
COMPUTER SYSTEM SUPPORT FOR 

DATA ANALYSIS 

' .• Thesis by . 

Norton Robert Gr~enfeld 

In Partial Fulfillment of the Requirements 

For the Degree of 

Doctor of Philosophy 

California Institute of Technology 

'Pasadena, California 

1972 

(submitted March 6, 1972) 



-ll-

ACKNOWLEDGMENT 

Professor Frederick B. Thompson has influenced every 

part of this thesis. His insight, understanding, innovative depth, 

and friendship have been essential to this work and the author. 



' 

-111-

ABSTRACT 

This thesis is an investigation into the nature of data analysis 

and computer software systems which support this activity. 

The first chapter develops the notion of data analysis as an 

. experimental science which has two major components: data

gathering and theory-building. The basic role of language in 

determining the meaningfulness of theory is stressed, and the 

informativeness of a language and data base pair is studied. The 

static and dynamic aspects of data analysis are then considered 

from this conceptual vantage point . The second chapter surveys the 

available types of computer systems which may be useful for data 

analysis . Particular attention is paid to the questions raised i n the 

first chapter about the language restr~ctions imposed by the computer 

. system and its dynamic properties . 

The third chapter discusses the REL data analysis system , 

which was designed to satisfy the needs of the data analyzer in an 

operational relational data system. The major l i mitation on the 

use of such systems is the amount of access to data stored on a 

relatively slow secondary memory. This problem of the paging of 

data i s investigated and two classes of data structure representations 

are found, each of which has desirable paging characteristics for 

certain types of quer i es . One representation i s used by most of the 

generalized data base management systems in existence today, but 

the other is clearly preferred in the data analysis environment, 

as conceptualized in Chapter I. 
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This data representation has strong implications for a 

fundamental process of data analysis -- the quantification of 

variables. Since quantification is one of the few means of sum

marizing and abstracting, data analysis systems are under strong 

pressure to facilitate the process. Two implementations of quanti

fication are studied: one analagous to the form of the lower predi

cate calculus and another more closely attuned to the data represen

tation. A comparison of these indicates that the use of the "label 

class" method results in orders of magnitude improvement over the 

lower predicate calculus technique. 
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Introduction 

The development of data analysis has paralleled the rise of 

empirical science itself. Modern science is founded upon the idea 

that theory should be verified against the data obtainable from 

reality. This inclusive view of the analysis of data has tended to 

be submerged by the successful development of the theories of 

probability and statistics, which have turned data analysis into a 

. relatively confined sub-branch of mathematics. The advent of the 

electronic computer, however, with its great flexibility and liber-

ating power has caused the rediscovery of data analysis as a field 

in its own right that has much wider goals and fewer restrictions 

than either mathematical statistics or probability theory. 

To get a feel for the rapid changes in attitude that have 

occurred recently, listen to the pioneer John W. Tukey ( 1962, p. 1): 

For a long time I have thought I was a statistician, 
interested in inferences from the particular to the 
general. But as I have watched mathematical statistics 
evolve, I have had cause to wonder and to doubt. And 
when I have pondered about why such techniques as the 
spectrum analysis of time series have proved so useful, 
it has become clear that their " dealing with fluctuations" 
aspects are, in many circumstances, of lessor impor
tance than the aspects that would already have been 
required to deal effectively with the simpler case of 
very extensive data, where fluctuations would no 
longer be a problem. All in all, I have come to feel 
that my central interest in is data analysis, which I 
take to include , among other .things, procedures for 
analyzing data, techniques for interpreting the 
results of such procedures, ways of planning the 
gathering of data to make its analysis easier, more 
precise or more accurate, and all the machine.ry and 
results of mathematical statistics which apply to 
analyzing data. 
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This statement, first presented in 1961, is still closely 

bound to the traditional notions of statistics, as it is a description 

of what statisticians did as opposed to what they said they did. A 

short time later Tukey recognized ( 1966, p. 69 5) the generality 

and independence of data analysis and had progressed far beyond 

the narrow confines of conventional statistics: 

The basic general intent of data analysis is 
simply stated: to seek through a body of data for 
interesting relationships and information and to 
exhibit the results in such a way as to make ' them 
recognizable to the data analyzer and recordable 
for posterity. 
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CHAPTER I 

THE ESSENCE OF DATA ANALYSIS 

Data analysis is that coordination of continuing 
observation and developing theory which prod
uces information. 

Data analysis is the activity of interrelationship between 

ongoing theory and ongoing data: it is neither the theory-changing 

nor data-gathering process. Modern trends in the philosophy of 

science match this view that the existence of reality, and with it 

the notion of truth, is irrelevant. Data analysis does not result 

in true theories , only informing ones. 

This use of "information" is non- standard. Both theory and 

data are required to produce information. Theory without data is 

so unsubstantiated as to be empty. Data without theory is mean-

ingless. In tying data to theory, data analysis gives the confirmation 

of data to theory and the interpretation of theory to data, and 

creates information. 

Now a theory is linguistic in nature: a set of statements 

in some language. One might prefer "conceptualization" instead, 

but this is illdefined and unmanageable . Theory is the tangible , 

manipulabl~ form of conceptualization, insight, understanding , 

and explanation. 

And what is data? Data is not linguistic , not sentences of 

a language. Data is a structured body of facts , a tabular listing 

of terms. Today data is epitomized by the computerized data bank. 
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The distinction between extension, the data structure, and 

intension, the theory, is the first fundamental duality. Data analysis 

is the bridge between them. It resembles the double helix, that 

foundation of life as we know it. If one strand is the activity of 

observation and the other is the unfolding process of conceptual

ization, then data analysis bonds the two, holding them together 

and conveying their recriprocal influences. 

The Role of Language 

When one is faced with a body of data, one conceives his 

task to be finding relationships which are substantiated by that 

data. One searches for those models, or sets of structural 

relationships, which best reflect the data. Some would like to 

think that the data analyzer has at his disposal all possible 

structures or models - this is not the case. 

11All possible models" is far too large a class and in fact 

is philosophically treacherous. In any particular case the 

analyzer is limited, limits himself, to a much more detailed and 

circumscribed set of models. These are the ones compared with 

the data. Thus another aspect of the task is to determine the 

modelspace, the set of models, to be considered. 

Equivalently, since a theory is embedded in a language, 

one must determine the language in which to express the theories 

to be given attention. The division between language and theory, 



-5-

or modelspace and model, is the second fundamental distinction 

of data analysis. 

An illustration can be formed from the relationships given 

by a family tree. When a researcher knows that his data is about 

family relationships he will use such terms as father, mother, and 

grandparent, and will state such particular data as "John is the 

father of Mary, " fully understanding the meaning of these ter,ms. 

These phrases, together with some knowledge of their meanings 

and interrelationships, form a language which he uses to describe 

certain worlds. 

Tacit Knowledge. Which models are available in this 

lang'uage? It is clear. that using such terms one cannot describe 

any model whatsoever. Since the words of the language include 

tacit knowledge , we find that language delimits the set of models 

we can consider and this very restriction adds knowledge which 

would otherwise not exist. Thus if we assume, either apriori or 

by explicit statement, that parent and child are related in the 

normal fashion, then from the data "John is the father of Mary" 

we can know that "Mary is John ' s child. " This new understanding 

is attainable only because we have eliminated many possibilities 

and thus have some restrictions on the models involved. This 

technique of gaining information by restricting the possibilities 

considered is tremendously powerful and ubiquitous. 
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The position of tacit knowledge is generally misunderstood. 

Consider "John is the father of Sue." Even if the level of implicit 

meaning that relates father to child is ignored, there remains a 

basic understanding of the structure of the sentence itself: it 

establishes that a relationship, namely father, exists between John 

and Sue. It is only in terms of these understandings of language 

and language structure that data is in any sense meaningful. Even 

when the data is given in the form of tabulations, without some 

prior understanding of how the forms of these tabulations are to be 

interpreted, of the significance of the symbols used, and so on, 

the data would be complete nonsense. 

Let us examine in greater detail the implicit knowledge 

tacit in language itself. One's ontology - what types of things one 

believes can exist - determines to a large extent what things one 

looks for , pokes and examines, or considers errors in measurement 

rather than data . To see that these metaphysical assumptions 

affect our perceived reality reconsider family relationships. We 

know that a father is male and a mother female, and every person 

has one of each. Yet in certain primitive cultures a person might 

have two female parents, one the mother and the other the father . 

Further , in our own society, artificial inovulation makes it 

possible for a person to have two "real" parents and a third woman 

for a mother. 
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It can be argued that the above is merely a change in the 

meaning of the words. This is a change of language (in the broad 

sense of language) and as such is a very definite change in the 

assumptions and knowledge we bring to a situation. The informa-

tiveness of data is affected rather directly by this kind of change. 

The linguist Benjamin Whorf expresses (1956, p. 212) the 

role of language quite forcefully: 

When linguists became able to examine critically 
and scientifically a large nwnber of languages of 
widely different patterns, their base of reference was 
expanded; they experienced an interruption of phenom
ena hitherto held universal, and a whole new order 
of significances came into their ken. It was found 
that the background linguistic system (in other words, 
the grammar) of each language is not merely a 
reproducing instrwnent for voicing ideas but rather 
is itself the shaper of ideas, the program and guide 
for the individual's mental stock in trade. Formu
lation of ideas is not an independent process, strictly 
rational in the old sense, but is part of a particular 
grammar, and differs, from slightly to greatly, 
between different grammars. We dissect nature 
along lines laid down by our native languages. The 
categories and types that we isolate from the world 
of phenomena we do not find there because they 
stare every observer in the face ; on the contrary, 
the world is presented in a kaleidoscopic flux of 
impressions which has to be organized by our minds
and this means largely by the linguistic systems in 
our minds. We cut nature up, organize it into 
concepts, and ascribe significanc,es as we do , 
largely because we are parties to an agreement to 
organize it in this way - an agreement that holds 
throughout our speech .community and is codified 
in the patterns of our language. 

The language as a whole encapsulates tacit knowledge. 

Statements in the language, "theory, " extend this in an explicit 

way. While even the level of meaning assumed in the language 
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may go beyond or be inconsistent with the data, presumably we 

start with a language which does not do this. But the theories 

which extend the tacit meaning may well. 

One can think of the sentences that make up a theory as 

specifications of certain aspects of the world. As such, each 

statement further restricts the class of possible models. In 

general, one would hope to have a theory which so restricts the 

possibilities that there would be one and only one left - this, then, 

would be the "true" theory of reality. Unfortunately, no data is 

complete enough to confirm such a theory, thus theory must be 

weaker. 

Data as Theory . There is at core a language in terms of 

which the data is stated. But the languages we use to deal with 

data are far richer than that minimally necessary for the statement 

of the data itself. We can describe further, more complex relation

ships that may or may not exist in the data. We can account for 

processes that reduce the data into other forms. Moreover, the 

language could have potentially stated items of data incompatible 

with those that may have been given, or which may extend or modify 

the original data . 

Any set of statements in a language is a theory. The data 

translated into statements form a theory , but a terribly weak one. 

Dr. Richard Feynman, Nobel Laureate in physics, puts the matter 

(1965, p . 76} this way: 
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How is it possible that we can extend our laws 
into regions we are not sure about? Why are we so confident 
that, because we have checked the energy conservation 
here, when we get a new phenomenon we can say it 
has to satisfy the law of conservation of energy? Every 
once in a while you read in the paper that physicists 
have discovered that one of their favorite laws is wrong. 
Is it then a mistake to say that a law is true in a 
region where you have not yet looked? If you will 
never say that a law is · true in a region where you have 
not already looked, you do not know anything. If the 
only laws that you find are those which you have just 
finished observing then you can never make predictions. 
Yet the only utility of science is to go on and try to 
make guesses. So what we always do is to stick our 
necks out, and in the case of energy the most likely 
thing is that it is conserved in other places. 

It is evident that data as theory is too weak. However, theory 

that goes far beyond data is too unsubstantiated. The "proper" 

theory is in an intermediate position between the two. We seek a 

theory that provides the greatest insight adequately confirmed 

by the data. 

Data as Submodel. Another view, complementary to the 

above notion, is that we seek that model ' or set of structural 

relationships which best reflects the data and its interconnections. 

We begin with some assemblage of models , the modelspace , from 

which we can choose a model on the basis of our data. The 

modelspace cannot be the set of all models:. the limitations are 

identical to those imposed by the tacit knowledge underlying a 

language. For example, social scientists doing regression 

analysis have confined themselves to linear models of their data. 

Thus the modelspace limits our alternatives in exactly the same 

way a~d for the same purpose as does a language. 
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Since the data specifi e s structural interrelationships one 

can view it as a submodel. As we have seen, the data- submodel 

does not form a complete model in itself, but only a partially 

specified configuration of the universe. The modelspace, then, 

consists of models which extend that partial specification- -models 

which contain the data as a submodel. These are the models which 

are compatible with the data. 

The relationship between a language and a modelspace is 

quite close: one can derive the modelspace from the language, 

though not quite the reverse. Consider the models of set theory as 

"all possible models", at least from a meta-level vantage point. 

We can say that two of these models are equivalent, to us, if no 

sentence in a given language can distinguish between them. Thus, 

no sentence of our language is true in one model and false on the 

other, or vice versa. In this case the language simply cannot 

express those features that differentiate the two models. As an 

example, suppose our language talked about flipping coins . We 

can express whether a coin lands with either heads or tails 

showing . What we cannot express or distinguish is the difference 

between landing heads up on the table or landing heads up on the 

. floor or landing heads up after spinning exactly 101 times . All of 

these events are identical to our simple heads/tails language. 

Therefore , a language clusters models together. The 

language can be used to distinguish any two models from different 
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clusters, and cannot be so used on models within the same cluster. 

Formally, the language has partitioned the models into a set of 

elementary equivalence classes. These clusters, or equivalence 

classes , form the modelspace we see when using that language. 

This modelspace represents exactly the possible states of 

the universe--as seen by a particular language or conceptualization. 

It mirrors the implicit understandings, knowledge, and structural 

relationships which are tacit in that language. 

A language corresponds to a modelspace. A theory, or set 

of statements, within that language will select one or more of the 

equivalence classes as being the set of models compatible with that 

theory. We can correspond theories and models in this way, with 

a "complete" theory selecting only one equivalence class, or one 

model in the modelspace. 

We will label the language/theory approach as intensional 

and the. modelspace/model approach as extensional. While the two 

are complementary, their differences are meaningful and will be 

discussed further in the section below on computer system techniques . 

The fabric of data analysis , then, can be torn in two ways 

by the fundamental distinctions expressed in the diagram below: 

language~,-----~) theory (intension) 

1 I 
modelspace( > model 

J 
(extension) 

(data 'as submodel) 

(structure)~-----+( content) 

Fig. 1. --The Two Dimensions of Data Analysis 

. . 
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Just as the first distinction can be considered intension vs. 

extension, the second can be thought of as structure vs. content. 

The difficulty is that there is no adequate definition of structure. 

As used here it means the commonalities found in a set of models, 

or the organization abstracted from some particular set of data. It 

is in this sense that we utilize a set of models, for the language/ 

modelspace gives us a means to manipulate structure. Marshall 

McLuhan pursues a somewhat similar idea in distinguishing media 

from message. 

The importance of structure is now being realized. If the 

milestones of computing history were to be enumerated, most 

computer scientists would agree on ( 1) the notion of a stored

program machine and ( 2) the notion of list-processing techniques. 

Information scientists, however, would subsume list-processing 

under the idea of structure processing in general, for we ~re 

becoming aware that the limitations of our programs are set by 

the structures we utilize much more than by any other factor . 

Furthermore , by designing programs to handle some particular 

structure rather than a very specific set of data , we acquire more 

widelr applicable programs . One can in fact go to the extreme 

(but logically correct) position that all our computers do is convert 

from one structure to another and therefore should be called 

structure-processing machines rather than data processing machines. 
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We impose structure on our universe. But the structure of 

our observations is too weak to be of any use; enormous structure 

far beyond our data has too low a confirmation. We need theories 

and models which are in between. 

What we do is build theories which are informing: which 

are compatible with our data and which go beyond the data in 

delimiting alternatives. This notion that our theories are not 

totally implied by our data disturbs people, for it insists that 

"totally objective science" does not exist. It means that in all 

human endeavors we impose our own subjective views on our 

perceptions and that if we wish to be informed we must be artists. 

But artists and scientists combined, for there are the two aspects 

to information: the side which compares theory to data in order 

to maintain compatibility, and the side which adds subjective 

· structure in order to delimit the alternatives to be considered. 

This imposition of cognitive structure on observation means 

that one can no longer believe in the primitive scientific ideal: one 

merely looks at nature (in this case some data) and all will be 

revealed, for all scientific laws are inherent in the data waiting 

for us to elicit them. This naive view has been supplanted by one 

in which scientific i aws are the product of our perceptions and of 

our own thinking process, and are informing at the moment. 
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Information, Language, and Data 

The notion of information has been woven throughout the 

preceding discussion; with it has been the assumption that informa-

tion is a function of both language and observation. While the 

formalization is beyond the scope of this work, it is possible to 

outline some characteristics of this function. 

The word information reminds us immediately of the exis-

tence of information theory, as communication theory has come to 

be known. This branch of probability theory, founded in 1948 by 

C. E. Shannon, is concerned with the likelihood of the transmission 

of messages when they are subject to certain probabilities of trans-

mission failure , distortion, and accidental additions called noise. 

The notion of information quickly appeared as workers in the field 

tried to express what it is that is communicated, and was just as 

quickly given a mathematical definition which fits the context of 

communication theory. 

The technical definition of information in communication 

theory is an attempt to measure the worth or value of receiving 

any particular message from some fixed set of messages (Pierce 

1961 , p. 23} : 

In communication theory we cons i der a m e ssage 
source , such as a writer or a speaker, which may 
produce on a given occasion any one of many possible 
messages . The amount of information conveyed by 
the mes sage increases as the amount of uncertainty 
as to what message actually will be produced becomes 
greater. A message which is one out of ten possible 
messages conveys a smaller amount ·of information 
than a message which is one out of a million possible 
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messages. The entropy of communication theory is a 
measure of this uncertainty and the uncertainty, or 
entropy, is taken as the measure of the amount of 
information conveyed by a message from a source. 
The more we know about what message the source 
will produce, the less uncertainty, the less the 
entropy, and the less the information. 

This tremendously successful conception of information has 

one important point: the amount of informatio~ depends heavily 

upon the characteristics of the set of alternatives from which the 

message is drawn. In fact, the amount of information conveyed 

by a message is defined as the difference before and after its 

receipt of our uncertainty about the message space. Thus the 

central concept of information is the space of alternatives and its 

probability distribution. 

What is the alternative space in a given situation? Commu-

nication theory was first applied to telegraphy, whose space was 

obviously the alphabet, numerals, and a few punctuation characters. 

These few characters were encoded into dots and dashes for 

transmission, and one could determine the amount of information 

a particular sequence of dots and dashes represented. 

One must be careful however. Morse originally devised a 

coding of words from a dictionary into dots and dashes - a radically 

different space of alternatives. One can receive a sequence of 

signals and compute many different amounts of information 

represented by that sequence, one for each alternative space or 

even one for each probability distribution on the same alternative 



-16-

space. Communication theory limits itself to a known and fixed 

alternative space and probability distribution. 

What has all this to do with data analysis? First, one can 

certainly think of data as a message, perhaps received from Nature 

over a noisy channel. One would obviously like to know how much 

information that data contained. If we had an alternative space 

the whole of communication theory would be applicable, and 

presumably we could compute the information. 

The problem, of course, is the space of alternatives. Here, 

as should be guessed by now, is the function of language. A language 

determines a modelspace, as shown previously, which is exactly 

the set of alternatives needed. 

Therefore, a language and a set of data together determine 

the amount of information. Given a body of data, one can search 

for that language which maximizes the information associated with 

that data. Given a fixed language, one can search for that data 

which is most informing within that conceptualization. We maximize 

our information by adjusting_ both language and data as necessary. 

The case of a single, fixed language is exactly that covered 

by communication theory. More interesting is the extension of the 

notion of information into the realm of many ~anguages, conceptual

izations, alternative spaces . We will refer to a conjecture con

cerning this area, enunciated by F. B. Thompson, as the 

Fundamental Theorem. 
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Consider the case of a fixed set of data and a linear chain of 

languages. The languages form a "proper" cha.i:ri, that is, any 

language in the chain is a proper ramification of the languages to 

its left. More formally, we can induce a partial ordering on the set 

of all formal languages by this definition: if L
1 

and L
2 

are formal 

languages, then L
1 

:!::: L
2 

if the modelspace associated with L
2 

is a 

refinement of the model space associated with L 
1

• That is, some 

model possible in L 
1 

has been ramified into several distinguishable 

models in L 2 . 

Two properties of such chains of languages are worth noting: 

every proper chain has a right-hand end, and none have a left-harrl 

end. The right-hand end language is one which creates a model

space with only one model - it cannot distinguish between any · 

states of the universe. Such a language might consist, for example, 

of the one word "wow. " The fact that there is no most powerful 

language is essentially Tarski's theorem on truth: for any formal 

language L 
1

, there is a more powerful language L 2 which can express 

things not expressible in L 
1

. 

Thus , if we make our chain of languages the horizontal axis 

of a graph, and a measure of the amount of information given by a 

fixed set of data the vertical axis , we should at least be able to 

see the shape of the curve even if we cannot give explicit formulae 

for its computation. There is one point worth noting on the language 

axis. We will assume that there is a least powerful language in 



-18-

which all aspects of the given body of data can be expressed, and 

~' mark that L . 

We know that the information provided by our one-word 

language is zero, since no data affects what we can do with it. As 

for the rest of the curve, the standard expectation assumed in the 

literature is that information increases until L *, at which point 

everything knowable is known, and is thereafter constant since one 

does not lose information already gained by being able to express 

more. This curve is depicted below. 

I 

L* L 
Fig. 2. - -"Objective reality" information curve 

This view encourages the use of low-level languages and 

>'< 
conceptualizations - at least as ramified as L'. More importantly, 

it says one can go much lower without loss of information; thus 

biologists and psychologists should be thinking in the same terms 

as atomic physicists , for example . This view of the information 

curve supports a reductionist philosophy. 

The Fundamental Theorem has two parts : 

1) if one considers more and more powerful languages , 

in the limit the information obtained is zero ; 
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* 2} there are languages to the left of L , i. e. abstractions 

>'< 
from L ', which maximize the information across the 

chain of languages. 

I 

Fig. 3. --The information curve of the Fundamental Theorem 

While this theorem has not yet been formally proved, there 

are good reasons for expecting it to be true. For more details, 

see Thompson (1969} and Randall (1970), 

The Fundamental Theor em implies that we are most informed 

when working at a fairly high level of conceptualization - more 

abstract than the level of the raw data, and certainly not at some 

extremely ramified common, basic language . At the same time 

one cannot get too far above the data. 

One must search for an informative conceptual view. But 

all languages are informative to some degree. The importance 

of the Fundamental Theorem is that it tells us to search for the most 

informative conceptual view, that in fact one exists. This view, 

furthermore, is not at the level of our sensory impressions or some 

other "objective" level. It is a view in which we have gone beyond 

the data, made inferences, and imposed our own will, 
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What is data analysis? On one side is the activity of finding 

an informative language and theory within that language. On the 

other is the continuing activity of perceiving and data gathering. 

Both of these processes affect the other enormously, and data 
\ 

analysis is the bridge that intervenes. Data analysis should tell 

us when to move to a more informing theory, and when to gain 

information by changing the data we work with to bring it closer to 

current language and theory. 

Data analysis is that connecti'on between advancing cognitive 

structuring, on the one hand, and continuing perception~ on the 

other, which produces information. 

Statics of Data Analysis 

If information is a function of language, one might well 

ponder the use of theory. Theories are necessary for the process 

of confirmation: one can compare data to a theory, not to a 

language . Theory is our bridge between data and conceptual view. 

Given a language and a body of data how does one choose 

which theory within the language will be used as representative and 

compared to the data? We would like to choose the best one, the 

theory which fits the data most closely, out of the possibilities 

provided by our language. In most languages, however , there is 

hardly a notion of fit, and no apriori meaning for "best fit. 11 



-21-

Mathematical Statistics. Fortunately, for a very few simple 

languages we can define "fit" and elicit the best-fitting theory. 

Mathematical statistics is that subject which describes these 

languages, a notion of fit, and procedures for finding the best 

theory in the language. The languages involved are all numeric, 

and in general are the ones which are mathematically tractable. 

For example, one of the most frequently used languages 

talks about lines: linear functions of one real vari, ble. All 

sentences in the language are of the form "Y = < number 
1 

> + 

< number
2 

> •:C X"; any such sentence can be considered a theory. 

The associated modelspace is the set of all non-vertical lines 

in a coordinate plane- - every line corresponds to a sentence and 

every sentence specifies a line. 

For this language and a set of data (pairs of numbers < x., y.>} 
l l 

one can define the best-fitting theory. It is that theory whose 

values of <.number 1> and <number2> are such as to minimize the 

function E(a, b} = ..Z.. (a + bx. -y.} 
2 

. l l 
l 

This definition is then used to find the best-fitting theory -

the coefficients which minimize the error function. Obviously. 

this procedure is curve-fitting with a least-squares criterion, 

and in this case finds the regression line . 

The point here is that most of descriptive statistics can be 

rephrased into the following form: "if the data is of type such-and-

such, and we consider only a particular language, then · ( l} a good 
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notion of fit is , and ( 2) using this notion, the best-fitting -----
theory can be found by -----" 

Thus mathematical statistics is an important part of data 

analysis and is limited only by the languages and model spaces it 

considers. 

The Uses of Fitting. Suppose we step back a little and 

consider what people think they do. We find two rather distinct 

groups . The first, consisting mainly of statisticians, advocates 

the use of models to analyze data. The second group, the simulation 

users, champion the use of data to analyze models. Are these 

opposing philosophies? 

The people who use models to analyze data talk in terms of 

"fit" : how well does the model fit the data? The viewpoint here 

is that it is the data which is important; they desire techniques and 

tools that summarize the dat:a and display the interesting relation

ships in the data. Models , from this point of view, are simply 

structures that guide data analysis . They are assisting tools , 

and one should never completely believe in them. Tukey (and 

Wilk 19 66 , p . 796) puts the matter this way: Data analysis "can 

only bring to our attention a combination of the content of the data 

with the knowledge and insight about its background which we must 

supply. Accordingly, validity and objectivity in data analysis 

is a dangerous myth. " 
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The main tools of this · group are fit and exposure. They fit 

a model to the data, then consider the residuals - those places 

and instances of lack of fit. Again according to Tukey ( 1966): 

\ 

The iterative and interactive interplay of summarizing 
by fit and exposing by residuals is vital to effective 
data analysis. Summarizing and exposing are comple
mentary and pervasive .... The single most important 
process of data analysis is fitting. It is helpful in 
summarizing, exposing, and communicating. Each fit 
( 1) gives a summary description, ( 2) provides a 
basis for exposure based on the residuals, and 
(3) may have the parsimony needed for effective 
comm uni ca ti on. 

In this type of data analysis, while the focus is on the data, 

we use models and theories as tools to get at the relationships that 

hold between the various elements in the data. Thus our eyes are 

on the data and our hands can be manipulating theory. 

The other school says that one uses data to analyze models. 

In this case, people generally have some theory and wish to verify 

the correctness of that theory against some "real world" data. 

This is the problem of verification of theory to increase the 

credibility of theoretical construction. 

The view that science proves theories to be true by verifying 

them has passed its day. The question has instead .become " how 

much should one believe in a given theory? 11 This is one of the 

main concerns of the people who design and experiment with simu-

lations: 

A simulation or game is the partial represen
tation of some independent system. Usually we 
are interested in simulation as a means for increasing 
our understanding of the system it is intended to copy. 
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Therefore, the representativeness of a simulation 
or game becomes extremely important in assessing 
its value. The process of determining how well 
one system replicates properties of some other 
system is called validation. In experimental 
research, validity is the goodness of fit or the 
correspondence between phenomena produced by 
two sets of properties. (Hermann 1967, p. 216) 

To gain confidence in his simulations, the 
social scientist may check them against scholarly 
work in general. Further, he should compare his 
constructions with "realities'' - empirical descriptions 
of the world of nation-states and international or
ganizations .... However, a simulated construction 
is but theory. It provides no shortcut or magical route 
to the "proof" of the validity of the verbal and 
mathematical components it contains. Thus, there 
is a need for a systematic examination of the extent 
of the congruences between empirical analyses of 
world processes and simul.ations of international 
relations. (Guetzkow 1968, p. 202) 

While these two viewpoints seem to be in opposition, it 

should be clear that both are sub-processes of what we call data 

analysis. They are both involved in the relationship of data to 

model , data to theory. The difference is that one side 

emphasizes data as being more important, the other side emphasizes 

the model. This unbalanced attention determines and is determined 

by the researcher's relative reluctance to change one or the other. 

If one looks closely enough, of course, one can see the two 

schools overlap: Tukey, primarily a data man, says , ( 19 66 , p. 698): 

"Even when used for confirmation alone , data analysis is a process 

of first summarizing according to the hypothesized model and then 

exposing what remains, in a cogent way, as a basis for judging 

the adequacy of this model or the precision of this summary, or 

both.'' 



-25-

\ 
Clearly data analysis encompasses both viewpoints and 

more: it is the dynamic balancing of the activities of perception 

and cognition. 

Dynamics of Data Analysis 

One of the criticisms of statistical decision theory is that 

the se.t of alternatives open to a decision maker is assumed to be 

fixed. The importance of this static nature is only now being 

recognized: 

Much of the impetus for the computerization 
of managerial decision making came from operations 
researchers who saw the power of certain optimizing 
techniques and recognized that most managers could 
not hope to find the best answers to their problems 
without the assistance of certain sophisticated 
mathematics .. 

However, an answer can be "optimal" only 
if the · range of choices considered by the manager 
is restricted. Let me illustrate: A manager who 
is being "eaten alive" by carrying costs on his 
inventory might be told by a bright young operations 
researcher (or a computer printout) that he should 
order items into his inventory in optimal lot sizes. 
There is a nice little square root formula that tells 
him how to determine the optimum. Suppose a 
lot size of 162 is the optimal answer to the math
ematicians question, "What is the optimal lot size? 11 

This may solve one facet of the problem , but it is not 
necessarily the best answer to the manager's questionll 
" What should I do about my high inventory carrying 
c osts? " 

The best answer for him might be : (a) hold 
a fire sale ; (b) put a new roof on the warehouse to 
stop parts from rusting ; ( c) hire new design engineers who 
can standardize the parts; ( d) fire the accountant 
who treats this account as a place to dump other costs ; 
( e} change the reorder points; or (f} instruct the 
inventory clerk on corporate goals! (Jones 1970, 
p. 76} 

' 
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Enlarging the space of alternatives is one of the means we 

have for changing a situation in order to gain information. The 

possibilities for change form the dynamics of data analysis and 

have too long be en ignored. 

There are three types of change which can be considered 

from our conceptual vantage point: ( 1) one can change his data; 

( 2) one can change theories within the basic framework of some 

fixed language; or (3) one can change languages. 

That one might change his data seems improper and is often 

referred to as unscientific. Historians of science, especially 

Kuhn ( 1970, p. 135), have investigated scientists at work and have 

actually found enormous amounts of selected purging of old data, 

usually in times of revolutionary science. Further, the gathering 

of new data is always under the guidance of the current conceptual

ization, including when and how. In statistical analysis there are 

special techniques which justify the elimination of unwanted data 

by labeling it error or "outlier." 

The dynamics of the situation are such that at times the 

current conceptualization is more valuable or more believed than 

data which raises questions about it, and so that data is ignored 

or dropped. This may be used to increase the information associated 

with that conceptualization/ data pair . 

Change of theory is a relatively well-understood phenomena; 

statistical decision theory is applicable, for example. We wish to 

choose that theory from among the possibilities created by our 
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language which is best confirmed by our data, which fits best, or 

which has the best expected payoff. There may be technical difficul

ties in finding such theories, but for a wide variety of theories the 

techniques of curve fitting, the calculus of variations, or dynamic 

programming are effective. The problems· intensify, of course, as 

the theories involved become more complex. 

The conceptual problem, and our lack of understanding, of 

language change is greater. We can identify several instances of the 

general notion of language change. 

If some part of a theory becomes very highly confirmed, it 

is usually more informative to shift the explicit structure of this 

subtheory to implicit structure within a language. That way one 

asswnes something that was once questioned and considered. An 

example is the belief that physical laws can be stated mathemati

cally. This notion was once as controversial in physics as it is 

today in the social sciences. 

Other types of language change can have even greater 

effects . There is change which admits the existence of new 

conceptual entities . The existence of forces-which-work-at-a

distance was a revolution in physics , as was the emergence of 

aristocrats in social philosophy. 

There is also language change which adds new alternatives, 

exactly as in the above example of the manager making decisions. 

This kind of language change ramifies structure - creating several 



-28-

alternatives where before there was only one. Abstraction has the 

opposite effect; it consolidates many alternatives into one by 

ignoring differences. The concept of "people" ignores many 

individual d~fferences in favor of certain commonalities. The 

concept of sex subdivides the class of people by emphasizing certain 

differences while excluding others. The dynamics of conceptuali

zation is often a pattern of alternation between abstraction and 

ramification. 

Note that change of language implies theory change as well. 

A theory, as a set of sentences within some language, is interpreted 

only with reference to rules contained within that language. Even 

if the explicit statement of a theory does not change, its meaning 

can. 

Think of the theory of physics, part of which is contained in 

the statement, "all of the properties of the world can be accounted 

for as interactions between atoms. " When atoms were defined as 

indivisible , basic particles, physicists conducted certain experi

ments to determine their characteristics , for example the impli

cation that chemical reactions occur with small-integer weight 

relations. 

Now , however , when an atom is a collection of further 

particles and forces , the operational meaning of the above state

ment is quite different. "Atom smashers11 were self-contradictory 

in pre-subatomic days. 
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Language change is more difficult than theory change since 

it entails the latter. It therefore occurs less frequently and with 

greater effort and attendant confusion. This more basic kind of 

change affects the unspoken assumptions of a field so that commun

ication may be disrupted. In data analysis this relative difficulty 

also holds. A social scientist doing correlations and regressions 

is working within the language of linear models. To switch to 

general polynomial models requires major adjustments in 

technique, interpretation, and theory. 

The importance .of language chan"ge in the dynamic asp"ects 

has already been recognized. Thomas Kuhn, in his work on the 

nature of scientific progress ( 19 70}, distinguishes normal science 

from revolutionary science. We can identify normal science as 

theory change and revolutionary science as. language change. 

Kuhn's thesis is . that normal science means working within 

a "paradigm", while revolutionary science changes paradigms. 

--Kuhn's paradigm is our notion of language. Paradigms are works 

which (p. 10} "served for a time implicitly to define the legitimate 

problems and methods of a research field for succeeding generations 

of practitioners. T-hey were able to do so because they shared two 

essential characteristics . Their achievement was sufficiently 

unprecedented to attract an enduring group of adherents away from 

competing modes of scientific .activity. Simultaneously, it was 

sufficiently open-ended to leave all sorts of problems for the 
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redefined group of practitioners to resolve." Although Kuhn is 

concerned with major upheavals, his notion is close to our concep-

tion of language, within which there are many theories. 

On revolutionary science, or important language change, 

Kuhn (p. 84) writes: 

The transition from a paradigm in crisis to a 
new one from which a new tradition of normal science 
·can emerge is far from a cwnulative process, one 
achieved by an articulation or extension of the old 
paradigm. Rather it is a reconstruction of the field 
from new fundamentals, a reconstruction that 
changes some of the field's most elementary 
theoretical generalizations as well as many of its 
paradigm methods and applications. 

Conceptual Frictions. A discussion of dynamics would not 

be complete without some thought given to the frictions which are 

inhibiting conceptual change. The following is superficial, yet 

does represent a beginning on this complex subject. 

We can classify the inertias into three broad categories: 

informational, psychological, and technical. Psychological 

_,resistance to change is the best docwnented and studied. In this 

domain, anxiety is a major cause for mental rigidity. An anxious 

person seems to lose the ability to move in the abstraction/ramifi-

cation dimension, to a degree dependent on the level of anxiety. 

Psychologists are irivestig;:i.ting this aspect of anxiety now . 

Another psychological friction is reluctance to change solely 

because of the previous level of investment. The investment could 

be in terms of money, time, mental effort, or any such scarce 

resource. When one has a lot invested in some conceptual view, 
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one tries to r etain that view if at all possible. These views are 

usually abandoned much later than they should have been, only 

when their use is a total catastrophe. This effect is visible today 

especially in societies, government structure, and computer systems. 

Under technological frictions are classified all inertias 

imposed on us by our use of current technology. There will always 

be technological friction, since one's technology forms a part of 

one's reality. Some forms of technology are less limiting than 

others, though. The electronic computer has the potential _to 

enormously facilitate our conceptual movement. The present _ usage 

of computers, however, does not. Chapter II of this dissertation 

provides the details on the current computer practice in data 

_analysis systems. 

Informational frictions are those related to the nature of 

information and the conceptualization process . First, suppose that 

we attempt to find the most informing conceptual view. That is, 

given some starting view, we move in the direction of increasing 

information: information hill-dim bing. But there is a trap 

here: we may find a language which provides a local maximum , 

i n terms of i nformation. All of its neighboring languages have 

less i nformation, even t hough some other languages provi de more . 

One would be reluctant to change conceptual views if i t meant a 

loss of informati on i mmediatel y and a possible gain later . 

The second type of information friction i s related to the 

need for communication. Communication between two individuals 
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can only take place if they share some conceptualization. Remember 

that we equate conceptualization to language: the individuals 

communicating must be talking the same language. What happens 

if one person changes his language? Either the amount of commun

ication drops, to that part of the language still held in common, or 

the other person must adjust his conceptualization to match. The 

painfulness of this process is evident, and one can cite many 

examples of its effects. A simple one is the frantic effort to 

standardize programming languages such as FOR TRAN, COBOL, 

or BASIC. 

These inertial forces in the dynamics of conceptual change 

constitute an interesting and important area of research for the 

behavioral sciences. A much deeper understanding of them is 

essential to a thorough treatment of data analysis. 
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CHAPTER II 

THE CURRENT STATE OF DATA ANALYSIS SYSTEMS 

A data analysis computer system is certainly a repository 

for data, but it is also something more: a medium for the articu

lation of conceptualizations. Since data analysis is the interaction 

between cognition and perception, the primary goal of these compu

ter systems is to encourage and provide support for this interaction. 

Data analysis systems must aid both sides: the ongoing 

processes of data collection and theory building. Furthermore, 

these two processes must be in harmony--neither can be neglected 

or overshadowed. 

There is an important point to be made about computer aids 

for conceptual developments. Computer systems are always a 

resistance to conceptual movement. They are, after all, only 

recursive mechanisms. Beyond this, however, various types of 

systems have their own rigidities. These,,restrictions exist be

cause of the incorporation of meta-level conceptualizations (the 

system designer's) and CUl;'rent technological limitations . Any 

particular system represents a balance between the conceptual and 

technological efficiencies obtainable by imposing limitations and 

tl~e inhibition of conceptual freedom that such limitations require. 

The basic questions to be asked about current systems 

include: ( 1) what range of user conceptualizations does the system 

allow; ( 2) how does the system facilitate the user's movement 

through that conceptualization space; (3) in what ways does the 
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system aid the process of data adjustment; and (4) does the system 

balance data and theory? 

Today there are five identifiable system types being used 

for data analysis: 

1. data management 

2. statistical analysis 

3. question-answering 

4. reference retrieval 

5. simulation 

Data Management Systems 

These are the systems designated by some combination of 

the terms data, information, file, retrieval, management, and 

generalized. There are currently around 200 distinct systems in 

existence; the system type is being studied intensively by a 

CODASYL committee ( 1969). 

Data management systems are an evolved form of the 3 x 5 

card file . This extremely useful device is typified by the card 

catalogue in a library. The catalogue consists basically of a file 

of cards , one for each book in the library. Each card contains all 

the data pertaining to one book, such as its title , call number , author , 

etc . There are also auxiliary files , containing such things as 

cross-references which facilitate certain types of searches . 

In current data management systems a data base consists of 

a set of files, each a sequence ' of records. All records in a file have 
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a similar, fixed format and all contain data about a single type of 

entity. Each record contains essentially all of the data about an 

entity, and ideally there is only one record per entity. Finally, 

some of the newer systems have added auxiliary files of indexes, 

using the notion of the "inverted file," in order to facilitate certain 

kinds of searches. 

Using these data management systems, one could, theoreti

cally, display the record of a single, particular entity. Instead, 

one usually produces' a "report," a display of a specified portion 

of the record for all those records satisfying some selection 

criteria. An example of such a report, and of these systems, is 

shown below in Figur<;i 4. An understanding of the nature of data 

management systems requires a look at the restrictions placed 

on the selection criterion. The decision of whether to include record 

X must be made on the basis of data contained only in record X. 

That is , the selection criterion is a recursive function of data in 

the given record exclusively. 

This limitation enforces a worldview that each entity, i.e . 

record, is basically independent of every other entity. What sorts 

of user conceptualizations are allowed in this environment? The 

only theories permitted are those that state that some entities 

. really are related and are interesting : all those which pass some 

stated selection process . Thus the space of theories is generated 

by the set of allowable selection functions, which are limited as 

described above. 
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The data management systems facilitate the user's movement 

through this conceptual space both by providing such a simplified 

space and by making it relatively easy to describe the selection 

function desired. The tremendous proliferation of such systems 

provides proof of the effectiveness of their conceptualization and 

implementation technique. 

The .limits of their applicability are equally clear. These 

systems assume a basically static language, that is in this case a 

basic set of data attributes. Modification of data in existing records 

is tolerated, as is the addition of new records within an existing 

file. Barely tolerated, since, as a typical example of the common 

use of such systems, a change-of-address on a magazine subscrip

tion will take six to ten weeks. 

As for more fundamental changes , the addition or deletion 

of an attribute across an entire file for instance, these require 

major upheavals in conceptualization as well as considerable time 

and effort . Data management systems are counterproductive in 

a dynamic or highly interrelated world. 
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Fig. 4. --An example of data management systems 

Suppose that one wanted to create a file with a 
record for each member of the computing center staff, 
giving his n~me, date of employment, and principal 
programming language. Suppose that one also wanted 
a list of all the PL/I programmers on the staff. The 
following ASAP program would accomplish this 
(Conway, Maxwell, and Morgan 1971, p. 13): 

)) ASAP START RUN: NEW, DEFINE 
)) ASAP 'PASSWORD' 
) ) DEFINE RECORD: STAFF 
)) NAME 30 KEY 
)) DATE OF EMPLOYMENT 8 
)) PRINCIPAL LANGUAGE 20 
)) DEFINE INPUT ; STAFF CARD 
)) COLUMNS 2-31 =NAME 
)) COLUMN l =NEW RECOR.D 
)) COL 32-39 = DA TE OF EMPLOYMENT 
)) COLUMNS 40-59 =PRINCIPAL LANGUAGE 
) ) DEFINE. END 
)) 
)) FOR ALL STAFF SELECTED BY KEY 
)) IN INITIAL DATA, FORMATTED BY STAFF CARD, 
)) UPDATE~ECORD. -
)) 
)) DATA BEGIN INITIAL DATA 
>!<JONES, WILLIAM 
>:<WILSON, MALCOLM 
>!<STEWART, PAUL 
.':'HOPKINS, PA ULA 
>!<ABELSON, PETER 
>'.cCHAMBERLAIN, H. G. 
)) DATA END INITIAL DATA 

FOR ALL STAFF WITH 

ll/23/68FORTRAN 
Ol/20/69COBOL 
07 /Ol/65FORTRAN 
l0/15/68PL/I 
02/0 l/ 66ASSEMBLER 
03/0l/64PL/I 

)) 
)) 
)) 
)) 
)) 

PRINCIPAL LANGUAGE = 'PL/I', 
PRINT A LIST OF NAME, PRINCIPAL 

ASAP END, ASAP END RUN 
LANGUAGE. 
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Statistical Analysis Systems 

These systems have been designed to support the mathemati

cal statistics view of data analysis. These packages usually include 

a primitive data management system with a simple, rigid data 

structure, and place emphasis on the processes available for 

analysis and summary. Some of the current systems are OSIRIS 

(Inter-university Consortium for Political Research), SPSS 

(University of Chicago), PSTAT (Princeton University), and BMD 

(UCLA). 

The statistical analysis systems make the asswnption that 

their data is a random sample from some much larger (i. e. iz:i.f.inite) 

population. In this conceptualization only the broad, statistical 

view is relevant and analysis of individuals is meaningless. Thus 

these systems have a data structure which can be described as 

rectangular: a fixed set of entities, a fixed set of attributes (either 

nwnerical or character-valued), and each entity is characterized 

by all attributes. There is no cross-linking of entities. 

In fact, in a random sample one does not expect the indivi

duals to be interconnected, and most statistical processes assume 

independence of individuals. Having related entities implies that · 

the sampling technique was faulty . 

Thus the world view presented is one of having a small 

amount of data taken from a large population. One wishes to 

discover broad, generalized characteristics of the total population. 
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In order to do this, the statistical systems provide a set of 

primary tools. Each tool is a process which imposes some 

particular conceptualization on the data and summarizes the data 

accordingly. These basic theoretical views are the usual ones 

found in mathematical statistics, simple random variables with 

known probability distributions, for example. 

In these systems a user can also express his theoretical 

view by transformations of the data or by some recursive selection 

process. Thus a user's conceptual space consists of some fixed 

set of basic views applicable to recursive transformations of the 

data. The overriding limitation is that the data must be considered 

a random sample collected from a large total population. 

Fig. 5. - -An example of statistical analysis systems (Nie, et al. 
1970, p. 54) 

RUN NAME 
FILE NAME 
VARIABLE LIST 
INPUT MEDIUM 
#OF CASES 
INPUT FORMAT 
MISSING VALUES 

VAR LABELS 

VALUE LABELS 

SAMPLE RUN OF THE SPSS SYSTEM 
EXAMPLE2, THIS IS THE FILE LABEL 
AGE, SEX, RACE, INCOME, EDUCA TN 
CARD 
10 
FREEFIELD 
AGE TO RACE (0, 8, 9) /INCOME(?)/ 
EDUCATN(O) 
AGE, AGE OF THE RESPONDENT/ SEX, SEX 
OF THE RESPONDENT /INCOME, YEARLY 
FAMILY INCOME IN DOLLARS/EDUCATN, 
EDUCA TN OF HEAD OF HOUSEHOLD 
SEX( l)MALE(2)FEMALE(3)NOT ASCER
TAINED/RACE( l)WHITE(2)NEGR0(3) 
ORIENTAL(4)0THER(9)NOT ASCERTAINED/ 
EDUCATN(l)NONE(2)PRIMARY OR LESS(3) 
SOME SECONDARY(4)SECONDARY GRADU
ATE(5)SOME COLLEGE(6)COLLEGE 
GRADUATE(7)GRAD SCHOOL(8)0THER(9) 
DON'T KNOW(o)NOT ASCERTAINED 
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PRINT FORMATS AGE TO EDUCATN (o) 
CROSSTABS RACE BY INCOME BY EDUCATN/INCOME 

BY RACE BY SEX 
OPTIONS 1, 3 
STATISTICS 1, 4, 6 

READ INPUT DATA 

74 1 2 8999 7 64 2 1 7463 4 24 3 1 5000 6 

41 3 1 4756 2 87 1 2 2746 3 55 2 4 8468 5 

57 2 3 9999 7 25 3 4 5472 1 37 2 3 2757 4 

28 1 1 7000 1 

PEARSON CORR AGE TO EDUCA TN WITH SEX TO INCOME 

OPTIONS 1, 3 

FINISH 

Question-Answering Systems 

W. Cooper ( 1964) first described what is now the standard 

view of question-answering or fact-retrieval: 

There are two propositions which are plausible 
in themselves, and which, when viewed in conjunction, 
focus attention on what we believe to be the fundamental 
problem of Fact Retrieval. 

Proposition I. A Fact Retrieval system must 
normally accept most of its information to be stored, 
and also its queries, in the form of natural 
language sentences (e.g. English) rather than in 
some artificial language selected for the purpose. 

Proposition II. A Fact Retrieval system must 
possess the capability of performing logical deduc
tions among the sentences of its input language .. . 

Together these propositions suggest that the 
central theoretical problem of Fact Retrieval is to 
·develop a system of logical inference among natural 
language sentences. 
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We can categorize question-answering systems into two 

types. Corresponding to an intensional view are the deductive 

systems, to an extensional view are the relational systems. A 

third type, the semantic net system (Quillian 1969), is an interesting 

and novel attempt to combine an intensional view with an extensional 

structure. 

Deductive Question-Answering Systems 

Deductive systems have evolved from artificial intelligence 

research on finding deductive proofs of mathematical theorems. 

The research has been generalized to deductions in a predicate 

calculus environment, usually only the first-order calculus. The 

question-answering systems, then, add to this work a translation of 

the English input sentences into the predicate calculus, but other

wise use the same techniques . 

These deductive systems all assume the intensional view, 

that is, they manipulate sentences and theories. The approach to 

. deduction is essentially syntactic: new theorems are added to a 

growing store by grammatical manipulations of the previously 

existing se t. The most efficient current techniques , the resolution 

methods , do work extensionally by trying to construct models . 

If an appropriate model cannot be constructed, it proves the falsity 

. of some sentence: usually the negation of the theorem one is trying 

to prove. However, the elements of these models are sentences 
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and clauses; one uses the linguistic entities as elements of models 

in order to construct manipulable models. 

There are several interesting aspects to the intensional 

approach. The first deals with the notion of atomistic completeness. 

The concept of completeness, taken from logic, is the property of a 

theory or model that all parts of that theory or model can be derived 

from some basic set of primitive elements--the atoms of that 

theory or model. Applied to a data base, this means that all of 

the data can be derived by application of recursive functions to the 

atomic elements of the data base. 

A good example is the grandparent relation. Suppose that the 

parent relation is a primitive in some data base. Then one can 

define the grandparent relation as the composition of parent with 

itself: "grandparent" means "parent of parent." In this case the 

grandparent relation is totally dependent on the parent relation and 

derives all of its characteristics from it; for example, the fact 

that every person has four grandparents . At this point the grand

parent relation has added nothing new, and all instances of the 

term could be replaced by its definition. 

Suppose , however , that one added the datum " the grandparent 

of Mary is John" and that our data does not include Mary' s parents. 

Now grandparent is de-coupled from parent; it has more properties 

and relationships to the rest of the world than is implied by the 

parent relation. This data base no longer has the property of 

atomistic completeness. 
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A theory or model can be atomistically complete only if all 

of its elements are of the primitive, atomic kind, with recursive 

definitions added for higher-level structures. In an atomistically 

complete model, with a primitive parent relation, the grandparent 

relation can be either 1) defined solely as "parent of parent" and 

thus completely coupled, or 2) defined primitively also, thus 

completely uncoupled. 

All of the current extensional systems are atomistically 

complete, and it is only the intensional, deductive systems which 

are not so ·restricted. 

The ability to handle meta-level data gives these systems 

their great power. The logic of the deductive systems is explicit, 

and therefore can be manipulated instead of implicit in the 

processing routines as is the case for other types of systems. An 

example of this power is the fact that these systems can comprehend 

data containing quantifiers as primitive items . "At least ten 

people live in Boston, 11 as data, makes certain kinds of deductions 

and answers possible , even if we· are uncertain exactly who is in 

Boston. 

The cost of this power is clear ; deductive systems use a 

recursively-enumerable search procedure , rather than the 

recursive procedures found in the extensional systems . By this 

we mean that the set of theorems in a formal language is recursively 

enumerable and not recursive . Thus one cannot determine the 
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truth or falsity of any given sentence directly, but instead one 

must list all theorems and see if the given sentence is among 

them. This enumeration technique, the only effective procedure 

for a recursively enumerable non-recursive set, has been shown 

time and again to be much slower than a direct approach where 

that is possible. This relative inefficiency limits the complexity 

of query and the size of data base allowable. For example, a 

recently developed system (Biss, Chien, and Stahl 1971, p. 303) 

works with a data base consisting of 2000 English sentences, claimed 

to be "larger than any other data base currently being used for 

natural language [ deductive ] question-answering systems. 11 

This fundamental limitation on efficiency may be bypassed to some 

extent by a judicious combination of both intensional and extensional 

approaches, which is the long-range promise of the semantic net 

systems . 

Fig. 6. - -An exampl~ of deductive question answering . 

Suppose the system (Biss et al 1971, p. 305) receives the 

question: Do cars always have to yield to pedestrians? and it has 

at its disposal the facts 1) Pedestrians not i n a crosswalk must 

yield to cars and 2) If x must yield to y , then y does not have to 

yield to x . 

The syntactic analysis of the question produces the form: 

always(must(yield(car, pedestrian))). The semantics of the word 

11always" converts this statement into: 
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V y(y- must(yield(car, pedestrian))), where y is a variable 

ranging over situations. This is further converted into: 

V x
1 

V x
2
(must(yield(x

1 
(car), x 2(pedestrian)))), where x

1 
is a 

variable ranging over situations on car and x
2 

is a variable 

ranging over situations on pedestrian. 

The relevant data has been stored as must( yield( (not( in 

(crosswalk))) (pedestrian), car)) and V x'lf y(must(yield(x, y))- ...:.must 

(yield(y, x))). The system tries to prove the question true by 

showing that its negation contrcldicts the relevant axions. This it 

will not be able to do, and so will eveni:-ually try to prove the ques

tion false. In this case the system can prove that the question state

ment itself contradicts the axioms, and so can be answered "no." 

To do this the R2 system first rewrites the second axiom 

as ,..., must(yield(x, y))V,..., must(yield(y, x)) since A-B is equivalent 

to ,..., AV B. Then, ..... must(yield(x
2
(pedestrian), x

1 
(car)}} follows 

from this and the question statement by recursively applying 

high-order resolution. This statement resolves with the first 

axiom if we let x
2 

= not(in(crosswalk}) and x
1 

= (/)(the empty 

substitution), generating a contradiction. 

The system can also output those situations in which a car 

does not have to yield to a pedestrian, i.e. the instantiations of 

.x
1 

and x
2

: when the pedestrian is not in the crosswalk. 
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Relational Question-Answering Systems 

Relational data systems take the extensional approach in order 

to reach a usable level of efficiency. All of these systems use a 

single type of modelspace, a relation algebra--a set of entities 

and a number of relations among those entities. Such systems 

are exemplified by the Relational Data File (Levein and Maron 1967) 

and Converse (Kellog et al. 1971). 

The notion of a relation algebra is a very general mathemati 

cal concept. It is general enough to be used as the basis for 

mathematical model theory, which underlies the use of the term 

model in this thesis. One can also consider set theory to be the 

theory about a particular relation algebra, one with a specified 

binary relation. 

Thus a relation algebra has a wide scope. At the same time 

its primitives , both entities and processes, are surprisingly 

simple and few in number . This implies that it should be possible 

to implement this type of system relatively easily and with a 

great deal of attention to efficiency. Such implementation details 

will be considered in a later section of this thesis . 

The relational data systems therefore allow rich interconnec

tion among the entities of t.he model , in contrast to the data manage

ment and statistical analysis systems discussed earlier (on this 

point see Codd 1970). This type of modelspace, however , seems 

to require atomistically complete models. What, then, are its 

capabilities for deduction? 
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One can distinguish two types _of capability, that for global 

. deduction a:nd that for local deduction. Global deduction, another 

term for the usual type of deduction, is an intrinsically recursively 

enumerable process as discussed above. The set of provable 

theorems is in general not recursive, but is recursively enumerable. 

Local deductive capability, i.e. the relational data systems, is the 

ability to work with recursive subsets of theorems. Local 

deduction denotes a recursive set of theorems and obviously is more 

restricted than a full deductive capability. 

Some examples are in order. First, suppose one had the 

following two items of data, "Joe arrived in Los Angeles in 1960, 11 

and "Joe left Los Angeles in 1970." What can one say in regard to 

Joe's whereabouts in 1965? On the basis of the data alone, nothing. 

One can, however, include in the logic of the language enough 

assumptions and rules of inference to be able to answer "Joe was 

in Los Angeles in 1965." These assumptions and rules take the 

form of recursive functions of the data, built specifically for 

particular cases. 

For a second example of local deduction, consider the ances

tor relation (i. e . "transitive parent"). With an explicit logic and 

relation algebra one could define the properties of transitive 

relations with axioms and then deduce Joe's ancestors from the 

data contained in the parent relationship. Local deduction here 

implies that the meaning of "transitive" is defined by a: specific 
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recursive function rather than by axiom. One could still find 

Joe's ancestors. 

As a final example consider the most important aspect of 

deduction--quantifiers. We will try to answer the question "Are 

all men mortal? 11 by recursive methods. Obviously, if the 

number of men is finite, one can simply generate each man in turn 

and ask the appropriate question. But even where we wish to 

allow the possibility of an infinite number of men, it is sometimes 

a recursive problem. We might have the class of men a subclass 

of the class of mortal things, and thus merely re-phrase the 

question into a simple one about subclass relationships. 

The point to be made here is that the relational data systems, 

at least in their present completely extensional implementations, 

are limited to local deduction. While local deduction is restricted, 

it may provide enough power and efficiency for some areas of 

a pplica ti on. 

Thus the relational data systems represent a compromise. 

They allow a fairly richly-interconnected universe--much more than 

the data management systems , for example . Yet they are efficient 

enough to handle reasonably large data bases. A description of such 

a system constitutes Chapter Ill of this thesis. 
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Reference Retrieval Systems · 

These systems are designed to automate the search of a 

library's card catalogue , and in general facilitate the search for 

books and articles dealing with some particular subject matter. 

Reference retrieval systems are specialized versions of question-

answering systems ; the restriction of purpose and data is made 

for the purpose of more efficient operation. Gerald Salton, a 

leading exponent of these systems, identifies ( 1968, p. 393) the 

restrictions this way: 

When comparing reference retrieval and data 
retrieval systems, the main complications present 
in the latter (and absent from the former) are 
caused by the more detailed analysis of the stored 
data necessary to operate a fact retrieval system. 
Whereas, for reference retrieval, it is normally 
considered sufficient to isolate the main objects 
or entities useful for the specification of the subject 
content of each stored item (the keywords, concepts, 
descriptors, etc.), in a question answering system it 
is necessary also to identify a large variety of 
functional relationships between entities. Thus, 
the semantic analysis must be much more thorough, 
and it must notably include the identification of a 
majority of the relations indicated in the language 
by verbs and function words, such as conjunctions, 
preposi tions , and quantifiers . 

Furthermore , a reference retrieval system is 
e xpected to cope with only one type of question, expressed 
i n terms of a document set considered closed at any 
given instant, namely " Does the stored collection 
include items dealing with such and such a subj ec t 
matter ?" On the other hand, a data retrieval 
system must handle a much larger variety of queries , 
including also queries for which an explicit answer may 
not be stored but may first have to be generated from 
the information actually available . 
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The goal of reference retrieval is to display all those 

documents deemed relevant to the subject matter contained in a 

query. Relevance, of course, is scarcely understood, and so 

the central notion used in these systems is that of a "concept. " If 

one has an operational definition of concepts, and some way to 

measure distance between concepts, one can define relevance as 

a measure inversely proportional to this distance function. The 

difficult work on reference retrieval consists of defining "concept" 

and "distance between concepts. " 

The usual operation of such systems is over some identi

fiable universe of discourse. First the appropriate concepts are 

decided upon, and then all documents in the collection are rated 

' • ... on their distance to each concept. Finally, a query is entered 

into the system and also rated on each concept. Then the correlation 

coefficient between the query ratings and document ratings are 

computed for every document in the collection, and the ones 

with the highest correlations output. 

This type of operation, typified by the Smart system of 

Salton, assumes a rather fixed set of data and certainly a static 

data structure. In fact, the dat a structure involved is a sequential 

file of vectors, one vector per document. Each vector contains 

the rating of each concept for that particular document and can be 

(and is) considered to locate a point inn-dimensional space. The 

query also represents such a point, and relevance is d.efined by 
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some n-dimensional distance function. A great deal of work is 

being done on clustering, that is, representing a group of closely

related documents by one representative description. These 

techniques are aimed at improving efficiency and especially search 

times, and lead naturally into other file structures, such as inverted 

or multilist. 

The subject of indexing (i.e. what are concepts?) has been 

active, breaking into two camps: clustering, where all documents 

are on the same level, and hierarchical indexing, where abstracted 

categories are combined in a tree-like structure. Hierarchical 

indexing appears to be winning in both efficiency and acceptability, 

especially as the systems become interactive. In fact, the future 

points obviously toward more general concept structures as the 

index attempts to mirror our own conceptualization, and therefore 

toward the convergence of these reference retrieval systems 

with the more general question-answering systems. 

This projected assimilation of reference retrieval systems 

is caused by 1) the emergence of efficient question-answering 

systems ; 2) the existence of economic interactive computer 

systems; and most importantly 3) the growing awareness that the 

user must have a great deal of freedom and control in his 

conceptualization and search processes . 
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Fig. 7. - -An example of reference retrieval systems 

The document collection being searched in 
this case consists of the 405 abstracts published 
in the IEEE Transactions on Electronic Computers 
for March, June, and September, 1959. The 
collection covers all fields of the computing literature. 
Sixteen abstracts were manually judged to be 
relevant to the request. (Salton 1968, p. 467) 

The search request: 
Give algorithms useful for the num'erical 

solution of ordinary differential equations and partial 
differential equations and partial differential 
equations on digital computers. Evaluate the 
various integration procedures (try Runge-Kutta, 
Milnes method) with respect to accuracy, stability 
and speed. 

answer 

384 stability 

360 siI'l)ulate 
386 eliminati 

39 2 on com put 
200 solution 

85 note on an 

387 boundary 

103 Runge-Kut 

102 On the so 

390 Monte Car 

correlation 

0.8567 

0.7741 
0.7457 

0.6571 
0.6443 

0.6372 

0.6171 

0.5874 

0.5648 

0.5448 

identification 

Stability of numerical solution of 
diff. eq. 
simulating second order equations 
elumination of special functions 
from diff. eq. 

· on computing radiation integrals 
solution of algebraic and transcen
dental eq. 
note on analogue techniques for 
resolving 
boundary contraction solution of 
Laplace 
Runge-Kutta methods for integrating 
diff. eq. 
On the solution of Poisson's differ
ence eq. 
Monte Carlo solutions of boundary 
value problems 
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Simulation , 

A simulation is a tangible, manipulable model that corre

sponds to a theory about some relevant aspects of the world. 

Simulations are usually dynamic models, that is, explicitly time 

dependent, and are therefore represented by processes which 

operate on some basic structural model. The execution of a 

simulation calls into play each of these "events, " which modify 

the model in some predetermined way. The main use of such 

simulations is to unfold the dynamic aspects of a model, especially 

those models too complex to be adequately handled by formal 

mathematics. 

There are two types of simulations currently receiving 

attention. The continuous simulations reflect the view that time 

is a continuous real variable and the processes involved operate 

continuously and often simultaneously. These models · are very 

often translated into sets of differential equations and solved 

numerically. Typical application areas might be electronic 

circuit design, neural network research (e . g. the Hodgkin and 

Huxley nerve membrane equations), and atmospheric pollution 

studies . 

The second type is called discrete simulation. Here the 

individual events are considered more important, and are u sually 

distinguishable from each other and are quite complex. The 

relevant times are only those at which events happen - a discrete 

sequence of ascending instants . Examples of such simulations 
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abound in the social and behavioral sciences, such as the formation 

of coalitions in international politics or the flow of traffic through 

a city. 

The purpose of a simulation is 'the same as that of any theory. 

It is used to gain insight into the phenomena under study. Simulations 

also have the same characteristics as theory: they can be more or 

less generalized, their primitive entities may or may not be well

chosen for the subject area, they may fit the data more or less 

closely, etc. The importance of simulation is that they are 

tangible theory, and thus can be studied, manipulated, and changed. 

While simulation is an important vehicle for conceptual 

development , as a data analysis tool it has one important defect: 

i t underemphasizes data. Simulation is totally overbalanced on the 

side of theory; any data produced by a simulation, and any data 

compared to these outputs , are to be utilized by some external 

process . Simulations merely produce data - what happens to it 

after that is left to the imagination. What this means, of course, 

is t hat a combination of theory-building simulations with a data

oriented analysis system could be extremely powerful. The 

conceptual pressure for such a combination is increasing, so that 

it will not be too many years before it exists . 
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Fig. 8. --An example of a discrete sirpulation (Gordon 1969, p. 125) 

Consider the example of a simple telephone system. The 

system has a number of telephones, connected to a switchboard by 

lines. The switchboard has a number of links which can be used 

to connect any two lines,, subject to the condition that only one 

connection at a time can be made to each line. It will be assumed 

that the system is a lost call system, that is, any call that cannot 

be connected at the time it arrives is immediately abandoned. 

A call may be lost because the called party is engaged, in which 

case the call is said to be a busy call; or it may be lost because 

no link is available, in which case it is said to be a blocked call. 

The object of the simulation will be to process a given number of 

calls and determine what proportion are successfully completed, 

blocked, or found to be busy calls. 

Suppose each line is treated as an entity, having its availabil

ity as an attribute . A table of numbers is established to show the 

current status of each line. It i's not necessary that a detailed 

history be kept of each individual link, since each is able to 

service any line. It is only necessary to incorporate in the model 

the constraint imposed by the fact that there is a fixed number 

of links. Under these circumstances, the group of links is 

represented as a single entity, having as attributes the maximum 

number of links and the number currently in use . 
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Each call is a separate entity having as attributes its 

origin, destination, and length. There is a list of calls in progress 

showing which lines each call connects and the time the call 

finishes. It will be asswned that the call is equally likely to come 

from any line that is not busy, and that it can be directed to any 

line, other than itself, irrespective of whether that line is busy 

or not. 

The simulation proceeds by executing a cycle of steps to 

simulate each event. The event of disconnecting a call merely 

updates the status information, while the event of an arriving call 

must check to see whether the call can be processed, and if so 

updates records and schedules the disconnecting event. Arrival 

times, source, destination and length of call are all random 

variables. Statistics are collected throughout the simulation and 

after some predetermined elapsed time or number of calls the 

simulation is stopped and the results output. 

The Boundaries of the Practicable 

What are the real problems that data analysis systems 

designers face? It is not in the area of data collection, for our 

current ability to collect and communicate data overpowers our 

ability to find appropriate conceptual frameworks for the data 

. '(consider the 96 , 000 reels of magnetic tape holding social 

security data). Thus our real need is to improve the aid we give 

to the conceptualization and analysis process. 
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Static limitations are the size and variety of the models our 

systems can handle. There are some extremely large sets of data 

available today, such as the individual-level raw census data, for 

which no analysis systems exist. It is only at the large size, say 

the census data aggregated to the census tract level, that either 

the data management or the statistical analysis systems became 

useable. Both of these system types permit only simple models 

in their conceptual space, and so large amounts of data can only 

be viewed in simpleminded ways. 

As the amount of data decreases systems with more complex 

conceptualizations become .effective. A complicated simulation, for 

example , might have from several hundred to several thousand 

entities or items of data - a fairly small amount. The deductive 

systems usually can handle only a few - up to a thousand - axioms 

and theorems. This inverse relationship between data base size 

and complexity forms an important boundary on the scope of 

present activities . Figure 9 attempts to depict this relationship. 

It is a coarse estimate of the size and complexity capability of each 

of the contemporary system types . For comparison, the raw 

United States census data should contain about lOlO items of 

data , and at least have kinship-type interrelationships between the 

entities . 
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Fig. 9. - -The contemporary relationship between data base size 
and complexity 

We have stressed throughout this thesis the importance of 

the dynamics of conceptual adjustment. The fundamental problem 

facing systems designers is how to aid sue~ adjustment, not 

hinder it as do most present systems . The goal : computer 

systems which help thei r users find insightful coneeptualizations . 

Computer systems could help in two ways . Their limitation 

t o some modelspace/language means that we have fewe r models t o 

consider as relevant. This pushes the common features o f the 

models into the background, since they are pre-determined. We 

can concentrate on the differences among the set of models or 

theories. The system could help us explore these theories, by 
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making it easier to express them, by aiding in the process of 

matching theory to data, or even by applying some known optimizing 

technique. 

More difficult and more important are computer systems 

which facilitate language change. This is what we really need in 

our very dynamic world. The conceptual rigidity of our computer 

systems is the significant boundary. 

Keeping these boundaries in mind, one can ask where the 

current thrust of research is heading. The answer, unfortunately, 

is simple: computer scientists are busily attempting to find a 

universal programming language in which all problems are to be 

solved (the old UNCOL ideal), and a universal data structure or 

data structure mechanism. 

The analysis of information given previously shows this to 

be a misdirected effort, except possibly in one instance. While 

it is not possible to have a universal language, it is worthwhile to 

seek a generalized language useful as a system designer's 

language, or meta-language for other users. With this much 

narrower goal in mind, the current research becomes practicable. 

Here , however, the most difficult part becomes finding a 

language which i.s extremely efficient in implementation, since 

we already have many generalized-enough languages (e.g. set 

theory, graph theory , machine language , or PL/I) . 

In a similar response to the need for a multiplicity of data 

structures, some computer scientists have been attempting to 



-60-

handle totally unstructured data (a contradiction in terms) or, 

failing that, to find a universal data structure (Earley 1971). 

This notion loses by the same criticism of a universal program-

ming language: even though a terribly generalized and abstract 

structure might be able to handle almost all known applications and 

conceptualizations, it would simply not be very informative in most 

contexts. A parallel can be found in mathematics. All theories 

and entities in mathematics can be expressed in set theory and 

the predicate calculus. Yet analysis talks of real and .complex· 

numbers, and algebra of groups, rings, and fields. The level 

with which they deal effectively is not the lowest level of 

conceptualization possible. 

A current approach to the need for idiosyncracy is that of 

providing a generalized mechanism which is capable of being 

·specialized as necessary. An awareness of this situation in the 

domain of programming languages has led to the extensible 

languages: 

There are two basic premises which underlie 
the development of ELF. The first of these is 
that there exists a need for a wide variety of programming 
languages; indeed, our progress in the understanding 
and application of computers will demand an ever widening 
variety of languages . There are , in fact , " scientific " 
problems, " data processing" problems, " information 
retrieval" problems, "symbol manipulation" problems , 
" text handling" problems, and so on. From the 
point of view of a computer user who is working on one 
or more of these areas there are certain units of data 
with which he would like to transact and there are 
certain unit operations which he would like to perform 
on these data. The user will be able to make effective 
use of a computer only when the language facilities 
provided allow him to work toward a desired result in 
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terms of data and operations which he chooses as 
being natural representation of his conception of 
the problem solution. That is, it is not enough to have 
a language facility which is formally sufficient to allow 
the user to solve his problem; indeed, most available 
programming languages are, to within certain size limitations, 
universal languages. Rather, the facility must be 
natural for him to use in the solution of his particular 
problem . • . . 

It is our contention that the most reasonable approach 
to providing the desired variety of language facilities 
is that of providing an extensible language supported 
by an appropriate compiling system. We do not, 
however, suggest that we can now devise a single 
universal core language which will adequately provide 
for the needs of the whole programming community; 
the diversity in "styles" of languages and translation 
mechanisms will probably always be sufficient to encourage 
several language facilities. ELF, which is the subject 
of this paper, provides a facility in the "style" of such 
languages as ALGOL-60, PL/I, and COBOL. 
(Cheatham et al 1968, p. 937) 

More generally, there are developments such as the REL 

system, described in detail below . This is a generalized language 

system , designed to handle a large variety of specialized languages, 

which need not be related to each other and can indeed be extensible 

themselves. 

These advances portend the proliferation of "natural" 

l anguages and made-to-order conceptualizations . This shift 

will force attention away from computer techniques toward 

information techniques . We are facing the beginning of a real 

information science and with it, an information engineering. 
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CHAPTER Ill 

THE REL DATA ANALYSIS SYSTEM 

Chapter I developed the theoretical position of data analysis 

as an informational activity . Chapter II presented a descriptive 

taxonomy of computer systems for the support of data analysis 

and an assessment of the present boundaries of their application. 

In this chapter, we turn to consideration of a particular data 

analysis system - the REL (Rapidly Extensible Language} System. 

The architecture of REL reflects both our theoretical understanding 

of system requirements and our. practical understanding of .present 

capabilities . 

Development of the REL system is based upon two goals: 

( l} to bring into concrete realization the theoretical view of 

Chapter I ; and ( 2) to reach operational status with such a system 

at the earliest possible time . 

The need for operational status on real applications derives 

from the lack of experience with these advanced systems, and how 

they affect information processing and data analysis in particular. 

In a sense , the REL System is a vehicle for testing our conceptual

ization of data analysis . We have little empirical evidence of a 

form that could be called scientific (namely from controlled 

·experiment or planned intervention} of the conceptual processes . 

The view presented herein, namely that the task of "knowing" is 

finding the most revealing conceptualization, is only one of several, 
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and is by no means the most widely held doctrine of information 

processing. A popular, and contrasting position is that the 

structure of reality is to be discerned in the data taken from that 

reality, rather than imposed by the researcher as a way of giving 

meaning to observational evidence. 

REL involves mechanisms for accommodating conceptual 

change and extension, for experimenting with the imposition of 

structure on data; The observation of serious applications of the 

system to actual data analysis tasks is expected to reveal much 

concerning the dynamics of information processes, by charting the 

use and evaluating the effectiveness of these mechanisms. In this 

way we believe it will reflect on the efficacy of our theoretical 

position. 

Since our interest in REL is based upon these considerations, 

experiencing the actual operation of the system on real data becomes 

an important goal. How has this constraint influenced the design 

specifications of REL? The data bases available today prejudice 

the choice of system type. In terms of size, most current data 

bases contain about 10, 000 to 1 million items. As one example , 

98% of the 65 data bases archived by the Inter-University Consortium 

for Political Research in 1970 were within that size range (ICPR 

1970). Near the end of the last chapter, Figure 9 related system 

type to the data base size which could reasonably be handled. On 

this rough graph we find that ( 1) the data management systems can 
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comprehend far larger amounts of data; ( 2) the relational data 

systems fall exactly in this range; and (3) both the deductive and 

complex modeling systems are unable to cope with this many items. 

As we look deeper, we see two interacting effects. First, 

consider the computing times associated with tasks typical of 

each of the data system methods. We can state broadly, though 

not precisely, that (I) the data management systems' processing . 

is simple and thus extremely fast; (2) the relational data systems 

are slightly more complicated and slower; and (3) the processing 

of the deductive or modeling systems is rather complex and time

consuming. Although the data management systems alone can 

handle the extremely large data bases, these bases have become 

so huge as to be unuseable in any case. With smaller data bases 

the relational data systems cost very little rm re and are enormously 

more powerful. For the kinds of applications where data manage

ment systems are useful, other types of systems can do much 

better. 

Suppose we now consider the computing time and cost for 

some fixed analysis task, in data bases typical of each method. 

Here we find that , on comparative tasks and system specific data 

bases , the deductive and complex modeling systems are so 

powerful that they can accomplish given tasks easily, and hence 

have a small cost. The relational data systems are more restricted 

in capability, and thus will cost more to do the same task on data 

bases specific to their application, The data management systems 
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are extremely restricted - standard analysis tasks on their 

typical data bases are prohibitively expensive. One pays a low 

price for the restriction from deductive methods to relational 

methods in terms of analysis capability, and receives a very high 

payoff in terms of data base capability. For the areas in which 

deductive techniques are applicable, one can still perform a major 

portion of the task with somewhat less capability, (namely the. local, 

rather than global, deductive ability). Thus the relational data 

systems are in exactly that compromise position today which 

promises a significant advance in operational capability. 
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The REL System 

The REL System is predicated on the view that: (a) the 

central human information process is to seek the appropriate 

conceptualization; and . (b) one's language is both the articulation 

of that conceptualization and. the media for molding that conceptual

ization. It is a generalized computer system that supports a large 

variety of languages each specialized - by grammar, data struc

ture, and processing algorithms - to some problem area. The 

system encourages the development of these "natural" languages 

and facilitates their implementation and extension. The REL 

System, then, is a maximally supporting environment in which 

"natural" computer languages are implemented. It puts only 

minimal constraints on possible languages, allowing the most 

general grammars, data. structures and processing algorithms. 

Minimal system constraints mean that each language can seek its 

own efficient implementation, tailored and extended in response to 

the conceptualization of the particular user. 

The System provides strong supportive resources. The 

REL System is a sentence driven, syntax directed interpreter. 

After a sentence has been input, H undergoes syntactic analysis 

by a parser. This produces a complete deep- structure phrase 

marker which in turn is used to direct the semantic processing 

of the sentence. Conceptually, therefore; the system can be 

described by the following diagram: 
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Fig. 10. --Syntax-directed interpretive systems 
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The inte:rpretation of a sentence depends solely upon the 

grammar, the syntactic routines, and the semantic routines of a 

particular REL language. Thus an REL language is defined by 

exactly these three elements. The REL System consists of the 

· total fram.ework in the above diagram which integrates these 

elements and applies them to the syntactic and semantic analysis 

of the input sentences. 

This overall REL System framework can be broken down 

into four major parts: 

a) the language processor, including as major subparts the 

parser and the semantic proces s or ; 

b) the programming environment, consisting of two major 

components-the list pro·cessor and th~ paging mechanism ; 

c) the language extension component, namely the language 

building routines and language extension utilities; 

d) the operating system components (over and above 

OS/360 itself) - the input/output components, job control language 

catalogued procedures, ·master routine, etc. 
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(a) The heart of the REL System is the language processor, 

consisting mainly of a parser and a semantic processor. The 

properties of these two programs, their efficiency, and how they 

are integrated determine to a large extent how the system works. 

The language processor is incomplete until provided with a grammar 

and corresponding interpretive routines; with these it becomes a 

total language system. The range of languages is determined 

mainly by the power and generality of the parser and semantic 

processor . REL µses a bottom-to-top general rewrite rule parser. 

(b) Language processing and the stack organization of syntax 

directed interpretive routines, in present state of the art systems, 

make dynamic use of memory through list processing schemes. 

Such a scheme underlies the REL language processor and provides 

the m 'edia between the language processor and the syntactic and 

semantic routines. This general list processing mechanism is also 

made available to the syntactic and semantic routines themselves. 

In a parallel fashion, the paging mechanism is a general 

resource used by both the REL System and the interpretive routines 

underlying any given REL language. These interpretive routines 

access pages as tabula- r osas . Thus they can organi ze and access 

data on these page s at the design discretion of the language 

programmer . Therefore REL accommodates any data structures 

(including, of course , programs themselves if so desired) . Further, 

the interpretive routines have control of individual pages and the 

paging area, thus are in a position to optimize their own page 
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referencing algorithms and data organization. At the same time 

I/0, dynamic address relocation, etc., are handled automatically 

by the paging mechanism . 

(c) Extensible languages are those which can change, by adding 

new syntax, during the course of conversation. REL has been 

designed particularly to facilitate the development and use of this 

type of language. There are utility programs that build the 

three language :lngredients - grammar, syntactic routines and 

semantic routines - into an integrated language, producing the 

necessary grammar table and link-editing grammar table and 

interpretive routines into internal forms which can be efficiently 

applied by the language processing system . There is a second 

family of utility routines which manipulate the grammar table and 

organize the paging of definitional structures. These utilities 

are available to each REL language , providing the mechanisms of 

language extension. 

(d) Finally, REL is implemented on top of OS/360 through 

a series of eight catalogued procedures , and the master routines 

that organize access to the r .elevant data set s , initialize lis t 

processing and paging , handle que.ry and answer input and output, 

and schedule the successive steps of language processing. 
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The REL Data Analysis System 

REL consists of (a) the REL operating environment, and 

(b} REL languages built within that environment. The last section 

discussed the environment; we now turn to the application of that 

system. This dissertation· is not directly concerned with all of 

the various language developments that are presently underway, 

e.g. the REL Animated Film Language and the REL Applied 

Mathematics Language. It is concerned only with the REL Data 

Analysis System, based upon the REL English language. Moreover, 

our particular concern is even more narrowly defined. The syntax 

of REL English, i.e. its capability to be queried in what is 

ostensibly natural English, is not the subject matter of this 

thesis, both because it has not been a part of this thesis research 

and also because the central remaining operational problems of 

building an effective data analysis system do not lie in the areas 

of syntax or language processing. 

The limitations on current question-answering systems lie 

mainly in the semantics, especially the problems of efficiency 

which occur for any reasonably large sized data base . Such data 

bases will not fit into the main memory of a computer , but i nstead 

must be stored on much slower , secondary memory devices 

(typically magnetic disk). The bottleneck today is the amount of 

access to this secondary memory, . for its relative slowness 

dominates all other processing time . The implications of this 
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problem of access to secondary memory and the development of 

effective solutions to it constitute the core problems of this thesis 

research. 

These problems are central to data management and data 

analysis systems. They are approached here in a specific context, 

namely the REL Data Analysis System, with all that implies for 

a rich but restrictive programming and operating environment. 

Nevertheless, our discussion of these problems is directed toward 

contributing to a general understa.p.ding of these problems and the 

tactics for their solution. The fact that we work within the REL 

environment serves largely to give concrete specificity to our 

results. 

Consideration of the problems of secondary memory access 

naturally divides into two specific technical areas: 

1) data structures and the algorithms for processing 

them, and 

2) the organization across a sentence (or program) of · 

the quantification of variables. 

Each of these will be considered in detail. 

Data Structures and Processing 

We shall attempt to minimize the nwnber of accesses to 

secondary memory in a paging environment. The environment 

will be unusual, however, in .that semantic routines will be. able 

to exercise complete control over the transmission of pages, rather / 
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than being dependent on some generalized system page replacement 

algorithm. This will enable us to attempt to find true minimums. 

In any relational data system, ubiquitous to the semantic 

processing of nearly every query and embedded deep within that 

processing is a central routine, namely: to find the image of a 

given class under a ·given relation. 

Examples are: 

A: parents. of people 

B : prices of stocks 

C: salaries of employees 

D: allies of countries 

Besides. being the basic operation in a relational system, one 

can see that the internal processing will be rather similar to that 

for almost all of the other large data operations, such ·as the 

intersection of two classes. Most of what can be said. on the image 

problem is directly applicable to the other important processes 

in the system. 

For this single task, then, we will see the effec t s of data 

structure and processing algorithms on the number of page t r ans

missions, and therefore on overall efficiency. The coordination of 

data structure and algorithm is important, for there are many 

documentations of the catastrophic failure of either not coordinating 

the two or entirely ignoring the properties of a hierarchical 

memory ( e. g. Brawn and Gusta 1son 1968; McKellar and Coffman 

1969). 
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We therefore turn _directly to the analysis of obtaining the 

image of a class under a relation. The class can be thought of as 

a set of pages, equivalent to a file, containing some identification 

of the members of that class. We define c to be the number of 

pages covered by the class, and c* to be the number of members 

in the class. Generally, c and c>'.c are roughly proportional, 

depending on the number of elements which can fit on a page 

(usually 100 to 1000). 

We now consider a number of alternative methods to store 

and process data, and the implications of these methods on 

finding the image of a relation. As each method is considered, it 

will be illustrated in terms of the following fou.r examples: 

Example A: "parents of people 11 

In this example we assume a data base which includes 

family relationship information. Such a data base could be from 

anthropological field data concerning an ethnic group or primitive 

tribe. We shall assume that there are 1000 people and that each 

has two parents . 

Example B : " prices of s t ocks" 

There are 2000 companies listed on the New York Stock 

Exchange whose prices vary over time. This data base will cover 

50 time periods , containing the price of each stock at_ each time . 

period (e . ·g. weekly price data for one year). 

Example C: "salaries of employees" 
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A typical personnel file for a large industrial firm contains 

data such as the current salary level for each employee. This 

example assumes 10, 000 employees and that each has a single 

salary figure. 

Example D: "allies of countries" 

The United Nations has about 150 member nations. Over 

the lifetime of that o·rganization, both the membership composition 

and the web of alliances has been changing. We will postulate an 

average of 25 allies for each country. 

Method I: Fixed -Format. This method embodies a fixed-format 

data structure together with a d_irect accessing scheme. Each 

individual in the data base has associated with it a page or set of 

pages. All data related to that individual are kept there, and 

corresponding to every relation is a fixed location in that data file 

in which the value of that relation is stored. The identification 

associated with an individual is the page address of its data file. 

With this data structure the algorithm for finding the image 

of a given class under a specific relation becomes: ( 1) get a 

member identifier from the class; (2) read the data file addressed 

by that identifier; ( 3) go tot he fixed location in that file specified 

by the relation and find its value; and (4) save that value in an out

put class and repeat the algorithm (execute step 1). 

The analysis of the paging behavior for al 1 of the methods 

discussed in this section will be standardized in two ways. We 
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will assume that all data is on secondary memory at the start of 

the algorithm (an assumption we will reconsider later in the case 

of repeated applications of relations). We will also ignore the 

page transmissions required for the image class - the output 

of the algorithm. This is done because we do not know the size of 

the output class, and. also because the number of page transmissions 

will be the same for all methods. Thus it does not affect their 

relative efficiency. 

The fixed format method · requires that we read at least one 

page for each member of the class, that is, in step 2 of the 

algorithm. We will assume exactly one page per member , since 

the fixed location for our given relation should enable us to directly 

address the right page . Add to this one-page-per-member the 

reading of the class itself and we find that the number of page 

transmissions required by method I: fixed format is (c * + c). 

We will now consider the meaning of this figure in each of 

our examples . A constant factor in these calculations is the number 

of member identifications which can be placed on a single page. 

This number determines c as a function of c*: we shall use the 

REL Data Analysis system figure of 2.53
1

• 

1The REL Data Analysis system has a page size of 2048 bytes, 
a class element size of 8 bytes, and a 24 pyte header at the top 
of each page. 
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Example A: "parents of people" 

For 1000 people c>!< = 1000, and c = 4. The total number of 

page transmissions will be: 1004 

Example B: 1 'prices of stocks" 

There are 2000 corripanies, and therefore c* = 2000, c = 8, 

and the total is: 2008 

Example C: "salaries of employees" 

The company has 10, 000 employees: c>'.c = 10, 000 and 

c = 40 10, 040 

Example D: "allies of countries" 

We have 150 countries, thus c>!< = 150 and c = 1, for a 

total of 151 

The fixed format method does not distinguish among our 

examples , except on the basis of the size of the class. Secondary 

random-access storage media today consist · of either fixed- or 

moving-head magnetic disks. The fixed-head disk can access a .ny 

page in about 20 milliseconds, or 50 pages per second. Our 

examples thus have the following, more easily interpreted, elapsed 

times: 

A. 20 seconds 

B. 40 seconds 

C. 3 minutes 

D. 3 seconds 

Example C clearly approaches the size limit for interactive response 

for the fixed-format, direct-access method. 
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Method II. Ring Structure. In this data structure each individual 

and relation consists of a linked list of elements, c~rcularly 

closed. An element contains space for the link and an extra space 

for a cross-link. A primitive item of data such as "Robert is 

the father of Sue" is maintained by creating a cross-connecting 

:ring. This ring links an element of the "Sue" ring to an element 

of the "father" ring, and then to an element of the "Robert" ring. 

The representation of this structure on pages places each 

individual or relation ring on a page (or list of pages). The 

cross-rings are then represented by pointers connecting elements 

on each of the rings involved. 

With this data structure we have two algorithms for 

finding the image - one for the relation and another for the 

converse of that relation. To simplify matters we will assume that 

every element contains the identification of the cross-linked ring 

along with the pointer into that ring. This means that we do not 

have to load the ring to see which ring it is. 

The algorithm for finding the image of a primitive relation 

is: ( 1) get the identification of a class member ; (2) load its 

associated ring and search it for an element containing the 

identification of the given relation; (3) when such an element is 

found, walk to the :ring element of the relation by loading that 

page, and pick up the identification of the image; ( 4) place that 

identification in the output class and repeat from step 1. 
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For the converse of a primitive relation we use the following 

procedure: ( 1) get the identification of a class member; (2) search 

the relation ring for an element containing that identifier; ( 3) when 

such an element is found, walk the cross-ring to the range element 

and pick up the identifier of the domain; ( 4) output it and repeat. 

An early such use of ring structures can be found in F. B. 

Thompson's classic DEACON work (Craig et al. 1966). DEACON 

used " referent rip.gs" and "connective rings" and contended that 

"ring structures are adequate for storing a wide range of richly 

interrelated data that is pertinent to such functions as intelligence 

analysis, management planning and decision making." (p. 366). 

The data structure described above was actually implemented in 

an earlier version of REL English (Thompson et al. 1969). 

The analysis of paging behavior for ring structured data 

is slightly more difficult. ·For primitivE'. relations, we must 

load the ring corresponding to each individual in the class (step 

2 of the algorithm) plus some number of pa.ges for the relation. 

We now need three more parameters : r , the number of pages 

taken by the relation; r>!<, the n umber of elements i n the relation; 

and K , the number of page frames in main memory available 

to our algorithm . 

The number of relation pages which must be loaded can be 

estimated by consideration of the following two cases. First, if 

the relation is small enough to fit into main memory (r < <K), one 
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need never load more than r pages. If the relation is large, how-

ever, one may be in a position where every acc~ss to the relation 

requires another page load. This would happen if the particular 

page holding the relation element was never in main memory when 

needed. Thus the number of page transmissions lies between 

(c>:• + c + r) and (c>:< + c + c>:<) ·- always greater than the (c>'.c + c) for 

the fixed format method. These figures also assume that each 

individual ring is only one page long. 

The analysis for the converse relation algorithm is similar: 

the number of page loads is dominated by c>:C, Here we must load 

the page of the range element for each class member identifier 

found in the relation. 

Example A: "parents of people" 

In a data base consisting of 1000 people we will have a 

. parent relation with 2000 elements . . With good packing a ring 

element will fit in 12 bytes, or 168 elements per REL page. 

Thus, c>'.c = 1000 
c = 6 
r>:c = 2000 
r = 12 

Since there are only 12 pages containing the relation and we can 

expect about 20 page frames, the total number of page loads will 

be: 1018 

Example B : "prices of stocks " 

Here there are 2000 companies and 50 prices for each, so 

. that the · relation becomes large: 100, 000 elements. 



c>~ = 2000 
c = 12 
r>:< = 100, 000 
r = 600 
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If we have but 20 page frames available; there is only a small 

chance that a relation page needed is already loaded. Thus, we 

will need essentially 2 (c"~) pages: 4012 

Example C: · "salaries of employees" 

The sheer size of c* dominates: 

c >:c = 10, 000 
c = 60 
r* = 10, 000 
r = 60 

There is a one-third chance that a relation page will be in memory 

when needed, and so the expected number of page loads is 

c* (c* +c + 3 ): 13,360 

Method III. Relational Data Structure. The preceding two 

methods were limited by the need to bring in a page for each 

member of the class. The relational data structure overcomes 

this difficulty by rearranging the data to be local, a property that 

data wl:iich must be accessed in a group is physically near also. In 

this data structure a relation consis t s of a list of pages whose 

elements are ordered pairs - the identifier of an argument and 

the identifier of a value . . The relations contain all of the data in 

the data base; there is no longer any need for pages associated 

with · individuals. 
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A simple algorithm for finding the image of a given class 

is the following: ( 1) get the identifier of a class member; (2) search 

the entire relation for ordered pairs with matching first element; 

(3) when one is found, output the second element of the pair; 

(4) repeat from step 1. The converse of a relation can be found 

by matching on the second half of an element. 

This r;nethod is not useable because of its paging character-

i stics. If the relation is small enough t o fit into main _memory, 

we can load it and then read the pages of the class one at a time. 

With K available page frames, we must have r ~ K-2 so that the 

relation will fit alongside one input class page and one output class 

page . In this case, we will have read the relat.ion once, and then 

the class once , for a total of (r + c) page transmissions. 

Suppose, however, that r >K-2, that is, the relation is too 

large t o be contained in available memory. Now for every class 

member all r pages of the relation must be loaded, since the 

cyclic nature of the accessing of relation pages always finds that 

the next page needed is on secondary memory. Thus in this case 

the algorithm loads ( r*c*) pages. 

Example A : "parents of people" 

In this data base of 1000 people and 2000 parents we have : 

c>:< = 1000 
c = 4 
r* = 2000 
r = 12 
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For K available page frames, if K :c!: 14 we have: 16 

if K is smaller, then we need: 12, 000 

Example B: ' 1prices of stocks 11 

Here c* = 2000 
c = 8 
r>:C = 100, 000 . 
r = 596 

We can assume that the relation does not fit into main 

memory. Thus the total number of page loads is: 

Example C: "salaries of employees 11 

c* = 10, 000 
c = 40 
r* = 10, 000 
r = 60 

For K ~ 62 we have: 

For K < 62 we need: 

l,20Q,OOO 

100 

600,000 

Clearly this algorithm collapses when the relation is large, 

though with enough main memory it is more efficient than the 

methods depending on c "~. The next method is a modification of . 

this one, which attempts to overcome this difficulty. 

Method IV Generated Relational Data . The primary tenet of 

good programming practice in a paging environment is that one 

should utilize as much data as possible from a page once it has 

been loaded. This method attempts to achieve efficiency with 

the relational data structure by manipulating the sequencing of 

page _loads and identifier compari sons . 
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Suppose that the algorithm knows the value of K, the number 

of available page frames. It can then consider the relation to be 
). 

composed of a sequence of sub-relations, each small enough to be 

held in main memory. Now the algorithm can form the image of the 

given class under each subrelation in sequence, using the simple 

Method III, and concatenate the results. The fact that the sub-

relation can be loaded in its entirety means efficient processing 

for each segment. 

This algorithm, which we will call GEN-R, is: ( 1) load 

the next K-2 pages of the relation; (2) read through the entire 

class, one page at a time, and form the image of the class under 

that subrelation; (3) repeat the -process until the relation is 

exhausted. 

There is a dual to this algorithm, called GEN-C, which 

breaks the class into small sub-classes: (1) load K-2 pages of 

the class; (2) read through the relation, one page at a time : 

(3) for each relation page in memory, forf!l the image of that sub

relation and subclass; .(4) after· the entire relation has been read, 

get the next subclass and continue . 

For these algorithms the analys is of paging is quite simple. 

The GEN-R algorithm structures the relation as fu~~ subrelations 9 

each, except possibly the last, (K-2) pages long . The algorithm 

reads through the class once for each subrelation, for a total of 

C • ~~~ page loads. The relation itself is read only once. Thus 
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the GEN-R algorithm requires r + c · rK~J page transmissions, 

and GEN-C, since it is entirely dual, requires c + r · r K~zl . 

The relational data structure, with no further organization, 

requires a minimum of (r + c) page loads. This number means 

that each class page and each relation page is loaded once and 

only once. When r ~K-2 the GEN-R algorithm achieves this 

minimum; when c ~K-2 the GEN-C algorithm does. These 

algorithms in general are sensitive to the relative sizes of K and 

r or c. The examples below are therefore presented with varying 

values of K, representing between 10 and 50 available page frames. 

Example A: "parents of people" 

Since there are relatively few people, the number of pages 

involved here is small. The a~gorithms will be at the minimum 

values quickly. 

c = 4 
c* = 1000 
r = 12 
r'!< = 2000 

K(number of page frames) GEN-R GEN-C (number of page loads) 

10 20 16 
20 16 16 
30 16 16 
40 16 16 
50 16 16 

Example B: "prices of stocks" 

In this case the relation is large, yet the class is small. 

Under these circumstances the GEN-C algorithm minimizes the 
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number of page loads immediately; the· GEN-R algorithm needs 

more space but is not too inefficient. 

c = 8 
c* = 2000 
r = 596 
r•:C = 100, 000 

K 

10 
20 
30 
40 
50 

GEN-'R 

1196 
868 
772 
724 
700 

Example C: "salaries of employees" 

GEN-C 

604 
604 
604 
604 
604 

Neither the relation nor the class will fit in main memory 

until K is fairly large. Yet the numbers of page loads are only 

a few times the minimum. · 

c = 40 
c* ~ 10, 000 
r = 60 
r>'.c = 10, 000 

K 

10 
20 
30 
40 
50 

GEN-R 

-380 
220 
180 
140 
140 

Example D: " allies of countries: 

GEN-C 

340 
220 
160 
160 
100 

The class is so small that this has become an extremely 

easy case. 

c = l 
c* = 150 
r = 23 
r* = 3750 
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K GEN-R GEN-C 

10 26 24 
20 25 24 
30 24 24 
40 24 24 
50 24 24 

Method V. Sort/Merge. The technique of sorting data has been 

used extensively, and sometimes unthinkingly, by the data 

processing community. We shall consider the implications of 

sorting the relational data structure. The power of the sorting 

technique stems from the situation in which both the class and 

the relation are properly ordered. In this case one can read 

through both class and relation simultaneously, keeping 

synchronized by use of the sort order: a merge process. This 

requires that each page in both the class and relation be loaded 

2 
once and only once for a total of ( r + c) page loads. 

Thus, on the assw:nption that the relation and class are 

already sorted~ the nw:nber of page loads is at the minimw:n for 

the relational data structure. However, since we cannot 

2
The mathematical purists might argue that not all r pages of the 

relation need be loaded, since once the class is exhausted the 
merge process can stop, and vice versa. However, suppose one 
assumes that the individuals in the data base are numbered from 
1 to N, and the class and relation contain random samples of 
individuals. Then the expected value of the maximum individual, 
i. e. the last, in the relation and class is r'!< N and c* N, 

i=*'+1 c*+l 
respectively (Feller 1950, p. 212). 
This means that for sizeable r'!< and c':' we can expect to load 
every single page in both relation and class- hence this factor is 
ignored in the page transmission calculations. 
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guarantee that pre-ordering, this absolute minimum does not 

tell the whole story. A sort, if needed, can easily do more paging 

than some more sophisticated algorithm. 

Sorting can be necessary und~r several conditions. First 

consider the relation. A binary relation can be ordered on either 

its domain or its range. One order is needed for the relation and 

the other for its converse. The relation could be duplicated and 

ordered both ways. · This has been done, in fact, for small data 

base systems (Levien 1969), but this solution wastes expensive 

secondary memory. Further, the use of n-ary relations (n > 2) 

means that the relation must be replicated many times . One can · 

instead keep the relation sorted one way and re-sort whenever 

necessary. A small, and certainly insufficient, study of queries 

put to a relational system revealed that this means sorting 

approximately one-half of the time for binary relations . 

It may be necessary to sort the class also. The classes 

created during the process of sentence analysis may not be sorted, 

even when the classes in the permanent data base are sorted. In 

our image taskg if the input class is assumed sorted then the 

output class must be sorted, for it may become the input of another 

application of the process . A further complication arises in that 

a class may have a subclass structure rather than simply members. 

An example is the class of "people" consisting of the two sub

classes "male" and "female, " each of which contains individuals. 
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Some amount of paging must be done to ensure a simple ordering 

on the classes involved. 

The sort/merge algorithm will assume that in the data 

base all reiations are ordered on their domain, and that no classes 
I 

are sorted. This last assumption will make our estimates of 

paging activity overestimates, but not too much on the average. 

Thus, the algorithm is simply stated: ( 1) sort the class; ( 2) if 

we need the converse relation, sort the relation on its range ; 

( 3) merge the class and relation, producing the image. 

The paging behavior of this algorithm can be estimated 

analytically for large data bases. Suppose we have a file which 

covers n pages and n is large enough so that the file cannot be 

contained in main memory. A simple, standard sort/merge 

technique to order that file works as follows: (a) subset the file 

into fragments of K pages each (except possibly the last), and 

sort each fragment while in main memory; (b) perform the 

required number of (K-1) - way merges, until all fragments 

have been merged into one, ordered, file. The sort phase will 

require Zn page transmissions, as each page is read and written 

once. A simple merge algorithm will require j1ogK- l ~ -1 

merge steps with 2n page transmissions in each. Thus to sort 

an n-page file r equire s Zn jlogK-l~pages. Asswning that the · 

relation requires sorting one-half of the time, the total number of 

page transmissions is r(l + f logK-lrl ) + c(l + 2 j1ogK-lc l )·.· 
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Improvements can be made in this simple sort/merge 

which will improve on this formula slightly and these techniques 

have been incorporated into the REL sort/merge algorithm. In 

obtaining the numbers given in the examples below, we have 

used a simulation of the actual technique employed by REL. 

Example A: 11parents of people" 

Both the relation and class are small enough so that 

significant savings can be made by working entirely in main 

memory. In fact, the absolute minimum is achieved for 25 

available page frames. 

c = 4 
c* = 1000 
r = 12 
r>:< = 2000 

K 

10 
20 

. 30 
40 
50 

SORT 

44 
32 
16 
16 
16 

Example B: "prices of stocks " 

In this example the relation is so large that the paging 

required for its sort dominates . This is exactly the kind of situa-

tion in which the sort is relatively inefficient. 

c = 8 
c>:c = 2000 
r = 596 
r* = 100, 000 
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K SORT 

10 2674 
20 2180 
30 1804 
40 1804 
50 1804 

Example C: "salaries of employees" 

Another example of files large enough to force a multiple 

pass sort, causing three times the m~nimurn number of page 

transmissions. 

c = 40 
c* = 10, 000 
r = 60 
r>:• = 10, 000 

K SORT 

10 380 
20 380 
30 380 
40 380 
50 380 

Example D: "allies of countries" 

Even though a rather small amount of data, the relation is 

large enough to cause excess paging until K is 50 or larger. 

c = l 
c>:• = 150 
r = 23 
r>'i< = 3750 

K 

10 
20 
30 
40 
50 

SORT 

71 
71 
48 
48 
24 
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Method VI: Others. There have been other suggestions for the 

implementation of relational structures which should be mentioned, 

and then rejected. One of the favorite techniques for searching a 

table in main memory is the binary search. If our relational data 

structure is ordered, we can use a binary search to find the value 

corresponding to any given argument. For any single argument 

we would expect to make log2 r>!< comparisons, or at the very least 

one page load. For a class of arguments we must repeat this 

process, and can save nothing from the full paging requirements. 

Thus a binary search will need c>:< page loads at least - always 

worse than the direct access method I. 

Another possibility which has been suggested and imple-

mented (Feldman and Rovner 1969) is the use of hash coding the 

relational data. This clever implementation places the data for 

a given relation on a single, variable length 11 page" and hash codes 

the argument to find its location on that page. If the relation "page" 

fits in main memory this technique is fast; on the other hand, a 

relation which i s larger means essentially c* page accesses 

again. (Assuming that the relation is p times larger than 

available memory and that the hash function distributes uniformly, 

the probability that the current needed "page" is already in main 

memory is .!." . Therefore the expected· number of page l oads is 
p 

(l;.l/p)c*.) 
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Summary of paging behavior. The methods considered 

above can be segregated into two categories: those which require 

a page load for each indivi.dual, and those which can group indivi

duals. Fixed formats, ring structures, and hash coding are all in 

the first category. The number of page loads needed by these 

methods is proportional to the number of individuals in the class. 

Consequently , if the number of individuals is small these are 

extremely efficient; a large size class makes all of them break 

down catastrophically. 

These methods have other virtues, especially the possibility 

of finding the values of several relations for a given individual at 

the cost of that same page load. This is the reason why they 

are used in the data management systems which produce telephone

book-like reports . The Fundamental Theorem discussed in 

Chapter I implies, however, that we are more informed if we step 

back from the absolute lowest level of detail. We need to be able 

to produce generalizations of our data. 

Abstractions can be generalizations across a set of relations 

or across a set of individuals for a given relation. The latter 

problem is attacked by the second category of methods. They 

structure the data in such a way as to facilitate abstraction over 

sets of individuals, in particular collecting all the data concerned 

with.a relation into physical ~roximity for efficient access . 

Of the methods studied, the two generator algorithms and the 

sort/merge, each has its own range where it is the most efficient. 

" 
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For very large data bases the sort/merge is superior: its paging 

is approximately r· log(r) while the generators page about r
2 

(or c 2). 

On smaller data bases, or smaller questions on large data bases, 

the generator algorithms are more efficient. 

A rather nice solution has been implemented in the REL 

Data Analysis System. It is a simple matter to keep the values of 

r and c in each relation and class respectively. Then every 
. . 

invocation of the image-producing routine can be locally optimized 

'by computing the number of page loads required for each algorithm 

and selecting the best algorithm for the particular input parameters. 

This dynamic minimization of paging has dramatic effects on the 

overall processing of a query. 

Our four examples show why one should not naively use the 

sort/merge algorithm everywhere: 

K 

10 
20 
30 
40 
50 

Example A: · "parents of people" 

c = 4 
c* = 1000 
r = 12 
r* = 2000 

SORT 

44 
32 
16 
16 
16 

Example 

c = 8 
c* = 2000 
r = 596 

B: 

r* = 100, 000 

' 

GENR 

20 
16 
16 
16 
16 

"prices of stocks" 

GENG 

16 
16 
16 
16 
16 



K 

10 
20 
30 
40 
50 

K 

10 
20 
30 
40 
50 

K 

10 
20 
30 
40 
50 

-94-

SORT GENR 

2674 1196 
2180 868 
1804 772 
1804 724 
1804 700 

Example C: "salaries of employees" 

c = 40 
c* = 10, 000 
r = 60 
r*· = 10, 000 

SORT GENR 

380 380 
380 220 
380 180 
300 140 
300 140 

Example D: "allies of countries" 

c = l 
c* = 150 
r = 23 
r* = 3750 

SORT 

71 
71 
48 
48 
24 

GENR 

26 
25 
24 
24 
24 

GENC 

604 
604 
604 
604 
604 

GENC 

340 
220 
160 
160 
100 

GENC 

24 
24 
24 
24 
24 

More on paging. A further consideration is whether one can 

better optimize by taking a wider context. The succeeding section 

discusses the relationship between quantification and paging. Here 

we examine the implications of the common situation cf composition 

of relations. Our paradigm example will be the phrase "locations 

of parents of people. " 
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The most straightforward method for handling this phrase 

consists of applying some technique to "parents of people" to 

obtain the class of parents, then repeat the process independently 

for "locations" and that class. Thus the composition of relations 

i s reflec t ed in the composition of processes for finding the image 

of a single relation and class. This method has the advantages of 

simplicity and the use of an already needed procedure. The 

possibility remains, however, that a specialized routine might be 

more efficient. Fortunately, n o - the straightforward method is also 

the most efficient in this case . 

The simple composition method has the disadvantage that a 

temporary class must be created, and paged, which holds the output 

of the first application of the i mage procedure. In a procedure de 

signed expressly for the composition case one can hope to eliminate 

that temporary class and thereby become more efficient. We can 

assume the relational data structure in which the relation cons i sts 

of pairs < domain element, range element> . If both relations fit 

enti rely in main memory one can proceed directly from argument 

to " relation of relation of argument" without an intermediate class . 

This can be done in our " locations of parents of people" example 

by (a) take a person, say Sue; (b) find her first parent, say 

Robert; ( c) output all locations of Rober t; ( d) continue searching 

for other parents of Sue and repeat from (c) when one is found; 

( e) when there are no more pare.nts of Sue, repeat_ the process 

from (a). 
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Complications arise when the relations are too large to 

fit into the available main memory. This could be handled by 

viewing the relations as sets of subrelations and the class as a set 

of subclasses, such that two subrelations and one subclass will 

all fit into main memory. One would then need to work through all 

combinations of the subrelations and subclasses, taking one piece 

from each of the three main sets of data, in order to find the 

composition image. Thus if "location" were broken into 2 parts, 

"parent" into 3, and "people" into 4, we could have 2· 3. 4 = 24 

combinations to consider. This means that the number of page 

transmissions b.ecomes multiplicative (in the number of relations), 

as opposed to additive for the straightforward composition method. 

We thus have reason to stay with the simple technique. 

Quantification 

Despite the fact that quantification is basic t o our intell ectual 

endeavors, it has been .relatively ignored by the designers of 

. computer information processing systems. Quantification is one 

of our primary tools for abstractio'n and generalization, and the 

Fundamental Theorem implies that we gain information by moving 

from the level of detail of our data to the more abstract. 

Quantification in English i s exemplified by such phrases as: 

all boys 
at most seven books 
which countries 
each student 
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Note the use of such phrases in abstracting overall characteristics 

of classes of objects from details concerning each member of 

these classes. Thus, in the sentence "All Harvard students have 

at least one girlfriend at Radcliffe," a property of Harvard students 

as a class is derived from data relating individual Harvard students 

to individual girls, some of whom attend Radcliff. 

The teclmiques of quantification will be illustrated by a single 

example: "Have the locations of all senators included at least 

3 nations?" This in-depth examination provides the concreteness 

necessary for an understanding of a complex process. The parse 

of this example is below, with unimportant details omitted: 

p, 

Have the locations of all senators included at least 3 nations? 

Fig. 11. - -Parse of quantification example 



/ 
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The example will be discussed in terms of its phrase marker, 

which is a set of phrases portraying the structure of the sentence 

and thus revealing the processing necessary to unravel the meaning 

of that sentence. We will use a LISP notation to express these 

phrase markers. Each phrase consists of two lists, a phrase list 

and a phrase information list. The phrase list - indicated 

(POS, F, PI) - contains a part of speech, syntactic features, and 

the name of the phrase information list. The features will be 

omitted when they do not affect the semantic processing. The 

indirection to the phrase information is made to facilitate the 

execution of the phrase marker, for the result of a semantic;: 

transformation is a new phrase information list which is then 

named by the old phrase element. 

Phrase information lists can be of several types, identified 

by the first element: 

1. (ROU, C, T) postfix routine: C is a list of the consti-

tuent phrases, and T is the name of a . semantic 

transformation. 

2 . , (GEN, C , T) prefix routine: (used mainly in generating 

situations) . 

3 . (DATA , D) data: D i s some data such as a number or 

a page in the data base, indicated by a 1 t' • oca ion 



J 
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4. (VAR, R, TY) primitive variable: R is a phrase 

which is the ra?ge of that variable, TY is the type 

of quantification. 

5. (OUT, STR) output string 

The "variable 11 technique. The "variable" technique for 

handling En~lish quantifiers turns each quantified noun phrase into 

a "variable,'' in the REL sense. This variable then propagates 

upward through t.he parse during the syntactic processing of the 

sentence, and gets bound at the appropriate level of analysis. 

The quantified noun phrase qua variable contrasts rather 

sharply with arithmetic expression or predicate calculus variables. 

These latter variables are truly place markers, conveying only 

syntactic information. The type of quantification, such as the 

arithmetic sum or product, and the range of values for the variable 

are provided when that variable becomes bound. Quantified noun 

phrases , on the other hand, acquire such data at the time they. 

are created. "All senators" is a variable with an "all" type of 

quantification and the class of senators for a range. 

The arithmetic or predicate calculus variable has an 

explicit syntactic marker which indicates the point at which it 

becomes bound. Phrases such as "sum f(x) for x= 1 to 10" clearly 

bind variables , besides specifying the quantification. In English, 

however, variables are bowid at the clause or sentence boundary, 

and there is no explicit binding phrase. In our present example 
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.the two quantifiers, "all senators" and 11at least 3 nations," are 

bound at the sentence boundary P 
1

. The p-rnarker below shows that 

two generator phrases have been inserted, corresponding to the 

quantifiers. These phrases are the representation of a bound, 

quantified, -variable. 

Fig. 12. - -P-marker for 11variable" quantifier technique 

P!l: (ROU, (Pa), T SS) P
1

: (SS,PI
1

) 

P : (VP, PI ) 
a a PI : a (GEN, (Pb)' Tall' (P 6 , ptr), Ra) 

Pb: (VP, Pib) 

P
2

: (VP, PI
2

) 

P 
3

: (IN, PI
3

) 

P 
4

: (NP, PI
4

) 

PS: (NP, PIS) 

P 6 : (NP, Pit)) 

P 
7

: (OJ, PI
7

) 

Pib: 

PI
2

: 

PI
3

: 

PI
4

: 

PIS: 

PI
6

: 

PI · 7· 

(GEN, (P2), T 
at least 3, 

(ROU, (P3, P7)' Tis) 

(ROU, (P
4

, PS), T. ) 
image 

( DA TA, a1 t. ) oca ion 

(VAR, (P
6

), all) 

(DATA a ) 
' senator 

(VAR, (P 
8

). at least 3) 

P
8

: (NP, PI
8

) PI
8

: ( DATA, a t' ) 
na ion 

Ra: ( (Pb, Pib), (P2, PI2), (P3, PI3), (PS' NP/O)) 

Rb: ( (P
2

, PI
2

), (P
7

, OJ/O) ) 

(P 
8

, ptr), 

The p-marker in figure 12 indicates a kernel in which a 

Rb) 

copula has an instrumental and an objective case. The instrurnen-

tal case is the location of some particular senator; the objective 

is some nation. Built around this kernel is the generation and 

resolution of the "all senators" and "at least 3 nations" phrases . 
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While it is always difficult to describe recursive processes, 

the following is a narration of the execution of this phrase marker. 

The indentation follows conventional block structure format. 

Process P 1: 

(1) Process P : 
a 

(A) generate first (next) senator, say senator i, and 
refresh, thusmakingPS: (NP, Pls') 

Pls': (DATA, a t .) sena or 1 

(B) process Pb 

( 1) generate first (next) nation, say nation j, and 
refresh, thus P 7 : · (OJ, PI7 

1
) 

PI7
1

: (DATA, a t ' .) . na ion J 

. (2) pro~ess P 2 

(a) process P
3 

· (i) process P 4 : recognize it as DATA 

and return · 

(ii) process PS: DATA 

(iii) apply T. to (P4 , PS) image 

output: P 6: (NP, PI6
1

) 

PI6 ': (DATA, {3location of 

senator i ) 

(b) process P 7 : recognize DATA and return. 

(c) apply Tis to (P3' P 7 ) 

output: P 2 : (VP, PI2 ') 

PI ': (DATA, yes, if the 2 · · location of senator i is 
nation j; no, otherwise ) 
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(3) apply Tat least 3 to P 2 of (i, j) 

count affirmatives. 

if count < 3, continue generation on j (i.e. repeat 
from step 1) 

if count = 3, output Pib 1: (DATA, yes} 

if generation complete, output P~ 1: (DATA, 
no) 

for any output set Pb: (VP , Pib 1) 

(C) apply Tall to Pb of (i) 

if affirmative, continue generation on i (repeat 
from step A) 

if no, output PI 1
: (DATA, no) a 

if generation complete, output PI ': · (DATA, yes) a 

for any output, set P : (VP , PI ') a a 

(II) apply T to (P ) 
SS a 

output P 1: (SS, PI1 ') 

PI1 ': (OUT, "yes" or "no") 

The essence of t he "variable" techn_ique is the generation of 

all quantified classes down to individuals, and the application of 

the core analysis process to those individuals in the innermo s t 

loop. The core processes ope r ate on individuals only and are not 

aware of the quantification around them. This is conceptually 

clean, but operationally disastrous. 

One of these core processes in the above example is the 

image routine g which produces the "location of senator .• " Since 
1 

the " variable" technique of quantification invokes the image routine 
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for every individual in· the range, an,d each invocation requires at 

least one page load regardless of the data structure, this technique 

' 
will page proportionately to the number of elements in the range of 

. the quantifier. The analysis of the previous section has shown, 

however, that such paging is unacceptable·, and avoidable. 

There is another, deeper, objection to the "variable " 

t echnique for handling quantifiers which dooms those systems 

using the predicate calculus as an intermediate language between 

English and the data. The "variable " technique, and the language 

of the predicate calculus, requires that all quantifiers .be properly 

nested. In our example the computation of the "location of 

senator." is within the quantification over nations, and normally 
l . 

would be repeated as many times as there are nations. 

Fortunately the REL refresher mechanism provides a "do- loop " 

optimization which guarantees that no redundant processing will 

occur. In this case the r efresher stack associated with the 

nation quantification does not contain P 3 ("location of senator i ") 

so that P 
3 

is processed only once for each senator. 

The multiplicative effect can be seen in another example: 

"Which boys are friends of at most 3 girls?" The phrase marker 

associatedw ith this query is shown in figure 13. Here "boys" are 

quantified as the outer variable , " girls" are the inner variable, 

and the central process is the test, "is boy. equal to a friend of 
1 

girl.? " 
J 
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Fig. 13. --P-marker for second "variable" quantifier example. 

(VP, 

(VP, 

PI
1

: 

PI : 
a 

(ROU, 

(GEN, 

(GEN, 

T SS) 

Twhich' (P 4' ptr), Ra) 

Tat most 3' (PS' ptr), Rb) 

Pz: (VP, Piz) 

P 
3

: (AG, PI
3

) 

PI2: (ROU, (P3 , PS), Tis) 

PI3 : (VAR, (~4 ), which) 

p 4: 

PS: 

P6: 

P· 
7" 

PS: 

R: 
a 

(NP, PI
4

) 

(OJ, PIS) 

(NP, PI
6
) 

(NP, PI
7

) 

(NP, PIS) 

(P 
6

, PI
6

), 

PI
4

: (DATA, ab ) oy 

(ROU, (P
6

, P
7

), 

(DA TA, a£ . d) r1en 

(VAR, (PS), at most 3) 

PIS: (DATA, a . 
1

) 
gir 

(P 
2

, PI
2

), (P 
3

, AG/O 

(P
2

, PI2), (PS' PIS), (P
7

, NP/O) ) 

T. ) 
image 

The fact that the innermost quantified variable, girl., is 
J 

involved in a computation which is independent of the outermost 

quantifier means that this computation will be repeated many times 

unnecessarily. In this case there is no solution: " do-loop'1 

optimization is irrelevant and does not help, and the quantifiers 

cannot be interchanged. The unaware system which uses the 

"variable" ·quantification technique can be devastated by ~his 

multiplicatively excessive, useless computation. 
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The "label class" technique. The REL data analysis system 

uses a method for handling quantifiers which circumvents the prob-

lems discussed above. This method turns a phrase such as "all 

senators" into a class \\:'hich is marked with the type of quantification, 

and in which each element is associated with the identification of a 

quantifier range element. ' The label, as the identification is called, 

represents the instance of the quantified variable which led to t he 

present element. Thus the phrase "locations of all senators" is 

represented by a class consisting of the pairs <New York, Jones >, 

< Boston, Smith >; and so on, me.aning that a location of Senator 

Jones was New York, etc . Notationally this class will be written 

<O, all> 
a< location, senator ";;; The subscripts are the class elements; 

the superscripts identify the type of quantifier (with 0 indicating 

none) . The "label class" technique shifts the burden from the 

syntactic analysis of variables to the semantic analysis of labels. 

Re-considering our example "Have the locations of all senators 

included at least 3 nations?" , we now have the simplified phrase 

marker below. 

Fig. 14--P-marker for "label class " quantifier technique 

p 1: (SS, PI
1

) PI
1

: (ROU, (P 2), Tss) 

PZ: (VP, PI
2

) PI
2

: (ROU, (P
3

, P
7
), T. ) 

l S 

P: 
3 

(IN, PI
3

) PI3 :. (ROU, (P 4' PS), T. ) 
image 

p 4: (NP, PI
4

) PI
4

: (DATA, a1 t ' ) oca ion 

PS: (NP, PIS) PIS: (ROU, (P 
6

), Tall) 
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P6: (NP, PI
6

) PI
6

: (DATA a ) 
' senator 

P7: (OJ, PI
7

) PI
7

: (ROU, (P
8

), Tat least 3) 

P8: (NP, PI
8

) PI
8

: (DATA, a t" ) na ion 

The importance of the "label class" technique for handling 

English quantifiers lies in the properties of its semantic processing. 

We first describe the processing of this example and then discuss 

it. Process P 
1

: 

(I) Process P 
2

: 

(A) Process P 
3

: 

( 1) Process P 
4

: recognize it as DA TA and 
return 

(2) Process PS: 

(a) Process P 
6

: recognize as DATA, 
and return. 

(b) apply Tall to (P 6) 

output PS: (NP, PI
6

1
) 

PI
6

1 : (DATA a all ) 
• senator 

(3) apply T. to (P4 , PS) 
image 

output P
3

: (NP, PI
3

1
) 

PI
3

' : (DAT A , < O' all > ) 
a< location, senator > 

( B) Pr oc es s P 
7

: 

( l) Process P 
8

: recognize DATA and return 

( 2) apply Tat least 3 to (P 8) 

output P
7

: (NP, PI
7

1
) 

PI7': (DATA cratl.east3 
' nation 
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(C) apply Tis to (P3,P7) . 

output P
2

: (VP, PI
2

1
) PI

2
: (DATA, yes/no) 

apply T to (P
2

) 
SS 

output P 
1

: (SS, PI
1 

') PI
1
': (DATA, "yes"/"no") 

The essence of the "label class" technique is that processes 

operate on quantified classes as a group, rather than individually. 

Thus in step I. A. 3 we apply the image routine to "location" and 

"all senators" and can utilize the paging optimization discussed 

in the previous section. This reduction of paging during quantifica-

tion represents an extremely important breakthrough, for it shifts 

the economic balance toward the use of abstraction. Since abstrac-

tion has been so neglected in recent computer systems, any such 

shift has a large payoff in informativeness. 

The other problem attached to the "variable" technique, 

that of redundant comp,utation, is also solved by the "label class" 

method. Every phrase is computed once only and the quantifiers 

essentially work their way upward through the phrase marker. 

Quantifiers interact when two labelled classes are merged, as in 

<O, all> d <at least 3 > 
step I. C for ct < 1 t > an a < t• > . oc. » sena or na 1on 

In these 

situations the quantifiers are ordered, consolidated, and sometimes 

resolved. To explain this process we will use several new 

examples. 
0 
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Surface structure ordering of quantifiers. Our first 

examples concern quantifiers which are similar, possibly identical, 

and th.e determination of their order of nesting. We shall consider 

the following two examples: (a) All people play some sport; and 

(b) Some sport is played by all people. 

The latter sentence is clearly the passive form of the former, 

and yet differs in an important manner from the normal passive 

transformation. Consider "John plays baseball" and "Baseball 

is played by John. 11 These sentences, while different in surface 

structure, are identical in deep structure and in :meaning. 

Linguists have been careful to note this retention of meaning 

through the passive transformation. The meanings of our two 

examples differ, though it is the same passive transformation, in 

a way reflecting a different ordering of the quantifiers . "All 

people play some sport" means that each person plays something, 

and that sport may be different for different people. For this 

sentence to be true it is enough that each individual play any sport. 

On the other hand, "some sport is played by all people" 

means that there is a single sport, which everyone plays . This 

requirement that everyone play the same sport is not implicit in 

the active form of the sentence. The difference in :meaning is 

exactly in the nesting of the quantifiers: the active form places 

the "all" quantifier outermost followed by the "some" quantifier, 

the passive has the "some" followed by the "all." Since the deep 
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structures are identical, the difference in meaning must be a 

function of the differing surface structures. If we include the 

feature marking the surface struct~re subject, our examples have 

the followirig phrase markers: 

a) PO: (VP, - PI
0

) PI
0

: (ROU, (Pl,P2), T play) 

pl: (AG, sur. subj., PI
1

) PI
1

: (DATA a all ) 
' people 

Pz: (OJ, - . PI
2

) PI
2

: (DATA a some) 
' sport 

b) PO: (VP, ,PI
0

) PI
0

: (ROU, (P
1
,P

2
), T play) 

p 1: (AG, - ; PI1) PI
1

: (DATA a all ) 
• people 

Pz: (OJ, sur. subj., PI2) PI
2

: (DATA a some) 
' sport 

Using the simple rule that surface object quantifiers should 

be nested within surface subject quantifiers, our examples concep

tually consolidate the quantifiers into these classes: 

< some, all> 
a) a < sport, people > 

b) a < all, some > 
<people, sport > 

The quantifiers can then be resolved, innermost first, and 

in both cases produce the correct interpretation. Another example 

of this same effect of surface structure is in "when did each 

person live in each city?" Here one wants as output a list of 

people and for each, a list of cities and times . Although ignored 

so far, all data has a time span associated with it in the REL data 

analysis system. This adds tremendous complexity to the processing 

·routines, yet is absolutely essential to a useful system. In this ex-

ample, · we indicate only a simplified version of the processing. 
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0, each, each a. . 
tune, city, person 

each, each a. 
city, person 

each a 
person 

0 
a person 

I 

each a. city 

0 
a . 

~ 

When did each person live in each city? 

Fig. 15. --Parse and label ·class processing for (each, each) 
example. 

The precedence ordering of quantifiers. The rule that 

surface object quantifiers are nested within surface subject 

quantifiers works if the quantifiers are similar. There is a 

hierarchical ordering, however, which supersedes this rule. We 

can classify as similar all quantifiers such as some, at least n, at 

most n, exactly n, alll' all but n, etc. These quantifiers are the 

ones which should be nested within any of the other types.. The 

next group . are the ones which count: how many, what proportion of, 

and what percentage of. These quantifiers should be kept outside 

the first group, and nested within the last group of quantifiers. 
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· These produce labels to be output as tabular listings: each, which, 

and what. 

One can see the effect of this ordering in the example, "At 

most 3 people have lived in which cities?" The "which" quantifier, 

even though it is the surface object, must be treated as the outer

< at most 3, which > 
most to produce the class a< 1 't' > • The answer to ·. peop e, c1 1es 

this question is a list of cities, since the "at most 3" quantifier is 

resolved at the clause boundary. 

Thus we have a precedence ordering of the quantifiers 

which partially determines the order of nesting in a multiply-

quantified class. The nesting order in turn determines the inter-

pretation of a phrase and finally of the entire sentence. The com-

plete rule for nesting can now be stated: when two quantified 

phrases are to be merged, the quantifiers are to be nested first 

by the precedence order and within each precedence group by the 

left-to-right order of appearance within the sentence, that is~ · 

quantifiers on the right are to be nested within quantifiers on the 

left. 

Resolution of quantifiers. Mentioned above was the resolu-

tion of a quantifier , that i s p the point at which the quantifier 

disappears and i s replaced by a simple , non-quantified set. 

Quantifiers are resolved by processes which depend ~n the quantifier 

type and at points in the phrase marker which depend on the 

precedence order. 
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The all, some, at least n quantifiers resolve into booleans 

by processes corresponding to e'ither universal or existential 

logical quantification. The how many quantifiers resolve into 

numbers by a counting operation, and the each or which quantifiers 

resolve into character strings placed on the output. 

The lowest precedence level quantifiers, all, some, etc., 

are resolved at the clause boundary. This occurs when a verb 

phrase gets parsed into a non-verb phrase, such as sentence, 

noun, or time. All other quantifiers are resolved only at the 

sentence level. This difference is important because of the 

possibility of subordinate clauses. The all or some quantifiers 

are eliminated at the subordinate clause boundary: "people who 

live in some city" represents a non-quantified class of people. 

The last sentence of this section illustrates many of the 

properties of quantifiers and their interaction. Figure 16 is a 

representation of its parse and label class processing and hints at 

an exciting development for the future: the label type "pn'' used 

for a generalized anaphoric expression. "How many employees 

of each company are children of people who have worked for some 

competitor of that company? " 



how many, each a empl, company 

0, each 
Cl emp. company 

each 
a company 

0 
a company 

< 0, each> 
Q! < n, company > 

< 0, pn > 
a child, company 

< 0, pn > 
· a people, company 

<0, pn > 
a comp, company 

pn 
a company 

0 
a company 

How many employees of each company are children of people who have worked for 
competitors of that company? 

Fig. 16. - - General label class quantification 

...... 

...... 
VJ 
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Use of the REL Data Analysis System 

The difficulty of articulating the impact of a responsive, 

.flexible data analysis system niust be apparent, and the non-

computer scientist reading this will probably have found the inside, 

technical viewpoint almost incomprehensible. This section will 

present the system from the other side of the language: the 

· user 1s view. 

As a typical, small-to-medium size data base we will use 

the demographic data compiled by Professor Bruce Russett of 

Yale University (1969). It consists of 75 political, social, and 

economic indicators on each of 133 countries. The total number 

of datums is therefore approximately 10, 000. Some of these 

indicators are population, GNP, public expenditures, military 

personnel, newspaper circulation, unemployment, life expectancy, 

and capital formation. No time series are involved since the 

data is assumed to have been gathered at one point in time, 

essentially 1959. 

The REL user first declares the lexicon - the names of 

items relevant to this particular data: 

United States : = name 
Canada: = name 
U. S. S. R. : = name 
population: = number relation 
GNP: = number relation 

There would be one such declaration for each country and each 
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indicator. · Using the language extension mechanism, we might 

also provide synonyms: 

def: Russia: U.S. S. R. 

Now we can input the basic data, either in the form of English 

declarative sentences or directly from a fixed-format card 

image: 

The population of the United States is 183742. 
The GNP of the United States is 443270. 
The United States 1 life expectancy is 73. 

We will not be concerned with the units in which each indicator 

is expressed; clearly this can be handled in a variety of ways. 

At this point it is possible to ask simple, fact-retrieval questions 

which involve few details: 

What is the working age population of Mali? 
What is the agricultural land area of the United States I 

the agricultural land area of Russia? 

This mode of analysis quickly becomes unsatisfactory, especially 

if the amount of data is large. One needs to generalize and 

summarize across wide areas thr ough the data, and yet be able 

to check details when desired, in order to cross-check or 

verify some generalization in the small. The simple summari-

zations are first, needing only some grouping of the data: · 

country: = class 
def: nation: country 
The United States is a country. 
Canada is a country. 

What is the total population of all countries? 
How many nations have a negative GNP increment? 
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The language extension mechanism proves useful very early, for 

it allows concepts to take on a life of their own: 

def: per capita "land area": "land area"/population 

Two clarifications about this definition: ( 1) "land area" is a 

variable for all things with the same part of speech as land area, 

i.e. number-valued relation, thus the definition is a general one 

for per capita anything; and (2) this definition is totally bound 

to the context of our ·present, particular data base. Cleq.rly 

this is not a generalized definition of per capita - it is only 

meaningful if we know that a "population" number relation exists. 

We re-emphasize that REL English is a formal language - not 

full, unrestricted everyday English. Yet i.t is a formal language 

which can be tailored to a subject matter so that the terms used 

are meaningful and unambiguous. It is the idiosyncratic nature 

of the above definition of per capita which makes it extremely 

useable in our present context, and not at all useable in general: 

What is the percapita defense expenditure of each nation? 
United States • 23 · 
United Kingdom • 08 
Canada .08 
West Germany • 04 

A representative sample of the answer to this question has been 

included to show that the 'phrase "each nation" is a request for a 

table of outputs and is a quantifier situation. This is a common 

means of summary, but the usual method is by the use of 

descriptive statistics: 
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What is the average school enrollment? 
What is the median of communist vote / total vote of all 

nations? 
What is the correlation between communist vote / total 

vote and per capita GNP over nations ? 
Which nations 1 per capita religious vote is greater than 

2* the median per capita religious vote? 

One component which determines whether such questions as the 

last <me above will really be asked is the time involved in 

producing their answers (and therefore also the cost). We can 

easily estimate the amount of elapsed time it will take the REL 

system to answer this query. There will be some overhead in ini-

t ializing the system, . parsing the sentence, and so on, btJ.t this 

will be under a second. In terms of the data, the REL data 

analysis system uses a page size large enough so that the class 

of countries , the population data, and the religious vote data 

w i ll each fit on a single page. Thus to get the "per capita religious 

vote of nations " data will require only 3 page loads , since the 

other manipulations will be done in main memory. !£we triple 

this for good measure, we still have an elapsed time of 1 /2 

second. The entire query, even with finding .the country names 

t o be printed, will take 1 to 2 seconds. 

As we have stressed, h owever , simple statistics i s n ot 

all of data analysis . Another important par t of the process of 

imposing our conceptual structure on t he data consist of subsetting 

the data into interesting groupings, each of which is to be studied 

further. 
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The most common type of international grouping is by 

geographical region. Geographers find that local proximity has 

important influences on the development of a nation: 

region: = relation 
locate: = verb (region of IN is LO) 
Europe: = name ,_, 
France is located in Europe. 

What is the average per capita GNP of European nations? 
What is the correlation between communist vote and 

religious vote over countries located in each region? 

The geographic breakdown of homogeneity is not the only 

possible or desirable one. The compilers of the Yale data base 

considered the matter (Russett 1964, p.'· 322): 

When we describe Peru as a Latin American 
country, we are simply locating it in a particular 
geographic region. If, however, we att~mpt to explain 
certain things about Peru, such as its personalismo 
in politics or its low per capita income, by saying that 
it is a Latin American country, several interpretations 
of this remark are possible. The simplest, which we 
shall call the geographic interpretation of regionalism, 
is that being a Latin American nation means having a 
lower per capita income than, say, North American 
countries, or means having considerable personalismo 
in its politics. If [ our preceeding analysis] had been 
presented separately for each of the world's major regions 
this kind of geographic analysis of the broadest 
ecological sort, comparing different regions with 
respect to their typically different social and political 
characteristics, would have been facilitated. 

Another way of interpreting the regional clustering 
of national data for cross-national comparisons 
would be to make explanations in terms of generalized 
cultural, political, or social variables which correlate 
with regional groupings. Thus, instead of talking 
about East European states, one can refer to communist 
countries and mean nearly the same thing. At some 
stage Mainland China and Castro's Cuba would also 
merit such a label~ Even more generally, as this 
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Handbook has done, one might describe such states 
in terms of a very high percentage of the electorate 
voting for communist political parties. Again it is 
clear that European nations (and a smaller number 
of Asian states, some of which do not have elections) 
are the particularly involved. Although highly concentrated 
in Europe and North America, economic development 
is another important generalizable regional phenomenon. 

Describing nations in terms of such universalistic 
variables might be called 'sociological regionalism. '• •• 

As a research focus and' a political fact regionalism 
may mean more than a cluste,ring of geographically 
proximate states on Handbook profiles, and more than 
the description or explanation of regional political 
and social phenomena in terms of sociological 
variables. A good de;:i.l qf tl;le literatur.e of _social science 
suggests that relationships betwe~n _ va.riables will b~ 
.different for data from different geographic or cultural 
contexts. 

What is the average GNP increment of nations whose 
executive stability index is greater than 100? 

What proportion of European nations whose per capita 
land area is less than • 5 have an infant mortality 
rate greater than 100? 

The essence of this rather lengthy passage is not that the 

REL Data Analysis System can handle regionalism, either 

geographic or sociological, but that it facilitates the imposition 

of structure on the data by the researcher. One can express and 

analyze that view which is relevant- -and if that particular 

structure ceases to be relevant , one can impose a new onee One 

i s neither forced to use pre-existing structure nor limited to 

one »s own obsolete conceptualizatione 
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developed: = class 
All nations whose per capita GNP is greater than 1 are 

developed. 
under developed: = class 
All nations whose per capita GNP ~s less than. 25 are 

underdeveloped. 
What is the average per capita public expenditure of 

developed nations? 
Is the life expectancy of .at least 3 European nations 

less than the maximum life expectancy bf under
developed nations? 

def: "GNP" ratio of "de'veloped 11 to "underdeveloped": 
median "GNP" of "developed" /median "GNP" of 
''underdeveloped 11 

What is the foreign trade ratio of developed nations to 
all nations ? 

What is the life expectancy ratio of underdeveloped 
European nations to African nations? 

The grouping of entities into classes, the use of relations 

between entities, and the use of language extensions are all 

powerful conceptual tools by which we can impose structure on 

our data. The grouping :of the United States, France, West 

Germany, and so on, into developed nations is a process of 

abstraction--the emphasizing of certain similarities and the · 

·exclusion of differences. At the same time the class of 

nations has been broken into three classes--developed and 

underdeveloped nations, and neither--a process of ramification 

of the structure of the data base in order to obtain a more finely 

detailed picture. The same effects are seen in the use of the 

relation "region" which allows phrases such as "European 

nation". · The relational structure has the added advantage that 
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it handles. phrases like "nations located in each region" thus 

allowing us to quantify over the subsets.' 

The language extension mechanism, though often 

underrated, is just as important.' Language extensions give 

substance to concepts and push our own notion of relevance into 

the language~ ', The definition of "per capita" above singles out 

population as being important, and the ratio of something to 

population as meaningful. Definitions are not mere abbreviations 

- they introduce new possibilities into our universe of discourse 
. ·, 

and thus change the informativeness of our language. Since 

the phrases which are defined can be re-defined with a 

different meaning, or even a primitive one, they are essentially 

independent of the original definition. Once defined, we utilize a 

concept without going into its definition, . as if it were a prim

itive entity - , which it therefore becomes.'' Definitions are 

articulations of theory • .' 

This example, and data base, has thus far barely touched 

the potential inherent in a relational data system: the explicit 

use of relati ons between entitiesG Even though most of our 

conceptualizations are concerned with the relationships exi sting 

between one thing and another~ our data and current theory 

reflect the inability of historical data systems to manipulate 

interconnected models~ · The relational data systems are the 

beginnings of tools for studying interdependenci~s of a stronger

thari-statistical nature:· Since the Yale data does not contain 

~· ' 



-122-

any explicit relations, we shall add one for explanatory purposes: 

ally: = relation 
West Germany, the United Kingdom, and Japan are allies 

of the United States 

What is the median GNP of allies of the United States? 
What is the total population of the United States 1 allies/ 

the total population of Russia's allies? 

The above use of the relation is again to subset the data - to cut 

the universe along desired lines~ · One can also study the relation 

itself: 

Are all allies of allies of the U.S. allies of the U.S. ? 
How many nations are allies of both the United States 

and Russia? 
What proportion the U.S. 's allies are developed? 

The net of relational structure can become exceedingly complex 

and begin to reflect some of the realities of the situation. 

Clearly we cannot do justice to the power of the relational 

structure - we can only give the briefest glimpse into the 

complex process of analysis: 

trading partner : = relation 

What trading partners of each nation are not allies of 
that nation? 

Which trading partners of China trade with some nation 
that trades with both Russ ia and the United States? 

What proportion of the underdeveloped trading partners .of 
European nations trade ·with at most 2 communist 
nations? 
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