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ABSTRACT

Computational imaging is flourishing thanks to the recent advancement in array
photodetectors and image processing algorithms. This thesis presents Fourier pty-
chography, which is a computational imaging technique implemented in microscopy
to break the limit of conventional optics. With the implementation of Fourier pty-
chography, the resolution of the imaging system can surpass the diffraction limit of
the objective lens’s numerical aperture; the quantitative phase information of a sam-
ple can be reconstructed from intensity-only measurements; and the aberration of a
microscope system can be characterized and computationally corrected. This com-
putational microscopy technique enhances the performance of conventional optical
systems and expands the scope of their applications.
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C h a p t e r 1

INTRODUCTION TO OPTICAL MICROSCOPY

A microscope is an instrument designed to produce a magnified image of small
objects, which is widely applicable to a large number applications in areas such as
biological research, clinical diagnosis, semiconductor inspection, etc. The optical
microscope, which uses visible light to convey sample information, is the one with
longest history and broadest scope of application.

This history of the microscope can date back to the 16th century, when British
microscopist Robert Hooke invented a simple compoundmicroscope, which already
consists of an objective lens and an eye-piece, in the 1660s. Ever since then, the
field of microscopy has been gradually evolving. A few key points in the course
of microscopy development include the following: in 1886, Ernst Abbe’s work
with Carl Zeiss formed the key theory on microscope image formation [1], lead-
ing to the production of the aberration-corrected objective lens. In 1893, August
Köhler developed an illumination scheme (Köhler illumination) which allowed mi-
croscopists to take full advantage of the resolving power of Abbe’s objective [2]. In
1934, Dutch physicist Frits Zernike invented phase contrast microscopy, a contrast-
enhancing optical technique that converts phase variation into intensity distribution
and largely expands the observable sample range of microscope. Georges Nomarski
introduced differential interference contrast microscopy in 1955, another important
contrast-enhancement technique for the observation of unstained, transparent sam-
ples. Starting from late 1980s, most of the major manufacturers of the microscope
migrate from finite corrected to infinity-corrected optics, which provides a larger
intermediate parallel light path that can freely add-in slabs such as polarizers or
filters.

In this chapter, the structure of modern microscope will be introduced, and a
few key parameters will be pointed out and analyzed. At the end of the chapter,
limitations of modern optical microscope will be explained.

1.1 Modern Microscope Model and Performance
Most modern microscopes use the infinity-corrected ray path structure, as

shown in Fig. 1.1. The magnification optic is composed of an objective lens with
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Figure 1.1: Infinity-correctedmicroscope ray path. O: object plane, O’: intermediate
image plane, O": image plane on retinal. Lob: objective lens, Ltb: tube lens, Ley:
eyepiece. h: object height, h’: intermediate image hight.

focal length Lob and a tube lens with focal length Ltb. The object is placed at the
front focal plane of the objective, and thus the collected light from a point from the
object will be focused to infinitely far away (parallel light), which is where the name
‘infinity-corrected’ is from. The parallel light is then refocused onto a point in the
intermediate image plane by the tube lens. From simple geometrical optics theory,
we can derive that the magnification of the object M = h‘

h =
Ltb
Lob

. The magnified
image can be further magnified by placing an eyepiece a focal length away and
observed by human eye, or can be recorded by placing a film or photo-electronic
array detector at the intermediate image plane.

Resolution
As mentioned above, the combination of objective and tube lens forms a

magnified image of the sample, with magnification defined as M = Ltb
Lob

. We note
that ‘magnification’ only means the scale of the feature; the amount of detail we can
distinguish from the sample is determined by ‘resolution’, which is defined as the
smallest resolvable distance of two points on the object side. Fundamentally, the
resolution of the microscope is limited because the wave property of light causes
diffraction.

Let’s look at a point on the object plane. According to ray optics theory, the
light coming out from this point will be collected by the optics and refocused on the
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Figure 1.2: The resolution of a microscope system can be analyzed from space
domain and Fourier domain

intermediate plane, forming a point image. However, because of the diffraction of
the light, what will form on the image plane is a diffraction pattern. The size and
shape of the diffraction pattern is determined by the cone of light that is collected and
the wavelength of the light. Take a circular-shape light cone with collection angle
of θ and wavelength λ as an example: the diffraction pattern will be a first order
Bessel function (Airy disk), as shown in Fig. 1.2. Because the optical system is a
space-invariant linear system [3], the image of a complex sample is the convolution
of the sample distribution with the impulse response (point-spread function (PSF))
of the optical system .

For the case of two-point target imaging, when the two points are placed too
close, their point spread functions will merge into one and we can not tell if the
target has two points or one big dot. The smallest resolvable distance on the sample
side can be derived as r = αλ

NA , where α is a parameter between 0.4 to 1 determined
by the criteria used in the resolvability analysis, and NA is the numerical aperture of
the objective defined as NA = n sin θ with n being the refractive index between the
sample and the objective lens. Further analysis on resolving criteria is described in
Appendix A.4. Intuitively, higher NA means a larger collection cone of light, which
will form a sharper PSF, resulting in a smaller resolvable distance.

Another way of resolution analysis is in the spatial frequency domain (Fourier
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domain), in which higher spatial frequency represents higher periodicity of the
target, in other words, higher resolution feature. The combination of objective lens
with tube lens can be treated as a 4f imaging system [4], in which the sample placed
at the front focal plane is Fourier transformed by the objective lens, low pass filtered
because of the limited NA, and then invert Fourier transformed by the tube lens and
forms the image. The low pass filter is the pupil function of the system, which is the
Fourier transform of the point spread function. When the sample is under coherent
illumination, the low pass filter has all 1 inside the pass band, 0 outside the pass band,
and a sharp cutoff frequency determined by the NA: kc =

2π
λ NA, which is called the

coherent transfer function (CTF) of the microscope system [3]. Intuitively, higher
NA allows information of higher spatial frequencies to pass through the system and
form images with higher resolution.

Field of View
The field of view (FOV) of a microscope, as its name implies, is the area

on the sample plane that can be viewed simultaneously through the microscope.
This property is characterized by field number (F.N.) of the objective lens, which
is the diameter of the view field in millimeter measured at the intermediate image
plane. Therefore, the field size in the sample plane can be easily calculated as:
FieldSize = F.N.

M . A typical microscope objective has a F.N. of 20 to 26.5.

Optical Aberration
Aberration is the phenomenon that actual light ray’s trajectory deviates from

the prediction of paraxial optics, resulting in a degradation of image quality. The
existence of aberration is not due to the flaws in optical elements, but rather it roots
in the inaccurate model of simple paraxial theory to describe the effect of an optical
system on light.

In the derivation of image formation, the basic rule that one uses is Snell’s
law, which describes the behavior of light at the interface of two different isotropic
media: n1 sin θ1 = n2 sin θ2. What the equation states is that the product of refractive
index and the sine of the angle of incidence remains a constant when the light passes
through the interface. In order to make the imaging system a linear system, paraxial
approximation is made in which sin θ ≈ θ. This assumption is only valid when the
angle is small. For a light ray with large incident or refraction angle, it will deviate
from the prediction of paraxial theory and cause aberration.

Other causes of aberration include the curvature of the image plane, the dis-
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tortion caused by varying magnification of different areas in the FOV, chromatic
aberration caused by dispersion of the material, and the extra aberrations due to the
flaws of optical elements and misalignment in assembly.

Aberration is a key bottleneck that restricts the overall performance of micro-
scope. A large portion of the effort for modern microscope design is to correct for
aberrations. Multiple pieces of lens, advanced materials, and free-form surfaces are
used to make objective lenses with better performance. Despite the efforts, aber-
rations can not be eliminated entirely, they can only be brought down to tolerable
range.

From the above analysis, we know that the larger the incident or refraction
angle, the more severely the aberrations need to be corrected. On one hand, a larger
NA objective will require the collection of light coming from a steeper angle, and on
the other hand, a larger FOV means that the light from the edge of the sample will
have a steeper angle. Because the total amount of aberration that can be corrected
is limited with a certain aberration-correction method, there exists a compromise
between NA and FOV: one of the parameters needs to be brought down if the other
one needs to be brought up. The result is that if we want to make the NA larger for
the observation of a finer feature, we have to sacrifice the FOV, meaning that the
area of the sample we can observe at the same time will become smaller. The same
compromise exists vise versa.

Spatial Bandwidth Product of Microscope Objective
From the view-point of information theory, the compromise between NA and

FOV means the ‘information transfer’ from sample to image is limited by the
‘bandwidth’ of the channel, which is the microscope system in our case. We can
use the term spatial bandwidth product (SBP) [5] to describe the throughput of the
system.

The SBP of the objective lens is defined as the total amount of pixel counts
on the image plane. Assuming an objective has diffraction-limited-resolution per-
formance over the entire FOV, the resolution of it is determined by r = 0.73λ/NA,
using sparrow resolution limit under coherent illumination. According to Nyquist
sampling theory, the effective pixel size is half of the resolution r

2 . The FOV area at
the sample plane can be calculated as π ∗ ( F.N./2

M )2(mm2), so the SBP can be defined
as:
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SBP = π · (
F.N./2

M
)2/(

r
2

)2 =
π · (F.N. · NA)2

(0.73Mλ)2 . (1.1)

A few microscope objectives’ SBPs are calculated and shown in Table 1.1.
As the NA of the objective lens increases, aberration correction becomes harder,
making the SBP of the objective lens smaller.

Objective Resolution SBP
(M/NA/ F.N.) (λ=532 nm) (megapixels)
1.25×/0.04/26.5 9709 nm 15.0 MP
2×/0.08/26.5 4855 nm 23.4 MP
4×/0.16/26.5 2427 nm 23.4 MP
10×/0.3/26.5 1295 nm 13.2 MP
20×/0.5/26.5 777 nm 9.1 MP
40×/0.75/26.5 518 nm 5.1MP
60×/0.9/26.5 432 nm 3.3 MP
100×/1.3/26.5 299 nm 2.5 MP

Table 1.1: SBP values for several Olympus microscope objectives

1.2 Limitation of Conventional Microscope System

• Limited SBP

The limited SBP restricts a lot of applications of the conventional microscope.
Because of the compromise between resolution and FOV, the user has to switch back
and forth between low NA large FOV objective and high NA small FOV objective
in the examination of sample, or a complicated mechanical scanning system has to
be used in applications that require high throughput.

• Uncorrected Aberration

The SBP calculation is made under the assumption of a well-corrected aberra-
tion over the entire FOV (diffraction limited resolution). However, in the use of a
conventional microscope, we observed uncorrected aberration which degrades the
image performance. Moreover, the uncorrected aberration becomes severer at the
edge of the FOV, making the effective SBP of the microscope much lower than the
nominal value. More analysis on uncorrected aberration is elaborated in Chapters 3
and 4.
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• Loss of phase information

Because both human eyes and opto-electronic detectors are not sensitive to the
phase of e-field, the phase information of sample is lost in observation. Different
imaging schemes such as Zernike phase or DIC can convert phase variation into
intensity distribution. However, the conversion is not linear and the phase will
mix with the intrinsic intensity distribution, preventing the detection of quantitative
phase information from the sample.

• Loss of 3D information

When imaging a thick 3-dimensional sample, the in-focus plane of the sample
will be recorded as a clear image. At the same time, the out-of-focus plane of the
sample will generate a blurred image added on the clear image. The results are:
1) the in-focus plane information cannot be easily distinguished from the blurred
information coming from other planes, and 2) to examine information at a different
plane, mechanical scanning in the depth direction is required.

1.3 Computational Microscopy System
The limitation of the conventional microscope system has restricted its appli-

cations. Recently, the advancement a few key technologies are changing the game:
1) large pixel count, high frame rate, and low noise digital array light detectors
(CCD and CMOS) are easily accessible; 2) the computation power of the computer
is improving exponentially; 3) novel illumination methods such as LD and LED are
cheaper and more compact. These advancements led to the prosperity of computa-
tional microscopy, where advanced illumination schemes can be designed, transient
phenomena can be recorded, and information can be processed to generate high
quality images of microscopic sample. A few of these examples in computational
microscopy include digital holography, structure light illumination, aperture coding,
etc.

In this thesis, the work of Fourier ptychography(FP) technique, which is one
of the computational microscopy techniques benefiting from these game changing
technologies, is presented. This technique untangles the compromise between FOV
and resolution, provides quantitative phase measurement, characterizes and corrects
residual aberration, and can be modified to deal with 3-dimensional sample. In
Chapter 2, the principle of FP is explained. In Chapter 3, a Fourier ptychographic
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microscopy (FPM) system is built by LED matrix illumination, and gigapixel am-
plitude + phase imaging capability is demonstrated. In Chapter 4, an improvement
of FPM is made which leads to the characterization and correction of microscope
aberration. Chapter 5 reports the effort of building an oil-free FPM system with
numerical aperture over unity and resolution power of 330nm. Chapter 6 presents
aperture scanning FPM, which is a different scheme to implement the FP technique
that can deal with 3-dimensional samples.
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C h a p t e r 2

FOURIER PTYCHOGRAPHY

Fourier ptychography is a computational imaging technique which combines ideas
from synthetic aperture and translational-diversity phase retrieval. The word pty-
chographywas derived from the Greekwords ptyché (fold) and gr áphein (to write),
coined by Hoppe and Hegerl in the early 1970s to describe a newly invented coherent
diffractive imaging technique [6]. Unlike holographic imaging techniques which re-
quires a stable reference wave, ptychography uses diffraction interference occurring
in the object itself. Moreover, ptychography calculates the phase relationship from
magnitude-only measurement of the diffracted field. For a more comprehensive de-
scription of ptychographic imaging technique, readers can refer to a review written
by J. M. Rodenburg [7].

Fourier ptychography, as the name implies, is a Fourier domain counterpart
of the conventional ptychography. In this case, all the sampling, tiling, and phase
retrieval are operated in the spatial frequency domain. There are two key components
in this technique: 1) In the image acquisition process, transverse-translationally
diversified Fourier domain measurements of the sample are carried out. One main
method to provide the measurements is through angularly varying illumination. 2)
In the reconstruction process, the measurements are inputted into a phase retrieval
algorithm to stitch all the information together in the Fourier domain. Meanwhile,
the algorithm recovers the phase information from the intensity-only measurements.
There are different modalities to realize transverse-translationally diversified Fourier
domain measurements and different methods for phase retrieval, which will be
covered in the following chapters. In this chapter, the basic mathmatical model and
the fundamental method for measurement and reconstruction will be explained.

2.1 Acquisition Process
As has been mentioned in Chapter 1, under a coherent illumination, the micro-

scope system can be modeled as a spatial frequency low-pass filter for the sample’s
e-field (electromagnetic field) distribution. Therefore, the resolution limit of a single
microscope image can be characterized by the pupil function of the imaging system,
which is the coherent transfer function (CTF) in this case. The pupil function of
an aberration-free infinity-corrected objective lens is given by the geometric shape
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of its aperture [3]. Typically, the aperture of an objective lens is a circle. Thus,
the pupil function in our microscope model will remain a circular low pass filter.
This filter’s cutoff spatial frequency, kc, is defined by the lens’s numerical aperture,
NAobj, and the illumination wavelength λ: kc = 2π · NAobj/λ. In conclusion, the
pupil function P(kx, ky) can be described as:

P(kx, ky) =



1 if (k2
x + k2

y ) ≤ k2
c

0 if (k2
x + k2

y ) > k2
c,

(2.1)

where kx, ky are the coordinates in the spatial frequency domain. When a thin
sample s(x, y) is illuminated by a quasi-monochromatic plane wave with wavevector
un = (kxn, kyn), the exit light wave from the sample can be written as e(r) =
s(r) exp(iun · r). Here we define r = (x, y) as the coordinate in the spatial domain
and u = (kx, ky) as the coordinate in the spatial frequency domain. This e-field is
first propagated to the Fourier plane and multiplied by the pupil function P(u) of the
objective lens, and then propagated to the image plane, which is an inverse Fourier
transform process: e2(r) = F −1 (F (e(r)) ∗ P(u)). If we define S(u) = F (s(r)) as
the Fourier spectrum of the sample, F (e(r)) = S(u−un) due to the frequency-shift
property of Fourier transform. The propagated e-field equation can be simplified
as:

e2(r) = F −1 (S(u − un) ∗ P(u)) . (2.2)

From Eq. 2.2, we can see that although the cutoff frequency of the objective
lens is determined by NAobj, spatial frequency information higher than the cutoff
can pass the imaging system with modulation by oblique angle illumination. The
high spatial frequency information carried by oblique angle illumination is the key
to reconstruct a high resolution image.

Because optical camera is only sensitive to the intensity distribution of the
e-field, the image recorded with illumination wavevector un is:

Iun = |F
−1(S(u − un) ∗ P(u)) |2. (2.3)

To sumup, in the image acquisition process, a stack ofN images {Iu0, Iu1, ...IuN−1 }

are captured with N different illumination, which samples different areas of the
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sample’s Fourier spectrum. These images are stitched together in the reconstruc-
tion process by putting the Fourier spectrum information back to its corresponding
position.

2.2 Reconstruction Process
The goal of the reconstruction process is to recover complex (amplitude and

phase) sample Fourier spectrum S(u) from the stack of intensity measurements
{IuN }. This problem can be categorized as a phase retrieval problem, which has
been studied for decades for applications such as electron microscopy, wavefront
sensing, astronomy, crystallography, and in other fields that wish to recover phase
while only intensitymeasurements can bemade [8]. To bemore specific, in this case,
this problem is a phase retrieval problem with transverse-translationally diversified
measurements [9] provided by angularly varying illumination.

Themost popular method that is used to solve this problem is the iterative phase
retrieval algorithm. The algorithm iteratively propagates the intermediate result
between planes with constraints, and updates the intermediate result gradually using
these constraints. In our case, the planes are spatial domain and Fourier domain,
and the constraints are measurements and a priori knowledge of the system. The
process of the algorithm is described as follows:

In the initialization step, an initial guess of the sample’s Fourier spectrum S0(u)
is set. The initial guess can be the Fourier transform of one frame of up-sampled
low-resolution image, or a Dirac delta function at the origin representing uniform
distribution in the space domain.

In the iterative reconstruction step, all the captured images are addressed in a
sequence {IuN }, and considered in turn to update the sample Fourier spectrum, as
shown in Fig. 2.1 on the left. This iterative engine contains two layers of loop. The
inner layer loops over all the intensity measurements to update S(u), and the outer
layer repeats the updating process until exit criteria is satisfied. The exit criteria
can be the change of S(u) within this loop being smaller than a certain value, or a
certain number of loops being executed.

For the updating step which is the core of iterative phase retrieval algorithm,
different updating schemes are proposed. One of the most broadly used ones is the
Gerchberg-Saxton algorithm [10, 11], and the steps are shown in Fig. 2.1 on the
right. For the nth update using image Iun , the region corresponding to illuminationun

is extracted and inverse Fourier transformed to simulate a captured image. Then the
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Figure 2.1: Iterative phase retrieval algorithm with Gerchberg-Saxton type update
function.

‘intensity constraint’ is applied on the simulated image by replacing the amplitude
with the square root of the real captured image. This modified simulated image
is Fourier transformed back to spatial frequency domain and is used to update
the sample’s Fourier spectrum. In this method, the ‘support constraint’ is applied
and the region corresponding to illumination vector un is replaced by the Fourier
transform of the ‘intensity-constrained’ simulated image.

Although there is no explicit error metric for GS type phase retrieval algorithm,
it has been argued that they end up minimizing the sum of the squared difference
between simulated and measured amplitude [8, 12]:

min
s(u)

f (S(u)) =
∑

n

∑
r

����

√
Iun (r) − ���F

−1{S(u − un)P(u)}���
����
2
, s.t. Iun (r), P(u).

(2.4)

Besides the GS type phase retrieval algorithm, there are other methods raised
to update Sn+1(u) which are designed to make the algorithm converge faster. These
algorithms include the gradient descending method, which we will mention in
Chapter 4, the input-output algorithm, etc. There are also non-iterative phase
retreival methods. In Ref. [13], a convex formulation of the ptychography problem
is proposed and a low-rank factorization based algorithm is used to solve the problem.
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One more thing to point out here is that the phase retrieval method is not a
global minimizer for the optimization problem mentioned in Eq. 2.4. However,
for a natural sample, with a proper initial guess and adequate measurements with
overlapping in the spectrum domain, the solution falls towards ground truth value
with a high probability. Practically, it has been shown experimentally that the RMS
errors decrease as the spectrum overlapping percentage increases, and a minimum
of 35% overlapping percentage is needed for a successful FP reconstruction [14].
In real experiment, 60% of overlapping is used in the design of illumination and 10
iterations of the algorithm is carried out to ensure convergence.

2.3 Performance Analysis
Resolution enhancement

As been analyzed by the previous section, the high spatial frequency informa-
tion of the sample that is beyond the cutoff frequency of the objective lens is captured
and placed back to its corresponding place by using Fourier ptychography. As a
result, an expended Fourier spectrum of the sample is acquired, and thus a higher
resolution imaging system is achieved. This sub-session analyzes the enhancement
of resolution quantitatively.

In amicroscope system, when the sample s(r) is illuminated by normal incident
plane wave, the highest spatial frequency of the sample ks =

√
k2

xs + k2
ys that can

pass the imaging system is determined by the lens’s cutoff frequency kc (Fig. 2.2,
right). Thus the CTF defines the image spatial frequency support as [−kc, kc].

In the case of oblique angle illumination, we define the illumination wavevector
as ki =

2π
λ nillu sin φ =

√
k2

x + k2
y , where nillu is the refractive index of the medium

separating the illuminator and the sample, and φ is the angle between the wavevec-
tor and the optical axis. As been mentioned in the previous section, the Fourier
spectrum of the exit wave will be a shifted version of the sample’s Fourier spectrum:
F (e(r)) = S(u − un). Because of this shift, a different range (i.e., support) of the
sample spectrum will now pass through the fixed lens CTF to the image sensor.
Now in the off-axis case the CTF defines a shifted spatial frequency support as
[−ki − kc,−ki + kc].

FP repeats this shift-and-capture imaging process for N different illumination,
extending to a maximum off-axis angle of φmax . After data capture, FP has thus
acquired N images, each originating from a distinct spatial frequency support. A
phase retrieval algorithm is used to digitally fuse all N captured spatial frequency
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Figure 2.2: Principle of Fourier ptychrography. The CTF of the microscope objec-
tive is a low pass filter with cutoff frequency kc. When the sample is illuminated by
normal incident plane wave (yellow line), the spatial frequency of the sample in the
range [−kc, kc] passes through the CTF to form an image. Illuminating the sample
with a tilted plane wave with wavevector ki (blue line) shifts the sample spectrum.
The CTF now defines the image’s spatial frequency support as [−ki − kc,−ki + kc].
After image capture, a phase retrieval algorithm stitches together the spatial fre-
quency information from the unique support of each image. The resulting FP
reconstruction is expected to exhibit a cutoff frequency of kmax + kc, corresponding
to an expanded system NA, NAsys = NAobj + NAillu.

supports together. The final resulting spectrum will thus lie within a contiguous
spatial frequency window [−(kc + kmax), kc + kmax], where kmax =

2π
λ nillu sin φmax

is the illumination wave vector from the maximum off-axis angle. If we define
NAillu =

kmax

2π/λ = nillu sin φmax as the illumination NA, the synthesized NA (i.e.,
NAsys) of the FPM system is given by:

NAsys = NAobj + NAillu. (2.5)

This system NA is analogous to the resulting NA of synthetic aperture setups.
[15–23]. Unlike a true synthetic aperture, FP does not measure the phase of each
shifted optical field at either the aperture plane or the image plane. Its unique phase
retrieval procedure instead allows us to stitch together each shifted spatial frequency
window when only the resulting intensities at the image plane are known.

Phase Imaging Capability
Since the phase retrieval algorithm reconstructs the complex Fourier spectrum

S(u) of the sample, the complex spatial distribution of the sample is also recon-
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structed. In other words, the phase of the sample is reconstructed from intensity-only
measurements.

There is a long history of using the phase retrieval algorithm to seek a complex
field solution that is consistent with measurements of its intensity. In its original
form, only one intensity measurement was used, and the Gerchberg-Saxton algo-
rithm [10, 11], as well as its related error reduction algorithm [8], was used to solve
this type of problem. Although this form of phase retrieval algorithm works well
for many cases of interest, stagnation and ambiguity problems are known to prevent
strict convergence.

Later on, a technique termed phase diversity has been developed to overcome
these limitations. This technique relies on measuring multiple intensity patterns
with a known modification to the optical setup applied between each measurement.
Methods to provide phase diversity include transverse-translationally diversified
measurement [9] (used in FP), defocus variation [24] (used in Chapter 3 for aberra-
tion estimation), etc [25–27]. The set of captured images, along with the knowledge
of the diversity function, is then used to iteratively converge to a complex field that
agrees with each measurement. Stagnation and ambiguity problems are overcome
by providing a set of measurements that more robustly constrain the phase retrieval
process. Increased accuracy is guaranteed through an analysis of its Cramer-Rao
lower bound [28].

The capability to measure phase is preferable for many applications, such as
observation of unstained tissue, cell culture monitoring, etc. In the following chap-
ters, an experimental verification of the quantitative phase measurement capability
will be presented and more implementations of the phase information such as digital
refocusing and aberration correction will be demonstrated.
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C h a p t e r 3

FOURIER PTYCHOGRAPHIC MICROSCOPY WITH LED
MATRIX ILLUMINATOR

3.1 Microscopy System Setup
A prototype of Fourier Ptychographic microscopy (FPM) system is built, as

shown in Fig. 3.1 (a). The system consists of an upright microscope (Olympus
BX61)with a 2X0.08NAobjective lens (Olympus 2XPlanApo), a ProsilicaGX6600
(CCD: Kodak KAI-29050, sensor size: 36.2 mm × 24.1 mm, Pixel size: 5.5µm,
28.8MPixel) with coverage over the full FOV of the objective lens, and an LED
matrix (Adafruit, 4mm spacing, controlled by an Arduino) to provide angularly
varying illumination.

As shown in the inlet of Fig. 3.1, each LED element has a red, green, and blue
chip which can be lit up separately. The lit up area of each color is 200µm, and the
LED panel is placed at 80mm away from the sample. Since the matrix is far away
from the sample, each LED provides close-to-plane-wave illumination for a small
area of the sample. Thewavevector (kx, ky) corresponding to the illumination can be
calculated using simple geometry. For all following experiments, red channel LEDs,
if not specified, are used when we capture monochromatic images. Red, green, and
blue LEDs are used separately to reconstruct red, green, and blue images. These
three images are combined when we capture color images.

In the experiment, 15x15 red LED are lit up sequentially (center LED right on
optical axis) and 225 images are captured. The overlap between two images is 70%,
satisfying the requirement of phase retrieval algorithm. All the captured data is fed
into the phase retrieval algorithm to reconstruct a high resolution image.

3.2 Resolution Enhancement
As been shown in Eq. 2.5, an FPM system has a system NA equal to the

summation of objective NA and illumination NA. In this case, the LED has a pitch
of 4mm, and is placed 80mm beneath the sample. The edge LED provides an
illumination NA of sin (arctan ( 7∗4

80 )) = 0.33. The objective NA is 0.08, so the
system NA equals 0.41, which is 5 times NA improvement compared to the original
microscope.
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Figure 3.1: FPM system schematic. (a) FPM system is built by substituting the
original lightsource with an LED matrix. (b) Schematic with key optical elements.
(c) The object’s finite spatial frequency support, defined by the microscope’s NA in
the Fourier domain (red circle), is imposed at offset locations to reflect each unique
LED illumination angle. The Fourier transform of many shifted low-resolution
measurements (each circle) is stitched together to extend the complex sample spec-
trum’s resolution well beyond the objective lens’s cutoff. (d) Light emitted from
a single LED strikes a small sample area with wavevector (kxi, kyi). (e) LEDs are
sequentially activated during FPM image acquisition.

Figure 3.2: FPM image of USAF resolution target. (a) Full FOV image using
a 2X objective; (b1) segment of image with normal illumination; (b2) resolution
enhanced by FPM method.
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To demonstrate the resolution improvement, a 1951 US Air Force (USAF)
resolution target is used as a sample. The images are shown in Fig. 3.2. With
one LED lit up, corresponding to coherent imaging of the original imaging sytem,
group 7, element 1 can be resolved (period=7.81µm). With FPM, group 9 ele-
ment 3 (period=1.55µm) can be resolved, which matches the theoretical resolution
prediction: r = λ

NAsys
= 1.58µm.

3.3 Quantitative Phase
To verify FPM’s capability to accurately recover optical phase, we image a

sample containing microspheres in oil (3µm and 6.5µm diameter, noil = 1.48,
nsphere = 1.6), shown in Fig. 3.3(a1-a3). Unwrapped line traces of the optical
phase shift induced by two different-sized spheres lead to estimated microsphere
thickness curves in Fig. 3.3(c1)-(c2), exhibiting close agreement with theory. The
root mean-squared errors (RMSEs) between experimental and theoretical thickness
are 0.25 µm and 0.33 µm, respectively.

A phase-shifting digital holography (DH) microscope is also used to provide
experimental ground-truth comparison. Our DH setup splits a solid-state 532 nm
laser into a sample and reference arm (both spatially filtered and collimated). The
reference arm passes through an electro-optic phase modulator (Thorlabs EO-PM-
NR-C1) before recombination with the sample beam for imaging (Prosilica GX
1920, 4.54 µm pixels) via an objective (40×, 0.65 NA Nikon Plan N) and tube lens.
Four images are captured with a π/2 phase shift added to the reference between
each image. Sample phase is calculated from the four images via the phase recovery
equation [29]. RMSEs of 0.41 µm and 0.30 µm for the 3 µm and 6.5 µm line traces
also offer close agreement between the DH experimental measurements and theory.

Fig. 3.3(b2) presents an FPM reconstruction of a complex biological sample –
a human blood smear immersed in oil, a common quantitative phase measurement
target [30]. The FPM and ground-truth DH phase (Fig. 3.3(b3)) maps closely
match, as exhibited by the phase trace through a red blood cell in Fig. 3.3(c3)
(RMSE = 0.58 µm). Sources of error for the FPM setup include the inclusion of
slight aberrations by the objective lens, effects of a partially coherent illumination
source, and the influence of noise within the iterative reconstruction scheme. The
primary source of error in the DH data is speckle “noise” caused by a coherent
illumination source. FPM phase tends towards a smoother phase profile in part
because its LEDs’ partially coherent illumination avoids coherent speckle artifacts.
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Figure 3.3: Comparing FPM phase reconstructions to digital holographic and the-
oretical data. FPM transforms low-resolution intensity images from a 2X objective
(a1) into a high-resolution phasemap (a2) of different-sized polystyrenemicrobeads,
as compared with a DH reconstruction (a3) using a 40X objective. (b) A similar
image sequence highlights FPM’s phase imaging capabilities on a human blood
smear. (c) Line traces through the microbeads and a RBC demonstrate quantitative
agreement with expected phase performance.
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10 µm

Phase gradient images in x and y directions 

(a1) (a2)

Phase-gradient-magnitude

(b)

Figure 3.4: Computed phase gradient images in x direction (a) and y direction (b),
and phase gradient magnitude image (c) from the human blood smear phase map in
Fig. 3.

A simple one-dimensional model helps describe limitations on the resolution of
FPM’s acquired phase image. From [31, 32], we know FPM’s maximum resolvable
wavevector kx is limited by its maximum LED angle θ: kmax

x = k (sinθ + NA).
Likewise, the wavevectors emitted by a slowly varying phase object φ(x) are set by
its gradient: kmax

x = dφ/dx in 1D. Assuming the phase object is a grating of period p
and thickness t, we canwrite φ(x) = t sin(px). Using the above gradient relationship
tells us its maximum emitted wavevector kmax

x = tp. Thus, the resolution limit for
the FPM phase is set by the product of the sample’s spatial resolution and thickness,
which both must be accounted for during system design. This argument extends
to an arbitrary extended complex sample by Fourier-decomposing it into a finite
set of gratings. While this relationship helped guide the design of the included
experiments, a more detailed analysis is worth future investigation.

The benefits of an acquired phase map are easily demonstrated with the com-
putational generation of phase-gradient images in Fig. 3.4, simulating the improved
visibility of a differential-interference-contrast microscopy. However, we note that
this computational processing does not produce new information for the complex
sample. Fig. 3.5 demonstrates how an acquired FPM phase map can give additional
sample information otherwise absent from FPM’s improved intensity resolution
image.

3.4 Gigapixel Imaging
By the implementation of Fourier ptychography on the 2X 0.08 NA micro-

scope system, the resolution is enhanced fourfold. Because of the quantitative
phase reconstruction capability of FP, the residual aberration over the entire FOV
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Figure 3.5: FPM intensity and phase images of a tissue sample. As indicated by the
red arrow, some cell features are transparent in the intensity image but visible in the
phase image.

can be removed by a digital wavefront-correction method and diffraction-limited
resolution given by NAsys can be achieved over the entire FOV. Thanks to these two
achievements, the FPM system can be used to generate gigapixel images of samples.

Digital Wavefront Correction
Although the FPM method does not require phase information as an input,

its operation implicitly accommodates phase during iterative reconstruction. We
demonstrate in this section that the depth-of-focus of our FPM prototype can be
significantly extended beyond that of the employed objective lens, using a numerical
strategy to compensate for aberrations in the pupil function [33, 34].

This digital correction process, as shown in Fig. 3.6, is inspired by similar
wavefront correction concepts in adaptive optics [35]. The basic idea is to digitally
introduce a phase map to our coherent optical transfer function to compensate for
aberrations at the pupil plane during the iterative image reconstruction process. The
FPM algorithm incorporates this compensation into two additional multiplication
steps (steps 2 and 5 in Fig. 3.6(a) and (b)). Specifically, step 2models the connection
between the actual sample profile and the captured intensity data (with included
aberrations) through multiplication with a pupil function ei·ϕ(kx,ky ), whereas step 5
inverts such a connection to achieve an aberration-free reconstructed image. Sample
defocus is essentially equivalent to introducing a second-order Zernike mode, or a
quadratic phase factor, to the pupil plane (i.e., a defocus aberration [36]):



23

b

②⑤

Figure 3.6: Extending depth-of-focus with digital wavefront correction. (a) The
principle of FPM’s digital wavefront correction technique. A digital pupil function
is introduced in steps 2 and 5 to model the connection between the actual sample
profile and the captured intensity data, which may exhibit aberrations caused by
defocus. (b) Diagram of FPM’s iterative recovery algorithm with the addition of
digital wavefront correction. (c) One raw low-resolution image of the USAF target
placed at z0 = −150µm. High-resolution FPM reconstructions without (d) and with
(e) steps 2 and 5 added to the iterative recovery procedure.

ei·ϕ(kx,ky ) =




ei
√

k2
0−k2

x−k2
y ·z0 if (k2

x + k2
y ) ≤ k2

c

0 if (k2
x + k2

y ) > k2
c,

(3.1)

where k0 = 2π/λ is the wavevector, kx and ky are the wave numbers at the
pupil plane, z0 is the defocus distance, and kc = k0 · NA is the objective’s cutoff
spatial frequency.

Fig. 3.6(c-e) experimentally demonstrates FPM’s ability to fully resolve an
object given a set of intensity images defocused by 150 µm. The significance of
wavefront correction is made clear by comparing reconstruction results without
(Fig. 3.6(d)) or with (Fig. 3.6(e)) digital addition of a defocused pupil. We note
that, in Fig. 3.6(e), the defocus distance is known a priori. If the defocus distance is
unknown, we can digitally adjust the ‘z’ parameter to different values, reconstruct the
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Figure 3.7: Correcting aberrations with digital wavefront correction, experiment.
(a1)-(c1) Low-resolution rawdata of ourUSAF resolution target, each corresponding
to different defocused distances (-150 µm to 150 µm). (a2)-(c2) FPM’s high-
resolution image reconstructions using digital wavefront correction. (d) Line traces
for the smallest features in (a2)-(c2), with a minimum contrast difference of 30%.

corresponding FPM images, and pick the sharpest image through observation or by
a computer algorithm [37]. This approach can also be extended to image a tilted or
uneven sample [38]. In this case, we can digitally adjust the ‘z’ parameter to achieve
acuity for each region of the whole image and combine the in-focus regions to form
a fully focused image of the tilted sample. From Fig. 3.6, we conclude that our
FPM prototype can achieve a resolution-invariant depth-of-focus of approximately
0.3 mmwith digital wavefront correction. This point is further validated in Fig. 3.7.
In contrast, the natural depth-of-focus of the employed 2x objective lens (0.08 NA)
is approximately 80 µm. The improvement is even more remarkable if compared
to an objective lens with a resolution-matching 0.5 NA, where the FPM prototype’s
0.3 mm depth-of-focus offers an approximate factor of improvement of 75.

Finally, we note that alternate digital multiplicative phase factors can be in-
cluded in steps 2 and 5 to correct for a variety of aberrations, as long as they correctly
model the employed optics. Following this strategy, we characterize and correct
higher order aberrations of our prototype’s objective lens in the following section.

Spatially-varying-aberration Characterization and Correction
For characterizing residual aberrations which are spatially varying, the micro-

scope’s FOV is divided into small tiles within each of which aberrations can be
considered as constant. For each tile, a phase retrieval approach based on defocus
variation is used to calibrate the aberrated wavefront. Then we apply a generalized
pattern search (GPS) method [39], a nonlinear optimization algorithm, to recover
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aberration parameters at 350 different spatial locations over the entire FOV. These
parameters are used to generate 2D aberration maps by parameter fitting. This
recovered aberration map is plugged into the digital wavefront correction algorithm
described in the previous section to reconstruct aberration-free images.

• Phase retrieval and defocus diversity

The first concept essential to our work is the application of the phase retrieval
algorithm using defocus diversity. Similar to the phase retrieval algorithm for FP
which uses transverse-translationally diversified intensity measurements to recover
lost phase information, this technique relies onmeasuringmultiple intensity patterns
with a known modification (defocus) to the optical setup applied between each
measurement.

In the implementation, two or more images must be captured with known
defocus distances, as shown in Fig. 3.8(a). Based on these intensity measurements
I(s) (s= -2, -1, 0, 1, 2 in Fig. 3.8(a)) at different defocus planes, we follow the
multi-plane iterative algorithm outlined in Fig. 3.8(b) [24]. In this algorithm, we
first initialize a complex estimate of the object function. This complex estimate is
then propagated to one defocus plane (multiplication by a quadratic phase factor
in the Fourier domain [3]). After propagation, the amplitude of the estimate is
replaced by the square root of the corresponding measurement I(s), while the phase
is kept unchanged. Such a propagate-and-replace process is repeated until the
complex solution converges. (see section ‘Off-axis pupil function recovery’ for
implementation details)

• Spatially varying pupil aberrations

Second, an understanding of spatially varying pupil aberrations is important
to fully appreciate the impact of this work. In an aberration-free coherent imaging
system, the light field distribution at the pupil plane (i.e., the back focal plane of the
objective lens) is directly proportional to the Fourier transform of the light field at
the object plane. Therefore, the spatial coordinates at the object plane and the pupil
plane can be expressed as (x, y) and (kx, ky), respectively, with kx and ky as the wave
number in the x and y directions. Due to such a Fourier relationship, aberrations
of an imaging platform are often characterized at the pupil plane for simplicity [3].
Different types of aberrations can be quantified as different Zernike modes at the
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Figure 3.8: Multi-plane phase retrieval with defocus diversity. (a) Multiple intensity
images I(s) (s= -2, -1, 0, 1, 2) are captured at different defocus settings. (b) Multi-
plane iterative phase retrieval algorithm presented in [24].

pupil plane. For example, defocus aberration can be modeled as a phase factor
p5 · Z0

2 (kx, ky), where Z0
2 (kx, ky) denotes the corresponding Zernike polynomial for

this aberration (here a quadratic function), while coefficient p5 denotes the amount
of defocus aberration (subscript ‘5’ indicates the fifth Zernike mode).

Amore complete aberrationmodel uses the generalized pupil functionW (kx, ky),
whose phase factor is a summation of different Zernike modes with different aber-
ration coefficients pm (pm denotes the amount of mth Zernike mode; refer to Eq.
3.2). If the imaging platform is shift-invariant, each aberration coefficient pm is
constant over the entire imaging FOV and the generalized pupil function W (kx, ky)
is independent of spatial coordinates x and y. However, recent extreme-FOV com-
putational imaging platforms push beyond the limits of conventional lens design
and thus invalidate this shift-invariant assumption. Aberration coefficients pms are
2D functions of x and y in this case, and thus the generalized pupil function can be
expressed as a function of both kx , ky and x, y, i.e., W (kx, ky, x, y). Our goal here
is to characterize the aberration parameters pm(m = 1, 2, ...) as a function of spatial
coordinates x and y. Based on pm(x, y), we can derive the generalized pupil function
W (kx, ky, x, y) at any given spatial location and accurately perform post-detection
image aberration correction using deconvolution method [40] or digital wavefront
correction method in Fourier ptychography.

• Off-axis pupil function recovery

Assuming the aberrations of the objective lens are minimal (i.e., they are well-
corrected for) at the center of its FOV, we use images of the object located near the
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FOV’s center to serve as the ground truth for other off-axis positions. The proposed
approach for off-axis aberration characterization consists of three primary steps: 1)
sample preparation, 2) phase retrieval, and 3) pupil function estimation.

1) Sample preparation. We first create a calibration "target" sample containing
identical discretized objects over its full viewing area. While several convenient tar-
gets exist, we found that simply spin-coating a layer of 10µm diameter microspheres
(Polysciences, Inc.) on top of a microscope slide offered an ideal calibration sample.
Selecting a sparse concentration of microspheres ensures that an automated search
algorithm can successfully identify each microsphere. For example, a slide that
contains 350 microspheres distributed randomly over the 1.3 cm FOV associated
with the 2X objective works well.

2) Phase retrieval. Following the general procedure outlined above, we displace
the microscope stage from the focal plane at δ = 50µm increments in either defocus
direction, capturing a total of 17 images of the microsphere calibration target I(s),
where s=(-8, ... 0, ...8). The maximum defocus distance with such a scheme is
400µm in either direction. For each image, the microsphere target is illuminated
with a quasi-monochromatic collimated plane wave (632 nm).

Next, we create a 642-pixel cropped image set Ic(s) that contains one micro-
sphere at the center FOV (see Fig. 3.9, left). We recover the complex profile of this
centered microsphere using the multi-plane phase retrieval algorithm [24], detailed
briefly as follows. First, an estimate of the complex field is initialized at the object
plane. The initial estimate’s phase is set to a constant and its amplitude is set to
the square root of the in-focus intensity measurement of the centered microsphere
Ic(0). Second, this complex field estimate is Fourier transformed and multiplied by
a quadratic phase factor exp(ikz z), describing defocus of the field by axial distance
z = s · δ. To begin, we set s = 1, corresponding to z = +50µm of defocus. Third,
after digitally defocusing, we again replace the amplitude values of the complex field
estimate with the square root of the intensity data from recorded image, Ic(s). Be-
ginning with s = 1, we first use the intensity values Ic(1) captured at z = +50µm for
amplitude value replacement, while the estimate’s phase values remain unchanged.
This digital propagate-and-replace process is repeated for all values of s (all 17
cropped intensity measurements from the captured focal stack). Finally, we iterate
the entire phase retrieval loop approximately 10 times. The final recovered complex
image, denoted as

√
Itrutheiφtruth , serves as a "ground truth" estimate of the complex

field from a minimally aberrated microsphere, which may be digitally refocused to
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Figure 3.9: Pupil function recovery at an off-axis position. Two cropped areas of
one set of defocused intensity images are used for algorithm input. One cropped
set Ic(s) is centered on a microsphere at the images’ central FOV (left), while
the other cropped set Id (s) is centered on a microsphere at an off-axis position
(right). Each cropped image set contains 17 intensity measurements (here only 5
are shown) at different defocus distances (-400 µm to +400 µm, 50 µm per step). We
approximate an unknown pupil functionW with 8 Zernike coefficients (x-tilt, y-tilt,
x-astigmatism, y-astigmatism, defocus, x-coma, y-coma, and spherical aberration).
We use this pupil function estimate to modify the 17 "ground truth" images Ic(s)
of the central microsphere to generate a new set of aberrated intensity images,
Ia (s) (middle). We then adjust the values of the 8 unknown Zernike coefficients to
minimize the difference between Ia (s) and the actual intensity measurements of the
off-axis microsphere, Id (s) (right). The corresponding pupil function described by
8 Zernike coefficients is recovered when the mean-squared error difference between
these two image sets is minimized.

any position of interest.

3) Pupil function estimation at an off-axis position. Next, we select a micro-
sphere at a position (x0, y0) off the optical axis and generate a new 642-pixel cropped
image set Id (s) from our initial measurements, centered at (x0, y0) (see Fig. 3.9).
We also initialize an estimate of the unknown location-dependent pupil function for
this position, W (kx, ky, x0, y0). For simplicity, we approximate the unknown pupil
functionW (kx, ky, x0, y0) with eight Zernike modes, z−1

1 , z1
1, z−2

2 , z2
2, z0

2, z−1
3 , z1

3, and
z0

4, corresponding to x-tilt, y-tilt, x-astigmatism, y-astigmatism, defocus, x-coma,
y-coma, and spherical aberration, respectively [41]. The point-spread function at
the selected off-axis microsphere location (x0, y0) may be uniquely influenced by
each mode above. We denote the coefficient for each Zernike mode with pm(x0, y0),
where the subscript ‘m’ stands for the mode’s polynomial expansion order (in our
case, m = 1, 2,..., 8). With this notation, our unknown pupil function estimate
W (kx, ky, x0, y0) can be expressed as:



29

W (kx, ky, x0, y0) = exp
{
i2π

[
p1(x0, y0)Z−1

1 (kx, ky) + p2(x0, y0)Z1
1 (kx, ky) + ...

p3(x0, y0)Z−2
2 (kx, ky) + p4(x0, y0)Z2

2 (kx, ky) + ...

p5(x0, y0)Z0
2 (kx, ky) + p6(x0, y0)Z−1

3 (kx, ky) + ...

p7(x0, y0)Z1
3 (kx, ky) + p8(x0, y0)Z0

4 (kx, ky)
]}
. (3.2)

Here, each mode pm(x0, y0) is a space-dependent function evaluated at (x =

x0, y = y0), allowing the pupil function W to model spatially varying aberrations.
This pupil function estimate is then used along with the "ground truth" complex field
of the centered microsphere found in step 2 to generate a set of aberrated intensity
images, Ia (s), as follows:

Ia (s) = ���F
−1

(
W (kx, ky, x0, y0) × F (

√
Itrutheiφtruth ) × eikzδs

) ���
2
, (3.3)

whereF is the Fourier transformoperator and the term eikzδs represents defocus
of the ground truth microsphere field to plane s. We then adjust the values of the
8 unknown Zernike coefficients pm comprising the pupil function W to minimize
the difference between this modeled set of aberrated intensity images Ia (s) and the
actual set intensity measurements of the selected off-axis microsphere, Id (s). The
corresponding pupil function described by 8 Zernike coefficients is recovered when
the mean-squared error difference is minimized. We apply a GPS algorithm [39] to
solve the following nonlinear optimization problem for pupil function recovery:

(p1, p2, ..., p8) |(x=x0,y=y0) = arg min
(p1,p2,...,p8)

8∑
s=−8

(√
Ia (s) −

√
Id (s)

)2
. (3.4)

Based on these optimal Zernike coefficients, the off-axis pupil function can be
approximated following Eq. 3.2. Determining the aberration function associated
with one off-axis microsphere requires an approximate computation time of 90
seconds on a personal computer with an Intel i7 CPU. We note that higher-order
aberrations can also be included in such an optimization process, with the cost of
longer computational time (about 3-4 folds longer for one more Zernike mode).

• Spatially varying aberration characterization over the entire FOV
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Repeating the previous section’s off-axis aberration recovery scheme for many
different microspheres spread over the image plane, we are able to characterize a
microscope objective’s spatially varying aberrations over its entire FOV. The center
of each microsphere is automatically identified using a marker-controlled watershed
segmentation algorithm [42]. We also measure the distance between each marked
microsphere and its nearest neighbor. Any microsphere within a 150 µm radius of a
neighbor is automatically skipped to avoid multiple computations at sphere clusters.

Fig. 3.10(a) shows a full FOV image of the calibration target with 350
microspheres denoted by a red dot. For each microsphere, we recover the same 8
location-specific Zernike coefficients. For example, Fig. 3.10(b) shows the pupil
function W recovered following Eq. 3.4 at position (x1, y1), the center of the black
square in Fig. 3.10(a). Fig. 3.10(c1)-(c5) are 5 of the 17 intensity measurements of
the microsphere at position (x1, y1) under different amounts of defocus: Id (s = 0),
Id (s = ±3), and Id (s = ±6). Fig. 3.10(d1)-(d5) display the corresponding aberrated
image estimates Ia (s) generated by the recovered pupil function in Fig. 3.10(b). The
applied GPS algorithm successfully minimizes the mean-squared error difference
between the measurements Id (s) and the estimates Ia (s).

Following this aberration recovery pipeline, 8 Zernike coefficients are calcu-
lated for approximately 350 unique spatial locations across the microscope’s FOV.
Fig. 3.11(a)-(f) plot the recovered second, third, and fourth order spatially varying
aberrations of our tested 2X objective lens, corresponding to x-astigmatism, y-
astigmatism, defocus, x-coma, y-coma, and spherical aberration, respectively (first
order Zernike modes are normally not considered as aberrations, and are thus not
shown). The full FOV image of our calibration target is displayed at the bottom
plane of each plot, where the FOV diameter is 1.3 cm. Each blue dot in Fig. 3.11
represents the recovered coefficient for the corresponding Zernike mode, and the
spatial location of each blue dot corresponds to one microsphere labeled in Fig.
3.10(a).

Finally, we fit these 350 discrete values to a continuous polynomial function
pm(x, y), allowing us to accurately recover the pupil function at any location across
the image plane (curved surfaces in Fig. 3.11). The order of each polynomial
function can be predicted via aberration theory for a conventional imaging platform
[41]. The aberrations of increasingly unconventional optical designs in compu-
tational imaging systems may not follow such predictable trends, which we may
account for with alternative fitting models and/or recovering coefficients at more



31

Figure 3.10: Off-axis aberration characterization with a calibration target. (a) 350
microspheres are automatically identified on a microscope slide, each denoted by
a red dot. (b) The recovered pupil function at position (x1, y1). (c1)-(c5) Intensity
measurements Id (s) of the microsphere centered at (x1, y1) under different amounts
of defocus. (d1)-(d5) The corresponding aberrated image estimates generated using
the pupil function in (b).

than 350 unique spatial locations.

We verified the accuracy of our aberration parameter recovery process with
an additional simple experiment. We defocused the calibration target by +50 µm
along the optical axis and again implemented our aberration parameter recovery
process (using the same ground truth images as before). For the tested wide-field
microscope objective, Fig. 3.12 displays two of these fitted polynomial functions
for spatially varying defocus: one computed for an in-focus target and one for the
target under +50 µm of defocus. The major difference between the two polynomial
fits is a constant offset corresponding to ∆z = 48.9µm, which is in good agreement
with the experimentally induced +50 µm displacement distance. As a reference, the
depth-of-focus of the objective lens is about 80 µm.
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Figure 3.11: Spatially varying aberrations of the 2X objective lens. Each data
point, denoted by a blue dot, represents the extracted Zernike coefficient weight for
one microsphere. 350 microspheres are identified over the entire FOV and their
corresponding parameters are fitted to a 2D surface for each type of aberration.
(a)-(f) correspond to x-astigmatism, y-astigmatism defocus, x-coma, y-coma, and
spherical aberration.

Figure 3.12: Recovered defocus parameter function p5(x, y) with (color surface)
and without (blue grid) +50 µm of sample defocus. The difference between these
two surfaces corresponds to a defocus distance of +48.9 µm, which is in a good
agreement with the actual displacement distance.
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Large FOV, High Resolution FP Microscopy System
The full FOV is segmented into 40x40 small tiles inwhich the LED illumination

can be treated as a plane wave and the aberration can be considered spatially
invariant. Each image in the captured full FOV image stack is segmented into tiles
and the stack of images in the same tile are used to reconstruct a high resolution
image of the tile. In the per-tile-reconstruction process, the aberration information
calibrated from sub-section 3.4 is used to generate an aberrated pupil function and is
incorporated in the phase retrieval algorithm so that the aberration is removed during
the reconstruction. These resolution-enhanced tiled images are stitched together to
generate a large FOV, high resolution FPM image. To get a color FPM image, red,
green, and blue LEDs are used to generate three color channels of FPM images,
which are later combined into an RGB image.

We demonstrate color FPM with our prototype by acquiring a wide-FOV color
image of a pathology slide (human adenocarcinoma of breast section, Carolina), as
shown in Fig. 3.13. Vignetted high-resolution views are provided in Fig. 3.13(b)-
(d). The imaging FOV is approximately 120 mm2, the same as that from a 2X
objective lens, whereas the maximum achieved NA is 0.4, similar to that of a typical
20x objective (MPLN, 0.4 NA, Olympus). The conventional microscope images
taken with 20X and 2X lenses are shown for comparison in Fig. 3.13(c2) and (c3).

For the generated FPM image, the resolutions is 1.56 µm so the Nyquist
sampling pixel size is (0.78µm)2. The SBP of a monochromatic image is: SBP =

120mm2

(0.78×10−3mm)2 × 2 = 0.395gigapixel. The factor of 2 here is because both amplitude
and phase information are reconstructed. For the full FOV color image, it contains
approximately 1.2 gigapixels of information.
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Figure 3.13: Gigapixel color imaging via FPM. (a) A wide-FOV color image of
a pathology slide, with a SBP of approximately 0.9 gigapixels. (b, c1, d, and e):
Vignetted high-resolution views of the image in (a). Images taken by a conventional
microscope with a 20X (c2) and a 2X (c3) objective lens, for comparison. A color
image sensor (DFK 61BUC02, Image Source Inc.) is used for capturing (c2 and
c3).



35

C h a p t e r 4

EMBEDED PUPIL FUNCTION RECOVERY

4.1 Introduction
We elaborated a digital wavefront correction strategy to correct for the spatially

varying aberration [40, 43, 44] in Section 3.4 to exploit the full throughput of the
FPM imaging platform. We demonstrated a high-resolution (1.56 µm, 0.4 NA),
wide-FOV ( 120 mm2) computational microscope with a final SBP of 0.4 gigapixel,
which is highly desired for many biomedical applications such as digital pathology,
haematology, and immunohistochemistry.

One of the drawbacks of the aforementioned wavefront correction is that a
pre-characterization of the spatially varying aberration of the microscopy system
is needed [40]. Such a characterization can be computationally onerous, and is
sensitive to the movement of the elements in the system. An adaptive wavefront
correction method for FPM has been reported [37] and it uses an image-quality
metric as a guide star for adaptive system corrections. This method eliminates the
need of a pre-characterization process and is in particular useful for factoring out
system uncertainty. However, the global optimization process imposes a heavy load
on computational resources; only a limited number of low order aberrations can be
corrected in a reasonable time duration.

In this chapter, we introduce a new phase retrieval algorithm, termed embedded
pupil function recovery (EPRY), which can reconstruct both the spatial Fourier
spectrum of the sample and the pupil function of the imaging system from the
captured FPM dataset (the spatial Fourier spectrum can be directly recast as the
spatial image of the sample by simply taking an inverse Fourier Transform). In this
case, an aberration-free image of the sample can be recovered and the aberration
behavior of the image system can be estimated from the recovered pupil function
without a complicated calibration process.

4.2 Reconstruction Algorithm
In cases when we have a precise estimation of the pupil function P(u) from the

pre-characterized aberration behavior, the phase retrieval algorithm with G-S type
update function is used to reconstruct a sample spectrum S(u). However, because
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Results of the 𝑛 − 1
loop: 𝑃𝑛 𝒖 , 𝑆𝑛 𝒖

𝜙𝑛(𝒖)=𝑃𝑛(𝒖)𝑆𝑛 𝒖 − 𝑼𝑛

Φ𝑛 𝒓 = ℱ−1 {𝜙𝑛 𝒖 }

Impose intensity constraint: 

Φ′𝑛 𝒓 = 𝐼𝑼𝑛
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Impose pupil function 
constraint

Figure 4.1: Flowchart of EPRY-FPM algorithm.

the phase retrieval algorithm only renews the sample spectrum while keeping the
pupil function unchanged, an imprecisely estimated pupil function will result in a
poor recovery. Such inaccuracy in the pupil function estimation can be caused by
the limited orders of aberration considered in the pre-characterization process [40]
or by mechanical or optical changes in the microscopy system.

In this chapter, we demonstrate the EPRY-FPM algorithm, which is developed
to address these errors by recovering both the Fourier spectrum of the sample and the
pupil function of the imaging system simultaneously. We make two main changes
to the original FP algorithm: 1) a gradient-descent-based update function is used,
making the phase retrieval algorithm converge faster, and 2) in the updating step, the
error information is used to update both the sample spectrum and the pupil function.

The flowchart of the EPRY-FPM algorithm is shown in Fig. 4.1. At the
beginning, an initial guess of the pupil function and sample spectrum, labeled as
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P0(u) and S0(u), are provided to start the algorithm. Generally, the initial pupil
function guess is set as a circular shape low-pass filter, with all ones inside the pass
band, zeros out of the pass band, and uniform zero phase. The radius of the pass
band is kc = NAobj×2π/λ , whereNAobj is the numerical aperture of themicroscope
objective and λ is the illumination wavelength. The Fourier transform of a frame of
an up-sampled low-resolution image is taken as the initial sample spectrum guess.
All the captured images are addressed in a sequence Iun (r), n from 0 to N-1 (N is the
number of captured images), and considered in turn, with both the pupil function
and sample spectrum updated each loop.

In the nth loop, with the knowledge of reconstructed Pn(u) and Sn(u) from
the previous loop, the exit wave at the pupil plane while the sample is illuminated
by wavevector un can be simulated by the multiplication φn(u) = Pn(u)Sn(u − un),
and the simulated image on the detector is the inverse Fourier transform of it
Φn(r) = F −1{φn(u)}. Then the intensity constraint is applied: the modulus of the
simulated image is replaced by the square-root of the real intensity measurement
Iun (r), which is captured with illumination wavevector un, such that:

Φ
′
n(r) =

√
Iun (r)

Φn(r)
|Φn(r) |

. (4.1)

Next, an updated exit wave is calculated via a Fourier transform: φ′n(u) =
F {Φ′n(r)} , and the updated pupil function and sample spectrum is extracted from
this result using two update functions, whose form is similar to the extraction
function mentioned in [8, 45]. The sample spectrum update function is given by:

Sn+1(u) = Sn(u) + α
P∗n (u + un)
|Pn(u + un) |2max

[
φ′n(u + un) − φn(u + un)

]
. (4.2)

The correction of the sample spectrum is extracted from the difference of the
two exit waves by dividing out the current pupil function, and this correction is added
to the current sample spectrum guess with weight proportional to the intensity of the
current pupil function estimate. The constant α adjusts the step size of the update.
In this work, α = 1 is used for the results.

The pupil update function takes the similar form:

Pn+1(u) = Pn(u) + β
S∗n (u − un)
|Sn(u − un) |2max

[
φ′n(u) − φn(u)

]
. (4.3)
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In this function, the roles of the pupil function and sample spectrum function
are reversed, while the basic principle remains the same. The constant β adjusts the
step size of the pupil function update and β = 1 is used in this work.

To suppress noise, a pupil function constraint is imposed on the updated pupil
function. For a microscope system, a physical circular aperture stop is set to define
the NA, and thus the area in the pupil function that corresponds to the stop should
always be zero. The non-zero points in the updated pupil function in the region
corresponding to the stop are caused by the noise in image acquisition, and are set
to zero to eliminate the noise. After that, we have updated pupil function Pn+1(u)
and sample spectrum function Sn+1(u).

This process continues until all the N captured images in the sequence Iun (r)
are used to update the pupil and sample spectra, at which point a single iteration
of EPRY-FPM is complete. Then the whole iterative process is repeated for more
iterations to improve convergence toward the final pupil and sample spectra. Finally,
the sample spectrum is inverse Fourier transformed back to the spatial domain, where
we get a high resolution, modulus and phase distribution of the sample.

The extra computational cost of EPRY-FPM algorithm is tiny compared to
the original FPM algorithm. Assuming that each captured low-resolution intensity
image containsm raw pixels. For each loop, the exit wave simulation, inverse Fourier
transform, intensity constraint and Fourier transform process has computational cost
of m, m · log(m), m and m · log(m) respectively. The sample spectrum update, pupil
function update and pupil function constraint has a computational cost of 3m, 3m,
and m, respectively. So the computational cost of the original FPM algorithm is
5m + 2m · log(m) for each loop, and the computational cost of the EPRY-FPM
algorithm is 9m + 2m · log(m). Generally, the raw pixel count m is in the order
of a million, so the incremental computational cost of 4m is small compared to
2m · log(m).

4.3 Simulation Results
To verify the effectiveness of the EPRY-FPM algorithm to separate the pupil

function and sample distribution from the measurements, the original FPM phase
retrieval algorithm used in [31] and the EPRY algorithm are run using a simulated
FPM dataset. Here we set the initial FPM pupil function guess as a flat function.
We note that the FPM work reported in [31] actually used a pupil function estimate
(with only the lowest five orders of Zernike polynomials accounting for the aberrated
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phase). The point of this current exercise is to compare the FPM and EPRY-FPM
performance in the total absence of prior aberration determination.

Two images, each containing 512x512 pixels with pixel size 0.2µm, are used as
the modulus and phase of the sample, as shown in Fig. 4.2(a1)-(a2). The modulus
is rescaled to (0, 1) and phase is rescaled to (−π, π). The simulated microscope
system has an NAobj = 0.08 with wavefront aberration, resulting in a circularly
shaped pupil function with a radius of 13 pixels and a pupil function phase as shown
in Fig. 4.2(a3). A sequence of 225 images are simulated with different plane wave
illuminations, with enough overlap in Fourier domain to assure convergence of the
of the algorithm [31].

In both algorithms, the initial guess of the pupil function is set as a circular
shape low-pass filter radius of 13 pixels with zero phase, and the first image in
the sequence is up-sampled and Fourier transformed to serve as the initial guess
of sample spectrum. Both algorithms were run for 100 iterations and the results
are shown in Fig. 4.2(b1-b3) and 4.2(c1-c3). The reconstruction using the original
uncorrected FPM is severely degraded. This is because the aberrated wavefront of
the pupil function repeatedly influenced the low and high frequency components of
the sample spectrum. In addition, there is a significant degree of crosstalk between
the modulus and phase images resulting from the lack of knowledge about the pupil
function phase distribution. In comparison, the EPRY-FPM reconstruction is able
to successfully separate the pupil function from the sample spectrum, resulting in
a quality-improved image and an accurate measurement of the real pupil function
phase. Because the illuminations do not cover the entire Fourier spectrum of the
sample, there exists a small amount of crosstalk in the modulus and phase image,
resulting in several phase-wrapped pixels in the reconstructed pupil function.

The convergence of both algorithms are also measured by calculating the
normalized mean square error metric [46] in each iteration:

E2(m) =
∑

u |S(u) − αSm(u) |2∑
u |S(u) |2

. (4.4)

The parameter α is given by:

α =

∑
u S(u)S∗m(u)∑

u |S(u) |2
. (4.5)
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Figure 4.2: Sample for simulation and reconstruction results. (a1-a2) Sample
modulus and phase used to generate simulated dataset. (a3) Phase of the pupil
function used to generate simulated dataset; intensity of the pupil function is a
circular shape low pass filter the same size as the phase circle. (b1-b2) Reconstructed
modulus and phase using the original uncorrected FPM algorithm. (b3) Initial guess
of the pupil phase used in both uncorrected FPM and EPRY-FPM, the initial guess
of the pupil intensity is a circular shape low pass filter the same size as the phase
circle. (c1-c2) Reconstructed modulus and phase using EPRY-FPM algorithm; the
initial guess of the sample spectrum is the same as the one used in uncorrected FPM
algorithm. (c3) Reconstructed pupil function phase, showing a similar distribution
as (a3). (d) Plot of convergence of both algorithms using the normalized mean
square error metric.
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This parameter allows the error metric to be invariant to a constant multiplica-
tion and a constant phase offset. Here S(u) is the true sample spectrum distribution
and Sm(u) is the reconstructed sample spectrum distribution after m iterations.
E2(m) is calculated over the center 128 x 128 pixels area which have enough over-
lapping, and the results are shown in Fig. 4.2(d). For the reconstructed sample
spectrum, EPRY-FPM algorithm has a significantly faster convergence rate com-
pared to the uncorrected FPM algorithm, and ends up with an error of less than
0.01. Meanwhile, for the uncorrected FPM algorithm, the error stopped decreasing
at 0.08 after 20 iterations, which is the limit imposed by the wavefront aberration
in the real pupil function. The convergence of reconstructed pupil function using
EPRY-FPM is also calculated using the same metric. As we can see in the plot,
although it converges slower than the sample spectrum at the first few iterations, the
final result has a small error of about 0.05.

4.4 Experimental Results
We also implement the algorithm on experimental data to demonstrate its

performance. Our experimental setup consists of a conventional microscope with
a 2X, NA=0.08 objective, a CCD camera mounted on top, and a programmable
color LED matrix as the light source. The setup is the same as the one reported in
[31]. We used a Wright-Giemsa stained blood smear as a sample and we captured
a sequence of 225 images using the center 15x15 red LEDs. We analyzed an area
of 150µm*150µm from the sample, located at 35% to the edge from the center of
the FOV of the imaging system, where the aberration is non-negligible. We ran
both uncorrected FPM and EPRY-FPM algorithms on the dataset from this area for
5 iterations through all 225 images. The initial guess of the pupil function was set
as a circular shape low-pass filter, whose radius was determined by the NA, with
zero phase, and the first image is up-sampled and Fourier transformed to serve as
the initial guess of sample spectrum.

The results of both algorithms are shown in Fig. 4.3. Fig. 4.3(a1) and (a2)
shows the intensity and phase distribution of the blood smear using the uncorrected
FPM algorithm. The image is blurry due to the very significant amount of objective
aberration at that location in the FOV (the aberrations get progressively worse as
we move away from the FOV’s center), the contour of the blood cells cannot be
recognized clearly and it is hard to distinguish white blood cells from red blood
cells. A high quality image can be achieved using the EPRY-FPM algorithm, as
shown in Fig. 4.3(b1)-(b2). The morphology of blood cells is clear, the zone of
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Figure 4.3: Reconstruction from uncorrected FPM and EPRY-FPM algorithms
using FPM blood smear dataset. The initial guess of the pupil function is a circular
shape low pass filter with no phase, and the reconstructed region is located 35%
from the center of the FOV. (a1-a2) Reconstructed sample intensity and phase using
uncorrected FPM algorithm. (b1-b2) Reconstructed sample intensity and phase
using EPRY-FPM algorithm. (c1-c2) Reconstructed pupil function modulus and
phase using EPRY-FPM algorithm. (d) Zernike decomposition of pupil function
phase. The amplitude of the lowest 30 modes (representing the 30 lowest order
aberrations) are shown.
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central pallor for the red blood cells is obvious, and the shape of the nucleus of the
white blood cell is recognizable. From the phase image in Fig. 4.3(b2), we can also
see the donut shape of the red blood cell. The pupil function for this FOV is also
recovered using the EPRY-FPM algorithm and shown in Fig. 4.3(c1)-(c2).

The recovered pupil function can be further studied to examine the properties
of the lens system. For one example, the size and shape of the modulus of the
pupil function reflects the shape and position of the physical aperture stop. In this
case, the modulus part of the pupil function approximately remains the same as
the initial guess, meaning that the numerical aperture is well defined by a circular
shape aperture. We can also see that the pupil function that ought to be centered
has a slight shift to the bottom right, which reflects an imprecise estimation of the
wavevector un caused by the shift of the LED matrix from its originally aligned
position. Through the EPRY-FPM algorithm, this error is corrected.

As another example, we note that the phase of the pupil function represents
the wavefront aberration [3]. If we do a decomposition of the pupil function phase
component in Zernike polynomials [47], the coefficient of each Zernike polynomial
represents the extent of aberration corresponding to this Zernike polynomial. In
our case, the decomposition is executed and the coefficients of the first 30 Zernike
polynomials are shown in Fig. 4.3(d). Different Zernike polynomials represent
different types of aberration, from low order to high order according to the mode
number. Mode number 1 represents the piston term, which will cause a constant
phase shift to the entire aperture and is not considered as an aberration. The three
dominant modes for the wavefront aberration are mode number 4, 5, and 6, which
represent defocus aberration, astigmatism in the x direction, and astigmatism in
the y direction, respectively. We can also see that coma aberration (mode 7 and
8) is not severe for this FOV but there are some higher order aberrations that are
non-negligible for this position, such as mode 9 (trefoil) and mode 13.

4.5 EPRY-FPM for Large FOV, High Resolution Image Reconstruction
For a large FOV microscope system, the aberration and, by extension, pupil

function can be expected to show spatial variations [40, 48]. To ensure the effec-
tiveness of the EPRY-FPM algorithm, we segment the entire FOV into small tiles
where in each tile the aberration can be considered as constant [31, 40]. For our
FPM system with a 6mm radius FOV, the entire area is segmented into tiles sized
350µm*350µm, and the EPRY-FPM algorithm is run on the dataset of each tile
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Figure 4.4: Full FOV high resolution monochrome image (red LED illumination)
reconstruction of blood smear: the entire FOV is segmented into small tiles, and
the aberration is treated as constant in each tile. EPRY-FPM algorithm is run on
each tile and the reconstructed high resolution images are mosaicked together. The
insets show the detail of the reconstructed image and also the wavefront aberration
at those locations.

independently, using the aforementioned process. We take advantage of the fact
that the pupil function varies continuously and use the reconstructed pupil function
from the adjacent tile as the initial pupil function guess (instead of a flat phase
initial guess) for the current tile to increase the convergence rate of the algorithm.
All these reconstructed high resolution, aberration eliminated images are combined
together to form a full FOV high resolution image, as shown in Fig. 4.4. The
reconstructed sample image and wavefront aberration of five regions on the FOV
are shown in Fig. 4.4, demonstrating the stable image quality from center to edge
achieved by EPRY-FPM algorithm, despite the much more severe aberration at the
edge compared to the center.

The same algorithm was also implemented to render a high resolution, large
FOV color image of a pathology slide. The center 15x15 red, green, and blue LEDs
on the LED matrix are lit up individually and 3 sets of FPM data are captured.
For each color channel, the same segmentation and reconstruction processes are
executed as previously described. For each tile, because the pupil function which
contains the defocus aberration is separated from the sample spectrum in EPRY-FPM
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Figure 4.5: Full FOV high resolution color image reconstruction of pathology slide:
each color channel is reconstructed using the same method described in Fig. 4.4,
and three channels are combined to generate RGB image. (a1, b1, c1) reconstructed
sample intensity of three regions in the FOV. (a2, b2, c2) reconstructed red channel
wavefront aberration of the three regions. (a3, b3, c3) reconstructed green channel
wavefront aberration of the three regions. (a4, b4, c4) reconstructed blue channel
wavefront aberration of the three regions.
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reconstruction process, each color channel is focused at its best focal plane. In other
words, the axial chromatic aberration, which is caused by different wavelengths
focused at different planes, is correctable by EPRY-FPM. Before we combine red,
green, and blue channel images in the same tile together, green and blue images are
slightly shifted spatially relative to the red channel to correct for lateral chromatic
aberration. An automatic program is run to find the correct amount of shift which
maximizes the correlation of the red-green image pair and red-blue image pair
respectively. Finally, all the color tiles are mosaicked together and the result is
shown in Fig. 4.5. Three regions are magnified and shown in Fig. 4.5(a1)-(c1).
The wavefront aberration on corresponding region for red, green, and blue channels
are also shown in the second (a2-c2), third (a3-c3), and fourth columns (a4-c4) of
Fig. 4.5. We would like to point out that the different sizes of the circles between
different color channels are caused by the different wavelengths. We further note
that the shape of the pupil function changed from a circle to an ellipse significantly
as we move towards the edge of the image. This is because the 2X objective we are
using is not strictly a telecentric lens [49] and, as such, the aperture shape can be
expected to change asymmetrically.

4.6 Comparison with Original Phase Retrieval Algorithm
To quantify the improvement in image quality, we use a USAF target in the next

set of experiments. The target is placed at 0%, 27%, 54%, and 80% of the entire
FOV from the center, and four sets of images are captured respectively using the
red LED. Three methods are run on these four sets of images: 1) the original FPM
algorithm without the knowledge of wavefront aberration (uncorrected FPM), 2) the
original FPM algorithm with pre-characterized defocus and astigmatism aberration
(corrected FPM) [40], 3) the EPRY-FPM algorithm without the knowledge of wave-
front aberration. Group 8 and 9 of all the 12 reconstructed images are shown in Fig.
4.6.

As we can see, the image quality is highly degraded by aberration for the 54%
and 80% FOV locations (Fig. 4.6(a3), (a4)). After the correction of defocus and
astigmatism aberration by method 2, the line on Group 9 (periodicity < 2µm) can be
vaguely resolved (Fig. 4.6(b3), (b4)). Three reasons prevent further improvement
of the image quality using method 2. First, a non-linear optimization algorithm [40]
is used for the aberration pre-characterization process, so adding N more aberration
variables for optimization means searching for the minimum point in an Nth order
higher dimensional space, which will make the computational complexity 2N times
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Figure 4.6: Characterization of achievable resolution by three methods using USAF
target: (a1-a4) Images at different FOV reconstructed by using uncorrected FPM
method. (b1-b4) Images at different FOV reconstructed by using corrected FPM
method. (c1-c4) Images at different FOV reconstructed by using EPRY-FPMmethod
without pre-characterized aberration.

that of the original 3 aberration optimization. Second, the image sets that are used
for aberration characterization only contain low resolution images captured by the
NA=0.08 objective. The high order aberration information is easily overwhelmed
by the noise of the imaging system, resulting in an imprecise measurement of the
high order aberration. Third, the characterized high order aberration information
can be volatile. This is because such aberration is highly sensitive to mechanical or
optical system drifts. In conclusion, method 2 is impractical to correct higher order
aberration.

However, by using the EPRY-FPM algorithm, the image quality is significantly
improved. This is largely attributable to the fact that the EPRY-FPM considers and
characterizes the entire pupil function rather than focusing on just the lower orders
of wavefront aberration. As shown in Fig. 4.6(c3), (c4), group 9 element 3 can
be resolved, resulting in a resolution of 1560µm throughout the entire FOV. There
are two primary reasons that the image quality at the edge is worse than the center:
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First, the synthesized Fourier spectrum domain is no longer symmetric for the edge
region because the 15x15 LEDs for illumination are centered at the center point of
the entire FOV. Second, because of the field distortion of the 2X objective, the pixel
size on the sample plane is not the same from center to edge. The imprecise distance
measurement from pixel count results in an imprecise estimation of wavevectors Un

for the reconstruction of the edge FOV, which degrades the image quality.

4.7 Conclusion
In this chapter, we described a new phase retrieval algorithm for FPM system

called EPRY-FPM which can recover both the expanded sample spectrum and the
pupil function of the imaging system by merely using the image set of the sample
captured by FPM. The implementation of EPRY-FPM algorithm provided us with
improvement of image quality, due to the fact that the entangled sample spectrum
and pupil function are isolated from the captured image set during the recovery
process. Moreover, the recovered pupil function which contains wavefront aberra-
tion information of the microscopy system can be further studied to characterize
the behavior of the lenses. We illustrated the ability of the EPRY-FPM algorithm
to cope with the spatially varying aberration of a large FOV image system, and re-
constructed high resolution, large FOV monochrome and color images of biological
samples using this algorithm. In the study of the recovered pupil function for the
large FOV image system, we observed variation spatially and spectrally. From the
elliptical shape of the pupil function at the edge of the FOV, we can also estimate the
deviation of this objective lens from a telecentric lens. By imaging a standard USAF
target and comparing the result with the original FPM algorithms, we showed that
the EPRY-FPM algorithm is an automatic method which is less time consuming,
generates higher quality images, and is more robust to the alignment drift of FPM
system.

With the help of this algorithm, the FPMno longer requires the time-consuming
and laborious acquisition of pupil characterization data. Besides its obvious advan-
tage in simplicity of use, the development of EPRY-FPM also opens up the choice
of optical systems we can adapt for FPM usage. Highly aberrated optical systems
or systems without a well-defined physical aperture stop, which were previously
precluded, can now be considered.

Finally, we would like to note that the EPRY-FPM method can also be po-
tentially employed to characterize optical system aberrations for purposes beyond
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FPM. For example, it can be used to benchmark the quality of imaging systems
for comparison purposes. Alternately, the recovered system aberration data can be
used to design appropriate correction optics to improve a target system. We believe
that this simple while elegant method can convert aberration characterization and
correction from a formidable task which requires optical professionals to a handy
tool for researchers in all areas.
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C h a p t e r 5

HIGN NUMERICAL APERTURE FOURIER PTYCHOGRAPHY

5.1 Introduction
As has been mentioned in Chapter 1, the resolving power of an optical micro-

scope is mainly determined by the numerical aperture (NA) of its objective lens,
defined as NA = n · sin θ. Here, n is the refractive index of the medium between
the sample and lens, and sin θ is the lens acceptance angle. While switching to a
higher-NA objective lens in a conventional microscope improves image resolution,
it also introduces several undesirable effects. First, the image field-of-view (FOV) is
correspondingly reduced. Second, high-NA (i.e., large θ) lenses also require a short
working distance, which can make sample manipulation challenging. Third, a way
of further increasing the lens NA is through a higher refractive index, n. However,
while the introduction of a liquid immersion medium can push the NA beyond unity,
it also increases the risk of sample contamination and microscope damage. Fourth,
as θ increases, so do lens aberrations, which become increasingly difficult to correct
for [50]. This last problem is especially problematic for high NA objective lenses.
In Chapters 3 and 4, we showed that aberrations can be significant even within the
specified field-of-view of an otherwise well-corrected objective lens system, which
prevents diffraction limited performance.

As has been shown in Chapters 2, 3, and 4, Fourier ptychography (FP) is a
super-resolution technique that offers an alternative way to increase the NA of a
bright-field microscope [31, 51, 52]. Instead of changing the objective lens and
possibly applying an immersion medium, we use an LED array to provide angularly
varying illumination and acquire a sequence of images. Each off-axis LED shifts a
different amount of high spatial frequency information, diffracted from the sample,
into the acceptance angle of a dry objective lens. FP then uses a phase retrieval
algorithm to fuse each uniquely illuminated image into a final output image with
increased resolution. This paradigm shift comes with two notable consequences.
First, for a fixed desired resolution, FP operates with a lower-NA objective lens as
compared with a conventional microscope. This increases both the imaging FOV
and sample-lens working distance. Second, by working with a lower-NA objective
lens, we will need to contend less with residual (i.e., uncorrected) aberrations to
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potentially achieve a resolution that is more closely matched to the NA-predicted
value.

This second point is practically important, because it could significantly allevi-
ate the need to design and construct complicated, multi-element lens systems with
many components included just to minimize aberrations. Furthermore, our previ-
ous works with microscope systems (Chapter 3 and 4) suggests that the presence
of residual aberrations still notably impacts the experimental formation of accurate,
wide FOV images. In this chapter, our prime focus is thus to systematically study
the true resolution of high-NA objective lenses and determine whether FP offers a
significant advantage by working with lower-NA lenses.

Here, we accomplish such a study by working towards two related goals. First,
we construct two unique FP microscopes (FPMs) with effective system numerical
apertures, NAsys, greater than unity (using a dry 20X 0.5NA and 40X 0.75NA objec-
tive lenses, respectively). Second, we benchmark the performance of our new FPMs
against other commonly available high-NA microscopes, including oil-immersion
setups. Due to its inherent use of controllable illumination and computation, a direct
comparison of FPM to conventional oil immersion images is somewhat nuanced.

5.2 High-NA FPM setup
Previous demonstrations of FPM only applied this aperture synthesis process

to low-NA microscope setups [31, 51, 53]. To extend FPM to the high-NA case, we
start from a conventional microscope with a 20X 0.5NA objective lens (Olympus
UPLFLN 20X) and a CCD camera (Kodak KAI-29050). An array of LEDs arranged
in concentric rings is used to provide variable off-axis illumination, as shown in Fig.
5.1(a). Each LED consists of three active areas with center wavelengths at 632nm
(red), 522nm (green) and 471nm (blue), which can separately acquire three color
channels for an RGB image. The outmost ring has a radius of 40 mm and contains
12 LEDs. Two more inner rings, each containing 8 LEDs, are arranged to ensure
enough overlap in the Fourier domain with radii of 16 mm and 32 mm, respectively.
An Adafruit 32x32 RGB LED matrix panel (same as the one in chapter 3) is used
in our experiment, and 3 rings of LEDs are selected within the panel such that
their distances to the panel center match with the aforementioned parameters. The
LED array is placed 41 mm away from the sample, providing an illumination NA
of 0.7 (φmax = 45◦). The total spatial frequency support that this arrangement
covers is shown in Fig. 5.1(b). The center red circle represents the pass band edge
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Figure 5.1: High-NA FPM setup and synthesized Fourier domain spectrum. (a)
Our primary high NA FPM system consists of a conventional microscope with a
20X 0.5NA objective lens and a ring illuminator, offering an illumination NA of
0.7. (b) Each captured image is merged in the Fourier domain, forming an enlarged
passband. Center red circle: Fourier support of the original microscope; white
circle: Fourier support of one LED; green circle: synthesized Fourier support of the
FPM system. (c1) Known sample intensity; (c2) image captured by a conventional
20X microscope corresponding to red circle in (b); (c3-c4) two images captured
with different off-axis LEDs on, corresponding to two of the white circles; (c5)
FPM reconstruction, corresponding to the green circle.

(i.e., the CTF) set by the objective lens numerical aperture. During FP capture, we
sequentially turn on each of the 28 LEDs in the illumination array and acquire an
image. The unique spatial frequency support of each image is denoted by a white
circle. In the reconstruction process, all of the information within each white circle
is fused together to reconstruct an image with support defined by the large green
circle, which is our synthetic system NA. For the present case, NAsys = 1.2.

Just likewith a conventionalmicroscope, FP can switch to a higherNAobjective
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lens and achieve a higher system NA. Alternatively, we can move the LED array
closer to the sample to form a higher illumination NA, so long as the overlap between
each image’s spatial frequency support remains sufficiently large (greater than 60%
area overlap) [14]. In this work, we select the former option to construct a second
FPM system, now using a 40X objective lens withNAobj = 0.75 (Olympus UPLFLN
40X) and the same illumination setup as discussed above (NAillu = 0.7). Following
Eq. 2.5, we expect this second FPM to synthesize a system NA of 1.45. With
these two unique setups, we hope to first validate Eq. 2.5, and then test whether the
experimental performance of FP, due to its utilization of low-NA, low-aberration
lenses, can have a better performance than its high-NA conventional microscope
counterpart.

5.3 Resolution Characterization
Comparison between Coherent and Incoherent Illumination

In this section, we propose an experimental procedure to verify the resolution
of each of our new high-NA FPM systems. We select this procedure both to help
verify our synthetic aperture model in Eq. 2.5, and to fairly compare the resolution
of FPM to the resolution of a conventional incoherently (i.e., Köhler) illuminated
microscope.

As noted in Section 2.3, Fourier ptychography ideally functions as a coherent
imaging system. Given each LED emits light of suitable temporal and spatial
coherence (see Appendix A.1), the formation of each FP image simply involves a
multiplication of the complex sample spectrum S(u) with a suitably shifted objective
lens CTF in the Fourier domain, defining the image’s spatial frequency support.
The computational goal of FP is to determine S(u) by correctly fusing together the
image measurements from each of these uniquely shifted support regions. Section
2.3 argues that this goal is equivalent to the formation of a large, coherent synthetic
CTF, CTFsys, with a cutoff frequency defined through Eq. 2.5. CTFsys is a complex
function that completely defines the ideal performance of FP.

Unlike the incoherent optical transfer function that solely depends upon image
intensities, CTFsys is sensitive to the input light’s phase at each spatial frequency
[3]. Thus, while it would be ideal for us to characterize each FPM by measuring
its CTFsys, required stability at sub-wavelength scales presents an experimental
challenge (e.g., small sample imperfections or setup instabilities can lead to large
measurement errors). Instead of measuring an entire CTFsys, it is common to define
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Figure 5.2: Resolution calibration using customized two-slit targets, illumination
wavelength λ = 632nm. (a) SEM, conventional microscope, and FPM images of the
two-slit targets (180 nm width, 4500 nm length). (b) Line plots of vertical intensity
distribution across both slits, showing a Sparrow resolution limit of 615 nm for 20X
0.5 NA objective (b1), 455 nm for 40X 0.75 NA objective (b2), 315 nm for 100X
oil immersion 1.25 NA objective (b3), 385 nm for 1.2 NAsys FPM system (b4), and
335 nm for 1.45 NAsys FPM (b5). Line plots of about 81% dip-to-peak ratio are
also shown for a rough estimation of Rayleigh resolution limit [54].
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microscope performance using a single cutoff metric [3, 55].

The approach by which the resolution of a coherent imaging system ought to
be quantified with a single metric is not a settled matter in literature. In broad
terms, published quantifications fall into two camps. One major approach is to
use the width of a point-spread function (PSF) (or some related variant), which is
widely used to characterize incoherent imaging systems. Significant papers using
this method include [56–58]. Proponents of the second camp rightly pointed out
that a point-spread function-defined resolution can systematically overestimate the
ability of a coherent imaging system to actually resolve two points in close proximity
[59]. As such, they argue that a two-point resolution measurement ought to be the
defining way to characterize resolution. On the other hand, a counter-argument
may be made that for a target with two points that are out of phase with each other,
coherent systems can be expected to do a better job of resolving two points than an
incoherent one, and as such, the two-point resolution measurement method unfairly
penalizes coherent systems [3].

Resolution of FPM Compared to High NA Objective
Here, we choose to risk underestimating instead of overestimating resolution

performance. We characterize system resolution by simply identifying theminimum
separation between two points or lines that the system can resolve. While alternative
resolution measures exist [55], this well-known two-point/slit criterion lends itself
nicely to comparing the resolution performance of coherent and incoherent imaging
systems. Specifically, we may use the same two-point/slit target to mark FP’s per-
formance against typical incoherent standard microscopes. Since the quantification
metrics for coherent and incoherent performance are connected to imaging system
NA by different constant factors [55, 60], we caution readers seeking to compare our
achieved resolutions to those of other reported systems to exercise due diligence.
Furthermore, for this target, coherent imaging systems, such as the FPM, can be
expected to systemically fare worse than incoherent imaging systems, such as a
standard microscope, as the light transmitted through the two-point/slit would have
the same phase. In comparison, a target with more phase variations can be expected
to perform better for coherent systems. This means that the resolution we expect to
measure here for the FPM is a base resolution quantity. For actual practical samples,
the FPM may actually do better in resolving features.

We construct our resolution targets by forming aperture pairs of different sep-
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aration with a focused ion beam on a gold coated (100 nm thickness) microscope
slide. When illuminated from below, each aperture pair forms our two points at a
unique separation. We tested two different aperture pair geometries. In the first
set, we fabricated each aperture as a round hole with a 200 nm diameter. In the
second set, each aperture is a slit of width 180 nm and length 4500 nm. For both
target types, we fabricated multiple targets with varying aperture center-to-center
distances ranging from 300 nm to 740 nm. For both tested FPM systems, we found
that the more light-efficient two-slit target set led to less noisy images, and thus
more reliable resolution measurements. The two-slit targets form the focus of this
section, while we present and discuss our similar two-hole resolution measurements
in Appendix A.3. The scanning electron microscope (SEM) images of 15 differ-
ent two-slit targets are shown in the first column of Fig. 5.2(a). We mount each
target with a #1 coverslip (to simulate our mounting of a biological sample) before
imaging.

To measure the two-point resolution for our FPM system, we first illuminate
each of the targets with a sequence of red LEDs (center wavelength = 632nm)
and capture an image set. We then apply our FP phase retrieval algorithm [31] to
reconstruct a high-resolution image from each image set. We execute this entire
procedure for our 1.2 NAsys FPM setup first, with the resulting reconstructions
shown in the second-to-last column of Fig. 5.2(a). We then repeat this procedure
with our 1.45 NAsys FPM setup. These reconstructions are in the last column of
Fig. 5.2(a). Each reconstruction displays the image intensity in pseudo-color.

Next, we use the Sparrow resolution criterion [61] to determine the cutoff
resolution of our two FPM setups from their target image sets. The Sparrow
resolution limit is defined as the distance between two points/slits where the dip in
brightness between each peak vanishes in an image. Vertical line traces through
each slit pair help identify this resolution cutoff, which we plot in Fig. 5.2(b4-
b5). For the 1.2 NAsys FPM setup, we see this intensity dip between the slit peaks
decrease as the slit center-to-center distance decreases (Fig. 5.2(b4)). It vanishes
at a center-to-center distance of 380 nm, which suggests the measured Sparrow
resolution limit of this FPM is approximately 385 nm. The theoretically predicted
Sparrow resolution of a coherent illuminated, diffraction limited imaging system
with an NA of 1.2 for two-slit target, defined as d = 0.68λ/N A (Appendix A.4
shows our derivation of a suitable Sparrow resolution equation), is 358 nm. Thus,
with only an 8% deviation between measurement and theory, we find that this 1.2
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NAsys FPM coherent synthetic aperture (computed via Eq. 2.5) closely adheres to
the theoretical limit. Furthermore, as our Sparrow limit measurement relies upon
images of multiple targets, we can immediately ascertain if one target is tilted or
misaligned (i.e., setting one aperture out of phase with the other), ensuring this
measurement is robust against experimental error.

We also search for the same intensity dip vanishing point within image traces
taken with our 1.45 NAsys FPM setup (Fig. 5.2(b5)). These traces exhibit a higher
contrast than the corresponding traces from the 1.2 NAsys FPM setup, as expected.
The intensity dip now disappears at a center-to-center spacing of 330 nm. This
suggests our measured Sparrow resolution limit is approximately 335 nm, which
deviates by 13% from theory (296 nm) for a 1.45 NA coherent microscope. In
both cases, the small difference between theory and experiment is attributable to a
mismatch in nominal NA and aberrations within the microscope objective that are
not accounted for, thus concluding that Eq. 2.5 is an accurate model.

For comparison, we also image the same set of two-slit targets with a conven-
tional incoherent microscope setup. We test the resolution performance of three
different objective lenses: a 20X 0.5 NA objective, a 40X 0.75 NA objective and a
100X 1.25 NA oil immersion objective (Olympus PLN 100X). For each, we illumi-
nate the sample with a halogen lamp beneath a condenser (i.e., Köhler illumination
with matched illumination NA [62], and here we use Olympus U-AC2 condenser
for 20X 0.5NA and 40X 0.75NA objective and Olympus U-AAC oil immersible
condenser for 100X 1.25NA objective), and place a red filter (Thorlabs FB630-10)
in the light path to match its spectrum to the FPM LED illumination spectrum.

Sample images from the conventional microscope are shown in Fig. 5.2(a),
columns two to four. We plot a vertical trace through the two-slit intensity dis-
tribution for each of these sample images, shown in Fig. 5.2(b1)-(b3). Under
Köhler illumination imaging, the theoretical Sparrow resolution limit is given as
d = 0.44λ/NA (Appendix A.4). A comparison between the theoretical value and
each of our measured Sparrow resolution limits for the three tested incoherent
microscope objectives is in Table 5.1.

Themeasurements for the incoherent microscope objectives showed significant
and increasing deviations from theory as the NA increases. This mismatch is likely
attributable to the deviation of their practical NA from their nominal NA, which
includes the negative impact of uncorrected aberrations. It is generally known
that due in part to a larger deviation from the paraxial approximation, aberrations
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System Parameter

Theoretical
Sparrow
resolution

(nm)

Measured
Sparrow
resolution

(nm)

Deviation
from
theory

Conventional
Microscope

20X 0.5NA 556 615 11%
40X 0.75NA 371 455 23%
100X 1.25NA 222 315 42%

FPM 1.2 NAsys
0.5 NAobj +
0.7NAillu

358 385 8%

FPM 1.45 NAsys
0.75 NAobj +
0.7NAillu

296 335 13%

Table 5.1: Sparrow resolution for microscope systems (λ = 632nm, two-slit targets)

are harder to eliminate within higher NA lenses [50]. Perhaps, of more pertinent
importance is the observation that the 1.45 system NA FPM achieved a measured
Sparrow resolution that is comparable to that of an incoherent 1.25NAoil-immersion
objective.

Finally, we would like to point out that the slightly larger Sparrow resolution
limit for the 1.45NAsys FPM compared to the 100X 1.25NA oil immersion objective
does not necessarily means a vaguer image for practical samples, since the phase
relationship of the sample will have an influence on the coherent system’s resolution
performance. This point will be further elaborated upon in the next section.

Our observations here remind us that when using a high-NA objective lens,
the nominal NA value (as marked on the lens casing) is not necessarily the best
indicator for imaging system cutoff resolution, due to its high measurement-to-
theory resolution deviation. Instead, the precise value should be calibrated via a
test target. We suggest that our two-slit target sequence is a simple and robust
procedure offering accurate results. At the same time, these tests reveal that FP
offers a well-controllable way to improve resolution performance while preserving
the longer working distance, larger FOV, and less-aberration-challenge benefits of
lower-NA microscope objectives.

At this point, we would like to point out that resolution provides a convenient
and objective way for comparing microscope performance. The overall image
quality is much more difficult to quantify, if at all possible. In fact, image quality
can differ not just between systems, but is also dependent on the samples that are
examined. The strong diffraction fringes observable for the 1.45 NAsys FPM in Fig.
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5.2 is attributable to the sharp cutoff in transfer function associated with a coherent
imaging nature of the FPM. The dropoff of the optical transfer function for an
incoherent system (conventional microscope) is much more gradual [3]. This does
not imply that a coherent system is inferior in general, because system performance
is highly sample dependent. This point is well explained in [3] and illustrative
examples can be found in Fig. 6.17 and 6.21 of the book. The subjectivity of image
quality versus the objectivity of resolution quantification is the reason we chose
resolution as the way to benchmark and quantify the performance of our system.
In the next section, we will look at the various system image performance with an
actual biospecimen.

5.4 Imaging Performance
In this section, we demonstrate how our high-NA FPM systems may benefit

a particular medical imaging scenario: the diagnosis of malaria-infected human
blood. We prepare a sample slide containing malaria-infected blood cells by first
maintaining erythrocyte asexual stage cultures of the P. falciparum strain 3D7 in
culture medium, following the protocol described in [63]. Then, we smear these
cultures on glass slide, fix them with methanol, and stain them with a Hema 3 stain
set (a modified Wright-Giemsa stain).

To image the stained cells with a conventional microscope, we use the same
incoherent Köhler illumination as the previous section, but now without a spectral
filter. To obtain color images of the cells via FPM, we repeat the FP capture and
process steps three separate times using red, green, and blue LED illumination from
the same LED array, and then place each reconstruction in the appropriate color
channel for the final color image in Fig. 5.3(a). We apply gamma adjustment to this
final color image to diminish its difference in color with the conventional microscope
images, caused by differences in the spectrum of the illumination light. We detail
imaging performance in two image sub-regions, marked by red squares in Fig. 5.3(a).
The same sub-regions from our 1.2 NAsys and 1.45 NAsys FPM reconstructions are
in Fig. 5.3(e)-(f). The pebbly pattern in the cells on 1.2 NAsys FPM image and the
colorized pattern in the background on 1.45 NAsys FPM images are mainly caused
by the variation of brightness between LED elements and between RGB chips within
an LED, which are not fully corrected in the reconstruction process. Images from
the conventional color microscope setup, using the same three different objective
lenses as noted above, are in Fig. 5.3(b)-(d). Image clarity increases as the objective
lens NA increases, but at a sacrifice of a smaller field-of-view (marked for each
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Figure 5.3: Microscope images of a malaria infected blood smear. (a) Full-sized
1.2 NAsys FPM reconstruction, which maintains the FOV and working distance of
the 20X objective. The FOV of the 40X and 100X objective are marked with black
and blue circles, respectively. (b1-b2) Two sub-regions from (a) (marked with red
squares) captured by the 20X objective, (c1-c2) 40X 0.75 NA objective lens, and
(d1-d2) 100X 1.25 NA objective lens. (e1-e2) 1.2 NAsys FPM, (f1-f2) 1.45 NAsys
FPM images of cells from the same sub-regions. A malaria infected red blood cell
from sub-region 2 are further zoomed in, showing particles (pointed by arrows) that
are clearly resolved by 1.45NAsys FPM and vaguely resolved by 100X oil immersion
microscope.
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objective lens with dashed circles in Fig. 5.3(a)) and a smaller working distance
(noted in each lens diagram).

The 1.2 NAsys FPM’s image is sharper compare to the 40X 0.75NA conven-
tional microscope setup, while the 1.45 NAsys FPM images contain details that are
not resolved in any of the other images. For one example, a malaria infected red
blood cell from Fig. 5.3(a) sub-region 2 are further zoomed in, showing particles
(pointed by arrows) that are clearly resolved by 1.45 NAsys FPM (Fig. 5.3(f2)). In
comparison, for 100X oil immersion microscope, part of these particles are vaguely
resolved and part of them are not resolved (Fig. 5.3(d2)), while all the particles are
not resolved in the rest of the microscope setups.

As noted earlier, the Sparrow resolution measurements for each of our FPM
setups was performed on a slit pair. Light transmitted through both slits undergoes
the same phase retardation. A coherent imaging system (such as the FPM) can be
expected to underperform for such a target more so than in an incoherent system
(such as a standard microscope). Conversely, if the transmissions are not in phase,
the two-point resolution cutoff can outperform for a coherent system [3, 64]. As
such, our Sparrow resolution measurements for our FPM systems establish base
resolution (underestimation) scores for FPM. In a sample with significant phase
variations (such as blood cells), the FPM can be expected to provide better resolution
performance. Finally, we again note that differences in the nature of the transfer
functions between the two systems can lead to variations in the FPM and standard
microscopy images.

The FP technique simultaneously acquires quantitative sample phase during
high-resolution intensity image reconstruction [51]. We can use the reconstructed
sample phase to simulate other modalities typically offered by microscope systems,
such as differential interference contrast (DIC) or dark-field imaging. This simula-
tion requires no physical modification to the imaging system. Figure 5(a1-a2) shows
the intensity and phase from a small region of the blood smear sample image in
Fig. 5.3, taken with the 1.2 NAsys FPM under red LED illumination. Phase gra-
dient images in both directions are shown in Fig. 5.4(b1-b2), which have a similar
appearance to what we will see under DIC microscope. Also, a simulated dark field
microscope image assuming a 0.5 NA objective lens and condenser with 0.65-0.7
NA illumination ring is in Fig. 5.4(c).
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Figure 5.4: The amplitude and phase from FPM images may be post-processed into
different modality of microscope (a1-a2) 1.2 NAsys FPM intensity and phase image
of the blood smear sample in Fig. 5.3. (b1-b2) Phase gradient images (similar
appearance as DIC image). (c) Simulated dark field image using the data in (a).

5.5 Conclusion
In this chapter, we first described a new interpretation of Fourier ptychography

as a coherent aperture synthesis technique, arriving at the conclusion that its syn-
thesized system NA equals the sum of its objective NA and illumination NA. Then,
we demonstrated for the first time an FPM system with an NAsys over unity. This
demonstration was performed on two unique setups: a 1.2 NAsys setup formed by
a 0.5 NA objective lens with a 0.7 illumination NA LED ring, and a 1.45 NAsys

setup formed by a 0.75 NA objective lens and the same LED ring. We verify the
predicted synthesized aperture sizes for each FPM setup using a simple Sparrow
resolution limit measurement, finding good agreement with theory. Performing the
same Sparrow limit measurement with several conventional microscope configu-
rations led to a larger mismatch between measurement and theory, attributable to
larger uncorrected aberrations within higher-NA objective lenses. We further found
that the 1.45 NAsys FPM gave comparable resolution performance to an incoherent
100X 1.25 NA oil immersion objective standard microscope. Finally, we used our
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FPM system to obtain comparable or better color imagery of a biological sample
than a conventional 100X oil immersion objective lens.

This study substantiates our initial conjecture that the use of lower-NA objec-
tive lenses in FPM can yield resolutions that are competitive with those of standard
microscopes using higher NA objectives. Particularly intriguing is our experi-
mental result showing that an FPM employing a 40X 0.75 NA objective can give
comparable resolution to that of commercially available standard microscope with
an oil-immersion 100X 1.25 NA objective. We would like to stress that the ob-
served competitive performance of the FPM with the 100X oil immersion objective
is attributable to the inability of the oil immersion objective to deliver NA-limited
resolution, rather than some extraordinary FPM ability. In other words, a perfect
aberration-free oil immersion objective can be expected to perform better.

As a whole, these findings indicate that high-NA FPM offers five primary ex-
perimental benefits over conventional high-NA microscope counterparts: a wider
FOV, longer working distance, larger depth-of-field, an ability to measure sample
phase, and a mitigation of the need for an oil immersion medium in certain situ-
ations. These five primary advantages come with certain costs. First, FPM must
acquire multiple images over time. Second, it now operates only with thin sam-
ples, and in its current configuration cannot improve the resolution of fluorescent
samples. Finally, its image recovery process is an inverse problem that can be
computationally demanding for large data sets. That said, a number of alternative
applications may immediately gain from the above five advantages, given they are
unaffected by or can tolerate these costs. Examples include the study of bacteria
[65], differential leukocyte counting [66], muscle tissue examination [67], and, as
we briefly demonstrated, malaria diagnosis [68].

Several future experimental steps may help improve high-NA FPM. First, the
LED ring array we used for sample illumination in both FPMs was optimized for the
1.2 NAsys FPM design. The 1.45 NAsys FPM, using a 0.75 NA objective lens, can
benefit from an even higher illumination NA. Second, an embedded pupil function
recovery algorithm [69] can be implemented to simultaneously estimate and remove
lens aberrations from our final FPM reconstruction. This additional step may lead
to improved image quality. Finally, we conclude that Fourier ptychography offers a
consistent technique to improve the resolution of conventional microscope objective
lenses across all magnifications, and has the potential to scale up to even higher-NA
configurations than this work includes.
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C h a p t e r 6

APERTURE SCANNING FOURIER PTYCHOGRAPHIC
MICROSCOPY

6.1 Introduction
Fourier Ptychography (FP) [31, 52] is a recently developed phase retrieval tech-

nique that utilizes intensity images of limited numerical aperture (NA) overlapped in
the Fourier domain to reconstruct a sample’s complex field. In the original demon-
stration [31], angularly varying illumination realized by an LED matrix is used to
scan the sample’s Fourier spectrum, resulting in an expanded synthesized NA of
the system. Images with resolution higher than the diffraction limit of the objective
lens can be reconstructed [31, 32]. Quantitative phase measurement of the sample
is also achieved [51].

The limitation of the angular illumination configuration of FP is its requirement
on a sample’s thickness[32]. Once the sample’s thickness exceeds the thin-sample
limit, the simple correlation between the change of illumination angle and the shift
in 2D Fourier spectrum is no longer valid, and the phase retrieval algorithm would
fail. Tian et al. [70] proposed and demonstrated a modification on FP to reconstruct
a 3D sample by approximating the 3D sample as a stack of 2D slices. Horstmeyer
et al.[71] modeled the imaging process as diffraction tomography and modified the
reconstruction accordingly, resulting in a phase retrieval of the scattering density
of a 3D sample. For both modifications, the computational complexity is increased
dramatically.

FP can be implemented in an alternate configuration by placing a scannable
aperture at the Fourier plane of the imaging system while illuminating the sample
with a single plane wave. In this configuration, the wavefront (scattered field)
exiting the sample is captured and reconstructed, and the thin sample requirement
is circumvented.

In this work, we demonstrate the usage of conventional microscope elements to
build an aperture scanning FP microscope (ASFPM) in section 2. This work builds
on previous non-microscopy FP works that are focused on 3D sample refocusing
[72] and aberration removal [73]. We show that ASFPMcan be used for transmissive
mode and reflective mode imaging. In section 3, we image spirogyra (transmissive)
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and microprocessor chip (reflective) with our setup, and demonstrate our ability
to refocus through thick samples at designated plane. In section 4, we show that
ASFPM’s reconstructed result could be combined with decompressive recovery
method to recover the 3D sample scattering density information.

6.2 System Setup
The core of ASFPM is a 4-f imaging system with a spatial light modulator

(SLM) at the intermediate Fourier plane, as shown in Fig. 6.1 (a). The wavefront
exiting the sample is collected by the first lens, passing through the open aperture
of the SLM and reimaged on the camera. A sequence of intensity images of
the wavefront is captured with different parts of the SLM aperture opened. The
captured images contain different spatial frequency information of the wavefront
determined by the open aperture’s location. These images are the input of the
phase retrieval algorithm [31] to be stitched in the Fourier domain. The aperture
opening sequence is arranged such that the adjacent apertures have a certain degree
of overlap [14], providing redundant information for the phase retrieval algorithm to
retrieve phase information merely from intensity measurements. The reconstructed
complex Fourier spectrum is then converted to the complex sample wavefront, with
the resolution limited by the aperture scanning range of the SLM. Because the
wavefront carries information from the entire sample volume, it can be further
processed to analyze sample distribution at different depths.

The experimental setup of the transmissive mode and reflective mode ASFPM
are shown in Fig. 6.1 (b) and (c), in which a reflective mode liquid crystal on silicon
display (LCOS display) (Model: Holoeye LC-R 1080) in combination with a pair of
linear polarizers (LP1 and LP2) are used as the SLM. An objective lens (Olympus
20X 0.4NA) and a tube lens serve as the forward and inverse Fourier transforming
device for the 4f system. Because the back focal plane of the objective lens is inside
the lens set and not accessible by the LCOS, a 1:1 relay lens system (L3 with L4) is
added in between to image the back focal plane of the objective onto the LCOS. For
the illumination, light from a He-Ne laser (λ=632.8nm) is first shined on a rotating
ground glass diffuser. The rotating diffuser decreases the temporal coherence of
the light, which reduces the speckles in the captured image[74]. The scattered light
from the diffuser is then collected into a multi-mode fiber, which allows for easy
switching between transmissive and reflective mode. For both modes, lenses are
arranged to illuminate the sample with a collimated beam.
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Figure 6.1: Principle of aperture scanning Fourier ptychographic microscopy (a),
and schematic for transmissive (b) as well as reflective (c) mode microscope system.
f: focal length of the lens; L, lens; LP, linear polarizer; Obj., objective lens; BS,
beam splitter

While priorwork [73] has used an electronically addressable SLM to implement
Fourier ptychography, the current setup offers the following 4 key benefits: 1) usage
of a reflective LCOSwith a much higher fill factor and efficiency than the previously
used transmissive liquid crystal display, 2) removal of temporal coherence artifacts,
3) adoption to a microscopic imaging arrangement, and 4) a new capability to
operate in a reflective configuration.

A Siemens star resolution target, recommended by ref. [75], is used as a sample
to test the lateral resolution of the imaging system. The patterns are fabricated on
gold-coated glass by focused iron beam. For all experiments, a circular aperture
on the SLM plane is used to scan the sample’s Fourier spectrum, as shown in Fig.
6.2 (a) by the blue trajectory. Each aperture has 80% of its region overlapped (in
one dimension) with its adjacent one, and the scanning covers a Fourier spectrum
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range equaling a numerical aperture of NAsyn = 0.36, which is within the NA of
the 20X 0.4NA objective lens. 20 images are captured in transmissive mode, and
the phase retrieval algorithm is used to reconstruct an image. The intensity of the
reconstructed image is shown in Fig. 6.2 (b). The center of the image is magnified
and shown in Fig. 6.2 (c). A red circle with spoke periodicity of 1.8 µm is drawn
in Fig. 6.2 (c), and the intensity distribution on the circle is plotted in Fig. 6.2
(d). As we can see, the spokes with periodicity of 1.8 µm can be resolved by our
imaging system, which matches well with the theoretical resolution defined by the
synthesized NA: d = λ/(NAsyn) = 1.76µm.

SLM Aperture 
scanning arrangement

𝑵𝑨𝒔𝒚𝒏
= 𝟎. 𝟑𝟔

𝑵𝑨𝒐𝒃𝒋
= 𝟎. 𝟒

(a) (b)

10um 2um

(b) (c)

Siemens star target image 
in transmissive mode

Siemens star target 
image zoomed in

(d)

Figure 6.2: (a) The arrangement of aperture scanning sequence on the SLMplane. A
circular aperture is scanned following the blue trajectory. The covered area provides
a synthesized NA of 0.36, which is within the objective NA of 0.4. (b-c) Siemens
star target intensity image in transmissive mode ASFPM. (d)intensity distribution of
the red circle in (c), showing a resolution of 1.8 µm which matches the theoretical
resolution of the synthesized NA.

6.3 Imaging Performance
To demonstrate the refocusing capability of ASFPM for a thick sample, a mul-

tilayer spirogyra slide is imaged in transmissive mode. The reconstructed hologram
is shown in Fig. 6.3 (a1-a2), in which no feature is in focus. The angular spec-
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trum propagation (ASP) method [3] is used to digitally propagate the hologram to
distances of -9µm, 6µm, and 17µm away from the objective’s front focal plane as
shown in Fig. 6.3 (b1-b3), allowing different segments of the spirogyra to come into
focus. The in-focus filament for each refocused plane is indicated by the red arrow,
in which the helical arrangement of the chloroplasts can be observed clearly.
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Figure 6.3: Transmissive mode ASFPM image of a spirogyra slide. (a1-a2) Am-
plitude and phase distribution of the reconstructed hologram. (b1-b3) Refocused
amplitude image of the hologram at different focal planes, in which different fila-
ments come into focus as indicated by red arrows.

The reflective mode ASFPM can be used to examine non-transparent samples
such as semiconductor devices, metallic structures, and ceramic surfaces. In our
experiment, we image a microprocessor (Fig. 6.4 (a)) with our ASFPM and show
the reconstructed hologram in Fig. 6.4. (b1-b2). Because the circuit is printed on
multiple layers, the hologram needs to be digitally propagated to different planes to
bring different regions into focus. As an example, three regions labeled by dashed
lines are zoomed in and the intensity images at -3µm and 2µm away, respectively,
from the objective’s focal plane are shown in Fig. 6.4 (c1-c2, d1-d2, e1-e2). The
wires in region c and the top half of the region in d are in focus at 2µm plane, while
the grating structure in the bottom half of region d and the structures in region e are in
focus at -3µm plane. To verify the result, we display on SLM an open aperture with
size equal to the synthesized aperture of ASFPM, and capture two intensity images
by physically moving the sample to -3µm and 2µm planes. As shown in Fig. 6.4
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(c3-c4, d3-d4, e3-e4), the images match closely with the digitally refocused image
generated by ASFPM. Moreover, due to the fact that multiple images are captured
and processed in ASFPM, the wire’s features in region c appear smoother and finer
than the single capture result. With the digital refocusing capability, researchers
can achieve in-focus images of every small part on the microprocessor and also
get the information of the height of different layers. These pieces of information
are useful for applications such as quality control, reverse engineering, and CMOS
failure analysis.
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Figure 6.4: Reflective mode ASFPM image of a microprocessor chip. (a) Picture of
the microprocessor. (b1-b2) Amplitude and phase of the reconstructed hologram.
The hologram is digitally propagated to -3µm (c1-e1) and 2µm (c2-e2) away from
the objective lens’ focal plane and three sub-regions are zoomed in. Intensity image
captured with the aperture opened at NA=0.36 and microprocessor chip physically
moved -3µm (c3-e3) and 2µm (c4-e4) are shown as a comparison to the digitally
propagated results.

Previous works have verified that the phase information captured in transmis-
sive mode Fourier ptychography, both by angularly-varying-illumination [51] and
aperture scanning [73], is quantitative. Here, for the first time, we demonstrate that
the phase information captured in reflective mode Fourier ptychography (ASFPM in
this case) is quantitative. We spread 10µmmicrospheres on a silicon wafer, immerse
them in mineral oil, and acquire an image with the reflective mode ASFPM. The
reconstructed hologram is shown in Fig. 6.5 (a-b). A line trace of phase distribution
through one of the microspheres is measured, and converted to microsphere thick-
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ness using the equation: ∆ = θ/2 ∗ λ/(2π ∗ (noil − nbead)), where θ is the relative
phase against background, λ is the wavelength of the laser light, noil = 1.5825 and
nbead = 1.5875 are the refractive indices of the mineral oil and the microspheres,
respectively. The factor of 2 in the denominator takes into account the fact that the
collimated beam passes through the microsphere twice before it is collected by the
objective lens. The measurement is plotted in Fig. 6.5 (c) with a blue line, and the
theoretical value is shown with a black line for comparison. The close agreement
between the measured and theoretical line plots proves that the phase information
we reconstruct from ASFPM is quantitative.
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Figure 6.5: ASFPM image of 10µm microspheres on silicon wafer, immersed in
mineral oil. Reconstructed amplitude (a) and phase (b) distribution of the hologram.
(c) The phase distribution through the dashed line in (b) is converted to the micro-
sphere’s thickness and plotted with a blue line. The theoretical thickness distribution
is plotted with a black line, showing a good match with the measurement.

6.4 Decompressive Inference of Hologram
As mentioned in section 6.2, ASFPM captures the complex wavefront distribu-

tion at the focal plane of the objective lens. When the sample is thin and in focus, the
complex wavefront represents the amplitude and phase distribution of the sample.
When the sample is thick, this wavefront carries the 3D information of the sample
and can be used to bring into focus different planes of interest, as demonstrated in
Fig. 6.3 and 6.4.

Furthermore, with the combination of compressive sensing theory [76–78],
here we show that 3D tomographic structure of the sample can be recovered from a
single frame of 2D holographic data. Similar work and analysis were carried out by
Brady et al [79], in which they used Gabor holography, but only the intensity of the
2D holographic data was recorded. Because of the loss of phase information, a few
approximations had to be made and the method had difficulties dealing with a phase
target. In our case, ASFPM records both the amplitude and phase information of
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the hologram. We show in the following section that the quantitative phase as well
as the amplitude information of a sample can be recovered from the decompressive
inference.

Forward Model of the Compressive Sampling Process
When a 3D sample with the scattering density of η(x′, y′, z′) is illuminated

with a monochromatic plane wave, the scattered field E(x, y) is defined under the
Born approximation [80] as:

E(x, y) =
$

η(x′, y′, z′)h(x − x′, y − y′, z − z′)dx′dy′dz′, (6.1)

where h is the point spread function which can be calculated as the product of
exp(ik0z) (the phase delay at a distance z) [81] and the inverse Fourier transform
of the propagation transfer function exp(iz

√
k2

0 − k2
x − k2

y )[3], and k0 = 2π/λ is the
wavevector.

We place the front surface of the 3D sample with scattering density η(x′, y′, z′)
at the focal plane of the imaging system, i.e. z′ = 0. To discretize the equation,
we let: 1) lateral sample spacings be ∆x = ∆y = ∆; 2) axial sample spacing be
∆z; and 3) number of pixels along each dimension of the sample be N. Using this
notation, the relationship between the discretized 2D scattered field distribution
En1n2 = E(n1∆, n2∆) and the discretized 3D sample scattering density ηm′1m′2l =

η(m′1∆,m
′
2∆, l∆z) can be expressed as [79] :
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This equation can be further simplified by noticing the following two facts:
1) the terms in the square bracket represent the 2D discrete Fourier transform of
ηm′1m′2l ; 2) the last exponential term in the last line of Eq. 6.2 forms the inverse 2D
Fourier transform in conjunction with the summations over m1 and m2. Therefore,
Eq. 6.2 can be interpreted as [79]:

En1n2 =F
−1

2D

{ ∑
l

η̂m1m2leikl∆zeil∆z
√

k2−m2
1∆

2
k
−m2

2∆
2
k

}

=
∑

l

F −1
2D

{
η̂m1m2leikl∆zeil∆z

√
k2−m2

1∆
2
k
−m2

2∆
2
k

}
, (6.3)

where η̂ denotes the Fourier transform of η, and F −1
2D denotes the 2D inverse

Fourier transform operation on subscript m1 and m2. In this interpretation, the 3D
sample is treated as a stack of 2D slices, and the 2D scattered field En1n2 is the
summation of slice-wise scattered field [82].

To write the equation into a matrix form for the purpose of decompressive
inference, we need to reshape the 2D scattered field En1,n2 and 3D sample scattering
density ηm′1,m

′
2,l

into 1D vectors g ∈ CNx Ny×1 and f ∈ CNx Ny Nz×1, respectively.
We define g(n2−1)×Nx+n1 = En1,n2 , and f (l−1)×(Nx×Ny )+(m′2−1)×Nx+m′1

= ηm′1,m
′
2,l
, where

Nx , Ny, and Nz denote the number of pixels in the x-direction, y-direction and
z-direction, respectively.

The operation can also be written in matrix form by defining 1) B = blkdiag(
F2D, F2D, ..., F2D) with F2D being the matrix representing the 2D DFT whose size
is (Nx Nz) × (NyNz), and “blkdiag" denoting the block diagonal matrix; 2) Q =

[P1P2...PNz ] with [Pl]m1m2 = eikl∆z eil∆z
√

k2−m2
1∆

2
k
−m2

2∆
2
k , where [Pl]m1m2 represents

the element of the matrix Pl at the intersection of the row m1 and the column m2;
and 3) G2D represents the 2D inverse DFT matrix.

With these definitions, Eq. 6.3 can be rewritten as:

g = G2DQB f . (6.4)

Fig. 6.6 shows the matrix representation of the compressive sampling forward
model in the above discussion. The ‘compressing’ process is the process in which
all the slices of the 3D sample propagate and project on to a 2D focal plane, where
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the complex hologram is captured. In matrix form, the ‘compressing’ process is
incorporated in the matrixQ, in which the slice-wise information is summed up and
shrunk in size.

The linear relationship between the detected hologram and the sample scatter-
ing density is the key to decompressive inference. In comparison, for Ref. [79]
to achieve a similar linear relationship, the technique had to capture hologram at
a significant distance from the sample of interest and exclude the nonlinear term
caused by intensity-only measurement. These approximations added to the error of
their system and resulted in an inaccurate phase recovery.
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Figure 6.6: Matrix representation of the compressive sampling model

Decompressive Inference Using Total Variation Constraint
To simplify the discussion, let H = G2DQB represent the operation of hologram

acquisition. In ref. [79], Brady et al. showed that this holographic acquisitionmatrix
H obeys the restricted isometry property (RIP) [76, 77] as a compressivemultiplexed
encoder, which ensures an accurate recovery of f from the compressivemeasurement
of g = H f with a high probability. We notice here that in this previous case, the
hologram acquisition process only determined the real values of the optical field,
whereas in our case the acquired field are can take on any complex value at each
pixel. As a result, our matrix canmap values to the entire complex space, as opposed
to just the real axis. Thus, our matrix H obeys the RIP of higher order [83] and can
in principle lead to the successful reconstruction of samples that are less sparse.

There are different approaches to recover f, such as selecting a basis (wavelets,
for instance) in which f may be assumed to be sparse, or enforcing a sparsity
constraint on the total variation (TV), as defined by Rudin et al [84], of f. In this
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work, we select the second method and model the decompressive recovery of f as
an optimization problem:

f̂ = arg min
f
| | f | |TV such that g = H f , (6.5)

where | | f | |TV is defined by

| | f | |TV =
∑

l

∑
n1

∑
n2

|∇( f l )n1,n2 |, (6.6)

where f l denotes a 2D slice of the 3D object datacube. This optimization
problem can be solved using the two-step iterative shrinkage/thresholding algorithm
(TwIST) proposed in ref. [85]. In this work, we adapt the released MATLAB code
from Bioucas-Dias et al [86] to inversely recover f from our measurement of g,
which is the complex hologram reconstructed from ASFPM.

Experimental Results
To experimentally demonstrate the performance of decompressive recovery, a

two-layer microsphere sample is prepared. Amixture of microspheres with diameter
of 4.3 µm (target) and 75 µm (spacer) is spread on the surface of a microscope glass
slide and a #1.5 coverslip. These two surface are glued together (face to face) with
the immersion oil in between, as shown in Fig. 6.7 (a3). The sample is imaged with
the ASFPM setup and the amplitude and phase image is shown in Fig. 6.7 (a1-a2).
As we can see, the microspheres that are on the glass slide are close to the in-focus
plane, while the microspheres that are on the coverslip are defocused and casting
large diffraction rings on top of the image. The hologram is digitally refocused to
different imaging planes using ASP, and we find the two planes corresponding to the
in-focal plane of the two layers are at 2µm and 45µm (the gap is not 75µm because
the spacer microspheres are squeezed in the gluing process). The holographic
acquisition matrix H is constructed according to these parameters, and the modified
TwIST algorithm is used to recover the sample scattering density on these two planes
from the complex hologram reconstructed using ASFPM.

The recovered amplitude and phase distribution of the two layers are shown
in Fig. 6.7 (b1-b2, c1-c2). As we can see, the sample information in these two
planes are mostly isolated, and the large diffraction fringes disappear. To verify the
quantitative-phase-recovery capability of this method, line traces through the center
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of two microspheres, one in 2µm plane and the other in 45µm plane are used to
calculate the corresponding thickness (same method as mentioned in section 3) and
are shown in Fig. 6.7 (b3, c3) with blue lines. The theoretical thickness profile are
shown with red lines, which match the recovered result well.
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Figure 6.7: Decompressive recovery of a microsphere sample. (a1-a2) Recon-
structed amplitude and phase information of the sample using ASFPM. (a3) Two-
layer sample configuration. (b-c) Amplitude and phase from decompressive recov-
ery at (b1-b2) 2µm and (c1-c2) 45µm focal planes. (b3) and (c3) are the thickness
profiles of microsphere calculated from the recovered phase through the two lines
in (b2) and (c2), shown in blue. The red lines show the theoretical thickness value
of the 4.3µm microsphere.

In the second experiment, the spirogyra image shown in Fig. 6.3 is inputted
into the decompressive recovery algorithm. In this case, the algorithm is modified
to recover the sample information in three planes: -9µm, 6 µm, and 17 µm, which
are the planes with the sharpest features when refocused. The recovery results are
shown in Fig. 6.8. The in-focus parts of the sample manifest themselves in the
corresponding planes, both for the amplitude and phase images. The chloroplasts
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in the three planes are also reconstructed clearly.

We would like to point out that the recovered result has worse resolution
compared to the ASP result. There are two reasons causing this: 1) The spirogyra
sample is continuously distributed in z direction, and thus the effort to isolate the 3D
continuous information into three slices of 2D distribution introduces some error.
2) The sample is a complicated bio-structure which is not sparse enough in terms
of total variation, where the TwIST algorithm used to recover the solution to Eq.
6.5 finds a sparse version of the real sample distribution [87]. The solution has a
lower resolution because a smoother function has a smaller total variation compared
to a high resolution function with more fine features. The decompressive recovery
process may be improved by 1) adding more slices in the reconstruction, and 2)
implementing sophisticated sparsity constraint such as dictionary learning [88].

20um

A
m

p
lit

u
d

e
P

h
as

e

FPM 
reconstructed

Decompressive Recovery

-9um 6um 17um

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Figure 6.8: Decompressive recovery of spirogyra sample from Fig. 6.3. (a1-a2)
Amplitude and phase reconstructed from ASFPM. (b1-d1) Amplitude and (b2-d2)
phase recovered from decompressive recovery at -9µm, 6 µm and 17 µm plane.

6.5 Conclusion
In summary, we implemented an aperture-scanning-based Fourier ptycho-

graphic microscopy system which reconstructs the complex wavefront from a se-
quence of intensity measurements. We demonstrated applications in imaging thick
biological samples (transmissive mode) and microprocessor surfaces (reflective
mode) and digital refocusing, and we verified the phase we measure is quantitative.
Moreover, by the introduction of compressive sensing theory, we show that the 3D
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sample distribution can be recovered from the 2D complex wavefront. Comparing
to other wavefront measurement methods such as digital in line holography [89],
ASFPM has several advantages: no interference measurement is needed to recon-
struct the phase information, it is easier to align the optical system, and it has a low
requirement of temporal coherence which results in much less speckle noise in the
reconstructed image. This imaging scheme can be potentially useful in applications
such as 3D moving object tracking, semiconductor device testing and analysis, and
skin cancer diagnosis.
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A p p e n d i x A

FURTHER ANALYSIS ON SYSTEM PERFORMANCE

A.1 Coherent Requirement Analysis, Fourier Ptychography as a Coherent
Imaging System
Here, we briefly discuss the spatial and temporal coherence properties of the

FP microscope. While the light from each FPM LED is neither fully temporally
or spatially coherent, we now argue why it is suitable to approximate it as such to
first-order. This approximation is mathematically equivalent to reducing the full
description of each LED illumination via its cross-spectral density (CSD) function,
c(x1, xx, vu), to a single coherent field, U(x), which is the form of our phase retrieval
solution. First, to drop the dependence of the CSD upon v, the quasi-monochromatic
criterion (v/∆v > M , with ∆v the spectral bandwidth and M the number of sensor
pixels along one axis) should be ideally fulfilled [90]. This requires a ∆v of several
nanometers, which a highly temporally coherent LEDmay satisfy. (This assumption
is independent of the FPM setup’s objective NA.)

Second, a spatially coherent field (i.e., a single coherent mode) removes the
CSD’s statistical dependence upon two spatial coordinates (i.e., we may assume
x1 = x2 = x if a single coherent mode is present). To fulfill this criterion, the field’s
spatial coherence length, given by the Van-Cittert Zernike theorem as l = λz/w,
should extend across the entire image FOV at the sample plane. Here w is the LED
active area width and z is distance between the LED and sample. Given image
FOV decreases with an increased NA lens, we can expect required spatial coherence
conditions to relax in high-NA setups, such as those current demonstrated. The
inability to satisfy either of the above temporal or spatial coherence requirements
does not fundamentally limit the FPM technique. Several proposed algorithms
identify and account for the unknown (spatial and temporal) source incoherence
by working with functions resembling the CSD, albeit at the cost of additional
computation and possibly more required measurements [91, 92].

Under the above conditions, each raw image in FPM contains the magnitude
of a spatially coherent field, and the phase retrieval-based combination of these
images is identical to forming a synthetic coherent aperture. The output of an ideal
FPM operation is the complex field at the sample plane s(x) filtered by a synthetic
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Figure A.1: Three dimensional spatial frequency space analysis of Fourier ptychog-
raphy. (a1-a3) Normal angle illumination case, (b1-b3) oblique angle illumination
case. Solid line red circles and arcs represent spatial frequency information of the
sample captured with the microscope system under certain illumination, and dot
rings depict the cross-sections of Ewald spheres.

coherent transfer function, CTF(kx) (the larger rectangle in Fig. 2.2), which defines
our system performance. CTF(kx) is most fairly compared to the physical CTF
of the coherently illuminated, high-NA physical system that also detects phase.
Thus, we model FP as a coherent imaging system with a synthesized system NA of
NAobj + NAillu.

A.2 The Influence of Sample’s Thickness on Fourier Ptychography
In previous discussions, we assume the sample to be infinitely thin in the axial

direction such that a tilt in illumination results in a shift of the sample spectrum in
Fourier domain. For practical samples with finite thickness, we now introduce a
three dimensional spatial frequency representation to further analyze the problem
[23].

As shown in Fig. A.1(a1-a3), when a sample is illuminated with a normally
incident plane wave, a spherical shell shape fraction of the sample’s 3D spatial
frequency spectrum can pass through the system and be captured by the camera.
The radius of the sphere is determined by the wavevector of light k0 = 2π/λ, and
the radius of the cross section in kx − ky space is limited by the numerical aperture
of the objective lens kc = 2π ·NAobj/λ, as shown in Fig. A.1(a2). The center of the
grey sphere (known as Ewald sphere) is on the surface of the red sphere, which also
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has a radius of k0. In case of normal incident plane wave illumination, the center is
also on kz axis, as shown in Fig. A.1(a3). When the sample is illuminated by an
oblique angle plane wave, the sample’s spectrum is going to shift with an amount
of (kix, kiy, kiz). Equivalently, the spherical shell is shift for the same amount to the
opposite direction, as shown in Fig. A.1(b1-b3). Since the illumination wavelength
is fixed, i.e. (k2

ix + k2
iy + k2

iz = k2
0 ), the center of the grey sphere remains on the

surface of the red sphere. Here, we define (kpx, kpy) as the coordinates of the Fourier
spectrum of the light field that passes through our imaging system, and (kx, ky) as
the coordinates of 3D sample spatial frequency spectrum. In this particular case,
kx = kpx − kix , ky = kpy − kiy.

For an illumination wave with wavevector (kix, kiy, kiz), the Fourier spectrum
of the light field that pass through the imaging system corresponds to a particular
3D sample spatial frequency spectrum. As we can see in Fig. A.1(b3), the kz

component of the sample spectrum is:

kz =

√
k2

0 − k2
px − k2

py −

√
k2

0 − k2
ix − k2

iy . (A.1)

From Eq. A.1, we can see that the same (kx, ky) sample information acquired
by different illumination wavevector (kix, kiy) will have different kz, which means
simply stitching in the spatial frequency domain for aperture synthesis might not be
valid for thick sample. Thus, prior research studies in synthetic aperture required
the sample to be thin [21, 22].

Lee et al. [23] reported their further study of the influence of sample’s thickness
on synthetic aperture for transmission geometry. They states that for a thick sample
with h as the crude maximum thickness, the sample Fourier spectrum ŝ(kx, ky, kz)
can be approximated as ŝ(kx, ky, 0) for |kz | < δ · k0, where δ = π/(k0 · h) defined
as thin-sample limit.

In case of FPM system with NAobj and NAillu, according to Eq. A.1,

|kz |max = max
(
k0 −

√
k2

0 − (k0 · NAobj)2, k0 −

√
k2

0 − (k0 · NAillu)2
)
. (A.2)

The maximum thickness h that satisfies |kz | < δ · k0 for all kz can be calculated
as hmax = π/|kz |max . For 1.2 NAsys FPM, NAillu = 0.7 > NAobj = 0.5, which give
us hmax = 1.75λ. As for 1.45 NAsys FPM, we have NAobj = 0.75 > NAillu = 0.7,
thus hmax = 1.48λ.
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According to the derivation above, the ideal thickness of sample for 1.2 NAsys

FPM should be smaller than 822nm, while for 1.45 NAsys FPM, this number should
be 696nm. The resolution target which is 100nm thick gold falls into this range.
For red blood cells, which have average thickness at the thickest point of 2 to 2.5
µm and a minimum thickness in the center of 0.8 to 1 µm [93], this limit is likely
exceeded.

In our opinion, the requirement of |kz | < δ · k0 is restrictively strict. It is valid
for samples with complicated 3D Fourier spectrum distribution in the kz direction.
However, in the case of single layer blood smear sample, structure in the z direction
is mainly extension of thickness of the same component. In this case, spectrum
ŝ(kx, ky, kz) is ŝ(kx, ky, 0) with a scale down factor in a larger range of |kz |. By
rescaling captured images, these information can still be stitched together in Fourier
domain – this is likely why we still get reasonable reconstructed images from our
samples. However, the noise and artifacts introduced by this process should not be
ignored and the rendered images can be significantly impacted if these effects are
significant.

A.3 Resolution Calibration Using 2D Circular Hole Pairs
In Fig. A.2 we show our measurements of the Sparrow resolution limit, for

the 1.2 NAsys FPM and several conventional incoherent microscope setups, using
targets consisting of two circular holes. We fabricated each two-hole calibration
target on a gold-coated (100 nm coat thickness) microscope slide using a focused
ion beam. Each hole has a diameter of 200 nm and the hole pairs have center to
center distance varying from 400 nm to 740 nm. The SEM image of 10 sets of hole
pairs are shown in the first row of Fig. A.2(a). The resulting images are shown in
the remaining rows of (a), while the traces through each intensity image are shown
in Fig. A.2(b). The result of the 1.45 NAsys FPM is not shown here, because the
captured images suffered from a high level of noise, due to the low brightness of each
LED as compared to an incoherent halogen lamp. Finally, we list the corresponding
experimentally measured and theoretically predicted Sparrow resolution limits in
Table. A.1. The equations used to predict theoretical Sparrow resolution is listed in
Appendix A.4

A.4 Discussion on Sparrow Resolution Limitation for Microscope System
The Sparrow resolution limit [61] of imaging system was first derived by

Barakat [94, 95]. The model he used is shown in Fig. A.3(a), and ε′ is the
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Figure A.2: Resolution calibration using a customized two-hole targets, illumination
wavelength λ=632nm. (a) SEM, FPM and conventional microscope image of holes
(200nm diameter) on the target. (b) Line plots of vertical intensity distribution
through the center of each hole pair, showing a Sparrow resolution of (b1) 635 nm
for 20X 0.5 NA objective, (b2) 475 nm for 40X 0.75 NA objective, (b3) 405 nm for
the 100X oil immersion 1.25 NA objective, and (b4) 405 nm for 1.2 NAsys FPM
setup.
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System
Parameter

Theoretical
Sparrow
resolution

(nm)

Measured
Sparrow
resolution

(nm)

Deviation
from
theory

Conventional
Microscope

20X 0.5NA 595 635 6%
40X 0.75NA 396 475 20%
100X 1.25NA 238 405 70%

FPM 1.2 NAsys
0.5 N Aobj +
0.7N Aillu

384 405 5%

TableA.1: Sparrow resolution formicroscope systems (λ =632nm, two-hole targets)

minimum resolvable separation in image space, q is the image distance, a is the
pupil half-width, and k = 2π/λ is the wavelength. In the derivation, he assumes the
receiving plane is far away from the aperture (q >> a2/λ), and thus the image is a
Fraunhofer diffraction of the E-field distribution at the aperture plane. The image
plane illuminance distribution is analyzed and the separation ε′ when the second
derivative of the total distribution between two peak vanishes (definition of Sparrow
limit) is given by the following relationships [60]:

ε′ = α ×
q

ka
, (A.3)

α here is the coefficient determined by image system dimension and illumina-
tion condition, which is summarized in Table A.2 [60]:

Coherent
Illumination

Incoherent
Illumination

Slit aperture (1D) system 4.164 2.606
Circular aperture (2D) system 4.600 2.976

Table A.2: Sparrow resolution limit coefficient α in different circumstances

For finite correctedmicroscope system, the two-point image formation schematic
is shown in Fig. A.3(b). As have been point out by [54], according to the sine con-
dition, nε sin θ = n′ε′ sin θ′, where n, n’ are refractive index on sample side and
image side of the system, θ, θ′ are the angles which the marginal ray make with the
axis, and ε is the separation in the sample side. Given that n′ = 1 for microscope
system, and sin θ′ ≈ θ′ ≈ a/q (long imaging distance). We have:

ε ≈
α

2π
×

λ

n sin θ
= β ×

λ

NA
. (A.4)
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Figure A.3: Two-point image formation. (a) General imaging system (adapted from
[60]). (b) Finite corrected microscope system (adapted from [54]). (c) Infinite
corrected microscope system.

Here β = α/2π, and the value of β in different circumstances is shown in
Table A.3. This derivation might not be valid for high NA objective lenses. For an
example, in order to satisfy the Fraunhofer diffraction condition, image distance q

needs to be larger than 1.5 m for a 1 mm exit pupil objective lens illuminated by 632
nm light source, while the typical value of image distance is only 160mm.

Coherent
Illumination

Incoherent
Illumination

Slit aperture (1D) system 0.66 0.41
Circular aperture (2D) system 0.73 0.47

Table A.3: Sparrow resolution limit coefficient β in different circumstances

As for infinity-corrected microscope system, which is commonly used in
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research-grade biomedical and industrial microscopes in the last decade, the im-
age distance of the objective lens is set to infinity, and a tube lens is placed within
the microscope to produce the image (Fig. A.3(c)). In this case, the objective
lens and the tube lens forms a low pass filter type 4f system, with is cutoff spatial
frequency, kc, defined by the lens numerical aperture, NAobj, and the illumination
wavelength: kc = 2π · NAobj/λ. Because of the Fourier transform property of the
4f system, no Fraunhofer diffraction assumption and small-angle approximation is
needed. Using similar mathematical derivation as mentioned above [94, 95], we
can deduce Sparrow resolution limit as:

ε = γ ×
λ

NAobj
, (A.5)

which is suitable for both low NA and high NA occasions.

For the case when the object consists of two parallel lines in a 2-D circular aper-
ture system (our scenario in section 3), the coefficient γ is found from a simulations
[96]. All the numbers of γ are summarized in Table A.4.

Coherent
Illumina-

tion

Incoherent
Illumina-

tion
Slit aperture (1D)

system 0.66 0.41

Circular aperture
(2D) system

Two-point target 0.73 0.47
Two-slit target 0.68 0.44

Table A.4: Sparrow resolution limit coefficient γ in different circumstances
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