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ABSTRACT

A general solution is presented for water waves generated by
an arbitrary movement of the bed (in space and time) in a two-dimen-
sional fluid domé.in with a uniform depth. The integral solution which
is developed is based on a linearized approximation to the complete
(nonlinear) set of governing equations. The general solution is evaluated
for the specific case of a uniform upthrust or downthrow of a block
section of the bed; two time-displacement histories of the bed move-

ment are considered.

An integral solution (based on a linear theory) is also developed
for a three-dimensional fluid domain of uniform depth for a class of bed
movements which are axially symmetric. The integral solution is
evaluated for the specific case of a block upthrust or downthrow of a
section of the bed, circular in planform, with a time-displacement

history identical to one of the motions used in the two-dimensional

model.

Since the linear solutions are developed from a linearized
approximation of the complete nonlinear description of wave behavior,
the applicability of these solutions is investigated. Two types of non-
linear effects are found which limit the applicability of the linear
theory: (1) large nonlinear effects which occur in the region of gener-
ation during the bed movement, and (2) the gradual growth of nonlinear

effects during wave propagation.



A model of wave behavior, which includes, in an approximate
manner, both linear and nonlinear effects is presented for computing
wave profiles after the linear theory has become invalid due to the

growth of nonlinearities during wave propagation.

An experimental program has been conducted to confirm both
the linear model for the two-dimensional fluid domain and the strategy
suggested for determining wave profiles during propagation after the
linear theory becomes invalid. The effect of a more general time-
displacement history of the moving bed than those employed in the

theoretical models is also investigated experimentally.

The linear theory is found to accurately approximate the wave
behavior in the region of generation whenever the total displacement of
the bed is much less than the water depth. Curves are developed and
confirmed by the experiments which predict gross features of the lead
wave propagating from the region of generation once the values of
certain nondimensional parameters (which characterize the generation
process) are known. For example, the maximum amplitude of the lead
wave propagating from the region of generation has been found to never
exceed approximately one-half of the total bed displacement. The
gross features of the tsunami resulting from the Alaskan earthquake of

27 March 1964 can be estimated from the results of this study.
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CHAPTER 1

INTRODUCTION

One of the most destructive water waves occurring in nature is
the tsunami. The Japanese word, ''tsunami'', has been adopted by the
scientific community (in lieu of ''tidal wave') to describe sea waves
generated by seismic disturbances. The principle seismic mechanism
responsible for the generation of tsunamis appears to be tectonic
earthquakes, e. g., earthquakes which cause a structural deformation
of the sea bed. Other activity such as volcanic eruptions and coastal

and submarine landslides are also known to have generated tsunamis.

The general features of tsunamis are fairly well known at the
present time. In the deep ocean the waves are very long and of
sufficiently small amplitude that they are not detectable visually.
When these waves approach a coastal region where the water depth
decreases rapidly, the wave energy is focused by refraction which,
combined with shoaling and local resonance effects, may result in
significantly increased wave amplitudes. These large waves then
strike the shoreline of exposed areas, presenting a major hazard to

life and property in heavily populated regions.

One of the most destructive tsunamis in historical time was
generated by an earthquake off the coast of Japan on 15 June 1896.

The main wave advanced shoreward to an elevation of 75 to 100 ft
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above the normal tide level. More than 27,000 people were killed and
over 10,000 homes were destroyed. More recently the Chilean earth-
quake of 23 May 1960 generated a tsunami that killed 1000 people in
Chile, 61 persons in Hawaii, and 114 people in Japan (another 90
were lost and presumed drowned). Extensive property damage also
occurred in these areas. On 27 March 1964 a major tsunami was
generated by an earthquake in the Gulf of Alaska which killed 142
persons in Alaska and along the western coast of the United States and

resulted in excess of $100 million property damage in these areas.

The general migration of people to coastal regions in recent
years has created a more urgent need for a precise understanding of
tsunamis and their potential hazard. Inadequate knowledge of the
vulnerability of specific coastal sites to tsunami attack and the lack of
precision in predicting probable and possible wave heights may pose
severe and costly engineering problems. These problems are espec-
ially difficult in the design and construction of nuclear reactors for

power generation which require very high standards of safety.

In order to accurately predict the potential tsunami hazard in a
specific coastal environment, a more complete understanding of the
following processes is required: (1) the generation of the tsunami
including the tectonic features of the seismic source and the response
of the fluid in the region of generation to the tectonic deformations,

(2) the propagation of the tsunami across the variable depth ocean

between the generation region and the coast, (3) the response
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characteristics of the coastal region to the approaching wave system.
An understanding of the wave behavior in the region of tsunami gener-
ation is especially important to the heavily populated coastal region of
Southern California which appears to be largely unaffected by tsunamis
generated elsewhere in the Pacific Ocean. The numerous offshore
islands and basins adjacent to this region apparently act as a reason-
ably effective barrier to the wave energy in a tsunami from a distant
source; hence, the primary tsunami hazard to this area may originate
from a tsunamigenic earthquake occurring between the mainland and

these offshore islands and basins.

1.1 OBJECTIVE AND SCOPE OF PRESENT STUDY.

The objective of the present study is to investigate, both
theoretically and experimentally, wave behavior in the region of
generation resulting from a family of simple and idealized tectonic
movements that could be responsible for tsunami generation and the
propagation of the generated waves in a fluid domain of uniform depth.
Because of a general lack of knowledge regarding actual tectonic
features of tsunamigenic earthquakes, a simple model of generation
based on a uniform, vertical displacement of a block section of the
ocean bed either upward or downward has been adopted. The time-
displacement history of the bed movement is varied. A two-dimen-
sional and three-dimensional model of wave generation have been
investigated theoretically; laboratory experiments have been conducted

to confirm the results of the two-dimensional model. Wave propagation
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in the two-dimensional model is investigated using a linear théory and
a theory which includes both linear and nonlinear effects in an

approximate manner.

A limited review of previous mathematical and experimental
studies of tsunami generation is presented in Chapter 2. A theoretical
analysis based on a linear theory is presented in Chapter 3 for the
two-dimensional and three-dimensional models of wave generation.
A discussion of the applicability of the linear solutions due to non-
linear effects arising during wave generation and propagation is also
presented. In Chapter 4 the experimental equipment and laboratory
procedures are described. Experimental and theoretical results are
compared in Chapter 5 and applied to the Alaskan earthquake of
27 March 1964 in order to infer probable characteristics of the
tsunami which was generated by this earthquake. Conclusions of this

study are stated in Chapter 6.



CHAPTER 2
LITERATURE SURVEY

The main body of tsunami research has originated in Japan as
a natural consequence of the destruction of life and property this island
nation has suffered as a result of these devastating waves. The Japan-
ese apparently Began studying tsunamis around 1880 (for a complete
listing of tsunami research between 1889 and 1962, see reference (18));
however, most of the early papers are primarily descriptive of
tsunami damage and do not attempt to model, either theoretically or
experimentally, the generation of tsunamis. This literature survey will
be limited to theoretical or experimental studies of tsunamis which are
generated by bed displacements that might occur during a tectonic
earthquake. Papers which are primarily descriptive or literature in
the related fields of waves generated by landslides, explosions, etc.,

will not be discussed.

The first theoretical investigation of tsunami generation and
propagation appears to have been performed by Sano and Hasegawa
(1915) who considered a point disturbance at the bed in a three-dimen-
sional domain of fluid. The disturbance was assumed to occur instant-
aneously in water of uniform depfh, h. Based on a linearized descrip-
tion of wave behavior Sano and Hasegawa were able to develop expres -

sions for the wave profile at large' distances from the disturbance. Few
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of the wave properties could be found from their expressions, how-
ever, because of the mathematical difficulties encountered in

evaluating actual values of the wave amplitudes.

Syono (1936) improved on the model of Sano and Hasegawa by
considering the size of the disturbance to be finite. Syono assumed

that a section of the sea bed was given the velocity:

a—c:: = f(r)g(t) cos n@® , (Z.1)

where ® = ©(r, z;t) is the velocity potential, z is the vertical coor-
dinate, r is the radial coordinate, t is time, and n = 0 or 1. The
spatial and temporal distributions of velocity, i.e., f(r) and g(t),
respectively, were given by:

Krn

(r2+R® )n+3/2

() = and git) = ~———— (2.:2)

where K, R, M, and L are arbitrary constants. These assumed
velocity distributions enabled Syono to determine expressions for the
wave structure for the cases of n = 0 and n = 1 in both deep

(h/R > > 1) and shallow (h/R < < 1) water. Again the solutions for
the wave profile were too complex to elucidate the detailed wave

structure and Syono did not calculate wave profiles.

In a series of papers Takahasi (1942, 1945, 1947) considered
three different models of tsunami generation. In the first paper a
circular disturbance of radius, ro, in water of uniform depth, h ,

was assumed to move with a uniform velocity a distance of Jif’/Trr(z),



v, -

where % is the total volume of the displacement. The bed movement
was permitted to occur in a finite time interval, 0 <t < T. Using a
linear theory Takahasi was able to find expressions for the wave
structure in deep (h/ro > > 1), shallow (h/rO < < 1), and inter-
mediate (h/rO >~ 1) water depths. A few wave profiles near the
region of generation were computed in an approximate manner

for the case of shallow water and for T = ro/A/gﬂ where g is the
acceleration of gravity. In the region of generation the water surface
followed the bed movement until t = T. Annular waves then began to
propagate as the water level at the origin (r = 0) began to decrease,
eventually going below the original still water level to a maximum
negative elevation of approximately -1.5 -V-/'n'rz. The water level at
r = 0 then oscillated about the still water level in a damped manner.
The leading wave was found to propagate with a velocity of A/g_h and
the maximum amplitude was found to decay like r_%. In deep water,

sample wave profiles were computed and for r > > r the wave

height was found to decay like r ™

In the second paper Takahasi (1945) considered a circular
disturbance with azimuthal and radial variations proportional to
r cos n® with n = 1, 2, and 3. Only simple features of the waves
generated by these deformations were determined. Positive leading
waves were found to result from bed uplift while negative leading
waves resulted from bed downthrow. The velocity of wave propagation
was again found to be given for shallow water by J/gh and the ampli-

1
tudes were found to decay like r =.
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In the third paper Takahasi (1947) considered a bed movement
of infinite extent in one coordinate direction so that only a two-dimen-
sional fluid domain was required. The bed deformation was given a

velocity in the form:

gi; = f(x)g(t) , (2.3)

where y is the vertical coordinate, x is the direction of propagation,
t is time, and ©® = ©(x,y;t) is the velocity potential. In the first model
Takahasi examined, the spatial and temporal variations in the bed

velocity were taken to be:

Eoolim) =% 6 s A A
fs) e - gt} = .  [2.4)
0 |x| >b o 45T
In the second model the assumed spatial variation was:

b sin“—lf \x‘ <b
f(X) = ’ (2'5)

0 ‘x‘ > b
and the uniform variation in time as given by Eq. (2.4) was again
utilized. The initial wave profiles were found to resemble the bed
deformation in both cases. The initial wave then divided into two
similar wave systems, propagating in opposite directions, in which
the velocity of propagation in shallow water was determined to be
given by ,/gh. Mathematical difficulties precluded more definite

features of the wave profiles from being determined.

Ichiye (1950) also considered a two-dimensional domain of
fluid of uniform depth, h, in which a velocity of the same form as
Eq. (2.3) was imparted to bed. Modeling the spatial and temporal

distributions of velocity by the functions:
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C,, |x] < b Nte™® ¢ >0

f(x) = » gl(t) = , (2.6)
0 x| > b 0 t <0

where N, Qo, b,and o are constants, Ichiye was able to determine
expressions for the water surface profiles based on a linear descript-
ion of wave behavior. When the bed motion was rapid, i.e.,
ba/J/gh > > 1, these expressions could be simplified so that numer-
ical computation was possible. Water surface profiles in the region
of generation were found to approximate the bed movement for this
case and the velocity of propagation of the leading wave was found to
be v/gh. At large distances from the generation region the wave
profiles were evaluated by the method of stationary phase and found to
yield a leading wave followed by a dispersive train of oscillatory waves.
The amplitude of the trailing waves was found to grow like t%— For
very slow movements of the bed, i.e., ba/Jg_h < <1, the largest

waves were found to propagate with a velocity greater than 4/gh and at

large distances from the disturbance only a single wave was observed.

Honda and Nakamura (1951) also investigated a two-dimen-
sional model of tsunami generation for a fluid domain of uniform depth,
h, in which the spatial and temporal variations in velocity of the
deforming bed were given by:
ot /t

_x2 /X2
f(x) = Ae ., glty = : (2.7)
where A, x,, and t, are arbitrary constants (see Eq. (2.3)). The

final elevation of the deformed bed, (, is given by:
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- -xz /Xf
C = A1ty Ae y (2.8)

For a shallow sea, i.e., h/x; < < 1, the initial wave profiles were
determined from Takahasi's general solution and computed numerically
for the special case of h = 4 km, x; = 50 km, t; = 2 sec, and
Jmt,;A = 3 m. The water surface in the region of generation was
found to rise like the deforming bed and then divide into two wave
systems (moving in the opposite direction) whose maximum amplitude
was one-half the maximum bed deformation. The propagation velocity
of the leading wave was again found to be given by ./gh. The magni-
tude of x; and t; was then varied and the effect on the wave behavior
at the origin,x = 0, was observed. As x; increased the time required
for the water to return to its original still water level also increased;
as t; increased the maximum water surface movement was found to

eventually become less than the total bed movement.

In a later paper Nakamura (1953) extended the previous work
of Hondo and Nakamura (1951) to a three-dimensional domain of
fluid with a uniform depth, h, in which the spatial and temporal
variation in velocity of the deforming bed was assumed to be:

2,,2
ot fta

f(r) = Ae » glt) = (2.9)

Again the wave behavior at the origin was evaluated assuming a shallow
sea such that h/R < < 1. As the time constant, t,, was varied, the
same general behavior of the maximum water surface elevation

observed in the two-dimensional model again was found, i.e., for
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small t; the maximum water elevation became equal to the total bed
displacement while for large t; the maximum water surface move-

ment was less than the bed movement.

Ichiye (1958) again considered a two-dimensional fluid domain
of uniform depth, h, in which the bed velocity was given by:
¢ x|l <b #T |t|l< T
fixh= { ° . g(E) = : (2.10)
0 |x| >b o el =7
where QO, b, and T are arbitrary constants. Using numerical
computations to evaluate the expressions for the resulting wave motion
in a shallow sea, Ichiye was able to construct the wave profiles near
the region of generation. In his examples the water movement in the
generation region approximated the bed deformation during the interval
0 <t < T, after which time the water collapsed into two similar
dispersive wave trains; one moving in the positive x-direction and one
moving in the negative x-direction. In Ichiye's examples the bed

movement was so rapid that the maximum water movement at the

origin was equal to the total bed movement, QO

Keller (1963) determined the far-field wave signatures using
the method of stationary phase for waves generated in a three-dimen-
sional fluid domainofuniform depth, h, by axially symmetric bed
deformations. He found that the leading wave amplitude decayed like
r—1 in the far-field, where r is the radial coordinate and the leading
wave was found to travel with a velocity of J/gh. Keller also investi-

gated the change in wave behavior based on the methods of geometrical
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optics when the water waves approached a coastal region where the depth
became nonuniform. No computations of actual wave profiles result-
ing from a specific disturbance were given by Keller to more clearly

elucidate the wave structure.

Webb (1962) investigated a simple model of tsunami generation
in a two-dimensional domain of fluid of uniform depth in which the
assumed spatial and temporal velocities of the moving bed were:

& x| <b ae” % ¢n0

f(x) = 9 , glt) = , (2.11)
0 et =5 0 t <0

where o, b, and QO are arbitrary constants. (This model of tsunami
generation is of special interest since it is also one of the models to
be considered in the present study.) Webb invoked the Fourier Integral
Theorem in order to represent the prescribed bed movement in terms
of a sum of sine and cosine functions. Since the spatial movement is
symmetric about x = 0, the sine portion of the representation may be
ignored; however, the temporal variation is not an even function of t
and cannot be represented as a sum of cosine functions as is done by
Webb. Webb's solution was thus found to be in error. (The correct
solution will be derived shortly.) Since. the argument of the sine
terms omitted by Webb are functions of time, the incomplete solution
fortunately yields a reasoﬁable approximation of the wave profiles
near t = 0, i.e., the initial waves. These wave profiles were
numerically computed by Webb for the special case of h = 10,000 ft,

b= 5,000 ft, and g = 0.1 sec_l. The maximum water elevation
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reached during the bed movement occurred at the origin and was equal
to 21% of the total bed movement, QO. A positive leading wave pro-
pagated from the generation region and gradually decreased in ampli-
tude. A train of damped oscillatory waves formed behind the leading
wave during propagation. The velocity of the leading wave was
found to exceed Jé—ﬁ initially, decrease to a value below Jg_h during
propagation, and then increase asymptotically to Jg_h Hendrickson
(1962) in the same report developed expressions for the asymptotic
behavior of these waves; however, since his analysis was based on an
incorrect solution by Webb, the asymptotic solution would also be

invalid.

Kajiura (1963) developed general solutions for waves generated
by an instantaneous movement of a section of the bed in both a two and
three-dimensional domain of fluid of uniform depth, h. Kajiura was
specifically interested in the decay of the leading wave during propa-

£
gation. A parameter, P, = (65/h/g /t)” (b/h), was found to be

important in determining the decay rate of the leading wave; g is the
acceleration of gravity, t is the time, and b is the half-width of the

source region. In a three-dimensional model the wave was found to
2

decay like r ° for P, > 3 and r! for P, < 1 where r is the

distance of propagation. In the two-dimensional model the leading
1

wave was found to decay like r® for P, > 3 and r ° for By S
Kajiura also investigated the maximum wave elevation reached at the
origin of an instantaneous bed deformation when the half-width of the

deformation was varied. For a uniform deformation in a two-
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dimensional fluid domain the maximum wave amplitude, T]o, was

found to be equal to the total bed movement, Qo, for b/h>3. For

b/h <3 the ratio no/CO decreased and tended to zero as b/h-0. For

a circular deformation in a three-dimensional domain of fluid the ratio,
no/Co, was equal to unity for b/h> 4 and tended to zero as b/h tended to
zero. Kajiura also investigated the far-field behavior for waves
generated by a bed movement in a three-dimensional fluid domain in
which the bed deformation was not axially symmetric. The directivity
of the leading wave generated by these disturbances was found to

disappear at a very large distance from the source region.

Momoi (1964) has used a high-speed computer to evaluate
numerically the wave profiles resulting from a uniform circular uplift
of radius, ro in a three-dimensional domain of fluid with a uniform
depth, h. The computations were based on the equation developed by
Takahasi (1942) for an instantaneous bed movement. (Recall that
Takahasi was able to find only crude approximations of the wave
profile for the limiting cases of a shallow or deep sea.) Momoi
computed the wave profiles for the case of r_/h = 10 from t = 0 to
the nondimensional time t«/ETH = 20. At t = 0 the water assumed
the shape of the bed deformation except near r = ro where a smooth
transition occurred between the raised level of fluid and the original
still water level. A wave then began to propagate from the region of
generation forming a positive leading wave whose maximum amplitude

was approximately 50% of the total bed movement, QO. At ti/g/h = 6
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the water level at r = 0 began to decrease from its raised level until
at tv/g/h = 13 the water level reached its maximum negative value of
approximately -1.5 Qo. (A similar behavior was also observed by
Takahasi.) The water level at r = 0 then returned to the still water

level about which it oscillated in a damped manner.

Carrier (1965) investigated the propagation of waves in a fluid

domain with a variable depth which were generated by the bed displace-

ment:
<0
éa_cg " 0 % >0 (2.12)
a.ea'xczte_Ct s O£ A0

where a and c are arbitrary constants. The limiting case of a = «
and ¢ —» © was solved by Carrier. Since Carrier's primary interest
was in the wave behavior at large distances from the generation region
where the long waves approached a sloping beach, the exponential
functions in Eq. (2.12) were chosen purely for mathematical conven-
ience. No wave profiles were computed by Carrier; however, his
simple method of solution of the linearized generation problem based
on the use of integral transforms is of particular interest since this

is also the method which will be adopted in this study.

Hwang and Divoky (1970) have taken an entirely different
approach to the tsunami problem; instead of the linearized model of
tsunami generation used by previous researchers, they adopt a first-

order-nonlinear theory which ignores completely the vertical motion



N ) o

of the water and thus all effects of frequency dispersion. In order to
solve the resulting equations in a three-dimensional fluid domain, a
finite-difference scheme was adopted which permits an arbitrary bed
displacement and a variable water depth to be incorporated into the
model. The model was then applied to a prototype bed displacement
which occurred during the Alaskan earthquake of 1964. Wave profiles
were computed at various locations near the region of generation; the
accuracy of these computed wave profiles could not be determined
since no actual wave records were available. At one offshore position
the computed profile was compared with water movements observed
onshore and found to be in reasonable agreement. In a later report
Hwang, et al (1971) adapted this model to also consider the curvature
of the ocean by expressing the governing equations in spherical
coordinates. In light of the results of the present study, the approach
of Hwang and Divoky appears to be quite limited in its ability to
accurately model tsunami propagation over very large distances.
(The limitations are in effect similar to those which depend on a purely

linear theory of wave propagation.)

Tuck and Hwang (1972) have most recently considered the
waves generated by a bed movement on a uniformly sloping beach by

adopting the linear-long-wave equations as a description of wave

behavior. The equations were solved analytically for arbitrary bed
movements which were assumed to occur instantaneously at the shore-
ward edge of a two-dimensional fluid domain. The generated waves

propagated into a fluid domain whose depth increased linearly. Wave
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profiles were computed for the special case of a maximum bed dis-
placement, Qo, occurring at x = 0 and decaying exponentially for
x > 0. The wave shape was observed to be independent of x while
the wave heights decayed like x-% or t_é. The region of validity of

the long wave description was also investigated since frequency dis-
persion is expected to eventually become important during propagation.
Considering only the increase in the importance of frequency dispersion
due to the increasing depth, Tuck and Hwang found the region of
validity to be given by b0 i bo/ai where b_is a character-
istic size of the disturbance and B is the slope of the bed. It should
be noted that the presence of nonlinear effects and frequency dispersion
which are omitted in Tuck's and Hwang's analysis would most probably
restrict the applicability of their solution to a region of propagation
which is much smaller than they suggest. Certainly as the bed slope,
a, tends to zero so that the fluid domain becomes uniform in depth,
the range of validity of the linear-long-wave equations (which reduce

to the simple wave equation for this case) would not tend to infinity.

The importance and interaction of nonlinearities and frequency disper-

sion will be discussed in detail in this study.

Experimental studies of tsunami generation by bed movements
appear to be very rare. Takahasi (1963) reported on earlier experi-
ments which were conducted in a three-dimensional wave tank. In his
1933 experiment a small wave basin was used 2 m x 1.5m x 0.3 m)

in which a cylinder housing a moveable piston was fitted to the bottom
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of the tank. The piston could be moved suddenly through several
centimeters by a spring-fly-wheel assembly. Wave measurements
were made photographically and indicated that the water initially rose
in a bell shape over the uplifted piston after which annular waves
begin to propagate. A negative wave elevation was observed to occur
at the center of the piston followed by oscillations about the original
still water level. The propagation velocity of the leading wave was
found to be equal to Jg—h or slightly less while the amplitude appeared

to decay like o b o

The 1957 experiments of Takahasi (1963) were conducted in a
large, outdoor basin in which circular membranes were installed at
the tank bottom. The membranes could be mechanically raised or
lowered impulsively by piston rods connected to the center of the
membrane and installed below the tank. Experiments were conducted
using one, two, and six membranes. With one membrane Takahasi
found the generated waves to be dispersive with the leading wave propa-
s ath & Gilersty 65 ool and Aebayite in waplitede Jiks. #7200,
Interpretation of wave records was admittably difficult due to the

presence of wind generated waves and vibration of the rubber mem-

branes at the end of a movement.

Takahasi and Hatori (1962) experimentally investigated the
waves generated by the sudden uplift of an elliptical membrane in a
three-dimensional fluid domain of uniform depth, h. A large outdoor

basin was used and the rubber membrane was installed at the bottom
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level of the basin. The movement of the membrane was created by the
introduction of compressed air below the membrane which caused the
membrane to swell. Wave measurements again indicated the formation
of a dispersive wave train whose leading wave propagated with a
velocity of ,/gh. The ratio of the wave heights at the ends of the long
and short axes of the elliptical region of generation was observed to

be one-third which was also the length ratio of the elliptical axes.
During propagation this ratio decreased. The amplitude of the initial

-0.5 -0.74
or r

crest was observed to decay like r depending on the

water depth used.

Although numerous authors have investigated the tsunami prob-
lem none appear to have thoroughly defined the wave signatures
generated over a full range of characteristic size and time scales of
a specific bed deformation. No authors appear to have considered
the effect of large amplitude movements relative to the wafer depth.
Previous analyses have approximated the equations governing the
fluid motion by ignoring the nonlinear terms except in one study where
the nonlinear terms have been partially retained but the linear effects

were ignored.

In this investigation a linear theory will be adopted to describe
the waves generated over a full range of generation characteristics by
a simple family of bed movements; however, the applicability of this
linearized approximation will also be investigated. Experimental

measurements will be presented to confirm the theoretical analysis.
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A strategy will also be demonstrated for finding the wave profiles
during wave propagation when the linear theory is found to be no
longer applicable. A theory for this case is presented which includes

in an approximate manner both nonlinearities and the linear effects of

frequency dispersion.
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CHAPTER 3

THEORETICAL ANALYSIS

In this chapter a linear theory is presented for waves generated
by a moving bed in a fluid initially with a constant depth. An integral
solution for an arbitrary bed movement (in space and time) is obtained.
Two general solutions are found, one for a two-dimensional fluid
domain, and a second for a three-dimensional domain. For the three-
dimensional model the bottom deformation is restricted to displace-
ments which are axially symmetrical. The integral solutions are
applied to two specific bed displacements. In both deformations the
spatial variation is taken to be a simple block upthrust or downthrow;

the time-displacement history of the block movement is varied.

Since the solutions obtained from the linear theory are only
approximations to the complete nonlinear description of the problem
of wave generation, the applicability of the linear solutions is dis-
cussed. Two classes of bed deformations, termed impulsive and
creeping, are found for which the linear solutions are applicable near
the region of wave generation. The nonlinear effects, which are
initially small for these two classes of bed displacements, grow in
importance during wave propagation. Eventually the linear and non-

linear effects become of the same order of magnitude. Once this
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condition is reached, the equation of Korteweg and deVries (1895) is
discussed as an appropriate model of further wave behavior.

The analogy between the classical dam-break problem, with a
semi-infinite and finite length reservoir, and the uniform upthrust of
a bed section occurring impulsively for the two-dimensional fluid
domain is discussed. From the dam-break analogy certain aspects

of the waves generated by this type of bed deformation can be deduced.

3.1 THE TWO-DIMENSIONAL MODEL - A LINEAR THEORY
Consider a fluid domain D as shown in Fig. 3.1 bounded above
by the free surface, Sf, below by the solid boundary, Sb, and un -
bounded in the direction of wave propagation, i.e., -® < x < o,
Initially the fluid is at rest with the free surface and the solid boundary
defined by the curves y = 0 and y = -h, respectively. For t > 0 the
bed (or solid boundary) is permitted to move in a prescribed manner
given by vy = -h + ((x;t) such that: lim ((x;t) = 0. The resulting

|x |-

deformation of the free surface which is to be determined is given by
y = n(x;t).

The problem can be solved by assuming the fluid to be incom-
pressible and the flow irrotational. Thus, a velocity potential
® = ©(x,y;t) is known to exist such that a = Vi where a = (u,v) is
the velocity vector and V is the gradient operator (8/9x, 98/dy), and
Laplace's equation is obtained from the continuity equation of an
incompressible fluid, Vv * q = O:

v®p = 0 in D. (3.1)
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Fig. 3.1 Definition sketch of coordinate system.

The kinematic conditions to be satisfied on the free surface, S and

f’
the bottom, Sb’ are respectively:
VoS T T H M 00y Fenimts (3.2)
cpy = Qt +cox§x on y = -h + ({(x;t). (3. 3)

By further assuming the flow to be inviscid and surface energy effects
to be negligible, the dynamic condition to be satisfied by fluid particles
on the free surface, Sf, becomes:

o, + 2(Vp)® + gn = 0 on y = n(x;t), EXY

t
where g is the acceleration of gravity. It is also assumed in Eq. (3. 4)
that the pressure on the free surface is constant and for convenience it

has been taken to be zero.
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The solution of the boundary value problem given by Egs. (3.1),
(3.2), (3.3), and (3. 4) is inherently difficult due to the nonlinear terms
in the boundary conditions and the fact that the position of the free
surface, on which the boundary conditions given by Eqgs. (3. 2) and
(3.4) are to be applied, is unknown prior to the solution of the problem.
The usual procedure in solving problems of this type is to circumvent
these difficulties by substituting for the complete problem a linear
approximation. In this approximation the nonlinear terms are omitted
and the boundary conditions are applied both on the undeformed free

surface and the solid boundary. The linearized problem is given by:

V3o = 0 in D, (3./5)

P = nony = 0, (3. 6a)

CDt+gﬂ=Oony=O, (3. 6b)

and CDY = Qt ony = -h. (3. 7}

Eqgs. (3.6a) and (3. 6b) are usually combined to give the single free

surface condition:

cptt+gcpy = 0 ony = 0. (3. 8)

A formal basis for using this linear approximation can be found by
expanding the dependent variables ®(x, y;t) and 7(x;t) as a power
series in terms of a small parameter ¢. Collecting terms of the
lowest order in ¢ yields the linear problem given by Eqgs. (3.5), (3.7)

and (3. 8). Therefore the accuracy of the linear approximation is
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dependent on the size of the parameter €. A physical interpretation
of € can sometimes be found by scaling the dependent and independent
variables of the problem with quantities which characterize the motion.

A discussion of the effects of nonlinearities will be given in Section 3. 2.

The solution of the initial and boundary value problem given by
Eqgs. (3.5), (3.7), and (3. 8) is most easily obtained by the methods of
operational calculus using integral transforms. An integral transform

f(p) of a function f(x) is defined by:

= ap
f(p) = j K(p, x) £(x) dx , (3. 9)
ay

where the limits of integration a, and az are known as well as the
kernal K(p,x). The use of an integral transform often reduces a
partial differential equation in n independent variables to one of (n-1)
variables. Successive use of transforms can ultimately reduce the
equation to an ordinary differential equation or even to an algebraic
equation. An outline of the strategy to be used in applying integral
transforms to the solution of initial and boundary value problems is
given by Tranter (1966, p. 18). For the problem under discussion
there exists three independent variables x, y, and t. Thus, the use
of transforms on two of these variables should reduce the problem to
the solution of an ordinary differential equation. A further reduction
to an algebraic equation is not worthwhile if the ordinary differential
equation can be solved readily. An appropriate transform for the
independent variable x whose limits are from minus to plus

infinity is the complex Fourier transform (Sneddon, 1951) given by:



T = j B T (3. 10)

where i is the imaginary number ,/-1. The appropriate transform for
the time variable t, for which functions are defined only for t = 0, is

the Laplace transform (Churchill, 1958) given by:

f(a) = f & *o 0y i, (3.11)

(The bar superscript will be used throughout this chapter to denote the
Fourier transform of a function and the tilda superscript will be used
to denote the Laplace transform. ) Applying both transforms to a

function f(x;t) yields:
Tioniis | dxj e W i1 T (3.12)
¥

To transform Eq. (3.5), the field equation is first multiplied through
by the kernals e1kx and eust and then integrated twice with respect
to x and t over the limits indicated by Eqs. (3.10) and (3.11),
respectively. Performing these operations yields:
J'm J‘m ikx -st I‘m ikx -st
dx | e e ) e e
-® 0

{x,y:t)dt + J dx
=00 8 T

XX pry(x,y;t)dt = 003 13)

Eq. (3.13) may also be written:

o, ) @ ]
J elkxéa—g[ [ e—StQO(x,y:t) dt-'dx
o e .

2 ) o

3ot e | o B vinide | =0 (3. 14)
v 2 34
Y e '~0 :
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where all integrals have been assumed to be sufficiently well-behaved
to permit the indicated operations, i.e., uniformly convergent. Com-
paring the bracketed terms with Egs. (3.11) and (3. 12), Eq. (3. 14)
may be rewritten as:

s 2 . 2 .

Praaka % 3SR e, (3. 15)

J 9x* oy

T =00

The above integral can be evaluated using integration by parts to yield:

Eyy(k,y;s) - kK®o(k,y;s) = 0 in D. (3.16)

In a similar manner Eqgs. (3.7) and (3. 8) may be transformed to:

E‘Ey‘k’ -h;s) = sC(k;s) , (3.17)

~ 2~

o &
e, 08 = k. 0:8) =10 3.18
coy( ) 5 o ( ) ( )

In deriving Eqs. (3.17) and (3. 18) use has been made of the fact that
o(x,y;0) = cpt(x,y;O) = 0 which is a consequence of the initial con-

ditions imposed on the boundary value problem.

The transformed field equation, Eq. (3.16), is an ordinary
differential equation which may be solved directly for ®©(k,y;s). The

solution is:

w(k,y;s) = A(k;s) cosh ky + B(k;s) sinh ky , (3.19)

where A and B are functions of k and s alone. Substituting ®(k, y;s),

as given by Eq. (3.19), into Eq. (3.18) gives:
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2

B(k;s) = -Z—EA(k;s). (3.20)

Substituting Eqs. (3.19) and (3.20) into Eq. (3.17) one obtains:

Alk;s) = — g8 L {kia) : (3.21)
(s® + gk tanh kh) cosh kh

Combining Egs. (3.19), (3.20), and (3.21) the transformed velocity

potential is found to be:

ﬁ(k :8) = -gs C (kis) [cosh ky by ky] (3.22)
Y251 " (6®+uw°) cosh kh L gk
2
where for convenience ®w is defined as:
®w® = gk tanh kh. (3.23)

It is noted that Eq. (3.23) is identical to the dispersion relationship
found in water wave problems with a stationary bottom and without
surface energy effects; however, this is not to imply that Eq. (3.23)

is the dispersion relation for this problem.

The free surface location n(x;t) is related to the velocity
potential o(x,y;t) by Eq. (3. 6b). Thus, the transformed relationship

is:

n(k;s) = -=w(k,0;s) . (3. 24)

E
g
Substituting Eq. (3.22) into Eq. (3.24) the following is obtained:

~

7 (kys) = 5L (kis)

(s®+w°) cosh kh
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The transformation of n(k;s) to n(x;t), i.e., to the original independ-
ent variables (x;t), is accomplished using the inversion formulae for
the Fourier and Laplace transforms. The inversion integral for the

Fourier transform is given by:

f(x) = 5= f_me‘lkx'f"(k)dk, (3. 26)
and for the Laplace transform:
g il
B8 leri f 2 M utds (3.27)
u-il

where U is a positive constant; hereafter, the inversion integral for

the Laplace transform will be written as:

(t) = 50 | e ade (3. 28)
ml
Br.
lim il
where r = 1-]1_‘00 is the Bromwich contour. Therefore, the
“B¥., u-il’
surface elevation becomes:
= -ikx st=
X :_I_J' {I_J' e C(k;s) }
nGet) = g ) lawily (eF709) cosh kn 0oS I Gy

Eq. (3.29) gives the free surface elevation as a function of
space and time in the fluid domain D (shown in Fig. 3.1) resulting
from a bed displacement described by ((x;t). Before a further simpli-
fication of Eq. (3.29) can be made, specific bed deformations must be

prescribed. Of special interest in the present study are two bed
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displacements whose spatial variation is taken to be a block section of
the bed, symmetric about x = 0, moving in the positive or negative
vertical direction. Two different time-displacement histories of the
block upthrust or downthrow will be used. The first displacement is

described mathematically by:
Cxt) = C_(1-e ™HE® -%%), t=20. (3.30)

H(b®-x°) is the Heavyside step function defined by:

1, b®-x® >0
HE® 5 = { %

0, b2 _x2 < 0 {(3.31)
The Heavyside step function used in Eq. (3. 30) confines the spatial
deformation of the bed to a uniform movement with time in the interval

-b < x < b. The time-displacement history of the bed section is shown

in Fig. 3.2. The bed deformation can be characterized by three

=

Fig. 3.2 Exponential time-displacement history of the moving bed.

c
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parameters: C’o’ the amplitude of the vertical displacement (either
positive or negative); b, the halfwidth of the block section; and tC,

a characteristic time of the displacement, e.g., By = l1/a. For
reasons to be discussed in Chapter 4, the characteristic time of
movement used will be the time required for two-thirds of the motion
to be completed, i.e., t = 1:C when Q/CO = 2/3 or tC = 1.11/q (see
Fig. 3.2). Of particular interest for this displacement is the initial
discontinuity in velocity, 8(/9t, and the asymptotic approach of the
block section to Qo. (The exponential bed displacement given by

Eq. (3.30) will hereafter be referred to as ge(x;t).)

The second bed deformation of interest is given by:
e 1 wt 2__2
C(x;t) = C’o -g—(l—cos—T—~)H(T—t) & H(t-T)]H(b -x") t =20, (3.32)

Again, the Heavyside step function H(b?-x%) is used to confine the
displacement to the interval -b < x < b. Step functions are also
employed in the temporal variation. For t < T, H(T-t) = 1 and
H(t-T) = 0, so the block section moves according to the function
Qo[l—cos(wt/T):'/Z. For t > T, H(T-t) = 0 and H(t-T) = 1 so the
bed unit remains at the constant elevation Co. The time-displacement
history of the block section is shown in Fig. 3.3. This movement has
a continuous velocity, 9(/dt, and is completed in a finite period, T.
Again three parameters are required to characterize the motion: Qo,
b, and a characteristic time, tc. An obvious choice for the character-
istic time is the total time of movement, T. (Henceforth, the half-

sine bed displacement given in Eq. (3.32) will be referred to as Qs(x;t).
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Fig. 3.3 Half-sine time-displacement history of the moving bed.

Eq. (3.29) can now be specialized using the particular bed
displacements given in Eqgs. (3.30) and (3.32). However, before the
wave amplitude can be obtained from Eq. (3.29), the bed deformations
must be transformed by the Laplace and Fourier transforms. Per-
forming the operations indicated by Eq. (3.12) the following is obtained
for the exponential bed displacement:

s . B sin kb a _,
e o k s(s+a)_

(3.33)

Substituting Eq. (3.33) into Eq. (3.29) the following is obtained:

¢ 2 . . st
Rls sy -ikx sin kb 1 J ase }
i e j 0 K cosh kh 12mi Jp Tota)(arar] o8 ok o 53, 34)

The Laplace inversion with respect to s, shown in brackets above,

can be integrated in closed form using the residue theorem and noting
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that all poles appearing in the integrand are simple. Performing this

integration yields:

G 5 . . 2
Bk o -ikx sin kb < a >[ -at A
nix;t) = - — J_we ¥k cosh kh \gatus e - cos wt- o suxwt]dk. (3. 35)

Taking the real part of Eq. (3. 35), and since the integrand is even in

k, the surface elevation can be expressed as:

2€o J‘m cos kx sinkb / «

-at W
T dg kX cosh kh \a2+w2>[e -cos wt- c151n w’c:! dk. (3. 36)

nix;t) = -

The integration over k cannot be computed in closed form and thus
must be approximated by numerical integration. A removable
singularity exists in the integrand of Eq. (3. 36) at the lower limit of
integration, k = 0. Letting I represent the integrand of Eq. (3. 36),
then by L'Hospital's rule: .

lim I = ble~ % . 1y, (3.37)
k>0

This limiting value is required for the numerical integration.

When the half-sine bed displacement given by Eq. (3. 32) is
transformed by the Laplace and Fourier transforms the following is
obtained:

2

o, go—s—i-“T}‘?— <1+e-ST)(s(—sK2T2)>j!' (3. 38)

where # = w/T. When Eq. (3.38) is substituted into Eq. (3.29) one

obtains the following:
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on” _-ikx _sin kb

hixt) = 2T k cosh kh
N st[_s® ][ > ][ -sT]
e ufBr e [nga ST Ll e ds}dk. (3. 39)

As for the exponential bed displacement, the integration with respect to
s can be performed in closed form. Performing the integration
indicated by the bracketed integral in Eq. (3.39) yields:

C ® : : 2
o -ikx sin kb R 9 )
j o k cosh kh {na-waj s,

- cos #t + H(t-T)[cos w(t-T) + cos nt]}dk 2 (3.40)

where H(t-T) is the Heavyside step function. Noting that the integrand

of Eq. (3.40) is an even function of k and taking only the real part

yields:
(et = g_oj'w cos kx sin kb 2 }{cos ot
Nk = o), Tk coshkh  (x3-wR
- cos #t + H(t-T)[cos w(t-T) + cos ut]}dk 2 (3.41)

Again the integral over the wave number k cannot be computed in
closed form thus necessitating the use of numerical integration. The
integrand of Eq. (3.41) has a removable singularity at the lower limit
of integration, k = 0. The limiting value of the integrand, I, as k-0
is:

lim I = b{l - cos #t + H(t-T)[1 + cos ut]} . (3. 42)
k-0

which, as_before, is required for the numerical integration.
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3.2 THE TWO-DIMENSIONAL MODEL -NONLINEAR

CONSIDERATIONS

The linear theory presented in Section 3.1 is only an approxi-
mation to the complete nonlinear problem; thus, it is of major impor-
tance to determine the conditions necessary for the linear model to
provide an accurate description of the actual wave behavior. As men-
tioned in Section 3.1, a rational basis for using the linear model is
usually found by expressing all independent variables as a power
series in terms of a "small" parameter €. The collection of lowest
order terms of € normally yields the linearized problem as a first
approximation to the complete description of wave behavior. Physi-
cally the parameter ¢ indicates the relative importance of nonlinear
terms compared to the linear terms. As also mentioned in Section 3.1,
a physical interpretation of the parameter € can sometimes be found
by scaling the dependent and independent variables of the problem by
quantities which characterize the motion. In the two following sections
(Section 3.2.1 and 3.2.2) it will be shown that more than one param-
eter e 1is required to adequately define the limitations of the linear
model. The discussion of nonlinear effects is conveniently divided
into two parts. In Section 3. 2.1 nonlinear effects occurring during
the time of bed deformation will be discussed. In Section 3. 2.2 the
effects of nonlinearities that arise during wave propagation are
discussed. Both types of nonlinearities limit the applicability of the

linearized model.
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3.2.1 Aspects of Nonlinearity—Generation

During the time of bed displacement, it would seem
appropriate to scale the motion of a water particle in the fluid domain
with respect to the motion of the deforming solid boundary. It was
indicated in Section 3.1 that the specific bed deformations given by
Egs. (3.30) and (3. 32) each can be characterized by three parameters:
an amplitude of displacement, Qo, a time, tc, and a size, b. The two
other independent variables of the problem are the water depth, h, and
the acceleration of gravity, g. These five independent variables are
available to scale the dimensional variables of the problem. Bucking-
ham (1914) showed that if the magnitude of a physical quantity, Q,,is
a function of (n-1) other independent physical quantities, and if Q, and
these (n-1) quantities include j fundamental dimensions, then the

functional equation:

Q: = £{Q, Qar voxs Q) , {3453

may be replaced by

T = Be MR = =a s M 3} § (3. 44)

where each [l term is an independent dimensionless ratio of the various
Q's. In the present problem the dependent quantity of interest is the
water surface displacement, M, which can be related functionally to
the five independent variables in the following way:

n = f(co. b, t. h, 2. (3. 45)
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Since the five independent quantities involve only two physical dimen-
sions, length and time, the normalized water surface displacement
should be a function of three dimensionless ratios (or [l terms).
A possible choice of these [l terms is:

ng =£(C /h, b/h, tCA/g/h) ; (3. 46)
(o]

The ratio Qo/h represents an amplitude scale of the bed movement,
b/h represents a size scale, and tCA/g7h represents a time scale. The
significance of this choice of nondimensional numbers, and combinations

thereof, will be shown shortly.

In order to gain some insight into the parameters which must be
small during generation in order for the linear theory to be applicable,
it is more convenient to use the nonintegrated equations of motion. It
is well known in fluid mechanics that under the assumptions given in

Section 3.1 the equations of motion are:

+ wk(u%) + V*(u*)y* + %(P*)x* = 0, (x-momentum), (3.47)

%

sk k(w3 k(sk _]'_ sk = .
(V’A)t* + u¥(v )x* + vi¥(v )Y* + p (P )y* +g =0, (y-momentum), (3.48)

where the asterisk is used temporarily to denote a dimensional variable
and the notation ( )t* implies the differentation of the bracketed quan-
tity with respect to t*. The quantity P* = P¥(x%, y¥*; t¥) is the
pressure in the fluid field, p is the density of the fluid, and g is the

acceleration of gravity. If the velocity vector (u¥*, v¥) is written in
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terms of the velocity potential ® in Eqs. (3.47) and (3. 48), and the
irrotationality condition: (u*)y* - (V*)x* is used, the equations may
be integrated once to yield Eq. (3. 4) on the free surface, i.e., on
y* = m¥(x*; t*). The continuity equation and boundary conditions are

the same as indicated previously but they are repeated here for

convenience:
(u’r‘)x* + (v*)y* =0, (3.49)
v¥ = (na:)t* + u,.c('r]>.<)x::: on y>,< = mw¥ o, (3_ 50)
vk = (g*)t* + u*(g*)x* ony* = -h + C*.(3.51)

The choice of scaling for each dimensional variable appearing
in Eqgs. (3.47) through (3.51) must be based on a reasonable physical
interpretation of the problem. Assume for the moment that the bed
displacement occurs so rapidly that the water surface profile is similar
in shape to the deformed bed at any time during the movement. Bed
movements of this type will hereafter be referred to as impulsive.
Then the water volume displaced by the deforming boundary has a
length scale, A, of the order of the length of the bed deformation, i.e.,
A = 0(b). The amplitude scale, Y, of the displaced water volume is of
order, Qo’ the amplitude of the bed deformation. (This can easily be
seen by equating the volume of displaced fluid per unit width, Qob, to
the volume per unit width in the wave, i.e., Xb = gob or % = Qo.) In

addition, time variations of the wave must scale with the characteristic

time of bed displacement, tC. A characteristic vertical velocity based
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on the bed deformation characteristics is Qo/tc. The velocity in the
direction of wave propagation and the fluid pressure should be scaled
by @H and pgh, respectively, in the normal manner for problems of
this type. The following scaling of variables thus seems appropriate

when the wave is generated impulsively:

_ ox* WS g SR i ] = B
X—byy t tc»u »

{4 52
* P*
Commn, Pe i
Co pgh
Note that two length scales have been used in the vertical scaling. The
boundary deformations have been scaled by the characteristic ampli-
tude scale ¥ = Qo while the position coordinate y* has been scaled by
the water depth h. Rewriting Eqs. (3.47) through (3.51) in terms of

the nondimensional variables yields:

tc: g/h go
1.1t + TB— (uux + Px) ik Tl—(vuy) =0 , (3. 53)
t »/g/h ¢ C.x=d
v, + —C:B_]E__(uvx) + -Tcl)-(vvy) + (tCA/g/h)a <TO> (Py+1) = 0 . (3. 54)

tc«/g7h C

O

o + TVY = 0 (3..55%
tCA/g/h Qo
v = ‘I’]t he 575 UM, on y = TT] ; (3.56)
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tc“ g/h o)
v = €t+T_h_—u€x ony = -1 +-h—g (3.57)
The stretching of variables given by Eq. (3.52) has made each term in
Eqgs. (3.53) through (3.57) of the same order as its coefficient. Thus,
if the coefficients of the nonlinear terms in Eqs. (3. 53) through (3.57)

are required to be much less than unity, i.e., if:

t »/g/h

c

Y < <. 1. go/h o I8 (3.58)

then the nonlinear terms may be neglected as a first approximation,
resulting in a system of linear equations. Since Qo/h is taken to be
much less than unity, the linearized boundary conditions on the free
surface and on the bed may be applied at y = 0 and y = -1, respect-
ively, with little error. The continuity equation, Eq. (3.55), depends
only on the relative size of tCJg_h/b and QO/h. If both parameters are
small and of the same order then both terms must be used in the first
approximation. If one coefficient is much smaller than the other (with
both still much less than unity) then the term with the smaller coef-

ficient may be neglected in the first approximation.

Thus, two parameters are found that must be small in order
for the linear theory to be applicable. These parameters consist of the
three ratios found previously by dimensional analysis. An interesting

combination of two of these numbers is given by the ratio of tCA/g/h
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and b/h which may be written tCJg—h/b. The quantity tC@ is simply
the distance a long gravity wave will travel in a time tC. Thus if
tCJg_}T/b is much less than unity a major portion of the bed movement
occurs before elevations (or depressions) of the water surface have
an opportunity to leave the generating region. This results in a dis-
placed water surface near the end of the bed movement similar in
shape to the deformed bed as was assumed in deriving the scaling of
variables given by Eq. (3.52). It should be noted that no restriction
must be placed on the magnitude of b/h alone in order to maintain the
applicability of the linear theory; the disturbance-size scale is un-

limited as long as tCA/gh/b remains much less than unity.

Now consider the case of a wave generated by a very slow bed
movement, i.e., tCA/_gH/b is much greater than unity; hence, the water
surface elevations (or depressions) that occur have sufficient time to
leave the generation region during the time of bed displacement. Bed
displacements of this type will hereafter be referred to as creeping.
Near the end of the bed deformation process the displaced volume
of water is distributed over a length in the direction of wave propaga-
tion proportional to tCA/gﬂ. Thus an appropriate length scale, A, would
appear to be tc@. A characteristic amplitude, ¥, of the displaced
water volume can be found as before by equating the wave volume per

unit width to the displaced volume per unit width:
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bC

Xté/gh = bQO or X = S & (3.59)
tC gh

The time variations of this wave form are assumed to be proportional
to the travel time of a long gravity wave across the deforming bed
section, i.e., b/J/gh, and the remaining variables, i.e., u¥, v¥, y¥,
and P*, scale as before. It would seem appropriate to scale the water
surface deformation, n*(x%*;t*), and the bed deformation, (*(x%;t%),

by the same characteristic amplitude, X, as was done for the previous

case. Thus areasonable choice for the scaling of variables when

tCA/gh/b > > 1 is:

5 U= x% y = L* £ o= ——tﬂ< 0 = —-—-u>:<
t ~/gh h (b/\/gh) J/gh
(3. 60)
3 o vk I I]i tCV gh g " _g_;:i C'V P = P
CRUTM R LR S T S B pgh

Rewriting Eqs. (3.47) through (3.51) in terms of the nondimensional

variables presented in Eq. (3. 60) yields:

¢
b/h b/h o o
t+tm qu+Px)+Tm <T>Vuy =10, (3.61)
b/h _b/m (% VAT
+ )+ ( >(vv)+t gh< XT) P+1 0, (3.62)

tf7— t/g/h

u +_}T(Vy) =0, (3.63)
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i b/h _ __b/h /g_o
v~nt+tcm(uﬂx) ony = tcml-\h’n' (3. 64)
&
v =20( + b/h (uC ) ony = -1 +——bﬂ’—<T°\;g. (3. 65)

(= b4
tcgh

tCA/g/h

Since, the original assumption in this development was:

tCA/gh tc g/h

B it Rl

. (3.66)

the nonlinear terms, as a first approximation, may again be neglected
when compared to the linear terms. This statement is true regardless
of the value of the relative bed displacement, C,O/h, since this ratio

is always less than or equal to unity. Hence, the linearized boundary

conditions v = n, on the free surface and v = Qt on the bed may be

applied on y = 0 and y = -1, respectively, even when Qo/h approach-
es unity. Again no restriction must be placed on the relative size of
the disturbance, b/h , alone in order for the linear approximation

to be applicable as long as tCA/gh/b - - S N

If the quantities Co/h, b/h, and tcm are indeed the proper
dimensionless generation parameters and if these ratios remain con-
stant, the wave generated should be similar regardless of the actual
values of Co’ b, tc, h or g. To see if this indeed is the case, con-
sider the linear solution given by Eq. (3. 36) which describes the vari-

ation of the wave amplitude as a function of space and time for the
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exponential bed displacement given by Eq. (3.30). The definition of
the characteristic time, tc’ for this motion, as mentioned previously,
is taken as tc = 1.11/a where a is the arbitrary constant appearing

in Eq. (3.30). Introducing the nondimensional variable X = kh, Eq.
(3.36) may be rewritten as:

2
1551

ﬂ(%, t»/g—/ﬁ> L rw cos X(%\} sin )\(-}}%> [ <tc“/§7};> _]

T A cosh X < 1. 11 >2+}, ol x_1

tcgh

.

go 'JO

[exp(—l. 11 i%)- cos (JX tanh A t\/g/h>

tCJg/h J/A tanh )\
| A 10

sin («/X tanh ) t«/g/h)]dk (3.67)

From Eq. (3.67) it can be seen that if b/h and tCJg7'}_1 are constant,
then the same nondimensional wave form, ’r]/go, results at the same
nondimensional distance downstream, x/h, and at the same nondimen-
sional time, tm. Note that the generation parameter, Qo/h, does
not appear in Eq. (3.67). In general, this parameter is assumed to be
much less than unity by the linear model and is thus eliminated from
consideration. In a similar manner the wave form given by Eq. (3. 41)

for the half-sine bed displacement may be expressed as:
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T 2
ﬂ(%,t@) 3 _1_,-°° cos X(;—‘) sin X(Bt)-)[ (Tg—/_l—:\ ] .
CO Tom 0 A cosh ) / \2

- X tanh A

Ktc,\/m/

{cos («/)\ tanh )\ th/h) - cos (ﬁi%//ih>+H[(t—tc)Jg7—ﬁ-’-

[cos <A/)\ tanh A(t-t )«/g/h) ofs cos<1r h@/_—b—>]1{d>\ ; (3. 68)
C tCJg7'H |
where again A = kh and the characteristic time has been set equal to
the total time of displacement, i.e., tC = T. Egq. (3.68) also shows
that a similar nondimensional wave results when the nondimensional

generation parameters, b/h and tCA/g7h, are held constant.

In summary, it has been shown that during the time of bed
displacemént, the linear theory appears to be applicable when the
generation parameters satisfy the conditions given by either Eq. (3.58)
or Eq. (3.66). From these conditions it can be seen that no restriction
need be placed on the size scale, b/h, alone as long as the time scale,

tCA/g7h, is such that Eqs. (3.58) or (3. 66) are satisfied.

3.2.2 Aspects of Nonlinearity - Propagation.

In the preceding section the effects of nonlinearities
introduced during the bed deformation process were discussed. Para-
meters characterizing the generation and ranges of these parameters

for which the linear theory appeared to be applicable were determined.
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Once a wave has been generated and propagates into the fluid region of
constant depth a different scaling of the dimensional variables is re-
quired in Eqgs (3. 47) through (3. 51). It is well known for long waves,
i.e., waves whose lengths are large compared to the water depth, that
the magnitude of the nonlinear terms is given by the ratio of the maximum
wave amplitude, No? and the water depth, h, i.e., no/h. The
magnitude of the linear terms is indicated by the square of the ratio of
the water depth, h, to a characteristic length, 4, of the wave in its
direction of propagation, i.e., (h/{,)z. The characteristic length, 4,
is a measure of the distance over which significant changes in water
surface elevation occur. More discussion of this characteristic length
will be given later. The importance of the nonlinear terms relative
to the linear terms is thus proportional to:

2
nonlinear effects no/h : 1']o*'
linear effects @ THATE = 1®

= U. (3. 69)

Although this ratio was pointed out by several authors (see, e. g., Stokes
(1847)), Ursell (1953) first discussed the significance of the ratio in
characterizing water waves of different types thus resolving what had
come to be known as the long wave paradox (see Stokes (1891) or Lamb
(1932, §252)). Hence the ratio given by Eq. (3.69) will hereafter be
referred to as the Ursell Number. For the nonlinear effects (also
termed amplitude dispersion by Lighthill and Whitham (1955)) to be
negligible during wave propagation the Ursell Number must be much

less than unity, i.e., 'r]o/h < < (h/2)°. When the Ursell Number is



T .

of order unity or greater, the linear theory is no longer applicable.
Waves for which the Ursell Number is much greater than unity can be
approximated very well by ignoring the linear effects (or frequency

dispersion) and retaining only the nonlinear effects.

When amplitude and frequency dispersion are of the same order
such at U = 0(1) the description of the wave motion must retain all
terms. Approximations to the complete solution of the water wave
problem for this special case can be made when linear and nonlinear
effects are assumed to be small and of the same order, i.e., no/h =
0[(h/2)?] < < 1. Equations governing the wave motion for this special
case have been developed by several authors including Boussinesq
(1872) and Korteweg and deVries (1895). Since this discussion of non-
linear effects occurring during wave propagation only applies to long
waves, the ratio h/2 must always remain much less than unity. It
will also be tacitly assumed throughout this discussion that T]O/h o |
in order to avoid the phenomenon of wave breaking which is known to
occur when no/h approaches unity. Hence, the special case of
’r]O/h = 0[(h/2)®] < < 1 is of major importance in this study and will

be discussed in more detail shortly.

The Ursell Number provides an excellent indicator for tracing
the evolution of wave behavior during propagation. Suppose for the
moment that a bed deformation occurs such that the wave generated is
initially predicted accurately by the linear theory. Then for the wave

Tlo/h o T (h/{,)a, i.e., the Ursell Number is much less than unity.
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It is well known that as the wave propagates the nonlinear effects will
grow and eventually they will become of the same order of magnitude
as the linear effects. If the bed deformation is such that the Ursell
Number for the resulting wave form is initially much greater than
unity, the linear theory is invalid for all time. For this case, how-
ever, the importance of the linear effects increases relative to the
amplitude dispersion terms during propagation and the Ursell Number
decreases until it is again of order unity. Thus, regardless of the
initial wave, the wave always evolves into a state in which the Ursell

Number is of order unity during propagation in a fluid of uniform depth.

Once the Ursell Number becomes of order unity, it remains
constant during further wave propagation. The region of space in the
direction of wave propagation for which the Ursell Number is of order
unity will be referred to as the far-field. (A discussion of wave
behavior in the far-field will be given shortly.) The region of space,
including the generation region, over which the Ursell Number is
much less or much greater than unity will be termed the near-field.
In addition, a linear near-field will be said to exist when the Ursell
Number is much less than unity, and a nonlinear near-field will exist
when initially the Ursell Number is much greater than unity. The
existence of a linear near-field is determined by the generation para-
meters discussed in Section 3.2.1. The length of a linear near-field
is a function of the rate of growth of nonlinearities during wave

propagation.
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As suggested earlier, the length, £, required to characterize
the linear effects of frequency dispersion, is a measure of the distance
over which significant changes in wave amplitude occur. When the
length is chosen properly for a wave, the ratio (h/2)® becomes pro-
portional to the vertical accelerations a water particle experiences
as the wave passes (see, e.g., Lamb (1932, §172)). An excellent
physical description of wave dispersion caused by vertical accelera-
tions of fluid particles is given by Peregrine (1966) and Madsen and
Mei (1969). In a periodic wave the characteristic length, 2, is pro-
portional to the wave length. In a wave of complex shape, i.e., non-
periodic, the characteristic length is no longer well defined and in
fact no single length may exist which adequately describes the entire
wave. In a wave of this type the length, 4, becomes a local property
of various regions of the wave profile. An appropriate definition for

the characteristic length, 4, in a region of a complex wave form is:
= 0(n/n)), (3.70)

where N, is the slope of the wave profile. When computation requires

a specific value for the length, 4, it may be taken as:

&zﬂn—oﬂ' 4 (3.71)

where o is the maximum wave amplitude in the region of the wave
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under consideration and an” is defined as the maximum
value of the slope of the profile in that region. Thus, the local Ursell

Number for a complex wave shape may be given as:

3
L h—a—T‘%—”—g ; (3.72)
%

In Section 3. 2.1 the linear theory was found to be applicable
during the interval of the bed deformation when the conditions on the
generation parameters given by Eqgs. (3.58) and (3. 66) were satisfied.
As indicated previously, the length of time after wave generation for
which the linear theory remains applicable depends on the rate of
growth of the nonlinear effects during wave propagation. This rate
of growth depends on the generated wave form which is a function of

the generation parameters discussed in the previous section.

Consider the bed deformation whose generation parameters
satisfy the conditions given by Eq. (3.58). For these deformations
the bed displacement can be considered to be impulsive; hence, at
the end of the displacement little wave propagation has taken place.
The water surface will have assumed a profile near the end of the
bed movement similar to the shape of the deformed bed. Due to the
elliptic nature of the fluid's response to an impulsive boundary dis-
placement, the water surface will not move exactly as the solid

boundary. This is especially true for small disturbance-size scales,
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b/h, as will be demonstrated in Chapter 5. It is useful, however, to
assume for the moment that for small-amplitude-impulsive-displace-
ments of the bed, the water surface at the end of the displacement is
identical to the bed deformation. For a block upthrust of the bed
section, the assumed water surface at the end of the displacement

is shown in Fig. 3.4. If the step in the bed profile is ignored, the

V')

Jo X
OIS ?/////////

Fig. 3.4 Assumed water surface profile at the end of an impulsive
upthrust of the bed.

asymptotic wave behavior of such an initial displacement based on a

linear theory has been found by Jeffreys and Jeffreys (1946) to be:

Wi

21 [ ) (b )] 070
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where Ai [ ] is the Airy integral and all variables are dimensional.
The Airy function for its argument less than zero, i.e., for x < t*@,
is a damped oscillation where the spacing of the nodes or the wave
length decreases as the argument becomes more negative. From

Eq. (3.73) it is seen that a convenient choice of a characteristic
amplitude of the wave form, Mo’ and a characteristic length, £,

are:

i 1
-8 3
W, = o[go<%>(t>a/g7h) ] A O[h(tﬂa/g/h) —’ (3. 74)
where t* is the elapsed time after generation. Itis noted that the choice
of length, 4, given by Eq. (3.74) differs from that suggested by Eq.
(3.71); however, either choice should yield values of the same order
of magnitude for the Airy integral. Thus the Ursell Number behaves

as:

Wik

_] : (3. 75)

u - o (2)()(esa7)

ol

From Eq. (3.75) nonlinear effects are seen to grow with time as (t¥*)".
(This discussion of the growth rate of nonlinearities is essentially

that presented by Ursell (1953).)

The time required for the Ursell Number to reach a specified
value can be approximated from Eq. (3. 75). For instance, when the
Ursell Number equals unity the linear theory is no longer applicable.
The nondimensional time, |, after generation for this to occur is of

order:
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- o) @71,

-

and the corresponding nondimensional distance, 8, from the generation

region is of order:

G- x=3 -3
() ®))

Therefore, the extent of the linear near-field decreases very rapidly
as the amplitude scale, Co/h, or the size scale, b/h, of the deforming
boundary increases. Itis interesting to note that although the magni-
tude of the size scale alone is unimportant in determining the appli-
cability of the linear theory, it is extremely important in determining

the distance over which the linear approximation remains useful.

The far-field has been previously defined as the region of wave
- propagation in which amplitude dispersion has become equal in impor-
tance to frequency dispersion, i.e., the Ursell Number is of order
unity. In a positive wave (no > 0) amplitude dispersion tends to hold
the wave form together while frequency dispersion is acting to disperse
the wave. Since both effects are equal in magnitude, a balance is
achieved and permanent wave forms are possible. In a negative wave
(no < 0) both amplitude and frequency dispersion act together to dis-

perse the wave; hence, no permanent form waves are possible.

As pointed out earlier, when T]O/h < < 1. and (h/4)®? < <1
such that no/h = 0[(h/2)?], approximate equations governing the wave
motionhave beendeveloped by several authors [see,e.g., Boussinesq
(1872), Rayleigh (1876), McCowan (1891), and Korteweg and deVries

(1895)1].
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The permanent form waves found by these authors are the solitary or
cnoidal waves. The equation which Korteweg and deVries found to
govern a wave propagating in the direction of increasing x* in water of

constant depth, h, is:

i 3 0 Voo LT o
(na‘)tzk t A/g_h(li-zﬁl_l_)(n’l‘)x* ¥ g gh hz(ﬂ’l‘) -4 j (3. 78)

P €

where the asterisk is again used to denote dimensional variables.
(Eq. (3.78) will hereafter be referred to as the KdV equation. )
Letting n = n*/h, x = x*/h, and t = t*@}—l the KdV equation may
also be written:

3 1 ~
SR T L T R B ks 9

XXX

Another form of the KdV equation which was used by Peregrine (1966)
is given as:
u, + (1+-3—u)u - lu = 0 (3. 80)
t 2 ot Rt d )
where u = u%*/J/gh and u¥*(x%*;t*) is the mean horizontal velocity of
the water. The water surface elevation, 1, is related to the velocity,

u, to the same order of approximation by:

¥ & ey --é—u . (3. 81)

From the preceding discussion it is seen that when no/h = <1
and (h/2)° < < 1 such that no/h = 0[(h/2)®] in the far-field, the KdV
equation provides an appropriate description of the future wave

behavior. In this investigation, a possible strategy to use when wave
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forms are required in the far-field is to take the linear solution
which is applicable in the near-field as the input to the KdV equa-
tion. The far-field wave forms can then be found by solving the
initial value problem for the KdV equation, either numerically or
analytically. Due to the complexity of the algorithm of the exact
solution a numerical solution has been used based on the work of
Peregrine using Eqgs. (3.80) and (3.81). A similar input-output
approach to the solution of the KdV equation has recently been used by

Zabusky and Galvin (1971).

When nonlinear and linear effects are each of order unity the
above strategy fails since the KdV equation applies to small (but finite)
waves only. Fortunately, this case is of little importance in the

current study.

As indicated previously, when the Ursell Number is of order
unity for a wave of complex shape, permanent form waves are
possible. The evolution of permanent wave forms has been
recently demonstrated by an extensive amountof research on the
properties of the KdV equation by several authors. In a numerical
study of the KdV equation Zabusky and Kruskal (1965) were able to
show that solitary waves (termed solitons by the authors) of different
amplitudes, and thus travelling with different celerities, were able
to ''pass through' one another without losing their identity. The only

effect of the nonlinear interaction of two solitons was a slight shift in
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phase (an acceleration) of the two waves. The ability of solitons to
emerge from the nonlinear interaction suggests that a complex wave
form may be thought of as consisting of a finite number of interacting
solitons of different amplitudes. This surprising behavior of a non-
linear physical process has been confirmed analytically by Gardner,
et al (1967) who discovered a nonlinear transformation which relates
the solutions of the KdV equation to the eigenvalues of the inverse
scattering problem. They showed that for an initial wave profile
whose net volume is finite and positive, a train of solitons will even-
tually evolve with decreasing amplitude toward the rear of the train
followed by a spreading tail of oscillatory waves. (For an initial wave
profile whose net volume is finite but negative, no solitons emerge;
this case will be discussed in more detail in Chapter 5.) The ampli-
tude and number of solitons that emerge is a function of the initial
condition 7N(x;0). Lax (1968) has investigated this same behavior for
a class of nonlinear equations of evolution one of which is the KdV
equation. A more complete discussion of the KdV equation and its
properties has appeared in a series of papers authored by researchers
at the Plasma Physics Laboratory, Princeton University, which are

indicated by references (24), (31), (32), and (46).
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3.3 RELATION OF THE DAM-BREAK PROBLEM TO IMPULSIVE
BED MOVEMENTS.

In Section 3.2.1 a class of bed movements was discussed in
which the deformation occurred so rapidly that the free surface near
the end of the movement assumed a shape almost identical to that of
the deformed bed. For a small-amplitude-bed-uplift, i.e.,

0 < Qo/h < < 1, a solution for the asymptotic wave behavior was
presented which was based on a linear theory. Now consider the case
where the uplifting bed section lies in the region -® < x* < 0, and the
bed displacement occurs impulsively through a distance Co which is
small but no longer much less than the water depth, h. The discussion
of the generation parameters in Section 3.2.1 suggests that a nonlinear
theory is required to describe the wave behavior. Again assuming the
water surface to be identical to the deformed bed at the end of the
movement, the initial water surface profile is shown in Fig. 3.5. (If
the relative bed displacement, Co/h, is small (but finite) then the pres-
ence of the step in the deformed bed may be ignored as a first approxi-
mation.) The wave form shown in Fig. 3.5 resembles the initial water
surface profile commonly used in the classical dam-break problem;
hence, further behavior of waves generated in this manner should be
analogous to the waves predicted by the solution of the dam-break

problem.

The dam-break problem (Stoker (1957), p. 333) consists of
finding the wave generated when a barrier separating two regions of
fluid of depth h and h + Qo is suddenly removed; thus, resulting in an

initial wave profile identical to that shown in Fig. 3.5. (Note that the
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origin of the coordinate system is now at the bed.) The equations

which are assumed to govern the motion are given by:
y*A
*170- c’o

Fig. 3.5 Assumed water surface profile after an impulsive bed
upthrust in the region -» < x* < 0,

(u¥k), . + u*(u*)x* 1 g(n*)x* =0, (3.82)

t

[u*(h+n*)lx,:< it (n*)t* = 0, (3. 83)

where m¥(x¥*;t*) is the water surface elevation above the downstream
water level given by h. Eqgs. (3.82) and (3. 83) neglect vertical water
particle motions thus eliminating the linear effects of frequency dis-
persion and implying a hydrostatic pressure distribution everywhere.
An analytical solution of Eqgs. (3.82) and (3. 83) for the initial water pro-
file shown in Fig. 3.5 1is available based on the method of character-
istics (see Stoker (1957)). The solution assumes that a bore (or shock)
of amplitude o forms immediately upon removal of the barrier and
then moves downstream with a constant velocity V. At the same time a

negative wave moves upstream into the reservoir. Fig. 3.6 shows the
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water surface profile at a time tg after the removal of the barrier.

The fluid domain in Fig. 3.6 is divided into four regions: zone (1)

downstream of the advancing bore, zone (2) containing the constant

amplitude bore, zone (3) where the transition between the upstreém

water surface elevation and the bore occurs, and zone (4) which is the

upstream quiet zone. Since regions (1) and (4) are quiet zones, the

watef surface elevations are the same as the initial state and the
horizontal fluid velocities are zero. In regions (2) and (3) the bore
amplitude, no, the particle velocities under the bore, u;k, and the

bore velocity, V, are related (see Stoker (1957)) by the equations:

1+%:%<J1+8(V/@)2—1> (3.

u;k ik 2/gh<l+n—}?—> = 2,/gh(1+%> ; (35

u¥ = V+%gvh<1 -,\/1+8(V/A/g_h)2> , (3.

while the water surface elevation in zone (3) is given by

*

h + (xR EE) = -()Lg(z /gh<1+CTo> . ’t‘—)a (3.

The negative wave retreating upstream is thus parabolic in form.

84)

85)

86)

87)

Egs. (3.84), (3.85), and (3.86) may be solved simultaneously for Ny’

2

u*, and V as a function of Qo/h. The solution of these equations for

the relative bore amplitude, no/go, as a function of Qo/h is shown
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4) (3)

Fig. 3.6 Regions of the fluid domain after removal of
the barrier.
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Fig. 3.7 Variation of the relative bore amplitude, n,/Cy, as a
function of the initial difference in water levels, Qo/h.
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in Fig. 3.7. As the amplitude scale, Qo/h, becomes small, the bore
amplitude becomes equal to one-half of the initial difference in water
levels, i.e., ’ﬂo/go = 0.5 as C,o/h =0 AS Qo/h increases to unity,
the relative bore amplitude decreases from 0.5 to 0.454. Since the up-
lifted bed section is not present in the dam-break problem, the two

problems are no longer approximately analogous for large values of { /h.
g i & g g o

When a reservoir of finite length, b, exists behind the barrier
the previous discussion is limited to the time interval occurring before
the negative wave, which propagates upstream from the original loca-
tion of the barrier, reaches the end of the reservoir. Assuming for
convenience that a vertical wall exists at the upstream end of the
channel, i.e., at x* = -b, the negative wave is reflected and pro-
pagates downstream in the positive x*-direction after striking the wall.
A characteristic-plane solution for this problem is shown in Fig. 3.8
where the coordinate x* is scaled by the reservoir length, b, and time
is scaled by the time required for the negative wave to reach the back-
wall, ive., t = t’kA/g—(—h+_§()—)/b. The water particle velocities, u¥, and
the phase velocities, Jm, (from which the water surface elevations,
T (x*;t%), can be found) at the labelled nodes in Fig. 3.8 have been
determined using standard techniques of the method of characteristics.
(These values are shown in the table inset in Fig. 3.8.) The shock
which is generated at the instant the barrier is removed, travels

downstream along the straight characteristic C;. The negative wave
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Fig. 3.8 Characteristic-plane solution of a dam-break problem with
a reservoir of finite length.
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propagating upstream is bounded by an expansion fan of angle A by
the characteristics C; and Cz. Once ux and N, are found from
Eqgs. (3.84) through (3.86), the angle, 8, of the expansion fan can

be found. The characteristic C, is reflected from the backwall and
interacts in a nonlinear manner with the incoming negative wave. The
nonlinear interaction is evident by the curvature of the characteristics
which indicate an acceleration of the negative wave until the inter-
action is completed. The region of the nonlinear interaction in Fig.
3.8 is indicated by the dashed portion of the characteristics. When
the characteristic Cz strikes the backwall the reflection of the
negative wave has been completed. It is interesting to note that once
the reflected characteristic C, clears the region of nonlinear
interaction, at node (7), it moves downstream at a constant velocity
slightly larger than the bore velocity; thus the negative wave will
eventually overtake the shock front. This is true for all initial
differences in water level over the range 0 < C,O/h < 1:, (For.a

discussion of an expansion wave overtaking a shock see Courant and

Friedrichs (1967, p. 180).)

A typical water surface profile after the reflection process
has been completed, but before the negative wave overtakes the
shock front, is also shown in Fig. 3.8. The bore now has a finite
length, as it must, since the volume of water in the reservor is

finite. The profile shown in Fig. 3.8 should be typical of waves
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generated by bed movements for which the dam-break analogy is

applicable, at least near the generation region.

Thus, the dam-break analogy provides a convenient mechanism
for investigating the effect of the bed displacement, go, and the dis-
turbance length, b, on the generated waves for a class of deformations
termed impulsive. It should be remembered that the nonlinear theory
used to solve the dam-break problem is limited in its ability to predict
the detailed wave structure due to the omission of frequency dispersion
and viscous effects. The vertical acceleration experienced by a fluid
particle is directly proportional to the curvature of the water surface.
At an abrupt discontinuity in the water surface (the shock front) the
curvature is infinite thus the omission of the effects of frequency dis-
persion is not justified. In a real (viscous) fluid diffusion of vorticity
by viscosity will smooth this discontinuity. Furthermore, Binnie and
Orkney (1955) have shown experimentally that when the ratio of bore
amplitude, Mg’ to water depth, h,exceeds 0. 75 the front of the bore
breaks and becomes turbulent as in the hydraulic jump. For 0.35 <
no/h < 0. 75 they found that undulations formed on the bore and at
least one of these broke; the undulations are the result of frequency
dispersion. No breaking was observed in their experiments when

ﬂo/h < 0.35, however, the undulations were still present.
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3.4 THE THREE-DIMENSIONAL MODEL - A LINEAR THEORY.

In the previous discussions in this chapter attention has been
given primarily to a simple two-dimensional model of tsunami genera-
tion, i.e., waves generated and propagating between parallel ortho-
gonals. The real tsunami problem is generally three-dimensional
with waves emanating in all directions from the disturbance. There-
fore, it is of interest to investigate certain aspects of a simple three-
dimensional model in order to relate the general properties of waves

propagating in that type of system to those in the two-dimensional case.

Consider a three-dimensional fluid domain D with cylindrical
coordinates r, z, and @. The fluid region is bounded above by a free
surface, Sf, below by a solid boundary, Sb’ and unbounded in the
radial direction, i.e., 0 < r < «, Initially the free surface and bed
are located at z = 0 and z = -h, respectively. The prescribed bed
movement for t > 0 is given by z = -h + ((r;t) where the bed defor-
mationhas beenassumed to be axially symmetrical. The resulting
water surface displacement will also be independent of the coordinate
® and is given by z = n(r;t). The fluid flow is again assumed to be
incompressible, irrotational, inviscid, and surface energy effects are
neglected. Since the flow is axially symmetrical the velocity potential,
v, is independent of the coordinate ®. Under these conditions the

mathematical description of the problem is as follows:
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Vch =P + o + B 0 in D, (3.88)
o, + -2—(@2 4 cp’;) +gn =0 onz = 7(r;t) , (3.89)
QOZ = T]t + .. T]r on z = N(rit); (3.90)
P Ct 15 corCr onz = -h + ((r;t) . (3.91)

In a2 manner which is similar to that presented in Section 3.1 the non-
linear problem given by Eqs. (3.88) through (3.91) is replaced by its

linear approximation:

1 ok :
O + gt 10 s o 0 in D, (3.92)
4 +go, = 0 onz =0, (3.93)
o = Qt onz = -h. (3.94)

The linearized equations are most easily solved using transform
techniques similar to those described in Section 3.1. The appropriate
transform for the radial coordinate (which ranges from zero to infinity)
is the Hankel transform of zeroth order. The Hankel transform of a

function f(r) is given by:

T(k) = jo rJ_(kr)f(r)dr , (3.95)

where Jo(kr) is the Bessel function of the first kind and of order zero.
(The caret superscript will beused here to denote the Hankel trans-
form.) The time variable, t, is again transformed by the Laplace

transform (Eq. 3.11). Performing the necessary operations on Eqs.
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(3.92), (3.93), and (3. 94), the transformed problem becomes:

o, (k,2s) - kK2 ok, 2;8) = 0, (3. 96)
o b

cpz(k,O;S) + ?co(k,O;S) =0, (3. 97)
B(k, -h;s) = sC(k;s) . (3. 98)

Solving Eqs. (3.96), (3.97), and (3.98) yields:

~

X _ _ -gsl(k;s) [ g ]
ok, z;s) = (Sg+w§-) —osh kb cosh kz - g_k sinh kz (3 99)

where ° again is defined as: w® = gk tanh kh. The water surface
variation is found from Eq. (3. 89) after that expression has been

linearized and transformed to be:

~

Nik;s) = 5 € (kis)

3.100
(sg+w2) cosh kh ( )

Application of the inversion integral for the Hankel transform of zeroth

order, i.e.:
e A
flr) = f kJo(kr)f(k)dk . (3..101)
5.0
and the Laplace inversion integral, Eq. (3.28), to Eq. (3.100) yields:
° s2e®%J_(kr) C(k;s)
0 = [ {zr |
n(r;t) Jo 2mi B, (sé+w2)cosh kh

ds b ik (3.102)
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To use Eq. (3.102) a specific bed displacement-time history
must be given. For example, consider a block upthrust or downthrow
of a section of the bed which is circular in planform and moves in the
same exponential manner as shown in Fig. 3.2. If the radius of the
moving bed section is given by ro then the movement is described

mathematically by:

Clrst) = Qo(l—e_at)H(ro—r), BE Y (3.103)

Where H(ro-r) is the Heavyside step function defined by Eq. (3. 31).
Transforming the bed movement by the Hankel and Laplace transforms

given by Eq. (3.101) and (3.11), respectively, one obtains:

A

r J, (kr )
[

Qa
s(s+a)] y (3.104)

where J, (kro) is the Bessel function of first kind and order one.

Substituting Eq. (3.104) into Eq. (3.102) yields:

© J, (kro) Jo(kr)

(r;t) = C 7 J L] ase”ds ) g (3.105)
) = oo fe 0 cosh kh | 2mi “ Br. (s2+w®)(s+a) ; )

The integration of the bracketed quantity above is identical to the
Laplace inversion integral appearing in Eq. (3.34); hence, the following

expression for the wave amplitude distribution results:

o J, (k¥ )T (ki) 2
n(r;t) = -C J s [

of 7[—ag 1 P
oro.JO L e K cos wt--sin wt_jdk. (3.106)
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The integration over wave number space in Eq. (3.106) cannot be
performed in closed form. Thus, numerical integration again must

be used.
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CHAPTER 4
EXPERIMENTAL EQUIPMENT AND PROCEDURES

In order to model the bed deformations given by Eqs. (3.30)
and (3.32) in the laboratory, a wave generation system was required
in which both the time-displacement history of a block section of the
bed in a wave tank and the motion characteristics, i.e., QO, b, and
tC, could easily be varied. A hydraulic servo-system was developed
to meet these requirements. Since the wave behavior for the simple
two-dimensional model of generation described in Chapter 3 is sym-
metric about the position x = 0, this position was replaced in the
laboratory model by a vertical wall; hence, only one-half of the disturb-
ance and fluid domain were modeled. In this chapter the wave tank,
the hydraulic servo-system, the associated instrumentation, the actual
time-displacement histories and dynamics of the moving bed section,
and the range of the generation parameters (Qo/h, b/h, tcm or

tcﬂ/gh/b) for which experiments were conducted are described in

detail.

4.1 THE WAVE TANK.

A wave tank measuring 103.8 ft (31.6 m) long, 2 ft (61 cm) deep,
and 15-1/2 in. (39.4 cm) wide was used for the experimental program.
The tank is constructed of eleven separate modules, ten of which are

identical; the additional module is located at one end of the wave tank



] I

and contains the moveable block section of the bed which is used to
generate the waves. A schematic drawing of one of the ten similar
modules of the wave tank is shown in Fig. 4.1. Details of the con-
struction of these modules have been given previously by French (1969)
and will only be discussed briefly here. The side walls of each of
these ten modules are constructed of glass panels measuring 5 ft long,
25 in. high, and 1/2 in. thick. The instrument carriage rails are
made of 1 in. diameter stainless steel rod and are mounted on the top
flanges of the tank sidewalls with studs spaced at 2 ft intervals. The
rails were carefully leveled to within 0.001 ft of a still water surface
in the wave tank. A photograph of an overall view of the wave tank
taken from the downstream end, i.e., the end of the tank furthest

from the wave generator, is shown in Fig. 4.2.

A wave-energy dissipation system which consists of twelve
individual units is located at the downstream end of the wave tank.
Each unit is constructed of a sheet of rubberized hair (commonly
used in the manufacture of furniture) measuring 2 in. thick with the
dimensions of the tank cross-section, and held in a rack made of 1/8
in. stainless steel rod. The units are approximately equally spaced
over the last 5 ft of length of the wave tank (see Fig. 4.2). Two sheets
of rubberized hair are also attached to the downstream end-wall of the
tank. The efficiency of this system as an energy dissipator varied
appreciably over the range of water depths used in the experiments.

No detailed reflection coefficients were obtained for the system, since
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Fig. 4.1 Schematic drawing of a typical downstream
tank drawing (after French (1969) )
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Fig. 4.2 Overall view of wave tank
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the main purpose of the dissipators was to attenuate the reflected wave

energy in the tank in the shortest possible time.

A schematic drawing of the tank module which was constructed
to house the moveable bed section is shown in Fig. 4.3. The upstream
end-wall of this module (corresponding to the position x = 0 in the
theoretical model presented in Chapter 3) is constructed of 15 in.
aluminum channel with a machined face and is mounted on four cad-
mimum-plated studs. Using these studs, the end-wall can be adjusted
for proper vertical alignment. Adjacent to the upstream end-wall is
an open section (or chamber) in the bottom of the module where the
moveable bed section of the wave generator is located. (Note that the
moveable bed section is shown installed in this chamber in Fig. 4.3.)
The length of this chamber corresponds to the half-length, b, of the
modeled bed deformation. The downstream wall of the chamber is a
1/2 in. machined aluminum plate which is also mounted to adjustable
studs to facilitate alignment. The fixed portion of the bed section in
this tank module, which connects to the remaining wave tank, is con-
structed of 15 in. aluminum channel. (All aluminum was anodized to
reduce corrosion.) The fixed bed section and the downstream chamber
wall are designed so that alterations in the chamber length can be made;

hence, the half-length, b, of bed deformation may be varied.

The side walls of the end module shown in Fig. 4.3 are made of
glass panels measuring 48 in. long, 41 in. high, and 3/4 in. thick.

Thicker glass is used in this module than in the downstream tank
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modules because of the larger hydrodynamic forces which occur
during rapid movements of the bed section. After construction, this
tank module was bolted to the existing wave tank with each leg of the
module supported on bolts which were fastened to a flat steel bar
bolted to the laboratory floor (see Fig. 4.3). Hence, the portion of
the tank bed in this module just downstream of the chamber for the
moveable bed unit could be aligned with the bed of the remaining wave
tank. Instrument carriage rails were also mounted on the top flanges
of this module and aligned with the rails of the main wave tank. A
photograph of the end tank module after installation is shown in Fig.

4.4 with the moveable bed unit in place in the chamber.
4.2 THE WAVE GENERATOR.

The wave generator which was designed and constructed to
accurately model the bed deformations discussed in Chapter 3 is
driven by ahydraulic servo-system. This system accepts an input
voltage and converts the input electrical signal into a mechanical
displacement (which is directly proportional to the magnitude of the
voltage); hence, the time-displacement history of the mechanical
movement is proportional to the time-voltage history of the input
signal. (A brief description of this generation system has been given
by Raichlen (1970).) The system can be conveniently divided into the
following sections: a moveable bed assembly, the hydraulic supply
unit, and the servo-system. A schematic drawing of the entire sys-

tem is shown in Fig. 4.5.
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Fig. 4.4 View of the end-tank module and wave generator.
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The moveable bed assembly consists of a hydraulic cylinder,
its supporting structure, two flexures, a load cell, a guide cylinder,
the bearing support structure, and the bed unit with its attached seal.
The assembly is located in a pit beneath the end module of the wave
tank (see Fig. 4.4); an '"exploded' view of the assembly is shown in
Fig. 4.6. The hydraulic cylinder which drives the bed unit is a double-
throw type (Miller Model DH62) with a stroke of *7 in. ($¥17.78 cm)
and has a net piston area of 6.811 sq.in. The hydraulic cylinder is
mounted vertically and attached by means of two stainless steel flex-
ures to the floor of the pit and to the load cell. The flexures provide
a means to correct for any small vertical misalignments occurring
during installation. The upper portion of a load cell (BLH Electronics,
Type U361) is attached to the bed unit and measures the total force
applied to the bed unit. (This transducer was not used in the current
study.) To insure the proper vertical movement of the bed unit, a
stainless steel cylinder with a lengthof 2ft and a 7-1/2 in. outside
diameter was used as a guide. The guide cylinder moves between two
bronze bearings located in the bearing support structure. The bearing
support structure is firmly anchored to the laboratory floor beneath
the end tank module as shown in Fig. 4.3. The bed unit is positioned
inside the chamber of the end module of the wave tank and is bolted to
the upper portion of the guide cylinder. A seal is attached to the
bottom perimeter of the bed unit (see Fig. 4.3). The seals which were
designed and fabricated are a single-piece unit, molded of relatively

flexible material and mounted to an aluminum frame.
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Fig. 4.6 Exploded view of moveable bed assembly.
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Two bed units were used in the experimental program in order
to vary the half-length, b, of the bed deformation. The longer bed
unit (shown in Figs. 4.3, 4.4, and 4.6) measures 2 ft (61 cm) in
length, 8 in. high, 15-1/4 in. wide, and is constructed of machined
cast aluminum except for the upper lid which is made of 1/2 in.
aluminum plate. The second bed unit is 1 ft (30.5 cm) in length, 8 in.
high, 15-1/4 in. wide, and is constructed entirely of 1/2 in. machined
aluminum plating. Both units were anodized to protect against

corrosion. A seal was fabricated for each bed unit.

The hydraulic supply unit consists of a hydraulic fluid reservoir,
pump, filter, unloading valve, two heat exchange units, check valve,
and an accumulator. A photograph of the main portion of the hydraulic
supply unit is shown in Fig. 4.7; the accumulator which is located in
the pit beneath the wave tank and the water cooled heat exchanger
which is located in the hydraulic fluid reservoir are not shown in this
photograph. (<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>