction instability. This shows why
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Figure 2.9: (a) Axial and radial effective and total stresses in an unstable assem-
bly, in this case, loose assembly under undrained triaxial compression. Note the
occurrence of axial softening (see inset corresponding to point P) and subsequent
instability (B). At instability, note that σ̇′a = σ̇′r and σ̇a = σ̇r . (b) Evolution of
deviatoric invariant q and pore pressure θ. Before P: q̇ > θ̇. After P: q̇ < θ̇ (see
inset corresponding to point P).

the concept of a necessary precursor is a powerful tool. If the necessary precur-
sor is met, and the same loading is applied continuously (sufficiency condition),
then the soil will experience flow liquefaction. This provides us with motivation
to investigate and look for necessary precursors under different initial and loading
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Figure 2.10: (a) Axial and radial effective and total stresses in a stable assembly,
in this case, dense assembly under undrained triaxial compression. Note that there
is no axial softening and the assembly continues to strengthen. (b) Evolution of
deviatoric invariant q and pore pressure θ. Note that q̇ > θ̇ at all times.

conditions. Such a concept could prove to be very useful while monitoring static
liquefaction in the field such as slope stability and landslides. If a soil is deemed
“at risk” (via some as yet undetermined precursor for field conditions), it could be
monitored and steps be taken to mitigate the effects of the instability.
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2.6 Conclusions
We defined a new flow liquefaction potential L for determining flow liquefaction
susceptibility during proportional strain triaxial compression. The potential is a
function of inconsistency between the natural dilative tendency β and the imposed
dilatancy βp, i.e., L = β− βp. If L > 0, pore pressures rise, whereas if L < 0, pore
pressures drop. An analysis of L provided us with a micro-mechanical interpreta-
tion of why given the right conditions, a loose soil that contracts during drained
triaxial compression and liquefies under undrained triaxial compression, may be
stable under proportional strain triaxial compression. Conversely, it also provided
us with an interpretation of why a dense soil that dilates during drained triaxial
compression and is stable under undrained triaxial compression, may liquefy un-
der proportional strain triaxial compression. The undrained loose case is a special
case of proportional strain triaxial compression (where βp = 0), under which a
soil can liquefy. Flow liquefaction criterion L provides an elegant framework to
visualize how a soil can liquefy despite volume changes; this can happen during
seismic shaking in the field, or under static loading when there is differential pore
pressure generation between adjacent soil layers with different densities. Unequal
pore pressure generation can lead to pore water being injected into certain layers
and being extracted from other layers, causing volume changes. Furthermore, since
L > 0 is necessary but not sufficient to induce flow liquefaction instability, we
analyzed the stress evolution of proportional strain triaxial compression and inves-
tigated the mechanics of the test leading up to flow liquefaction instability. We
arrived at reduction of effective axial stress (or axial softening) as a necessary pre-
cursor for flow liquefaction instability. Axial softening occurs when increment of
pore pressure becomes greater than the increment of shear strength. In fact, for the
simulation shown in Figure 2.9, axial softening occurs at about 10% of the strain
needed for onset of flow liquefaction instability. This shows why the concept of
a necessary precursor is a powerful tool. After attaining the precursor, the same
loading must be applied continuously (sufficiency condition) for the soil to experi-
ence flow liquefaction. This provides us with motivation to investigate and look for
necessary precursors under different initial and loading conditions. Such a concept
could prove to be very useful while monitoring static liquefaction in the field such as
slope stability and landslides. However, if the initial stress state of the soil is such
that it is susceptible to spontaneous liquefaction, then the concept of a necessary
precursor has limited applicability. Furthermore, care must be taken to ensure that
the soil in question satisfies the compositional criteria needed to make it capable of



32

existing in a liquefiable state. For instance, clays are inherently non-liquefiable and
will not exhibit liquefaction-like behavior even if they satisfy the necessary precur-
sors. Lastly, note that the term ‘softening’ in this context should not be confused
with the vanishing of hardening modulus as in elasto-plasticity theory.

In sum, the current work has taken some important steps towards understanding
the mechanics of origin of flow liquefaction instability under proportional strain
triaxial conditions. It complements the present understanding of the macro and
micro-mechanics at the onset of flow liquefaction instability, and enables a deeper
understanding of the phenomenon.
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