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Abstract 

Part 1. Many interesting visual and mechanical 

phenomena occur in the critical region of fluids, both for 

the gas-liquid and liquid-liquid transitions. The precise 

thermodynamic and transport behavior here has some broad 

consequences for the molecular theory of liquids. Previous 

studies in this laboratory on a liquid-liquid critical mix­

ture via ultrasonics supported a basically classical anal~ 

ysis of fluid behavior by M. Fixman (e. g., the free energy 

is assumed analytic in intensive variables in the thermo­

dynamics)--at least when the fluid is not too close to 

critical. A breakdown in classical concepts is evidenced 

close to critical, in some well-defined ways. We have stud­

ied herein a liquid-liquid critical system of complementary 

nature (possessing a lower critical mixing or ex>nsolute 

temperature) to all previous mixtures, to look for new qual­

itative critical behavior. We did not find such new 

behavior in the ~!trasonic absorption ascribable to the 

critical fluctuations, but we did find extra absorption due 

to chemical processes (yet these are related to the mixing 

behavior .generating the lower consolute point). We rede­

rived, corrected, and extended Fixman's analysis to interpret 

our experi·mental results in these more complex circumstan­

ces. The entire account of theory and experiment is 

prefaced by an extensive introduction recoµnting the general 

status of liquid state theory. The introduction provides a 
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context for our present work, and also points out problems 

deserY1ng attention. Interest in these problems was stim­

ulated by this work but also by work in Part J. 

Part 2. Among variational theories of electronic 

structure, the Hartree-Fock theory has proved particularly 

valuable for a practical understanding of such properties 

as chemical binding, electric multipole moments, and X-ray 

scattering intensity. It also provides the most tractable 

method of calculating first-order properties under external 

or internal one-electron perturbations, either developed 

explicitly in orders of perturbation theory or in the fully 

self-consistent method. The accuracy and consistency of 

first-order properties are poorer than those of zero-order 

properties, but this is most often due to the use of explic­

it approximations in solving the perturbed equations, or to 

inadequacy of the variational basis in size or composition. 

We have calculated the electric polarizabilities of H2 , He, 

Li, Be, LiH, and N2 by Hartree-Fock theory, using exact per­

turbation theory or the fully self-consistent method, as 

dictated by convenience. By careful studies on total basis 

set composition, we obtained good approximations to limiting 

Hartree-Fock values of polarizabilities with bases of reas­

onable size. The values for all species, and for each 

direction in the molecular cases, are within 8% of experi­

ment, or of best theoretical values in the absence of the 

former. Our results support the use of unadorned Hartree-. 
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Fock theory for static polarizabilities needed in interpret­

ing electron-molecule scattering d~ta, collision- induced 

light scattering experiments, and other phenomena involving 

experimentally inaccessible polarizabilities. 

Part 3. Numerical integration of the close- coupled 

scattering equations has been carried out to obtain vibrat­

ional transition probabilities ior some models of the 

electronically adiabatic H2-H2 collision. All the models 

use a Lennard-Jones interaction potential between nearest 

atoms in the collision partners. We have analyzed the re­

sults for some insight into the vibrational excitation 

process in its dependence on the energy of collision; the 

nature of the vibrational binding potential, and other fac ­

tors. We conclude also that replacement of earlier, simpler 

models of the interaction potential by the Lennard- Jones 

form adds very little realism for all the complication it 

introduces. A brief introduction precedes the presentation 

of our work and places it in the context of attempts to 

understand the collisional activation process in chemical 

reactions as well as some other chemical dynamics . 
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I. Introduction 

We have recently completed an experimental study 

of the velocity and linear attenuation or absorption coeff­

icient of ultrasonic waves in 2,6-lutidine: water 

mixtures. We concentrated on the behavior near the lower 

consolute or critical mixing point of temperature and com­

position. Our intent was learning more of the statics and 

dynamics of the large, correlated fluctuations in order 

parameter--here, the local composition--occurring at crit­

ical points. Among probes of such phenomena, ultrasonics 

is convenient for its simplicity and for the directness of 

its relation to the dynamics. The raw ultrasonic data were 

carefully corrected for systematic experimental errors and 

statistically analyzed. Results were reduced to molecular 

parameters (persistence length, friction constant) using 

Fixman•s1 theory for the critical fluctuations and their 

coupling to the sound waves. We selected this theory over 

rival theories2 ,3 principally for its good balance of 

tractability and rigor. The formalism was rederived with 

some correction and reinterpretation, in order to extend it 

to the mixed behavior of our system. 

The present studies cover but one aspect of liq­

uid state theory, and employ but one experimental probe of 

structure and dynamics. We review below the present status 

of theories for fluids of complexity ranging from simple 
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monatomic fluids through pure and mixed systems possessing 

rotational, vibrational, and chemical degrees of freedom. 

The context of our research, which is summarized in the 

two journal preprints following, should become clear in the 

process. 

Various levels of microscopic structure and dy­

namics develop through the progression of fluid types under 

study: simple flu.ids and their mixtures, fluids with well­

defined internal degrees of freedom as rotation or vibrat­

ion, fluids where the molecules self-associate in large 

aggregates, and mixtures of an associated liquid with a 

species it solvates chemically. These four classes are not 

inclusive: for example, we have excluded dilute solutions 

of reactive species, electrolytes, or polymers. In such 

solutions the fluid acts as a carrier phase, a dielectric 

or solvating medium, or a large reservoir of one reactive 

species, rather than being of central interest. 

Simple fluids are under the most intensive study. 

Their thermodynamic and transport properties have been 

correlated with model solid- and gas-like structures by 

approximate theories. More rigorously, one can correlate 

their properties with the basic molecular parameters, the 

mass~ and the intermolecular potential V(r). One does not 

assume a small set of basic structures; rather, one employs 

full statistical mechanical theory and describes the fluid 

with very general distributions containing complete infor-
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mation. Critical phenomena are still beyond fully success­

ful quantitative description by rigorous or even approximate 

theories, as the critical region's thermodynamic instability 

is reflected strongly in its microscopic structure. In the 

second class of fluids, the members are necessarily poly­

atomic and nonspherical. Equilibrium properties are modi­

fied either by the strong coupling of rotation and transla­

tion, or (in the dimerization case) by the strong coupling of 

all internal degrees of freedom in two molecules. 

Repartitioning of phase space allows adequate treatment by 

rigorous statistical mechanics or thermodynamics. Transport 

in dilute fluids of this type involves more complex (angle­

dependent) distributions and some new mechanisms, and is 

difficult to describe. Dense phases pose a virtually insol­

uble problem to date. The associated liquids forming the 

third class possess extensive spatial and motional struc­

ture, built from a great modification of the degrees of 

freedom of the isolated molecules through an n-body inter­

action poteritial deviating strongly from pairwise additivity. 

So much of the framework of rigorous molecular statistical 

mechanics on the few-body level is_ inapplicable, that only 

phenomenological descriptions are possible, based on a few 

large and fixed structures or on a set of linked chemical 

reactions. The behavior of a mixture of another liquid with 

an associated one is even more difficult to explain with 

molecular or other microscopic units of structure. More 
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narrow empirical relations of bulk properties are required, 

except for critical mixing phenomena, which are qu8.litative­

ly similar to all other critical systems. 
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A. Simple Dense Fluids 

These fluids show no evidence of internal struc-

ture, meaning they are generally monatomic. We exclude from 

consideration the liquid metals, whose cohesive forces are 

qualitatively different from those of insulating liquids; 

a recent conference4 has summarized what is known of liquid 

metal structure and dynamics. We also exclude quantum 

effects5a,6a as manifested by the light atoms He and Ne even 

to 11 high 11 temperatures. The properties typically of interest 

are, for equilibrium, the PVT data or equation of s_tate, the 

heat capacity Cp or Cv, the chemical potential~, and the 

surface tension ~; and for transport, the shear and bulk 

viscosities 1ls and ·riv, the thermal conductivity A, and the 

diffusion coefficient D, as they depend on the equilibrium 

state and possibly on the transport process angular freq­

uency c'.i.). The dynamic responses of the fluid to nonthermal, 

mechanical perturbations or probes such as elastic and 

inelastic light and neutron scattering are also of interest, 

on independent grounds as well as for further confirmation 

of our understanding of related bulk transport coefficients. 

Experimental techniques for equilibrium and 

transport properties are many and varied. PVT data have been 

compiled extensively by straightforward pressure bomb meas­

urements? on confined samples. Ultrasonic studies yield the 

velocity13, which provides a simple and accurate additional 
2 ·1 

determination of the adiabatic compressibility K5 = ( f 13 )--, 

I .. 
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which otherwise requires extensive numerical analysis of the 

straight PVT data. The critical region equation of state is 

also probed on special cuts in the thermodynamic plane by 

such unseemly means as NMR8 . Heat capacities Cv or Gp are 

taken by direct calorimetry, 7. by and large. The ultrasonic 

value for Ks is also used to check the critical region diver­

gence of CV = Cp~/W1 from the better-known behavior of Cp 

and K,9. Surface tension Cf' is primarily measured by capil-

1 . lO t ff ary rise • Among ranspor_t coe icients, the best-studied 

are 17
5 

and /\. , the former by capillary flow or rotating 

disk viscometers 11112a and the latter by heat flux measure­

ments across parallel plates or concentric cylinders11112a. 

The self-diffusion constant D requires some ingenuity 

(though for mixed fluids mutual diffusion also exists and 

is straightforward to determine). Radioisotope diffusion13, 

NI1R spin echoes12b, and light scattering14,l5 are in use, 

the latter two particularly near criticality. Ultrasonics 

provides the only measure of the bulk viscosity ~vl6-2o 

through its proportionality to the absorption coefficient 
7. 3 

c< = w ·11 v /2..rf3 . Additional fluid properties which touch 

more or less directly on the microscopic structure we seek 

to understand include pair distribution functions ~(r) from 

x-ray21a, 22 or neutron scattering23a. The validity of the 

g( r) concept and calculations as well as the form of the 

intermolecular potential is investigated. The long-range 

structure of g(r) near the critical point is probed by 
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light scattering?,l2c. Other light-scattering information 

includes the velocity and attenuation of hypersonic thermal 

waves (Rayleigh and Brillouin scattering15), also inves-
18a 19a 24 tigated ultrasonically ' , depolarization spectra , 

and induced Raman25. Further afield are such properties as 

second-order transport coefficients, of which thermal diff­

usivity5b is an example. 

The bulk properties of the liquid phase pose the 

greatest theoretical problems. They reflect the properties 

of the solid and of the gas to which the liquid is related 

by the first-order transitions of melting and evaporation; 

in addition there is the dramatic connection to the gas 

through or above the second-order critical transition. 

Similarly to the gas, the liquid has high fluidity~; 1 ; an 

entropy S much higher than the solid; diffusion constant D 

and dilational viscosity~v of similar magnitude to those of 

the gas; and modes of bulk motion described by the Navier­

Stokes equations18b. In common with the solid, the liquid 

has a heat capacity .CV, internal energy E, and enthalpy li 

reflecting strong molecular interactions; a compressibility 

K and a molar volume V showing similar packing and mean 

forces; and a heat conductivity A indicating similar mechan­

isms of energy transport23b. Of course, the similarities or 

differences are often more quantitative than qualitative and 

depend upon which thermodynamic cut one chooses. There is 

also the more microscopic structure such as equilibrium 
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pair distribution functions ~) to compare among phases. 

We wish to explain the properties above, in their dependence 

on the thermodynamic state within the liquid or dense gas 

phases as well as across the transitions. Correlations with 

the solid or gaseous phases are useful, but a more basic 

explanation should derive primarily from the molecular param­

eters of mass m and potential V(r), which also ground the 

properties of the other two phases. The critical region 

connection of gas and liquid poses a special challenge by 

its anomalous rate of change of properties (Cv,~s• light 

scattering power= opalescence, e.g. 12•26 ) and its violation 

of classical thermodynamics baaed on the analytic nature27a 

of the free energy g. The cooperative phenomena here are 

apparently in basic analogy27b,28 to many other thermal 

many-body phenomena in highly dissimilar systems such as 

ferromagnets and superfluids, or in the more closely related 

consolute binary liquids. 
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B. Equilibrium Theory 

The earliest success in explaining dense gas non­

ideali ty and in correlating the same to the existence of a 

gas-liquid phase transition was achieved by van der Waals in 

the equation29 bearing his name. He postulated an excluded 

volume b in the total volume due to finite molecular size, 

as well as a pressure term a/V2 proportional to the inverse 

square volume due to the attractive portion of the pair po­

tentials. The parameters can be set from the critical 

parameters of the fluid to yield a reasonably good gas 

description. There arises a principle of corresponding 

states5,29 among all gases when P,Y._,_ and T are all reduced 

to their ratio with the corresponding critical values P
0

, 

V
0

, and Tc. Experiments bear out the principle rather well. 

In the true liquid region the van der Waals equation 

describes fictitous states, but the ad hoc Maxwell construc­

tion29a locates the liquid-gas phase boundary. The shape of 

the coexistence curve in the critical region is now known to 

be qualitatively incorrect3°, but this defect is shared with 

every theory based on classical thermodynamics assuming the 

analyticity of the free energy in the intensive variables. 

Basically, we assess that the van der Waals theory takes a 

gas to be structureless: within the excluded volume the 

molecules are entirely random in time-average placement. 

However, both the repulsive core and the attractive tails 

in the pair potential induce structure5c,Jla in the pair 
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distribution, directly between two bodies and indirectly 

through third bodies. Statistical mechanics notes that 

the momentum-averaged probability of occurrence of a spa­

tial configuration (~1 ,iJ2 , ••• ,r~) of N molecules is 
-> 4 ~ 

proportional to exp-U(r1 ,r2 , ••• ,rN), where U is the total 

potential energy. 

The search for a better equation of state, partic­

ularly for the liquid state and preferrably a less empirical 

one based more on the intimate molecular mechanics, yielded 

no essential advance until the 19JO's. At this time, the 

x-ray diffraction patterns of liquids were measured32 and 

found to show remarkable short-range order reminiscent of 

the solid state. Quasi-crystalline models of liquids sprung 

up in number, all partitioning the configuration of the 

liquid into effective single-particle distributions for one 

particle moving in the averaged field from a lattice of the 

other particles. Originally, these cell theories5, 6b,33 

postulated a complete lattice structure and uncorrelated one 

particle motions under hard-sphere or Lennard-Jones poten­

tials. They considerably underestimated the entropy by over­

estimating the structure, particularly by not allowing the 

interchange of particles among cells, much less multiple 

cell occupancy. The equation of state is quite poor, while 

the internal energy is quite acceptable. Lennard-Jones and 

Devonshire accounted for the extra potential from two further 

'coordination shells' in the lattice in establishing both 

free volume and total lattice energy. They also corrected 
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the 'communal entropy' from particle exchange fully toward 

the gas value. Double occupancy of lattice sites was pro­

posed later, introducing the communal entropy more gradually 

through the liquid range and giving better critical con­

stants and overall liquid properties. Allowance for vacant 

sites in the lattice, to an extent dependent on temperature, 

marks the hole theories, with the best accounting for the 

entropy. The net equation of state is little better than 

the three-shell straightforward cell theory. A tunnel 

theory proposed by Barker incorporated effective li.near 

channels in the lattice for freer motion but only partially 

corrected the entropy errors. Eyring and coworkers33 a~ 

mechanical partition function or, equivalently, the config­

uration integral. They start frbm hole theory and reject 

all but the 'significant structures' in the ~-particle 

distribution, meeting with modest success. 

These solid-like models can give reasonable prop­

erties in limited ranges. They fail near the gas region, of 

course, and will ever be insensitive to the features of the 

intermolecular potential. They still provide empirical 

correlations for engineering usage, particularly for mix­

tures, and do incorporate enough of the proper energetics to 

ground reasonable transport theory. The first steps toward 

an a' priori equilibrium theory were taken in the same era 

by Urse1134 and especially by Mayer and coworkers35, work-
--- ---- -- ---
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ing from the definition of the configuration integral and 

expanding it in orders of the density--the so-called virial 

or cluster expansions. One chooses a parameterized pair 

potential and then carries out successively higher-order 

integrations of exp-UN/kT involving larger and larger clus­

ters of n molecules. The required time and effort limit the 

approach to the lowest orders of virial coeffiecients (of 

f/kT), less than six for the Lennard-Jones potentiaiJ6. 

Convergence difficulties appear36a,J7 to defeat any applic­

ation to real liquids in any case. The chief use of virial 

theory now is production of exact virial coefficients for a 

given potential, to compare to the effective coefficients 

from equations of state yielded by promising approximate 

theories. 

Yvon38 and Born and Green39in the late 'JO's and 

140 1 8 proposed a description of fluids by n-particle dist­

ribution functions g<::>c~1 , ••• ,-;n), which are integrals over 

(N-n) other particles of the configuration probability 

exp-UN/kT, times a combinatorial factor for the ways n par­

ticles can be chosen among N. The pair function_g( 2 )c~1 ,zt"2 ) 
=g(r

12
) is central for all properties (but total entropy21b) 

of our type of filuids. One may derive a coupled set of 

inhomogeneous integro-differential equations for the heir­

archy of the g(n) from the Liouville equation in total phase 

space or its equivalents. The resulting Born-Green-Yvon 

(BGY) equations are unclosed, in that the ~) equation in-
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1 . t 1 "th (n+l) Cl vo ves an in egra wi ~ • osure can be obtained by 

approximating~) as a product of g( 2 ) 's--the superposition 

approximation 'of Kirkwood40--or a little more flexibly as 

in Cole 1 s41 or Fisher•s42 approximations. Bogolyubov43 also 

postulated similar equations without practical extensions. 

Kirkwood40 proposed an alternate set of equations to go with 

the closure scheme, using a coupling parameter for a test 

particle and obtaining slightly different results in the 

superposition approximation. 

The pair distribution approach is desirable for 

several reasons. Its prime quantity g(Z)(£) has a direct 

integral relation to the macroscopic equilibrium proper­

ties21c and to the Fourier components (in the space of~· = 

4n sine/~ ) of the x-ray scattering intensity. By reason 

of this second relation (an analogous one exists for neu­

tron scattering), the theory's output .Bi.!:) can be checked in 

point-by-point detail, over and above as a weighted average 

with potential operators for bulk properties. X-ray exper-

iments are not currently accurate enough to be a prime 

source for .,gi£), since the computed properties, especially 

the pressure44, are rather sensitive to errors in g(r). 

A thiru 'advantage' of the distribution theory is that the 

equations are readily truncated by an approximation (super­

position) with some intuitive physical interpretation. 

Unfortunately, alternate approximations more appropriate for 

true liquids are not possible and the theory is presently 
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bogged down. Critical phenomena remain outside the compe­

t ence of t he t heory by any f oreseeable extens i on , as they 

are true many-body instabilities. 

The superpositon technique has been tested exten-

SJ.• velyJ6a up through 1 . "d d · t · · d t t iqui ensi ies an empera ures, 

where it fails badly in predicting the equation of state. 

Rushbrooke and Scoins45 looked at the effective 1 direct ' 

corre1ation function c(r) which determines ~) by the Orn­

stein-Zernicke integral equa tion46 and advanced a simplific­

ation called the netted-chain(NC) equation. This was 

quickly replaced by the better hypernetted chain (HNC) which 

gave encouraging results in dense systems. Near this time, 

Percus and Yevick47 derived a related approximation (PY) 

and justified it on the basis of arguments in many-body 

theory for collective motion of the Fourier density compon­

ents. PY theory is the most successful distribution 

approach, as it even shows a phase transition in appropria te 

condi tions. It has been improved (the PY2 form48 ) and also 

adapted for nonspherical systems49 and for the presence of 

t hree-body potentials5°. Further advances are still needed 

for t he densest liquids near the melting transition and for 

the critical region, but they are not foreseen as extensions 

of present forms. There exists the direct expansion of~) 

in cluster integrals51 ·that can be systematically extended 

to any order in density, amounting to stopping at the next-

to-last stage in virial theory. However, the theory is at 
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least as difficult as the latter and has mostly formal util­

ity in searching for new approximate theories. 

Several groups, beginning with Zwanzig52 , have 

developed theories for the equation of state starting from 

the free energy, and perturbing it from the hard-core refer­

ence result to change the configuration integral ana the 

pair distribution function. A limited class of systems are 

treated successfully by this approach in a straightforward 

application. 

Two 'brute force' approaches to fluids are applic­

able with all pair potentials and all thermodynamic states. 

They provide reference values for other theories to measure 

up to, essentially giving the experimental behavior of ideal 

fluids uncomplicated by any trace of triplet potentials or 

experimental errors. The Monte Carlo theory2l,53a generates 

the configuration integral by assembling random points or 

N-particle configurations for the integrand. The latest 

practical versions select configurations with a probability 

proportional to exp-UN/kT to gather the largest contribut­

ions with the least work. Properties are excellent when 

referred to real substances such as argon. They are accur­

ate enough to relate deviations from experiment to triplet 

potentials and other complications. The limited size of 

systems of N particles that can be handled leaves a little 

doubt on some properties, certainly near criticality where 

the long-range correlations cannot be represented. The 
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second approach, molecular dynamics53b, consists in numeri­

cally integrating the equations of motion for N par ti cles 

over a representative time span, in two or three dimensions. " 

This technique is also very accurate and is packed with 

information. i ncluding transport coefficients (autocorrel­

ation function theory54 relates macroscopic gradient 

dissipation to that of spontaneous microscopic gradients). 

It is restricted to even smaller systems than MC for the 

same effort or computing time. Neither theorY can be con-

sidered an everyday working theory for investigating liquids, 

particularly as the quantitative results are not readily 

broken down into a limited number of qualitative concepts 

for a physical understanding. 

Critical phenomena are in a territory of true 

many-body instabilities untouched by all the microscopic 

theories. The vanishing of the derivative (dP/oV)T and of 

the gas-liquid density difference (and hence, the meniscus) 

makes for dramatic mechanical and visual effects26 • Several 

cuts in the PVT plane are of interest--the isotherms, the 

isochores, and particularly the coexistence curve. Anomal-
12d ous--even diverging--specific heats are present • The 

microscopic parameters of corr elation, as the total correl­

ation length K -1 in the asymptotic part of fill:) .-v e- K r /r, 

become macroscopic and show up in strong light scattering or 

opalescence7,Z6. Transport also shows significant anomalies, 

t hough we are presently considering only equilibrium aspects. 
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The original phenomenological theory of van der 

Waals did touch on critical phenomena. Its principal predic­

tions 7 ,55,56 are a parabolic shape for the coexistence curve 

in (T-Tc) versus (f-fc), a simple discontinuity in specific 

heat across the critical point on the isochore, and an 

inverse linear divergence of the isothermal compressibility 

K
7 

with (T-Tc). We may use the shorthand of Fisher•s27c 

critical exponents to express these results. The exponents 

are power laws relating two intensive variables' differences 

from their critical values. The van der Waals' exponents 

corresponding to the three predictions above are ~ =~, o< = c< !. 

= 0, and o = 1, the same for all fluids. The critical point 

in van der Waals theory appears to originate in cooperative 

motion from long-range forces 12e, while the quantum theory 

of intermolecular forces57 by London and others showed the 

forces to be of short range, varying as r-6 asymptotically. 
46 

Ornstein and Zernicke proposed an alternate microscopic 

theory to calculate the long-range total correlation func­

tion gir:) from a short-range direct correlation function 

c ( r) • They focused on the critical opale.scence intensity 

and on the related divergence of K
1

, both tied to the behav-
-1 u ior of the correlation length J-< 'rheir results for n 1 

agree with van der Waals theory, despite the assumed differ­

ent nature of the forces. A more detailed microscopic 
' 

theory originally applied fo ferromagnetic systems, Landau 

theory58 , clarified the connection. All the theories to . 
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that time were mean field theories, in which the order par­

ameter for the transition (f -ec for fluids) is not allowed 

to fluctuate spatially while computing the free energy, but 

the form of the free energy allows the spectrum of fluctua­

tions to diverge at the same time. Any assumption of the 

analyticity of the free energy in T and V brings these con-

dlusions. 

Experimentally, the coexistence curve was shownJO 

in time to be flatter than parabolic, consistent with a ~ 

closer to 1/J than ~ and contrary to classical theories • 
. 5-8c._,t>9 

The Ising modelAfor the analogous ferromagnetic transition 

predicts a @ of nearly 5/16, however, and this is encour-

aging. 
. 60 

The Ising model can be converted to a model or· the 

gas-liquid critical point called the lattice gas by redefin-

ing variables and interactions. The fluid molecules are 

restricted to lattice sites which may be singly occupied or 

unoccupied. Nearest neighbors interact with a single fixed 

strength. It is essentially a hole or free volume descrip­

tion with exact correlation of the particles and holes, 

though the Hamiltonian is oversimple. The other critical 

exponents it predicts are quite good. An important result 

is ~ = O, in the sense that the i~ochoric specific heat Cv 

diverges logarithmically. This definitely quashes hopes for 

applying classical thermodynamics to the model. Experiment-

al verification of the Cv anomaly was slower in coming, due 

to the difficulty of doing calorimetry in the critical 
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region. The ultrasonic value for Ks was and is used to con­

firm the anomaly through the known divergences of CP and ~r 

and the relation Cv/~s =Op/Hr 9 • 

A total of nine critical exponents are now defined 

and more or less accurately known27 from classic ~ data 

as well as from more exotic and direct probes such as 

refractive index differences61 and NMH line splittings8 • 

Their universal disagreement with classical predictions has 

stimulated the development of a nonclassical thermodynamic 

scheme known as the static scaling laws58b,62 , which relate 

the exponents to each other. The basis is a universal equa­

tion of state in the reduced intensive variables, in turn 

based on the analyticity of the chemical potential through 

the critical transition. It is by no means a complete 

explanati~n, for it does not yield enough relations to 

predict all the exponents; it does not give the coeffic­

ients in the power law relations; and it cannot locate the 

critical parameters fc,Vc, and Tc on any basis, much less a 

molecular one. It is useful in displaying the essential 

analogy28 ;60 among all fluid transitions and even among all 

critical transitions. (We exploit this analogy in our work 

here, as we study the experimentally convenient binary 

liquid-liquid transition in lieu of the harder gas-liquid 

one~) More microscopic theoretical leads have come from 

Fixman and from Kawasaki and several others for the behav­

ior of ~-t ,under investigation by light scattering63,64 and 

also ultrasonic absorption1 ' 2 , although the latter has a 
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strong connection to the dynamics to cloud the issue. 

Other problems faced by critical thermodynamic theory 

include slight variations5Bc of exponents among systems, 

possibly from quantum corrections or residual sensitivity of 

e~ponents to the exact form of the intermolecular potential. 

Many investigators continue to look at the critic­

al region with greater precision and more sophisticated 

techniques. It is important , to qualitatively and quantita­

tively refine our understanding of this gas-liquid connec­

tion, for its basic many-body character reflects on our 

general ability to describe fluids. The dynamic aspects 

are similarly important and will be discussed under transport 

theory. 
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C. Transport Theory 

A fluid subjected to external stresses ( such as 

shear or dilational forces from forced flow or sound wave 

passage, or heat stress from a temperature gradient on its 

boundaries) reacts against the stresses to dissipate them. 

Outside the Knudsen regime5d,64Xof extremely low densit~ and 

excluding gradients over distances comparable to molecular 

separations, the bulk fluid may be treated as a continuum 

described5e by local mass density e , temperature T, and 
-r 

velocity v for these nonequilibrium conditions. Gradients 

in these quantities are dissipated by corresponding ~luxes 

of mass, energy, and momentum. The empirical equations of 

motion for these five local variables have been formulated 

. thoroughly as continuum mechanics or hydrodynamics, begin­

ning with the work of Newton, of Euler, and others65,66. 

The equations express the conservation67a of mass, momentum, 

and energy (the respective densities of which are e , (' v, 

and i f v2 + f E ( T, e ) , where E =internal energy per unit mass 

for the same T and ~ at eql!JJilibrium) and introduce the phen­

omenological coefficients of trans~ort'J.s,~v• and A: 

I'1ass flux 

Momentum 
flux 

continuity ( 1) 
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t>V · VA. + p ~ .. 
\ '- 4 Lj 

circulatio~ 
source 

Euler, 

OR Navier-Stokes~8 
ov .v. -+ p S. - +er~. for viscous 
\ ·-" 1 11 t ..44' o fluids 1 

r.-' : 7l f av,._ + dv-t - 3. S . . t\7· v )-+ 11 S- . \J~'°J. 
u; j · l s \ <lx j o x ..\. 3 .1. t v "'I 

(2a) 

(2b) 

(2c) 

En~~~ c: ( ~ f' Va+ e E) + \J.. [ V ( ~ (> v :t + e .f\) J '.: 0 / ( Ja) 

h -:: )\ ( i: ()~enthalpy per unit mass / 

OR 

( 
C)S ~ ) e I at + v · Vs -= O linearized 

adiabatic equation • 

For viscous, heat-conducting fluids, 
add to (Ja) the extra terms (ref. 67b): 

-\7·[~·~' -AVI]. 

(Pure heat conduction follows the 
empirical law: 

q = heat flux • - /...\/ T (~ = 0) , 

or equivalently, 

£l + 'A V~1' ~ o Fourier's law.) 
dt (f I 

(Jb) 

These equations describe an enormous range of poss-

ible bulk flow pattern~ depending upon the boundary 

conditions and the magnitudes of the transport coefficients. 

The whole of hydrodynamics is not of immediate interest to 

us in this review (but see ref. 66). We are concerned with 

the eventual explanation of the transport coefficients in 

terms of molecular parameters---and also with the bulk 
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response to special boundary conditions such as the time-

dependent periodic motion in sound waves, that allows us to 

measure the coefficients. To develop this last point: it 

suffices here to linearizelSc, 69 all the equations, i.e., 

to retain terms only of first order in the small fluctua­

tions op , OP, &T, and 11. In this event, the energy equation 

(3) to first order expresses the adiabatic equation of state 

dS = O. Internal dissipati~e processes give second-order 

perturbations, and thus an entropy production or energy 

loss restricted to quadratic or higher order in the grad­

ients 19b, 6?c, as required for stable equilibrium and a 

propagative mode. Heat conduction and shear viscosity are 

two dissipative processes that have a reasonably direct 

intuitive picture. Bulk viscosity is more of a catch-all 

for all other dynamic additions to the equation of state, 

from the finite-time relaxation of internal degrees of free­

dom (relative concentratinn in a mixture, chemical equil­

ibria in an associated liquid, e.g.). We must find 

additional empirical rate laws for these degrees of freedom, 

or relaxation equations 19c. In conclusion, the energy loss 

from the combined effects of ·~ 5 , "r\...,, and A manifests itself 

as a . . 18d 19d/JS P _ d) 
linear attenuation ' t6P - o< x of the travelling 

sound wave, w ~ [ '"! ""'\ ( l l ) J 
o< :: ~'3 -1\s + " ( - -C + 11.v 

~~ 13 ? " p • 
I 1 • 1 1 L-l c assica •excess' 

We may identify ·n_ s with momentum transport, ~ with 

energy transport, and ' 1v with a mixture. The self-diffusion 
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constant D clearly concerns mass transport, but in a special 

sense , as e is unchanged by self-diffusion unless the exper­

imental probe can distinguish molecular labels such as spin 

( NMR) 12b or isotopic mass differences 13. The empirical 

equation in which Q appears relates the labelled mass flux 

i and the gradient in concentration c 67d, 

i = -fDVc -fv'T 
"-:'¥-' 

or \J c -7 (Oji- I a c: ) - 1vF in complex 
cases; 

isothermally; Fick's law. 

The molecular-mechanical explanation of these 

transport coefficients lies ultimately in the parameters m 

and V(r) and in the classical mechanical equations of motion 

for the N identical particles. (Quantum equations of motion 

for transport make only small corrections for simple liquids 

and have been put together very piecemeal, in any event,5f, 

6c,70,71a,72a after von Neumann73 laid the basics.) For N 

particles, the Hamiltonian equations of motion are most com­

pactly expressed as the single Liouville equation5,74a,75a 

for a trajectory of the system (or flow, for a statistical 

average or distribution5136b,?4a,75a,?6 of initial condit-

ions) in the 6N-dimensional space of positions and momenta. 

On an ensemble average for N very large, the system exhibits 

( i rreversible) continuum hydrodynamic behavior at times much 

longer than individual collision times. Before we can solve 

for the motion and numerically evaluate the transport coef-
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ficients, we face the great con~eptual and practical prob­

lems of (a) reducing the Liouville equation and N-particle 

distribution functions to the level of few-body collisions 

and distributions, rigorously or approximately, and (b) 

resolvi ng the dilemma posed by the time-reversibilitylla, 

36b,74b,75b,77 of the Liouville equation in contrast to the 

irreversibility of the long-time phenomena it describes. 

Rice, et al.llb break down the molecular theory of transport 

into three major areas: (1) analysis of the essential mechan­

i ca l nature of irreversibility, (2) derivation of a 

suitable kinetic equation for the long-time evolution (much 

beyond individual collision transients) of some few-body 

distribution, and (3) solution of the equation for the trans-

port coefficients in terms of the molecular parameters plus 

~ and T. The first two problems are not simply annoying 

obstacles to the final numerical calculations; rather, they 

lead to rich and useful concepts in statistical condensation 

of the intricate molecular motions down to the level of 

observation in real systems, all of which are extremely com-

plex many-body systems. 

On the first level, important work was furthered 

by Kirkwoodllc,J6c,71b,77a on . . th d t ·1 d coarse-graining e e a1 e 

molecular distributions down to the level of crudity of real 

observations, and by Prigogine and coworkerslld,36d,74b,7Ba 

on the destruction of motional invariants (=mechanical 

order) by the collisions. It is now understood that for 
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systems of macroscopic size reversibility manifests itself 

only at times so long as to be cosmologically meaningless36~ 

In autocorrelation function theory54a,?lc,??b,?Sb, the prac-

tical irreversibility of the bulk equations of motion and 

of the low-order molecular distributions is postulated, and 

then used to declare the identity of the regression laws for 

fluctuations in both cases. Generally, the formal studies 

on the first problem of irreversible behavior have been 

peripheral to the more intensive work on the second problem 

of constructing actual few-body kinetic equations. The 

third step, numerical testing of the equations, follows the 

second quite rapidly and establishes the limits of applic­

ability. We'll recount below the general history of kinetic 

equations as a way of summing up transport theory. 

The first kinetic equations were limited to dilute 

gases, where the collision phenomena are easiest to sort 

out. The N-body motion can be reduced to considering only 

binary collisions occurring in a completely random fashion. 

Early free-path models for hard-sphere gases were proposed 
72b 79 80a 78c . by Maxwell and others ' ' ' in the nineteenth cen-

tury and made almost fully quantitative by the time of 
80 Jeans • While providing adequate fits to data and a very 

good intuitive picture of transport, the free-path models 

d?pend upon some undetermined coefficients which must be 

estimated, and they also apply only to hard spheres?ld. 

Boltzmann•s81 work culminating in his famous equation solved 
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these problems, but some work did continue on these lines: 

Eucken5g,72 developed corrections for nonspherical molecules 

which can carry extra momentum and energy in rotation; and 

Bhatrager, Gross, and Krook75 constructed a complementary 

approach based on the distribution of collision times rather 

than free paths, leaning on some of Boltzmann's formalism. 

In 1872 Boltzmann postulated a fully determinate 

equation for the time-dependence of the singlet distribution 

function, which is the time-dependent generalization of the 

f(1) of equilibrium theory, and the carrier of the hydro­

dynamic information. (1) !(l) is presumed to be a functional 

of the initial gradients which relaxes by isolated binary 

collisions occurring under the influence of arbitrary but 

short-ranged intermolecular potentials. Ternary and higher 

collisions are taken as negligible. (2) The equation for 

f(l) rCl) is made closed by factoring the pair distribution - , -
occurring in the collisional driving term into a product of 

singlet distributions. This is the same as assuming that 

pair and higher correlations do not build up for successive 

collisions. (3) The gradients and time-dependence of the 

distribution functions on the molecular collision time and 

distance scales are assumed negligible. All these conditiQ'lS 

hold for dilute gases36f,7le, with (2) being most difficult 

to justify. Condition (2), called the molecular chaos 

assumption, short-circuits the infinite heirarchy of time­

dependent BGY equations in the exact but impossible N-body 
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treatment, and it introduces the irreversibility. Its anal­

ysis as a coarse-graining of the distribution functions 

remained the primary, if not fully satisfactory, explan­

ation of irreversibility until the time of Prigogine and 

his school. 

Jeans80 and others used the Boltzmann theory for 

qualitative and formal studies. Enskog, with others5h, 82 , 

gave the explicit solution for the transport coefficients 

in terms of collision integrals, starting in 1922. Final 

numerical solutions5i for a series of model potentials, 

including the Lennard-Jones, came in the 1940 1s. The 

results were good enough for a quantitative understanding 

of transport in dilute gases. The analogous equation for 

truly quantum-mechanical systems like the lighter atoms 

and plasma electrons was shown in 1928 by Pauli83. Grad84 

extended the Boltzmann approach to very low densities and 

other conditions where the continuum nature of the fluid 

begins to disappear. Grad also notes85 that the Boltzmann 

equation is even more important for strong-gradient pnenom­

ena (shock waves, ultrahigh frequency sound) than for stan­

dard stationary transport. An extension to polyatomic 

systems in a realistic description of internal motion has 

been made by Wang-Chang, Uhlenbeck, and deBoer86 • 

The initial work for the dense gas region was done 

by Enskog87 , who accounted for finite molecular separation 

during collision (hard-sphere) in calculating the collision 
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integrals. The Boltzmann theory thus corrected works down 

to liquid densities and explains5j,?lf qualitatively the 

observed minimum in viscosity as a function of density. 

However, a hard-sphere model with fixed parameter cf is inad-

equate through the liquid range, as new mean forces and 

structure develop;. Enskog' s. theory cannot be made quanti ta­

ti ve over any extended density range. Bogolyubov88 proposed 

a heirarchy of Boltzmann-like equations as an expansion in 

powers of density, to be used with realistic non-impulsive 

intermolecular forces, hopefully for all densities. While 

the numerical results are good for moderately dense gases, 

the series does not converge·. It has been discov·ered in 

consequence that the density expansion of transport coeffic­

ients is non-analytic89 , due to the subtle growth of high-

order correlations among collisions. The formal, exact 

theories that can handle this problem have come only 

recently and suffer from great complexity and other inad-

equacies; they will be discussed shortly. 

More phenomenological approaches gloss over the 

details of the individual binary collisions, all coupled 

strongly to one another in dense gases and liquids. At the 

same time, they make more tenuous the connection of molec­

ular parameters with numerical values for transport 

coefficients. The principle of corresponding states5k for 

non-equilibrium states was developed early, and continuously, 

on dimensional analyses of model kinetic equations. The 
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principle as applied far into the liquid region seems to 

work well for the rare gases. However, some discrepancies 

occur with polyatomics, even those so nearly spherical as 

CH4. The simple two-parameter models for the intermolecular 

potentials smooth over small features that differ between 

rare gases and polyatomics, while transport seems to be 

much more sensitive to such features than equilibrium 

properties. 

A second approach is that of Eyring 1 s90 rate pro­

cess ,; theory, first advanced in 1936. Here it is presumed 

that every transport process has some rate-limiting step, 

of the character of a unimolecular passage over a barrier 

in an appropriate space. Quasi-molecular parameters for a 

relaxation time and an energy of activation are needed. 

Reasonably consistent connections can be made to simple 

equilibrium properties for all kinds of molecules, if one 

avoids the dilute gas region. The shear viscosity is well 

accounted for in its P- and !-dependence; D is poorly given: 

and /\ is given well, except in its P-dependence. 

Kirkwood40b,?lg started a third approach, using a 

Brownian motion model for the evolution of singlet and pair 

distributions. The Markovian nature of the time-evolution 

( a generalization of Fokker-Planck form91 ) ensures irrever­

sibility. The pair function f(Z) or g is required, since 

liquids with nonimpulsive interactions have speci~l7lh 

potential contributions to transport, in addition to the 
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kinetic or 'piggyback' part considered in Boltzmann-like 

theories. The new phenomenologic~l parameter is the molec­

ular friction constant) , of uncertain relation36g,7li to 

the molecular parameters and equilibrium distribution 

functions; this is the method's weakness. Kirkwood's 

theories give us fair nume~ical results, but quite sensitive 

to the friction constant value and not mutually consistent 

even with~ adjusted7lj. Insofar as the theory is correct 

quantitatively, it gives us some insight into the nature of 

collisional correlations and new mean forces in liquids. 

However, molecular dynamics data on model systems have 

recently provided92 evidence against Kirkwood's picture of 

velocity autocorrelation decays. The principal defect is 

the lack of validity of Markovian equations for the strong 

collisions7lk which are responsible for much of the trans­

port, in contrast to their validity for the more common 

weak collisions in the 'cage' of neighbor molecules. Rice 

and Allnatt93 attempted to correct this defect in large part 

by introducing 'hard' and 'soft' friction constants at the 

expense of greater empiricism. Their results for realistic 

systems, especially for pressure and temperature dependence, 

are encouraging but may never be adequate.-even if only due 

to the need for gross approximations in equilibrium g(r) 

and other input data11f. As a final note, many workers94 

have extended Brownian theories for mixtures, principally to 

provide good engineering correlations of data. 
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Cell models are a fourth empirical approach. 

Cohen and Turnbu1195 proposed a dynamic version of the hole 

or free volume theory. A molecule may move only if a void 

of some critical size opens next to it, by the random coal­

escence of the free volume. It requires the hard-sphere 

diameter "'as an additional empirical parameter and can fit 

transport data quite well in temperature, except for n11g. 

It fails to represent the intermolecular potential flexibly 

enough, apparently. 

Of recent origin are the rigorous formal theories 

of transport which provide an analysis of the fluid response 

to a perturbation of any nature or frequency. They begin 

with an operator resolution of the Liouville equation or of 

the quantum density matrix am delve into the many-body 

phenomena to define the most meaningful collision events. 

Particularly, they show how correlations are destroyed to 

generate irreversibility; they further provide, as by the 

partial summation techniques of many-body theory, approx­

imate kinetic equations on the few-body level. Their value 

lies in their facility with all kinds of transport for any 

state of the system (in principle only, at present), their 

utility in developing concepts about the collisional nature 

of irreversible processes, and their position to start and 

to assess different model knietic equations. Really adeq­

uate theories for liquids may derive from these soon. 

The early BGY or BBGKY heirarchyJB,J9,40,43 of 
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equations for the time-dependent reduced distribution 

functions is rigorous in principle but shows no systematic 

way to analyze irreversibility and then to generate new 

kinetic equations. (Born and Green39 did use a superposi­

tion approxima.tion in transport to get fair results for 
40b dense gases.) Kirkwood suggested a many-body operator 

technique be used before reducing the Liouville equation to 

the few-body level. vanHove96 later succeeded in treating 

weakl y-coupled (weak potentials) systems, stirring much 

enthusiasm. Essentially, he obtains a master equation for 

the time-dependent populations of the unperturbed N-body 

states, by disregarding phase-coherence and interference 

of the successive sets of collisions, in quantum terms. 

Brout and Prigogine97 derived a similar classical master 

equation on rather intuitive grounds (classically, one 

works with similar .!:!_-body eigenstates of the Liouville 

equation, defined in phase space). Finally, Prigogine74 

developed an operator resolution of the classical Liouville 

equation (looking very much like quantum mechanics in form) 

and showed how a simple master equation resulted from 

summing certain classes of the perturbation expressions to 

infinite order. The formalism displayed an explanation of 

irreversibility without extra, ad hoc statistical 

postulates: the collisions destroy motional or mechanical 

invari ants of the system on the hydrodynamic time scale to 

give increasing disorder; correlations built up by success-
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-ive binary collisions flow7?c into higher-order correlation 

functions whose detailed structure is unimportant for ob~ 

served properties. I t also shows, in the struc t ure of the 

master equation, that the short-time evolution of the system 

is !!.Q!!-Markovianllh,74c, degenerating to Markovian (random, 

Brownian) only for longer times. Transport and relaxation 

in weakly-coupled gases and weakly-anharmonic solids were 

understood quantitatively74 with Prigogine's theory, but 

strongly-coupled systems like real liquids are still too 

complicated to treat. A more approximate form suitable for 

liquids on the pair distribution level was derived98 and · 
11f 

tasted recently, but found lacking. 

The other principal formal theory concerns itself 

with autocorrelation functions.54a,7lc,77b,7Sb These are 

time correlation functions for simple dynamic variables such 
-7 as f or v , e.g., 

Cvv(t) = Z ~(t)~(O)/. 

The brackets indicate that an equilibrium ensemble average 

is to be taken, and imply that th~ autocorrelation functions 

are implicitly dependent on the equilibrium intensive vari ­

ables ~ , T, etc. The ACF' s or their Fourier transforms 

contain all the basic dynamic data. This remarkable dis­

covery of transport information in equilibrium fluctuations 

has been known quite a while in diverse systems suen as 

electrical resistors99. The application to transport in 

dense neutral (molecular) systems is more recent100 . 
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The usual transport coefficients are just zero-frequency 
54a components of a few autocorrelation functions times def-

inite numerical factors. 

The ACF's can be represented as the linear or 

first-order response of the system to the appropriate 

adiabatically-applied perturbation, either mechanical---

electromagnetic radiation, a moving boundary, e.g., or 

thermal--temperature gradient, pressure g~.adient, etc. 

However, explicit solution for the perturbed (N-body) phase­

space distribution involves solution of the complete N-body 

problem. We must depend upon further leads within or outside 

the theory to compute ACF's using only few-body dynamics. 

Some approximate kinetic equations for the ACF itself di~ 

tl b · tested54a. Al th · 1 lt f rec y are eing so, e numerica resu s o 

molecular dynamics calculations can be reduced to numerical 

values for transport coefficients, using the basic discovery 

noted initially100 • 

The ACF approach is extremely difficult in prin-

ciple and in practice now, but it holds much promise. 

Certainly, it has the advantage of using the entire frequen-

cy spectrum of transport to understand and check the 

model kinetic equations. It also interrelates data from 

ordinary transport and relaxation (such as the dielectric 

relaxation spectrum derived from the ACF for one molecule's 

electric dipole (lI(O) ·U(.t)) ) with data from special 

probes from more complex perturbations (such as fluorescence 
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depolarization: ( ~ [ g( O) ·ti( t )) 2-1) ) . 

Critical region anomalies i~ transport were slow 

to be recognized and studied experimentally12g, so the 

corresponding theory is relatively new and undeveloped. 

The earliest, and qualitative, theories were directed toward 

the excess ultrasonic attenuationlOl,l0 2 in critical liquid 

mixtures. These theories claimed that other wave propaga­

tion phenomena (shear viscosity in special flow patterns 

around fluctuations
101

, or Rayleigh scattering by same102 ) 

were masquerading as anomalous changes in the bulk viscosity. 

They ignored the possibility that near the critical point 

there were changes in the nature of mutual diffusion, which 

is the principal mode of relaxation of the fluctuations . in 

concentration. These theories were wrong, for diffusion is 

altered from its standard form19e; Fixman•s ideas on this 

line1 gave the first quantitative success for the anomaly 

in bulk viscosity. His related theories for shear viscos­

itylOJ and for static heat capacity104 also worked fairly 

well. Kawasaki2 advanced another microscopic approach to 

critical sound absorption. It was based on ACF theory and 

is much less transparent, but only slightly different--in 

fact, he uses Fixman's rnodification103 of the diffusion law, 

though in a more rigorous way (as we do, in .paper I). 

Kadanoff and Swift3 have recently presented very general 

theories for all transport coefficients in both gas-liquid 

and liquid-liquid (mixture) critical regions. The K & S 
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perturbation approach to the master equation is very com­

plex. However, it is of the same strain as Fixman's and 

Kawasaki's, in that it describes dissipative processes as 

the breakdown of one transport mode into several others. 

As such, it is called 'mode-mode coupling'. Unfortunately, 

it is less successfull05 with experimental data than the 

other two theories. 

The final generalization for critical region 

transport is a type of corresponding states theory, called 

the dynamic scaling laws3,i06 , very similar in form to the 

static scaling laws of Widom and others for equilibrium. 

Kadanoffl07 reviews their experimental support, which is 

incomplete in itself, and not very encouraging. 

(paper I gives detailed comparisons of sound ab­

sorption data with the various theories.) 
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D. Fluids with Well-Defined Internal Degrees 

of Freedom 

The first level of complication above simple 

fluids is represented by non-associated polyatomic molecules, 

which possess permanent multipole interactions (esp. dipoles) 

and the new internal motions of rotation, vibration, 

internal rotation (rotational isomerism, when rotation is 

restricted), or simple dimerization equilibrium. These 

extra internal motions and the multipole interactions coup-

ling them allow the molecules to structurally store and to 

transport additional energy and momentum. The coupling of 

these motions, particularly to the external translational 

motion---sometimes so strongly as to merge identity with the 

latter, alters the nature of collisions and of static struc­

tural correlations. Quantitative changes from simple fluid 

behavior are found in the equation of state (particularly in 

the location of phase boundaries), heat capacities, and 

transport coefficients; qualitative trends with pressure, 

temperature (and frequency, for transport) are sometimes 

altered, especially in polar fluids. Rotational reorient­

ation or rotational diffusion108 arises in dense fluids as 

a new transport process. In cons~quence, the electromechan­

ical response becomes interesting: dielectric relaxation109 

in (di)polar fluids, or in nonpolar fluids the lineshapes 

for ~i crowave,llOd IR, Raman110b, visible, UVllOa, and 

N~m111 • Static dielectric constant and strength and• 
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materialism are equilibrium aspects, Rotational 
16-20 112 113 

relaxation ' ' (as well as vibration, internal rota-

tion, and dimerization) also makes a dominating contrib­

ution to the old transport coefficient, the bulk viscosity. 

We exclude from consideration very large polymers 

or macromolecules, with yet more drastically different prop­

erties. For example, their transport even at modest freq­

uencies is governed by v scoelastic equations114,ll5 rather 

than Navier-Stokes equation~. We leave untouched the large 

field of rheology. 

To be sure, much of the interest in properties of 

such polyatomic fluids as we consider is still outside 

our scope: color, reflectivity, and other electromagnetic 

properties which are more ·utilitarian; chemical stability 

and kinetics of degradatinn or reaction; and all manner of 

chemical and physical behavior in complex, possibly multi ­

phase, mixtures. Still other interesting aspects are only 

in part related to the simple equilibrium and transport 

behavior we'll study, and may be touched on briefly, e.g., 

relaxation of artificially inverted vibrational populations 

in chemical lasers116 • We justify our artificial limit-,· · 

ations of interest on pure convenience, as well as on the 

opinion that qualitative and quantitative understanding of 

these simple properties is the major work in understanding 

all the properties of these fluids---and by extension those 

of the associated liquids, in particular the compound of 
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greatest chemical and biological interest, water. 

We have previously mentioned some new transport 

behavior. We should now like to elaborate on some more 

qualitative effects in properties, beginning with equilib­

rium. Dipolar forces and orientation in the fluids, 

especially dense fluids, cause imperfectly understood but 

significant additions5l to heat capacities and to the equa­

tion of state. The melting and boiling transitions are 

raised in temperature, and the critical constants• inter­

relations are changed5m. Empirical equations of state like 

van der Waals or approximate virial still apply with more 

error; more parameters are now desirable. In the correspon­

ding states treatment5m, the reduced dipole moment is a 

necessary new parameter. Even in polyatomics which are not 

dipolar, there are new small terms in the heat capacity117 

and the virial coeffictents5n or other representation of the 

equation of state. The well in the spherical-average pair 
118 potential is also generally deeper in polyatomics , from 

stronger dispersion forces, more densely-packed excited 

electronic states. The liquid ranges are also higher in 

temperature and the specific heats higher in value119 than 

those of simple fluids, in consequence. The exact treatment 

of the equilibrium properties must include the new mutual­

orientation dependence in the fluid structure. For example, 

in the distribution function approach one uses a host of 

coupled pair distribution functions49. These are a type of 
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harmonic expansion of the pair function as used for simple 

!fluids, and are quite difficult to use. (This is a proper 

description of combined translation and rotation. Vibration 

remains essentially separable even in dense fluids; some 

subtle changes show up spectroscopically120 to give evidence 

of the fluid structure and interactions . ) The dimerization 

equilibrium causes the grossest changes in equilibrium prop­

erties. Its sensitivity to temperature increases the heat 

capacity, to 4-5 times the expected value12la in the case of 

N02 . The volume change in forming the dimer modifies the 

PVT behavior as well. The energy storage in the internal 

motion, especially vibration, manifests itself in yet more 

ways, even for gases. The restriction to quantized levels 

may become evident at low temperatures. For example, the 

molar vibrational heat capacity begins to 'freeze out 11 22a, 
5o from its high-temperature value of R per vibration mode 

as the temperature is lowered, but still well above room 

temperature. Rotation freezes out well below room temper-
122b . ature. Quantum symmetry restricts the pairing · of 

vibrational with rotation levels in cases as H2 , causing ' 

further divergences in heat capacities. Free internal rota­

tion 123 partially freezes to become few-state hindered 

rotation or (for asymmetrical barrier) rotational 1somer­

ism19f ,l24 before it disappears. 

The nature of molecular collisions is also new. 

Momentum and energy are transported internally by the 
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molecules--qui te dramatically in the case of dimerizing 

species; N0 2 has 4-5 times the thermal conductivity121b 

expected. Collision dynamics are quite definitely quantum 

mechanical, particularly for vibrational excitation, as 

shown by interpretation of ultrasonic data. The nature of 

trajectories is also affected by the initial orientation 

correlations imposed by the static structure. In dense gas­

es, rotational relaxation or reorientation degenerates to 

small, diffusive steps described by a new transport coeffi-
108 cient, the rotational diffusion constant Drot • Dipolar 

molecules show strongest correlation and are probed easily 

by dielectric relaxation109. This rotational diffusion 

persists even in solids125. Ordinary transport--viscosity, 

~nductivity, diffusion--is also presumably affected by the 

new orientation-dependent packing and the anisotropy of the . 
interactions. 11 Piggyback' and potential contributions are 

both altered. The changes in magnitudes of the transport 

coefficients~s'~, and D from simple fluid values are not 

large119b,l 21 •126 and the theory86 is difficult, so this 

aspect has not seen much work. On the other hand, the bulk 

viscosity is greatly increased and otherwise affected by 

the new internal relaxations- possible. The extra energy in 

the internal motions is traded around or exchanged with 

translational energy at finite rates18e,l9g. Time lags in 

energy adjustment in response to temperature (or sometimes 

pressure) fluctuations cause dissipation of the energy in 
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paasing sound waves 18f ,l 9h. The study of this relaxation--

vibrational, rotational, rotational isomeric, and chemical-­

is a well-developed and dominant part of ultrasonics. Time­

dependent order parameters (say, effective temperatureslSe, 
19

g of internal motions) are needed to formulate the relax-

ation laws in the new 'dynamic' equation of state. Each 

kind of relaxation has its characteristic dependence uponw, 

P, and T, which is helpful in qualitative identification. 

Detailed molecular models using quantum scattering theory ~ 

are needed to explain the parameters of the empirical relax­

ation equations ( or~vdirectly). Among the first successes 

of molecular collision theorylBg,l 27 and the first uses of 

ultrasonics were studies of relaxation in gases. 

Chemical reaction, specifically the dimerization 

we consider here, is an extreme limit of the interaction 

of the degrees of freedom of two (or more) molecules. The 

statistical mechanical description of structure in u reactive 

fluid merits some discussion. A pair interaction defined 

in a relative coordinate is an insufficient description 

of binding. The .rotations, the vibrations, and even the 

relative translation are totally recast with new energy 

levels. The new quantization and new phase space alters the 

partition function128 and hence the thermodynamic properties 

rather intricately compared to the simply interacting mol­

ecules. The interaction of the dimerized pair with a third 

molecule is now given by a second effective pair potential. 
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Overall, reaction is too complex to be described in detailed 

phase- space distributions as were simple fluids. More 

phenomenological groupings into all the monomer states and 

all the dimer states are used, with ther~odynamic parameters 

and gross rate constants18h,19i,129. 

The overall magnitudes of transport coefficients 

for non-simple fluids are not greatly different from those 

of simple fluids in analogous states of packing and temper­

ature, ll 9b, l211126 but for the bulk viscosity and the new 

Drot and in isolated cases of other transport (~for N02). 

Both the equation of state and transport properties can 

often be 'explained' in the framework of simple fluid theor­

ies by using effective spherical pair potentials. However, 

the resultant state-dependence of the effective simple 

fluid parameters, especially trying to reproduce contrary 

trends with P, T, or w , is unsatisfactory. More elaborate 

theoretical frameworks are then justifiable. Certainly we 

will need them on the way to understanding associated liq-

uids like water. 

New probes are available for the new features of 

non-simple fluids. All the common gases have been studied 
16-20,112,113 

by ultrasonics for their rotational and vibra-

tional relaxation (actually coupled into one vibrational-

rotational-translational --VRT--relaxation set). Initially 

the studies were prompted by shock and combustion phenomena, 

since bulk viscosity is unimportant in ordinary conditions. 
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After initial triumphs of crude quantum explanations18g,127, 

ultrasonics and VRT relaxation were kept as a proving 

ground for scattering theory, including classical and semi­

classical modifications13°, and as an adjunct to molecular 

beam and other experiments for determining intermolecular 

potentials113. At low temperatures the relaxation times 

between distinct quantum levels have been pinned down18i, 
19j 132· 18j 19k lJJa ' ' ' ' , though in general multiple relax-

ation18k,l9l, l34 occurs and complicates analysis--even "t 

worse in liquids. The dimerization kinetics of N02 were also 
lJJb studied early and adequate interpretation of other prop-

erties was made. Dimerization by H-bonding in acetic and 

propionic acids has been studied in liquidsl9m. Similarly, 

liquids have been probed for vibrational relaxation, as in 
181 cs2 --though the new nature of collisions makes definition 

18m 19n of basic collision rates ambiguous ' • Pure rotational 

isomeric transitionsfan,i 9o,lJS are studied primarily by 

ultrasonics, though the presence of isomerism was first 
136 demonstrated by spectroscopy, electron .. diffraction, cal-

orimetry, and dielectric behavior. Liquids are, in fact, 

classified180 as simple (no relaxation or excess sound 

absorption from~), Kneser (distinct thermal relaxation 
v 

from a well-defined internal degree of freedom), and assoc­

iated (modest excess absorption, nearly T-indepen4ent, etc.). 

The characteristic ~,P, and T-dependence of different relax­

ation processes makes ultrasonics a good tool, rich in 
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information. Dramatic cross-relaxation19P of one species 

by another in mixtures has seen some work. Equilibrium 

properties, especially in mixtures, are often taken137 from 

ultrasonic measurements. 

NMR111 is another probe for rotational relaxatioo· . 

or diffusion, at the Larmor frequency w~. IR, UV, and 

Raman lineshapes110 inform us of vibrational or rotational 

relaxation at the vibrational relaxation itself. Dielectric 

relaxation109 lineshapes probe rotational relaxation. X-ray 

scattering138 may conceivably be developed for studying 

orientational effects in liquid structure. Relaxation of 

nonthermal vibrational populations inverted by light absorp­

tion139, laser scattering140 , or chemical laser action116 

is more precise for level-by-level studies. 
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E. Equilibriwn Theory 

Our coverage of theory for non-simple fluids will 

be more sketchy than for simple fluids. Some general obser­

vations have been included in the previous section. Many of 

the theories of ~ B can be simply extended. van der Waals 

theory and other few-parameter empirical equations give 

about as good agreement with small non-polar non-simple 

fluids as £or simple fluids. Larger molecules such as 

hydrocarbons require a ·greater number of parameters141, as 

do polar species. Corresponding states treatments5m are 

good for small molecules and can be explicitly adjusted to 

three-parameter form for dipole forces. Cell theories are 

similarly used for polyatomic species with somewhat less 

success5P than for simple fluids. 

Virial cluster theories and distribution function 

theories, including PY and HNC approximate forms, are less 

often used for polyatomics, for they do more in the rol~ 

of exhaustive testing as quite accurate, rigorous equilib­

rium theory. The proper extension is to include multipole 

forces and harmonically expand the pair function in orient­

ation angles. Pople and Buck1ngham142 have used cluster 

theory with dipole and quadrupole forces added. Levine and 

McQuarrie143 and Stogryn144 have included higher multipoles 

and proceeded to the third virial, for both ordinary and 

dielectric coefficients in the first case. Frisch and Lebo­

witz145 have done a scaled particle theory extension. 
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Gibbons and Steele146 and also Buckingham147 have done some 

less quantitative work at liquid densities. Steele and 

Chen49 have used angle-dependent PY ., theory through liquid 

densities with encouraging results. Perturbation theories 

52•117 based on the free energy function with a hard-sphere 

zero-order model are by and large inapplicable, as the angle 

dependent forces so complicate the perturbation expansion as 

to eliminate the advantage over more direct approaches. 

Molecular dynam1cs54 and Monte Carlo148 calculations have 

been done for a few moderately nonspherical potentials 

including dipoles. 

Dimerization, and solvation 1n mixtures, are too 

complex for present a' priori theories. Phenomenological 

theories are in use149a, at least for the deviations from 

additivity of thermodynamic functions for mixtures in whieh 

one component either self-associates or solvates the other. 

Pure species' gas imperfection from dimerization is calcul­

able149b, but :there is no treatment for dense gas or liquid. 

In all, much more work has been done on empirical 

representation of data on real systems than on a' priori 

approaches. The latter must be greatly improved within the 

ai·mple fluid domain before moving up to more complex 1lluids. 

Critical phenomena occur at higher temperatures 

and pressures than in simple species, re.fleeting stronger 

pair potentials. The critical compressibility factor PcV0 / 

BcTc is altered from the general simple fluid value of 0.292 
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by polar forces in particular.Sm The critical exponents 

are not detectably altered for the moderately nonshperical 

molecules? commonly studied. This indicates once more that 

the critical region equation of state is not sensitive to 

the exact nature of the intermolecular potential. Critical 

exponents for dipolar gases, on the other hand, could be 

very interesting. The generally stronger molecular inter-

actions, within or between species, can lead to strongly 

nonadditive thermodynamic behavior in mixtures. Regions of 

liquid149,l50a (or even gaseous150b) immiscibility and new 

liquid-liquid critical mixing points occur. Here we have a 

whole new field for critical investigations, often at more 

convenient conditions of temperature and pressure. These 

systems seem to behave analogously to gas-liquid critical 

systems, with the appropriate transcription of intensive 

variables12h,105a. The few equilibrium exponents known aP­

pear to be the same7,lZh as for gas-liquid transitions. 

Liquid-liquid critical mixtures are more ·commo.nly used for 

transport studies than for equilibrium. 
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F. Transport Theory 

As for equilibrium, transport in non-simple fluids 

is often handled by simple extension of simple fluid theor­

ies. Now, it is often easiest to use effective spherical 

models, except for ~v and Drot• In light of the unspectac­

ular differences among all manner of fluids in ordinary 

transport, this is justifiable in large part. It is also 

necessary in generating semi-empirical forms for transport 
5i 11i 94 in mixtures ' ' , quite a large . field. When one ·does 

explicitly consider the internal motions, there are moFe or 

less evident corrections or generalizations of simple fluid 

theory. The Eucken correction5g,?2 for rotation can be 

appended to the early· free-path models for gases with some 

success, especially at elevated temperatures5g. It may also 

be used with the Boltzmann equation solution5q of Chapman 

and Enskog. A more rigorous treatment is given by Wang­

Chang, Uhlenbeck, and deBoer86 for all separable degrees of 

freedom as we are considering. There are also many models 

of loaded spheres and other rigid bodies151 for which the 

Boltzmann equation has been solved, in an attempt to 

include nonspherical interactions in the repulsive core. 

The dense gas and liquid are less amenable to such models, 
. 87 

as the necessary Enskog correction involves a difficult 

pair distribution; molecular dynamics calculations are more 

suitable. More phenomenological models have little diffic­

ulty with polyatomics. Corresponding states5k, rate 
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process90 , and ce11 95 theories gloss over so much detail and 

are so heavily empirical that the qualitative subtleties are 

lost. They give often acceptable fits to data, as discussed 

in § C, and are useful for semi-empirical calculation of 

transport in mixtures 11i. Reactions such as dimerization 

are a complication tending to invalidate all but Eyring's 

rate process model. Brownian models40b,7lg,93 are too in-

accurate and undeveloped to warrant worries about the 

anisotropy of interaction, though they are also used semi­

empirically for mixtures94. 

The rigorous formalisms which might incorporate 

non-spherical molecules are principally Prigogine's74 and 

ACF54a,7lc,77b,?Sb theory. The minor effort39 on the gra-

dient-dependent BGY pair distribution in .the superposition 

approximation has not been continued for either simple or 

polyatomic fluids. It is inevitably inaccurate at tru;; liq­

uid densities and is not a notable advance over competing 

dense gas theories. Prigogine's theory has not been 

explicitly developed for nonspherical molecules, again 

because simple fluids {with their strong coupling) still are 

waiting. Internal degrees of freedom are quite a complica­

tion for the theory and apparently will make it a complete 

master equation78d formalism (internal quantum states are 

resolved), while their inherently weak coupling makes them 

better suited for study, given quantum scattering calcula-

tions for excitation cross sections. The AC~ theory, on 
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the other hand, has been used at least once54a, in conjunc­

tion with molecular dynamics, on nonspherical and even 

dipolar molecules. Drot can be derived from the results, 

along with more detailed information, principally on the 

electromechanical response. 

The two transport properties which really show the 

new features of unassociated polyatomic fluids are ~ and 

" 
Drot' as we have said in the previous section. In conse­

quence, most theoretical effort has been expended on them, 

including specialized theories outside the realm of the 

other transport modes. Rotational diffusion is the subject 

of several phenomenological theories. A mechanism of small 

diffusive steps was proposed early by Debye108 and others ,, 

and seems to be confirmed for larger molecules, while finite 

random reorientations are proposed for smaller molecules 152. 

The internal relaxations responsible for the large bulk vis­

cosi tY 11.v are usually approached by calculating the inelas­

tic binary collision cross-sections, which are then plugged 

into elementary free-path theories. As a result, the relax­

ation time is the inverse of a simple Boltzmann averagel9q 

of probability of excitation per collision. Multi-level 

relaxation is given inadequately; coupled relaxation equa­

tions18k,l9l, l34 for all the levels can be formed, again in 

the free-path approxi ti on for collisions. While . ' the 

more detailed relaxation process in dense gases and liquids 

deserves much attention in statistical mechanics, most of 
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the recent work in relaxation phenomena tries to improve the 

realism and scope of binary scattering theory calculations. 

Much of this effort, in turn, is expended on bimolecular 

reactive collisions153, particularly simple exchange reac­

tions. The advent of better molecular beam154 and other1161 

l39,l40 techniques for direct observation ~ partial cross­

sections has much to do with the resurgent interest in a• 

priori kinetics. 

The anomalous increase of 'l\ from slowed diffusive 
v 

decay of increasingly large fluctuations in critical fluids 

gets the\ lion's share of the attention, both theoretically 

and experimentally. This is primarily because it is most 

straightforward. The experiments for ~v' which are fairly 

numerous (esp. in liquid-liquid cases} and .are reviewed in 

paper II, are readily done with ultrasonics. Fixman1, Kawa­

saki2, and Kadanoff and Swift3 give quantitative theoretical 

explanations, which are discussed at the end of j c. The 
J 106 

d,Jnamical scaling theory ' , an outgrowth primarily of the 

last theory, touches upon the other transport coefficients 
105 but is not very successful even for ~~· Fixman has adap-

ted his ideas for the shear viscos1ty103. Otherwise, crit­

ical transport theory is unexplored. The experiments on 'S' 

by standard
11

' 12a or torsional crystall55 viscometers, on~ 
11 12a 12b again by standard apparatus ' , and on D by NMR or 

14 15 light scattering ' cover both gas-liquid and liquid-liq• 

uid phenomena. In aggregate the work is not defin1t1ve12a 



54 

in establishing the existence and nature of anomalies in 

these three transport modes. 
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G. Associated Liquids 

Some polyatomic species can hydrogen-bond into 

extensive arrays in the liquid (and solid). Water is the 

most famous example, while others are low-molecular weight 

alcohols and polyols (e.g., glycerol), HF, and HCN. 
156a H-bonding is weak by the standards of chemical bonds, 

but strong compared to the van der Waals forces binding the 
. 

types of fluids discussed previously. As a result, assoc-

iated liquids have anomalously high melting and boiling 

points, heats of transition, and surface tension. Water, 

which bonds to as many as four neighbors, boils 162 degrees 

above its congener a2s. The strongly directional character 

of chemical H-bonds also shows in bulk properties. The 

strong molecular alignment causes high dielectric constants 
119b in these liquids • Water also has to great extent a 

distinct, extensive three-dimensional network156b. This 

contributes to its melting and boiling anomalies, high molar 

volume, and high viscosity. Its thermal breakdown is 

responsible for a large neat capacity and for its density 

increase on melting and oni slight further warming of the 

melt. Thermal conductivity is large through the semi-rigid 

solid-like lattice, and compresaibility is low. The lattice 

structure is also broken down by pressure, leading to an 

anomalous decrease in viscosity1560 • It is labile on a 

short time scale . so that molecules do rotate and flow rather 

independently. Self-diffusion, most reliably measured by 
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1156,126 NMR, is norma • 

The other associated fluids usually show less dra-

matic anomalies. Most alcohols to modest size are somewhat 

higher-boiling and the polyols in particular are quite 

viscous. Glycerol is so extensively bonded as to have a 

huge viscosity which-relaxes much like bulk viscosity does 

at modest frequencies 19r; relaxation is so slow at low tern- . 

peratures that it acts glassy. All associated liquids show 

a modest bulk viscosity which is in near constant ratio to 

shear viscosity over the temperature rangel9s,lBp. 

In water, HF, and HCN the protons are very mobile, 

unbending and rebonding to travel, aided by their lightness. 

Noticeable electrical conductivity156d is found in the pure 

liquids, and it is greatly enhanced by solvation ionic com­

pounds normally conductive themselves only as melts. Water 

in particular shows great solvating power for a wide range 

of substances. Great chemical and biochemical importance 

accrues to water for its abilities to solvate so many spe­

cies and to promote reactions, .Particularly those with ionic 

intermediates. Solvation is accompanied by lattice break­

down to smaller units, and by strong electrical forces. 

Isotopic substitution of deuterium or tritium for normal 

hydrogen makes noticeable changes in properties156 , princi­

pally ~Y altering the H-bond strength. In the vapor phase, 

association is weakened essentially to dimerization, causing 

1 1 . 156e . th . f t· esser anoma ies in e gas imper ec ion. 
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Associated liquids are certainly very difficult to 

describe theoretically because they show cooperative motion 

of very many molecules. The intermolecular potential is 
156f 

well -established as non-pairwise-additive, involving 

three-body and possibly higher distortions. The short range 

and directional nature of the H-bond aggravates the problem 

of describing transport a' priori. There are some new tools 

for help in qualtiatively understanding the added structural 

and dynamic features. X-ray156b and neutron scattering give 

us pictures of inter- and intra-molecular structure. Water 

shows such definite orientational effects that the lattice-

like structure found in the 1930's prompted the cell models 

of all liquids. The proton magnetic resonance156g is strong 

and readily resolved into chemical chift and linewidth infor­

mation on various environments and rates of motion. 

Vibrational spectroscopy156h is at its most informative for 

associated liquids. While properties under normal condi.,;. 

tions are heavily studied, the critical phenomena of assoc-

lated fluids remain unknown, partly because of their high 

critical temperatures and pressures (water: 373 C., 218 atm. 

methanol: 240 c. , 79 atm.). 

The rather spotty equilibrium and transport theory 

will be briefly recounted in this one section. We will con-

centrate on the story of water, with occasional comments on 

other species. Most of the equilibrium theories for water 

are heavily phenomenological and can be classified as ,~· 
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mixture models. A finite set of distinct chemical struc-

tures is presumed in equilibrium. Each structure is assigned 

an enthalpy and specific volume (in interstitial models, 

the smaller species--monomers--can hide in the free volume 

of major structures). Eucken157 and Halll5B postulated 

mass-action (straight chemical) models, based primarily on 

the ultrasonic bulk viscosity. Both temperature and pres- : 

sure dependence of ~v and f>s are acceptably given in 

Eucken's form. Application of Hall's theory to alcohols ' 

ultrasonic behavior has been attempted with slight ~uccess 

l59; since there is no density minimum, the thermal driv-

ing term neglected by Hall is no longer small compared to 

the pressure driving term in the dynamic equation of state. 

A number of other workers 156i have used similar chemical 

models for water, obtaining the molecular parameters from 

molar volumes, compressibilities, or radial distribution 

functions. 

Getting away from mass-action equilibria models, 

Pauling and others 156i advanced simpler interstitial forms 

with one major structure. They have difficulty explaining 

the high configurational heat capacity of water. Recently, 
156i Eyring and others have given multiple-species models 

for the partition function directly, sometimes including 

vacancies, and all using extensive thermodynamic data. The 

large number of variational parameters tends to make these 

theories simply empirical fits, hard to test for reasonable-
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-ness of the parameter values. The general problem with 

mixture models is the variability they imply for the envi­

ronments of individual molecules, contraindicated by the 

narrow spread of dielectri c relaxation times156j. They 

also fail to expla in the strong molecular alignment leading 

to the high dielectric constant. 

Pople156k proposed distortion of a complete net­

work of H-bonds to explain the observed radial distribution 

functions, assigning a bending force constant for each bond. 

The dielectric constant and volume decrease on melting seem 

to come naturally from the model, while the viscosity from 

such a model would be too high. The very characterization 

of intact--perhaps bent- - and broken H-bonds is difficult 
1561 

either macroscopically or microscopically within any 

model, however. 

There are . two recent a' priori approaches employ­

ing effective pair potentials. Ben-Naim160 performed a PY 

calculation on water, having directly approximated the poten-

ti al of mean force. His results reproduce features in the 

pair distribution but he does not compute properties. 

Barker and Watts148 . did a Monte Carlo study on water, taken 

to have a spherical potential plus a strong dipole. The 

vapor has been the subject of virial cluster theory156e in 

which it is characterized by a pair multipole potential or 

by a dimerization equilibrium. Neither alternative . is con-

sistently good for the temperature dependence, particularly 
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for the third virial coefficient. 

In summary, there is no consistent and successful 

nonempirical theory through an extended domain in the ther­

modynamic plane. Eisenberg and Kauzmann156 have collected 

a great mass of experimental data and theoretical correl-

ations for water, from which one might make more detailed 

judgments. 

Transport is more fragmented than equilibrium 

theory, as most transport theories correlate only one such 

property with some equilibrium or distribution data, and do 

not cross-correlate transport data. Again, Eisenberg and 

Kauzmann have assembled the data on water. Dielectric rela~ 

ation in water156 j is .. inter-esting for its very small spread 

of relaxation times, implying near uniform molecular envi-

ronments on a quite short time scale (but not so short as a 

vibration time, where a spread of environments shows up 
. 156m spectroscopically ). It also possesses a large high-

frequency limit €0?, indicating persistent rapid motions, 

probably rotations. Generally, qualitative models are em­

ployed to explain its behavior. Haggis, et a1.
161 

used 

their complicated mixture model of equilibrium among zero-

through four-bonded molecules plus postulates on simple 

reorientational motions available to these species. This 

theory also covers equilibrium and other transport, notably, 

though it is highly parameterized. Rotational diffusion 

apparently occurs at a slightly faster rate156n with a 
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similarly low spread in W-dependence of the obviously 

related relaxation it represents. Eyring's rate process 

theory is used1560 to obtain an energy of activation for 

dielectric reorientations, which energy happens to match 

that for self-diffusion and viscosity, tying them to some 

common mechanism too. 

Self-diffusion has been the subject of rate pro•,, ti­

cess theory1560 onl~ to date. Neutron-scattering data156o 

on the w -dependence of D may soon be helpful in generating 

better detailed models. Shear visoosity156P is also given 

only in a rate process analysis. Its decrease with pressure 

at low temperatures supports the qualitative equilibrium 

picture of network breakdown, with shear flow sustained pri­

marily in the free (monomer} phase. Rate process theory 

reflects this feature. 

Bulk viscosity is curious in all the associated 
19s 18p liquids in that it has a ratio ' to 'l\5 largely indepen-

dent of T and P. Some underlying identity of mechant.sm is 

apparent, while the only theoretical treatments cover only 

~v and equilibrium. Eucken•s157 and Hall 1 s
158 

models, 

developed originally for ultrasonics, are rather successful 

in correlating the bulk viscous behavior with the bulk com­

pressibility and molar volume as functions of pressure and 

temperature. For the very viscous fluids as glycerol, both 

shear and bulk viscosity appear to relax together19t in 

frequency and temperature. Shear and bulk 'fluidities• or 
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moduli are used in the largely empirical viscoelastic 
19u 114 description ' , as they are now the additive quantities. 

A consideraDle spread in relaxation times is evident19u. 



6) 

H. Mixtures Containing an Associated Liquid 

Fluid mixtures quite commonly show nonadditive 

thermodynamic and transport properties. Some of the largest 

of such effects are shown by solutions in associated liquids 

of unassociated species which are solvated by new H-bonding. 

Aqueous solutions of organic amines or of higher alcohols 

are examples. Some important features are large heats and 
e e volumes of mixing ~ and y_ , as well as partial liquid 

149c 162a immiscibility ' leading in particular to lower con-

solute points. The anomalous properties of the associated 

liquid may be much reduced in mixing, due to the structural 

breakdown needed to accomplish solvation. The dielectric 

behavior, thermal expansion163, and molar volume become 

more normal. On the other hand, the heat capacity and bulk 

viscosity have new contributions from the solvation equilib­

ria, with the latter being greatly increasedl9t,l6J,l64• 

The compressibility anomaly is increased163, which may be 

unexpected at first glance; the shear viscosity is likewise 

increased (see paper II, e.g.). Mutual diffusion is inter­

esting, especially near the critical consolute point where 

it vanishes. 

Many simple fluid equilibrium theories have been gen­

eralized to treat the odd forces in polyatomic and even 

associated fluids, and also to treat mixtures. Cell theor­

ies165 and distribution function theories166 come to mind, 
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but in any event these generalizations are largely formal. 

They are mostly unexplored and very much more difficult than 

the parent theories. Few, then, are up to the task of hand­

ling both association and mixture behavior at the same time. 

More often the work falls to more empirical theories from 

physical chemistry, seeking solely to explain nonadditive 

thermodynamic behavior in terms of the pure component param­

eters. This separate handling of the association and mixing 

problems gives a more reasonable return for the effort in­

volved. The physicochemical approaches to nonelectrolyte 

solubilities also gets much attention because of the direct 

technological application of solution thermodynamics, solute 

partition between two solvents, etc. Prausnitz' 149 book on 

solutions recounts in detail the physical bases for the 

major theories. Again, few of these theories are adequat e 

for associated liquids, due principally to their assumptions 

of simple-fluid equations of state for both components. 

Many of them also require that volume changes or entropy 
e e changes y_ or §._ vanish, making them extremely doubtful for 

associated solvents. Several of them (Guggenheim's quasi­

chemica1149d, l67 method; Flory-Huggins polymer149e,162 

theory; two-liquid theory149 f • 168 ) attempt a crude treatment 

of the nonrandom mixing of the two components, the preferred 

molecular aggregattons in the process of salvation. 

The most satisfying empirical tack begins with the 

chemical theory of solutions149g. Here explicit association 
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chains (A + An-l # An) and salvation (An + B ~ BAn) equil­

ibria are proposed, with quite simple progressions of 

equilibrium constants and of AH, 6V .values for each step. - -
The activity coefficients, hence thermodynamics, of solvent 

A and solute B are calculated from their true mole fractions 

as free monomers. Many thermal and volumetric properties 

are given reasonably well, However, the solutions of the 

postulated species must actually be nonideal from additional 

'physical' forces (difficult to divide from stronger 'chem­

ical' forces) to give any immiscibility150c. Benon169 has 

given the most comprehensive theory in this regard, one 

which is fairly heavily empirical. Of course, the usual 

objections to mixture models for associated liquids do imply 

the inadequacy of. Renon•s and other theories for some prop­

erties, such as dielectric behavior, especially at low mole 

fractions of the unassociated component. Andreae, et ai:63 

tested the simpler chemical theories on the thermodynamics 

and ultrasonic absorption behavior (see next paragraph) of 

aqueous amine and alcohol solutions, but achieved poor 

results and extracted only qualitative indications of the 

real structure and dynamic processes. To close the dis­

cussion, we note that Bowlinson150d regards aqueous 

nonelectrolyte solutions as the hardest, least understood 

aspect of equilibrium phenomena, though a mass of data and 

empirical correlations has been obtained, as seen in the 

book by Hildebrand and Soott162 • 
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Dynamics are again a great problem. The ultrason­

ic bulk viscosity is handled in the chemical theory of 

solutions. Over and above the equilibrium constants and 

thermodynamic changes for each partial reaction, rate const-
19t 163 164 ants ' ' are fitted to the absorption and perhaps 

163 some equilibrium data. Andreae, et al. achieved only 

partial success. Qualitatively it is quite clear that the 

relaxing solvation equilibria are responsible for the large 

bulk viscosity; the relaxation times can even be resolved in 

some cases. However, any adequate treatment should dynamic­

ally generalize R~non's theory. To justify the effort in 

obtaining the latter, one would require very precise ultra­

sonic and thermodynamic data and would achieve only a 

rather unwieldy semiempirical correlation. Advances in 

associated liquid theory are highly desirable beforehand. 

For the other transport phenomena, particularly 

~s• A, and D (dielectric relaxation and Drot are generally 

ignored), there are ag.in formal generalizations of simple 

fluid models. The generalizations of corresponding states 

170, rate process9°, and Brownian94 theories have been 

given, at least for mixtures of normal liquids. None is 

particularly suited to mixtures containing an associated 

component: pure associated liquids and normal fluids do not 

have corresponding states; Brownian models have not been 

used for associated liquids pure or otherwise, with their 

complex potentials and hard-to-represent structure. Only 
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rate process is sufficiently empirical, and it does not do 

well for thermal conductivity171 , for example. 

The liquid-liquid critical phenomena are qualita­

tively different in origin from those in simple fluids as 

discussed in ~~ D-:-F. The. .. ,·immiscibili ty and critical consolute 

behavior in the latter arise from largely athermal mixing 

which is nonetheless non-random (cf. the success of Flory­

Huggins polymer theory even for simple molecular mixtures172 

---this may be fortuitous, however); upper consolute behav­

ior is the rule, with complete miscibility at higher 

temperatures from the wiping out of the nonrandom structure. 

On the contrary, the strong H-bonding in ·solvation by assoc­

iated liquids most commonly149h leads to lower consolute · 

behavior. In many systems, the phase diagram is quite 

skewed toward low mole fraction of the unassociated compon­

ent173. The obvious occurrence of solvation equilibria 

points to a large chemical contribution to the free energy 

of mixing, hence the phase behavior. However, the analysis 

of our own experiments on 2,6-lutidine/water in paper II 

shows that the phase phenomena are hard to explain with chem­

ical theory augmented by any simple physical (nonideality) 

corrections. 

As for the liquid-gas transition, the critical 

region equation of state in liquid-liquid transitions is not 

given by classical, analytic thermodynamics. After tran-

scription of the intensive variables, the two kinds of 
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critical points appear similar, as noted in§ 9 D-F. For 

example, the shape of the phase diagram (now in the X-T 

plane, ~= mole fraction) is cubic rather than parabolic. 

There is less detailed information deep in the critical 

region than for the gas-liquid transition, however, so very 

few analyses have been made for critical exponents. Only ~ 

for the CP divergence and p for the coexistence curve shape 
- 12h 

are reasonably well established • In transnort, ·rt recei\eS • v 

the most attention, from the theories of Fixman1 , Kawasaki2 , 

and Kadanoff and Swift3. As noted in ~ F, these gave the 

first quantitative explanations of the anomalous critical 

region absorption. The anomaly in the diffusive decay of 

the fluctuations is now in mutual diffusive decay of rela­

tive composition fluctuations at constant density. Some 

recent work, as that in our following two papers, has at- · 

tempted to show the identity in nature of liquid-liquid 

critical phenomena at upper and lower consolute points. 

Paper II indicates this is not clear, for at the lower con­

solute point the ultrasonic absorption f~om the critical 

processes is partly obscured by non-anomalous but large 

thermal relaxation (this has not been generally recognized 

in investigations of other lower consolutes1021174 which did 

not include the composition-dependence of absorption). 

Furthermore, the separation of the critical and thermal 

ultrasonic effects once recognized is still difficult, due 

to the implicitly classical and wrong thermodynamics of 
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the coexistence curve--hence also of the ~-dependence of 

---in all three absorption theories. In general, we expect 

that the dynamic critical exponents will be hard to pin down 

and to compare among systems. 

More realistic irreversible thermodynamics should 

be worked into Fixman's and other theories of transport to 

analyze critical phenomena, complemented by better equilib­

rium thermodynamics combining chemical and physical models 

of the solutions. The pressure dependence of the consolute 

temperature is also interesting. The excess volume of mix­

ing gives a P-sensitivity to '.:c. , through the X-dependent 

free energy of mixing Ge acquiring a term PVe. (See paper 

II for a treatment of the extra ultrasonic absorption from 

the harmonic variation of Tc with the sound wave•s bf.)~49i 
For the air-saturated (hence ternary) solutions commonly 

used, the nature of the consolute point as a true critical 

point deserves some attention175. 
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I. Concluding Remarks 

We have reviewed the status of theory and experi­

ment aimed at understanding basic equilibrium and transport 

properties of fluids, particularly in terms of the few most 

basic molecular parameters and the classical equations of 

motion. We have seen many shortcomings in our understand­

ing, particularly in theouy. In this final section, we 

should like to speculate as to what advances are most needed 

for describing liquids and dense gases. 

In equilibrium theory, a list of 'reasonable' 

expectations might read as follows: 1) use of a small basic. 

set of •structures' to compose pair distribution functions, 

as if in variational theory; or a more direct description of 

liquid structure in a transformed phase space, not necessar­

ily reduced uniformly to the two-body level--less sensitive 

to errors in small regions of phase space; 2) better repre­

sentation of molecular interaction than V(r), one with 

capabilities for nonadiabatic encounters; complementing an 

improved choice of zero-order degrees of freedom and (quan­

tum phase space) states; and lending itself to flexible yet 

simple mixing rules for unlike-molecule interactions; 

3) more semiempirical entries into fluid theory; tractable 

variational approaches to £tl..!:)-1, and/or truncation of the 

infinite heirarchy of BGY equations by use of simple, experi­

mental, directly physical parameters describing the medium 
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of other particles; 4) overhaul of water structure descrip-

tion--also aqueous nonelectrolytes; involving an overhaul of 

mass action principles (cf. Renon•s169 work) by an appeal to 

a simply-parameterized partition function still distinguish­

ing chemical species on some few-body level; also involving 

a rigorous few-body description of structures, yet with room 

to describe cooperative effects as in dielectric alignment; 

5) a coherent explanation of structural, largely chemical, 

relaxation in aqueous solutions and of phase behavior (duly 

noting its nonanalytic nature); 6) in elementary fluid reac-

tions, an overhaul of the net representation of degrees of 

freedom upon reaction; one which allows chemical species 

distinction, and also remedies inadequacies of the pair po­

tential description; 7) more detail on critical many-body 

phenomena--on the location of Tc, on explaining exponent 

differences among systems; real use of the liquid- gas con­

nection, in a comprehensive theory for the dilute gas through 

the liquid region; (b) better semiempirical, nonanalytic 

thermodynamics for critical phase behavior, as for use in 

Fixman theory; 8) developing spectroscopy in mixed/dense 

media (with their increased number of degrees of freedom 

and states) for details of internal motion interactions; 

including linewidth information for 'state' lifetimes. 

In transport: 1) modelling of correlation decays 

in the few-body space parametrically; alternative perturb-

ation summations from many-body theory, for new quasi -
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particle descriptions· generalizing Prigogine' s 74 approach ; 

more studies on the functionality of f tN ) in terms of f(l~ 
and of f(l) in terms of gradients; formalisms for nonther-

mnl processes ; 2 ) lens a r tificial connec t ion of the various 

t i me sca l es of evol ut i on (collisional , kine tic, hydrodynam­

ic); multiple parametric representation of non- Markovian 

time evolution; 3) clarification of the problem in density­

expanding transport coeffic ients; rational func tion repre­

sentations; 4) developing concepts of the nature of collis~ 

ions in liquids, especially involving polyatomic species; 

prmbing the utility of quasi - particle descriptions or of 

interrupted binary-collision formalisms; analyzing the boun­

dary conditions and other aspects of getting a general form 

for two-body motion in a medium; learning to average over 

neglected degrees of freedom by adiabatic, stochastic, or 

intermediate postulates--possibly in a uniform semiclassical 

· t · 131 1 ·r · · b k d t t· 1 · approxima ion ; c ari ying piggy ac an po en ia con~ 

tributions; handling multiple relaxation, l ocal nonequilib-

rium effects; utilizing the best resolution of elementary 

flow patterns in phase space, perhaps reducing from auto­

correlation theory54 ; 5)handling the nature of collistons 

and fluxes in water and aqueous solutions in particular; 

remedying the inadequacies of pair potential descriptions; 

pinning down the role of physical interactions and of the 

recasting of degrees of freedom upon associati on; 6) devel­

oping spectroscopy as a tool for details of nonadiabatic 
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encounters, extending the equilibrium applications; 7) util­

ization of the w -dependence in transport (even in D, as 
1560 from neutron scattering ) for full inversion from thermal 

and mechan:.1cal respDnses to the complete several-body dynam­

ical features--a reversal of the ordinary procedure of 

testing taeories by pr~dictive numerical calculations of 

the response from the theory. 

Our ultrasonic experiments and their analysis have 

brought us up against several of the stumbling blocks noted 

above, especially (4)J 5), and ( 7b) under equilibrium, and less 

directly (4) and (7) under transport. The following two 

papers outline our findings in these regards. The append­

ices after them give the details of the apparatus, operating 

procedure, calibrations, data reduction, and theoretical 

fittings. We achieve limited advances in our qualitative 

understanding of liquid-liquid phase behavior and structural 

relaxation from these investigations. These are reviewed at 

the end of paper II. To proceed further requires more com­

prehensive experiment and theory. Specifically, we recom­

mend more isotherms for absorption and velocity measurements, 

including at least one quite far removed from critical, and 

perhaps one in the two-phase region (separate measurements 

in each phase, of course). Thermodynamic data on tbe phase 

diagram and vapor pressure should be obtained, to numerically 
?. 

evaluate the derivatives ~ }'41 Id ~2 ~ !, to plug into Fixman 

theory in place of ad hoc, classical analytic approximationa 
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This remedies the defects of classical thermodynamics, par­

ticularly for the X-dependence of the absorption. It allows 

essential testing of Pixman's mode-coupling, and removes one 

obstacle to separating CR and TR effects in o< • To remove 

the other obstacle, the TR theory should be made quantitat­

ively accurate and consonant with the phase behavior (free 

energy of mixing) by generalizing Renon•s169 theory of 

associated solutions to relaxation phenomena. Detailed 

excess volume and heat of mixing data will be necessary to 

fix the l:J. H and 8. V v&lues for ~action steps in the expan­

ded model. The composition dependence for ci( in at least 

one other lower cousolute system--say, triethylamine/water-­

should be observed (only the relatively crude level of the 

present work is necessary) to see the uniformity in relative 

magnitudes of CR and TR relaxations in lower consolute sys­

tems. All of this extra work is probably within the scope 

ot one more doctoral research effort. 
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We retrace the thermodynamic and hydrodynamic analysis 

used by M. Fixman (J. Chem. Phys. 36, 1961 (1962)) in the 

first quantitative explanation of the anomalously la~ge 

sound absorption near fluid critical points. With some 

oversights and ambiguities corrected, the basic theor y is 

seen to be firmly based in classical thermodynamics and 

hydrodynamics. The use of the Ornstein-Zernike, Debye, and 

Flory-Huggins models for reduction of key quantities 

appears necessary for thermodynamic consistency. For 

analysis of experimental data, Fixman's theory is preferred 

over alternative theories, though no one theory is truly 

satisfactory. With a view toward interpreting our data 

presented in the following paper (J. Chem. Phys. ~, xxxx, 

(1971)), we argue the applicability of Fixman theory in 

systems having a strong background of additional (thermal) 

relaxation. 
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Introduction 

As a probe of energy exchange, especially in simple 

fluid systems, measurement of the ultrasonic pressure 

amplitude attenuation or absorption coefficient a and of 

the sound velocity a has shown much utility. 'Thermal' 

relaxation of internal degrees of freedom, such as vibra-

tional, or of local structure, as in chemical association, 

causes absorption and dispersion behavior whose detai ls of 

magnitude, temperature- and composition-dependence can 

often be correlated closely with kinetic and thermodynamic 

parameters of the system. 1 Near critical points - and here 

we speak specifically of gas-liquid and binary liquid­

cri tical points - additional strong absorption arises, 2 

somehow tied to the presence of strong fluctuations ' n 

density or composition, up to macroscopic size. Early 

attempts at an explanation included Lucas• 3 proposal that 

the fluctuations undergo differential acceleration relative 

to the bulk fluid because of their different density, thus 

causing excess viscous losses1 and work by Richardson and 

Brown4 ascribing it in · at least one system to an apparent 

loss of energy by Rayleigh scattering. Both models fail 

quantitatively, for both give too small a magnitude for the 

absorption, and dependences on frequency not generally 

observed. 
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Using irreversible thermodynamics as a framework 

unifying our treatment with that of ordinary thermal re­

laxation, we shall retrace the approach of M. Fixman, 5 

which proved the first successful model. The primary ther­

modynamic quantity to relate to absorption and dispersion 

is the effective complex compressibility (adiabatic) Ksw 

giving the volume response of the system to the periodic 

pressure perturbation of the sound wave, hence the measure 

of reversible and irreversible work done. Substituti ng a 

complex compressibility in the wave equation for the 

pressure variation op, 

(1) 

where (pK)-l = B2 = squared sound velocity, (2) 

gives a solution 

op = op e-axe i (kx-wt) (3) 
0 

with a IQ 
wpB Im K. (4) 

2 

To calculate K, it is generally sufficient to assume expan­

sions of the volume and entropy differentials ov and oS in 

the state variables6 (also sound wave progress variables) 
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oT, o~, and 0~1 the latter is some order parameter for the 

internal degrees of freedom: 

m 

C H' 
oS = ~ oT - vem op + T o~ (5) 

oV = ve m 
(6) 

The superscript •m• refers to processes in the limit of 

infinite frequency, where the internal degree of freedom is 

frozen. The quantities :e_1 e, ~', KT' and V' are respect­

ively isobaric heat capacity, thermal expansivity, an 

internal enthalpy, isothermal compressibility, and an 

internal volume change. The first equation is used i n the 

form oS•O to eliminate one variable and to express t he lack 

of spatial heat transfer to first order during sound 

passage. A simple oV ++ ~ relation to obtain K~ is ob­

tained with the addition of kinetic equation for o~, 

assumed to be 

~ o~ = 0€ = - Loz. (7) 

Here z is some ordering force associated with o~, 

(8) 
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and ~ is defined by the above equation. The total solution 

is then 

K w = 00 

Ks 8 

with T 

This yields 

+ { (V'- V6mH'J 2 } 

V~ [l + (H~) 2/TC;~] 

= (L~)-1. 

Im K w = 
s 

1 

1 , (9) 
+ ica>T 

(10) 

(11) 

and thus a typical relaxation curve for a, proportional to 

We have throughout neglected the extra s hea r 

viscous and thermal conduction losses, which require extra 

terms in Eq. (1), since these are always additive fo r our 

7 uses. 

For our purposes, the internal degree of freedom is 

the local density or concentration. Treating binary systems 

more specifically, t his is the local concentration (by mass, 

volume, or mole fraction, as is convenient) c 2 of component 

2. Its kinetic equation (Eqs. 7 and 8 combined) is a 

dissipative diffusive equation whose form outside the 

critical region is taken as 8 
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Here µ is a chemical potential µ1 - µ 2, with µ1 , µ 2 the 

chemical potential per unit concentration, and a, £ are 

constants; also ~Pµ = v~ and aµ = ~ in the terminology of 
OU rc2 

Eq. ( .8) • This choiee of kinetic equation describes the 

bare-diffusion (oT : 0) or thermal diffusion Co~ : 0) 

mechanisms. The former yields a response of 

I ( 13) 

where k is the propagation vector magnitude as in Eq. (3), 

and an absorption 

a p$ 
= '2" I (14a) 

(14b) 

While ' vanishes at the critical point, so does 0 12 and 

the absorption is not only finite but negligibly smal l. 
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Fixman's Development 

Clearly the diffusion of c 2 follows a modified equation 

in the critical region. The thermodynamic equations (5) and 

(6) may also need to be taken to higher order. Fixman9 

realized that the differential of the local Gibbs energy 

density 6G from which (5) and (6) are derived must include 

a quadratic term in (6c 2) 2 , since the linear term is van­

sihing. Taking c 2 as n2, the molecular or molar density, 

he obtains 

where µ1° is the bulk or average value of µ 1 • The Gi bbs­

Duhem relation n1dµ 1 + n2 dµ:2 yields 

The relation of dn1 and dn2 in the fluctuation is taken as 

preserving the molar volume, 

(17) 
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corresponding to isochoric propagation conditions which 

can be related later to the proper adiabatic conditions. 

Integration over the fluctuation volume yields 

oG = JdG = (t5n2) 2 p,T,n1 (18) 

for the anomaly-containing quadratic term. Additionally, 

Fixman notes that we should make the replacement, 

(19) 

where K is the inverse correlation length of the crit ical 

region pair distribution function i.!!L in Ornstein­

Zernike10 form, 

G(R) = g(R) - 1---> ~ e-KR. 

R~• 

(20) 

< is very temperature-sensitive but[::~J in Eq. (18) is pro­

portional to K
2 so this extra term in oG is as a whol e 

negligible, Now make the good approximation 

os a k oGjp,T 

1 [02\.11 l 
m- ~v· an2aT p,n1 2 1 

(21) 
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We take some liberties with Fixman's original presentation 

from here on, as by keeping n2 as the concentration 

variable rather than going over to the volume fraction +2; 

our final result is unchanged. 

The dynamic response of (6n2) 2 must now be computed 

from the diffusion equation with critical region correc­

tions. Now, (6n2>2 is not the square of the sound-driven 

fluctuation, which can be made arbitrarily small by reduc­

ing the sound intensity. Rather, (6n2>2 has a finite 

equilibrium average related to the 2-2 pair distribution 

function G22 CR) = G(R): 

consider 

(22) 

Assuming Fourier decompositions of 6n2 (R) and of G(R) as 

(23a) 

' 
(23b) 

a few manipulations yield 

> - (24) 



The first term is dropped if we are considering a volume 

considerably larger than the fluctuation. 

The periodic temperature excursion 6! due to the sound 

wave alters the dynamics of the spontaneous fluctuati ons, 

adding a correction to (6n2>2 that is correlated to t he 

sound wave. The resulting energy exchange with the sound 

wave has a phase lag and causes a loss or absorption of 

energy. The dynamics of the decay of spontaneous fl uctua­

tions in the singlet distribution c 2 are given by Fi xman's 

modified diffusion equation11 (les;-the non-anomalous 

direct driving terms in ~p, 6T of the sound wave), 

= -

The diffusion constant product a' of Eq. (12) has been 

written in the new variables hand K
2 , from the thermo­

dynamic expression for K
2 in terms of aµ 1/an2 in the 

Ornstein-Zernike model, 

41fa 
~= 

K 
• 

(25) 

(26) 

The relation dµ • (p/n
2
m1m2) dµl is also used to express h 

as 13 
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h :ill , (27) 

where Vi , mi , ci, and 'i are respectively partial molar 

v~lume, •olecular mass, weight- and volume-fraction con-

centrations, and~ is as in Eq. (26). The second or 

correction term in Eq. (25) has been derived by Fixman11 

and justified as consistent with the critical-region form 

of the free-energy density in a fluctuation. 

The dynamic response of (6n2>
2 to the sound wave 

perturbation &T is more readily expressed in terms of the 

response of G(R). Intuitively, Fixman adapts the di f fusion 

equation (25) for the pair density G(R) simply by doubling 

the diffusion constant h/2, 

The equilibrium solution to Eq. (28) is the proper 

Ornstein-Zernike form, 

G(R) ---+ 
R+m 

a -ic:R 
R e • 

The primary temperature sensitivity is in 

Fixman14 adds the term 

h (;;
2

) IST v2
G 

2 
IC ' 

such that 

(28) 

(29) 

(30) 
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to Eq. (28). There is no way to treat a spatial dependence 

of 6T, so the implicit assumption is that the sound wave­

length is very large relative to the fluctuation size, or 

A sound >>IC 
-1 . , (31) 

this is consistent with dropping the first term in Eq. (24). 

A perturbation solution in Fourier space yields a cor rection 

6Gk to the component G~ = a/(2w 2 [k2+ic: 2] ), given by 

The fluctuating excess entropy 6S of Eq. (21) is, us i ng 

Eq s • ( 21) , ( 2 6) and ( 3 2) , 

This is equivalent to an excess heat capacity AM per mole, 

6S NO 
~M = TcrT (n1+n

2
) (34) 

N0 = Avogadro's number 

which is clearly complex. The compressibility is then . ... 
computed from Eqs. (5) and (6) by altering :_e_ to :_e_ + AM and 

neglecting the small direct driving terms in 6~ and 
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ot=on2, (H~/T)on2 and V2on2• we have, dropping super­

scripts, 

ov = veoT-VK.roP, 

and from 6S•O, 

Expanding (S: + AM-l with AMasswned small and using 

:. K 
T 

, 

(equality holds for :e_ replaced by the net~+ A), we 

obtain an absorption 

a • 

where y= Cp/<;, as usual. This is Fixman's result. More 

rigorous attention to the mathematics, esp. in Eq. (37), 

would show small differences for the true adiabatic 

propagation conditions. 

(35) 

(36) 

(37) 

(38) 
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Discussion and Redevelopment 

In principle, Fi xman's theory contains no adjust able 

parameters. The two central microscopic parameters K and 

h may be derived from some light-scattering data15 ; a lso, 

thermodynamic data could be used for K through its r e lation 

to {aµ 1/an2) in Eq. (26). Practically, the theory has 

always been used with h and K as two adjustabl e parameters 

to be set from a least-squares fit of the absorption a or 

a/f2 as a function of frequency f and temperat ure T at t he 

critical composition. (Extension of the theory for the 

composition dependence of a has also been done.) To r educe 

K, which varies with temperature, to a fixed parameter, 

the Debye11 relation is used, 

2 
K = 6 

~ 
IT-Tel 

Tc 
, (39) 

~ being the Debye persistence length. This last step fixes 

the theory squarely in classical critical thermodynamics, 

as the compressibility then diverges as IT-Tc l-l • 

Similarly, a Flory-Huggins type11116 model for the chemical 

potential µ 1 , 

(40) 

is used to set the constant a of Eq. (26), since the 
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diffusion constant h can be expressed through an involved 

reduction13 in terms of equivalent ideal diffusion con-

stants in the form 

h = H/at , (41) 

where t is a molecular friction constant of more intuitive 

value. 

Overall then, Fixinan theory as used in analyzing 

experimental data incorporates several classical thermo­

dynamic models-the two above, plus the Ornstein-Zernike 

model for G(R) which can be made partially non-class ' cal 

by letting K
2 have its true order of zero at T

0
• None of 

this compromises the theory, which is necessarily classical 

from the point where an integer order (second) expansion 

of 6G in terms of 6n2 is taken. The restriction is more 

apparent in the final expression for a, proportional to 

(aK 2/aT) - the classical relation Eq. (39) gives an a 

neither divergent nor vanishing at T
0

, while the true 

critical behavior of K
2 has a higher than linear relation 

to IT-T
0

1 and would yield a=O at the critical point. At 

modest distances from the critical point at the mere onset 

of the anomaly, the deviation from classicality should be 

tolerable and the theory valid. In its usage to date on 

data quite near critical, Fixman theory yields more 
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questionable parameters. We return to this point after 

discussing the relative success of the theory as well as 

competing theories. 

In application to various sets of experimental data on 

binary consolute points, Fixman's theory has been qualita-

tively upheld in most respects. The early data of 

Chynoweth and Schneider17 on aniline/n-hexane at one 

frequency was analyzed by Fixman in his original paper, 

finding the predicted temperature dependence. The 

temperature derivative of the velocity, dS/dT, was positive 

and half as large as predicted. Anantaraman, et a1. 18 

found good f- and T-dependence, but dS/dT < O contrar y to 

expectations in nitrobenzene/isooctane. D'Arrigo and 

Sette19 found adequate T-dependence and again dS/dT < 0 in 

nitrobenaene/n-hexane. They also give a form for the 

composition or X-dependence of a/£2 based on keeping the 

V2;v1 term in Eq. (26). This yields a peak in a/£2 in 

composition that was far too narrow, due to the need to use 

the Flory-Huggins model for (aµ 1/an2) with its inherent 

limitation to a quadratic coexistence curve rather than the 

flatter, cubic true curve. Limited work on nitroethane/ 

isooctane by Shakhparonov, et a1. 20 showed an £-dependence 

fitting a power law like a/£2 ~ f-(p+l), with~ in the 

range (O,l), roughly consistent with the f- 5/ 4 dependence 

predicted for small IT-Tel. · Puls22 studied the liqui d metal 
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system Ga/Bi as one of the simplest binaries, finding fair 

f- and T-dependence and dS/dT ~ O. The X-dependence was 

fair but still too narrow. Interestingly, a/f2 predicted 

with the persistence length ! set from the least-squares 

fit and · ~ calculated from an estimate of the ideal 

diffusion constant, was 6.5 times too large, again re~lect­

ing the defects of classical thermodynamics, this time for 

the fluctuation spectrum 6n2
2• 

Attempts have been made to avoid the defects of Fixinan 

theory regarding mathematical rigor or thermodynamics in 

the rival theories of Kawasaki 23 and of Kadanoff and 

Swift. 24 Kawasaki 23a originally gave a treatment based on 

the autocorrelation function expression for the combi nation 

of (frequency-dependent) shear and bulk viscosities, 

(42) 

The anomalous absorption from the shear viscosity anomaly 

is automatically included, unlike Fixman's treatment. The 

fluxes in the autocorrelation function are expanded to 

second order in the concentration fluctuations, and for the 

equation of motion of the latter Fixman's form Eq. (25) is 

used, as also the Ornstein-Zernike form for the equi l ibrium 

average fluctuations. Kawasaki's result is substantially 

that of Fixman but for the change from isobaric to 
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adiabatic propagation conditions, which is minor. It is 

similarly restricted to classical thermodynamics, again 

due to the quadratic expansion of quantities (here, the 

fluxes) of thermodynamic significance. The theory of 

Kadanoff and Swift24 incorporates a perturbation solution 

of the master equation, using the so-called dynamic scaling 

laws. Though the derivation is quite involved, their 

result for the critical region behavior of the quanti ty e, 

hence of a, is that it diverges as IT-Tcl-2+A---where ~is 

the critical exponent of the heat capacity CP--and i s 

independent of frequency. Kawasaki 1 s 23b extended theory 

is also a dynamic scaling theory that extends to the non­

hydrodynamic region of sound frequency where the condition 

(31) is reversed. He also incorporates a quadratic 

expansion for the fluxes, which is classical thermodynamics. 

His results are the frequency and temperature exponents for 

absorption divergence, similar to Kadanoff and Swift . 

As Kawasaki's original theory is essentially a 

corroboration of Fixman's, a.nd as the form 

(43) 

predicted by Kadanof f and Swift or by Kawasaki in his 

extended theory is not observed and in addition the dynamic 
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scaling laws are unproven, 25 we may take Fixtnan theory as 

the one of primary utility in analyzing experimental 

results. Its defects are only partly remediable. One that 

can be fixed is the expression of the dynamic response of 

(6n2 >
2 = n~ Jcilt GJt to the perturbation 6T. Here 6Gk can 

be computed after solution of the proper singlet diff usion 

equation. Assuming the Fourier decomposition (23a) for the 

undriven fluctuation plus a decomposition for the dri ven 
d portion on2 , 

the perturbation solution is 

Then 

and 

(44) 

( 45) 

, (46) 
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and 6S has the form of Eq. (33) but for the replacement of 

h in the denominator of the integral over k by h/2. 

According to this correction, values of the parameter s 1 

and t derived from the original theory should be mult iplied 

by 2-7/ 3 = 0.20 and 2113 = 1.26, respectively. As t he 

parameters ~' a, t backed out of the data by Fixman t heory 

are generally order-of-magnitude, this is not a drama tic 

change, and certainly not a change of philosophy. 

Another point of rigor that can be resolved is Fixman's 

choice of the term in Eq. (30) as the dominant pertur bation. 

We know that the new driving term must be linear in t he 

ultrasonic progress variables 6~, 6T, and also that t he 

separate linear terms in v2T and v~ cause no anomaly. 

Therefore, we require a perturbation to the coefficients 

of c 2 in the diffusion equation. Here the main sens i tivity 

to 6T or 6P is in K
2 • In a recent thesis, Puls26 notes 

that -a term in 6p analogous to term (30) is neglected by 

Fixman yet may be significant. Now the 6T term origi nated 

in the derivative 

6T, (47) 

where C\u.x is the Gibba ener.qy of aizin9 of an arbitrary -
mass and the derivative with respect to N2 is at constant 



107 

N1 • The analogous pressure term is 

(48) 

where Vmix is the volume change on mixing. The ratio of 

(48) to (47) is 

2 l [a 2
6v l a AVmix 

[ Ull~C2 mix 

!£ a'Rlac2 cP 
(49) = TVe 

[ 2 ] 

~T 

[ 2 l a µl a µ . 

aTa~2 aTac 2 

Using the Flory-Huggins model for ca 2
µ 1/ac2aT) and experi­

mental density data for (a 2t.VmixfaN1 ac 2), we have evaluated 

this ratio for the system 2,6-lutidine/water reported in the 

following paper27 and have found it to be roughly•?.9%. In 

general the ~P term should be negligible. 

In light of the previous discussion, the defects of the 

theory as valid classical thermodynamics and hydrodynamics 

are resolved. The inherent deficiency of classical thermo-

dynamics is difficult to remedy and we can see no path for 

improvement at present, with or without incorporating 

features of the other mode-coupling theories commented 

upon. One final point actually extrinsic to the theory is 

whether or not ordinary thermal relaxation involving 
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driving of the same concentration variable c 2 is truly 

additive to the Fixman mechanism. Intuitively, it appears 

so, as the two mechanisms involve vastly different spatial 

scales or nk components: the former involves structure 

on the order of one or two molecular diameters, the latter, 

structure on the order of hundreds of Angstroms. On a more 

rigorous basis, the two mechanisms are seen to drive 

distinct linear terms in the 6S and 6V expressions, Fixman's 

driving an added heat capacity in the first term in Eq. (5) 

and (6). As Eqs. (5) and (6) are combined to calculate the 

effective complex compressibility, the terms of the two 

types occur linearly and thus additively. This additivity 

of thermal relaxation is conuuonly employed in analyzi ng 

experimental data, and it is found particularly important 

for the lutidine/water system we have studied. 
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Sound absorption coefficients and velocities have 

been measured over ranges in frequency, temperature, and 

composition for 2,6-lutidine/water near its critical 

mixing point. Large excess absorption coupled to critical 

fluctuation dynamics is found, as in other binary 

mixtures. A strong background of ordinary thermal r elaxa­

tion is also apparent. Interpretation of the details of 

the absorption and velocity, as well as of auxiliary data 

on the shear viscosity and density, in terms of the Fixrnan 

mechanism of critical region absorption combined with a 

chemical association model cannot be attempted quantita-

tively. The reason lies in defects in Fixrnan theory for 

the composition dependence of the critical absorption, and 
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in the inherent inability of the chemical association 

model to account for phase separation behavior. Never­

theless, Fixman's form for the absorption as a function 

of frequency and temperature at the critical composition 

is satisfactory, and some important qualitative aspects 

of binary fluid structure come to light, including 

inherent differences of upper and lower consolute points. 
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Introduction 

Binary liquid mixtures commonly exhibit nonadditive 

thermodynamic and kinetic behavior, many of the details 

of which are manifested in the ultrasonic absorption 

coefficient a and velocity B. In some cases, chemical 

association of small numbers of the two basic species in 

a linked set of chemical reactions causes enthalpy, 

volume, and excess entropy changes on mixing. Values of 

these three parameters for each reaction, as well as re­

laxation times related to the forward or backward rate 

constants, can sometimes be extracted for the princi pal 

reactions by analyzing the ultrasonic data as a function 

of mixture composition and temperature and of sound 

frequency. 1 The periodic temperature and pressure per­

turbation alters the microscopic dynamics in a well­

defined manner and causes a sound energy loss or absorp­

tion. Additionally, the chemical and physical associa­

tions may generate a free energy of mixing of such f orm 

as to cause a region of imperfect miscibility and a 

corresponding critical mixing (consolute) point of 

incipient phase separation. Large thermodynamic composi- _ 

tion fluctuations or changes in large-scale associat ion 

occur here, and these are also susceptible to the sonic 
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perturbation. Added absorption and velocity dispersion 

arise, describable readily by a theory of Fixrnan2 i n terms 

of the Ornstein-Zernike correlation length K or the Debye 

persistence length t, plus a friction constant ~. 

Numerous investigations have been made on both the 

chemical relaxation loss mechanism, which we denote as 

thermal relaxation (TR) and the latter mechanism, which 

we call critical relaxation (CR). In most studies t he 

system, composition, and temperature have been chose n to 

make one or the other mechanism dominant, especially in 

the absorption behavior. Our present work on the 2 , 6-

lutidine/water system focuses on the critical losses , 

although a comparably large background of TR accompanies 

the CR. Our system was chosen because it has a lower 

consolute point, or phase separation above a critical 

temperature, rather than the typical upper consolute 

point. The critical point is conveniently close to room 

temperature. For the description of the CR portion of the 

absorption, we use Fixrnan's theory as presented in t he 

preceding paper3 (I), as it was shown there that CR and TR 

may be considered additive and that Fixman's CR theory has 

been reasonably successful in the past. A chemical asso­

ciation model for TR and equilibrium properties is also 

attempted. The original goal of our study was the 
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quantitative understanding of the ultrasonic and equili-

brium properties using these two models. While this has 

failed, we can pinpoint the precise difficulties in such 

an approach and also draw some significant qualitati ve 

conclusions on binary mixture structure, differences of 

upper and lower consolute points, and the adequacy of 

Fixman theory. 

Experimental 

The absorption a and the velocity B were measur ed at 

fourteen compositions over the whole range, at four 

frequencies, nominally 4.5, 7.5, 10.5, and 13.5 MHz , and 

at least two temperatures of Tc - 0.92 £and Tc - 0.12 £, 

plus a third temperature for most compositions as c l ose 

to the phase separation temperature as practical but not 

exceeding Tc + 1.08 c. Supplementary data on the shear 

viscosity and density were also taken. The phase d i agram 

of Cox and Herington4 was used to help locate the c r itical 

composition and temperature. 

The basic ultrasonic apparatus is a pulsed vari able-

path single pass cell, a modification of the typical 

design of Andreae, et al.Sa Equipment used in previ ous 

investigations in our laboratory5b has been adapted , but 

with better temperature control and electronic stab: l ity. 
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The temperature is controlled with a circulating water 

jacket supplied from an external bath, and also a heated 

Lucite enclosure for the total apparatus. The sample is 

mixed, and its composition identified by density measured 

in a thermostatted pycnometer. It is introduced int o the 

sample cell, which is immediately reassembled. An upper 

silica and a lower Duralumin delay rod carry the ul t ra­

sonic pulse to the liquid gap. After equilibration, mea­

surements of the absorption coefficient a and the velocity 

·e· are made at all frequencies, the temperature is changed 

and the measurements repeated. In all ultrasonic measure­

ment, pulses of 8 µsec. duration and one kHz repeti t ion 

rate from a Chesapeake U-100 signal generator drive an 

x-cut transducer at low power. For path length vari a­

tions, a Gaertner micrometer carries the upper delay rod 

through a Teflon seal. Horizontal and vertical alignment 

between the two rods is insured by several independent 

techniques. Both rods were initially finished to 0.1 mil 

o~ better, though the lower rod's surface det eriorat ed 

without noticeable bad effects. Absolute liquid pat h 

lengths are occasionally checked, for use in establi shing 

diffraction corrections. Signal frequency is measured by 

visual beating against the calibrated reference signal 

generator. The received signal is preamplified in an 
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Arenberg PA-620L and displayed on a Tektronix 547 CRO, 

along with the reference signal from the Hewlett-Packard 

HP-606A. The reference signal is attenuated in calibrated 

steps of one db nominally by a Hewlett-Packard HP-355C 

attenuator and the liquid path changed to keep the two 

signal displays superposed. A least-squares fit of path 

length versus attenuation directly yields the absorption 

coefficient. Signal quality is good except that some mode 

conversion in the delay rods causes spurious signal en-

velope fluctuations, for which an empirical correcti on to 

the raw absorption coefficients is applied at the two 

lowest frequencies. Velocity measurements are made by 

varying the path length and restoring signal superposition 

with the calibrated variable delay of the CRO. 

Raw path-length/decibel data were corrected for 

diffraction by calculations on the method of Bass. 6 

They were then reduced to an attenuation coefficient by a 

least-squares fit, weighted by estimated visual matching 

and amplitude stability errors, and augmented by a 

students' t-test. A similar reduction averaged the re-

peated runs made, generally three to five. Finally , error 

estimates were rescaled to give a unity chi-squared. 

Accuracies of a values are typically 0.5% near peak a, on 

up to 5% for the lowest absorptions at f = 4.5 MHz. 
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Velocity accuracy is of the order of 0.3%. A total cali-

bration run on reagent benzene titrating as 0.02% water 

produced the result a/f2 = 962xlo-17 Np. cm.-l sec. 2 

(Np.= neper = 8.686 db.), near the literature value 7 of 

960 ± 15 in these units. 

99% lutidine was used after refluxing over Bao and 

distilling1 water content was typically 0.1 mole percent 

by titration. Laboratory distilled water was used. 

Initial density ++ mole fraction identificati ons wer e 

established by making solutions by weight on an analytical 

balance. Temperatures of pycnometers in the thermos tat 

and of samples in the cell were ordinarily read to ± 0.01 

£· with glass thermometers calibrated against a Leeds and 

Northrup platinum resistance thermometer certified by the 

NBS. The latter was also used to establish the cri t ical 

temperature and composition by visual observations of 

phase separation as Tc = 33.57 c. and mole fraction X
0 

= 0.065 ± 0.001 lutidine, respectively, versus Tc = 

34.06 c. and X = 0.0665 of reference 4. Sample composi-
- c 

tion in the ultrasonic cell was stabilized by an evapora-

t i on buffer in the line to the atmosphere, and cell 

corrosion was prevented by silver plating. Mixtures were 

ring-stirred in the cell (not during actual measurements). 

All temperatures were controlled to within the 0.03 c. 
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stability of the external bath. Independent thermocouple 

measurements indicated a drop of 0.01 c. between the 

external bath and the sample. 

Auxiliary determinations of shear viscosity were made 

on separate samples with a Cannon-Fenske viscometer cali-

brated with distilled water and with reagent acetone. 

Corrections were made to the raw kinematic viscosities 

according to NBS monograph No. 55 to yield final accur a­

cies ' of 1%. 

Results 

The corrected absorption coefficients are present ed8 

in Figs. 1-3. They are presented in the form a/f2 , f 

being the sound frequency. Furthermore, the so-called 

classical9 contribution ac1/f
2 from ordinary v i scous 

losses, 

= (1) 

with ns the shear viscosity, have been subtracted to 

leave the excess quantity aex/f2 which is to be inter­

preted in terms of relaxation (or, formally, in terms of a 

bulk viscosity nv = pB 3 a0x/2~ 2f2 ). Thermal conduction also 

causes a classical loss but is negligible in binary 
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liquids. Typically ac1/f
2 is of the order of 5% of 

ae,!£2 , showing relaxation as the dominant loss mechanism. 
2 Fig. 1 presents aex/f as a function of composition X = 

mole fraction lutidine for the temperature T = T - 0.92 - c 

c., with one curve for each of the four frequencies used. 

Figs. 2, 3 present similar results for temperatures T -c 

0.12 c., Tc+ 1.08 c. Much structure in x- and £-depen-

dence is evident1 the !-dependence of ae,!£2 is also 

strong but less obvious. 

The magnitude and frequency-dependence of ae,!f2 

allows us to dismiss two loss mechanisms and to retain 

the CR-plus-TR explanation we have mentioned earlier. The 

first loss mechanism is scattering of sound10 by the 

inhomogeneous acoustical impedance pa, p = density, in the 

presence of fluctuation. The frequency-dependence asso-

ciated with such a mechanism is 

, 0 < p < 2 , (2) 

certainly not seen here although strong critical opale-

scence was seen in several of the states investigated. 

The small variation of p6 with macroscopic composition 

adds support to the conclusion. The second mechanism is 

the persistence of the excess absorption of the pure 
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liquids, possibly as 

a l [ a l ex + (l-X) ex 
7 7 lutidine water 

(3) 

= [70 X + 18(1-X)] x 10-l? Np. cm. sec. -2 

Our measured absorptions are considerably larger than 

this, and in addition, the contributions are less than 

dd . i d t 1 t' 11 a it ve ue o cross-re axa ion. 

Presumably all our data can be well represented as 

the sum of the CR and TR contributions, 

aex = Af-5/4 l(d) + B 
7 , (4) 

where 

(5) 

( f 18) h d t . 11 . t 12 see Re • • T e secon erm is actua y compos1 e, 

Bi 
B = l 

i 1 + (f/fci)2 

but all of the chemical relaxation times fci are almost 

surely higher than any frequencies we have used. B is 

primarily a strong function of composition X; it is also 
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expected to have a modest and probably negative linear 

temperature dependence. It should peak at the composition 

of strongest chemical association. The first or CR term 

is translated from Fixman2 form, with A, c known functions 

of X with weak dependence on T, and with ~(d) a dimension­

less monotonically decreasing function of d related to an 

excess dynamic heat capacity presented to the sound wave. 

The parameters A and C can be simply reduced to the para­

meters ~ and t 2 or K
2 of Fixman theory. 

The TR absorption is quite extensive in composition, 

while its peak is strongly skewed, peaking near ! = 0.1. 

It shows little £-dependence. The CR absorption peaks 

strongly at X = Xe with strong f- and T-dependence. It 

is also quite extensive in X, as a/£2 has significant 

f-dependence far from Xe' and its strong T-dependence 

extends to the TR peak, the base of which lifts with 

temperature as a result. Quantitative analysis of the 

results will be attempted below. Additional insight into 

the internal structure and dynamics is also provided by 

examining the sound velocity a at f = 4.5 MHz (its dis­

persion or E_-dependence is low) and the sign of its 

temperature derivative, in Fig. 41 also the volume change 

on mixing, vmix' in the same figure; the shear viscosity 

n
9 

as a function of composition at a typical temperature 
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Tc - 0.4 c. in Fig. 51 and the logarithmic temperature 

derivative dtn ns/dT also in Figure 4. Of these four 

quantities, only dtn ns/dT and to a lesser extent a show 

marked evidence of critical phenomena. All four show 

major 'structure' at intermediate compositions x = 0.2-0.5 

from the chemical association behavior. 

Discussion 

A quantitative formulation of the chemical model for 

the TR portion of the absorption and for equilibrium prop­

erties begins with the choice of a chain association model 
13 for water, 

A +A l ~A n- ~ n , K 
n 

(7) 

where on is the true mole fraction of the species An = 

(H20)n' 

= (8) 

The progression of Kn must follow a simple series to be 
n tractable1 Kn = constant = K, or Kn = K

0
r , r = constant 

are possibilities. The H-bonding of lutidine to water may 
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be described as 

B+A .:.BA n 'II;'" n 
K' , n (9) 

Refinements with direct association of two chains and with 

formation of associations AnBm are generally intractable. 

By postulating the average complexation of lutidine to be 

with many water molecules, we assure that the relaxation 

or absorption peaks at a high water/lutidine ratio, as 

observed. One can solve Eqs. (7) and (9) for the equili-

brium concentrations Na. After assigning volume and 

enthalpy changes per step, the net 6V and 6~ of mixi ng 

can be computed from these concentrations. These two pro­

perties and their temperature dependence are useful 

criteria for the model. The contribution Gchem of the 

reactions to the free energy of mixing G . mix can be calcu-

lated simply 14 as 

(10) 

where XA' XB are the macroscopic or apparent mole frac-
- - 2 2 

tions. The condition a Gmix/axA > 0 for miscibility maps 

out the region of phase separation. An extra term Gphys 

from 'physical' interactions is necessary15 to get 
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a2Gmix/axi < O, but Gchem helps the separation occur and 

partly determines its location in mole fraction: also, its 

temperature dependence is crucial to the nature of the 

consolute point as being upper or lower. Finally, one may 

assign the forward rate constants k , k~ for reactions n n 
(7) and (9) and solve an eigenvalu~equation12 for the 

relaxation frequencies fci and relaxation strengths Bi 

of the 'normal moles' of reaction. This last step is 

quite difficult in general, especially as a numerical 

solution must be obtained. The infinite chain of reac-

tions and its analytic form of solution must be retracted. 

The CR mechanism contributes to some degree to the 

static specific heat and compressibility (hence sound 

velocity) and much to the sound absorption. It has been 

formulated by Fixman, 2 whose theory is re-examined3 in 

paper I. In practice, the forms Eqs. (4) and (5) are used 

in analyzing absorption data. To represent the data in 

its composition dependence, the explicit X-dependence of 

the 'constants' A and C must be known. A and C are known 

functions of macroscopic quantities as specific heat and 

density - whose X-dependence is known experimentally to 

sufficient accuracy - and of the two microscopic para­

meters t and K
2 • tis presumably composition-independent, 

while K2 is given by Eq. (26) of paper I, 
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4'11'a = 7 (11) 

The X-dependence on the right is principally in (aµ 1/an2>, 

for which a Flory-Huggins16 model may be taken using 

(aµ 1/an2> = (aµ 1/a4> 2> (a4> 2/an2>. D'Arrigo and sette17 in 

particular have developed this technique, though they made 

the oversight of taking a factor in the absorption aCR as 

(aK 2/aT) 2 valid at X = XC' rather than as (a 2µ1/an2 aT) 

(aK 2/aT). In any event, the total x-, T-, and £-depen­

dence of a/£2 can presumably be modeled now by Eq. (4) 

with judicious choice of parameters. 

Least squares adjustment of the CR and the TR or 

chemical parameters to match observed absorptions and 

equilibrium (including phase diagram) properties is a 

reaso·nable expectation. Of course, it is a nonlinear fit 

requiring iteration, but Andreae, et a1. 13 have had modest 

success in treating a pure TR mechanism in aqueous solu-

tions of nonelectrolytes. In our preliminary work, the 

qualitative magnitude and ~-dependence of aTR were 

visually estimated from our a /£2 data and several chem­
ex -

ical models were tested for plausibility. We became 

dissatisfied on realizing that phase separation behavior 
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1 . t t G . G lS k' h a ways requires an ex ra erm phys in mix' ma ing t e 

connection of the ~R and the critical region chemical 

potential or its rel ative Gmix a very tenuous one. Much 

of the value of tying the two mechanisms together to 

analyze all properties is lost. However, we did obtain 

useful qualitative insight by proceeding to add Gphys 

terms of the form Ax~xA to force a2Gmix/ax! to vanis h. 

Temperature dependence in Gchem alone then explains the 

existence of a lower consolute point at intermediate mole 

fraction for small exponents n in Gphys' or of an upper 

point at low concentrations forced by a large exponent ~· 

This failure points to deficiencies in the form of G chem' 

in our understanding of the structure of water and _ts 

solutions. To be sure, large H-bonded structures of water 

and large complexes of water and lutidine exist and such 

strong H-bonding association seems a general requirement 

for a lower consolute point. However, the arbitrary 

distinction of chemical and physical interactions is 

faulty. Even if elaborate interlocking chemical equili­

bria are used to describe the former, the ideality of the 

solution of true chemical species is implicit in the 

equilibrium constant formulas as in Eqs. (7) and (9 ) . 

Physical interactions make a continuous transition to 

chemical bonding and a continuous perturbation from 



128 

ideality that is difficult to describe in mass action 

terms. The chemical simplification of the many-body 

problem fails badly here. This difficulty has not been 

cited by investigators18 of other critical systems, since 

most of these are upper consolutes in which the phase 

diagram is grounded principally in G h and little TR p ys 

contribution to a occurs. Gphys describes an entropy of 

mixing effect and has an adequate empirical form in the 

Flory-Huggins16 theory. 

A final and practical barrier to using superposed CR 

and TR mechanisms to explain the absorption also carne to 

our attention in the generally poor results from use of 

the composition-dependent Fixman theory. To date, i nvest-
. 17 19 igators ' have found the theory to predict absorption 

peaks which are too narrow, at times grossly so, as func-

tions of X. The necessity of 'classical' thermodynamics 

of the critical phase diagram and of ~2 causes the problem. 

The least-squares fit of Eq. (4), weighting a /f2 at all ex ~ 

compositions equally, would be invalidated. We settle for 

the lesser information in a least-squares fit to Fixman's 

parameters from the eight pieces of absorption data at 

X ~ Xe, consisting of measurements at four frequencies and 

at two temperatures, Tc - 0.92 c. and Tc - 0.12 c. We 

obtain the values 
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A = 2.2xl0-6 . -1 
cm. sec. 3/4 

B -17 -1 2 (12) = 20lxl0 Np. cm. sec. 

c = 2.0xlo2 -1/2 -1 sec. deg. 

for the best fit as in Table I. Note that Fixman theory 

is moderately good but gives too sharp an f-dependence and 

about the right !-dependence. Separate fits for the two 

temperatures use three parameters for four points, but 

serve to show that the theory is strained, as the B values 

become large and unphysically negative. The B value for 

the eight-point fit, on the other hand, is very reasonable 

in light of the size of the TR peak at X % O.l. Final 

reduction of the A, c values to estimates of the Debye 

persistence length .e. and the friction constant t was made 

with the correction noted after Eq. (46) in paper (I), 

and it yields 

.e. = 9.o A 

t = 13 -1 0.32 x 10 sec. , ( 13) 

in the same range as for other systems similarly 

corrected. The value of the correlation length K-l at 

Tc - 0.5 c. is, from Eq. (39) of paper I, 

(14) 
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0 
compared to an estimated 100-200 A from light scattering 

data in our laboratory. 20 Our final quantitative work 

with Fixinan theory is calculating the ratio of the excess 

absorptions from the temperature and pressure perturba-

tions of the sound wave. Only the former is included in 

the theory as originally developed. The second pressure 

term was suggested by Puls19 and is formulated in our 

paper I. The result, a pressure contribution only 0.4% of 

the temperature term, supports Fixman's choice of the 

dominant perturbation. 

We can extract more information of a qualitative 
2 nature from aex/!_. Earlier we noted that the f-depen-

dence is expected to lie principally in the CR mechanism. 
1 The appearance of significant £-dependence to X ~ ~ Xe 

and to x o 2Xc indicates a fair extent for CR. The T­

dependence o~aex/f2 has more detail. Near X c 1.0, it is 

positive as expected for internal vibrational relaxation 

of pure lutidine. 21a At the intermediate composition 

X = 0.3042, it dips slightly negative, as expected21b for 

thermal relaxation of lutidine/water associations. It is 

large and positive for the remainder of the composition 

range. The magnitude is the same at both peaks in a /f2 , ex ~ 

indicating either a larger extent for CR than hinted by 

the f-dependence, or a change to positive !-dependence for 
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TR in this range. Now the 'definition' of the CR peak at 

! = Xe is good only at f = 4.5 MHz for T = Tc - 0.92 c. 

This suggests the CR mechanism is at least as restricted 

as the f-dependence indicates. Thus the TR temperat ure 

coefficient seems to undergo a sign reversal not ver y far 

down its shoulder in a composition profile, which points 

once again to complexity in the chemical behavior. 

The sound velocity a showed no clear dispersion with 

frequency in our most reliable measurements. The 4 . 5 MHz 

values show nontrivial composition dependence. At low 

lutidine concentrations a rises rapidly with !r due to 

breaking down of water structure (chain-length) that 

causes a decrease in compressibility. 13 Around x = 0.15 

and just beyond the composition of peak TR absorption, a 
turns downward. The trend is not smooth, for the region 

near X = X forms a step of increased velocity. Every­
- c 

where the temperature derivative is slightly negative or 

vanishing. This corresponds in the critical region to 

the expected increase in compressibility on nearing the 

critical state. In regions dominated by the chemical 

phenomena, the positive temperature coefficient of com-

pressibility shows that the simple reduction of water 

structure breaking (by the decrease of chemical associa-

tion) more than counteracts the decrease in the chemical 



132 

contribution to the compressibility (from the same cause). 

The excess volume AV shows a broad minimum near 

X = o.s. This is probably due to peaking here of the 

chemical association as measured by greatest reduction in 

water chain length. Similarly, the shear viscosity peaks 

near X = 0.3, and by Eyring•s 22 theory of viscosity this 

is roughly the peak of the heat of vaporization. Another 

measure of complexation, involving the enthalpy changes 

AHi of the chemical steps, must be largest here. The 

temperature coefficient of the shear viscosity, dtn n
8
/dT, 

has been estimated from a fit of the ns data to the form 

n = Ae-E/T {+ B in critical region). (15 ) 
IT-T 1172 

c 

It is uniformly negative except for a sharp positive-going 

peak at X = X
0

• Critical phenomena contributions appear 

as well-localized and as strong here as in absorption. 
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Table I. Comparison of experimental absorption data with 

best fit from Fixman theory at the critical composition 

x = x • c 

f(MHz.) 

T=Tc-0.92 c. 4.5 

7.5 

10.5 

13.5 

T=T c -0 • 12 C. 4.5 

7.5 

10.5 

13.5 

aex/f2xio 17 ,Np. -1 2 an. sec. 

Experimental Best theoretical fit 

557 573 

465 406 

327 338 

262 303 

613 641 

498 435 

358 355 

285 314 
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Figure Captions 

Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Excess absorption of sound at T = Tc - 0.92 
for four frequencies. 

Excess absorption of sound at T = Tc - 0.12 

Excess absorption of sound at T = Tc + 1.08 
(Tc + 0.28 C. for solid points). 

Sound velocity and excess volume of mixing. 
Velocity is averaged over two or three temp­
eratures near Tc and qualitative trend with 
temperature dB/dT is indicated by +, -, or O 
under data point. Excess volume is measured 
at T = 32 c. = Tc - 1.57 c. 

Shear viscosity ns and its logarithmic temp­
erature derivative, both at T = Tc - o.37 c. 
See Eq. (15) • 

c. 

c. 

c. 
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Appendix I. Experimental Apparatus 

Our ultrasonic cell is a slight modification of 
1 that of Andreae, et al. It was constructed principally by 

P. D. Edmonds and A. V. Anantaraman for earlier binary liq­

uid studies in this laboratory2 , with special care in design 

for the close temperature control required near critical 

states. We have further modified it for better temperature 

control and homogeneity, prevention of bulk composition 

changes from air contact, and improved electronic stability. 

The basic sample cell is a 300 ml. thin-walled copper cylin-

der brazed to a brass base and surrounded by a circulating 

water jacket on the same base providing temperature control. 

The sample liquid has a free surface and is covered on top 

by a screw-on plate similar to the base. Coaxial upper and 

lower ultrasonic delay rods, of low fixed losses, project 

into the liquid through holes in the base and cover to con­

duct the sound from transducers to the liquid gap. This 

arFangement keeps the transducers out of the corrosive and 

somewhat conductive solution. Extra fittings on the cell 

provide for stirring and for vapor venting (through a buffer 

solution). In manner of sound propagation, the apparatus is 

described as a pulsed, variable path, single pass cell. 

Short sound pulses, converted from RF pulses by a transdu-

cer, traverse the acoustical path in the liquid between the 

delay rods. The attenuated pulses are reconverted to 
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electrical signals by a similar transducer at the end of the 

lower rod, amplified {in a tuned preamp for lower noise), 

and 4isplayed on a CRO screen. The path is varied by moving 

the upper rod up or down, and the change in received signal 

amplitude is observed and eventually reduced to a linear 

attenuation~. Similarly, the change in received signal 

delay is converted to a so'iand velocity 13 • 

The pulse technique contrasts with the interfero­

metric methods employing continuous standing waves and eith­

er electromechanical {transducer) or optical detection3. 

Continuous wave methods heat the sample more and are there­

fore less desirable in the critical region. Our method also 

contrasts with the pulsed double pass, where a reflector 

returns the attentuated pulse to the same transducer which 

generated it. While ~his guarantees a transducer match, it 

requires sophisticated fast switching between electrical 

transmitting and receiving circuitry and has trouble with 

moderately long pulse trains at short acoustical paths. 

Pixed path pulsed methods2 are also in use for samples con­

fined under unusual conditions where sealing of the moveable 

delay rod or the disturbances induced by its motion cause 

difficulties. Absolute signal levels must be measured, 

which is difficult. Pinkerton4 discusses the best implemen­

tation of the pulse methods. 

We used pycnometers and an auxiliary temperature 

bath to measure densities of solutions at representative 
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compositions, and the bath with a viscometer to measure 

shear viscosities. The densities were used to compute ex­

cess volumes of mixing and also to establish a f '\:-->X curve 

for identifying solutions by density, after making them up 

quickly by volume. The exact locus of the critical point 

(~c,Tc) was examined in more detail to ensure that the 

states we investigated for ultrasonic and . viscous behavior 

were accurately located relative to the critical point, 

irrespective of absolute errors in X
0 

and Tc• The ultra­

sonic cell and auxiliary equipment were extensively calibra­

ted and tested for operating problems, and reliable 

operating procedures were set up. We recount below the de­

tailed construction of the apparatus and the underlying 

design considerations. At the end we tabulate the equipment 

specifications and list the suppliers. Later appendices 

describe the test and calibrations, and finally the results. 

CELL: Figure 1 is a sketch of the important mech­

anical parts of our apparatus. To give scale, we note that 

the delay rods are 1 11 in diameter and 6 11 long. The walls of 

the cell are of 23 gauge copper formed into a cylinder of 

}~ 11 inside diameter by 2-3/4 11 tall. · The general dimensions 

are dictated by the magnitude of the absorptions expected 

and the usable frequencies. A range of about 10-12 db in 

attenuation is conveniently measured by our comparison pulse 

technique (discussed shortly) using a precision attenuator 

in the comparison pulse circuit along with visual matching. 
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A frequency range of a factor of four or so is desirable, to 

test the ~requency dependence of absorption predicted by 

various theories. To minimize diffraction losses, the low~ 

est frequency should have a wavelength (in the sample mater­

ial) less than around o.o4 of the diameter of the transducer. 

At the same time, the transducer should be moderately thick 

for mechanical~strength, while it should be used near its 

fundamental frequency which is inversely proportional to its 

thickness. At a modest diameter of lt" (larger than the 

delay rod), a thickness of 0.075" is reasonable, giving it 

a fundamental of 1.5 MHz. Odd harmonics are easily excited, 

so that a range of 4.5-13.5 MHz is practical for both the 

transducer and the pulse generator; at 1.5 MHz. we have too 

great a diffraction loss. This f-range is in the lower 
5 range of thermal relaxation frequencies for mixtures , so 

that we might touch on these interesting phenomena as well 

as critical relaxation. The expected~/~ 2 values are of the 
-14 -1 2 order of 10 Neper cm. sec. , several tens or hundreds 

of times the classical losses. one Neper, abbreviated Np., 

is equivalent to an attenuation of amplitude by a factor of 

~. and hence to 8.686 db of power. Thus o<. values of 0.2-

2 db per cm. are expected and a delay rod travel of 5-6 cm. 

is desirable. 

Given the acoustical path 41mens1ons, the remain­

ing design considerations for the cell center on making the 

cell walls sufficiently distant from the beam to prevent 



. 148 

echoes, achieving good sample temperature control, homogen­

eity and purity, and insuring accurate and stable mechanical 

alignment of the delay rods. Drawings 50023- 1, - 2, and - 3 on 

file in the Chemical Engineering drafting lay out the orig­

inal design. A cell diameter several times the delay rod's 

loses the echoes yet leaves poss ible good thermal contact 

(with stirring) of sample with circulating jacket. Corrosion 

protection was afforded in the original design by nickel 

plating, which is sufficient in the nitrobenzene- isooctane 

system but not for lutidine/water. Lutidine, a nitrogen 

heterocycle, is a powerful copper complexing agent. It 

presented us with severe corrosion problems (notebook ..2.Q.1Z_: 

50,98,102ff.,127; ..2.Q.2_Q: 114) until gold and later silver 

platings were applied (see notebook ..2.Q.lZ. : 127; .2Q.2.Q : 79,116-

23,124- 5, es~. 130-36). 

Temperature-control water for the circulating 

jacket is drawn from a large-capacity (30 liter) bath therm­

ostatted by a Sargent S-84805 controller. Control within 

0.03 c. is achieved in both bath and cell (notebook~: 8, 

19), with a loss of 0.01 C. in temperature on the way to the 

cell via thick rubber tubingo A small submersible 1/30 hp. 

centrifugal pump does the lifting job. The outer circulat­

ing jacket is of no critical dimensions. Originally, it did 

not encompass the cell bottom- -only the sides, while heat 

losses from the bottom set up convection currents upsetting 

signal stability (notebook 5072; 104 ff.). We added a false 
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bottom (notebook ..2.Q'.ZZ: 109) and connected it to the rest of 

the jacket with a number of large drill holes. Even this 

was not sufficient ( notebook ..2.Q2_Q: 79) and we eventually 

enclosed the whole apparatus in a Lucite box (notebook .2._0_2Q: 

80-82). Cables, the micrometer handle, the stirrer string, 

and two air temperature thermometers entered through ports; 

jacket hoses entered through the bottom (the apparatus cab­

inet) as before. A small heater-blower controlled by one of 

the thermometers maintained a preset air temperature within 

0.2 c. Snap-out Lucite panels with aluminum borders for 

screw fastening allowed easy manual access to the cell. 

The cell is made to seal on the lower rod simply 

by resting upon the rod's taper. Both rod and hole must be 

precisely machined (drawing 50012). In addition, a thin 

plastic" sleeve or shim must be used between rod and cell; 

we eventually settled on a Teflon cone made by the shop. 

The cell must not be too heavy to be supported by the deiay 

rod without damage or a bending misalignment. 

The last main part of the cell is the upper plate 

(drawing 50023-1) which serves to contain the pressurized 

circulating water in the outer .jacket and also to shield the 

sample from the ambient air .in large part. To accomplish 

the former task, the cover plate is grooved and fitted with 

a large nylon 0-ring (i" wide, 1/16 11 thick) of median diam­

eter equal to the cell proper diameter. This seals by 

compression, aided by a disposable ring of Teflon tape 
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draped over the cell walls, upon screwing the plate to the 

outer flange of the jacket. To shield the liquid from the 

air, the plate's center hole must be only minimally larger 

than the upper delay rod. The original design left an annu­

lus of about i;- 11 around the rod, large enough to allow a lot 

of evapovation, and also incorporated an .... ineffective 8- vaned 

coaxial stirrer. These two defects are corrected by the 

auxiliary fittings discussed shortly. 

DELAY RODS AND TRANSDUCERS :are the other main con-

cern. The rods must have low absorption loss at the highest 

frequencies, and be strong and elastic. Fused silica is 

excellent, at least for the upper rod, as it has an absorp­

tion o< = ( Jx1o-10f + 1o9xlo-l 7 r 2 ) db cm. - l (ref. 6a). Sil-

ica was also used in the lower rod originally, but it chips 

too easily under stress. Duralumin alloy, of similar low 

loss6b, are a better choice. The upper rod must be carried 

on a micrometer-mounted arm (drawing .50013- 1) and thus it 

and its transducer assembly must ·be light$ The rod must be 

long enough beyond the transducer nous.ing and arm clamp to 

project through the thickness of the cell cover plate and 

through the vapor space into the liquid 6-8 cm. A length of 

6 11 is sufficient. The edges of the rod are beveled to re­

duce the chipping hazard in handling. The faces have a fin­

ish of about 1/20 th of the shortest wavelength (in the 

liquid) to be used, to prevent surface scattering of the 

signal at the rod-liquid interface, and to assure good 
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acoustical contact at the transducer end. The face should 

also be perpendicular to the axis within an angle a such 

that R sin 9 is again about 1/20 th the wavelength, to min­

imize refraction errors. The supplier, Englehard Indus­

tries, automatically finishes the rods to one wavelength of 

light and an alignment of 1" of arc, which is adequate up to 

200 MHz. in ultrasonics. Somewhat larger diameter irregular­

ities are tolerable. The final design is given in drawings 

50012,-1 (Edmonds) and 60037 (our work), also on file. The 

lower rod must be held securely in a wide base attached to 

the micrometer. A collet design is given in drawings 50013, 

-1, and -2, with trimming screws to to align the planes of 

the two delay rods. The main micrometer assembly pivots 

on a vertical post from its base to bring1the rods into 

coaxiality. A lower rod length of 6" is also sufficient. 

A Gaertner micrometer model M342 was chosen to carry the 

tubular arm which clamps onto the upper rod (drawing 50013 

-1). The required micrometer travel accuracies and precis­

ion must restrict to a few tenths of a percent the error over 

the shortest distance in which one db attenuation occurs. 

The Gaertner•s implicit specifications of better than 0.005 

mm. satisfy this readily. 

X-cut quartz transducers are excellent3,6 for 

their high signal purity and low loss (high Q-value, though 

this also means low conversion efficiency), and atmospheric 

stability. They must be matched to within about one-quarter 
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of their frequency bandwidth in circuit. Gold platings on 

both sides form the electrodes for applying the RF signal. 

Transducer housings (drawings 50012,50013-2) position each 

transducer' against the delay rods for acoustical and elec­

trical contact. Electrical contact to the upper side of the 

transducer is made through a copper leaf pressed onto the 

face by a spring inside the housing. The spring also helps 

the acoustical contact, which is completed by a film of sil­

icone grease between rod and transducer not covering the 

entire surface. The ungreased annulus f0rms an electrical 

contact of the lower transducer face and delay rod (in the 

case of the silica rod, there is a Cr-Ni or Ag plating over 

the face and one inch do~m the rod sides, maximum resistance 

lOJ?_ between any two points). The delay rod in turn., con­

tacts the grounded transducer housing. In use the delay 

rods are pressed ~~ into their ,housings far enough to lift the 

oversize (li") transducers a fraction of an inch from their 

resting positons over the rod holes in the housings. A 

collet fitting on each housing grips the delay rod and 

maintains the pressure. Standard coaxial cables with low­

loss polymer dielectric carry the signals in and out to the 

external electronics. 

OTHER CELL ACCESORIES: There are three auxiliary 

fittings on the cell. First is an evaporation buffer (note­

book 5072: 62) added for our work, mounted on the cover 

plate. It is needed because the vapor volume above the 
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sample changes as the delay rod moves. Makeup air flow is 

routed (bubbled) through a smaller sample of liquid, about 

5 ml., which undergoes sacrificial composition changes by r 

evaporation and water pickup, protecting the bulk sample 

composition. The tubing from the buffer volume enters the 

eell volume through the second accessory, a short length of 

threaded pipe brazed to the cover plate and encircling the 

upper delay rod. A thick Teflon ring fits in a collar 

screwing onto the pipe, to seal closely but without binding 

against the delay rod. The third fitting is our ring 

stirrer, replacing the old vaned stirrer of the original 

design. A horizontal, flat, 16 gauge stainless steel ring 

3" O.D. by 2t" I.D. travels up and down in the sample to 

provide fast and efficient mixing.(notebook ...2Qlg: 107). 

Its vertical pushrod emerges from the cover plate through 

a bushing. It ties ~o a string, the other end of which 

attaches to a flywheel on a small 57 RPM motor to provide 

reciprocating motion; the stirrer falls by gravity. 

ELECTRONICS: Figure 2 gives the electronic config­

uration needed for the pulse technique. A Chesapeake U-100 

RF generator puts out a continuous series of shaped 8 )A.Sec. 

pulses to the upper transducer, through a transformer (im­

pedance matching boxa notebook ..2Q11: 17, 20, P. D. Edmonds) 

for improved signal transfer. After passing through the 

sample and being reconverted to an electrical signal at t.he 

lower transducer; the received pulse passes through a tuned 
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preamp (Arenberg PA-620L) powered by a regulated HV supply 

(HP 712B), and is displayed on a CRO (Tektronix 547, with 

lAl dual-trace plug-in). The sample's attenuation of the 

signal as a function of liquid path length is observed vis­

ually on the CRO and measured by reference to a comparison 

signal which can be attenuated in precise steps. At some 

initial path length or micrometer height, the received sig­

nal and the comparison signal are displayed superposed on 

the CRO with their amplitudes adjusted to match at the peaks 

of their envelopes. The comparison signal is attenuated or 

deattenuated one fixed step (one db, with our attenuator) 

and the path length is changed to bring the pulses into 

sµperposition again. This is repeated until one runs out of 

micrometer travel or attenuator steps. The data points of 

relative attenuation as a function of height, [((h), are 
~ . , 

least-squares fit to the form (L=~x + b to get the linear _,,/ 

absorption coefficient ~ • In practice; theoretical diff­

raction losses are first subtracted from CL(h). The lower 

half of the electronics schematic is concerned with the dis-

play of the comparison pulse. Part of the initiating pulse 

shaping the RF output pulse of the Chesapeake is taken off 

as a trigger signal. This is subsequently reshaped into a 

square wave of very stable height and adjustable duration 

by the Tektronix 162 and 163 units. This square wave modu­

lates the RF output 9f the highly stable reference signal 

generator, an. .HP 606A. The precision., frequency- compensated 
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0-12 db attenuator (HP 355 C) passes the signal out to the 

second channel of the CRO. The use of separate CRO channels 

for received and comparison pulses eliminates the problems 

of impedance changes and mixing nonlinearity . It also facil ­

itates use of the variable time delay on the sec ond chan­

nel to bring the signals into superposition- -especially for 

velocity measurements discussed shortly. The only critical 

parameters in the setup not related to stability are the 50 

ohm impedances. which must be presented to the input and 

output of the attenuator for it to give calibrated atten­

uations. The HP 606A has an output impedance of 50.Q ; the 

scope channel input must be terminated by a frequency-compen­

sated 50J1. dummy load (Tektronix part no. 011-0049-00) ·; 

and the generator-attenuator-dummy load interconnections 

must be made with 50Sl. cable. These considerations were 

overlooke.d in the original electronic design. 

Of course, the preamp in the received channel :. must 

be linear and noise free. The overall signal levels are 

chosen as the smallest for an acceptable signal-to- noise 

ratio at the CRO (say, 10 db) at the highest attenuation at 

the preamp's frequency of least gain. For our system, a 

JOOV peak-to-peak signal at the upper transducer is satis­

factory. A pulse duty of less than one percent insures 

low sample heating; the 8r-sec. pulses repeat on the average 

every msec. The pulses must be long enough to contain about 

50 RF cycles minimum to insure good spectral purity, and 
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they must similarly be well-shaped and smooth. 

Sound velocities are measured from the received 

signal delay as a function of liquid path. Initially the 

received signal's leading edge is aligned with one fiduciary 

line on the CRO screen (the peak is flat and hard to locate). 

As the path length is changed, the variable delay on the 

CRO necessary to restore the display is observed. A least­

squares fit of delay to height yields the sonic velocity di­

rectly. There are some difficulties with the technique, as 

the signal amplitude varies with liquid path and hence in 

discernible shape. Limited careful checks in which one par­

ticular RF cycle was tediously followed rather than the 

envelope edge indicate that only the least-absorbed 4.5 MHz. 

signal is suitable for the simpler leading-edge type of 

measurement. 

AUXILIARY EQUIPMENT: As mentioned above, we 

require an apparatus to determine densities of solutions, 

either for establishing initial e <:-->X correlations or for 

identifying cQmposittons of aliquots taken from samples 

being used in ultrasonic or viscosity measurements. We use 

glass pycnometers hand-blown from marked small-bore tubing. 

As a result of the marking, they have calibrated divisions 

on the neck for reading and interpolating the liquid vol­

umes. They also have caps for stopping evaporation. The 

caps must be placed on carefully to avoid slightly pressur­

izing the contents, as the thin pycnometer bottoms bulge 
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easily. They are filled using ground- glass syringes fitted 

with long 17 gauge or finer stainless steel needles. 

The pycnometers are thermostatted in a Tamson 

TV40 water bath of 40 liter controlled volume. The bath 

controls within 0.005 C. over an hour with~.a variation over 

the volume of 0.005 c. To achieve this accuracy, the bath 

requires a regulated flow of cooling water of fairly stable 

temperature, with flow rate and temperature adjusted to 

induce the proper cooling/heating cycle. Cooling water is 

supplied by a Tamson T3 water circulator, itself cooled by 

either tap water or the probe of a Tamson PBC-5 portable 

refrigeratinn unit. 

Temperatures were commonly observed visually on 

Prince -10 to +100 c. or -10 to +50 c. glass thermometers. 

Readings could be interpolated and reproduced to a little 

worse than 0.01 C. A platinum resistance thermometer (Leeds 

and Northrup ser. 676711; notebook .2.Q2.Q.: 145 ff.) was .used 

in conjunction with a potentiometer to observe the bath 

fluctuations, to calibrate the glass thermometers, and to 

closely resolve the critical pointo These tests and cali­

brations are described in a later Appendix. 

The pycnometer masses, dry and filled, were meas­

ured on an analytical chain balance (Weston Bros. type BB, 

ser. 35973; weights : Ch. E. no. 20187) to o.1 mg. after 

cleaning and drying their exterior surfaces with reagent 

acetone. Reagent acetone was also used to clean and dry 
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their interiors, alotig with dry air blown in through stain~ 

less steel needles. The balance was also used in making up 

flasks of solutions by weight for the initial ~«-..:>- ~ studies. 

Shear viscosities were determined in an Ostwald­

Cannon-Fenske viscomete.r, of the bent-U design with two 

calibrated bulbs on the capillary arm of the U separated by 

a neck marked with a reference line. Viscometer operation 

and calibration is discussed in NBS Monograph no. 55. The 

viscometer was held in the Tamson bath by an array of clamps 

and aligned visually with a plumb line. For proper temper­

ature control the viscometer must be almost fully submerged. 

Then to impeded water vapor and/or air from circulating in 

the viscometer vapor space, we led plastic tubing from the 

arm ends to the outside air. Flow times were recorded with 

a synchronous electric timer resolving to 0.01 sec. operated 

by a snap switch. The viscometer was cleaned originally 

with chromic acid cleaning solution briefly, and routinely 

with reagent acetone. 

CHEMICALS: 100 gm. bottles of Matheson, Coleman, 

and Bell 99% purity lutidine were combined into 500-1000 ml. 

lots, dried by refluxing over Bao, and distilled (notebook 

.2.Q.1.g: 19,68,104,113; ..2.Q.2Q: 28,115). Occasional water deter­

minations in the stored, distilled lutidine by titration 

with Karl Fischer reagent showed contents of 0.04% typic­

ally. Better purification could be obtained by gas chrom­

atography, fractional crystallization, or zone-refining the 
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solid, but these are too difficult. Laboratory distilled 

water was the other component of the critical mixtures and 

also served as one of the viscometer calibrating fluids. 

Metal ion assays performed incidental to cell corrosion 

tests showed traces of Sn ions but no other common metal 

contaminants. Baker reagent acetone was used in cleaning 

and also for viscometer calibration. A total ultrasonic 

calibration, to be described later, was run on Mallinckrodt 

thiophene-free analytical reagent benzene, titrating as less 

than 0.12 mole 5 water (notebook 5096: 20,J4). 

Lutidine/water samples for Viscosity' e <.-- ) x " stud­

ies, and ultrasonics were all disjoint. The large amount of 

lutidine used in any one ultrasonics sample necessitated 

several consecutive reuses of the same sample, diluted ap-

propriately each time. Upon long storage the solutions 

tended to discolor but critical properties--at least Tc-­

seem unaffected. 

SUPPLIERS 

Chesapeake Instrument Co. 
Shadyside, Mdo 

U- 100 signal generator (ser. 118) 

-500 W instantaneous peak into 100~-resistive 
load; adjustable. 

-0.9-200MHzo with 12 plug-in coils 
-rise time 0.5 µ.sec. 
-pulse width 1,1.5, or 6)-Lsec. :nominal 
-internally or externally triggered; . 100V 
-pulse re:p.?tition rate, internal trigger: 50 -

7000 Hz. 
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Arenberg Ultrasonic Laboratory, Inc. 
94 Green Street 
Jamaica Plain, Mass. 02130 

PA-6201 preamp {ser. SN 241) 

-gain: dependent on freq. and bandwidth; 
approx. 35 db min. 

-Input impedance 93-15, 000 n_; output 2. 7k..P., 
capacitatively coupled 

-0.1-17 MHz. 
-has instruction manual on file 

Hewlett-Packard 
275 Page Mill Road 
Palo Alto, Calif. 

712B regulated DC power supply {ser. 002-04783) 

-0-500 out, 200 ma. max. load; also -300V, 50 
ma.; 6.JV AC CT, 10 A. {unreg.); etc. 

-less than 50 mv. change on 500V line, no loa:l. 
to full load 

-less than ±100 mv. change for± 10% line in. 
-less than 500p.v ripple 
-internal impedance at full load 0.1.n.in ser-
ies with 25 p.H 

-current metering; overload protection 

606A signal generator (ser. 038-03448) 

-(exterusive spec sheet) 
-50kHz.-65 MHz. in 6 bands; freg. acc. within 

1% 
-calibration within 0.01% (BFO), 0-50 c. 
-RF output 0.1)"-V-3V continuously adjustable, 
into 50 resistive load 

-output accuracy with change of vernier ±1 db 
-freq. response ± 1 db over the entire fpeq. 
band range at any setting of output 

-output impedance 50.Jl.; SWR 1.1on1V range; 
less than 1.1 on 1 and 3V ranges to 20 MHz. 

-spurious harmonic output < 3. 
-continuously adjustable amplitude modulation 

0-100%, constant within ±i db over full 
range of carrier freq. and output level; 
DC to 20 kHz. bandwidth 

-envelope distortion < 1% at 30% modulation 
-incidental FM<0.0025% or 100 Hz. (larger) 

on lV and lower ranges 
-spurious FM < O. 001% or ± 20 Hz. 
-spurious AM: hum and noise -70 db 
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-freq. drift: 1V and lower ranges,< 0.005% or 
5 Hz. for 10 min. period after warmup or re­
stabilization at freq. of use 

355 C attenuator (ser. 219-00194) 

-0-12 db in 1 db steps, ± 0.05 db 
-0-1000 MHz. compensation 
-0.5 W max. dissipation 
-50~ in and out 

Tektronix, Inc. 
s. W. Millikan Way 
P.O. Box 500 
Beaverton, Oregon 

547 oscilloscope (ser. 006668) 

-(extensive spec sheet and manual) 
-sweep rates 0.1 µ..sec./cm. to 5 sec./cm. in 

24 calibrated steps, t 2%; uncalibrated ver­
nier to o.4 of rate 

-sweep magnification 2X, 5X, and 10X, ± 5% 
-trigger source, coupling, level all adjust. 
-time-delay on sweep O .1 JJ-Sec. to 50 sec., 
t 1% of indicated delay, ± 2 minor divisions 
of multiplier 50p.sec.-50 sec.; incremental 
delay accuracy t 2 minor divisions; 
jitter< 0.005% 

-horizontal deflection continuously variable 
0.1 V/cm. to 10 V/cm.; DC-4oO kHz. (3 db) 

-input 1 M .n., shunted by 55 pF. 
-has internal amplitude calibrator; output 
trigger, gate, sweep signals 

-tolerates t 10% line v~ltage variations 

calibration service; local representative 

1A1 dual-trace plug-in (ser. 014214) 

-50 mv./cm. -20 V/cm.; DC-50 MHz.; rise time 
7 nsec., 15 pF. input 

-5 mv./cm/; DC-28 MHz.; rise time 12.5 nsec., 
47 pF. input 

011-0049-00 so.st.termination 

-freq~compensated over wide range 

162 waveform generator (ser. 007495) 

-pulse, gate, or sawtooth of adjustable 
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duration and repetition 
-externally or manually triggered 
- pos. pulse:+ 0-50 V; 10 ~sec. to 0.05 sec.; 
rise time'"'-'1 f-Sec.; repetition 0.1 Hz.-10 
kHz. 

-neg. sawtooth: amplitude decreases uniformly 
from 150 V to 20 V; duration 100 p.sec. -10 
sec.; repetition 0.1 Hz. - 10 kHz. 

-output .-.1000.rz.. 
-trigger: any pulse, into ,...__, 1 M..0-, pulse 15\ 

V, 5 msec. or less rise time 

161 pulse generator(ser. 006421) 

-to supply calibrated rectangular output or 
pos. gating pulse; variable delay on Baw­
tooth input 

- + 50 V gate, not adjustable 
-output impedance 1 kD- max. 
-trigger sensitivity 3 V p-p min.; max. rep-
etition rate 50 kHz. 

163 pulse generator (ser. 1123) 

- to supply rectangular pulses of adjustabie 
duration and amplitude; triggered by pos. 
pulse or sawtooth; variable delay on saw­
tooth 

-0-25 V p-p pulse 
-pulse output impedance 500D-; varies with 
amplitude setting; min. load 3.5 k..rL 

C-12 oscilloscope camera 

E. H. Sargent and Co. 
4647 W. Foster Ave. 
Chicago, Ill. 

S-84805 constant temperature water bath; circ. 
pump and heaters with separate controller (excl. 
contact thermometer) 

-heaters : 400 W fixed booster; 300 W adjust­
able uncontrolled; 250 W adjustable, control­
led by saturable reactor; all switchable 

-regulation ± 0.01 C. and uniformity ± 0.01 c. 
to 70 c.; ±0.005 C. in vicinity of 25 c. 

S-84810 water bath ; Pyrex 16" dia. by 10" high 

S-81840 mercurial thermoregulator (contact thermo­
meter) 
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ASTM Ostwald-Cannon-Fenske viscometer 

-inherent accu~acy discussed for general type 
in NBS Monograph no. 55 

The Gaertner Scientific Corp. 
1201 Wrightwood Ave. 
Chicago 14, Ill. 

M~{J.2 micrometer slide (ser. 2352P) 

-accurately ground and corrected lead screw 
and lap-fitted nut 

-threaded carriage for mounting 
-100 mm. (certificate 100.000@ 20 C.), 
reading to 0.001 mm. with 10 part vernier; 
lead screw pitch 1 mm. 

P. M. Tamson 
Zoeltermeer, Holland 

local: Neslab Instruments, Inc. 
P. O. Box Y 
Durham, N. H. 03824 

TV40 viscometer bath (ser. 660239) 

-0-230 C., ± 0.005 C. (0-100 C.) 
-40 liters capacity, most inside controlled 
volume (baffled) 

T3 circulation thermostat (ser. 0003635) 

- ± 0.06 c. to 250 c. 
-capacity 3.5 liters 
-pump head 10 1 , 130 gal./hr. 

PBC-5 portable bath cooler (ser. 75043J) 

-temperature control ;allowed to -15 c. 
Englehard Industries, Inc. 
Amersil Quartz Division 
685 Ramsey Ave. 
Hillside 5, N. J. 

delay rods 

-Amersil Optical Quality #2 , fabricated from 
specs on drawing 60037 (earlier 50012-1) 

Keim Precision Minrors Corp. 
124 E. Angeleno Ave. 
Burbank, Calif. 91502 
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silvering of delay rod ends (C.I.T. P. O. 25L-
50364) 

-on one face and 1 11 down adjacent sides 
-10 max. resistance between any two points 

Leeds and Northrup Co. 
4901 Stenton Ave. 
Philadelphia 44, Penn. 

7556-1 guarded six-dial potentiometer (K-6) 
(ser. 1631257) 

-high range 0-1.6 V in steps of 1.0 JAV, 
± { 0. 000 5% + 1 }Av) 

-plus accessory standard resistors, adjustable 
DC resistors 

-used for temperature measurements in con­
junction with Pt thermometer below; cf. note 
by H. Strumpf to C. J. Pings on use of 
potentiometer for temperature measurements. 

Platinum resistance thermometer (ser. 676711) 

-calibrated by NBS, Nov. 18, 1949; certifi~~ 
cate on file in Ch. E.; test no. 122106 

-polynomial coefficients of resistance in 
temperature are in bounds 

There is no record in any reports or notebooks by previous 
1-nvestigators, of the sources for the X-cut quartz trans..o . ~ 
ducers, or or the glass tubing blown into pycnometers, 
except for the cryptic notation about the transducers, 
"ex I.C.I." Transducers which are at least similar in 
performance can probably be obtained from Valpey-Fisher 
Corp., 1015 First Street, Holliston, Mass. 01746. 

Other useful equipment, noted only by manufacturer or supp~ 
lier: 

Coaxial cables, BNC connectors: Belden; widely 
available 

Submersible circ. pump: Little Giant Corp., Okla. 
City; distributed by Fisher Scientific 

Syringes and needles: Becton, Dickinson and Co. 
"Yale" series with Leur-Lok needles; avail­
able readily through Bio. Dept. 

Silicone grease: Halocarbon Products Corp., Hack­
ensack, N. J.; does not tarnish platings 

Remaining equipment: either standard items from stock or 
common fixed equipment, or fabricated from same according 
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Appendix II. Operating Procedure 

Our experiments lie in three groupings. First, a 

set of mixtures spanning the full range of mole fractions 

were carefully prepared and their densities measured on sev­

eral isotherms. The data were used to compute excess vol- . 

umes of mixing but more importantly to construct ~ <--> X 

calibration curves for pinpointing by density the composit­

ions of samples made volumetrically for ultrasonics or 

viscosity measurements. The original data reported in note­

book .iQ.Z.g: 43-61 and the more carefully taken later data 

recorded in notebook .2.Q.22: 11-13 are reduced to final den­

sity values in .2.Q.22: 11-13 and to excess volumes in ~:56. 

Table I presents the results from the accurate later data. 

Second, a similar series of mixtures were prepared and the 

shear viscosities measured on three or four isotherms. The 

raw data are recorded in iQ.Zg: 43-61; 113 ff. and tran­

scribed in .2.Q.2.§: 48-9. Values of \s are computed at .2.Q.2.Q: 

54-5 and these in turn are fitted for temperature depend­

ence to theoretical forms in .2.Q.2.Q.: 75-80. These results, 

which were used to construct figure .5 of paper ll, are tab­

ulated in Table II. Third, a similar series of compositions 

were prepared for ultrasonic absorption and velocity meas­

urements. Actually, all the experiments were run several 

times with various improvements in the ultrasonic cell and 

procedure, before a satisfactory full set of data was 



obtained. Each mixture was prepared volumetrically, identi­

fied by density, entered into the sample cell, measured for 

~ and 13 at four isotherms (when possible) accessed succes­

sively at four frequencies (4.5,7.5,10.5, and 13.5 MHz.) 

each time, rechecked for composition by density, and stored. 

Succeeding mixtures were prepared by enriching or diluting 

the previous mixture with lutidine. About every three com­

positions, fresh lutidine and distilled water were used, 

usually drawing from the same lutidine distillation batch 

as the previous set. The raw data require some discussion, 

particularly about diffraction and mode conversion correc­

tions and error bounds~ so we defer this presentation to 

Appendix IV. All equipment, chemicals, and procedures were 

thoroughly tested and calibrated as reported in Appendix III 

following. 

Our specific procedure for accumulating the e<-~ X 

density calibration data is straightforward. The Tamson 

bath is warmed up while the pycnometers, weighing flask, and 

syringes are cleaned. The Tarnson is trimmed to the first 

isotherm and the sample is made up by weight: the flask is 

weighed empty; one syringes out the approximate volume of 

lutidine into the narrow-neck weighing flask, then trims the 

weight drop-by-drop (quickly, to avoid evaporation and water 

pickup errors). The flask is stoppered and weighed. The 

procedure is repeated with the water portion, using a new 

or cleaned syringe. A sample is entered into the pycnometer 

, 
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with a small syringe and fine needle, with care to avoid 

forming bubbles in the pycnometer bulb or neck or to remove 

those that form. The pycnometer is equilibrated until 10 

minutes after the liquid level stops visibly rising in the 

neck. After tapping loose any new bubbles 1 the volume is 

read and the Tamson reset for the next isotherm. After all 

four isotherms have been taken, the pycnometer is removed, 

its exterior and cap are dried with reagent acetone, and it 

is weighed, and finally cleaned. 

The viscosity technique is similar. The Tamson 

is warmed up and the viscometer and syringes cleaned. The 

sample is made up approximately by volume in a 50 cc. flask 

and identified by density in a pycnometer much as above, at 

a reference temperature of 33.32 C. Two lengths of plastic 

tubing (one with suction bulb) are attached to the viscom­

eter, which is then inserted in the bath and aligned verti­

cally by a plumb line. One syringes as close as possible 

to 10 cc. of the sample into the viscometer, corks the 

tubing ends, and equilibrates the setup at the first iso­

therm for 15 minutes. The corks are removed and the suction 

bulb used to lift the sample to the proper level in the 

capillary arm. The time of flow between the fiduciary 

lines (around the upper bulb in our work, while this is not 

recommended in the NBS Monograph no • . .5.5) is recorded. The 

timing is repeated twice more and then a new isotherm 

selected. Again, 15 minutes equilibration time is allowed 
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before running . The composition was sometimes rechecked by 

density after the viscosity runs. The viscometer is then 

removed and cleaned with acetone. 

Ultrasonic measurements are somewhat more in~ 

volved, partly because of t he complication of cell a s sembly. 

The Tamson and Sargent baths are warmed up. The alignment 

of the upper with the lower delay rod is checked by running 

them both into a close-tolerance Lucite tube made by the 

shop. Occasionally, we measured the additive constant for 

converting micrometer readings to absolute delay rod spac­

ings. These must be known for diffraction corrections to 

the measured absorptions. Next the upper rod is removed and 

the cell proper is cleaned with acetone and seated on the .'... 

lower rod. The upper plate and its stirrer are cleaned and 

fastened to the cell , with a strip of Teflon tape run 

around the cell lip for extra sealing v The stirrer drive is 

assembled. Circulation to the jacket is begun and one then 

checks for leaks to the inner cell. The Lucite box is assem­

bled and its temperature control warmed up. Then about 350 

ml. of sample is made up volumetrically. An aliquot is put 

into a pycnometer for identification by density. If the 

composition is too far from the desired one, the bulk sample 

is readjusted and rechecked by density. As the electronics 

are switched on to wa rm up , the sample is quickly poured 

into the cell through the delay rod hole. The Teflon collar 

is slipped onto the upper rod and the rod is put into the 
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upper plate hole. The rod is clamped into the micrometer 

arm again and then the collar is tightened to the threading 

on the upper plate. For later runs, we also taped a Saran 

bag as a vapor trap to the collar on one end and to the 

upper part of the delay rod on the other. The ·Lucite box 

is closed, stirring is star~ed, and the bath temperature is 

trimmed. 

While the sample equilibrates, the electronics 

are tuned for the best received signal at the initial fre-

quency (notebook ~:80 records best tuning parameters). 

This entails switching to the optimum settings on the Ches­

apeake tuning dial, impedance matching box input and output 

taps, and Arenberg preamp input and output tuning slugs. 

The variable resistance on the impedance box and the resis­

tances in and out on the Arenberg are adjusted by trial and 

error. Occasionally the Arenberg input capacitance or its 

tuning slugs may need attention, again by trial and error. 

One tries for maximum signal with a monotonic, smooth envel­

ope. Sometimes the grease acoustical contact in one or the 

other transducer assembly gives out in part or in full, as 

evidenced by severe or total loss of received signal. Some 

pitfalls in the tuning procedure are noted in notebooks ...2.Qlf.: 

127; 5090: 41 ff. 

One is ready to start when the sample has equili-

brated at least t hour with occasional stirring and the 

electronics are tuned. The predominant pulse frequency is 
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measured by zero-beating the channel A-B added signals on 

the CRO. The average of the bath temperature in its cyc­

ling is recorded. The velocity may be measured first, as 

described in Appendix I. Care is taken to keep the microm­

eter and also the scope delay dial moving in one direction 

only, for any one set of height- delay measurements. This 

eliminates backlash errors in the delay dial, micrometer, 

and the riding of the Teflon collar upon the delay rod. 

After the ~ measurements, the ~ data are taken, again keep­

ing the micrometer moving in one direction on any one pass. 

Generally we made three _ passes, up-down-up, to eet three 

independent sets of data for better statistics. The first 

run is alway made EJ2, to assure that the received signal is 

as large as possible on the CRO screen without going off the 

edges. The U-100 amplitude is adjusted to make the display 

fit e Of course, for all « and ·p measurements the stirrer 

is off. One must be careful that the signal is stable for 

the o( data; if it visibly alters in size over periods of 

about 30 sec. it may give invalid data. Causes of instabil ­

ity include poor thermal homogeneity· in the sample, 

especially at high lutidine concentrations where convection 

is easiest to set up; and poor •sync' adjustment of the U-

100. For some overall tuning, there may also be enhanced 

mode conversinn errors, a form of overlapping and interfer­

ing echo in the delay rods that causes oscillations to be 

superposed on the monotonic decrease of amplitude with 
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micrometer height. Since the oscillations are hard to 

characterize, they ruin the adaptability of the data to a 

linear least-squares fit. Any data run with gross dispar­

ities in micrometer intervals for succeeding db attenuation 

steps should be rejected and the apparatus should be retuned. 

The tuning is all redone to reach the next fre­

quency for~ and 'P measurements, with only a nominal wait 

for restabilization of the electronics and with brief stir­

ring of the sample, say 15 sec. After all four frequencies 

have been run, one changes the bath temperature and re-equil­

i brates the sample with occasional stirring for another ~ 

hour. One finally runs through all four isotherms--or less, 

if one or two of the upper isotherms is in the two-phase 

region at the particular composition. By this time the 

sample has been in the cell about 8 hours! An aliquot is 

taken for rechecking the composition by density, and any 

visual turbidity is noted, as this may signal contamination 

by cell corrosion or jacket-to-cell leakage. While the ali­

quot is thermostatting, the upper plate of the cell is 

removed to expose the full sample, which is rapidly trans­

ferred to a storage flask using large 50 cc. syringes 

without needles. Electronics, enclosure heater, and bath 

are all shut down. The cell is disassembled and washed with 

acetone and air-dried. Finally, with the pycnometer data 

recorded, the Tamson is shut down and the pycnometer is 

cleaned. 
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Table I. Density Calibrations and Excess Volumes of Mixing 

X(lutidine) T(C.) 
I 

I 

0.9994 

0.0000 

0.0300 

0.0600 

0.0663 

0.0901 

0.1240 

0.1769 

0.2100 

0.2996 

o.4003 

31.98 
33.99 

32.00 
34.oo 

31.96 
33.98 

31.98 
33.44 

31.98 
33.24 
31.97 

31.98 
33.46 

31.98 
33.50 

31.98 
33.50 

31.97 
34.02 

31.96 
34.04 

31.96 
34.04 

* ** e ,g./ml. est. e32 
I I I 

I I ve,ml.Anolt 

0.91144 
0.90966 

0.99505 
0.99440 

0.99228 
0.9913.5 

0.98978 
0.98883 

0.98921 
0.98837 
0.98924 

0.98729 
0.98618 

0.98496 
0.98372 

0.98113 
0.97980 

0.97853 
0.97664 

0.97113 
0.96916 

0.9621.5 
0.96014 

0.91142 
o.ooo 

0.99.505 
o.ooo 

0.99226 
-0.238 

0.98977 
-0.468 

0.98920 
-0.513 

0.98727 
-0.684 

0.98494 
-0.926 

0.98111 
-1.267 

0.97850 
-1.4.52 

0.97109 
-1.8.53 

0.96211 
-2.110 

* ml. • 1.000027 cc. 

** linear interpolation 

# -1 -1 linear interpolation, units g. ml. c. 

0.00089 

0.00032 

0.00046 

0.00064 

0.00067 

0.0007.5 

0.00082 

0.00088 

0.00092 

0.00095 

0.00101 
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Table II. Shear Viscosities 

* X(lutidine) T(C.) ~ (g./ml.) V (centi..,, i· 11s(cent1-
I I I stoke) I poise) 

I L 
0.0000 24.83 0.99711 0.8963 o.8937 

32.55 0.99487 0.7598 0.7560 
34.56 0.99421 0.7299 0.7257 
39.92 0.99227 0.6591 0.6540 

0.0263 ** 32.52 0.99239 1.234 1.225 
33.33 0.99202 1.214 1.204 
33.73 0.99184 1.203 1.193 
34.54 0.99149 1.183 1.173 

0.0545 32.40 0.98998 1.895 1.876 
33.21 0.98949 1.914 1.894 
33.60 0.98926 1.980 1.959 

0.0630 32.42 0.98922 2.058 2.036 
33.21 0.98870 2.085 2.061 
33.61 0.98844 2.151 2.126 

0.0710 32.40 0.98855 2.194 2.169 
33.21 0.98800 2.211 2.184 
33.61 0.98773 2.276 2.248 

o.o84o 32.41 0.98742 2.386 2.356 
33.22 0.98684 2.369 2.338 
33.61 0.98655 2.371 2.339 

0.1032 32.40 0.98599 2.580 2.544 
33.21 0.98538 2.531 2.494 
33.61 0.98507 2.507 2.470 
34.41 0.98446 2.474 2.436 

0 .1265 32.40 0.98442 2.785 2.742 
33.21 0.98377 2.717 2.673 
33.60 0.98345 2.686 2.642 
34.40 0.98279 2.624 2.579 

0.1544 32.40 0.98245 3.025 2.972 
33.21 0.98177 2.943 2.889 
3,.61 0.98143 2.896 2.842 
3 .41 0.98075 2.820 2.766 

(continued on next page) 

* kinematic viscosity, Y- = ~s/e 
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Table II. Shear Viscosities (continued) 

X(lutidine) T( C.) ~ ( g ./ml.) * r ( centi- 1ts ( centi-
I I I stoke) I poise) 

_ _L 
** 32.54 0.98063 3.126 3.066 0.177 

33.34 0.97993 3.039 2.978 
33.74 0.97958 3.000 2.934 
34.54 0.97887 2.914 2.852 

** 32.54 3.340 3.242 0.2979 0.97071 
33.34 0.96994 3.243 3.146 
33.74 0.96956 3.173 3.076 
34.54 0.96880 3.089 2.993 

** 
o.4017 32.54 0.96145 2.840 2.730 

33.34 0.96065 2.766 2.657 
33.74 0.96025 2.732 2.623 
34.54 0.95946 2.663 2.555 

** 0.91168 0.787 0.9901 32.57 0.717 
33.36 0.91097 0.780 0.711 
3~.72 0.91065 0.777 0.708 
3 .53 0.90992 0.768 0.699 

--~-· -· 
* kinematic ViSCOSi ty, Y" = 1<.J f;_ 

** less reliable: poorer viscometer charge volume control 
and mole fraction determination 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

Shear Viscosity and Its Temperature Dependence 
at One Reference Temperature (33.2 C.) From Fit to Eq. 
(15) of Paper II ~ 

X(lutidine) I ~ 33.2 I ( d ln 7ls / dT) 33 • 2 L L 
0.0000 0.7460 -0.0204 
0.0263 * 1.207 -0.0217 
0.0545 * 1.894 +0.0167 
0.0630 * 2.060 +0.0265 
0.0710 * 2.184 +0.0108 
0.0840 * 2.338 -0.0074 
0 .1032 * 2.494 -0.0236 

(continued on next page) 
-*,__,U....,s .... e ..... a-s-ec...,o-n ..... d,.__t...,er-m-1....,,n~Eq...--. -tc....,.1~5+) --------·-·- - -----
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Table II. Shear Viscosity ••• Temperature Dependence ••• 
(continued) 

X(lutidine) I ·yt ~3. 2 I I ( d ln ~s./ dT) 3 3• 2 _L 

0.126~ * 2.674 -0.0309 
0.154 2.888 -0.0359 
0.177 ** 
0.2979 ** 3.156 -0.0406 
o.4017 ** 2.670 -0.0331 
0.9901 ** 0.712 -0.0129 

* used second term in Eq. (15) 

** less reliable basic 1l~ data; see table above 
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Appendix III. Calibrations and Tests 

The first important calibration is that of the 

pycnometer volume, which was done with distilled water at 

four temperatures. The experiments are recorded in note­

book~: 27 ff., while the data are reworked in ..2.Q..2.Q.:4ff. 

The calibration was found to be better if no temperature 

coefficient of the volume was included. We note here that 

no buoyancy corrections were applied in the weighings with 

stainless steel weights. Since all the solutions are in a 

restricted range of density and the lutidine purity is no 

better than 99.5%, it does not appear worthwhile to rework 

the weight data. Some relative calibrations of the weights 

used (unrecorded) indicated that the uncorrected nominal 

masses give an accuracy of about 0.5 mg., within the error 

bounds of evaporation and water pickup in making the orig­

inal { <.-..;.) X identifications. 

Lutidine purity is hard to determine quantitative­

ly. Water content was assayed by Karl Fischer reagent 

several times (notebook~: 37 ff.; 5090: 152). It was 

held to 0.3 mole % for the initial e~~ x identifications and 

to 0.06 mole % for final ultrasonic measurements. Freedom 

from isomers and homologs was not gauGed; this requires gas 

chromatography. Only the claim of 99+% mole purity by the 

supplier (supported by a reported m.p., -7 to -4 C.) can be 

reiterated. The distillation after drying in our laboratory 
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served more to draw the lutidine off the bed of drying agent 

than to remove homologs, which is better done by fractional 

crystallization, zone refining, or gas chromatography. The 

effectiveness of the new cell plating and sealing against 

conbamination by cell corrosion (problems encountered: note­

book ..2.Ql_g: 50, 98, 102 ff., 127; 2Q29.: 114, 130 ff.) or evap­

oration can be weighed by the agreement of initial and final 

aliquot compositions in runs; also by lack of noticeable 

turbidity after sample runs. A final important aspect of 

mixture behavior over and above component purity is the es­

tablishment of our practical critical point X0 , T
0

, to 

accurately gauge our distance from the same in any run. Our 

first attempts at Xe and T0 are recorded in notebook ..2.Q.1_g_: 

29 ff.; a limited coexistence curve mapping is done in .2.Ql_?: 

74-8 to check the phase diagram published by Cox and Herinr,­

ton. We finally established T0 quite well at the same time 

that we used a platinum thermometer to calibrate our glass 

thermometers, check the Tamson bath stability (notebook 

2.Q2Q: 145 ff., esp. 148 ff.). Notebook 2.Q.2.§: 1 ff. reports 

some comments on the phase diagram and a closer determina~ · 

tion of X0 • Our best critical parameters are Xe * 0.065 

±0.001 lutidine and Tc = 33.57 c. 
The accuracy and precision of our temperature 

measurements vary. Most viscosity, density, and ultrasonic 

data were taken with only calibrated ~lass thermometers for 

monitoring. The temperatures for viscosity and density are 
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most reliable, as the experiments were performed in the 

closely-controlled and homogeneous Tamson bath. Tempera~ 

tures in the ultrasonic cell are regulated by a poorer bath 

{Sargent) and in addition there is a temperature drop in 

transport of the circ~lating water. This drop, amounting 

to the 0.01 C. noted earlier, was measured by a zero-correc­

ted thermocouple in test recorded in notebook 2.Q.22: 18, and 

used to adjust sample cell temperature records. 

The ~ <.-~ X identifications are actually cali bra-

t ions and have no external checks. The shear viscosity data 

are better off, as the viscometer was calibrated with dis­

stilled water and reagent acetone (notebook .2.Ql.g: 42 and 

..5.Q.2..Q: 49-53-rework) using literature values for absolute 

water and acetone viscosities reported in the Handbook of 

Chemistry and Physics, edition 44, and Techniques of Organic 
~ 

Chemistry, ed. Weissberger, et al., respectively. The 

error bounds on the series of lutidine/ water mixture meas-

urements, from differences in pressure head between calibra­

tion and run conditions, were noted according to N.B.S. 

Monograph no. 55 in notebook~: 49 ff. 

In the ultrasonic experiments there are numerous 

possibilities for mechanical or electronic errors, either 

systematic or random. We recount below the numerous checks 

we performed, except for measurements of the principal sys­

tematic errors discussed with the data reduction schemes in 

Appendix IV. We might mention that these main correctible 
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errors are in the delay dial calibration, for velocities, 

and in the attenuator calibration, diffraction correction, 

and mode conversion, for absorption. Also in the final data 

reduction, the visual CRO screen reading error and the 

remaining systematic and random errors discussed below are 

lumped into an equivalent random error source . 

We first consider the mechanical aspects of sound 

propagation. Before acoustic mode conversion in the delay 

rods was identified as the major source of signal drift, we 

looked for mechanical errors in the micrometer alignment and 

travel. The micrometer precision was checked with a travel 

indicator over short ranges (notebook iQ.1.g: 88). The 

effects of angular misalignment of the delay rods upon the 

amplitude and envelope of the received signal were checked 

with a goniometer replacing the micrometer (notebook ..2.Q2.Q: 

60 ff.). The resultant signal variations with angl~ were 

recorded photographically. No clear leads resulted, but it 

became apparent that alignment was not as critical as 

thought previously for either absolute signal levels or for 

relative change with height. The simple procedure of 

aligning the two delay rods before the run by use of a Lu­

cite tube is certainly adequate. The smoothness of finishes 

on the delay rod faces also does not seem critical, as the 

lower Duralumin face deteriorated visibly without bad 

effects. Binding of the Teflon collar against the moving 

upper rod did cause signal variations, but this was care-
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fully avoided during each run .. (notebook ..2.Ql.g: 129; .2Q2Q: 

77). A final mechanical cause of signal variation is a var­

iable load on the transducer housings, hence on the trans­

ducer-rod contacts. In the misalignment tests, we sometimes 

loaded the housing with extra weight with its collet untight­

ened and achieved significant fractional increases in the 

received signal. Conceivably the pull exerted on the top 

housing by the RF cable could cause a smaller but still bad 

effect. Keeping the collet tightened eliminated the error. 

General accounts of signal drift errors we encountered are 

given in notebooks ..2Q.'.Z.g: 88-90, 104 ff.; jQ2Q: 29, 32, 35, 

39 ff. 

Electronic contributions to error are minimized 

first by using the best tuning, i. e., the simplest mono­

tonic envelope for the RF signal. Overtones, harmonic and 

FM distortion in poorly-shaped pulses cause spuriously high 

losses (see Nozdrev, ref. J of App. I) and accentuate the 

mode conversion problems. Instability of gain at the Aren­

berg preamp caused repeated problems, to the point of 

requiring some experimental runs to be abandoned. The lin­

earity of the Arenberg arid of the two CRO channels as a 

unit was verified after completing the ultrasonic experi­

ments, by dividing a variable-amplitude signal between the 

two circuits (notebook .2Q.2.2.: 41-2, 46-8). Stability of the 

CRO in gain and sweep was unquestionably excellent. The 

comparison ·signal amplitude is also very stable. Initially 
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there was a problem because its rectangular wave modulation 

had a slope, but this was eliminated (notebook 2Q2Q: 77) by 

bypassing an electronic module providing DC bias to the 

signal (part of the original design we inherited). The 

stability of the laboratory temperature probably aided that 

of all the electronics. 

Frequency accuracy depends upon the comparison 

signal generator, the HP 606A. We frequently recalibrated 

its vernier dial against its internal beat frequency oscil­

lator overtones. The BFO itself was checked against a 

Beckman counter (notebook .2Q2.2: 4J-5) and found to be well 

within specifications. The visual beat technique for meas­

uring received signal frequency by comparison to the 

re ~erence signal worked much more simply and at least as 

well as the alternative, matching a whole series of peaks in 

the two signals displayed expanded upon the screen. 

Several total calibration runs were made on ben­

zene, with the apparatus in various stages of improvement. 

Benzene's ix. and·µ values are well known (ref. 7, paper 

II) and are taken as standards. Our apparatus and procedure 

seem to give good results by this check {notebook ..2.Q.Zg: 

91; 2.Q.22: 34). Our sound velocity measurements in water 

(notebook ..2.Q.2..§: 35-7) indicate no dispersion with frequency, 

which again agrees with the literature. 
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Appendix IV. Ultrasonic Data Reduction and Results 

We first coniider the absorption data, composed of 

two to six sets of micrometer height (h): attenuation read­

ings tor each of 144 conditions or composition, temperature, 

and frequency (X,T.f). Reduction of the data to« values 

for each of the 144 conditions (denoted by some index k) is 

done in two basic steps. First, each full set or points, 

denoted by some double index h!'.! and composed of Nnk individ­

ual points, is least-squares fit to the linear form atn • 
~~ htn+ b~ (tor i•l,Nkn in FORTRAN-style notation). Second, 

the various values of~~ of absorption computed from each of 

the Nk data sets are combined into a weighted average ~k, 

taken as our best approximation to the t:rUe absorption in 

the silate k. In other words, the~~ are fit to the constant 

form~~• ~k. 
In practice, the fitting procedures are quite com­

plicated, for two reasons. First, we must correct the raw 

data points U~; h~n for systematic errors. Second, we 

must assign them realistic error bounds so that we can fin­

ally estimate the error bounds or the ~k. The following 

elaborations are incorporated into the reduction scheme: 

-Firstly, some data sets l9l recorded in the note­

books have obvious systematic errors, the presence of which 

was noted at the time of the experiment. Signal instability 

from poor tuning, trom convection currents in the cell, or 

from faulty preamp operation is the usual culprit. These 
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dat a sets are not even used. 

-Secondly, the raw attenuation readings Ov~n are 

corrected for t wo systematic errors, before fitting. Errors 

in the micrometer readings h~n, in the instrument or in ob­

servation are so low as to be negligible. The first system­

atic error is the deviation of attenuator readings on the 

HP J55C from actual attenuations. ~ These actual attenuations 

were measured after the completion of experiments by sending 

the attenuator to Hewlett-Packard in Palo Alto. Calibra-

tions at 4.5 MHz. and 13.5 MHz. are recorded in notebook 

..2.Q.22.: 80-81 ~ and are incorporated in the computing to trans­

late readings to true net attenuation. 

Second and more important is the correction for 

diffraction losses in propagation of the pulse through the 

liguid. A finite-area transducer does not produce a collim­

ated column 6f plane waves; rather, the beam spreads over 

some angle and attains a warped amplitude profile. The for­

mer causes incomplete exposure of the lower transducer to 

the total radiated energy. The latter causes destructive 

interference in signals generated across the lower transduc­

er face, hence rejection of a portion of that power imping­

ing on the trasnducer. The shape of the sound amplitude or 

velocity field equivalent for two finite circular transducm 

ers is governed by ordinary hydrodynamics. R. Bass (J. 

Acous. Soc. Am. JQ,602 (1959) ) presents calculations on the 

theory. We had to extend these to shorte~ distances between 
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transducers, with a new expansion of the integrand in the 

integral representation of the loss factor. We also veri­

fied the additivity of diffraction losses to true absorption, 

intuitively and numerically. Details of all our calcula­

tions will be presented later in this Appendix. 

The apparent diffraction loss ~ depends upon the 

absolute delay rod spacing ~' obtained from the micrometer 

reading through an additive consta..~t h0 • This constant was 

occasionally measured for the assembled apparatus. Thus we 

represent the total measured attenuation (translated from 

the nominal attenuation setting) atn as 

where A is the true sample absorption plus any random errors. 

The actual least-squares fit is then 

kn A. = 
i 

-Thirdly, we assign estimated errors to each data 

point Qtn. First is a constant error ~l from random frac­

tional changes in signal amplitude, in turn due to generator 

fluctuations or to sound-refracting convection in the cell. 

cr1 is given in our original notebook work and in our comput­

ing in terms of equivalent fluctuations in CRO display 

height at a nominal total height of I 0 C=i cm. usually). We 

take ~1 to be 0.06 cm. for our runs, which converts to 0.074 

db. Second is a scope-reading error ~2 in matching 
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comparison and received signals, roughly 0.15 mm. for us. 

Mismatch of the traces by a height o-'2 at a nominal display 

height of I = I 0 ~-0/8 • 686 , where Q.is attenuation as usual, --
gives an error in attenuation ~Q, 

6a.- (~)6I 
• ( 1 )t:f. 

8.686 I 2 

- 02 Q/8.686 
8.686 ! 0 e • 

The net estimate error is 

er kn = 1 ( 2 afn/8.686 2] t 
i 8.686 I

0 
(o'l) + (cr2 e ) • 

This error estimate is used first to weight the data points 

relative to one another, for we perform the least-squares 

fit by minimizing the error function 

Clearly, data points at high attenuations are weighted less, 

as 

~k 
n 

they are more error-prone. For the averaging fit of the 

to Gek, the estimated error a kn in each ac.~ is compounded 

from the presumably independent pointwise errors er t11, 
k 

""" ( aoc.n ) 2 ( O"" kni ) 2 • r oAfll 
Similarly, « k, our best approximation to the true sample ab-

sorption, is a weighted average, 
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from minimizing 

Its error compounds as 

1.. --

All the fits and error computations are done in a compre-

hensive computer program, which is flowcharted later. d ... 
k 

is not necessarily. the final estimated error, and it is not 

the only information we have on error levels--we also have 

'X-2k. The rescaling of errors and final confidence levels in 

the ~k are discussed under the sixth heading here. 

- Fourthly, in both the Nk individual linear fits 

for the~~ and the final averaging forcc.k, we exercise the 

option of deleting data points on either of two grounds. 

The first ground is automatic: a 3..;a __ :teat is run on each 

data point i in turn. This means that a.r and hr1 are ten­

tatively deleted and a new fit made to the remaining Nkn-1 

points. If the point 1 ends up more than 3 standard dev-
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-iations 3 o-k(i) from the line of tentative fit, it is 
n 

permanently deleted: 

"°" \'\, L "" " A 4 - I(. 'W\ < ~) n ~ - ~ " C t ) \ Compute R • ·. 
cf~- .. ... 

If { R ~ 3, delete the point 
R < 3, retain it. 

More than one point may be a candidate for deletion, but the 

program took only the latest one; we redid several choices 

by hand, taking the one giving the lowest~ (the notebook 

.iQ2.§. is corrected as of 7/13/71). Overriding the program 

choice in the case of nearly equivalent deletions calls for 

discretion, and is discussed in section 6, with details. If 

there were fewer than 4 data points to begin with, Nkn~4, 

the 3-d test could not be run. 

The second ground for rejection is the discretion 

of the user. Optional input to the computer program forces 

a deletion of the point ! and displays the resulting ~~ or 

~k. In the former case, it does not alter the automatic 

inclusion of ~k from11aa automatically-selected ~es~ deletion n 
in the final averaging tor ~k. If the deletion, on the 

basis of some observation during the experiment (recorded in 

the notebook), looks like a more reasonable and reliable 

course, the final ~k must be manually recomputed. We exer­

cised this option several times, but did not choose to 

alter the automatic results. We also tried some forced 

deletions in the final averaging of the~k and dtd excise a n 
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number of runs. 

- Fifthly, we tested for the presence of other sys­

tematic errors. The most likely error is a constant 

mismatch of the CRO displays in one direction (so it is not 

random). Since the received signal has a fluttering noise 

band at the outer edge of its envelope, we might by accident 

take the outer fringe of the total (noise + received signal) 

envelope to match the edge of the comparison envelope. 

Another possible error is insufficiency of the diffraction 

corrections. Either error changes the form of the equation 

our data should fit; our first ~ess was a quadratic, 

Now, the reduction of the data to net error func­

tions -x,2kn is not an adequate indication of the systematic 

error. That is, a quadratic fit yielding a lower-x..2 than a 

linear fit is not necessarily preferred. F. Sculli of phys­

ics clarified this in several discussions we had (notebook 

..2.Q.2.Q: 123-4; ..2.Q.22: 76); least-squares fits are simply not 

good indicators of systematic error, except in the following 

sense. If the quadratic coefficient 1 ~ improves J0 and also 

ends up with an attached error O"~n sensibly smaller than 

itself, say O" ~n < !T~, then 1 t is probably warranted in the 

data representation. Conversely, inclusion of a 1~ which 

has an error c'S t'n ~ T~ is unwarranted regardless of its ef­

fect onx,2 and does not represent the systematic error. 
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The quadratic terms in our typical tests were 

small, but they drastically altered «~ and increased <"k 
(notebook .iQ.2.2: 6)). We analyzed the form of the matching 

error more carefull7. Consider a received signal at zero 

attenuation with envelope height 11 composed of the true re­

ceived signal enTelope ri plus a constant noise band £. It 

is matched to the comparison signal I 0 , at a micrometer 

reading ho= 
11 + c • I 0 • 

Now, at an apparent attenuation of ~ db, the received signal 

is actaally attenuated by ~o db: 

I' • I e-n/8.686 
0 0 

• Cii> + c 

• I~e-n0/8.686 + c. 

Here .Bo is presumably linear with acoustical path, 

n0 • •C~-h0 ). 

Rearranging, we find the relation of !!o and ~ to be, for 

small £, 

n0 :: n + 8.686(..2...)(en/8•686-1) • ~c~-h0 ), 
Io 

and so a better equation for least-squares fitting the Ar11s 

Ai + 8.686J(eAi/8•686-1) • •hi + b. 

Trials of this equation showed a strong coupling or 'Y and• 

(large changes in ec and large values of c11and c1"), which 

were recognized as coming from the ~-like term in the unde?L 

bracketed term above. This was deleted to give 
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Ai + [a .686(eAi/8 •686-1) - AJ =«hi + b. 

Now o{ was not drastically altered from its linear fit value. 

Significantly, in all conditions k, l was small and <:i">>""f, 
so we concluded there is no significant systematic error we 

had not corrected. 

-Sixthly : Eventually, we had all our results {a~; 

O'kn; ~l and {c k; O'k; ~} • These are partly reproduced in 

Table II. In four runs kn we chose to reject the point de- ­

letion giving the lowest 'X.~n· In three cases (k={.K=0.2132, 

T=J4.66, f=4.5), n=5; k =(0.04J6,JJ.84,4.5],,!!=4; and k = 

@.o664,J2.66,4.5J,n =1) .there were two deletions giving very 

similar~n and o"kn but very different«~ (points 4&1, .5&1, 

6&1, respectively), so we averaged them. In the fourth case 

(k =[0.0288,J4.64,7.5],n =J), deleting point 5 gav~ a 

slightly better~n than did deleting point 4, but also a 

much larger ~k~' so we chose the latter. 

No entire run kn was rejected automatically by the 

J-d test in averaging. We rejected some runs in each of 3 

conditions .k on extrinsic grounds. For k =(0.0722,32.66, 

7.5) we eliminated runs 1-J, which were noted during experi­

ments as having unusual signal tuning. They also gave very 

much different «~ than the last 3 runs. For the two states 

k =(0.0664,J2.66,7.5 and 10.5) we took only the good-tuning 

reruns, and in the first of these we also rejected the first 

rerun, noted as having less reliable tuning. 

The complete set of reduced data can be examined 
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in a computer output binder on file, containing the origin­

al output in a fully explanatory format. Deletions on 

discretion noted above, as well as manual selections of the 

best deletions over the original program's automatic choice 

of latest deletion, are noted in a separate standard port­

folio, which also contains the raw data, program listings, 

condensed output (from punched cards), and table of dele­

tions for all states. 

The results are to be interpreted as f ollows . 

The relative error estimates for the data points At11 or for 

whole runs ~ are probably accurate, for weightings in their 

respective fits. The absolute error levels, however, may 

not be. If we desired our error estimates ~1 , ~2 to repre­

sent bounds on the true error with a confidence l evel of C 

(say, .50%), then the grand average of ~/(NkiiF)= ~n/(Nkn 
- 2), "X,2 (F =degrees of freedom in fit) should reflect this 

value of c. Thus 'X,2 should be 1 for C =50%; 1/9 f or C =95%; 

etc . ). The specific relation is 

- P 1
00 2 

C = ~2 e dP . 

-x,2 should be adjusted to the proper level by uniformly re­

scaling all the errors cr-1 , c:r2 : 
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Choose f to give proper -x_2. 

This is a legitimate adjustment in the least-squares tech­

nique, as much as we can do without taking additional 

measurements to establish that ~1 and ~2 should scale dif­

ferently. New error estimates change the results of the 3-d 

tests of course, and the whole data set should be rerun. 

If the new 3-d tests do not significantly alter the choice 

of data deletions, then the iterated-x.2 should still be near 

its desired value. We note that the ~0 s should represent 

50% intervals for the 3-d test as given on p. 190; the break 

factor R should be ad justed for any other confidence level. 

In practice, we decided that the Nk groups of data 

seta for the k conditions are more on an equal footing of 

reliability than the Nkn individual data sets. Thus we 

computed"X.~ and the tentative rescale parameter Pas 

~ 'Yw2 
-2 .:i.. ·1 [ n kn J ,;i,. 

p = (X,:old)- 2 = (N ~l Nk . )- 2
• 

Our initial estimates of the cr•s were too conservative, as 

our first E value was O.JO. We redid all the fits and got 

a more acceptable ~2 • Interestingly, the new f- broken down 

by frequency f k showed a systematic trend, 

f, .MHz. 

4.5 
7.5 

10.5 

p 

o.48 
0.76 
0.52 

f, MHz o P 

13.5 0.72 
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This probably indicates that o;_, cr2 are not the same for all 

f due to differences in envelope shape, generator stability, 

etc. We did a 'final' rescaling, different for each f, 

using the computed P(f) on the previous page. We readjusted 

rJ: and -x{, but did not redo the fits. 

Finally, we did a further averaging of the new ~~ 

over the three isotherms T for any given X and f, since k 

and a-; varied little with T. We obtain better statistics on 

~:. Unfortunately, one flaw remained in our data: the aver­

age 'X~/(Nk-1), ~'which measures the scatter of the results 

~~ about ~k, was too large. While the data points in indi~ 

vidual runs scattered little--the correct amount after 

rescaling, the results ~~ scatter more than the errors dkn 

from data point scatter would indicate. Since the final 

errors d~ are the most importnat, we rescaled errors once 

more, doubling all ~·s. Then the average over k of~ came 

to near unity. 

In the final results in Table III, we quote ~x/f~ 

after subtracting classical shear losses ~1/f2 and a mode 

conversion correction discussed immediately below. The 

errors ~;collapsed over the 2 or 3 isotherms, <5.x_"f, indicate 

the bounds of the corresponding ~XfT = ~k. The associated 

conridence levels~f are collapsed once more over f to a 

~' which indicates the confidence one can have that the 

errors 0-X~ truly represent the error bounds. The.~ aver­

age to unity, of course, but the value for each X may 
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scatter around this. The scatter may be real, and so we do 

report the individual x~. 

Our data looked good as tar as error estimates 

were concerned. Still, it had indications of one last sys­

tematic error, this one in frequency and not in attenuation 

readings. At high mole fractions of lutidine, far from the 

compositions showing chemieal or critical relaxation, mix­

tures should behave as Kneser liquids with high relaxation 

frequencies. The frequency dependence of -Jt2 should be 

nil. Also, any !-dependence ot ~/!2 that does develop 

toward lower ~ should consist ~t a monotonic decrease with 

increasing r. However, the four most concentrated mixtures, 
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X = 0.9901, o.427, O.J82J, and to some extent, x c O.J042, 

the values of ~/f2 at 7.5 MHz. dip lower than those at high­

er f. Also, the values at 4.5 MHz. are notably higher than 

the values at 10.5 and lJ.5 MHz.; the rise at 4.5 MHz. is 

too rapid even for strong thermal relaxation at low frequen-

cy of unknown origin. 

The possible errors in t</f2 at f = L~.5 and 7.5 

MHz. tie in with observations during the experiments that at 

these same frequencies the ultrasonic pulses showed unstable 

shape and extra ; oscillations in amplitude versus height. 

After some searching in the acoustics literature, we finally 

discovered a reference to a similar phenomenon in Puls' 

thesis (ref. 19, paper II), called~ conversion. The 

sound pulse is slowed and distorted at the walls as it trav­

els down the delay rod~ forming a longer, self- interfering 

wavetrain. The oscillatory displacement of the delay rod 

face, generating sound in the liquid sample, is then not 

plane; not of the same amplitude and phase across the face; 

i.e., not of a pure vibration mode. A recent journal 

.article (H.J. McSkimin, J. Acous. Soc. Am. Jl,287(1959) ) 

suggests breaking up the spurious modes by roughing the rod 

walls, as by cutting a screw thread in them (Puls) . Since 

mode conversion (MC) causes spurious spreading and interfer­

ence in the beamed sound pulse much as diffraction does, it 

is likely an additive attenuation. The net loss probably 

depends upon the total range of micrometer readings, so a 
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simple uniform correction depending upon r but not the value 

of f( is not justified. However, 01../t2 does not vary much 

with ! at these high concentrations of lutid1ne, so we will 

apply a uniform correction of -30 (xio-17 Np. cm.-1 sec. 2) 

to tl/f2 at f • 4.S MHz., and a s!idlar one of +8 in these 

units at f • 7.5 MHz. Toward lasser X this is not accurate 

but *'/.f2 grows so large that a small feature in error does 

not qualitatively change our data or its interpretation. 

Our final ~/!2 data for the 144 conditions of X, 

!, and f are reported in Table III, after incorporation of 

the MC correction and after subtraction of the ~lassical 

loss (8!!2!\ 6 )/(Je~3) listed at the side. Water data are 

taken from .the literature, since MC problems here swamped 

the measurements. 

Velocity 

The velocity data are compesed or .Q!!!!. set or 

micrometer height C!:!l: signal delay (!) readings tor each of 

the conditions ~' except for a ve'f7 few cases with two or 

three sets. One linear leaat-squares fit reduces each data 

set to a velocity 
' 

hk = ft.ktk + ck • i ... i 

The frills in the reduction scheme parallel those for -. : 

(1) Some poor data sets were rejected outright and 

the run remade immediately during the experiments. 

(2) delay time readings, from the variable sweep 

delay dial of the CHO, are corrected to the true delay times 
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according to the calibration made with a Beckman counter, as 

noted in Appendix III. A quadratic fit of the true delay to 

the dial readings was used (notebook .22.2§.: 81). This is a 

very minor correction. 

(3) we assign errors to each delay reading, d~. 

The inherent reproducibility, high accuracy, and low data 

scatter we noticed suggests that our main dial error is the 

failure to read half-divisions, so we picked ~ • 0.005 

turns uniformly. Each turn represented a delay or 5 p.sec. 

usually. We obtain a confidence level !'unction~ and an · 

estimated error bound dk for each run. 

(4) we had a feature to delete data points auto­

matically or on discretion. The 3-d tests were used uni­

formly, selecting the one giving the best~. by hand if 

necessary. One run had an obvious error in recording of one 

delay reading, which we corrected manually. 

(5) quadratic fits were made to test for system­

atic errors, :.and again none were found. 

( 6) the error information dk and~ were inter­

preted as for ~. Our initial fits indicated a rescale of 

error to an almost uniform 0.1%. We think 0.3% is a more 

reliable estimate for all states k. Only : the 4.5 MHz. val­

ues are reliable, free of the systematic error from 

envelope-shape change discussed in Appendix !!IT-except that 

the underlined 1-''s at f = 7.5 or 10.5 MHz. were done by the 

tedious peak-watching technique and are also reliable. The 
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results are given, without the trivial 6k or~, in Table 

III. 

Fit Program 'Flowchart' and General Organization 

A FORTRAN program was written for the IBM system 

360/370 to fully process the raw data for absorption and 

velocity. Input is divided into groups, one for each of the 

144 conditions (X,T,f). Each group is composed of first the 

« data, then the ' data. The first card in the group is an 

(X,T,f) identification and remark card. An optional card 

before this (recognized by its format) may update the esti.-

mates of the micrometer-to-acoustical path correction 

h0 and of the zero-db display height I 0 • Another optional 

format-recognized card (OFRC) before tha actual absorption 

data updates the error estimates ~1 , <i2 ; and another before 

the velocity data updates o for that data. The entire pro­

gram is too large to list in the thesis, just as is the raw 

data set; both are on file in a computer binder and in a 

standard portfolio. The FORTRAN-style outline follows, 

keyed to actual statement numbers. 

(final version) 

2 read X,T,f ,title 
if OFRC, read h0 ,I0 

reread X,T,f,title 
if X=X0 go to 10 

store new X0 write compendium of results for old X
0 10 write title; new h0 ,I0 if changed 

c~ section] 

read Nk 
if Nk = o, go to 220 (~ section) 



do 100 n • 1,Nk 
read ·Nkn 

it OFHC, read di, o2 write title 
read the hf11 and echo them; convert to z 

value~for diffraction correction; assume 
the G.:1 are in progression from 0 to Nkn-1 
unless another OFRC tells us it starts 
from n0 

compute diffraction corrections Q(h~+ h0 ) by 
interpolating data table cubically; first 
correct ~ble to proper r: 

write out
2
Ai for inspection 

compute ~ 
call for linear fit; routine calle~ writes out 

all the relevant information "ii•C1~, and ~n 
and returns all for later averaging; also 
returns flag to denote : if, and which, data 
point was deleted 

(do optional discretionary deletions and refits) 
read Mkn = no. of purges to be run on this one 

data set 
call linear fit, printing same as above (do 

not store results) 
call quadratic or other nonlinear fit 

100 (call purged nonlinear fit) 
write out compendium of results for linear fits 

for conditions k, plus averaging of same 
esp. for rescale parameter 

call point-fit (average) of 8ll the «~; r2utine 
called prints all results ., , dk• and 'Xk 

(call purged point fits) 
write out compendium of results for nonlinear 

fits 
call average of all ~~ for nonlinear fits 
(call purged fit of same) 

section 

read Nk (0 or 1) 
if N~ o, go to 2 for next groip of data 

read N1k, d; convert latter to di (same for all 
i) k k 

read the ~i' ti and echo them 
correct t 1 by parabolic fii 2 call linear fit, printing 1' , ~ 
(formerly, call quadratic fit) 
go to 2 

terminates by read error, end or data set 
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Diffraction Corrections 

Much of this section is a rewrite or condensation 

of extensive information in notebook ..2.Q.2Q: 48 ff. We give 

little text, so the presentation is somewhat rough, to keep 

its size down. 
' I 

Geometry: ~· f - -upper rod; vibrating as plane 
I I ' 

, 

~ -- · • circular piston into semi-

1 
- ~·~~~~ infinite medium (no echoes 

z 
~ '-.. to reload it; no other 

\ ~ ~ ...... modes from I 

I sound pulse '~ MC) 
one wavelength ").' ! samople 

_ _ .. 

6 

med ; i um 
t 

< a . I 
v 

common axis 
of transducers 

Sound pattern depends upon a/i, z/~, or a/~, z~ 

In our system .§: is fixed, ).. ranges over 4 discrete values 

corresponding to the 4 frequencies, and z varies continuous­

ly from ~ o.6a to ?a. Compute average sound pressure on the 

lower rod face (P>av= 

(P(z)) av= J~ drZ'l!~=~z,r) , implicit function · of a/"'A, 

P(z,r) = iW(>
0
Cf(z,r), \9 =velocity potential 

r00 -p.z ds 
lf(z,r) ="\30 aJ

0 
e J 0 (sr)J1 (sa) 'jl 

':&i =Bessel function of order n 
i»o =sound ~elocity in medium 
p. =( s2-k2) ~-
k =propagation constant =~/~ 

From A. O. Williams, Jr., J. Acous. Soc. Am. £2,1(1951), 

omitting many steps: 
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(Cf(z}) • 2!•COOdsu-1e-sz Jf(sa) 
av Jo sa 

and using integral representations of the 
Bessel functions 

• ~(!f/2desin2ere-ikz_e-1k(z2+4a2cos20)t] 
~kl ~ , 

0 

which reduces to Bass' final expression for (P(z)>av by 

multiplying by iwp0 • Our interest is in the ratio R of 

(P(z))av to the perfect plane wave pressure <P
0

Cz>>av = 

e".we-ikz/k, 

a 1-I. 

I has no closed form. Williams expands the inte­

grand in powers of oos&, changes variables, and gets an 

analytic form good for (4ka)/(z/a)5<<2n' and (ka4)/z3<.<1. We 

want to treat z/a?0.6 azld ka::-230-700, while Williams• ex­

pression does not converge at the lower range of z/a. 

Bass changes variables: 

~ • ~ [<z2+4a2)f-zJ 

• [(z2+4a2cos2e) t_zJ/ (Cz2+4a2) t_zJ 

2 ,1 \\ r 1+?Su 1•r1-u1t -2i~u I-+~J (1-9'(1-2u~ll+"1l-"- u e du, 
0 2 

where for compactness '< •( ~/ka) • 

Now, integrals In ·5~ due-21~~n(l~u)t can be expressed in 

terms of a few Bessel functions, as by identifying the 

integral with a confluent hypergeometrio function 
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(M. Abramowitz and I, Stegun, Handbook of Mathematical 

Funotions,N.B.S., Washington, D.C., 1964 ; p • .50.5). :~ Also 

Bass implies 

Io. ¥f Jo(~)+iJ1<~>Je-i~. 
1 d 

Using In • 2 a~In-1 and the Jn recursion relations to reduce 

all Bessel functions to J
0

, J 1, we find 

11 = t~ J1e-i~ (argument of J implicitly)) 

I2 = ~2 e-it(~Jo-(2+i~)J11 

I'l = ~ e-1> [C3~+2it 2 )J0-{6+41~-2)2 )J1] 
.J 16~ 

14 • ~:~4 e-it[c-12\-91t 2+4~3 )J0+{24+1a1~-11~2 
-4i~3)J1] • 

We still have to expand the factor in the integrand 

in polynomial form. Bass expands about u • o, but this 

won't converge for small z/a (large a). Instead we expand­

ed about u = i arbitrarily and gathered powers of u. Terms 

to u3 adequately represented f{u) in the important range z/a 

20.5 for u in the range 0,1: 

f(u) = t rCn) Ci> Cu-i)n 
n•O n! 

•A' + B'u + C1u2 +D•u3• 

Total integrand: 
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g(u) • (1+.c.( 1-2u)) f(u) :::- i: cnun 
n•O 

r - ~fo dug(u>C i~u> •e-21~u 
61 2 ~ j1 d n(~)i -2i~u 
'!!~en uu u e 

n=O O 

4 

-!, ~o cnin • 

Gathering terms in ~n: 

where 

and 

and 

and 

R = 1-I 

• 1-2e-1t(~C-1~c4+j32o4+fgc~ ~ +!{o4+c3+c2l ~2 
+ Co J) 

2 

+~ ( 1ic4-{hc4+ ~c31 t-A-{11c4+ac3 

+802lY+ ~fc4+c3+02+2cJ ~3+~co~4)] 

c0 •(1-•)A' I o1 •2~A'+(1-•)B' I c2 •2•B'+(1-~)C' 

C3 =2~C'+(1-•)D' I 04 =2...0' 

A' =A -iB + tC - D/8 

C' =C - ~D 

A =b/c B •-c2/2bc3 

"4(4+2•+tf) 
D = 8b5c? 

B' •B - C + ~ D 

D' =D 
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~=-s2/(ka) 2 ; r = ~[(z2+4a2)~·-z]; z,k,a are given 

in the dimensions of the problem. 

The complex response ratio R is converted to an 

effective db loss g, 

lR I = e-Q/8 · 686 -~Q = 8.686 ln\Rl. 

~was computed for my system for g = 12.7 mm. (fixed), for 

four frequencies f = 4.5, 7.5, 10.5, and 13.5 MHz. ( for 4 

values of propagation constant k, that is), and in turn for 

a grid of heights z (hence for ~ or o< ) from about 8 to 66 

mm. in steps of 2 mm. (and later out to 80 mm.). Several 

sound velocities were tried without changing the results 

noticeably, so we settled on a standard"P of 1570 m./sec. 

The FORTRAN computer program to do the work is listed in the 

pages stapled in notebook 5090: 52. Its input consists of: 

the number of classes of velocity (and absorption- -explained 

later), and labels; number of frequencies and the f1; ~and 

; the grid of z1 ; absorption c<; and print option param- · 

eterso It is extensively commented and easy to use. Our 

results in Table IV check with Bass' for larger z/a. The 

apparent loss factor ~ was monotonic for all f in my range 

of z, even at.·:.very low ~. This verifies that diffraction is 

not the cause of signal oscil.lation with micrometer height, 

and reinforces the judgment that mode conversion is the real 

cause. 

Bass notes that non-zero absorption ~ can be 
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accommodated in the formalism by making the propagation 

constant k complex, h = 2!'1'/)-i~ (distinguish absorption• 

from at• ~2 I ( ka) 2 ) • The goal here is to show that g from 

diffraction is additive to absorption losses for all prac­

tical purposes: 

Q. c tt, z > : Q.0 c z > + ~ z 

Q. (it, Z) a Q.1 ( Z) + ec. Z t 

that is, that g1~9.o. We wrote new routines to compute the 

Bessel functions of complex argument~. Rather than rewrite 

in complex arithmetic the computing center routines which 

are more general than we need, we noticed that ~ is large 

enough even at z/a as small ·as 0.5 (Re~ ranges from 35.4 to 

503 in our work) to use asymptotic expansions (Abramowitz 

and Stegun, p. 364): 

J
0

(z)O: (~)iz-tfc1- 9 + 3675 )cos(z-irr} 
"ll' l' 128z2 J2768z4 

+(- ~81 + 1i 3)sin(z-itr>} z 102 z 

J1(z)~ r~)tz-ifc1 + ~ - 141754)cos(z- 3-) 
"ft 128z 32768z i;:.u 

+(1 - 105 )sin(z- J...>} 
Sz 1024z3 J4:u 

These expansions are used with standard complex double pre­

cision sin and cos routines, CDSIN, cocos. 
Since cos z, sin z can be written as iCe1z+e-iz), 

~1 (eiz_e-iz), the form of e-itJ
0

Ct> in the expression for 

R (hence (Rf,~) can be seen as dominated by the lead term 

e-i~ei~= 1 for any complex~. if its imaginary part is 
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small. Thus corrections from nonadd1t1vity of diffraction 

and true absorption require Im~ =~to approach the order 

of magnitude of Re k = 2f11/~, which never occurs in our ex­

periments. We proceeded wtth the calculations and obtained 

results Q1(z) indistinguishable from ~(Z) (additions to - -
notebook .2Q.2Q: 52). They are not reported in Table IV. 
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Table I. Sample of Haw Ultrasonic Data 

Order of data explained in text; formats given in program 

listing 

0 .1 238 34 . 66 4 . 51DA TA 2 / 25 /7 0 BY VPG ; THIS ~UN STAR T S TRAD ' N OF BE TA AT 4 . 5 M 
HZ ONL Y, NEW WAY ; 5 DB READ I NG I N 3RD RUN IS W/ POOR L I Q. CON TACT 

3 
6 

29 . 00 37. 93 47. 25 55 . 95 64 . 85 7 4 . 0R 
6 

29 .1 0 3~ . 37 4 7. 30 56 . 35 66 . 3R 75 . 00 
6 

29 . 00 3R . 09 4 7.7 2 57. 18 66 . 22 75 . 5 7 
1 
5 5 . 000- 06 

7 0 . 00 60 . 00 50 . 00 4 0 . 00 30 . 00 
09 . 00 0 7. 72 06 . 44 05 .1 6 03 . 89 

0 . 1238 34 . 66 7. 520A TA 2 / 25 /70 BY VPG ; LAS T 7 . 5 MHZ Rt: TA: S I GNAL UNS Tt:ADY , ESP 
• RE TWEl:N J , 2 DB . IN ! ST RUN 

2 
10 
29 . 00 34 . 84 4 1. 45 4 6 . 00 50 . 8 1 55 . 59 60 .4 6 64. 52 69 . 26 7 3 .7 0 
10 
3 1. 17 36 . 25 40 . 87 46 . 30 5 1. 52 56 . 32 60 . 80 65 . 29 70 .4 0 75 . 00 

l 
5 5 . 00D- 06 

1 0 . 00 6n . oo 50 . 00 40 . 00 30 . 00 
09 . 09 07 . 8 1 06 . 54 05 . 26 04 . 00 

0 .1 238 34 . 66 10 . 53D AT A 2 / 25 /7 0 RY VPG 

2 
13 
29 . 00 3 1. 79 34. 48 3 7. 20 39 . 97 43 . 83 45 . 50 4 A. OO 5 1. 06 53 . 6R 56 . 28 58 . 88 62 . 0 1 
13 
31 . 53 34 . 36 36 . 8 1 39 .7 6 42 .76 45 . 58 4 8 . 39 5 1.1 3 54 .11 56 .7 0 59 . 65 62 . 43 65 . 00 

0 
0 .1 238 34 . 66 13 . 53DA TA 2 / 25/ 70 BY VPG ; S I GNAL BOUN CE AT 5-6 DR ! ST RUN , 4 -3 0 

R IN 2ND RUN ; RETUNED FOR 2ND RUN 
2 

13 
29 . 00 30 . 98 32 . 92 34 . 8 7 35 .76 37. 58 39 . 84 41. 34 43 .1 6 45 . 06 4 7. 25 49 . 0 7 5 1. 04 
13 
29 . 90 32 . 08 33 . 85 36 .1 2 3 7. 62 39 . 63 4 1. 60 43 . 56 45 . 32 4 7. 42 49 . 34 5 1.1 2 5 3. 00 

0 
0 . 1238 33 . 46 13 . 53D AT A 2 / 25 /7 0 AY VPG ; 

2 
13 
29 . 00 30 . 99 32 . 86 34 .77 36 .77 38 . 62 40 . 49 42 . 43 44 . 26 46 .1 5 48 .11 49 . 99 5 1. 92 
13 
30 . 94 33 . 02 34 . 78 36 . 49 38 . 42 40 . 3 1 42 . 25 44 .1 6 46 .1 6 48 .1 4 50 .11 5~ . 06 54 . 00 

0 
0 . 1238 33 . 46 10 . 54DATA 2 / 25 /7 0 BY VPG; 

2 
13 
29 . 00 31. 93 34 . 6 7 3 7. 2 1 40 . 34 43 . 07 46 . 30 49 . 15 5 1. 99 54 . 94 5 7. 73 60 . 5 1 63 .4 8 
13 
30.44 33 . 26 36 .1 9 38 . 84 4 1.74 44 . 62 47 . 55 50 . 58 53 . 34 56 . 34 59 .1 0 6 1. 84 65 . 00 

0 
0 .1 238 33 . 46 7. 54DATA 2/25/ 7 0 AY VPG; 9 DB IN 3RO RUN UNUSUA L 
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3 
10 
29 . 00 34 . 03 38 . 90 43 . 84 48.78 54 . 02 58 .7 8 63 . 40 68 . 06 72 . 97 
10 
29.58 31, . 51 39 .7 9 45 .1 6 50 . 5 8 55 . 58 60 .7 5 65. 70 70.37 75. 00 
1.0 
29.00 3'1.08 39 . 64 44. 65 49 .71 54 . 33 59 . 66 64.41 69 . 2'• 71.39 

0 
O. 123A 33 . 46 4. 52DA rA 2/25170 BY Vf'G 

3 
5 

29.00 39.0 8 48.17 'J 7. 3H 67. 23 
5 l 

36.45 '•6.10 55 . 6 7 64 . 90 74 . oo 
5 

29.00 3CI . 39 4 8 .7 8 ':>8.05 67 .5 3 
l 
5 5 . 000-06 

70.00 60 . 00 50 .00 40.00 30 . 00 
09.00 07 . 7Z 06 .44 05.!6 03 . BB 

0.1 23A 32 . 66 4.52DATA 2 /25/70 BY Vl'G: f'OOR T!ENCL.I CON TROL 

5 
5 

29.00 39 . 07 49 . 37 ':>9 . 61 69 . 56 
5 

31 . 39 41.97 51 . 67 6 1.40 71 . 00 
5 

29.00 39 . 53 49. 58 58 .45 67. 74 
5 

31.35 40 . 56 51 . 52 60 . 58 70 .oo 
5 

29.00 3A . 82 47.85 57 .70 67 .6 2 
1 
5 5.000-06 

10.00 60. 00 50 . 00 40.00 30 . 00 
08.00 06. 71 05 . 43 04.16 02 . 88 
0.1238 32 . 66 7.54DATA 2/25/70 BY Vl' G; POOR T(ENCL.l ".:ON TROL 

2 
10 
29.00 34.12 39.34 44.45 49 . 54 54.67 60.92 64.5 6 69 . 60 74.91 

9 l 
34. 13 39. 16 44 . 21 49 . 36 54 . 64 59.71 65 .43 70.54 75.00 

0 
0.1238 32 . 66 10.54DATA 2/25/70 BY VP G; POOR f(ENCL.l CONTRO L: BA TH TE MP . READJ 

• TO CORRECT DR IFT 
2 

13 
29.00 32.07 34 . 65 37 .75 40.70 43 . 56 46.35 49 . 56 52 . 43 55 . 39 58 . 33 61 .1 2 64.24 
13 
30. 56 33.39 36.71 39 .51 42 . 35 45.4 4 48 . 40 51 . 41 54 . 55 57 . 53 60 . 43 63 . 46 66.00 

0 
0.1 238 32 . 66 13. 54DA TA 2/25/70 BY VP G; POOR T!ENCL.l CONTROL 

2 
13 
29 . 00 30 .70 32 . 51 34 . 38 36 . 24 37.95 39 . A2 41~63 43. 59 45 .58 47. 55 49.47 51 . 30 
13 
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Table II. Sample of Initial Computed Absorptions, Velocities 

Format: the headings over the columns of results are ex~ 
plained below. The run conditions X, T, f listed in the 
first three columns identify the total set of ~ and f.! data 
following. Absorption data come first, then a-averaging in 
the s ame formato The velocity data are of slightly differ­
ent format; most noticeably, the velocity value is printed 
in floating point rather than integer format. 

Absorpt i on 

X =mole fraction lutidine; T =temperature (C.); f = fre­
quency ( MHz. ) 

N = for individual runs : no. of db readings = Nk:n 
= Nk for averaging : no. of runs 

~ = ~;r2, in 10-17Np. cm.-1 seco 2 ; ~q~ error 
cent (lOO*~~~t); -x,2 = (~2/(N-F))2, N, F 

bound in per­
as in text 

I = for individual runs 
for average of runs 

which point deleted by 3-d test 
which run deleted (never occurs) 

C is an indicator of type of fit done; C = CACN 

CA= blank 
Q 

linear fit or straight averaging 
nonlinear fit (individual runs only) 

initial fit, all data points used 
result of 3-d test; point denoted by 1 above 

has been deleted 

REMARKS : under individual r uns, two types occur, and only 
for runs with 3-d test deletions. 1Preferred 1 means 
this is the best deletion~ giving lowest -x..2; 1 taken 
auto'ly (ok)' means this is the latest deletion and was 
automatically chosen by the original program for averag­
ing--but it was not the best one; this is rectified by 
hand later, as explained in the text. 

under averages, the straight average with no dele­
tions is the only one occurring. It is followed by the 
value of the average error rescale parameter P for the 
Nk runs in the particular average. 

Velocity : exact analog of headings. Only one run is 
made; no averaging is done, just 3-d testing; no error 
rescale is computed. 
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x T F N c- REMARKS 

0.1238 34.66 4.51 6-- 585 2.03 0 0.36 
-585 2.03 l 0.01 TAKEN AUTO'LY (OK) 

Q 574 o.75 0 0.36 G=-0.07 EG=0.19 
Q-569 o.75 5 0.24 PREFERRED 

6 571 2.03 0 0.33 
-574 2.22 5 0.13 PREFERRED 

- 5b4 0 .-74 o - o.301 =-~o-s E- =O. 0 
Q-570 0.77 5 0 .14 PREFERRED 

6 563 2.03 0 0.39 
-563 2.03 7 0.14 TAKEN AUTO'LY (OK) 

- --- Q 547 0.10 0 0.31 G=-0.11 EG=0.1 _9 _ ----
Q-547 0.63 2 0.25 PREFERRED 

--w-~ O.TO-S 0.32 TAKEN AlJTIJ IL OK 
3 573 1.21 0 0.93 AVG. E SCALE =O .3 2 

15 63. 5 0.25 - o 0. 5-3 
-1560.0 0.35 5 0 .13 TAK.EN AUT0 1 LY (OK) 

0. 1 Z-38-3~66- 1.52 10 402 o.94 0-2~ 

-415 1.10 1 1.86 PREFERRED 
0 - 3-47 0. 31 -0 T . 2T- G=-o-;-z2 -G=O. 
Q-348 0.29 3 o.79 PREFERRED 
Q-339 0.40 10 1. 11 AKE ADT 

10 406 0.94 0 1. 03 
-406 0.94 5 1 • 11 TAKEN AUT0 1 LY {OK) - --

Q 384 0.42 0 0.68 G=-0.09 EG=0.04 
Q-38-2 0.42 8 0 • 5 6- fYRE FFRHl:D 
Q-381 o.56 10 0.69 TAKEN (OK) 

2 409 o.71 0 o.o AVG. .5 0 
5 1569.4 0.25 0 o.76 
-1564.8 0.35 5 o.54 TAKEN AUTTJT[_ y (OK) 

0.1238 34.66 10.53 13 376 0.66 0 1.61 
-376 0.66 6 0 • 4 6 -P~ EFEVRE' ----

13 365 0.66 0 0.67 
-364 0.73 13 0.50 PRE FE R D 

2 370 0.49 0 o.o AVG. ESCALE=0.48 
o. 12 38 3--zt. 66 13.53 13 347 0.65 0 2.0-8--

-347 0.65 6 0.53 TAKEN AUTO'LY (OK) 
-0 366 0.86 0 1.97 G= o. 05- tG=O. 03 ----
Q-368 0.80 4 1.55 PREFERRED 
Q-365 0.88 r2 2.05 TAl\Ei\J ts..uro rcv- m ---

13 326 0.65 0 0.91 
-3Z? 0.67 4 0. 63-PRFFFRRED 

Q 319 0.12 0 0.85 G=-0.02 EG=0.02 
o...:-3T8 0.69 o--; 131 -~CFEKR-E"D-

Q-317 o.76 9 0.85 TAKEN AUT0 1 LY (OK) 
2 33 0.47 0 o.o SC 

0.1238 3 3 .4 6 13 .5 3 13 328 0.65 0 0.35 
-328 0.65 6 0.85 TAKEN AUIO'TY (OK) ------

13 327 0.65 0 o.73 
-327 0.65 4 0.25 TAKEN AUT0 1 LY -OK) 

2 327 0.46 0 o.o AVG. ESCALE=0.57 --- -

- -------
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x T ~ N--c I --i:<CM AKK S 

0.1238 33-.46 -10.5~ I3 ~56 0.66 0 0.59 
-356 o.67 4 0.46 PREFERRED 

:-51 0.66 0 o. 
-357 0.66 4 0.46 TAKEN AUT0 1 LY (OK} 

2- 356 0.47 0 o.o AVG. ESCATE=O .Ltl - - -

0.1238 33.46 7.54 10 403 0 .94 0 0.63 
-403 0.94 4 0.46 T AK1:N AUTLl 1 LY -1 OK- ) 

10 385 0.94 0 0.98 
- ~l 1 ~U-9 10 o---; 7Y-P-RE FFR R rn-

10 402 0.94 0 2.29 
~9-1 1.08 1 o- o • 8 0--P~ tFFR Ri:o-

3 392 0.59 0 2.73 AVG. ESCALE=0.72 
0 • 1~3 8 ~ 3.-4- 6 -4 .5 2 5 - 550 2.68 0 o.~ 

-561 3.78 1 0. 1 7 PRE F ERRED 
5-S-8 2.66 o.47 ----

-569 3.75 1 0.32 PREFERRED 
5 5-44 2.68 0 0.65 

-5 61 3.77 1 0.16 PREFERRED 
3 563 2 .1 7- 0 0-;-21- AVG. ES C-JtCE- = 0 • z3-

5 1561.1 0.25 0 0. 19 
- -- 1560 .-o o. 5 5 a-. l 1- .LtK--i: mncr--1 e-Y \ 

0.1238 32.66 4.52 5 510 2.69 0 0.32 
-503 3.82 5 0.08 PRf-F E R Ri: D 

5 528 2.68 0 0.61 
-542 3.78 1 0 .30 PREFER~-ED -- --

-516 3.81 5 0.43 TAKEN AUT0 1 LY !OK} 
5 539 2.68 0 0.99 

-562 3.77 1 0.65 PREFERRED 
5 535 2.68 0 0.82 

-535 2.68 1 0.17 TAKt:N AUT0 1 LY (OK) 
5 542 2.68 0 0•26 

-540 2.85 2 0.16 PREFERRED 
5 531 1.46 0 1.1.4" Ave;-. C-Sr:ACC=~l 

5 15 64. 0 0. 25 0 o.77 
-1568.8 0.35 1 0.34 TAKEN l\UT0 1 LY (OK) 

0.1238 32.66 7 .54 10 385 0.94 0 1.09 
-387 0.96 7 0.46 PRCFERRED 

9 381 1.08 0 o.58 
--- -378 1.28 9 CJ .41 PREFER-RED ---· 

2 383 o.77 0 o.o AVG. ESCALE=0 .43 
0.1238 3-2.66 10.5A 13 350 0 .66 0 0.42 

-350 0.66 7 0.41 TAKEN AUT0 1 LY (OK) 
13 344 0.66 0 o.76 

-342 0.73 13 0.48 PREFERRED 
- - 2 345 0.49 0 o.o ts..V c;-. E'S CALE =-o---;-

0.1238 32.66 13. 54 13 335 0. 65 0 0.83 
13 333 0.65 0- 0.31 - - --· -

2 334 0.46 0 o.o AVG. ESCALE=0.63 
---

---
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Table III. Final Computed Absorptions~, After Data Purgingla·; 

With Error Bounds (<ic'i-' in percent), and Chi-Square 

Confidence Functions (-xi ) on Errors 

2 10-17 Np. cm.-1 2 
°'exlf ' sec. 

(or, dx'f, %> 

" /f2 
f(MHz.) •M Ll ~ 1J1.2 

cl 
rx,2 ) X(lutidine) !i.Q.,_) x 

0.9901 32.65 6.5 72 74 9 
34.41 69 76 ~4 9 
J .66 --- 69 

c2:4> 
9 

(---) (7.8) (1.6) (0.37) 

o.427 32.68 82 91 86 87 22 
3,.48 82 ~4 ~4 86 22 
3 .68 94 88 21 

(.5.6) (4. 7) (1.7) (1.5) (0.7.5) 

0.3823 32.66 98 108 104 107 22 
34.4; 103 106 99 106 21 
3 .66 107 106 102 104 21 

(.5.8) (3.7) (1.2) (1.1) < o.49) 

0.)042 32.66 ~'4 142 146 147 24 
33.46 1 2 143 1 0 24 
34.66 1.52 145 141 139 23 

(2.7) (2.7) (0.7) (0.7) (1.20) 

0.2132 32.64 240 222 210 208 23 
J,.46 246 226 222 212 22 
3 .66 2 7 234 218 208 21 

(2.6) ( 1.4) ( 0 • .5) (0.8) (0.44) 

0.1772 32.64 319 292 266 252 22 
3,.46 324 294 270 2.54 21 
3 .66 340 29.5 271 2.56 20 

(1.2) (1.5) (0.5) (0.7) (0 • .54) 

0.1238 32.66 488 373 327 31.5 19 
34.46 .514 4s1 337 309 19 
3 .66 526 00 3.52 317 18 

(1.6) (1.0) (0 • .5) (0.7) (1.00) 
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'x/f • 10-17 Np. cm.-1 sec. 2 

(or, O:r• %) 
~ /r2 

f(MHz.) • hl 1a..2 1Q....2 
ol 

XClut1d1ne> ~) rx,,2 x> 

0.0892 32.66 .564 426 341 290 17 
33.48 .594 4.59 3.50 301 16 
33.84 600 4.58 356 306 16 

( 1.4) (0.9) ( 0 • .5) (0.7) 1.12) 

0.0722 32.66 .51.5 44.5 339 267 1.5 
33.44 .5.59 491 348 276 1.5 

(1.2) (0.6) ( 0 • .5) (0.7) (1.57) 

0.0664 32.66 557 46.5 327 262 1.5 
33.45 613 498 358 285 15 

(1.2) (0.6) (0 • .5) (0.7) (0.66) 

0.0614 32.64 486 430 304 238 14 
33.4.5 .524 431 317 254 14 

(1.7) (1.0) ( 0 • .5) (0.7) (2.58) 

0.0436 32.64 371 313 229 180 11 
33.46 406 340 241 18.5 11 
33.84 415 34.5 241 187 11 

(2.0) (1.0) ( 0 • .5) (0.7) (1.09) 

0.0288 32.68 189 19.5 138 101 9 
3~.42 202 210 141 107 9 
3 .64 231 222 154 113 8 

(3.2) (2.6) (1.0) (1.1) o.65) 

o.ooooc all 19 19 19 19 6 

Squoted as "gxff2, after subtracting •c1/r2 and the mode 
conversi n correction 

bsee text on method of data-point deletion 
c11terature value, not our measurements 
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Final Computed Velocities, After Data PurgingS-

~. m. sec.-1 (error bound d.,, .o. 3%, all) 

(values at f•4.5 MHz. and underlined 
values are most reliable) 

f(MHz.) ~ Ll 1Q.....2 ll..2 
X{lutid.ine) T{C.) 

0.9901 32.65 1324.4 1336.2 1330.0 
33.47 1326.9 1324.6 1331.7 
34.66 1320 .1 1324.3 1329.2 

o.427 32.68 14?8.6 149?.2 1495 • .5 1.507.6 
3
4

.48 1489.2 1498.8 1495.8 1,02.6 
3 .68 1489.1 1488.7 1493.9 1 98.6 

0.3823 32.66 1.508.3 1.50?.8 1517.8 1.520.9 
3a.4' 1~04.2 1499.4 1.508.3 1.51,.1 
3 .66 1 99.9 1.500. 1.508.8 1.51 .o 

0.3042 32.66 1.540.0 1.529.2 1s44.2 1.527.8 
34.46 1.533.t 1.532.9 1.5 9.8 1.527.9 
3 .66 1.522. 1.526.3 1.527.8 1544.8 

0.2132 32.64 1.549.9 1.5.59.7 1.569.8 
34.46 15.52.3 15~:2.0 1.5~6.o 1574.1 
3 .66 1.5.53.J 12 7.S 1,2 a1 a 1.559.8 

0.1772 32.64 1564.o mR 007i 1592.1 
33.46 1567.6 9. 1572.3 
34.66 1.567.0 1.55 .9 1,26J.~ 1.581.1 

0.1238 32.66 1.568.8 
34.46 1561.1 

1,264,8 4 • .5 3 .66 1560.0 

x T ", x 'l , t MHz. 
only 

0.0892 32.66 15,58.8 0.061~ 33.4,; 1.562.2 
33.48 1ss4.9 
33.84 1.5.5 .9 0.0436 32.64 1561.6 

32.66 1.567.0 
33.46 1.5,56.7 

0.0722 3J.84 1.5.57.8 
33.44 1560.6 

0.0664 32.66 
0.0288 )2.68 . 1.562. 2 

1.56,5.8 j 4.42 1.562.7 
33.4.5 1566.3 3 .64 1560.0 

0.0614 32.64 1565.2 (continued) 
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1' t m. sea. -1 (error bound cf 1' •O • 3%, all ) 

(values at r-4.S MHz. and underlined 
values are most reliable) 

f(MHz.) !t...l .11..j 
X(lut1dine) ~) 

0.0000 32.64 
34.66 

1516.8 
1518.6 

1525.J 

benzene 32.65 1260.7 

&see text on method of data-point deletion 
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Table IV. Diffraction Corrections Q0(a/~,z/~) • Q0 (z) for 

Our System, a• 12.7 mm., ~- 1.570 m./sec. 

(Parameters in parentheses are the more general reduc-
tions: a~ is given next to t, z!).next to Q itself) 

~MHz. z. (a/;\) Q
0 

in decibels 

4.~~J6 4~ Z.2(6o.zl 10.~~84.2~ 1J.a~102a2l 
8 0.2 .5 l22.9) 0.198 0.1 0.1 

10 0.286 (28.7) 0.222 0.188 0.16.5 
12 O.J1J (J4.4) 0.24J 0.206 0.182 
14 O.JJ9 (40.1) 0.263 0.222 0.196 
16 O.J62 (4.5.8) 0.281 0.2J8 0.210 
18 o • 484 c s 1 • 6 > 0.298 0.2.52 0.222 
20 o. 04 (.57.J) O.J14 0.266 0.245 22 o.424 (6J.1) 0.329 0.279 0.2 6 
24 o.442 (68.8) o.J44 0.291 0.257 
26 o.462 (74 • .5) O.J.58 0.304 0.267 
28 o.479 (80.2) O.J72 0.31 0.277 
JO o.496 (86.o) O.J84 0.325 0.287 
32 0 • .510 (91.7) 0.496 0.346 0.296 
J4 0 • .526 (97.4) o. 08 O.J 6 O.JO~ 
J6 0 • .543 (103) o.420 0.3.57 0.)1 
)8 0 • .5.58 ( 109) o.!!l4 O.J66 0.323 
40 0 • .571 (11.5) o. J o.37g_ 0.341 42 0 • .583 (120) o.4.56 O.J8 O.J 0 
44 0 • .597 (126) · o.464 0.493 O.J47 
46 0.61.5 c132) o.474 O. OJ O.J.5.5 
48 0.626 c148> o.486 c229) o.411 0.362 
50 o.6J.5 <1 3) o.497 c249> o.420 0.370 
.52 o.6.55 (149) 0.506 (2 8) o.427 0.377 
54 0.659 (1.5.5) 0 • .51.5 (2.58) o.~7 0.)86 
56 o.678 (160) 0 • .523 (268) 0. .5 O.J91 
.58 o.683 (166) o.s42 c211> 0. 4.51 ( ~88) o.~99 
60 0.104 (172) o.s ~ (287) o.4.58 c 01) o. 0.5 
62 0.70 (178) 0 • .55 (296) o.466 (41.5) o.413 (.533) 
64 0.726 (18J) 0 • .559 (306) o.473 (420> o.420 (.550) 
66 0.729 (189) 0 • .568 (Jl.5) o.481 (441) 0. 42.5 (.568) 
68 0.741 (19.5) 0.580 c32g_> o.490 (4.5.5) o.431 (585) 
70 0.760 (201) 0 • .583 ( 3~) o.498 (468) o.441 (602) 
72 0.7.58 (206) 0.597 (3 ) 0 • .503 (482) o.4 J (619) 
74 0.772 (212) 0.600 (354) 0 • .508 (495) o.449 (6J6) 
76 0.792 (218) 0.613 (363) 0 • .51 7 ( .508) 0 .45.5 ( 6.54) 
78 0.792 (224) 0.615 (373) 0.525 (5.22) o.462 (671) 
80 0.797 (229) 0.629 (382) 0.528 C.53.5) o.469 (688) 
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Appendix V. Details of Theoretical Interpretation of Ultra-

sonic Results. 

Paper I developed and extended Fixman's theory for 

interpreting critical region sound absorption in molecular 

terms, beginning from a general framework of irreversible 

thermodynmaics. Paper II presented the ultrasonic results 

for our binary system, which gave clear indications .of an 

additional absorption from thermal relaxation. It also out­

lined the t wo-part (critical + thermal) relaxation theory we 

developed thermodynamically to analyze our results quantita-

tively. Paper II finally presented our analysis, limited 

to the critical absorption only by fundamental theoretical 

obstacles. In this Appendix we giv.e the details of our gen­

eral theory and of the data interpretation, for the record 

as well as for any future work toward a useable total 
' theory. First we give more details in Fixman's theory of 

critical absorption. Then we give details of the chemical/ 

physical models for thermal relaxation and for solution 

thermodynamics. The thermodynamics could .have been a uni -

fying link between critical and thermal relaxation mechan­

isms, but it flailed. 

(A) Reduction of ~cR/f2 to the molecular param­

eters h, 12 or r,12 : 

- - (1) Form of <cR/r2 from Fixman theory (equation 

numbers not of the form v.x:x refer to our papers I or II, or 
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to Fixman's paper on ec, ref. 5 of paper I): 

•ca •W(f'o-l)I A (I.J8) 
21SCp m M 

AM • A , 4 • heat capacity /unit vol. , 
ni+n2 

n1= moles/unit vol. 

From (I.JJ) and (I.J4): 

£\ • .!h (T bK2)2 I 
~ c ~T 

I •Jdk k
4 

C k2+1() c ic.J + hk2(k2+:X .2J) 

Change variables: x = k/~ , d •I( 2( h/w) t ; ( V .1) 

I • ~ f_,dx._..._x ...... 4 _______ _ 

tu d2 ( 1 +x2 )(-1d-2+x2 (1 +x2J ) 

= ,.,,-i d-1 f NWt#IA • w -i f( d) <• .12) 
hJ/4 hJ/4 

.~ • kht w-t (T ~1(2 ) 2f( d) 
J.nl.2 o ~T {,( • 11 ) 

<exff2 • ._.-S/4CT0-l)k (T a~2 ) 2 ht Im f(d) + B(X,T,f) 
Cn1+n2 )2J'Cp c T 

• J(d) 
(V.2) 

B(X.T.f) represents TB; near X0 and at our low 
frequencies, its x- and f-dependenoe ~e weak, and its T­
dependenoe is weak re la ti ve to ""calf ; B ~ oonst. 

We see-f!a/f2 to be a function of the bulk, 'stat­

ic' parameters 11>, n1, cp, cv,13, T0 , and also of the two 

microscopic parameters 12 (since ~2/ ~T m 6/12) and H 

(d in f(d) is a function of w, 12, and h also). 

--(2) To develop a bookkeeping for fitting ~ex/f2 

to our data, define 
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o(. ; /f2 = Ar-5/4 ~(d) + B {V.Ja) ex 
d = c IT-T f r-t 

0 c . • {V.Jb) 

Results of the fit to the data, which is a nonlinear fit in 

C0 , linear in A, B: 

-- C was scanned to minimize the residual error of the 
0 

linear fit . Eight data points were fit, four f at each of 

two T. For co = 0.2 (f in MHz ., ~/r2 in 10-l7 Np. cm.-1 

sec. 2 ), the error was minimized on a crude grid. The error 

was insensitive to C
0

, however. There was a consistent 

localization of the total error in the f = 7.5 MHz. points, 

the computed values always being lower; Eq. (V.2) gives a 

poor shape for ~f2 vs. f. d) was nearly constant over 

the d-range we sampled in our 8 data points, so essentially 

el.ex/f2
#V r-5/4 is predicted. 

--Adjustment of Tc was tried, with little result. This 

is as expected, since it only changes d values, to which the 

fit is insensitive. 

--Separate fits of the four f points were tried for 

each of the two T; only one degree of freedom is left in 

both fits. Results are poor; the B term was negative for tre 

best fits, attempting to smooth the poor shape of CC'cR/f2·. ~ .. 

with f. 

--Finally, we gave Ba temperature dependence, a T- · 

coefficient of +3% deg.-l to -9% deg.-1, with little effect 
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(C0 changes but the net error is relatively unaffected), 

since it does not change the problematic f-dependence of 

""ex/f2. 
t -1 Selecting C0 = 0.20 MHz. c. 

• 2.ox102 sec.-ic.-1, 

the corresponding A, B values are 

B • 211 (x10-17Np. cm.-1sec. 2); very reasonable 

.A• ?.ox103 (x10-17Np. cm.-1sec. 2MHz.-5/4) 

= 2.2x10-6 cm.-lseo.3/4; about 0.1 of the value 
for nitrobenzene: isooctane; reasonable. 

-~CJ) Reduce to the molecular parameters: compar­

ing Eqs. (V.2), (V.Ja), we see 

A • (2U)-5/4(~o-1)kht (T ~ )2 
2f3Cp(n1+n2 ) 0 &T ' 

and comparing Eqs. (V.1), (V.Jb) and using~2• 6IT-T0 f/12, 

< c • (2!t)-t6 ht 
0 ~. 

c 
Now factor all the fixed macroscopic parameters from the A, 

c0 expressions, leaving only powers of h, 12: 

A •4ht/14 ; c0 =eht/12 

a.· 36C2U)-5/4cro-1)k 
21'CpCn1 +n2) 

e • (2!t)-t6/T
0

• 

Reduce the data to C0 /C • C = ht/12, A/G-= A• ht/14, and 

get h, 12 as 

h • cu2 /11' . :> 4/J, i 2· cctx2>1/J 
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--1 1', n1+n2• V , and T0 Etake component 1 as water): 

T0 -= 306.7 K • 

.... ~ • 7. 80x10-3 K-l 

• 1566 m. sec.-1, measured 

CP' Cv--not measured independently; estimate Cp 

from the pure fluid values 
1 2 2 

CP~x1cp +x2cp ; CP estimated from other pyridine, 
heterocyole •alues 

• 0.935(18 cal.c.-1mole-1)+o.o65(50 cai.c-1 
1 mole- ) 

• 20 cal. c.-1 mole-1 

and get Cv from Cp-Cv • TVl/~T• notation of paper I: 

e • -C'af>/~T)/p':!-(Ap/AT)/p 

For our mixture at X0 , between T • 32.65 and J4.65 c., 
our initial p ~-. X di.ta give p • 0.98900, 0.98759: 

e::e 7 .1x10-4 c. -l 

lfT also was not measured; use '<T • Ks + TVe2 /CP 

~. 1/pti', e. o.989oox103 kg. m.-3 

4 -9 -1 2 • o. 1Jx10 nt. m. 

V • X1MW1+x2MW2 
~soln. 

~ 0.065(10~) + 0,935(18) 
0.9 9 

• 24.1x10-6 m.3 mole-1 

l(T-=. o.458x10-9 nt.-1 m. 2 

-1 -1 CP-cv "= 1. 94 cal. C. mole 

~-1 • 0.107 

cc. mole-1 

Q. • o.491x1o-33 m. 2molecule-1seo. 

A • A/Q..• 4.47x1029 m.-3seo.-tmoleoule 
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C • C0 /C • 2.56x104sec.-i 

h = 1.66x1012 X4 sec. -l; reasonable size of pair 
diffusion constant 

. 02 
12• S0.5 A ; reasonable in comparison to other 

systems 

These values are not final; they are adjusted for Fixman's 

overs1ghtf as noted in paper I. 

--(4) Reduce h further, to a molecular friction 

constant ~as does Fixman (his@), from his Eq. (~.5): 

-2 J. 
h • (n1+n2 )v1 'ikTc • 'f /a~ 

ml c2:_;2!1a~ 

ni in molecules/unit vol. 

v1 in vol./molecule 

c2 •weight fraction of component 2 (lut.) 

v1• 18.07 co. mole-1 = J.oox10-23 cc. molecule-1 

'11• n1V1 

n1• p X3 • 0.0376 moles cc.-1 
X1MW1+X2MW2 

~lra o.680 

o2• X2MW2/(X1MW1+X2MW2) • 0.708 

)I• 48.8x10-26 m.smolecule-1 sec.-2 

H • h/')4 • J.4x10-14 ~-1aec. 
a~ a 1/H • 2. 94x1013i sec. -l 

Now, Fixman derives a • JV2/2tfl.2 from the Flory-Huggins 

model: 
a• 1.84 j; very low compared to other consolutes 

1.6x1013 seo.-1; small; corrected to 0.32 in 
paper II, for Fixman•s oversight. 



226 

(B) Derivation of Correction Factors for l,t from 

Fixman's original results, due to Fixman's oversight in the 

form of f(d)--faulty translation or singlet-. pair diffusion: 

Fixman derived a pair diffusion equation for G(r) 

or its Fourier transform Gk (Eq. 40, viscosity paper), lead­

ing to our Eq. (I.JJ). The diffusion constant h appears in 

two places in the incremental heat capacity (or •, K/f2)-­

as a factor in the numerator, and buried in the denominator 

of the integrals I or f(d). But we showed in our redevelop­

ment that h should be replaced by b/2 in the latter place. 

We indicated that this requires adjustment of Fixman•s 1,) 

by 1.26, 0.20, respectively. We derive these factors here: 

Proper form: 

A• kh' (T ~ 2 
4n2 c aT ) I' 

I' = J-dk,___k_4 _________ _ 

( k2+ 2 ) ( i w + -f k2 (k2+J(2J ) 

h' is the proper diffusion constant 

Performing the change of variables 

x = k/~, d -~2(h 1 /2w)t, similarly to before, 

we get 

with f(d) the same mathematical form as before. Thus in our 

forms ~/f2 = Af-514-eCd) + ~ B, d = c0 r-ifT-TJ, we have really 

A= 2314Q.Ch 1 )i/{1 1 )
4 
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c = e 2-i < h • > i IC i • > 
2 

and 
h' = 2713cc2/A>

413 
a 27' 3h = 5 04 h old • old 

=-+~' = 0.20 ~old 
l' = 2113cc/A2 >

1
'
6 = 2113 1 = 1 26 i old • old• 

(C) Proving Fixman's expression for the diffusion 

const:aat h, 
·-2 

h = kT~1v1 cn1+n2 ) 
(Cl( • .5) 

mic22'rta~ 

There are some difficulties in verifying this relation: 1) 

Fixman commonly does not label the variables held fixed in 

his partial derivatives; 2) he changes notation in transit, 

or makes errors in notation corrected implicitly in later 

papers; 3) he sometimes uses approximate equalities in deri­

vations but quotes them as equalities• !~hese three problems 

plus the spreading of his total derivation over 4 papers are 

great obstacles to following his line of reaaoning. We have 

corrected some implicit assumptions of the types above in 

our paper I, but we still have to verify the above equation. 

The diffusion equation outside the critical region 

(I.12) has a diffusion constant 

{ 1) 

which is retained in the critical region (only the driving 

terms are altered) but written as 

D = ~1'2 
2 • 
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Clearly, 

and from this we must derive Eq. (•.5). Let us reduce Eq. 

(1). First, we take, as does Fixman, c2 to be the mass frac­

tion of component 2. Correspondingly, p is the difference 

in chemical potentials per unit concentration p 2-p1 • As 

Fixman later uses p 1 as the chemical potential per molecule, 

we must convert 

P. • µ2/m2-J11/m1 

dp = d~2/m2 - dp1/m1. 

By the Gibbs-Duhem relation, p1 and p.2 are constrained to 

vary as 
n1d.J11 + n2dp2 • O 

~ dJ1 • nlml +n2m2 dp 

n2m1m2 1 

and thus 
D = «p · ~Jll 

n2m1m2 tsc2>P,T • 

Now, in his viscosity paper, Fixman derives a 

relation (Sec. A) between ~1/~~2 (or bp1/~n2 , as easili) 

and the microscopic parameters~ and.f2, through the rela­

tion of osmotic pressure 'ff. and the correlation function 

()!!' • kT [ 1 + n2 f G 22 ( r) d J-1 
11 ( ~P ) 

On2 On2 J11, T 

= a>11 ~P 
(~ )·P,'r(°ajil )n2,T • 



229 

le u s es a Maxwell relat i on 

and an assumption of small compressibilicy of the mixture, 

to get 

Now, in the critical reg ' on, according to the Ornstein­

Zernike model of classical thermodynamics, 

f G 2 2 ( r) ) = J.Jn!a/ I) 2 

> 4na 
1)2 = - (I .26) 

The second term in brackets is negligible relative to tre 

first when oµ 1/on2 - o, as in the critical region --unless 

we are trying to get the dependence of absorption on compo­

sition away fro Xe (Pulse t.esis, e.ge). Thus 

~u1 ~ V1kT!)2 

bn2 - 4tlia"t'l2 .. 

--We must put this n terms o: ~µ1/oc2 : 

op.1 _ oµ 1 on2 
ocz - ( 8n2) ( 002 \r • , 

The chain rule is j stified, since c2 (w ' th P, T) is a com­

plete desc iption.. \\·e need a con ition on the latter 

p rti l to reflect the P, T constancy, and we choose dV=O 
I 

low compressi" ili ty; also consistent with relation I .17 
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between cSG and (cSn212 ) : 

Thus 

dc2 = (~c2) dn + 
bn1 n2 1 

C2 =~ 

de 2 • m1 m2 r: ] 7 L-n2dn1 + nl dn2 

dV = V1dn1 +V2dn
2 
~ dn1 

D • .,_ ('2 fJ.V 1 2k!r~ 

n2ml2fJ12• -1c24'rfa 

- 2 h = -t(->Vl kT 

n2m 2m o 2!rt1 1 2 2 

---Fixman uses an intermolecular friction constant 

~in preference to ", converting through an ideal diffusion 

constant Did• In Sec. VIII in his viscosity paper, he der­

ives a rigorous relation 



and then defines 

~ E .!££_ 
m2Did 
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)~ = m1m22n1nz(n1+n2)V1 

f>kT 

= m1m2n1n2(n1+n2)Vl 

e~ 

, Q.E. D. 

(D) A Comment on Fixman's choice of the dissipa-

tive equation and its driving force: Fixman 1 s earlier papers 

on general critical region thermodynamics and on ultrasonic 

attenuation focus on the equations of motion for the singlet 

and pair densities, rather than the singlet and pair concen­

tration deviations. The latter obey a purely dissipative 

equation, modified from the standard non-critical diffusion 

equation; the choice of thermodynamic description for the 

entropy production and the choice of driving term are well 

justified. The density equations of motion, on the other 

hand, are mixed propagative-dissipative and encompass the 
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anomalous entropy production or sound absorption only for 

the gas-liquid critical point, and then in a non-obvious 

way. Fixman's first attempts to describe the liquid-liquid 

critical absorption failed for this reason. 

(E) Estimation of the pressure-driven contribution 

to the critical absorption, relative to the thermal absorp­

tion: The &T term in the driven e~tropy fluctuation, hence 

in " , originated in the derivative 

(~~)6T"'(d2µ1 )6T • a2 OOmix -sr- aTbc2 6Tdc2 ( ~Nl )N2, 

where Gmix is the free energy change for an arbitrary mass 

of solution and the Ni are total numbers of moles (or mole­

cules, if one prefers). The.:.;.analogous f>P-clri ven term is 

proportional, with the same constant of proportionality, to 

aJGm1x • ~ (~N )N AVm1x 
~P~o23N1 2 1 2 

The derivative (b/aN1>N2 factors as 

and clearly AVmix• N AVmix• where the bar denotes the molar 

quantity. Then the 6P term measure becomes, for e2• x2, 
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and 

aAvmix = CMW2-MW1) _ 
bx2 f's 

The ratio R of the pressure-induced to the temperature-in­

duced absorption is 

l~~ vmix a2 
AVmix] 

R = ~ - X2 2 
2 ~x2 c 

.-1-
( ~~1/~bX2) TV9 

, 

since for Ss a o, ~ 6T - ve5P - o. 
T 

A modified Flory-Huggins model will be used for the term 

~2p1/b>C2~T, in terms of mole · fractions rather than volume 

:fractions: 

which , is a form satisfying bJ11/~2 • o • ~ ~1;ax2 2 at x2=x
2 
~ 

and c\3p1;ax.2 
2bT > O appropriate to a lower oonsolute. Then 

, ~2µ1 • - Rg [.!:__ - 2 ) -t ;;.Rg at X 
~2~T (X2c>2 X1 XC5' (X 0)2x 0 0 • 

1 2 1 
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Numerical evaluation (let component 1 be water), T • 33.2 c. 
and X • X0 = 0.065 lut1d1ne: 

MWi = 18 g. mole-1 

MW2 • 107 g. mole-1 

p1 • 0.91035 g. co.-1 

f2 = 0.99467 g. cc. -1 

es - 0.98852 g. cc.-1 

~- 0 00087 ~ cc.-1 8 -1 "'t's ~ - •• - = -o. O 7 g. cc. , 
- - 0.0100 ax2 graphically 

6 Vmix• -0.504 co. mole-1 

Rg• 1.987 cal. c.-1 mole-1 

Cp, T, v, e have been listed in section (A). 

~AVm1x 4 -1 
~ • -9. 5 cc. mole 

2 

a2 Av --~m,,_1 ..... x • +7 09 co. mole-1 . ax 2 • 
2 

~2>i1/~2bT = 503 cal. c.-1 mole-1 

Ra -0.079 = -7.9% 
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Part II: Chemical Theory of Solution Thermodynamics and of 

Ultrasonic Relaxation. 

The thermodynamics of our lutidine: water mix-

tures, as of other aqueous amine or heterocycle solutions, 

points to strong A~B association through hydrogen-bonding. 

The phase behavior is affected: a lower consolute or criti­

cal mixing point is generated. The strong association 

equilibria also relax ultrasonically to yield a strong 

absorption. The latter effect has been studied by Andreae, 

et a1.1 with simple and not very successful models or chem­

ical theories, and pointedly ignoring the former effect. 

The critical absorption phenomena have been studied only 

for upper consolute mixtures (with one exception), dominated 

by 'physical' rather than 'chemical' interactions of mixing. 

Our solution seems to be the first2calling for a careful 

modelling of both absorption effects in a common framework, 

to separate and interpret the effects which are of compar~~ 

able magnitude in the critical region of interest. We have 

only limited guides in constructing such a theory; the 

chemical models of thermal relaxation are not very satisfac­

tory as we have noted, and the models for the critical 

thermodynamics have been elementary physical solution thee,... 

ries (not beyond Flory-Huggins) used empirically, far from 

the more complex chemical theories. Our rather piecemeal 

attempts at the total theory are presented below. 

Assume some model for the self- association of 
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water, and likewise for lutidine-water oomplexation: 

A+ An-1 ~ An 

B + An~BAn • 

Each equilibrium is characterized by an equilibrium constant, 

enthalpy change, volume change, and (for relaxation) forward 

rate constant. Let us denote these for the association 

equilibria as ~, Hn, Vn, and kfn' respectively, and with 

primes for the complexation equilibria. With modern comput­

ers it is possible to solve for the •true• species concen­

trations given a large but finite set of equilibria with an 

arbitrary progression or Kn, etc. with B, and from there to 

compute the net thermodynamic functions of mixing and the 

relaxation strengths, both as functions of the macroscopic 

composition as perhaps measured by the mole fraction x8 . 

This reduces to an exercise in curve fitting with an enor­

mous number of parameters. Our limited data on the phase 

diagram and on absorption do not justify such an exacting 

treatment, which is of limited interpretive value in any 

case. Our models are therefore limited to some simple pro­

gressions of the Kn, Vn, etc., such as the geometric one, 

Kn• ~~-l· We obtain low-order polynomial equations for the 

mole fractions 6n, 68 , and dan of the true species An, B, 

and BAn, to be solved numerically for any composition x8 • 

The molar free energy of mixing can be computed 

from the true species concentrations rather straightforward­

ly, 
(II.10) 
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under the assumption that the 'true' species form an ideal 

solution, in which case the aotivities of the monomers A, B 

equal the corresponding true mole fractions 6A• 6B. (A 

reasonable assumption to go with this is that the parameters 

Kn, etc. are independent of composition; this keeps things 

simple.) The condition for instability (1mmisoibility) 

~2Gmix < 0 
~xA2 

maps the region of phase separation. The chemical term:~ 

above Gmix = Gchem is not sufficient to cause such a con­

dition, but it helps it to occur and partly determines the 

particular mole fraction whre it occurs. 

Aside from phase behavior, our model must give the 

correct relaxation strength Z.:·:as a function of macroscopic 

composition XB. For a single general reaction 

aA + bB + • • • .._ cC + dD + ••• 

Herzfeld and Litovitz3 develop a relaxation equation. Let 

~ define an extent of reaction from some arbitrary initial 

state and let its first order disturbance (from the ultra­

sound) be 6~, 

S}. 5nc. 6nn. -6nA a -&nB - ••• , 
-ca.- --a T 

ni • no. of moles of species i. 

""" -Defining the forward and backward rate constants k and k, 

they derive to first order.(for the case aA+bB~cC+d.D, to 

prevent ambiguity of expressions) 
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d o c o d f.{a2 b2 c2 d2 2), 
-dt 64$ = k(oc)(5D) t CA+ 6B + 6c + 6n -(An) 3<5~ 

-n ~ln KJ 
4n = c+d-a-b 

~o. -- ( o
1 

equilibrium value of oi. 

Since b ln K = AH2 &T + Av bP, we can write this as 
RT RT 

the general form of irreversible thermodynamics . 

111 = k(68) 0 (og)d~/RT 
2 2 2 

~ = RT (§:__ + .!L + .9_ 
oA 6B 6c 

d2 2 + -- - ( n) ) 
6n 

H1 = n 4H 

V' = n ~ 

and the relaxation strength is as usual 

z = Im Ks(w) 

(V 1-ve00 H 1 )
2 JJJr 

= V~ (1+(H 1 )2/Tc;~J(1-o- w2-r1
] 

(I.9) 

Here 

For multiple equilibria, the coupling of the reactions (one 

reaction's product s another•s reactant, as for the pair 

A+An-l~An, A+An-' An+l) must be removed by taking appropri­

ate linear combinations of reactions, 'normal modes' of 
4 reaction. Eigen and deMaeyer give the necessary linear 

algebra . The redefined equilibrium constants, volume chan-

ges, etc. can be solved for on a computer--or an analytic 

solution can be obtained if our choice of progression of 
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the elementary parameters Kn, Vn, etc. is a lucky one. 

The expressions for the mixing free energy and for 

the general relaxation strength are our mainstays in eval­

uating any model of the equilibria. We require three 

results for an acceptable model: 

(1) z, summed over the reactions and regarded as a 

function of the macroscopic composition, "must have the cor­

rect peaking at X(lutidine)~0.1, including width and height. 

Now,Z is hard to compute for the general case of coupled 

reactions. However, we do know that the principal contrib­

utor to relaxation is the complexation A-B, and not the 

water self-association, since pure water absorbs very little. 

If we assume the complexation reactions are all uncoupled, 

then at a frequency f<<l/-Yi for all 1"1 such as we use, 

«/f2 - £ z ';' n n n 

= ~ (V'-VSHn )2 
• 

n V¢n ( 1 + (H 'nl 2 /TC~ ¢n) 

Under the reasonable assumption that for all n 

V' = V1 
n 

H' = H', n 

1 

• 

d t . th t th t V 9 o- d TC 00 d d an no 1ng a e parame ers , , an p are in epen -

ent of n, the measure of ~/f2 simplifies, 

At the end points XB = 0 or 1, this can be shown to vanish 
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as it must; ~Bn<Jn -~ finite limit, ~n -7 oo • 

Practical calculations are easiest and·•still accu-

rate ~ Co """ if we model V,6 , and CP as linearly varying with 

composition. The progression of kn with !! must be decided 

upon. Two simple choices are that they -are independent of!! 

or that they follow the same progression as the Kn. What­

ever the choice of progression, the sum over n in the 411/f2 

measure must be done numerically. Once a reasonable shape 

for ~/f2 as a function of XB has been obtained by adjusting 

the model parameters, it remains to check the absolute mag­

nitude of the calculated ~/f2. While the absolute value 

can be changed by scaling the k uniformly, they cannot be 
n 

adjusted such that "t'n~ 1/fmruu where fmax is the upper limit 

of the dispersion-free frequency range- -at least 13.5 MHz. 

in our system. 

In our original calculations on all models, we 

used a simple and intuitive, but incorrect, measure of ~/f2, 

namely oAB itself for the simplest case where B associates 

only with monomer water A. We therefore do not report our 

results in this regard. Our conclusions on phase behavior 

are still valido The correct measure should be computed 

and evaluated for our models at some later date, and the 

problem of reaction coupling should be attacked. 
I 

(2) The free energy of mixing must generate a 

critical point at the proper low mole fraction XB = O. 065. 

Let us define = Gmix/RT and 1 = o):i/oXA, ~11 ·• ::: o2..tf-/oXA2• 
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The critical condition is ~·= 0 at some XB. It is easy to 

derive that 

11 2 ('I XA 1 t 11 ( ! ' ) 2] 2 t ' "1. chem= r 0 A + rz 0 A0 A- 0 A - -, 0 B 
0 A 0 A 0 a 

XB t t. II ~I 2] 
+ -::--2 oBoB-(oB) 

OB 

where 5A = ~oA/oXA, 8~ = o&B/oXA, etc. 

It is simplest to express everything in terms of SA and its 

derivatives, using the chain rules 

S~ = (o5B/oOA)8A, o; = (~SB/ooA)5~. 

Further, ~l, b~, and obB/aOA are ma;st compactly derived by 

implicit differentiation--of the polynomial equation for SA 

and XA for the first two, and of the sum rule relation 

- l:Sn - LcSBn = 1 - ~Sn - SB£~bn 
n n n n 

= ( 1- i;8n) /( 1-£Kri8n) 
n n 

for ~oB/o~A· 

To get a phase separation, we need to add .U h , 
P ys 

some functinn of composition. Now, .-t!~hem can bring Jt.' 
close to zero, and certain of the models favor smallness and 

flatness of ~hem at low XB where we require it. A .tiphys 

of the simple form AXA~B can then be added, which peaks at 

XB = 3/(n+4). For Xe= 0.065 to be generated, n has to be 

about 50, which is very unrealistic. ~phys becomes a narrow 

spike. An inverse exponential such as Aexp(a/(\XB-Xcl+b)) 

might be more realistic. Any form, however, is hard to 

justify on any grounds over and above the phase behavior. 
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Finally, we note that ~ phys may alter the acti v­

i ty coefficients of the true species,and the equilibria must 

be correspondingly adjusted. 

( J) The net temperature dependence of ~11 = 'A,." chem 

+..ti." phys must give a lower consolute point, 

0 l:1. II ( x B ) I ~T < 0 • 

The chemical equilibrium constants are all reduced by in-

creased temperature, since the enthalpies of reaction are 

all negative • ..d. ~hem is consequently changed. In all our 

models, tj, ~hem pulled away from zero at .extreme mole fractions 

and bulged toward zero at intermediate ~' as the tempera­

ture rose. To get c) 11 /01, <.O at low XB, the major -
temperature dependence must be in ~ phys• which is surpris­

ing and discouraging. The model for <iphys becomes more 

arbitrary yet more important for properties. This dif.fi ­

cul ty is our principle one, as cited in paper II. 

Before ending this Appendix by listing the key 

equations for three chemical models, we mention that two 

more thermodynamic criteria could be added : accurate predic­

tions of volume and enthalpy changes on mixing, AVmix and 

Hmix· We do not have any data on the latter for our sys--
tem, but the former is modestly informative for lutidine: 

water. An extra use of the volume information is in set­

ting y_• for the complexation, for use in calculating the 

relaxation strengths, hence ~/f2 • The detailed equations 

for computing Vmix are developed as follows : 



where 

In turn, 
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AVmix= vE = V(Xa) - VoCXa) 

vo<xa> = volume per mole or monomers, 

V(Xa) = volume per mole of monomers, 

Vo{XB) • XAVA(O) + x8v8 • 

unmixed 

mixed. 

There is an x8-dependence of VA because it self-associates, 

and even an inert diluent shifts the equilibria. Now, 

VA(O) = VtC=total volume)/Nt{•total no. monomers) 

=!nkvk/ !knk • £6kvk/ 2:kf>k 
k k k k 

Vk • kV0 + (k-1).AV (for AVn• const. =tN) 

VA(O) • V0 + AV{1-%&k/~k6k) ii V0 + R0 /:lV. 
k k 

Similarly, for the mixture, 

V(X8 ) = Vt/Nt 

vt~£6kvk + ~BVB +t&BkvBk 
k k 

Vk • kV0 + (k-1)6V , as before 

Vak• kV0 + (k-1)6V + 6V' 

Nt-~kSk + 58 + l:Ck+1)bBk • 
k k 

Overall, vE has the form 

Vmix• f 1 CXa)AV + f 2cx8 )6V'. 

AV should be set from the molar volume of pure water VA(O), 

leaving AV' to be set from the least-squares fit of our vE 

function to experiment. We take V0 + AV to represent the 

molar volume or ice (totally bonded water), and V0 +R ~V to 
0 

be the molar volume or water at some moderately low tempera-

ture. 



244 

Calculations of the enthalpy of mixing 6Hmix(Xs) follow the 

exact same outline, and use the same R0 , r1(XB), and r2CXa)• 

The chained equilibria of association cause r 1 to 

peak at very high Xs. For the simplest model of complex­

ation, that of A-B monomer association only (K~·O for n>O), 

f 2 also peaks at large XB. However .AVmix peaks at Xa~0.4, 

so the simple model is unphysical for at least the excess 

volume behavior. The other models have not been examined 

for their volume predictions. Getting the phase behavior, 

absorption, and volume/enthalpy behavior to be satisfactor­

ily predicted by anY' chemical model will no doubt be very 

difficult, if not impossible. 

Details 

The algebra of the mole fraction equations is very messy and 

difficult to do correctly, so we present the key equations 

for three chemical models as a time saver for any future 

work on these lines. 

Model I: 

A+ ~-1*An Kn• K • 6n/6A&n-1 

A + B'#AB K1 
• cSAB/6Af>B 

--------~-------
x = NA = ~tC~~~n:6Aa) . 

A NA+Ns ~t~n6n+26As+6B) 

• 6A(( l+K 1 )-2KK'6A +KK ~ ( 1+K)6~ J 
1+2(K'-K)~A+(K-K'+K2-4KK 1 )6i+2KK'(l+K)6l 

• 6A (a-b,A+.o6A2J 

1+d6A+e~A2+2c~Aj 

, 
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which reduces to the cubic form 

(2cXA-c)61+(eXA+b)&~+(d.XA-a)6A+XA= o. 
Explicit fo~ms for the solutions to cubic equations are 

available, as in the Handbook of Chemistry a.rd Physics. 

Generally there are three real roots SA obtained, only one 

of which satisfies the constraint that all mole fractions 

6A, 6B, and &AB be positive. 

6B Ill ( 1- [1 +K] 6 A) I ( 1-Kf> A)( 1 +K. ~A) 

a~B/b6A 111 - (a+ b6~ + c6A2)/(1-K6A)(l+K'6A) 

~l= -(1 + d6A + e&~ + 2o&1)/D 

D • XA(d + 2e6A+ 6c6A2) - a+ 2b6A - JcbA2 
I 

b~ • - ~A[2(d+2e~A+6c6A2) + XA(2e6l+12c6A6l) 

+2b6l-6coA~l] 
"1chem i~ not very flat for this model for any 

moderate K1 K', and 6AB peaks at XB • 0.5. 

Model II: 

A + An-1~ An 

B + i\i~ BAn 

~ = K 

~ = K' 

XA = (1+K 1 )6A - K(l+K 1 )~A2 

1 + (2K'-3K)6A + (1+3K)(K-K 1 )6A2 + 

K(l+K) (K'-K)6A3 

31 6A(a - b~A) 

1 + c6A + d6A2 + e6A3 , 

cubic if K # K', quadratic if Km K'. 



246 

bB = ( 1- (1+KJ6A)/( 1- ~-K')f>A) 

~5B/b6A = -(a - b6A)/(1 -(K-K 1]SA) 2 

~l - - (1 + o6A + d~A2 + e6A3)/D 

D = XA(c + 2d6A + Je6A2) - a +2b6A 

A reasonable model. 

Model III: 

A+ An-l~An 

B + An~BAn 

~ = K 

K' • K'~n n 

SB • ( 1 - [1 +K]S A) ( 1 - .uc& A) 

(1 - K6A)(1 + ~0c•-K)6A) 

XA 4-~ 6A relation is quartic, unless K = K', which 

we promptly assume: 

5B • (1 - (l+K)bA)(l - •K~A)/(1 - K6A) 

XA = (1 + "K)~A - 2tlK(l+K)5A2 + etK2(1+K)bA3 

1 - 2K6 A + K ( 1 - "' + K) 6 A 2 

a (a6A + b6A2 + c6A3)/(1 + d6A + ebA2) 

6l =-(1 + d6A + e&A2)/D 

D • XA(d + 2e6A) - a - 2b6A - JcbA2 

~5a/a&A • - (a + b6A + cbA2)/(1 - K6A) 2 

also a good model. 

We -used two more models, one the same as model III 

but with KA• K'~n-l, and one with self-association of B. 

The toi'mer is not noticeably different from model III, and 

t he latter is unrealistic for our system. 
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Calculations of Hartree-Fock Polarizabilities for Some 

Sim le Atoms and Molecules and Their Practicalit * 
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Hartree-Fock electric polarizabilities have been calculated 

for H2, He, Li, Be, LiH, and N;i. Perturbation theory with all the 

coupling terms was employed variationally for the first five, using 

a variety of basis sets for each. Each basis for the perturbation 

calculations was composed of a zero-order set, plus a first-order 

set (appropriate to the direction of polarization, for the molecules). 

The two sets . are disjoint to ensure identical zero-order functions 

for the two molecular polarizability components and, hence, reliable 

anisotropy values. Nonorthogonal theory as formulated by T. P. 

Das and K. J. Duff [Phys. Rev. 168, 43 (1968) ], assuming exact 
"""""" 

zero-order orbitals, was used for LiH. For practical reasons, the 

nitrogen molecule was treated by the fully self:-consistent approach 
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which does not distinguish orders of perturbation. The results for 

all six species are in very good agreement with experiment, 

reflecting . both a reliable choice of polarization functions and, more 

significantly, . the basic accuracy of the Hartree-Fock method for 

the static charge distributions, both unperturbed and perturbed by 

an electric field. 
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I. INTRODUCTION AND THEORY . 

Among variational theories of molecular electronic structure, 

the Hartree-Fock theory has proved particularly valuable for a 

practical understanding of such properties as chemical binding, 

electric multipole moments, and x-ray scattering. It provides the 

most tractable method of calculating first-order properties under 

external or internal one-electron perturbations, either developed 

explicitly in orders of perturbation theory or in the fully self-con­

sistent method. Electric polarizabilities, l-4 and magnetic proper­

ties5 such as spin coupling, chemical shift, and susceptibility have 

been treated with the theory. The accuracy and consistency of first­

order properties are poorer than those of zero-order properties. 

Most often this is due to use of explicit approximations in solving 

the first-order perturbation equations, or to the inaccuracies of the 

zero-order molecular orbitals (MO's) which may undermine the 

variational principle for the second-order energy. Theoretical 

studies using many-body theory6' 7 indicate that the Hartree-Fock 

theory itself. is basically sound for static or zero-frequency proper­

ties, and we do not intend to draw further conclusions along this 

line. Rather, we have performed representative calculations of 

static electri.c polarizabilities for small atoms and molecules to 

underscore the basic soundness of perturbed Hartree-Fock theory, 

giving important and practical guidelines for selecting the varia­

tional basis sets for the first-order wavefunction. 
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Our first studies were on H2 and the atoms He, Li, Be 

using a variety of simple wavefunctions constructed from Slater type 

orbitals (STO's). For such few-electron species, the problem is 

best solved by constructing explicit first-order perturbation equa­

tions for the perturbation cf>~ to the unperturbed molecular orbitals 

cp~. The unperturbed electronic Hamiltonian contains one-electron 

terms h? and two-electron terms g .. = 1/r .. (in atomic units), 
1 :::!! _!l 

H
0 = E h~ + E E g. · 

i 1 i < j lJ 

The perturbation due to an electric field ~ along the axis k is 

and the zero-order and first-order Hartree-Fock equations are 

respectively 

(ho+ E<ct>~l·lct>~> - €~)'*'~ j J J 1 '+"1 

(1) 

(2a) 

+ (hl +:6 [<ct>J~l. lct>~> +<'*'~I· !ct>~> J - €~)ct>~ = o, (2b) 
. j J 't'J J 1 1 

with the usual convention of order-by-order orthogonality, 
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(cf;~l<Pj> = 0. 

Here we use the shorthand notation 

(al·lb)c = (a(j)lgijlb(j))c(i) 

- (a(j)lgijlc(j))b(i). 

The zero;..order equation is commonly solved variationally using 

STO's (x~) centered on the nuclei, 

cp? = ~ c~ Xo 
1 p IP p· 

(3a) 

(3b) 

(4) 

(5) 

The first-order equation may be solved variationally in a similar 

way. Operationally, this means making Eq. (2b) hold for all pro­

jections with the first-order basis set {x 1 }, 

(6) 

for all p_ and !_· . 
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1 Substitution of the appropriate basis expansions for the <Pi' 

including the explicit forms for the matrix elements €~, yields 

linear equations for the first-order coefficients c~ . This is 
_!Q_ 

equivalent to minimizing the second-order energy, assumirg the 

exactness of the zero-order solution in the total basis {x} = 

{x o} + {x1}, 

for all r. 

(7) 

Given a zero-order basis {x 0 } and the direction or axis of 

polarization ~ the polarization functions {x 1 
}k can be picked 

judiciously to include all important shifts in orbital amplitudes while 

remaining few in number. A major part of the work reported 

herein concerns just such choice of the basis. We have shown that 

the distortion · of </>~ can be adequately described by allowing each 

atomic orbital in the MO to distort in the electric field as a pure 

hydrogenic orbital would distort. For the H2 molecule and the 

three atoms He, Li, Be, our work is further simplified since the 

polarization functions are automatically of a different symmetry 

from the occupied orbitals: au vs. ag for H2, and E vs. ~ for the 

atoms. The calculations proceed very straightforwardly to the 

second-order energy in the electric field 

t2E <2> = t2~ (q\lh1l<t>i), 
l 

(Ba) 
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which directly measures the polarizability as 

E ( 2) - _.!,,, 
- 2u.• (Bb) 

We obtained excellent agreement with most reliable values, either 

experimental or theoretical. The results were markedly insensitive 

to the choice of zero- and first-order bases. 

We were encouraged to try molecules of lower symmetry 

and more electrons. The first case was LiH, previously treated by 

Lipscomb and Stevens1 in similar fashion. Now our simple expe­

dient of distorting the atomic orbital basis functions as if they 

described hydrogenic atoms yields a first-order basis composed of 

functions not automatically orthogonal to the occupied orbitals by 

symmetry. We can Schmidt orthogonalize the X~ to the X~ before 

doing any perturbation calculations, but this involves much manipu­

lation of the raw one- and two-electron integrals over basis func -

tions. The nonorthogonal perturbation formalism of Das and Duff8 

performs instead a symmetric deorthogonalization in the matrix 

equations (6). They perform the deorthogonalization before 

separating orders of perturbation in the Hartree-Fock equations and 

minimizing the second-order energy with respect to the -+.~. Thus, . ~l 

they obtain extra terms in the first-order equation due to inexact-

ness of the ¢~ in the augmented basis {x 0 } + {x 1 }k: Eq. (7) is not 

satisfied. Most often these terms are small and can be dropped 

much as Das and Duff do in their final presentation. We then have 

at hand a formalism for computing separately the two polarizability 
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components ak (a zz and axx) in small total bases while retaining 
- -

reliability of the anisotropy ak - al.. 

Finally we tried the N2 molecule, with its many electrons 

and many occupied symmetry types of orbitals. Practical zero­

order bases of Gaussian type orbitals (GTO's) do not keep the q0 
-

inexactness terms in the perturbation equations sufficiently small 

any more . Even in LiH, GTO's cause this problem. The inexact­

ness terms are too prolific to include. The problem is avoided by 

shifting both zero- and first-order calculations to the common, 

enlarged basis {x 0 } + {x 1 }k. The unoccupied virtual orbitals from 
. 1 

zero-order can then act as the new Xp· To once more avoid much 

manipulating of two-electron integrals, we abandoned the perturba­

tion formalism in favor of the fully self-consistent approach, equiva­

lent at low fields l. The basic Hartree-Fock equations unseparated 

into orders a.re solved, given a finite electric field. The field is 

small enough such that <Pi ~ ¢~ + ¢~ and E c:.! E
0 

+ ~ E < 1 > + 

CE < 2 > and higher orders are negligible (for N2, E < 1 > = 0, too). 

Now, if one computed the two polarizability components separately, 

the anisotropy ak - a 1 would be less reliable because the unper­

turbed energy is doubtlessly shifted differently in the two different 

total bases {x 0 } + {x 1 °lk, {x 0 } + {x 1},t. We thus prefer one large 

basis {x0
} + {x 1 }k + {x 1 }l. for all calculations. Fortunately, for N2 

a good ze~o-order basis {x 0 } already contains many functions which 

may also act as polarization functions and {x 0 } is not greatly en­

larged by adding the nonredundant parts of { x 1 
}k and {x 1 } t . 
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Beyond the approximation of finite basis expansion for the 

molecular orbitals <f>i (in all orders), several approximations to 

Hartree- Fock theory have been proposed. The explicit perturbation 

equations (2b) are altered in these approximations to eliminate the 

need for all or most of the two-electron integrals over basis func­

tions. Dalgarno 9 has discussed these methods, and the approxima­

tions have been evaluated relative to the "full theory" by Langhoff, 

Karplus, and Hurst.10 While these theories save most of the effort 

in evaluating a first-order property, they consistently undervalue 

the polarizability to an unpredictable extent. We wish to test the 

accuracy of full Hartree-Fock theory which neglects only instan­

taneous correlation. We do not consider further the approximations 

to its perturbation formalism. 
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II. APPLICATIONS AND RESULTS 

Many polarizability, magnetic susceptibility, and magnetic 

shielding calculations have been done for H2, by all manners of 

perturbation theory and with all types of unperturbed wavefunctions. 

We focused on the simpler zero-order wavefunctions, the Coulson11 

and Hansil 12 Hartree-Fock (HF) functions and the Wang13 valence­

bond (VB) function. The Coulson and Wang wavefunctions use only 

one ls atomic orbital on each center, while the Hansil function in­

cludes one 2s and one 2pz in addition. In each case the wavefunc­

tion was perturbed by letting each basis function x~ assume the 

variational form (there is only one MO). 

(9) 

with c a variational constant. For the two HF wavefunctions this is 

equivalent to the perturbed HF formalism outlined previously, 

o e 1 
cf>· - cf>· + c..."'·. 1 1 '+'1 

The analogous VB treatment involves straightforward minimization 

of the second-order energy. 
1 

The Xp were selected initially as solutions of the hydrogen-

like atom in an electric field with x~ as the unperturbed wavefunc­

tion, 

(10) 
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Here ~ is the principal quantum number of x~ tp is the orbital 

exponent, Z is the effective nuclear charge ~ and €~ is the 

first-order energy associated with the perturbation -trk along the 

Cartesian axis k. Thus a ls STO in a z-directed field yields as 

x~ a linear combination of 2pz and 3pz of the same l°_i a 2s 

Slater--a 2pz' 3pz' and 4pz combination; a 2px --a 3dxz and 4d_xz; 

a 2pz --a ~ . ~ ~ ~ 3d3z2-r2 , and 4d3z2-r2 • · All of the 

hydrogen molecule trials used the STO's in the x.~ frozen in their 

original linear combinations, even if, for example, only 2pz and 

4pz were used for the 2s polarization. The molecular calculations 

on LiH and N2 in contrast used Eq. (10} simply as an indication of 

important primitive basis functions, STO or GTO, to include in 

bases unconstrained by any linear combinations. 

The results are in Table I. Trials A, B, and E are most 

relevant, as they compare three different simple wavefunctions 

under essentially complete polarization according to Eq. (11). They 

are compared to the extremely accurate polarizabilities of Kolos 

~d Wolniewicz14 who used a 54-term zero-order wavefunction and 

34 terms in first order. Quadratic interpolation was done to the 

internuclear distances R used in our calculations. Sufficiently 

accurate experimental polarizabilities are only available at optical 

frequencies. . The insensitivity of our results to the choice of the 

zero-order functions along with the first order wavefunction chosen 

according to Eq. (11), and their agreement with · experiment, is very 

encouraging. Result C shows that optimization of the exponents for 
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polarization functions is unnecessary, and case D indicates a need 

for polarizing the majority of the zero-order basis. 

The. He; Li, and Be atoms were treated next, using 

Clementi's
15 

unperturbed wavefunctions computed in double-zeta 

basis sets. An accurate He polarizability, a = 1. 397 a. u., has 

been obtained by Johnston, et al.16 by extrapolation of the experi-
17 mental dielectric constant to zero pressure. Dutta, et al., 

have used many-body theory on He and found a = 1. 407 a. u. Our 

result of 1. 319 a. u. is 6. 0% low relative to the experiments, the 

first in a trend to undervaluing the correct polarizability for atoms. 

The best Li . polarizability was determined by Fues 18 using the Stark 

splitting in lithium metal; molecular beam measurements use single 

atoms rather than bulk metal but have been far less precise. Our 

Li wavefunction, which is of unrestricted Hartree- Fock form, gave 

a result of 167. 6 a. u., 7. 9% below the experimental value of 182 a. u. 

Beryllium atom provided our greatest success, as it has for several 

other calculations using Hartree-Fock theory; the computed value of 

45.28 a. u. lies only 3. 2% lower than the accurate many-body result of 

46. 77 a. u. due to Kelly .7 No experimental results are reliable. All 

three atomic calculations showed negligible, usually negative contri­

butions to a by the core orbitals, as might be expected. 

The LiH molecule, as a heteronuclear species with two 

electronic shells, provides a somewhat better test of Hartree-Fock 

theory, particularly its nonorthogonal formulation discussed in the 

previous section. Ransil's19 wavefunction was chosen for zero order 
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at the experimental internuclear distance R = Re = 3. 015 a. u.. The 

perpendicular polarization was represented by the full set of four 

hydrogenic-model polarization functions x 1 --see Eq. (11). Standard . p 

orthogonal perturbation theory20 could be used for a 
1

, yielding the 

value 26. 22 a . u. This agrees well with the most reliable theoreti­

cal estimate of 27. 00 a. u. by Stevens and Lipscomb.1 The parallel 

component is more difficult, requiring nonorthogonal theory. We 

chose to test here many of our ideas on the adequacy of polarization 

functions, and so we pooled all 13 primitive x~ as unconstrained 

individual STO's, plus the two virtuals from zero-order. The com­

plete basis yielded a 11 = 25. 29. Stevens and Lipscomb1 did not 

compute a
11 

because of the change of zero-order basis necessary to 

retain the orthogonal perturbation theory. Kolker and Karplus 2 have 

made cruder calculations, a
11 

= 25. 38 a. u. and a1 = 34. 42 a. u., 

which are in poor agreement with ours, but at least show a nega­

tive anisotropy a
11 

- a
1 

= -9. 04 a. u.; our value is -0. 93 a. u. We 

could conclude that the ~ ~-like orbitals from polarization of the 

tight lsLi' the ~ from the 2sLi (nearly redundant with the zero­

order !E_); and the 2s from . the 2pLi polarization were all unimpor-
1 --

tant. This new basis {x } yielded a
1 

= 25. 04 to confirm our judg-

ment. Many other deletions were tried, with a nine-function set 

being the smallest to give a good result: the two virtuals plus the 

~ ~ STO's from the 2sLi' the ~ ~ 3d from the 2pLi' and the 
·--

~ ~ from . the 2sH gave a
11 

= 24. 63 a. u. In all these calculations 

the inner core orbital was seen to back-polarize slightly, following 

the trend of the atoms. 
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The N2 molecule is tractable only in a Guassian basis set 

due to the large number of two-center, two-electron integrals 

required. For experience in selecting the {x 1 
}, we returned to the • p 

LiH molecule in a GTO basis. We attempted to reproduce the non-

orthogonal perturbation theory results for STO's, choosing Gaussians 

t t d b H . I 
21 . t• t . . th s O' f con rac e y uzmaga s prescrip ion o m1m1c e T s or 

atoms. While the zero-order energy was close, the dipole moment 

was poorer and the polarizability using just the . two virtual orbitals 

was two-thirds that obtained using the STO's. This indicates poor 

tails for the Gaussian wavefunctions. We tried to add to the non-

orthogonal perturbation theory the extra terms due to inexactness of 

the <t>i, but these proliferated wildly. Instead we settled for an 

equivalent fully-self-consistent approach discussed earlier. The 

polarizability is taken from the ratio of the induced dipole moment 

to the electric field, possibly extrapolated to zero field for greater 

accuracy. We did not do such extrapolations, since the larger 

inherent error of Hartree-Fock theory does not warrant it. 

We began our LiH calculations with a very large basis of zz 

functions covering a full range of exponents in ~ ~ and 3<! GTO's 

for Li and ~ ~ for H. By trial and error we pared the basis to 

15 functions, which yielded a 11 = 21. 06, a
1 

= 22. 56. The anisotropy 

is negative as for STO's, but absolute magnitudes are down about 

15%, somewhat disturbingly. Perhaps lack of closely-spaced expo­

nents for the Gaussians is responsible, as this disallows construc­

tion of more diffuse functions with radial nodes. 
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Proceeding to N2, we built from the zero-order basis of 

Dunning 22 consisting of 13 contracted GTO's (22 primitives) on each 

nitrogen, four of the s-type, three of each .2_-component. The cal­

culations were done at the experimental internuclear distance, 

2. 068 a. u. We added on each center a diffuse ls (t; = 0. 0800) for ~­

polarization of the 2pz or ~-polarization of the 2px; a similarly 
-- --

diffuse ~ (0. 0800) of all three directions for ~ and z-polarizations 

of the a o.rbitals; and a host of d-functions all of moderately diffuse 

exponent 0. 200. Among the Q.-functions the two-center linear com­

bination XXA + XXB covers the x-field on ?T~ orbital; YY A + YYB 
---- - --

is simply the complement to the above for the a-orbital balance; 

XY A + XYB covers the x-field on ?T~, while YZA + YZB is for the 
-- -- -
~-field; XZA and XZB are used independently to . represent the ~-

polarization of a , a and the z-polarization of the ?Tx orbital. 
g ~ - ~ 

The computed a
11 

and a
1 

are 14. 97 and 9. 46 a. u., respec-

tively. It is of practical interest that it was extremely difficult to 

obtain convergence of the SCF procedure for the z-polarized case. 

Three-point extrapolation23 by the ek procedure for oscillating and 
- 23 

diverging series was used, as outlined by Petersson and McKoy. 

The comparable experimental values are a
11 

= 16. 06 and a
1 

= 9. 78 

a. u. obtained dynamically with Na D light. 24 Dispersion corrections 

may be estimated to give static polarizabilities of 15. 9 and 9. 7 a. u. 

The agreement of theory and experiment is quit~ remarkable. It 

may be partly fortuitous, due to a 5-15% underestimation of a when 

using a GTO basis, or to increased inaccuracy of the highly polari­

zable valence orbitals in systems of many electrons. One more 
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interesting feature of the N2 polariza ti.on is the coupling of orbitals 

in pairs under the field influence. The lag_' lau orbitals are 

essentially unpolarized for both field directions. For an x-field, 

the 2ag_ gives 11. 4% of the polarizability and the 2au 31. 0%; the 

3ag_ and 17T~ couple, with to latter anti-polarizing, to give another 

42. 4%; and the 111Y yields the last 15. 2%. In a z-field the 2ag_ u -

contributes 4. 1 %; the 2au -3a coupled give 26. 0%; the 111x 31. 1 %; 
- g_ u 

and the 111Y 38. 8%. The disparity of the last two contributions is 
u 

due to a slight inequivalence in the zero-order descriptions of the 

two orbitals: the xzA, xzB polarization functions also enter into the 

unperturbed 111~. 
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III. CONCLUSIONS 
~ 

Hartree-Fock theory for the static first-order property of 

polarizability appears adequate when solved exactly within a modest 

basis, under quite general circumstances of molecular structure 

and of basis set composition. The smallness of electron correla­

tion effects has been previously displayed explicitly with many-body 

theary6' 7 . in special cases, and the work reported here supports 

this conclusion more widely. Hartree-Fock may give poor elec­

tronic excitation frequencies, but at all perturbing field frequencies 

low relative to correlation processes for virtual or real excitations 

it does well for properties. The model should be useful for cal­

culating such experimentally inaccessible prope;rties as molecular 

polarizabilities in their dependence on internuclear distance, a (R). 

The variation of the polarizability of a pair of atoms as a function 

of distance has well-defined effects, including increased cross sec­

tion for vibrational excitation in electron-molecular collisions, 

strong contribution to the second dielectric virial coefficient, 25 

collision induced light scattering26 and a nonlinear refractive 

index. 27 Of course, one must be careful in using molecular 

Hartree-Fock wavefunctions far from equilibrium internuclear separa­

tions Re: for molecules dissociating into fragments with unclosed 

shells, the Hartree-Fock wavefunction is incorrect except near Re· 

Multiconfiguration self-consistent field calculations can remedy this 

fault while increasing the computing effort; the fully self-consistent 

approach to polarizabilities remains viable in this framework. 
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TABLE I. Polarizability of H2 for various wavefunctions. 

R 

(A) 1.402 

(B) 1.406 

a 
STO Bases {x 0 1, {x 1 } for 
Hartree-Fock (:ltF) or Valence 
Bond · (VB) Wavefunctions 

{O} = ls (1.197) HF 

{l} = 2p, 3p (1.197) 

{O} = ls (1.166) VB 

{l} = 2p, 3p (1.166) 

{l} = 2p, 3p (1.100) 

b a
11 

(% error) 

6.345 (-1.0) 

6.003 (-7.1) 

a
1 

(% error) 

4.238 (-7.5) 

4.441 (-3.4) 

4.469 (-2.8) 
N 

(C) 

(D) 1. 402 {O} =ls (1.378), 2s (1.176) 

2p (1. 820) HF 

6. 090 (-4. 9) 4.102 (-10. 5)$ 

{1} = 2p, 3p (1. 378) 

(E) . {1} = 2p, 3p (1. 378) 6. 321 (-1. 3) 4. 597 (+2. 9) 

2p, 4p (1. 176) 

a First-order bases are constrained as linear combinations by the solution of Eq. (10). See text. 

b Error is relative to the accurate theoretical values of Ref. 14. See text. Accurate values of 

(a
11

, a
1

) are (6. 407, 4. 584) at R = 1. 402 and (6. 460, 4. 597) at R = 1. 406. All values are atomic 

units (a. u. ), a~. 



270 

Orbital Basis Sets and Their Method of Selection 

In our perturbation calculations on H:a, He, Li, Be, and Lili 

using STO' s, our choice of polarization functions was guided by Eq. 

(10) of the paper. This equation establishes the polarization function 

for any given pure hydrogenic function. The exact solution for z­

polarization are described below. Subscripts STO and HO on orbitals 

mean "Slater-type orbital" and "hydrogenic orbital," respectively; 

the two differ in the case of nominal 2s form. 

As noted in the text, ~ is the orbital exponent of the x 0 , as 

well as of all ST<;3' s in x 1 • 

(B) x0 = (2s)STO = [ (ls)HO - (2s)HO] I .J3 

We assume that the x 1 for the two HO components add algebraically. 

There is an additional problem, that (2s)HO and {2pz)HO are 

degenerate; to solve Eq. (10) for x1, we must use the linear combina­

tions };- [ (2s)HO ± (2pz)H0 ] appropriate for degenerate perturba­

tion the~ry. Corresponding first-order energies are ~ (l) = ~ k . 
. 1 1[1 1 ] 

Then we construct X 28, HO as /2 X (2s+2p), HO + X ~2s-2p), HO · 

The result is: 
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Following (B), we construct 

1 1 [ 1 1 . 

· X2pZ' HO as ../2 X(2s+2p), HO - X(2s-2p), HO ], 

with the result 

X 
1 

- 4~, [(ls)ST0-"3 (2s)STO - 1¥" (3s)STO + ./¥ (4s$ToJ 

- 4~g- [(ad3z2-r2)STO + If (4d3z2-r2)STO] 

For the a
11 

= azz calculations on Lili, the constraints of 

the x1 to the above linear combinations were relaxed, and the primitive 

STO' s occuring in the x1 were used as individual free basis functions. 

For zero-order bases { x0
} composed of GTO' s, the unper­

turbed reference Hamiltonian for each function is no longer than 

that of the hydrogenic atom with its coulombic binding potential. It 

is instead the Hamiltonian for a harmonic oscillator. This is not 

realistic for the x0 as used, so we adopted a different technique of 
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selecting the x 1 for nonorthogonal perturbation theory or fully self­

consistent calculations. Basically, we referred the total GTO 

basis to an equivalent STO basis, constructed the corresponding 

(unconstrained) STO { x1
}, and converted the latter to GTO' s. As 

the first step we examined the range of orbital exponents in the 

GTO's of any one type on one center, such as ls on Li in the LiH 

case. Then we reversed Hurzinaga's (Ref. 20) prescriptions for 

fitting one STO with!!. GTO's by energy minimization. For example, 

Huzinaga reports that four (!:~GTO used to fit one (!!)STO range 

in exponents ~G from 0.123 (~ s)2 through 13. 36 (t 8)2
• In reversing 

Huzinaga's procedure, we identify the extreme high and low Gaussian 

exponents with components in expansions of the two STO's with highest 

and lowest exponents ts· If the extreme ~Gare~ (low) and_&, 

respectively, the corresponding extreme ~s are s1 = ../g1 /0.123 

and Sa = ../g2 /13. 36 . We then assume these two STO's polarize into 

the familiar ST(Lj x1 above, which we reexpress in GTO' s. We look 

at only the GTO x1 of extreme exponents and fill in other Gaussians 

in a geometric progression of exponents, usually with a ratio 3. 3. 

Since the extreme exponents for STO X1 are the same as those for the 

STO x0
, the conversion is simple. Thus if we are discussing only 

the ls types among the GTO x0 and have constructed s 1 and s 2 for the 

corresponding STO (~ and(~, we need only choose the conversion 

of the STO ~ and (~ to GTO (2p)[ GTO ~) exist but are harder 

to use in integral routines]. Using four (!p_)GTO to convert one (~STO' 

the ~GT~ range in exponents from O. 020 (2s1)
2 

to 0. 734 (2aa)2
• 



273 

For our fully self-consistent calculations, {x 0 } and {x 1 } 

combine into one large set. The zero-order basis was chosen first, 

and then augmented by {x 1 } chosen as above, deleting any x 1 which 

were redundant, or nearly so, with any of the x0
• The zero-order 

GTO basis for LiH was chosen in correspondence to the STO basis 

used by Hansil (Ref. 18), again by finding the extremes in exponent 

range for the corresponding GTO' s and filling in with a geometric 

progression. This procedure has some drawbacks relative to good 

exponent optimization, drawbacks not remedied simply by adding a 

few more basis functions. Lack of closely spaced exponents is one 

difficulty, as it disallows generation of more diffusive atomic orbitals 

with radial nodes. At the high exponent end the lack of optimization 

incurs a penalty in zero-order energy, plus a slight unbalancing 

of the basis set. By trial and error we adjusted the total basis for 

LiH, adding .and deleting functions at the extremes of the exponent 

range for each symmetry type and center--we even added a ( ls)GTO 

in the middle of the range to form a close-exponent pair, and we 

contracted the tightest (ls) functions on each center into one function. 

These trials and their resulting a values are recounted shortly. 

For N2 we began with Dunning's zero-order basis (Ref. 21) 

consisting of 44 primitive GTO's contracted into 26 functions. On 

the basis of -our experience with LiH, we added one more diffuse 

function of each type (ls), (2px), (2py), (2pz) on each center. The 

extra ~) represent polarization of(ls) types, and the extra (ls) 

functions represent part of the X1 for the zero-order ~). We also 
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added 5 types of (3d)GTO on each center to represent the rest of the 

x 1 for the zero-order (!E_). Careful selection of polarization func-

tions for the zero:-order (!E_) forming the diffuse and very polarizable 

1T orbitals is most important. The rationale f6r each type of 

(3d}GTO is given in the paper. Four of the basic symmetry types 

XX, YY, ZZ, and XY occur in only one of the two possible linear 

combinations because the other combination does not represent the 

first-order polarization of any occupied molecular orbital. 

The second entry in each set is the type of calculation 

done--'OPT' for orthogonal perturbation theory, 'NOPT' for non­

orthogonal perturbation theory, and 'FSC F' for fully-self-consistent­

field. The H2 bases are given in Table I in the paper and are not 

reproduced here. 



He 

a= 1.319 OPT 

Li 

a = 167.6 OPT 

Be 

a= 45.28 OPT 

{O }sTO = ls (1. 44608), 2s (2. 86222) 

E. Clementi, ,I_BM Research Paper RJ-256, August 6, 1963. 

{l }sTO = 2p, 3p (1. 44608, 2. 86222)--·constrained linear 

combinations in x 1 

{O}STO = ls (2. 43309, 4. 51769) } 
2s (0.67142, 1.97812) 

E. Clementi, op. cit. 

{l }STO = 2p (2. 43309, 4. 51769) 

restricted 

Hartree-Fock · 

2p, 3p (0. 67142, 1. 97812)--constrained linear 

combinations in x 1 

{O}STO = ls (3. 3370, 5. 5063) 
2s (0. 6040, 1. 0118) 

E. Clementi, op. cit. 

{1 }STO = 2p (3. 3370, 5. 5063) 
2p, 3p (O. 6040, 1. 0118)--constrained linear 

combinations in x 1 

l\) 
-...J 
\J\ 



LiH (STO) 

various trials 
. R = 3. 015 a. u. = Re 

a
1 

= 26.22 OPT 

19.49 OPT 

a
11 

= 25.29 NOPT 

{O} = Li: ls (2. 6909), 2s (0. 7075), 2pz (0. 8449) 
H: ls (O. 9766) 

B. J . . Hansil, Rev. Mod. Phys·. 32, 245 (1960). 
. . . . ~ . 

{l} = Li: 2px, 3px (2. 6909, 0. 7075), 4px (O. 7075), 

3d ,4d (0.8449) 
xz xz 

H: 2px,3Px (0.9766) 

-constrained linear combination in x 1 

{l} = as above, less Li: 3px (2. 6909), H: 2px (O. 9766) 

-constrained linear combinations in x 1; 

constraint is probable cause of much poorer a ~ 
°' 

{l} = Li: 2pz, 3pz (2. 6909, 0. 7075), 4pz (O. 7075), 

ls, 2s, 3s, 4s, 3d3z 2 -r2, 4d3z2 -r2 (O. 8449) 

H: 2pz, 3pz (0.9766) 

-all unconstrained 



25.04 NOPT 

25.44 NOPT 

23.80 NOPT 

23.43 NOPT 

13.40 NOPT 

LiH (GTO) 

various trials 
R = 3. 015 a. u. = Re 

{l} = {O} + Li: 3pz, 4pz (0. 7075) 

ls,3s,4s,3d,4d (0.8449) 

H: 2p ,3p (0.9766) 
Z Z . 

-deleting the redundant x 1 

{l} = above less ls in x 0 ; rise in a with less free 

variation means <Pi -inexacmess terms dropped 

from NOPT are causing trouble 

{l} = {O} + Li: 3pz (0. 7075), ls, 3s, 3d (0. 8449) 

H: 2pz,3Pz (0.9766) 

{l} = {O} + Li: 3pz (0. 7075), 3s, 3d (0. 8449) 

H: 3pz (0. 9766) 

Best small basis 

{l} = {O} - just for debugging NOPT 

All calculations are FSC F; we report total Hartree­

Fock energies E0 , dipole moments µ 0 (both in 

l\) 
--.J 
--.J 



a. u. ), and virial ratios V /T for the zero-order 

calculations, as partial criteria for the bases. 

For comparison, the Hartree-Fock limits and exact ·nonrelativistic values for LiH are 

estimated as [P. E. Cade a.~d W. M. Huo, J. Chem. Phys . . 47, 614 (1967)]: 
""' 

a
11 

= 21.44 

E0 = -7.9838 

µ 0 = 2. 3626 

V /T = 2. 00074 

HF limit 

E0 = -7.9873 

µ 0 = 2.376 

'Exact' 

E0 = -8. 0705 

µ 0 = 2.307 

V /T = 2. 000· · · 

Li-ls: 0. 033, 0. 110, 0. 360, 1. 20, (4. 00, 13. 2, 66. 0, 

3330.0]* 

2pz: 0. 0080, 0. 0264, 0. 0871, 0. 290, 0. 960, 3. 20 

3d 2: 0. 200 z 
3~2, 3<\r2, 3dz2: 0. 018, 0. 060, 0. 660, 2. 20 

H-ls: 0. 080, 0. 264, (0. 871, 2. 90, 11. 6, 58. 0 ]** 

2pz: 0. 018, 0. 060, 0. 200, 0. 660 

Test set - every possible useful basis function; 31 

contracted GTO's from 37, or 31(37) in the notation 

N 
-..:> 
00 



a
11 

= 22.78 

E0 = -7.9832 

µ 0 = 2. 3567 

V /T = 2. 00062 

a
11 

= 22. 36 

E0 = -7.9835 

µ 0 = 2. 3568 

V /T = 2. 00118 

we will use here. 

*· contracted, with coefficients 0. 726440, 0. 292317, 
0.060146, 0.002333. 

**: contracted, · with coefficients 0. 763697, 0. 249790, 
0.056681, 0.010246. 

Li-ls: 0. 033, 0.110, 0. 360, 1. 20, [ 4. 00-330. 0] 

2p : 0. 0080, 0. 0264, 0. 0871, 0. 290, 0. 960, 3. 20 z 
3dz2 : 0. 018, 0. 200 

3d 2, 3d 2: 0. 060 x y 

H-ls: 0. 080, 0. 0264, [0. 871-58. 0] 

2p : o. 018, o. 200, o;660 z . 

Supposed "best set, " deleting functions from above set 
which contributed least polarization: 21(27) 

Li-ls: 0. 010, 0. 033, 0. 110, 0. 360, 1. 20, ( 4. 00-

330. 0] 

2pz: 0. 0264, 0. 0871, 0. 290, 0. 960 

3~2, 3dy2' 3dz2 : 0. 060, 0. 200, 0. 660 

H-ls: 0. 024, 0. 080, 0. 264 [O. 871-58. 0] 

2pz: o. 018, o. 060, o. 200, ·o. 660 

l\) 
-..J 

'° 



a
11 

= 21. 74 

E0 = -7.9830 

I.lo = 2. 3608 
V/T = 2. 0067 

a
11 

= 21. 06 

"Best big set" after more experience in tailoring the 

first GTO set: 27(33); probably best balanced in both 

orders. 

Li-ls: 0. 033, 0. 110, 0. 360, 1. 20 [ 4. 00-330. 0] 

2p : 0.0871, 0.29~ 0.960 z 
3rl 2, 3d 2, 3d 2: 0. 200 
le y z 

H-ls: 0. 024, 0. 080, 0. 264, (0. 871-58. 0] 

2pz: 0. 060, 0. 200 

Cutting all minor contributors from above set: 17(23) 

Li-ls: 0.033, 0.11~ 0.20~ 0.36~ 1.2~ (4.00-

330.0] 

2pz: 0.0871, 0.29~ 0.960 

H-ls: 0.024, 0.08~ 0.264, (0.871-58.0] 

2pz: 0.200 

Simplest "adequate" basis for a 
11

: 14(20) 

I\) 
()) 
0 



a
1 

= 22.56 

N2 GTO 

R = 2. 068 a. u. = Re 

Li-ls: 0. 033, 0. 110, 0. 200, 0. 360, 1. 20, [ 4. 00-

330.0] 

2pz: 0. 290, 0. 960 

2p : 
. X 

0.0871, 0.290 

H-ls: 0. 024, o. 080, 0. 264, [0.871-58.0] 
2p . z· 0.200 

2p . x· 0. 080, 0. 200 

Simplest "adequate" basis for a
1

: 17(23); it is obvious how 
to combine this with the above set to get the best total 

basis - which we did not waste time doing, instead 

proceeding to N2 • 

Zero-order basis functions from Dunning's N2 wave­

function (Ref. 22) are unmarked. Polarization functions 

we added are starred. Basis functions occurring free 

on each center are denoted as ( ) A' ( )B; those 
occurring on both centers but conSfrainea to only one of 

the two linear combinations are denoted as ( ) A ± ( )B. 

Total basis is 40(66) GTO's. 

l\) 
(X) 
t..A 



a
11 

= 14.97 

a
1 

= 9.464 

E0 = -108.89926t 
V /T = 2. 00054 

ls A' lsB 

2Px '2Px ' } A B 
2Py A' 2PyB' 

2pz '2pz A B 

3d: XXA + XXB 

YYA + YYB 

XYA + XYB 

XZA 

XZB 

YZA + YZB 

5909.4399 
887.4510 
204.7490 
59.8376 
19.9981 
2.6860 
7.1927 
0.7000 
0.2133 
o. 0800* 

contracted 

c oeffici"ents 
(from Dunning) 

0.0020033 
0.0153045 
0.0742662 
0.2532725 
0.6003592 
0.2450225 

26.7860} {0.0267996 
5. 9563 contracted t 0. 1708759 

1.7074 0.5726499 
0.5314 
0.1654 
0.0800* 
0.200* 
0.200* 
0.200* 
0. 200* 
0.200* 
0.200* 

I\) 
<X> 
I\) 



t Originally, the 2p function of exponent 0. 5314 was included in a four-way contraction. 

We split if off for polarization freedom. 

iCompa.re to Dunning's zero-order values, E0 = -108. 8877. 

l\) 
co 

\...) 
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~· Extended Comments on the Derivation and Use of 

Nonortho onal (Hartree-Fock) Perturbation Theory 

We mentioned in the paper that the nonorthogonal perturba­

tion theory (NOPT) as given by Das and Duff eventually caused us 

problems. Their formalism uses the approximation that the zero­

order Hartree-Fock equation 

(h0 
- E~)u~ = 0 

1 1 

is exactly satisfied: in projecting with any function x 1 we obtain p 

zero 

(A) 

(B) 

Actually, if the basis {x 1 } contains any functions not in {x 0 
}, then 

Eq. (B) is not true. We recount here our findings in trying to 

derive the most exact NOPT equations and to use them. 

There are two basic expressions which . any NOPT formalism 

must yield. First and more important is the first-order Hartree­

Fock equation satisfied by the nonorthogonal (in first order) orbi-

tals. Expansion of the first-order orbitals u~ in the first-order 
1 

basis {x~} 

"'"" 1 1 U~ = LI c. X , 1 lp p 

and projections of the first-order equation with each x~ in turn 

(C) 



285 

yield linear equations for the c~p· The second expression needed 

from NOPT is that for the second-order energy E <2 > of the total 

determinantal Hartree-Fock wavefunction--simplified by use of the 

first-order differential equation (1. d. e.) to a form involving only 

matrix elements of the perturbation operator h1 (in orthogonal 

Hartree-Fock [OHF] the expression is simply 

(D) 

The general route to the 1. d. e. of NOPT is to construct 

the total energy (E) for the wavefunction through second order (in 

any one orbital consider only terms through first order in non­

orthogonality); perform the variation of the energy with respect to 

u~, i>E/6u~, and select the first-order part; and finally simplify as 
1 1 

much as possible with use of the zero-order differential equation 

(0. d. e. )--preferably only in its exact form 

(u~ jh0 
- €~ I u~) = 0 (E) J 1 1 

and not assuming additionally the validity of Eq. (B). For practical 

calculations the 1. d. e. is converted to linear equations for the u~ 

expansion coefficients in the basis {x 1 
}. Before any numerical 

work, it is valuable to check the linear equations at least for sym­

metry: the linear equations from the 1. d. e. have the form 

(F) 
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where the (!£)-th equation comes from the variation OE/ouj = 0 
1 

projected with Xp· We require 

Fip;jq = F. . Jq;1p 

since 

F = a (~) 
ip;jq acjq acip 

2 o E = ac. c. Jq lp 

and 

(G) 

(H) 

(I) 

and the order of derivatives cannot matter because the energy E 

is analytic in the coefficients (particularly because the coefficients 

contain the electric field strength). 

Das and Duff follow the three-part route described above. 

Their Eq. (7) is the Hartree-Fock expectation value of the energy, 

through second-order. Their Eq. (10) is the result of the variation 

CJE/au. after using the 0. d. e. [in the extended, approximate sense 
1 

of Eq. (B)] to simplify it. It is still of mixed orders, zero 

through two, but the first-order terms are at their simplest. Thus 

they have done the last two steps at once in going from their Eq. 

(7) to Eq. (10). Finally, they explicitly select the first-order part 

of their Eq~ (10), displaying the zero- and first-order parts of the 

one-electron operator, h0 and !{, explicitly also; the result is Eq. 

(14). 
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Our attempts to use NOPT as given by Das and Duff (DD) 

began with a derivation of the form appropriate to doubly-occupied 

molecular orbitals. We worked from the OHF equations (12) 

adapted to double occupancy by the simple expedient of interpreting 

the operation (a I · I b } c as 

(J) 

rather than as in Appendix I. After symmetric deorthogonalization 

of the orthogonal orbitals ui as 

u. = u. -
1 1 i I) (uklu1. }uk, 

k¢i 
(K) 

we obtained a first-order equation not in entire analogy to Eq. (14), 

but by using the assumption of Eq. (A) three times we completed 

the analogy. The lack of rigor for Eq. (14) or its double-occupancy 

analog was somewhat disturbing but initially felt to be of the same 

or lesser order than the inherent error in finite-basis expansion of 

orbitals. 

Our second step was checking the symmetry of the linear 

equations derived from our analog of Eq. (14), that is, the satis­

faction of Eq. (G). We found an asymmetry, though it could be 

removed by removing a summation restriction k ¢ j appearing in 

Eq. (14) or its analog. After correspondence with both Das and 

Duff, we confirmed our interpretation of some ambiguous terms in 

Eq. (14) and .resolved our original problem as one of convention. 
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To eliminate possible ambiguity in the deorthogonalization prescrip­

tion, Eq. (K) or their Eq. (11), the restriction 

11 0 (u. u. ) = 0 
1 1 

was entered. This auxiliary condition must be incorporated 

linear equations (F) for the c~P as extra equations [and then 

need not hold], or it can be incorporated after the solution. 
1 

is, the orbitals u. and 
1 

1 1 <110>0 u. = u. - u. u. u. 
1 1 1 1 1 

(L) 

into the 

(G) 

That 

satisfy the same 1. d. e. Thus in principle we could drop the 

summation restriction as we had planned (the added term vanishes 

anyway). 

We derived the expression for E< 2 > at this time, both by 

deorthogonalizing the total Hartree-Fock energy and projecting 

second-order terms, and by direct deorthogonalization of the sim­

plified E <2 >. Both times we found the result 

E <2> (M) 

where 

and the restriction j ¢ i applies when ( ui I ut) = 0 is forced. As a 

check, we programmed OHF PT to compare to NOPT using the 
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1 
unoccupied virtual orbitals as the {x }. We also verified that Eq. 

(14) correctly reduces to OHF PT. 

As we noted in the paper, ·our initial numerical results 

showed much instability in the calculated second-order energy with 

regard to basis changes. Some instability was probably due to 

using Eq. (M) with the restriction i ¢ j intact, but some remained 

after removing the restriction. Apparently the use of assumption 

(A) was responsible. 

Quite a while later, we attempted a derivation of the most 

correct 1. d. e. We deorthogonalized the OHF equations with the 

extra k = i term in the deorthogonalization. We found that the 
. . 

0. d. e. is used in both stages of Das and Duff's derivation, going 

from Eq. (7) - Eq. (10) and from Eq. (10) - Eq . . (14). In our 

more correct analog to Eq. (14), derived without use of the 0. d. e. 

and also allowing ( ui I u;) ¢ 0, we found the linear equations it 

gave were not symmetric. Yet the use of the· 0. d. e. to derive 

Das and Duff's Eq. (14) valid for (u~ lui) ¢ 0 did yield symmetric 

linear equations. The symmetry should be unaffected by use of the 

0. d. e. This paradox is yet unresolved, after much rechecking of 

algebra. 

Starting afresh, we took Eq. (7) (which we assumed was 

accurate) and projected EC 2 > explicitly from it. We then performed 

the variation t>E< 2 > /Oui = 0 to get the 1. d. e. Some summation 

restrictions had to be cleared up and then we obtained symmetric 

linear equations. However, the numerical results were unstable 
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as before. A check of Eq. (7) was initiated, deriving the expecta­

tion of the energy E through second order by directly calculating 

the contributions of each permutation operator in the matrix ele­

ments (1/l jHjA1J;), (1J;jA1/I) where 1/1 is the unsymmetrized straight 

product of HF orbitals, A is the familiar antisymmetrizer composed 

of a sum of signed n-electron permutations, and H is the total N­

electron Hamiltonian. The 1. d. e. we derived by variation contained 

new terms and, unfortunately, did not reduce to Eq. (14) under the 

assumptions of Eqs. (A) and (L) [yet Eq. (14) is known to be the 

valid deorthogonalized form of the OHF equations under these 

assumptions, as we showed before]. 

In sum, our problems are twofold: the inability to verify 

Eq. (7) for the total energy either (1) by reference to the more 

basic form E = (1/1 jH IA1/l)/(1/l IA1JI) or (2) by exact reduction of 

Eq. (7) to a symmetric, stable set of linear equations. Amplifying 

the latter problem, we note that avoiding use of the 0. d. e. should 

preserve the variational principle for E <2 > with respect to the basis 

{x 1 }, independent of any errors in (A) from finitude of the basis 

expansion. That is, the numerical results should be stable and 

E< 2 > monotonic with addition of x 1 
functions. 

Soon after encountering all these difficulties, we abandoned 

NOPT for the equivalent FSCF approach, achieving acceptable 

results for both LiH and N2 • The proper NOPT equations still 

elude us, but we feel they are not as useful or reliable as FSCF, 

contrary to our original estimations. We now cover the exact 
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utilities of OPT, NOPT, and FSCF approaches to sustain this 

last claim. 

Given a zero-order basis {x 0 
}, the best bases {x 1 } x 

and {x 1 } z ·for the two directions of polarization are well-defined 

in our scheme . The two straightforward ways <?f proceeding to 

calculate E < 2 > and a are OPT and FSC F. In both we combine all 

three bases into one large basis, eliminating redwidant fwictions, 

and obtain a set about twice as large as {x 0 } ·for small molecules, 

or perhap.g 1. 5 times as large for big molecules (N2). Of course, 

we combined both {x 1 } at once to avoid wibalancing the two cal­

culations, · axx and azz, and lowering the anisotropy accuracy 
- -

thereby. The two-electron integral computation time is 16 .down to 

5 times that for {x 0 
}, depending on molecular complexity. OPT 

and FSC F give equivalent results in this total basis. [While 

FSCF is more readily adapted from existing SCF programs, OPT 

can be faster in the actual 1. d. e. solution if we borrow the com­

plicated integral-handling from SCF programs. ] The nonstraight­

forward procedure is NOPT, requiring two separate basis set 

mergers, {x 0 } + {x 1 
}x and {x 0 } + {x 1 }z, again eliminating redwi­

dant fwictions. The merged sets are roughly 1. 6-1. 35 times as 

large as · {x 0 
} [small and large molecule limits], and require 

total two-electron integral times range from 13 -6. 6 times that for 

{x 0 
}. The total calculation time for NOPT is only trivially smaller 

than that for OPT or FSCF--yet NOPT is so much harder to obtain 

in correct form, and in addition its a calculations do not give the 
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zero-order MO determination the benefit of using the diffuse 

polarization functions to increase the accuracy (of the zero-order 

MO's, hence also of a itself). 
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Introduct i on 

Ut i lity of Vi brational Energy Transfer Studies in Chemistry 

The problem of molecular vibrational or rotational 

excitation in binary collisions is well studied, perhaps 

overly so in some respects. Many different kinds of exper­

iments in thermal, hot-atom, or molecular beam systems are 

aimed at extracting vibrational (or less often, rotational) 

excitation cross-sections or relaxation times, especially 

for the lower energy levels which are easiest to distinguish 

individually. In addition there have been many calculations 

on simplified models of the colliding molecules, quantum and 

classical, exact and approximate. We present such a model 

calculation for the H2-H
2 

system in a paper f ollowing this 

introduction. 

The understanding of vibrational relaxation in 

particular is important for chemistry . It is deeply involved 

in collisional activation1 in gas reactions, and it is also 

of interest for other bulk processes : ultrasonic absorption 

and other transport (see the introduction to part I of this 

thesis); optical fluorescence2 (including the existence of 

competing radiationless decay3 in large molecules), and 

molecular laser operation4 ; and some esoteric astrophysical 

processes5, such as comet tails and nebular radio emission. 

As chemists, we concentrate on its importance in the theo~ 

retical understanding of chemical reactions. 

A chemical description of a bulk system in terms 
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of singlet distribution functions (concentrations) for dis-

tinct molecular species is presumable accurate for 

thermodynamic, transport, electromagnetic, and other macro­

scopic properties. (The neglected 'physical' interactions 

of molecules cause severe problems in dense phases, of 

course-- see the introduction to part I of this thesis, espe­

cially section G on associated liquids~) With this pre­

sumed to be true, the change of system properties (including 

heat, work) with time is ascribed to changes in concentration 

of chemical species6 through reactions. 

In any complex kinetic system in bulk matter, it 

is reasonable to assume we can decompose the rates of change 

of species concentrations and corresponding bulk properties 

into elementary steps or reactions. Each elementary reaction 

is taken as a simple rate process described by a rate law, 

with the rate constant dependent on temperature, pressure, 

and other conditions (and only weakly on chemical composi­

tion). Of course for nonthermal systems this is a more 

questionable analysis and a direct appeal should be made to 

time-dependent molecular distribution functions or other 

essentially complete many-body descriptions--and even in 

fast-reacting thermal systems the local and transient dis­

turbances from local thermodynamic equilibrium require 

corrections to the forms of empirical rate law expressions?. 

To continue, this principle of decomposability into elemen­

tary reactions is the foundation of all chemical kinetics. 
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Let us consider the molecular dynamics and some of the sta-

tistical-mechanical nature of the binary collisions in the 

various kinds of elementary reactions, particularly regard­

ing the role of vibrational energy. For brevity we must 

moit discussion of the often fascinating coupling8 of elemen-

tary steps into total reacting systems, involving staging, 

competition, branching, and elegant derivative phenomena 

such as feedback loops common in biochemistry9. 

All types of elementary reactions are presumably 

governed by the same general laws of quantum mechanics and 

statistical mechanics. However, a real understanding 

demands detailed (and necessarily approximate or modeled) 

theoretical frameworks and experimental techniques, very · 

much dependent on the specific type of reaction. After all, 

chemical reactions range from ionic solid reactions through 

aqueous acid-base reactions and electrochemistry to free-

radical gas phase reactions. Reactions may be classified by 

MOLECULARITY: unimolecular, bimolecular, (rarer) termolec­

ular and higher. In the interest of unity, we may claim that 

unimolecular reactions are a limiting case of bimolecular 

ones, with a metastable~ ·unarranged product in the reactive 

region of molecular configuration,or arrangement channel. 

Similarly, termolecular recombinations are viewed as the 

inverse of bimolecular dissociation, which is reaction into 

a new arrangement channel above an energetic threshhold. 

REARRANGENENT TYPE is another division scheme on the basis 
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of the exact manner of particle regrouping: exchange (atom 

or group), abstraction, simple charge transfer; recombin­

ation/dissociation ( for termolecular only). The ELECTRONIC 

FORM OF REACTANTS, whether ionic, neutral, or free radical, 

influences the gross nature of the intermolecular interac­

tion potential. The manner of ENERGIZATION or initiation 

determines the relative involvment of the various molecular 

degrees of freedom (d.o.f .) and the statistics governing 

energy transfer among them both temporally and spatially: 

thermal-- all d.o.f.; photochemical or (particle-)radiative 

= hot-atom--variable balance of translation, vibration, 

chiefly; shock wave--translation initially; molecular beam 

(non-bulk)--any desired d.o.·f. or combination, in principle. 

The THERMODYNAMIC STATE or STATE OF AGGREGATION is a chief 

determinant of the statistics of energy and mass redistribu­

tion in success i ve collisions: dilute gas, dense fluid, 

solid; pure, diluted by inert species, solvated; homophase 

or heterophase situation of reaction partners. Changes of 

phase from reactants to products (e.g., precipitation, 

gas evolution) affect the kinetics on the hydrodynamic time 

scale (much longer). Catalysis is -challenging to describe 

theoretically, as it involves a special aggregation or 

three-body-level molecular distribution, often heterophase. 

The MODE OF PROPAGATION is rather like a subset of rear-

rangement type: chai~, branehed, nonchain; polymerizing or 

not. Special aspects of propagation such as caging10 in 
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liquids could be added here, or under the thermodynamics; 

caging is a result of significant structure in the two-body 

molecular distribution functions and their time-evolution. 

THERIVfODYNAMIC CONSTRAINTS in the bulk (adiabatic, isochoric, 

or isobaric maintenance; openness to mass exchange; hydro-

dynamic conditions of flow or mixing; and phase change dur­

ing reaction) give convenient further divisions but are not 

essential either empirically or microscopically. Such con­

straints are merely boundary conditions on the differential 

equations of species, momentum, and energy balances already 

fixed by the basic rate laws. 

The eventual goal of experimental or theoretical 

reaction studies is extractinn or calculation of the rate 

law, including its dependence on temperature, pressure, etc. 

and also its dependence on a few basic features of the mol­

ecules. More detailed information is possible, especially 

theoretically (which may be viewed as a more fundamental 

approach to the temperature dependence, etc.): rate con~ 

stants in rate laws are simple thermal (Boltzmann) averages 

of more basic reactive cross-sections11 • If the relative 

translational energy E of the reactants in a given encounter 

is a valid total delineation for the collision (other d.o.f. 

are presumed to have a Boltzmann population of their energy 

levels at some temperature low compared to the equivalent 

translational temperature--often true for the important 

range of translational energy), then a cross-section 6(E) is 
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a more detailed result11 • For complete state resolution in 

reactants and products of all d.o.f. energy levels, the 

result is o( n,m ), where~, m denote the complete set of 

quantum numbers for the reactants, products. 

mechanically correct is the S-matrix S(n.m) 

More quantum-
2 

o= S , for 

proper compounding of multi-stage processes of activation. 

The problem we address in our vibrational excita­

tion studies is, How does vibrational energy storage and 

transfer affect the equilibria and rates for each type of 

reaction above? There is sketchy knowledge for limited 

types of reactions. Unimolecular decomposition rates of 
·12 gases are apparently well-explained by the accumulation of 

large amounts of vibrational energy in all the molecular · 

bonds through hard collisions. The actual decomposition 

occurs when by chance most of the quanta localize in one 

bond and break it. The theory has seen many successive 

refinements. Simple gas-phase abstraction reactions, such 

as K + HCl-- KCl + H, are also undergoing much study13. 

~olanyi 14 in particular has sought the effects of very gen­

eral features in the potential energy surface (on which the 

reactants and products move; . see later) on the effectiveness 

of reactant vibrational energy in causing reaction, or con­

versely, on the degree of vibrational excitation in the 

products. Some qualitative knowledge has been gained in 

this regard about attractivenss or repulsiveness of entrance 

a.~d exit channels, presence of net energetic barriers either 
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direction (endo- or exo-thermicity of reaction), and 

entrance or exit location of additional, local energetic 

barriers or wells. Finally, vibrational energy flow is 

readily followed in systems fitting the stochastic15 (strong 

collision, totally diabatic) or. transi tion-state16 (complete­

ly adiabatic) models, which apply in rare limiting cases 

but then among almost all classes of reaction. In the sto­

chastic model all energy in the reactants (and products, as 

well) is equivalent. In transition-state theory, the 

change of vibrational quantization from reactant to inter­

mediate and on to product transfers definite amounts of 

energy to other degrees of freedom, to retain adiabaticity 

in every d.o.f. 

Most reactions fall outside the scope of the re­

action classes and theoretical models above, and require 

more detailed analysis and calculations in order to under­

stand the absolute rates and their dependence on thermodynam­

ic conditions and molecular structure. Beginning with the 

surer knowledge of the statics--of the vibrational level 

spacing/density in all the important reactant configurations, 

we must develop the dynamics: th:: coupling of the vibration-

al d .• o of. to other d. o. f. in collisions, and how 

collisions compound statistically in succession. Some aver­

aging procedure for the d.o.f. not directly involved in 

reaction must also be developed. Theoretical studies are 

generally of two types: (1) a' priori models of the molecular 
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dynamics, proceeding from many cross-section calculations 

over representative energy ranges and partner orientations 

(classically--over translational and internal states, quan­

tum-mechanically) to a final macroscopic rate constant; (2) 

fitting e~perimental rate constants to a parametric form of 

the cross-section as ~(E) 11 , assuming a model in which E • 

relative translational energy is all that matters. The lat­

ter is a more recent approach. The former is more basic and 

even underpins the latter, and thus we concentrate on it. 

Let us consider the general approach to the theory 

of reactions through collision dynamics (scattering theory), 

particularly for 'clean• gas-phase bimolecular reactions. A 

model is selected for the division of the internal molecular 

d.o.r., and the reaction coordinates identified along with 

the proper division of configuration space into reactants , 

products, and interaction region. One then assumes a poten­

tial energy surface (PES) for the total molecular motion 

(from molecular quantum mechanics calculations generally-­

fraught with its own great diff1culties5,l7) and projects it 

onto the reaction coordinates as a cut in the hyperspace of 

total motion; the potential variation in the remaining d.o.f. 

coordinates is developed as some basis expansion, usually. 

One might also assume directly the form of the PES projec­

tion on the reaction coordinate and main d.o.r., commonly a 

Lennard-Jones analytic form in some key interatomic coord­

inate. The Hamiltonian for the equations of motion must 
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be simplified to involve only the reaction coordinate and 

a few important d.o.fo; other d.o.f. are neglected, or 

rarely, averaged analytically or approximately. In the 

d.o.f. remaining explicitly, one then distinguishes the 

'channels' or net quantum states of motion, as by relative 

kinetic energy E, total angular momentum J, vibrational 

quantum numbers ni --often neglecting subdivision into rota­

tional states. The blocks of channels which are coupled by 

the potential are identified. For example~ channels of dif~ 

ferent total J do not couple; the total wavefunction or 

classical phase-space distribution breaks into a sum over 

various J-components, called partial waves in quantum mech­

anics18. The differential equations(d.e.) of motion are 

solved for the whole relevant range of initial conditions 

(initial channels) with proper scattering boundary conditions 

imposed19, 20 • Either quantum or classical (or semiclassical:) 

equations can be assumed, and then solved by essentially 

exact or else approximate (perturbation, variation) methods. 

In the quantum treatments of the related inelastic 

but nonreactive scattering, one invariably perfonms a chan-

nel expansion of the total wavefunction for the motion 

(in a stationary state representation). Extra channels are 

included which are not energetically accessible at long 

times ( 'virtuals'; their involvement in motion generates 

some uniquely quantum phenomena--tunneling21 through classi­

cal barriers; and resonances 22 which are rapid changes
1

with 
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initial energy, of the exit channel distribution, from rapid 

alteration in quantum interference effects). The total 

Schrodinger d.e. factors into coupled d.e. 1 s for the chan­

nels. Solution methods for the CC equations vary widely23 

in approach and in adaptability to different probelms. Re-

turning to reactive scattering, we encounter difficulties in 

channel expansions because the channels of one arrangement 

channel are a complete set, yet boundary conditions in the 

other arrangement channels (products, e.g.) cannot be formu­

lated in terms of them. Physicists29 attacked this problem 

first; now there are numerous ways around the problem in a 

practical sense20 • 

Finally the solutions for motion under 'pure• 

initial conditions are converted to S-matrix elements·. or 

scattering cross-sections C'f", and then averaged over the 

(thermal, Boltzmann) statistical distribution in initial 

channels. Statistical mechanical and quantum corrections 

for interference among channels or temporally enter here-­

e. g., corrections for generation of nonequilibrium fluid 

structure (hence collision statistics) by temporal heating? 

in fast reactions; or corrections for multiple collisions 

during •activation• in dense fluids. 

We have outlined above an essentially complete, 

detailed theory. It rarely gets tested in total by actual 

numerical calculations even without thermal averaging, for 

realistic systems. Only one total calculation30 has been 



303 

done, in the simplest system H + Hz -- Hz + H for a few init­

ial kinetic energies. The more practical and valuable use 

of the theory involves only parts of it at a time, with 

further simplifications of the equations of motion through 

models for the coupled molecular motions--even to very crude 

models such as stripping and harpooning31 , ignoring the 

detailed internal motions and postulating abrupt shifts in 

the PES, and using simple gas kinetic theory for total 

collision (reactive and non-reactive) cross-sections. With 

sufficient work on models of all degrees of rigor we should 

hope to develop a rnanageably small set of concepts to anal­

yze any reaction rate and/or its component cross-sections-­

or partial aspects of same, such as the effect of simultan­

eous rotational transitions3Z on vibrational transition 

cross-sections. An exploding volume of kinetic data and 

other experimental data (ultrasonic relaxation, laser oper­

ation, etc., as noted earlier) is awaiting understanding 

thvough correlation with a few basic molecular parameters 

by use of the theory. 
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Calculation of Transition Probabilities for Collinear Atom-Diatom and Diatom-Diatom 
Collisions with Lennard-Jones Interaction 
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(Received 10 March 1969) 

Numerical integration of the close coupled scattering equations is performed to obtain \'ibmtional transi­
tion prohabilities for three models of the electronically adiabatic H,-H, collision. All three models use a 
Lennard -Jones interaction potential hetween the nearest ntoms in the collision partners. The results arc 
analyzed for some insight into the vi brational excitation process, including the effects of anbarmonicitics 
in the molecular vibration and of the internal structure (or lack of it) in one of the molecules. Conclusions 
are drawn on the value of similar model calculations .. -\mong them is the conclusion that the replacement 
of earlier and simpler models of the interaction potential by the Lennard-Jones potential adds very little 
realism for all the complication it introduces. 

INTRODUCTION 

There is current interest in quantum·mechanical 
treatments of molecular collisions involving excitation 

of internal degrees of freedom and possibly reaction. 
The collision systems pose a multichannel scattering 
problem, commonly solved by the coupled channels 
(CC) method. The CC equations are coupled differen· 
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tial equations derived us follows for a nonreactive sys­
tem: consider a system composed of two asymptotically 
isolated parts described by internal coordinates r., r2. 
Let the relativ~ coordinate be given by R. Into the 
Schriidinger equation, 

[T(R)+H0 (r., r.)+V1(r., r2, R)-E~(r., r2, R)=O 

(1) 

(where T is the operator for kinetic energy of relative 
motion), substitute the state or channel expansion 

.Y(ri, r:, R) = L:/.(R)<1>.(r1, r2), (2) 

where {<t>.l is a complete orthonormal set of the eigen­
functions of Ho, 

(3) 

Left multiplication of Eq. (1) by <1> .. * and integration 
over the coordinates r., r2 yields the CC equations 

(-T(R)+E-t,.)/.,(R)= L V.,.(R)/.(R), (4) 

where 

V ... (R) = (<f>.,(ri, r2) \ V1(r., r2, R) I <1>.(r1, r:) ). (5) 

These equations are solved subject to boundary con­
ditions, generally that asymptotically ( I R I --> oo) the 
relative motion becomes free, i.e., 

J.(R),...,exp(i'k.·R)+scattered waves. (6) 

The form ·of the scattered waves depends upon the 
dimensionality of the system. The ratio of scattered to 
incident flux, with flux defined by 

j.(R) = (fi/2m) Im(/. *VJ.), (7) 

is the transition probability (one dimension) or cross 
section (two or three dimensions). As closed-form ana­
lytical solutions of Eqs. ( 4) are not ordinarily obtain­
able, several techniques have been developed for their 
accurate numerical integration.1- 1 We developed our 
own technique of integration using Dirichlet boundary 
conditions and simple one-step Euler integration. This 
was the fastest technique available to us at the time 
of O•lr calculations, though it is now superseded by 
the reference solution methods of Refs. 4 and 5. The 
parameters controlling the accuracy of the integration­
step size, end points of the integration in the coordi­
nate R, the number of channels included in the ex­
pansion Eq. (2), and the accuracy of the numerical 
integration for the potential matrix elements V .,.(R) 
in Eq. ( 4)-werc chosen such that each individual 
transition probability was converged to within 1 % of 
its "true" value and detailed balance error, as meas­
ured by the quantity 

e.,.-=[(J> ••• -P ... )/P.,.]X100%, (8) 

was limitt.-d to 0.1 %-0.4%, allowing us to report only 
one prob11bility of each equivalent pair P.,., PH. 

In the first section of this paper, we define the co­
ordinates for the one-dimensional or collinear atom­
diatom and diatom-diatom collisions with vibrational 
excitation. We then specify numerical values of pa­
ramet"ers used to define the three models of the Hr H2 
collision. Two of these models are atom-diatom type, 
one of which takes the potential for the diatom vibra­
tion as the harmonic potential, the other as the Morse 
potential. The third model is the diatom-diatom type, 
with each diatom being a harmonic vibrator. Ylasscs 
of the atoms and diatoms are chosen such that all 
three models are appropriate for the H 2-H2 collision­
this requires the atom mass to equal the total mass of 
the diatom. Finally, a Lennard-Jones interaction po­
tential is assumed to operate between the nearest atoms 
in the collision partners. This is a more realistic choice 
than the more common one of an exponential potential, 
at least at low collision energies. Jn Sec. II we present 
the numerical results for the transition probabilities. 
We contrast the physical behavior of the models for 
qualitative insight into the cfTects of vibrational an· 
harmonicity and internal structure in the coll is ion part­
ners, and comment briefly on related semiclas,;ical and 
classical calculations. Finally, we conclude that the 
simpler exponential interaction potential is preferable 
to the Lennard-Jones potential because it reproduces 
transition probabilities for the latter very accurately 
while requiring far less computing time. 

I. NATURE OF THE THREE 
MODEL CALCULATIONS 

A. The Atom-Diatom Collision in One Dimension 

The original coordinates for this system are simply 
the positions x,, l'2, 1·3 of the three masses mi, 1112, ma, 
with 1111-111-: comprising the bound or diatomic system. 
The operator for the Hamiltonian minus the energy 
eigenvalue is 

42 iJ2 fi2 iJ2 42 ()2 
H-E=--- - --- - --

2tn1 OX12 21112 8:r22 2111, a:r.2 

+ V.2'(:r2-x1)+ V1'(xrx1)-E. (9) 

The interaction potential V 1' (.r,-l·3) h;\S been ne­
glected. \\'c show in the Appendix that several con­
secutive transformations of coordinates can be per­
formed which (1) put the system into the form of an 
"atom" colliding with another, oscillating atom bound 
to an equilibrium position- a two-body problem; sec 
Fig. 1-and (2) reduce all coordinates, masses, and 
potential parameters to a smaller number of dimension­
less quantities. The operator Il-E in new units and 
coordinates is 

11-E= -1/2µ,(u2/a.~2)-Hu2/ay2) 

+ V.1(y)+ V1(x-y)-R, (10) 

where the energy E is c~clusivc of center-of-mass mo-
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tion and is measured in units of ~. twice the ground­
state vibrational· energy of the oscillator m1-mz. The 
set of parameters for the collision reduces to E, µ., and 
the parameters of the two potentials. 

Next we make the channel expansion, Eq. (2). The 
function .P.(y) representing bound states of the oscilla-
tor are solutions of the eigenvalue equation · 

Again, the energies f• arc measured in units of twice 
the ground-state oscillator energy, so tha:t for the 
ground state, t1 = !. T wo models for the oscillator have 
been used in our calculations: (1) the harmonic oscil­
lator, .for which 

Y11(y)=!y2, 

11= 1, 2, 3, .. ., 

.p.(y) = [2•-1(11- l) !j1' 2Il ._. 1 (y) e:q>( -y2/2), (12) 

where H. is the Hermite polynomial, and (2) the Morse 
oscillator, for which 

V12(y) =D.(c2fl•-e-~•), 

e.= [2(2D.) 1' 2/13](n-! )-!'9'(ti-!)', 

.p.(y) =N. exp(-dc~•) (2Je-1'•)<H•+ll/2 

XL._.H•+1(2Jc~•), (13) 
with 

1l= (2D,) 112;13, 

k=2d, 

N. =normalization constant, ( 13') 

and where La+."(x) is a generalized Laguerre poly­
nomial. The quantity D. is the depth of the potential 
well, and fJ is an anharmonicity parameter. The Morse 
oscillator has a linite number of bound states, up to 
llmax=k. The CC equations for both models have the 

<•> Coordinates in the original ~pace 
I ' ' 

m3 rl11 ' 02 
()0v-0 

~-x-'--'J 'x ' 
6 

I 
X I 

x 
x· 

I I 
1 total center u )J 
, of mass ~r12 12, 3 

1-2 center Q 
of mass -

~ 
' ' 

<•l In the space of the 
equivalent two-particle problem 

1-"tG. I. The ori):inal (a) anti I nms!ormrd (h) coordinates for the 
atom-dialmn collision in one dimension. 

form 

"tot 

(tP/dx'+k.2)/.(x) = 2µ. }: v .... (x)f .. (x), (14) ..-1 
with 

k.2= 2µ.(E-t.), 

v ... (x) = (.p.(y) I Vr(x-y) I it> .. (y)) 

= L: dy.p.(y) Vr(x-y).p,,.(y), 

llto• =number of states retained in the channel 
expa nsion. (14') 

Our choice of the interaction potential Vr(x-y) is 
the Lennard-Jones potential with its singularity at 
x-y=O replaced by a finite step. 

Vr(x-y) =4e([u/(x-y)]12-[o/(x-y)]l, x-y~b 

"'Vr(b}, x-y<h, 

(15) 

although another choice, the exponential potential, 

Vr(x-y) =C exp[ -a(x-y)] (16) 

was used to check our method by duplicating some 
calculations of Secrest and Johnson.1 

As a shorthand notation for the two models let . us 
use HOLJ for the harmonic oscillator hit by an atom 
interacting with it by a Lennard-Jones potential, and 
MOLJ for the Morse oscillator and the same Lennard­
Jones interaction (and HOEXP for the harmonic oscil­
lator and the exponential .Potential). In all of these 
c11lculations, the parametersµ., t, u (and also D,, /3 for 
the MOLJ case) were chosen to represent the collision 
of two hydrogen molecules, one of which has its vibra­
tional degree of freedom frozen out. The dimensionless 
values of the parameters are then 

µ.=0.5, 

e=5.707X 10--1, 

u=46.71, 

D,=8.3255, 

/3-0.24886, (17) 

as. converted from dimensioned quantities quoted in 
Bhatia"' and Herzberg6b and Herzfeld and Litovitz.&o 
A slight adjustment of {3 from a calculated value of 
0.248-10 was made to obtain the proper value of t 1 = 0.5 
for the ground vibrational level. The values of D. and 
/3 allow 16 bound levels for the Morse oscillator. 

B. The Diatom-Diatom Collision in One Dimension 

The original ·coordinates for this system arc the posi­
tions x, (i= 1, 2, 3, 4) of the four masses 111,, with 
m1-m, and m1-m, forming the two bound diatomic 
systems. Assuming the dominant nonbound interaction 
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1'ABLF. I. Selection of channel~ to lndud~ in diatom-<liatom 
prohlcm. ;\laximum cxcitntiun of each diatom is to second vi· 
brationnl level 111- 2. • 

Method (1)-form nil possible product 
states (11., 111) with 11,, "•independently 

ranging from 1 to 4 
Method (2)-add 

the restriction 
.. ,+n,!!>4 

Channel 
no.• 

1 
2 
3 
4 · 
5 
6 
7 
8 

1, 1 
1, 2 
l, 3 
1, 4 
2, l , 
2, 2 
2, 3 
2,4 

Channel 
no. 

9 
10 
11 
12 
13 
14 
is 
16 

3, 1 
3, 2 
3, 3 
3,4 
4, 1 
4, 2 
4, 3 
4,4 

Channel 
no.b 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1, 1 
1,2 
2, 1 
1,3 
2, 2 
3, 1 
1,4 
2,3 
3, 2 
4, 1 

• Values or Nl to .f ::1hoult.1 be Included on the ba1ds ol atom-dintom model 
fC?JUlt~. 

b In each wlectlon M:heme the open channell are In bolc.1 face. 

V 1 to be between particles 2 and 3, one has 

' ll-E= l: -(h2/2111,)(02/ax,2)+Yi1'(x1-x2) ,_, 
+ V .. '( ;ra-~)+ V,'(Xt-xa)-E. (18) 

In the Appendix we show that successive coordinate 
transformations, analogous to those used to reduce the 
atom-diatom problem, put the system into the form 
of a diatom . oscillator hitting a bound oscillating 
"atom." The system parameters arc also made di· 
mcnsionless. The operator 1/-E in the transformed 
coordinates is · 

11-E= - (1/2µ) (a2/a.\"')-!(a2/ay1
2)-Ho2/ay2

2) 

+ Vu(y,) + Va,(yi)+ V1(x-y1-Yt)-E (19) 

for a system of two idmtical diatoms; the general form 
is gh·en in the Appendix. Again, E is the energy, 
exclusivr of center-of-mass motion, in units of twice 
the ground vibrational energy of either oscillator. The 
set of parameters remains E, µ, and the parameters of 
the potentials, a~ in Se..:. I.A. The diatom-diatom colli­
sion can .be made physically equivalent to the atom­
diatom collision, so thal comparisons of analogous tran· 
sition probabilities will illustrate the effect of an internal 
degree of freedom in thr incident "particle." ln addi­
tion, "resonant" energy lrilnsfcr involving interchange 
of vibrational quanta bet\l't'"n the diatoms with no 
conversion of translational energy exists for the dialom­
diatom case. 

The channel expansion of Eq. (2) ta:tes the form 

'/t(x, ).'h )'1) .. l:/.(x)qi.,(y1)</>.1()'t), (20) 

where the <t»i.i. c/>.1 are solutions of eigenvalue equations 
of the fom1 (10). In our calculations, both diatom 
oscillators arc modeled as harmonic oscillators and the 
interaction potential is the Lennard-Jones potential; 
this model is denoted by the shorthand HOHOLJ. Sys­
tem parameters exclusive of the energy E are 

µ=0.5, 

t=S.707X lo-', 

0'=46.71. (21) 

Test calculations on a model with the exponential 
potential successfully duplicated the results of Riley. 1 

The CC equations have the general form 

(o1/Cl~Hk.1)/.(x) = 2µ L v ... (x)f .. (x) I (22) 

where 

k.'= 2µ.(E-t.1-t.1), 

v ... (x) 

""(c1>.1(J1)c/>.2(y:) I Vr(x-y1-Y2 I </>M1(y1)</> .. 2(y2) ). 

The ordering of states in the expansion (20) becomes 
significant when we truncate the expansion. Two ways 
to order or include channels suggest themselves: ( 1) 
retain a certain number of states for each oscillator, 
yielding the correspondence between 11 and (nl, . 112) 
given in the left-hand columns of Table I, or (2) retain 
product stales (111, 112) up lo a certain energy level 
t.1+e.2, yielding the correspondence of 11 and (nl, 112) 
given in the right-hand columns of Table I. The second 
approach places all open channels together at th e begin­
ning of the numbering scheme, and makes for a smaller 
set of coupled equations for similar accuracy; that is, 
the stales (111, 112) where both 111 and 112 arc high 
virtual states will be relatively unimportant. The sec­
ond approach will be used in our HOHOLJ cakulations. 

Note the occurrence of equivalent channels. (111, 112)+-+ 
(t12, ul). These channels are physically distinct; a 
transition from one to the other involves no conversion 
of translational into vibrational energy-it is a rcso11aiil 
energy transfer. 

Fto. 2. Enerl(y <lepcn<lcnce u( the lran•ilion pruLabilitics" l'( 1-11) 
from the ground state in the atom-diatom problem, HOLJ model. 
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TABLE II. Calculated transition prob:ibilities for HOLJ model. Numbers in parentheses are negative powers of 10 multiplying result.• 

Eb 

P .... 1.55 1.65 1.85 2.05 2.25 

1->1 0.9999 0.9992 . 0 .9946 0.9835 0.964 
1->2 0.121(3) 0. 792(3) 0.538(2) 0.165(1) 0.357(1) 

2-2 0.9999 0.9992 0.9946 0.9835 0.964 

E 

P._,,. 2.45 2.55 2.65 2.85 3 .05 3.45 

1->I 0.936 0.918 0.898 0 .852 0.799 0 .674 
1->2 0.638(1) . 0.815(1) 0.101 0.147 0 . 199 0 .314 
1->3 0 .506(5) 0 .411 (4) 0 .406(3) 0 .170(2) 0.109(1) 

2-+2 0.936 0.918 0.897 0.843 0 . 771 0.580 
2->3 0 .235(3) 0.152(2) 0.100(1) 0.296(1) 0.105 

3_,3 0.99976 0.9984 0.990 0.969 0.884 

E 

P .... 3.80 4.20 4.80 5.20 5.80 6.20 

1->I 0.555 0.420 0.245 0.157 0.687(1) 0.351(1) 
1->2 0 .412 0.498 0 .543 0.510 0.394 0.296 
1->3 0.323(1) 0.799(1) 0 . 201 0.300 0 .427 0.470 
1->4 0.421(4) 0 .855(3) 0.106(1) 0.322(1) 0.105 0.183 
1->5 0 . 107(4) 0.264(3) 0.422(2) 0.149(1) 
1->6 0 .350(5) 0 . 100(3) 

2-2 0.384 0.179 0.104(1) 0.222(1) 0.175 0.299 
2->3 0 .202 0.313 0.383 0.328 0.148 0.416(1) 
2-+4 0.640(3) 0.870(2) 0.631(1) 0.136 0.258 0.297 
2-+5 0.123(3) 0.228(2) 0.241(1) 0.6-14(1) 
2->6 0.341(4) 0 . 773(3) 

3->3 0.755 0.536 0.177 0.313(1) 0.387(1) 0.134 
3->4 0.982(2) 0.698(1) 0.238 0.326 0.297 0.180 
3-+5 0.108(2) 0.137(1) 0.878(1) 0.170 
3-+6 0.233(3) 0.401(2) 

4->4 0 .989 0.921 0.676 0.421 0.805(1) 0.364(2) 
4-+5 0.124(1) 0.834(1) 0.256 0 .317 
4->6 0.156(2) 0.186(1) 

5-+5 0.986 ' 0.900 0.612 0.338 
5->6 0.146(1) 0.945(1) 

6-+6 0.9835 0.882 

a Cakututro \•alut's or P""' ond P,"" wt"rt alwa)'::1 \\t:ll within t 3 of t'n<'h b Ent'rKY unit:ot ar~ hw, twlC'e the erouml·Mtate vibr~tion:il tnl"rlCr of the 
other. To avoid redunclnnry, only the former are &i\'f'n. diatom. 

II. RESUL'.fS OF MODEL CALCULATIONS feature for both atom-diatom models HOLJ and ~IOLJ, 
which cover signilicant energy ranges, is the o~cillation 

Tables II-JV present our calculated transition prob- of the l' .... For instance, the elastic transition prob-
nbilities for the HOLJ, Iv!OLJ, and HOHOLJ models. ability P'l'l in the HOI.J model decrt'ases steadily until 
The total error in these results is in the mnge of 1 % or it reaches a deep minimum near E=·l.9; then, despite 
lell!I. The beha\'iur of selected probahilitks P ... as func- the opening of un additional inelastic channel at F.= 4.S, 
tion~ 0£ en.crgy is illustrated in Fig~. 2· 6. The clearest P11 heiiins to rise rapidly. This is "caused" hy the 
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FIG. 3. Energy · dependence of the transition probabilities 
P(2->11) from the first excited state in the atom-diatom problem, 
HOLJ model. 

downward turns in probabilities P21 and Pu. We sec a 
similar behavior in transitions from initial states 1 and 
3, Pi. and l'i~ - · Comparing transitions according to 
their initial state, we note that the coupled oscillations 
in probabilities set in at a lower value of initial kinetic 
energy E-E., the higher the initial state ii. 

This oscillatory behavior has been found in similar 
atom-diatom model systems by previous workers. 
Shuler and Zwanzig7 found sharp-peaked oscillations for 
all transitions in their exact but specialized quantum­
mechanical treatment of the harmonic diatom and the 
hard-sphere interaction potential, 

""• 

%-y>O. 

%-y=O. (23) 

The exact result of Secrest and Johnson3 for several 
HOEXP models show maxima in inelastic probabilities. 
The exact scmidassical results of Rapp and Sharp8 for 
a HOEXP-like model show regular oscillations. The 
oscillations in our results and the results quoted above 
are real, although there have been many approximate 
calculations in which the use of low-order perturbation 
theory or the artificial exclusion of most of the channels 
in expansion ( 2) has led to a spurious effect. 

A major part. of the analysis of our results is the 

•·10. 4. Encri:,· tlrpcndencc ol the transition probabilities 
J>(,\->1t) from the ~•·wntl rxdtcd state in thr atom-diatom prd,. 
ltm, HOl.J mood. 

TABLE III. Calculated transition probabilities for !\!OLJ model.• 

Eb 

P.- 1.55 1.90 2.30 2. 75 

1-1 0.99983 0.9958 0 .980 0.939 
1-2 0 . 165(3) 0.417(2) 0 . 198(1) 0 .604(1) 
1->3 0.129(3) 

2-2 0 .999113 0.9958 0.980 0.931 
2->3 0.819(2) 

3->3 0.9917 

E 

P._,,. 3 .40 4. 15 4.45 4.85 

1-1 0 .854 0 . 724 0 .662 0. 582 
1-2 0.142 0.255 0 .302 0.354 
1->3 0 .314(2) 0 .204(1) 0 .345(1) 0 .602(1) 
1->4 0 . 159(5) 0.306(3) 0 . 977 (3) 0 .320(2) 
1->5 0.138(6) 0.317(5) 0.394(4) 
1->6 0.198(i) 

2-2 0 .780 0.508 0 .391 0.249 
2->3 0 . 779( 1) 0 .229 0 . 287 0 .347 
2-4 0 .868(4) 0.809(2) 0 . 198(1) 0.475(1) 
2->5 0,. 623(5) 0 . 111 (3) 0. 104(2) 
2-t6 0 . 764(6) 

3->3 0 .915 0 .643 0 .493 0.296 
3-4 0.412(2) 0 . 108 0 . 182 0 .281 
3-t5 0.182(3) 0 .230(2) 0. 145(1) 
3-t6 0 .180(4) 

4-4 0 .9958 0 .878 0 . 756 0.531 
4->5 0. 598(2) 0.407(1) 0. 137 
4->6 0 .371 (3) 

5->5 0 .9938 0.957 0.838 
S-6 0.919(2) 

6-t6 0.9904 

•Calculated valuel4 of P,..,,. and P,..,. 'A~re always "°"11 within 13 of 
each other. To avoid redundancy, only the former are 1lven, 

b Eneri)' unit:t arf' liw, twice the around·:ottate vibrational eutrRY of 
the diatom. 

IO 

00 

O• 

00 .. 
Fm. S. Encri:y 1lepcndenct ol the tran•itiun prohnhilitir• 

/'{2-tn) from the lir~l excite<l stntc in the ntom-tliutom prohle 11, 

MOl.J m·idcl. 



1 
\ 

1 
\ 

313 

COLLINEAR DIATOM-DIATOM COLLISIONS 4813 

TABLE IV. Calculated transition probabilities for HOHOLJ model.• 

£b 

P .... ,,. 2.05 2.15 2.35 2.55 2.75 2.95 

11->11° 0.99990 0.99934 0.9956 0.987 0.972 0.951 
11->12 0 .508(4) 0.329(3) 0.219(2) 0.656(2) 0.140(1) 0.245(1) 

12->12 0.9929 0.980 0.950 0.914 0.872 0.825 
12->21 0 . 707(2) 0.194(1) 0.474(1) 0. 789(1) 0.114 0.150 

E 

P .... 3.08 3.15 3.35 3.55 

11->ll 0.934 0.923 0.890 0.853 
11->12 0.328(1) 0.382(1) 0.547(1) 0.731(1) 
11->13 0.183(5) 0.680(5) 0 .648(4) 0.261(3) 
11->22 0.366(5) 0.136(4) 0.130(3) 0.523(3) 

12->12 0.792 0.773 0.714 0.650 
12->21 0.175 0.188 0.224 0.258 
12->13 0 . 192(3) 0.603(3) 0.381 (2) 0.108(1) 
12->22 0.104(3) 0.329(3) 0.214(2) 0.627(2) 
12->31 0.14..3(4) 0.548(4) 0.524(3) 0 . 204(2) 

13--+13 0.980 0.963 0.909 0.846 
13--+22 0.200(1) 0.360(1) 0.848(1) 0.136 
13--+31 0 . 110(3) 0.352(3) 0 .203(2) 0.556(2) 

22->22 0.960 0.927 0.826 0.715 

a Calculated values of P (111, w2)-("H I 1 , nl') that should be equal among h Energy unit~ are hw1: •flwit •hw, twin· the around-:.;tatc vibrational 
themselve:-1 by timc--rev"r:"al invariance or symmetry were negligibly dif-
fnent. Only one member b tdvcn to avoid redundancy. 

comparison and contrast of the three models for the 
H2-H2 collision. Suitable quantities for comparison in­
clude analogous transition probabilities (as 1->2 HOLJ, 
1-+2 MOLJ, 11-+12$11-+21 HOHOLJ), net energy 
transfer from analogous initi<Ll states, and relative 
strengths of multiquantum jumps. Contrasts of HOLJ 
and MOLJ models will tell us something about the 
effects of anharmonicity, and contrasts of HOLJ and 
HOHOLJ will hdp reveal the effect of internal struc-

io ·~~- ·1-·1-1-~r---,----r--:--

oa ·~·----
oe ---·-· 

" ;:: 0" 
0 

~06. 

:a~. 

•"2•13, •20 
b·:2•22,•2V 
t•ll-31,~20 

lOlAl. lN[l!W'f 

-----·-----. -

Fm. 6. Eneq:y drpcmkncc of the trnnsition probabilities 
/'(12_..,.,,.) in the diatom-diatom problem, HOllOl.J model. 
The initial state 1-l has '"''' of the diatoms in its gruuncl stnlt', 
the other in its fir>t cxcilt'd state. 

eneray of either diatom. 
'The transition (HI. H2)- (nl 1

, "2') ls abhrevlatcd to nh2-"1'n2'. 

lure in the incident particle. At the same time, exam­
inations of models individually show the basic energy 
behavior of the probabilities and other properties that 
are as instructive as the obvious contrasts between 
models. Specific items we can study, both within and 
between models, include comparisons of ( 1) all transi-

-lO 

I •l.O 

g 

00 OS 10 .. 
[NERGY ABOV[ THR£SHOLO 

Fm. 7. Demonstration of very similar cncri:r dependence for 
01w-qunntum jumps in nil three models of the 11,-H, collision, 
UOl.J, ~101.J, llOIIOl.J . Tho curves of lng10 (prnhahility) have 
been biased by -0.75 in the MOLJ cases for clarity. 
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ENERGY • 
FIG. 8. Comparison of all transition probabilities 1' (2-m) from 

the first excited state. The two atom-diatom model, HOLJ nnd 
MOJ,J are both represented . 

tions of a given type, such as one-quantum jumps 
P •.• +i. for various initial states ti, (2) all transitions 
l' ... frorn a given initial slate 11, (3) net energy trans­
fer (translational to vibrational) from each state ti, 
defined for the atom-diatom models as 

(24) 

where the E; are the energy eigenvalues for the diatom 
vibration. The diatom-diatom model has several types 
of energy transfer that will be defined later. 

Figure 7 presents a logarithmic plot of several one­
quantum jump probabilities for each of the three 
models. The abscissa in each case is energy above 
threshold J!.x= E-E.+i, rather than initial kinetic en­
ergy. The striking fact brought out by the logarithmic 
plot is that all the Pn.•H for a given model behave 
much like 

P •.• +1(E) =Const./(&.,,.), (25) 

with /( ... ) the same for all 11. Further, f(E) is very 
similar for the HOLJ and HOHOLJ models, while 
logf(E) for .MOLJ has a smaller slope at the lowest 
energies. Pursuing this point of similarity, we turn to 
the actual magnitudes of probabilities at low energy. For 
the analogous transitions 11-+12© 11-+21 HOHOLJ 
and 1-+2 HOLJ, we !ind 

(Pu~12+ 1'11~21) 11011ou/ (P12)nou~0.8 (26) 

at low energy. Not only do these transitions have simi­
lar f(E) or "slopes," but their magnitudes are close, 
being reduced for the HOHOLJ case by the extra 
ndiabaticity or softness introduced into the collision 
process by the extra internal degree of freedom. That 
the change from HOLJ to HOHOLJ is principally the 
addition of a \'er~ modest amount of adiabaticity is 
supported by comparing the 11-+12 ancl 21-... 22 
HOHOLJ probabilities. The two values nrc extrcnwly 
close at low cneri:ics, indicating ug:\in that the initial 
Mate of our extra inkrn:\l degret' of frerdom has little 

effect of itself on transition probabilities-which would 
not be true if the extra degree of freedom coupled 
strongly to translation. However, it does couple strongly 
to the vibration of the other diatom, giving rise to 
highly favored resonant energy transfers of the type 
12->21. The latter transitions may be of independent 
interest, but they do not drain much probability from 
other transitions at modest energies. 

Proceeding to the HOLJ-~IOLJ comparison, we find 
the ratio (P12hwu/(P12)11ou is quite small-around 
0.3-0.4. This is readily explained by the lower coupling 
between adjacent states of the anharmonic osdllalor 
(compared to that for a harmonic oscillator) induced 
by a potential that is essentially linear in the oscil­
lator coordinate. This near linearity in the coordi­
nate y holds near the classical turning point x,, where 
Vr(x1- (y)) = E-t., for our Lennard-Jones potential­
and it is the region of X1 that is most important. The 
problem of why MOLJ one-quantum jumps have a 
different "slope" at low energies than HOLJ jumps 
cannot be commented on with our calculations limited 
to so few energies. 

Figure 8 prrsents a comparison of the second type, 
among all transitions from initial state 2 (Pu, P2a, P24 , 

P 26 ) for both atom-diatom models. It is also a log­
arithmic plot, and the abcissa is appropriately the 
total energy E. A clear feature is that the horizontal 
or energy gaps between adjacent curves 2-+11, 2-+ii+ 1 
are widening as JI increases. That is, in either of the 
two models, the higher the quantum jump, the more 
slowly the probability grows. The explanation is again 
in the essential linearity of lhe interaction potential 
at the classical turning point; the first-order coupling 
of a final state to the initial stnte is a very strongly 
dcc1easing function of the number of quantum jumps 
in the transition. This argument docs not hold as well 
for the anharmonic MOLJ model, and so the energ)' 
intervals between the various curves do not widen as 

oo 10 10 so •o 
KIN[TIC lNERGY IN INITIAL STAT[ 

Fm . 9. Atnm ·dintom collision : net tmnskr or t'n<'r)(\' from 
lmnslntion lo tliatnm vihmtion a• a funrtinn o! the initiill ~tnlc 
(u) n111! of the kinetic enerh'Y in the initial state. Both 1101.J 
nnd ~101.J n111<kl; arr rrprescnted. 
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rapidly here, even after we discount the decreasing 
intervals between. thresholds. 

We have no HOHOLJ m;ults for transitions higher 
than two-quantum jumps, and these only from the 
ground state. Yet . the HOHOLJ model has a greater 
variety of transition types or processes than the atom­
diatom models. Finding the relative magnitudes of the 
different processes is a worthwhile task. The processes 
we distinguish, and examples of each, are: 

E-Elastic: 11-+11, 12-+12 . 
R-Rcsonant: no net quantum jump in the pair of 

diatoms, i.e., opposite jumps in each diatom: 12-+21, 
22-+13 . 
SR~Semiresonant: opposite jumps of different order 

in each diatom: 12-+31 
NR--Nonresonant: 

(a) One-quantum jump: 11-+12, 22-+12 
(b) Two-quantum jump: 11-+13 
(c) Double one-quantum jump: 11-+22 

The HOHOJ,j results at the modest energy Ea3.55 
show that the strengths of processes generally follow 
the order 

E>R>NR(a)>SR> ... , (27) 

reflecting the weakness of translational-vibrational cou­
pling compared to vibrational-vibrational (V··V) cou­
pling. There are V-V processes that are weak, as the 
13-+31 transition involving concerted two-quantum 
jumps that are approximately forbidden in first order. 

Our final study is of energy transfer. :Figure 9 plots 
(llE,.) for both atom-diatom models from initial states 
1, 2, and 3 as functions of initial kinetic energy. MOLJ 
has about 40% the energy transfer efficiency of HOLJ, 
from the initial states 1 or 2. The energy transfer in 
state 2 reaches a node at lower energy for MOLJ than 
HOLJ, reflecting the earlier opening up of new channels 
for l\10LJ. The disparity in form for HOLJ and l\IOLJ 
energy transfer appears to be very pronounced for high 
initial states. 

To define the measure of energy transfer for diatom­
diatom collisions, we must denote the subsystems or 
degrees of freedom bet ween which the transfer occurs. 
These subsystems are translation or "tr," diatom 1-2 
or "d" (playii1g the same role as the diatom in atom­
diatom collisions), and tli•1tom 3-4 or "a" (playing the 
same role . as the atom). The energy transfers most 
directly comparable lo the atom-diatom results are 
tr-+a-t-d= tr-+all, tr->d (not equal in general to tr-+a; 
"d" and "a" may be initially in different stntcs, making 
for distinguishahility in this otherwise symmetric sys­
tem), and tr-t-a-+d=all-+d . Figure 10 presents these 
three (AE) functions for llOHOLJ in initial states 11, 
12, and 13, plotted as functions of initial kinetic energy. 
AE(tr-+d) is VI'!'\' lll'arh· idt'ntirnl for states 11 and 12 
for comparnhle distanet'; aho,·c their respective thresh­
olds, corresponding to our finding that the state of a 
docs not much affect the coupling of d to tr. There is 

o.o 10 10 

KINETIC tNEftGY IN INIT1-.1. STATE 

Fm. 10. Diatom-<liatom collision, HOHOLJ model: net trans­
fer of energy between the various degrees of freedom (e .g., TR= 
translation; see text for symbol mcl\ning), ns .. a function of initial 
state (11111,) and of the kinetic energy in the initial state. 

also the expected trend, that t..E(all-+d) increases 
strongly ns the state of "a" is raised . As there is noth­
ing surprising within Fig. 10, we proceed to compare 
HOHOLJ with HOLJ via their ratio AE(tr-+all) / .Ml 
for analogous initial states. For HOHOLJ state 11 and 
HOLJ state 1, the ratio is around 0.8, rellecting the 
extra adiabaticit,- of the diatom-diatom case. For 
HOHOLJ state 21 and HOLJ state 2, the ratio is 
about 0.4, probably due to the drain of the resonant 
process 12 ...... 21. The same rntio occurs in the compari­
son HOHOI.J 3!HHOLJ 3 and in the weaker com­
parison HOHOLJ 22.-.HOLJ 3. 

vVe may draw a number of conclusions from our 
results, particularly regarding the value of similar model 
calculations on intermolecular energy transfer. Despite 
the limitations of our models-one-dimensionality, a 
restricted and modeled interaction potential, and the 
simplicity of the models of the diatoms-we have ex­
tracted a number of physical insights into the collision 
of two fairly stiff diatoms, if not into the actual H 2-H2 

collision. The effects of anharmonicity and of in tern al 
degrees of freedom, and the relative magnitudes of 
different processes are among the insights. Certainly, 
calculations on a wider sampling of collision partners 
within the same general modeling scheme can be rernm­
mended as n practical and valuaulc project; the com­
puting times arc moderate. W c arc also able to suggest 
some precautions and some simplifications in modeling 
a colli~ion system. First, the introduction of all the 
internal degrees of freedom of the collision partners is 
not as necessary for reasonably accurate calculatinns 
as a fair degree of anharmonicity in the vibrations. 
Neither complication can really be ignored and scmi­
empirical corrections basl'd on careful studies of addi­
tional systems are probably desirable. Secondly, the 
choke of analytic form for the interaction potential is 
not nearly as import;int as the careful estimation of the 
parameters for the chosen form. To support this claim 
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we turn to some results of A. Wagner of this laboratory. 
In entirely similar calculations he employed HOEXP 
and HOHOEXP models for the HcH2 system with 
the EXP (exponential) potential parameter a care­
fully fitted by various least-squares techniques to the 
Lennard-Jones parnmcters u, E. His calculations dupli­
cated ours within several percent for all but the highest 
quantum jumps at the highest energies, where one 
probability might he off as much as a factor of 2. Let 
us consider that neither LJ nor EXP potentials are 
terribly realistic, and that the change in probabilities 
in switching from one to the other is less than the 
change produced by a very minor shift -in the param­
eters of either one. We see no reason to retain the LJ 
potential with its attendant great increase in complexity 
and computing timc,9 at least in treating systems such 
as ours where the energy quanta exchanged in colli­
sion are considerably larger than the small attractive 
well in the LJ potential. If one must use a potential 
that has an appreciable attractive portion, as a chem..,. 
ical "well," or if one must do accurate calculations, his 
best choice of potential is one tabulated numerically. 
If one is satisfied with as simple a potential as the 
exponential, he should choose his parameters very care­
fully. A much-needed study is the development of 
simple but more adequate model intermolecular poten­
tials, particularly for three-dimensional systems. 
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APPENDIX 

Transformation ·to Dimensionless Coordinates for the 
Atom-Diatom Problem 

Figure 1 (a) shows the original coordinate system. 
The first step is to separate the center of mass motion 
in Eq. (9), by defining new coordinates 

=coordinate of center of mass of entire system. 

•distance bet ween particle 3 and center of muss of 
system 1-2, 

and corresponding masses 

M-+X, 

P1u=mm,/M-+x' 

P12=m1m-Jm--+y1
• 

The new form of the operator H-E is 

fi' a1 fi2 as fi2 a2 

-----------
2M aX2 2P1M ax'2 2µ12 ay'2 

(i\2) 

+ Vn(y')+ Vr[x'-(1111/m)y']-E. (.-U) 

Now remove the center-of-mass motion; write 

(A4) 

and remove the opemtor 

- (fi2/2m)(a2/aX2)-Ei,""'=0 (for eigenstates). 

(A5) 

Next, place x' and y' on an equal footing by defining 

x'= (mJm) (x+yo'), or x= (111/1111)x'-yo', 

or fj= y'-yo', (A6) 

where yo' is the equilibrium value of y'. The correspond­
ing masses arc 

fl.= (mi'/1111)µ11,1=111b11a/111M->.r, 

n-+1], (A7) 

and the opera tor II - E becomes 

fit as fi2 a2 -
- -- - --+V12(y)+\'1(x-y)-f', (AS) 

2{1. a.itl 2µ11 agi 

where 
1;11(Y) = Vn(!7+1io'), 

f'r(i-y) = Vr[(t111/111) (.i-y)], 

f:=E-Eir=. (A9) 

Lastly, divide the whole of Eq. (A8) by liw= twice the 
ground-state vibrational energy of the 1-2 system, and 
absorb the factors Ti,2/2µ; into the derivative terms. 
Define ' 

x= (P1"ZW/fi) 1'
2x, 

y= (µ1.µ/fi) 11ig, 

µ = P./ Ptt = 11111111/ M 1112, 

}\,""' f:/liw 

to obtain Eq. ( 10) 

(AIO) 

(Al) - (l/2µ)(iJ 2/ilx2)-Hil'/ay2} + V12'(yH l"r'(x-y}-E,, 
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where 

Yu'{y) = l"n[(fi/11.12CA1)1/1y) 
fk,, 

Yu[(fi/ 11.HW) lf1y+yo'J 
fk,, 

V '( ) V1[(fi/11.!2W)112(x-y)] 
1 x-y = fk,, 

Vr[(m/m1) (fi/µ1~)112(x-y) J 
fk,, 

(A11) 

The transformations in (A11) will change ii.II pa­
rameters of the original potentials into dimensionless 
quantities, and in some cases reduce the number of 
parameters in Vi: by one. 

Transformation to Dimensionless Coordinates for the 
Dia 'om-Diatom Problem 

We separate the center-of-mass motion from Eq. 

The operator is finally made dimensionless by divid­
ing by~ and absorbing dimensional factors into the 
second differential operators. Define 

x- (11.aWJJ/fi) 111x, 

)'12= (11.aWu/fi) 11'gu, 

)'11= (µ.,t/11,Jfi) ll"gu, 

to obtain the generalization of Eq. {19), 

H-E-= - {1/2µ) {o2/o:r2)-l(O'/oy122) 

(A16) 

-("'a4/wu) {o2/oy .. ')+ Y12'{y12)+ Yu'{yai) 

+Vr'(x-y12-'YY11). (A17) 

( 18) by defining the coordinates and corresponding The potentials are related to their original forms by 
masses 

• 
X= L,m,x,/M, 

)'11'=x,-x1, 

)'u1 =%t-Xa, 

µ12= t111mJm11 

~,=m,mJmu, 

x'= (m,x,+1n.x1)/mu-(m1x1+m,x,)/mu, 

/.112.14 = n112m1J M 

=distance between the centers of mass of systems 

1-2 and 3-4. {A12) 

The operator 11-E, dropping the operator {AS), is 

fi' fi' fi' a2 ri2 a• - - -- - - -- - ---- + Y12(Y11') 
211.12 iJy12" 2~ oyu12 211.11.11 ox'' 

+ V,.(Ya4')+ Yr (x'- mi y1,'- m, Yil)-E. 
m12 mu 

(A13) 

Nel£ put ~:' and y12' on the same footing, by defining 
new coordinates and masses, 

i= (m1Jm1)x1-y11°--yy,.o, 

f=m12mJ1111111u, 

'{}12=yu'-yn°, µu, 

(A14) 

The potential terms in JI-E become 

f"n(!}11)+Vu(!i.w)+ i'1(.~-!}1i-'Y1)11)-= ft2('{}1t+Y12°) 

+ V,.(gu+Ya,~H V1[(mJ11111) (.t-y-f!}u)]. (Ats) 

(A18) 
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Appendix. Our CC Integration Technique 

At the time of our calculations, there were essen­

tially two possible numerical integration techniques. First 

was straightforward numerical integration in the coordinate 

x, statring from some x0 where 'V(x,~)':!!O . A standard inte­

grator such as Runge- Kutta-Gill is used. A number ns of 

linearly-independent solutions, n5 ~ n0 P ( n
0

p= number of 

open channels) is required, each of the form 

( 1 ) 

These solutions are begun with the proper physical boundary 

condition (b.c.) that f~k)(x0 ) = 0 qut do not obey the prop­

er scattering boundary conditions for pure states in the 

potential - free region x-~ oo. These conditions are that 

right-incident.-waves exist in only one channel n, with scat-

tered waves in all channels: 

ntot 
I(x,y) = I:: F~I) (x)~n(y) 

n=l 

F~I)(x) -~ bnre- iknx + Anie+iknx • 
X - ->OO 

Only an integral equation can build in these conditions (and 

such a technique was developed about the same time by M.E. 

Riley; see ref. 25 of the introduction). Our n8 independent 

solutions behave asymptotically as 

( 2) 
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They must be linearly combined to meet the scattering b.c., 

F(I)(x) • ~c(I)f(k~x). 
n k•l k n 

The ns straightforward integrations with independent start­

ing b.c., such as 

must be dressed up to be practieal. As the solutions are 

propagated from x0 to some xf essentially in the potential­

free region, the virtual channels with their exploding com-
-

ponents 

dominate the couplings of all the other f(k) and cause 
n 

practical linear dependence in the solutions. Periodic reor­

thogonalization, as in the DRILL method 4eveloped by M. E. 

Riley (Ph.D. thesis, Caltech, 1968) is the easiest solution. 

The second technique was the recently-developed 

total finite-difference (FD) method (D. J. Diestler and V. 

McKoy, J. Chem. Phys. 48,2941(1968)). It is an extension of 

sorts of the previous method which discretizes .Q!!! coordin­

ate, ~' to effect a numerical solution. FD discretizes both 

x and ~ to obtain matrix equations for the wavefunction 

at the mseh points (xi,y1). It does not have linear depen­

dence problems for reasons much the same as in our final 

method discussed shortly. However, it is very time-consuming 

for most physical problems with large ranges of ~' i to be 
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covered. It is more useful for small regions of strong 

coupling and especially for the interaction region of reac­

tive scattering (Diestler and McKoy, ibid. ~,2951(1968)) 

where we do not wish to commit ourselves to a channel expan­

sion in one or the other arrangement channel. In our type 

of problem, however, we should make use of our knowledge of 

the uncoupled z-motion--i.e., of the t>n<z>; we require fewer 

fn<z) than mesh points in z to cover the z-space. Thus we 

converted FD to the CC equations and achieved the fastest 

method to date, which we called finite-difference-matrix 

(FDM). Consider how we would solve Eq. (14) of the text 

numerically: discretize it in ~ as (suppress the index k for 

now) 

( 12 6~ + k~)f n(x) • 2J1 f,Vnm(x) fm(x), 
h m 

where the difference operation ~~ is 

S~fn(x) • fn(x+h) - 2fn(x) + fn(x-h) 

and h is clearly the mesh spacing in ~· Rewrite this as 

C: !2 + ~ - 2pVnn(x)) fn(x) + !2 fn(x+h) 

1 
+ 2 fn (x-h) -2pi:V (x) f (x) = O. 

h m nm m 
~-

(4) 

To get one of the linearly-independent somutions 

{f~k)(x),, values of the ~k)(x) must be specified at two 

points ~; ~· Note that the ohoioe .:i,• x0 , ~- x0 + h 

nearly corresponds to the b.c. ( J) for the old method of 

solution. A more appropriate choice of x1, x2 would be x0 - - -
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and xf, as for example, 

f(k)(x ) = r · n f 0 nk· 

Three considerations dictate this choice of :_i, x2 . The 

first is simply that the above equations fulfill the true 

bee. at x = x0 • The second is that the second of the equa­

tions is an ideal form for constructing solutions close to 

true scattering solutions at xf; exploding exponential solu­

tions 

Bke+lknlx 
n 

in virtual cha.r1nels are forced to die out at x = xf in the 

first n 0 p independent solutions. Practical calculations on 

HOLJ and MOLJ verified that only n
0

p independent solutions 

need be generated and linearly combined, rather than ntot• 

The third consideration is that our b.c. allow us to write 

the discretized CC equations in a matrix form. Write the 

entire set of f(k)(x.) for all n and i as a single column 
n 1 

vector x(k) whose elements are .,.. 

where 
j = (i-l)ntot. + n 

xie: xl, xr-1J • 

Eqs. ( 4) can be written in the matrix form 

A x .\:k) = b ( k) 
,.. ,.. -

where 

(5) 
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(A) .. = -~+k 2 -2µV (x.) 
....-. JJ h2 n nn i 

(A) .k = - 2 µ V (x.) , k = (i - 1) ntot + m ....-. J nm i 

(b )j = 0 , j < (f - i) ntot 

(b )j = onk ' j ~ (f - i) ntot 

The matrix A is seen to be banded with a half-bandwidth of 

nt 0 t+l (note the relation of Eqs. ( 5), ( 6) to the original 

FD method). A very rapid and accurate routine has been cod­

ed (for the IBM 7094 originally, on which all our calcula­

tions were performed) by McCormack and Hebert (C. McCormack 

and K. Hebert, 0 Solutions of Linear Equations with Digital 

Computers", Technical Report, Engineering Division, Califor­

nia Institute of Technology, 1965, unpublished) for solving 

equations of the above form using a Gauss triangularization 

and elimination technique. Both core and disk storage are 

used, allowing large solution vectors (up to 16,000 ele­

ments) . Our initial calculations proved to be of the same 

order of practicality as DRILL calculations. 

For reduction of our primitive solutions to the 

proper pure scattering states by linear combination, see 

the first reference to Diestler and McKoy. In any event, 

given the final 'reflection coefficients" A I for the true n 
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scattering states, the probabilities of transitions Pron 

from state m to ~ are calculated simply as 

Prn = kn IA I l 2 
k n 1 • I . 

This formula follows directly from the definition of prob­

abilities as ratios of incoming currents in I and outgoing 

currents in n. 

a . Some Problems i n Numerical Technique 

Given an atom-diatom collision system, the param­

eters E, p, and the parameters of the potentials v12 , v1 -- --
(henceforth called system parameters) are fixed. Several 

solut i on-method parameters remain to be chosen. The most 

obvious is ntot ' the number of channels retained in the ex­

pansion ( 1). Practical calculations carried out at energies 

E such that 2, 3, 4, 5, and 6 channels are open indicated 

that values ntot = 4, 5-6, 7, 9, and 10, respectively, suf­

fice to give transition probabilities converged to within 

one percent. These values are appropriate to the HOLJ and 

MOLJ models and should not be taken as general guides (the 

optimal number depends upon the degree of diabaticity in the 

collision and the relative spacing of the upper levels of 

vibration). A second parameter is the step size h in the 

difference equations. Experience indicated that a good 

choice is h = 0.15/~, where k1 is the wavenumber of chan­

nel 1. The error introduced by keeping h this coarse, when 

compounded with the channel-truncation error, yielded a net 

error of less than one percent (relative) in the Prn• The -
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use of several coarser values of h with subsequent extrap­

olation (as in Diestler and McKoy) is more time-consuming 

for the same accuracy, and a like criticism applies to use 

of a coarser h with higher-order difference approximations 

to the CC d.e. 's. 

A further set of parameters is the pair of limits 

x 0 , xf • The Lennard-Jones potential is singular at x-x = O 

but may be cut off at some b and set to a constant value for 

x-x.$ b. A good scheme is to cut off v1 when it reaches a 

magnitude of ten times the maximum kinetic energy (and is 

thus impenetrable to the particle even quantum- mechanically) 

VI -~ 10 (E-¢:1 ) 

=10 (E-0 • .5). 

A complementary choice of x0 is x0~b - 3. The value of Xf 

is strictly equal to infinity, since the Lennard- Jones po~ 

tential is of infinite range. However, the CC equations 

effectively decouple to give free plane-wave fn(x) as of 

Eq. ( 2) when v1 drops to some small value. Decoupling 

occurs later (at larger xr, smaller ~) as the energy E ap­

proaches _a threshhold of a channel from above, so the choice 

of Xf will depend upon the smallest wavenumber km in the 

problem at hand. To illustrate, two choices are 

v1 (xf)Z 2.5 x 10-6 when k; ~ 0. 0.5 

v1 (xr)~2. o x 10-4 when 2 km ~o. 3.5. 

A final parameter is n8 , the number of linearly-independent 

solutions to be generates. This was set to n0 p in all our 
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calculations for reasons noted earlier. 

Regarding accuracy of the solutions ~(k), there 

are two considerations in a~dition to the choiees of param­

eters above. The first is the accuracy attainable in solu~ 

tion of the FDM equations (6) by Gauss' method. Tests were 

made using the feature of the routine which allows iterative 

improvement of the solutions. Basically, only small and 

uniform changes in the phases of the f~k) were noted in im­

proved solutions, even for lengthy solution vectors near 

channel threshholds. This reveals an advantage of FDM, in 

that significant errors do not 'propagate'. The second con-

sideration is the accuracy in evaluating matrix elements 

Vmn(x) for the HOLJ and MOLJ models studied . Analytic forms 

do not exist and numerical quadrature must be used. Exten~ 

sive trials showed .that for the HOLJ case, where the oscil-

lator eigenfunctions ¢n(Y) are spatially compact, a twenty-

point Hermite quadrature in x gave good results. For the 

MOLJ case, the eigenfunctions for higher n become quite dif­

fuse, making something like our 181- point trapezoidal quad­

rature necessary. at least for ~< <:f (the Lennard- Jones 

parameter). To save computer execution time, a series ex-

pansion of v1(x-y) in powers of y-y0 (y0 is roughly the 

average location of the maxima in tn(y)) was used for x-y0 

:?<:f, yielding V1m(x) as a sum over moment integrals. 

b. Similar Considerations for Diatom-Diatom Cases 

For these cases, as noted in the text the CC 
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equations have exactly the same form as Eq. (14) of the text 

but the channel index n is really a double index n1n2 denot­

ing the states of vibration in both collision partners. The 

total number of cha:r..nels rises, and exactly which double 

channels are to be retained is a little tricky--the choice 

is discussed in the text and in Table I .there . 

The discussion of section (a) on b.c. applied to 

the primitive solutions [ f~k) (x)l and the final physical 

solutions {F~I )(x)) also holds for the diatom-diatom case. 

The primitive b.c. were slightly modified, however, . to read 

O, n;k,n>n0 P 

O. 1 , n f' k, n ~ n0 p 

1.0, n = k • 

We found a slight impvovement in accuracy near threshholds 

over the original b.c. One problem peculiar to the case of 

identical diatoms and to the necessary b.c. is that the ma­

trix A. in the diatom-diatom analog of Eq:. ( 6) is nearly 

singular due to the presence of equivalent channels (nl , n2) 

-~ (n2,n1). These channels are physically distinct; a tran-

sition from one to the other involves no conversion of 

translational into vibrational energy- - it is a resonant 

transfer. However, their respective coupled equations dif­

fer mathematically only due to b.c. on the f~k)(x) • . They 

would otherwise be related by a single permutation of terms 

on the right-hand side of Eq. ( 6). Without going into more 
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detail, we note that the f~k)(x) for equivalent channels n 

a~d n' become very similar for all but two values of the 

superscript k, and identical whenever k corresponds to a 

channel (nJ, nJ). The implications of this behavior for the 

FDM method of solution by Gauss' algorithm are that each 

initial solution vector x(k) is accurate, but attempts to 

iteratively improve the solution lead to divergences. No 

practical problems were caused by this difficulty. 

The solution method parameters h, x 0 , xr, and n 8 

are chosen by the criteria outlined in section (a). The 

goal of our calculations on the HOHOLJ model is to have prob-

abilities Pmn of relative accuracy one percent. The choice 

of adjustable parameters given above can assure this goal 

for the energy range encountered, if the matrix elements 

Vnm(x) are calculated with sufficient accuracy (perhaps 1 

part in 104). These matrix elements require a two-dimension­

al numerical quadrature in the variables Y1, y2 • Each 

dimension was treated by twenty-point Hermite quadrature, as 

for the atom-diatom case. To cut down on computer execution 

time, the Vnm(x) were tabulated on magnetic tape at a modest 

grid spacing ~ = 0.20, and each calculation of the solution 

vectors at a given energy used matrix elements interpolated 

cubically from this tabulation. The error added into the 

Pmn by interpolation error was about 0.01%o 
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c. Miscellany: Timings . Refinements, Relation to 

J-D Scattering, 

Precise timings for calculations by our method are 

only of academic interest, while the order of magnitude and 

dependence on energy~ (or equivalently, on ntot) and on the 

complexity of the model are · more generally significant. 

First, we note some typical compute times on an IBM 7094 

(roughly the same speed as the new IBM 370/155). For the 

HOLJ model used here, the times are: 

E ntot t(sec.) 

2~45 4 53 

3.05 6 112 

6.20 10 438 

and for HOHOEXP (similar to HOHOLJ but using only trivial 

time for computing Vnm(x) relative to actual Gauss solution; 

better indicator of the integrator per se): 

2.46 9 127 • 

Gordon's new integrator (ref. 24 of introduction) should cut 

these times by an average factor of about 20. Thus calcula­

tions with 40-50 channels are even f easible at the extreme, 

since all integrators• times increase roughly as ntot3· 

This is nothing to lament, really, since the detailed S-ma­

trix for a large number of channels is not very meaningful 

for an understanding of collision processes-- for the same 

reason that in statistical mechanics the trajectories of 

1023 particles in a bulk system aren't meaningful : both are 
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filled with irrelevant detail, irrelevant for the aim of 

correlating molecular structure with properties. A further 

argument against large model problems is the rising propor­

tion of computing effort going into computing just the Vnm 

matrix elements; for HOLJ these take about 50-70% of the 

total compute time, while for HOHOLJ they consume fully 95%. 

Before closing, we should like to mention two 

possible refinements to the scattering solutions; the second 

is of interest even for newer CC integrators. First, analo­

gous to the use of higher-order predictor-corrector formulae 

in the straightforward CC integrators such as DRILL, the 

actual numerical integration scheme in FDM can be improved. 

An obvious action is switching to a five-point difference 

formula in discretization, possibly a Numerov formula. At 

the endpoints x0 , ~, of course, we shall have to revert to 

the J-ppint formula. We did not try this, as our total 

computing effort was modest as the method stood--and we may 
I 

not even gain by hlcreasing the mesh size h but doubling the 

matrix bandwidth to 2 ntot +1. Besides, Gordon's integrator 

has superceded all simple integrators. 

Toe second refinement tested was a shortening of 

the distance in ~. xr-x0 , over which we propagate the solu-- -
tions f~k}(x) before assuming they have attained their 

essential potential-free plane-wave form and proceeding to 

analyze them for the A~, Bk and hence the transition prob-
.:n 

ab111 ti.es. The common experience of investigators in 
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molecular scatteri~ theory is that v1 must be down to the 

general magnitude of 10-4 energy (oscillator) units for the 

analysis and probabilities to be stable (to variations in 

the analysis point Xf, that is). We felt that the strong -
diabatic (transition-causing) couplings of channels might be 

completed (especially in systems with 'soft' interactions 

v1) much earlier, say at xd where ~~0.1. Analysis at xd 

in an adiabatic basis for this ~ might be successful. This 

adiabatic basis of oscillator functions is parametric in xd, 

1.e., it is 'n<Ylxd), and each function is a solution of the 

equation 

This basis of •perturbed stationary states' must be solved 

for numerically in general, and definitely when v1 is a 

Lennard-Jones potential. Toobe brief, this analysis failed, 

for our HOLJ H2-H2 model at least. Perhaps diabatic coup­

ling is. strong even to low v1 for the harder potentials. 

In closing, we should like to mention one point of 

interpretation of the one-dimensional (1-D) or collinear 

solutions: the wavefunction in our 1-D model is also the 

S-wave portion of the partial-wave expansion of the J~D 

wavefunction, for a 1breathing sphere' (a collision system 

where there is no diatom-orientation- or angle-dependence 

in the interaction potential; implies a perfect but compress­

ible sphere) : 
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Vjn( x, y) = l:f8n1eik1z + gn ( e) eiknr /r} f ( y) 
n n 

( H • - h
29\ H0 (y) + V1(r-y) ) 2,.. 

• ~ [; ~ u~( r) P 1 ( cose U f n ( y) , 

where uf(r) satisfies 

Clearly for l• 0 (S-wave) this is our collinear collision 

equation of motion. What does this imply for the relation 

of the 1-D transition probabilities (pure numbers) to J-D 

transition cross-sections (areas)? Now, the 3-D scattering 

amplitude gn(e) has the form -
gn(e) =...Li: (21+1)(-1) 1+1 (A 

1 1-C-1} 15n1 )P1 (co~) 2ik 1 n, 

where the Anil are the simple generalization for the 1-waves 
~ 

of the AnI of our S-wave. The 3-D differential cross-sec-

tion is ~In(8) • jg~(e}f 2, and the total cross-section Q~~t 
integ!\ated over angles e is simply 

Qi~t = ~£ (21+1)(~11-(-1>1on1>2. 
k1 1 , 

For n ~ I and for S-wave scattering dominating, the total 

cross-section simplifies to 

Qt~~~ '!f 2 IAn 1o 12 
• -!!kn P kr , krJ In• 

This is the result we seek; note that ~ is an area, rightly . 


