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ABSTRACT 

The matrices studied here are positive stable (or briefly stable). 

These are matrices, real or complex, whose eigenvalues have positive 

real parts. A theorem of Lyapunov states that A is stable if and only 

if there exists H > 0 such that AH+ HA* = I. Let A be a stable matrix. 

Three aspects of the Lyapunov transformation LA: H ~AH+ HA >,'< are 

discussed. 

1. Let C
1

(A) = [AH+HA,:< :H ;i: O} and C
2

(A) = [H:AH+HA* :<!: 'J}. 

The problems of determining the cones C 1 (A) and C
2

{A) are still un-

solved. Us ing solvability theory for linear equations over cones it is 

proved that C
1

{A) is the p ol ar of c
2

{A,:c), and it is also shown that C
1

{A) 

-1 = C 1 {A ). The inertia assumed by matrices in C 1 {A ) is characterized. 

2. The index of dissipation of A was defined to b e the max i -

mum number of equal eigenvalues of H, where H runs through all 

matrices in the interior of c
2

{A). Upper and lower bounds, as well 

as some properties of this index, are given. 

3. We consider the minimal eigenvalue of the Lyapunov trans

form AH+ HA>:<, where H varies over the set of all positive semi-

definite matrices whose largest eigenvalue is less than or equal to 

one. Denote it by \'{A). It is proved that if A is Hermitian and has 

2 
eigenvalues µ. 1 <? µ.2 <? ••• ~ µ.n > 0, then \'{A) = - {µ. 1-µ.n) /{4{µ. 1+µ.n) ). 

The value of \f{A) is also determined in case A is a normal, stable 

matrix. Then l\'{A) can be expressed in terms of at most three of the 

e igenvalues of A. If A is an arbitrary stable matrix, then upper and 

lower bounds for w{A) are obtained. 
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A 

R(A) 

tr(A) 

null( A) 

s(A) 

In(A) 

Ix(A) 

I 

v 

H,K 

PD 

PSD 

v 

NOTATIONS 

nxn matrix with complex elements 

complex conjugate and transpose of A 

trace of A 

null space of A 

Lyapunov operator corresponding to A, see 
definition on page 6 

Stein index of A, see definition on page 13 

inertia of A, see definition on page 12 

index of dissipation of A, see definition on 
page 24 

identity matrix 

direct sum of the matrices A
1 

and A
2 

diagonal matrix of order n with a
1

, a
2

, ... , a 
on the main diagonal n 

n 2 -dimensional linear space of nxn Hermitian 
matrices over the real numbers 

Hermitian matrices 

set of all nx n positive definite matrices 

set of all nxn positive semidefinite matrices 

n-dimensional Euclidean space over the com
plex numbers 

n-dimensional Euclidean space of the real 
numbers. 
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INTRODUCTION 

This thesis is concerned with positive stable (or brief! y stable) 

matrices. These are matrices, real or complex, whose eigenvalues 

have positive real parts. A most important result concerning stable 

matrices is Lyapunov's theorem. 

Theorem (Lyapunov [13]). The nxn matrix A is stable if and only if 

there exists an nxn positive definite Hermitian matrix H such that 
, .. 

AH+HA" =I. 

Here A denotes an nxn matrix with complex elements, and A>:C 

is the complex conjugate and transpose of A. Throughout this work 

H and K denote Hermitian matrices. We write H > 0 if H is positive 

definite and H ~ 0 if H is positive semidefinite. The identity matrix 

is denoted by I. 

Lyapunov 1s theorem is a special case of some theorems proved 

by Lyapunov, establishing conditions for the stability of solutions of 

differential equations. Because of its importance we give a brief 

account on some of its proofs and generalizations. Gantmacher [8] 

and Bellman [2] give proofs which use differential equations. Bellman 

even proves that if A is stable, then the unique solution of the matrix 

equation AH+ HA* = K is given by the explicit form 

00 >!c 
H = f e -AtKe -A t dt 

0 
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Other proofs are given by Hahn [ 10] and Tauss ky [21]. Givens [9] 

proved it via the generalized field of values F H(A) with respect to the 

metric !!xii~= x*Hx, given by the positive definite matrix H. Here 

FH(A) = [x~:cAGx: llxllH = l}. 

>:C For a fixed matrix A, the transformation LA: H ..... AH+ HA , 

which is a linear transformation from the real n
2

-dimensional space 

of Hermitian matrices into itself, is called the Lyapunov transforma-

tion. The eigenvalues of this transformation are A..+ A.., i, j = 1, ... ,n, 
l J 

where A. 1 , A. 2 , •.. , "-n are the eigenvalues of A, e.g., [9], and [22]. 

The elementary divisors of the Lyapunov transformation were found by 

Givens [9]. The fact that LA is a linear operator, and that the posi-

tive semidefinite matrices form a closed, convex, self-polar cone 

enables one to use here the solvability theory of linear equations over 

cones. Indeed, Berman and Ben-Israel [ 4] proved the Lyapunov 

theorem in this way. This approach will be used here to obtain some 

further properties of the Lyapnnov transformation. 

To describe some generalizations of the Lyapunov theorem, we 

need the concept of the inertia of a matrix. For an nXn matrix A 

which has n{A) eigenvalues with positive real parts, 'V(A) eigenvalues 

with negative parts, and 5(A) purely imaginary eigenvalues, we call 

the ordered triple (n(A), 'V(A), 5(A)) the inertia of A, written 

In(A) = ( n(A), v(A), 5(A) ). Let A have eigenvalues A. 1 , A. 2 , ... , "-n· 

Taussky [21] showed:if A..+>....-:# 0, i,j = 1,2, ... ,n, then there exists 
l J 

H such that AH+HA* =I, and this H satisfies In(H) = In(A). Ostrowski 

and Schneider [15] proved that there exists H such that AH+ HA>:C > 0 
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if and only if o(A) = O. Furthermore, AH+HA* > 0 implies that 

In(A) = In(H). Carlson [6], and Carlson and Schneider [5], investi

gated the matrix inequality AH+ HA* ~ 0. They obtained bounds for 

In(H) in terms of In(A), or as a function of rank (AH+ HA~~). However, 

the relation of In(H) to In(A) in this case is much more complicated 

and is not fully understood. 

Tauss ky [20, 21] showed that every complex (real) stable matrix 

. is unitarily (real orthogonally) similar to a matrix of the form (I+S)D, 

where Sis skew-Hermitian (skew-symmetric) and Dis a positive 

diagonal matrix. 

There is a close connection between stable .matrices and 

convergent matrices, namely matrices all of whose eigenvalues are of 

modulus less than one. The connection originates from the Cayley 

transformation. Thus, if A is stable then C = (A+ I) - l(A - I) is con

vergent. Conversely, if C is convergent then A = (I - C)-
1
(1+ C) is 

stable. Stein [17] proved that a matrix C is convergent if and only if 

there exists H > 0 such that H - CHC* > O. Tauss ky [23] showed that 

Lyapunov's theorem is equivalent to Stein's theorem. 

Many questions concerning stable matrices and the Lyapunov 

transformation remain unsolved, despite the extensive research des-

cribed above. It is the purpose of this thesis to consider some of 

them. In Chapter I the following two problems are discussed: Deter-

* * mine C 1(A) = (AH+HA :H ~ O} and c 2 (A) = (H :AH+HA ~ O}. These 

are the image and the inverse image of the cone of positive semi-

definite matrices under the Lyapunov transformation, respectively. 
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These problems slightly modify problems of Taus sky [24, 25], who 

asked what are the interiors of C 1(A) and C 2(A). Using the solvability 

theory for linear equations over cones it is proved that C 1 (A) is the 

f C
2

(A*). Th h bl polar o the cone us, t e two pro ems are not unrelated, 

but in fact equivalent. -1 It is also shown that C 1 (A) = C 
1 

(A ) . 

Stein and Pfeffer [19] found the range of BH+HB>.\ where H 

runs through all positive definite matrices and B varies over all 

matrices similar to the fixed matrix A. Restating their result in 

terms of A itself, we characterize the inertia vectors which are 

assumed by matrices in the interior of C 1 (A). This result leads to the 

characterization of inertia vectors assumed by matrices in C 1 (A). 

The index of dissipation of a stable matrix is defined by 

Taus sky [25] to be the maximal number of equal eigenvalues of H, 

where H runs through all matrices in the interior of C
2

(A). Upper and 

lower bounds, as well as some properties of this index, are given in 

Chapter II. 

In Chapter III we consider the minimal eigenvalue of the 

... 
Lyapunov transform AH+ HA .... , where H varies over the set of all 

positive semidefinite matrices whose largest eigenvalue is less than 

or equal to one. Denote it by \r(A). The value of W(A) is determined 

in case A is normal and stable, while upper and lower bounds for w(A) 

are obtained for a general stable A. 
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CHAPTER I 

ON THE RANGE OF THE LYAPUNOV 

TRANSFORMATION 

In this chapter the range of the Lyapunov transformation is con

sidered. More precisely, for a fixed stable matrix A, what is the 

image of the cone of positive semidefinite matrices under the trans

formation H _, AH+HA*? This problem is unsolved to date, and here 

some observations about it are made. 

Let A be a matrix of order nxn with complex elements (unless 

otherwise specified), and A~'f. be its complex conjugate and transpose. 

The trace of A is denoted by tr(A), and the null space of A by null( A). 

The trace function satisfies tr(AB) = tr(BA) for every pair A, B of nxn 

matrices. 

Let H and K denote Hermitian matrices. The space of all nXn 

Hermitian matrices is denoted by V. This is clearly an n 2 -dimensional 

space over the real numbers. Moreover, an inner product can be put 

on this space, by defining (H, K) = tr(HK). This is the ordinary inner 

product if we look on matrices as n
2

-dimensional vectors The set of 

nxn positive definite matrices is denoted by PD, and we write H > 0 

if H E PD. The set of nxn positive semidefinite matrices is denoted 

by PSD, and we write H ~ 0 if H E PSD and H l ~ H 2 if H l - H 2 ~ O. 

The identity matrix is denoted by I, its order should be clear from the 

text. 
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We let En(Rn) be the n-dimensional Euclidean space over the 

complex (real) numbers. The inner product in En(Rn) is denoted by 

n n 
(x, y), where x, y EE (R ). 

The following definitions are the starting point. 

Definition 1. The matrix A is called positive stable (or briefly stable) 

if all its eigenvalues have positive real parts. 

Definition 2. For any matrix A let R(A) = A+A~:·. Note that hence

forth both R(A) and A+ A* are used. 

Definition 3. The transformation LA: V -+ V defined by 

LA(H) = R(AH) = AH+HA* ( 1) 

is called the Lyapunov transformation. LA is called the Lyapunov 

operator. Note that we use the term Lyapunov transformation, rather 

than the longer term Lyapunov transformation corresponding to A, 

since we usually consider a fixed matrix A, and no confusion should 

arise. 

Stable matrices are characterized by the Lyapunov theorem. 

Theorem 1 (Lyapunov [13]). The matrix A is stable if and only if there 

exists H > 0 such that R(AH) = I. 

A brief survey of the various proofs of this theorem is given in 

the Introduction. Lyapunov's theorem characterizes stable matrices, 

but leaves open many questions concerning these matrices. The 
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following two problems, due to Taussky, are discussed in this chapter. 

Problem 1 [24]. Let A be a stable matrix. What is the range of the 

Lyapunov transformation if H runs through the set PD? 

Problem 2 [25]. Let A be a stable matrix. What is the set of 

Hermitian matrices H such that R(AH) > 0? 

It is our purpose to show that these seemingly unrelated prob-

lems are equivalent. The proof makes use of solvability theory of 

linear equations over cones. To establish the proof we need some 

additional theorems and definitions. The following theorem determines 

the eigenvalues of the Lyapunov operator LA. 

Theorem 2 [9 ], [22]. Let A be an nxn matrix with eigenvalues 

A 1, A. 2 , ... , "-n· Then the eigenvalues of the Lyapunov operator LA are 

A..+ A., i,j = 1,2, ... ,n. 
1 J 

The proof of Givens [9] makes use of Kronecker products of 

matrices. Taussky and Wielandt [22] find the required eigenvalues by 

choosing an appropriate basis. 

Henceforth it is assumed that A is a stable matrix, unless 

otherwise specified. 

Corollary 1. Let A be a stable matrix. Then the Lyapunov operator 

LA is one-to-one. In particular, its null space consists of the 0 

matrix only. 
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Proof. This follows immediately from Theorem 2. 

Definition 4. 
n 

(I) Let S c E , S nonempty. The set S is said to be a 

convex cone if 

(a) )..S c S for every A ~ 0 • 

(b) s + s c s. 

(II) 
n 

Let S c E , S nonempty. The polar of S, written sP, is defined by 

n [y EE :Re(y,S) ~ O} . 

The polar set is defined similarly over Rn, with the Re obviously 

omitted. It is known that sP is always a closed convex cone, see, 

e.g. , [3]. 

The next lemma is an immediate consequence of the well

known fact that a closed convex set S of En and a point of En which 

does not belong to S can be separated by a hyperplane. 

Lemma 1 [3]. n Let S c E , S nonempty. Then S = sPP if and only if S 

is a closed convex cone (here sPP = (SP)P). 

The lemma leads to the following solvability theorem of linear 

equations over cones. We need this theorem to establish the equivalence 

of problems 1 and 2. 

Theorem 3 [3]. Let T be an mxn matrix with complex elements, and 

let b E Em. Let S c En be a closed convex cone and assume that 

null( T) + S is closed. Then the following are equivalent. 
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(a) Tx = b, x ES has a solution. 

(b) T~ E sP implies Re(b, y) ~ O. 

To prove the equivalence of Problems 1 and 2, we define the 

following closed convex cones. 

(2) 

)!c 
C 2(A) = (H:AH+HA' ~ O} ( 3) 

It follows from Corollary 1 (since A is assumed to be stable) that the 

sets defined in Problems 1 and 2 are the interiors of C 1 (A) and c
2

(A), 

respectively. Thus, in order to prove the equivalence of Problems 1 

and 2, it suffices to show that the determination of C 1 (A) and C 2(A) 

are equivalent problems. This is shown in the next theorem. 

Theorem 4. Let A be a stable matrix. Then, 

and 

Proof. This theorem follows from Theorem 3. We replace the matrix 

T of Theorem 3 by LA. Correspondingly, Em and En are replaced by 

V, the linear space of nXn Hermitian matrices over the real numbers. 

We let S be PSD, the set of nxn positive semidefinite matrices. It is 

well-known that PSD is a closed convex cone. Moreover, PSD is a 

self-polar cone, namely PSD = PSDP, e.gf, [4]. It follows from 

Corollary 1 that null( LA) = (0 }. Hence null( LA) + PSD = PSD, and the 
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assumptions of Theorem 3 are satisfied. It remains to find L;. 

We show L; = LA*· To see it, let H, K EV. Then, 

(LA (H), K) = (AH+ HA):<, K) = tr(AHK+ HA*K) = tr(HKA+ HA)',cK) 

= (H, A*K+ KA) = (H, LA*(K)) 

To complete the proof, let KEV. Then KE C
1

(A) if and only 

if K = LA (H
0

) for some H
0 

E PSD. By Theorem 3 this is equivalent 

to: 

LA~,c(H) ~ 0 implies (K, H) ~ 0 

But, LA):c(H) ~ 0 if and only if HE C 2(A*). Hence, KE C 1(A) if and 

only if K E C
2

(A*)P. This proves the first part of the theorem. 

Replacing A by A*, we get C 1 (A*> = c 2 (A)P. Since c
2

(A) is a 

closed convex cone, it follows from Lemma 1 that c 2 (A) ~ c 2(A)PP. 

Hence, 

completing the proof. 

Having proved the equivalence of Problems 1 and 2, we can now 

concentrate on Problem 1, or, equivalently, the determination of 

C 1(A). The next theorem, which follows immediately from Lyapunov's 

theorem, gives us some information about c 1 (A). 

Theorem 5 [23]. Let A be a stable matrix, and le~ K be a given posi

tive definite matrix. Then the unique solution of AH+ HA):c = K is 

positive definite. 
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Proof. The uniqueness follows from the fact that LA is one-to-one. 

By Sylvester's law of inertia, there exists nonsingular matrix T such 

* that TKT = I. Hence, 

The matrix TAT- l is stable. Thus, by Theorem 1 (Lyapunov's theorem) 

THT* > 0, and consequently H > O. 

Another proof of Theorem 5 can be given, using Bellman's 

integral representation to the solution of AH+ HA* = K. For further 

details, see the Introduction. 

Corollary 2. c
1
(A) ~ PSD • 

Proof. This follows immediately from Theorem 5 and the closedness 

of Cl (A}. 

Using Theorem 4 we can prove the following theorem. 

Theorem 6. Let A be a stable matrix. 

Proof. -1 We first show that c 2(A) = c 2(A ). 

Let H E c 2(A), so R(AH) ~ O. We want to prove that 

-1 
R(A H) ~ O. Since R(AH) ~ 0, we have 

1 l* * A- AHA- + A- 1HA*A-l ~ 0 

so 
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This proves that R(AH) :2: 0 implies R(A- 1H) :2: 0, or H E c
2

(A) implies 

-1 H EC 2(A ). 

-1 -1 
Hence c

2
(A) c C

2
(A ). Similarly, as A is also stable, 

-1 -1 * C 2(A ) c C
2

(A). Hence C 2(A) = C
2

(A ). Replacing A by A , which 

* is also stable, we get c
2

(A*) = C
2

(A- 1 ). 

To finish the proof, we notice that by Theorem 4 

Theorem 6 gives rise to a new problem. What matrices B 

satisfy C
1

(A) = C 1(B)? This question is not discussed here. 

We proceed to generalize theorems due to Stein, and Stein and 

Pfeffer, concerning C 1(A). We notice that so far only Corollary 2 

gives us some information on the structure of C 1(A). In fact, almost 

nothing is known about C 1 (A), for a fixed stable A. The approach of 

Stein and Pfeffer is to allow the matrix A to vary. To describe their 

results, we introduce some more concepts. 

Definition 5. Let A be an arbitrary matrix having n(A) eigenvalues 

with positive real parts, V(A) eigenvalues with negative real parts 

and <5(A) purely imaginary eigenvalues. The ordered triple In(A) = 

(n(A), v(A), &(A)) is called the inertia of the matrix A. Obviously, 

n(A) + v (A) + o(A) = n. 

Definition 6. The vector w = ( w 
1

, w
2

, w
3
), whose coordinates are non

negative integers and satisfy w1 + w2 + w3 = n, is called an inertia 

vector. 
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Definition 7. Let A be an arbitrary matrix, having distinct eigen-

values A. 1, A. 2 , ... , A.r. The index of A.., 1 :s:: i :s:: r, is the maximum num-
1 

ber of linearly independent eigenvectors corresponding to it, i.e., the 

dimension of its eigenspace. The Stein index of A, written s(A), is 

defined here to be the maximum of the indices of the A. .. 
1 

We assume now that A.
1

, A. 2 , ... , Ar are the distinct eigenvalues 

of A. We write 

m = s(A) ( 4) 

and we may assume without loss of generality that the index of A.
1 

is 

equal to m. We can now describe the degrees of the elementary 

divisors corresponding to the A.. as follows: 
1 

A.l: nll ~nl2 ~ •· · ~nlm >O 

A.2: n2 l ~ n22 ~ · · • ~ n2m ~ O 

( 5) 

We agree that if n .. = 0 for some i and j, the corresponding elemen
lJ 

tary divisor does not e;xist. It is obvious that the arrangement 

described above can be done. Also, 

r m 
~ ~ nkJ. = n • 

k= 1 j=l 
( 6) 
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We are ready to state the results of Stein [18], Stein and 

Pfeffer [19], and their generalizations. 

Theorem 7 [18]. Let K EV. The following are equivalent: 

(a) K has at least one positive eigenvalue, i.e. , n(K) ::!: 1. 

(b) There exists a stable matrix A and H > 0 such that 

R(AH) = K. 

This theorem determines what matrices can be written in the 
,t, 

form AH+HA"'', where not only H runs through the set PD, but A is 

allowed to vary over the set of stable matrices. The proof of Stein is 

a constructive one, but is too complicated to be described here. 

Ballantine [l] gives an inductive proof. 

Theorem 8 [19]. Let A be a stable matrix, and let K EV be a given 

matrix. Let m = s(A) be the Stein index of A. Then the following are 

equivalent: 

(a) K has at least m positive eigenvalues, i.e. , n(K) <:!: m. 

(b) There exists a nonsingular matrix T and H > 0 such that 

This theorem, due to Stein and Pfeffer, gives the range of 

BH + HB*, where H runs through the set PD, and B varies over the 

set of all matrices similar to the given matrix A. We want to link 

the Stein-Pfeffer theorem to the problem of finding C 1 (A). To do it, 

we need the following lemma. 
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Lemma 2. Let A be a stable matrix, let K EV, and let T be a non-

singular matrix. Then there exists H > 0 (H ~ 0) such that R(AH) = K 

if and only if there exists H
0 

> 0 (H
0 

~ 0) such that R(TAT- 1H
0

) = 
TKT*. 

Proof. Assume that AH+HA~~ = K. Then, 

We choose H
0 

= THT*. Now, H > O (H :<!: 0) implies H
0 

> O (H
0 

~ O), 

and the proof of the first part is completed. The second part follows 

similarly. 

We can now restate Theorem 8 (Stein-Pfeffer) in terms of A 

alone. 

Theorem 9. Let A be a stable matrix, and let w = ( w 1 , w2 , w3) be an 

inertia vector. Let m = s(A) be the Stein index of A. Then the fol-

lowing are equivalent: 

(a) w 1 ~ m. 

(b) There exists H > 0 such that In(AH +HA*> = w. 

Proof. (a)~(b). We choose K0 EV, such that In(K
0

) = w. By 

Theorem 8, there exist T nonsingular and H 0 > 0 such that 

-1 * R(TAT H 0) = K 0• We let TKT = K0 . Sylvester's law of inertia 

asserts that In(K) = In(K0) = w. It follows now from Lemma 2 that 

there exists H > 0 such that R(AH) = K. This completes the first part 

of the proof. 
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(b):+(a). This follows immediately from the corresponding 

part in Theorem 8. 

Note: Theorem 9 characterized the inertia vectors which are assumed 

by matrices in the interior of C 1(A). 

Theorems 10 and 12 below generalize Theorems 7 and 9, by 

allowing H to be nonnegative definite. The more interesting theorem 

is 12, which determined the inertia vectors assumed by matrices in 

Theorem 10. Let K EV. The following are equivalent: 

(a) K has at least one positive eigenvalue, i.e. , TT(K) ~ 1, or 

K = O. 

(b) There exists a stable matrix A and H ~ 0 such that 

R(AH) = K. 

Proof. (a)a+(b). For K = 0 choose any stable matrix and H = O. For 

K -:!. 0 with rr(K) ~ 1 apply Theorem 7. 

(b)=+(a). Let R(AH) = AH+ HA* = K, where A is a stable 

matrix and H ~ O. Assume that K -:!. 0 and TT(K) = O. Then -K E PSD. 

It follows from Corollary 2 that there exists H 0 ~ 0 such that 

R(AH0) = -K. But the Lyapunov operator LA is one-to-one, implying 

that H = -H0 . On the other hand, H ::?: O and H 0 ~ 0 imply H = H
0 

= O. 

Thus K = 0, contradicting our assumptions. This completes the proof. 

To generalize Theorem 9, we need the following theorem of 

Carlson, which considers the elementary divisors of a block triangular 
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matrix (over the complex numbers). For proof, see [7]. 

Theorem 11 [7]. Let B be a block triangular matrix of the form 

B = 

where B 11 and B 22 are square matrices. Let A be an eigenvalue of 

B. Let the degrees of the elementary divisors associated with A be 

a 1 :<!:a2 :2: ••• :2:aq inB, b 1 ~b2 ~ ... ~btinB 11 and c 1 :<!:c 2 ~ .. 

~ cw in B 22• Then for all i we have 

a . SI: b. i:: a. 
w+1 i i 

at+· ~ c. Ca. 
1 1 1 

where by definition a. = 0 if i > q. 
1 

(7) 

Theorem 12. Let A be a stable matrix, and let m = s(A) be the Stein 

index of A. Suppose that Al, A2 , ... , Ar are the distinct eigenvalues of 

A, and that the degrees of the corresponding elementary divisors are 

given by (5). Let w = (w 1 , w2 , w3) be an inertia vector. Denote 

t = min( w 1, m) (8) 

Then the following are equivalent: 

(a) (9) 

where the right-hand side is defined to be 0 if t = O. 
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(b) There exists H :;<: 0 such that In(AH +HA*) = w. 

Proof. (a)~(b). We assume that w satisfies (9). If w
1 

:;<: m, then 

the fact that (b) is true follows from Theorem 9, while for w 
1 

= 0 (b) 

is satisfied by H = O. Hence we can assume that 0 < w 1 < m, and 

consequently i, = w 
1

. 

Let j be an arbitrary positive integer such that 1 ~ j ~ m. Let 

A. be the direct sum of Jordan blocks of orders n
1 

., n
2 

., .•. , n ., cor-
J J J r J 

responding to A. 1 , A. 2 , •.• , A.r, respectively. 

r 
n. = I; 

J i= 1 
n .. 

lJ 

Thus, the order of A. is 
J 

The Stein index s(A .) of A. is obviously equal to one. There exists a 
J J 

nonsingular matrix T such that 

( 10) 

the right-hand side being the direct sum of the matrices A
1

, A
2

, .• 

We define now real diagonal matrices K. of order n. as follows: 
J J 

K. = 
J {

diag( 1, *, ••. , *) 

0 

j=l,2, ••. ,w
1

, 

The places denoted by >:< in K 1 , K
2

, •.• , Kw 
1 

can be filled by any non

positive numbers, provided that exactly w
2 

of them are negative. This 
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is possible since (9) holds. 

Consider now a fixed j, 1 ~ j ~ w 1. Since n(K .) = s(A .) = 1, 
J J 

it follows from Theorem 9 that there exists H . > 0 of order n. such 
J J 

that In(A.H.+H.A~) = In(K .). We further choose H . = 0 for 
J J J J J J 

w
1
+1 ~ j :e m, and define the following direct sums: 

and 

The matrix H is positive semidefinite and satisfies, by ( 10), 

In(R(TAT- 1H)) = In(K) = w 

Applying Lemma 2 we finish the proof that (a).+(b). 

(b)-+(a). The proof is by induction on n, the order of A. For 

n = 1 the proof is trivial. Assume that (b)-.(a) for all stable matrices 

of order less than or equal to n-1, and consider the given matrix A. 

~-Denote AH+ HA· = K. By our assumption In(K) = w, so in particular 

w 1 = n(K). There are three cases. 

Case 1. w 1 > m. In this case (9) holds trivially, since we have J, = m. 

Thus, the right-hand side of (9) is equal to n, by (6). 

Case 2. w 1 = O. In this case the right-hand side of (9) is equal to 0, 

by definition. We also know from Theorem 10 that the left-hand side 

of (9) must be 0, so (9) holds in this case. 

Case 3. 0 < w1 <m. Note that in this case J, = w
1

. We let 

d = n - n ( K) = n - w 1• 
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Since A.
1 

is an eigenvalue of geometric multiplicity m for A, 

* A. 1 is an eigenvalue of geometric multiplicity m for A • Denote the 

* eigenspace of A corresponding to A. 1 by S. 

Let µ.
1

, µ.
2

, .•. , µ.d be the d nonpositive eigenvalues of K, and · 

let x
1

, x
2

, ••• , xd be an orthonormal set of corresponding eigenvectors. 

Let L [x
1

, x2 , .•. , xd J be the linear space spanned by x 1 , x2 , ..• , xd. 

We have 

m+d = n+m- w1 >n 

so there exists a vector y, (y, y) = 1, such that y ES n L [x1, x 2 , .. 

• • xd ]. We write 

We have 

and 

Also, 

d 
y = 6 

i= 1 

d 
y*Ky = 6 

i= 1 

a..x. 
1 1 

0 :!! y*Ky = y*(AH +HA *)y = 

since H :!! 0 and Re(A. 1) > O. Hence, 

* * y Ky = y Hy = 0 . 
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Now, H C!: 0 and y*Hy = 0 imply that Hy= 0, by the variational charac-

terization of the eigenvalues of a Hermitian matrix [8, Vol. I, 

Chapter 10]. Moreover, the restriction of K to L[x1,x
2

, ... ,xd] is 

negative semidefinite, so for the same reason Ky= 0, 

We now let Ube an nXn unitary matrix with the vector y in its 

first column. Then, 

0 

u*Au = 

* 

u*Hu = ~ :] 

u*KU = ~ :J 
where H 1 and K 1 are n-lxn-1 Hermitian matrices, A 1 is an n-lxn-1 

matrix, and * denotes a column vector whose coordinates are 

irrelevant. The equation AH+ HA* = K implies 

u* AUU*HU + u*Huu* A *u = u*Ku , 

so consequently, 
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The matrix K 1 satisfies rr(K 1) = rr(K) = w
1 

and \J(K
1
) = \J(K) = 

w2 , while H 1 ~ O. The elementary divisors of U*AU are equal to 

those of A. Let the elementary divisors of A 1 corresponding to Ai be 

denoted by n! ., j = 1, 2, ... , m; i = 1, 2, ... , r. It follows from Theorem 
lJ 

11 that 

n~. ~ n .. , 
lJ lJ 

i = 1,2, ... ,r; j = 1,2, ... ,m . 

(It also follows from Theorem 11 that n~m-l ~ n 1m > 0, so the Stein 

index s(A
1
) '::!: m-1, but we don't use this fact here.) 

Applying the induction hypothesis for the stable matrix A
1 

we 

find that 

This completes the proof of the theorem. 

Theorem 12 gives some indication on the structure of C
1
(A). 

by characterizing the inertia vectors which are assumed by matrices 

in c 1 (A). We illustrate this theorem in the next example. 

Example. Let A be a stable matrix of order 45, having Al, A2 , A
3

, 

A
4 

as its distinct eigenvalues. Let the degrees of the elementary 

divisors of A be given by: 
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"-1: 8 6 4 2 

"-2= 5 3 3 1 

"-3: 2 2 

A.4: 4 3 2 

The Stein index of A is 4. The following inertia vectors w are assumed 

by matrices in c 1 (A). 

All inertia vectors with w 1 ~ 4. 

If wl = 3, all inertia vectors with w2 ~ 42-3 = 39. 

If wl = 2, all inertia vectors with W2 ~ 33-2 = 31. 

If wl = 1, all inertia vectors with w 2 ~19-l = 18. 

If wl ::: 0, only the vector (0, 0, 45). 

We finish this chapter with the following corollary. 

Corollary 3. Let A be a stable matrix. Then C 1 (A) = PSD if and only 

if A is a scalar matrix, i.e., A= A.I for some complex number A 

with Re( A.) > O. 

Proof. Obviously, if A is a scalar matrix then C 
1 

(A) = PSD. The 

converse follows immediately from Theorem 12 and the following 

easily verified fact: A is a scalar matrix if and only if s(A) = n. 

(Here n denotes, as usual, the order of A.) 
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CHAPTER II 

THE lliDEX OF DISSIPATION 

Let A be a stable matrix. We kn.ow that there exists H > 0 

such that R(AH) = AH+ HA* > O. However, it need not be true that 

R(A) = A+ A~~ > O. In fact, very little is kn.own about the relation 

between the eigenvalues of A and R(A). The matrix A is said to be 

dissipative if R(A) > O. It is natural to ask how "close" is a stable 

matrix A to a dissipative matrix. One of several possibilities to 

define "close 11 is discussed in this chapter. We need the following 

definition, dut to Taussky. 

Definition 1 [25]. Let A be a stable matrix. The index of dissipation 

of A, written Ix(A), is the maximum number of equal eigenvalues of 

H, where H runs through all positive definite matrices with R(AH) > 0, 

i.e. , H E interior of c 2(A). Recall that R(AH) > 0 implies H > 0, by 

Theorem 5, Chapter 1. 

Upper and lower bollllds, as well as some properties of the 

index of dissipation, are given in this chapter. It should be pointed 

out that the exact meaning of this index remains unclear. 

We start with some general observations on Ix(A). Throughout 

this chapter A denotes an nxn stable matrix, 1lllless otherwise speci

fied. 
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Theorem 1. 

Proof. Suppose AH+HA>~ > O. Then H- 1(AH+HA>::)H-l = A>:(H-l 

-1 -1 
+ H A > O. But, if H has k equal eigenvalues so does H , and this 

proves Ix(A) s; Ix(A>~). Similarly, one shows Ix(A *) s; Ix(A), and the 

first equality follows, Also, AH+ HA>:( > 0 implies A - l(AH + HA>:()A -1>!( 

= A- 1H+HA- 1 >~ > O. Hence Ix(A) s; Ix(A- 1). Similarly, one shows 

Ix(A - l) ~ Ix(A), completing the proof. 

We let Al (D Az be the direct sum of the matrices A 1 and AZ. 

It is quite natural to ask: 

Problem, Is 

( 1) 

We would like to be able to get an affirmative answer to the 

question, but, unfortunately,( 1) will be proved under some restrictions 

on A 
1 

or Az. In the following we let 

where A 1 and AZ are stable matrices of order p and q, respectively. 

Here p+ q = n. 

Proof. Let k. = Ix(A.), i = 1, Z. There exists a matrix H., such that 
1 1 1 

1 is an eigenvalue of H. of multiplicity k. and R(A.H.) > 0, i = 1, Z. 
1 1 1 1 
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Let H = H
1 
e H 2• Then R(AH) = R(A 1H 1) e R(A2H 2) > 0, and 1 is an 

eigenvalue of H of multiplicity k1 + k 2 . This completes the proof. 

Before proceeding, we recall the well-known interlacing in 

equalities between the eigenvalues of an nxn Hermitian matrix H and 

an n-1 xn-1 principal submatrix of H. 

The Interlacing Inequalities [8, Vol. I, Chapter 10]: 

Let H be an nxn Hermitian matrix with eigenvalues A.. 1 ~ A.. 2 ~ ••• ~ "-n· 

Let K be an n-1 xn-1 principal submatrix of H with eigenvalues 

Then 

(2) 

The next theorems describe situations where ( 1) holds. 

Note: In a matrix partitioned into blocks, a ':~ denotes a block whose 

entries do not matter for our purposes, while 0 denotes a block whose 

entries are all equal to zero. 

Lemma 2. Let A
2 

= (a) be a 1X1 matrix, and let A = A 
1 

© A 2 . Then 

Ix( A) = Ix(A l) + 1. 

Proof. Let k = Ix(A
1
). Lemma 1 implies that Ix(A) ~ k+ 1. It remains 

to prove that Ix(A) s: k+ 1. So let H be a matrix with r equal eigen

values and satisfying R(AH) > O. We can assume that 1 is an eigen

value of H of multiplicity r. We write 
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where H 1 is an n-1 xn-1 principal submatrix. Then 

[

R(A 1H 1) 

R(AH) = 
):c 

Now R(A
1
H

1
) > 0, since all principal submatrices of a positive definite 

matrix are themselves positive definite. Also, it follows from the 

interlacing inequalities that 1 is an eigenvalue of H 1 of multiplicity at 

least r-1. Hence r-1 s k, completing the proof. 

Lemma 3. Let Ube an nxn unitary matrix. Then Ix(A) = Ix(U;'<AU). 

Proof. This follows from the identity 

u*(AH+HA*)U = (U*AU)(U*HU) + (U*HU)(U*AU)* 

and the fact that H and U*HU have the same eigenvalues. 

Theorem 2. Let A 2 be a qxq normal matrix, and let A= A 1 6:) A
2

• 

Then 

Ix(A) = Ix(A I) + Ix(A2) = Ix(A l) + q . 

Proof. We first note that Ix(A2) = q, because A 2 normal and stable 

implies R(A2) = A 2 +A~'< > O. This proves the second equality. 
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AZ is unitarily similar to a diagonal matrix. Hence, by 

Lemma 3, we can assume without loss of generality that AZ is a di

agonal matrix, and write Az = diag (d1, dz, •.• , dq). 

The proof is by induction on q. For q = 1 the situation is 

exactly that of Lemma Z, so the theorem is true. Let q be an inte

ger greater than one, and assume that the theorem holds for all 

diagonal matrices of order less than or equal to q - 1. Defining 

B = diag (d 1, dz, .•. , dq_ 1), we get 

A= 

0 d 
q 

Applying again Lemma Z we get Ix(A) = Ix(A 1 <;9 B) + 1, while using the 

induction hypothesis we find Ix(A 1 9 B) = Ix(A1) + q - 1. Hence Ix(A) = 

Ix(A
1
) + q, completing the proof. 

Theorem 3. Let AZ be a qx q ma~rix such that R(Az) > 0, and let 

A= A 1 @Az. Then 

Proof. Clear! y Ix(Az) = q, as R(Az) > O. 

It is well-known [14, p. 67] that every matrix is unitarily simi

lar to a lower triangular matrix. Hence, by Lemma 3, we may 

assume without loss of generality that Az is a lower triangular matrix. 

The proof is by induction on q. For q = 1 the theorem reduces 

to Lemma Z. So let q be an integer greater than 1, and assume that 

the theorem holds for all triangular matrices of order less than or 



29 

equal to q-1. We write 

where A
22 

is a q-1 X q-1 matrix and A 33 is a 1 Xl matrix. Accordingly, 

A has the following block form 

Al 0 0 

A = 0 A22 0 

0 A23 A33 

It is enough to prove that Ix(A) ~ Ix(A 1) + q, since Ix(A) :<!: 

Ix(A 1) + q by Lemma 1. So let H be a Hermitian matrix having 1 as 

an eigenvalue of multiplicity r, and R(AH) > O. Partition H conform-

ably with A, 

Hll Hl2 Hl3 

H * H22 H23 = Hl2 

* Hl3 * H23 H33 

Then 

R(AlHll) * AlH12+Hl2A22 * 
R(AH) = AH+HA* A ):c *A* 

R(A22H22) ):c > 0 = 22Hl2+Hl2 1 . 

* ):c ):c 
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The positive definite principal submatrix of order n-1, sitting in the 

upper left corner of R(AH), is equal to 

0 

R 

A H* 
22 12 

But 1 is an eigenvalue of [:~l : 12] of multiplicity r-1 at least, by 
12 22 

the interlacing inequalities. Also, A 22 satisfies R(A22) > 0, since 

R(A
2

) > O. It follows from the induction hypothesis that r - 1 ~ Ix(A
1
) 

+ q-1. Hence r s: Ix(A 1) + q, and the result follows. 

Theorem 3 is stronger than Theorem 2, because the latter is 

a special case of Theorem 3. It remains to be seen whether the 

assumption that R(A2) > 0 can be dropped in proving (1). It can be 

easily shown that ( 1) holds for matrices A 1 and A
2 

with p+q = n s: 4. 

The remaining part of the chapter is devoted to obtaining upper 

and lower bounds for the index of dissipation. We recall that n(H) 

denotes the number of positive eigenvalues of the Hermitian matrix H. 

Theorem 4. Ix( A) S: rr(A +A*) ( 3) 

Proof. Let k = Ix(A). There exists a matrix H > 0 having 1 as an 

eigenvalue of multiplicity k, and R(AH) > O. Therefore there exists 

a unitary matrix U such that 
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where I is the identity matrix of order k and D is a real diagonal 

matrix. Let B = U):cAU. Then 

Partitioning B c onformably with K, 

we find that 

lR(Bl 1) 

R(BK) = 
):c 

Hence R(B 
11

) > O. The interlacing inequalities imply that n(B + B*) ~ k. 

But B+B* = u*(A+A*)U, so n{A+A*) = n(B+B*) ~ k. This completes 

the proof. 

The next question to ask is, obviously, whether equality holds 

in (3). It turns out that the answer is no, and so it seems certain that 

the index of dissipation of a matrix has no simple meaning. An 

example showing that strict inequality is possible in (3) follows the 

next corollary. 

Corollary 1. 
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Proof. Let a. be an arbitrary nonnegative number, and let R(AH) > O. 

It was previously proved (see proof of Theorem 1) that R(AH) > O 

implies R(A-
1
H) > 0, and thus R((A+ a.A- 1)H) > O. We conclude that 

Ix(A) ~ Ix(A +a.A - l) ~ TT ( R(A +a.A - l}) 

the second inequality following from Theorem 4. Since a. is arbitrary, 

the proof is complete. 

Example. We exhibit a 3x3 matrix A such that Ix(A) = 1, while 

):c 
rr(A+A} = 2. Let 

1 6 4 

A = 0 2 6 

0 0 3 

Then 

1 -3 14/3 2 6 4 

A-1 = 0 1 /2 -1 R(A} = 6 4 6 

0 0 1/3 4 6 6 

2 -3 14/3 

R(A - l) = -3 1 -1 

14/3 -1 2/3 
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It is easy to see that n(A+ A~.c) = 2, because A+ A* has positive trace 

and a negative determinant. However, the matrix 

2. 6 5. 1 5. 4 

R(A+ O. 3A -l) = 5. 1 4. 3 5. 7 

5.4 5. 7 6. 2 

has only one positive eigenvalue, so by Corollary 1 we have Ix(A) = 1. 

Finally, we get a lower bound for the index of dissipation. The 

index of dissipation is invariant under unitary similarity (Lemma 3), 

so without loss of generality we may assume that A is a triangular 

matrix. Actually, we shall assume only that A is block triangular. 

The following characterization of positive definite matrices, due to 

Haynsworth, is required for our purposes. 

Theorem 5 [11]. Let 

be a Hermitian matrix. Then H > 0 if and only if H 11 > 0 and 

Th t . H* H- lH . 11 d h S h e ma rix 12 11 12 1s ca e t e c ur 

complement of H 11 in H. 

Theorem 6. Let A be a block triangular matrix, partitioned into 

blocks as follows: 
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A= 0 

0 0 

The matrices A 11 , A 22 , A 33 are square matrices of orders p, q, r, 

respectively, where p+q+r = n (p and/or r can be zero). If R(A22) > 0 

then Ix(A) 2: q. 

Proof. There exist H 1 and H 3 such that R(All H 1) > 0 and 

R(A
33

H
3

) > 0, because A 11 and A 33 are stable matrices. Let 13 1 and 

13
3 

be positive real numbers, to be determined later, and let 

H = s
1
H

1 
e I e 13 3H 3 . Here I denotes the identity matrix of order q. 

Hence, 

13 1R(A 11H 1) Al2 

>'' R(AH) = A" R(A22) 12 

l33H3A>i3 '" 
l33H3Az3 

We shall show that for sufficiently large 13
1 

and sufficiently small 13
3 

we have R(AH) > 0, and this will establish the proof. 

Since R(A22) = A 22 + A~2 > 0, also 

(4) 
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for sufficiently large 13 1 , by a continuity argument. We choose s
1 

which satisfies (4) and fix it. For this choice of 13 1 the principal sub-

matrix 

of R(AH) is positive definite. It suffices to show, by Theorem 5, that 

its Schur complement is positive definite for sufficient! y small 13
3

. 

Indeed, calculating this Schur complement we get 

HA* 1 
3 23.J 

A* 
12 

We chose H 3 so that R(A33H 3) > 0 and 13 1 so that (4) is satisfied. If 

• ( 5) 

we choose 13
3 

sufficiently small, then the matrix given in (5) is positive 

definite, by a continuity argument. This completes the proof, since 1 

is an eigenvalue of H of multiplicity q. 

Corollary 2. Let A have a system of r orthonormal eigenvectors. 

Then Ix(A) ~ r. 

Proof. Let x 1, x 2 , ••• , xr be a system of orthonormal eigenvectors of 

A, and let t.. 1 t.. 2 , .•• , '-r be the corresponding eigenvalues. Let Ube a 

unitary matrix having x 1, x 2 , .•. , xr as its first r columns. Then 
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u*Au =[DO 

where D = diag P, .. 1, A. 2 , •.• , \r). The result follows from Theorem 6, 

since D + D~:c > O. 
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CHAPTER III 

THE MINIMAL EIGENVALUE OF THE 

LYAPUNOV TRANSFORM 

Throughout this chapter we consider a fixed stable matrix A of 

order n (n > 1). In Chapter I we discuss the problem of finding C 1 (A), 

the image of PSD (the cone of positive semidefinite matrices) under 

the Lyapunov transformation. As indicated, this problem is far from 

being solved. In this chapter a different aspect of the problem is dis

cussed. Corollaries 2 and 3 of Chapter I show that C 1 (A) strictly 

contains PSD, unless A is a scalar matrix. Thus, if A :f. AI, there 

exist matrices of the form AH+ HA*, H <!: 0, with negative eigenvalues. 

We would like to know how negative can the eigenvalues of the Lyapunov 

trans£ orm AH+ HA* become. To make the question meaningful, we 

have to restrict H to a bounded subset of PSD. A precise formulation 

of the question to be considered will be given following some additional 

definitions and notation. 

Let H be a Hermitian matrix. Its eigenvalues will usually be 

denoted by 

a.
1 

(H) and a.n (H) satisfy the variational characterization 
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a.I (H) 
>:< 

= max x Hx 
(x, x) = 1 

*H 
( 1) 

a. (H) = min x x 
n 

(x,; x)='l 

see, e.g. , [8, Vol. I, Chapter 10 ]. Here x denotes a column vector. 

Definition 1. Let S be a convex subset of a linear space over the real 
m 

numbers, and let x
1

, x
2

, ••• , xm ES. The linear combination ~ 0.x. 
j= 1 J J 

is said to be a convex combination of xl, x2, ... , xm if ej ~ 0, j = 1, 2, .. 
m 

..• m, and ~ e. = 1. 
j= 1 J 

Definition 2. Let S be a convex subset of a linear space over the real 

numbers, and let f be a real valued function defined on S. We say 

that f is a concave function if it satisfies for every x, y E S and 

0 s 8 s: 1 the inequality 

f(0x+(l-0)y) ~ 0f(x)+(l-0)f(y) . 

Note: It follows immediately from this definition that 

f (!£ e.x.) ~ 
~= 1 J J 

m 
~ 0.f(x.) 
j= 1 J J 

for every convex combination of points x 1 , x
2

, ..• , xm E S. 

We are ready to state the problem to be considered in this 

chapter. Let 

J = {H: H EV and OS:HS:I}. 

( 2) 

( 3) 
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= min [a (AH +HA,:<) } 
H EJ n 

( 4) 

The number *(A) is well defined, since a (AH+ HA,:<) is a con
n 

tinuous function of H, and J is a compact set. It gives us the minimal 

eigenvalue of the Lyapunov transform AH+ HA>:<, where H runs through 
I 

all matrices in J. In what follows the value of *(A) is determined in 

case A is a normal matrix, while lower and upper bounds for *(A) are 

given in the general case. 

To find *(A) we start with some observations on J and the func-

tion a (AH+ HA,:<). First, note that for every nxn unitary matrix U 
n 

we have 

UJU* = J • ( 5) 

Next, the set J is compact and convex (in the space V). Moreover, it 

follows from ( 1) that 

for every H, K E J and 0 ~ 0 s: 1, implying that a (AH+HA,:<) is a 
n 

concave function on the convex set J. We claim now that in order to 

find w(A) it is enough to consider a (AH+ HA*) only on the extreme n 

points of J. This follows immediately from (2) and from the following 

lemma. This lemma is essentially known [16] even in more general 

spaces, but a brief matrix theory proof is given for the sake of 

completeness. 
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Lemma 1. Let 

P. 
J 

= diag( 1, 1, ••• , 1, O, ••• , O) 
\.._..,--' 

j=O,l, •.• ,n. ( 6) 

j times 

The extreme points of J are exactly the projection matrices, i.e. , the 

matrices of the form UP .U>:\ where U is an arbitrary nxn unitary 
J 

matrix and j = 0, 1, ..• , n. Moreover, every H E J can be written as a 

convex combination of (a finite number of) extreme points of J. 

Proof. From (5) it follows that His an extreme point of J if and only 

if UHU* is, where U is an arbitrary unitary matrix. Hence it suffices 

to find what real diagonal matrices are extreme points of J. So let 

D = diag(d
1

, d
2

, ••• , dn) E J. Since every number in the open interval 

(0, 1) is a convex combination of 0 and 1, the matrix D cannot be an 

extreme point, unless all the main diagonal entries are equal to 0 or 1. 

Conversely, we show that if d. = 0 or d. = 1 for 
J J [o 

an extreme point. We can assume that D = 
0 

all j, 1 :S: j s: n, D is 

I
o] , where I is the 

identity matrix of order q for some 0 :S: q :S: n. Suppose that D = 

9H+(l-e)K for some H,K E J and 0<8<1. Partitioning Hand K con

formably with D, 

we find that 

8H ll + ( 1- 9) K 1l = 0. 
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But H ::!: 0 and K ::!: 0 imply H
11 

= K 11 = 0, and consequently H
12 

= 

K
12 

= O. Furthermore, 

together with 0 s H 22 ~ I and 0 ~ K
22 

$ I imply H
22 

= K
22 

= I. This 

completes the first part of the proof. 

In proving the second part of the lemma we can again consider 

only real diagonal matrices. We let D = diag(d 1, d 2 , .•. , dn), where 

we may assume that 1 ~ d 1 ~ d 2 ::!: ••• ~ dn ~ O. The decompos i tion 

n 

D = :6 ( d . - d ·+ l) P . 
j=O J J J 

where dn+l = 0 and d 0 = l-d 1, describes Das a convex combination of 

extreme points of J, completing the proof. 

We denote now 

P. = [UP .U~:c: U an arbitrary unitary nxn matrix}, 
J J (7) 

j=O,l, ... ,n, 

,,, 
W .(A) = min fa (AH+ HA'")} 
J HEP. n 

j=O,l, •.• ,n. (8) 

J 

The sets P . are compact, hence the W .(A) are well defined. Moreover, 
J J 

from (4), (8) and Lemma 1 it follows that 

W(A) = w.(A) • 
J 

(9) 
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We shall use (9) to find w(A) by evaluating the W .(A). Note that 
J 

P 0 = [O} andP =[I}, so w0(A) = O and w (A)= a (A+A*). n n n 

Notation: From now on all vectors are column vectors with n com-

ponents, denoted by x, y and these letters with subscripts. The com

plex conjugate and transpose of x is denoted by x>:c, and the transpose 

t 
of x by x. 

Lemma 2. Let 1 ~ j :C n. The following are equivalent: 

and 

Proof. 

(a) HEP .. 
J 

(b) There exist vectors x 1, x 2 , •.• , xj such that 

(a):9(b). LetH EP .• 
J 

k, J, = 1, 2' ... ' j ' 

j 
H :6 * 

= k=l ~~ 

):c 
Hence H = UP .U for some unitary 

J 

matrix U. Denote the columns of U by x 1, x 2 , ••. , xn. Also, denote 

the unit vector with 0 in all places except 1 in the k-th entry by 

e k, k = 1 , 2, . . . , n. Then 

H = UP.lfc = 
J 

Hence the vectors x 1,x2 , .•. ,xj satisfy (10). 

j 

:B ~{ 
k=l 

( 10) 

(b)~(a}. Suppose that x 1, x 2 , •.. , xj satisfy (10). We can find vectors 

xj+ 1, •.. , xn such that x 1, x 2 , •.. , xn form an orthonormal basis. The 
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matrix U, whose k-th column is ~· is a unitary matrix and satisfies 

H = UP .U,~. 
J 

Corollary 1. H Er 1 if and only if there exists a vector x such that 
n-

(x, x) = 1 and H = I-xx,~. 

Proof. This follows immediately from Lemma 2. 

Relations among the w .(A) 

The purpose of the next theorems is to prove that ~(A) = w
1 
(A). 

For each vector x, such that (x, x) = 1, we define 

( 11) 

Lemma 3. Let x be a vector such that (x, x) = 1. Then 

a
1 
(M(A, x)) ~ o = a 2(M(A, x)) = .. 
. . = a 1(M(A, x)) ~a (M(A, x)) . 

n- n 
( 12) 

Proof. There exists an nXn unitary matrix U such that Ux = e 1, where 

e 
1 

is the unit vector whose first component is equal to 1 and all other 

components are equal to O. 
,,, 

Let B = UAU"' = (b .. ). Then 
lJ 

Let f(A.) be the characteristic polynomial of M(A, x). We have 
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This completes the proof. 

Lemma 4. 

Proof. Recall that the trace function satisfies tr(A 1A 2) = tr(A
2

A
1

) for 

every pair of matrices A 1 and A 2 of orders mx p and pX m, respectively. 

Moreover, the trace of a 1x1 matrix is equal to its single entry. Using 

these properties, Lemma 2 and the variational characterization of the 

smallest eigenvalue of a Hermitian matrix, we ge t 

w
1

(A) = min a.n(M(A,x)) = min min i~(Axx':c+xx':cA>:~)y 
(x, x)=l (x, x)=l (y, y)=l 

= min min [tr ( y':c Axx * y + /:~xx':~ A':~ y) J 
(x, x)=l (y, y)=l 

= min min [tr(Axx':cyy':c) + tr(y/:Cxx>:CA>:C)J • 
(x,x)=l (y,y)=l 

Replacing A by A* we get 

w 1 (A':~) = min min [tr(A':Cxx>:Cyy':c) + tr(yy':~xx>:cA)] 
( x, x) = 1 ( y, y) = 1 

= min min [tr(xx':cyi~A*) + tr(Ayy':Cxx*)] 
( x, x) = 1 ( y, y) = 1 

= min min [tr(yy:o,icxx,:C A*) + tr(Axx':Cyy>:c)] = w
1 

(A) • 
(x, x}=l (y, y)=l 

Theorem 1. 

Proof. We first prove that Wn(A) :<!: w1 (A). We have 
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Also, it follows from ( 12) and the trace properties that for each vector 

x, such that ( x, x) = 1, 

Hence, by Lemma 3, 

We conclude that 

a. (M(A, x)) :e x*(A+ A *)x 
n 

w
1

(A) = min a. (M(A, x)) S min x*(A+ A *)x = a. (A+ A~c) = 
n n (x, x)=l (x, x)=l 

It remains to prove W1 (A) ~ W2(A) ~ •.• ~ wn-1 (A). Let 1 :;; j s 

n-2. We prove that w/A) ~ Wj+l (A). 

There exists a matrix H. E P. 
J J 

·'c such that a. (AH.+H.A''} = w.(A). 
n J J J 

By Lemma 2 we can write 

j 

H. = ~ ~{ 
J k=l 

where x
1

, x 2 , ••• , xj satisfy ( 10). There exists a vector y such that 

(y, y) = 1 and 

):< * ):< W .(A) = a. (AH.+ H .A ) = y (AH.+ H .A ) y • ( 13) 
J n J J J J 

We look now on the linear subspace spanned by x 1, x 2 , ..• , xj, y. S.ince 

j ~ n-2, there exists a vector xj+ 1 such that 

( x j+ 1 , ~) = 0 j+ 1 , k ' 

(xj+ 1 , y) = 0 

k=l,2, ••. ,j+l, 

( 14) 
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Define now 

j+ 1 
:6 * ~-= x. x. = HJ. + xJ.+ 1xJ+: 1 k=l K I< 

It follows from Lemma 2 and (14) that Hj+l E Pj+l" Moreover, 

the last equality following from ( 13) and ( 14). Applying again the varia-

tional characterization ( 1), we get 

Theorem 2. 

W .(A) • 
J 

Proof. It is enough to show that w1 (A) = *n- l (A), by Theorem 1. 

Using Corollary 1, ( 11), properties of the trace function and Lemmas 

3 and 4, we get: 

* [ * *''~ a. (AH+ HA ) = min a. A(I·xx ) +(I-xx )A''] 
n n 

(x, x)=l 

= min min y* [A( I-xx*) + (I-xx*) A *Jy 
(x, x)=l (y, y)=l 

= min min [y*(A+A*)y - y*(Axx*+xx*A*)y] 
(y,y)=l (x,x)=l 

= min 
(y, y)= 1 

= min 
(y, y)=l 

[y*(A+A*)y - max y*(Axx*+xx*A*)y] 
(x,x)=l 

[y*(A+A*)y - max tr(l'<Axx*y+ y>:Cxx*A*y)] 
(x, x)= 1 
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= min [ *(A A*) ( >.~ *A *A* ~~ )] y + y - max tr x yy x + x yy x 
(y, y)=l (x, x)=l 

= min ... * .,, * *'!c [y,..(A+A )y - max x'"(yy A+A yy'')x] 
(y, y)= 1 (x, x)=l 

= min [y*(A+A*)y - et
1
(M(A*, y))] 

(y, y)=l 

= min 
(y' y)= 1 

= min 
(y, y)=l 

Corollary 2. w(A) = w1 (A) 

and 

w(A) = w(A *) • 

Proof. The proof follows from Theorems 1 and 2, Lemma 4 and (9). 

Computation of W(A) for Normal and Hermitian Matrices 

We use Corollary 2 to find W(A), by computing w
1

(A). In case 

A is a normal and stable matrix V(A) is determined precisely, while 

for a general stable matrix only upper and lower bounds are given here. 

We assume now that A is a given normal and stable matrix. 

From (5) and the identity 

U(AH +HA*) u* = ( UA U*) ( UHU*) + ( UHU*) ( UA u*) >:c 

it follows that V(A) = W(U* AU), for every nxn unitary matrix U. Hence 
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we can assume that A is a diagonal matrix, and we write 

( 15) 

Here 

A. = µ.. + i\1. ' 
J J J 

j=l,2, •.. ,n ( 16) 

where i = J-1, and µ. 1 , µ. 2 , •.. , µ.n and 'J1, v2 , .•. , vn are real numbers 

satisfying 

We define 

( 1 7) 

so A= DR + iDr Obviously, A =A* if and only if D1 = O. 

Let ·x = (sj) be a column vector with coordinates i.; 1, i;2 , ... , sn' 

satisfying (x, x) = 1. Recall that 

W(A) = w1(A) = min etn(M(A,x)) 
(x, x)=l 

where M(A, x) is defined by ( 11). Let f 0 .. ) be the characteristic poly
x 

nomial of M(A, x). Since A is a diagonal matrix, it is easy to verify 

that 

f 0 .) 
x 

= An- 2 fA2 -2r~ µ..ls.12\A+ l ~=l J J ) 

,:; I i; . i;k I z [ ( A .+;:: .)(Ak + \k) - (A . +A,J (\ .Hk) JI. 
l ~j<kSn J J J J J Jj 
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~: fx(A.) depends only on the I sj I , so we can assume from now on 

(for the case of normal A) that x has only real entries. This and the 

computation of a (M(A,x)) from f (A.) give n x 

a ( M( A, x)) = 6 µ, • s . - 6 µ. . s . + n 2 ~~n 2)2 
n j= l J J ·= l J J 

Denoting 

6( x) = 6 µ. . S . + (
n 2)2 

j= l J J 

we have t.(x) > 0 and 

t.(x) 
n 2 4 ~ 2 2 = 6 µ. • s . + 2 L1 µ. . µ.ks . s k 
j=l J J l~j<k~ J J 

Since (x, x) = 1, we get 

6(x) 

Also, 

n 2 2 2 2 2 
6 µ. ~ s . + 6 ( v. - 2 v. vk + "'k > s . sk = 
j= 1 J J 1 ~j<k~ J J J 

n 2 2 
6 µ.J. s j 
j= l 

( 18) 

( 19) 

(20) 
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n 2 2 2 2 2 n 2 2 2 (n 2)2 + 6 v. s . ( 1 - s . ) - 2 6 v. vk s . sk = 6 ( µ. . + v. ) s . - 6 v. s . 
j= 1 J J J 1 $ j<k$n J J j= 1 J J J j= 1 J J 

so ti(x) can be written in the following form: 

ll(x) 

Thus, 

n 2 2 2 ( n 2) 2 t 2 2. t 2 = 6 ( µ. . + v. ) s . - 6 v. s . = x (DR + DI ) x - ( x D 1x) . ( 2 1) 
j= 1 J J J j= 1 J J 

a. (M(A, x)) 
n 

n 2 ~ 
= 6 µ..$ . - ll(x) 

j= 1 J J 

The last expression can be written in a homogeneous form of degree 

two, using the fact that (x, x) = xtx = 1. Indeed, 

We are interested in the minimum of a. (M(A, x)), subject to the 
n 

equality constraint (x, x) = 1. We use the method of Lagrange multi-

pliers and look on the function 

a.n (M(A, x)) - S(x, x) 

where S is a Lagrange multiplier. The real vector x = ( s .) mini
J 

mizes a. (M(A, x)), subject to (x, x) = 1, only if the equations 
n 

oa. (M(A, x)) 
n ae: 2se: . = 0 ' . -J 

-J 
j = 1, 2 •••. , n , 

and 
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n 
= ~ s~ = 1 

j= 1 J 

are satisfied. Writing these equations in detail we get: 

[ -i 2 2 t 2 2 t J 2µ..-6(x) [µ. . +-.;. +x(DR+Dr)x-2(xDix)\) . }-213 i;. = 0 , 
J J J J J 

n 

~ s~ = 1 
j=l J 

j = 1,2, •. .,n , 

Since a. (M(A, x)), in the form given by (22), and (x, x) are homo
n 

(23) 

geneous functions of degree two, it follows from Euler's theorem on 

homogeneous functions that if x and 13 satisfy (23) then 

13 = a. (M(A, x)) • n 
(24) 

To simplify subsequent computations we make, for the time 

being, the following assumptions: 

Assumption (a). The matrix A is given by (15). We may assume 

without loss of generality that Al , A
2

, .•. , An are distinct. Otherwise, 

suppose that Al, A2 , .•. , Ar (r < n) are the distinct numbers among 

A1 , A
2

, •.. , An' and define B = diag(A 1, A2 , .•. , Ar). It follows from (22) 

that w1 (A) = w1 (B), and B is a matrix of. order r with distinct eigen

values. 

Assumption (b). 

Cartesian plane. 

Consider the points (µ..,\I.), j = 1, 2, ... , n, in the 
J J 

We assume that no four of these points lie on one 
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proper circle. This assumption will be removed later by a continuity 

argument. 

Let the vector x minimize ex. (M(A, x)), subject to (x, x) = 1. 
n 

Then for all indices j such that s. -:/: 0 the equation 
J 

-i 2 2 t 2 2 t 
2µ. - 6(x) [µ. + v. +x (DR+D1)x - 2(x D

1
x)v.} - 2S = 0 (25) 

J J J J 

must hold. Hence all the corresponding points ( µ., v.) lie on one 
J J 

proper circle. Because of assumption (b) it follows that x has at 

most three nonzero components, and in the Hermitian case at most 

two nonzero components. Thus, in order to find w(A), we need only 

consider vectors with at most three nonzero components (two at most 

in the Hermitian case) and satisfying (23). We investigate three cases. 

Case 1. The vector x has exactly one nonzero component. In this 

case it follows from ( 18) that Cl (M(A, x)) = O. As indicated in the beg in
n 

ning of this chapter, w(A) ~ 0 with equality holding if and only if A is a 

scalar matrix. But, by assumption (a), A is not a scalar matrix, and 

hence the required minimum is not attained at x. 

Case 2. The vector x has exactly two nonzero components. So let 

1 $ k < t ~ n, and assume that all the components of x are equal to 

zero except sk and s ;,• We denote 

(26) 

and 
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Equations (23) are rewritten here as 

and 

j = k, J, • 

1\ + 11,e = 1 ; 7\ > 0 ; Tl,e > 0 • 

(27) 

j = k, 1. ' (28) 

(29) 

In order to solve these equations we assume further that \l~.e > O. 

It is not difficult to remove this restriction after finishing the calcula-

tions. 

We use here the expression (20) for ti(x), so we have 

Subtracting the equations for j = k and j = .t in (28) gives 

[ 2 2 2 J-i [ 2 2 2 2 
2µk.t - µkT\+µ.tn.t+vk..e'r\c'rl..e (µk-µ..t)+(vk-v.t) 

- 2( vk - v t)( 1\ vk + ri .e v .t)} = o 

and substituting n.t = 1 -1\ gives the equation 

2 2 2 2 
µk - µ .t + \lkt - 2 \)k.t1\ 

2 µk.t = ----2.----.2..----..2 ...... _..2~~---2---2 ......... f 
[µ. 1. + (µ.k - µ .t + \lk1) 1\ - \lk.t T\c] 

(30) 

We show that (30) possesses a solution in (0, ~]and, conversely, 

every solution of (30) must lie in (0, iJ. This is obvious in case 

~ = µ .t' for then T\c = i is the only solution of (30). In case µk > µ .t 

the right-hand side of (30) for ~ = 0 is lal'lger than the left-hand side 
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of (30), while the right-h'and side of (30) for ~ :a: ~is smaller than the 

left-hand side. 

Rewriting (30) leads to the following quadratic equation, 

0 . 

Its only solution in (O, ~] is 

( 31) 

where we define 

Hence 

It remains to determine an(M(A, x)). We know that nk = s~ is 

given by (31), and n .e = s~ = 1 - TJk. Hence the modulii of sk and s J, 

are uniquely determined. 

using (30), we get 

Substituting these values into a (M(A, x)) and 
n 

2 2 2 ..1. 
an (M(A, x)) = ~µ.k + Tl J,µ. J, - [ T)kµ.k + n# J, + ~ T)J, vkJ,] 2 

2 2 2 2 ]~ = µ. J, + ~µ.kl, - [µ. J, + ~(µ.k - µ. .e) + ~( 1 - ~) vkJ, 

2 2 2 2 2 2 2 2 ~ 
= µ. + µ.k J, ( ( µ.k J, + vk J,)( µ.k - µ. J, + vk J,) - [ µ.k i ~ J, + vk J,) eJ } 

e 2 2 2 
2 vk ;, ( µ.k J, + vk J,) 
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2 2 2 
µk - µ i, + \)k i, 

2µki, 

2 2 2 2 2 2 2 2 2 .1. 
\)ki,[(µki,+ ~.e)(µk - µ p,+ \)k,e> - [µkiµki,+ ~i,) 9]

2
} 

+~~~~~~~~---~_,..~-,,,~~~~~~-

Zµki,\)k i, (µki,+ \Jki,) 

Hence, 

and 

a. (M(A, x)) 
n 

Substituting for 8 from (32) we finally get 

a. (M(A, x)) 
n 

or 

(33) 
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The last formula was obtained tmder the assumption that 2 
'1ct > o. 

However, (33) remains meaningful if we put vkf, = 0. Indeed, if '1c.e = 0 

we can still show by similar calculations that if x satisfies (28) and 

(29), then a. (M(A, x)) is given by (33). 
n 

We define 

<Pk,e = 

= lSk<f,S:n. 

It follows from the preceding calculations that if the vector x has 

exactly two nonzero components and satisfies equations (23), then 

for some k, t; 1 s: k < f, s n . 

(34) 

(35) 

Case 3. The vector x has exactly three nonzero components. So let 

1 s: k < t < m s: n, and assume that all the components of x are equal 

to zero except sk' st and Sm· 

It follows from (25) that the points (µ ., v.), j = k, f,, m, must 
J J 

lie on a proper circle. Hence, if this is not the case, there exists no 

vector x which satisfies (23) and whose only nonzero components are 

sk' st' Sm· This explains the fact that for Hermitian matrices we 

have to consider only Cases 1 and 2. 

If there exists a proper circle passing through ( µ ., v.), 
J J 

j = k, t,m, let (cktm'~ f,m) and rktm denote its center and radius, 

respectively. Thus, 
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2 2 
(µ.-ckn) +(v.-dkn) 

J x,m J x-m 
j = k, P,, m • (36) 

But, rewriting (2 5) we get 

.1.2 t 2 
( µ . - 6( x) 2) + ( v. - x D1x) 

J J 

.1. t 2 2 
= - 2 13 .6( x) 2 

- x (DR + DI ) x 

t 2 + .6(x) + (x D1x) , j = k, p,, m • (3 7) 

Comparing (36) and (3 7) and substituting for .6(x) using (21), we find 

that the following equations must be satisfied by x: 

1- t 2 2 t 2 .1. 
.6(x) 2 = [x (DR+ D 1)x - (x D1x) ] 2 = ck.tm (38) 

t 
d (39) x D

1
x = ktm 

t 1 (40) xx = 
2 

8 = 
rkp,m 

( 41) -
2ck,em 

. 

Let 

2 
11· = s. > 0 , 

J J 
j = k, .t, m • 

Since .6(x) > 0, it follows that x satisfies equations (38), (39), and ( 40) 

if and only if 

ck > 0 .tm 

and the following linear system has a positive solution for ~· 11.e' 11m: 

~ ~ + v ,e 11.t + vm 1\n = dk.tm (42) 

2 2 2 2 2 2 2 2 
( µk + vk) ~ + ( µ P, + \J ;,> 11,e + ( µm + vm) 1\n = ck P,m + dk .tm • 
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We are ready to conclude the discussion of Case 3. We see 

that it is possible that there exists no vector x which satisfies (23) 

and whose only nonzero components are sk' s ;,' Sm· Such a vector 

exists if and only if the following conditions are satisfied. 

(i) There exists a proper circle passing through(µ,., v.), j = k, ;,, m. 
J J 

(ii) cki,m > 0. 

(iii) The linear system (42) has a positive solution for T\:• nt' nm . 

If these conditions are satisfied, the modulii of sk' st' t;m are 

uniquely determined. Moreover, we conclude from (24) and (41) that 

a (M(A, x)) 
n 

2 
rkJ,m 

= ~ = - 2cki,m 

so a (M(A, x)) is uniquely determined. 
n 

Finally, we define 

2 
r 

ki,m 

2cki,m 
if conditions (i), (ii), (iii) are satisfied 

~ki,m = 1 :Ck< 1, <m :S:n • 

0 otherwise 

( 43) 

(44) 

This completes the investigation of the three cases. Recall 

that this investigation was carried out under assumptions (a) and (b). 

We are ready to find W(A) for a normal matrix A, foil owing the next 

elementary lemma. 

Lemma 5. Let s > 0, Tl > 0 and s ~ T). Let 
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h( i;, ri> 

Then and 

(Here, naturally, hE: and h denote partial derivatives.) 
- ri 

Proof. Trivial. 

Theorem 3. Let A = A~:~ be a positive definite matrix with eigenvalues 

lfr(A) 

Proof. Again we may assume without loss of generality that A = DR, 

where DR is given by (17). We further assume that all the eigenvalues 

of A are distinct. We know that 

lfr(A) min a: (M(A, x)) • 
n (x,x)=l 

w1 (A) is attained at x, such that (x, x) = 1, only if x satisfies (23). 

Under our assumptions, this vector x has at most two nonzero com-

ponents. The discussion of Cases 1 and 2 shows that there exist k 

and J,, 1 ~ k < ;, ~n, such that a.n(M(A,x)) = <lkp,' where 

Here the expression for c,ok,R, is a specialization of (34) for the 
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Hermitian case. Since there are only a finite number of cpk.t' we get 

where the second equality follows from Lemma 5. 

The theorem remains true if the eigenvalues of A are not dis-

tinct by the remark of assumption (a). This completes the proof. 

Theorem 4. Let A be a normal stable matrix of order n (n ~ 2) with 

.1. >:c eigenvalues Al, A
2

, ••. , An' and suppose that A r A • 

( 1) If the eigenvalues of A are distinct, then 

~(A) = 

min r min cpki,; 
v~<.eSn 

min ~ki,m l for n ~ 3 
1 S:k<.t<mSn 1} 

for n = 2 

(45) 

where the numbers cpk.t and ~ki,m are defined by (34) and ( 44), respec

tive! y. 

(2) If the eigenvalues of A are not distinct, suppose that 

Al, A2 , ••• , Ar are the distinct numbers among Al, A2 , ••. , An. Let B 

be any normal matrix of the order r (r <n) whose eigenvalues are 

Al, A2 , .•. , Ar. Then ~(A) = ~(B), where ~(B) can be calculated by part 

( 1). 

Proof. It is enough to prove part ( 1) of the theorem by the remark of 

assumption (a). Thus assume that A. 1 , A.2 , .•• , A.n are distinct. 



61 

We may again assume without loss of generality that A is a 

diagonal matrix, given by (15) and (16). We further assume that no 

four of the points (µ..,\J.), j = 1,2, .•. ,n, lie on a proper circle. 
J J 

The value W(A) = w1 (A) is attained at x, such that (x, x) = 1, only 

if x satisfies (23). Under our assumptions, this vector x has at most 

three nonzero components. The discussion of cases 1, 2, 3 shows that 

there exist k and J,, 1 1.:k < ..e ~n, such that a (M(A, x)) = m. , or k, ..e, n ,..Kl, 

m, 1 ~k< J,<m ~n, such that an(M(A, x)) = ~k.tm" Since there are only a 

finite number of <Ok.t and ~kJ,m' the result follows. 

To complete the proof, we notice that every normal matrix can 

be arbitrarily approximated by a normal matrix with the property that 

no proper circle passes through four of the points ( µ.., \J.), j = 1, 2, ... , n. 
J J 

Since w(A) depends continuously on the entries of A, the proof is com-

plete. 

Remark. We conclude from Theorem 3 that if A is a Hermitian matrix, 

then l\l(A) depends only on its largest and smallest eigenvalues. 

Theorem 4 provides an algorithm for the computation of W(A) for a 

normal matrix A. It also proves that for a normal, but not Hermitian, 

matrix l\l(A) can be expressed in terms of at most three eigenvalues of 

A. However, the precise identification of these eigenvalues depends on 

the location of the points ( µ. 1, v 1), ( µ. 2 , \J2), ... , ( µ.n' \Jn) in the Cartesian 

plane. 

Finally, it is clear from the proof of Theorem 4 that w(A) can 

be determined in a number of steps which is proportional to n 3 , if A is 

an n x n diagonal matrix with distinct eigenvalues and n is sufficiently 

large. 

We illustrate Theoren 4 in the following examples. 
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Examples. 

(1) Let A= diag(2, 2+i, l+i, 1). Easy calculations give 

cp 12 

<P13 

<P14 

<P34 

~123 

~134 

1 

= - ! ( 17 2 - 4) 
1 

= <P24 = -(10 2 -3) 

1 
= <P23 = - rr 
= 

1 .1. 
- 2 (5 2 - 2) 

= ~124 = 0 

1 
= cp234 = - b . 

Here ~ 123 = ~ 124 = 0 by (44), since in both cases the system (42) has 

no positive solution. Hence, 

1 
~(A) = ~134 = ~234 = - 'b 

(2) Let A= diag(2, 2+i, 2+2i, 1+4i). Hence, 

1 

<012 = <P23 = - ! ( 17 2 - 4) 
1 

<P13 = -(5 2 - 2) 

17 
<.014 = - Tb 

5 .1. 
1) <P24 = - 3 (2 2 -

5 .1. 
3) <P34 = -3(132_ 

~123 = ~124 = ~134 = ~234 = 0 

Here ~ 123 = 0 by (44), since the points (2, O), (2, 1) and (2. 2) are on a 

line. Also, ~ 124 = ~ 134 = ~234 = 0 by (44), since c 124, c
134 

and c
234 

are negative. We conclude that 
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17 
cp 14 = - TI 

Upper and Lower Bounds for w(A) 

In this section upper and lower bounds for w(A) are given. We 

first consider normal matrices. Although w(A) was precisely deter-

mined for a normal matrix A, the following inequalities seem to be 

useful. 

Theorem 5. Let A be an nXn normal, stable matrix with eigenvalues 

\! = max Iv. - "\:I 
1 ~j<k~n J 

Then 

Proof. We use the results of the previous section. We can assume 

that A is a diagonal matrix. Let x = (s.) be a real vector (see the note 
J --

preceding ( 18)) such that (x, x) = 1. We have by ( 18) and ( 19) 

a (M(A, x)) 
n 

Using (20) for l:l(x) we get 

n 2 1 

= '6 µJ.i;J. - l:l(x) 2 
j= 1 
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[ n 2 2]1. t Ln 2 2~1. G 2 2Jt 6 µ. • s . 2 ~ 6( x) s 6 µ. . s ~ 2 + v 6 s . sk . 
j= l J J . ·= l J J " 1 Sj<k~ J 

Hence, 

{n 2 [n 2 u-~ w(A) ~ min 6 µ. .s . - 6 µ.. s. 2 

(x, x)=l j=l J J j=l J J 
( 46) 

and 

{ n 2 [n 22~1.} w(A) ~ min 6 µ..~! - 6 µ,.;. 2 -

(x, x) = 1 j= 1 J J j= 1 J J 
v max C 6 E'.~ e:2J t 

( ) 1 l 'J"<k....., -J -k x, x = :::. ;;:ir~ 

where x varies only over real vectors. 

Let DR be the real diagonal matrix defined by ( 17). It follows 

from (20) that the right-hand side of ( 46) is exactly w(DR), so by 

Theorem 3 

n 
Also, (x, x) = 6 s2

J. = 1 implies 
j= 1 

n 

= t 6 sf s~ 
j, k=l 
j#k 

= 1. [ ~ E'.~ E'.2 - ~ e:~J = 
2 - J -k . -J 

j, k=l J=l 

Hence, 

n 

t - t 6 s~ J j= 1 
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~ min 6 i;. 2 
( 

n 4]i 
(x, x)=l j=l J 

[ l 1 J],_2 = :z-Tn = 

completing the proof. 

We turn now to a general stable matrix A. The upper and lower 

bounds for w(A) are expressed in terms of Hermitian or normal 

matrices, for which we know how to find the w. 

To get bounds for W(A), we use a theorem due to Hoffman 

and Wielandt. Define for A= (ajk) 

,., 
tr(A'''A) 

for arbitrary nxn matrices. 

Theorem 6 [12]. Let H and K be nxn Hermitian matrices with eigen-

respectively. Then 

j= l 

n 
6 [a .(H)-a.(K) ] 2 ~ !IH-Kll

2 
J J 

The proof of this theorem uses convexity arguments, see [12]. 

Recall that 1+r(A) = W(U>:~AU} for any unitary matrix U, so we can 

assume without loss of generality that A is a triangular matrix. 
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Theorem 7. Let A = D + T, where D is a stable, diagonal matrix and 

Tis a strictly upper triangular matrix (so D = diag(a 11 , a
22

, ..• , ann) ). 

Then 

where W(D) can be determined from Theorem 3 or 4. 

Proof. There exists a vector x such that (x, x) = 1 and 

Also, 

M(A, x) = M(D, x) + M(T, x) 

so Theorem 6 implies 

I a (M(A, x)) - a (M(D, x)) I s: II M( T, x) II n n 

But 

Hence, 

Similarly one proves w(D) ::2: w(A) - 211T11. completing the proof. 

To get another upper bound for w(A), we have to drop the 

assumption that A is a stable matrix. We note the following: 
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Remark. The assumption that A is a stable matrix is not essential in 

the discussion of this chapter. In fact, w(A), W1(A), W2(A), .•. ' *n(A), 

and the theorems proved about these numbers, remain valid even if A 

is not stable. In particular, w(A) = w1 (A) is still true, and we can find 

w(A) by minimizing a (M(A, x)). The only difference occurs in the 
n 

previous section, where we compute w(A) for a normal and stable 

matrix A. There are still three cases to consider even if A is not 

stable, but we can no longer disregard Case 1, while Case 2 becomes 

more complicated. We do not repeat the calculations, but state the 

generalization of Theorem 3 to an arbitrary Hermitian matrix. As 

indicated, the proof differs only slightly from the proof of Theorem 3. 

Theorem 8. * Let A= A have eigenvalues µ.
1 

:2: µ.
2 

:2: • • • :2: µ.n. Then 

W(A) = 
2µ. 

n 

if 

if 

The last theorem enables us to get an upper bound for W(A). 

Theorem 9. Let A be an arbitrary matrix. 
1 ),'< 

Then W(A) S: W( mA +A )) . 

Proof. There exists a matrix H E J such that 

:2: ~ a (AH+ HA*) + ~ a (A>:CH +HA) :2: ~ V(A) + t W(A *) = W(A) , n n 

the last equality following from Corollary 2. This completes the proof. 



[l] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

[10] 

[11] 

[12] 

68 

BIBLIOGRAPHY 

C. S. Ballantine, A note on the matrix equation H = AP+PA"\ 
Linear Algebra and Appl. 2 (2969), 37-47. 

R. Bellman, Introduction to matrix analysis, McGraw-Hill, 
New York, 1970. 

A. Ben-Israel, Linear equations and inequalities on finite 
dimensional, real or complex, vector spaces: A unified 
theory, J. Math. Anal. Appl. 27 (1969), 367-389. 

A. Ben-Israel and A. Berman, Linear equations over cones 
with interior: A solvability theorem with applications to 
matrix theory, Report No. 69-1, Series in Applied Mathe
matics, The Technological Institute, Northwestern University, 
Evanston, Ill. , 1969. 

D. Carlson and H. Schneider, Inertia theorems for matrices: 
The semidefinite case, J. Math. Anal. Appl. 6 ( 1963), 
430-446. 

D. Carlson, Rank and inertia bounds for matrices under 
R(AH) ~ 0, J. Math. Anal. Appl. 10 (1965), 100-111. 

D. Carlson, Inequalities relating the degree of elementary 
divisors within a matrix, Simon Stevin 44 ( 1970), 3-10. 

F. R. Gantmacher, The theory of matrices, Vols. I, II. 
Chelsea, New York, 1960. 

W. Givens, Elementary divisors and some properties of the 
Lyapunov mapping X ..... AX+ XA*, Argonne Nat. Lab. Rep., 
1961, ANL-6456. 

W. Hahn, Eine Bermerking zur zweiten Methode von Lyapunov, 
Math. Nachr. 14 (1956), 349-354. 

E. Haynsworth, Determination of the inertia of a partitioned 
Hermitian matrix, Linear Algebra and Appl. 1 ( 1968), 
73-81. 

A. J. Hoffman and H. Wielandt, The variation of the spectrum 
of a normal matrix, Duke Math. J. 20 (1953), 37-39. 



[13] 

[14] 

[15] 

[16] 

[17] 

[18] 

[19] 

[20] 

[21] 

[22] 

[23] 

[24] 

[25] 

69 

A. Lyapnnov, Probleme G~n~ral de la Stabilite du Mouvement, 
Ann. of Math. Studies 17, Princeton Univ. Press, 
Princeton, N. J., 1947. 

M. Marcus and H. Mine, A survey of matrix theory and matrix 
inequalities, Allyn and Bacon, Inc. , Boston, Mass. , 1964. 

A. Ostrowski and H. Schneider, Some theorems on the inertia 
of general matrices, J. Math. Anal. Appl. 4 (1962), 72-84. 

* * S. Sakai, C -Algebras and W -Algebras, Springer-Verlag, 
Berlin, Heidelberg, New York, 1971. 

P. Stein, Some general theorems on iterants, J. Res. Nat. 
Bur. Standards 48 ( 19 52), 82-83. 

P. Stein, On the ranges of two functions of positive definite 
matrices, J. Algebra 2 ( 1965), 350-353. 

P. Stein and A. Pfeffer, On the ranges of two fnnctions of 
positive definite matrices II, ICC Bull. 6 ( 1967), 81-86. 

O. Taussky, A remark on a theorem of Lyapnnov, J. Math. 
Anal. Appl. 2 (1961), 105-107. 

O. Taussky, A generalization of a theorem of Lyapnnov, J. 
Soc. Indust. Appl. Math. 9 (1961), 640-643. 

O. Taussky and H. Wielandt, On the matrix fnnction AX+ X
1
A

1
, 

Arch. Rational Mech. Anal. 9 ( 1962), 93-96. 

O. Taussky, Matrices C with Cn __, 0, J. Algebra 1 ( 1964), 
5-10. 

0. Taussky, Matrix theory research problem, Bull. Amer. 
Math. Soc. 71 ( 1965), 711 

0. Ta us sky, Positive definite ma tr ices, in "Inequalities, " 0. 
Shisha Ed., Academic Press, New York, 1967. 


