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ABSTRACT 

A general solution is presented for water waves generated by 

an arbitrary movement of the bed (in space and time) in a two-dimen­

sional fluid domain with a uniform depth. The integral solution which 

is developed is based on a linearized approximation to the complete 

(nonlinear) set of governing equations. The general solution is evaluated 

for the specific case of a uniform upthrust or downthrow of a block 

section of the bed; two time-displacement histories of the bed move­

ment are considered. 

An integral solution (based on a linear theory) is also developed 

for a three-dimensional fluid domain of uniform depth for a class of bed 

movements which are axially symmetric. The integral solution is 

evaluated for the specific case of a block upthrust or downthrow of a 

section of the bed, circular in planform, with a time-displacement 

history identical to one of the motions used in the two-dimensional 

model. 

Since the linear solutions are developed from a linearized 

approximation of the complete nonlinear description of wave behavior, 

the applicability of these solutions is investigated. Two types of non­

linear effects are found which limit the applicability of the linear 

theory: (1) large nonlinear effects which occur in the region of gener­

ation during the bed movement, and (2) the gradual growth of nonlinear 

effects during wave propagation. 
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A model of wave behavior, which includes, in an approximate 

manner, both linear and nonlinear effects is presented for computing 

wave profiles after the linear theory has become invalid due to the 

growth of nonlinearities during wave propagation. 

An experimental program has been conducted to confirm both 

the linear model for the two-dimensional fluid domain and the strategy 

suggested for determining wave profiles during propagation after the 

linear theory becomes invalid. The effect of a more general time­

displacement history of the moving bed than those employed in the 

theoretical models is also investigated experimentally. 

The linear theory is found to accurately approximate the wave 

behavior in the region of generation whenever the total displacement of 

the bed is much less than the water depth. Curves are developed and 

confirmed by the experiments which predict gross features of the lead 

wave propagating from the region of generation once the values of 

certain nondimensional parameters (which characterize the generation 

process) are known. For example, the maximum amplitude of the lead 

wave propagating from the region of generation has been found to never 

exceed approximately one-half of the total bed displacement. The 

gross features of the tsunami resulting from the Alaskan earthquake of 

27 March 1964 can be estimated from the results of this study. 
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CHAPTER 1 

INTRODUCTION 

One of the most destructive water waves occurring in nature is 

the tsunami. The Japanese word, "tsunami", has been adopted by the 

scientific community (in lieu of "tidal wave") to describe sea waves 

generated by seismic disturbances. The principle seismic mechanism 

responsible for the generation of tsunamis appears to be tectonic 

earthquakes, e.g., earthquakes which cause a structural deformation 

of the sea bed. Other activity such as volcanic eruptions and coastal 

and submarine landslides are also known to have generated tsunamis. 

The general features of tsunamis are fairly well known at the 

present time. In the deep ocean the waves are very long and of 

sufficiently small amplitude that they are not detectable visually. 

When these waves approach a coastal region where the water depth 

decreases rapidly, the wave energy is focused by refraction which, 

combined with shoaling and local resonance effects, may result in 

significantly increased wave amplitudes. These large waves then 

strike the shoreline of exposed areas, presenting a major hazard to 

life and property in heavily populated regions. 

One of the most destructive tsunamis in historical time was 

generated by an earthquake off the coast of Japan on 15 June 1896. 

The main wave advanced shoreward to an elevation of 75 to 100 ft 
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above the normal tide level. More than 27, 000 people were killed and 

over 10, 000 homes were destroyed. More recently the Chilean earth­

quake of 2 3 May 1960 generated a tsunami that killed 1000 people in 

Chile, 61 persons in Hawaii, and 114 people in Japan (another 9 0 

were lost and presumed drowned). Extensive property damage also 

occurred in these areas. On 2 7 March 1964 a major tsunami was 

generated by an earthquake in the Gulf of Alaska which killed 142 

persons in Alaska and along the western coast of the United States and 

resulted in excess of $ 100 million property damage in these areas. 

The general migration of people to coastal regions in recent 

years has created a more urgent need for a precise understanding of 

tsunamis and their potential hazard. Inadequate knowledge of the 

vulnerability of specific coastal sites to tsunami attack and the lack of 

precision in predicting probable and possible wave heights may pose 

severe and costly engineering problems. These problems are espec­

ially difficult in the design and construction of nuclear reactors for 

power generation which require very high standards of safety. 

In order to accurately predict the potential tsunami hazard in a 

specific coastal environment, a more complete understanding of the 

following processes is required: ( 1) the generation of the tsunami 

including the tectonic features of the seismic source and the response 

of the fluid in the region of generation to the tectonic deformations, 

(2) the propagation of the tsunami across the variable depth ocean 

between the generation region and the coast, (3) the response 
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characteristics of the coastal region to the approaching wave system. 

An understanding of the wave behavior in the region of tsunami gener -

ation is especially important to the heavily populated coastal region of 

Southern California which appears to be largely unaffected by tsunamis 

generated elsewhere in the Pacific Ocean. The numerous offshore 

islands and basins adjacent to this region apparently act as a reason­

ably effective barrier to the wave energy in a tsunami from a distant 

source; hence, the primary tsunami hazard to this area may originate 

from a tsunamigenic earthquake occurring between the mainland and 

these offshore islands and basins. 

1. 1 OBJECTIVE AND SCOPE OF PRESENT STUDY. 

The objective of the present study is to investigate, both 

theoretically and experimentally, wave behavior in the region of 

generation resulting from a family of simple and idealized tectonic 

movements that could be responsible for tsunami generation and the 

propagation of the generated waves in a fluid domain of uniform depth. 

Because of a general lack of knowledge regarding actual tectonic 

features of tsunamigenic earthquakes, a simple model of generation 

based on a uniform, vertical displacement of a block section of the 

ocean bed either upward or downward has been adopted. The time­

displacement history of the bed movement is varied. A two-dimen­

sional and three-dimensional model of wave generation have been 

investigated theoretically; laboratory experiments have been conducted 

to confirm the results of the two-dimensional model. Wave propagation 
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in the two-dimensional model is investigated using a linear theory and 

a theory which includes both linear and nonlinear effects in an 

approximate manner. 

A limited review of previous mathematical and experimental 

studies of tsunami generation is presented in Chapter 2. A theoretical 

analysis based on a linear theory is presented in Chapter 3 for the 

two-dimensional and three-dimensional models of wave generation. 

A discussion of the applicability of the linear solutions due to non­

linear effects arising during wave generation and propagation is also 

presented. In Chapter 4 the experimental equipment and laboratory 

procedures are described. Experimental and theoretical results are 

compared in Chapter 5 and appli e d to the Alaskan earthquake of 

27 March 1964 in order to infer probable chara cteristics of th e 

tsunami which was generated by this earthquake . Conclusions of this 

study are stated in Chapter 6. 
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CHAPTER 2 

LITERATURE SURVEY 

The main body of tsunami research has originated in Japan as 

a natural consequence of the destruction of life and property this island 

nation has suffered as a result of these devastating waves. The Japan­

ese apparently began studying tsunamis around 1880 (for a complete 

listing of tsunami research between 1889 and 1962, see reference ( 18) ); 

however, most of the early papers are primarily descriptive of 

tsunami damage and do not attempt to model, either theoretically or 

experimentally, the generation of tsunamis. This literature survey will 

be limited to theoretical or experimental studies of tsunamis which are 

generated by bed displacements that might occur during a tectonic 

earthquake. Papers which are primarily descriptive or literature in 

the related fields of waves generated by landslides, explosions, etc., 

will not be discussed. 

The first theoretical investigation of tsunami generation and 

propagation appears to have been performed by Sano and Hasegawa 

(1915) who considered a point disturbance at the bed in a three-dimen­

sional domain of fluid. The disturbance was assumed to occur instant­

aneously in water of uniform depth, h. Based on a linearized descrip­

tion of wave behavior Sano and Hasegawa were able to develop expres -

sions for the. wave profile at large distances from the disturbance. Few 
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of the wave properties could be found from their expressions, how-

ever, because of the mathematical difficulties encountered in 

evaluating actual values of the wave amplitudes. 

Syono (1936) improved on the model of Sano and Hasegawa by 

considering the size of the disturbance to be finite. Syono assumed 

that a section of the sea bed was given the velocity: 

3cp oz = f(r )g(t) cos n@) , ( 2. 1) 

where cp = cp(r, z ;t) is the velocity potential, z is the vertical coor -

dinate, r is the radial coordinate, t is time, and n = 0 or 1. The 

spatial and temporal distributions of velocity, i.e., f(r) and g(t), 

respectively, were given by: 

f(r) and g(t) = L 
(2. 2) 

where K, R, M, and Lare arbitrary constants. These assumed 

velocity distributions enabled Syono to determine expressions for the 

wave structure for the cases of n = 0 and n = 1 in both deep 

(h/R > > 1) and shallow (h/R < < 1) water. Again the solutions for 

the wave profile were too complex to elucidate the detailed wave 

structure and Syono did not calculate wave profiles. 

In a series of papers Takahasi (1942, 1945, 1947) considered 

three different models of tsunami generation. In the first paper a 

circular disturbance of radius, r , in water of uniform depth, h , 
0 

was assumed to move with a uniform velocity a distance of :V /rrr 2
, 

0 
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where ¥- is the total volume of the displacement. The bed movement 

was permitted to occur in a finite time interval, 0 s: t s: T. Using a 

linear theory Takahasi was able to find expressions for the wave 

structure in deep (h/r > > 1), shallow (h/r < < 1), and inter-
o 0 

mediate (h/r ""' 1) water depths. A few wave profiles near the 
0 

region of ·generation were computed in an approximate manner 

for the case of shallow water and for T = r /Ji,h where g is the 
0 

acceleration of gravity. In the region of generation the water surface 

followed the bed movement until t = T. Annular waves then began to 

propagate as the water level at the origin (r = 0) began to decrease, 

eventually going below the original still water level to a maximum 

negative elevation of approximately -1. 5 ¥-/rrr 2
• The water level at 

0 

r = 0 then oscillated about the still water level in a damped manner. 

The leading wave was found to propagate with a velocity of Jgh and 
1. 

the maximum amplitude was found to decay like r - 2 . In deep water, 

sample wave profiles were computed and for r > > r the wave 
0 

-1 
height was found to decay like r 

In the second paper Takahasi ( 1945) considered a circular 

disturbance with azimuthal and radial variations proportional to 

rn cos n® with n = 1, 2, and 3. Only simple features of the waves 

generated by these deformations were determined. Positive leading 

waves were found to result from bed uplift while negative leading 

waves resulted from bed downthrow. The velocity of wave propagation 

was again found to be given for shallow water by Jgh and the ampli-
1. 

tudes were found to decay like r - 2 . 
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In the third paper Takahasi ( 194 7) considered a bed movement 

of infinite extent in one coordinate direction so that only a two-dimen-

sional fluid domain was required. The bed deformation was given a 

velocity in the form: 

~ = f(x)g(t) , (2. 3) 

where y is the vertical coordinate, x is the direction of propagation, 

t is time, and cp = cp (x, y;t) is the velocity potential. In the first model 

Takahasi examined, the spatial and temporal variations in the bed 

velocity were taken to be: 

{ (0 
Ix I < b 

f(x) = 
0 Ix\ > b 

In the second model the assumed 

{ 

b 
. 'IT'X 

Slnb 
f(x) = 

0 

{ l/T 0 < 

g(t) = 0 
t > 

spatial variation was: 

\x I < b 

\x I > b 

t < T 

T 

and the uniform variation in time as given by Eq. (2. 4) was again 

(2. 4) 

(2. 5) 

utilized. The initial wave profiles were found to resemble the bed 

deformation in both cases. The initial wave then divided into two 

similar wave systems, propagating in opposite directions, in which 

the velocity of propagation in shallow water was determined to be 

given by Jgh. Mathematical difficulties precluded more definite 

features of the wave profiles from being determined. 

Ichiye (1950) also considered a two-dimensional domain of 

fluid of uniform depth, h, in which a velocity of the same form as 

Eq. (2. 3) was imparted to bed. Modeling the spatial and temporal 

distributions of velocity by the functions: 



-9-

{ c o lxl < b {Nte-at t > 0 
f(x) = g(t) ::: 0 (2. 6) 

0 !xi > b t < 0 

where N, ( , b, and a. are constants, Ichiye was able to determine 
0 

expressions for the water surface profiles based on a linear descript-

ion of wave behavior. When the bed motion was rapid, i.e., 

ba.//gh > > l, these expressions could be simplified so that numer-

ical computation was possible. Water surface profiles in the region 

of generation were found to approximate the bed movement for this 

case and the velocity of propagation of the leading wave was found to 

be .jgh. At large distances from the generation region the wave 

profiles were evaluated by the method of stationary phase and found to 

yield a leading wave followed by a dispersive train of oscillatory waves. 
1 

The amplitude of the trailing waves was found to grow like t4 . For 

very slow movements of the bed, i.e. , ba.//gh < < 1, the largest 

waves were found to propagate with a velocity greater than Jgh and at 

large distances from the disturbance only a single wave was observed. 

Honda and Nakamura ( 1951) also investigated a two-dimen-

sional model of tsunami generation for a fluid domain of uniform depth, 

h, in which the spatial and temporal variations in velocity of the 

deforming bed were given by: 

2 I a 
f(x) = Ae -x Xi 

2 I 2 
g(t) = e-t tl (2. 7) 

where A, x 1 , and t 1 are arbitrary constants (see Eq. (2. 3)). The 

final elevation of the deformed bed, C, is given by: 



-10-

(2. 8) 

For a shallow sea, i.e., h /xi < < 1, the initial wave profiles were 

determined from Takahasi's general solution and computed numerically 

for the special case of h = 4 km, xi = 50 km, ti = 2 sec, and 

J; ti A = 3 m. The water surface in the region of generation was 

found to rise like the deforming bed and then divide into two wave 

systems (moving in the opposite direction) whose maximum amplitude 

was one-half the maximum bed deformation. The propagation velocity 

of the leading wave was again found to be given by Jgh. The magni-

tude of x 1 and t 1 was then varied and the effect on the wave behavior 

at the origin, x = 0, was observed. As xi increased the time required 

for the water to return to its original still water level also increased; 

as ti increased the maximum water surface movement was found to 

eventually become less than the total bed movement. 

In a later paper Nakamura (1953) extended the previous work 

of Hondo and Nakamura (1951) to a three-dimensional domain of 

fluid with a uniform depth, h, in which the spatial and temporal 

variation in velocity of the deforming bed was assumed to be: 

f(r) 
2 I 2 

g(t) = e-t t1 (2. 9) 

Again the wave behavior at the origin was evaluated assuming a shallow 

sea such that h/R < < 1. As the time constant, t 1 , was varied, the 

same general behavior of the maximum water surface elevation 

observed in the two-dimensional model again was found, i.e., for 
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small ti the maximum water elevation became equal to the total bed 

displacement while for large ti the maximum water surface move-

ment was less than the bed movement. 

Ichiye (1958) again considered a two-dimensional fluid domain 

of uniform depth, h, in which the bed velocity was given by: 

f(x) -- { coo 
\x] < b 

\x] > b { 

1 z-T 
g(t) = 0 

It\ < T 

\t\ > T 

where C , b, and T are arbitrary constants. Using numerical 
0 

(2. 10) 

computations to evaluate the expressions for the resulting wave motion 

in a shallow sea, Ichiye was able to construct the wave profiles near 

the region of generation. In his examples the water movement in the 

generation region approximated the bed deformation during the interval 

0 :-::;; t :-::;; T, after which time the water collapsed into two similar 

dispersive wave trains; one moving in the positive x-direction and one 

moving in the negative x-direction. In Ichiye' s examples the bed 

movement was so rapid that the maximum water movement at the 

origin was equal to the total bed movement, C • 
0 

Keller ( 1963) determined the far-field wave signatures using 

the method of stationary phase for waves generated in a three-dimen-

sional fluid domain of uniform depth, h, by axially symmetric bed 

deformations. He found that the leading wave amplitude decayed like 

r - l in the far-field, where r is the radial coordinate and the leading 

wave was found to travel with a velocity of Jgh. Keller also investi-

gated the change in wave behavior based on the methods of geometrical 



-12-

optics when the water waves approached a coastal region where the depth 

became nonuniform. No computations of actual wave profiles result-

ing from a specific disturbance were given by Keller to more clearly 

elucidate the wave structure. 

Webb (1962) investigated a simple model of tsunami generation 

in a two-dimensional domain of fluid of uniform depth in which the 

assumed spatial and temporal velocities of the moving bed were: 

{ co ]xi < b { -~t t > 0 ae 
f(x) = g(t) = (2. 11) 

0 Jxl > b 0 t < 0 

where a, b, and C are arbitrary constants. 
0 

(This model of tsunami 

generation is of special interest since it is also one of the models to 

be considered in the present study.) Webb invoked the Fourier Integral 

Theorem in order to represent the prescribed bed movement in terms 

of a sum of sine and cosine functions. Since the spatial movement is 

symmetric· about x = 0, the sine portion of the representation may be 

ignored; however, the temporal variation is not an even function of t 

and cannot be represented as a sum of cosine functions as is done by 

Webb. Webb's solution was thus found to be in error. (The correct 

solution will be derived shortly.) Since the argument of the sine 

terms omitted by Webb are functions of time, the incomplete solution 

fortunately yields a reasonable approximation of the wave profiles 

near t = 0, i.e., the initial waves. These wave profiles were 

numerically computed by Webb for the special case of h = 10, 000 ft, 

-1 
b = 5, 000 ft, and a = 0. 1 sec . The maximum water elevation 
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reached during the bed movement occurred at the origin and was equal 

to 21 % of the total bed movement, ' . 0 
A positive leading wave pro-

pagated from the generation region and gradually decreased in ampli-

tude. A train of damped oscillatory waves formed behind the leading 

wave during propagation. The velocity of the leading wave was 

found to exceed Jgh initially, decrease to a value below Jgh during 

propagation, and then increase asymptotically to Jgh. Hendrickson 

( 1962) in the same report developed expressions for the asymptotic 

behavior of these waves; however, since his analysis was based on an 

incorrect solution by Webb, the asymptotic solution would also be 

invalid. 

Kajiura ( 1963) developed general solutions for waves generated 

by an instantaneous movement of a section of the bed in both a two and 

three-dimensional domain of fluid of uniform depth, h. Kajiura was 

specifically interested in the decay of the leading wave during propa-
1 

gation. A parameter, Pb = (6Jh/g /t) ::i (b/h), was found to be 

important in determining the decay rate of the leading wave; g is the 

acceleration of gravity, t is the time, and b is the half-width of the 

source region. In a three-dimensional model the wave was found to 

2 -1 
decay like r - 3 for Pb > 3 and r for Pb < 1 where r is the 

distance of propagation. In the two-dimensional model the leading 

0 1 
wave was found to decay like r for Pb > 3 and r - 3 for Pb < 1. 

Kajiura also investigated the maximum wave elevation reached at the 

origin of an instantaneous bed deformation when the half-width of the 

deformation was varied. For a uniform deformation in a two-
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dimensional fluid domain the maximum wave amplitude, T) , was 
0 

found to be equal to the total bed movement, C , for b /h > 3 . 
0 

For 

b /h < 3 the ratio T) / C decreased and tended to zero as b /h-+ 0. For 
0 0 

a circular deformation in a three-dimensional domain of fluid the ratio, 

r1 Ir was equal to unity for b/h > 4 and tended to zero as b/h tended to 
'

10 "° o' 

zero. Kajiura also investigated the far-field behavior for waves 

generated by a bed movement in a three-dimensional fluid domain in 

which the bed deformation was not axially symmetric. The directivity 

of the leading wave generated by these disturbances was found to 

disappear at a very large distance from the source region. 

Momoi (1964) has used a high-speed computer to evaluate 

numerically the wave profiles resulting from a uniform circular uplift 

of radius, r , in a three-dimensional domain of fluid with a uniform 
0 

depth, h. The computations were based on the equation developed by 

Takahasi ( 1942) for an instantaneous bed movement. (Recall that 

Takahasi was able to find only crude approximations of the wave 

profile for the limiting cases of a shallow or deep sea.) Momoi 

computed the wave profiles for the case of r /h = 10 from t = 0 to 
0 

the nondimensional time tJg/h = 20. At t = 0 the water assumed 

the shape of the bed deformation except near r = r where a smooth 
0 

transition occurred between the raised level of fluid and the original 

still water level. A wave then began to propagate from the region of 

generation forming a positive leading wave whose maximum amplitude 

was approximately 50% of the total bed movement, ' . 0 
At t Jg /h = 6 
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the water level at r = 0 began to decrease from its raised level until 

at b / g/h = 13 the water level reached its maximum negative value of 

approximately -1. 5 C • (A similar behavior was also observed by 
0 

Takahasi.) The water level at r = 0 then returned to the still water 

level about which it oscillated in a damped manner. 

Carrier ( 1965) investigated the propagation of waves in a fluid 

domain with a variable depth which were generated by the bed displace-

ment: 

.£.c£ = 
8y 

0 

0 
ax 2t -ct ae c e 

t < 0 

x > 0 (2. 12 ) 

x < 0, t > 0 , 

where a and c are arbitrary constants. The limiting case of a _, 00 

and c _, 00 was solved by Carrier. Since Carrier 1 s primary interest 

was in the wave behavior at large distances from the generation region 

where the long waves approached a sloping beach, the exponential 

functions in Eq. (2. 12) were chosen purely for mathematical conven-

ience. No wave profiles were computed by Carrier; however, his 

simple method of solution of the linearized generation problem based 

on the use of integral transforms is of particular interest since this 

is also the method which will be adopted in this study. 

Hwang and Divoky ( 1970) have taken an entirely different 

approach to the tsunami problem; instead of the linearized model of 

tsunami generation used by previous researchers, they adopt a first-

order-nonlinear theory which ignores completely the vertical motion 
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of the water and thus all effects of frequency dispersion. In order to 

solve the resulting equations in a three-dimensional fluid domain, a 

finite-difference scheme was adopted which permits an arbitrary bed 

displacement and a variable water depth to be incorporated into the 

model. The model was then applied to a prototype bed displacement 

which occurred during the Alaskan earthquake of 1964. Wave profiles 

were computed at various locations near the region of generation; the 

accuracy of these computed wave profiles could not be determined 

since no actual wave records were available. At one offshore position 

the computed profile was compared with water movements observed 

onshore and found to be in reasonable agreement. In a later report 

Hwang, et al (1971) adapted this model to also consider the curvature 

of the ocean by expressing the governing equations in spherical 

coordinates. In light of the results of the present study, the approach 

of Hwang and Divoky appears to be quite limited in its ability to 

accurately model tsunami propagation over very large distances. 

(The limitations are in effect similar to those which depend on a purely 

linear theory of wave propagation. ) 

Tuck and Hwang ( 1972) have most recently considered the 

waves generated by a bed movement on a uniformly sloping beach by 

adopting the linear-long-wave equations as a description of wave 

behavior. The equations were solved analytically for arbitrary bed 

movements which were assumed to occur instantaneously at the shore­

ward edge of a two-dimensional fluid domain. The generated waves 

propagated into a fluid domain whose depth increased linearly. Wave 
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profiles were computed for the special case of a maximum bed dis -

placement, ~ , occurring at x = 0 and decaying exponentially for 
0 

x > 0. The wave shape was observed to be independent of x while 

the wave heights decayed like x -i or t -t. The region of validity of 

the long wave description was also investigated since frequency dis -

persion is expected to eventually become important during propagation. 

Considering only the increase in the importance of frequency dispersion 

due to the increasing depth, Tuck and Hwang found the region of 

validity to be given by b < < x < < b I a 2 
where b is a character-o 0 0 0 

istic size of the disturbance and a is the slope of the bed. It should 
0 

be noted that the presence of nonlinear effects and frequency dispersion 

which are omitted in Tuck's and Hwang' s analysis would most probably 

restrict the applicability of their solution to a region of propagation 

which is much smaller than they suggest. Certainly as the bed slope, 

a
0

, tends to zero so that the fluid domain becomes uniform in depth, 

the range of validity of the linear-long-wave equations (which reduce 

to the simple wave equation for this case) would not tend to infinity. 

The importance and interaction of nonlinearities and frequency disper-

sion will be discussed in detail in this study. 

Experimental studies of tsunami generation by bed movements 

appear to be very rare. Takahasi (1963) reported on earlier experi-

ments which were conducted in a three-dimensional wave tank. In his 

1933 experiment a small wave basin was used (2 m x 1. 5 m x 0. 3 m) 

in which a cylinder housing a moveable piston was fitted to the bottom 
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of the tank. The piston could be moved suddenly through several 

centimeters by a spring-fly-wheel assembly. Wave measurements 

were made photographically and indicated that the water initially rose 

in a bell shape over the uplifted piston after which annular waves 

begin to propagate. A negative wave elevation was observed to occur 

at the center of the piston followed by oscillations about the original 

still water level. The propagation velocity of the leading wave was 

found to be equal to Jgh or slightly less while the amplitude appeared 

d l .k -0.6 -1 to ecay i e r or r 

The 1957 experiments of Takahasi (1963) were conducted in a 

large, outdoor basin in which circular membranes were installed at 

the tank bottom. The membranes could be mechanically raised or 

lowered impulsively by piston rods connected to the center of the 

membrane and installed below the tank. Experiments were conducted 

using one, two, and six membranes. With one membrane Takahasi 

found the generated waves to be dispersive with the leading wave propa­

gating with a celerity of Jgh and decaying in amplitude like r- 5 16 . 

Interpretation of wave records was admittably difficult due to the 

presence of wind generated waves and vibration of the rubber mem-

branes at the end of a movement. 

Takahasi and Hatori ( 1962) experimentally investigated the 

waves generated by the sudden uplift of an elliptical membrane in a 

three-dimensional fluid domain of uniform depth, h. A large outdoor 

basin was used and the rubber membrane was installed at the bottom 
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level of the basin. The movement of the membrane was created by the 

introduction of compressed air below the membrane which caused the 

membrane to swell. Wave measurements again indicated the formation 

of a dispersive wave train whose leading wave propagated with a 

velocity of Jgh. The ratio of the wave heights at the ends of the long 

and short axes of the elliptical region of generation was observed to 

be one-third which was also the length ratio of the elliptical axes. 

During propagation this ratio decreased. The amplitude of the initial 

crest was observed to decay liker -O. 5 or r -O. 74 depending on the 

water depth used. 

Although numerous authors have investigated the tsunami prob­

lem none appear to have thoroughly defined the wave signatures 

generated over a full range of characteristic size and time scales of 

a specific bed deformation. No authors appear to have considered 

the effect of large amplitude movements relative to the water depth. 

Previous analys'es have approximated the equations governing the 

fluid motion by ignoring the nonlinear terms except in one study where 

the nonlinear terms have been partially retained but the linear effects 

were ignored. 

In this investigation a linear theory will be adopted to describe 

the waves generated over a full range of generation characteristics by 

a simple family of bed movements; however, the applicability of this 

linearized approximation will also be investigated. Experimental 

measurements will be presented to confirm the theoretical analysis. 
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A strategy will also be demonstrated for finding the wave profiles 

during wave propagation when the linear theory is found to be no 

longer applicable. A theory for this case is presented which includes 

in an approximate manner both nonlinearities and the linear effects of 

frequency dispersion. 
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CHAPTER 3 

THEORETICAL ANALYSIS 

In this chapter a linear theory is presented for waves generated 

by a moving bed in a fluid initially with a constant depth. An integral 

solution for an arbitrary bed movement (in space and time) is obtained. 

Two general solutions are found, one for a two-dimensional fluid 

domain, and a second for a three-dimensional domain. For the three­

dimensional model the bottom deformation is restricted to displace­

ments which are axially symmetrical. The integral solutions are 

applied to two specific bed displacements. In both deformations the 

spatial variation is taken to be a simple block upthrust or downthrow; 

the time-displacement history of the block movement is varied. 

Since the solutions obtained from the linear theory are only 

approximations to the complete nonlinear description of the problem 

of wave generation, the applicability of the linear solutions is dis -

cussed. Two classes of bed deformations, termed impulsive and 

creeping, are found for which the linear solutions are applicable near 

the region of wave generation. The nonlinear effects, which are 

initially small for these two classes of bed displacements, grow in 

importance during wave propagation. Eventually the linear and non­

linear effects become of the same order of magnitude. Once this 
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condition is reached, the equation of Korteweg and deVries (18 9 5) is 

discussed as an appropriate model of further wave behavior. 

The analogy between the classical dam-break problem, with a 

semi-infinite and finite length reservoir, and the uniform upthrust of 

a bed section occurring impulsively for the two-dimensional fluid 

domain is discussed. From the dam-break analogy certain aspects 

of the waves generated by this type of bed deformation can be deduc ed. 

3. 1 THE TWO-DIMENSIONAL MODEL - A LINEAR THEORY 

Consider a fluid domain D as shown in Fig. 3. 1 bounded above 

by the free surface, Sf, below by the solid boundary, Sb, and un -

bounded in the direction of wave propagation, i.e. , -co < x < co. 

Initially the fluid is at rest with the free surface and the solid boundary 

defined by the curves y = 0 and y = -h, respectively. For t > 0 the 

bed (or solid boundary) is permitted to move in a prescribed manner 

given by y = -h + C(x;t) such that: lim C(x;t) = 0. The resulting 
!xl-+co 

deformation of the free surface which is to be determined is given by 

y = Tj(x;t). 

The problem can be solved by assuming the fluid to be incom-

pressible and the flow irrotational. Thus, a velocity potential 

-+ -+ 

cp = cp (x, y;t ) is known to exist such that q = \i'cp where q = (u, v) is 

the velocity vector and \i' is the gradient operator (o/ox, o/oy), and 

Laplace 1 s equation is obtained from the continuity equation of an 

incompressible fluid, 'V • q = 0: 

\i'
2 cp = 0 in D. (3. 1) 
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Fig. 3. 1 Definition sketch of coordinate system. 

The kinematic conditions to be satisfied on the free surface, Sf, and 

the bottom, Sb, are respectively: 

cp = Tlt + cp Tl on y = ri(x;t) , 
y xx 

( 3. 2) 

cp = Ct + cp C on y = -h + C(x; t). y x x 
( 3. 3) 

By further assuming the flow to be inviscid and surface energy effects 

to be negligible, the dynamic condition to be satisfied by fluid particles 

on the free surface, Sf, becomes: 

l. 2 cpt + ~( 'Vcp ) + gri = 0 on y = ri(x;t), ( 3. 4) 

where g is the acceleration of gravity. It is also assumed in Eq. (3. 4) 

that the pressure on the free surface is constant and for convenience it 

has been taken to be zero. 
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The solution of the boundary value problem given by Eqs. (3. 1), 

(3. 2), (3. 3), and (3. 4) is inherently difficult due to the nonlinear terms 

in the boundary conditions and the fact that the position of the free 

surface, on which the boundary conditions given by Eqs. (3. 2) and 

(3. 4) are to be applied, is unknown prior to the solution of the problem. 

The usual procedure in solving problems of this type is to circumvent 

these difficulties by substituting for the complete problem a linear 

approximation. In this approximation the nonlinear terms are omitted 

and the boundary conditions are applied both on the undeformed free 

surface and the solid boundary. The linearized problem is given by: 

9 2 cp = 0 in D, ( 3. 5) 

coy = 'llt on y = 0, (3 . 6a) 

cot + gri = 0 on y = 0, (3. 6b) 

and cpy = stony = -h. (3. 7) 

Eqs. (3. 6a) and (3. 6b) are usually combined to give the single free 

surface condition: 

cptt + gcpy = 0 on y = 0. ( 3. 8) 

A formal basis for using this linear approximation can be found by 

expanding the dependent variables cp(x, y;t) and ri(x;t) as a power 

series in terms of a small parameter E:. Collecting terms of the 

lowest order in E: yields the linear problem given by Eqs. (3. 5), (3. 7) 

and (3. 8). Therefore the accuracy of the linear approximation is 
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dependent on the size of the parameter e:. A physical interpretation 

of E: can sometimes be found by scaling the dependent and independent 

variables of the problem with quantities which characterize the motion. 

A discussion of the effects of nonlinearities will be given in Section 3. 2. 

The solution of the initial and boundary value problem given by 

Eqs. (3. 5 ), (3. 7), and (3. 8) is most easily obtained by the methods of 

operational calculus using integral transforms. An integral transform 

f(p) of a function f(x) is defined by: 

a2 
f ( p) = J K ( p, x ) £ ( x) dx , 

a1 

(3. 9) 

where the limits of integration a 1 and a 2 are known as well as the 

kernal K(p, x). The use of an integral transform often reduces a 

partial differential equation in n independent variables to one of (n-1) 

variables. Successive use of transforms can ultimately reduce the 

equation to an ordinary differential equation or even to an algebraic 

equation. An outline of the strategy to be used in applying integral 

transforms to the solution of initial and boundary value problems is 

given by Tranter (1966, p. 18). For the problem under discussion 

there exists three independent variables x, y, and t. Thus, the use 

of transforms on two of these variables should reduce the problem to 

the solution of an ordinary differential equation. A further reduction 

to an algebraic equation is not worthwhile if the ordinary differential 

equation can be solved readily. An appropriate transform for the 

independent variable x whose limits are from minus to plus 

infinity is the complex Fourier transform (Sneddon, 1951) given by: 



-26-

co 

f (k) = I eikxf(x) dx (3. 10) 
- co 

where i is the imaginary number J=T. The appropriate transform for 

the time variable t, for which functions are defined only for t :2'. 0, is 

the Laplace transform (Churchill, 1958) given by: 

"' Jco -st f ( s) = e f ( t) d t. 
0 

(3.11) 

(The bar superscript will be used throughout this chapter to denote the 

Fourier transform of a function and the tilda superscript will be used 

to denote the Laplace transform. ) Applying both transforms to a 

function f(x;t) yields: 

co Q) 

r I ikx -st f (k;s) = I dx e e f(x;t) dt. 
.., _Q) 0 

(3. 12) 

To transform Eq. (3. 5), the field equation is first multiplied through 

ikx -st 
by the kernals e and e and then integrated twice with respect 

to x and t over the limits indicated by Eqs. (3. 10) and (3. l l ), 

respectively. Performing these operations yields: 

I ro dxJ
00

eikxe-stc.p (x,y;t)dt + I 00 

dxl
00

eikxe-st c.p (x,y;t)dt = 0. (3.13) 
-CO o xx _Q) "o YY 

Eq. (3. 13) may also be written: 

co 2 Q) I ~ikxa:2 [I e-st c.p (x,y;t)dt]ax 
-CO 0 

2 co Q) 

+~[I dx J eikx e -st co(x, y;t)dt l = 0 , 
y _Q) 0 

(3. 14) 
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where all integrals have been assumed to be sufficiently well-behaved 

to permit the indicated operations, i.e., uniformly convergent. Com-

paring the bracketed terms with Eqs. (3. 11) and (3. 12), Eq. (3. 14) 

may be rewritten as: 

Joo ikx o2 CP'(x,y;s)dx + 8 2 qJ(k,y;s) 
. e ox2 oy2 

-0'.l 

= 0 . (3.15) 

The above integral can be evaluated using integration by parts to yield: 

co (k, y; s) 
yy 

2-k co(k,y;s) = 0 in D. 

In a similar manner Eqs. (3. 7) and (3. 8) may be transformed to: 

cp (k, -h;s) = sC(k;s) , 
y 

2,...., 

coy(k, O;s) +: co (k, O;s) = 0 . 

(3. 16) 

(3. 1 7) 

(3. 18) 

In deriving Eqs. (3. 17) and (3. 18) use has been made of the fact that 

co(x, y;O) = cpt(x, y;O) = 0 which is a consequence of the initial con­

ditions imposed on the boundary value problem. 

The transformed field equation, Eq. (3. 16), is an ordinary 

differential equation which may be solved directly for cp(k, y; s ). The 

solution is: 

cp(k, y;s) = A(k;s) cosh ky + B(k;s) sinh ky , (3.19) 

where A and B are functions of k and s alone. Substituting cp(k, y;s), 

as given by Eq. (3. 19), into Eq. (3. 18) gives: 
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B(k; s) 
s2 

= - gkA(k;s) (3. 20) 

Substituting Eqs. (3. 19) and (3. 20) into Eq. (3 . 17) one obtains: 

-gs ?"(k;s) A(k; s) = ____ ....._._.___.';,'-'--'---,___ __ 
(s 2 + gk tanh kh) cash kh 

(3. 21) 

Combining Eqs. (3. 19), (3. 20), and (3. 21) the transformed velocity 

potential is found to be: 

cp(k,y;s) = - gs t (k; s) [ h k s 
2 J 

2 2 cos y - gk sinh ky . 
(s +w ) cash kh -

(3. 22) 

2 
where for convenience w is defined as: 

w2 = gk tanh kh. (3. 23) 

It is noted that Eq. (3. 23) is identical to the dispersion relationship 

found in water wave problems with a stationary bottom and without 

surface energy effects; however, this is not to imply that Eq. (3. 23) 

is the dispersion relation for this problem. 

The free surface location 'll(x; t) is related to the velocity 

potential cp(x, y;t) by Eq. (3. 6b). Thus, the transformed relationship 

is: 

:n (k; s) (3. 24) 

Substituting Eq. (3. 22) into Eq. (3. 24) the following is obtained: 

Tl (k;s) = a 2 (s +w ) cash kh 
(3. 25) 
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The transformation of Ti (k; s) to ri(x; t), i.e. , to the original independ-

ent variables (x;t), is accomplished using the inversion formulae for 

the Fourier and Laplace transforms. The inversion integral for the 

Fourier transform is given by: 

co 

f(x) = 1 J e -ikx f(k) dk, 
2'!T 

- co 

and for the Laplace transform: 

+·r 
lim 1 J µ 

1 
st 

f(t) = r -2 . e 1(s)ds , 
.... co '!Tl . r µ-1 

(3. 26) 

(3. 27) 

where µ is a positive constant; hereafter, the inversion integral for 

the Laplace transform will be written as: 

f(t) 1 I st~ = z-:- e f (s)ds 
'!Tl Br. 

(3. 28) 

I l' Jµ+ir 
where = ~~co • is the Bromwich contour. 

Br. µ-1r 
Therefore, the 

surface elevation becomes: 

co 2 -ikx st'.:::'. 
( ) 1 J { 1 J s e e C (k; s) d } dk 

'll x;t = 21T -o:i 2'!Ti Br. (s2+w 2) cash kh s · 
(3. 29) 

Eq. (3. 29) gives the free surface elevation as a function of 

space and time in the fluid domain D (shown in Fig. 3. 1) resulting 

from a bed dis placement described by C(x;t). Before a further simpli-

fication of Eq. (3. 29) can be made, specific bed deformations must be 

prescribed. Of special interest in the present study are two bed 
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displacements whose spatial variation is taken to be a block section of 

the bed, symmetric about x = 0, moving in the positive or negative 

vertical direction. Two different time-displacement histories of the 

block upthrust or downthrow will be used. The first displacement is 

described mathematically by: 

H(b 2 -x2
) is the Heavyside step function defined by: 

{
l, b 2

-x
2 > 0 

0, b 2 -x2 < 0 

t ~ 0 . (3. 30) 

(3. 31) 

The Heavyside step function used in Eq. (3. 30) confines the spatial 

deformation of the bed to a uniform movement with time in the interval 

-b < x < b. The time-displacement history of the bed section is shown 

in Fig. 3. 2. The bed deformation can be characterized by three 

t 

Fig. 3. 2 Exponential time-displacement history of the moving bed. 
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parameters: C , the amplitude of the vertical displacement (either 
0 

positive or negative); b, the halfwidth of the block section; and t , 
c 

a characteristic time of the displacement, e.g. , t = 1 / a . For 
c 

reasons to be discussed in Chapter 4, the characteristic time of 

movement used will be the time required for two-thirds of the motion 

to be completed, i.e. , t = t when CIC = 2/3 or t = 1.11/a (see 
c 0 c 

Fig. 3. 2). Of particular interest for this displacement is the initial 

dis continuity in velocity, BC I ot, and the asymptotic approach of the 

block section to C . (The exponential bed displacement given by 
0 

Eq. (3. 30) will hereafter be referred to as C (x;t).) 
e 

The second bed deformation of interest is given by: 

t ;;:>: 0. (3. 32) 

Again, the Heavyside step function H(b2 -x2
) is used to confine the 

displacement to the interval -b < x < b. Step functions are also 

employed in the temporal variation. Fort < T, H(T-t) = 1 and 

H(t-T) = 0, so the block section moves according to the function 

C
0

[1-cos(;rt/T)]/2. Fort> T, H(T-t) = 0 and H(t-T) = 1 so the 

bed unit remains at the constant elevation C . The time-displacement 
0 

history of the block section is shown in Fig. 3. 3. This movement has 

a continuous velocity, 8C/8t, and is completed in a finite period, T. 

Again three parameters are required to characterize the motion: C
0

• 

b, and a characteristic time, t . An obvious choice for the character­
c 

istic time is the total time of movement, T. (Henceforth, the half-

sine bed displacement given in Eq. (3. 32) will be referred to as C (x;t). ) 
s 
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t =T c t 

Fig. 3. 3 Half-sine time-displacement history of the moving bed. 

Eq. (3. 29) can now be specialized using the particular bed 

displacements given in Eqs. (3. 30) and (3. 32). However, before the 

wave amplitude can be obtained from Eq. (3. 29), the bed deformations 

must be transformed by the Laplace and Fourier transforms. Per-

forming the operations indicated by Eq. (3. 12) the following is obtained 

for the exponential bed displacement: 

C (k; s ) - 2 C sin kb [ q. J 
e - o k s ( s +ex.)_ (3. 33) 

Substituting Eq. (3. 33) into Eq. (3. 29) the following is obtainetl: 

. _ Co J 00 

-ikx sin kb {-1- J q.se st } 
T](x,t) - 1T -°" e k cosh kh 21Ti Br. (s+a)(s:l+w2) ds dk. (3.34) 

The Laplace inversion with respect to s, shown in brackets above, 

can be integrated in closed forrn using the residue theorem and noting 
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that all poles appearing in the integrand are simple. Performing this 

i n te g ratio n yields: 

- CTTo J 00 

e -ikx sin kb ( 
2 

)[ Y){x; t ) = k cosh kh a 2a+ w-.a e-at_ cos wt-~ sin wt] dk. (3 . 3 5 ) 
- CXl 

Taking the real part of Eq. (3. 35), and since the integrand is even in 

k, the surface elevation can be expressed as: 

2
Co J 00 

cos kx sin kb ( a
3 

)[ -at w . l Y){x;t) = - -- k h kh a+ 2 e -cos wt- -sin wt dk. (3. 36) 
rr 0 cos a w a ... 

The integration over k cannot be computed in closed form and thus 

must be approximated by numerical integration. A removable 

singularity exists in the integrand of Eq. (3. 36) at the lower limit of 

integration, k = 0. Letting I represent the integrand of Eq. (3. 36), 

then by L 1Hospital' s rule: 

lim I = b(e -at - 1) . 
k-+O 

This limiting value is required for the numerical integration. 

(3. 37 ) 

When the half-sine bed displacement given by Eq. (3. 32) is 

transformed by the Laplace and Fourier transforms the following is 

obtained: 

Is (k;s) = ro sin kb [(1+e -sT)( x.a )J 
"" k s(sz+x. 2 ) _ ' 

(3.38) 

where x. = rr/T. When Eq. (3. 38) is substituted into Eq. (3. 29) one 

obtains the following: 
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ri(x;t) = <;o J co e -ikx sin kb 
2rr k cosh kh 

-CO 

(3. 39) 

As for the exponential bed displacement, the integration with respect to 

s can be performed in closed form. Performing the integration 

indicated by the bracketed integral in Eq. (3. 39) yields: 

<;of co -ikx sin kb { x.2 lf 
ri(x;t) = 2'T1" e k co sh kh x.2 -w2 J . cos wt 

-CD 

- cos x.t + H(t-T) [cos w(t-T) + cos x.t 1} dk , (3. 40) 

where H(t-T) is the Heavyside step function. Noting that the integrand 

of Eq. (3. 40) is an even function of k and taking only the real part 

yields: 

ri(x;t) = <;o J CD cos kx sin kb { x.
2 

} {cos wt 
'TT" 

0 
k co sh kh x_a -wa 

- cos x.t + H(t-T)[cos w(t-T) +cos x.t] }dk. (3. 41) 

Again the integral over the wave number k cannot be computed in 

closed form thus necessitating the use of numerical integration. The 

integrand of Eq. (3. 41) has a removable singularity at the lower limit 

of integration, k = 0. The limiting value of the integrand, I, as k ..... 0 

is: 

lim I 
k---0 

= b {I - cos x.t + H(t-T)[l + cos x.t]} , 

which, as before, is required for the numerical integration. 

(3.42) 
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3. 2 THE TWO-DIMENSIONAL MODEL -NONLINEAR 

CONSIDERATIONS 

The linear theory presented in Section 3. 1 is only an approxi­

mation to the complete nonlinear problem; thus, it is of major impor -

tance to determine the conditions necessary for the linear model to 

provide an accurate description of the actual wave behavior. As men­

tioned in Section 3. 1, a rational basis for using the linear model is 

usually found by expressing all independent variables as a power 

series in terms of a 11 small 11 parameter E:. The collection of lowest 

order terms of E: normally yields the linearized problem as a first 

approximation to the complete description of wave behavior. Physi­

cally the parameter E: indicates the relative importance of nonlinear 

terms compared to the linear terms. As also mentioned in Section 3. 1, 

a physical interpretation of the parameter E: can sometimes be found 

by scaling the dependent and independent variables of the problem by 

quantities which characterize the motion. In the two following sections 

(Section 3. 2. 1 and 3. 2. 2) it will be shown that more than one param­

eter i:: is required to adequately define the limitations of the linear 

model. The discussion of nonlinear effects is conveniently divided 

into two parts. In Section 3. 2. 1 nonlinear effects occurring during 

· the time of bed deformation will be discussed. In Section 3. 2. 2 the 

effects of nonlinearities that arise during wave propagation are 

discussed. Both types of nonlinearities limit the applicability of the 

linearized model. 
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3. 2. 1 Aspects of Nonlinearity-Generation 

During the time of bed displacement, it would seem 

appropriate to scale the motion of a water particle in the fluid domain 

with respect to the motion of the deforming solid boundary. It was 

indicated in Section 3. 1 that the specific bed deformations given by 

Eqs. (3. 30) and (3. 32) each can be characterized by three parameters: 

an amplitude of displacement, C , a time, t , and a size, b. 
0 c 

The two 

other independent variables of the problem are the water depth, h, and 

the acceleration of gravity, g. These five independent variables are 

available to scale the dimensional variables of the problem. Bucking-

ham ( 1914) showed that if the magnitude of a physical quantity, Ql' is 

a function of (n-1) other independent physical quantities, and if Q 1 and 

these (n-1) quantities include j fundamental dimensions, then the 

functional equation: 

may be replaced by 

... , Q ) , 
n 

IT1 = f ( TI2 , TI3 , ••• , TI • ) , 
n-J 

(3.43) 

( 3. 44) 

where each IT term is an independent dimensionless ratio of the various 

Q's. In the present problem the dependent quantity of interest is the 

water surface displacement, r), which can be related functionally to 

the five independent variables in the following way: 

b, t , h, g). 
c 

(3. 45) 
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Since the five independent quantities involve only two physical dimen-

sions, length and time, the normalized water surface displacement 

should be a function of three dimensionless ratios (or TI terms). 

A possible choice of these TI terms is: 

_n_ = f (s /h, b/h, t Jg/h) . co 0 c 
(3. 46) 

The ratio C /h represents an amplitude scale of the bed movement, 
0 

b/h represents a size scale, and t Jg7h represents a time scale. The 
c 

significance of this choice of nondimensional numbers, and combinations 

thereof, will be shown shortly. 

In order to gain some insight into the parameters which must be 

small during generation in order for the linear theory to be applicable, 

it is more convenient to use the nonintegrated equations of motion. It 

is well known in fluid mechanics that under the assumptions given in 

Section 3. 1 the equations of motion are: 

(3. 4 7) 

where the asterisk is used temporarily to denote a dimensional variable 

and the notation ( )t,:< implies the differentation of the bracketed quan­

tity with respect to t>:<. The quantity P>!< = P>:<(x>!<, y'!<; t>:<) is the 

pressure in the fluid field, pis the density of the fluid, and g is the 

acceleration of gravity. If the velocity vector (u*, v>!<) is written in 
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terms of the velocity potential qJ in Eqs. (3. 47) and (3. 48) , and the 

irrotationality condition: (u':') .,, = (v':<) ,,, is used, the equations may 
Y"' X " ' 

be integrated once to yield Eq. (3. 4) on the free surface, i.e., on 

y ':' = ri ':' (x ':' ; t ':' ). The continuity equation and boundary conditions are 

the same as indicated previously but they are repeated here for 

convenience: 

(3 . 4 9) 

on y '~ = (3. 50) 

The choice of scaling for each dimensional variable appearing 

in Eqs. (3. 47) through (3. 51) must be based on a reasonable physical 

interpretation of the problem. Assume for the moment that the bed 

displacement occurs so rapidly that the water surface profile is similar 

in shape to the deformed bed at any time during the movement. Bed 

movements of this type will hereafter be referred to as impulsive. 

Then the water volume displaced by the deforming boundary has a 

length scale, /\, of the order of the length of the bed deformation, i.e., 

I\ = O(b). The amplitude scale, x. of the displaced water volume is of 

order, C , the amplitude of the bed deformation. (This can easily be 
0 

seen by equating the volume of displaced fluid per unit width, C b, to 
0 

the volume per unit width in the wave, i.e. , Xb = C b or X = C . ) In 
0 0 

addition, time variations of the wave must scale with the characteristic 

time of bed displacement, t . A characteristic vertical velocity based 
c 
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on the bed deformation characteristics is C ft . The velocity in the 
0 c 

direction of wave propagation and the fluid pressure should be scaled 

by Jgh and pgh, respectively, in the normal manner for problems of 

this type. The following scaling of variables thus seems appropriate 

when the wave is generated impulsively: 

x'::: Y.! t 
t >:< u>::: 

x = b y = = u = Jgh, , 
h 

, 
t 
c 

(3. 52) 

v>::: .n:. c £.:. p 
p;~ 

v = It Y] = = = 
(Co c) 

, ' , c o 
, 

pgh 
0 

Note that two length scales have been used in the vertical scaling. The 

boundary deformations have been scaled by the characteristic ampli-

tude scale X = C while the position coordinate y >!< has been scaled by 
0 

the water depth h. Rewriting Eqs. (3. 4 7) through (3. 51) in terms of 

the nondimensional variables yields: 

(3. 53) 

(3. 54) 

(3. 55) 

t Jg/h c 
v = Y]t + b/h on y (3. 56) 
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c 
= -1 +_£_,. on y h -,, (3. 57) 

The stretching of variables given by Eq. (3. 52) has made each term in 

Eqs. (3. 53) through (3. 57) of the same order as its coefficient. Thus, 

if the coefficients of the nonlinear terms in Eqs. (3. 53) through (3. 57) 

are required to be much less than unity, i.e., if: 

t .fiTh 
c 
b/h < < l, c /h < < 1 

0 
(3. 58) 

then the nonlinear terms may be neglected as a first approximation, 

resulting in a system of linear equations. Since C /h is taken to be 
0 

much less than unity, the linearized boundary conditions on the free 

surface and on the bed may be applied at y = 0 and y = -1, respect-

ively, with little error. The continuity equation, Eq. (3. 55), depends 

only on the relative size oft Jgh/b and C /h. If both parameters are 
c 0 

small and of the same order then both terms must be used in the first 

approximation. If one coefficient is much smaller than the other (with 

both still much less than unity) then the term with the smaller coef -

ficient may be neglected in the first approximation. 

Thus, two parameters are found that must be s rnall in order 

for the linear theory to be applicable. These parameters consist of the 

three ratios found previously by dimensional analysis. An interesting 

combination of two of these numbers is given by the ratio of t ./iJh 
c 
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and b/h which may be written t Jgh/b. The quantity t Jgh is simply 
c c 

the distance a long gravity wave will travel in a time t . Thus if 
c 

t Jgh/b is much less than unity a major portion of the bed movement 
c 

occurs before elevations (or depressions) of the water surface have 

an opportunity to leave the generating region. This results in a dis -

placed water surface near the end of the bed movement similar in 

shape to the deformed bed as was assumed in deriving the scaling of 

variables given by Eq. (3. 52 ). It should be noted that no restriction 

must be placed on the magnitude of b/h alone in order to maintain the 

applicability of the linear theory; the disturbance-size scale is un­

limited as long as t Jgh/b remains much less than unity. 
c 

Now consider the case of a wave generated by a very slow bed 

movement, i.e. , t Jgh/b is much greater than unity; hence, the water 
c 

surface elevations (or depressions) that occur have sufficient time to 

leave the generation region during the time of bed displacement. Bed 

displacements of this type will hereafter be referred to as creeping. 

Near the end of the bed deformation process the displaced volume 

of water is distributed over a length in the direction of wave propaga­

tion proportional to t Jgh. Thus an appropriate length scale, /\, would 
c 

appear to be t Jgh. A characteristic amplitude, x, of the displaced 
c 

water volume can be found as before by equating the wave volume per 

unit width to the displaced volume per unit width: 
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Xt Jgh = b {; or X = 
c 0 

b{; 
0 

(3. 59) 
t Jgh 
c 

The time variations of this wave form are assumed to be proportional 

to the travel time of a long gravity wave across the deforming bed 

section, i.e., b/jgh, and the remaining variables, i.e., u'!<, v':', yi.', 

and P*, scale as before. It would seem appropriate to scale the water 

surface deformation, ri>~(x>.'<;t*), and the bed deformation, (;>!<(x':';t>:<), 

by the same characteristic amplitude, X, as was done for the previous 

case. Thus a reasonable choice for the scaling of variables when 

t Jgh/b > > 1 is: 
c 

x'~ x = 
tJgh' y 

c 

v = 

t':' --=----, u = 
(b/Jgh) 

p = P -·-'•' 

(3.60) 

Rewriting Eqs. (3. 47) through (3. 51) in terms of the nondimensional 

variables presented in Eq. (3. 60) yields: 

U + b/h b/h ('o) 
t t Jg/Fi (uux + P)+ t JiTh h vuy = 

c c 
0, (3.61) 

0 , (3.63) 
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+ b /h ( ) b/h r'o) v = 11t t JiTh u~ on y = t Jg/h <h I Tl c g c 
(3 . 64) 

v = c t + b/h (u( ) on y = -1 + b/h ( Co ) ( 
t ..fi7h x t J g/h h 
c c 

(3. 6 5) 

Since, the original assumption in this development was: 

t Jgh 
c t ..fi7h c 
b = b/h 

> > 1 , (3 . 66) 

the nonlinear terms, as a first approximation, may again be ne glected 

when compared to the linear terms. This statement is true reg ardless 

of the value of the relative bed displacement, ( /h, 
0 

since this ratio 

is always less than or equal to unity. Hence, the linearized boundary 

conditions v = T]t on the free surface and v = (t on the bed may be 

applied on y = 0 and y = -1, respectively, even when ( /h approach-
0 

es unity. Again no restriction must be placed on the relative size of 

the disturbance, b/h , alone in order for the linear approximation 

to be applicable as long as t Jgh/b > > 1 
c 

If the quantities ( /h, b/h, and t Jii7h are indeed the proper 
0 c 

dimensionless generation parameters and if these ratios remain con-

stant, the wave generated should be similar regardless of the actual 

values of ( , b, t , h or g. To see if this indeed is the case, con-
o c 

sider the linear solution given by Eq. (3. 36) which describes the vari-

ation of the wave amplitude as a function of space and time for the 
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exponential bed displacement given by Eq. (3. 30). The definition of 

the characteristic time, t , for this motion, as mentioned previously, 
c 

is taken as t = 1. 11 I a where a is the arbitrary constant appearing 
c 

rn Eq. ( 3. 30). Introducing the nondimensional variable A. = kh, Eq. 

(3. 36) may be rewritten as: 

cos A.(~J sin A.(*) 
A. cash A. 

( 1.11)
2 

[ tc~ J 
( 1. 

11 ) + A. tanh A. 
t Jg7h 
c 

[exp ( -1. 11 tJg?h )- cos (JA. tanh A. t.Ji7h) 
t Jg7h 
c 

t Jg7h JA. tanh A. 
- c 1. 11 sin (JA. tanh A. tJg/hJ]d A. . (3. 67) 

From Eq. (3. 67) it can be seen that if b/h and t JiTh are constant, 
. c 

then the same nondimensional wave form, n.f C , results at the same 
0 

nondimensional distance downstream, x /h, and at the same nondimen-

sional time, t./ilh. Note that the generation parameter, C /h, does 
0 

not appear in Eq. (3. 67). In general, this parameter is assumed to be 

much less than unity by the linear model and is thus eliminated from 

consideration. In a similar manner the wave form given by Eq. (3. 41) 

for the half-sine bed displacement may be expressed as: 
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{cos (JA tanh A. t,/iTh) - cos (rr tJglh ) + H[(t-t ),Jgih 1-
'- ' tJi]h c 

c g 

(3. 68) 

where again A. = kh and the characteristic time has been set equal to 

the total time of displacement, i.e., t = T. 
c 

Eq. (3. 68) also shows 

that a similar nondimensional wave results when the nondimensional 

generation parameters, b/h and t ,/iTh, are held constant. 
c 

In summary, it has been shown that during the time of bed 

displacement, the linear theory appears to be applicable when the 

generation parameters satisfy the conditions given by either Eq. (3. 58) 

or Eq. (3. 66). From these conditions it can be seen that no restriction 

need be placed on the size scale, b/h, alone as long as the time scale, 

t ,Jg7h, is such that Eqs. (3. 58) or (3. 66) are satisfied. 
c 

3. 2. 2 Aspects of Nonlinearity - Propagation. 

In the preceding section the effects of nonlinearities 

introduced during the bed deformation process were discussed. Para-

meters characterizing the generation and ranges of these parameters 

for which the linear theory appeared to be applicable were determined. 
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Once a wave has been generated and propagates into the fluid region of 

constant depth a different scaling of the dimensional variables is re-

quired in Eqs (3. 4 7) through (3. 51 ). It is well known for long waves, 

i.e. , waves whose lengths are large compared to the water depth, that 

the magnitude of the nonlinear terms is given by the ratio of the maximum 

wave amplitude, ri , and the water depth, h, i. e. , ri /h. 
0 0 

The 

magnitude of the linear terms is indicated by the square of the ratio of 

the water depth, h, to a characteristic length, t, of the wave in its 

direction of propagation, i.e., (h/t) 2
• The characteristic length, t , 

is a measure of the distance over which significant changes in water 

surface elevation occur. More discussion of this characteristic length 

will be given later. The importance of the nonlinear terms relative . 

to the linear terms is thus proportional to: 

nonlinear effects 
linear effects 

ri /h ri -e,2 
0 0 

a (h It ) 2 = h 3 = u. (3. 69) 

Although this ratio was pointed out by several authors (see, e.g., Stokes 

(1847)), Ursell (1953) first discussed the significance of the ratio in 

characterizing water waves of different types thus resolving what had 

come to be known as the long wave paradox (see Stokes (1891) or Lamb 

(1932, § 252)). Hence the ratio given by Eq. (3. 69) will hereafter be 

referred to as the Ursell Number. For the nonlinear effects (also 

termed amplitude dispersion by Lighthill and Whitham (1955)) to be 

negligible during wave propagation the Ursell Number must be much 

less than unity, i.e., ri /h < < (h/t) 2
• 

0 
When the Ursell Number is 
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of order unity or greater, the linear theory is no longer applicable. 

Waves for which the Ursell Number is much greater than unity can be 

approximated very well by ignoring the linear effects (or frequency 

dispersion) and retaining only the nonlinear effects. 

When amplitude and frequency dispersion are of the same order 

such at U = 0( 1) the description of the wave motion must retain all 

terms. Approximations to the complete solution of the water wave 

problem for this special case can be made when linear and nonlinear 

effects are assumed to be small and of the same order, i.e., 11 /h = 
0 

O[(h/t) 2
] < < 1. Equations governing the wave motion for this special 

case have been developed by several authors including Boussinesq 

(1872) and Korteweg and deVries (1895). Since this discussion of non-

linear effects occurring during wave propagation only applies to long 

waves, the ratio h/t must always remain much less than unity. It 

will also be tacitly assumed throughout this discussion that 11 /h < < 1 
0 

in order to avoid the phenomenon of wave breaking which is known to 

occur when 11 /h approaches unity. Hence, the special case of 
0 

11 /h = O[(h/t) 2
] < < 1 is ofmajorimportanceinthis study and will 

0 

be discussed in more detail shortly. 

The Ursell Number provides an excellent indicator for tracing 

the evolution of wave behavior during propagation. Suppose for the 

moment that a bed deformation occurs such that the wave generated is 

initially predicted accurately by the linear theory. Then for the wave 

11 /h < < (h/t) 2
, i.e., the Ursell Number is much less than unity. 

0 
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It is well known that as the wave propagates the nonlinear effects will 

grow and eventually they will become of the same order of magnitude 

as the linear effects. If the bed deformation is such that the Ursell 

Number for the resulting wave form is initially much greater than 

unity, the linear theory is invalid for all time. For this case, how­

ever, the importance of the linear effects increases relative to the 

amplitude dispersion terms during propagation and the Ursell Number 

decreases until it is again of order unity. Thus, regardless of the 

initial wave, the wave always evolves into a state in which the Ursell 

Number is of order unity during propagation in a fluid of uniform depth. 

Once the Ursell Number becomes of order unity, it remains 

constant during further wave propagation. The region of space in the 

direction of wave propagation for which the Ursell Number is of order 

unity will be referred to as the far-field. (A discussion of wave 

behavior in the far-field will be given shortly. ) The region of space, 

including the generation region, over which the Ursell Number is 

much less or much greater than unity will be termed the near-field. 

In addition, a linear near-field will be said to exist when the Ursell 

Number is much less than unity, and a nonlinear near-field will exist 

when initially the Ursell Number is much greater than unity. The 

existence of a linear near-field is determined by the generation para­

meters discussed in Section 3. 2. 1. The length of a linear near-field 

is a function of the rate of growth of nonlinearities during wave 

propagation. 
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As suggested earlier, the length, t, required to characterize 

the linear effects of frequency dispersion, is a measure of the distance 

over which significant changes in wave amplitude occur. When the 

length is chosen properly for a wave, the ratio (h/t) 2 becomes pro-

portional to the vertical accelerations a water particle experiences 

as the wave passes (see, e. g. , Lamb (1932, § 1 72) ). An excellent 

physical description of wave dispersion caused by vertical accelera-

tions of fluid particles is given by Peregrine ( 1966) and Madsen and 

Mei ( 1969 ). In a periodic wave the characteristic length, t, is pro -

portional to the wave length. In a wave of complex shape, i.e. , non-

periodic, the characteristic length is no longer well defined and in 

fact no single length may exist which adequately describes the entire 

wave. In. a wave of this type the length, t, becomes a local property 

of various regions of the wave profile. An appropriate definition for 

the characteristic length, t, in a region of a complex wave form is: 

t = O(T]/TJ ) , x (3. 70) 

where T) is the slope of the wave profile. When computation requires 
x 

a specific value for the length, t, it may be taken as: 

(3. 71) 

where T]
0 

is the maximum wave amplitude in the region of the wave 
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under consideration and 11'11 II is defined as the maximum x 

value of the slope of the profile in that region. Thus, the local Ursell 

Number for a complex wave shape may be given as: 

u = (3. 72) 

In Section 3. 2. 1 the linear theory was found to be applicable 

during the interval of the bed deformation when the conditions on the 

generation parameters given by Eqs. (3. 58) and (3. 66) were satisfied. 

As indicated previously, the length of time after wave generation for 

which the linear theory remains applicable depends on the rate of 

growth of the nonlinear effects during wave propagation. This rate 

of growth depends on the generated wave form which is a function of 

the generation parameters discussed in the previous section. 

Consider the bed deformation whose generation parameters 

satisfy the conditions given by Eq. (3. 58). For these deformations 

the bed displacement can be considered to be impulsive; hence, at 

the end of the displacement little wave propagation has taken place. 

The water surface will have assumed a profile near the end of the 

bed movement similar to the shape of the deformed bed. Due to the 

elliptic nature of the fluid's response to an impulsive boundary dis -

placement, the water surface will not move exactly as the solid 

boundary. This is especially true for small disturbance-size scales, 
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b/h, as will be demonstrated in Chapter 5. It is useful, however, to 

assume for the moment that for small-amplitude-impulsive-displace-

ments of the bed, the water surface at the end of the displacement is 

identical to the bed deformation. For a block upthrust of the bed 

section, the assumed water surface at the end of the displacement 

is shown in Fig. 3. 4. If the step in the bed profile is ignored, the 

y* 

h 

r----

Fig. 3. 4 Assumed water surface profile at the end of an impulsive 
upthrust of the bed. 

asymptotic wave behavior of such an initial displacement based on a 

linear theory has been found by Jeffreys and Jeffreys (1946) to be: 
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where Ai [ ] is the Airy integral and all variables are dimensional. 

The Airy function for its argument less than zero, i.e., for x < t '\/gh, 

is a damped oscillation where the spacing of the nodes or the wave 

length decreases as the argument becomes more negative. From 

Eq. (3. 73) it is seen that a convenient choice of a characteristic 

amplitude of the wave form, I\ , and a characteristic length, t , 
0 

are: 

1 

1\
0 

= o[ C
0 
(~)( t '~h7h )-

8
] and t 

.!. 

= o[ h( t >!'J g /h )'"] (3. 74 ) 

where t >:' is the elapsed time after generation. It is noted that the choice 

of length, t , given by Eq. (3. 74) differs from that suggested by Eq. 

( 3. 71 ) ; however, either choice should yield values of the same orde r 

of magnitude for the Airy integral. Thus the Ursell Number behaves 

as: 

u = o/ (' 0 )(E.)( t>~Jilh)~l . 
·- h h \ -

(3. 75) 

1 

From Eq. (3. 75) nonlinear effects are seen to grow with time as (t':') 8 . 

(This discussion of the growth rate of nonlinearities is essentially 

that presented by Ursell (1953).) 

The time required for the Ursell Number to reach a specified 

value can be approximated from Eq. (3. 75). For instance, when the 

Ursell Number equals unity the linear theory is no longer applicable. 

The nondimensional time, 1jl, after generation for this to occur is of 

order: 
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(3. 76 ) 

and the corresponding nondimensional distance, S, from the generation 

region is of order: 

(' )-3 )-3] s = o[ ~ (~ · (3. 77) 

Therefore , the extent of the linear near-field decreases very rapidly 

as the amplitude scale, C /h, or the size scale, b/h, of the deforming 
0 

boundary increases. It is interesting to note that although the magni-

tude of the size scale alone is unimportant in determining the appli-

cability of the linear theory, it is extremely important in determining 

the distance over which the linear approximation remains useful. 

The far-field has been previously defined as the region of wave 

propagation in which amplitude dispersion has become equal in impor-

tance to frequency dispersion, i.e., the Ur sell Number is of order 

unity. In a positive wave (11 > 0) amplitude dispersion tends to hold 
0 

the wave form together while frequency dispersion is acting to disperse 

the wave. Since both effects are equal in magnitude, a balance is 

achieved and permanent wave forms are possible. In a negative wave 

(11 < 0 ) both amplitude and frequency dispersion act together to dis -
0 

perse the wave ; hence, no permanent form waves are possible. 

As pointed out earlier, when T) /h < < 1 and (h/ ·t) 2 < < 1 
0 

such that 11 /h = O[(h/.t) 2 
], approximate equations governing the wave 

0 

motion have been developed by several authors [see, e.g., Boussinesq 

(1872), Rayleigh(l876), McCowan(l891), and Korteweg and deVries 

(1895)]. 
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The permanent form waves found by these authors are the solitary or 

cnoidal waves. The equation which Korteweg and deVries found to 

govern a wave propagating in the direction of increasing x >:< in water of 

constant depth, h, is: 

(3. 78) 

where the asterisk is again used to denote dimensional variables. 

(Eq. (3. 78) will hereafter be referred to as the KdV equation.) 

Letting 11 = 11'~/h, x = x':</h, and t = t'~Jg/h the KdV equation may 

also be written: 

0 . (3. 79) 

Another form of the KdV equation which was used by Peregrine ( 1966) 

is given as: 

(3. 80) 

where u = u >:< /Jgh and u>:<(x>:<;t>:<) is the mean horizontal velocity of 

the water. The water surface elevation, 11, is related to the velocity, 

u, to the same order of approximation by: 

1 2 
T1 = u + -u 4 

1 
- -u 

6 xx 
(3.81) 

From the preceding discussion it is seen that when T) /h < < 1 
0 

and (h/t) 2 < < 1 such that T) /h = O[(h/t) 2 J in the far-field, the KdV 
0 

equation provides an appropriate description of the future wave 

behavior. In this investigation, a possible strategy to use when wave 
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forms are required in the far-field is to take the linear solution 

which is applicable in the near-field as the input to the KdV equa-

ti on. The far-field wave forms can then be found by solving the 

initial value problem for the KdV equation, either numerically or 

analytically. Due to the complexity of the algorithm of the e x act 

solution a numerical solution has been used based on the work of 

Peregrine using Eqs. (3. 80) and (3. 81 ). A similar input-output 

approach to the solution of the KdV equation has recently been used by 

Zabusky and Galvin (1971). 

When nonlinear and linear effects are each of order unity the 

above strategy fails since the KdV equation applies to small (but finite) 

waves only. Fortunately, this case is of little importance in the 

current study. 

As indicated previously, when the Ursell Number is of order 

unity for a wave of complex shape, permanent form waves are 

possible. The evolution of permanent wave forms has been 

recently demonstrated by an extensive amount of research on the 

properties of the KdV equation by several authors. In a numerical 

study of the KdV equation Zabusky and Kruskal ( 1965) were able to 

show that solitary waves (termed solitons by the authors) of different 

amplitudes, and thus travelling with different celerities, were able 

to "pass through 1
' one another without losing their identity. The only 

effect of the nonlinear interaction of two solitons was a slight shift in 
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phase (an acceleration) of the two waves. The ability of solitons to 

emerge from the nonlinear interaction suggests that a complex wave 

form may be thought of as consisting of a finite number of interacting 

solitons of different amplitudes. This surprising behavior of a non­

linear physical process has been confirmed analytically by Gardner, 

et al (1967) who discovered a nonlinear transformation which relates 

the solutions of the KdV equation to the eigenvalues of the inverse 

scattering problem. They showed that for an initial wave profile 

whose net volume is finite and positive, a train of solitons will even­

tually evolve with decreasing amplitude toward the rear of the train 

followed by a spreading tail of oscillatory waves. (For an initial wave 

profile whose net volume is finite but negative, no solitons emerge; 

this case will be discussed in more detail in Chapter 5.) The ampli­

tude and number of solitons that emerge is a function of the initial 

condition 'Tj(x;O). Lax (1968) has investigated this same behavior for 

a class of nonlinear equations of evolution one of which is the KdV 

equation. A more complete discussion of the KdV equation and its 

properties has appeared in a series of papers authored by researchers 

at the Plasma Physics Laboratory, Princeton University, which are 

indicated by references (24), (31), (32), and (46). 
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3. 3 RELATION OF THE DAM-BREAK PROBLEM TO IMPULSIVE 

BED MOVEMENTS. 

In Section 3.2.1 a class of bed movements was discussed in 

which the deformation occurred so rapidly that the free surface near 

the end of the movement assumed a shape almost identical to that of 

the deformed bed. For a small-amplitude-bed-uplift, i.e., 

0 < C /h < < l, a solution for the asymptotic wave behavior was 
0 

presented which was based on a linear theory. Now consider the case 

where the uplifting bed section lies in the region -co < x * s; 0, and the 

bed displacement occurs impulsively through a distance C which is 
0 

small but no longer much less than the water depth, h. The discussion 

of the generation parameters in Section 3. 2. 1 suggests that a nonlinear 

theory is required to describe the wave behavior. Again assuming the 

water surface to be identical to the deformed bed at the end of the 

movement, the initial water surface profile is shown in Fig. 3. 5. (If 

the relative bed displacement, C /h, is small (but finite) then the pres-o . 

ence of the step in the deformed bed may be ignored as a first approxi-

mation. ) The wave form shown in Fig. 3. 5 resembles the initial water 

surface profile commonly used in the classl.cal dam-break problem; 

hence, further behavior of waves generated in this manner should be 

analogous to the waves predicted by the solution of the dam-break 

problem. 

The dam-break problem (Stoker {1957), p. 333) consists of 

finding the wave generated when a barrier separating two regions of 

fluid of depth h and h + C is suddenly removed; thus, resulting in an 
0 

initial wave profile identical to that shown in Fig. 3. 5. (Note that the 
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origin of the coordinate system is now at the bed. ) The equations 

which are assumed to govern the motion are given by: 

Fig. 3. 5 Assumed water surface profile after an impulsive bed 
upthrust in the region -a:> < x* ::;; 0. 

(3. 82) 

(3. 83) 

where il*(x*;t*) is the water surface elevation above the downstream 

water level given by h. Eqs. (3. 82) and (3. 83) neglect vertical water 

particle motions thus eliminating the linear effects of frequency dis -

persion and implying a hydrostatic pressure distribution everywhere. 

An analytical solution of Eqs. (3. 82) and (3. 83) for the initial water pro-

file shown in Fig. 3. 5 is available based on the method of character-

istics (see Stoker (1957)). The solution assumes that a bore (or shock) 

of amplitude 'll forms immediately upon removal of the barrier and 
0 

then moves downstrean1 with a constant velocity V. At the same time a 

negative wave moves upstream into the reservoir. Fig. 3. 6 shows the 
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water surface profile at a time t* after the removal of the barrier. 
0 

The fluid domain in Fig. 3. 6 is divided into four regions: zone (1) 

downstream of the advancing bore, zone (2) containing the constant 

amplitude bore, zone (3) where the transition between the upstream 

water surface elevation and the bore occurs, and zone (4) which is the 

upstream quiet zone. Since regions (1) and (4) are quiet zones, the 

water surface elevations are the same as the initial state and the 

horizontal fluid velocities are zero. In regions (2) and (3) the bore 

amplitude, 11
0

, the particle velocities under the bore, u~: , and the 

bore velocity, V, are related (see Stoker (1957)) by the equations: 

(3. 84) 

(3. 85) 

(3. 86) 

while the water surface elevation in zone (3) is given by 

h + 11*(x>::;t>::) = - 1 (2jgh(1+ Co) - x_: )2 

9g h t~ 
(3. 87) 

The negative wave retreating upstream is thus parabolic in form. 

Eqs. (3. 84), (3. 85), and (3. 86) may be solved simultaneously for 11
0

, 

u':' , and V as a function of C /h. The solution of these equations for 
2 0 

the relative bore amplitude, 11 IC , as a function of C /h is shown 
0 0 0 
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Fig. 3. 6 Regions of the fluid domain after removal of 
the barrier. 
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Fig. 3. 7 Variation of the relative bore amplitude, ri 0 / C0 , as a 
function of the initial difference in water levels, C0 /h. 
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in Fig. 3. 7. As the amplitude scale, C /h, becomes small, the bore 
0 

amplitude becomes equal to one-half of the initial difference in water 

levels, i.e., 11 /C --+ 0. 5 as C /h _, 0. As C /h increases to unity, 
0 0 0 0 

the relative bore amplitude decreases from 0. 5 to 0. 454. Since the up-

lifted bed section is not present in the dam-break problem, the two 

problems are no longer approximately analogous for large values of C /h. 
0 

When a reservoir of finite length, b, exists behind the barrier 

the previous discussion is limited to the time interval occurring before 

the negative wave, which propagates upstream from the original loca-

tion of the barrier, reaches the end of the reservoir. Assuming for 

convenience that a vertical wall exists at the upstream end of the 

channel, i.e., at x>!< = -b, the negative wave is reflected and pro-

pagates downstream in the positive x>!<-direction after striking the wall. 

A characteristic-plane solution for this problem is shown in Fig. 3. 8 

where the coordinate x>!< is scaled by the reservoir length, b, and time 

is scaled by the time required for the negative wave to reach the back-

wall, i.e., t = t>:<Jg(h+C
0

)/b. The water particle velocities, u~', and 

the phase velocities, Jg(h+11>:<), (from which the water surface elevations, 

T]':'(x>!<; t>!<), can be found) at the labelled nodes in Fig. 3. 8 have been 

determined using standard techniques of the method of characteristics. 

(These values are shown in the table inset in Fig. 3.8.) The shock 

which is generated at the instant the barrier is removed, travels 

downstream along the straight characteristic C 1 . The negative wave 
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Fig. 3. 8 Characteristic-plane solution of a dam-break problem with 
a reservoir of finite length. 
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propagating upstream is bounded by an expansion fan of angle 8 by 

the characteristics C 2 and C3 • Once u* 2 
and fl are found from 

0 

Eqs. (3. 84) through (3. 86), the angle, 8, of the expansion fan can 

be found. The characteristic C2 is reflected from the backwall and 

interacts in a nonlinear manner with the incoming negative wave. The 

nonlinear interaction is evident by the curvature of the characteristics 

which indicate an acceleration of the negative wave until the inter-

action is completed. The region of the nonlinear interaction in Fig. 

3. 8 is indicated by the dashed portion of the characteristics. When 

the characteristic C 3 strikes the backwall the reflection of the 

negative wave has been completed. It is interesting to note that once 

the reflected characteristic C 2 clears the region of nonlinear 

interaction, at node (7), it moves downstream at a constant velocity 

slightly larger than the bore velocity; thus the negative wave will 

eventually overtake the shock front. This is true for all initial 

differences in water level over the range 0 < C /h ~ 1. (For a 
0 

discussion of an expansion wave overtaking a shock see Courant and 

Friedrichs (1967, p. 180).) 

A typical water surface profile after the reflection process 

has been completed, but before the negative wave overtakes the 

shock front, is also shown in Fig. 3. 8. The bore now has a finite 

length, as it must, since the volume of water in the reservor is 

finite. The profile shown in Fig. 3. 8 should be typical of waves 
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generated by bed movements for which the dam-break analogy is 

applicable, at least near the generation region. 

Thus, the dam-break analogy provides a convenient mechanism 

for investigating the effect of the bed displacement, C , and the dis -
0 

turbance length, b, on the generated waves for a class of deformations 

termed impulsive. It should be remembered that the nonlinear theory 

used to solve the dam-break problem is limited in its ability to predict 

the detailed wave structure due to the omission of frequency dispersion 

and viscous effects. The vertical acceleration experienced by a fluid 

particle is directly proportional to the curvature of the water surface. 

At an abrupt discontinuity in the water surface (the shock front) the 

curvature is infinite thus the omission of the effects of frequency dis-

persion is not justified. In a real (viscous) fluid diffusion of vorticity 

by viscosity will smooth this discontinuity. Furthermore, Binnie and 

Orkney (1955) have shown experimentally that when the ratio of bore 

amplitude, fl , to water depth, h, exceeds 0. 7 5 the front of the bore 
0 

breaks and becomes turbulent as in the hydraulic jump. For 0. 35 < 

fl /h < 0. 75 they found that undulations formed on the bore and at 
0 

least one of these broke; the undulations are the result of frequency 

dispersion. No breaking was observed in their experiments when 

fl /h < 0. 35, however, the undulations were still present. 
0 
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3. 4 THE THREE-DIMENSIONAL MODEL - A LINEAR THEORY. 

In the previous discussions in this chapter attention has been 

given primarily to a simple two-dimensional model of tsunami genera­

tion, i.e., waves generated and propagating between parallel ortho­

gonals. The real tsunami problem is generally three-dimensional 

with waves emanating in all directions from the disturbance. There­

fore, it is of interest to investigate certain aspects of a simple three­

dimensional model in order to relate the general properties of waves 

propagating in that type of system to those in the two-dimensional case. 

Consider a three-dimensional fluid domain D with cylindrical 

coordinates r, z, and @. The fluid region is bounded above by a free 

surface, Sf, below by a solid boundary, Sb, and unbounded in the 

radial direction, i. e. , 0 ::; r < 00 • Initially the free surface and bed 

are located at z = 0 and z = -h, respectively. The prescribed bed 

movement for t > 0 is given by z = -h + C(r;t) where the bed defor­

mation has been assumed to be axially symmetrical. The resulting 

water surface displacement will also be independent of the coordinate 

8 and is given by z = Tl(r;t). The fluid flow is again assumed to be 

incompressible, irrotational, inviscid, and surface energy effects are 

neglected. Since the flow is axially symmetrical the velocity potential, 

cp, is independent of the coordinate 8. Under these conditions the 

mathematical description of the problem is as follows: 
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\72 c:p = c:p + .!_ c:p + c:p = 0 
rr r r zz 

= rit + co n r r 

in D, (3.88) 

on z = T)(r;t) , (3. 89) 

on z = T)(r;t), (3. 90) 

on z = -h + ' (r;t) . (3.91) 

In a manner which is similar to that presented in Section 3. 1 the non-

linear problem given by Eqs. (3. 88) through (3. 91) is replaced by its 

linear approximation: 

co + 
1 co + c:p = 0 rr i='" r zz 

in D, (3. 92) 

on z = 0 , (3. 93) 

N"\ = ' '-1/z t on z = -h . (3. 94) 

The linearized equations are most easily solved using transform 

techniques similar to those described in Section 3. 1. The appropriate 

transform for the radial coordinate (which ranges from zero to infinity) 

is the Hankel transform of zeroth order. The Hankel transform of a 

function f(r) is given by: 

A 

f (k) 
00 

= J rJ (kr)f(r)dr 
0 0 

(3. 95) 

where J (kr) is the Bessel function of the first kind and of order zero. 
0 

(The caret superscript will be used here to denote the Hankel trans-

form.) The time variable, t, is again transformed by the Laplace 

transform (Eq. 3. 11). Performing the necessary operations on Eqs. 
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(3. 92), (3. 93), and (3. 94), the transformed problem becomes: 

A 2"' 
CD (k, z;s) - k cp(k, z;s) = 0 , 

zz 

2~ 

A S A 
cpz(k, O;s) + g cp(k, O;s) = O , 

cp(k, - h; s ) = s c (k; s ) 

Solving Eqs. (3. 96), (3. 97), and (3. 98) yields: 

A 
cp(k, z; s) 

A 

= -gss(k;s) [cash kz - gsk
2 

sinh kz] 
(s 2 +w2 ) cosh kh 

(3. 96) 

(3.97) 

(3.98) 

(3. 99) 

where w2 again is defined as: w2 = gk tanh kh. The water surface 

variation is found from Eq. (3. 89) after that expression has been 

linearized and transformed to be: 

~ 

n(k;s) = 2 2 (s +w ) cosh kh 

2"' 
s ' (k; s) (3. 100) 

Application of the inversion integral for the Hankel transform of zeroth 

order, i.e. : 

CD 

f(r) = J kJ (kr)f(k) dk , 
0 0 

(3. 101) 

and the Laplace inversion integral, Eq. (3. 28), to Eq. (3. 100) yields: 

~ 

ri(r;t) 
s 2 e

8
\J (kr) C(k;s) 

= J0

00 

{2;i JBr. (s 2 +w2 )
0 

cosh kh 
1 ds j dk . (3. 102) 
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To use Eq. (3. 102) a specific bed displacement-time history 

must be given. For example, consider a block upthrust or downthrow 

of a section of the bed which is circular in planform and moves in the 

same exponential manner as shown in Fig. 3. 2. If the radius of the 

moving bed section is given by r , 
0 

then the movement is described 

mathematically by: 

t :<: 0 , (3. 103) 

where H{r -r) is the Heavyside s~ep function defined by Eq. (3. 31). 
0 

Transforming the bed movement by the Hankel and Laplace transforms 

given by Eq. (3.101) and (3.11), respectively, one obtains: 

A 0 0 a ,....., r J 1 (kr ) [ J 
C(k;s) =Co k s(s+a) ' 

where J 1 {kr ) is the Bessel function of first kind and order one. 
0 

Substituting Eq. (3. 104) into Eq. (3. 102) yields: 

I 
en J 1 (kr ) J {kr) 

1 
std 

r. t = r o o __ ase s dk 
11( ' ) Co o 

0 
cosh kh {2rri J Br. (sa+w2 )(s+a.) } 

(3. 104) 

(3. 105) 

The integration of the bracketed quantity above is identical to the 

Laplace inversion integral appearing in Eq. (3. 34); hence, the following 

expression for the wave amplitude distribution results: 

oo J 1 (kr )J (kr) ~ t 

I o o [ a 1 [ -a w . l 11 (r;t) = -C r h kh 2 + 2·i e -cos wt--srn wt , dk. o o 
0 

cos a w _ . a __J 
(3. 106) 
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The integration over wave number space in Eq. (3. 106) cannot be 

performed in closed form. Thus, numerical integration again must 

be used. 
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CHAPTER 4 

EXPERIMENTAL EQUIPMENT AND PROCEDURES 

In order to model the bed deformations given by Eqs. (3 . 3 0 ) 

and (3. 32) in the laboratory, a wave generation system was required 

in which both the time-displacement history of a block section of the 

bed in a wave tank and the motion characteristics, i.e., C , b, and 
0 

t , could easily be varied. A hydraulic servo-system was developed 
c 

to meet these requirements. Since the wave behavior for the simple 

two-dimensional model of generation described in Chapter 3 is sym-

metric about the position x = 0, this position was replaced in the 

laboratory model by a vertical wall; hence, only one-half of the disturb-

ance and fluid domain were modeled. In this chapter the wave tank, 

the hydraulic servo -system, the associated instrumentation, the actual 

time-displacement histories and dynamics of the moving bed section, 

and the range of the generation parameters (C /h, b/h, t Jg/h or 
0 c 

t Jgh/b) for which experiments were conducted are described in 
c 

detail. 

4. 1 THE WAVE TANK. 

A wave tank measuring 103. 8 ft (31. 6 m) long, 2 ft (61 cm) deep, 

and 15 -1 /2 in. (39. 4 cm) wide was used for the experimental program. 

The tank is constructed of eleven separate modules, ten of which are 

identical; the additional module is located at one end of the wave tank 
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and contains the moveable block section of the bed which is used to 

generate the waves. A schematic drawing of one of the ten similar 

modules of the wave tank is shown in Fig. 4. 1. Details of the con­

struction of these modules have been given previously by French ( 1969) 

and will only be discussed briefly here. The side walls of each of 

these ten modules are constructed of glass panels measuring 5 ft long, 

25 in. high, and 1 /2 in. thick. The instrument carriage rails are 

made of 1 in. diameter stainless steel rod and are mounted on the top 

flanges of the tank sidewalls with studs spaced at 2 ft intervals. The 

rails were carefully leveled to within 0. 001 ft of a still water surface 

in the wave tank. A photograph of an overall view of the wave tank 

taken from the downstream end, i.e., the end of the tank furthest 

from the wave generator, is shown in Fig. 4. 2. 

A wave-energy dissipation system which consists of twelve 

individual units is located at the downstream end of the wave tank. 

Each unit is constructed of a sheet of rubberized hair (commonly 

used in the manufacture of furniture) measuring 2 in. thick with the 

dimensions of the tank cross -section, and held in a rack made of 1 /8 

in. stainless steel rod. The units are approximately equally spaced 

over the last 5 ft of length of the wave tank (see Fig. 4. 2). Two sheets 

of rubberized hair are also attached to the downstream end-wall of the 

tank. The efficiency of this system as an energy dissipator varied 

appreciably over the range of water depths used in the experiments. 

No detailed reflection coefficients were obtained for the system, since 
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------ IO'-----
a'----- - + - - - - e· ------

Fig. 4. 1 Schematic drawing of a typical downstream 
tank drawing (after French ( 1969) ) 

Fig. 4. 2 Overall view of wave tank 
11403 
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the main purpose of the dissipator s was to attenuate the reflected wave 

energy in the tank in the shortest possible time. 

A schematic drawing of the tank module which was constructed 

to house the moveable bed section is shown in Fig. 4. 3. The upstream 

end-wall of this module (corresponding to the position x = 0 in the 

theoretical model presented in Chapter 3) is constructed of 15 in. 

aluminum channel with a machined face and is mounted on four cad­

mimum- plated studs. Using these studs, the end-wall can be adjusted 

for proper vertical alignment. Adjacent to the upstream end-wall is 

an open section (or chamber) in the bottom of the module where the 

moveable bed section of the wave generator is located. (Note that the 

moveable bed section is shown installed in this chamber in Fig. 4. 3.) 

The length of this chamber corresponds to the half-length, b, of the 

modeled bed deformation. The downstream wall of the chamber is a 

1 /2 in. machined aluminum plate which is also mounted to adjustable 

studs to facilitate alignment. The fixed portion of the bed section in 

this tank module, which connects to the remaining wave tank, is con­

structed of 15 in. aluminum channel. (All aluminum was anodized to 

reduce corrosion.) The fixed bed section and the downstream chamber 

wall are designed so that alterations in the chamber length can be made; 

hence, the half-length, b, of bed deformation may be varied. 

The side walls of the end module shown in Fig. 4. 3 are made of 

glass panels measuring 48 in. long, 41 in. high, and 3/4 in. thick. 

Thicker glass is used in thi.8 module th a n in th e dowrnit.ream tank 
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modules because of the larger hydrodynamic forces which occur 

during rapid movements of the bed section. After construction, this 

tank module was bolted to the existing wave tank with each leg of the 

module supported on bolts which were fastened to a flat steel bar 

bolted to the laboratory floor (see Fig. 4. 3). Hence, the portion of 

the tank bed in this module just downstream of the chamber for the 

moveable bed unit could be aligned with the bed of the remaining wave 

tank. Instrument carriage rails were also mounted on the top flanges 

of this module and aligned with the rails of the main wave tank. A 

photograph of the end tank module after installation is shown in Fig. 

4 . 4 with the moveable bed unit in place in the chamber. 

4. 2 THE WAVE GENERATOR. 

The wave generator which was designed and constructed to 

accurately model the bed deformations discussed in Chapter 3 is 

driven by a hydraulic servo-system. This system accepts an input 

voltage and converts the input electrical signal into a mechanical 

displacement (which is directly proportional to the magnitude of the 

voltage); hence, the time-displacement history of the mechanical 

movement is proportional to the time-voltage history of the input 

signal. (A brief description of this generation system has been given 

by Raichlen (1970).) The system can be conveniently divided into the 

following sections: a moveable bed assembly, the hydraulic supply 

unit, and the servo- system. A schematic drawing of the entire sys­

tem is shown in Fig. 4. 5. 



-76-

Fig. 4. 4 View of the end-tank module and wave generator. 
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The moveable bed assembly consists of a hydraulic cylinder, 

its supporting structure, two flexures, a load cell, a guide cylinder, 

the bearing support structure, and the bed unit with its attached seal. 

The assembly is located in a pit beneath the end module of the wave 

tank (see Fig. 4. 4); an 11 exploded" view of the assembly is shown in 

Fig. 4. 6. The hydraulic cylinder which drives the bed unit is a double­

throw type (Miller Model DH62) with a stroke of ± 7 in. ( ± 1 7. 78 cm) 

and has a net piston area of 6. 811 sq .in. The hydraulic cylinder is 

mounted vertically and attached by means of two stainless steel flex­

ures to the floor of the pit and to the load cell. The flexures provide 

a means to correct for any small vertical misalignments occurring 

during installation. The upper portion of a load cell (BLH Electronics, 

Type U36 l) is attached to the bed unit and measures the total force 

applied to the bed unit. (This transducer was not used in the current 

study.) To insure the proper vertical movement of the bed unit, a 

stainless steel cylinder with a lengthof Zft and a 7-1/2 in. outside 

diameter was used as a guide. The guide cylinder moves between two 

bronze bearings located in the bearing support structure. The bearing 

support structure is firmly anchored to the laboratory floor beneath 

the end tank module as shown in Fig. 4. 3. The bed unit is positioned 

inside the chamber of the end module of the wave tank and is bolted to 

the upper portion of the guide cylinder. A seal is attached to the 

bottom perimeter of the bed unit (see Fig. 4. 3). The seals which were 

designed and fabricated are a single-piece unit, molded of relatively 

flexible material and mounted to an aluminum frame. 
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Fig. 4. 6 Exploded view of moveable bed assembly. 
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Two bed units were used in the experimental program in order 

to vary the half-length, b, of the bed deformation. The longer bed 

unit (shown in Figs. 4.3, 4.4, and 4.6) measures 2 ft (61 cm) in 

length, 8 in. high, 15-1/4 in. wide, and is constructed of machined 

cast aluminum except for the upper lid which is made of 1 /2 in. 

aluminum plate. The second bed unit is 1 ft (30. 5 cm) in length, 8 in. 

high, 15-1/4 in. wide, and is constructed entirely of 1/2 in. machined 

aluminum plating. Both units were anodized to protect against 

corrosion. A seal was fabricated for each bed unit. 

The hydraulic supply unit consists of a hydraulic fluid reservoir, 

pump, filter, unloading valve, two heat exchange units, check valve, 

and an accumulator. A photograph of the main _portion of the hydraulic 

supply unit is shown in Fig. 4. 7; the accumulator which is located in 

the pit beneath the wave tank and the water cooled heat exchanger 

which is located in the hydraulic fluid reservoir are not shown in this 

photograph. (A schematic drawing of this assembly has been shown 

in Fig. 4. 5.) The reservoir is filled with hydraulic fluid and contains 

a sight gage which indicates the fluid level and temperature. A 

Denison, constant volume, axial-piston-type pump, rated at 2. 9 gpm 

at 3000 psi and 2. 8 gpm at 3500 psi is mounted above the reservoir; 

the pump is powered by a 7. 5 hp, 1800 rpm electric motor. Imme­

diately downstream of the pump is a filter constructed of stainless steel 

wire cloth with a nominal and absolute particle diameter rating of 5 

microns and 15 microns, respectively. Downstream of the filter is an 

unloading valve which is followed by a check valve. The unloading 
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Fig. 4. 7 View of the hydraulic supply unit. 
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valve senses the system pressure at a position downstream of the 

check valve; when the system pressure is below a preset value 

(3200 psi during normal operation) the unloading valve directs the 

flow of hydraulic fluid into the system. Once the desired system 

pressure is reached, the system side of the valve closes and the flow 

is diverted through an air-cooled heat exchanger (the radiator struct­

ure shown in Fig. 4. 7) and back to the reservoir. The check valve 

prevents a reverse flow through the pump from the pressurized system 

when power to the pump is turned off. During normal operation the 

assembly shown in Fig. 4. 7 is enclosed in an acoustically insulated 

housing that contains a fan which is used to increase the air flow 

through the heat exchanger. 

An accumulator was installed downstream of the check valve in 

order to provide a sufficient volume of hydraulic fluid at high pres sure 

to drive the moving bed unit when flow rates greater than 2. 9 gpm 

(the pump capacity) are required. The accumulator (partially shown 

in Fig. 4. 4 horizontally mounted to the wall of the pit) is pre charged 

with nitrogen at 1500 psi on one side of a moveable piston. Under a 

system pressure of 3200 psi the nitrogen is compressed behind the 

piston thus permitting approximately 2-1 /2 gallons of hydraulic fluid 

to be stored. This volume is sufficient to supply the required flow 

rates which occasionally reach an instantaneous value of 60 gpm for 

very short intervals of time. 
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One of the most important parts of the wave generator is the 

servo-system which controls the time-displacement history of the 

moving bed. The servo-system consists of a Moog AC/DC servo-

controller (Model 82-151) and power pack (Model 82-152), a Moog 

servoval ve (Model 72-103), a function generator designed and constructed 

by Dr. Haskell Shapiro, and a linear variable differential transformer. 

The function generator provides a DC voltage which varies with 

time and is directly proportional to the desired time-displacement 

history of the moveable bed unit; the circuit required to produce a 

time-voltage history proportional to the exponential and half-sine bed 

movements given by Eqs. (3. 30) and (3. 32), respectively, is shown 

in Fig. 4. 8. When the two selector switches in Fig. 4. 8 are in 

position A, the output voltage varies in an exponential manner given 

by Eq. (3. 30). The variable capacitor, CX
3

, permits changes in the 

time scale of the exponential movement; the capacitance in microfarads 

corresponds approximately to the time in seconds required for two-

thirds of the motion to be completed. (This relationship is the reason 

for the definition of the characteristic time, t , adopted in Chapter 3.) 
c 

The maximum voltage which is approached asymptotically by the 

exponential time history (which corresponds to the maximum bed 

displacement, 1;:
0

) is controlled by the variable r e sistor, R
1

. When 

the two selector switches are in the position, B, the output voltage 

varies in a half-sine manner described by Eq. (3. 32). The matching 

variable capacitors' cxl and cx2, may be adjusted to control the 
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total time of the movement in seconds. The total amplitude of the 

movement may be adjusted in the same manner as for the exponential 

motion by changing the variable resistor, R 
1

. 

The servocontroller receives the electrical signal from the 

function generator and actuates the servovalve to vary the flow of 

hydraulic fluid to either side of the piston in the hydraulic cylinder; 

the imbalance of pressure across the hydraulic piston results in the 

displacement of the bed unit. The LVDT is used in conjunction with 

the servo-system to monitor the actual bed displacement. The servo­

controller compares the actual bed displacement with the programmed 

motion and makes corrections in the electrical signal to the servovalve 

if the bed unit is not moving properly. In this manner the time history 

of the mechanical displacement is corrected within the limitations of 

the ability of the mechanical system to respond to the electrical signal. 

(This response will be dis cussed in Section 4. 3.) 

The electrical signal from the LVDT is also recorded on a 

multi-channel Consolidated Electronics Corporation (Model 5- l 24A) 

recording os cillograph after first being amplified by a Dynamics 

(Model 6450) differential DC amplifier. (The recording speeds of the 

oscillograph range from 0. 625 cm/sec to 160 cm/sec; hence, detailed 

measurements of very rapid bed movements are possible.) The LVDT 

was calibrated by moving the bed a known distance and recording the 

electrical signal from the LVDT on the oscillograph. A typical cali­

bration curve of the LVDT is shown in Fig. 4. 9. The LVDT was 



4 

-E 
0 -
~ 

3 z 
w 
~ 
w 
u 
<X 
....I 
~ 2r en 
0 

0 
w 
al 

0 

/ 

10 20 30 40 50 60 

STYLUS DEFL~CTION (mm) 

Fig. 4. 9 Typical calibration curve of the linear variable differential 
transformer. 

1 I 
00 
O' 

70 



-87-

found to be a highly reliable motion transducer maintaining its linearity 

over the full range of displacements used in this study. 

4.3 THE RESPONSE OF THE WAVE GENERATOR. 

The hydraulic servo-system is limited in its performance by 

the ability of the mechanical system to respond to the programmed 

electrical signal. In order to check the performance of the wave 

generator over a wide range of programmed time scales, the frequency 

response of the mechanical-electrical system was determined. A 

sinusoidal voltage of constant maximum amplitude and variable fre-

quency (up to a maximum of 40 cps) was used as input to the servo-

controller. The response of the moveable bed unit to this signal was 

then determined from the recorded output of the LVDT. The dam.ping 

in the system may be varied electrically to change the response 

characteristics of the entire wave generator. Response curves 

obtained at three different values of the electrical damping are shown 

in Fig. 4. 10 where the total bed displacement, Ct' normalized with 

respect to the total bed displacment for a frequency approaching zero, 

Ci, is shown as a function of the forcing frequency. (The experimental 
0 

curves placed through the measured data are to be considered only as 

suggested response curves.) The short-dashed curve represents the 

system response for the smallest electrical damping; amplification of 

the bed motion appears to occur at 1. 5 cps and 20 cps for this damping. 

As the electrical damping is increased, these resonant peaks disappear. 

The solid curve shown in Fig. 4. 10 represents the system behavior at 
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a damping which was found to yield the best overall performance of the 

wave generator; this daniping was adopted for use throughout the 

experimental program. 

In addition to monitoring the bed unit displacement on the 

recording oscillograph, the electrical signal from the function gener-

ator was also monitored. Since the calibration curve of the LVDT 

output is linear, the side- by- side measurement of programmed and 

actual bed movement provides an easy performance check of the wave 

generation system. Two examples of the system performance for the 

exponential bed displacement are shown in Figs. 4. 11 a and 4. 11 b where 

the programmed and actual bed displacements, C, are shown as a 

function of time. (Note that the electrical signals from the LVDT and 

function generator in each figure have been scaled so that they cause 

the same total stylus deflection.) The characteristic time, t , of the 
c 

programmed movement shown in Fig. 4. 11 a is 0. 250 secs. (Recall 

that t = t when 'I' = 2 /3 for the exponential bed dis placement; the c 0 

manner in which t is determined from the LVDT output will be dis­
c 

cussed shortly.) The actual bed movement in Fig. 4. lla appears to 

lag the programmed signal by approximately 0. 01 secs. The actual 

bed motion in Fig. 4. l la closely resembles the programmed movement 

except initially where some discrepancies are observed. These dis-

crepancies are caused by the dis continuity in the bed velocity of the 

exponential time history at t = 0. The mechanical system smoothes 

this discontinuity in accordance with the response shown in Fig. 4. 10. 
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This smoothing process requires approximately 0. 01 secs after motion 

of the bed has begun. The high frequency oscillation in the electrical 

signal from the LVDT (the actual bed displacement) is a result of the 

400 cps electrical signal used to excite the LVDT. The presence of 

this signal did not affect the bed movement since the mechanical sys -

tern cannot respond to a frequency of this magnitude. 

As the characteristic time of the exponential bed displacement 

1s increased to values larger than t = 0. 250 secs, the agreement 
c 

between the programmed and actual bed displacements improves. As 

the characteristic time decreases, the differences between program-

med and actual motions become more pronounced since the initial 

smoothing of the dis continuity requires a larger period of time relative 

to t . This type of behavior is demonstrated in Fig. 4. 11 b where 
c 

simultaneous measurements of the LVDT and function generator output 

for an exponential bed displacement with t = 0. 020 secs are shown. 
c 

For this movement the smoothing of the initial discontinuity requires 

approximately 0. 012 secs; hence, the programmed and actual bed 

movements are dissimilar for more than 50% of the characteristic 

time. Because of this behavior no experiments were conducted for the 

exponential bed displacements with a characteristic time, t , less 
c 

than 0. 073 secs. 

Side-by-side measurements of actual and programmed time 

histories of two half-sine bed displacements are shown in Figs. 4. 12a 

and 4. 12b. The characteristic time, t ' c 
of the programmed motion 
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rn Fig. 4. 12a is 0. 079 secs. (Recall that the characteristic time of 

the half - sine motion has been taken as the total time of movement; the 

determination of this time from an actual motion record will be dis -

cussed shortly.) The bed movement is again observed to lag the 

programmed movement by approximately 0. 01 secs. Except for the 

presence of this lag, the actual and programmed motion appear to be 

similar. (The oscillations observed on the actual bed motion are 

caused again by the 400 cps electrical signal used to excite the LVDT. ) 

No discontinuity exists in the slope of the half-sine bed displace-

ment given by Eq. (3. 32); however, in accordance with the system 

response, the actual motion of the bed becomes distorted as the 

characteristic time of the displacement becomes very small. This is 

illustrated in Fig. 4. 12b where the simultaneous recordings of the 

programmed and actual bed motion are shown for a programmed 

motion with a characteristic time of 0. 039 secs. The bed unit is not 

able to reach the velocities required by the programmed motion and 

the bed unit overshoots the total programmed displacement. In order 

to avoid this behavior, no experiments with half- sine bed dis placements 

were conducted with a characteristic time of less than 0. 043 secs. 

In addition to the frequency limitations of the wave generator, 

the response is also limited by the total displacement, C , of the 
0 

programmed motion. Although a maximum stroke of ± 17. 78 cm is 

provided by the hydraulic cylinder, it was found that the actual bed 

displacements deviated from the programmed movements when C 
0 
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exceeded ± 6 cm for rapid bed motions. This type of behavior is 

caused by the increase in the required velocities and accelerations as 

the total displacement increases for a constant characteristic time. 

Hence, a maximum bed displacement of ± 6 cm was used in the 

experimental program for rapid movements. Larger total displace-

ments could be used for slow bed movements; however, the total dis -

placement never exceeded ± 10 cm. 

In accordance with the limitations of the experimental equip-

ment, the range of the generation parameters (C /h, b/h, t Jg/h or 
0 c 

t Jgil/b) used in the experimental program are shown in Table 4. 1 for 
c 

both the exponential and half-sine bed displacements. The disturbance -

amplitude scale never exceeds ±0. 2, i.e., 1 C /h 1 :<;:; 0. 2, for the 
0 

three smaller disturbance-size scales of b/h = 0.61, 1.22, and 2.03. 

For b/h = 6. 10 a bed displacement up to 50% of the water depth was 

used; for the largest size scale, i.e., b/h = 12. 2, the bed unit could 

be displaced over the full depth, i.e., 1s
0

/h1 :<;:; 1.0. 

Although the characteristic time of the programmed exponential 

or half-sine bed movement could be determined approximately from 

the capacitance used in the circuit (see Fig. 4. 8), the actual character-

istic time was computed from the LVDT output for each movement. 

In order to determine t for the exponential motion, the actual time­
c 

displacement history is plotted on semi-log paper as shown in Fig. 

4. 13a where the ordinate is given by 1 - CIC and the abscissa 
0 

represents the time elapsed from the beginning of the bed displacement. 
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Table 4. 1 Range of generation parameters (and corresponding water depths) used in the 
experimental investigation. 
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The data shown in Fig. 4. 13a have been determined from the actual 

bed movement shown in Fig. 4. l la; note that a large water depth, 

h = 50 cm, a large total displacement, C = + 5 cm, and the smaller 
0 

bed unit (b = 30. 5 ·cm) were used for this movement. Once the data 

for the actual motion are determined, a straight line is fit to the 

data and the characteristic time, t , is found at CIC = 2/3 or 
c 0 

1 - CIC
0 

= 1/3 (see Fig. 4. 13a). 

For the half-sine bed displacement, the characteristic time is 

determined by plotting the actual motion on a special paper where the 

half-sine motion between t = 0 and t = T plots as a straight line. 

Fig. 4. 13b shows the half-sine movement of the experimental record 

shown in Fig. 4. lZa plotted in this manner. (Note that a small water 

depth, h = 5 cm, a small total displacement, C = + 1 cm, and the 
0 

larger bed unit (b = 61 cm) have been used in this experiment. ) 

The data in Fig. 4. 13b are determined by first finding the position 

on the actual experimental record at which one-half of the motion has 

been completed (see Fig. 4. lZa). This position becomes the origin 

from which the bed displacement, C', and time, t', are measured; 

hence, C' and t' are negative for the motion which occurs during the 

first half of the dis placement. Once C' has been normalized with 

respect to the total bed displacement, C , and plotted as a function 
0 

oft', 

time, 

a straight line is fit to the data from which the characteristic 

t , is easily determined (see Fig. 4. 13b). 
c 
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4. 4 THE MEASUREMENT OF WAVE AMPLITUDES. 

Resistance wave gages are used in conjunction with the Sanborn 

( 150 Series) recorder in order to measure wave amplitudes as a 

function of time at a specific location in the wave tank. A drawing of 

a typical wave gage is shown in Fig. 4. 14. The wave gage consists 

of two stainless steel wires 3. 25 in. long with a diameter of 0. 01 in., 

and spaced 0. 16 in. apart. The wires are stretched taut and parallel 

in a frame constructed of l /8 in. diameter stainless steel rod. The 

wires are insulated electrically from each other in the frame, how­

ever, a current can pass between the wires when they are immersed 

in a conducting fluid. The wave gage is mounted on a point gage which 

is attached to an instrument carriage resting on the stainless steel 

rails which are mounted to the walls of the wave tank. A Sanborn 

Carrier Preamplifier (Model 150-1100 AS) is used to supply the 

2400 cps/4. 5 volt excitation for the gages as indicated by the circuit 

diagram in Fig. 4. 15. The output signal from the wave gage is also 

received by the Carrier Preamplifier which after demodulation and 

amplification is displayed on the recording unit. As the immersion 

of a wave gage is varied in a conducting solution, the resistance in 

the circuit changes proportionally, causing an imbalance in the full 

bridge circuit shown in Fig. 4. 15; this imbalance is recorded as a 

change from the balanced position. 

Before the wave gage is calibrated the full bridge circuit must 

be balanced at a fixed gage immersion. The gage is then immersed 
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and withdrawn a known distance from the balanced position and the 

deflection of the stylus is noted. This procedure is repeated for 

various immersions and withdrawals, and a typical calibration curve 

which results is shown in Fig. 4. 16. Every wave gage is calibrated 

before each experiment; however, no calibration curves were obtained 

at the end of the experiment, since each experiment was completed 

within minutes of the initial calibration. 

Wave profiles were normally recorded at five locations in the 

wave tank during the experiments; two wave gages were positioned 

over the moving bed section and three gages were located downstream 

of the bed section. Over the bed unit the waves were measured at the 

end-wall (x/h = O) and at the leading edge of the moving bed section 

(x/h = b/h). The downstream positions were varied according to the 

water depth such that the entire wave profile could be recorded at each 

position before the wave reflected from the end of the tank and return-

ed to distort the generated wave pattern. Table 4. 2 shows the wave gage 

b/h (x-b}/h 

0.61 -b/h 0 10 20 30 

1. 22 -b/h 0 10 20 30 

2.03 -b/h 0 20 30 60 

6. 10 -b/h 0 20 60 180 

12.22 -b/h 0 20 180 400 

Table 4. 2 Wave gage locations for each 
disturbance-size scale used 
in the experimental investigation. 
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positions for each of the five disturbance-size scales, b/h, for which 

experiments were conducted. Note that the wave gage locations are 

arranged such that two adjacent values of disturbance-size scale have 

four positions in common. The wave measurements at x/h = 0 (or 

(x-b)/h = -b/h) were by necessity obtained approximately 1 cm in 

front of the tank end-wall. Obviously, measurements at this position 

could not be made in experiments for which the bed unit displacement 

was positive and equal to the water depth. For this case, also, wave 

recordings at the leading edge of the bed section were made about 1 cm 

downstream of the uplifting bed unit. 

In addition to these Eulerian measurements of wave profiles, 

i.e. , the observation of the change in wave height with time at a fixed 

spatial location, a photographic system was constructed to enable 

Lagrangian measurements of the water surface movement to be made 

near the moveable bed section. These Lagrangian measurements 

permitted the spatial distribution of the wave amplitudes to be observed 

at a fixed time. 

The photographic system consists of an adjustable point gage 

with an attached micro-switch, a time-delay mechanism, two gas­

discharge flash lamps, and a camera. The point gage is mounted on 

the support structure of the moveable bed assembly in a manner such 

that a cam attached to the guide cylinder could trip the micro-switch 

when the cylinder movement reaches a preset position of the point 

gage. The micro-switch closes an electrical circuit which activates 
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the time-delay device. The time-delay device could be adjusted to 

activate the lamps after a time interval of zero to three seconds; 

adjustments of this mechanism could be made in 0. 05 sec intervals. 

A camera is positioned in front of the generation region with the 

shutter open so that the lamp flash imprints the picture on the film. 

Hence, the water surface location in the region of generation can be 

photographed at any time after the bed movement begins. 
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CHAPTER 5 

PRESENTATION AND DISCUSSION OF RESULTS 

In the first section of this chapter (Section 5. 1) results are pre-

sented for the region of the fluid domain in which the bed deformation 

occurs; both the two-dimensional (2-D) and three-dimensional (3-D) 

models of wave generation which were described in Chapter 3 are 

examined. The region of the fluid domain in which the bed mo vement 

occurs is termed the generation region and is given by · \x \ ::;; b and 

r ~ r for the two and three-dimensional models, respectively. In 
0 

the discussion of the two-dimensional model, theoretical and experi-

mental results are presented for the maximum amplitudes and charac-

teristic periods of the generated waves as well as the detailed wave 

structure at different locations in the region of generation. Possible 

energy dissipation mechanisms present in the experimental measure-

ments for the 2-D model are also briefly discussed. Section 5. 1 is 

concluded with a presentation of the theoretical results for the maximum 

wave amplitudes and the general wave structure in the generation region 

of the 3-D model. 

In Section 5. 2 theoretical and ·experimental results are presented 

for wave propagation in the two-dime!)siqnal model which occurs outside 

the region of generation. The fluid domain outside the region of gener -

ation, i.e., \x \ > b, is termed the downstream region. Wave propa-

gation in this region is investigated by both the linear theory developed 
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in Chapter 3 and the nonlinear description of wave motion based on the 

KdV equation which was also discussed in Chapter 3. The effects of 

energy dissipation that occur in the downstream region of the experi-

mental model are also discussed. 

Experimental wave profiles are presented in Section 5. 3 which 

result when an oscillating motion is superposed on the half-sine bed 

displacement. Changes in the wave profiles caused by varying both 

the frequency and amplitude of the oscillating motion are investigated. 

This chapter is concluded in Section 5. 4 with a discussion of the 

practical application of the theoretical and experimental results to the 

Alaskan earthquake of 27 March 1964. Characteristic values of 

appropriate generation parameters are found for the tectonic deform-

ations occurring during this disastrous earthquake; from these values 

certain features of the resulting tsunami are inferred. 

5. 1 THE GENERATION REGION 

For the two and three-dimensional models the generation region 

is defined as the region of fluid extending over the moving bed section 

which is given by \x \ ::;;; b and r :::;; r , respectively. There are two 
0 

positions in the generation region of the two-dimensional model which 

have been investigated both experimentally and theoretically; these 

positions are: x/h = 0, which will be referred to as the backwall, and 

x/h = b/h termed the leading edge (or the leading edge of the disturb-

ance). In the experiments the plane x = 0 corresponds to the upstream 

limit of both the wave generator and the wave tank. The positions 
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corresponding to x/h = 0 and x/h = b/h in the three-dimensional 

model are r /h = 0 and r /h = r /h; wave structure at these positions 
0 

has only been investigated theoretically. 

The range of the generation parameters ( C /h, b/h, and t 'V g /h) 
0 c 

for which experiments have been conducted for the exponential and half-

sine bed displacements were presented in Chapter 4. These generation 

parameters will be referred to in this chapter as: 

C /h - disturbance-amplitude scale, 
0 

b/h - disturbance-size scale, 

t 'l/g/h - disturbance-time scale. 
c 

(The ratio of the disturbance-time scale to the disturbance-size scale 

will hereafter be referred to as the time-size ratio.) It should be 

recalled that the characteristic time, t , for the exponential bed dis­
c 

placement is the time required for two-thirds of the movement to occur, 

i.e., t = t when CIC = 2/3. For the half-sine bed displacement the 
c 0 

total time of movement, T, is taken as the characteristic time. 

5. 1. 1 Maximum Wave Amplitudes in the Generation Region. 

One of the more important characteristics of the waves 

generated by a moving boundary is the maximum water surface elevation 

reached by the wave at a particular location. The maximum amplitude 

of the leading wave generated by the exponential and half-sine bed dis -

placements will be referred to herein as ri . (Other characteristics of 
0 

the generated waves, e.g., wave profiles and periods, will be discussed 

in Sections 5. 1. 2 and 5. 1. 3, respectively.) 
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Experimental and theoretical results for the variation of the 

ratio of the maximum wave amplitude to the maximum bed displace -

ment, i.e., 11
0

/C
0

, 

the backwall (x/h = 

as a function of the time-size ratio, t 1gii/b, at 
c 

0) are shown in Fig. 5. 1 for the exponential bed 

displacement. (Recall that the time-size ratio, t "1gh/b, was found in 
c 

Section 3. 2. 1 to be important as an indicator of the type of wave which 

is generated.) In Fig. 5. 1 the data are presented separately for each 

disturbance-size scale; hence, changes in the relative wave amplitude, 

Tl /C , are the result of changes in only the disturbance-time scale, 
0 0 

t '-Jg/h. In Fig. 5. 1 hollow circles are used to indicate experiments rn 
c 

which the bed displacement is positive (C > 0) while solid circles 
0 

correspond to experiments for negative bed displacements (C < O). 
0 

The symbols have also been identified to indicate the absolute value of 

the disturbance-amplitude scale, 1 C /h J, of the bed movement; the 
0 

symbols and the corresponding amplitude scale are shown in the legend 

of Fig. 5. 1. (It should be noted from the legend that no experiments 

were conducted for the case of IC /h I = 0. 7. ) The arrows which are 
0 

adjacent to certain data points indicate experiments for which the 

smaller bed unit, b = 30. 5 cm, was used; for all other experiments 

the length of the b.ed unit was 61 cm. 

The curves for each disturbance-size scale indicate the theo-

retical values of the maximum wave amplitude which were found by 

numerically integrating Eq. (3. 67). In the numerical integration the 

integral of Eq. (3. 67) rapidly converged so that the computation could 
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be terminated quickly. The variation of the integrand as a function of 

the integration variable, i.e. , the quantity A. = kh, was used to deter -

mine the limits of the integration such that an accurate approximation 

to the integral was obtained. All computations were performed on an 

IBM 360/75 or 370/155 high-speed digital computer. 

Examination of the results in Fig. 5. 1 for each disturbance-

size scale shows that the linear theory accurately predicts the relative 

wave amplitude for both positive and negative bed motions and for the 

full range of the generation parameters which were investigated. In 

the discussion of Chapter 3 regarding nonlinear effects occurring 

during a bed movement, it was suggested that the linear theory was 

only applicable over the full range of disturbance-amplitude scales, 

i.e. , 0 < \ C /h \ s: 1, when the time- size ratio was much greater than 
0 

unity. For bed movements which oc curred so rapidly that the time-size 

ratio was much less than unity, the analysis in Chapter 3 indicated that 

the linear theory was applicable only for small disturbance-amplitude 

scales, i.e., I c /h I < < 1. 
0 

Surprisingly, the linear theory shown in 

Fig. 5. 1 appears to accurately predict the relative wave amplitude, 

'Y1 ;r at the backwall for the full range of amplitude scales even when 
'

10 "'o' 

the time- size ratio is much less than unity. This behavior is demon-

strated best by the data for the largest size scale studied, i.e., 

b/h = 12. 2, where data with disturbance-amplitude scales up to ±0. 5 

appear near t '\/' gh/b = 10- 1 . 
c 
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Fig. 5. 1 clearly shows the variation of the relative wave height, 

Tl IC , as a function of the time scale, t Jglh, for a constant disturb-
o 0 c 

ance-size scale. Consider again the results for the largest size scale, 

i.e., blh = 12. 2, where the maximum wave amplitude becomes 

essentially equal to the total bed displacement, i.e., Tl IC """l, for a 
0 0 

time scale such that the time-size ratio is less than 10-
1

. As the time 

scale increases (or equivalently, as the time- size ratio increases) the 

relative wave height decreases until the theoretical curve approaches a 

slope of minus unity on the log-log representation for very large values 

oft jghlb; hence, Tl IC becomes inversely proportional to the time-
c 0 0 

size ratio as t ,/ghlb becomes large. This behavior was suggested 
c 

previously in Chapter 3 where it was found that the characteristic wave 

amplitude for bed movements such that t jghlb > > 1 was inversely 
c 

proportional to the parameter, t jghlb, now termed the time-size 
c 

ratio. The results for the smaller disturbance-size scales shown in 

Fig. 5. 1 shows the same general behavior as that for blh = 12. 2. 

However, the asymptotic value of Tl IC approached by the theoretical 
0 0 

curves for the smaller size scales (e.g., blh = 1. 22) when the time-

size ratio becomes very small is now less than unity. More discussion 

of this behavior for small size scales will be given shortly. 

For the two disturbance-size scales: blh = 1. 22 and 6. 10, 

data are shown in Fig. 5. 1 for which two different bed unit lengths, b, 

were used. No difference in the relative wave amplitude, Tl IC , is 
0 0 

apparent from the data regardless of the bed unit length as long as blh 
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remains constant; hence, the disturbance-size scale appears to be a 

proper scaling parameter for characterizing the wave generation 

process. 

In Chapter 3 bed movements which occurred so rapidly that the 

water surface nearly followed the bed deformation were described as 

impulsive. Thus for the largest size scale in Fig. 5. l, i.e., blh = 12. 2, 

the region of the time-size ratio for which the maximum wave amplitude 

equals the bed displacement, i.e., t Jgh°lb < 10- 1 , may be termed the 
c 

impulsive region of generation. For the smaller disturbance-size 

· scales in which the maximum wave amplitude, ri
0

, never becomes equal 

to the total bed displacement, C , a region does exist in which the ratio 
0 

ri IC becomes constant, i.e., ri IC is independent of the time-size 
'

10 o o o 

ratio; this region will hereafter be referred to as the impulsive region 

of generation. The region which corresponds to time-size ratios much 

greater than unity for which the relative wave amplitude, ri IC , 
0 0 

becomes inversely proportional to the time-size ratio will be referred 

to as the creeping region of wave generation as suggested previously 

in Chapter 3. (The word "creeping 11 is adopted due to its general use 

in seismology to describe slow adjustments along faults occurring after 

a major earthquake.) The range of time-size ratios between the 

impulsive and creeping regions will be referred to as the transition 

zone of generation. 

Fig. 5. 2 shows the variation of the relative wave amplitude, 

ri Ir as a function of the time-size ratio, t r::::Lghlb, atthe backwall 
' 10 "'o' c"/ gn 
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for the case of the half-sine bed displacement. The notation used is 

the same as that shown in Fig. 5.1 and is described again in the legend 

of Fig. 5. 2. The theoretical curves for each size scale have been 

computed from Eq. (3. 68). Again the linear theory appears to accur-

ately predict the relative wave amplitude for all of the time scales, 

t .fi}h, amplitude scales, C /h, and size scales, b/h, which have been 
c 0 

investigated. The general behavior of the results shown in Fig. 5. 2 is 

the same as that observed for the data presented in Fig. 5. 1 for the 

exponential bed displacement. As the disturbance-time scale decreases 

for a constant size scale, a maximum wave amplitude is reached which 

then remains constant with further reductions of the time scale. For 

two size scales: b/h ::: 6. 10 and 12. 2, the maximum wave amplitude. 

'11
0

, is equal to the total bed displacement, c . 
0 

Smaller relative wave 

amplitudes are reached in the impulsive regions of the other disturbance-

size scales: b/h::: 0.61, 1.22, and 2.03. (This behavior will be 

discussed shortly.) Upon leaving the impulsive region of generation for 

any size scale, the relative wave amplitude quickly becomes inversely 

proportional to the time-size ratio; the transition region for each size 

scale shown in Fig. 5, 2 is smaller in extent than the corresponding 

region for the exponential bed displacement shown in Fig. 5. 1. 

Data are also shown in Fig. 5. 2 for the disturbance-size scales 

b/h ::: 1. 22 and 6. 10 in which the smaller bed unit length (b=30. 5 cm) 

was used. The agreement of these data with that for the larger bed unit 

again indicates that b/h is a proper scaling parameter for the wave 

generation process. 
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The theoretical curves at the backwall are shown for all size 

scales in Fig. 5. 3 for both the exponential (Fig. 5. 3a) and the half-sine 

bed displacement (Fig. 5. 3b). In addition to the five size scales for 

which experiments have been conducted, a theoretical curve has also 

been computed for b/h = 100. Only a small difference in relative 

wave amplitude, Tl IC , is observed for the exponential bed displace­
o 0 

ment between the curves for b/h = 12. 2 and b/h = 100. This slight 

difference occurs only in the transition region of generation as the two 

curves are coincident in the impulsive and creeping regions. For the 

half-sine bed displacement the theoretical curves for b/h = 12. 2 and 

b/h = 100 are coincident for all time-size ratios. This lack of depend-

ence of the relative wave amplitude on the size scale at x/h = 0 for 

large values of b/h (e.g., b/h > 12. 2) is important in the application 

of these data to practical problems. 

It can be seen from Fig. 5. 3a and Fig. 5. 3b that the theoretical 

curves for T) IC collapse into a single curve when the creeping region 
0 0 

of generation is reached for each disturbance-size scale. As the size 

scale decreases, the magnitude of the time-size ratio required before 

the creeping region is reached also increases. This behavior is con-

sistent between the theoretical results for the exponential and half-sine 

bed displacements. Fig. 5. 3a and Fig. 5. 3b also show that as the 

impulsive region is reached for each disturbance-size scale, the maxi-

mum value of n IC that is achieved in this region decreases as the 
0 0 

size scale decreases; a discussion of this behavior will be given 

shortly. 
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The second position of interest in the generation region is the 

leading edge of the moving bed section, i.e., x = b or x/h = b/h. 

Experimental and theoretical results for the variation of the relative 

wave amplitude, Y] IC , as a function of the time-size ratio, t Jgh/b, 
0 0 c 

when the bed moves in an exponential manner are shown in Fig. 5. 4. 

Again the results for each size scale are shown separately so that 

changes in the time-size ratio (plotted as the abscissa) only represent 

changes in the disturbance-time scale. The notation used in Fig. 5. 4 

is the same as used previously and is again noted in the legend of the 

figure. 

Before discussing the agreement between theory and experiment, 

it is more convenient to look at the general behavior of Y] IC that is 
0 0 

predicted by the linear theory. For the largest size scale, b/h = 12. 2, 

the maximum wave amplitude at the leading edge of the bed section, Y] , 
0 

becomes equal to one-half the total bed displacement, C , as the time 
0 

scale becomes small, i.e., in the impulsive region of generation. 

This is the same value as predicted by the dam-break analogy in 

Chapter 3 for small initial differences in the water level between the 

reservoir and the downstream region. (Recall that the initial difference 

in water levels in the dam-break problem is analogous to the disturb-

ance-amplitude scale in the problem now under discussion.) As the 

disturbance-time scale is increased for b/h = 12.2 the relative wave 

amplitude decreases and approaches a slope of minus unity on the log-

log representation again indicating that the relative wave amplitude is 
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inversely proportional to the time scale. This same general behavior 

is found for the other size scales shown except for the smallest, i.e., 

b/h = 0.61, where the maximum wave amplitude reached in the im-

pulsi ve region of generation is less than one-half the total bed dis -

placement. (Again, an explanation of this behavior will be given 

shortly.) 

The agreement between theory and experiment in Fig. 5. 4 is no 

longer as good for the larger disturbance-size scales, i.e., b/h = 6. 10 

and 12. 2, as was observed at the backwall. The data for these size 

scales in Fig. 5. 4 indicate that il /r:;, is consistently less than the 
0 0 

value predicted by the linear theory in the transition and impulsive 

regions of generation for positive bed displacements (hollow circles) 

with amplitude scales greater than 0. 2. The larger the disturbance-

amplitude scale, the more the linear theory deviates from the experi-

mental results. Near t Jgh/b = 0. 4 for b/h = 12. 2 the linear theory 
c 

predicts a relative wave amplitude, il Ir:;, , approximately twice as 
0 0 

large as that observed experimentally when the amplitude scale 

approaches unity. A similar finite-amplitude effect was suggested by 

the dam-break analogy in Chapter 3 where the amplitude of the generated 

bore, il , relative to the initial difference in water levels (termed r:;, ) 
0 0 

decreased as r:;, increased for a fixed downstream water depth. When 
0 

the initial difference in water levels was equal to the downstream water 

depth, a decrease in the relative bore amplitude, ri
0

/C:,
0

, of approxi­

mately 6% was calculated. The much stronger nonlinear effect evident 
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from the data in Fig. 5. 4 for positive bed movements in the impulsive 

region of generation for b/h = 12. 2 is probably due to the presence of 

the large step in the channel at the end of the impulsive bed movement. 

No step is present in the bed profile for the dam-break problem; hence, 

the analogy with the waves generated by the bed movement no longer 

exists. When an impulsive movement of the bed unit occurs such that 

(; /h is of order unity, the flow of water near x/h = b/h more closely 
0 

resembles flow over a broad-crested weir as it spills out of the 

generation region into the downstream domain of fluid. It should be 

noted that as the time scale, t Jg/b, decreases in the impulsive region 
c 

of generation for b/h = 12. 2, the difference between the predicted and 

the measured values of maximum amplitudes for positive bed move-

ments of large amplitude appears to decrease; this is indeed the case 

and is due to a major change in the general wave profile which occurs. 

(This behavior will be discussed in Section 5. 1. 2.) 

For b/h = 6. 10 and 12. 2 the relative wave amplitude, 11
0
/(

0
, 

for negative bed displacements increases in the impulsive and transition 

regions as the absolute value of the disturbance -amplitude scale 

becomes greater than 0. 2; however, this finite-amplitude effect of the 

bed movement is not as pronounced as observed for positive bed dis -

placements. It can be seen from the data for b/h = 12. 2 that when 

0. 5 ~ 1 (; /h 1 ~ 1 the measured relative wave amplitude is only 20% 
0 

larger than that predicted by the linear theory. As the time scale 

becomes very small, these data for negative bed movements do not 

appear to approach the linear theory as indicated by the data for 

positive bed displacements. 
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The linear theory agrees well with the data shown in Fig. 5. 4 

over the full range of the time-size ratio investigated for b/h = 6. 10 

and 12.2, when the disturbance-amplitude scale is less than 0.2. For 

the smaller size scales: b/h = 0. 61, 1. 22, and 2. 03, the linear 

theory agrees well with all the data shown. It should be noted that for 

these smaller disturbance-size scales, no amplitude scale greater 

than O. 2 could be used in any experiments. 

From Fig. 5. 4 it can be seen that in the creeping region of 

generation the data agree well with the linear theory for each disturb-

ance-size scale regardless of the amplitude scale of the bed movement. 

This behavior for creeping bed movements was suggested previously 

in Chapter 3. 

For the size scales: b/h = 1. 22 and 6. 10, experiments are 

indicated for which the smaller bed unit length (b =' 30. 5 cm) was 

used. No differences between these data and the data for the larger bed 

unit are observed; hence, b/h does appear to be a proper generation 

parameter. 

Fig. 5. 5 shows the experimental and theoretical results for the 

relative wave amplitude, T) Is , as a function of the time-size ratio, 
0 0 

t Jgillb, at xlh = blh when the bed moves in a half-sine manner. The 
c 

notation is the same as used previously and is again noted in the legend 

of Fig. 5. 5. As for the exponential bed displacement, the linear theory 

accurately predicts T) Is for all time-size ratios and disturbance­
o 0 

size scales when the absolute value of the disturbance-amplitude scale 
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islessthan0.2. For \C /h\ >0.2 thesamenonlinearbehaviorofthe 
0 

relative wave amplitude in the impulsive and transition regions for 

b/h = 6. 10 and 12. 2 is observed as was discussed previously for the 

exponential bed displacement in Fig. 5. 4. In the creeping region of 

each size scale, the linear theory agrees well with the data over the 

full range of amplitude scales. 

Fig. 5. 6a and Fig. 5. 6b show the theoretical results for the 

relative wave amplitude as a function of the time- size ratio for the 

exponential and half-sine bed displacements, respectively. In addition 

to the five disturbance-size scales discussed previously, a theoretical 

curve has been computed for b/h = 100 for each time-displacement 

history of the bed unit. The curves for b/h = 100 predict a slightly 

larger relative wave amplitude in the transition region of generation 

than that predicted for the smaller size scale, b/h = 12. 2. The 

theoretical curves for these two size scales are coincident in the 

impulsive region of generation where the relative wave amplitude 

becomes constant at a value of 0. 5 and in the creeping region where 

Tl / C is inversely proportional to the time-size ratio. In Fig. 5. 6a 
0 0 

and Fig. 5. 6b the relative wave amplitude, Tl IC , appears to become 
0 0 

independent of the disturbance-size scale for size scales greater than 

b/h = 12. 2; this behavior was also observed for the relative wave 

amplitude measurements at the backwall (see Fig. 5. 3). 

For the smaller disturbance-size scales in Fig. 5. 6a and 5. 6b, 

the maximum value of the relative wave amplitude, Tl /C , reached rn 
0 0 

the irnpulsi ve region of generation is less than 0. 5. A similar 
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behavior was also exhibited by T) /C for the smaller size scales in the 
0 0 

impulsive region of generation at the backwall (see Fig. 5. 3a and 5. 3b}. 

The decrease in the maximum wave amplitude that can be reached in 

the generation region for small size scales is a result of the elliptic 

nature of the partial differential equation, 'V
2

cp = 0, governing the 

response of the fluid medium to the impulsive boundary condition. In 

order to understand this "elliptic behavior" of the fluid medium, it is 

useful to first discuss an analogous problem from the theory of elasti-

city where elliptic equations are also found to describe the response of 

an elastic solid to a system of applied forces. 

Consider an elastic solid which is experiencing a complex 

system of forces over a section of its boundary of length, 0 , whose 

resultant force is zero. Saint-Venant's principle (which is used exten-

sively in the study of the elastic behavior of solids) states that the 

strains produced by the system of forces are negligible at distances 

from the force system which are large compared to 0 (see, e.g., Fung, 

1965 ). Hence, the complex system of forces may be replaced by any 

other system which is statically equivalent in order to determine the 

behavior of the solid at distances from the force system which are 

large compared to 0 . 

Saint-Venant' s principle may also be applied to the current pro-

blem since the governing equations are elliptic. Hence, the response of 

the fluid at distances much greater than Zb (the disturbance length) from 

t ht' impulsi vc boundary deformation would not be expected to behave 
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differently during any impulsive boundary deformation in which the 

same amount of water volume is displaced. (Requiring the deformations 

to displace the same total water volume is analogous to requiring the 

force systems on the elastic solid to be statically equivalent.) When the 

water depth is such that h > > 2b then the water surface over the 

impulsively moving bed is included in this part of the fluid domain and 

would no longer be expected to resemble the deformed bed at the end of 

the deformation. 

The effect of this elliptic behavior on the wave amplitudes at 

x /h =- 0 and x/h =- b/h at the end of the impulsive bed displacement is 

shown in Fig. 5. 7 where the maximum wave amplitude, T] I ~ , is 
0 0 

shown as a function of the disturbance-size scale, b/h. The curves 

shown have been computed by the linear theory for both half-sine and 

exponential bed displacements when the time-size ratio was less than 

10 -Z. The same curves result independent of the time -dis placement 

history of the bed movement as would be anticipated for impulsive bed 

displacements. 

The maximum wave amplitude, T] , at the position x/h = 0 
0 

becomes equal to the total bed displacement for all disturbance-size 

scales greater than about four. As the size scale becomes less than 

four the relative wave amplitude, T] I~ , decreases from unity until 
0 0 

it becomes directly proportional to the size scale for b/h < 0. 1, i.e.: 

for b/h < 0. 1. ( 5. 1) 
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(The constant of proportionality can be seen from Fig. 5. 7 to be equal 

to unity.) 

The maximum wave amplitude, Tl , occurring at the edge of the 
0 

moving bed section, i.e., x/h = b/h, is equal to one-half the total bed 

displacement for all disturbance-size scales greater than approxi-

mately two. The maximum wave amplitude then decreases as the size 

scale decreases until, near b/h = 0. l, the wave amplitude at the 

leading edge becomes equal to the wave amplitude at the center of the 

deformed bed section (x/h = 0). These amplitudes remain equal for 

smaller size scales; hence, the relative wave amplitudes at x/h = b/h 

is also given by Eq. (5. 1) for b/h < 0. 1. 

Eq. (5. 1) may also be written as: 

( 5. 2) 

where Tl b represents the amount of the displaced water volume remain­
o 

ing in the generation region during the impulsive bed displacement and 

C b is equal to the displaced water volume. Hence, for the disturbance­
o 

size scales less than 0. 1 most of the displaced water volume is already 

in the downstream region at the end of the impulsive bed displacement. 

Still another form of Eq. (5. 1) is: 

Tl h 
0 CT - 1 
0 

for b/h < O. 1 , ( 5. 3) 

which appears to indicate that the displaced water volume is contained 
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in a region at the end of the impulsive bed movement which resembles 

a semi-circular-cylindrical shell of radius h, a thickness Tl , and unit 
0 

width. 

It is interesting to note that Sokolnikoff (1946, p. 90) in his 

treatise on elasticity states that it is commonly assumed in problems 

regarding beams that Saint-Venant' s principle becomes applicable at 

a distance of approximately five times the characteristic length of the 

applied force system. In the present problem the water surface directly 

over the disturbance is at a distance of five times the disturbance length 

(2b) when b/h = 0. 1. This is indeed the largest disturbance-size scale 

for which the water surface behavior in the generation region becomes 

independent of location. 

In summary, it appears that the linear theory developed in 

Chapter 3 for the two-dimensional model predicts reasonably well the 

relative wave amplitude, Tl /C , in the generation region. Major 
0 0 

differences between the linear theory and experiments appear to be 

limited primarily to the impulsive and transitional region of generation 

for large disturbance-amplitude scales, i.e., I C
0

/h 1 > 0. 2. In the 

creeping region of generation the linear theory agrees well with experi-

ments over the full range of amplitude scales, i.e., 0 < 1 C /h 1 ~ 1. 
0 

5. 1. 2 Wave Profiles in the Generation Region. 

In the previous section only one characteristic of the 

waves in the generation region was discussed, i.e., the maximum 
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amplitude, T) ,of the leading wave. In general the linear theory was 
0 

found to predict this amplitude well. A more complete confirmation of 

the linear theory in the region of generation requires a detailed com-

parison between theory and experiment of the entire wave profile~ such 

a comparison will be made in this subsection. 

In the discussion of maximum wave amplitudes it was found that 

the bed displacements for a specific size scale could be conveniently 

divided into three regions of generation according to the magnitude of 

the time-size ratio, t Jgh/b. An impulsive region of generation was 
c 

said to exist when the maximum wave amplitude remained constant for 

a decreasing time-size ratio; a creeping region was defined for large 

t Jgh/b when the wave amplitude became . inversely proportional to the 
c 

time-size ratio and independent of b/h; and a zone of transition was 

defined between the impulsive and creeping regions. Since the wave 

structure is similar within each of these three regions, a convenient 

method for determining the accuracy of the linear theory in predicting 

the wave structure is to examine in detail typical wave profiles in each 

region. 

Typical theoretical and experimental wave profiles which occur 

in each region of generation for exponential bed displacements are 

shown in Fig. 5. 8 where the normalized wave amplitude, Ti/C , is 
0 

shown as a function of the nondimensional time, t.fi)h.. The size scale 

for each wave profile shown is b/h = 12. 2; recorded and computed 

wave profiles are shown at the backwall (x/h = 0) and at the leading 
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edge of the disturbance (x/h = b/h). (The generation parameters for 

each profile are indicated in the figure. Note that an amplitude scale, 

C /h, for which the linear theory should be applicable has been chosen 
0 

in each region.) Experimental curves are shown dashed in Fig. 5. 8 

while theoretical curves are shown as solid lines. 

In the impulsive region the water surface at both the backwall 

and the leading edge of the disturbance rapidly rises to an amplitude of 

C and C /2, respectively. The wave amplitude then remains constant 
0 0 

for a limited interval of time after which the water surface rapidly 

decreases to the still water level(also referred to as SWL) and then 

oscillates in a damped manner about this mean level. The amplitude of 

each oscillation is small compared with the amplitude of the leading 

wave. The experimental profiles and the linear theory in Fig. 5. 8 

agree well at both the backwall and the leading edge except for the 

trailing portion of the leading wave. The time required for the leading 

wave to rise and then return to the SWL (hereafter referred to as the 

nodal time) appears to be somewhat larger in the experiments than in 

the computed profiles. This behavior of the experimental and the 

theoretical profiles was consistent for all runs in which the disturbance-

amplitude scale was small, i.e., C /h ~ 0. 2, and the disturbance- size 
0 

scale, b/h, was equal to 12. 2. As b/h decreased, the linear theory 

agreed more closely with the experimental profiles. (Nodal times of 

the wave profiles will be discussed in the following section (Section 

5.1.3).) 
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The waves at the back wall and at the leading edge in the trans -

ition region shown in Fig. 5. 8 rise at a slower rate than those in the 

impulsive region and reach a maximum amplitude which is less than 

C and C /2, respectively. Immediately upon reaching this maximum 
0 0 

amplitude, the water elevation begins to decrease toward the SWL. The 

rate of fall decreases before reaching the still water level and slight 

oscillations occur; these oscillations do not appear to go below the SWL. 

In this region the theoretical and experimental profiles agree well over 

the entire wave signature. 

In the creeping region of generation the waves at both the back-

wall and leading edge slowly rise to a maximum amplitude and then 

fall very slowly back toward the SWL. (Note the change in abscissa 

and ordinate scales for this profile.) The rate of fall is so slow that the 

profile resembles a bore. The theoretical profiles agree well in shape 

with the experimental waves but fail to reach the same amplitudes ; 

maximum experimental wave amplitudes are on the order of 10% 

higher than the computed amplitudes. Dimensional wave heights for 

this experiment were less than 2 mm; henc e, a 10% error in measure -

ment is within the normal error expected for measureme nts with a 

resistance wave gage (see Section 4 . 4) for waves of this amplitude. 

Typical experimental and theoretical profiles for waves gener -

ated by a half-sine bed displacement in each of the three regions of 

generation are shown in Fig. 5. 9 where T) / C is again shown as a 
0 

function of t.}g7h. Wave profiles for both a positive and negative bed 
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displacement are shown in each region and the disturbance-size scale 

is varied among the regions. For the negative bed displacements the 

generation parameters are the same as for the corresponding positive 

cases. (Recall that the linear theory predicts that a negative bed dis -

placement will generate a wave which is the mirror image of the wave 

created by a positive bed displacement.) 

In the impulsive region of generation the experimental and 

theoretical profiles for the negative dis placement ( <:
0 

< 0) agree well 

in detailed structure at both the backwall and leading edge. The agree-

ment between the theoretical and experimental wave profiles generated 

by a positive bed displacement does not appear to be quite as good at 

either position. At the backwall the measured wave profile reaches an 

amplitude greater than the total bed displacement. This behavior of the 

measured profile may be caused by observed leakage of air around the 

seal of the moveable bed unit during very fast bed displacements. This 

leakage could cause the measured water surface to exceed the theoret-

ical amplitude, <: , and possibly oscillate as shown by the experimental 
0 

profile for small nondimensional times. (The entrainment of air due 

to leakage around the seal will be discussed in more detail shortly. ) As 

for the exponential case in the impulsive region, the nodal times of the 

leading wave for the experimental wave profiles are greater than those 

predicted by the linear theory. In the transition and creeping regions 

of generation, both the positive and negative wave profiles of the linear 

theory agree well with the experimental wave profiles in detailed 

structure. 
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Comparison of the waves for each region between Fig. 5. 8 for 

the exponential bed displacement and Fig. 5. 9 for the half-sine bed 

displacement shows that, in general, the wave profiles in the impul-

si ve and transition regions of generation are similar while the wave 

profiles are quite different in the creeping region of generation. For 

the exponential bed displacement a wave resembling a bore is generated 

in the creeping region of generation while the wave generated by the 

half-sine bed displacement is inuch more symmetrical and has a finite 

nodal time. 

Eqs. (3. 67) and (3. 68) demonstrated that similar wave profiles 

result when the generation parameters b/h and t ,Jg1h remain constant, 
c 

regardless of the individual values of b, h, t , 
c 

and g. This suggested 

behavior could be investigated experimentally by using the two bed units 

of different lengths and varying the generation characteristics such that 

the nondimensional generation parameters remained constant. Fig. 

5. 10 shows a sequence of measured wave profiles for both an exponent-

ial and half-sine bed displacement for bed lengths, b, of 30. 5 cm and 

61 cm. The wave amplitude, fl, has been normalized by the total bed 

dis placement, C , and shown as a function of the nondime n sional time 
0 

t./g7h - (x-b)/h. Since the wave motion at both x/h = 0 and x/h = b/h 

begins at t = 0, the wave profile at the back wall must begin at the 

abscissa value of b/h. In addition to these two positions in the gener-

ation region, three wave measurements are also shown in the down-

stream region. For the half-sine bed displacement the downstream 
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locations are at 10, 20, and 30 depths from the leading edge of the 

disturbance; for the exponential bed movement measurements were 

made at 20, 60, and 180 depths from the leading edge. The solid 

curves in Fig. 5. 10 represent the experimental profiles recorded 

using the larger bed unit (b = 61 cm); the dashed curves represent the 

profiles recorded at similar locations when the smaller bed unit 

{b = 30. 5 cm) was used. The values of the nondimensional generation 

parameters (which were held constant for the experiments) are indi-

cated in Fig. 5. 10. Various aspects of the propagation characteristics 

of such waves will be discussed completely in Section 5. 2; some of 

these are presented in Fig. 5.10 only to indicate the similarity of 

profiles for a change in absolute bed size. 

The time-size ratio for the exponential bed displacement lies 

in the transition region of generation and has a large amplitude scale 

of C /h = 0. 5. It can be seen that at each location the recorded pro­
o 

files for this experiment are almost identical for each of the bed unit 

sizes. 

The time-size ratio for the half-sine experiment also lies in 

the transition region of generation but has a very small amplitude scale 

of C /h = 0. 04. Again the recorded profiles are almost identical for 
0 

each bed unit. This, to some extent, confirms the validity of the choice 

of the generation parameters which were determined in Chapter 3. 
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The general wave structure in the impulsive region illustrated 

in Figs. 5. 8 and 5. 9 for the exponential and half-sine bed movements 

is typical of the experiments for small disturbance-amplitude scales, 

i.e. , le /h\ :::; 0.2. For larger amplitude scales, however, the 
0 

general wave structure in the generation region is altered when the bed 

movement is impulsive. Wave profiles recorded at x/h = 0 and 

x/h = b/h for a disturbance with le /h\ = 0.4 are shown in Fig. 5.11 
0 

for a positive and negative half-sine bed movement which is impulsive. 

Again the wave amplitude, T], has been normalized by the bed displace­

ment, e , and shown as a function of the normalized time, t/i)h. 
0 

The linear .theory is again shown as a solid curve with the experimental 

profiles shown dashed. 

For the positive movement in Fig. 5. 11, the recorded wave at 

the backwall has a much larger nodal period than that predicted by the 

linear theory. At x/h = 0 the leading wave is now followed by a single 

negative wave with a nodal period of the same order of magnitude as 

that of the leading wave. At the leading edge of the disturbance 

(x/h = b/h) the water level rapidly rises to a maximum elevation, n
0

, 

where it remains constant for an interval of time after which the 

amplitude decreases to the SWL. This results in a long negative wave 

trailing the positive disturbance. The only feature of this wave struc -

ture which appears to be predicted reasonably well by the linear theory 

is the maximum amplitude, Tl , which occurs momentarily in the 
0 

measured profile. It was found that Tl IC approached one -half as the 
0 0 
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time-size ratio was decreased within the impulsive region of generation. 

(This behavior was demonstrated by the data presented in Fig. 5. 4 and 

5. 5. ) 

The theoretical profiles for the negative bed displacement at 

x/h = 0 and x/b = b/h in Fig. 5. 11 appear to predict the temporal 

variation of the experimental profiles more accurately than for the 

positive bed displacements. The maximum wave amplitude, ri , at 
0 

the leading edge of the disturbance for the measured profile is approxi-

mately 20% greater than that predicted by the linear theory. 

In other experiments it was noted that as the disturbance-

amplitude scale was increased, the temporal variation of the waves 

shown in Fig. 5. 11 was maintained while the differences increased 

between the measured amplitudes and those computed by the linear 

theory. 

In the preceding discussion the wave forms have been viewed 

from an Eulerian point of view, i.e., the position of observation has 

been fixed and variations with respect to time have been observed. It 

is also useful to observe the wave structure in the generation region by 

fixing the time of observation and examining the water surface spatially. 

Lagrangian measurements of this type have been performed in the 

laboratory photographically in order to fix the motion at a specific time. 

The experimental arrangement permitted pictures of the water surface 

to be taken at predetermined times during and after the bed displacement 

yielding a time sequence of photos showing the temporal evolution of the 
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water surface behavior. (For a full description of the photographic 

system the reader is referred to Chapter 4. ) 

The two experiments photographed to illustrate the spatial water 

surface deformation in the region of generation for the exponential bed 

displacement had the following generation characteristics: 

b = 61 cm, t = 0.116 secs, and h = lOcm thus: 
c 

t Jgh 
c 0 /h = ± 0 . 5 , b /h = 6 . 1 0 ' c b = 0 . 18 8 . 

(; = ± 5 cm, 
0 

( 5. 4) 

From Fig. 5. 1 this displacement is seen to lie in the transition region 

of generation. A large disturbance-amplitude scale and small time 

scale were chosen in order to enable the water surface movements to 

be easily observed. As indicated by Eq. (5. 4), both a positive and a 

negative bed displacement were investigated; the sequence of photo-

graphs obtained for each displacement is presented in Fig. 5. 12a and 

5. l 2b. The bed position and times are indicated beneath each photo; 

the SWL has been marked by a black line in each photo and a vertical 

scale is indicated on each photograph (in centimeters). 

Fig. 5. 12a shows the sequence of photographs for the positive 

bed displacement with photo # 1 showing the undisturbed fluid. In photos 

#2 and #3 the water surface is essentially following the moving bed 

section except near the leading edge where a smooth transition occurs 

between the SWL and rising water surface. In this case, the trans -

itional length between the downstream water depth and the rising water 

surface in the generation region is due to wave propagation rather than 
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Fig. 5. 12 Spatial variations of the water surface elevation in the 
generation region for exponential bed displacements; 
a) bed upthrust, b) bed downthrow. 
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the elliptic response of the fluid. A long wave traveling with a velocity 

of Jgh = 99 cm/ sec has had an opportunity to propagate a distance of 

approximately 1 7 cm upstream and downstream of the leading edge in 

photo #3, yielding a transition length of 34 cm which is approximately 

the length of the transition scaled from the photograph. In photo #4 a 

positive wave can definitely be seen leaving the generation region 

while a negative wave is retreating over the bed unit. In photo #5 the 

negative wave has reached the backwall where the water level is now 

decreasing. This continues in photo #7 until in photo #8 the water at 

the backwall has returned to the still water level. A small negative 

wave forms in photo #8 trailing the positive leading wave. 

The corresponding sequence of photographs for the negative 

exponential bed displacement is shown in Fig. 5. 12b; again photo # 1 

shows the undisturbed fluid. In photo #2 and #3 the water surface is 

deforming in the same manner as the bed unit except near the leading 

edge where a smooth transition with a length of approximately 34 cm 

occurs between the two water levels. Photos #4 and #5 show a positive 

wave entering the generation region which has reached the backwall in 

photo #6 where the water level has returned to the SWL. In photo #7 

the trailing portion of the negative leading wave is shown leaving the 

generation region while photo #8 shows small amplitude oscillations 

forming behind the leading wave. 

The presence of air entrained around the seal of the bed unit 

during rapid bed movements is illustrated by the sequence of photos 
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shown in Fig. 5. 12b. Examination of the area just above the seal in 

photo #2 shows that air bubbles have formed between the moving bed 

unit and the glass sidewalls of the wave tank. The bubbles increase in 

size and begin to rise into the fluid during the displacement and reach 

the free surface of the fluid domain in photo #7. As suggested earlier, 

the leakage of air around the seal for rapid bed displacements may 

account for some of the differences which were noted between the 

experimental and theoretical wave profiles shown in Fig. 5. 9 (especi-

ally at the backwall). 

A comparison of the photographs in Fig. 5. 12a and Fig. 5. 12b 

for bed upthrust and downthrow is also of interest. Since the photos 

were taken at identical positions during the bed displacement, a direct 

comparison of wave behavior is possible. As stated previously, the 

linear theory suggests that wave profiles, whether Eulerian or Lag ran-

gian, are mirror images about the still water level for positive and 

negative bed movements with the same generation parameters. In 

photos #2 and #3 the corresponding water surfaces do indeed appear 

to be mirror images of each other. Slight discrepancies begin to appear 

in photo #4 which increase in magnitude in the remaining photos. These 

discrepancies are probably caused by the nonlinear effects introduced by 

the large amplitude scale of the bed displacement. 

The experiment which was photographed to illustrate the water 

surface deformation in the region of generation for the half-sine bed 

displacement had the characteristics: <: = ± 5 cm, b = 61 cm, 
0 
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t = 0. 20 secs, and h = 10 cm with the following generation para­
c 

meters: 
t Jgh 

so/h = ±0. 5, b/h = 6. 10, c b = 0. 324. ( 5. 5) 

Fig. 5.2 indicates that this time-size ratio lies in the impulsive region 

of generation near the boundary of the transition region. The sequence 

of photos for the case of bed uplift is shown in Fig. 5. l 3a. Again a 

black line is used to indicate the SWL and a vertical scale graduated 

in centimeters is shown in each photograph. Beneath each photograph 

the position of the bed unit in space and time is indicated. 

The evolution of the water surface shown in Fig. 5. 13a is very 

similar to that shown for the exponential bed displacement in Fig. 5. 12a. 

The water surface essentially follows the bed unit in photos #2 and #3. 

In photo #4 a wave can be seen leaving the generation region and in 

photo #5 the water level at the backwall has begun to decrease. The 

trailing portion of the leading wave can be seen developing in the 

remaining photos. 

The photographic sequence for bed downthrow for a half-sine bed 

displacement program is shown in Fig. 5. 13b. The wave behavior is 

similar to that shown in Fig. 5. 12 b for the exponential time history of 

the bed displacement. Comparison of the individual photos between the 

case of positive bed movement shown in Fig. 5. 13a and the negative 

movement of Fig. 5. 13b again demonstrates that the detailed wave 

profiles are not the mirror image of each other due to the large 

amplitude scale used in this experiment (s /h = ±0. 4). 
0 
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Fig. 5. 13 Spatial variations of the water surface elevation in the 
generation region for half-sine bed displacements; 
a) bed upthrust, b) bed downthrow. 
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5. 1. 3 Wave Periods in the Generation Region. 

All wave profiles occurring in the region of generation 

and described in the preceding section were complex in shape, i.e., 

nonperiodic, over the full ranges of the generation parameters (b/h, 

C /h, and t Jglh) which were investigated. For these complex wave 
0 c 

shapes, no single period exists which adequately describes the temporal 

variation of the entire wave profile. Fortunately, most of the displaced 

volume of water (and wave energy) for the wave profiles illustrated i n 

Section 5. 1. 2 is contained in the leading wave. Three periods appear 

to adequately describe the temporal variation for most of the various 

complex shapes of the lead waves found in the region of generation. 

Consider the typical profile of the leading wave in the generation 

region illustrated by the sketch in Fig. 5.14a and Fig. 5.14b for an 

impulsive, positive and negative bed displacement, respectively. For 

77 

770 
t tf r 

t 
tr tf 

-77 0 

(a) ( b) 
Fig. 5. 14 Definition sketch of rise time, tr, fall time, tf, and nodal 

time, t ; a) positive lead wave, b) negative lead wave. 
n 

t 
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the positive bed displacement the water rises to a maximum height, 11 , 
0 

in a period tr, remains at this amplitude until the time tf' and then 

begins to decrease to the still water level which is reached at the time, 

t . Similar time intervals are shown in Fig. 5. l 4b for the leading 
n 

wave generated by a negative bed displacement. (The times tr, tf' 

and t will hereafter be referred to as the rise time, fall time, and 
n 

nodal time, respectively. 

It should be noted that the shape of the leading wave shown in 

Fig. 5. 14a for an impulsive positive bed displacement is not character-

istic of all the profiles at the leading edge of the disturbance. When 

the disturbance-amplitude scale is large, i.e., C /h > 0. 2, and the 
0 

bed displacement is impulsive, a typical wave profile of the leading 

wave recorded at the leading edge is shown in Fig. 5. 11. The water 

surface for this case requires at least one more amplitude, (corres-

ponding to the constant height which the water surface maintains over 

some time interval) and time interval (corresponding to the interval 

before the constant wave height is reached) to describe the temporal 

variation of these waves. No effort will be made in this section to 

describe the temporal variation of these wave profiles at x/h = b/h 

except in terms of the notation shown in Fig. 5. l 4a. 

Fig. 5. 15 shows the experimental and theoretical p eriods: 

and t , for leading waves at the backwall (x/b = 0) which were 
n 

t • r 

generated by an exponential bed dis placement. The wave periods have 

been normalized by the characteristi c tin1e of the bed movement, t , 
c 
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and shown separately for each disturbance- size scale, b/h, as a 

function of the time-size ratio, t Jgh/b. The theoretical curves 
c 

shown for each period have been computed from the linear theory 

given by Eq. (3. 67). Hollow symbols are again used to indicate data 

for positive bed displacaments while solid symbols indicate data for 

which a negative movement of the bed occurred. Three different 

symbols (see the legend of Fig. 5. 15) are used to indicate the 

normalized rise time, fall time, and nodal times for each wave. The 

notation for the disturbance-amplitude scale for each experiment is 

shown in the table in the legend of Fig. 5. 15. Arrows adjacent to 

certain data again indicate experiments for which the smaller bed unit, 

b = 30. 5 cm, was used; for all other experiments b = 61 cm. 

Typical wave profiles in the generation region for an exponential 

bed displacement have been previously shown in Fig. 5. 8. The rise 

and fall times of the lead wave are observed to be equal in this figure 

for both the transition and creeping regions of generation. When the 

rise and fall times for a wave profile are equal, only the rise time 

symbol and the theoretical curve for rise times are shown in Fig. 5. 15. 

It is also observed from Fig. 5. 8 that the wave forms at both the back-

wall and the leading edge in the creeping region of generation resemble 

a bore; hence, the nodal time becomes a meaningless measurement. 

No data or theory are indicated in Fig. 5 .15 for the nodal times in this 

region of generation. It should be noted that measurements of the rise 

times for experimental wave forms became more difficult for very fast 
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bed movements (t < 0.1 secs) due to the relatively slow speed at 
c 

which the wave forms were recorded (1 cm/ sec). Some difficulty was 

also experienced in defining the rise times for very slow bed move-

ments in which the maximum wave elevation was approached at a very 

slow rate. (Theoretical computations have also been made for the 

disturbance-size scale of b/h = 100 for which no experimental data 

exist. ) 

The theoretical results presented in Fig. 5. 15 for the rise, fall, 

and nodal-time ratios for the size scales: b/h = 0.61, 1.22, and 2.03, 

agree well with the experimental data for both positive and negative 

bed displacements. For these three disturbance -size scales, no 

amplitude scale greater than 0. 2 was used and the rise and fall times 

are equal for the full range of time-size ratios investigated. 

For b /h = 6. 10 the theoretical results agree well with the 

experimental data for the rise and fall-time ratios which are equal over 

the full range of t jgh/b which was investigated. Some of the data 
c 

have disturbance-amplitude scales as large as 0. 5; hence, the ampli-

tude scale appears to have little effect on the rise and fall times at the 

backwall. (Recall from Section 5. 1. 1 that the relative wave amplitude, 

T) IC , at the backwall also appeared to be predicted by the linear 
0 0 

theory over the full range of disturbance-an1plitude scales.) The theo-

retical nodal times for b/h = 6. 10 no longer agree as well with the 

data as for the smaller size scales. Measured nodal times for positive 

bed displacements are consistently larger than those predicted by the 
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linear theory, with a possible weak dependence on the amplitude scale ; 

this behavior was also shown in Fig. 5. 8 by the wave profiles in the 

impulsive region of generation. The nodal time data for negative bed 

displacements which have an amplitude scale of ~lh = -0. 5 are 

slightly smaller than those predicted by the linear theory. 

For the disturbance-size scale: blh = 12. 2, in Fig. 5. 15, a 

region of the time-size ratio exists which is given approximately by 

t jghlb < 10- l where the rise and fall times are no longer equal. This 
c 

region is indicated by both the experimental and theoretical results. 

The linear theory for the fall-time ratio, t/tc, agrees well with all 

data in this region; however, the theory for the rise times, t It , 
r c 

appears to predict a larger rise-time ratio than observed in the experi-

ments for the data with an amplitude scale greater than 0. 2. No definite 

conclusions can be stated regarding a possible disturbance-amplitude 

scale effect on rise or fall times in this region due to the limited 

amount of data available. 

The linear theory for b lh = 12. 2 in Fig. 5. 15 predicts a 

smaller nodal-time ratio, t It , than indicated by the data for positive 
n c 

bed displacements, regardless of the disturbance-amplitude scale; this 

same behavior was also observed for blh = 6. 10 in Fig. 5. 15. It 

does appear from the experimental data that t It increases as C lh 
n c o 

increases. The single data point for a negative bed displacement with 

C lh = - 0. 5 is only slightly smaller than the value predicted by the 
0 

linear theory. 
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The theoretical results for b/h = 100 presented in Fig. 5. 15 

indicate that the rise-time ratio becomes approximately constant for 

-1 
a time-size ratio less than 10 , i.e., in the impulsive region of 

genera ti on. For t Jgh/b > 0. 2 the rise-time ratio appears to become 
c 

inversely proportional to the time-size ratio, i.e., t /t a(t jgh/b)-
1

. 
r c c 

The fall-time ratio, t/tc, is inversely proportional to tcJgh/b over 

the full range of the time-size ratio investigated and is equal to 

t /t for t Jgh/b > 0. 2. The theoretical curve for the nodal-time 
r c c 

ratio is slightly above and approximately parallel to the curve for the 

fall-time ratio; hence, the temporal variation of the wave forms gener -

ated for b/h = 100 at the backwall when t Jgh/b < 0. 1 may be found 
c 

by extrapolating the curves. Since the curves for tn/t c and t/t c appear 

to be parallel in the impulsive region of generation, the ratio 

approximately constant. Note that the theoretical curves for 

not vary appreciably between b/h = 12. 2 and b/h = 100. 

Fig. 5. 16 shows the theoretical and experimental time ratios: 

t /t , tf/tc, and t /t , as a function of t Jgh°/b at the backwall r c n c c 

(x/h = 0) for the half-sine bed displacement. The notation used is 

identical to that shown in Fig. 5. 15 for the exponential bed displacement 

and is repeated in the legend of Fig. 5. 16. Theoretical curves for 

t /t , tf/t , and t /t have been computed by the linear theory, Eq. 
r c c n c 

(3. 68), for each disturbance-size scale investigated experimentally 

and for b/h = 100. 
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The linear theory for t It , tflt , and t It presented in Fig. 
r c c n c 

5. 16 appears to agree well with the data for blh = 0. 61 for both 

positive and negative bed displacements. The rise and fall times for 

this disturbance-size scale are equal over the full range of the time-

size ratio which was investigated. For a time-size ratio less than 0. 4, 

i.e., the impulsive region of generation, the rise and fall-time ratio 

approaches unity; hence, the water rises at the backwall until the bed 

movement is completed and immediately begins to decrease to the still 

water level. The nodal-time ratio in the impulsive region of generation 

increases as the time-size ratio decreases. In the creeping region of 

generation, i.e., t jgb.lb > 40, the rise and fall-time ratios become 
c 

equal to 0. 5 indicating that the water level at the back wall begins to 

decrease once the bed has moved through one-half of its total displace-

ment. The nodal-time ratio in the creeping region of generation, 

becomes asymptotic to unity. Since, the rise and fall-time ratios are 

equal to 0. 5 in this region, the rise and fall times occur midway the 

nodal-time interval thus indicating a symmetrical wave shape (see, 

e.g., Fig. 5. 9). 

For blh = 1. 22 and 2. 03 the rise and fall-time ratios rn Fig. 

5. 16 remain equal over the full range of t jgb.lb investigated. The 
c 

behavior of t It = tflt , and t It suggested by the linear theory for r c c n c 

these size scales in the impulsive, transition, and creeping regions of 

generation is similar to that observed for blh = O. 61. The agreement 

of the linear theory with the data for these two disturbance-size scales 
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is reasonably good except for several experiments for negative bed 

dis placements in the impulsive region of genera ti on when b lh = 2. 03. 

These measurements indicate a smaller nodal time than the other data 

and the linear theory in this region; hence, these data are probably 

erratic points. The linear theory appears to consistently indicate a 

slightly larger rise, fall, and nodal_ time for these size scales over 

the full range of the time-size ratio investigated. 

Fo.r blh = 6. 10 the linear theory in Fig. 5. 16 suggests the 

same general behavior for t It and t It in each region of generation 
r c n c 

as found for the smaller disturbance- size scales. However, the fall-

time ratio is now larger than the rise-time ratio in the region 

t Jghlb < 1; hence, for this region, the amplitude of the leading wave 
c 

reaches a maximum at the time t and remains constant for the time 
r 

interval given by tf-tr. As the time-size ratio becomes greater than 

unity the rise and fall times are equal and approach a value of one-half 

the characteristic time, t . For t ,jghlb > 10 the nodal-time ratio 
c c 

becomes equal to unity; hence, a symmetrical wave shape results in 

the creeping region of generation as discussed previously. In the region 

t Jghlb < 1 
c 

where the linear theory indicates that the fall time is no 

longer equal to the rise time, the agreement of the linear theory with the 

data is reasonably good except for the fall-time ratio, t/tc. The data 

for t It and tflt in this region are somewhat incon.sistent with several 
r c c 

experiments indicating equal rise and fall times while others result in 

different values; this behavior may simply be due to experimental error. 
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The linear theory for the nodal-time ratio appears to agree well with 

all data for both positive and negative bed displacements. It should be 

noted that an insufficient amount of data are available to indicate any 

possible nonlinear effects due to large disturbance-amplitude scales. 

The data presented for b/h = 12. 2 in Fig. 5. 16 cover a larger 

range of disturbance-amplitude scales given by 0 <le /h\ ~ 0.8, 
0 

and are thus more indicative of any nonlinear effects caused by large 

amplitude scales. No nonlinear effect is evident for the rise-time 

ratio, t /t , over the full range of t Jgh°/b which was investigated; 
r c c 

however, all of the data for the rise times consistently indicate a 

smaller rise time than that predicted by the linear theory independent 

of the disturbance-amplitude scale. The fall-time ratio becomes 

larger than the rise-time ratio in the region t Jgh°/b < 1. The data 
c 

for the fall times in this region indicate a larger fall time than that 

predicted by the linear theory, apparently independent of the disturb-

ance-amplitude scale and the direction of the bed movement. (Note 

that all of the data in this region have a fall time different from the 

rise time; hence, the data in the impulsive region of b/h = 6. 10 in 

which the rise and fall times were equal and greater than unity do 

indeed appear to be erroneous.) The linear theory for the nodal-time 

ratio agrees well with the data which correspond to \ e /h \ ~ 0. 2; 
0 

however, the data for positive bed displacements with e /h > O. 2 
0 

have a larger nodal time in the impulsive and transition region of 

generation than that predicted by the linear theory. This nonlinear 
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behavior o f the nodal times at the backwall was also shown in Fig . 5. 11 

for a positive bed movement. An insufficient amount of data is avail-

able for n egative bed movements to suggest a corresponding nonlinear 

behavior. In the creeping region of generation, i.e., t Jghlb > 4 (see 
. c 

Fig . 5.2), the linear theory fort It agrees well with the experimental 
n c 

data over the full range of disturbance-amplitude scales. 

The linear theory for the rise, fall, and nodal-time ratios when 

blh = 100 is similar to that described for blh = 6. 10 and 12. 2. For 

t ,jghlb < 1 the rise-time ratio is equal to unity and the fall-time 
c 

ratio (tflt ) is larger than t It and increases as the time-size ratio 
c r c 

decreases. The nodal-time ratio is slightly larger than t/t c and the 

difference between these two ratios appears to decrease as t Jghlb 
c 

decreases. For t ..,/gh.lb > 10 the nodal-time ratio is asymptotic to 
c 

unity and the rise and fall-time ratios (which are now equal) become 

asymptotic to O. 5. All . curves appear to be linear on the log-log 

representation for the asymptotic conditions of large and small time­

size ratios; hence, extrapolation to smaller t Jghlb may be possible. 
c 

However, extrapolation of the curves for tflt and t It to time -size 
. c n c 

I -1 
.ratios less than 10 would appear to eventually yield a point at which 

these two ratios became equal; no further extrapolation should then be 

made. Note that the theoretical curves for t It and t It do not vary 
r c n c 

appreciably between blh = 12. 2 and blh = 100. It also appears that 

the fall-time ratio approaches the nodal-time as the size scale increases 

for a constant value of t Jghlb in the impulsive region of generation . 
c 
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Fig. 5. 1 7 shows the theoretical and experimental results for the 

time ratios: t It , tflt , and t It , as a function of t Jghlb at the 
r c c n c c 

leading edge of the bed section for an exponential bed displacement; i. e ., 

at xlh = blh. The notation for the data and theory is the same as used 

rn Fig s. 5.15 and 5.16 and is described again in the legend of Fig . 5.17. 

No data or theory are shown for the nodal-time ratio, t It , in the 
n c 

creeping region for each disturbance-size scale since the wave profile 

in this region resembles a bore (see, e.g., Fig. 5. 8). In addition, the 

rise and fall times are equal as shown in Fig. 5. 8 and only data sym-

bols for the rise times are presented. 

For the three size scales: blh = 0. 61, 1. 22, and 2. 03, the 

rise and fall-time ratios shown in Fig. 5. 17 are equal over the full 

range of the time-size ratio, t Jghlb, which was investigated. 
c 

The 

theory for each of these size scales agrees well with the data. (Recall 

that no disturbance-amplitude scale greater in absolute value than 0. 2 

was used for these size scales.) 

For blh = 6. 10, 12. 2, and 100 the linear theory shown in 

Fig. 5. 1 7 suggests that the rise and fall times are no longer equal for 

t Jghlb < 0. 4; Fig. 5. 6 showed that this region corresponded to the 
c 

impulsive region of generation for these size scales. In the impulsive 

region of blh = 6. 10 the linear theory for the rise-time ratio agrees 

fairly well with all data for negative bed movements regardless of 

amplitude scale and with the data for positive bed movements for which 

C lh < 0. 2. The data for positive bed displacements with amplitude 
0 
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scales greater than 0. 2 show a much smaller rise time than that pre-

dieted by the linear theory. This nonlinear behavior of the rise times 

for large amplitude scales and positive bed movements is more dram-

atically demonstrated by the data for b/h = 12. 2 where the maximum 

amplitude scale is unity. Here this nonlinear effect is also evident in 

the transition region of generation, i.e. , 0. 4 < t c' fgh/b < 4. In the 

creeping region for b/h = 6. 10 and 12. 2, the linear theory for the 

rise-time ratio (which is also equal to the fall-time ratio) agrees well 

with the data regardless of the amplitude scale of the disturbance and 

the direction of the bed movement. 

The linear theory for the fall-time ratio in the region 

t Jgh/b < 0. 4 for b/h = 6. 10 and 12. 2 appears to be slightly smaller 
c 

than the values indicated by the experiments, regardless of the disturb-

ance-amplitude scale or the direction of bed movement. No nonlinear 

effects due to large amplitude scales are apparent for the fall times; 

however, it should be noted that, for some experiments, positive 

amplitude scales greater than 0. 2 result in waves resembling those 

shown in Fig. 5. 11. For those wave profiles the rise and fall times are 

equal and fall-time data for these experiments are not shown in 

Fig. 5. 1 7. The theoretical results for the nodal times .appear to agree 

well with the data for negative bed displacements and the theory con-

sistently predicts a nodal time slightly less than the observed values 

for positive bed displacements regardless of the amplitude scale. 

This behavior can also be seen in the profiles presented in Fig. 5. 8. 
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It is evident from the experimental results for the nodal times for 

these two size scales that a nonlinear effect due to large bed displace -

ments is present, i.e., as the amplitude scale increases, the nodal-

time ratio also increases thus deviating more from the value pre-

dieted by the linear theory. 

The theoretical computations for b/h = 100 in Fig. 5. 1 7 again 

show that the rise and fall-time ratios become different for 

t ,/gh/b < 0. 4. In this region the rise-time ratio becomes constant 
c 

at a value of approximately five compared to a value of six at the back-

wall. The fall-time ratio in this region (and also for t jgh/b > 0. 4) is 
c 

inversely proportional to the time-size ratio, i.e., tf/t a (t jgh/b)-
1

. 
c c 

The curve for t /t (shown only for t Ji,h/b < 0. 1 ) is only 
n c c 

slightly above the curve for the fall-time ratio; the difference between 

these curves seems to decrease as t Jgh°/b decreases on the log-log 
c 

representation. (This behavior for b/h = 100 is similar to that 

observed in Fig. 5. 15 at the back wall.) Note that the theoretical curves 

for t /t and t /t do not differ appreciably between b/h = 12. 2 and 
r c n c 

b /h = 100. The theoretical curve for t/t c appears to be approaching 

t /t on this log-log representation as the size scale increases for a 
n c 

constant value oft jgh/b in the impulsive region of generation; hence, 
c 

the ratio tn/tf is decreasing toward unity as b/h increases. 

The temporal variations of the leading wave profiles generated 

by a half-sine bed displacement at x/h = b/h are shown in Fig. 5. 18 

where the ratios: t /t , tf/t , and t /t are presented as a function of 
r c c n c 
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t Jgh°/b. The same notation is used in this figure for the theoretical 
c 

and experimental results as was used previously in Figs. 5. 15, 5. 16, 

and 5. 17 and a summary of this notation appears in the le g end of Fig . 

5. 18. (It should be mentioned again that in the experiments whe r e the 

fall times and the rise times are equal only the rise times are shown. ) 

For the two smallest size scales (b/h = 0. 61 and 1. 22) the 

rise and fall-time ratios shown in Fig. 5. 18 are equal over the full 

range of t Jgh/b investigated. This behavior is indicated by both the 
c 

experimental data and the theoretical computations. The linear theory 

appears to agree reasonably well with the experimental data, especially 

for the smaller size scale (b/h = 0.61). A tendency does appear to 

exist, however, for the linear theory to slightly over -estimate the ris e -

time ratio for b/h = 1. 22. For t jgh/b < 1 the rise and fall-time 
c 

ratios (which are equal for these two size scales) become asymptotic 

to unity while the nodal-time ratio increases rapidly as t Jgh°/b . c 

decreases. For t Jgh/b > 40 the rise and fall-time ratios become 
c 

asymptotic to 0. 5 while the nodal-time ratio approaches unity; hence, 

a symmetric wave shape is generated similar to the profile shown in 

Fig. 5. 9. These asymptotic conditions for large and small time - size 

ratios for the theory and data at the leading edge are similar to those 

observed in Fig. 5. 16 at the back wall. 

For b/h = 2. 03 the linear theory shown in Fig. 5. 18 indicates 

that the rise and fall-time ratio are no longer equal in the region 

t Jgh/b < 1; however, all data do not appear to confirm this suggested 
c 
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behavior. A similar inconsistency was observed in data for experi-

ments at the backwall in Fig. 5. 16 for b/h = 6. 10. In the discussion 

of Fig. 5. 16 it was suggested that this inconsistency was probably 

caused by anomalities in the experimental measurements; this may also 

be true of the experimental data shown in Fig. 5. 18. In general, it c an 

be seen that there is fairly good agreement between theory and experi-

ment. The nodal-time ratio for this size scale appears to be accurately 

predicted by the linear theory over the full range of t Jgh/b which was 
c 

investigated. It should be noted that no disturbance-amplitude scale 

greater than 0. 2 (in absolute value) was investigated. 

The linear theory presented in Fig. 5. 18 for the rise-time ratio 

of the two size scales: b/h = 6. 10 and 12. 2, agrees reasonably well 

with the data for all amplitude scales shown. However, there is con-

siderable scatter of the data, the majority of which indicates a smaller 

rise-time ratio than that predicted by the linear theory. This is true 

of the data for both the positive and negative bed displacements over the 

full range of the time-size ratio investigated. The rise-time data in the 

impulsive and transition regions of generation for which C /h > 0. 2 
0 

indicate no large or consistent nonlinear effects as was found for the 

exponential bed movements in Fig. 5. 1 7. Any weak nonlinear effects 

present for the half-sine bed displacements are masked by the scatter 

in the data. The linear theory suggests that the rise and fall-time 

ratios are different in the region t ,Jgh/b < 2, similar to the behavior 
c 

for b/h = 2. 02 in the region t jgh/b < 1. For these larger size 
c 
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scales the linear theory agrees with the data in predicting the region 

in which the rise and fall-time ratios are no longer equal; however, 

the data consistently indicate a larger value of t/tc than predicted 

by the linear theory. In the case of the nodal-time ratio for blh = 6. 10 

and 12. 2 the linear theory agrees well with the data for negative bed 

motions and with the data for positive bed movements where the disturb-

ance-amplitude scale is less than 0. 2. As the amplitude scale for positive 

bed movements increases, the data deviate more from the theory; a 

similar nonlinear effect was observed in the data for the nodal-time 

ratio shown in Fig. 5. 17 for the exponential bed motion. 

The theoretical curves for the temporal variation of the leading 

waves shown in Fig. 5. 18 for blh = 100 are similar to those presented 

at the backwall in Fig. 5. 16 for the same disturbance-size scale. For 

t Jghlb < 1 the rise-time ratio is asymptotic to unity and the fall-time 
c 

ratio increases at a rate inversely proportional to the time-size ratio, 

i.e., tflt a. (t Jghlb)-
1

. 
c c 

The curve for t It in this region is only 
n c 

slightly above the curve for the fall-time ratio and these curves appear 

to be converging as t Jghlb decreases. Hence, the rear portion of the 
c 

leading wave appears to become steeper at xlh = blh as the time scale 

decreases. In the region t Jghlb > 20 the rise and fall-time ratios are 
c 

equal and are asymptotic to the value 0. 5 while the nodal-time ratio 

approaches unity. The theoretical curves for t It and t It do not 
r c n c 

appear to vary appreciably between blh ::: 12. 2 and blh = 100. The 

curve for the fall-time ratio appears to be approaching the curve for the 
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nodal-time ratio as the size scale increases for a constant value of 

t Jgh/b in the impulsive region of generation; hence, the ratio, 
c 

tn/tf, is approaching unity. 

In summary, the linear theory appears to predict the rise-time 

ratio, t /t , at the backwall reasonably well over the full range of the 
r c 

time-size ratios investigated for both the exponential and half-sine bed 

movements. The rise-time ratio at the backwall also appears to be 

relatively independent of the disturbance-amplitude scale. The linear 

theory consistently under-estimates the fall-time ratio, t/t c, obtaine d 

from experiments whenever this quantity was different from the ris e-

time ratio for both types of bed displacements; nonlinear effects due to 

large disturbance-amplitude scales were not evident. The nodal-time 

ratio, t /t , at the back wall also appeared to be slightly under-"estimated 
n c 

by the linear theory for the larger disturbance-size scales and for 

amplitude scales less than O. 2. As the amplitude scale increased the 

observed nodal-time ratios increased with the discrepancy between the 

linear theory and the experiments also increasing. 

At the leading edge of the disturbance, x/h = b/h, the linear 

theory for a positive exponential bed movement appeared to predict the 

rise-time ratio fairly well only for small amplitude scales. As the 

amplitude scale increased in the impulsive and transition region of 

generation, the observed values of t /t were much smaller than those 
r c 

predicted by the linear theory. In the creeping region of generation 

the linear theory appeared to be applicable over the full range of 
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The linear theory for t It agreed well 
r c 

with the data for negative exponential bed movements over the full 

range of disturbance -amplitude and size scales which were investigated. 

For the half-sine bed displacement the linear theory at xlh = blh 

appeared to predict a slightly larger rise-time ratio than observed over 

the full range of t Jgh°lb which was investigated. Strong nonlinear 
c 

effects due to the disturbance-amplitude scale were not apparent in the 

rise-time data for the half-sine bed displacement. 

The linear theory appeared to predict a smaller fall-time ratio 

at xlh = blh than observed in the region of the time-size ratio where 

t It and tilt were not equal for both types of bed movement. The 
r c c 

data do not appear to depend on the disturbance-amplitude scale. 

The nodal time ratio, t It , was also under ,,-estimated by the 
n c 

linear theory at xlh = blh for the larger size scales investigated for 

both the exponential and half-sine bed displacements. The nodal-time 

ratio also was observed to increase as the disturbance-amplitude scale 

increased for both bed motions. 

Theoretical curves for t It and t It do not appear to vary 
r c n c 

appreciably in the generation region for size scales greater than 12. 2 

when the time-displacement history of the bed is not varied. The ratio, 

tnltf appears to approach unity in the impulsive region of generation as 

the size scale increases for both the exponential and half-sine bed 

movements. This behavior of the time ratios is extremely important 

in the practical application of these results. 
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5. 1. 4 Energy Dissipation in the Generation Region. 

In the linear theory presented in Chapter 3 the effect of 

fluid viscosity was neglected; however, the experimental measurements 

are all affected to some degree by viscosity. Boundary layers are 

formed in the fluid domain during wave propagation at the bed and side -

walls of the wave tank as well as at the free surface due to the local 

effects of surface tension. In fact one major difference between the 

experimental model and the theoretical model is the condition which 

exists at x/h = 0. In the former there is a no-slip condition at this 

location whereas in the latter x/h = 0 is simply a plane of symmetry. 

The boundary resistance to flow reduces the amplitude and velocity of 

the centroid of the propagating wave (see, e.g., Benjamin and Mahony 

( 1971) ) . Since the length of wave propagation in the generation region 

never exceeded 24. 4 water depths, energy losses from wave propaga­

tion in this region are probably small. (Energy losses during down­

stream wave propagation will be discussed in detail in Section 5. 2.) 

The major effect of fluid viscosity in the generation region 

appears to be the creation of a vortex near the leading edge of the rising 

or falling bed section. Fig. 5. 19 shows the vortex structure for both a 

positive and negative half-sine bed displacement with generation para­

meters identical to those given by Eq. (5. 5) which were used in the 

photographic sequence shown in Fig. 5. 13a and 5. 13b. The effect of 

this vortex on the wave amplitudes and temporal variations in the 

generation region appears to be small as evidenced by the agreement 
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-

(a) 

(b) 

Fig. 5. 19 Vortex generation at leading edge of moving bed section; 
q.) bed upthrust, b) bed downthrow. 
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of theory and experiment in this region which was discussed in Sections 

5 . 1 . 1 and 5 . 1 . 2 . 

5. 1. 5 The Three-Dimensional Model in the Generation Region. 

Generally, waves created in nature by moving boundaries 

involve a more complex pattern of wave propagation than described by 

the simple two-dimensional model presented in Chapter 3. In the two-

dimensional model wave propagation occurs in one coordinate direction 

while in the most general case, surface wave propagation occurs in two 

coordinate directions; hence, the fluid domain must be described three 

dimensionally. 

A simple three-dimensional model was presented in Section 3. 4 

in which the fluid domain was described by the coordinates (r, e, z), 

and a linear solution for a class of bed deformations which were axially 

symmetrical was developed. The general solution, Eq. (3. 102), was 

then applied to the specific bed deformation given by Eq. (3. 103) which 

consisted of a block upthrust or downthrow, circular in planform with a 

radius r , which moved exponentially in time (see Fig. 3. 2). The size 
0 

scale, amplitude scale, and time scale for this deformation are defined 

as: r /h, C /h, and t Jg /h, respectively. Assuming the bed deformation to 
0 0 c 

be axially symmetric led to a wave system propagating radially into a 

three-dimensional fluid domain. 

The generation region for the three-dimensional (3-D) model is 

defined as the fluid region over the moving bed section, i.e., r ~ r . 
0 
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The positions in this region corresponding to the "backwall" and the 

"leading edge" in the two-dimensional model are r/h = 0 and 

r /h = r /h, respectively. It is useful to compare the theoretical 
0 

results at these two positions to the results obtained from the linear 

theory in the two-dimensional (2-D) model. Figs. 5. 20a and 5. 20b 

show the variation of the relative maximum wave amplitudes, Tl /(, , 
0 0 

computed at r/h = 0 and r/h = r /h for a disturbance-size scale 
0 

of r /h = 12. 2 as a function of the parameter t Ji,h/r which will be 
0 c 0 

termed the time-size ratio. (The characteristic time is again chosen 

as the time required for two-thirds of the bed movement to be com-

pleted.) Also shown in Figs. 5. 20a and 5. 20b are corresponding wave 

amplitude computations for the two-dimensional model at x/h = 0 and 

x/h = b/h; these curves from Figs. 5. 1 and 5. 4 are for the disturbance-

size scale: b/h = 12.2. 

At r/h = 0, the same general behavior for the relative wave 

amplitude, Tl I(, , is observed in Fig. 5. 20a as for the two-dimensional 
0 0 

- 1 
becomes less than 10 the wave case. As the parameter t Jgh/r 

c 0 

height at the center of the disturbance becomes constant and equal to 

the total bed displacement, (, . 
0 

As the time-size ratio approaches a 

value near 10, the relative wave amplitude becomes inversely proportional 

to the time-size ratio, t jgh/r , just as in the analogous two-dimensional 
c 0 

model. Thus an impulsive, transition, and creeping region of genera­

tion based on the time-size ratio, t Ji,h/ r , again may be defined for 
c 0 

the three-dimensional model in the same manner as was done in 
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Section 5. 1. 1 for the 2-D case. The only difference observed betwee n 

the two and three-dimensional wave amplitudes at x/h = 0 and r/h = 0 

is that a slightly smaller maximum wave amplitude results in the trans -

ition and creeping region of generation for the 3-D model for a fixed 

value of the time-size ratio. 

At the leading edge of the disturbance, r /h = r /h, the relative 
0 

wave amplitude, Tl /C , observed in Fig. 5. 20b for the 3-D model is 
0 0 

similar in its general behavior to the analogous curve for b/h = 12. 2 

for the two-dimensional model; however, a smaller wave results for 

the 3-D model over the full range of time-size ratios which were investi-

gated. This behavior in the impulsive region of generation for 

r /h = 12. 2 suggests that at the leading edge of the disturbance the 
0 

elliptic response of the three-dimensional fluid domain to an impulsive 

bed movement affects larger size scales than in the 2-D model. 

Fig. 5. 21 shows the maximum value of the ratio, Tl IC , that 
0 0 

can be reached in the impulsive region of generation at r /h = 0 and 

r /h = r /h as a function of the size scale r /h. 
0 0 

Similar results 

for the two-dimensional model which were shown previously in F'ig. 5. 7 

are shown in Fig. 5. 21 for comparison. (The curves shown for the 3-D 

model were computed for an exponential bed displacement only; how-

ever, no difference in the indicated behavior would be expected for a 

half-sine time-displacement history of the bed movement as was found 

previously for the 2-D model. Computations for these curves were 

made for a time-size ratio, t Jgh/r , less than or equal to 10- 3 .) 
c 0 
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At r /h = 0 , the wave amplitude, 11
0

, is equal to the bed dis -

placement, C for all disturbance-size scales, r /h, greater than 
o' o 

about four; a similar behavior is observed for the 2-D model at 

x/h = 0. For r
0

/h less than four, the relative wave amplitude, 11
0

/ C
0

, 

decreases from unity until it becomes proportional to (r /h)
2 

for all 
0 

size scales less than 10-
1

, i.e.: 

'n Jr a (r /h)2 
'b "" o o 

for r /h < 1 0 - 1 . 
0 

( 5. 6) 

For the two-dimensional model at x/h = 0 the relative wave amplitude 

became directly proportional to the size scale, b/h, in the region 

b/h < 10-l; hence, a major difference in the behavior of maximum 

wave amplitudes in the generation region for the two and three-dimen­

sional models occurs for disturbance-size scales less than 10-l when 

the bed movement is impulsive. 

At the leading edge of the circular disturbance, i.e., r/h = r /h, 
0 

the ratio, 11 /C , approaches 0. 5 for large disturbance-size scales; 
0 0 

however, this value is not actually reached until approximately 

r /h = 100. For size scales, r /h, which are less than 100, the 
0 0 

relative wave amplitude decreases from 

decreasing disturbance-size scale. For 

an asymptotic value of 0. 5 with 

r /h < 10- l the relative wave 
0 

amplitudes at both r /h = r /h and r /h = 0 become equal and continue 
0 

to decrease in the manner given by Eq. (5. 6) with decreasing r /h. In 
0 

the results for the 2-D model at x/h = 0, 11 /C became equal to 0. 5 
0 0 

near b/h = 2 and for size scales less than two in this model, 11 / C 
0 0 
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decreased until it was directly proportional to the disturbance-size 

-1 
scale for blh < 10 (see Eq. 5.1) as well as equal to the relative 

wave amplitude at xlh = 0. Hence, the behavior of the maximum wave 

amplitudes in the generation region for an impulsive bed movement in 

both the two and three-dimensional models appears to be identical for 

disturbance-size scales, blh or r lh, greater than approximately 10 2
• 

0 

The behavior of Tl IC is almost the same for size scales greater than 
0 0 

about four. For size scales less than four the behavior of Tl IC is 
0 0 

quite different between the two models. 

Eq. (5. 6) may also be written: 

for r lh < 1 0 - 1 
0 , ( 5. 7) 

which appears to indicate that the displaced water volume at the com­

pletion of the impulsive bed movement (which is proportional to r 2 C ) is 
0 0 

located in a region resembling a portion of the upper half of a hemi-

spherical shell with a thickness of Tl and a radius proportional to the 
0 

water depth, h. 

In addition to the maximum wave amplitudes that occur in the 

generation region of the three-dimensional model, it is also useful to 

observe the detailed wave profiles in the impulsive, transition, and 

creeping regions of generation. Fig. 5. 22 shows the wave profiles rn 

each region which are calculated by the linear theory, Eq. (3. 106), at 

r lh = 0 and r lh = r lh for a positive bed displacement. The wave 
0 
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amplitude, T), has been normalized by the total bed displacement, co' 

and is shown as a function of the nondimensional time, tJg/h. A 

disturbance-size scale of r /h = 12. 2 has been used for each profile 
0 

in Fig. 5. 22 so that a direct comparison with the theoretical waves 

presented in Fig. 5. 8 for an exponential bed movement in the two -

dimensional model is possible. (The time-size ratio, t ,/gh/r , for 
c 0 

each profile is indicated in the figure. ) 

In the impulsive region of generation at r /h = 0 the water 

rapidly rises to an amplitude equal to the total bed displacement, co' 

remains constant for an interval of time, and then rapidly decreases 

to a level of -1. 6C below the still water level. The water then 
0 

oscillates in a damped manner about a mean position which appears to 

be approaching the SWL as time increases. This wave structure 

behind the leading wave is quite different from the corresponding wave 

form shown in Fig. 5. 8 for the 2-D model in which no large negative 

waves trail the positive leading wave. 

At r /h = r /h in the impulsive region of generation the water 
0 

surface shown in Fig. 5. 22 rapidly rises to a maximum amplitude and 

immediately decreases to the SWL where a large negative wave is 

formed whose maximum amplitude is approximately equal in absolute 

value to that reached by the positive leading wave. This wave structure 

is also different from that observed at x/h = b/h for the impulsive 

region of generation in the 2-D model which was presented in Fig. 5. 8. 
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For the 2-D model the water rose to a maximum height, ri , and 
0 

remained constant for an interval of time before returning to the still 

water level. The amplitude of the oscillations behind the leading wave 

for the 2-D case of Fig. 5. 8 were found to be small compared to the 

amplitude of the leading wave. Computations of the wave form for the 

3-D model were terminated before the major wave system was fully 

developed; however, oscillations appear to be forming about a mean 

level which approaches the SWL asymptotically. 

In the transition region of generation shown in Fig. 5. 22 the 

water level at r /h =O and r /h = r /h rises to a maximum amplitude 
0 

and immediately decreases to the still water level. A negative wave is 

seen to be trailing the lead wave which appears to approach the still 

water level in an asymptotic manner. In the transition region of Fig. 

5. 8 for the 2-D model no negative wave was formed. 

In the creeping region of generation in Fig. 5. 22 a small positive 

wave resembling a bore is formed at both r /h = 0 and r /h = r /h. 
0 

This behavior is similar to the waves generated in the creeping region 

for the two-dimensional model shown in Fig. 5. 8. 

In summary, it appears that the simple three-dimensional model 

of wave generation presented in Chapter 3 results in wave profiles in the 

generation region which are, in general, different in detailed structure 

from those produced in the two-dimensional model for analogous gener-' 

ation parameters. In the impulsive region of generation, negative waves 
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of large amplitude trail the positive leading wave produced by a positive 

bed displacement; hence, positive waves of large amplitude would be 

expected to result from a negative bed displacement trailing the 

negative leading wave. This type of behavior was not observed in the 

two-dimensional model of generation. Hence, the applicability of the 

two-dimensional model of wave generation appears to be limited, in 

general, to tectonic earthquakes in which one coordinate dimension of 

the deformation is very large compared to the other dimension so that 

locally the wave propagation may be described by a simple 2-D model 

as presented in Chapter 3. 

5. 2 THE DOWNSTREAM REGION. 

The downstream region is defined as the region of the fluid 

domain in which the solid boundary is undisturbed for all time; this 

region is defined in the two and three-dimensional models by Ix I > b 

and r > r , respectively. Except for very small size scales 
0 

the water particle motion that occurs in the downstream region is 

caused by waves propagating from the region of generation. In Chapter 

3 the general behavior of waves propagating in the downstream region 

was discussed and a strategy was suggested for determining wave pro-

files at any position in this region. A review of this discussion is 

presented in this section (Subsection 5. 2. 1) and the suggested strategy 

is applied to two specific examples of wave generation. This section is 

concluded (Subsection 5. 2. 2) with a discussion of energy dissipation 

present in the experimental measurements made in the downstream 
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region. (No theoretical or experimental results are presented for the 

three-dimensional model in the downstream region.) 

5. 2. 1 Wave Propagation. 

It was shown in Chapter 3 that long wave propagation is 

characterized by the Ursell Number: 

T\ /h t 
2 

o T\o 
u = (h/t)2 = h3 (5. 8) 

which represents the ratio of nonlinearities to linearities in a propa-

gating wave. When the Ursell Number is much less than unity a linear 

theory is sufficient in approximating the wave behavior. When the 

Ursell Number is much greater than unity, amplitude dispersion 

controls the wave behavior and the linear effect of frequency dispersion 

may be ignored. For the special case of T\ /h = O[(h/t)2 ], i.e., the 
0 

Ursell Number is of order unity, the description of the wave behavior 

must retain the effect of both frequency and amplitude dispersion. The 

Korteweg and de Vries (KdV) equation was suggested in Chapter 3 as the 

appropriatemodelofwavebehavior whenT] /h = O[(h/t)2 ] < < 1. 
0 

This special case is of major importance for long waves since the ratio, 

h/t, must be much less than unity for these waves. 

The Ursell Nun1ber was also shown in Chapter 3 to provide an 

excellent indicator for tracing the evolution of a long wave during prop-

agation. Regardless of the magnitude of the Ursell Number for a 

wave in the downstream region (whose depth is uniform), the wave 

always evolves into a shape such that U = 0(1 ). Once this condition 
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is reached, the Ursell Number remains constant during further propa­

gation. The region of the fluid domain in which amplitude and frequency 

dispersion are of the same order of magnitude, i.e., U = 0( 1 ), was 

termed the far-field. In the far-field the KdV equation appears to be 

the appropriate description of wave behavior. It was mentioned in 

Chapter 3 that the asymptotic solution of the KdV equation for any 

initial condition whose net volume is positive is a train of solitary 

waves (or solitons) with the amplitude of the waves decreasing toward 

the rear of the train followed by an oscillatory tail. The number and 

amplitude of these solitons appear to be a function of the initial profile . 

When the volume of water in the initial wave is finite but negative, no 

permanent wave forms are possible. The region of the fluid domain 

(including the generation region) in which the Ursell Number is chang­

ing from its initial value to unity was termed the near-field. A linear 

near-field was said to exist when the initial value of the Ursell Number 

is much less than unity; a nonlinear near-field was said to exist when 

the Ursell Number is initially much greater than unity. 

The wave profiles resulting from the bed displacements used in 

the experimental investigation were shown in Section 5. 1. 2 to be com­

plex in form, i.e., nonperiodic. For waves of this type, more than one 

Ursell Number is usually required to describe the entire wave. A 

definition of the Ursell Number for an appropriate region (which will be 

defined shortly) of a complex wave was given in Chapter 3 as: 
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u = ( 5. 9) 

where Tl is the maximum wave amplitude in the region and 11 Tl \I 1s 
0 x 

the maximum value of the slope of the wave profile in that region. An 

"appropriate" region for a complex wave may be defined as the region 

of wave structure between points at which the slope of the wave profile 

becomes zero, i.e., Tl = 0. Hence, any complex wave may be divided x 

into appropriate regions and characterized by various Ursell Numbers 

as given by Eq. (5. 9). (When Eq. (5. 9) is applied to the solitary wave 

as given by Boussinesq (1872), the Ursell Number is found to be equal 

to 2. 37 in each of the two similar regions of the wave profile.) In 

deciding on the applicability of the linear theory in predicting the 

entire wave profile, the Ursell Number with the largest magnitude 

must be considered. In general, the largest Ursell Number will be 

found in the leading region of a complex wave, since longer wave com-

ponents with larger characteristic lengths travel faster than shorter 

components and thus appear at the front of the wave train. The actual 

computation of Ursell Numbers by Eq. (5. 9) for specific complex wave 

shapes will be illustrated shortly. 

When a linear near-field exists, a possible strategy for finding 

the wave profile at any downstream position was suggested in Chapter 3. 

The linear theory may be used until the Ursell Number indicates that 

nonlinear effects are becoming of the same order of magnitude as the 

linear effects. At this point the profile calculated by the linear theory 
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may be used as an initial condition for the KdV equation which may then 

be solved to give the wave profile at any desired position in the down-

stream region. This is the strategy adopted in this section to invest-

igate wave profiles in the downstream region. 

Due to the complexity of the analytical solution of the KdV 

equation, a numerical solution algorithm is adopted. The numerical 

model involves the KdV equation in a form given by Eq. (3.80) which 

was used by Peregrine (1966) to study the development of undular bores. 

Peregrine found that a straight-forward finite-difference approximation 

of Eq. (3. 80) was stable. Using forward differences in time and central 

differences in space the finite-difference representation of Eq. (3. 80) 

is: 

(5.10) 

where uo, s = u(66.x, s6t), 6 = 1, 2, ... , .!!.· s = 0, 1, 2, ... '..!!!_, 

6x is the nondimensional grid spacing, and 6t is the nondimensional 

time step. The initial values of the average horizontal velocities, 

u 0 , s' can be found from Eq. (3.81) at each of the.£ spatial nodes 

since the water surface amplitude, ri. is known. (For a small initial 

wave profile the approximation u 0 0 
= ri 0 0 

appears to be sufficient.) 
' ' 

The velocities at the next time step, i.e., u 0 1
, can then be found in , 
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terms of the initial values by writing Eq. (5. 10) at each of the E. nodes 

which yields a system of ~ simultaneous algebraic equations in the n 

unknown velocities. These velocities can then be determined by solving 

the simultaneous equations using standard techniques of matrix algebra. 

The values of the water particle velocities at the next time step can be 

found in a similar manner; hence, this procedure can be repeated for 

as many time steps as required and the water surface elevation, I] , at 

any time step can be found from the water particle velocities by Eq. 

(3. 81). As in the work of Peregrine, 6x and tit are taken to be equal 

for convenience and will be referred to as 6. 

The accuracy of the finite-difference approximation given by 

Eq. (5. 10) over a specific time interval, mtit, is easily checked by 

propagating a solitary wave over the same time interval. Since the 

solitary wave is an exact solution of Eq. (3. 80), the wave profile should 

propagate unchanged. Changes of the wave profile that do occur repre­

sent the inaccuracy of the finite-difference approximation, Eq. (5. 10 ), 

to the original partial differential equation, Eq. (3. 80). A convenient 

measure of this error (commonly referred to as numerical viscosity or 

dispersion) is the reduction of the solitary wave amplitude that occurs 

during wave propagation. The accuracy of the numerical approximation 

may be improved by decreasing the step size, 6 , (see Peregrine (1966)). 

In the results that follow, the step size, 6, was chosen by first propa­

gating a soliton of amplitude comparable to the waves under consider­

ation and reducing the step size until the percentage reduction in the 

soliton amplitude at the end of propagation was acceptable. 
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In order to illustrate the use of the Ursell Number for complex 

waves and to apply the suggested strategy for finding waves whose net 

volume is positive in the downstream region of the two-dimensional 

model, an exponential bed displacement with the following generation 

parameters has been investigated: 

' /h = 0.1, b/h = 12.2, t ,/gh/b = 0.148. 
0 c 

( 5. 11) 

From Fig. 5.1 the time-size ratio in Eq. (5.11) is seen to lie in the 

impulsive region of generation. Sections 5. 1. 1 and 5. 1. 2 also indicate 

that the linear theory should be applicable in the generation region for 

these generation parameters; hence, a linear near-field should exist. 

The experimental results at the downstream positions: 

(x-b)/h = 20, 180, and 400 and at the leading edge, x/h = b/h or 

(x-h)/b = 0, are shown in Fig. 5. 23a where the wave amplitude, ri, 

is normalized by the water depth, h, and shown as a function of the non-

dimensional time, tJg/h - (x-b)/h. If the Ursell Number in the leading 

region of each wave is calculated by taking T] as the maximum ampli­
o 

tude attained by the leading wave and 11 Tl 11 to be the maximum slope x 

of the leading face of the wave, then the values shown in Fig. 5. 23a 

are found. (All values of the Ursell Number are rounded to one signifi-

cant digit since only an order of magnitude is indicated by Eq. (5. 9 ). ) 

No Ursell Number is indicated at (x-b)/h = 0 since the water movement 

at this position is a combination of the generation process and propa-

gation; hence, it is not appropriate to define an Ursell Number for the 

wave. At (x-b)/h = 20 the Ursell Number is found to be O. 7 which is 
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nearly of order unity; hence, within twenty depths of the generation 

region, amplitude dispersion appears to have become of the same order 

of magnitude as frequency dispersion. At (x-b)/h = 180 and 400 the 

Ur sell Number increases only slightly to values of two and three, res -

pectively. The Ursell Number in the leading region of the wave is thus 

of order unity at all the downstream positions which indicates that the 

KdV equation should be used to describe the wave behavior at these 

positions. (Note that the Ursell Number found at (x-b)/h = 180 and 

400 is approximately the same as that found for the solitary wave of 

Boussinesq.) 

For the measured wave at (x-b)/h = 0, i.e., the leading edge, 

the water surface rises rapidly to a maximum amplitude (Tl /h """ 0. 047), 
0 

remains reasonably constant for an interval of time, and then rapidly 

decreases to the still water level. (This wave profile at the leading 

edge of the disturbance is characteristic of waves generated by impul-

sive bed movements for which the size scale, b/h, is greater than 

approximately two.) At (x-b)/h = 20 undulations which are caused by 

frequency dispersion have formed about the level Tl /h ""' 0. 047 on the 
0 

lead wave. At (x-b)/h = 180 the nodal period of the leading wave has 

increased as the wave appears to be separating into individual waves. 

Note that these individual waves appear to be symmetrical in shape and 

their troughs do not go below the still water level; to some extent, they 

resemble solitary waves. Oscillatory waves of small amplitude and 

short periods are observed to be trailing the lead wave at this position. 
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At (x-b)/h = 400 the nodal period of the lead wave continues to incre as e 

as the separation into individual waves continues. The troughs of the 

individual waves appear to be moving toward the still water level and 

the waves remain symmetrical. The trailing waves at (x-b) /h = 400 

appear to have increased slightly in amplitude and period. 

The wave profiles at each position: (x- b) /h = 0, 20, 180, and 

400, as calculated by the linear theory are shown in Fig. 5. 23b. At 

the leading edge, (x-b)/h = 0, the linear theory agrees well with the 

experimental profile except, as expected, for a small discrepancy in 

estimating the nodal time. At (x-b)/h = 20 the undulations trailing 

the lead wave are larger in amplitude than those of the measured pro­

file in Fig. 5. 23a. A possible explanation for this discrepancy is 

indicated by the Ursell Number for the measured profile at (x-b)/h = 20 

which is of order unity; hence, amplitude dispersion is approximately 

equal in magnitude to frequency dispersion and has thus reduced the 

effects of frequency dispersion for this positive wave. 

At (x-b)/h = 180 the temporal variations of the wave predicted 

by the linear theory no longer agree well with the measured profile. 

Frequency dispersion, unhindered by amplitude dispersion in the linear 

theory, has continued to disperse the leading wave into its spectral 

components as evidenced by the wave groups trailing the lead wave. 

These wave groups exhibit the well-known beat phenomena found in 

linear wave theories. At the position furthest downstream, (x-b)/h=400, 

the differences in the temporal variations between the linear theory and 
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measured profiles have increased as frequency dispersion continues to 

form wave groups behind the lead wave. 

The Ur sell Number of the leading wave is also shown for the 

profiles found from the linear theory in Fig. 5. 23b. At (x-b)/h = 20 

the Ursell Number has already become of order unity for the linear 

profile just as indicated by the measured profile in Fig. 5. 23a. During 

further propagation the Ursell Number continues to grow as shown at 

the downstream positions: (x-b)/h = 180 and 400, where U = 8 and 

12, respectively. This growth of the Ursell Number during propagation 

is characteristic of the linear theory since frequency dispersion separ­

ates the initial wave into its spectral components with the longer com­

ponents travelling fastest and thus appearing at the front of the wave 

train. This behavior suggests that the length of the linear near -field 

may be found easily by using the linear theory until the Ursell Number 

in the leading portion of the calculated wave becomes of order unity. 

For the waves shown in Fig. 5. 23b the length of the near-field appears 

to be on the order of twenty depths from the region of generation. 

It is interesting to note that the maximum amplitude of the lead­

ing wave computed by the linear theory at the downstream positions 

agrees well with the maximum amplitudes of the measured waves; 

however, it should be pointed out that the reduction in the measured 

wave amplitudes due to viscous energy dissipation is probably quite 

large. Thus, the agreement between the maximum amplitudes pre­

dicted by the linear theory and the measured wave amplitudes is 
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probably coincidental. (The effects of energy dissipation occurring 

during wave propagation will be discussed in Section 5.2.2.) 

Following the suggested strategy for determining wave behavior 

in the far-field , the linear theory at (x-b)/h = 20, (which agrees rea-

sonably well with the measured profile) has been used as the initial 

condition for the KdV equation. For the numerical propagation of this 

initial condition, a nondimensional step size, 6, in space and time , of 

0. 3 was used. The maximum amplitude of a solitary wave with an 

initial height of T) /h = O. 05 was found to decrease by 14% as a result 
0 

of numerical dispersion when propagated a distance of 380 depths. It 

should be noted that numerical dispersion was observed to change the 

shape of the solitary wave in a manner similar to the effect of frequency 

dispersion shown in Fig. 5. 23b, i.e., waves of smaller amplitude and 

frequency are left behind the leading wave. 

The profiles computed by the KdV equation at the positions 

(x-b)/h = 180 and 400 are shown in Fig. 5.23c. Ursell Numbers for 

the front region of the lead wave are also shown. The temporal vari-

ation of the KdV profile at (x-b)/h = 180 more closely resembles the 

experimental profile at this position than that computed by the linear 

theory. The leading W'9-Ve of the KdV profile appears to be separating 

into individual waves (or solitons) in the same manner as the measured 

profile in Fig. 5. 23a. The major difference in the computed and meas-

ured profiles is found in the maximum wave amplitudes which are 

much larger for the computed wave. (A possible explanation for this 
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behavior will be discussed.) Note that the Ur sell Number in the front 

region of the wave profile computed by the KdV equation has remained 

of order unity just as in the measured profile. 

At (x-b)/h = 400 the temporal variation of the leading wave 

computed by the KdV equation resembles the measured leading wave 

much better than the variation computed by the linear theory. The 

leading wave appears to be separating into solitons which are followed 

by a train of oscillatory waves. The Ur sell Number remains constant 

at a value of three during the propagation by the KdV equation in the 

same manner as observed in the measured profile. 

At the furthest position downstream, (x-b)/h = 400, the maxi­

mum amplitude of the leading wave computed by the KdV equation is 

approximately 40% larger than the maximum amplitude of the measured 

wave profile. If the maximum wave amplitude computed by the KdV 

equation is increased by 14% to correct for the possible decrease in 

amplitude resulting from numerical dispersion, the computed wave 

amplitude becomes approximately 54% larger than the observed wave 

amplitude. This 54% difference between theoretical and experimental 

amplitudes of the lead wave is probably a result of energy dissipation 

due to viscous effects in the laboratory model. 

Comparison of the location of the first crest in the leading 

waves at (x-b)/h = 400 in Fig. 5. 23a and 5. 23c indicates that the wave 

computed by the KdV equation has an average celerity of approximately 

2-1 /2% greater than the experimental wave. The average velocity of 
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the computed wave profile between (x-b)/h = 20 and 400 is approxi­

mately Jg(h+n ) = 71. 8 cm/ sec where n is the average-maximum 
0 0 

wave amplitude over the propagation distance (T) """ 0. 25 cm). The 
0 

average velocity of the experimental wave between (x-b)/h = 20 and 

400 is closely approximated by Jgh = 70 cm/sec. This small dis-

crepancy may be due to measurement error since Jg(h+n ) is expected 
0 

to be a better representation of wave celerities for long waves of finite 

amplitude. 

The positions of the centroid for each measured wave profile at 

the downstream positions: (x-b)/h = 20, 180 , and 400, are also 

indicated in Fig. 5. 23a. The centroid position, X, is defined by: 

co I xn(x;t)dx 
-CO x = co I n(x;t)dx 

(5. 12) 

- co 

which was approximated by numerical integration for each wave record 

at the downstream locations. In the absence of viscous forces the cen-

troid velocity downstream should remain constant; this behavior has 

been demonstrated rigorously for water waves recently by Benjamin and 

Mahony (1971) and can be seen by the direct application of Newton's 

first principle. When viscous forces are present, the centroid velocity 

is expected to decrease. The average velocity of the centroid between 

the positions (x-b)/h = 20 and 180 shown in Fig. 5. 23a is 69. 36 cm/ 

sec and between (x- b) /h = 180 and 400 the average velocity is 68. 62 

cm/ sec. Thus, approximately 1 % reduction in the average centroid 
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velocity appears to occur between the downstream positions. It should 

be noted that this slight decrease in the average centroid velocity is 

probably also within the range of expected error for determining the 

centroid position from a digitized wave record; hence, definite 

conclusions cannot be made. However, it does appear that the effect 

of viscosity on the centroid velocity of a propagating wave is much 

less than on the wave amplitudes. 

It should be noted that the total volume per unit width in the 

experimental wave profiles at each downstream position in Fig. 5. 23a 

(given by the integral in the denominator of Eq. (5. 12)) was never found 

to vary more than 6% from the known volume of the bed displacement, 

i.e., C b = 3 0. 5 cm 3 I cm. 
0 

It is also of interest to investigate numerically the asymptotic 

behavior computed by the KdV equation for long waves whose net volume 

is positive. As stated previously, a train of solitons should evolve from 

any initial profile of this type. In order to study this behavior, the 

measured wave profile at (x-b) /h = 400 from Fig. 5. 23a was chosen as 

the initial condition and then propagated numerically by the KdV equation 

a distance of 700 depths further downstream to (x-b)/h = 1100. (A non-

dimensional step in space and time of 0. 3 units was chosen. Over the 

propagation distance of 700 depths a 25% reduction in the amplitude of 

solitary wave due to numerical dispersion was observed with this 

nondimensional step size.) 
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Fig. 5. 24 shows the wave profiles computed by the KdV equation 

at the downstream positions: (x-b)/h = 600, 800, 1000, and 1100. 

The wave amplitude, T], has been normalized by the water depth and is 

shown as a function of the nondimensional time, tJg/h - (x-b)/h. At 

each position the leading wave continues to separate into individual 

waves as the peaks gradually separate and the troughs approach the 

still water level. Each wave remains symmetrical and has the appear -

ance of a solitary wave. The trough behind the third peak actually g o e s 

below the still water level at (x-b)/h = 600 and continues to drop at the 

remaining downstream positions. This behavior is probably the result 

of the numerical dispersion present in the finite-difference approxi-

mation since large negative wave amplitudes would not be consistent 

with the expected asymptotic wave behavior. 

The Ursell Number for the leading region of each wave form at 

(x-b)/h = 400, 600, 800, 1000, and 1100 is also indicated in Fig. 

5. 23. Eq. ( 5. 9 ) was used in the computation where T] was taken as 
0 

the maximum amplitude of the leading wave and the maximum slope of 

this wave profile is defined as I I 11x \I. At every downstream location 

the Ursell Number remains constant at a value of three, i.e., of order 

unity. Recall that this asymptotic value of the Ursell Number is appro-

ximately equal to that found for a solitary wave (U = 2. 37). 

When a negative bed displacement occurs, a wave is generated 

in which the net volume is negative; hence, no solitons are expected to 

develop in the downstream region. Amplitude and frequency dispersion 



/ 
/" 

71 
h 

0.08 

0.06 

0.04 

0.02 

0 

0.06 

0.04 

0.02 

0 

0.06 

0.04 

0.02 

0 

0.06 

0.04 

0.02 

0 

0.06 

0.04 

0.02 

0 

-197-
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Fig. 5. 24 Asymptotic wave behavior computed by the KdV equation 
for waves with a net positive volume. 



-198-

in a negative wave (n < 0) both act to disperse the wave; thus, no 

permanent form waves are possible even when these two effects are 

equal in magnitude, i.e., U = 0(1). (It should be noted that negative 

solitary waves are found to be possible when surface energy effects 

are included in the description of the wave motion; however, for this 

to occur the water depth must be less than 0. 47 cm (see Korteweg and 

de Vries (1895).) 

In order to illustrate the downstream behavior of the waves 

resulting from a negative bed displacement and the application of the 

suggested strategy for determining downstream wave profiles, an 

exponential bed movement with the following generation parameters 

has been investigated: 

' /h = - 0. 1, b /h = 12. 2, 
0 

t Jgh 
c 

b =0.093. (5. 13) 

The time - size ratio in Eq. (5. 13) can be seen from Fig. 5. 1 to lie in 

the impulsive region of generation. A linear theory is also applicable 

for describing the wave motion in the generation region for the param-

eters given in Eq. (5.13) (see Sections 5.1.1 and 5.1.2). 

The measured profiles found at the leading edge of the disturb-

ance, (x-b)/h = 0 and at the downstream positions of (x-b)/h = 20, 

180, and 400 are shown in Fig. 5. 25a. The wave amplitude, n, has 

been normalized with respect to the water depth, h, and is shown as a 

function of the nondimensional time, tjglh - (x-b)/h. Two Ursell 

Numbers are shown in Fig. 5. 25a for each wave profile at the down-
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stream positions (x-b)/h = 20, 180, and 400. The first Ursell Number, 

.!h, corresponds to the front region of the lead wave and is based on the 

maximum negative amplitude of this wave, T)
0

, and the maximum slope 

reached by the water surface in decreasing to that elevation. The 

second Ur sell Number, U 2 , corresponds to the rear region of the lead 

wave and is based on the total change in water level from -T) until the 
0 

slope of the water surface becomes zero again and the maximum slope 

of the rear face of the leading wave. Note that the Ursell Number, Q 1 , 

is negative since the change in water level is negative in the front 

region of the leading wave while U 2 is positive since the water level is 

increasing in the rear region of the wave. The reason for computing 

two Ursell Numbers for the leading wave will become evident shortly. 

At the leading edge of the disturbance, (x-b)/h = 0, in Fig. 

5. 25a the water level rapidly decreases to a maximum amplitude, 

T) /h """' -0. 05, remains constant for an interval of time, and then 
0 

rapidly rises to the still water level about which it oscillates in a 

damped manner. This profile is similar to all profiles at (x-b)/h = O 

created by a negative bed movement which is impulsive (see Section 

5. 1. 2). Ur sell Numbers are not calculated for this wave since the 

water movement here is a combination of the generation process and 

propagation. 

At (x-b)/h = 20 the water level rapidly decreases to a minimum 

elevation, oscillates about this elevation for an interval of time, and 

then rapidly rises to the still water level about which it oscillates in a 
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damped manner. The Ursell Numbers in both the front and rear region s 

of the lead wave are of order unity; hence, amplitude and frequency 

dispersion are of the same order of magnitude after only twenty depths 

of propagation. Comparison of this profile with the measured profile 

at (x-b)/h = 20 for the case of bed uplift in Fig. 5. 23a indicates that 

the two profiles are nearly the mirror image of one another. The 

major difference bewteen these two profiles exists in the oscillatory 

waves trailing the lead wave which are larger and more numerous for 

the case of bed downthrow. This difference is probably due to the 

presence of amplitude dispersion which is acting to decrease the effect 

of frequency dispersion for the positive wave and is increasing the 

dispersion process for the negative wave. 

At (x-b)/h = 180 in Fig. 5. 25a the Ursell Number, _!d" 1 , has 

increased (in absolute value), an order of magnitude to a value of minus 

thirty; hence, in the front region of the leading wave amplitude disper­

sion is dominating wave behavior. This is evident by the increase in 

distance (or time) required for the water level to decrease from the 

still water level to the maximum negative elevation. In the rear region 

of the leading wave the Ursell Number has remained of order unity 

(_!d" 2 = 1 ); hence, amplitude and frequency dispersion are remaining of 

the same order of magnitude. Large-amplitude oscillatory waves are 

forming behind the negative leading wave. Comparison of this wave 

profile and the corresponding profile in Fig. 5. 23a for a positive bed 

movement shows that the two wave profiles are no longer the mirror 
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image of each other. The difference in the two profiles is tbe result 

of the opposite action of amplitude dispersion between positive and 

negative waves. 

At (x-b)/h = 400 the Ursell Number in the front region of the 

leading wave has increased to U1 = -55 as amplitude dispersion con­

tinues to dominate frequency dispersion and the ''stretching" of the 

front face of the negative wave continues. The Ur sell Number in the 

rear region of the leading wave is still of order unity CQ 2 = 2). The 

train of oscillatory waves following the negative lead wave appear to 

be increasing in crest -to-trough amplitude as propagation continues. 

Wave profiles at (x-b)/h = 0, 20, 180, and 400 calculated by 

the linear theory for the generation parameters given by Eq. (5. 13) are 

shown in Fig. 5. 25b where the normalized wave amplitude, n/h, is 

shown as a function of the nondimensional time, L/g/h - (x-b)/h. The 

Ursell Number in the front region of the leading wave at each down­

stream position is also shown. (No Ursell Numbers have been calcul­

ated in the rear region of the leading wave.) At (x-b)/h = 0 and 20 the 

profiles computed by the linear theory agree well with the measured 

profiles at the corresponding downstream positions in Fig. 5. 25b. The 

Ursell Number in the front region of the leading wave computed by the 

linear theory has already become of order unity (and negative) at 

(x-b)/h = 20; hence, the linear near-field has ended within twenty 

depths of the generation region. This behavior was also indicated by 

the measured profile in Fig. 5. 25a. 
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At (x-b)/h = 180 the temporal variations and the amplitudes of 

the profile calculated by the linear theory no longer agree well with the 

measured profile in Fig. 5. 25a. The differences are a result of ampli­

tude dispersion as indicated by the Ursell Numbers, U 1 • For the com­

puted profile U1 = -8 whereas ~1 = -30 for the measured profile. 

The increase in U1 (in absolute value) from (x-b)/h = 20 to 180 

indicated for the wave profile computed by the linear theory is a result 

of the decomposition of the wave into its spectral components by 

frequency dispersion. 

At (x-b)/h = 400 the differences between the temporal variations 

and amplitudes of the wave profile computed by the linear theory and 

the measured profiles increase as amplitude dispersion continues to 

affect the actual wave behavior. The Ur sell Number for the computed 

wave has increased to lJ1 = -12 at this position which alone suggests 

that the linear theory is no longer descriptive of wave behavior as is 

observed. 

Following the suggested strategy for computing wave profiles in 

the downstream region, the wave profile computed by the linear theory 

at (x-b)/h = 20 has been used as the initial condition for the KdV 

equation and then propagated numerically to (x-b}/h = 400. The Ur sell 

Number for the linear profile indicated that amplitude and frequency 

dispersion had become of the same order of magnitude at (x-b)/h = 20; 

hence, the far-field has been reached and the KdV equation should now 

be used to propagate the wave. Again a nondimensional time and size 
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step, 6, of 0. 3 has been used for the finite-difference approximation 

of the KdV equation (Eq. (5. 10)). Recall that a solitary wave with an 

initial amplitude, n /h = 0. 05, was found to decrease in amplitude by 
0 

14% when propagated a distance of 380 depths as a result of numerical 

dispersion. 

The profiles computed by the KdV equation at (x-b) /h = 180 and 

400 are shown in Fig. 5. 25c where the normalized amplitude, 11/h, is 

shown as a function of the nondimensional time, tJg/h - (x-b)/h. The 

Ursell Numbers, U1 and U;;p for the leading wave of the computed 

profiles are also indicated in the figure. At (x-b)/h = 180 the temporal 

variation of the leading wave computed by the KdV equation agrees well 

with the measured wave shown in Fig. 5. 25a. The agreement is indi-

cated further by the Ursell Numbers which are given by .!Ji = -25 and 

Q2 = 3 for the computed profile and Q 1 = -30 and U2 = 3 for the 

measured profile. Hence, the KdV equation appears to properly model 

the stretching of the front face of the leading wave and the balance of 

frequency and amplitude dispersion in the rear region of this wave. 

At (x-b)/h = 400 in Fig. 5.25c the profile computed by the KdV 

equation continues to agree well with the measure profile in its temporal 

variation. In the front region of the computed leading wave the Ur sell 

Number has grown to Q1 = -61 compared to Q1 = -55 for the measured 

profile. In the rear region of the leading wave, the Ursell Numbers are 

equal and of order unity for both the measured and computed profile. 
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The major difference between the measured and computed pro­

files at (x-b)/h = 180 and 400 is found in the amplitudes of the leading 

waves and the trailing train of oscillatory waves. The measured lead­

ing wave amplitude at (x-b)/h = 400 is 36% smaller (in absolute value) 

than the amplitude of the wave computed by the KdV equation at this 

position. If the leading wave amplitude is increased in absolute value 

by 14% to correct for numerical dispersion, the difference in measured 

and computed amplitudes increases to 50%. (Recall that a 54% differ­

ence between measured and computed leading wave amplitudes was 

found at (x-b)/h = 400 in Fig. 5. 23a and Fig. 5. 23c.) It should be 

noted that when the leading wave amplitude computed by the KdV equation 

is increased by 14% to correct for numerical dispersion, the wave 

amplitudes behind the leading wave must be decreased in a like manner 

in order to satisfy the requirement of the conservation of wave volume. 

Hence, the large amplitude oscillatory waves behind the computed 

leading wave in Fig. 5. 25c would be reduced in amplitude and would 

then agree better with the measured oscillatory waves. As indicated in 

the discussion of Fig. 5. 23, the difference between the computed and 

observed amplitudes is probably a result of energy dissipation due to 

viscous effects in the experimental measurements. 

It can be seen from Figs. 5. 25a and 5. 25b that the wave computed 

by the KdV equation arrives at (x-b)/h = 400 before the measured pro­

file. The arrival time of the measured wave at this location indicates 

that the wave has propagated with an average velocity of Jgh = 70 cm/sec 
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between (x-b)/h = 20 and 400. The difference in the arrival times of 

the measured and computed profiles indicate that the average velocity 

of the computed profile is approximately 3% larger than the observed 

velocity of measured profile. A similar difference in average velo-

cities was found for positive wave propagation in Figs. 5. 23a and 5. 23c. 

The centroid of each measured profile in the downstream region 

is also indicated in Fig. 5. 25a. The average centroid velocity between 

(x-b)/h = 20 and 180, and (x-b)/h = 180 and 400, was found to be 

62. 8 cm/sec and 63. 7 cm/sec, respectively. The centroid velocity 

thus appears to be relatively constant during propagation. A similar 

behavior was also found for the centroid velocity of the positive waves 

in Fig. 5. 23a; hence, the effect of viscous forces on centroid velocity 

again appears to be small compared to the ~£feet of energy losses on 

wave amplitudes. 

In order to investigate further downstream behavior of waves 

created by a negative bed displacement, the measured wave profile at 

(x-b)/h = 400 has been used as the initial condition for the KdV equation 

and then propagated numerically a distance of 700 depths similar to the 

case of the positive disturbance. A step size of 6 = O. 3 was used for 

the numerical propagation which resulted in a 25% reduction in ampli-

tude of a solitary wave with an initial amplitude of 11 /h = 0. 05 for 
0 

700 depths of propagation. The results of the propagation are shown in 

Fig. 5. 26 where the normalized wave amplitude, 11/h, is shown as a 

function of the nondimensional time, t/ilh - (x-b)/h, at (x-b)/h = 600, 
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800, 1000, and 1100. Ursell Numbers are also shown at each location 

for the front (U1 ) and rear (Q2 ) regions of the lead wave. 

At each downstream position the front face of the leading wave 

continues to stretch as the Ursell Number in this region grows from 

Q1 = -55 at (x-b)/h = 400 to U 1 = -100 at (x-b)/h = 1100. In the 

rear region of the leading wave the Ursell Number remains constant 

(Q 2 = 2) and of order unity at each downstream position. The trailing 

train of oscillatory waves appear to spread behind the leading wave 

during propagation as their period increases. The amplitudes of each 

of these oscillatory waves appear to vary less between adjacent waves 

as propagation continues. No solitary waves (or solitons) are formed. 

For the waves createxi by a positive bed displacement in Fig. 

5. 23a and the waves created by a negative bed displacement in Fig. 

5. 25a, the linear near-field was found to be approximately twenty 

depths in length. The bed displacement used to generate each series 

of waves was impulsive and the disturbance-size scale, b/h, was equal 

to 12. 2. In the discussion of the growth rate of nonlinearities in 

Chapter 3, it was found that for impulsive bed movements the length, 

6 , of the linear near-field behaved like (b/h)- 3
, (see Eq. (3. 77)). 

Hence, for size scales greater than 12. 2 the length of the linear near­

field would appear to be appreciably less than twenty depths, and the 

linear theory would then appear to be even more limited in its ability 

to adequately treat a propagated wave. 
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In summary, the KdV equation appears to be the appropriate 

model for finding the temporal variation of the wave profiles in the far­

field of the downstream region. The major difference between the 

measured profiles and the profiles computed by the KdV equation in the 

far-field occurs in maximum wave amplitudes; the measured amplitudes 

always were smaller than the computed amplitudes. This discrepancy 

is probably due to the effect of viscosity in the experiments and will be 

discussed in the following section (Section 5.2.2). The length of the 

linear near-field was found to be determined easily by observing the 

Ursell Number in the front region of the leading wave computed by the 

linear theory. When this Ursell Number became of order unity, the 

far-field had been reached. Up to and including this position the linear 

theory was found to agree well with the measured wave profiles. The 

linear theory appears to be quite limited in its ability to propagate a 

wave generated by an impulsive bed displacement over any large dis­

tance when the disturbance-size scale is also large. 

For positive bed displacements a series of solitons followed by 

a group of oscillatory waves was found to be the asymptotic solution for 

the waves in the far-field. For negative bed movements no solitons 

were found; in the far-field the front face of the negative lead wave 

stretched with time and numerous oscillatory waves whose amplitude 

were of the same order of magnitude as the lead waves were observed 

following the negative leading wave. In regions of the wave where the 

Ursell Number was negative, the Ursell Number was found to become 
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more negative during propagation while in wave regions where the 

Ursell Number was positive, the Ursell Number tended toward unity 

and remained constant during further propagation. 

5. 2. 2 Energy Dissipation in the Downstream Region. 

The presence of viscosity in the experimental model has 

been cited in Section.5. 2. 1 as a possible cause of the difference between 

wave amplitudes computed in the downstream region by the KdV equa-

tion and the measured wave amplitudes. As indicated in Section 5. 1. 4, 

viscosity causes boundary layers to form around the wetted perimeter 

of the wave tank and at the free surface of the fluid. Energy losses in 

these boundary layers causes a decrease in wave amplitudes during 

propagation. 

Keulegan (1948) has investigated the damping of long waves of 

translation due to energy dissipation arising from the boundary layers 

adjacent to the solid boundaries of a wave tank. Assuming the boundary 

layers to be laminar, the energy dissipation was calculated using the 

well-known dissipation function (see e.g., Batchelor (1967, p. 153)). 

The total energy loss was shown to consist of two components: energy 

loss in the laminar layer directly beneath the wave, and kinetic energy 

left behind as the wave propagates. For a solitary wave of initial height 

ri at x = 0, in water of depth, h, and in a wave tank of width B, 
0. 

,,(, 

Keulegan developed the following expression for the height, T)
0

, of the 

solitary wave at a downstream position relative to the initial height T) : 
0 ,.{, 
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J.. . .l 4 
Tlo [ 1 (x) ( . )4 ( 2h) ( v

18 )4 J --n- = 1 + IT h Tlo /h 1 + 13 gh3 • 

0 ....t ....t 

(5. 14) 

where g is the acceleration of gravity and v is the kinematic fluid 

viscosity. 

Laboratory experiments have been conducted to check the 

validity of Eq. (5. 14) by several authors. These are summarized by 

French (1969, p. 170) who also includes his own data from experiments 

which were conducted in the same wave tank which was used in the 

current study. The different data shown by French (1969) show con-

siderable scatter when compared to Eq. (5. 14); however, the data of 

French appear to agree reasonably well with Keulegan 1 s equation. 

Although the range of water depths used in the current study varied 

more than those of French, Eq. (5. 14) appears to be a convenient 

expression for estimating the effect of viscous boundary layers develo-

ped along the wetted perimeter of the wave tank. 

Fig. 5. 27 shows the decrease in the ratio, f) /Tl , computed by 
0 0 ....t 

Eq. (5. 14) as a function of the downstream distance, (x-b)/h for the 

four water depths: h = 5, 10, 30, and 50 cm, which were used in the 

experiments with the larger bed unit (b = 61 cm). At each water depth, 

curves have been computed for three values of the initial relative wave 

amplitude, f) /h = 0. 1 , 0. 5, and 1 . 0. 
0 ....t 

(The curve for f) /h = 1. 0 
0 ....t 

is of little practical value since waves are known to break when their 

amplitude approaches the same order of magnitude as the water depth. ) 
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Fig. 5. 27 Amplitude decay of a solitary wave during 
propagation based on the equation of 
Keulegan (1948). 
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As would be anticipated, Fig. 5. 27 shows that small depths and large 

wave amplitudes lead to more energy dissipation in the boundary layers 

and thus to greater damping of the wave amplitude. 

Fig. 5.27 can be used to estimate the effect of boundary dis­

sipation of the experimental waves shown in Figs. 5. 23a and 5. 25a. 

For these profiles the ratio of the initial wave amplitude to the depth 

(h = 5 cm) was approximately 0.1. From Fig. 5.27 Keulegan's equa­

tion is observed to predict approximately a 38% decay in wave ampli­

tude after 400 depths of propagation, i.e., at (x-b)/h = 400. Recall 

that the observed difference between the measured and computed pro­

files was approximately 50-54%; hence energy losses in the boundary 

layer around the wetter perimeter of the wave tank do not appear to be 

sufficient to account for the total difference between theory and experi­

ment. 

Energy losses also occur in the boundary layer developed at the 

free surface. (Note that Keulegan's study does not consider losses in 

this layer.) In a study of the energy dissipation in the free-surface 

boundary layer, Van Dorn ( 1966) found that for low frequency oscillatory 

waves, the total energy loss in the surface layer was often as large or 

larger than the energy dissipation around the tank side walls. This 

surprisingly large dissipation is due to variations in surface energy 

which result from the contamination of the water surface invariably 

present under laboratory conditions unless the surface is specially 

treated. Since energy losses in the surface layer may be so large, it 
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is reasonable to assume that these losses may account for the additional 

12-16% decay in the experimental wave amplitudes at (x-b)/h = 400 

indicated by the theoretical computations. Hence, the KdV equation 

appears to be an accurate model of wave propagation in the downstream 

region in the absence of viscous effects. 

Another source of energy dissipation that occurred in some 

experiments resulted from the phenomenon of wave breaking. When 

the bed displacement was negative such that ]C /h\ ~ 0.5 and the 
0 

time- size ratio small, the positive wave immediately following the 

leading negative wave was found to break at a distance of ten to twenty 

depths from the generation region. This phenomenon occurred for 

both the exponential and half-sine bed displacements when the time-

size ratio was less than 1.5 and 6.0, respectively. 

Fig. 5. 28 shows the positive wave immediately behind a negative 

leading wave breaking in the downstream region. The generation param-

eters for this wave are identical to those given by Eq. (5. 5) for the 

negative, half-sine bed displacement used in the photographic sequence 

of Fig. 5. 13. The energy loss due to wave breaking appears to have 

little effect on the downstream wave profiles since the breaking wave is 

small relative to the leading wave where most of the propagating energy 

is contained. No wave breaking occurred when the bed displacement 

was positive for the full range of generation parameters investigated. 
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11 43 1 

Fig. 5. 28 Wave breaking in the downstream region for 
negative bed displacements. 

5. 3 OSCILLATING BED MOTIONS WITH A MEAN DISPLACEMENT. 

In the preceding sections only two simple time-displacement 

histories of the bed movement were considered. For each of these 

displacements the bed section rose or fell from its initial position to 

a prescribed elevation, ' , in a manner such that its velocity, 
0 

never changed sign during the movement. In order to observe experi-

mentally the effect of a more general time-displacement history of the 

bed movement on the wave behavior, a system was constructed whereby 

an oscillating motion could be superposed on the half-sine or exponential 

bed displacements. The oscillating motion (or dither) began at the 

same instant as the mean motion and was automatically stopped as the 
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bed unit neared the prescribed permanent displacement, c . Both the 
0 

period, 'T, and the crest-to-trough amplitude, C1 , of the dither could 

be varied. Experiments were conducted for the half-sine mean motion 

in which the period of the dither was varied from 10% to 50% of the 

characteristic time of the mean motion, i.e., O. 1 ~ 'T It ::::;; 0. 5, and 
c 

the amplitude of the dither was variedfrom20%to 50% of the character-

is tic amplitude of the mean motion, i.e., 0. 2 ~ C1 IC ~ 0. 5. 
0 

Figs. 5. 29a, 5. 29b, and 5. 29c shows the results for three 

experiments in whLch the half-sine mean motion had the following 

generation parameters: 

C /h = o. 2, b /h = 12. 2, t Jgh I b = 1. 1 o . 
0 c 

(5.15) 

From Fig. 5. 2 the time-size ratio of the mean motion is observed to 

lie at the boundary between the impulsive and transition regions of 

generation. In Fig. 5. 29a the actual time-displacement history of the 

bed for the mean motion and the resulting waves are shown at the 

positions: (x-b)/h = -b/h, 0, 20, 180, and 400. In Fig. 5. 29b the 

time-displacement history of the bed and the resulting waves at similar 

positions are shown when a dither with a period of 'T = 0. 5 t and an 
c 

amplitude of C1 = 0. 5 C is superposed on the mean motion. The time­
o 

displacement history of the bed and resulting waves at (x-b)/h = -b/h, 

0, 20, 180, and 400 are shown in Fig. 5. 29c when a dither of period 

'T = 0. 1 t c and amplitude C1 = 0. 5 (
0 

is superposed on the mean 

motion. In each case the wave an1plitude, 'fl, has been normalized by 

the water depth, h, and is shown as a function of the non-dimensional 

time: t./iTfi - (x-b)/h. 
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Fig. S. 29 Measured wave profiles; a) an impulsive half-sine mean 
motion, b), c) half-sine mean motion with a superposed 
oscillation. 
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The wave profile at the backwall, i.e., (x-b)/h = -b/h, in Fig. 

5. 29 a rapidly rises to a maximum elevation, Tl /h = 0. 2, (or ri/ C = 1 
0 0 

since C /h = 0. 2) and immediately decreases to the still water level 
0 

where a small amplitude negative wave results which has a nodal time 

of the same order of magnitude as the positive leading wave. At the 

· leading edge of the disturbance, (x-b)/h = 0, the water rises to a 

maximum elevation, Tl /h = 0. 1, remains at this level for an interval 
0 

of time, and then decreases to the still water level where a small 

negative wave is formed. At (x-b)/b = 20 the wave has changed very 

little from the profile observed at the leading edge of the disturbance. 

Further downstream at (x-b)/h = 180 the positive leading wave has 

begun to separate into solitons similar to the behavior of the waves 

shown previously in Fig. 5. 23a. The separation of the leading wave 

into solitons continues at (x-b)/h = 400 as the crests of the individual 

waves separate . and the troughs approach the still water level. 

When a dither with an amplitude of C1 = 0. 5 C and a period of 
0 

T = 0.5 t is superposed on the mean motion (Fig. 5.29b) the change in 
c 

water level at the backwall, (x-b)/h = -b/h, follows the actual time-

displacement history of the moving bed up to a maximum elevation 

equal to that reached by the mean motion in Fig. 5. 29a. The super-

posed dither is responsible for genera.ting small amplitude oscillatory 

waves whose period and amplitude are proportional to T and C1 , re spec -

tively. After reaching a maximum elevation the water level at the back-

wall immediately decreases toward the still water level where 
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oscillations are also observed to occur. At the leading edge of the 

moving bed the change in water level again follows the actual time­

displacement history of the moving bed up to a maximum elevation 

equivalent to that observed for the mean motion alone in Fig. 5. 29a. 

A small oscillatory wave is observed to be preceding the primary 

leading wave. The maximum water level is maintained for an interval 

of time and then begins to decrease to the still water level where small 

oscillatory waves occur. At (x-b)/h = 20 the water level rises to a 

maximum elevation about which small oscillations occur before the 

water level begins to decrease to the still water level. Small os cilla­

tory waves are observed to be following the lead wave. It appears that 

the small wave preceding the primary leading wave at (x-b)/h = 0 has 

now been overtaken by the primary wave which is propagating with a 

larger celerity. At (x-b)/h = 180 the leading wave is observed to be 

separating into solitons just like the corresponding wave in Fig. 5. 28a 

which was created by the mean motion alone. The oscillatory waves 

created by the superposed dither have now been left behind by the longer 

leading wave which is apparently generated by the mean motion only. 

This behavior is seen more clearly at (x-b)/h = 400 where the leading 

wave has continued to separate into solitons and resembles very closely 

the corresponding wave in Fig. 5. 29a. The only difference between 

these two profiles occurs in the trailing portion of the wave profiles 

where very small oscillatory waves can be seen in the experiment in 

which the dither was superposed on the mean motion. It thus appears 
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that this superposed dither has little effect on the downstream wave 

profiles for this experiment. 

For the wave measurements shown in Fig. 5. 29c the period of 

the superposed dither has been reduced to 'T = 0. 1 t while the ampli -
c 

tude of the dither has been maintained at C1 = 0. 5 c . The water 
0 

movement at the two positions in the generation region, (x-b)/h = -b/h 

and 0, is drastically altered from that observed in Fig. 5. 29b where 

'T = 0. 5 t . At the backwall the water level initially follows the time­
c 

displacement history of the moving bed but suddenly large amplitude 

oscillations with a small period occur. Some of these oscillations have 

a maximum amplitude, Tl /h, greater than 0. 4 which corresponds to 
0 

an amplitude greater than twice the total bed displacement, c . 
0 

These 

large waves are caused by the formation of cross waves in the generating 

region, i.e., waves propagating laterally across the wave tank. Cross 

waves are known to sometimes form during the forced oscillation of a 

fluid region as a result of a nonlinear instability (see e.g., Lin and 

Howard (1960)). Cross waves were found to occur in the present experi-

men ts when both C1 I C0 
approached unity and T/t c became very small. 

For example, no cross waves occurred when the period of the dither 

was maintained at T = 0. 1 t and the amplitude of the dither was 
c 

reduced to C1 = 0. 2 C • The cross waves at the backwall continue to 
0 

reflect from the tank sidewalls after the displaced water volume pro-

pagates from the generation region. 
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The effect of the cross wave pattern is clearly shown at the 

leading edge of the disturbance, (x-b)/h = O. Initially the water level 

rises and oscillates just as the bed unit but suddenly large amplitude 

waves develop. These cross waves which develop continue to propagate 

back-and-forth across the wave tank long after the longitudinal waves 

created by the bed motion have propagated from the generation region. 

At the first downstream position, (x-b)/h = 20, the long wave 

which is apparently created by the mean motion arrives first and 

resembles very closely the wave form recorded at the same position 

in Fig. 5. 29a where only the mean motion was used. The effect of the 

cross waves in the generation region can also be · seen at (x-b)/h = 20 

in Fig. 5. 29c where groups of oscillatory waves are observed to be 

following the longer leading wave. These oscillatory waves which are 

propagating longitudinally in the wave tank are two-dimensional and have 

apparently been generated by the longitudinal pres sure gradients induced 

by the cross wave pattern in the generation region. 

At (x-b)/h = 180 the leading wave is separating into solitons just 

as the leading waves at the same position in Figs. 5. 29 a and 5. 29b. 

The oscillatory wave pattern following the leading wave at (x-b)/h = 180 

is now approximately 360 nondimensional time units behind the leading 

wave. (Note that the time axis has been broken in order to show this 

trailing wave group.) The maximum amplitude of the oscillatory waves 

of the first wave group has decreased by approximately 80% between 
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(x-b)/h = 20 and (x-b)/h = 180; probably as a result of the combined 

effect of energy dissipation due to viscosity and frequency separation. 

At (x- b) /h = 400 the leading wave continues to separate into 

solitons and is almost identical to the wave profiles at this downstream 

position in Figs. 5. 2 9a and 5. 2 9b. The trailing wave groups have been 

left so far behind by the leading wave at this position that they were not 

recorded before the leading wave reflected from the end of the wave 

tank and returned to the position of the wave gage. 

Fig. 5. 29 thus demonstrates that when the mean motion of the 

bed displacement is impulsive, the same leading wave results during 

propagation, regardless of the details of the actual bed displacement. 

(Recall that the time-size ratio of the mean motion used in Fig. 5. 29 

was at the boundary of the impulsive and transition regions of gener­

ation. ) This behavior of the downstream waves is extremely important 

in the practical application of the results obtained in Sections 5. 1 and 

5. 2 for the simple family of bed displacements, i.e., the half-sine 

and exponential motions. (Application of these results will be discussed 

in Section 5. 4. ) 

In Section 5. 1. 2 it was shown that the waves resulting when the 

time-size ratio of the bed displacement was in the creeping region of 

generation were highly dependent on the actual time-displacement 

history of the bed movement. Hence, if an oscillation is superposed 

on the mean motion of a creeping bed displacement the resulting waves 

would be expected to differ accordingly. A half-sine mean motion with 
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the following generation parameters has been used to investigate this 

suggested behavior: 

c /h = 0. 4, b /h = 12. 2, t Jgh /b = 16. 7 5 . 
0 c 

(5. 16) 

Fig . 5. 3 0a and Fig. 5.30b show, respectively, the waves resulting for 

the mean motion alone and for the mean motion with a superposed dither 

which has a period of T = 0. 1 t and an amplitude of C1 = 0. 5 C . 
c 0 

The wave amplitude, ri. has been normalized with respect to the water 

depth, h, and is shown at the positions (x-b)/h = -b/h, 0, 20, 18 0, 

and 400, as a function of the nondimensional time: tJglh - (x- b) /h. 

The actual time-displacement histories of the bed motion are also 

shown above each sequence of wave profiles. 

The wave created by the mean motion alone in Fig. 5. 30a is 

similar at each position of measurement in the generation region. The 

water rises slowly to a maximum elevation and then decreases to the 

still water level forming a symmetric wave form. During propagatio n 

the front face of the wave begins to steepen as a result of amplitude 

dispersion. 

When the dither is superposed on the mean motion, the water in 

the generation region is observed in Fig. 5. 30b to move in the same 

manner as the bed, forming a train of oscillatory waves whose ampli-

tude is much larger than the waves created by the mean motion alone. 

During propag ation each of these oscillatory waves begins to disperse 

and interact to form a complex train of waves which do not resemble 

in any manner the single wave created by the mean motion. Henc e , 
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Fig. 5. 30 Measured wave profiles; a) a creeping half­
sine mean motion, b) half-sine mean motion 
with a superposed oscillation. 
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when the mean motion of a bed displacement lies in the creeping region 

of generation, the detailed time-displacement history of the movement 

is extremely important in determining wave behavior. (No cross waves 

developed in any experiments for which the mean motion was in the 

creeping region of generation.) 

In summary, it appears that the superposition of an oscillating 

movement on an impulsive mean motion has little effect on the wave 

profiles measured in the downstream region. Some small oscillatory 

waves are generated by the dither but these are quickly left behind by 

the larger (and longer) wave which is apparently created by the mean 

motion alone. When the mean motion is in the creeping region of 

generation, the superposed dither has a major effect on the observed 

waves in the downstream region. The oscillating motion generates a 

series of long waves which have maximum amplitudes that are some-

what larger than the amplitude of the wave created by the mean motion 

alone; hence the oscillatory waves are traveling at a slightly larger 

velocity than the wave created by the mean motion. 

5. 4 APPLICATION OF RESULTS TO THE ALASKAN EARTHQUAKE 

OF 27 MARCH 1964. 

The results presented in Sections 5. l, 5. 2, and 5. 3 for a simple 

two-dimensional model of tsunami generation indicate that three para-

meters of bed deformation are important in determining the character -

is tics of the generated wave. These three parameters are: (1) the 

disturbance-amplitude scale, c /h, 
0 

(2) the disturbance-size scale, 
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b/h, and (3) the time-size ratio, t Jgh/b, which incorporates the 
c 

disturbance-time scale, t Jglh. It is of primary importance to investi­
c 

gate an actual tsunamigenic earthquake in order to determine character-

istic values of these nondimensional ratios and thus to infer certain 

characteristics of the generated tsunami. 

Although numerous tsunamigenic earthquakes have occurred 

(mainly in the Pacific Ocean}, very little information is available in 

the literature regarding the actual tectonic deformations of the sea bed 

which are responsible for generating tsunamis. The detailed form of 

submarine tectonic displacements is extremely difficult to determine 

since the deformations cannot be observed directly and in most cases 

the preearthquake bathymetry is unknown so that postearthquake sound-

ings are of little value. In fact, submarine bed deformations resulting 

during an earthquake appear to be generally inferred from available 

tsunami signatures recorded at various tide gage stations that are 

affected. 

The only tsunamigenic earthquake for which a reasonably 

accurate description of the submarine tectonic deformations exists 

appears to be the Alaskan earthquake of 2 7 March 1964. This disaster -

ous earthquake had a Richter magnitude of 8. 4 (Pasadena seismograph 

station) and was accompanied by crustal deformations of land and sea 

bottom in south- central Alaska covering an area probably in excess of 

110, 000 square miles (Plafker, 1969). A tsunami was generated by the 

sea bed deformations which caused extensive damage and loss of life 



-227-

along the Alaskan coastline and at locations as far away as Crescent 

City, California. Because of the location of numerous offshore islands 

in the coastal region affected by the earthquake, and the knowledge of 

preearthquake bathymetry in portions of the coastal region, this earth­

quake provided an exceptional opportunity to determine the submarine 

tectonic deformations responsible for generating the ensuing tsunami. 

The tectonics of the Alaskan earthquake have been discussed extensively 

by Plafker (1969) from which most of the following description has 

been taken. 

The epicenter of the Alaskan earthquake was located somewhat 

north of Prince William Sound (lat. 61. 06 ° N. , long. 14 7. 44 ° W.) as 

indicated in Fig. 5. 31 which has been adapted from Plafker (1969). The 

initial rupture apparently propagated in a predominantly south-westerly 

direction for a distance of 375-500 miles (600-800 km). The propagation 

of the rupture appears to have occurred in a complex series of bursts 

(Wyss and Brune, 1967) with an average velocity of 2 miles I sec (3 km/ 

sec). The observed and inferred tectonic deformations are postulated 

by Plafker ( 1969) to have resulted primarily from a relative seaward 

displacement and uplift of the seaward portion of the effected area and 

a simultaneous horizontal extension and subsidence of the landward 

portion of the effected area. This di polar movement of the earth 1 s 

crust was centered along a "hinge line" running from the northern 

portion of Prince William Sound in a southwesterly direction to Trinity 

Islands (see Fig. 5. 31). lsobase contours of the vertical tectonic 
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displacements (which indicate the amount of vertical deformation rela­

tive to the preearthquake land elevation) have been constructed by 

Plafker (1969) and are shown in Fig. 5. 31. The major area of uplift 

is observed in Fig. 5. 31 to occur in an arcuate region encompassing 

the Continental Shelf and possibly portions of the continential slope 

with a length of approximately 375 miles and a maximum width of 150 

miles. The maximum measured uplift was found to be 38 ft which 

occurred in a northwest trending belt about 6 miles wide along the 

Continental Shelf and was exposed on Montague Island in the south­

western portion of Prince William Sound. The major zone of subsidence 

occurred partially in the embayed coastal areas and along the Alaskan 

mainland. The maximum measured land downthrow appears to be 

approximately 8 ft. 

The vertical displacements along three cross-sections through 

the effected region are also shown in Fig. 5. 31; these deformations are 

measured from the preearthquake land elevation denoted by the zero 

base line. Along Section A-A' an approximately uniform uplift of 5-10 ft 

occurs in a submarine region with a cross-sectional length of approxi­

mately 150 miles; a corresponding downthrow with a maximum ampli­

tude of 6 ft occurs on the landward side of this cross -section. From 

the cross-section B-B', the sea bed is observed to have uplifted in an 

approximately linear manner to an elevation of approximately 1 7 ft at a 

distance of 30 miles seaward of the hinge line of the dipolar crustal 

deformation. The sea bed then lifted to a maximum elevation of 30 ft in 
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a narrow belt approximately 6 miles wide. This region is followed by 

a zone of nearly uniform uplift of 15 ft for a distance of 50 miles to the 

projected position of Middleton Island. The remaining uplift occurred 

in a region over the continental slope and apparently decreased to zero 

near the foot of the slope. (Note that Middleton Island appears to be 

located at the edge of the Continental Shelf.) The negative displacement 

along Section B-B' occurs mainly on land and does not exceed approxi­

mately 6 ft. The inferred zone of uplift along Section C- C' closely 

resembles the profile at Section B-B' even though these two cross -

sections are separated by approximately 200 miles along the major 

axis of the region affected by the earthquake. As observed before, 

most of the uplift along Section C- C' occurs on the Continental Shelf 

and decreases to zero along the continential slope. 

Plafker suggests that the axis of sea bed uplift along the Contin­

ental Shelf, shown in Fig. 5. 31, is also the axis of the source region 

for the tsunami generated by the earthquake. Independent evidence of 

this suggested source region was also determined by Van Dorn ( 1964) 

with the use of wave refraction diagrams constructed from known 

arrival times of the Alaskan tsunami at different tide gage locations 

around the Pacific Ocean. It thus appears that the tectonic deformation 

responsible for the Alaskan tsunami consists of an elongated belt which 

extends approximately 350 miles from the vicinity of Montague Island to 

the area offshore of the Kodiak Island group in which a typical vertical 

bed displacement is illustrated by the cross-section B-B' in Fig. 5. 31. 
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The average width of the belt of uplift appears to be approximately 

125 miles. (It should be noted that the seaward thrust of the earth 

movement during the Alaskan earthquake created horizontal displace­

ments of approximately 64 ft; however, these movements are apparently 

dis counted by Plafker ( 1969) as a mechanism for large ocean wave 

generation since the bathymetry of the sea bed was not sufficiently steep 

in the region of these horizontal displacements to generate a large wave.) 

As stated by Plafker (1969), no instrument records exist which 

would indicate the time or rate of the tectonic movements occurring 

during the Alaskan earthquake; hence, no time-displacement history of 

the bed uplift in the source region of the generated tsunami is known. 

Eyewitness reports indicate that the major portion of the tectonic move­

ments occurred during the 1-1/2 to 5 minutes of violent tremors. 

Van Dorn ( 1964) suggests that the vertical displacements must have 

occurred very rapidly (from 2 to 6 minutes) due to the presence of an 

atmospheric gravity wave measured at La Jolla, California which was 

apparently generated by the vertical movements of the land and ocean. 

From the preceding discussion of the source mechanism for the 

Alaskan tsunami, a two-dimensional model of the generation would 

appear to be applicable at least locally since the region of generation 

is elongated with a length of approximately three times the width. If 

the deformed bed profile shown at the cross-section B-B' in Fig. 5. 31 

is indeed typical of the general bed displacement responsible for the 

Alaskan tsunami, then a characteristic size, b, may be defined. The 



-232-

total width of the region of uplift excluding the region over the contin-

ental slope is approximaely 100 miles; hence, the half-width of the 

region is b "'"" 50 miles. (It seems appropriate to neglect the region of 

uplift over the continental slope, i.e., seaward of Middleton Island in 

Section B-B', since the water depth in this region is increasing rapidly 

and the uplift is decaying to zero.) The average water depth in the 

region of uplift landward of Middleton Island is of the order of 600 ft as 

seen in Fig. 5. 31; hence, a characteristic disturbance - size scale 

becomes: b/h "'"" 450. 

In order to determine the time-size ratio, t /gh/b, of the 
c 

generation process, a characteristic time, t , of the bed displacement 
c 

is required. As indicated earlier, the best estimate of the total time of 

ground movement (which is a convenient characteristic time) appears 

to be two to six minutes. Using these times and an average water depth 

of h = 600 ft, yields a range of possible time-size ratios given by: 

0.06 < 
t Jgh 

c 
b 

< o. 18 . (5.17) 

Since the probable range of time-size ratios given by Eq. (5. 17) is much 

less than unity, the bed displacement of the Alaskan earthquake appears 

to be impulsive. This suggested behavior can be seen directly from 

Fig. 5. 1 or Fig. 5. 2 if the results determined for an exponential or 

half-sine bed displacement in Section 5. 1 are applied to the Alaskan 

earthquake. 
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Since the bed uplift (and water depth) along B-B' in Fig. 5.31 

is not uniform, the disturbance-amplitude scale, C /h, must vary 
0 

along this cross-section. The maximwn uplift of approximately 30 ft 

occurs in a narrow region in which the water depth is approximately 

300 ft. (Detailed contours of the water depth in this region are given 

by Wilson and Tc;6rum (1968, p. 53) from which this depth was deter-

mined.) Outside this narrow belt the amplitude of the vertical deform-

ation decreases while the water depth is generally greater than 300 ft; 

hence, the maximum value of the disturbance-amplitude scale along 

B-B' appears to be: ( c /h) = 0. 1. o max 

From the preceding discussion, possible values of the important 

parameters of generation for the Alaskan tsunami appear to be: 

c /h < 0. 1, 
0 

b/h ~ 450, 0.06 < 
t Jgh 
c 

b 
< o. 18 . (5. 18) 

The small amplitude scale of Eq. (5. 18) suggests that a linear theory 

provides an adequate description of the initial wave behavior; since the 

time-size ratio indicates an impulsive generation, the actual time-dis -

placement history of the bed movement is not expected to be of critical 

importance in determining the general characteristics (e.g., the maxi-

mum amplitude, T\o, the rise time, t , the fall time, 
r tf' and the nodal 

time, t ) of the lead wave propagating from the region of generation. 
n 

Hence, it is of interest to examine the predicted general features of the 

lead wave of the Alaskan tsunami in light of the results determined in 

Section 5. 1 by the linear theory for waves generated by two specific bed 
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movements. Since the bed uplift or water depth in the generation 

region is not uniform or symmetrical about the centerline of the uplift 

region, the wave which propagates out of the generation region toward 

the Alaskan mainland would not be expected to resemble in detail the 

wave which propagates seaward of the uplift region. The following 

discussion will be primarily concerned with the wave which propagates 

seaward of the region of uplift. 

As suggested previously, the leading edge of the generation 

region on the seaward side of the uplift may be taken as the projected 

position of Middleton Island shown on the cross-section B-B 1 in Fig. 

5. 31. The characteristics of the wave which propagates past this 

position are probably dominated by the 50 miles of nearly uniform 

uplift of 15 ft which occurs between the narrow belt of maximum uplift 

and Middleton Island. As a first approximation it is useful to assume 

that the uplift along the entire cross-section is uniform with a total 

displacement, C , of approximately 15 ft; under this assumption, the 
0 

results presented in Section 5. 1 may be directly applied. It should be 

recalled from the discussion in Section 5. 1. 1 that the maximum ampli-

tude ratio, ri IC , of the leading wave in the generation region was 
0 0 

found to become constant and independent of the time-size ratio in the 

impulsive region of generation. The asymptotic value of ri IC for 
0 0 

impulsive bed movements was found to be independent of size scale for 

b/h > 4; hence, :the results presented in Section 5. 1. 1 may be used for 

the very large size scale (b/h = 450) of the Alaskan tsunami. It was 



-235-

determined in Section 5. 1. 3 that for each type of bed movement investi-

gated, the rise-time ratio, t It , and the nodal-time ratio, t It , did 
r c n c 

not vary appreciably between the size scales of blh = 12.2 and 

blh = 100. In the impulsive region of generation where the rise and 

fall-time ratios are not equal, the ratio of the nodal and fall times, 

i.e., tnltf, was observed to decrease toward unity as the size scale 

increased from blh = 12. 2 to blh = 100. Hence, it appears to be 

appropriate to apply the results computed for blh = 100 in Section 

5. 3. 1 to this case. Since the characteristic time, t , for the Alaskan 
c 

earthquake has been estimated as the total time of the bed deformation, 

the results for the half-sine bed displacement would appear to be more 

appropriate than the corresponding results for the exponential bed 

movement; however, both types of motion will be considered in this 

discussion. 

The inferred characteristics (Tl , t , tf, and t ) of the leading o r n 

wave of the Alaskan tsunami at the projected position of Middleton 

Island on the cross-section of B-B' of Fig. 5. 31 are presented in Table 

5. 1. Column (1) indicates the type of bed motion from which the 

characteristic features of the wave have been determined while Columns 

(2) and (3) indicate the assumed characteristic time, t , and the result­
c 

ing time-size ratio, respectively. Columns (4), (5), (6), and (7) indicate 

the nondimensional time ratios of the leading wave where the values in 

Column ( 4) have been found from Fig. 5. 6a for the exponential bed move-

ment and from Fig. 5. 6b for the half-sine bed movement. Columns (5), 



( 1 ) 

BED 

MOTION 

Exponential 

Half-Sine 

(2) (3) ( 4) ( 5) (6) (7) (8) (9) 

t t Jgh TJ IC t It tf/t c t It T\o t 
c c 0 0 r c n c r 

b 
(min) (ft) (min) 

2 0.06 0.5 5 32 38 7.5 10 

6 0. 18 0.5 5 11 13 7.5 30 

2 0.06 0.5 1 32 34 7.5 2 

6 0. 18 0.5 1 11 12 7.5 6 

Table 5. 1 Inferred characteristics of the leading wave of the Alaskan 
tsunami (27 March 1964) near Middleton Island. 

( 10) 

tf 

(min) 

64 

66 

64 

66 

(11) 

t 
n 

(min) 

76 

78 

68 

72 

I 

N 
UJ 
0--
1 
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(6), and (7) have been determined from Fig. 5.17 for the exponential 

bed movement and from Fig. 5. 18 for the half-sine bed movment. 

(The theoretical curves for b/h = 100 in Fig. 5. 18 must be extrapo-

lated to the small time - size ratio of t Jgh/b = 0. 06. ) Column (8) has 
c 

been computed using C = 15 ft which is the assumed uplift. Columns 
0 

(9), (10), and (11) indicate the rise, fall, and nodal times of the leading 

wave, respectively, which were computed from the characteristic time, 

t , presented in Column (2) and the time ratios presented in Columns 
c 

(5), (6), and (7). 

The rise times of the leading wave are observed in Table 5. 1 to 

vary between 2-6 minutes for the half-sine displacement and 10-30 

minutes for the exponential movement. As suggested earlier, the 

results for the half-sine motion are probably more appropriate since 

the total time of bed deformation has been used to estimate the character-

istic time, t . The fall time of the leading wave is estimated in Column 
c 

(10) to be 64-66 minutes regardless of the type of bed movement. The 

nodal time of the leading wave is found in Column ( 11) to be in the range 

of 68-72 minutes by the half-sine results and 76-78 minutes by the 

exponential results. The type of bed motion thus appears to have little 

effect on the fall and nodal times. The profile of the leading wave of the 

Alaskan tsunami is thus suggested by the results of Section 5. 1 to 

resemble the shape of the nondimensional profiles shown in Fig. 5. 8 or 

Fig. 5. 9 at x/h = b/h in the impulsive region of generation; the 

suggested dimensional characteristics of the leading waves are: 
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ri
0 

'°'"' 7. 5 ft, tr """ 2-6 minutes, tf """' 64-66 minutes, and tn =>< 68-78 

minutes. 

The characteristics of the leading wave which are suggested 

above are based on the assumptions of uniform bed uplift and uniform 

water depth which are not completely valid assumptions. The variable 

uplift would be expected to affect Tl to some degree; however, no wave 
0 

amplitude greater than 15 ft, i.e., one-half the maximum bed uplift, 

would be expected to propagate from the generation region. The vari-

ation in the water depth would affect the temporal variations of the 

wave profile to some extent; however, the indicated values are 

expected to suggest at least the correct order of magnitude of these 

times. The suggested nodal time of more than 1 hour is in relative 

agreement with the leading wave periods found by Wilson and Tr;zlrum 

( 1968) from the subjective analysis of marigrams of the Alaskan 

tsunamis recorded at tide gage stations near Alaska. This large nodal 

time is also in agreement with the leading wave period found from the 

deep-water signature of the Alaskan tsunami which was recorded at 

Wake Island and presented by Van Dorn (1964). 

The very large size scale indicated by Eq. (5. 17) suggests that 

the effects of nonlinearity will very quickly become of the same order 

of magnitude as the linear effects of frequency dispersion during wave 

propagation. However, it should be noted that the wave propagating 

seaward of the generation region immediately enters the region of the 

continental slope where the water depth increases rapidly; hence, the 



-239-

effects of frequency dispersion which are indicated by (h/t) 2 would 

increase while the effects of nonlinearity indicated by Tl /h would 
0 

decrease. Thus a linear theory which incorporates a variable water 

depth might be useful to propagate the wave over the continental slope; 

however, at some point past the continental slope (if not before), the 

nonlinearities would become of equal importance as the linearities 

and a theory such as that given by the K.dV equation would be necessary 

to adequately model the wave behavior. (Recall that the K.dV equation 

used in this study is only applicable for wave propagation in a fluid 

domain of uniform depth.) 

Regardless of the actual time-displacement history of the bed 

uplift in the Alaskan earthquake, the results of Section 5. 3 indicate that 

the leading wave reaching positions outside the generation region would 

resemble the wave generated by the mean motion only. Any high fre-

quency waves generated by high frequency oscillations of the moving bed 

would be left behind during propagation by the longer lead wave. 

If the Alaskan earthquake is indeed typical of a major tsunami-

genie earthquake, the general characteristics of the tsunami generated 

by this earthquake, which have been described above, would appear to 

be applicable to most tsunamis. The major limitation of the two-dimen-

sional model of tsunami generation presented in this study appears to 

result from the assumption of uniform depth in the downstream region 

of propagation. Tsunamigenic earthquakes in the Pacific Ocean usually 

occur in the shallow water along the Continental Shelf; hence a proper 
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description of wave propagation must consider the large changes in 

depth which occur across the continental slope. The two-dimension­

ality of the model appears to be sufficient in determining local wave 

behavior; however, for wave propagation over large distances from the 

source region, a three-dimensional model should be used. 
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CHAPTER 6 

CONCLUSIONS 

The major objective of the present study has been to investigate, 

both theoretically and experimentally, the generation of tsunamis 

initiated by a simple family of bed deformations in a fluid domain with 

a uniform depth. Both a two and three-dimensional model of gener-

ation have been investigated theoretically; experiments have been 

conducted to check the validity of the two-dimensional model. The 

study of the wave behavior was presented by dividing the fluid domain 

into two regions: a generation region above the moving bed section 

and a downstream region in which the bed remained in its initial 

position for all time. Wave behavior in the downstream region has 

also been investigated using a theory which considers in an approxi-

mate manner both linear and nonlinear effects which affect the wave 

during propagation. 

The following major conclusions can be drawn from this study 

for the region of generation: 

1. Three nondimensional parameters of the bed deformation 

are important in defining the characteristics of the waves 

which are generated: C /h, which represents an ampli­
o 

tude scale of the disturbance, b/h, which represents a 

size scale of the disturbance, and the time-size ratio, 
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t Jghlb, which incorporates a time-scale, t Jglh, of 
c c 

the disturbance. 

2. The time- size ratio is useful in defining three general 

types of bed deformations for both the two and three-

dimensional models: an impulsive bed deformation 

(for t Jghlb very small) where the maximum amplitude 
c 

ratio, ri IC , of the leading wave becomes constant 
0 0 

(independent of the time-size ratio), a creeping bed move-

rnent (for t Jghlb very large) where ri IC becomes 
c 0 0 

inversely proportional to the time-size ratio, and an 

intermediate or transition region of generation for time -

size ratios between the impulsive and creeping range. 

3. The linear theory, which was developed for the two-dim.en-

sional model, adequately predicts the wave structure in 

the generation region (including the maximum amplitude 

and certain temporal variations such as the rise, fall, 

and nodal times of the leading wave) for impulsive or 

transition bed movements whenever the absolute value of 

the amplitude scale of the disturbance is less than 0. 2, 

i.e., for IC lh l < 0. 2; the linear theory accurately 
0 

predicts the wave structure for creeping bed movements 

over the full range of amplitude scales, i.e., l c lh I ~ 1; 
0 

4. The general shape of the lead wave propagating across 

the boundary between the generation and downstream 
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region for an impulsive bed movement does not depend 

significantly on the actual time-displacement history of 

the bed; in the creeping region of generation the wave 

profiles are strongly dependent on the actual time history 

of the bed movement. 

5. The detailed structure of the waves generated by an im­

pulsive bed movement for the two and three-dimensional 

models of generation differ in one main respect; large 

amplitude negative waves can result from a positive bed 

movement in the three-dimensional model (and vice 

versa) whereas no large negative waves result from a 

positive bed movement in the two-dimensional model (or 

vice versa) for comparable generation parameters. 

The following major conclusions can be drawn from the results 

determined for the downstream region of the two-dimensional model: 

6. The Ursell Number as defined by Eq. (3. 72) provides an 

excellent indicator for tracing the evolution of a long wave 

during propagation; when the maximum Ursell Number of 

a complex wave profile is less than unity then the linear 

theory provides an adequate description of wave behavior; 

when the Ursell Number becomes of order unity then the 

linear theory is no longer applicable; positive Ursell 

Numbers tend toward a value of unity during propagation 

and remain of this order during further propagation; 
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negative Ursell Numbers grow indefinitely in absolute 

magnitude during propagation. 

7. The Korteweg and de Vries equation (Eq. (3. 80)) provides 

an adequate description of wave behavior {in the absence 

of viscous forces) once the Ursell Number has become 

of order unity; hence, wave profiles in the region of pro­

pagation where the linear theory is no longer valid may 

be determined by using a wave profile computed by the 

linear theory in its region of validity as the initial condi­

tion for the KdV equation and solving this equation for the 

wave profile at any downstream position. 

8. Asymptotic numerical solutions of the KdV equation 

suggest that any initial wave with a net positive volume 

eventually results in a train of permanent-form solitary 

waves (or solitons) with decreasing amplitude toward the 

rear of the train followed by a tail of oscillatory waves; 

initial waves whose net volume is negative do not result 

in any waves of permanent form. 

9. In the downstream region the same leading wave profile 

results for impulsive bed movements whose mean motions 

are similar regardless of the actual time -displacement 

history of the movement; this leading wave is apparently 

generated by only the mean motion of the bed displace­

ment. 
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The Alaskan earthquake of 2 7 March 1964 was examined in 

detail in order to apply the results and determine the limitations of the 

generation models investigated in this study. The following major 

conclusions can be drawn from the examination of the Alaskan earth­

quake: 

10. . The probable generation parameters of the Alaskan 

tsunami indicate that a linear theory is applicable for 

determining the initial wave behavior and that the bed 

movement of this earthquake was impulsive so that a 

detailed knowledge of the actual time-displacement 

history of the movement probably is not required to 

predict certain features of the wave propagating from the 

generation region. 

11. A two-dimensional model of wave generation is applicable 

for describing local wave behavior since the source 

region of the Alaskan tsunami was elongated with a length 

of approximately three times the average width. 

12. The major limitations found in applying the results of the 

models investigated in this study to the Alaskan tsunami 

are caused by the assumptions of a uniform bed displace­

ment and a uniform water depth in the downstream region; 

in order to determine more detailed structure of the wave 

propagating from the region of uplift, the variable uplift 

must be considered; the large changes in water depth 
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which occur at the continental slope must be considered 

to adequately model the wave behavior during propagation. 

If the Alaskan earthquake is typical of large tsunamigenic 

earthquakes, then conclusions (10) to (12) may be applied to tsunamis 

in general. 
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The Airy function. 

Arbitrary limits of integration. 

Width of wave tank. 

Half-width of the bed deformation. 

Denotes characteristics in the solution of the dam­
break problem. 

Denotes the fluid domain. 

The base of the Naperian logarithm. 

Acceleration of gravity. 

The Heavyside step function. 

The uniform water depth. 

Denotes the integrand of an integral. 

Bessel functions of the first kind and of order zero 
and one, respectively. 

The number of fundamental dimensions. 

Parameter of the Fourier transform. 

A characteristic length scale of a wave during 
propagation. 

The total number of time steps used in the finite­
difference solution of the KdV equation. 

An integer. 

The total number of spatial nodes used in the 
finite -difference solution of the KdV equation. 

Indicates order of magnitude. 

Pressure in the fluid domain. 
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Arbitrary parameter of an integral transform of a 
function. 

Independent variables. 

The velocity vector. 

Coordinate axis in the radial direction of the three­
dimensional model. 

Radius of bed deformation in three-dimensional model. 

The solid boundary of the fluid domain. 

The free surface of the fluid domain. 

Parameter of the Laplace transform. 

The total time of a bed deformation. 

Time. 

A characteristic time of a bed deformation. 

The fall time of the lead wave. 

The node to node time of the lead wave. 

A specified time after wave generation. 

The rise time of the lead wave. 

Time measured from midpoint of half-sine bed 
movement. 

Nondimensional length of time steps used in finite­
difference solution of the KdV equation. 

The Ursell Number. 

The Ursell Number in the front region of the lead 
wave. 

The Ursell Number in the rear region of the leq.d 
wave. 

Horizontal component of the water particle velocity. 
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Horizontal water particle velocities under the bore 
generated in the dam- break problem. 

The bore velocity in the dam-break problem. 

Vertical component of velocity of a water particle. 

Horizontal position of the centroid of a wave profile . 

Coordinate axis in the horizontal direction of the two­
dimensional model. 

Nondimensional spatial steps used in finite-differe nce 
solution of KdV equation. 

Coordinate axis in the vertical direction of the two­
dimensional model. 

Coordinate axis in the vertical direction of the three­
dimensional model. 

The time constant of the exponential bed movement. 

Nondimensional length of the linear near -field. 

A real number denoting the imaginary axis location 
of the Bromwich contour. 

Denotes f':>.x = lit. 

Index notation of spatial nodes used in the finite­
difference solution of the KdV equation. 

A small parameter. 

The bed displacement from its initial position. 

The total bed displacement. 

Amplitude of the dither superposed on the mean 
motion of the bed dis placement. 

Total bed displacement at a nonzero forcing frequency. 
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Total bed displacement at a forcing frequency of zero. 

Bed displacement measured from midpoint of half­
sine bed movement. 

Denotes the exponential bed displacement. 

Denotes the half-sine bed displacement. 

Displacement of the water surface from its initial 
pos i tion. 

Maximum wave amplitude. 

The maximum amplitude of a solitary wave before 
propagation. 

Angular coordinate direction in the three-dimensional 
model. 

Angle of expansion fan in the dam-break problem. 

rr /T. 

A characteristic length scale of the deformed water 
surface during generation. 

Nondimensional integration variable, kh. 

A positive number denoting the real location of the 
Bromwich contour. 

The kinematic viscosity of the fluid. 

Index notation of the temporal step used in the finite­
difference solution of the KdV equation. 

3. 14159 ••. 

The fluid density. 

Period of the dither superposed on the mean motion 
of the bed displacement. 

The velocity potential. 
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A characteristic vertical length scale of the water 
surface movement during generation. 

The nondimensional time interval after wave gener­
ation in which the Ursell Number remains less than 
unity. 

gk tanh kh. 

Characteristic length of a stress distribution applied 
to an elastic solid. 

Denotes absolute value. 

Denotes maximum value. 

Gradient operator. 

Laplacian opera tor. 

Divergence of a vector. 

Denotes differentiation with respect to the subscripted 
variable. 

Sometimes used to denote dimensional quantity. 

(Overscore) denotes Fourier transform. 

(Overscore) denotes Laplace transform. 

(Overscore) denotes Hankel transform. 

Denotes Laplace inversion integral around Bromwich 
contour. 

Additional Symbols Referred to in Chapter 2: Literature Survey 

K,R,L,M Arbitrary constants appearing in the assumed velocity 
of the bed deformation (Syono, 1936). 

The volume of the bed deformation (Takahasi, 1942). 
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Arbitrary constant in temporal variation of the 
velocity of the bed deformation (Ichiye, 1960). 

Arbitrary constants appearing in the assumed 
velocity of the bed deformation (Honda and 
Nakamura, 1951). 

Arbitrary constants appearing in the assumed 
velocity of the bed deformation (Nakamura, 19 53 ). 

A parameter for indicating the decay rate of the 
leading wave of a tsunami (Kajiura, 1963 ). 

Arbitrary constants appearing in the assumed 
velocity of the bed deformation (Carrier, 1965). 

Characteristic size of the bed deformation (Tuck 
and Hwang, 1972 ). 

The slope of the bed (Tuck and Hwang, 1972 ). 


