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ABSTRACT

The problem of determining the orientation distribution
function for rigid particles of arbitrary shape is formulated in a
general stochastic approach to consider the influence of any acting
orientation mechanism, stochastic or deterministic. The effect of
the various orientation mechanisms on the partial diifierential equa~
tion of the problem, an equation of the Fokker-Planck type, is
analyzed. The question of linearity or non-linearity of the super-
position of the effects due Lo different orientation mechanisms is
examined.

The orientation of ri.gid ellipsoidal particles in uniform
shear flow is studied in detail, for different cases of acting orienta-
tion mechanisms. When only the viscous stresses act on the
particles, the problem for the orientation distribution function
becomes a deterministic first-order initial value problem, and its
solution displays periodic behavior. In the case of macromolecules,
when the Brownian influence is predominant, we examine the effect
of a third orientation mechanism acting on the macromolecules in
addition to the Viscéus stresses and the Brownianimpulses. In
Couette flow between concentric cylinders, the third orientation
mechanism is considered to be a deterministic force field in the
radial direction x, varying linearly with x. The steady state
orientation distribution function is Lhen delermined to the third
order, and the theory of streaming birefringence of a dilute sus-

pension of rigid ellipsoidal macromolecules in Couette flow is
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generalized to include the effect of the additional influence. The
direction of the isocline and the amount of birefringence are calcu-
lated to the second order.

When spherical macromolecules are added to the suspension
in increasing concentration, the effect of hydrodynamic interactions
between the two species on the orientation of the ellipsoidal
particles is examined in Couette flow. It is shown that an effect of
the presence of the spheres is to decrease the drift velocity of the
ellipsoids--and thus decrease the amount of birefringence--and that
the effect can be described as a decrease in the effective velocity
gradient. The theoretical result for this decrease is in good agree-
ment with experimental results for sphere concentrations comparable
to the concentration of ellipsoids. On the other hand, as the concen-
tration of spheres increases, the effect of their presence on the
rotational diffusion constant of the asymmetrical particles can be
large enough to reverse the trend and lead to a positive variation of

the amount of birefringence with sphere concentration,
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I, INTRODUCTION

When a viscous fluid undergoes laminar flow with nonvanishing
velocity gradient, its optical properties often become anisotropic,
i. e., it behaves as a birefringent medium to the transmission of
light through it, and double refraction can be observed.

This general phenomenon is known as Streaming Birefringence
(SBR). It was first observed by J. C. Maxwell in 1866 and reported in
18 73(1) in a paper which described a concentric cylinder apparatus by
which SBR could be easily produced. To this day, SBR is usually
studied in simple shear flow betweeh two concentric cylinders (Couette
apparatus). with a beam of polarized light'trahsrnitted in the axial
(z) direction, and is often referred to as "the Maxwell effect. "

In the case of a suspension, in which both the dispersed
particles and the suspending medium are optically isotropic but of
different refractive index, birefringence will be observed if the
particles are geometrically anisotropic and their orientation distribu-
tion is nonuniform. We then say that the suspension presents form
birefringence, and its optical properties can be defined in terms of
the orientation distribution of the suspended particles. The
existence of a velocity gradient in the suspension induces a nonuniform
orientation distribution of the suspended asymmetrical particles and
thus gives rise to anisotropies and Streaming Birefringence.

When the suspended particles are sufficiently small, as in

1

J. C. Maxwell, "On Double Refraction in a Viscous Fluid in

Motion, " Proc. Roy. Soc: (London), A 22, 46 (1873).
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macromolecular suspensions, their orientation distribution is
affected by a second mechanism, in addition to the viscous stresses
on the surface of the particle due to the velocity gradient, This
second mechanism consists of the Brownian impulses acting on the
particle due to the thermal motions of the molecules of the sur-
rounding fluid. Further orientation mechanisms may also be
acting by the application of external force fields, as, for example,
an electric field (Kerr effect) or a magnetic field (Cotton-Mouton
effect).

Streaming birefringence of macromolecular suspensions has
enjoyed wide application

(a) For the study of macromolecular properties

(b) As a hydrodynamic research tool

(2)

since it was placed on a sound theoretical basis
(3, 4)

by the orientation
theory of Peterlin and Stuart This theory relates the observable
optical properties of the suspension, with the size, shape, mass,

(5)

and dispersity of the macromolecules' ', Particularly significant

is the limiting case of zero shear rate, since it can give the value

2A complete review and discussion of the theoretical work on SBR
up to 1959 has been given by H. G. Jerrard, Chem. Reviews, 59,
345 (1959).

3A. Peterlin and H. A, Stuart, Z. Physik 112, 1, 129 (1939).

4A. Peterlin and H. A. Stuart, Hand-und Jahrbuch der Chemischen

Physik, (Recker u. Erler, Leipsig, 1943), Bd VIII, Abt. 1B.

5Very clear on this subject is the earlier review on SBR by R. Cerf
and H. A. Scheraga, Chem. Reviews, 51, 185 {1952).
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of the rotary diffusion coefficient D, as well as an indication of
any structurization in the suspension. As a hydrodynamic research
tool, on the éther hand, SBR is useful for flow visua,lization(6) since
its theory relates the observable direction of the optical axis to the
streamline dii'ection at each point.

The orientation theory of Peterlin and Stuart considers the
Couette flow of a dilute suspension of rigid ellipsoidal macromole-
cules and formulates the problem of determining the distribution
function for the orientation of the major axis of the rotational
ellipsoids (spheroids), taking into account two orientation mechanisms
acting on the particles

(a) The viscous stresses

(b) The Brownian impulses.

Then, the steady state distribution function F(0, ¢} is determined in
series form and is used to calculate the mean values (see Part VI, 1)
in terms of which are expressed the optical properties of the suspen-
sion as a refracting medium, namely the extinction angle ¥, defining
the direction of the isocline, and the amount of birefringence 4An.
The following are noteworthy in this theory: the consideration of
dilute suspensions justified the neglect of interactions as an orienting

mechanism; the consideration of Couette flow allowed the authors to

use the expressions obtained earlier by Jeffery(7) for the rotary

6Harold Wayland, J. Polymer Science, Part C, No. 5, 11 (1963).

"G. B. Jeffery, Proc. Roy. Soc. (London), A102, 161 {1922).
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- motion of ellipsoidal particles due to the viscous stresses; finally,
the effect of the isotropic Brownian impulses appears as a diffusion
term in the partial differentiation equation of the problem, as was

(8)

shown in the pioneering work of Finstein' ', who had also given the
expression for the diffusion coefficlent.

An important generalization of this theory was carried out by
Wayland(g), avoiding the restriction to Couette flow. In this way,
Wayland prescnted a theory of SBR for general two-dimensional
converging or diverging laminar flow and greatly extended its use-
fulness as a hydrodynamic research tool for flow visualization.

As a consequence of these applications of SBR, it has been
the aim of experimenters to refine the measuring techniques, so
that even the very small effects characteristic of small concentra-
tions and small shear rates could be analyzed and interpreted. The
need for an instrument of sensitivity greater than anything previously
used had become apparent for measuring these small effects, and

Wayland proposed(lo)

sinusoidal modulation of the light beam so as
to achieve an amplitude varying linearly with the observed angle €
(between the position of the analyzer and the null position) rather

than quadratically. An apparatus based on this principle was

designed and built by Infaglietta(u) at the C.I1. T. SBR Laboratory

8. Einstein, Annal. d. Phys., 17, 549 (1905) and 19, 371 (1906).
94. Wayland, J. Chem. Phys., 33, No. 3, 769 (1960).
10 - H. Wayland, Comptes Rendus, 249, 1228 (1959).

U\ farcos Intaglietta, Ph.D. Thesis, C.I T., 1963
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and very careful measurements were obtained with it by Intaglietta
and Leray.

In the successive refinements of the measuring techniques,
some departures from the Peterlin and Stuart theory have been
observed, particularly in the range of small shears and concentra-

(12)

tions , which as already mentioned, is precisely the interesting

range for the purpose of determining macromolecule properties.

In addition, an interesting effect was observed(B)

in the ca se where
spherical macromolecules, suspended together with the ellipsoidal
ones, caused hydrodynamic interactions, an influence which has

not been considered at all in the Peterlin and Stuart theorvy.

In order to provide a theoretical basis for an explanation of
these phenomena, it was apparent to the author that the influence of
additional orientation mechanisms, of either deterministic or
stochastic nature, should be allowed for in the theoretical formula-
tion. In addition, it was fz2lt that the appropriate approach for the
theoretical formulation of the whole problem of SBR in macro-
molecular suspensions, should be one based on the theory of stochastic
prucesses, in view of the presence of stochastic orientation mecha-
nisms, which make the orientation of each particle a random variable

of time,.

The present study represents an effort to generalize the

orientation theory of SBR in this direction. First, to formulate,

125 i.eray, J.de Chimie Physique, 316 (1961).

13. H. Wayland and M, Intaglietta, Proc. 4th'Intern. Congr. on
Rheol., Part IV, 317 (1965).
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from a stochastic approach, the problem of determining the distri-
bution function for the orientation of a rigid particle of arbitrary
shape. Second, to analyze the way in which the various distinct
orientation mechanisms, stochastic or deterministic, will appear
in the partial differential equation of the problem. And third, to
examine the question of linearity or non-linearity of the super-
position of the effects due to the different orientation mechanisms.

This generalization is then applied to formulate a theory
of SBR in Couette flow taking into consideration a particular orienta-
tion mechanism which is likely to be realized in addition to the
viscous and Brownian effects in Couette flow, namely a force field
in the radial direction x, varying linearly with x. It is shown that
an example of this general influence is the effect of a uniform
electric field in the radial direction x on polarizable macromole-
cules, which haé been studied at the C.I, T, SBR Laboratory by
Demetriades(l4). It also seems possible that the effect of the rmal
forces due to the energy dissipation and the conduction of heat to the
thermostated walls--an effect that was first suggested by LerayaS)
to explain the observed discrepancies from the previcus theory--may
also be expressible in terms of such a force field.

Finally, we examine, in terms of a model, and give a

.theoretical explanation to the interesting effect which was observed

when spheres are added to the suspension, in concentration and

45 T, Demetriades, J. Chem. Phys., 29, No. 5, 1054 (1958).

15Persona.l communication, November 1963,
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dimensions comparable to those of the ellipsoids, namely the fact
that the amount of birefringence was observed to initially decrease
with sphere concentration, whereas the opposite had been expected.
It is ' shown that the addition of spheres has the effect of decreasing
the effective velocity gradient, and the theoretical results give

good agreement with the experiment. On the other hand, as the
concentration of spheres increases, the effect of their presence on
the rotational diffusion constant of the asymmetrical particles can
be large enough to reverse the trend and lead to a positiye variation
of the amount of birefringence with sphere concentration. This
effect is studied in terms of various models, and the possibility of

the reversal of the trend is shown.
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II. THE ORIENTATION OF RIGID PARTICLES
AS A STOCHASTIC PROCESS

1. The Orientation Distribution Function

Let us consider a population of identical rigid particles of
arbitrary shape, suspended in a continuous medium. The orientation
of each particle can be defined by a set of convenient variables,
most commonly by the Euler angles 08, ¢ and ¢, with respect to a
defined reference frame. The ranges of these variables form a
space R, each point of which uniquely corresponds to an orientation
of the particle.

If one or more of the orienting forces, or mechanisms, that
act on a particle in a particular physical situation, are of random
nature (which means that their properties are only statistically
defined), then the orientation of the particle will be a stochastic
process; mére precisely, the point P which represents the orienta-
tion of the particle in the space R will be a random function of time,
expressed analytically as T = r(t). Itis clear that =(t) will be a
continuous random function, although its derivative —1" (t} can be dis-
continuous, depending on the nature of the orienting mechanisms.

For a stochastic process of this nature, we seek a description
in terms of the orientation distribution function f(r, t), which we

define, in the space R, as a probability density: the probability

that a particle, any particle, will be s0 oriented, at time t, that the
representative point P lies within a certain domain V of the space

R, is given by the relation



Pr {P € V,t} - _)Vf('f,t) av (1)

It is clear that, if we wish to refer to the whole population instead of
a single particle, Eq. (1) will be interpreted as giving the fraction
of fhe total number N of particles which are found, at time t, to have
orientations whose representative points lie in V. The two methods of
interpretation are fully equivalent, although the term "distribution
function" \s eems to derive from the second one.

For every stochastic process, the central problem is the
determination of the corresponding probability density. The formu-
lation of this problem is based on the continuity of probability, as it

is most generally expressed by the integral relation of Smoluchowski
f(r, t+7) =S. 17, 0p(F , t/7,t+1) AV (2)
R

This relation uses the concept of the transition probability:

p(F,t/T,t+7) is the probability that the particle will have the
orientation given by T at the time t +7, if it is known that, at

time t, it had the orientation given by T. The physical meaning

of the Smoluchowski relation is simple; it fundamentally asserts

that the particle had some orientation at time t, from which it under-
went a transition so as to have, at time t + T, the orientation given
by r. We may parenthetically remark that, in expecting the transi-
tion probability to have a unique meaning, we are actually suppusing
that the behavior of =(t) after a certain instant t, depends only

on the instantaneous value ;(to) and is entirely independent of its
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- whole previous history. A stochastic process which has this
characteristic, namely, that what happens after a given instant of
time t depends only on the state of the system at £, is said to be a
Markov process. That we should be able to consider the orientation
of a rigid particle, under the stochastic influence of Brownian im-

pulses, as a Markov process appears very reasonable.

2. The Fokker-Planck Equation.

The integral relation of Smoluchowski can be reduced to a
partial differential equation for f(r,t), if we can give an expression
to the transition probability p(_l-'l, t/?,t+‘7‘), valid for small 7.
When r(t) is a continuous ré,ndom function, it is possible to arrive
at such an expression in the following way:

Since

g p(T ,t/ T, t+7) dV =1 (3)
R

(expressing the fact that the particle must have some orientation at
time t+7), it is clear that for small T the transition probability
p(?', t/ r,t+7T) will be sharply centered around the point T in the
space R, and will 1n fact tend to the delta function §(T - ¥ ) as

T — 0, We can thus assume, for small 7, the double expansion
1 — - —_— o | — ]
plr,t/ r,t+7) = 8(r - ) + T{—C(r s t)e Vo{r - v )
+ DE, YWV - T} + 0D (@)

or, using a cartesian coordinate system defined in the space R,
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pEL /T = 5E T +r {0 FL 0 5F - )
i

—1 0 o —1 } 2 1
+ Dij(r , t) axi an 8(r -T)} + O(T%) (4"
Using this expression in the Smoluchowski integral relation (2}, and

taking the limit as T — 0, we find that £(r,t) satisfies the partial

differential equation

-g—%—-Fdiv{fE-rdiva}:O (5)
or

ot | 9 .0 98 - '

ot T, Cif A B% D;;£=0 (5%

This equation is known as the Smoluchowski equation, or as a Fokker-
— =

Planck Equation. The parameters C (a vector) and D (a symmetri-

cal tensor of second rank) have a well defined physical meaning, for

—— —1
each stochastic process, namely, if r(t)=1r ,

<7Tlt+T) - T(t) >
- (6)

C(E',t) = lim
70

<[x(t+7)-x(t)][ *; (t+7)~- Xj(t)] > -
2T

D..(r',t) = lim
Y T—0

This fact is readily shown by actual evaluation of the mean or

expected values

<7T{t+T) - T (t) >2l o T §R('£-?')p('r",t/ T,t+7)dV  (8)
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and

<[z (t+7) - x,(t)] [Xj(t+'f) B Xvj(t)] > Tt

= g (x. - xMx, - X!)p(?’,t/ T, ttT) dV (9)
R i iV 3 v

with the help of Eq. (4), and taking the limit as T~ 0. The meaning
of the above two expected values is clear: they are the first and
second moments, respectively, of the deflections of the point P in
time interval T. Note that if the process is stationary, which implies
that the transition probability is independent of t, the parameters

€ and D do not depend explicitly on t, a fact that significantly
simplifies the corresponding Fokker-Planck Equation.

For a continuous random function r(t), therefore, the proba-
bility density f(r,t) can be analytically determined as the solution of
a boundary valuc problem, involving the Fokker-Planck Equation (5),
the appropriate boundary conditions, and the initial condition f(r, 0).
The problem will be defined, of course, only if the analytical expres-
sions for the parameters € and E, that correspond to the stochastic

process in question, can be determined.

In particular, if the initial condition is taken to be
— — —
f(r,0) = 8{(r - r) (10)

then the solution will represent the transition probability p(xr,0/71,t).
This formulation of the problem for the probability density

f(r,t), in terms of a boundary value problem, must be completed by
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the discussion of three questions of physical interest: the existence
of a solution, its uniqueness, and its behax}ior for large t. Let the

following be noted about these questions:

(a) The existence of a solution has not been rigorously shown for
the general case. This question is mathematically complicated by
the following necessary restrictions on f(r,t) in order that it be a

valid probability density function:
f(r,t) = 0 forall v in R and t=0

g f(r,t)dv =1 for all t=0 (11)
R

(b) The uniqueness of the solution can be shown: two probability
density functions, which satisfy a Fokker-Planck Equation and have

the same boundary and initial conditions, are idcntical.

(c) In most physical situations, it is intuitively plausible that the
effect of initial conditions would tend to disappear as time went on,

leading to a steady state probability density

£{r, t — o) = F(r) (12)

Such a tendency can indeed be formally shown, in the following sense:
the difference between two solutions of the Fokker-Planck Equation
satisfying different initial conditions can be "measured" by a function

of time Af(t), which can only decrease.
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3. The Fundamental Parameters C and D.

We turn now to the fundamental problem of determining the
analytical expression for the parameters —6 and 1=) in any particular
stochastic process. This will of course be based on the physical
interpretation of the se parameters:

—

C is the "drift velocity" of the point P in the space R.

D is the "diffusion tensor, " associated with the second

central moments of the deflections of the point P in

time interval T.

The statistical propertics of the random function r(t) depend
on the statistical properties of the forces that act on the system and
affect the position of the repfesentative point in the space R. This
dependence is defined by the mechanics of the physical situation,

namely by the ordinary differential equation in t that T(t) must

satisfy

Lt{?}zo (13)

Such an equation is known as the Langevin FEquation when referring to

a stochastic process. It contains the forces, of which we only know

the statistical properties, and therefore cannot be solved in the

)

ordinary sense to give ?(t)flf’ It supplies, however, the relation

between the given statistical properties of the forces and the

1611: is this fact that underlines the important distinction between

stochastic forces and deterministic or causal forces. The latter
are given explicitly as functions of r and t, so that the differential
equation for r(t) can be solved by the methods of Mechanics. In
other words, r(t) can be "determined" in that case.
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statistical properties of r(t); and it is in terms of the latter that c
and ]——D- are defined in Eqs. (6) and (7).

Another theoretical method, which can be used for the evalu-
ation of the second moments, and hence of the diffusion tensor B, is
the kinetic approach presented by Einstein in his investigations on the
theory of the Brownian motion. In this study we shall use Einstein's
results to describe the effect of the Brownian impulses, with only a
slight generalization to consider particles of arbitrary shape.

Finally, the statistical properties of the random function T(t)
can be determined experimentally. Experimental determination of
statistical properties has been often used successfully, as in the
gelebrated experiment of Perrin which allowed calculation of the
Avogadro number. In any case, we shall rely on the experiment for
the ultimate justification of any analytical expression for ¢ and ]—_5
4, The Simultaneous Action of Various Orientation Mechanisms and

the Question of Superposition.

In the stochastic process that concerns SBR, namely the
orientation of a rigid particle suspended in a flowing medium,
vé.rious orientation mechanisms of distinct physical nature may be
simultaneously acting on the particle. A stochastic mechanism of
orientation consists of the Brownian impulses due to thermal motion,
when the particle is small enough to be affected by them. A deter-
ministic orientation mechanism would be any force field acting on
the particle and resulting in a given torque, i.e., given as a function

of ¥ and t.
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In such cases, there arise two questions of physical interest,
concerning the detcrmination of the coefficients € and S of the
Fokker~Planck Equation:

{(a) How are E and B affected by each of the acting forces,
stochastic or deterministic ?

(b) If the values E(i) and B(i)’ that correspond to the i-th force
acting alone on the particle, are known for each force, can we super-
pose them to find the values of C and B that correspond to the
simultaneous action of all the forces?

We shall discuss these questions, in the light of the stochastic
approach that we have followed, concentrating our attention to those
stochastic processes, which, like the one we are concerned with,
have a linear Langevin Equation.

First, it is clear that the diffusion tensor B is solely depen-
dent on the stochastic forces. If a deterministic force were acting
alone, the resulting deterministic "course™ _;d(t) of the point P in
the space R would have a finite velocity ;d(t), so that the second
moments of the deflection would then be of order ‘TZ, and the limit

which gives Bi in Eq. (7) would vanish, If both a deterministic and

a stochastic force are acting, then, for a linear Langevin Equation,

it would be
rt) = rd(t) + r (t) (14)
where the stochastic variable ? (t) is of positive order in t; conse-

]
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~quently, the contribution of ?d(t) to the second moments of the
deflection in time T will again vanish in the limit which is taken in
Eq. (7) to give B

On the other hand, the drift velocity C will be affected by
both the stochastic forces (as long as the first moment of the
deflection in time T does not vanish) and the deterministic forces.
In fact, the drift velocity E(i) caused by a deterministic force acting
alone, is to be identified with the deterministic velocity ?'d(t) which
can be found by the methods of Mechanics.

As to the second question, we can conclusively assert, that
the influence of the various forces on c is additive: based on the
definition of C in Eq. (6), it is clear that, when the corresponding

Langevin Equation is linear, the drift velocities C(i} are vectorially

additive to give the resultant

g T, (15)
i

On the other hand, we see from Eq. (7) that the diffusion
tensor B Iis given by a nonlinear expression in T({t). We conclude,
therefore, that the effects of more than one stochastic force cannot in
general be linearly superposed to give a resultant ]_I—_) A case when
they are 1ineé.r1y superposed is if both of the corresponding ;(i)(t)'
have a Gaussian transition probability density.

Specifically, if isotropic Brownian impulses provide the only
stochastic mechanism of orientation acting on a rigid particle, then

the tensor D has the following form, when expressed in the system
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- of the principal inertial axes of the particle:

D.. = kTB.6,, {no sum) (16)
ij 174j

In this expression, which is a slightly generalized form of Einstein's
result, k is Boltzmann's constant, T the absolute temperature,
6ij the Kronecker symbol and Bi the rotational mobility of the
particle around its i-th principal inertial axis, when it is suspended
in a medium of viscosity Mg

In conclusion, let us summarize the analytical prbblem of
determining the orientation distribution function for a rigid particle
suspended in a flowing medium, as it is formulated by this stochastic
approach:

The orientation distribution function f(r,t) is the solution of a
boundary value problem, involving the Fokker-Planck Equation (5),
with the values of C and S that correspond to the shape of the
particle and the acting orientation mechanisms. The drift velocity
C(z,t) is the linear superposition of

(a) The first moment of the deflection velocity caused by the

stochastic mechanisms, and
(b) the "deterministic" velocities of the representative point
P caused by the deterministic mechanisms.
The diffusion tcnsor i—:) ie aseociated with the second moments of the
deflections of the representative point P, and it is solely, and non-

linearly, dependent on the stochastic mechanisms of orientation acting

on the particle.
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III. ANISOTROPIES IN SHEAR FLOW OF MACROMOLECULAR
SUSP ENSIONS

1. The Orientation of Spheroids in Coustte Flow.

Macromolecules can often be considered(”) as rigid prolate

ellipsoids of revolution (spheroids), with half-axes a) # a, = a3, and
characterized by the axial ratio p = -le- > 1. For this model, since
we are.interested in the orientation and not in the actual rotational
position, the value of the Euler angle { is not of importance, and the
orientation distribution function becomes £(0,¢,t), namely a function
of only two spacial variables, the poiar angle 0 and the azimuthal
angle ¢, which define the position of the major axis of the ellipsoid.
As a consequence, we can use, as space R, a spherical surface of
unit radius. The representative point P lies on this two-dimensional
space, and the Fokker-Planck Equation can be cxpressed in spherical
coordinates with no r-dependence.

We shall examine the case where isotropic Brownian impulses
are the only stochastic mechanism of orientation. The diffusion tensor

is then given, in the triad of the spherical unit vectors e €g and e

which are always principal inertial axes of the ellipsoid, by Eq. (16)

with
2 2
1 2p -1 2
BZ:B3=4|¢V 12 [—1+ PZ In (p + p—l)] for p=1 17
o p -1 pPep -1
17

W. Kuhn, H., Kuhn and P. Duckner, LIrg. exact. Naturw., 25, 1 (1957).
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(18)

as can be calculated from hydrodynamics Note that D does not

depend on the variables in our problem; Py is the viscosity of the
solvent and V the volume of each particle.

In the cases where the divergence of the tensor D vanishes,

the T'okker-Planck IIquation takes the form

of , g
e +d1v{fC -

ol

- Vil =0 (5"

In our two-dimensional case R, in addition Lo div D = 0, DZ = ]33 for

rotational ellipsoids; as a consequence the diagonal tensor D acts as
a scalar when contracted with the two-dimensional vector Vi, and

the Fokker-Planck Equation of our problem takes the following simple

form

%—f:— +div £C - DV%£ = 0 (18)
where

D =kTB, = kTB (19)

2 3

If the Brownian impulses are isotropic, the first moment of
their effect will vanish and, therefore, there is no Brownian contribu-
tion to the drift veloﬁity €. This parameter will be then determined
by the deterministic orientation mechanisms acting on the particle.

One such mechanism is the viscous stress field in laminar
Couette flow. The suspended macromolecules have dimensions which

are large compared to the molecules of the solvent and can thus be

18k Perrin, J. Phys., 5, 497 (1934) and 7, 1 (1936). Also see

Appendix A. :
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treated as rigid particles finding themselves in a flowing continuum.
Due to the existence of a velocity gradient G in the flow, the viscous
stresses acting on the surface of the suspended particles result in a
torque, thus causing a rotational motion. The corresponding velocity

of the representative point P on the spherical surface R was calcu-

lated by Jeffery(lg), by means of the Stokes approximation, to be
c = —gsin 0 [b cos O sin Zgoe? +{1+b cos Zgo): {20)
viscous 2 L 0 )

In this expression,

G = the velocity gradient in the undisturbed field, i. e. before
the particles are immersed, and
2 Z
17 % -1
b = > > = PZ a geometrical parameter characteristic
aq + a, p- t1

of the ellipsoidal particles.
The flow geometry and the selection of axes correspond to the follow-
ing definition of the undisturbed laminar flow field:

—_—
u

= Gx’e’y (G > 0) (21)

The viscous stress field is the only deterministic orientation

mechanism which was taken into consideration in the theory of Peterlin

and Stuart.

9 Loc. cit. If the gap between the two cylinders of the Couette

apparalus is much smaller than their radii, then G can be con-
sidered to be a constant.
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2. Orientation Under the Predominant Action of the Viscous Stresses.

(20)

A limiting case of considerable practical interest arises
when the dimensions of the particles are large or the velocity gradient
is very high. Then the viscous stresses constitute the predominant
orientation me chanism and the Brownian effect can be neglected, so
that the motion of the particle in the solvent and its orientation at

every instant can be "determined" from hydrodynamics alone.

Then the Fokker-Planck Equation becomes

-g{- +div LG =0 (22)

i.e., it is no more an equation of the diffusion type. The problem
becomes a first order initial value one: to find £(0,¢,t) given the

initial condition f(e,q),to) = fO(GO, goo) and the fact that

e B Aoy o OF B
C=q = w09 =035 *?5
=0 ee+g1;sin8 e(P (23)

The equation of the problem becomes, in our spherical coordi-

nates
g%ﬁug_i.i_é_{%(fé sinG)—F—%(fq; sine)} =0
or
'g“% +é§-§—+¢-§§+gi—f;§ —a%(é sinB) + f %%; -0
20

“See, for example, S. G. Mason and R. St. J. Manlay, Proc. Roy.
Soc. (London), A 238, 117 (1956) and H. L. Goldsmith and S. G.
Mason, Ibid., A 282, 569 {1964).



-23-
and finally
df 100 & . d¢ \ _
———+f{m _8-50 sme+%}_0 (24)
The operator

4.0 LB oD
a5 "9t g (25)

expresses the rate of change of f on the path that a particle would

follow if placed at that position, say BO, Py But this path is known.

It can be determined from the relations (20), namely

%E sin 20 sin 2¢

1l

0

q}:-g(1+bcos 20)

Hence

—E—)a—e- 0 sin 0 = 94—b sin an[Z cos 20 sin © + sin 20 cos 9] (26)
and

.g_;é - -%'b(—z) sin 2 = - Gb sin 20 (27)

The differential equation thus becomes

2

daf L . Gb_, oA
o T3 sin 2¢ {cos 20 + cos”0 2] =0
or
-1-£ %—i— = %Gb sin Zqo-sinz ¢]
_3 2 49
=z s sin 20
-3tg0 (28)

dt
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Hence on the path of the particle (the characteristic)

1 _ _ o d(cos 0)
-fdf =-3 cos B
cos © 3
_ o
£= fo( cos 0 ) (29)

This is the value of the distribution function on the path of a
particle. The above equation solves the problem; because given the
position of the particle at t, we only have to find where it was at 'to
(which is possible from the equations of motion) and then f_ is the

given initial condition fo(Go, goo). In other words
: cos 60 3
p— . 1
f(8,9,t) = fo(ao,qoo) <556 (29")

To complete the solution, therefore, we need to express the
initial position of the particle, namely 90 and 9”0, in terms of its

position at time t, namely 0 and ¢.

d0 _ Gb . _ Gb . de
sinB cos 8~ "2 sin 2¢ dt = 2 sin Zip—a-
- do _ b sin 2¢ do

tgb cosze 1 +b cos 2¢

or
d(tgb) _ _ 1 d{l +b cos 29¢)
tgb - 2 1+bcos2e

and, upon integration
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tgd  _ (11 +b cos 29 ;)‘1/2
tgeo +Db cos Zqoo
or
_ .2 1+bcos 2¢
tgzao =tg 0 1+ b cos 20 (30)

This is a first integral of the motion of the ellipsoid and gives the curve
that a particle placed at 80, ?s will follow. It is a closed curve on the
sphere of radius a).

To find the time dependence and the period of this motion in

the above closed curve, we integrate the equation

do -G
1+bcos 2 ~ 2 dt
It is
2 2 2 2 2
-1 1- +
1+bcos 2¢ = 1 +p2 11 tgzgo - Zz(p tg (pz), - Zczos cp(pzﬁgzqo)
p~ 1l 1+tgte  (pTH)(lttgTe) PpTHL
(31)
Thus

de - G dt

coszq)(p?'*tgzcn) p2+

Now put tge = p§ whence Jd—%—- =p d§
cos” ¢

pdé . _G_ 4

pz(l +€2) pzﬂ

arc tgf - arc tg§_ = —Ezg—(t -t)
> T 02
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tge,

= arctg —3- —P———(t -t )
P e

arc tg

tgo - ptg—L(t t.)
P 21
tgo_=0p (32)
© pttge tg—R—(t -t_)
P +1

From this equation we see that indeed the motion is periodic with

frequency
p fl
or period (33)
2
T = 2 1L
prG

Now to find Bo as a function of 9,¢ and t we eliminate ?,

from equations (30) and (32). Using Kq. (31) we find

2g

2
tg O:thB (p° +tg %9) cos’e

2 2
(p +tg ?q )Jcos ?,

2
tgze (P2+tg2<p)cos2¢ [ptteetg <40(13-t0)-_]

pzcoschO p2+tg2<p tgzw(t'to)"'tngl’ +P2

i

tgzw(t—to)

2
2 2 2
tg“0 799%—?- [p +tgcptgw(t-to)] cos “wft-t )

oS g
P Py

2 cos2¢ . 12 2
tg“0 —=—= [p +tgotg wlt-t )|"cos wlt-t )
P

2
2 | tgo-ptgwlt-to)
X %1 tp [p +ttgotg w(t-tOT] %

2
tg°0 <252 cos’uft-t ) ;(p+tg<otg wlt-t_) )%+ pz(tgrp-ptgw(t—to))zf
p

L]
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tgot .r.ot 2 2 1/2
tg 90 = tg0 cos gcos w(t-to)g 1+ —-g-E—g-— + (tgo-ptg w(t-to)) (34)

We have then

£0, ¢, t) = £_ [eo(e, 9. ), 9(0, ga,t)} cos™%0 (1+tg%0) /2 (35)

In the case when the original distribution is uniform

1
fo T 4r
we get _
(1 +tg26 ) 3/2 cos O 3
(6, @, t) = 2 = L 2
> 4 3 47 \ cos ©
T cos” B

Note: For very long rods, for which b—>1 and p ~— o, we have the

following simplifications:

tg ©
Equation (30) becomes 0. CoS¢
tg 6 cos ¢_

= const.

i. e. tg B cos ¢

tg ¢ - Gt-t )

Equation (31) becomes tg ?q

Equation (34) becomes tg 90 tg 0 cos ¢ {1 +{tge - G(t—to))z}l/‘2
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3. The Drift Velocity Caused by a Linearly Varying Force Field in
The Radial Direction,

—_

Z €

T Consider two symmetrical points
0 A o on the major axis of the particle.

7 ' ;9 Since the force field varies

/ linearly in the x direction,

e y
®x /N there is a force differential
N‘
/ —_ —

< dF = C(x-x'") dr e (36)

Fig. 1
where dr is the element of length on the major axis. Since the points

are symmetrical, x=-x'=2x = 2r sin 0 cos ¢. Therefore, the torque

with respect to the center of the particle is

dl\_/-fO =?><df‘. = ZCrzsin 0 cos ¢ dr zr X—gx (37)
and integrating over the major axis (r =0 ... al), we find
M = 2 Ca3 sin® cos go-g Xe. (38)
o) 3 1 r X

The resulting rotational velocity of the particle is

—
(€3]

1
Wy
<
i

wit

3n - =
Ca1B251n 0 cos ¢ e. X e, (39)

and the corresponding drift velocity of the point P on the spherical

surface of unit radius will be

8 =T;><:

f r (40)

—

Now note that —e’X = sin O cos cp?r + cos 6 cos c,o_efe - gin ¢ ecp .
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—_— —
e

Hence (er X eX) Xe = cos 0 cos ¢ g ~ 8sing e, and

Ef = K sin 06 cos qol:cos 0 cos <p—;9 - sin (P—e:a:] - (41)
where
_2C 3
K= 3 alB2 | (42)

The parameter K defines the magnitude and the sign of the
effect., One can see, by comparing the expressions given by
Demetriades, that the drift velocity caused by a uniform electric
field in the radial direction, if the ellipsoidal particles are polarizable,

is of this nature, specifically with

K = - ZBEZBZ (43)

(21)

in our notation

4, Orientation Under the Predominant Action of the Brownian Impulses,
and the Influence of the Viscous Stresses Plus a Third Orientation
Mechanism,

For macromolecular suspensions, when the suspended particles
have high rotational mobility, the Brownian impulses are usually the

predominant factor affecting the orientation of the particles. We shall

now examine in detail this case,.

21 The magnitude factor B is defined in Appendix A of Demetriades’

article, in which the quantity BE®B, is called M. E is the
electric field. -
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4.1. The Fokker-Planck Equation.

We shall first give expliycit form to the Fokker.-Planck Equation
that will be satisfied by the orientation distribution function of ellip-
soidal macromolecules in laminar Couette flow, when the following
three orientation mechanisms are acting, namely

(a) Stochastic: Isotropic Brownian Impulses

(b) Deterministic: (1) Viscous stresses resulting in a torque

because of the velocity gradient G.
(2) A force field in the radial direction x,
varying linearly with x.

Substituting
¢c=C +¢ (44)
namely

o =%12 sin 290 sin 2¢ + —ZIS sin 20 coszgo

sin @ sin 2¢

PN

G .
c¢~ —2-s1n9(1+bcos 2¢) -

in the Fokker-Planck Equation (18) we obtain

of 1 9 . 9 2, _
-é-€+m{§-e—s1n6fce+-a—afc¢}-l)vf—0 (45)

where

2 1 9 . .0 , 8 1 )
v = {—a—é'Slne—a-é'“l'-B—asintp %} (46)
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Simplifying we obtain

of of o of 1 {a ) }__ 2
5t T 036 TSin 0 By s © 100 Cesin O t g c, ff=DVE

Now cesin 6 = gin 6 sin 20 {% sin 2¢ + IZ-E cosch}

—;—% cesin 0 = (cos8sin206 + 2sinBcos 29){%12 sin2¢ +TZIS cosch}
= 2sin8(3 cosze - 1){—G4£ sin 2¢ +-ZI-<- ’coszgo}

and -B%—o qu = sin © {-— Gb sin 2¢ - K cos Zq)}

Therefore

1 0 b
e { 55 cesme +a¢ q)} (2-3sin 9) {-——-— sinze +——(cos 2¢ +1)}
- Gb sin 2¢ - K cos 2¢

= K( - % sinZG)— % sinze(K cos 2¢ +Gbsin 2¢)

- %{K(Z -3 5in%0) - 3 sin20(K cos 2¢ +Ch sin 2<p)}

(47)
So we finally obtain the equation
9f | 5in 20 of

. of
5t 7 {K(l +cos 2¢) +Gbsin Zgo} 55 }Z{G(I +bcos 2¢) - Ksin 2"0}8—90

Nl*"‘

{K(Z 3 sin 6) - 3 sin’ 9(]’:\ cos2¢ T Gb Sln2<p)}

(48)

_.D_ is-ne_@iJri_.&__Ei}
sinG{BB MY 58 " Bg Sin 0 Do
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The form of the coefficients of this linear partial differential
equation is consistent with the boundary conditions that the distribution

function is expected to satisfy on grounds of physical symmetry.

namely

(0, ¢} = f{w-0, ¢otm)

(49)
(0, ¢) = £(r-9, ¢)

4. 2. The Steady State Solution .

The theory of SBR is principally concerned with the optical
properties of the suspension. under steady state conditions. There-
fore. only the steady state solution F(0,¢) of the Fokker-Planck
Equation (48), under the boundary conditions (49), is needed for our
purposes.

In addition, the Brownian influence is usually predominant for
macromolecules, a fact which is displayed by the value of D being
of considerably higher order than the values of either G or K.

We are concentrating our attentioh to this case, which we shall

define mathematically by the relations

K = \G = \¢D (50)
and
o = -g—— <<1
(51)
l?\lo' = K <<1
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The coefficient |\| defines the relative order of magnitude between
the two deterministic orientation mechanisms.

The equation for the steady state orientation distribution
function can then be solved by a perturbation approach, which will
give F(0,¢) in a series of ascending orders of ¢:

o
F(0,¢) = Z «PF™(e, ¢) (52)

n=0

Since ¢ <<1, this series can be expected to converge rapidly, so that
the calculation of the first few orders will be sufficient, This same
approach was used by Demetriades, and the calculation carried ta the
second order. However, a transformation of variables, that he,
like Tolstoi(az), has chosen to introduce in order to combine the mag-
nitudes of the viscous and the electrical effects, tends to obscure the
results and does not allow a direct calculation of the two parameters
of SBR, namely the extinction angle X and the amount of birefringence
An. In our study, it is the calculation of these parameters that has
dictated the appropriate form of the distribution function, Our solution
will of course coincide with that of Demetriades up to the second
order, but it will be in a form that will allow us to proceed to the
calculation of ¥ and An. Also, it will be carried to the third order.
The equation for the steady state orientation distribution

function F(6, ¢) can be written in the form

22N. A. Tolstoi, Doklady, 59, 1563 (1948).
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oL {F} = V°F (53)

where L is the differential operator

L =22 28 {m tcos 2¢) +bsin 290}86 2 {1+bC°S 2¢ - Xsmzq’} 'éa"
+4 {M2-3510%) - 3 sin6(\ cos 20 +b sin 29) (54)

Substituting the series form (52) in Eq. (53) and equating like orders

of o, we find that the following relations must be satisfied

F2F(0) _ g

(55)
L {F(”-"l)} = VZ{F(“)} for n=1,2,...

These constitute a system of differential recursion relations,
from which the various orders F(n)(ﬁ,m) can be determined. This is
best achieved if we consider them expanded in the complete system of
the eigenfunctions of the Laplacian operator which satisfy the boundary
conditions (49) of the problem:

w 4

F(n)(e,cp) = Z E ay  COS 2mq>+b( n) sin ngo} P%En(cos 0) (56)

£ =0m=0

Because then, the recursion relationreduces to an algebraic expression

for the coefficients of the n-th order, in view of the eigenvalue prop-

erty
o) £
Vz {F(“)(e, (p)} = z -2L (28 +1) z.{aétzlcos 2me + b’(erir)l sin ngo} PZZT(COS 0)
' £=0 m=0

(57)



-35-

Let us note, in connection with this calculation, that because of the
form of the coefficients of the operator L, the expansion (56) of
F(n)(e,go) is‘a firﬁte one, the summation with respectto £ stopping
at £ = n,

Using the above method, we have determined F(O), F(l), F(z)
and F(a), namely we have calculated the steady state distribution

function to the third order

0)

FO,0) = FO 4 opl) 4 ;25(2) 4 3503) (58)

The zeroeth order term corresponds to £ = 0

)0, ¢) = %) (59)

and we readily determine that ag;) = 211—7 by using the normalizing

condition
g Flo) g0 =1
Fo,0) = L (59")

The first order term will have the form ({ = 0,1)

F(l)(e, Q) = agg + aﬁ))PZ_(cos 9) +{aﬁ)cos 29 fbﬂ)sin Zqo}Pg(coscp)
(60)

Substituting in the recursion relation

L)} - g2p®
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we find

-41}- 12- {x(z -35in%0) - 3 sin®6(hcos 29 +bsin 2¢)}

1)

= - 6a{lP (cos 0) - 6 {aﬁ)cos 20 +Bsin an}P‘;(cosG) (61)

Finally, by comparing the coefficients of the orthogonal
(23)

functions we find
1y . _ 1 A
0 7 4n 6
a _ 1 x
n - Ir 12 (62)
B L B
n =~ 47 12
It is obvious that we shall have to take
a(i) =0 forevery i =1 (63)
oo ¥ -

. . . o}
in view of our choice for ago)

So, the first order term is

e, o)

1

—4-1;_- -1-]-'-2—- [—-2X Pz(cos o) + {X cos 2¢ +b sin Zgo}Pg(cos 6)]

- Zl‘? le [Mz - 35in%0) - 3 sin’0 {mos 2¢ +b sin Zso}J (60%)

The second order term will have the form

23

The Legen%re Polynomials P,y and the Associated Legendre Poly-
m

nomials le are tabulated in Appendix B,
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F(Z)(B, @) = a‘lO)P (cos 8)+ { a]flz)cos 2¢ +bg‘)sin Zgo} Pg(cos 0)
+ a(z%))P4(cos 8) + { (2 )cos 20 +b(2)s1n Zgo} Pi(cos 0)
+ {a(zzz)cos 4o +b(222)sin4,go} P (cos 0) (64)

Substituting in the rccursion rclation

L {rh - v2p(2) | (65)

-12- [sine cosZG {)\ +Xcos 2¢ +bh sin 2<p}
X {—6)\ sin B - 6 sin®{\cos 2¢ +b sin 290)}
+{(1+tbcos2¢- Asin2¢)(-3 sinZG)Z(-)\sin 2¢ +bcos 2¢)
2 2 2
+ {)\(2 -35in“0)-3sin"@ (A cos 2¢ tb sin qu)}
= ~6a2)P_(cos 8) - 6{ alflcos 29 +b{Z)sin 20| 3 sin®0

2 2 2) . 2
- 20 a(ZO)P4(cos 9) - 20 {a(ﬂ)cos 2¢ +b(21)s1n 2<p} P4 (cos 8)

- 20 -{a(z )cos 4 +b(2)sm4cp} Pi(cos 0) (66)

By corhparing the coefficients of the orthogonal functions we

find
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(2) _ 1 2%+ 32
410 T "Tor 79

(2) . 1 2\

2 _ 7
%1 % 16w  2-7-

2
9

J(2) 1 AMzb+7)
11 " T6r ~ 2779

(2)_ 1 3% + b2
20 ~ 167 2: 5.7
(67)
21 %
21 =" 1w 23757

b(2) - 1 Ab
21 - 16w 2-3-5-7

A2 \e - b2
22~ 16w .4

2723457
p2) o 1 Ab
22 16m 23.3.5.7

So the second order term is
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2., 2 2..2
(2) 1 1 22 % +3b 3N“+b
F0,9) = T e Pz(cos 0) * —5— P4(cos 0)
27272 M 2b+7) 2

2
\b . 2
- \:—_;,—0- cos 2¢ +-3—6 sin 2<p] P4(cos 0)

2 .2
+ ‘: 2_40 cos 4¢ + )\bo sin 4<p] i(cos 9)5

1 g3x % . 4. A% . 2. . \2-3p2
= T6x

Z 31n9-——g—51n9+———-9-6-——

2 2
+|:)\T si.n4'9 _ A gb sinZO] cos 2¢

+ [-%)—‘ sin/lG + '-)-\—%_—b-zsinzﬁ] sin 2¢

2
)\1; sin4'9 cos 4¢ + % sin49 sin 4¢

The third order term will have the form

F(3)(e,<p) = aig')Pz(cos 0) + [a{f)cos 20 + bg’)sin Zcp]Pg(cos 0)

+ a(3)P4(cos 0) +[ (3 )cos 20 +b( )sm 290] Pi(cos 0)

[ (3)cos 4¢ + b(3)S1n 490] Pi(cos 0) + a( )P6(cos 0)

+ [ag?i)cos' 20 + bg)sin 2<p} Pé(cos 0)
[ (3)005 4¢ + b(3)sin 449] ch(cos a)

[ (3 )cos 6<P th, (S)Sin 690] PZ(COS 0)

(64")

(68)
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Substituting in the recursion relation

L {F3 - g2r?) (69)

we have

A 2 2.2 2
-s-}-r—l—?e-z-gr-q—s-—--e{)\'l')\cos 2¢ t bsin Zcp} {_33_)_\2_*_'_]_3_ sinZO A

3
2 .2, A\b A(1L-b] )
+|A"sin"6 - 3 ]cosZgo+[7\bsm6+ ]siano
2 .2
+ ; sinZB cos 4¢ +£21-)- sinze sin 4qo}

2 2
1 . AT 4 ATHD L2 .
+ 3?5{1 t+bcos 2¢ - Asin th}{ [—-2-s1n 0+ 7 sin 9] sin 2¢

2.2
+ [_1_32_)} 4g 4 M- b)sm 9] cos 2¢ - K4-b sin46 sin 4¢

+ —%Esin49cos Zgo} 5 { AM2-3 sin G) - 3sin G(Kcos 2¢ tb SlIlZgo)}

2,2 2 2
X{é-z\-i—g-b— sin49 - %—sinze + A

2 2 2
-b A 4, A tb_. 2
30 +[—4—-sin o - g sin 0] cos 2¢

2 .2
b, ., 4 Mi-b) . 2 . A -b” . 4
+[—-—4 sin 0 + g sin 9:'s1n 2¢ + g sin Ocos 4¢

+ -%E sin49 sin 4cp}

= - 6a{g)P2(cos 0) - [ (3 )cos 2¢ +b( )Sin Zgo]P%(cos 9) - 20 a(Z?E))P4(cos 0)

a(23)cos 20 +b(3)s1n th:IPi(cos 0)

20|:a(232)cos 40 + b(232)sin 490] Pz(cos 0) - 42 a( )Pé(cos 8) -
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- 42 [ag)cos_ 29 + bg)sin Zgo] Pz(cos 0)
- 42[ag32)cos 40 + bg?’z)sin 4go] Pg(cos 0)

-~ 42[ag:?cos 6o + bg;)sin 6¢] Pg(cos 0) (70)

By using the relations

cos 2¢ cos 4¢ =-lz- cos 6qo+-lzcos 2¢ sin 4¢ cos 2¢ =—12- sin 6o +—12-sin 2¢
(71)

. 1 1 . 1. 1.
sin2¢ sinde = 5 cos 20 - 5 cos 69 sin 2¢ cos 4¢ = 5 sin b - 3 sin 2¢

and comparing coefficients of the orthogonal functions, we find the

coefficients of cos 2¢ and sin 2¢ in F(S)(G,M:

(3) 1 A ( 2 2
= - 35 +15b +3b% +412)
11 167 2. .3, 5. 4
NEY I 1522 - 40%b - 3b° - 35D
n " Tew 52, 33, 5. 7

(3) _ 1 A44b - 2002 -15L%)

a =
2l “Tor  Z.32. .21
(72)
L3) 1 amn®+200%p +15b°
21 67,2 32.52. .0

(3) 1 A5EAE+b%)

a =
31 T Tem L4525 4.1

L3 _ 1 5\%b + b3

31 " Ter 452, o4
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Iv. STREAMING BIREFRINGENCE OF MACROMOLECULAR
SUSPENSIONS UNDER THE INFLUENCE OF A THIRD
ORIENTATION MECHANISM

1. The Optical Properties of Suspensions and the Parameters of
Streaming Birefringence.,

Consider a suspension of prolate ellipsoidal macromolecules
which consist of optically isotropic matter. Each macromolecule will
then have principal axes of optical polarizability along the major axis
(the axis of revolution) and along any equatorial axis, with correspond-
ing values of optical polarizability Vg1 and ng, where V is the
volume of the macromolecule.

If n is the number density of macromolecules in suspension,

and n is the isotropic refractive index of the solvent, then the square

of the refractive index of the solution is the matrix

2 2 2
n n n
XX Xy XZ
ﬁz = nz n2 n2 {(73)
yX yy yz
2 2 2
n n n
zZX zZy zz
where
n_ = g 1 4V [gz + (g1 2) < sinze cuszgu >]
2 .2 2, .2 }
n o= n t 4wV [gz + (gl—gz) < sin"0 sin® ¢>
.2 2
n =B + 4mnV l_gz + (g1 gz) < cos’e >] |
2 _ .2 . : (74)
o= YX = 4-rrnV(g1-g2) < sin%0 cos ¢ sin¢>
n_, =0 = 41mV(g1-g2) < sin 0 cos O cosg>=0
1 =n =

41TnV(g1-g2) <sin O cos @ sin¢g > =0



-43-

The last two must vanish since the orientation distribution is sym-

metric with respect to the xy plane.
Now the direction and the magnitude of the principal optical
axes of the anisotropic solution will be obtained by the transformation

of the matrix r';z into diagonal form within the =y plane, i.e., by

diagonalizing the submatrix

2 2

n n
XX Xy
2 5 (75)
n n
Xy vy

This matrix is Hermitian, hence the eigenvalues will be real and its

cigenvcctors will be orthogonal. We first find the eigenvalues )\l and

)\2 from the equation
n2 -\ 2
XX Xy
2 5 =0 (76)
n, n__ -\
Xy vy
or
Xz—(n +n2 )7\+n_2,_n -n4f =0
Yy =xX xy
1 2 2 2 2 .2 2 2 4
M2 7 7 4 By * J( Tagyl A ney T By }
=L {nz +n2 + (n2 - n2 )Z +4n4 (77)
2 \'xx vy XX vy Xy
- an K
=.1.{n2 +nZ % o -n2 |ofi + (2L }
2| xx vy xXx Yy S



-44 -

The eigenvectors Vl and "7’2 are now defined by the relation between

their components V_ and V_:
X y

2
2n
nz—-lz nz-l-1r12:1:|nz—nZ l+(—————1——X V+n2 =0
XX | xx Tyy xxX T yy nZ _nZ X XYV
XX Yy
2n2 2
L 1+(—»«Xl-> V_+n® vV =0
2| "xx Tyy XX T yy n2 " vV y
XX VY
2 2
| 2 2 en
-1+ sign(n._-n") 1+(—2—-—>-<X-——)
v =ovy n —nz
_\_f_yz 5 p; 94 A (78)
X 2n
—_—y
2 2
n- - n
XX VY
2
2n o
Call ——5—351’-—? =tg 24y (-‘—?j< 2y < 5). Then
n” -n
XX VY
. 2 2\ _ .
sign (n__ - nyy) = sign Y , (79)
and
. 1
.Y.Y— -1 * sign Woos 20 _ - cos 2y * sign Y (80)
VX— tg 2y - sin 2y

Now in Couette flow with the flow field defined by

— —
u

it is physically obvious that, for prolate ellipsoids of revolution, the
viscous effect will tend to orient the major axis near the streamline,

so that it will be



Thus sign § = -1 and we get

YX cos 2* +1 (81)
Vx sin 2y

It is also obvious that we shall get the direction X of the eigenvector

which forms the smaller (in absolute value) angle with the x axis, if

we choose the negative sign in the numerator (remember that cos 2y = 0)

Yy cos 2b-1_ 2 sin’y

v, sin 2} " Zsinlcosy -8V (82)
or
v
v—i = - tg |¢] (83)

which is indeed the smaller of the two angles of the cross of the eigen-
vectors with the x axis, since ]4:] < 3—;, and it is negative. Hence
the position of the eigenvectors is always as pictured in Fig. 2. (24)

Now to find this direction X, we have used the lower sign in

Fq. (81) which means that this direction is the direction 2 with refractive

index )\2 < )\'_l We have called this direction (in the 4th quadrant) X

24111 view of this analysis, it is clear that the directions of the optical
axes are not correctly shown in Figs. 1 of the articles by R. Cert
and H, A. Scheraga, loc, cit. and by H. A, Scheraga, J. T. Edsall
and J. O. Gadd Jr., J. Chem. Phys. 19, 1101 (1951).
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and we take the other'orthogonal direction (in the first quadrant) as Y

Now in the orthogonal system, X, Y, z, the matrix ﬁz takes

the diagonal form

2
Ny 0 0
~2 2
= 0 Ny 0 (84)
0 0  n?
V¥4

where

2 1§ 2, 2 2 _ 2.2, .4 s
=\ = & - +
vy )\1 2 znxx * nyy * J(nxx nyy) 4nxy

We can now express the parameters of Streaming Birefringence

The extinction angle x 1is defined as the smaller of the two

angles between the cross of the eigenvectors and the direction of the

streamline at each point. . We scc, from the dcefinition, and the geometry

we have used, that
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X = |y, ¥)] (85)

Note that {y, Y) = (x,X) = -

: L
x = |9l = 3tg TT——Y_Z——i (86)
- It
2 2
1, -1 Ux
=3 tg —Z———%~— in our case
n - In
Vy XX

Note, in addition, that this is the angle between the streamline and the

optical axis with the higher refractive index.

The amount of birefringence A is defined as the difference

in refractive index between the two principal directions, namely

An = i ©'¢ (An > 0)

2 2 J 2 2 .2 4
n -n (n” -n" )" +4n
An= SEZX LYY x Xy (87)
nYY + nXX 2n

Finally note that, using the volume ratio
b =nV (88)

we find from Eqgs. (74)

2
n
XX

and (89)

- n;y = 41r¢(g1— gz) < sinzecos 2¢ >

2 _ . 2 .
-any = 47r<1>(g1 gz) < sin“ 0 sin 2¢ >
Defining then
< sin? 8 cos 2¢> = A (it must be negative)

< si_n2 fsin 2¢9>=3B (it must be positive)
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We can express

x = Stg™ (- 2) (90)
and '
4rd(g,~ g,)
An = 1 ~2 \iAz + B2
2n
_ 21T¢(81' gz) _AZ . BZ (91)
n

2. The Direction of the Isocline and the Amount of Birefringence
Calculated to the Second Order,

We can now use the obtained distribution function to calculate
the mean values A =< sinze cos Zg0>> and B = <sin29 sin 2¢> in
terms of which the parameters x and An of SBR are defined in

Egs. (90) and (91). In connection with this calculation, it is noted

that, since

sinze = % Pg(cos 0)

the quantities sinze cos 2¢ and sinze sin 2¢ are among the eigen-
functions of the Liaplacian operator which were used to express

(n) (n) _.
11 and bll will

appear in view of the orthogonality relations. Specifically, since the

F(n)(e,¢)cn and therefore only the coefficients a

norms

- 2 2_ 2 {2%2) 48
[IP5(cos 0) |7 = 555 (2-2) 1 5

and

||cos 2¢]|% = [|sin 2¢]|% = =
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we find
_ léw N\ (n) n
A= -—g—-z all o (92)
n
and
_1n § @) n
B= Qz_bll - (93)
n

The values of the coefficients aﬁl) and bgl), to the third

order, are

a.

R T

_(3) _ _1_ -A\(35 +15b + 4\ + 3b7)
1 = Tom 73

2%.33.5.7 (94)

{0)
D o

LM _ 1 b

11 ~ 167 3

{2V 1 A2bt7)

nCTw . 2.

NE) 1572 - 42%b - 35b - 3b°
b1 T Tow 2. 23,5

Thus, to the third order,
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2 | 2 2
A~ 3?\5U+ zxz T2 M35 +2152+§>\ +3b%) 3 (95)
2:32.5.7 22.33.52,7
b M2b+7) 2 . 150% - 42%b - 35b - 3b° 3
B= g0 +—5——0 + 5—3 > iy (96)
2.32.5.7 22.33.52. 7

and using these we find X and An from Eqgs. (90) and (91).

Note that

(97)

|
I

INE]
1
=

is the angle formed between the isocline and the principal strain axis
in Couette flow. It appears in the theory of SBR in a more fundamental
way that X, as was shown By Wayland when he considered the more
general case of any two-dimensional laminar flow(ZS)o We shall

therefore use ¢ to define the direction of the isocline, rather than

X. Itis

2¢=%-2x=arctg(—%) (98)

Using the obtained expressions for A and B, we find

2 2
- A yot1 o yy"F1Nb-7) 2
thqo—_ 5= Yt tg—at 555 O (99)
where we have put
X K '
Y=1%  Gb (100)

25Loc. cit. In fact, Wayland has assigned the symbol X to what we

have defined as ¢, and not to the extinction angle, as it is conven-
tionally defined and used in this study, namely as the smaller of the
two angles between the direction of the isocline and the streamlines.
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Then, using the Taylor series expansion

1 3,15

arctgz =2z - 3z +3z (101)
we find
p=-Jq- —? ¥ 1’; ) + Yi; R {(..b-Zl)'yé- 21y4+b} % (102)
Similarly, we find
An = 2mé L 22 \/;E’L_l b{o- + DY UZ} (103)
= |

The above two relations give the parameters of SBR for our

case.

3. Discussion,
It is interesting to note how the presence of the third orientation
mechanism influences the two parameters of SBR,
First, in both the expression for ¢ and An, both even and
odd powers appear, whereas in the absence of the third orientation
mechanism (y = 0) the even powers disappear, and Eqgs. (102) and (103)
reduce, of course, to the expressions given by Peterlin and Stuart.
Secondly, if we let ¢~ 0 but keep the ratio —Ié (and hence

(26)

also y) constant , we see that An - 0, but that the angle ¢ no
longer vanishes. Its limiting value for o — 0 is in fact associated

with v

26

““The three variables are the magnitudes of G, K and D, character-
izing the strength of each of the three acting mechanisms.
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1 2 4\
lim0q0= -Ey{l-—‘g— +X§—} (104)
a— N
Y = const

so that its expérimental determination allows calculation of K, i.e.,
the magnitude of the third orientation mechanism through equation (100).
Thirdly, if we let G~ 0 but keep K and D constant, then

¢ =0 but |y|— o, hence we obtain from Eq. (99) that ¢ = 45° or

X = 0, which means that the cross of the optical axes coincides with
the x and y axes. On the other hand, since the quantity oy = -BISI-)
remains constant in this case, we obtain from Eq. (103) that
1" 8
lim An 2m¢ +—2 K (105)
- 15D
o0 n

Y™ ©

i.e., An is proportional to the magnitude of the third orientation

mechanism, as has bee.n observed in the case of the Kerr effect,
Finally, if we keep K and D constant, and start increasing

G, then ¥ will also increase up to a point; for large values of G, ¥

will again tend to zero as in ordinary streaming birefringence.



-53-

V. HYDRODYNAMIC INTERACTIONS IN A SUSPENSION OF
ELLIPSOIDS AND SPHERES IN SHEAR FLOW

1. The Experimental Evidence

One of the most interesting experiments performed at the
C.I.T. SBR Laboratory was the one(27) involving a suspension of
both ellipsoidal macromolecules (in this case the rod-like Tobacco
Mosaic Virus - TMV) and spherical ones (Southern Bean Mosaic
Virus - SBMV). It was observed, for example, that at equal
weight concentrations of the two species at 3 Kg per m3 of the
suspension, the amount of birefringence An was lower than what
it would have been in the absence of the spheres. This was con-
sidered opposite to what could be expected, since the addition of the
spheres tends to increase the macroscopic viscosity of the medium
in which the asymmetrical particles find themselves; it should
therefore also, if anything, tend to increase the observed An, which
depends linearly on the viscosity of the suspending medium. The
discrepancy had to be attributed to hydrodynamic interactions between
the spheres and the rods.

That hydrodynamic interactions can indeed influence the
macroscopic properties of suspensions has been suggested by the
results of numerous expe riments. Specifically at C.I. T., where a
systematic investigation of this subject has been carried out under.

the direction of Professor Wayland, the importance of hydrodynamic

27 H. Wayland and M. Intaglietta, loc. cit. =
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interactions has also been demonstrated by Collins and Wayland(zg)
in measurements of the viscosity of a dilute suspension of TMV rods
and Polystyrene Latex (PSL) spheres in Poiseuillian flow, as a
function of the concentration of the two species.

In what follows, we shall try to examine theoretically the
phenomena occurring in a uniform shear flow of a suspension of
both ellipsoidal and spherical macromolecules due to hydrodynamic
interactions between the two species. Our aim will be to investigate
the processes by which these phenomena affect the macroscopic
properties of the suspension, and particularly the observed amount
of birefringence.

2. Birefringence and Viscosity. The Various Aspects of the
Phenomenon.

The amount of birefringence in a suspension of ellipsoidal

macromolecules undergoing shear flow is given by the following
G

expression for low shear rates (o = ) << 1), as can be seen from

Eq. (103) at the absence of a third orientation mechanism:

[0}

(106)

g -8
An = 2w ——1:——§%

B

It is clear from this simple expression that the velocity

gradient G represents the mechanism that orients the particles,

namely the anisotropic action of the viscous stresses, whereas the

28D. J. Collins and . H. Wayland, Trans. Soc. Rheol., VII, 275

(1963).
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diffusion constant D represents the "disorienting" mechanism,
namely the isotropic Brownian impulses which "fight" towards a
random distribution of orientations.

We have glready seen (Egs. 16 and 19) that the diffusion
constant is a linear function of the rotational mobility of the particle
when subjected to a torque. We may therefore deduce from Eq. (106)
the following statement: the amount of birefringence increases with
increasing velocity gradient G, since G measures the orienting
mechanism; and it decreases with increasing rotational mobility of
the particle in the suspension, since this mobility measures the
effectiveness of the "disorienting" Brownian mechanism.

If we use the expression given in Eq. (17) for the appropriate
rotational mobility of a spheroid suspended in a medium of viscosity

Hyr We have

2 2
_ _ kT p _ 2p~-1 2_ 1/zi|
D = kTB, -@:vp£1[1+ @Anlzln@+® n=")

P

(107)

1i
&1

where Dp. depends only on the particle and the temperature, and
not on the suspending medium. We can then express
81782 b

- 15 D
n u

An’ = 27 Gp.o {108)

which explicitly displays the linear dependence of the amount of
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birefringence on the viscosity of the suspending medium By i.e.
the local visco'sity felt by the suspended particle.

It is important to differentiate B, from the macroscopically
observable bulk viscosity of the suspension. Consider for example
the following two statements:

(a) A suspension is made more viscous by dissolving

glycerol in it.

(b) A suspension is made more viscous by adding rigid

particles to it, like the spheres of our case of interest.
It is clear that the first concerns the local viscosity, whereas the
second concerns the macroscopic or bulk viscosity. It is clear also
that the local viscosity is the one that is naturally involved in the
rotational mobility of a single particle.

On the other hand, the presence of other particles in the
suspension may influence the rotational mobility of the single particle,
specifically it may reduce it. The effect of particle concentration on
the rotational mobility of a single particle is especially pronounced
in the case of chain molecules, where it has received extensive
theoretical and experimental attention 2, It was found that the
quantity %—% is linear in ¢, for small values of G and ¢, and both
theoretical and empirical expansions have been given. As it is well
known, a similar behavior is displayed by the bulk viscosity of the

suspensions for low values of ¢, It was therefore natural to associate

the birefringence behavior with the bulk viscosity behavior with

2(aSee, for example, the reviews by Cerf and Scheraga  and by Jerrard,
loc. cit.
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(

concentration. 30) Indeed, the possibility that a relationship may be

set up between vi'scosity and streaming birefringence hinges on the
ict that both are conditioned by the rotational mobility of the particle.

)

wcifically, it has been su.ggeste:d(31 that the concentration depen-

d¢ = of An could be taken into consideration by replacing Mo, with

an . ctive viscosity pq‘, depending on the bulk viscosity p and
the s nt viscosity Bos in the relation giving the rotational mobility,
and hei also in the relation giving An.

The effect of the presence of the spheres, however, cannot
properly be described by this macroscopic argument of the incrcascd
bulk viscosity of the suspension.BO) Such an argument would refer
this effect entirely to the stochastic side of the orientation mechanisms
acting on the ellipsoidal particle, by having it affect the Brownian
influence alone. This does not seem justified at all, especially in
view of the fact that, as expressed by Broersma(az), "in dilute
suspensions a first-order perturbation in the velocity pattern pro-
duces only a second order change in the value of the effective
viscosity. " And the velocity pattern represents the orienting
mechanism !

The effect of the presence of the spheres should then also
be connected to the deterministic as well as the stochastic side of

the orientation mechanisms. To the deterministic side, by consider-

ing the perturbation of the flow field and the energy dissipation due

30Ch. Sadron, Ch. IV, § 1.2 in "Flow Properties of Disperse Sys-
tems" edited by J. J. Hermans, North-Holland Publ. Co. (1953).

1A. Peterlin, Proc. 2nd Inter. Congr. Rheol., 343 (1954).
325, Broersma, J. Chem. Phys., 30, 707 (1959).

3
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to the presence of the spheres, and then determining the drift
velocity of the ellipsoids in this perturbed flow field. And to the
stochastic side, by considering the change in the rotational mobility
of the ellipsoids and the probability of collisions and associations
between the spheres and between spheres and ellipsoids.

The deterministic side of the phenomenon, which has not
received attention, will be studied in what follows. We shall show
that the presence of the spheres has the effect of retarding the
rotational motion of the ellipsoids and that this effect can be described
as a change in the velocity gradient experienced by the ellipsoids
from the value G in the undisturbed flow to a new value, Gef:f’
smaller than G, On the stochastic side, we shall describe the
change in the rotational mobility of the ellipsoids due to the presence
of the spheres by using for the diffusion constant the value D

eff’

smaller than D, We shall then have, for the amount of birefringence

g,-8 G
An = 2w 1_ 2 —% Deff (109)

n eff

and denoting by (An)D the amount of birefringence in the absence of

the spheres, which is given by Eq. (106), we have

An _ Geff D

'(An)o G Deff

(110)

The behavior of the amount of birefringence, when spheres are added
to the suspension in increasing concentration, will be studied in terms

of this relation.
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3. The Effect of the Spheres on the Drift Velocity of the Ellipsoids.
We shall attempt to analyze this interaction effect by using the
concept of the energy dissipation. The approach will be based on the

flow properties of very viscous fluids.

3.1, Introduction
Consider the Stokes flow of a homogeneous viscous fluid in a

region V_ bounded by the well-defined closed surface S_ . Let the
(0) (0}

fluid velocity and pressure be o and p respéctively, and con-

sistently refer all velocities to a stationary coordinate system..
Given the velocities on the surface SO, the flow field every-

where in VO can be found as the solution of a boundary value prob-

lem involving the linear equations

v-al0oy (111)

0)

~7pl0) 4 HOVZ'J( =0 (112)

where b, is the viscosity of the fluid. These equations of motion
describe the flow of incompressible fluids, in the absence of non-
conservative external body forces, when the effects of fluid inertia
are either absent (uniform flow) or negligible (creeping flow}). In the
latter case these equations correspond to what is termed "Stokes
approximation, "

Note that "time " does not appear in these equations. There-

fore the solution of the boundary value problem is independent of

time, in the sense that it describes the instantaneous flow field under
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the instantaneous boundary condition's_ given. This does not mean that
the flow field is necessarily time independent: if the boundary con-
ditions vary with time, so will the flow field.. However, at any instant
t, the flow field is given, within the Stokes approximation, by the
solution of the boundary value problem involving the boundary con-
ditions corresponding to this t, independently of the time history of
the boundary conditions. This, of course, is a direct consequence

of the fact that the contribution of inertia is negligible, which was
what allowed us fo neglect the c;orresponding terms from the Navier-
Stokes equation and thus transform it to the linear form (112). The
flow field will be strictly steady only if the velocities prescribed

on So are constant in time; for example, if So is the surface of

the well-defined boundaries of a viscometry apparatus.

Consider now that a small volume V of the fluid {much
smaller than VO) has been replaced by a rigid particle of arbitrary
shape, bounded by the surface S, while the boundary condition on S
is constant in time. There arise two problems of interest:

(1) The motion of the particle as a rigid body. This can be
defined by giving, at.every instant t, the two vectors V and ':o»,
where V is the velocity of a point of the body (say its geometrical
center Q) and. o the rotational velocity around that point. Then,
the velocity of any point T of the rigid body at this time t, is given

by the expression -

Tl’b('r',t) = V) tolt)X {# -'I»’o) (113)



-61-

(2) The fluid flow field Tl)(r) in the region between So and
the particle surface S, at every instant t. It is clear that, in
general, this flow ficld will vary with time, since both the part of the
geometrical boundary represented by S and the boundary conditions
on it vary with time. At any given instant t, however, the flow field
will be uniquely determined by the instantaneous conditions on its
boundary, which is now the surface SO + S; the boundary condition on
S is given by Eq. (113).

It is thus clear that the two problems are coupled: the solution
to the first problem is needed in order to know the complete boundary
condition for the second, and the solution to the second is needed in order
to calculate the hydrodynamic force and torque on the particle, the
motion of which is determined by the condition that, within the frame-
work of creeping flow, there can exist no net force or torque on it.

The solution to both problems can be obtained simultaneously
by the approach used by Jeffery in the case of ellipsoids: Begin by
solving the second problem, thg. problem of the flow field, by using
arbitrary values for V and w. Then, using the obtained solution,
calculate the hydrodynamic force and torque on the particle as functions
of V. and :: Fiﬁally, equate the net force and torque on the particle
to zero, and thus. obtain the actual values of ‘7 and _c-o), namely the
solution to problem (1).

It is interesting to examine what the vectors V and :;, deter-
mined as above, will depend on. They, together with the position of
e particle with respect to So at the instant in question, determine

the geometrical region and the complete boundary conditions for the
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problem (2). Therefore, the solution to this problem, namely the
flow field at t--and consequently also the hydrodynamic force and
torque on S, the energy dissipation and any other quantity defined

in the flow field--depend exclusively on the position and the motion
of the rigid particle with respect to SO, on the viscosity of the fluid
and on the boundary conditions on So. In addition, if all points of
the surface S0 are very far away from the particle, then the actual
position of the particle stops being of importance, while the boundary
conditions on SO are important only in the sense that they define

uniquely the undisturbed flow field —J(O)

that would exist at the region
V if the particle were absent. We conclude that the perturbed flow

field due to the presence of the particle

MG AT (114)

depends only on (a) the unperturbed flow field 71’(0)

in the region
around V, (b) the viscosity of the fluid Mo and (c) the shape, and
motion (defined by V and :;), of the body. As a direct consequence of
the above, we conclude that the hydrodynamic force FI—I and torque

TH on the particle will also exclusively depend on (a), (b) and (c).

But it is FH and TH that determine the motion of the particle, in

conjunction with any external force and torque on it. Therefore: The

(O)(;)

motion of a particle which is immersed in a fluid flow field u
depends only on the undisturbed field E(O) and the shape of the
particle.

This general statement is consistent with the expression given
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(32) (33)

—
by Giesekus and by Bretherton to the rotation w of a rigid

particle of arbitrary shape which is immersed in any viscous flow

=(0)

, in the absence of external force or torque. If we denote by
(V X (0)) the rotation and by € = (v-l—;(O)):ymmetrlc the
rate of strain in the undisturbed flow in the neighborhood of the point

where the body is immersed, then

©=T+2B:¢ | (115)
or in tensor notation
=g, + -1- B, (115")
aﬁ ap

where :B is a third rank tensor, characteristic of the particle shape,
and symmetric in the last two indi ces.

Finally, the following expression can be shown for the hydro-
dynamic torque acting on a rigid particle of arbitrary shape im-
mersed in an arbitrary flow provided there is no coupling between the
translational and rotational motions of the particle(gé) (i. e. that the
particle is of such shape that a forced translation through a fluid at

rest at infinity does.not induce rotation of the particle)

Ty = R [Z’-TS 15 .?] (116)

UU I

32H. Giesekus, Rheol. Acta, 2, 101 (1962).

33F. P. Bretherton, J. Fluid Mech., 14, 284 (1962).

34H. Brenner, Chem. Eng. Science, 19, 631, (1964).
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where R (=B -1) is the rotational resistance tensor of the particle,
calculated from the completely different problem of the particle

having a steady forced rotation in a fluid at rest at infinity.

Equation (116) of course proves the theorem of Giesekus and

Bretherton in the absence of external torque, since then it must be

_T’I—I = 0. In addition, it establishes in the general case that E = E -1

k)

which can be noticed to be true in the results of Jeffery for the hydro-

dynamic torque in ellipsoids, for which the six non-zero components

of Biaﬁ are

az - a2

_ _ T2 3

Biz3 = B3y = 2, .2

2 T 23

3.2 - a.z

~ 337
By =Buns = 2, .2 (117)

373

az - a.z

B T

Ba12 = Psa1 = 722

1 T3y

3.2. Energy Dissipation
According to the heuristic argument presented in the previous
paragraph, the energy dissipation in the perturbed flow field due to

the presence of the particle, depends only on (a) the unperturbed

flow field K(O) in the neighborhood of V, (b) the viscosity of the

fluid and (c) the shape of the particle. We shall show that consistent
results are produced in the case of spheres and ellipsoids immersed

in Couette flow by the statement that the energy dissipation due to the
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perturbation field u () in the region between S, and S is given

by the expression

1

E=%-B " - (118)

where B 1is the rotational mobility tensor as given in Appendix A.
If n is the number density of dilutely suspended particles in the flow,

then the energy dissipation increment is, per unit volume

(119)

The fact that Eq. (119) properly describes the energy dissipa-
tion increment in the above two cases suggests the possibility of
proving its validity in more generality, subject to certain restrictions
as to the form of the undisturbed flow field. This task will not be

attempted here.

'3.3. The Energy Dissipation in Couette Flow of Suspensions of
Ellipsoids or Spheres

When the suspended particles are of asymmetrical shape,
the rotational velocity & and the energy dissipation e will depend

on the momentary orientation of the particle with respect to the shear

flow field

e = e(0,0,0) (120)

However, if the distribution function (9, ¢, ) is steady in time, one

can consider the time independent mean value

<e> = S fe dV = (£, e) (121)
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and thus define the increase in the viscosity of the suspension over

that of the solvent in terms of the relation
. %2 . .
<e>=(p-u)G (122)

where o is the viscosity of the solvent and G is the velocity
gradient in the suspension.
For prolate ellipsoids of revolution, the mobility tensor has,

in the system of the principal inertial axes, the diagonal form

) B, 0 0
B= {0 B, 0] (123)
o o B,

as it has been already mentioned. The constants Bl and B2 are
given in Appendix A.

Substituting in Eq. (119) we obtain

_wz w2+co2 16 T wz (a2+a2)(<§2+w2)
_ 1 2 30 o) 1 1 AR 3 - .
e=n|lm=—t+t——|=n —5—|=5 * (124)
B, B, 3 |B, 226 1 a2a
25 o 1o
But
2. 2 2., 2_( Gb 2 g 2
w2+w3=9 +{¢sinB) =(——2—sinecosesin2¢) + = sin0(1 tb cos 2¢)
and

2
2_ 02 - (S
w0 = (¢ cos © +t )~ = 2‘cos 6)

We thus have
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2 2
e =n % Trp.o(}Z [Cgs 0 | 21 22 sinZO(l +2bcos 2¢ +b2—bzsin29 sinZer)]
o) azﬁo+ a;e

(125)

This corresponds to Jeffery's result,

The energy dissipation in the case of suspended spheres,
namely Einstein's result, is found immediately by this approach.
We know that Vspheres rotate in simple shear flow with rotation

axis perpendicular to the plane of flow and rotational velocity

w = _GZ . Therefare
B W<
e=ERE T D 2
_ 1 .
For a spherc we know that B = HL—O—V—S where VS is the volume of
the sphere, hence
2
G~ _ 3 2
e =n 6HOVS T = > ,nVS HOG

But nVS = & (the volume ratio), and we conclude that the energy

dissipation due to the rotation of the sphere is

2

e = -%de. G (126)

o]

Now the total energy dissipation per unit volume, namely the
dissipation due to buth the solvent occupyiag 1 - ¢ of the volume and

the sphere, is.

dw _ . 2,3, .2
n = {1 ¢)[.L0G + ZCIJp.OG

=1+ %MHOGZ (127)
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This is Einstein's result.
Note: FEinstein then proceeds to find the viscosity of the suspension

by proving that G = G(1 - ¢), hence Ga<Z = Gz(l - 2¢) and

2 1+1 0
- dW _ *2 1 aw_ .1, G~ _ 2
defining Fri pG he found p = —-—-—G*Z i (1+ > qn)po -(;—,-2 = MoTT53

or p = p.o(l + -g ¢) to the first order.

3.4. Energy dissipation under hydrodynamic interactions.
Consider now that the particles interact hydrodynamically, in
the sense that the perturbation of the flow field around particle 1,
caused by its presence, .is felt by particle 2 as a significant change
of the local field that it (i. e. particle 2) experiences, and vice versa.
The situation can be analyzed as follows:

(a) The presence of particle 1 at position r, will perturb the flow field

1
by the perturbation —1;1'(—1-: - ?1), so that now
TE =T F) 48 E-T) (128)

(0) is the undisturbed flow field.

where u
(b) If there are many particles of type 1 influencing the field, we can
write

2@ =20+ ZTII'(? -7 (129)

v
v

(c) If a particle of type 2 is now placed at _1:2, it will follow the flow
field (129), rotating in the way prescribed for it by the velocity
gradient tensor of this flow field, namely in the way described by

Eqg. (115). This corresponds to our case of interest, where a TMV
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finds itself surrounded by many spherical particles.
T, will
perturb the flow field by the amount K;(; - ?2). This field will

(d) In addition, however, the presence of the particle 2 at

depend on the rotational velocity © of the particle 2, and will affect
the motion of the spheres. Due to the presence of the spheres in
this field there is an energy dissipation increment, which, as calcu-

(35)

lated by Einstein , is, per sphere

_ 2 2, .2 |
e, = 5 (A% + BS + CH)V_ (130)

where A, B, C are the three principal rates of strain in the field
T{"Z(-IT).and V is the volume of each sphere.

(e) This energy is directly due to the interaction between the spheres
and the rod, since it is calculated not in the actual flow field existing
in the suspension and felt by the outside world, but as a result of the
presence of the spheres in the flow T;Z, ) Which, as has been mentioned,
represents the perturbation due to the presence of a rod alone in the
original flow field. If we accept, therefore, that the external world
does not provide any part of this energy, then the energy dissipation
due to the presence of the rod in the original flow must be smaller

. by the same amount, so that the rod will now rotate slower, and we
shall obtain in this way a valid estimate of the maximum change that
can be expected in the rotational velocity of the rod due to the
presence of the spheres. In other words: If this interaction were
not present, the rod would rotate with angular velocity © which was

the objcct of the discussion given in the previous paragraph. Duec to

35 A. Einstein, Annalen d. Physik, 19, 289 (1906).
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- |

~interaction of the field u, with the spheres, however, the rod will
rotate with a smaller angular velocity 7;‘, so that

— _1—-—» —_—

BT L -w

i

w = e {131)

12

By comparing Equations (130) and (131) we obtain the relation

—_— :_1 — — =_1-—>| _ T
w-B - w-w B Tw = 51J,O /J
spheres

2

(A2 +B +C2)VS (132)

This is the relation that we shall use for the study of the deter-
ministic effect of hydrodynamic interactions. The perturbation velo-
city —1;2' is known as a function of &' from the solution of the hydro-
dynamic problem. Its magnitude is proportional to the magnitude of
&'. The rotation « is also known from the hydrodynamic problem.
It is well to note, at this point, that P depends on G but not on B
this is physically expected. since the torque acting on the particle
is due to the vis.cous stresses and is thus proportional to Mo but also
the resistance to rotation is proportional fo Pgr SO By does not
appear in w. One can, therefore, calculate &' from Eq. (132), and
thus one can find the change in the angular velocity of the rod, in the
presence of the spheres due to _u.>2" .

Of course, in order to find the total change in the angular
velocity of the particle 1, one also has to consider the change due to
the field :i namely the perturbation field produced at the position
of the rod by the spheres, using Eq. (115). We shall calculate that

contribution also, although it can be expected to be small for our

case of interest.
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4; Application

We shall now proceed to apply the above approach in the
specific case of the experiments of Intaglietta, namely when:
Particles 1 are particles of SBMV: spheres of diameter

2a=2.52%10"% m

Particle 2 is a particle of TMV: a long cylindrical rod of dimensions

2a; = 30 %108 m
2a; =1.8 x10 8 m
(p=16.7)

We are interested in aﬁy change in the rotational velocity of
the rods due to the presence of the spheres. The spheres do not
affect the observed parameters of SBR, except if they were to form
doublets. This possibility will be examined later. Also, their
- presence will tend to raise n, if their refractive indix is higher
than that of the solvent, but this effect has been shown by Wayland
and Intaglietta to be insignificant for the concentrations involved.

4.1. Definitions of concentrations, number densities and
volume ratios.

We shall note by ¢ the concentration of a certain substance

in a suspension in

Kg of the substance

1 m3 of the suspension

(1) We can immediately relate c¢ to the number density of the mole-

cules of this substance: If M is the molecular weight of the substance,
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there are

i Kg-moles of the substance per m3, hence, using the
Avogadro number

N, = 6.025 x102° (Kg-mole) !

we obtain, in m

-
n= 5N, (133)

Particularly, for TMYV which has a molecular weight of 39 X 106,

we obtain

_ 19
nTMV = 1. 544 X 10 CTMV

and for SBMYV, which has a molecular weight of 6. 63 X 106

2

N 19
Nopmy = -1 X107 egpygy

{2} We note that

n .- C
¢ = JSBMV_ 5 gq “SBMV _ 5.88

CrmMmv k

DMy

C
We have defined k = -E—T—M—Y—- .
SBMV

(3} The volumes of each particle of the two species are

_ 2, B 2 24 _3
VTMV = ma., 2:3,1 = m(0.9)30 X 10

m

= 7.63 %10 %3 m3
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4 3 _ a4 3., -24
VSBMV = -3-,' ma = '3-' TT(].. 26) X 10
= 8.38 X107 %% 3
4) ¢ =1.18 X10 > ¢ ¢ - 7.63X10 % ¢
™V = ™V’ ®semv = 7 SBMV
TABLE 1
Pure TMV k = 2.9 Kk =1 k = 0. 31
CrMV 3 3 3 -3 Kgm
19 19 19 19 -3
npggy | 463x1007 4.63x107 4,63 %107 4.63x10 m
-3 -3 -3 -3
bpppy  3-54%107° 3.54X1070 3541077 3,54 %10
-3
SN - 1,03 3 9.7 Kg m
19 20 20 -3
ne gy - 9.4 x 1017 2.73x10%° 8.8 x 10 m
-4 -3 -3
bsmrry - 7.87%x10°% 2.28%X107° 7.37X10
¢ - 2.03 5.88 18. 95

4.2, The effect of the field Tl»ll .

The field _Jll (T - _171) has been defined as the perturbation field
.

due to the presence of a sphere at 1

Einstein, who has found that, assuming spheres are uniformly dis-
tributed around, its effect is to decrease the principal shear rates at
position 1 by the factor 1 - ¢s, where ¢s is the volume ratio of the
spheres. This result indicates, in our case of interest, that the TMV

particles find themselves in pure shear flow of velocity gradient

c" = Gu (134)

" ®sBmv!

This field has been calculated by
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It is clear however (see Table 1) that this effect is too small
to account for the results of the Intaglietta experiment, where the

changes in An were of the order of 10% whereas is much

¢SBMV
smaller.

4.3. The effect of the field u, .

The effect of this field will be studied in terms of the energy
dissipation approach described ih paragraph 3. 4.

The perturbation velocity field around a long cylindrical rod
immersed in a simple shear flow of velocity gradient G has been
given by Burgers(37). If we take as origin the center of the rod,
and if the axis of the rod has an orientation 0,¢ wi;ch respect to the

flow {see Part IIT of this thesis), we can then express, in vector

notation, the perturbation field at every point r as follows:

G .a e
—1 e 71 . 2 . — .2
uz(r) = 6[1; 5p ~1.8] sin"0 cos ¢ sin ¢ {:1 - 3(e1_- e)]:% (135)

where the vector e gives the direction of the axis of the rod, i.e. it
has coordinates (sin O cos ¢, sin O sin ¢, cos ), so that
e

e - :zsinecosgoszsine sing + Z cos (136)
r T T T

For a body of revolution, like our long cylindrical rod, we.

have

37J. M. Burgers, Second Report on Viscosity and Plasticity, Ch. II,

North-Holland Publishing Co., Amsterdam, 1938.
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1
and since, in our case, B1>> BZ’ we can put equation (132) in the

form

12
(“§.+‘*’§)'(“”22+‘*’3) N 2,2, .2
5 = 50,V sppry ZJ (A% B%+C%)

spheres

(138)

In our case of interest there are § (= nSBMV/nTMV) spheres

per TMV particle, which we shall assume uniformly distributed
around the TMV particle, so that the probability density of finding
a sphere at T is constant.‘ Then, the result of the presence of the
£ spheres around the rod, will be given by the average

2, 2 .2 12
wy oz - (wy twgl)

} ’ég 2, 02, ~2
B, = 5, VsBMY ¥ V(A FBHCT) 4V

) 2, 52, 2
= 5po¢SBMV§V(A +B+C%) AV (139)

The domain of integration V will be a spherical shell, around

the center of the rod, starting at r =a + a, and corresponding to

each rod.

Calling R the outer radius of this domain, we have

or
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In our case, where nqy,y =4.63 X 1019 rn—3 we find

R=1.73X10" ' m
=1.15 ay (140)
Note that the volume % TrR3 = 1/nTMV = 2.16 X 10-'20 rn3 is much

larger than the volumes of the SBMV or the TMV particle.
— ]
From Eq. (135) we see that u, has only a component in the

radial direction in spherical coordinates, namely that

— ] — —
uz(r)= ve_

We calculate therefore the gradient of this vector field in spherical

coordinates. We find

'Y - - 9v
\% b )rr - err - 9r
— | _ _ z
(Vu,)gg = €99 = 7
— _ _ z
Vu2)op = €pp = T

Now

ov : CTe 21

dr =~ 3[1n 2p - 1. 8]

-3

sin%0 cos ¢ sing[1 - 3(;;' :)2] r

3
v Sesdm
r 6| 1n 2p - 1. 8]

<

sin%0 cos o sing [1 - 3(—e-;r- :)2] .3
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Hence
G .a _ _
EZ +Eéa+é2 = eff 1 5 sin49 COSZqD sin ¢ [1-3(e_- e)zl 2'r 6
rr ??  6[in2p - 1. 8] r

In order now to inﬁegrate this expression in the domain V (see

Eq. 139) we use a spherical coordinate system with the polar axis

in the direction of the rod e. Calling then X\ the polar angle in this
system (in order to avoid confusion with 0 which has been already

used) we have

— —
€

e = cos A

L
. . . - —>2-.2 -6 . .
and the integration of the quantity [1 - 3(er e)]%r in the domain

V becomes

— = 6 ™R 2 4., -4
S‘ [1—3(e~r- e)]r "4V ng - (1-6 cos™A+9cos "A)r “sinAdhdr
Vv o a.“l'a2

i

+1 ' R
Zﬂly Q-6x2+9x4)dx S} r-4 dr
-1 : * a+a2

3 3
w2023 () - ()]

S (Y- ()]

2

Therefore we find

: 3
2.2, .2 81r ol 2.2 Vi A a3
(aZ4plictav =01 (g +w)[ - (%)
fv B o18]2 23 (“-f-—a E ( R
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Substituting now in Eq. (139), and using the fact that

2
w, Tw 2
2 3 G
12 + 127 GZ (143)
“2 3 eff
we obtain
2 a3 a, 3 a, 3
G* . _p. 81, 1 [( 1)(_1_):]
GZ 2 9 "o'SBMV [1n 2p - 1,8] 2 ata, R
eff
St L) (3]
9 72% SBMV[an 1 8]2 a+a2 R
Finally remembering that for a long rod Bz“‘é 11182 -30' 8 (see
- T
Appendix A), we have 3™
Coge = —— 177 (144)
1+K) .
where
K= %6 In2p-0.8 [( al‘)}_ (1)3] (145)
3 'SBMV [1n 2p - 1. 8] 2 a+a2 R
4.3.1. The numerical calculation.
In equation (145) we can put
-4 °T™MV
q)SBMV = 7.63 X10 =

in which case we obtain
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- 3 3
o -4 1 3.51-0.8 [ 30 1 )]
K=17.63x10 - -
I P—— T33) (1. 15

(146)

(1) For k=2.9 we find K = 0,082 and from Eq. (144)

G

eff _
o = 0.96
(2) For k=1 we have K = 0. 238 and
G
eff _
e =0.90
(3) For k=0.31 we have K = 0.768 and
G
eff _
G = 0. 752

Let us also find two intermediate points:

(4) For k=2, i.e. cgppmy = 15 Ke m_?’,l we have K = 0.11Y and
G
eff _
= = 0. 945
(5) For k=0.5, i.e. CeRMV = 6 Kg m-3, we have K = 0.476 and
G
eff _0.824

G
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4.4. Comparison with experiment. Discussion.

Using the above results, the curve

(An) - G g

ol = (147)

An
G

which describes the deterministic effect alone, has been plotted in
Fig. 3 against the concentration of spheres, by using the result of

Intaglietta that

(An)o ~1.82 A sec
G b 'l

We notice fairly good agreement with the experimental results for
k=2.9and k =1. However, for k = 0. 31 our curve continues to
decrease, whereas the experimental results show a reversed trend.

It should be pointed out, in addition, that the results obtained
in the previous paragraph described the maximum effect that can be
expected from the interaction of the spheres and the rod, in view of
the argument that was used in writing down Eq. (132), and that the
calculation is very sensitive to the lower limit of the domain of inte-
gration in the averaging process (Eq. 139) since the largest contri-
bution comes from the spheres which are nearer to the rod. On the
other hand, ’;he obtained results are seen to describe very adequately
the observed effect of the addition of spheres to the suspension up to
sphere concentration equal to that of the rods (k = 1).

As it has already been mentioned, the behavior of the bire-

fringence curve with sphere concentration depends also on the
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stochastic side of the phenomenon, namely the decrease of Deff as

we add spheres, so that

an _ B, Gy p (148)
G G G D
eff
This decrease of Deff with the addition of spheres will tend to

reverse the trend. We shall now examine this side of the phenomenon.
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5. The Effect of the Spheres on the Diffusion Constant of the
Ellipeoids. Other Related Stochastic Phenomena.

1t has already been pointed out that, unlike the effect on the
drift velocity, the variation of the diffusion constant D due to
various stochastic interaction effects has received attention by
several authors. We shall review here the various approaches as
they can be applied to the stochastic side of the phenomenon of our

interest.

5.1. The viscosity approach.

We have already referred to this method of describing the
effect of increased concentrations by using the "effective" viscosity
in the expressions which are valid for very dilute suspensions.

This approach can be readily applied to our case when spheres are

added to the suspension. Then it will be (subscript s for spheres)

(¢) ‘
D__ g9 s (149)

D s Ko o

If we now use the Einstein relation, we would find

. L5

On the other hand, if we use the Burger's relation(37) we would have

(151)

37Loc. cit.

[
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Intaglietta has measured the viscosity of the suspension he was

using for the experiment and had found that

0 )
bR =y 4 3.8%x1073¢ (152)
By s

It l.S obvious from the above three expressions, that at the interval
of our interest in sphere concentration, such a description would
give a small effect, which could not account for the reversal of the
trend in the birefringence curve. For example, at the largest
concentration of spheres that was used in the experiment, namely
d)s =7.37X 10_3 or c_ = 9.7 Kg m_3, we would get a factor

D

Deff

=1.02... 1.04 (153)

namely an increase in An of 2 ... 4% only.

5.2. The Formation of Doublets by the Spheres.

It has been experime ntally‘obs.erv,ed(38)that when spheres
come in contact while suspended in shear flow, they form a doublet
of which the subsequent motion, up to the point of separation, can be
described by Jefferg;'s equatiéns for spheroids with p = 2. There is
also a steady number density n, of doublets in the solution. Calling
n

1 the number density of singlets and n, the total number density of

spherical particles, it is clear that

n

1+2n =n (154)

2 s

38 S. G. Mason et al., loc. cit.
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If the number density of doublets is significant, then there
are two effects that may influence the streaming birefringence of

the suspension:

(a) The drift velocity of the ellipsoids will be affected, since the
energy dissipation due to a doublet in _1-52' is different from the

energy dissipation due to two spheres.

(b) Since the doublets are geometrically anisotropic, their formation
will lead to a second birefringence, and the suspension must then

be studied as a polydisperse éystem.

We shall examine these possibilities for our case of interest.
The volume ratio of doublets is connected to the volume ratio

of spheres in terms of the theoretical relation(39)

i 20 ,2

(39) that ©. was

Experimentally, however, it has been determined 2

approximately twice as large; the discrepancy has been attributed to
the formation of pefmanent (non-separating) doublets. We shall take
into consideration this experimental result in our numerical calcu-
lations and we shall double the theoretical results when estimating

the number of doublets.

39

At

H. L. Goldsmith and S. G. Mason, loc. cit.
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Noting that, of course, ¢1 +<‘1>2 = 4>S,v we have from Eq. (155),

Ly 20,
b - 3 Ts
(156}
Y2 _ 20,
¢‘S T 3 Ts
We also note that
4
ng ¥
157)
an i} d:_%
By ¢s

To calculate, now, the magnitude of this effect in our case

of interest, we consider the largest concentration of sphcrcs that

was used, and obtain

3,2

20 )

- -20,2_ 20 ‘10"
¢, (k=0.31) =5 ¢ = = (7.37 X10

= 3.62 X 1074

In view of the experimental evidence, we can take ¢2 (k=0.31) =
7x10% which is approximately 20% of ¢ gy On the other hand

we find

2 _ 10, _
= —5—¢S—2.460]0

From this last result we see that, for the concentration of
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the experiment, the number of doublets is too small to influence the
drift velocity of the ellipsoids. Even if we adjust, in view of the
experimental evidence, n, to the value nz/ns = 5%, the effect on
Eq. (136) is negligible.

It remains to calculate the amount of birefringence An2 due

to the doublets and compare it to the amount of birefringence due

to the rods, at the same G. Using Eq. (106) we obtain

2 *2 (g - gl P2 DPrmv (158)
*rmv & - €ltmy Pomv De
As can be seen from the above expression, AnZ will be
much smaller than AnTMV since the mobility of the SBMV doublet
is much higher than the mobility of the TMV rod. Let us calculate,
using Appendix A:
2

2
1 P ) 2p~-1 2 ,\1/2
EE T P . i )

5 -24'1%‘{~1+_'7—17'2' 1n(2+(3)1/2)}
4X1077X 2X8.38X10 2(3)

26
10 24 . -1_-2
= X338 X1.66 =6.6X107" Kg 'm “sec
and
D, = kT(B,), = 1.38 X1072% X 293 X 6. 6 X 10°% sec™

2.67 X 10% sec?



On the other hand it is

3 In 2p - 0.8

Bolomy =I5 v z
o P
_ 3 2. 71 -1 -2
= 3 ~53 > Kg 'm "sec
4 X10 7 X 7,63 10 16. 7
= 9.55 X 1022 Kg_lrn_zsec
and
D = KT(B,) =3.88 X102 sec™!
TMV 2'TMV '

We therefore see that

Drmv

D,

~1.45 %1072

and since the other three fractions which appear on the right hand
side of Eq. (158) all have absolute values smaller than unity, we
conclude that the birefringence due to the doublets is very much
smallér than the one due to the rods. In fact, if we neglect the
difference between the optical factors we get, at the highest concen-

tration of spheres, from Egq. (158)

2 3

An _
—A—r-x_—%—— < 2 %10 1%
TMV |

1.45 X10 “=1.74 X10"
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5.3. The Possibility of Association Between Spheres and Rods

In the flowing suspension, the spheres will collide with the rods
as well as with themselves. It is clear that if the phenomenon occurs
strongly enough so that spheres associate with the rods in the way
‘that they have been observed to do between themselves, then the mobility
of the rods will be significantly affected. The mobility, and the
diffusion constant, of the composite particle will be lower and hence
the amount of birefringence due to it will be higher than that due to
the single rod, all other things being equal.

This effect can be large enough, at sufficient sphere concentra-
tions, to reverse the effect of the smaller effective velocity gradient
and to lead, in fact, to positive variation of An with sphere concen-
tration., We shall examine this possibility by treating the suspension
as a polydisperse medium, in which the suspended particles are single
rods (of volume V1 =. V and axial ratio py = p)s rods associated with
one sphere in line (the composite particle having volume VZ. and
axial ratio pz) and also rods associated with two and thrcc spheres
in line (the composite particles having volume V3 resp. V4 and axial
ratio p, resp. p4).
The parameters of SBR in a polydisperse medium are given (40)

by the following expressions:

_ (159)
'12 Ani cos Z(pi

=0 Ch. Sadron, J. Phys. Rad., (7), 2, 381 (1938).
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~ 2 2|1/2
An = 2 An. sin 2¢, + ; An, cos 20, (160)
i i fod i i

i i

where ?5 and Ani are the parameters that would have been observed
if the ith species existed alone in the suspension at the same concen-
tration,
We are interested in the amount of birefringence in a poly-
disperse medium of elongated particles for low o, (= —g— ). Indeed,
i
in the experiments of Intaglietta o, never exceeded the value 10—1 .
In this case @ is nearly zero for all the species, More precisely,
it is
%y 2
i .= + .
sin 2<p1 - O(o-l)
(161)
2
= +
cos Zqoi 1 O(o-i)

which shows that the second term on the right-hand side of Eq. (160)

is dominant, so that this equation takes the simple form

An = Z Ani | (162)
i
Thé above equ‘ation can be given another useful form. If we
consider An as due to a certain monodisperse system of suspended
particles with diffusion consf:ant D_¢ and concentration ¢ = Z ¢
we obtain from Eq. (162), using the expression (106) for the amount
of birefringence of elongated particles of the same optical factor, the

following expression for Deff
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™

1 S i ' (162"
= —_ 1621
T)eff ‘—1" D'i

where we have delined as x; the volume proportion

¢,

1

Sl (163)

1

pde

[Note: If we wish to characterize also the angle ¢, which is observed

in a polydisperse medium, as due to a certain monodisperse system

of suspended particles, we must use as diffusion constant D:'d = (Deff)qf
(Deff)An' This is immediately seen from Egs. (159), (106) and (161)
and the fact that

5%

tg 20" = T + O ) (164)

which lead to the expression

X.
Z =t
1 i DZZ
Los —- 165)
D Z i
- D,
i i
This relation has been reported by Donne’c(lqc1 ).]
Using Eq. (162') in our case we have
b4 X x x .
]é :—EL'I--ﬁ-Z'r-f)é'l-Tjé : (166)
eff 1 2 3 4 '

where, of course

4 J. B. Donnet, Comjtes rendus, 229, 189 {1949).
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x1+x2+x3+x4=1 (167)

The factor

II)) which appears in Eq. (148), and which describes
eff
the magnitude of the effect, is then (D = Dl)

D
3D

D D
=x tx, 5 *=x

D
2 (168)
D g 2 4 D

W
RN

We shall calculate this factor for various distributions of the
four kinds of particles, namely (1) single rods, (2) rods plus one

sphere, (3) rods plus two spheres, and (4) rods plus three spheres.
(42)

We know that the concentration of particles of type (2) is propor-

tional to the conceﬁtration of the spheres, whereas the concentration
of particles of type {3) and (4) is proportional to the square and cube
respectively of the concentration of the spheres. Thus, if the distri-
bution of the three kinds of particles is known at a certain concentra-
tion of spheres, then it is known for any other: X, varies linearly,

X, quadratically and Xy with the cube of sphere concentrations. In

addition, at any given concentration of spheres, it will be X3 = X%

_ .3
and Xy =X, -

The ratios —]—DD— which appear in Eq. (168) can readily be
i

expressed by using Eq. (A-12):

2
D _ Vi m2p-038 (Pi,
Di Y

In2p, - 0.8 Y

(169)

4 .
-2 Goldsmith and Mason, loc. cit.
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We have

p =16.7 V =7.63%x10" %3 m3
p, = 18.1 V., =8.47 x10°%3 m3
2 2
P, =19.5 V, =9.31 X10™ %% m3
3 3

- _ -23 _3
p4—20.9 V4—10.15X10 m

= = 1,27
D,

2 =158
3

%:1.93
4

In order to calculate the magnitude of this effect, we shall
examine two cases of different distribution of the four species. It
has been already mentioned that it is sufficient to know any one of the
four X at a certain—_—s_phe re concentration C.» in order to know all
four functions x, = xi(cs). The two cases that we shall examine are

defined by the value of X5 at the maximum concentration of spheres

reported in the experimental results, namely cg = 9.7Kg m”3:

Case I x 3

> 30% at cs=9.7 Kg m~

Case II x

1

,=40% at c_=9.7 Kgm™3

. D .
For each case we shall calculate the variation of 5 as a function
eff
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of cg For purposes of comparison, we shall find the points on these
curves that correspond to the reported experimental points. The

nume rical calculation follows,

5.3.1., Case I

At c, = 9.7 Kg m—3, if %, = 30%, the distribution of the four

2

species will be

X = 58. 3% X, = 30% X5 = 9% X, = 2.7%

Therefore

0.583 +1.27 X0.30 +1.58 X 0.09 +1.93 X 0.027

H

eff

1 +0.27 X0.30 +0.58X0.09 +0.93 X0.,027

=1.158

T

At c_ = 6 Kg m—3, itis x, =0.03 -9-(-)—7— = 18. 56% and the distri-
bution is
X1 =77.35% Xy = 18. 56% X, = 3.45% Xy = 0. 64%
Therefore
22— =1 +0.27 X 0,1856 + 0,58 X 0.0345 +0.93 X 0,0064
eff
=1,076
At ¢ =3 Kgm™3, itis x, =0.30 ?)5—7- = 9.28% and the distri-

bution is
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x, = 89.78% x, = 9. 28% x, = 0.86% x, = 0.08%

Therefore

D

Dot

=1+0.27 X0.0928 +0.58 X0,0086 +0.93 X0.0008

=1,030

3 1. 03

At ¢ =1.03Kgm ~, x,=0.30X—5—= = 3.18% and the distri-

bution is

:{i—# 96.72% x, = 3. 18% x, = 0.10% x, negligible

- Therefore

D

Dess

=1+0.27 X0.0318 + 0,58 X0.0010
= 1. 009

5.3.2., Case II

At c_=9.7TKgm >, if x, = 40%, the distribution of the four

"species will be

X = 38.4% x, = 40% X, = 16% X, = 5. 6%
Therefore

D —_— g
D_e_f_f—1+0.27 X 0.40 +0.58 X0.16 +0.93 X 0.056

= 1. 253



At c_ = 6 Kg m ~, x, = 0.40 X 5 =24, 75% and the distri-
bution is
x = 67. 65% x, = 24.75% xg = 6.10% x, =1. 50%
Therefore
DD =1+0.27 X0.2475 + 0. 58 X 0.061 + 0,93 X 0. 015
eff
=1,116
At c_=3Kgm >, x,=0.40X g= =12.37% and the distri-
bution is
% = 85, 91% x, = 12.37% Xy = 1. 53% X, = 0.19%
Therefore
];3 =1+0.27 X0.1237 + 0. 58 X 0.0153 + 0.93 X 0. 0019
eff
=1.044
At c_ =103 Kgm™>, x,=0.40 X 22 =4.25% and the dis-
tribution is
x, = 95. 56% x,=4.25% x;=0.18% x,= 0.01%
Therefore
DD =1+0.27 X0.0425 +0.58 X 0,0018 + 0,93 X 0.0001
eff

= 1. 012
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The results of these calculations carn now be summarized in the
following table, using Egs. (147) and (148) and the experimental

~ result that

(&n)
= =1, 82
TABLE 2
VALUES OF THE SPECIFIC RETARDATION %1 IN f*—ES-%C- FOR

INCREASING CONCENTRATION OF SPHERES AT CONSTANT
ROD CONCENTRATION

Cryy = 3 3 3 3 3
Method CopMV T 0 1,03 3 6 9.7
- oo |2.9 1 0.5 | 0.31
Experimenfal 1.82}1.72 |1.61 - 1.67
Velocity Gradient 1.82|1.75 |1.64 [1.50| 1.37

Effect Alone

Velocity Gradient
plus Association 1.82(1.76 11.69 |1.61}] 1.59
(Case I) Effect

Velocily Gradient
plus Association 1.82 1 1.7711.71 {1.67] 1.72
{Case II) Effect




2o}
Pue
el
i
‘d-l
(24
o
=4

(. w/5) 071 6.
ANWES , B ” i ; Ea

0s°

]
23

11

B2 o)
oRs Yy’ uy
o




-98-

The three theoretical curves have been shown in Fig. 3 together
with the three experimental points, We can see that, for Xy between
_ -3 . L.
30% and 40% at CopMmy = 9.7 Kg m ~, the effect of the association
between spheres and rods is large enough to reverse the trend and
lead to an increase of An with CSBMV? in accordance with the

expérimental results.
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APPENDIX A

THE ROTATIONAL MOBILITY TENSOR FOR PROLATE SPHEROIDS
' AND ELONGATED RODS

In the system of the principal inertial axes, the rotational

mobility tensor for such particles of revolution has the form

B1 0 0
B = o B, 0 (A-1)
0 0 B2

where the constants B1 and B2 depend on the volume and the elonga-

tion of the particles in terms of the relations given in this Appendix.

Note that the volumes are

A% -4 aza-é
spheroid - 3 228 7 3T

rod ~ 271

1. For spheroidal particles it is, in the notation used by Jeffery,

2
B = 1 _ 360 ZaZ _ 3[30 (A-2)
1° 2 - 2 lémwp - 16mp
ZaZA1 ZaZ o o
2 2
3(asp_ ta;a ) .
B = B 1 _ 2 o ]. O (A-3)

2 3772 2 . T 2. 2
: (a1 +a2)A2 (a1 +a2)161T}.L0

Now, for prolate spheroids (p > 1)



-~100-

_ 2In(p+t - 1} 2 _
" T2 . 23/2 2 5 (A-4)
ay - 2y 1'37 22
B = 1n(p +y/p° - 1) + p? (A-5)
0 (a 252 3/2 A (az_ az)
1 Z 1l 2
Hence
B = 3 p2 31 In(p +\! pz- 1)
1 16'rr}.L az p -1 p‘[pz-l g
2%
2 f 2
= 5 1V g %1 In(p +\2P ‘1)% (A-6)
Mo P -1 p\ﬁ) -1
and

B, =B, = > S 1n (p o 2-1)
2 3 2
16w 0223 P 4 ‘ pajp -1

-1 ,_2p%1 In (p +Ap2- Db (A-7)
- p P
0 p -1 p\)p -1

For large values of the axial ratio {p = 10}, it is, to a very good

approximation,
B, = -1 {A-8)
1 4p VvV
o}
and
_ _ 1 21ln 2p -1
By= By s v 2
o p
- 3(In 2p - 0.5) (A-9)

3

S 0?1
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The mobility constant B for a sphere of radius a can be ob-

tained from Egs. (A-2) or (A-3) by noting that for a sphere

oo
@ =p = S°° dn (a2 3/2 ~2,73 (A-10)
o o J, (a2+)\)5/2 - 3/2 3
Hence
3 2 -3 1 1
B = =a - = = (A-11)
161-rp0 3 81Tpoa3 6|J.OV

2. For an elongated cylindrical rod of length 2a1 and diameter 2a,

43
(we again define p = al/az), Burge_rs( ) gives
B =B = 3(In 2p - 0.8)
2 3 8 3
Th 2]
:43V 11’12}920.8 (A-].Z)
Po

p

43 Loc. cit.
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APPENDIX B

ASSOCIATED LEGENDRE POLYNOMIALS

The associated Legendre polynomials that have been used in
Part® II, namely P M (cos B) for £,m =0,1,2 and 3 £ = m)

are given by the following expressions, where we have put

cos ©

S
i

v = sin O

Po(x) =1

2

P,x) = 3 (3x% - 1) = 3 (2 - 3y9)

Pg(x) = (1 - x2)3 = 3y°

P,(x) = § (35x" - 30x% +3) = & (357" - 40y” + 8)
Pix) = (1- x) 8 (1x% - 1) = B y¥ 198 1 6)
Pi(x) = (1 - x5%105 = 105 y*

6 4 2 1 6

P, (x) =57 (231x°- 315x +105x°- 5) = L (-231y°+ 378y%- 168y%+16)

Pz(x) = (1-x° -1—2—5-( x%- 18x%+ 1) = 105 =2y (33y4~ 48')’ +16)
P‘é(x) = (1-x%)2 9le05 (11x2- 1) = 9.37(_1.9.5_ v (-11y2 +10)

PZ(X) = (1-x2)39 x 11 x 105 = 9 X 11 x 15 y6
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APPENDIX C

EXPERIMENTAL RESULTS

The experimental measurements reported by Intaglietta concern-

\

'ing the amount of birefringence for a suspension of both TMV and

SBMYV are as follows:(44')

Concentratiéns (Kg m—3) An/G (10-8 sec)
TMV SBMV

(1) 3.0 - . | 1.82

(2) 3.0 1,03 1.72

(3) 3.0 3.0 1.61

(4) 3.0 9.7 1.67

. .
4 ‘Marcos Intaglietta, Ph, D, Thesis, C.L T., 1963.
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