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Abstract

This thesis discusses simulations of earthquake ground motions using prescribed ruptures and dy-
namic failure. Introducing sliding degrees of freedom led to an innovative technique for numerical
modeling of carthquake sources. This tcchnique allows efficient implementation of both prescribed
ruptures and dynamic failure on an arbitrarily oriented fault surface. Off the fault surface the solu-
tion of the three-dimensional, dynamic elasticity equation uses well known finite-element technicues.
We employ parallel processing to efficiently compute the ground motions in domains containing mil-
lions of degrees of freedom.

Using prescribed ruptures we study the sensitivity of long-period near-source ground motions
to five earthquake source parameters for hypothetical events on a strike-slip fault (My 7.0 to 7.1)
and a thrust fault (M 6.6 to 7.0). The directivity of the ruptures creates large displacement and
velocity pulses in the ground motions in the forward direction. We found a good match between
the severity of the shaking and the shape of the near-source factor from the 1997 Uniformn Building
Code for strike-slip faults and thrust faults with surface rupture. However, for blind thrust faults
the peak displacement and velocities occur up-dip from the region with the peak near-source factor.
We assert that a simple modification to the formulation of the near-source factor improves the match
between the severity of the ground motion and the shape of the near-source factor.

For simulations with dynamic failure on a strike-slip fault or a thrust fault, we examine what
constraints must be imposed on the coefficient of friction to produce realistic ruptures under the
application of reasonable shear and normal stress distributions with depth. We found that variation
of the coefficient of friction with the shear modulus and the depth produces realistic rupture behavior
in both homogeneous and layered half-spaces. Furthermore, we observed a dependence of the rupture
speed on the direction of propagation and fluctuations in the rupture speed and slip rate as the
rupture encountered changes in the stress field. Including such behavior in prescribed ruptures

would yield more realistic ground motions.
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Chapter 1 Introduction

In the last five years two earthquakes have reminded us that we still have much to learn about how
faults rupture and the resulting ground motions. On January 17, 1994, the Northridge earthquake
hinted at the destruction possible when faulte rupturc below o denscly populated arca. Fortunatcly,
most of the energy propagated away from the center of population. A year later, on January 17,
1995, the city of Kobe, Japan, did not fair as well: a fault rupture propagated toward the city. These
earthquakes provided another demonstration that even moderate earthquakes can cause substantial
damage. Records from these two events significantly increased our limited knowledge of how the
ground moves close to rupturing faults. We need more information, however, about the robustness
of the characteristics of near-source ground motions. Inversions of strong ground motions allow us
to identify the area where slip occurred, the speed of the fault rupture, and the maximum slip rates.
Inversions do not provide informatyion about the sensitivity of the ground motions to variations in
thie source paraneters.

We focus on investigating such sensitivities by computing the ground motion time histories for
many hypothetical scenarios on a strike-slip fault and a shallow dipping thrust fault using finite-
element models. Using prescribed ruptures, we assess the sensitivity of the ground motions to
variations in the earthquake parameters. We improve our understanding of the dynamics of the
rupture process by modeling the ruptures with dynamic failure through frictional sliding on the
fault surface, instead of prescribing the ruptures. Based on simulations in homogeneous and layered
half-spaces, we develop a simple, functional form for the coefficient of friction as a function of the
material properties and the depth. Additionally, we conduct a second sensitivity study to gauge
the influence of the initial conditions and friction model on the rupture behavior and tile resulting

ground motions.

1.1 Background

The sporadic occurrence of moderate to large earthquakes makes the task of understanding near-
source ground motions difficult. Additionally, the sparse coverage of recording stations limits our
ability to capture ground motions close to fault ruptures. The location of the 1992 Landers earth-
quake in a sparsely populated desert area resulted in only one record of near-source ground motion.
While this record has been carefully studied (Iwan and Chen 1994), it shows how the ground moved
at only one location. Modeling of the long-period ground motions from this event suggests that larger

peak velocities occurred farther south along the fault (Wald and Heaton 1994). The location of the
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1994 Northridge and 1995 Kobe earthquakes near large centers of population, where the station cov-
erage is generally more dense, added many records of near-source ground motions to the database.
During the Northridge earthquake, ten stations within five kilometers of the surface projection of
the rupture recorded ground motions (Hall et al. 1995). The limited number of near-source ground
motions that have been recorded for large thrust earthquakes made it impossible to determine if
the near-source records from the Northridge earthquake were anomalous (Somerville et al. 1996);
however, Somerville et al. used a simulation procedure that was validated with many California
earthquakes to reproduce the departure of the Northridge records from the empirical attenuation
relations. They concluded that the Northridge near-source ground motions are representative of the
near-source ground motions from large thrust earthquakes.

With the limited number of near-source records, seismologists have relied on simulations to
reproduce ground motions from actual events and to predict the ground motions for hypothetical
ones. Researchers have successfully modeled the near-source ground motions at periods of one second
and longer from ten California earthauakes (Hall et al. 1995). These include, among others, the 1089
Loma Prieta (Wald et al. 1991), 1992 Landers (Wald and Heaton 1994), and the 1994 Northridge
(Wald et al. 1996) earthquakes. Additionally, Kamae and Irikura (1998) and Wald (1996) reproduced
the near-source ground motions from the 1995 Kobe earthquake. The source models associated with
these simulations provide valuable information for dissecting past earthquakes. Olsen and Archuleta
(1996) approximated the Northridge rupture to examine basin and directivity effects. Pitarka et al.
(1998) and Hisada et al. (1998) have studied the directivity and basin edge effects for the 1995 Kobe
earthquake to explain the zones ot concentrated damage.

On the other hand, simulations of past events give little insight into how the ground motions
compare to those from futurc cvents. We would also like to know if earthquakes on similar faults
will produce comparable ground motions. Thus, the variability of the ground motions to changes in
the seismic source parameters becomes important when predicting ground motions for hypothetical
events. Saikia (1993) examined the ground motions at a network of sites in the greater Los Angeles
area for a My 7.0 event on the Elysian Park fault. In order to gauge the uncertainty of the ground
motions, he examined several random distributions of slip and found wide variations in the peak
accelerations. Based on the moderate to strong sensitivity of the ground motions to variations
in the seismic moment, source rise time, and heterogeneity of the slip distribution for simulations
of hypothetical earthquakes on a section of the San Andreas fault, Graves (1998) suggested that
appropriate values for the source parameterization are essential for realistic predictions of ground
motions. Additionally, while studying the accuracy of three-dimensional seismic velocity models,
Wald and Graves (1998) demonstrated the variability exhibited by ground motions in response to
changes in the material properties of the simulation domain.

We will expand on these studies and study the sensitivity of the long-period near-source ground
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motions on a strike-slip fault and a thrust fault to systematic variations of five earthquake source
parameters, including the rupture speed, maximum slip rate, hypocenter location, fault depth, and
distribution of slip. We also investigate how the shape of the near-source factor from the 1997
Uniform Building Code matches the distribution of the shaking.

Furthermore, we can improve the accuracy of our modeling of near-source ground motions if
we better understand the dynamics of the rupture process. Including the rupture dynamics in
simulations of earthquakes generally involves modeling the frictional sliding on the fault surface.
Two distinct efforts of modeling the frictional sliding on faults have emerged in recent years. One
focuses on modeling the evolution of stress on the fault leading up to the nucleation of earthquakes
(Marone 1998; Rice and Ben-Zion 1996; Scholz 1998; Tullis 1996), and the other concentrates on
modeling the dynamics of the rupture during the earthquake (Fukuyama and Madariaga 1998; Harris
and Day 1999; Madariaga and Cochard 1996; Magistrale and Day 1999; Oglesby et al. 1998; Olsen
et al. 1997).

Those researchers who model the evolution of stress on the fault almost exclusively use state- and
rate-dependent friction models. Review articles by Marone (1998) and Scholz (1998) summarize the
development of the friction models and some of the features of their behavior. These models are based
on laboratory experiments of sliding at slip rates between 10~7 mm/sec and 1 mm/sec, which are
appropriate for the nucleation of earthquakes (Rice and Ben-Zion 1996). Additionally, analytical
models of creep behavior yield friction models of the same form (Persson 1997). Consequently,
researchers apply these models to studies of the nucleation of earthquakes and creep behavior on
faults. Using an elastodynamic model of a half-space, Rice and Ben-Zion (1Y96) examined nucleation
of earthquakes on a strike-slip fault. Tullis (1996) conducted a similar study on a segment of the San
Andreas fault near Parkfield. Both groups use realistic distributions of the effective normal strosscs
with depth: the effective normal stresses are the difference between the lithostatic pressures and the
hydrostatic pressures.

Rundle et al. (1997) suggested that the laboratory experiments used to create the state- and
rate-dependent friction models do not adequately represent sliding on faults, and, in particular
sliding dominated by inertial effects. Rundle et al. also noted that several predictions implied
by these friction models have yet to be observed in nature. These include high shear stresses that
generate large amounts of heat on the fault surface and significant precursory and inter-seismic creep
between earthquakes. The first of these predictions is often referred to as the heat paradox. Several
mechanisms have been suggested to explain why the friction stress drops to low levels during sliding
and prevents melting. These include fluid pressurization prior to slip (Sleep 1997), wrinkle-like slip
pulses associated with a contrast in material properties (Ben-Zion and Andrews 1998), acoustic
fluidization (Melosh 1996), and normal vibrations (Tworzydlo and Hamzeh 1997).

The uncertainty in the behavior of how faults rupture has led researchers to create simple, ad
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hoc models that produce reasonable behavior. These models generally include either slip-weakening
behavior, i.e., the shear strength decreases as slip occurs, or a combination of slip-weakening and
rate-weakening, i.e., initially, the shear strength drops with slip in respounse to slip-weakening and
then returns near its original level as the slip rate decreases. For over twenty years the slip-weakening
friction model has been used to study the frictional sliding associated with earthquakes. Burridge
et al. (1979) used a slip-weakening friction model to study stable propagation of mode-II shear cracks.
More recently, Langer et al. (1996) postulated that inertial dynamics played an integral role in the
complex distributions of slip in earthquakes, based on observations of chaotic sequences of large
and small events in two-dimensional elastodynamics models with slip-weakening friction. Using the
boundary integral method, Madariaga and Cochard (1996) examined a two-dimensional anti-plane
crack and discovered heterogeneity occurred on smooth faults with slip- and rate-weakening friction.
Madariaga aud Cochard suggested that stress heterogeneity occurs when the friction model allows
a dynamic stress drop significantly larger than the average stress drop.

With an impraved boimdary integral method, Fukuyama and Madariaga (1998) successfully
examined the three-dimensional features of slip on a planar crack in a homogeneous elastic medium.
They concluded that, in friction models with slip- and rate-weakening, the slip-weakening friction
is important at the leading edge of the rupture, while the rate-weakening friction influences the
healing stage. Furthermore, Fukuyama and Madariaga found that healing (recovery of the shear
stress on the fault) may occur in simulations without rate-weakening in the presence of shear stress
asperities. The use of boundary integrals limits the applicability of the method to simple geometrical
domains and variations in the material properties. Madariaga et al. (1998) formulated appropriate
boundary conditions for the finite-difference method to study dynamic failure on planar faults in
three-dimensional domains and demonstrated that the method reproduces the well known behavior
of simple rupture models. The use of finite-differences marked a dramatic improvement in the
applicability of the methods used to implement dynamic ruptures because it allowed heterogeneous
material properties; however, the formulation restricted the alignment of the fault plane to the finite-
difference grid. Consequently, the method did not allow rupture on faults inclined with respect to
the finite-difference grid.

A simulation of the 1992 Landers earthquake by Olsen et al. (1997) demonstrated the ability
of this finite-difference method and a slip-weakening friction model to produce reasonable rupture
behavior. The simulation generated a confined rupture pulse consistent with the kinematic source
models and reproduced the main long-period features of the waveforms. Olsen et al. could not deter-
mine whether or not a friction model with slip- and rate-weakening or variation of the characteristic
slip-weakening distance would improve the fit of the ground motions to the recorded data. Other
simulations with a slip-weakening friction model also generate realistic ruptures. Oglesby et al.

(1998) used the finite-element method to study the difference between ruptures on two-dimensional
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normal faults and thrust faults in a homogeneous medium. They found larger motions on the hang-
ing wall compared to the footwall that are consistent with recorded ground motions. Harris and Day
(1999) explained the propagation across an echelon of faults for the rupture in the 1992 Landers
earthquake using a three-dimensional finite-difference method. Using the same technique, Magis-
trale and Day (1999) investigated ruptures propagating across an echelon of thrust faults. In both
cases the boundary conditions associated with the implementation of the earthquake source forced
alignment of the faults along the finite-difference grids.

In contrast to the simulations using state-rate friction models, all of the simulations with slip-
weakening or slip- and rate-weakening friction models assume uniform effective normal stresses. The
use of the slip-weakening friction model and the slip- and rate-weakening friction model do not con-
strain the variations of the effective normal stresses with depth. Consequently, we will examine
what constraints on the friction model may be required to produce realistic ruptures when we apply
reasonable shear and normal stress distributions with depth. Additionally, we will show that intro-
dneing sliding degrees of freedom in the finite-element models allows simulation of dynamic failure
on an arbitrarily oriented fault surface. Using this implementation of the earthquake source and fol-
lowing the constraints imposed on the friction model, we will determine the sensitivity of the rupture
behavior and ground motions to systematic variations of the initial shear stresses, friction model,
fault depth, and location of the hypocenter. With this information we compare the rupture behavior
from the dynamic failure simulations with our prescribed ruptures and propose modifications to the

prescribed ruptures that would lead to more realistic ground motions.

1.2 Organization

Chapters 2-4 discuss the framework that we use in the earthquake simulations in the later chapters.
Chapter 2 outlines the general methodology of the simulations. Chapter 3 focuses on the issues re-
lated to parallel execution of the software. We discuss the energy balance of earthquakes in chapter 4
and determine which forms of energy we can compute in our simulations. Chapter 6 summarizes
the validation of the simulation software with both dynamic and static solutions. In chapter 7 we
present the results from a sensitivity study of long-period near-source ground motions computed
using prescribed ruptures. We assess the sensitivity of the ground motions to five earthquake source
parameters and discuss the implications for earthquake engineering.

Chapter 8 begins our study of dynamic failure simulations by outlining the software implemen-
tation of the dynamic ruptures and discussing some of the general features of the rupture dynamics.
Using a homogeneous half-space, chapter 9 summarizes several of the numerical aspects of dynamic
ruptures, including the effects of changing the distribution of the effective normal stresses with

depth. We demonstrate how variation of the coefficient of friction with depth produces realistic be-
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havior when the effective normal stresses increase with depth. Chapter 10 extends our discussion of
dynamic failure to a layered half-space. We examine some of the implications of using a layered ver-
sus a homogeneous half-space and conduct a sensitivity study of near-source ground motions using
dynamic failure with variations in the initial conditions and the friction model. Finally, chapter 11

suminarizes the findings of the sensitivity studies and suggests areas for further study.



Chapter 2 General Methodology

We want to simulate slip on a fault in an efficient manner and to compute the ground motions in
a given domain. Because we are focusing primarily on near-source ground motions, the domain
of interest includes the ground surface in the region surrounding the fault, the fault itsclf, and
everything in between. We model the slip on the fault to create the earthquake and model the wave

propagation to compute the ground motions in the domain.

2.1 Governing Equations

We solve for the displacement time histories in the three-dimensional dynamic elasticity equation as
given in index notation by equation (2.1) where A and p are Lame’s constants, v denotes displace-
ment, and p denotes mass density. We subject the domain to the appropriate boundary conditions

as discussed in section 2.2.1.
/\uk,kj(sij + [,L(’Uui,jj + uj,ij) = pi, (2.1)

In practice we cannot find closed-form solutions to equation (2.1) for geometrically complex me-
dia with heterogeneous properties. We must turn to numerical methods, such as the finite-element
method, to find the displacement time histories. Although several computationally efficient meth-
ods have been developed to synthesize ground motions on finite faults with prescribed slip iu a
layered half-space (Heaton 1995), we use the finite-element method because we intend to extend
the software to simulations with dynamic rupture and three-dimensional material properties. Using
Lagrange equations and the finite-element method, the dynamic elasticity equation becomes the
matrix equation given by equation (2.2), where [M], [C], and [K] denote the mass, damping, and
stiffness matrices, respectively, and {F} is the force vector.! We will discuss each term in detail

below.

(M)} + [CHa)} + [KHu(®)} = {F(H)} (2.2)

1The details are given in most finite-element texts, such as Rao (1999).
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2.2 Integration of Differential Equation

The central-difference scheme provides an efficient means by which to numerically integrate the
matrix differential equation. Equation (2.3) gives the expressions for the velocity, {(t)}, and accel-
eration, {ii(t)}, at time ¢ as a function of the displacements at time t — At, ¢, and t + At, where At

denotes the time step.

{it)} = i (fult + AD)  {ult - AD)) (23)
()} = o ({ult — AD} — 20u@)} + {ult + A1) (24)

Substituting into the equation of motion (equation (2.2)) and solving for the displacements at time

t + At yields

(01 + 53101 ule + 89} = (PO} + (o] - (K1) (w0}

1

) (2.5)
- (30 - 3511) (ute - a0},

If we take the mass and damping matrices to be diagonal and constant, the left~-hand side of equa-
tion (2.5) involves a constant, diagonal matrix, so that solving for the displacement vector at time
t + At does not require matrix factorization. Additionally, computing the right-hand side necessi-
tates only one matrix-vector multiplication; all of the other computations are operations on either
vectors or diagonal matrices. Because the central-difference scheme minimizes the number of matrix-
vector calculations and matrix-vector computations require significantly more operations than vector
computations, in this case, the central-difference scheme provides an efficient technique for numeri-
cal integration. For stability of the numerical integration, the time step must be less than the time
necessary for the fastest traveling wave to propagate between nodes— that is, the Courant-Friedrich-
Lewy parameter must be less than 1.0. Consequently, in order to avoid unnecessarily small time
steps, we want the elements to be as large as possible, which is also desirable from the standpoint

of minimizing the number of elements in the mesh.

2.2.1 Boundary Conditions

Our domain encompasses only a minuscule fraction of the earth. We must therefore apply appro-
priate boundary conditions to compensate for the truncation of the domain. We madel the ground
surface as a free surface and create non-reflecting boundaries on the lateral sides and bottom of
the domain. The non-reflecting boundaries approximate the behavior of the waves continuing to
propagate past the edges of the domain. We absorb the outgoing waves by placing dampers on the

absorbing boundaries as discussed below in section 2.3.3. While the dampers absorb nearly all of



9

the energy of the propagating waves, they do not provide the stiffness that would exist if we did
not truncate the domain; the absorbing boundaries act as free surfaces when the velocities on the
boundary are zero. As a result, the final displacements depend on the size of the domain. But this
dependency becomes small as the domains become large. Furthermore, the ground motion time
histories, not the final displacements, are most important, and the lack of stiffness at the absorb-
ing boundaries has minimal impact on the dynamic displacements. Consequently, the absorbing

boundaries allow truncation of the domain with minimal adverse effects on the solution.

2.3 Discretization

Efficient computation with the finite-element method requires choosing the appropriate type of finite-
element. Choosing the appropriate element will, in most cases, reduce the errors in the computation,
the memory storage requirements, and the computation time. The constraints imposed by solving
the dynamic elasticity equation include the need to vary the node spacing to match variations in the
material properties and to minimize the memory storage requirements of the global matrices. For
linear elements, such as a hexahedron with six nodes and a tetrahedron with four nodes, reducing
interpolation errors to less than five percent requires using ten nodes per shear wavelength (Bao
et al. 1998). Ideally, we want the finite-elements to satisfy this criterion of ten nodes per wavelength
throughout the entire domain.

We could use elements of the same size throughout the domain with the appropriate node spacing
[or the slowest shear wave speed. This would be the inost stringent option. BDut this leads o weshes
that contain many times the optimal number of elements and nodes and requires extremely small
time steps in the numerical integration. This phenomenon is the major shorteoming of nsing the
finite-difference method, which relies on uniform grid spacing. Because wavelength is proportional
to wave speed, we want the node spacing to vary directly with the shear wave speed. Typically
the shear wave speed varies from 4500 m/sec at the top of the mantle (at a depth of 30km) to less
than 700m/sec at the surface. As a result, to minimize the mesh size and computational effort
when simulating wave propagation with minimal artificial dispersion requires the node spacing at
the surface to be less than one-sixth the node spacing at a depth of 30 km. We also wish to impose
the constraint that the mesh should not lead to inefficient use of memory or to excessive computation
time. The stiffness matrix which is the only non-diagonal matrix, dominates the memory storage
requircments, so we wish to minimize its sizc by minimizing the total number of degrees of freedom
and the average number of coupled degrees of freedom.

When modeling three-dimensional domains with finite-elements, the two main choices include
hexahedral (six-sided) elements and tetrahedral (four-sided) elements. Hexahedral elements gener-

ally result in meshes with repeating structures, which make mesh generation simple, while tetrahedral
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elements generally result in meshes with little or no repeating structure and make mesh generation
extremely complex, especially in three dimensions. The use of mesh generation software, such as
Structural Dynamic Research Corporation’s IDEAS, alleviates this difficulty. Several significant
advantages lead to the choice of using tetrahedral elements. The most compelling reason to use
tetrahedra over hexahedra is the improved ability to vary the node spacing within the domain. The
structured nature of hexahedral meshes inhibits adjusting local element sizes independently of the
surrounding elements, while the unstructured nature of tetrahedral meshes allows adjusting the local
node spacing with minimal effects on the surrounding elements. A second advantage involves the
coupling among the degrees of freedom. A linear hexahedral element in a uniform grid shares nodes
with 26 other elements. With three translational degrees of freedom per node and all degrees of
freedom coupled within an element, each degl;ee of freedom is typically coupled to 81 degrees of
freedom. In a mesh of approximately uniformly sized tetrahedral elements, each degree of freedom
is typically coupled to only 40 degrees of freedom. This means that the stiffness matrix for a tetra-
hedral mesh requires roughly half the memory as that for a hexahedral mesh with the same number
of nodes. For these reasons we use a tetrahedral finite-element.

If we compare a linear tetrahedral element, which has four nodes, to a parabolic tetrahedral
element (ten nodes), we find that use of the parabolic element requires more memory. For a parabolic
element, limiting interpolation errors to less than five percent requires 9.4 nodes per wavelength (Bao
et al. 1998), so the element edges are approximately twice as long but the node spacing is nearly the
same. With ten nodes per element, the number of coupled degrees of freedom increases dramatically
compared to the linear tetrahedral element, so that the stitfness matrix for a mesh with parabolic
tetrahedral elements requires much more memory than the one for a mesh with linear tetrahedral
elements. We therefore choose the linear tetrahedral element over the parabolic tetrahedral element.

With a linear tetrahedral element as shown in figure 2.1, we may exactly represent a linear
variation in displacement within the element with the shape functions given in equation (2.6), where
V is the volume of the element, and V; is the volume of the tetrahedron formed by the point P and
all nodes except node i. For example, V; denotes the volume of the tetrahedron formed by point P

and nodes 2, 3, and 4.

N=% N=% N=% N=4 (2.6)

The process of converting the three-dimensional elasticity equation (equation (2.1)) into the
matrix differential equation (equation (2.2)) yields the expressions for the element matrices. Rao
(1999) provides detailed development of the calculations, so in the following sections we will discuss
only the final implementation of the matrix computations. We assume that the material properties

do not vary significantly within an element, so that we may assume homogeneous material properties



11

2
Figure 2.1: Node and face numbering of a tetrahedral finite-element.

within the element and use the material properties at the element centroid.

2.3.1 Mass Matrix

For efficient integration of the differential equation using the central-difference scheme we want a
diagonal mass matrix. We convert the consistent, element mass matrix to the lnmped element mass
matrix (diagonal matrix) given in equation (2.7) by requiring that both matrices yield the same

inertial forces for rigid body accelerations along each global coordinate direction.

€

ey = £

4<111111111111) (2.7)

Note that this matrix depends only on the volume of the element, V¢, and not explicitly on the
relative locations of the nodes. We store the diagonal matrix using a row vector as indicated by the

notation in equation (2.7).

2.3.2 Stiffness Matrix

The same method that produced the consistent mass matrix also gives us the expression for the
element stiffness matrix shown in equation (2.8), where V¢ is the volume of an element, [D] is
the elasticity matrix relating the stresses to the strains (equation (2.9)), and [B] is the matrix of
the derivatives of the shape functions {equation (2.10)). We assume that the strains and rotations

remain small everywhere so that we may use linear elasticity.

[K*] = V*[B[D][B] (28)
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Cy4
by

The constants in the expression for [B] (ai, b, ¢;, and d;) are the cofactors of the terms in the

deterwinaut for the volume of an element given by equation (2.11), where (4, y3, 2) denobes the

coordinates of node i. Equation (2.12) shows the expressions for four of the cofactors; the other

cofactors may be found from permutations of these four.

T2 Y2 22 1
a1=|x3 Y3 23 by =—11
Ty Ysa 2 1

1 2 oy o2

V‘f:l 1 22 oy 2

611 2 Y3 23

L 24 ya 24
Y2 22 T 1 29
Ys 23 C1=—|zs 1 =z3
Ys 24 T4 1 2

(2.11)

T2 y2 1

di=—|zz y3 1] (2.12)

Ty Ys 1

Because the material property matrix is symmetric, we have a symmetric element stiffness matrix,

and assembly into the global stiffuess matrix also produces a symmetric matrix. As mentioned

previously, in a finite-element mesh with linear tetrahedral elements, typically each degree of freedom

is coupled to approximately 40 others.

For a stiffness matrix with anywhere from hundreds of

thousands to millions of degrees of freedom, relatively few entries in the matrix are nonzero. The

unstructured nature of the finite-element mesh makes it nearly impossible to number the degrees

of freedom in such a way as to create a uniformly banded stiffness matrix. Therefore, we choose
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to store as a row vector (data vector) only the nonzero terms in the upper half of the symmetric,
sparse stiffness matrix. In order to find the location of each entry in the full matrix in the data
vector, we also store the index where each row in the full matrix begins in the data vector and the
column in the full matrix of each entry in the data vector. Figure 2.2 demonstrates the storage of a

5x5 symmetric, sparse matrix.

3 -1 07 0
-1 2 0 0 [-3]
0 0 14 0
7 0 45 0
0 -300 6

Data
[a]-1]7]2]a]1]a]s]6] eanyperoas
A

Columns ;
l-0|1|311‘4|2|3|3|4| 32 byte integers

J

Rows [________F’.

0|3(5]|7| 8] 32byteintegers

Figure 2.2: Storage example for a 5x5 symmetric, sparse matrix. We follow the C/C++ convention
and number the rows and columns starting with 0. We find the entry -3 in row 1, column 4
(highlighted by the box) by looking up in the Rows array where row 1 starts. We then perform a
linear search until we find coluimn 4. The index in the Columns array in which we found column 4
indicates which index in the data array contains the entry we want.

2.3.3 Damping Matrix

The damping matrix contains contributions from two sources: material damping and dampers placed
on the boundaries to prevent artificial reflections of the propagating waves. We assume that the
material damping may be created from scaling the mass and stiffness matrices as shown by equa-
tion (2.13).

[C] = Cn[M] + Ci[K] (2.13)

We need not restrict ourselves to using the global matrices in equation (2.13); using the element
mass and stiffness matrices allows local variations in the damping independent of variations in mass

and stiffness.
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Mass-Proportional Damping

Mass-proportional damping applies more damping to the lowest modes of the domain. Equa-
tion (2.14) illustrates how the percent of critical damping, (m, varies as a function of frequency,

w, for a given level of mass-proportional damping, C,,.

Cm

T 2w

Cm (2.14)

This means that waves with longer wavelengths are subjected to more damping than those with
shorter wavelengths. The earth attenuates higher frequencies more than lower frequencies, so we use
little or no mass-proportional damping. Because we use a diagonal mass matrix, mass-proportional
damping contributes only terms on the diagonal to the damping matrix, whether or not we allow local
variations in Cy, (using cquation (2.13) with the clement matrices). This docs not adversely affect
the computational efficiency of the central-difference scheme because a diagonal damping matrix
does not introduce any additional matrix-vector multiplications which dominate the computation

effort at each time step.

Stiffness-Proportional Damping

Stiffness-proportional damping more effectively damps higher modes of the domain. Equation (2.15)
shows how the percent of critical damping, (, varies as a function of frequency, w, for a given level

of stiffness-proportional damping, C.
1
Gk = 5 Chw (2.15)

In other words, stiffness-proportional damping has the opposite trend with respect to frequency
that mass-proportional damping has; with stiffness-proportional damping, the shorter wavelengths
receive more damping than the longer wavelengths, so it more closely resembles what occurs in the
earth. Unfortunately, stiffness-proportional damping greatly reduces the efficiency of the central-
difference integration scherme, because it contributes off-diagonal terms to the damping matrix. If
we allow local variations in Cj, we must formulate an additional sparse matrix to store the damping
watrix, which nearly doubles the memory storage requirements. It also destroys the efficiency of the
central-difference equation because we must factor the left-hand side of equation (2.5). Therefore,
we do not allow lacal variations in ), If we restrict ourselves to a uniform Cj, we may solve the
matrix differential equation without storing an additional sparse matrix. We do so by adjusting the

formulation of the central-difference scheme as shown by equation (2.16), where [Cy,] denotes the
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diagonal damping matrix coming from mass-proportional damping.

(1001 + O e+ 20 = (@ + 2501 - (1) o .16
- (M) - 5516~ 5 CHIKT) fule— B9

We have approximated the velocity for the stiffness-proportional damping term at time ¢ using the
displacements at time t and t — At as shown by equation (2.17), instead of the usual times ¢ + At

and t— At, to prevent the stiffness-proportional damping term from appearing on the left-hand side.

{80} = 5 (u(0)} ~ {utt ~ A)}) (2.17)

Notice that each time step now involves two matrix-vector multiplications, effectively doubling the
computation time. For this reason, the software does not currently implement stiffness-proportional

damping.

Absorbing Boundary

Dampers placed on the lateral sides and bottom of the mesh prevent propagating waves from reflect-
ing off the boundaries and contaminating the solution inside the domain. For plane dilatational and
shear waves propagating normal to the boundary, the dampers may absorb the waves completely
if the dampers for the normal degrees of freedom are tuned to the dilatational wave speed and the
dampers for the tangential degrees of freedom are tuned to the shear wave speed. This method also
works reasonably well for incident angles other than 90 degrees (Cohen 1980). For an element with
face 3 (see figure 2.1) on an absorbing boundary aligned with the yz plane, equation (2.18) gives the

element damping matrix, where p denotes the mass density, A denotes the area of the face on the
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boundary, and « and 3 denote the dilatational and shear wave speeds, respectively.

1

20 0 0 a« O O O O O «o 0 O
0 26 0 0 8 0 000 0 B8 0
0 0 2 0 0 B 000 0 0 2
a 0 0 22 0 0 0 0 0 o 0 O
0 4 0 0 28 0 000 0 B 0
e = PA 0 0 5 0 0 26000 0 0 § (2.18)
200 0 o 0o 0 0 000 0 0 0
00 0 0 0 0 000 0 0 0
0 0 0 0 0 0 000 0 0 O
« 0 0 o 0 0 000 22 0 0
0 B 0 0 B 0 000 0 23 0
00 8 0 0 B 000 0 0 28

Although we require the absorbing boundaries to be aligned with a coordinate axis as discussed
in section 2.6, we choose to formulate the boundary condition without this artificial constraint.
Consequently, we formulate the element damping matrix based on the normal direction of the face,
so that we completely absorb shear and dilatational waves propagating normal to the boundary.
Because we use tetrahedral elements, three nodes define a face of the tetrahedron, so knowing the
location of the three nodes for a face uniquely determines the normal direction. We form the element
damping matrix in the normal and tangential coordinate frame of the face and then transform the
element damping matrix to the global coordinate frame.

The above procedure results in a non-diagonal damping matrix, which we wish to avoid so that
we may use the central-difference scheme without factoring any matrices. We know that the node
spacing will be chosen to satisfy the ten nodes per wavelength requirement, so we may assume
that the wavelength of the wave hitting the boundary will be much greater than the node spacing.
This means that the velocities at the nodes of an element face on the absorbing boundary will be
approximately the same, and we may use equivalent rigid body velocities to convert the full damping
matrix to a lumped (diagonal) damping matrix without significantly decreasing the effectiveness
of the absorbing boundary. This is the same method that we used to lump the mass matrix in

section 2.3.1, except that here we use rigid body velocities instead of rigid body accelerations.

2.4 Model of Fault

Realistic ground motions require accurate modeling of the slip on the fault. Prescribed ruptures

necessitate explicit control of the slip at every point on the fault at all times. Similarly, simulations
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with dynamic failure require control of the friction on the fault. Double couples typically are used to
model the earthquake source by applying forces to create large strains that approximate dislocations
on the fault surface. A discretized domain requires applying the forces over a discrete length to
create the couples. This distributes the slip across a discrete length, which is usually the node
spacing, creating a “fault zone.” For a node spacing with ten nodes per wavelength and shear waves
with periods of one second or more, the slip will be distributed over a much wider region than we
observe in nature. Additionally, in an unstructured mesh the nodes do not naturally lie where we
want to place the forces to generate the double couples. Using double couples also does not lend itself
to implementing dynamic failure on the fault. These shortcomings of double couples inspired the
development of an alternative method for modeling the earthquake source. The following sections
outline the use of slip degrees of freedom to xr_lodel slip on the fault in a way that works well both

for simulations with prescribed ruptures and for simulations with dynamic failure.

2.4.1 Slip Degrees of Freedom

For slip on the fault we want to impose a dislocation in the finite-element model. In the case of a
prescribed rupture we wish to specify the relative motion of one side of the fault with respect to the
other side while allowing propagation of waves across the fault. We may accomplish these tasks by
incorporating the fault plane into the geometry of the finite-element model. This interior surface
gives structure to the finite-element mesh so that no elements straddle the fault plane. Instead,
elements on either side share common faces on the fault plane, as illustrated by figure 2.3. We give
double the usual number of degrees of freedom to all the nodes on the fault plane to allow one side
to move relative to the other side; each fault node has six translational degrees of freedom that are
split such that each side of the fault has three degrees of freedom, as shown in figure 2.3.

If we transform to relative and average degrees of freedom, we gain explicit control of the relative
motion across the fault. We will denote the three degrees of freedom corresponding to the positive
side of the fault plane? by ug,, Uy,, and u,,, and those corresponding to the negative side of the
fault plane by ug,, ty,, and u,. Equation (2.19) shows how to transform from the global degrees of

freedom to relative and average degrees of freedom using an orthogonal matrix. Using an orthogonal

2We follow the convention that the normal vector for the fault points towards the hanging wall, and the hanging
wall lies on the positive side of the fault plane.
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Ve

6 degrees of

> freedom

Face on fault surface

Figure 2.3: Model of the fault plane in the finite-element mesh. The left portion shows the alignment
of the elements on the fault plane. The right portion provides a closeup of a node to demonstrate
how each node contains six translational degrees of freedom to allow the sides of the fault to move
relative to each other.

matrix allows us to use the transpose to invert the transformation.

\ - - 3
Ugpy — a3 % 0 0 —=% 0 0 Ugy
Uyr~y2 0 “\}‘2‘ 0 0 “% 0 Uy,

1 1

Ya—z ? 0 ? 0 | ] (2.19)
Uy -+ E 0 0 —\/—5 0 0 Uy
Uy, +y2 0 % 0 0 % 0 Uyy
o [0 o0 % 0 0 —\}3 | vz

We do not want to restrict the alignment of the fault plane to any one of the global coordi-
nate planes. If we rotate from the global coordinate frame to the fault coordinate frame before
transforming to slip and relative degrees of freedom, we will allow arbitrary orientation of the fault
plane. Given the predominant slip direction in the fault plane and the fault normal, we define the
fault coordinate frame by a fixed direction in the fault plane, selected to coincide with the direction
of dominant slip (first coordinate), the direction in the fault plane perpendicular to the dominant
slip direction (second coordinate), and the positive fault normal (third coordinate). In prescribed
ruptures we set the slip in the dominant slip direction. In simulations with dynamic failure we

apply the shear tractions on the fault surface in the direction of the dominant slip, although slip
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may occur in any direction on the fault plane. Equation (2.20) demonstrates how to transform from
the global coordinates to the relative and average coordinates in the fault plane, where [Tg;p| is
the 6x6 orthogonal matrix given in equation (2.19) and Tjuup is the 6x6 rotation matrix given in
equation (2.21), which transforms the degrees of freedom from the global coordinates, (z, y, z), into
the fault plane coordinates, (p,q, 7). Figure 2.4 shows the orientation of the fault plane coordinates

relative to the global coordinates.

¢ 3 ( \

Ups ~p2 Uy

g, ~qz Uy,

Upy T 1 0 U

T2 U [TBM] [ fau t] [ ] z1 | (2‘20)

Upy-+p2 [03 [Tfault] Uz

uq1+qe u:’}a

\'u’ﬁ+?“2 ) Uzy

cos Asin @ — sin Acos § cos ¢ cosAcos¢ +sinAcosdsing  sin Asind

Taue] = | —siuAsing — cos Acos S cos g — sin Acos ¢ + cos Acos S sing  cos Asin § (2.21)
sin § cos ¢ —sindsin ¢ cosd
Z, up
y, north

strike direction

/dip angle

N p, slip direction
WSlip angle

r, fault normal

X, east

Figure 2.4: Fault geometry relative to the global coordinate axes.

The use of the slip degrees of freedom allows explicit control of the relative motion. In prescribed
ruptures we simply set the slip degrees of freedom at each time step as described in chapter 5, while

in simulations involving dynamic failure we set the forces acting on the slip degrees of freedom based
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on frictional sliding as described in section 8.1. In both cases we prevent the fault from opening by

setting the relative degree of freedom in the direction normal to the fault to zero at all time steps.

2.4.2 Modification to Element Matrices

For clements that contain onc or more nodes on the foult, the slip degrees of freedom do not match
those used for the element matrices, so we must transform the element mass and stifiness matrices
derived in section 2.3.1 and section 2.3.2 to account for the slip degrees of freedom. We assume
no damping is associated with elements that have slip degrees of freedom, so that these elements
do not contribute to the global damping matrix. We transform the usual twelve element degrees of
freedom aligned with the global coordinate axes to the modified element degrees of freedom using the

transformation matrix given by equation (2.22), where [Ttg,0] is defined above by equation (2.21).
If the element lies on the positive side of the fault plane, then C = +1, and if the element lies on

the negative side of the fault plane, then C = —1.

(7] o] fo] [0]
g |@ m e e | )
0 [0] [T5] [0]
RGO
1 0 0
01 0] if node 7 is not on the fault
0 01
-C 0 0-
T3] = < 0 C 0 (2.23)
Lo 00 o
7 Lo o [Tiuiz] if node i is on the fault
0 1 0O
[ o0 1]

Modified Element Mass Matrix

We want the modified element mass matrix to give the same inertial forces for the same accelerations.
In other words, if we transform a given acceleration in the usual twelve element degrees of freedom
into the modified element degrees of freedom, we want the inertial forces in the modified coordinate

system to be equal to transformation of the inertial forces in the original coordinate system,

(M WiiGup } = [Tea] [M{ii}, (2.24)
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where [T is given by equation (2.22). After some simple manipulation we find that

(M) = [Tel] [ME)[Tet] (2.25)
In section 2.3.1 we chose to use a lumped element mass matrix for efficient time stepping, so that
[M] is diagonal. In general, the transformation of the lumped (diagonal) mass matrix given by
equation (2.25) leads to a mass matrix with off-diagonal terms. The following example shows that
we may neglect the off-diagonal terms because they will be small.

Consider a system with two degrees of freedom and a lumped mass matrix,

Ul

{u} = (2.26)
U2
mp O
[M] = 01 . (2.27)
ma
Transforming to slip degrees of freedom gives
L(ur ~ua)
{usip} = { V2 , where (2.28)
JaluL )
{usip} = [T1{u}, and (2.29)
L 1
[T] = «/15 ;/5 : (2.30)
Vi V2

Using equation (2.25) to transform the mass matrix to the slip coordinate frame yields

[Miip] = (2.31)

Df DN

(my+mz)  §(my—mg)
(m 3

1—m2)

If the masses on each side of the slip plane are equal, i.e., if m; = mo, then we have a diagonal mass
matrix. In our unstructured mesh this fnay or may not be true. Nevertheless, the off-diagonal terms
involve the differences between the masses on opposite sides of the slip plane, while the diagonal
terms involve the sum of the masses; this means that the off-diagonal terms will be much smaller than
the diagonal terms, so that we may neglect the off-diagonal terms to create the diagonal (lumped)
mass matrix as desired. To create the lumped modified element mass matrix, we simply distribute
the lumped masses from the degrees of freedom for nodes on the fault equally between the relative

and average degrees of freedom.



22

Modified Element Stiffness Matrix

We follow the same analysis to find the modified element stiffness matrix that we used to determine
the modified element mass matrix. We want the forces in the slip coordinate frame to be equal to

the transformed forces in the original coordinate frame for a given displacement field,
(K Gupl{uGiip} = [Tl [K{u}- (2.32)
After some simple manipulation we find that
(Kip) = [Tet] [K€)[Tt] " (2.33)

This transformation neither adds any additional constraints nor adversely modifies the stiffness
matrix, as we will see by examining the eigenvalue and eigenvectors of the original and modified
element stiffness matrices. The eigenvalues, \;, and eigenvectors, {v;}, of the original element

stiffness matrix satisfy
[KNvi} = Ai{vi}. (2.34)
Denoting the eigenvalues and eigenvectors in the slip coordinate frame by AF and {v}}, we have
(K gpl{vi } = A {vi'} (2.35)

Substituting the expression of the modified stiffness matrix given by equation (2.33) and simplifying

produces
(K[ Tet] {07} = X [Tl {0 }. - (2.36)
This is simply the eigenvalue problem for the original stiffiness matrix, where

{vi'} = [Tal{vi},and (2.37)

Ai — AL (2.38)

Hence, the eigenvalues of the stiffness matrix do not change, and the eigenvectors are simply the

original eigenvectors transformed to the slip coordinate frame.
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2.4.3 Average Slip and Moment Magnitude

We often categorize seismic events using the fault area, the average slip, and the moment magnitude.
We define the fault area to be the sum of the tributary areas on the fault plane of each node at which
slip occurred. With an unstructured mesh the tributary areas will likely vary significantly from node
to node, especially where the malerial properties vary over the fault plaue. Bguation (2.39) indicates
how we compute the average slip from the slip degrees of freedom by finding the weighted sum of
the slip at each node and dividing hy the fault area, where N is the number of nodes at which slip

occurred and A; is the fault tributary area for node i.

N
— S DAL
D= Z.@.:].\lr...ﬁ.‘[.li (2.39)
Zi'—:l A'i
The moment magnitude which is defined by
M= W)Where (2.40)
1.5
M, = uAD (all in CGS units), (2.41)

depends on the shear modulus on the fault plane. For heterogeneous material properties we cannot
use the above expression for the moment, A, as it stands; we must sum the moments at each node

at which slip occurs as shown by equation (2.42).

N NE
M, =Y Dip;A, (2.42)

i=1 j=1
The tributary area for each node comes from all elements that contain the node and that also have a
face on the fault surface. Each element may have a different shear modulus, so we sum the product
of the tributary fault area and shear modulus over all N¢ elements that contain the fault node. This
expression for seismic moment accurately captures the variation in the moment over the fault for
heterogeneity in both slip and shear modulus, and reduces to the usual expression (equation (2.41))

in the case of uniform slip and homogeneous material properties.

2.5 Spatial Interpolation

The simulation software requires several input parameters that may or may not be described by
simple functions. In some cases we may only have a numerical picture of the data as defined by a
set of locations and values. This data may be distributed along a line, e.g., material properties as as
a function of depth, an area, e.g., slip as a function of dip and strike on the fault plane, or a volume,

e.g., material properties as a function of location in the domain. In any case, we want to use the
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values and locations given by the data set to determine values at other locations inside the domain,
usually nodes or element centroids. This section describes the method used to interpolate values
from a given spatial distribution of data. The procedure accounts for the topology of the data set
and works for any location where we want to find the values.

The data set provides a list of values and locations in the global coordinate frame. Additionally,
we require the data set to provide a flag indicating the topology of the data. Figure 2.5 shows the
different topologies; the data points as a group describe variations in zero dimensions (one point),
one dimension (line), two dimensions (area), or three dimensions (volume). We assume the values
vary linearly between data points (as explained below), so that we interpolate using the closest
points and the corresponding values. The number of points that we need depends on the spatial
variation of the values. For a one-dimensional data set, we need two points (line segment) to describe
a linear varialion in the values, for a two-dimeosional data set we need three poiuts (Lriaogle), and
for a three-dimensional data set we need four points (tetrahedron). For each given location at which
we wish to know a value, we order the points in the data set based on the distance from the given
location. We use the closest points that allow interpolation to find the value. If the given location

lies outside the region covered by the data, we extrapolate using the nearest locations.

*? o o o ¢
2 ° e . i
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Figure 2.5: Different topologies of the data set. (a) Zero-dimensional data set (b) One-dimensional
data set (c) Two-dimensional data set (d) Three-dimensional data set

We now describe the algorithm used in the interpolation. Point P denotes the location where

we wish to know the value of some quantity s, and s; denotes the value of s at point i.

1. If the data set contains only one point, then the value at point P is simply the value at the

data set point, and we are done.
2. Order the data set based on the distance from point P.

3. Select the nearest point in the data set as point 1.
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4. Select the next nearest point in the data set as point 2 subject to the constraint that point
P lies between point 1 and point 2. If no such point 2 exists, we choose point 2 as the next

closest point in the data set after point 1.

5. If the data set is one-dimensional, then

2
13
Sp = Zl- Z S.idi, (243)
where d is the distance between point 1 and point 2, and d; is the distance between point P
and the point other than point ¢ as shown in figure 2.6. We are done.

6. Select the next nearest point in the data set as point 3, subject to the constraint that point P
lies inside the triangle formed by point 1, point 2, and point 3. If no such point 3 exists, we

choose point 3 as the next closest point in the data set after point 2.

7. If the data set is two-dimensional, then

8 = ./11 Z 8 A;, (2.44)

where A is the area of the triangle formed by point 1, point 2, and point 3, and A; is the
area of the triangle formed by point P and the other two points besides point i as indicated

in figure 2.6(b). We are done.

8. Select the next nearest point in the data set as point 4 subject to the constraint that point P
lies inside the tetrahedron formed by point 1, point 2, point 3, and point 4. If no such point

exists, we choose point 4 as the next closest point in the data set after point 3.

9. If the data set is three-dimensional, then

=1 > sV, (2.45)

where V' is the volume of the tetrahedron formed by point 1, point 2, point 3, and point 4,
and V; is the volume of the tetrahedron formed by point P and the three other points besides

point 4. V4 is shaded in figure 2.6(c). We are done.

2.6 Finite-Element Mesh Creation

We do not attempt to write software to generate the unstructured finite-element meshes with tetra-

hedral finite-elements. It is not easy to discretize a domain into tetrahedra, and the complexity of
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() (b) (c)
Figure 2.6: Interpolation schemes for the various topologies of the data sets. (a) Linear interpolation.
(b) Area interpolation. (c¢) Volume interpolation.

the problem increases significantly when we constrain the node spacing to match changes in material
properties, include the fault plane as part of the domain geometry, and force the tetrahedra to be
as regular as possible. Consequently, we use the IDEAS software from the Structural Dynamics
Research Corporation to generate the finite-element mesh.

The first step involves inputing the geometry into the IDEAS solid modeler. In addition to
the basic domain geometry, we also include the fault plane on which we align the element faces as
described in section 2.4.1 and other surfaces on which we want to force alignment of the element
faces. For example, we usually include the surface that slices through the centerline of the fault
so that we may output information on this surface. For faster mesh generation we subdivide the
domain into smaller chunks, allowing the mesh generator to work on only one chunk of the domain at
a time. We define the finite-element model from the geometry by selecting the four-node tetrahedral
finite-element and specifying the node spacing at appropriate locations in the domain.

We generate the mesh one sub-domain at a time and use the auto-checking feature of IDEAS to
insure the quality of the elements in the mesh. Poor-quality elements include those with distorted
shapes, which lead to larger numerical errors, and elements with non-optimal node spacing, which
lead to interpolation errors when the spacing is too large and to reduced time steps when the node
spacing is unnecessarily small. We export the mesh in universal file format, which is a plain text file
that is easily read by the simulation software.

We also use IDEAS to extract information regarding which nodes and element faces lie on given
lines and surfaces. For example, we want to identify all of the nodes on the fault plane, because
we use them to implement slip of the fault. Similarly, we often waut to output displacemenl tine
histories on the ground surface or along strategically placed lines. For planar surfaces, only one face
of an element lies on the surface, and a list of the element’s three nodes on the surface uniquely
determines the element face on the surface. However, for multiple faces on a surface, all four nodes

of an element lie on the surface and anywhere between two and four faces may lie on the surface.
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We must use an additional criterion to separate the extraneous faces from the ones that we want.
We require the fault to be a planar surface, so that only one face of an element may lie on the fault
surface, and we do not need an additional criterion. The surfaces on which we choose to output
information may or may not be planar. Because outputting information on these extra surfaces
does not affect the solution and because the penalty for outputting this additional information is
negligible, we allow the extraneous surfaces to remain. The absorbing boundaries usually have
planar surfaces that meet with elements on the intersection having multiple faces on the absorbing
boundary, with the extraneous faces arbitrarily oriented relative to the boundary. These extra faces
could hamper the effectiveness of the absorbing boundary. We eliminate them by constraining the
lateral sides of the domain and bottom (absorbing boundaries) to coincide with one of the coordinate
axes. When we formulate the absorbing boundary we ignore any faces that do not coincide with one
of the coordinale axes. We use IDEAS to create the groups of nodes that coincide with the desired

geometric entity and export them as part of the universal file.
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Chapter 3 Implementation of Parallel Processing

Simulations that involve hundreds of thousands to millions of degrees of freedom require hundreds
of megabytes to gigabytes of memory and billions of floating point operations. State of the art
workstations still lack the memory storage and processing power to effectively handle such large
problems. Luckily, parallel computing provides a suitable environment for solving such problems
by distributing both the storage and computation among many processors. We do not seek the
optimum parallel software implementation, but do strive for efficient parallel computation.

Several methods and libraries exist to aid in writing parallel computing software. We chose to
use the Message Passing Interface (MPI) which is not a library in itself, but a standard interface
which libraries may follow. Some manufacturers develop their own implementation of the MPI
in order to optimize the code for the architecture of the supercomputer, such as Intel’s MPI on
the Intel Paragon. In other cases, a third party implementation, such as MPICH from Argonne
National Laboratory, is used. The MPI standard defines numerous functions to pass information

among processors and facilitate initializing parallel execution.

3.1 The Center for Advanced Computing Research Super-
computers

The Center for Advanced Computing Research (CACR) at the California Institute of Technology
oversees the use of several supercomputers. Initially, we used the CACR’s Intel Paragon that has
a total of 512 compute nodes. Each compute node contains an Intel i860 XP microprocessor and
32 megabytes of RAM and is capable of executing a maximum of 60 Mflops. The CACR decided
to retire the Intel Paragon supercomputer in the spring of 1999, so we switched to the CACR’s
Hewlett Packard Exemplar. The Exemplar contains 16 hypernodes with each hypernode containing
16 Hewlett Packard PA 8000 RISC microprocessors running at 180 MHz with a peak capacity of
720 Mflops per processor; the processors within a hypernode share four gigabytes of RAM. Currently,

it is the largest cache-coherent shared memory computer in the world.

3.2 Domain Partitioning among Processors

We distribute the computation among the processors by parceling the domain among the processors.

Ideally we want the computation load evenly distributed among the processors, so that we achieve
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maximum parallel performance (processors do not sit idle and they spend negligible time commu-
nicating with each other). The software follows the single program-multiple data (SPMD) model of
parallel execution in which every processor follows the same algorithm but operates on a different
portion of the domain. In other words, we divide the finite-element mesh into small groups of ele-
ments and give each processor one group of elements. We map each element to one processor, while
the nodes may be mapped to more than one processor; nodes that lie on the boundaries between
groups must be shared by the processors containing elements with those nodes. The lack of a repeat-
ing structure ih meshes with tetrahedral elements tends to complicate the problem of partitioning
the mesh. We have used two different partitioning strategies: a strategy that parcels the elements
based a simple geometric approach and a more refined strategy more appropriate for unstructured
meshes that balances the load and minimizes the communication among the processors.

Inertial bisection provides a simple and very fast method for partitioning the elements among
the processors (Willlams 1991; Williams 1994). We assume that the number of elements in each
processor correlates with the computation time, so that we pa;rtition the domain based solely on
the locations of the elements. Inertial bisection recursively divides the domain until the number of
partitions equals the number of processors. We consider each element as a point mass with the mass
of the element proportional to the computation effort of the degrees of freedom of that element.
In this way, we give the elements with slip degrees of freedom more mass to compensate for their
additional computational effort.?

Any number of partitions may be created by recursively dividing each partition. By adjusting
the distribution of the load at each division, we ultimately create a load (mass) balanced partitioning
of the domain. For example, to partition a mesh among three processors, we first divide the mesh
into two groups, one with a load (mass) that is one-half of the second one, and then subdivide the
larger of the two groups. The three resulting partitions all have the same load (mass). Each division
requires computing the maximum principle moment of inertia of the current partition and finding
the origin of the bisecting plane normal to the maximum principle moment of inertia to separate
the elements into two groups with the desired loads (masses). Figure 3.1 gives an example of how
inertial bisection partitions an unstructured mesh with nearly uniform element sizes. An example of
partitioning an unstructured mesh with large variations in element sizes is shown in chapter 7. The
inertial bisection method comes from a statistical approximation to the spectral bisection method.
As a result, it may produce partitions that require significantly more interprocessor communication
than other methods.

The METIS software library (Karypis et al. 1999) from the University of Minnesota provides

the tools to efficiently partition unstructured meshes while evenly distributing the computation load

1 The amount of additional mass required to balance the load depends on the architecture of the supercomputer
and the efficiency of the interprocessor communication libraries.
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Figure 3.1: Example of partitioning of an unstructured mesh among eight processors using inertial
bisection. Each patch of color identifies the elements of a single processor. The domain contains
homogeneous material properties so the element sizes are nearly uniform.

and minimizing the total communication among processors. As in the case of inertial bisection, we
assign a computation effort to each element,. and adjust the weights of elements with slip degrees
of freedom accordingly in order to account for the additional computational effort they require.
Figure 3.2 gives an example of an unstructured mesh with nearly uniform element sizes partitioned

using the METIS library.

3.3 Parallel Computation

Efficiently implementing parallel computation requires minimizing the communication among the
processors. Bottlenecks occur when processors must pass information to each other, especially when
they must pass information to all of their neighbors. Each processor formulates matrices and vectors
for its degrees of freedom in the same fashion as we would normally formulate the global matrices and
vectors. In order to couple the matrices and vectors over the entire domain (across the processors),
we assemble the matrices and vectors by having each processor pass the entries for those degrees
of freedom it shares with other processors to the appropriate neighbor. Note that it is much more
efficient to assemble vectors, which require passing one entry per shared degree of freedom, than to

assemble matrices, which require passing an entire row per shared degree of freedom.




30

05 <$i>‘=‘;£i%§1:xvs >
S E S
; X TSI S DI IS s S
‘l‘é S S e o
‘V‘“\‘V "‘\' s /\_L>§L\_=,‘7\ Z T
> '%“‘KS“%‘X&«W%*\V& R ""’%’»".4.4

wﬂ?ﬂv&*‘g‘ éy‘%‘;ﬁ“[m; "2‘1"
, D ¢
wgi%’é'u‘“ "4‘"‘“‘ s
SRR él%““‘? SRR
R ‘» R A@w ‘}5 2’*"""?‘
M,\W
V

Depth (km)
>
G
,gﬁ s
VA
>
ﬁﬁ

o
L
LN
VA
V
A
V
A'V
AN
N/

South~North (km) -15 -7

West-East (km)

Figure 3.1: Example of partitioning of an unstructured mesh among eight processors using inertial
bisection. Each patch of color identifies the elements of a single processor. The domain contains
homogeneous material properties so the element sizes are nearly uniform.

and minimizing the total communication among processors. As in the case of inertial bisection, we
assign a computation effort to cach clement, and adjust the weights of elements with slip degrees
of freedom accordingly in order to account for the additional computational effort they require.
Figure 3.2 gives an example of an unstructured mesh with nearly uniform element sizes partitioned

using the METIS library.

3.3 Parallel Computation

Efficiently implementing parallel computation requires minimizing the communication among the
processors. Bottlenecks occur when processors must pass information to each other, especially when
they must pass information to all of their neighbors. Each processor formulates matrices and vectors
for its degrees of freedom in the same fashion as we would normally formulate the global matrices and
vectors. In order to couple the matrices and vectors over the entire domain (across the processors),
we assemble the matrices and vectors by having each processor pass the entries for those degrees
of freedom it shares with other processors to the appropriate neighbor. Note that it is much more
efficient to assemble vectors, which require passing one entry per shared degree of freedom, than to

assemble matrices, which require passing an entire row per shared degree of freedom.
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Figure 3.2: Example of partitioning of an unstructured mesh among eight processors using the
METIS library. Each patch of color identifies the elements of a single processor. The domain
contains homogeneous material properties so the element sizes are nearly uniform.

One reason we choose to numerically integrate the dynamic elasticity equation using the central-

difference scheme is that it is well suited for parallel processing. Upon examining equation (2.5) we

see that the factor <L [M] + ﬁ[(‘] on the left-hand side does not change with time, so we need to
formulate it only once; each processor computes the lacal portion of the term, and then we assemble
the vector (diagonal matrix stored as a row vector) across the processors. The right-hand side
changes significantly from time step to time step, so at each time step each processor formulates the
local version of the entire right-hand side of equation (2.5) before assembling it across the processors.
As a result, the numerical integration involves interprocessor communication only when we assemble

the vector on the right-hand side, which occurs just once per time step.

3.4 Parallel Input and Output

File input and output becomes slightly more complicated when executing a program on multiple
processors. One strategy involves letting each processor read and write to its own file; however,
this may lead to operating system panics when there are hundreds of processors. Additionally,
post-processing becomes cumbersome because we must compile data from hundreds of files. An

alternative strategy involves parallel input and output, or letting each processor read and write from
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Figure 3.2: Example of partitioning of an unstructured mesh among eight processors using the
METIS library. Each patch of color identifies the elements of a single processor. The domain
contains homogeneous material properties so the element sizes are nearly uniform.

One reason we choose to numerically integrate the dynamic elasticity equation using the central-
difference scheme is that it is well suited for parallel processing. Upon examining equalion (2.5) we
see that the factor =7 [M]+ 55;[C] on the left-hand side does not change with time, so we need to
formulate it only once; each processor computes the local portion of the term, and then we assemble
the vector (diagonal matrix stored as a row vector) across the processors. The right-hand side
changes significantly from time step to time step, so at each time step each processor formulates the
local version of the entire right-hand side of equation (2.5) before assembling it across the processors.
As a result, the numerical integration involves interprocessor communication only when we assemble

the vector on the right-hand side, which occurs just once per time step.

3.4 Parallel Input and Output

File input. and ontput hecomes slightly more complicated when execnting a program on multiple
processors. One strategy involves letting each processor read and write to its own file; however,
this may lead to operating system panics when there are hundreds of processors. Additionally,
post-processing becomes cumbersome because we must compile data from hundreds of files. An

alternative strategy involves parallel input and output, or letting each processor read and write from
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the same file. This strategy is particularly effective when the supercomputer contains a parallel file
system, e.g., the Intel Paragon. The simulation software includes a simple parallel input/output
library which interfaces with the MPI and, in the case of the Intel Paragon, the parallel file system.

The parallel input/output library gives control of the file pointer to a master processor. We
allow the master processor to read and write from the file as it wishes, during which it updates
the file pointer. When we want to output information contained on multiple processors, the master
processor coordinates the reading and writing to insure that each processor reads and writes from
the proper place in the file. When multiple processors write information, we order the data based
on the rank of each processor, so the data from processor ¢ follows the data from processor ¢ — 1 and
immediately precedes the data from processor i + 1. When we want to write in parallel, we follow

the algorithm below (reading in parallel is similar).
1. Each processor sends the master processor the number of bytes it wants to write.

2. The master processor computes the file position where each processor should begin writing

based on the current file position (which it stores).
3. The master sends to each processor the file position where it should begin writing its data.

4. All processors write their data at the designated locations.

3.5 Global Mesh Refinement

As discussed in section 2.6, we use IDEAS to generate the finite-element meshes, and even with
small meshes we must subdivide the domain to expedite the mesh generation process. To further
reduce the load on the mesh generator, we create the mesh at a coarse resolution in IDEAS, and
then globally refine the mesh to the desired resolution at the beginning of the simulation. Each
processor refines its own portion of the domain, and by following the same refinement strategy, the
element faces match along all interprocessor boundaries. The global refinement does not require
extensive computation effort, so it is simply a matter of convenience to refine the meshes in parallel;
the input file for the simulation may remain at coarse resolution which reduces disk storage. This
allows TDEAS to create a mesh that contains only a fraction of the number of nodes and elements
we use in the simulation. We currently implement two different resolutions of refinement: one that
reduces the node spacing by a factor of two (2x refinement) and one that reduces the node spacing
by a factor of four (4x refinement). We apply the refinement strategy to all elements in the same
manner, so the resolution of the coarse mesh must be fine enough to capture the proper variations
in node spacing; we satisfy this requirement by carefully selecting the locations of the element size

control points and the designated element sizes when we create the coarse mesh.
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If we choose to output information at the coarse resolution, we substantially reduce the file sizes
with minimal losses of information. For ekample, we expect the final displacements and stresses to
be much smoother than the shortest propagating wave, so the coarse mesh, even with four times the
node spacing of the fine mesh, presents an accurate picture of the final displacements and stresses,
but requires less than 2% of the disk space needed to store the displacements and stresses at the

complete resolution.

3.5.1 Element Splitting

In 2x refinement we split each element in the mesh into eight elements as shown in figure 3.3. We
add new nodes at the midpoints of the edges of the original tetrahedron. For a regular tetrahedron
with edges of length [ in the coarse mesh, we create four regular tetrahedra with edges of length %
and four irregular tetrahedra with edges of length £ and ﬁ Consequently, the global refinement
algorithm does slightly degrade the quality of the elements, but not enough to adversely affect the
solution. In this case, the mesh generated in IDEAS contains only one-eighth of the number of

elements of the mesh used in the simulation.

Figure 3.3: Diagram of element splitting in 2x refinement procedure during which we divide each
element into eight elements and reduce the node spacing by a tactor of two.

In 4x refinement we split each element in the mesh into 64 elements as shown in figure 3.4. During
the 4x refinement we do not recursively refine the element using the 2x refinement procedure, because
the quality of the elements would continue to degrade at the second level of refinement. Instead, we
follow a different procedure that adds new nodes on both the edges and in the interior of the original

element. We add new nodes such that each node lies exactly between two other nodes. From a
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regular tetrahedron with edges of length [, we create 24 regular tetrahedra with edges of length %
and 40 tetrahedra with edges of length ;li— and 21% The disparity between the lengths of the edges
of the tetrahedra remains the same as the 2x refinement. In this case, the number of elements in the
coarse mesh generated in IDEAS is approximately 1.6% of the number of elements in the fine mesh
used in the simulation. This gives a tremendous reduction in the time and effort needed to generate

a mesh.

Figure 3.4: Diagram of element splitting in 4x refinement procedure during which we divide each
element into 64 elements and reduce the node spacing by a factor of four.

When we globally refine the mesh and create new nodes and elements, we must adjust the
boundary conditions accordingly. As discussed in section 2.6, we use lists of nodes or nodal groups
to uniquely determine the element faces composing the boundary conditions, e.g., the absorbing
boundaries and the fault plane. During the mesh refinement, whenever we create new nodes on
an element face associated with a boundary condition, we add the nodes to the list of nodes for
that boundary condition. We also follow this procedure to modify lists of nodes associated with the

surfaces on which we output time histories, when we select to output the information at the fine

resolution.
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Chapter 4 Dynamic Energy Balance for
Earthquakes

We compute the energy balance for our simulated earthquakes with the objective of learning more
about the physics of the rupture process. As we will discuss below, the only forms of energy available
from the simulations are the radiated energy, the change in potential energy of the earth, and the
change in thermal energy of the earth. The energy balance also provides an additional tool to
measure the size of the earthquake, and the change in thermal energy allows estimation of the

degree of melting on the fault.

4.1 Derivation of Dynamic Energy Balance

We start with the conservation of energy for the entire earth. We neglect all external forces, such
as the gravitational forces from the sun and the other planets; therefore, we have no change in the
internal energy of the earth. As given by equation (4.1), the internal energy of the earth involves the
radiated energy (Er), the change in thermal energy (AQ), and the change in the potential energy
(AW). '

Ep+AQ+ AW =0 (4.1)

The change in potential energy involves changes in the strain energy, changes in the gravitational
potential energy, and changes in the rotational energy of the entire earth. For prescribed ruptures
we do not model the sliding friction on the fault, so we can determine neither the change in thermal
energy nor the change in potential energy. The only quantity in the energy balance that we can
compute is the radiated energy. When we use dynamic failure to model the slip on the fault,
we do model the frictional sliding, so we can compute each term of the energy balance given by

equation (4.1).

4.2 Radiated Energy

When we think about energy and earthquakes, we often only consider the radiated energy, because
we associate it with the ground motions and can estimate it from ground motion records. Similarly,

in numerical models the radiated energy is readily available from the earthquake simulation by
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finding the energy of the waves propagating away from the seismic source. The earth eventually
dissipates all of the radiated energy through material damping. When we truncate the edges of the
domain in order to model only a small portion of the earth, the absorbing boundaries, as discussed in
section 2.3.3, mimic the waves propagating through the boundaries by absorbing the waves through
the use of dampers. As a result, in our discretized models the damping matrix contains a complete
description of how the domain dissipates the radiated energy, so we use it to compute the radiated
energy. Generally, we do not specify enough time steps in the time integration for the absorbing
boundaries to completely absorb all of the radiated energy, and a small amount of the radiated
energy remains in the domain as kinetic energy. We add this kinetic energy to the energy absorbed
through the damping matrix to find the total radiated energy. For the domain discretized in both
space and time, equation (4.2) gives the total energy radiated from the seismic source, where {4(t)}
is the velocity vector at time ¢, [C] is the damping matrix, [M] is the mass matrix, At is the time
step, and N is the number of time steps.
N

Eg = At 3 (d(mAt) [Ci(mAt)} + %(a(mmmm {a(mAt)} (4.2)

4.3 Change in Thermal Energy

Earthquakes change the thermal energy of the earth in four ways. The primary contribution comes
from the generation of heat by the frictional sliding on the fault. Additionally, the fracturing of
materials iu the fault zoue creates latewt heat. The radiated energy eventually dissipates into heat,
but we choose to consider it separately as discussed above. If we assume that the strain increments
thronghont the earth acenr adiabatically, then they cause changes in temperature in the same fashion
that the adiabatic expansion of a gas causes a drop in temperature (Fung 1965). We will assume
that the strain increments cause a negligible change in temperature, so that we may neglect the
change in thermal energy imposed by the adiabatic change in strain. Therefore, we are left with the
change in thermal energy caused by frictional sliding and the fracturing of materials.

We choose to include both the fracture behavior and the sliding behavior in the friction model.
Consequently, the energy dissipated through frictional sliding includes both the latent heat associated
with the fracture energy and the heat generated by sliding. 'Lo find the energy dissipated as heat
during frictional sliding on the fault, we begin with the increment of heat, dQ(t), created during an

increment of slip, dD(#),
dQ(t) = oy (t)dD(t) dS, (4.3)

where o¢(t) is the frictional stress at a point on the fault surface and dS is the differential fault area.
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Integrating over the fault surface and slip yields

AQ(t) = /D " A o (t)dD dS. (4.4)

Converting the integral over slip to an integral over time produces

AQ() = /t L o1 ()D(t) dS dt, (4.5)

where D is the slip rate. Finally, for a domain discretized in time and space, equation (4.6) gives the
total change in thermal energy for an earthquake, where At is the time step, (Fy(t)) is the friction

force vector at time ¢, and N is the number of time steps.

N
AQ(t) = At Y (Fr(mAt){D(mAt)} (4.6)

m=1
4.3.1 Change in Temperature on the Fault

The heat generated during sliding on the fault will increase the temperature in a region surrounding
the fault. The total change in thermal energy on the fault, which we compute from the friction and
sliding on the fault as discussed above, includes both the fracture energy and the heat generated by
sliding. We will assume that the fracture energy is much smaller than the heat generated by sliding,
so that we may use the change in total thermal energy at each point on the fault to compute the
change in temperature. We find the increment in temperature, d7°, at o point on the fault from the
increment in heat, dQ, using
dQ(t)
dT = ———, 4.7

CypddS (47
where C, is the heat capacity per unit mass, p is the density, d is the distance perpendicular to the
fault where the heat is trapped, and dS is the differential fault area. Substituting in the expression
for the increment in heat at a point on the fault (equation (4.3)) and converting the increment in
slip to a slip rate over an increment in time yields

_ oft)D(t)dt

dT = L (4.8)

Integrating over time to find the change in temperature produces

AT = /t ﬁ%@ dt. (4.9)
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After discretizing the domain in space and time, we find that equation (4.10) gives the change in
temperature at a point on the fault, where F(t) is the friction force at time ¢, At is the time step,

and N is the number of time steps.

N

C?}f - :‘;1 Fr(mA)) {D(mA#)} (4.10)

4.4 Change in Potential Energy

We define the change in potential energy as the energy released by the slip on the fault assuming that
the slip occurs quasi-statically and that the domain behaves according to linear elasticity. Because
both the radiated energy and the change in heat energy must be positive, conservation of energy
dictates that the change in potential energy must be negative. This drop in the potential energy
allows earthquakes to release energy as propagating waves and generate heat through frictional
sliding,. ‘

We follow a procedure similar to that of Savage and Walsh (1978) and Dahlen (1977) to find
the change in potential energy due to an earthquake. We start with the change in energy for an

increment of slip,
dW = —o(D)dD dS, (4.11)

where dW is the incremental change in potential energy, o is the shear stress at a point on the fault,
D is the slip at a point on the fault, dD is the increment of slip, and dS is the differential fault area.

The negative sign indicates the shear stress opposes slip. Assuming a linearly elastic medium, the

stress follows

D) 5, L (412)

a(D(t)) = —oo + D

where o, is the shear stress just prior to the earthquake, o(D(¢)) is the shear stress after the fault
has slipped an amount D(t), D(t) is the slip at time ¢, D is the final slip, and Ao is the final stress
drop. We follow the convention that a decrease in stress gives a positive stress drop. Substituting the
stress at slip D(t) into the expression for the incremental change in potential energy and integrating

over both the slip and the fault area produces

- / / (00 — lem) dD dS. (4.13)
JDJIS
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Integrating over the slip and simplifying produces
1
AW = —5 / (0’0 =+ Ul)DdS, (4..14)
s

where D and o are the slip and stress at a point on the fault after the earthquake. After discretizing
in time and space, equation (4.15) gives the change in potential energy caused by an earthquake,
where (F'(0)) is the friction force vector on the fault at zero slip and (Fi(D)) is the friction force

vector on the fault at the completion of slip.
1
AW = —2((F(0)) + (F(D)){D} (4.15)

From the point of view of understanding the physics of the rupture, we would like to decompose
the change in potential energy into the change in strain energy and change in gravitational potential
energy. As shown by Savage and Walsh (1978) and Dahlen (1977), we cannot determine these
changes in energy when we truncate the domain, because all points in the earth contribute equally
to the computations; the domain must encompass the entire earth in order to compute the change in
strain energy and the change in gravitational potential energy. Additionally, we neglect the change

in Earth’s rotational energy caused by earthquakes for the same reason.’

4.4.1 Topography and Changes in Gravitational Potential Energy

Tf we conld determine the change in gravitational potential energy, it might lead ns to a hetter un-
derstanding of the creation of mountains due to thrust earthquakes. The following simple thought
experiment illustrates the general mechanism by which earthquakes change the gravitational poten-
tial energy of the earth. Consider two containers of an incompressible fluid with widths b; and by
as shown in Figure 4.1. Figure 4.1(a) shows the containers filled with fluid to heights of h; and ha.
We may think of the two containers of fluid as the two sides of a thrust fault with the heights of
the fluid corresponding to the level of the surface topography. The gravitational potential energy of

this configuration is
1 1
We, = Ehl (pghib) + :}-hg(pghab:z) (4.16)

We move the divider a distance d to the right. This represents a slip of d that generates the

upward movement of the hanging wall and the subsidence of the footwall in a thrust earthquake.

1Chao and Gross (1995) computed the change in the rotational energy of the earth for a catalog of earthquakes
using modal techniques and point sources.
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(a) (b)
Figure 4.1: Configurations of the two fluid containers. (a) Original configuration (b) Configuration
after the divider moves a distance d to the right.

The gravitational potential energy of the fluid in the containers becomes

1 h1b1 1 h2b2
== hib = . .
We, =5 (bl +d> (pghabr) + 5 <b2 —d) (pghabz) (4.17)
The change in gravitational potential energy is

AWeg = Wg, — Weao

1 hs by hib
= cpgd | —2— — . 4.1
5/ (bg—«d b1+d) (418)
The movement of the divider increases the gravitational potential energy if
2 2
hybe | i (4.19)

bo—d = by +d’

which is nonlinear in the movement of the divider, d. Even for this simple analogy, the gravitational
potential energy changes in a nonlinear fashion. If we start with equal heights and widths of the fluid
containers (h; = he and b1 = by), the expression for the change in gravitational potential energy

reduces to

2

d
AWg = pgdh?b, 72

et (4.20)

and the change in gravitational energy is second order. This corresponds to no surface topography
being present before the earthquake. On the other hand, when surface topography does exist, the
change in gravitational potential energy is first order.

For the same slip distribution on a given fault, the greater the differences in topographic fea-
tures, the larger the change in gravitational potential energy. In other words, for mountain-building
thrust fault earthquakes with the same amount of slip, each successive earthquake leads to greater

changes in the gravitational potential energy. If the change in potential energy is the same for each
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event, the change in strain energy must become more negative to balance the ever greater changes
in gravitational potential energy. We do not know how the seismic behavior changes with these
progressively larger changes in the strain energy and the gravitational potential energy, because
we cannot compute the change in strain energy and change in gravitational potential energy. We
must rely on the stress state as discussed in section 8.2.3 for insight into the roles of gravity and

topography in seismic events.
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Chapter 5 Prescribed Rupture

When we simulate earthquakes using prescribed ruptures, we set the slip time history at each point
on the fault according to some predetermined set of parameters. This method works well when we
want to computce the ground motions for scenarios with well known source parametors, such as the
final distribution of slip on the fault, rupture speed, and maximum slip rate. On the other hand,
we ignore the dynamics of the rupture process by not modeling the frictional sliding on the fault
surface. Instead, we focus on the ground motions resulting from the choice of the earthquake source

parameters.

5.1 Earthquake Source

With the use of slip degrees of freedom to model the earthquake source as described in section 2.4.1,
at each time step we set the displacemoents of the slip degrees of frecdom to create the appropriate
relative motion between the sides of the fault. In the numerical integration (equation (2.5)) we set
the displacements of the slip degrees of freedom at time ¢+ At, so we must subtract the known values
of the left-hand side from the right-hand side. We subtract the term (z&z[M] + 55 [C]) {u(t+ At)}
from the right-hand side where the only nonzero entries in {u(¢+ At)} are the displacements for the
slip degrees of freedom. By using the already assembled version of <4 [M] + 5% [C], this calculation
does not require any interprocessor communication, and we subtract this product from the already

assembled right-hand side.

5.2 Slip Time History

The slip time history controls the progression of slip over time. The slip time history at each point
on the fault has the same functional form, but we set the time constants that control the precise
time history at each point based on the specified values of the final slip and maximum slip rate. We
use a uniform maximum slip rate but allow spatial variation of the final slip as we will discuss below
in section 5.3. Allowing variations in final slip while using a uniform maximum slip rate produces
variations in the slip rise times with longer rise times at points with larger values of final slip.

For the slip time history in a given scenario, we choose one of the three shapes shown in table 5.1
and figure 5.1. One-half of a period of the cosine function gives an extremely simple slip time history.
To create a causal slip time history from the non-causal functional form of the error function, we

truncate the beginning portion of error function time history. With two time constants in the
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Shape Slip function | Maximum Slip Rate |
cosine Lo — L gin (2riste) 2
1 t—tg—T: 1
erf 5 (1 + erf (-—-\/—%;;i)) Trers
Brune | 1 —exp (:«g—t;_—@l) (1+ t:;t-'l) ;15

Table 5.1: Functional forms of the three slip time history shapes. Slip begins at time t = ¢, and T,
71, and 7 are all time constants.
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Figure 5.1: Slip and slip rate as a function of time for the three shapes of the slip time history

functions. Each slip time history has the same maximum slip rate. We have set £, = 0 for convenience

so slip begins at ¢ = 0.

o
o
o
o

error function, we may select both the maximum slip rate and the time when it occurs. However,
the time of the maximum slip rate must be late enough, so that the portion we truncate remains
negligible. Olsen and Archuleta (1996) often use this shape when simulating earthquakes with
prescribed ruptures. Typically, we use the third shape, the integral of Brune’s (1970) far field time
function, for the slip time history. In contrast to the other two shapes, the acceleration is nonzero
when slip begins. Additionally, the maximum slip rate occurs early in the time history, which leads
to an non-symmetric slip rate. When a point starts to slip, we expect a nonzero acceleration, so this
third shape matches more closely with what we expect physically.

The shape of the slip time history along with the rupture speed controls the frequency content of

the waves generated in the domain. As discussed in section 2.3, we need ten nodes per wavelength
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for the shortest period shear wave. We now examine the frequency content of the slip time histories
using the magnitude of the Fourier coefficients. Figure 5.2 shows the magnitude of the Fourier
coefficients for each slip time history as a function of frequency. As we approach 0.75Hz from the
left, each distribution falls off at a different rate with the error function falling most rapidly and
the integral of Brune’s far field time function falling gradually. Above about 0.75Hz, all three have
nearly identical frequency distributions. The band limited features of these three slip time histories
match well with our constraint of simulating only the long-period ground motion due to the limited

resolution of the finite-element mesh.

© 0.15 r 1
.5 — COSine
8 - - erf
k3 0.12 -~ Brune
5]
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Figure 5.2: Fast Fourier transforms of the three shapes of slip time history functions using time

histories with 1024 points, a time step of 0.02sec, and the same time constants as those used in
figure 5.1.

5.3 Slip Distribution

We use the spatial interpolation procedure outlined in section 2.5 to specify the final distribution of
slip on the fault surface. With a dense population of points, we may independently specify the final
slip at each node on the fault surface. In general, we want a relatively uniform distribution of slip
that is tapered at the edges and may or may not contain some degree of heterogeneity. Consequently,
we nearly always use three simple construction techniques to generate the spatial distribution. We
taper the slip at three or four of the edges using an exponential function. Scaling the nominal value
of slip produces the desired average value. Introducing circular asperities of various sizes and values
gives heterogeneity to the distribution.

We taper the slip at the edges of the fault to emulate the smothering of the rupture at the
boundaries of the fault surface. We taper all four edges when we bury the fault, but may allow the

rupture to reach the surface when the fault reaches the surface by tapering only three edges, i.e.,
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the lateral edges and the bottom. Equation (5.1) gives the final slip as a function of location along
the strike, p, and location along the dip, ¢, where D, denotes the nominal value of final slip and
d denotes a distance which controls the rate of decay of slip. Figure 5.3 illustrates the coordinate
system with the center of the fault given by (p,,¢,). The constant C controls on how many edges
we taper the slip. We set C' = 0 when g > ¢, and we want to taper the slip on only three edges, and

we set C' = 1 when we want to taper the slip along all four edges.

b= b, (1- o (F2Z2=2DY) (1o (FZiZ0DY) g

(Po» 4o)

p
Figure 5.3: Strike and dip coordinates used in the slip tapering function.

We add circular asperities with different radii and heights to give heterogeneity to the distribu-
tion. Equation (5.2) gives the height of the asperity as a function of radius. The radius r, denotes
the radius at which the height has decayed to 5% of the peak value. Figure 5.4 illustrates the

cross-section of an asperity of height D, and radius r,.

2
D = D,exp (—;—2> , where (5.2)
(2]
2
r2 = "a
In 20

5.4 Rupture Speed

We set the rupture speed relative to the local shear wave speed. If, instead, we choose to ignore
variations in material properties and enforce a uniform rupture speed, we will have large variations
in the rupture speed relative to the shear wave speed. Numerical modeling, such as that in chapter 8

and that by Burridge et al. (1979), suggests stable ruptures tend to propagate at nearly uniform
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Figure 5.4: Cross-section of an asperity with height D, and radius r,.

speeds relative to the local shear wave speed. Consequently, we impose a uniform rupture speed
relative to the local shear wave speed. The speed of the rupture governs when adjacent points on
the fault should start to slip. This means that specifying the rupture speed involves setting the
time when each point on the fault begins to slip. The rupture starts at the hypocenter, which we
require to coincide with a node in the finite-element model. The following algorithm outlines how
we prescribe the time when the sides of the fault begin to move relative to each other at each node

on the fault.
1. Set the hypocenter node to start slipping at time ¢ = 0 (¢; = 0 in table 5.1).

2. Set the time when slip begins for all nodes adjacent to the hypocenter node. We use the
finite-element faces on the fault plane to define adjacent nodes, which in this case means that
the nodes lie on an edge of an element face on the fault plane. For node ¢ adjacent to the

hypocenter node, which lies on an edge of length ! contained in element j, the time when slip

begins is

l
to = mm(ﬁ,j == ]....N), (5.3)
e}

where v, is the rupture speed as a fraction of the local shear wave speed () and N is the

number of elements with edges on the fault plane containing the hypocenter node and node i.
3. Iterate to propagate the rupture front (start times) along each element face on the fault surface.

(a) For each element face on the fault plane, we check to see if we changed any of the start
times for its nodes in the last iteration. If we did change at least one start time and have

assigned start times to at least two nodes on the face (which we will denote as node A
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and node B), then we set the start time at the node with the latest start time (which we
will denote as node C) using equation (5.4). We change the start time at node C only
if the new start time is earlier than the previous one. We denote the start time at node
A as t4, the start time at node B as tp, and the distance between node ¢ and node j as

d;;. Figure 5.5 illustrates the other quantities used in equation (5.4).

to = (i(:g , where (5.4)
d%p =18+ die — 2rpdpe cos(fy + 6)

TA = Upta

B = UrlB

1 e
b= d. | B A
y (aam 1 75T

0, = arccos (i) from AABC
"B

2 2 82
f1 = arccos (dAB ~ die d‘%) from ABCD
2dapdpc

(b) Find the number of start times we changed this iteration. If we did not change any start

times, then we are done. Otherwise, continue iterating.
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Figure 5.5 Diagramn of the quantities used to propagate rupture front along an element face. The
D is the apparent hypocenter, and we set the start time at node C.

clement face is AABC, point
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Chapter 6 Validation of Simulation Software

In this chapter we discuss the validation of the simulation software in terms of how well it succeeds
in modeling the wave propagation. We check the ground motion time histories to verify that they
acenrately predict both the arrivals and amplitudes of the varions phases. Additionally, we examine
the final displacements in the ground motions to see how well they match those predicted by a static
analysis. The performance of the absorbing boundary will also be evident in the ground motions.
For the validation we solve the problem of a propagating rupture on a buried, dipping, finite fault

in a homogeneous half-space.

6.1 Domain Geometry

We model a region 60 km long by 60 km wide down to a depth of 24 km. As shown by figure 6.1, we
bury the 28 km long and 18 km wide fault 8.6 lan below the surface. The fault strikes west and dips
23 degrees to the north. We impose a rake angle of 105 degrees from the strike; this corresponds to
¢ = 270 degrees, ¢ = 23 degrees, and A = 105 degrees in figure 2.4. We use homogeneous material
properties with a dilatational wave speed of 5.85 km/ sec, a shear wave speed of 3.40km/sec, and a
density of 2500 kg/m?. These material properties correspond to those typically found at depths of
10-20km.

We created the finite-element model at a coarse resolution and used the 2x refinement procedure
discussed in section 3.5 to globally refine the mesh to a resolution of ten nodes per wavelength for
a shear wave with a period of 2.0sec. The coarse mesh contains 6389 nodes and 31,879 elements;
the mesh at fine resolution contains approximately 400,000 nodes and two million elements. The
simulation took 1.2 hours using 64 processors on the Intel Paragon or 40 minutes using 12 processors

on the Hewlett Packard Exemplar at the CACR.

6.2 Validation of Ground Motion Time Histories

We prescribed the slip at each point on the fault using the integral of Brune’s far field time func-
tion with a final slip of 1.0m and a maximum slip rate of 0.74m/sec. The hypocenter lies along
the east-west centerline of the fault at a depth of 15km. The rupture propagates away from the
hypocenter at a uniform speed of 2.7 km/sec, which is 80% of the shear wave speed. We compare the

ground motions generated using the finite-element model with ones generated using point dislocation
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Figurc 6.1: Orthographic view of domain geometry used for validation of the simulation software.
The star denotes the hypocenter. We examine the final displacements along the two dash-dotted
lines on the ground surface and velocity time histories at sites A-D.

solutions obtained by discrete-wave-number finite-element techniques.®

We compare velocity time histories at four sites on the ground surface, labeled A, B, C, and D in
figure 6.1. Site A lies directly above the top of the fault, and site D lies at the absorbing boundary.
Tigures 6.2—6.5 show the north-south and vertical components of the velocity time histories at each
site for the two simulation methods. All of the time histories have been low-pass filtered using
a Butterworth filter with a corner frequency of 0.5 Hz. We do not see any evidence of delays in
arrival of the phases, and the velocity amplitudes agree reasonably well. We want the best accuracy
where the motion is most severe, and, indeed, this is the case. The time histories for the vertical
component match very well, especially close to the fault. The limited amount of energy arriving late
in the velocity time histories of the finite-element simulation confirms that the absorbing boundaries
adequately prevent reflections from the lateral sides and the bottom of the domain. At the absorbing
boundary, site D, the velocity time histories agree less well, but as we noted, the absorbing boundary
does its job. L'herefore, we find the level of accuracy of the ground motions acceptable, provided

that we don’t use the sites on the absorbing boundary in any analysis.

1 David Wald at the United States CGeological Survey office in Pasadena provided these time historica. More details
regarding the method he used may be found in the paper by Hall et al. (1995).
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Figure 6.2: Velocity time histories in the north-south and vertical directions at site A, which is
located directly above the top of the fault. The solid lines indicate the time histories from the finite-
element solution, and the dashed lines indicate the time histories from the discrete-wave-number
solution.
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Figure 6.3: Velocity time histories in the north-south and vertical directions at site B, which is located
10 km south of the top of the fault. The solid lines indicate the time histories from the finite-element
solution, and the dashed lines indicate the time histories from the discrete-wave-number solution.

6.3 Validation of Static Displacements

In addition to verifying the velocity time histories, we also compare the final displacements from
the finite-element simulation with the displacements computed from a static analysis. For the static
analysis we compute the displacements from point source dislocations using the analytical solution
given by Heaton and Heaton (1989). We uniformly distribute 2016 point sources over the fault surface

to mimic the uniform slip of 1.0m in the finite-element model. We examine all three components of
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Figure 6.4: Velocity time histories in the north-south and vertical directions at site C, which is located
20 km south of the top of the fault. The solid lines indicate the time histories from the finite-element
solution, and the dashed lines indicate the time histories from the discrete-wave-number solution.
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Figure 6.5: Velocity time histories in the north-south and vertical directions at site D, which is
located on the absorbing boundary and 25 km south of the top of the fault. The solid lines indicate
the time histories from the finite-element solution, and the dashed lines indicate the time histories
from the discrete-wave-number solution.

displacement along the north-south running centerline of the domain and along the east-west line
along the top of the fault, as denoted by the dash-dotted lines in figure 6.1.

Tigure 6.6 shows the comparison between the horizontal componcents along both lincs. Figure 6.7
and figure 6.8 demonstrate the vertical displacements also match well along the north-south and east-
west lines. The rake angle of 105 degrees deforms the ground surface to the south and slightly to
the east (visible in figure 6.6 and figure 6.8). Approaching the edges of the domain, the north-south

displacements from the finite-element model gradually diverge from those of the static analysis,
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Figure 6.6: Horizontal components of the final (static) displacements along two lines on the ground
surface. The dotted line indicates the projection of the fault plane onto the ground surface. The
north-south line passes though the center of the domain, and the east-west line along the top of the
fault. The thin, solid lines show the original locations of the lines. The displacements have been

scaled by a factor of 50,000.

because the absorbing boundaries do not model the stiffness of the truncated portion of the domain
as discussed in section 2.3.3. This leads to a slightly slower decay with distance from the source
in the final displacements of the finite-element model compared to the analytical solution. The

east-west displacements exhibit excellent agreement across the domain.

6.4 Discussion

The results from the finite-element simulation show close agreement with those from the discrete-
wave-number technique and the static analysis. The absorbing boundary effectively prevents con-
tamination of the solution in the interior of the domain from reflections off the lateral sides and the
bottom of the domain. Comparison of the velocity time histories also suggests that we cannot use
the ground motions at the absorbing boundaries for any analyses because the dampers distort the
time histories. Additionally, the static displacements near the edges of the domain have limited ac-
curacy, as a result of the lack of stiffness provided by the absorbing boundary. Hence, the simulation
software provides accurate results as long as we ignore the ground motions very close to the edges
of the domain.

In the above validation we use homogeneous material properties. We also want to simulate

the ground motions in heterogeneous domains with the same confidence in the accuracy of the
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Figure 6.6: Horizontal components of the final (static) displacements along two lines on the ground
surface. The dotted line indicates the projection of the fault plane onto the ground surface. The
north-south line passes though the center of the domain, and the east-west line along the top of the

fault. The thin, solid lines show the original locations of the lines. The displacements have been
scaled by a factor of 50,000.

because the absorbing boundaries do not model the stiffness of the truncated portion of the domain
as discussed in section 2.3.3. This leads to a slightly slower decay with distance from the source
in the final displaccments of the finite-element model compared to the analytical solution. The

east-west displacements exhibit excellent agreement across the domain.

6.4 Discussion

The results from the finite-element vsimulation show close agreement with those from the discrete-
wave-number technique and the static analysis. The absorbing boundary effectively prevents con-
tamination of the solution in the interior of the domain from reflections off the lateral sides and the
bottom of the domain. Comparison of the velocity time histories also suggests that we cannot use
the ground motions at the absorbing boundaries for any analyses because the dampers distort the
time histories. Additionally, the static displacements near the edges of the domain have limited ac-
curacy, as a result of the lack of stiffness provided hy the ahsorhing houndary. Hence, the simulation
software provides accurate results as long as we ignore the ground motions very close to the edges
of the domain.

In the above validation we use homogeneous material properties. We also want to simulate

the ground motions in heterogeneous domains with the same confidence in the accuracy of the
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Figure 6.7: Vertical and north-south components of the final (static) displacements on the ground
surface along the north-south line passing though the center of the domain. The dotted line indicates
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Figure 6.8: Vertical and east-west components of the final (static) displacements on the ground
surface along the east-west line along the top of the fault. The dotted line indicates the projection
of the fault plane onto the vertical slice. The displacements have been scaled by a factor of 50,000.

ground motions. Because we assume homogeneous material properties within an element, varying
the material properties involves simply setting the properties in each element according to some
specified spatial distribution. As discussed section 2.3, the node spacing governs the accuracy of
the ground motions, so we limit the errors in the simulation by adjusting the node spacing with the
material properties. In other words, in order to handle heterogeneous material properties with the
same level of accuracy, all we need to do is to insure that we maintain the appropriate node spacing

throughout the domain.
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Figure 6.7: Vertical and north-south components of the final (static) displacements on the ground
surface along the north-south line passing though the center of the domain. The dotted line indicates
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factor of 50,000.
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Figure 6.8: Vertical and east-west components of the final (static) displacements on the ground
surface along the east-west line along the top of the fault. The dotted line indicates the projection
of the fault plane onto the vertical slice. The displacements have been scaled by a factor of 50,000.

ground motions. Because we assume homogeneous material properties within an element, varying
the material properties involves simply setting the properties in each element according to some
epecified spatial distribution. As discussed section 2.3, the node spacing governs the accuracy of
the ground motions, so we limit the errors in the simulation by adjusting the node spacing with the
material properties. In other words, in order to handle heterogeneous material properties with the
same level of accuracy, all we need to do is to insure that we maintain the appropriate node spacing

throughout the domain.
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Chapter 7 Sensitivity Study of Near-Source

Ground Motion with Prescribed Ruptures

We now use two sets of prescribed rupture simulations to study the sensitivity of the long-period near-
source ground motions to variations in the earthquake source parameters. We want to understand
the variability in the near-source ground motions for changes in the seismic source and identify those
parameters that most strongly influence the near-source ground motions. We systematically vary
the seismic source parameters for both a strike-slip fault and a shallow dipping thrust fault. We
select different hypocenter locations, maximum slip rates, rupture speeds, spatial distributions of
the final slip, average slips, and the depth of the top of the fault. Additionally, we compare the

ground motions from a layered half-space with those from a homogeneous half-space.

7.1 Strike-Slip Fault

The geometry of the strike-slip fault roughly matches the combined fault segments that ruptured
in the June 1992 Landers event. We enclose the 60km long and 15km wide fault in a domain
100km long, 40 km wide, and 32km deep as shown in figure 7.1. We impose pure right-lateral slip
on the vertical fault that strikes north. We offset the fault 10 km to the south from the center of the
domain in anticipation of locating the hypocenters on the southern half of the fault and generating

the largest displacements near the north end of the fault.

7.1.1 Finite-Element Model

We use two different finite-element models, one for the layered material properties case and one for
the homogeneous material properties case. Table 7.1 and figure 7.2 show the mass density, shear
wave speed, and dilatational shear wave speed as a function of depth for the layered half-space. For
the homogeneous half-space we simply use the material properties that are associated with a depth
of 6.0km in the layered half-space.

We use IDEAS to create the finite-element model at coarse resolution and the 4x refinement
procedure outlined in section 3.5 to create a mesh with the appropriate node spacing to model wave
propagation with periods down to 2.0sec. Table 7.2 gives the sizes of the finite-element models at
coarse and fine resolution for the layered and homogeneous half-spaces. Figure 7.3 illustrates the

partition of the finite-element mesh for the layered half-space among 256 processors using the inertial
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Figure 7.1: Orthographic projection of the domain geometry for the strike-slip fault for the case
where the top of the fault reaches the ground surface. The labels HA through HD denote the
various hypocenter locations. We will examine the waveforms at sites S1 and S2.

. 00km

Depth | Dilatational Wave Speed | Shear Wave Speed | Mass Density
(km) (km/sec) (km/sec) (g/cm®)
0.0 1.80 0.70 1.50
3.0 4.50 2.60 2.00
6.0 5.70 3.30 2.45
20.9 5.85 3.40 2.50
21.0 6.45 3.75 2.60
32.0 6.74 3.92 2.63

Table 7.1: Density, shear wave speed, and dilatational wave speed control elevations for the layered

half-space.

Homogeneous Layered
Course Fine Course Fine
# Nodes 9500 610,000 33,000 | 2.1 million
# Elements | 48,000 | 3.0 million | 160,000 | 10 million

Table 7.2: Sizes of the finite-element models of the layered and homogeneous half-spaces at coarse

and fine resolution.

bisection algorithm. Each simulation took 2.8 hours using 256 processors of the Intel Paragon at

the CACR.
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Figure 7.2: Density (p), shear wave speed (S), and dilatational wave speed (P) as a function of depth
for the layered half-space.
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Figure 7.3: Partitioning of the coarse finite-element model among 256 processors for the layered
half-space using the inertial bisection algorithm. Each color patch identifies the elements of one
processor.

7.1.2 Earthquake Source Parameters

We vary five earthquake source parameters: the location of the hypocenter, the rupture speed, the
maximum slip rate, the distribution of slip, and the fault depth. As shown in table 7.3, 15 of the
simulations use the layered half-space model, while the other 2 use the homogeneous half-space
model. The base case, scenario basell, features a homogeneous slip distribution that is tapered
on three edges, a rupture speed of 80% of the local shear wave speed, a maximum slip rate of

1.5m/sec, and a hypocenter located mid-depth at the south edge of the fault (hypocenter HA). For
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Figure 7.2: Density (p), shear wave speed (S), and dilatatianal wave speed (P) as a function of depth
for the layered half-space.
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Figure 7.3: Partitioning of the coarse finite-element model among 256 processors for the layered

half-space using the inertial bisection algorithm. Each color patch identifies the elements of one
ProCessor.

7.1.2 Earthquake Sourcc Paramcters

‘We vary five earthquake source parameters: the location of the hypocenter, the rupture speed, the
maximum slip rate, the distribution of slip, and the fault depth. As shown in table 7.3, 15 of the
simulations use the layered half-space model, while the other 2 use the homogeneous half-space
model. The base case, scenario basell, features a homogeneous slip distribution that is tapered
on three edges, a rupture speed of 80% of the local shear wave speed, a maximum slip rate of

1.5m/sec, and a hypocenter located mid-depth at the south edge of the fault (hypocenter HA). For
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each parameter we generally vary the value equally about the base case, e.g., we select maximum

slip rates of 2.0m/sec and 1.0m/sec about the base case value of 1.5m/sec.

Scenario Slip Rupture | Maximum | Hypocenter | Fault Material | Mom.
Pattern Speed Slip Rate Location | Depth | Properties | Mag.
% of B (m/sec) (km)
base unitaper 80 1.5 HA 0.0 layered 7.0
basell semitaper 80 1.5 HA 0.0 layered 7.0
vr70 semitaper 70 1.5 HA 0.0 layered 7.0
vr90 semitaper 90 1.5 HA 0.0 layered 7.0
vs10 semitaper 80 1.0 HA 0.0 layered 7.0
vs20 semitaper 80 2.0 HA 0.0 layered 7.0
hymq sermitaper 80 1.5 HB 0.0 layered 7.0
hybq semitaper 80 1.5 HC 0.0 layered 7.0
hyme semitaper 80 1.5 HD 0.0 layered 7.0
sliptop weakupper 80 1.5 HA 0.0 layered 7.0
slipbot weaklower 80 1.5 HA 0.0 layered 7.0
sliphet strongheter 80 1.5 HA 0.0 layered 7.0
slip3 semitaper3 80 1.5 HA 0.0 layered 7.1
faultdkm | unitaper 80 1.5 HA 4.0 layered 7.1
fault8km | unitaper 80 1.5 HA 8.0 layered 7.1
homo semitaper 80 1.5 HA 0.0 homo. 7.1
hvr90 semitaper 90 1.5 HA 0.0 homo. 7.1

Table 7.3: Summary of the parameters for the prescribed rupture simulations on the strike-slip fault.

Hypocenter Locations

The four hypocenter locations on the southern half of the fault are labeled HA through HD in
figure 7.1, and the precise locations are given in figure 7.4. Hypocenter HA sits mid depth at the
southern edge of the fault, hypocenter HB sits mid-depth at the southern quarter point, hypocenter
HC sits at the bottom of the fault at the southern quarter point, and hypocenter HD sits at the

center of the fault.
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Figure 7.4: Hypocenter locations on the fault plane.



Slip Time Histories and Rupture Speeds

We use the integral of Brune’s far field time function (discussed in section 5.2) for the slip time
histories. For each simulation we set a spatially uniform maximum slip rate of 1.0 m/sec, 1.5m/sec,
or 2.0 m/sec. Additionally, we independently choose a rupture speed of 70%, 80%, or 90% of the local
shear wave speced. The median values of 1.5 m/sec and 80% of the shear wave speed correspond (o
a typical slip rate and average rupture speed found in inversions of strong ground motions (Heaton
1990). We choose to keep the maximum slip rate uniform over the fanlt surface, hecanse great
uncertainty still exists regarding the duration of slip for very shallow rupture. Source inversions of
the Landers earthquake (Wald and Heaton 1994) and the Kobe earthquake (Wald 1996) inferred slip
durations of more than four seconds for the shallow slip, but eyewitnesses reported slip durations
of one second or less for the 1990 Luzon earthquake in the Phillipines (Yomogida and Nakata 1994)
and the 1983 Borah Peak earthquake (Wallace 1984).

We determine the final slip at each node on the fault based on the given spatial distribution of
slip. The six slip distributions include: a homogeneous distribution that is tapered on all four edges
(figure 7.5), two homogeneous distributions that are tapered on three edges (figure 7.6 and figure 7.7),
two weakly heterogeneous distributions (figure 7.8 and figure 7.9), and a strongly heterogencous
distribution (figure 7.10). For the heterogeneous distributions, we start with a homogeneous slip
distribution with a nominal value and add 30 asperities with uniform random distributions of radii
(as given in table 7.4), heights (as given in table 7.4), strike locations between 2.0km and 58 km,
and dip locations between 0.0km and 13km. The weakly heterogeneous slip distributions have a
bias towards larger slips on either the upper half of the fault (weakupper!) or the lower half of the
fault (weaklower?). We adjust the height of all asperities that lie in the dip range of the bias by the

amount given in table 7.4.

Distribution | Nominal | Asperity | Asperity Bias
Slip Heights Radii Dip Height Adj.
(m) (m) (km) (km) (m)
weakupper 1.57 -0.25-1.0 | 5.0-10.0 | 2.0-7.5 +0.25
weaklower 1.52 -0.25-1.0 | 5.0-10.0 | 7.5-13.0 -+0.25
strongheter 0.28 0.0-3.2 | 3.0-8.0 N/A 0.0

Tahle 7.4: Agperity parameters used in the heterogeneous slip distributions on the strike-slip fault.

Fault Depth

We place the top of the fault at three different depths while maintaining the same length and

width. When we bury the fault 8.0km below the ground surface, the material properties do not

1Weak refers to the heterogeneity, and upper refers to the region of greater slip.
2Weak refers to the heterogeneity, and lower refers to the region of greater slip.
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Figure 7.5: Homogeneous slip distribution unitaper that is tapered on all four edges with an average
slip of 2.0m and a maximum slip of 2.5m.
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Figure 7.6: Homogeneous slip distribution semitaper that is tapered on three edges with an average
slip of 2.0m and a maximum slip of 2.3 m.
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Figure 7.7: Homogeneous slip distribution semitaper3 that is tapered on three edges with an average
slip of 3.0m and a maximum slip of 3.4m.

vary appreciably on the fault surface. Consequently, the rupture speed is nearly uniform. When we
bury the fault 4.0 km below the ground surface, the material becomes softer in the top 2.0 km of the
fault surface, and the rupture slows down slightly as it runs through this region. When the fault
surface reaches the ground surface, the material becomes progressively softer in the top 6.0 km. The

slower rupture speed near the surface causes significant curvature in the rupture front.
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Figure 7.5: Homogeneous slip distribution unitaper that is tapered on all four edges with an average
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Figure 7.7: Homogeneous slip distribution semitaper3 that is tapered on three edges with an average
slip of 3.0m and a maximum slip of 3.4m.

vary appreciably on the fault surface. Consequently, the rupture speed is nearly uniform. When we
bury the fault 4.0 km below the ground surface, the material becomes softer in the top 2.0km of the
fault surface, and the rupture slows down slightly as it runs through this region. When the fault
surface reaches the ground surface, the material becomes progressively softer in the top 6.0 km. The

slower rupture speed near the surface causes significant curvature in the rupture front.
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Figure 7.8: Weakly heterogeneous slip distribution weakupper that is tapered on three edges with
an average slip of 2.0 m, a maximum slip of 4.7 m, and a bias towards slip near the surface.
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Figure 7.9: Weakly heterogeneous slip distribution weaklower that is tapered on three edges with
an average slip of 2.0 m, a maximum slip of 3.4 m, and a bias towards slip at depth.
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Figure 7.10: Strongly heterogeneous slip distribution strongheter that is tapered on three edges with
an average slip of 2.0m and a maximum slip of 7.8 m.

7.1.3 Simulation Results

We will examine only the base case, scenario basell, in detail. For the other simulations, we examine
groups of scenarios in order to study the sensitivity of the ground motions to a single parameter.
For all of the scenarios with the top of the fault at the ground surface and an average slip of 2.0 m,
the earthquakes have a moment magnitude of 7.0. Thus, for these scenarios, any variability in the

ground motions is independent of the moment magnitude. Each simulation took 2.8 hours using 256
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Figure 7.8: Weakly heterogeneous slip distribution weakupper that is tapered on three edges with
an average slip of 2.0m, a maximum slip of 4.7 m, and a bias towards slip near the surface.
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Figure 7.9: Weakly heterogeneous slip distribution weaklower that is tapered on three edges with
an average slip of 2.0m, a maximum slip of 3.4m, and a bias towards slip at depth.
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Figure 7.10: Strongly heterogeneous slip distribution strongheter that is tapered on three edges with
an average slip of 2.0 m and a maximum slip of 7.8 m.

7.1.3 Simulation Results

We will examine only the base casc, sconario bascll, in detail. For the other simulations, we examine
groups of scenarios in order to study the sensitivity of the ground motions to a single parameter.
For all of the scenarios with the top of the fault at the ground surface and an average slip of 2.0m,
the earthquakes have a moment magnitude of 7.0. Thus, for these scenarios, any variability in the

ground motions is independent of the moment magnitude. Each simulation took 2.8 hours using 256



62

processors on the Intel Paragon at the CACR.

Base Case

We start with an examination of the slip rate on the fault as a function of time. The snapshots of slip
rate, shown in figure 7.11, clearly identify the curvature of the rupture front. The rupture propagates
slower in the softer material in the top 6.0km of the domain, so that the rupture at the surface falls
farther and farther behind the rupture at depth. The width of the rupture front narrows in the
softer material in response to the slower rupture speed. The jaggedness of the rupture that begins
at around sixteen seconds comes from propagating the rupture front with an increasing curvature
through the finite elements. Furthermore, as the rupture front nears the edge of the domain, the
final slips decrease while the maximum slip rate remains uniform, so the contours of slip rate in
figure 7.11 uo longer represent the location of the rupture front.

The velocity on the ground surface shows the propagation of the shear wave and a train of surface
waves. Figure 7.12 gives snapshots in time of the magnitude of the velocity vector at each point on
the ground surface. The velocities have been filtered using a fourth-order Butterworth filter with a
corner frequency of 0.5Hz. The magnitude of the velocity near the fault increases as the rupture
progresses and dies quickly after the rupture reaches the north end of the fault at about 24 sec. The
most severe ground motions are concentrated close to the fault. The rupture excites trains of surface
waves that propagate behind the sheaf wave and create a wedge-shaped interference pattern. While
less than the amplitude of the shear wave, the amplitudes of some of the surface waves do exceed
1.0m/sec starting at around thirteen seconds.

The maximum horizontal displacements and the maximum horizontal velocities on the ground
surface (figure 7.13) give a clear picture of the effect of directivity on the ground motions. Both
the maximum displacements and the maximum velocities are symmetric about the fault plane due
to the symmetry of the problem. The shear wave with particle motion perpendicular to the fault
plane (east-west direction) builds as the rupture propagates. This leads to a maximum horizontal
displacement of 2.2m at sites 1.7km east or west of the north end of the fault. The maximum
velocity of 2.9 m/sec occurs slightly farther south at sites located 6.7 km south and 0.5km east or
west of the north end of the fault. The maximum velocities (filtered to periods longer than 2.0 sec)
exceed 1.0m/sec over an area of 700 square kilometers. In contrast to the maximum displacements
that increase along the strike of the fault, the maximum velocities increase, decrease, and then
increase again along the strike of the fault. The changing curvature of the rupture front disrupts
the reinforcement of the shear wave by the propagating rupture and causes the reduction in the
maximum velocities on the ground surface above the center of the fault. However, the reinforcement
of the rupture front stabilizes, and the velocities build for approximately the last 25km of the

rupture.
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Figure 7.11: Snapshots of slip rate on the fault surface for scenario basell.
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The directivity of the rupture causes large variations in the ground motions with changes in
azimuth (angle between the projection of the slip vector onto the ground surface and the vector
from the epicenter to the site). We will consider two sites located 10 km from the edge of the fault
but with azimuths that differ by 90 degrees; the sites are labeled S1 and S2 in figure 7.1. Site S1 lies
10 km north of the north end of the fault (azimuth of 0 degrees) and site S2 lies 10 km east of the fault
center (azimuth of 90 degrees). Figure 7.14 shows all three displacement and velocity components

for the two points. Both the displacements and velocities have been filtered using a fourth-order
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Figure 7.11: Snapshots of slip rate on the fault surface for scenario basell.

The directivity of the rupture causes large variations in the ground motions with changes in
azimuth (angle between the projection of the slip vector onto the ground surface and the vector
from the epicenter to the site). We will consider two sites located 10km from the edge of the fault
but with azimuths that ditfer by 90 degrees; the sites are labeled S1 and 52 in figure 7.1. Site S1 lies
10 ki north of the north end of the fault (azimuth of 0 degrees) and site S2 lies 10 ki east of the fault
center (azimuth of 90 degrees). Figure 7.14 shows all three displacement and velocity components

for the two points. Both the displacements and velocities have been filtered using a fourth-order
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Figure 7.12: Snapshots of the magnitude of the velocity vector at each point on the ground surface
for scenario basell. The white line indicates the projection of the fault onto the ground surface, and
the yellow circle identifies the epicenter.

Butterworth filter with a corner frequency of 0.5 Hz.? The north-south and vertical components are
negligible at site S1 because the site falls on the north-south running line of symmetry. The vertical
component at site S2 is also very small. This means that at site S1 the only surface waves we observe
are Love waves, while at site S2 we observe both Love and Rayleigh waves.

The most important difference between the two sites is the fact that, while both have similar

3We use the same digital filter on all subsequent displacement and velocity time histories.
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Figure 7.12: Snapshots of the magnitude of the velocity vector at each point on the ground surface

for scenario basell. The white line indicates the projection of the fault onto the ground surface,

the yellow circle identifies the epicenter.

and

Butterworth filter with a corner frequency of 0.5 Hz.? The north-south and vertical components are

negligible at site S1 because the site falls an the north-south running line of symmetry. The vertical

component at site S2 is also very small. This means that at site S1 the only surface waves we observe

are Love waves, while at site S2 we observe both Love and Rayleigh waves.

The most important difference between the two sites is the fact that, while both have similar

3We use the same digital filter on all subsequent displacement and velocity time histories.
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Figure 7.13: Maximum magnitudes of the horizontal displacement and velocity vectors at each point
on the ground surface for scenario basell. The white line indicates the projection of the fault plane
onto the ground surface, and the yellow circle identifies the epicenter.

peak horizontal displacements (1.2m at site S1 and 0.90m at site S2), the peak horizontal velocity
at site S1 is 2.8 times greater than the peak horizontal velocity at site S2 (1.4 m/sec at site S1 versus
0.49m/scc at site S2). The dircctivity cffect causcs the shear wave cnergy from all points on the
fault to arrive at nearly the same time at site S1. At site S2 the energy arrives over a longer interval
of time which reduces the peak velocity. This is evident in the acceleration response spectra? in
figure 7.15, where the spectrum for site S1 contains large peaks at periods of 1.9sec and 3.1 sec, and

the spectrum for site S2 contains a small, broad peak centered at around 3.0 sec.

Material Properties

In order to understand the effect of including softer material near the ground surface, we compare
the waveforms at sites S1 and S2 from the base case, scenario basell, where we use a layered half-
space, with those from scenario homo, where we use a homogeneous half-space. The horizontal
displacements (figure 7.16) at sites ST and S2 provide a good representation of the differences in
the ground motions between the two scenarios. The displacements are significantly larger in the

layered half-space, and the time histories in the homogeneous case do not contain the four or five

4The waveforms have been rotated into the direction with the maximum peak to peak velocity using a resolution
of 2 degrees (90 degrees east of north for site S1 and 88 degrees east of north for site S2).
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Figure 7.13: Maximum magnitudes of the horizontal displacement and velocity vectors at each point
on the ground surface for scenario basell. The white line indicates the projection of the fault plane
onto the ground surface, and the yellow circle identifies the epicenter.

peak horizontal displacements (1.2 m at site S1 and 0.90m at site S2), the peak horizontal velocity
at site S1 is 2.8 times greater than the peak horizontal velocity at site S2 (1.4m/sec at site 51 versus
0.49m/sec at site S2). The directivity effect causes the shear wave energy from all points on the
fault to arrive at nearly the same time at site S1. At site 82 the energy arrives over a longer interval
of time which reduces the peak velocity. This is evident in the acceleration response spectra® in
figure 7.15, where the spectrum for site S1 contains large peaks at periods of 1.9sec and 3.1 sec, and

the spectrum for site S2 contains a small, broad peak centered at around 3.0 sec.

Material Properties

In order to understand the effect of including softer material near the ground surface, we compare
the waveforms at sites S1 and S2 from the base case, scenario basell, where we use a layered half-
space, with those from scenario homo, where we use a homogeneous half-space. The horizontal
displacements (figure 7.16) at sites S1 and 52 provide a good representation of the differences in
the ground motions between the two scenarios. The displacements are significantly larger in the

layered half-space, and the time histories in the homogeneous case do not contain the four or five

4The waveforms have been rotated into the direction with the maximum peak to peak velocity using a resolution
of 2 degrees (90 degrees east of north for site S1 and 88 degrees east of north for site S2).
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Figure 7.14: Displacement and velocity time histories at sites S1 and S2 for scenario basell.
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Figure 7.15: Horizontal acceleration response spectra at sites S1 and S2 for scenario basell.

cycles of motion associated with the surface waves found in the layered half-space. At both sites the

final displacements match very well as do the very long-period motions. Hence, when we prescribe

the slip on the fault, the softer malterial near the surface has little eflect on the very long-period

progression towards the final deformation. However, the layered half-space generates much larger,

short period displacements with four or five cycles compared to the single cycle in the homogeneous
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Figure 7.14: Displacement and velocity time histories at sites S1 and S2 for scenario basell.
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Figure 7.15: Horizontal acceleration response spectra at sites S1 and S2 for scenario basell.

cycles of motion associated with the surface waves found in the layered half-space. At both sites the
final displacements match very well as do the very long-period motions. Hence, when we prescribe
the slip on the fault, the softer material near the surface has little effect on the very long-period
progression towards the final deformation. However, the layered half-space generates much larger,

short period displacements with four or five cycles compared to the single cycle in the homogeneous
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Figure 7.16: Comparison of horizontal displacement time histories at sites S1 and S2 for a layered
half-space versus a homogeneous half-space.

half-space.

Rupture Speed

We examine the variability of the ground motions to three different rupture speeds set relative to
the local shear wave speed; scenario vr70 uses a rupture speed of 70% of the local shear wave speed,
scenario basell uses a rupture speed of 80% of the local shear wave speed, and scenario vr90 uses
a rupture speed of 90% of the local shear wave speed. As we increase the rupture speed towards
the shear wave speed, we increase the efficiency of the reinforcement of the shear wave, because we
reduce the relative distance between the shear wave and the following rupture front. If we compare
the maximum horizontal velocities on the ground surface from scenario vr90 (figure 7.17) with those
from scenario basell (figure 7.13), we see that the peak horizontal velocity increases from 2.9m/sec
to 3.5 m/sec. Furthermore, the double lobe pattern disappears because the curvature of the rupture
front changes more rapidly and the amplitude of the shear wave velocity quickly stabilizes. As a
result, for a fixed distance from the fault, the maximum velocity in the east-west (fault normal)
direction becomes nearly uniform along the northern 40km of the fault. The maximum velocities
exceed 2.5 m/sec along this northern section out to a distance of approximately two kilometers from
the fault.

Comparing the horizontal velocity components at sites S1 and S2 for the three scenarios (fig-
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Figure 7.17: Maximum magnitudes of the horizontal displacement and velocity vectors at each point
on the ground surface for scenario vr90. The white line indicates the projection of the fault plane
onto the ground surface, and the yellow circle identifies the epicenter.

ure 7.18), we see sharper phase arrivals as the rupture speed increases. The travel time to the
hypocenter remains the same, but the energy from all parts of the fault arrives closer together in
time. At sites S1 and S2 we see that this leads to a substantial increase in the amplitude of the
shear wave, while the amplitudes of the surface waves remain relatively unchanged. Besides being
compressed in time, the general shapes of the ground motions remain the same.

Figure 7.19 shows the maximum displacements and velocities along the east-west line that passes
through the north tip of the fault for each of the three rupture speeds. As the rupture speed increases,
the maximum velocities exhibit a relatively greater increase than the maximum displacements. The
maximum velocities, however, decay with distance from the fault more rapidly than the maximum
displacements. Figure 7.19 also includes the near-source ground motion factor, N,, from the 1997
Uniform Building Code (UBC). The UBC uses the near-source factor to account for the greater
demand placed on structures arising from earthquakes on nearby faults compared to those on faults
farther away. We assume that the maximum displacements and maximum velocities correlate with
the seismic demand on a structure, so that we want the shape of the near-source curve to mimic
the shapes of the maximum displacements and maximum velocities. We focus on the general shape
of the near-source factor and do not correlate values of the near-source factor with any specific

displacements of velocities. We match the near-source factor curve with the average of the peak
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ure 7.18), we see sharper phase arrivals as the rupture speed increases. The travel time to the
hypocenter remains the same, but the energy from all parts of the fault arrives closer together in
time. At sites S1 and S2 we see that this leads to a substantial increase in the amplitude of the
shcar wave, while the amplitudes of the surface waves remain relatively unchanged. Besides being
compressed in time, the general shapes of the ground motions remain the same.

Figure 7.19 shows the maximum displacements and velocities along the east-west line that passes
through the north tip of the fault for each of the three rupture speeds. As the rupture speed increases,
the maximum velocities exhibit a relatively greater increase than the maximum displacements. The
maximum velocities, however, decay with distance from the fault more rapidly than the maximum
displacements. Figure 7.19 also includes the near-source ground motion factor, N, from the 1997
Uniform Building Code (UBC). The UBC uses the near-source factor to account for the greater
demand placed on structures arising from earthquakes on nearby faults compared to those on faults
farther away. We assume that the maximum displacements and maximum velocities correlate with
the seismic demand on a structure, so that we want the shape of the near-source curve to mimic
the shapes of the maximum displacements and maximum velocities. We focus on the general shape
of the near-source factor and do not correlate values of the near-source factor with any specific

displacements of velocities. We match the near-source factor curve with the average of the peak
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Figure 7.18: Comparison of horizontal velocity time histories at sites S1 and S2 for the three rupture
speeds.

maximum displacements or velocities and the average of the maximum displacements or velocities
at sites located 15 km from the fault. The shape of the near-source factor curve closely matches the
shape of the maximum displacements. The shape of the near-source factor curve matches the shape

of the maximum velocities, except the curve of the maximum velocities has a narrower peak.

Maximum Slip Rate

Scenarios vs10, basell, and vs20 allow comparison of the ground motions from simulations with
maximum slip rates of 1.0m/sec, 1.5 m/sec, and 2.0 m/sec, respectively. Figure 7.20 illustrates the
sensitivity of the velocity ground motions at sites S1 and S2 to variations in the maximum slip rate.
At sites S1 and S2 the velocity amplitudes exhibit a moderate increase with maximum slip rate,
but the phase arrival times do not change. As the maximum slip rate increases, the slip on the
fault occurs over a shorter period of time which reduces the width of the rupture front. Because the
leading edge of the rupture front is controlled by the rupture speed, it remains the same distance
behind the shear wave as we change the maximum slip rate. Consequently, when we increase the
maximum slip rate, the center of the rupture front moves closer behind the shear wave. This leads
to more efficient reinforcement of the shear wave, and hence, larger amplitude displacements and

velocities.
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Figure 7.18: Comparison of horizontal velocity time histories at sites S1 and S2 for the three rupture
speeds.

maximum displacements or velocities and the average of the maximum displacements or velocities
at sites located 15 km from the fault. The shape of the near-source factor curve closely matches the
shape of the maximum displacements. The shape of the near-source factor curve matches the shape

of the maximum velocities, except the curve of the maximum velocities has a narrower peak.

Maximum Slip Rate

Scenarios vs10, basell, and vs20 allow comparison of the ground motions from simulations with
maximum slip rates of 1.0m/sec, 1.5m/sec, and 2.0 m/sec, respectively. Figure 7.20 illustrates the
sensitivity of the velocity ground motions at sites S1 and S2 to variations in the maximum slip rate.
At sites S1 and S2 the velocity amplitudes exhibit a moderate increase with maximum slip rate,
but the phase arrival times do not change. As the waximum slip rate increases, the slip on the
fault occurs over a shorter period of time which reduces the width of the rupture front. Because the
leading edge of the rupture front is controlled by the rupture speed, it remains the same distance
behind the shear wave as we change the maximum slip rate. Consequently, when we increase the
maximum slip rate, the center of the rupture front moves closer behind the shear wave. This leads
to more efficient reinforcement of the shear wave, and hence, larger amplitude displacements and

velocities.
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Figure 7.20: Comparison of horizontal velocity time histories at sites S1 and S2 for the three maxi-
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Comparing the maximum displacements and velocities on the east-west line running through
the north tip of the fault for the three slip rates (figure 7.21) with those in figure 7.19 for the
three rupture speeds, we see that increasing the slip rate produces a slightly greater increase in the
maximum displacements and velocities than an increase in the rupture speed. As we noted above,
whereas the rupture speed strongly influences the phase arrivals, the variation in slip rates does not
influence the phase arrivals. The shape of the UBC near-source factor curve matches the shapes of
the maximum displacements and velocities in almost an identical fashion as it did for the scenarios

with the different rupture speeds.
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Figure 7.21: Maximum magnitudes of the horizontal displacement and velocity vectors along an east-
west line running through the north tip of the fault for the three maximum slip rates. The thick,
dashed line indicates the near-source ground motion factor, N,, from the 1997 Uniform Building

Code.

Hypocenter Location

We study the sensitivity of the ground motions to the location of the hypocenter using scenario
basell (where hypocenter HA sits at the middle of the south edge of the fault as illustrated in
figure 7.4), scenario hymq (where hypocenter HB sits mid-depth at the southern quarter point),
scenario hybq (where hypocenter HC sits at the bottom of the fault at the southern quarter point),
and scenario hyme (where hypocenter HD sits at the center of the fault). Changing the location of
the hypocenter significantly alters the ground motions in some locations but has a minimal impact

at other locations. If we compare the maximum horizontal displacements and velocities on the
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Comparing the maximum displacements and velocities on the east-west line running through
the north tip of the fault for the three slip rates (figure 7.21) with those in figure 7.19 for the
three rupture speeds, we see that increasing the slip rate produces a slightly greater increase in the
maximum displacements and velocities than an increase in the rupture speed. As we noted above,
whereas the rupture speed strongly influences the phase arrivals, the variation in slip rates does not
influence the phase arrivals. The shape of the UBC near-source factor curve matches the shapes of
the maximum displacements and velocities in almost an identical fashion as it did for the scenarios

with the different rupture speeds.
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Figure 7.21: Maximum magnitudes of the horizontal displacement and velocity vectors along an east-
west line running through the north tip of the fault for the three maximum slip rates. The thick,

dashed line indicates the near-source ground motion factor, Ny, from the 1997 Uniform Building
Code.

Hypocenter Location

We study the sensitivity of the ground motions to the location of the hypocenter using scenario
basell (where hypocenter HA sits at the middle of the south edge of the fault as illustrated in
figure 7.4), scenario hywmy (where hypocenter HB sits mid-depth at the southern quarter point),
scenario hybq (where hypocenter HC sits at the bottom of the fault at the southern quarter point),
and scenario hymec (where hypocenter HD sits at the center of the fault). Changing the location of
the hypocenter significantly alters the ground motions in some locations but has a minimal impact

at other locations. If we compare the maximum horizontal displacements and velocities on the
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ground surface for scenario hybq (figure 7.22) to those from scenario basell, we find the maximum
displacements and velocities remain relatively unchanged at the north end of the fault. However, at
the south end of the fault the spatial variation of the maximum displacements and velocities changes

drastically.
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Figure 7.22: Maximum magnitudes of the horizontal displacement and velocity vectors at each point
on the ground surface for scenario hybq. The white line indicates the projection of the fault plane
onto the ground surface, and the purple circle identifics the cpicenter.

When we place the hypocenter at the middle edge of the fault (hypocenter HA), the rupture
reinforces the shear wave almost exclusively in the region north of the hypocenter. By moving
the hypocenter to the bottom quarter point (hypocenter HC), the rupture reinforces the shear
wave as it propagates towards the north, towards the south, and towards the ground surface. The
reinforcement of the shear wave south of the epicenter occurs in the same manner as it does to the
north. Consequently, the maximum displacements and velocities south of the epicenter match those
the same distance to the north until we encounter the termination of the rupture at the south end of
the fault. The propagation of the rupture towards the surface reinforces the shear waves propagating
normal to the fault. In the top 6.0 km of the domain, the shear waves propagating normal to the
fault refract towards the surface due to the vertical variation in material properties. This creates
the local peak in the maximum displacements and velocities approximately three kilometers from
the fault near the epicenter.

The ground motions at site S1 exhibit minor differences with changes in the location of the
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ground surface for scenario hybq (figure 7.22) to those from scenario basell, we find the maximum
displacements and velocities remain relatively unchanged at the north end of the fault. However, at
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Figure 7.22: Maximum magnitudes of the horizontal displacement and velocity vectors at each point
on the ground surface for scenario hybq. The white line indicates the projection of the fault plane
onto the ground surface, and the purple circle identifies the epicenter.

When we place the hypocenter at the middle edge of the fault (hypocenter HA), the rupture
reinforces the shear wave almost exclusively in the region north of the hypocenter. By moving
the hypocenter to the bottom quarter point (hypocenter HC), the rupture reinforces the shear
wave as it propagates towards the north, towards the south, and towards the ground surface. The
reinforcement of the shear wave south of the epicenter occurs in the same manner as it does to the
north. Consequently, the maximum displacements and velocities south of the epicenter match those
the same distance to the north until we encounter the termination of the rupture at the south end of
the fault. The propagation of the rupture towards the surface reinforces the shear waves propagating
normal to the fault. In the top 6.0 km of the domain, the shear waves propagating normal to the
fault refract towards the surface due to the vertical variation in material properties. This creates
the local peak in the maximum displacements and velocities approximately three kilometers from
the fault near the epicenter.

The ground motions at site S1 exhibit minor differences with changes in the location of the
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hypocenter, while the ground motions at site S2 exhibit major differences. For each of the four
hypocenter locations, site S1 lies along an azimuth of 0 degrees. Furthermore, site S1 lies far enough
away from the hypocenter in all four cases that the amplitude of the shear wave velocity stabilizes
well before it arrives at site S1. As shown in figure 7.23, the arrival times differ, but the amplitudes
of the displacement time histories remain about the same. Similarly, the points along the east-
west line through the north tip of the fault lie in the forward direction for all four hypocenter
locations. Figure 7.24 shows there is negligible variation in the maximum horizontal displacements
and velocities at these sites for the four hypocenter locations, and the shape of the UBC near-source

curve continues to mimic the shapes of the maximum displacements and velocities.
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Figure 7.23: Comparison of horizontal displacement time histories at sites S1 and S2 for the four
hypocenter locations.

At the other end of the spectrum, site S2 lies along three different azimuths for the four hypocenter
locations. When we place the hypocenter at the center of the fault (hypocenter HD), site S2 lies
on a node in the radiation pattern for displacement in the east-west and vertical directions, so it
experiences motion only in the north-south direction (figure 7.23). In this case, the sharp arrival of
the shear wave dominates the motion in the north-south direction. For the three other hypocenter
locations, the east-west (fault normal) displacements are greater than or equal to the north-south
(fault parallel) displacements. As we might expect based on the observations at site S1, we find

only minor variations in the ground motions at site S2 when we compare the ground motions from
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west line through the north tip of the fault lie in the forward direction for all four hypocenter
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Figure 7.23: Comparison of horizontal displacement time histories at sites S1 and S2 for the four
hypocenter locations.

At the other end of the spectrum, site S2 lies along three different azimuths for the four hypocenter
locations. When we place the hypocenter at the center of the fault (hypocenter HD), site 52 lies
on a node in the radiation pattern for displacement in the east-west and vertical directions, so it
experiences motion only in the north-south dircction (figure 7.23). In this case, the sharp arrival of
the shear wave dominates the motion in the north-south direction. For the three other hypocenter
locations, the east-west (fault normal) displacements are greater than or equal to the north-south
(fault parallel) displacements. As we might expect based on the observations at site S1, we find

only minor variations in the ground motions at site S2 when we compare the ground motions from
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Figure 7.24: Maximum magnitudes of the horizontal displacement and velocity vectors along an east-
west line running through the north tip of the fault for the four hypocenter locations. The thick,
dashed line indicates the near-source ground motion factor, N,, from the 1997 Uniform Building
Code.

the two hypocenter locations at the southern quarter point, because site S2 remains along the same
azimuth. Thus, as we move the hypocenter, site S2 experiences large fluctuations in the ground
motions, particularly in the east-west direction where the motion varies from being much smaller

than the north-south motion to equal to or greater than the north-south motion.

Slip Distribution

The simulations include a homogeneous slip distribution without surface rupture in scenario base,
a homogeneous slip distribution with surface rupture in scenario basell, a weakly heterogeneous slip
distribution with a bias towards slip near the surface in scenario sliptop, a weakly heterogeneous slip
distribution with a bias towards slip at depth in scenario slipbot, and a strongly heterogeneous slip
distribution in scenario sliphet. Small perturbations in the final distribution of slip cause negligible
differences in the ground motions. Large perturbations do affect the ground motions, particularly
the displacement time histories. Figure 7.25 shows the maximum displacements and velocities on the
ground surface for scenario sliphet, which uses the strongly heterogeneous slip distribution shown
in figure 7.10. In this case, the rupture does not continuously reinforce the shear wave; instead
it reinforces the shear wave in short intervals. As a result, the maximum displacements form a

complex pattern of peaks and valleys compared to the simple pattern associated with homogeneous
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Figure 7.24: Maximum magnitudes of the horizontal displacement and velocity vectors along an east-
west line running through the north tip of the fault for the four hypocenter locations. The thick,

dashed line indicates the near-source ground motion factor, Ny, from the 1997 Uniform Building
Code.

the two hypocenter locations at the southern quarter point, because site S2 remains along the same
azimuth. Thus, as we move the hypocenter, site 82 experiences large fluctuations in the ground
motions, particularly in the east-west direction where the motion varies from being much smaller

than the north-south motion to equal to or greater than the north-south motion.

Slip Distribution

The simulations include a homogeneous slip distribution without surface rupture in scenario base,
a homogeneous slip distribution with surface rupture in scenario basell, a weakly heterogeneous slip
distribution with a bias towards slip near the surface in scenario sliptop, a weakly heterogeneous slip
distribution with a bias towards slip at depth in scenario slipbot, and a strongly heterogeneous slip
distribution in scenario sliphet. Swall perturbations in the final distribution of slip cause negligible
differences in the ground motions. Large perturbations do affect the ground motions, particularly
the displacement time histories. Figure 7.25 shows the maximum displacements and velocitics on the
ground surface for scenario sliphet, which uses the strongly heterogeneous slip distribution shown
in figure 7.10. In this case, the rupture does not continuously reinforce the shear wave; instead
it reinforces the shear wave in short intervals. As a result, the maximum displacements form a

complex pattern of peaks and valleys compared to the simple pattern associated with homogeneous
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Figure 7.25: Maximum magnitudes of the harizontal displacement and velocity vectors at each point
on the ground surface for scenario sliphet. The white line indicates the projection of the fault plane
onto the ground surface, and the yellow circle identifies the epicenter.

slip (figure 7.13).

The maximum velocities exhibit less sensitivity to the heterogeneity in slip, and the distribution
closely resembles that of the homogeneous slip case. The maximum displacements and velocities
close to the fault remain approximately the same, but away from the fault the displacements and
velocities tend to be slightly smaller. At the north end of the fault, as revealed by figure 7.26, the
maximum displacements and velocities do not noticeably change with the increase in heterogeneity
of the final slip distribution.

Minor perturbations to the slip distribution that include tapering the slip near the surface or
adding a small amount of heterogeneity result in almost no change in the displacement and velocity
time histories at both sites (figure 7.27). At site S2 the strongly heterogeneous slip distribution
causes significant changes to the amplitudes and alters the shape of the displacement time histories.
At site S1 energy from all points on the fault arrives closer together which greatly reduces the
effect caused by the discontinuity of the reinforcement of the shear wave. Consequently, the strong
heterogeneity in the final slip distribution has less of an effect at site S1 than it does at site S2.
Remarkably, at both sites the peak displacements remain relatively unchanged across all of the slip
distributions. However, based on the maximum displacements on the entire ground surface which

we discussed above, we know large perturbations in the slip distribution may significantly alter the
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Figure 7.25: Maximum magnitudes of the horizontal displacement and velocity vectors at each point
on the ground surface for scenario sliphet. The white line indicates the projection of the fault planc
onto the ground surface, and the yellow circle identifies the epicenter.

slip (figure 7.13).

The maximum velocities exhibit less sensitivity to the heterogeneity in slip, and the distribution
closely resembles that of the homogeneous slip case. The maximum displacements and velocities
close to the fault remain approximately the same, but away from the fault the displacements and
velocities tend to be slightly smaller. At the north end of the fault, as revealed by figure 7.26, the
maximum displacements and velocities do not noticeably change with the increase in heterogeneity
of the final slip distribution.

Minor perturbations to the slip distribution that include tapering the slip near the surface or
adding a small amount of heterogeneity result in almost no change in the displacement and velocity
time histories at both sites (figure 7.27). At site S2 the strongly heterogeneous slip distribution
causes significant changes to the amplitudes and alters the shape of the displacement time histories.
At site S1 energy from all points on the fault arrives closer together which greatly reduces the
effect caused by the discontinuity of the reinforcement of the shear wave. Consequently, the strong
heterogeneity in the final slip distribution has less of an effect at site S1 than it does at site S2.
Remarkably, at both sites the peak displacements remain relatively unchanged across all of the slip
distributions. However, based on the maximum displacements on the entire ground surface which

we discussed above, we know large perturbations in the slip distribution may significantly alter the
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Figure 7.26: Maximum magnitudes of the horizontal displacement and velocity vectors along an
east-west line running through the north tip of the fault for the five slip distributions. The thick,
dashed line indicates the near-source ground motion factor, N,, from the 1997 Uniform Building
Code.

peak displacements.

Average Slip

Increasing the average slip from 2.0 m in scenario basell to 3.0 m in scenario slip3, while maintaining
a maximum slip rate of 1.5m/sec, increases the amplitudes of the displacements but has little effect
on the amplitudes of the velocities. When we change the average slip, we also increase the moment
magnitude of the earthquake from 7.0 to 7.1. The larger amplitude displacements are clearly visible
in the displacement time histories at sites S1 and S2 shown in figure 7.28. Imposing the same
maximum slip rate causes the maximum slip rate to occur later in the slip time history and results
in a slight delay in the peak displacement amplitudes. Although not shown, we see nearly negligible
variations in the amplitudes of the velocity time histories with the increase in average slip. Along the
east-west line running through the north tip of the fault (figure 7.29), we also observe an increase
in the peak displacements with no accompanying increase in peak velocities. With such minor
differences in the ground motions, it is no surprise that the shape of the UBC near-source factor

curve continues to closely follow the shapes of the maximum displacements and maximum velocities.
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Figure 7.26: Maximum magnitudes of the horizontal displacement and velocity vectors along an
east-west line running through the north tip of the fault for the five slip distributions. The thick,
dashed line indicates the near-source ground motion factor, N,, from the 1997 Uniform Building
Code.

peak displacements.

Average Slip

Increasing the average slip from 2.0 m in scenario basell to 3.0m in scenario slip3, while maintaining
a maximum slip rate of 1.5 m/sec, increases the amplitudes of the displacements but has little effect
on the amplitudes of the velocities. When we change the average slip, we also increase the moment
magnitude of the earthquake from 7.0 to 7.1. The larger amplitude displacements are clearly visible
in the displacement time histories at sites S1 and S2 shown in figure 7.28. Imposing the same
maximum slip rate causes the maximum slip rate to occur later in the slip time history and results
in a slight delay in the peak displacement amplitudes. Although not shown, we see nearly negligible
variations in the amplitudes of the velocity time histories with the increase in average slip. Along the
east-west line running through the north tip of the fault (figure 7.29), we also observe an increase
in the peak displacements with no accompanying increase in peak velocities. With such minor
differences in the ground motions, it is no surprise that the shape of the UBC near-source factor

curve continues to closely follow the shapes of the maximum displacements and maximum velocities.
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Figure 7.27: Comparison of horizontal displacement time histories at sites S1 and S2 for the five slip
distributions.
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Figure 7.28: Comparison of horizontal displacement time histories at sites S1 and S2 for the two
values of average slip.
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west line running through the north tip of the fault for the two values of average slip. The thick,
dashed line indicates the near-source ground motion factor, Ny, from the 1997 Uniform Building
Code.

Fault Depth

We evaluate the effect of the depth of the fault using the results from scenarios basell, fault4km,
and fault8km. It is interesting to note that increasing the depth of the top of fault, while using
the saune slip distribution, shifts the slip Lo a region with a larger shear modulus and leads to a
slight increase in the moment magnitude of the earthquake. Lowering the top of the fault to 4.0km
below the ground surface increases the moment magnitude from 7.0 to 7.1, but lowering the fault
an additional 4.0 km provides no noticeable effect on the moment magnitude, and it remains at 7.1.
While dropping the fault has the same effect on the moment magnitude as increasing the average
slip, the effect on the ground motions is very different.

In general, the lower the depth of the fault, the smaller the amplitude of the ground motions.
Figure 7.30 shows that lowering the top of the fault to 4.0km below the ground surface does not have
as much impact as lowering the top of the fault to 8.0 km below the ground surface. As long as the
top of the fault remains less than 6.0 km below the ground surface, slip occurs in the softer material
at the top of the domain, and the energy tends to refract toward the ground surface. When we drop
the top of the fault to 4.0km below the ground surface, we see little reduction in the amplitude
of the displacement time histories at sites S1 and S2, particularly in the north-south direction at

site S2. No slip occurs in the region of softer material when the top of the fault sits 8.0 km below
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the ground surface. This explains why dropping the fault 8.0 km below the ground surface greatly

reduces the amplitude of the displacements and velocities.
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Figure 7.30: Comparison of horizontal displacement time histories at sites S1 and S2 for the three
depths of the top of the fault.
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Figure 7.30: Comparison of horizontal displacement time histories at sites S1 and S2 for the three
depths of the top of the fault.
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7.2 Thrust Fault

We set up the geometry of the thrust fault so that it closely resembles that of the Elysian Park
fault underneath Los Angeles as described by Hall et al. (1995). The fault measures 28 km long and
18km wide, dips 23 degrees to the north, and projects onto the ground surface an area 28 km long
by 16.6 km wide. Tor most of the simulations we bury the fault 8.0 km below the ground surface. We
enclose the fault in a domain 60 km long by 60 km wide by 24km deep as illustrated in figure 7.31.

We impose obligne slip with a rake angle of 105 degrees from the strike to the west.

North\

-8.00km

}Q——-—24_00km‘=—{

0
\\0-"
Figure 7.31: Orthographic projection of the domain geometry for the thrust fault for the case where

the top of the fault lies 8.0km below the ground surface. The labels HA through HD denote the
various hypocenter locations. We will examine the waveforms at sites S1 and S2.

7.2.1 Finite-Element Model

We use a total of four finite-element models, one for each of the three fault depths in the layered half-
space, and one for the homogeneous half-space. For the layered half-space we use the same material
property variation with depth that we use for the strike-slip domain. Figure 7.32 reproduces the
mass density, shear wave speed, and dilatational wave speed over the depth range of this domain
for the layered half-space showu in fgure 7.2. We take Uhe material properties of (the homogeneous
half-space from the material properties of the layered half-space at depth of 6.0 k.

From the coarse mesh created with IDEAS, we use the 4x refinement procedure to create a mesh
with the appropriate resolution for propagation of waves with periods down to 2.0 sec. Table 7.5 gives
the sizes of the finite-element models at coarse and fine resolution for the layered and homogeneous
half-spaces. For the layered half-space figure 7.33 illustrates the inertial bisection of the finite-

element mesh among 256 processors. Each simulation took 1.2 hours using 256 processors of the
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Figure 7.32: Density (p), shear wave speed (S), and dilatational wave speed (P) as a function of
depth for the layered half-space.

Fault Coarsc Fine

Depth | # Nodes | # Elements | # Nodes | # Elements
Homogeneous | 8km 6700 33,000 420,000 2.1 million

8km 26,000 120,000 1.7 million | 7.7 million
Layered 4km 27,000 130,000 1.8 million | 8.3 million

0km 26,000 120,000 1.6 million | 7.6 million

Table 7.5: Sizes of the finite-element. models of the layered and hamogeneons half-spaces at coarse
and fine resolution.

Intel Paragon at the CACR.

7.2.2 Earthquake Source Parameters

We follow the same procedure that we use for the strike-slip fault and systematically vary the
five earthquake source parameters; these include the hypocenter location, the rupture speed, the
maximum slip rate, the distribution of slip, and the fault depth. Table 7.6 summarizes the parameters
for each ot the 14 simulations. 'L'he base case teatures a tault buried 8.0 kin below the ground surface,
a homogeneous slip distribution tapered at the edges, a rupture speed of 80% of the local shear wave

speed, a maximum slip rate of 1.5m/sec, and a hypocenter located at the bottom center of the fault.

Hypocenter Locations

Figure 7.31 illustrates the general locations of the four hypocenters (labeled HA through HD) and
figure 7.34 gives the precise locations of the hypocenters on the fault plane. Hypocenter HA lies at
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Figure 7.33: Partitioning of the coarse finite-element model among 256 processors for the layered
half-spacc using the incrtial bisection algorithm. Each color patch identifies the elements of one

Processor.

Scenario Slip Rupture | Maximum | Hypocenter | Fault | Material | Mom.

Pattern Speed Slip Rate Location | Depth | Properties | Mag.

% of 3 (m/sec) (km)

base unitaper 80 1.5 HA 8.0 layered 6.8
vr70 unitaper 70 1.5 HA 8.0 layered 6.8
vr90 unitaper 90 1.5 HA 8.0 layered 6.8
vs10 unitaper 80 1.0 HA 8.0 layered 6.8
vs20 unitaper 80 2.0 HA 8.0 layered 6.8
hybc unitaper 80 1:5 HB 8.0 layered 6.8
hyme unitaper 80 1.5 HC 8.0 layered 6.8
hymc unitaper 80 1.5 HD 8.0 layered 6.8
sliptop weakupper 80 1.5 IIA 8.0 layered 6.8
slipbot weaklower 80 1.5 HA 8.0 layered 6.8
slip2 unitaper2 80 1.5 HA 8.0 layered 7.0
fault4km unitaper 80 1.5 ITA 4.0 layered 6.7
faultOkm unitaper 80 1.5 HA 0.0 layered 6.6
homo8km | unitaper 80 1.5 HA 8.0 homo. 6.7

Table 7.6: Summary of the parameters for the prescribed rupture simulations on the thrust fault.

the center of the bottom edge of the fault, hypocenter HB lies at the northeast corner of the fault,

hypocenter HC lies approximately mid-depth on the eastern edge of the fault, and hypocenter HD

lies approximately mid-depth on the north-south running centerline.

Slip I'ime Histories and Rupture Speeds

For the slip time histories we use the integral of Brune’s far field time function. We also independently

set the maximum slip rate to either 1.0 m/sec, 1.5 m/sec, or 2.0 m/sec and the rupture speed to either
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Figure 7.33: Partitioning of the coarse finite-element model among 256 processors for the layered
half-space using the inertial bisection algorithm. Each color patch identifies the elements of one
processor.

Scenario Slip Rupture | Maximum | Hypocenter | Fault Material | Mom.
Pattern Speed Slip Rate Location | Depth | Properties | Mag.
% of 3 (m/sec) (km)
base unitaper 80 1.5 HA 8.0 layered 6.8
vr'70 unitaper 70 1.5 HA 8.0 layered 6.8
vr90 unitaper 90 1.5 HA 8.0 layered 6.8
vs10 unitaper 80 1.0 HA 8.0 layered 6.8
vs20 unitaper 80 2.0 HA 8.0 layered 6.8
hybe unitaper 30 1.5 HB 8.0 layered 6.8
hyme unitaper 80 1.5 HC 8.0 layered 6.8
hyme unitaper 80 1.5 HD 8.0 layered 6.8
sliptop weakupper 80 1.5 ITA 8.0 layered 6.8
slipbot weaklower 80 1.5 HA 8.0 layered 6.8
slip2 unitaper2 80 1.5 HA 8.0 layered 7.0
fault4km u<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>