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Abstract 

This thesis discusses simulations of earthquake ground motions usmg prescribed ruptures and dy­

namic failure. Introducing sliding degrees of freedom led to an innovative technique for numerical 

modeling of earthquake sources. This technique allows efficient implementa,tion of both prescribed 

ruptures and dynamic failure on an arbitrarily oriented fault surface. Off the fault surface the solu­

tion of the three-dimensional, dynamic elasticity equation uses well known finite-element techniques. 

We employ parallel processing to efficiently compute the ground motions in domains containing mil­

lions of degrees of freedom. 

Using prescribed ruptures we study the sensitivity of long-period near-source ground motions 

to five earthquake source parameters for hypothetical events on a strike-slip fault (Mw 7.0 to 7.1) 

and a thrust fault (Mw 6.6 to 7.0). The directivity of the ruptures creates large displacement and 

velocity pulses in the ground motions in the forward direction. We found a good match between 

the severity of the shaking and the shape of the near-source factor from the 1997 Uniform Building 

Code for strike-slip faults and thrust faults with surface rupture. However, for blind thrust faults 

the peak displacement and velocities occur up-dip from the region with the peak near-source factor. 

We assert that a simple modification to the formulation of the near-source factor improves the match 

between the severity of the ground motion and the shape of the near-source factor. 

For simulations with dynamic failure on a strike-slip fault or a thrust fault, we examine what 

constraints must be imposed on the coefficient of friction to produce realistic ruptures under the 

application of reasonable shear and normal stress distributions with depth. We found that variation 

of the coefficient of friction with the shear modulus and the depth produces realistic rupture behavior 

in both homogeneous and layered half-spaces. Furthermore, we observed a dependence of the rupture 

speed on the direction of propagation and fluctuations in the rupture speed and slip rate as the 

rupture encountered changes in the stress field. Including such behavior in prescribed ruptures 

would yield more realistic ground motions. 
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Chapter 1 Introduction 

In the last five years two earthquakes have reminded us that we still have much to learn about how 

faults rupture and the resulting ground motions. On January 17, 1994, the Northridge earthquake 

hinted at the destruction possible when faults rupture below a densely populated area. Fortunately, 

most of the energy propagated away from the center of population. A year later, on January 17, 

1995, the city of Kobe, Japan, did not fair as well: a fault rupture propagated toward the city. These 

earthquakes provided another demonstration that even moderate earthquakes can cause substantial 

damage. Records from these two events significantly increased our limited knowledge of how the 

ground moves close to rupturing faults. We need more information, however, about the robustness 

of the characteristics of near-source ground motions. Inversions of strong ground motions allow us 

to identify the area where slip occurred, the speed of the fault rupture, and the maximum slip rates. 

Inversions do not provide information about the sensitivity of the ground motions to variations in 

the l:!uun.:e µan.uueterl:!. 

We focus on investigating such sensitivities by computing the ground motion time histories for 

many hypothetical scenarios on a strike-slip fault and a shallow dipping thrust fault using finite­

element models. Using prescribed ruptures, we assess the sensitivity of the ground motions to 

variations in the earthquake parameters. We improve our understanding of the dynamics of the 

rupture process by modeling the ruptures with dynamic failure through frictional sliding on the 

fault surface, instead of prescribing the ruptures. Based on simulations in homogeneous and layered 

half-spaces, we develop a simple, functional form for the coefficient of friction as a function of the 

material properties and the depth. Additionally, we conduct a second sensitivity study to gauge 

the influence of the initial conditions and friction model on the rupture behavior and the resulting 

ground motions. 

1.1 Background 

The sporadic occurrence of moderate to large earthquakes makes the task of understanding near­

source ground motions difficult. Additionally, the sparse coverage of recording stations limits our 

ability to capture ground motions close to fault ruptures. The location of the 1992 Landers earth­

quake in a sparsely populated desert area resulted in only one record of near-source ground motion. 

While this record has been carefully studied (Iwan and Chen 1994), it shows how the ground moved 

at only one location. Modeling of the long-period ground motions from this event suggests that larger 

peak velocities occurred farther south along the fault (Wald and Heaton 1994). The location of the 
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1994 Northridge and 1995 Kobe earthquakes near large centers of population, where the station cov­

erage is generally more dense, added many records of near-source ground motions to the database. 

During the Northridge earthquake, ten stations within five kilometers of the surface projection of 

the rupture recorded ground motions (Hall et al. 1995). The limited number of near-source ground 

motions that have been recorded for thrust earthquakes made it impossible to determine if 

the near-source records from the Northridge earthquake were anomalous (Somerville et al. 1996); 

however, Somerville et al. used a simulation procedure that was validated with many California 

earthquakes to reproduce the departure of the Northridge records from the empirical attenuation 

relations. They concluded that the Northridge near-source ground motions are representative of the 

near-source ground motions from large thrust earthquakes. 

With the limited number of near-source records, seismologists have relied on simulations to 

revrvuuce grvuuu rnvLivut> frvm acLuctl eveuLt> auu t.u vreuicL Lhe grvuuu muLivnt> fur hyvvLheLical 

ones. Researchers have successfully modeled the near-source ground motions at periods of one second 

irnrl lone;Ar from t.Rn C:::i.lifnrnia R::i.rt.hqnakRs (H::i.11 At ::i.1. 1 Q!,}fl). ThRSR inch1rlA, Hmong othArs, thR 1 mm 

Loma Prieta (Wald et al. 1991), 1992 Landers (Wald and Heaton 1994), and the 1994 Northridge 

(Wald et al. 1996) earthquakes. Additionally, Kamae and Irikura (1998) and Wald (1996) reproduced 

the near-source ground motions from the 1995 Kobe earthquake. The source models associated with 

these simulations provide valuable information for dissecting past earthquakes. Olsen and Archuleta 

(1996) approximated the Northridge rupture to examine basin and directivity effects. Pitarka et al. 

(1998) and Hisada et al. (1998) have studied the directivity and basin edge effects for the 1995 Kobe 

earthquake to explain the zones of concentrated damage. 

On the other hand, simulations of past events give little insight into how the ground motions 

compare to those from future events. We would also like to know if earthquakes on similar faults 

will produce comparable ground motions. Thus, the variability of the ground motions to changes in 

the seismic source parameters becomes important when predicting ground motions for hypothetical 

events. Saikia (1993) examined the ground motions at a network of sites in the greater Los Angeles 

area for a Mw 7.0 event on the Elysian Park fault. In order to gauge the uncertainty of the ground 

motions, he examined several random distributions of slip and found wide variations in the peak 

accelerations. Based on the moderate to strong sensitivity of the ground motions to variations 

in the seismic moment, source rise time, and heterogeneity of the slip distribution for simulations 

of hypothetical earthquakes on a section of the San Andreas fault, Graves (1998) suggested that 

appropriate values for the source parameterization are essential for realistic predictions of ground 

motions. Additionally, while studying the accuracy of three-dimensional seismic velocity models, 

Wald and Graves (1998) demonstrated the variability exhibited by ground motions in response to 

changes in the material properties of the simulation domain. 

We will expand on these studies and study the sensitivity of the long-period near-source ground 



3 

motions on a strike-slip fault and a thrust fault to systematic variations of five earthquake source 

parameters, including the rupture speed, maximum slip rate, hypocenter location, fault depth, and 

distribution of slip. We also investigate how the shape of the near-source factor from the 1997 

Uniform Building Code matches the distribution of the shaking. 

Furthermore, we can improve the accuracy of our modeling of near-source ground motions if 

we better understand the dynamics of the rupture process. Including the rupture dynamics in 

simulations of earthquakes generally involves modeling the frictional sliding on the fault surface. 

Two distinct efforts of modeling the frictional sliding on faults have emerged in recent years. One 

focuses on modeling the evolution of stress on the fault leading up to the nucleation of earthquakes 

(Marone 1998; Rice and Ben-Zion 1996; Scholz 1998; Tullis 1996), and the other concentrates on 

modeling the dynamics of the rupture during the earthquake (Fukuyarna and Madariaga 1998; Harris 

and Day 1999; Madariaga and Cochard 1996; Magi:strale and Day 1999; Ogle:sby et al. 1998; Ol:sen 

et al. 1997). 

Those researchers who model the evolution of stress on the fault almost exclusively use state- and 

rate-dependent friction models. Review articles by Marone (1998) and Scholz (1998) summarize the 

development of the friction models and some of the features of their behavior. These models are based 

on laboratory experiments of sliding at slip rates between 10-7 mm/sec and 1 mm/sec, which are 

appropriate for the nucleation of earthquakes (Rice and Ben-Zion 1996). Additionally, analytical 

models of creep behavior yield friction models of the same form (Persson 1997). Consequently, 

researchers apply these models to studies of the nucleation of earthquakes and creep behavior on 

faults. Usmg an elastodynam1c model of a half-space, Rice and Ben-Zion (H:l!Jo) exammed nucleat10n 

of earthquakes on a strike-slip fault. Tullis (1996) conducted a similar study on a segment of the San 

Andreas fault near Parkfiold. Both groups use roaliotic diotributiono of the effective normal stresses 

with depth: the effective normal stresses are the difference between the lithostatic pressures and the 

hydrostatic pressures. 

Rundle et al. (1997) suggested that the laboratory experiments used to create the state- and 

rate-dependent friction models do not adequately represent sliding on faults, and, in particular 

sliding dominated by inertial effects. Rundle et al also noted that several predictions implied 

by these friction models have yet to be observed in nature. These include high shear stresses that 

generate large amounts of heat on the fault surface and significant precursory and inter-seismic creep 

between earthquakes. The first of these predictions is often referred to as the heat paradox. Several 

mechanisms have been suggested to explain why the friction stress drops to low levels during sliding 

and prevents melting. These include fluid pressurization prior to slip (Sleep 1997), wrinkle-like slip 

pulses associated with a contrast in material properties (Ben-Zion and Andrews 1998), acoustic 

fluidization (Melosh 1996), and normal vibrations (Tworzydlo and Hamzeh 1997). 

The uncertainty in the behavior of how faults rupture has led researchers to create simple, ad 
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hoc models that produce reasonable behavior. These models generally include either slip-weakening 

behavior, i.e., the shear strength decreases as slip occurs, or a combination of slip-weakening and 

rate-weakening, i.e., initially, the shear strength drops with slip in response to slip-weakening and 

then returns near its original level as the slip rate decreases. For over twenty years the slip-weakening 

friction model has been used to study the frictional sliding associated with earthquakes. Burridge 

et al. (1979) used a slip-weakening friction model to study stable propagation of mode-II shear cracks. 

More recently, Langer et al. (1996) postulated that inertial dynamics played an integral role in the 

complex distributions of slip in earthquakes, based on observations of chaotic sequences of large 

and small events in two-dimensional elastodynamics models with slip-weakening friction. Using the 

boundary integral method, Madariaga and Cochard (1996) examined a two-dimensional anti-plane 

crack and discovered heterogeneity occurred on smooth faults with slip- and rate-weakening friction. 

Mauarlaga aml Cudmru :sugge:steu that :stress heLerogeneity occurs when the friction Inodel allows 

a dynamic stress drop significantly larger than the average stress drop. 

With l'!n imprnvPrl hmmrli:i.ry intPgral mAt.hocl, F11k11yama ancl Madariaga (1998) successfully 

examined the three-dimensional features of slip on a planar crack in a homogeneous elastic medium. 

They concluded that, in friction models with slip- and rate-weakening, the slip-weakening friction 

is important at the leading edge of the rupture, while the rate-weakening friction influences the 

healing stage. Furthermore, Fukuyama and Madariaga found that healing (recovery of the shear 

stress on the fault) may occur in simulations without rate-weakening in the presence of shear stress 

asperities. The use of boundary integrals limits the applicability of the method to simple geometrical 

domains and variations in the material properties. Madariaga et al. (1!:.1!:1~) formulated appropriate 

boundary conditions for the finite-difference method to study dynamic failure on planar faults in 

three-dimensional domains and demonstrated that the method reproduces the well known behavior 

of simple rupture models. The use of finite-differences marked a dramatic improvement in the 

applicability of the methods used to implement dynamic ruptures because it allowed heterogeneous 

material properties; however, the formulation restricted the alignment of the fault plane to the finite­

difference grid. Consequently, the method did not allow rupture on faults inclined with respect to 

the finite-difference grid. 

A simulation of the 1992 Landers earthquake by Olsen et al. (1997) demonstrated the ability 

of this finite-difference method and a slip-weakening friction model to produce reasonable rupture 

behavior. The simulation generated a confined rupture pulse consistent with the kinematic source 

models and reproduced the main long-period features of the waveforms. Olsen et al. could not deter­

mine whether or not a friction model with slip- and rate-weakening or variation of the characteristic 

slip-weakening distance would improve the fit of the ground motions to the recorded data. Other 

simulations with a slip-weakening friction model also generate realistic ruptures. Oglesby et al. 

(1998) used the finite-element method to study the difference between ruptures on two-dimensional 
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normal faults and thrust faults in a homogeneous medium. They found larger motions on the hang­

ing wall compared to the footwall that are consistent with recorded ground motions. Harris and Day 

(1999) explained the propagation across an echelon of faults for the rupture in the 1992 Landers 

earthquake using a three-dimensional finite-difference method. Using the same technique, Magis­

trale and Day (1999) investigated ruptures propagating across an echelon of thrust faults. In both 

cases the boundary conditions associated with the implementation of the earthquake source forced 

alignment of the faults along the finite-difference grids. 

In contrast to the simulations using state-rate friction models, all of the simulations with slip­

weakening or slip- and rate-weakening friction models assume uniform effective normal stresses. The 

use of the slip-weakening friction model and the slip- and rate-weakening friction model do not con­

strain the variations of the effective normal stresses with depth. Consequently, we will examine 

what constraints on the friction model rnay be required to produce realistic ruptures when we apply 

reasonable shear and normal stress distributions with depth. Additionally, we will show that intro­

rlnrine; slirline; rlPe;mPs of frpprJom in thP finitP-PlPmP.nt morlels allows sirnnlation of <lynamic: fa.ilnm 

on an arbitrarily oriented fault surface. Using this implementation of the earthquake source and fol­

lowing the constraints imposed on the friction model, we will determine the sensitivity of the rupture 

behavior and ground motions to systematic variations of the initial shear stresses, friction model, 

fault depth, and location of the hypocenter. With this information we compare the rupture behavior 

from the dynamic failure simulations with our prescribed ruptures and propose modifications to the 

prescribed ruptures that would lead to more realistic ground motions. 

1.2 Organization 

Chapters 2-4 discuss the framework that we use in the earthquake simulations in the later chapters. 

Chapter 2 outlines the general methodology of the simulations. Chapter 3 focuses on the issues re­

lated to parallel execution of the software. We discuss the energy balance of earthquakes in chapter 4 

and determine which forms of energy we can compute in our simulations. Chapter 6 summarizes 

the validation of the simulation software with both dynamic and static solutions. In chapter 7 we 

present the results from a sensitivity study of long-period near-source ground motions computed 

using prescribed ruptures. We assess the sensitivity of the ground motions to five earthquake source 

parameters and discuss the implications for earthquake engineering. 

Chapter 8 begins our study of dynamic failure simulations by outlining the software implemen­

tation of the dynamic ruptures and discussing some of the general features of the rupture dynamics. 

Using a homogeneous half-space, chapter 9 summarizes several of the numerical aspects of dynamic 

ruptures, including the effects of changing the distribution of the effective normal stresses with 

depth. We demonstrate how variation of the coefficient of friction with depth produces realistic be-
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havior when the effective normal stresses increase with depth. Chapter 10 extends our discussion of 

dynamic failure to a layered half-space. We examine some of the implications of using a layered ver­

sus a homogeneous half-space and conduct a sensitivity study of near-source ground motions using 

dynamic failure with variations in the initial conditions and the friction model. Finally, chapter 11 

summarizes the findings of the sensitivity studies and suggests areas for further study. 
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Chapter 2 General Methodology 

We want to simulate slip on a fault in an efficient manner and to compute the ground motions in 

a given domain. Because we are focusing primarily on near-source ground motions, the domain 

of interest includes the ground surface in the region :surrounding the fault, the fault itself, and 

everything in between. We model the slip on the fault to create the earthquake and model the wave 

propagation to compute the ground motions in the domain. 

2 .1 Governing Equations 

We solve for the displacement time histories in the three-dimensional dynamic elasticity equation as 

given in index notation by equation (2.1) where A. andµ are Lame's constants, u denotes displace­

ment, and p denotes mass density. We subject the domain to the appropriate boundary conditions 

as JiscusseJ iu section 2.2.1. 

(2.1) 

In practice we cannot find closed-form solutions to equation (2.1) for geometrically complex me­

dia with heterogeneous properties. We must turn to numerical methods, such as the finite-element 

method, to find the displacement time histories. Although several computationally efficient meth­

ods have been developed to synthesize ground motions on finite faulLs wilh prescriLeJ :;lip i11 a 

layered half-space (Heaton 1995), we use the finite-element method because we intend to extend 

the software to simulations with dynamic rupture and three-dimensional material properties. Using 

Lagrange equations and the finite-element method, the dynamic elasticity equation becomes the 

matrix equation given by equation (2.2), where [M], [CJ, and [K] denote the mass, damping, and 

stiffness matrices, respectively, and { F} is the force vector. 1 We will discuss each term in detail 

below. 

[M]{ii(t)} + [C]{u(t)} + [K]{u(t)} = {F(t)} (2.2) 

details are given in most finite-element texts, such as Rao (1999). 
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2.2 Integration of Differential Equation 

The central-difference scheme provides an efficient means by which to numerically integrate the 

matrix differential equation. Equation (2.3) gives the expressions for the velocity, { u(t)}, and accel­

eration, { ii(t) }, at time t as a function of the displacements at time t - At, t, and t +At, where At 

denotes the time step. 

{ u(t)} = ~ ( { u(t +At)} - { u(t - At)}) 
2o.t 

{ii(t)} ;t2 ({u(t At)} 2{u(t)}+{u(t+At)}) 

(2.3) 

(2.4) 

Substituting into the equation of motion (equation (2.2)) and solving for the displacements at time 

t +At yields 

(A
1
t2 [M] + 2~t[c]) {u(t +At)}= {F(t)} + (~2 [M] - [KJ) {u(t)} 

- (-
1 

[M] - -
1 

[CJ) { u(t - At)}. At2 2At 

(2.5) 

If we take the mass and damping matrices to be diagonal and constant, the left-ham.I tsitle uf ey_ua­

tion (2.5) involves a constant, diagonal matrix, so that solving for the displacement vector at time 

t + At does not require matrix factorization. Additionally, computing the right-hand side necessi­

tates only one matrix-vector multiplication; all of the other computations are operations on either 

vectors or diagonal matrices. Because the central-difference scheme minimizes the number of matrix­

vector calculations and matrix-vector computations require significantly more operations than vector 

computations, in this case, the central-difference scheme provides an efficient technique for numeri­

cal integration. For stability of the numerical integration, the time step must be less than the time 

necessary for the fastest traveling wave to propagate between nodes- that is, the Courant-Friedrich­

Lewy parameter must be less than 1.0. Consequently, in order to avoid unnecessarily small time 

steps, we want the elements to be as large as possible, which is also desirable from the standpoint 

of minimizing the number of elements in the mesh. 

2.2.1 Boundary Conditions 

Our domain encompasses only a minuscule fraction of the earth. We must therefore apply appro­

priate boundary conditions to compensate for the truneation of the domain_ We mn<lPl fop ground 

surface as a free surface and create non-reflecting boundaries on the lateral sides and bottom of 

the domain. The non-reflecting boundaries approximate the behavior of the waves continuing to 

propagate past the edges of the domain. We absorb the outgoing waves by placing dampers on the 

absorbing boundaries as discussed below in section 2.3.3. While the dampers absorb nearly all of 
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the energy of the propagating waves, they do not provide the stiffness that would exist if we did 

not truncate the domain; the absorbing boundaries act as free surfaces when the velocities on the 

boundary are 7'ero. As a result, the final displacements depend on the si7'e of the domain. But this 

dependency becomes small as the domains become large. Furthermore, the ground motion time 

histories, not the final displacements, are most important, and the lack of stiffness at the absorb­

ing boundaries has minimal impact on the dynamic displacements. Consequently, the absorbing 

boundaries allow truncation of the domain with minimal adverse effects on the solution. 

2.3 Discretization 

Efficient computation with the finite-element method requires choosing the appropriate type of finite­

element. Choosing the appropriate element will, in most cases, reduce the errors in the computation, 

the memory storage requirements, and the computation time. The constraints imposed by solving 

the dynamic elasticity equation include the need to vary the node spacing to match variations in the 

material properties and to minimi7'e the memory storage requirements of the global matrices. For 

linear elements, such as a hexahedron with six nodes and a tetrahedron with four nodes, reducing 

interpolation errors to less than five percent requires using ten nodes per shear wavelength (Bao 

et al. 1998). Ideally, we want the finite-elements to satisfy this criterion of ten nodes per wavelength 

throughout the entire domain. 

We could use elements of the same size throughout the domain with the appropriate node spacing 

for the slowesL shear wave speed. This would be Lhe most striugeuL ovLiou. DuL Ll1i:> leall:> Lu me:>he:> 

that contain many times the optimal number of elements and nodes and requires extremely small 

time steps in the nnmeric:al integration. This phenomenon is the major shortmming of 1rning the 

finite-difference method, which relies on uniform grid spacing. Because wavelength is proportional 

to wave speed, we want the node spacing to vary directly with the shear wave speed. Typically 

the shear wave speed varies from 4500 m/ sec at the top of the mantle (at a depth of 30 km) to less 

than 700 m/ sec at the surface. As a result, to minimize the mesh size and computational effort 

when simulating wave propagation with minimal artificial dispersion requires the node spacing at 

the surface to be less than one-sixth the node spacing at a depth of 30 km. We also wish to impose 

the constraint that the mesh should not lead to inefficient use ot memory or to excessive computation 

time. The stiffness matrix which is the only non-diagonal matrix, dominates the memory storage 

requirements, so we wish to minimize its size by minimizing the total number of degrees of freedom 

and the average number of coupled degrees of freedom. 

When modeling three-dimensional domains with finite-elements, the two main choices include 

hexahedral (six-sided) elements and tetrahedral (four-sided) elements. Hexahedral elements gener­

ally result in meshes with repeating structures, which make mesh generation simple, while tetrahedral 
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elements generally result in meshes with little or no repeating structure and make mesh generation 

extremely complex, especially in three dimensions. The use of mesh generation software, such as 

Structural Dynamic Research Corporation's IDEAS, alleviates this difficulty. Several significant 

advantages lead to the choice of using tetrahedral elements. The most compelling reason to use 

tetrahedra over hexahedra is the improved ability to vary the node spacing within the domain. The 

structured nature of hexahedral meshes inhibits adjusting local element sizes independently of the 

surrounding elements, while the unstructured nature of tetrahedral meshes allows adjusting the local 

node spacing with minimal effects on the surrounding elements. A second advantage involves the 

coupling among the degrees of freedom. A linear hexahedral element in a uniform grid shares nodes 

with 26 other elements. With three translational degrees of freedom per node and all degrees of 

freedom coupled within an element, each degree of freedom is typically coupled to 81 degrees of 

freeuum. Iu a me:;h uf aµpruxiumLely unifunnly 15ized tetrahedral elementB, each degree of freedom 

is typically coupled to only 40 degrees of freedom. This means that the stiffness matrix for a tetra­

h1:>rlr::i.l mARh rc>cp1irAR rn11gh ly h::i.lf the> mc>mory HR th::i.t for ::i hPx::t.hPrlral mPRh with t.hP Rll.mA rmmhPr 

of nodes. For these reasons we use a tetrahedral finite-element. 

If we compare a linear tetrahedral element, which has four nodes, to a parabolic tetrahedral 

element (ten nodes), we find that use of the parabolic element requires more memory. For a parabolic 

element, limiting interpolation errors to less than five percent requires 9.4 nodes per wavelength (Bao 

et al. 1998), so the element edges are approximately twice as long but the node spacing is nearly the 

same. With ten nodes per element, the number of coupled degrees of freedom increases dramatically 

compared to the linear tetrahedral element, so that the stittness matrix for a mesh with parabolic 

tetrahedral elements requires much more memory than the one for a mesh with linear tetrahedral 

element::>. We therefore choose the linear tetrahedral element over the parabolic tetrahedral element. 

With a linear tetrahedral element as shown in figure 2.1, we may exactly represent a linear 

variation in displacement within the element with the shape functions given in equation (2.6), where 

Vis the volume of the element, and Vi is the volume of the tetrahedron formed by the point P and 

all nodes except node i. For example, 1li denotes the volume of the tetrahedron formed by point P 

and nodes 2, 3, and 4. 

(:l.o) 

The prnrnRR of r.onw~rting the thrne-dimensional elastidty equation (eq11ation (2.1)) into the 

matrix differential equation (equation (2.2)) yields the expressions for the element matrices. Rao 

(1999) provides detailed development of the calculations, so in the following sections we will discuss 

only the final implementation of the matrix computations. We assume that the material properties 

do not vary significantly within an element, so that we may assume homogeneous material properties 
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4 

Fa.'ce s _F:ace 1 
· .. · 

3 

2 
Figure 2.1: Node and face numbering of a tetrahedral finite-element. 

within the element and use the material properties at the element centroid. 

2.3.1 Mass Matrix 

For efficient integration of the differential equation using the central-difference scheme we want a 

diagonal mass matrix. We convert the consistent element mass matrix to the lnmped element mass 

matrix (diagonal matrix) given in equation (2.7) by requiring that both matrices yield the same 

inertial forces for rigid body accelerations along each global coordinate direction. 

4 (1 1 1 1 1 1 1 1 1 1 1 1) (2.7) 

Note that this matrix depends only on the volume of the element, ve, and not explicitly on the 

relative locations of the nodes. We store the diagonal matrix using a row vector as indicated by the 

notation in equation (2.7). 

2.3.2 Stiffness Matrix 

The same method that produced the consistent mass matrix also gives us the expression for the 

element stiffness matrix shown in equation (2.8), where ve is the volume of an element, [DJ is 

the elasticity matrix relating the stresses to the strains (equation (2.9)), and [B] is the matrix of 

the derivatives of the shape functions (equation (2.10)). We assume that the strains and rotations 

remain small everywhere so that we may use linear elasticity. 

(2.8) 
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.\ + 2µ .\ .\ 0 0 0 

.\ .\ + 2µ .\ 0 0 0 

.\ .\ .\ + 2µ 0 0 0 
[DJ (2.9) 

0 0 0 /J, 0 0 

0 0 0 0 µ 0 

0 0 0 0 0 µ 

b1 0 0 b2 0 0 b3 0 0 b4 0 0 

0 C1 0 0 C2 0 0 C3 0 0 C4 0 

1 0 0 d1 0 0 d2 0 0 d3 0 0 d4 
[BJ= 6Ve (2.10) 

C1 bi 0 Cz bz 0 C3 b3 0 C4 d4 0 

0 di C1 0 d2 c2 0 d3 C3 0 d4 C4 

di 0 b1 d2 0 b2 d3 0 b3 d4 0 b4 

The constants in the expression for [B] (a;, b,i, Ci, and di) are the cofactors of the terms in the 

Je!,euuirmu(, fur !,he vulume uf au demeu(, g,iveu Ly e4uaUuu (2.11), where (xi, Yi, ;;;i) JeuuLeb Ll1e 

coordinates of node i. Equation (2.12) shows the expressions for four of the cofactors; the other 

cofactors may be found from permutations of these four. 

1 

1 1 ve 
6 1 

l 

1 Y2 z2 

bi= - 1 Y3 Z3 

1 Y4 Z4 

X1 Y1 z1 

X2 Y2 Z2 

X3 Y3 Z3 

X4 Y4 Z4 

X2 1 Z2 

C1 = - X3 1 Z3 

X4 1 Z4 

(2.11) 

X2 Y2 1 

d1 = - X3 Y3 1 (2.12) 

X4 Y4 1 

Rer:a11se the material property matrix is symmetric, we have a symmetric element stiffness matrix, 

and assembly into the global stiffness matrix also produces a symmetric matrix. As mentioned 

previously, in a finite-element mesh with linear tetrahedral elements, typically each degree of freedom 

is coupled to approximately 40 others. For a stiffness matrix with anywhere from hundreds of 

thousands to millions of degrees of freedom, relatively few entries in the matrix are nonzero. The 

unstructured nature of the finite-element mesh makes it nearly impossible to number the degrees 

of freedom in such a way as to create a uniformly banded stiffness matrix. Therefore, we choose 
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to store as a row vector (data vector) only the nonzero terms in the upper half of the symmetric, 

sparse stiffness matrix. In order to find the location of each entry in the full matrix in the data 

vector, we also store the index where each row in the full matrix begins in the data vector and the 

column in the full matrix of each entry in the data vector. Figure 2.2 demonstrates the storage of a 

5x5 symmetric, sparse matrix. 

3 -1 0 7 0 
-1 2 0 0 @] 
0 0 1 4 0 
7 0 4 5 0 
0 -3 0 0 6 

Data 

3 ·1 7 2 4 5 6 64 byte floats 

Columns 

0 3 2 3 3 4 32 byte integers 

Rows 
....---..-~-.-----.-~.....----. 

0 3 5 7 8 32 byte integers 

Figure 2.2: Storage example for a 5x5 symmetric, sparse matrix. We follow the C/C++ convention 
and number the rows and columns starting with 0. We find the entry -3 in row 1, column 4 
(highlighted by the box) by looking up in the Rows array where row 1 starts. We then perform a 
linP.A.r SP.A.rc:h nntil WP. fine! c:olnmn 4. ThP. inclP.x in thP. nolnmns array in which we found column 4 

indicates which index in the data array contains the entry we want. 

2.3.3 Damping Matrix 

The damping matrix contains contributions from two sources: material damping and dampers placed 

on the boundaries to prevent artificial reflections of the propagating waves. We assume that the 

material damping may be created from scaling the mass and stiffness matrices as shown by equa­

tion (2.13). 

(2.13) 

We need not restrict ourselves to using the global matrices in equation (2.13); using the element 

mass and stiffness matrices allows local variations in the damping independent of variations in mass 

and stiffness. 
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Mass-Proportional Damping 

Mass-proportional damping applies more damping to the lowest modes of the domain. Equa­

tion (2.14) illustrates how the percent of critical damping, (m, varies as a function of frequency, 

w, for a given level of mass-proportional damping, Cm. 

(2.14) 

This means that waves with longer wavelengths are subjected to more damping than those with 

shorter wavelengths. The earth attenuates higher frequencies more than lower frequencies, so we use 

little or no mass-proportional damping. Because we use a diagonal mass matrix, mass-proportional 

damping contributes only terms on the diagonal to the damping matrix, whether or not we allow local 

variations in Cm (using equation (2.13) with the clement matrices). This docs not adversely affect 

the computational efficiency of the central-difference scheme because a diagonal damping matrix 

does not introduce any additional matrix-vector multiplications which dominate the computation 

effort at each time step. 

Stiffness-Proportional Damping 

Stiffness-proportional damping more effectively damps higher modes of the domain. Equation (2.15) 

shows how the percent of critical damping, (k, varies as a function of frequency, w, for a given level 

of stiffness-proportional damping, Ck. 

(2.15) 

In other words, stiffness-proportional damping has the opposite trend with respect to frequency 

that mass-proportional damping has; with stiffness-proportional damping, the shorter wavelengths 

receive more damping than the longer wavelengths, so it more closely resembles what occurs in the 

earth. Unfortunately, stiffness-proportional damping greatly reduces the efficiency of the central­

difference integration scheme, because it contributes off-diagonal terms to the damping matrix. If 

we allow local variations in Ck, we must formulate an additional sparse matrix to store the damping 

1rn:ttrix, which nearly <loulJles the memory storage requirements. It also destroys the efficiency of the 

central-difference equation because we must factor the left-hand side of equation (2.5). Therefore, 

we do not allow local variations in Ck If we restrict ourselves to a uniform Ck, we may solve the 

matrix differential equation without storing an additional sparse matrix. We do so by adjusting the 

formulation of the central-difference scheme as shown by equation (2.16), where [Cm] denotes the 



15 

diagonal damping matrix coming from mass-proportional damping. 

(~1t2 [M] + 2~t[Cm]) {u(t + ~t)} = {F(t)} + (;t2 [M] - [KJ) {u(t)} 

( 
1 1 1 ) - -[M] - -[Cm] - -Ck[K] {u(t- ~t)}. 
~t2 2~t ~t 

(2.16) 

We have approximated the velocity for the stiffness-proportional damping term at time t using the 

displacements at time t and t - ~t as shown by equation (2.17), instead of the usual times t + ~t 
and t- ~t, to prevent the stiffness-proportional damping term from appearing on the left-hand side. 

{u(t)} 
1 
~t({u(t)}-{u(t ~t)}) (2.17) 

Notice that each time step now involves two matrix-vector multiplications, effectively doubling the 

computation time. For this reason, the software does not currently implement stiffness-proportional 

damping. 

Absorbing Boundary 

Dampers placed on the lateral sides and bottom of the mesh prevent propagating waves from reflect­

ing off the boundaries and contaminating the solution inside the domain. For plane dilatational and 

shear waves propagating normal to the boundary, the dampers may absorb the waves completely 

if the dampers for the normal degrees of freedom are tuned to the dilatational wave speed and the 

dampers for the tangential degrees of freedom are tuned to the shear wave speed. This method also 

works reasonably well for incident angles other than 90 degrees (Cohen 1980). For an element with 

face 3 (see figure 2.1) on an absorbing boundary aligned with the yz plane, equation (2.18) gives the 

element damping matrix, where p denotes the mass density, A denotes the area of the face on the 
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boundary, and o: and /3 denote the dilatational and shear wave speeds, respectively. 

2a 0 0 a 0 0 0 0 0 a 0 0 

0 2/3 0 0 /3 0 0 0 0 0 /3 0 

0 0 2/3 0 0 /3 0 0 0 0 0 /3 
o: 0 0 2o: 0 0 0 0 0 o: 0 0 

0 /3 0 0 2/3 0 0 0 0 0 /3 0 

pA 0 0 /5 0 0 2/5 0 0 0 0 0 /5 [Ce] (2.18) 
12 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

a 0 0 o: 0 0 0 0 0 2a 0 0 

0 /3 0 0 /3 0 0 0 0 0 2(3 0 

0 0 /3 0 0 /3 0 0 0 0 0 2/3 

Although we require the absorbing boundaries to be aligned with a coordinate axis as discussed 

in section 2.6, we choose to formulate the boundary condition without this artificial constraint. 

Consequently, we formulate the element damping matrix based on the normal direction of the face, 

so that we completely absorb shear and dilatational waves propagating normal to the boundary. 

Because we use tetrahedral elements, three nodes define a face of the tetrahedron, so knowing the 

location of the three nodes for a face uniquely determines the normal direction. We form the element 

damping matrix in the normal and tangential coordinate frame of the face and then transform the 

element damping matrix to the global coordinate frame. 

The above procedure results in a non-diagonal damping matrix, which we wish to avoid so that 

we may use the central-difference scheme without factoring any matrices. We know that the node 

spacing will be chosen to satisfy the ten nodes per wavelength requirement, so we may assume 

that the wavelength of the wave hitting the boundary will be much greater than the node spacing. 

This means that the velocities at the nodes of an element face on the absorbing boundary will be 

approximately the same, and we may use equivalent rigid body velocities to convert the full damping 

matrix to a lumped (diagonal) damping matrix without significantly decreasing the effectiveness 

of the absorbing boundary. This is the same method that we used to lump the mass matrix in 

section 2.3.1, except that here we use rigid body velocities instead of rigid body accelerations. 

2 .4 Model of Fault 

Realistic ground motions require accurate modeling of the slip on the fault. Prescribed ruptures 

necessitate explicit control of the slip at every point on the fault at all times. Similarly, simulations 



17 

with dynamic failure require control of the friction on the fault. Double couples typically are used to 

model the earthquake source by applying forces to create large strains that approximate dislocations 

on the fault surface. A discretized domain requires applying the forces over a discrete length to 

create the couples. This distributes the slip across a discrete length, which is usually the node 

spacing, creating a "fault zone." For a node spacing with ten nodes per wavelength and shear waves 

with periods of one second or more, the slip will be distributed over a much wider region than we 

observe in nature. Additionally, in an unstructured mesh the nodes do not naturally lie where we 

want to place the forces to generate the double couples. Using double couples also does not lend itself 

to implementing dynamic failure on the fault. These shortcomings of double couples inspired the 

development of an alternative method for modeling the earthquake source. The following sections 

outline the use of slip degrees of freedom to model slip on the fault in a way that works well both 

fur ~imulaLioms with prei'icribed rupture:5 and for :sinmlation:s with dynamic failure. 

2.4.1 Slip Degrees of Freedom 

For slip on the fault we want to impose a dislocation in the finite-element model. In the case of a 

prescribed rupture we wish to specify the relative motion of one side of the fault with respect to the 

other side while allowing propagation of waves across the fault. We may accomplish these tasks by 

incorporating the fault plane into the geometry of the finite-element model. This interior surface 

gives structure to the finite-element mesh so that no elements straddle the fault plane. Instead, 

elements on either side share common faces on the fault plane, as illustrated by figure 2.3. We give 

double the usual number of degrees of freedom to all the nodes on the fault plane to allow one side 

to move relative to the other side; each fault node has six translational degrees of freedom that are 

split such that each side of the fault has three degrees of freedom, as shown in figure 2.3. 

If we transform to relative and average degrees of freedom, we gain explicit control of the relative 

motion across the fault. We will denote the three degrees of freedom corresponding to the positive 

side of the fault plane2 by Ux 1 , Uy
1

, and Uz 1 , and those corresponding to the negative side of the 

fault plane by Ux 2 , uy2 , and Uz2 . Equation (2.19) shows how to transform from the global degrees of 

freedom to relative and average degrees of freedom using an orthogonal matrix. Using an orthogonal 

follow the convention that the normal vector for the fault points towards the hanging wall, and the hanging 
wall lies on the positive side ot the tault plane. 
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Face on fault surface 

6 degrees of 
freedom 

Figure 2.3: Model of the fault plane in the finite-element mesh. The left portion shows the alignment 
of the elements on the fault plane. The right portion provides a closeup of a node to demonstrate 
how each node contains six translational degrees of freedom to allow the sides of the fault to move 
relative to each other. 

matrix allows us to use the transpose to invert the transformation. 

Ux1-x2 
1 0 0 1 0 0 Ux1 v'2 -72 

Uy1-y2 0 0 0 0 Uy1 

Uz1 -z2 0 0 0 0 Uz1 

1 1 
(2.19) 

Ux1+x2 v'2 0 0 v'2 0 0 Uxz 

Uy1+Y2 0 1 0 0 1 0 Uy2 v'2 v'2 
Uz1+z2 0 0 1 0 0 1 

Uz2 v'2 v'2 

We do not want to restrict the alignment of the fault plane to any one of the global coordi-

nate planes. If we rotate from the global coordinate frame to the fault coordinate frame before 

transforming to slip and relative degrees of freedom, we will allow arbitrary orientation of the fault 

plane. Given the predominant slip direction in the fault plane and the fault normal, we define the 

fault coordinate frame by a fixed direction in the fault plane, selected to coincide with the direction 

of dominant slip (first coordinate), the direction in the fault plane perpendicular to the dominant 

slip direction (second coordinate), and the positive fault normal (third coordinate). In prescribed 

ruptures we set the slip in the dominant slip direction. In simulations with dynamic failure we 

apply the shear tractions on the fault surface in the direction of the dominant slip, although slip 
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may occur in any direction on the fault plane. Equation (2.20) demonstrates how to transform from 

the global coordinates to the relative and average coordinates in the fault plane, where [Tslip] is 

the 6x6 orthogonal matrix given in equation (2.19) and TJault is the 6x6 rotation matrix given in 

equation (2.21), which transforms the degrees of freedom from the global coordinates, (x, y, z), into 

the fault plane coordinates, (p, q, r). Figure 2.4 shows the orientation of the fault plane coordinates 

relative to the global coordinates. 

Ux1 

Uy1 

[T,,., I [ [T1"""] [OJ l Uz1 
(2.20) 

[OJ [Tjault] Ux2 

Uv2 

Uz2 

[T;autt] 
[ 

cos >. sin ¢ sin >.. cos 8 cos ¢ 

- :;iu >. :;iu </J cu:; >. cu:; 6 cu:; </J 

sin8 cos¢ 

cos >.. cos ¢ + sin >. cos 8 sin ¢ 

- sin8 sin¢ 

sin>.. sin 8] 
cu:;>. :;iu 6 

cos8 

(2.21) 

Z, Up 

strike direction 

dip angle 

x, east 

r, fault normal 

Figure 2.4: Fault geometry relative to the global coordinate axes. 

The use of the slip degrees of freedom allows explicit control of the relative motion. In prescribed 

ruptures we simply set the slip degrees of freedom at each time step as described in chapter 5, while 

in simulations involving dynamic failure we set the forces acting on the slip degrees of freedom based 
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on frictional sliding as described in section 8.1. In both cases we prevent the fault from opening by 

setting the relative degree of freedom in the direction normal to the fault to zero at all time steps. 

2.4.2 Modification to Element Matrices 

For clements that contain one or more nodes on the foult, the slip degrees of freedom do not match 

those used for the element matrices, so we must transform the element mass and stiffness matrices 

derived in section 2.3.1 and section 2.3.2 to account for the slip degrees of freedom. We assume 

no damping is associated with elements that have slip degrees of freedom, so that these elements 

do not contribute to the global damping matrix. We transform the usual twelve element degrees of 

freedom aligned with the global coordinate axes to the modified element degrees of freedom using the 

transformation matrix given by equation (2.22), where [TJault] is defined above by equation (2.21). 

If the element lies on the positive side of the fault plane, then C = +l, and if the element lies on 

the negative side of the fault plane, then C -1. 

[T1] [OJ [OJ [OJ 

[Tel] 
[OJ [T2] [OJ [OJ 

where (2.22) 
[OJ [OJ [T3] [OJ 

[OJ [OJ [OJ [T4] 

[~ 
0 

~] 1 if node i is not on the fault 

0 

c 0 0 

[Ti] 0 c 0 (2.23) 

1 0 0 c 
v'2 [TJault] if node i is on the fault 

1 0 0 

0 1 0 

0 0 1 

Modified Ele1ue11t Ma1515 Matrix 

We want the modified element mass matrix to give the same inertial forces for the same accelerations. 

ln other words, if we transform a given acceleration in the usual twelve element degrees of freedom 

into the modified element degrees of freedom, we want the inertial forces in the modified coordinate 

system to be equal to transformation of the inertial forces in the original coordinate system, 

(2.24) 
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where [Tel] is given by equation (2.22). After some simple manipulation we find that 

(2.25) 

In section 2.3.1 we chose to use a lumped element mass matrix for efficient time stepping, so that 

[M] is diagonal. In general, the transformation of the lumped (diagonal) mass matrix given by 

equation (2.25) leads to a mass matrix with off-diagonal terms. The following example shows that 

we may neglect the off-diagonal terms because they will be small. 

Consider a system with two degrees of freedom and a lumped mass matrix, 

{u) { ::} (2.26) 

[M] ~ [~I ~,] (2.27) 

Transforming to slip degrees of freedom gives 

{
. ~(ui -u2)}. , where 

+ u2) 
(2.28) 

{uslip} = [T]{u}, and (2.29) 

[T] [~ - ?2] 
V2 V2 

(2.30) 

Using equation (2.25) to transform the mass matrix to the slip coordinate frame yields 

(2.31) 

If the masses on each side of the slip plane are equal, i.e., if m1 = m2, then we have a diagonal mass 

matrix. In our unstructured mesh this may or may not be true. Nevertheless, the off-diagonal terms 

involve the differences between the masses on opposite sides of the slip plane, while the diagonal 

terms involve the sum of the masses; this means that the off-diagonal terms will be much smaller than 

the diagonal terms, so that we may neglect the off-diagonal terms to create the diagonal (lumped) 

mass matrix as desired. To create the lumped modified element mass matrix, we simply distribute 

the lumped masses from the degrees of freedom for nodes on the fault equally between the relative 

and average degrees of freedom. 
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Modified Element Stiffness Matrix 

We follow the same analysis to find the modified element stiffness matrix that we used to determine 

the modified element mass matrix. We want the forces in the slip coordinate frame to be equal to 

the transformed forces in the original coordinate frame for a given displacement field, 

(2.32) 

After some simple manipulation we find that 

(2.33) 

This transformation neither adds any additional constraints nor adversely modifies the stiffness 

matrix, as we will see by examining the eigenvalue and eigenvectors of the original and modified 

element stiffness matrices. The eigenvalues, Ai, and eigenvectors, {Vi}, of the original element 

stiffness matrix satisfy 

(2.34) 

Denoting the eigenvalues and eigenvectors in the slip coordinate frame by Xi and {vt}, we have 

(2.35) 

Substituting the expression of the modified stiffness matrix given by equation (2.33) and simplifying 

produces 

This is simply the eigenvalue problem for the original stiffness matrix, where 

(2.36) 

(2.37) 

(2.38) 

Hence, the eigenvalues of the stiffness matrix do not change, and the eigenvectors are simply the 

original eigenvectors transformed to the slip coordinate frame. 
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2.4.3 Average Slip and Moment Magnitude 

We often categorize seismic events using the fault area, the average slip, and the moment magnitude. 

We define the fault area to be the sum of the tributary areas on the fault plane of each node at which 

slip occurred. With an unstructured mesh the tributary areas will likely vary significantly from node 

to node, e:sµedally where Lhe umLerial µruµerLiet:i vary uver Lhe fctulL µhiue. E4rn:tLiuu (2.39) imlica,Les 

how we compute the average slip from the slip degrees of freedom by finding the weighted sum of 

the slip at each node and dividing by the fault i:iri:>::i, whPrP N i"l the rn1mhi:>r nf nnile"l at. whirh <llip 

occurred and A; is the fault tributary area for node i. 

D 

The moment magnitude which is defined by 

M 

M 0 =µAD (all in CGS units), 

(2.39) 

(2 40) 

(2.41) 

depends on the shear modulus on the fault plane. For heterogeneous material properties we cannot 

use the above expression for the moment, M 0 , as it stands; we must sum the moments at each node 

at which slip occurs as shown by equation (2.42). 

N Ne 

Mo= LLDwjAi (2.42) 
i=l j=l 

The tributary area for each node comes from all elements that contain the node and that also have a 

face on the fault surface. Each element may have a different shear modulus, so we sum the product 

of the tributary fault area and shear modulus over all Ne elements that contain the fault node. This 

expression for seismic moment accurately captures the variation in the moment over the fault for 

heterogeneity in both slip and shear modulus, and reduces to the usual expression (equation (2.41)) 

in the case of uniform slip and homogeneous material properties. 

2.5 Spatial Interpolation 

The simulation software requires several input parameters that may or may not be described by 

simple functions. In some cases we may only have a numerical picture of the data as defined by a 

set of locations and values. This data may be distributed along a line, e.g., material properties as as 

a function of depth, an area, e.g., slip as a function of dip and strike on the fault plane, or a volume, 

e.g., material properties as a function of location in the domain. In any case, we want to use the 
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values and locations given by the data set to determine values at other locations inside the domain, 

usually nodes or element centroids. This section describes the method used to interpolate values 

from a given spatial distribution of data. The procedure accounts for the topology of the data set 

and works for any location where we want to find the values. 

The data set provides a list of values and locations in the global coordinate frame. Additionally, 

we require the data set to provide a flag indicating the topology of the data. Figure 2.5 shows the 

different topologies; the data points as a group describe variations in zero dimensions (one point), 

one dimension (line), two dimensions (area), or three dimensions (volume). We assume the values 

vary linearly between data points (as explained below), so that we interpolate using the closest 

points and the corresponding values. The number of points that we need depends on the spatial 

variation of the values. For a one-dimensional data set, we need two points (line segment) to describe 

a linear variaLiuu iu Lhe valueto, fur a L wu-Llirneutoiuual uaLa toeL we ueeu Lhree µuiuLto ( Lriaugle), auu 

for a three-dimensional data set we need four points (tetrahedron). For each given location at which 

we wish to know a value, we order the points in the data set based on the distance from the given 

location. We use the closest points that allow interpolation to find the value. If the given location 

lies outside the region covered by the data, we extrapolate using the nearest locations. 

• • • • • • • • • 
• • • • • • • 

• • • • • • • • • • • • 
• • 

(a) (b) (c) (d) 
Figure 2.5: Different topologies of the data set. (a) Zero-dimensional data set (b) One-dimensional 
data set (c) Two-dimensional data set (d) Three-dimensional data set 

We now describe the algorithm used in the interpolation. Point P denotes the location where 

we wish to know the value of some quantity s, and Si denotes the value of s at point i. 

1. If the data set contains only one point, then the value at point P is simply the value at the 

data set point, and we are done. 

2. Order the data set based on the distance from point P. 

3. Select the nearest point in the data set as point 1. 
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4. Select the next nearest point in the data set as point 2 subject to the constraint that point 

P lies between point 1 and point 2. If no such point 2 exists, we choose point 2 as the next 

closest point in the data set after point 1. 

5. If the data set is one-dimensional, then 

(2.43) 

where d is the distance between point 1 and point 2, and di is the distance between point P 

and the point other than point i as shown in figure 2.6. We are done. 

6. Select the next nearest point in the data set as point 3, subject to the constraint that point P 

lies inside the triangle formed by point 1, point 2, and point 3. If no such point 3 exists, we 

choose point 3 as the next closest point in the data set after point 2. 

7. If the data set is two-dimensional, then 

(2.44) 

where A is the area of the triangle formed by point 1, point 2, and point 3, and A; is the 

area of the triangle formed by point P and the other two points besides point i as indicated 

in figure 2.6(b). We are done. 

8. Select the next nearest point in the data set as point 4 subject to the constraint that point P 

lies inside the tetrahedron formed by point 1, point 2, point 3, and point 4. If no such point 

exists, we choose point 4 as the next closest point in the data set after point 3. 

9. If the data set is three-dimensional, then 

1 4 
Sp= lf L:s;Vi, 

i=l 

(2.45) 

where V is the volume of the tetrahedron formed by point 1, point 2, point 3, and point 4, 

and Vi is the volume of the tetrahedron formed by point P and the three other points besides 

point i. V1 is shaded in figure 2.6(c). We are done. 

2.6 Finite-Element Mesh Creation 

We do not attempt to write software to generate the unstructured finite-element meshes with tetra­

hedral finite-elements. It is not easy to discretize a domain into tetrahedra, and the complexity of 
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(a) (b) (c) 
Figure 2.6: Interpolation schemes for the various topologies of the data sets. (a) Linear interpolation. 
(b) Area interpolation. ( c) Volume interpolation. 

the problem increa::ies significantly when we constrain the node opacing to match changes in matcrio,l 

properties, include the fault plane as part of the domain geometry, and force the tetrahedra to be 

as regular as possible. Consequently, we use the IDEAS software from the Structural Dynamics 

Research Corporation to generate the finite-element mesh. 

The first step involves inputing the geometry into the IDEAS solid modeler. In addition to 

the basic domain geometry, we also include the fault plane on which we align the element faces as 

described in section 2.4.1 and other surfaces on which we want to force alignment of the element 

faces. For example, we usually include the surface that slices through the centerline of the fault 

so that we may output information on this surface. For faster mesh generation we subdivide the 

domain into smaller chunks, allowing the mesh generator to work on only one chunk of the domain at 

a time. We define the finite-element model from the geometry by selecting the four-node tetrahedral 

finite clement a.nd specifying the node spacing at appropriate locations in the domain. 

We generate the mesh one sub-domain at a time and use the auto-checking feature of IDEAS to 

insure the quality of the elements in the mesh. Poor-quality elements include those with distorted 

shapes, which lead to larger numerical errors, and elements with non-optimal node spacing, which 

lead to interpolation errors when the spacing is too large and to reduced time steps when the node 

spacing is unnecessarily small. We export the mesh in universal file format, which is a plain text file 

that is easily read by the simulation software. 

We also use IDEAS to extract information regarding which nodes and element faces lie on given 

lines and surfaces. For example, we want to identify all of the nodes on the fault plane, because 

we use them to implement slip of the fault. Similarly, we often want to output di8placemeuL Lime 

histories on the ground surface or along strategically placed lines. For planar surfaces, only one face 

of an element lies on the surface, and a list of the element's three nodes on the surface uniquely 

determines the element face on the surface. However, for multiple faces on a surface, all four nodes 

of an element lie on the surface and anywhere between two and four faces may lie on the surface. 
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We must use an additional criterion to separate the extraneous faces from the ones that we want. 

We require the fault to be a planar surface, so that only one face of an element may lie on the fault 

surface, and we do not need an additional criterion. The surfaces on which we choose to output 

information may or may not be planar. Because outputting information on these extra surfaces 

does not affect the solution and because the penalty for outputting this additional information is 

negligible, we allow the extraneous surfaces to remain. The absorbing boundaries usually have 

planar surfaces that meet with elements on the intersection having multiple faces on the absorbing 

boundary, with the extraneous faces arbitrarily oriented relative to the boundary. These extra faces 

could hamper the effectiveness of the absorbing boundary. We eliminate them by constraining the 

lateral sides of the domain and bottom (absorbing boundaries) to coincide with one of the coordinate 

axes. When we formulate the absorbing boundary we ignore any faces that do not coincide with one 

of the coonliuate CLXe::;. We u::;e IDEAS tu create the group5 of node5 that coincide with the de5ired 

geometric entity and export them as part of the universal file. 
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Chapter 3 Implementation of Parallel Processing 

Simulations that involve hundreds of thousands to millions of degrees of freedom require hundreds 

of megabytes to gigabytes of memory and billions of floating point operations. State of the art 

work.stations still lack the rn.emory storage and processing power to effectively handle such 

problems. Luckily, parallel computing provides a suitable environment for solving such problems 

by distributing both the storage and computation among many processors. We do not seek the 

optimum parallel software implementation, but do strive for efficient parallel computation. 

Several methods and libraries exist to aid in writing parallel computing software. We chose to 

use the Message Passing Interface (MPI) which is not a library in itself, but a standard interface 

which libraries may follow. Some manufacturers develop their own implementation of the MPI 

in order to optimize the code for the architecture of the supercomputer, such as Intel's MPI on 

the Intel Paragon. In other cases, a third party implementation, such as MPICH from Argonne 

National Laboratory, is used. The MPI standard defines numerous functions to pass information 

among processors and facilitate initializing parallel execution. 

3.1 The Center for Advanced Computing Research Super­

computers 

The Center for Advanced Computing Research (CACR) at the California Institute of Technology 

oversees the use of several supercomputers. Initially, we used the CACR's Intel Paragon that has 

a total of 512 compute nodes. Each compute node contains an Intel i860 XP microprocessor and 

32 megabytes of RAM and is capable of executing a maximum of 60 Mflops. The CACR decided 

to retire the Intel Paragon supercomputer in the spring of 1999, so we switched to the CACR's 

Hewlett Packard Exemplar. The Exemplar contains 16 hypernodes with each hypernode containing 

16 Hewlett Packard PA 8000 RISC microprocessors running at 180 MHz with a peak capacity of 

720 Mflops per processor; the processors within a hypernode share four gigabytes of RAM. Currently, 

it is the largest cache-coherent shared memory computer in the world. 

3.2 Domain Partitioning among Processors 

We distribute the computation among the processors by parceling the domain among the processors. 

Ideally we want the computation load evenly distributed among the processors, so that we achieve 
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maximum parallel performance (processors do not sit idle and they spend negligible time commu­

nicating with each other). The software follows the single program-multiple data (SPMD) model of 

parallel execution in which every processor follows the same algorithm but operates on a different 

portion of the domain. In other words, we divide the finite-element mesh into small groups of ele­

ments and give each processor one group of elements. We map each element to one processor, while 

the nodes may be mapped to more. than one processor; nodes that lie on the boundaries between 

groups must be shared by the processors containing elements with those nodes. The lack of a repeat­

ing structure in meshes with tetrahedral elements tends to complicate the problem of partitioning 

the mesh. We have used two different partitioning strategies: a strategy that parcels the elements 

based a simple geometric approach and a more refined strategy more appropriate for unstructured 

meshes that balances the load and minimizes the communication among the processors. 

Inertial bisection provides a simple and very fast method for partitioning the elements among 

the processors (Williams 1991; Williams 1994). We assume that the number of elements in each 

processor correlates with the computation time, so that we partition the domain based solely on 

the locations of the elements. Inertial bisection recursively divides the domain until the number of 

partitions equals the number of processors. We consider each element as a point mass with the mass 

of the element proportional to the computation effort of the degrees of freedom of that element. 

In this way, we give the elements with slip degrees of freedom more mass to compensate for their 

additional computational effort. 1 

Any number of partitions may be created by recursively dividing each partition. By adjusting 

the <listrilJution uf the loa<l at each <livi::;iun, we ultimately create a load (mass) balanced partitioning 

of the domain. For example, to partition a mesh among three processors, we first divide the mesh 

into two groups, one with a load (mass) that is one-half of the second one, and then subdivide the 

larger of the two groups. The three resulting partitions all have the same load (mass). Each division 

requires computing the maximum principle moment of inertia of the current partition and finding 

the origin of the bisecting plane normal to the maximum principle moment of inertia to separate 

the elements into two groups with the desired loads (masses). Figure 3.1 gives an example of how 

inertial bisection partitions an unstructured mesh with nearly uniform element sizes. An example of 

partitioning an unstructured mesh with large variations in element sizes is shown in chapter 7. The 

inertial bisection method comes from a statistical approximation to the spectral bisection method. 

As a result, it may produce partitions that require significantly more interprocessor communication 

than other methods. 

The METIS software library (Karypis et al. 1999) from the University of Minnesota provides 

the tools to efficiently partition unstructured meshes while evenly distributing the computation load 

1The amount of additional mass required to balance the load depends on the architecture of the supercomputer 
and the efficiency of the interprocessor communication libraries. 



\ 

E 
:::=.. 
~ 

0 

5 

Q_ 10 
Q) 

0 

15 

15 

30 

7 

West-East (km) 
Soutt1-Nortt1 (km) -15 -7 

Figure 3.1: Example of partitioning of an unstructured mesh among eight processors using inertial 
bisection. Each patch of color identifies the elements of a single processor. The domain contains 
homogeneous material properties so the element sizes are nearly uniform. 

and minimizing the total communication among processors. As in the case of inertial bisection , we 

assign a computation effort to each element, and adjust the weights of elements with slip degrees 

of freedom niccordingly in order to account for the additional computational effort they require. 

Figure 3.2 gives an example of an unstructured mesh with nearly uniform element sizes partitioned 

using the ME TIS library. 

3.3 Parallel Computation 

Efficiently implementing parallel computation requires minimizing the communication among the 

processors. Bottlenecks occur when processors must pass information to each other , especially when 

they must pass information to all of their neighbors. Each processor formulates matrices and vectors 

for its degrees of freedom in the same fashion as we would normally formulate the global matrices and 

vectors. In order to couple the matrices and vector over the entire domain (across the proce ors) , 

we assemble the matrices and vectors by having each processor pass the entries for those degrees 

of freedom it shares with other processors to the appropriate neighbor. Note that it is much more 

efficient to assemble vectors, which require passing one entry per shared degree of freedom , than to 

assemble matrices , which require passing an entire row per shared degree of freedom . 
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Figure 3.1: Example of partitioning of an unstructured mesh among eight processors using inertial 
bisection. Each patch of color identifies the elements of a single processor. The domain contains 
homogeneous material properties so the element sizes are nearly uniform. 

and minimizing the total communication among processors. As in the case of inertial bisection, we 

assign a computation effort to each clement, and adjust the of elements with slip 

of freedom accordingly in order to account for the additional computational effort they require. 

Figure 3.2 gives an example of an unstructured mesh with nearly uniform element sizes partitioned 

using the METIS library. 

3.3 Parallel Computation 

Efficiently implementing parallel computation requires minimizing the communication among the 

processors. Bottlenecks occur when processors must pass information to each other, especially when 

they must pass information to all of their neighbors. Each proce5sor formulates matrices and vectors 

for its degrees of freedom in the same fashion as we would normally formulate the global ma.trices and 

vectors. In order to couple the matrices and vectors over the entire domain (::i.cross the prnr.Pssnrs), 

we assemble the matrices and vectors by having each processor pass the entries for those degrees 

of freedom it shares with other processors to the appropriate neighbor. Note that it is much more 

efficient to assemble vectors, which require passing one entry per shared degree of freedom, than to 

assemble matrices, which require passing an entire row per shared degree of freedom. 
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Figure 3.2: Example of partitioning of an unstructured mesh among eight processors using the 
METIS library. Each patch of color identifies the elements of a single processor. The domain 
contains homogeneous material properties so the element sizes are nearly uniform. 

One reason we choose to numerically integrate the dynamic elasticity equation using the central­

difference scheme is that it is well suited for parallel processing. Upon examining equation (2.5) we 

see that the factor L::i.
1t7· [J\.:f] + L.lt [CJ on the left-hand side does not change with time, so we need to 

formulate it only once; each processor computes the local port.inn of t.hP t.Prm 1 ~.nn t.hPn WP assP.m hlP 

t.hP. vPr.t.nr (ni~.gonal m~.t.rix st.nrP.n ~.s ~. row vP.d.or) ar.ross t.he pror.essors. The right-hand side 

r.h~.nges signifir.ant.ly from t.ime st.ep to time step, so at each time step each processor formulates the 

local version of the entire right-hand side of equation (2.5) before assembling it across the processors. 

As a result, the numerical integration involves interprocessor communication only when we assemble 

the vector on the right-hand side, which occurs just once per time step. 

3.4 Parallel Input and Output 

File input and output becomes slightly more complicated when executing a program on multiple 

processors. One strategy involves letting each processor read and write to its own file; however , 

this may lead to operating system panics when there are hundreds of processors . Additionally, 

post-processing becomes cumbersome because we must compile data from hundreds of files. An 

alternative strategy involves parallel input and output, or letting each processor read and write from 
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Figure 3.2: Example of partitioning of an unstructured mesh among eight processors using the 
METIS library. Each patch of color identifies the elements of a single processor. The domain 
contains homogeneous material properties so the element sizes are nearly uniform. 

One reason we choose to numerically integrate the dynamic elasticity equation using the central-

difference scheme is that it is well suited for para.llel processing. Upon examining equaLion (2.::J) we 

see that the factor f).\ 2 [M] + 2lt [CJ on the left-hand side does not change with time, so we need to 

formulate it only once; each processor computes the local portion of the term, and tlrnn we assem hie 

the vector (diagonal matrix stored as a row vector) across the processors. The right-hand side 

changes significantly from time step to time step, so at each time step each processor formulates the 

local version of the entire right-hand side of equation (2.5) before assembling it across the processors. 

As a result, the numerical integration involves interprocessor communication only when we assemble 

the vector on the right-hand side, which occurs just once per time step. 

3.4 Parallel Input and Output 

File inp11t an<l 011tp11t hec:omes slightly more c:omplk;:i.t.erl when exec:nting a program on multiple 

processors. One strategy involves letting each processor read and write to its own file; however, 

this may lead to operating system panics when there are hundreds of processors. Additionally, 

post-processing becomes cumbersome because we must compile data from hundreds of files. An 

alternative strategy involves parallel input and output, or letting each processor read and write from 
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the same file. This strategy is particularly effective when the supercomputer contains a parallel file 

system, e.g., the Intel Paragon. The simulation software includes a simple parallel input/output 

library which interfaces with the MPI and, in the case of the Intel Paragon, the parallel file system. 

The parallel input/output library gives control of the file pointer to a master processor. We 

allow the master processor to read and write from the file as it wishes, during which it updates 

the file pointer. When we want to output information contained on multiple processors, the master 

processor coordinates the reading and writing to insure that each processor reads and writes from 

the proper place in the file. When multiple processors write information, we order the data based 

on the rank of each processor, so the data from processor i follows the data from processor i 1 and 

immediately precedes the data from processor i + 1. When we want to write in parallel, we follow 

the algorithm below (reading in parallel is similar). 

1. Each processor sends the master processor the number of bytes it wants to write. 

2. The master processor computes the file position where each processor should begin writing 

based on the current file position (which it stores). 

3. The master sends to each processor the file position where it should begin writing it8 data. 

4. All processors write their data at the designated locations. 

3.5 Global Mesh Refinement 

As discussed in section 2.6, we use IDEAS to generate the finite-element meshes, and even with 

small meshes we must subdivide the domain to expedite the mesh generation process. To further 

reduce the load on the mesh generator, we create the mesh at a coarse resolution in IDEAS, and 

then globally refine the mesh to the desired resolution at the beginning of the simulation. Each 

processor refines its own portion of the domain, and by following the same refinement strategy, the 

element faces match along all interprocessor boundaries. The global refinement does not require 

extensive computation effort, so it is simply a matter of convenience to refine the meshes in parallel; 

the input file for the simulation may remain at coarse resolution which reduces disk storage. This 

allows TDRAS to r.reate a mesh th::i.t r.ont.ii.ins only ii fraction of the number of nodes and elements 

we use in the simulation. We currently implement two different resolutions of refinement: one that 

reduces the node spacing by a factor of two (2x refinement) and one that reduces the node spacing 

by a factor of four ( 4x refinement). We apply the refinement strategy to all elements in the same 

manner, so the resolution of the coarse mesh must be fine enough to capture the proper variations 

in node spacing; we satisfy this requirement by carefully selecting the locations of the element size 

control points and the designated element sizes when we create the coarse mesh. 
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If we choose to output information at the coarse resolution, we substantially reduce the file sizes 

with minimal losses of information. For example, we expect the final displacements and stresses to 

be much smoother than the shortest propagating wave, so the coarse mesh, even with four times the 

node spacing of the fine mesh, presents an accurate picture of the final displacements and stresses, 

but requires less than 23 of the disk space needed to store the displacements and stresses at the 

complete resolution. 

3.5.1 Element Splitting 

In 2x refinement we split each element in the mesh into eight elements as shown in figure 3.3. We 

add new nodes at the midpoints of the edges of the original tetrahedron. For a regular tetrahedron 

with edges of length l in the coarse mesh, we create four regular tetrahedra with edges of length ~ 

and four irregular tetrahedra with edges of length ~ and ~. Consequently, the global refinement 

algorithm does slightly degrade the quality of the elements, but not enough to adversely affect the 

solution. Iu thi::s ca::se, Lhe me::sh geuerateu iu IDEAS cuuLaiu::s only oue-eighth uf the number uf 

elements of the mesh used in the simulation. 

/\\ 
/ \ 

( \ 

I 

Figure 3.3: Diagram of element splitting in 2x refinement procedure during which we divide each 
element into eight elements and reduce the node spacing by a factor of two. 

In 4x refinement we split each element in the mesh into 64 elements as shown in figure 3.4. During 

the 4x refinement we do not recursively refine the element using the 2x refinement procedure, because 

the quality of the elements would continue to degrade at the second level of refinement. Instead, we 

follow a different procedure that adds new nodes on both the edges and in the interior of the original 

element. We add new nodes such that each node lies exactly between two other nodes. From a 
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regular tetrahedron with edges of length l, we create 24 regular tetrahedra with edges of length -£­

and 40 tetrahedra with edges of length -i: and 2~. The disparity between the lengths of the edges 

of the tetrahedra remains the same a.s the 2x refinement. In this ca.se, the number of elements in the 

coarse mesh generated in IDEAS is approximately 1.6% of the number of elements in the fine mesh 

used in the simulation. This gives a tremendous reduction in the time and effort needed to generate 

a mesh. 

Figure 3.4: Diagram of element splitting in 4x refinement procedure during which we divide each 
element into 64 elements and reduce the node spacing by a factor of four. 

When we globally refine the mesh and create new nodes and elements, we must adjust the 

boundary conditions accordingly. As discussed in section 2.6, we use lists of nodes or nodal groups 

to uniquely determine the element faces composing the boundary conditions, e.g., the absorbing 

boundaries and the fault plane. During the mesh refinement, whenever we create new nodes on 

an element face associated with a boundary condition, we add the nodes to the list of nodes for 

that boundary condition. We also follow this procedure to modify lists of nodes associated with the 

surfaces on which we output time histories, when we select to output the information at the fine 

resolution. 



35 

Chapter 4 Dynamic Energy Balance for 

Earthquakes 

We compute the energy balance for our simulated earthquakes with the objective of learning more 

about the physics of the rupture process. As we will discuss below, the only forms of energy available 

from the simulations are the radiated energy, the change in potential energy of the earth, and the 

change in thermal energy of the earth. The energy balance also provides an additional tool to 

measure the size of the earthquake, and the change in thermal energy allows estimation of the 

degree of melting on the fault. 

4.1 Derivation of Dynamic Energy Balance 

We start with the conservation of energy for the entire earth. We neglect all external forces, such 

as the gravitational forces from the sun and the other planets; therefore, we have no change in the 

internal energy of the earth. As given by equation ( 4.1), the internal energy of the earth involves the 

radiated energy (ER), the change in thermal energy (b.Q), and the change in the potential energy 

(b.W). 

( 4.1) 

The change in potential energy involves changes in the strain energy, changes in the gravitational 

potential energy, and changes in the rotational energy of the entire earth. For prescribed ruptures 

we do not model the sliding friction on the fault, so we can determine neither the change in thermal 

energy nor the change in potential energy. The only quantity in the energy balance that we can 

compute is the radiated energy. When we use dynamic failure to model the slip on the fault, 

we do model the frictional sliding, so we can compute each term of the energy balance given by 

equation (4.1). 

4.2 Radiated Energy 

When we think about energy and earthquakes, we often only consider the radiated energy, because 

we associate it with the ground motions and can estimate it from ground motion records. Similarly, 

in numerical models the radiated energy is readily available from the earthquake simulation by 
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finding the energy of the waves propagating away from the seismic source. The earth eventually 

dissipates all of the radiated energy through material damping. When we truncate the edges of the 

domain in order to model only a small portion of the earth, the absorbing boundaries, as discussed in 

section 2.3.3, mimic the waves propagating through the boundaries by absorbing the waves through 

the use of dampers. As a result, in our discretized models the damping matrix contains a complete 

description of how the domain dissipates the radiated energy, so we use it to compute the radiated 

energy. Generally, we do not specify enough time steps in the time integration for the absorbing 

boundaries to completely absorb all of the radiated energy, and a small amount of the radiated 

energy remains in the domain as kinetic energy. We add this kinetic energy to the energy absorbed 

through the damping matrix to find the total radiated energy. For the domain discretized in both 

space and time, equation (4.2) gives the total energy radiated from the seismic source, where {u(t)} 

i:s the velocity vector at time t, [OJ is the damping matrix, [A1] io the maoo matrix, l:!.t is tho time 

step, and N is the number of time steps. 

N 

ER f:::.t L (u(m!:::.t))[C]{u(mf:::.t)} + ~(u(mf:::.t))[M]{u(mf:::.t)} 
m=l 

( 4.2) 

4.3 Change in Thermal Energy 

Earthquakes change the thermal energy of the earth in four ways. The primary contribution comes 

from the generation of heat by the frictional sliding on the fault. Additionally, the fracturing of 

materials iu the fault :.-;uue cre<:1,Le:; 1<:1,LeuL hectl. The rctdiaLed energy eventually dissipates into heat, 

but we choose to consider it separately as discussed above. If we assume that the strain increments 

t.hro11ghrn1t. t.hP Part.h nrrnr acliahatirally, thAn they c:anse changes in temperature in the same fashion 

that the adiabatic expansion of a gas causes a drop in temperature (Fung 1965). We will assume 

that the strain increments cause a negligible change in temperature, so that we may neglect the 

change in thermal energy imposed by the adiabatic change in strain. Therefore, we are left with the 

change in thermal energy caused by frictional sliding and the fracturing of materials. 

We choose to include both the fracture behavior and the sliding behavior in the friction model. 

Consequently, the energy dissipated through frictional sliding includes both the latent heat associated 

with the fracture energy and the heat generated by sliding. 'fo tind the energy dissipated as heat 

during frictional sliding on the fault, we begin with the increment of heat, dQ(t), created during an 

increment of slip, dD(t), 

dQ(t) a1(t) dD(t) dS, (4.3) 

where a1(t) is the frictional stress at a point on the fault surface and dS is the differential fault area. 
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Integrating over the fault surface and slip yields 

t:.Q(t) = { { u1(t)dDdS. 
lv(t)Js 

Converting the integral over slip to an integral over time produces 

t:.Q(t) = 1 { u 1(t)D(t) dS dt, 
tls 

( 4.4) 

(4.5) 

where D is the slip rate. Finally, for a domain discretized in time and space, equation ( 4.6) gives the 

total change in thermal energy for an earthquake, where t:.t is the time step, (F1(t)) is the friction 

force vector at time t, and N is the number of time steps. 

N 

t:.Q(t) = t:.t L \F1(mt:.t)){D(mt:.t)} (4.6) 
m=l 

4.::S.l Change in Temperature on the Fault 

The heat generated during sliding on the fault will increase the temperature in a region surrounding 

the fault. The total change in thermal energy on the fault, which we compute from the friction and 

sliding on the fault as discussed above, includes both the fracture energy and the heat generated by 

sliding. We will assume that the fracture energy is much smaller than the heat generated by sliding, 

so that we may use the change in total thermal energy at each point on the fault to compute the 

change in temperature. We find the increment in temperature, dT, at a point on the foult from the 

increment in heat, dQ, using 

dT = dlJ(t) 
CvpddS' 

(4.7) 

where Cv is the heat capacity per unit mass, p is the density, d is the distance perpendicular to the 

fault where the heat is trapped, and dS is the differential fault area. Substituting in the expression 

for the increment in heat at a point on the fault (equation ( 4.3)) and converting the increment in 

slip to a slip rate over an increment in time yields 

Integrating over time to find the change in temperature produces 

t:.T = 1crJ(t)D(t) dt. 
t Cvpd 

(4.8) 

(4.9) 



38 

After discretizing the domain in space and time, we find that equation ( 4.10) gives the change in 

temperature at a point on the fault, where F1(t) is the friction force at time t, b.t is the time step, 

and N is the number of time steps. 

6.T 
6.t N 
~ \F1(mb.t)){D(m6.t)} (4.10) 
m=l 

4.4 Change in Potential Energy 

We define the change in potential energy as the energy released by the slip on the fault assuming that 

the slip occurs quasi-statically and that the domain behaves according to linear elasticity. Because 

both the radiated energy and the change in heat energy must be positive, conservation of energy 

dictates that the change in potential energy must be negative. This drop in the potential energy 

allows earthquakes to release energy as propagating waves and generate heat through frictional 

sliding. 

We follow a procedure similar to that of Savage and Walsh (1978) and Dahlen (1977) to find 

the change in potential energy due to an earthquake. We start with the change in energy for an 

increment of slip, 

dW -O'(D) dD dS, (4.11) 

where dW is the incremental change in potential energy, er is the shear stress at a point on the fault, 

D is the slip at a point on the fault, dD is the increment of slip, and dS is the differential fault area. 

The negative sign indicates the shear stress opposes slip. Assuming a linearly elastic medium, the 

stress follows 

(4.12) 

where <T0 is the shear stress just prior to the earthquake, u(D(t)) is the shear stress after the fault 

has slipped an amount D(t), D(t) is the slip at time t, Dis the final slip, and 6.<T is the final stress 

drop. We follow the convention that a decrease in stress gives a positive stress drop. Substituting the 

stress at slip D(t) into the expression for the incremental change in potential energy and integrating 

over both the slip and the fault area produces 

(4.13) 
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Integrating over the slip and simplifying produces 

AW=-~ { (O"o + 0"1)DdS, 
2 ls (4.14) 

where D and cr1 are the slip and stress at a point on the fault after the earthquake. After discretizing 

in time and space, equation ( 4.15) gives the change in potential energy caused by an earthquake, 

where (F(O)) is the friction force vector on the fault at zero slip and \Ft(D)) is the friction force 

vector on the fault at the completion of slip. 

(4.15) 

From the point of view of understanding the physics of the rupture, we would like to decompose 

the change in potential energy into the change in strain energy and change in gravitational potential 

energy. As shown by Savage and Walsh (1978) and Dahlen (1977), we cannot determine these 

changes in energy when we truncate the domain, because all points in the earth contribute equally 

to the computations; the domain must encompass the entire earth in order to compute the change in 

strain energy and the change in gravitational potential energy. Additionally, we neglect the change 

in Earth's rotational energy caused by earthquakes for the same reason. 1 

4.4.1 Topography and Changes in Gravitational Potential Energy 

Tf WP rcmlcl rlPt.PrminP thP rhangP in gravitatiomi.l potPnthi.l PTIPrgy, it might ]pacJ 11~ t.o a hf1t.t.Pr im-

derstanding of the creation of mountains due to thrust earthquakes. The following simple thought 

experiment illustrates the general mechanism by which earthquakes change the gravitational poten­

tial energy of the earth. Consider two containers of an incompressible fluid with widths b1 and b2 

as shown in Figure 4.1. Figure 4.l(a) shows the containers filled with fluid to heights of h1 and h2 . 

We may think of the two containers of fluid as the two sides of a thrust fault with the heights of 

the fluid corresponding to the level of the surface topography. The gravitational potential energy of 

this configuration is 

(4.16) 

We move the divider a distance d to the right. This represents a slip of d that generates the 

upward movement of the hanging wall and the subsidence of the footwall in a thrust earthquake. 

1 Chao and Gross (1995) computed the change in the rotational energy of the earth for a catalog of earthquakes 
using modal techniques and point sources. 
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d ----

(a) (b) 

Figure 4.1: Configurations of the two fluid containers. (a) Original configuration (b) Configuration 
after the divider moves a distance d to the right. 

The gravitational potential energy of the fluid.in the containers becomes 

( 4.17) 

The change in gravitational potential energy is 

(4.18) 

The movement of the divider increases the gravitational potential energy if 

(4.19) 

which is nonlinear in the movement of the divider, d. Even for this simple analogy, the gravitational 

potential energy changes in a nonlinear fashion. If we start with equal heights and widths of the fluid 

containers (h1 = h2 and b1 = b2), the expression for the change in gravitational potential energy 

reduces to 

( 4.20) 

and the change in gravitational energy is second order. This corresponds to no surface topography 

being present before the earthquake. On the other hand, when surface topography does the 

change in gravitational potential energy is first order. 

For the same slip distribution on a given fault, the greater the differences in topographic fea­

tures, the larger the change in gravitational potential energy. In other words, for mountain-building 

thrust fault earthquakes with the same amount of slip, each successive earthquake leads to greater 

changes in the gravitational potential energy. If the change in potential energy is the same for each 
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event, the change in strain energy must become more negative to balance the ever greater changes 

in gravitational potential energy. We do not know how the seismic behavior changes with these 

progressively larger changes in the strain energy and the gravitational potential energy, because 

we cannot compute the change in strain energy and change in gravitational potential energy. We 

must rely on the stress state as discussed in section 8.2.3 for insight into the roles of gravity and 

topography in seismic events. 
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Chapter 5 Prescribed Rupture 

When we simulate earthquakes usmg prescribed ruptures, we set the slip time history at each point 

on the fault according to some predetermined set of parameters. This method works well when we 

want to compute the ground motionG for Gceno.rioG with well known oouree parametero, such as the 

final distribution of slip on the fault, rupture speed, and maximum slip rate. On the other hand, 

we ignore the dynamics of the rupture process by not modeling the frictional sliding on the fault 

surface. Instead, we focus on the ground motions resulting from the choice of the earthquake source 

parameters. 

5 .1 Earthquake Source 

With the use of slip degrees of freedom to model the earthquake source as described in section 2.4.1, 

at each time step we set the displacements of the slip degrees of freedom to create the appropriate 

relative motion between the sides of the fault. In the numerical integration (equation (2.5)) we set 

the displacements of the slip degrees of freedom at time t + D..t, so we must subtract the known values 

of the left-hand side from the right-hand side. We subtract the term (~[M] + [Cl) {u(t+D..t)} 

from the right-hand side where the only nonzero entries in { u(t + D..t)} are the displacements for the 

slip degrees of freedom. By using the already assembled version of ~ [M] + 2lt [CJ, this calculation 

does not require any interprocessor communication, and we subtract this product from the already 

assembled right-hand side. 

5.2 Slip Time History 

The slip time history controls the progression of slip over time. The slip time history at each point 

on the fault has the same functional form, but we set the time constants that control the precise 

time history at each point based on the specified values of the final slip and maximum slip rate. We 

use a uniform maximum slip rate but allow spatial variation of the final slip as we will discuss below 

in section 5.3. Allowing variations in final slip while using a uniform maximum slip rate produces 

variations in the slip rise times with longer rise times at points with larger values of final slip. 

For the slip time history in a given scenario, we choose one of the three shapes shown in table 5.1 

and figure 5.1. One-half of a period of the cosine function gives an extremely simple slip time history. 

To create a causal slip time history from the non-causal functional form of the error function, we 

truncate the beginning portion of error function time history. With two time constants in the 
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Shape Slip function Maximum Slip Rate 

cosine t-to _ _l_ sin (2n t-to) 
T 21T T 

erf .!. (1 + erf (t-ta-r1 )) 
2 v'2r2 

j._ 
re Brune 1 (1+~) 

Table 5.1: Functional forms of the three slip time history shapes. Slip begins at time t =to, and T, 

r1, and r2 are all time constants. 

Figure 5.1: Slip and slip rate as a function of time for the three shapes of the slip time history 
functions. Each slip time history has the same maximum slip rate. We have set t 0 = 0 for convenience 
so slip begins at t = 0. 

error function, we may select both the maximum slip rate and the time when it occurs. However, 

the time of the maximum slip rate must be late enough, so that the portion we truncate remains 

negligible. Olsen and Archuleta (1996) often use this shape when simulating earthquakes with 

prescribed ruptures. Typically, we use the third shape, the integral of Brune's (1970) far field time 

function, for the slip time history. In contrast to the other two shapes, the acceleration is nonzero 

when slip begins. Additionally, the maximum slip rate occurs early in the time history, which leads 

to an non-symmetric slip rate. When a point starts to slip, we expect a nonzero acceleration, so this 

third shape matches more closely with what we expect physically. 

The shape of the slip time history along with the rupture speed controls the frequency content of 

the waves generated in the domain. As discussed in section 2.3, we need ten nodes per wavelength 
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for the shortest period shear wave. We now examine the frequency content of the slip time histories 

using the magnitude of the Fourier coefficients. Figure 5.2 shows the magnitude of the Fourier 

coefficients for each slip time history as a function of frequency. As we approach 0. 75 Hz from the 

left, each distribution falls off at a different rate with the error function falling most rapidly and 

the integral of Brune's far field time function falling gradually. Above about 0. 75 Hz, all three have 

nearly identical frequency distributions. The band limited features of these three slip time histories 

match well with our constraint of simulating only the long-period ground motion due to the limited 

resolution of the finite-element mesh. 
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c: 
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Figure 5.2: Fast Fourier transforms of the three shapes of slip time history functions using time 
histories with 1024 points, a time step of 0.02 sec, and the same time constants as those used in 
figure 5.1. 

5.3 Slip Distribution 

We use the spatial interpolation procedure outlined in section 2.5 to specify the final distribution of 

slip on the fault surface. With a dense population of points, we may independently specify the final 

slip at each node on the fault surface. In general, we want a relatively uniform distribution of slip 

that is tapered at the edges and may or may not contain some degree of heterogeneity. Consequently, 

we nearly always use three simple construction techniques to generate the spatial distribution. We 

taper the slip at three or four of the edges using an exponential function. Scaling the nominal value 

of slip produces the desired average value. Introducing circular asperities of various sizes and values 

gives heterogeneity to the distribution. 

We taper the slip at the edges of the fault to emulate the smothering of the rupture at the 

boundaries of the fault surface. We taper all four edges when we bury the fault, but may allow the 

rupture to reach the surface when the fault reaches the surface by tapering only three edges, i.e., 
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the lateral edges and the bottom. Equation (5.1) gives the final slip as a function of location along 

the strike, p, and location along the dip, q, where D 0 denotes the nominal value of final slip and 

d denotes a distance which controls the rate of decay of slip. Figure 5.3 illustrates the coordinate 

system with the center of the fault given by (p0 ,q0 ). The constant C controls on how many edges 

we taper the slip. We set C 0 when q > q0 and we want to taper the slip on only three edges, and 

we set C 1 when we want to taper the slip along all four edges. 

D D 0 (1 (b.l) 

q 

p 

Figure 5.3: Strike and dip coordinates used in the slip tapering function. 

We add circular asperities with different radii and heights to give heterogeneity to the distribu­

tion. Equation (5.2) gives the height of the asperity as a function of radius. The radius ra denotes 

the radius at which the height has decayed to 5% of the peak value. Figure 5.4 illustrates the 

cross-section of an asperity of height Da and radius ra. 

D = Daexp (-~~),where (5.2) 

2 7'~ 
ro = ln20 

5.4 Rupture Speed 

We set the rupture speed relative to the local shear wave speed. If, instead, we choose to ignore 

variations in material properties and enforce a uniform rupture speed, we will have large variations 

in the rupture speed relative to the shear wave speed. Numerical modeling, such as that in chapter 8 

and that by Burridge et al. (1979), suggests stable ruptures tend to propagate at nearly uniform 
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Figure 5.4: Cross-section of an asperity with height Da and radius ra. 

speeds relative to the local shear wave speed. Consequently, we impose a uniform rupture speed 

relative to the local shear wave speed. The speed of the rupture governs when adjacent points on 

the fault should start to slip. This means that specifying the rupture speed involves setting the 

time when each point on the fault begins to slip. The rupture starts at the hypocenter, which we 

require to coincide with a node in the finite-element model. The following algorithm outlines how 

we prescribe the time when the sides of the fault begin to move relative to each other at each node 

on the fault. 

1. Set the hypocenter node to start slipping at time t 0 (to = 0 in table 5.1). 

2. Set the time when slip begins for all nodes adjacent to the hypocenter node. We use the 

finite-element faces on the fault plane to define adjacent nodes, which in this case means that 

the nodes lie on an edge of an element face on the fault plane. For node i adjacent to the 

hypocenter node, which lies on an edge of length l contained in element j, the time when slip 

begins is 

. ( l . ) to= mm -
13 

,J = 1 ... N , 
Vr j 

(5.3) 

where Vr is the rupture speed as a fraction of the local shear wave speed (/3) and N is the 

number of elements with edges on the fault plane containing the hypocenter node and node i. 

3. Iterate to propagate the rupture front (start times) along each element face on the fault surface. 

(a) For each element face on the fault plane, we check to see if we changed any of the start 

times for its nodes in the last iteration. If we did change at least one start time and have 

assigned start times to at least two nodes on the face (which we will denote as node A 
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and node B), then we set the start time at the node with the latest start time (which we 

will denote as node C) using equation (5.4). We change the start time at node C only 

if the new start time is earlier than the previous one. We denote the start time at node 

A as iA., the start time at node B as iB, and the distance between node i and node j as 

dii. Figure 5.5 illustrates the other quantities used in equation (5.4). 

t - dcv where 
O - Vrf3' 

d~v r~ + d~c 2rBdBc cos(l11 112) 

TB= VriB 

b 1 (d · r~ .. r~ ) 2 AB I dAB 

112 = arccos ( r~) from Lo.ABC 

111 = arccos (d~B + d1c - d~c) from Lo.BCD 
2dA.BdBc 

(5.4) 

(b) Find the number of start times we changed this iteration. If we did not change any start 

times, then we are done. Otherwise, continue iterating. 
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Chapter 6 Validation of Simulation Software 

In this chapter we discuss the validation of the simulation software in terms of how well iL succeeds 

in modeling the wave propagation. We check the ground motion time histories to verify that they 

arr11r::i.tAly prnrlirt hnth thP :::irriv::ils ::i.nrl ::implit.11rlAs nf thP varirn1s ph::i.;;AR. Arlrlitinn::illy, WP FlrnrninP 

the final displacements in the ground motions to see how well they match those predicted by a static 

analysis. The performance of the absorbing boundary will also be evident in the ground motions. 

For the validation we solve the problem of a propagating rupture on a buried, dipping, finite fault 

in a homogeneous half-space. 

6.1 Domain Geometry 

We model a region 60km long by 60km wide down to a depth of 24km. As shown by figure 6.1, we 

bury the 28 km long and 18 km wide fault 8.6 km below the surface. The fault strikes west and dips 

23 degrees to the north. We impose a rake angle of 105 degrees from the strike; this corresponds to 

</> = 270 degrees, 8 = 23 degrees, and A= 105 degrees in figure 2.4. We use homogeneous material 

properties with a dilatational wave speed of 5.85km/sec, a shear wave speed of 3.40km/sec, and a 

density of 2500 kg/m3 . These material properties correspond to those typically found at depths of 

10-20km. 

We created the finite-element model at a coarse resolution and used the 2x refinement procedure 

discussed in section 3.5 to globally refine the mesh to a resolution of ten nodes per wavelength for 

a shear wave with a period of 2.0sec. The coarse mesh contains 6389 nodes and 31,879 elements; 

the mesh at fine resolution contains approximately 400,000 nodes and two million elements. The 

simulation took 1.2 hours using 64 processors on the Intel Paragon or 40 minutes using 12 processors 

on the Hewlett Packard Exemplar at the CACR. 

6.2 Validation of Ground Motion Time Histories 

We prescribed the slip at each point on the fault using the integral of Brune's far field time func­

tion with a final slip of l.Om and a maximum slip rate of 0.74m/sec. The hypocenter lies along 

the east-west centerline of the fault at a depth of 15 km. The rupture propagates away from the 

hypocenter at a uniform speed of 2. 7 km/sec, which is 80% of the shear wave speed. We compare the 

ground motions generated using the finite-element model with ones generated using point dislocation 
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Figure 6.1: Orthographic view of domain geometry mied for validation of the oimulation ooftw11re. 
The star denotes the hypocenter. We examine the final displacements along the two dash-dotted 
lines on the ground surface and velocity time histories at sites A-D. 

solutions obtained by discrete-wave-number finite-element techniques. 1 

We compare velocity time histories at four sites on the ground surface, labeled A, B, C, and Din 

figure 6.1. Site A lies directly above the top of the fault, and site D lies at the absorbing boundary. 

Pigureis 6.2-6.5 :show the north-:south and vertical component:s of the velocity time hi:storie:s at each 

site for the two simulation methods. All of the time histories have been low-pass filtered using 

a Butterworth filter with a corner frequency of 0.5 Hz. We do not see any evidence of delays in 

arrival of the phases, and the velocity amplitudes agree reasonably well. We want the best accuracy 

where the motion is most severe, and, indeed, this is the case. The time histories for the vertical 

component match very well, especially close to the fault. The limited amount of energy arriving late 

in the velocity time histories of the finite-element simulation confirms that the absorbing boundaries 

adequately prevent reflections from the lateral sides and the bottom of the domain. At the absorbing 

boundary, site D, the velocity time histories agree less well, but as we noted, the absorbing boundary 

does its job. Therefore, we iind the level of accuracy of the ground mot10ns acceptable, provided 

that we don't use the sites on the absorbing boundary in any analysis. 

1 David Wald at the United States Geological Survey office in Pasadena provided thcGc time histories. lVIore details 
regarding the method he used may be found in the paper by Hall et al. (1995). 
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Figure 6.2: Velocity time histories in the north-south and vertical dirndions at site A, which is 
located directly above the top of the fault. The solid lines indicate the time histories from the finite­
element solution, and the dashed lines indicate the time histories from the discrete-wave-number 
solution. 
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Figure 6.3: Velocity time histories in the north-south and vertical directions at site B, which is located 
10 km south of the top of the fault. The solid lines indicate the time histories from the finite-element 
solution, and the dashed lines indicate the time histories from the discrete-wave-number solution. 

6.3 Validation of Static Displacements 

In addition to verifying the velocity time histories, we also compare the final displacements from 

the finite-element simulation with the displacements computed from a static analysis. For the static 

analysis we compute the displacements from point source dislocations using the analytical solution 

given by Heaton and Heaton (1989). We uniformly distribute 2016 point sources over the fault surface 

to mimic the uniform slip of 1.0 m in the finite-element model. We examine all three components of 
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Figure 6.1: Velocity time histories in the north-south and vertical directions at site C, which is located 

20 km south of the top of the fault. The solid lines indicate the time histories from the finite-element 
solution, and the dashed lines indicate the time histories from the discrete-wave-number solution. 
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Figure 6.5: Velocity time histories in the north-south and vertical directions at site D, which is 
located on the absorbing boundary and 25 km south of the top of the fault. The solid lines indicate 
the time histories from the finite-element solution, and the dashed lines indicate the time histories 
from the discrete-wave-number solution. 

displacement along the north-south running centerline of the domain and along the east-west line 

along the top of the fault, as denoted by the dash-dotted lines in figure 6.1. 

Figure 6.6 BhowB the compa,rison between the horizontal components along both lines. Figure 6.7 

and figure 6.8 demonstrate the vertical displacements also match well along the north-south and east­

west lines. The rake angle of 105 degrees deforms the ground surface to the south and slightly to 

the east (visible in figure 6.6 and figure 6.8). Approaching the edges of the domain, the north-south 

displacements from the finite-element model gradually diverge from those of the static analysis, 
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Figure 6.6: Horizontal components of the final (static) displacements along two lines on the ground 

surface. The dotted line indicates the projection of the fault plane onto the ground surface. The 
north-south line passes though the center of the domain , and the east-west line along the top of the 
fault . The thin, solid lines show the original locations of the lines. The displacements have been 
scaled by a factor of 50,000. 

because the absorbing boundaries do not model the stiffness of the truncated portion of the domain 

as discussed in section 2.3.3. This leads to a slightly slower decay with distance from the source 

in the final displacements of the finite-element model compared to the analytical solution. The 

east-west displacements exhibit excellent agreement across the domain. 

6.4 Discussion 

The results from the finite-element simulation show close agreement with those from the discrete­

wave-number technique and the static analysis. The absorbing boundary effectively prevents con­

tamination of the solution in the interior of the domain from reflections off the lateral sides and the 

bottom of the domain. Comparison of the velocity time histories also suggests that we cannot use 

the ground motions at the absorbing boundaries for any analyses because the dampers distort the 

time histories. Additionally, the static displacements near the edges of the domain have limited ac­

curacy, as a result of the lack of stiffness provided by the absorbing boundary. Hence, the simulation 

software provides accurate results as long as we ignore the ground motions very close to the edges 

of the domain. 

In the above validation we use homogeneous material properties. We also want to simulate 

the ground motions in heterogeneous domains with the same confidence in the accuracy of the 
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Figure 6.6: Horizontal components of the final (static) displacements along two lines on the ground 
surface. The dotted line indicates the projection of the fault plane onto the ground surface. The 
north-south line passes though the center of the domain, and the east-west line along the top of the 
fault. The thin, solid lines show the original locations of the lines. The displacements have been 
scaled by a factor of 50,000. 

because the absorbing boundaries do not model the stiffness of the truncated portion of the domain 

as discussed in section 2.3.3. This leads to a slightly slower decay with distance from the source 

in the final displacements of the finite-element model compared to the analytical solution. The 

east-west displacements exhibit excellent agreement across the domain. 

6.4 Discussion 

The results from the finite-element simulation show close agreement with those from the discrete­

wave-number technique and the static analysis. The absorbing boundary effectively prevents con­

tamination of the solution in the interior of the domain from reflections off the lateral sides and the 

bottom of the domain. Comparison of the velocity time histories also suggests that we cannot use 

the ground motions at the absorbing boundaries for any analyses because the dampers distort the 

time histories. Additionally, the static displacements near the edges of the domain have limited ac­

curacy, as a result of tltP. lac:k of stiffnP.ss prnvklP-rl hy thfl ::ih::orhing boundary Hence, the simulation 

software provides accurate results as long as we ignore the ground motions very close to the edges 

of the domain. 

In the above validation we use homogeneous material properties. We also want to simulate 

the ground motions in heterogeneous domains with the same confidence in the accuracy of the 
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Figure 6.7: Vertical and north-south components of the final (static) displacements on the ground 
surface along the north-south line passing though the center of the domain. The dotted line indicates 
the projection of the fault plane onto the vertical s lice . 'rhe displacements have hP.en ~r.::i lPd hy a 

factor of 50,000. 
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Figure 6.8: Vertical and east-west components of the final (static) displacements on the ground 
surface along the east-west line along the top of the fault. The dotted line indicates the projection 
of the fault plane onto the vertical slice. The displacements have been scaled by a factor of 50,000. 

ground motions. Because we assume homogeneous material properties within an element , varying 

the material properties involves simply setting the properties in each element according to some 

specified spatial distribution. As discussed section 2.3, the node spacing governs the accuracy of 

the ground motions, so we limit the errors in the simulation by adjusting the node spacing with the 

material properties. In other words , in order to handle heterogeneous material properties with the 

same level of accuracy, all we need to do is to insure that we maintain the appropriate node spacing 

throughout the domain. 
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Figure 6.7: Vertical and north-south components of the final (static) displacements on the ground 
surface along the 11orth-imutJ1 line passiug Lhuugh Lhe ceuLer uf Lhe domain. The dotted line indicates 
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Figure 6.8: Vertical and east-west components of the final (static) displacements on the ground 
surface along the east-west line along the top of the fault. The dotted line indicates the projection 
of the fault plane onto the vertical slice. The displacements have been scaled by a factor of 50,000. 

ground motions. Because we assume homogeneous material properties within an element, varying 

the material properties involves simply setting the properties in each element according to some 

specified spatial distribution. As discussed section 2.3, the node :spacing governs the accurncy of 

the ground motions, so we limit the errors in the simulation by adjusting the node spacing with the 

material properties. In other words, in order to handle heterogeneous material properties with the 

same level of accuracy, all we need to do is to insure that we maintain the appropriate node spacing 

throughout the domain. 
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Chapter 7 Sensitivity Study of Near-Source 

Ground Motion with Prescribed Ruptures 

We now use two sets of prescribed rupture simulations to study the sensitivity of the long-period near­

source ground motions to variations in the earthquake source parameters. We want to understand 

the variability in the near-source ground motions for changes in the seismic source and identify those 

parameters that most strongly influence the near-source ground motions. We systematically vary 

the seismic source parameters for both a strike-slip fault and a shallow dipping thrust fault. We 

select different hypocenter locations, maximum slip rates, rupture speeds, spatial distributions of 

the final slip, average slips, and the depth of the top of the fault. Additionally, we compare the 

ground motiom1 frorn a layered half-space with those from a hornogeneoms half-space. 

7.1 Strike-Slip Fault 

The geometry of the strike-slip fault roughly matches the combined fault segments that ruptured 

in the June 1992 Landers event. We enclose the 60 km long and 15 km wide fault in a domain 

lOOkm long, 40km wide, and 32km deep as shown in figure 7.1. We impose pure right-lateral slip 

on the vertical fault that strikes north. We offset the fault 10 km to the south from the center of the 

domain in anticipation of locating the hypocenters on the southern half of the fault and generating 

the largest displacements near the north end of the fault. 

7.1.1 Finite-Element Model 

We use two different finite-element models, one for the layered material properties case and one for 

the homogeneous material properties case. Table 7.1 and figure 7.2 show the mass density, shear 

wave speed, and dilatational shear wave speed as a function of depth for the layered half-space. For 

the homogeneous half-space we simply use the material properties that are associated with a depth 

of 6.0 km in the layered half'..space. 

We use IDEAS to create the finite-element model at coarse resolution and the 4x refinement 

procedure outlined in section 3.5 to create a mesh with the appropriate node spacing to model wave 

propagation with periods down to 2.0 sec. Table 7.2 gives the sizes of the finite-element models at 

coarse and fine resolution for the layered and homogeneous half-spaces. Figure 7.3 illustrates the 

partition of the finite-element mesh for the layered half-space among 256 processors using the inertial 



1 
E 

..:,: 
0 
n 

56 

E 

Figure 7.1: Orthographic projection of the domain geometry for the fault for the case 

where the top of the fault reaches the ground surface. The labels HA through HD denote the 
various hypocenter locations. We will examine the waveforms at sites Sl and S2. 

0.0 1.80 0.70 1.50 
3.0 4.50 2.60 2.00 
6.0 5.70 3.30 2.45 
~U.!::I b.8b ;).4U ~.5U 

21.0 6.45 3.75 2.60 
32.0 6.74 3.92 2.63 

Table 7.1: Density, shear wave speed, and dilatational wave speed control elevations for the layered 
half-space. 

Homogeneous Layered 
Course Fine Course Fine 

I #Nodes 9500 610,000 33,000 2 .1 million 
I #Elements 48,000 3.0 million 160,000 10 million 

Table 7.2: Sizes of the finite-element models of the layered and homogeneous half-spaces at coarse 
and fine resolution. 

bisection algorithm. Each simulation took 2.8 hours using 256 processors of the Intel Paragon at 

the CACR. 
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Figure 7.2: Density (p), shear wave speed (S), and dilatational wave speed (P) as a function of depth 
for the layered half-space. 
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Figure 7.3: Partitioning of the coarse finite-element model among 256 processors for the layered 
half-space using the inertial bisection algorithm. Each color patch identifies the elements of one 
processor. 

7 .1.2 Earthquake Source Parameters 

We vary five earthquake source parameters: the location of the hypocenter, the rupture speed, the 

maximum slip rate, the distribution of slip, and the fault depth. As shown in table 7.3, 15 of the 

simulations use the layered half-space model, while the other 2 use the homogeneous half-space 

model. The base case, scenario baseII, features a homogeneous slip distribution that is tapered 

on three edges, a rupture speed of 80% of the local shear wave speed, a maximum slip rate of 

1.5 m/sec, and a hypocenter located mid-depth at the south edge of the fault (hypocenter HA) . For 
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Figure 7.3: Partitioning of the coarse finite-element model among 256 processors for the layered 
half-space using the inertial bisection algorithm. Each color patch identifies the elements of one 
processor. 

7.1.2 Earthquake Source Para.meters 

We vary five earthquake source parameters: the location of the hypocenter, the rupture speed, the 

maximum slip rate, the distribution of slip, and the fault depth. As shown in table 'f.3, lb of the 

simulations use the layered half-space model, while the other 2 use the homogeneous half-space 

model. The base case, scenario baseII, features a homogeneous slip distribution that is tapered 

on three edges, a rupture speed of 80% of the local shear wave speed, a maximum slip rate of 

1.5 m/sec, and a hypocenter located mid-depth at the south edge of the fault (hypocenter HA). For 
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each parameter we generally vary the value equally about the base case, e.g., we select maximum 

slip rates of 2.0 m/sec and 1.0 m/sec about the base case value of 1.5 m/sec. 

Scenario Slip Rupture Maximum Hypocenter Fault Material Mom. 
Pattern Speed Slip Rate Location Depth Properties Mag. 

% of f3 (m/sec) (km) 

base uni taper 80 1.5 HA 0.0 layered 7.0 
base II semi taper 80 1.5 HA 0.0 layered 7.0 
vr70 semi taper 70 1.5 HA 0.0 layered 7.0 
vr90 semi taper 90 1.5 HA 0.0 layered 7.0 
vslO semi taper 80 1.0 HA 0.0 layered 7.0 
vs20 semi taper 80 2.0 HA 0.0 layered 7.0 
hymq semi taper 80 1.5 HB 0.0 layered 7.0 
hybq semi taper 80 1.5 HC 0.0 layered 7.0 
hymc semi taper 80 1.5 HD 0.0 layered 7.0 
:;liµLuµ we1:tkuµµer 80 1.[l HA 0.0 layered 7.0 
slip bot weaklower 80 1.5 HA 0.0 layered 7.0 
sliphet strongheter 80 1.5 HA 0.0 layered 7.0 
slip3 semitaper3 80 1.5 HA 0.0 layered 7.1 
fault4km uni taper 80 1.5 HA 4.0 layered 7.1 
fault8km uni taper 80 1.5 HA 8.0 layered 7.1 
homo semi taper 80 1.5 HA 0.0 homo. 7.1 
hvr90 semi taper 90 1.5 HA 0.0 homo. 7.1 

Table 7.3: Summary of the parameters for the prescribed rupture simulations on the strike-slip fault. 

Hypocenter Locations 

The four hypocenter locations on the southern half of the fault are labeled HA through HD in 

figure 7.1, and the precise locations are given in figure 7.1. Hypocenter HA sits mid depth at tho 

southern edge of the fault, hypocenter HB sits mid-depth at the southern quarter point, hypocenter 

HC sits at the bottom of the fault at the southern quarter point, and hypocenter HD sits at the 

center of the fault. 

60.00 km 

~! HA 
I~ 

North __.,_ 
HC 11W 

13.64 km 16.36 km 
Figure 7.4: Hypocenter locations on the fault plane. 
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Slip Time Histories and Rupture Speeds 

We use the integral of Brune's far field time function (discussed in section 5.2) for the slip time 

histories. For each simulation we set a spatially uniform maximum slip rate of 1.0 m/ sec, 1.5 m/ sec, 

or 2.0 m/sec. Additionally, we independently choose a rupture speed of 70%, 80%, or 90% of the local 

shear wave speed. The median values of 1.5 m/ sec and 80% of the shear wave speed correspond to 

a typical slip rate and average rupture speed found in inversions of strong ground motions (Heaton 

1990). We choose to keep the maximum slip rate uniform over the fanlt ;mrfa.re, herimsP e;re::d 

uncertainty still exists regarding the duration of slip for very shallow rupture. Source inversions of 

the Landers earthquake (Wald and Heaton 1994) and the Kobe earthquake (Wald 1996) inferred slip 

durations of more than four seconds for the shallow slip, but eyewitnesses reported slip durations 

of one second or less for the 1990 Luzon earthquake in the Phillipines (Yomogida and Nakata Hl94) 

and the 1983 Borah Peak earthquake (Wallace 1984). 

We determine the final slip at each node on the fault based on the given spatial distribution of 

slip. The six slip distributions include: a homogeneous distribution that is tapered on all four edges 

(figure 7.5), t.wo homogeneous distributions that are tapered on three edges (figure 7.6 and figure 7.7), 

two weakly heterogeneous distributions (figure 7.8 and figure 7.0), and a Gtrongly ne·terogcrn:olIS 

distribution (figure 7.10). For the heterogeneous distributions, we start with a homogeneous slip 

distribution with a nominal value and add 30 asperities with uniform random distributions of radii 

(as given in table 7.4), heights (as given in table 7.4), strike locations between 2.0km and 58km, 

and dip locations between 0.0 km and 13 km. The weakly heterogeneous slip distributions have a 

bias towards larger slips on either the upper half of the fault (weakupper1
) or the lower half of the 

fault (weaklower2). We adjust the height of all asperities that lie in the dip range of the bias by the 

amount given in table 7.4. 

Distribution Nominal Asperity Asperity Bias 
Slip Heights Radii Dip Height Adj. 
(m) (m) (km) (km) (m) 

weakupper 1.57 -0.25-1.0 5.0-10.0 2.0-7.5 +0.25 
weaklower 1.52 -0.25-1.0 5.0-10.0 7.5-13.0 +0.25 
strongheter 0.28 0.0-3.2 3.0-8.0 N/A 0.0 

'l':;ihle 7.4: AspPrity parameters used in the heterogeneous slip distributions on the strike-slip fault. 

Fault Depth 

We place the top of the fault at three different depths while maintaining the same length and 

width. When we bury the fault 8.0 km below the ground surface, the material properties do not 

1 Weak refers to the heterogeneity, and upper refers to the region of greater slip. 
2 Weak refers to the heterogeneity, and lower refers to the region of greater slip. 
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Figure 7.5: Homogeneous slip distribution unitaper that is tapered on all four edges with an average 
slip of 2.0 m and a maximum slip of 2.5 m. 
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Figure 7.6: Homogeneous slip distribution semitaper that is tapered on three edges with an average 
slip of 2.0 m and a maximum slip of 2.3 m. 
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Figure 7.7: Homogeneous slip distribution semitaper3 that is tapered on three edges with an average 
slip of 3.0 m and a maximum slip of 3.4 m. 

vary appreciably on the fault surface. Consequently, the rupture speed is nearly uniform. When we 

bury the fault 4.0 km below the ground surface, the material becomes softer in the top 2.0 km of the 

fault surface, and the rupture slows down slightly as it runs through this region. When the fault 

surface reaches the ground surface, the material becomes progressively softer in the top 6.0 km. The 

slower rupture speed near the surface causes significant curvature in the rupture front . 
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Figure 7.5: Homogeneous slip distribution unitaper that is tapered on all four edges with an average 
slip of 2.0 m and a maximum slip of 2.5 m. 
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Figure 7.6: Homogeneous slip distribution semitaper that is tapered on three edges with an average 
slip of 2.0 m and a maximum slip of 2.3 m. 
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Figure 7. 7: Homogeneous slip distribution sernitaper3 that is tapered on three edges with an average 
slip of 3.0 m and a maximum slip of 3.4 m. 

vary appreciably on the fault surface. Consequently, the rupture speed is nearly uniform. When we 

bury the fault 4.0 km below the ground surface, the material becomes softer in the top 2.0 km of the 

fault surface, and the rupture slows down slightly as it runs through this region. When the fault 

surface reaches the ground surface, the material becomes progressively softer in the top 6.0 km. The 

slower rupture speed near the surface causes significant curvature in the rupture front. 
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Figure 7.8: Weakly heterogeneous slip distribution weakupper that is tapered on three edges with 
an average slip of 2.0 m, a maximum slip of 4. 7 m, and a bias towards slip near the surface. 
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Figure 7.9: Weakly heterogeneous slip distribution weaklower that is tapered on three edges with 
an average slip of 2.0 m, a maximum slip of 3.4 m, and a bias towards slip at depth. 
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Figure 7.10: Strongly heterogeneous slip distribution strongheter that is tapered on three edges with 
an average slip of 2.0 m and a maximum slip of 7.8 m. 

7.1.3 Simulation Results 

We will examine only the base case, scenario baseII, in detail. For the other simulations, we examine 

groups of scenarios in order to study the sensitivity of the ground motions to a single parameter. 

For all of the scenarios with the top of the fault at the ground surface and an average lip of 2.0 m, 

the earthquakes have a moment magnitude of 7.0. Thus, for these scenarios, any variability in the 

ground motions is independent of the moment magnitude. Each simulation took 2.8 hours using 256 
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Figure 7.8: Weakly heterogeneous slip distribution weakupper that is tapered on three edges with 
an average slip of 2.0m, a maximum slip of 4.7m, and a bias towards slip near the surface. 
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Figure 7.9: Weakly heterogeneous slip distribution weaklower that is tapered on three edges with 
an average slip of 2.0 m, a maximum slip of 3.4 m, and a bias towards slip at depth. 
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Figure 7.10: Strongly heterogeneous slip distribution strongheter that is tapered on three edges with 
an average slip of 2.0 m and a maximum slip of 7.8 m. 

7.1.3 Simulation Results 

We will examine only tho b1:1so c1:1so, scenario bascll, in detail. For the other simulations, we examine 

groups of scenarios in order to study the sensitivity of the ground motions to a single parameter. 

For all of the scenarios with the top of the fault at the ground surface and an average slip of 2.0 m, 

the earthquakes have a moment magnitude of 7.0. Thus, for these scenarios, any variability in the 

ground motions is independent of the moment magnitude. Each simulation took 2.8 hours using 256 
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processors on the Intel Paragon at the CACR. 

Base Case 

We start with an examination of the slip rate on the fault as a function of time. The snapshots of slip 

rate, shown in figure 7.11, clearly identify the curvature of the rupture front. The rupture propagates 

slower in the softer material in the top 6.0 km of the domain, so that the rupture at the surface falls 

farther and farther behind the rupture at depth. The width of the rupture front narrows in the 

softer material in response to the slower rupture speed. The jaggedness of the rupture that begins 

at around sixteen seconds comes from propagating the rupture front with an increasing curvature 

through the finite elements. Furthermore, as the rupture front nears the edge of the domain, the 

final slips decrease while the maximum slip rate remains uniform, so the contours of slip rate in 

figure 7.11 uo longer repre8ent the location of the rupture front. 

The velocity on the ground surface shows the propagation of the shear wave and a train of surface 

wavAs. Fie;m·A 7.12 givAs sn:;ipshnt.R in time of the magnitude of the velocity vector at each point on 

the ground surface. The velocities have been filtered using a fourth-order Butterworth filter with a 

corner frequency of 0.5 Hz. The magnitude of the velocity near the fault increases as the rupture 

progresses and dies quickly after the rupture reaches the north end of the fault at about 24 sec. The 

most severe ground motions are concentrated close to the fault. The rupture excites trains of surface 

waves that propagate behind the shear wave and create a wedge-shaped interference pattern. While 

less than the amplitude of the shear wave, the amplitudes of some of the surface waves do exceed 

1.0 m/sec starting at around thirteen seconds. 

The maximum horizontal displacements and the maximum horizontal velocities on the ground 

surface (figure 7.13) give a clear picture of the effect of dlredlviLy uu Llie gruuml muLion8. Both 

the maximum displacements and the maximum velocities are symmetric about the fault plane due 

to the symmetry of the problem. The shear wave with particle motion perpendicular to the fault 

plane (east-west direction) builds as the rupture propagates. This leads to a maximum horizontal 

displacement of 2.2m at sites 1.7km east or west of the north end of the fault. The maximum 

velocity of 2.9m/sec occurs slightly farther south at sites located 6.7km south and 0.5km east or 

west of the north end of the fault. The maximum velocities (filtered to periods longer than 2.0 sec) 

exceed l.Om/sec over an area of 700 square kilometers. In contrast to the maximum displacements 

that increase along the strike of the fault, the maximum velocities increase, decrease, and then 

increase again along the strike of the fault. The changing curvature of the rupture front disrupts 

the reinforcement of the shear wave by the propagating rupture and causes the reduction in the 

maximum velocities on the ground surface above the center of the fault. However, the reinforcement 

of the rupture front stabilizes, and the velocities build for approximately the last 25 km of the 

rupture. 
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Figure 7.11: Snapshots of slip rate on the fault surface for scenario basell. 

The directivity of the rupture causes large variations in the ground motions with changes in 

azimuth (angle between the projection of the slip vector onto the ground surface and the vector 

from the epicenter to the site). We will consider two sites located 10 km from the edge of the fault 

but with azimuths that differ by QO degrees ; the sites are labeled Sl and S2 in figure 7 .1. Site Sl lies 

10 km north of the north end of the fault (azimuth of 0 degrees) and site S2 lies 10 km east of the fault 

center (azimuth of 90 degrees). Figure 7.14 shows all three displacement and velocity components 

for the two points. Both the displacements and velocities have been filtered using a fourth-order 
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Figure 7.11: Snapshots of slip rate on the fault surface for scenario baseIL 

The directivity of the rupture causes large Vdriations in the ground motions with changes in 

azimuth (angle between the projection of the slip vector onto the ground surface and the vector 

from the epicenter to the site). We will consider two sites located 10 km from the edge of the fault 

but with azimuths that ditter by !:JU degrees; the sites are labeled Sl and 82 in figure 7.1. Site Sl lies 

10 km north of the north end of the fault (azimuth of 0 degrees) and site S2 lies 10 km east of the fault 

center (azimuth of 90 degrees). Figure 7.14 shows all three displacement and velocity components 

for the two points. Both the displacements and velocities have been filtered using a fourth-order 
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Figure 7.12: Snapshots of the magnitude of the velocity vector at each point on the ground surface 
for scenario basell. The white line indicates the projection of the fault onto the ground surface, and 
the yellow circle identifies the epicenter. 

Butterworth filter with a corner frequency of 0.5 Hz. 3 The north-south and vertical components are 

negligible at site Sl because the site falls on the north-south running line of symmetry. The vertical 

component at site 82 is also very small. This means that at site Sl the only surface waves we observe 

are Love waves , while at site 82 we observe both Love and Rayleigh waves. 

The most important difference between the two sites is the fact that , while both have similar 

3We use the same digital filter on all subsequent displacement and velocity time histories. 
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Butterworth filter with a corner frequency of 0.5 Hz. 3 The north-south and vertical components are 

negligible at site Sl hern.11se the site fa.lls on the north-south running line of symmetry. Tho vertical 

component at site 82 is also very small. This means that at site Sl the only surface waves we observe 

are Love waves, while at site S2 we observe both Love and Rayleigh waves. 

The most important difference between the two sites is the fact that, while both have similar 

3 We use the same digital filter on all subsequent displacement and velocity time histories. 
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Figure 7.13: Maximum magnitudes of the horizontal displacement and velocity vectors at each point 
on the ground surface for scenario baseII. The white line indicates the projection of the fault plane 
onto the ground surface, and the yellow circle identifies the epicenter. 

peak horizontal displacements (1.2 m at site 81 and 0.90 m at site 82), the peak horizontal velocity 

at site 81 is 2.8 times greater than the peak horizontal velocity at site 82 (1.4 m/sec at site 81 versus 

0.10m/scc o.t site 82). The directivity effect co.uses the shear wo.vc energy from o.11 points on the 

fault to arrive at nearly the same time at site Sl. At site S2 the energy arrives over a longer interval 

of time which reduces the peak velocity. This is evident in the acceleration response spectra4 in 

figure 7 .1.5 , where the spectrum for site Sl contains large peaks at periods of 1.9sec and 3.1 sec , and 

the spectrum for site 82 contains a small, broad peak centered at around 3.0 sec. 

Material Properties 

In order to understand the effect of including softer material near the ground surface, we compare 

the waveforms at sites 81 and 82 from the base case, scenario baseII, where we use a layered half-

space, with those from scenario homo , where we use a homogeneous half-space . The horizontal 

<lisplar.P.rnP.nts (fignrP. 7.] n) at. sit.P.s Sl anfl S2 provir!P. a goorl rP.prP.sP.nt.at.ion of t.hP. <liffP.rP.nr.P.S in 

the ground motions between the two sr.enarios. The <lisplar.P.mP.nts am signifir.antly larger in the 

layered half-space, and the time histories in the homogeneous case do not contain the four or five 

4 The waveforms have been rotated into the direction with the maximum peak to peak velocity using a resolution 
of 2 degrees (90 degrees east of north for site Sl and 88 degrees east of north for site 82) . 
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peak horizontal displacements (1.2 m at site 81 and 0.90 m at site 82), the peak horizontal velocity 

at site Sl is 2.8 times greater than the peak horizontal velocity at site S2 (L4m/sec at site ~l versus 

0.49 m/sec at site 82). The directivity effect causes the shear wave energy from all points on the 

fault to arrive at nearly the same time at site 81. At site 82 the energy arrives over a longer interval 

of time which reduces the peak velocity. This is evident in the acceleration response spectra4 in 

figure 7.15, where the spectrum for site 81 contains large peaks at periods of 1.9 sec and 3.1 sec, and 

the spectrum for site 82 contains a small, broad peak centered at around 3.0 sec. 

Material Properties 

In order to understand the effect of including softer material near the ground surface, we compare 

the waveforms at sites 81 and 82 from the base case, scenario baseII, where we use a layered half­

space, with those from scenario homo, where we use a homogeneous half-space. The horizontal 

displacements (figure 7.16) at sites Sl and S2 provide a good representation of the differences in 

the ground motions between the two scenarios. The displacements are significantly larger in the 

layered half-space, and the time histories in the homogeneous case do not contain the four or five 

4 The waveforms have been rotated into the direction with the maximum peak to peak velocity using a resolution 
of 2 degrees (90 degrees east of north for site 81 and 88 degrees east of north for site 82). 
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cycle::; of muLiuu a::;::;uciated with the surface waves found in the layered half-space. At both sites the 

final ui:.;vlace111e11L:.; 111a.Lch very well a:.; uu Lhe very luug-_µeriud rnuLiuu::; . Hence, when we _µre::;criu e 

the slip on the faulL , Lhe :::iufLer 111a.Lerial Hear Llie :.;urface ha:.; liLLle eIIecL UH Lhe very luHg-veriuu 

progression towards the final deformation. However, the layered half-space generates much larger, 

short period displacements with four or five cycles compared to the single cycle in the homogeneous 
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60 

cycles of motion associated with the surface waves found in the layered half-space. At both sites the 

final displacements match very well as do the very long-period motions. Hence, when we prescribe 

the slip on the fault, the softer material near the surface has little effect on the very long-period 

progression towards the final deformation. However, the layered half-space generates much larger, 

short period displacements with four or five cycles compared to the single cycle in the homogeneous 
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half-space. 

Rupture Speed 

We examine the variability of the ground motions to three different rupture speeds set relative to 

the local shear wave speed; scenario vr70 uses a rupture speed of 70% of the local shear wave speed, 

scenario baseII uses a rupture speed of 80% of the local shear wave speed, and scenario vr90 uses 

a rupture speed of 90% of the local shear wave speed. As we increase the rupture speed towards 

the shear wave speed, we increase the efficiency of the reinforcement of the shear wave, because we 

reduce the relative distance between the shear wave and the following rupture front. If we compare 

the maximum horizontal velocities on the ground surface from scenario vr90 (figure 7.17) with those 

from scenario baseII (figure 7.13), we see that the peak horizontal velocity increases from 2.9 m/sec 

to 3.5 m/sec. Furthermore, the double lobe pattern disappears because the curvature of the rupture 

front changes more rapidly and the amplitude of the shear wave velocity quickly stabilizes. As a 

result, for a fixed distance from the fault, the maximum velocity in the east-west (fault normal) 

direct.ion becomes nearly uniform along the northern 40 km of the fault. The maximum velocities 

exceed 2.5 m/sec along this northern section out to a distance of approximately two kilometers from 

the fault. 

Comparing the horizontal velocity components at sites Sl and S2 for the three scenarios (fig-
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Figure 7.17: Maximum magnitudes of the horizontal displacement and velocity vectors at each point 
on the ground surface for scenario vr90. The white line indicates the projection of the fault plane 
onto the ground surface, and the yellow circle identifies the epicenter. 

ure 7.18) , we see sharper phase arrivals as the rupture speed increases. The travel time to the 

hypocenter remains the same, but the energy from all parts of the fault arrives closer together in 

time. At sites 81 a.nd 82 we see tha.t this lea.ds to a. substa.ntia.l increa.se in the a.mplitude of the 

shear wave, while the amplitudes of the surfocc waves remain relatively unchanged. Besides being 

compressed in time, the general shapes of the ground motions remain the same. 

Figure 7.19 shows the maximum displacements and velocities along the east-west line that passes 

through the north tip of the fault for each of the three rupture speeds. As the rupture speed increases , 

the maximum velocities exhibit a relatively greater increase than the maximum displacements. The 

maximum velocities , however, decay with distance from the fault more rapidly than the maximum 

displacements. Figure 7.19 also includes the near-source ground motion factor , N v, from the 1997 

Uniform Building Code (UBC) . The UBC uses the near-source factor to account for the greater 

demand placed on structures arising from earthquakes on nearby faults compared to those on faults 

farther away. We assume that the maximum displacements and maximum velocities correlate with 

the seismic demand on a structure, so that we want the shape of the near-source curve to mimic 

the shapes of the maximum displacements and maximum velocities. We focus on the general shape 

of the near-source factor and do not correlate values of the near-source factor with any specific 

displacements of velocities. We match the near-source factor curve with the average of the peak 
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Figure 7.17: Maximum magnitudes of the horizontal displacement auJ vdudLy vecLur:; aL each point 
on the ground surface for scenario vr90. The white line indicates the projection of the fault plane 
onto the ground surface, and the yellow circle identifies the epicenter. 

ure 7.18), we see sharper phase arrivals as the rupture speed increases. The travel time to the 

hypocenter remains the same, but the energy from all parts of the fault arrives closer together in 

time. At sites Sl and 82 we see that this leads to a substantial increase in the amplitude of the 

r3hc11r wave, while the amplitudes of the surface waves remain relatively unchangeJ. Bet:1iJe:; Leiug 

compressed in time, the general shapes of the ground motions remain the same. 

Figure 7.19 shows the maximum displacements and velocities along the east-west line that passes 

through the north tip of the fault for each of the three rupture speeds. As the rupture speed increases, 

the maximum velocities exhibit a relatively greater increase than the maximum displacements. The 

maximum velocities, however, decay with distance from the fault more rapidly than the maximum 

displacements. Figure 7.19 also includes the near-source ground motion factor, Nv, from the 1997 

Uniform Building Code (UBC). The UBC uses the near-source factor to account for the greater 

demand placed on structures arising from earthquakes on nearby faults compared to those on faults 

farther away. We assume that the maximum displacements and maximum velocities correlate with 

the seismic demand on a structure, so that we want the shape of the near-source curve to mimic 

the shapes of the maximum displacements and maximum velocities. We focus on the general shape 

of the near-source factor and do not correlate values of the near-source factor with any specific 

displacements of velocities. We match the near-source factor curve with the average of the peak 
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Figure 7.18: Comparison of horizontal velocity t ime histories at sites Sl and 82 for the three rupture 
speeds. 

maximum displacements or velocities and the average of the maximum displacements or velocities 

at sites located 15 km from the fault. The shape of the near-source factor curve closely matches the 

shape of the maximum displacements. The shape of the near-source factor curve matches the shape 

of the maximum velocities, except t he curve of the maximum velocities has a narrower peak. 

Maximum Slip Rate 

Scenarios vslO, baseII, and vs20 allow comparison of the ground motions from simulations with 

maximum slip rates of 1.0 m/sec, 1.5 m/sec, and 2.0 m/sec, respectively. Figure 7.20 illustrates the 

sensitivity of the velocity ground motions at sites Sl and 82 to variations in the maximum slip rate. 

At sites Sl and 82 the velocity amplitudes exhibit a moderate increase with maximum slip rate, 

but the phase arrival times do not change. As the maximum slip rate increases, the slip on the 

fault occurs over a shorter period of time which reduces the width of the rupture front . Because the 

leading edge of the rupture front is controlled by the rupture speed, it remains the same distance 

behind the shear wave as we change the maximum slip rate. Consequently, when we increase the 

maximum slip rate, the center of the rupture front moves closer behind the shear wave. This leads 

to more efficient reinforcement of the shear wave, and hence, larger amplitude displacements and 

velocities. 
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Figure 7.18: Comparison of horizontal velocity time histories at sites 81 and S2 for the three rupture 
speeds. 

maximum displacements or velocities and the average of the maximum displacements or velocities 

at sites located 15 km from the fault. The shape of the near-source factor curve closely matches the 

shape of the maximum displacements. The shape of the near-source factor curve matches the shape 

of the maximum velocities, except the curve of the maximum velocities has a narrower peak. 

Maximum Slip Rate 

Scenarios vslO, baseII, and vs20 allow comparison of the ground motions from simulations with 

maximum slip rates of 1.0 m/sec, 1.5 m/sec, and 2.0 m/sec, respectively. Figure 7.20 illustrates the 

sensitivity of the velocity ground motions at sites 81 and 82 to variations in the maximum slip rate. 

At sites 81 and 82 the velocity amplitudes exhibit a moderate increase with maximum slip rate, 

but the phaBe a,rrival time:s do not change. A::> t,he 1uctximum :;lip rate increases, the slip on the 

fault occurs over a shorter period of time which reduces the width of the rupture front. Because the 

leading edge of the rupture front is controlled by the rupture speerl, it remains t.he same distance 

behind the shear wave as we change the maximum slip rate. Consequently, when we increase the 

maximum slip rate, the center of the rupture front moves closer behind the shear wave. This leads 

to more efficient reinforcement of the shear wave, and hence, larger amplitude displacements and 

velocities. 
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Figure 7.19: Maximum magnitudes of the horizontal displacement and velocity vectors along an 
east-west line running through the north tip of the fault for the three rupture speeds. The thick, 
dashed line indicates the near-source ground motion factor , Nv, from the 1997 Uniform Building 
Code. 

Site S1 Site S2 
1.5 0.8 

0 1.0 0.6 
Q) 

.!!}_ O.G 0 _4 
§. 0.2 
~ 

o_o 
·g -0.5 

0.0 
a:; 1.0 m/sec -0.2 
> -1.0 1.5 m/sec -0.4 ~ 

~ -1.5 2.0 m/sec -0.6 
-2.0 -0.8 

1.5 0.8 
0 1.0 ~ 0.6 Q) 
en 0.4 - 0.5 §. 0.2 c 0.0 
·g -0.5 

0.0 

Ci5 -0.2 
> -1.0 

" 
-0.4 

~ -1.5 -0.6 

-2.0 -0.8 
0 10 20 30 40 50 60 0 10 20 30 40 50 60 

Time (sec) Time (sec) 

Figure 7.20: Comparison of horizontal velocity time histories at sites Sl and 82 for the three maxi­
mum slip rates. 
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Comparing the maximum displacements and velocities on the east-west line running through 

the north tip of the fault for the three slip rates (figure 7.21) with those in figure 7.19 for the 

three rupture speeds, we see that increasing the slip rate produces a slightly greater increase in the 

maximum displacements and velocities than an increase in the rupture speed. As we noted above, 

whereas the rupture speed strongly influences the phase arrivals, the variation in slip rates does not 

influence the phase arrivals. The shape of the UBC near-source factor curve matches the shapes of 

the maximum displacements and velocities in almost an identical fashion as it did for the scenarios 

with the different rupture speeds. 
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Figure 7.21: Maximum magnitudes of the horizontal displacement and velocity vectors along an east­
west line running through the north tip of the fault for the three maximum slip rates. The thick, 
dashed line indicates the near-source ground motion factor, Nv, from. the 1997 Uniform Duilding 
Code. 

H ypocenter Locat ion 

We study the sensitivity of the ground motions to the location of the hypocenter using scenario 

baseII (where hypocenter HA sits at the middle of the south edge of the fault as illustrated in 

figure 7.4), scenario hymq (where hypocenter HB sits mid-depth at the southern quarter point), 

scenario hybq (where hypocenter HC sits at the bottom of the fault at the southern quarter point) , 

and scenario hymc (where hypocenter HD sits at the center of the fault) . Changing the location of 

the hypocenter significantly alters the ground motions in some locations but has a minimal impact 

at other locations. If we compare the maximum horizontal displacements and velocities on the 
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maximum displacements and velocities than an increase in the rupture speed. As we noted above, 

whereas the rupture speed strongly influences the phase arrivals, the variation in slip rates does not 

influence the phase arrivals. The shape of the UBC near-source factor curve matches the shapes of 
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with the different rupture speeds. 
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west line running through the north tip of the fault for the three maximum slip rates. The thick, 
dashed line indicates the near-source ground motion factor, Nv, from the 1997 Uniform Building 
Code. 

Hypocenter Location 

We study the sensitivity of the ground motions to the location of the hypocenter using scenario 

baseII (where hypocenter HA sits at the middle of the south edge of the fault as illustrated in 

figure 7.4), :scemuiu hyim.J. (where hypoceuter HB sits mid-depth at the southern quarter point), 

scenario hybq (where hypocenter HC sits at the bottom of the fault at the southern quarter point), 

and scenario hymc (where hypocenter HD sits at the center of the fault). Changing the location of 

the hypocenter significantly alters the ground motions in some locations but has a minimal impact 

at other locations. If we compare the maximum horizontal displacements and velocities on the 
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ground surface for scenario hybq (figure 7.22) to those from scenario baseII, we find the maximum 

displacements and velocities remain relatively unchanged at the north end of the fault. However, at 

the south end of the fault the spatial variation of the maximum displacements and velocities changes 

drastically. 
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Figure 7.22: Maximum magnitudes of the horizontal displacement and velocity vectors at each point 
on the ground surface for scenario hybq. The white line indicates the projection of the fault plane 
onto the ground surface, and the purple circle identifies the epicenter. 

When we place the hypocenter at the middle edge of the fault (hypocenter HA), the rupture 

reinforce:::; the :::;hear wave almost exclusively in the region north of the hypocenter. By moving 

the hypocenter to the bottom quarter point (hypocenter HC) , the rupture reinforces the shear 

wave as it propagates towards the north, towards the south, and towards the ground surface. The 

reinforcement of the shear wave south of the epicenter occurs in the same manner as it does to the 

north. Consequently, the maximum displacements and velocities south of the epicenter match those 

the same distance to the north until we encounter the termination of the rupture at the south end of 

the fault. The propagation of the rupture towards tho surface reinforces tho shear waves propagating 

normal to the fault. In the top 6.0 km of the domain, the shear waves propagating normal to the 

fault refract towards the surface due to the vertical variation in material properties. This creates 

the local peak in the maximum displacements and velocities approximately three kilometers from 

the fault near the epicenter. 

The ground motions at site Sl exhibit minor differences with changes in the location of the 
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ground surface for scenario hybq (figure 7.22) to those from scenario baseII, we find the maximum 

displacements and velocities remain relatively unchanged at the north end of the fault. However, at 

the south end of the fault the spatial variation of the maximum displacements and velocities changes 

drastically. 
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Figure 7.22: Maximum magnitudes of the horizontal displacement and velocity vectorR at AR.C'.h point. 
on the ground surface for scenario hybq. The white line indicates the projection of the fault plane 
onto the ground surface, and the purple circle identifies the epicenter. 

When we place the hypocenter at the middle edge of the fault (hypocenter HA), the rupture 

reinforces the shear wave almost exclusively in the region north of the hypocenter. By moving 

the hypocenter to the bottom quarter point (hypocenter HC), the rupture reinforces the shear 

wave as it propagates towards the north, towards the south, and towards the ground surface. The 

reinforcement of the shear wave south of the epicenter occurs in the same manner as it does to the 

north. Consequently, the maximum displacements and velocities south of the epicenter match those 

the same distance to the north until we encounter the termination of the rupture at the south end of 

the fault. The propagation of the rupture towards the surface reinforces the shear waves propagating 

normal to the tault. ln the top 6.0 km of the domain, the shear waves propagating normal to the 

fault refract towards the surface due to the vertical variation in material properties. This creates 

the local peak in the maximum displacements and velocities approximately three kilometers from 

the fault near the epicenter. 

The ground motions at site Sl exhibit minor differences with changes in the location of the 
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hypocenter, while the ground motions at site 82 exhibit major differences. For each of the four 

hypocenter locations, site Sl lies along an azimuth of 0 degrees. Furthermore, site Sl lies far enough 

away from the hypocenter in all four cases that the amplitude of the shear wave velocity stabilizes 

well before it arrives at site Sl. As shown in figure 7.23, the arrival times differ, but the amplitudes 

of the displacement time histories remain about the same. Similarly, the points along the east­

west line through the north tip of the fault lie in the forward direction for all four hypocenter 

locations. Figure 7.24 shows there is negligible variation in the maximum horizontal displacements 

and velocities at these sites for the four hypocenter locations, and the shape of the UBC near-source 

curve continues to mimic the shapes of the maximum displacements and velocities. 
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Figure 7.23: Comparison of horizontal displacement time histories at sites 81 and 82 for the four 
hypocenter locations. 

At the other end of the spectrum, site 82 lies along three different azimuths for the four hypocenter 

locations. When we place the hypocenter at the center of the fault (hypocenter HD) , site 82 lies 

on a node in the radiation pattern for displacement in the east-west and vertical directions, so it 

experiences motion only in the north-south direction (figure 7.23) . In this case, the sharp arrival of 

the shear wave dominates the motion in the north-south direction. For the three other hypocenter 

locations, the east-west (fault normal) displacements are greater than or equal to the north-south 

(fault parallel) displacements. As we might expect based on the observations at site Sl , we find 

only minor variations in the ground motions at site 82 when we compare the ground motions from 



73 

hypocenter, while the ground motions at site S2 exhibit major differences. For each of the four 

hypocenter locations, site Sl lies along an azimuth of 0 degrees. Furthermore, site Sl lies far enough 

away from the hypocenter in all four cases that the amplitude of the shear wave velocity stabilizes 

well before it arrives at site Sl. As shown in figure 7.23, the arrival times differ, but the amplitudes 

of the displacement time histories remain about the same. Similarly, the points along the east­

west line through the north tip of the fault lie in the forward direction for all four hypocenter 

locations. Figure 7.24 shows there is negligible variation in the maximum horizontal displacements 

and velocities at these sites for the four hypocenter locations, and the shape of the UBC near-source 

curve continues to mimic the shapes of the maximum displacements and velocities. 
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Figure 7.23: Comparison of horizontal displacement time histories at sites Sl and S2 for the four 
hypocenter locations. 

At the other end of the spectrum, site S2 lies along three different azimuths for the four hypocenter 

locations. When we place the hypocenter at the center of the fault (hypocenter HD), site 82 lies 

on a node in the radiation pattern for displacement in the east-west and vertical directions, so it 

experiences motion only in the north-south direction (figure 7.23). In this case, the sharp arrival of 

the shear wave dominates the motion in the north-south direction. For the three other hypocenter 

locations, the east-west (fault normal) displacements are greater than or equal to the north-south 

(fault parallel) displacements. As we might expect based on the observations at site Sl, we find 

only minor variations in the ground motions at site S2 when we compare the ground motions from 
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Figure 7.24: Maximum magnitudes of the horizontal displacement and velocity vectors along an east­
west line running through the north tip of the fault for the four hypocenter locations. The thick, 
dashed line indicates the near-source ground motion factor , Nv , from the 1997 Uniform Building 
Code. 

the two hypocenter locations at the southern quarter point, because site 82 remains along the same 

azimuth. Thus, as we move the hypocenter, site 82 experiences large fluctuations in the ground 

motions, particularly in the east-west direction where the motion varies from being much smaller 

than the north-south motion to equal to or greater than the north-south motion. 

Slip Distribution 

The simulations include a homogeneous slip distribution without surface rupture in scenario base, 

a homogeneous slip distribution with surface rupture in scenario baseII, a weakly heterogeneous slip 

distribution with a bias towards slip near the surface in scenario sliptop, a weakly heterogeneous slip 

distribution with a bias towards slip at depth in scenario slipbot, and a strongly heterogeneous slip 

distribution in scenario sliphet . Small perturbations in the final distribution of slip cause negligible 

differences in the ground motions. Large perturbations do affect the ground motions, particularly 

the displacement time histories. Figure 7.25 shows the maximum displacements and velocities on the 

ground surface for scenario sliphet, which uses the strongly heterogeneous slip distribution shown 

in figure 7.10. In this case, the rupture does not continuously reinforce the shear wave; instead 

it reinforces the shear wave in short intervals. As a result , the maximum displacements form a 

complex pattern of peaks and valleys compared to the simple pattern associated with homogeneous 
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Figure 7.24: Maximum magnitudes of the horizontal displacement and velocity vectors along an east­
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the two hypocenter locations at the southern quarter point, because site 82 remains along the same 

azimuth. Thus, as we move the hypoc:ent.er, site S2 FX"pPriences large fluctuations in the ground 

motions, particularly in the east-west direction where the motion varies from being much smaller 

than the north-south motion to equal to or greater than the north-south motion. 

Slip Distribution 

The simulations include a homogeneous slip distribution without surface rupture in scenario base, 

a homogeneous slip distribution with surface rupture in scenario basell, a weakly heterogeneous slip 

distribution with a bias towards slip near the surface in scenario sliptop, a weakly heterogeneous slip 

distribution with a bias towards slip at depth in scenario slipbot, and a strongly heterogeneous slip 

distribution iu :;c1:;m:uiu :;livh1:;L. Small perturbations in the final distribution of slip cause negligible 

differences in the ground motions. Large perturbations do affect the ground motions, particularly 

the displacement time histories. Figure 7.25 shows the maximum dispbcomcnto and velocities on the 

ground surface for scenario sliphet, which uses the strongly heterogeneous slip distribution shown 

in figure 7.10. In this case, the rupture does not continuously reinforce the shear wave; instead 

it reinforces the shear wave in short intervals. As a result, the maximum displacements form a 

complex pattern of peaks and valleys compared to the simple pattern associated with homogeneous 
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slip (figure 7.13). 

The maximum velocities exhibit less sensitivity to the heterogeneity in slip, and the distribution 

closely resembles that of the homogeneous slip case. The maximum displacements and velocities 

close to the fault remain approximately the same, but away from the fault the displacements and 

velocities tend to be slightly smaller. At the north end of the fault, as revealed by figure 7.26, the 

maximum displacements and velocities do not noticeably change with the increase in heterogeneity 

of the final slip distribution. 

Minor perturbations to the slip distribution that include tapering the slip near the surface or 

adding a small amount of heterogeneity result in almost no change in the displacement and velocity 

time histories at both sites (figure 7.27). At site 82 the strongly heterogeneous slip distribution 

causes significant changes to the amplitudes and alters the shape of the displacement time histories. 

At site Sl energy from all points on the fault arrives closer together which greatly reduces the 

effecL cam;ed by the discontinuity of the reinforcement of the shear wave. Consequently, the strong 

heLerugeueiLy iu Lhe Ilual ::;liµ di::;Lrilmtion hat> le88 of an effect at site Sl than it does at site S2 . 

Remarka.Lly, a.L LuLl1 ::;iLe::; Lhe veak di::svlacerne11L::; remain relaLively unchanged acro88 all of the t>liµ 

distributions. However, based on the maximum displacements on the entire ground surface which 

we discussed above, we know large perturbations in the slip distribution may significantly alter the 
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Figure 7.25: Maximum magnitudes of the horizontal displacement and velocity vectors at each point 
on the ground surface for scenario sliphet. The white line indicates tho projection of the foult plane 
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slip (figure 7.13). 

The maximum velocities exhibit less sensitivity to the heterogeneity in slip, and the distribution 

closely resembles that of the homogeneous slip case. The maximum displacements and velocities 

close to the fault remain approximately the same, but away from the fault the displacements and 

velocities tend to be slightly smaller. At the north end of the fault, as revealed by figure 7.26, the 

maximum displacements and velocities do not noticeably change with the increase in heterogeneity 

of the final slip distribution. 

Minor perturbations to the slip distribution that include tapering the slip near the surface or 

adding a small amount of heterogeneity result in almost no change in the displacement and velocity 

time histories at both sites (figure 7.27). At site 82 the strongly heterogeneous slip distribution 

causes significant changes to the amplitudes and alters the shape of the displacement time histories. 

At site 81 energy from all points on the fault arrives closer together which greatly reduces the 

effect caused by the discontinuity of the reinforcement of the shear wave. Consequently, the strong 

heterogeneity in the final slip distribution has less of an effect at site 81 than it does at site 82. 

Remarkably, at both sites the peak displacements remain relatively unchanged across all of the slip 

distributions. However, based on the maximum displacements on the entire ground surface which 

we discussed above, we know large perturbations in the slip distribution may significantly alter the 
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Figure 7.26: Maximum magnitudes of the horizontal displacement and velocity vectors along an 
east-west line running through the north tip of t he fault for the five slip distributions. The thick, 
dashed line indicates the near-source ground motion factor, Nv, from the 1997 Uniform Building 
Code. 

peak displacements. 

Average Slip 

Increasing the average slip from 2.0 min scenario basell to 3.0 min scenario slip3, while maintaining 

a maximum slip rate of 1.5 m/sec, increases the amplitudes of the displacements but has little effect 

on the amplitudes of the velocities. When we change the average slip, we also increase the moment 

magnitude of the earthquake from 7.0 to 7.1. The larger amplitude displacements are clearly visible 

in the displacement time histories at sites Sl and 82 shown in figure 7.28. Imposing the same 

maximum slip rate causes the maximum slip rate to occur later in the slip time history and results 

in a slight delay in the peak displacement amplitudes. Although not shown, we see nearly negligible 

variations in the amplitudes of the velocity time histories with the increase in average slip. Along the 

east-west line running through the north tip of the fault (figure 7.29) , we also observe an increase 

in the peak displacements with no accompanying increase in peak velocities. With such minor 

differences in the ground motions, it is no surprise that the shape of the UBC near-source factor 

curve continues to closely follow the shapes of the maximum displacements and maximum velocities. 
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Figure 7.26: Maximum magnitudes of the horizontal displacement and velocity vectors along an 
east-west line running through the north tip of the fault for the five slip distributions. The thick, 
dashed line indicates the near-source ground motion factor, Nv, from the 1997 Uniform Building 
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peak displacements. 

Average Slip 

Increasing the average slip from 2.0 m in scenario basell to 3.0 m in scenario slip3, while maintaining 

a maximum slip rate of 1.5 m/sec, increases the amplitudes of the displacements but has little effect 

on the amplitudes of the velocities. When we change the average slip, we also increase the moment 

magnitude of the earthquake from 7.0 to 7.1. The larger amplitude displacements are clearly visible 

in the displacement time histories at sites Sl and S2 shown in figure 7.28. Imposing the same 

maximum slip rate causes the maximum slip rate to occur later in the slip time history and results 

in a slight delay in the peak displacement amplitudes. Although not shown, we see nearly negligible 

variations in tho arnplitudoo of tho velocity time histories with the increMe in average :slip. Along the 

east-west line running through the north tip of the fault (figure 7.29), we also observe an increase 

in the peak displacements with no accompanying increase in peak velocities. With such minor 

differences in the ground motions, it is no surprise that the shape of the UBC near-source factor 

curve continues to closely follow the shapes of the maximum displacements and maximum velocities. 
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Figure 7.'27: Comparison of horizontal displacement time histories at sites SI and S2 for the five slip 
distributions. 
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Figure 7.28: Comparison of horizontal displacement time histories at sites SI and S2 for the two 
values of average slip. 
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Fault Depth 

We evaluate the effect of the depth of the fault using the results from scenarios baseII, fault4km, 

and fault8km. It is interesting to note that increasing the depth of the top of fault, while using 

the "''uue olip Jbhiuutiuu, ohifto the oliµ Lu ct regiuu wiLh ct lctrger 1:>hear modulus and leads to a 

slight increase in the moment magnitude of the earthquake. Lowering the top of the fault to 4.0 km 

below the ground surface increases the moment magnitude from 7.0 to 7.1, but lowering the fault 

an additional 4.0 km provides no noticeable effect on the moment magnitude, and it remains at 7.1. 

While dropping the fault has the same effect on the moment magnitude as increasing the average 

slip, the effect on the ground motions is very different. 

In general, the lower the depth of the fault, the smaller the amplitude of the ground motions. 

Figure 7.30 shows that lowering the top of the fault to 4.0 km below the ground surface does not have 

as much impact as lowering the top of the fault to 8.0 km below the ground surface. As long as the 

top of the fault remains less than o.U km below the ground surface, slip occurs in the softer material 

at the top of the domain, and the energy tends to refract toward the ground surface. When we drop 

the top of the fault to 4.0 km below the ground surface, we see little reduction in the amplitude 

of the displacement time histories at sites 81 and 82, particularly in the north-south direction at 

site 82. No slip occurs in the region of softer material when the top of the fault sits 8.0 km below 
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the ground surface. This explains why dropping the fault 8.0 km below the ground surface greatly 

reduces the amplitude of the displacements and velocities. 
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Figure 7.30: Comparison of horizontal displacement time histories at sites Sl and 82 for the three 
depths of the top of the fault. 
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Figure 7.30: Comparison of horizontal displacement time histories at sites Sl and 82 for the three 
depths of the top of the fault. 
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7.2 Thrust Fault 

We set up the geometry of the thrust fault so that it closely resembles that of the Elysian Park 

fault underneath Los Angeles as described by Hall et al. (1995). The fault measures 28km long and 

18 km wide, dips 23 ue~:ret~ts to the north, and projects onto the ground surface an area 28 km long 

by 16.6 km wide. Por moist of the isimulations we bury the fault 8.0 krn below the grnund surface. We 

enclose the fault in a domain 60 km long by 60 km wide by 24 km deep as illustrated in figure 7.~n. 

WP imprn:;e ohliqne slip with a r::i.ke ::i.nglP of 1 Ofi 1-lPgrPPS from t.hP strikP to thP west 
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Figure 7.31: Orthographic projection of the domain geometry for the thrust fault fqr the case where 
the top of the fault lies 8.0 km below the ground surface. The labels HA through HD denote the 
various hypocenter locations. We will examine the waveforms at sites Sl and S2. 

7.2.1 Finite-Element Model 

We use a total of four finite-element models, one for each of the three fault depths in the layered half­

space, and one for the homogeneous half-space. For the layered half-space we use the same material 

property variation with depth that we use for the strike-slip domain. Figure 7.32 reproduces the 

mass density, shear wave speed, and dilatational wave speed over the depth range of this domain 

fur Lhe layereu half-:::.vact: ::sbuwu lu figure 7.2. We Lake Lhe irn::iLerlal vruverLies uf Lhe humugeueuus 

half-space from the material properties of the layered half-space at depth of 6.0 km. 

From the coarse mesh created with IDEAS, we use the 4x refim~ment procednrn to create a mesh 

with the appropriate resolution for propagation of waves with periods down to 2.0 sec. Table 7.5 gives 

the sizes of the finite-element models at coarse and fine resolution for the layered and homogeneous 

half-spaces. For the layered half-space figur~ 7.33 illustrates the inertial bisection of the finite­

element mesh among 256 processors. Each simulation took 1.2 hours using 256 processors of the 
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Figure 7.32: Density (p), shear wave speed (S), and dilatational wave speed (P) as a function of 
depth for the layered half-space. 

Fault Coarse Fine 
Depth #Nodes #Elements #Nodes # Elements 

Homogeneous 8km 6700 33,000 420,000 2.1 million 
8km 26,000 120,000 l. 7 million 7.7 million 

Layered 4km 27,000 130,000 1.8 million 8.3 million 
Okm 26,000 120,000 1.6 million 7.6 million 

TahlP 7.fi: Si1r.P.s of thP. finitP-PlPmP.nt mociP.ls of thP. lR.yP.rP.cl ancl homoe;P.nP.ons hR.lf-spR.f'.P.S ::it roarsP. 

and fine resolution. 

Intel Paragon at the CACR. 

7.2.2 Earthquake Source Parameters 

We follow the same procedure that we use for the strike-slip fault and systematically vary the 

five earthquake source parameters; these include the hypocenter location, the rupture speed, the 

maximum slip rate, the distribution of slip, and the fault depth. Table 7.6 summarizes the parameters 

for each of the 14 simulations. The base case features a fault buried 8.U km below the ground surface, 

a homogeneous slip distribution tapered at the edges, a rupture speed of 80% of the local shear wave 

:speed, a maximmn :slip rate of 1.5 m./:sec, and a hypocenter located at the bottom center of the fault. 

Hypocenter Locations 

Figure 7.31 illustrates the general locations of the four hypocenters (labeled HA through HD) and 

figure 7.34 gives the precise locations of the hypocenters on the fault plane. Hypocenter HA lies at 
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Figure 7.33: Partitioning of the coarse finite-element model among 256 processors for the layered 
half-space using the inertial bisection algorithm. Each color patch identifies the elements of one 

processor. 

Scenario Slip Rupture Maximum Hypo center Fault Material Mom. 
Pattern Speed Slip Rate Location Depth Properties Mag. 

% of /3 (m/sec) (km) 

base uni taper 80 1.5 HA 8.0 layered 6.8 
vr70 uni taper 70 1.5 HA 8.0 layered 6.8 
vr90 uni taper 90 1.5 HA 8.0 layered 6.8 
vslO uni taper 80 1.0 HA 8.0 layered 6.8 
vs20 uni taper 80 2.0 HA 8.0 layered 6.8 
hybc uni taper 80 1.5 HB 8.0 layered 6.8 
hyme uni taper 80 1.5 HC 8.0 layered 6.8 
hymc uni taper 80 1.5 HD 8.0 layered 6.8 
sliptop weakupper 80 1.5 IIA 8.0 layered 6.8 

slip bot weaklower 80 1.5 HA 8.0 layered 6.8 
slip2 unitaper2 80 1.5 HA 8.0 layered 7.0 
fault4km uni taper 80 1.5 IIA 4.0 layered 6.7 

faultOkm uni taper 80 1.5 HA 0.0 layered 6.6 
homo8km uni taper 80 1.5 HA 8.0 homo. 6.7 

Table 7 .6: Summary of the parameters for the prescribed rupture simulations on the thrust fault . 

the center of the bottom edge of the fault , hypocenter HB lies at the northeast corner of the fault , 

hypocenter HC lies approximately mid-depth on the eastern edge of the fault , and hypocenter HD 

lies approximately mid-depth on the north-south running centerline. 

Slip Time Histories and Hupture 8peeds 

For the slip time histories we use the integral of Brune's far field time function . We also independently 

set the maximum slip rate to either 1.0 m/sec, 1.5 m/sec, or 2.0 m/sec and the rupture speed to either 
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Figure 7.33: Partitioning of the coarse finite-element model among 256 processors for the layered 
half-space using the inertial bisection algorithm. Each color patch identifies the elements of one 
processor. 

Scenario Slip Rupture Maximum Hypo center Fault Material Mom. 
Pattern Speed Slip Rate Location Depth Properties Mag. 

% of f3 (m/sec) (km) 

base uni taper 80 1.5 HA 8.0 layered 6.8 
vr70 uni taper 70 1.5 HA 8.0 layered 6.8 
vr90 uni taper 90 1.5 HA 8.0 layered 6.8 
vslO uni taper 80 1.0 HA 8.0 layered 6.8 
vs20 uni taper 80 2.0 HA 8.0 layered 6.8 
hybc uni taper 80 1.5 H.8 8.0 layered 6.8 
hyme uni taper 80 1.5 HC 8.0 layered 6.8 
hymc uni taper 80 1.5 HD 8.0 layered 6.8 
sliptop wcakupper 80 1.5 IIA 8.0 layeretl 0.8 

slip bot weaklower 80 1.5 HA 8.0 layered 6.8 
slip2 unitaper2 80 1.5 HA 8.0 layered 7.0 
fault4km uni taper 80 1.5 HA 4.0 layered 6.7 
faultOkm uni taper 80 1.5 HA 0.0 layered 6.6 
homo8km uni taper 80 1.5 HA 8.0 homo. 6.7 

Table 7.6: Summary of the parameters for the prescribed rupture simulations on the thrust fault. 

the center of the bottom etlge uf Lhe faulL, hyµucenter HB lies at the northeast corner of the fault, 

hypocenter HC lies approximately mid-depth on the eastern edge of the fault, and hypocenter HD 

lies approximately mi<l-<lepth on the north-south running centerline. 

Slip Time Histories and Rupture Speeds 

For the slip time histories we use the integral ofBrune's far field time function. We also independently 

set the maximum slip rate to either 1.0 m/ sec, 1.5 m/ sec, or 2 .0 m/ sec and the rupture speed to either 
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70%, 80%, or 90% of the local shear wave speed. The spatial distributions of final slip include two 

homogeneous distributions that are tapered on all four edges (figure 7.35 and figure 7.36) and two 

weakly heterogeneous distributions (figure 7.37 and figure 7.38). The heterogeneous slip distributions 

each have a nominal slip to which we add 20 asperities with uniform random distributions of radii 

(as given in table 7.7), heights (as given in table 7.7), strike locations between 2.0km and 26km, and 

dip locations between 2.0 km and 16 km. The weakly heterogeneous slip distributions have a bias 

Luwttnl:; t:ili]J uu eiLl1e1 Ll1e UJJJJer (weaku]Jµer 5 ) ur Lhe luwer (weakluwer6 ) half of the fault surface. 

We adjust the height of the asperities that lie in the dip range of the bias by the amount given in 

table 7.7. 

Distribution Nominal Asperity Asperity Bias 
Slip Heights Radii Dip Height Adj. 
(Ill) (m) (km) (km) (m) 

weakupper 0.66 -0.25-0.50 5.0-8.0 2.0-8.0 +0.50 
weaklower 0.68 -0.25-0.50 5.0-8.0 8.0-16.0 +0.50 

Table 7.7: Asperity parameters used in heterogeneous slip distributions on the thrust fault. 

Fault Depth 

In order to be able to study the sensitivity of the ground motions to fault depth, we place the top 

of the fault at depths of 8.0 km, 4.0 km, and 0.0 km while maintaining the same length, width, and 

dip. When we bury the top of the fault 8.0 km below the ground surface, the bottom of the fault 

5 Weak refers to the heterogeneity, and upper refers to the region of greater slip. 
6Weak refers to the heterogeneity, and lower refers to the region of greater slip. 
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Figure 7.35: Homogeneous slip distribution unitaper that is tapered on all four edges with an average 
slip of 1.0 m and a maximum slip of 1.3 m. 
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Figure 7.36: Homogeneous slip distribution nnitapP.r2 that is tapP.rP.cl on all fonr P.clgP.s with an 
average slip of 2.0 m and a maximum slip of 2.6 m. 

sits 15.0 km below the ground surface. 

7.2.3 Simulation Results 

We will follow the same procedure that we use to study the strike-slip simulations: we examine the 

base case in detail and analyze tho other simulations in groups based on tho variation of one of t h o 

parameters. When we bury the top of the fault 8.0 km below the ground surface and prescribe a n 

average final slip of 1.0 m , the earthquakes have a moment magnitude of 6.8 . The simulations took 

1.2 hours using 256 processors on the Intel Paragon at the CACR. 



84 

0 2.5 

3 2.0 

6 
1.5 

9 a.. 0.. 
1.017.i i:S 

12 

15 0.5 

18 0.0 
0 7 14 21 28 

Strike (km) 
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Figure 7.36: Homogeneous slip distribution unitaper2 that is tapered on all four edges with an 
average slip of 2.0 m and a maximum slip of 2.6 m. 

sits 15.0 km below the ground surface. 

7.2.3 Simulation Results 

We will follow the same procedure that we use to study the strike-slip simulations: we examine the 

base case in detail and analyze the other simulations in groups based on the variation of one of the 

parameters. When we bury the top of the fault 8.0 km below the ground surface and prescribe an 

average final slip of 1.0 m, the earthquakes have a moment magnitude of 6.8. The simulations took 

1.2 hours using 256 processors on the Intel Paragon at the CACR. 
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Figure 7.37: Weakly heterogeneous slip distribution weakupper that is tapered on three edges with 
an average slip of 1.0 m, a maximum slip of 2.3 m, and a bias towards slip near the surface. 
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Figure 7.38: Weakly heterogeneous slip distribution weaklower tapered on three edges with an 
average slip of 1.0 m, a maximum slip of 2.2 m, and a bias towards slip at depth. 

Base Case 

We begin by analyzing the ground motions on a north-south vertical slice through the center of 

the fault . Figure 7.39 shows the magnitude of the velocity vectors at each point on the slice. We 

allow the scale to saturate at 0.5 m/sec in order to illustrate the ground motions at depth more 

clearly. As the rupture propagates up the fault , the largest velocities are confined to a narrow region 

near the fault . Once the seismic waves reach the softer material in the top 6.0 km of the domain, 

the velocities increase and saturate the scale. Beginning at Q.O sec the most severe motions are 

confined to the ground surface and are propagating to the south. In contrast to the area south of 

the epicenter, over the entire region to the north of the epicenter, we observe ground motions with 
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Figure 7.37: Weakly heterogeneous slip distribution weakupper that is tapered on three edges with 
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Figure 7.38: Weakly heterogeneous slip distribution weaklower tapered on three edges with an 
average slip of 1.0 m, a maximum slip of 2.2 m, and a bias towards slip at depth. 

Base Case 

We begin by analyzing the ground motions on a north-south vertical slice through the center of 

the fault. Figure 7.39 shows the magnitude of the velocity vectors at each point on the slice. We 

allow the scale to saturate at 0.5 m/ sec in order to illustrate the ground motions at depth more 

clearly. As the rupture propagates up the fault, the largest velocities are confined to a narrow region 

near the fault. Once the seismic waves reach the softer material in the top 6.0krn of the domain, 

the velocities increase and saturate the scale. Beginning at 9.0 sec the most severe motions are 

confined to the ground surface and are propagating to the south. In contrast to the area south of 

the epicenter, over the entire region to the north of the epicenter, we observe ground motions with 



Time= 1.0 sec 
0 

E' 
6 10 
£. 
o_ 
w zo 
0 

Time= 3.0 sec 
0 

E' 
6 1 0 
£. 
o_ 
Q) 

0 
20 

Time= 5.0 sec 
0 

E' 
6 10 
£. 
o_ 
Q) 20 
0 

Time= 7.0 sec 
0 

E' 
6 1 0 
£. ....... 
a.. 

20 Q) 

0 

. ------------ -
-": · 

-30 -15 0 15 
South- North (km) 

86 

Time= 9.0 sec 

Time= 11 .0 sec 

Time=13.0 sec 

" -------------....... -
•t:,1 

Time=15.0 sec 

----------------- -
-t: • 

30 -30 -15 0 15 
South-North (km) 

30 

0.5 

0.4 

c 
O'"> 
(1j 

2 
0.2 :::-.. 

0.1 

0.0 

....... 
u 
0 
Q) 

> 

Figure 7.39: Snapshots of the magnitude of the velocity vector on a north-south vertical slice through 
the center of the fault for scenario base. The white line indicates the projection of the fault onto 
the slice, and the yellow circle identifies the hypocenter. 

velocities less than 0.15m/sec. 

The seismic waves reach the ground surface approximately five seconds after the rupture begins. 

Figure 7.40 displays the magnitude of the velocity vectors at each point on the ground surface 

beginning at 6.0 sec. As we noted above, the most severe shaking occurs in the region extending 

from above the top of the fault to near the south edge of the domain. The snapshot of the velocity at 

10.0 sec clearly shows a double velocity pulse associated with the out and back motion of the ground 

with peaks in both the positive and negative directions exceeding 0.8 m/sec. The peak velocities 

develop in the second pulse at around twelve seconds, after which the amplitudes decay due to 

geometric spreading as the waves continue to propagate to the south. The shear wave with the 

double pulse is followed by Love and Rayleigh waves with amplitudes much smaller than the shear 

wave. 

The maximum displacements (figure 7.41) and velocities (figure 7.42) occur five kilometers south 

of the top of the fault. The slip direction with a rake angle of 105 degrees skews the maximum 

displacements and maximum velocities slightly towards the east . The particle motion of the shear 
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Figure 7 .39: Snapshots of the magnitude of the velocity vector on a north-south vertical slice through 
the center of the fault for scenario base. The white line indicates the projection of the fault onto 
the slice, and the yellow circle identifies the hypocenter. 

velocities less than 0.15m/sec. 

The seismic waves reach the ground surface approximately five seconds after the rupture begins. 

Figure 7.40 displays the magnitude of the velocity vectors at each point on the ground surface 

beginning at 6.0 sec. As we noted above, the most severe shaking occurs in the region extending 

from above the top of the fault to near the south edge of the domain. The snapshot of the velocity at 

10.0 sec clearly shows a double velocity pulse associated with the out and back motion of the ground 

with peaks in both the positive and negative directions exceeding 0.8 m/sec. The peak velocities 

develop in the second pulse at around twelw~ ReronrlR, ::i.ft.er whirh the ::i.mplit.udes decay due to 

geometric spreading as the waves continue to propagate to the south. The shear wave with the 

double pulse is followed by Love and Rayleigh waves with amplitudes much smaller than the shear 

wave. 

The maximum displacements (figure 7.41) and velocities (figure 7.42) occur five kilometers south 

of the top of the fault. The slip direction with a rake angle of 105 degrees skews the maximum 

displacements and maximum velocities slightly towards the east. The particle motion of the shear 
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Figure 7.40: Snapshots of t he magnitude of the velocity vector at each point on the ground surface 
for scenario base. T he white line indicates the projection of the fault onto the ground surface, and 
the yellow circle identifies t he epicenter. 

waves becomes more horizontal as the shear wave propagates through the softer material. This causes 

a maximum horizontal displacement 1.5 times the maximum vertical displacement (1.1 m versus 

0.75 m) . The velocities exhibit an even greater disparity with the maximum horizontal velocity 

3.0 times the maximum vertical velocity (1.2 m/sec versus 0.40 m/sec). The maximum, filtered 

horizontal velocities exceed 1.0 m/sec over an area of 100 square kilometers. The final deformation 

at the ground surface (not shown) involves both horizontal and vertical components which tends to 

more evenly distribute the displacement among the two directions. 

The displacements and velocities at sites Sl and 82 given in figure 7.43 exemplify the disparity 

between the motion in the forward direction (south of the fault) and the motion in the backwards 

direction (north of the fault) . As shown in figure 7.31 , site Sl lies above the southeast corner of the 

fault , and site 82 lies above the center of the northern edge of the fault , which in this case coincides 

with the epicenter. At site Sl the shear wave arrival consisting of a single pulse in displacement 

and a corresponding double pulse in velocity dominates the motion on all three components. The 

horizontal motion occurs almost exclusively in the southeast direction and is skewed to the east of 
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Figure 7.40: Snapshots of the magnitude of the velocity vector at each point on the ground surface 
for scenario base. The white line indicates the projection of the fault onto the ground surface, and 
the yellow circle identifies the epicenter. 

waves becomes more horizontal as the shear wave propagates through the softer material. This causes 

a maximum horizontal displacement 1.5 times the maximum vertical displacement (1.1 m versus 

0.75 m). The velocities exhibit an even greater disparity with the maximum horizontal velocity 

3.0 times the maximum vertical velocity (1.2m/sec versus 0.40m/sec). The maximum, filtered 

horizontal velocities exceed 1.0 m/sec over an area of 100 square kilometers. The final deformation 

at the ground surface (not shown) involves both horizontal and vertical components which tends to 

more evenly distribute the displacement among the two directions. 

The displacements and velocities at sites Sl and S2 given in figure 7.43 exemplify the disparity 

between the motion in the forward direction (south of the fault) and the motion in the backwards 

direction (north of the fault). As shown in figure 7.31, site Sl lies above the southeast corner of the 

fault, and site 82 lies above the center of the northern edge of the fault, which in this case coincides 

with the epicenter. At site Sl the shear wave arrival consisting of a single pulse in displacement 

and a corresponding double pulse in velocity dominates the motion on all three components. The 

horizontal motion occurs almost exclusively in the southeast direction and is skewed to the east of 
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Figure 7.41: Maximum magnitudes of the horizontal and vertical displacement vectors at each point 
on the ground surface for scenario base. The white line indicates the projection of the fault plane 
onto the ground surface , and the yellow circle identifies the epicenter. 
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the slip direction. As we noted above, the peak horizontal displacement exceeds the peak vertical 

displacement by approximately 40%. The arrival of the shear wave is followed by the arrival of Love 

and Rayleigh waves but with almost negligible amplitudes compared to the shear wave. Site 82 

receives far less shear wave euergy, auu Lhe euergy arrive::; uver a luuger iuLerval uf Lime. A::; a re::;ulL , 

the amplitude of the shear wave blends in with the sm.all amplitude surface waves . 

We compute the response spectra at both sites following the san~e procedure that we use for the 

strike-slip fault outlined in section 7.1.3. In this case we rotate the ground motions at sites 81 and 82 

to 140 degrees east of north and 170 degrees east of north, respectively. The horizontal acceleration 
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the ground surface for scenario base. The white line indicates the projection of the fault plane onto 
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the slip direction. As we noted above, the peak horizontal displacement exceeds the peak vertical 

displacement by approximately 40%. The arrival of the shear wave is followed by the arrival of Love 

and Rayleigh waves but with almost negligible amplitudes compared to the shear wave. Site 82 

receives far less shear wave energy, and the energy arrives over a longer interval of time. As a result, 

the amplitude of the shear wave blends in with the small amplitude surface waves. 

We compute the response spectra at both sites following the same procedure that we use for the 

strike-slip fault outlined in section 7.1.3. In this case we rotate the ground motions at sites 81 and 82 

to 140 degrees east of north and 170 degrees east of north, respectively. The horizontal acceleration 
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Figure 7.43: Displacement and velocity t ime histories at sites 81 and 82 for scenario base. 

response spectra shown in figure 7.44 vividly illustrate the severity of the ground motion at site 

81 compared to the rather benign ground motion at site 82. The response spectrum for site 81 

displays a broad peak of 40% g centered around a period 2.6 sec. The response spectrum for site 82 , 

in contrast, is nearly flat with o, level below 5% g . 

Materia l Prop erties 

We study the effect of allowing variation in the material properties with depth by con~paring the 

waveforms at sites 81 and 82 from scenario base, which uses a layered half-space, with those from 

scenario homo, which uses a homogeneous half-space. Figure 7.45 gives the north-south and vertical 

components of the velocity time histories at the two sites. In both cases site 81 undergoes much more 

severe shaking than site 82. In addition to the obvious increase in amplitude of the velocity with 

the layered half-space, in the homogeneous half-space the north-south and vertical components are 

nearly equal , while in the layered half-space the horizontal components dominate the motion as we 

notP.rl in 011r rlisr.nssion of thP. hasP. r.asP. . 'ThP softPr m::i.t.Prial near the ground surface doP.s not ::i.ppP::i.r 

to affect the vertir.al grrnmrl motion ; howP.vP.r, WP. know that. t.hP part.ir.lP mot.ion rnt.::i.t.P.s towarrls thP. 

horizontal as the shear wave refracts while propagating through the softer material. This causes 

an increase in the horizontal motion with a corresponding decrease in the vertical motion, so it is 

purely coincidental the vertical motion remains relatively unchanged. 
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Figure 7.43: Displacement and velocity time histories at sites Sl and 82 for scenario base. 

response spectra shown in figure 7.44 vividly illustrate the severity of the ground motion at site 

Sl compared to the rather benign ground motion at site 82. The response spectrum for site 81 

Jbvlay:; a LruaJ veak of 40% g centered around a period 2.6 sec. The response spectrum for site S4, 

in contrast, is nearly flat with a level below 53 g. 

Material Properties 

We study the effect of allowing variation in the material properties with depth by comparing the 

waveforms at sites 81 and 82 from scenario base, which uses a layered half-space, with those from 

scenario homo, which uses a homogeneous half-space. Figure 7.45 gives the north-south and vertical 

components of the velocity time histories at the two sites. In both cases site 81 undergoes much more 

severe shaking than site 82. In addition to the obvious increase in amplitude of the velocity with 

the layered half-space, in the homogeneous half'..space the north-south and vertical components are 

nearly equal, while in the layered half-space the horizontal components dominate the motion as we 

noted in our discussion of the base case. The softer material near the ground surface does not appear 

to affect the vertical ground motion; however, we know that the particle motion rotates towards the 

horizontal as the shear wave refracts while propagating through the softer material. This causes 

an increase in the horizontal motion with a corresponding decrease in the vertical motion, so it is 

purely coincidental the vertical motion remains relatively unchanged. 
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Rupture Speed 

We study the sensitivity of the ground motions to the rupture speed using scenario vr70 with a 

ruµlure ::speeu vf 70% vf Lhe lvcal ::;hear wave 8peed, scenario base with a rupture speed of 80% of the 

local shear wave speed, and scenario vr90 with a rupture speed of 90% of the local shear wave speed. 

In figure 7.46 we see that increasing the rupture speed leads to a significant increase in the amplitude 

of the velocity in the north-south direction at both sit.es Sl and 82. The vertical components show 

no corresponding increase. As we found in the strike-slip fault simulations (section 7.1.3), increasing 

the rupture speed causes the shear waves from all portions of the fault to arrive in a shorter time 

interval which leads to sharper phase arrivals. As a result, the width of the double pulse in velocity 

at site Sl decreases as the rupture speed increases. 

If we examine the maximum horizontal displacements and velocities on the ground surface along 

the north-south line running through the center of the domain given in figure 7.47, we see that 

the maximum displacements and velocities increase as we increment the rupture speed from 70% 

to 90% of the local shear wave speed. The rupture speed does not affect the shapes of the curves. 

We again overlay the near-source ground motion factor, Nv, from the 1997 UBC even though the 

California Division of Mines and Geology does not include blind thrust faults on the mapR 11Rerl 

to determine the near-source factor (California Department of Conservation, Division of Mines and 

Geology 1998). With the fault dipping 23 degrees and buried 8.0km below the ground surface, the 

fault lies within 10 km of the surface along a 5.1 km section of the north-south line. Consequently, 

we set the near-source factor to 2.0 over this section and the adjacent 2.0 km on either side. The 

maximum displacements and velocities fall outside of this region where we set the near-source factor 

to 2.0. The shallow dip of the fault causes the shear wave to reach the surface 5.0 km from the top 
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Figure 7.45: Comparison of north-south and vertical velocity time histories at sites 81 and 82 for a 
layered half-space versus a homogeneous half-space. 
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of the fault, which lies 3.0 km outside the region where the near-source factor reaches its maximum 

value. Additionally, the maximum displacements and velocities decay rapidly north of their peak 

values, while the near-source factor remains constant for several kilometers before decaying. Thus, 

the shape of the near-source factor does not appear to correlate with the distribution of the shaking. 
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Figure 7.47: Maximum magnitudes of the horizontal displacement and velocity vectors along a 
north-south line running over the center of the fault for the three rupture speeds. The thick, dashed 
line indicates the near-source ground motion factor, Nv, from the 1997 Uniform Building Code. 

Maximum Slip Rate 

Scenarim; vslO, base, and vs20 with maximum slip rates of 1.0 m/sec, 1.5 m/sec, and 2.0 m/sec, 

respectively, illustrate the limited sensitivity of the ground motions to changes in the maximum slip 

rate. The maximum slip rate influences the amplitude of motion in the north-south direction at sites 

Sl and 82, as shown in figure 7.48, but not the shape of the waveforms. Increasing the slip rate from 

1.0 m/sec to 1.5 m/sec has a more significant impact than increasing the slip rate from 1.5 m/sec 

to 2.0 m/sec, whereas in the case of the strike-slip fault , each increment in the maximum slip rate 

yields roughly the same changes in the amplitudes of the time histories. The vertical component 

remains relatively unchanged as we vary the maximum slip rate. 

Figure 7.49 shows that the maximum horizontal displacements and velocities on the ground sur-

face along the north-south running centerline also display a markedly greater sensitivity to increasing 

the maximum slip rate from 1.0 m/sec to 1.5 m/sec than to increasing the maximum slip rate from 

1.5 m/sec to 2.0 m/sec. The shapes of the curves of the maximum displacements and velocities 
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of the fault, which lies 3.0 km outside the region where the near-source factor reaches its maximum 

value. Additionally, the maximum displacements and velocities decay rapidly north of their peak 

values, while the near-source factor remains constant for several kilometers before decaying. Thus, 

the shape of the near-source factor does not appear to correlate with the distribution of the shaking. 
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north-south line running over the center of the fault for the three rupture speeds. The thick, dashed 
liue imlicaLes Lhe near-source ground motion factor, Nv, from the 1997 Uniform Building Code. 

Maximum Slip Rate 

Scenarios vslO, base, and vs20 with maximum slip rates of l.Om/sec, l.5m/sec, and 2.0m/sec, 

respectively, illustrate the limited sensitivity of the ground motions to changes in the maximum slip 

rate. The maximum slip rate influences the amplitude of motion in the north-south direction at sites 

Sl and 82, as shown in figure 7.48, but not the shape of the waveforms. Increasing the slip rate from 

1.0 m/sec to 1.5 m/sec has a more significant impact than increasing the slip rate from 1.5 m/sec 

to 2.0 m/sec, whereas in the case of the strike-slip fault, each increment in the maximum slip rate 

yields roughly the same changes in the amplitudes of the time histories. The vertical component 

remains relatively unchanged as we vary the maximum slip rate. 

Figure 7.49 shows that the maximum horizontal displacements and velocities on the ground sur­

face along the north-south running centerline also display a markedly greater sensitivity to increasing 

the maximum slip rate from 1.0 m/sec to 1.5 m/sec than to increasing the maximum slip rate from 

1.5 m/sec to 2.0 m/sec. The shapes of the curves of the maximum displacements and velocities 
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Figure 7.48: Comparison of north-south and vertical velocity t ime histories at sites Sl and 82 for 
the three maximum slip rates. 

closely match those in figure 7.4 7 for the three rupture speeds and continue to peak approximately 

three kilometers south of end of the region where the near-source factor is 2.0. 

Hypocenter Location 

We examine the variability of the ground motions with changes in the location of the hypocenter using 

scenario base (where hypocenter HA sits at the center of the bottom edge of the fault) , scenario hybc 

(where hypocenter HB sits at the northeast corner of t he fault), scenario hyme (where hypocenter 

HC sits near the middle of the east edge of the fault) , and scenario hymc (where hypocenter HD 

sits near the fault center). Figure 7.34 gives the precise hypocenter locations. Figure 7.50 shows 

the maximum horizontal and vertical velocities on the ground when we place the hypocenter at 

the middle edge (hypocenter HC) for scenario hyme. By comparing the maximum velocities from 

scenario base (figure 7.42) with those from scenario hyme (figure 7.50) , we see that moving the 

hypocenter location from the bottom center (hypocenter HA) to the middle edge (hypocenter HC) 

causes a dramatic shift in the spatial variation of the maximum velocities. The peak velocity remains 

near the top of the fault , but the velocities above the west edge of the fault increase relative to the 

rest of the domain. Additionally, the peak horizontal velocity decreases from 1.2 m/sec to 0.55 m/sec. 

Site Sl lies along a different azimuth for each hypocenter location, while site 82 lies along three 
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Figure 7.4~: Comparison ot north-south and vertical velocity time histories at sites Sl and S2 for 
the three maximum slip rates. 

closely match those in figure 7.47 for the three rupture speeds and continue to peak approximately 

three kilometers south of end of the region where the near-R011rce factor iR 2.0. 

Hypocenter Location 

We examine the variability of the ground motions with changes in the location of the hypocenter using 

scenario base (where hypocenter HA sits at the center of the bottom edge of the fault), scenario hybc 

(where hypocenter HB sits at the northeast corner of the fault), scenario hyme (where hypocenter 

HC sits near the middle of the east edge of the fault), and scenario hymc (where hypocenter HD 

sits near the fault center). Figure 7.34 gives the precise hypocenter locations. Figure 7.50 shows 

the maximum horizontal and vertical velocities on the ground when we place the hypocenter at 

the middle edge (hypocenter HC) for acenario hyme. Dy comparing the maximum velodLie:o fiurn 

scenario base (figure 7.42) with those from scenario hyme (figure 7.50), we see that moving the 

hypnr.PntPr lnr.atinn from the bottom center (hypocenter HA) to the middle edge (hypocenter HC) 

causes a dramatic shift in the spatial variation of the maximum velocities. The peak velocity remains 

near the top of the fault, but the velocities above the west edge of the fault increase relative to the 

rest of the domain. Additionally, the peak horizontal velocity decreases from 1.2 m/sec to 0.55 m/sec. 

Site Sl lies along a different azimuth for each hypocenter location, while site 82 lies along three 
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Figure 7.49: Maximum magnitudes of the horizontal displacement vectors and velocity vectors along 
a north-south line running over the center of t he fault for the t hree maximum slip rates. The thick, 
dashed line indicates the near-source ground motion factor, Nv, from t he 1997 Uniform Building 
Code. 

different azimuths for the four hypocenter locations. As we might expect from our observations 

of the ground motions from the strike-slip fault, at both sites Sl and 82 the displacement time 

histories for the different hypocenter locations given in figure 7.51 differ considerably when the sites 

lie along substantially different azimuths, but match reasonably well when the sites lie along similar 

azimuths. In general, the displacement amplitudes increase as we increase the distance the fault 

ruptures toward the site and place the site closer to an azimuth of zero degrees . For example, 

at site Sl moving the hypocenter from the middle center (hypocenter HD) to the bottom center 

(hypocenter HA) increases the distance the rupture propagates towards the site and places site Sl 

closer to an azimuth of zero degrees. As a result, the peak horizontal displacement increases by 86% 

(from 0.36m to 0.67m). Similarly, shifting the hypocenter from the bottom corner (hypocenter RB) 

to the bottom center (hypocenter HA) increases the distance the rupture propagates towards the 

site, and the peak horizontal displacement increases by 76% (from 0.38 m to 0.67m) . At site 82 we 

find that placing the hypocenter at either location at the bottom of the fault or at either location 

at mid-depth results in displacement time histories with similar shapes. As we expect from using 

the same final slip distribution, the final displacements remain the same as we change the location 

of the hypo center. 

We again turn our attention to the maximum horizontal displacements and velocities along the 
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Figure 7.49: Maximum magnitudes of the horizontal displacement vectors and velocity vectors along 
a north-south line running over the center of the fault for the three maximum slip rates. The thick, 
dashed line indicates the near-source ground motion factor, Nv, from the 1997 Uniform Building 
Code. 

different azimuths for the four hypocenter locations. As we might expect from our observations 

of the ground motions from the strike-slip fault, at both sites Sl and 82 the displacement. time 

histories for the different hypocenter locations given in figure 7.51 differ considerably when the sites 

lie along substantially different azimuths, but match reasonably well when the sites lie along similar 

azimuths. In general, the displacement amplitudes increase as we increase the distance the fault 

ruptures toward the site and place the site closer to an azimuth of zero degrees. For example, 

at site Sl moving the hypocenter from the middle center (hypocenter HD) to the bottom center 

(hypocenter HA) increases the distance the rupture propagates towards the site and places site Sl 

closer to an azimuth of zero degrees. As a result, the peak horizontal displacement increases by 86% 

(from 0.36m to 0.67m). Similarly, shifting the hypocenter from the bottom corner (hypocenter HE) 

to the hnt.tom center (hypocenter HA) increases the distance the rupture propagates towards tho 

site, and the peak horizontal displacement increases by 76% (from 0.38m to 0.67m). At site 82 we 

find that placing the hypocenter at either location at the bottom of the fault or at either location 

at mid-depth results in displacement time histories with similar shapes. As we expect from using 

the same final slip distribution, the final displacements remain the same as we change the location 

of the hypocenter. 

We again turn our attention to the maximum horizontal displacements and velocities along the 
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Figure 7.50: Maximum magnitudes of the horizontal and vertical velocity vectors at each point on 
the ground surface for scenario hyme. The white line indicates the projection of the fault plane onto 
the ground surface, and the yellow circle identifies the epicenter. 

north-south line running over the center of the fault . We see only a minor shift in the shape of 

the maximum displacements in figure 7.52 as we move the hypocenter. The shape of the maximum 

velocities exhibits a more dramatic shift with fluctuations in the hypocenter location. The curve 

of the maximum velocities for scenario hymc contains two peaks, while the curves for the other 

scenarios contain only one. For scenario hyme the peak of the curve of maximum velocities falls 

near the middle of the region where the near-source factor is at its maximum value, whereas for the 

other scenarios the peak of the curve falls near the southern edge of the region where the near-source 

factor is at its maximum value. 

Slip Distribution 

The simulations use o. homogeneous slip distribution in scenario base, a weakly heterogeneous slip 

distribution with a bias towards slip on the upper half of the fault plane in scenario sliptop, and a 

weakly heterogeneous slip distribution with a bias towards slip on the lower half of the fault plane in 

scenario slipbot. Figure 7.53 shows that the maximum velocities on the ground surface become more 

symmetric about the north-south centerline when we use the slip distribution with a bias towards 

slip at the surface. This slip distribution contains a large asperity near the southwest corner of 

thP. fa111t anci inr.rP.asP.s t.hP. vP.lor.it.iP.s :::i.t. t.hP. s11rr01miling lor.:::i.t.ions_ HP.nr.P. , whilP. t.hP. slip ilirP.r.t.ion 

tends to increase the velocities above the southeast corner of the fault , the large asperity near the 

southwest corner of the fault tends to increase the velocities above the southwest corner of the fault. 

Consequently, the spatial variation of the maximum velocities becomes more symmetric and contains 

one peak approximately five kilometers south of each corner at the top of the fault . 

Upon examining the displacement time history at site Sl in figure 7.54, we see small variations in 
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north-south line running over the center of the fault. We see only a minor shift in the shape of 

the maximum displacements in figure 7.52 as we move the hypocenter. The shape of the maximum 

velocities exhibits a more dramatic shift with fluctuations in the hypocenter location. The curve 

of the maximum velocities for scenario hymc contains two peaks, while the curves for the other 

scenarios contain only one. For scenario hyme the peak of the curve of maximum velocities falls 

near the middle of the region where the near-source factor is at its maximum value, whereas for the 

uther ::;ceuarlu::; the peak of the curve falls near the southern edge of the region where the near-source 

factor is at its maximum value. 

Slip Distribution 

The simulations use a homogeneous slip distribution in scenario base, a weakly heterogeneous slip 

distribution with a bias towards slip on the upper half of the fault plane in scenario sliptop, and a 

weakly heterogeneous slip distribution with a bias towards slip on the lower half of the fault plane in 

scenario slipbot. Figure 7.53 shows that the maximum velocities on the ground surface become more 

symmetric about the north-south centerline when we use the slip distribution with a bias towards 

slip at the surface. This slip distribution contains a large asperity near the southwest corner of 

the fault and increases the velocities at the surrounding locations. Hence, while the slip direction 

tends to increase the velocities above the southeast corner of the fault, the large asperity near the 

southwest corner of the fault tends to increase the velocities above the southwest corner of the fault. 

Consequently, the spatial variation of the maximum velocities becomes more symmetric and contains 

one peak approximately five kilometers south of each corner at the top of the fault. 

Upon examining the displacement time history at site Sl in figure 7.54, we see small variations in 
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for the four hypocenter locations. 

1.5 

E' 
~ 1.0 
E 
Q) 
0 

io.5 
(/} 

0 

0 
Q) 

~ 1.0 

c 
·g 0.5 
Q) 
> 

Figure 7.52: Maximum magnitudes of the horizontal displacement vectors and velocity vectors along 
a north-south line running over the center of the fault for the four hypocenter locations. The thick, 
dashed line indicates the near-source ground motion factor , N v, from the 1997 Uniform Building 
Code. 



Site S1 
0.9 

I 0.6 -c: 0.3 CJ.) 

E 0.0 CJ.) 
(.) 

-5. -0.3 

cS -0.6 

~ -0.9 
-1.2 

0.9 
I 0.6 
c 
CJ.) 0.3 
E 0.0 CJ.) 

~ -0.3 HA (bullum c.;enter) 

5-0.6 
HB (bottom corner) 
HC (middle edge) 

§-0.9 - - HD (middle center) 
-1.2 

0 5 10 15 20 
Time (sec) 

96 

0.4 

0.2 

0.0 

-0.2 

-0.4 

-0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

-0.6 
25 0 

Site S2 

,:;;::::~'-·-
'A/ - -

5 10 15 
Time (sec) 

20 25 

Figure 7.51: Comparison of north-south and vertical displacement time histories at sites Sl and S2 
for the four hypocenter locations. 

1.5 

g 
53 1.0 
E 
CJ.) 

> z 
...; 
.s 
~ 

u... 
2.0 ~ 
1.6 g ~0.5 

(/) 

Ci ~~'""=_:;;_:;:::_.-::.:"':--~-~ 1 :6 ~ ..--------. 
Cll HA (bottom center) 0.0....__,_ __ ....__,_ __ .....___. __ .....____, __ _,_ __ .___._ __ ...__, 

1.5 

z 

> z 

HB (bottom corner) 
HC (middle edge) 
HD (middle center) 
Nv 

Figure 7.52: Maximum magnitudes of the horizontal displacement vectors and velocity vectors along 
a north-south line running over the center of the fault for the four hypocenter locations. The thick, 
dashed line indicates the near-source ground motion factor, Nv, from the 1997 Uniform Building 
Code. 



Horizontal Component 
30 

20 
'E 
6 10 
£: 
t 
0 0 z 
I 

..c: -10 ~ 
0 
lfJ 

-20 

-30 
-30 -20 -10 0 1 0 20 

West-East (km) 

97 

Vertical Component 

30 - 30 - 20 - , 0 0 , 0 20 30 
West-East (km) 

1.5 

:::::: 
rn 
(1j 

0.5 2 

0.0 

>.. 
+-" 

(.) 

0 
Q) 

> 

Figure 7.53: Maximum magnitudes of the horizontal and vertical velocity vectors at each point on 
the ground surface for scenario sliptop. The white line indicates the projection of the fault plane 
onto the ground surface, and the yellow circle identifies the epicenter. 

the amplitude of the displacement pulse associated with the shear wave arrival, but the remainder of 

the displacement time history appears unaffected by the weak heterogeneity in the slip distributions. 

At site 82 the ground motion displays no noticeable variation until nearly ten seconds, after which 

the ground motion in the north-south direction remains noticeably different for the remainder of the 

record. In other words, the surface waves radiating towards the north appear more sensitive to the 

spatial distribution of slip than the shear waves. As we move the bias in slip from the lower half 

towards the upper half (considering homogeneous slip to have a bias in the center) , the amplitudes 

of the surface waves increase because slip near the ground surface excites the surface waves more 

efficiently. 

The maximum horizontal displacements and velocities along the north-south centerline given in 

figure 7 .55 display only minor variations when we add heterogeneity to the slip distributions. We 

find two distinct trends in the curve of the maximum displacements; these include a shift in the 

peak of the curve towards the north when we use the slip distribution with a bias towards slip at 

depth, and an increase in the maximum displacements above the north end of the fault when we 

use the slip distribution with a bias towards slip near the surface. As we noted in our discussion of 

the waveforms at sites 81 and 82 , the increase in the displacement amplitudes towards the north is 

associated with larger amplitude surface waves that are excited more efficiently by the increase in 

slip at shallower depths. 

The only noticeable trend in the curve of the maximum velocities is the slight variation in the 

peak maximum velocity. This variability arises from shifts in the locations of the slip asperities. 

With only minor variations in the shapes of the curves of the maximum horizontal displacements 

and velocities , it is no surprise that the shape of the curve for the UBC near-source factor again 
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the amplitude of the displacement pulse associated with the shear wave arrival, but the remainder of 

the displacement time history appears unaffected by the weak heterogeneity in the slip distributions. 

At site 82 the ground motion displays no noticeable variation until nearly ten seconds, after which 

the ground motion in the north-south direction remains noticeably different for the remainder of the 

record. In other words, the surface waves radiating towards the north appear more sensitive to the 

spatial distribution of slip than the shear waves. As we move the bias in slip from the lower half 

towards the upper half (considermg homogeneous slip to have a bias in the center), the amplitudes 

of the surface waves increase because slip near the ground surface excites the surface waves more 

efficiently. 

The maximum horizontal displacements and velocities along the north-south centerline given in 

figure 7.55 display only minor variations when we add heterogeneity to the slip distributions. We 

find two distinct trends in the curve of the maximum displacements; these include a shift in the 

peak of the curve towards the north when we use the slip distribution with a bias towards slip at 

depth, and an increase in the maximum displacements above the north end of the fault when we 

use the slip distribution with a bias towards slip near the surface. As we noted in our discussion of 

the waveforms at sites Sl and 82, the increase in the displacement amplitudes towards the north is 

associated with larger amplitude surface waves that are excited more efficiently by the increase in 

sli]J aL tshalluwer llejJLhs. 

The only noticeable trend in the curve of the maximum velocities is the slight variation in the 

peak maximum velocity. This variability arises from shifts in the locations of the slip asperities. 

With only minor variations in the shapes of the curves of the maximum horizontal displacements 

and velocities, it is no surprise that the shape of the curve for the UBC near-source factor again 
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fails to capture the shape of either the maximum displacements or the maximum velocities. 

Average Slip 

Increasing the average slip from 1.0 m in scenario base to 2.0 m in scenario slip2 causes a dramatic 

increase in the displacement amplitudes, but only a small increase in the velocity amplitudes. This 

doubling of the average slip changes the moment magnitude from 6.8 to 7.0. In figure 7.56 we find at 

sites 81 and 82 that varying the average slip affects both the north-south and vertical displacement 

components. We observe that the final displacements double as do the amplitude of the displacement 

pulse at site 81 and the amplitudes of the surface waves at site 82. Maintaining the same maximum 

slip rate of 1.5 m/sec causes the peak slip rates to occur later in the slip time history and leads to a 

slight delay in the peak amplitudes for an average slip of 3.0 m compared to an average slip of 2.0 m. 
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Figure 7.56: Comparison of north-south and vertical displacement time histories at sites Sl and 82 
for the two values of average slip. 

The maximum horizontal displacements and velocities on the north-south centerline in figure 7.57 

reflect the relatively larger impact that changing the average slip has on the displacements compared 

to the velocities. The maximum displacements exhibit a nearly uniform increase by a factor of two 

consistent with our observations at sites Sl and 82. The maximum velocities, on the other hand, 

show only a minor increase towards the south with little variation near the peak values. The peaks 

of the maximum displacements and maximum velocities remain approximately three kilometers to 
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the south of the region where we set the near-source factor to a value of 2.0. 

Fault Depth 

We study the effect that changing the depth of the fault has on the ground motions using scenario 

base where the top of fault sits at a depth of 8.0 km, scenario fault4km where the top of the fault 

sits at a depth of 4.0 km, and faultOkm where the top of the fault sits at the ground surface. As we 

raise the top of the fault, the slip occurs in softer material which reduces the moment magnitude 

from 6.8 (8.0km depth) to 6.7 (4.0km depth) and 6.6 (0.0km depth). While the moment magnitude 

decreases, the ground motions become much more severe, particularly directly above the top of the 

fault. Figure 7.58 illustrates the increase in the maximum velocities above the top of the fault and 

the shift in the peak values in the horizontal direction from 5.0 km south of the top of the fault 

to directly above the top of the fault. The peak maximum horizontal velocity increases by 50%, 

and the area subjected to maximum velodLitb exc1:::1:::Jiug, 1.1 m/bec jum]Jl:i frum rnug,hly 20 tiquare 

kilometers to more than 200 square kilometers. 

As evident in figure 7.59, raising the top of the fault from 8.0 km to 4.0 km causes a substantial 

increase in the amplitude of the displacement pulse at site Sl. Raising the top of the fault an 

additional 4.0 km, so that the top of the fault reaches the ground surface, leads to a velocity pulse of 



Horizontal Component 
30 

20 

'E 
6 10 
..c 
t:: 
0 0 z 
I 

..c -10 =5 
0 
(/) 

-20 

-30 
-30 -20 -10 0 10 20 

West- East (km) 

101 

Vertical Component 

30 -30 -20 -10 0 10 20 30 
West-East (km) 

1.5 

0.0 

(._) 

0 
Q) 

> 

Figure 7.58: Maximum magnitudes of the horizontal and vertical velocity vectors at each point on 
the ground surface for scenario fault4km. The white line indicates the projection of the fault plane 
onto the ground surface, and the yellow circle identifies the epicenter. 

about the same size, but with three peaks; this implies the single pulse in displacement becomes a 

double pulse, or in other words, the rebound in displacement overshoots the final value. Additionally, 

raising the top of the fault to the surface causes a delay in the arrival of the shear wave at site 81 , 

because the rupture is completely contained in the softer material near the surface; to reach site 

81 the shear waves must traverse a more horizontal path with a greater distance through the softer 

material where the shear wave speed is slower. In contrast to site 81 , as we raise the fault , the 

shear waves continue a near vertical propagation path to site 82 , and the reduction in propagation 

distance needed to reach the site leads to earlier arrivals of the shear waves. Furthermore, the 

increased motion of the hanging wall contributes to a more pulse like motion in the horizontal 

direction at site 82. The motion in the vertical direction is less sensitive to the changes in the depth 

of the fault. 

Figure 7.60 displays the maximum horizontal displacements and velocities along the north-south 

centerline. As we previously noted, for the base case with a fault depth of 8.0 km, the curve for the 

maximum displacements and the curve for the maximum velocities peak 5.0 km south of the top 

of the fault . When the top of the fault sits 4.0 km below the surface, the maximum displacements 

and velocities contain two peaks. The first peak is associated with the maximum amplitude of the 

shear wave, while the second peak is associated with the maximum amplitude of the surface waves. 

Note that the second peak falls in a region where the near-source factor has decayed to near its 

minimum value. When the top of the fault lies at the ground surface, the maximum displacements 

directly above the fault exhibit a greater increase than those up-dip from the fault , and the peak 

displacements fall near the center of the region where the near-source factor is a maximum. The 

curve of the maximum velocities becomes complicated due to shear waves reflecting off the surface 
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about the same size, but with three peaks; this implies the single pulse in displacement becomes a 

double pulse, or in other words, the rebound in displacement overshoots the final value. Additionally, 

raising the top of the foult to the surface causes a delay in the arrival of the 5hear wave at bite Sl, 

because the rupture is completely contained in the softer material near the surface; to reach site 

Sl the shear waves must traverse a more horizontal path with a greater distance through the softer 

material where the shear wave speed is slower. In contrast to site Sl, as we raise the fault, the 

shear waves continue a near vertical propagation path to site 82, and the reduction in propagation 

distance needed to reach the site leads to earlier arrivals of the shear waves. Furthermore, the 

increased motion of the hanging wall contributes to a more pulse like motion in the horizontal 

direction at site 82. The motion in the vertical direction is less sensitive to the changes in the depth 

of the fault. 

Figure 7.60 displays the maximum horizontal displacements and velocities along the north-south 

centerline. As we previously noted, for the base case with a fault depth of 8.0 km, the curve for the 

maximum displacements and the curve for the maximum velocities peak 5.0 km south of the top 

of the fault. When the top of the fault sits 4.0 km below the surface, the maximum displacements 

and velocities contain two peaks. The first peak is associated with the maximum amplitude of the 

shear wave, while the second peak is associated with the maximum amplitude of the surface waves. 

Note that the second peak falls in a region where the near-source factor has decayed to near its 

minimum value. When the top of the fault lies at the ground surface, the maximum displacements 

directly above the fault exhibit a greater increase than those up-dip from the fault, and the peak 

displacements fall near the center of the region where the near-source factor is a maximum. The 

curve of the maximum velocities becomes complicated due to shear waves reflecting off the surface 
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Figure 7.59: Comparison of north-south and vertical velocity time histories at sites Sl and 82 for 
the three depths of the top of the fault. 

and interacting constructively and destructively with shear waves generated at other locations on 

the fault. Thus , we find the shape of the curve for the near-source factor better fits the general 

shape of the curve of the maximum velocities when the fault lies close to the surface. This comes as 

no surprise since the California Division of Mines and Geology includes only strike-slip faults and 

thrust faults with surface rupture in the maps used to determine the near-source factor . 
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Figure 7.59: Comparison of north-south and vertical velocity time histories at sites Sl and 82 for 
the three depths of the top of the fault. 

and interacting constructively and destructively with shear waves generated at other locations on 

the fault. Thus, we find the shape of thfl r.11rvfl for thP ni>i:ir-source factor better fits the general 

shape of the curve of the maximum velocities when the fault lies close to the surface. This comes as 

no surprise since the California Division of Mines and Geology includes only strike-slip faults and 

thrust faults with surface rupture in the maps used to determine the near-source factor. 



103 

1.5 > 
/' 

z 
E - ~ 2.0 o~ 

~ 1.0 
\ t) 

cu 
\ 1 .6 LL. E 

\ ~ Q) 
Q) 

\ () 
<.) 

~ 1.2 ~ io.5 \ ' ..... 1.0 Cf) (J) .... 
0 ro Okm Q) 

0.0 z 4km 

1.5 > 8km 
z Nv, O km 

0 -- , , 2.0 c5 Nv, 4 km 
Q) t) Nv, 8 km ~ 1.0 ~ \ \ cu 

/ ~ \ 

' ' ' 1.6 ~ 
~ v~'1 \ \ 

' ' 2 ·g 0.5 \ ' ' ' 1.2 5 ."':'-" "' ' , , , , 
Ci) ,,__~ ' 1.0 ~ ' 

..... '· -·- '"" > --- . ..... . _ ..... _ :::::: . cu 
Q) 

0.0 z 
-25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 

NS Distance from Fault (km) 

Figure 7.60: Maximum magnitudes of the horizontal displacement vectors and velocity vectors along 
a north-south line running over the center of the fault for the three depths of the top of the fault. 
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7 .3 Discussion 

7.3.1 Ground Motion Characteristics 

The earthquake simulations on the strike-slip fault share several distinct characteristics. When slip 

occurs in the softer material in the top six kilometers of the domain, the rupture slows considerably 

in this region causing the curvature of the rupture front to progressively increase. As a result, the 

reinforcement of the shear wave by the rupture stabilizes and the peak velocities become uniform 

along the strike of the fault for a significant portion of the fault length. Due to positive reinforcement 

by the rupture, the peak displacements tend to increase along the strike of the fault away from the 

epicenter until the end of the fault where they decay rapidly with distance. A typical ground motion 

contains a large amplitude shear wave followed by a train of surface waves with nearly the same 

o,mplitudc. The most severe ground motion occurs in the direction normal to the fault. 

We also find several common features for the simulations where the top of the thrust fault lies 

8.0km below the ground surface. The shallow dip of the fault to the north causes the maximum 

displacements and velocities to occur approximately five kilometers south of the top of the fault. 

The rake angle of 105 degrees directs the largest displacements and velocities towards the southeast. 

A large, single pulse in displacement and a corresponding large, double pulse in velocity characterize 

the ground motions towards the south (the forward direction). The ground motions towards the 

north (the backward direction) are much less severe. As we raise the top of the fault towards the 

ground surface, the motion above the fault becomes more severe, and a pulse-like shear wave arrival 

appears in the displacements above the north end of the fault. 

7.3.2 Sensitivity of Grmmcl Motions to Variations in Parameters 

Based on the strike-slip and thrust fault simulations we assess the sensitivity of the ground motions 

to our systematic variation of the simulation parameters. 

Material Properties 

The ground motions exhibit a strong sensitivity to vertical variation of the material properties 

(homogeneous half-space versus layered half-space). Softening the material near the surface leads 

to a substantial increase in the displacement and velocity amplitudes. In the strike-slip simulations 

when we place the top of the fault at the ground surface, we observe large amplitude Love and 

Rayleigh waves in the layered half-space, but not in the homogeneous half-space. In the thrust fault 

simulations when we bury the fault beneath the ground surface, the horizontal component dominates 

the motion in the layered half-space, while the horizontal and vertical components are much smaller 

and roughly the same in the homogeneous half-space. 
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Rupture Speed 

Increasing the rupture speed compresses the time histories in duration, and we observe a corre­

sponding narrowing of the ground motion pulses. Additionally, the reinforcement of the shear wave 

by the rupture becomes more efficient as the rupture speed increases, because the rupture follows 

more closely behind the shear wave. This lf~acls to l::i.rger ::implitmfr~s in hnth the di,,phwernent and 

velocity time histories in the strike-slip and thrust simulations as we increase the rupture speed from 

703 to 903 of the local shear wave speed. However, in the thrust fault simulations this increase 

is predominantly confined to the horizontal components. The ground motions appear moderately 

sensitive to variations in the rupture speed. 

Maximum Slip Rate 

The ground motions display slightly less sensitivity to the changes in the maximum slip rate than 

they do to the changes in the rupture speed. Increasing the maximum slip rate narrows the rupture 

front which positions the center of the rupture front closer behind the shear wave. As a result, the 

efficiency of the reinforcement of the shear wave improves, as it does when we increase the rupture 

speed, and we observe similar increases in the amplitudes of the ground motions. However, on both 

faults the phase arrivals remain relative unchanged. Hence, the maximum slip rate influences the 

amplitude of the motion but not the shapes of the waveforms. 

Hypocenter Location 

At a given site the sensitivity of the ground motions to the location of the hypocenter depends on 

the relative changes in azimuth. In the strike-slip simulations the azimuth of the sites in the forward 

direction remains nearly constant and we observe very small variations in the motions when we 

move the hypocenter location. On both faults when the azimuth changes significantly as we move 

the hypocenter, we find large variations in the ground motions. In some cases the site may move off 

of or onto a nodal line, and the ground motions increase or decrease by very large amounts. 

Slip Distribution 

The ground motions exhibit little sensitivity to the addition of weak heterogeneity into the di:stri­

bution of final slip, particularly in the forward direction. However, we expect the high frequency 

portion of the ground motions, which we do not include in the simulations, to exhibit a greater 

sensitivity to heterogeneity in the final slip. In the thrust fault simulations the dip location of 

the heterogeneity affects the amplitude of the surface waves at sites towards the north (backward 

direction). In the strike-slip simulations we use a strongly heterogeneous slip distribution which 

does reduce the displacement amplitudes for a considerable portion of the time histories. As in 
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the thrust fault simulations with weak heterogeneity, the ground motions in the backward direction 

show a greater sensitivity to the strong heterogeneity in the final slip. In the forward direction we 

do observe some minor changes in the waveforms, but the peak displacements and velocities remain 

relatively unchanged. 

GnweB (1998) alt:So found uea1-::iuurce g,ruuw.l muLlurn; relaLlvely imsem1itive to weakly heteroge­

neous slip distributions; however, he found large reductions in the peak velocities with a strongly 

heterogeneous distribution of slip. In contrast to our simulations, he lengthened the slip duration on 

the shallow portion of the fault based on the kinematic source model of the 1992 Landers earthquake 

from Wald and Heaton (1994). This significantly disrupts the efficiency of the reinforcement of the 

shear wave by the rupture and leads to a decrease in the amplitude of the motion. As we noted in our 

discussion of our choice of the slip rates and rupture speeds in section 7.1, considerable uncertainty 

still exists regarding the duration of slip for very shallow rupture, and lengthening of the duration 

of slip near the surface may or may not be realistic. 

Average Slip 

Bcco,uoc the dioplaccmcnt solution is linear in alip, when we incre<l.t:Se the average :;li]! uu Lhe foulL, 

the displacement amplitudes increase about the same relative amount as the increase in average 

slip. Maintaining the same rupture speed and maximum slip rate prevents a similar increase in the 

velocities; the amplitudes of the velocity time histories show only a minor increase. Additionally, by 

keeping the maximum slip rate the same, the larger slip leads to a longer rise time. Consequently, we 

observe a slight delay in the peak displacement and velocity amplitudes as we increase the average 

slip. Thus, the displacements exhibit a strong sensitivity to different values of average slip, while 

the velocities exhibit a weak sensitivity. 

Fault Depth 

In our simulations the ground motions are most severe when the slip occurs near the surface. With 

shallow slip we observe large amplitude surface waves with several cycles of deformation. We often 

do not observe these features in the real earth, because dissipation and lateral heterogeneity in the 

material properties tend to disrupt the generation of surface waves. Raising the top of the thrust 

fault causes an increase in the motion directly above the fault and shifts the largest motion from 

south of the top of the fault to directly above the top of the fault. On both the strike-slip fault and 

the thrust fault, the ground motions display a strong sensitivity to the depth of the fault. 

2400 square kilometers. If we retrofit these structures so that similar damage occurs at 0.60 m/sec 

instead of 0.40m/sec, then the same earthquake would cause the same level of damage over an area 

of only 1600 square kilometers. This is a 33% reduction in the area where severe damage occurs. 
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7.3.3 Implications for Earthquake Engineering 

This sensitivity study shows that in order to accurately model ground motion, in particular ground 

motion for engineering design, we must carefully select the values for those parameters that cause the 

most variability in the resulting ground motion. Thus, for a given site we must know the material 

properties of the surrounding region and the location and geometry of all nearby faults. To simulate 

the most severe cases of ground motion, the hypocenter should be placed such that the rupture 

propagates as far as possible towards the site under study, and that the site lies close to an azimuth 

of zero. Additionally, we must select reasonable values of rupture speed, maximum slip rate, and 

average slip; if the amplitudes of the displacement time histories are particularly important, we need 

to pay special attention to the average slip. As long as the site sits in the forward direction. the 

spatial distribution of slip on the fault has little influence on the long-period ground motions, so we 

need not model it with as great of care. 

We consider the distribution of the ground motions on the ground surface for the base cases 

in the sensitivity study (scenario baseII for the strike-slip fault and scenario base for the thrust 

fault). Figure 7.61 displays the area on the ground surface where the maximum horizontal displace-

mentei a,nd velocities exceed a, giveu vCJ.lue. The CJ.rem; where Lhe maximum values exceed Om and 

0 m/ sec correspond to the total areas of the ground surfaces in the two domains. The entire ground 

surfaces in the domains experience at least small displacements and velocities, so the curves are 

relative fiat for small levels of shaking. The shapes of the curves corresponding to the maximum 

horizontal displacements for the strike-slip and thrust faults closely agree, as do the shapes of the 

curves corresponding to the maximum horizontal velocities for the two types of faults. The area 

subjected to a given maximum displacement or velocity decreases rapidly as we appro~ch the peak 

maximum displacements and velocities. This is associated with the rapid increase in the maximum 

displacements and velocities as we approach the fault. 

Near the middle of the curves the area subjected to a given level of ground motion increases 

very rapidly for small changes in the level of ground motion. This means that if a region contains 

many structures that experience damage for these moderate lew~ls of grrnmcl motion (rPl!'ithrP to the 

severe ground motion near the fault), then only minor improvements in the structural capacity may 

drastically reduce the area of the region where damage occurs. Alternatively, small degradations in 

the structural capacity of these structures lead to a substantial increase in the area where damage 

occurs. We illustrate the former of these two cases with an example. If a given type of structure 

generally suffers severe damage when the maximum horizontal velocity exceeds 0.40m/sec, then the 

strike-slip earthquake in scenario base would cause severe damage in these structures over an area of 

2400 square kilometers. If we retrofit these structures so that similar damage occurs at 0.60 m/sec 

instead of 0.40 m/sec, then the same earthquake would cause the same level of damage over an area 

of only 1600 square kilometers. This is a 33% reduction in the area where severe damage occurs. 

with the moment magnitude. 
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Figure 7.61: Areas on the ground surface in the strike-slip and thrust fault domains where the 
maximum horizontal displacements and velocities exceed a given value. 

The same strategy applied at higher velocities generates similar percentage reductions, but the sizes 

of the areas are much smaller. 

The difference in the average slip between the base case for strike-slip fault (2.0 m) and the base 

case for the thrust fault (1.0 rn) creates the shift in the areas subjected to maximum displacements 

exceeding a given value. We cannot attribute the difference in the areas for the maximum velocities 

t.n t.hP rliffPrPnrP in lWPTl'l[';P slip hPtWPPTI thp hBSP CBSE'S for the strike-slip fault and thrust fault, 

because in the sensitivity studies we find the maximum velocities relatively insensitive to the average 

slip. Instead, we attribute the increase in the area subjected to a given maximum velocity to the 

differences in the fault geometries. For the thrust fault the shallow dip angle of 23 degrees and 

the 28 km fault length leads to the velocity pulse sweeping across a large area, but the 18 km fault 

width limits the distance over which the rupture reinforces the shear wave. For the strike-slip fault 

the vertical dip of the fault tends to confine the velocities pulses to the region close to the fault 

(small area), but the 60 km fault length allows the rupture to reinforce the shear wave over a much 

greater distance compared to the thrust fault. The longer fault length of the strike-slip fault has a 

grco.tcr impact than the shallow dip angle of the thrust fault, so that the area on the ground c;urfoce 

subjected to a given velocity level is larger for the strike-slip fault than for the thrust fault. 

The simulations also reveal some information regarding ground motions and moment magnitude. 

As we might expect and the simulations confirm, we find variability in the ground motions for a 

given moment magnitude for different sites and scenarios with different rupture speeds, slip rates, 

and hypocenter locations. However, we generally expect the severity of the ground motion to increase 

with the moment magnitude. 



109 

For the strike-slip fault and the thrust fault, table 7.8 gives the maximum displacements and 

velocities for the base case and those scenarios with different moment magnitudes. We see that 

increasing the average slip increases the moment magnitude, and it is accompanied by the expected 

increase in maximum displacement with little change in the maximum velocity. We also see that 

raising or lowering the depth of the fault causes an equal or greater change in moment magnitude 

accompanied by larger variations in maximum displacement and velocity, but the motions are more 

severe as the moment magnitude decreases. The moment magnitude depends on the shear modulus 

which is smaller in the softer material near the surface, so that the moment magnitude decreases 

as we raise the fault closer to the ground surface. Thus, the moment magnitude provides a poor 

measure of the severity of the ground motion with variations in the depth of the fault. The seismic 

potency, which is defined as the product of the average slip and fault area, provides a slightly better 

measure of the severity of shaking by removing the dependence on the 5hear modulu5. 

Fault Type Scenario Moment Seismic Average Maximum Maximum 
Magnitude Potency Slip Horizontal Horizontal 

Displacement Velocity 
(m3) (m) (m) (m/sec) 

Strike-Slip baseII 7.0 1.8 x lOfj 2.0 2.2 2.9 

slip3 7.1 2.7x109 3.0 2.5 2.8 

fault4km 7.1 1.8x109 2.0 1.2 1.7 

fault8km 7.1 1.8x109 2.0 0.95 1.0 

Thrust base 6.8 5.0x 108 1.0 1.1 1.2 

slio2 7.0 1.0x109 2.0 1.8 1.4 
fault4km 6.7 5.0x 108 1.0 1.6 1.8 

faultOkm 6.6 5.0x108 1.0 1.3 1.5 

Ta,ble 7.8: Va,riations in the peak maximum di5placement5 and velocitie5 with moment magnitude. 

For each group of simulations in the sensitivities studies with the strike-slip fault and the thrust 

fault, we compared the shapes of the curves of the maximum displacements and maximum velocities 

along a line running normal to the strike of the fault with the shape of the curve of the Uniform 

Building Code near-source factor, Nv. If we assume that the maximum displacements and velocities 

correlate with the seismic demand imposed on a building, then we want the shape of the near-source 

factor curve to match the general shapes of the maximum displacements and the maximum velocities; 

we do not correlate the maximum displacements or velocities with specific values of the near-source 

factor. For the strike-slip fault we find that the near-source factor accurately captures the location 

of the peak motion and the decay with distance from the fault. 

We apply the formula for the near-source factor from the 1997 Uniform Building Code to all 

three depths of the thrust fault. The California Division of Mines and Geology, on the other hand, 

does not include blind thrust faults on the maps used to determine the near-source factor (California 
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Department of Conservation, Division of Mines and Geology 1998). For the thrust fault the near­

source factor reaches a maximum value where the fault lies within 10 km of the surface and 2.0 km 

on either side. When we place the fault close to the ground surface, this region does receive the 

more severe ground motion. However, the peak motion falls outside this region when we bury the 

fault 8.0 km below the ground surface. The near-source factor remains at a maximum value for only 

2.0 km on the up-dip side of the fault regardless of the depth of the fault. In order for the shape of 

the near-source factor to more closely follow the shapes of the maximum displacements and velocities 

for buried thrust faults, it must be either shifted towards the up-dip side of the fault or extended in 

that direction. 

We now consider a modification in the formulation of the near-source factor curve to account for 

blind thrust faults. We adopt the conservative approach of increasing the near-source factor in the 

up-dip direction rather than shifting the entire C'.11rve. Tmit.eacl of mdne; t.hP top of thP fa.11 lt. as thE> 

reference point in determining the distance from the fault in the region up-dip from the fault, we 

use the up-dip projection of the fault plane to determine the distance from the fault. Consequently, 

the modified near-source factor remains at its maximum value over the region where the extension 

of the fault plane lies within 10 km of the ground surface and 2.0 km on either side as illustrated in 

figure 7.62. Our modification includes variations in both the location of the top of the fault and the 

angle of dip of the fault plane; however, we can test only the application to various fault depths, 

because we do not vary the dip angle in the simulations. We reproduce figure 7.60 in figure 7.63 

with the modified near-source factor. For all three depths of the fault, the peak maximum horizontal 

displaccmcnto and vclocitico gcncmlly lie in the center of the region where we Bet the modified near­

source factor to its maximum value. The conservative nature of the modification is apparent by the 

narrow peaks in the curves of the maximum displacements and velocities compared to the peaks in 

the modified near-source factor. This alteration of the near-source factor remains consistent with 

1997 UBC near-source factor as it applies to strike-slip faults and thrust faults with surface rupture. 

Thus, the shape of the modified near-source factor provides a much better fit to the pattern of strong 

shaking than the near-source factor, Nv, in the 1997 UBC. 

7 .3.4 Geophysical Implications 

As discussed in the preceding section, the moment magnitude often, but not always, correlates with 

the severity of the ground motion. Hanks and Kanamori defined the moment magnitude so that 

it is proportional to the radiated energy and it is compatible with the empirical energy-magnitude 

relation developed by Gutenberg and Richter (Heaton et al. 1986). Figure 7.64 displays the radiated 

energy as a function of moment magnitude for all of the strike-slip and thrust fault simulations 

along with the energy-magnitude relation of Gutenberg and Richter given by equation (7.1) (Lay 

and Wallace 1995). The Gutenberg-Richter energy-magnitude relation gives the radiated energy 
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Figure 7.62: Modified version of the 1997 UBC near-source. The upper portion shows the modified 
near-source factor and the 1997 UBC near-source factor, Nv. The lower portion of the figure shows 
the location of the fault plane and the up-dip projection. 

in ergs in terms of the surface wave magnitude, Md Using thP e11pressions for the surface wave 

magnitude and moment magnitude as a function of the seismic moment, we manipulate the energy­

magnitude relation to give the radiated energy in terms of the moment magnitude. 

logE 11.75 1.5Mw (7.1) 

We compute the radiated energy during the simulation before low-pass filtering the velocities. Hence, 

the radiated energy reflects the energy emitted at all wavelengths from the prescribed rupture, 

although we construct the rupture to generate predominantly long-period motion as discussed in 

section 5.2. 

We see that the radiated energies from the simulations agree with the Gutenberg-Richter rela­

tionship. The relative scatter for each of the faults depends on whether we plot the rad~ated energy 

using a linear scale or a log scale. As the rupture speed approaches intrinsic wave speeds, directivity 

effects cause displacement pulses with short durations and large amplitudes. Consequently, chang­

ing the duration of slip via the maximum slip rate or changing the rupture speed causes changes 

in the particle velocities. These changes cause fluctuations in the radiated energy and lead to the 

:;ca,LLer iu Llie rauiaLeu euergy al <:t giveu u1u111t:mL maguiLuue. BtJC<:tUtitl uur t:iiuiulaLium; iucluue uuly 

the long-period ground motions, we expect the radiated energies from the simulations to be smaller 

than thmie predided hy the G11tenherg-Rfr:hter rnlationship. The radiated energies for the t.hrnst. 

fault simulations display this trend, but the radiated energies for the strike-slip fault tend to be 

larger than those predicted by the Gutenberg-Richter relationship. However, the radiated energies 

from the strike-slip simulations probably lie well within the scatter of the events used to generate the 

Gutenberg-Richter relationship. Because larger earthquakes tend to radiate energy at longer periods, 
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Figure 7.63: Maximum magnitudes of the horizontal displacement vectors and velocity vectors along 
a north-south line running over the center of the fault for the three depths of the top of the fault . 
The thick, dashed lines indicate the modified near-source ground motion factor for the three fault 
depths . 

we do expect relatively larger radiated energies from the strike-slip fault simulations, which have 

larger moment magnitudes, than the thrust fault simulations. Relative to the Gutenberg-Richter 

relationship, our radiated energies do display this trend. 

When we use prescribed ruptures, we ig;nore the dynamics of the rupture process and set the 

rupture speed independent of the maximum slip rate. This means that we may choose a rupture 

speed that is incompatible with our choice of slip rate. Moreover, while the slip time history may 

meet our spectral content needs related to the discretization size, the shape may not conform to 

those found in nature. This is not a problem when we want to simulate recent events where these 

parameters are well known. However, for hypothetical events it is difficult to select physically realistic 

parameters without an understanding of the dynamics of the rupture process . 
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we do expect relatively larger radiated energies from the strike-slip fault simulations, which have 

la:rger moment magnitudes, than the thrust fault simulations. Relative to the Gutenberg-Richter 

relationship, our radiated energies do display this trend. 

When we use prescribed ruptures, we ignore the dynamics of the rupture process and set the 

rupture speed independent of the maximum slip rate. This means that we may choose a rupture 

speed that is incompatible with our choice of slip rate. Moreover, while the slip time history may 

meet our spectral content needs related to the discretization size, the shape may not conform to 

those found in nature. This is not a problem when we want to simulate recent events where these 

parameters are well known. However, for hypothetical events it is difficult to select physically realistic 

parameters without an understanding of the dynamics of the rupture process. 
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Chapter 8 Dynamic Failure 

We incorporate the frictional sliding on the fault surface into the earthquake source with the goals 

of creating more physically realistic ruptures and better understanding the physics of the rupture 

proccoo. We specify tho friction model and tho initial trnctiono on tho fault, and the dynamic 

behavior of the rupture controls the slip on the fault as a function of time. 

8.1 Earthquake Source 

We need to make only a few, simple modifications to the model of the earthquake source to add the 

ability to simulate the earthquakes using dynamic failure. Instead of specifying the displacements at 

the slip degrees of freedom, we use the friction model to specify the forces actmg on the slip degrees 

of freedom. We must also include the stresses from the surrounding region that act on the fault, 

'\Yhich we call the tectonic otrcssca because 11 significnnt portion comes from plate tectonics. 

We assume that the coefficient of friction is a function of slip distance and slip rate, and possibly, 

a number of state variables. We use the usual definition of slip rate, i.e., the magnitude of slip 

velocity. When sliding occurs on a plane, the definition of slip distance depends on the length 

scale of the surface asperities (surface roughness) that create the friction. If the asperities are large 

compared to the distance over which slip occurs, then an appropriate definition of slip distance is 

the magnitude of the distance a point slides from its original position. This definition allows the slip 

distance to remain constant if sliding occurs along the circumference of any circle centered at the 

point where sliding begins. On the other hand, if the asperities are small compared to the distance 

over which sliding occurs, then the slip distance should increase independently of the slip path, and 

an appropriate definition of slip distance is the total distance over which sliding has occurred. We 

will assume that the asperities are small compared to the slip distance and use the total sliding 

distance as the slip distance. Regardless of how we choose to define the slip distance, the friction 

force always acts in the opposite direction of the sliding. 

8.1.1 Governing Equations with Friction 

We replace the force vector in the governing equation, equation (2.2), with the difference between 

the friction force vector, {Ff}, and the vector of tectonic forces, {Ft}, as shown in equation (8.1). 

[M]{u(t)} + [C]{u(t)} + [K]{u(t)} = {Ft(t)}- {F1(D(t),D(t))} (8.1) 
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The minus sign in front of the friction force vector indicates that we choose to explicitly include the 

dissipative nature of the friction force in the governing equation, so that the vector { F1 } acts in the 

direction of sliding. We will discuss the formulation of the vector of tectonic forces in section 8.1.2. 

Following the same procedure that we used for the prescribed ruptures discussed in section 2.2, 

we integrate the differential equation using the central-difference scheme. The expression for the 

displacement at time t + At is 

( 
1 1 ) . At2 [M] + 2At[C] {u(t + ~t)} = {Ft(t)} {F1(D(t),D(t))} 

+ (;t2 [M] - [KJ) {u(t)} (8.2) 

- (-
1 

[M] - -
1 

[CJ) {u(t - At)}. At2 2At 

We compute the friction at time t assuming that we know the slip rate at time t. In the 

central-difference scheme the velocity at time t depends on the displacement at time t + At, so that 

computing the slip rate at time t requires knowing the slip at time t +At, which we do not know. 

To remedy this difficulty, we assume that the time step is small enough so that the slip rate does not 

change significantly in a single time step. This approximation may cause problems if the slip rate 

exhibits a strong influence on the coefficient of friction. Fortunately, we do not use friction models 

with this feature. Thus, we use the slip rate at time t - At, instead of the slip rate at time t, to 

compute the friction force at time t. Equation (8.3) gives the amended version of the expression for 

the displacement at time t + At. 

(;t2[M] + 2~t[cJ) {u(t+At)} {Ft(t)} {F1(D(t),D(t At))} 

+ ( /1~2 [M] [K]) { u(t)} (8.3) 

- (-
1 

[M] - -
1
-[c]) {u(t-At)} 

At2 2At 

8.1.2 Forces on Slip Degrees of Freedom 

We must transform the initial tractions applied on the fault surface into forces acting on the slip 

degrees of freedom. We specify the initia,l tractions on the foult surface u:sing the :spatial interpolation 

procedure described in section 2.5. At each node on the fault, we interpolate from the given initial 

tractions and convert the tractions to forces using the node's tributary a.ma on thP. fa11lt pla.nP.. WA 

assume that the fault is in equilibrium and apply the forces equally to both sides of the fault. We 

transform the forces into the slip coordinate frame using the transformation matrix [Tslip] given 

by equation (2.19). Equation (8.4) shows the simplified expression for the force vector applied at 

the degrees of freedom for a node on the fault with tributary area A. Following the conventions 
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used in section 2.4.1, (p, q, r) denotes the coordinates on the fault plane, the subscript 1 denotes the 

degrees of freedom associated with the movement of the hanging wall, and the subscript 2 denotes 

the degrees of freedom associated with the movement of the footwall. 

Fp1-P2 Tp 

Fg1-q2 Tq 

Fr1-r2 =Ah 
Tr 

(8.4) 
Fp1+P2 0 

Fq1+q2 0 

Fr-1+r2 0 

The initial tractions do not contribute any forces to the average degrees of freedom, which we 

associate with movement of both sides of the fault in the same direction, because we assume that 

the fault surface is in equilibrium. 

The friction force does not require any transformation; the product of the coefficient of friction 

and the force acting on the relative normal degree of freedom gives the magnitude of the friction 

force vector acting on the slip degree of freedom. The dynamic deformation in the domain may 

cause variations in the normal forces acting on the fault. We compute the dynamic normal force at 

the slip degrees of freedom as part of the formulation of the right-hand side of the time stepping 

equation (equation (8.3)). By checking that the normal force remains compressive, we confirm that 

clamping the relative normal displacement across the fault remains valid. In other words, because 

tensile tractions imply opening of the fault, which we do not allow, we want the normal tractions to 

remain compressive. 

The appearance of the difference between the tectonic force vector and the friction force vector 

in the equation of motion implies that we may create the same sliding behavior from an infinite 

combination of tectonic and friction forces by keeping the difference between them the same. In 

other words, given the sliding behavior and the values of the tectonic forces and friction forces, if 

we are given different tectonic forces, we may adjust the friction model to maintain the same sliding 

behavior. 

8.1.3 Initiation of Sliding 

To initiate sliding at a point on the fault, the friction force must be less than the sum of the other 

forces acting on that point. We start the earthquakes by increasing the tectonic forces in order to 

overcome the friction. During the first 0.5 sec of the simulation, we increase the friction force above 

the level given by the friction model in order to create gradual failure and prevent sudden initiation 

of the rupture. At each point on the fault where failure occurs, we transition the friction force from 
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the critical force necessary to prevent slip at time t = 0 to the force given by the friction model at 

time t = 0.5 sec. Equation (8.5) gives the expression for the transition of the artificially adjusted 

friction force, FjdJ, from the critical force required to prevent slip, Fer, to the force given by the 

friction model. 

Fadj 
f 

8.1.4 Condition for Termination of ~:Hiding 

(8.5) 

Once a point on the fault starts sliding, it continues sliding until the slip rate decreases and the 

friction force is large enough to "lock" the fault. In more mathematical terms, the sliding stops when 

the friction force becomes larger than the sum of all of the other forces. Because sliding occurs on 

a plane, we must consider the vectors for the forces acting on each node on the fault .. Following the 

conventions of section 2.4.1, we consider the Pl - P2 and qi - q2 sliding degrees of freedom at each 

node on the fault. equation (8.3) with diagonal mass and damping matrices, the magnitude 

of the critical friction force for the ith degree of freedom is 

Fcri (Di(t), Di(t At)) 

[Ft, - A~2 Mi (ui(t +At) - 2u.;(t) + u;(t - At)) - 2~t Ci(ui(t +At) - ui(t - At)) - KijUj(t) I· 
(8.6) 

We do not know the value of ui(t flt) since that is what we want to find; however, when sliding 

stops, ui(t +At) = ui(t), and the critical friction force for the ith degree of freedom becomes 

Fer; (D(t), D(t At))= 

IFti + A
1
t2 Mi (u;(t) ui(t At)) 2~tci (ui(t) ui(t At)) KiJui(t)/. (8.7) 

When sliding stops, the friction force may act in any direction. This implies we do not need to 

account for the current sliding direction in our criterion for terminating the sliding. In other words, 

we only need to determine if the magnitude of the friction force meets or exceeds the magnitude of 

the force required to terminate the sliding. Denoting the friction force at a node on the fault by F1, 

equation (8.8) gives the expression for the condition used to determine if sliding stops at a node on 

the fault with sliding degrees of freedom Pl - P2 and qi - q2· 

(8.8) 
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8.1.5 Average Stress Drop 

Seismologists often use the average stress drop to characterize earthquakes. Modeling the friction 

on the fault allows explicit computation of the stress drop at every point. Equation (8.9) indicates 

how we compute the average stress drop, AO', from the slip degrees of freedom by finding the drop 

in friction force at each node and dividing by the foult area, ;vhcrc N is the number of nodes where 

slip occurred and Ai is the fault tributary area for node i. We follow the same convention that we 

use for stress and denote the friction forces before and after by Fo and F1. A positive stress drop 

signifies a reduction in the stress on the fault. 

(8.9) 

8.2 Initial Tractions on Fault 

The seismic waves generated by the rupturing fault create dynamic stresses in tho suirroundu:tg 

volume. We assume that the other stresses present, such as those due to gravity and plate tectonics, 

do not change on the time scale of the earthquake, so we consider them to be constant. As in the 

prescribed ruptures, we do not need to know the initial stresses throughout the domain to model 

the seismic wave propagation. However, in order to simulate the dynamic failure of the fault, we 

must know the initial stresses acting on the fault surface. These stresses may be found in a number 

of ways, including solution of a static problem, solution of a viscoelastic problem, extrapolated from 

data, or assumed from intuition. Regardless of their source, we resolve the stresses into shear and 

normal tractions acting on the fault surface. Thus, off the fault surface we consider only the dynamic 

stresses, while on the fault surface we consider both the initial and dynamic stresses. 

8.2.1 Effective Normal Tractions 

We will consider gravity arid plate tectonics as sources of normal stresses acting on the fault surface. 

In a self-gravitating, spherical earth with only radial variations in material properties, the weight 

of the material generates lithostatic stresses (total stress due to gravity) with no shear stresses and 

equal axial stresses (Mohr's circle degenerates into a point). For homogeneous material properties, 

the lithostatic stresses increase linearly with depth. In addition to shear stresses, plate tectonics 

also creates normal stresses on the fault surface, especially in the case of inclined faults. The 

presence of water in the interstices of the grains generates pore pressures that decrease the effective 

normal stresses. The three definitive cases include: when the interstices contain no water, when the 

interstices are saturated with water at hydrostatic pressure, and when the interstices contain water 

at pressures greater than hydrostatic pressure. 
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If little or no water sits in the interstices, the pore pressures are negligible and the effective 

normal stresses equal the normal stresses. For homogeneous material properties and much larger 

lithostatic stresses than tectonic normal stresses, the effective normal stresses increase approximately 

linearly with depth. If the interstices are saturated with water, then the pore pressures equal the 

hydrostatic pressures, and the effective normal stresses are the difference between the normal stresses 

and the hydrostatic pressures. Under the assumptions of homogeneous material properties and 

greater lithostatic normal stresses than tectonic normal stresses, the effective normal stresses again 

increase approximately linearly with depth, but at a slower rate due to the presence of hydrostatic 

pore pressures. Finally, if the confining pressures reach high enough levels, the pore pressures may 

approach the normal stresses causing the effective normal stresses to become negligible. In this third 

case the material essentially "floats." The existence of topography and density variations implies 

large shear stresses at depth that require large normal stresses to prevent failure. Consequently, 

except in localized areas, we expect the pore pressures to be no greater than the hydrostatic pressures. 

We also expect the normal stresses on the fault from gravity to be much greater than the stresses 

from plate tectonics, so that the effective normal stresses closely resemble the normal stresses from 

gravity. Researchers often use uniform effective normal stresses for simplicity (Olsen et al. 1997; 

Ben-Zion and Andrews 1998; Madariaga et al. 1998) without acknowledging that assuming uniform 

effective normal stresses with depth implies very large confining pressures. We will examine the 

rupture behavior for all three cases of pore pressure in chapter 9. 

8.2.2 Shear Traction 

Shear tractions on the fault generate the forces that cause slip on the fault surface. As discussed 

above in section 8.1.2, we convert the shear tractions to forces acting on the slip degrees of freedom. 

We apply the shear tractions in the direction of the desired slip and use an asperity (usually circular 

in shape) with a shear stress greater than the failure stress to start the rupture. Many factors, 

such as discretization size, failure stress, and dynamic stress drop, influence the size of the asperity 

necessary to initiate a propagating rupture (Madariaga et al. 1998). 

8.2.3 Effect of Gravity 

In general gravity affects both the normal and shear stresses acting on the fault surface. For a self­

gravitating, spherically symmetric earth with only radial variations in material properties, gravity 

does not cause shear stresses on any planes. However, the earth is not spherically symmetric and 

contains lateral density variations. As a result, the stress field due to gravity generally contains both 

shear and normal stresses. We will use the analogy shown in figure 8.1 between a block on an incline 

plane and a thrust fault to demonstrate the typical effect gravity has on a thrust fault. The tectonic 
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forces push the mountain higher and the block up the incline, while gravity resists the motion. 

= 

Figure 8.1· Analogy between a mountain created by a thrust fault and a block on an incline 

First, we consider the block without gravitational forces present as shown in figure 8.2(a). For 

the block to move up the incline, the shear component of the tectonic force must be greater than 

the friction force, 

Ft cos() > Ft. (8.10) 

After substituting in the coefficient of friction, µt, and simplifying, we find 

µt <cote. (8.11) 

This result does not depend on the tectonic force, which implies that for a small enough coefficient 

of friction, we can move the block up the incline with an infinitesimal amount of force. 

(a) (b) 
Figure 8.2: Block on an incline plane subjected to a horizontal tectonic force, Ft. We denote the 
normal and friction forces acting on the block by Fn and Ft. (a) Neglecting gravitational forces. 
(b) Including gravitational forces. 

Now we consider the same block on an incline under the force of gravity as shown in figure 8.2(b ). 

In order to move the block up the incline, the shear component of the tectonic force must overcome 

both the friction force and the shear force caused by gravity, 

Ft cos() > Ft + mg sin(), (8.12) 

where m is the mass of the block and g is the acceleration of gravity. Substituting in the coefficient 
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of friction and simplifying yields 

D µ f COS e + Sine 
rt> mg . . 

cosB ~ µf sm0 
(8.13) 

In this case a minimum tectonic force exists for sliding to occur. Including gravity increases the 

tectonic force required to move the block, because gravity increases the shear force acting down the 

incline and increases the friction force through an increase in the normal force. Thus, the existence 

of gnivity requires larger tectonic stresses to create slip on a thrusL faulL. Decau~e Lhe ~ei~rnic wave 

propagation does not require knowing the stresses due to gravity, we do not explicitly include the 

contribution of gravity in the stresses on the fault; however, we do include them in the initial shear 

and normal tractions on the fault surface. 

8.2.4 Spatial Distribution of Parameters for Dynamic Failure 

We specify the initial tractions and parameters of the friction model using the spatial interpolation 

procedure outlined in section 2.5. This means that we may apply the same techniques we use to 

create the data points that specify the final distribution of slip on the fault (described in section 5.3) 

to specify the initial tractions and friction model parameters on the fault. This includes both the 

exponential function to taper the shear tractions at the edges of the fault (equation (5.1)) and the 

circular asperities (equation ( 5.2)) to generate heterogeneity in the shear tractions or parameters 

of the friction model. Tapering the shear tractions at the edges of the fault terminates or nearly 

tenninates the propagation of Lhe i uvLurn a~ iL avvruache~ Lhe edge of the fault surface. We start 

the rupture using a circular asperity with a height that corresponds to shear tractions one or two 

percent greater than the failure stress. The one or two perr.ent over the failure stress effectively gives 

the rupture a small kick to start propagating. As we noted in section 8.2.2, many factors influence 

the size of the asperity needed to initiate a propagating rupture. For this reason no relationships 

have yet been found that give the size of the asperity required to initiate a rupture (Madariaga et al. 

1998). 

The normal tractions usually follow one of the three definitive cases described in section 8.2.1. 

When the material properties depend only on depth, we can find closed form solutions for the 

stresses m a self-gravitating, spherical earth as a function of depth. Of course, under simple initial 

conditions, such as uniform effective normal stresses, specifying the effective normal stress is triv­

ial. For lithosto,tic normo,l stresses with negligible pore pressures, equation (8.14) gives the non:nal 

stresses (Mohr's circle degenerates into a point) as a function of depth when the mass density varies 

piecewise linearly with depth. Figure 8.3 shows the set of N control points that define the variation 
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of the mass density with depth. 

( ) g P1 ( 2 2 ) g PJ-1 ( 2 2 ) 
CY[ z = 2Zj-IZ - z - zj-1 + -2 z - 2ZZj - zj-l + 2ZjZ,j-l 

2 Zj-l - Zj Zj-l - Zj 

j-1 

+ L ~(Pi+ Pi-1)(zi - Zi-1) (8.14) 
-i~l 

Equation (8.14) does not account for non-zero pore pressures. For hydrostatic pore pressures, we 

simply replace the mass density at each point in equation (8.14) with the difference between the 

mass density and the mass density of water. 

positive z Zo • Po 

I Zt • Pt 

Z2 • P2 

Zj-1 • PJ-1 
z 

Zj • PJ 

ZN-1 • PN-1 

ZN • PN 

Figure 8.3: Control points that define the piecewise linear variation of the mass density with depth. 
We compute the normal stresses at the location denoted by the open circle with coordinate z. 

8.3 Overview of Rupture Dynamics 

The friction model enables us to examine some of the basic relationships surrounding the dynamics 

of the rupture. We study the rupture dynamics by focusing, first, on the friction stress and, second, 

on the energy. 

8.3.1 Stress and Rupture Dynamics 

We examine the anatomy of the shear stress on the fault near the rupture front shown in figure 8.4 to 

find the relationship between its features and the dynamics of the rupture. From fracture mechanics, 1 

we kuuw llmL aheau uf Lhe ruplure fruuL Lhe ::shear ::sLre::stieti increase and becomes nearly singular 

just ahead of the leading edge of the rupture. At the leading edge of the rupture where slip begins, 

the shear stresses decrease dramatically, and then, depending on the friction model, may or may 

1See Freund (1990) for an extensive discussion on the stress field associated with dynamic fracture. 
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not recover as the slip rate decreases. Of course, in the earth and our finite-element models failure 

occurs at a finite value which prevents the formation of a true singularity. 

Stress 

Slipping region 

Direction of propagation 

Position 

Stress 

Slip begins 
/ 

"Distance" / 
from Failure / 

Initial 
Stress 

. · 1· D~n~mi~ . t ~~:;s 
Stress ,_..._.......;.l ___ _ 
Drop "-. 

Slip ends 

Time 
Figure 8.4: Diagrams of the concentration of shear stress near the rupture front as a function of 
space (left diagram) and as a function of time (right diagram). 

The friction model controls the decrease in friction stress as slip progresses, and therefore, the 

dynamic stress drop. The rate of the dynamic stress drop governs the slip rate with faster decreases 

in shear stress leading to faster increases in slip. The dynamic stress drop and the distance from 

failure (the difference between the failure stress and the initial shear stress) determine the nature of 

the concentration of stress ahead of the leading edge of the rupture. A larger distance from failure 

magnifies the stress concentration, and a larger dynamic stress drop increases the rate of the decay 

of the stress concentration. The increase in shear stress associated with the stress concentration 

dictates when slip occurs at each point and, as a result, the rupture speed. Thus, the slip rate and 

rupture speed are related through the dynamic stress drop. 

8.3.2 Energy and Rupture Dynamics 

We may also study the dynamics of the rupture using energy. The increase in shear stress on the 

fault ahead of the rupture implies storage of strain energy in the surrounding region. As the rupture 

propagates, the rupture front consumes energy through sliding. We associate two forms of energy 

with the sliding. We call the energy dissipated during the decrease in the friction during sliding the 

fracture energy, because it corresponds to the fracture energy in crack models. We associate the 

energy dissipated through sliding at a relatively constant friction stress with the change in thermal 

energy. The sliding also generates the energy radiated in the seismic waves. As we increase the 

fracture energy, the rupture consumes more energy leaving less available for sliding. In such cases 

the slip rates and rupture speed decrease (Fukuyama and Madariaga 1998). Likewise, when we 

decrease the fracture energy, more energy is available for sliding, and the slip rates and rupture 
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speed increase. If the rupture dissipates more energy than the energy released, then the rupture 

slows and eventually stops. 

The fracture energy involves both the failure stress and the rate of change of the friction stress 

with slip. For an increment of slip, dD, the increment in fracture energy per unit area, dG, is 

dG ()1dD, (8.15) 

where () f is the friction stress. Expanding the friction stress about the failure t:iLress (Of ail) Lu firt>L 

order in dD and substituting yields 

(8.16) 

This expression shows that the failure stress does not uniquely determine the fracture energy. We 

may adjust the slope of the friction model to change the fracture energy. For example, if we lower 

the failure stress, we may maintain the same fracture energy by reducing the rate at which the 

friction stress decreases with slip. 

This technique plays a critical role in manipulating the dynamics of the rupture in the finite-

element simulations. We want the wave propagation to govern the local element sizes. However, 

accurately capturing the stress concentration in shear stress near the leading edge of the rupture 

requires much smaller elements than those necessary to model the wave propagation (Madariaga 

et aL 1998). With extremely high resolution meshes, the failure stress will develop only over a very 

localized region. We want to capture the general behavior of such failure without modeling such 

localized behavior. As we increase the element size, the concentration in shear stress decreases for a 

given dynamic stress drop. In other words, the buildup of stress becomes distributed over a longer 

length, which reduces the stress concentration. Consequently, we must reduce the failure stress for 

the rupture to propagate. Thus, the ability of a continuous medium to generate nearly singular 

stresses near the leading edge of the rupture front means the fracture energy, not the precise level of 

the stress at failure, governs the propagation of the rupture. On the other hand, in a discrete model, 

such as our finite-element models, the failure stress becomes a length-scale dependent parameter, 

but the fracture energy continues to control the behavior of the rupture. Luckily, we may manipulate 

the friction model as demonstrated in figure 8.5 to maintain the same fracture energy as we change 

the failure stress. This means that we may use larger elements than those required to accurately 

capture the stress concentration and may allow the wave propagation to control the discretization 

size without altering the behavior of the rupture. 
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D 
D~ D~ 

Figure 8.5: Illustration of two sets of parameters for the slip-weakening friction model (denoted by 
the superscripts a and b) that have the same fracture energy with different failures stresses ( O"fail 

and CJ.~ail) and characteristic slip distances (D~ and D~). 

8.4 Friction Models 

The simulation software implements eight models of sliding friction. All of the models define a 

functional form of the coefficient of friction, and we compute the friction force from the product of 

the normal force and the coefficient of friction. We do not implement the state-rate friction models 

advocated by several researchers, including Scholz (1998) and Dieterich (1992), because they are 

based upon viscoelastic creep behavior (Persson 1997). Slip during earthquakes occurs at rates on 

the order of meters per second (Heaton 1990). These slip rates lie well outside the range of the 

creep slip rates of millimeters per year used in the laboratory experiments to develop the state rate 

friction models. Thus, we choose to use simple, ad hoc friction models with characteristics, such 

as weakening with the progression of slip and re-strengthening with the decline of slip rate, that 

produce realistic rupture behavior and capture the general features of more complicated models. 

We focus on capturing the macroscopic characteristics of the sliding. We lump small-scale effects 

into the friction model, because several possible mechanisms have been suggested to explain the 

reduction in friction during sliding. These include fluid pressurization (Sleep 1997), contrasts in 

material properties (Ben-Zion and Andrews 1998), acoustic fiuidization (Melosh 1996), and normal 

vibrations (Tworzydlo and Hamzeh 1997). In other words, we do not model any particular mech-

ani:sm that reduces the friction stre:ss; in:stead, we incorporate Lhe:>e eITedt:> iuLu Lhe mmlel uf the 

coefficient of friction and do not account for the reduction in the friction stress by modifying the 

normal stresses. We will discuss the dynamics of the rupture process for several of these n.d hnr 

friction models in chapter 9 and chapter 10. Table 8.1 provides descriptions of the parameters used 

in the functional forms of the coefficient of friction. 
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Variable Dimensions Description 

µf dimensionless coefficient of friction 
µmax dimensionless maximum coefficient of friction 

µmin dimensionless minimum coefficient of friction 
D length slip distance 

v,iJ length/time slip rate 
Do length characteristic slip distance 
Vo length/time characteristic slip rate 
s dimensionless state variable in shear melting-freezing model 

To time characteriStic time .. . ----

Table 8.1: Description of the variables involved in the friction models. 

8.4.1 Constant 

The coefficient of friction remains constant during sliding. This is the simplest friction model 

possible. 

µf =µmax (8.17) 

8.4.2 Two-Phase 

The coefficient of friction takes a value of µrnin when sliding occurs and µmax otherwise. This is the 

simplest friction model that with constant normal tractions leads to the stick-slip behavior associated 

with earthquakes. The instantaneous drop in the coefficient of friction implies no energy is required 

for fracture. This model corresponds to the slip-weakening I friction model with D 0 0. 

8.4.3 Slip-Weakening I 

D(t) o 
iJ(t) i- o 

(8.18) 

We modify the two-phase friction model by decreasing the coefficient of friction over a slip distance 

of D 0 • This includes the latent heat (fracture energy) generated by fracture in the friction model. 

We assume instantaneous recovery of the coefficient of friction upon the termination of sliding, so 

that as soon as sliding stops, the coefficient of friction increases to µ,max. We will refer to this model 

as slip-weakening friction, because the material exhibits a weakening in shear strength as slip occurs. 

Figure 8.6 illustrates how the coefficient of friction decreases from µmax (labeled umax in the figure) 
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to µmin (labeled umin in the figure) over a characteristic slip distance of D 0 • 
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Figure 8.6: Slip-weakening I friction model. 

8.4.4 Slip-Weakening II 

(8.19) 

In this case, instead of a linear decrease in the coefficient of friction with slip distance, we decrease 

the coefficient of friction inversely with slip distance as shown in figure 8.7. 

(8.20) 
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Figure 8.7: Slip-weakening II friction model. 
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8.4.5 Rate-Weakening I 

This model is analogous to the slip-weakening I friction model with the decay as a function of slip 

distance replaced by a decay as a function of slip rate. 

D(t) > V0 

(µmax µmin)~ D(t) S Vo 
(8.21) 

8.4.6 Rate-Weakening II 

This model is analogous to the slip-weakening II friction model with the decay as a function of slip 

distance replaced by a decay as a function of slip rate. 

· Vo 
/If ( D( f)) = /I.min + (Jl,rnare - Jl,rnin) -.---

D( f) +Vo 
(8.22) 

8.4. 7 Slip- and Rate-Weakening 

Following Madariaga et al. (1998) we create a friction model that depends on slip distance and slip 

ratP. hy taking the greater of the two coefficients of friction determined from the slip-weakening I 

and rate-weakening I friction models. We will often refer to this model as slip- and rate-weakening. 

We replace Jl'max in the rate-weakening I friction model with µpost to allow different shear strengths 

before and after slip. Figure 8.8 illustrates the variation of the coefficient of friction with both slip 

distance and slip rate; we also show a typical path of the coefficient of friction during sliding. 
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Figure 8.8: Slip- and rate-weakening friction model. The thick line indicates a typical trajectory of 
the coefficient of friction. 
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8.4.8 Shear Melting-Refreezing 

This model comes from Persson (1997) and contains several of the same general features of the slip­

and rate-weakening model. However, the coefficient of friction depends on the history of the slip 

rate. Figure 8.9 displays a typical trajectory of the coefficient of friction during a slip event. 

We denote the state of the sliding surface by tho state variable {]. When a 1 the surfocc is in 

a "solid" state with a high coefficient of friction, and when s = 0 the surface is in a ''fluid" state 

with a low coefficient of friction. Although Persson derives the friction model associating the low 

level of friction with a fluid state and the high level of friction with a solid state, the physics of the 

friction model do not explicitly involve melting and refreezing; the friction model involves transitions 

between two states with two different coefficients of friction. In this friction model the characteristic 

slip distance refers to the sliding distance over which "melting" occurs, and the characteristic time 

varies inversely with the rate at which areas "refreeze." 

(8.23) 

s(t) s(t))(- ln(l s(t)))i 
s(t)D(t) 

Do 
(8.24) 

When no sliding occurs, we have two equilibrium states where the coefficient of friction does not 

change with time: µ f = µmin when s 0 and µf = µmax when s 1. If the system is not in 

equilibrium and not sliding, s :;!:;-s(l s) > 0 because 0 < s < 1, and the surface refreezes (s--+ 1). 

We integrate the state equation using the forward difference scheme to obtain the value of the state 

variable at time t + tlt. 
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s(t))(- ln(l - s(t))) ~ (8.25) 

00 
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Figure 8.9: Shear melting-refreezing friction model. The thick line indicates a typical trajectory of 
the coefficient of friction. 
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Chapter 9 

Half-Space 

Dynamic Failure in a Homogeneous 

We begin our examination of dynamic failure with simulations in a homogeneous half-space. We 

study the behavior of the rupture, including the role of fracture energy, the effects of the free surface 

on the rupture, and the effects of the various friction models on the ground motions. We also 

consider different variations in the effective normal stresses with depth and their implications on the 

parameters of the friction model. 

We will use some of the basic features of ruptures observed in nature to judge the behavior of the 

simulated ruptures. Heaton (1990) examined the rupture behavior of seven earthquakes and found 

uu ::>y:;tematic variation:; in the :;lip di:;tributions with depth. On the other hand, we do expect 

some systematic variations in the slip distribution for theoretical, constant stress drop earthquakes 

(Heaton and Heaton 1989) When the fault reaches the free surface, for a uniform stress drop the 

largest slip occurs along the free surface due to the reduction in stiffness. Likewise, when we bury 

the fault, the largest slips occur near the center of the fault. Although difficult to resolve, Heaton 

(1990) did not find any clear variations in the duration of slip with depth. Consequently, we want 

relatively uniform maximum slip rates. We will also assume that the nominal tectonic tractions may 

be derived from application of relatively uniform stresses or uniform strains (the two are equivalent 

in homogeneous half-spaces). 

9.1 Finite-Element Models 

We focus on the general characteristics of the rupture behavior for these simulations. Consequently, 

where possible, we consider only the volume immediately surrounding the fault to reduce the com­

putation effort and storage requirements. This allows these simulations to run on a Sun workstation. 

When we need to examine dynamic failure in a homogeneous half-space with a larger fault, we use 

the finite-element model for the homogeneous half-space from section 7.1. 

9.1.l Strike-Slip Fault 

We enclose the 16 km long and 9.9 km wide fault in a domain 30 km long, 14 km wide, and 16 km 

deep as shown in figure 9.1. The top of the fault sits at the ground surface. We impose horizontal 

shear stresses to generate left-lateral slip on the north striking, vertical fault. 
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Figure 9.1: Orthographic projection of the domain geometry for the strike-Rlip fanlt.. The h1.hel HA 
denotes the location of the hypocenter. We will examine the waveforms at site Sl. 

We use IDEAS to create the finite-element model at coarse resolution and the 2x refinement 

procedure to generate a nominal node spacing of 660 m. We again model wave propagation down to 

periods of 2.0 sec with the same material properties as the homogeneous half-spaces with prescribed 

ruptures in chapter 7. Using the 4x refinement procedure reduces the period by an additional factor 

of two, but increases the number of elements by a factor of eight as illustrated in table \:J.l. 

Table 9.1: Sizes of the finite-element models at various resolutions for the domain containing the 
strike-slip fault. 

9.1.2 Thrust Fault 

The domain with dimensions shown in figure 9.2 contains a 9.9km long and 11.2km wide thrust 

fault that dips 3b degrees to the south. We bury the fault 5.3 km below the ground surface, and 

impose shear stresses on the fault surface 105 degrees from the strike to the east. Table 9.2 gives the 

sizes of the finite-element model created at coarse refinement using IDEAS and after 2x refinement. 
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Figure g 2· Orthographic projection of the domain geometry for the thrust fault. The label HA 
denotes the location of the hypocenter. We will examine the waveforms at site Sl. 

Table 9.2: Sizes of the finite-element models at various resolutions for the domain containing the 
thrust fault. 

9.2 General Features of Dynamic Rupture 

We consider rupture on the strike-slip fault in the homogeneous half-space described in section 9.1.l. 

We follow the lead of some of the other researchers who simulate earthquakes using dynamic failure, 

such as Madariaga et al. (1998) and Ben-Zion and Andrews (1998), and begin by assuming uniform 

effective normal stresses. Recall from section 8.2.1 that this variation in the effective normal stress 

is generally used for simplicity. 

From the subsurface rupture length and average slip relationship from Wells and Coppersmith (1994) 

we expect an average slip of 0.5 m on a strike-slip fault this size. The twera,ge streaa drop on 

a rectangular, vertical, strike-slip fault in a homogeneous Poissonian half-space generally follows 
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equation (9.1) where l and w denote the length and width of the fault (Heaton et al. 1986). 

D 
D..O' = Cµ­

w 

where 

CD w 

c~{ CD+ 0.9(1- ~) w < l < 2w 

Cn 0.9 l > 2w 

Gn ~ { 1.6 surface rupture 

2.1 deeply buried faults 

(9.1) 

Substituting in for the shear modulus and fault width, we find that we expect an average stress 

drop of 1.3 MPa. The recovery of the coefficient of friction upon termination of the slidmg means 

that the average stress drop will be less than the maximum dynamic stress drop. As a result, we 

must use a dynamic stress drop that is than the expected average stress drop to generate 

comparable slip. Consequently, based on a trial simulation we impose a maximum dynamic stress 

drop of 2.0 MPa to produce approximately 0.5 m of slip. 

Initial Conditions 

We will assume that the earthquake does not completely relieve the initial stress and apply uniform 

initial shear tractions of 4.0 MP a. We still need to determine a value for the failure stress. We 

expect the initial stresses to lie somewhere between the minimum sliding shear stresses and the 

shear stresses at failure. A small distance from failure (the difference between the failure stress and 

the initial shear stress) implies that the fault is close to failure and the rupture will propagate very 

fast. At the other extreme, a large distance from failure inhibits propagation of the rupture. Thus, 

we want to avoid the extreme cases and expect the initial shear stresses to be about midway between 

the minimum sliding shear stresses and the shear stresses at failure. In this case and in nearly all 

other cases, we select the distance from failure to match the maximum dynamic stress drop. As 

a result, the initial shear stresses lie halfway between the minimum sliding shear stresses and the 

failure stresses. 

Matching the distance from failure with the maximum dynamic stress drop gives a failure stress 

of 6.0 MPa. Assuming a typical value of 0.6 for the coefficient of friction at failure (Persson 1997) 

yields a normal traction of 10 MPa. We need to keep in mind that at seismogenic depths in the earth 

we find effective normal stresses as high as 500 MPa. We want to produce a smooth slip distribution, 

so we choose a uniform dynamic stress drop. This implies a minimum coefficient of friction of 0.2. 

Table 9.3 summarizes the friction model parameters and initial tractions, and figure 9.3 displays the 

shear and normal tractions on the fault surface. We initiate the rupture with a circular asperity 
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with a radius of 1.8 km whose center sits 5.0 km below the ground surface and 5.0 km north of the 

south end of the fault. 
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µmax 0.6 
µmin 0.2 
Do 0.15m 

Normal Traction -lOMPa 
Shear Traction 6.0MPa 

Table 9.3: Friction model parameters and initial tractions for scenario ssbase. 
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Figure 9.3: Shear and normal tractions on the strike-slip fault for the base case which features 
uniform effective normal stresses and no variations of the coefficient of friction parameters with 
depth. 

Characteristics of Earthquake 

ThP. gP.nP.r~.1 fP.at.11rP.R nf the rupture conform to what we expect in an earthquake. As shown in 

figure 9.4 , thP. rnpt11rP. init.iat.P.R in t.hP. aspP.rit.y ~ .nil prnp~.g~.t.P.s ~.r.rnss t.hP. fa11 lt. _ ThP. rnpture ex-

pands as an ellipse with a faster rupture speed in the direction of slip compared to the direction 

perpendicular to slip. This differs from the prescribed ruptures where we use a uniform rupture 

speed, but it does make sense physically. In the direction of slip, the rupture displays mode-II crack 

behavior (shearing) , and in the direction perpendicular to slip, the rupture displays mode-III crack 

behavior (tearing) . 

When the fracture energy is small, the stress intensities in the anti-plane (mode-III) direction 

exceed those in the in-plane (mode-II) direction (Madariaga et al. 1998) . As a result , we would 

expect ruptures to propagate faster in the direction perpendicular to slip (anti-plane direction) . 

However, Madariaga et al. found that ruptures with this limited amount of fracture energy are 

numerically controlled, so that the numerical solution fails to model the rupture front accurately. 

As the fracture energy increases, the rupture speed in the direction of slip tends to exceed the speed 
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with a radius of 1.8 km whose center sits 5.0 km below the ground surface and 5.0 km north of the 

south end of the fault. 
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Table 9.3: Friction model parameters and initial tractions for scenario ssbase. 
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Figure 9.3: Shear and normal tractions on the strike-slip fault for the base case which features 
uniform effective normal stresses and no variations of the coefficient of friction parameters with 
depth. 

Characteristics of Earthquake 

The general features of the rupture conform to what we expect in an earthquake. As shown in 

figure 9.4, the rupture initiates in the asperity and propagates across the fault. The rupture ex­

pands as an ellipse with a faster rupture speed in the direction of slip compared to the direction 

perpendicular to slip. This differs from the prescribed ruptures where we use a uniform rupture 

speed, but it does make sense physically. In the direction of slip, the rupture displays mode-II crack 

behavior (shearing), and in the direction perpendicular to slip, the rupture displays mode-III crack 

behavior (tearing). 

When the fracture energy is small, the stress intensities in the anti-plane (mode-III) direction 

exceed tho5e in the in-plane (moJe-II) Jiredluu (Madariaga et al. 1998). As a result, we would 

expect ruptures to propagate faster in the direction perpendicular to slip (anti-plane direction). 

However, Madariaga et al. found that ruptures with this limited amount of fracture energy are 

numerically controlled, so that the numerical solution fails to model the rupture front accurately. 

As the fracture energy increases, the rupture speed in the direction of slip tends to exceed the speed 
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Figure 0.4: Snapshots of slip rate on the strike-slip fault for the base case. 
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in the direction perpendicular to slip due to the asymmetry in the shear wave radiation pattern 

(Madariaga et al. 1998). We observe precisely this type of behavior; in the direction parallel to the 

slip we observe a rupture speed of l.7km/sec (compared to a shear wave speed of 3.3km/sec) , and 

in the direction perpendicular to the slip we observe a rupture speed of 1.4 km/sec. These values 

correspond to rupture speeds of roughly 50% and 40% of the shear wave speed. We may increase 

this slow rupture speed to a more realistic value by decreasing the fracture energy without changing 

the fundamental behavior of the rupture. 

Au eigliL kilurneLer luug µurLiuu of Lhe rupture front encounters the free surface almo8t 8imul-

taneo usly, w liich Jnumt Lically reJ uce::; Lhe re::;i::; Lauce Lu ::;lilliug uear Lhe ceu Ler uf Lhi::; µur Liuu uf 

the rupture front. This creates rapid slip near the surface with a high apparent velocity along the 

ground surface at 4.0 sec. The reduced resistance to slip generates a small reflection in slip off the 
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Figure 9.4: Snapshots of slip rate on the strike-slip fault for the base case. 

in the direction perpendicular to slip due to the asymmetry in the shear wave radiation pattern 

(Madariaga et al. 1998). We observe precisely this type of behavior; in the direction parallel to the 

slip we observe a rupture speed of l.7km/sec (compared to a shear wave speed of 3.3km/sec), and 

in the direction perpendicular to the slip we observe a rupture speed of 1.4 km/sec. These values 

correspond to rupture speeds of roughly 50% and 40% of the shear wave speed. We may increase 

this slow rupture speed to a more realistic value by decreasing the fracture energy without changing 

the fundamental behavior of the rupture. 

An eight kilometer long portion of the rupture front encounters the free surface almost simul­

taneously, which dramatically reduces the resistance to sliding near the center of this portion of 

the rupture front. This creates rapid slip near the surface with a high apparent velocity along the 

ground surface at 4.0 sec. The reduced resistance to slip generates a small reflection in slip off the 
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free surface that is barely visible at 5.0 sec near the back of the main rupture front. The larger slip 

rates near the ground surface allow the rupture to continue propagating along the ground surface 

at a faster rupture speed (compared to the true speed that the rupture has when it hits the ground 

surface with a high apparent velocity). This fast portion of the rupture catches up to the rupture 

at depth just before the rupture reaches the end of the fault. The width of the rupture front , i.e., 

the region where the slip rates are nonzero , stretches across a large portion of the fault; however, 

the larger slip rates (where most of the slip occurs) are confined to a small portion located close to 

the leading edge of the rupture. 

Figure 9.5 gives the distributions of final slip and maximum slip rate on the fault . The final 

slip resembles that of a uniform stress drop earthquake, as it should based on the use of a uniform 

dynamic stress drop and a slip-weakening friction model. The average slip of 0.51 m closely matches 

our target value of 0.5 m and corresponds to a moment magnitude of 6.2. Additionally, the average 

::;Lre::;::; drop of 1.2 MPa generally agrees with the value of 1.3 MPa from equation (9.1 ). As we noted 

iu uur Ji::;cu::;::;iuu uf Lhe ruµLure µruµagaLiuu, Lhe maximum ::;lip raLe::; occur aloug Lhe free ::;urface. 

The rn.aximum slip rates away fr01n the ground surface display a Lendency Lo increa::;e a::; Lhe rupLure 

propagates. 
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Figure 9.5: Distributions of final slip and maximum slip rate at each point on the strike-slip fault 
for the base case. 

9.2.2 Role of Fracture Energy 

We switch the friction model from the slip-weakening friction model to the two-phase friction model, 

while applying the same initial tractions. This coincides with decreasing the characteristic slip 

distance to zero in the slip-weakening friction model. However, the discrete nature of the finite­

element model does provide some inherent or effective fracture energy. Upon initiation of sliding 

the coefficient of friction immediately drops to its minimum value, and no energy is required for 

fracture. Figure 9.6 shows the slip time histories at a depth of 8.0 km at the left and right quarter 

points of the fault (labeled LQP and RQP in figure 9.1); the left quarter point lies at the center of 
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free surface that is barely visible at 5.0 sec near the back of the main rupture front. The larger slip 

rates near the ground surface allow the rupture to continue propagating along the ground surface 

at a faster rupture speed (compared to the true speed that the rupture has when it hits the ground 

surface with a high apparent velocity). This fast portion of the rupture catches up to the rupture 

at depth just before the rupture reaches the end of the fault. The width of the rupture front, i.e., 

the region where the slip rates are nonzero, stretches across a large portion of the fault; however, 

the larger slip rates (where most of the slip occurs) are confined to a small portion located close to 

the leading edge of the rupture. 

Figure 9.5 gives the distributions of final slip and maximum slip rate on the fault. The final 

slip resembles that of a uniform stress drop earthquake, as it should based on the use of a uniform 

dynamic stress drop and a slip-weakening friction model. The average slip of 0.51 m closely matches 

n11r target value of 0.5 m and corresponds to a moment magnitude of 6.2. Additionally, the average 

stress drop of l.2MPa generally agrees with the value of l.3MPa from equation (9.1). As we noted 

in our discussion of the rupture propagation, the maximum slip rates occur along the free surface. 

The maximum slip rates away from the ground surface display a tendency to increase as the rupture 

propagates. 
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Figure 9.5: Distributions of final slip and maximum slip rate at each point on the strike-slip fault 
for the base case. 

9.2.2 Role of Fracture Energy 

We switch the friction model from the slip-we::ikening friction model to the two-phase friction model, 

while applying the same initial tractions. This coincides with decreasing the characteristic slip 

distance to zero in the slip-weakening friction model. However, the discrete nature of the finite­

element model does provide some inherent or effective fracture energy. Upon initiation of sliding 

the coefficient of friction immediately drops to its minimum value, and no energy is required for 

fracture. Figure 9.6 shows the slip time histories at a depth of 8.0 km at the left and right quarter 

points of the fault (labeled LQP and RQP in figure 9.1); the left quarter point lies at the center of 
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the asperity used to initiate the rupture. As expected with the instantaneous drop in friction, the 

slip quickly accelerates inside the asperity. With no fracture energy, the rupture propagates with an 

approximate rupture speed in the direction of slip of 4.9 km/sec compared to the shear wave speed of 

3.3 km/sec, or nearly three times faster than the rupture with slip-weakening friction. At the right 

quarter point, the slip rate exhibits only a minor increase when we remove the fracture energy. At 

both locations, slip occurs in closely spaced, multiple events due to the introduction of numerical 

noise associated with the sharp initiation of slip and the inability of the model to accurately handle 

frequencies above 0.5 Hz. Thus, we confirm our intuition outlined in the discussion of the fracture 

energy and rupture speed in section 8.3.2; the fracture energy displays a strong influence on the 

speed of the rupture. 
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Figure 9.6: Comparison of slip time histories at the left and right quarter points on the strike-slip 
fault at a depth of 8.0 km for ruptures with fracture energy (slip-weakening friction model) and 
without fracture energy (two-phase friction model). 

9.2.3 Effect of Discretization Size 

We examine the effects of the discretization size by using the same parameters as the base case, 

i.e., the same initial tractions on the fault surface and the same slip-weakening friction model, but 

replace the 2x refinement procedure with the 4x refinement procedure. This reduces the nominal 

node spacing from 660 m to 330 m. Figure 9. 7 shows the horizontal displacement time histories at 

site Sl, which is located on the ground surface above the center of the fault. The earlier initiation 

of slip m the finer mesh indicates that the rupture propagates 113 faster ( 1.9 km/ sec compared to 

1.7km/sec). The larger displacement in the north-south (fault parallel) component for the finer 

resolution reflects the increase in average slip from 0.51 m to 0.55 m. On both components the 

velocities exhibit little change. Thus, reducing the discretization size leads to only small changes in 

the rupture speed and slip time histories with no fundamental differences in the rupture dynamics. 
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We conclude that with the appropriate fracture energy we may use the node spacing criterion from 

the wave propagation for the simulations with dynamic failure. 
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Figure 9. 7: Comparison of horizontal displacement time histories at site 81 for the two spatial 
resolutions of the strike-slip domain. 

9.3 Effective Normal Stresses 

We want to determine how the changes in the variations of the effective normal stresses with depth 

etffecL Lhe uy !li:tlUiCb vf Lhe r:u_11Lure VH Lhe bLrike-bli_11 foulL. FurLherrnvre, w heu Lhe dmrncLeribLicb 

of the rupture do not lead to realistic events, we will adjust the friction model to create realistic 

ruptures_ We return to the three definitive cases of pore pressures described in section 8.2.1 to 

create three different variations of the normal tractions with depth, including uniform effective 

normal tractions, lithostatic effective normal tractions, and lithostatic effective normal tractions 

reduced by hydrostatic pore pressures. 

9.3.1 Uniform Stresses with a Uniform Friction Model: 

Scenario ssbase 

We already discussed scenario ssbase (the base case) which features uniform effective normal stresses. 

Figure 9.8 displays the uniform tractions with depth. While we do not a priori know the change 

in the shear tractions, the uniform dynamic stress drop suggests the approximate values of the 

change in shear tractions. We illustrate the final shear tractions using the initial shear tractions and 

the change in the shear tractions. In scenario ssbase we found realistic rupture dynamics, i.e., the 

rupture propagates along the fault at a relatively constant speed and generates a smooth uniform 

slip distribution consistent with a uniform stress drop. 
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Figure 9.8: Variations of the tractions with depth on the strike-slip fault for the case of uniform 
effective normal stresses and no variations of the coefficient of friction µarameLen; wiLh <leµLh. The 
dashed lines give an estimation of those tractions whose precise values depend on the results of the 
simulation. 

9.3.2 Lithostatic Stresses with a Uniform Friction Model: 

8cenario sslithouni 

In this case we assume that little or no water resides in the interstices of the grains, so that the 

pore pressures are negligible, and the effective normal stresses are lithostatic. We use the same 

slip-weakening friction model that we use in the base case. The parameters in the friction model do 

not vary with depth. 

Initial Conditions 

With negligible pore pressures the effective normal stresses equal the lithostatic stresses. In the case 

of our homogeneous half-space, the effective normal stresses increase linearly with depth. The shear 

tractions at failure increase linearly with depth, because they come from the product of the normal 

tractions, which increase linearly with depth, and the maximum coefficient of friction (µmax), which 

is uniform with depth. To create a propagating rupture with a uniform speed, we employ a uniform 

distance from failure. This implies that the initial shear tractions should increase linearly with 

depth. Maintaining a uniform distance from failure over the entire depth of the fault would require 

negative initial shear tractions near the ground surface, so we limit the shear tractions to positive 

values and taper the distance from failure near the ground surface. Because the effective normal 

tractions increase with depth, the change in the shear tractions will be larger at depth. Figure 9.9 

summarizes the variations of these tractions with depth. We do not know the final shear stresses 

on the fault surface, but we expect the final shear stresses to generally follow the variations of the 

minimum sliding shear stresses. Figure 9.10 shows the initial shear and normal tractions applied 
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to the fault surface. The asperity used to start the rupture requires only small relative increases in 

the shear tractions, so unlike the base case, it blends in with the surrounding shear tractions. Due 

to the large increase in the shear tractions with depth, we choose not to taper the shear tractions 

along the lateral edges and bottom of the fault. 
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effective normal stresses and no variations of the coefficient of friction parameters with depth. The 
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simulation. 
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Figure 9.10: Initial shear and normal tractions on the strike-slip fault for scenario sslithouni. 

Characteristics of the Earthquake 

The rupture propagates rapidly across the bottom of the fault in response to the increase in the 

dynamic stress drop with depth. Recall from section 8.3.1 that the size of the dynamic stress drop 

influences the rupture speed. Figure 9.11 shows the distributions of final slip and maximum slip 

rate on the fault. In contrast to scenario ssbase, both the final slip and maximum slip rate show a 



140 

to the fault surface. The asperity used to start the rupture requires only small relative increases in 

the shear tractions, so unlike the base case, it blends in with the surrounding shear tractions. Due 

to the large increase in the shear tractions with depth, we choose not to taper the shear tractions 

along the lateral edges and bottom of the fault. 
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Figure 9.10: Initial shear and normal tractions on the strike-slip fault for scenario sslithouni. 

Characteristics of the Earthquake 

The rupture propagates rapidly across the bottom of the fault in response to the increase in the 

dynamic stress drop with depth. Recall from section 8.3.1 that the size of the dynamic stress drop 

influences the rupture speed. Figure 9.11 shows the distributions of final slip and maximum slip 

rate on the fault. In contrast to scenario ssbase, both the final slip and maximum slip rate show a 
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clear trend with depth with extraordinarily large values near the bottom of the fault . We see that 

a dynamic stress drop that increases with depth leads to unreasonable behavior, and, in particular, 

the final slips and maximum slip rates increase with depth. 
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Figure 9.11: Distributions of final slip and maximum slip rate at each point on the strike-slip fault 
for scenario sslithouni. 

We may scale the initial tractions to create reasonable values of final slip and slip rate near the 

bottom of the fault , but we cannot change the trend with depth as long as the parameters in the 

friction model remain uniform with depth. Similarly, if the pore pressures remain well below the 

lithostatic pressures , increasing the pore pressures will only reduce the rate at which the slip and 

slip rate increase with depth; it cannot change the trend. Additionally, any other friction model 

with uniform parameters with depth will produce the same trends with depth. This suggests that 

either the effective normal stresses are uniform with depth or the friction model parameters vary 

with depth. As we noted in section 8.2 .1, the existence of topography and density variations imply 

the pore pressures do not generally approach the lithostatic normal stresses. Consequently, we will 

attempt to adjust the parameters in the friction model to compensate for effective normal stresses 

that increase with depth. 

9.3.3 Lithostatic Stresses with a Variable Friction Model: 

Scenario sslithovar 

We continue to assume negligible pore pressures so that the effective normal stresses increase linearly 

with depth in the homogeneous half-space. We adjust the coefficient of friction parameters , µmax 

and µmin, in the slip-weakening friction model to create a uniform dynamic stress drop. We start 

with the expressions for the effective normal stress (an) , the shear stress at failure (aJail) , and the 

_j 
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clear trend with depth with extraordinarily large values near the bottom of the fault. We see that 

a dynamic stress drop that increases with depth leads to unreasonable behavior, and, in particular, 

the final slips and maximum slip rates increase with depth. 
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We may scale the initial tractiorns to creaLe reMumiLle vctlue~ uf fi111tl t:>lijJ ctud t:>lip rate near the 

bottom of the fault, but we cannot change the trend with depth as long as the parameters in the 

friction model remain uniform with depth. Similarly, if the pore prnss11rns remain well below the 

lithostatic pressures, increasing the pore pressures will only reduce the rate at which the slip and 

slip rate increase with depth; it cannot change the trend. Additionally, any other friction model 

with uniform parameters with depth will produce the same trends with depth. This suggests that 

either the effective normal stresses are uniform with depth or the friction model parameters vary 

with depth. As we noted in section 8.2.1, the existence of topography and density variations imply 

the pore pressures do not generally approach the lithostatic normal stresses. Consequently, we will 

attempt to adjust the parameters in the friction model to compensate for effective normal stresses 

that increase with depth. 

9.3.3 Lithostatic Stresses with a Variable Friction Model: 

Scenario sslithovar 

We continue to assume negligible pore pressures so that the effective normal stresses increase linearly 

with depth in the homogeneous half-space. We adjust tho coefficient of friction parameters, µmax 

and µmin, in the slip-weakening friction model to create a uniform dynamic stress drop. We start 

with the expressions for the effective normal stress (a,,), the shear stress at failure (afai1), and the 
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stress drop ( .6.a): 

O"n = pgz 

O"fail = -µ,maxO"n 

.6.0" ao 0-1. 

(9.2) 

(9.3) 

(9.4) 

We follow the convention that z is positive upwards so z < 0 below the ground surface. We define 

the initial shear stress relative to the failure stress using the distance from failure, O" dft, 

O"Q = O" fail - O" dft' (9.5) 

and assume that the final shear stress equals the minimum sliding shear stress, 

(9.6) 

Substituting into the expression for the stress drop and solving for the minimum coefficient of friction 

yields 

(9.7) 

The distance from failure may or may not change with depth. Assuming a distance from fail­

ure proportional to depth implies that the minimum and maximum coefficients of friction remain 

relatively uniform with depth. In order to maintain a uniform rupture speed with a distance from 

failure that increases with depth, the stress concentration ahead of tho rupture muot incrci:wc with 

depth. As we discussed in section 8.3.2, in continuous media propagating ruptures generate nearly 

singular shear stresses near the rupture front. Such shear stresses can cause failure over the depth 

of the fault when the distance from failure increases with depth. In the finite-element model the 

dependence of the failure stress on the discretization size coupled with our basing the discretization 

size on the wave propagation necessitates using a uniform distance from failure. As a result, we 

focus on accurately modeling the fracture energy and the shear stresses during sliding as opposed 

to the shear stresses at failure. 

Returning to our expression for the change in the minimum coefficient of friction, a uniform 

dbtauce fnm1 failure me<:u1::; LhaL Lhe au:;uluLe uiliereuce between tJ1e maximum and minimum values 

of the coefficient of friction decreases with depth, i.e., µmax µmin -t 0 as z -t -oo. We may 

accomplish this task in three general ways. 

1. We use a uniform value for the coefficient of friction at failure (µmax) and decrease the relative 
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change in the coefficient of friction during sliding by adjusting µmin using 

b.o- + (j dff 
µmin = µmax + ---~ 

pgz 
(9.8) 

The uniform coefficient of friction at failure and a uniform distance from failure means that 

the initial shear stresses must increase lmearly with depth. Consequently, the tectomc stresses 

must increase linearly with depth. In other words, the tectonic stresses cannot be derived from 

application of uniform strcssco or uniform strains in the homogeneous h11lf-sp11ee, which occmo 

unrealistic. Furthermore, the sliding stresses increase with depth which implies huge changes 

in temperature during sliding. For example, assuming a coefficient of friction at failure of 

0.6, a density of 2450 kg/m3 , a distance from failure of 2 MPa, at a depth of 10 km we find a 

sliding stress of 140 MPa. If the heat is confined to a region 5 mm wide and the heat capacity 

is 1000J/(kg-°K) (Kanamori et al. 1998), the change in temperature for every meter of slip is 

11,000 degrees Kelvin. Such a large change in temperature would induce melting and would 

lead to a decrease in the sliding stress. With larger effective normal stresses with depth, the 

degree of melting would increase with depth. Assuming tha~ the sliding stresses decrease 

significantly with melting implies that the sliding stresses do not increase with depth. This 

contradicts our original assumption. Thus, the coefficient of friction at failure must decrease 

with depth. 

2. We use a uniform value for the minimum coefficient of friction during sliding (µmin)· We 

decrease the relative change in the coefficient of friction by altering the coefficient of friction 

at failure using 

(9.9) 

The failure stress approaches a uniform value as the depth increases, which in conjunction 

with the uniform distance from failure implies larger initial shear stresses near the surface. As 

in the previous case, we find this unrealistic because the tectonic tractions cannot be derived 

from application of uniform stresses or uniform strains. 

3. We decrease the coefficient of friction with depth by adjusting both the coefficient of friction 

at failure (µmax) and the coefficient of friction during sliding (µmin) in the same manner. As 

bli}J vrvgrebbeb, the abbvlule change vf the cveffideut vf fiiciivu Jecieabeb with Jevt.11, but, the 

relative change does not. This leads to uniform failure and sliding stresses with depth and 

resembles the case of uniform effective normal stresses. In this case, we may generate the 

tectonic shear and normal stresses from uniform stresses or uniform strains with depth. 

We choose the third alternative because the initial and sliding shear stresses seem most realistic. 
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Additionally, the uniform relative change in the coefficient of friction appears reasonable, yet re­

markably simple. 

Initial Conditions 

The two parameters, µ,ma"' and µmin. in the slip-weakfming frktion morlel vary with the inverse nf 

depth as shown in figure 9.12. Equation (9.10) gives the function form of the friction model. It 

seems unreasonable to let the coefficient of friction approach infinity at the surface, so we clip its 

value above a depth of 250 m. 
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Figure 9.12: Depth variations of the coefficient of friction parameters, µmax and µmin, in the slip­
weakening friction model. 

Our ad hoc adjustment of the friction model parameters creates large variations in the coefficient 

uf fridiuu wHh depth. He::>e(tn.:11en; UU::>erve reuuceu values of the coefficient of friction when the 

temperature increases (Scholz 1990). Rice and Ben-Zion (1996) vary the parameters in their friction 

model with depth based on temperature; however, their parameters exhibit only small variations 

with depth. Thus, some decrease in the coefficient of friction with depth based on the increase in 

temperature seems reasonable. We do not know how the coefficient of friction varies with depth, so 
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our large variation in the coefficient of friction with depth may or may not be realistic. We reduce 

the coefficient of friction with depth in order to create low sliding shear stresses that do not imply 

melting, to allow a uniform stress or strain field to generate the nominal initial shear stresses on the 

fault, and to maintain a uniform distance from failure. We choose a uniform distance from failure 

based on our desire not to increase the resolution of the finite-element model with depth and our 

focus on the shear stresses during sliding as opposed to the shear stresses at failure. Moreover, the 

variation of the coefficient of friction remains relatively unconstrained by seismological data. 

Figure 9.13 illustrates that the shear tractions at failure along with the initial and final shear 

tractions do not vary with depth except near the ground surface. Above the depth where we clip the 

coefficient of friction at failure (labeled "Taper Depth" in figure 9.13), the tractions taper towards 

a value of zero at the ground surface. Figure 9.14 shows the effective normal tractions and initial 

ohcC1r trC1ctiono thC1t we C1pply to the foult ourfocc. The effective normC11 trC1ctions match those from 

the previous case (figure 9.10), and the initial shear tractions match those from the case of uniform 

effective normal stresses (figure 9.3), except in the top 250m where we taper the shear tractions. 
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Figure 9.13: Variations of the tractions with depth on the strike-slip fault for the case of lithostatic 
effective normal stresses and variations of the coefficient of friction parameters with depth. The 
dashed lines give an estimation of those tractions whose precise values depend on the results of the 
simulation. 

Characteristics of the Earthquake 

Our manipulation of the friction model parameters yields the desired results. The rupture ex­

hibits nearly identical behavior to the one in scenario ssbase. The rupture propagates at the same 

speed (1.7km/sec) and produces the distributions of final slip and maximum slip rate given in fig­

ure 9.15. Comparing the distributions to those from scenario ssbase (figure 9.5), we find only small 
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Figure 9.14: Shear and normal tractions on the strike-slip fault for scenario sslithovar. 
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Figure 9.15: Distributions of final slip and maximum slip rate at each point on the strike-slip fault 
for scenario sslithovar. 

deviations between the two. The tapering of the tractions near the ground surface causes the more 

noticeable differences, including the reduction of the maximum slip rate along the ground surface. 

The horizontal velocities at site Sl reflect these minor differences. In figure 9.16 we see a smaller 

peak velocity in the north-south (fault parallel) direction for scenario sslithovar compared to scenario 

ssbase. This coincides with the reduced maximum slip rates along the ground surface. The east-west 

component of velocity shows negligible differences. 

9.3.4 Lithostatic-Hydrostatic Stresses with a Variable Friction Model: 

Scenario sslithohydro 

We now consider the case of saturated material where the pore pressure equals the hydrostatic 

pressure. Several researchers, such as Rice and Ben-Zion (1996), Sleep (1997) , and Tullis (1996) , 

use this distribution of the effective normal stresses with depth. Compared to the case of lithostatic 

effective normal stresses, the saturation of the material with water reduces the effective normal 

stresses by the hydrostatic pressures. We maintain the same foilurc stress at every point with a 703 

increase in the coefficient of friction. Equation ( 9 .11) gives the functional forms of the parameters in 

the slip-weakening friction model. Consequently, we apply the same initial shear tractions that we 
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deviations between the two. The tapering of the tractions near the ground surface causes the more 

noticeable differences, including the reduction of the maximum slip rate along the gruuml :::;u.rfctce. 

The horizontal velocities at site Sl reflect these minor differences. In figure 9.16 we see a smaller 

peak velocity in the north-south (fault parallel) direction for scenario sslithovar compared to scenario 

ssbase. This coincides with the reduced maximum slip rates along the ground surface. The east-west 

component of velocity shows negligible differences. 

9.3.4 Lithostatic-Hydrostatic Stresses with a Variable Friction Model: 

Scenario sslithohydro 

We now consider the case of saturated material where the pore pressure equals the hydrostatic 

pressure. Several researchers, such as Rice and Ben-Zion (1996), Sleep (1997), and Tullis (1996), 

use this distribution of the effective normal stresses with depth. Compared to the case of lithostatic 

effective normal stresses, the saturation of the material with water reduces the effective normal 

stresses by the hydrostatic pressures. We maintain the same failure stress at every point with a. 703 

increase in the coefficient of friction. Equation (9.11) gives the functional forms of the parameters in 

the slip-weakening friction model. Consequently, we apply the same initial shear tractions that we 
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Figure 9.16: Comparison of horizontal velocity time histories at site Sl for the three cases of effective 
normal stresses on the strike-slip fault. 

use for scenario sslithovar. Figure 9.16 shows that the waveforms remain the same, i.e., the rupture 

behavior and the resulting ground motions do not change. Thus, the variations of the parameters 

in the friction model works equally well for both negligible and hydrostatic pore pressures. 

µ=,~ { 
_422m z<-250m z 

1.69 z > -250m 

µmin~ { 
_141m z < -250m 

0.563 z > -250m 

D 0 = 0.150m (9.11) 

9.4 Thrust Fault 

In this section we demonstrate that these same issues regarding the effective normal stresses also 

apply to inclined faults by considering a thrust fault with a dip angle of 35 degrees (see section 9.1.2 

for a description of the domain). We imprn;e shear trn.r.tions on thR fa.11lt surface at an angle of 

105 degrees from the strike. Additionally, we create the same dynamic stress drop and distance 

from failure as in scenario ssbase. In contrast to vertical faults, such as the strike-slip fault that 

we use above, on dipping faults the shear and normal tractions are coupled during application of 

horizontal axial stresses. The ground surface remains traction free, and we must apply shear and 

normal stresses acting in the horizontal direction to generate the shear tractions on the fault plane 

with the appropriate rake angle. 
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9.4.1 Uniform Stresses with a Uniform Friction Model: 

Scenario thbase 

As with the strike-slip fault, we begin with uniform effective normal stresses and use a friction model 

with parameters that do not vary with depth. Researchers, such as Magistrale and Day (1999) and 

Oglesby et al. (1998), typically select these uniform distributions for simplicity. 

Initial Conditions 

We create the 4.0 MPa shear tractions through application of axial stresses in the north-south di­

rection and horizontal shear stresses that mimic the stresses generated through plate tectonics. The 

shear stresses give the shear traction vectors the appropriate rake angle on the fault plane. This 

also generates effective normal stresses on the fault surface of 2.7MPa that are much less than the 

10 MPa effective normal stresses that we impose on the strike-slip fault. The shallow dip causes the 

effective normal tractions to be much less than the shear tractions, and we must use a coefficient 

of friction greater than 1.0. Table 9.4 gives the parameters for the slip-weakening friction model; 

we increase the coefficient of friction by a factor of 3. 7 compared to the strike-slip case (scenario 

ssbase). 

Parameters Value 

µmax 2.2 

µmin 0.74 
Do O.Him 

Table 9.4: Parameters of the slip-weakening I friction model for scenario thbase. 

Figure 9.17 shows the initial shear and normal tractions that we apply to the fault surface. We 

taper the shear tractions on all four edges to smother the rupture as it approaches the edges of the 

fault. We place the asperity used to initiate the rupture along the north-south running centerline 

4.0 km from the bottom of the fault. The diameter of the asperity matches the one used in the 

strike-slip cases. 

Characteristics of the Earthquake 

As demonstrated in figure 9.18, the rupture propagates with the same elliptic shape that we observe 

in the sirnulu.tions on the strike-slip fault. The slip follows the dhediuu uf Lhe applied ::>hear tractions, 

so the slip direction has a rake angle of 105 degrees. As a result, the rupture propagates at a speed 

of 1.8 km/sec up the fault but skewed slightly to the west. Compared to the strike-slip case, the 

smaller fault and lack of a free surface reduces the width of the rupture front. The portion of the 

rupture front that contains large slip rates (where most of the slip occurs) remains about the same. 
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Figure 9.17: Shear and normal tractions on the thrust fault for scenario thbase. 

Figure 9.19 shows the distribution of final slip and maximum slip rate on the fault surface. As 

we expect, the final slip resembles that of a uniform stress drop earthquake with an average slip of 

0.25 m and a moment magnitude of 5.8. We find a nearly uniform maximum slip rate over the area 

where slip occurred. The negligible maximum slip rates along the edges of the fault illustrate that 

the tapering of the initial shear traction at the edges of the fault smothers the rupture. Despite the 

elliptic shape of the rupture front, the final slip and maximum slip rate are nearly symmetric about 

the fault centerlines. We examine velocity time histories in section 9.4.2 below. 

9.4.2 Lithostatic Stresses with a Variable Friction Model: 

Scenario thlithovar 

We now consider the case of lithostatic effective normal stresses with variations of the parameters 

of the coefficient of friction with depth. Because we use the same homogeneous material properties 

as in the strike-slip case, gravity generates the same effective normal stresses. With negligible pore 

pressures the stresses due to gravity dominate the normal stresses due to the tectonic loading applied 

as horizontal axial stresses, and the effective normal stresses closely match those on the strike-slip 

fault in scenario sslithovar. Thus, it makes sense to use the parameters of the friction model from 

scenario sslithovar. 

lnitial Conditions 

Figure 9.20 illustrates the effective normal stresses created from the superposition of the lithostatic 

stresses due to gravity and the normal tractions due to plate tectonics. Gravity does not contribute 

to the shear tractions, so the shear tractions do not change from scenario thbase. We find much 
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Figure 9.17; Shear and normt1l !,radium:; uu t,he thrm;t fault for scenario thbase. 

Figure 9.19 shows the distribution of final slip and maximum slip rate on the fault surface. As 

we expect, the final slip resembles that of a uniform stress drop earthquake with an average slip of 

0.2fi m :::i.nrl B moment magnitude of 5.8. We find a nearly uniform maximum olip ro,tc over the area 

where slip occurred. The negligible maximum slip rates along the edges of the fault illustrate that 

the tapering of the initial shear traction at the edges of the fault smothers the rupture. Despite the 

elliptic shape of the rupture front, the final slip and maximum slip rate are nearly symmetric about 

the fault centerlines. We examine velocity time histories in section 9.4.2 below. 

9.4.2 Lithostatic Stresses with a Variable Friction Model: 

Scenario thlithovar 

We now consider the case of lithostatic effective normal stresses with variations of the parameters 

of the coefficient of friction with depth. Because we use the same homogeneous material properties 

as in the strike-slip case, gravity generates the same effective normal stresses. With negligible pore 

pressures the stresses due to gravity dominate the normal stresses due to the tectonic loading applied 

as horizontal axial stresses, and the effective normal stresses closely match those on the strike-slip 

foult in scenario aslithovar. Thms, it makes sern;e Lu ut:ie Lhe parameters of the friction model from 

scenario sslithovar. 

Initial Conditions 

Figure 9.20 illustrates the effective normal stresses created from the superposition of the lithostatic 

stresses due to gravity and the normal tractions due to plate tectonics. Gravity does not contribute 

to the shear tractions, so the shear tractions do not change from scenario thbase. We find much 
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Figure 9.18: Snapshots of slip rate on the thrust fault for scenario thbase. 
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larger effective normal stresses at the top of the thrust fault than at the top of the strike-slip fault , 

because we bury the thrust fault 5.3 km below the ground surface. 

Characteristics of the Earthquake 

As in the case of the strike-slip fault , we find only minor differences in the behavior of the rupture 

between the case of uniform effective normal stresses with a uniform coefficient of friction and the 

case of lithostatic effective normal stresses with a variable coefficient of friction . The average slip 

increases from 0.25 m (scenario thbase) to 0.30 m (scenario thlithovar) , but the moment magnitude 

remains 5.8. Comparing the final slip distribution for this scenario (figure 9.21) with the one from 

scenario thbase (figure 9.19) , we notice that the slip increases in the center of the fault with almost 

no change near the edges. We also find just a small, general increase in the maximum slip rate. 
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larger effective normal stresses at the top of the thrust fault than at the top of the strike-slip fault, 

because we bury the thrust fault 5.3 km below the ground surface. 

Characteristics of the Earthquake 

As in the case of the strike-slip fault, we firnl only minor rliffPrences in the behavior of the rupture 

between the case of uniform effective normal stresses with a uniform coefficient of friction and the 

case of lithostatic effective normal stresses with a variable coefficient of friction. The average slip 

increases from 0.25 m (scenario thbase) to 0.30 m (scenario thlithovar), but the moment magnitude 

remains 5.8. Comparing the final slip distribution for this scenario (figure 9.21) with the one from 

scenario thbase (figure 9.19), we notice that the slip increases in the center of the fault with almost 

no change near the edges. We also find just a small, general increase in the maximum slip rate. 
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Figure 9.19: Distributions of final slip and maximum slip rate at each point on the thrust fault for 
scenario thbase. 
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Figure 9.20: Shear and normal tractions on the thrust fault for scenario thlithovar. 

We examine the time histories at site Sl, which sits above the center of the top edge of the fault . 

The north-south and vertical components of the velocity time histories shown in figure 9.22 exhibit 

similar characteristics. We observe a slightly later initiation of slip corresponding to the difference in 

the rupture speeds (1.7 km/sec for scenario sslithovar compared to 1.8 km/sec for scenario thbase) . 

In both the north-south and vertical components the amplitudes of the velocity increase slightly, 

but the shapes of the pulses do not change. 
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Figure 9.19: Distributions of final slip and maximum slip rate at each point on the thrust fault for 
scenario thbase. 
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Figure 9.20: Shear and normal tractions on the thrust fault for scenario thlithovar. 

We examine the time histories at site Sl, which sits above the center of the top edge of the fault. 

The north-south and vertical components of the velocity time histories shown in figure 9.22 exhibit 

similar characteristics. We observe a slightly later initiation of slip corresponding to the difference in 

the rupture speeds (1.7km/sec for scenario sslithovar compared to l.8km/sec for scenario thbase). 

In both the north south o.nd vcrtico.l components the amplitudes of the velocity lncrea,::;e ::;llghLly, 

but the shapes of the pulses do not change. 
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Figure 9.21: Distributions of final slip and maximum slip rate at each point on the thrust fault for 
scenario thlithovar. 
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Figure 9.22: Comparison of north-south and vertical velocity time histories at site Sl for the two 
cases of effective normal stresses on the thrust fault. 

9.5 Rupture Behavior with Different Friction Models 

We study the changes in the behavior of the rupture on the strike-slip fault to variations in the 

friction model by replacing the slip-weakening I friction model with the slip- and rate-weakening 

model and the melting-refreezing model. In both cases we apply normal tractions equal to the 

lithostatic pressures and vary the coefficient of friction parameters with depth. We adjust the 

parameters in the friction models to create earthquakes with average slips that closely match the 

0.52 m average slip of scenario sslithovar. 
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Figure 9.21: Distributions of final slip and maximum slip rate at each point on the thrust fault for 
scenario thlithovar. 
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Figure 9.22: Comparison of north-south and vertical velocity time histories at site Sl for the two 
cases of effective normal stresses on the thrust fault. 

9.5 Rupture Behavior with Different Friction Models 

We ::>Lw.ly Lhe changes in the behavior of the rupture on the strike-slip fault to variations in the 

friction model by replacing the slip-weakening I friction model with the slip- and rate-weakening 

morlel anrl the melting-refreezing modeL In both cases we apply normal tro,ctiono equal to the 

lithostatic pressures and vary the coefficient of friction parameters with depth. We adjust the 

parameters in the friction models to create earthquakes with average slips that closely match the 

0.52 m average slip of scenario sslithovar. 
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9.5.1 Slip- and Rate-Weakening Friction Model: Scenario sscombo 

With slip- and rate-weakening friction, the friction stress initially decreases as slip progresses, but 

returns close to its original level as the slip rate decreases (see figure 8.8). With the re-strengthening 

as the slip rate drops, slip will terminate sooner than when we use the friction models with only slip-

weakening and tho same sliding stress. Conocqucntly, we oclcct a new value for the dynamic atreaa 

drop, but we maintain the same initial rate of decrease of the coefficient of friction with slip distance 

as in the base case (scenario ssbase) in order to generate a similar rupture. We use a post-seismic 

coefficient of friction that is 83% of the coefficient of friction at failure. Equation (9.12) gives the 

parameters of the friction model that yield an average slip of 0.55 m, which is close to our target 

value of 0.52 m. With no change in the effective normal tractions and initial shear tractions from 

those in scenario sslithovar, we use the same maximum coefficient of friction (µmax). In order to 

enlarge the dynamic stress drop, we reduce the minimum coefficient of friction (µmin)· Additionally, 

maintaining the same initial rate of decrease of the coefficient of friction with slip distance involves 

adjm>tiug the characteristic slip distance. 

{ _250m z < -250m 
µmax 

z 

1.00 z > -250m 

!'min~ { 

_ 41.7m z < -250m z 

0.167 z > -250m 

µ~,, ~ { 
_208m z < -250m z 

0.833 z > -250m 

D0 = 0.188m 

Vo 0.133m/sec (9.12) 

Characteristics of the Earthquake 

The rupture propagates with nearly the same speed as in scenario sslithovar (1.9 km/sec compared 

to 1. 7 km/ sec), but the maximum slip rates increase significantly. Comparing figure 9 .23 with 

figure 9.15, we see that the maximum slip rates exhibit a nearly uniform increase of approximately 

0.2 m/sec. Because we attempt to match the average slip with scenario sslithovar, we expect a 

aimilar final alip diatribution. Indeed, we find a small, nearly uniform increase in the fimtl 1:>lip llli:tL 

corresponds to the difference in the average slips. 

Figure 9.24 shows the velocity time histories at site Sl for both scenario sslithovar and scenario 

sscombo. The north-south (fault parallel) velocity time histories confirm the increase in rupture 

speed with earlier motion in scenario sscombo than in scenario sslithovar. The termination of 
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Figure 9.23: Distributions of final slip and maximum slip rate at each point on the strike-slip fault 
for scenario sscombo. 
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Figure 9.24: Comparison of north-south and vertical velocity time histories at site Sl for the three 
friction models on the strike-slip fault. 
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shear wave continues to dominate the ea.st-west (fa.ult normal) vduciLy Liu1e lii:;Lurie:; . Tl1e reilecLiuu 

of the rupture off the free surface generates a second slip event in the central portion of the fault 

and causes the noticeably different shape in the east-west component towards the end of the time 

history. 

9.5.2 Shear Melting-Refreezing Friction Model: 

Scenario ssmclt 

The shear melting-refreezing model produces the same general behavior as the slip- and rate­

weakening friction model (see figure 8. 9 for a typical trajectory of the coefficient of friction in terms 

of slip distance and slip rate) . We again select the parameters to closely match the average slip of 

scenario sslithovar (0.52 m). We apply the effective normal tractions and initial shear tractions from 
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Figure 9.23: Distributions of final slip and maximum slip rate at each point on the strike-slip fault 
for scenario sscombo. 
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Figure 9.24: Comparison of north-south and vertical velocity time histories at site 81 for the three 
friction models on the strike-slip fault. 

sliding occurs more abruptly in scenario sscombo in response to the shear re-strengthening. The 

shear wave continues to dominate the east-west (fault normal) velocity time histories. The reflection 

of the rupture off the free surface generates a second slip event in the central portion of the fault 

and causes the noticeably different shape in the east-west component towards the end of the time 

history. 

9.5.2 Shear Melting-Refreezing Friction Model: 

Scenario ssrnelt 

The shear melting-refreezing model produces the same general behavior as the slip- and rate­

weakening friction model (see figure 8.9 for a typical trajectory of the coefficient of friction in terms 

of slip distance and slip rate). We again select the parameters to closely match the average slip of 

scenario sslithovar (0.52 m). We apply the effective normal tractions and initial shear tractions from 
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scenario sslithovar. We use the friction model parameters given by equation (9.13) to produce an 

average slip of 0.51 m. 

µm== { 

_250m z < - 250m z 

1 _nn z > - ?.50m 

µmin= { 

_4.''i _Rm ;(, < -200111 
z 

0.183 z > -250m 

D 0 = 0.0800m 

T0 = 0.650 sec (9.13) 

Characteristics of the Earthquake 

Based on the similarity of the friction models and the dynamic stress drop, we expect to find about 

the same increase in the maximum slip rates for this scenario and scenario sscombo compared to 

scenario sslithovar, where we use a slip-weakening friction model. The maximum slip rates shown 

in figure 9.25 exhibit approximately a 0.1 m/sec increase compared to the 0.2 m/sec increase for 

scenario sscombo. If we compare the final slip distribution from this scenario with that from scenario 

sslithovar, we find that the slip distribution shifts slightiy towards the north. In the shear melting­

refreezing friction model the rate of decrease of the coefficient of friction depends on the history of 

the slip rate. This creates a tendency for relatively larger values of slip to occur in regions with 

larger values of maximum slip rate. 
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Figure 9.25: Distributions of final slip and maximum slip rate at each point on the strike-slip fault 
for scenario ssmelt. 

If we return to figure 9.24, we observe similar velocity time histories at site Sl for the scenarios 

with the slip- and rate-weakening friction model (scenario sscombo) and the shear melting-refreezing 

friction model (scenario ssmelt) . The peak velocities differ in proportion to the difference in max­

imum slip rates, which we noted above. The reflection of slip off the ground surface generates a 
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scenario sslithovar. We use the friction model parameters given by equation (9.13) to produce an 

average slip of 0.51 m. 

{ _250m z < -250m 
µmax 

z 

LUU z > -45Um 

{ _ 45.Sm z < -250m 
µmin 

z 

U.183 z > -250m 

Do 0.0800m 

T0 = 0.650 sec (9.13) 

Characteristics of the Earthquake 
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Figure 9.25: Distributions of final slip and maximum slip rate at each point on the strike-slip fault 
for scenario ssmelt. 

If we return to figure 9.24, we observe similar velocity time histories at site Sl for the scenarios 

with the slip- and rate-weakening friction model (scenario sscombo) and the shear melting-refreezing 

friction model (scenario ssmelt). The peak velocities differ in proportion to the difference in max­

imum slip rates, which we noted above. The reflection of slip off the ground surface generates a 
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second slip event in the central portion of the fault as it did in scenario sscombo, so we find that 

the east-west (fault normal) components match very well towards the end of the time history. 

9.6 Effect of the Free Surface 

On the strike-slip faults the slip rates increase in the vicinity of the free surface. This causes 

the rupture to propagate faster along the free surface. We illustrate the nature of this behavior by 

studying the effects of ruptures with different curvatures encountering the free surface. Additionally, 

we subject a much larger strike-slip fault to similar initial conditions and examine the behavior of 

the rupture. 

9.6.1 Slip Rate and Hypocenter Location 

In section 9.2.1 we claim that the combination of the large slip rates and the initial high apparent 

velocity of the rupture along the free surface allows the rupture to continue propagating ut a foster 

speed along the ground surface compared to the other portions of the rupture. We now demonstrate 

this phenomenon by changing the depth of the hypocenter (asperity) in order to vary the apparent 

velocity of the rupture as it hits the free surface. We consider three asperity locations by using the 

results from scenario sslithovar and selecting two new asperity locations. 

Initial Conditions 

vVe maintain the same initial conditions and parameters from scenario sslithovar, and change the 

depth of the asperity as shown in figure 9 .26. The parameters of the friction model follow the same 

depth vanat10ns, and we apply the same initial effective normal and shear tractions on the fault 

surface (see section 9.3.3 for the details). 

Characteristics of the Earthquakes 

Placing the top of the asperity at the top of the fault (hypocenter HB) effectively eliminates the high 

apparent velocity along the free surface. As shown in figure 9.27, the maximum slip rates become 

nearly uniform with a slight tendency to increase as the rupture progresses; the large slip rates near 

the free surface disappear. The absence of the large slip rates near the surface prevents the rupture 

from propagating faster along the free surface, and the rupture propagates at a uniform speed of 

1.9 km/sec. The average slip of 0.48 m closely matches that of scenario sslithovar, and we see some 

small variations in the distribution of final slip caused by the shift in the hypocenter. 

Hypocenter location HC sits roughly halfway between hypocenter locations HA and HB. This 

creates a slower apparent rupture velocity along the ground surface when the rupture hits the ground 

surface compared to scenario sslithovar. Figure 9.28 illustrates that we find a slight variation in the 
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Figure 9.27: Distributions of final slip and maximum slip rate at each point on the strike-slip fault 
for the case with hypocenter location HB. 

slip rates with depth. While the general shape of the distribution matches that of scenario sslithovar 

where the rupture speed and slip rates do vary with depth, the peak maximum slip rates remain 

near the level that we observe with hypocenter HB. As we expect based on the larger slip rates near 

the surface, the rupture propagates marginally faster near the free surface. Thus, as we increase 

the apparent velocity of the rupture along the free surface, the slip rates near the ground surface 

increase. This allows the portion of the rupture near the free surface to propagate faster than the 

portion of the rupture at depth. 

9.6.2 Bifurcation of the Rupture on a Long Fault 

As noted in the previous sections, the variation of the slip rates with depth creates a similar variation 

in the rupture speed with depth. In section 9.2.1 we found that the rupture near the surface appears 



157 

4.95 km 

:....i 
01 (,) .,,,. 

Qi HB 3 0 .i:.. .,,,. (.o 
3 01 .,,,. 

HC 3 

co 
(.o 

HA 0 .,,,. 
3 

1.75 km Radius 

Figure 9.26: Diagram of starting asperity locations on the strike-slip fault. The asperity HA corre­
sponds to the hypocenter location in figure 9.1. 

0.0 1.0 1.0 

0.8 u 
2.5 0.8 Q.) 

(f) - 0.6E" 
...._ 

E 0.6 ,§, 
""" ..._.. 5.0 

..._.. 

04g-
Q) 

c.. 0.4 (;:j i:S 
7.4 

. (I) 
0: 

0.2 0.2 g-
(I) 

9.9 0.0 0.0 
0.0 4.1 8.2 12.4 16.5 0.0 4.1 6.2 12.4 16.5 

Strike (km) Strike (km) 
Figure 9.27: Distributions of final slip and maximum slip rate at each point on the strike-slip fault 
for the case with hypocenter location HB. 

slip rates with depth. While the general shape of the distribution matches that of scenario sslithovar 

where the rupture speed and slip rates do vary with depth, the peak maximum slip rates remain 

near the level that we observe with hypocenter HB. As we expect based on the larger slip rates near 

the surface, the rupture propagates marginally faster near the free surface. Thus, as we increase 
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increase. This allows the portion of the rupture near the free surface to propagate faster than the 

portion of the rupture at depth. 

9.6.2 Bifurcation of the Rupture on a Long Fault 

As noted in the previous sections, the variation of the slip rates with depth creates a similar variation 

in the rupture speed with depth. In section 9.2.1 we found that the rupture near the surface appears 
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ready to overtake the rupture at depth just as the tapering in the initial shear tractions at the edge 

of the fault smothers the rupture. We use the homogeneous half-space model from the strike-slip 

fault in section 7.1 to discover how the rupture behaves when we allow the propagation to continue. 

Initial Conditions 

We use the same homogeneous material properties and apply lithostatic effective normal tractions. 

Following the same procedure as in scenario sslithovar, we impose nominal shear tractions of 4.0 MPa 

and taper the shear tractions at the edges of the fault. In this case, we place the asperity used to 

initiate the rupture at a depth of 8.0 km. Figure 9.29 gives the distributions of the normal and shear 

tractions on the fault surface. The friction model corresponds to the one in scenario sslithovar. 
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Figure 9.29: Shear and normal tractions on the fault surface of the large homogeneous half-space. 
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of the fault smothers the rupture. We use the homogeneous half-space model from the strike-slip 

fault in section 7.1 to discover how the rupture behaves when we allow the propagation to continue. 
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and taper the shear tractions at the edges of the fault. In this case, we place the asperity used to 
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Characteristics of the Earthquake 

The snapshots of slip rate in figure 9.30 show that the rupture bifurcates as the rupture near the free 

surface passes the rupture at depth. The white ellipses identify the leading edge of the rupture that 

propagates at 2.2 krn/sec (67% of the shear wave speed of 3.3 krn/sec). When the rupture reflects 

off the free surface, we add a second white ellipse at 5.5 sec to coincide with the reflected portion 

of the rupture. We also add a purple ellipse at the leading edge of the portion of the rupture that 

propagates along the free surface at a speed of 4.4 krn/ sec. This speed lies between the shear wave 

speed of 3.3km/sec and the dilatational wave speed of 5.7krn/sec. The rupture at the free surface 

begins to separate at 8.5 sec, and at 10 sec we see two distinct slip events at the free surface. We 

observe substantially larger slip rates where the two portions of the rupture constructively interfere 

(identified by the intersection of the white and purple ellipses). In general the portion of the rupture 

traveling near the dilatational wave speed generates larger slip rates than the portion traveling near 

the shear wave speed. Furthermore, as the two portions interact, the speed of the portion of the 

ruµt,unj LluiL vruvagaLes near the shear wave speed increases to around 3.0 krn/sec. The white ellipses 

we overlay on the slip rate reflect this change in rupture speed. 

'l'his rnmpli>Y rupture creates the smooth distribution of final slip shown in figure 9.31. Tho shape 

of the distribution roughly matches the one on the small strike-slip fault from scenario sslithovar. 

In contrast to the final slip, the maximum slip rate at each point on the fault surface reflects the 

complex nature of the rupture. The path of constructive interference between the two portions of 

the rupture is clearly visible with slip rates roughly 0.2 m/sec greater than the surrounding region. 

We also see large slip rates near the top of the fault at the north end that corne from the faster 

portion of the rupture. 

The faster portion of the rupture propagates at a speed between the shear wave speed and the 

dilatational wave speed, while the slower portion propagates at a speed slower than the shear wave 

speed. In earthquakes we observe ruptures propagating slower than the shear wave speed (Heaton 

1990). However, using a Dugdale model of rnode-II crack propagation, Burridge et al. (1979) found 

steady solutions for propagation at speeds both slower than the Rayleigh wave speed and between the 

shear speed and the dilatational wave speed. Based on the variation of the force with the propagation 

speed, they concluded that stable propagation occurred for mode-II cracks with speeds between V2 
times the shear wave speed and the dilatational wave speed. Furthermore, Rosakis et al. (1999) 

observed cracks propagating at v'2 times the shear wave speed in a brittle polyester resin under 

far-field loading. In our simulation the faster portion of the rupture propagates at approximately 

1.3 times the shear wave speed, or within 6% of V2 times the shear wave speed. We will examine 

the dynamic shear strain frorn a double couple to illustrate why shear ruptures may propagate both 

near the shear wave and the dilatational wave speeds. 

We consider a vertically oriented double couple (an azimuth of 0 degrees, a dip angle of 90 
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uegree::;, auu a rake augle of 0 degree::;) in a whole-space as shown in figure 9 .32 . Note that in this 

particular case and this case only, we follow the convention used by Heaton (1979) , and x3 is positive 

downwards. We want to compute the shear strain corresponding to pure lateral slip , i.e., Er¢ using 

the spherical coordinates given in figure 9.32. Equation (9.14) (Heaton 1979) displays the pertinent 

displacements in spherical coordinates as a function of space and time. 
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degrees, and a rake angle of 0 degrees) in a whole-space as shown in figure 9.32. Note that in this 

particular case and this case only, we follow the convention used by Heaton (1979), and x 3 is positive 

downwards. We want to compute the shear strain corresponding to pure lateral slip, i.e., Er<f> using 

the spherical coordinates given in figure 9.32. Equation (9.14) (Heaton 1979) displays the pertinent 

displacements in spherical coordinates as a function of space and time. 
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where 

Rn = sin2 {)sin 2</> 

1 
Ro = 2 sin 2() sin 2¢ 

R¢ = sin() cos 2¢ 

(9.14) 

(Q_ 1 S) 

(9.16) 

We want to compute the shear strain along the x1 axis , which for a vertical strike-slip fault lies 

on the fault in the direction of propagation. Using the definition of Er¢ in spherical coordinates , 

(0 .17) 

and restricting the domain to the x1 axis where() = ~ and¢= 0, we find that equation (9.18) gives 

the lateral shear strain as a function of space and time, where fJ' denotes the derivative of the Dirac 
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where 

RR = sin2 (}sin 2¢ 

1 
Re = 2 sin W sin 2¢ 

R¢i = sin(} cos 2¢ 

(9.14) 

(9.15) 

(9.16) 

We want to compute the shear strain along the x 1 axis, which for a vertical strike-slip fault lies 

on the fault in the direction of propagation. Using the definition of Er¢ in spherical coordinates, 

-- +-1 ( 1 811r 8ito;p 
2 Rsin(} 8R 

8iio;p) 
8R ' 

(9.17) 

and restricting the domain to the x1 axis where() = ~ and¢= 0, we find that equation (9.18) gives 

the lateral shear strain as a function of space and time, where 6' denotes the derivative of the Dirac 
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Figure 9.32: Orientation of spherical coordinates relative to a vertical double couple in a whole-space. 
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We find Dirac delta functions in the shear strain propagating at both the dilatational and shear wave 

speeds. This implies the shear strain may cause a dislocation to propagate near the dilatational and 

shear wave speeds in the direction of slip on a vertical strike-slip fault. 

9.7 Discussion 

9. 7.1 Modeling of Dynamic Failure 

Including the frictional sliding on the fault surface in the simulation allows the dynamics of the 

rupture to determine the speed of the rupture and the slip distribution. This prevents combining 

physically unrealistic combinations of slip rate and rupture speed, which is possible when we use 

vrebcribeu rnvLureb. The dyuamic ruptures also illustrate the dependence of the rupture speed on 

the direction of propagation. Including this effect in prescribed ruptures on strike-slip faults faults 

will lead to minimal changes in behavior, but the effect becomes more dramatic on thrust faults, 

which we will demonstrate in chapter 10. Additionally, the use of the slip degrees of freedom to 

model the dislocation across the fault surface allows simulating earthquakes with dynamic failure 
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on any arbitrarily oriented fault plane. We find only small differences in the rupture behavior when 

we use the slip-weakening friction model and increase the resolution of the mesh by a factor of two 

from the size based on the wave propagation. Therefore, with appropriate selection of the failure 

stress and fracture energy, we may base the discretization size on accurate modeling of the wave 

propagation. 

9. 7.2 Effective Normal Stresses 

In order to create realistic ruptures with effective normal stresses that increase with depth, the 

absolute change in the coefficient of friction during slip must decrease with depth. We assume a 

nearly uniform minimum sliding stress with depth, which implies a uniform relative variation of the 

coefficient of friction with depth. This generates ruptures with behaviors that closely match those 

produced by assuming uniform effective normal stresses and no variations in the friction model 

parameters with depth. In other words, with realistic initial conditions (effective normal stresses 

LhciL irn.:1eci:se wiLh <levLh) we cciu vru<luce ruvLure:s wiLh Ldu:tviur:s :similcir Lu Lhu:se wiLh unrealh:itic 

initial conditions (uniform effective normal stresses). This may explain why researchers, such as 

Olsi:m et al. (HN7) ancl Rr-m-'Zion ancl A nrlrPws (19!1x), who 11;;:p iiniform effective normal stresses are 

able to create ruptures with realistic behavior. 

The strongest support for the increase in the effective normal stress with depth comes from the 

examination of inclined faults. The tectonic stresses generate both shear and normal stresses on the 

fault surface. If we assume pore pressures near the lithostatic stresses, then the dominant contri­

bution of the effective normal stresses comes from the tectonic stresses. For our thrust fault with a 

dip angle of 35 degrees, this implies the effective normal stresses are less than 3 MPa. Furthermore, 

as we decrease the dip angle of the fault from 90 degrees and keep the shear tractions constant, 

the effective normal stresses go to zero. To maintain the same failure stresses we must scale the 

coefficient of friction parameters accordingly. For example, in order to use the friction model from 

the strike-slip fault on the thrust fault, we scale the coefficient of friction by a factor of 3. 7. 

On the other hand, assuming negligible pore pressures (the argument applies equally well for 

hydrostatic pore pressures) generates effective normal stresses that increase with depth and dominate 

the normal stresses created by the tectonic stresses. Consequently, changing the dip angle of the 

fault while keeping the shear tractions constant causes almost no variations in the effective normal 

stresses. We do not need to alter the parameters in the friction model to keep the failure stresses the 

same. Hence, we may use the same friction model on both strike-slip and the thrust faults. It seems 

much more realistic to be able to apply a friction model to any arbitrarily oriented fault plane, than 

to have to scale the parameters for every change in the dip angle of the fault. Thus, the simulations 

on the strike-slip fault and thrust fault confirm that it is more realistic to assume that the effective 

normal stresses increase with depth than remain uniform. 
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9. 7.3 Friction Models 

The fracture energy plays a critical role in the behavior of the rupture. We control the fracture 

energy through the rate of decrease in the coefficient of friction at the onset of sliding. When we 

allow the coefficient of friction to decrease instantaneously from the static value to a dynamic value 

in the two-phase friction model, the rupture propagates near the dilatationo1 wave opeed. The sharp 

initiation of slip also introduces high frequencies in the solution and the mesh resolution is too coarse 

to accurately capture the behavior. We adjust the fracture energy to manipulate the maximum slip 

rate and rupture speed. As we increase the fracture energy, the maximum slip rates and rupture 

speed decrease; continuing to increase the fracture energy ultimately leads to ruptures that fail to 

propagate. 

The ruptures exhibit the same general behavior for the slip-weakening, slip- and rate-weakening, 

and shear melting-refreezing friction models. The slip-weakening friction model does not allow the 

re-strengthening of the shear stress on the fault as the slip rates decrease that we find in the slip- and 

rate-weakening and the shea1 meHiug-refree:dug fricLiuu muuelt;. Fur ruptures with the same average 

slip, we must use larger dynamic stress drops with the slip- and rate-weakening and shear melting­

refreezing friction moclf~ls to gemffate the samP. slip. C:onseC]_11P.ntly, the maximum slip rates increase 

slightly compared to when we use the slip-weakening friction model. The coefficient of friction in the 

shear melting-refreezing model depends on the history of the slip rate, while both the slip-weakening 

and slip- and rate-weakening models are path independent. At locations on the fault with relatively 

larger slip rates, this creates larger slips in the simulation with the shear melting-refreezing model 

than in the simulation with the slip- and rate-weakening friction model. For comparable average 

slip distributions the ground motions associated with the friction models with shear re-strengthening 

show excellent agreement and exhibit slightly greater maximum velocities than those associated with 

the slip-weakening friction model. 

9. 7.4 Effect of Free Surface 

When the rupture hits the free surface, it encounters a reduced resistance to slip. In many cases 

the rupture will reflect off the free surface and generate additional slip on the portion of the fault 

hP.low thP frAA Rnrfa.rp As we move the hypocenter to greater depths, the rupture hits the ground 

surface with less curvature. This causes a longer portion of the rupture front to arrive at the free 

surface in a shorter period of time and creates a high apparent velocity along the ground surface. 

Consequently, the slip rates increase and the rupture may sustain a super~shear propagation speed 

along the surface. On a long fault this leads to bifurcation of the rupture into a portion propagating 

near the dilatational wave speed and a portion propagating near the shear wave speed. While 

the portion propagating near the dilatational wave speed appears feasible, we do not observe such 
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phenomenon for real earthquakes. The real earth includes variations in the material properties with 

depth which these models do not. This could explain why we do not observe ruptures propagating 

faster than the shear wave speed in the real earth. 



166 

Chapter 10 Dynamic Failure in a Layered 

Ha lf-S p::i c.e 

Armed with our knowledge of how to create relatively realistic ruptures with dynamic fa.ih1re on 

faults in a homogeneous half-space, we study dynamic failure on faults in a layered half-space. We 

use the finite-element models of the strike-slip and thrust fault domains from the prescribed rupture 

simulations discussed in chapter 7. We focus on creating ruptures in the layered half-space that 

generally match the prescribed ruptures. Additionally, we examine the sensitivity of the ground 

motion to variations in the initial tractions and the friction models and identify the characteristics 

of the dynamic ruptures that differ from our prescribed ruptures. 

10.1 Strike-Slip Fault 

Section 7.1 gives a complete description of the geometry of the domain and the strike-slip fault. 

Instead of using the inertial bisection method to partition the meshes, for improved performance 

we switch to the METIS library (see section 3.2 for a discussion of both methods). The improved 

load balancing among the processors reduces the execution time without altering the solutions. 

Figure 10.1 illustrates the partitioning of the coarse mesh among 16 processors. Each simulation 

took 5.6 hours using 16 processors of the Hewlett Packard Exemplar at the CACR. 

10.1.1 Earthquake Source Parameters 

We follow the same procedures that we use for the dynamic failure simulations in the homogeneous 

half-space (see section 9.3.3) to determine the initial shear and normal tractions on the fault surface. 

For each scenario we assume that the pore pressures are negligible and apply lithostatic effective 

normal tractions. We want to compare the ground motions from these simulations, which use 

dynamic failure, to the ones in chapter 7, which use presr.ribed ruptnrns, so we aim for an :iw~nige 

slip of 2.0 m. The distribution of the initial shear tractions with depth depends on whether we 

assume uniform tectonic stresses or uniform tectonic strains. Additionally, using the slip- and rate­

weakening friction model or the melting-refreezing friction model, as opposed to the slip-weakening 

friction model, requires a larger dynamic stress drop to generate the same average slip. Thus, we 

will discuss the details of the shear tractions on the fault surface on a case by case basis. 
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Figure 10.1: Partitioning of the coarse finite-element model among sixteen processors for the layered 
half-space using the METIS library. Each color patch identifies the elements of one processor. 

10.1.2 Uniform Stress Versus Uniform Strain 

We continue to generate the initial stress distribution on the fault based on intuition and some 

degree of trial and error. With the variations in the material properties with depth in the layered 

half-space, uniform tectonic stresses create a substantially different distribution of shear tractions 

on the fault than uniform tectonic strains. We evaluate both cases to determine which generates a 

morP. rP.ali~t.ir. rnpt.11rP. . 

Uniform Stress: Scenario unistress 

We need to determine the nominal initial shear tractions on the fault surface. Equation (Q .1) gives 

the approximate average stress drop for a strike-slip fault in a homogeneous Poissonian half-space. 

Below a depth of 6.0 km, the material properties on the fault surface are nearly uniform, so we use 

the shear modulus from a depth of 6.0 km in equation (9.1). Applying this equation with an average 

slip of 2.0 m and our fault dimensions yields an average stress drop of 2.5 MPa. The recovery of the 

coefficient of friction upon termination of sliding means that the dynamic stress drop will exceed the 

average stress drop. Consequently, based on a test simulation with the homogeneous half-space, we 

impose a maximum dynamic stress drop of 4.5 MPa. We assume that some residual shear stresses 

remain on the fault after the earthquake, so we impose an initial shear stress of 6.0 MPa. At the 

lateral edges of the fault , we taper the initial shear tractions to smother the rupture. Figure 10.2 

gives the initial shear and normal tractions that we apply to the fault surface. For this scenario the 

asperity that initiates the rupture has a radius of 1.8 km and sits 8.0 km below the ground surface 
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Figure 10.1: Partitioning of the coarse finite-element model among sixteen processors for the layered 
half-space using the METIS library. Ea.ch color patch idcntifiees the elcmentl5 of one procestsur. 

10.1.2 Uniform Stress Versus Uniform Strain 

We continue to generate the initial stress distribution on the fault based on intuition and some 

degree of trial and error. With the variations in the material properties with depth in the layered 

half-space, uniform tectonic stresses create a substantially different distribution of shear tractions 

on the fault than uniform tectonic stro.ino. We evaluate both casees to deten:nine whicl1 gern:n«::tLets Gt 

more realistic rupture. 

Uniform Stress: Scenario unistress 

We need to determine the nominal initial shear tractions on the fault surface. Equation (9.1) gives 

the approximate average stress drop for a strike-slip fault in a homogeneous Poissonian half-space. 

Below a depth of 6.0 km, the material properties on the fault surface are nearly uniform, so we use 

the shear modulus from a depth of6.0km in equation (9.1). Applying this equation with an average 

slip of 2.0 m and our fault dimensions yields an average stress drop of 2.5 MPa. The recovery of the 

coefficient of friction upon termination of sliding means that the dynamic stress drop will exceed the 

average stress drop. Consequently, based on a test simulation with the homogeneous half-space, we 

impose a maximum dynamic stress drop of 4.5 MP a. We assun1e Llw.L tsume reisi<lual t>hear stresses 

remain on the fault after the earthquake, so we impose an initial shear stress of 6.0 MPa. At the 

lateral edges of the fault, we taper the initial shear tractions to smother the rupture. Figure 10.2 

gives the initial shear and normal tractions that we apply to the fault surface. For this scenario the 

asperity that initiates the rupture has a radius of 1.8 km and sits 8.0 km below the ground surface 
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and 14 km north of the south end of the fault . In order to prevent the effective normal stress from 

vanishing at the ground surface, we apply uniform axial stresses of 2.0 MPa in the east-west direction. 
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Figure 10.2: Shear and normal tractions on the strike-slip fault for scenario unistress. 

We set the parameters of the slip-weakening friction model based on our knowledge of creating 

realistic ruptures in a homogeneous half-space. We assume that the relative change in the coefficient 

of friction as a function of slip, i.e., the relative difference between µmax and µmin , does not vary 

with depth. In the strike-slip simulations with the homogeneous half-space, outside the asperity 

that starts the rupture, we use a distance from failure equal to the maximum dynamic stress drop 

(see section 9.2.1) . Applying the same strategy here gives nominal failure stresses of 10.5 MPa. 

With the variations of the material properties with depth, we cannot match the distance from 

failure over the entire depth of the fault. As a result, we choose to match (in an average sense) the 

distance from fai lure over the depth range of 6.0 km to 15.0 km, where the material properties remain 

relatively uniform. We determine the parameters in the friction model based on our selections of the 

maximum dynamic stress drop and the distance from failure. Equation (10.1) gives the functional 

forms of the parameters in the friction model and figure 10.3 shows the parameters of the slip­

weakening friction model as a function of depth. We clip the values above a depth of 1.0 km to 

prevent the values from approaching infinity at the ground surface. In order for the fracture energy 

to remain nearly uniform, we modify the characteristic slip distance in the softer material near 

the ground surface from its uniform value at depth. We denote this friction model by the label 

li tholayeruf. 
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Figure 10.2: Shear and normal tractions on the strike-slip fault for scenario unistress. 

We set the parameters of the slip-weakening friction model based on our knowledge of creating 

realistic ruptures in a homogeneous half-space. We assume that the relative change in the coefficient 

uf fricLiuu <:to a fuucLiuu uf olip, i.e., the relative difference between µmax and µmin, does not vary 

with depth. In the strike-slip simulations with the homogeneous half-space, outside the asperity 

that starts the ri1pt11rn, we nsr. a clist.::i.nre frnm fail11re eqlui.l to the maximum dynamic stress drop 

(see section 9.2.1). Applying the same strategy here gives nominal failure stresses of 10.5MPa. 

With the variations of the material properties with depth, we cannot match the distance from 

failure over the entire depth of the fault. As a result, we choose to match (in an average sense) the 

distance from failure over the depth range of 6.0 km to 15.0 km, where the material properties remain 

relatively uniform. We determine the parameters in the friction model based on our selections of the 

maximum dynamic stress drop and the distance from failure. Equation (10.1) gives the functional 

forms of the parameters in the friction model and figure 10.3 shows the parameters of the slip­

weakening friction model as a function of depth. We clip the values above a depth of 1.0 km to 

prevent the values from approaching infinity at the ground ;:;urface. In order for the fretcture energy 

to remain nearly uniform, we modify the characteristic slip distance in the softer material near 

the ground surface from its uniform value at depth. We denote this friction model by the label 

litholayeruf. 
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Figure 10.3: Parameters of the slip-weakening I friction model, litholayeruf, as a function of depth. 

Figure 10.1 gives the initial shear stresses, the :shear :stre:s:se:s at failure, and the minimum ;,,liJiug 

stresses as a function of dip on the fault. The minimum sliding stresses exhibit very little variation 

with depth except in the top LO km where we clip the parameters in the friction model. The 

figure displays the initial shear stresses through the center of the asperity that initiates the rupture. 

Outside the asperity and away from the edges of the fault, we apply uniform initial shear stresses. 

The decrease in density near the ground surface causes the effective normal stresses to decrease 

rapidly approaching the ground surface. Consequently, the failure stresses decrease as does the 

distance from failure. 

The reduced distance from failure in the softer material in the top 6.0 km of the domain allows 

lhi:: rupture to propagate at 4.9 km/sec. The rupture bifurcates towards the end of the rupture, but 

not to the same degree that we found in the homogeneous half-space (see section 9.6.2). Additionally, 

the reduced distance from failure leads to final slips (figure 10.5) exceeding 6.0 m over much of the 

top five kilometers of the fault with a maximum final slip of over 11 m. We also find maximum slip 

rates greater than 3.0m/sec in the top two to three kilometers of the fault with a peak maximum 
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Figure 10.5: Distributions of final slip and maximum slip rate at each point on the strike-slip fault 
for scenario unistress. 

slip rate of 11 m/sec. The distribution of the maximum slip rate in figure 10.5 displays relatively 

larger values along the path of constructive interference of the two portions of the rupture. We find 

this same interference in the large homogeneous half-space (see figure 9.31) . 
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Figure 10.5: Distributions of final slip and maximum slip rate at each point on the strike-slip fault 
for scenario unistress. 

slip rate of 11 m/sec. The distribution of the maximum slip rate in figure 10.5 displays relatively 

larger values along the path of constructive interference of the two portions of the rupture. We find 

this same interference in the large homogeneous half-space (see figure 9.31). 
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U niforrn Strain: Scenario unistrain 

In scenario unistrain we determine the nominal initial shear tractions on the fault surface based on 

application of uniform tectonic shear strains. We select shear strains that produce the desired shear 

tractions of approximately 6.0 MPa below a depth of 6.0 km where the material properties are nearly 

uniform. In order to prevent the effective normal stress from vanishing at the ground surface, we 

also apply uniform axial strains in the east-west direction. Equation (10.2) gives the strain field 

used to generate the shear and normal tractions that we apply on the fault surface (figure 10.6) . 
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Figure 10.6: Shear and normal tractions on the strike-slip fault for scenario unistrain. 

We continue to use the litholayeruf friction model from scenario unistress. Figure 10. 7 shows 

that this leads to the same relatively uniform distribution of sliding stresses with depth as those in 

scenario unistress. The initial shear stresses reflect the decrease in the shear modulus in the softer 

material in the top 6.0 km of the domain. In contrast to the variations of the shear stresses at failure 

in scenario unistress , the shear stresses at failure in scenario unistrain decrease gradually from the 



171 

Uniform Strain: Scenario unistrain 

In scenario unistrain we determine the nominal initial shear tractions on the fault surface based on 

application of uniform tectonic shear strains. We select shear strains that produce the desired shear 

tractions of approximately 6.0 MPa below a depth of 6.0 km where the material properties are nearly 

uniform. In order to prevent the effective normal otrcoo from vaniahing at the ground surface, we 

also apply uniform axial strains in the east-west direction. Equation (10.2) gives the strain field 

used to generate the shear and normal tractions that we apply on the fault R11rfar.A (fig11rA 1 O 6) 
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We continue to use the litholayeruf friction model from scenario unistress. Figure 10.7 shows 

that this leads to the same relatively uniform distribution of sliding stresses with depth as those in 

scenario unistress. The initial shear stresses reflect the decrease in the shear modulus in the softer 

material in the top 6.0 km of the domain. In contrast to the variations of the shear stresses at failure 

in scenario unistress, the shear stresses at failure in scenario unistrain decrease gradually from the 
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bottom of the fault up to a depth of 1.0 km, where we clip the coefficient of friction parameters. 

Two of the undesirable features of scenario unistress (figure 10.4) that we successfully eliminate in 

scenario unistrain (figure 10.7) include: the uniform maximum dynamic stress drop and the decrease 

in the distance from failure in the softer material near the top of the fault. 
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Figure 10.7: Initial, failure, and minimum sliding shear stresses through the center of the asperity 
on the strike-slip fault as a function of dip for scenario unistrain. 

The rupture propagates across the fault with a nearly uniform speed of 2.9 km/sec. The distri­

bution of the final slip in figure 10.8 exhibits little variation; we find the usual tapering at the edges 

of the foult and only a small peak located where Lhe ctbJJeriLy iuiLictLe<l Lhe rupture. The maximum 

slip rate shows a slight tendency to increase as the rupture propagates, which allows the rupture 

to penetrate into progressively shallower clepths. The l::i.rge clist.::i.nce from failure at shallow depths 

prevents the rupture from reaching the top of the fault. 

Comparing the characteristics of this scenario ( unistrain) with those from scenario unistress, 

where we apply a uniform stress, we find that this rupture appears more realistic. The excessive 

final slip and maximum slip rates near the surface disappear, creating relatively uniform distributions 

of final slip and maximum slip rate. Additionally, the rupture propagates at 88% of the local shear 

wave speed. The rupture does not propagate to the ground surface, and we consider this the only 

prominent feature of the scenario that seems unrealistic. 

10.1.3 Variation of Friction Parameters with Material Properties 

The parameters in the litholayeruf friction model do not change with the variations in the material 

properties; they change only with depth. Based on the inability of the rupture to reach the ground 

surface in scenario unistrain, it seems logical to make the parameters in the friction model a function 

of the material properties as well as depth. We want to create a relatively uniform slip distribution 
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Figure 10.8: Distributions of final slip and maximum slip rate at each point on the strike-slip fault 
for scenario unistrain. 

with depth where the material properties change with depth, and the effective normal stresses 

increase with depth. 

The change in stress at a point on the fault varies proportionally with the shear modulus and 

the slip, 

(10.3) 

The change in stress is also the difference between the initial shear stress , O"o , and the final shear 

st.rP.ss , rT1 . WP ::issume that we derive the initial shear stress from a uniform strain field , which gives 

(10.4) 

For the final shear stress, we use the minimum sliding shear stress, 

(10.5) 

Combining these equations , substituting in the expression for the shear inodulus (µ - pj32 ) , and 

solving for the minimum coefficient yields 

(10.6) 
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with depth where the material properties change with depth, and the effective normal stresses 

increase with depth. 

The change in stress at a point on the fault varies proportionally with the shear modulus and 

the slip, 

(10.3) 

The change in stress is also the difference between the initial shear stress, a0 , and the final shear 

stress, a1. We assume that we derive the initial shear stress from a uniform strain field, which gives 

(10.4) 

For the final shear stress, we use the minimum sliding shear stress, 

(10.5) 

Combining these equations, substituting in the expression for the shear modulus (µ = p/32 ), and 

solving for the minimum coefficient yields 

(10.6) 
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We now consider four cases of how the mass density, shear wave speed, and normal stress vary 

with depth. 

1. If the mass density, shear wave speed, and normal stress are all uniform with depth, then 

for uniform slip we want a uniform minimum coefficient of friction. This coincides with the 

oimpliotic case of uniform normal stress in the homogeneous half-space UmL we examiueJ iu 

chapter 9. 

2. lf the mass density and shear wave speed are uniform with depth, and the normal stress varies 

linearly with depth (due to the overburden pressure), then we want a minimum coefficient of 

friction that varies inversely with depth. This matches the reasoning that we use to derive the 

depth dependence of the coefficient of friction for the homogeneous half-space in chapter 9. 

:1. lf the mass density is uniform, and the shear wave speed and normal stress increase linearly 

with depth, then we want a minimum coefficient of friction that varies linearly with depth. 

This corresponds to a layered half-space where the shear wave i:;µeeJ ii:; µruµurUunal to the 

depth, but the mass density is relatively uniform with depth. 

4. If the mass density and shear wave speed vary linearly with depth, and the normal stress varies 

with the depth squared, then we again want the minimum coefficient of friction to vary linearly 

with the depth. This corresponds to a layered half-space where both the shear wave speed and 

the mass density are proportional to the depth. 

Our layered half-space follows neither of the last two cases. Near the surface it roughly matches 

the last case, but the material properties become relatively uniform below a depth of 6.0 km. Because 

the mass density and shear wave speed Ju uuL vaubh al Lhe ground tmrface, they actually vary 

slower than that predicted by a simple proportionality. As a result, we find that we achieve a 

desirable distribution of slip (as predicted from equation (10.6)) by making the coefficient of friction 

proportional to either the ratio of the square root of the shear modulus to the depth or the ratio of 

the shear wave speed to the depth. 

Figure 10.9 gives the normalized slip distribution predicted by equation (10. 7) for three different 

variations of the coefficient of friction: the coefficient of friction depends on the inverse of the depth, 

the coefficient of friction depends on the ratio of the square root of the shear modulus to the depth, 

and the coefficient of friction depends on the ratio of the shear wave speed to the depth. We use the 

effective normal stresses from scenario unistrain and select values of C1 and C2 to create normalized 

slips between approximately -1 and 1. 

(10.7) 
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The negative slip values indicate that slip at that depth leads to a local increase in the shear stress 

on the fault. Smaller normalized slips indicate a reduced preference for slip to occur. We see that 

varying the coefficient of friction inversely with the depth tends to retard slip near the surface, 

which matches our observations from scenario unistrain. Adding dependence on the square root 

of the shear modulus or the shear wave speed shifts the preference in slip towards a more uniform 

distribution with depth. 
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Figure 10.9: Normalized slip with depth for three different variations of the coefficient of friction 
with depth and material properties. 

We choose to vary the coefficient of friction with the quotient of the square root of the shear 

modulus and the depth, because based on equation (10. 7) it gives tho most uniform distribution of 

normalized slip with depth. We apply the dependence on the square root of the shear modulus to 

the characteristic slip distance to create a relatively uniform fracture energy. Equation (10.8) gives 

the functional forms of the parameters in the friction model, and figure 10.10 displays the variations 

of the parameters in the friction model with depth in the layered half-space. We denote this friction 

model by the label litholayeruf2. 
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Figure 10.10: Parameters of the slip-weakening I friction model, litholayeruf2, as a function of depth 
in the layered half-space. 

We apply the initial shear and normal tractions from scenario unistrain. This gives the distri­

butions of the initial, failure, and sliding stresses shown in figure 10.11 on the vertical li.ne through 

the center of the asperity. The shapes of the shear stresses at failure and the minimum sliding 

stresses more closely match the shapes of the initial shear stresses compared to those from scenarios 

unistress and unistrain. At each depth the maximum dynamic stress drop generally matches the 

distance from failure. Our homogeneous half-space simulations with dynamic failure that produce 

realistic ruptures contain this precise feature. Additionally, the dynamic stress drop closely follows 

the variations of the shear modulus that increases linearly in the top 6.0 km and is nearly uniform 

below 6.0 km. 

The snapshots of slip rate on the fault surface in figure 10.12 show that the rupture propagates all 

the way to the ground surface. Before the rupture hits the ground surface, the rupture propagates at 

about 2.5 km/sec, and after hitting the ground surface the rupture maintains a speed of 3.0 km/sec 

at a depth of 6.0 km. We attribute the change in the rupture speed to the increase in the maximum 
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Figure 10.11: Initial, failure, and minimum sliding shear stresses through the center of the asperity 
on the strike-slip fault as a function of dip for scenario unistrain2. 

slip rates as the rupture approaches the ground surface and encounters a reduction in the stiffness. 

The rupture reflects off the ground surface, but this second slip event soon disappears. As in scenario 

unistrain, the rupture does not bifurcate and propagates slower than the local shear wave speed. 

The average slip of l.9m nearly matches our target value of 2.0m from the prescribed ruptures. 

The moment magnitude of the event is 6.9. We compute an average stress drop of 1.4 MPa which 

falls short of the 2.5MPa average stress drop predicted by equation (9.1). The presence of the 

softer material in the top 6.0 km of the domain reduces the average stress drop rP.lativP. to the "ame 

average slip in a homogeneous half-space. This causes a deviation in the relationship between the 

average stress drop and the product of the shear modulus and the average slip from the one given 

by equation (9.1), which applies to homogeneous Poissonian half-spaces. 

Figure 10.13 shows the distributions of the final slip and maximum slip rate on the fault surface. 

The region where the final slip exceeds 3.0 m coincides with the locations that are subjected to the 

second slip event associated with the reflection of the rupture off the ground surface. This appears 

to distort the final slip from a more uniform distribution. The distribution of the maximum slip 

rate displays the features that we expect based on the snapshots of slip rate. We find the maximum 

slip rates near the surface are about 0.5 m/sec greater than the maximum slip rates at depth. The 

tendency for the maximum slip rate to increase as the rupture propagates causes this region of larger 

slip rates at the surface to progressively increase in size. The increases in the slip rates are small, 

and the maximum slip rates increase by less than 0.25m/sec over a distance of 25km. 

We now evaluate the level of the shear stresses on the fault during sliding. Recall that by 

appropriate scaling of the initial, failure, and sliding shear stresses (see section 8.1.2), we may change 

the sliding stresses without any changes in the rupture behavior. This means the observed rupture 
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Figure 10.12: Snapshots of slip rate on the strike-slip fault for scenario unistrain2 . 
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behavior and ground motions do not constrain the sliding stresses. However, using equation (4.10) 

we may compute the change in temperature at each point on the fault . Few faults contain glassy 

material that would indicate frictional melting (Kanamori et al. 1998). This implies that the change 

in temperature on the fault during sliding remains below the level that would cause cause melting. 

If we assume that changes in temperature on the order of 1000 degrees Kelvin cause melting, then 

we want our sliding stresses to yield estimated temperature changes less than 1000 degrees Kelvin. 

Following Kanamori et al. (1998) we assume a heat capacity per unit mass of 1000J/(kg-°K) 

and confinement of the heat to a region that extends 5.0 mm perpendicular to the fault . If the slip 

occurs across an infinitesimally thin zone, then the heat is confined to the thermal penetration depth 

given by d = JkTd,, where k is the thermal diffusivity and Td is the time scale of the slip. Assuming 

that k = 1.35x10- 6 m/sec2 and choosing Td = 5 sec gives d = 2.6 mm. If the slip is distributed over 

a wider zone, then d may be larger. Consequently, we moderate the value of d given by the thermal 

penetration depth and choose a value of d = 5.0 mm. As shown in figure 10.14, at most locations 
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Figure 10.12: Snapshots of slip rate on the strike-slip fault for scenario unistrain2. 

behavior and ground motions do not constrain the sliding stresses. However, using equation (4.10) 

we may compute the change in temperature at each point on the fault. Few faults contain glassy 

material that would indicate frictional melting (Kanamori et al. 1998). This implies that the change 

in temperature on the fault during sliding remains below the level that would cause cause melting. 

If we assume that changes in temperature on the order of 1000 degrees Kelvin cause melting, then 

we want our sliding stresses to yield estimated temperature changes less than 1000 degrees Kelvin. 

Following Kanamori et al. (1998) we assume a, hea,L rnµ<LdLy µer unit mass of 1000 J /(kg-°K) 

and confinement of the heat to a region that extends 5.0 mm perpendicular to the fault. If the slip 

occurs across an infinitesimally thin zone, then the heat iR mnflned to the thermal penetration depth 

given by d = JkTd,, where k is the thermal diffusivity and Td is the time scale of the slip. Assuming 

that k 1.35 x 10-6 m/ sec2 and choosing Td = 5 sec gives d = 2.6 mm. If the slip is distributed over 

a wider zone, then d may be larger. Consequently, we moderate the value of d given by the thermal 

penetration depth and choose a value of d = 5.0mm. As shown in figure 10.14, at most locations 
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the temperature increases 300- 400 degrees Kelvin. We observe smaller changes in temperature near 

the top of the fault because the minimum sliding stresses are smaller. Below a depth of 6.0 km 

the sliding stresses vary little, so below that depth the change in temperature closely resembles the 

distribution of final slip. Thus, our sliding stresses seem consistent with the lack of melting observed 

in fault zone materials. 
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Figure 10.14: Final change in temperature at each point on the strike-slip fault for scenario unis­
train2. 

The distrihntions of thP. maxim11m horimntal rlisplar.P.mP.nts anrl vP.lnr.itiP.s r.lP.::l.rly show thP. P.f­

fect of directivity that we observe in the prescribed ruptures. In figure 10.15 both the maximum 

horizontal displacements and velocities increase along the strike of the fault away from the epicenter 

until the end of the fault where they begin to decay. The maximum displacements exceed 1.0 m 
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the temperature increases 300-400 degrees Kelvin. We observe smaller changes in temperature near 

the top of the fault because the minimum sliding stresses are smaller. Below a depth of 6.0 km 

the sliding stresses vary little, so below that depth the change in temperature closely resembles the 

distribution of final slip. Thus, our sliding stresses seem consistent with the lack of melting observed 

in fault zone materials. 
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Figure 10.14: Final change in temperature at each point on the strike-slip fault for scenario unis­
train2. 

The distributions of the maximum horizontal displacements and velocities clearly show the ef­

fect of directivity that we observe in the prescribed ruptures. In figure 10.15 both the maximum 

horizontal displacements and velocities increase along the strike of the fault away from the epicenter 

until the end of the fault where they begin to decay. The maximum displacements exceed 1.0 m 
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over an area of approximately 1200 square kilometers with a peak value of 3.0 m. The maximum 

velocities exceed 1.0 m/sec over an area of approximately 550 square kilometers with a peak value 

of 3.5 m/ sec. The maximum displacements exhibit the gradual decay away from the fault that we 

found in the prescribed ruptures, while the distribution of the maximum velocities fits the familiar 

teardrop shape, but with a more rapid decay. 
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Figure 10.15: Maximum magnitudes of the horizontal displacement and velocity vectors at each 
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We now examine the displacement and velocity time histories 1 at site Sl, which is located on 

the ground surface 10 km north of the north tip of the fault, and at site 82, which is located on the 

ground surface 10 km east of the center of the fault (see figure 7.1 for a diagram of the locations of the 

two sites). Site Sl lies on the nodal line for motion in both the north-south and vertical directions, 

so we observe motion only in the east-west (fault normal) direction in figure 10.16. We see a sharp 

arrival of the shear wave with a peak velocity of 1.3 m/sec followed by a train of surface waves 

wiLh µrugretitiively tirnaller arnµliLuueo. AL oite S2 the peak Jioplacement in the north-oouth (faulL 

parallel) direction exceeds the peak displace111e11L iu Lhe eatiL-wetiL (faulL uurnial) JirecLiuu Ly 34%, 

but the peak velocities in the two directions are nearly equal (0.20 m/sec compared to 0.20 rn/sec) . 

These general features are consistent with the ground motions from the prescribed ruptures . 

1 As in chapter 7, we low-pass filter all displacement and velocity time histories using a fourth-order Butterworth 
filter with a corner frequency of 0.5 Hz. 
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Figure 10.15: Maximum magnitudes of the horizontal displacement and velocity vectors at each 
point on the ground surface for scenario unistrain2. The white line indicates the projection of the 
fault plane onto the ground surface, and the purple circle identifies the epicenter. 

We now examine the displacement and velocity time histories1 at site 81, which is located on 

the ground surface 10 km north of the north tip of the fault, and at site 82, which is located on the 

ground surface 10 km east of the center of the fault (see figure 7.1 for a diagram of the locations of the 

two sites). Site Sl lies on the nodal line for motion in both the north-south and vertical directions, 

so we observe motion only in the east-west (fault normal) direction in figure 10.16. We see a sharp 

arrival of the shear wave with a peak velocity of 1.3 m/ sec followed by a train of surface waves 

with progressively smaller amplitudes. At site 82 the peak displacement in the north-south (fault 

parallel) direction exceeds the peak displacement in the east-west (fault normal) direction by 34%, 

but the peak velocities in the two directions are nearly equal (0.26m/sec compared to 0.25m/sec). 

These general features are consistent with the ground motions from the prescribed ruptures. 

1 As in chapter 7, we low-pass filter all displacement and velocity time histories using a fourth-order Butterworth 
filter with a corner frequency of 0.5 Hz. 
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Figure 10.16: Displacement and velocity t ime histories at sites Sl and 82 for scenario unistrain2. 

We find that uniform tectonic strains and a friction model with parameters that vary as a function 

of both depth and shear modulus produce a realistic rupture. We observe reasonable values for the 

rupture speed and the maximum slip rate, and the ground motions exhibit the directivity that 

we expect. The horizontal velocities near the north end of the fault that exceed 3.0 m/sec appear 

excessive and may be attributed to the rapid slip rates near the surface. However, these excessive 

w1.h1 PR ::i.rP iRnl::it.Pr1 to the sites within one kilometer of the fault . Using a uniform characteristic 

slip cHstanr.P of 0 .~~8 m in t.hP frir.tinn mnr1Pl (Rr.Pn::i.rin 11nir.h::i.rr1iRt.) prnr11ir.PR nPgligihlP rh::i.ngPR in 

the behavior of the rupture and the ground motions. Moreover, changing the dependence of the 

coefficient of friction from the square root of the shear modulus to the shear wave speed (scenario 

shearspeed) also yields nearly identical behavior. Because scenarios unistrain2 and unichardist 

generate realistic rupture behavior and ground motions, we will use these two scenarios as base 

cases for a sensitivity study. 

10.1.4 Sensitivity Study 

We conduct a second sensitivity study of the long-period nco.r-sourcc ground motions, but in this 

case we focus on determining how the ground motions and rupture behavior change as we vary the 

initial conditions and parameters of the friction model. We systematically vary the type of friction 
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Figure 10.16: Displacement and velocity time histories at sites Sl and si for scenario unistrain2. 

We find that uniform tectonic strains and a friction model with parameters that vary as a function 

of both depth and shear modulus produce a realistic rupture. We observe reasonable values for the 

rupture speed and the rnaximum slip raLe, and Lhe 1'1,Wuml mulium; exhll.JH Lhe directivity that 

we expect. The horizontal velocities near the north end of the fault that exceed 3.0 m/sec appear 

excessive and may be attributed to the rapid Rlip rat.AR rn~ar tho Rnrface However, these excessive 

values are isolated to the sites within one kilometer of the fault. Using a uniform characteristic 

slip distance of 0.338 m in the friction model (scenario unichardist) produces negligible changes in 

the behavior of the rupture and the ground motions. Moreover, changing the dependence of the 

coefficient of friction from the square root of the shear modulus to the shear wave speed (scenario 

shearspeed) also yields nearly identical behavior. Because scenarios unistrain2 and unichardist 

generate realistic rupture behavior and ground motions, we will use these two scenarios as base 

cases for a sensitivity study. 

10.1.4 Sensitivity Study 

We conduct a second sensitivity study of the long-period near-source ground motions, but in this 

case we focus on determining how the ground motions and rupture behavior change as we vary the 

initial conditions and parameters of the friction model. We systematically vary the type of friction 
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model, the depth of the top of the fault, the hypocenter location, and the degree of heterogeneity 

in the initial shear stresses and the parameters of the friction model. Table 10.l summarizes the 

general initial conditions and parameters for the scenarios in the sensitivity study, and table 10.2 

gives some of the features of the ruptures for the scenarios. We discuss the scenarios in the following 

sections. 

Scenario Initial Tractions Friction Type 

1mistress 11nifnrm stress slip-weakening 
unistrain uniform strain slip-weakening 
unistrain2 same as unistrain slip-weakening 

unichardist same as unistrain slip-weakening 
shearspeed same as unistrain slip-weakening 

comboB uniform strain slip- and rate-weakening 
meltC same as comboB melting-refreezing 

fault4km uniform strain same as unichardist 
hymc uniform strain same as unistrain2 

shearweak weakly heter. strain same as unistrain2 
shearstrong sLrougly hder. :;Ln:iiu :;ame a:; unistrain2 
meltstrong strongly heter. strain same as meltC 

friction weak same as unistrain2 weakly heter. slip-weakening 
frictionstrong same as unistrain2 strongly hater. slip weakening 

Table 10.1: Summary of the initial tractions and the friction model type for each scenario in the 
sensitivity study with the strike-slip fault. When scenarios share exactly the same parameters, we 
note the common bond in the latter scenarios. 

Friction Model 

We study the sensitivity of the ground motions to the fridion morlel mdne; the slip-weakening friction 

model (scenario unichardist), the slip- and rate-weakening friction model (scenario comboB), and 

the shear melting-refreezing friction model (scenario meltC). The minimum sliding stresses remain 

the same across all three scenarios, but we increase the maximum dynamic stress drop by a factor of 

1.44 for scenarios comboB and meltC. As discussed in section 9.5, the friction models with shear re­

strengthening require a greater dynamic stress drop to generate the same slip as the slip-weakening 

friction model. We also scale the coefficient of friction at failure in order to maintain a distance from 

failure that matches the maximum dynamic stress drop. Equation (10.9) gives the functional forms of 

the parameters in the friction models for scenarios comboB and meltC. Figure 10.17 gives the initial 

shear stresses, the shear stresses ut foilure, and the minimum sliding shear stresses over t.l1e ueJ!Lll 

of the fault. Recall that V0 denotes the slip rate at which shear re-strengthening occurs in the slip­

and rate-weakening friction model, and r 0 varies inversely with the rate at which areas "refreeze" 

in the shear melting-refreezing friction model. These initial conditions for scenarios comboB and 

meltC produce earthquakes with a moment magnitude of 6.8 and average slips of 1.4 m and 1.5 m. 
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Scenario Average Max. Average Max. Max. Moment Average 
Slip Slip Slip Rate Slip Rate Magnitude Stress Drop 
(m) (m) (m/sec) (m/sec) (MP a) 

unistress 3.8 11 1.8 11 7.1 1.9 
unistrain 1.2 2.3 0.89 1.4 6.8 1.6 

unistrain2 1.9 3.5 1.2 3.9 6.9 1.4 
unichardist 1.9 3.6 1.2 4.1 6.9 1.4 
shears peed 1.8 3.5 1.2 4.0 6.9 1.4 

comboB 1.4 2.4 1.4 4.4 6.8 1.2 
meltC 1.5 :u 1.5 5.2 6.8 1.5 

fault4km 1.5 2.8 1.0 1.6 7.0 2.3 
hymc 2.0 3.6 1.2 3.7 6.9 1.5 

shearweak 2.3 4.4 1.2 4.2 7.0 1.8 
shearstrong 1.9 3.8 1.1 5.7 6.9 1.3 
meltstrong 1.7 3.8 1.5 7.4 6.9 1.4 

friction weak 1.9 3.6 1.2 4.2 6.9 1.1 

frictionstrong 2.0 4.0 1.1 4.5 6.9 1.4 

Table 10.2: Summary of the ruptures in the scenarios that we use in the sensitivity study of the 
strike-slip fault. We compute the average slip using equation (2.30), the moment magnitude using 
equation (2.40), and the average stress drop using equation (8.9). 

{ 0.227 z > -1.0km 
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-4 17 X 10-3 ( ms sec2) 2 ::IJ!:. z < -1.0km . kg z 

{ 0.0235 z > -1.0km 
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-4.31 X 10-4 (ms sec2) 2 ::IJ!:. z < -1.0km kg z 

{ 

0.157 z > -1.0km 

-2.88x10-3 m
3

sec
2 2 ::II!:. Z < -1.0km 

µpost = ( ) 1 

kg z 

D0 = 0.446m (scenario comboB) 

V0 = 0.150m/sec (scenario comboB) 

D0 0.130m (scenario meltC) 

T 0 = 0.350 sec (scenario meltC) (10.9) 

In scenario comboB the healing portion of the rupture, which is associated with the trailing edge 

of the rupture front, almost catches the leading edge of the rupture. This narrowing of the rupture 

front in the central portion of the fault significantly reduces the maximum slip rates and nearly 

smothers the rupture. Fukuyama and Madariaga (1998) also observed narrowing of the rupture 

front when they included rate-weakening in a similar friction model. The maximum displacements 

and velocities on the ground surface in figure 10.18 display evidence of this phenomenon. North 
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Figure 10.17: Initial, failure, and minimum sliding shear stresses through the center of the asperity 
on the strike-slip fault as a function of dip for scenarios comboB and meltC. 

of the epicenter both distributions exhibit an initial increase in the maximum values followed by 

a decrease along the central portion of the fault before increasing again. At the north end of the 

fault, the displacements and velocities on the ground surface return to levels near those observed in 

scenario unichardist. The local minimum in the maximum displacements occurs approximately two 

kilometers south of the local minimum in the maximum velocities. This is consistent with the more 

rapid decay in the maximum displacements off the north end of the fault compared to the maximum 

velocities. The peak maximum values of 3.3m and 3.7m/ser nrr11r 2.::l km ><rmth of the north tip of 

the fault. As in scenario unichardist, these extremely large values occur on the fault where the slip 

rates are the greatest. 

We compare the velocity time histories at sites Sl and 82 for all three scenarios (figure 10.19). 

At site Sl we find larger amplitudes for scenario meltC (melting-refreezing friction) than for ei­

ther scenario unichardist (slip-weakening) or scenario comboB (slip- and rate-weakening). The 

slightly sharper phase arrivals for scenario meltC reflect the faster rupture speed (3.1 km/sec ver­

sus 3.0 km/sec) and contributes to the larger amplitudes. Additionally, the increase in the velocity 

amplitudes may be attributed to the greater tendency for the slip rates to progressively increase in 

ruptures with tho molting refreezing friction model compared to the other two friction models. At 

site 82 in the north-south (fault parallel) direction, the velocity amplitudes for scenario unichardist 

are generally larger than those for scenarios comboB and meltC, but the reverse is true in the east­

west (fault normal) direction. While the time histories for scenarios unichardist and comboB match 

closely at site Sl, at site 82 the time histories for scenarios comboB and meltC match closely. Al­

though the velocity time histories exhibit moderate variations in amplitude, at both sites the general 

shapes of the waveforms do not change across the three friction models. 
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Figure 10.18: Maximum magnitudes of the horizontal displacement and velocity vectors at each 
point on the ground surface for scenario comboB. The white line indicates the projection of the fault 
plane onto the ground surface, and the purple circle identifies the epicenter. 

The maximum displacements and velocities on the ground surface along the east-west line through 

the north tip of the fault agree with our observations at site Sl. Figure 10.20 shows a close match 

between the ma,ximum displa,cements a,nd velocities for scenarios unichardist and cornboD with 

slightly larger values for scenario mcltC. The maximum velocities for scena.rio meltC deca,y a,t a, 

s lightly slower rate from 5.0- 10 km away from the fault compared to those from scenarios unicho.rdist 

and comboB. \i\Te attribute these larger maximum velocities to the relatively larger slip rates at tho 

north end of the fault in scenario meltC compared to the other two scenarios. This slower decay 

more closely matches the shape of the near-source factor , Nv, from the 1997 Uniform Building 

Code. Nevertheless , the shapes of the curves of maximum displacements and velocities from all 

three scenarios match the general shape of the near-source factor curve. 

Fault Depth 

We study the sensitivity of the ground motions to the depth of the fault using scenarios unichardist 

anrl fan lt.4km _ To create scenario fault4km we lower the fault 4 .0 km while applying the same initial 

strain field and using the same slip-weakening friction model litholayeruf2 (given by equation (10.8)) . 

With the buried fault in scenario fault4km, the rupture does not hit the free surface and produces 

more uniform distributions of final slip and maximum slip rate. The two distributions resemble 
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Figure 10.18: Maximum magnitudes of the horizontal dfaplacement and vectors at each 

point on the ground surface for scenario comboB. The white line indicates the projection of the fault 
plane onto the ground surface, and the purple circle identifies the epicenter. 

The maximum displacements and velocities on the ground surface along the east-west line through 

the north tip of the fault agree with our observations at site ~L Figure 10.20 shows a close match 

between the maximum displacements and velocities for scenarios unichardist and comboB with 

slightly larger values for scenario mdtC. Tho maximum velocities for scenario meltC decay at a 

slightly slower rate from 5.0~ 10 km away from the fault compared to those from scenarios unichardist 

and comboB. We attribute these larger maximum velocities to the relatively larger slip rates at the 

north end of the fault in scenario meltC compared to the other two scenarios. This slower decay 

more closely matches the shape of the near-source factor, Nv, from the 1997 Uniform Building 

Code. Nevertheless, the shapes of the curves of maximum displacements and velocities from all 

three scenarios match the general shape of the near-source factor curve. 

Fault Depth 

We study the sensitivity of the ground motions to the depth of the fault using scenarios unichardist 

and fault4km. To create scenario fault4km we lower the fault 4.0 km while applying the same initial 

strain field and using the same slip-weakening friction model litholayeruf2 (given by equation (10.8)). 

With the buried fault in scenario fault4km, the rupture does not hit the free surface and produces 

more uniform distributions of final slip and maximum slip rate. The two distributions resemble 
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models. 
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models. 
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dashed line indicates the near-source ground motion factor, Nv, from the 1997 Uniform Building 
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those from scenario unistrain where the rupture did not penetrate the softer material near the 

ground surface. With the deeper fault and the increase in shear modulus with depth, the moment 

magnitude increases from 6.9 to 7.0 even though the average slip decreases from 1.9 m to 1.5 m. 

The north-south displacement time histories at site 82 (figure 10.21) reflect this variation in the 

average slip. While the shapes of the time histories closely match, we observe larger amplitudes and 

final displacements for scenario unichardist, where the top of the fault sits at the ground surface, than 

for scenario fault4km, where the top of the fault sits at a depth of 4.0 km. In the east-west direction 

at both sites Sl and 82, we generally observe smaller displacement amplitudes with the buried fault. 

The notable exception is the shear wave arrival at site 81 where the peak displacement for the buried 

fault exceeds the peak displacement for the fault at the surface by 203 (1.2 m compared to 1.0 m). 
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Figure 10.21: Comparison of horizontal displacement time histories at sites Sl and 82 for the two 
depths of the top of the fault. 

In addition to substantially reducing the maximum displacements and velocities along the east­

west line running through the north tip of the fault, burying the fault perturbs the shapes of the 

curves as shown in figure 10.22. The maximum displacements for scenario fault4km become nearly 

uniform for distances 15-20 km from the fault. On the other hand, the maximum velocities continue 

to decay at approximately the same rate over this same region. The maximum velocities from 

scenario unichardist decay at a faster rate closer to the fault before decaying more slowly 10 km from 

the fault. Consequently, the maximum displacements and velocities from the two scenarios closely 
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agree between 5.0 km and 10 km from the fault. Less than 5.0 km from the fault, the maximum 

displacements and velocities from scenario fault4km lie well below those from scenario unichardist, 

while beyond 10 km from the fault, they are only slightly lower. Although the lowering of the fault 

does reduce the maximum horizontal displacements and velocities, the peak values on this east-west 

liue ::;Lill ex<.:eell 1.0 m and 1.5 rn/8ec. vVe continue to find no significant discrepancies between the 

shape of the near-source factor and the shapes of the maximum displacements and velocities for this 

strike-slip fault. 
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Figure 10.22: Maximum magnitude8 of the horizontal displacement and velocity vectors along an 
east-west line running through the north tip of the fault for the two depths of the top of the fault. 
The thick, dashed line indicates the near-source ground motion factor, Nv, from the 1997 Uniform 
Building Code. 

Hypocenter Location 

Moving the asperity to the center of the fault, while maintaining the same 8.0 km depth (scenario 

hymc), allows examination of the sensitivity of the ground motions to the location of the hypocenter. 

Besides the adjustment of the asperity in the initial shear tractions, the other initial conditions and 

parameters do not change from those we use in scenario unistrain2. Figure 10.23 displays the 

displacement time histories at sites Sl and 82 for scenario unistrain2 with the hypocenter at the 

southern quarter point (labeled middle and scenario hymc with the hypocenter at the 

2 The first word in the label of the hypocenter refers to the dip location, and the second word refers to the strike 
location. 

slip of 2.0 m from scenario hymc closely matches the average slip of 1.9 m from scenario unistrain2. 

Consequently, at each site we find minimal differences between the final displacements for the two 

scenarios. 

When •Ye exo,mine the mo,ximu1n horiz;ontoJ di::1pletcen:1ent'5 <ind vduciLie::> ciluug Lhe ea::>L-we::>l. liue 

through the north tip of the fault given in figure 10.24, we find that the change in the hypocenter 

location affects the maximum displacements more than the maximum velocities. When we move the 
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center of the fault (labeled middle center). As expected, the shear wave arrives earlier at site Sl 

when we place the hypocenter near the center of the fault. In contrast to the prescribed ruptures 

where we observe little change in the amplitudes of the motion for the different hypocenter locations, 

we see that the peak displacement in the east-west direction increases from 0.74m to l.Om as the 

hypocenter moves from the middle of the fault to the southern quarter point. The shapes of the 

displacement time histories remain the same. 
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Figure 10.23; Comparibuu uf liuriwuLal uibplacement time histories at sites SI and S2 for two the 
hypocenter locations. 

At site S2 the shear wave arrives more sharply with the central hypocenter location. The energy 

from the locations within the asperity arrives over a shorter period of time due to the finite size of 

the asperity and the location of site S2 at an azimuth of precisely 90 degrees. For both hypocenter 

locations site Sl lies on nodal lines for motion in the north-south direction, and for the middle center 

hypocenter location site S2 lies on a nodal line for motion in the east-west direction. The average 

slip of 2.0 m from scenario hymc closely matches the average slip of 1.9 m from scenario unistrain2. 

Curn;el1ui:mLly, aL each bHe we fiuJ minimal differences between the final displacements for the two 

scenarios. 

When we examine the maximum horizontal displacements and velocities along the east-west line 

through the north tip of the fault given in figure 10.24, we find that the change in the hypocenter 

location affects the maximum displacements more than the maximum velocities. When we move the 
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hypocenter from near the center of the fault to the southern quarter point, the peak of the curve 

of maximum displacements increases by 26% while the peak of the curve of maximum velocities 

increases by only 3.7%. In the prescribed ruptures we find little variation in both the maximum 

displacements and velocities. The shapes of the curves exhibit little variation and closely agree with 

the shape of curve for the near-source factor. 
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east-west line running through the north tip of the fault for the two hypocenter locations. The thick, 
dashed line indicates the near-source ground motion factor, Nv, from the 1997 Uniform Building 
Code. 

Heterogeneity in Initial Shear Tractions 

We gauge the sensitivity of the rupture behavior and the ground motions to heterogeneity in the 

initial shear tractions by introducing asperities into the tectonic shear strains. We continue to use the 

litholayeruf2 slip-weakening friction model (equation (10.8)). We create both weakly heterogeneous 

(scenario shearweak) and strongly heterogeneous (scenario shearstrong) distributions of the initial 

shear strains. The distributions each contain 30 asperities with uniform random distributions of 

radii between 3.U km and 8.U km and uniform random distributions of locations along the strike and 

dip. We do not allow asperities within 2.0 km of the edges of the fault to prevent tampering with 

the taper in the shear stresses at the edges of the fault. The weakly and strongly heterogeneous 

distributions contain asperities uniformly distributed within 30% and 60% of the nominal strain field 

(equation (10.2)). We introduce the heterogeneity directly into the initial shear tractions from the 
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asperities in the strain field. Consequently, the asperities do not affect the effective normal tractions. 

Figure 10.25 shows the distribution of the initial, failure, and sliding shear stresses on the fault for 

scenario shearstrong which contains the strongly heterogeneous initial strains . 
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Figure 10.25: Initial (blue), failure (red) , and minimum sliding (green) shear stresses on the strike­

slip fault for scenario shearstrong. 

The heterogeneity in the initial shear stresses provides one of the few means to introduce het­

erogeneity into the distribution of the final slip. The other methods include using heterogeneity in 

the parameters of the friction model, which we will discuss below, and using heterogeneity in the 

material properties. The strongly heterogeneous initial shear stresses do a substantially better job 

of generating heterogeneity in the distribution of the maximum slip rate than in the distribution of 

final slip as illustrated by figure 10.26. Compared to the level of heterogeneity in the final slip , the 

level of heterogeneity in the maximum slip rates more closely matches the level of heterogeneity in 

the initial shear tractions. We do find an increase in the maximum final slip from 3.5 m to 3.8 m with 

negligible change in the average slip. We observe an increase in the final slip at a strike of around 

40 km, where two asperities create large initial shear stresses. Similarly, the reduced initial shear 

stresses at the bottom of the north end of the fault effectively prevent slip at the bottom corner 

of the fault. The asperities also lead to sudden increases and decreases in the maximum slip rate 

and rupture speed corresponding to regions where they reduce or increase the distance from failure. 

These fluctuations create the heterogeneous distribution of maximum slip rate visible in figure 10.26. 

The changes in the rupture speed greatly reduce the efficiency of the reinforcement of the shear 

wave by the rupture. Figure 10.27 shows that the maximum displacements and velocities increase 

more rapidly as the rupture encounters the two asperities at a north-south location of 0 km (strike 

of 40 km) . This is in response to the relatively larger slip rates and slip that occur when the rupture 

hits the asperities. These larger slip rates momentarily increase the rupture speed and the efficiency 

of the reinforcement of the shear wave by the rupture. On the other hand, just north of this region, 

the maximum displacements and velocities suddenly decrease, because the rupture speed decreases 
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asperities in the strain field. Consequently, the asperities do not affect the effective normal tractions. 

Figure 10.25 shows the distribution of the initial, failure, and sliding shear stresses on the fault for 

scenario shearstrong which contains the strongly heterogeneous initial strains . 
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Figure 10.25: Initial (blue), failure (red), and minimum sliding (green) shear stresses on the strike­
slip fault for scenario shearstrong. 

The heterogeneity in the initial shear stresses provides one of the few means to introduce het­

erngeueiLy iuLu Lhe distribution of the final slip. The other methods include using heterogeneity in 

the parameters of the friction model, which we will discuss below, and using heterogeneity in the 

material properties. The strongly heterogeneous initial shear stresses do a substantially better job 

of generating heterogeneity in the distribution of the maximum slip rate than in the distribution of 

final slip as illustrated by figure 10.26. Compared to the level of heterogeneity in the final slip, the 

level of heterogeneity in the maximum slip rates more closely matches the level of heterogeneity in 

the initial shear tractions. We do find an increase in the maximum final slip from 3.5 m to 3.8 m with 

negligible change in the average slip. We observe an increase in the final slip at a strike of around 

40 km, where two asperities create large initial shear stresses. Similarly, the reduced initial shear 

stresses at the bottom of the north end of the fault effectively prevent slip at the bottom corner 

of the fault. The asperities also lead to sudden increases and decreases in the maximum slip rate 

and rupture speed corresponding to regions where they reduce or increase the distance from failure. 

These fluctuations create the heterogeneous distribution of maximum slip rate visible in figure 10.26. 

The changes in the rupture speed greatly reduce the efficiency of the reinforrement of the shea.r 

wave by the rupture. Figure 10.27 shows that the maximum displacements and velocities increase 

more rapidly as the rupture encounters the two asperities at a north-south location of 0 km (strike 

of 40km). This is in response to the relatively larger slip rates and slip that occur when the rupture 

hits the asperities. These larger slip rates momentarily increase the rupture speed and the efficiency 

of the reinforcement of the shear wave by the rupture. On the other hand, just north of this region, 

the maximum displacements and velocities suddenly decrease, because the rupture speed decreases 
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Figure 10.26: Distributions of final slip and maximum slip rate at each point on the strike-slip fault 
for scenario shearstrong. 

and the efficiency of the reinforcement of the shear wave returns to near its nominal level. The 

maximum displacements and velocities increase again as the rupture approaches the north tip of the 

fault. 

The limited ability of the strongly heterogeneous initial shear tractions to create large variations 

in the distribution of final slip inspired the combination of the melting-refreezing friction model with 

the strongly heterogeneous initial strains (scenario meltstrong). The shear re-strengthening in the 

melting-refreezing friction model reduces the width of the rupture front and causes the slip to occur 

at a more local level. We use the melting-refreezing model from scenario meltC and simply add the 

asperities from the heterogeneous strain field to the initial strain distribution from scenario meltC. 

The correlation between the height of the asperities and the final slip increases substantially in 

scenario meltstrong compared to scenario shearstrong, even though we observe no change in the 

maximum final slip and minimal change in the average slip. We find local maxima in the final slip 

in figure 10.28 near the two asperities that sit at a strike of about 40 km. The local variations in the 

distribution of the maximum slip rate agree with those in scenario shearstrong. This suggests that , 

while both the slip-weakening and melting-refreezing friction models produce heterogeneity in the 

8lip rates, the friction models with shear re-strengthening more effectively produce heterogeneity in 

Lhe ui8LriLuLiuu uf final 8lip. 

Figure 10.29 displays the displacement time histories for the four scenarios. The displacement 

time histories from scenario shearweak differ the most from the other three scenarios, because the 
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Figure 10.26: Distribut10ns of final slip and maximum slip rate at each point on the strike-slip fault 
for scenario shearstrong. 

and the efficiency of the reinforcement of the shear wave returns to near its nominal level. The 

maximum displacements and. velocities increase again as the rupture approaches the north tip of the 

fault. 

The limited ability of the strongly heterogeneous initial shear tractions to create large variations 

in the distribution of final slip inspired the combination of the melting-refreezing friction model with 

the strongly heterogeneous initial strains (scenario meltstrong). The shear re-strengthening in the 

melting-refreezing friction model reduces the width of the rupture front and causes the slip to occur 

at a more local level. We use the melting-refreezing model from scenario meltC and simply add the 

asperities from the heterogeneous strain field to the initial strain distribution from scenario meltC. 

The correlation between the height of the asperities and the final slip increases substantially in 

scenario meltstrong compared to scenario shearstrong, even though we observe no change in the 

maximum final slip and minimal change in the average slip. We find local maxima in the final slip 

in figure 10.28 near the two asperities that sit at a strike of about 40 km. The local variations in the 

distribution of the maximum slip rate agree with those in scenario shearstrong. This suggests that, 

while both the slip-weakening and melting-refreezing friction models produce heterogeneity in the 

slip rates, the friction models with shear re-strengthening more effectively produce heterogeneity in 

the distribution of final slip. 

Figure 10.29 displays the displacement time histories for the four scenarios. The displacement 

time histories from scenario shearweak differ the most from the other three scenarios, because the 
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Figure 10.27: Maximum magnitudes of the horizontal displacement and velocity vectors at each 
point on the ground surface for scenario shearstrong. The white line indicates the projection of the 
fault plane onto the ground surface, and the purple circle identifies the epicenter. 
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rupture happens to encounter an asperity near the hypocenter and begins propagating at a speed of 

4.9 km/sec. By propagating faster than the shear wave, the reinforcement of the shear wave decreases 

dramatically. This results in the smaller amplitude displacements in the east-west (fault normal) 

direction at sites 81 and 82 . At site 82 the amplitudes in the north-south direction are larger for 

scenario shearweak, because the faster rupture speed corresponds to higher slip rates. The larger slip 

rates generate an average slip of 2.3 min scenario shearweak compared to the 1.9 m of slip in scenario 

unistrain2. Turning our attention to the other three scenarios, we find only small changes in the 

displacement amplitudes at site 81 which lies in the forward direction. The displacement amplitudes 

exhibit greater sensitivity at site 82 which lies at an azimuth of 90 degrees. As we might expect , 

we find better agreement in the displacement time histories between the scenarios shearstrong and 

meltstrong, which feature strongly heterogeneous distributions of shear tractions. 
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Figure 10.29: Comparison of horizontal displacement time histories at sites 81 and 82 for the four 
cases of heterogeneity in the initial shear tractions. 

Despite wide fluctuations in the maximum displacements and velocities across the four scenarios 

on the east-west line running through the north tip of the fault , the shapes of the curves match the 

general shape of the near-source factor from the UBC as shown in figure 10.30. As we noted in our 

discussion of the time histories, the super-shear rupture speed in scenario shearweak reduces the 

efficiency of the reinforcement of the shear wave. Consequently, the curve of the maximum veloci­

ties for scenario shearweak consistently lies below the other curves. The 203 larger average slip in 
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cases of heterogeneity in the initial shear tractions. 

Despite wide fluctuations in the maximum displacements and velocities across the four scenarios 

on the east-west line running through the north tip of the fault, the ohapeo of the curves m(1tch the 

general shape of the near-source factor from the UBC as shown in figure 10.30. As we noted in our 

discussion of the time histories, the super-shear rupture speed in scenario shearweak reduces the 

efficiency of the reinforcement of the shear wave. Consequently, the curve of the maximum veloci­

ties for scenario shearweak consistently lies below the other curves. The 203 larger average slip in 
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scenario shearweak compared to scenarios unistrain2 and shearstrong prevents a similar reduction 

in the maximum displacements. We find the maximum velocities significantly more sensitive to the 

heterogeneity in shear tractions compared to the maximum displacements . The maximum displace­

ments from scenario unistrain2 match reasonably well with those from scenario meltstrong, but the 

curves of the maximum velocities do not. Instead, the curve from scenario meltstrong resembles the 

curve from scenario shearstrong. Both curves for the strongly heterogeneous distributions of the 

initial tractions lie well below the curve for scenario unistrain2, because the strong heterogeneity 

has a greater impact on the slip rates and velocities. 
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Figure 10.30: Maximum magnitudes of the horizontal displacement and velocity vectors along an 
east-west line running through the north tip of the fault for the four cases of heterogeneity in the 
initial shear tractions. The thick, dashed line indicates the near-source ground motion factor , N v, 
from the 1997 Uniform Building Code. 

Heterogeneity in Friction Model Parameters 

We create heterogeneity in the litholayeruf2 friction model by varying the parameters in the friction 

model over the fault surface. We follow the same procedure that we use for creating heterogeneity in 

t.he initial shear tractions and place the 30 asperities using uniform random distributions . The radii 

vary from ~-0 km t.o R_O km _ 'rhP ::i.sperity heights correspond to variations in the coefficients in t.hP 

friction model. For example, we independently vary the coefficients in the expressions for µmax and 

µmin by 20% and 40% above and below the nominal value to generate weakly and strongly hetero­

geneous distributions. We do not introduce heterogeneity in the characteristic slip distance, but the 
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scenario shearweak compared to scenarios unistrain2 and shearstrong prevents a similar reduction 

in the maximum displacements. We find the maximum velocities significantly more sensitive to the 

heterogeneity in shear tractions compared to the maximum displacements. The maximum displace­

ments from scenario unistrain2 match reasonably well with those from scenario meltstrong, but the 

curves of the maximum velocities do not. Instead, the curve from scenario meltstrong resembles the 

curve from scenario shearstrong. Both curves for the strongly heterogeneous distributions of the 

initial tractions lie well below the curve for scenario unistrain2, because the strong heterogeneity 

has a greater impact on the slip rates and velocities. 
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Figure 10.30: Maximum magnitudes of the horizontal displacement and velocity vectors along an 
east-west line running through the north tip of the fault for the four cases of heterogeneity in the 
initial shear tractions. The thick, dashed line indicates the near-source ground motion factor, Nv, 
from the 1997 Uniform Building Code. 

Heterogeneity in Friction Model Parameters 

We create heterogeneity in the litholayeruf2 friction model by varying the parameters in the friction 

model over the fault surface. We follow the same procedure that we use for creating heterogeneity in 

the initial shear tractions and place the 3U asperities using uniform random distributions. The radii 

vary from 3.0 km to 8.0 km. The asperity heights correspond to variations in the coefficients in the 

friction model. For example, we independently vary the coefficients in the expressions for µmax and 

µmin by 20% and 40% above and below the nominal value to generate weakly and strongly hetero­

geneous distributions. We do not introduce heterogeneity in the characteristic slip distance, but the 
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fluctuations in the maximum and minimum values of the coefficient of friction cause heterogeneity 

in the fracture energy. Figure 10.31 shows the initial shear stresses, the shear stresses at failure , and 

the minimum sliding stresses on the fault surface. 
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Figure 10.31: Initial (blue), failure (red) , and minimum sliding (green) shear stresses on the strike­
slip fault for scenario frictionstrong. 

The strong heterogeneity in the friction model parameters has a greater impact on creating 

heterogeneity in the distribution of the maximum slip rate than in creating heterogeneity in the 

distribution of final slip. In figure 10.32 the regions with the larger maximum slip rates correlate 

with the regions of a reduced distance from failure , and vice versa. In the central portion of the 

fault , we observe a relatively uniform increase in slip corresponding to the reduced distance from 

failure. In our discussion of heterogeneous initial shear tractions, we found similar trends in scenario 

shearstrong, which uses a strongly heterogeneous distribution in the initial shear stress and a slip­

weakening friction model. 

Compared to scenario unichardist with homogeneous coefficients in the friction model, the intro­

uucLiou of weak heterogeneity in the coefficients of the friction model (scenario frictionweak) leads 

to negligible chauge iu Ll1e Lelmviur uf Lhe ruµLure. 011 Lhe oLher hauu, Lhe i11Lroc.lucLio11 of ::;Lrong 

heterogeneity (scenario frictionstrong) leads to significant changes in the rupture behavior. For the 

three scenarios the average slip varies less than 0.2 m, but the strongly heterogeneous friction model 

decreases the maximum horizontal displacement by 20% and the maximum horizontal velocity by 

11%. 

The displacement time histories at sites Sl and 82 displayed in figure 10.33 illustrate these 

features . At both sites we see little variation in the final displacements, which is consistent with the 

nearly identical values of the average slip . As noted above, the rupture behavior does not change 

with t.hp weak heterogeneity, and we find no noticeable differences between the displacement time 

histories from scenarios unichardist and frictionweak. At site Sl the strong heterogeneity reduces 

the peak displacement by 28% (0.72m for scenario frictionstrong compared to l.Om for scenario 

unichardist). The amplitudes for the remainder of the time histories exhibit similar reductions . At 
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slip fault for scenario frictionstrong. 

The strong heterogeneity in the friction model parameters has a greater impact on creating 

heterogeneity in the distribution of the maximum slip rate than in creating heterogem~ity in the 

distribution of final slip. In figure 10.32 the regions with the larger maximum slip rates correlate 

with the regions of a reduced distance from failure, and vice versa. In the central portion of the 

fault, we observe a relatively uniform increase in slip corresponding to the reduced distance from 

failure. In our discussion of heterogeneous initial shear tractions, we found similar trends in scenario 

shearstrong, which uses a strongly heterogeneous distribution in the initial shear stress and a slip­

weakening friction model. 

CompareJ Lu ::iceuadu uuidmnlii;L with homogeneous coefficients in the friction model, the intro-

duction of weak heterogeneity in the coefficients of the friction model (scenario frictionweak) leads 

to negligible change in the behavior of the rupture. On the other hand, the introduction of strong 

heterogeneity (scenario frictionstrong) leads to significant changes in the rupture behavior. For the 

three scenarios the average slip varies less than 0.2 m, but the strongly heterogeneous friction model 

decreases the maximum horizontal displacement by 20% and the maximum horizontal velocity by 

11%. 

The displacement time histories at sites Sl and S2 displayed in figure 10.33 illustrate these 

features. At both sites we see little variation in the final displacements, which is consistent with the 

nearly identical values of the average slip. As noted above, the rupture behavior does not change 

with the weak heterogeneity, and we find no noticeable differences between the displacement time 

histories from scenarios unichardist and frictionweak. At site Sl the strong heterogeneity reduces 

the peak displacement by 28% (0. 72 m for scenario frictionstrong compared to 1.0 m for scenario 

unichardist). The amplitudes for the remainder of the time histories exhibit similar reductions. At 
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Figure 10.32: Distributions of final slip and maximum slip rate at each point on the strike-slip fault 
for scenario frictionstrong. 

site 82 we observe almost no reduction in the displacement amplitudes in the east-west (fault normal) 

direction and a small increase in the amplitudes in the north-south direction. The differences in the 

variations in the displacements between the two sites may be explained by their locations. Site Sl 

lies at an azimuth of 0 degrees, while site 82 lies at an azimuth of 90 degrees. Consequently, the 

variation in the rupture speed, which reduces the efficiency of the reinforcement of the shear wave, 

tends to reduce the amplitude of the motion at site Sl. On the other hand, the rapid propagation 

and large slips near the center of the fault tends to increase the displacement amplitudes at site 82 . 

The maximum horizontal displacements along the east-west line passing through north tip of the 

fault support our analysis of the displacement time histories at site Sl. As shown in figure 10.34, 

both the maximum displacements and maximum velocities decrease with the strong heterogeneity in 

the parameters of the friction model, which we attribute to the fluctuations in the rupture speed. We 

continue to observe negligible differences in the ground motions between scenarios unichardist and 

frictionweak (homogeneous and weakly heterogeneous friction model parameters). Once again, we 

find no significant variations in the shape of the curves of the maximum displacements and maximum 

velocities, so they continue to match the shape of the curve of the UBC near-source factor. 

10.1.5 Comparison with Prescribed Ruptures 

In our discussion of the sensitivity study, we have highlighted some of the similarities and differences 

between the prescribed rupture simulations that we discussed in section 7.1 and the dynamic failure 
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Figure 10.32: Distributions of final slip and maximum slip rate at each point on the strike-slip fault 
for scenario frictionstrong. 

site 82 we observe almost no reduction in the displacement amplitudes in the east-west (fault normal) 

direction and a small increase in the amplitudes in the north-south direction. The differences in the 

variations in the displacements between the two sites may be explained by their locations. Site Sl 

lies at an azimuth of 0 degrees, while site 82 lies at an azimuth of 90 degrees. Consequently, the 

variation in the rupture speed, which reduces the efficiency of the reinforcement of the shear wave, 

tends to reduce the amplitude of the motion at site Sl. On the other hand, the rapid propagation 

and large slips near the center of the fault tends to increase the displacement amplitudes at site 82. 

The maximum horizontal displacements along the east-west line passing through north tip of the 

fault support our analysis of the displacement time histories at site Sl. As shown in figure 10.34, 

both the maximum displacements and maximum velocities decrease with the strong heterogeneity in 

the parameters of the friction model, which we attribute to the fluctuations in the rupture speed. We 

continue to observe negligible differences in the ground motions between scenarios unichardist and 

friction weak (homogeneous and weakly heterogeneous friction model parameters). Once again, we 

find no significant variations in the shape of the curves of the maximum displacements and maximum 

velocities, so they continue to match the shape of the curve of the UBC near-source factor. 

10.1.5 Comparison with Prescribed Ruptures 

In our discussion of the sensitivity study, we have highlighted some of the similarities and differences 

between the prescribed rupture simulations that we discussed in section 7.1 and the dynamic failure 
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Figure 10.33: Comparison of horizontal displacement time histories at sites Sl and S2 for the three 
cases of heterogeneity in the parameters of the friction model. 

simulations. Obviously, we expect similarities in the rupture behavior and the ground motions, 

because we selected the parameters in the dynamic failure simulations such that the average slip 

and rupture speeds of the dynamic ruptures generally agree with those that we use in the prescribed 

ruptures. We will now discuss some of the fundamental similarities and differences in more detail 

by examining scenario unistrain2 , which uses dynamic failure , and scenario hymq, which uses a 

prescribed rupture. Scenario unistrain2 features an average slip of 1.9 m, a moment magnitude of 

6.9, and an average rupture speed of 853 of the local shear wave speed. Scenario hymq has similar 

characteristics with an average slip of 2.0 m, a moment magnitude of 7.0, and a rupture speed of 

80% of the local shear wave speed. 

Figure 10.35 gives the horizontal velocity time histories at sites Sl and S2 for the two scenarios. 

At each site we find that the phases for the two scenarios arrive at nearly the same time, which 

we expect because the travel time from the hypocenter is the same. At site Sl we see excellent 

agreement in the shape of the waveforms between the two scenarios with minor discrepancies in 

the amplitudes. The peak east-west velocity of 1.3 m/sec for scenario unistrain2 exceeds the peak 

velocity of 1.0 m/sec for scenario hymq by 30%, but the peak displacements (not shown) are within 

10% (1.0 m versus 1.1 m). At site S2 we find similar agreement in the east-west component where 

the amplitudes exhibit minor differences but the shapes match. In the north-south component the 



198 

Site S1 Site S2 
1.2 0.4 

I 0.8 0.2 
...... 0.0 c: 0.4 Q) 

E -0.2 
Q) -0.0 

-0.4 (.') 

-B. -0.4 -0.6 
6-0.8 

homogeneous 
weak heter. -0.8 

~ -1.2 strong heter. -1.0 
-1.6 -1.2 

I 
1.2 0.4 

0.8 0.2 
E 0.4 0.0 
Q) 

E -0.2 
Q) -0.0 

-0.4 ~ c.. -0.4 -0.6 
6-o.8 -0.8 
$ -1.2 -1.0 w 

-1.6 -1.2 
0 10 20 30 40 50 60 0 10 20 30 40 50 60 

Time (sec) Time (sec) 
Figure 10.33: Comparison of horizontal displacement time histories at sites Sl and S2 for the three 
cases of heterogeneity in the parameters of the friction model. 

simulations. Obviously, we expect similarities in the rupture behavior and the ground motions, 

because we selected the parameters in the dynamic failure simulations such that the average slip 

and rupture speeds of the dynamic ruptures generally agree with those that we use in the prescribed 

ruptures. We will now discuss some of the fundamental similarities and differences in more detail 

by examining scenario unistrain2, which uses dynamic failure, and scenario hymq, which uses a 

prescribed rupture. Scenario unistrain2 features an average slip of 1.9 m, a moment magnitude of 

6.9, and an average rupture speed of 85% of the local shear wave speed. Scenario hymq has similar 

characteristics with an average slip of 2.0 m, a moment magnitude of 7.0, and a rupture speed of 

80% of the local shear wave speed. 

Figure 10.35 gives the horizontal velocity time histories at sites Sl and S2 for the two scenarios. 

At each sitt~ we finrl that the ph::i.ses for the two scenarios arrive at nearly the same time, which 

we expect because the travel time from the hypocenter is the same. At site Sl we see excellent 

agreement in the shape of the waveforms between the two scenarios with minor discrepancies in 

the amplitudes. The peak east-west velocity of 1.3 m/sec for scenario unistrain2 exceeds the peak 

velocity of 1.0 m/sec for scenario hymq by 30%, but the peak displacements (not shown) are within 

10% (1.0 m versus 1.1 m). At site S2 we find similar agreement in the east-west component where 

the amplitudes exhibit minor differences but the shapes match. In the north-south component the 
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east-west line running through the north tip of the fault for the three cases of heterogeneity in the 
friction model. The thick, dashed line indicates the near-source ground motion factor , Nv , from the 
1997 Uniform Building Code. 

phase arrivals match reasonably well, and we find larger differences in the amplitudes; however, the 

velocity amplitudes are smaller compared to the other components. Thus, the velocity time histories 

from scenario unistrain2 with dynamic failure and scenario hymq with a prescribed rupture show 

excellent agreement with only minor discrepancies in the amplitudes of the motion. 

The maximum horizontal displacements and velocities along the east-west running line through 

the north end of the fault highlight the principle difference between the simulations with dynamic 

failure and the simulations with prescribed ruptures. From figure 10.36 we see that the maximum 

displacements for the two scenarios match very well except in the region that lies within about three 

kilometers of the fault. Similarly, the maximum velocities match very well outside the region that 

lies within about one kilometer of the fault. The large displacements and velocities next to the fault 

in scenario unistrain2 come from the rapid slip that occurs at the ground surface. The 0.093 MPa 

effective normal stresses at the ground surface, which come from the tectonic axial strains , provide 

little resistance to failure. This allows the large, rapid slips at the top of the fault. Harris and Day 

(1999) found a negative stress drop effectively prevents slip near the surface. Alternatively, larger 

effective normal stresses corresponding to larger tectonic axial strains or modification of the friction 

model to include cohesion would increase the distance from failure and the fracture energy. These 

strategies would reduce the slip and slip rates near the surface and bring the maximum displacements 
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from scenario unistrain2 with dynamic failure and scenario hymq with a prescribed rupture show 

excellent agreement with only minor discrepancies in the amplitudes of the motion. 

The maximum horizontal displacements and velocities along the east-west running line through 

the north end of the fault highlight the principle difference between the simulations with dynamic 

failure and the simulations with prescribed ruptures. From figure 10.36 we see that the maximum 

displacements for the two scenarios match very well except in the region that lies within about three 

kilometers of the fault. Similarly, the maximum velocities match very well outside the region that 

lies within about one kilometer of the fault. The large displacements and velocities next to the fault 

in occnario unistmin2 come from the ra.pid slip that occurs at the ground surface. The 0.093 MPa 

effective normal stresses at the ground surface, which come from the tectonic axial strains, provide 

little resistance to failure. This allows the large, rapid slips at the top of the fault. Harris and Day 

(1999) found a negative stress drop effectively prevents slip near the surface. Alternatively, larger 

effective normal stresses corresponding to larger tectonic axial strains or modification of the friction 

model to include cohesion would increase the distance from failure and the fracture energy. These 

strategies would reduce the slip and slip rates near the surface and bring the maximum displacements 



200 

Site S1 Site S2 
1.5 1.0 

u 1.0 0.8 
Q) 0.6 
~ 0.5 0.4 _§_ 
z-. 0.0 0.2 
·o o.a 
0 -0.5 -0.2 

Qi 
> -1.0 1:-: dynamic failure I 

-0.4 

~ -1.5 
-0.6 prescribed rupture -a.o 

-2.0 -1.0 

1.5 1.0 
u 1.0 0.8 
Q) 0.6 U'J -- 0.5 0.4 g 
z-. 0.0 0.2 

·g -0.5 
a.a 

Q5 -0.2 
> -1.0 -0.4 

~ -1.5 
-0.6 
-0.8 

-2.0 -1.0 
0 10 20 30 40 50 60 0 10 20 30 40 50 60 

Time (sec) Time (sec) 
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failure scenario unistrain2 and the prescribed rupture scenario hymq. 

and velocities from scenario unistrain2 into better agreement with those from scenario hymq. The 

,..,~ •• ~ .. ~· shapes of the curves of the maximum horizontal displacements and velocities from both 

prescribed rupture scenarios and dynamic failure scenarios match the shape of the near-source factor, 

N,,, from the 1997 Uniform Building Code. 
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10.2 Thrust Fault 

We follow the same procedure that we use for the strike-slip fault and study dynamic failure on 

thP. thrnst fa11 lt in t.hP. layP.rP.r1 h;;i.lf-sp;;i.r.p with the finite-element model from the prescribed ruptures 

(see section 7.2). Each simulation reqnirP.d 2.n honrs nsing 10 pror.P.ssors of thP. HP.wlP.tt. Par.karr1 

Exemplar at the CACR. Figure 10.37 shows the partitioning of the mesh among the processors nsing 

the METIS library. 

30 

South- North (km) -30 -30 West-East (km) 

Figure 10.37: Partitioning of the coarse finite-element model among 16 processors for the layered 
half-space using the METIS library. Each color patch identifies the elements of one processor. 

10.2.1 Earthquake Source Parameters 

We apply uniform horizontal axial and shear strains to generate the shear tractions on the fault . 

We align the shear tractions with the slip direction of the prescribed ruptures, which has a rake 

angle of 105 degrees from the strike, and try to match the average slip of 1.0 m from the prescribed 

ruptures. For inclined faults the average stress drop remains proportional to the product of the 

shear modulus and average slip, but the proportionality constant depends on the depth of the fault 

and the dip angle. Consequently, we do not have a simple expression for the average stress drop as 

a function of the shear modulus and the average slip for inclined faults that we have for strike-slip 

faults (equation (9.1)) (Parsons et al. 1988) . As in the strike-slip fault , the different friction models 

require different maximum dynamic stress drops to produce comparable slip, so we will discuss the 

shear tractions on a case by case basis. 

We continue to assume that the material contains little water, so that gravity creates lithostatic 

effective normal stresses. When we bury the fault 8.0 km below the ground surface, the material 

properties exhibit little change over the depth of the fault . As a result , the uniform tectonic strains 

will create ~early uniform shear and normal tractions on the fault. The shallow dip of the fault 
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10.2 Thrust Fault 

We follow the same procedure that we use for the strike-slip fault and study dynamic failure on 

the thrust fault in the layered half-space with the finite-element model from the prescribed ruptures 

(see section 7.2). Each simulation required 2.6 hours using 16 processors of the Hewlett Packard 

Exern]Jl<:Lr <:LL Lhe CACR. Figure 10.37 shows the partitioning of the mesh among the processors using 

the METIS library. 
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10.2.1 Earthquake Source Parameters 

We apply uniform horizontal axial and shear strains to generate the shear tractions on the fault. 

We align the shear tractions with the slip direction of the prescribed ruptures, which has a rake 

angle of 105 degrees from the strike, and try to match the average slip of 1.0 m from the prescribed 

ruptures. For inclined faults the average stress drop remains proportional to the product of the 

shear modulus and average slip, but the proportionality constant depends on the depth of the fault 

and the dip angle. Consequently, we do not have a simple expression for the average stress drop as 

a function of the shear modulus and the average slip for inclined faults that we have for strike-slip 

foults (equation (9.1)) (Farnum> eL al. 1988). As in the strike-slip fault, the different friction models 

require different maximum dynamic stress drops to produce comparable slip, so we will discuss the 

shear tractions on a r:ase hy r:ase hasis. 

We continue to assume that the material contains little water, so that gravity creates lithostatic 

effective normal stresses. When we bury the fault 8.0 km below the ground surface, the material 

properties exhibit little change over the depth of the fault. As a result, the uniform tectonic strains 

will create nearly uniform shear and normal tractions on the fault. The shallow dip of the fault 
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causes the tectonic strains to produce much smaller normal tractions than the normal tractions 

from gravity. Thus, we will find little change in the normal tractions on the fault surface as we 

change the maximum dynamic stress drop. We do not change the function form of the friction 

model; it continues to depend on both the square root of the shear modulus and the inverse of the 

depth. We do change the coefficients slightly to create the desired maximum dynamic stress drop 

and shear stresses at failure. 

10.2.2 Sensitivity Study 

We continue our study of the sensitivity of the long-period near-source ground motion to variations 

in the initial conditions and parameters of the friction model. In addition to the parameters we 

examined for the strike-slip fault, we vary the level of the initial shear tractions on the fault. Ta­

ble 10.3 summarizes the general parameters of the scenarios in the sensitivity study, and table 10.4 

displays the basic features of the ruptures for the scenarios. We will examine the scenarios in more 

Llt:Lctil in Lhe fulluwiug secLium;. 

r< Initial rr ::::'u~c!uu Type " 

unistrain uniform strain slip-weakening 
unistrain2 uniform strain same as unistrain 
combo8km uniform strain slip- and rate-weakening 
melt8km same as combo8km melting-refreezing 
fault4km uniform strain same as unistrain 
faultOkm uniform strain same as unistrain 

comboUkm unitorm strain same as combo8km 
hymc uniform strain same as unistrain 

shearweak weakly heter. strain same as unistrain 
shear:strong :strongly hete1. stniiu ::.<:Lu1e cts uuisLrctiu 

meltstrong strongly heter. strain same as melt8km 
frictionweak same as unistrain weakly heter. slip-weakening 

frictionstrong same as unistrain strongly heter. slip-weakening 

Table 10.3: Summary of the initial tractions and the friction model type for each scenario in the 
sensitivity study with the thrust fault. When scenarios share exactly the same parameters, we note 
the common bond in the latter scenarios. 

Base Case: Scenario unistrain 

For the base case we bury the fault 8.0 km below the ground surface. We use a relatively homogeneous 

distribution of the initial tectonic strains to generate nominal shear tractions of 6.0 MPa on the fault 

surface; as a result we label the base case scenario unistrain. Equation (10.10) and equation (10.11) 

give the tectonic strains and the parameters in the lithothrustuf friction model. As in the strike­

slip base case, we use the slip-weakening I friction model in the thrust fault base case. We select 
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Scenario Average Max. Average Max. Max. Moment Average 
Slip Slip Slip Rate Slip Rate Magnitude Stress Drop 
(m) (m) (m/sec) (m/sec) (MPa) 

unistrain 1.2 2.3 0.79 1.2 6.9 2.6 
unistrain2 1.6 2.6 1.1 1.7 7.0 3" .0 

combo8km 0.72 1.5 0.81 1.4 6.6 1.8 
melt8km 0.96 1.7 1.0 1.8 6.8 2.4 
fault4km 1.8 3.2 0.91 1.4 7.0 3.1 
faultOkm 2.5 5.2 1.1 4.7 7.1 1.5 

comboOkm 1.1 2.0 1.1 6.1 6.8 0.93 
hymc 1.2 2.5 0.83 1.4 6.8 1.9 

shearweak 1.1 2.0 0.85 1.6 6.8 2.5 
shearstrong 1.4 2.5 0.92 1.6 6.9 2.9 
melt.strong 1.2 2.3 1.2 2.3 6.8 2.8 

frictionweak 1.0 2.2 0.78 1.3 6.8 2.0 
frictionstrong 0.83 1.4 0.63 1.2 6.7 1.9 

Table 10.4: Summary of the ruptures in the scenarios that we use in the sensitivity study of the 
thrust fault. We compute the average slip using equation (2.39), the moment magnitude using 
equation (2.40), and the average stress drop using equation (8.9). 

nominal minimum :sliding :stre:s:ses of 1.5 MPa, a nominal maximum dynamic stress drop of 4.G MPa, 

and nominal shear stresses at failure of 10.5 MPa. These correspond to the str~sses on the strike-slip 

fault at similar depths. These initial shear stresses, shear stresses at failure, and minimum sliding 

shear stresses (shown in figure 10.38) exhibit a small increase over the depth of the fault (8.0 km to 

15 km), because the shear modulus increases slightly from a depth of 6.0 km to a depth of 21 km. 

Eyy -2.36X10-4 

Exx = Ezz 5.84 X 10-5 

Exy = 7.27x10-5 

Eyz = Exz = 0 

0.162 
1 

-2 97 X 10-3 ( m3 sec2) 2 ::/E. 
. kg z 

0.0231 
l 

-4.24 X 10-4 (ms sec2) 2 Vii 
kg z 

D 0 = 0.338 m 

(10.10) 

z > -1.0km 

z < -1.0km 

z > -1.0km 

z < -1.0km 

(10.11) 
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Figure 10.38: Initial, failure, and minimum sliding shear stresses through the center of the asperity 
on the thrust fault as a function of dip for scenario unistrain. 

We start the rupture using a shear stress asperity with a radius of 1.8 km located along the 

north-south running centerline of the fault at a depth of 13.5 km, or 4.0 km up-dip from the bottom 

of the fault. We taper the shear tractions on all four edges to smother the rupture as it approaches 

the edges of the fault. Figure 10.39 displays the shear and normal tractions applied to the fault 

surface. 
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Figure 10.39: Shear and normal tractions on the thrust fault for scenario unistrain. 

The rupture begins slowly in response to the placement of the asperity close to the edge of the 

fault. As shown by the snapshots of slip rate in figure 10.10, at 2.0 soc tho rupture is still about 

the size of the asperity. As the rupture begins to propagate, the rupture front conforms to the 

familiar elliptic shape with the fastest rupture speed in the direction of slip, which has a rake angle 

of 105 degrees. The maximum slip rates remain relatively low and the rupture propagates in the 

direction of slip at a speed of only 2.2 km/sec, or about 67% of the local shear wave speed. The 

elliptic shape of the rupture front causes the leading edge of the rupture to reach the center of the 
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We start the rupture using a shear stress asperity with a radius of 1.8 km located along the 

north-south running centerline of the fault at a depth of 13.5 km, or 4.0 km up-dip from the bottom 

of Lhe faulL We Lciµer Lhe t>hecir Lrndiom; uu all four edges to smother the rupture as it approaches 

the edges of the fault. Figure 10.39 displays the shear and normal tractions applied to the fault 

surface. 
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The rupture begins slowly in response to the placement of the asperity close to the edge of the 

fault. As shown by the snapshots of slip rate in figure 10.40, at 2.0 sec the rupture is still about 

the size of the asperity. As the rupture begins to propagate, the rupture front conforms to the 

familiar elliptic shape with the fastest rupture speed in the direction of slip, which has a rake angle 

of 105 degrees. The maximum slip rates remain relatively low and the rupture propagates in the 

direction of slip at a speed of only 2.2 km/sec, or about 67% of the local shear wave speed. The 

elliptic shape of the rupture front causes the leading edge of the rupture to reach the center of the 
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top of the fault at about 6.5 sec. Meanwhile, the lateral portions of the leading edge of the rupture 

have propagated a much shorter distance. This gives the rupture a bilateral appearance from 7.0 sec 

to 9.0 sec. The prescribed ruptures with a uniform rupture speed do not produce this behavior, 

although we can introduce such behavior with modifications to the algorithm used to set the slip 

start times which we discussed in section 5.4. 

Another phenomenon present in scenario unistrain that fails to appear in the prescribed ruptures 

is the second slip event near the hypocenter that begins a little before 8.0 sec. The reflection of the 

dilatational wave off the ground surface generates a shear wave that propagates back down through 

the fault. As the wave passes through the fault, the dynamic shear stresses cause additional failure 

on the fault near the hypocenter. This second slip event lasts only a couple seconds and remains 

confined to the region around the hypocenter. We will find this second slip strongly sensitive to 

variations in the initial conditions and the friction model. 
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Figure 10.40: Snapshots of slip rate on the thrust fault for scenario unistrain. 
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The distribution of final slip displayed in figure 10.41 displays no clear trends with depth and 

resembles the final slip of a uniform stress drop earthquake. The average slip of 1.2 m agrees rea­

sonably well with our target value of 1.0 m. The second slip event caused by the shear wave passing 

through the fault creates the peak slip of 2.3 m near the hypocenter. The slip rates associated with 
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although we can introduce such behavior with modifications to the algorithm used to set the slip 
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Figure 10.40: Snapshots of slip rate on the thrust fault for scenario unistrain. 

The distribution of final slip displayed in figure 10.41 displays no clear trends with depth and 

resembles the final slip of a uniform stress drop earthquake. The average slip of 1.2 m agrees rea­

sonably well with our target value of 1.0 m. The second slip event caused by the shear wave passing 

through the fault creates the peak slip of 2.3 m near the hypocenter. The slip rates associated with 
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this second slip event near the hypocenter exceed those in the same region for the first slip event. 

The maximum slip rates reflect the slow initiation of the rupture. If we neglect the large slip rates 

near the hypocenter that correspond to the second slip event, then we find the maximum slip rates 

progressively increase as the rupture propagates. As in the distribution of final slip, we observe no 

clear trend with depth. 
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Figure 10.41: Distributions of final slip and maximum slip rate at each point on the thrust fault for 
scenario unistrain. 

We examine the changes in temperature on the fault surface to determine if melting occurs. As 

we did for the strike-slip fault, we assume a heat capacity per unit mass of 1000J/(kg-°K) and 

confinement of the heat to a region that extends 5.0 mm perpendicular to the fault. Figure 10.42 

shows the distribution of the change in temperature closely follows the distribution of final slip. This 

is not surprising because we use a nearly uniform minimum sliding stress coupled with a characteristic 

slip distance of 0.34 m, which is much smaller than the average slip of 1.2 m. Over most of the fault 

the maximum temperature change does not exceed 400 degrees Kelvin. Although the temperature 

change does approach 600 degrees Kelvin in the hypocentral region, the changes in temperature 

remain below the 1000 degrees Kelvin that would imply melting (Kanamori et al. 1998). Thus, we 

conclude that the level of sliding stress appears realistic based on the lack of melting associated with 

the estimated changes in temperature. 

The relatively slow rupture speed of 67% of the local shear wave speed allows limited rein­

forcement of the shear wave by the rupture. Additionally, the bilateral nature of the end of the 

earthquake directs energy laterally, instead of up-dip from the fault . As a result , we observe sig­

nificantly smaller ground motions than those from the strike-slip fault with dynamic ruptures and 

those from the thrust fault with prescribed ruptures. The distribution of the maximum horizontal 

and vertical displacements given in figure 10.43 shows the directivity of the rupture even at this 

slow rupture speed. The propagation of the rupture towards the surface along the center of the 

fault creates the local peaks in the horizontal displacements south of the top of the fault and the 

vertical displacements just north of the top of the fault. The bilateral nature of the end of the 
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this second slip event near the hypocenter exceed those in the same region for the first slip event. 

The maximum slip rates reflect the slow initiation of the rupture. If we neglect the large slip rates 

near the hypocenter that correspond to the second slip event, then we find the maximum slip rates 

progressively increase as the rupture propagates. As in the distribution of final slip, we observe no 

clear trend with depth. 
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Figure 10.41: Distributions of final slip and maximum slip rate at flach point on thA thrn.c;;t fa.ult for 
scenario unistrain. 
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conclude that the level of sliding stress appears realistic based on the lack of melting associated with 

the estimated changes in temperature. 

The relatively slow rupture speed of 673 of the local shear wave speed allows limited rein­

forcement of the shear wave by the rupture. Additionally, the bilateral nature of the end of the 

earthquake dirccto energy latcroJly, imrteo.d of up-dip from the fault. A:s a result, we uut;erve t:iig-

nificantly smaller ground motions than those from the strike-slip fault with dynamic ruptures and 

those from the thrust fault with prescribed ruptures. The distribution of thA maximum horimnt.11.l 

and vertical displacements given in figure 10.43 shows the directivity of the rupture even at this 

slow rupture speed. The propagation of the rupture towards the surface along the center of the 

fault creates the local peaks in the horizontal displacements south of the top of the fault and the 

vertical displacements just north of the top of the fault. The bilateral nature of the end of the 
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Figure 10.42: Final change in temperature at each point on the thrust fault for scenario unistrain. 
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Figure 10.43: Maximum magnitudes of the horizontal and vertical displacement vectors at each 
point on the ground surface for scenario unistrain. The white line indicates the projection of the 

fault plane onto the ground surface, and the yellow circle identifies the epicenter. 

rupture coupled with the south-southeast slip direction creates the large horizontal displacements 

towards the east. We attribute the local peak in the horizontal displacements north of the epicenter 

to constructive interference in the ground motions among the waves coming from the east and west 

ends of the fault and the second slip event near the hypocenter. 

'ThP. pP.ak vP.lnr.it.iP.s shnwn in fig11rP. 10 _44 P.Yhibit a greater sensitivity to t.he bil::l.t.P.ral nat.11rP. nf 

the latter part of the rupture. In contrast to thP. prP.sr.rihP.rl rnpt.11rP.s whP.rn the peak horizontal 

velocities occur 5.0 km south of the top of the fault , the largest maximum horizontal velocities 

occur above the east and west edges of the fault . However, we do find locally greater maximum 

velocities south of the top of the fault. The peak vertical displacement of 0.65 m nearly equals the 

peak horizontal displacement of 0.68 m, but the peak horizontal velocity of 0.54 m/sec exceeds the 
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Figure 10.43: Maximum magnitudes of the horizontal and vertical displacement vectors at each 
point on the ground surface for scenario unistrain. The white line indicates the projection of the 
fault plane onto the ground surface, and the yellow circle identifies the epicenter. 

rupture coupled with the south-southeast slip direction creates the large horizontal displacements 

towards the east. We attribute the local peak in the horizontal displacements north of the epicenter 

to constructive interference in the ground motions among the waves coming from the east and west 

ends of the fault and the second slip event near the hypocenter. 

The peak velocities shown in figure 10.44 exhibit a greater sensitivity to the bilateral nature of 

the latter part of the ruµiure. Iu cuuLn:i:;L Lu Lhe pretscribed ruptures where the peak horizontal 

velocities occur 5.0 km south of the top of the fault, the largest maximum horizontal velocities 

occur above the east and west edges of the fault. However, we do find locally greater maximum 

velocities south of the top of the fault. The peak vertical displacement of 0.65m nearly equals the 

peak horizontal displacement of 0.68 m, but the peak horizontal velocity of 0.54 m/sec exceeds the 
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peak vertical velocity of 0.29 m/sec by 86%. The prescribed ruptures display a similar discrepancy 

between the horizontal and vertical velocities compared to the displacements. 
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Figure 10.44: Maximum magnitudes of the horizontal and vertical velocity vectors at each point on 

the ground surface for scenario unistrain. The white line indicates the projection of the fault plane 
onto the ground surface, and the yellow circle identifies the epicenter. 

Figure 10.45 gives the displacement and velocity time histories at site Sl, which is located above 

the southeast corner of the fault, and at site 82, which is located above the middle of the north 

edge of the fault (see figure 7.31 for a diagram of the site locations). At site Sl we observe pulse­

like behavior on all three components with the peak displacements and velocities occurring in the 

east-west direction. The rebound in displacement creates a single pulse in displacement and a 

corresponding double pulse in velocity. Hased on the slip direction that is only 15 degrees east of 

south, we would expect larger amplitude motion in the north-south direction compared to the other 

two directions; however, the bilateral nature of the rupture at the end of the earthquake skews the 

motion towards the east. At site S2 the largest motion occurs in the north-south direction with a 

large velocity pulse at 16 sec. This velocity pulse comes predominantly from the second slip event 

that occurs near the hypocenter, although constructive interference with waves from the east and 

west ends of the fault also contribute. The rest of the time history features relatively long-period, 

small amplitude motions that are consistent with the location of the site in the backward direction. 

As expected, the uniform strain field and the friction model with dependence on both the shear 

modulus and depth produces a realistic rupture. Tho location of tho asperity used to start tho 

rupture near the edge of the fault slows the initiation of the rupture and leads to a slow rupture 

speed. Nevertheless, the rupture creates smooth distributions of final slip and ma...ximum slip rate 

that agree with our understanding of uniform stress drop earthquakes. Additionally, the average slip 

of 1.2 m agrees reasonably well with our target value of 1.0 m from the prescribed ruptures. Thus, 

we choose to use scenario unistrain as the base case for the sensitivity study. 
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Figure 10.44: Maximum magnitudes of the horizontal and vertical velocity vectors at each point on 
the ground surface for scenario unistrain. The white line indicates the projection of the fault plane 
onto the ground surface, and the yellow circle identifies the epicenter. 

Figure 10.45 gives the displacement and velocity time histories at site 81, which is located above 

the southeast corner of the fault, and at site 82, which is located above the middle of the north 

edge of the fault (see figure 7.31 for a diagram of the site locations). At site 81 we observe pulse­

like behavior on all three components with the peak displacements and velocities occurring in the 

east-west direction. The rebound in displacement creates a single pulse in displacement and a 

corresponding double pulse in velocity. Based on the slip direction that is only 15 degrees east of 

:::;outh, we would expect larger amplitude motion in the north-south direction compared to the other 

two directions; however, the bilateral nature of the rupture at the end of the earthquake skews the 

motion towards the east. At site 82 the largest motion occurs in the north-south direction with a 

large velocity pulse at 16 sec. This velocity pulse comes predominantly from the second slip event 

that occurs near the hypocenter, although constructive interference with waves from the east and 

west ends of the fault also contribute. The rest of the time history features relatively long-period, 

small amplitude motions that are consistent with the location of the site in the backward direction. 

As expected, the uniform strain field and the friction model with dependence on both the shear 

modulus and depth produces a realistic rupture. The location of the asperity used to start the 

rupture near the edge of the fault slows the initiation of the rupture and leads to a slow rupture 

speed. Nevertheless, the rupture creates smooth distributions of final slip and maximum slip rate 

that agree with our understanding of uniform stress drop earthquakes. Additionally, the average slip 

of 1.2 m agrees reasonably well with our target value of 1.0 m from the prescribed ruptures. Thus, 

we choose to use scenario unistrain as the base case for the sensitivity study. 
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Figure 10.45: Displacement and velocity time histories at sites Sl and 82 for scenario unistrain. 

Initial Shear Traction 

We want to shift the rupture speed to a value near 80- 85% of the local shear wave speed that more 

closely agrees with the rupture speeds observed by Heaton (1990). We accomplish this by increasing 

the tectonic shear strains given in equation (10.10) by 17% in order to increase the nominal shear 

tractions from 6.0 MPa to 7.0 MPa. We do not change the friction model or the location of the 

asperity used to start the rupture from those in scenario unistrain. Comparing the rupture behavior 

from scenarios unistrain and unistrain2, we observe an increase in the average maximum slip rate 

from 0.79 m/sec to 1.1 m/sec. This allows the rupture to propagate in the direction of slip at 

2.9 km/sec, or 88% of the local shear wave speed, instead of 67% of the local shear wave speed. This 

increases the reinforcement of the shear wave by the rupture. 

Comparing figure 10.43 with figure 10.46, we find substantially larger maximum horizontal and 

vertical displacements without any significant shifts in the relative distribution. The peak maximum 

horizontal displacement increases from 0.68 m in scenario unistrain to 1.4 m in scenario unistrain2 . 

Similarly, the peak maximum horizontal velocity increases by 110% from 0.68 m/sec in scenario 

uuh;Lraiu Lu 1.4 m/::::;ec in uni::::;train2. From figure 10.44 and figure 10.4 7 we find that the increase in 

the rupture speed shifts the largest horizontal velocities to the south. The peak horizontal values 

occur south and east of the top of the fault , which more closely resembles the distributions from the 



210 

Site S1 
0.6.-----...-----.~--..---.---.... 

I o.4 
1: 
~ 0.2 
ru 
~ 0.0 1-----'CI!"", 
~ \ / __ , __ 
B -0.2 \ I 

'-I 
-0.4'----'"~--'--~...._ _ _....~-~ 

0.4 .....-----...--......... --...------. 

() 
(]) 0.2 

i 
~ 0.01----~ 

·c:s ' 0 \ 

~ -0.2 

Site S2 
0.2 .-----..----..---.....------. 

0.1 

0. 0 1---.::;:;:_,,,C 

'"\.._ I -0.1 
\ 

-0.2 \ ,,,. \ I 

-0.3 '
1 

-0.4'--~--~~--~~"-------~ 

0.4 .--.........,..---.---....---.....---. 

0.3 

0.2 

east-west 
north-south 
up-down 

0.1 

O.Ot---.......,.1(; 

-0.1 
-0.4 _____ __._ __ _,_______ -0.2--------......... -----

0 5 10 15 20 25 0 5 
Time (sec) 

10 15 
Time (sec) 

20 25 

Figure 10.45: Displacement and velocity time histories at sites Sl and 82 for scenario unistrain. 

Initial Shear Traction 

We want to shift the rupture speed to a value near 80-85% of the local shear wave speed that more 

closely agrees with the rupture speeds observed by Heaton (1990). We accomplish this by increasing 

the tectonic shear strains given in equation (10.10) by 17% in order to increase the nominal shear 

tractions from 6.0 MPa to 7.0 MPa. We do not change the friction model or the location of the 

asperity used to start the rupture from those in scenario unistrain. Comparing the rupture behavior 

from scenarios unistrain and unistrain2, we observe an increase in the average maximum slip rate 

from 0.79m/sec to l.lm/sec. This allows the rupture to propagate in the direction of slip at 

2.9 km/sec, or 88% of the local shear wave speed, instead of 67% of the local shear wave speed. This 

increases the reinforcement of the shear wave by the rupture. 

Comparing figure 10.43 with figure 10.46, we find substantially larger maximum horizontal and 

vertical displacements without any significant shifts in the relative distribution. The peak maximum 

horizontal displacement increases from 0.68 rn in scenario unistrain to 1.4 m in scenario unistrain2. 

Similarly, the peak maximum horizontal velocity increases by 110% from 0.68 m/sec in scenario 

unistrain to 1.4m/sec in unistrain2. From figure 10.44 and figure 10.47 we find that the increase in 

the rupture speed shifts the largest horizontal velocities to the south. The peak horizontal values 

occur south and east of the top of the fault, which more closely resembles the distributions from the 
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prescribed ruptures. The end of the rupture still retains bilateral characteristics, and we find locally 

larger horizontal velocities above the east and west edges of the fault. The vertical velocities display 

only a small shift towards the south with almost no change in the location of the peak value. 
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Fignrn 1 () _46: Maximum magnitudes of the horizontal and vertical displacement vectors at each 
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Figure 10.47: Maximum magnitudes of the horizontal and vertical velocity vectors at each point on 
the ground surface for scenario unistrain2. The white line indicates the projection of the fault plane 
onto the ground surface, and the yellow circle identifies the epicenter. 

At both sites 81 and 82 the increase in the rupture speed causes a dramatic change in the 

velocity time histories o.s shown in figure 10.48. For consistency with the prescribed ruptures we 

consider motion in the north-south and vertical directions. In the north-south direction at site 81 , 

we see an increase in the peak velocity from 0.16 m/sec to 0.45 m/sec and the waveform for scenario 

unistrain2 looks like the waveform from unistrain2, but compressed in time. In scenario unistrain2 
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prescribed ruptures. The end of the rupture still retains bilateral characteristics, and we find locally 

larger horizontal velocities above the east and west edges of the fault. The vertical velocities display 

only a small shift towards the south with almost no change in the location of the peak value. 
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Figure 10.46: Maximum magnitudes of the horizontal and vertical displacement vectors at each 
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fault plane onto the ground surface, and the yellow circle identifies the epicenter. 
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Figure 10.47: Maximum magnitudes of the horizontal and vertical velocity vectors at each point on 
the ground surface for scenario unistrain2. The white line indicates the projection of the fault plane 
onto the ground surface, and the yellow circle identifies the epicenter. 

At both sites Sl and 82 the increase in the rupture speed causes a dramatic change in the 

velocity time histories as shown in figure 10.48. For consistency with the prescribed ruptures we 

consider motion in the north-south and vertical directions. In the north-south direction at site Sl, 

we see an increase in the peak velocity from 0.16m/sec to 0.45m/sec and the waveform for scenario 

unistrain2 looks like the waveform from unistrain2, but compressed in time. In scenario unistrain2 
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the double pulse in velocity dominates the time history, while in scenario unistrain the amplitude 

of the pulses are only marginally larger than the velocity amplitudes in the latter portion of the 

time history. The vertical component of velocity at site Sl displays less sensitivity to the increase 

in the initial tectonic strains with only a 72% increase in the peak velocity and no major changes in 

the shape of the waveform. The arrival of the shear wave does become sufficiently sharper to create 

the appearance that the arrival time changes; however, the north-south component clearly shows no 

change in the arrival time of the shear wave. 
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Figure 10.48: Comparison of north-south and vertical velocity time histories at sites 81 and 82 for 
the two values of the initial shear stress. 

The increase in initial tectonic strains allows the second slip event near the hypocenter to prop­

agate farther. This causes significant changes to the amplitude of the motion in the north-south 

direction at site S2, but little change in the vertical direction. In the north-south direction the initial 

motion remains nearly identical, but a smaller, double peaked pulse, that arrives at around 12 sec in 

scenario unistrain2, replaces the narrow velocity pulse, that arrives at 16 sec in scenario unistrain. 

The vertical component at site 82 shows the compression in time correspumliug, tu the iucreetse iu 

rupture speed but little change in amplitude. 

As in the prescribed ruptures, we examine the maximum horizontal displacements and velocities 

along the north-south line on the ground surface that runs above the center of the fault. Figure 10.49 

reflects the increase in the maximum velocities south of the fault in response to the increase in the 
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tectonic strains. The maximum displacements display a similar trend, but the increase is distributed 

more uniformly across the entire width of the domain. In both scenarios unistrain and unistrain2 

the maximum displacements contain a local peak centered approximately 25 km north of the top of 

the fault. The maximum horizontal velocities do not display a corresponding set of peaks. 
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Figure 10.49: Maximum magnitudes of the horizontal displacement and velocity vectors along a 
north-south line running over the center of the fault for the two values of the initial shear stress. 
The thick, dashed line indicates the near-source ground motion factor, Nv, from the 1997 Uniform 
Building Code. 

We overlay the near-source factor, Nv, from the 1997 Uniform Building even though the California 

Division of Mines and Geology does not include blind thrust faults on the maps used to determine the 

near-source factor. The peaks in the curves of the maximum horizontal displacements and velocities 

both fall outside the region where the near-source factor is a maximum. The shape of the near-source 

factor does not conform to the peak in the maximum displacements located near the north edge 

of the domain. We do not find this a significant flaw in the near-source curve, because these local 

peaks are small relative to the global peak for scenario unistrain2, which contains a more realistic 

rupture speed compared to scenario unistrain. The peak south of the top of the fault appears in the 

maximum displacements and velocities for both scenarios. Because this peak dominates the shape 

of the curve::. in ::icem:iriu uni1'.>trn,in2, which hat; a mure realitiLic rupLure tipeed, and this peak falls 

outside the region where the near-source factor is at its maximum value, we find the shape of the 

near-source curve for our blind thrust fault fails to match the distribution of shaking as measured 

by the maximum horizontal displacements and velocities. 

rate-weakening friction model and the melting-refreezing friction model with the scenario with the 

slip-weakening friction model, we notice a decrease in duration of the single pulse in displacement 

in both the north-south and vertical components at site Sl. We associate such compression in time 

with an increase in the average rupture speed. We observe negligible change in the rupture speecl 

near the end of the rupture, but the larger maximum dynamic stress drop allows the asperity to 
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Friction Model 

We examine the sensitivity of the ground motions to the friction model using the slip-weakening 

friction model (scenario unistrain), the slip- and rate-weakening friction model (scenario combo8km), 

and the melting-refreezing friction model (scenario melt8km). For scenarios combo8km and melt8km 

we increase the nominal maximum dynamic otrcGscs drop from 4.5 MPa to 6.5 MP a in an attempt 

to create earthquakes with comparable slip to scenario unistrain. In order to maintain the same 

nominal minimum sliding shear stresses of 1.5 MPa, we increase the nominal initial shear tradinn,:; 

from 6.0MPa to 8.0MPa by scaling the tectonic strains given in equation (10.10) by a factor of 1.33. 

We scale the distance from failure by the same amount to prevent substantial changes in the rupture 

speed. Equation (10.12) gives the parameters of the slip- and rate-weakening friction model and the 

melting-refreezing friction model as a function of depth. 

µm~ ~ { 
0.222 z > -1.0km 

1 

-4.08 X 10-3 ( m3 sec2) 2 :Lf!:. z < -1.0km kg z 

µmin~ { 
0.0230 z> 1.0km 

1 

-4.22 X 10-4 ( m3 sec2) 2 ...ffi z < -1.0km kg z 

{ 0.153 z > -1.0km 
fl post 1 

-2.04 X 10-3 ( m3 sec2) 2 :LJ!:. z < -1.0km kg z 

D 0 0.446rn (scenario combo8km) 

V0 0.150 m/sec (scenario cornbo8krn) 

D 0 0.130 rn (scenario melt8km) 

7 0 0.350 sec (scenario rnelt8km) (10.12) 

The shear re-strengthening friction models with the larger dynamic stress drop produce ruptures 

with average slips of 0. 72 m for scenario combo8km and 0.96 m for scenario melt8km. Hence, despite 

increasing the maximum dynamic stress drop, the values of average slip do not match as well as 

we would hope. The final values in the displacement time histories at sites Sl and 82 displayed in 

figure 10.50 reflect these different values of average slip. Comparing the scenarios with the slip- and 

rate-weakening friction model and the melting-refreezing friction model with the scenario with the 

slip-weakening friction model, we notice a decrease in duration of the single pulse in displacement 

in both the north-south and vertical components at site Sl. We associate such compression in time 

with an increase in the average rupture speed. We observe negligible change in the rupture speed 

near the end of the rupture, but the larger maximum dynamic stress drop allows the asperity to 
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initiate propagation of the rupture at a faster speed. Thus, the average rupture speed increases due 

to a faster rupture speed near the beginning of the rupture. The smaller average slip in scenario 

combo8km produces a peak north-south displacement of only 0.19 m compared to the peak value of 

0.43 m in scenario melt8km. In both the north-south and vertical directions the peak displacement 

in scenario melt8km falls within 173 of the peak values for scenario unistrain. 
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for the three friction models. 

The shear re-strengthening in the friction models prevents the shear wave that is created from 

the reflection of the dilatational wave off the ground surface from creating a second slip event 

on the fault. This leads to a significant reduction in the amplitude of the motion at site 82 for 

scenarios combo8km and melt8km compared to scenario unistrain. Even with the difference in 

average slip between scenarios combo8km and melt8km, we find little difference in the displacement 

time histories. This is not surprising based on the similarity of the friction models and the other 

features of the ruptures. 

Figure 10.51 shows the maximum horizontal displacements and velocities along the north-south 

line above the center of the fault. The peak horizontal displacements from scenarios combo8km 

and melt8km do not contain the local peak 25 km north of the top of the fault that we associate 

with the second slip event near the hypocenter in scenario unistrain. Near the top of the fault , 

the maximum horizontal displacements from scenarios combo8km and unistrain match, while the 
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initiate propagation of the rupture at a faster speed. Thus, the average rupture speed increases due 

to a faster rupture speed near the beginning of the rupture. The smaller average slip in scenario 

combo8km produces a peak north-south displacement of only 0.19 m compared to the peak value of 

0.43 m in scenario melt8km. In both the north-south and vertical directions the peak displacement 

in scenario melt8km falls within 173 of the peak values for scenario unistrain. 
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Figure 10.50: Comparison of north-south and vertical displacement time histories at sites 81 and 82 
for the three friction models. 

The shear re-strengthening in the friction models prevents the shear wave that is created from 

the reflection of the dilatational wave off the ground surface from creating a second slip event 

on the fault. This leads to a significant reduction in the amplitude of the motion at site 82 for 

scenarios combo8km and melt8km compared to scenario unistrain. Even with the difference in 

average slip between scenarios combo8km and melt8km, we find little difference in the displacement 

time histories. This is not surprising based on the similarity of the friction models and the other 

features of the ruptures. 

Figure 10.51 shows tho maximum horizontal displo.ccmcnts and velocities along the north-south 

line above the center of the fault. The peak horizontal displacements from scenarios combo8km 

and melt8km do not contain the local peak 25 km north of the top of the fault that we associate 

with the second slip event near the hypocenter in scenario unistrain. Near the top of the fault, 

the maximum horizontal displacements from scenarios combo8km and unistrain match, while the 
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maximum horizontal displacements from scenario melt8km are slightly larger. However, the larger 

slip rates in the scenarios with the larger dynamic stress drop and shear re-strengthening (scenarios 

combo8km and melt8km) create significantly larger maximum velocities above the top of the fault. 

We observe no shift in the location of the peak in the curve of maximum displacements or velocities, 

so it is no surprise that the peak maximum displacements and velocities fall slightly south of the 

region where the near-source factor is a maximum. 
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Figure 10.51: Maximum magnitudes of the horizontal displacement and velocity vectors along a 

north-south line running over the center of the fault for the three friction models. The thick, dashed 
line indicates the near-source ground motion factor, Nv , from the 1997 Uniform Building Code. 

Fault D ep t h 

We raise the top of the fault in increments of 4.0 km to analyze the sensitivity of the rupture dynamics 

and the resulting ground motions to the depth of the fault. For scenarios fault4km and faultOkm we 

do not change the strain field (equation ( 10 .10)) or the functions for the parameters of the friction 

model (equation (10.11)) from those of scenario unistrain where the top of the fault sits at a depth of 

8.0 km. Similarly, for scenario comboOkm we use the same strain field and slip- and rate-weakening 

friction model as combo8km. The variation of the parameters in the friction model with the quotient 

of the square root of the shear modulus and the depth produces the desired variations of the distance 

from failure and the maximum dynamic stress drop with depth. Figure 10.38 shows the initial shear 

stresses, the shear stresses at failure, and the minimum sliding stresses for scenario faultOkm, where 

the top of the fault sits at the ground surface. Because we use the same material properties and 
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maximum horizontal displacements from scenario melt8km are slightly larger. However, the larger 

slip rates in the scenarios with the larger dynamic stress drop and shear re-strengthening (scenarios 

combo8km and melt8km) create significantly larger maximum velocities above the top of the fault. 

We observe no shift in the location of the peak in the curve of maximum displacements or velocities, 

so it is no surprise that the peak maximum displacements and velocities fall slightly south of the 

region where the near-source factor is a maximum. 
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north-south line running over the center of the fault for the three friction models. The thick, dashed 
line indic11te:s the near-:source ground moLlou fodur, Nv, frum Lhe 1997 Uniform Building Code. 

Fault Depth 

We raise the top of the fault in increments of 4.0 km to analyze the sensitivity of the rupture dynamics 

and the resulting ground motions to the depth of the fault. For scenarios fault4km and faultOkm we 

do not change the strain field (equation (10.10)) or the functions for the parameters of the friction 

model (equation ( 10 .11)) from those of scenario unistrain where the top of the fault sits at a depth of 

8 .0 km. Similarly, for scenario comboOkm we use the same strain field and slip- and rate-weakening 

friction model as combo8km. The variation of the parameters in the friction model with the quotient 

of the square root of the shear modulus and the depth produces the desired variations of the distance 

from failure and the maximum dynamic stress drop with depth. Figure 10.38 shows the initial shear 

stresses, the shear stresses at failure, and the minimum sliding stresses for scenario faultOkm, where 

the top of the fault sits at the ground surface. Because we use the same material properties and 
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functional form of the slip-weakening friction model for the thrust fault and the strike-slip fault, we 

find that the shapes of the distributions (figure 10.11 and figure 10.52) look very similar when the 

top of the faults sit at the ground surface. The principle differences come from the placement of the 

asperities used to initiate the rupture. 
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Figure 10.52: Initial, failure, and minimum sliding shear stresses through the center of the asperity 
on the thrust fault as a function of dip for scenario faultOkm. 

When the top of the fault reaches the ground surface, the seismic waves become trapped be­

tween the fault and the ground surface. For the slip-weakening friction model (scenario faultOkm) 

figure 10.03 vruviueo a du::;euv view uf Lhe NlGIJJohuL::; iu Llrne uf Lhe im:iguiLuue uf Lhe veludLy aL each 

point on a vertical slice through the center of the fault. The snapshots begin at 4.0 sec when the rup-

ture has propagated a.pprmdmately ha.lfway up the fault, and we observe only minor perturbations in 

the symmetry of the velocities about the fault plane. We also see the beginning of the amplification 

of the waves traveling through the softer material on their way to the surface. Beginning at 5.0 sec 

and continuing until nearly 12.0 sec, we find much larger velocities above the fault than immediately 

below the fault. The only velocities above 0.2 m/sec below the fault correspond to the motion of the 

footwall during slip. For a large fraction of this duration, the velocities over a large region saturate 

the amplitude scale of the plot, so the maximum velocities exceed 0.5 m/sec. When slip occurs on 

the fault surface, the sliding stresses are low compared to the initial shear stresses, and the fault acts 

much like a free surface for normally incident shear waves. Consequently, after the seismic waves 

above the fault reflect off the ground surface and atten1pt to propagate back through the fault, n10st 

of the energy reflects off the fault surface and propagates back towards the ground surface; little of 

the energy is transmitted across the fault. The energy becomes trapped above the fault and creates 

severe ground motions above the fault near the surface rupture. 

The maximum horizontal and vertical displacements in figure 10.54 provide a good indication of 
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Figure 10.53: Snapshots of the magnitude of the velocity vector on a north-south vertical slice 
through the center of the fault for scenario faultOkm. The white line indicates the projection of the 
fault onto the vertical slice, and the yellow circle identifies the hypocenter. 

the severity of the ground motions near the surface rupture. The entrapment of the seismic waves 

above the fault causes nearly all the motion to occur on the hanging-wall side of the fault . The 

peak maximum horizontal displacements exceed 2.0 mover an area of about 200 square kilometers 

with a peak value uf 0.2111 where Lhe ruvLure hiL~ Lhe ~urface. Although the maximum vertical 

displacements do not reach the san~e levels as the maximum hu1iz,u11Lal ui::ivlace111euL::; , Lhey Ju 

exceed 2.0 m along much of the surface rupture. 

The extent of the dynamic interaction between the seismic waves and the slip on the fault depends 

on the width of the rupture front, i.e., the area where slip is occurring. Figure 10.55 displays snap­

shots of the magnitude of the velocity on the vertical slice through the fault centerline for scenario 

comboOkm, which uses the slip- and rate-weakening friction model. The shear re-strengthening nar­

rows the rupture front which limits the area where the seismic waves may interact with the rupture. 

Consequently, we do find larger velocities above the fault as in scenario faultOkm, but the asymme-

try across the fault occurs ovP.r a smallP.r arna. r,omparing t.hP. m::i.xim11m hori'Zont.::i.l rfo~pl::irP.mP.nt.s 

from scenario faultOkm (figure 10.54) with those from scenario mmhoOkm (figme 1 O.fin) , we see a 

substantial decrease in the values resulting from the smaller amount of dynamic interaction between 

the seismic waves and the rupture. While the largest motions continue to occur on the hanging 

wall , the peak maximum horizontal displacement decreases from 6.2 m to 4.0 m. Thus, the lack of 

any shear re-strengthening in the slip-weakening friction model tends to accentuate the dynamic 
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Figure 10.53: Snapshots of the magnitude of the velocity vector on a north-south vertical slice 
through the center of the fault for scenario faultOkm. The white line indicates the projection of the 
fault onto the vertical slice, and the yellow circle identifies the hypocenter. 

the severity of the ground motions near the surface rupture. The entrapment of the seismic waves 

above the fault causes nearly all the motion to occur on the hanging-wall side of the fault. The 

peak maximum horizontal displacements exceed 2.0 m over an area of about 200 square kilometers 

with a peak value of 6.2 m where the rupture hits the surface. Although the maximum vertical 

displacements do not reach the :;an1e levels as th~ maximum hurhmntal displacements, they do 

exceed 2.0 m along much of the surface rupture. 

The extent of the dynamic interaction between the seismic waves and the slip on the fault depends 

on the width of the rupture front, i.e., the area where slip is occurring. Figure 10.55 displays snap­

shots of the magnitude of the velocity on the vertical slice through the fault centerline for scenario 

comboOkm, which uses the slip- and rate-weakening friction model. The shear re-strengthening nar­

rows the rupture front which limits the area where the seismic waves may interact with the rupture. 

Consequently, we do find larger velocities above the fault as in scenario faultOkm, but the asymme­

try across the fault occurs over a smaller area. Comparing the maximum horizontal displacements 

from scenario faultOkm (figure lU.54) with those from scenario comboOkm (figure 10.56), we see a 

substantial decrease in the values resulting from the smaller amount of dynamic interaction between 

the seismic waves and the rupture. While the largest motions continue to occur on the hanging 

wall, the peak maximum horizontal displacement decreases from 6.2 m to 4.0 m. Thus, the lack of 

any shear re-strengthening in the slip-weakening friction model tends to accentuate the dynamic 
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Figure 10.54: Maximum magnitudes of the horizontal and vertical displacement vectors at each 
point on the ground surface for scenario faultOkm. The white line indicates the projection of the 
fa.ult plane onto the ground surface, and the yellow circle identifies the epicenter. 

interaction between the seismic waves and the fault rupture and the entrapment of the waves above 

the fault. 

We now examine the displacement time histories in the north-south and vertical directions at 

sites 81 and 82 given in figure 10.57 for all three fault depths. At site 81, which sits on the hanging­

wall side of the fault, we find a substantial increase in the peak displacements on both components 

as we move the fault closer towards the surface while using the same slip-weakening friction model; 

the peak values in the north-south direction increase from 0.38 m to 0. 7 4 m and 1.5 m. When we use 

Lhe :::;liµ- aml rnLe-weakeuiug friction model, the smaller amount of dynamic interaction between the 

seismic waves and Lhe 1u1-1Lure leau:::; Lu au averag,e ::iliµ uf 1.1111 curnµareu Lu Lhe 2.:Jrn wheu we u:::;e 

the slip-weakening friction model. As a result, we observe rnuch sni.aller displacements. The delay in 

the onset of the large amplitude displacements at site 81 for the two cases of surface rupture stems 

from the slower rupture speed in the softer material near the surface. 

At site 82 we observe little motion in the vertical direction, but the peak displacements in the 

north-south direction exceed 1.0 m when we use the slip-weakening friction model and the top of 

the fault lies within 4.0 km of the ground surface. Based on the severity of the ground motions 

associated with the combination of the slip-weakening friction model and the surface rupture, we 

an~ not s11rprisP.n to finil t.hP. 1 _Om of rlispl::ir.PmPnt. ::it site S? for scenario fault.Okm As we noted in 

our discussion of site 81, we find mnr.h smallP.r ilisplar.P.mP.nts with thP. top of thP. fa.111t. at thP. grrnmil 

surface when we use the slip- and rate-weakening friction model. Comparing the time histories for 

scenarios fault4km and unistrain we find similar shaped arrivals near the end of the time history. 

We attribute the pulse in scenario unistrain with a second slip event near the hypocenter, and we 

find a similar such event in scenario fault4km. Because the fault sits 4.0 km closer to the surface in 
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Figure 10.54: Maximum magnitudes of the horizontal and vertical displacement vectors at each 
point on the ground surface for scenario taultukm. The white line indicates the projection of the 
fault plane onto the ground surface, and the yellow circle identifies the epicenter. 

interaction between the seismic waves and the fault rupture and the entrapment of the waves above 

the fault. 

We now examine the displacement time histories in the north-south and vertical directions at 

sites Sl and 82 given in figure 10.57 for all three fault depths. At site Sl, which sits on the hanging­

wall side of the fault, we find a substantial increase in the peak displacements on both components 

as we move the fault closer towards the surface while using the same slip-weakening friction model; 

the peak values in the north-south direction increase from 0.38m to 0.74m and l.5m. When we use 

the slip- and rate-weakening friction model, the smaller amount of dynamic interaction between the 

seismic waves and the rupture leads to an avercige :sliv uf 1.l 111 cumvared to the 2.5 m when we use 

the slip-weakening friction model. As a result, we observe much smaller displacements. The delay in 

the onset of the large amplitude displacements at site 81 for the two cases of surface rupture stems 

from the slower rupture speed in the softer material near the surface. 

At site 82 we observe little motion in the vertical direction, but the peak displacements in the 

north-south direction exceed 1.0 m when we use the slip-weakening friction model and the top of 

the fault lies within 4.0 km of the ground surface. Based on the severity of the ground motions 

associated with the combination of the slip-weakening friction model and the surface rupture, we 

are not surprised to find the 1.0 m of displacement at site 82 for scenario faultOkm. As we noted in 

our discussion of site Sl, we find much smaller displacements with the top of the fault at the ground 

surface when we use the slip- and rate-weakening friction model. Comparing the time histories for 

scenarios fault4km and unistrain we find similar shaped arrivals near the end of the time history. 

We attribute the pulse in scenario unistrain with a second slip event near the hypocenter, and we 

find a similar such event in scenario fault4km. Because the fault sits 4.0 km closer to the surface in 
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Figure 10.55: Snapshots of the magnitude of the velocity vector on a north-south vertical slice 
through the center of the fault for scenario comboOkm. The white line indicates the projection of 
the fault onto the vertical slice, and the yellow circle identifies the hypocenter. 

scenario fault4km, the amplitude of the motion at site 82 from this second slip event exceeds 1.0 m, 

compared to the peak north-south displacement of 0.30 m in scenario unistrain. 

Figure 10.58 shows the maximum horizontal displacements and velocities along the north-south 

line running over the center of the fault for each of the three fault depths. We also overlay the 

near-source factor from the 1997 UBC for each case. For the two cases of surface rupture (scenarios 

faultOkm and comboOkm) , we find that the maximum velocities roughly match (3 .3 km/sec and 

3.2 km/8ec) , while the displacements from scenario faultOkm (slip-weakening friction model) exceed 

those from scenario comboOkm (slip- and rate-weakening friction model) by 543. As discussed 

above, this difference stems from the larger area where the seismic waves interact with the rupture 

in scenario faultOkm compared to scenario comboOkm. For these two cases with surface rupture, we 

find that the peak values of the near-source curve encompass the locations of the peak maximum 

displacements and velocities. This should be expected because the California Division of Mines and 

Geology includes thrust faults with surface rupture in the maps u sed to determine the near-source 

factor . As we lower the top of the fault , the peak maximum displn.cements and velocities shift 

towards the up-dip direction. When the top of the fault sits 1.0 km below the ground surface, the 

peak maximum horizontal velocity occurs at the edge of the region where the near-source curve is 

at a maximum. As discussed in the previous sections, the maximum displacements and velocities 

along this line fall outside this region when we bury the top of the fault 8.0 km below the ground 
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Figure 10.55: Snapshots of the magnitude of the velocity vector on a north-south vertical slice 
throngh thA rAnt.Ar of the fault for scenario comboOkm. The white line indicates tho projection of 
the fault onto the vertical slice, and the yellow circle identifies the hypocenter. 

scenario fault4km, the amplitude of the motion at site S2 from this second slip event exceeds 1.0 m, 

compared to the peak north-south displacement of 0.30 m in scenario unistrain. 

Figure 10.58 shows the maximum horizontal displacements and velocities along the north-south 

line running over the center of the fault for each of the three fault depths. We also overlay the 

near-source factor from the 1!:!~7 UHC for each case. For the two cases of surface rupture (scenarios 

faultOkm and comboOkm), we find that the maximum velocities roughly match (3.3 km/sec and 

3.2 km/sec), while the displacements from scenario faultOkm (slip-weakening friction model) exceed 

those from scenario comboOkm (slip- and rate-weakening friction model) by 54%. As discussed 

above, this difference stems from the larger area where the seismic waves interact with the rupture 

in scenario faultOkm compared to scenario comboOkm. For these two cases with surface rupture, we 

find that the peak values of the near-source curve encompass the locations of the peak maximum 

displacements and velocities. This should be expected because the California Division of Mines and 

Geology includes thrust faults with surface rupture in the maps used to determine the near-source 

factor. As we lower the top of the fault, the peak maximum displacements and velocities shift 

towards the up-dip direction. When the top of the fault sits 4.0 km below the ground surface, the 

peak maximum horizontal velocity occurs at the edge of the region where the near-source curve is 

at a maxinmm. As discussed in the previous sections, the maximum displacements and velocities 

along this line fall outside this region when we bury the top of the fault 8.0 km below the ground 
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Figure 10.56: Maximum magnitudes of the horizontal and vertical displacement vectors at each 
point on the ground surface for scenario comboOkm. The white line indicates the projection of the 
fo.ulL µla11e u11Lu Llie gruuml i:;urface, and the yellow circle identifies the epicenter. 

surface. 

Hypocenter Location 

We move the location of the shear asperity that starts the rupture 6.3 km up-dip along the fault 

centerline in order to move the hypocenter from a depth of 13.4 km (scenario unistrain) to a depth 

of 11.0 km (scenario hymc). The deep hypocenter sits roughly 4.0 km up-dip from the one denoted 

bottom center in the prescribed ruptures and labeled HA in figure 7.31. The shallow hypocenter 

matches the middle center location in the prescribed ruptures and is labeled HD in the figure. The 

change in the hypocenter location sufficiently alters the dynamics of the rupture to remove the second 

slip event near the bottom of the fault that we observe in scenario unistrain. Additionally, in scenario 

hymc the bilateral nature of the rupture increases with the central location of the hypocenter. 

These two factors have little impact on the ground motions at site Sl. In figure 10.59 we observe 

almost no change in the shape of either the north-south or vertical components, and less than a 17% 

change in the peak velocity. The slightly earlier arrivals correspond to the shorter travel time from 

the shallow hypocenter compared to the deep hypocenter. In the north-south direction at site 82, 

the lack of the second slip event in scenario hymc, coupled with the stronger bilateral nature of the 

rupture, removes the velocity pulse that occurs aL 10 sec in :;cern::1.1iu uui:;Lraiu aml aJJ:; Llie LruaJ , 

double pulse in velocity that arrives at 10 sec. In the vertical direction we observe a broadening of 

the smo.11 o.mplitudc pulse, but only a moderate change in amplitude. 

The shift in the hypocenter location to a shallow depth does reduce the ground motions up-dip 

from the top of the fault. Figure 10.60 displays the maximum horizontal displacements and velocities 

along the north-south line over the center of the fault. Remarkably, the only significant changes in 
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Figure 10.56: Maximum magnitudes of the horizontal and vertical displacement vectors at each 
point on the ground surface for scenario comboOkm. The white line indicates the projection of the 
fault plane onto the ground surface, and the yellow circle identifies the epicenter. 

surface. 

Hypocenter Location 

We move the location of the shear asperity that starts the rupture 6.3 km up-dip along the fault 

centerline in order to move the hypocenter from a depth of 13.4 km (scenario unistrain) to a depth 

of 11.0km (scenario hymc). The deep hypocenter sits roughly 4.0km up-dip from the one denoted 

bottom center in the prescribed ruptures and labeled HA in figure 7.:n. The shallow hypocenter 

matches the middle center location in the prescribed ruptures and is labeled HD in the figure. The 

change in the hypocenter location sufficiently alters the dynamics of the rupture to remove the second 

slip event near the bottom of the fault that we observe in scenario unistrain. Additionally, in scenario 

hymc the bilateral nature of the rupture increases with the central location of the hypocenter. 

These two factors have little impact on the ground motions at site Sl. In figure 10.59 we observe 

almost no change in the shape of either the north-south or vertical components, and less than a 17% 

change in the peak velocity. The slightly earlier arrivals correspond to the shorter travel time from 

the shallow hypocenter compared to the deep hypocenter. In the north-south direction at site 82, 

the lack of the second slip event in scenario hymc, coupled with the stronger bilateral nature of the 

rupture, removes the velocity pulse that occurs at 16 sec in scenario unistrain and adds the broad, 

double pulse in velocity that arrives at 10 sec. In the vertical direction we observe a broadening of 

the small amplitude pulse, but only a moderate change in amplitude. 

The shift in the hypocenter location to a shallow depth does reduce the ground motions up-dip 

from the top of the fault. Figure 10.60 displays the maximum horizontal displacements and velocities 

along the north-south line over the center of the fault. Remarkably, the only significant changes in 
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Figure 10.57: Comparison of north-south and vertical displacement time histories at sites Sl and 82 
for the three fault depths. The combo in the legend refers to the slip- and rate-weakening friction 
model. 

the curve of the maximum displacements occur in the first 15 km that lie up-dip from the top of the 

fault. In this region the values decrease with the shallower hypocenter. The maximum velocities 

exhibit a more uniform decrease along the line with the shift in the hypocenter to the middle of the 

faulL. We tlu Ilutl a t:>lighLly greaLer relaLive tlecreat:>e in the peak maximum velocity that occur~ 5.0 km 

up-dip from the top of the fault. This is consistent with the decrease in Lhe maximum displacements 

in the same region. With the change in the curves of the maxim.um displacernents and velocities, we 

find a better match between the curves for scenario hymc and the shape of the near-source factor. 

The near-source factor does not conform to the local peak in the maximum displacements that in 

both scenarios sits about 26 km north of the top of the fault. As we noted in our discussion of 

the scenarios with the different initial shear tractions, this peak becomes significant only when the 

ground motions near the top of the fault are small, so we do not find this a significant difference 

between the curves of the maximum horizontal displacements and velocities and the near-source 

far.tor . 
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Figure 10.57: Comparison of north-south and vertical displacement time histories at sites Sl and S2 
for the three fault depths. The combo in the legend refers to the slip- and rate-weakening friction 
model. 

the curve of the maximum displacements occur in the first 15 km that lie up-dip from the top of the 

fault. ln this region the values decrease with the shallower hypocenter. The maximum velocities 

exhibit a more uniform decrease along the line with the shift in the hypocenter to the middle of the 

fault. We do find 11 islightly gre11ter rebtive decn::a6e iu Lhe µeak maximum velocity that occurs 5.0 km 

up-dip from the top of the fault. This is consistent with the decrease in the maximum displacements 

in the same region. With the change in the curves of the maximum displacements and velocities, we 

find a better match between the curves for scenario hymc and the shape of the near-source factor. 

The near-source factor does not conform to the local peak in the maximum displacements that in 

both scenarios sits about 26 km north of the top of the fault. As we noted in our discussion of 

the scenarios with the different initial shear tractions, this peak becomes significant only when the 

ground motions near the top of the fault are small, so we do not find this a significant difference 

between the curves of the maximum horizontal displacements and velocities and the near-source 

factor. 
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Figure 10.58: Maximum magnitudes of the horizontal displacement and velocity vectors along a 
north-south line running over the center of the fault for the three depths of the top of the fault . The 
combo in the legend refers to the slip- and rate-weakening friction model. The thick, dashed line 
indicates the near-source ground motion factor , Nv, from the 1997 Uniform Building Code for the 
three fault depths. 

Heterogeneity in Initial Shear Tractions 

We introduce heterogeneity into the initial shear tractions through the strain field . We create 

both weakly heterogeneous (scenario shearweak) and strongly heterogeneous (scenario shearstrong) 

distributions of the initial shear tractions. The distributions each contain 20 asperities with uniform 

distributions of radii between 3.0 km and 8.0 km and uniform random distributions of locations along 

the strike and dip. We do not allow the asperities within 2.0 km of the edges of the fault to prevent 

alteration of the tapering in shear stresses. As in the strike-slip scenarios with heterogeneous shear 

stresses, we uniformly distribute the asperity heights between plus and minus 30% and 60% of the 

nominal strain field (equation (10.10)) for the weakly and strongly heterogeneous distributions. 

Figure 10.61 shows the initial shear stresses, the shear stresses at failure, and the sliding shear 

stresses on the fault surface for scenario shearstrong. For scenarios shearweak and shearstrong 

the friction model remains the same as the one in scenario unistrain, so that the shear stresses 

at failure and minimum sliding shear stresses remain relatively uniform. We also create scenario 

meltstrong which features a strongly heterogeneous distribution of initial shear tractions and the 

melting-refreezing friction model (equation (10.12)) from scenario melt8km. To create the strongly 

heterogeneous shear tractions for scenario meltstrong with the larger dynamic stress drop, we super-
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Figure 10.58: Maximum magnitudes of the horizontal displacement and velocity vectors along a 
north-south line running over the center of the fault for the three depths of the top of the fault. The 
combo in the legend refers to the slip- and rate-weakening friction model. The thick, dashed line 
indicates the near-source ground motion factor, Nv, from the 1997 Uniform Building Code for the 
three fault depths. 

Heterogeneity in Initial Shear Tractions 

We introduce heterogeneity into the initial shear tractions through the strain field. We create 

both weakly heterogeneous (scenario shearweak) and strongly heterogeneous (scenario shearstrong) 

distributions of the initial shear tractions. The distributions each contain 20 asperities with uniform 

distributions of radii between 3.0 km and 8.0 km and uniform random distributions of locations along 

the strike and dip. We do not allow the asperities within 2.0 km of the edges of the fault to prevent 

alteration of the tapering in shear stresses. As in the strike-slip scenarios with heterogeneous shear 

stresses, we uniformly distribute the asperity heights between plus and minus 30% and 60% of the 

nominal strain field (equation (10.10)) for the weakly and strongly heterogeneous distributions. 

Figure 10.61 ohows the initial shear stresses, the :shear stresses at failure, and the tiliuiug ::;hear 

stresses on the fault surface for scenario shearstrong. For scenarios shearweak and shearstrong 

the friction model remains the same as the one in scenario imistrain, so that the shear stresses 

at failure and minimum sliding shear stresses remain relatively uniform. We also create scenario 

meltstrong which features a strongly heterogeneous distribution of initial shear tractions and the 

melting-refreezing friction model (equation (10.12)) from scenario melt8km. To create the strongly 

heterogeneous shear tractions for scenario meltstrong with the larger dynamic stress drop, we super-
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Figure 10.59: Comparison of north-south and vertical velocity time histories at sites Sl and 82 for 
the two hypocenter locations. 
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impose the tectonic strain asperities from scenario shearstrong on the tectonic strains from scenario 

melt8km. This creates a strongly heterogeneous distribution of shear tractions with the appro­

priate nominal maximum dynamic stress drop of 6.5 MPa that we need to generate comparable 

slip to that in scenario unistrain with the melting-refreezing friction model, which contains shear 

re-strengthening. 
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Figure 10.61: Initial (blue), failure (red), and minimum sliding (green) shear stresses on the thrust 
fault for scenario shearstrong. 

We compare the distributions of final slip and maximum slip rate from scenarios shearstrong and 

meltstrong with those from scenario unistrain (figure 10.41) to determine if the heterogeneous shear 

tractions introduce heterogeneity in the distributions of final slip and maximum slip rate. As shown 

in figure 10.62, when we use the slip-weakening friction model, the strongly heterogeneous tractions 

ha.ve liLLle effecL UH Lhe fi1ia.l :::;liµ ui:::;LriuuLiuu LuL Ju iuLruuuce :::;urne heLeruge11eiLy iu Lhe 11ia.xi111u111 

slip rate. The local extrema in the rnaximum slip rate correlate with the extrema in the initial 

shear tractions. Comparing the distributions of final slip for scenarios shearstrong and unistrain, 

we find that the most noticeable difference occurs in the top cast corner of the foult, where the slip 

decreases in response to the smaller maximum slip rates. In scenario meltstrong (figure 10.63) we 

find a strong correlation between the distributions of final slip and maximum slip rate. While the 

average maximum slip rate increases from 0.80 m/sec in scenario unistrain to 1.2 m/sec in scenario 

meltstrong, we observe no change in the average slip (1.2 m). These larger slip rates allow the rupture 

to generate the same slip over a shorter period of time that corresponds to the narrower width of 

the rupture front. Thns, we finrI that the shear re-strengthening in the frir.tion moriel lor.aJii,,es t.he 

slip, which enables the heterogeneity in shear tractions to create a heterogeneous slip distribution. 

The heterogeneity in the distribution of final slip in scenario meltstrong influences the maximum 

velocities . Comparing the maximum horizontal and vertical velocities from scenario unistrain in 

figure 10.44 with those from scenario meltstrong in figure 10.64, we see a general shift towards larger 

values in the forward direction. The location of the largest shear stresses near the top of the fault 
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Figure 10.61: Initial (blue), failure (red), and minimum sliding (green) shear stresses on the thrust 
fault for scenario shearstrong. 

We compare the distributions of final slip and maximum slip rate from scenarios shearstrong and 

meltstrong with those from scenario unistrain (figure 10.41) to determine if the heterogeneous shear 

tractions introduce heterogeneity in the distributions of final slip and maximum slip rate. As shown 

iu figure 10.02, when we use the slip-weakening friction model, the strongly heterogeneous tractions 

have little effect on the final slip distribution but do introduce some heterogeneity in the maximum 

slip rHte. 'T'hA lor.:i.l Airtrema in the maximum slip rate correlate with the extrema in tho initial 

shear tractions. Comparing the distributions of final slip for scenarios shearstrong and unistrain, 

we find that the most noticeable difference occurs in the top east corner of the fault, where the slip 

decreases in response to the smaller maximum slip rates. In scenario meltstrong (figure 10.63) we 

find a strong correlation between the distributions of final slip and maximum slip rate. While the 

average maximum slip rate increases from 0.80 m/sec in scenario unistrain to 1.2 m/sec in scenario 

meltstrong, we observe no change in the average slip (1.2 m). These larger slip rates allow the rupture 

to generate the same slip over a shorter period of time that corresponds to the narrower width of 

the rupture front. Thus, we find that the shear re-strengthening in the friction model localizes the 

slip, which enables the heterogeneity in shear trnciiurn; Lu crea,Le a, heLewgeueous slip distribution. 

The heterogeneity in the distribution of final slip in scenario rneltstrong influences the maximum 

velocities. Comparing the maximum horizontal and vertical velocities from scenario unistrain in 

figure 10.44 with those from scenario meltstrong in figure 10.64, we see a genera.I shift towards larger 

values in the forward direction. The location of the largest shear stresses near the top of the fault 
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scenario shearstrong. 
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scenario meltstrong. 
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Figure 10.64: Maximum magnitudes of the horizontal and vertical velocity vectors at each point on 
the ground surface for scenario meltstrong. The white line indicates the projection of the fault plane 
onto the ground surface, and the yellow circle identifies the epicenter. 
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Figure 10.64: Maximum magnitudes of the horizontal and vertical velocity vectors at each point on 
the ground surface for scenario meltstrong. The white line indicates the projection of the fault plane 
onto the ground surface, and the yellow circle identifies the epicenter. 
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tends to increase the ground motions above the top of the fault. Thus, for this random distribution 

of asperities, the local effects of the asperities with large shear stresses, which tend to increase the 

ground motions, overcome the general effect of the heterogeneity, which tends to decrease the ground 

motions. The peak maximum vertical velocity remains above the top of the fault, but the largest 

maximum horizontal velocities shift to above the southwest corner of the fault where the greatest 

slip and maximum slip rates occur. The distribution of the maximum horizontal velocities continues 

to contain local maxima along the east, south, and west edges of the surface projection of the fault. 

We compare the velocity time histories at sites Sl and S2 to gauge the sensitivity of the ground 

motions to the heterogeneity in the tectonic strains. The north-south and vertical velocities at site 

Sl, which are displayed in figure 10.65 for the four scenarios (unistrain, shearweak, shearstrong, 

meltstrong), all have the same general shape. The different timing of the peak velocities reflects the 

vnrbbility in the rupture speed as the ruptures encounter the different degrees of heterogeneity. The 

peak velocities in the north-south direction vary from 0.16 m/sec in scenario unistrain to 0.31 m/sec in 

scenario shearweak. At site S2 the vertical velocities exhibit little variation aJToss the follT' s<'f'Trn.rins. 

In the north-south direction the presence or absence of the second slip event near the hypocenter 

strongly influences the variability in the ground motion. Scenarios unistrain and shearstrong both 

contain the second slip event and the large velocity pulses at around 15 sec. Moreover, scenarios 

shearweak and meltstrong do not contain the second slip event, and the velocity time histories differ 

considerably, both from the other two scenarios and from each other. 

Despite the wide variability in the velocity time histories, the maximum horizontal displacements 

and velocities along the north-south line over the center of the fault change little m shape across the 

four scenarios, as shown in figure 10.66. In contrast to the strike-slip simulations where the addition 

of heterogeneity in the initial tractions tends to decrease the motion, the addition of heterogeneity 

tends to increase the ground motions on the ground surface for the thrust fault. As discussed above, 

we attribute this increase to the random location of the asperities with large shear stresses near the 

surface. These asperities are most prevalent in the strongly heterogeneous distribution of the initial 

shear tractions. The larger slip and faster slip rates near the top of the fault in scenario meltstrong 

lead to substantially greater peak maximum displacements and velocities compared to the other 

scenarios. Nevertheless, we observe no shift in the location of the peak relative to the top of the 

fault; the peak continues to fall 5.0 km south of the top of the fault and outside the region with 

the largest near-source factor. In the forward direction (south of the top of the fault) the curves 

for scenarios shearweak and shea,n;t,ruug, ::;hvw ueglig,iule ::;em;itivity to the increase in heterogeneity 

in the tectonic strains. The second slip event near the hypocenter in scenario shearstrong does 

create larger maximum displacements and velocities in the backward direction compared to scenario 

shearweak. 
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Figure 10.65: Comparison of north-south and vertical velocity time histories at sites Sl and 82 for 
the four cases of heterogeneity in the initial shear tractions. 

H eterogen eity in Friction Model Parameters 

We create heterogeneity in the lithothrustuf fr iction model by following the same procedure that we 

use to create heterogeneity in the friction model for the strike-slip simulations. We independently 

vary the coefficients in the expressions for µmax and µmin by 203 and 103 above and below the 

nominal value to generate weakly and strongly heterogeneous distributions. We do not include 

heterogeneity in the characteristic slip distance, but the fluctuations in the maximum and minimum 

values of the coefficient of friction create heterogeneity in the fracture energy. The size and location 

of the 20 asperities follow the same guidelines as the asperities that we use in the previous section for 

the initial tectonic strains. We apply the initial shear and normal tractions from scenario unistrain , 

except that we adjust the height of the shear asperity such that it is 2.0% over the shear stress 

required for failure. Scenario frictionweak uses the weakly heterogeneous friction model parameters 

and scenario frictionstrong uses the strongly heterogeneous friction model parameters. Figure 10.67 

shows the initial shear stresses, the shear stresses at failure , and the minimum sliding stresses on 

the fault surface for scenario frictionstrong. 

Our strongly heterogeneous failure stresses in scenario frictionstrong degrade the ability of the 

rupture to propagate and produce an average slip of only 0.83 m. From the distributions of final slip 

and maximum slip rate in figure 10.68, we find that a large region in the top west corner does not 
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Figure 10.65: Comparison of north-south and vertical velocity time histories at sites Sl and 82 for 
the four cases of heterogeneity in the initial shear tractions. 

Heterogeneity in Friction Model Parameters 

We create heterogeneity in the lithothrustuf friction model by following the same procedure that we 

use to create heterogeneity in the friction model for the strike-slip simulations. We independently 

vary the coefficients in the expressions for µrnax and µrntn by 20% and 40% above and below the 

nominal value to generate weakly and strongly heterogeneous distributions. We do not include 

heterogeneity in the characteristic slip distance, but the fluctuations in the maximum and minimum 

values of the coefficient of friction create heterogeneity in the fracture energy. The size and location 

of the 20 asperities follow the same guidelines as the asperities that we use in the previous section for 

the initial tectonic strains. We apply the initial shear and normal tractions from scenario unistrain, 

except that we adjust the height of the shear asperity such that it is 2.0% over the shear stress 

required for failure. Scenario frictionweak uses the weakly heterogeneous friction model parameters 

and scenario frictionstrong uses the strongly heterogeneous friction model parameters. Figure 10.67 

shows the initial shear tSLre::;::;e::;, Lhe ::;hear l:ltresses at failure, and the minimum sliding stresses on 

the fault surface for scenario frictionstrong. 

Our strongly heterogeneous failure stresses in scenario frictionstrong degrade the ability of the 

rupture to propagate and produce an average slip of only 0.83 m. From the distributions of final slip 

and maximum slip rate in figure 10.68, we find that a large region in the top west corner does not 
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Figure 10.67: Initial (blue), failure (red), and minimum sliding (green) shear stresses on the thrust 
fault for scenario frictionstrong. 

fail. Additionally, the slip along the eastern side of the fault remains relative low despite the local 

peak in the maximum slip rate. As in the case of heterogeneity in the tectonic tractions with the 

slip-weakening friction model, the slip distribution remains relatively homogeneous; the distribution 

of the maximum slip rate exhibits a greater sensitivity to the heterogeneity than the distribution of 

final slip. 

The heterogeneity in combination with smaller average slips reduces the displacement amplitudes , 
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fault for scenario frictionstrong. 

fail. Additionally, the slip along the eastern side of the fault remains relative low despite the local 

peak in the mnximum slip rate. As in the case of heterogeueiLy iu Lhe Lectunic tractions with the 

slip-weakening friction model, the slip distribution remains relatively homogeneous; the distribution 

of the maximum slip rate exhibits a greater sensitivity to the heterogeneity than the distribution of 

final slip. 

The heterogeneity in combination with smaller average slips reduces the displacement amplitudes, 
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Figure 10.68: Distributions of final slip and maximum slip rate at each point on the thrust fault for 
scenario frictionstrong. 

especially at site 81. Figure 10.69 shows the sharpest shear wave arrival at site 81 occurs in scenario 

unistrain with the homogeneous parameters in the friction model. As we increase tho heterogeneity, 

the amplitudes decrease and the arrivals become more gradual despite little change in the average 

rupture speed_ Certainly, the reductions in the average slip from 1.2 m in scenario unistrain to 

1.0 m anrl O.R~ m in sr.P.narins frir.t.innwP.ak :rnn frir.t.innst.rnng rP.ci11cP. t.hP. ~mplit.11ciP. of t.hP. mot.inn _ 

The perturbations in the rupture speed also contribute to the reduction in the amplitude of the 

motion by disrupting the reinforcement of the shear wave by the rupture. At site 82 we continue to 

find little variation in the vertical component. We also find the initial portion of the displacement 

time histories in the north-south direction relatively insensitive to the heterogeneity in the friction 

model. The second slip event near the hypocenter in scenario frictionstrong produces significantly 

less slip than the ones in scenarios unistrain and frictionstrong. This creates the variability in the 

north-south component towards the central portion of the time history. 

The heterogeneity in the friction model creates moderate perturbations in the shape of the 

maximum horizontal displacements and velocities along the north-south line that runs over the 

center of the fault as shown in figure 10.70. Comparing the maximum displacements from scenario 

frictionweak with those from scenario unistrain, we observe a shift in the peak values towards the 

north, with the peak value occurring almost directly above the top of the fault. On the other hand, 

the peak maximum horizontal displacement for scenario frictionstrong remains at about the same 

location as that in scenario unistrain. The maximum horizontal velocities display similar trends. The 

shapes of the curves for scenarios unistrain and frictionstrong match, while the maximum velocities 

for scenario frictionweak contains a local peak 13 km north of the top of the fault that is not present in 

the other curves. In general, the maximum displacements and velocities for the homogeneous friction 

model exceed those from the heterogeneous friction model cases. The near-source curve continues 

to miss the shape of the maximum displacements and velocities by not extending sufficiently far 

enough in the up-dip direction. 
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Figure 10.68: Distributions of final slip and maximum slip rate at each point on the thrust fault for 
scenario frictionstrong. 

especially at site SL Figure 10.69 shows the sharpest shear wave arrival ;:i.t. >lite Sl occurs in scenario 

unistrain with the homogeneous parameters in the friction model. As we increase the heterogeneity, 

the amplitudes decrease and the arrivals become more gradual despite little change in the average 

rupture speed. Certainly, the reductions in the average slip from 1.2 rn in scenario unistrain to 

1.0 m and 0.83 m in scenarios frictionweak and frictionstrong reduce the amplitude of the motion. 

The perturbations in the rupture speed also contribute to the reduction in the amplitude of the 

motion by disrupting the reinforcement of the shear wave by the rupture. At site 82 we continue to 

find little variation in the vertical component. We also find the initial portion of the displacement 

time histories in the north-south direction relatively insensitive to the heterogeneity in the friction 

model. The seconcl slip evPnt near the hypocenter in scenario frictionstrong produces significantly 

less slip than the ones in scenarios unistrain and frictionstrong. This creates the variability in the 

north-south component towards the central portion of the time history. 

The heterogeneity in the friction model creates moderate perturbations in the shape of the 

maximum horizontal displacements and velocities along the north-south line that runs over the 

center of the fault as shown in figure 10.70. Comparing the maximum displacements from scenario 

frictionweak with those from scenario unistrain, we observe a shift in the peak values towards the 

north, with the peak value occurring almost directly above the top of the fault. On the other hand, 

the peak maximum horizontal displacement for scenario frictionstrong remains at about the same 

location as that in scenario uniotrain. The maximum horizonteil velocitie:s displeiy similar LreuJt:i. The 

shapes of the curves for scenarios unistrain and frictionstrong match, while the maximum velocities 

for scenario frictionweak contains a local peak 13 km north of the t.op oft. he fa.11 lt that is not present in 

the other curves. In general, the maximum displacements and velocities for the homogeneous friction 

model exceed those from the heterogeneous friction model cases. The near-source curve continues 

to miss the shape of the maximum displacements and velocities by not extending sufficiently far 

enough in the up-dip direction. 
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Figure 10.69: Comparison of north-south and vertical displacement time histories at sites 81 and 82 
for the three cases of heterogeneity in the parameters of the friction model. 

10.2.3 Comparison with Prescribed Ruptures 

In our analysis of the ground motions during the sensitivity study, we noted some of the similarities 

and differences between the prescribed ruptures simulations in section 7.2 and the dynamic foilurc 

simulations. We will highlight some of tho fundamental differences between tho proscribed ruptures 

and the dynamic ruptures by examining a dynamic failure scenario and a prescribed rupture scenario 

for the case where the top of the fault lies at a depth of 8.0 km and the case where the top of the 

fault lies at the ground surface. 

Blind Thrust 

We compare the dynamic failure scenario unistrain2 with the prescribed rupture scenario base, 

because the rupture features of scenario unistrain2 best fit scenario base. The rupture speed of 88% 

of the local shear wave speed and peak maximum slip rate of 1.7m/sec provide a good match to the 

rnpt.nrn spPPrl of 80% of the local shear wave speed and uniform maximum slip rate of 1..5 m/sec in 

sr.P.nario hasP.; howP.vP.r , sr.P.nario nnist.rain2 gP.nPr::t.t.Ps ::i.n ::i.vPrn.gP slip of 1.n m r.omparnrl t.o t.hP 1 .0 m 

slip of scenario base. 

Figure 10. 71 shows the velocity time histories at site 81 and 82 for both scenarios. At both 

sites we observe a good match in the general shapes of the time histories for both the north-south 
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Figure 10.69: Comparison of north-south and vertical displacement time histories at sites Sl and S2 
for the three cases of heterogeneity in the parameters of the friction model. 

10.2.3 Comparison with Prescribed Ruptures 

In our analysis of the ground motions during the sensitivity study, we noted some of the similarities 

and differences between the prescribed ruptures simulations in section 7.2 and the dynamic failure 

simulations. We will highlight some of tho funcbmentul differences between the prescribed ruptures 

and the dynamic ruptures by examining a dynamic failure scenario and a prescribed rupture scenario 

for the case where the top of the fault lies at a depth of 8.0 km and the case where the top of the 

fault lies at the ground surface. 

Blind Thrust 

We compare the dynamic failure scenario unistrain2 with the prescribed rupture scenario base, 

because the rupture features of scenario unistrain2 best fit scenario base. The rupture speed of 88% 

of the local shear wave speed and peak maximum slip rate of 1. 7 m/ sec provide a good match to the 

rupture speed of 803 of the local shear wave speed and uniform maximum slip rate of l.5m/sec in 

scenario base; however, scenario unistrain2 generates an average slip of 1.6 m compared to the 1.0 m 

slip of scenario base. 

Figure 10.71 shows the velocity time histories at site Sl and S2 for both scenarios. At both 

sites we observe a good match in the general shapes of the time histories for both the north-south 
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Figure 10.70: Maximum magnitudes of the horizontal displacement and velocity vectors along a 
north-south line running over the center of t he fault for t he t hree cases of heterogeneity in the 
frict ion model. T he t hick, dashed line indicates the near-source ground motion factor, Nv, from the 
1997 Uniform Building Code. 

and vertical components. In the vertical direction at site Sl the peak velocities differ by less than 

153. Similarly, in the north-south direction the peak negative velocities differ by less than 103. 

The narrower velocity pulse for the prescribed rupture scenario creates a peak positive velocity 823 

greater than the peak positive velocity in the dynamic failure scenario. This difference corresponds 

to the direction dependence of the rupture speed in the dynamic failure scenario that we do not 

include in the prescribed ruptures. The apparent rupture velocity towards site Sl decreases as the 

rupture becomes more bilateral in nature towards the end of the earthquake. As a result, the energy 

arrives at site Sl over a longer time interval. This increases the width of the velocity pulse and 

reduces the peak velocity. At site 82 we find better agreement in the north-south direction than in 

the vertical direction. Site 82 lies at the epicenter and receives more energy as the rupture becomes 

more bilateral. Hence, because the bilateral nature of the dynamic rupture increases as it propagates , 

at site 82 the amplitudes of the motion in the dynamic failure scenario become progressively larger 

relative to those in the prescribed rupture scenario. 

Along the north-south line running over the center of the fault , we observe a close match in the 

maximum horizontal displacements and velocities as displayed in figure 10.72. The dependence of 

the rupture speed on the direction of propagation relative to the slip direction has much less impact 

on the sites near the center of the fault , because they lie close to azimuths of 0 or 180 degrees. As a 
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Figure 10.70: Maximum magnitudes of the horizontal displacement and velocity vectors along a 
north-south line running over the center of the fault for the three cases of heterogeneity in the 
friction model. The thick, dashed line indicates the near-source ground motion factor, Nv, from the 
1997 Uniform Building Code. 

and vertical components. In the vertical direction at site Sl the peak velocities differ by less than 

1.r1%. Similarly, in t.hP. nnrth-snnth climrtinn the peak negative velocities differ by less than 10%. 

The narrower velocity pulse for the prescribed rupture scenario creates a peak positive velocity 82% 

greater than the peak positive velocity in the dynamic failure scenario. This difference corresponds 

to the direction dependence of the rupture speed in the dynamic failure scenario that we do not 

include in the prescribed ruptures. The apparent rupture velocity towards site Sl decreases as the 

rupture becomes more bilateral in nature towards the end of the earthquake. As a result, the energy 

arrives at site Sl over a longer time interval. This increases the width of the velocity pulse and 

reduces the peak velocity. At site 82 we find better agreement in the north-south direction than in 

the vertical direction. Site 82 lies at the epicenter and receives more energy as the rupture becomes 

more bilateral. Hence, because the biltiteral nature of the dynamic rupture increa:se:s a:s it propagate:s, 

at site 82 the amplitudes of the motion in the dynamic failure scenario become progressively larger 

relative to those in the prescribed rupture scenario. 

Along the north-south line running over the center of the fault, we observe a close match in the 

maximum horizontal displacements and velocities as displayed in figure 10.72. The dependence of 

the rupture speed on the direction of propagation relative to the slip direction has much less impact 

on the sites near the center of the fault, because they lie close to azimuths of 0 or 180 degrees. As a 
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Figure 10. 71: Comparison of north-south and vertical velocity time histories at sites 81 and 82 for 
the dynamic failure scenario unistrain2 and the prescribed rupture scenario base. 

result, the maximum velocities from scenario unistrain2 exhibit an excellent match with those from 

scenario base. Tho larger slip in scenario unistrain2 causes the maximum displacements from Lhe 

dynamic failure scenario to exceed those from the prescribed rupture scenario. Nevertheless, the 

shapes of the curves show minimal variation. For both scenarios the peak ma.."Ximum displac:emfmts 

and velocities occur outside the region where the near-source curve attains its maximum value. 

Surface Rupture 

When we raise the top of the fault to the ground surface, the low sliding stresses on the fault allow 

entrapment of the seismic waves above the fault. This generates large slips near the surface and 

severe ground motion on the hanging-wall side of the surface rupture. The prescribed ruptures 

do not contain this dynamic interaction between the seismic waves and slip. As we discussed in 

section 10.2.2, the degree to which this interaction occurs depends on the width of the rupture 

front. The slip-wel'tkening friction model, which tends Lu creale wiJe ruµLure frunt8, accentuates 

this effect. Consequently, we will compare the dynamic failure scenario comboOkm, which uses the 

slip- and rate-weakening friction model, and the prescribed rupture scenario faultOkm to see how the 

inclusion of the dynamic interaction changes the ground motion. Scenarios comhoOkm and faultOkm 

have comparable average slips (1.1 m and 1.0 m) and average maximum slip rates (1.1 m/sec and 



1.4 

E'1.2 
E' 1.0 
Q.l 
E 0.8 
Q.l 
~ 0.6 
~0.4 
Ci 0.2 

234 

.... 
.,,,,.,.---- ...... ---­' - - ,.,.,,. 

0.0'---'---''---'---''---'---''---'---''---'---''---'---J 

1.4 

() 1.2 
.m 1.0 
E..o.s 
>-13 0.6 
~ 0.4 
> 0.2 

... 
\ 

o.o----~-----~--........ ~--__.~ ....... ~-----~..__ ..... 

> z 
2.0 c5 

t5 
1.6 if 

Q.l 
2 

1.2 s 
1.0 Cf) 

.... 
ct! 
Q.l~~~~~~~~ z 
> z 
..: 

failure 
prescribed 
Nv 

O'--~~~~~~--' 

2.0 ~ 
LI.. 

1.6 ~ .... 
:::i 

1.2 a5 
1.0 (ij 

Q.l 
z 

-25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 
NS Distance from Fault (km) 
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north-south line running over the center of the fault for the dynamic failures scenario unistrain2 
and the prescribed rupture scenario base. The thick, dashed line indicates the near-source ground 
motion factor, Nv, from the 1997 Uniform Building Code. 

1.5m/sec), but scenario comboOkm has a much larger peak maximum slip rate (6.1 m/sec compared 

to L5m/scc). 

At site 82 we find little difference in the displacement time histories between the dynamic failure 

scenario (comboOkm) and the prescribed rupture scenario (faultOkm). At site 81 we observe no 

differences in the arrival times of the phases, but the amplitudes differ considerably. The peak 

displacement in the vertical direction for the prescribed rupture scenario exceeds that of the dynamic 

failure scenario by 583 (0.41 m compared to 0.26 m). In the north-south direction, we find a larger 

peak displacement for the dynamic failure scenario (0.82 m) compared to the prescribed rupture 

scenario (0.56 m). Furthermore, we observe almost no difference between the peak positive and 

negative displacements for the prescribed rupture, while the peak negative displacement for the 

dynamic failure simulation is much larger than the peak positive displacement. We attribute this 

distinct difference in the shape of the waveforms to the dynamic interaction between the seismic 

waves and the rupture in the dynamic failure scenario. Thus, while tho dynamic interaction between 

the seismic waves and the rupture has little affect on the waveforms away from the surface rupture, 

it does affect the amplitudes and shapes of the waveforms near the surface rupture. 
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10.3 Discussion 

10.3.1 Summary of Rupture Behavior and Ground Motions 

The layered half-space, in contrast to the homogeneous half-space, allows examination of how pa­

rameters in the dynamic failure simulations depend on the material properties. This includes dis­

tinguishing between application of a uniform strain field and a uniform stress field, and how the 

coefficient of friction varies with the material properties. 

Uniform Stress Versus Uniform Strain 

The variation of the material properties with depth leads to different distributions of the initial 

shear tractions on the fault surface depending on whether we apply a relatively uniform stress 

field or a relatively umform strain field. On the strike-slip fault with the depth dependence of 

the coefficient of friction, we find that application of the uniform strain field creates more realistic 

ruptures. In the simulation with uniform stress, the rupture propagates near the dilatational wave 

speed and generates slips and slip rates in excess of 10 m and 10 m/sec at the ground surface. On 

the other hand, in the simulation with uniform strain, the rupture propagates at 88% of the local 

shear wave speed, and the final slips and maximum slip rates remain below 2.5 m and 1.5 m/sec; 

however, the rupture fails to reach the ground surface. Of course, the stress state on a fault in the 

earth evolves over time due to many factors, such as plate tectonics, earthquakes, and viscoelastic 

creep. It probably looks very different from both a uniform stress field and a uniform strain field. 

Nevertheless, our simulations lend support for relatively uniform strains with depth compared to 

relative uniform stresses with depth. 

Adjustment of Friction Model 

We modify the friction model to account for the variation in the material properties with depth, 

based on the lack of surface rupture that occurs when we apply uniform strains and include only 

a depth dependence in the friction model. Making the coefficient of friction a function of either 

the shear wave speed or the square root of the shear modulus introduces reasonable variations 

with depth of the shear stresses at failure and the shear stresses during sliding. Furthermore, this 

modification remains consistent with the depth only dependence that we use in the homogeneous 

half-spaces, because the coefficient of friction depends on the quotient of the square root of the shear 

modulus and the depth. We adjust the friction model to generate realistic ruptures and adhere 

to restrictions on the change in thermal energy, but do not invoke any theoretical basis for these 

modifications. However, a number of mechanisms have been proposed for low dynamic friction 

during earthquakes (Ben-Zion and Andrews 1998; Melosh 1996; Sleep 1997; Tworzydlo and Hamzeh 

1997). This alteration of the friction model moderates the variation of the coefficient of friction 
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with depth in the layered half-space compared to the homogeneous half-space. For example, as we 

go from a depth of LO km to a depth of 15.0 km, the coefficient of friction decreases by 93% in a 

homogeneous half-space, while it decreases by only 80% in the layered-half space. Thus, the increase 

in the coefficient of friction with the shear modulus partially offsets the decrease in the coefficient 

of friction with the depth. 

10.3.2 Sensitivity of Ground Motion to Variations in Parameters 

Using the strike-slip and thrust simulations, we gauge the sensitivity of the ground motions to the 

variations in the simulation parameters. For those parameters present in the both the dynamic 

failure and prescribed rupture sensitivity studies, we compare the sensitivity of the ground motions 

from the dynamic failure simulations with those from the prescribed rupture simulations. 

Friction Model 

The ground mot10ns exhibit a moderate sensitivity to the introduction of shear re-strengthening in 

the friction model, i.e., recovery of the coefficient of friction as the slip rates decrease. By increasing 

the maximum dynamic stress drop when we introduce shear re-strengthening, we preserve the general 

characteristics of the rupture. As a result, we observe little change in the overall shape of the 

waveforms. The slip rates increase with the greater maximum dynamic stress drop, which leads to 

a moderate increase in the velocity amplitudes. The switch from the slip-weakening friction model 

to either the slip- and rate-weakening friction model or the melting-refreezing friction model has a 

greater impact on the ground motions for the thrust fault. The location of the hypocenter close 

to the edge of the thrust fault inhibits the initiation of the rupture. The increase in the dynamic 

stress drop with the switch in the friction models results in faster initiation of the rupture and larger 

ground motions. This same behavior does not occur in the simulations with the strike-slip fault, 

because we place the hypocenter well away from the edges of the fault. 

Fault Depth 

The severity of the ground motions increases substantially when we allow the rupture to reach 

the ground surface. On both the strike-slip ancl thmst. frrnlt." the ruptures generate significantly 

larger slips near the surface than at depth. As the ruptures encounter the reduced resistance to 

slip approaching the ground surface, the slip and slip rates increase. This leads to a corresponding 

increase in the amplitudes of the displacements and velocities near the fault. Additionally, when 

we raise the thrust fault to the surface, the dynamic interaction between low sliding stresses on the 

fault and the seismic waves above the fault causes large displacements and velocities on the ground 

surface above the fault. Using a slip-weakening friction model??, Oglesby et al. (1998) observed 
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similar behavior during two-dimensional simulations of dynamic failure on a thrust fault subjected 

to uniform initial stresses in a homogeneous half-space. The slip-weakening friction model which 

contains no shear re-strengthening accentuates this effect, because it tends to create wide rupture 

fronts. Using the slip- and rate-weakening friction model, which contains shear re-strengthening, 

we observe significantly less dynamic interaction. Nevertheless, we retain asymmetry across the 

fault plane with much larger ground motions on the hanging wall compared to the footwall. The 

dependence of the friction model on the material properties exhibits a strong influence on the shallow 

slip, and our ad hoc choice of parameters in the friction model may also accentuate these near-surface 

effects. However, as in the prescribed ruptures, we find that the depth of the fault displays a strong 

influence on the ground motions. 

Hypocenter Location 

We observe the same trend in the sensitivity of the ground motions to the location of the hypocenter 

in the dynamic fail11m sim11lations that wi> finrl in the prescribed rupture simulations. The sensitivity 

of the ground motions at a given site depends on the relative change in azimuth. As we move the 

hypocenter location, the ground motions show little variation at sites that remain near the same 

azimuth. When the azimuth changes significantly with different hypocenter locations, we observe 

large changes in the ground motions, especially when the site lies near a nodal line for one of the 

hypocenter locations. 

Initial Shear Tractions 

On the thrust fault we find that the ground motions exhibit a strong sensitivity to the level of the 

inHlal ~hear lracUurn;. Increasing the nominal shear traction by 17% with no corresponding increase 

in the failure stress (or the fracture energy) leads to a 31 % increase in the rupture speed and a 

200-300% increase in the maximum velocities. We expect that the ground motions display a similar 

degree of sensitivity to variation of the level of the initial shear tractions on the strike-slip fault. 

Additionally, introducing heterogeneity into the initial shear tractions generates heterogeneity in the 

maximum slip rate and variations in the rupture speed. The peak displacements and velocities at 

sites near regions with larger slip rates tend to increase, but the variation in the rupture speed tends 

to cause a general decrease in the amplitude of the motion, because it disrupts the reinforcement of 

the shear wave by the rupture. 

At most locations on the ground surface of the strike-slip fault simulations, the general decrease 

dominates the local increases. These results with heterogeneous maximum slip rates more closely 

resemble the source parameterization used by Graves (1998) than the prescribed ruptures with 

heterogeneous slip distributions in chapter 7. As a result, the observed decreases in the maximum 

displacements and velocities with the introduction of heterogeneity in the initial shear tractions on 
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the strike-slip fault are consistent with the decreases observed by Graves. In the forward direction 

on the ground surface of the thrust fault simulations, the local increases that we associate with the 

proximity of the asperities dominate the general decrease that we associate with the disruption of 

the reinforcement of the shear wave by the rupture. 

On both faults replacernont of tho olip-wco,kcning model with the melting-refreezing friction mvud 

leads to a substantial increase in the heterogeneity in the distribution of the final slip. These local 

changes in slip and slip rate alter the shapes and amplitudes of the time histories. Thus, we find the 

ground motions exhibit a strong sensitivity to both the level of the initial shear stresses and the degree 

of heterogeneity. These observations suggest that shear re-strengthening may play an important role 

in generating heterogeneous slip distributions. Madariaga and Cochard (1996) suggested that any 

friction model that produces a large dynamic stress drop compared to the average stress drop will 

produce heterogeneity in the final shear stress. Ultimately, this will lead to slip heterogeneity. On 

the other hand, based on kinematic inversions of several recent earthquakes Day et al. (1998) found 

that heterogeneity in the stress drop alone may generate the heterogeneity in the final slip. Our 

use of large asperities (3.0-8.0 km in radius) in the initial shear stresses may not provide sufficient 

heterogeneity in the stress drop to arrest the rupture at a local level when we use the slip.:weakenine; 

friction model. As a result, the distributions of final slip closely resemble the final slip from a 

uniform stress drop earthquake. Thus, we cannot dismiss the possibility that the slip-weakening 

friction model with greater heterogeneity in the initial shear tractions will produce the same level 

of heterogeneity in the distribution of final slip that is generated by the melting-refreezing friction 

model which contains shear re-strengthening. 

Heterogeneity in Friction Model Parameters 

The ground motions generally display less sensitivity to the heterogeneity in the parameters of the 

friction model than they do to the initial shear tractions. For the strike-slip fault the introduction of 

weak heterogeneity has negligible impact on the ground motions. On the thrust fault the introduction 

of the same level of heterogeneity reduces the amplitude of the ground motions. On both faults, the 

variation in the rupture speed with the strong heterogeneity in the friction model parameters leads 

to a substantial, general decrease in the peak displacements and peak velocities. 

10.3.3 Dynamic Failure versus Prescribed Ruptures 

In the dynamic failure simulations we do not a priori know the characteristics of the rupture behavior. 

In the prescribed ruptures we have complete control over the time histories at each point on the 

fault, so that we know the behavior of the rupture before running the simulation. Furthermore, 

many aspects of controlling the rupture still remain a mystery, and reasonable ruptures are often 

created by trial and error (Madariaga et al. 1998; Olsen et al. 1997). On the other hand, the dynamic 

wave by the rupture. As a result, the ground motions in the dynamic failure simulations exhibit 

be easily incorporated into prescribed ruptures, because the behavior is well defined. Other more 

complex features that may be difficult to incorporate into the prescribed ruptures include: the re-
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failure simulations may generate much more physically realistic ruptures, because the dynamics of 

the rupture control the rupture speed and slip at each point on the fault; we need to know the initial 

conditions and the friction model, but not the complex relationships between rupture speed, slip 

rate, and final slip. Unfortunately, we have only rough estimates of the initial conditions and the 

friction models. 

We find several important differences between the simulations with prescribed ruptures and 

the simulations with dynamic failure. In the dynamic failure simulations the speed of the rupture 

depends on the direction of propagation relative to the slip direction. As documented by other 

researchers, such as Madariaga et al. (1998), the rupture propagates near the shear wave speed in 

the direction of slip, but at a slower speed in the direction perpendicular to slip. The absolute and 

relative speeds in the two directions depend on the fracture energy, but we consistently observe a 

203 reduction in the speed of the rupture in the direction perpendicular to the olip compare<l tu the 

direction parallel to the slip. In the prescribed rupture simulations we assume a uniform rupture 

speed relative to the shear wave speed. This difference is minimal on lone;, m1.rrow fa.111t,; where 

the direction of slip coincides with the longer dimension, because the rupture propagates along the 

fault near the shear wave speed. However, when the slip direction is nearly perpendicular to the 

longer dimension, as is often the case on thrust faults, the rupture propagates near the shear wave 

speed along the shorter dimension but at a slower speed along the longer dimension. The contrast in 

rupture speeds in the two directions tends to create a rupture that propagates progressively closer 

to a right angle from the direction of slip. This reduces the reinforcement of the shear wave by the 

rupture and decreases the amplitudes of the ground motions at sites away from an azimuth of zero 

degrees. 

When we include heterogeneity in the initial shear stresses (through tho tectonic strains) or the 

shear stresses at failure (through heterogeneity in the friction model parameters), the rupture slows 

down as it encounters regions farther from failure (where the fracture energy is larger) and speeds 

up as it encounters regions closer to failure (where the fracture energy is smaller). The degree to 

which such variations occur depends on the dynamics of the rupture and the state of stress on the 

fault. Olsen et al. (1997) found similar changes in rupture speed in their simulation of the 1992 

Landers earthquake, which used a heterogeneous initial distribution of shear stress. These changes 

in the rupture speed disrupt the steady reinforcement of the shear wave by the rupture and reduce 

the amplitude of the ground motions. Additionally, the slip rates increase with the faster rupture 

speed in regions closer to foilure, which in turn geueraLe huger :;lip:;. FurLhermore, we observe 

heterogeneity in the final slip only when strong heterogeneity exists in the maximum slip rate. In 

the prescribed ruptures we allow the rupture to continue propagating at a uniform speed regardless 

of the heterogeneity in slip. This causes minimal disruption in the steady reinforcement of the shear 

wave by the rupture. As a result, the ground motions in the dynamic failure simulations exhibit 
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a much stronger sensitivity to introduction of heterogeneity in the slip compared to the prescribed 

rupture simulations. 

The dynamics of the rupture also lead to phenomenon not present in the prescribed ruptures. In 

most of the strike-slip simulations the rupture reflects off the free surface and generates a second slip 

event on the fault below. Because the rupture propagates away from the ground surface during this 

second slip event, it has only a small impact on the ground motions. When we bury the thrust fault, 

we also observe a second slip event in some of the simulations. The reflection of the dilatational 

waves off the ground surface generates shear waves that passes through the fault. In some cases the 

dynamic shear stresses created by the shear waves trigger additional slip near the hypocenter. This 

creates a significant velocity pulse that we observe late in the time history near the epicenter. When 

the top of the thrust fault sits at the ground surface, the dynamic interaction between the rupture 

and the seismic waves causes largA grmmcl motions on the hirngine; w::i.11 

As shown in figure 10. 7 4, the areas subjected to a given level of horizontal displacement or 

velocity remains nearly the same when we use either prescribed ruptures or dynamic failure. For the 

strike-slip fault we follow section 10.1.5 and compare the data from the prescribed rupture scenario 

hymq with the data from the dynamic failure scenario unistrain2, and for the thrust fault we follow 

section 10.2.3 and compare the data from the prescribed rupture scenario base with the data from 

the dynamic failure scenario unistrain2. For both the strike-slip and thrust faults we find an excellent 

match between the curves associated with the maximum velocities. Due to differences in the average 

slips (2.0 m for scenario hymq versus 1.9 m for scenario unistrain2 for the strike-slip fault, and 1.0 m 

for scenario base versus 1.6 m for scenario unistrain2 for the thrust fault), the curves associated 

with the maximum displacements for the thrust fault display less agreement than the curves for the 

strike-slip fault. The peak maximum horizontal displacements and velocities for the dynamic failure 

simulations exceed those from the prescribed rupture simulations. This changes the areas where the 

ground motions exceed a given level only at the most severe levels of motion. 

10.3.4 Implications for Earthquake Engineering 

The simulations with dynamic failure demonstrate several important characteristics of the behav­

ior of earthquake ruptures. Incorporating these characteristics into the prescribed ruptures allows 

creation of more realistic earthquake simulations without explicitly including the dynamics of the 

rupture process. With the limited database of strong ground motions, such simulations play an 

important role in generating ground motions for engineering design. The dependence of the rupture 

speed on the direction of propagation plays an important role in the ground motions on blind thrust 

faults, particularly along the lateral edges of the surface projection of the fault. This behavior may 

be easily incorporated into prescribed ruptures, because the behavior is well defined. Other more 

complex features that may be difficult to incorporate into the prescribed ruptures include: the rP-
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lationship between the maximum slip rate and the rupture speed, and the variation of the rupture 

speed with heterogeneous slips and slip rates. All of these phenomenon influence the behavior of 

the rupture and the ground motions. Their inclusion into prescribed ruptures would lead to more 

physically realistic simulations of earthquakes and more accurate predictions of ground motions . 

We revisit our modified near-source factor described in section 7.3.3 to demonstrate that it 

applies equally well to the thrust fault simulations with dynamic failure. Figure 10. 75 reproduces 

figure 10 58 with the near-source factor from the 1QQ7 UBC replaced by the modified near-source 

fa.ctor for the three fa11 lt ilepths. As in the prP.sr.ribP.d ruptures , the peak maximum hori?:onta.1 

displacements and velocities for all three depths of the fa11lt occnr m~ar the center of the regions 

where the corresponding modified near-source factors attain their maximum values. When we apply 

the 1997 UBC near-source factor to our thrust fault , the peaks generally lie outside this region. 

Thus, the shape of the modified near-source factor does a better job of matching the general pattern 

of the severity of shaking for both prescribed rupture simulations and dynamic failure simulations 

compared to the 1997 UBC near-source factor. 

10.3.5 Geophysical Implications 

Using the strike-slip and thrust fault simulations , we consider how well our earthquakes in the 

layered half-space fit the proportionality between average stress drop and average slip given by 
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lationship between the maximum slip rate and the rupture speed, and the variation of the rupture 

speed with heterogeneous slips and slip rates. All of these phenomenon influence the behavior of 

the rupture and the ground motions. Their inclusion into prescribed ruptures would lead to more 

physically realistic simulations of earthquakes and more accurate predictions of ground motions. 

We revbH VUJ: mvuifit:Ll uear-~uurce factor described in section 7.3.3 to demonstrate that it 

applies equally well to the thrust fault simulations with dynamic failure. Figure 10. 75 reproduces 

figure 1 O.fi8 with thR nR::ir-~m1rce factor from the 1997 UBC replaced by the modified near-source 

factor for the three fault depths. As in the prescribed ruptures, the peak maximum horizontal 

displacements and velocities for all three depths of the fault occur near the center of the regions 

where the corresponding modified near-source factors attain their maximum values. When we apply 

the 1997 UBC near-source factor to our thrust fault, the peaks generally lie outside this region. 

Thus, the shape of the modified near-source factor does a better job of matching the general pattern 

of the severity of shaking for both prescribed rupture simulations and dynamic failure simulations 

compared to the Ul!J7 UilC near-source factor. 

10.3.5 Geophysical Implications 

Using the strike-slip and thrust fault simulations, we consider how well our earthquakes in the 

layered half-space fit the proportionality between average stress drop and average slip given by 
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equation (10.13) , which applies to homogeneous half-spaces. 

D 
!la = Cµ-

w 
(10.13) 

Using the data from table 10.2 and table 10.4, figure 10. 76 shows that the proportionality continues 

to provide a good description of the relationship. The blue and red lines indicate the average 

proportionality between the average stress drop and average slip for the simulations on the strike­

slip fault and the thrust fault . The blue and red symbols identify the scenarios that we use in 

determining the proportionality constant. We do not include the scenarios identified by the green 

symbols, because they correspond to different depths of the fault, which we associate with different 

proportionality constants . If we use the shear modulus from a depth of 6.0 km, the blue and red lines 

correspond to C = 0.45 and C = 1.5 in equation (10.13) for the strike-slip fault and the thrust fault . 

The value of G = U.45 for the strike-slip tault falls below the value of G' = 0.7 from equation (Y .l) . 

The difference corresponds to the tendency for the larger slips to occur near the ground surface 

where the shear modulus and, consequently, the stress drop are smaller. For blind thrust faults 

no relationships have been found relating the average stress drop to the average slip as a function 

of the fault dimensions and depth of the top of the fault . As noted by Parsons et al. (1988) , the 
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equation (10.13), which applies to homogeneous half-spaces. 
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Cµ­
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(10.13) 

Using the data from table 10.2 and table 10.4, figure 10.76 shows that the proportionality continues 

to provide a good description of the relationship. The blue and red lines indicate the average 

proportionality between the average stress drop and average slip for the simulations on the strike­

slip fault and the thrust fault. The blue and red symbols identify the scenarios that we use in 

determining the proportionality constant. We do not include the scenarios identified by the green 

symbols, because they correspond to different depths of the fault, which we associate with different 

proportionality constants. If we use the shear modulus from a depth of 6.0 km, the blue and red lines 

correspond to C = 0.45 and C 1.5 in equation (10.13) for the strike-slip fault and the thrust fault. 

The value of C 0.45 for the strike-slip fault falls below the value of C 0.7 from equation (9.1). 

The difference corresponds to the tendency for the larger slips to occur near the ground surface 

where the shear modulus and, consequently, the stress drop are smaller. For blind thrust faults 

no relationships have been found relating the average stress drop to the average slip as a function 

of the fault dimensions and depth of the top of the fault. As noted by Parsons et al. (1988), the 
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proportionality constant should. be less for a thrust fault than for the same sized strike-slip fault, 

because of the reduction in the relative stiffness above a thrust fault. Equation (9.1) yields a value 

of C equal to 1.6 for a deeply buried strike-slip fault with the same dimensions as our thrust fault . 

Consequently, our value of C = 1.5 falls slightly below that of the strike-slip fault and is consistent 

with the numerical results of Parsons et al. 
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Following the procedure described in chapter 4, we can compute the energy balance for each 

earthquake generated using dynamic failure. Restricting our domains to only a small fraction of the 

earth limits the terms in the energy balance to the change in potential energy, the radiated energy, 

and the change in thermal energy (which includes the fracture energy). Furthermore, we model the 

long-period motion, so that we do not include the energy radiated at short periods. In figure 10.77 we 

display a typical energy balance for a strike-slip simulation (scenario unistrain2) and a thrust fault 

simulation (scenario unistrain2). On both faults the change in thermal energy generally exceeds 

the (long-period) radiated energy by a factor of two to three. If we maintain the same dynamic 

stress drop and distance from failure (fracture energy) but reduce the shear stresses during sliding, 

the rupture behavior does not change. This leads to smaller changes in the thermal and potential 

energies with no change in the radiated energy. Hecause we can determine the general behavior of 

the rupture from ground motions, the radiated energy is much more severely constrained by data 

from real earthquakes than either the change in potential energy or the change in thermal energy. 

Assuming that melting does not occur on the fault surface limits the levels of shear stresses on the 

fault surface during sliding. Since the shear stresses during sliding determine the change in thermal 
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Following the procedure described in chapter 4, we can compute the energy balance for each 

earthquake generated using dynamic failure. Restricting our domains to only a small fraction of the 

earth limits the terms in the energy balance to the change in potential energy, the radiated energy, 

and the change in thermal energy (which includes the fracture energy). Furthermore, we model the 

long-period motion, so that we do not include the energy radiated at short periods. In figure 10.77 we 

display a typical energy balance for a strike-slip simulation (scenario unistrain2) and a thrust fault 

simulation (scenario unistrain2). On both faults the change in thermal energy generally exceeds 

the (long-period) radiated energy by a factor of two to three. If we maintain the same dynamic 

stress drop and distance from failure (fracture energy) but reduce the shear stresses during sliding, 

the rupture behavior does not change. This leads to smaller changes in the thermal and potential 

energies with no change in the radiated energy. Because we can determine the general behavior of 

the rupture from ground motions, the radiated energy is much more severely constrained by data 

from real earthquakes than either the change in potential energy or the change in thermal energy. 

Assuming that melting does not occur on the fault surface limits the levels of shear stresses on the 

fault surface during sliding. Since the shear stresses during sliding determine the change in thermal 
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energy, we may constrain the change in thermal energy by limiting the changes in temperature to 

values that do not imply melting. 
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'\i\Tith the radiated and average slips from the dynamic failure simulations, we revisit tho 

Gutenberg-Richter relationship between radiated energy and magnitude. Figure 10.78 shows the 

data from the prescribed ruptures scenarios (given in figure 7.64) and the data from the dynamic 

failure scenarios. Nearly all of the simulations follow the Gutenberg-Richter relationship between the 

radiated energy and the moment magnitude. The thrust fault simulation with surface rupture and 

the slip-weakening friction model (the red rectangle on the bottom right) does not fit the relationship, 

because the dynamic interaction between the rupture and the seismic waves creates very large slips 

near the surface. The large slips lead to a large moment magnitude. The large area where the 

dynamic interaction occurs between the rupture and the seismic waves generates much larger slips 

relative to other earthquakes with the same radiated energy. 

The radiated energies from the strike-slip simulations continue to be slightly larger than those 

predicted by the Gutenberg-Richter relationship, while the radiated energy from the thrust fault sim­

ulations continue to be slightly smaller than those predicted by the Gutenberg-Richter relationship. 

The scatter of the events about the Gutenberg-Richter relationship appears to be based on the fault 

geometry (strike-slip versus thrust) with the scatter that falls near the median of the moment mag­

nitude of the simulations centered about the Gutenberg-Richter relationship. This suggests that the 

radiated energies from the simulations are consistent with those predicted by the Gutenberg-Richter 

relationship and likely fall within the scatter used in its derivation. 
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Chapter 11 Conclusions and Future Work 

11.1 Conclusions 

We simulated tho long period near source ground motions from earthquakco uGing both prescribed 

ruptures and dynamic failure. We modeled the earthquake source by introducing slip degrees of 

freedom to create dislocations in the finite-element model. For prescribed ruptures we specified 

the displacement of the slip degrees of freedom to create slip on the fault. In the simulations with 

dynamic failure, the friction model determined the forces acting on the slip degrees of freedom, and 

the dynamics of the rupture process controlled the slip on the fault. In both cases the use of slip 

degrees of freedom allowed arbitrary orientation of the fault plane. 

Using prescribed ruptures we examined the sensitivity of the near-source ground motion to 

variations in the material properties and five earthquake source parameters. The ground motions 

exhibited the strongest sensitivity to the depth of the rupture and the material properties. The 

ground motions also showed moderate to strong sensitivities to the rupture speed, the maximum 

slip rate, and the average slip. Adding heterogeneity to the slip distribution had little impact on 

the long-period ground motions, especially in the forward direction. Thus, in order to accurately 

model ground motion, in particular ground motion for engineering design, we must carefully select 

the values for those parameters that cause the most variability in the resulting ground motion. In 

all of the simulations, the directivity of the rupture created large displacement and velocity pulses 

in the forward direction. Additionally, shallow ruptures generated surface waves that caused several 

cycles of large amplitude motion. When we raised the depth of the fault and maintained the same 

slip distribution and fault area, the moment magnitude decreased while the ground motions became 

larger. Consequently, the seismic potency, which does not depend on the shear modulus, provided 

a slightly better measure of the severity of the shaking. 

For strike-slip faults and thrust faults with surface rupture, we found a good match between 

the severity of the shaking and the shape of the near-source factor from the 1997 Uniform R11ilrling 

Code. On the other hand, for blind thrust faults the region subjected to the most severe shaking fell 

up-dip from the region where the near-source factor reaches its maximum value. We demonstrated 

that modifying the near-source factor for blind thrust faults, so that it uses the up-dip projection of 

the fault plane instead of the top of the fault, extends the region where the near-source factor is at 

its maximum value. As a result, the region with the maximum near-source factor encompassed the 

area subjected to the strongest shaking for both strike-slip and thrust faults. 
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By including the frictional sliding on the fault surface in our simulations, we improved our 

understanding of the dynamics of the rupture process. Simulations on a strike-slip fault and a thrust 

fault demonstrated that it is more realistic to assume that the effective normal stresses increase with 

depth than remain uniform. In order for ruptures to generate realistic slip distributions under such 

conditions, the absolute change in the coefficient of friction during sliding must decrease with depth. 

We found that assuming the coefficient of friction vc1,ried inversely with depth and proportionally with 

either the shear wave speed or the square root of the shear modulus produced reasonable ruptures. 

Compared to the ground motions from ruptures with the slip-weakening friction model, the velocities 

from ruptures with either the slip- and rate-weakening or shear melting-refreezing friction models 

displayed a moderate increase for the same average slip, although the general behavior of the ruptures 

did not change. 

The dynamic foilure sirnulatiomi illuatrated several important features of the behavior of ruptures 

during earthquakes. In the direction of slip the ruptures usually propagated at speeds between 503 

and 90% of the shear wave speed, while in the direction perpendicular to slip the ruptures propagated 

approximately 20% slower. In our prescribed ruptures, we used a uniform rupture speed relative 

to the shear wave speed. While this difference had minimal impact on the ground motions from 

strike-slip faults, it tended to increase the amplitude of the ground motions above the lateral sides 

of the buried thrust fault. 

Additionally, the speed of the dynamic rupture changed as it encountered heterogeneity in the 

distance from failure (fracture energy) and the dynamic stress drop. We found that these changes 

in the rupture speed had a moderate influence on the ground motions. Locally, the displacements 

and velocities increased and decreased in response to the changes in the slip and slip rates. The 

fluctuations in the rupture speed disrupted the reinforcement of the shear wa,ve by the rupture, and 

generally decreased the amplitude of the motion in the forward direction. Consequently, the ground 

motions from the dynamics failure simulations exhibited a stronger sensitivity to heterogeneity in the 

slip than the ground motions from the prescribed rupture simulations. Incorporating these features 

into prescribed ruptures would allow more realistic simulations of earthquakes without explicitly 

modeling the rupture dynamics. 

Despite these differences between the behavior of the prescribed ruptures and those with dynamic 

failure, the ground motions displayed many of the same features. In both cases the directivity of the 

rupture was the principle factor governing the amplitude of the displacements and velocities. We 

ob:served relatively minor differences in Lhe shape of Lhe wavefo1m:> Ldweeu Lhe i.ne:>criLeJ rupLure 

simulations and the dynamic failure simulations. As expected, when the source parameters from a 

dynamic rupture resembled those from a prescribed rupture, the ground motions showed excellent 

agreement. 

The radiated energies from both the prescribed rupture simulations and the dynamic failure sim-
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ulations followed the Gutenberg-Richter energy-magnitude relationship. The strike-slip simulations 

consistently radiated slightly more energy than that predicted by the Gutenberg-Richter relation­

ship, while the opposite was true for the thrust fault simulations. As in the prescribed rupture 

simulations, the shape of the near-source factor from the 1997 Uniform Building Code failed to 

match the distribution of the shaking for the dynamic failure simulations on a blind thrust fault, 

because the largest maximum displacements and velocities occurred up-dip from the top of the fault. 

The shape of the modified near-source factor, which uses the up-dip projection of the fault plane in 

the formulation of the near-source factor, did a better job of matching the general pattern of the 

severity of the shaking. 

11.2 Future Work 

We still have much to learn about the dynamics of the rupture process. Although the work described 

above illustrated the qualitative relationships between many of the seismic source parameters, such 

as dependence of the rupture speed on the slip rate and the dependence of the slip rate on the 

fracture energy and the dynamic stress drop, quantifying these relationships would lead to more 

realistic prescribed ruptures and less trial and error in dynamic failure simulations. We also need to 

test our assumptions of how the coefficient of friction varies with the material properties and depth 

by attempting to reproduce the rupture dynamics of real earthquakes. 

Oglesby et al. (1998) suggested that the ground motions above thrust faults are significantly 

than those above normal faults with the same geomet1y. Huwever, OglesLy eL al. used a 

homogeneous half-space and uniform effective normal stresses. With our assumptions of how the 

coefficient of friction varies with the material properties and depth, we need to determine if their 

observations hold true for more realistic distributions of the material properties and the effective 

normal stresses. If we find systematic variations in the ground motions between the two types of 

faults, the building codes may need to be changed to reflect those differences. 

Additional work is also necessary to improve our understanding of how ruptures generate the 

heterogeneous slip distributions that we observe in earthquakes. For different friction models the 

degree of heterogeneity in the slip distributions may stabilize at different levels with successive sim­

ulations of ruptures on the same fault. Although we found that the friction models with shear 

re-strengthening more efficiently produce heterogeneous slip distributions, based on kinematic in­

versions of several recent earthquakes, Day et al. (1008) suggoEJtod that hotorogcncity in the stress 

drop alone may generate the heterogeneous slip distributions, i.e., ruptures do not require shear 

re-strengthening to produce heterogeneous slip distributions. Higher resolution simulations with 

smaller scale heterogeneity in the stress drop may confirm their observations or suggest alternative 

mechanisms. Investigations in this area will also shed light on whether healing in fault ruptures 
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comes from shear re-strengthening or healing phases emitted by the edges of the fault, i.e., whether 

faults tend to follow pulse-like behavior or crack-like behavior. 

Modeling the friction stresses on fault surfaces has important implications to understanding 

earthquakes. We can enhance the applicability of the slip degrees of freedom by making the trans­

formation to the slip degrees of freedom local to each degree of freedom. This allows creation of 

finite-element models with non-planar fault surfaces and arbitrary orientation of any number of 

fault surfaces. It then becomes possible to model shear and normal stresses on multiple fault sur­

faces. We can expand on the study of ruptures that propagate along an echelon of faults conducted 

by Harris and Day (1999) by using realistic fault orientations and curvatures. Including existing 

three-dimensional topography and density variations will provide constraints on the stress fields. 

Furthermore, it becomes natural to enforce consistency of the stress field across different faults. 

Ultimately, this allows modeling of the stress field over a region, such as southern California, and 

bridging the gap between the inter-seismic and seismic behavior. 
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