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Abstract

This thesis presents a comprehensive investigation of noise and thermodynamics in electronic circuits
and systems. This study of “statistical electronics” spans two disciplines, statistical thermodynam-
ics and electronic circuit engineering, and leads to a gencral picture that bridges electronics and
statistical thermodynamics.

QOur work on statistical electronics has both scientific and engineering implications. Scientifically,
this work is an extensive study of statistical thermodynamics in the context of electrical circuits,
which has made several significant contributions to the understanding of noise processes in electrical
circuits. The technological importance is a demonstration of how the fundamental physical consid-
crations evolve to practical high-performance novel circuit design. The power of our fundamental
approdch is demonstrated through several practical circuit examples.

First, our investigation of fluctuations in nonlinear electrical circuits provides deep insight into
the nonlinear fluctuation phenomena. Especially, the study of fluctuations in nonlinear active devices
constitutes an important sector in this investigation, verifying the physical soundness of the contem-
porary active device noisc modeling and leading to clear understanding of fluctnation-dissipation
relations in nonlinear devices.

Second, we apply statistical clectronics to noise problems involved in frequency conversion, an
essential function in modern RF and microwave receivers. This study leads to two novel observations
of noise figure degradation duc to cyclostationary noise and conversion gain enhancement, both
dependent on the size of cnergy storing elements. This novel behavior is experimentally veritied
with a direct measurement of integrated switching mixers. The results provide new insight into
cyclostationary noise processes in frequency conversion and optimum deisgn for switching mixers.

Third, application of statistical electronics to noise in frequency generation by self-sustained os-
cillators leads to a new theory of oscillator noise. This study demonstrates the direct correspondence
between the phase noise and the Einstein relation, revealing the underlying physics of oscillator noisc.
Our approach clarifics the fluctuation-dissipation relation in oscillator noise generation, establishing
a link betwecn currently available fluctuation-based and dissipation-based phasc noise models and
leading to a clear definition of loaded quality factor of an oscillator. The novel concepts of virtual
damping and linewidth compression put resonators and oscillators in a unified framework, providing
immediate design optimization insight. The power of this theoretical development is demonstrated
through experimental measurements of various integrated oscillators.

Our work on statistical electronics combining circuit engineering and physical science has also
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resulted in other useful engincering methods, such as graphical optimization, noise simulations for

computer-aided design (CAD), and time-varying filter theory.
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Chapter 1 Introduction

1.1 Motivation

Radio engineers were among the early investigators of noise. “Noise” derived its name from the hiss
constantly heard from radio speakers. Efforts to explain the physical origin of noise soon revealed
that the seemingly chaotic phenomenon is actually governed by fundamental physical laws and is
predictable on statistical bases. The classic paper by Nyquist calculated the thermal noise gencrated
by a resistor using an elegant thermodynamic argument [1]. Noise quickly became one of the central
topics in RF and microwave engincering and since then the importance has only increased.

Especially during the last decades, we have witnessed an enormous growth in interest in noise anc
emphasis on low-noise design in different disciplines of science and crgineering. Higher sensitivity
detectors are neceded to probe the physical world more and more accurately. An extreme exarn-
ple is the Laser Interferometer Gravitational- Wave Observatory (LIGO) 2] to detect astrophysical
gravitational waves. Direct detection of gravitational waves requires an unprecedented sensitivity to
measurc sib-atomic scale dimension change using 4-kilometer giant interferometers and hernce noise
plays a key role in successful operation of the observatory [3]. Other state-of-the-art signal detec-
tors ranging from radio astronomy telescopes to microwave/optical spectrometers to RE/microwave
measurcment systems unavoidably suffer from various noise issues. In commrunications engineering,
recent emphasis on low-noise design reflects the fast development of wireless technology and the
phenomenal growth of the wireless communication market. According to Shannon’s theorem [4], the
demand for higher information capacity in communication systems makes noise one of the critical
design bottlenccks.

Modern RF and microwave receivers implement three key functions: amplification, frequency
conversion, and frequency synthesis. While noise processes involved in amplifiers are well understood
duc to the lincar time-invariant (LTI) nature of the circuits, noise processes in frequency conversion
and frequency synthesis are quite complicated because they involve nonlinear time-varying circuits
such as mixers and oscillators. These circuits exhibit strong nonlinearity, rich dynamics, and time-
variance, which jointly entangle the noise evolution. For this reason, noise problems in mixers and
oscillators remain an active field of rescarch.

The mainstream rescarch efforts to cope with the noise problems in oscillators and mixers in
contemporary receiver design lies in construction of a more comprehensive, and unavoidably more

complex, noise models for oscillators and mixers, by absorbing more of the second-order details. This
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direction of study undoubtedly has helped scientists and cengineers understand the noise processes
better and predict noise more accurately, Construction of such inclusive noise models is of special
importance in implementing noise simulation tools for computer-aided design (CAD).

However, such contemporary noise modeling efforts arc phenomenology-based and lack physical
understanding. Most of the currently available noise models do not reflect the intimate link between
noise and statistical thermodynamics. This tends to block insight into the design optimization of a
mixer or oscillator, especially when the noise models contain many cross-related design parameters.
A Dbig-picture physical behavior of noise is hard to see in complex noise formulae without a firm
grasp of the underlying physics of the noisc process and designers often have to resort to local
optimizations with minor details or brute-force design methods relying on computer-aided design
(CAD) tools. This lack of a global picture of the noise behavior nos rarely leads to misconceived
design guidelines.

This thesis is an outgrowth of the attempt to solve noise problems in oscillators and mixers based
on fundamental physics while an ultimate research goal is to benefis practical low-noise desigr. ‘The
distinguishing feature of our approach is to place a strong emphasis on statistical therrmodynamics
governing noise processes in the time-varying systems, and hence our approach deviates from the
conventional design practice. The power of this more fundamental approach is demonstrated ex-
perimentally, confirming the practical advantages of emphasizing fundamental physics in low-noise
design. In this thesis, a special attention is paid to electrical operation of oscillators and mixers, and
our theoretical framework is demonstrated through integrated circuits. Howcever, our treatment of
noisc processes in the time-varying systems is general and the concepts and methods developed in
our work can be applied to various different types of operations and implementations of time-varying
systems, e.g., lasers (optical oscillators).

The study has significant scientific and technological implications. Scientifically, our work is an
extensive study of statistical thermodynamics which has led to deeper understanding of thermal
fluctuations in electronic circuits. This study is an important demonstration of how fundamental
physical considerations can cvolve to practical low-noise circuit design. The circuit engineering
combined with physical concepts has also resulted in useflul engineering methods, such as graphical
optimization, noise simulations for CAD, and time-varying filter theory.

This thesis presents the [oundation of “statisiical electronics” with emphasis on fluctuations and
thermodynamics in nonlinear electrical circnits (Chapter 4), noise in mixers {Chapter 5), and noise

in oscillators (Chapfer 6).



1.2 Organization

In Chapter 2, we review the basic issues in modern radio-frequency (RF) signal detection with spe-

_cial attention to the negative cffects of noisc on the signal detection performance, using a generic
RF signal detector. We will introduce two major performance measures of high-frequency signal
detection, that is,"dynamic range and sclectivity, and discuss how the signal-path noise and the
frequency-reference noise present in the RE signal detector affect these two figures of merit. Difficul-
ties in dealing with noise processes in [requency downconversion and reference-frequency generation
for RT" signal detection are discussed.

Chapter 3 is tﬁtorial on thermal fluctuation theory. This material is often lacking from the
standard clectrical engineering curriculum. The physics and mathematics from this chapter is fre-
quently used in later chapters. Using Brownian motion and thermal noise in resistors as examples,
we will discuss key physical concepts of thermal fluctuations, such as equipartition theorem, Iiin-
stein relation, and fluctuation-dissipation theorem. This chapter also introduces the mathematical
foundations for analyzing such fluctuation phenomena, i.e., the mathematical theory of random
processes. We will present two powerful mathematical tools for the analysis of random processes:
Langevin equation and Fokker-Planck cquation. The solution of the Langevin equation will be used
to describe the evolution of the statistical averages such as mean, variance, etc., of a fluctuating
quantity. The solution of the Fokker-Planck equation will be used to describe the time evolution of
the probability distribution of a fluctuating quantity. The mathematics used in this chapter is not
complicated and the prerequisites arc basic probability theory and elementary calculus.

Chapter 4 presents one of the main results of this thesis, i.e., fluctuations and thermodynamics
in nonlinear clectrical systems. First, we investigate thermmal fluctuations in eclectrical circuits in-
volving nonlinear resistors such as active devices. We clarify so-far-confusing issues in this subject,
verifying physical soundness of the contemporary noise models for nonlinear resistors and leading to
a palpable understanding of nonlinear fluctuation-dissipation balance in a practical circuits context.
This investigation is facilitated through a close examination of the energetics in the nonlinear elec-
trical systems. Additionally, our study will illuminate how the nonlinear resistors change the energy
cquipartition property in electrical circuits. Second, we investigate how nonlinear energy storing
elements such as nonlinear capacitors modify the energy equipartition property.

In Chapter 5, we present another primary result of this work, that is, noise in time-varying
driven circuits (mixers). By utilizing the concepts and methods in thermal fluctuation theory intro-
duced in Chapter 3, we lead to a new observation of a noise phenomenon involved in the {requency
downconversion: noise figure degradation duc to cyclostationary noisc, dependent on the size of
cnergy storing elements. Additionally, this chapter establishes a time-varying filter theory, leading

to another new observation in the [requency donwconversion: conversion gain enhancement with
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an increasing size of energy storing elements. These novel behaviors are experimentally verilied
through a direct measurement of intcgrated switching mixers. The results provide new insights into
cyclostationary noise processes in the frequency downconversion and the optimum design of mixers.

Chapter 6 presents one of the most important contributions of our work on sta‘r:isti(:al electronics:
noisc in time-varying autonomous circuits (self-sustained oscillators). The fundamental investigation
of fluctuation phenomena in oscillators in this chapter exemplifies the power of statistical clectronics,
leading to a new theory of oscillator phase noise. Demonstration of a direct correspondence between
the oscillator phase noise and Einstein relation reveals the underlying physics of oscillator noise, fill-
ing in the gap between the fundamental physics of noisc and the existing phase noisc theories. Novel
concepts of virtual damping and linewidth compression allow us to view oscillators and resonators
in a unified framework, leading to a general oscillator design optimization strategy. Additionally, we

develop an intuitive graphical method to execute the oscillator design optimization strategy.
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Chapter 2 RF Signal Detection Issues

In this chapter, wé review the primary issues in radio-frequency (RF) signal detection with special
emphasis on the negative effects of noise on the signal detection performance, using a generic RF
signal receiver shown in Figure 2.1. Typical examples of RF receivers widely used in engineering
and science are communication radio receivers, astronomical radio telescopes, and RT/microwave
measurement systems such as spectrum analyzers, to name a few. For a more comprehensive review

of RT" detectors, readers are referred to [5] - [10].

2.1 A Generic RF Signal Detector

Amplification, frequency donwconversion and reference-frequency generation are three essential func-
tions utilized in almost any modern RF signal detectors. These functions are used to amplify the RE
signal and translate it to a lower intermediate frequency (IF). The three functions are all executed
in the front-end of the RF receiver, which is located inside the box in Fig. 2.1. In this RF {ront-end,
the amplification is performed by the low-noise amplifier (LNA), while the mixer and local oscillator
are used for frequency conversion and frequency generation.

The mixer is essentially an analog multiplier which multiplies the amplified RF signal at the
output of the LNA| a(t) cosiwrpt+¢(t)], by the reference signal generated from the LO, vg cos{wrot).
Here, a(t) and ¢(f) correspond to amplitude and angle modulations, respectively, which contain low-
bandwidth information. Also, wro and wrr are the LO and RF frequencics. The multiplication of
the LO and RT signals results in a Jow-frequency component at jwyo — wgr| and a high-frequency

component at wpo + wrr. The low-frequency component corresponds to the downconverted IF

RF Front-End Optional

Antenna ———
[~ - - — | 7 ~

AN
Mixer\
\

DSP

“ Figure 2.1: A generic RF signal receiver.
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Figure 2.2: Frequency downconversion using a mixer and a local oscillator.

signal with the IF frequency of wir = |wrr —wro|, while the higher-frequency component is filtered
out at the mixer output. The frequency-domain view of this frequency downconversion is illustrated
in Fig. 2.2. I the RT and LO frequencics are equal, we call the recciving scheme homodyning, wherc
the II* frequency is zcero. In the homodyning, the second frequency downconversion block shown
inside the circle in Fig. 2.1 is not needed. On the other hand, if the RF and LO frequencies are
different, the receiving scheme is called heterodyning, in which the sccond frequency downconversion
block can be opted for depending upon the design issues.

Signal handling in the RF front-end is one of the most challenging signal processing steps in the
whole recciver. This difficulty is mainly due to high frequency and weak signal in the front-end,
which jointly present stringent design constraints. For instance, noise in the front-end circuits affects
the receiver performance much more severely than noise in the rest of the receiver due to the weak
signal in the front-end, as will be more fully discussed shortly.

The dynamic ronge and selectivity is a traditional measure of the RF receiver performance. As
shown on the left-hand side of Fig. 2.3, the dynamic range is defined as the difference between
the minimum and the maximum signal levels that can be detected without considerable loss of
information. On the other hand, the seleclivity pertains to the receiver’s capability to select a
desired signal while rejecting unwanted interferers from the neighboring channels (right-hand side
of Fig. 2.3).

The dynamic range and the selectivity are alfected by many different design parameters as shown
in the diagram in the middle of Fig. 2.3 [8]. For instance, gain and linearity of the recciver arc two
major design parameters that determine the maximum detectable signal level of the dynamic range.
If the incoming RF signal is large cnough to drive the receiver into a nonlinear regime after signal
amplification, the information carried by the signal will be distorted, increasing the bit-error-rate

(BER). Hence gain and linearity of the receiver determine the upper bound of the dynamic range.
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Figure 2.3: Performance measure in RF signal detection - dynamic range and selectivity.
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Figure 2.4: Tmage and wanted signals.

The seleciivity of the recciver is affected by linearity, gain, image/blocker rejection ratios, fre-
quency reference noise, et(:‘. (Fig. 2.3) (8]. For cxample, the nonlinearity of the receiver often
generates spurious in-band signals by intermodulating out-of-band signals and hence degrades the
selectivity of the receiver. For another example, let us consider the image rejection problem 8. In
heterodyning, the bands symmetrically located above and below the LO frequency are downcon-
verted to the same IF frequency. Hence, as shown in Fig. 2.4, if an unwanted signal accidentally
happens to mirror the desired RF signal about the LO frequency, the unwanted signal will be down-
converted to the same IF band, scriously affecting the selectivity perforinance of the receiver. This
unwanted signal is called the image signal. There arc several recciver architecturcs to suppress the
image effect [8], [11], [12], but the problem of image rejection still presents difficult chalienges to RF
designers.

Although the effects of the various design parameters on the RE signal detection deserve more

discussion, we direct rcaders to [5] - [9] for the subject and in the following section, we will primarily
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focus on noise and its effects on the RIF signal detection.

2.2 Noise in RF Detection

The fundamental importance of noisc in RF signal detection can be well appreciated with the help

of Shannon’s theorem [4]:

v
C’=B-log2(1+é;) (2.1)
N
which relates the capacity, C, of a given communication channel with bandwidth, £, signal intensity,
S, and noise power, N. As can be seen, for given bandwidth and signal intensity, a smaller noise
power will result in a larger information capacity, hence leading to a better receiver performance.
Furthermore, Shannon’s theorem suggests that the noisc in the RF recciver is a key performance
parameter not only in the stand-alone receiver but also in the whole RF communication system.
For instance, as a parameter in a communication link budget, a lower receiver noise allows smaller
antennas or lower transmitter power for the same system performance. In the context of the modern
wireless cellular communication enginecring, reduction of the noise in the wircless RE receivers can
lead to more sparse distribution of the base-stations, hence cutting down the construction cost for
the cellular network infrastructure.

In more concrete terms, there are two types of noise in the RF receiver, that is, signal-path noise
and frequency-reference noise. As shown in the diagram in the middle of Fig. 2.3, the signal-path
noise affects the dynamic range of the RF receiver while the frequency-reference noise degrades the
seleclivity of the receiver. In the following two subsections, we will elaborate on the harmful eflects

of noise on the receiver performance,

2.2.1 Signal-Path Noise

In the dynamic range, while the maximum detectable signal level is determined by the linearity and
the gain of the receiver as mentioned earlier, the minimum detectable signal level is set by the signal-
path noise, i.e., the amount of noise that is added when a signal goes through the receiver chain in
TFig. 2.1. This lower limit of the dynamic range is often called the sensitivity. Conventionally, the
signal-path noise in the receiver is quantified using a figure of merit called noise figure (NF). The
noise figure of any two-port system is defined as the ratio of the signal-to-noise ratio (SNR) at the

input to the SNR at the output and hence represents a quantitative measure of the SNR degradation
(8], [13]:
SNRin

NF = —%
SNRout

(2.2)

In a systerm where multiple functional blocks are cascaded as schematically shown in Fig. 2.5, the

overall noise figure N Fyopq; of the cascaded system can be expressed in terms of gain and noise figure
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G 1 G 2 G 3 Gn
NF, NF; NF; NF,

Figure 2.5: A cascaded system.

of each building block using the Friis equation [13]. Let us assume that the i-th block {1 <4 < n)
has an available power gain of G; and a noise figure of N F. For the sake of brevity, we assumc that
all input impedances, output impedances and source impedance are the same, with respect to whick
all the noise figures, NFy, NFy, ..., NF, and NFq, are calculated. Then the Friis equation for

the overall noise figure N Fiypiq; can be written as follows [13}:

NF—1 NF;—1 NI —1
NFypta1 = NFy + + O o (2.8
total 1 Gl GGy + G1G2 SRR C ) \ )

Therefore, if the gain of the first stage, G1, is sufficiently large and the gains of the subsequent stages
(Ga, Ga, ..., Gn) arc not too small, the noise figure of the first stage dominates in the overall noise
figure while the noise figures of the subsequent blocks are suppressed progressively by the gain of
second to n-th stage. This is intuitively understandable since once the first-stage amplifies a weak
signal, the following stages only have to deal with fairly large signals which are more immune to
the noise present in the stages. Accordingly, in the gencric RF recciver of Fig. 2.1, the overall
noise figure of the receiver is dominated by the noise figure of the front-end as far as the gain of the
front-end is sufficiently large. Therefore, it is important to firmly understand and effectively predict

noise of the RF front-end to be able to design low-noisc receivers.

2.2.2 Frequency-Reference Noise

In the previous subsection, we discussed signal-path noise characterized by noise figure and its effect
on the lower limit of the dynamic range (scnsitivity) of RF receivers. Now we will discuss how
frequency-reference noise affects the performance of the RE receivers.

As mentioned earlier, reference-frequency generation by local oscillators is an essential function
in any modern RF recciver. Due to the noise present in the oscillator, the power spectrum of the
oscillator output signal has linewidth broadening around the oscillation frequency as shown on the
left of Fig. 2.6(c). This linewidth broadening is normally referred to as phase noise and a cuantitative
definition of phase noise will be presented in Chapter 6. This phase noise is synonymous with the
frequency-reference noise.

The phase noise of local oscillators degrades the selectivity in the RF signal detection, as indicated
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by the diagram in the middle of Fig. 2.3. To appreciate this effect in the context of modern wireless
communication engineering, let us consider a fcasible situation where a desired RF signal is already
significantly attenuated al a mobile unit after traveling {rom a distant base-station while a nearby
base-station is transmitting a strong interferer signal through the neighboring chlanncl as shown in
Fig. 2.6(a). If a local oscillator in use were noiseless and hence had a delta-function-like ontput
spectrum in the frequency domain as shown in Fig. 2.6(b), the strong undesired signal would not
interfere with the weak desired signal after the frequency downconversion as shown in the same figure,
Unfortunately, this is not a realistic case as any oscillators have phase noise or linewidth broadening
in their output power spectrum. The left-hand side of Fig. 2.6(c) depicts the oulput power spectrim
of a noisy oscillator along with the desired yel weak RF signal in the presence of the strong, unwanted
interferer signal in a neighboring channcl. In this realistic case, after the frequency downconversion,
the “phase noise skirts” of the unwanted TF signal interfere with the desired IT signal to a significant
degree as shown on the right-hand side of Fig. 2.6(c), hence downgrading the receiver selectivity.
The local oscillator noise is an important parameter not only in cvaluating the performance of a
stand-alone receiver but also in assessing the capacity of the whole wireless communicaiion system.
In the context of cellular communication engineering, for instance, a lower phase noise simply allows
a larger number of channels and hence more cell phone users in a given cell at a given time.
Summarizing, the signal-path noise guantified by noise figure degencrates the sensitivity and
the local oscillator noise characterized by the phase noise degrades the selectivity in the RF signal
detectionn. We have noted that noise in the RT front-end shown in Fig. 2.1 is especially critical in

improving the noise performance of the whole receiver.

2.2.3 Noise in Time-Varying Systems

As mentioned previously, the RF front-end executes three key functions for RF signal detection,
i.e., amplification, frequency downconversion, and frequency generation. The noise process in am-
plification by the LNA is a very well understood topic duc to the linear time-invariant (LTI) nature
of the amplifier [14] - {177, In contrast, noise processes in local oscillators and mixers are a difficult
challenge for circuit designers and theorists. This difficulty in dealing with noise in mixers and
oscillators mainly arises from their time-variance, nonlinearity, and resultant rich dynamics, which
all together complicate the noise processes.

There has been considerable rescarch endeavors to address the noise issues in oscillators and
mixers in many different disciplines of scicnce and engineering. These rescarch efforts have largely
focused on accurate noisc modeling of the time-varying circuits, by taking more of the sccond-order
cffects and minor details into account. These studies undoubtedly have helped circuit designers
predict noise in oscillators and mixers more accurately. However, most of the studies assume phe-

nomenological and/or mathematical standpoints, but with little atsention to the fundamental phys-
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Figure 2.6: Adverse effects of frequency-reference noise on the selectivity of radio receivers (a) A situation where
a desired signal comes from a distant base-station and an unwanted signal comes from a nearby base-station. (b)
Frequency downconversion with a noiseless local oscillator. (c) Frequency downconversion with a noisy local oscillator.
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ical aspects of theynoise processes. Since noise is a physical process intimately linked with statistical
thermodynamics, a t‘horough' intuitive understanding of the physical processcs can greatly facilitate
design optimization of the circuits, providing insights into a global physical behavior of noise in
the complex RF design environment. "Often, the complicated noise models with little comprehen-
sion of the underlying physics merely block designers’ insight into design optimization, leading to
design misconceptions. Working with noise models lacking a physical basis, many designers often
have to resort to partial optimization with minor details or brute-force simulations solely relying on
computer-aided design (CAD) tools.

Two important themes of this thesis are noise in mixers and oscillators, which are presented
in Chapters 5 z;nd 6, respectively. The distinguishing feature of our approach from conventional
low-noise desi"gn practice is to place a strong emphasis on statistical thermodynamics governing
noise processes in the time-varying systems. The fundamental physical considerations evolve lo
insightful and practical design theorics, whose power is demonstrated in the implementation of
various integrated circuits.

Before diving into the topic of noise in oscillators and mixers, we will first review basic physical
concepls and mathematical methods to understand and describe thermal fluctuations in physical
systems in the following chapter. In Chapter 4, we will present one of the main results of this work
besides noise in oscillators and mixers, ¢.e., fluctuations and thermodynamics in nonlinear electrical

circuits.
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Chapter 3 Thermal Fluctuation Fundamentals

In this chapter, we review central concepts and methods in the theory of thermal fluctuation. The
physical cxamples used in this chapter are Brownian motion and its analoguc in the electrical circuits.
Even though we will singly chus on fluctuations in electrical circuits in the main body of this thesis,
the Brownian motion is presented in this chapter since it brings clear physical insights into the
fluctuation phenomena appealing to our cveryday experiences and provides an excellent analogy with
the fluctuations in electrical circuits. Additionally, the theory of thermal fluctuation was initially
developed to explain Brownian motion, and hence the review of the Brownian motion will put the
thermal fluctuation theory in historical perspective. The concepts and methods introduced in this
chapter will be essential in understanding the rest of this thesis, frequently appearing throughout
this thesis and playing a crucial role in our development of statistical electronics. While more
comprehensive reviews on the Brownian motion can be found in classic literature, such as [18] - [25),

this chapter serves as a sufficient review for understanding the rest of this thesis.

3.1 Brownian Motion

The theory of thermal fluctuation originally grew out of cfforts to explain Brownian motion. This
incessant, random movement of pollen particles suspended in liquid was first discovered in 1827 by a
British botanist Robert Brown. As a botanist, Robert Brown was inclined to explain the observation
by endowing the pollen grains with a vital force. Later, this biologically inspired idea was dispelled
by Brown himself, who observed that tiny particles of inorganic substances were also subjected to
the same erratic motion. As a consequence, theory of Brownian motion drifted from biology to
physics where the first major theoretical foundation on the dynamic phenomenon was layed at the
“turn of the 20th century by Einstcin and Smoluchowski in their seminal articles [26], [27], [28]".
The theoretical breakthrough by Einstein and Smoluchowski was further advanced by another set of
pioncering studies on Brownian motion by Langevin [29], Fokker [30], and Planck [31}, who provided
further deep physical insights and powerful mathematical tools. Since the major advances in theory
of Brownian motion in the early 20th century, Brownian motion has been at the heart of the ficld of
stochastic processes and thermal fluctuations. The field has flourished, producing a huge repository
of methods to study a wide range of dynamic systems subject to the influence of noise [18] - [25].
This section serves as an introduction to this theory of thermal fluctuation, where the analysis

vehicle is an archetypical case of one-dimensional Brownian motion shown in Fig. 3.1. In this figure,

1 The article in [27] is an English translation of the original [26].



Figure 3.1: An archetypical model of Brownian motion.

the Brownian particle of mass m suspended in a fluid experiences two types of forces both originating
from the same surrounding fluid: a frictional force Fy that dissipates the kinetic energy of the particle
via interaction with the thermal bath kept at absolute temperature 7" and a random force (?) that
pushes the particle in an erratic fashion. For a small enough velocity of the Brownian particle, v,
the frictional force Fy can be expressed as Fy = —myv, where v is a friction constant. As will
be discussed later in this chapter, the fact that the frictional force and the random force originate
from the same source will lead to an intimate relationship between fluctuation and dissipation.
Fluctuating quantities that are of interest to us in the Brownian motion are the velocity, v(t), and
the displacement, z(t), of the Brownian particle.

There are two general methods of calculating the time-evolution of fluctuations in velocity and
displacement in the Brownian motion. The first method, based on the so-called Fokker-Planck
equation, focuses on time-evolution of the probability distributions® of the fluctuating quantities.
The second method, based on the so-called Langevin equation, focuses on time-evolution of the
statistical averages (mean, variance, autocorrelation, etc.) of the fluctuating quantities. We will
discuss these two methods separately in Subsections 3.1.2 and 3.1.4 along with relevant key concepts
in Brownian motion. Subsection 3.1.3 will discuss one of the most important concepts in Brownian
motion, the fluctuation-dissipation theorem. However, before directly jumping into the theory of
thermal fluctuation, we will first discuss the equilibrium property of the Brownian system in the

following subsection.

3.1.1 Equilibrium Property

No matter what the initial condition is, the Brownian system of Fig. 3.1 will eventually reach
thermal equilibrium after a sufficiently long time if there is no external pumping of energy into the

system. The probability distribution of the energy E of the (classical) Brownian particle in thermal

2or, probability densities. We will use these two names interchangeably in this thesis.
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equilibrium is given by the Boltzmann distribution according to statistical physics [32]:

E

Po(E) o cxp [—k—B—T-} (3.1)

where kg is the Boltzmann constant and T is the absolute temperature. If the energy E of the Brow-
nian particle is a function of a certain fluctuating quantity y, that is, if E = E(y), the cquilibrium

probability distribution of y is also given by the same Boltzmann distribution:

Poly) o< exp [—%2—} (3.2)

The mean fluctuation encrgy of the Brownian particle can then be evaluated as in the following?:

s = [ sw)ew |22y [~ ew -2 (33

where the denominator is no more than a normalization factor.
If the encrgy E(y) assumcs a quadratic form of y, i.e., E(y) = Ay?/2 with a certain constant A4,

we can casily prove that the above equation (3.3) results in

kpT

(E(y)) = ~5- (34)
or
") = %I (3.5)

This is the famous equipartition theorem in statistical physics [32]. More generally put, the theorem
states that any independent degree of freedom in a system in thermal equilibrium kept at absolute
temperature 7" has a mean thermal energy of kgT/2. Here, one of the conditions to be an independent
degree of freedom is of course to have a quadratic-form cnergy expression. Many systems in nature
have quadratic-form encrgy expressions. For instance, the kinetic energy of the Brownian particle is
given by E(v) = mv?/2 (v:velocity) and the encrgy stored in a capacitor, C, is given by E(v) = Cv?/2
(v:voltage), '

In our example of the Brownian motion in Fig. 3.1, the equilibrium probability distribution of
the velocity of the Brownian particle is given by the following Boltzmann distribution, according to

(3.2): mvz-
Py(v) o exp [— 2kBT} (3.6)

Also, the mean energy of the Brownian particle in thermal equilibrium is kpT/2 according to the

3Throughout this thesis, (x) represents an ensemble average for a random process x, while T represents a time
average.



cquipartition theoyem:

mw? kT
(E()) = (——) = —=— (3.7)
2 2
This results in the famous mean-squared velocity formula:
k
(v?) = —fzz (3.8)

As can be reasoncd from our foregoing argument, Boltzmann distribulion is a more general
equilibrium property than the equipartition theorern. A fluctuating quantity associated with energy
(e.g., velocity ir{ the Brownian motion) always has a Boltzmann distribution in thermal equilibrium
while the equipartition theorem ensues only when the encrgy is a quadratic form of the fluctuating
quantity.

As an additional yet important note, we need to distinguish thermal equilibrium from steady-
state. If a time-dependent probability distribution P(y, t) of a certain fluctuating quantity, y, reaches
a time-independent probability distribution, Py(y), after a long run, the probability distribution of y
is said to have reached ils steady-state. Thermal equilibriumn requires more physical conditions than
only having a time-independent probability distribution. In thermal equilibrium, the net exchange
of heat between the Brownian particle and the thermal bath should be zero, to maximize the total
entropy of the whole system [32]. Henccforth, thermal equilibrium states constitute a subset of the
get of steady-states as shown in Fig. 3.2 and hence we encounter the notion of “nonequilibrium
steady-state”.

A pertinent example of such nonequilibrium steady state is water contained in a tank, whose top
surface temperature and bottom surface temperature are kept different. After sufficiently long time,
ihe system reaches a steady-state while it never reaches thermal equilibrium due to the constant
heat flow. This distinction between the thermal equilibriumn and the steady-state will be crucial in
understanding fluctuations and thermodynamics in electrical circuits, as will be seen later. When
onc solves either the Langevin or the Fokker-Planck equation in the following subsections, the
steady-state solutions of the cquations should agree with the equilibrium properties presented in

“this subsection, if the system of concern reaches equilibrium in the steady-state.

3.1.2 Langevin Equation

The Langevin’s approach [18], [19], [29] is to directly solve the equation of motion for the Brownian

particle, which in the case of Fig. 3.1 is given by

mi = —myv + ((t) (3.9)
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Steady-State

Equilibrium Nonequilibrium

Figure 3.2: Equilibrium steady-state and nonequilibrium steady-state.

where the dot in the equation signifies time-derivative. By dividing the above equation by m, we
obtain

b= —yv+ % (1) (3.10)

Due to the stochastic driving force, ({¢}, the Langevin equation (3.10) is an example of stochastic
differential equations (SDE) [33].

The random force, ¢(t), is assurned to be Gaussian due to the central limit theorem while its
mean is zero thanks to the randomness of the collisions by molecules in the surrounding fluid. The
random force, {(t), at two different times, is assumed to be uncorrelated while this assumpiion is
based on the fact that the resolution of our observation time is too coarse to rcsolve the relatively
small correlation time of the random force. These statistical properties can be mathematically

described as

€w) =0
C(t1)¢(t2)) = Té(t1—1t2) (3.11)

where 8(t; — ¢o) is the Dirac delta function. The intensity of noisc, I', can be determined from the
equilibrium property of the Brownian system as can be seen later.

No correlation of the random force, {(t), at two different times as shown in (3.11) implies that ¢(¢)
is white noisc in the frequency domain [33;. This can be easily scen by using the Wiener-Khintchin
theorem [33], stating that the power spectral density of a stationary random process is a Fourier

transform of its autocorrelation, i.e.,

s = [ e g s o

= I‘/ e~ ¥ IT§(T)dr

=T (3.12)
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As clearly seen, the power spectral density of the random force, {(t), is independént of the frequency,
and hence ((t) is white noise. The power spectral density in (3.12) is the double-side band (DSB)
representation, while its single-side band (SSB) representation which is perhaps more familiar to

electrical engineers is given by
2
-— =28.(f)=2r (3.13)

While solving the stochastic differential equation (3.10} for v(t) itself is meaningless since v(t)
is stochastic, we can still solve it for statistical averages of v(t), such as mean, variance, and auto-
correlation. Methods of calculating statistical averages of fluctuating quantitics from the Langevin
equation constitute stochastic calculus [33]. In the followings, we will show how the mean and

autocorrelation of v(t) arc obtained from the Langevin equation, (3.10).

Mean Velocity

A differential equation for the mean velocity, (v(t)), is obtained by taking an ensemble average of
(3.10):

1 )
= () = —7(()) + —- (((1)) = —7(v(1)) (3.14)

where we have used (¢(¢)) = 0 in (3.11). The solution of (3.14) is casily shown to be (v(t)) o e

Hence, after the initial transient dies away, the mean velocity (v(t)) converges to zero, i.e.,
(v(t)) =0 (3.15)

Velocity Autocorrelation

The calculation of the autocorrelation of the velocity, {(v(t1)v(t2)), is more involved than the mean
velocity calculation. The calculation routine to obtain {v(t1)v(t2)) from (3.10) consists of two steps.
In the first step, we derive the cross-correlation of v(t) and ¢(t), i.e., (v(t2){(t1)), from (3.10).
This cross-correlation will be used in the second step. The differential equation for this cross-
correlation can be obtained by multiplying (3.10) at time t; ‘by ¢(t1) and taking an ensemble average,
i.€.,

0

- (Ut (0)) + () (E)) = 5 - (D) = o801 1) (3.16)

1
m

where we have used (¢(t1)((t2)) = I'6(t; — £2) in (3.11). The solution of the equation above after

the initial transient decays is given by

(t2)C(0)) = el — by) (3.7
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where u(t) is the ynit-step function.
In the sccond step, we derive the autocorrelation of the velocity, {v(t1)v(t2)), utilizing the result
of the previous step, (3.17). The differential equation for (v(#1)v(t2)) can be obtained by multiplying
(3.10) at time ¢3. by v(t2) and taking an ensemble average:

-Mm«mhw%fWr“wm—m (3.18)

3=

(0t )u(t)) +2(o(t)o(t2) =

where we have used (3.17). This is a deterministic differential equation whose solution is

T
T 2ym?

[e—'ylt]—tzl _ 6—7(i1+t2)] (3.19)

Let us define two new variables t = t; (absolute measurement time) and 7 = 5 —#; (measurcment
time difference). Then, the sccond exponential term in (3.19) is merely an initial transient which
dies away after large enough time (large ¢) and hence we can rewrite the autocorrclation of the

velocity, v(t), in (3.19) as

R, (1) = (v()v(t+ 7)) = eIl (3.20)

2ym?
after the initial transient removal. Note that the autocorrelation of u(t) only depends upon the
measurement time difference, 7 = t; — #,, indicating that v(t) is a stationary random process.

As an additional note, the technique introduced here to obtain the autocorrelation from the
Langevin equation will be frequently used in this thesis. Especially in the study of noise in mixers

in Chapter 5, this technique will play a key role.

Noise Intensity

Now the noise intensity, [, can be determined using (3.20) together with the equilibrium properties
of the Brownian system discussed in Subsection 3.1.1. When the thermal equilibriumn between the
Brownian particle and the surrounding fluid is obtained after a sufficiently long time, the Brownian
particle has a mcan energy of kgT/2 due to the equipartition theorem, which is cquivalent to

(vi(t)) = EBT‘/m. Comparing this to (3.20) for t; = t2, we can determine the noise intensity I':
[ = 2ymkgT (3.21)

which is proportional to the particle mass, friction coefficient, and absolute temperature. Using
the equilibrium properties such as equipartition theorem to determine noise intensity is a powerful
technique that has been widely employed to study various systems under the influence of thermal
fluctuations. As will be discussed later in Section 3.2, the Johnson-Nyquist thermal noise of resistors

can be casily obtained using this technique.
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Power Spectral Density

The Veiocity autocorrelation, R, ,(7) = (v(t1)v(t2)), (T = t1 — t2) also allows us to evaluate the
power spectral density of the velocity, S,(f). Using the Wiener-Khintchen theorem [33] together

with (3.20) and (3.21), the power spectral density of the velocity is given by:

Su(f)

i

m o
/ 2T Ry o (T)dT
-0

kgT 2

. 3.22
m 42 + dn? f2 (3.22)

which is a Lorentzian distribution. The mean-squared velocity of the Brownian particle can be

calculated by integrating S, (f) with respect to f from —oo to oo, i.e.,

kT
m

{1)2) = /_oo Su(f)df = (3.23)

which is consistent with the equipartition thcorem.

Mean-Square Displacement

So far we have discussed the statistical properties of the velocity, v(t), of the Brownian particle.
We now study the statistical properties of the displacement, z(%), of the Brownian particle. From
our everyday cxperience (e.g., an ink droplet in water), we can guess that an ensemble of Brownian
particle will diffusc in the surrounding fluid and hence the mean-squared displacement, (z%(t)), will
grow with time. Now we will quantify this diffusion process starting from the Langevin equation
(3.10).

Multiplying (3.10) by z(t), we obtain

d d 1
’cd—: = a;(zv) —v? = —yzv+ — z((t) {3.24)
Taking an cnsemble average of the above equation and using the equipartition theorem, i.e., (v%) =
“kgT/m, and also noting the negligible correlation between the displacement, x(t), and the random

force, ¢(t)%, we obtain
d kT

e = —— v{(zv) (3.25)
The solution of {3.25) is given by
ksT
(zv) = Ae™" + 22— (3.26)
mey

where A is a certain constant which can be determined from the initial condition. Noting that

zv = (1/2) - (d/dt)z? and neglecting the first term corresponding to the initial transient in the above

4Namely, the statistical properties of the force is independent of the actual physical displacements.
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Figure 3.3: Illustration of the Einstein relation (a) Two Brownian particles with different masses (m1 < mg)
suspended in the same type of fluid (y; = 72). The mean-squared velocities are different, i.e., (v7) > (v3). The
diffusion constant of the lighter particle is larger than that of the heavier particle: D1 > Ds. (b) Two Brownian
particles with the same mass (m; = mg) immersed in the different fluids with different friction constants (y1 > 72).
The mean-squared velocities are the same, i.e., (v%) = ('v%), as they are determined from the equipartition theorem
and have no dependence on the friction constant. However, the diffusion constants are different: the Brownian particle
in the less viscous medium diffuses faster than the one in the more viscous medium, i.e., D1 > Da.

equation, we advance to

(z2(t)) = 2Dt (3.27)

where the diffusion constant, D, is given by

&
&
~

D= X (3.28)

&l
.

sensitivity  friction

This formula for the diffusion constant was first derived by Einstein and is called Finstein relation
[26], [27]. Equation (3.27) demonstrates that the Brownian particle does exhibit diffusion with the
diffusion constant of D, agreeing with our everday acquaintance.

The Einstein relation (3.28) illuminates the Brownian movement by identifying two key physical
elements governing the diffusion process: the sensitivity of the Brownian particle undergoing the
diffusion and the friction (energy loss) of the environment in which the diffusion process occurs.

First, the kgT/m factor in (3.28) represents the sensitivity of the Brownian particle to the
perturbations originating from the thermal ﬂuctua‘pions. A lighter Brownian particle is more sensitive
to perturbations, and therefore has a larger diffusion rate than a heavier Brownian particle when

immersed in the same fluid (the same friction constant) as shown in Fig. 3.3(a). This sensitivity
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factor is independent of the friction constant of the liquid and is obtained usirlg the equipartition
theorem for the velocity, i.e., (v?) = kgT/m.

Second, the 1/ factor in (3.28) represents the friction (cnergy loss) clement in the diffusion
process. This friction factor indicates that when two identical Brownian particles (same mass) are
suspended in liquids with different friction constants, the Brownian particle suspended in a medium
with more friction will exhibit a slower diffusion as shown in Fig. 3.3(b). The friction constant, 7,
was defined through the relation © = —yv in (3.10) in the absence of the noise term.

This Einstein relation will play a key role in our study of phase noisc in oscillators in Chapter 6.

3.1.3 Fluctuation-Dissipation Theorem

The Brownian particle exchanges energy with the thermal bath via fluctuation and dissipation.
Fluctuation tends to increase the cnergy of the particle while dissipation is an energy flow from the
particle to the thermal bath. In thermal equilibrium, these two flows of energy cancel each other
and the mean energy of the particle remains constant at the value of kpT/2 which is determined
by energy equipartition. This delicate balance between fluctuation and dissipation constitutes an
important theorem in statistical physics, which is called fluctuation-dissipation theorem [32), [34],
[35], [36], [37], [38].

We have already hinted this intimate link between fluctuation and dissipation in establishing the
Langevin equations (3.9) by mentioning that the frictional force, —m~yv, and the random force, (),
arise from the same surrounding fluid. The frictional force retarding the motion of the Brownian
particle is indced determined by the average of the vast number of rapidly varying individual forces
exerted by the molccules in the surrounding medium. At the same time, exactly because the average
frictional force is due to a large number of individual molecular motions, the frictional, dissipative
force should be essentially linked to the random foree, ((t), which arises from the thermal fluctuations
of the molecules.

Through the Einstein relation, (3.28), Einstein first demonstrated analytically and physically
this essential and fundamental connection between the average force (friction or dissipation) and the

fluctuation. As can be seen in (3.28), the diffusion constant, D, due to the thermal fluctuation is
directly linked to thc friction constant, v, which is responsible for the dissipation.

There have been subsequently a considerable number of developments and ramifications of Ein-
stein’s discovery of this vital rclationship, such as Nyquist’s theorem [1] to explain Johnson’s ob-
servation [39] of thermal noisc in resistors, and the further theoretical development in which the
official name, “fAuctuation-dissipation theorem”, was coined by Callen and Welton [34] - [38]. We
shall revisit the fluctuation-dissipation theorem in the context of the Johnson-Nyquist thermal noise
of resistors in Section 3.2. Summarizing, thermal fluctuation and dissipation always go hand in

hand, arising from the same surrounding fluid where the Brownian motion occurs: whenever there
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represents a set of
possible y,

Figure 3.4: Probability in-flux from y1 to y2 and out-flux from y2 to y;.

is thermal fluctuation, there exists associated dissipation and vice versa.

So far, we have considered the fluctuation-dissipation theorem in the linear case where the fric-
tional force is proportional to the vélocity, or friction constant is a constant. In the nonlinear case,
where the friction constant depends upon the velocity, the problem becomes much more involved.
However, even in the nonlinear case, the fluctuation-dissipation relation must remain valid in the
physical sense that the thermal fluctuation and dissipation should always balance each other for
energy conservation. However, the simple mathematical fluctuation-dissipation relations such as
(3.28) are not valid any more in the nonlinear case [40]. The fluctuation-dissipation relation in the
nonlinear friction is still an active field of research and we will also address this issue in the context

of nonlinear resistors (transistors) in Chapter 4.

3.1.4 Fokker-Planck Equation

~Tn Subsection 3.1.2, we discussed how the statistical averages, such as (v(t)), (v(t1)v(t2)) and (z2(¢)),
evolve with time in the Brownian motion using the Langevin equation. In this subsection, we will
focus on the time-evolution of the probability distribution of the velocity, P(v,t), and the probability
distribution of the displacement, P(r,f), in the Brownian motion. The partial differential equations
describing the time-evolution of such probability distributions are called Fokker-Planck equations
(FPE) [24], [25], [30], [31]. The solution of the Fokker-Planck equation shows how an ensemble of
Brownian particles that begins out of statistical nonequilibrium is brought into equilibrium steady-
state (or in certain cases, nonequilibrium steady-state as seen later in this Chapter) through contact

with a heat bath.
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Derivation of Fgkker-Planck Equation

Here we will show how the Fokker-Planck equation is derived using a generic fluctuating quantity,
y, and its probability distribution, P(y,t). In the case of Brownian motion, y can be the veloc-
ity or the displ‘acement. We define W(yQIyl) as a transition probability per unit time from
to 2. At a given time t, the net increase of the probability at yo per unit time, (8/0t) P(ya, 1),
is given by the probability increase at gy, per unit time due to the transition from y; to s,
ffooo W {y2i31) P(y1,t)dy;, minus the probability decrease at g2 per unit time duc to the transi-
tion from ys to yi, ffooo W (y1)y2) P(yz, t)dy,, where y; tuns all over the possible space® as shown
in Tig. 3.4. Therefore, we can cstablish the following integro-differential equation governing the

probability distribution:

O] — [ W ualn) Pl 1) — W (s )P (v, ) s (3.29)

ot oo
This type of probability evolution equation based on the transition probability has many different
versions of essentially the same nature, which have obtained different names such as Smoluchowski
equation, Chapman-Kolmogorov cquation, and master equation, depending on their specific forms
[19]. In this thesis, we will simply call this type of equation master equation. If we define € = y; —ys,

Y = yo, and W{y;e) = W (y1ly2), W(ya|yr) is equal to W(y + €; —€) and (3.29) can be rewritten as

D) ™ W+ c-Pl+ et - Wi Pl 1) de (3.30)

The master equation such as (3.29) or (3.30) is one of the more general equations describing many

6 in nature. In the master equation, physics governing the random process comes

random processes
into play through the transition probability, W (1 |yz), as will be seen shortly.

The Fokker-Planck equation we will derive now is obtained as an approximation of the master
equation (3.30). With an a priori assumption that fluctuations are very small (¢ < 1), we take the
Taylor expansion of the first term in the integrand of the right-hand side up to the sccond order of
-€ to obtain

OP(y,t) a /°° ] 1 92 /°° 2 o 911
et A S : -eVde| P = - Vde , _
> 3 L eW (y; €)de| P(y,t) + 257 | _° W{(y;e)dc| P(y,t)  (3.31)

By defining the n-th jump moment, A,(y), as

An(y) = / N "W (y; €)de (3.32)

g =00

5n the one-dimensional case, ¥ runs from —oo to oo.
6More accurately, Markov processes.
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we can rewrite (3.31) as

OP(y,t)

D P + 2 ) Pl (3.33)
ot __@{ l(y) (y’ )}+ 20@/2 2(Y Y1 .

which is @ general form of the Fokker-Planck equation.

The derivation of the Fokker-Planck equation (3.33) so far is of purely mathematical nature
based on probability transition. Now, physics governing the fluctuation comes on the scene through
the aptly named jump moments defined in (8.32): € = y1 — y2 = Ay represents a jump from yo to
y1 and A,(y) in (3.32) is simply the n-th moment of € per unit time. The first and the second jump
moments, A;(y) and As(y), in the Fokker-Planck equation (3.33), are determined by the specific
physical properties of the system under consideration. According to (3.32), A;(y) is the avcrage of

the jump € = Ay per unit time for a given y, i.e.,

Ar(y) = ' (3.34)

where the subscript y signifies that y is a fixed value from which the jump € = Ay occurs. Similarly,
A2(y) can be re-expressed as

2
Ag(y) = ((A—f;i)—y (3.35)

These jump moments are cxtremely important as the physics governing the random process comes
into play through these jump moments. We will shortly calculate these moments more specifically
using Brownian motion as an example.

The Fokker-Planck equation (3.33) can be rewritten in the form of continuity equation

OP(y,t) _ 8J(y,t)

ot~ oy (3.36)
where the probability in-flux, J(y,t), is defined as
10 o
J(y, t) = _-Al(y)P(ya t) + 5'5?;{A2(y)P(y’ t)} (‘3'57)

The continuity cquation implies that the probability density increase per unit time at given y and at
a given time ¢ is equal to the effective probability flux into y per unit time. This is analogous to the
familiar situation where the electric current density flow (J) changes the charge density (p) in space
for charge conservation, which in a one-dimensional case, is described by the following continuity

equation:
op(z,t) _ 0J(x,t)
ot Oz

(3.38)
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where J signifies he in-flow current density’.

Fokker-Planck Equation for Velocity in Brownian Motion

Now we will consider the probability density of the velocity, P(v,t), in the Brownian motion and its
evolution with time. First of all, we should determine the velocity jump moments, A;(v) and As(v).
According to {3.34), the first jump moment is A;(v) = (Av),/At and we can casily sce from (3.10)
that this quantity is equal to —vyv, that is,

A1(v) = —yv (3.39)

The second jump morment in (3.35) for the velocity is given by As(v) = ((Av)?),/At. Since this
quantity is always positive, the second jump moment can be expressed as Az(v) = o + cov? + - -
wherc ¢cg > 0, ¢, ... are expansion coefficients. The first order term ¢;v should vanish in the
expansion (i.e., ¢; = 0) as we must have Az(v) = Az(—v). Now assuming small fluctuations just as
we did in the derivation of the Fokker-Planck equation, we neglect the second- or higher-order terms
in the expansion of Az(v), leading to:

As(v) = g (3.40)

The coefficient ¢g will be obtained shortly using the equilibrium property of the Brownian system.
Now plugging (3.39) and (3.40) into (3.33), we obtain the following Fokker-Planck equation for

the velocity of the Brownian particle:

OP(v,t) O co OP{v,t) .
—5 = 5 [m)P(; 1) + 7 5y (3.41)

When the Brownian system reaches equilibrium, the time-dependent term in the left-hand side
vanishes and hence we have

yvPy(v) + Po(v) (3.42)

where Py(v) signifies the steady-state solution of the Fokker-Planck cquation, that is, Py(v) =
lim¢—eo P(v,t). Now by resorting to the equilibrium property, we can determinc the unknown
constant ¢o. By multiplying (3.42) by v and integrating it over v and using the equipartition

theorem (v2?) = kgT'/m, we obtain
k‘ T kgT kT :
=BL CO/ v—Povdv-—'y —E———/ Podv =~ -—i-?—-——c—oz() (3.43)

where the second equation was obtained via integration by parts while v Po(v)|v—co = vPo(v)jp=—o0c =

0 as the distribution, Py(v), is sharp and narrow around its mean and decays fast to zero as v departs

7Perhaps a more familiar form in a three-dimensional case using the out-flow current density is V - J + %f =0.
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Figure 3.5: Evolution of P(v,t) starting from the initial condition of P(v,t = 0) = (v). ¢1 < t2. Fort — oo, P(v,t)
converges to the Boltzmann distribution.

away from the mcan. Therefore, cg = 2vkgT/m, and the Fokker-Planck equation (3.41) becomes

?_IM = 9 ['va(W,t) +

kgT OP(v,t )
ot v u'_u} (3.44)

m ou

Now the steady-state solution of (3.44), i.e., the solution of (3.42) with co = 2vkgT/m becomes

o ] (3.45)

Po(v) o< exp [—— T

which is the Boltzmann distribution, agreeing with the statistical physics discussed in Subscc-
tion 3.1.1. The proportional constant is determined by the probability normalization condition
22 Py(v)dv = 1.

The time-dependent solution of (3.44) with an initial condition of P(v,t = 0) = §(v) can be

shown to be
2

—1/2
P(v,t) = 2TrkBT(l - e_z'Vt)] exp [— il h (3.46)

m 2kgT 1 —e— 27t
which converges to the Boltzmann distribution after a sufficiently long time. The evolution of P(v,t)

_in (3.46) is depicted in Fig. 3.5.

Fokker-Planck Equation for Displacement in Brownian Motion

In a fashion similar to the velocity case, we can establish a Fokker-Planck equation for the displace-
ment probability distribution, P(z,t), in the Brownian motion. Intuitively, the first displacement
jump moment is given by A;(z) = (Az),/At = 0 as the average change in the displacment, Az, is

zero regardless of z. The second displacement jump moment is given by As(z) = ((Az)?)./At = 2D
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Progressively thinly-distributed with time.
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Figure 3.6: Evolution of P(x,t) starting from the initial condition of P(z,t = 0) = §(z). t1 < t2 < i3. For ¢t — o0,
P(z,t) approaches zero for any given z and the probability distribution becomes more and more thinly distributed
over .

according to (3.27). Now, the Fokker-Planck equation (3.33) for the displacement can be written as

OP(z,t) D o?

which is the well-known diffusion equation.
The solution of the diffusion equation with an initial condition of P(z,t = 0) = §(z) in the

absence of any boundaries becomes

Pz, t) =

1 z? ]
exp | ——— 3.48
JarDi p[ iDt (3.48)

This is a Gaussian distribution whose mean, (), is zero and whose variance, 0, = /(2%(t)), is cqual
to v2Dt, or
(z%(t)) = 2Dt (3.49)

which perfectly agrees with (3.27) obtained using the Langevin equation. The time-evolution of

" P{z,1) described by (3.48) is illustrated in Fig. 3.6.

Wiener and Ornstein-Uhlenbeck Process

As seen in (3.48), the probability distribution of the displacement of the Brownian particle does not
reach steady-state. As time goes by, the probability density at any given x approaches zero while the
standard deviation of the distribution approaches infinity, proportionally increasing with Vt. This is
the key signature of any diffusion pracesses. The diffusion process was rigorously studied by Nobert
Wicner and the diffusion process is often referred to as Wiener process in the theory of random

process [33]. As can be seen from (3.47), the Fokker-Planck equation describing the Wicner process



29

does not invelve the first jump moment (e.g., A;(z) =0 in (3.47)). Since the statistical averages in
the Wiener process vary with time, as seen in (3.49), the Wiener process is a nonstationary process.

On the other hand, the velocity of the Brownian particle is ultimately a stationary process as the
probability disttibution of the velocity cventually reaches the steady-state distribution, which corre-
sponds to the Boltzman distribution. These types of random process are called Ornstein-Uhlenbeck
processes {41] (reprinted in [18]). Equation (3.44) is a typical form of the Fokker-Planck equation
that describes the Ornstein-Uhlenbeck process. Interestingly, the Ornstein-Uhlenbeck process is the
only process which is stationary, Gaussian, and Markovian at the same time [42] (reprinted in [18]).

Here, we should make an important comment on the small-fluctuation approximations we have
used to derive the Fokker-Planck equation, and their different effects on the two processes. For
the Ornstein-Uhlenbeck process which ultimately attains the steady-state distribution, the small-
fluctuation assumption and the resultant approximation in the Fokker-Planck equation will result in
a sharply distributed steady-state probability distribution around the mean. This is because even in
the steady-state, the fluctuations should be still small. However, in the Wiener-process which does
not achieve the steady-state distribution, the small-fluctuation can accumulate and the probability

density can be broadened without limit as we saw earlier in the diffusion process.

3.2 Brownian Motion in Electrical Circuits

3.2.1 Johnson-Nyquist Noise

In his pioneering paper dated in 1928 [39], Johnson first reported an experimental observation
that an electric linear {ohmic) resistor, R, generates white noise of thermal origin. His measurcment
demonstrated that the single-side-band (SSB) power spectral density (PSD) of the equivalent thermal

voltage noise in Fig. 3.7(a) is given by

3
N (3.50)

which is equivalent to the following autocorrelation expression:
(vn(t1)vn(t2)) = 2kgTR - 6(t1 — t2) (3.51)

Figure 3.7(b) depicts the Norton equivalent current noise model for the resistor where the SSB

PSD of the current noise is given by:
i2  4kpT

=3 (3.52)
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Figure 3.7: Johnson-Nyquist thermal noise in an ohmic resistor. (a) Thevenin equivalent noise model. vZ/Af =

2kpTR. (b) Norton equivalent noise model. i2 /Af = 2kgT/R. (c) An electrical analogue to the mechanical Brownian
motion.

or, equivalently,
2kgT

Ain(t1)in(t2)) = Oty — t2) (3.53)

The credit for acquiring deep physical insight into the thermal noise in resistors goecs to Nyquist,
who theoretically verified the Johnson’s observation based upon an elegant thermodynamic argument
[1]. The basic principle Nyquist used was that of thermal equilibrium, and hence cssentially the same
as that used by Einstein and Langevin. To illustrate the principle used by Nyquist, let us consider an
RC-circuit shown in Fig. 3.7(c), which is an clectrical analogue of the mechanical Brownian system
discussed in the previous section. In this analogy, the capacitor functioning as an energy storing
element corresponds to the inertia of the Brownian particle while the dissipative resistor corresponds
to the surrounding fluid. The thermal fluctuations of electrons tend to increase the energy of the
capacitor. However, excess energy stored in the capacitor is dissipated through the resistor, flowing
into the thermal bath kept at temperature T'. This subtle balance between fluctuation and dissipation
ultimately drives the system towards equilibrium, in which the capacitor stores the mean energy of
kgT/2 according to the equipartition theorem.

Now we will show how the Johnson noise can be derived from the equilibrium property (equipar-
tition theorem). Nyquist's derivation in his paper is a bit different from our derivation herc but the
concepts of both methods are essentially the same. The Langevin equation governing the voltage

“across the capacitor, v(t), in Fig. 3.7(c) is given by
1 in(t)

V= —-RE’U + '—‘a— (3.54)

which is obtained using Kirchoff’s current and voltage law (KCL, KVL). The white Gaussian current
noise, i,(t), has an intensity of A, which will prove to be 2kpT/R shortly using the equilibrium
property:

(in(t1)in(t2)) = AB(t1 — t2) (3.55)

From the Langevin equation (3.54) we can obtain the autocorrelation of v(t) using the method
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introduced in Subgection 3.1.2:
RA —ity — t2l-|
(v(t1)v(ta)) = 50 XP [ RO

4

where we have already discarded the initial transient term. Since the energy stored in the capacitor

C is Ec = Cv?/2, the mean fluctuation energy of the capacitor becomes

1 RA .
(Ec) = sC{v*) = — (3.57)
2 4
where we have used (3.56). Since {Ec) must be equal to kgT/2 according to the equipartition

theorem, we arrive at

A= Zkng (3.58)
corresponding to
2 4kpT
= = 3.59
Af- R (3.59)

which is the Johnson noisec.

3.2.2 Fluctuation-Dissipation Theorem Revisited

The thermal equilibrium of the RC-circuit in Fig. 3.7(c) is achieved via the balance between fluctu-
ation and dissipation, as mentioncd previously, and hence we reencounter the fluctuation-dissipation
theorem in the context of clectrical circuits: As can be seen in (3.50), the fluctuation intensity has a
direct dependence upon the dissipation element R, that is, the dissipation R and its corresponding
thermal fluctuation 4kgTR always go hand in hand. Wherever there is dissipation, there is thermal
fluctuation and wvice versa.

If dissipation did not accompany thermal fluctuations in a given system, the system cannot
develop the balance between fluctuation and dissipation and will exhibit a nonphysical behavior.
For cxample, if the dissipation clement 12 were taken out in Fig. 3.7(c) leaving ouly the thermal
fluctuation, the capacitor works as an ideal integrator of the thermal fluctuation, i,(t), as can be
seen in (3.54) with R = oo:

1 t
o)) = /0 in ()’ (3.60)

Hence the autocorrelation function of v(t) in this unrealistic case becomes

11 io
W) = gz [ [ @)

2%5T
RC? J,
2%5T

B . ‘
== -RE;Z— mlIl{tl,tz} (361)

t1 to
dt’ / a6 — ")
0
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where min{ty, 2} signifies the minimum value between t; and ¢2. Therefore, fort =1t = ta, the

mean-squared voltage grows with time indefinitely

2kgT 0\
W(0) = 5T -t (3.62)

or equivalently, the mean fluctuation cnergy of the éapacicor grows with time without bound

kT

3.63
=5 ¢ (3.63)

(Eo) = 5C(7) =
In other words, the voltage across the capacitor assumes the Wiener or diffusion process, which
is physically prohibited as the energy of the capacitor cannot grow indefinitely in the absence of
external encrgy sources due to the law of energy conservation. This clearly shows that the unrealistic
imbalance between thermal fluctuation and dissipation gives rise to physically impossible situations.
Hence, in circuit noise modeling, care should be taken of to accompany any thermal noise source
by its corresponding dissipation. This important notion of fluctuation-dissipation balance will be
encountered several times in this thesis, and will play specially substantial roles in the treatment of
oscillator phase noise presented in Chapter 6. The fluctuation-dissipation balance in the presence
of nonlinearity investigated in Chapter 4 will be a key to fundamental understanding of thermal

fluctuations of nonlinear resistors such as transistors.

3.2.3 Probability Distribution of Voltage

In this subsection, we will study the probability distribution of the voltage across the capacitor in
Fig. 3.7(c). To this end, we have to calculate the first and second voltage jump moments, A;(v)
and Az(v) in the Fokker-Planck equation, (3.33).
The first jump moment A;(v) in (3.34) can be easily obtained by rcsorting to the Langevin
equation, (3.54):
_ {Av), v

A1('U) = At = —.ﬁ (364)

The second jump moment Az(v) in (3.35) will be approximated as an unknown positive constant,
co, where the justification for this approximation can be found in the explanation above (3.40):

((Av)%),

Ag(’l)) = At

~ o (3.65)

The constant cg will be determined using the equilibrium property.

Plugging (3.64) and (3.65) in (3.33), we obtain the Fokker-Planck equation for the probability
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Figure 3.8: The probability distribution of the voltage across the capacitor in the RC-circuit in thermal equilibrium.

The distribution is that of Boltzmann and the standard deviation of the distribution is \/kpT/C, which is obtained
from the equipartition theorem.

distribution of the voltage, P(v,1):

OP(v,t) 0 [ v o 6
i = Tl Y

P( 1) (3.66)

When the system eventually reaches equilibrium, the left-hand side of (3.66) becomes zero as the

equilibriuin probability distribution is independent of time and hence we have

o) + 2L py(v) = 0 (3.67)

RC 2 dv

where Py(v) = limg—.oo P(v,t) is the equilibrium probability distribution. By multiplying (3.67) by
v and integrating it over v and using (v?) = kgT/C (equipartition theorem), we obtain
1 Ii'BrI7 Co b d . 1 k‘BT Co
— .2 —F dy = o ' —— — — = 3.
RC C + 2 _oovdv o(v)dv 0 (3.68)
where the second equation was obtained via integration by parts while vPy(v)|y=100 = 0 due to the

fast decay of Po(v) for large |v|. Therefore, co = 2kgT/ (RCZ) and the Fokker-Planck cquation is

now completely determined:

kgT O

8P(v,t) _ a[ o) + 026

e
Tot v s b )] (3.69)

The solution of the Fokker-Planck equation (3.69) for the initial condition of P(v,t = 0) = §(v)

is given by

2

— /2
27T]<?BT —2t/(RC) ! C v
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(CE] a(V) |
10f | ~ 600 p
100f | ~ 200 p
1p ~ 60 p
10p ~ 20 p
100p ~ 6 p

Table 3.1: C versus o = \/kgT/C at T = 300K.

For ¢t = co when the system reaches equilibrium, the corresponding probability distribution Po(v)

becomes the Boltzmann distribution

. [2mksT] 2 Cv? ‘
Poy(v) = [_C'__] - exXp [_QkBT] (3.71)

which is depicted in Fig. 3.8. The standard deviation of the Boltzmann distribution, o, = \/(_UT) )
which indicates the width of the distribution in Fig. 3.8 is given by .\/W thanks to the equipar-
tition theorem. The distribution width o for typical values of capacitors is shown in Table 3.1 for
the temperature of 300 K. As can be seen from the table, the voltage fluctuation in the capacitor is

very small for typical values of the capacitor.

3.2.4 More on the kgT/C-Noise

In Subsection 3.2.1, we have derived the Johnson-Nyquist noise based on a priori knowledge of the
equipartition theorem in the simple RC-circuit of Fig. 3.7(c). In this subsection, we will start with
a priori knowledge of the Johnson-Nyquist noise to verify the equipartition theorem or equivalently,
the kpT/C-variance of the probability distribution of the voltage across the capacitor (the so-called
kpT/C-noise) in more complex arrangements of R, C, and L. The examples of LRC-nctworks
that will be used for this verification are shown in Fig. 3.9, where the current sources represent the
Johnson-Nyquist noise generated by the ohmic resistors in the circuits. This reverse derivation serves
- a purpose of examining the consistency between the Johnson’s 4kgT R-noise and the equipartition

theorem in various linear networks of passive elcments.

First-Order RC-Circuit with Multiple Resistors
Here, we will derive the kgT/C-noise in the first-order RC-circuit with multiple resistors shown in

Fig. 3.9(a). Using the KCL at both nodes of the capacitor at an angular frequency w, we obtain

v . . 1 . .
7t (jwC ~ R—3)v = fin1—in3 (3.72)
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Figure 3.9: Various LRC circuits. In any circuits, (v?) = kgT/C.

: 1 L
;-’g —(WC+ g = dng+ing (3.73)

where v = vy — v_. After a simple manipulation of the simultaneous equations, we obtain

= Ryin1 — Raing — (R1 + Ra)ing
jwC(Ry + Rg) + (R1 + Ra2 + R3)/Rs

(3.74)

Using (3.52) and (3.74) and also assuming uncorrelation among %, 1, ¢,2 and %, 3 as they are from
different resistors, we obtain the power spectral density for the differential voltage v:
v? r

— = 4kgT -

Af 1+ w2C?r? (3.75)

where a new parameter r = (By + Rz) - R3/(R1 + Rz + R3) was introduced for simplicity. Now, the
mean-squared voltage (v2) is obtained through integration of the power spectral density in (3.75)

over the whole frequency range from 0 to oo:

®© dw v2
2 — et
@ = /0 o Af

o [ dw r
- 4kBF./o 21 14 w2C?r2



_ (3.76)
which verifies the equipartition theorem in the first-order circuit.

Simple Second-Order L(C-Resonator

Now we will derive the kgT/C-noise in the simple second-order LC-resonator depicted in Fig. 3.9(b).
The ohmic resistor in parallel with the LC-tank can be viewed as either an explicit external resistor
or the internal loss of the resonator. Since the resonator is a linear time-invariant (LTI) system,
we can easily rezlate the power spectral density of the voltage across the tank to the power spectral

density of the Johnson current noise:

P2

Af

:
XZ—},—

2
T

Il

. 1
Ll

2
W=

= 4kgTR- (3.77)

(W? — wd)? + w2w?

where w, = (RC)™! and w? = (LC)~!. Then, the mean-squared voltage can be obtained by

integrating the power spectral density of the voltage over the whole frequency range:

0 i v2
2 — ———
) = /0 o Af

_ 2kgT /°° do w?
T wRC? |, (w? — W3)2 + wiw?
2kBT « o0 3,‘2
= =] d .
cC /0 prT (02 = 2)22 +1 (3.78)
where £ = w/wy and @ = wy fwp. The 4 poles of the integrand f(z)
2
z
f(z)= (3.79)

2+ (02 —2)22 + 1

constitute the four corners of a rectangle in the complex z-plain as shown in Fig. 3.10, i.e., 21 = a4+,
"z¥ = a—bi, zg = —a~— bi; and 25 = —a —bi for a > 0 and b > 0. The residues r; and 7 for the

poles z; and z3 of the integrand f(z) are then given by

. _a+io/2
ri= lim (z = 21)f(2) = ——=
. a —ia/2
ro= fim (=2l = "haa (3.80
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complex
z-plane

Figure 3.10: Contour integration.

Then the contour integration of f(z) along the contour Cy in Fig. 3.10 with an infinite radius leads

to
F(2)dz =2 / @)z = 2mi(ry +ra) = < (3.81)
C Jo (61
and therefore, the integration (3.78) results in the kgT/C noise,
kgl
2 B

= —_— .82
W=7 (3.82)

which confirms the validity of the equipartition theorem in the LC-resonator. This notion of the
kgT/C-dependence of the tank voltage noise will be extremely important later on in the trecatment

of phase noise of I C-oscillators.

Second-Order LC-Resonator with Multiple Resistors

Now we consider a bit more complicated LC-resonator shown in Fig. 3.9(c) which contains multiple

resistors and hence multiple noise sources. Using KCL at both nodes of the capacitor, we obtain

1 1 . .
Rl + (jwC + ——L -1—2— ¥V = dp1—ing3 (3.83)
v 1 1 o . .
B UCT L TR T tatins (380

where v = v, — v_. A simple manipulation of the simultaneous equations leads to

_ Ryin,1 — Roin2 — (B1 + Raling
"~ (jwC +1/(jwL)) - (R1+ Ra) 4+ (R1+ R2+ R3)/Rs

(3.85)
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and henceforth, the power spectral density of v is given by

02 L2w2 2
— = 4kgT - =2 -
Af 5T r o zt4 (Lwo/r)2 —2)22 + 1

(3.86)

where w? = (LC)™!, r = (R; + Ra) - R3/(R1 + Ro + Rs) and £ = w/wp. In the derivation, we have
assumed that the noise sources are uncorrelated among each other as they originate from different

resistors. By utilizing the contour integral result of (3.81), we obtain

WP = /wdwv_z 0 gy v2
0

WAf Jo AT

wo LW} /°° 2

= —— .4k . dr
o T = Jo e (Two/r)? — 272 + 1
kgT

— b= (3.87
- (3.87)

which again results in the kpT/C-noise, demonstrating the equipartition theorem.

Simple Third-Order LC-Resonator

The resonator shown in Fig. 3.9(d) is a third-order system, which makes the calculation of the
mean-squared voltage across the capacitor nontrivial. The power spectral density of the voltage

across the capacitor is given by

K 1, 1 oz
AF T mll(JWL + m)”R X AT
(1 — z%)2

= TR e T ot (1 =20 + B2

(3.88)

where wi = 1/(L'C"), z = w/wg, @ = wpRC, and B = C’/C. The mean-squared voltage is then

given by

0 g 2
o = [
0 L

kgT o (% (1~ 22)2 |
- C T d . - D
c = /0 33(1 — 722 + o222{(1 — 22) + B2 (3.89)
As can be seen, the integrand g(a; 8; ) in the above integral
1— :L‘é 2
9o Biz) = ( ) (3.90)

T (1 -22)?+0222{(1 - 22) + 3}?

is a function of z with two independent parameters « and 8. If the mean-squared voltage in (3.89) is
to be kpT/C, the integration in the equation should result in 7 /o, regardless of the value of 5. While

this seems unlikely due to the explicit dependence of the integrand on 3, numerical integrations verify
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a=01 a=1 a=5 & =10 & = 100

(m/a =~ 31.42) | (7/a = 3.142) | (7/a ~ 0.6283) | (7/a = 0.3142) | (r/a ~ 0.03142)
B=0.1 31.4224 3.1361 0.6280 0.3132 0.03132
=1 31.3978 3.1362 0.6281 0.3139 (1.03131
8=10 31.3959 3.1362 0.6281 0.3140 0.03130
8 =100 31.4109 3.1362 0.6281 0.3144 0.03130

" Table 3.2: Numerical calculation results for the integration in (3.89) for various values of o and 8.

that the integration in (3.89) is indeed 7/ as shown in Table 3.2. Thercfore, (v?) again becomes

kgT/C, once again confirming the equipartition theorem.

Validity of the kgT/C-Noise

In this subsection, we have demonstrated through examples that a capacitor C in linear LRC-
networks in which resistors generatc the Johnson noise always stores a mean-squared voltage of
kpT/C in equilibrium. This kgT/C-noise is a direct result of the equipartition theorem. This
notion of encrgy equipartition can be extremely powerful in circuit noise calculation as seen in the
third-order LC resonator example in Fig. 3.9(d). While the noise calculation routine using the
typical LTI theory becomes progressively complex with an increasing order of the system, resorting
to the energy equipartition makes the noise calculation one liner.

However, in many practical circuit arrangements and operations, the conditions with which
the cquipartition theorem is established are violated, leading to non-kpT/C-noise. As discussed
in Subsection 3.1.1, there are two conditions that validate the equipartition theorem. First, the
probability distribution of the voltage across the capacitor should be the Boltzmann distribution.
Second, the cnergy in the capacitor should assume a quadratic form with respect to the voltage
across it, i.e., E¢ = Cv?/2. For the equipartition theorem to hold good, both of these conditions

should be satisfied. A few example cases where these conditions are violated:

e when nonlinear capacitors such as MOSCAPs, varactor diodes, ctc. are energy storing el-
ements. The energy stored in the nonlinear capacitor does not have the quadratic form in
general, as the capacitance varies with the voltage across the capacitor. However, in most
practical cases, fluctuations are small and we can approximate the nonlincar capacitor as a
linear capacitor. Within the accuracy of this approximation, the encrgy stored in the nonlincar
capacitor has the quadratic form and hence the equipartition theorem holds good as far as the
probability distribution of the voltage across the capacitor is Boltzmann. We will discuss this

in full details in Section 4.5 in the next chapter.

e when a system involving a nonlinear resistor is in nonequilibrium steady-state. As will be

demonstrated in the next chapter, the probability distribution of the voltage across the capac-



40

itor in the pxesence of nonlinear resistors is not Boltzmann in the nonequilibrium steady-state.

In such cases, the equipartition theorem is not valid in general.

3.3 Forced Brownian Motion

Section 3.1 focused on the Brownian motion in the absence of any external force. Similarly in Section
3.2, we have diécussed the thermal fluctuations in circuits in the absence of any external bias current.
However, in the real physical world, the Brownian motion is often subject to an external force and
hence this forced Brownian motion has a considerable practical importance. In this section, we will

study such forced Brownian motions, in both mechanical and electrical cases.

3.3.1 Mechanical Case

Let us consider a Brownian particle subject to a constant force F' as illustrated in Fig. 3.11(a) or
(b). In Fig. 3.11(a), the Brownian particle with mass m and charge ¢ is subject to an clectric field,
E, or an electric force, F = gE. In Fig. 3.11(b), the Brownian particle with mass ' is subject
to a gravitational field, g, or a gravitational force, F = mg. In either case, the Langevin equation

describing the Brownian motion is given by

1 1
) = — — - ((t — - F 3.9
D v+ p ¢(t) + - (3.91)

After a sufficiently long time, the mean velocity of the Brownian particle will reach a steady-state
valuc or the so-called terminal velocity as the external force, F, ultimately becomes equal to the

frictional force, m~yv. Therefore, if we denote this terminal velocity as vy, we have

. F
v = tl_lglo(v(t)) = (3.92)
With the help of (3.92), the Langevin equation (3.91) can be rewritten as
2w —w0) = (v~ ) + - (1) (3.99)
d o) = —7 0 m 4 .

Comparing the Langevin cquation above to the Langevin equation (3.10) in the casc of no external
force, the only change that has been made is replacement of v with v — vg. Henceforth, the Fokker-
Planck equation in this case can be obtained by replacing v with v — vp in (3.44):

vkgT OP(v,t)

P N (3.94)

OP(v,1) 9 8
—'—-a-t— + ’YUOBT)P(U,t) = B0 ’Y'UP('U,t) +

where we have used P(v — vg,t) = P(v,t) and 0/0(v — vg) = 8/0v. The steady-state probability
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Figure 3.11: Forced Brownian motion. (a) A Brownian particle with mass m and charge g subject to an electric
field E or an electric force F = qE. (b) A Brownian particle with mass m subject to a gravitational field g or a
gravitational force F = mg. (c) An electrical analogue of the forced Brownian motion. The RC-circuit is driven by a
current source.

Boltzmann-
s P(vt) /' P(\,; tz) +»P,(v) distribution

t=1, t=1 t = infinite
Figure 3.12: Evolution of P(v,t) for the velocity in the forced Brownian motion with an initial condition of

P(v,t = 0) = 6(v). t1 < t2. P(v,t) ultimately converges to the Boltzmann distribution whose mean is the terminal
velocity wp.

distribution of the velocity, Po(v), will then assume the Boltzmann distribution as in (3.45) while

we must replace v with v — vg:

Po(v) = [2—7%£] o exp [— 2,:;T(U - v0)2] (3.95)

In other words, the steady-state probability distribution of the velocity of the Brownian particle
in the presence of the external force is the Boltzmann distribution centered around vy = F/(my)
instead of vp = 0. Fig. 3.12 shows the time-evolution of P(v,t) starting with an initial condition
of P(v,t = 0) = 6(v), which eventually leads to the Boltzmann distribution given by (3.95). The
equipartition theorem still holds good, as we can easily demonstrate using (3.95) that

(v =20)%) = ksT (3.96)

m



42

An important thing to note is that when a Brownian particle is subject to an external force with
no physical boundary (such as a wall) stopping its drift, the whole system consisting of the Brownian
particle, the surrounding medium, and the thermal bath, never reaches thermal equilibrium even
though P(w,t) tcaches its steady-state distribution Po(v) given by (3.95). In the stcady-state, the
Brownian particle continuously receives mechanical work, Fug, per unit time and converts it all
into heat inste_ad of turning it into kinetic encrgy, hence keeping its velocity at a constant value,
vo. Therefore, cven in the steady-state, there is constant heat-flux into the thermal bath and the
system is never in thermal equilibrium. This is the notion of nonequilibrium steady-state, which was
discussed in Subsection 3.1.1.

In light of t.his observation, the Boltzmann distribution (3.95) and the cquipartition theorem
(3.96) in the nonecquilibrium steady-state look quite peculiar as they are the equilibrium properties
as discussed in Subsection 3.1.1. The Boltzmann distribution and the equipartition theorem in this
nonequilibrium steady-state are actually a consequence of linearity of the system. As the linear
Langevin equation (3.91) suggests, the Brownian particle’s overall response to the stochastic force,
¢(t), the damping force, —m~v, and the cxternal force, F, will be the superposition of the response
to each force thanks to the linearity. Hence, the Boltzmann distribution still appears even in the
presence of the external force which keeps the system out of the equilibrium. When nonlinearity is
involved, the situation becomes vastly different, which we will extensively investigate in Chapter 4

in an electrical circuits context.

3.3.2 Electrical Case

Figure 3.11(c) illustrates a noisy RC-circuit coupled with a constant bias current, Iy, which is an
clectrical analogue of the forced Brownian motion of the previous subsection. The Langevin cquation

describing the dynamics of the voltage across the capacitor is given by

v —1g in(t) )
RO + C (3.97)

d

—(v—1w) =
priChall)
“where vp is the bias voltage across the resistor, i.e., vp = IpR, which is analogous to the terminal
velocity in the mechanical case. Again, the only difference between the Langevin equation (3.54)
in the absence of the bias current and the equation above is the replacement of v with v — vy.
Accordingly, the steady-state probability distribution of the voltage across the capacitor will be the

Boltzmann distribution like (3.71), but with replacement of v with v — w:

27rkBT] s exp [———C(” - ’00)2] (3.98)

Pov) = { c 2%ksT
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Figure 3.13: P(v,t) ultimately converges to the Boltzmann distribution whose mean is the terminal velocity vo.

The variance of the probability distribution is then given by

(3.99)

The stcady-statc probability density and its variance are both shown in Fig. 3.13. Note that the
RC-circuit never rcaches thermal equilibrium even in the steady-state yet achieves the Bollzmann
distribution (3.98) and the equipartition theorem (3.99) thanks to the linearity of the system as

mentioned earlier.

3.3.3 Probability Distribution of Displacement

In this subsection, we will consider the probability distribution of the displacement, P(z,t), in the
case of the forced Brownian motion. To obtain the corresponding Fokker-Planck equation, we should
evaluate the jump moments, A;(z) and As(z), in (3.34) and (3.35). The first jurnp moment can be

obtained intuitively
{Ax),

Aule) =1~

=g (3.100)

—

as the Brownian particle has the drift velocity of vg. According to (3.27), the second jump moment

is given by
tofz) = B oy keT
2T AL my

(3.101)

where we used the Einstein relation (3.28) in the last equation. Therefore, the general form Fokker-

Planck equation (3.33) bccomes

OP(z,t) OP(z,1) 0*P(x,t) .
- TP (3.102)
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Po(x)
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Figurc 3.14: (a) Evolution of P(z,1) for the forced Brownian motion. (b) Steady-state distribution Fy(z) in the
presence of the boundary at © = xg.

The second term on the right-hand side corresponds to diffusion while the first term on the right-hand
side corresponds to drift of the Brownian particle with the terminal velocity of wo.
The solution of the equation above is given by

P(z,t) =

)2
U.Q_] (3.103)

1
——m exp [— D¢
for the initial condition of P(L,l = (}) = 8(x), which is illustrated in Fig. 3.14(a) for diflerent times
{; < tg < t3. In the figure, the translation of the center of the distribution with time corresponds to
the drift of the Brownian particle, while the broadening of the distribution corresponds to diffusion.
In the presence of boundaries (e.g. a wall that stops the drift of the Brownian particle), we can
obtain a steady-state solution for the drift-diffusion equation (3.102). In case where there is a wall

al x = zg as shown in Fig. 3.14(b), the steady-state solution becomes

| Lz = 20) ”’0)} (3.104)

Vo
Polz) o exp | = - (x — z0)| =e
0\.13) X exXp D z :Zo)] exp{ T

which is no more than the Boltzmann distribution as the potential energy of the Brownian particle

is given by U = F(zq — x). For instance, if the constant force F' is the gravitational force, i.e.,



F = mg, then (3.104) can be rewritten as

mg(@ — 7o) | (3.105)

which is the famous Barometric distribution [32].

3.4 Summary

In the foregoing sections, we have reviewed fundamental concepts and mathematical tools to un-
derstand and describe thermal fluctuation phenomena, using mechanical and electrical Brownian
motions as analysis vehicles. We have seen that the balance between thermal fluctuation and ther-
mal dissipation plays an important role in the energetics of the Brownian moiion and in achieving
thermal equilibrium. The Einstein relation and Johnson-Nyquist noise are the quantitative represen-
tations of the fluctuation-dissipation relation. The Einstein relation which illuminates the diffusion
process by identifying its two key elements, sensitivity and friction, will play a critical role in the
study of oscillator phase noise in Chapter 6. The Boltzmann probability distribution and energy
equipartition are key characteristics in equilibrium. In a linear system, the Boltzmann distribution
and cnergy equipartition are still valid even in nonequilibrium steady-state.

We have introduced Langevin equation and Fokker-Planck equation as powerful mathematical
tools to describe fluctuations. The Langevin equation is used to describe the time-evolution of
statistical averages of Auctuations. The solutions of the Fokker-Planck equations are time-dependent
probability distributions of fluctuating quantities.

In Table 3.3, we have listed various types of random processes and corresponding Langevin

cquations. In each Langevin cquation, the white Gaussian noise ((t) has the following properties:

(€ = 0
(€)= ToE —1") (3.106)

The table shows conversion from a given Langevin equation to a corresponding Fokker-Planck equa-
tion by specifying jump moments A;(y) and As(y) for the general form Fokker-Planck equation

{3.33), which is rewritten in the following for convenience:

OP(y,1t) s} / 1 02 \ ,
—_— = ——— - t — < 4 . Al

We will frequently use this conversion from the Langevin equation to the Fokker-Planck equation

throughout this work. In the following, we will give examples for cach type of random process in

Table 3.3.
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_ Jump Momenss in (3.33) J
Type | Langevin Eq. Ai(y) | Ao(y) Process
I y=—yy+((t) —yYy T Ornstein-Uhlenbeck
IT y=—yy+C(t)+a | —yy+a r Orustein-Ulilenbeck
I | y=1¢({) 0 T Wicner (Diffusion)
WV lg=({t)+a a r Wiener (Diffusion)
V [9=Cy)+DwK) | Cl) I'D*(y) N/A

Table 3.3: Various types of random processes. This table also shows the conversion from a given Langevin equation
to the corresponding Fokker-Planck Equation. The noise source ((t) is assumed to be white Gaussian whose mean is
zero and {C(t)¢(t")) =T6(t —#'). a is a constant.

o Type-1
The velocity of the lincar Brownian motion in Fig. 3.1 and the voltage across the capacitor in

the linear RC-circuit in Fig. 3.7(c¢) fall into this category.

e Type-ll
The velocity of the lincar forced Brownian motion in Fig. 3.11(a)/(b) and the voltage across the
capacitor in the linear RC-circuil driven by a constant current in Fig. 3.11(c) are categorized
here.

¢ Type-II1
The displacement of the linear Brownian motion in Fig. 3.1 is the type-III random process.
As will be seen in Chapter 6, the phase noise of self-sustained oscillators, i.e., ¢(¢) in the total

oscillator phase 8(1) = wot + ¢(t) {wo : oscillation frequency), also falls into this category.

e Type-IV
The displacement of the linear forced Brownian motion in Fig. 3.11(a)/(b) is in this category.
As will be scen in Chapter 6, the total oscillator phase 0(t) = wot + ¢(t) is also this Type-TV

process.

e Type-V
In the Langevin equation for this type-V random process, the coefficients C(y) and D(y) have
general dependence on y. This Langevin equation is used to describe nonlinear Brownian
motion, which we will study in the next chapter. Once nonlinearity is introduced in random
processes, the fluctuation phenomenon becomes much more difficult to understand, and this
nonlinear Brownian motion is still a field of active research, including our own research on

fluctuations and thermodynamics in nonlincar electrical circuits in Chapter 4.

The conversion procedure from the Langevin equation to the Fokker-Planck equation in the
Type-V nonlinear random process is rather involved while the appropriate treatment can be

found in [19], [24], and [25] among many others. Depending upon the physical interpretation of
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the nonlinear random process, the Langevin equation can lead to two different forms of Fokker-
Planck cquations, i.e., Ito’s form [43], [44] and Stratonovich’s form [45]. ‘Table 3.3 shows the
1to’s form and unless otherwise mentioned, we will use this Ito’s form for the Fokker-Planck
equation. For the reference, the Stfatonuvi(:h’t: form of the Fokkcr-P]anckA equation for this
type-V nonlincar random process is given by

OP(y,t) rr

9 ) )
- ; LY LD Py, t 3.108
g (.,)y{C(y)P(y,t)}Jr 5 By D('U)ay{ () Py, )} (3.108)
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Chapter 4 Fluctuations and Thermodynamics in

Nonlinear Electrical Circuits

This chapter presents one of the main contributions of our work on statistical clectronics, that is,

fluctuations and thermodynamics in nonlinear electrical circuits.

4.1 Motivation

In the previous chapter, we reviewed the theory of thermal fluctuations in linear Brownian systems.
The analytical examples were a Brownian particle immersed in liquid with a linear friction and a
sitnple RC-circuit consisting of an ohmic resistor and a linear capacitor. The study of the therrnal
fluctuation in such lincar systems was [acilitated via Langevin or Fokker-Planck equations, which
we could solve explicitly to describe the time evolution of the statistical averages or the probability
distributions of the fluctuating quantitics.

Let us recall the stcady-state properties of the linear Brownian system discussed in the previous
chapter. If there is no cxternal cnergy pumping into the linear Brownian system via external
force or bias current (unforced Brownian motion), the system ultimately reaches equilibrium steady-
state, where the probability distribution of the fluctuating quantity, y, is given by the Boltzmann

distribution:

. Ely)
Po(y) o< exp [— ) ]

A
ol (4.1
in which E(y) is the encrgy stored in the associated energy storing clement. Tor a linear energy
storing clement, the energy F(y) normally takes a quadratic form in y, i.e., I(y) = Ay?/2 with a
certain constant A. For instance, the energy of a linear capacitor, (', is given by E(v) = Cv?/2
where » is the voltage across the capacitor. I the encrgy assumes the quadratic form, the mean
fluctuation energy (E(y)) in equilibrium is kgT/2, or (y?) = kgT/A, as shown in (3.3) and (3.4),
leading to the so-called equipartition theorem.

When energy is pumped into the linear Brownian system from an external source, such as an
external force or a bias current (ferced Brownian motion), the lincar system will eventually reach
nonequilibrium steady-state. In the previous chapter, using both mechanical Brownian motions and
noisy RC-circuits, we have demonstrated that the Boltzmann distribution and the equipartition
theorem are valid even in this nonequilibrium steady-state as far as the system is lincar. These

steady-state propertics of the lincar Brownian system are summarized in Table 4.1.
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Brownian ) Linear System Nonlinear System
Motion || yo = (y) | Steady-State Poly) [{(E(y—10)) . Py) | (Ely—w))
Unforced o = 0 | Equilibrium Boltzmann| kgT/2 Boltzmann |+ kgT/2 in general
Forced yo 7 0 | Nonequilibriumn | Boltzmann| kgT/2 non-Boltzmann|# kgT/2 in general

Table 4.1: Probability distribution and mean fluctuation energy in linear and nonlinear Brownian systers in their
steady-state. y is the fluctuating quantity, Fo(y) is the steady-state probability distribution, and E(y — yo) is the
fluctuation energy.

Vsuppty
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Figure 4.1: A general nonlinear RC-circuit consisting of a nonlinear resistor and a nonlinear capacitor. The circuit
is caupled to an ideal current source generating a constant bias current of /p.

Many circuits encountered in practical circuit design involve nonlincarity of various sorts. In our
familiar example of the RC-circuit in Fig. 3.7(c) (unforced brownian system) or Fig. 3.11(c) (forced
Brownian system), nonlinearity can be introduced by either replacing the lincar capacitor with a
nonlinear capacitor or replacing the lincar resistor with a nonlinear resistor. Figure 4.1 illustrates a
general nonlincar RC-circuit, which consists of a nonlinear resistor and a nonlinear capacitor. The
circuit is coupled to an ideal current source generating a bias current of Io.

The current through the nonlinear resistor, [ g{v), varics nonlincarly with the voltage, v, across it
and hence the incremental resistance, R{v), or the incremental conductance, G(v) = 1/R(v), defined
1 dilgp

Ro) = dv (42)

G(v) =

varies with v in general. Active devices are such nonlinear resistors. For instance, in a MOS
transistor, the drain current depends nonlinearly upon the drain-source voltage for a given gate-
source vollage. Figure 4.2 shows a hypothetical nonlinear current-voltage relation, which resembles
the IV-curve of the MOS transistor.

The nonlinear capacitor in Fig. 4.1 accumulates electric charge, q(v), which has a nonlincar

dependence on the voltage, v, across the capacitor, as shown on the left-hand side of Fig. 4.3. The
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Figurce 4.2 Nonlinear resistor and its conductance G(v).
incremental capacitor, C(v), delined as a derivative of the charge with respect to the voltage
P , > g I g
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= (4.3
o (4.3)

varies with v, in general. Typical examples of such nonlincar capacitors arc capacitance of a reverse-

biased junction diodes, MOS capacitors, etc. [46]. The current in the nonlinear capacitance is given

by
dg dv dq

il e C{v)o (4.4)

where we have used (4.3). The energy stored in the nonlinear capacitor is given by

q v
Ec(v) = / v{q)dg = / C(v)vdw (1.5)
Jo Jo

where we have used (4.3) again. This cnergy stored in the capacitor corresponds to the shaded arca
in the g-v curve on the left-hand side of Fig. 4.3. The energy of the nonlinear capacitor does not
assume the quadratic form in general, as will be secn later in Section 4.5.

As shown in Fig. 4.1, we assume that the nonlincar resistor generates white thermal current
1

noise’, i, (v;t), which is widely modeled as

in(v;t) = a(v)n(t) (4.6)

\

where a(v) is a deterministic function of the quiescent voltage, v, across the resistor, and is de-

termined by the specific physical construction and property of the nonlinear resistor and n(tf) is

1Some nonlinear resistors such as MOS transistors generate thermal noise while other nonlinear resistors such as
bipolar junction fransistors generate noise of non-thermal origin, e.g., shot noise.
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Figure 4.3: Nonlinear charge g(v) and nonlinear capacitor C(v) versus voltage v across the capacitor.
stationary white Gaussian whose mean is zero and double-side band (DSB) PSD is IV, that is,
() = 0
(n( (")) = N&({t' —t") or — =2N (4.7)
For the lincar case of the ohmic resistor, R, a(v) and N are simply

alv) = 1

2kpT )
N = 1.8
] = (1)

The steady-state propertics of the nonlinear RC-circuit in Fig. 4.1 are quile different from those
of the lincar RC-circuit discussed earlicr. First, when the nonlincar circuit undergoes unforced
Brownian motion in the absence of bias current (I = 0), it eventually evolves to equilibrinm steady-
state, in which probability distributions are Boltzmann. This is because no matter if the Brownian
system is linear or nonlinear, equilibrium probability distributions must be Boltzmann demanded
by statistical physics [32]. However, the equipartition theorem does not necessarily hold true even
in equilibrium if the energy storing element is nonlinear due to the nonquadratic form of the energy
expression, as will be seen in Section 4.5.

Second, when the nonlincar RC-circuit of Fig. 4.1 experiences forced Brownian motion coupled
with external bias current (Jo # 0), it will reach nonequilibrium steady-state. In the nonequilibrium
steady-state and in the presence of nonlinearity, the Boltzmann distribution and the equipartition
theorem arc not valid in general since the conditions under which the two properties hold true are not

satisfied any more. The probability distribution and the mean energy cannot be determined unless
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physical details of the nonlinear systems are known. The steady-state properties of the norlinear

BBrownian system are also summarized in Table 4.1,
Fluctuations in nonlinear systems still remains a difficult subject and constitute an active ficld of
research in many disciplines [19], [10]. The subject becomes particularly hard when the nonlincarity
is introduced in the resistors and their corresponding fluctuations (that is, in the presence of the
nonlinear resistor), involving several conceptual difficultics of a physical nature. For instance, there
is much confusion and many unsettled disputes on the fluctuation-dissipation balance in nonlinear

systems [40].

We will exemplify this difficulty in understanding fluctuations in nonlinear systems using a MOS
transistor shown in Fig. 4.4(a) as a practical example of the nonlinear resistor: for a fixed gate-source
voltage, the drain current varies nonlinearly with the drain-source voltage. The nonlinear resistance,
Tout, depicted in Fig. 4.4(a) is commonly referred to as the output resistance and is defined as

1 _ dIp
Tout Ovas

(1.9)

This 1/r,,: 18 a special case of G(v) defined in (4.2). The MOS transistor can opcrate in three
different regimes, .c., off, pinch-off and triode regimes [46]. In the pinch-off regime, the drain
current depends weakly on the drain-source voltage, and hence the outpul resistance, 7oy, can be
quite large. In the triode-regime, the MOS iransistor behaves similarly to the ohmic resistor (but
it still exhibits nonlinearity) and the output resistance, roue, is often called chanuel resistance as it
models the energy dissipation in the conductive channel of the MOS transistor.

Fig. 4.4(a) also shows a commonly used modec! for the channel thermmal noise, i,(t), of the MOS

transistor, whose power spectral density is given by 47], [48

2
AT 4kgTvga0 (4.10)

where ggo is the channel conductance when the voltage difference between drain and source is zero,

1.6,
_ 0Ip 1
9do = EON lvg.=0 =
3

vge=0 (4.11)

Tout
and « is a fitting paramcter which varies with the bias conditions [47], 48]. Figure 4.4(a) shows
v versus vq, for a fixed vgys for both mobility-limited and velocity-saturated transistors. These two
modes of operation are loosely called long and short channel regimes, respectively. The MOS channel
thermal noise shown in (4.10) is not Johnson-Nyquist type (3.52) in the sense that the extra factor
~ varies with the bias voltages:

This channel thermal noise model of the MOS transistor, (4.10), is a special case of the more

general noise model for the nonlinear resistor given by (4.6) and (4.7), where a{v) and N in this
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Figure 4.4: (a) A MOS transistor as a nonlinear resistor and its widely adopted channel thermal noise model. The
fitting parameter <y in the noise PSD depends on the bias voltages and behaves differently between the short and long
channel transistors. (b) A MOS transistor in parallel with an external capacitor is coupled to an ideal current source.
{c) a small-signal model for the circuit in (b). (d) The capacitor in the circuit can store mean fluctuation energy much

larger than kpT'/2.



special case are given by

aly) = v(v)
N = 2kpTgu (4.12)

respectively, where the voltage, v, corresponds to the drain-source voltage for a given gate-source

voltage.

Figure 4.4(b) depicts a MOS transistor with a fixed gate-source voltage, which is in parallel with

an external capacitor, C', and is coupled to an ideal current source gencrating bias current of /y. The

equivalent small-signal circuit including the channel thermal noise is shown in Fig. 4.4(c), where,

Tout 18 the output resistance of the transistor at the quiescent defined by (4.9). Now, a closc look into

the small-signal circuit from thermodynamics viewpoints results in several fundamental questions

on the noise model for the MOS transistor:

1.

Wyatt and Coram [49] recently made an effort to assess the physical validity of the white
thermal noise model of nonlincar resistors given by (4.6) and (4.7) (e.g., the MOS channel
thermal noise given by (4.10)), based on laws of thermodynamics. Their study led them to
a conclusion that the model does not meet the basic requirements of thermodynamics. Their

analytical procedure that led to this conclusion is as follows.

First, in the circuit of Fig. 4.4(b) and for Iy = 0, establish a Fokker-Planck cquation for the
probability distribution of the voltage across the capacitor, by utilizing the channel thermal
noise model given by (4.10). Second, the equilibrium probability distribution of the voltage
across the capacitor must be Boltzmann demanded by statistical physics. Third, if one plugs
the Boltzmann distribution into the Fokker-Planck equation, one can verify that the Boltzmann
distribution is not the solution of the Fokker-Planck equation, hence leading to the conclusion

that the nonlinear resistor noise model is flawed.

This incompatibility between the Boltzmann distribution and the nonlinear resislor noise model
in Wyatt and Coram’s study, if true, presents a scrious dilemma since the Boltzmann distribu-
tion in equilibrium is a fundamental fact of thermodymamics while the channel thermal noise

model is {irmly established through a direct measurement of the MOS transistor [47], [48].

. Aside from the above study in the literature, thermodynamically inspired speculation based

on the thermal fluctuation theory in Chapter 3 leads us to a fundamental question about the

equivalent small-signal model including the channel thermal noise in Fig. 4.4(c).
Il the bias current Iy in Fig. 4.4(b) is large enough to drive the MOS transistor into the pinch-off
regime, the MOS transistor’s oulput resistance, r.,;, becomes a fictitious resistance i which

no “thermnal dissipation” occurs [46!. Even though there exist current through and voliage
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across the resistor, the power dissipation in the resistor {multiplication of the voltage and the

current) do not correspond to the thermal dissipation but it is conservatively used as “work”

to change the kinetic energy of the electrons in the ballistic region of the MOS transistor via
chanuel length modulation. This accounts for the fact that 7.+ does not geﬁeram any thermal
noise [46]. Hence there does not exist any thermal dissipative clement corresponding to the
thermal noise, 4,(#), in the small-signal circuit in Fig. 4.4(c). Then, how does the circuit
achieve the balance between thermal fluctuation and thermal dissipation which we discussed

in the previous chapter?

Physically speaking, there actually exists a thermal dissipative element in the circuit of Fig.
4.4(b), which is the transistor’s channel, where the electrical encrgy is turned into heat and
thus channel thermal noisc is generated. However, this energy dissipation does not seem to be
reflected in the small-signal model of Fig. 4.4(c) where we practically calculate all the physical

noise Processes.

In the linear RC-circuit of Fig. 3.7(c) or Fig. 3.11(¢), we can use the equipartition theorem to
derive the kpT/C-noise in the capacitor, as discussed in the previous chapter. Alternatively,
this kpT/C-noise arises from the fact that the voltage thermal fluctuation, 4kgTR, and the
resistance, R, originate from cxactly the same physical origin. As R increases, the vollage
noise intensity, 4kgT R, increases while the bandwidth, 1/{RC), decreases, hence keeping the

mean-squared voltage across the capacitor at kgT/C regardless of the resistance [50..

However, in Fig. 4.4(¢), rou: and i, originate from completely different physical origins and
hence the mean-squared voltage fluctuation across the capacitor in Fig. 4.4{c) can deviate far

from kpT/C. Indeed, a simple calculation leads to:

(Av)?) = /'wﬁﬁ(ﬁvﬁ

o 2w Af
* dw r2
= 2knT~ - out
B1 Y440 -/—oo o _——1+w2027'§ut
kT Lo
= 1(3’_' * Y9doT out (4-115)

Here, the vg407ou: factor can be very large if Iy is large enough to put the transistor in the pinch-
off regime. In the long channel transistor, gao = ¢m where g, is the transistor transconductance
and hence Yg4oTout ~ GmTout 18 the intrinsic voliage gain of the MOS transistor in the common
source arrangement loaded with an ideal current source as in Fig. 4.4(b). This gain in the
long-channel transistor can be typically as large as scveral thousands and hence the mean-
squared voltage fluctuation across the capacitor can be a few orders of magnitude larger than

kg'T'/C, or equivalently the mean thermal encrgy of the capacitor can be orders of magnitude
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greater than kpT'/2. Figure 4.4(d) compares this non-Boltzmann distribution of the voltage
across the capacitor to the Boltzmann distribution for the same capacitor. As can be seen,
the non-Boltzmann distribution is much fatter and shorter than the Boltzmann distribution.
Even though the mcan cnergy does not have to be kgT'/2 as the equipartition theoremn is not
valid in ‘Ghis_nonlinea.r nonequilibrium steady-state case as seen in Table 4.1, still how could

the capacitor store such large thermal fluctuation energy?

To the best of our knowledge, these questions on the physical validity of the contemporary
noise mode! for the nonlinear resistors have not been clearly addressed so far, which justifies our
investigation of the fluctuations in nonlinear electrical circuits in this chapter. As the nonlinear noise
models such as (4.10) are widely used in the electrical circuit design including our work, we need to
confirm its physical soundness, negating the conclusions in [49]. Likewise, we need to address the
issues on the fluctuation-dissipation balance in nonlinear resistors as well as the large mean thermal
energy of the capacitor. A key to answering the last two questions is a study of encrgy flows in the

nonlinear electrical circuits, as will be seen later.

4.2 Problem Formulation

The nonlinear RC-circuit in Fig. 4.1 will be the analysis vchicle in our study of fluctuations in
nonlincar circuits in this chapter. The Langevin equation for the voltage, v(t), across the capacitor

is obtained using the KCL and KVL:

V=

I —Ir(v)  oav) ,
-t (4.
o) T ow ™Y (4.14)

where this Langevin cquation falls into the category of type-V random process in Table 3.3. Ac-

cording to the table, the corresponding Fokker-Planck equation is given by

d 9 [Ig(w) — I ] N & [052(1)) , o
mP(L,t) = 3 Co0) P(v,t)] T 5 G0 ;(JZ(?))P(U,t) (4.15)

If we define the probability fluxes J(v,t) and Jo(v, ) as

_ Igv) N 0 [o?(v) I X
J(w,t) = 0 P(v,t) + 55 {CQ(U)P(U,”J (4.16)
Jo(o, ) = —-C—;E%P(v,l:) (4.317)

the Fokker-Planck equation (4.15) can be rewritten as a continuity equation:

Pa

o, o . ., R
E)—tP(v,t) = -(,%{Jow, ) + J(v, 1)} (4.18)
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Once the circuit reaches steady-state, the voltage v(t) can be decomposed into its time-independent

mean, vo = {(v(#)), and fluctuation, v, (t), around the mean voltage, that is,
v(t) = vg — v (1) (4.19)
The mecan voltage vg is determined by the bias condition, .e.,
Iy = Ig(vg) (4.20)

We will consider threc different cases in the following sections. In Section 4.3, we study the
special case where the resistor and the capacitor in Fig. 4.1 are both linear. Even though we have
alrcady discussed this linear circuit in the previous chapter, we will reconsider it in this section
with special attention to its energetics. The encrgetics concepts we develop here prove to be very
insightful and will be helpful in understanding nonlinear fluctuations in the following section. In
Section 4.4, we consider the case where the resistor is nonlinear and the capacitor is linear in Iig. 4.1.
An example of such nonlincar circuit is already presented in Fig. 4.4(b). This section constitutes the
most important body of this chapter, and addresses all the questions raised in Section 4.1. Section
4.5 investigates the nonlinear circuit in Fig. 4.1 with a nonlinear capacitor and a lincar resistor,

mainly focusing on how the nonlinear capacitor modifies the equipartition property.

4.3 TFluctuations in Linear RC-Circuits, Revisited

In this scction, we will study the special case where both G and C in Fig. 4.1 arc independent of
voltage. This linear case is redrawn in Fig. 4.5 for convenience. The ohmic resistor, R, generates

Johnson noise, and hence a(v) = 1 and N = 2kpT/R according to (4.8). In this linear case, the
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Langevin equation (4.14) and the Fokker-Planck equation (4.15) will simplify to

vg —v  n(t)

P . ™ (4.21
’ RC " C 21)

7] ' 0 — g kT o?

—P{v,t) = v : 4.22)

OTP(L’I) d?) [ P\U7t)] R(/vz (),”ZP( T) ( 2 /

respectively, where vy = Io/R according to the bias condition (4.20) and n{t) = i,(t) in (4.6) as

a(v) = 1. The probability fluxes in (4.16) and (4.17) are also simplified to

kgl O ;
J(v ) = RC' P(v, t)—}—Rté,?d P(v,t) (4.23)
Jo(v,t) = _-];’%P( ) (4.24)

The Fokker-Planck cquation (4.22) will be extremely useful in evaluating cnergy flows and entropy

evolution in the circuit, as can be seen in the following two subsections.

4.3.1 Energetics

This subsection studies energy flows in the linear RC-circuit. The rate of the mean cnergy increase

in the capacitor per unit time is given by

L ko)) = -c/ 20—sz
= —C,/ v %{ Jo(v, t) + J(v,t)}dv (4.25)

where we have used the continuity equation in (4.18). Integrating by parts and assuming that the

probability density rapidly decays to zero with v — foo, we obtain

;f (Ec(t)) =-C /_ v{Jo(v,t) + J(v,t) }dv (4.26)

Using {4.23) and (4.24) here and noting that (v(t)) = vo, (*(8)) = ((vo + va(£))?) = v3 + (¥2(1)),

VAT

we obtain
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volvy (%)  kgT /OO 3]
RC + e + RO? | 71%P(7),t)dv_

_ ugly) @ kgT [ B
= = 7 + e ] P(v,t)dv

_ @A) ksT \
= = RC (4.27)

where we integrated by parts to obtain the second line and used ] P(v, t)dv = 1.
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The mean power dissipation in the resistor is given by

(Pr(t)) =

(4.28)

Here the first and the second terms correspond to the de power dissipation due to Iy and the
dissipation of the fluctuation energy, respectively.
The mean energy input per unit time from the fluctuation and the current source to the circuit

is given by

LBt = Tolw(®) + (o)
= Iovg + (n(t)ua(t))
g kT
= ESJ’ e (1.29)

where (n(t)v,(t)) = kpT'/(RC) was obtained from the Langevin equation (4.21) using the stochastic
methods introduced in Subsection 3.1.2.

Now combining (4.27}, (4.28), and (4.29), we notice that

(Bin(1)) = S (Ec(t)) + (Palt) (4.30)

which is the demonstration of the energy conservation, or the first law of thermodynamics. In words,
the mean input energy, {Ey,), to the systern coming from the thermal bath in the form of fluctuation
and the current source will cither increase the mean energy of the capacitor, (E@), or result in the
mean power dissipation, {Pg(t)), in the resistor.

According to the conservation of energy, the net heat fluz, Quee, per unit time from the RC-
circuit to the thermal bath is given by the de power dissipation duec to I in the resistor minus the

mean energy increase in the capacitor per unit time, i.e.,

d d,
'(Eant(t) = IO”O"‘E(ECUJ»
9 9
o, (R ksT |
N e
(Pr(t))

where we have used (4.27). The first and sccond terms on the right-hand side represent heat
dissipation per unit time in the resistor due to Ip and fluctuations, respectively. These two terms
constitute {Pg(t)) as can be scen from (4.28), that is, the heat flux from the circuit to the thermal

bath through the resistor per unit time. The third term on the right-hand side of (4.31) represents



60

dc power

(P:®)

, cm= iw=n0 @D

AN
\
\
]
~N o0
%, dissipation
Vs
~
N 3 i

R -~ .
S Circuit -~ fluctuation
-

-
—— -

Thermal bath

Figure 4.6: Energetics in the linear RC-circuit. In the steady-state, the dissipation of the fluctuation energy in the
resistor and the heat flux from the thermal bath to the circuit via fluctuation cancel each other out.

the heat flux from the thermal bath to the circuit in the form of thermal fluctuations per unit time.
These heat flows are illustrated in Fig. 4.6.

In the steady-state, the fluctuation in-flux (the third verm) and the dissipation out-flux (the
second term) must balance each other out and hence we have

]iTBT
- C

(4.32)

which is in complete agreement with the equipartition theorem. The net heat flux from the circuit
to the thermal bath per unit time in the stecady-state is then Ipug. As mentioned earlier, due to
this constant net heat flux in the stecady-state, the system never achieves thermal equilibrium unless
Ip = 0. This notion of nonequilibrium stcady-state has been mentioned several times so far, but
in rather qualitative fashion. In the following section, we will discuss the entropy evolution in the

linear RC-circuit, also quantitatively demonstrating the nonequilibrium steady-state.

4.3.2 Entropy Evolution

This subsection discusscs the time-evolution of the entropy in the linear RC-circuit of Fig. 4.5. In
the case of Iy = 0, the cntropy evolution for the linear circuit has been analytically worked out in
[49]. Our calculation in this subsection is the generalization of the work in [49] for an arbitrary bias
current, Ip.

The entropy of the RC-circuit can be expressed as

o
Src = —kp / P(v,t) ln P(uv,t)dv (4.33)

o =00

where P(v,t) is the probability distribution of the voltage across the capacitor. This is the definition
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of entropy in statistical physics '32], [51] and also the same definition is used in information theory
[4). This statistically defined entropy is identical to the thermodynamically defined entropy [32],
which will be used to evaluate the entropy increase in the thermal bath, shortly. The instantancous
change of the entropy of the RC-circuit per unit time is ‘

%S’RC(t) = —kg ‘/_oo gt (v,0)In P{v,t}dv — kp ((;t / P(v,t)dv

= —kp / —,?/—{J('u,t) + Jo(v, )} ln P(v, t)dv

J—o0

10
= kg / {J(v,t) + Jo(v, 7‘)}—(—”——/7(;/ (v, t)dv
= kB/ J(v P(v ) EZP( Jdv (1.31)

where we have used the continuity equation (4.18) to obtain the second line while we integrated by
parts to obtain the third line.

On the other hand, the entropy change in the thermal bath is, by definition in thermodynamics,
the net heal flux into the thermal bath from the RC-circuit divided by the temperature of the

thermal bath [32]:

qbath( Td_[_Qnet( ) (435)
Using (4.31) here, we obtain
d I()’U() 1d
—— = (1
77 ot (1) T~ T el

= g/ vJ (v, t)dv (1.36)
TJ

where we have used (4.26) to derive the second line.
Since the total entropy, Stotal, Of the whole system consisting of the RC-circuit and the thermal

bath is the sum of the entropies of the RC-circuit and the thermal bath, namely,

Stotal = SRC + Shath (4.37)

the change in the total entropy per unit time can be calculated using (4.34) and (4.36):

d © O kg o
Estoml(li) = / J(—'Uf Bd—])

TP
_ [T B L, +£‘:P2>0 (4.38)
= .7 PR "TRCZOw | < o

As the time-derivative of the total entropy is non-negative, the total entropy never decrcases
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Figure 4.7: (a) A nonlinear RC-circuit with a nonlinear resistor and a linear capacitor. (b) An example of such
nonlinear circuit: A MOS transistor in parallel with a linear capacitor. For a fixed gate-source voltage, the MOS
transistor acts as a nonlinear resistor.

with time evolution, in agreement with the second-law of thermodynamics. Once a system reaches
thermal equilibrium, the total entropy of the system reaches its maximum and stays constant at the
maximurm value [32]. Hence, the equality in (4.38) is satisfied in equilibrium. This notion can serve
as a criterion in determining if a system reached equilibrium or not in its steady-state.

Lot us see how this works in the linear RC-circuit. The steady-state solution of the Fokker-Planck

cquation (4.22) is given by the familiar Boltzmann distribution:

Clv — 7)0)1
P —— 3¢
o(v) o exp { T (4.39)
Plugging this steady-state solution into (4.38), one obtains
d Iov
—CEStOtal = % [in steady-state] (4.40)

For Iy =0, (d/dt)S,o1a = 0 in steady-state and hence the total entropy doces not change any more,
implying that the system reached thermal equilibrium in steady-state. For {o > 0, the total entropy
grows without bound cven in stcady-state according to (4.40) and hence the system never reaches
thermal equilibrium. This is a quantitative demonstration of the nonequilibrium steady-state for

Jo > 0 (forced Brownian motion).

4.4 Fluctuations in RC-Circuits with Nonlinear Resistors

This section investigates the circuit of Fig. 4.1 with a nonlinear resistor and a linear capacitor,
as redrawn in Fig. 4.7(a). This section represents the most important contribution of the work

presented in this chapter, and addresses all the questions raised in Section 4.1. An example of
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such nonlinear circuit has been alrcady shown in Fig. 4.4(b), which is redrawn in Fig. 4.7(b)
for convenience. In this example, a MOS transistor is in parallel with a linear capacitor. Tor a
lixed gate-source voltage, the MOS transistor acts as a nonlincar resistor in which the drain current
* depends nonlinearly ou the drain-source voltage. |
The Langevin cquation for the voltage, v, across the capacitor in Fig. 4.7(a) is obtained by

replacing C'(v) with C in (4.14):

o Io — IR('U) a('v)
vTTC C

- n(t) (4.41)

Similarly, the Fokker-Planck equation for the probability distribution of v can be obtained from

(4.15) to be:
N

2C*

a ., 8 [Ir(v) — Iy
= P,t) = — | L2 P(o,t
ml—’\v,t) 5 c (v, t)] +

o {?0)P(v,)) (1.42)

The operation bias voltage, vg, is determined by the bias condition:
Io = Ig(vo) (4.43)

Now utilizing these equations, we will discuss stcady-state properties, energetics, fAuctuation-
dissipation relations, and entropy evolution in the nonlincar circuit in the following subsections. We

will address all the questions raised in Section 4.1 along the way.

4.4.1 Steady-State Properties

The steady-state probability distribution, Pp(v), of v is obtained by solving the Fokker-Planck

equation (1.42), while setting its left-hand side to zero and P(v,t) to Pp(v):
2C d .
T\T{IR(U) — Ip}Polv) + %{(12(1))]3()(1})} = (1.44}

Equilibrium Steady-State

Let us first discuss the case of Iy = 0, where the system attains the equilibrium steady-state. In this
case, the solution of (4.44) for [y = 0 should be the Boltzmann distribution, as required by statistical
physics. However, in [49], Wyatt and Coram showed that the Boltzmann distribution cannot satisfy
(4.44) for Iy = 0 and hence the widely accepted noise modeling for the nonlinear resistor (4.6) (e.g.
MOS transistor’s channel thermal noise) used in constructing the Fokker-Planck equation (4.42) is
flawed. Indeced, we can explicitly obtain the solution of (4.44) for Iy = 0, which does not follow
Boltzmann distribution:

Py(v)

7 v .2
2CTg{v) Cv jl (4.45)

1
— oxp |~ [ =B XD | — — e —
2) P17 ] Na2w) ”] %‘Xp[ %sT
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This consideration seems to present a serious dilemma as emphasized in [49]. On one hand, we
must have the Boltzinann distribution as the equilibriumn probability density. On the other hand, we
have experimentally verified noise models for nonlincar resistors such as MOS transistors’ channel
thermal noise, which can be modeled as (4.6). And these two facts arc seemingly ihcompatible! This
dilemma was raised as the first question in Section 4.1.

However, this paradox can be vesolved by closely examining the underlying assumptions of the
nonlinear resistor noise model, i(v;¢) = a(v)n(t), in (4.6). If fluctuation, n(t), is large, the voltage,
v, in a(v) fluctuates by a significant amount due to the large fluctuation, and hence determining o (w)
becomes a meéningless task as «(v) itself is a random process. However, in all the practical noise
measurements which led to the nonlinear resistor noise model [47], [48], a(v) is always assumed
as a fixed value where the dc bias voltage across the nonlincar resistor, v, is used as v (in the
case of Iy = 0, vo = 0). This is because the fluctuations are already assumed to be very small:

Mathematically speaking, if the fluctuations are small, we have

a(v) - n(t)

Q

a(ve) - n(t) + o' (vo) Av - n(t)

Q

a(vg) - n(t) (4.46)

where Av is the fluctuation of the voltage v due to n(t) around the quiescent vg. In the above
calculation, we neglected Av-n(t) as both Av and n(t) arc very small, hence leading to a{v) =~ a(vg).

Since the nonlinear resistor noise model in (4.6) was derived with this a priori assumption that
flnctuations are very small, solving (4.44) with the “unapproximated” a(v) and Ig(v), which take
into account their dependence upon v all across the possible range of v, only causes approximation
inconsistency, lcading to a wrong resuls. The work in {49! led to the dilemma for this reason. In
order to stay consistent, before solving (4.44), we should take approximations for a(v) and Ix(v)
using Taylor expansion, assurning small fluctuations.

Now we will solve (4.44) using this small-fluctuation approximation. For small fluctuations, we
can take the following approximation for (v} in (4.44) Jor I =0, vo =0 and v =vg —v, = v, K

1):
[r(v) = G(0) v+ -- (4.47)

where G(v) is defined in (4.2). Also, we replace o(v) with ¢?(0) in (4.44) according to {4.46). Then,

the differential equation (4.44) for Iy = 0 is approximated as

Ryl
N «a2(0)

d
~uPp(v) + E—‘Po(v) =0 (4.48)



whose solution is

2k5TG(O0)  Cv? |

. 4.49
J\/.()z2 (()) 2](7BT_‘ ( )

Py(v) o exp |—

In Fig. 4.7(b) in which the MOS transistor in the triode-regime (lo = 0) is the nonlinear resistor,
(v = 0) = &*(v = 0) = 1 [47], [48], G(0) = gao according to (4.2) and (4.11}, and N = 2kgT gao
as shown in (4.12) and hence (4.49) is no more than a Boltzmann distribution, now in complete
agrecment with the cequilibrium statistical physics.

More generally, (4.49) should be Boltzmann distribution demanded by statistical physics and
therefdre, the following criterion to assess physical validity of the nonlincar resistor’s thermal noise

model (4.6) is established:
2kpTG(0)

- 4.50)
Nty (4.50)

Then, for Iy = vo = 0, the PSD of the thermal noise (4.6) for a nonlinear resistor is given by

=2
fﬂmwﬂzwwﬂm=%ﬂ@w) (4.51)

where we have used (4.7) and (4.50). This equation (4.51) means that any given nonlinear resistor
must behave like an ohmic resistor producing the Nyquist noise for Jo = vg = 0 as far as the resistor

generates thermal noise.

Nonequilibrium Steady-State

In the presence of the bias current in the nonlinear circuit of Fig. 4.7(a), i.e., for Jy # 0, the
system will attain nonequilibrium steady-state in the long run and hence the steady-state probability
distribution of v is not Boltzmann in general, as shown in Table 4.1. Again using the small-fluctuation

approximation, we oblain

Ir(v) = Io+G{vg)-(v—wy)+--- (4.52)
;%{QQ('U)PO(‘U)} g Clg(t’o)g;PO(U) (4.53)
which simplify (4.44) to

2C¢° G(vo) d _,
N a2y YT I) F gr () =0 (1.54)
The solution of this equation is

2kpTG(vo) Clv— vo)?”
Na?(vg) 2%ksT |

Py(v) x exp | —
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As pointed out carlier, this is not the Boltzmann distribution or, 2kgTG(vo) # Na?(vg) in general.

This distribution results in the following mean-squared voltage fluctuation across the capacitor:

kgT  Na*(vo)
T 2 — B .
<(,U 1/0) > C 2kB,I'G(‘U())

(4.56)

For example, in Fig. 4.7(b) using the MOS {ransistor as a nonlinear resistor, No®(vo) = 2kgT¥gdo
and G(vg) = 1/7oy: by definition, simplifying (4.56) to

(v~ 1)0)2> = 51(3'1 Yo" out (4.57)
which is in complele agreement with (4.13) obtained using a small-signal model. As already men-
tioned in Section 4.1, this variance can be orders of magnitude larger than kgT'/C in the pinch-off
regime as shown in Fig. 4.4(d). How could the capacitor in parallel with the nonlincar resistor store
mean thermal energy so mnuch larger than kg7’/2? This is the third question raised in Section 4.1.
Additionally, another question in the context of the MOS transistor circuit in Fig. 4.7(b) is how
the circuit balances fluctuation and dissipation as rey: physically does not correspond to thermal
dissipation as discussed in Section 4.1. Then where is the thermal dissipative clement corresponding
to the channe! thermal noise? This is the second question raised in Section 4.1.

Now, we will address these questions, by closely investigaling the encrgetics of the system.

4.4.2 Energetics

We will again hire the small-fluctuation approximation in dealing with the Fokker-Planck equation

(4.42). By using the approximations (4.52) and (4.53) in (4.42), we obtain

T 92

3, d [Gwo)-(v—w = o2

—P(o. ) = — ._._._—0) y -
6tP(L’L) v C Pl.t)] +

UO)(‘%TP(UJ) (1.58)

The probability fluxes J(v,t) and Jo(v,t) in (4.16) and (4.17) are then also simplified to

v Glw) v, N , 0 \ -
J(v,t) = 5 Pv,t) + 502" (’Uo)%P(’U,/,) (4.59)
Jo(v,t) = —-C—;@—O(wP(v,t) (4.60)

Now, using the same technique used in Subsection 4.3.1, one can show from (4.58) that the mean

encrgy increase in the capacitor per unit time is given by

N .
gg — (1) (4.61)

(Bo(t)) = —G(wo) - (v3) + 50

Similarly, using the same technique hired in Subsection 4.3.1, one can show that the mean power
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dissipation in the nonlinear resistor is given by

(Pr(t)) = (I(v) - v) = Iovo + G(vo) - (v2) (1.62)

Here, the first and the sccond terms correspond to the de power dissipation duc to Ip and the
effective thermal dissipation of the fluctuation energy, respectively. Even though G(wvo) is a fictitious
conductance in which no physical thermal dissipation occurs in general (e.g., in the MOS transistor,
1/G(19) = Tout-) as mentioned earlier, it basically controls the number of clectrons flowing into the
nonlinear resistor in which real thermal dissipation occurs (e.g., in the MOS transistor, the thermal
dissipation occurs in the conductive channel) and hence G(vo) in any nonlinear resistor effectively
represents the thermal dissipation inside the nonlinear resistor, and hence mathematically scrves as a
thermal dissipative element. If G(vg) is smaller, the number of fluctuating electrons flowing into the
nonlinear resistor becomes smaller, reducing the cffective thermal dissipation as the sccond term of
(4.62) clearly suggests. This observation will play a key role in addressing the fluctuation-dissipation
issue in the nonlinear circuit as will be seen shortly.

The mean energy input per unit time from the thermal bath (in the form of fluctuations) and

the bias current to the circuit is given by

%(Em(t» = (o + in(D)0) = Tovo + %UZ(UO) (4.63)

Combining (4.61), (4.62), and (4.63) lcads to the conservation of energy (first law of thermodynam-
ics):
d

d .
E{Ein(t) = Pp(t) + EE(J( ) (4.64)

As discussed in Subsection 4.3.1, the net heal flux, Qper, per unit time from the circuit to the
thermal bath is calculated by subtracting the mean capacitor cnergy increase per unit time from the

de power dissipation due to Ip in the resistor:

d d
;EQnet = Ipvo — EEc(f«)
' 2 \T / v
= v + G‘(rvo) . <v“>, 2 (o) {4.65)
{Pr(t)}

where we have used (4.61). As can be secn, the net heat flux from the circuit to the thermal bath
is the heat flux from the circuit to the thermal bath through the resistor (the first and second
terms constituting (Pg(t)}) minus the heat flux from the thermal bath to the circuit via thermal
fluctuations (the third termn). As mentioned earlier, the sccond term corresponds to the effective

thermal dissipation of the fluctuation energy in the incremental conductance G(vg). It is important
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Figure 4.8: Analogy using the tank with a hole.

to emphasize once again that even if G(vo) per se is not a physical thermal dissipative element in
general, it effectively serves as a thermal dissipative element for the fluctuation energy as it controls
the number of fluctuating electrons flowing into the real thermal dissipative part of the nonlinear
resistor.

Previously, we raised a question on how the fluctuation-dissipation balance is achieved in the
circuit of Fig. 4.7(a) with a specific example of the MOS transistor circuit of Fig. 4.7(b). The
question seemed hard to answer as we thought that G(v) (or 1/rey: for the MOS transistor) was a
fictitious conductance in which no thermal dissipation occurs. But as observed in this subsection,
the conductance G(v) is effectively a thermal dissipative element for the fluctuation energy and this
is exactly how the fluctuation-dissipation balance is achieved in this nonlinear case. In the steady-
state, the net heat flux per unit time from the circuit to the thermal bath is Jove in (4.65) due
to the fluctuation-dissipation balance, which sets the second and third terms in (4.65) equal. This
fluctuation-dissipation balance leads to the following steady-state mean-squared voltage fluctuation

across the capacitor:

() = 57 (4.66)

which is in complete agreement with (4.56).

As already discussed a few times before, (4.66) in the case of the MOS transistor circuit of Fig.
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4.7(b) becomes
kT
<,U121> = ?1 *Y9doT out (467)

which can be much larger than the equipartition value, kg7T/C. Now we will. provide a physical

explanation on how the capacitor can store much larger thermal energy than kg7'/2:
2

The mean-squared voltage, (¢2), in (4.66) was obtained using the principle of the fluctuation-
dissipation balance, or by setting the second and third terms equal to each other in (4.65). Hence, for
the given amount of fluctuation cnergy in-flux from the thermal bath to the circuit, (02) is essentially
determined by the conductance G(vp) as can be seen in (4.65). TFor a given fluctuation energy, if
G(wo) is smaller, {(v2) should be larger in order to keep the dissipation G(vg) - {v2) the same as the
fluctuation energy. Hence, if G(vg) is very small which is the typical case for transistor operations,
(v2) becomes very large. Therefore, the very large thermal energy stored in the capacitor in (4.67)
is actually the result of the very fluctuation-dissipation balance.

In more physical terms, G{vg) controls the number of clectrons flowing into the nonlinear resistor
where the real thermal dissipation occurs. For a given amount of fluctuation energy in-flux, if G(vg)
is small, the capacitor will have to accumulate a larger number of electrons (hence larger (v2)) until
the number of clectrons escaping from the capacitor (via dissipation) becomes equal to the number
of clectrons getting stored in the capacitor (via fluctuation). An insightful analogy of this concept
using a water tank with a hole is illustrated in Fig. 4.8. Water is being poured in the tank ai a
constant rate. The tank has a hole at the bottom which drains water in the tank while the drain rate
is proportional to the height of water as well as the size of the hole. Now, when the hole becornes
smaller, the tank will have to store more water until the rates for water in and out become equal.
In this analogy, the tank corresponds to the capacitor, water in and out corresponds to fluctuation
and dissipation, and the size of the hole corresponds to the conductance, G(p). The height of water
corresponds to (v2) of the capacitor.

In this subsection, by carefully investigating the cnergetics of the nonlinear circuit, we were able
to address the second and third questions raised in Section 4.1. The nonlinear conductance G{ug)
effectively serves as a thermal dissipative clement for fluctuations even when it docs not physically
correspond to thermal dissipation in general, and the exact balance between thermal fluctuation
and its effective thermal dissipation through G(v) was the key to understanding the fluctuations
in the circuit with the nonlincar resistor. A nonlinear resistor with smaller G(v) (e.g., transistors)
increases the mean thermal cnergy stored in the capacitor to a significant degree from &pT/2 due

to the fluctuation-dissipation balance.



4.4.3 Entropy Evolution

This subsection considers the entropy evolution of the nonlinear circuit in Fig. 4.7(a). The calcu-
lation technique is essentially the same as in Subsection 4.3.2. The entropy of the nonlinear-circuit

can be expressed as [32], [51]
Scircuit = —kp / Plv,t)ln P(v,t)dv (4.68)

Using the same technique in Subsection 4.3.2, the change of the entropy of the circuit per unit time

can be shown to be

d \ 00 L9 ,
—Seirenit(t) = k J(v, ) —————P(v,t)d 4.69
dté ie(t) IDB-/—oo T(v, )P(v,t) B P( v (4.69)

On the other hand, the change of the entropy in the thermal bath is, by definition, the net heat

flux into the thermal bath from the circuit divided by the temperature of the thermal bath [32]:

d 1d ,

Ry ) = = — Qner(t 4.70)

dtSbath(T) T dtheL\ ) ( 0/

Using (4.65) in the above equation, we obtain
d Tovo 1d
— F - FEn(t
a7 e (1) T ~Tate®
CY o]
= 7 . vd (v, t)dy (4.71)

Since the total entropy, Stotar, of the whole system consisting of the circuit and the thermal bath

is the sum of Sgirouir and Shaen, using (4.69) and (4.71), we obtain

d : ' C kg 9
—‘S'L()tal(t) = / J(—fu + _‘B_'P)

dt
®  Na*(vg) ks C 3] 20G () 9 .
- dy=2\0o) KB Py Lp| .|y 9 472
/_oo Y Tac? P {kBTq + [‘)vP] L\’crz(mvo)v + v (4.72)

Now il one plugs the steady-state probability density (4.55) into the cquation above, one obtains

d fovo
_"Stota.!, =

p” = [in steady-state] (4.73)

For Iy = 0, the entropy of the whole system does not change with time in the steady-state, implying
that the system is in thermal equilibrium. For Jg # 0, the system is never in thermal equilibrium in
the steady-state as the total entropy indefinitely increases. Again, this is the notion of nonequilibrium

steady-state expressed quantitatively.
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Figure 4.9: A nonlinear capacitor in parallel with an ohmic resistor. The circuit is coupled with a current source
generating bias current [p.

4.5 Fluctuations in RC-Circuits with Nonlinear Capacitors

In this section, we will consider the circuit of Fig. 4.1 with a nonlinear capacitor and a linear resistor,
which is redrawn in Fig. 4.9. The energetics and entropy evolution of the system can be studied
similarly to the previous sections. However, in this section, we will focus on how the nonlinearivy in
the capacitor affects the cuergy equipartition property.

The Fokker-Planck cquation for the probability density of the voltage, v, across the capacitor in

Fig. 4.9 is obtained from (4.15) by replacing Iz(v) = v/R, Io = vo/ R, N = 2kgT/R and o*(v) = 1:

0 d [v—ug kpT O? 1 )
—P{v,t) = ~P(v,t)| — | =P (v, 1 4.74
Ut M ) ([)’U I:RC(’U) ( 9 )] H (f),”z CZ(’U) ( : ) ( )
Again using the small-fluctuation approximation and hence assuming that the steady-state distribu-
tion, Po(v), is a very narrow distribution in the above cquation, we obtain the following differential

equation for Py(v):
C(w)
kT

d

(v —v)Py(v) — —Fo(v) =0 (4.75)
dv

whose solution is no more than the Boltzmann distribution:

Ec(v— )

T (4.76)

Py(v) o exp [—k:BLT /C(v)(v — ’Uo)d’U:| = exp {—

where we have used (4.5). Now, we will consider the case of Iy = 0 for sirnplicity and will evaluate
the mean enecrgy stored in the nonlinear capacitor for different types of nonlinear capacitors.

First, let us consider the case where the nonlincar capacitor has the following voltage-deper.dence

C(v) = av®" (4.77)
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where n = 1,2,3,---. The charge stored in the capacitor then has the following voltage-dependence:
Qv) = ———p?7 ! (4.78)
2n4 1 )

while the energy stored in the capacitor is given by

a P,
[-4](:,(7)) = m’()z +2 (479)

where we have used (4.5). Then, the mean energy stored in the capacitor can be calculated using

the Boltzmann distribution (4.76) as in the following

Sl —-Ec(v) / —Ec(v) )
D e >y du ¥ 2 ; 4.
(Ec) ‘/_Do Ec(v)exp [ TnT } v/ (xp “FeT dv (1.80)

where the denominator is only the normalization factor. Now the numerator of (4.80) is given by

o0
[numerator] = / ZnL:— 7Y 22 exp [—— mvzn'”] dv
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_ Bl (il / e ay (4.81)
2n+ 2 a J -
where we used the transformation of variable, 272 = a{(2n + 2)kp7’} *v?"*2 in the second

equation, and 3?2 = Az?"*2 in the fourth equation. Similarly, we can calculate the denominator

of (4.80) as in the following

[denominator] = ‘ /_ N exp[ m 2”“} dv

2 2 m 100 2n

= ( n+ kBT> / e (4.82)
a —o0
where we have used the transformation of variable, 2?72 = a{(2n + 2)kgT}~'v?>**2. Combining
(4.80), (4.81) and (4.82), we obtain

. ksT oo
< (/> - 27l+ 2 (483)

For n = 0, which corresponds to a linear capacitor, (E¢) = kg1'/2 in complete agreement with

the equipartition theorem. For n # 0, the mean thermal energy of the capacitor is always less
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Figurc 4.10: Mean thermal energy stored in a nonlinear capacitor, depending upon the nonlirecarity.

than the equipartition value, kgT/2. In other words, the nonlinearity in the capacitor reduces its
mean thermal cnergy from the equipartition value of kgT'/2. The stronger the nonlincarity in the
capacitor, the smaller the mean thermal encrgy stored in the capacitor. This is opposite the case
of the nonlincar resistor in parallel with a lincar capacitor, where the mean thermal cnergy of the
capacitor was increased through the nonlinearity of the resistor as shown in the previous section.

Now, let us consider a capacitor with more complex nonlinearity. We will use the following
example:

Cw) =a+ b? {4.84)
The energy stored in the capacitor is then given by
1 1
Ec(v) = 5(1?)2 + 21)7;4 (4.85)

according to (4.5). Now by using (4.80) and (4.85) and with some manipulation, we obtain

I (2 = ay"yem Wi rert gy

TS ;
\]—ooe (y‘-i-ay“)dy

(Eg) = kgT x (4.86)

where o = (b/a?) - kpT. Here, « is an indicator of the degree of the nonlinearity: If b is larger, o
is larger and vice versa. Now, Fig. 4.10 shows (E¢) versus «. When « is small and nonlincarity is
not large, the mean thermal energy stays at the equipartition value of kgf’/2. As the nonlinearity
mcreases with aﬁ increasing «, the mean thermal energy approaches kg'l’/4. However, kg'l’ is a very

small number and hence practically, «-is very small and the thermal mean energy almost always

stays close to kgT/2, unless the constant term in the C(v) expansion vanishes in (4.84).
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Summarizing, nonlinearity in a capacitor tends to decrease the mean thermal energy stored in the
capacitor from the equipartition value kgT'/2. However in most practical cases where the nonlinear
capacitaice is cxpanded as in C{v) =~ Cp + - - - and Cp # 0, this mean thermal energy reduction
effect is typically negligible. If C(v) expansion starts with a higher order term as \in (4.77) (wkich is

unusual in reality), the reduction effect can he appreciable.

4.6 Summary

This chapter presented one of the main contributions of our work on fluctuations in nonlinear
clectrical circuits. The subject studied in this chapter is divided into two categories, that is, (1)
fluctuations in the presence of noulinear resistors such as transistors, and (2) fluctuations in the
preserce of nonlinear cnergy storing clements such as nonlinear capacitors.

First, in the category (1), we verified the physical validity of the widely used white thermal noise
model for nonlinear resistors such as channel thermal noise of MOS transistors. With this verifica-
tion, we will be able to use the widely accepted white thermal noise model for nonlinear resistors
in the following chapters on mixers and oscillators. Conceptual difficulties in understanding the
subject of fluctuations in nonlinear resistors were overcome by rigorous investigation of the energet-
ics in the circuit including the noulinear resistors, leading to a tangible understanding of nonlinear
fluctuation-dissipation balance. The study illuminated the underlying mechanism with which the
nonlinear resistors dump much more mean thermal fluctuation encrgy into a lincar capacitor than
the equipartition value of kg7'/2.

Sccond, in the category (2), we demonstrated that the mean thermal fluctuation energy stored in
the nonlinear capacitors in parallel with a linear resistor becomes smaller than kgT'/2 but in most

of the practical cases, not by a perceptible margin.
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Chapter 5 Noise in Time-Varying Driven Circuits

5.1 Introduction

Earlier in Chapters 1 and 2, it was mentioned that the noise evolution involved in the frequency
donwconversion in the RTF signal detection is quite complicated, resulting in difficulties in low-noise
design of mixers which execute the frequency downconversion. Mixers can be classilied into a broader
circuit category called time-varying driven circuils. As shown in Fig. 5.1, mixers are “time-varying”
due to the periodic local oscillator (LO) signal and are “driven” by the RF signal. In this chapter,
utilizing the fluctuation theory introduced in Chapter 3, we develop general concepts and methods
to understand, describe, and predict the noise in such time-varying driven circuits and hence, this
chapter constitutes one of the main contributions of our work on statistical electronics [52., [53].
While special focus in this chapter will lie on the mixers in the RF desecting/receiving systems for
the sake of concreteness, this theoretical framework is general and can be applicc to various other
types of time-varying driven systerns.

Generic time-varying driven circuits are schematically shown in Fig. 5.2. The essential clements
of the time-varying driven circuits are switches, which turn on and ofl periodically by the cyclic
signal generated by the local oscillator. While the cyclic switching is a key function of any time-
varying driven circuit, the signal amplification in Fig. 5.2 is not necessarily needed and can be opted
for depending upon the design issues under consideration. The difference between the two circuits
in Fig. 5.2(a) and (b) is merely the order of the signal amplification and the switching, and hence
is of no fundamental importance.

As can be seen from Fig. 5.2, time-varying driven circuits are in general three-terminal systems
where one terminal is used to receive the input signal, another terminal provides the periodic 1.O

or clock signal into the system to commute the signal periodically, and the last terminal provides

Mixer

LO

Figurc 5.1: Mixer as a time-varying driven circuit.
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Figure 5.2: Generic time-varying driven circuits.
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the output signal. Typically, however, the time-varying driven circuits are treated as if they were
two-terminal systems with the input and output terminals while the LO signal is considered as an
inherent part of the circuit. The time-varying driven circuits are linear systems when viewed from
the input terminals but nonlincar systems when viewed from the LO terminals [8].

Time-varying driven circuits are frequently found in various electrical engineering systems. Spe-
cific examples of the time-varying driven circuits are passive and active mixers used in the RE signal
detection for frequency downconversion and sample-and-holds {SH) in data conversion systerns. For
the mixer, the ratio of the fundamental LO frequency to the fundamental frequency of the input
(RF) signal is typically close to 1. Among the two functions shown in Fig. 5.2, passive mixers,
also known as switching mixers whose simple example is depicted in Fig. 5.3(a), only utilize the
switching functions while active mixers, whose example is illustrated in Fig. 5.3(b), incorporatc
both switchings and signal amplification. For the SH with an oversampling rate, the ratio of the
fundamental clock (or LO) frequency to the fundamental frequency of the input signal is much larger
than 1.

Noise in the time-varying driven circuits often plays a crucial role in low-noise design of many
engineering systems. For instance, as shown in Fig. 2.1, the mixer at the receiver front-end can be
a considerable noise contributor. Hence a firm understanding of noise processes in the time-varying
driven circuits, as well as accurate and effective prediction of noise is crucial in the design and
optimization of many systems.encountered in engineering design.

The noise problem in the time-varying driven circuits is very complicated for various reasous.
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Figure 5.3: (a) Simple passive mixer; (b) Active mixer.

First, in the case of an up- or down-conversion mixer, the noise components at wyp above and below
the integer multiples of wyo will be downconverted to the IF band and will be folded together there
during the frequency downconversion process, as shown in Fig. 5.4, Seccond, the operating points
of the active devices in the time-varying driven circuits periodically change due to the periodic
LLO drive, which introduces strong time variations in the circuit. Third, due to the same periodic
operaling point change, the noise generated from the active devices in the circuit is periodically
modulated in time, resulting in the so-called cyclostationary noise, which makes the noise processes
in the circuit even more involved. Finally, energy storing elements such as capacitors present in the
time-varying driven circuits tend to “color” while noise.

Recent rescarch efforts towards accurate and effective noise prediction in time-varying driven
circuits have led to several simulation-based approaches '54]-[57]. Although these simulation meth-
ods constitute essential components of computer-aided design (CAD) tools, they normally involve
complex mathematical expressions and hardly provide hands-on intuition to cope with the noisc
problem in practical design of time-varying driven circuits.

Efforts to understand noise in the time-varying driven circuits on a more intuitive basis have
resulted in a few analytical methods [38] - [60], but a clear explanation of the interaction between
cyclostationary noise and energy storing clements is still lacking. In 58], cyclostationary noise is
considered ignoring the energy storage effects while [59] calculating the circuit noise in the presence
of capacitors, but neglecting the cyclostationary noise. The work in [60] brings insight into the
physical mechanism for 1/f and white noise process in active mixers but it also does not cover the

Interaction between cyclostationarity and encrgy storing elements. As will be scen in this chapter.
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Figure 5.4: Noise translation and folding.

in reality, however, manifestation of cyclostationary noise is significantly affected by energy storing
elements, as shown later, and hence the existing approaches provide rather limited design insights.

In this chapter, we present extensive theoretical and experimental study of noise in time-varying
driven circuits in the presence of energy storing elements. This investigation utilizes certain meth-
ods and concepts of the physical lluctuation theory introduced in Chapter 3 as key analysis tools.
Especially the Langevin equation proves to be extremely useful in handling the noise problems in
the time-varying driven circuits. Our theoretical framework is general and can be applied to various
types of time-varying driven circuits. In this chapter, however, we will study noise inn time-varying
driven circuits using switching mixcers as a specific analysis vehicle. This concrete switching mixer
example will put our general theory on noise in time-varying driven circuits in a practical perspective,
demonstrating how the fundamental approach can benefit practical circuit design.

Our study will demonstrate that switching mixers in the presence of energy storage compo-
nents act essentially as time-varying fillers in which the bandwidth is a periodic function of time.
Establishmernt of the theory of time-varying filtering in this chapter in conjunction with the phys-
ical fluctuation theory discussed in Chapter 3 leads to an important observation on the switchirg
mixer noise that has remained unknown to this date to our best knowledge: The time-varying fl-
tering of cyclostationary noise in switching mixers results in two different noise generation regimes,
quasi-stationary and cyclostationary regime, depending upon the size of the energy storing clements.
Remarkably, in the cyclostationary regime, mixer noise figure is seriously degraded due to the cy-
clostationarity. Equally importantly, the time-varying filtering theory applied to the deterministic
dynamics in switching mixers leads to a so far unknown observation of a conversion gain enhance-
ment for small enough energy storing elements. Both noise figure degradation and conversion gain

cnhancement in switching mixers arc positively verifled through a direct measurement of switching
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mixers. These two novel results provide an immediate insight into the optimum design of switching
mixers.

The organization of this chapter is as follows: Section 5.2 is a review of the cyclostationary noise,
which will play an important role in the stochastic dynamics of switching mixérs. In Section 5.3,
we review the lincar time-invariant (11'1) filtering of cyclostationary noisc. Section 5.4 introduces
a switching mixer as a specific example of the proposed analysis technique and explain its basic
operational principles. In Scctions 5.5 and 5.6, we investigate the time-varying filtering of signal
and cyclostationary noise in switching mixers, vespectively, and hence these sections constitute one
of the most important sectors of this chapter. In Section 5.7, we present the numerical simulation
results. Finally, Section 5.8 verifies the theoretical prediction of Sections 5.5, 5.6 and 5.7 through
a direct measurement of integrated switching mixers. The measurements indeed demonstrate the
novel behavior of switching mixers, 4.e., noise figure degradation due to the cyclostationary noise

and conversion gain enhancement.

5.2 Cyclostationary Noise Fundamentals

Cyclostationary noise is a random process whose statistical properties vary eyclically with time [61].
In the time domain, a cyclostationary noise, 7,(t), can be modeled as the product of a stationary

random process, n(t), and a deterministic periodic function, p(t), i.e.,

ny(t) = n(H)p(1) (5.1)

Here, the stationary random process, n(t), can be either white or colored. Duc to the periodic
modulation by p(t), statistical quantities describing the cyclostationary noise such as mean, variance,
and power spectral density (PSD) are also periodic in time in general: a key signature of the
cyclostationary noise.

Nature finds many examples of the cyclostationary random process. The temperature of a certain
region on Earth is a cyclostationary random process where the periodicity ariscs from seasons. The
radition intensity {rom a pulsar is another example of the cyclostationary noise where the periodicity
is due to the rotation of the pulsar.

In clectrical cirenits, the cyclostationary noise is observed in time-varying driven circuits such
_as samplers and mixers and in time-varying autonormous circuits such as oscillators which will be
discussed in Chapter 6'. Since operating points of active devices in the time-varying circuits change
periodically with time, the otherwise stationary noise of the active devices is modulated cyclically,

as in {5.1) and exhibits cyclostationarity.

!For u general introduction o the cyclostationary noise in electrical circuits, refer to [62]. The work in [63] shows
how the cyclostationary noise can be cxploited in the design of oscillators.



Figure 5.5: MOS sample-and-hold and cyclostationary noise.

For instance, let us consider the MOS sample-and-hold shown in Fig. 5.5. In the channel
thermal noise given by (4.10) in the previous chapter {47], both the noise coefficient v and the
channel conductance ggg at Vys = (0 are bias-dependent and hence the periodic clock signal which
modulates the gate voltage of the MOS transistor will result in the cyclic channel thermal noise

PSD:

-
Zdz—]’: — Ak Ty (1) gao(t) (5.2)
Fig. 5.5 shows the corresponding hypothetical cyclostationary channel thermal noise in the time
domain.

We now calculate the autocorrelation and power spectral density (PSD) of the cyclostationary
noise, ny(t) = n(t)p(t), given in (5.1). If n{t) is white noise, i.e., (n{ty)n(t2)) = N6(t; —t2) or more

conventionally put, n?/Af = 2N, the autocorrelation function of the cyclostationary noise, np(t),

is given by

Rnp,np(tlat2) = <n(t1)n(t2)>p(t'l)p(t2)
= N§(t; — t2)p*(t1)
= R'np,np (T; t) (53)

where 7 = t; — #9 and t = #;. As can be seen, the autocorrelation function is not only a function of
the measurement time difference, 7, but also a cyclic function of the absolute measurement time, 1.

Evaluating the power spectral density (PSD) of the cyclostationary noise, n,(t), is a subtle
task since in the most rigorous terms, it is not valid to use the Wiener-Khirtchen theorem [33]
and take the Fourier transform of the autocorrelation in (5.3) in order to obtain the PSD for the

cyclostationary random process. This is because the Wiener-Khintchen theorem is originally derived
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for the stationary random processes [33.

Putting aside the mathematical definition of PSD for the cyclostationary noise for a while, let
us first consider the PSD of n,(¢) which we will get if we “measured” the cyclostationary noise
using conventional noise measurement systerns such as spectrumn analyzers and noise figure meters.
Signal processing in the conventional measurement systems is shown in Fig. 5.6. The input signal
to the system is truncated over each measurement period T and then filtered by a bandpass filter
whose bandwidth is much smaller than the center frequency of the bandpass filter. The output of
the band-pass filter is sent to the built-in power meter. This procedure is repeated many times to
obtain an estimate of the ensemble average, which then is divided by the truncation time, 7. The
entire procedure is perfectly captured in the measurement-oriented definition of PSD for an arbitrary

random process z(t) [65]:

Hl

1
lim = (| Xr(f)I?
Jim (X (1)
1 'T T . .
- F]I_I)TCI)OT/[) /0 dtldtzfzﬂ,,ﬂ_—(tl,LQ)CJZﬂf(tl_tz) (54)

Sm,measured(f)

where

[
o
=

T
XT(f)E/O z()el?™ Iy (5.

Now using z(t) = np(t) = n(t)p(t) and the autocorrelation of ny(2) in (5.3) assuming that n(t)

is white noise, we can simplity (5.4) to

T
N : g 2
Snp,measured(f) = Thnl N _/ ¥y (1)
J0

— N7 (5.6)

where the overline signifies the time-average over a period of the periodic function, p?(1). In other
words, when n(#) is white noise, the measured power spectral density of the cyclostationary noise,
ny(1) = n(t)p(l), is equal to the product of the PSD of n(!) and mean-squared valuc of the noise
modulating function, p(?).

Now, even though the Wicner-Khintchin theorem is valid only for the stationary random processes
in the most rigorous sense, we will define an operational PSD of the cyclostationary noise, n,(t), as

the Fourier transform of the autocorrclation of ny(t):

o0

Sn,(f3t) = / e Ry (Ti )T (5.7)

—OQ

Later we will see how this operational PSD of the cyclostationary noise is related to the measured

PSD, Sn, measured(f). When .n(t) in ny(t) = n(t)p(t) is white noise, by using (5.3) in (5.7), we
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Figure 5.6: Signal processing in conventional measurement systems.

obtain

Sny(f31) = / TR, (13 t)dr

= Np*(1) (5.8)

As can be seen, the operational PSD of the cyclostationary noise at a given frequency f is a periodic
function of time, t. Note that (5.2) is a special case of (5.8). This periodic operational PSD of the
cyclostationary noise will be seen repeatedly throughout this chapter.” From now on, we will drop
the word “operational” and call the PSD of the cyclostationary noise defined in (5.7) simply periodic
or cyclic PSD.

Now, comparing the measured PSD in (5.6) with the periodic PSD in (5.8), we note that

Snp,meas'u.'red(f) = Snp(f; t) (59)

where the overline signifies the time-average over a period of the periodic function, p?(¢). Equation
(59) demonstrates that the measurement of a cyclostationary noise whose periodic PSD is Sy, (f;1)
results in a stationary noise, whose PSD is given by the time-average of the periodic PSD, that is,
m This observation, which is illustrated in Fig. 5.7, is very important and useful as it links the

PSD of the cyclostationary noise that we measure in the lab with the operationally defined periodic
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Figure H.7: Measurement of a cyclostationary noisc.

PSD of the cyclostationary noise. As an additional comment, measurement of cyclostationary noise
using the conventional measurement systems is essentially equivalent to band-pass filtering of the
cyclostationary noise, as we can easily rcason from Fig. 5.6.

While the foregoing argument to prove (5.9) was restricted to the case where n(t) is white noise,
(5.9) can be shown to be valid in the most general case of colored stationary noise, n(t). Now,
we will prove this most general case. The autocorrelation function for the cyclostationary noise,

np(t) = n(t)p(t), in this most general case is given by

Rnp'np(tl,tg) = —Rn,n(tl - tz)p('t] )p(tg) (510)

According lo (5.7), the cyclic PSD of the cyclostationary noisc is given by

00
Sn, f3t) = / dre’*™ 7 Ry, o (T)p(t)p(L + 7) (5.11)
—00
where 7 = {1 — {5 and { = #;. On the other hand, using (5.4), we can obtain the measured PSD:
1 (T (T
" . ;D F [
Snp’"wus,wed(f) == Th—r»%oj;/o /0 dtldthnp)n,p(tl,tg)ej—%'](tl t2)

o1 T . .
= Tlgxéof/() /0 dtydtaRy, 1 (11 — la)e? ™= 2 (4 \p(ts)

Through a variable transformation defined as (11,42) — (+,7) = (¢1,#; — t2), the integral above

becomes

o1 yT T ) -
Snpymeasured(f) = _lim T A dt/_TdT.Rn,n(T)e:”"f"p(l,)p(t—|—T) (5.12)

T--00
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Flgure 5.8: Noise flow in a generic mixer noise measurement setup.

By recognizing the identity between the sccond integral of the equation above and Sy, (f;t) of (5.11;

for a sufficiently large T, we can simplify the integral above to

1t _—
Snp,measured(f) = 7111_120 T /0 dtSn;,(f; t) = Snp (f, [,) (513)

which proves (5.9).

Summarizing, in this section, we have reviewed basic properties of the cyclostationary noise and
discussed how we can characterize the power spectral density of the cyclostationary noise. The
periodic power spectral density of the cyclostationary noise was obtained by taking the Fourier
transform of the autocorrelation of the cyclostationary noise. On the other hand, the measured
power spectral density of the eyclostationary noise is equal to the time-average of the periodic power
spectral density over a period. We have also mentioned that the measurement using the conventional
noise measurement systems is essentially equivalent to the band-pass filtering.

[n many practical circuit situations, the cyclostationary noise undergoes various types of filter-
ings. To see lhis, let us take a look at a generic mixer noise measurement setup shown in Fig.
5.8 as an example. Switching components in the mixer driven by the periodic LO signal generate
cyclostationary noise inside the mixer. As will be seen later, the mixer then processes this internally
generated cyclostationary noise through time-varying low-pass filtering whose bandwidth, Q(t), is

periodically changing, as shown on the left-hand side of Fig. 5.8. The study later will also show that
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this time-varying low-pass filtering of the cyclostationary noise again produces yet another cyclosta-
tionary noise process at the output IF-port. The IF-port cyclostationary noise will then experience
typical linear time-invariant (LTI) low-pass filterings in building blocks such as amplifiers and/or
band-pass filterings in band-pass filters or noise measurement systems. |

Postponing the investigation of the time-varying filtering of cyclostationary noise in switching
mixers to Section 5.6, we study the LTI low-pass filtering of cyclostationary noise in the following
section. The LTI band—paés filtering of cyclostationary noise was already studied early in this section

in the-context of the measurement of the noise.

5.3 LTI Low-Pass Filtering of Cyclostationary Noise

The study of the LTI low-pass filtering of the cyclostationary noise in this section will demonstrate
that the LTI low-pass filter output (in the passband) for a cyclostationary noise input, n,(t), is
a stationary noise, whose PSD is the timc-average of the periodic PSD of ny(t), Sn,(f;1), if the
bandwidth of the filter is much smaller than the fundamental frequency of p(t) [61]. This study will
also serve as a comparison to the time-varying low-pass filtering of cyclostationary noise in mixers
discussed in the next section.

Consider an RC low-pass filter as a physical example where the input is cyclostationary voltage
noise, n,(t) = n(t)p(t), as shown in Fig. 5.9. The filter’s bandwidth, w, = (RC)™!, is assumed far
smaller than the fundamental frequency, 2 fp, of the noise modulating funcsion, p(t), i.e., 2w fo >
w,. The output voltage across the capacitor is denoted as v(t). For simplicity, n(t) is assumed to
be white noise and accordingly, the autocorrelation function and PSD of n,(t) are given by (5.3)
and (5.8), respectively. In the frequency domain, one can casily obtain the power transfer function

|H(w)|* of the filter:

w, 2

T (5.14)

-, 2 —
B = 7mr s

The corresponding dynamics of »(t) in the time-domain is described by

d
d_?tj + wrv = wrnp(t) = won(t)p(t) (5.13)

which is a typical Langevin equation introduced in Chapter 3. While solving (5.15) for »(1) itself
is meaningless since v(t) is stochastic, we can still solve it for statistical quantities of v(t) such as
mean, variance, and autocorrelation, as discussed in Chapter 3.

In the first step, by multipling (5.15) at time ?; by n(t;) and taking an cnsemble average, we
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Figure 5.9: RC low-pass filtering of cyclostationary voltage noise np(t) = n(t)p(t). The fundamental frequency of
the noise modulating function, p(t), is fo. We assume w; < 27 fo.

obtain

0 _ .\
'(;)—[—Q-Rn,v(tlth) +wrRy o(t1,t2) = W NO6(E1 — t2)p(t2) (5.16)

and by using the method of integrating factor [71], the solution of this equation is give by
Rn,v(tl, lig) = NwTe““"*(tg““)p(tl)u(tg — tl) (517)

where u(t) is a unit-step function.
In the second step, by multiplying (5.15) at time ¢; by v(t2) and vaking an ensemble average, we

obtain

0
(91_' Rv,'u (tly tZ) + WT-Hv,'u(tl,- t?) = w‘rp(tl)Hn,'u(tl : th) (518)
b

Again, resorting to the integrating factor mecthod and using R, ,(¢1,%2) obtained just before, the

solution of the equation above becomes

. o ~min(t1,t2) ,
R, u(t1,t2) = wﬁNe_”T(tthz)/ pA(1)eXrt dt! (5.19)
0

Using the Fourier series, the periodic function p{t) can be expanded as

oo
plt)y= D ppe?miol (5.20)

n=—o0

and accordingly, p%(t) can be expressed as

(o]
PPt = papon+t D PopmelZr(nimifol (5.21)

n=—00 n¥E—m
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By substituting (5.21} in (5.19) and leaving out transient terms, the first term of (5.21) results in

: —writy— t2|
R’U)U(tlatQ) = "‘JTAI L PnP-n (522)

n=—o

[from the first term of (5.21)]

while the second term of (5.21) leads to

(,—w,-ltl iz 67271'(11—!-117)7‘0 min(ty,ta)

Ruw (tl, 52) = wWelN————— x Z ])npm
7 2
= J(n +m)(2r fo/2ws)
Ve—~w'ylfr1—-1/23 0 Wy {5.23)
. 5 . (271'[0 (5.

[from the second term of (5.21)

For 27 fo » w,, (5.23) is negligible when compared to (3.22) and R, (%1, 12) can be approximated as

e—wrlti—ta]

Rosltite) = w N 720 (5.24)

where we have usced the Parseval theorem. As can be seen clearly here, in case of 27 fy > w,, that
is, when the fundamental frequency of p(t) of the cyclostationary noise, n,{t) = n(t)p(t), is much
larger than the bandwidth of the low-pass RC filter, the autocorrelation al the oulpui of the [ilter
depends only on the measurement time difference 7 = ¢; — 3. This implies that at the low-pass filter
output, the noise, v(t), is approximately stationary as far as the condition, 27 fo > w;, is satisfied.

When 27 fy > w, holds true and hence v(t) becomes stationary, the power spectral density of

2(t) can be obtained by taking the Fourier transform of the autocorrelation:

2
N = NDIE) - —r
S‘L(f) - -Z\/p (f) (27T'f) +w2
= Su,(f38) - H(F) (5.25)
where we have used (5.8) and (5.14). In the passband of the filter where 27 f < wr, |FI(f)
hence we have
Su(f) = Sn,(f;t) (5.26)

Similar to the band-pass filtering case shown with (5.9), the low-pass filtering of a cyclostationary
noise whose periodic PSD is S, (f;¢) results in a stationary noise whose PSD is the time-average
of the periodic PSD, i.e., .S, ( f;t), as far as the fundamental frequency of the cyclostationarity is
much smaller than the bandwidth of the low-pass filter.

The results of this and previous sections demonstrated that once the cyclostationary noise is
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Trigure 5.10: Cyclostationary noise and its filtering.

bandpass- or lowpass-filtered with sufficiently small bandwidths, the cyclostationary noise disappears
and we will always observe stationary noise at the filter output. As any available contemporary noise
measurement systems, such as spectrum analyzers and noise figure meters, essentially employ the
bandpass [iltering as mentioned earlier, we will never be able to observe the cyclostationary noise
ilsell in reality: Whenever we try to measure the cyclostationary noise, it transforms to a stationary
noise! Then what is the reason for this emphasis on cyclostationary noise?

To answer this question, we turn o Fig. 5.10 where a mixer is followed by a lowpass or a
bandpass filter whose bandwidth is assumed to be much smaller than the [undamental frequency
of the cyclos;tationarity. Now, at the II"-port of the mixer or atl the input of the filter, the noise
is cyclostationary and has a periodic PSD which is shown at the bottom left of the figure. As
will be seen later, depending upon the circuit parameters, the degree of the time-variance of the
periodic PSD changes, or alternatively put, the degree of the cyclostationarity varies. Now when
this cyclostationary noise passes through the filter following the mixer, according to (5.9) or (5.26),
the noise at the filter output becomes stationary and its PSD becomes the time-average of the
periodic PSD as shown at the right bottom of Fig. 5.10. Ilowever, depending upon the degree of the
cyclostationarity, the time-averaged PSD will have different values as shown in Fig. 5.10. Hence,
even though we cannot observe the time-varying cyclostationary noise per se, we can sce the effects
of the cyclostationarity.

In the followings, we will investigatc how the mixer generates the cyclostationary noise at the

TF-port via time-varying filtering and how the degree of the cyclostationarity at the IF-port changes
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Figure 5.11: MOS switching mixer.

depending upon the circuit paramecters, especially the energy storing elements such as capacitors.
The main result of this theorctical investigation on the mixer noise will be presented in Sections 5.6
and 5.7 waile Section 5.8 positively verifies the theoretical prediction experimentally. The analysis
vehicle for the mixer noise study will be a CMOS switching mixer shown in Fig. 5.11, whose
operational principles will be discussed in the following Section 5.4. Section 5.5 is dedicated to
the investigation of the deterministic dynamics of the switching mixer, which also leads to a new

observation of the conversion gain behavior of the circuil.

5.4 Switching Mixer Example

In this section, we will discuss the operational principle and the state equation of the cornmonly
used MOS switching mixer shown in Fig. 5.11, which will be used as an example of the proposed

analysis technique i the following scctions.

5.4.1 Operational Principle

Figure 5.11 shows a commouly used MOS switching mixer [67], [68], {69]. Transistors My and M, are
driven by the periodic local oscillator with frequency of fro and transistors My and M3 arc driven
by the opposite phase of the same signal. All transistors operate between ofl and triode regions.
Gsource 18 the source conductance (e.g., 1/(5082)) and the IF-capacitance C is due Lo the transistor

parasitic capacitors and input capacitance of the next stage. Although this IF-capacitor may have
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Figure 9.12: Equivalent RC-model of the switching mixer including r.oise sources.

a weak voltage- and hence time-dependence in general, we will consider it voltage-independent here
for the sake of simplicity. The resistor, R;p, represents the input resistance of the next stage and/or
bias circuitry (e.g., voltage-divider nctwork).

The mixer can operate in two different switching modes depending upon the biasing scherne,
namely, hard- and soft-switching modes [69]. In hard-switching mode, there is a period when all
transistors are ofl, leaving the IF-port floating. In soft-switching mode, there is no single moment
at which all transistors are simultaneously off. The bias criterion to determine the switching mode
is given by

<0 (hard-switching)

V00,dc — VREde — Vin (5.27)

>0 (soft-switching)

where Vyy, is the threshold voltage of the MOS transistor and V5o ue, Viirde, and Vip 40 signify the
dc levels of the LO, RF, and IF signals. Note that Vrpde = ViF4. from the schematic of Fig. 5.11.

Figure 5.12 shows an equivalent RC model of the mixer including all the noise sources. g(l) and
g(t), periodic in fro and in opposite phase, represent channel conductances of MOS transistors.

The channel conductance, g(¢), in the triode-regime is given by
Q(T) = ,un.c’om(W/L)[Vgs (f) - Vds (“) - Vth] (528)

and shows dependence on all of the LO, RF, and IF signals. However, in practice, the RF and I¥
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signals arc much smaller than the LO signal and hence we will use the deep triode approzimation in

evaluating g(t), i.c., Va(t) = Vs(t) = VrF.de = ViF.de, throughout our treatment:

/anoml[ijg(i) —Vrrde — Vin]  (deep-triode)
0 (off)

g(t) ~ (5.29)
With this approximation, the channel conductance, ¢(t), only depends on the LO signal. The
threshold vollage, Via, in (5.29) can have a weak time-dependence due to the body eflect of the
MOS transistors, which will be ignored here for brevity.

The noise currents 4;(t) to i4(¢) in Fig. 5.12 represent cyclostationary channel thermal noise of

the MOS transistors, whose single-side band (SSB) statistical properties arce given by [47]

A—lf = A—‘} = 4kgTg(t),
i _ 3 = 4kpTg(l) 5.30)
Af_Af_ BLg (0.9

Here, we have replaced gqo(t) with g(t) since g(t) is calculated for Vg, = 0 in our decp triode
approximation. Also we have used unity for the channel thermal noise constant, v, as we are taking
the deep triode approximation [47].

We can safely assume no correlation among i1 (t) to i4(t) since they are generated by diflerent
transistors. vq(t) and vo(t) in Fig. 5.12 are voltage noise associated with the source conductance,

G source, While ig(t) is current noise due to the load resistor, Rrp.

5.4.2 State Equation

In this section and the following Sections 5.5 and 5.6, we analyze the circuit for Gsouree = 00 and
R;r = oo in Fig. 5.12 in order to gain clear insight. We postpone the general analysis to Section
5.7 where the numerical analysis results are presented. By applying KCL and KVL to the circuit of
Fig. 5.12, we obtain the following differential equation for the IF-port voltage vif(¢):

dt’i f
dt

1
C

[state equation]

+ ‘Q(t)vif = ([deter + Isto) (531)

where v;£(t) = vs() -+ v, (1), in which v, (¢} and v, (t) signify the signal and noise part of the IF-port
voltage, respectively. The time-varying bandwidth, Q(t), the deterministic driving term, lgeter, due

to the input RF signal, v,;(1), and the stochastic driving term, /s, due to the transistor channel
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Figure 5.13: gr(t) and m(t) in (a) hard-switching (b) soft-switching modes.

thermal noisc are given by

Qft)
Ideter

Isto

respectively, where the effective conductance,

terms of g(f) and g(t) [69;:

1l

gr(t)

my(t)

ch(f) (5.32)
gr(tym(t)v.¢(t) (5.33)
1. . . . .

5(11 — g — 13 —i4) (5.34)

gr(t), and the mizing function, m(t), are defined in

_ 9 ;r 9(t) 5
_ g3 o
T g(t) +3(t) (5.36)

The roles these two [unctions play in the mixer will be explained shortly. Fig. 5.13 shows typical

waveforms of gr(t) over a period of LO for hard- and soft-switching modes [69]. Due to the com-

plementary nature of switches, the fundamental frequency of gr(f) is 2fro. Fig. 5.13 also shows

typical m(t) waveforms over a period of LO for the two switching modes [69]. Note that m(t) has a

fundamental frequency of fro and no d¢ component.

The stochastic driving term, g, in (5.34), can be simplified as follows. Assuming no correlation

among 71 to i4 and using the single-side band (SSB) white noise statistics of (5.30), we can show

that

4kpTgr(t)

g7(t) - 4ksT/gr(t) (5.37)
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Figure 5.14: (a) The circuit corresponding to the deterministic dynamics (5.40}) of the switching mixer. This circuit
is no more than the Thévenin equivalent circuit of the mixer for Gsource = 00 and Ryp = oo in Fig. 5.12. (b) The

circuit corresponding to the stochastic dynamics (5.41) of the switching mixer.

This power spectral density corresponds to

Lyo(t) = gT(l)'UEff,n(t)

where the effective cyclostationary voliage noise vess (1) is characterized as

(5.38)

(5.39)

Since Q(t) = gr(t)/C only depends on the already-known LO signal within the accuracy of

the deep triode approximation as mentioned carlier, the IF-port voltage vif(t) in (5.31) is 2 linear

response to any driving terms on the right-hand side of the equation. Therefore, we can scparate

(5.31) into deterministic and stochastic parts. In the deterministic part, the signal component v,(¢)

of the TF voltage is a response t0 Ijeer(f) while in the stochastic part, the noise component v, (1) of

the IF voltage is a response to I4,(1), i€,

dv s

gt+9@%m = Q) - m)vns(l)
‘deterministic dynamics]

dv,

ZE QM) = Q) - verpalt)

[stochastic dynamics]

Both (5.40) and (5.41) can be better understood in the light of their corresponding circuits

shown in Fig. 5.14(a) and (b), respectively. Note that the circuit in Fig,

5.14(a) is no more

than the Thévenin equivalent circuit of the mixer, derived from the RC-model in Fig. 5.12 for

Gsource = 00 and Rrip = oo [69]. The cquivalent circuits in Fig. 5.14 suggest that the switching
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mizer acts as a first-order time-varying filter whose cffective conductance and capacitance are gr(t)
and C, respectively, resulting in the time-varying bandwidth of Q(t) = g7(#)/C. The time-varying
conductance, gr(t), can be also regarded as the conductance of a sampling switch, as in Fig. 5.14.

In the deterministic dynamics of Fig. 5.14(a), the effective input voltage (Tliévenjn equivalent
input) to the time-varying filter is m(t)v,;(¢). In other words, the RIY input v,¢(t) to the mixer is
first multiplied by m(t), hence the name for m(t), mizing function. The product is then processed
by the time-varying filtering, resulting in the output voltage vs(f). In the stochastic dynamics of
Fig. 5.14(b), the effective input voltage to the time-varying filter is the cyclostationary voltage noise,
Vesfn(l), that is, the switching mixer processes the cyclostationary noise vepsn () by the idertical
time-varying filtering, producing the ontput v, (). Both the time-varying bandwidth, €2{2), and the
cyclostationary noise, vesr,. (), originate from the same switching elerents in the circuit and hence
will maintain a constant phase relation.

The following two sections will scparately investigate the deterministic and stochastic dynamics

of the switching mixer.

5.5 Time-Varying Filtering Theory - I : Deterministic Dy-
namics

In this scction, we investigate the deterministic dynamics of the switching mixer, specially focusing
on the dependence of mixer conversion gain on the IF-port capacitance C in Fig. 5.14(a). We will
show that the conversion gain will initially increase with C resulting in a peaking in the conversion
gain, as conceptually shown with the solid curve in Fig. 5.15. To the best of our knowledge,
this conversion gain enhancement with an increasing capacitor in the switching mixer context has
remained unknown so far.

Without loss of generality, we assume the RF signal, v.f(t), is a pure sinusoid with the frequency
of frr and unity amplitude:

Vpf (t) = ()08(271’fRF l-) (542)

Delining the IF-frequency as frr = |frr — fro|, the key approach to the problem is breaking the
Thévenin equivalent input voltage m(t)v.(t) in Fig. 5.14(a) into f;» and non-f;# components and
observing the circuit’s response, v5(t), at the output to the former and latter, separatcly. Combining
(5.42) and the Fourier series expansion of m(() given by

=9}

m(t) = Z My cos3(2n7 frot + ¢n) (5.43)

n=1
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Figure 5.15: Conversion gazin contribution from the frr and non-frr components of m(t)v,f(¢}. The solid curve
represents the total conversion gain while the broken curve represents the conversion gain contribution from the frp
component of m(t)v,y(t).

we obtain

1
m(thvp(t) = §m1 co8 [27 f1 1t — ¢1]
1 & 1 &
T3 nZ:] mp, cos2m(nfro + fre)t + ¢n] + égmn cos[2n(nfro — frr)L + &l
1
= gmicos (27 fi 1ot + @) +[non-f1F comps.] (5.44)

[1F component

Since my, = 0 for even n due to the special waveform of m(t) in Fig. 5.13, the non- fir components
of m(t)v, () are at odd integer multiples of 1o plus/minus frr, i.e., nfro + frr forn=1,3,5, -
and nfpo — frr forn=3,5,7,---.

For C = 0, vs(t) = m(t)ves(t) from Fig. 5.14(a) or (5.40). Hence, for C' = 0, only the frp
component of m(t)v,s(t) contribules to the conversion gain where the conversion gain is simply
given by

1
Aconv = 37”1 [ ¢=90 ] (545)

using (5.44).
For C' # 0, mixer’s response v, (¢) to both fr and non- f1r components of the Thévenin equivalent

input m(t)v,#(t) in Fig. 5.14(a) can be better understood by considering the mixer as a sampler.
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Figure 5.16: Sampling and recovering of the frp component of m(t)v,¢(t) for small IF capacitance C.

The mixer samples the input m(t)v,¢(t) with the sampling rate of 2fro (fundamental frequency
of gr(t)), resulting in the output vs(t). We can break down our analysis into f;r and non-frr
components. 7

The frr component of m(t)v,¢(t) is a slowly varying input to the sampler, when compared to
the sampling rate, 2f70, as shown in Fig. 5.16. Hence, the sampler almost completely recovers the
fir componént of m(t)v,¢(t) at its output unless the IF capacitance is too large to follow. Hence
the conversion gain is my/2 for small enough C. As C becomes larger, mixer’s response becomes
slower and the frp component of m(t)v,¢(t) cannot be fully recovered at the output, leading to a
roll-off in conversion gain. This behavior is conceptually depicted with the broken line in Fig. 5.15
consisting of flat and roll-off regions.

The non-f7r frequency components of m(t)v,f(¢) in Fig. 5.14(a) will lead to a previously unno-
ticed conversion gain enhancement. Now we show how the non-frr components result in the fir
component in the mixer output, vs (t). When the switch represented by gr(t) samples any given
non-frr component of m(t)v,s(t) with the sampling rate of 2fy o for C' # 0 in Fig. 5.14(a), the
sampled waveform at the output will be shaped in time due to the memory effect of the nonzero
capacitor as depicted in Fig. 5.17. Since gr(t) and the input non-frr component of m(t)v,¢(t)

eventually return to the same common phase? after a certain period defined as Tyear = 1/ foeat, the
p

2Here, we are restricting our discussion to the integer frequencies and a more general treatment can be found in
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Figure 5.17: An example of a pattern unit generation and repetition (beating) in sampling of & non-f;r component
of m(t)v.¢(t). In this simplified example, fLo=3Hz, frr=4Hz, and the non-frr component of m(t)u,(t) at fro +
JrF = THz is considered. The sampling rate is 2f;,o =6Hz.

sampled (and shaped) output waveform paltern repeats itself with the beat frequency of foear as
illustrated in Fig. 5.17.

Now, it can be shown that the IF frequency, frr, is always an integer multiple of freq. for any
non-frr component of m(t)v.f(t). The proof runs as follows.

Let us define two frequencies, f, and fi,, where f; = 2f.0 is the sampling ratc and the input
frequency fi, represents any non-f; » components of m(t)vq¢(t), i.e., fin = nfroxfrr (n=1,3,5, -
for the plus sign and n = 3, 5,7, --- for the minus sign). We denote the least common multiple (LCM)

of fs and fi;, as Ly:
L = LCM(Js, fin) = ks fo = Kin fin (5.16)
for certain integers k, and k;,. Let us also denote the LCM of &5 and &y, as Ly, t.e.,
Ly = LCM ks, ki) (5.47)

Since the sampling period is 1 = /7 = ks/ L and the input signal period is T3, = g kin/Ly,

Jin

the beat period becomes Theq, = Li/Ly or alternatively, the beat frequency is given by

1 _ [Jf

fbea,t =
Tbeat Lk‘
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Figure 5.18: Contributions of frp and non-f;r components of m(t)v,.¢(t) to the fiz component at the mixer
output v (t).

Noting 17 = {nfro = far) — (n* 1)fro| = |fin — 7' fs| where n' = (n £ 1)/2 is an integer as n is
odd and using (5.46), we obtain
ks — Ik'i'n
fre=Lyg- |—s——n— (5.49)
l k'inks

Utilizing k. ki, = GrLy where Gy, is the greatest common divisor (GCD) of ks and ki,, which is 1,

and using (5.48), we have

L

fip=2L. |ks ~ n'kin| = foeat x [integer] (5.50)
) Lk:

Therefore, any non-f;r component of m(t)v,s(t) does contribute to the mixer conversion gain
through one of the harmonics of fpeq:, which is delermined by the integer relation of frr and
Fheat-

Let us consider a simple example with fro = 3 Hz, frr = 4 Hz, and fyp = 1 Hz. [n this
example, we consider the fin, = fro + frr (=7 Hz) component of m(t)v,.f(t) as an input to the
sampler. The sampling rate is fs = 2fr0 = 6 Hz. The corresponding gr(¢) with the 6 Hz sampling
rate, input with 7 Hz periodicity and the resulting sampled output waveforms are shown in Fig.
5.17. Since the input and g7(¢) return to the same common phase after one second, the sampled
wavelform will form a pattern unit during this one second and will repeat it on and ou. This beating
has the frequency of frear = 1Hz = frr, showing that the non-f;r components of m(t)vrf(t) does

gencrate frp component at the mixer output, contributing to the conversion gain.
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Summarizing (Fig. 5.18), for C = 0, the frr component of the Thévenin equivalent input
m(t)v,¢(t) is the sole contributor to the conversion gain of m; /2. For C # 0, the contribution from
the frr component of m(t)v,r(t) to the conversion gain is shown with the broken line in Fig. 5.15
consisting of flat and roll-off regions. Also for C # 0, the non-f;r components of 7;7,(75)'1)_,4 #(t) result in
beating patterns in the mixer outpul, adding extra amount of frp response at the output on the top
of the response due to the f;p component of m(t)v,.f(t) (the broken line in Fig. 5.15). Combining
these effects, the mizer conversion gain increases starting from my /2 with an increasing C until it
ultirnately begins decreasing due to the filtering effect for large enough C. This overall conversion
gain versus C bchavior is shown with the solid curve in Tig. 5.15. The size of the bump in the
curve is then proportional to the harmonic richness of the mixing function m(t) and hence Lhe size
of the burnp should be larger in the hard-switching than in the soft-switching. This conversion gain
enhancernent with an increasing C is a previously unknown phenomenon and can be exploited to

achicve an optimum mizer design, as can be seen laler.

5.6 Time-Varying Filtering Theory - II : Stochastic Dynam-
ics

In this subsection, we investigate the stochastic dynamics of the switching mixer, i.e., the lime-
varying filtering of the cyclostationary noisc, in Fig. 5.14(b), or in (5.41), which is rewritten in the

following for the sake of convenience:

du,

22 Q1)oa(8) = A1) veg1a(0) (5.51)

This is a Langevin equation which has a stochastic driving term on its right-hand sice. The method
of solving the Langevin equation was alrcady discussed earlier in Chapter 3. We apply the method to
derive the autocorrelation function of v, () from (5.51). To begin with, note that (5.39) is equivalent
to

2kgT

Rvﬂff,‘nyveff," (tl ) tz) == T(t] ) 6(t1 - t2) (552)

9

In the first step, by multiplying (5.51} at 3 by verfn(t1) and taking the expected value wutilizing
(5.52), we obtain
0 2kgT

%Rveff,ﬂyvn (t] L) tQ) + Sz(tQ)RUe.ff‘n.'Un (t-l’ 'fQ) = C’

6ty — t2)
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Using the integration factor method [71] with &(f) = ]5 Q(')dt’, the solution of the above equation
is shown to be

5T (o) d(ts) \ o
Rueff,nﬂ"n (tl’ 1’2) = _g_e[q}(h) ‘b(tz)“u’(tg - tl) (‘)")5)

where u(t) is the unit step function.
In the second step, by multiplying (5.51) at {7 by v, (t2) and taking the expected value, we obtain
0

2kgT .
.([)T]%vﬂ Un (tl,tg) + SZ(tl)Rvn,vn (t17t2) = Q(tl)_‘g—“(i[@(tl)_@(tz)"u(tg — ll) (55’1)
1

where we have used the result in the first step, (5.53). By using the integrating factor technique

again, we obtain the following autocorrelation function of vy:

%57 _tweatay [T e, - rr
Ry, v, (t1,12) = ¢ ()~ it2). e gr(t)dt (5.55)
0

By noting (d/df)e?®®) = (2/C)gr(t)e?*®), we can perform the integral above, leading to
kgT \
Ry (b1, 1) = —mem20002) (5.56)

’ C
where we have ignored the initial transient and the exponent A{ty,ts) is given by

A(tl, tg) = @(tl) - (I)(f,g) — 2(1)(1’[1in[t1,f2]) (557)

Using the Fourier series expansion of gr(t) only with its de and fundamental frequency components
for simplicity®, i.e.,

gr(t) = gr,0 + gra cos(2wrot + 61) (5.58)

and defining 7 =12 — ) and t = t1, the exponent A(f1,t5) can be expressed as

A(ty,t2) = A(1;t) = gT,’O T + ﬂ1——(:05[(4),-_,07' + 2wrot + 61] sinwro|7| (5.59)
C \'.ULOC

and hence the autocorrelation in (5.56) can be written as

kBT e—A(‘r;t)

Ry, 0, (T3) = (5.60)

S

As can be seen, the antocorrelation Ry, ., (7;t) depends not only on the measurement time

difference

7| but also on the absolute measurement time {. This shows that the time-vorying
filtering of the cyclostationary noise in switching mizers again produces cyclostationary noise v, (1)

at the mizer’s oulput (IF-port). Equation (5.59) suggests that the fundamental frequency of the

Swro =27 fLo, wpr = 2nfRF, and wip =21 fiF
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Figure 5.19: Explanation of the time-invariant {v2) = kT /C in the context of the equivalent circuit of switching
mixer for noisc, redrawn from Fig. 5.14(b).

output cyclostationarity is 2fro. Ry, v, (7;t) ultimately decays exponentially with |7, implying less
correlation with larger |7].

For t = t3 or 7 =0, (5.60) reduces to
kgT

o (1) = (03) = (5.61)

o c

Remarkably, (5.61) shows that the mean-squared voltage noise {v3

”) is timne-invariant even in the

presence of the cyclostationarily. TFurthermore, the mean-squared voltage given above coincides
with the value determined from the equipartition theorem, that is, C{v2)/2 = kzT'/2, where the
equipartition theorem was fully discussed in Chapter 3.

Another way of looking at the time-invariance of (v2) is to note that the instantaneous bandwidth
Q(t) o< gr(t) and input voltage noise intensity m o« 1/gr(t) in Fig. 5.14(b) (redrawn in Fig.
5.19) vary inversely proportional to each other during the mixer operation: as gr(f) increases, the
bandwidtl increases while the input noise intensity decreases and vice versa for decreasing gr(t).
Hence the mean-squared voltage noise at the output stays constant regardless of the measurement
time 2.

The cyclic power spectral density of vy, at the IF frequency frr is given by

co

Su, (f1rit) = / e T Ry, (T3 )T (5.62)

-0

There exist two different regimes of noise generation, depending on the size of the IF capacitor.

We can identify the two regimes of noise generation based on the relative size of the de component



102

Figure 5.20: R,, (7;t) versus 7 for two different measurement, times ¢ = {1 and { = g for large enough C >
97,0/ (2wL0)-

of Q}(t), Qo = gr,o/C, with respect to 2wpp. Tirst, quasi-stationary regime is identified with the
condition 2y <« 2wy . For a large enough IF-port capacitance, C, satisfying the condition, R, (7;1)
for a given t assumes a decay ~ e~970/C7l with rapid, small variations around it due to the
trigonometric termns in (5.59) as illustrated in Fig. 5.20. The change of the measurement time t
will only introduce the small phase shift of the rapid variations (Fig. 5.20). Therefore, the integral
in (5.62) will average oul the rapid variations regardless of {, implying a weak manifestation of

cyclostationarity. Equation (5.62) then can he approximated as

kT [ _. . .
S, (f1r) = 25 / e I2mIrrT o= 2T g

gr,0 o
= 4kgT — - 5.63
o 9'3‘,0 + 47r2ffFC2 (5:63)

[quasi-stationary approximalion]

o =00

which could be obtained from Fig. 5.12 by replacing g(t) and g(t) with their d¢ components and
hence the name, quasi-stationary approximation.

Second, cyclostationary regime is identificd with the condition Qg > 2w 0. For a small enough
IF-port capacitance C' satisfying the condition, R, (7;t) for a given ¢ decays quickly with i7| when
compared to the time scale ~ 1/(2fr0). By the time |7| the autocorrelation decays considerably, it
contains only a fraction or a few of 2L variations due to the trigonometric terms in (5.59) while
the size of the variations is appreciable. Accordingly, different measurement time # will result in
conspicuously different 2, (7;t) as shown in Fig. 5.21. These variations seriously change the valuc
of power spectral density in (3.62), a clear manifestation of the cyclostationary noise. Additionally,
due to the rapid decay of R, (7;t) with 7 when compared to 1/(2fr0), the effective intcegration

interval of (5.62) is much smaller than 1/frr as fro > frr in the mosi, practical cases. Therefore,
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Sv"(fj‘p ’t2)

Figur(} 5.21: Ry, {(T;t) versus T for four different measurcment times ¢ = £1,%2,%3 ana iy for small cnough € <
g1.0/(2wLo).

e~d27IFT a0 1 in (5.62) and we have

oo

Su, (J1rit) = Ry, (T5t)dr (5.64)

—o0

[cyclostationary regime]

in this cyclostationary regime. Henceforth, S, (frr;t) for a given time, ¢, is simply the arca under
the Ry, (7;%) versus T curve as shown in Fig. 5.21.

In summary, the switching mixer processes the cyclostationary noise generated by the MOS
switches through the time-varying filtering, again producing cyclostationary noise at the IF-port.
The fundamental frequency of the IF-port cyclostationarity is 2fro. There exists two different noise
generation regimes depending on the size of the IF-port capaciiance C. In the cyclostationary regime,
the IF-port cyclostationarity is pronounced and the conventional quasi-stationary approximation can
lead to large crrors. [n the quasi-stationary regime, the manifestation of the cyclostationarity at
the IF-port is scverely weakened and the quasi-stationary approximation holds good. The border
between the two regimes can be defined by Qg = 2w, which determines the critical capacitance
C’cyclo:

_ gro

Ccyclo = 2o (56:))
L

The cyclostationary regime is identified with C < Cgyero while the quasi-stationary regime is iden-
tified with C' > Ceyeio.
Although not common in practice, let us consider the casc where the IF-port capacitance C' is

very large for the sake of completeness. When C' is large cnough to satisfy {ly < w;r, the mixer
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filters both IF signal and IF noise. Hence, the critical capacitance, Cfiter, which determines the

onset of the IF signal/noise filtering is given by

. gr,0 .
Cfilte'r = (566)
WirF

We will see these effects more clearly in the following section.

5.7 Simulation and Design Implication

In this section we will use numerical simulations [52] to verify the results of the previous section for
the general case where Gyource and R are both finite. The state equation has the same form as in
the special case (5.31) while (2), Iieter and s, are more complicated for this general case [66]. As
will be seen shortly, the circuit behavior remains essentially the same as in the special case of the
previous section.

The SSB noisc figure (NF) of the mixer can be expressed as [92]

Gsourcc S’U»,q, (fIF: t)
4kgT A2

conv

NF =1+ (5.67)
where Agony 15 its voltage conversion gain and S, (f1r,¢) is the cyclic power spectral density of
the IF voltage noise, v,, while excluding contribution of the noise due to Gepyree. Time-averaged
PSD in the numerator is what the noise figure meter measures as demonstrated earlier. Now we will
calculate Acony, Su, (f1r.t) and NF by numerically solving (5.31) in the general case.

The following numerical results have been obtained using fro = 300 MHz, frr = 10 MHz,

frr = 310 MHz, Giource = 0.02 (or, 50Q source resistance) and Rrp = 10kQ.

5.7.1 Conversion Gain Simulation

The simulated voltage conversion gain, Acony, versus IF-port capacitance, C, is depicted in Fig.
5.22 for hard- and soft-switching modes. As predicted carlicr, Agony does increase with increasing C
until the trend ultimately reverses at the onset of the f;r component filtering. The critical [F-port
capacitance C'ier defined by (5.66) in excess of which the IF filtering becomes substantial is shown
in the figure for each switching mode. The bump size of the curves is larger in the hard-switching
than in the soft-switching as the former has richer harmonic contents, resulting in more contribution
from higher order odd integer multiples of fro plus/minus frr as predicted earlier in this chapter.
An important design implication obtained from the Agen. versus C curve is the cxistence of an
optimum capacitance that results in maximum conversion gain. Additionally, we can see that the

hard-switching mode yields a higher optimum conversion gain performance than the soft-switching.
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Figure 5.22: Simulated Acone versus C for the two different switching modes.

5.7.2 Noise Simulation

Figures 5.23 and 5.24 show S, (f1r;t) versus t during a period of LO for different values of ¢
for hard- and soft-switching modes, respectively. As can be seen, Sy, (fir;t) clearly manifests the
cyclostationarity with the 2fro periodicity. The instantaneous noise generation at the IF-port is
boosted when gp(#) is small, close to switching and attenuated when gr(t) is large. As predicted
in the previous section, a small IF capacitor results in large variation in the PSD, or stronger
cyclostationarity while large IF capacitors average out more of 2fro cyclostationarity and reduce
the time-variations of the PSD. Also comparing the numerical values in Figures 5.23 and 5.24, we
notice that for a given capacitance, the cyclostationarity is more pronounced in the hard-switching
than in the soft-switching.

In Fig. 5.25, the timec-averaged PSD S, (frr;t) versus C is depicted for both hard- and
soft-switching modes. The figure also shows the results obtained from the cornmonly used quasi-
statiorary approximations of (5.63) with broken lines. As predicted earlier, for large cnough ca-
pacitances, S, (frr;t) converges to the stationary approximation. For smaller capacitances, the
cyclostationarity is more pronounced and the stationary approximation can result in large errors, es-
pecially in the hard-switching. In this cyclostationary noise regime, the reduction rate of Sy, (f7r;t)
with increasing C represents the importance of cyclostationarity and the hard-switching shows a
higher level of cyclostationarity. For the soft-switching, the time-variance of the PSD is significantly

weaker when compared to the hard-switching mode. The critical capacitance Ceyelo defined earlier
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Figure 5.23: Simulated Su,, (f1r;t) versus ¢ during a period of LO for various capacitor values in the hard-switching
mode.
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F igure 5.24: Simulated S, (frF;t) versus t during a period of 1O for various capacitor values in the sofi-switching
mode. :
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Pigure 5.25: Simulated Sy, (f1F;t) versus C.

in (5.65) appropriately separates the quasi-stationary and cyclostationary regimes.

The upper part of Fig. 5.26 shows the Agony versus C and Sy, (f1r; 1) versus C curves logether
for the hard-switching mode. The cyclostationary regime (C' < Ceyeto) colncides with the region
where the conversion gain increases with C. Once €' becomes larger than Ceyero. both the voltage
and noise go through the simple first-order filtering process and A2, =~ and S, (frr;t) show the
same dependence upon C (plateau and roll-off). Therefore, the noise figure in (5.67) decreases with
C' roughly until C rcaches Ceyelo and then remains constant afterwards as the filtering for noise
and signal occurs at the same rate as shown in the lower part of Fig. 5.26. The lower part of
the figure also compares the noise figure performance for the different switching modes. The best
noise performance is achicved by operating the mixer in the soft-switching mode. However, the soft-
switching mode has an inferior conversion gain as shown in Fig. 5.22. For a given switching mode,
the mazimum conversion gain is achieved while the noise figure stays in the plateau as con be seen
from Fig. 5.26. Thus the IF total capacitance should be chosen at the optimum design capacitance
Coptimum thot mazimizes the conversion gain and minimizes the NF. An IF capacitor in excess of

Coptirnum will lower the gain with no effect on the NF.
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Figure 5.26: Simulated Aconv: Sv,, (frrit) and NF versus IF capacitance C.
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Figure 5.27: Die photo of the mixer chip.

5.8 Experimental Verification

5.8.1 Measurement Setup

Figure 5.27 shows the die photo of the mixer test chip fabricated in a BICMOS 0.35 pm technology
using only MOS transistors. Figure 5.28 shows the gain and noise figure measurement setup using
an HP8570A noise figure measurement system and an HP860C diode noise source. The variable
capacitor shown in the figure is implemented on chip with a set of multiple capacitors of different
values layed-out in parallel across the balanced IF-port. By laser-trimming the capacitors one by one,
we can obtain various IF capacitor values. Noise figure and voltage conversion gain were measured
for each value of C. The range of the capacitor values used is comparable to or less than Coptimum
shown in Fig. 5.26 because the most interesting behavior of the mixer is observed when C is in
the range of yor smaller than Coptimum while the behavior is typical when C is much larger than
Coptimum.

The post amplifier following the mixer shown in Fig. 5.28 is a cascade of an on-chip amplifier
followed by an off-chip amplifier. The post-amplifier plays the role of isolating the parasitics of
the mixer from those of the off-chip interconnects and components, enabling a precise control of
the IF-port capacitance. Additionally, as the switching mixer provides gain less than 1, the post
amplifier is used to enhance the input noise to the noise figure measurement system, improving the
accufacy of the measurément.

The chip has a direct electrical connection (broken lines) between the RF- and IF-ports that
by-passes the mixer circuit as shown in Fig. 5.28. This connection was realized in order to de-
embed the noise and gain coﬁtributions of the post amplifier. The de-embedding process is as
follows: First, the by-pass lines are cut via laser-trimming and the noise figure and gain of the

whole mixer-amplifier chain is measured at various IF-port capacitances. Second, in a different
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TFigure 5.28: Mixer measurement setup.

chip, the RT' port is routed directly to the amplifier input (IF-port) while the mixer is isolated
from the circuit via laser trimming and the noise figure and gain of the amplifier is measured. Due
to the paramecter variatious of the on- and off-chip components, using two different chips for the
de-embedding purpese leads to an inevitable error. Thercfore, the sccond procedure is performed on
7 chips and the statistical data are obtained in the de-embedding process. The input impedance of
both the mixer and amplifier arc important to take the impedance mismatching effects into account
properly. They are characterized using an HP87531) network analyzer. 'The measurement frequencies

arc at [0 = 300MIlz, [;r=10MIlz as in the simulation and SSB noise figure is measured.

5.8.2 Measurement 'Resultsb

Fig. 5.29 shows the measured Acpny versus C curves of the stand-alone mixer for different switching
modes. This measurement result agrees with our theoretical predictions of the mixer conversion gain
behavior (Compare with Fig. 5.22). The conversion gain enhancement can be clearly seen. The
conversion gain grows with an increasing C' for a while before it eventually reverses the trend. The
size of the bump is larger in the harder-switching mode which has richer harmonic contents.

Fig. 5.30 depicts the measured noisc figure versus C' curves of the stand-alone mixer for different
switching modes. This measurcment result agrees well with our theoretical prediction (Compare
with Fig. 5.26). First, the noise figure is higher in the hard-switching mode than in the soft-
switching modc. Second, the cyclostationary effects are apparent in both switching modes. Third,
the cyclostationary effect is more pronounced in the hard-switching than in the soft-switching,

showing the rapid increase in the noise figure with the decreasing C' (A4 — Ay). Iu the soft-switching
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Figure 5.29: Measured voltage conversion gain versus IF capacitance for different switching modes.
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Figure 5.30: Measured noise figure versus IF capacitance C' for different switching modes.
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Figure 5.31: Simulated and measured noise figure versus IF capacitance C in the hard-switching mode.

mode, the resulting increase of the noise {igure with the decreasing capacitaice C' (C4 — Cy) is not
as strong as in the hard-switching mode.

Fig. 5.31 directly compares the measured noise figure to the simulated noise figure solving (5.31)
in the hard-switching mode. The error bar indicates the statistical variance which is obtained [rom
the multiple sets of measurement. The measurement result clearly shows the cyclostationarity and
bears the same trend as the theoretical behavior of the noise figure with the decreasing €. For a
very small IF capacitance on the order of 100fF or less, the noise figure does not increase as fast as
theoretically predicted with the decreasing C as can be scen from Ay — A; in Fig. 5.31. This can
be explained by the nonzero transistor and interconnect parasitic capacitors on the same order of
magnitude. Even though the explicis capacitors are cut in Ay — Ay, the parasitic capacitors are

irremovable and their effects become dominant for the small IF capacitor values.

5.9 Summary

This chapter presented extensive study of time-varying filtering in switching mixers for both signal
and cyclostationary noise. The study reveals two novel observations of switching mixers: noise figure
dcgradation due to the cyclostationarity and couversion gain enhancement, both for small enougn
energy storing clements. The theoretical prediction was firmly verified through a direct measurement
of CMOS switching mixcrs. The novel behavior of switching mixers depending on the size of energy

storing elements provides immediate design insight into the mixer optimization.
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Chapter 6 Noise in Time-Varying Autonomous

Circuits

6.1 Introduction

This chapter presents one of the most important contributions of our work on statistical electronics,
that is, luctuations and thermodynarmics in time-varying autonomous circuits [72], {73..

Differently from the time-varying driven circuits studied in the previous chapter, the time-varying
antonomous circuits generate periodic signals autonomously without any input signals. Hence-
forth, lime-varying autonomous systems arc actually synonymous with “self-sustained oscillators”
or simply put, “oscillators”. These time-varying autonomous circuits are frequently used to pro-
vide frequency- or timing-refcrences in a variety of systems encountered in science and engineering.
For instance, as mentioned earlier in Chapter 2, any modern RE receivers necessitate reference
frequencies generated by local oscillators to execute frequency downconversion.

In an ideal case where there is no noise, the oscillator has delta-function-like power spectral
density at the fundamental frequency and its integer multiples (harmonics) as shown at the top of
Fig. 6.1(a). In the time-domain, the zero-crossings of the noiseless oscillator signal lic af a certain
constant plus the integer multiples of half of the oscillation period where the constant corresponds to
the first zero-crossing. These zero-crossings of the noiseless oscillator are called ¢deal zero-crossings
and they arc shown with the “X” marks in Fig. 6.1.

In the presence of noise, the oscillator cannot provide absolutely accurate frequency reference.
Noise spreads the oscillation energy around the center frequency and its harmonics, hence making
the power spectrum shorter yet fatter when compared to the noiseless case, as shown in Fig. 6.1(b}.
This linewidih broadening in the oscillator power spectrum corresponds to the errors in the reference
frequency, and is called phase noise. A quantitative definition of the phase noise will be given in
Section 6.3. In the time-domain, the noisy oscillator’s zero crossings drift away from the ideal zero
crossings as time evolves, and after a sufficiently long time, the zero crossings are completely ofl from
the ideal zero crossings as shown at the bottom of Fig. 6.1(b). This nonidea! zero crossings resuls
in errors in timing-reference, which arc called timing jitter. The adverse effects of this frequency- or
timing-reference noise on RF detection was discussed in Chapter 2.

Noise in oscillators has been a subject of active research for over half a century [63], [74] - [77]. The

oscillator phase noise has been studied from several different angles, ranging from a mathematical
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Figure 6.1: Oscillator output in frequency- and time-domain for (a) noiseless oscillators and (b) noisy oscillators.
The “X” marks in the time-domain signify the ideal zero crossings.

physics ireatment [74] to CAD-oriented, pure-mathematical methods [75), [76] and design-oriented
approaches 63], [77], to name a few. The design-oriented approaches have evolved from a familiar
linear time-invariant theory [77] to a more accurate time-varying theory [63], adding additional
insight into the oscillator design. These theorics have helped circuit designers better understand
the evolution of noisc in oscillators and predict more accurate phase noise, leading to lower noise
designs.

However, most of these currently available theories are mainly phenomenology-based, and pay
little attention to the connection between oscillator noise and statistical thermodynamics. If com-
bined with fundamental physical understanding, the currently available noise modelings can be much
more cffective in designing low-noise oscillators. On the other hand, heavy dependence upon the
phenomenology with little comprehension of the underlying physics of oscillator noise could block
insight into design optimization, leading to design misconceptions. This is cven more true as the
contemporary oscillator noise models become more complicated with many cross-related design pa-
rameters to take into account more details for accurate noise prediction. An example of such design
miscorceplions is the widely held belief that a larger voltage swing always results in a better phase
noise. However, as will be demonstrated later, increasing voltage swing actually can degrade phase
noise performance.

This chapter presents a new theory of oscillator noise based on fundamental physics, bringing
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transparent insight into the oscillator phase noise. OQur work consists of four main results. First, by
using an ensemble of identical oscillators as a tool, we derive the concept of virtual damping, which
puts oscillators and resonators in a unified framework. It will be shown that the virtual damping rate

'is a fundamental measure of phase noise which can be verificd experimentally. Sécond, we demon-
strate the direct correspondence between the virtual damping rate and Einstein relation discussed in
Chapter 3. Our approach reveals the underlying physics of oscillator phase noisc by identifying its
two essential clements: sensitivity and friction (energy loss). Also this treatment leads to a physical
definition of the loaded quality factor of oscillators, establishing a link between fluctuation-based and
dissipation-based phase noise models. Third, the virtual damping concept results in another useful
concept, linewidth compression, leading to a general oscillator noisc optimization principle. Fourth,
thermodynamic concepts involved in the oscillator noise processes arc clarified, providing more fun-
damental understanding of the oscillator noise. Qur theorctical development is positively verified
through virtual damping measurements, low-noise desigu of oscillators, and direct measurements of
the oscillator noisc.

Additionally, this work utilizes an insightful graphical design-optimization method for oscillator
design. This graphical method facilitates the application of our oscillator noise theory to the practical
low-noise design of oscillators. We have demonstrated that identifying the feasible design points using
this graphical method is extremely helplul in a complex circuit design environment.

This chapter is organized as follows. Scctions 6.2 and 6.3 review the fundamentals of sclf-
sustained oscillators and the oscillator phasc noise. In Section 6.4, we develop the concept of virtual
damping and demonstrale phase noisc as its natural outcome using both theoretical and experimental
treatments. In Section 6.5, we derive the virtual damping rate based on physical arguments using
the Finstein relation and discuss its physical implications. Section 6.6 mathematically confirms this
physical argument by using the Langevin and the Fokker-Planck equations. Section 6.7 develops
another useful concept of linewidth compression, combining the results of Sections 6.4 and 6.5. From
this linewidth compression concept, a gereral oscillator noise optimization principle is cstablished.

In Section 6.8, we present a low-noise design example.

6.2 Self-Sustained Oscillator Fundamentals

Before directly diving into the oscillator noise problem, let us first review the fundamentals of sclf-

sustained oscillation using L.C-oscillators as an example.

6.2.1 Self-Sustained Oscillation

A sclf-sustained LC oscillator model is shown in Fig. 6.2. The resistance, R, is an cxplicit repre-

sentation of the parasitic tank loss. The active devices are used to compensate this tank loss by
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Figure 6.2: A generic model for a self-sustained LC oscillator.

converting dc energy to RF encrgy and injecting it into the LC tank. The current sources in the
model represent equivalent current noise generated from the tank loss and the active devices.
There exist lwo characteristic frequencies (or cquivalently, time constants) involved in the dynam-
ics of the LC oscillator. One is the resonant frequency (oscillation frequency), wo, of the oscillator
and the other is the inverse of the time-constaut, 7, due to the coupling of the resistance, R, o the

capacitance, C:

1
wo = 6.1
0 e (6.1)
1 1 .

These two characteristic frequencies play important roles in understanding the self-sustained oscil-
lation as will be seen shortly.
If the noise in the circnit is ignored, the voltage, v(t), across the LC tank in Fig. 6.2, can be

described by the following nonlinear second-order differential equation:
b4 wiv + wr fl0)o =0 (6.3)

Here, f(v) is a unitless, voltage-dependent function, and determined by the specific arrangement of
the active devices in Fig. 6.2. The first two terrs of the above equation represent the frequency
selection mechanism utilizing the LC tank. The third lerm is responsible for the self-sustaining mech-
anism of the oscillator in which f{v) plays a key role. f(v) becomes negative when |v| approaches
zero, leading to “negative damping” or amplitude boosting. On the other hand, f(v) becomes posi-
tive when | becomes large, resulting in the normal damping or, amplitude limiting. The amplitude

boosting is also responsible for the oscillation start-up and hence the following condition guarantees
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the oscillation start-up and its sustenance:
J(0) <0 (6.4)

Let us denote the effective parallel conductance due to the active devices as Gactive (V). In self-
sustained 6scillatofs, this effective parallel conductance at v = 0 is negative [8]. If the magnitude
0f Gactive(0) is larger than the tank 10ss (|gactive(0)| > 1/R), the oscillator will start up and will be

sustained. Hence, the small-signal loop gain, «, is defined as the ratio of jgactive(0)| to 1/R:

a = R |gactive(0)] (6.5)

and the start-up condition becomes

o> 1 (6.6)

Now let us check the consistency between (6.4) and (6.6). Since f{v) = 1 in the absence of the
active devices, gactive(v) 18 given by

ga,cti/ue(v) - "%—1 (67)

Combining (6.5) and (6.7), we obtain the following expression for the small-signal loop gain:

_p O .
=R =1 £(0) (6.8)

demonstrating the consistency between (6.6) and (6.4).
Self-sustained oscillation can be insightfully understood using an energy argument. The tank

cnergy at resonance, Fyignk, is given by

1 1 .5
H[,anlc = §C'U2 + ELI“

IC(‘Z—I—UZ
= v wg

\

1
= =C(*+w?) (6.9)
2

where 4 = C¥ is the current in the LC tank and we have defined a new variable, w, as

) 7
W= — =

- .10
wo woC (6 )

"This new variable, w, is essentially the same as the current, 4, in the tank, cxcept the scaling factor

1/{woC). From this point on, we will call this variable, w;, scaled current. Note that w has the unit
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of voltage.

From (6.9), the time-derivative of the tank energy is obtained as

% LC?)(6 — wiv)
! 02 [ (v) (6.11)
ol ) 11)

where we have used (6.3) to obtain the second line. As can be seen, for f (v) < 0, the sime-derivative
of the tank energy is positive and hence the tank encrgy increases. This makes sense since f(v) < 0
corresponds to the negative damping or energy pumping into the LC tank as mentioned earlier. On
the other hand, if f(v) > 0, the time-derivative of the tank energy becomes negative, corresponding
to the tank energy decrcase duc to the normal damping. When the oscillator reaches steady-state,

these energy loss and gain per one period should be equal and hence

1 227 Jwa

AEink = —— / P2 f(v)dt =0 (6.12)
1{(4}6 Jo

where AE;,,, signifies the net cnergy change in the tank per period. This cquation will be used to

determine the oscillation amplitude later.

6.2.2 Examples
Van der Pol oscillator

Van der Pol used f(v) = av? —b (a > 0, b > 0) in (6.3) to carry out his classic study on the
self-sustained oscillators [78], [79]. For the Van der Pol oscillator, the differential equation (6.3)
becomes

B+ wiv+ (e =6 =0 6.13)
oV Y )

In this case, f(0) = —b and hence the start-up condition for the Van der Pol oscillator is b > 0

according to (6.4). Additionally, the small signal loop gain is given by
(Y:1+b (6]4)

according to (6.8). In the Van der Pol oscillator, when |v] is small enough, f(v) = av? — b becomes
negative, resulting in the amplitude boosting. When |v| grows large enough, f(v) = av? —b becomes
positive, limiting the amplitude. The Van der Pol oscillator is rather a simple model but captures
the essence of nonlinear self-sustained oscillation, and hence is widely used to study the generic

characteristics of the self-sustained oscillator,
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Figure 6.3: LC cross-coupled oscillators with (a) bipolar transistors and (b) MOS transistors. In the figures, It
explicitly represents the parasitic tank loss.

Circuit Examples

Practical circuit examples of the self-sustained oscillators are shown in Fig. 6.3(a} and (b), which
schematically depict LC oscillators with cross-coupled bipolar transistor pairs and cross-coupled
MOS transistor pairs, respectively. The cross-coupled pairs act as a negative resistance when the
magnitude of the differential tank voltage, v = = — y, is small enough, hence introducing the
amplitude hoosting mechanism to the circuit. For both of the circuits, the differential equations for
the differential tank voltage, v = & — y, are given by

/

1 d .
B+ wiv + wrd + %%[I(y, z)—=I{z,z) =0 (6.15)

where I{x,z) and I(y,z) represent currents flowing through the transistors as shown in Fig. 6.3
and are functions of the voltage difference, z — z and y — 2z, respectively, to the first order. In the
oscillator with the bipolar transistors, the base currents are being neglected.
For the oscillator in Fig. 6.3(a), (6.15) becomes
Rgm

B4 wiv + we [L— — cosh—‘z(%)] =0 (6.16)
T

F2)
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where we have used the exponential relation between the base-emitter voltage and the collector cur-
rent {46]. 1n {6.16), g, is the transconductance of the bipolar trausistor when the dc collector current
is Thias/2 and Vp = kgT/e. Hence, f(v) in (6.3) is given by f(v) = [1 — (Rgm/2) (:osh_Q(w/QVT)] in
this case, ‘
For the oscillator in Fig. 6.3(b), ignoring the triode-regime of MOS transistors, we can reexpress

(6.15) as
Ry, 1—(v/Vgs)?
2 \/1-(v/Vgs)?/2

f(w)

b4 wiv + w1 — =0 (6.17)

where we have used the quadratic relation between the drain current and the gate-source voltage
assuming that the MOS transistors arc the long channel transistors [46]. Here, g, is the transcon-
ductance of the MOS transistor when the de drain current is Ipies/2 and Vg is the gate-source
voltage of the MOS transistor when the de drain current is Ipies /2.
In both (6.16) and (6.17), the start-up condition (6.4} results in
2

— <R 6.18
e (6.18)

This result can be interpreted from a circuit standpoint. The effective input resistance looking into
the cross-coupled pair is shown to be —2/g,, when v = 0 as shown in Fig. 6.3. If the oscillator is
to start up, the magnitude of this negative resistance should be smaller than the tank loss, hence
agreeing with (6.18). Note that in both cases, f{v) becomes positive for a sufficiently large |v],

leading to the amplitude lirniting.

6.2.3 State-Space and Limit Cycle

It is often convenient to view the dynamics of the LC oscillator in the two-dimensional state-space
where the two independent variables constituting the state-space are the voltage across the tank,
v, and the scaled current in the tank, w, defined by (6.10). Here the use of the scaled current, w,
instead of the current, , is due to the mathematical symmetry between v and w as seen in (6.9) and
the resultant convenience but not for any fundamental reasons.

In the course of oscillation, the voltage across and the current in the LC tank periodically change
and hence, the dynamics of the oscillator can be mapped onto a solution trajectory in the » — w
state-space as shown in I'ig. 6.4. If we decompose (6.3) into the following simultancous differential

equations,

U = woWw

B o= —wov — wrf(v)w (6.19)



limit cycle

Figure 6.4: v — w state-space and limit cycle.

at any given state-space point X = (v,w), the statc-space velocity V = (6,0) = {wow, —wyv —
vf(v)w) is known from (6.19) and accordingly, we can always find the oscillator trajectory at least in
principle in the state-space with a given initial condition. Note that for a purely harmonic oscillator
(wr = 0), {6.19) implies that X and V arc always orthogonal and the solution trajectory for the
oscillation becomes a circle centered at the origin. The steady-state solution trajectory representing
the oscillation is a closed curve duc to the periodicity and is called a limit eycle {80). This limit cycle
represents a periodic solution or rather a family of periodic solutions differing only in phase for the
differential cquation (6.3). All other solution curves ultimately get attracted to the limit cycle after
the initial transient fades out. Generally speaking, {or any differential equation that has the limit
cycle, all solutions of it are ultimately periodic with the same period and amplitude determined by
the equation, while only the phase depends on the initial condition [80].

This peculiar property of the self-sustained oscillator directly affects its fluctuation behavior
when it is subject to noise. The fluctuations would remain small in the amplitude direction due
to the nonlincar oscillator’s attribute to return back to the limit cycle. However, fluctuations in
the direction along the limit cycle has no tendency to return since the nonlinear oscillator has
no fundamental mechanism forcing the changed phase back to the original phase. Conscquently,
the oscillator phase undergoes “random walk” along the limit cycle in the presence of noise and
the probability density of the phase spreads out on the limit cycle, just as the Brownian particle
randomly walks in space and the probability density of its displacement diffuses out in space. These

fluctuation behaviors of the oscillator will be treated in a quantitative manner later in this chapter.
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6.2.4 Approximation for Resonator-Based Oscillators

In general, it is a cumbersome task to analytically solve the nonlinear differential equation (6.3). For-
tunately, for resonator-based oscillators such as LC oscillators, we can take a certain approximation
to study the oscillator dynamics as far as the unloaded tank quality factor, @, is sufficiently large [81].
In this subsection, we will study LC oscillator’s deterministic dynamics using this approximation.
Iarlier in this scction, we have mentioned that there arc two characteristic frequencies involved
in the dynamics of the LC oscillator, which are wo and w; defined in (6.1) and (6.2), respectively.

The ratio of these two frequencies is no more than the unloaded tank quality factor, Q [7]:

N RCw=Q (6.20)

wr

Now in a new time frame #' = wgt in which the angular frequency becomes 1, (6.3) transforms to

O+ v+ l1')f(v) =0 (6.21)
Q
where the time-derivative signified with the dots is with respect to the new time, t'. Thercfore, if
wo/wr = @ > 1 which is typical in LC oscillators, the third nonlinear term is rather weakly coupled
to the first two harmonic oscillator terms, resulting in the near-sinusoid steady-state oscillation
waveforms.

Typical time evolution of »(t) including the initial transicnt in this high-Q) case is depicted in
Fig. 6.5. As will be shown shortly, the amplitude growth in the initial transicnt occurs with the time
constant on the order of wyl. Since wy > w, for @ > 1, there are many oscillation cycles in the
mitial transient as shown in Fig. 6.5. Once the oscillation reaches the steady-state, the waveform
is near-sinusoid due to the weak coupling of the nonlinearity. Hence in this weak nonlinearity case
(@ > 1), we can use an approximation in which the steady-state solution of (6.3) is regarded as a
sinusoid, that is, v(t) & rq cos(wot), where rp is the amplitude of the oscillation, hence the name,
near-sinusotd approximation.

Let us see how we can determine the oscillation amplitude in this high-) case using thc necar-
sinusoid approximation. Earlier, we noted that the tank energy loss and gain per period should be
equal in the steady-state oscillation, lcading to {6.12). In the case of the Van der Pol oscillator,

(6.12) becomes

2w jwo 27 fwo
/ D f(v)dt = / % (av? — b)dt = 0 (6.22)
0 0

By using the near-sinusoid approximation, we plug v(2) = rgcoswgl into the equation above, ob-
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Figure 6.5: A typical waveform for LC-type oscillators when the nonlinearity is weakly coupled, or Q >> 1.

taining

ro & \/@ (6.23)

which is the amplitude of the Van der Pol oscillation in the high-@) case. Earlier, we have noted that
b and the small-signal loop gain, «, of the Van der Pol oscillator arc related by (6.14) and hence
(6.23) implies that a larger small-signal loop gain leads to a larger voltage swing in the Van der Pol
oscillator.

In the case of the weak nonlinearity coupling, we can not only calculate the steady-statc am-
plitude, rg, but also evaluate the time-evolution of the oscillation amplitude in the transient. The
technique used to obtain a differential equation for this time-evolution of the oscillation amplitude
is so-called “two-timing” method [81], which utilizes the fact that the two characteristic frequencies
wp and w, are in different scales for this high-@Q case.

In the Van der Pol oscillator, using this two-timing method, we can show that the differential
equation for the araplitude evolution is given by

dr  aw,r 4b

o 0 5
o 3 (a ) (6.24)

where the detailed derivation is given in Appendix 1. In the steady-state, there is no variation in r
with time and hence the right-hand side of (6.24) is zero, resulting in the amplitude of ro = 1/4b/q,

in perfect agreement with (6.23).
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The solution of (v.. -~ hy
3 1 3 =
r(t) = = (6.25)
V-
where the constant A is determined by the initial condition. . =\ we can calculate the
starl-up time of the oscillation. For cxample, the time for r to reach 0.9r¢g so. () = 0.1rq
is givén by
RC T
At~ 6 =0 6..
b a—1 (620,

where we have used (6.2) and (6.14). As can be seen, the start-up time, At, is proportional to the
RC-time constant 7 = RC = 1/w; of the oscillator as can be intuitively expected. Additionally, the
start-up time is inversely proportional to the small-signal loop gain, «, that is, a larger small-signal
loop gain results in a smaller start-up time. Also note that the start-up time goes to infinity with
o — 1, which implies that there is no oscillation unless o > 1. Finally, the start-up time is on the
order of 7/b = 1/(bw;) ~ 1/w, unless the small-signal loop gain is excessively larger than 1. This

time-scale for the start-up in the initial transient was already indicated in Fig. 6.5.

6.3 Phase Noise Fundamentals

This scction reviews the fundamentals of oscillator phase noise. As an analysis vehicle, we will use

the LC oscillator model shown in Fig. 6.2.

6.3.1 Phase Diffusion

The voltage, »(t), across the LC tank shown in Fig. 6.2 can be expressed as
v(t) = r(t) coslwot + (1)) (6.27)

where 7(t) represents its amplitude, ro, plus the fluctuation (amplitude noise) around ro. @(t)

represents the fluctuation in the oscillator phasc. The total oscillator phase, 0(2), is defined as
0(t) = wot + ¢(2) (6.28)

As discussed in Subsection 6.2.3, the fluctuations remain small in the amplitude direction in the
limit cycle of Fig. 6.4 due to the oscillator’s tendency to return back to the limit cycle. Henceforth,

we will ignore the amplitude noise and replace r(t) with the amplitude r5. Then (6.27) simplifies to

7;(t) = rp coslwot + &(¢)) (6.29)
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Tigure 6.6: An cnsemble of N identical oscillators.

The fluctuations in the direction along the limit cycle has no tendency to return since the
oscillator has no fundamental mechanism forcing the changed phase back to the original phase.
Consequently, the oscillator phase, ¢(t), in (6.29) “randomly walks” along the limit cycle in the
presence of noisc and hence experiences the diffusion process. To see this phase diffusion more
clearly, let us consider an ensemble of N identical oscillators shown in Fig. 6.6, which are assumed
to be all at the same initial phase at £ = 0. N is a very large number. In the state-space shown
in Fig. 6.7(a), the oscillation points from the ensemble are all on the top of one another initially,
rotating on the limif cycle together. However, the rotating oscillation points diffuse along the limit
cycle with time, ultimately getting widespread on the limit cycle after a sufficiently long time.

Based on the enscmble of oscillators, we can define the probability distribution of the phase,
P(¢,t), and the probability distribution of the total phase, P(6,t), where 6(t) = wot + ¢{t) as
defined in (6.28). Figure 6.7(b) shows the time-evolution of P(¢,t). Since all the oscillators in
the ensemble are at the same initial phase (and let’s assume that the initial phase is zero without
loss of generality), the initial distribution is given by P(¢,t = 0) = 6{(¢). As time goes by, the

phase undergoes diffusion and the probability distribution of ¢ spreads out. This phase diffusion
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is analogous to the diffusion of the Brownian particle in space discussed in Section 3.1, where the
time-evolution of the displacement probability density is depicted in Fig. 3.6. If the phase diffusion

is due to white noise, the variance of ¢ is given by
(¢*(t)) = 2Dt (6.30)

analogous to (3.49). D in the above cquation is called phase diffusion constant and it depends upon
various circuit paramecters. As will be seen shortly, the phase diffusion constant is the sole factor
that deterrmines the amount of error in the reference [requency (phase noise). If D is very small
(e.g., in atomic clock.), the reference-frequency error will be small. If D is relatively large (e.g., in
relaxation oscillators.), there will be larger errors in the reference-frequency.

Figurc 6.7(b) depicted the phase diffusion in the absence of any boundary conditions, i.e., the

phase, ¢, was assumned to diffuse in the {—o0, 00] space. An alternative way of looking at the phase

diffusion is to confine the diffusion space Lo [—m, 7] and impose the boundary conditions:

P{-x,t) = P(%,t)
OP(¢,t) OP(9,1) e
=7 - , =—T ‘\ > ].
96 o= e |6 6.31)

Figure 6.8 shows the time evolution of P(¢,t) under these boundary conditions. As can be seen, the
phase distribution will ultimately tend to a uniform distribution across the whole range of phase,
—m, 7). With or without the boundary conditions, the rate with which the phase diffuses is always
given by the phase diffusion constaunt, D.

In Fig. 6.8, the uniform phase probability distribution at ¢ = co constitutes the most probable
(the mazimum entropy) state. According to the second law of thermodynamics, the entropy of the
ensemble of the oscillators will grow and ultimately cvelve to this maximum entropy state, which
cannot be prevented by any means. The phase diffusion constant D hence is a direct measurce of how
fast the entropy grows. Even though we cannot stop entropy from growing, we have a control over
the entropy-growth-rate, or the phase diffusion constant, D, to a certain degree. Minimization of
reference frequency errors (minimization of D) is equivalent to minimization of the entropy-growth
rate.

The total oscillator phase 6(t) in (6.28) has both drift and diffusion components in it. 6{1)
drifts with a constant velocity of wg while @(t) in the total phase undergoes diffusion. In the time-
evolution of the probabilily density of the total phase, P(6,t), shown in Fig. 6.7{c), the center of the
distribution moves with the velocity of wy while the distribution around the center spreads out with
time. This is analogous to the time-evolution of the probability distribution of the displacement of

a forced Brownian particle, which is shown in Fig. 3.14.
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Figure 6.8: Time evolution of P(¢,t) in the presence of boundary condition.

A time-domain picture of the phase diffusion is shown in Fig. 6.7(d) for the ensemble of osciliators.
At the start of oscillation, the oscillator output waveforms are all on the top of each other since the
oscillators in the ensemble are at the same initial phase. After a sufficiently long time, however,
the output signals from the ensemble become incoherent duc to the phasc diffusion (a.k.a., litter
accumulation) and eventually go totally “out of sync”.

Summarizing, this subscction introduced the concept of phase diffusion and defined the phase
diffusion constant, D. We have visualized the phase diffusion in state-space and time-domain as well
as in terms of the time-evolution of phase probability distributions. Now in the following subsection,
we will study how the phase diffusion aflects the oscillator power spectrum in the frequency-domain,

leading to a definition of the phase noise.

6.3.2 Phase Noise

In this subsection, we evaluate the oscillator power spectrum in the presence of white noise. We
have previously mentioned that in the presence of white noise, the oscillator phase undergoes dif-
fusion (Wiener process) and its variance evolves with time according to (6.30). More generally, the

autocorrelation of the phase is given by [33], [74]

<¢(t1)¢(t2)> =2D min{tl, tg} (632)

which is a key characteristic of the Wiener process. Note that this cquation subsumes (6.30).
To calculate the power spectral density of »(t) in (6.29), let us first evaluate the autocorrelation

function for v(t):

Ry w1, t2) = {v(t)v(t2)) .
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= r%(cos[wobl + &(t1)] - cosfwota + P(L2)])
= r{ cos(woty) cos(wota)(cos ¢(t1) cos P(ta)) + ré sin(wot) sin(wota) (sin ¢(t1) sin ¢(t2))
2 cos(wiots) sin{wola) (cos @(ty) sin 6(t2)) — & sin(wotr) cos(wotz) (sin (1) cos 6(t2))

(6.33)

For a Gaussiar. distribution of ¢(¢) at any given time, the statistical averages in the above equation

can be calculated as shown in Appendix 2, simplifying (6.33) to

Ry (t1.ta) (6.34)
= 7'8 coslwo(t; —t2)] - exp [— (@*(t)) + <¢2(t2%> _ 2<¢(."1)¢(t2)>]
2 201, ¢ o
oty - )] -cnp | LD 1))+ 0 00 65

Utilizing the special properties of ¢(t) given in (6.32), the above equation can be further simplified

Lo
Ry (t1,t2) = 75 coslwo(ty — tg)] - [e7 PN 712l 4 g7 Pt a2 min{tuta))) (6.36)

By defining 7 = ¢ — #1 and noting that the second term in the above equation is an initial transient,

we can reexpress (6.36) as
Ryo(7) = 13 coswor - e~ P17 (6.37)

The power spectral density of the oscillator output is the Fourier transform of the autocorrelation

function (6.37) and can be shown to be the familiar Lorentzian shape [74]

D

Su(w) = T%m
9 D
DT (Awy?
= S (Aw) (6.38)

where Aw in the second line is defined as Aw = w — wy and is called offset frequency. Note that
regardless of 1D, the total oscillation energy is kept at the same value, r2/2, as can be easily seen by

integraling S,(w) over the whole frequency range:

/

oc ,l y
(v?) = / Sv(w)(w =

vo|Sts

&, 3.39
] p (6.39)

Figure 6.9 shows S,(w) versus w for different phase diffusion constants. As D becomes larger,
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Wy

Figure 6.9: Power spectral density of the oscillator output for different, diffusion constants: Dy < D2 < Ds.

the Lorentzian shape becomnes shorter yet fatter, distributing the total oscillation energy of rg/2
more widely around the center frequency, hence increasing the errors in the reference frequency.
This is the frequency domain meaning of the phase diffusion constant, D. This error in the reference
frequency is normally called phase noise as mentioned earlier. More quantitasively [86], the phase
noise of an oscillator at an offset frequency, Aw, is defined as the ratio of the power spectral density

at, the frequency of* wp + Aw (shaded area in Fig. 6.10) to the total oscillation energy, 73/2:

Sy (Aw)
T3/2
2D

L{Aw}

I

This phase noise indicates the degree of the energy spreading around the center frequency for a
given total encrgy. We have to emphasize here that lhe phase noise solely dependes wpon the phase
diffusion constant, D. If the oflset frequency is large enough, i.e., for Aw > D, (6.40) assumes a

familiar f =2 behavior 77]:
2D

L{Aw} = TBE

(6.41)

It is important to cmphasize from (6.41) that a smaller phase diffusion constant D results in a smaller
phase noise. In other words, if the phase diffusion occurs more slowly, the spectrum broadening in

the frequency domain is smaller.

~or alternatively, at wg — Aw
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6.3.3 Lceson Model and Hajimiri-Lee Model

In the previous subsections, we have reviewed a generic phase noise model based on phase diflusion.
As clearly shown in (6.41), the phasc noise optimization is equivalent to minimization of the phase
diffusion constant, D. Many eiflorts have been made to relate the phase diffusion coustant, D, with
specific circuit parameters. In this subsection, we will discuss two well-known oscillator phase noise

models among many others, that is, Leeson model [77] and Hajimiri-Lee model [63].

Leeson Maodel

The phase noise model proposed in {77} by Leeson is perhaps the most well-known phase noise
model for electrical oscillators. The model is based on a lincar time-invariant (LTI) approach for
the resonator-based oscillators such as LC' oscillators. The model predicts the following f~2 phase

noise behavior:
2FkgT - wWp }2
Ps 2Cglcau'vedA(“-)

L{Aw} = (6.42)

where P; is the average power dissipation in the resistive part of the tank, Qjoaqeq is the effective

quality factor of the tank including the loading effects, hence the name, loaded quality factor?, and

F is a fitting parameter determined experimentally. Comparing the generic phase noisc model (6.41)

and the Leeson model, we can identify the phase diffusion constant in the Leeson model:

D= FkgT n wo )2
Py "2Qi0aded

2For the unloaded quality factor, we have used Q

[Diffusion constans in the Leesor model: (6.43)
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The Leeson model has long been prevailing cue to its simple yet intuitive appeal. The model clearly
shows the dependence of phase noise on frequencies, power dissipation, and the loaded quality factor.
While the Leeson model appropriately predicts the general behavior of the phase noise, there remain
several problems with the model. First, the unknown factor, I, is to be empiricaliy determined and
hence accurate phase noise prediction is difficult. Second, definition of the loaded quality factor is
ambiguous, further adding uncertainty to the phase noisc model. Third, while oscillators are time-
varying circuits which cxlﬁibit time-varying noise processes, the Leeson model is based on the LT1]

theory.

Hajimiri-Lee Model

To address the problems with the Leeson model, Hajimiri and Lee proposed a time-varying phase

noise theory [63], which predicts the following phase noise behavior:

1 7’12'1 -2 3
‘C{Aw} = m Z z}- -1 eff,n,rms (b/lq)

where ¢maz 18 the maximumn charge swing, i, represents noise sources in current forms (n is an index
counting all the noise sources present in the circuit.), and Tesy n is the effective impulse sensitivity
function associated with the n-th noise source, i, and takes into account the time-varying effect in
the circuit. Comparing this model with (6.41), we can identify the phase diffusion constant in the

Hajimiri-l.ec model:
]_ 1;21 9 B . . . o .
D= 7 Z AP ef f.nrms [Diffusion constant in the Hajimiri-Lee model] (6.45)
max n o

As can be seen, by taking the time-varying cffects into account and using the explicit noise sources
in the phase noise expression, the Hajimiri-Lec model removes uncertainties in the Leeson model
arising from the empirical factor, F, and the ambiguous loaded quality factor, hence leading to more
accurate prediction of phase noise.

Even though the Hajimiri-Lee model looks vastly different from the Leeson model, there is a

strong link between these two models, which we will discuss in the following,.

Dissipation-Based and Fluctuation-Based Phase Noise Models

The Leeson model does not involve any explicit expressions for the noise sources but is expressed in
terms of the loaded tank quality factor. The quality factor, by definition, arises from the dissipation
in the circuit, and hence the Leesou model is a dissipation-based phase noise model. On the other
hand, the Hajimiri-Lee model is expressed in terms of the noise sources present in the oscillator, but

does not involve the quality factor. Hence, the Hajimiri-Lee model is a fluctuation-based phase noise
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Figure 6.11: LC oscillator as an energy conversion engine. The energy transfer efficiency of the aclive device can
be defined as (Pyotar — Factive)/ Protal-

model. How could these two seemingly different models describe the same phase noise phenomenon?
In Chapter 3, we have discussed the intimate link between the fluctuation and the dissipation. When-
ever there is (thermal) fluctuation, there is dissipation and vice versa: Fluctuation and dissipation
always go hand in hand with each other. Due to this intimate link, the fluctuation-based model and
the dissipation-based model aclually describe the same phenomenon. Our approach presented in the
following sections will clearly establish this link between the fluctuation-based and dissipation-based

phase noise models.

Fundamental Relation between Loss and Noise

An oscillator can be viewed as an energy conversion engine as shown in IMig. 6.11. In an oscillator,
the active device acts as a means to transfer energy from the dc¢ power supply to the resonator and
convert it from dc to ac. Every cffort should be made to maximize the energy transfer efficiency of
active devices (See Fig. 6.11), as it will directly increase the tank energy of the resonator for a given
power dissipation. The energy loss in the active device is usually a strong function of its voltage
and current waveforms and the energy transfer efliciency can be improved by proper timing of the
voltage and current as in certain oscillator topologies, such as Colpitts [63].

It has been shown that such efficient operation of active devices is closely linked to the exploita-
tion of cyclostationarity to reduce noise contributions from active devices [63]. This operational
perspective can be viewed from a fundamental angle. In any physical system, loss components and
noise have an intimate connection due to the fluctuation-dissipation relation. The reduced energy

loss in the active device by proper timing implies an enhanced screening of resonator from the loss
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components in the active devices, which will directly reduce active device’s fractional noise contribu-
tion to the resonator according to the luctuation-dissipation theorem. This cxplains the underlying

physics for the active device noise reduction due to cyclostationary effects [63].

6.4 Virtual Damping

In the previous chapter, we reviewed fundamentals of oscillator phase noise and some of the cur-
rently available phase noise models. The evolution from the linear time-invariant theory (e.g. Leeson
model) to the more accurate time-varying theory (Hajimiri model) has helped circuit designers un-
derstand the noise processes in oscillators, leading to more accurate phase noise predictions, and
lower noise designs. Iowever, these currently available theories assume phenomenological stand-
points and a more fundamental, yet intuitive understanding of phase noise is still needed. The rest
of this chapter presents our fundamental study of phase noisc. We will get started by introducing
the powerful concept of virtual damping in this section.

Time-domain picture of the phase diffusion was shown in Fig. 6.7(d) using an cnsemble of
oscillators which have the same initial phase and i1s redrawn at the top of T'ig. 6.12. At the start
of oscillation, the oscillators in the ensemble have the same phase aud hence the enscmble average,
(w(t)), is equal to v(t) of any single oscillator in the ensemble. After a sufliciently long time, however,
the oscillator signals become incoherent due to the phase diffusion and (v(t)) tends to zero with time,
as shown al the bottom of Fig. 6.12. We will refer to this damping of the ensemble average as virtval
damping. Even though the single oscillator output, v(t), per se sustains itsell, its ensemble average
which matters in the measurement of phase noise virtually damps. One can logically conceive that
the phase diffusion constant, D, is identical to the virtual damping rate. A lower phase noise implies
a smaller phase diffusion constant or a slower virtual damping rate.

A mathematical verification of the virtual damping is given here. The output voltage »(l) of an
oscillator without amplitude fluctuations is given by (6.29), which is rewritten in the following for
convenience:

v(t) = ro cos|wol ~ (1) (6.16)

As mentioned earlier, in the presence of white noise, the phase noise ¢(t) becomes a Wiener process
(diffusion) where (¢?(t)) = 2Dt with diffusion constant D [74], [84], [85.. For a Gaussian distribution
of ¢(t) at any given time, t, we have {cos¢) = e=(#*}/2 and (sin @) = 0 as seen in Appendix 2 and

hence
W) = roe " /2 cos(wot) = roe™ Pt cos(wot) (6.47)

which clearly shows the exponential behavior of virtual damping. As can be seen, the virtual damping
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Figure 6.12: Ensemble average of v(t) and virtual damping.
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Figure 6.13: Measurement setup for the virtual damping using a digital oscilloscope.

rate is equivalent to the phase diffusion constant, D.

The virtual damping rate, D, and the phase noise of the oscillator are related by (6.41). As

a numerical example, a 1 GHz oscillator whose phase noise is -121dBc¢/Hz at 600 kHz offset has
D =~ 5.645 Hz or D/wp ~ 107° according to (6.41). As can be seen, typical good oscillators have
very slow virtual damping rates when compared to oscillation frequencies.

We can observe the virtual damping phenomenon experimentally as well. As just discussed,
typical oscillators have very slow virtual damping rates making them less suitable for experimental
verification. Instead, we use a ring oscillator whose phaseAnoise is degraded by injection of a white
noise current whose power spectrum can be controlled externally. This setup is shown in Fig. 6.13.
The ring oscillator has a center frequency of 5 MHz. A digital oscilloscope is used to sample the
output waveform multiple times and calculate the average over N samples, i.e., (v(¢))y. The N

output waveforms arc triggered at the same phase at ¢ = 0. Figure 6.14 shows this average for
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Figure 6.14: Measured {v(t))s12 versus t for a 3 MIlz ring oscillator.

i2/Af Measured D | PN from measured D | PN from spec. analyzer
(A?/Hz) (sec™1) (dBc/Hz) (dBc/1z)
2.60 x 10~° [ 1.02 x 10* -92.9 -93.0
4.84 x 10715 [ 1.56 x 107 -91.0 -90.0
9.66 x 10715 | 3.53 x 10* -87.4 -86.5
2.12x 107 | 9.30 x 10° -83.3 -81.7
6.01 x 1071 | 1.90 x 10° -80.0 -79.5

Table 6.1: Measured D, phase noise calculated from the measured D, and phase noise measured using a spectrum
analyzer. 'The offset frequency is 1MHz and the center frequency of the oscillator is 5MHz.

N = 512 samples as a function of time. As can be seen clearly, the expected value of the output
is an exponecntially damping sinusoidal even though the single output waveform is a steady-state
sinusoidal in complcte agreement with the virtual damping concept and equation (6.47).

Using this experiment, the virtual damping rate, D, (reciprocal of the exponential time constant)
was measured for different injected noise power levels. D is the inverse of lime constant of the best-
fit exponential to the resultant time domain waveforms (e.g., Fig. 6.14). The oscillator phase noise
was also measurced using a spectrum analyzer at 1 MHz offset [from the carrier. Equation (6.41)
was used to predict the phase noise using the measured virtual damping rate, D. The results are
summarized in Table 1 showing close and consistent agreements between the two methods.

The power of this virtual damping concept lies in providing a unified framework in which the
resonator and the oscillator arc viewed from the same angle. The left-hand side of Fig. 6.15 shows
a parallel LC resonator with an eflective parallel tank resistance, R, representing energy loss. Due

to the loss, the voltage v across the tank shows an exponential damping from a given initial voltage
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Figure 6.15: Resonator versus oscillator. The X’s on the t-axis represent the ideal zero-crossings.

as shown in the figure. This damping corresponds to a Lorentzian line broadening in the encrgy
spectrum. A negative resistance is used to cancel these losses to obtain a self-sustained oscillator,
as shown in the right-hand side of Fig. 6.15. The active and passive device noise perturbs the phase
of the oscillator, resulting in phase diffusion, which corresponds to a line broadening of oscillator’s
output power spectral density, or phase noise as discussed earlier. The line broadening of the
oscillator is much smaller than that of the resonator yet it still has the Lorentzian shape.

Now, this relatively small spectral line broadening in the oscillator power spectrum can be thought
of as the result of the relatively slow exponential virtual damping and this provides an explanation
why both resonator’s energy spectrum and oscillator’s output power spectral density have Lorentzian
broadening with different linewidths (Fig. 6.16). Since the virtual damping rate is much slower than
the damping in the resonator as discussed earlier, the linewidth of the oscillator output spectrum
is much smaller than the linewidth of the resonator’s energy spectrum, as shown hypothetically in
Fig. 6.16. This is because the damping rate essentially determines the linewidth of the frequency
spectrum. In other words, placing a resonator in a positive feedback loop to make a self-sustained
oscillator results in the linewidth compression. By comparing the damping rate of the resonator
(which is (2RC)™!) to the virtual damping rate of the oscillator, we can evaluate the ratio of the

linewidth of the oscillator power spectrum to that of the resonator energy spectrum:

AOSC D \
= = = 2RCD .4
r= 3 = TGR0) :C (6.18)
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Figure 6.16: Damping in resonators and virtual damping in self-sustained oscillators.

This linewidth ratio will be expressed in terms of circuit paramecters after obtaining an explicit
expression for D in the following sections. This concept of linewidth compression proves to be

powerful, resulting in an immediate design optimization strategy for resonator-based oscillators.

6.5 Physical Derivation of Virtual Damping Rate

In this section, we will determine the virtual damping rate, D, using a fundamental argument based
on the theory of Brownian motion and diffusion introduced in Chapter 3. The key to this approach is
the notion that the rate of any diffusion process is determined by two elements affecting the process:
the sensitivity of the physical quantity undergoing the diffusion and the friction (energy loss) of the
environment in which the diffusion process occurs, as fully discussed in Subsection 3.1.2.

For example, the diflusion constant, D, of a Brownian particle of mass, m, immersed in a liquid
at temperature, T, with frictional coefficient of v in Fig. 6.17 is given by the Einstein relation (3.28),

which is written in the following for the sake of convenience:

ksT 1

D= == . = £6.49)
m
S ——

sensitivity friction

where ~ determines the frictional force of myv for a Brownian particle with velocity of v. The kgT'/m
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Figure 6.18: Oscillation trajectory in state-space and phase diffusion.

factor represents the sensitivity of the Brownian particle to perturbations and becomes smaller with
a larger mass (Fig. 3.3(a)). This sensitivity factor is obtained using the equipartition theorem of
statistical physics discussed in Chapter 3, which demands that each independent degree of freedom

of a system in equilibrium at temperature T has a mean energy of kgT/2, i.e.
() =—— (6.50)

This sensitivity factor is independent of the friction coefficient of the liquid. Also, if two identical
Brownian particles are immersed in liquids with different frictions, the Brownian particle in a medium
with more friction will exhibit a slower diffusion (Fig. 3.3(b)), and hence the second factor 1/ in
(6.49). Summariziﬁg, the diffusion constant can be determined only when both sensitivity and
friction (energy loss) elements are known. Now by applying the same concept to the electrical

oscillators, we will quantify the phase diffusion, starting with the simpler time-invariant case.
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6.5.1 Time-Invariant Case

Fig. 6.18 shows the oscillation trajectory (limit cycle) in the (v, w) state-space for an output signal
of the LC oscillator of Fig. 6.2 where w is the scaled current defined in (6.10).. A phase random
walk by the amount of A¢ corresponds to a random walk of the oscillation trajectory point from
A; to Ag or equivalently a voltage random walk from By to Bo. In the following, we wil. first
characterize this voltage diffusion and conversion to the phasec diffusion can be easily performed by
a mulliplicative factor 1/r3.

Utilizing the fluctuation-dissipation relation of statistical physics discussed in Chapter 3, which
states the deep-seétted connection between a loss (dissipation) clement and a thermal noise (fluctu-
ation) element, any thermal noise source in a circuit can be replaced with a loss. ‘The right-hand
side of Fig. 6.17 shows a parallel LC tank with multiple parallel losses in a given oscillator that
represent the noise sources. R, is always reserved for the effective parallel tank resistance. A MOS
transistor in parallel with the LC tank will contribute a loss element R = 1/(ytrangdo) 2s ils noise

contribution is

g—f}. = 4kgT¥trangdo (6.51)
where Yran 18 the CMOS thermal noise factor and gqo is the channel transconductance at Vg, = 0
[47]. Note that Fig. 6.17 is not an equivalent circuit model for the oscillator but is used to identify
the sensitivity and friction parts of the voltage diffusion as in the following.

In the circuit of Fig. 6.17, (v?) across the capacitor and {i?) through the inductor can be
calculated noting that each of them constitutes a degree of freedom which will have kgT/2 of
thermal energy according to equipartition theorem: (v?) = kgT/C and (i*) = kpT/L. This is
analogous to the kgT'/m sensitivity factor of the Brownian motion. Just as the sensitivity of the
Brownian particle was described in terms of the velocity, v (time-derivative of the displacement, z,
that diffuses), as discussed earlier or in Chapter 3, the sensitivity of the voltage diffusion is to be

described in terms of its timne-derivative, v, i.e.:

1, 3

1 . keT kT
l=mE =TE =G

(* ws  [sensitivity factor] (6.52)

The friction (energy loss) associated with the oscillator can be calculated from the LR part of

the resonator. Since the current in the circuit satisfies

where

Req = ||| - - ||Rn (6.54)



141

in the absence of the capacitor, similar to the equation of motion © = —vw for the Brownian motion,
) q )

we can see the frictional coefficient, v, of the system is given by

1L [encrgy loss (friction) factor] . {(6.53)
7 feg '

Now taking both sensitivity and loss inlo accouni and using Einstein relation, the phase diffusion

constant D is given by

D= )
1 kgT L
~ 1% C Re

1 k‘BT wo

. . 6.56
T6 C Qloaded ( )

where the factor 1/rg was introduced to convert the voltage diffusion to the phase diffusion as

mentioned carlier and the loaded tank quality factor, Qoaded, is defined as
Qloadcd = CR&QWO (657)

Since Qioaded = wWoEtank/Ps = woCrd/(2P;) where Py is the power dissipation in the resistive part

of the resonator, (6.56) can be rewritten as

kgT ( wo >2 .
D=— | —— 6.58
2Ps Qloaded ( )

Combining this with (6.41) leads to Leeson model (6.42) in the 1/f2-region cxcept for the fitting
parameter I/ 2,

Summarizing, by evaluating the sensitivity and energy loss (friction) factors of the phase diffu-
sion process, we derived the virtual damping constant and hence, phase noise. The power of this
approach lies in the identification of the two essential clements of the oscillator phase noise, which,
in conjunction with the linewidth compression concept, will lead to immediate design insights as will
be scen in Section 6.7. The largely ignored sensitivity factor kgT/C in (6.56) will play important

role in practical oscillator design optimization [82].

6.5.2 Time-Varying Case

In the foregoing argument, we ignored the time-varying effects in the phase noise evaluation. In
actuality, the phasc ¢(t) of an oscillator experiences a time-varying diffusion in that the average size
of the phase random walk periodically changes in the course of oscillation [63]. The time-varying

effects are quantified using the impulse sensitivity function I'(t) describing the periodic sensitivity of
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the oscillator phase to the perturbation and the noise modulating function (NMF) a(t) accounting for
the cyclostationary noise generation [63]. This separation of the time-varying effects into the ISF and
the NMF agrees perfectly with our carlier view of separating the phase diflfusion into the sensitivity

and loss (friction) part. The ISF affects the sensitivity part and modulates (6.52) periodically, 4.¢e.,

~wd T 6.59)
0

Ou the other hand, the NMF describing the cyclostationary noise is equivalent to periodic circuit

loss modulation in the course of oscillation, 4.e.,

- = 0 (6.60)

Now we will modify our previous derivation of the virtual damping constant /2 to incorporate the
time-varying effects. The time-varying effects modulate the average size of the random walk in the
course of oscillation. Since the phase variance (¢?(¢)) in the diffusion process is an accumulation of
this time-varying random walk over time, alter a long observation time, the details of time-variance
in (¢%(¢)) will become negligible, hidden behind the 2D¢ diffusion where the diffusion constant is
now affected by I'(¢) and «(t) in an averaged sense, modifying the contribution {rom the n-th noise

source R, in (6.56) to

1 kpT Tipfme
D, = = - B2 Teffirmsm (661)
rg C R, C
where Ugsr () = Dp(t)an(t). Now includiug all the noisc sources, we have
D = 3 Dn
n
1 kgT ¢
- = fBf Yo (6.62)
L Qosdeg
sensitivity friction
where the new definition for the loaded tank quality factor, Qioaded, i8
R Ry \
Quondea = woC | gr——1 =+ llgg——— (6.63)
ef forms,1 ef frms,N

As can be seen clearly from (6.62), the phase diffusion constant or the virtual damping rate has the
sensitivity element, kgT/C, and the friction (energy loss) element, wo/Qioaded- Traditionally, design
efforts for the oscillator noise optimization has been focused on the friciion (energy loss) clement,
or the quality factor of the tank while the sensitivity clement has been largely ignored. As will be

seen in Section 6.7, the sensitivity element will play an equally important role as the quality factor
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Figure 6.19: Geometric derivation of phase noise Langevin equation.

in the design optimization of the resonator-based oscillator.

Using gmaz = 70C and

i 4kgT _—
2= 6.64
A7~ R (6.64)
D, in (6.61) can be rewritten as
I T
D, = effrmsn LL (665)

and the combination of (6.65), (6.62) with (6.41) lead us to the Hajimiri-Lec model (6.44).

Now a natural question arises: if our physical approach eventually leads to the alrcady existing
model [63], why is it so important? As can be seer: in Section 6.7, the physical phase diffusion concept
entailing the sensitivity and friction (energy loss) in conjunction with the linewidth compression
concept will actually lead to an immediate insight into oscillator design optimization and intuitive
design methodology.

Before discussing the design implications derived from our physical investigation ol oscillator
phase noise, we will mathematically re-derive the phase diffusion constant, (6.62), in the following

section for the sake of completeness.

6.6 Mathematical Derivation of Virtual Damping Rate

Let us first derive a Langevin cquation for the phase, @(t), of an ideal sinusoidal output signal of an

LC oscillator in the presence of white noise sources. This task can be done geometrically using the
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circular limit cycle (for sinusoidal output signal) shown in Fig. 6.19.
The noise current, Ai, injected into the tank during a short time duration, A¢, will result in
change in the scaled current

A = B - (6.66)

where we have used the definition of the scaled current given by (6.10). The contribution of Aw to

the phase change, Ag, can be obtained geometrically, as shown in Fig. 6.19:

roAP = Aw X coswot =

Ai
wog cos wol (6.67)

By dividing both sides of the above equation by A¢ and considering the limit Atz — 0, we obtain the
following Langevin equation:

rod = ——=1i, COSwol (6.68)
wOC

Integrating the right-hand side by parts results in

. t
oty = ! in(t) coswol + L / in (1) sinwet'dt’ (6.69)
T'OC Jo

Tow

)

White Wiener

Note that the first term is white random process as i, (¢) is assumed to be white noise while the
second term is a Wiener process as it is an integrasion of the white noise [33]. One can casily show

that the power spectral densities of the first and the sccond terms in (6.69) are given by

N 1
Sp.(w) 2(TC)£ . :E [White process]
' 2N 1
Sp,p(w) = [Wiener process] (6.70)

(roC)?  w?

where N is the intensity of the white noise, that is, (i,(f1)%,(t2)) = N&(t1 — ta3). Equation (6.70)
reveals that for any w in the typical offset frequency range, the Wiener process dominates over the
white noise in (6.69) by orders of magnitude. The corner frequency au which the white process
becomes equal to the Wiener process is 2wp. Apparently, the white process is of no practical
importance. Therefore, we can neglect the first term on the right-hand side of (6.69), reducing the

equation to the following differential form:

1

This is the Langevin equation for the phase, ¢(t). Apart from the time-varying function sinwgt, the

phasc &(t) is an intcgration of the white noise, i,(t), and hence undergoes the Wiener process or
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diffusion process as mentioned earlier several times. The phase ¢(t} is of course analogous to the
displacement x(t) of the Brownian particle.
The time-varying function, sinwpt in (6.71) is the special case of the impulse sensitivity function
‘ (ISF) for an ideal sinusoidal voltage output, v(t) = rocoswot [63]. In a more general case of a
nonsinusoidal oscillator output signal, we can replace sinwgt in (6.71) with the general ISF, I'(£),
which can be obtained from charge injection simulation [63] in the most general case or from the
similar geometric derivation when the effect of amplitude fluctuation is negligible. In general, there is
no cloge form for the ISF function. Additionally, the noise source i, (t) in oscillator is cyclostationary
duc to the periodic change of the operating point as fully discussed in Section 5.2, and can be

decomposed into

i (1) =n(t)p(t) (6.72)

where n{t) is white noisc and p(t) is the periodic noise modulating function as shown in Section 5.2.

Then the Langevin equation for ¢(¢) in (6.71) is gencralized to

b= —onOpOr®

1 - -
= 'I“ocn(t)l cff(t) (().73»)

where Tepp(t) = p(t)'(2) is called effective ISF [63].
Now, the phase ¢(t) is the Type-1II random process according to Table 3.3, and its corresponding

Fokker-Planck equation for the probability distribution of the phase, P(@,1), becomes

opr N 2P
= T2, () — 74
ot 2r3C? Lers®) 2 (6.74)

according to the same table; where N is the intensity of the white noise, n(t). This is no more than
a diffusion cquation with a time-varying diffusion constant, D(t):

N

£ (6.75)

By plugging

P(,1) . { ¢ ] (6.76)
Po,t) = exXp | — .
 2mo(t) P17 20%()
into (6.74), we obtain the following expression for the variance of the phase, a?(t):
( t
o2(t) = 2 / D(t"at'
Jo
N

= W(rzﬁmmst + [trigonometric terms)) (6.77)
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where Ty f ;. rms signifies the root mean square for the effective ISF. In the above cquation, as the first
term growing with time will be eventnally dominating over the second trigonometric terms which

are bounded, we can approximate the above equation with

: NT?2
200, leffrms ooy
By comparing this with 02(t) = (¢%(#)) = 2D,t, wc eventually obtain the diffusion constant, Dy,

for the noise source, iy:

_ Nrgff,r'ms
" 2r2C2
.rg C .R.,,,C ef fyrms,n ( ) )

which is in perfect agrecment with (6.61) where we have used (6.64) and i2/Af = 2N.

As a final cornment in this section, we have to emphasize that cven though the phase noise SDI-
(6.73) bears an apparent periodic time-varying cffect, the statistical average {¢*(1)) = 2Dt does
not snow such periodic time-varying effects afler many cycles, as shown in (6.77) and (6.78). This
is why the output signal of the oscillator does not carry any perceptible cyclostationary effects in it.
The time-varying nature in (6.73), however, does affect the diffusion process in an averaged sense by

modifying the diffusion constant D as shown in (6.79) with the rms value of the effective ISF.

6.7 Principles of Oscillator Noise Optimization

In Sections 6.4 and 6.5, we established concepts of virtual damping and linewidth compressiorn
and explicitly evaluated the virtual damping constant (phase diffusion constant), D, resorling to a
physical argument utilizing Einstein relatior. In Section 6.6, we verified the physical argument by
mathematically evaluating [ using the Fokker-Planck equation. In this section, based upon these
previous results, we will cstablish fundamental principles of oscillator phase noise optimization,
ieading to an oscillator design optimization strategy.

In Seclion 6.4, we have argued that the ratio of the linewidth of an oscillator to the linewidth
of a resonator which bases the oscillator is given by (6.48), which is rewriting in the following for

convenience:

AOSC
ATCS

r=

=2RCD (6.80)

by comparing the damping ratc of the resonator to the virtual damping rate of the oscillator. Sec

Fig. 6.16. Using the explicit expression for the virtual damping rate, D, in (6.62), the compression
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Figurce 6.20: Details of linewidth compression in oscillators.

ratio in (6.80) can be expressed as

5 C Qioaded (6.81)
where we have used @ = RCuwyq for the unloaded tank quality factor. This ratio r reveals how rmuch
linewidth improvement we obtain by placing a given resonator into a feedback loop and making an
oscillator. In a typical electrical oscillator at a normal temperature, this ratio is extremely small:
for instance, for C = 1pF, ro = 1V, Q@ = 10 and Qjogded = 5, 7 =~ 1.6 x 10~® and hence shows that
the linewidth of a resonator is narrowed by almost 8 orders of magnitude when placed in a positive
feedback loop to make an oscillator. In the time-domain picture, this observation is equivalent to
the fact that the virtual damping rate of the oscillator is 8 orders of magnitude smaller than the
damping rate of the rescnator.

In the light of the linewidth compression, the oscillator phase noise is determined by the following

steps (Fig. 6.20). First, the unloaded quality factor, @, of the resonator scts the linewidth of
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the resonator. Sccond, by placing the resonator in the positive feedback loop, the linewidth is
compressed by the factor given by ('6.81). In this compression process, the resonator ¢ which is
in the denominator of the resonator linewidth expression is cancelled by the @ in the numerator of
the compression factor of (6.81). However, the compression factor, r, in (6.81) has a loaded tank
quality factor, Qiogded, in its denominator, resulting in Qoaded int the denominator of the linewidth
expression for the oscillator. While the effect of the unloaded tank quality factor, @, seems to
disappear in the linewidth compression process, the unloaded quality factor, @, actually affects both
the voltage swing, rq, for a given bias current and the loaded quality factor, Qioaded, and therefore
remains a crucial design parameter.

The sensitivity element, kgT'/C, which plays a crucial role in the linewidth compression, should
be another important design consideration. This sensitivity element has been largely ignored in
contemporary oscillator design community, often leading to misconceived design guidelines. For
an example of such design misconceptions, neglecting the sensitivity factor, kgT/C, can lead to
noise optimization guidelines promoting maximization of L as it increases the voltage swing, rg [921.
However, increasing L or equivalently decreasing C for a given oscillation frequency also increases the
sensitivity factor, kgT'/C. Hence, the hypothesis that increasing L will lead to a better phase noise
performance actually does not reflect the physical reality. We will fully discuss this issue shortly.

In this section, we will establish the principles of the oscillator phase noise optimization, focusing
on both sensitivily element (capacitance/inductance values) and friction element (loss), leading to
essential ﬁnderstanding of the basic trade-offs in an LC oscillator. In Subsection 6.7.1, we will first

study the behavior of the noise-to-carrier ratio (NCR) defined as?

N 1 kBT Eth.srma.l / '
NCR= = = 6.82
v 7'5 C Eta'n.k: k )

which constitutes an important part of the linewidth compression ratio, r, as shown in (6.81).
Subsection 6.7.2 will investigate the behavior of the phage diffusion constant or the virtual damping
rate, D, leading to a phasc noisc optimization strategy. Although the following argument is limited

to the oscillators with parallel LC tanks, a scries tank can be analyzed using a dual line of argument.

6.7.1 Behavior of Noise-to-Carrier Ratio, NCR

In order to investigate the behavior of the NCR given in (6.82), we first need to know the behavior
of the oscillator voltage amplitude, ro, depending upon the circuit parameters. Two modes of
operation, named current- and woltage-limited regimes, can be identified for a typical LC oscillator
of Fig. 6.2, considering the bias current as the independent variable [104]. In the current-limited

regime, the oscillator amplitude, ro, linearly grows with the bias current according to rg = Ipias 2

3Eta.nk = C'7‘(2)/2: Ethermal = kB,F/Q-
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inductance-limited

! v N
I L >L

Figurc 6.21: Eiqnk versus L curves obtained from (2) for two different tank cnergics Eiank,2 > Eiank,1. With an
increasing inductance, the tank amplitude grows along the solid parts of the curves until it reaches Vi, (inductance-
limited regime). Once the tank amplitude reaches Viimat, it stops growing with the further increase of inductance
(voltage-limited regime). The parts of curves with broken lines are unrealizable.

until the oscillator enters the voltage-limited regime where R is the tank loss shown in Fig. 6.2. In
the voltage-limited regime, the amplitude is limited to Viimse, which is determined by the supply
voltage and/or a change in the operation mode of active devices (e.g., MOS transistors entering

triode region). Thus, rg can be expressed as

Iyies R (I-limited)

ro = hias ( (683)
Viimir  (V-limited)

These two modes of operation can be viewed from a different perspective, by using the tank

inductance, L, as the independent variable instead of Ipi,s. Noting that the tank cnergy, Eignk, is

defined as Fignke = Crg /2, ro can be expressed in terms of Eiqnk, t.€.,

2ﬁji,ank:

5= 2F ankwi L (6.84)

2=
where wp = 1/VLC is the oscillation frequency. The tank amplitude grows with L for a given
Biani and wg as indicated by (6.84) and depicted in Fig. 6.21 for two different tank energies
Eionin < Btank,s. While being the same as the current-limited regime, we refer to this mode as
inductance-limited regime when L is the independent variable. Therefore, any equation valid in
the current-limited regime must be valid in the inductance-limited regime and wice versa. This
alternative denomination will facilitate the understanding of various trade-ofls in oscillator design.
Once the tank amplitude reaches Vi, it stops increasing with further increase of the inductance
and the oscillator will enter the voltage-limited regime as before.

Note that many different inductors with the same inductance, L, can be made in any technology.

For cxample, different on-chip spiral inductors with the same L can be designed using different
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geometric parameters such as diameter, number of turns, etc. [110]. However, only one of these
designs will offer the minimum loss, or the largest equivalent parallel resistance, Ry. Unless otherwise
specified, from this point on, whenever we refer to an inductance, L, we assume that this optimization
is already performed [110] and hence L corresponds to the inductor with the miﬁimum loss. Note
that the minimum loss 12y is a function-of L.

The equivalence of the current- and inductance-limited regimes can be used to combine (6.83) and
(6.84) to determine the relation between Fygn and Iy, in the inductance-limited regime. Assuming

that the losses due to the on-chip spiral inductors are dominant in the integrated LC oscillators,

(i.e., R~ Rp),
2 R

bias

Eionk
tank X T,

(L-limited) (6.85)

While (6.84) is valid in both inductance- and voltage-limited regimes, il is casier to deal with a

constant quantity Viyms: in the voltage-limited regime and hence we can rewrite (6.84) as

; 2 anrwi L (L-limited
r§ = rnknl : (6.86)
Vi (V-limited)

imit

Using (6.86) in {6.82), we can express the NCR of the LC oscillator for a given oscillation

frequency as

NCR 1/ Eiany  (L-limited) (6.87)
L (V-limited)

Equation (6.87) shows that although ry increases with L for a given Eiopni, as scen in Fig. 6.21,
the NCR stays constant in the inductance-limited regime and does not depend on the value of the
inductor. However, once the oscillator enters the voltage-limited regime, the NCR increases with L.
Therefore, choosing an inductance, L, that places the oscillator in the voltage-limited regime results
in waste of inductance and will only increase the NCR. An important obscervation is that for a given
E,oni, a larger tank amplitude obtained by increasing the inductance, L, does not result in a better
noisc performance because the oscillator has a similar response to both the tank energy and the
thermal cnergy. On the other hand, the NCR can indeed be immproved by increasing the tank energy
as can be scen from (6.87), which will inevitably result in larger power dissipation.

We can draw a mechanical analogy to the LC osciliator to help us understand the dependence
of the NCR on the ‘Value of the inductor. Consider a mass-spring oscillator in which a mass, m, is
fastened to one ond of a spring with a spring constant, k, while the other end of the spring is kept
stationary. The mass is immersed in water and subject to random bombardment of water molecules.
The loss due to the water friction is compensated by a hand which follows the oscillation of the

mass and continuously injects compensating cnergy into the system. The hand is assumed to have



undesirable yet inherent shaking.

The comparison between the diflerential equations for the velocity of the mass and the voltage
across the parallel LC tank reveals the analogy of the mass, m, and the spring constant, k, to the
capacitance, C, and the inverse of the inductance, 1/ L, respectively. The mass velocity corresponds
to the voltage across the parallel LC tank. The random bombardment of water molecules and the
hand shaking correspond to the tank noise and the active device noise, respectively. The hand can

only make limited displacements and never allows the mass to exceed its range. This introduces

4

an upper bound for the maximum displacement and hence the maximum velocity of the mass®,

resulling in a wvelocity-limited regime as an analog to the voltage-limited regime.

As expected intuitively, the mass of the oscillator has a similar response to the oscillation energy
and the thermal energy. Therefore, a smaller mass results in a larger maximum velocity, a larger
velocity noise, and hence a constant noise-to-signal ratio for a given oscillation energy until the
oscillation reaches the velocity-limited regime. In the velocity-limited regime, a reduction in mass
degrades the noise-to-signal ratio as the velocity noise keeps increasing while the maximum velocity
stays constant.

Although (6.87) provides cssential insights into the oscillator noise as a funclion of Eigpy, the
bias current, Ihies, 15 a more practical design parameter for clectrical oscillators. To that end, we

converl (6.87) into

L IZ' R2 L-limited
/( bias L) ( ni () (688)
L (V-limited)

NCR

by using (6.85).

Two important concepts of waste of inductance and waste of power in the voltage-limited regime
can be seen.from (6.88). Increasing L beyond the value that puts the oscillator at the edge of the
voltage-limited regime will degrade the NCR in proportion to the excess inductance and hence will
result in waste of inductance. Similarly, increasing the bias current in excess of the value that places
the oscillator at the borderline of the two regimes will not improve the NCR and therefore induces
the more commonly appreciated concept of waste of power.

Based on (6.88), the optimum NCR for a given bias current is obtained in the inductance-
limited regime when L/R? assumes its minimum value. Note that L ~ 1/C in the expression L/R?
represents the sensitivity of the tank while 1, in the expression represents the friction (energy loss)
element and hence NCR depends on both the sensitivity and the friction elements. When L increases
or equivalently € decreases for a given oscillation frequency, the sensitivity factor L increases. The
friction element, Ry, is also a function of L, and hence the specific behavior of NCR o< L/ Ri with

the inductance has a strong dependence on the particular implementation of the inductor.

“noting that kx2,,./2 = mv, . /2.
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Figure 6.22: L/R‘;:, ro and NCR versus L for a given Ipias: (a) L-/Ri increasing with an increasing inductance
b) L/R? decreasing with an increasing inductance L.
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Now, we investigate two hypothetical, yet illustrative, cases to show how the optimum inductance

for the optimum NCR can be obtained for a given Ipias.
e Case 1: L/R? increasing with I,

First, we consider the casc in which L/ R% increases with the inductance. As can be seeun from
(6.88), a smaller inductance results in a better NCR for a given bias current. ITowever, the induc-
tance cannot be reduced indefinitely since in practice, we always have a minimum tank amplitude
constraint 7o > 7o msn and/or a start-up condition. The excessive reduction of inductance will even-
tually violate the minimun tank amplitude or the start-up constraint. Consequently, the optimurn
inductance for the optimum NCR is determined when the design lies at the verge of the tank am-
plitude or start-up constraint®. Hypothetical curves for L/R2, ry and NCR versus L for a fixed
bias current in this casc arc shown in Fig. 6.22(a), where the minimumn tank amplitude constraint

is the limiting mechanism for this reductiorn.
e Case 2: L/R% decreasing with L

Now we consider the case where L/R? decreases with increasing inductance. In this case, (6.88)
shows that a larger inductance in the inductance-limited regime results in a better NCR for a given
bias current. Hence, the optimum inductance for the optimum NCR is the one that places the
design at the edge of the inductance-limited regime as seen in hypothetical curves for L/ | ro and
NCR versus L for a fixed bias current of Fig. 6.22(b).

Summarizing, the behavior of the NCR is determined by delicate balance between the sensitivity
and friction (energy loss) elements in the oscillator in the inductance-limited regime. In the voltage-
limited regime, incfeasing inductance will only increase the NCR. Neglecting the sensitivity in the
NCR or the distinction between the voltage- and inductance-limited regimes can wrongly lead to

noise optimization guidelines promoting maximization of L [92].

6.7.2 Behavior of Virtual Damping Rate, D

In the previous subsection, the noise-to-carricr ratio (NCR), a main canstituent of the linewidth
compression ratio given by (6.81), was used to investigate the certain propertics of oscillator noise.
As shown in (6.62) or in Fig. 6.20, the virtual damping rate {phase diffusion constant), D, has an

extra-factor, wg/Qoaded, in addition to the NCR:

D = 1 kZBT wWo
T‘% C Qloaded
— NCR-—2 (6.89)
Qloaded.

57'he start-up constraint is normally imposed by specifying the minimum small-signal loop gain between 2 and 3.
Hence the design at the verge of the start-up constraint still has a sufficient margin on the loop gain.
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where Qoaded 18 the loaded tank quality factor given by (6.63), which is rewritten in the following

for the sake of convenience:

- Rl RN ' N
Qioaded = woC | mg——|| - - || (6.90)
ef firms,l ef firms, N
Here, the effective resistance, R, (for n = 1,2,3,...,N) is given by
2 1kpT
L (6.91)

Af R,

as discussed earlier in Section 6.5 where i, 1s the n-th current noisc source. For instance, for the
MOS transistor, R, = (vg40)”* [47]. As will be seen later with an example in the next section,
the loaded tank quality factor, Qioaded, is normally dominated by the active devices. In the active
devices, It, is typically the function of the bias currents [46], and hence Qpopgeq in (6.90) can be
reexpressed as

(gloaded X WOC X P‘(]I)ias) (692)

where F'(/piqs) is a certain function of the bias current®. Combining (6.88) and (6.92) in (6.89), we

obtain

1'2 [{2 X ]2' -PY [)ias -1 L-limited
D / L [ bias ( l )] ( ) (693)
L? % [F(dpias)] ™" (V-limited)

Now we will discuss the dependence of the phase diffusion constant, D, upon the inductance,
L, for a fixed bias current, Ip;ns. The dependence upon the bias current will be discussed in the
next section with a specific example with which F(Jpias) is explicitly known. For a given bias
current, diffusion constant in (6.93) increases with an increasing L in the voltage-limited regime,
which corresponds to waste of inductance.

In the inductance-limited regime, D o L2/R% has both sensitivity element (L ~ 1/C) and
friction clement (RZQ) and the behavior of D is determined by the delicate balance between these
two clements. For typical on-chip spiral inductors, the minimum effective parallel conductance
gL = (Rr)™! for a given inductance L decreases with an increasing inductance when the diameter of
the inductor is constrained with an upper-bound [110]. An example of such dependence is shown in
Fig. 6.23 [110]. Using this data of Fig. 6.23, it can be seen that the factor L?/R7 in (6.93) increases
with an increasing inductance as shown in Fig. 6.24. Consequently, for a given Ipi.s, phase noise
increases with the inductance in the inductance-limited regimne and a smaller inductance results in a
better phase noise. However, the inductance L cannot be indefinitely reduced since it will eventually

reduce the voltage swing and the small-signal loop gain below the specification. The optimum

8Tor instance, in case of the short channel MOS transistor, Rn = (vgao) ™! « Il;;s [47] and hence, F(Ipiqs) = Il:lis'
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Figure 6.23: Simulated maximum inductor quality factor @z, and minimum effective parallel conductance gy, versus
the inductance L.

inductance is then the one that places the oscillator at the verge of either the voltage swing or the
start-up constraint. Hence, the design strategy for the LC oscillator utilizing the on-chip spiral
inductors is to find the minimum inductance that satisfies both the tank amplitude and start-up
constraints. This design strategy will be executed using a practical graphical optimization method

in the next section.

6.8 Design Example

In the previous section, we considered underlying physics of LC' oscillators, concluding that induc-
tance selection process plays a central role in oscillator noise optimization. An investigation of phase
noise properties led to a design strategy based on an inductance selection scheme, providing a basis
for a detailed optimization methodology presented later in this work. This optimization process
entails an intuitive graphical method to visualize the design constraints such as tank amplitude,
frequency tuning range and start-up condition, allowing minimization of phase noise while satisfying
all design constraints. 7

In Subsection 6.8.1, a specific oscillator topology is chosen as a design example and design
constraints are imposed on the oscillator. The inherent properties of phase noise lead to a design
strategy. Subsection 6.8.2 explains the details of our graphical optimization process. Elaborate
simulation results of the optimized VCO accurately predicting phase noise are shown in Subsection

6.8.3. Subsection 6.8.4 presents the experimental results and compares the performance of our VCO
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Figure 6.24: L2g% versus the inductance L.

to that of other reported LC oscillators to prove the adequacy of our design methodology.

6.8.1 LC VCO Topology, Design Constraints and Phase Noise

In this section, we demonstrate the design strategy through the oscillator topology of Fig. 6.25.

Design constraints are specified and a design strategy specific to the circuit is devised for phase

noise optimization.

Design Topology

The cross-coupled LC oscillator of Fig. 6.25 is selected as a vehicle to demonstrate our optimization
process. Full exploitation of differential operation lowers undesirable common-mode effects such as
extrinsic substrate and supply noise amplification and up-conversion. The oscillation amplitude of
this structure is approximately a factor of two larger than that of the NMOS-only structure due to
the PMOS pair [104], [112], [86]. The rise and fall time symmetry is also incorporated to further
reduce the 1/f noise upconversion [63]. These properties result in a better phase noise performance
for a given tail current. '

There are twelve initial design variables associated with this specific oscillator: MOS transistors
dimensions (W,, Wp, Ly, and L,), geometric parameters of on-chip spiral inductors (metal width
b, metal spacing s, number of turns n, and diameter d), maximum and minimum values of the
varactors (Cy maa and Cy min), load capacitance (Cloaa) and tail bias current in the oscillator core

(Ipias). These design variables are listed in Table 1. Later, we will reduce the number of independent
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TFigure 6.25: VCO core schematic.

design variables vo six through proper design considerations.

Components

Initial Design variables

Transistors
Spiral inductors
Varactors

Load capacitors

Bias current

Wiy Wp, L, Ly
b, s, n, d
C’u,'ma:u Cv,min
Cload

Ibias

Table 1 : Twelve initial design variables

The equivalent circuit model of the oscillator is shown in Fig. 6.26 [111], where the broken
line in the middle represents either the common mode or ground. The symmetric spiral inductor
model of Fig. 6.27 [113] with identical RC loading on both terminals is used as a part of the tank
model. Varactors for frequency tuning arc made ous of the gate channel capacitor of standard PMOS

transistors in inversion mode. They are modeled with a capacitor C,, in series with: a resistor R, as

in Fig. 6.28, which is used as a part of the tank model.

In Fig. 6.26, Cxuos and Ceyos arc the total parasitic capacitances of the NMOS and PMOS
transistors, respectively”, and g,, and g, are small-signal transconductance and output cornductance
of the transistors, respectively. Although the values of g, and g, vary with the change of the

operating points of transistors in the course of oscillation, we will use the values of g, and g, when

"Cumos = Cys,n — Cab,n +4Cga,n, Cemos = Cys,p + Capp +4Cqd p-

Cl{;ud
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the voltage across the LC tank is zero. This approximation facilitates the analytical expression
of design constraints. We will justify that the approximation does not mislead the design shortly.
All the clectrical parameters in the cquivalent circuit model can be expressed in terms of design
‘ variables, by utilizing existing formulae for transistor parameters and on-chip resonator parameters
[110], [111].
The frequently appearing parameters in our optimization process are the tank loss, gians, cffective

negative conductance —gactive, tank inductance, Ligng, and tank capacitance, Crank, given by

29tank = Gon + Gop + 9v + 9L, (6.94)
29active =  Gmn + Gmp, (6.95)
Liane = 2L, (6.96)
2Ciant = Comos T Cxmos + CL + Cy + Cload, (6.97)

respectively, where g7, and g, are the effective parallel conductance of the inductors and varactors,
respectively®. As giank and Crane assume certain range of values as the varactor capacitance varies,

their maximum and minimum values will be denoted by subscripts maz and min.

Design Constraints

Design constraints are imposed on power dissipation, tank amplitude, frequency tuning range, start-
up condition, and diameter of spiral inductors.
First, the maximum power constraint is imposed in the form of the maximum bias current /r.oz

drawn from a given supply voltage Viuppiy, %.2.,

]bzas < I’maa‘ (698)

Second, the tank amplitude is required to be larger than a certain value, Vignk min, to provide a

large enough voltage swing for the next stage:

I LS s
To = b— > I/f,a.nk'.,'rn'in (699)

gtank,marz:

The subscript maz it grank,mae signifies the worst case scenario. Since gy, is the dominant term in
(6.94), the approximation lor g, mentioned earlier does not lead to a significant error.

Third, the tuning range of the oscillation frequency is required to be in excess of a certain

8gr = 1/Rp + Re/(Lw)? and gy = (Cow)/Qu.
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minimum percentage of the center frequency, w, i.e.,

1
Ltankctank,min < 2 (6100)
mae .
, 1 . .
Ltank:ctanlc,maa: > ) (0101)
min

where (Wmaz — Wmin)/w = (minimum fractional tuning range) and (Wmaz + Wmin)/2 = w.

Fourth, the start-up condition with a small-signal loop gain of at least o, can be expressed as

Gactive 2> UminGtank,max (6102)

where the worst-case condition is imposed by Giank,maez. T0 overcome the possible error that the
approximation for g, mentioned previously might cause, we can select a conservative minimum
small-signal loop gain amin (€.9., 3).

Finally, we specify a maximum diamecter for the spiral inductor as dy,qz, %.6.,
d < dmax (6.103)
to limit the dic area.
Phase Noise in the Cross-Coupled Topology

In the 1/f? region, the phase noise is given by [63]

A 1 1 7’_21. ) \ v
L{foff} = ’ Z<Af -1 72‘ms,n/' (6104)

87T2 fc;sz qgnu.a:

n

where fosy is the offset frequency from the carrier and gmq, is the total charge swing of the tank.
The impulse sensitivity function (ISF), T', represents the time-varying sensitivity of oscillator’s phase
to perturbations [63]. Each [y in (6.104) is the rms value of the ISF for each noise source and
is 1/4/2 for an ideal sinusoidal waveform. It can be evaluated more accurately from simulations as
shown in Sec. 6.8.3.

The E/ Af terms in the sum of (6.104) represent the equivalent differential noise power spectral
density due to drain current noise, inductor noise and varactor noise and they are given by [104],

(7], [114]

)
2 N v
Xj:l = 2KT¥(ga0,n + gdo,p) (6.105)
12
ind Qk'J’gL (6106)
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Lar  — 9kTgy mas (6.107)

where v ~ 2/3 and v ~ 2.5 for long- and short-channel transistors, respectively. gqo is the chan-
nel conductance at zero Vpg and is equal to g, for long-channcl transistors while it is given by
2l irain/( Lehannet Esat)® for short-channel transistors [114]. gy maz in the varactor noise power spec-

tral density is used for the worst-case noisc.

Dominance of Drain Current Noise

In this subsecction, we demonstrate the dominance of drain current noise for the design topology of
Fig. 6.25, which will be used to simplify (6.104).
According to (6.94), (6.106) and (6.107), the cquivalent current noise density due to the varactors

and the inductors is less than 4kT e mazs b €.
Htank. maz; )

72 T2

Za 2ar e
ind < 4KT ma 6.108

_Af ‘_“‘Af Gtank,mazx ( ) )

While g,, = gao for long-channel transistors, ¢,, < gqo for short-channel transistors by definition

of the short-channel regime, i.e.,

gm Lchannel PJSU.L .
e m < ] {6.109
g 2(Vas — Vrw) ' )
Therefore, from (6.95) and (6.105), we obtain
Af 2 41‘7T"/gaciive (()11[])

where the equality and the inequality are valid for the long- and short-channel transistors, respec-
tively.
Now the ratio of the equivaleni currenl noise density due to the tank components to that of the

drain current can be upper-bounded using (6.108) and (6.110), .e.,

;?;/Af + ";%ar/Af 4-kTgtank,ma:c < 1
'IZMd/Af 4kTYGactive — Ymin

(6.111)

where we used the start-up condition (6.102) to obtain the last inequality. The inequality of (6.111)
predicts that with oy, = 3 the drain current noise contributes more than 88% of the circuit noise
for short-channcl transistors. This prediction agrees well with the simulation result shown later.

Now by taking only the dominant drain current noise termn into account in (6.104), we can obtain

9 Feqt is the electric ﬁeld at which the carrier velocity reaches half its saturation velocity.
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an insightful approximation for phase noise. Using (6.104) and (6.105) while replacing ¢mes with
70/ (Ltanpw?), we obtain ' .

Ly fops} x £J—r[§1£ ‘ (6.112)
where gdo = 2irain/(Lehannet Bsat) Was used for short-channel transistorsl® and 1"72.,;1_5 == 1/2 was
used for a pure sinusoidal waveform. Equation (6.112) can be easily interpreted by noting that
10 = Ihias/Grank = Ipins/gr, in the inductance-limited regime and ro = Vi = Veupply i the

voltage-limited regime, i.e.,

Closs) o L-zgi [Ipias  (L-limited) (6.113)
L2Thins (V-limited)
‘This equation is in perfect agreement with (6.93), which led to a convenient design strategy that the
inductance should be minimized (while satisfying the design constraints) for a given bias current in
the previous section.

Now, let us see how the phase noisc depends upon the bias current. Equation (6.113) indicates
that for a given inductance I, phasc noise increases with the bias current in the voltage-limited
regime, inducing waste of power. Note that (6.113) ignores the cyclostationary eflects that can
change the dependence of the phase noise on the bias current in the voltage-limited regime. A more
rigorous treatment taking the cyclostationary noise into account shows that phase noise reaches a
platcau with an increase of the bias current in the voltage-limited regime [104]. Even with this
consideration, the current that places the design in the voltage-limited regime causes waste of power
as unnecessary power dissipation occurs without a significant improvement in phase noise.

Now we demonstirale the power-noise trade-off in the design of LC' oscillators, assumning that
the inductance reduction is limited by the tank amplitude constraint (6.99). One can obtain the
optimum inductance for a given Ip;qs by calculating the maximum allowable 91, using Ipias/grank =
Iyias/91 = Viank,min. This maximum allowable g7 will correspond to the minimum (and hence
optimum) allowable L in Fig. 6.23. The optimum L2?g? /Iis given in (6.113) is then plotted for
different values of Iy;es in Fig. 6.29. As can be seen from Fig. 6.29, a larger bias current results
in a better optimum phase noise, concluding that Ip;4. should always be set to its maximum value
allowed by (6.98). Hence, this design constraint is tight.

The design strategy for the oscillator in Fig. 6.25 can be summarized in the following way: Find
the minimum inductance that satisfies both the tank amplitude and start-up constraints for the
mazimum bias current altowed by the design specifications. This design strategy will be exccuted

using a practical graphical optimization method in the following section.

lo—rbias - QIdra-in,
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Figure 6.29: LQQ%/Ibms versus the bias current Ip;qs-

6.8.2 LC VCO optimization via graphical methods

As mentioned earlier, phase noise of the LC oscillator in Fig. 6.25 can be optimized by reducing the
inductance as far as both the tank amplitude and start-up constraints allow. While it may appear
trivial, performing such inductance reduction is challenging in practice, as the L-reduction should be
executed while satisfying all the design consiraints. This challenge can be overcome by visualizing
the design constraints graphically.

It is noteworthy that the following optimization will result in a near optimum design, as time
varying effects, such as cyclostationarity, are ignored and the ISF is assumed to have an rms value
of 1/ v2. A final quick fine-tuning simulation has to be performed to obtain the most accurate
predictions, as shown in the next section.

Now we demonstrate the optimization process, starting with the reduction of the number of
independent design variables through appropriate design considerations, in the context of a numerical

example.

Independent Design Variables and Numerical Design Constraints

In this subsection, we reduce the number of design variables from the original twelve to six [115].
First, as shown in the previous section, the power consumption constraint (6.98) is tight and Ipias
is set to Ijaz. Second, in the cross-coupled MOS transistors, both channel length L, and L,

are set to the minimum allowed by the process technology to reduce parasitic capacitance and
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achieve the highest transconductance. Also, a symmetric active circuit with gm, = Gmp'! is used to
improve the 1/f3 corner of phase noise, which establishes a relation between W), and W,,. Therelore,
MOS transistors introduce only one independent design variable, W;,. Third, MOSCAP varactors
introduce ouly one design variable Cy . since in a typical varactor, the ratio Cy maz/Cumin 18
primarily determined by underlying physics of the capacitor and remains constant for a scalable
layout. Fourth, the size of the output driver transistors can be pre-selected so that they can drive a
50 Q load with a specified output power with the worst-case minimum tank amplitude of Viank min-
This results in a specific value for Cjeqq, cxcluding it from the set of design variables. Table 2 shows
the reduced set of independent design variables, together with their abbreviated notation that will

be used from now on.

Components Design variables | Notation
Transistors W, w
Spiral inductors b, s, n,d b,s,n, d
Varactors Cymax c

Table 2 : Six independent design variables

To demonstrate a typical design problem, specific numncrical design constraints are imposed in

accordance with Subsection 6.8.1 as shown in Table. 3.

Eq. Specifications Value
N/A Viupply 2.5V
(6.98) Loz 4mA
(6.99) Viank,min 2V
(6.100),(6.101) Seenter 2.4GHz
(6.100),(6.101) | minimum tuning range 15%
(6.102) Wi 3
(6.103) Amax 200pm

Table 3 : Example of design constraints

Identification of Feasible Design Regions

In this subsection, £, is fixed to show how feasible design points in the cu-plane can be identified. The
numerical value of the sclected inductance in this subsection is 2.7nH where the inductor geometric
parameters, b, s, n and d, arc chosen such that gy, becomes minimum for this value of L.

The design constraints given by (6.99) - (6.102) are visualized in Fig. 6.30 in the cw-plane where

w is in pm and ¢ is in pF. The tank amplitude line is the loci of the cw points resulting in a tank

117This is an approximate criterion. More accurate criteria for minimization of 1/f noise can be found in [86].
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Figure 6.30: Design constraints for Iy;.s = 4 mA.

amplitude of Vignk min = 2V, using (6.99). Points below this tank amplitude line correspond to a
ro larger than 2V. The broken line with one dash and three consecutive dots represents the regime-
divider line, below which the oscillation occurs in the voltage-limited regime with the tank amplitude
of Viimit = Veuppiy = 2.5V, The tr1 and ¢r2 lines are obtained from (6.100) and {6.101), respectively.
A tuning range of at least 15% with a center frequency of 2.4GHz is achieved if a design point lies
below the tr! line and above the tr2line. The start-up line is obtained from (6.102). The small-signal
loop gain is over tmin = 3 on the right-hand side of the start-up line to guarantee start-up. The
shaded region in Fig. 6.30 satisfies all the constraints in {6.99) to (6.102) and therefore represents a
set of feasible design points.

Further intuition can be obtained from this graphical representation. For instance, the eflect of
the start-up condition on the size of the region of plausible design can be seen in Fig. 6.31. It shows
the effect of the loop-gain constraint, where increasing the minimum small-signal loop gain, apin,
shrinks the region of feasibility. Intuitively, a higher small-signal loop gain requires larger transistor
dimensions, and therefore the resultant increase in the parasitic capacitances makes it more difficult
to obtain the desired tuning range.

The dominance of drain current noise lowcers the dependence of phase noisc on transistor width,
w, and the maximum capacitance of varactors, ¢. Therefore, the phase noise differcnce across the
feasible design arca in the curplane is expecied be small. For example, in Fig. 6.30, phase noise
difference between points A and B is no more than 0.5 dB where the phase noise was calculated from

(6.104). This fact is well reflected in phase noise approximation (6.113), which suggests a strong
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Figure 6.31: Effect of changes in the minimum small-signal loop gain.

dependence of phase noise on the choice of inductor rather than ¢ and w.

Inductance Selection

We now execute the design strategy obtained in Sec. 6.8.1, exploiting the graphical representation
of the design constraints. AS gienr = gr increases with a decreasing L as shown in Fig. 6.23,
the L-reduction will translate the tank amplitude linc downward and the start-up line to the right,
shrinking the feasible design area in the cw-plane. For gy, in cxcess of a certain critical value, either
the minimuin tank amplitude constraint or the start-up constraint will be violated as can be scen
from (6.94), (6.99) and (6.102). The inductance corresponding to this critical g is the optimum
inductance, Lgpe. Tuning range constraints are of no concern with the L-reduction process as
decreasing L increases the capacitance budget, relaxing the tuning-range constraints. With L = Loy,
therc exists only a single feasible design point in the cw-plane, which lies on either the tank amplitude
line or the start-up line.

Diflerent scenarios can be envisioned depending on the order the constraints are encountered
with the reduction of L, as shown in Fig. 6.32. If the tank amplitude limit is reached first, the single
feasible design point lies on the tank amplitude line at L = Loy, as shown in Fig. 6.32(a). This
unique design point A in the cu-planc represents the optimum ¢ and w.

On the other hand, when the start-up constraint becores active first, the region of feasibility
will shrink to a single point B located on the start-up line, as shown in Fig. 6.32(b) and (¢). Two

different cases can be identified here. If point B lies in the inductance-limited regime (between the
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tank amplitude and regime-divider lines) as shown in Fig. 6.32(b), point B will correspond to the
optimum design and no further action is necessary. However, if B resides in the voltage-limited
regime (below the regime-divider line), as depicted in Fig. 6.32(c), the design suffers from waste of
‘ powcer. In this case, the bias current should be reduced to make the regime- dlv1der line translate

downward and pass through point B2,

Summary of the Optimization Process

The design optimization process can be summarized as follows. Set the bias current to Ipae, and pick
an initial guess for the inductance value. Find the inductor with this inductance that minimizes gr,.
This can be done using the method proposed in [110] or using simulation tools such as ASITIC [116].
Plot the design constraints in the cu-plane using the selected inductor. If there are more than one
feasible design points in the cw-plane, decrcase the inductance and repeat until the feasible design
area shrinks to a single point, as in Fig. 6.32. The single design point in the cu-plane represents the
optimum ¢ and w and the corresponding inductor with L = Loy is the optimum inductor. If the
single design point lies in the voltage-limited regime, the bias current should be reduced from I,

until the regime-divider line passes through the single feasible design point to avoid waste of power.

Robust Design

The graphical visualization of design constraints can help us cope with possible process variations,
leading to a robust design. In the presence of process variations, the constraint lines turn into
bands as shown hypothetically in Fig. 6.33. The broken and solid lines represent design constraints
in the slow and fast process corner, respectively. The robust design points are selected inside the
inner triangle, sides of which consist of broken lines. The shaded arca in the figure represents
unreliable design in the presence of process variations. Accordingly, the optimization process should

be modified to turn the region of reliable design to a single point, instead.

6.8.3 Simulation

Validity of the approximations made in the previous sections can be verified using simulations. In
this section, an accurate phase-noise simulation is performed [115] on the VCO designed using our
optimization process. The more accurate nonsymnetric equivalent circuit for spiral inductors used
in simulations is depicted in Fig. 6.34. This nonsymmetric model was developed using ASTTIC to
address the physical asymmetry of the spiral structure [116..

Phase noisc siinulation is performed at a center frequency of 2.22 GHz with a tail current of

12The start-up and tuning range lines show little dependence on the bias current. It is obvious that the tuning
range is not affected by the bias current. The start-up constraint is almost independent of the bias current as the
transconductance of short-channel transistors shows little dependence on the bias current.
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4mAb. The impulse sensitivity functions (ISF) of various noise sources are obtained by performing
the charge injection simulation [63] and are depicted in Fig. 6.35 for the PMOS, NMOS and tail
transistors. The cyclostationary effect of the drain current noise due to the periodic operating point
change can be taken into account by the noise modulating function (NMF), which is proportional
to /gao [63]. The simulated NMF for PMOS and NMOS transistors is shown in Fig. 6.36. The
effective ISF, Which‘is the product of the original ISF and the NMF for the drain current noise, is
depicted in Fig. 6.37.

The total simulated phase noise is -120 dBc/Hz at 600 kHz offset from a 2.22 GHz carrier. The
circuit noise contributions from each noise source are shown in Table 4. Note that most of the circuit
noise is contributed by the drain current noise of the cross-coupled transistors, as demonstrated ear-
lier. The approximate equation (6.113) predicts a phase noise of -121 dBe/Hz at 600 kHz offset. This
is only 1 dB different from the simulation results, confirming the validity of the assumption leading
to (6.113). - The 1/f noise reduction factors are 0.18 and 0.25 for NMOS and PMOS transistors,
respectively [63].
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Figure 6.38: Chip photograph.

Noise source | PSD (A%2/Hz) | Contribution
Drain current | 6.90 x 10723 86 %
Gate 1.20 x 1024 1.5%
Inductor 4.49 x 107 56 %
Varactor 1.77 x 10724 2.2 %
Tail current | 3.73 x 1072 4.7%

Table 4 : Simulated result of noise contributions from each noise source

6.8.4 Experimental Results

Table 5 summarizes performance of the VCO, which was implemented in a three-metal, 0.35um
BiCMOS technology, only ﬁsing MOS transistors. Fig. 6.38 shows the VCO chip photograph. A
tuning range of 26% is achieved, as shown in Fig. 6.39. Phase noise is measured using an HP8563
spectrum analyzer with phaée noise measurement utility. The measured phase noise at 2.2 GHz is
about 3 dB higher than the simulated phase noise. This 3 dB difference can be attributed to the
uncertain channel noise factor, 7, degradation of tank amplitude caused by the parasitic resistors
in metal layers And high sensitivity of the oscillation frequency to extrinsic supply and control line

noise due to the high VCO gain at this frequency.
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Supply voltage 2.5V
Current {core) 4mA
Center frequency : 2.33GHz
Tuning range 26 %
Output power 0dBm

Phase noise (f. = 1.91GHz, Q600kHz) | -121dBc/Hz
Phase noise (f, = 2.03GHz, @600kHz) | -117dBc/Hz
Phase noise (f. = 2.63GHz, @600kH z) | -115dB¢/Hz

Table 5 : VCO performance summary

To measure the phase noise more accuralely, we increased the control voltage up to 3.5V which
further reduces the oscillation {requency down to 1.91GHz where the VCO gain is very low. Fig.
6.40 shows a plot of phase noise versus offset frequency from the 1.91GIlz carrier. The phase noise
measurement at 600kHz offset {rom the 1.91GHz carrier yiclds -121dBe¢/Hz.

To compare the performance of our oscillator to recently reported results '87] - [L09], we define
two ligures of merit. TFirst, power-frequency-normalized (PFN) figure of merit
kT fo

i

PFN = 10log|
sup foff

)] = L{foss} (6.114;

was devised noting that phase noise of an oscillator measured at an offset fo7; [rom a carrier at fy
is proportional to f2 and inversely proportional to 'ff § [77] as well as the power dissipated in the
resistive part of the tank. As the power dissipated in the resistive part of the tank cannot be casily
calculated from the VCO specification, phase noise is normalized to KT/ Pe,,, in (6.114), where Py,
is the total dc power dissipated in the VCO. PFN is a unitless figure ol merit expressed in dB. A
larger PI'N corresponds to a better oscillator.

To take tuning range into account in the comparison of different oscillators, a second figure of

merit called, power-frequency-tuning-normalized (PFTN)

.k une \ 2y +
PFTN = 10log! r. (fff—h—c-)zj — L{foss} (6.115)
sup o

was devised where fiune = frar — finin. Note that PFTN is a normalization of PN vo the squared
tuning range, (frune/fo)?. Again a larger PFTN corresponds to a better oscillator.

Using these two figures of merit, the designed oscillator is compared to those reported in [87 -
[109 in Fig. 6.41 and 6.42. The reported oscillator in this paper has the second largest PFN and

the largest PFTN among the oscillators with on-chip inductors using standard metal layers.
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Chapter 7 Conclusion

This thesis presented a general study of noise in clectrical circuits and devecloped a new physical
theory of noise in mixers and oscillators. The scientific importance of our resulls includes several new
observations of thermal fluctuations in nonlinear time-varying circuits and original physical insight
into the noise processes. Technologically, our investigation has considerable engincering significance
as a demonstration of how we can develop practical novel circuit designs starting from fundamental
physical considerations. The power of our approach was demonstrated by applying our theory to
three practical topics which remain active fields of research: (1) fluctuations in nonlincar electrical
circuits, (2) noise in mixers, and (3) noise in oscillators.

In Chapter 4, we rigorously investigated thermal fluctuations in nonlinear clectrical circuits,
providing profound insights into and tangible understandings of nonlinear fluctuation phenomena.
Particularly, owr study of fluctuations in nonlinear resistors was an important sector of this investi-
gation, verifying the physical soundness of the contermnporary noise models for certain active devices.
This investigation was facilitated through a close examination of the energetics in nonlinear clectrical
systems.

Chapter 5 studies noise in mixers, and presents two new observations: noise {igure degradation
due to cyclostationary noise and conversion gain enhancement, both dependent on the size of energy
storing clements. These novel behaviors were experimentally verified with a dircet measurement of
integrated switching mixers. The results provided new insights into cyclostationary noise processes
in mixers and optintum design.

Chapter 6 presents our study on noise in oscillators. The fundamental physical investigation
of noise in oscillators results in a new oscillator noise theory, bringing a transparent insight into
oscillator phase noise. Novel concepts of virtual damping and linewidth compression put resonators
and oscillators in a unified framework, lcading to a general oscillator design otpirnization strategy.
Demonstration of a direct correspondence between oscillator phase noise and Einstein relation reveals
the underlying physics of phasce noise. The theory was verified with experiments using various
oscillator prototypes. Additionally, as a useful engineering method, we have developed an intuitive
graphical optimization method for oscillator design.

Ovecrall, this thesis is a comprchensive physical theory of noise in electronics. Many of the results

arc easily applied and should become part of the working knowledge of RF and microwave engineers.
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Chapter 8 Appendices

8.1 Appendix 1

Since the weak nonlinearity regime is characterized by the condition wy > w, and hence there

arc two major time-constants inherent in the oscillator (wy* and y71), we define a new parameter

A= v/wo = Q! <« 1 and introduce two independent time variables 7o and 7q:

To=f,

71 = At (81)

Having v = w9+ Av; + - on one hand and (8.1) on the other, we can obtain the following equations

from (6.3):

92,

?—Zq +wiuy = 0 [O(A®) terms] (3.2)
O7¢

8%y 2 H?ug dug L
W -+ Wty = — m - u)of (’Uo) 5—7% [O()J) terms] (53)

where our approximations are consistent up to the first order of A and f(v) = f(wvg) + Avy f'(vg) was

used. The solution of (8.2) is
vo(T0,71) = 7(71) cos(woTo ~ 0(71)) (8.4)

This O(A%)-order solution corresponds to the near-sinusoid approximation while the detailed infor-
mation on r and # is to be obtained from the O(A\!)-order equation. By plugging (8.4) into (8.3),
we obtain

2
d*m

9 d do
ﬁ +uwpuv1 = (wgrf(v(,) + QLU(]E_T—.I-) SiIl(ngTo + 9) + QWQT—d'TTT COS(L(,’OTO + 6’) (85)

which becomes, for the Van der Pol oscillator,

82 o d * 1 5 . d9 X
(")T? +wivy, = (2(.«.)0d—;1 — kwir — Zawérs) sin(woTo + 0) + 2word—ﬁ cos{wgTo —0)  (8.6)

+ third-order harmonics (8.7,
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To exclude the nonrealistic case in which v becomes unstable, we sct the coetficients of the cosine
1

and sine of the first and second term to zero, leading to

dr awgr 4k .2 : .
(l_Tl
do
—_— = | 8.9
dTl ) ( )

8.2 Appendix 2

If a probability distribution function for ¢(t) is Gaussian at a given time f, we can obtain an
explicit expression for averages such as (cos¢), {cos ¢(t1)cos ¢(f2)), etc., by appealing to the fact
that the Gaussian distribution has zero n — th order cumulants for n > 3, i.e., (¢7?) = e~(®*/2 and
(ed(@(t)+o(t2))) = e—(1/2)(($7(21))+(87 (22)) =2(¢(t1)d(12))) 4 o~ (1/2)(0° (1)) (3" (t2))+2{2(81)¢(t2))) | From
these, the following Table 3 is constructed which is essential in evaluating the statistical properties

of the signal v(t) = cos(wot + ¢(t)):

Ensemble average Analytical expressions in terms of (¢2(¢)) and {¢(t1)@(t2))
{cos ¢(t)) e (0% ()/2
{sin (7)) 0

(sin ¢(t1) sin ¢(t2 [e—(l/z)(w?(tl))f(rp?(tz)>—2<¢(t1)¢(tz))) — e~ (/DU 0D+ (t2)) +2(o{t1)8(12))) | /2

(cos (i) cos (1)) | [e~ WDULHEN (e (1) =2(6(0)002)) — o=(1/2) (6 1))+ () -2 ()0t 1) /2

)

(t2))
{sin @(t1) cos P(t2)) 0
(cos (t1) sin @(12)) 0

Table 3: Ensemble averages of various triangular functions whose arguments are diffusion processes.
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