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SUMMARY

This is an investigation of the equations of motion and
physical parameters involved in stabilizing the initial flight
of a vertically launched rocket by means of a booster rocket
pin-connected below the main rocket., The system is designed
to stabilize the flight in its early stage before the aerodynamic
control surfaces become effective. Stability of the system is
dependent on the pendulum action of the booster rocket,

The equations of motion were derived from Lagrange's
generalized momentum equation. The differential equations
thus obtained were not solved but were tested for stability by
means of Routh's stability criteria. The ratio of the mass of

the main rocket, Mj, to the mass of the booster rocket, MZ’

M M
was investigated for the two values =—— = 1,5 and +—+ = 7.75.,
M, M,
M
The system involving a mass ratio 1. 7.75 was found
2

to be unstable under all conditions., However, the system in-
volving a mass ratio Lo 1.5 was determined to be stable in
the range 1.62<,# < 4.54 x 10!0, where # is defined as the ratio
of the distance & from the center of gravity of the booster M,
to the pin connecting the strut to the main rocket Ml’ divided

by the radius of gyration, k,, of the booster M In this range,

2.

for any given value of & , stability was uniquely determined by



one value of the ratio a =é , where € is the length of the
strut from the main rocket M; to the booster rocket M;. Thus,

for a given booster, stability is primarily a function of the ratio

A
4

, and for any given AR /Z . 1s uniquely determined.
Although the system was found to be theoretically stable
My
for the mass ratio T\/I‘ = 1.5, the ratio % turned out to be of
2 2

such great magnitude as to make the system entirely impracti-

cal for this particular mass ratio.
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I. INTRODUCTION

When a rocket or guided missile is initially launched there
is a short period when its flight is unstable due to the fact that at
low velocities the aerodynamic control surfaces are ineffective.

Various procedures have been adopted to stabilize this
initial part of the flight, The most obvious and most successful
of these has been the use of guide rails, or launching towers which
hold the missile on its course until it has attained a velocity at
which the control surfaces become effective. But this method
requires a bulky launcher, and special care is necessary to main-
tain the rails in proper alignment,

A modification of the guide rail system is the ''short-
length'" launcher which is really a guide rail whose length has
been reduced to a minimum by greatly increasing the initial ac-
celeration and thus the velocity of the missile. This increased
acceleration presents a great many problems in component design
to resist the tremendous accelerative forces,

During World War II the Germans were fairly successful
with a unique approach to the problem in their well-known "V-2"
rocket, (Reference 1), The "V-2'" was launched from a near-
vertical position with no external restrictions. Instead it em-
ployed four carbon vanes mounted in the jet stream and activated

by the auto-pilot to maintain the missile on its proper flight path.
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The great difficulty here was that the vanes steadily burned out
with a consequent diminishing of control,

The subject of this thesis is a third means of initial flight
stabilization based on the concept of the action of a pendulum and
independent of both external guides and internal control mechan-
isms.

If the missile booster is constructed as a separate unit
and attached to the main rocket by a pin connection a certain dis-
tance below its own center of gravity it can be seen from Figure
1 that any motion of the main rocket will impart a proportionate
motion to the booster. Specifically, if the main rocket rotates
about its center of gravity in a clockwise direction, the connec-
ting strut will cause the booster to rotate also about its own center
of gravity in a clockwise direction., Thus, if the main rocket
turns off course in a clockwise direction the booster immediately
turns in a clockwise direction also, that is, the booster tends to
re-align its thrust with the axis of the main rocket., If, by a
proper choice of moment arms, the booster can be made to over-
shoot this position of thrust alignment slightly the thrust will have
a horizontal component which acts on the strut to the main rocket
and causes the main rocket to turn about its center of gravity in
a counter-clockwise direction. Thus, the booster responds to an

error and its response tends to counteract the error. Such a sys-
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tem should produce a sinusoidal flight path if the proper moment
arms and damping forces were applied,

In this analysis frictional and aerodynamic forces were ne-
glected to simplify the equations. The only damping force consid-
ered (other than the inertia forces of the system) was the jet damp-
ing force or the resistance of a jet stream to rotation. The other
external forces considered were the weights of the main rocket
and the booster, and the thrust of the booster., (The motor of the
main rocket is considered not to be operating in this analysis),
Taking into account only these forces the writer derived the equa-
tions of motion of the system in two dimensions by means of La-
grange's generalized momentum equation. Because of the com-
plicated nature of these equations no solution of them was attempted.
Instead the conditions for stability were investigated by means of
Routh's stability criteria.

A hypothetical system consisting of a five-second booster
pin-connected below a '""V-2'" rocket was first investigated. For
this system the ratio of the mass of the main rocket My, to the

My
mass of the booster MZ’ is -M—Z =7.75. To reduce the work of
compufation the lateral motion of the center of gravity of the sys-
tem was set equal to zero and only the vertical motion of the

center of gravity and the rotation of the main rocket and the

booster were considered,
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Since no stable solution was found, a system with mass
ratio _; = 1,5 was next investigated, again neglecting the lateral
motion of the center of gravity of the system. In this case a range
of stability was determined but it was of such a sensitive nature

as to make impractical further investigation for this mass ratio

in the general case with lateral motion taken into account.
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II. DERIVATION OF THE EQUATIONS OF MOTION

In deriving the equations of motion, only four external
forces are considered, namely, the weight, M;g, of the main
rocket, the weight, Mg, of the booster, the thrust, F, of the
booster, and the jet damping force, D, of the booster, These

forces are indicated in Figure 1.

Figure 1, External Forces on Main Rocket and Booster.
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The jet damping force, D, is a force which resists the ro-
tation of the booster about its own center of gravity. If the booster
is of mass My, then the rate
of flow through the nozzle may
dM,

be written as “gf , or MZ' As

the booster rotates about its cen-

ter of gravity the tangential ve-
locity at the nozzle exit will be

d .
/g—as—” or lyq, . Therefore

the damping force, D, will be

equal to the rate of change of momentum, or Mz *(,q,). This

M
expression has the dimensions T ‘L % » OT l\g.L .

Frictional forces and aerodynamic forces are neglected in
this analysis,

Both the main rocket, Ml’ and the booster, MZ’ are as-
signed three degrees of freedom, namely, lateral, vertical, and
rotational motion. Note, also, that only the two dimensional case
is being treated. The coordinates of masses Mj and M, are indi-

2

cated in Figure 2., The connecting strut between M, and M, is as-

1
sumed to be of zero mass and of infinite stiffness for purposes of
this analysis, and consequently the coordinates of the center of

gravity of the system are indicated on the straight line joining

M; and M, in Figure 2.
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3
X

Figure 2. Schematic Diagram of Coordinate System and
Dimensions.,
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It is assumed that the propulsion system of the main rocket,

M, , will not be operating during the initial stages of launching and

1
consequently Ml is a constant for this analysis. The booster, MZ’
will of course be burning with a consequent change of mass during
launching, and the rate of change of mass M;, say MZ, will be
considered, as will be the change of position relative to Ml and M,
of the center of gravity of the system.,

The first step of the analysis is to eliminate the extraneous
coordinates d5s 96+ d7s and dg in order to write the equations of
motion in terms of the rectilinear coordinates of the center of grav-
ity of the system, dys and A, and the angular coordinates q3 and a4

of M; and M, about vertical axes through their respective centers

2
of gravity. (Since only the onset of instability is of interest, the
analysis will be restricted to consideration of small variations of
the angles q3 and q4.) Once this step has been completed, La-

grange's generalized momentum equation will be used to deter-

mine the equations of motion,

ELIMINATICN OF EXTRANEOUS COORDINATES

- The coordinates qg, g q7 and qg are always redundant
because of the rigid links in the system and the known position of
the center of gravity of the two masses. Therefore these extran-

eous coordinates may be eliminated by considering the constraints



elaborated below.

The first relation between the coordinates of the individual
centers of gravity and the center of gravity of the system may be
found by taking moments about the center of gravity of the system

indicated in Figure 3.

Mg
% 1
Je
%z
cg-
7 #7

7

e

Mg
7 77
PIN 7z

Figure 3. Relationship of My and M, to the center of gravity of
the system.

Thus

G () — % 7G4 =°

or _ (l)
sgep) = G )



-10-

Furthermore the horizontal and vertical separations of

the centers of gravity of M; and M, in Figure 4 are fixed by the

length of the line, 4, , joining the two, and by the angle ,[qa - j)

which .4 makes with the vertical,

Mg
/=
7<
J
28
, V]
U
J ;
< 2
&
bA (4
7 g
7z 17
S 7o
PIN
Figure 4. Relationship of M; and M, to the connecting strut.

In Figure 4 the vertical separation is

Sy =G =i

or - //«y = 4_7;&_6—
&:% -fj

and the horizontal separation is

pg_f} = & d/»//z’-f)

or 4 - 5 -7

J/';y/a—;) ‘

(2)

(3)
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A fourth equation follows from a consideration of the

similar triangles indicated in Figure 3.

MR(Fe-Fr) ST Pi-7s)

gl s =)
and, since the denominators of both sides of this equation are

equal from Equation (1), it may be written

G E) = /‘é///; '/Z») (4)
Equations (1), (2), (3), and (4) provide four linear rela-

tions between the coordinates 9,9, 59,5 and dg s and q , q, s

q, > and q, - Consequently the former may be expressed in terms
of the latter and thereby eliminated from subsequent equations.

Solving these equations the following expressions are obtained:
From Equation (2) /g = 4 ws 673‘47 +/§ (5)
From Equation (3) ﬁ = Z J/bﬁ? -J) _/_/7.7

or - -G 9 (7-7) (6)

Substituting Equation (6) into Equation (1)
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MPr-F) = LG ety somipa-F)/

FlT0E) = g g - ML ;,;,%J)

G % g (7
Substituting Equation (5) into Equation (4)
105 @y d) 1 i = % (G
7% Pron) = Mg s rag - G easﬁ-f)
o % <or (F-F) (8)

ﬁ=/‘z R

Substituting Equation (7) into Equation (6)

A 72

AN 2 Mz ”"’675’;)" & ,,-,,//g-f)

N A )

M,

F o % ) ”

From Equation (2)

A e

Substituting Equation (8) into this equation
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i

Ay €0 5 gz—f) 7"/72 - 7,?,‘72/@, easgg—f)

/7

i

B = e el i)

/g =F - .ﬁ_ Z eofgﬁ-f) (10)

AL P A7

These expressions for the extraneous coordinates in Equa-
tions (7), (8), (9), and (10) involve, in addition to the principal co-
ordinates, the variables /Z , the distance between the centers of
gravity of the two components, and 4, the angle between the strut
4 , and the line ,4, joining the centers of gravity of the two
components., These two variables will now also be expressed in
terms of the principal coordinates.

In Figure 4 by the law of cosines

4 = W‘,«,g‘— P4 S 7,) (11)
and by the law of sines

g _ %
Frd mgv,,—,g )

s J = ?f- jfzgg,-ﬁ)

N

4

whence Q;./) = ﬁ - Sy "/-f ,;—,-,,7’,.?/73-)7 (12)
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These relations are unfortunately complicated. There-
fore, to simplify them for later use, the fact that the variations
ingq, and q, are small will be taken into account. Assuming
these angles sufficiently small such that terms of order qz

may be neglected, the following approximations can be made

J/b/,- 3”2; and c'a,.r/g- ® /

From Equation (11)

A x YLl -l = £-4

From Equation (12)
) x - 4
G PR

—_ +'Z - 2L
Al E)-FF

- ~ //;’f/é__/_g
/(5;) - ﬁ A ,/«/ﬁ

and since

G £-4

) ~ 4L Z - -
73 f} “‘//’—//2‘/3 _.’/':Qﬁ = 51’77;, ’}

c‘a:Cf';-J') X /

Thus the appropriate approximations are

c’o;é{;’— } x=/

| N ; Y 13
sor (= 9) = Jf%’ﬁ':?::%—ﬁf (13

G = -4
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Substitution of the results of Equation (13) into Equations
(7), (8), (9), and (10) yields the following approximate relations

between the extraneous and the principal coordinates

7S i (g AR (14)

FOEf o e A (15)
77 w4 (16)

- 4
i g il %) (17)
To derive the equations of motion by the method of La-
grange the expression for the kinetic energy, T, must first be

found for use in the Lagrangian equation

& 27 27 | =

Al 25) " g - (18)
where & is the '"generalized force' and (.lA- isj{;;é' . (Reference 2),
The generalized force . is employed rather than the potential
energy because this is a non-conservative system.,

If I, denotes the moment of inertia of the mass M_ about

its own center of gravity, the kinetic energy of translation and

rotation for the system may be written



~16-

4

s F LG FUEIR) o RS (19)

N
N

DERIVATION OF EQUATION OF MOTION

FOR COORDINATE g,

In applying Equation (18) to the direction of the coordinate
9 the value of 27 is first computed using the kinetic energy,

T, of Equation (19).

27

7 :”/dfﬁﬁf”/

The extraneous coordinates q_ and q, may be eliminated from

this expression by differentiating Equations (14) and (16) respec-

tively., From Equation (14)

7w (AR e (4 )

and from Equation (16)

i ¥ m i) i e (A 7
Therefore

= M7 it (IR e LR 4]

*ALf - S AR+ Ty ]

/?'
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//}*//Hﬂ)z///’ //]" "’//"*(,.,”Z:/ /jf ’/Z’)]

The first term in the Lagrangian expression is then

LR R (] - R (hy- A 5) T

* ALF o o ()]

or

J PR I,}z . - ”/q,_
L) R s Ap) ) < AR (20)

By inspection of Equation (19), the second term of the La-

grangian expression is

o7
T

The generalized force &£ is most easily computed by con-

o (21)

sidering the work done by the external forces as the coordinate q .

is varied, all other coordinates remaining fixed,
Work,
Af;-

In particular, the force &, becomes, referring to Figure 2,

In general, Work, = oZ - 4/3. s or Z,=

Z, = Workh _ [~ ,, + Deos 7v) 4

4, ag,
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But within the present approximations
.-»4% ;9f,, and ea.ff,, x /

hence oZ = /‘Z;/-;LD (22)

Substituting the results of Equations (20), (21), and (22)
into Equation (18), the equation of motion in the q, direction be-

comes

(iem)F o Sl (g - ff,) - LLEB (A7)

//‘/4-/11)‘

*/%.[: = /‘_ﬁ ~ 2 (23)

DERIVATION OF EQUATION OF MOTION

FOR COORDINATE q,

The equation of motion in the q, direction is obtained in
an identical manner,
From Equation (19)

/_.7_-_: A~ _L 77,
5% f; fs’aﬁ

and, differentiating Equation (15)
> - o 17, /%,
e TS5 T rme) ~-4)

Consequently j& - /

2

Similarly, differentiating Equation (17)
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b > 1/-,3- —
A Sy LR %

so that .
%
7

27 > Y RactS -
Therefore ;E____ //'{-/—/4)4}2 7=y //( /’i}]

and the first term of the Lagrangian expression becomes

G52 (el - L ] o )]

or

S5 - o) - g ) < &

Furthermore 27 - o (25)

x*

The generalized force &, is, referring to Figure 2,

= - Work, _ ﬁ/%w%)? + Feos 73 - Dsww 731 47
AR age

and since

J’/qlqy:‘\;/,‘( and eo.s/?,, % 7/

=, = —//z-f/‘(z/y » £ - D (26)



-20-
Substituting the results of Equations (24), (25), and (26)
into Equation (18), the equation of motion in the q, direction be-

-
comes

ﬂ/f”/ ””‘ [/—//.ﬁ/‘rﬁ = /.._y(r‘f,awl‘&)_ﬂﬁ (27)

,ﬁ”)’"

DERIVATION OF EQUATION OF MOTION

FOR COORDINATE q5

The first term of the Lagrangian expression is obtained in
an identical manner to that employed for coordinates q, and q_ .

From Equation (19)

—jﬂ—'}i: z/'f;+ Mf;-%—-f”ﬁzf

and, differentiating Equation (14)
. . 27 47,
B f o i (- //),./an g - //)

so that

2fc . g

);; S AP,

Similarly, differentiating Equation (16)

/ < f - i/ % 47 "‘(,::»/:zjt/jﬁ” 4z

so that




2]

Therefore

7}3&1; - Arjv o (s~ » G )l (1)

« 4f - B (A + R PR 7 4)

or

o7
7

and the first term of the Lagrangian expression becomes

< LF e L L4 )

M+ T

éﬁ—/ % * 7%%';///7%-4/@),; e «f,’/fﬁ_,g/;;) (28)
From Equation (19)
or /%r;%u/ / yz 25 *fo,,) (29
and, differentiating Equation (14)

77w s G (-4

so that L (30)
m (777E)R

Similarly, differentiating Equation (16)

G mm AR e (B )

so that L (31)

fg,fz=mf—’527/f



-22-

But now the values of ;jﬁ and 242 cannot be evaluated to
3 L
the first order from the linearized expressions for q, andq,
in Equations (15) and (17) respectively because the q, term has
vanished in the process of linearizing these equations. Therefore
the differentiation must be carried out upon the exact expressions,

Equations (10) and (8), and the results then linearized,

From Equation (10)

ﬁ:ft’.’. 1% /46::(9 where &:ﬁ—f

Ve Rt

and the time derivative is

.. o ) e J M A7 ) 2
ﬁ =/‘2 - M":/z /4/5”7:9/& +/ﬂf;fz4 Cos & .,.m_ _/4/ Cos (3 )

Therefore
d; - ) L/é oy & - Vs 3 / Frind é
5w S5 (7Y - w7 7
Ml e DO M D es o
i ¥ dﬁ A+ djf?
7 s S 17, PE s o

+/‘//f-”14 /f-” * (7 %+ )% df;

v >3

The value of ?j_{é.’ follows from Equation (11)
2

4= G2t d wsipp)
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and upon differentiation

J//—V - AL -’/ﬂ//"'ﬁ/
72 A% A

which, by retaining only first order terms may be written

M o _ AL ()
7% A
Similarly L (34)

2 _ g . Khlowippl G- ps)
el Ay |

The various derivatives of ¢ must be computed from

Equation (12)

‘9=ﬁ"f= 5 .»'”—/?f_ :/»66,-/3_)/

Thus

T Ry 4 eosiugi) - [ ] (- i)
% V/ —-/:/5 Jlfllé’&—zzyz //; z

IO . / //é /‘gzeoséy-ﬁ) -/z/z’ Sewr ‘?,,.ﬁ)
7 N ) A

8 . s, 4 V7 A (35)
52 4 & #

Now
A 5in® s & 29
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and substituting the results of Equation (35) and linearizing

_f.f_{’_”ﬁ.—u L S

s = .

6
G2 o £ (36)

SN

Similarly, from the results of Equations (35) and (13)

P o5 O

o sped® . _ L ha £ . _ /tgfeé-dz 7)
% &yfj" 7 y 7z (37)

Substituting Equations (34), (35), (36), and (37) into Equa-

tion (33) and retaining only first order terms

e . M LB LF) o ARG F)
7‘;3 7 447, A A 7

A R VA 2 . z//?-zz‘zz
(~7+r7)]? A (77 +7% )3 7,

or

Sf = L L RA-4) L L g h-g) (Y
¥ v

s At 72 (77 +1)"

To find g‘ﬁ the same procedure is followed. Thus, from
7

Equation (8)

ﬁ:%-/ﬂ:'if‘,@,eos& where O——'ﬁ—f

and the time derivative is

s A, . Pl foese, 1SR s 39
ﬁ ~/§ v A 4/’”"y& —/‘flfﬂ"ﬂr “ //‘z+/‘fz)z ¥ (39)
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Therefore

o e A, - PTa G
M 2 oo DB 0% D epss
o e Iy T M o, e
LM L Dewse . M Iy cosd
A7 - 77, 4,, (/‘zfm)‘//_;

27, 17 /{/ g oS (40)
(77w )T e

Substituting Equations (34), (35), (36), and (37) into Equation (39)

and retaining only first order terms

/f/* Ty j’.,/ //"’_ﬁ)

- //"4-#/‘7:)1 /ﬂf,-f/‘fz}z'

7;%? e 4 i) - 7—”%7 % (4-4) (41)

The second term of the Lagrangian can now be written by
substituting Equations (30), (31), (32), (38), (39) and (41) into Equa-

tion (30)

73 = F o T - A ) » s Al e 4

4l - A ) » ot AR A ey 4 T
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+1[f v e AR - 7 A - e ]
+ M [f - 7/7',‘,,%?//5‘4/][7/,—:?{//? - ﬁ?/ﬁ]

or

2T i L. M M (g /ﬁ)

2/73 YA A /7)) 7

/ﬁ/j;z /ﬁf - ”N%), /f/f 4 ) (42)

The generalized force. <Z; is

Works
Ve

&, =
Therefore, referring to Figure 5,
ﬂa = ,/{j% - /%9 éf: +/_J/'/7/;, %& —/—‘2/./.4) J’//I/;]
+ Feos g 3—;;; [ B ek) sy ] s P 5 gf;—gf; - (e 4) oz ]

— ﬂ»}?ﬁ ;7;;4; —/gfg} go"ﬁ’]
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Substituting Equations (8), (9), and (10) to eliminate the extraneous

coordinates q 59, and q, s and collecting terms

Z, /%'J/ﬂ/fyv‘/eoo‘ﬁ) , M L 56— [L+4) .5/-,7/;_7

Zf_ /‘f,f/‘f
-/-//‘—eau’%/_ ﬂo‘zdf/ % ,/;7/'%4&60— %f,g) eu,’f’,]

Vs

g

N 4 ;
7

J& (hnts) s o

y4 —A{ﬁ@}af'qﬁ

Figure 5 . Schematic diagram of external forces acting on system.,

Carrying out the indicated differentiation with respect to qa,

g; :://"Jz'ﬂﬁ -7 ea.;ﬁ,)/:l‘sz;& /4 /j‘d& p Tre7 Q@ d;; )]

+//"Co:ﬁ,- /5:'4/7%/:”,‘%%/ /77;’(9 £ COIO _gfé/]




-28-
Substituting Equations (34), (36), and (37) into this expression,
and using the approximations $ing ¥ 7 and g s, Ry

becomes

ARG A . [/;1,/%;:,;/25% /,Z%:,- 53)/]/

- (#- %)/‘M/zz

(LB (Fr-7)
(4

Finally, retaining only first order terms, the expression for the

generalized force & reduces to
o = oyl A R) + 2] (43)

Therefore, by substituting the results of Equations (28),

(42), and (43) into Equation (18), the equation of motion in the q,

direction becomes

LF e £ -4 ) TR A )

+I‘7.;

L1k 45 - _/z_»zz__s///; /f}

T TGS (7% + 76)

7

, R . A -
. B AR R v g R )

]

- M”’ /s f)*}] (44)
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DERIVATION OF EQUATION OF MOTION

FOR COORDINATE q4

The first term of the Lagrangian expression is obtained in
an identical manner to that employed for coordinates q , q, s
1]

and q, -

From Equation (19)

27 . Zg o . T 2R
% 2% fdf,, P

and, differentiating Equation (14)

so that
IFs 7
;‘é - —”,-I'Mz ‘4
7

Similarly, differentiating Equation (16)

G =} A P )« e 4R
so that

dz_ 77
{7; T M <

R

Therefore,

e Y f + 57 ) e (o ) |- 4

8 [ e <) 7 o Ap)] [ i 4]

or

52 g - sn A7)

J/qy e Aot
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and the first term of the Lagrangian expression becomes

a/ 7 .s S e
//;? L rhp - //vw)zjé//f' <7/

7 % > =
o (4 -47%) (45)
From Equation (19)

% A i B ()

and, differentiating Equation (14)

f;“ zf;+ /’f ///+//‘7 M)‘// //'})

so that > (47)

Similarly, differentiating Equation (16)

7o = - 7 (-4 « ey (5 %)

so that > (48)

2 - _ M 4
?ﬁ (7 +/%)*
Here again the values of Z2f< and -2 z cannot be evalu-~
g v 7% ?ﬁ
ated to the first order from the linearized expressions for q, and

qa, in Equation (15) and (17) respectively because the q, term has

vanished in the process of linearizing these equations, Therefore
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the differentiation must be carried out upon the exact expressions,
Equations (10) and (8), and the results then linearized,
The time derivative of q defined by Equation (10), has

already been found from Equation (32)

> = P 77 Y ald . 2% s M1t Lews®
[? - ﬁ - /,l./.;fz -6/-’946/0 +m’£e a'l‘m:. (Sand (32)
Therefore
210 47 )/;/(,,-4 o)o Ll p PInd &
4 P Oy P+ Y id
— /7 A ﬂ,,df.‘é /% _ﬁ;’é’(!c"@
res % M+ J/y
- 2% 4 Pz MilT Dy aze
A Iy (s ) fy
M AL
*
(% 2% )* 4 dﬁ (49)

The value of 2% follows from Equation (11)

G = *ij,./{?-_ 204 ea.;év,,—/g,}

and upon differentiation

Ay - L AE 3w (- F2)
Jﬁ/ ,/y

which, by retaining only first order terms, may be written

Ay o L)
2 /4
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Similarly
_%y = ,Z = /,g/-f”/ /fy“ﬁ/](z'}—f;) (50)
I A

The various derivatives of ©® must be computed from

Equation (12)

& = ﬁ-f = ﬁ - J/w_//_/j;é :///7,—/7;2]

Thus
2o 4 G orfr ) - iy 5) Lhzpllci)
= ‘ -
jje/ ]// _//_%@;#7_/ /@z
:)_(_9 = /Z ,//Vzgdj/if—/?‘;)—//{ ’,.4167’,%)
% %"‘zz/ Lsm ‘6«,,— 5 ) 7%

and approximately
2 . _ _Z2 4 . _ X
E2 e 2

(51)

Now
donS _ o @ 29
7 3

and, substituting the results of Equation (51) and linearizing,

A S c® < _/4 for0 -~ . ’/‘z
=z Z (52)

&, /4( 4

Similarly, from the results of Equations (51) and (13),

5029 b sn@ o K%ﬁ“«gﬁ’) (53)
M

A5 S _ _

7 S
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Substituting Equations (50), (51), (52), and (53) into Equa-

tion (49) and retaining only first order terms

Wy = MM :‘//3/7 ‘f/+ /‘f+/v,_ 717—/})

(77 +/%)*

P A ) o P A //7; -z 7).

or

7*//%”::/7,«” %G foll-4)+ ”m)z/ 5 (4 -4) (54)

%4

To find 5%5 the same procedure is followed. The time
derivative of g , defined by Equation (8);, has already been found

from Equation (39):

> v ©)6 — /‘7/ a,xd M/@eo_fé
/ f ”* / ) M+ % +W*/‘a)z (39)
Therefore
I . % /.5/4&/& v Ll L Pond &
J/?/ A, + //y A /fy
v Ll 4 7nd 2SS _ M Dy ss O
A d/v 10t Pfy
—- AT, /é e > VA M e O
A 2y (P r) " Oy
-+ Y 2 €058

(55)
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Substituting Equations (50), (51), (52), and (53) into Equation (55)

and retaining only first order terms

;h,.,:j,l,f/ oA 5) ~ i L (- fi)
L i) + A L (g

A7+ %) 4,

A AT
(r7+r%)*

or

RS o VLAY e VD

The second term of the Lagrangian can now be written by

substituting Equations (32), (39), (47), (54), and (56) into Equa-

tion (46)
27 _ A@/:+ // 4 }+_/Vﬁﬁ // 4 Z&F M % 37
ﬁ I+ M, /‘; f +/‘7’1)‘ / f /‘/*” *
el £) 2 (AR 4]
# Y b e )] 7 4+ e A ]
[ F o il (L[~ e 4y « A [
or
;‘;’- T /‘Z»/Z “Gf - //vfmﬂ ///f”-jf)
r H A F ) 67
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The generalized force £ is

,7;/ - Work,,

i

Therefore, referring to Figure 5,
=, =//‘a,w/;+ﬂea.;—/é;,/;%[f7 _/{+g/ .:7'/7/'/]
(e i) S [ () oo ]

_@9% - /‘7_7;;:;'6/

Substituting Equations (8), (9), and (10) into this expression to

eliminate the extraneous coordinates q_ , q, s and q,

=, = /'.»ﬂ/;,-/. 2@7/7_4/:7 7% .¢J/'4&__/{*,€)J///fy]

LAY

_,./"wjz, L )d 1/4;-' m !asd-//f-/)¢a/7

9%& i k.s@/ /‘/‘72/_‘”7 Mf/"fz.. eba&)

and collecting terms and performing the differentiation

O7y=/'r""’7r* ﬁ"‘”ﬁ’)/:»z:f}& M,/%ZO + a,h&%)—/,&,.,@)ebaﬁ,]

gttt gt o) [l ]

Substituting Equations (13), (34), (36), and (37) into this expression,

and using the approximations 27 and wiz e !, ﬂy becomes
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= (j'g,+//[”+” /// //"/)]
+ (7 -t (ELG LA L)y (ol ]

Finally, retaining only first order terms, the expression for the

generalized force £, reduces to

z=-~}——§——/+ ) (58)

Mo # /7

Therefore, by substituting the results of Equations (45),
(57), and (58) into Equation (18), the equation of motion in the q,

direction becomes

13

. ., 2, . - e s
\%;a -+-472-5£%§%F3479§G—4§z}-;ééﬁf%fﬂeﬁ-4/;)

e g (—‘—‘/w oo s L) - Hle A fi

- 7 ,//g,//-/) = -Ygm Ll ] (59)

Thus Equations (23), (27), (44) and (59) are the four La-
grangfan equations of motion corresponding to the four principal

coordinates of the system.
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ANALYSIS OF THE EXTERNAL FORCES AND REDUCTION

OF THE EQUATIONS TCO DIMENSIONLESS FORM

In carrying out the stability analysis the state of vertical
motion corresponding to the q, direction will be considered con-
stant during the perturbation. That is, the values of c'l‘_ and 2:1;
will be fixed, and their magnitudes will be determined by the
time-instant at which the stability of the system is investigated,
Therefore the equation of motion in the q, direction, Equation
(27), will not be considered further in this analysis,

The thfust force, F, of the booster may be expressed in
terms of the mass rate of flow, M, , and the specific impulse of

the fuel, I,, , as

A = —/‘%39'-2;,0

The negative sign is necessary because M, is numerically a
negative quantity as it occurs in the Lagrangian derivation. Thus
the thrust, F, will become a positive quantity when evaluated nu-
merically in the next section.

Also, it was found in the first part of the derivation that
the jet>damping force, D, is proportional to the quantity /‘2.4/7; .
In order t.o make this a numerically positive quantity, it will be

written as
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The moment of inertia, I, can be written as the product
of the mass, M, , and the square of the radius of gyration, k,,

that is

L = A

The time derivative of the moment of inertia, I, is

FL S é A A7) . However, the second term is
7 2= i

small compared to the first term and will be neglected in this

analysis. Therefore the following approximation can be made

Making these four substitutions in the equations of motion
in the q, , q, and a, directions the following equations are ob-
tained from Equations (23), (44), and (59), respectively.

From Equation (23)

e 7 /17/”
Crealf o+ FB A - e A

(A -l (L e A n = 0 (o)

From Equation (44)

an /‘7/2,'11 <
/‘7/+Mz./f+/”é+ /*/“fz //ﬁ +//‘1.+/‘¢4)z"/ﬁ

(G- P AL T A )z,
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W2 AL /ﬂ,ﬂ, LL ., M //)f,

YA N h

Z
Vac/) —
o LR AL - Gl Lo ly)f = e (61)

From Equation (59)

/‘Z/“?s/'—_/‘ﬂ/"z//"_”/'/l L ¢
it ST Aerty <7 (pern )t 44 S

M_///; +/ﬂé” NM/)f

@7+ 17 ) Akes

(74 M G AR g 2 ,4)/7',

M+ 17 )* Mo+ M

1% AV _ (62)
//va/‘fz/f-f/ﬂf-/‘&)'?//)ﬁ =

To write these last three equations in dimensionless form
introduce the dimensionless coordinates O, , Q, ;, and Q_ ; and the

characteristic units of time =1I,,, velocity = I_ g, and acceleration

Ego
Thus
@ = & P =_F & = Z ]
L g Ly I 7

@ = 5 é:, = —'/Z;z 4’3 = Lo fa > (63)
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Making the above substitutions into Equation (60) and divid-
A
ing the resulting equation by M,g, the following dimensionless equa-

tion is obtained

Lo %) & 4 L e 4 _4 5
// /71/ Q /‘/ /, M/ f 1,;7 £ 2/;_ &
7% iy x éx. / Vé

—-._____.._.....__..___

@ - [ 7
Mrrnl Ioq 4, 4 "'*"”z 1,,5 £z

._//j;-/?z' .A&./J’}q]¢ /”*Mﬁ ——; /—;—f—

r 2L lB) ] @ = o (64)

Similarly, substituting the values of Equation (63) into
Equation (61) and multiplying the resulting equation by —/—7.’“—7—
A G A

the second dimensionless equation is obtained

_f{;( ,v/¢ [—:——/: ,ét/, M/ ”fjéz /]@

45 b LAG [T b, ) pid) e L
” 9 ,é%@*/ ,y”‘ /ﬂ,wa IFg A&

X

M A 2.
v e O TP - o £ G [ e 5
:/—/ij I,,,y,é e /Z'; ;‘/ /Z‘,@//f,‘fﬂ]@ = © (65)
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Finally, substituting the values of Equation (63) into Equa-
A

AL+ AT the

tion (62) and multiplying the resulting equation by /{”&74

third dimensionless equation is obtained

WIS A £ 2 YA
*/47: »//rﬂ:/z.,:g z'z@*/%?f/”?%‘/*z,? z/@

) /‘Z_ff /1/ . I Aéz_é_,; Wi % Lo £: A
t [ ez, mz' /45,4 * A TIrM LEG &

% s o ot)irg L il b ))T @
P e g)- B R R (A)] %

— __C__/, /';a.]; /
/_,.,z m‘if’;(’* /*M(prf 7 .éz ] (66)
Equations (64), (65), and (66) are the three dimensionless

equations of motion of the system and contain the following eight

dimensionless parameters

m’ 4, /% Zow pa
% %, g M+ A

s & £
4 B2 Ly g A

N
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ﬁl. NUMERICAL INVESTIGATION OF STABILITY

Rather than attempt to find a solution for Equations (64),
(65), and (66), it was decided to introduce selected values of the
first six dimensionless parameters and, treating % and £

2 %

as variables, to use Routh's Stability Criteria to determine
the range of combinations of these two variables in which the
system would be stable.

To simplify the writing of the determinantal equation

necessary for the use of the Routh criteria, introduce the fol-

lowing notation where

A,;' = coefficient of Q. in Equation j

}?17‘ = coefficient of QA- in Equation j

CJ.; =coefficient of .Q". in Equation j
and

J = 1 corresponds to Equation (64)

j = 2 corresponds to Equation (65)

I

j 3 corresponds to Equation (66)
.With this notation Equations (64), (65}, and (66) may now

be written as



Cu

B, 9+C,, §,+B,, 0, +4,,Q,+C, &

B, Q+C,,

Ql + Bu QI + BJI Q.-l + Ajl Qi + B"//

H
(]

where, letting ?4_5/ and £ = £ , the coefficients in Equation

(67) are

Agy

2

~

- //::'fﬂ¢/ J.;,j M

%7y, % AT,
2 45, M LT Lsp M /
ﬂ,—fﬂ;[ ,7"7 /Vf/“/l. +M

I

) %

2.

/% 6/ /+ /ya.] 2
/‘77‘/’72, N+M"

/‘71-/»(,+_17_) /,1‘/&&?‘%

P Al Z

/'%‘J;’ 17 /fﬁ
P47, %—[

/72 5 [_f /7
Ve AT/

A
- Gida (5

e L :/1,__&)
AT

27 (1% T |*

f/J'

# %)

>(67)
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¥3

“

3z

73

437

-4

T A
v sl

/‘%a. ]S/‘ éz. %

rtM Ly

%l 7 K K

T Mt 7 f;,“y

4

/'7-7’/' /,‘ ,/r ML /3
7%+ Zig T M Z}g
(g /',z,js-/;
/n/‘fz./ * M 179%_7
AL 2, o) LS. R X R
e MM iy g 1% et PG
LAl [, e //"_f?x-[-'/ 1_42 /s- /r/
S L%
Vacld
/‘7 'éz. o
4 <5
%
— A7z /éx
7 By’
,é/
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Inasmuch as oscillatory solutions are of main interest,

t

assume @, =< e’
Then B e A=A Q.
and d': oc /\:. 4?,

For the system of homogeneous differential equations (67)
to have other than a trivial solution, the determinant of coefficients

of . must vanish. That is

z
" X + BH ’\ B.’I A + A‘;/ B//l’\ + A‘V/
B, A Cut + B,r + A, CoA + B2 +A,F0 (67a)
B,;x Cys X + Byy) + Ay, Cp A+ B,,x + A,

Expanding the determinant of (67a)

C, FA" +(C, H+ B, F)X+ (B, H+ C, T - B.S + B, W) A"
+(C,K+B,J-B,T+B,X))+(C,R+B,K-B_U+B,Y)\
+(B,R-B,V+B,2) =0

which can be written

5 & K Z —
PA +PA" +pA +pX +par +tp. =0 (68)
where
p =CF
p =C,H+ B, F

p, =B, H+C,J-B,S+B,W

p, =C,K+B,J-B,T+B,X



B, = C, R+
p =B, R -
and
¥ = CsC,,
H =B,C,
F o= A0,
K =4A,B,
R =A,A,,
S =B, Cs
T = A,,C,,
U =4,5B,
Vo= A, A,
w =B,C,
X = A, C,
Y =4,B,
Z = a/An
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B,K-B,U+B,Y
B,V+B,2Z2

- G5 Cha

+B,G. - B.C,;, - B,,C,,
+A,C, +B,B, - AG. - A,C,, - B,,B,
tALB, - ALB, - ALB,
- Ay By

- B, C;,
+B,B,-4,C;-B_B,
t A, B, -4A,B, - As:Bw
-ALA

- B,C,,

+B,B, -4,C,-B,.B,
tALB, -A B, - AB,
- AL4A,

The system will be stable if the coefficients of Equation (68)

and the following terms of Routh's stability criteria are all of the

same sign (Reference 3)

l. 2 - &5
7
2. A Cosy -4 )
2o -2 A
2
3. £ L A~ (A~ 205) A

5(69)

2L (28 -2 2) - (24 - )]
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NUMERICAL EXAMPLE FOR "V-2" TYPE ROCKET

To find a numerical solution to the problem the '""V-2'" rocket
(weight approximately 28,000 lbs.) was vchosen as the main rocket,
M, and a small five-second booster providing an initial accelera-
tion of 1-1/2 g was selected as the booster, M;.

The dimensionless parameters of the system were then es~

timated to be

M g Re _ fPr o€ @ 2PZr . _ 22/
A .Z./‘y 7+ %

L = 775 7§é.=-2%axﬂf6

4, 79

z_. O at launchin
ol 9

The stability of the system was then to be investigated for various

. .z _ 4
values of the two variables d_Z—and/- %

Because of the inherent complexity of the constants of Equa-
tion (69), a vast amount of time would be required to investigate
every likely combination of the variables A= £ and &= é. How-

4 42
ever, the writer optimistically set out to evaluate these constants
for various combinations of a and & ., Inasmuch as no combination
was found where even the constants p to p, were of the same sign,
much less where the test functions of Equation (69) were of the same

sign, it was decided to reduce the complexity of the system in order

to expedite the computation.
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Accordingly, Q, and 'Q" were assumed to be zero, that is,
the system was restricted to vertical and rotational movement of
the center of gravity. This assumption reduced the system of equa-
tions to two, namely, Equations (65) and (66), and reduced the labor
involved in applying the Routh stability criteria substantially. Once
a stable range of a and # had been determined, these values were

then to have been used in the general case for closer investigation,
STABILITY OF SYSTEM WITH TWO DEGREES OF FREEDOM

If both Q, and ('j‘ are assumed to be zero,; Equations (65)

k]

and (66) may be re-written (using the abbreviated notation intro-

duced earlier) as

Cszéa + B:n.Qa t AazQ.? + Gy, dff + B, Q:/ +A4,0Q =0
G,Q, +B,0, +4,0, +C,08, +B,Q, + A,Q, =0

. At . .
and assuming @ «< € , as in the more general case, the determi-
4

nant for this case becomes

3 2
C oA+ B,A+ Aj, C.A+B A+ A,

2 P
Cy3A+ By,A + Ass Cﬂ/\ + Busd+ A,

The expanded determinant may then be written
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7

- B,,C,,) A

“2 33

(Cazcv.? - quzc.as) }‘¥+ (C B,, + B,,C,, - w2 By

32 43 '3

+ (ng A,,+A,C,+B B, ~-C,A;;-A,C, -B,_B ),\

32 %3 ¥2, 33

+ (Byy Aus + A, By, - BAy, - A BI)A+ (A4, - ALA ) =0

32 Y3 ¥z 33

Furthermore, since the parameter E% equals zero at launching,
/0

the last term of Equation (70) becomes

(/.732 /;vs ~ 4 4?3)— W/‘é’ﬁ%’ /‘,;/][/‘/a. /‘f—f-/‘f L/7 d/]

v [R5 ( £2)][ 52

M*M/ Z,,,7

Therefore Equation (70) reduces to a third order equation of the

form

BAT e RAT 2 RA 2L =0 (71)

where

p =6G.,C, -C.C

*2 323

P, = C:az B, + B, C qu By - BW_C”.
p, = Cs A + Aacdla .n Bva - Cyz A.as = A'«ac:a - Byz B,s
b, = Bsz Ava + A.u B«a - B«z A.;:a - sz Bss

and the Routh stability criteria require that p , P sP sP and
4 2

z

all be of the same sign. (Reference 3).
The coefficients of Equation (71) may now be evaluated by
substituting the parameters previously selected for the "V-2'" rocket

with five second booster., Collecting terms these coefficients may

(70)
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be expressed as follows

g - L@l c) (72)
where
g = ST 24 x /o_lj
e = R226:/7 . zsran "
(-3 ’42‘
/7 LA
B = L@l ) (73)
where
g = AT/
C = J,7/z/o'7__ 6-/-5?/0-7__ f./.ex/o"
S el
(74)
2 = #Llrr bl
where
a = A7 T ET
b, = 5B Lt #2350 5P 42/ 07"
AR P Ny e T LI _____Qf;v < ?.Jx/a"}
A = G r A + G (75)
where
@ = 3ozzx /o TEF*

.53

i}

~(€.06+ 0 5%+ é’./z,/o'%)

30350 T Y Bt SO T LT Y ZLE x0T

R

Q
il
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Before computing numerical values of the coefficients of
Equation (71) it will be profitable to draw certain conclusions from
an inspection of Equations (72) through (75).

a is defined as the quantity é , and & is defined as the
quantity _/é‘zé , where € and k, are inherently positive quan-
tities by the physical nature of the problem. Therefore, it can
be concluded that for any real solution of the physical problem,
both a and # must be of the same sign, that is, either both posi-
tive, or both negative,

In Equation (72) the sign of p, is independernt of & and
takes the sign of a. Therefore numerical values of p, need not
be determined at this stage of the investigation since the sign of
p, will be evident by-inspection,

In Equation (73) a, is always negative, and ¢, has roots
at 4 = 0.456 and & = -1.93,

Since both a, and ¢, are. < <

negative for £ < 1,93 and

since a is negative when &

e
is negative, it follows / - \ a
/ N

that p is always posi-

tive in this regi(;n.
Negative a yields negative p, from Equation (72). Therefore p,

and p, will be of opposite sign for all values of &< 1.93, and,
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by Routh's stability criteria, stability is impossible for this case,
By analogous reasoning stability is impossible in the range
0 <& < 0.456.
In Equation (74) a, = 0 when & = 0, and a, is negative for
all other values of & , Furthermore, b, has a root at & =2.54x10_¢,
and ¢, has a root at A

& = -2.68x10 . Since

s
a, , b, ,andc, are all _— -3
C . / d‘
negative in the range
0< B <zt <

it can be concluded that stability is impossible in this range by
reasoning analogous to that in the case of p, .

In Equation (75) a, = 0 when #& = 0, and a, is positive for
all other values of & .

Furthermore b, has a

O

root at £ = -1.34x10"

and at & =0. Also /%43
. »
\ Z -

c, has roots at/é"= < M

0.456, & = -1,92,

&

and & = -2.68x10° .

No conclusions can be
drawn in this case.

To summarize the conclusions of the preceding paragraphs,
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the possibility of stability need only be investigated in the ranges
-1.93 << 0and 2.54x10 <& < 0,456.

In evaluating the coefficients p , p, » and p, the follow-
ing procedure was adopted. Selected values of & within the
positive range 2.54x10_4</ < 0,456 were used to find the con-
stant coefficients of Equations (73), (74), and (75). Then the
positive roots of the resulting equations were computed as func-
tions of a. Negative roots were not investigated since a must
be of the same sign as & . These values are tabulated in Table
I.

S.imilarly, values of the coefficients and corresponding
negative roots of Equations (73), (74), and (75) were computed
and are tabulated in Table II.

The data of Tables I and Table II are plotted qualitatively
in Figure 6 and Figure 7,

In Figure 8 and Figure 9 are plotted the logarithms of
maximum and minimum limits of a for which p, , p, , and p,
are each positive,

It is apparent from Figure 8 that there is no single value

revim

of a for which p, , p, , and p, can all be positive since a

for positive p, greatly exceeds a,,.. for positive p, for all

values of 2,54x10 < & < 0.456.

Likewise, in Figure 9 there is no single value of a for
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which p , P, » and p, can all be negative since \a ,.,,,,‘ for nega-

max

tive p, greatly exceeds |a for negative P, for all values of
-1.93< % < 0.
Therefore, it is clear that Equations (65) and (66) do not

have a stable solution for any combination of a and & for the

parameters chosen,
STABILITY OF SYSTEM WITH REDUCED MASS RATIO

In view of the negative results obtained in the previous

case it was decided to investigate the effect of changing the par-

ameter /’Z . The following set of dimensionless parameters

was then selected

R £ - 6.721/0_(; 7 Tp _ _ 22/

/‘fz L;q M*”x_

4 _ s A PP

/‘éL .5,19

,;éL - o at launchin

o ( g)

Note that £%Z was decreased from 7.75 to 1.5, —z'é—
/Y2 ]";0-7

< <
was increased from 1,96x10 +to 6,.72x10 , and 1—,—,21 was in-
4

- -6
creased from 2.48x10 +to 8.75x10 . The remaining parameters
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were unchanged. Thus, this second set of parameters describe

a system essentially the same as that first investigated except

A

that the mass ratio Z2* has been markedly reduced.
2

The coefficients of Equation (71) are again evaluated by

substituting these new parameters, Collecting terms the coef-

ficients may be expressed as follows

po = R/—//O.,;(Lv‘ (a) (76)
where a, = &S orr s0 7
c = 282:20"7, Lo "
4 2
7
b = 7/(7,(‘,« (,) (77)
-
where a, = *%7 x so
c - Aagx/o'f_ /2/v/o—i ST e x”
‘ F = z=4
b, = gLl r L + G (78)
e <
where a, = —-2Z%ZZ -~ 79 i
b, = #43x0 F P, 2585 8 — 6.36 = s077
2
Co o = ~(2Ur 0 B 24850 5 + 46 17T -"f—’;‘fgﬂ’:r)
b . @ G G (79)
-/ z
where a, = #32~x©
-7 -9
b, = —//.ycx/o/fzv‘f.’ll'«/d Oﬂ)
-y
c = 232 s07"%%, £ 22 « 0 ST+ Lo SO Ve LT xt0]
R 4

<z
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As previously stated, a and & must be of the same sign.

Again, the sign of p, is independent of & and takes the sign of a.

In Equation (77) a,

<G
is always positive. Also /

/

c, has roots at & = 0,68 /

and at & = -2.84.
In Equation (78)

a, = 0 when #=o¢o , and

Q

T is negative for all

other values of & .

Furthermore b, has roots
at # = -5.6x10°  and at

-
A& = 2,55x10 . Also c,

has a root at Z= —1,12x10$ .

7

Since a, , b, , and c, are all negative in the range 0 <, < 2.55x10

stability is not possible in this range.

In Equation (79) a; = 0 when & = 0, and & is positive for

all other values of & . Furth-
ermore by has roots at 4 =0

- &
and at 4 = -5.62x10 , Also, -

A
/

———

has roots at 8™ 0,625,

Cs

& =-2.83 and & = -1.12x10 .

-
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It may be concluded that the possibility of stability need
only be investigated outside the range 0 <& <Z,55x10-‘..

As in the previous case selected values of both positive
and negative & were substituted into Equations (77), (78), and
(79), to compute the constant coefficients of Equation (71), and
the resulting equations were then solved for maximum and min-
imum allowable values of a. The results are tabulated in Table
III and Table IV, and are plotted qualitatively in Figure 10 and
Figure 11,

Figure 12 and Figure 13 are again logarithmic plots of
the maximum and minimum limits of a versus the logarithm
of & .

In Figure 12 it can be seen that stability is possible in
the range 10_r</ <4.5x10” only if a,., for positive p, is
greater than a,,, for positive p, . (The curves appear to co-
incide,) However, an analysis of Table III reveals that for all
values of 104-<ﬂ < 0.68 both ¢, and c, are negative whereas
a, is negative while a, is positive in this range. Therefore

a, |4 [/ |//~i’ﬁ£5 while a _ | b [/ / 4“43(3]
zndh—[,(d;‘\ * ézz Zmmin Z.J_a -+ + égl

Thus it follows that a, is greater than a,
"/ e »

in this range
ak

and stability is impossible.
Similarly, in Figure 13 stability is only possible if

Ia for negative p, is greater-than |a

for negative p_ .

Ilf-tgl s
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However, an analysis of Table IV reveals that for all values of
-
-2.8<4< -10 both c, and c; are positive while a, is negative
- é‘; Aty Ca
™ N[ ) 22
. b2 > <3 .
while pG,va= '_-z—ﬂ;’ ‘- ]ié; ]] and thus laé wn| 1is greater

than }c(_,m”‘ .

and a, is positive in this range. Therefore,

Therefore it is only necessary to investigate more close-
4 »
ly the range 0.68 <& <4.5x10" and -10 < & <-2.8.
Returning to Equation (71) and multiplying the analytic
expressions for the coefficients of p, and p, the following equa-

tions are derived if only first order terms are retained.,

/f :@’-(27‘62’(7‘(1_

= -Gz )<

[ ) () e (- 5]

A Lo /éz A7 /% oy ég Ract) s
* /‘7;/42 ,5;7 /+ 771—// * e, Zog'F //+ /":/ﬂ
il ) (L)) 2n)fon 47, (80)
/‘Z*/‘fz ’,‘17 /7 /‘72_ kzz
and ‘
A = T éj, L » &

i

-/ REEVEE) e
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zrs 2t
/ 7 7‘/‘"1 ’/9/ W./-”: .1.;/2_7 7 A /’/d
/;J;, z //,ﬁz L% %L [, /"/ / L
H (7] i 7/ % 7+ 1) T g /5

B O ] e

Zg T

Factoring -/4,:—’ //:‘:f;; from Equation (81)

I

/—yf 7/_3:%{ [//::ﬁ;;) []"q//] oL

4 /‘73];/ 2 e A __/__‘77 ]a/
*[ v Kr VYA 1,;9//*/1%

I T3 Y M.-Z‘/' 'éz / Vil /; L
*/ VAV ],,3// /A AT AT */‘f/// VAV

, /‘Z}Z’-ﬂ ]
/‘74"‘/‘7:. / ;’ 9

(82)

‘Comparing Equation (80) with Equation (82) it can be seen

that both a, and b, are multiples of a, and b, respectively by the

factor }\% %ZL . For positive & , stability exists only if a

R I )
is greater than'a,,,, , thatis, if & < —S2

2 ATy
My M A1



-60-

. But the factor & 2% Zip is numer-
/% N+ M

ically negative so that the condition for stability can be written

e, > ——c3
A7 M Zspy
A

Substituting the values of ¢, and ¢, from Eguation (80) and Equa-

tion (82) this condition becomes

LA Loy ’@..(Hﬁ P /’7"‘5’ ) [/,‘ ) , 4 )
M T2 G M) A /‘Zf” Is,7 "7 ,é’-

/%f/? ) Ma- L/ [
Ry~ Zig //* // [y 3 z,,g

which, upon collecting terms, becomes

y Lem)[r-C- 2N %)]

7)) KLs /“f].r
(11—3/& ’/7 Mz+/}"”/*”’

Inserting the numerical values of the parameters, the second term

¢ =
of the denominator is of the order 10 since If’; = €72« jO .
>

Therefore this term can be neglected in comparison with the first
term of the denominator and the expression simplifies to
2
- s, Ao
&> L (7 N 2&*)

= (83)
A

Solving this inequality with the parameters chosen, the result is

& > 1.62
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As an example, choose /& = 2. Inserting values from
Table III into Equation (78) and Equation (79), for 4 = 2 the

following values of a are obtained

o = —z—";/—/: |//-§f—(- = ‘z_f‘/-/ 2 (- ZZ‘C/]
s S -%
Ay = IE s /o'V//~ 2, 5%« /o-.s-)

oAy PN A & b =)

il

Thus p, changes from positive to negative when
a,=5 .6x10‘/(1\-2.54x\1(5r), while p_ changes from negative to
positive when aq, =5 .6x107(1-9.85x10"), and both p, and p, are
positive in the range (5 .6x10° -5 .52) <a <(5 .6x10¢—1.42). Re-
sults with a similar sensitivity are obtdined for larger values
of # but smaller values of a. (It can be seen from Figure 12
that the product of a and & is approximately constant and equal
to 107.)

There is yet to be applied the final Routh criterion,
namely that /ﬂ - ’i’/a/be positive also. Choosing p, atits
smallest allowable value, say O_“:aT and calling the correspond-
ing value of p, some small positive value, say <, ﬂg_ :fé’/f!/:é‘.

Thus all the stability criteria are satisfied and the system is

stable, Therefore, it can be concluded that the system is stable
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for /& > 1.62 but that, for any given value of & in this stable
range, a is extremely restricted.

Finally, there remains the negative range of 4 to be
investigated, namely -103</6’ <-2.8, But, for negative values
of # , & must be greater than -1.62 by Equation (83) in order
that p, and p both be negative, Therefore stability is not

possible for negative values of &,
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IV. DISCUSSION OF RESULTS

Only two possible sets of parameters for a launching sys-
tem of this type have been investigated. In the first case where
the mass ratio was 7,75 it was found that stability was impossible,
whereas, in the second case where the mass ratio was 1.5 it was
found that stability was theoretically possible for values of & be-
tween 1,62 and 4.5x10” if the effect of lateral motion of the center
of gravity of the system was neglected. For any given value of
in this range stability was possible for only one corresponding
value of a.

Returning to the physical aspects of the problem consider
now the meaning of the variables a and & . & is defined as {;i
where 4 is the distance from the center of gravity of the booster,
M, , to the pin connecting 1{ to the strut to the main rocket, M, ,
and k., is the radius of gyration of the booster, M, . For any sys-
tem of this type k, will always be of the order of one foot or
greater. Therefore, .4 = 44, will always be equal to or greater
than 4. That is, as a first approximation, _4 is approximately
numerically equal to & . Thus, from a practical consideration
//,_ , and therefore ,& , must certainly not exceed some small num-

ber of the order of 1to 10, depending on the size of the booster,

for otherwise the pin will be located too near the booster exhaust.



-64-

Now a is defined as:/% where £ is the length of the strut
from the pin in the booster M, to the center of gravity of the
main rocket, M, . Here again there is a practical upper limit
for £ , first, because the strut was assumed to be of zero mass
in the derivation of the equations of motion; and second, because
the strut was assurﬁed to be of infinite rigidity. A long strut
would present structural problems in rigidity since it is essen-
tially a column acting under both axial and bending loads, Re-
stricting -4 to values of the order of a few feet it is clear that a
should not exceed 100 or 200 at most, since these values corres-
pond to an ¢ of 25 to 100 feet.

In view of the foregoing remarks consider the product of

the two variables a and &, Thus-o=4 % = £ | Ik,
A %

is of the order of 1 to 10 feet, say, and _#¢ is restricted to 25 to
S

100 feet, then it can be seen that the product a,4 should not ex-

ceed 25. Returning to Figure 12 note that, in the range 1,62 <, &<

4.,54x10” s 0 is approximately constant and equal to about 10 -,

Thus, even though theoretically stable, this system is of no prac-

tical significance for the mass ratio investigated.
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V. CONCLUSIONS

1. A compound pendulum system of launching stabilization is not

stable for a mass ratio 7,75,

2. Such a system is theoretically stable for a mass ratio 1.5 if
the effect of lateral motion is neglected. However, even in this
restricted case the system is of no practical significance due to
the excessive length requirements for the strut from the main

rocket to the booster.,

3. Since the system is quite sensitive to the particular param-
eters chosen, several more investigations of specific cases are
required before any general conclusions can be drawn as to the

practicality of this method of stabilization.
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Figure 14, Schematic diagrarh of system showing inertia
forces for use in Newtonian derivation of equa-
tions of motion,
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APPENDIX

NEWTONIAN DERIVATION OF EQUATIONS OF MOTION

The equations of motion for the two dimensional system
may be derived by applying Newton's Second Law of Motion pro-
vided that proper consideration is given to the inertia forces of
the system. In Figure 14 these forces are indicated by broken
lines, In this derivation the main rocket, M, , and the booster,
M, , will be treated separately as free bodies and the reaction
of the pin connection will be replaced in Figure 14 by its two
components, f, in the vertical direction, and f, in the horizon-
tal direction., The pin is assumed to be frictionless and there-
fore no moment is transmitted.

Treating the main rocket, M, , as a free body first, the

sum of the vertical forces acting on it are
v £ - mg - g

and therefore
AR AN (1)

Similarly, the sum of the horizontal forces acting on M_ are

ZH= £ - M7
and therefore

£ = Mg (2)
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Finally, the sum of the moments acting on M, are
SA = j,%.f ){A,”eoaf_; - [/:mﬁ

or

-Z; ://////-’"ﬂﬁ‘gjea:ﬁ

(3)

Treating the booster, M, , as a free body, the sum of the

vertical forces acting on it are

ZV = ffo.fﬁ-ﬂ:t‘llﬁ—[—%?-./‘(g/ii~/‘;z/}

and therefore

},/.:- /{ca.fﬁ—ﬂ-’/'ﬂﬁ—-/z'j—lzf-/%‘/}

(4)

Furthermore, the sum of the horizontal forces acting on M, are

Th= Fomng o Peaszy - o - 1% 35 - 05 7,
and therefore
£ = /.}/,,-ﬁ - f@a;;,—/%.f; —/'éf';
Finally, the sum of the moments acting on M, are
M= Zg + L35 + £ srngy, - K G sz, 5 P08 +5)

or

4f:/ *zﬂ, = 44 eos y-—/,/g-’/a/{, -]ﬂ-é 7‘—«?)

(6)

Substituting the results of Equation (1) into Equation (4) to

eliminate f,

Mg + A = ooy ~ Dongy -6 ~ 1AFE - P4 1

(7)

Similarly, substituting the results of Equation (2) into Equation (5)

to eliminate f 2

/IV/;._ =/5’”fy+je°~’/?y-—/‘z_i‘;— 1/77

(8)
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Substituting the results of Equations (4) and (5) into Equation (3)
to eliminate f, and f,

17 = (Feos g5 - Doy~ PG - P55 - /i o) 4 s Fs

(Foingy v Doy B f) L 2or 7 (9)

Similarly, substituting the results of Equations (4) and (5) into

Equation (6) to eliminate f, and f,

sz.; +Izﬁ = //‘.w/;-f /eo:ﬁ—-/z.f: - /‘7;/7/42 cos 7
_ﬂreo;ﬂ -~ Pangy - 12T - /Zf - ﬁé[}/,{a,w/;,
~ 2[4 +,,6) (10)
Assuming the angles q_ and qa, sufficiently small such that
terms of order q* may be neglected, the following approximations
can be made
s g % 7 and €os 7 % /
Therefore, Equations (7), (8), (9), and (10) may be rewritten in
simpler form. Thus
From Equation (7)
Mﬁ = f_,fﬁ,-//v,wvz/g-/z;;_»zﬁ (11)
From Eéuation (8)
/‘71/{.—:—%4-./—/71[;-‘”21/&7 (12)
From Equation (9)
Zf = (F- 27 - 157 - /vzf—/'é;})/ﬁ
..[/’f.,+ﬂ—/‘&j;~/‘?zf;// (13)
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From Equation (10)

LF v hg = (s 0 -rhf - iG] A
—(F- Oy g - LG gy - P44 (14)

The following approximate relations between the principal

coordinates q, , d, » 9, » and q, s and the extraneous coordinates

qd__: q‘

and

and

» 45 q, were proved earlier in Part I of this paper
25 e (4 ) 1)

5 =/ * il 2 (4 4) (16)

7= /vn«m /// /// (17)

R A Xl "

Taking the first and second time derivatives of Equation (15)

Fo = Ji it CR ) e 5 () 19

2 MM:.

/6} =/é: f/'m/‘f)’//f’ /7)*(»/4”): //f? /f)

i (AF A7) » e (=47 20

Tk

Taking the first and second time derivatives of Equation (16)

7= g D .. Sy Y (21)

GAN/ Y

ﬁ___”'ol‘_z” (l-4) (22)

(M*/‘f)?

Taking the first and second time derivatives of Equation (17)
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/7; =7 - /,,,f:’,‘,,”‘)z//f /// e (L - <4 (23)

and
F= F - s Cn ) s (- 47
* (»7,‘7;)*(/ 4 f) e (F - 45 ) (24)
Taking the first and second time derivatives of Equation (18)
5= A A (25)
and
oA ) (26)

Equation (11) can now be rewritten in terms of the principal
coordinates only by substituting the results of Equations (22), (25)

and (26) for the extraneous coordinates

M /Vl . .
(+0%)f = R () e P f = F-g(1er5)- 27, (27)
Note that Equation {27) is identical with Equation (27) of Part II of
this paper.

In a similar manner, Equation (12) can be rewritten in terms
of the principal coordinates by substituting the results of Equations
(20), (23), and (24) for the extraneous coordinates

(28)

W,/v;f,‘_/‘z_fa//ﬁ 47)- 7% ,{)z//ﬁ'/;?/ +n47 s

which is identical with Equation (23) of Part II of this paper.

Substitution of Equations (23), (24), (25), and (26) in Equa-

tion (13) yields



-84-

I+ e PG AR 7 A

2 2 . AT A :
- LA Uy A ) + e A o gy 4 )

)+ 2] (29)

which is identical with Equation (44) of Part II of this paper.
Finally, substitution of Equations (23), (24), (25), and (26)
in Equation (14) yields
VT A A AL/ _ M,M,_ 53
Lfy + L= e A7) - AR AR

M 17, 2 727t £ 47 :
RV R L Y A T AV

A Apg) s 2 oy 44D )

which is identical with Equation (59) of Part II of this paper.
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TABLE OF SYMBOLS

\

N

4

Jet damping force

Thrust force

Acceleration of gravity

Moment of inertia

Specific Impulse

Radius of gyration

Mass

Mass rate of flow

Lagrangian generalized space coordinate
Dimensionless Lagrangian generalized space coordinate
L.agrangian generalized force

Kinetic energy
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