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ABSTRACT

A numerical algorithm is developed to estimate absolute permeability in multi-
phase, multilayered petroleum reservoirs based upon noisy observation data, such
as pressure, water cut, gas-oil ratio and rates of liquid and gas production from
individual layers. The industrial Black-Qil code, CLASS, (Chevron Limited Appli-
cation Simulation System), is used as the basic reservoir simulator in conjunction
with this history matching algorithm. Since the history matching inverse problem
is ill—Aposed due to its large dimensionality and the insensitivity of the permeabil-
ity to measured well data, regularization and spline approximation of the spatially
varying absolute permeability are employed to render the problem computationally
well behaved. A stabilizing functional with a gradient operator is used to measure
the non-smoothness of the parameter estimates in the regularization approach, and
the regularization parameter is determined automatically during the computation
The numerical minimization algorithm is based on the partial conjugate gradient
method of Nazareth. Numerical examples are considered in two- and three-phase
reservoirs with three layers. The effects of the degree of regularization, spline ap-
proximation versus zonation, and differing true areal permeability distributions on

the performance of the method are considered.
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CHAPTER 1

INTRODUCTION

Estimation of the properties of multilayered, multiphase reservoirs remains an
important problem in reservoir analysis. The knowledge of these properties, such
as absolute permeability, forms the basis for determining an optimal strategy of oil
recovery. The process of estimating unknown properties in a mathematical reservoir
model to give the best fit to measured well data is called history matching.

The history matching problem is a notoriously difficult one for several rea-
sons: (1) In a reservoir, properties vary with location; thus, conceptually an infinite
number of parameters are required for a full description of the reservoir. Computa-
tionally, a reservoir simulator contains a finite number of parameters corresponding
to the number of grid blocks, and in field-scale simulations, a simulator may contain
on the order of 10,000 grid blocks. (2) The history matching problem is theoret-
ically ill-posed, which means that small instabilities in the data can lead to large
perturbations in the estimated parameters’?. (3) Many actual reservoirs involve
significant vertical as well as horizontal property variations, requiring the estimation
of property distributions in both directions. (4) History matching situations may
involve full three-phase (oil, water and gas) behavior, wherein traditional observa-
tions at wells may not be adequate to enable property estimation; this problem has

not been addressed previously in the literature.
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There exist a number of prior papers on automatic history matching, which
have been organized according to reservoir dimensionality and number of phases
considered in Table 1. The goal of the present work is to develop a general history

matching code applicable for three-dimensional, three-phase reservoirs.

To alleviate the ill-conditioning in the history matching problem, several ap-
proaches have been tried, such as decreasing the number of parameters to be esti-
mated and, in addition, utilizing any available information to constrain the choice
of the unknown parameters. One way of reducing the number of parameters is to
divide the reservoir into a relatively small number of zones and to assume that the
properties are uniform within each zone. While this approach is effective in reducing
the number of unknowns, sufficient @ prior: information is not usually available to
enable specification of the zones on any physical basis. A modification to zonation
is to use prior information expressed as an assumed probability distribution for the
zonal reservoir properties. If certain a prior: knowledge is assumed about the mean
values and correlations of the parameters, the history matching performance index
can be modified to include a term that penalizes the weighted deviations of the
parameters from their assumed mean values'. Although it has been shown that
better-conditioned estimates may be obtained when a priori statistical informa-
tion is used, sufficient knowledge of the nature of the unknown parameters is not
generally available to specify the parameters needed to carry out such a Bayesian

estimation.
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Kravaris and Seinfeld®* have shown that the concept of regularization can
be applied to the estimation of spatially varying parameters in partial differential
equations of the parabolic type. Regularization of an ill-posed, inverse problem
refers to solving a well-posed inverse problem whose solution approximates that
of the original problem in a physically meaningful way. In particular, parameter
estimation by regularization is performed by minimizing a smoothing functional
that is a weighted sum of the conventional least-squares functional and a stabiliz-
ing functional which measures the degree of non-smoothness with respect to the
parameter estimates. The weighting factor or regularization parameter represents
the degree of smoothing desired. Furthermore, spline approximation, which pro-
vides a convenient way of representing the spatially varying parameters, also helps
circumvent some of the ill-conditioning inherent in the finite difference or zonation
representation of the unknown parameters by imparting a degree of smoothness to

the parameter distribution.

Estimation of porosity and absolute permeability, in single-phase, two-
dimensional reservoirs using regularization and bicubic spline approximation has
been investigated by Lee et al’. The effects of the degree of spline approximation
and regularization on the parameter estimation were considered. In applying the
spline approximation to the parameter estimation problem, the number of coeffi-
cients for spline representation should not exceed either the number of grid cells
for the PDE’s or the number of available observation data. If too few coefficients
are employed, the spline approximation cannot represent the spatial details of the
permeability distribution adequately. Estimation of absolute permeability and si-
multaneous estimation of absolute and relative permeability in two-phase (oil and

water), two-dimensional reservoirs were also investigated by Lee et al®?. As in the
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single-phase case, both bicubic spline approximation and regularization techniques

were used in parameter estimation.

Chen et al.® have applied a so-called generalized pulse spectrum technique
(GPST) inversion algorithm for history matching in two-dimensional, two-phase
simulator models. The GPST method involves solving the history matching problem
using a multigrid technique in which the estimation is performed on successively
finer grids starting with a single cell model until convergence is reached. In this
work, Chen assumes that both pressure and saturation data are available at each
observation point in the history match. In actual field applications, saturation
data are not generally available. Lee et al.®" assumed only measurable production
data, such as water-oil ratio and wellbore pressure, to be available at observation
locations. In addition, Lee’s method can be applied directly to any two-dimensional,

two-phase simulator model not only to those using a multigrid method for solution.

A number of investigations aimed at estimating parameters in multilayered
reservoirs have been carried out in the field of well testing? 25, All the prior work
in multilayered reservoirs, conducted for the case of single-phase flow, demonstrates
that the properties of individual layers cannot be estimated by conventional tran-
sient well tests if all the layers are producing simultaneously. To determine individ-
ual layer parameters and interlayer crossflow parameters, it is necessary to conduct
well tests in which some layers are produced and others are shut-in. The above
listed references provide a variety of strategies for determining layered properties

together with analytical solutions for transient well tests on single-phase reservoirs.



5

Although single- and two-phase, two-dimensional reservoirs are clearly the
first step in addressing parameter estimation problems, from the point of practical
application, it is necessary to consider three-phase, three-dimensional reservoirs.
Chen et al.?6:27 have applied the GPST algorithm to idealized three-dimensional,
two- and three-phase simulator models. In this work, as in their two-dimensional,
two-phase work, the permeability distribution is estimated assuming pressure, water
and gas saturation data are available at the wells. In general, data of this type are

not available; rather only field production data are available.

This thesis represents in many respects the culmination of many years of
work by the Caltech group together with that at the Chevron Oil Field Research
Company in the field of parameter estimation in petroleum reservoirs. We develop,
in this work, a multilayered, three-phase history matching algorithm for use with
an industrial Black Oil simulator. The permeability distribution is estimated by
matching production data such as the wellbore pressure, the water cut, the gas-
oil ratio and the flow rates of liquid and gas from individual completions. The
techniques of regularization and bicubic spline approximation are used to convert

the ill-posed inverse problem into one that is computationally well behaved.

Chapter II is an initial examination of the question of determining the proper-
ties of individual layers in multilayered reservoirs using two-phase flow information.
The situation considered here is a simple water flood in which a vertically stratified,
oil-bearing reservoir cross section between two wells is subjected to water injection
at one of the wells. The ability of layer-by-layer measurements at the producing
well, such as well pressure and water-oil ratio, to reflect the reservoir’s vertical het-

erogenity is examined through reservoir simulation. Thus, the object is to assess the
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feasibility of estimating properties of layered reservoirs on the basis of waterflood-
ing data. Various types of production scenarios are examined and the sensitivity of

measured production data to reservoir properties is analyzed.

In Chapter III, the determination of absolute permeability in multilayer reser-
voirs using two- and three-phase well data, such as well pressure, water cut, gas-oil
ratio and rates of liquid and' gas production from individual layers is addressed. A
history matching algorithm that employs the industrial Black Oil simulator, CLASS
(Chevron Limited Applications Simulation System), is developed to estimate ab-
solute permeabilities. The effects of bicubic spline approximation versus zonation

and regularization are considered in a series of history matching calculations.
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TABLE 1 - PRIOR PAPERS ON AUTOMATIC HISTORY MATCHING

Number of Phases

No. of Dim. One-Phase Two-Phase Three-Phase
1-D 1,24,29 30
2-D 2-5,9-19, 6-8
21-25,28
3-D 26, 27,

This work This work



(1)

(2)

(3)

(4)

(5)

(6)

(1)

(8)

8

REFERENCES

Shah, P. C., Gavalas, G. R., and Seinfeld, J. H.: “Error Analysis in History
Matching: The Optimum Level of Parameterization,” SPEJ (June 1978) 219-
28.

Yakowitz, S., and Duckstein, L.: “Instability in Aquifer Identification: Theory

and Case Studies,” Water Resources Research, 16, No. 198, 1054-64.

Kravaris, C., and Seinfeld, J. H.: “Identification of Parameters in Distributed
Parameter Systems by Regularization,” SIAM J. Control and Optimization,
23, No. 2, 217-41.

Kravaris, C., and Seinfeld, J. H.: “Identification of Spatially-Varying Parame-
ters in Distributed Parameter Systems by Discrete Regularization,” J. Mathe-
matical Analysis and Appl., (1986) 118, No. 9.

Lee, T., Kravaris, C., and Seinfeld, J. H.: “History Matching by Spline Approx-
imation and Regularization in Single-Phase Areal Reservoirs,” SPE Reservoir

Engineering, 1, 521 (1986).

Lee, T., and Seinfeld, J. H.: “Estimation of Two-Phase Petroleum Reservoir

Properties by Regularization,” J. Computational Physics.

Lee, T., and Seinfeld, J. H.: “Estimation of Absolute and Relative Permeabil-

ities in Petroleum Reservoirs,” Inverse Problems.

Chen, Y. M. et al.: “GPST Inversion Algorithm for History Matching in 2-D,
Two-Phase Simulator Models,” Appl. Numer. Math., 4, 83, (1988).



(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

9

Bremer, R. E., Winston, H., and Vela, S.: “Analytical Model for Vertical
Interference Tests Across Low-Permeability Zones,” SPEJ (June 1985) 407-

418.

Dogru, A. H., and Seinfeld, J. H.: “Design of Well Tests to Determine the
Properties of Stratified Reservoirs,” paper SPE 7694 presented at the 1979
SPE of AIME Fifth Symposium on Reservoir Simulation held in Denver, CO,
Feb. 1-2.

Earlougher, R. C. Jr., Kersch, K. M., and Kunzman, W. J.: “Some Charac-
teristics of Pressure Buildup Behavior in Bounded Multiple-Layered Reservoirs

Without Crossflow,” JPT (Oct. 1974) 1178-1186; Trans., AIME, 257.

Ehlig-Economides, C. A., and Ayoub, J. A.: “Vertical Interference Testing
Across a Low-Permeability Zone,” SPEFE (Oct. 1986) 497-510.

Ehlig-Economides, C. A., and Joseph, J.: “A New Test for Determination of
Individual Layer Properties in a Multilayered Reservoir,” SPEFE (Sept. 1987)
261-283.

Foss, B. A.: “Well Test Analysis and Design: A Parameter Identification Ap-

proach,” Report No.1, The Norwegian Institute of Technology (June 1986).

Gao, C. T.: “Single-Phase Fluid Flow in a Stratified Porous Medium with
Crossflow,” SPEJ (Feb. 1984) 97-106.

Kazemi, H., and Seth, M. S.: “Effect of Anisotropy and Stratification on Pres-
sure Transient Analysis of Wells with Restricted Flow Entry,” JPT (May 1969)
639-647.



(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

10

Lefkovits, H. C. et al.: “A study of the Behavior of Bounded Reserviors Com-

posed of Stratified Layers,” SPEJ (March 1961) 43-58; Trans., AIME, 222.

Pendergrass, J. D., and Berry, V. J. Jr.: “Pressure Transient Performance of a

Multilayered Reservoir with Crossflow,” SPEJ (Dec. 1962) 347-354.

Prijambodo, R., Raghavan, R., and Reynolds, A. C.: “Well Test Analysis for
Wells Producing Layered Reservoirs with Crossflow,” SPEJ (June 1985) 380-
396.

Raghavan, R. et al.: “Well Test Analysis for Wells Producing from Two Com-
mingled Zones of Unequal Thickness,” JPT (Sept. 1974) 1035-1043; Trans.,
AIME, 257.

Russell, D. G., and Prats, M.: “Performance of Layered Reservoirs with Cross-

flow - Single-Compressible-Fluid Case,” SPEJ (March 1962) 53-67.

Russell, D. G., and Prats, M.: “The Practical Aspects of Interlayer Crossflow,”
JPT (June 1962) 589-594.

Streltsova, T. D.: “Pressure Drawdown in a Well with Limited Flow Entry,”
JPT (Nov. 1979) 1469-1476.

Streltsova, T. D.: “Buildup Analysis for Interference Tests in Stratified For-
mations,” JPT (Feb. 1984) 301-310.

Chen, W. H. et al.: “A New Algorithm for Automatic History Matching,”
SPEJ, 14, (Dec. 1974) 593 - 608.



(26)

(27)

(28)

(29)

(30)

11

Chen, Y. M. et al.: “Application of GPST to History Matching In Multiphase
Simulator Models,” IMACS Trans. Sci. Comput. - 1988; 1.1 and 1.2: Numer.
and Appl. Math., ed. by W. F. Ames and C. Brezinski, in press.

Zhu, J. P. and Chen, Y. M.: “GPST for History Matching In 1-Parameter,

3-D, Three-Phase Simulator Models,” to appear in J. Comp. Phys.
Wasserman, M. L., Emanuel, A. S., and Seinfeld, J. H.: SPEJ, 15, 347 (1975).

Chavent, G., Dupuy, M., and Lemonnier, P.: “History Matching by Use of
Optimal Control Theory,” SPEJ , (Feb. 1975), 74-86; Trans., AIME , 251.

Van der Bosch, B., and Seinfeld, J. H.: SPEJ, 17, 398, (1977).



12

CHAPTER II

DETERMINATION OF INDIVIDUAL LAYER PROPERTIES
IN MULTILAYER RESERVOIRS WITH TWO-PHASE FLOW

1. INTRODUCTION

Estimation of the properties of multilayer reservoirs remains an important
problem in reservoir analysis. A number of investigaﬁions of this problem have
appeared in the petroleum engineering literature® ~'%. All the prior work, conducted
for the case of single-phase flow, demonstrates that the properties of individual
layers cannot be estimated by conventional transient well tests if all the layers are
producing simultaneously. To determine individual layer parameters and interlayer
crossflow parameters, it is necessary to conduct well tests in which some layers are
produced and others are shut-in. The above listed references provide a variety of
strategies for determining layered properties together with analytical solutions for

transient well tests on single-phase reservoirs.

The present paper is an initial examination of the question of the determina-
tion of the properties of individual layers in multilayer reservoirs using two-phase
flow information. The situation considered here is a simple waterflood in which a
vertically stratified, oil-bearing reservoir cross section between two wells is subjected
to water injection at one of the wells. The ability of layer-by-layer measurements
at the producing well, such as well pressure and water-oil ratio, to reflect the reser-
voir’s vertical heterogeneity is examined through reservoir simulation. Thus, the
object of the present paper is to assess the feasibility of estimating properties of

layered reservoirs on the basis of waterflooding data.
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This work begins with a brief statement of the reservoir model employed and
then discusses the types of production scenarios that will be examined. The major
body of the paper consists of an analysis of the sensitivity of measured production

data to the reservoir properties.

2. RESERVOIR MODEL

The two-dimensional, unsteady flow of oil and water in a vertical cross section
of a reservoir with thickness Ay in which water is injected at one well and oil and
water are produced from the other well is considered. If the capillary pressure is
assumed to be zero, and the fluids are both slightly compressible, the pressure and

saturation distributions in the reservoir are governed by

i[kz(fﬂ, 2)kr,1(Sw)bi(p) _a_l'g] _Q[kz(fc, 2)kr1(Sw)bi(p) O(p — ngZ)] _
oz 3 Oz 0z 7 0z N
0
¢5¥[bl(p)31] - Qh l = o, w (1)
Sw + S, = 1 (2)
Op
9 0 at =0 and z=1, (3)
kxx,z) = 0 at z=0 and z=1L, (4)

p(:C,Z,O) = po(:E,Z) (5)
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TABLE 1 - PHYSICAL PROPERTIES OF THE RESERVOIR

(1) Fluid properties

Compressibility, atm™*
Viscosity, g cm™3

Relative permeability

(2) Rock and reservoir properties

Porosity

Initial pressure, atm

Water

1.0 x 10~*
0.305

Ay = 1.0
by = 2.0
Siw = 0.12

0.3

325.0

Oil

1.5x 1074
0.5

a, = 1.0
b, = 2.0
S;e = 0.10
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The physical properties of the reservoir are shown in Table 1. Furthermore,
the relative permeablities of the oil and water phases are assumed to be functions

of saturation and can be written as

1.0 = Sro — Su 5,
1.0~ S0~ Si’ ©

kro(Sw) = ao (

Sw - Siw

krw(Sw) = a'w( - )bw (7)
1.0 — S — S50

Since the wellbore size is small relative to the reservoir dimensions, the pro-
duction and injection well flow rates are treated as sink or source terms in the
governing equations. The fully implicit finite-difference approximation of the reser-

voir equations can be written as

AZlc kzkr lbl ntl n-+1
( —) Di+1,k — Dik
( Az ) i i+1/2,k( )
AZk kzkr,lbl i n+1

+ i—1,k — Pi
(=, ) ” )i_l/z’k(p 1,k = Pik)

Aw | kokyhy "

) [Pik+1 — ik + p19(zx — zk41

+
Azt P ka2

)]n+1

Az koky by "
)

L k~1 — Dik + p19{zr — zg—
Azp_1/2 ] )i,k—l/Z[pz ( 1)

+ ]n+1

b oQuk — SlBST - S = 0 ®)
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In order to draw quantitative conclusions, it is necessary to assume a certain
number of layers for the reservoir simulation. The reservoir will be assumed to
consist of three layers in which the horizontal permeabilities as well as the vertical
permeabilities between layers one and two and layers two and three are assumed
to be uniform. (See Fig. 1.) Three layers are sufficient for us to draw general
conclusions about the behavior of layered reservoirs and are a compromise in the

representation of layered reservoir behavior.

One of several variables that govern the behavior of the wellbore such as
the wellbore pressure, total liquid flow rate and the oil or water flow rates can be
specified. In this study, the total liquid flow rate in the production well and the total
water flow rate in the injection well are assumed to be known. In all cases considered
here, water is injected into all three layers simultaneously, and the number of layers
that are being produced at a given time is varied. Two equations governing the
injection and production wellbores are needed to calculate the wellbore pressures
when the overall well flow rates are specified. The equations governing the injection

and production wells are

NZP(NZL)
Z {U]\;‘] - %%%AL =0 ()
k=NZP(1)
where
. Az BN NZ-1
S N U SRR
In(7=) m j=k
and
NZP(NZL)
> (QUIP? + QP - effh = 0
k=NZP(1)
where
A Ebd NZ-1
PROD k z lr, 10} PROD 5
= P — Fuw + a Az); 12
o ln(i)( ” )NX?k[PNX,k Puwb g j:Zk(P Jit1/2] (12)
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Newton’s method was used to solve the nonlinear system of 2V + 2 equations

generated by Eqgs. (8),(9) and (11).
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Fig. 1 - Vertical cross-section of a petroleum reservoir
between an injection and production well
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3. PRODUCTION STRATEGIES

It is assumed that at ¢t = 0, water is injected and fluid produced at equal vol-
umetric flow rates. Although water is injected into all three layers simultaneously,
gravitational forces tend to cause the water to sink to the bottommost layer with a
corresponding displacement of oil into the layers above. When the value of the ver-
tical permeabilities is O(1072 darcies or more) (i.e., the layers are communicating),
for the conditions we will simulate, all of the water injected sinks to the bottom
layer well before reaching the producing well. When the vertical permeabilities are
extremely small,O(10™* darcies or less), (i.e., the layers are uncommunicating), the
water tends to remain in the layer into which it has been injected. If production
occurs only from layer three (the bottom layer), for example, communicating layers
lead to a decrease in the water breakthrough time over that if the layers do not com-
municate, since the water migrates along the bottom layer. If the well is producing
at layer two only, water production does not occur until the bottom layer is nearly
saturated with water, and the oil is eventually displaced by water migrating upward
into layer two. When producing from layer two, if the layers are noncommunicating
(k. <O(107* darcies)), then water breakthrough occurs sooner than if the layers
communicate since the water injected into layer two does not sink towards the bot-
tom of the reservoir before reaching the production well. Thus, for the conditions
we will consider, because gravitational forces redistribute the water and oil in the
reservoir well before water breakthrough occurs, if the layers are communicating,
the effect of small changes in the values of vertical permeabilities on the production
parameters is expected to be negligible, and only a large reduction in the vertical
permeabilities, £, <O(107* darcies), can be expected to cause noticable changes in

production behavior.
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A variety of measurements can be made in both the injection and production
wells depending upon the number of layers being produced or injected. In the pro-
duction well with only one layer producing, the wellbore pressure and the water-oil
ratio bcan be measured. With two layers producing, the rate of liquid production
from only one of the layers needs to be monitored since the total flow is specified.
Several cases with different numbers and combinations of producing layers are con-
sidered in which various measurements are made, such as the production wellbore
pressure, the rate of liquid production from a producing layer and the water-oil ra-
tio. Note that the water breakthrough time can be determined without measuring
the water-oil ratio directly by monitoring the sudden decrease in the production
wellbore pressure that occurs at water breakthrough. In general, the production
measurements will be found to be more sensitive to changes in the horizontal than
the vertical permeabilities. When producing from only one layer at a specified to-
tal rate of liquid production, the wellbore pressure at the producing layer is most
sensitive to changes in the permeability of that layer. (Note that the wellbore
pressure is always measured at the bottom hole, i.e., the bottommost producing
layer.) Because the rate of production is proportional to the pressure drop between
the reservoir and the wellbore, as in Eqgs. (10) and (12), the larger the pressure
drop necessary to produce at a specified rate of total liquid production, the smaller
the permeability of the producing layer. Furthermore, since specifying the same
volumetric flow rates of injection and production keeps the reservoir pressure dis-
tribution constant with time, the bottom hole pressure is indicative of the behavior
of the pressure drop across the wellbore. Since the pressure drop decreases as the
bottom hole pressure increases, the larger the permeability of the sole producing

layer, the larger the bottom hole pressure measured at that layer. Thus, a larger
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permeability in the producing layer creates a correspondingly larger bottom hole
pressure.

The horizontal permeabilities of the nonproducing layers do not affect the
wellbore pressure when producing from only one layer, but tend only to delay or
enhance water breakthrough times. In particular, when producing from layer three,
the larger the permeability of the producing layer, ks,, the sooner water break-
through occurs; while the larger the horizontal permeabilities in layers one and two
(the nonproducing layers), the longer the water injected remains in those layers
without sinking to the bottommost layer. In general, with communicating layers,
most of the water injected sinks to the bottom of the reservoir then flows through
the bottommost layer until water breakthrough occurs. Hence, regardless of which
layer is producing, the larger the permeability of the bottommost layer, the sooner
water breakthrough occurs. The water breakthrough times behave similarly when
producing only from layer one. Again, a larger permeability in layer three (a non-
producing layer) decreases the water breakthrough time. Whereas, the larger the
permeability in either layer one (the producing layer), or layer two, the later water

breakthrough occurs.

When producing from two or more layers simultaneously, the wellbore pressure
at the bottom hole depends upon the permeabilities of all the producing layers
not just that of the bottommost producing layer where the wellbore pressure is
measured. Although the sum of the rates of liquid production from all the layers is
specified (i.e., the total rate of liquid production), the individual rates of production
from a particular layer depend upon the ratio of the permeabilities of the two
layers. In particular, since the total rate of production is specified, when producing
from layers one and two, for example, the larger the ratio ( %), the lower the

rate of production from layer two versus layer one and the higher the wellbore
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pressure measured. In other words, the wellbore pressure depends upon both the
value of the permeability at the bottommost producing layer where the pressure is
measured, as well as the ratio of that permeabiblity to the permeabilities of the other
producing layers. When two or more layers are producing, the water breakthrough
time depends upon both the ratios of the permeabilities of all the layers (producing
and nonproducing) and the value of the permeabilities. For example, if the ratios of
kiz to kaz and ko, to k3, in one case are identical to those of another case, even if the
values of the permeabilities are different in the two cases, the water breakthrough
time is the same. In two cases in which the values of ki1, and kg, are the same,
the larger the value of kj,, the sooner water breakthrough occurs for the reasons
discussed earlier. In general, the analysis of the sensitivity of measured production
parameters to vertical heterogeneity is more difficult in cases where more than one
layer is produced simultaneously.

The specific cases that will be considered here are defined in Table 2. In
cases (1) - (3), fluid is produced from only one layer at a time. Both the wellbore
pressure at the producing layer and the water-oil ratio are measured. In case (4),
fluid is produced from two layers simultaneously. Although the total rate of liquid
production is specified, the rate of liquid production from an individual layer is
measured at the bottommost layer produced. In case (5), fluid is produced from
layer three only; however, after the first 100 time steps, fluid is produced from layers

one and two simultaneously until water breakthrough occurs.
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~ TABLE 2 - PRODUCTION SCENARIOS FOR DETERMINING SENSITIVITY
OF MEASURED VARIABLES TO RESERVOIR HETEROGENEITIES

Case Number

1
—> 1
2
3 —d
2
3 1
- 2 o
— 3
3
— 1 2
—] 2
— 3
4
— i e
2 e
3
5

b
W

HEOOQWR

@ >

oe g

gaw»

Qe

klz

0.7
0.4
0.4
0.4
0.4
0.4

0.5
0.5

0.4
0.4

0.7

0.35
0.35
0.35

0.5
0.5
0.5

k2x

0.3
0.6
0.6
0.3
0.6
0.2

0.2
0.2

0.5
0.5

0.3
0.7
0.7
0.7

0.6
0.4
0.4

Permeability

(darcies)
k3z klz
0.5 0.03
0.3 0.03
0.5 0.03
0.5 0.03
0.3 0.0003
0.3 0.03
0.6 0.02
0.4 0.02
0.3 0.02
0.3 0.02

5 0.35 0.035
0.35 0.035
0.7 0.035
0.35 0.0035
0.3 0.025
0.3 0.025
0.3 0.00025

k2z

0.03
0.03
0.03
0.03
0.0003
0.03

0.02
0.02

0.02
0.01

0.035
0.035
0.035
0.0035

0.025
0.025
0.00025
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4. SENSITIVITY OF MEASURED PRODUCTION VARIABLES
TO VERTICAL RESERVOIR HETEROGENEITIES

In this section, the sensitivity of production parameters, such as the produc-
tion wellbore pressure, the water-oil ratio and the rate of production from individual
layers, to differences in the horizontal and the vertical permeabilities is examined.
The various production strategies discussed in the previous section, as shown in
Table 2, are considered here.

In cases (1) - (3), in Table 2, fluid is produced from only one of the three layers.
Since the wellbore pressure is most sensitive to the permeability of the producing
layer, it is indicative of the permeability of that layer only. Hence, little information
can be determined about the horizontal permeabilities of the nonproducing layers
and vertical permeabilities between layers. In general, if the total rate of produc-
tion is specified, the larger the permeability of the producing layer, the larger the
wellbore pressure measured at that layer. This behavior is seen by examining the
following cases. For example, as shown in Figs. 2 and 3, the wellbore pressure of
case (1.C) is higher than that of case (1.B). In these cases, fluid is produced from

layer three only, and hence, the wellbore pressure behavior in cases (1.B) and (1.C)

(1.0) (1.B)

implies that k3, > ks, . Furthermore, as shown in Figs. 2 and 3, the

absence of marked differences between the wellbore pressure curves of cases (1.A)
and (1.C) indicates that kgx(l'A) ~ kgz(l'c), Although kgx(l'A) ~ k3x(1‘c),
klz(l'A) > klx(l'c) and kgz(l‘A) < kzz(l'c) which shows the insensitivity of
the wellbore pressure measured at the producing layer to the permeabilities of the

nonproducing layers in cases where only one layer is producing.
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Although vertical permeabilities also affect the reservoir production param-
eters, the wellbore pressure and the water breakthrough time are less sensitive to
their differences than to those of the horizontal permeabilities. This insensitivity
is illustrated by a comparison of the wellbore pressure curves for cases (3.A) and
(3.B). The horizontal permeabilities and the vertical permeability between layers
one and two are identical in both cases: however, ko34 = 2ks,3B) . Even
though the value of the vertical permeability between layers two and three in case
(3.B) is half that in case (3.A), the wellbore pressures are the same except near
water breakthrough. (See Fig. 5.)

Since water breakthrough time depends on the horizontal permeabilities of the
producing and nonproducing layers as well as the vertical permeabilities between
layers, other aspects of the vertical structure are difficult to determine. In order to
understand how the water breakthrough time is affected by horizontal and vertical
permeabilities, several examples are considered. When the layers are communicating
the water injected sinks to the bottommost layer before water breakthrough occurs,
and hence, most of the water flows to the producing well through layer three. Thus,
when producing from layer one, two or three, regardless of which layer is the pro-
ducing one, the larger the permeability of layer three, k3, the sooner water break-
through occurs. For example, when layer two is producing, as in cases (2.A) and
(2.B), (where k34 = k1. P and kop 24 = kZz(Z'B)), water breakthrough
occurs sooner in case (2.A) than in case (2.B), since k3, 4 > fy (2B (See Fig.
4.) As discussed in the previous section, the larger the permeabilities of layers one
and two, k1, and ko, the later water breakthrough occurs, regardless of which layer

is producing. When layer three is producing, water breakthrough occurs sooner in

case (1.D) than (1.C), (where b, (1O = k1. and ks, (1) = kgx(l'D)),

(1.D)

since ko, < kzz(l'c), as shown in Figs. 2 and 3.
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When the layers are noncommunicating as in case (1.E), the fluid flow in
the vertical direction is negligible; therefore, fluid flows in the horizontal direc-
tion more quickly causing water breakthrough to occur sooner. See for example,
cases (1.B) and (1.E), in which the horizontal permeabilities are identical, but
kLB = 0.001k0P) and ko, = 0,001k, B, (See Figs. 2 and
3.) As discussed previously, when producing from layer three only, as in case (1),
the smaller the permeabilities in the nonproducing layers, one and two, the earlier
water breakthrough occurs. Consider case (1.F), in which the permeability of layer
three, k3., (the producing layer), is the same in cases (1.B) and (1.E). Since the per-
meabilities of layer three are the same in cases (1.B), (1.E) and (1.F), the wellbore
pressures behave similarly. In case (1.F), the permeability of layer two is less than
that in case (1.B), (i.e., koo ") < kg ™P)), and hence, as in case (1.E), water
breakthrough for case (1.F) occurs sooner than in case (1.B). In fact, the water
breakthrough times for cases (1.E) and (1.F) are very similar, but due to different
vertical structure. In particular, in case (1.E), because the layers are noncommu-
nicating, water breakthrough occurs sooner than in case (1.B). Whereas, in case
(1.F), water breakthrough occurs sooner than in case (1.B) because the horizontal
permeability of layer two is smaller in case (1.F) than in case (1.B). Although the
wellbore pressure for cases (1.E) and (1.F) indicates that the permeability of layer
three is the same in both cases, the time at which water breakthrough occurs is
affected by both the horizontal and vertical permeabilities. Therefore, it 1s difficult
to distinguish between the vertical structure in cases (1.E) and (1.F') where both the
wellbore pressure behavior and the water-oil ratios are similar. Thus, the analysis
of the production parameters measured while producing from only one layer from

t = 0 until water breakthrough can be ambiguous and inconclusive.
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In case (4), where fluid is produced from layers one and two simultaneously,
in addition to the wellbore pressure and the water breakthrough time, the rate
of production from an individual layer can be measured. Hence, when two layers
are produced simultaneously, a combined analysis of the wellbore pressure and the
rate of production from an individual layer can be used to estimate the horizontal
permeabilities of the producing layers. When the total rate of production is spec-
ified, both the wellbore pressure, which is measured at the bottommost producing
layer, and the rate of production from an individual layer are sensitive not only
to the value of the permeability at that layer, but also to the ratio between the
permeabilities of the two producing layers. As discussed in the previous section,
(See Eq. (12)) since the rate of production from a layer is proportional to the pres-
sure drop between the reservoir and the wellbore, and since the reservoir pressure
remains constant with time due to equal total rates of injection and production,
the wellbore pressure increases as the rate of production from that layer decreases.
Furthermore, the lafger the ratio of the permeabilities between layers one and two,

the smaller the rate of production from layer two versus layer one.

For example, consider cases (4.A) and (4.B) where EL:;,:’*A) = 2.0 and
iui(;;m‘ = 0.5. An examination of the rate of production from layer two which
is smaller in case (4.A) than in case (4.B), indicates that ﬁ;}%"l > £ k(:'B).

Since the rate of production from layer two is smaller in case (4.A) than in case
(4.B), the wellbore pressures measured at layer two are similar (except at water
breakthrough) even though oy Y < kow P, In case (4.C), both the rate of
production from layer two and the wellbore pressure behave similarly to case (4.B)

(See Figs. 6 and 7).
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Since both the rates of production and the wellbore pressures are similar in
cases (4.B) and (4.C), both the ratios of the permeabilities between the layers one

and two and the values of the permeabilities of the producing layers are the same.

(ie., h%fzi) _ h%zC_J and k1, (4B = k1z(4'c), kzx(4'B) _ k21(4.0)).

As we have shown, when producing from two layers simultaneously, the per-
meabilities of the two producing layers can be estimated by a combined analysis of
the rate of production from an individual layer and the wellbore pressure measured
at the bottommost producing layer. On the other hand, the water breakthrough
time depends upon the horizontal permeabilities of the producing and nonproduc-
ing layers as well as the vertical permeabilities between layers. As a result, it is
difficult to draw any additional conclusions about the permeabilities of the non-
producing layers and the vertical permeabilities between layers. For example, the
water breakthrough times of cases (4.C) and (4.D) are similar. Furthermore, they
are both shorter than the water breakthrough time for cas (4.B), but because of
different vertical structures. In all three cases, the wellbore pressures and the rates
of production from layer two are similar which indicates that the horizontal per-
meabilities in layers one and two are the same. In case (4.C), water breakthrough
occurs sooner because the horizontal permeability of layer three is larger than in
case (4.B), whereas the water breakthrough time is shorter in case (4.D) because

the layers are noncommunicating.

In case (5), fluid is produced solely from layer three for the first 100 time
steps; then, after this initial period, fluid is produced from layers one and two
simultaneously until water breakthrough occurs. In cases (5.A), (5.B) and (5.C), as

shown in Fig. 8, the wellbore pressures behave similarly for the first 100 time steps.
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As discussed before, since fluid is produced solely from layer three during this
period, this similarity indicates that the permeabilities in layer three are identical
in all three cases. After the first 100 time steps, since fluid is produced from two
layers simultaneously, the rate of production from layer one is measured. Since

the rate of production from layer one in case (5.A) is smaller than that in cases

(5.B) and (5.C), it is clear that hf,ci—ii) < W Furthermore, as shown

in Fig. 9, the rate of production from layer one is the same in cases (5.B) and

(5.C) implying that hf,:%i = El*’”,;i—c) Since, in cases (5.B) and (5.C), from

t = 100 time steps to ¢ ~ 250 time steps, both the wellbore pressures and the rates
of production from layer one behave similarly, the permeabilities of layer one and
layer two must be the same in both cases. Thus, since the horizontal permeabilities
are the same in all three layers in cases (5.B) and (5.C), differences in the vertical
permeabilities must cause the shorter water breakthrough time in case (5.C). As
discussed previously, because the layers are noncommunicating in case (5.C), water
breakthrough occurs sooner. By producing from all three layers, more information
about the vertical structure can be determined in cases (5.B) and (5.C). In general,
a production strategy in which fluid is produced from each of the three layers (but
not more than two simultaneously) is the most useful in determining both horizontal

and vertical permeabilities.
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5. CONCLUSION

In this paper, the determination of the horizontal and vertical permeabilities of
the individual layers in a multilayer, oil-bearing reservoir during a simple waterflood
has been examined. Since two-phase flow exists in this case, the analysis of the
sensitivity of measured production parameters is different from that when only one
phase is flowing. In particular, the water breakthrough time can be used to examine
certain aspects of the formation’s vertical structure. Several production strategies
are examined to discover those most suitable for determining horizontal and vertical
permeabilities. All the results are based on an assumed three-layer reservoir, but

the conclusions can be generalized to any number of layers.

In the first production strategy examined, fluid is produced solely from only
one of the layers. When producing from only one layer until water breakthrough
occurs, the production wellbore pressure is indicative of the permeability of that
layer only. Since the horizontal and vertical permeabilities of all layers affect the
water breakthrough time, the vertical permeabilities between layers one and two and
between layers two and three and the horizontal permeabilities of the nonproducing
layers are difficult to determine individually. Thus, although an analysis of the
wellbore pressure when fluid production occurs from only one layer leads to a clear
determination of the permeability of the producing layer, the water breakthrough

time is insufficient to estimate other aspects of the vertical structure.
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When producing from two layers simultaneously until water breakthrough
occurs, the wellbore pressure that is measured at the bottommost producing layer
depends upon both the value of the permeability of that layer and the ratio of the
permeabilities of the two producing layers. If the total rate of liquid production is
specified, the individual rate of production from a particular layer depends upon
the ratio of the permeability of that layer to the permeability of the other producing
layer. Thus, a combined analysis of the wellbore pressure and the rate of production
from an individual layer can be used to determine the horizontal permeabilities
of both producing layers. Since the water breakthrough time depends upon the
horizontal and vertical permeabilities of all the layers, the horizontal permeability of
the nonproducing layer as well as the vertical permeabilities between layers cannot
be uniquely determined. Clearly a production strategy in which two layers are
produced is more useful in determining vertical structure than one in which fluid is

produced from only one layer.

In the last case, fluid is produced solely from layer three for a certain period
of time, and then after this initial period, fluid production occurs from both layers
one and two simultaneously until water breakthrough. During the initial period, an
analysis of the wellbore pressure, measured at layer three, determines conclusively
the permeability of this layer. After this initial period, when fluid is produced from
layers one and two simultaneously, a combined analysis of the wellbore pressure
and the rate of production from one of the layers leads to a determination of the
permeabilities of layers one and two. Since all three horizontal permeabilities can
be determined from a combined analysis of the wellbore pressure and the rate of
production from layer one, an examination of the water breakthrough time leads to

knowledge about other aspects of the vertical structure such as the communication
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between layers. Since the horizontal permeabilities of all three layers and the com-
munication between layers can be determined, a production strategy in which fluid
is eventually produced from all three layers is the most advantageous in determining

a formation’s vertical structure.
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NOMENCLATURE
by = formation volume factor of phase [
g = gravitational acceleration
kr1 = relative permeability of phase [
k(xz,z) = absolute horizontal permeability
k.(z,z) = absolute vertical permeability
L, = length of the reservoir
L, = depth of the reservoir
NX = total number of grid blocks in the x — direction
NZ = total number of grid blocks in the z — direction
NZL = total number of producing layers
NZP(k) = index of the producing layer
P = reservoir pressure
pLE7 = bottom hole pressure in the injection well
o9l = bottom hole pressure in the production well
@i = injection or production rate of phase [
Qi,]’\;cj = rate of water injection into layer k
f ,?OD = rate of fluid production from layer k
Q% 41 = total rate of water injection
QFREIR. = total rate of fluid production
re = effective radius
rv = wellbore radius
S1 = saturation of phase [
Siw = irreducible water saturation

residual oil saturation
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GREEK
a = conversion factor
At = time step
Az = grid block length
Az = grid block height
p1 = viscosity of phase [
pi1 = density of phase ]
p = average fluid density in production wellbore
SUBSCRIPTS
e = effective
¢ = index in the x — direction
k = index in the z — direction
! = phase
o = oil phase
w = water phase
SUPERSCRIPTS

INJ = injection

PROD = production
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CHAPTER II1

A GENERAL HISTORY MATCHING ALGORITHM
FOR THREE-PHASE, THREE-DIMENSIONAL
PETROLEUM RESERVOIRS

1. INTRODUCTION

In the present work, a multilayered, three-phase history matching algorithm
is developed for use in conjunction with the industrial Black Oil simulator, CLASS,
(Chevron Limited Application Simulation System) for estimating the absolute per-
meability distribution using measured well data such as pressure, water cut, flow
rates of liquid and gas from individual completions, and gas-oil ratio. The algorithm
incorporates the latest advances in regularization theory as applied to petroleum
reservoir parameter estimation. Numerical examples are considered in a series of
history matching calculations on two- and three-phase reservoirs with three layers.
The effects of the degree of regularization, spline approximation versus zonation
for representing the unknown permeability distribution, and differing true areal

permeability distributions on the performance of the method are examined.
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2 . RESERVOIR MODEL

We consider the three-dimensional, unsteady flow of oil, water and gas in a
petroleum reservoir. If the three phases are immiscible, then the mass conservation

equations for the water, oil and gas phases are

Ru = = o (puo)d@)S0) = V- (pulpo)oa)
Nuyeu (1)
+ Z pw(po)qw,y5(w—-:v,,)6(y—y,,)5(z—z,,) =0
Ro = = S (0obe RNEIS) — V- (pulpos Re)on)
Nuyenr (2)
+ Z po(poaRs)QO,ué(-'E ——xu)(S(y—yy)(S(z —Z,,) = 0
Ry = = 280 rs00)Sy + Bupolpo, R2)S.)
- V'(Pg(PO)Uy + RSPo(Po,RS)UO) (3)
Nuwen
F Y podgud(s — 25y — )5z — ) = 0.

The volume fractions of oil, water and gas with respect to the total fluid volume,

So, Sw and Sy, are called oil, water and gas saturations respectively, and satisfy

Sw + S0 + S, = L (4)

The linear velocities of the three phases are represented by Darcy’s Law,

v, = — k‘(xpyl;‘)z()piio](zfsuasg) \V4 (Po —gpo(Po,Rs)h('ray)) (5)
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B k(z,y,2)krw(Sw)
tw(Po)

V (po = 9puw(Po)(2,y) — Pewo(Sw)) (6)

Yy =

_ k(z,y,2)krg(Sy)
tg(Po)

V (o — 9£¢(Po) (2, y) + Prog(Sy)) (7)

’Ug:

where k(z,y,z) is the absolute permeability o(po), ttw(po) and py(p,) are the
viscosities of oil, water and gas, respectively, and the relative permeabilities of oil,
water and gas, kro(Sw,Sy), krw(Sw) and kry(Sy), are functions of the water and

gas saturations. The initial conditions are specified pressure and saturations,

p(z,y,2,0) = po(z,y,2) (8)
Sw(z,y,2,0) = Siw (9)
So(z,y,2,0) = Si (10)

and the typical no flux reservoir boundary conditions are

n - V(po — gpo(po, Rs)h(z,y)) = 0 (11)

n-V(po = 9pw(po)h(z,y) = Pewo(Sw)) = 0 (12)

0~ V(po — 9py(Po)h(2, ) + Peog(S,)) = 0. (13)
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Equations (1) - (13) are generally solved numerically using finite difference
approximations. In this study, the particular numerical solutions of Equations (1)
- (13) embodied in the Black Oil simulator, CLASS (Chevron Limited Applications
Simulation System) developed at the Chevron Qil Field Research Company will be

employed. (See Appendix A.)
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3. THE HISTORY MATCHING PROBLEM

In a multiphase petroleum reservoir, the parameters to be estimated can in
theory be the absolute permeability, porosity, or the relative permeabilities. In the
present work, only the estimation of absolute permeability is considered, and the

porosity and relative permeabilities are assumed known.

In a two-phase (water and oil), single-layered, areal (two-dimensional) reser-
voir, the measured data necessary to estimate absolute permeability consist of the
wellbore pressure and the water cut. To estimate absolute permeability in a three-
phase (gas, oil and water), multilayered (three-dimensional) reservoir gas-oil ratio
and the rate of gas production from individual layers must be included as well.
In particular, the liquid and gas flow rates from individual layers are crucial to
the estimation of vertical heterogeneity in multilayered reservoirs. Hence, in three-
dimensional reservoirs exhibiting two-phase flow, the least-squares, history matching
objective function consists of three discrepancy terms corresponding to the three
types of measured well data (pressures, water cuts and liquid flow rates from in-
dividual completions) that are measured at observation wells in the reservoir. In
addition to the three discrepancy terms found in the objective function used in
two-phase estimations, the least-squares objective function used for estimating the
permeability distribution in three-phase reservoirs contains two additional discrep-
ancy terms corresponding to the gas-oil ratio and the flow rate of gas from individual

completions.

The mean-square error, 012,, between the calculated and observed pressure data

is defined as,

Nt NO
1 n 2

2 _ § E obs

ap o NoNt n=1 v=1 (p(x”’ylfazu,tn) - Py ) (14)
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where (24,9,,2,), v = 1,..., N, denote the locations of the observations, i.e., the
wells, and t,, n=1,...,N; are the observation times. Similarly, the mean-square
errors in the water cut, the gas-oil ratio, the rate of liquid production from individual

layers and the rate of gas production from individual layers are defined as,

Nt No
1 n
of 5 2 O (WOUT(,,y,,2,ta) — WCUTSY,  (15)
t n=1 p=1
0% = Zuytn) — GORS™Y, (16)
n=1 v=1
1 Ny N, Ngpay
2 = 4. b
7e T NN, ; ,;’Y:’: @levymot) = QDY (D)
and
) 1 Ny N, Npavy -
e N, N, (Qg(wuaymzmtn) - .Z?’f,k (18)

1

3
Il
—
N
.I_I.
e
It

where Ny, 4y is the number of layers completed in a given well. The overall least-

squares objective function is given by the weighted sum of the five contributions

Jrs(k) = Wpcrf, + Wwopy + Weol + WQngg, + Wanég (19)
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where W), Wy, Wg, Wg, and Wy , are the weighting coefficients. The calculation
of these weighting factors will be discussed later. The performance function, Jrg,
which is generally non-convex, must be minimized over a large number of variables
and is usually insensitive to changes in certain of the parameters. As a consequence,
the parameter estimates are frequently dependent upon the initial guess, may be
spatially oscillatory and dependent on the grid system chosen for the numerical
solution, and generally are not continuously dependent on the measured data. This
type of behavior in inverse problems is termed “ill-posed.”

One means of alleviating the ill-posed nature of inverse problems is to solve
a “regularized” problem, the solution of which approximates that of the original
problem. In general, no single solution exists to problems of the type we con-
sider in this work. Regularization attempts to select one solution that balances the
minimization of the discrepancy between predictions and observations while main-
taining some degree of smoothness in the estimated parameters. Regularization of
an ill-posed parameter estimation problem penalizes the undesired features (non-
smoothness) of the parameter estimates through a stabilizing functional, Jgr, that

characterizes the non-smoothness of the parameter,

Jsr(k) = | Lk HzH(L)(Qp (20)

where L is either identity or a differential operator and H (L)(Q) 1s an appropri-
ate Sobolev space. The total performance index is then the so-called smoothing

functional

Jsu(k;B) = Jrs(k) + BJsr(k), (21)
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where the regularization parameter, 3, measures the relative weight of the penalty
on the non-smoothness compared to the error in matching the data. A discussion

of how to choose the value of 7 will follow later.

Tikhonov’s stabilizing functional is given by || & ||? gs)(q), Where the space,
H®)(Q), is the set of functions that are square-integrable over  and have square-

integrable derivatives up to order 3! %,

Nray

Tsr(k) = Z Z G TSy (). (22)

where ki(z,y), k = 0,..., N4y, is the parameter distribution for each layer and
N1 ay is the total number of layers in the reservoir. gl STk , m=0,...,3, represents

m-th order derivative terms given by

e = 3 (7) Gl seay 29

with dimensionless spatlal variables { = 2= and n = Z%’ and the coefficients

Cm, m =0,...,3 satisfy (,» > 0 for m = 0,1,2 and (5 > 0°8. Since significant ver-
tical heterogeneity is expected in a multilayered petroleum reservoir, “smoothing”
of the parameter distribution is desired only in the areal dimensions and not in the

vertical direction.
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As Trummer’ has pointed out, in practical application of the theory of reg-
ularization, Tikhonov’s stabilizing functional can lead to underestimation of the
parameter value due to the term J g‘% in Eq. (23), which is the Euclidean norm
of the parameter. Locker and Prenter'® have suggested regularization with a dif-
ferential operator defined by || Lk || ) (g for the linear least-squares problem, so
that the stablizing functional is the norm of the derivatives of the parameter in the
Sobolev space. When the operator L in Eq. (20) is equal to the two-dimensional

gradient V, Locker and Prenter’s stabilizing functional becomes

Npay 3 (m)
Isr(k) = Z Cm JSTk(k) (24)
k=1 m=1
where Jé%z, m = 1,...,3 is the same as above, and the coeffcients (n,, m =1,...,3

satisfy (1 > 0, (2 > 0, and (3 > 0, so that it does not include the Euclidean norm of
the parameter. The choice of values for the (x’s in Eqs. (22) and (24) is arbitrary
except for the inequality conditions stated above. One possibility is to base the
choice of (,,’s on the length scales used in the finite difference approximation of
the PDE’s, Az and Ay. By using this criterion, the (,’s used in this work are
G=C(=3G=1"

Since, in some cases, the absolute permeability may be known at certain
locations it may prove useful to include this local information while estimating
the permeability over the whole reservoir. In using a zonation approach, in which
the absolute permeability value itself is estimated at each grid cell, one way of
accomplishing the inclusion of known permeability information is to minimize the
performance index only with respect to the unknown zones. When using a bicubic
spline approximation, however, the bicubic spline coefficients do not have a one-to-
one relationship with the permeability values at each grid cell, and thus, a direct

elimination of a coefficient is not possible. Rather, an additional penalty term
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can be included in the performance index, Jpgn, which is a weighted sum of the
discrepancy between the permeability predicted during the parameter estimation

and the “true” value at that location,

Np
Teen(k) = Y Wi (k7T — B[ TUF)? (25)

1=1
where Wy, is the weighting factor for the :'* known value of k and is assumed to

be % where %; is an upper bound of the known permeability values.

t

The formulation of the history matching problem as discussed above seeks the
minimum of either the smoothing functional, Jsas(k; 8), or the smoothing functional
plus a penalty term, Jsa(k; 8) + JpEN, in the case that information is known a
priori about the permeability distribution. In the first case, Jspr is composed of
six quantities, Wpoy, Wwoty,, Waog, Wo,04,, Wa, 0'229 and BJsr, where five of
the six weighting coefficients W, Ww, Wg, Wq,, W, and 3, must be determined

independently. In this work, W,, Ww, Wg, Wg, and Wgq, have been chosen as

IETE SN W B i 5. Fw. TG, T 5
5 5 5, and P respectively, where &, w, 7G, 0q, and 7q, are the

upper bounds of the discrepancy terms associated with the observed well data. This
particular choice for the weighting coefficients assures that each type of measured

well data is weighted equally and have values of approximately order 1.

Determining a suitable value of § for a given set of noisy measured data
where the noise level may or may not be known can be done in one of several ways.
Clearly, 8 = 0 corresponds to the non-regularized problem, while 8 — oo would
lead to oversmoothing of the estimated distribution. Craven and Wahba'? used
the method of generalized cross validation (GVC) to find a 8 at which the param-
eter estimate gives the best prediction of unobserved data values. To apply GCV

to reservoir parameter estimation, one needs the parametric sensitivity of pressure
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and production data, the calculation of which is specifically avoided here for com-
putational efficiency. Another possibility, developed by Tikhonov and Arsenin'?,
involves defining a “quasi-optimal” value of the regularization parameter for 8 > 0
such that the parameter estimates are minimally sensitive to the logarithmic change
of 8; i.e., JST(ﬁg—Z) is a minimum. The numerical algorithm to find such a quasi-
optimal (3 requires repeated solution of the regularized problem for different 3’s.
Miller'* suggested a way of determining the regularization parameter from the ra-
tio of an upper bound of Jy s values calculated from the measured data to an upper
bound of Jgr 1.e., %i Based upon Miller’s idea, Lee and Seinfeld'! developed an
algorithm in which the regularization parameter is determined automatically during
the estimation process without requiring e prior: information. In the computational

examples considered here, the regularization parameter is calculated automatically

using the following relation

B = aw,lLS (26)
JsT

where a = 0.1 for two-phase cases and o = 10 for three-phase cases. By trial and
error, it has been found that Miller’s method determines a regularization parameter
that is too large for two-phase problems and too small for three-phase problems. A
regularization parameter that is % of the value suggested by Miller has been found
to work well in a variety of two-phase cases, and a regularization parameter that is
10 times the value suggested by Miller has been found to work well in a variety of

three-phase cases.
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4. SPLINE APPROXIMATION OF THE
AREAL PERMEABILITY DISTRIBUTION

Several options exist for representing the spatial distribution of the parame-
ters. One such option is the zonation approach in which the absolute permeability
itself is assumed uniform in each zone. A zone may be as small as one grid cell or
encompass a number of grid cells. Another approach is to use a prespecified func-
tion, such as a bicubic spline function, to represent the horizontal variation of the
permeability. Spline approximation has several merits including a built-in smooth-
ing of the parameter distribution as well as computational convenience® %1% As
noted in the previous section, significant vertical heterogeneity is expected in the
permeability distribution and thus the bicubic spline approximation is applied to

each layer separately.

The spline representation of the spatially varying absolute permeability in

each horizontal layer is given by

Nys Ny
ki(z,y) = Z Z be (1, )by (ly, y) Wik (27)

ly=1 l,=1

where b,(l;,z) and by(l,,y) are the cubic B-spline functions, -

Z

Az,

be(lp,z) = x*™(4— 1 + ), le=1,..,Ng (28)

by(ly,y) = x*(4—1, + -&’";—), l,=1,..,Nys (29)
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£, 6 € (0,1
_ —1)2 _1)8
é + (921) + (9 21) _ (8 21) ’ 6 = [1,2]’
X0 = Q4 (g-2)2 4 22 6 €[2,3]; (30)
_ _2)2 _2)3
% . (023) + (8 23) (s 63) 7 9 c [3’4]’
0, otherwise;

where Az, and Ay, are the grid spacings for the spline approximation and [ = I, 4
Nys(ly—1), I=1,...,N, where N, = Ny X Ny,. With this approximation, k(z,y)
is replaced by the set of unknown coefficients, Wz, | =1,...,N,, k=1,...,Npay.

In applying the spline approximation to the history matching problem, the
number of coefficients for spline representation should not exceed either the num-
ber of grid cells for the PDE’s or the number of available observation data. If too
few coefficients are employed, the spline approximation cannot represent the spa-
tial details of the permeability distribution adequately; furthermore, the functional
derivative of Jrs with respect to the absolute permeability given by Eq. (B.9 -
10) cannot be properly represented by the derivative of Jpg with respect to the
spline coefficients during the minimization of Jsas, and this may slow the rate of
convergence. When the spline approximation is used together with regularization,
the smoothing power of the spline approximation becomes less important than in
its absence and N;, and Ny, can be chosen as large as the numbers of grid cells

along the z- and y-directions for the solution of the PDE' st
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5 . THE HISTORY MATCHING ALGORITHM

The problem is to minimize subject to Eqs. (1-13) the augmented objec-
tive function, Jsas, with respect to the spline coeflicients, Wi, I = 1,..., N, and
k=1,..., Npay. If a zonation approach is used, the minimization is carried out with
respect to the zonal permeabilities themselves. To obtain an algorithm to solve this
problem, two steps are required. First, the gradient of Jsas with respect to each
Wi,r must be computed, and then this gradient must be used in a numerical min-
imization method to minimize Jgps. The calculation of these gradients represents
the most time-consuming part of updating the parameter iterates. In a problem as
large as the current one, these derivatives must be calculated directly without first
calculating the sensitivity coeflicients. The derivation of these derivatives and the
expressions describing them shown in Eqgs. (B.9 - 11) can be found in Appendix B.
The approach that will be used here, based on optimal control theory, requires only
first-order functional derivatives of the performance index with respect to the pa-
rameter to be estimated?*%17. To compute the functional derivative of Jzg with
respect to the absolute permeability, the reservoir PDE’s are first solved forward
in time with the given initial conditions at ¢ = 0; then, as described in Appendix
B, the adjoint system of equations, Eqs. (B.2 - 5), are solved backward in time
with the terminal constraints given by Egs. (B.6 - 8). At the end of each time step
during the solution of the adjoint system of equations, the derivative of Jrg with
respect to the permeability at each grid cell, %‘%i, ¢ =1,..., N, is computed by Eq.
(B.9). Next one computes the derivative of Jrg with respect to the spline coeffi-
cient, Wi i from Eq. (B.10), the derivative of Jsr with respect to Wj  as discussed
by Kravaris and Seinfeld'® and the derivative of Jgps with respect to Wi from Eq.

(B.11).
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For most multivariate minimization problems, methods that require second-
order derivatives of the performance functional are not recommended since they are
computationally inefficient. As a result, various methods have been developed that
utilize only the first derivatives; these include the conjugate gradient, quasi-Newton
and partial conjugate gradient methods. The conjugate gradient algorithm requires
an exact line search to compute the length of each descent direction vector. Quasi-
Newton methods use the inverse Hessian matrix to compute the desceﬁt vector,
which requires a substantial amount of memory, although it does not require an
exact line search. In general, quasi-Newton methods are preferred for relatively
small problems, and conjugate gradients methods for large ones!®. On the other
hand, partial conjugate gradient methods have the same memory requirements as
conjugate gradient methods, without requiring an exact line search and show good

performance over a range of problem sizes. Lee, et al.l1:20

employed the partial
conjugate gradient method of Nazareth?! as the core minimization technique in
estimating permeabilities in two-dimensional, two-phase problems. In the present

study this method will be used also.

As Lee et al.!! discussed, the choice of the initial guess is crucial since con-
vergence difficulties are experienced when the initial guesses of the parameters are
far from their actual values. To alleviate this problem and to generate an algorithm

that is as automatic as possible, Lee et al.ll

suggest beginning the estimation by
determining the unknown parameter as uniform over each layer in the region. Thus,
to start, a single value of permeability is estimated for each horizontal layer in the
entire region which minimizes Jzs. These values then serve as a starting point for
the multivariable estimation algorithm. The reason behind this strategy is that

convergence difficulties should not be encountered in estimating only a few param-

eters. These uniform parameters values, while not accurate in their spatial detail,
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serve as a good starting point for the full algorithm. This initial minimization is
carried out using the secant method. To summarize, the following algorithm is used

in this work:

Step 1 In the absence of a prior: information about the unknown parameters,
find the flat initial guess of the permeability for each layer that
minimizes Jps.

Step 2 Using the starting value of the permeability determined in Step 1, find
the spatially-varying parameter that minimizes Jrg and compute the
values of Jrs and Jgr.

Step 3 Using the permeability distribution and the values of Jpg and Jsr
determined in Step 2, let 8 = 0.1Wp§§;— for two-phase problems, and
8= 10Wp‘—}-5515; for three-phase problems, and find the spatially-

varying permeability distribution that minimizes Jgas.
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6. COMPUTATIONAL EXAMPLES

The remainder of this work is devoted to the numerical evaluation of the
history matching algorithm in a three-layered reservoir in the case of two- and
three-phase flow. The algorithm will be evaluated on well-defined test problems for
which the true absolute permeability distribution is known. The reservoir simulator
is solved with the true permeability distribution to generate observation data, and
then the history matching algorithm is used to try to recover the true permeability
values. The horizontal permeability distribution in each of the three layers is to be
estimated.

From the results in Chapter II, in which the sensitivity of measured well data
such as wellbore pressure, water cut and rate of liquid production from individual
layers to changes in k, is examined, it was shown that the measured well data are
relatively insensitive to changes in k, for k, > 0. The reason for this insensitivity
is that gravitational forces tend to segregate the fluids rapidly, water sinking to
the bottom close to the wells where it is injected and gas rising to the top of
the reservoir as soon as it is released from solution in the oil phase. Thus, the
gravitational forces outweigh the effect of differences in the value of %k, on the
vertical distribution of fluids. As a result, the wellbore pressure, water cut and
rate of liquid production from individual layers measured at the production wells
where multiphase production takes place are insensitive to changes in k, since gas is
normally produced from the top layers of the reservoir and water from the bottom.
Of course, if the layers are noncommunicating, i.e., k, = 0, then fluid remains in
the layer in which it is injected or is released from solution and no segregation takes
place. In this work, computational examples in which the layers communicate are

considered. In a multilayered petroleum reservoir, k, is usually considerably smaller
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than the horizontal permeability due to the deposition history of the sedimentary
layers and the existence of shale lenses within these layers. In this work, we have
used a rule of thumb, often employed in petroleum reservoir simulation, which is to

assume that k, is Ilﬁ of the value of the horizontal permeability in each grid cell**?3,

The physical specification of the reservoir is given in Table 1. Both the reser-
voir PDE’s and the adjoint system are solved on a 15 x 10 grid, and a spline grid
of the same dimensions is employed for the bicubic spline representation of the per-
meability distribution in each layer. The geometry of the reservoir with the well
locations is shown in Fig. 6.1, and the true absolute permeability distributions for
layers 1 and 3 are shown in Figs. 6.2 (a) and (b). The true absolute permeability
distribution for layer 2 is assumed to be uniform with a value of 0.3 Darcy.

The Chevron Qil Field Research Company Black Oil simulator, CLASS, is
used to generate the observation data which include bottom hole pressure, water cut,
rate of liquid production from individual layers and, in the three-phase problems,
gas-oil ratio and the rate of gas production from individual layers. To generate
noisy measured well data, a set of uniformly distributed pseudo-random numbers
is added to the measured well data obtained from solving the reservoir simulator

with the true permeability distribution.

In the two-phase (oil and water) case, the water injection rate is controlled
using the voidage replacement option in which the volume rate of injection is de-
termined to be the same as the volume of fluid produced in order to maintain the
reservoir pressure. In the three-phase (oil, water and gas) case, two examples with
different production scenarios are considered. In the first example, we assume that
there is free gas in the reservoir initially. In this case, since gas is initially produced
in large quantities causing a rapid decrease in reservoir pressure the injection rate

slightly exceeds the production rate to ensure that the reservoir pressure does not
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drop too low. In Example 2, no free gas exists in the reservoir initially, but evolves
with time since the liquid production rate exceeds the water injection rate allowing
the reservoir pressure to decrease. When the reservoir pressure falls below the bub-
ble point pressure, gas is released from solution and percolates upward through the

reservoir forming a gas cap at the top.

A total of 1413 pressure data are measured at the injection, production and
observation wells, which represents 157 measurements per well at time intervals
of 24 days over a ten-year period. In addition, 785 water cut and rate of liquid
production measurements are made, and in the three-phase case, gas-oil ratio and

the rate of gas production measurements are made at the five production wells.

A comparison is made between the estimation results using the zonation ap-
proach and those using the bicubic spline approximation. The effect of regulariza-
tion on the final estimation results is investigated; the regularization parameter, £, is

calculated automatically during the estimation procedure such that 8 = 0.1WP%L1
ST

for the two-phase cases and 8 = 10WP%L4;— for the three-phase cases. In general,
s

the minimization scheme is run until JsMina = 0.001Jsps All computations

initial ®

are carried out using a CRAY X-MP /48.
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'TABLE 1 - PHYSICAL PROPERTIES OF THE RESERVOIR

(1) Fluid properties (ref. pres. 3600. psia)

Water 0il Gas
Compressibility, psia™! 1.0 x 1075
Viscosity, CP 0.96 09.5 0.017
Surface specific gravity 1.015 0.72 0.89 (air = 1.0)
Siw = 0.22 Sro = 0.0
Rs, SCE 1390.

$3 STB

(2) Rock and reservoir properties

Porosity 0.3
Initial pressure, psia, at 3164.042 ft. 3600.
Rock compressibility, psia™! 0.3 x 10~5
Gas-oil contact, ft. 3100.
Water-oil contact, ft. 3400.
Top of Reservoir, ft. 3147.7
Two — phase case
Production rate at all wells, IS)TTE 2000.
Injection rate (I1,13,14,16), S38 1250.
Injection rate (12,15), XL 2500.
Bubble point pressure, psia 2000.

Three — phase case : Examplel

Production rate at all wells, % 1200.
s STB
InJ'ect?on rate (11,13,14,51'1(‘5];, Bay 700.
Injection rate (12,15), DAY 1200.
Bubble point pressure, psia 3600.
Three — phase case : Example2
Production rate at all wells, %‘% 1080.
Injection rate (I1,13,14,16), 18 540.
Injection rate (12,15), £18 800.

Bubble point pressure, psia 3600.
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6.1 Generation of the Initial Guess

As discussed previously, a three-step minimization procedure is implemented
to estimate the spatially-varying permeability distribution. Since the uniqueness of
the solution of the parameter estimation problem is not guaranteed and since there
may exist unidentifiable regions due to the configuration of the well measurements
and time period over which the data are available, convergence of the algorithm
may depend upon the initial guess. In the first step, the best uniform value for the
absolute permeability is estimated for each layer to alleviate convergence difficulties
associated with the choice of the initial guess in a multivariable minimization. In
both the two- and three-phase cases, Step 1 of the minimization algorithm is begun

with starting guesses of 0.05 Darcy for each layer.

In the two-phase case, as shown in Tables 2 and 3, the values of the uniform
permeability that minimize Jrg in Step 1 are 0.336 Darcy for the top layer, 0.361
Darcy for the middle layer and 0.690 Darcy for the bottom layer. In Step 1, Jrs
decreases from a value of 0.599 x 10° to a value of 0.521 x 10* which is 10.6 times
the value of Jpg calculated based on the noisy observation data with the true
permeability distribution. In Example 1 of the three-phase cases, as shown in Table
4, Step 1 of the algorithm converges to values of the permeability of 0.339 Darcy for
the top layer, 0.234 Darcy for the middle layer and 0.514 Darcy for the bottom layer.
In this case, the value of Jps decreases from 0.734 x 10° to a value of 0.731 x 10%.
In Example 2 of the three-phase cases, as shown in Table 5, Step 1 of the algorithm
converges to values of the permeability of 0.139 Darcy for the top layer, 0.104 Darcy
for the middle layer and 0.229 Darcy for the bottom layer. In this case, the value

of Jrs decreases from a value of 0.540 x 107 to a value of 0.134 x 105.
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In all three cases, Step 1 was successful in decreasing the performance index
by several orders of magnitude and estimating better starting guesses for each layer
than 0.05 Darcy, for use as uniform initial guesses in Step 2, the first step of the

multivariable minimization.
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TABLE 2 - PERFORMANCE OF THE ESTIMATION FOR THE TWO-PHASE
CASE USING BICUBIC SPLINE APPROXIMATION

k 8 Jis JsT Jsm CPU time® Number of
Darcy Darcy ™2 Darcy? s IterationsP®
Initial Guess® (.05 59893
Step 1 5210 1300 20
Layer 1 0.336
Layer 2 0.361
Layer 3 0.690
Step 2 0.0 413 34.7 413 2600 40
Step 3 0.97 322 16.5 338 2600 40
True values 489

a On Cray X-MP/48
b Number of solutions of the state and adjoint equations
¢ Same value for all three layers
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TABLE 3 - PERFORMANCE OF THE ESTIMATION FOR THE TWO-PHASE
CASE USING THE ZONATION APPROACH

Initial Guess®

Step 1

Layer 1
Layer 2
Layer 3

Step 2

Step 3

True values

k

Darcy

0.05

0.336
0.361
0.690

a On Cray X-MP/48
b Number of solutions of the state and adjoint equations
¢ Same value for all three layers

B
Darcy™

0.0

0.97

Jis Jst
Darcy?

59893

5210

591 55.6

389 52.7

489

Jsm

591

440

CPU time®

S

1300

2600

2470

Number of
Tterations’

20

40

38
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TABLE 4 - PERFORMANCE OF THE ESTIMATION FOR THE THREE-PHASE
CASE USING BICUBIC SPLINE APPROXIMATION: Example 1

k J¢j Jis JsT Jsm  CPU time® Number of
Darcy Darcy 2 Darcy? S Tterations®
Initial Guess® 0.05 7.34 x 10°
Step 1 7.31 x 103 5040 28
Layer 1 0.339
Layer 2 0.234
Layer 3 0.514
Step 2 0.0 334 17.5 334 20,520 114
Step 3 29.2 175.4 5.9 363 14,400 80
True values 04

a On Cray X-MP/48

b Number of solutions of the state and adjoint equations

¢ Same value for all three layers

d Noiseless observation data was used in the 3-phase examples
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TABLE 5 - PERFORMANCE OF THE ESTIMATION FOR THE THREE-PHASE
CASE USING BICUBIC SPLINE APPROXIMATION: Example 2

Initial Guess®

Step 1

Layer 1
Layer 2
Layer 3

Step 2

Step 3

True values

k

Darcy

0.05

0.139
0.104
0.229

a On Cray X-MP/48
b Number of solutions of the state and adjoint equations
¢ Same value for all three layers

d Noiseless observation data was used in the 3-phase examples

g

Darcy™

0.0

30.1

Jis JsT
Darcy?

5.40 x 10°

1.34 x 10*

3310 20.5

3310 20.5

0d

Jsm

3310

3503

CPU time® Number of
b

s Iterations
7200 40
12,600 70

0 0
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6.2 The Types of Observation Data Needed to Estimate
Permeabilities in Two- and Three-Phase,

Three-Dimensional Reservoirs

The least-squares objective function used in the minimization algorithm con-
sists of three types of measured well data in the two-phase case, which include
bottom hole pressure, water cut and the rate of liquid production from individ-
ual completions, and five types in the three-phase case, which include those of the
two-phase case and, in addition, the gas-oil ratio and the rate of gas production
from individual completions. In a single-phase problem, only pressure data are
required to estimate the absolute permeability distribution in an areal reservoir
model. In a two-phase (o0il and water) reservoir, both pressure and water cut in-
formation are necessary to predict the two-dimensional permeability distribution.
In a three-dimensional reservoir, the change in the water cut with time generally
depends more upon the permeability distribution in the bottommost layer than
upon the distributions in the upper layers since most of the water migrates to the
producing wells through the bottom layer. Thus, the permeabilities in the upper
layers have little influence on the water breakthrough time. As a result, the rate
of liquid production from the individual completions is necessary to estimate the
permeability distribution in a reservoir with more than one layer since neither the
pressure nor water cut data alone contain enough information about the varying

permeability distributions in a multilayered system.
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In three-phase reservoirs, the rate of gas production from individual comple-
tions and the gas-oil ratio are also needed for determination of the permeability
distribution. The change in the gas-oil ratio with time generally depends more
upon the permeability distribution in the topmost layer since gravity forces the gas
to rise to the top of the reservoir and to migrate to the producing wells through
the topmost layer. Thus, the permeabilities in the lower layers have little influence
on the gas breakthrough time. In addition to the liquid flow rate from individ-
ual completions, the gas flow rate from each completion is needed to estimate the

permeability distribution in three-phase reservoirs with more than one layer.

6.3 The Effects of the Spline Approximation Approach
versus the Zonation Approach and Regularization

on the Performance of the Matching History Matching Algorithm

Two criteria must be considered in evaluating the performance of the history
matching algorithm. The first is how well the algorithm matches the observation
data generated by solving the simulator with the true permeability distribution.
The second is how well we can recover the true permeability distribution starting
with some randomly chosen initial guess. In the following section, we will discuss
the effects of spline representation versus zonation and regularization on these two
criteria as they apply to the results of the estimation of permeabilties in two- and

three-phase reservoirs.
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6.3.1 Two-Phase Reservoirs

For the two-phase case, as shown in Figs. 6.3, 6.4 and 6.5 (a), (b) and (c), the
calculated well data from the estimated permeability distributions match the actual
observation well data more accurately when using the bicubic spline approach than
when using the zonation approach. In using the zonation approach the absolute
permeability values themselves at each grid cell are estimated during the minimiza-
tion procedure, while using the bicubic spline approximation, the permeability is
replaced with the coefficients of the spline function. In using the zonation approach,
the calculated water cut and pressure data fit the observation data well as shown
in Figs. 6.3 and 6.4; however, this method has difficulty matching the rate of lig-
uid production from individual layers as accurately as the spline representation as
can be seen in Fig. 6.5 (a), (b) and (¢). When using the zonation approach, the
objective function decreased from a value of 0.599 x 10° to a value of 440.0 in 98
iterations (see Table 3). When using the bicubic spline approach, the objective
function decreased from a value of 0.599 x 10° to a value of 338.0 in 100 iterations
(see Table 2). In spite of the relative closness of 440 and 338, a comparison of Figs.
6.6 (a), (b) and (c) and Figs. 6.7 (a), (b) and (c) shows that the bicubic spline
approach is clearly much more effective in representing the true permeability distri-
bution even though both approaches led to a significant decrease in the performance
index. In general, the effect of representing the permeability distribution with spline
approximation is to impart a degree of smoothness and regularity to the estimated
permeability distribution. The spline approximation both enhances the ability of
the minimization algorithm to recover the true permeability distribution, and as
a result, improves the overall match of the measured observation data generated

by running the simulator with the true permeability distribution, particularly the
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liquid flow rates from individual completions. A comparison of Figs. 6.6(a) and (b)
with Fig. 6.6(c) illustrates that the permeability distribution in the bottom layer is
estimated slightly more accurately than that in the top layer. This behavior is due
in part to the fact that the water cut depends more on the permeability distribution

in the bottom layer than that in the top and middle layers.

A further comparison of the two approaches can be made and the effect of
regularization studied by considering the results after Step 2 of the algorithm which
is the least-squares minimization with 8 = 0 as shown in Figs. 6.8 (a), (b) and
(c¢) and 6.9 (a), (b) and (c) for the two-phase case. As can be seen, the bicubic
spline function does not unduly constrain the possible values of the permeability
while helping enormously in improving the results of the estimation by imparting
a degree of smoothness on the estimated values even before the regularization step
has been applied. In Step 2, when using the zonation approach, Jrs decreased
from a value of 5210 to a value of 591, while with the bicubic spline approach, Jrg
decreased from a value of 5210 to a value of 413.

In applying regularization to the results of Step 2 for the zonation approach,
little improvement is made in the estimation of the permeability distribution as can
be seen in a comparison of Figs. 6.7 (a), (b) and (c) and Figs. 6.8 (a), (b) and
(c). The lack of improvement is due the fact that since the parameters are not
represented by an analytic function as in the bicubic spline approach, the stabi-
lizing functional, Jgr, must be calculated using a finite difference approximation,
and thus, only its first derivative terms can be calculated with any accuracy. A
comparison of Figs. 6.6 (a), (b) and (c¢) and Figs. 6.9 (a), (b) and (c) shows the
improvement in the parameter estimation due to the application of regularization

when using the bicubic spline approach. In particular, the contours are smoothed
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in all three layers and the prediction of the peaks and valleys in layers 1 and 3 is

enhanced.
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6.3.2 Three-Phase Reservoirs

In the three-phase reservoir, the objective function includes the gas-oil ratio
and the rate of gas production from individual layers as well as the other measured
well data used in the two-phase case. In the three-phase case two situations with
different physical behavior are considered. In Example 1, S, = 0.05 initially
everywhere in the reservoir. The existence of free gas in the system throughout the
time period of the simulation ensures that the same simulator model is always used.
In addition, the reservoir pressure is always at or below the bubble point causing

the density of the oil-phase to always increase with decreasing reservoir pressure.

In Example 2, no free gas exists in the reservoir initially, but arises in the
system from a reduction in the reservoir pressure to a pressure below the bubble
point of the oil-phase. Before the appearance of free gas in a grid cell, that is, when
the reservoir pressure in that grid cell is above the bubble point, the simulator
solves the gas-phase material balance for R, the fraction of gas dissolved in the oil-
phase. When the reservoir pressure in a particular grid cell falls below the bubble
point and free gas is released from solution, R, is calculated as a function of the
saturation pressure and the simulator solves the gas-phase material balance for S,
the saturation of the gas-phase. In addition to a change in the simulator equations
due to the existence of free gas in the reservoir, the oil-phase physical properties,
particularly the density, change behavior as a result of the reservoir pressure being
above or below the bubble point. When the reservoir pressure is above the bubble
point, a decrease in pressure causes a reduction in the oil-phase density. When the
pressure is below the bubble point, a decrease in pressure causes more gas to be
released from solution in the oil-phase and a corresponding increase in the density

of the oil-phase.
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The complex physical behavior in reservoirs exhibiting a transition between
two- and three-phase behavior and the resulting change in the reservoir model used
causes particular problems in the history match of the observation data. This can be
understood by considering what occurs during the estimation procedure. First an
initial guess is chosen. Not only does the production data generated by this guess
of the true distribution not match the observation data calculated with the true
permeabilities, but the production data were calculated using a different simulator
model since with any estimate of the permeabilities the time and location at which
gas is released from solution may vary from that with the true permeabilities. Since
the existence of free gas in the system determines both which gas-phase material
balance equation is used as well as the oil physical properties, a different physical
model and hence possibly dramatically different physical behavior is observed in a
reservoir with an estimated distribution other than that of the true permeability
distribution. As a result of this complex behavior, convergence of the estimation

problem is impeded.

A comparison of the history match of the measured data calculated with
the estimated permeability distributions for three-phase Examples 1 and 2 to the
observed data generated by the true permeability distribution is shown in Figs.
6.10.1, 6.10.2, 6.11.1, 6.11.2, 6.12.1 and 6.12.2 (a), (b) and (c), 6.13.1 and 6.13.2
(a), (b) and (c), 6.14.1 and 6.14.2. In Figs. 6.10.1 and 6.10.2, a comparison of the
history match of the observed pressure data for Examples 1 and 2, shows that the
pressures are matched more accurately in Example 1 where free gas exists in the
system intially. Similarly, a comparison of the match of the water cut data for the
two cases (see Figs. 6.11.1 and 6.11.2) shows that the water cut is also matched
more accurately in Example 1. The flow rates of liquid and gas from individual

completions are all matched more accurately in Example 1 than in Example 2. (see
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Figs. 6.12.1 and 6.12.2 (a), (b) and (c) and 6.13.1 and 6.13.2 (a), (b) and (c).) The
gas-oil ratio is matched accurately in both examples. The estimated permeability
distribution for Example 1, as shown in Figs. 6.15 (a), (b) and (c), matches the
true distribution more accurately than that in Example 2, shown in Figs. 6.16 (a),
(b) and (c). In summary, the estimation of the permeability distribution in cases
where there is a transition between two- and three-phase behavior is considerably

more difficult than in cases where only two- or three-phase behavior exists.

In the first example of the three-phase cases, a comparison of Figs. 6.15 (a),
(b) and (c) with Figs. 6.17 (a), (b) and (c) shows the smoothing effect of the
application of regularization on the estimation of the permeability distribution. In
layer 1, although there is improvement in the general shape of the permeability
contours after regularization is applied, the 0.70 Darcy contour disappears during
the regularization step. In layer 2, in which the true permeability distribution is
uniform and has a value of 0.3 Darcy, regularization smoothes the estimate of the
true permeability distribution. In layer 3, the effect of regularization on the estimate
of the permeability distribution is the most dramatic. Not only does regularization
help to smooth the estimated contours, but it also enhances the prediction of the
peaks and the valleys. In Example 2, in which there is a transition between two- and
three-phase behavior, regularization leads to no improvement in the permeability
distribution, presumably because the transition in flow behavior exerts a, much more
profound influence on the performance of the minimization than does the smoothing

provided by regularization.
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6.3.3 Comparison of the Performance of the History Matching

Algorithm in Two- and Three-Phase Reservoirs

As can be seen by comparing Figs. 6.6 (a), (b) and (¢) and Figs. 6.15 (a), (b)
and (c), the permeability distribution is estimated more accurately in the two-phase
case than in the three-phase cases. This behavior can be explained by considering

the flow behavior in a single-phase reservoir as described in the following equation,

Nyeu
= V(%Vp) + > @bz —2,)8(y — v, )6(z — 2) (31)

v=1

op
“® ot

As the ratio of the permeability to the compressibility, %, decreases, the spatial
variation of the permeability has a decreasing influence on the change in reservoir
pressure with time. In multiphase reservoirs, the presence of gas makes the overall
system more compressible. As a result, the spatial variation in the permeability
distribution is more difficult to estimate in three-phase reservoirs than in two-phase

reservoirs that contain only oil and water.

6.4 Computing Requirements

For the two-phase case, using the zonation approach, the entire algorithm,
Steps 1, 2 and 3, required 98 iterations (solutions of the simulator and adjoint
systems) corresponding to 6370 CPU seconds on a CRAY X-MP/48. The bicubic
spline approach needed 100 iterations which corresponds to 6500 CPU seconds.

For Example 1 of the three-phase cases, the entire algorithm, Steps 1, 2 and 3,
required 222 iterations corresponding to 666 CPU minutes on a CRAY X-MP/48.
For Example 2 of the three-phase case, the entire algorithm, Steps 1, 2 and 3,
required 110 iterations corresponding to 330 CPU minutes on a CRAY X-MP/48.
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7 . CONCLUSIONS

The aim of this work has been to develop a three-dimensional, three-phase
(gas, oil and water) history matching algorithm for use with an industrial Black
Oil simulator, in which the absolute permeability distribution is estimated using
measured well data, such as pressure, water cut, gas-oil ratio and flow rates of
gas and liquid from individual completions. The algorithm which does not require
any a priori information on the parameter to be estimated, employs a three-step
procedure. In Step 1, the best uniform permeability distribution is estimated for
each layer starting with a flat initial guess. This step helps to avoid convergence
difficulties that may arise in estimating spatially-varying parameters from a poor
initial guess. Usually this step converges in about 20 iterations for two-phase cases
and 30 iterations for three-phase cases. In this work, an iteration refers to one
iterative solution of the reservoir and adjoint equations. In Step 2, a conventional,
non-regularized (5 = 0) least-squares estimation is performed using spline approxi-
mation. The spline grid system is chosen so that the number of spline coefficients
is the same as the number of grid cells for the solution of the reservoir PDE’s. The
parameter estimates from this step are usually ill-conditioned and dependent on
the choice of spline grid. This step requires between 15-40 iterations for two-phase
cases and 60-80 for three-phase cases to reduce the value of the performance in-
dex to 1/1000 of its starting value. In this step, approximate values of the upper
bounds of Jrs, the traditional least-squares objective functional, and Jgr, the sta-
bilizing functional, are calculated. In Step 3, parameter estimation by regularization
and spline approximation is carried out to obtain the final solution. In this step,
the regularization parameter is calculated to be E%V—;?EL—: for two-phase problems

ST

and EV—TVL;-;LS for three-phase problems. This step of the algorithm converges after
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approximately 40 iterations for two-phase problems and after approximately 80 it-
erations for three-phase problems. In general, the convergence rate for three-phase
problems is slower than for two-phase ones which is due in part to the additional
complexity of the physical behavior of three-phase reservoirs and to additonal terms
in least-squares objective function, in particular, the gas flow rate discrepancy term
and the gas-oil ratio discrepancy term. Furthermore, an additional equation (gas
material balance) must be solved in each grid cell for three-phase problems. Thus
each iteration for a three-phase problem takes approximately 2.8 times as long as
an iteration in a two-phase problem.

The algorithm has been applied to both two- and three-phase reservoirs cases.
In the two-phase case, the permeability distribution is estimated by matching
pressures, water-cuts, and liquid flow rates from individual completions. In two-
dimensional reservoirs, only pressure and water cut data are needed to estimate
the areal permeability distribution. In multilayered reservoirs, flow rate data from
individual completions are necessary to predict the permeability distributionsin the
different layers. In three-phase reservoirs, gas-oil ratio and gas flow rate data are

necessary to estimate the permeability distribution in a multilayered system.

Two examples of three-phase reservoir behavior have been considered. In the
first, free gas is present in the reservoir initially. In the second, no free gas is present
initially, but arises in the system from a reduction in reservoir pressure to a pressure
below the bubble point of the oil-phase. Thus, in this case, a transition between
two- and three-phase behavior occurs. The estimation of the permeability distribu-
tion in cases where there is a transition between two- and three-phase behavior is
considerably more difficult than in cases where only two- or three-phase behavior
exists. In three-phase reservoirs, the presence of gas makes the system more com-

pressible. As a result, the spatial variation in the permeability distribution is more
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difficult to estimate in three-phase reservoirs than in two-phase cases with only oil

and water.
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NOMENCLATURE

b

x

Puwb,,,
Pewo
Peog

dyg
9o
Qw

= B — spline function in the x — direction

B — spline function in the y — direction
gravitational acceleration

height of the reservoir

= least — squares objective function

penalty function

= smoothing functional

stabilizing functinal

= absolute horizontal permeability

relative permeability of phase [
absolute vertical permeability

total number of observation wells

= total number of spline grid blocks

total number of observation times
total number of wells

total number of grid blocks in the x — direction

= total number of spline grid blocks in the x — direction

I

total number of grid blocks in the y — direction
total number of spline grid blocks in the y — direction
total number of grid blocks in the z — direction
reservoir pressure

initial reservoir pressure -

pressure of phase [

wellbore pressure of well v

capillary pressure water — oil

capillary pressure oil — gas

mass rate per unit volume of gas production
mass rate per unit volume of oil production

mass rate per unit volume of water production
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rate per unit mass per unit volume from well v
gas flow rate

oil flow rate

= water flow rate

liquid flow rate

= gas flow rate from well v and layer &

liquid flow rate from well v and layer k

material balance equation of phase [

= adjoint equation associated with p;

If

adjoint equation associated with R,
fraction of gas dissolved in the oil phase

adjoint equation associated with Sy,

= adjoint equation associated with S,

= adjoint equation associated with pus,

ll

Il

saturation of phase [

irreducible water saturation

initial oil saturation

time

velocity of phase [

volume of grid block ¢

bicubic spline coefficients for spline grid layer &

weighting factor for the penalty function

weighting factor for the gas — oil ratio discrepancy term
weighting factor for the pressure discrepancy term
weighting factor for the gas flow rate discrepancy term
weighting factor for the liquid flow rate discrepancy term

weighting factor for the water — cut discrepancy term

spatial variable

spatial variable

= spatial variable
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GREEK
B = regularization parameter
B = formation volume factor of phase [
6 = Dirac delta function
At"™ = time step size of time step n
Az = grid block length in the x — direction
Ay = grid block 1ength in the y — direction

Az, = spline grid block length in the x — direction

D>
=
i

spline grid block length in the y — direction
grid block height

(m = coefficient of the stabilizing functional, m = 0,1,2,3

D
&
I

dimensionless spatial variable in the y — direction

=
|

1 = viscosity of phase [
¢ = dimensionless spatial variable in the x — direction

,bl = density of phase [

0% = gas — oil ratio discrepancy term
012, = pressure discrepancy term
aég = gas flow rate discrepancy term
0'2Ql = liquid flow rate discrepancy term
G%V = water cut discrepancy term
02 = upper bound of the discrepancy term
¢ = porosity
V¥,, = adjoint variable associated with p;
Vg, = adjoint variable associated with Ry,

= adjoint variable associated with S,

Vs = adjoint variable associated with S,
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SUBSCRIPTS
g = gas phase
G = gas — oil ratio
i = i'" grid cell
k = index of layers
Il = liquid
LAY = layer
o = oil phase
w = water phase
W = water cut
SUPERSCRIPTS

n = time step index
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Appendix A. Finite Difference Reservoir Equations

Consider the three-dimensional, unsteady flow of oil, water and gas in a
petroleum reservoir. If the three phases are immiscible, then the mass conser-
vation equations for the water, oil and gas phases are given by Eqs. (1)-(13). In
this work, CLASS (Chevron Limited Applications Simulation System) is used as the
basic reservoir model. Using a finite difference approximation, a nonlinear system

of algebraic equations is generated as shown

n

( Pi —Pj — 9Pw;; (zz - ZJ') — Pewo; + Pcwoa‘)n

Ry, = — > khij(—25-

JjE€J; wﬂw b
n Sw¢ ‘J’w¢ nl
B “”'_At"[(ﬂw)i ( I=0
(A1)
R,, = — Y kh ,,( ﬂ ( —Dj — 9Poi;(7i — z;))"
JEJ; HoPo 4, (A.2)
. Vi S.4." N
- 0; Atn[( ;3 )i ( ﬂo )z ]— 0
R km n
Ry, = — > khij[(—=2)  (pi —pj — 9poi; (zi — )
JEJ; o t,J
krg " n n
+ ( (pi —pj — 9Pg;.; (zi — 2;) + Peog; ~ PCO!]j )l gi (A.3)
tgBg i
.Vvi RSSO n RsSo n—1 S S n—1
— RsSod RaSop b (2e2y" (Bl ] =0

A (g, ) — (=) (ﬁg)_ (

2 2 F) P

forn=1,...,N; and i € N defined by
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2|
I

= {Z l 1= i, +Nz(iy - 1) +N1‘Ny(iz - 1)7
to =1, No, by = 1,0, Ny, i, =1,...,N,} (A4)

= {1,..,N}
where N = N;N,N, and ¢, ¢ty and 7, denote the PDE grid blocks along the z—,

y— and z—directions, and the index set J;, defined for each ;1 € V by

is introduced for simplicity, with initial conditions

pi = po (A.6)

Se. = Siw. (A7)

An harmonic average is used for the absolute permeability

2.0 UFACX; ;

UX;k; UX;k;

khi; =

(A.8)

for j=i—1, i 41, where

L(Az; + Az;)?
UFACX,; = - i(A2i + Ac;) (4.9)
1(Azi + Azj)? + (Az + Azj)?

and

UX; = Ay;Az;, (A.10)
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2.0 UFACY;

A Ay
UY;k; + UYik;

khij = (A.11)

for j =1 — N,, ¢ + N, where

i (Ayi + Ay;)?
UFACY;,; = 4 J A.12
! i(Ayi + Ay + (Azi+ Azj)? ( )

and

UY; = Az;Az, (A.13)

and

2.0

AZ]' + AZ{
0.1 UZ;k;j 0.1 UZ;k;

for j =¢— NyNy, 1 + N Ny, where

khi; = (A.14)

UZ; = Azx;Ay;. (A.15)

Furthermore, upstream weighting is used for the relative permeabilities for the sta-

bility of the numerical integration given by

k77‘1,0¢,j = k’”O(ngS;) of p?i ZPZj
(A.16)
kro,; = kro(Sy;, Sy, ) otherwise
kzwi,j = k"w(Sg)i) Zf pZz sz’j
(A.17)
krw. . = krw(Sy,,) otherwise
N 3
k:},gi,j = krg(SZ,) of PZ,- ZPZ]-
. (A.18)

k::gi,j = krg(S;j> otherwise
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The viscosity, formation volume factor and fraction of gas dissolved in the oil-phase

are treated similarly.

Several equation solver options are available for use with the CLASS simulator.
Since convergence difficulties are encountered when using iterative techniques to

solve the adjoint system of equations, a direct method is employed in this work.
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Appendix B. Functional Derivative of Jig

The finite difference version of the first-order necessary condition of the least
squares discrepancy function is defined by Eqs. (15) - (20). The corresponding

Hamiltonian of the conventional least-squares problem is

t N
T = Jus ¢ Y1) (WAL VLR 4 93 A
n=1 =1 | (Bl)

wells

+ Z lIIwell.s,, wells]

From the first variation of Eq. (B.1), the adjoint equations are given by the follow-

ing, where the terms that include é6p}* yield

Pi

Opw, ;
ap (z1 - z]))

krw
- Z(\Ilpc \IJPJ )n ( )za](l — g
= PwBuw

1
T Uy, ; (kkrw)i 5;(;7%,1(?1 —Dj — GPw; (2i — 2j) = Pewo; + Pewo; "
wHMw

= S (s, = s, (B -

J€J; Noﬂo

apoz

L(zi — 24))

0 1
+ oy ; (kkro)i,j %(ﬁ)i,j(pi —Pj = Gpos,; (zi — 2 )"

nis Bkro R
- > (¥s,, —Ts,)"[( 7
JjeJ; HoPo

alool]

)i j(1 —g——5—- B (zi — 25))

R, n
+ oy ; (kkro)i,j %(m)m(m —Pj — 9pos ; (zi — 2;))]

- (s, = s, VG0 0 e )

J€J; Hg

0
+ Ug;; (kkrg)i ,Ja (—— ﬂ )ii{pi — — GPyg; ; (=i — zj) + Peog; — Pcogj "
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where the terms that include 65 o, yield
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where for an unsaturated reservoir, the terms that include OR,; yield

Ry, =
o Kk, 2k
> (s, — Vs, + Rs;;(Ur,, — Ur,,)] [9(‘#—[3—3— iz — z5)
]EJ— o [¢]
0 1 n n
- uo;,,-(kkrogR—s(m))i,j(pi —DPj — GPo:; (2 — zj))"]
n kkro n n
— > (e, = Tr, ) "[uo,,( 3 )i (Pi = Pj — gpo ; (2i — 2;))"]
= Koo
+1 n
n 0Q0" L Q" ¢, " YR, Uk,
- Vs, OR, s, oR, T V’S""(E)Z (Gmtt — Gin )
_ n gt \I/”o vE o
o °‘3R (T)’ [‘_nTl_ 5t “’(otnﬂ =)
N, N N,, 8G N Nuw
22 gt * aRn ZZ > VLR, G, =0, (B4)
n=1 ;=1 v,=1 8¢ Si n=1 ¢=1 v, =1

and where the terms that include 685y, yield

Ry, =
kkrw . OP.yo.
- Z(\ijz ‘IIPJ) ( ) b 5
JEJ; wﬁw O
_ uww( )z,] 675’% (pi —Pj — ng;,j (z, - Zj) - Pcwoi + Pchj )]n
- Z(‘IISo,- - ‘Ilsaj Ry, ; (\Ijsgi - \I]Sﬁ )"
JET;

X [u o”( )m 55 (s — Py _QPO;,j(Zi - zi)]"

94,3
kk, oP,,
— (Us,, —¥s, )"[(—Z A
2o =G s g
B Ok,

+ Ug; ; (Mgﬂg )i,j 55’; (pi — Pj —9pyg; ; (2 — zj) + Peog, — Pcogj "
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n 0@11),’ " n aQOi " \I}n 8Q9i "

+ ¥

73S, %8s, — "Supg,
n n n 71+1 n
-V G~ ) — ) oy -
"B, N6tntl T gn i (gpnt 5tn
n+1 n
¢RS " ¢ " \Ilsgi \IlSyi
= Vi) = (5 (5255 — )
Bo By ot ot
Ny N N”o N, N N
+ ZZ Z aSn ZZ,,O 65;‘ zjlz Zl \I;n Z,,,w Bying, — 0 (35)
n=1 =1 y,=1 tn=11=1 vy, =

fori € N and n = Ny, Ny —1,...,1 with terminal constraints

gl = ¢ (B.6)
Tyt = (B.7)
Tt = 0. (B.8)

The functional derivative of J; 5 with respect to k;, for i € N is given by

8J1s
ok
-y Y
n=1jeJ; 81{:’
x [(¥p, — T, )( )15 (Pi = Pj = Pui; (% = 2j) = Pewo; + Pruo,)

wﬂw
+ (lIISo; - ‘IISOJ' + Rsi,j (\Ijsg,- - \Ilsgj ))('u’ 7; Z](pl _p] - poi,j (Zl - Z.]))

n kr n
+ (‘I’Sgi - ‘I’Sgi) (‘i)i,j(pi —Pj = Pg;; (2 — ZJ') + Peog; — Pcogj )]

6@3;,- 3Q (9Q
- U s, T s, 3
N, N N,, oc N,

(B.9)
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The adjoint system equatibns are solved using the same direct method used in

the CLASS simulator. From Qé—flfﬁi, i =1,...,N, the derivative of Jrs with respect

to the spline coefficients Wi, 1,k can be computed using the following relationship

Nx Ny
_OJis - E: E: %S_X*4(4_lz+ x)x*4(4_l + y) (B.10)
Wi, 1,k : Ok; 1 bz Y Sy,

z=1 1,=1 ’

for lp = 1,...,Ngg, Iy = 1,...,Nys and i = i, + Nz (iy — 1) where x*4(6) is given in
Eq. (30). The derivative of Js7 with respect to Wik can be calculated analytically
from the expression for the bicubic spline approximation given in Eqs. (27 - 30)
as shown by Kravaris and Seinfeld*. Finally, the derivative of Jgy; with respect to

Wik is computed by

8]5M N 8JLS aJST
Wiy — OWi Wiy

(B.11)
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CHAPTER IV

CONCLUSIONS

The aim of this work has been to develop a three-dimensional, three-phase
(gas, oil and water) history matching algorithm for use with an industrial Black
Oil simulator, that does not require any e prior: information on the parameter to
be estimated, in which the absolute permeability distribution is estimated using
measured well data, such as pressure, water cut, gas-oil ratio and flow rates of
gas and liquid from individual completions. In general, the convergence rate for
three-phase problems is slower than for two-phase ones which is due in part to
the additional complexity of the physical behavior of three-phase reservoirs and to
additonal terms in least-squares objective function, in particular, the gas flow rate
discrepancy term and the gas-oil ratio discrepancy term. Furthermore, an additional
equation (gas material balance) must be solved in each grid cell for three-phase
problems. Thus each iteration for a three-phase problem takes approximately 2.8

times as long as an iteration in a two-phase problem.

Two examples of three-phase reservoir behavior have been considered. In the
first, free gas is present in the reservoir initially. In the second, no free gas is present
initially, but arises in the system from a reduction in reservoir pressure to a pressure
below the bubble point of the oil-phase. Thus, in this case, a transition between
two- and three-phase behavior occurs. The estimation of the permeability distribu-
tion in cases where there is a transition between two- and three-phase behavior is
considerably more difficult than in cases where only two- or three-phase behavior
exists. In three-phase reservoirs, the presence of gas makes the system more com-

pressible. As a result, the spatial variation in the permeability distribution is more
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difficult to estimate in three-phase reservoirs than in two-phase cases with only oil

and water.

The estimation of absolute permeabilities in three-phase reservoirs is not rec-
ommended since it requires excessive computational time, and, in addition, in most
three-phase reservoirs transitions between two- and three-phase behavior occur. In
two-phase reservoirs, the absolute permeability is estimated accurately with relative
computational efficiency. Furthermore, the computational time could be lessened
by decreasing the number of observation times, and correspondingly, the number of
time steps used for solving both the simulator and adjoint.equations. Since in both
the two- and three-phase cases, the measured well data were matched accurately,
even though the permeability distribution was not estimated as well in the three-
phase case as in the two-phase case, how well the observation data are matched is

not necessarily a measure of the accuracy of the permeability estimation.
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APPENDIX A
Derivation of the History Matching Algorithms
1. Derivation and Solution of the Reservoir Equations

Consider the three-dimensional, unsteady flow of oil, water and gas in a
petroleum reservoir. If the three phases are immiscible, then the mass conservation

equations for the water, oil and gas phases are given by

Ru = = o(ou()épo)S0) ~ V- (pulpolva)
N, (A.1)
+ Z Puw(Po)Qw,wb(x — 2,)6(y ~ yu)b(z —2,) = 0
R, = - %(PO(P07R3)¢(PO)SO) ~ V. (po(po, Rs)vo)
N, (A.2)
+ Z PO(PmRS)QO,v‘S(‘”“wu)‘s(y‘yu)‘s(z"%) =0
Ry = = g (6(0o)(po(pe)Sy + Rapolpo, R2)S2))
— V-(pg(po)vg + RSPO(pO7R3)v0) (A3)

Ny
+ E Pg(Po)dgwé(z — 2)8(y — yu)6(2 — 2,) = 0

for 0 < ¢ < T. The volume fractions of oil, water and gas with respect to the total
fluid volume, S,, S, and Sy, are called oil, water and gas saturations respectively,

and satisfy

Sw + So + 5, = 1 (A.4)

The linear velocities of the three phases are represented by Darcy’s Law for the flow

in porous media,
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v = - ““’”’iﬁf%“ V (3o = 9p0(por R)B(x,y))  (A5)

vy = — k(w,yﬁzizizi;(sw) \V4 (Po _ gpw(po)h(w,y) - Pcwo(Sw)) (A6)

_ k(z,y, 2)krg (Sy)
tg(Po)

’Ug:

V (po — gpg(po)h(:v, y) + Pcog(Sg)) (A-7)

where the absolute permeability k(z,y,z) is a parameter characterizing the fluid
conductivity of a porous medium, x,(p,), tw(po) and py(p,) are the viscosities of
oil, water and gas, respectively, and the relative permeabilities of oil, water and gas,
kro(Sw, Sg); krw(Sw) and k,4(S,), are functions of the water and gas saturations.

The initial conditions are

p($7yaz)0) == po(:v,y,z) (AS)
Sw(r,y,2,0) = S (A.9)
50(537%2’0) = S (A-IO)

and the no flux boundary conditions

n - V(po ~ gpo(po, Rs)h(z,y)) = 0 (A.11)

- V(2o = 9pu(Po)(2,y) = Pewo(Sw)) = 0 (4.12)
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n-V(po — gpg(Po)h(2,y) + Peog(Sy)) = 0

hold on the boundary for 0 < ¢ < T. Egs.

(A.13)

(A.1 - A.13) are solved numerically

using finite difference approximation. An industrial Black Oil simulator, CLASS,

(Chevron Limited Applications Simulation System) is used to simulate a water-

flood where water is pumped down injections wells to drive the oil in place toward

other wells where it is produced.

Using a finite difference approximation of Egs. (A.1) - (A.7), a nonlinear
system of algebraic equations is generated as shown
J— T‘ k \n s / n
Rwi = T /. ’fhz,]\ ﬁ \P: — Dj *ng,»,j(Zz‘ ‘Zj)*Pcwo,- +Pcw0j)
JET; Hw 'w i,
n Vi . Swd." Swé "
- Q- ARl -G 1-
(A.14)
R,, = — Z khi ,J( oﬂo ( = Pj — 9Po;,; (7 — 2j))"
i€ b . ) (A.15)
n i o¢ So¢ "
o = Aml(z) — () =0
At ,Bo ] ﬂo L
Ry, = - Z khi;l( ﬂ ) (pi —pj — gPOi,j(Zi — ;)"
JET; HoPo %]
kry ™ n n
+ (__g‘) (pi —pj — 9Pg;,; (2i = 2j) + Peog; — PCOQj I Qgi (A.16)
1By 3,7
Vi  RsSod.”  RsSod ™! S,0." Sy "1
— btk Y Subs. i hl + (=Z =0
TR g, )i ( 5, )l_ ( 5, . ( i ]
forn=1,...,N; and i € N defined by
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N = {i | i = i+ No(iy — 1) + NoN,y(in — 1),
tp =1,..,Na, iy =1,..., Ny, i, =1,...,N,} (A.17)

= {1,..,N}
where N = N;NyN, and i,, 2y and 7, denote the PDE grid blocks along the z—,

y— and z—directions, and the index set J;, defined for each ; € IV by

Ji = {j1J=1—NoNy,i = Npyi—1,i+ 1,5+ N, i + N, N, } N, (A.18
Y Y

is introduced for simplicity, with initial conditions

Po (A.19)

o
I

Se. = Siw. (A.20)

A harmonic average is used for the absolute permeability

20UFACX; ;
kh;; = Az, Azi’J (A.21)
UX;k; T UX:k;
for j=4i—1, 14+ 1, where
1(Az; + Az;)?
UFACX;,; = i(Aei+ Az)) (A4.22)

i(Awi + Az;)? + (Az; + Azj)?

and

UX; = AyAz, (A.23)
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2.0 UFACY;

Ayj Ay
UY;k; © UYik;

khz‘,]‘ =

for j =i — N, i + N, where

1Ay + Ay;)?

UFACY; ; =
T 1Ay F Ay + (Azi + Az)?
and
UYZ = AxiAzi,
and
2.0
khi’j =

AZ]‘ + Azi
0.1 UZ; k; 0.1 UZ;k;

for j =¢— NgNy, ¢ + NNy, where

UZ;, = Az;Avy;.

(A.24)

(A.25)

(A.26)

(A27)

(A.28)

Furthermore, upstream weighting is used for the relative permeabilities for the sta-

bility of the numerical integration given by

k?,o,',j kTO(SZ)i’S;,') 7’f pg; Zpgj

krf'z,o;,j = kro(SZ,J.,S;j) otherwise

k'rr‘tw;,j = krw(‘s’g)z) Zf pZJz Zp:;,

krw,;, = krw(Sy,;) otherwise

k:;gz',j = k,«g(S;i) zf p;i Zpgj

kg, = krg(Sg;) otherwise

(A.29)

(A.30)

(A.31)
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The viscosity, formation volume factor and fraction of gas dissolved in the oil-phase
are treated similarly.

Several equation solver options are available for use with the CLASS simulator.
Since convergence difficulties are encountered when using iterative techniques to

solve the adjoint system of equations, a direct method is employed in this work.
2. Derivation of the Adjoint System

The least-squares objective function, Jy g, constists of three contributions for
two-phase problems and five contributions for three-phase problems, where the pres-

sure discrepency term is given by

Nt No
1 n 2

2 __ obs

Op = NoNt E : § : (p(xlhyl/vzvatn) - Py ) (A.32)

n=1 v=1

where (z,,y,,2,) € V, v = 1,..., N, denote the locations of the observations, i.e.,
the wells, and t,, n = 1,..., N, are the observation times. Similarly, the mean-
square errors in the water cut, the gas-oil ratio and the rates of liquid and gas

production from individual layers are defined as,

N: N,
]_ n 2
2 _ obs
W= NN, n; V; (WCUT (20, yu, 20,ta) — WCUTZ™")’, (4.33)
1 Nt No ) .
2 obs™
°¢ T NN, T; Zl (GOR(zy,yu, 20, tn) — GORY"Y, (4.34)
1 Nt No Nl 9
aél = NoNt (Ql(muaylnzlntn) - lo’l;/s) (A35)
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and

N N, N;
1 obs™\2
5, = N,N, DD D Qe zta) — Qb (A.36)

n=1 v=1 k=1

where IV is the number of layers completed in a, given well. Thus, the least-squares

objective function is given by the weighted sum of the five contributions

T 1
JLg:/O ///V da:dydzdtNtNox

[Wpaﬁ + Wwop, + Wgol + WQ,aél + Wan%g]x (A.37)

6(x —2,)8(y — v, )6(2 — 2,)6(t — t).

By adjoining Eqs. (A.1) - (A.3) and in addition the well equations, the cor-

responding Hamiltonian of the conventional least-squares problem is

T
Tis = Jus + / ///(\IJPRU, + Us,R, + Us, R,
0 Vv
N.

wells

(4.38)
+ Z \Ilwells,, Rwells,, )dﬂ?dydz

v=1

The corresponding finite difference approximations of Eqgs. (A.37) and (A.38) are

¢ N,
1
Jrs = [WUU -+ WWo'W” + WGO‘G”
NN, 2 Z 2 Whoy, ' ’ (A.39)

n=1 =1 v=1

+ Wooq,, + Wo,oq,,, 164,

———

N: N
Jrs = Jps + Z Z [\I}I?iRZH + WZ'WRZ + \Ilgngg" +
n=0 =1

Nwella (A40)

+ Z Uowelts, Ruwelts, |-

v=1
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From the first variation of Eq. (A.40), the adjoint equations are given by the

following, where the terms that include op? yield

R} =

= X W IS0 - g B )

J1€J;

1
+ U, ; (kkrw)ij %(ﬁ)l)i(?i ~Pj = 9Pw:;(2i = 2j) = Pewo; + Pewo, )]"

kkyo 6PO£ j

- J;J,.(\IIS” — Vs, )"[( oﬂo)w( I (zi — zj))

o (ko) ()50 = 25 = 900y (51— 2"

— (s, — s, )" [<’“’””°R>,J-<1— ”"“(z, )
jEeJ; 0

+ Uo,; (kkro)i,ja*p(#—;—)i,j@i —Pj — 9Po;; (zi — z;))]"

o khy
- Z(lllsgi _\Ilsgj) [(ﬂ I Z;J(l_g

JET; gﬂg

9pg. ;

o (2 — 2;))

0 1
+ g (Rkrg)ij 8P(H 3 )ii(Pi — pj — 9Pgi; (2i — 2j) + Peog, — Peog; )™
9Py

_ \y"% on % on a_QLi

Pt 9p o Soi dp B Sgi dp
0 6" B w oo VBT W
Vs, G *570 VS (Gt —
) ¢R o, ¢ » T wu
VilSo; 5~ e — —
+ [ i ap gi a (/3 ) ](5tn+1 6tn )
Ny vy

3G e
+ Z Z Op;™ bi, 3pz ZZ Z vy, Ra,, b, =0, (A.41)

n=1 =1 v,,=1

where the terms that include 65 0, yield
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R =
- Z(\Ilpz )Z,] cwo£
— uww( )z,] 87;0: ( Pi —pj _"gpw;j(Zi ‘—Zj)—Pcwo,- +Pcw0j)]n
+ }:(@s -—Ws ; TR (Us,, —¥s, )"
JeJ;
k Ok, 3k
X [uoi,j( )i,j( 85 =)i,5(Di = Pj = gpos ; (i — 2;))]"
kkr oP,,
+ (‘I’Sg, — Vs, )'(—5)i5 =
]; HgPg 95,
— Ug; J( )1,] 87‘;! L (pz — D — gpg,-,j (Zi - Z]) + Pcog,- - Pcogj )]n
Q. " 0Q,." n 0Qg "
Ly i on Jwor | n i
T s, T Vsias, T ¥sigs,
n \yn+l n n Q""‘l go'
(ﬂ )i (6tn+1 - 6tn) + V(ﬁ )i (5tn+1 - _5257)
n+1 7
PR, 9 Sy,
FHGE — G (g — )
t N NVo t
+ZZZaSn iy, T aSnzZZ\pn Ry b, =0, (A42)
n=1i=1 p,=1 0i n=1i=1 p,, =1

where for an unsaturated reservoir, the terms that include 0R;, yield

R%@i =
kky,2te
D [¥s,, = Us, + Ry, (T, — g, )" [g(—2Beyp
j€T—i Holo
Lk 0 1 n
- uoz',j( roaRs(,U'o,Bo ))i,j(pi 9P0u< Z])) ]

n kkro n n
- Z(\I/Rs,- - \IIRSJ-) [u'oi,j(lu 3 )i,j(Pi —Pj — 9Po;; (Zi - Zj)) ]

JET;
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n gl gm

So; OR, T OF S OR, + VzSo,-(Bo )’ (6tn+1 Py )

P 2 oEtuy

+R?'(6t":1 = S

_\I,n aQo; \I,n ani

+ VS

% 8R ( )l [6t”+1 &tn

t N N"o

N: N v
+ ZZ Z aRn zz,,o 8Rn ZZ Z \I!n Rn zz,,w = 0, (A43)

n=1 i=1 v,=1 i n=1 =1 v, =1

and where the terms that include 6.5, yield

n

(= P T

]Ejz
L Ok, ;
= Yy ()i g5 (i = Pi = 9pwi; (i = 7) = Pewos + Pewo,)}"
- Z(\I‘Soi - \Ilsoj Rsi»j (\I;S-‘h' - \I}Sg.i ))n
Jj€J;
k 8kro n
X [UOi,j(;L_ﬁ—)iaj_a—g;. .(Pi — Pj = 9Pos; (2i — 7;))]
_ Z(\I}S ~ Vs, )n[( Ehry i,j OPeoy,
= g Bg 0S8,
k Ok, ;

T Ug;; (#gﬂg )i,j as, (pi — Pj — 9Py, ; (2 — Zj) + Peog; — Pcoyj )]

0Qu." _ gn 0Qu™ . 99

P98, % dS, % 9S,
n \I,n+1 \I’n ¢ n \I)gj'l \I,go
B V(_) (Gt ~5n) ~ Vilgo)i (gt = gn )
n-l-l 7
$R, s s,
~ VSR - <~>z Y -

Ny N,
+ ZZ Z aSn “Vo aSn ZZ Z Qn Rn Zluw =0 (A44)

n=1 i=1 v,=1 9i n=1 1=1 v, =1

for i € N and n = Ny, Ny — 1,...,1 with terminal constraints
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gt =0 (A.45)
\Iﬂ\{;jl =0 (A.46)
gt = 0. : (A.47)

g;

The functional derivative of Jg with respect to k;, for i € N is given by

§JLs
ok;

i

X

+

[( pi Pz) ( w,Bw ,](pl — Pw;j (Zz - Zj) - Pcwoi + Pcwo,~)

(¥s,, —¥s,, + R ;(¥s, —¥s,, ))( bre 05 (Pi = Pj = po; (i — 7))

krg
(¥s,, — Vs, )"(*J—)i,j(pz‘ ~DPj ~ Pgs; (zz' - z]-) *+ Peog; — Peog; )]

ZZ Z 5;;;6“ ak; ZZ Z Ty B,

n=11=1v,=1 n=11=1 v, =1

(A4.48)

The adjoint system equations are solved using the same direct method used

in the CLASS simulator. The numerical scheme to solve the adjoint equations and

compute the derivatives, %%5—, forn = Ny Ne—1,...,2,1 1s as follows

Step 1
Step 2
Step 3

Step 4

Let U3 = 0gt!, Up = Uptland g =05 ! Vie N.
Let U3 = % , ¥mold = ¥ and \Ifg M=y VieN.
Solve Eqgs. (A.45) - (A.48) using the direct method used by CLASS.

If U2 — \I/gi"’ld|oo > ¢, etc., then repeat Step 2.
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Step 5 Compute the contribution of the n-th time step values of

oJ ;
_Bléi’ 1t €N.

3. Calculation of the Derivatives of Jsur

with respect to W,

"To apply the spline approximation of the absolute permeability to the history

matching algorithms, an expression for the derivatives of .J sMm Wwith respect to spline

coefficients, Wi i, I =1, ..., N, is needed. From the derivatives of Jr g with respect

to ki, ¢ € N, the derivatives of J Ls with respect to the spline coefficients can be

calculated by

N, N,
dJrs = % dJLs ,
a”l,k - z:]_ Zl akl bxylm,lmby,ly,zy
ty= ly=

for ¢ € N where bz,1,,i, and by,ly,,-y are the cubic B-spline function,

:U,’m

A:cs)’

bzyla.‘aia: = X*4(4 - Z.l' + lr = 1,---,N:1;,g, Z;L- - 17-“7N:1:

by,,i, = X*(4—1, +

Yi o
A;S ), Zy = 1,...,Ny3, Zy = 17"'7Ny

1 (6—1) (6—1)2 —1)° .
U S e
X ()_ g*(9_2)2+T7 66[273];
6-3 §—3 6—3)3
%_(_2_)_'_(2)_(63)’ 66[3,4,
L 0, otherwise;

(4.49)

(A.50)

(A.51)

(A.52)
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where Az, and Ay, are the grid spacings for the spline approximation and [ = [, +
Ngs(ly—1), I =1,..., N, where Ny = N5 X Nys. With this approximation, ki(z,y)
is replaced by the set of unknown coefficients, Wi, {=1,...,N;, k=1,...,Npay.

The derivatives g—VJV%Z;—, l=1,..,Nyand &k = 1,...,Npay can be calculated

analytically*, and hence,

OJsm _ OJis dJsr
OWik - OWi i Wik

(A.53)

4. Minimization Algorithm

In this dissertation, the partial conjugate gradient algorithm of Nazareth®® is
used for the minimization of absolute permeabilities, or rather, the coefficients of the
bicubic spline function. In general, this method is preferable for large-scale problems
that have an order of a hundred variables or more. Let z be an n-dimensional vector,
F(z) be a function to be minimized over z, and g(z) be the gradient of F(z) at
x. Let d denote the descent direction vector, which will be determined during the
minimization. To maximize the overall efficiency, the line search step is terminated
early without an exact search, and to keep the conjugacy of the search direction,
the new descent direction 1s calculated from two previously determined descent

directions given by

himihy oo hiky
hj——ldj—l J h]d]

dip1 = —h; d; (A.54)
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where hj = g;41; — g; and j is the minor iteration count. (See Fig. A-1.) In
the examples reported in this dissertation, the algorithm required usually two line
search iterations, although occasionally a few more, and 7-10 minor iterations. The
number of major iterations is much more dependent on the particular problem, but
on the whole, the three-step history matching algorithm reported in Chapter III

required 100 solutions of the state and adjoint equations.
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X, given

F1 = F(Xl)

g1 = g(xl)
r

k=k+1

i=0;c=0 T

1]
2
X1 =X; + sc o
<
Fi=F() | =
g1=glxi) | S
£ g 5
i 5 :
£ Xj+1=X; +sd; &
= Fji1= F(x;44) 2
Qo
gi+1 = g(X;j41) £
_ .
.2
B
g
e
]
&
Q
R
-
Fig. A-1 - Flow chart of Nazareth’s partial conjugate gradient

algorithm
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APPENDIX B
User’s Guide to the AUTOHM Program
1. Introduction

A new fully automatic, three-dimensional, three-phase history matching rou-
tine for estimating absolute permeabilities and well PI’s is available for use with
the industrial Black Oil simulator, CLASS. The algorithm uses the techniques of
bicubic spline approximation, regularization and optimal control theory to make
the algorithm computationally efficient and to alleviate the ill-posed nature of the
mathematical problem of estimating spatially-varying parameters in a petroleum

reservolr.
2. Discussion of Method

The AUTOHM program is run in three steps. In the first step, the best flat
initial guess of the absolute permeability is estimated for each layer that minimizes,
Jrs, the traditional least-squares objective function defined in Eqs. (A.32 - 39) us-
ing the secant method. In Step two, a multivariable estimation is performed which
minimizes Jrg only. In the third step, the spatially-varying parameters are esti-
mated using regularization techniques. In this step, the performance index is Jgpy,
the smoothing functional which is the weighted sum of Jrg and Js7, the stabilizing
functional where 3, the regularization parameter, weights the relative importance

of the two terms. The regularization parameter, 4 is calculated automatically at

the end of Step 2 by 8 = 0.1W, —7?4'; for use in Step 3.
sT
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The algorithm has several restrictions. First, due to the use of bicubic spline
approximation, each layer must have the same x- and y-dimensions; although, Az
and Ay can vary in the x- and y-directions, respectively. Secondly, the history
matching algorithm assumes a particular set of injection and production rules. At
the injection wells, water injection is allowed but not gas injection. At the pro-
ducing wells, the total rate of liquid prodcution must be specified. Finally, since a
history match may be difficult if the production or injection rules change during the
estimation, it is necessary to make sure they stay the same during the time period

over which the minimization is performed.

3. Generation of the Input and Output Data Files
for Use with the AUTOHM Program

A number of input files are necessary for running the AUTOHM program.
These include the input files necessary for running CLASS as well as the history

matching algorithm.

3.1 Input File for CLASS, «.DECK

The *. DECK file includes the input data necessary to run the CLASS simula-
tor. The user must include this file as input during all steps of the history matching
routine. A detailed discussion of the creation of the input file, * DECK, needed to
run the CLASS simulator can be found in the CLASS User and Programmer Guide.
In using CLASS with all three steps of the minimization algorithm, the input file,
*.DECK, must include time cards for all the observation times at which the user
wishes to history match in order to assure that the simulator is solved at every ob-
servation time. It must be noted that although the absolute permeability is read as

an input by CLASS from the * DECK file, the history matching algorithm overrides
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those values by reading them from other input files. In addition, the restrictions
discussed in the previous section must considered in creating the appropriate input

* DECK file.

3.2 Generation of the Observation Files

from Program RSVRS.FOR

The observation data files needed for running AUTOHM depend upon the
particular problem the user wishes to consider. In particular, the number and type
of phases present and the dimensionality of the problem are factors that deter-
mine which sort of data files a needed. Several input data files are needed to run
RSVRS.FOR. These input files and all the different kinds of observation data files
and their usage are listed in this section. When program RSVRS.FOR is used with
CLASS to generate a set of observation data to history match, the true absolute

permeability distribution is entered in the input file for CLASS, . DECK.

INPUT FILES

OBDAT.DAT = Contains input data necessary to run the history
matching algorithm. Must be created by the
user for use with RSVRS.FOR as well as for all

other steps of the minimization algorithm.

READ  NOISY, KPENAL, IZONE, KPERM, NPI, NOBPT,
NOBCOM, NOBWEL, NWLL, MAXCOM, NSRT,
NGOR, NWCT

READ  (MOBS(I), I = 1, NWLL)

READ  (MOBCOM(I), I = 1, MAXCOM)

READ  (MOBCEL(D), I = 1, NDATAP)



NOISY

KPENAL

IZONE

KPERM

NPI

NOBPT

NOBCOM
NOBWEL
NWLL

MAXCOM
NSRT

NGOR
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(NDATAP = # of active cells)

Do not generate or use noisy observation data.
Do generate and use noisy observation data.
Include JPEN, penalty terms used when assuming

known values of the absolute permeability.

Do not include JPEN.

Use zonation approach.
Use bicubic spline approach.
Assume k,;, = 0, i.e., layers are noncommunicating.

Assume k,, = 0.1k;.

Simultaneously estimate &’s and PI’s.

Estimate k’s only.

= Total # of observation cells; this does not include

cells containing completions.

=  Total # of observation completions.

=  Total # of observation wells.

= Total # of wells.

=  Total # of completions.

= 1

Y

Use the rate of liquid production from individual
completions.

Use the rate of total production from indvidual
completions.

Use both the rate of liquid production and gas production

from individual completions.

Use the gas-oil ratio from each completion.
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2, Use the gas-oil ratio from each well.

NWCT = 1, Use the water cut from each completion.

2, Use the water cut from each well.

MOBS(NWLL) = 0, Well is not an observation well.

1, Well is an observation well.

MOBCOM(MAXCOM) = 0, Completion is not an observation comp.

1, Completion is an observation comp.

MOBCEL(NDATAP) = 0, Cell is not an observation cell.

1, Cell is an observation cell.

AWGT.DAT

Contains a parameter used for calculating the
weighting factors used in the least squares objective
function; this number has a value between 0 and 1.

Must be created by the user.

NAMELIST  /AWGTO/, AWGT
READ  (x,AWGTO)

AWGT(1) > 0, for all cases.
AWGT(2) > 0, for the two-phase oil and water case and for
the three-phase case.
= 0, otherwise.
AWGT(3) > 0, for the two-phase oil and gas case and for
the three-phase case.
= 0, otherwise.
AWGT(4) > 0, for all three-dimensional cases.

= 0, otherwise.
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ouTPUT FILES

POB.DAT

Contains reservoir pressure measurements in each

il

active cell at each observation time in SI units.
Created by RSVRS.FOR. Needed for all estimation

cases.

WRITE T, (POB(I), I = 1, NDATAP)

BHPOB.DAT = Contains bottom hole pressures in each well

at each observation time in SI units. Created by

RSVRS.FOR. Needed for all estimation cases.
WRITE T, (BHPOB(I), I =1, NWLL)
WCTOB.DAT = Contains water cut in each well at each observation

time; only needed when both oil and water are present.

Created by RSVRS.FOR.

WRITE T, (WCTOB(I), I =1, NWLL)

I

GOROB.DAT = Contains gas-oil ratio in each well at each observation
time; only needed when both oil and gas are present.

Created by RSVRS.FOR.

WRITE T, (GOROB(I), I =1, NWLL)

SRTOB.DAT

Contains liquid rate of production from each comp.
at each observation time; 3-D cases only.

NSRT =1 or 3.

Created by RSVRS.FOR.

WRITE T, (SRTOB(I), I = 1, MAXCOM)



169

SRTTOB.DAT = Contains total rate of production from each comp.
at each observation time; 3-D cases only. NSRT = 2.
Created by RSVRS.FOR.

WRITE T, (SRTTOB(I), I = 1, MAXCOM)

I

SRGOB.DAT = Contains gas rate of production from each comp.
at each observation time; 3-D, 3-phases cases only.

NSRT = 3. Created by RSVRS.FOR.
WRITE T, (SRGOB(I), I = 1, MAXCOM)
OBSTEP.DAT = Contains the # of observation times for each
type of data. Created by RSVRS.FOR.

WRITE NTOP, NTOBH, NTOW, NTOG, NTOR,

NTOP =  # of reservoir pressure observations

NTOBH = # of wellbore pressure observations

NTOW =  # of water cut observations

NTOG = # of gas-oil ratio observations

NTOR = # of rate of production observations

WGTDAT.DAT = Contains the weighting factors used to calculate Jr,s.

Created by RSVRS.FOR.

NAMELIST /HMALGO/ WGTPP, WGTWCT, WGTGOR, WGTSRT,
WGTSRTT, WGTSRG

WRITE (x,HMALGO)

WGTPP = weighting factor for pressure data.

WGTWCT=  weighting factor for water cut data.

WGTGOR =  weighting factor for gas-oil ratio data.
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WGTSRT =  weighting factor for liquid production data.
WGTSRTT=  weighting factor for total production data.

WGTSRG =  weighting factor for gas production data.

3.3 Input and Output Files for Step 1 of the
AUTOHM Program, RSVR1.FOR

In Step 1 of the history matching algorithm, we wish to find the best uniform
value of the absolute permeability for each layer which minimizes J;g. The secant
method is the minimization technique used in this step of the algorithm since we
are only estimating a few parameters. In general, we have found that when starting
with an initial guess that is much lower than the true permeability values the
minimization algorithm works much more efficiently. Since the true permeability
distribution is not known e priors, we suggest starting the algorithm with a very

small value.

INPUT FILES

OBDAT.DAT = Created by the user and discussed in Section 3.2.

POB.DAT = Created by RSVRS.FOR and discussed in Section 3.2.
BHPOB.DAT = Created by RSVRS.FOR and discussed in Section 3.2.
WCTOB.DAT = Created by RSVRS.FOR and discussed in Section 3.2.
GOROB.DAT = Created by RSVRS.FOR and discussed in Section 3.2.
SRTOB.DAT = Created by RSVRS.FOR and discussed in Section 3.2.

SRTTOB.DAT

(il

Created by RSVRS.FOR and discussed in Section 3.2.
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SRGOB.DAT = Created by RSVRS.FOR and discussed in Section 3.2.
OBSTEP.DAT = Created by RSVRS.FOR and discussed in Section 3.2.
WGTDAT.DAT = Created by RSVRS.FOR and discussed in Section 3.2.
TIMES.DAT = Contains end time for the simulation run.

READ TEND

TEND = End time for the simulation run.

MINIMU.DAT = Contains input data for running RSVR1.FOR.

Created by the user.

READ NFC
READ EPS
NFC =  Total # of function calls allowed, i.e., # of times both the simulator

equations and the adjoint system are solved.

EPS = Tolerance for convergence.

PRMO.DAT

I

Contains the uniform initial guess of the absolute

permeability for each layer. Created by the user.

READ (PRMU(I), I = 1, NZ)
NZ = # of layers

PRMU(NZ) = Uniform initial guess for each layer in SI units.
OUTPUT FILES

PRM1.DAT

il

Contains the best estimate of the uniform permeability

for each cell in the reservoir.



172

Created by RSVR1.FOR.

WRITE (PRM(I), I =1, NDATAP)

PRM(NDATAP) Permeability for each grid cell.

RUNDAT.DAT

it

Contains the values of PRMU(NZ), JLS and
GLSKU(NZ), the derivative of JLS wrt PRMU(I),
for each iteration of the minimization algorithm.

Created by RSVR1.FOR.
WRITE (PRMU(I), I = 1, NZ)
WRITE  JLS
WRITE (GLSKU(I), I = 1, N%)

PRMU(NZ) = Uniform permeability value for each layer.
JLS =  Objective function.
GLSKU(NZ) = Gradient of JLS wrt PRMU(I)

3.4 Input and Output Files for Step 2 of the
AUTOHM Program, RSVR2.FOR

In Step 2 of the history matching algorithm, we wish to estimate the spatially-
varying absolute permeability distribution which minimizes Jrs starting with the
best uniform values for each layer estimated in Step 1. The conjugate gradient
method without exact line search is the minimization technique used in this step of

the algorithm.

INPUT FILES

OBDAT.DAT = Created by the user and discussed in Section 3.2.
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POB.DAT Created by RSVRS.FOR and discussed in Section 3.2.

il

BHPOB.DAT Created by RSVRS.FOR and discussed in Section 3.2.

(l

WCTOB.DAT

(l

Created by RSVRS.FOR and discussed in Section 3.2.

GOROB.DAT = Created by RSVRS.FOR and discussed in Section 3.2.
SRTOB.DAT = Created by RSVRS.FOR and discussed in Section 3.2.
SRTTOB.DAT = Created by RSVRS.FOR and discussed in Section 3.2.
SRGOB.DAT = Created by RSVRS.FOR and discussed in Section 3.2.
OBSTEP.DAT = Created by RSVRS.FOR and discussed in Section 3.2.
WGTDAT.DAT = Created by RSVRS.FOR and discussed in Section 3.2.
TIMES.DAT = Contains end time for the simulation run.

READ TEND

TEND =  End time for the simulation run.

l

MINIM.DAT = Contains input data for running RSVR2.FOR and
RSVR3.FOR. Created by the user.

READ NFC

READ NLS

READ NITE
READ EPS

READ ETA, ETAC

NFC = Total # of function calls allowed, i.e., # of times both the
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simulator equations and the adjoint system can be solved.
NLS = Total # of line searches allowed. Usually 5-10.
NITE = Total # of iterations before corection step of the

minimization technique is performed.

EPS =  Tolerance for convergence.
ETA, ETAC = Convergence tolerances for the correction step.
PRM1.DAT = Contains the uniform initial guess of the absolute

permeability for each layer. Created by
RSVR1.FOR.
Used when IZONE = 2 only.

READ (PRM(I), I = 1, NDATAP)

PRM(NDATAP) = Starting guess of the permeability for Step 2.

SPLINE.DAT = Contains the dimensions of the spline grid.
Used only when 1ZONE = 2.

NAMELIST /NLSPL/  NXS, NYS, TOL
READ  (+,NLSPL)

NXS = x-dimension of the spline grid; NXS < NX.
NYS = y-dimension of the spline grid; NYS < NY.
TOL =  Tolerence for solving over-determined system generated by

calculating the spline coefficients from the permeability.

WEKDAT.DAT = Used only when KPENAL = 1;
i.e., when the bicubic spline approach is used, and
when some of the permeability values are assumed

known. This is accomplished by adding a penalty
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term to the performance index, Jpen.

Created by the user.

READ  NKNOW

READ  (MKNOW(I),I=1,NDATAP)
READ  (WGHTK(I),I=1,NKNOW)
READ  (PRMK(I),I=1,NKNOW)

NKNOW = Total # penalized permeability values.

MKNOW(NDATAP) = 0, Non-penalized permeability value.
Cell number of the penalized value.

WGHTK(NKNOW) =  Weighting factors for the penalized
permeability values.

PRMK(NKNOW) = Penalized permeability values.

ZONE.DAT Used only if IZONE = 1;

i.e., when the zonation approach is used.

This file is created by the user.

READ  NZONE
READ  (NPZONE(I),I=1NDATAP)

NZONE = Total # zones < NDATAP.
NPZONE(NDATAP) = Zone number associated with an active cell.
PZONE1.DAT = Used only if IZONE = 1;

i.e., when the zonation approach is used.

This file is created by the user.

READ  (KZONE(I),I=1,NDATAP)
READ  (PRMZON(I),I=1,NZONE)



176

KZONE(NDATAP)= 1, permeability of zone is known.
2, permeability of zone is unknown.

PRMZON(NDATAP) = Initial value of the permeability of each zone.
OUTPUT FILES

PRM2.DAT

I

Contains the best estimate of the spatially-varying
permeability when minimizing JLS, REGPRM, the
regularization parameter, and the spline coefficients

and the PI’s when PI’s are estimated as well.

Created by RSVR2.FOR when IZONE = 2.

WRITE (PRM(I), I = 1, NDATAP), REGPRM,
(W(D), I = 1,NA)

PRM(NDATAP) = Permeability for each grid cell.

REGPRM = Regularization parameter calculated in RSVR2.FOR
for use in Step 3.

W(NA) = Spline coeffcient for each spline grid cell and the PI’s.
NA = NXS*«NYS + # of PI’s to be estimated.

PRM2.DAT = Contains the best estimate of the spatially-varying
permeability when minimizing JLS, REGPRM, the
regularization parameter, and the spline coeflicients

and the PI’s when PI’s are estimated as well.

Created by RSVR2.FOR when IZONE = 2.

WRITE (PRM(I), I = 1, NDATAP), REGPRM,
(W(D), I =1,NA)

PRM(NDATAP) = Permeability for each grid cell.
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REGPRM = Regularization parameter calculated in RSVR2.FOR

for use in Step 3.

W(NA) = Spline coeffcient for each spline grid cell and the PT’s.
NA = NXS«NYS + # of PI's to be estimated.
PZONE2.DAT = Contains the best estimate of the spatially-varying

permeability when minimizing JLS, REGPRM, the
regularization parameter, and the KZONE(NDATAP).
Created by RSVR2.FOR when IZONE = 1.

WRITE (KZONE(I),I=1,NDATAP) REGPRM,
(PRMZON(I), I = 1, NZONE)

PRMZON(NZONE) =  Permeability for each zone.

REGPRM = Regularization parameter calculated in RSVR2.FOR for use in Step 3.

RUNDAT.DAT = Contains the values of the gradient, the objective

function and the permeability for each iteration.

WRITE (PRM(I), I = 1, NDATAP)

WRITE IFC
WRITE  (W(I), I =1, NA)
WRITE  JLS

WRITE JPEN

WRITE  JLS, JLSPP, JLSWCT, JLSGOR, JLSSRT OR JLSSRTT,
JLSSRG

WRITE  JST, (SBLV(I), I = 1, 4)

WRITE ITE, ILS, J

WRITE JSM,< GD >, |G|, D,S
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IFC =  Current number of function calls, i.e., number of times the simulator
and adjoint equations have been solved.
JPEN =  Penalty function used when known permeability data is included

in the estimation.

JLSPP =  Pressure terms in the objective function.

JLSWCT =  Water cut terms in the objective function.

JLSGOR = Gas-oil ratio terms in the objective function.

JLSSRT =  Total or liquid production rate terms in the objective
function.

JLSSRG = Gas production rate terms in the objective function.

JST = Stabilizing functional.

SBLV(4) = Magnitude of the four terms in the stabilizing functional.

ITE =  Current number of iterations. |

ILS =  Current number of line searches.

JSM =  Smoothing functional.

<G,D> = Norm of G*D.

Gl = Norm of G, the gradient.

I D = Norm of D, the search direction.

S = Step length.

3.5 Input and Output Files for Step 3 of the
AUTOHM Program, RSVR3.FOR

In Step 3 of the history matching algorithm, we wish to estimate the spatially-
varying absolute permeability distribution which minimizes Jsps the smoothing
functional discussed in Section 2, starting with the permeability values estimated

in Step 2.



INPUT FILES

OBDAT.DAT

POB.DAT

BHPOB.DAT

WCTOB.DAT

GOROB.DAT

SRTOB.DAT

SRTTOB.DAT

SRGOB.DAT

OBSTEP.DAT

WGTDAT.DAT

TIMES.DAT
READ TEND
TEND
MINIM.DAT
READ NFC
READ NLS
READ NITE

READ

1

il

H

Hl

i
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Created by the user and discussed in Section 3.2.
Created by RSVRS.FOR and discussed in Section 3.2.
Created by RSVRS.FOR and discussed in Section 3.2.
Created by RSVRS.FOR and discussed in Section 3.2.
Created by RSVRS.FOR and discussed in Section 3.2. —
Created by RSVRS.FOR and discussed in Section 3.2.
Created by RSVRS.FOR and discussed in Section 3.2.
Created by RSVRS.FOR and discussed in Section 3.2.
Created by RSVRS.FOR and discussed in Section 3.2.
Created by RSVRS.FOR and discussed in Section 3.2.

Contains end time for the simulation run.

= End time for the simulation run.

EPS

Contains input data for running RSVR2.FOR and
RSVR3.FOR. Created by the user.
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READ ETA, ETAC
NFC =  Total # of function calls allowed, i.e., # of times both the
simulator equations and the adjoint system can be solved.
NLS =  Total # of line searches allowed. Usually 5-10.
NITE =  Total # of iterations before correction step of the minimization
technique is performed. ‘
EPS =  Tolerance for convergence.
ETA, ETAC = Convergence tolerances for the correction step.
PRM2.DAT = Contains the best estimate of the spatially-varying
permeability when minimizing JLS, REGPRM, the
regularization parameter and the spline coefficients
and the PI’s when PI’s are estimated as well.
Created by RSVR2.FOR when IZONE = 2.
READ (PRM(1), I = 1, NDATAP), REGPRM,
(W(I)> 1= 1aNA)
PRM(NDATAP) = Permeability for each grid cell.
REGPRM =  Regularization parameter calculated in RSVR2.FOR
for use in Step 3.
W(NA) =  Spline coeffcient for each spline grid cell and the PI’s.
NA = NXS«NYS + # of PI’s to be estimated.
SPLINE.DAT = Contains the dimensions of the spline grid.

Used only when IZONE = 2.

NAMELIST  /NLSPL/ NXS, NYS, TOL

READ

(+,NLSPL)
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NXS =  x-dimension of the spline grid; NXS < NX.
NYS =  y-dimension of the spline grid; NYS < NY.
TOL = tolerence for solving over-determined system generated by
calculating the spline coefficients from the permeability.
WKDAT.DAT = Used only when KPENAL = 1;
i.e., when the bicubic spline approach is used, and
when some of the permeability values are assumed
known. This is accomplished by adding a penalty
term to the performance index, Jpgy.
Created by the user.
READ NKNOW
READ (MKNOW(I),I=1,NDATAP)
READ (WGHTK(I),I=1,NKNOW)
READ (PRMK(I),I=1,NKNOW)
NKNOW = Total # penalized permeability values.
MKNOW(NDATAP) = 0, Non-penalized permeability value.
Cell number of the penalized value.
WGHTK(NKNOW) =  Weighting factors for the penalized
permeability values.
PRMK(NKNOW) = Penalized permeability values.
ZONE.DAT = Used only if IZONE = I;
i.e., when the zonation approach is used.
This file is created by the user.
READ NZONE
READ (NPZONE(I),I=1,NDATAP)



182

NZONE = Total # zones < NDATAP.
NPZONE(NDATAP) = Zone number associated with an active cell.
PZONE2.DAT = Contains the best estimate of the spatially-varying

permeability when minimizing JLS, REGPRM, the
regularization parameter, and the KZONE(NDATAP).
Created by RSVR2.FOR when IZONE = 1.

READ  (KZONE(I)I=1,NDATAP),REGPRM,
(PRMZON(I), I = 1, NZONE)

PRMZON(NZONE) =  Permeability for each zone.
REGPRM = Regularization parameter calculated in RSVR2.FOR

for use in Step 3.
OUTPUT FILES

PRM3.DAT = Contains the best estimate of the spatially-varying
permeability when minimizing JLS, REGPRM, the
regularization parameter, and the spline coeflicients

and the PI'’s when PI’s are estimated as well.

Created by RSVR3.FOR.

WRITE (PRM(I), I = 1, NDATAP), REGPRM,
(W(I), I = 1,NA)

PRM(NDATAP) = Permeability for each grid cell.
REGPRM = Regularization parameter calculated in RSVR2.FOR

for use in Step 3.

W(NA)

I

Spline coeffcient for each spline grid cell and the PD’s.
NA = NXS*NYS + # of PI’s to be estimated.
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PZONE3.DAT = Contains the best estimate of the spatially-varying
permeability when minimizing JLS and REGPRM, the

regularization parameter.

Created by RSVR3.FOR when IZONE = 1.
WRITE (PRMZON(I), I =1, NZONE), REGPRM

PRMZON(NZONE) =  Permeability for each zone.
REGPRM = Regularization parameter calculated in RSVR2.FOR for use in Step 3.

RUNDAT.DAT = Contains the values of the gradient, the objective

function and the permeability for each iteration.

WRITE (PRM(I), I = 1, NDATAP)

WRITE IFC

WRITE  (W(I), I = 1, NA)

WRITE  JLS

WRITE JPEN

WRITE  JLS, JLSPP, JLSWCT, JLSGOR, JLSSRT OR JLSSRTT,
JLSSRG

WRITE  JST, (SBLV(I), I = 1, 4)

WRITE ITE, ILS, J

WRITE JSM, < G,D>, |G|, |ID],S

IFC =  Current number of function calls, i.e., number of times the
simulator and adjoint equations have been solved.

JPEN = Penalty function used when known permeability data is included
in the estimation.

JLSPP =  Pressure terms in the objective function.

JLSWCT = Water cut terms in the objective function.
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JLSGOR = Gas-oil ratio terms in the objective function.

JLSSRT = Total or liquid production rate terms in the objective
function.

JLSSRG = Gas production rate terms in the objective function.

JST =  Stabilizing functional.

SBLV(4) = Magnitude of the four terms in the stabilizing functional.

ITE =  Current number of iterations.

ILS =  Current number of line searches.

JSM =  Smoothing functional.

< G,D> = Norm of G*D.

| Gl = Norm of G, the gradient.

Il Dl = Norm of D, the search direction.

S =  Step length.

4. Implementation

Implementation of the AUTOHM program involves several steps. First, the
observation data files and other input data files must be generated for use with Steps
1, 2 and 3 of the minimization algorithm. A detailed discussion of these files and
what they contain is presented in the previous section. The appropriate FETCH
and DISPOSE commands must be included in the job control files created for each
step of minimization algorithm and in the job control file used for generating the

observation data with CLASS.

The Cray load modules needed for running program RSVRS to generate ob-

servation data using CLASS are accessed under the following:

CLASSPROC,ID=AUTOHM,0WN=FJKE.
IOLIB,ID=AUTOHM,0WN=FJKE.
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CLASSLIB,ID=AUTOHM,OWN=FJKE.
DIRECTSOLV, ID=RESMATH,OWN=RERF.
CGLGEN,ID=RESMATH,OWN=RERF.
CLASSLIB,ID=AUTOHM,OWN=FJKE.
CCLASS,ID=AUTOHM,OWN=JEMAR.
COMPOB,ID=AUTOHM,OWN=JEMAR.

The Cray load modules needed for running Step 1 of the minimization algo-

rithm are accessed under the following:

CLASSPROC,ID=AUTOHM,0WN=FJKE.
IOLIB,ID=AUTOHM,0WN=FJKE.
CLASSLIB,ID=AUTOHM,0WN=FJKE.
DIRECTSOLV, ID=RESMATH,0WN=RERF.
CGLGEN,ID=RESMATH,0WN=RERF.
CLASSLIB,ID=AUTOHM,0WN=FJKE.
CCLASS,ID=AUTOHM,0WN=JEMAR.
COMADJ,ID=AUTOHM,0WN=JEMAR.
COMP1,ID=AUTOHM,0WN=JEMAR.

The Cray load modules needed for running Step 2 of the minimization algo-

rithm are accessed under the following:

CLASSPROC,ID=AUTOHM,0WN=FJKE.
IOLIB,ID=AUTOHM,0WN=FJKE.
CLASSLIB,ID=AUTOHM,0WN=FJKE.
DIRECTSOLV,ID=RESMATH,0WN=RERF.
CGLGEN,ID=RESMATH,0WN=RERF.
CLASSLIB,ID=AUTOHM,OWN=FJKE.
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CCLASS,ID=AUTOHM,OWN=JEMAR.
COMADJ,ID=AUTOHM,OWN=JEMAR.
COMP2,ID=AUTOHM,OWN=JEMAR.

The Cray load modules needed for running Step 3 of the minimization algo-

rithm are accessed under the following:

CLASSPROC,ID=AUTOHM,0WN=FJKE.
IOLIB,ID=AUTOHM,0WN=FJKE.
CLASSLIB,ID=AUTOHM,0WN=FJKE.
DIRECTSOLV,ID=RESMATH,0WN=RERF.
CGLGEN,ID=RESMATH,OWN=RERF.
CLASSLIB,ID=AUTOHM,0WN=FJKE.
CCLASS,ID=AUTOHM,0WN=JEMAR.
COMADJ,ID=AUTOHM,0WN=JEMAR.
COMP3,ID=AUTOHM,0WN=JEMAR.

The source code for the minimzation algorithm is stored under the following:

JEMAR.SIMUL.FORT.

5. Definition of Programs

RSVRS

The main program used for generating observation data using CLASS.

RSVRI1

The main program used for performing Step 1 of the the minimization

algorithm in which the best uniform value of k is calculated for each layer.
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RSVR2

The main program used for performing Step 2 of the the minimization
algorithm in which a multivariable estimation is performed that minimizes

J1s, the traditional least-squares objective function.

RSVR3

The main program used for performing Step 2 of the the minimization
algorithm in which a multivariable estimation is performed that minimizes
Jsm, the smoothing functional, which is the weighted sum of J; s and

JsT, the stabilizing functional.

6. Definition of Subroutines

AAMAINT

This was the main program of class which is now a subroutine called

by all steps of the minimization algorithm.

ADJCUM

Computes the time derivative terms of the matrix elements of the

adjoint equations.

ADJEQ

Calls the routines that compute the matrix elements of the adjoint

equations and puts these elements into sparse matrix format.

Calls ADJCUM, ADJWEL, ADTXS, SPARSE and WELADJ.

ADJGRD

Computes the gradient of Jis wrt. the permeability from the
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adjoint variables.

ADJGRD1

Computes the gradient of Jrs wrt. the PI's from the adjoint variables.

ADJSTP

Calls ADJEQ and the equation solver routines to solve adjoint equations.

ADJWEL

Computes the coeflicients of the adjoint equations associated with

the well equations.

ADTXS

Computes the directional derivative terms of the adjoint equations.
These terms are associated with the transmiscibility terms in the

flow equations.

ATRANS

Updates the KH’s after each iteration of the minimization algorithm.

BSPLM

Calls BSPL3.

BSPL3

Computes the bicubic spline function and its first, second and third

derivatives.
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EXTREM
Calculates the upper and lower bounds of the observation data needed
to create noisy observation data.
GLSF

Sets the terminal constraints for solving the adjoint equations.
Calls ATRANS. Calls AAMAIN which solves the flow equations with the
updated values of the KH’s. Reads in data necessary for solving the
adjoint equations. Calls ADJSTP, ADJGRD and ADJGRD1.

GSTF

Computes the stabilizing functional and its derivatives wrt. the

permeability analytically from the bicubic spline function.

GSTF1

Computes the stabilizing functional and its derivatives wrt. the

permeability using finite difference approximation.

HSEHLD

Solves the over-determined system of equations generated from calculating

the bicubic spline coeflicients, W, from the permeability.

JSTF

Computes the constant terms in the bicubic spline function.

MINZ

Updates the current values of the parameters during a multivariable

minimization done in Steps 2 and 3. This minimization algorithm generates
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a conjugate search direction and maintains finite termination when
applied to quadratic functions without requiring exact line search.
Calls VARY which updates the values of the gradient of Jgps wrt.
the parameters.

Reference:

7 A Conjugate Direction Algorithm without Exact Line Searches,”
Opt. Theory and Appl., 23, (1977), 373-387.

SECANT

Updates the current values of the parameters using the the secant
method. This method is used in Step 1 where only one value of the
parameter is estimated for each layer. Calls UNIF which updates the

gradient of Jps wrt. the parameters.

SHIFT1

Generates BX2 and BY2 which are associated with the bicubic spline function.

SHIFT?2

Generates F2 which is associated with the bicubic spline function.

SPARSE

Stores the cell coeflicients of the adjoint equations in sparse matrix A and the

right hand side in matrix B.

UNIF

Computes the partial derivative of Jrg wrt. the flat permeability profile

for each layer and the PI’s for each for each completion. Calls GLSF.
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VARY

Computes the derivative of Jsar wrt. the spline coefficients, W,

and the PI’s. Calls GLSF, GSTF and GSTF1.

WELADJ

Computes the well terms of the adjoint equations for the adjoint variables

associated with pressure, saturations and R,.
7. Discussion of Options

The AUTOHM program can be used to estimate horizontal permeabilities
alone, PI’s alone or PI’s and horizontal permeabilities simultaneously. The verti-
cal permeabilities in each cell are either assumed to be a tenth of the horizontal
permeabilities of that cell in which case the layers are communicating, or they are
assumed to be zero in which case the layers are noncommunicating. RSVRS.FOR
can be used to generate either noisy or non-noisy observation data. Either the
zonation approach or the bicubic spline approach may be used for performing the
multivariable minimization. This program allows the user to input known values
of the permeability for both the zonation and bicubic spline approaches. When
using the zonation approach, the known value is not estimated during the mini-
mization procedure. When using the bicubic spline approach, since the coefficients
of the bicubic spline function do not have a one-to-one correspondence with the
permeabiltiy values in each grid cell, a penalty function, Jpgy, is added to the
performance index to weight the known values of the permeability during the esti-

mation procedure.



