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ABSTRACT 

We are concerned with the class Iln of n><n complex matrices A 

* for which the Hermitian part H(A) = A2A is positive definite. 

Various connections are established with other classes such as 

the stable, D-stable and dominant diagonal matrices. For instance it 

is proved that if there exist positive diagonal matrices D, E such that 

DAE is either row dominant or column dominant and has positive diag­

onal entries, then there is a positive diagonal F such that FA E Iln. 

Powers are investigated and it is found that the only matrices A 

for which Am E Iln for all integers m are the Hermitian elements of 

Iln. Products and sums are considered and criteria are developed for 

AB to be in Iln. 

Since Iln is closed under inversion, relations between H(Af 
1 

and H(A -
1

) a:re studied and a dichotomy observed between the real and 

complex cases. In the real case more can be said and the initial result 

is that for A E nn, the difference H(adjA) - adjH(A) ~ 0 always and is 

* > 0 if and only if S(A) = A2A has more than one pair of conjugate non-

zero characteristic roots. This is refined to characterize real c for 

which cH(A -
1

) - H(Af
1 

is positive definite. 

The cramped (characteristic roots on an arc of less than 180°) 

unitary matrices are linked to Iln and characterized in several ways via 

-1 * products of the form A A . 

Classical inequalities for Hermitian positive definite matrices 

are studied in Iln and for Hadamard's inequality two types of 
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generalizations are given. In the first a large subclass of lln in which 

the precise statement of Hadamard's inequality holds is isolated while 

in another large subclass its reverse is shown to hold. In the second 

Hadamard's inequality is weakened in such a way that it holds through­

out lln. Both approaches contain the original Hadamard inequality as a 

special case. 
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INTRODUCTION 

The primary object of this thesis is the consideration of the 

class Iln of n x n matrices for which A+ A* is positive definite. They 

are a natural generalization of the positivity of the well-studied 

Hermitian positive definite matrices. The class Iln has been studied 

in various settings. It arises naturally in operator theory where the 

term "dissipative" has been used (see, for instance, Phillips [ 36]). 

The finite case of Iln' usually with entries from the real field, also 

arises naturally in the study of dynamic systems in economics (see 

Arrow [2] and Quirk [37], [38]). Carlson, Fan, Fiedler, Taussky 

and others have considered the class from the viewpoint of finite 

matrix theory. This interest flows in part from the investigation of 

stability via the Lyapunov Theorem (see (0. 13)). 

The approach of this author is to study Iln as a natural general­

ization of the Hermitian positive definite matrices and thus as a further 

weaker generalization of positivity. In this regard certain related 

classes such as the positive stable matrices are peripherally con­

sidered. One goal is to delineate respects in which Iln is like or 

unlike the Hermitian case, and, though there are manifest similarities, 

II is much less well behaved. Many results which are obtained n . 

highlight the difference between Iln and the Hermitian case by degen-

erating trivially in the Hermitian case. 

Our methodology is largely that of finite matrices. However, 
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many proofs are sufficiently formal or dependent upon the field of 

values that they extend to the operator theoretic setting. Most specific 

methods of proof are new. 

A systematic development of several basic facts used through­

out is provided in Chapter 1. Many of these facts are known or are 

refinements of known results (often with new proofs), but their pro­

vision here aids in indicating several different ways of looking at IT as 
n 

well as in making the development of this thesis largely self-contained. 

Chapters 2 through 6 each contain independent ideas in the 

theory of rrn. 

In Chapter 2 the taking of powers of elements of Iln is studied. 

The main result is that the only members which remain in Iln under all 

integral powers are the Hermitian ones. Here the analogy between Iln 

and the complex numbers with positive real parts is quite strong. 

Chapter 3 considers products and sums of matrices and develops 

criteria for their membership in Iln via the characteristic roots of 

related matrices. 

Next we compare H(A)-
1 

and H(A-
1
), where H(A) = (A+ A*) / 2, 

in Chapter 4. A dichotomy is observed between the real and complex 

cases, and comparisons are drawn in each by separate methods. The 

real case is apparently the deeper of the two and Theorem (4.1) 

inspires much of the chapter including refinements and several 

intriguing consequences. It states that H(adjA) - adjH(A) is positive 

semidefinite for all A E Iln and is positive definite if and only if 

(A -A*) / 2 has more than one pair of conjugate nonzero roots. In 
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addition the Ostrowski-Taussky inequality is strengthened. 

In Chapter 5 a natural relation between Iln and the cramped 

unitary matrices via products of the form A- 1A * is presented and two 

characterizations are given. 

Chapter 6 asks to what extent classical inequalities involving 

the entries of Hermitian positive definite matrices can be extended to 

II . In the case of Hadamard's inequality (see page 54) two different n 

types of answers are given. The first extends the precise statement of 

Hadamard's inequality to a large subclass of Iln which contains the 

Hermitian elements. In the process an alternate proof of Hadamard's 

inequality is provided as well as a second subclass of Iln in which the 

reverse of Hadamard's inequality holds. The second answer economi-

cally weakens the inequality so that it holds throughout Iln and again the 

original result is a special case. 
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CHAPTER 0 

PRELIMINARIES 

i) Notation, Definitions and Immediate Observations. 

ii) Known Theorems of Relevance. 

i 

(0.1) Definition. Mn(R) and Mn(C) will denote the classes of nXn 

matrices over the real and complex fields, respectively. 

( 0. 2) Definition. For A E Mn ( C), denote by F(A) "the field of values of 

A", {(x, Ax) I !Ix II = 1, x E en}. 

( 0. 3) Definition. Let H(A) = (A+ A*) /2 and S(A) = (A - A*) /2 if 

A E Mn(C). 

(O. 4) Observation (Linearity). H(A) is Hermitian, S(A) is skew­

Hermitian and A = H(A) + S(A). Also, if a, b E R and A, B E Mn(C), then 

H(aA + bB) = aH(A) + bH(B) and S(aA + bB) = aS(A) + bS(B). H(A) will be 

called the Hermitian part and S(A) the skew-Hermitian part of A. 

(O. 5) Definition. Let Dn denote the set of all positive diagonal matrices 

in Mn(R). 

(0. 6) Definition. :2;n will denote the class of all positive definite 

Hermitian elements of Mn(C). 
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Discussion of ~n including several useful characterizations is 

given in [26], and this knowledge will be assumed. 

(O. 7) Definition. Iln will denote {A E Mn(C) jH(A) E ~J, the class 

whose Hermitian parts are positive definite. 

The study of Iln is the primary goal of this thesis. Most fre­

quently the general case of complex entried members of Iln is con­

sidered, but in certain instances it is of use to either specialize or 

emphasize the real or complex field and in these instances Iln(R) or 

Iln (C) will be used. 

(O. 8) Definition. If A E Mn(C), A(A) will denote an arbitrary charac­

teristic root of A and a(A) will denote the set of all characteristic roots 

of A. 

(O. 9) Definition. SKn = {s E Mn(C) Is* = -S}, the "skew-Hermitian" 

elements of Mn(C). 

(0.10) Definition. Ln ={A E Mn(C) IA E a(A) implies Re(:\) > o}. 

(0.11) Definition. DLn ={A E Ln IDE Dn implies DA E Ln}. 

Though not the original definition, (0.11) is taken to be the 

definition of "D-stability" by some authors. 

(0.12) Remarks. It is of note that the following sequence of contain-

ments is valid. 

= ~ II n n 
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Thus these sets may be regarded as a sequence of successively weaker 

generalizations of positivity within Mn(C). Note also that Iln is just 

L EB SK and that H orthogonally projects II onto L . n n n n 

ii 

We shall assume the following three well-known theorems which 

are relevant to the study of Iln. 

(0.13) Theorem (Lyapunov). A E Ln if and only if for each Q E Ln 

there is a P E Ln such that 

H(PA) = Q 

Further, if A E Ln, the solution P is unique. 

Thus Iln may be thought of as the set of all A E Ln sue h that for 

some Q E Ln the Lyapunov solution is P = I. 

(O .14) Theorem (Gersgorin). If A = (aij) E Mn(C), let 

n 

ri(A) = l: laijl 
j=l 
j:1i 

and 
n 

c/A) = l: laij I 
i=l 
i4j 

Then a(A) is contained in the union of the closed discs whose centers are 

a .. and radii are r.(A) and a(A) is contained in the union of the closed 
11 1 

discs with centers aii and radii ci(A), i = 1, ... ,n. 

(0.15) Theorem. If A E Mn(C), then F(A) is a convex set; F(U* AU) = 

F(A) if U is unitary; a(A) c F(A) and F(A) is the closed convex hull of 

a(A) if A is normal. If A E Ln' then F(A) is a line segment on the 

positive real axis. 
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CHAPTER 1 

ELEMENTARY FACTS CONCERNING IIn 

i) Preliminary Algebra and Analysis of IIn. 

ii) Geometry of IIn. 

iii) Conditions for Membership in IIn. 

We develop here a number of facts both known and previously 

unknown which we need to study Iln. 

i 

(1.1) Lemma. Suppose A, B E Mn(C), then 

(a) F(A + B) C F(A) + F(B); 
A A 

(b) if A is a principal submatrix of A, then F(A) c F'(A); and 

(c) {Re(c) /c E F(A)} = F(H(A)). 

Proof: (a) If c E F(A + B), then c = (x, (A+ B)x) for some /I x 11 = 1. 

Thus c = (x,Ax) + (x, Bx) and since I Ix 11 = 1, c = d + e where d E F(A) 

and e E F(B). Therefore c E F(A) + F(B). 

(b) Suppose c E F(A) and that A is determined by the set of dis­

tinct indices {i1 , i2 , ••• , ik} c {1, 2, ... , n}. Then c = (x,Ax) for some 

x E ck, I Ix 11 = 1. Construct x E en from x by making the jth component 

of x equal to the .Hh component of x if j = if for some i and making the 

jth component of x equal to 0 otherwise. Then !Ix II = 1, and (x, Ax) = 
.... 

(x,Ax) = c, and c E F(A). 
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(c) We show that Re(x, Ax) = (x, H(A)x) for all x E en. We have 

(x, H(A)x) = (x, At* x) = ~ (x, Ax) + ~(x, A *x) = ~ ( (x, Ax) + (Ax, x)) 

= ~( (x, Ax)+(~)) = Re(x,Ax). 

(1. 2) Field of Values Interpretation of Iln. A E Iln if and only if 

c E F(A) implies Re(c) >O. 

Proof: The matrix A E Iln ~ H(A) E ~n # F(H(A) ) > O since H(A) is 

Hermitian. We have F(H(A)) >O if and only if ReF(A) > 0 by (1. l)c. 

Thus A E Iln if and only if ReF(A) >O. 

(1. 3) Closure of Iln under Congruences. Suppose A E Iln and B E Mn(C) 

is invertible. Then B* AB E Iln. 

Proof: Since y = Bx is not zero unless x is, we have that Re(x, B* ABx) 

= Re(y, Ay) > 0 if x * 0 by (1. 2). This means ReF(B* AB) > 0 and yields 

the conclusion. 

The following theorem suggests a class which generalizes Iln 

[ 49] and provides a vehicle for extending some results proven for Iln. 

(1.4) We have 0 f F(A) if and only if :3:8 E [0,211') such that ei 8 A E Iln. 

Proof: If ei 8 A E Iln, then 0 f F(A) since 0 f F(ei 8 A) by (1. 2). By the 

convexity of the field of values, 0 l F(A) means that we may separate 0 

1. The situation of this theorem is exactly that the convex set F(A) 
lies strictly to the right of the imaginary axis. It is equivalent to say 
that Re(x, Ax) >O for all 0 * x E en. This occurrence will be abbreviated 
by "ReF(A) >O", and if A is Hermitian, by "F(A) >O." 
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and F(A) by a line. Thus we may rotate F(A) into the positive half-

plane which implies the converse. 

We now prove some facts to be used repeatedly in later chapters. 

(1. 5) Observations. 

(a) II c L n n 
(b) L II c L n n n 

(c) A E LnLn implies A has positive real roots and linear ele-

mentary divisors 

(d) A E LnSKn implies a(A) is pure imaginary. 

Proof: (a) A E IIn implies Re( a(A)) > 0 since a(A) c F(A). Thus 

Re(a(A)) > 0 means A E Ln. 
l 

(b) Suppose J E Ln and A E Iln. Then J 2 exists in Ln and 
l l l l 

J-2JAJ2 = J2AJ2 E IIn by (1.3). This means JA is similar to an ele-

ment of Iln and thus is in Ln by part (a). 
l l 

(c) Let A =HJ with H, J E Ln' and it follows that J 2AJ- 2 = 
1 l l l 

J 2HJ2 is Hermitian and in Ln by (1. 3). Thus J 2HJ2 (and, therefore, A) 

is similar to a real diagonal matrix with positive characteristic roots. 

This means that A has positive real roots2 and linear elementary 

divisors. 
l l 

(d) We now assume A =HS, H E Ln' S E SKn, and then H- 2AH2 = 
l l l l 

H2 SH2 E SKn. Therefore by similarity a(A) = a(H2SH2) and is pure 

imaginary. 

2. The con verse is also known to be valid. See [ 42] or [ 53] . 
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(1. 6) Closure of Iln under Inversion. A E Iln if and only if A -l exists 

and A- 1 E II . 
n 

Proof: By (1. 5), 0 /:_ a(A) and thus A- 1 exists. To show that A- 1 E II 

it suffices to show that Re(y, A-
1
y) > 0 for any 0 -f y E en. But, 

Re(y, A-
1
y) = Re(Ax, x) if x = A-

1
y. Since A E IIn, Re(Ax, x) > 0 or, 

equivalently, Re(y, A-
1
y) > 0 and thus A- 1 E Iln. Similarly, A- 1 E Iln 

implies A = (A -l)-1 E Iln to complete the proof. 

That A E Iln implies A- 1 E Iln also follows from the fact that 

H(A- 1
) = (A- 1)*H(A)A- 1 and applying (1. 3) or via the Lyapunov 

characterization mentioned in (O .13). 

(1. 7) A E rrn if and only if A* E Iln. 

Proof: H(A) = H(A *). 

(1. 8) If A, B E Iln and c > 0, then (a) cA E rrn and (b) A+ BE Iln. 

Proof: The proof is immediate from (1. 2), the field of values inter­

pretation of rrn. 

n 

A A 3 
(1. 9) If A E Iln and A is any kXk principal submatrix of A, then A E Ilk. 

In particular, Re aii > 0 for i = 1, ... , n if A = (aij). 

3. It is well to note that these facts about extraction of sub­
matrices might also be proven using orthogonal projections. The union 
of the Iln is closed under orthogonal projections and extraction of sub­
matrices is a special case of an orthogonal projection. 
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Proof: By (1. l)b, F(A) c F(A) which means ReF(i\) > 0. By (1. 2) this 
... 

implies A E Ilk. The special case of k = 1 yields that the diagonal 

entries have positive real parts. 

Fiedler and Ft:ik [20] have noted the following fact using dif­

ferent methods. 

(1.10) A E Iln(R) implies det(A) > 0. Thus all principal minors of A 

are positive. 

Proof: Since A E M (R), det(A) is real and could be negative only if . n 

A had a negative real characteristic root. This possibility is denied 

by (1. 5)a and since det(A) I- 0 by (1. 6), we conclude det(A) > 0. By 

(1. 9) it follows that each principal submatrix of A also has positive 

determinant. 

(1.10.1) Example. Of course (1.10) does not necessarily hold even 

for Re det(A) if A E Iln(C) as the following 2X2 example shows. If 

A = (l~i l+~i), then A E II2 , but detA = -1+3i. 

Statement (1.10) is one of the more elementary of several 

properties which hold for A E Iln(R) but, interestingly enough, have no 

clear analog when A E Iln(C). 

In this preliminary section we have found that Iln is a class of 

matrices which naturally generalizes the positivity of ~n. The classes 

Iln are closed under inversion, the taking of the Hermitian adjoint, 

addition, positive scalar multiplication, congruences, and the extrac-

tion of principal submatrices and may be thought of in terms of the 
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position of the field of values. Each of these generalizes a property of 

2:n. 

ii 

Elementary Geometry of Iln 

(1.11) Iln is an open convex cone in Mn(C) [considered as an n2-dim 

vector space with Euclidean norm] . 

Proof: The convex cone property follows from (1. 8) and the openness 

from the greater than sign of the definition of Iln. 

It is apparent that H defined in (O. 3) may be considered as a 

linear transformation from Mn(C) [considered as a vector space over R] 

onto the subspace ~(C) of nxn Hermitian complex matrices [con­

sidered as a vector space over R]. In this context, the inverse image 

of an element Jin ~(C) is just H-
1
(J) = {J + S Is E SKJ. The line 

{ J + ts It ER, S fixed in SKJ in Mn(C) is contained in H-\J) and thus 

H- 1(J) may be thought of as a union of a class of lines passing through 

Jin Mn(C). 

Since 2:n is a convex cone in Mn(C) just as Iln is, we may view 

Iln as an extension of 2:n, Iln = H-
1
(2:n). The extension is given by 

unioning all lines passing through points in the cone 2:n and going in the 

direction of skew-Hermitian matrices. 

= LJ LJ { J + tS It real} 
J E2:n SES~ 
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The result is the cone Iln with Ln as a "core". 

The map H has a number of important properties and inter­

actions with other maps on the cone Iln. For instance, Chapter 4 

studies its relationship with inversion, and the Ostrowski-Taussky 

inequality (4. 4) says H cannot increase determinants on Iln and, in 

fact, decreases them on Iln - Ln. 

iii 

Conditions for Membership in Iln 

Theorem (1. 4) tells us that A E Iln implies A E Ln, that is that 

the characteristic roots of A have positive real parts. The converse 

is, however, hopelessly invalid. 

(
-7 

(1.12) Example. Let A = 
22 

-44) 
92 

. The roots of A are {81, 4} 

which means A E L2 • But since -7 occurs on the diagonal, A t:. II2 by 

(1. 9). 

The example is even stronger since the roots of A not only have 

positive real parts but are also real. 0. Taussky [ 42] (see also 

Wigner [ 53] ) has shown that this means that such an A can be decom­

posed into a product of two matrices from Ln if A has a complete 

system of eigenvectors (which, of course, our A does). (The converse 

(1. 5)c has already been shown.) Thus this example also shows that a 

product of Ln matrices need not be in Iln. 

Example (1. 12) raises the question, "under what added con­

ditions is the converse to (1. 5)a valid?"; that is, when does A E L · 
n 
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imply A E Iln? In the case of ~n no such dichotomy is necessary. The 

non-Hermitian case is, of course, quite different, but (1.13) exhibits 

yet another situation where "normal" is a natural extension of 

"Hermitian". 

Let M1 = min {Re(A.) jA. E a(A)} and m 1 = max d(c, Co( a(A))) 
c E F(A) 

where "d( , )"denotes Euclidean distance and "Co" the closed convex 

hull. From (1. 2) it follows that m1 < M 1 and A E L imply A E TI . n n 

That is, if F(A) does not deviate "too much" from the convex hull of 

the characteristic roots of A, then A E Ln implies A E Iln. This answer 

is, unfortunately, not too helpful since no simple, effective method for 

determining m 1 is available. The answer does, however, serve to 

illustrate the magnitude of the problem of determining whether A E Iln 

without directly consulting H(A). Some partial conditions follow. 

(1.13) If A is normal, then A E Ln implies A E Iln. 

Proof: Since A E Ln, the convex hull of its characteristic roots lies to 

the right of the imaginary axis in the complex plane. Since A is normal, 

F(A) is the convex hull of the characteristic roots of A by (0.14), and, 

therefore, Re(F(A)) > 0 which means A E Iln by (1. 2). Alternatively, 

m 1 = 0 and M1 is positive. 

(1.14) Definition. We shall define the sets GRn and Gen 4 as follows. 

A = (aij) E GRn if and only if 

4. These are the classes for which the real part of the diagonal 
dominates the rows and columns, respectively. Thus they might be 
called "real part diagonally dominant." Note that the condition implies 
Re a .. > 0. 

11 
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n 

Re(aii)>ri(A) = l jaij / 
j=l 
j~i 

A E Gen if and only if A* E GRn. 

for i = 1, ... , n 

(1. 15) Theorem. If A E GRn n Gen, then A E Iln. 

Proof: By the triangle inequality H(A) E GRn n Gen also. Thus by 

Gersgorin's Theorem (0.14), the necessarily real roots of H(A) are 

positive since they are contained in discs which must lie to the right of 

the imaginary axis. 

In the real case GRn U Gen is just the set of diagonally domi­

nant matrices with positive diagonal elements. 

Though it is a rather weak sufficiency criterion, (1. 15) is quite 

helpful in constructing examples of members of Iln for large n. It will 

also be theoretically useful in several of the theorems to follow. 

Arguing as in [ 40] it is easy to show that GRn U Gen c Ln. 

Further it is easily seen that GRn U GCn c DLn, but GRn U Gen is not 

necessarily contained in Iln. However the following result indicates a 

link between DLn and Iln in this case. 

5. We may weaken the condition of the theorem to yield: 

(1. 16. 1) If D, E E Dn are such that DAE E GRn u Gen then A E Dnlln. 

Since DLn is closed under multiplication from Dn, this follows from 
(1. 3) and (1.16) by writing DAE as E(DE- 1A)E. 
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Proof: Consider the statement: 

(a) "A E GR implies that there is a D E D such that DA E GR n GC . " n n n n 

We begin by showing that the theorem follows from (a). Certainly the 

GRn case of the theorem follows from (a) in virtue of (1.15). But the 

Gen case also follows from (a) by the following reasoning: 

(1.14) (O!) 
A E GC ; A* E GRn==;> DE D such that DA* E GR n GC n n n n 
(1.14) (1. 3) 
~ ADE GR n GC c IT ==~} D- 1ADD- 1 = D- 1A E IT 

~A ED IT. n n 

n n n n 

In order to prove the statement (a), we may assume without loss 

of generality that A E GRn has real entries and that the off-diagonal 

entries are nonpositive. The general complex case then follows since 

the imaginary parts of the diagonal entries are irrelevant for considera­

tion of ITn and for the off-diagonal entries only the absolute values are 

relevant. 

To complete the proof we shall rely on a property of the so­

called "M-matrices" and employ a theorem of [19]. A matrix is of 

class M if (1) it has real positive diagonal entries and real nonpositive 

off-diagonal entries and (2) all of its principal minors are positive. 

Since Re(aii) > ri(A) ~ 0 and because of our comments above, we may 

assume our matrix A satisfies (1). That A also satisfies (2) follows 

from the fact that it is real and that each real characteristic root of 

each of its principal submatrices is positive by Gersgorin's Theorem 
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(0.14). Thus our A is an M-matrix. Theorem (4,3) of [19] says that A 

is an M-matrix implies there is a D E Dn such that DA E GCn. Since 

left multiplication from Dn does not disturb membership in GR and our 
~- n 

A is already in GRn we have DA E GRn n GCn and the proof is complete. 

As a special case of (1. 3) we have 

(1.17) Iln is closed under unitary similarities. 

The well-behaved nature of unitary similarities on Iln raises 

the question of general similarities of matrices in Iln. We develop 

here by a different approach an already known link [45] between Iln and 

Ln given by similarity. 

( 1. 18) Theorem. A E Ln if and only if A is similar to a matrix in Iln. 

Further, the similarity may be provided by a matrix Q of the form 

Q = DU where U is unitary and D E Dn. 

Proof: If A is similar to a matrix in Iln, then certainly A E Ln since 

Iln c Ln and similarity preserves the characteristic roots. 

Assume A E Ln and pick U, unitary, to triangularize A. 

T = (tij) = U* AU, upper triangular. Since TE Ln its diagonal 

entries have positive real parts. The completion of the proof now fol­

lows from two facts: 

(1) that there is a D E Dn such that DT E GCn c Dnlln, and 

(2) that the set Rn of all diagonal similarities of matrices in 

Iln is exactly Dnlln. 
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Together (1) and (2) mean TE Rn as was to be shown. 

Proof of (1). We shall construct a DE Dn with diagonal entries 

dp ... , dn so that DTE GCn. Let d1 = 1 and d2 be such that 

and, in general, let dj' j = 3, ... ,n, be such that 

j-1 
d. Re(t .. ) > \' d. It .. I ] ]] LJ l l] 

i=l 

assuming d1' ... , dj-1 have already been chosen. This .sequential choice 

process may be carried out in general (thus yielding the desired result) 

since Tis triangular and Re(tjj) > 0, j = 1, ... ,n. 

l 

Proof of (2). Suppose D E Dn and D2 is the matrix in Dn whose square 
l l l l 
- -1 - - -

is D. Then A =DB, where B E II , implies (D 2
) AD 2 = D2 BD 2 E II n n 

by (1. 3), and we have DnIIn c Rn. But if DAD- 1 = Bwhere B E IIn, 

D E Dn, then D
2 
A = D(DAD-

1
)D = DBD E Iln by (1. 3) and A E DnIIn so 

. 6 
that R c D II . n n n 

With the aid of (1.18) we may now strengthen (L 5)b to yield: 

(1.19) Theorem (Taussky [43}) . . ~ II = L . n n n 

6. The first sentence of (1.18) can also be proved via the Jordan 
canonical form of A as remarked in [ 45]. Then utilizing (1. 17) and the 
polar decomposition, the specific form of Q mentioned in the second 
sentence can be realized. 
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Proof: By (1. 5)b, L:nlln c Ln so that it suffices to show Ln c :L;nIIn. 

E * -1 E Suppose B Ln, then DUBU D = C Iln for a suitable D and U by 

(1.18). By (1. 3) Iln is closed under congruences and u*n2UB = 

u*DCDU = A E II . Since D ED and U is unitary, u*n2 u = K E L; n n n 

(thus K-
1 

E L:n) and B = K-
1
A, so that B E L:nlln and the proof is 

complete. 

In [43] this theorem is deduced from Lyapunov's Theorem (0.13). 

Our proof is independent of Lyapunov's Theorem and, in a sense, (1.19) 

is a weak form of (0.13). Lyapunov's Theorem guarantees an infinite 

array of :L;nlln representations of each member of Ln while (1. 19) 

guarantees at least one. [See also 8.] 

(1.20) Remarks. It is clear that if TE Ln is triangular, then TE DLn. 

Thus the proof of (1. 18) also shows that the triangular matrices in DLn 

are in Dnlln and that matrices in Ln are always unitarily similar to 

matrices in DLn. 

It is conceptually useful to look at the preceeding theorems from 

another point of view. The class Iln is preserved when subjected to all 

possible unitary similarities; but under all similarities Iln expands to 

exactly Ln. The interesting intermediate class of all diagonal simi­

larities of Iln is Dnlln and is related to DLn. The class Ln is also just 

the unitary similarities of DL . 
n 

Capitalizing again on (1. 17) we may observe a simple "normal 

form" for Iln matrices. 
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(1. 21) Observation. A E Iln if and only if there is a unitary U E Mn(C) 

such that 

* U AU = D + S 

where DE Dn and SE SKn. 

Proof: Pick U to diagonalize H(A) and then S = u*s(A)U to prove neces­

sity. Sufficiency follows from the fact that H(A) = UDU*. 

By the construction the D of the representation (1. 21) is unique 

up to permutation of the diagonal entries. This means that in a problem 

in Iln which is unchanged under unitary equivalence we may as well 

assume H(A) E Dn. 

We close this section with an exact criterion for the membership 

of a square in Iln. The proof is left to Chapter 3. (Recall that if H is 

Hermitian and invertible then H2 E ~n.) 

(1. 22) Theorem. Suppose A E Mn(C) is invertible. Then A
2 

E Iln if 

and only if the positive semi-definite Hermitian matrix 

H(A)- 1S(A)S(A) *H(A)- 1 

has all its characteristic roots less than 1. 

Intuitively this criterion may be thought of as saying H(A) is 

large in relation to S(A). 
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CHAPTER 2 

POWERS IN nn: A GENERAL THEOREM 

In Chapter 2, 3, and 4 we shall highlight the investigation of 

three different algebraic aspects of Iln. The results will be deeper 

and more special but will utilize the development of Chapter 1. 

In Chapter 1, Iln was found to have the additive structure of a 

positive convex cone. Any investigation of multiplicative structure 

must c cnsider multiplicative closure which immediately raises a question 

concerning powers of matrices in Iln. Since powers of Hermitian 

matrices are Hermitian and for general matrices the characteristic 

roots of the n-th power are the n-th powers of the characteristics roots, 

it is apparent that En is closed under the taking of integral powers. In 

fact any complete set of commuting elements in En for ms a multiplica­

tive group. 

In Iln outside of En the situation is, however, systematically 

different, and the difference begins with the taking of integral powers. 

There is essentially one important result in this chapter which we shall 

look at in a number of different ways. 

If we are to accept an analogy between Mn(C) and the complex 

numbers, then we might reasonably identify En with the positive real 

numbers and Iln with the complex numbers whose real part is positive. 

In this context the following result is reminiscent of the theorem of 

De Moivre for complex numbers. 
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(2. 1) Theorem. Suppose A E Iln and A l ~n (S(A) * 0). Then there is a 

positive integer m such that Am l Iln. 

Proof: The demonstration is constructive and proceeds in six parts. 

(1) Reduction of problem. By unitary triangularization we may 

reduce A to upper triangular form T by unitary equivalence. 

u*Au = T 

Then u*AmU =Tm and Am E Iln if and only if Tm E Iln by (1.17). Since 

A is not Hermitian, either (case I) some diagonal entry of T has a non­

zero imaginary part or (case II) all diagonal entries of Tare positive 

real numbers and at least one entry of T above the diagonal is nonzero. 

In case I the main result follows immediately by De Moivre 's Theorem 

for complex numbers and (1. 5)a. Thus it remains and suffices to con­

sider case II. In this eventuality without loss of generality by virtue of 

(1. 8) we may assume that T is normalized so that any single diagonal 

entry which we specify is one. Our strategy will be to show that the 

Hermitian part of some power of such a matrix has negative determinant 

and the theorem then follows. 

(2) Lemma 2. la. We shall say B = (bij) is of the form (1) if 

b11 0 · · · 0 bin 

b22 0 0 
B = 

0 0 
b nn 
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and the bii are real and positive i = 1, ... ,n,n>l, and bm 4 0. If 

m ~ 1 is an integer, B is of the form (1) and b11 = 1, then 

m-1 
1 o ... 0 bin I bj 

nn 
m 

b22 
j=O 

0 0 
Bm = 

0 

o ....... 0 m 
bnn 

and Bm is of form (1). 

Proof . (by induction on m): The assertion of the lemma is evident for 

m = 1. Assume it is valid for k ~ m - 1 and carry out the multiplication 

Bm = BBm-i. Collecting terms in each entry yields the desired form. 

The only nonzero off-diagonal entry is the (1, n)-entry and it is 

m 2 m-1 - j m-1 · 
1 . bin l: bnn + bin. bnn = bin L b~n 

j=O j=O 

(3) Lemma 2. lb. If Bis of the form (1) and m ~ 1 is an integer 

and b11 = 1, then 

( m) m m m detH B = b22 · · · bn-i, n-i b -nn 

m-1 

lbin I [ . b~n 
j=O 

2 

2 
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Proof: Lemma 2. la allows us to construct H(Bm). Interchange the 

1st and n- 1st rows of H(Bm) and then the 1st and n- 1st columns. The 

result has the same determinant as H(Bm) and is the direct sum of two 

matrices. One is diagonal with b~, ... , b~_ 1 n-i down the diagonal and 
' 

the other is 

m-1 
2 bin 6 bj 

nn 
l j=O 
2 

m-1 

b1n L: bj 2 bm 
nn nn 

j=O 

which has determinant equal to 

Thus detH(Bm) is just the product of the determinants of these two 

direct summands which is the form the assertion of the lemma takes. 

(4) Lemma 2.lc. Suppose (b .. ) =BE II is of the form (1) and 
IJ n 

b 11 = 1. Then there is an integer m > 0 such that detH(Bm) < 0. 

Proof: Let 

m-1 ! bm = b \' bj 2 m L nn 
j=O 
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By Lemma (2. lb) it suffices to show that b: - lbm 1

2 < 0 for some 

such m. 

We consider two cases (bnn = 1 and bnn * 1). First suppose 

bnn = 1. Then bm = ~ bin and we must pick m so that 1 < (~ lb1n 1) 
2 

or, equivalently 1 < W- lb1n I· In this case , it is clear since bm * 0 

that we may take m to be the first integer greater than the positive 

number 2 / lb1n I· 
Suppose bnn * 1. Then we may write 

(
bm 1) b = b1 _n_n __ 

m n b - 1 
nn 

Since 

2 

( 
lbin I ) 

2 lbnn - 1 I 

is positive and does not depend on m, it suffices to show that 

(bm - 1)
2 
/ bm gets arbitrarily large in order to show that bm - lb 1

2 

nn nn nn m 
can be made negative by choice of m in this case. But, taking square 

roots of positive numbers to be positive, 

(bm - 1)2 /bm = ((bm - 1) /bm / 2)2 
nn /~nn nn /'nn 

= (bm/2 _ 1 .lm / 2)
2 

nn / unn 

l 

where t = b2 . Since 1 * t > 0, either t or 1/ t is larger than 1, nn 
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2 
(tm - (1 / t)m) grows arbitrarily large and the proof of the lemma is 

complete. 

( 5) Two observations: 

(2. ld) Observation. Each nondiagonal upper triangular matrix 

(with positive real diagonal elements) in Mn(C) has a principal sub­

matrix which is determined by a set of consecutive indices and which is 

of form (1). For instance, if T = (tij) is our matrix and tij' i < j, is 

the first nonzero entry in the list t 12 , t23 , ••• , tn-i n' t 13 , t 24 , ••• , tn_2 n' 
' ' 

t 14 , ••• , ••• , t 1n, then the principal submatrix determined by the indices 

i, i+l, ... , j will do. 

.... 
(2. le) Observation. Suppose T is a principal submatrix of T, 

... 
triangular, in Mn(C) and Tis determined by the set of consecutive 

indices {i, i+l, ... , i+k}. If m ~ 0 is an integer, then Tm is the prin­

cipal submatrix of Tm determined by the same set of consecutive 

indices. In other words, raising triangular matrices to powers keeps 

these principal submatrices intact as a simple consequence of matrix 
.... ~ 

multiplication. (We might say that Tm = Tm or that "hatting" and 

"raising to powers" commute.) 

( 6) Completion of proof. The matrix T E Iln is upper triangular, 

has positive real diagonal elements, and is not diagonal. 

Recall by (1.9) that if Tm has a kXk principal submatrix which 

is not in Ilk (for any k = 1,2, ... ,n), then Tml. II . By (2.ld,e) we n 
.... 

may choose a principal submatrix T of T which is of form (1) and which 
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we may focus on since the raising of T to powers leaves it intact. 

Without loss of generality we may normalize T via multiplication by a 
A 

positive real scalar so that the first diagonal element of T is one. By 

(2. le) we may choose an integer m > 0 so that Tm f. Ilk since 

detH(Tm) < 0. Since Tm is a principal submatrix of Tm, we have that 

Tm f. Iln and the proof of the theorem is complete. 

Since powers of elements of :6n remain in :6n, Theorem (2. 1) 

may be restated in the following manner. 

(2. 2) Theorem. Suppose A E Iln. Then Am E Iln for all integers m if 

and only if A E :6n (S(A) = 0). 

Thus, if A E Iln and S(A) * 0, then no matter how "small" S(A) is 

eventually Am will pass out of Iln. It may or may not pass out of Ln. 

By De Moivre 's theorem it will remain in Ln if and only if all its roots 

are real. In this case it is evident from the proof of (2. 1) that for all 

m greater than some M, Am will remain in Ln - Iln [see Figure 1]. 

m That A eventually passes out of Iln apparently means (because 

of (1. 2)) that as it "expands" under successive powers, F(A m) even­

tually crosses the imaginary axis so that ReF(A m) > 0 no longer holds 

(from the proof of (2. 1) it is clear that an actual crossing takes place). 

Even for operators it is known that F(Am) c Pm where Pis the posi­

tive half-plane (29 J and viewing (2. 1) from the point of view of the 

field of values may be thought of as strengthening such results. 

Given any m a positive integer it is not difficult to construct an 

A such that Ai E Il - :6 , i = 1, ... , m, so that certain subsets of n n 
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Figure 1 

_ __,, _______ ~n -~ 
n n 

· all powers 
ass out. 

powers. 
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ITn - Ln are closed under the taking of any given number of powers. 

Thus it is unfortunate that one bit of insight the proof of (2. 1) does 

not provide is any close estimate of the first m > 0 for which 

Am f. IT . This could occur well before the construction in the proof 
n 

indicates. If such an estimate were available it might be exploited 

as a measure of how strong A's membership in ITn is or as a method 

of usefully classifying the elements of Iln. The fact that 

00 

L = n {A E IT I A' A 
2

' ••• ' Am E IT } 
n m=l n n 

might be thought of as another way of looking at Ln as the "core" of 

ITn (see section ii of Chapter 1). 

The case of negative integral powers is entirely contained in 

that of positive integral powers since A -m E ITn if and only if Am E Iln 

by (1. 6). 

A known fact which can be shown directly to hold more gen­

erally can easily be deduced as a consequence of (2. 2) and is worth 

mentioning here. 

(2. 3) Corollary. If A E ITn has real roots then A is normal if and 

only if A E Ln. 
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Proof: If A E Iln is normal with real characteristic roots then all 

powers of A are normal and have positive real roots and are thus in 

II . Therefore A E ~ by (2. 2), and the converse is immediate. n n 
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CHAPTER 3 

PRODUCTS AND SUMS IN rrn 

As might be expected analysis of products in Iln is a very dif­

ficult task. Trial of only a few examples quickly convinces one that 

the set of products from Iln is a large class and that Iln is far from 

being multiplicatively closed. Products of elements in Ln even may 

easily pass out of Iln (see, e.g., Ballantine [3], [4], [5], [6] , on the 

representation of matrices as products of matrices from Ln). Thus 

we merely ask in what special cases can we guarantee that the product 

of two matrices in Iln is in Iln. 

A few general lemmas are of use. 

(3.1) Lemma. A E Mn(C) is normal if and only if H(A) and S(A) com­

mute. 

Proof: We have AA* =A* A~ ( H(A) + S(A) ](H(A) - S(A)] = 

(H(A) - S(A)] [H(A) + S(A)] ~ H(A) 2 + S(A)H(A) - H(A)S(A) - S(A) 2 = 

H(A) 2 + H(A)S(A) - S(A)H(A) - S(A) 2~ 2 S(A)H(A) = 2 H(A)S(A) ~ H(A) 

and S(A) commute. 

The following lemma extends a remark of Ky Fan in [ 41]. 

(3.2) Lemma (Sums). Suppose A E Iln and BE Mn(C), then A+B E Iln 

if and only if A. E a(H(Af 
1
H(B)) implies A.> -1. 

Proof: A+B E Iln ~ H(A+B) = H(A) + H(B) E Ln ~ A. E a(H(A) + H(B)) 

implies A. > 0. By (1. 5)c the characteristic roots of H(A) + H(B) are 
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positive if and only if those of H(Af 
1 

[ H(A) + H(B)] = I+ H(A)- 1H{B) are 

positive. The latter holds if and only if each characteristic root of 

H(Af
1
H(B) is larger than -1. 

(3. 3) Lemma (Commutativity). Suppose A, B E M (C). Then the fol­n 

lowing three conditions are equivalent: 

(1) A and B commute; 

(2) S(H(A)H(B)) = S(S(B)S(A)) 

and H(S(A)H(B)) = H(S(B)H(A)); 

and (3) H(AB) = H(A)H(B) + S(A)S(B) 

and S(AB) = S(A)H(B) + H(A)S(B). l 

Proof: The proof is a computation. 

(1) implies (3): AB = [H(A) + S(A) ](H(B) + S(B)] = H(A)H(B) + 

S(A)S(B) + S(A)H(B) + H(A)S(B) = R + T where R = H(A)H{B) + S(A)S(B) 

and T = S(A)H(B) + H(A)S(B). It suffices to show that 

S(R) = 0 

and H(T) = 0 

follow from {l). For, then, H(AB) = H(R+T) = H(R) = R and S(AB) = 

S(R+T) = S(T) = T which is what condition (3) asserts. 

Let R = H(B)H(A) + S(B)S(A) and T = S(B)H(A) + H(B)S(A). Then 

BA= R+ T, and AB= BA implies R+ T = R+ T. Then H(R+ T) = H(R+ T) 
and S(R + T) = S(R + .er). We shall show that 

1. The two parts of (3) are equivalent statements. 
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H(R+T) = H(R+T) implies H(T) = 0 

and that 

S(R+T) = S(R+T) implies S(R) = 0 

It is easily computed that 2 H(R) = R +Rand that 2 H(R) = R + R. Thus 

H(R) = H(R) , and by the linearity of the operator H H(T) must equal 

H(T). But, 2 H(T) = T - T and 2 H(T) = T - T by direct computation. It 

follows that H(T) = -H(T) and that H(T) = 0, as required. We obtain the 

second half of our assertion similarly. We compute that 2 S(T) = 2 S(T) 

which requires that S(R) = S(R). However, 2 S(R) = R - R and 2 S(R) = 

R - R from which it follows that S(R) = -S(R) or that S(R) = 0 which 

completes the deduction of (3) from (1). 

(3) implies (2): Arguing as above, (3) implies that 0 = S(R) = 

S(H(A)H(B)) + S(S(A)S(B)) = S(H(A)H(B)) - S(S(B)S(A)) and this, in turn, 

implies S(H(A)H(B)) = S(S(B)S(A)), the first part of condition (2). The 

second part of (2) follows similarly from the second part of (3). 

(2) implies (1): Condition (2) implies that S(H(A)H(B)) + 

S(S(A)S(B)) = 0 = H(S(A)H(B)) + H(H(A)S(B)) which gives the conditions 

S(R) = 0 = H(T) of above. These conditions imply (by direct computa­

tions which retrace the first portion of this proof) the commutativity of 

A and B. This completes the proof of the lemma. 

(3.4) Theorem. Suppose A,B E Mn(C) commute and that H(H(A)H(B)) E 

~n, then AB E lln if and only if 

A E a[H(H(A)H(B) f 1H(S(A)S(B)*)J 

implies A < 1. 
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Proof: The proof is an application of lemmas (3.2) and (3. 3). We have 

that H(H(A)H(B) f
1 

exists since H(A)H(B) E Iln by assumption. 

Since A and B commute AB E Iln if and only if H(A)H(B) + 

S(A)S(B) E Ln by (3. 3). Since H(H(A)H(B)) is assumed in Ln we may 

apply (3. 2) and the fact that S(B)* = -S(B) to get the statement of the 

theorem. 

When A = B the hypotheses of (3. 4) are satisfied, and we have 

the following special case mentioned earlier. 

(3. 5) Theorem. If A E Mn(C) and H(Af
1 

exists, then A
2 

E Iln if and only 

if 

implies A. < 1. 

Proof: Take A =Bin (3. 4). Then if H(Af
1 

exists the hypotheses are 

immediately satisfied. Note that [H(Af
1
S(A)] [H(Af

1
S(A)] * is similar 

to H(Af 2S(A)S(A)* and the application is proven. 

Theorem (3. 5) characterizes the squares in Iln. The following 

lemma, included for completeness, facilitates applications of (3. 5) and 

further results of this type as corollaries in Chapter 4. 

(3. 6) Lemma. If A-
1 

exists, then the following three statements are 

equivalent: 

(1) A
2 

E Iln 

(2) H(A) 2 
+ S(A) 2 > 0 
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Proof: The proof follows from two observations. 

(i) H(A
2

) = H( (H(A) + S(A) )
2

) 

= H(H(A)
2 

+ S(A)
2 

+ H(A)S(A) + S(A)H(A)) 

= H(A) 2 
+ S(A)

2 
+ H(H(A)S(A) + S(A)H(A)) 

= H(A) 2 + S(A) 2
• 

(ii) A- 1 2 H(A2 )(A- 1
) * = A(A- 1

) * + A- 1A * = 2 H(A -iA *). 

Thus for A 
2 

to be in Iln means that S(A) is "small" (in the sense 

of (3. 5) or (3. 6)) compared to H(A). Formally the conditions appear 

exactly like conditions for determining if the real part of the square of 

a complex number is positive. 

If A is normal, lemma (3.1) permits the condition of theorem 

(3. 5) to be weakened to give 

(3. 7) Theorem. Suppose A E Mn(C) is normal, then A
2 

E Iln if and only 

if T =max !A.(H(Af
1
S(A)) I < 1. 

We close this chapter with two results on products not tied so 

tightly to the others. One deals with the Schur product and the other is 

a determinantal inequality for products. 

Let "o" denote the Schur (element-wise) product of matrices 

and recall that Schur [11] has proven that the Schur product of two 

positive definite matrices is positive definite, i.e., ~n o ~n c ~n. 

This may be easily shown by a field of values argument [ 11] and is 

generalized below. 
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Proof: (b) follows from (a) since the operations of Schur producting 

and diagonal multiplication commute. 

To prove (a), assume A = H(A) + S(A) is an arbitrary element 

of IT and J is an arbitrary element of ~ and consider Ao J = H(A) o J n n 

+ S(A) o J. Since the involution "*"is easily checked to be di stributive 

over "o", S(A) o J is in S~ and H (A) o J = K E ~n by Schur' s original 

result. Thus H(A o J) = K E ~n and A o J E Iln. 

It will not be demonstrated here but can be shown that A E L -- n 

DLn implies 3:J E ~n such that A o J ~ Ln. This means that between 

DLn and Ln there is no intermediate class closed under the Schur 

product with ~n· Thus (3. 8) by showing that Dniln is closed under "o" 

with ~n further serves to relate Dniln and DLn (via the Schur product) 

and as a by-product demonstrates that Dniln c DLn. 

General determinantal inequalities involving Iln, products and 

the operator H are difficult to obtain. We close with a relatively weak 

result of this type which is interesting when applied to A
2

• 

(3. 9) Theorem. Suppose A, B,AB E Iln, that A and B commute and that 

S(A) and S(B) commute. Then2 

detH(AB) ~ detH(A)H(B) ~ JdetAB I 

2. What we shall show is that under the conditions of (3. 9) 
H(A)H(B) ~ H(AB) and that by (3.10) the inequality is preserved by 
applying the determinant function. 



37 

To prove (3. 9) we shall use the following lemma which will be 

reused later. 

(3.10) Lemma. If A, B E ~n and C E ~n (closure), then A = B + C 

implies detB ~ detA. 

-1 -1( ) ( -1 ) Proof: det B A = det B B+ C = det I+ B C ~ 1 since the roots of 

B- 1C are nonnegative by (1. 5)c. 

Proof (of 3. 9): H(AB) = H(A)H(B) + S(A)S(B) by (3. 3) and S(A)S(B) is 

Hermitian negative semi-definite since S(A) and S(B) commute. Thus 

H(A)H(B) is Hermitian positive definite and H(A)H(B) = H(AB) - S(A)S(B) 

where H(AB) E ~n and -S(A)S(B) E ~n. Therefore det H(AB) ~ 

detH(A)H(B) by (3.10). That detH(A)H(B) ~ ldetAB I follows from two 

applications of the Ostrowski-Taussky inequality (4. 4) to be derived in 

Chapter 4, and the proof is complete. 

Letting A =Bin (3. 9) yields 

(3.11) Theorem. If A, A
2 

E Iln, then det H(A
2

) ~ det H(A)
2 ~ ldetA

2 I. 
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CHAPTER 4 

RELATIONS BETWEEN H(A)-
1 

AND H(A- 1
) 

In rrn we have found that we may always construct inverses (1. 6) 

and we may always construct the Hermitian part via the linear operator 

H. In general these two operations do not commute and thus it is of 

interest to compare H(A-
1

) and H(Af 1 • Here there is a dichotomy 

between Iln(R) and Iln(C) and the first half of this chapter studies the 

question in Iln (R) while the second half studies Iln (C). The main results 

for IT (R) are (4.1) and (4. 3) which we might call a "precise" inequality. n 

Interestingly enough the systematic relation of the real case does not 

directly generalize to the complex case and in the second half of the 

chapter the main result is (4.11) which is obtained by entirely different 

methods. 

If adjA denotes the classical adjoint of A (also called the adjugate 

or cofactor matrix) then the strong result of (4. 3) is motivated by (4.1) 

which considers H(adjA) - adjH(A). For A E M2 (R) this expression is 

identically 0. For A E I13(R) - :L; 3(R) it is a rank 1 positive semi­

definite matrix (i.e. , H(adjA) - adjH(A) = EE* where E "* 0 is some 

3 by 1 matrix). Both these facts can be noticed computationally. For 

n > 2, H(adjA) - adjH(A) = 0 if and only if S(A) = 0 (A symmetric). 

For all n a natural relation occurs between H(adjA) and adjH(A) when 

( 4 .1) Theorem. If A E Iln(R), then 
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(a) H(adjA) - adjH(A) ~ 0 ( E 2:n); and 

(b) H(adjA) - adjH(A) > 0 ( E 2:n) if and only if S(A) has more 

than one pair of conjugate nonzero eigenvalues. 1 

The proof proceeds in four parts. 

Proof: Let H(A) = J and S(A) = S, then A = J + S with J > 0 and S skew­

symmetric. If B1 = H(adjA) - adjH(A), then B1 may be rewritten 

B1 = H(adj(J+S)) - adjJ = det(J+S) · H( (J+S)-
1

) - det(J) · J- 1
• 

Since det(J) > 0, the definiteness of B1 is equivalent to that of 

B2 = B1 / det(J). Thus it suffices to consider 

where c = det(I+ J- 1S). 

(i) The factor c. 

l l l 1 

J- 1S = J-2 (J-2SJ-2)J2 so that J-
1
S is similar to a skew-symmetric 

matrix. Therefore J- 1s has only pure imaginary eigenvalues occurring 

in conjugate pairs± itj (and since the zero eigenspaces of J- 1S and S 

have the same dimension, J- 1S has as many nonzero conjugate pairs of 

eigenvalues as S has). Thus the eigenvalues of I + J-
1
S are of the form 

1 ± itj and 

(2) = II(l + t~) , 
J 

tj real . 

1. By (1. 6), H(adjA) - adjH(A) is the difference of two elements 
of 2:~. We shall describe the situations of the theorem as H(adjA) ~ 
adjH~A) and H(adjA) > adjH(A), respectively. 
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This means c has a factor > 1 for each conjugate pair of nonzero eigen­

values of S. 

(ii) An equivalent check for the definiteness of B2 • 

B2 is symmetric and it suffices to consider 

(3) (x, B2x) for all nonzero n-vectors x to determine the definite­

ness of B2 • 

= (c / 2)[(x, (J+Sf
1
x) + (x, (J-Sf1x)] - (x, J-

1
x). If 

= (c / 2)[( (J+S)yu Y1) + ( (J+S)yu (J-Sf1(J+S)y1)) - (Jy3, y3) 

= (c / 2)[( (J+S)y11 Y1) + (y1, (J+S)y1)] - (Jy3, Y3) 

= (c/2)[(Y1,(J-S)y1) + (y1, (J+S)y1)] - (y3, Jy3) 

Since y1 = (J+S)-1x = (J+Sf1Jy3 =(I+ J-1S)-1y3 our expression 

becomes 
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(iii) Thus it suffices to check the symmetric matrix 

(4) 

[ ( -1 )-1 ( -1 )-11 [ ( ( -1 )2)-1 ] =cJI-J S I+J S -J=JcI-J S -I 

This means that B3 is congruent via an element of ~n to a 

matrix similar to 

( 5) ( ( -1 )2)-1 B4 = c I- J S - I 

Therefore B3 is ~ 0 or > 0 if and only if B4 has all its eigenvalues ~ 0 

or > 0, respectively. 

(iv) The eigenvalues of B4 • 

. The eigenvalues of B4 are just [c/(1+ tj)] - 1 where ± itj are the 

eigenvalues of J- 18 already considered in (i). Since c = II(l + tj) by 

equation (2), the eigenvalues of B4 become 

(6) ( [rr(1+e)J/(1+e)\ - 1 = rr (1+e) - 1 
J i'J j# J 

Thus all eigenvalues of B4 are nonnegative and are all positive if and 

only if there is more than one tj -:1: 0, that is if and only if S(A) has more 

than one pair of nonzero eigenvalues. 

Therefore B2 and thus B1 are always positive semi-definite and 

are positive definite if and only if S(A) has more than one conjugate pair 

of eigenvalues which completes the proof. 
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(4.2) Definition. For a given matrix A EM (C) let n 

T =max IA(H(Af
1
S(A)) j. Then Tis a real number and a function of A; 

if we wish to emphasize the A, we shall write TA. 

(4. 3) Theorem. If A E Iln(R) and c is a real scalar, then cH(A- 1
) -

H(Af 1 is positive definite ( E L:;n) if and only if c > 1 + T2
• 

Proof: Return to the proof of (4.1). Turning to parts (iii) and (iv) the 

matrix B4 has all its characteristic roots positive if and only if c is 

greater than the largest of the 1 + tj which is to say that c > 1 + T
2

• By 

the proof of (4.1), this means that B2 which is the same as the expres­

sion of (4. 3) is positive definite if and only if c > 1 + T
2

• 

Tied up in the preceding is what may be thought of as a gen­

eralization of the spirit of an . important known inequality for Iln [ 51] . 

In equation (2) of the proof of (4.1) the fact that c > 1 implies the real 

case of the Ostrowski-Taussky inequality. The statement of ( 4. 1) does 

not readily imply it, but the proof (4.1) can be adjusted to obtain more 

or less its original proof. 

(4. 4) Ostrowski-Taussky. · If A E Iln(C), then detH(A) ~ idetA j. 

Equality holds if and only if S(A) = 0 (A E :L;n). 

Proof: By the same methods as in part (i) of the proof of (4.1), 

idet(I+ H(Af 1S(A)) I :;:::: 1 (H(Af 
1
S(A) has only imaginary roots) with 

equality only when S(A) = 0. This statement holds even if A is complex 

and means detH(A) ~ jdet[H(A) + S(A)] I = jdetA I· 
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The Ostrowski-Taussky inequality says that the operator H 

decreases determinants on the cone Iln--except, of course, on the 

"core" ~n· Theorem (4. 4) can be generalized in several ways (see, 

e . g., Fan [17]) and we shall present here a new generalization which 

strengthens the original inequality and appears like a reverse of the 

triangle inequality. The real case of this generalization originally arose 

out of a discussion with Ky Fan by combining a result of his [18] with 

the result (4.1) of this author. We develop here the general complex 

case independently. 

(4. 5) Theorem. A E II
0

(C) implies 

(1) if n = 1, !detA I ~ detH(A) + !detS(A) I with "=" if and only if 

A E ~n; and 

(2) if n > 1, !detA I ~ detH(A) + !detS(A) I with "=" if and only if 

either (a) A E ~n or (b) n = 2 and both roots of H(Af 
1
S(A) have the same 

absolute value. 

Proof: (1) is merely the triangle inequality. For (2) it suffices to con­

sider the validity of the inequality !det[I + H(A)- 1S(A)] I ~ 1 + 

ldetH(Af 
1
S(A) I since A = H(A) + S(A). The roots of H(Af 

1
S(A) are 

purely imaginary by (1. 5)d and so we may call them itj, j = 1, ... , n 

where each tj is real. Thus it suffices to show 

rrj1+it. I~ 1 + Int. I . J . J 
J J 

if n > 1. 
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We shall verify this by induction. 

Part I: n = 2. It suffices to take tj ~ O, j = 1, 2 since the sign 

of tj, j = 1, 2 makes no contribution to the value of either side. Thus 

11+it1 I 1 1 + i~ I ~ 1 + t1t2~ (1+t~)(1+t~) ~ (1+t1t2) 2~ t~ + t~ ~ 2t1t2 

which it is since (t1 - t2)
2 ~ 0. 

Part II: Suppose 

n-1 n-1 
II 11 + it]. I ;;., 1 + I II t. I 

j=l j=l J 

Multiply both sides by I 1 + itn I which is positive and greater than both 1 

and ltn I unless tn = 0. Thus 

n-1 
= ll+it I II ll+itJ. J;;., ll+itnl n . 1 J= 

1 + II It. I ~ n-1 ~ 
j =1 J 

n-1 n 
= ll+itn I+ ll+itn I J·II=l It]. I~ 1 + I II t. I 

j =1 J 

which was to be shown and completes the induction proof. 

(a) If A E ~n' then S(A) = 0 and "=" holds as in Ostrowski­

Taussky (4. 4). 

(b) If n = 2, then "=" holds only when lt1 I = lt2 I by part I. 

Since "=" cannot hold if n ~ 3 unless A E ~n' as is seen from the induc­

tion step, the proof is complete. 

Some additional corollaries to (4. 3) which expand on Chapter 3 

are of note. 
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(4.6) Corollary. If A E Iln(R) and is normal then A- 1A* E Iln if and 

only if T < 1. In this case 0 < Re A.(A- 1A *) ~ 1. 

Proof: By (4. 3) c > 1 + T
2 

if and only if c(A- 1 + (A-
1

) *) / 2 >[(A+ A*) ; 2r 1 

or (c/4) [2I + (A-
1

) *A + A-
1
A *] >I since the left-hand side is 

Hermitian by the normality of A. Since A normal implies A- 1A* is 

unitary we have ((A- 1)*A) = (A- 1A*f 1 
= (A- 1A*)* and (c / 4) [2I+2H(A- 1A* )] 

> I or H(A- 1A *) > 2~c I. Then A- 1A * E Iln ~ c < 2 ~ T2 < 1. When 

A -iA * E Iln all real parts of its characteristic roots must be positive 

and since A- 1A * is unitary they are also less than or equal to 1. 

If A E Iln(R) but not necessarily normal a similar approach still 

yields information about A -l A* via ( 4 . 3). The condition of ( 4. 6) is still 

necessary, but no longer sufficient. 

Since the product of two positive definite matrices has all its 

roots real and positive (1. 5), cH(A-
1

) - H(Af 1 > 0 if and only if 

cH(A- 1)H(A) - I has all roots positive. Equivalently H(A-
1
)H(A) has all 

roots> 1/ c. But H(A-
1
)H(A) = I/2 + (A- 1A* + (A-

1
A*f 1) / 4 and we may 

conclude by Theorem (4. 2) that A- 1A * + (A-
1
A *f 1 has all its eigen­

values> 2(2-c) / c if and only if c > 1 + T2
• Thus A-

1
A* + (A-

1
A*f 1 has 

all its roots positive if and only if 1 < c < 2, that is, T
2 

> 1. The 

smallest eigenvalue of H(B) is always less than or equal to the smallest 

-1 * of the real parts of those of B for any square matrix Band A A and 

(A -iA *f 1 are either both in or both not in Iln. If both are, their sum 

is and we may conclude as a consequence of (4. 2). 
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(4.7) Corollary. IfAEIIn(R), thenA- 1A* EIInimpliesT< 1. 

It could be that T < 1 and A- 1A * ~ Iln if A is not normal. A 
6 -3 

simple example is A = ( 3 2 ). It, of course, depends on how much 

smaller the smallest root of H(A-
1
A *) is than the smallest of the real 

parts of the roots of A- 1A *, that is, on how much the field of values of 

A- 1A * deviates from the convex hull of its eigenvalues. 

Lemma (3. 6) allows us to translate the preceeding results to 

consideration of A 2 • 

(4.8) Corollary. Suppose A E Iln(R), then 

(1) A2 E Iln implies T < 1, and 

(2) if A is normal A2 E Iln if and only if T < 1. 

Just as with A- 1A *, T < 1 does not imply A2 E Iln if A is not 

normal (the same example suffices). 

We now turn to consideration of Iln(C) in order to more generally 

compare H(Af 1 and H(A- 1
). 

First we prove a useful lemma which is interesting by itself. 

It is an extension of the remark by Ky Fan [16] and the proof is new. 

The lemma is more general than the II case, but the proof depends n . 

essentially on the Ilncase. Since the arguments involving F(A) do not 

depend on finite matrices, the proof is valid for the operator case as 

well. 

(4. 9) Lemma. 0 ~ F(A) implies A- 1A * is similar to a unitary matrix. 
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Proof: By (1.4) 0 ~ F(A) implies ei 8A =BE Iln for some B. Since 

-1 * -2i6A-1A* d -2i8 . ·t 1 A-1A* . . . B B = e an e 1s a um ary sea ar, 1s s1m1lar to 

a unitary matrix if and only if B-
1
B* is, and it suffices to assume 

A E Iln. [Note "A-
1
A* similar to a unitary matrix if A E Iln" has been 

shown by Fan by alternate means. ] 

Assume A E Iln and write A = H + S where H E L;n and S is skew­

Hermitian. We shall show A- 1A * is similar to a unitary matrix by a 

Hermitian positive definite matrix. 

A-1A* = (H+Sf
1
(H-S) = (H+Sf1 HH-\H-S) 

= [H- 1(H+S)]-1 [H-\H-S)] =(I+H-1Sf1 (I-H- 18) 

= (I+H-
1
Sf 1 (I+SH- 1)* 

,...., _.!. _.!. 
where S = H 2 SH 2 E SKn. The last expression in the sequence of 

equalities is similar to (I+ ~r\r+ s)* via H! E L;n' and (I+ Sf \r+ s)* is 
,..., 

necessarily unitary since (I+ S) is normal. 

In order to facilitate the main result to follow, 
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(4.11) Theorem. If A E Iln(C), then 

(1) cH(A-
1

) - H(A)-
1 > 0 if and only if c > ~ (equivalently m+.L 

2-c) 
m > c' and 

( ( ) -1 ( -1) M + 1 2) dH A - H A > 0 if and only if d > - 2- (equivalently 

M < 2d- 1). 

In view of (4. 9) and the fact that I+ A- 1A * = A- 1(A +A*) is 

invertible, we have necessarily that m > -1 and that the c and d of 

the theorem are positive. 

Proof: (1) cH(A-
1

) - H(Af
1 > 0 U 

~ A.([cH(A- 1
)]-

1 (cH(A- 1
) - H(A)- 1

)) > 0 

~ A.(I - [ cH(A)H(A- 1
)] -

1
) > 0 

#A.(- [cH(A)H(A- 1
)]-

1
) > -1 

~ A.([ cH(A)H(A- 1
)] -

1
) < 1 

~ A.(cH(A)H(A-
1
)) > 1 

~ A.(H(A)H(A- 1
)) > !. 

c 

~A.(A+A*. A-
1

+(A-
1
)*) >!. 

l 2 2 c 

(
I A*A- 1 +AA-u) 1 

~A 2""+ 4 >c 

~ X- - > - - n- - ~ ·(A*A-
1
+(A*A-

1f 1
) 1 1 _ 2-c 

4 c ~ ~c 
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<==9 A.(A*A-1+(A*A-1)-1) > 2(2-c) 
c 

# ReA.(A*A-1) = ReA.(A-1A*) > 2-c 
c 

2-c 
~ m > c<=> cm > 2-c ~cm + c > 2 

2 
# c(m+l) > 2 *==> c > m+l , 

and (1) is complete. 

The proof of (2) is similar. 

(2) dH(A)-
1 

- H(A-1) > 0 

# A.([dH(A)- 1
] -l [dH(A)- 1 

- H(A - 1
)]) > 0 

# A.(I - ~ H(A)H(A - 1
) . ) > 0 

#A.(- ~H(A)H(A- 1)) > -1 

~ A.(-H(A)H(A-1)) > -d 

~ A.(H(A)H(A- 1)) < d 

(
I A*A-1 (A*A- 1f 1) +=+A.2+ +4 - <d 

~ A.(A*A- 1 + (A*A-1f 1) < (d-~4 

# ReA.(A*A- 1
) = ReA.(A-1A*) < (d- ~) 2 

# M < 2d - 1 ~ M+l < 2d 

~d>¥ 

[See footnote 2.] 

2. Note at this point: each matrix menvoned has had necessarily 
real roots. In particular, since the roots of A A - 1 + (A* A - 1 

)-
1

, or 
equivalently A- A*+ (A- 1A*)- 1

, are necessarily ~eal, we have by this 
calculation alone that any complex roots of A- A , A E Iln, must be 1 
in absolute value. This pleasantly agrees with (4.9). 
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and the proof is complete. 

(4.12) Corollary. AEII impliesH(Af 1 ~ H(A- 1
). - . n 

Proof: d = 1 must satisfy d ~ ¥ since M is at most 1 by ( 4. 9) and 

the corollary follows from part (2) of (4.11). 

Recalling (3. 10), (4. 12) yields the following determinantal 

inequalities. 

( 4 .13) Corollary. A E Iln implies 

and 

Applying (4.11) to Iln(R) and comparing it to (4. 3) reveals: 

(4.14) Corollary. A E Iln(R) implies 

or 1-T2 

m = f+T'Z" 

Finally, inspection of (4.11) produces: 

(4.15) Corollary. If c and d are any real numbers which satisfy 

parts (1) and (2) of (4.11), respectively, then 
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CHAPTER 5 

UNITARY AND CRAMPED UNITARY MATRICES AND Iln 

(5.1) Definition. A unitary matrix U shall be called cramped if and 

only if all of its roots fall within a sector of less than 180 ° on the unit 

circle. [Notice U is cramped if and only if 0 ~ F(U).] 

The results of this chapter are obtained in a straightforward 

manner but do accomplish two goals. They characterize the cramped 

unitary matrices and link them to Iln in a rather pleasant way and pro­

vide an area for the theoretical application of criteria previously 

developed in this paper. 

A very natural link exists with Iln and the discussion will be 

centered around products of the form A-
1
A* (see, e.g., Fan [17] and 

Taussky [ 48], [50]). If A is normal then it is an easy computation that 

A - 1A * is unitary (compare ( 4. 9)) and if A- 1A * = U, unitary, then A 

can only be normal (as an aside this means that the normal matrices 

are just those matrices which differ from their * by only a unitary 

matrix since A* = UA). 

(5. 2) Definition. Let N(U) ={Aiu =A -iA * and A is normal}. 

Taussky [50] has given a general discussion of the decompo­

sitions of a unitary U into A- 1A * and characterized N(U). 

( 5. 3) Lemma. U is unitary if and only if N(U) is nonempty. 
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Proof: Sufficiency of the condition has already been mentioned. The 

necessity follows from the fact that any unitary matrix has an invertible 
l l l 

square root u- 2 which is unitary and (U- 2f 1(U- 2)* = U. Other proofs 

involving the characteristic roots are available and straightforward. 

Thus we can always pick an element from N(U) if U is unitary 

without worrying about the case N(U) = <P. 

Since U cramped unitary means 0 ~ F(U) we may observe the 

following by virtue of (1. 4). 

(5. 4) Lemma. A unitary matrix U is cramped if and only if 

3:8 E [o, 2 7T) such that 

Relying partly upon (1. 4) and (3. 6), we are now in a position to 

present two parallel characterizations of the cramped unitary matrices. 

(5. 5a) Theorem. U is cramped unitary if and only if :!IA E N(U) and 
i<P ~ :!rep E [o, 27T) such that A = e A and 

( 5. 5b) Theorem. U is cramped unitary if and only if 3: A E N(U) such 

that 0 ~ F(A) and 0 ~ F(A
2
). 

Proof: Statement (5. 5b) follows from (5. 5a) by (1. 4) and we shall con­

structively demonstrate (5. 5a). 

By (5. 4) U is cramped if and only if 3: 8 E [O, 27T) such that 
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U 0 = eil1u E Iln. Clearly U 6 is unitary. Suppose V is unitary such that 

* _ . ( i 61 i On) ,..., _ . ( - i 91 /2 - i 8n/2 * V U 0 V - d1ag e , ... , e . Let A - V diag e , ... , e )V . 
,..., ,..., "'2 

Now A E N(U £) and A E Iln by (1.12) and A E Iln by (3. 6) since U 6 E Iln. 

Since A = ei 8/ 2 A E N(U) and each argument is reversible, the theorem 

follows. 

Applying Theorem (3. 7) to (5. 5)a we obtain 

( 5. 6) Theorem. A unitary matrix U is cramped if and only if 

min max A(B tY < 1 
OE (0, 27T] 
A EN(U) 
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CHAPTER 6 

c LASSICAL INEQUALITIES IN rrn: TWO EXTENSIONS 

OF HADAMARD'S INEQUALITY 

The inequality of Hadamard [24] holds for a matrix in Mn(C) 

when the absolute value of its determinant is dominated ( ~) by the 

absolute value of the product of its diagonal elements. This very 

beautiful relationship holds throughout ~n and is one of the most basic 

inequalities in ~n. In considering Iln as a generalization of ~n it is 

therefore appropriate to ask to what extent Hadamard's inequality holds 

in Iln. Relevant partial information has been provided by Gantmacher, 

Krein, Koteljanskii and Fan [22], [30], [14]. 

That Hadamard's inequality does not hold in its pure form 

throughout Iln is easily demonstrated by the following examples. 

(6.1) Examples. 

(a) Let A=(_~ ~). Then A E II2 , but detA = 10 > 9 = 3·3 

(b) Let B = (~ 16 ~) . Then B E II3 , but detB = 1089 > 960 
1 8 12 

=8·10·12. 

In this chapter we generalize Hadamard's inequality into Iln in 

two directions. In one (Theorem (6. 6)) the inequality is generalized 

in its pure form to a large subclass of Iln which includes ~n. This 

provides an intriguing independent proof of Hadamard's original 
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inequality, and the theorem indicates as well a class where the reverse 

of Hadamard's inequality necessarily holds. In the second, Theorem 

(6. 9) and (6.10) , the inequality is weakened in such a way that it holds 

throughout Iln. This direction also includes the full force of the original 

inequality as a special case. Both directions differ essentially from 

the work of GKK and F as an example will illustrate. 

To facilitate the discussion, certain definitions are in order. 

(6. 2) Definition (Triangular Part). If H = (hij) is Hermitian, then 

T(H) = (tij) where 

2 h .. 
lJ if i< j 

t.. - h .. if i = j lJ lJ 
0 if j< i 

If A E Mn(C) , then T(A) = T(H(A)). 

( 6. 3) Observations. The operator T is linear over the reals as H was 

(in fact T and H have similar matrix representations) and H "ignores" 

T since H(T(A)) = H(A) just as T(H(A)) = T(A). Thus T(A) is just that 

upper triangular matrix whose Hermitian part is H(A). The diagonal 

elements of T(A) are real and detT(A) is just the product of those 

diagonal elements. Thus for H E 2:;n' Hadamard's inequality states 

that det(H) ~ detT(H). 

(6. 4) Definition. Let a ER and define 

II(a) = {aT(A) + (1 - a)T(A)* jA E II } n n 
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(6. 5) Observations. H a= .! II( a) = ~ If 2
' n n · 

A = 

1 2a · · · · · · · · · · · 2a 

2(1 - a) 1 

2a 

2 ( 1 - a) · · · • . · . 2 ( 1 - a)' · · 1 

and "o" denotes the Schur (element-wise) product of matrices, then 

II~a) ={Ao H IH E ~n} . For the purpose of simplicity of description 

this is probably the easiest way to think of n~a). However, the original 

definition is more convenient for displaying proofs. Since H(aT(A) 

+ (1 - a)T(A)*) = H(A), we have II~a) c Iln for all a E R. 

We now present our most general form of the pure extension of 

Hadamard's inequality. 

(6.6) Theorem. Suppose A E II~a) and D,E E Dn. Let (bij) = B "'DAE, 

then 

(i) if a E [O, 1], B satisfies Hadamard's inequality, and 

(ii) if a~ [o, 1], 

n 
II b.. ~ I detB I , 

. 1 11 l= 

the reverse of Hadamard's inequality. 

Proof: Since pre or post multiplication by a diagonal matrix effects 

both the determinant and the product of the diagonal elements in an 
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identical manner , it suffices to take B E II~a) to prove the general 

result. 

* Suppose B = aT + (1 - a)T , where T = T(C), C E Iln. We first 

show that S(B) = (2a - l)S(T). 

[aT+ (1- a)T*] - [aT* + (1- a)T] 
S(B) = (B-B*) /2 = 

2 

= [ (2a - l)T - (2a -l)T*] /2 = (2a - l)S(T) 

As noted before, H(B) = H(T) and thus T = H(T) + S(T) and 

B = H(T) + (2a - l)S(T), H(T) E L;n. Call H(T) = H and S(T) = S. 

Now consider the quotient TB- 1
• The theorem follows if 

ldetTB- 1 I ~ 1 for a E [O, 1] and !detTB-1 I ~ 1 for a rt. [o, 1]. 

But 

1 1 

-1 · det(H+S) det(I+H-2SH-2) 
. detTB = det(H+ (2a-1)S) = det(I+ (2a-l)H ~SH ~) 

.! ... .! .! 
Since H E L;n' H- 2 exists in L;n and S = H- 2 SH- 2 is skew-Hermitian. 

Thus the roots of I+S are of the form 1 + i.~ .. while those of I+(2a-l)S 
J 

are of the form 1 + i(2a-l)Aj' Aj real, j = 1, ... ,n. 

Now, 

Thus we have 
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l2a-1 I ~ 1 if a E [O, 1] and l2a-1 I ~ 1 if a rt [O, 1] . 

This means 

if 

if 

a ft [o, 1] 

And, finally, 

II It+ iA./1 + i(2a-l)A. ) ~ 1 
. J J 
J 

if 

a E ( 0, 1] and ~ 1 if a rt. [ 0, 1 ] . 

Thus we conclude: 

detT ~ !detB I if a E (0, 1] 

and 

detT ~ !detB I if a ft [O, 1] 

which is equivalent to the statement of the theorem. The special case 

a=~ is Hadamard's result. 

We might briefly state: 

!detA I ~ detT(A) if A E rr~<l)' (1 E (0, 1] . 
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It should be noted that the method of proof indicates the function 

f(a) = det(aT+ (1-a)T*), T E Iln' attains a min for a = i and is 

decreasing everywhere to the left and increasing everywhere to the right 

(see Figure 2). 

Finally , then, if A E Iln we have verified the following sequence 

of inequalities: 

(6. 7) detH(A) :E; !det(aT(A) + (1-a)T(A) *) I 
aE [o, 1] 

:E; detT(A) :E; ldet({3T(A) + (l-{3)T(A)*) I 
{3 ER - [O, 1] 

It is worth noting that the classes Il~a), a E [O, 1], for which we 

have verified Hadamard's inequality differ from and are not contained in 

the class for which GKK and F extended the Hadamard and Szasz 

inequalities. 

(6.8) Example. Let 

3 3 -3 

A = 1 4 -6 

-1 -2 5 

Then A E n~t) by direct verification, but A is not a GKK matrix 

(14] since 

-3) ( 1 det 
-6 -1 

_:) ~ (-6)(2) = -12 i 0 . 
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f(a) 

-------\r---------------1t-----II t .. 
. JJ 
J 

a=l 

Figure 2 
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An elaboration on the systematic reversal of Hadamard's 

inequality in some subclasses of Iln (such as in part (ii) of (6. 6)) is 

given in the following. 

(6. 8. 5) Observation. If A= (aij) E Iln is in the normal form given by 

(1. 21), then 

n 
II Re(a .. ) ~ ldetA I 

. 1 11 1= 

the reverse of Hadamard's inequality. Equality holds if and only if 

Proof: Merely notice that for this class of matrices our statement is 

equivalent to the Ostrowski-Taussky inequality (4. 4) since H(A) = D and 

detD ~ ldetD+S I· 
(a) 

The interesting way in which the classes Iln parallel ~n suggests 

that they may provide fruitful ground for generalizing other classical 

inequalities for L:n. Inequalities due to Szasz [34], Thompson [52], 

Marcus [31] and Bergstrom [11] each in some respect generalize 

Hadamard's inequality within ~n and thus would be natural to consider 

. II(a) 
m n . 

In the second direction of generalization of Hadamard's inequality 

we are able to consider all of Iln and give a systematic estimate for how 

close the inequality is to being valid. We consider Iln(R) and Iln(C) 

separately. 
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(6.9) Theorem. SupposeAE Iln(R). Then 

detA ~ K detT(A) 

where 

K = detc(I+Bf 1, B = H(Af 1S(A) 

and 

c = 1 + max jA(B) j
2 

[Note 1: 0 ~ det(I+B)- 1 ~ 1, c ~ 1.] 

[Note 2: A E ~n implies K = 1 which is the original Hadamard result.] 

Proof: detA = detH(A)det(I+B) implies detA-
1 = det(I+Bf

1
detH(Af

1 

~ det(I+Bf 1detcH(A- 1
) by (4. 3). But det(I+B)- 1detcH(A- 1

) = detc(I+Bf 1 

detH(A- 1
) = K detH(A- 1

) ~ K detT(A- 1
) by the original Hadamard 

inequality. Since Iln(R) is closed under inversion (1. 5) we may just as 

well replace A by A -l to yield detA ~ K detT(A), the desired result. 

[Note: By (1. 9) and (1. 10) both quantities are positive real numbers.] 

(6.10) Theorem. Suppose A E Iln(C). Then 

I detA I ~ K detT(A) 

where 

and 

Proof: The proof proceeds formally just as that of ( 6. 9) except that 

the alternate definition of c is justified by (4.11). 
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To show that the type of estimate of (6. 9) or (6.10) is actually 

economical, consider in closing an example. 

(2 -1) (6.11) Example. Let A = 1 1 . A E II2(R) and we will check all the 

quantities required by (6. 9). 

detA = 3 ; detT(A) = 2 ; 

(
0 -i) B= . 

' 1 0 
1 3 

c =1+2""=2""; 

(I+B) = ; (I+ Bf 
1 

= ; (1 -t) 2(1 t) 
1 1 3 -1 1 

-1 3 2( 1 t) ( 1 t) c(I+B) = 2" 3'" = ; 
-1 1 -1 1 

and K = detc(I+Bf
1 

= 3/ 2, and we have detA = 3 = (3 / 2)2 = K detT(A), a 

case in which equality is realized in (6. 9). 
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