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Abstract

Surface mass loads come in many different varieties, including the oceans, atmosphere,

rivers, lakes, glaciers, ice caps, and snow fields. The loads migrate over Earth’s surface on

time scales that range from less than a day to many thousand years. The weights of the shift-

ing loads exert normal forces on Earth’s surface. Since the Earth is not perfectly rigid, the

applied pressure deforms the shape of the solid Earth in a manner controlled by the material

properties of Earth’s interior. One of the most prominent types of surface mass loading,

ocean tidal loading (OTL), comes from the periodic rise and fall in sea-surface height due

to the gravitational influence of celestial objects, such as the moon and sun. Depending on

geographic location, the surface displacements induced by OTL typically range from mil-

limeters to several centimeters in amplitude, which may be inferred from Global Navigation

and Satellite System (GNSS) measurements with sub-millimeter precision. Spatiotemporal

characteristics of observed OTL-induced surface displacements may therefore be exploited

to probe Earth structure. In this thesis, I present descriptions of contemporary observational

and modeling techniques used to explore Earth’s deformation response to OTL and other

varieties of surface mass loading. With the aim to extract information about Earth’s density

and elastic structure from observations of the response to OTL, I investigate the sensitiv-

ity of OTL-induced surface displacements to perturbations in the material structure. As a

case study, I compute and compare the observed and predicted OTL-induced surface dis-

placements for a network of GNSS receivers across South America. The residuals in three

distinct and dominant tidal bands are sub-millimeter in amplitude, indicating that modern

ocean-tide and elastic-Earth models well predict the observed displacement response in

that region. Nevertheless, the sub-millimeter residuals exhibit regional spatial coherency

that cannot be explained entirely by random observational uncertainties and that suggests

deficiencies in the forward-model assumptions. In particular, the discrepancies may reveal

sensitivities to deviations from spherically symmetric, non-rotating, elastic, and isotropic

(SNREI) Earth structure due to the presence of the South American craton.
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1
Tidal Theory

1.1 Introduction and Motivation

Gravitational forcing by the moon and sun deforms the solid Earth both directly through

the gravitational potential (body tides) and indirectly through loading by the periodic re-

distribution of Earth’s oceans (load tides). Ocean tidal loading (OTL) refers to the process

by which tidally redistributed seawater exerts a normal force on Earth’s surface. The mate-

rial properties of the crust and upper mantle govern the flexural response of the solid Earth

to the weight of the additional water; thus, the OTL response signal, contained within all

geodetic measurements, may be exploited to explore Earth’s interior structure.

Whereas the spatial distribution of the body-tide response generally follows that of the equi-

librium tide derived directly from the gravitational potential, ocean tides exhibit a complex

spatial pattern due to interactions with continental boundaries and bathymetry (Jentzsch,

1997). Thus, whereas body tides are long wavelength phenomena that sample a very

large-scale average of Earth structure (e.g., Farrell, 1972a; Latychev et al., 2009), ocean

tidal loads are shorter wavelength features that probe Earth’s material properties at finer

spatial scales (e.g., Farrell, 1972a; Baker, 1984; Ito & Simons, 2011; Agnew, 2015; Bos

et al., 2015). Constraints on Earth’s interior properties derived from surface mass loading

(SML) provide an independent means of testing scaling laws and assumptions commonly

adopted in seismology, rejecting existing proposed Earth models that are inconsistent with

the geodetic observations (e.g., Ito & Simons, 2011; Bos et al., 2015), and addressing out-

standing questions in geophysics, such as the long-term stability of continental cratons

against tectonic deformation (e.g., Jordan, 1978).

Although the concept of using tidal displacements to probe the Earth’s interior emerged

several decades ago (Takeuchi, 1950; Longman, 1962; Farrell, 1972a), early attempts to
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implement the theory using gravity, strain and tilt measurements were limited in effective-

ness due to insufficient spatial coverage and high sensitivities to local variations in mate-

rial properties (Baker, 1984; Agnew, 2015). Modern Global Navigation Satellite System

(GNSS) receivers do not suffer from the same sparsity or sensitivity constraints and record

Earth’s response to OTL with sub-millimeter precision (e.g., Penna et al., 2015). Given

the precision of modern GNSS observations (Blewitt, 2015), the rapid expansion of global

and regional GNSS networks, and the accuracy of contemporary ocean-tide models (Stam-

mer et al., 2014), the possibility of using observed OTL-induced surface displacements to

investigate Earth’s interior structure has become increasingly tractable.

The current chapter provides a basic introduction to tidal theory, including a derivation of

the equilibrium tide and a decomposition of the tidal potential into individual harmonic

terms. Ch. 2 reviews one of the most successful and widely used methods for extracting

the amplitudes and phases of major tidal constituents from a displacement time series: har-

monic analysis. Ch. 3 discusses the details of processing Global Positioning System (GPS)

data for use in OTL-response analysis. Ch. 4 considers techniques used to model Earth’s

deformation response to surface mass loading. I first discuss the computational procedure

for deriving load Love numbers and load Green’s functions for spherically symmetric, non-

rotating, elastic, and isotropic (SNREI) Earth models. I then document a strategy for con-

volving the load Green’s functions with a spatially distributed load. Ch. 5 briefly describes

methods that may be used to develop an inverse problem relating measured load-induced

surface displacements to structural model parameters. In Ch. 6, I analyze the sensitivity of

load-induced surface displacements to SNREI Earth structure. Ch. 7 presents a case study

that explores observed and predicted OTL-induced surface displacements in South Amer-

ica. In Ch. 8, I provide some remarks on extending the methodology for predicting surface

displacements induced by ocean tidal loading to surface displacements induced by varia-

tions in surface pressure from additional sources, such as the atmosphere and hydrosphere.

Ch. 9 includes a brief summary and a short discussion on possible future directions in the

field. The appendices provide additional data tables and figures, information about the GPS

station network, and supplementary information about GPS data processing.
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1.2 Tide-Generating Forces

According to Newton’s law of universal gravitation, the force of gravity, Fg, on a test mass,

m, is given by:

F g =
GM m

R2
, (1.1)

where G is the universal gravitational constant, M is the mass of the reference body, and R

is the distance between the center of mass of the reference body and the center of mass of

the test body.

Taking the sun as a reference body and the Earth as a test body, followed by the moon as a

reference body and the Earth again as a test body, demonstrates that the gravitational force

of the sun on the Earth is about 178 times greater than the gravitational force of the moon

on the Earth. Thus, although the moon orbits the Earth, the Earth-moon system orbits the

sun.

The moon, on the other hand, generates tidal disturbances that are more than twice as large

as those due to the sun. Since the tides are created by gravitational forcing, and the sun

exerts a greater gravitational pull on the Earth, the relatively large lunar tides might seem

counterintuitive.

The key to resolving the apparent discrepancy lies in the definition of the tides as the peri-

odic rise and fall in sea level (or deformation of the solid Earth) that results from differential,

or unbalanced, gravitational forces throughout the Earth (e.g., Doodson & Warburg, 1941,

Sec. 2.2). The differential forces arise because the Earth has a finite diameter over which the

gravitational forces are distributed. In other words, the unequal distances between various

points on and in the Earth with respect to the external attracting body lead to an unbalanced

response to the gravitational forcing.

The Earth and moon, for example, revolve around a common center of mass known as the

barycenter, generating a centrifugal force (in a non-inertial, rotating reference frame) that

is always directed away from the center of revolution. Since the Earth revolves about the

barycenter as a coherent body, the centrifugal force is the same everywhere inside and on
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To Moon 

A 

C 

B 

D 

Figure 1.1: Schematic diagram depicting tidal forces, or accelerations, generated by a two-
body system. For the Earth-Moon system, the largest arrows represent an acceleration of
1.14 µm s−2. The elliptical outline illustrates a tide-generated equipotential surface (greatly
exaggerated). The points A–D, indicated by the dashed lines, are referred to within the text.
The diagram has been reproduced and modified with permission from Agnew (2015).

the surface of the Earth, and always directed away from the moon (e.g., Godin, 1972; Pugh,

1987; Pugh & Woodworth, 2014).

The centrifugal force due to revolution about the barycenter is perfectly balanced at the

Earth’s center of mass by the gravitational force due to the moon. At other locations in and

on the Earth, however, the gravitational force varies, but the centrifugal force remains the

same, thereby giving rise to differential forces. Fig. 1.1 illustrates the tidal forces generated

by a two-body system.

Since the centrifugal force balances the lunar gravitational force at the center of mass of the

Earth, the equation for the centrifugal force on a test mass, m, is given by (e.g., Pugh &

Woodworth, 2014, Sec. 3.1):

F centrifugal =
GMLm

R2
LE

, (1.2)

where ML is the mass of the moon and RLE is the distance between the center of mass of

the moon and the center of mass of Earth. For a test mass located at the sub-lunar point

(point A, Fig. 1.1), the centrifugal force would remain the same, but the gravitational force
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would instead be given by (e.g., Pugh & Woodworth, 2014):

F gA =
GMLm

(RLE − a)2
, (1.3)

where a is the radius of the Earth (assumed spherical). The difference between the gravita-

tional and centrifugal forces yields the tide-generating force, F TA , at point A:

F TA = F gA − F centrifugal (1.4)

=
GMLm

(RLE − a)2
− GMLm

R2
LE

=
GMLm

R2
LE

 1(
1− a

RLE

)2 − 1


≈ GMLm

R2
LE

(
1 + 2

a

RLE
· · · − 1

)
=

2GMLma

R3
LE

.

Since a
RLE

is only about 1
60 (e.g., Pugh & Woodworth, 2014), I have only kept the first non-

zero term in the expansion. Repeating the procedure for point B in Fig. 1.1 yields a vector

of the same magnitude, but pointed in the opposite direction (i.e., away from the moon),

which generates the familiar tidal bulges.

To examine what happens at the poles, I decompose the tidal forces, or tide-generating

forces, into radial and tangential components relative to Earth’s surface (e.g., Doodson &

Warburg, 1941). Since RLE is approximately equal to RLC , where RLC is the distance

between point C and the center of mass of the moon, the tangential components of the force

vectors effectively cancel. The unit vector situated at point C and directed along the path

RLC , however, also has a small surface-normal component, which is approximately equal

to − a
RLE

(e.g., Doodson & Warburg, 1941, Sec. 2.3). Thus, the tidal force at point C in

Fig. 1.1 is given approximately by:

F TC = −GMLma

R3
LE

. (1.5)
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Analogously, F TD is equivalent in magnitude but opposite in direction to F TC .

It turns out that the components of the tidal forces directed tangential to the surface, other-

wise known as the tidal tractive forces (e.g., Doodson & Warburg, 1941), are principally

responsible for generating the tides (e.g., Doodson & Warburg, 1941; Boon, 2004). Com-

puting the radial component of the force helps to elucidate this point. In particular, I exam-

ine the gravitational force due to the moon versus the gravitational force due to the Earth

on a test mass at point A. The gravitational force due to the Earth is given by

FE =
GMEm

a2
(1.6)

and the gravitational force due to the moon is given by

FL =
GMLm

R2
LA

, (1.7)

where RLA is the distance between point A and the center of mass of the moon. The force

due to the moon relative to the force due to the Earth is therefore:

FL =
ML a

2

ME R2
LA

FE ≈ 3.4× 10−6 FE . (1.8)

Thus, for a test mass on the surface of the Earth, the radial component of the gravitational

force due to the moon is extremely small relative to Earth’s gravity and does not play a

significant role in the generation of the tides (e.g., Doodson & Warburg, 1941, Sec. 2.3).

The tangential component of the tidal-force vector, however, does not face an opposing

gravitational force, thereby allowing the water to move freely across Earth’s surface. As

illustrated by Fig. 1.2, the flow direction due to the tidal forcing is away from points C

and D (Fig. 1.1) and towards points A and B. The solid Earth cannot move as freely as the

liquid ocean water, but still responds to the forcing by material deformation.
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To Moon 

Figure 1.2: The surface-tangential components of the tidal force vectors resolved onto
Earth’s surface. The so-called tractive forces are unopposed by Earth’s gravity and therefore
principally responsible for generating the tidal response.

1.3 Tidal Potential

Computing the tide-generating forces is worthwhile for gaining some physical intuition

about tides, but for more complete analyses of the tidal spectrum, deriving the tidal poten-

tial is preferable. The tidal potential is a scalar, rather than a vector, quantity and hence

much easier to develop in computations. The gravitational potential at a point, P, on the

Earth’s surface due to the gravitational influence of an external body may be written as

(e.g., Doodson, 1921; Melchior, 1983; Pugh & Woodworth, 2014, Sec. 3.2.1):

V =
GM

r
, (1.9)

where G is the universal gravitational constant, M is the mass of the external body (e.g.,

the moon), and r is the distance between the observation point, P, and the center of mass

of the external body. In geodesy, the convention is to define the gravitational potential as a

positive quantity such that an increase in potential results in an increase in the height of the

geoid (e.g., Pugh & Woodworth, 2014).
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Using the geometry shown in Fig. 1.3, I apply the law of cosines to obtain a formula for r:

r2 = a2 +R2 − 2aR cos θ (1.10)

and use this to re-write the equation for the potential:

V =
GM

R

{
1− 2

a

R
cos θ +

a2

R2

}− 1
2

. (1.11)

The bracketed term is a generating function for Legendre polynomials (e.g., Boas, 1983,

Sec. 12.5). Thus, the potential may be expanded as:

V =
GM

R

{
P0(cos θ) +

a

R
P1(cos θ) +

a2

R2
P2(cos θ) +

a3

R3
P3(cos θ) + · · ·

}
=

GM

R

∞∑
n=0

( a
R

)n
Pn(cos θ), (1.12)

where Pn(cos θ) are the Legendre polynomials. The first few Legendre polynomials are

(e.g., Boas, 1983; Pugh & Woodworth, 2014):

P0(cos θ) = 1

P1(cos θ) = cos θ

P2(cos θ) =
1

2
(3 cos2 θ − 1)

P3(cos θ) =
1

2
(5 cos3 θ − 3 cos θ).

The first term in Eq. 1.12 is constant-valued and does not generate a force. The second term

represents a uniform force in the direction of OC, and therefore does not generate a tidal ef-

fect. The third term, in contrast, produces the largest tidal effect (e.g., Pugh & Woodworth,

2014). Higher-degree terms (beyond the third term) are sometimes neglected, since the po-

tential is proportional to
(
a
R

)n, where n represents the spherical harmonic degree (Pugh &

Woodworth, 2014). For the moon, aR ≈
1
60 , and for the sun, aR ≈ 4.3×10−5. Contributions

to the tidal potential therefore drop off rapidly with increasing n. Note that, even though

the sun is much more massive than the moon, the sun is also much further away. Since the
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Earth	  

Body	  2	  

Figure 1.3: Schematic diagram depicting the geometry used to construct the gravitational
potential observed at point P on the Earth due to the gravitational forcing imposed by a
secondary body, “Body 2.” Body 2 is typically the moon or sun, but may be any external
body, such as another planet.

magnitude of the potential drops off as M
Rn+1 , it is not necessary to expand the potential for

the sun to as high of a degree as for the moon. In the case of the second-degree expansion,

for example, MS

R3
S

= 0.46ML

R3
L

, where MS is the mass of the sun, ML is the mass of the

moon, andRS andRL are the distances between the center of mass of the Earth and the sun

and moon, respectively. Furthermore, it is generally not necessary for practical purposes to

expand the potential for either body beyond the third- or fourth-degree (e.g., Cartwright &

Taylor, 1971).

Focusing on the degree-2 expansion, the tide-generating potential, VT , may be written as:

VT =
1

2
GM

a2

R3
(3 cos2 θ − 1). (1.13)

This equation, however, is not very useful, since θ and R are complicated functions of the

astronomical ephemeris and P is an arbitrary point on the Earth’s surface. Fortunately, the

angle between OP and OC (i.e., θ) may be related to the astronomical ephemeris using

spherical trigonometry. For the Earth-moon system, θ depends on the declination angle

of the moon north of the equator, dL; the latitude of point P (positive north), φP ; and the

hour angle of the moon, CL. The lunar hour angle is the difference in longitude between
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the meridian of point P and the meridian of the sub-lunar point. The spherical trigonomet-

ric formula relating these quantities is (e.g., Doodson, 1921; Doodson & Warburg, 1941;

Schureman, 1971; Pugh & Woodworth, 2014):

cos θ = sinφP sin dL + cosφP cos dL cosCL. (1.14)

As such,

cos2 θ = sin2 φP sin2 dL + cos2 φP cos2 dL cos2CL +

2 sinφP sin dL cosφP cos dL cosCL. (1.15)

Using the trigonometric identity

sin 2u = 2 sinu cosu, (1.16)

Eq. 1.15 simplifies to:

cos2 θ = sin2 φP sin2 dL + cos2 φP cos2 dL cos2CL +

1

2
sin 2φP sin 2dL cosCL. (1.17)

To reduce the order of terms in cosCL, I use

cos2CL =
1

2
(cos 2CL + 1) (1.18)

to re-arrange Eq. 1.17, which results in:

cos2 θ = sin2 φP sin2 dL + cos2 φP cos2 dL

(
1

2
(cos 2CL + 1)

)
+

1

2
sin 2φP sin 2dL cosCL,

= sin2 φP sin2 dL +
1

2
cos2 φP cos2 dL cos 2CL +

1

2
cos2 φP cos2 dL +

1

2
sin 2φP sin 2dL cosCL. (1.19)
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Following (Pugh & Woodworth, 2014), the trigonometric identity

cos2 u = 1− sin2 u (1.20)

may be used to re-write Eq. 1.19 as:

cos2 θ = sin2 φP sin2 dL +
1

2
cos2 φP cos2 dL cos 2CL +

1

2
(1− sin2 φP )(1− sin2 dL) +

1

2
sin 2φP sin 2dL cosCL,

= sin2 φP sin2 dL +
1

2
cos2 φP cos2 dL cos 2CL +

1

2
(1− sin2 φP − sin2 dL + sin2 φP sin2 dL) +

1

2
sin 2φP sin 2dL cosCL

=
1

2
cos2 φP cos2 dL cos 2CL +

1

2
(1− sin2 φP − sin2 dL + 3 sin2 φP sin2 dL) +

1

2
sin 2φP sin 2dL cosCL

=
3

2
sin2 φP sin2 dL +

1

2
cos2 φP cos2 dL cos 2CL +

1

2
(1− sin2 φP − sin2 dL) +

1

2
sin 2φP sin 2dL cosCL

=
1

3
+

3

2

(
sin2 φP −

1

3

)(
sin2 dL −

1

3

)
+

1

2
cos2 φP cos2 dL cos 2CL +

1

2
sin 2φP sin 2dL cosCL. (1.21)

Eq. 1.21 can then be substituted into Eq. 1.13 to obtain a formula for the lunar tide-

generating potential, VL, in terms of the astronomical ephemeris (e.g., Doodson, 1921;

Pugh, 1987; Pugh & Woodworth, 2014):

VL =
3

2
ga
ML

ME

( a
R

)3
{

3

2

(
sin2 dL −

1

3

)(
sin2 φP −

1

3

)
+

1

2
sin 2dL sin 2φP cosCL +

1

2
cos2 dL cos2 φP cos 2CL

}
, (1.22)

where ML is the mass of the moon and I have made use of the relationship

G =
ga2

ME
, (1.23)
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where ME is the mass of the Earth and g is the gravitational acceleration at Earth’s surface.

This formulation provides the foundation for a development of the equilibrium tide, which

is equivalent to the tidal equipotential on a perfectly rigid Earth (e.g., Agnew, 2015). Note,

however, that Eq. 1.22 is only of second-degree (i.e., spherical harmonic degree n = 2),

though for practical purposes the potential is typically expanded to at least the third- or

fourth-degree for the moon and at least second- or third-degree for the sun (e.g., Cartwright

& Taylor, 1971; Cartwright & Edden, 1973; Hartmann & Wenzel, 1995).

Furthermore, Eq. 1.22 does not account for the flattening of the Earth due to rotation or

other distortions of the geoid (e.g., Cartwright & Taylor, 1971). Accounting for the shape

of the geoid introduces higher-order terms into the development of the tidal potential (e.g.,

Hartmann & Wenzel, 1995; Roosbeek, 1996, Sec. 4.5), but the effect is apparently small:

∼1.8 ngal for lunar tidal gravity (Roosbeek, 1996). The tidal potential catalogues devel-

oped by Doodson (1921), Cartwright & Taylor (1971), and Cartwright & Edden (1973),

for example, were not adjusted to account for the secondary effects that arise due to the

non-spherical shape of the geoid.

1.4 Equilibrium Tide Formulation

1.4.1 Direct Mathematical Approach

Much of the following development has been reproduced from Pugh (1987) and Pugh &

Woodworth (2014), but may also be found in other sources dating back to the cardinal

works on tidal harmonic analysis by Darwin (1898) and Doodson (1921) in the late 19th

and early 20th centuries.

The equilibrium tide, or the height of an ideal ocean that is in perfect equilibrium with the

tidal forcing (assuming negligible self-attraction effects) (e.g., Schureman, 1971, Par. 88),

is given by:

ξ =
VT
g
, (1.24)

which has units of length. Eq. 1.24 may be roughly derived by relating the gravitational
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and tide-generating forces to the slope of the equilibrium sea surface (Pugh & Woodworth,

2014).

Combining Eq. 1.24 with Eq. 1.22, an expression for the degree-2 equilibrium tide due to

the moon may be derived (e.g., Doodson, 1921; Melchior, 1983; Pugh & Woodworth, 2014,

Sec. 3.2.2):

ξL(t) =
aML

ME

[
C0(t)

(
3

2
sin2 φP −

1

2

)
+ C1(t) sin 2φP + C2(t) cos2 φP

]
, (1.25)

where

C0(t) =

(
a

RL(t)

)3(3

2
sin2 dL(t) − 1

2

)
(1.26)

C1(t) =

(
a

RL(t)

)3(3

4
sin 2dL(t) cosCL(t)

)
(1.27)

C2(t) =

(
a

RL(t)

)3(3

4
cos2 dL(t) cos 2CL(t)

)
. (1.28)

Eq. 1.25 expresses the equilibrium tide in terms of the north latitude of the observation

point P (φP ) and three time-dependent coefficients, which vary with lunar declination (dL),

the distance between the center of mass of the Earth and moon (RL), and the lunar hour

angle (CL).

For clarity, a general geodetic factor, G∗, may be defined:

G∗ =
3

4

a gML

ME

a3

c3
, (1.29)

whereML is the mass of the moon, ME is the mass of Earth, g is the mean acceleration due

to gravity at Earth’s surface, a is the radius of the Earth (assumed spherical), and 1
c is the

mean value of 1
RL

(e.g., Doodson, 1921; Melchior, 1983). Dropping the time-dependent

notation and multiplying by g to convert tidal height back to gravitational potential, Eq.

1.25 may be re-written as (Doodson, 1921):

ξDegree−2
L g = V Degree−2

L =

(
c

RL

)3

(G∗0H0 +G∗1H1 +G∗2H2), (1.30)
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Doodson’s Geodetic Coefficients
Symbol Formula

Second Degree (n = 2)
G∗0

1
2G
∗(1− 3 sin2 φP )

G∗1 G∗ sin(2φP )

G∗2 G∗ cos2 φP
Third Degree (n = 3)

G∗′0 1.11803G∗ sinφP (3− 5 sin2 φP )

G∗′1 0.72618G∗ cosφP (1− 5 sin2 φP )

G∗′2 2.59808G∗ sinφP cos2 φP
G∗′3 G∗ cos3 φP

Fourth Degree (n = 4)
G∗′′0 0.12500G∗ (3− 30 sin2 φP + 35 sin4 φP )

G∗′′1 0.47346G∗ sin(2φP ) (3− 7 sin2 φP )

G∗′′2 0.77778G∗ cos2 φP (1− 7 sin2 φP )

G∗′′3 3.07920G∗ sinφP cos3 φP
G∗′′4 G∗ cos4 φP

Table 1.1: The general geodetic factor G∗ = 3
4
a gML
ME

a3

c3
, where ML is the mass of the

moon, ME is the mass of Earth, g is the mean acceleration due to gravity at Earth’s surface,
a is the radius of Earth (assumed spherical), and 1

c is the mean value of 1
RL

. The numerical
coefficients that precedeG∗ in the third- and fourth-degree coefficients are derived from the
quantity a

c , which is approximately equivalent to the sine of the mean equatorial horizontal
parallax (Doodson, 1921).

where

H0 =
2

3
− 2 sin2 dL (1.31)

H1 = sin 2dL cosCL (1.32)

H2 = cos2 dL cos 2CL, (1.33)

and G∗0, G∗1, and G∗2 are Doodson’s Geodetic Coefficients, defined in Table 1.1.

Additional details regarding the expansion of the equilibrium tide may be found in, e.g.,

Cartwright & Taylor (1971); Doodson (1921); Doodson & Warburg (1941), Ch. 4; Godin

(1972), pg. 16-27 and Appendix 1; Pugh (1987), Chs. 3 and 4; and Pugh & Woodworth

(2014). Note that, for solar terms, G∗S = 0.46 G∗. A short discussion of equilibrium tide

catalogues will be provided later in this chapter (Sec. 1.5).

From Eq. 1.25 for the equilibrium tide, along with its time-dependent coefficients, note
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that each coefficient depends on the lunar hour angle as a cosine term with a different

frequency: theC2(t) coefficient includes a cos(2CL(t)) term, theC1(t) coefficient includes

a cos(CL(t)) term, and theC0(t) coefficient does not include a cosine term with dependence

on the hour angle. The response of the equilibrium tide to astronomical forcing is separated

into these three coefficients, which vary in spherical harmonic mode as a result of their

dependence on the hour angle (e.g., Pugh & Woodworth, 2014).

Tides that do not depend on the hour angle (i.e., coefficient C0(t)) are known as long-

period tides and are characterized by a zonal spherical harmonic function (i.e., n = 2,

m = 0, where m is the spherical harmonic order) (e.g., Melchior, 1983, Ch. 1). Tidal

signals proportional to cos(CL(t)) (i.e., C1(t)), characterized by a frequency of one cycle

per day, are known as diurnal tides and are represented by a tesseral spherical harmonic

function (i.e., n = 2, m = 1). Tidal signals proportional to cos(2CL(t)) (i.e., C2(t)),

characterized by a frequency of two cycles per day, are known as semidiurnal tides and are

represented by a sectorial spherical harmonic function (i.e., n = 2, m = 2).

Note also the dependence of the coefficients on lunar declination. From the
(

3
2 sin2 dL(t)− 1

2

)
portion of theC0(t) term, it is clear that the long-period tides reach a maximum amplitude at

the poles and zero amplitude at ±35.27◦ declination (e.g., Pugh & Woodworth, 2014, Sec.

3.2.2). The C1(t) term, which is proportional to sin 2dL(t), also varies at twice the rate of

variations in lunar declination, reaching a maximum amplitude at±45◦ and a minimum am-

plitude at the equator and poles. The C2(t) term varies with cos2 dL(t); thus, semidiurnal

tides reach a maximum amplitude at the equator and zero amplitude at the poles.

Similarly, the equilibrium tide depends on the latitude (positive north) of the observation

point, φP . The long-period tides, proportional to sin2 φP , reach maximum values at the

poles. The diurnal tides, proportional to sin 2φP , are maximized at ±45◦ latitude. The

semidiurnal tides, proportional to cos2 φP , are maximized at the equator.

Plugging in average values for a, RL, ME , and ML, the amplitude of the semidiurnal

equilibrium tide is 0.27 m (54 cm peak-to-peak) at the equator (assuming dL = 0◦).

To compute the equilibrium tide due to the sun, the variables dL, ML, and RL in Eq. 1.25
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Parameter Description Symbol Temporal Evolution
Lunar Hour Angle (radians) CL λP + (ω0 + ω3)t− π −AL
Solar Hour Angle (radians) CS λP + (ω0 + ω3)t− π −AS
Mean longitude of moon (◦) s 277.02 + 481267.89T + 0.0011T 2

Mean longitude of sun (◦) h 280.19 + 36000.77T + 0.0003T 2

Longitude of lunar perigee (◦) p 334.39 + 4069.04T − 0.0103T 2

Longitude of lunar ascending node (◦) N 259.16− 1934.14T + 0.0021T 2

Longitude of perihelion (◦) p′ 281.22 + 1.72T + 0.0005T 2

Spatiotemporal Variables
Time in Julian centuries T 365(Y−1900)+(D−1)+i+HMS

36525

Current year Y

Current day D

Current hour, minute, second HMS units of days
Leap year correction i integer part of (Y-1901)/4
East longitude of observation point P λP units of radians
Sidereal time at Greenwich Meridian t measured from First Point of Aries
Right Ascension of Moon/Sun AL/AS see text for equations

Table 1.2: Astronomical parameters used to describe the temporal variations of the moon
and sun relative to the Earth (e.g., Pugh, 1987). Only six of the seven parameters listed
are independent. The variables ω0 and ω3 represent angular speeds of the astronomical
parameters, which are listed in Table 1.3. See also, e.g., Doodson (1921), Doodson &
Warburg (1941), Schureman (1971), Melchior (1983), and Meeus (1998).

are replaced with dS , MS , and RS , respectively, where dS represents the solar declination,

MS is the mass of the sun, and RS is the distance between the center of mass of the Earth

and the center of mass of the sun. Furthermore, the hour angle, CS , represents the angular

separation between the sub-solar point and the observation point, P.

Earth-Sun System: The distance between the Earth and sun,RS , is given by (e.g., Dood-

son & Warburg, 1941; Munk & Cartwright, 1966; Pugh, 1987; Pugh & Woodworth, 2014):

RS =
R∗S

1 + eS cos(h− p′)
, (1.34)

where eS is the eccentricity of the Earth’s orbit about the sun (≈0.0167504 from Munk &

Cartwright (1966)),R∗S is proportional to 1/(mean equatorial parallax) (Munk & Cartwright,

1966) or equal to the mean solar distance (Doodson & Warburg, 1941; Pugh, 1987; Pugh

& Woodworth, 2014), and h and p′ are defined in Table 1.2. Note that the mean equatorial
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(solar) parallax, 8.79415′′ from Munk & Cartwright (1966), may be related to the mean

earth-sun distance by:
6371 km

1
60

8.79415
60

π
180

≈ 1.5× 108 km. (1.35)

Additional tabulations of astronomical parameters can be found in Wenzel (1997) and

Meeus (1998).

The right ascension for the sun, in equatorial coordinates, is (e.g., Pugh & Woodworth,

2014):

AS = λS − tan2
(εS

2

)
sin(2λS), (1.36)

where

λS = h+ 2e sin(h− p′) (1.37)

and εS is the solar ecliptic latitude, or ≈ 23.452◦ (Munk & Cartwright, 1966). The solar

declination in terms of equatorial coordinates is then (e.g., Pugh & Woodworth, 2014):

dS = sin−1(sin(λS) sin(εS)). (1.38)

Earth-Moon System: The distance between the Earth and moon, RL, is given by (Pugh,

1987; Pugh & Woodworth, 2014):

RL =
R∗L

1 + eL cos(s− p) + solar perturbations
, (1.39)

where eL is the eccentricity of the moon’s orbit about the Earth, which varies from 0.044 to

0.067, and R∗L is the mean lunar distance. The right ascension for the moon is (e.g., Pugh

& Woodworth, 2014):

AL = λL − tan2
(εL

2

)
sin(2λL), (1.40)

where

λL = s+ 2 e sin(s− p) + solar perturbations , (1.41)

and

εL = sin−1(sin(λL −N) sin(5◦09′)) (1.42)
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is the lunar ecliptic latitude. The lunar declination is given by:

dL = sin−1(sin(λL) sin(εL)) . (1.43)

Characteristics of the actual ocean tides turn out to be quite different from the ideal equi-

librium tide due to complicated effects related to finite ocean depths, bathymetry, and con-

tinental boundaries.

1.4.2 Harmonic Decomposition Approach

Six independent parameters are necessary to describe the temporal variations of R, d, and

C in the tidal potential for both the sun and moon. After careful consideration, Doodson

(1921) selected six astronomical parameters that are well-suited to harmonic analysis and

often used in practice (e.g., Foreman, 1977, Sec. 2.1.1):

τ = local mean lunar time,

s = mean longitude of moon,

h = mean longitude of sun,

p = mean longitude of lunar perigee,

N ′ = −N , where N is the mean longitude of lunar ascending node,

p′ = mean longitude of perihelion.

Local mean lunar time is typically measured relative to the Greenwich Meridian. The mean

longitudes of the moon, sun, perigee, lunar ascending node, and perihelion are typically ref-

erenced to the mean vernal equinox of the date (Meeus, 1998; Pugh & Woodworth, 2014).

Relationships describing how the astronomical parameters vary in time are provided in Ta-

ble 1.2 as well as in the literature (e.g., Meeus, 1998). Time derivatives of the astronomical

parameters yield angular speeds, which may be combined by integer sums and differences

to compute the periods of individual tidal harmonics. The period of s, for example, is a

sidereal month (27.32 days) and the period of h is a tropical year (365.24 days).
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Note that τ is equivalent to CL when referenced to the same observation point, which is

typically set at the Greenwich Meridian. Furthermore, the two parameters have the same

angular speed. Alternatively, the mean solar time, t, may be used in place of τ ; the two

parameters are related by other fundamental astronomical parameters: τ = t− s+ h (e.g.,

Doodson, 1921).

The expression for the equilibrium tide may now be expanded into a series of harmonic

terms. For example, I make use of Eq. 1.39 and Doodson’s astronomical parameters to

re-write Eq. 1.28 as (e.g., Pugh & Woodworth, 2014, Sec. 4.2.1):

C2(t) =

[(
a

R∗L

)3 3

4
cos2 dL

]
[1 + eL cos(s− p)]3 cos(2CL)

≈

[(
a

R∗L

)3 3

4
cos2 dL

] [
cos(2ω0t+ 2h− 2s) +

7

2
eL cos(2ω0t+ 2h− 3s+ p) +

1

2
eL cos(2ω0t+ 2h− s− p+ 180◦)

]
, (1.44)

where eL is the lunar eccentricity and I have kept only the lowest-degree terms. For the

full expansion, one would need to substitute expressions for the declination in terms of

the astronomical parameters as well. A more complete expansion of the equilibrium tide

contains thousands of terms (infinite in a full expansion), but in practice, only a few dom-

inant harmonics are essential. Equilibrium tide catalogues, expanded to include hundreds

to thousands of tidal harmonics, may be found in the literature (e.g., Cartwright & Taylor,

1971; Cartwright & Edden, 1973; Hartmann & Wenzel, 1995).

The C2(t) term from the expansion of the equilibrium tide contains the semidiurnal tidal

harmonics. The first harmonic term in Eq. 1.44, cos(2ω0t + 2h − 2s), has an angular

speed of 2(ω0 − ω2 + ω3), where ω0 is the angular speed of CS , ω2 is the angular speed

of s, and ω3 is the angular speed of h. Table 1.3 lists the frequencies and periods of each

astronomical parameter. Note that 2(ω0 − ω2 + ω3) = 0.5059 rad/hour = 28.9842◦/hour,

which is equivalent to 2ω1, or twice the frequency of the mean lunar day. The tidal harmonic

that arises from this combination of astronomical parameters is called the M2 harmonic, by

convention. The second harmonic term in Eq. 1.44, given the name N2, has an angular
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Angular Speeds of Astronomical Parameters
Period Frequency Angular Speed

Parameter (days) (cycles/day) Symbol (rad/hour) (◦/hour)
Mean solar day 1.00 1.00 ĊS = ṫ ω0 = 0.26 σ0=15.00
Mean lunar day 1.04 9.66E-1 ĊL = τ̇ ω1 = 0.25 σ1=14.49
Sidereal month 27.32 3.66E-2 ṡ ω2 = 9.58E-3 σ2=0.55
Tropical year 365.24 2.74E-3 ḣ ω3 = 7.173E-4 σ3=0.04
Lunar perigee 8.85 (years) 3.09E-4 ṗ ω4 = 8.03E-5 σ4=4.6E-3
Lunar nodal
regression 18.61 (years) 1.47E-4 −Ṅ = Ṅ ′ ω5 = 3.84E-5 σ5=2.2E-3
Perihelion 20942 (years) - ṗ′ ω6 ≈ 0 σ6 ≈ 0

Table 1.3: Angular speeds, or frequencies, of the astronomical parameters from Table 1.2.
The angular speeds, ω, represent the mean rates of change, in radians per hour, of the
astronomical parameters: CS , CL, s, h, p, N ′, p′. For units of degrees per hour, the angular
speeds are denoted by σ. A dot above an astronomical parameter indicates differentiation
with respect to time. Since the astronomical parameters vary in time with terms higher than
first order, the angular speeds also change with time, albeit slowly (see text for details).

speed of 2ω0 + 2ω3 − 3ω2 + ω4 = 2ω1 − ω2 + ω4 = 0.4964 rad/hour = 28.4398◦/hour.

Furthermore, the third harmonic term in Eq. 1.44, given the name L2, has an angular speed

of 2ω0 + 2ω3 − ω2 − ω4 = 2ω1 + ω2 − ω4 = 0.5154 rad/hour = 29.5286◦/hour. Note that

the three harmonics differ in amplitude, which is modulated in this case by the lunar orbital

eccentricity.

Recall that I have made many simplifying assumptions to arrive at the succinct form of Eq.

1.44. In reality, the tidal potential contains an infinite number of unique harmonics. A more

rigorous expansion would account not only for changes in lunar perigee and hour angle, but

also for variations in declination. Moreover, expressions for the astronomical parameters

could be expanded to include higher order terms as well. Note also that this expansion can

be done for both the moon and the sun (and planets, etc.) as well as for higher degrees

of the gravitational potential (only second-degree has been developed here), which would

eventually yield an extensive collection of tidal constituents.
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Angular Speed: The general form for the angular speed, ω, of a given tidal harmonic, η,

is (e.g., Pugh & Woodworth, 2014, Sec. 2.4.1):

ωη = ηa ω1 + ηb ω2 + ηc ω3 + ηd ω4 + ηe ω5 + ηf ω6, (1.45)

where ω1 to ω6 are angular speeds, generally in rad/hour, derived from the lunar and solar

ephemera. First-order approximations of the angular speeds are provided in Table 1.3.

More precise values may be obtained by taking the first time derivatives of the astronomical

parameters (Table 1.2). The coefficients ηa to ηf are small integer values that form the

Doodson number for harmonic η. Distinct sets of integer coefficients (ηa through ηf )

are used to determine unique sums and differences of the astronomical frequencies, which

represent individual tidal harmonics in the expansion of the equilibrium tide (e.g., Doodson

& Warburg, 1941; Pugh & Woodworth, 2014).

The M2 harmonic, for example, has a Doodson number of [2 0 0 0 0 0]; thus, the M2 tide

has a frequency of ωM2 = 2ω1 + 0ω2 + 0ω3 + ... = 0.5059 rad/hour = 28.9842◦/hour.

Note that it is not necessary to include ω0, since ω0 may be written in terms of other as-

tronomical frequencies (i.e., ω0 = ω1 + ω2 − ω3). For a degree-2 expansion of the tidal

potential, the coefficient ηa may only be 0, 1, or 2, representing the long-period, diurnal,

and semidiurnal tidal species, respectively (e.g., Pugh & Woodworth, 2014, Sec. 4.2.1).

The value of coefficient ηb defines the tidal group and the value of coefficient ηc defines the

tidal constituent. Coefficients ηb through ηf generally range from -5 to +5. Values greater

than two for coefficient ηa represent species at frequencies higher than semidiurnal, such as

terdiurnal tides (ηa = 3), that arise from higher-order expansions of the tidal potential. The

full set of six integer coefficients defines a tidal harmonic, also sometimes referred to as a

tidal argument.

To make the connection back to the spherical harmonic expansion of the tidal potential, the

tidal species coefficient, ηa, is equivalent to the spherical harmonic order, m. Some tidal

harmonics arise from the second-degree (n = 2) expansion of the equilibrium tide, whereas

others arise only from a higher-order expansion and are generally smaller in amplitude. As

in spherical harmonics, the order m cannot exceed the degree n. Therefore, terdiurnal tides
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Astronomical Frequencies to Higher Order
Element Frequency Formula (deg/hour) Symbols
Mean solar day 1 ∗ (360/24) ω0 ĊS = ṫ

Mean lunar day 1 + ω2 - ω3 ω1 ĊL = τ̇

Sidereal month [(481267.89 + 0.0022 T )/36525]/24 ω2 ṡ

Tropical year [(36000.77 + 0.0006 T )/36525]/24 ω3 ḣ

Lunar perigee [(4069.04− 0.0206 T )/36525]/24 ω4 ṗ

Lunar nodal regression −{[(−1934.14 + 0.0042 T )/36525]/24} ω5 Ṅ ′ = −Ṅ
Perihelion [(1.72 + 0.0010 T )/36525]/24 ω6 ṗ′

Table 1.4: Astronomical frequencies in general form. The angular speeds, ω, represent
the mean rates of change of the astronomical parameters: CS , CL, s, h, p, N ′, p′. Time
derivates were taken of the astronomical parameters in Table 1.2 to derive the frequency
formulae in column 2. T is in Julian centuries.

only manifest after an expansion to at least the third degree (e.g., Godin, 1972).

To avoid negative numbers in the six-digit set, Doodson added +5 to each of the integers ηb

through ηf . With the arithmetic adjustment to the Doodson number, the angular speed must

also be adjusted by subtracting ωη = 5 ω2+5 ω3+5 ω4+5 ω5+5 ω6. Unadjusted Doodson

numbers, which include negative values, are also common in the literature (e.g., Cartwright

& Taylor, 1971; Godin, 1972). Here, I adopt the unadjusted Doodson-number convention,

and therefore eliminate the need to correct for the offset in computing the angular speed (as

well as other parameters, such as the astronomical argument, that are discussed later).

Constituent clusters in the development of the equilibrium tide contain many individual

tidal harmonics with different amplitudes. A given harmonic may be separated from an-

other harmonic, in the frequency domain, by only one cycle in 8.85 years (∆f4 = 3.094E-

4 cycles per day), 18.6 years (∆f5 = 1.471E-4 cycles per day), or even 20942 years

(∆f6 = 1.037E-7 cycles per day). 8.85 years represents the period of precession of the

lunar perigee, 18.6 years represents the period of regression of the lunar ascending node,

and 20942 years represents the precession of perihelion (Table 1.3). Fig. 1.4 shows spectra

of tidal amplitudes as a function of frequency.
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Astronomical Argument: Analogous to the angular speed, the astronomical argument

may be written as (e.g., Godin, 1972, Sec. 0.4.2):

Vη(t) = ηa τ(t) + ηb s(t) + ηc h(t) + ηd p(t) + ηe N
′(t) + ηf p

′(t). (1.46)

The astronomical argument, which may be evaluated using Table 1.2 (and Vη(t) modulo

360◦ for large angles), provides the reference phase angle for tidal harmonic η at time t.

1.5 Tidal Potential Catalogues

Tidal potential catalogues, or equilibrium tide catalogues, distill the gravitational inter-

actions between the Earth and neighboring astronomical bodies into individual harmonic

terms, each with a unique Doodson number and a potential height. Sir G.H. Darwin de-

veloped the first tidal potential catalogue of harmonic terms in the late 19th century (Dar-

win, 1898). Subsequently, Doodson made great advancements in the theory of tidal har-

monic analysis, expanding substantially upon the number of catalogued harmonics (Dood-

son, 1921). Doodson’s catalogue was used for most of the 20th century until Cartwright &

Taylor (1971) and Cartwright & Edden (1973) further expanded and improved the catalogue

using modern computer power. Although the Cartwright, Taylor, and Edden catalogue (ab-

breviated as the CTE catalogue) is still often used today, additional and yet more extensive

catalogues have since been developed. For example, Hartmann & Wenzel (1995) expanded

the tidal potential to include nearly 13000 harmonics, with gravitational contributions from

the moon and sun as well as from Mercury, Venus, Mars, Jupiter, and Saturn. More on the

history of tidal analysis and the development of tidal potential catalogues may be found in

Cartwright (1999).

The total tidal potential, VT , is given by:

VT = VL + VS + contributions from other external bodies, (1.47)

where VL is the contribution to the tidal potential by the moon and VS is the contribution to

the tidal potential by the sun.
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Dominant Tidal Harmonics
Doodson Number Speed Equilibrium

Constituent ηa ηb ηc ηd ηe ηf σ (◦/hour) f (cycles/day) Amplitude
Z0 0 0 0 0 0 0 0.0000 0.0000 0.73869G∗0
Sa 0 0 1 0 0 -1 0.0411 0.0027 0.01160G∗0
Ssa 0 0 2 0 0 0 0.0821 0.0055 0.07299G∗0
Mm 0 1 0 -1 0 0 0.5444 0.0363 0.08254G∗0
Mf 0 2 0 0 0 0 1.0980 0.0732 0.15642G∗0
2Q1 1 -3 0 2 0 0 12.8543 0.8570 0.00955G∗1
σ1 1 -3 2 0 0 0 12.9271 0.8618 0.01153G∗1
Q1 1 -2 0 1 0 0 13.3987 0.8932 0.07216G∗1
ρ1 1 -2 2 -1 0 0 13.4715 0.8981 0.01371G∗1
O1 1 -1 0 0 0 0 13.9430 0.9295 0.37689G∗1
τ1 1 -1 2 0 0 0 14.0252 0.9350 0.00491G∗1
M1 1 0 0 -1 0 0 14.4874 0.9658 0.01065G∗1
NO1 1 0 0 1 0 0 14.4967 0.9664 0.02964G∗1
χ1 1 0 2 -1 0 0 14.5695 0.9713 0.00566G∗1
π1 1 1 -3 0 0 1 14.9179 0.9945 0.01029G∗1
P1 1 1 -2 0 0 0 14.9589 0.9973 0.17584G∗1
S1 1 1 -1 0 0 1 15.0000 1.0000 0.00423G∗1
K1 1 1 0 0 0 0 15.0411 1.0027 0.53050G∗1
ψ1 1 1 1 0 0 -1 15.0821 1.0055 0.00423G∗1
φ1 1 1 2 0 0 0 15.1232 1.0082 0.00756G∗1
θ1 1 2 -2 1 0 0 15.5126 1.0342 0.00566G∗1
J1 1 2 0 -1 0 0 15.5854 1.0390 0.02964G∗1
OO1 1 3 0 0 0 0 16.1391 1.0759 0.01623G∗1
ε2 2 -3 2 1 0 0 27.4238 1.8283 0.00671G∗2

2N2 2 -2 0 2 0 0 27.8954 1.8597 0.02301G∗2
µ2 2 -2 2 0 0 0 27.9682 1.8645 0.02777G∗2
N2 2 -1 0 1 0 0 28.4397 1.8960 0.17387G∗2
ν2 2 -1 2 -1 0 0 28.5126 1.9008 0.03303G∗2
M2 2 0 0 0 0 0 28.9841 1.9322 0.90812G∗2
λ2 2 1 -2 1 0 0 29.4556 1.9637 0.00670G∗2
L2 2 1 0 -1 0 0 29.5285 1.9686 0.02567G∗2
T2 2 2 -3 0 0 1 29.9589 1.9973 0.02479G∗2
S2 2 2 -2 0 0 0 30.0000 2.0000 0.42358G∗2
R2 2 2 -1 0 0 -1 30.0411 2.0027 0.00354G∗2
K2 2 2 0 0 0 0 30.0821 2.0055 0.11506G∗2
η2 2 3 0 -1 0 0 30.6265 2.0418 0.00643G∗2

Table 1.5: A selection of important tidal harmonics, including all named constituents from
the Doodson expansion of the tidal potential (Doodson, 1921), also found in Appendix 1
of Godin (1972). The formulas for the geodetic coefficients are listed in Table 1.1 and are
used to convert the normalized amplitudes to actual equilibrium tidal heights.
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In terms of the astronomical parameters, the expansion of the tidal potential to spherical

harmonic degree-3 may be written as (Godin, 1972):

VT0,2 =
∑
ηa=0,2

[G∗ηa

∑
ηb ηc ηd ηe ηf

Aηa ηb ηc ηd ηe ηf × cos(ηaτ + ηbs+ ηch+ ηdp+ ηeN
′ + ηfp

′) +

G∗′ηa

∑
ηb ηc ηd ηe ηf

Bηa ηb ηc ηd ηe ηf × sin(ηaτ + ηbs+ ηch+ ηdp+ ηeN
′ + ηfp

′)], (1.48)

for the long-period and semidiurnal tidal harmonics, and:

VT1,3 =
∑
ηa=1,3

[G∗′ηa

∑
ηb ηc ηd ηe ηf

Aηa ηb ηc ηd ηe ηf × cos(ηaτ + ηbs+ ηch+ ηdp+ ηeN
′ + ηfp

′) +

G∗ηa

∑
ηb ηc ηd ηe ηf

Bηa ηb ηc ηd ηe ηf × sin(ηaτ + ηbs+ ηch+ ηdp+ ηeN
′ + ηfp

′)]. (1.49)

for the diurnal and terdiurnal tidal harmonics. G∗ηa and G∗′ηa are Doodson’s geodetic co-

efficients for degree-2 and degree-3 harmonic species (Table 1.1), respectively, (ηaτ +

ηbs + ηch + ηdp + ηeN
′ + ηfp

′) defines the astronomical argument for harmonic η, and

Aηa ηb ηc ηd ηe ηf and Bηa ηb ηc ηd ηe ηf represent the (scaled) amplitude coefficients of the har-

monic terms (Godin, 1972). All variables and coefficients are equivalent in Eqs. 1.48 and

1.49, but note the swap of the geodetic coefficients. Also note that, for an expansion up to

degree-3 only, G∗3 is undefined and all the sine terms will be zero (Godin, 1972; Cartwright

& Taylor, 1971).

Either A or B will be nonzero for a particular tidal harmonic (i.e., for a unique sequence

[ηa ηb ηc ηd ηe ηf ]), but not both. Tidal potential catalogues list each unique sequence

[ηa ηb ηc ηd ηe ηf ], which is also the Doodson number of each harmonic, along with its cor-

responding amplitude coefficient, typically scaled. In Eqs. 1.48 and 1.49, the amplitudes

are scaled by Doodson’s geodetic coefficients. In this case, it is simple to convert catalogue

amplitudes (given as the A and B coefficient terms) back to actual tidal heights:

Aη =
G∗ηa
g

Aηa ηb ηc ηd ηe ηf (1.50)
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and

Bη =
G∗′ηa
g

Bηa ηb ηc ηd ηe ηf . (1.51)

Section 0.4 of Godin (1972) provides more information on the Doodson catalogue scheme.

Also note that G∗S = 0.46G∗, and hence tidal heights derived from solar ephemeris must

be adjusted by this constant factor, which is based on the mass ratio between the moon and

the sun as well as the ratio of earth-moon distance to earth-sun distance.

Cartwright & Taylor (1971) adopted an alternative approach to Doodson’s lengthy algebraic

expansions: they generated the time-dependent, spherical harmonic coefficients directly us-

ing the most up-to-date lunar and solar ephemeris and the “response method” of tidal anal-

ysis (Munk & Cartwright, 1966). Amplitudes of individual tidal harmonics, shown in Fig.

1.4 using the Doodson scaling convention, were then extracted from the time series using

filtering methods. Agnew (2015) reviews this approach. The CTE scaling convention dif-

fers from that of Doodson, though the definitions are directly related (Cartwright & Taylor

(1971), Table 2).

Regardless of the tidal potential catalogue adopted for a tidal harmonic analysis, making

note of the catalogue’s sign convention is important. The most common variation in sign

convention occurs with the fifth astronomical parameter pertaining to the regression of the

lunar ascending node. Sometimes the fifth astronomical parameter is taken to be the pre-

cession of the lunar ascending node, N , but perhaps more commonly, the fifth astronomical

parameter is taken to be the regression of the lunar ascending node,N ′ = −N . The adopted

convention therefore affects the sign of the fifth Doodson coefficient, ηe, as well as the sign

of ω5 and the astronomical parameter itself. It is simply important to be consistent through-

out an analysis, regardless of which convention is assumed.

1.6 Physical Interpretation of Tidal Harmonics

To gain intuition for the physical meaning of individual tidal harmonics, imagine that each

tidal harmonic is the result of a unique “fictitious” body that has specific characteristics

and orbital properties that generate a specific contribution to the total equilibrium tide (e.g.,
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Darwin, 1898; Pugh & Woodworth, 2014, Sec. 4.2.1). Here, I highlight a few examples that

elucidate the origins of some of the most prominent astronomical constituents, beginning

with the semidiurnal species.

From Eqs. 1.30 and 1.33, the lunar semidiurnal equilibrium tide varies as:

(
cL
RL

)3

cos2 dL cos 2CL. (1.52)

First, imagine a fictitious body that moves only in the plane of Earth’s equator (i.e., dL = 0).

Next, suppose that the fictitious body moves at the moon’s mean speed and at the moon’s

mean distance from Earth (i.e., cL
RL

= 1). The two stipulations yield a lunar semidiurnal

tide that is proportional only to cos 2CL, which has a period of half a lunar day, a Doodson

number of [2 0 0 0 0 0], and an angular speed of 2ω1. The particular harmonic just de-

scribed is the principal lunar semidiurnal tide and, due to its large amplitude and significant

presence around the world, has been given a special name: the M2 tidal harmonic (e.g.,

Doodson & Warburg, 1941; Pugh & Woodworth, 2014).

Next, I consider a situation in which the moon remains in the plane of the equator, but

the orbital distance of the moon is allowed to vary (i.e., RL 6= const). This gives rise to,

in the first instance, two additional “fictitious” bodies that have angular speeds that differ

from that of M2 by the addition and subtraction of the speed of variation in moon-Earth

separation distance, RL. The variation in moon-Earth separation distance has a period

27.555 mean solar days, which is nearly but not precisely equivalent to the length of a

sidereal month (or the period of revolution of the moon in longitude). In terms of the

six fundamental astronomical parameters defined previously, the astronomical argument

for this special type of lunar month could be expressed either as (−s + p) or (s − p).

Each of these combinations of astronomical parameters yields a period equivalent to that

of the period of variation in moon-Earth separation distance (e.g., drawing from Table

1.3, 1
f2−f4 = 1

0.0366009−0.00030937 = 27.555 days). Therefore, the two tides generated

from the modulation of M2 by variations in lunar distance have astronomical arguments

of (2τ − s + p) and (2τ + s − p). The tide that arises from a fictitious body that orbits

Earth with an angular speed of (2ω1 − ω2 + ω4) is called N2 and the tide that arises from
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a fictitious body that orbits Earth with an angular speed of (2ω1 + ω2 − ω4) is called L2

(e.g., Pugh & Woodworth, 2014, Sec. 4.2.1). N2 is also referred to as the larger lunar el-

liptic semidiurnal tidal harmonic, whereas L2 is also referred to as the smaller lunar elliptic

semidiurnal harmonic (e.g., Doodson & Warburg, 1941, Ch. 6).

From Eqs. 1.30 and 1.32, the lunar diurnal equilibrium tide varies as:

(
cL
RL

)3

sin 2dL cosCL. (1.53)

Note that, according to the degree-2 expansion of the equilibrium tide (Eq. 1.30), all diurnal

tides generated from fictitious bodies that orbit in the plane of the equator (dL = 0) have

zero amplitude. Due to the finite size of the Earth, however, a small diurnal tide, M1, arises

even for dL = 0 because the tide at the sub-lunar point will be slightly larger than the tide

at the antipode. The first three Doodson numbers for the M1 constituent cluster are [1 0 0].

Within that cluster, the harmonic with the largest amplitude has a Doodson number of [1 0

0 -1 0 0], which matches the frequency of a prominent shallow-water tide, to be discussed

later. The harmonics [1 0 0 0 0 0] and [1 0 0 1 0 0] also make significant contributions to the

constituent cluster. The harmonic [1 0 0 0 0 0] has a frequency of 14.4921◦ per mean solar

hour and represents the difference in tidal heights on opposite sides of Earth for a mean

moon, which orbits Earth in the equatorial plane at a mean distance and at mean speed. The

harmonics [1 0 0 1 0 0] and [1 0 0 -1 0 0] differ from the harmonic [1 0 0 0 0 0] by the

8.85-year cycle of the longitude of lunar perigee.

The largest diurnal tides occur when the absolute value of (sin 2dL) is maximized, or when

(sin 2dL)′ = 2 cos 2dL = 0, which corresponds to lunar declinations of ±45◦. The period

over which the moon completes one full declinational cycle, north and south of the equator,

is equivalent to the lunar orbital period, which is referred to as a sidereal month. A sidereal

month has a period of 27.3217 mean solar days, which is equivalent to the period of Doo-

dson’s second astronomical parameter, s (see Table 1.3). Modulating the principle lunar

diurnal cycle by the period of the declinational cycle yields two of the largest diurnal tidal

harmonics: K1 and O1 (e.g., Doodson & Warburg, 1941, Ch. 6). K1 has an astronomical

argument of (τ +s) and O1 has an astronomical argument of (τ −s). Additional harmonics
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arise by accounting for variations in the moon-Earth separation distance, as for the semidi-

urnal tides. Recalling that variations in lunar distance, or lunar parallax, are represented by

astronomical arguments of (s−p) or (−s+p), four new harmonics may be readily derived:

[τ + s + (s − p)], [τ + s + (−s + p)], [τ − s + (s − p)], and [τ − s + (−s + p)]. The

first has an angular speed of 14.4921 + 0.5490 + 0.5490 − 0.0046 = 15.5855◦ per mean

solar hour and has been given the special name of J1 (e.g., Pugh & Woodworth, 2014, Sec.

4.2.1). The second and third are simply [1 0 0 1 0 0] and [1 0 0 -1 0 0], which are harmonics

within the M1 constituent cluster as mentioned previously. The fourth, Q1, has an angular

speed of 14.4921− 0.5490− 0.5490 + 0.0046 = 13.3987◦ per mean solar hour.

The conceptual key to understanding diurnal tides is visualizing a tidal bulge that is inclined

relative to the equator (Boon, 2004). Thus, as Earth rotates, an observer at a nonzero lati-

tude will observe a slightly larger high-tide at one time of day and a slightly lower high-tide

approximately half a day later. This difference in the tidal heights may roughly be con-

sidered the diurnal tide, though other processes (including contributions from long-period

tides) will also play a role.

From Eqs. 1.30 and 1.31, the lunar equilibrium long-period tide varies as:

(
cL
RL

)3 (1

3
− sin2 dL

)
. (1.54)

In this case, tidal height does not depend on lunar hour angle, and hence tidal periods of the

so-called long-period harmonics are never shorter than one day in length. The first Doodson

number, which defines the tidal species, is therefore zero for all long-period harmonic terms.

Tides of this nature arise as a consequence of the longer period astronomical parameters,

such as the sidereal month and the cycle of lunar perigee.

One of the most important long-period tides is the lunar fortnightly tide, Mf . Noting that

sin2 dL may be re-written as 1−cos 2dL
2 by the half-angle formula, the lunar equilibrium

long-period tide varies as:

(
cL
RL

)3 (1

2
cos 2dL −

1

6

)
. (1.55)
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Thus, the period of the declination-dependent term is one-half of the full declinational cycle,

or one-half of a sidereal month, which corresponds to an angular speed of 2σ2 = 1.0980◦

per mean solar hour and a Doodson number of [0 2 0 0 0 0]. The variation in lunar parallax

(or moon-Earth distance), which has an angular speed of σ2−σ4 = 0.5444◦ per mean solar

hour, yields the lunar monthly harmonic constituent, Mm, with a period of 27.555 days.

Solar constituents are, of course, derived in much the same way, except that solar parameters

are substituted for the lunar parameters (e.g., RS is substituted for RL, dS is substituted for

dL, and CS is substituted for CL). More information may be found in, e.g., Boon (2004),

Ch. 6 of Doodson & Warburg (1941), and Ch. 4 of Pugh & Woodworth (2014).

1.7 Tidal Dynamics

Here, I briefly summarize a few important points related to tidal dynamics. For more elab-

orate introductions, the reader may consult, e.g., Doodson & Warburg (1941) or Pugh &

Woodworth (2014). The concept of the equilibrium tide does not apply directly to the dy-

namic ocean tides observed on Earth. The true ocean tides contend with sharp continental

boundaries, bathymetry, Earth rotation, elastic deformation of the sea floor, and frictional

interfaces.

Neglecting non-linear effects, the dispersion relation for gravity waves is given by (e.g.,

Wright et al., 1999):

c =

√
g

k
tanh(kH), (1.56)

where c is the wave speed, g is the gravitational acceleration at Earth’s surface, H is the

water depth, and k is the wavenumber. If the water depth is much less than the wavelength,

λ, then tanh(kH) ≈ kH . Thus, the wave speed reduces to (e.g., Doodson & Warburg,

1941; Pugh & Woodworth, 2014):

c =
√
g H (1.57)

in the so-called “shallow-water approximation,” which well describes tides in the pelagic

ocean (e.g., Pugh & Woodworth, 2014). In practice, Eq. 1.57 is assumed to apply when

H/λ is less than about 1/20 (e.g., Wright et al., 1999). In addition to a small ratio of
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water depth to tidal wavelength, the amplitude of the tidal wave must also be much smaller

than the water depth in order to mitigate non-linear effects (e.g., Parker, 2007; Pugh &

Woodworth, 2014). Note that λ = c T , where T is the tidal period, and that ω = c k, where

ω is the angular frequency of the tidal wave.

The continental boundaries form ocean basins as well as constricted bays and seas, leading

to local resonance effects. In general, the world’s oceans exhibit resonant frequencies near

to the semidiurnal tidal frequency, reinforcing the strength and amplitude of the tidal waves

(e.g., Pugh & Woodworth, 2014). In some parts of the world, such as the Bay of Fundy,

resonant effects generate tidal amplitudes in excess of 10 m (e.g., Pugh & Woodworth,

2014, Sec. 1.3).

Although it may be natural to assume that the ocean tides respond directly in-phase with the

lunar and solar gravitational forcing, it turns out that the actual response of Earth’s oceans is

very complicated. The discrete continental boundaries, for example, have a large effect on

tidal phase. Even in the absence of continental boundaries, however, a global ocean would

generally respond out-of-phase, or inverted, with respect to the forcing body (Souchay et al.,

2012; Pugh & Woodworth, 2014). To estimate the phase of the response, the period of the

forcing may be compared with the natural period of the responding body. As an analogy,

Souchay et al. (2012) considers the response of a simple pendulum to external forcing at

different frequencies. For a forcing frequency that is very low with respect to the natural

frequency, the response is approximately in-phase with the source. For a forcing frequency

that is very high with respect to the natural frequency, the response is approximately out-of-

phase with the source. The phase-response (as well as the amplitude-response) of the simple

pendulum is therefore a function of the frequency, with perfectly in-phase and perfectly

out-of-phase end members. Considering a mass on a spring, forced oscillations at very high

frequency will not allow the mass time to respond; therefore, the mass remains effectively

static and its motion (from the perspective of the source) will be minus the applied motion

to the spring. In this case, the mass is seen to be completely out-of-phase (±π) with the

source. On the other end of the spectrum, forced oscillations at very low frequency provide

the mass with ample time to respond to the forcing. In this case, the relative motion between
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the source and the mass (amplitude response) is approximately zero, and the relative phase

between the source and the mass (phase response) is also approximately zero.

For Earth’s oceans, the natural period may be estimated as the time required for a wave

to propagate a quarter of the Earth’s circumference and back again (Souchay et al., 2012).

Assuming that the speed of the wave is given by Eq. 1.57 with no impeding continents,

the natural period of Earth’s oceans is approximately equivalent to 30 hours for a water

depth of 4 km, which is significantly longer than the semidiurnal tidal period of ∼12 hours.

In this idealized case, the oceans are generally out-of-phase with respect to the moon and

sun at semidiurnal and diurnal periods. To be in-phase with the gravitational forcing, the

oceans would need to be significantly deeper (>∼20 km). The solid Earth, in contrast,

exhibits a natural period of ∼1 hour (derived from Earth’s free oscillations), which is much

shorter than the forcing period and therefore more or less in-phase with the gravitational

forcing. Recall, however, that the oceans are much more complicated than this simple

thought experiment might suggest, largely due to continental boundaries and Earth rotation.

1.8 Suggestions for Further Reading

Cartwright (1999), Boon (2004), and Pugh (2004) provide introductions to tidal theory and

analysis with an emphasis on qualitative and conceptual understanding over mathematical

development. For one interested in a more quantitative, yet still accessible and comprehen-

sive, overview of tidal analysis, I recommend Agnew (2015), Pugh & Woodworth (2014),

Pugh (1987), Melchior (1983), Godin (1972), Schureman (1971), Doodson & Warburg

(1941), Doodson’s classic papers on harmonic analysis (Doodson, 1921, 1924a, 1928), and

Darwin (1898). A comprehensive and quantitative, albeit now somewhat out-dated, account

of geophysical methods as applied to geodesy, including a development of the gravitational

potential as well as details about tides and Earth rotation, is given by Lambeck (1988).
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2
Harmonic Analysis

2.1 Introduction

The forcing function that generates the tides (i.e., the astronomical ephemeris) may be bro-

ken down into individual harmonic periods (e.g., Darwin, 1898; Doodson, 1921; Doodson

& Warburg, 1941). The total forcing from the combined harmonics excites responses within

and on the Earth that are also periodic. Harmonic analysis aims to extract the amplitude and

phase of individual tidal harmonics, each with a unique frequency, from a time series of ar-

bitrary length. In other words, the tidal signal at a particular location may be represented by

the summation of a series of cosine terms. It is worth noting that non-harmonic techniques

have also been developed to describe the tidal response, such as the response method (e.g.,

Munk & Cartwright, 1966; Pugh & Woodworth, 2014).

Formally, a tidal harmonic, η, may be characterized by a harmonic expression of the form

(e.g., Pugh & Woodworth, 2014, Sec. 4.2):

Aη cos(σηt− φη), (2.1)

where A is the amplitude, σ is the angular speed in degrees per mean solar hour (σ =(
180
π

)
ω), t is the time in mean solar hours, and φ is the phase lag in degrees measured

relative to the start of the time series.

Rather than reference the phase of a harmonic, φη, to the start of the time series, it is more

useful for comparison to reference the phase to a common standard. Typically, phases

are referenced to the peak in the equilibrium tide height for the harmonic η at a certain

longitude, such as the Greenwich Meridian (e.g., Doodson & Warburg, 1941; Godin, 1972;

Foreman, 1977). For long-period tides, which do not depend on the lunar hour angle, the
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phases are generally referenced to the peak in the equilibrium tide at the equator (e.g., Bos

et al., 2000). Thus, an additional term must be included: the astronomical argument, Vη(t0).

With the astronomical argument included, the harmonic expression becomes:

Aη cos(Vη(t0) + σηt− φη). (2.2)

Since the angular speed contains higher-order secular terms, the expression may be written

more precisely. Rather than evaluating the astronomical argument at the beginning of the

time series and assuming a linear relationship in its temporal progression, the astronomical

argument may be computed explicitly at every epoch (e.g., Foreman et al., 2009). Formally,

Aη cos(Vη(t)− φη), (2.3)

where

Vη(t) ∼ Vη(t0) + σηt. (2.4)

Time series of tidal data contain many individual harmonics, some of which may be very

close in the frequency domain. If two harmonics are not separable in frequency over the

length of the time series, then the smaller amplitude harmonic will modulate the amplitude

and phase of the larger amplitude harmonic over time. Given a time series less than 18.6

years in length, for example, two tidal harmonics separated by one cycle in the regression

of the lunar ascending node will not be resolvable. Attempts to extract the amplitude and

phase of one of the harmonics, however, will be contaminated by the other harmonic. Thus,

correction factors are introduced to account for the modulations introduced by the sub-

sidiary harmonics in the frequency domain (e.g., Doodson, 1924a; Doodson & Warburg,

1941; Godin, 1972; Pugh & Woodworth, 2014):

Aη fη(t) cos(Vη(t) + uη(t)− φη), (2.5)

where fη(t) is the harmonic-modulation correction factor for the amplitude and uη(t) is

the harmonic-modulation correction factor for the phase. In the special case that harmonics
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are separated from a primary harmonic by integer cycles in the lunar ascending node, the

harmonic-modulation correction factors are referred to as nodal modulations (e.g., Pugh

& Woodworth, 2014). Since modulations also occur due to harmonic separations in other

astronomical cycles, such as lunar perigee, the modulations have also been more generally

referred to as satellite modulations (Foreman et al., 2009). The nomenclature of satellite

modulations, however, may cause confusion with modern space-based geodesy platforms;

thus, I refer to the modulations in a generic sense as harmonic modulations.

Traditionally, to save on computational resources, tidal analyses have applied harmonic-

modulation correction factors after an initial least squares fit to the time series (e.g., Godin,

1972; Pawlowicz et al., 2002). Accounting for the harmonic modulations a posteriori often

involves the application of constant correction factors that may be assumed constant only

over short time windows, such as one year of data or less (e.g., Schureman, 1971, Par. 346).

Correcting for the harmonic modulations at the post-processing stage and thereby limiting

an analysis to a short time span of data are unnecessary sacrifices with modern computa-

tional resources (Foreman et al., 2009). Updating the harmonic-modulation corrections, as

well as the astronomical argument, at every epoch in the time series allows for seamless

processing of multiple years of data in a single estimation step.

2.2 Harmonic Modulations and Corrections

Recall that a tidal constituent represents a cluster of tidal harmonics that share the same first

three coefficients in a Doodson number (i.e., ηa, ηb, and ηc). The harmonic with the largest

amplitude from the tidal potential catalogue is typically taken to be the primary, or domi-

nant, harmonic. Additional harmonics within the same constituent cluster are referred to as

satellite (e.g., Godin, 1972; Foreman, 1977; Foreman et al., 2009) or subsidiary (e.g., Doo-

dson, 1924a) harmonics. For very long time series, many of the subsidiary harmonics may

be resolvable from the primary harmonic outright. For harmonics separated in frequency by

cycles of the lunar perigee, a time series of at least 8.9 years in length is required for sepa-

ration. For harmonics separated in frequency by cycles of the lunar ascending node, a time

series of at least 18.6 years in length is required for separation. Any additional harmonics
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Harmonic Modulations
Constituent f u

Mm 1.000− 0.130 cosN 0.0◦

Mf 1.043 + 0.414 cosN −23.7◦ sinN + 2.7◦ sin(2N) -
0.4◦ sin(3N)

Q1,O1 1.009 + 0.187 cosN - 10.8◦ sinN − 1.3◦ sin(2N)+
0.015 cos(2N) 0.2◦ sin(3N)

K1 1.006 + 0.115 cosN - −8.9◦ sinN + 0.7◦ sin(2N)
0.009 cos(2N)

J1 1.013 + 0.168 cosN - −12.9◦ sinN + 1.3◦ sin(2N) -
0.017 cos(2N) 0.2◦ sin(3N)

2N2,µ2,ν2,
N2,M2 1.000− 0.037 cosN −2.1◦ sinN

K2 1.024 + 0.286 cosN + −17.7◦ sinN + 0.7◦ sin(2N)
0.008 cos(2N)

L2 f cosu = 1.00− 0.25 cos(2p)− 0.11 cos(2p−N)−
0.02 cos(2p− 2N)− 0.04 cosN

f sinu = −0.25 sin(2p)− 0.11 sin(2p−N)−
0.02 sin(2p− 2N)− 0.04 sinN

M1 f cosu = 2 cos p+ 0.4 cos(p−N)
f sinu = sin p+ 0.2 sin(p−N)

Table 2.1: Harmonic-modulation corrections for primary tidal harmonics from several dom-
inant constituents (e.g., Doodson & Warburg, 1941; Pugh & Woodworth, 2014).

that are too close in frequency to separate outright will contaminate the complex-valued

amplitude of the primary harmonic during an inversion. Correction factors are therefore

invoked to treat the effects of the harmonic modulation (e.g., Doodson & Warburg, 1941;

Godin, 1972; Pawlowicz et al., 2002; Foreman et al., 2009; Pugh & Woodworth, 2014).

Alternatively, the response method of Munk & Cartwright (1966) includes the correction

factors implicitly.

Table 2.1 provides a list of harmonic-modulation corrections for dominant tidal harmonics

in various constituent clusters. Note that the harmonic modulations have a much greater ef-

fect on the diurnal and long-period harmonics than on most of the semidiurnal harmonics.

L2 and M1 require corrections that address both the 8.85- and 18.6-year modulations. To

distinguish the different origins of modulations, the lunar-perigee modulations are some-

times denoted by j and v instead of the conventional f and u. Here, I use f and u to

represent harmonic-modulation corrections from both origins.
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To develop a general formulation for deriving harmonic-modulation corrections, I return to

the expansion of the tidal potential. In particular, the signal for a particular tidal constituent

(primary harmonic + subsidiary harmonics) may be written as (e.g., Doodson, 1924a; Fore-

man, 1977):

aη cos(Vη − φη) +
∑
k

Aηk aηk cos(Vηk − φηk) +
∑
l

Aηl aηl sin(Vηl − φηl), (2.6)

for long-period and semidiurnal constituents, and

aη sin(Vη − φη) +
∑
k

Aηk aηk sin(Vηk − φηk) +
∑
l

Aηl aηl cos(Vηl − φηl), (2.7)

for diurnal constituents, where a is the equilibrium-tide amplitude (obtained from a tidal

potential catalogue), φ is the phase of harmonic η referenced to Greenwich, and V is the

astronomical argument. A single η subscript refers to the primary harmonic in the tidal con-

stituent cluster, whereas the ηk and ηl subscripts refer to subsidiary harmonics of second-

and third-degree, respectively, in the development of the tidal potential. A is an interaction

matrix that accounts for the interference between the primary harmonic and its subsidiary

harmonics (Godin, 1972; Foreman, 1977), computed as:

Aηk =
sin[N∆t(σηk − ση)/2]

N sin[∆t(σηk − ση)/2]
, (2.8)

whereN is the number of consecutive observations, ∆t is time difference between observa-

tions, σηk is the frequency of subsidiary harmonic k, and ση is the frequency of the primary

harmonic η. In practice, A is very close to one.

Since terdiurnal terms arise only in the third-degree expansion of the tidal potential (n = 3,

m = 3), they are treated slightly differently. Both the primary and the subsidiary harmonics

are due to third-order terms and, since m is odd, the third-order contribution will be in the

form of a cosine term (e.g., Foreman, 1977, Sec. 2.3.2). This is analogous to the diurnal

terms, where the third-degree subsidiary harmonics are cosines, except that in this case, the

primary harmonic is also of third-degree, and hence also a cosine term. Alternatively, terdi-



39

urnal terms can be considered analogous to second-degree semidiurnal harmonics, without

any third-degree subsidiary harmonics. Here, I do not consider the terdiurnal terms to have

any subsidiary harmonics beyond degree-3.

Tidal analyses typically assume that all harmonics are represented by a cosine term with

positive amplitude (i.e., in the form of aη cos(Vη−φη) for aη > 0). Thus, phase corrections

of 180◦ (i.e., 1
2 cycle) must be applied to primary harmonics with a negative amplitude (e.g.,

Foreman, 1977, Sec. 2.3.2). Furthermore, a phase correction of −1
4 is necessary to convert

degree-2 diurnal harmonics from sine to cosine terms.

Therefore, the signal due to a tidal constituent cluster may be represented by (e.g., Foreman,

1977):

|aη| cos(V ′η−φη)+
∑
k

Aηk |aηk| cos(V ′ηk+αηk−φηk)+
∑
l

Aηl |aηl| cos(V ′ηl+αηl−φηl),

(2.9)

where

V ′(i.e., V ′η , V
′
ηk, V

′
ηl) =


V + 1

2 if aη < 0,

V otherwise;

αηk =


0 if aηk and aη have the same sign,

1
2 otherwise;

αηl =


−1

4 if aηl and aη have the same sign,

1
4 otherwise

for the long-period and semidiurnal constituents,

V ′ =


V + 1

4 if aη < 0,

V − 1
4 otherwise;

αηk =


0 if aηk and aη have the same sign,

1
2 otherwise;
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αηl =


1
4 if aηl and aη have the same sign,

3
4 otherwise

for the diurnal constituents, and

V ′ =


V + 1

2 if aη < 0,

V otherwise;

αηk =


0 if aηk and aη have the same sign,

1
2 otherwise

for the terdiurnal constituents. Note that V applies to all Vη, Vηk, Vηl.

If, on the other hand, V ′ηk and V ′ηl are left as-is (i.e., equal to Vηk and Vηl, respectively), then

the argument corrections become:

V ′η =


Vη + 1

2 if aη < 0,

Vη otherwise;

αηk =


0 if aηk > 0,

1
2 otherwise;

αηl =


−1

4 if aηl > 0,

1
4 otherwise; and

V ′ηk = Vηk

V ′ηl = Vηl
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for the long-period and semidiurnal constituents,

V ′η =


Vη + 1

4 if aη < 0,

Vη − 1
4 otherwise;

αηk =


−1

4 if aηk > 0,

1
4 otherwise;

αηl =


0 if aηl > 0,

1
2 otherwise; and

V ′ηk = Vηk

V ′ηl = Vηl

for the diurnal constituents, and

V ′η =


Vη + 1

2 if aη < 0,

Vη otherwise;

αηk =


0 if aηk > 0,

1
2 otherwise; and

V ′ηk = Vηk

for the terdiurnal constituents. The reason that it is nice to keep the argument corrections

in the first form (i.e., with all of the V s modified by the same amount), is that when one

takes the difference between them for the harmonic-modulation corrections (shown later),

the phase offset cancels out, and hence all one needs to worry about are the original, uncor-

rected astronomical arguments, because all of the corrections for positive-sign and cosine

coefficients will be taken care of with the α terms.
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Note that amplitudes from the tide-generating potential are coefficients of cosine terms

for the case (m + n) even and coefficients of sine terms for the case (m + n) odd (e.g.,

Cartwright & Taylor, 1971). Thus, cosines are appropriate for degree-2 long-period and

semidiurnal harmonics, as well as for degree-3 diurnal and terdiurnal harmonics. Likewise,

sines are appropriate for degree-2 diurnal harmonics as well as for degree-3 long-period

and semidiurnal harmonics.

Since the admittance across the frequency window of a tidal constituent cluster is nearly

constant, I assume that the Greenwich phase is equivalent between the primary and sub-

sidiary harmonics (i.e., φη = φηk = φηl) (Foreman, 1977). It is also assumed that the am-

plitude ratios between the subsidiary harmonics and the primary harmonic are equal to the

ratio of the tidal equilibrium amplitudes from the tidal potential catalogue (i.e., rηk ≡
|aηk|
|aη |

and rηl ≡
|aηl|
|aη | , where |aη|, |aηk|, and |aηl| are obtained from a tidal potential catalogue).

Ratios of third-degree terms relative to second-degree terms also involve a latitudinal cor-

rection factor based on the ratio of Doodson’s geodetic coefficients (Sec. 1.4, Table 1.1).

I seek to write Eq. 2.9 in terms of a single tidal harmonic, where the contributions to the

signal from subsidiary harmonics are accounted for by two time-varying factors, f and

u. As discussed previously, f and u represent harmonic-modulation corrections to the

amplitude and phase of the primary harmonic. Therefore, I seek an equation of the form

(e.g., Doodson, 1928; Schureman, 1971; Foreman et al., 2009):

fη |aη| cos(Vη + uη − φη). (2.10)

It is more useful, however, to write Eq. 2.10 in terms of fη cosuη and fη sinuη (e.g.,

Doodson, 1928), such that:

fη =
√

(fη cosuη)2 + (fη sinuη)2

uη = tan−1

[
fη sinuη
fη cosuη

]
. (2.11)
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L2 Tidal Constituent
Doodson Number Harmonic Equilibrium

Classification ηa ηb ηc ηd ηe ηf Degree Amplitude
Satellite 2 1 0 -1 -1 0 Second 0.00095

Main 2 1 0 -1 0 0 Second -0.02567
Satellite 2 1 0 0 -1 0 Third -0.00031
Satellite 2 1 0 0 0 0 Third 0.00525
Satellite 2 1 0 0 1 0 Third 0.00099
Satellite 2 1 0 1 -1 0 Second -0.00012
Satellite 2 1 0 1 0 0 Second 0.00643
Satellite 2 1 0 1 1 0 Second 0.00283
Satellite 2 1 0 1 2 0 Second 0.00040

Table 2.2: Primary and subsidiary harmonics from the L2 tidal harmonic. The primary har-
monic is that which has the largest equilibrium amplitude. Note that the primary and sub-
sidiary harmonics are separated only by cycles of lunar nodal regression and lunar perigee.

Using a trigonometric identity, I can re-write Eq. 2.10 as

fη |aη| [ cos(Vη − φη) cosuη − sin(Vη − φη) sinuη ], (2.12)

and rearrange to arrive at:

(fη cosuη) |aη| cos(Vη − φη)− (fη sinuη) |aη| sin(Vη − φη). (2.13)

Thus, fη cosuη is equivalent to the summation of the coefficients in front of the [ |aη| cos(Vη−

φη) ] terms in the expansion of all harmonic terms (primary and subsidiaries) associated

with a particular tidal harmonic. Likewise, fη sinuη is equivalent to the summation of the

coefficients in front of the [ |aη| sin(Vη − φη) ] terms (e.g., Doodson, 1928).

The harmonic-modulation corrections may thus be written in a generalized form for any

tidal constituent, η, as follows (e.g., Foreman, 1977; Yuan et al., 2013):

fη cosuη = 1 +
∑
k

Aηk rηk cos(∆ηk + αηk) (2.14)

fη sinuη =
∑
k

Aηk rηk sin(∆ηk + αηk), (2.15)
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where

∆ηk = Vηk − Vη, (2.16)

and Aηk, rηk, and αηk are defined previously (cf., Eqs. 2.11).

2.2.1 Example: L2 Harmonic

Practical methods for computing the harmonic modulations may be found in the literature

(e.g., Godin, 1972, Secs. 2.8.1–2.8.2). As an example, consider the harmonic-modulation

corrections for tidal harmonic L2 (cf., Doodson, 1928, Sec. 9.6). The Doodson number for

L2 is [2 1 0 -1 0 0] and the scaled equilibrium amplitude from the Doodson catalogue is -

0.02567 (e.g., Godin, 1972). The subsidiary harmonics for the L2 constituent share the same

first three Doodson coefficients with the primary L2 harmonic. Here, I consider five second-

order harmonic terms and three third-order harmonic terms that neighbor the primary L2

harmonic in the constituent cluster. Table 2.2 lists the selected (significant) second- and

third-order primary and subsidiary harmonics associated with the L2 tidal constituent.

Since the L2 constituent is a semidiurnal tidal species, it may be represented by a harmonic

expansion in the form of Eq. 2.6:

G∗2 ×−0.02567 cos(VL2 − φL2) + . . .

AL21 ×G∗2 × 0.00095 cos(VL2 − φL2 −N ′) + . . .

AL22 ×G∗′2 ×−0.00031 sin(VL2 − φL2 + p−N ′) + . . .

AL23 ×G∗′2 × 0.00525 sin(VL2 − φL2 + p) + . . .

AL24 ×G∗′2 × 0.00099 sin(VL2 − φL2 +N ′) + . . .

AL25 ×G∗2 ×−0.00012 cos(VL2 − φL2 + 2p−N ′) + . . .

AL26 ×G∗2 × 0.00643 cos(VL2 − φL2 + 2p) + . . .

AL27 ×G∗2 × 0.00283 cos(VL2 − φL2 + 2p+N ′) + . . .

AL28 ×G∗2 × 0.00040 cos(VL2 − φL2 + 2p+ 2N ′).

Here, I have assumed that the phase of each subsidiary harmonic is equivalent to the phase
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of the primary harmonic; smooth admittance across the tidal constituent band is assumed

(e.g., Foreman, 1977). VL2 is the astronomical argument for the primary L2 harmonic (i.e.,

VL2 = 2τ + s − p). Recall that AL2k is an interaction matrix given by Eq. 2.8, which

is approximately equal to one. As discussed previously, constituents are conventionally

expressed by a cosine term with a positive amplitude. This can be accomplished by making

slight adjustments to the phases of the harmonics as follows:

G∗2 × 0.02567 cos(VL2 − φL2 + 180◦) + . . .

AL21 ×G∗2 × 0.00095 cos(VL2 − φL2 + 180◦ + 180◦ −N ′) + . . .

AL22 ×G∗′2 × 0.00031 cos(VL2 − φL2 + 180◦ − 90◦ + 0◦ + p−N ′) + . . .

AL23 ×G∗′2 × 0.00525 cos(VL2 − φL2 + 180◦ − 90◦ + 180◦ + p) + . . .

AL24 ×G∗′2 × 0.00099 cos(VL2 − φL2 + 180◦ − 90◦ + 180◦ +N ′) + . . .

AL25 ×G∗2 × 0.00012 cos(VL2 − φL2 + 180◦ + 0◦ + 2p−N ′) + . . .

AL26 ×G∗2 × 0.00643 cos(VL2 − φL2 + 180◦ + 180◦ + 2p) + . . .

AL27 ×G∗2 × 0.00283 cos(VL2 − φL2 + 180◦ + 180◦ + 2p+N ′) + . . .

AL28 ×G∗2 × 0.00040 cos(VL2 − φL2 + 180◦ + 180◦ + 2p+ 2N ′).

Note that 180◦ was added to the phase of each harmonic since the primary harmonic had a

negative amplitude. Furthermore, sine terms were shifted in phase by −90◦. Finally, any

subsidiary harmonics that had amplitudes opposite in sign to the primary harmonic were

shifted in amplitude by an additional 180◦. Now, pulling the quantity (AL2 G
∗
2) out front

and adding the phase adjustments together, the expression becomes:

0.02567G∗2 × [ cos(VL2 − φL2 + 180◦) +

AL21

0.00095

0.02567
cos(VL2 − φL2 −N ′) +

AL22

0.00031

0.02567

G∗′2
G∗2

cos(VL2 − φL2 + 90◦ + p−N ′) +

AL23

0.00525

0.02567

G∗′2
G∗2

cos(VL2 − φL2 − 90◦ + p) +
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AL24

0.00099

0.02567

G∗′2
G∗2

cos(VL2 − φL2 − 90◦ +N ′) +

AL25

0.00012

0.02567
cos(VL2 − φL2 + 180◦ + 2p−N ′) +

AL26

0.00643

0.02567
cos(VL2 − φL2 + 2p) +

AL27

0.00283

0.02567
cos(VL2 − φL2 + 2p+N ′) +

AL28

0.00040

0.02567
cos(VL2 − φL2 + 2p+ 2N ′) ].

Now, the cosine terms may be rewritten using a common trigonometric identity: cos(V +

u) = cosV cosu− sinV sinu. After simplifying the fractions, the result is:

0.02567G∗2 × { cosVm +

AL210.037 [cosVm cos(−N ′ − 180◦)− sinVm sin(−N ′ − 180◦)] +

AL220.012(2.59808 sinφP ) [cosVm cos(p−N ′ − 90◦)−

sinVm sin(p−N ′ − 90◦)] +

AL230.205(2.59808 sinφP ) [cosVm cos(p+ 90◦)−

sinVm sin(p+ 90◦)] +

AL240.039(2.59808 sinφP ) [cosVm cos(N ′ + 90◦)−

sinVm sin(N ′ + 90◦)] +

AL250.005 [cosVm cos(2p−N ′)− sinVm sin(2p−N ′)] +

AL260.250 [cosVm cos(2p− 180◦)− sinVm sin(2p− 180◦)] +

AL270.110 [cosVm cos(2p+N ′ − 180◦)−

sinVm sin(2p+N ′ − 180◦)] +

AL280.016 [cosVm cos(2p+ 2N ′ − 180◦)−

sinVm sin(2p+ 2N ′ − 180◦)] }, (2.17)

where Vm is the argument of the primary harmonic (i.e., Vm = VL2 − φL2 + 180◦).
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Since I seek an expression of the form

am fL2 cos(Vm + uL2) = am [fL2 cosuL2 ] cosVm − am [fL2 sinuL2 ] sinVm, (2.18)

where am = 0.02567 G∗2, I now extract the expressions for [fL2 cosuL2 ] and [fL2 sinuL2 ]

immediately from Eq. 2.17, purely by inspection. The results are:

fL2 cosuL2 = 1 +AL21 0.037 cos(−N ′ − 180◦) +

AL22 0.012(2.59808 sinφP ) cos(p−N ′ − 90◦) +

AL23 0.205(2.59808 sinφP ) cos(p+ 90◦) +

AL24 0.039(2.59808 sinφP ) cos(N ′ + 90◦) +

AL25 0.005 cos(2p−N ′) +AL26 0.250 cos(2p− 180◦) +

AL27 0.110 cos(2p+N ′ − 180◦) +

AL28 0.016 cos(2p+ 2N ′ − 180◦), (2.19)

and

fL2 sinuL2 = AL21 0.037 sin(−N ′ − 180◦) +

AL22 0.012(2.59808 sinφP ) sin(p−N ′ − 90◦) +

AL23 0.205(2.59808 sinφP ) sin(p+ 90◦) +

AL24 0.039(2.59808 sinφP ) sin(N ′ + 90◦) +

AL25 0.005 sin(2p−N ′) +AL26 0.250 sin(2p− 180◦) +

AL27 0.110 sin(2p+N ′ − 180◦) +

AL28 0.016 sin(2p+ 2N ′ − 180◦). (2.20)

Note that the results here could have been derived directly from Eq. 2.14.
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2.3 Shallow-Water Harmonics

In the pelagic ocean, where the tide amplitudes are much smaller than the water depth and

the tide wavelengths are much longer than the water depth, the tides are well described

by the astronomical harmonics. In shallow seas and estuaries, however, non-linear effects

become important and produce higher-order harmonics, including overtides and compound

tides (e.g., Doodson & Warburg, 1941; Doodson, 1957; Schureman, 1971; Godin, 1972;

Foreman, 1977; Parker, 2007; Pugh & Woodworth, 2014). The non-linear distortions of the

astronomical tides occur due to several mechanisms, including bottom friction, an increase

in the ratio of tide amplitude to water depth, and coastal bathymetry (e.g., Parker, 2007;

Pugh & Woodworth, 2014).

Following the development in Doodson & Warburg (1941), suppose that the heights of two

tidal harmonics, such as M2 and S2, are given by η1 = A cos a and η2 = B cos b. The total

tide height, y, resulting from a linear interaction between the two tides is then:

y = η1 + η2 = A cos a+B cos b. (2.21)

In shallow water, non-linear effects distort the shape of the tide as a function of the square

and higher powers of the original tidal amplitude, thereby generating higher-order harmonic

terms (e.g., Doodson & Warburg, 1941; Doodson, 1957; Godin, 1972; Pugh & Woodworth,

2014, Sec. 4.2.3). For example, the square of the total tide height obtained from the inter-

actions of two harmonics, η1 and η2, is given by (e.g., Doodson & Warburg, 1941; Pugh &

Woodworth, 2014):

y2 = A2 cos2 a+B2 cos2 b+ 2AB cos a cos b, (2.22)

which, using simple trigonometric identities, can be expanded further to:

y2 =
1

2
A2 cos 2a+

1

2
B2 cos 2b+AB cos(a+ b) +AB cos(a− b) + constants. (2.23)

Note that four harmonic terms in y2 are generated by the non-linear interaction of two
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Shallow-Water Tidal Harmonics
Astronomical Contribution

Name iM2 iS2 iN2 iK2 iO1 iQ1 iP1 iK1

MSf -1 1 0 0 0 0 0 0
NO1 0 0 1 0 -1 0 0 0
SO1 0 1 0 0 -1 0 0 0
2MS2 2 -1 0 0 0 0 0 0
OP2 0 0 0 0 1 0 1 0
2MN2 2 0 -1 0 0 0 0 0
2PO1 0 0 0 0 -1 0 2 0
MKS2 1 -1 0 1 0 0 0 0
OQ2 0 0 0 0 1 1 0 0
MKS2 1 -1 0 1 0 0 0 0
MSN2 1 1 -1 0 0 0 0 0
2SM2 -1 2 0 0 0 0 0 0
MO3 1 0 0 0 1 0 0 0
SO3 0 1 0 0 1 0 0 0
MK3 1 0 0 0 0 0 0 1
SK3 0 1 0 0 0 0 0 1
MN4 1 0 1 0 0 0 0 0
M4 2 0 0 0 0 0 0 0
SN4 0 1 1 0 0 0 0 0
MS4 1 1 0 0 0 0 0 0
MK4 1 0 0 1 0 0 0 0
S4 0 2 0 0 0 0 0 0
SK4 0 1 0 1 0 0 0 0
2MN6 2 0 1 0 0 0 0 0
M6 3 0 0 0 0 0 0 0
MSN6 1 1 1 0 0 0 0 0
2MS6 2 1 0 0 0 0 0 0
2MK6 2 0 0 1 0 0 0 0
2SM6 1 2 0 0 0 0 0 0
MSK6 1 1 0 1 0 0 0 0
3MN8 3 0 1 0 0 0 0 0
M8 4 0 0 0 0 0 0 0
2MSN8 2 1 1 0 0 0 0 0
3MS8 3 1 0 0 0 0 0 0
2(MS)8 2 2 0 0 0 0 0 0
2MSK8 2 1 0 1 0 0 0 0

Table 2.3: Shallow-water tidal harmonics. Additional shallow-water harmonics may be
found in the literature (e.g., in the appendices of Foreman (1977)).
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harmonic terms in y. In this case, the arguments of the four shallow-water tides are 2a,

2b, a + b, and a − b. If the two interacting harmonics are M2 and S2, then a = 2σ1t and

b = 2σ0t, yielding four shallow-water tides that have frequencies of 4σ1, 4σ0, 2(σ1 + σ0),

and 2(σ0 − σ1).1 The four frequencies correspond to the M4, S4, MS4, and MSf shallow-

water tidal harmonics, respectively. The amplitudes, which should be compared only to

other harmonics of the same tidal species and interpreted only in a relative sense (e.g.,

Doodson & Warburg, 1941, Sec. 8.3), are 1
2A

2, 1
2B

2, andAB. Thus, in a relative sense, the

MS4 and MSf tidal harmonics have equivalent amplitudes. This theory provides the basis

for the derivation of shallow-water harmonics. Additional terms arise through interactions

between other astronomical constituents and expansions of the tidal interaction equations

to higher order. For example, expanding the interaction between the two astronomical tides

in Eq. 2.21 to third order (i.e., y3 = y2 y) yields six independent shallow-water harmonics.

Table 2.3 lists some of the most important shallow-water tidal harmonics, including the as-

tronomical harmonics from which they are derived. Doodson numbers for the shallow-water

harmonics are obtained by forming the sum of the products between the Doodson coeffi-

cients and contribution factors for each astronomical harmonic. In pseudo-mathematical

notation, the Doodson numbers for l shallow-water harmonics could be derived as follows

(e.g., Doodson & Warburg, 1941; Foreman, 1977):

[Astronomical Contribution]× [Astronomical Doodson] = [Shallow-Water Doodson] ,

or, in terms of matrix dimensions,

[ l ×m ]× [ m× 6 ] = [ l × 6 ] , (2.24)

where m is the number of interacting astronomical tidal harmonics. For the particular

shallow-water harmonics listed in Table 2.3, m = 8 because the non-linear interactions

required to produce them involve some combination of eight specific astronomical tidal

harmonics: M2, S2, N2, K2, O1, Q1, P1, and K1. For the first five shallow-water harmonics
1Note that cos(a− b) = cos(−(a− b)) = cos(b− a).
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listed in Table 2.3 (MSf , NO1, SO1, 2MS2, and OP2) as well as an additional and generic

shallow-water tide (sw), the matrix multiplication required to derive the Doodson numbers

for the shallow-water tides becomes:

MSf

NO1

SO1

2MS2

OP2

sw



−1 1 0 0 0 0 0 0

0 0 1 0 −1 0 0 0

0 1 0 0 −1 0 0 0

2 −1 0 0 0 0 0 0

0 0 0 0 1 0 1 0

iM2s iS2s iN2s iK2s iO1s iQ1s iP1s iK1s


×

M2

S2

N2

K2

O1

Q1

P1

K1



2 0 0 0 0 0

2 2 −2 0 0 0

2 −1 0 1 0 0

2 2 0 0 0 0

1 −1 0 0 0 0

1 −2 0 1 0 0

1 1 −2 0 0 0

1 1 0 0 0 0



=

MSf

NO1

SO1

2MS2

OP2

sw



0 2 −2 0 0 0

1 0 0 1 0 0

1 3 −2 0 0 0

2 −2 2 0 0 0

2 0 −2 0 0 0

ηas ηbs ηcs ηds ηes ηfs


.

The Doodson numbers for the shallow-water harmonics may then be used to derive the

frequencies, σ, of the shallow-water harmonics in the same way as for the astronomical

harmonics. Some of the shallow-water harmonics have Doodson numbers that coincide

with astronomical tides, and hence shallow-water tides may mask or be masked by as-

tronomical tides on occasion. Care must be exercised when deriving the argument and

harmonic-modulation corrections for the shallow-water tides.

Arguments for shallow-water harmonics are computed as follows (e.g., Doodson & War-
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burg, 1941; Foreman, 1977; Pugh & Woodworth, 2014):

VSW = iM2 (arg ofM2) + iS2 (arg ofS2) + iN2 (arg ofN2) + iK2 (arg ofK2) +

iO1 (arg ofO1) + iQ1 (arg ofQ1) + iP1 (arg ofP1) + iK1 (arg ofK1)

+ . . . , (2.25)

where (arg ofM2), for instance, refers to the argument of the astronomical M2 harmonic.

Additional astronomical harmonics may be added as needed. The argument for the shallow-

water tide M6, for example, is [3×(arg ofM2)] and the argument for the shallow-water tide

2MS2 is [2× (arg ofM2)− (arg ofS2)].

Harmonic-modulation corrections for the shallow-water tides are computed as follows (e.g.,

Doodson & Warburg, 1941; Foreman, 1977; Pugh & Woodworth, 2014):

uSW = iM2 (u ofM2) + iS2 (u ofS2) + iN2 (u ofN2) + iK2 (u ofK2) +

iO1 (u ofO1) + iQ1 (u ofQ1) + iP1 (u ofP1) + iK1 (u ofK1) + . . .(2.26)

fSW = (f ofM2)iM2 + (f ofS2)iS2 + (f ofN2)iN2 + (f ofK2)iK2 +

(f ofO1)iO1 + (f ofQ1)iQ1 + (f ofP1)iP1 + (f ofK1)iK1 + . . . . (2.27)

As an example, the astronomical contribution for 2MSN8 is iM2 = 2, iS2 = 1, and

iN2 = 1. Therefore, the Doodson number for the shallow-water harmonic is 2×[2 0

0 0 0 0] +1×[2 2 -2 0 0 0] +1×[2 -1 0 1 0 0] = [8 1 -2 1 0 0]. The argument is

then 2 × (arg ofM2) + 1 × (arg ofS2) + 1 × (arg ofN2). Furthermore, the harmonic-

modulation corrections are u2MSN8 = 2(u ofM2) + (u ofS2) + (u ofN2) and f2MSN8 =

(f ofM2)2 + (f ofS2) + (f ofN2). Note that the harmonic-modulation corrections differ

significantly between the astronomical and shallow-water harmonics, even between those

that share the same Doodson number and frequency. Thus, monitoring harmonic modula-

tions has become a valuable tool used for differentiating between the shallow-water and as-

tronomical contributions to observations of tidal height (e.g., Godin, 1972; Foreman, 1977).

It is worth noting, however, that shallow-water harmonics are produced through several dif-
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ferent physical mechanisms that generate different non-linear effects. The M6 harmonic,

for example, can arise due to both asymmetrical and symmetrical frictional effects (Parker,

2007). The second-order asymmetrical effect occurs when the crest of the primary tide

propagates faster than the trough due to bottom friction and shallow water depths. The

first-order symmetrical effect occurs because the frictional energy loss is proportional to

the square of the current speed (i.e., a quadratic frictional non-linear mechanism). In some

locations, the quadratic frictional mechanism may dominate, in which case the amplitude-

modulation correction factor for M6 should be the square of the amplitude-modulation cor-

rection factor for M2, rather than the cube (Parker, 2007).

2.4 Constituent Selection

A small subset of carefully selected tidal constituents can often account for nearly all of

the tidal signal (e.g., Godin, 1972, Sec. 2.8.2). Since time series of tidal observations are

finite in length, the selection of appropriate constituents must involve a consideration of the

frequency resolution of the time series (e.g., Godin, 1972, Sec. 1.5.1). In particular, the

order of the constituent selection is important, since some harmonics are more dominant

than others in terms of amplitude. Selecting a subsidiary harmonic to the M2 harmonic,

for example, would generally not be a good choice, since its selection could preclude the

inclusion of M2 in the analysis, even though M2 generally has a large amplitude.

No single method exists to select the ideal set of tidal constituents to include in an analysis

(e.g., Foreman et al., 2009). One option is the Rayleigh comparison, which tests for the abil-

ity to separate two harmonics in the frequency domain over a given length of observations

(e.g., Foreman, 1977, Sec. 2.1.2). A Rayleigh comparison is performed as follows:

|σ0 − σ1| × T ≥ R, (2.28)

where σ0 and σ1 are the frequencies of the two tidal harmonics being compared (in deg/hour),

T is the length of the time series (in hours), and R is the Rayleigh parameter. The Rayleigh

parameter must be at least 1 cycle, or 360◦, but may be increased for time series with gaps.
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Furthermore, to prevent aliasing, harmonics must only be selected if they have frequencies

at least less than half the sampling rate.

For astronomical tidal harmonics, priority for inclusion in an analysis is commonly based

on equilibrium-tide amplitudes from tidal potential catalogues (e.g., Godin, 1972; Foreman,

1977, Sec. 2.1.2). The largest amplitude harmonics within each tidal species are typically

selected first. For a time series of intermediate length (' 1 month but < 8.85 years),

additional harmonics within each tidal species will be considered for inclusion, commenc-

ing with the largest amplitude harmonics. Each harmonic considered for inclusion will be

compared against larger-amplitude harmonics that were already selected using the Rayleigh

criterion. If the test harmonic may be separated from all other harmonics over the length

of the time series, then the test harmonic will also be selected for inclusion in the analy-

sis. The process continues in descending order of equilibrium-tide amplitude until no more

harmonics are available to test. Generally, only the largest amplitude harmonic from each

constituent cluster will be considered for inclusion in an analysis, and contributions from

the remaining harmonics in the constituent (above an arbitrary amplitude threshold) will be

accounted for with harmonic-modulation corrections. A reasonable Doodson-scaled ampli-

tude threshold is 0.0025 (e.g., Cartwright & Taylor, 1971). Foreman (1977) makes a few

minor exceptions to the strict amplitude hierarchies in order to maximize the number of

large-amplitude harmonics in an analysis, given the available frequency resolution.

For time series that are less than 1 month in length, it may be necessary to consider terms

separated in period by the sidereal month (ηc) as subsidiary harmonics, in addition to the

usual modulations in lunar perigee, nodal regression, and perihelion. Similarly, for time

series longer than about 20 years, it would no longer be necessary to apply harmonic-

modulation corrections for harmonics separated by cycles in p or N ′, since the harmonics

are separable outright.

Selection of shallow-water harmonics presents a more complicated problem (e.g., Doodson,

1957, Sec. 6), since shallow-water harmonics do not have equilibrium-tide amplitudes (e.g.,

Godin, 1972, Sec. 2.7). One technique typically used, however, is to refrain from including

a shallow-water harmonic until all of its astronomical components have also been included
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(e.g., Foreman, 1977, Sec. 2.1.2). Furthermore, shallow-water harmonics may be compared

against previously selected shallow-water and astronomical harmonics using the Rayleigh

criterion. The order of selection for shallow-water harmonics, however, is not straightfor-

ward. Godin (1972) and Foreman (1977) make some suggestions about the hierarchy for

shallow-water harmonics based on Godin’s extensive experience with tidal analysis. Other

options involve comparing the relative amplitudes of astronomical harmonics that give rise

to the shallow-water harmonics (e.g., Doodson & Warburg, 1941, Sec. 8.3) or practical

experience and analysis at specific locations (e.g., Doodson, 1957; Doodson & Warburg,

1941, Sec. 15.3).

2.5 Inversion

In this section, I discuss a method for inverting time-series data to recover tidal-harmonic

components. Recall that the general expression for a single tidal harmonic, η, was given by

Eq. 2.5. For a signal that includes contributions from many different tidal harmonics, the

equation becomes:

Z(t) = m0 +m1t+
N∑
η=1

Aη fη(t) cos(σηt− φη + Vη(t0) + uη(t)), (2.29)

where Z(t) represents the amplitude of the total signal at epoch t, m0 accounts for a con-

stant offset in the data, m1 accounts for a linear trend in the data, η represents a tidal

harmonic, and N represents the total number of tidal harmonics considered. The trigono-

metric argument may be simplified and made more precise by recalling that (e.g., Foreman

et al., 2009):

Vη(t0) + σηt ∼ Vη(t). (2.30)

Indeed, Vη(t0) + σηt is actually a linear approximation to Vη(t), which represents the as-

tronomical argument at time t. Thus, Eq. 2.29 becomes:

Z(t) = m0 +m1t+
N∑
n=1

Aη fη(t) cos(Vη(t) + uη(t)− φη). (2.31)
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Since f , u, and V are known quantities derived from the astronomical ephemeris (Tables

1.2 and 2.1), I seek the set of model terms [m0, m1, Aη, φη]. Least-squares optimization is

a common method used to solve for the model terms. To apply the least-squares technique,

I first linearize the problem by separating the harmonic portion of Eq. 2.31 into in-phase

and quadrature components. In particular, each harmonic may be decomposed using a

trigonometric identity: cos(u− v) = cosu cos v + sinu sin v. Formally,

Aη fη(t) cos(Vη(t) + uη(t)− φη)

= Aη fη(t) cos(Vη(t) + uη(t)) cos(φη) +

Aη fη(t) sin(Vη(t) + uη(t)) sin(φη)

= Aη fη(t) cos(φη) cos(Vη(t) + uη(t)) +

Aη fη(t) sin(φη) sin(Vη(t) + uη(t))

= Aη cos(φη) fη(t) cos(Vη(t) + uη(t)) +

Aη sin(φη) fη(t) sin(Vη(t) + uη(t))

= cη fη(t) cos(Vη(t) + uη(t)) + sη fη(t) sin(Vη(t) + uη(t)), (2.32)

where

cη ≡ Aη cos(φη) (2.33)

and

sη ≡ Aη sin(φη). (2.34)

Substituting Eq. 7.8 into Eq. 2.31:

Z(t) = m0 +m1t+

N∑
n=1

[cη fη(t) cos(Vη(t) + uη(t)) +

sη fη(t) sin(Vη(t) + uη(t))]. (2.35)

Eq. 7.10 may be used to invert time series of tidal data for the unknown model parameters

[m0, m1, cη, sη]. The construct is specific to linear, overdetermined problems. Note that if

Z0 (mean sea level) is included as a tidal harmonic, then m0 must be removed from the set
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of model parameters to avoid ill-conditioning in the matrix inversion.

For least-squares harmonic analysis, the system of linear equations to be solved takes the

form:

Gm = d, (2.36)

where d is the observed tidal data, m is a vector of model parameters, and G is a matrix of

known quantities that interact with the model parameters. The objective is to minimize the

misfit between the model, Gm, and the observed data, d, specifically by minimizing the

norm of the squared residuals. In other words, I seek to minimize:

√√√√ m∑
i=1

r2
i =

√√√√ m∑
i=1

(di − (Gm)i)2 = ||d−Gm||2, (2.37)

where r corresponds to the residuals between the observed data and the predicted model

(i.e., r = d−Gm) (Aster et al., 2013).

The normal equations for the inversion are given by:

m = (GT G)−1GT d, (2.38)

where

m = [ m0 m1 c1 s1 c2 s2 c3 s3 c4 s4 · · · ]T (2.39)

and

d = [ d(t0) d(t1) d(t2) d(t3) d(t4) d(t5) d(t6) d(t7) · · · ]T . (2.40)

The subscripts for c and s represent individual tidal harmonics (e.g., M2).
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The GT matrix (transpose of G) is given by:

GT =



1 1 1 · · ·

t0 t1 t2 · · ·

f1(t0) cos[V1(t0) + u1(t0)] f1(t1) cos[V1(t1) + u1(t1)] · · · · · ·

f1(t0) sin[V1(t0) + u1(t0)] f1(t1) sin[V1(t1) + u1(t1)] · · · · · ·

f2(t0) cos[V2(t0) + u2(t0)] f2(t1) cos[V2(t1) + u2(t1)] · · · · · ·

f2(t0) sin[V2(t0) + u2(t0)] f2(t1) sin[V2(t1) + u2(t1)] · · · · · ·

f3(t0) cos[V3(t0) + u3(t0)] f3(t1) cos[V3(t1) + u3(t1)] · · · · · ·

f3(t0) sin[V3(t0) + u3(t0)] f3(t1) sin[V3(t1) + u3(t1)] · · · · · ·

f4(t0) cos[V4(t0) + u4(t0)] f4(t1) cos[V4(t1) + u4(t1)] · · · · · ·

f4(t0) sin[V4(t0) + u4(t0)] f4(t1) sin[V4(t1) + u4(t1)] · · · · · ·
...

...
...

...



.

Some of the harmonic-modulation formulae in Table 2.1 are given in the form [f cosu]

and [f sinu]. The current construct for G does not have the harmonic-modulation terms

in this form; however, the corrections may be easily recast using additional trigonometric

manipulations:

cos(u+ v) = cosu cos v − sinu sin v (2.41)

and

sin(u+ v) = sinu cos v + cosu sin v. (2.42)

Thus,

f cos[V + u] = f cosV cosu− f sinV sinu

= [f cosu] cosV − [f sinu] sinV (2.43)

and

f sin[V + u] = f sinV cosu+ f cosV sinu
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= [f cosu] sinV + [f sinu] cosV, (2.44)

which may be substituted into G.

To perform the inversion, I aim to minimize the misfit between the observations and model,

d−Gm, by adopting an iteratively reweighted least-squares (IRLS) algorithm, which evalu-

ates a series of weighted least-squares problems that converge to an L1-norm solution (Aster

et al., 2013). The L1-norm minimizes the absolute value of the residuals and is therefore

highly effective at down-weighting outliers. A preliminary L2-norm solution forms the ini-

tial model vector. A weighting matrix is then constructed based on the residuals between the

observations and the forward model. Since the weighting matrix is a non-linear function of

the model vector, the normal equations must be solved iteratively. Thus, an updated model

vector is derived from the L1-norm solution to the normal equations and tested against a

tolerance value. The iterations continue until the tolerance is satisfied, at which point the

inversion yields a model vector (Eq. 2.39) that provides a constant offset value, linear trend

coefficient, and the harmonic coefficients.

The in-phase and quadrature components of the harmonic coefficients may be re-combined

to compute amplitude and phase values for each tidal harmonic. For a given tidal harmonic,

η:

Aη =
√
c2
η + s2

η (2.45)

and

φη = atan2(sη, cη), (2.46)

where Aη is the amplitude and φη is the phase.

2.6 Error Analysis

One method for determining uncertainties in the estimated harmonic coefficients involves

computing power spectra of the residuals, as described in (Pawlowicz et al., 2002). In

particular, the variance in the c and s parameters may be estimated by multiplying the

average spectral density, P̄ , by the frequency interval of the time series, ∆f = (N∆t)−1,
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where N represents the total number of epochs in the time series and ∆t represents the

temporal spacing of the time series. Periodograms for real time series often do not exhibit

spectral flatness; thus, frequency windows centered on each tidal harmonic may be applied

to the periodograms prior to computing P̄ .

Since P̄∆f provides a variance estimate for the harmonic coefficients (cη and sη in Eq.

7.10), the error estimates must be mapped into amplitude and phase. The mapping may

be accomplished using a parametric bootstrap algorithm. In particular, random noise esti-

mates may be sampled from Gaussian distributions of the residual variance and added to

the original harmonic coefficients derived from inversion of the time series. The addition of

randomly sampled noise to the harmonic coefficients generates many additional instances

of the harmonic coefficients, which may be converted into distributions of amplitude and

phase for each tidal harmonic. Standard statistical analyses may then be performed on the

bootstrapped distributions of amplitude and phase.

2.7 Particle Motion Ellipses

For an individual tidal harmonic, the OTL-induced surface displacements at a particular

station may be represented by a closed particle motion ellipse (PME) in three-dimensional

space, which is traced out completely during each tidal period (e.g., Godin, 1972, Sec.

2.6.1). To illustrate three-dimensional harmonic displacements on a two-dimensional map,

however, the horizontal motion can be depicted by the size and orientation of the PME

(generated from the east-west and north-south displacement) and the vertical motion can be

depicted by the color of the PME.

The horizontal-ellipse parameters may be derived analytically from the harmonic time func-

tions for the north- and east-displacement components:

x(t) = A cos(ω0 t− α)

y(t) = B cos(ω0 t− β),

where x(t) represents the time function for the east component and y(t) represents the
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time function for the north component. Since the frequency, ω0, is the same for each time

function, the time functions may be combined (e.g., Thornton & Marion, 2004):

y(t) =
B

A
x(t) cos δ −B

√
1−

(
x(t)

A

)2

sin δ

A2B2 sin2 δ = B2 x(t)2 − 2AB x(t) y(t) cos δ +A2 y(t)2

sin2 δ =
x(t)2

A2
− 2x(t) y(t) cos δ

AB
+
y(t)2

B2
, (2.47)

where δ = α− β.

The east- and north-displacement components may then be rotated into a new frame of

reference such that the semi-major and semi-minor axes of the ellipse are aligned with the

horizontal and vertical axes of the new coordinate system. The new coordinates, x′ and y′,

are related to the old coordinates (x and y) by a rotation angle, θ (e.g., Boas, 1983, Sec.

3.6):

x(t) = x′(t) cos θ − y′(t) sin θ

y(t) = x′(t) sin θ + y′(t) cos θ.

Substituting the rotated coordinates into Eq. 2.47 yields:

(x′(t) cos θ − y′(t) sin θ)2

A2
+

(x′(t) sin θ + y′(t) cos θ)2

B2
−

2 (x′(t) cos θ − y′(t) sin θ) (x′(t) sin θ + y′(t) cos θ) cos δ

AB
= sin2 δ. (2.48)

Expanding and rearranging leads to:

sin2 δ =
x′(t)2 cos2 θ

A2
− 2x′(t) y′(t) sin θ cos θ

A2
+
y′(t)2 sin2 θ

A2
+

x′(t)2 sin2 θ

B2
− 2x′(t) y′(t) sin θ cos θ

B2
+
y′(t)2 cos2 θ

B2
−

2 cos δ

AB
[x′(t)2 cos θ sin θ − y′(t)x′(t) sin2 θ +

y′(t)x′(t) cos2 θ − y′(t)2 sin θ cos θ]

= x′(t)2

[
cos2 θ

A2
− 2 cos θ sin θ cos δ

AB
+

sin2 θ

B2

]
+
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y′(t)2

[
sin2 θ

A2
+

2 cos θ sin θ cos δ

AB
+

cos2 θ

B2

]
+

x′(t) y′(t)

[
−2 sin θ cos θ

A2
+

2 cos δ (sin2 θ − cos2 θ)

AB
+

2 cos θ sin θ

B2

]
.

(2.49)

Setting the x′(t) y′(t) term in Eq. 2.49 equal to zero yields:

[
−sin(2 θ)

A2
− 2 cos δ cos(2 θ)

AB
+

sin(2 θ)

B2

]
= 0, (2.50)

where the trigonometric identities

sin(2u) = 2 sinu cosu

cos(2u) = cos2 u− sin2 u

have been applied. I then solve Eq. 2.50 for θ:

0 = −B2 sin(2θ)− 2AB cos δ cos(2θ) +A2 sin(2θ)

= sin(2θ)[A2 −B2]− cos(2θ)[2AB cos δ]

sin(2θ)

cos(2θ)
=

[
2AB cos δ

A2 −B2

]
tan(2θ) =

[
2AB cos δ

A2 −B2

]
2 θ = arctan

[
2AB cos δ

A2 −B2

]
θ =

1

2
arctan

[
2AB cos δ

A2 −B2

]
. (2.51)

Returning to Eq. 2.49:

sin2 δ = x′(t)2

[
cos2 θ

A2
− 2 cos θ sin θ cos δ

AB
+

sin2 θ

B2

]
+

y′(t)2

[
sin2 θ

A2
+

2 cos θ sin θ cos δ

AB
+

cos2 θ

B2

]
+

x′(t) y′(t) [0], (2.52)
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which equates to
x′(t)2

a2
+
y′(t)2

b2
= 1, (2.53)

where

1

a2
=

1

sin2 δ

[
cos2 θ

A2
− 2 cos θ sin θ cos δ

AB
+

sin2 θ

B2

]
1

b2
=

1

sin2 δ

[
sin2 θ

A2
+

2 cos θ sin θ cos δ

AB
+

cos2 θ

B2

]
. (2.54)

The PME representing the horizontal motion is now aligned along the x′ and y′ axes, where

a and b are the semi-major and semi-minor axes and θ is given by Eq. 2.51.

2.8 Suggestions for Further Reading

A selection of useful resources for tidal harmonic analysis includes: Doodson (1921, 1924a,

1928, 1957), Doodson & Warburg (1941), Schureman (1971), Godin (1972), Foreman

(1977), Melchior (1983), Pugh (1987), Pawlowicz et al. (2002), Foreman et al. (2009),

and Pugh & Woodworth (2014).
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3
GNSS-Inferred Measurements of Ocean

Tidal Loading Response

3.1 Introduction

Earth’s displacement response to periodic loading by the ocean tides may be inferred using

Global Navigation Satellite System (GNSS) networks of ground-based receivers and space-

based satellites (e.g., Ito & Simons, 2011; Yuan et al., 2013; Bos et al., 2015). The Global

Positioning System (GPS), operated by the United States government, makes up one sector

of the broader GNSS system. Currently, the space-based GPS constellation consists of

approximately 30 satellites (Blewitt, 2015). Typically, at least five GPS satellites are visible

to an Earth-based observer at any time and at any location worldwide. The satellites record

surface displacements, indirectly by means of pseudorange and phase observables, with an

accuracy of about a few millimeters and a precision down to about 1 mm (Blewitt, 2015).

Traditionally, gravity, tilt, and strain measurements have been used to investigate Earth’s

response to ocean tidal loading (OTL) (e.g., Baker, 1980a,b; Melchior, 1983; Baker, 1984;

Agnew, 2015). The load Green’s functions for tilt and strain, however, decrease as r−2 from

the load point, where r is distance; thus, OTL response estimates obtained using strain- and

tilt-meters primarily reflect the local Earth structure (Baker, 1984; Jentzsch, 1997). Local

inhomogeneities, such as cavities, limit the effectiveness of using strain and tilt observa-

tions to investigate OTL response. Gravity and displacement load Green’s functions, on

the other hand, decrease as r−1 from the load point and therefore exhibit sensitivity to a

wider expanse of ocean loads as well as to regional solid Earth structure (Baker, 1984).

Since GPS stations are also extensively deployed around the globe, GPS has emerged as a

preferred method for investigations into OTL response (e.g., Penna et al., 2015).
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For many geodetic studies, OTL response is an inconvenient source of noise. Thus, the

signal is often removed at the GPS processing stage using forward-modeled coefficients for

the main tidal constituents. Smaller tidal harmonics are often modeled and removed as well

by interpolation of the admittance, which is assumed smooth across each tidal constituent

band (e.g., Agnew, 2012). One can also remove the OTL signal at the post-processing stage

by simply fitting a harmonic series of sine and cosine terms, each with a specific tidal fre-

quency, and removing the modeled values from the time series. Since precise estimates of

the phases relative to a common reference point are not required for simply removing the

tidal components, the astronomical ephemeris need not be considered (except for determin-

ing the frequencies of the tidal harmonics, which are widely known).

When OTL response is the signal of interest, however, the astronomical argument and

harmonic-modulation corrections must be considered as well. Isolating the OTL-response

signal in a geodetic time series requires the modeling and removal of additional signals that

might contaminate the time series, including the solid-Earth body tides, transient effects

(such as earthquakes, diking, rifting, creep, or volcanism), tectonic plate motions, glacial

rebound, multipath effects, atmospheric loading, antenna imperfections, and tropospheric

refraction. Here, I discuss strategies for processing raw GPS data and isolating the OTL-

response signal.

3.2 Basic GPS Theory

The GPS satellites, deployed and maintained primarily by the US Department of Defense,

emit electromagnetic (EM) signals at two separate microwave frequencies: 1575.42 MHz

(19.0 cm wavelength) for the L1 band and 1227.60 MHz (24.4 cm wavelength) for the L2

band (e.g., Blewitt, 1997, 2015). Each satellite transmitter encodes the two carrier wave

signals via phase modulation into binary bits that contain the time of transmission, satellite

clock bias estimates, and satellite position information, supplied by three distinct codes: the

Course Acquisition (C/A) Code, the Precise (P) Code, and the Navigation Message.

Ground-based GPS receivers detect the dual-frequency carrier waves and cross-correlate

the waves internally with replica signals generated by the receiver clocks. Two pseudo-
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ranges, one for each frequency band, as well as two carrier phase observables are then

computed by the receiver. The pseudoranges are derived based on the travel time of the car-

rier waves. The phase observables are derived based on the difference in phase between the

transmitted signal and the replica signal generated internally by the receiver. Note that an

ambiguity of an integer number of wavelengths will be introduced when the phase observ-

ables are converted to a distance measurement. Modern, research-grade software includes

the functionality to estimate the integer ambiguities through a process known as ambiguity

resolution (Blewitt, 1997; Bertiger et al., 2010; Blewitt, 2015).

For high-precision estimates of GPS receiver positions, the receiver must compute the two

pseudoranges and two carrier phase observables simultaneously for at least five satellites in

current view. The measurements are combined using trilateration (Blewitt, 2015). Thus,

three satellites are required to obtain an estimate of receiver position. The fourth and

fifth satellites facilitate estimation of receiver-clock bias and delays in signal transmission

through the troposphere. Transmission delays through the ionosphere may also be removed

through an appropriate combination of the dual-frequency signals, known as an ionosphere-

free combination (Zumberge et al., 1997; Blewitt, 2015).

Although satellite navigation information is provided by the transmitting satellite itself,

higher-precision satellite ephemeris information may be obtained through the International

GNSS Service (IGS) or the Jet Propulsion Laboratory (JPL). Geodetic-quality positioning

requires advanced signal processing software with the capacity to implement sophisticated

algorithms, including multi-parameter estimation, ambiguity resolution, cycle-slip detec-

tion, and body-tide removal (Blewitt, 2015).

The design of the GPS satellite constellation maximizes the number of satellites visible to

receivers across the globe at any time (Blewitt, 2015). The satellites occupy six evenly-

spaced orbital planes at ∼26 600 km altitude, each inclined at 55◦ relative to the equatorial

plane. Although ∼30 GPS satellites are currently deployed, only about 24 are considered

currently active, with the remainder serving as spares. Each satellite completes one orbit

about the earth in 11 hours and 58 minutes, and hence two orbits are completed in 23

hours and 56 minutes, a time period equivalent to the length of one sidereal day, or Earth’s
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rotational period. Since the ground tracks and geometry of the satellite constellation repeat

every sidereal day, error sources specific to each satellite-receiver pair, such as multipath,

repeat at the same period (Larson et al., 2010; Blewitt, 2015).

The satellite orbital inclinations have important implications for sensor deployment, includ-

ing site selection and receiver orientation, as well as the precision of the estimated receiver

positions (Blewitt, 1997, 2015). Due to the 55◦ inclination of the orbital tracks, the satel-

lites never cross the polar regions and never rise more than 55◦ above the horizon from the

perspective of a polar observer. For this reason, positioning precision worsens towards the

poles. Moreover, in equatorial regions, GPS satellites appear to orbit primarily in the north-

south direction; thus, estimation of the north displacement-component tends to be better

constrained than the east displacement-component.

3.3 Data Acquisition and Formatting

The International GNSS Service (IGS) maintains an extensive network of more than 350

GNSS stations worldwide, with data freely available on-line for research purposes. Many

additional local and regional networks have also been deployed, both on a permanent ba-

sis as well as campaign-style, by numerous governments and research organizations. The

standard format for GNSS data is known as Receiver Independent Exchange (RINEX).

3.4 GPS Data Processing Strategies

Several software packages are available for the high-level processing of RINEX data (Ble-

witt, 1997, 2015). Here, I focus on software developed and maintained by JPL: the GNSS-

Inferred Positioning System and Orbit Analysis and Simulation Software II, or GIPSY-

OASIS II (GOA-II) (e.g., Gregorius, 1996; Zumberge et al., 1997). GOA-II includes the

functionality to estimate static (daily) as well as kinematic (sub-daily/high-rate) receiver

positions; either technique may be used to investigate OTL response (e.g., Allinson et al.,

2004; King, 2006; Ito & Simons, 2011; Yuan & Chao, 2012; Yuan et al., 2013; Agnew,

2015; Penna et al., 2015). I adopt the kinematic approach, whereby the OTL response
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remains un-modeled at the GPS processing stage and subsequently estimated through har-

monic analysis (Ch. 2).

3.4.1 Kinematic Precise Point Positioning

GOA-II processes GNSS data using Precise Point Positioning (PPP) (Zumberge et al.,

1997). Motivated by reducing the computation time for large GNSS networks, PPP pro-

vides an efficient and precise method for estimating receiver positions without inter-station

double-differencing. The modules executed by GOA-II (gd2p script) include a data editor

module (ninja), a measurement model module (qregres), a parameter estimation module

(wash cycle), and a solution module (e.g., tdpfile and stacov). In addition to a RINEX file,

GOA-II requires the data rate, solution rate, and solution type (i.e., static or kinematic). The

data rate, rather than the solution rate, predominantly controls the processing time. Addi-

tional parameters may optionally be specified, such as the stochastic process noise settings

for the coordinate estimates and tropospheric zenith delay.

PPP requires pre-computed satellite orbit and clock products, determined from a global net-

work of GNSS satellites and permanent receivers. The precise ephemeris information ef-

fectively eliminates the need for local base stations, which would be required for traditional

differential GNSS analysis (e.g., Zumberge et al., 1997; King & Aoki, 2003). Further-

more, GOA-II performs single-receiver ambiguity resolution by pre-computing wide-lane

and phase bias estimates relative to an extensive global network of ground-based receivers

(Bertiger et al., 2010).

Particularly for sub-daily solutions, treatment of the tropospheric zenith delay plays a crit-

ical role in the ability to resolve receiver positions accurately due to the direct trade-off in

the two sets of parameters (Bar-Sever et al., 1998). A range of process noise values for the

tropospheric zenith delay appear in the literature for mass-loading applications, including

3 mm hr−
1
2 (5.0E-8 km s−

1
2 ) (e.g., Williams & Penna, 2011; Yuan & Chao, 2012; Yuan

et al., 2013), 4.8 mm hr−
1
2 (e.g., King & Aoki, 2003), 6 mm hr−

1
2 (e.g., Larson et al., 2010;

Allinson et al., 2004), and 10.2 mm hr−
1
2 (e.g., King et al., 2005). Typically, a tropospheric

zenith delay is estimated, from which delays at any elevation angle may be extrapolated us-
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ing a mapping function (e.g., Blewitt, 2015). One of the simplest examples of an effective

mapping function is the inverse sine of the elevation angle multiplied by the zenith delay,

which assumes a horizontally stratified atmosphere (a reasonable assumption for elevation

angles greater than about 20◦). More accurate mapping functions treat the wet and dry

components of the tropospheric delay separately and account for the curvature of Earth’s

surface (e.g., Blewitt, 2015).

3.4.2 Recovery of the OTL-Response Signal

Synthetic testing may be used to assess the optimal settings for GOA-II parameters (e.g.,

King & Aoki, 2003; Penna et al., 2015). Penna et al. (2015) introduced a small synthetic

signal into a frequency band unoccupied by large-amplitude harmonics, but between M2

and O1. By tuning the coordinate and tropospheric process noise settings for the kinematic

PPP analysis, Penna et al. (2015) demonstrated that the synthetic harmonics could be re-

covered with a precision of about 0.2 mm for stations in western Europe. As an alternative

option, the synthetic signals could simulate real OTL-response signals, such as the modeled

OTL response at a given location. For a kinematic PPP analysis, fine tuning the coordinate

and tropospheric process noise settings are priorities (Penna et al., 2015).

To introduce a modeled OTL-response signal into GPS data, the complex-valued amplitudes

of the synthetic harmonic(s) must be converted into pseudorange and phase observables

for each transmitter-receiver pair. The conversion may be accomplished within GIPSY by

computing two static PPP solutions. For the first solution, the raw data should be pro-

cessed as normal, with receiver-specific OTL-response estimates included. For the second

solution, the raw data should be processed using the same procedure, but with the synthetic

OTL-response estimates substituted for the receiver-specific estimates. All other parameters

should remain the same between the two runs. For the method to work well, the synthetic

OTL-response signal should be much larger in amplitude than the receiver-specific OTL-

response signal. The difference in pre-fit residuals from the two static solutions may be used

to modify directly the GOA-II quick-measurement file, which includes the pseudorange and
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phase observables for each satellite relative to the receiver2.

The pre-fit residuals represent the differences between the GNSS observations and contri-

butions from input-model parameters prior to the determination of station positions. Since

all parameters remain unchanged between the two static runs except for the OTL-response

model, the difference in pre-fit residuals simply yields the difference between the OTL-

response models. Formally,

Rpred − Rsyn = (O−Mpred)− (O−Msyn)

= Msyn −Mpred, (3.1)

where Rpred represents the pre-fit residuals computed based on the predicted tidal response

at the receiver, Rsyn represents the pre-fit residuals computed based on the synthetic tidal

response, O represents the observations tabulated in the RINEX file, and M represents

contributions to the data from input models. All model contributions cancel out in the dif-

ferencing of the pre-fit residuals except for the OTL-response models; Msyn −Mpred sim-

ply yields the difference between the synthetic OTL-response signal and predicted OTL-

response signal at the receiver. Importantly, the differences between the OTL-response

models are now given in the form of pseudorange and phase observables for individual

satellites. When the model differences are added to the true pseudorange and phase observ-

ables in the qmfile, which includes the actual (recorded) OTL-response signal at the receiver,

the resulting OTL-response signal should reflect only the synthetic harmonics. Since minor

differences between the predicted and observed OTL response at the receiver will undoubt-

edly be present, receivers selected for synthetic testing should exhibit small OTL-response

amplitudes relative to the synthetic. Ideally, the predicted and observed OTL-response sig-
2In order to export the pre-fit residuals, the qregres.nml file must be adjusted to include the line “Prefit =

.True.” in the run type block. The adjustment must be made after the initial static PPP runs and followed by a
re-execution of qregres. To re-execute qregres, run the command located at the top of the qregres1.log file at
the command line, after adding “-res syn test” to the end of the command list. Now, the pre-fit residuals may be
found in a file called “syn test;” the seventh column contains the residuals. After computing the difference in
pre-fit residuals, the result must be inserted appropriately into the qmfile. Since the qmfile is binary, it must be
converted to ascii format to make the changes. To do this, I use the dump qm command: “dump qm -d qmfile
> qmascii,” where -d indicates double precision. I then edit the qmascii file by adding the pre-fit residual
differences to the observation column (column 9), taking great care to keep track of satellite number, epoch,
and type of observable. After the edits have been made, the ascii file can be dumped back to binary: “dump2qm
ascii file bin file.” Now, gd2p can be run with the qmfile as input instead of a RINEX file using the “-ae” flag.
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nals would be zero (or perfectly modeled) such that the OTL-response contributions to the

modified qmfile would come entirely from the synthetic signal. Any discrepancies, how-

ever, between the predicted and observed OTL response at the receiver remain consistent

between various recovery tests. Thus, whereas uncertainty estimates garnered from the syn-

thetic tests might be biased by inaccurate modeling of the OTL-response at the receiver, the

process of finding optimal parameters should not be significantly impacted.

3.4.3 Removal of the Solid Earth Body Tides

GOA-II currently adopts a model for the solid-Earth body tides (SEBTs) from the 2010

International Earth Rotation and Reference Systems Service (IERS) standards (Petit &

Luzum, 2010, Sec. 7.1.1). The SEBTs are computed from complex-valued Love numbers,

where imaginary components arise due to mantle anelasticity and core resonances. Further-

more, the Love numbers are latitude dependent due to Earth’s non-sphericity and frequency

dependent due to Earth’s rotation, mantle anelasticity, and the Nearly Diurnal Free Wobble

(NDFW) resonance. The Love numbers are computed based on an oceanless version of

the Preliminary Reference Earth Model (PREM) (Dziewonski & Anderson, 1981), with the

model for mantle Q obtained from Widmer et al. (1991). For more information, see (Petit

& Luzum, 2010, Secs. 6.2.1 & 7.1.1).

3.5 Post-Processing Techniques

3.5.1 Cleaning the Time Series

Even though gd2p performs some editing of data outliers, it is often necessary to detect

and remove outliers at the post-processing stage as well. One method for removing out-

liers is to employ a running median absolute deviation. Furthermore, appropriately placed

heaviside functions may be necessary to remove large offsets in the time series, perhaps

due to tectonic events or local site disturbances. When extracting tidal harmonics from a

GPS-inferred time series, an iterative re-weighted least squares (IRLS) approach, which

converges to an L1-norm solution, can help to suppress the influence of large outliers (e.g.
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Aster et al., 2013).

In addition to large outliers, local reflections of the carrier wave signals, known as multipath,

can contribute significantly to the noise level of the time series (e.g., Larson et al., 2010).

Since the reflections are specific to each satellite-receiver pair, and since the positions of

the satellites relative to a receiver repeat every sidereal day, the multipath effects may be

mitigated through sidereal filtering. A rough estimate for the sidereal filter may be obtained

at the post-processing stage: a sidereal average may be computed for every epoch in the

residual time series. In other words, a running average will be applied to the residual time

series, whereby a mean multipath value for a given epoch will be derived from a series of

neighboring epochs separated by multiples of a sidereal day. Since the multipath signals

can change over time (e.g., a nearby tree may be cut down), temporal windows should not

be too long. I have found that a window of ±10 days (20 total days) works well.

3.5.2 Spectral Analysis

Common methods for computing the power spectrum of a time series include the Fourier

Transform (e.g., Press et al., 2007, Sec. 13.4) and autoregressive, or “all-poles,” models

(e.g., Press et al., 2007, Sec. 13. 7). The methods, however, cannot be applied directly to

unevenly sampled data, and simply filling in the missing values using interpolation tech-

niques can generate false signals at low frequencies (e.g., Press et al., 2007, Sec. 13.8).

In practice, tidal data is rarely evenly spaced, typically due to measurement gaps. Thus,

alternative algorithms are required to compute the power spectra of time series with gaps.

A couple options include mulit-tapering methods (e.g., Fodor & Stark, 2000) as well as the

Lomb (also known as the Lomb-Scargle) periodogram (e.g., Press et al., 2007, Sec. 13.8).

3.5.3 Removal of Non-OTL Mass Loading Signals

The GNSS time series may be further improved by predicting and removing signals due to

other effects, such as atmospheric pressure loading (e.g., van Dam et al., 1994; van den Dool

et al., 1997; Ponte & Ray, 2002; Ray & Ponte, 2003; Petrov & Boy, 2004; Guo et al., 2004;

Tregoning & van Dam, 2005; Tregoning & Watson, 2009; van Dam et al., 2010; Tregoning
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& Watson, 2011), hydrological loading (e.g., van Dam et al., 2001; Bevis et al., 2005; Fu

et al., 2015), and non-tidal ocean loading (e.g., van Dam et al., 1997; Williams & Penna,

2011; Nordman et al., 2015). More information on non-OTL variations in surface pressure

and associated deformation is provided in Ch. 8.
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4
Modeling Earth Deformation Induced by

Surface Mass Loading

4.1 Introduction

Predicting the displacement-response of a radially symmetric Earth to surface mass loading

(SML) involves a convolution of displacement load Green’s functions (LGFs) with a load

model (e.g., Farrell, 1973; Jentzsch, 1997):

U(r, S, Z, ρ) =

∫
Ω
ρ(r′)G(|r′ − r|, S)Z(r′) dΩ, (4.1)

where U is the response of Earth at the observation point r, ρ is the mass density of the

load at point r′, G is the Green’s function per kg load, and Z is the height of the load at

point r′. The integral is taken over the surface area of the Earth, Ω. The LGFs depend on

the distance between the load point and the observation point, |r′ − r|, where r represents

the position vector of the observation point and r′ represents the position vector of the load

point (e.g., Jentzsch, 1997, Sec. 2.3). The LGFs additionally depend on Earth structure, S,

where S represents radially symmetric structure (e.g., PREM). The LGFs are derived from

combinations of load Love numbers (LLNs) (e.g., Farrell, 1972a). Self-gravitating, spher-

ically symmetric, non-rotating, elastic, and isotropic (SNREI) Earth models are typically

assumed (e.g., Longman, 1962; Smylie, 2013), though more sophisticated models may also

be adopted, such as to include mantle anelasticity (e.g., Pagiatakis, 1990; Bos et al., 2015).

Here, I develop the procedure for computing load Love numbers, displacement load Green’s

functions, and SML-induced surface displacements for realistic mass loads.
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4.2 Love Number Computation

4.2.1 Introduction

Love numbers are dimensionless parameters that characterize the yielding of the elastic

Earth to body forces and surface tractions (Love, 1911; Munk & MacDonald, 1960). For

the response of an elastic Earth to an external gravitational potential, V (Eq. 1.9), three Love

numbers are defined: hn(r), kn(r), and ln(r). The subscript n denotes a dependence on

spherical harmonic degree and (r) indicates a radial dependence. Augustus Edward Hough

(A.E.H.) Love introduced hn(r) and kn(r) in 1909 (Love, 1909); Toshi Shida subsequently

introduced ln(r) in 1912. All three parameters are commonly referred to as Love numbers,

or alternatively referred to as the Love and Shida numbers. Although the parameters exhibit

a radial dependence, here I consider deformation observed only at Earth’s surface, and thus

drop the (r) notation.

The parameter hn characterizes Earth’s vertical displacement in response to an external

potential. The radial displacement, un, of Earth’s surface in response to an external gravi-

tational potential of spherical harmonic degree, n, is given by (e.g., Munk & MacDonald,

1960; Farrell, 1972a; Melchior, 1983; Baker, 1984; Agnew, 2015):

un = hn
Vn
g
, (4.2)

where g is the gravitational acceleration at Earth’s surface, Vng represents the equilibrium

tidal height, and hn scales the equilibrium height to a realistic vertical displacement based

on the density and elastic properties of Earth’s interior. Gravitational self-attraction, gen-

erated by the redistributed mass, is accounted for in the response parameter hn (Munk &

MacDonald, 1960).

The parameter kn characterizes the change in the gravitational potential resulting from the

redistribution of mass that occurs in response to the external potential field. Due to the self-

attraction effect, the magnitude of the gravitational potential increases by a factor knVn

from the location of the displaced surface. Thus, the total potential, accounting for self-
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attraction, becomes (e.g., Munk & MacDonald, 1960; Agnew, 2015):

V total
n = (1 + kn)Vn. (4.3)

Dividing Eq. 4.3 by the gravitational acceleration at the surface gives the height of the tidal

equipotential:

uequipotential
n = (1 + kn)

Vn
g
, (4.4)

and, thus, the radial displacement of a perfectly fluid Earth relative to its initial, undisturbed

height. Now, the vertical displacement of a fluid layer covering the solid Earth, and with

respect to the solid Earth, is given by (e.g., Agnew, 2015):

ufluid layer
n = (1 + kn − hn)

Vn
g
. (4.5)

In other words, Eq. 4.5 represents the height of the equipotential surface minus the vertical

deformation of the solid Earth due to the load.

The Shida number ln is defined as the horizontal displacement of Earth relative to the gra-

dient of the equilibrium tide. The two components of the horizontal displacement are:

vnorth
n = − ln

g

∂Vn
∂δ

veast
n =

ln
g

1

sin δ

∂Vn
∂λ

, (4.6)

where δ is colatitude and λ is east longitude (e.g., Munk & MacDonald, 1960; Harrison,

1985).

For a rigid Earth, hn = kn = ln = 0. For a perfectly fluid Earth, hn = ln = 1 and kn

depends on the density profile of the redistributed fluid (e.g., Stacey & Davis, 2009). For a

homogeneous, perfectly fluid Earth, kn = 3
2 .

The Love and Shida numbers described so far characterize Earth’s response to an external

gravitational potential; thus, I refer to them as potential Love numbers. A second class of

Love numbers, referred to as load Love numbers, may also be introduced to describe the
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deformation of Earth under normal tractions, typically applied at Earth’s surface (Munk &

MacDonald, 1960; Lambeck, 2005). Surface mass loads come from a variety of sources,

including glaciers, lakes, the atmosphere, and oceans. The load Love numbers are distin-

guished from the potential Love numbers by a superscript prime: h′n, k′n, and l′n. A third

class of Love numbers exists to characterize Earth’s response to surface-tangential tractions

(Lambeck, 2005), distinguished from the other classes by superscript double primes (h′′n,

k′′n, l′′n) and known as shear Love numbers. Only six of the nine Love numbers from the

three sets (potential, load, and shear) are independent, and hence expressions exist to relate

the Love numbers to one another (Molodenskiy, 1977; Lambeck, 1988).

4.2.2 Equilibrium Equations for Material Deformation

Here, I review the equilibrium equations describing spheroidal deformations of an elas-

tic, self-gravitating, and hydrostatically pre-stressed body (e.g., Takeuchi, 1950; Alterman

et al., 1959; Longman, 1962; Takeuchi, 1966; Farrell, 1972a; Takeuchi & Saito, 1972; Cath-

les, 1975; Lanzano, 1982; Dahlen & Tromp, 1998; Bos & Scherneck, 2013; Smylie, 2013).

In continuum mechanics, conservation of linear momentum states:

ρ a = ∇ · σ + ρF , (4.7)

where σ is the stress tensor, ρ is the density, a is the acceleration vector (ai =
(
∂2u
∂t2

)
i

=

(u,tt )i = ui,tt, where u is a three-component displacement vector) and F is the body-force

vector per unit mass. In indicial notation, (∇ · σ)i = σij,j , where Einstein’s summation

convention for repeated indices applies. The system of equations 4.7 are also known as

the equations of motion or the momentum equations. In static equilibrium, the inertial term

vanishes and the divergence of the total stress field balances the sum of all body forces:

0 = ∇ · σ + ρF . (4.8)

Since surface mass loading can be dynamic, however, I retain the acceleration term.
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Assuming that the body is initially in hydrostatic equilibrium, I express the pre-existing

stress field, Tij , as (e.g., Smylie, 2013):

Tij = −p0 δij , (4.9)

where p0 is the equilibrium pressure and δij is the Kronecker delta function. In vector

notation,

T = −p0 I, (4.10)

where I is the identity matrix. The minus sign indicates that the hydrostatic pressure is

compressive, based on the convention that positive stresses are directed outward normal to

the surface (e.g., Sabadini & Vermeersen, 2004).

For a body subject to an elastic displacement u, the initial stress field in the undeformed

medium is given by (e.g., Lapwood & Usami, 1981; Lanzano, 1982; Sabadini & Ver-

meersen, 2004; Smylie, 2013):

σ0 = T− u · ∇T. (4.11)

Now, the total stress tensor σ at coordinates in the undeformed medium becomes the sum

of the hydrostatic prestress, σ0, and an additional perturbation to the stress field due to

deformation, σ1:

σ = σ1 + σ0

σ = σ1 − p0 I + u · ∇ p0. (4.12)

Hence, the equilibrium equation becomes (e.g., Sabadini & Vermeersen, 2004):

ρa = ∇ · σ1 −∇ p0 +∇(u · ∇ p0) + ρF . (4.13)

In hydrostatic equilibrium, the gradient of the pressure, p0, is related to density and gravity
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by the relation:
∂p0

∂xi
= ρ0 g0i, (4.14)

where ρ0 and g0 are the equilibrium density and gravity of the unperturbed medium, respec-

tively. In spherical coordinates, I assume that the gravitational acceleration is everywhere

directed perpendicular to the surface, and hence Eq. 4.14 becomes:

∂p0

∂r
= ρ0 g0 r̂, (4.15)

where r̂ is a unit vector, directed outward normal to the surface. The equilibrium gravity,

g0, at radius r may be derived from a radially heterogeneous density distribution via (e.g.,

Longman, 1962):

g0(r) =
4πG

r2

∫ r

0
ρ0(s)s2ds, (4.16)

where G is the universal gravitational constant.

The deformation also induces small perturbations in density and gravity. The resulting

density, ρ, is equivalent to the sum of the initial undeformed density, ρ0, and the perturbation

to the density caused by the deformation, ρ1 (e.g., Smylie, 2013). Hence:

ρ = ρ0 + ρ1, (4.17)

where

ρ1 = −∇ · (ρ0 u) (4.18)

is the continuity equation for mass advection and ui represents the ith component of the

displacement vector (e.g., Lanzano, 1982; Smylie, 2013).

The perturbation in density leads to a perturbation in the gravitational potential, ψ1, which

must satisfy Poisson’s equation (e.g., Alterman et al., 1959; Longman, 1962; Lanzano,

1982):

∇2ψ1 = −4πGρ1

= −4πG (−∇ · (ρ0 u))
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= 4πG

(
ρ0∇ · u+ u · r̂ ∂ρ0

∂r

)
= 4πG

(
ρ0 ∆ + ur

∂ρ0

∂r

)
, (4.19)

where ∆ is the dilatation (i.e., the trace of the strain tensor, ε). The total gravitational

potential field, ψ, is equivalent to the sum of the initial field in its unperturbed state, ψ0, and

the additional small perturbation, ψ1 (e.g., Sabadini & Vermeersen, 2004; Smylie, 2013).

The perturbation in gravity, g1, due to the perturbation in the gravitational potential is thus:

g1 = ∇ψ1. (4.20)

Taking the body force per unit mass, F , to be the acceleration of gravity, I arrive at:

ρF = ρ (∇ψ) = ρ (∇ψ0 +∇ψ1) = ρ∇ψ0 + ρ∇ψ1 = ρ g0 + ρ g1. (4.21)

Now, I also expand density into its unperturbed and perturbed components:

ρF = g0(ρ0 + ρ1) + g1(ρ0 + ρ1)

= ρ0 g0 + ρ1 g0 + ρ0 g1 + ρ1 g1

= ρ0∇ψ0 + ρ1∇ψ0 + ρ0∇ψ1 + ρ1∇ψ1. (4.22)

Putting this back into the momentum equations:

ρa = ∇ · σ1 −∇ p0 +∇(u · ∇ p0) + ρ0∇ψ0 + ρ1∇ψ0 + ρ0∇ψ1 + ρ1∇ψ1. (4.23)

Note that −∇ p0 = −ρ0 g0r̂ = −ρ0∇ψ0; thus, two terms may be canceled, resulting in:

ρa = ∇ · σ1 +∇(u · ∇ p0) + ρ1∇ψ0 + ρ0∇ψ1 + ρ1∇ψ1. (4.24)

Furthermore, since ρ1∇ψ1 represents second-order displacements, it may be neglected here
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(e.g., Lanzano, 1982). Therefore:

ρa = ρ0 u,tt = ∇ · σ1 +∇(u · ∇ p0) + ρ0∇ψ1 + ρ1∇ψ0

= ∇ · σ1 +∇(ρ0 u · g0) + ρ0 g1 + ρ1 g0

= ∇ · σ1 +∇(ρ0 u · g0) + ρ0 g1 − (∇ · (ρ0u)) g0

= ∇ · σ1 +∇(ρ0 u · g0) + ρ0 g1 − (ρ0∇ · u+ u · ∇ρ0) g0

= ∇ · σ1 +∇(ρ0 u · g0) + ρ0 g1 − (ρ0 ∆ + u · ∇ρ0) g0

= ∇ · σ1 + ρ0∇(u · g0) + (u · g0)∇ρ0 + ρ0 g1 −

(ρ0 ∆ + u · ∇ρ0) g0, (4.25)

which is a linearized version of the Navier-Stokes equation, and ρ1 u,tt has been neglected

since it is of second order in the displacements (e.g., Lanzano, 1982).

4.2.3 Conversion to Spherical Coordinates

A cartesian coordinate system (x1, x2, x3) may be mapped to a spherical coordinate system

(r, θ, φ) by the relations (e.g., Lapwood & Usami, 1981; Boas, 1983):

x1 = r sin θ cosφ

x2 = r sin θ sinφ

x3 = r cos θ, (4.26)

where r is radial distance from Earth’s center, θ is colatitude, and φ is longitude. Further-

more, I define the displacement vector u as (e.g., Alterman et al., 1959):

ur = u

uθ = v

uφ = w. (4.27)
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The covariant base vectors, ai, in the spherical coordinate system are thus (e.g., Takeuchi,

1966; Lapwood & Usami, 1981):

ar =
∂x

∂r
= (sin θ cosφ, sin θ sinφ, cos θ)

aθ =
∂x

∂θ
= (r cosφ cos θ, r sinφ cos θ,−r sin θ)

aφ =
∂x

∂φ
= (−r sin θ sinφ, r sin θ cosφ, 0). (4.28)

Furthermore, the metric tensor, gij , is computed by:

gij = ai · aj , (4.29)

yielding

gij =


1 0 0

0 r2 0

0 0 r2 sin2 θ

 .

Scale factors, hi, may now be derived from the metric tensor via:

hi =
√
g(ii), (4.30)

resulting in:

hr = 1

hθ = r

hφ = r sin θ. (4.31)

From here, the components of the nabla operator are directly derived:

∇i =
1

h(i)

∂

∂θi
=

(
∂

∂r
,

1

r

∂

∂θ
,

1

r sin θ

∂

∂φ

)
. (4.32)
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Furthermore, the corresponding normalized base vectors, gi, are:

gr =
a(r)

hr
= (sin θ cosφ, sin θ sinφ, cos θ)

gθ =
a(θ)

hθ
= (cosφ cos θ, sinφ cos θ, − sin θ)

gφ =
a(φ)

hφ
= (− sinφ, cosφ, 0). (4.33)

The divergence of the vector displacement field, u, also referred to as the dilatation, be-

comes:

∇ · u = ∆ = ∇i(u) · gi

= ∇i(uj gj) · gi

= (∇i uj)gj · gi + uj (∇i gj) · gi

= ∇i ui + uj (∇i gj) · gi

=
∂u

∂r
+

1

r

∂v

∂θ
+

1

r sin θ

∂w

∂φ
+ uj (∇i gj) · gi

=
∂u

∂r
+

1

r

∂v

∂θ
+

1

r sin θ

∂w

∂φ
+
u

r
+
u

r
+

cot θ

r
v

=
∂u

∂r
+

1

r

∂v

∂θ
+

1

r sin θ

∂w

∂φ
+

2u

r
+

cot θ

r
v

=
1

r2 sin θ

[
∂

∂r
(r2 u sin θ) +

∂

∂θ
(r v sin θ) +

∂

∂φ
(r w)

]
. (4.34)

Putting the vertical load at the pole and assuming symmetric deformation about the line

θ = 0; the φ component of the equations of motion will be zero (e.g., Longman, 1962).

Now, the dilatation may be rewritten as:

∆ =
∂u

∂r
+

2u

r
+

1

r sin θ

∂

∂θ
(v sin θ). (4.35)

Following the development of Lapwood & Usami (1981), I denote the rule for differentia-

tion of a second-order tensor, Tij , as follows:

Tij,γ =
∂

∂γ
Tij + Γiσγ Tσj + Γjσγ Tiσ, (4.36)
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where Γijk represent Christoffel symbols. In spherical coordinates, the components of the

Christoffel symbols are:

Γ1
22 = −r

Γ1
33 = −r sin2 θ

Γ2
33 = − sin θ cos θ

Γ2
12 = Γ2

21 =
1

r

Γ3
13 = Γ3

31 =
1

r

Γ3
23 = Γ3

32 = cot θ, (4.37)

where 1, 2, and 3 correspond to r, θ, and φ. All other components are zero. Inserting the

components of Eq. 4.37 into Eq. 4.36 yields:

T11,1 =
∂

∂r
T11

T12,2 =
∂

∂θ
T12 − r T22 +

1

r
T11

T13,3 =
∂

∂φ
T13 − r sin2 θ T33 +

1

r
T11 + cot θ T12

T21,1 =
∂

∂r
T21 +

1

r
T21

T22,2 =
∂

∂θ
T22 +

2

r
T12

T23,3 =
∂

∂φ
T23 − sin θ cos θ T33 +

1

r
T21 + cot θ T22

T31,1 =
∂

∂r
T31 +

1

r
T31

T32,2 =
∂

∂θ
T32 + cot θ T32 +

1

r
T31

T33,3 =
∂

∂φ
T33 + 2 cot θ T23. (4.38)

Normalizing back to the physical components of the stress tensor, I use the relation (e.g.,

Lapwood & Usami, 1981, Appendix A.2):

σij =
√
g(ii) g(jj) Tij , (4.39)
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where g(11) = 1, g(22) = r2 and g(33) = r2 sin2 θ (Eq. 4.29). Thus, the components of the

stress tensor are:

σrr = T11

σθθ = r2 T22

σφφ = r2 sin2 θ T33

σrθ = r T12

σrφ = r sin θ T13

σθφ = r2 sin θ T23. (4.40)

Recall that the divergence of the stress tensor is given by:

∇ · σ = σij,j = ∂j σij . (4.41)

Thus, for the r component:

σrj,j =

(
∂

∂r
T11 +

∂

∂θ
T12 − r T22 +

1

r
T11 +

∂

∂φ
T13 − r sin2 θ T33 +

1

r
T11 + cot θ T12

)
r̂

=

(
∂

∂r
σrr +

1

r

∂

∂θ
σrθ −

1

r
σθθ +

2

r
σrr +

1

r sin θ

∂

∂φ
σrφ −

1

r
σφφ +

cot θ

r
σrθ

)
r̂

=

(
∂

∂r
σrr +

1

r

∂

∂θ
σrθ +

1

r

[
2σrr − σθθ − σφφ +

1

sin θ

∂

∂φ
σrφ + cot θ σrθ

])
r̂

=

(
∂

∂r
σrr +

1

r

∂

∂θ
σrθ +

1

r
[2σrr − σθθ − σφφ + cot θ σrθ]

)
r̂, (4.42)

where I have canceled the ∂φ term in the final line due to the assumed azimuthal symmetry

(i.e., deformation is assumed to be symmetric about the line θ = 0).

Performing the same expansion for the θ component yields:

σθj,j =

(
∂

∂r
T21 +

4

r
T12 +

∂

∂θ
T22 +

∂

∂φ
T23 − sin θ cos θ T33 + cot θ T22

)
r θ̂

=

(
∂

∂r

σrθ
r

+
4σrθ
r2

+
1

r2

∂

∂θ
σθθ +

1

r2 sin θ

∂

∂φ
σθφ −

cos θ

r2 sin θ
σφφ +

cot θ

r2
σθθ

)
r θ̂

=

(
1

r

∂

∂r
σrθ −

σrθ
r2

+
4σrθ
r2

+
1

r2

∂

∂θ
σθθ +

1

r2 sin θ

∂

∂φ
σθφ −

cot θ

r2
σφφ +

cot θ

r2
σθθ

)
r θ̂
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=

(
1

r

∂

∂r
σrθ +

1

r2

∂

∂θ
σθθ +

1

r2
[(σθθ − σφφ) cot θ + 3σrθ] +

1

r2 sin θ

∂

∂φ
σθφ

)
r θ̂

=

(
1

r

∂

∂r
σrθ +

1

r2

∂

∂θ
σθθ +

1

r2
[(σθθ − σφφ) cot θ + 3σrθ]

)
r θ̂

=

(
∂

∂r
σrθ +

1

r

∂

∂θ
σθθ +

1

r
[(σθθ − σφφ) cot θ + 3σrθ]

)
θ̂, (4.43)

where, again, I have canceled the ∂φ term in the final line due to the assumed azimuthal

symmetry. Expanding the φ component is unnecessary due to the azimuthal symmetry as

well (e.g., Sabadini & Vermeersen, 2004).

Now, I recast Eq. 4.25 in terms of the r and θ components of the stress tensor from Eqs. 4.42

and 4.43 (e.g., Alterman et al., 1959; Longman, 1962; Lapwood & Usami, 1981; Lanzano,

1982):

ρ0
∂2u

∂t2
=

∂

∂r
σrr +

1

r

∂

∂θ
σrθ +

1

r
[2σrr − σθθ − σφφ + cot θ σrθ] +

ρ0∇(u · g0) + (u · g0)∇ρ0 + ρ0 g1 − (ρ0 ∆ + u · ∇ρ0) g0

=
∂

∂r
σrr +

1

r

∂

∂θ
σrθ +

1

r
[2σrr − σθθ − σφφ + cot θ σrθ]−

ρ0
∂(g0 u)

∂r
+ ρ0 g1 + ρ0 g0 ∆ + (u · g0)∇ρ0 − (u · g0)∇ρ0 +

u× (∇ ρ0 × g0)

=
∂

∂r
σrr +

1

r

∂

∂θ
σrθ +

1

r
[2σrr − σθθ − σφφ + cot θ σrθ]−

ρ0
∂(g0 u)

∂r
+ ρ0

∂ψ1

∂r
+ ρ0 g0 ∆

ρ0
∂2v

∂t2
=

∂

∂r
σrθ +

1

r

∂

∂θ
σθθ +

1

r
[(σθθ − σφφ) cot θ + 3σrθ] +

ρ0∇(u · g0) + (u · g0)∇ρ0 + ρ0 g1 − (ρ0 ∆ + u · ∇ρ0) g0

=
∂

∂r
σrθ +

1

r

∂

∂θ
σθθ +

1

r
[(σθθ − σφφ) cot θ + 3σrθ] +

ρ0

r

∂ψ1

∂θ
− ρ0 g0

1

r

∂u

∂θ
, (4.44)

where I have made use of the vector triple product, the relationship g1 = ∇ψ1, and the

relationship g0 · r̂ = −g0, with positive r̂ directed outward normal to the surface. Further-

more, u× (∇ ρ0× g0) is taken to be zero since I assume that ρ0 is only a function of r (i.e.,

no lateral variations) and that g0 acts only in the radial direction. Recall that u represents
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the displacement in the direction of r̂ (ur = u) and that v represents displacement in the

direction of θ̂ (uθ = v), as defined in Eqs. 4.27.

Note that I have not yet made any assumptions about a constitutive law. I have, however,

assumed radial forcing, which implies only spheroidal deformation. The Eqs. 4.44 are

general to spheroidal deformation and may be used for multiple applications, including

Earth’s free oscillations, Earth’s response to external gravitational potentials, and Earth’s

response to surface mass loading. The distinction between the different applications enters

only through the boundary conditions applied at the surface.

4.2.4 Linear Elastic Constitutive Relation

In the small-strain approximation, the strain tensor may be related to displacements by:

ε =
1

2
((∇u)T + (∇u)), (4.45)

or in indicial notation by:

εij =
1

2
(ui,j + uj,i). (4.46)

For linear elasticity, the constitutive relation is given by:

σij = Cijkl εkl, (4.47)

where Cijkl represents the elasticity modulus (or stiffness tensor), which is a tensor of

fourth-order. Eq. 4.47 is also known as Hooke’s Law. For isotropic materials, the elasticity

modulus reduces to:

Cijkl = λ δij δkl + µ(δik δjl + δil δjk), (4.48)

where λ and µ are Lamé’s constants, which are related to compressional (P ) and shear (S)

sound-wave velocities by:

V 2
P =

λ+ 2µ

ρ
(4.49)
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V 2
S =

µ

ρ
. (4.50)

Thus, for linear elastic and isotropic materials, the constitutive relation is given by (Eqs.

4.47 and 4.48):

σij = λ εkk δij + 2µ εij . (4.51)

Note that Einstein’s summation convention is implied; thus, εkk represents the trace, as well

as the first invariant, of the strain tensor.

In spherical coordinates, the components of the stress tensor, σ1, arising from the material

deformation (without the hydrostatic pre-stress terms) are given by (e.g., Takeuchi, 1966;

Lapwood & Usami, 1981):

σrr = λ∆ + 2µ εrr (4.52)

σθθ = λ∆ + 2µ εθθ (4.53)

σφφ = λ∆ + 2µ εφφ (4.54)

σrθ = 2µ εrθ (4.55)

σrφ = 2µ εrφ (4.56)

σθφ = 2µ εθφ, (4.57)

where

εrr =
∂u

∂r
(4.58)

εθθ =

(
1

r

∂v

∂θ
+
u

r

)
(4.59)

εφφ =

(
1

r sin θ

∂w

∂φ
+
v

r
cot θ +

u

r

)
(4.60)

εrθ =

(
1

2

∂v

∂r
− v

2r
+

1

2r

∂u

∂θ

)
(4.61)

εrφ =

(
1

2

1

r sin θ

∂u

∂φ
+

1

2

∂w

∂r
− w

2r

)
(4.62)

εθφ =

[
1

2r

(
∂w

∂θ
− w cot θ

)
+

1

2r sin θ

∂v

∂φ

]
. (4.63)
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Thus, both elastic and gravitational restoring forces contribute to the deformation response.

Note that definitions of the shear strain can differ by a factor of two in the literature, which

must then be reflected consistently in the equations of motion (e.g., Alterman et al., 1959;

Longman, 1962).

Inserting the constitutive relations back into Eqs. 4.44:

ρ0
∂2u

∂t2
=

∂

∂r
(λ∆ + 2µ εrr) +

1

r

∂

∂θ
(2µ εrθ) +

1

r
[2(λ∆ + 2µ εrr)− (λ∆ + 2µ εθθ)− (λ∆ + 2µ εφφ) + cot θ (2µ εrθ)]−

ρ0
∂(g0 u)

∂r
+ ρ0

∂ψ1

∂r
+ ρ0 g0 ∆

=
∂

∂r
(λ∆ + 2µ εrr) +

2µ

r

∂εrθ
∂θ

+
2µ

r
[2 εrr − εθθ − εφφ + cot θ εrθ]−

ρ0
∂(g0 u)

∂r
+ ρ0

∂ψ1

∂r
+ ρ0 g0 ∆

ρ0
∂2v

∂t2
=

∂

∂r
(2µ εrθ) +

1

r

∂

∂θ
(λ∆ + 2µ εθθ) +

1

r
[((λ∆ + 2µ εθθ)− (λ∆ + 2µ εφφ)) cot θ + 3(2µ εrθ)] +

ρ0

r

∂ψ1

∂θ
− ρ0 g0

1

r

∂u

∂θ

= 2
∂

∂r
(µ εrθ) +

1

r

∂

∂θ
(λ∆ + 2µ εθθ) +

2µ

r
[(εθθ − εφφ) cot θ + 3 εrθ] +

ρ0

r

∂ψ1

∂θ
− ρ0 g0

1

r

∂u

∂θ
. (4.64)

Moreover, inserting the expressions relating strain to displacement into Eqs. 4.64:

ρ0
∂2u

∂t2
=

∂

∂r

(
λ∆ + 2µ

∂u

∂r

)
+

2µ

r

∂
(

1
2
∂v
∂r −

v
2r + 1

2r
∂u
∂θ

)
∂θ

+

2µ

r

[
2
∂u

∂r
−
(

1

r

∂v

∂θ
+
u

r

)
−
(v
r

cot θ +
u

r

)
+ cot θ

(
1

2

∂v

∂r
− v

2r
+

1

2r

∂u

∂θ

)]
−

ρ0
∂(g0 u)

∂r
+ ρ0

∂ψ1

∂r
+ ρ0 g0 ∆

=
∂

∂r

(
λ∆ + 2µ

∂u

∂r

)
+

2µ

r

∂
(

1
2
∂v
∂r −

v
2r + 1

2r
∂u
∂θ

)
∂θ

+

2µ

r

[
2
∂u

∂r
− 1

r

∂v

∂θ
− 2u

r
+ cot θ

(
1

2

∂v

∂r
− 3v

2r
+

1

2r

∂u

∂θ

)]
−

ρ0
∂(g0 u)

∂r
+ ρ0

∂ψ1

∂r
+ ρ0 g0 ∆

ρ0
∂2v

∂t2
= 2

∂

∂r

(
µ

(
1

2

∂v

∂r
− v

2r
+

1

2r

∂u

∂θ

))
+

1

r

∂

∂θ

(
λ∆ + 2µ

(
1

r

∂v

∂θ
+
u

r

))
+
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2µ

r

[((
1

r

∂v

∂θ
+
u

r

)
−
(v
r

cot θ +
u

r

))
cot θ + 3

(
1

2

∂v

∂r
− v

2r
+

1

2r

∂u

∂θ

)]
+

ρ0

r

∂ψ1

∂θ
− ρ0 g0

1

r

∂u

∂θ

= 2
∂

∂r

(
µ

(
1

2

∂v

∂r
− v

2r
+

1

2r

∂u

∂θ

))
+

1

r

∂

∂θ

(
λ∆ + 2µ

(
1

r

∂v

∂θ
+
u

r

))
+

2µ

r

[(
1

r

∂v

∂θ
− v

r
cot θ

)
cot θ + 3

(
1

2

∂v

∂r
− v

2r
+

1

2r

∂u

∂θ

)]
+

ρ0

r

∂ψ1

∂θ
− ρ0 g0

1

r

∂u

∂θ
, (4.65)

where I have allowed for radial heterogeneity in the density and elastic moduli.

4.2.5 Solutions to the Equations of Motion

The spheroidal-deformation Eqs. 4.65 for a self-gravitating, radially heterogeneous Earth

may be satisfied by solutions of the form (e.g., Alterman et al., 1959; Longman, 1962):

un = Un(r)Pn(cos θ) eiωt

vn = Vn(r)
∂Pn(cos θ)

∂θ
eiωt

ψn = Pn(r)Pn(cos θ) eiωt, (4.66)

where U(r), V (r), and P (r) are radial coefficients of the spherical harmonic expansions

and Pn(cos θ) is a Legendre polynomial of order n. For periodic forcing, such as loading

by the ocean tides, ω represents the frequency of the forcing. Since the tides exhibit periods

much longer than the free oscillations of the Earth (∼1 hour), a quasi-static formulation

of the equations of motion is sometimes adopted anyway (e.g., Longman, 1962; Takeuchi,

1966; Farrell, 1972a; Guo et al., 2004). For static or quasi-static formulations, ω = 0, and

temporal variations in the loading are removed from the problem. Since the divergence of

the stress tensor must then balance the sum of all forces, the static equations may be referred

to as the equilibrium equations (e.g., Longman, 1962). Nevertheless, to maintain generality,

I retain the time-varying factors in the development of the displacement solution presented

here (e.g., Na & Baek, 2011; Wang et al., 2012). The time-varying factors are also retained

in normal-mode seismology (e.g., Alterman et al., 1959; Lapwood & Usami, 1981).
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The dilatation, ∆, may be written as:

∆ = εrr + εθθ + εφφ

=
∂u

∂r
+

1

r

∂v

∂θ
+
u

r
+
v

r
cot θ +

u

r

=
∂u

∂r
+

2u

r
+

1

r

∂v

∂θ
+
v

r
cot θ

= eiωt [
∂U

∂r
Pn(cos θ) +

2U

r
Pn(cos θ) +

1

r

∂

∂θ

[
V
∂Pn(cos θ)

∂cos θ

∂cos θ

∂θ

]
+

cot θ

r
V
∂Pn(cos θ)

∂cos θ

∂cos θ

∂θ
]

= eiωt [
∂U

∂r
Pn(cos θ) +

2U

r
Pn(cos θ) +

1

r

∂

∂θ

[
V
∂Pn(cos θ)

∂cos θ
(− sin θ)

]
+

V cot θ

r

∂Pn(cos θ)

∂cos θ
(− sin θ) ]

= eiωt [
∂U

∂r
Pn(cos θ) +

2U

r
Pn(cos θ) +

V

r

∂

∂θ

[
− sin θ

∂Pn(cos θ)

∂cos θ

]
+

+
1

r

[
− sin θ

∂Pn(cos θ)

∂cos θ

]
∂V

∂θ
− V cos θ

r

∂Pn(cos θ)

∂cos θ
]

= eiωt [
∂U

∂r
Pn(cos θ) +

2U

r
Pn(cos θ)− V sin θ

r

∂

∂θ

[
∂Pn(cos θ)

∂cos θ

]
−

V

r

∂Pn(cos θ)

∂cos θ

∂sin θ

∂θ
− V cos θ

r

∂Pn(cos θ)

∂cos θ
]

= eiωt [
∂U

∂r
Pn(cos θ) +

2U

r
Pn(cos θ)− V sin θ

r

[
∂2Pn(cos θ)

∂cos2 θ
(− sin θ)

]
−

V cos θ

r

∂Pn(cos θ)

∂cos θ
− V cos θ

r

∂Pn(cos θ)

∂cos θ
]

= eiωt [
∂U

∂r
Pn(cos θ) +

2U

r
Pn(cos θ) +

V sin2 θ

r

[
∂2Pn(cos θ)

∂cos2 θ

]
−

2V cos θ

r

∂Pn(cos θ)

∂cos θ
]

= eiωt [
∂U

∂r
Pn(cos θ) +

2U

r
Pn(cos θ) +

V

r
[ sin2 θ

∂2Pn(cos θ)

∂cos2 θ
−

2 cos θ
∂Pn(cos θ)

∂cos θ
] ]

= eiωt [
∂U

∂r
Pn(cos θ) +

2U

r
Pn(cos θ)− n(n+ 1)

r
V Pn(cos θ) ]

= eiωt Pn(cos θ) [
∂U

∂r
+

2U

r
− n(n+ 1)

r
V ]

= X(r)Pn(cos θ) eiωt, (4.67)

where

X(r) = U̇ +
2U

r
− n(n+ 1)

r
V, (4.68)
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and I have made use of the Legendre differential equation (e.g., Boas, 1983). A dot implies

differentiation with respect to r. Note that the term containing ∂V
∂θ was canceled since V is

only a function of r.

From the set of Eqs. 4.66:

∂u

∂θ
= −U sin θP ′n

∂v

∂θ
= V sin2 θP ′′n − V cos θP ′n

∂u

∂r
= U̇Pn(cos θ)

∂v

∂r
= −V̇ sin θP ′n

∂2u

∂θ2
= U sin2 θP ′′n − U cos θP ′n

∂2v

∂θ2
=

∂

∂θ
[V sin2 θP ′′n − V cos θP ′n]

= V [sin2 θP ′′′n (− sin θ) + 3P ′′n sin θ cos θ + sin θP ′n], (4.69)

where

P ′n =
∂Pn(cos θ)

∂cos θ
, P ′′n =

∂2Pn(cos θ)

∂cos2 θ
, P ′′′n =

∂3Pn(cos θ)

∂cos3 θ
, (4.70)

and, according to the Legendre differential equation (Boas, 1983),

sin2 θP ′′n − 2 cos θP ′n = −n(n+ 1)Pn. (4.71)

Only Pn and P ′n are required to derive additional derivatives of the Legendre polynomials

recursively. For example, the third derivative of the Legendre polynomial, P ′′′n , is given by:

0 =
∂

∂cos θ
[(1− cos2 θ)P ′′n − 2 cos θP ′n + n(n+ 1)Pn]

= P ′′′n − 2 cos θP ′′n − cos2 θP ′′′n − 2P ′n − 2 cos θP ′′n + n(n+ 1)P ′n

= (1− cos2 θ)P ′′′n − 4 cos θP ′′n + (−2 + n(n+ 1))P ′n

= sin2 θP ′′′n − 4 cos θP ′′n − (2− n(n+ 1))P ′n

sin2 θP ′′′n = 4 cos θP ′′n + 2P ′n − n(n+ 1)P ′n. (4.72)
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Now, I can rewrite the radial component of Eq. 4.65 as:

ρ0
∂2u

∂t2
=

∂

∂r

(
λ∆ + 2µ

∂u

∂r

)
+
µ

r

∂
(
∂v
∂r −

v
r + 1

r
∂u
∂θ

)
∂θ

+

2µ

r

[
2
∂u

∂r
− 1

r

∂v

∂θ
− 2u

r
+ cot θ

(
1

2

∂v

∂r
− 3v

2r
+

1

2r

∂u

∂θ

)]
−

ρ0
∂(g0 u)

∂r
+ ρ0

∂ψ1

∂r
+ ρ0 g0 ∆

=
∂

∂r

(
λX + 2µ U̇

)
+
µ

r

∂2v

∂r∂θ
+
µ

r2

∂2u

∂θ2
+

µ

r2

[
4 rU̇ − 3

∂v

∂θ
− 4U + r cot θ

(
∂v

∂r
− 3v

r
+

1

r

∂u

∂θ

)]
−

ρ0
∂(g0 U)

∂r
+ ρ0Ṗ + ρ0 g0X

=
∂

∂r

(
λX + 2µ U̇

)
+
µ

r
(V̇ sin2 θP ′′n − V̇ cos θP ′n) +

µ

r2
(U sin2 θP ′′n − U cos θP ′n) +

µ

r2
[4 rU̇ − 3(V sin2 θP ′′n − V cos θP ′n)− 4U +

r cot θ(−V̇ sin θP ′n +
3V

r
sin θP ′n +

−U
r

sin θP ′n)]−

ρ0
∂(g0 U)

∂r
+ ρ0Ṗ + ρ0 g0X

=
∂

∂r

(
λX + 2µ U̇

)
+ V̇

µ

r
(sin2 θP ′′n − 2 cos θP ′n) + U

µ

r2
(sin2 θP ′′n − 2 cos θP ′n) +

µ

r2
[4 rU̇ − 3V (sin2 θP ′′n − 2 cos θP ′n)− 4U ]− ρ0

∂(g0 U)

∂r
+ ρ0Ṗ + ρ0 g0X

=
∂

∂r

(
λX + 2µ U̇

)
+ V̇

µ

r
(−n(n+ 1)) + U

µ

r2
(−n(n+ 1)) +

µ

r2
[4 rU̇ − 3V (−n(n+ 1))− 4U ]− ρ0

∂(g0 U)

∂r
+ ρ0Ṗ + ρ0 g0X

−ω2ρ0U =
∂

∂r

(
λX + 2µ U̇

)
+
µ

r2
[4 rU̇ − 4U + n(n+ 1)(3V − U − rV̇ )]−

ρ0
∂(g0 U)

∂r
+ ρ0Ṗ + ρ0 g0X, (4.73)

where common terms in eiωt and Pn have been canceled (Alterman et al., 1959).

Similarly, the surface-tangential component of Eq. 4.65 may be written as:

ρ0
∂2v

∂t2
= 2

∂

∂r

(
µ

(
1

2

∂v

∂r
− v

2r
+

1

2r

∂u

∂θ

))
+

1

r

∂

∂θ

(
λ∆ + 2µ

(
1

r

∂v

∂θ
+
u

r

))
+

2µ

r

[(
1

r

∂v

∂θ
− v

r
cot θ

)
cot θ + 3

(
1

2

∂v

∂r
− v

2r
+

1

2r

∂u

∂θ

)]
+

ρ0

r

∂ψ1

∂θ
− ρ0 g0

1

r

∂u

∂θ
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=
∂

∂r

(
µ

(
−V̇ sin θP ′n + sin θP ′n

V

r
− U

r
sin θP ′n

))
+

1

r

∂

∂θ

(
λXPn + 2µ

(
1

r

∂v

∂θ
+
u

r

))
+

2µ

r2

[(
∂v

∂θ
− v cot θ

)
cot θ +

3

2

(
r
∂v

∂r
− v +

∂u

∂θ

)]
+
ρ0

r

∂ψ1

∂θ
− ρ0g0

r

∂u

∂θ

=
∂

∂r

(
µ

(
−V̇ sin θP ′n + sin θP ′n

V

r
− U

r
sin θP ′n

))
+

1

r
λXP ′n(− sin θ) +

2µ

r2

(
∂2v

∂θ2
+
∂u

∂θ

)
+

2µ

r2

[(
∂v

∂θ
− v cot θ

)
cot θ +

3

2

(
r
∂v

∂r
− v +

∂u

∂θ

)]
+
ρ0

r

∂ψ1

∂θ
− ρ0g0

r

∂u

∂θ

= − sin θP ′n

(
∂

∂r

(
µV̇ − µV

r
+ µ

U

r

)
+
λ

r
X

)
+
ρ0

r

∂ψ1

∂θ
− ρ0g0

r

∂u

∂θ
+

2µ

r2

[
∂2v

∂θ2
+
∂u

∂θ
+

(
∂v

∂θ
− v cot θ

)
cot θ +

3

2

(
r
∂v

∂r
− v +

∂u

∂θ

)]
= − sin θP ′n

(
∂

∂r

(
µV̇ − µV

r
+ µ

U

r

)
+
λ

r
X

)
+
ρ0

r

∂ψ1

∂θ
− ρ0g0

r

∂u

∂θ
+

2µ

r2

[
∂2v

∂θ2
+
∂u

∂θ
+ cot θ

∂v

∂θ
− v cot2 θ +

3

2

(
r
∂v

∂r
− v +

∂u

∂θ

)]
= − sin θP ′n

(
∂

∂r

(
µV̇ − µV

r
+ µ

U

r

)
+
λ

r
X

)
+
ρ0

r

∂ψ1

∂θ
− ρ0g0

r

∂u

∂θ
+

2µ

r2

[
∂2v

∂θ2
+

5

2

∂u

∂θ
− v

(
cot2 θ +

3

2

)
+ cot θ

∂v

∂θ
+

3r

2

∂v

∂r

]
= − sin θP ′n

(
∂

∂r

(
µV̇ − µV

r
+ µ

U

r

)
+
λ

r
X

)
+
ρ0

r

∂ψ1

∂θ
− ρ0g0

r

∂u

∂θ
+

µ

r2

[
2
∂2v

∂θ2
+ 5

∂u

∂θ
− v

(
2 cot2 θ + 3

)
+ 2 cot θ

∂v

∂θ
+ 3r

∂v

∂r

]
= − sin θP ′n

(
∂

∂r

(
µV̇ − µV

r
+ µ

U

r

)
+
λ

r
X

)
+
ρ0

r

∂ψ1

∂θ
− ρ0g0

r

∂u

∂θ
+

µ

r2
[2V (sin2 θP ′′′n (− sin θ) + 3 sin θ cos θP ′′n + sin θP ′n) + 5

∂u

∂θ
−

v(2 cot2 θ + 3) + 2 cot θ(V sin2 θP ′′n − V cos θP ′n)− 3rV̇ sin θP ′n]

= − sin θP ′n

(
∂

∂r

(
µV̇ − µV

r
+ µ

U

r

)
+
λ

r
X

)
+
ρ0

r

∂ψ1

∂θ
− ρ0g0

r

∂u

∂θ
+

µ

r2
[2V ((4 cos θP ′′n + 2P ′n − n(n+ 1)P ′n)(− sin θ) + 3 sin θ cos θP ′′n + sin θP ′n) +

5UP ′n(− sin θ)− V P ′n(− sin θ)(2 cot2 θ + 3) +

2 cot θ(V sin2 θP ′′n − V cos θP ′n)− 3rV̇ sin θP ′n]

= − sin θP ′n

(
∂

∂r

(
µV̇ − µV

r
+ µ

U

r

)
+
λ

r
X

)
+
ρ0

r

∂ψ1

∂θ
− ρ0g0

r

∂u

∂θ
+
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µ

r2
[2V (− sin θ cos θP ′′n − sin θP ′n + n(n+ 1) sin θP ′n) +

5UP ′n(− sin θ)− 2V cot2 θP ′n(− sin θ)− 3V P ′n(− sin θ) +

2V cot θ sin2 θP ′′n − 2V cot θ cos θP ′n − 3rV̇ sin θP ′n]

= − sin θP ′n

(
∂

∂r

(
µV̇ − µV

r
+ µ

U

r

)
+
λ

r
X

)
+
ρ0

r

∂ψ1

∂θ
− ρ0g0

r

∂u

∂θ
+

µ

r2
[2V (− sin θ cos θP ′′n − sin θP ′n + n(n+ 1) sin θP ′n) +

5UP ′n(− sin θ) + 2V cot θ cos θP ′n − 3V P ′n(− sin θ) +

2V cos θ sin θP ′′n − 2V cot θ cos θP ′n − 3rV̇ sin θP ′n]

= − sin θP ′n

(
∂

∂r

(
µV̇ − µV

r
+ µ

U

r

)
+
λ

r
X

)
+
ρ0

r

∂ψ1

∂θ
− ρ0g0

r

∂u

∂θ
+

µ

r2
[2V (− sin θP ′n + n(n+ 1) sin θP ′n) +

5UP ′n(− sin θ)− 3V P ′n(− sin θ)− 3rV̇ sin θP ′n]

= − sin θP ′n

(
∂

∂r

(
µV̇ − µV

r
+ µ

U

r

)
+
λ

r
X

)
+

ρ0

r
PP ′n(− sin θ)− ρ0g0

r
UP ′n(− sin θ) +

µ

r2
[2V (− sin θP ′n + n(n+ 1) sin θP ′n) +

5UP ′n(− sin θ)− 3V P ′n(− sin θ)− 3rV̇ sin θP ′n]

−ω2ρ0V =
∂

∂r

(
µV̇ − µV

r
+ µ

U

r

)
+
λ

r
X +

ρ0

r
P − ρ0g0

r
U +

µ

r2
[5U − V − 2n(n+ 1)V + 3rV̇ ]

−ω2ρ0V r = r
∂

∂r

(
µV̇ − µV

r
+ µ

U

r

)
+ λX + ρ0P − ρ0g0U +

µ

r
[5U − V − 2n(n+ 1)V + 3rV̇ ], (4.74)

where common terms in eiωt and [− sin θP ′n] have been canceled (Alterman et al., 1959).

Finally, Poisson’s equation (Eq. 4.19) may be written as:

∇2ψ1 = 4πG

(
ρ0 ∆ + u

∂ρ0

∂r

)
= 4πG (ρ0X + U ρ̇0) . (4.75)

I can also write the Laplacian in spherical coordinates (neglecting the azimuthal component)
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as:

∇2ψ1 =
1

r2

∂

∂r

(
r2∂ψ1

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ1

∂θ

)
=

1

r2
[2rṖ + r2P̈ ] +

1

r2 sin θ

[
cos θ

∂ψ1

∂θ
+ sin θ

∂2ψ1

∂θ2

]
=

2

r
Ṗ + P̈ − cos θ

r2
PP ′n +

P sin θ sin2 θP ′′n
r2 sin θ

− P sin θ cos θP ′n
r2 sin θ

=
2

r
Ṗ + P̈ +

P

r2
[− cos θP ′n + sin2 θP ′′n − cos θP ′n]

=
2

r
Ṗ + P̈ +

P

r2
[sin2 θP ′′n − 2 cos θP ′n]

=
2

r
Ṗ + P̈ − n(n+ 1)

r2
P, (4.76)

where

∂ψ1

∂θ
= PP ′n(− sin θ)

∂2ψ1

∂θ2
= P [sin2 θP ′′n − cos θP ′n].

Combining Eq. 4.75 with Eq. 4.76 yields (Alterman et al., 1959):

P̈ +
2

r
Ṗ − n(n+ 1)

r2
P = 4πG (ρ0X + U ρ̇0) , (4.77)

where I have again canceled common factors of eiωt and Pn.

The equations of motion for spheroidal deformation are now given by three second-order

differential equations (Eqs. 4.73, 4.74, and 4.77) that may be solved for the coefficients U ,

V , and P .

4.2.6 Reduction of the Equations of Motion to First Order

For convenience, a set of handy substitutions may be made to simplify Eqs. 4.73, 4.74, and

4.77 prior to numerical integration (e.g., Alterman et al., 1959; Longman, 1962; Melchior,
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1983, Ch. 5):

y1 = U

y2 = λX + 2µU̇

y3 = V

y4 = µ

(
V̇ − V

r
+
U

r

)
y5 = P

y6 = Ṗ − 4πGρ0U. (4.78)

With the substitutions, Eqs. 4.73, 4.74, and 4.77 become a system of six first-order differ-

ential equations (e.g. Alterman et al., 1959):

ẏ1 =
−2λ

λ+ 2µ

y1

r
+

y2

λ+ 2µ
+
λn(n+ 1)

λ+ 2µ

y3

r
,

ẏ2 =

[
−ω2ρ0r

2 − 4ρ0g0r +
4µ(3λ+ 2µ)

λ+ 2µ

]
y1

r2
− 4µ

λ+ 2µ

y2

r

+

[
n(n+ 1)ρ0g0r −

2µ(3λ+ 2µ)n(n+ 1)

λ+ 2µ

]
y3

r2

+ n(n+ 1)
y4

r
− ρ0y6,

ẏ3 = −y1

r
+
y3

r
+
y4

µ
,

ẏ4 =

[
g0ρ0r −

2µ(3λ+ 2µ)

λ+ 2µ

]
y1

r2
− λ

λ+ 2µ

y2

r

+

[
−ω2ρ0r

2 +
2µ

λ+ 2µ
[λ(2n2 + 2n− 1) + 2µ(n2 + n− 1)]

]
y3

r2

− 3y4

r
− ρ0

y5

r
,

ẏ5 = 4πGρ0y1 + y6,

ẏ6 = −4πGρ0 n(n+ 1)
y3

r
+ n(n+ 1)

y5

r2
− 2y6

r
, (4.79)

where dots represent differentiation with respect to r. Importantly, by reducing the equa-

tions of motion to first order, the derivatives of the elastic parameters no longer appear. The

variables y1 and y3 characterize the radial and tangential displacements, respectively; y2

and y4 characterize the radial and tangential stress, respectively; y5 characterizes the grav-
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itational potential; and the equation for ẏ5 defines y6. Additional details may be found in

the literature (e.g., Takeuchi & Saito, 1972; Lapwood & Usami, 1981; Guo et al., 2004;

Smylie, 2013).

Note also that the six equations may now be written in the form ẏ = A y:



dy1
dr

dy2
dr

dy3
dr

dy4
dr

dy5
dr

dy6
dr


=



−2λξ
r ξ k2λξ

r 0 0 0(
−ω2ρ0 − 4g0ρ0

r + 2δ
r2

)
−4µξ

r

(
k2g0ρ0
r − k2δ

r2

)
k2

r 0 −ρ0

−1
r 0 1

r
1
µ 0 0(g0ρ0

r −
δ
r2

)
−λξ

r

(
−ω2ρ0 + ε

r2

)
−3
r −ρ0

r 0

4πGρ0 0 0 0 0 1

0 0 −4πGρ0
k2

r 0 k2

r2
−2
r





y1

y2

y3

y4

y5

y6


,

(4.80)

where

k2 = n(n+ 1) (4.81)

ξ =
1

λ+ 2µ
(4.82)

δ = 2µ(3λ+ 2µ)ξ (4.83)

ε = 4k2µ(λ+ µ)ξ − 2µ. (4.84)

The matrix equation, ẏ = A y, may be solved using numerical methods, such as the com-

monly adopted Runge-Kutta algorithm and the propagator matrix technique (Sec. 4.2.11)

(Gilbert & Backus, 1966) .

For the special case of n = 0, the equations for y3 and y4 are undefined and the system

reduces to (e.g., Smylie, 2013):



dy1
dr

dy2
dr

dy5
dr

dy6
dr


=



−2λξ
r ξ 0 0(

−ω2ρ0 − 4g0ρ0
r + 2δ

r2

)
−4µξ

r 0 −ρ0

4πGρ0 0 0 1

0 0 0 −2
r





y1

y2

y5

y6


. (4.85)
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4.2.7 Non-dimensionalization

Suitable scaling parameters must be introduced to maintain numerical stability during the

integration of the equations of motion (e.g., Longman, 1962; Crossley, 1975). I adopt a

characteristic length scale, a, equal to Earth’s mean radius (6371 km) and a characteristic

mass scale close to Earth’s mass, 4πa3ρ̄/3, where ρ̄ is an approximate value for Earth’s

average density (5500 kg/m3). A handy way of scaling the time is to define the characteristic

time scale as 1/
√
πGρ̄ where G is the universal gravitational constant. Since G has units

of [M−1L3T−2], it becomes

G′ = G/(ρ̄−1a−3a3πGρ̄) = 1/π (4.86)

in the scaled system. M , L, and T represent units of mass, length, and time, respectively.

In summary I have

Length :

l′ = l/a (4.87)

Mass :

m′ = m/(4πρ̄a3/3) (4.88)

Time :

t′ = t
√
πGρ̄ (4.89)

Another way of stating the above mass scaling is simply to say that I adopt a characteristic

density scale equal to ρ̄, where

ρ′ = ρ/ρ̄. (4.90)

4.2.8 Starting Solutions: Power Series Expansion

The six first-order ordinary differential equations (Eq. 4.79) require six starting solutions

to initialize the Runge-Kutta integration. Three of the functions, U , V , and P , diverge at

r = 0; thus, the starting solutions for U , V , and P are necessarily set to zero to ensure
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regularity at Earth’s center (e.g., Crossley, 1975; Wu & Peltier, 1982). The remaining

three linearly independent solutions at Earth’s center may be computed by a power series

expansion near the geocenter (Crossley, 1975; Smylie, 2013). Following the development

of Crossley (1975) and Smylie (2013), the power series expansion of the y variables takes

the form:

yi(r) = rα
∞∑
ν=0

Ai,ν r
ν , i = 1, 2, . . . , 6, (4.91)

where α and ν are integers and the coefficients Ai,ν are to be determined. The variable α

must be non-negative and the coefficients Ai,ν = 0 for ν < 0. The derivate of Eq. 4.91 is

given by (Crossley, 1975):

dyi(r)

dr
= rα−1

∞∑
ν=0

(α+ ν)Ai,ν r
ν . (4.92)

Additionally, gravity can be expanded as:

g0(r) = γr, (4.93)

where terms beyond first-order have been dropped since the expansion will be implemented

close to the geocenter, and

γ =
4

3
πGρ0. (4.94)

Within an arbitrarily small radius, such as r = 1 km, the density and elastic moduli are

assumed to be constant and equivalent to their values at the geocenter.

Eqs. 4.91, 4.92, and 4.93 are inserted back into the system of equations (Eq. 4.79). Match-

ing powers of the radius are equated to obtain a set of characteristic, or indicial, equations.

Eigenvalues of the characteristic equations yield the acceptable values for variable α, and

the corresponding eigenvectors may then be used to compute the values of the coefficients

Ai,ν in terms of three free constants: A1,1,A6,1, andA4,0 (Smylie, 2013). Choice of the free

constants is arbitrary, since multiplying each of the y variables in a fundamental-solution

set by the same constant factor does not affect the result; only ratios between the y variables

are important. A convenient option is to set each of the three constants equal to one.
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To facilitate numerical integration, I transform the variables (e.g., Smylie, 2013; Crossley,

1975):

z1(r) =
y1(r)

rα+1

z2(r) =
y2(r)

rα

z3(r) =
y3(r)

rα+1

z4(r) =
y4(r)

rα

z5(r) =
y5(r)

rα+2

z6(r) =
y6(r)

rα+1
, (4.95)

where α = n− 2 for the starting solutions associated with the free constants A1,1 and A6,1

and α = n for the starting solution associated with the free constant A4,0.

Following Smylie (2013), the first starting solution, associated with free constant A1,1, is

given by:

z1(r) = A1,1 +A1,3r
2 +A1,5r

4 + · · ·

z2(r) = 2(n− 1)µA1,1 +A2,2r
2 +A2,4r

4 + · · ·

z3(r) =
1

n
A1,1 +A3,3r

2 +A3,5r
4 + · · ·

z4(r) = 2µ
n− 1

n
A1,1 +A4,2r

2 +A4,4r
2 + · · ·

z5(r) =
4πGρ0

n
A1,1 +A5,4r

2 +A5,6r
4 + · · ·

z6(r) = A6,3r
2 +A6,5r

4 + · · · , (4.96)

where the value of A1,1 is arbitrary. The r2 coefficients are given by:

A1,3 =
−ρ0n

p1(n)
[(3− n)γ + ω2]A1,1

A2,2 =
−ρ0 q1(n)

p1(n)
[(3− n)γ + ω2]A1,1

A3,3 =
ρ0

p1(n)
[(3− n)γ + ω2]A1,1

A4,2 = 0
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A5,4 =
4πGρ0

2(2n+ 3)
[(n+ 3)A1,3 − k2A3,3]

A6,3 = (n+ 2)A5,4 − 4πGρ0A1,3, (4.97)

where

p1(n) = 2n[n(n+ 2)λ+ (n(n+ 2)− 1)µ] (4.98)

q1(n) = [n(n+ 1) + n(n+ 3)]λ+ 2n(n+ 1)µ. (4.99)

The r4 coefficients are obtained from:

0

ρ0[−(4γ + ω2)A1,3 + (k2γ)A3,3 −A6,3]

0

ρ0[γA1,3 − ω2A3,3 −A5,4]

0

0


=



2λξ + n+ 3 −ξ −k2λξ 0 0 0

−2δ 4µξ + n+ 2 k2δ −k2 0 0

1 0 n+ 2 − 1
µ 0 0

δ λξ −ε n+ 5 0 0

−3γ 0 0 0 n+ 4 −1

0 0 3γk2 0 −k2 n+ 5





A1,5

A2,4

A3,5

A4,4

A5,6

A6,5


, (4.100)

where parameters are defined as in Eqs. 4.81–4.84 and 4.94.

The second starting solution, associated with free constant A6,1, is given by:

z1(r) = −n ρ0

p1(n)
A6,1r

2 +A1,5r
4 + · · ·

z2(r) = − q1(n)

p1(n)
ρ0A6,1r

2 +A2,4r
4 + · · ·
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z3(r) =
ρ0

p1(n)
A6,1r

2 +A3,5r
4 + · · ·

z4(r) = A4,4r
4 + · · ·

z5(r) =
1

n
A6,1 +A5,4r

2 +A5,6r
4 + · · ·

z6(r) = A6,1 +A6,3r
2 +A6,5r

4 + · · · , (4.101)

where the value of A6,1 is arbitrary. The r2 coefficients are:

A1,3 = −n ρ0

p1(n)
A6,1

A2,2 = −q1(n)
ρ0

p1(n)
A6,1

A3,3 =
ρ0

p1(n)
A6,1

A4,2 = 0

A5,4 =
4πGρ0

2(2n+ 3)
[(n+ 3)A1,3 − k2A3,3]

A6,3 = (n+ 2)A5,4 − 4πGρ0A1,3, (4.102)

where p1(n) and q1(n) are given by Eqs. 4.98 and 4.99, respectively. The r4 coefficients

are obtained from Eq. 4.100.

The third starting solution, associated with free constant A4,0, is given by:

z1(r) =

(
1

µ
− np2(n)

p1(n)

)
A4,0 +A1,3r

2 +A1,5r
4 + · · ·

z2(r) =

(
q2(n)− q1(n)

p2(n)

p1(n)

)
A4,0 +A2,2r

2 +A2,4r
4 + · · ·

z3(r) =
p2(n)

p1(n)
A4,0 +A3,3r

2 +A3,5r
4 + · · ·

z4(r) = A4,0 +A4,2r
2 +A4,4r

4 + · · ·

z5(r) = A5,2 +A5,4r
2 +A5,6r

4 + · · ·

z6(r) = A6,1 +A6,3r
2 +A6,5r

4 + · · · , (4.103)

where the value of A4,0 is arbitrary. The r0 coefficients are given by:

A1,1 =

(
1

µ
− np2(n)

p1(n)

)
A4,0
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A2,0 =

(
q2(n)− q1(n)

p2(n)

p1(n)

)
A4,0

A3,1 =
p2(n)

p1(n)
A4,0

A4,0 = A4,0

A5,2 =
4πGρ0

2(2n+ 3)
[(n+ 3)A1,1 − k2A3,1]

A6,1 = (n+ 2)A5,2 − 4πGρ0A1,1, (4.104)

where

p2(n) = n(n+ 5) +
λn (n+ 3)

µ
(4.105)

q2(n) = 2(n+ 1) +
λ (n+ 3)

µ
. (4.106)

The r2 coefficients are obtained from:

0

ρ0[−(4γ + ω2)A1,1 + (k2γ)A3,1 −A6,1]

0

ρ0[γA1,1 − ω2A3,1 −A5,2]

0

0


=



2λξ + n+ 3 −ξ −k2λξ 0 0 0

−2δ 4µξ + n+ 2 k2δ −k2 0 0

1 0 n+ 2 − 1
µ 0 0

δ λξ −ε n+ 5 0 0

−3γ 0 0 0 n+ 4 −1

0 0 3γk2 0 −k2 n+ 5





A1,3

A2,2

A3,3

A4,2

A5,4

A6,3


. (4.107)
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The r4 coefficients are obtained from:

0

ρ0[−(4γ + ω2)A1,3 + (k2γ)A3,3 −A6,3]

0

ρ0[γA1,3 − ω2A3,3 −A5,4]

0

0


=



2λξ + n+ 5 −ξ −k2λξ 0 0 0

−2δ 4µξ + n+ 4 k2δ −k2 0 0

1 0 n+ 4 − 1
µ 0 0

δ λξ −ε n+ 7 0 0

−3γ 0 0 0 n+ 6 −1

0 0 3γk2 0 −k2 n+ 7





A1,5

A2,4

A3,5

A4,4

A5,6

A6,5


, (4.108)

which differs from the 6 × 6 matrix in Eq. 4.100 by the addition of 2I , where I is the

identity matrix.

Modifications must be made for the special cases of n = 1 and n = 0 (Smylie, 2013). For

n = 0, only one starting solution is regular at the geocenter.

4.2.9 Starting Solutions: Homogeneous Sphere

An alternative approach to the power series expansions is to compute the analytical solution

for a homogeneous sphere (e.g., Farrell, 1972a; Takeuchi & Saito, 1972; Lambeck, 1988;

Dahlen & Tromp, 1998). Takeuchi & Saito (1972) provide a very complete description of

the homogeneous sphere solutions, albeit with a focus on frequencies in the free-oscillation

band for application to normal-mode seismology. Here, I review the analytical solutions of

the equations of motion for a homogeneous sphere.

Two of the independent solutions (note the ∓ in the equation for b2 below) for spherical
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harmonic degree, n, and forcing frequency, ω, are given by (e.g., Takeuchi & Saito, 1972):

y1 = − rn+1

2n+ 3

[
1

2
nhψn(x) + fφn+1(x)

]
y2 = −(λ+ 2µ)rnfφn(x) +

µrn

2n+ 3
[−n(n+ 1)hψn(x) + 2(2f + k2)φn+1(x)]

y3 = − rn+1

2n+ 3

[
1

2
hψn(x)− φn+1(x)

]
y4 = µrn

[
φn(x)− 1

2n+ 3
[(n− 1)hψn(x) + 2(f + 1)φn+1(x)]

]
y5 = rn+2

[
V 2
P f − (n+ 1)V 2

S

r2
− 3γf

2(2n+ 3)
ψn(x)

]
y6 =

1

r

[
(2n+ 1)y5 +

3nγhrn+2

2(2n+ 3)
ψn(x)

]
, (4.109)

where VP is the compressional wave velocity, VS is the shear wave velocity, r is the radius,

λ and µ are Lamé parameters, and

γ =
4

3
πρG

x = b r

b2 =
1

2

ω2 + 4γ

V 2
P

+
ω2

V 2
S

∓

((
ω2

V 2
S

− ω2 + 4γ

V 2
P

)2

+
4k2γ2

V 2
PV

2
S

) 1
2


f =

V 2
S

γ

(
b2 − ω2

V 2
S

)
h = f − (n+ 1). (4.110)

Furthermore,

φn(x) =
(2n+ 1)!!

xn
jn(x)

= 1− x2

2(2n+ 3)
+

x4

22(2n+ 3)(2n+ 5)2
− . . . (4.111)

ψn(x) =
2(2n+ 3)

x2
[1− φn(x)]

= 1− x2

2(2n+ 5)2
+

x4

22(2n+ 5)(2n+ 7)3
− . . . (4.112)

where jn(x) represents the spherical Bessel function of the first kind (e.g., Abramowitz &

Stegun, 1964; Takeuchi & Saito, 1972). Since the Bessel functions tend toward zero at high
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n, I approximate them using the power-series expansions given by Eqs. 4.111 and 4.112,

carried out to several terms.

The third independent solution is given by (e.g., Takeuchi & Saito, 1972):

y1 = nrn−1

y2 = 2µn(n− 1)rn−2

y3 = rn−1

y4 = 2µ(n− 1)rn−2

y5 = (nγ − ω2)rn

y6 =
1

r
(2n+ 1)y5(r)− 3nγrn−1. (4.113)

4.2.10 Starting Solutions: Approximation

Since the initial starting values for y2, y4, and y6 are of order n larger than the starting values

for y1, y3, and y5, it is possible to approximate the starting solutions as vectors of ones and

zeros. In other words, the first independent solution would be [0 1 0 0 0 0], the second

independent solution would be [0 0 0 1 0 0], and the third independent solution would

be [0 0 0 0 0 1]. These starting solutions are clearly much simpler than those derived

from the homogeneous sphere or power series expansion. Furthermore, they are also more

stable, since they are fully linearly independent. However, caution must be exercised when

substituting these vectors for the initial conditions since they represent a relatively crude

approximation for the actual starting solutions and are most suitable only at large n.

4.2.11 Runge-Kutta Integration

For n ≤ 15, I integrate from Earth’s center through the cores, mantle, and crust to the

surface. In the inner core, I compute starting solutions using power series expansions of the

governing equations of motion (Smylie, 2013) with transformed z variables (Sec. 4.2.8).

Boundary conditions are applied at all solid-solid and solid-fluid interfaces, as well as at the

surface. For n > 15, and for reasons of numerical stability, I begin the integration within the
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mantle from a starting radius specified by the r for which
(
r
a

)n exceeds a sufficiently small

threshold, such as 10−4. The starting solutions within the mantle are computed analytically

using a homogeneous sphere formulation (Sec. 4.2.9).

From the starting solutions yi (or zi within the inner core) at initial radius ri, the solutions

yi+1 at the new radius ri + h are given by:

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4), (4.114)

where h is a suitably small step in radius,

k1 = A(ri) y(ri) (4.115)

k2 = A

(
ri +

h

2

) [
y(ri) +

k1

2

]
(4.116)

k3 = A

(
ri +

h

2

) [
y(ri) +

k2

2

]
(4.117)

k4 = A(ri + h) [y(ri) + k3], (4.118)

and A is given by Eq. 4.80. The fourth-order Runge-Kutta formulation in Eq. 4.114 is

derived from a Taylor series expansion of ẏ. The system of equations, ẏ, may be computed

at each radial step using the propagator matrix technique (i.e., ẏ = A y, as in Eqs. 4.115–

4.118) (Gilbert & Backus, 1966).

As an alternative to the finite difference method for solving the system of differential equa-

tions, fully numerical methods, such as spectral element techniques, may also be employed

(e.g., Guo et al., 2004; Ito & Simons, 2011).

4.2.12 Fluid Layers

In fluid regions, the shear modulus vanishes (µ = 0). Hence y4 = 0, y2 = λX , and

ẏ3 is undefined (Alterman et al., 1959). Therefore, the system of equations for spheroidal
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deformation reduces to (e.g., Smylie, 2013):



dy1
dr

dy2
dr

0

dy5
dr

dy6
dr


=



−2
r

1
λ

k2

r 0 0(
−ω2ρ0 − 4g0ρ0

r

)
0 k2g0ρ0

r 0 −ρ0

g0ρ0
r −1

r −ω2ρ0 −ρ0
r 0

4πGρ0 0 0 0 1

0 0 −4πGρ0
k2

r
k2

r2
−2
r





y1

y2

y3

y5

y6


.

The third equation in the system can be solved for y3 as follows (Alterman et al., 1959):

0 =
ρ0g0

r
y1 −

1

r
y2 − ω2ρ0y3 −

ρ0

r
y5

ω2ρ0y3 =
ρ0g0

r
y1 −

1

r
y2 −

ρ0

r
y5

y3 =
1

ω2ρ0

(
ρ0g0

r
y1 −

1

r
y2 −

ρ0

r
y5

)
y3 =

1

ω2r

(
g0y1 −

1

ρ0
y2 − y5

)
. (4.119)

Since y3 is now written in terms of y1, y2, and y5, it may be substituted back into the matrix

system, which then reduces to:



dy1
dr

dy2
dr

dy5
dr

dy6
dr


=



−2
r + k2

r y
1
3

1
λ + k2

r y
2
3

k2

r y
5
3 0(

−ω2ρ0 − 4g0ρ0
r + k2g0ρ0

r y1
3

)
k2g0ρ0
r y2

3
k2g0ρ0
r y5

3 −ρ0

4πGρ0 0 0 1

−4πGρ0
k2

r y
1
3 −4πGρ0

k2

r y
2
3

(
k2

r2
− 4πGρ0

k2

r y
5
3

)
−2
r





y1

y2

y5

y6


,

where

y1
3 =

g0

ω2r

y2
3 = − 1

ρ0ω2r

y5
3 = − 1

ω2r
. (4.120)
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4.2.13 Boundary Conditions at Solid-Fluid Interfaces

All independent variables y1, y2, . . . y6 are continuous at solid-solid internal boundaries

(e.g., Alterman et al., 1959; Takeuchi & Saito, 1972; Guo et al., 2004). At solid-fluid

boundaries, however, the shear stress vanishes; thus, all y variables are continuous with

the exception of y3, which is undefined across the interface. The system of six first-order

ODEs within the solid layer reduces to a system of four first-order ODEs within the fluid

layer. Thus, whereas three independent solutions are required for solid layers, only two

independent solutions are required for fluid layers.

Following the method of Takeuchi & Saito (1972), I form a linear combination of the three

independent solutions on the solid side of a solid-fluid interface:

yi = Qs1 y
s
i1 +Qs2 y

s
i2 +Qs3 y

s
i3, (4.121)

where i = 1, 2, . . . , 6 and Qs1, Qs2, and Qs3 are constants of integration for each of the three

solutions. Similarly, on the fluid side of the interface, the linear combination of the two

independent solution sets for the fluid layer is:

yi = Qf1 y
f
i1 +Qf2 y

f
i2, (4.122)

where i = 1, 2, 5, 6. Since y4 = 0 at the solid-fluid boundary, one of the integration

constants in Eq. 4.121 may be determined directly:

Qs3 = −y
s
41

ys43

Qs1 −
ys42

ys43

Qs2. (4.123)

Now, combining Eqs. 4.121 and 4.122, and inserting the expression for Qs3, yields:

Qf1 y
f
i1 +Qf2 y

f
i2 = Qs1 y

s
i1 +Qs2 y

s
i2 +

(
−y

s
41

ys43

Qs1 −
ys42

ys43

Qs2

)
ysi3

= Qs1

(
ysi1 −

ys41

ys43

ysi3

)
+Qs2

(
ysi2 −

ys42

ys43

ysi3

)
. (4.124)

At this point, the two sets of solutions may again be equated independently. Furthermore,
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Qs1 = Qf1 and Qs2 = Qf2 at the interface (Takeuchi & Saito, 1972). Thus, the mapping of

solutions across a solid-fluid boundary becomes:

yfi1 = ysi1 −
ys41

ys43

ysi3 (4.125)

yfi2 = ysi2 −
ys42

ys43

ysi3, (4.126)

for i = 1, 2, 5, 6.

For a fluid-solid interface, two independent sets of solutions from the fluid layer transition

into three sets of solutions for propagation through the solid layer. On the solid side of the

interface (e.g., Takeuchi & Saito, 1972),

ysj1 = yfj1

ysj2 = yfj2

ys31 = ys41 = ys32 = ys42 = 0

ys33 = 1

ysi3 = 0

Qf1 = Qs1

Qf2 = Qs2,

(4.127)

where j = 1, 2, 5, 6 and i = 1, 2, 4, 5, 6.

4.2.14 Surface Boundary Conditions

The surface boundary conditions differ depending on the type of response being investi-

gated, such as Earth’s free oscillations, Earth’s response to an external gravitational poten-

tial, or Earth’s response to surface mass loading. For free oscillations of the Earth, the ab-

sence of an applied load requires that the radial and tangential stresses vanish at the surface

(e.g., Alterman et al., 1959; Wiggins, 1968; Takeuchi & Saito, 1972). Thus, y2 = y4 = 0.
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Additionally, the total gravitational potential and gradients of the potential must remain

continuous everywhere. Therefore, the continuity of y5 and

y6 = ẏ5 − 4πGρ0y1 (4.128)

must be ensured at all internal boundaries as well as at the surface (Takeuchi & Saito,

1972). In the absence of an external gravitational potential, ψE , as in the case of Earth’s

free oscillations, Poisson’s equation reduces to Laplace’s equation:

∇2ψE = 0. (4.129)

Outside of the Earth, the solution to Laplace’s equation, based on the definition for the

potential in Eq. 4.66, is given by:

ψE = C
(a
r

)(n+1)
Pn(cos θ) eiωt, (4.130)

where C is a constant (e.g., Longman, 1962; Takeuchi & Saito, 1972; Melchior, 1983).

Since the potential must remain continuous across the free surface, C = y5(a). To ensure

continuity of the derivative of the potential, y6 must also be continuous. Hence,

ψ̇1 − 4πGρ0u = ψ̇E , (4.131)

where

ψ̇E =
dψE
dr

= −n+ 1

r

(a
r

)(n+1)
y5(r)Pn(cos θ) eiωt

⇒ −n+ 1

a
y5(a)Pn(cos θ) eiωt

= −n+ 1

a
ψE , (4.132)

and I have substituted r = a for the condition at the surface. Therefore,

ẏ5 − 4πGρ0y1 = −n+ 1

r
y5, (4.133)
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and at the surface,

ẏ5 − 4πGρ0y1 +
n+ 1

a
y5 = y6 +

n+ 1

a
y5 = 0. (4.134)

An alternative definition for y6 in Eq. 4.78 is therefore

y6 = ẏ5 − 4πGρ0y1 +
n+ 1

r
y5, (4.135)

which simplifies the surface boundary condition to y6 = 0 (e.g., Takeuchi & Saito, 1972;

Na & Moon, 2010). With internal consistency, however, the end result remains the same.

Now suppose that a mass, m, outside Earth sets up an external gravitational potential. The

external gravitational potential, ψE , must now be added to the perturbed field, ψ1, in the

equations of motion (e.g., Farrell, 1972a). Since mass m exists entirely outside Earth, how-

ever, the external potential field satisfies Laplace’s equation everywhere inside the Earth and

thus is only implicit in the equations of motion. The surface boundary conditions, however,

contain ψE explicitly. At the surface, both ψ1 and ψE must be continuous. Furthermore,

ψ̇1 − 4πGρ0u must be continuous, as stated previously, and additionally ψ̇E + 4πGγ must

also be continuous, where γ represents a unit of external mass distributed uniformly over a

disk of radius α (e.g., Longman, 1962; Farrell, 1972a). Following the method of Longman

(1962), γ is expanded as a harmonic Legendre series of the form:

γ =

∞∑
n=0

KnPn(cos θ) eiωt. (4.136)

The coefficients Kn are then given by (e.g., Longman, 1962; Farrell, 1972a; Lanzano,

1982):

K0 =
1

4πa2

Kn =
Pn−1(cosα)− Pn+1(cosα)

4πa2(1− cosα)
, n > 0 (4.137)
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where a is Earth’s radius. In the limit α→ 0,

Kn =
2n+ 1

4πa2
. (4.138)

From a Legendre recursion relation,

Pn−1(x)− Pn+1(x) =
2n+ 1

n(n+ 1)
(1− x2)P ′n(x) ; (4.139)

therefore (Farrell, 1972a),

Kn =
2n+ 1

4πa2

[
− (1 + cosα)

n(n+ 1) sinα

∂Pn(cosα)

∂α

]
. (4.140)

The quantity in brackets is known as the disk factor and represents a mass distribution of

finite size. The quantity in front of the bracketed terms represents the Legendre expansion

of the delta function in spherical coordinates (e.g., Farrell, 1972a; Sun & Okubo, 1993).

Equating the two continuous functions that represent gradients of the perturbed internal and

applied external gravitational potential fields at Earth’s surface yields (e.g., Longman, 1962;

Farrell, 1972a):

ψ̇1 − 4πGρ0u = ψ̇E + 4πGKnPn(cos θ), (4.141)

where ψ1 and u are given by Eq. 4.66. Moreover, at the surface,

ψ1 = ψE (4.142)

and

ψ̇E = −n+ 1

a
ψE (4.143)

as shown previously in Eq. 4.132. The boundary condition is thus:

ψ̇1 +
n+ 1

a
ψ1 = 4πGρ0u+ 4πGKnPn(cos θ) (4.144)
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or, in terms of the y-variables:

y6 +
n+ 1

a
y5 = 4πGKn . (4.145)

Now, instead of a unit mass external to Earth, consider m equal to the mass of Earth, mE

(e.g., Longman, 1962). Thus,

m = mE =
a2gS
G

, (4.146)

where gS is the acceleration due to gravity at Earth’s surface. Settingm = mE requires final

solutions to be multiplied by m′

mE
, where m′ is the actual external mass, but also simplifies

the boundary condition (Longman, 1962). The coefficients of the external mass distribution

become:

Kn = mE
2n+ 1

4πa2
, (4.147)

which leads to the surface boundary condition (e.g., Farrell, 1972a; Lanzano, 1982; Guo

et al., 2004):

y6 +
n+ 1

a
y5 = 4πGKn

= 4πGmE
2n+ 1

4πa2

= 4πG
2n+ 1

4π

gS
G

= (2n+ 1) gS . (4.148)

The surface boundary condition for the potential, given by Eq. 4.148, applies to masses

that are either loading the surface or completely external to Earth. For Earth’s response to a

gravitational potential field generated by an external mass not loading Earth, the radial and

tangential tractions vanish at the free surface (e.g., Melchior, 1983). Thus, y2 = y4 = 0,

as for the free oscillations (e.g., Alterman et al., 1959; Takeuchi & Saito, 1972). For the

case of surface mass loading, however, the radial traction will be non-zero (e.g., Longman,

1962; Farrell, 1972a; Lanzano, 1982; Guo et al., 2004). The radial traction is given by

the acceleration of gravity multiplied by the surface mass distribution (e.g., Lanzano, 1982,
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Surface Boundary Conditions
Free External Surface Surface Shear Surface

Oscillations Potential Mass Loading Forcing Stress (n=1)

y2 0 0 −g2
S

2n+1
4πG 0 − 3 g2S

4πG

y4 0 0 0 (2n+1) g2S
4πGn (n+1)

3 g2S
8πG

y6 + n+1
a y5 0 (2n+ 1) gS (2n+ 1) gS 0 0

Table 4.1: Summary of surface boundary conditions for the cases of (a) free oscillations,
(b) the presence of an external potential, (c) surface mass loading, (d) surface shear forcing,
and (e) surface stress (e.g., Alterman et al., 1959; Longman, 1963; Wiggins, 1968; Lanzano,
1982; Melchior, 1983; Okubo & Saito, 1983; Okubo & Endo, 1986; Guo et al., 2004). The
surface stress solution satisfies the consistency relation and provides a linearly independent
secondary solution for static degree-1 modes (Okubo & Endo, 1986). Note that the bound-
ary conditions stated in Longman (1963) are presented in terms of normalized y-variables,
whereas here I state the boundary conditions directly in terms of the y-variables. Also note
that the Love number definitions of Okubo & Saito (1983) differ from the definitions stated
here by a factor of (a gS), where a is Earth’s radius and gS is the acceleration due to gravity.
Different scalings for the Love numbers must be reflected in the boundary conditions.

Sec. 3.06). Thus,

y2 = −gSKn

= −gSmE
2n+ 1

4πa2

= −gS
2n+ 1

4π

gS
G

= −g2
S

2n+ 1

4πG
. (4.149)

The surface boundary conditions for free oscillations, external potential fields, and sur-

face mass loading (SML) are summarized in Table 4.1. Solving the spheroidal-deformation

equations using external-potential boundary conditions yields potential Love numbers. Solv-

ing the equations using SML boundary conditions yields load Love numbers. Another set of

boundary conditions may be developed to represent surface shear forcing (also listed in Ta-

ble 4.1). Solutions generated from applying shear-forcing boundary conditions to the equa-

tions of motion yield shear Love numbers. Only six of the nine Love numbers (potential,

load, and shear) are independent and expressions exist to relate them (e.g., Molodenskiy,

1977; Saito, 1978).



117

For the special case of n = 0, the equations for y3 and y4 (the tangential components)

are undefined and the system reduces to four equations (Eq. 4.85) (e.g., Longman, 1963;

Smylie, 2013). Furthermore, only two solutions and two boundary conditions exist for

n = 0. The boundary conditions are identical to those listed in Table 4.1, with the exception

that the conditions for y4 must be excluded.

For the special case of n = 1, the gravitational potential load Love number, kn, must be

zero in a reference frame centered at the center of mass of the solid Earth, CE (Blewitt,

2003, Sec. 4.1). Thus, the boundary conditions are modified accordingly to force k1 = 0

(e.g., Guo et al., 2004; Wang et al., 2012). Namely, the third surface boundary condition,

for the cases of the external potential and surface mass loading, becomes:

y5 = a gS . (4.150)

Sec. 4.3.5 provides a description of reference frames applicable to the loading problem.

4.2.15 Load Love Numbers

Load Love numbers are computed by equating linear combinations of the three independent

solutions with boundary conditions at the surface. In matrix form,


−g2

S
2n+1
4πG

0

(2n+ 1) gS

 =


yI

2 yII
2 yIII

2

yI
4 yII

4 yIII
4

(yI
6 + n+1

a yI
5) (yII

6 + n+1
a yII

5 ) (yIII
6 + n+1

a yIII
5 )



m1

m2

m3

 ,
(4.151)

where the superscript Roman numerals represent each of the three independent solutions

that were propagated to the surface. Note that if the y-variables are non-dimensional, then

the other variables must be scaled appropriately (Sec. 4.2.7). The system of equations may

now be solved for the model parameters m1, m2, and m3. When the system is solved using

a direct matrix inversion or the normal equations, large instabilities in the Love numbers

can arise, particularly at high spherical harmonic degrees (see Sec. 4.2.19). Therefore, to

promote stability, I solve the system using the Moore-Penrose pseudoinverse, also known
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as the generalized inverse, which is evaluated using singular value decomposition (e.g., Aki

& Richards, 1980).

With the model parameters in hand, Y1, Y3, and Y5 at the surface may now be derived:

Y1(a) = m1 y
I
1 +m2 y

II
1 +m3 y

III
1 (4.152)

Y3(a) = m1 y
I
3 +m2 y

II
3 +m3 y

III
3 (4.153)

Y5(a) = m1 y
I
5 +m2 y

II
5 +m3 y

III
5 . (4.154)

The load Love numbers are given by (e.g., Longman, 1962; Farrell, 1972a; Guo et al.,

2004):

h′n =
Y1(a)

a
(4.155)

l′n =
Y3(a)

a
(4.156)

k′n =
Y5(a)

a gS
− 1. (4.157)

Here, I have considered a spherically symmetric, non-rotating, elastic and isotropic (SNREI)

Earth; thus, the load Love numbers are real-valued and latitude independent. Rotation and

ellipticity introduce a latitudinal dependency (e.g., Lambeck, 1988) and anelastic effects

produce complex-valued load Love numbers (e.g., Pagiatakis, 1990).

4.2.16 Potential Love Numbers

The potential, or “tidal” (e.g., Saito, 1978), Love numbers are computed analogously to

the load Love numbers, with the exception of different boundary conditions. For potential

Love numbers, boundary conditions for an external gravitational potential are applied to the

momentum-equation solutions at the surface (e.g., Farrell, 1972a; Melchior, 1983):


0

0

(2n+ 1) gS

 =


yI

2 yII
2 yIII

2

yI
4 yII

4 yIII
4

(yI
6 + n+1

a yI
5) (yII

6 + n+1
a yII

5 ) (yIII
6 + n+1

a yIII
5 )



m1

m2

m3

 .
(4.158)
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The potential Love numbers are derived from

Y1(a) = m1 y
I
1 +m2 y

II
1 +m3 y

III
1 (4.159)

Y3(a) = m1 y
I
3 +m2 y

II
3 +m3 y

III
3 (4.160)

Y5(a) = m1 y
I
5 +m2 y

II
5 +m3 y

III
5 (4.161)

using the following formulae:

hn =
Y1(a)

a
(4.162)

ln =
Y3(a)

a
(4.163)

kn =
Y5(a)

a gS
− 1. (4.164)

4.2.17 Shear Love Numbers

The shear Love numbers are computed analogously to the load and potential Love numbers,

except for different boundary conditions. Shear-traction boundary conditions are applied to

derive the shear Love numbers (Table 4.1). Furthermore,

kn =
Y5(a)

a gS
, (4.165)

since the external force is free of a gravitational potential (e.g., Saito, 1978; Okubo & Saito,

1983).

4.2.18 Stress Love Numbers and Degree-1 Modes

Since potential and shear Love numbers are undefined for the degree-1 static case, stress

Love numbers may be introduced to satisfy the consistency relation (e.g., Farrell, 1972a;

Okubo & Endo, 1986). The consistency relation, given by

y2(r) + 2 y4(r) +
g(r)

4πG
y6(r) = 0, (4.166)
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ensures that, in the static case for n = 1, the solid Earth experiences no net force (e.g., Saito,

1974; Okubo & Endo, 1986). As with the shear Love numbers, the stress Love numbers

characterize Earth’s response to potential-free external forcing (Table 4.1).

One additional special consideration must be made for the degree-1 mode: accounting for

a rigid-body translation (e.g., Merriam, 1985; Okubo & Endo, 1986; Okubo, 1993; Blewitt,

2003). For a reference frame centered at the center of mass of the solid Earth (CE), the

degree-1 potential field must vanish outside the Earth. To satisfy the restriction, a rigid-

body translation may be added to the solution vector derived from the equations of motion

for spheroidal deformation (e.g., Merriam, 1985; Okubo & Endo, 1986):

y1(r) = α

y2(r) = 0

y3(r) = α

y4(r) = 0

y5(r) = g(r)α

y6(r) =
−2 g(r)

r
α, (4.167)

where

y5(a)Load = 1 (4.168)

y5(a)Stress = 0 (4.169)

and a corresponds to an evaluation at Earth’s surface. Thus,

αLoad = −y5(a)

g(a)
(4.170)

αStress = −y5(a)

g(a)
+

1

g(a)
. (4.171)

A careful reader might recognize that the set of equations 4.167 correspond precisely to

equations 4.113 for the case of n = 1, ω = 0, and y5(a) = 1 for the load solution or y5(a) =



121

0 for the stress solution (Takeuchi & Saito, 1972). Note that definitions of the “y” equations

(Eqs. 4.79) may differ in the literature. For example, to convert between the convention

used here (Table 4.1) (e.g., Alterman et al., 1959) and the convention of Okubo & Saito

(1983) and Okubo & Endo (1986), one must divide the y-variables by a factor [a g(a)].

Furthermore, y6 is also defined differently; thus, the convention adopted here requires an

extra factor of [−(n+1)
r g(r)α = −2 g(r)

r α] for the rigid-body translation.

4.2.19 Numerical Considerations

Numerical instabilities can easily arise in load Love number computations up to spherical

harmonic degree n = 10000 or greater, particularly since the three linearly independent

starting solutions become less linearly independent with integration to the surface. In addi-

tion to non-dimensionalization, I found it important to compute the surface model param-

eters (Eq. 4.158) using a generalized inverse (e.g., Moore-Penrose pseudoinverse), rather

than by direct inversion. Furthermore, the integration solver can also influence stability.

I have elected to use a Runge-Kutta scheme with adaptive step-sizing within python.

In particular, I find good stability with the scipy differential-equation solvers dopri5 and

dopri853, which perform explicit fourth- and eighth-order Runge-Kutta integration, respec-

tively. Reducing the absolute and relative tolerance values for the integration can improve

precision, ableit at the expense of computation time (e.g., Press et al., 2007). Another

method for improving stability involves variable transformations (e.g., Wang et al., 2012;

Smylie, 2013). Also, although I have not found it necessary here, the matrix minor method

of Woodhouse (1988) might further improve stability. Finally, the starting solutions and

choice of starting radius also have significant effects on precision and stability, as discussed

in the following section.

4.2.20 Starting Radius within the Mantle

Vertical and horizontal displacements induced by either an external gravitational potential

or by surface mass loading at spherical harmonic degree, n, are proportional to the external

potential field, which is proportional to
(
r
a

)n (e.g., Farrell, 1972a; Baker, 1984; Jentzsch,
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1997). Therefore, since the influence of the potential drops off rapidly inside Earth with

increasing n, integration through the inner and outer cores becomes less important (and

may generate instabilities in the solution vectors) for spherical harmonic degrees higher

than about n = 15 (e.g., Na & Baek, 2011). In practice, I have found that commencing the

integrations from a radius at which
(
r
a

)n just exceeds a tolerance level of 10−4 works well

for spherical harmonic degrees beyond n = 15. For spherical harmonic degrees lower than

n = 15, I commence integration from Earth’s center.

4.2.21 Asymptotic Solutions

As a function of spherical harmonic degree, the load Love numbers approach asymptotic

values after about n = 1000 (e.g., Farrell, 1972a; Guo et al., 2004). The asymptotic expres-

sions may be obtained by solving the flat-Earth Boussinesq problem (e.g., Farrell, 1972a) or

by deriving asymptotic solutions to the system of governing ordinary differential equations

(e.g., Guo et al., 2004). Using the latter method, the asymptotic expressions are given by:

h′n = h∗∞ +
1

n
h∗∗∞

nl′n = l∗∞ +
1

n
l∗∗∞

nk′n = k∗∞ +
1

n
k∗∗∞, (4.172)

where

h∗∞ = −
g2
S σS

4πGµS ηS

l∗∞ =
g2
S

4πGηS

k∗∞ = −a ρS gS
2µS

h∗∗∞ =
g2
S

4πGηS

[
−µS
ηS

+
a ρS gS (λ2

S + λS µS − µ2
S)

2µ2
S ηS

+
2πGaρS ηS

gS µS

]
l∗∗∞ =

g2
S

4πGηS

[
−

3λ2
S + 8λS µS + 3µ2

S

2µS ηS
+
a ρS gS σS

2µS ηS

]
k∗∗∞ =

a gS ρS
µS

[
λS
4ηS

+
a ρS gS (2λS + µS)

8µS ηS
+
πGaρS
gS

]
(4.173)
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and

σS = λS + 2µS

ηS = λS + µS . (4.174)

A subscript S refers to the value of the parameter at Earth’s surface.

4.3 Displacement Load Green’s Functions

4.3.1 Introduction

Infinite sums of Love numbers may be formed to determine the impulse-response function,

or Green’s Function, of a body to a certain stimulus. Here, I focus on surface mass loading

boundary conditions, though a similar procedure may be applied to other types of boundary

conditions, such as an external gravitational potential. The variables Y1, Y3, and Y5 obtained

in Sec. 4.2.15 represent the radial coefficients of the spherical harmonic expansions (Eqs.

4.66). Namely, for mass loading at Earth’s surface,

Un(r) = Y1 = a h′n

Vn(r) = Y3 = a l′n

Pn(r) = Y5 = a g (k′n + 1), (4.175)

where a is Earth’s radius. Referring back to Eqs. 4.66, the radial displacement for spherical

harmonic degree n is given by:

un = Un(r)Pn(cos θ) eiωt

= a h′n Pn(cos θ) eiωt, (4.176)

where eiωt represents the temporal evolution of the applied load, such as a periodic ocean

tide.

Since the boundary conditions in Sec. 4.2.14 were formulated based on the mass of the
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Earth, Eq. 4.176 may be rewritten to represent an arbitrary mass load m′ (e.g., Longman,

1963):

un = a
m′

mE
h′n Pn(cos θ) eiωt

=
a

mE
h′n Pn(cos θ) eiωt, (4.177)

where, in the second line, I have taken m′ to be a load of unit mass.

The vertical-displacement load Green’s function (LGF) for a 1-kg load applied at Earth’s

surface is given by a summation of Eq. 4.177 over all n:

u =
a

mE

∞∑
n=0

h′n Pn(cos θ) eiωt. (4.178)

Similarly, the horizontal-displacement LGF for a 1-kg load at Earth’s surface is given by:

v =
a

mE

∞∑
n=1

l′n
∂Pn(cos θ)

∂θ
eiωt. (4.179)

Note that the sum for v begins at n = 1, since horizontal displacements do not apply to the

degree-0 mode.

The radial coefficients of the spherical harmonic expansions may also be expressed in terms

of the transformed surface potential for a point load of unit mass, Φ2,n (e.g., Munk &

MacDonald, 1960; Farrell, 1972a; Melchior, 1983; Jentzsch, 1997):

Un(r) = h′n(r)
Φ2,n

g

Vn(r) = l′n(r)
Φ2,n

g
, (4.180)

where

Φ2,n =
4πGa

2n+ 1
Kn

=
4πGa

2n+ 1

2n+ 1

4πa2

=
GmE

a2

a

mE
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=
a g

mE
. (4.181)

The displacement LGFs in Eqs. 4.178 and 4.179 may also be derived from Eqs. 4.180 and

4.181. In other words, the load Love numbers scale the equipotential height, Φ2,n

g , to the

true displacements expected for Earth’s material structure. To derive the predicted SML-

induced displacements within Earth’s interior, an extra factor of
(
r
a

)n must be included in

Eq. 4.181 (e.g., Munk & MacDonald, 1960; Melchior, 1983).

In summary, the amplitudes of the displacement LGFs (i.e., written without the dynamic

component of the forcing term) are:

u =
a

mE

∞∑
n=0

h′n Pn(cos θ) (4.182)

and

v =
a

mE

∞∑
n=1

l′n
∂Pn(cos θ)

∂θ
. (4.183)

For surface displacements induced by an external gravitational potential, the potential Love

numbers scale the equipotential height generated by the external gravitational potential, Vn

(Eq. 4.2). For a mass a distance R away from Earth’s center, the gravitational potential at

Earth’s surface, a, is given by (Eq. 1.12):

V potential
n =

GM

R

( a
R

)n
Pn(cos θ)eiωt, (4.184)

where the time-dependent harmonic term (eiωt) has been included to account for periodic

dynamic forcing. Hence, the vertical and horizontal displacements due to an external grav-

itational potential may be derived by inserting the expression for Vn (Eq. 4.184) into Eqs.

4.2 and 4.6, respectively, and summing over all n.

Since GNSS receivers infer ground displacements, I have only reviewed the development

of displacement LGFs here. Developemnts for additional types of Green’s functions, such

as gravity, tilt, and strain, may be found in the literature (e.g., Farrell, 1972a; Francis &

Dehant, 1987; Jentzsch, 1997; Guo et al., 2004; Na & Baek, 2011).
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4.3.2 Kummer’s Transformation

The series in Eqs. 4.182 and 4.183 can be slow to converge. Kummer’s series transfor-

mation may be implemented to speed convergence (e.g., Farrell, 1972a; Francis & Dehant,

1987; Guo et al., 2004; Na & Baek, 2011). The general form of Kummer’s transformation

is given by (e.g., Abramowitz & Stegun, 1964; Na & Baek, 2011):

∑
n

f(n)Qn = f∞
∑
n

Qn +
∑
n

(f(n)− f∞)Qn, (4.185)

where f∞ = limn→∞ f(n).

Thus, Eqs. 4.182 and 4.183 may be expressed in terms of the asymptotic expressions of the

load Love numbers as:

u =
a

mE
h∗∞

∞∑
n=0

Pn(cos θ) +
a

mE

∞∑
n=0

(h′n − h∗∞)Pn(cos θ) (4.186)

and

v =
a

mE
l∗∞

∞∑
n=1

1

n

∂Pn(cos θ)

∂θ
+

a

mE

∞∑
n=1

(nl′n − l∗∞)
1

n

∂Pn(cos θ)

∂θ
. (4.187)

The factor 1
n in Eq. 4.187 enters because l∗∞ represents the asymptotic value of nl′n (Eq.

4.172) (cf., Farrell, 1972a).

Eqs. 4.186 and 4.187 include only the first term in the asymptotic expressions of the load

Love numbers (Eq. 4.172). Guo et al. (2004) introduced an additional term to the asymp-

totic expressions, improving accuracy by a factor 1
n . With the extra term included, Eqs.

4.182 and 4.183 become:

u =
a

mE
h∗∞

∞∑
n=1

Pn(cos θ) +
a

mE
h∗∗∞

∞∑
n=1

1

n
Pn(cos θ) +

a

mE
h′0 +

a

mE

∞∑
n=1

(h′n − (h∗∞ +
1

n
h∗∗∞))Pn(cos θ) (4.188)
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and

v =
a

mE
l∗∞

∞∑
n=1

1

n

∂Pn(cos θ)

∂θ
+

a

mE
l∗∗∞

∞∑
n=1

1

n2

∂Pn(cos θ)

∂θ
+

a

mE

∞∑
n=1

(nl′n − (l∗∞ +
1

n
l∗∗∞))

1

n

∂Pn(cos θ)

∂θ
. (4.189)

Note that the second-order terms for the asymptotes are undefined for n = 0. Some of the

Legendre sums in Eqs. 4.188 and 4.189 are known analytically (e.g., Farrell, 1972a; Guo

et al., 2004):

∞∑
n=0

Pn(cos θ) =
1

x
(4.190)

∞∑
n=1

1

n
Pn(cos θ) = ln

2

x+ 1− cos θ
(4.191)

∞∑
n=1

1

n

∂Pn(cos θ)

∂θ
= −

sin θ( 1
x + 1)

x+ 1− cos θ
(4.192)

∞∑
n=1

1

n2

∂Pn(cos θ)

∂θ
=

1

sin θ
ln

(2− x)2(1− cos θ)

2(x− 1 + cos θ)(1 + cos θ)
−

cos θ

sin θ
ln

sin2 θ

2(x− 1 + cos θ)
, (4.193)

where x =
√

2− 2 cos θ.

In practice, the load Love number computations are often carried out to spherical harmonic

degree n = 10000, beyond which the load Love numbers are assumed to be equivalent to the

asymptotic values (Eq. 4.172) (e.g., Farrell, 1972a; Guo et al., 2004). Thus, the arguments

in Eqs. 4.188 and 4.189 that contain load Love numbers become zero beyond spherical

harmonic degree, N . Furthermore, the Legendre polynomials and their derivatives may be

computed recursively using the so-called recursion relations, which will be discussed in

Sec. 4.3.3.

In summary, the displacement load Green’s functions are computed using the formulae:

u(θ) =
a

mE
h∗∞

∞∑
n=1

Pn(cos θ) +
a

mE
h∗∗∞

∞∑
n=1

1

n
Pn(cos θ) +
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a

mE
h′0 +

a

mE

N=10000∑
n=1

(h′n − (h∗∞ +
1

n
h∗∗∞))Pn(cos θ) (4.194)

for the vertical-displacement response, and

v(θ) =
a

mE
l∗∞

∞∑
n=1

1

n

∂Pn(cos θ)

∂θ
+

a

mE
l∗∗∞

∞∑
n=1

1

n2

∂Pn(cos θ)

∂θ
+

a

mE

N=10000∑
n=1

(nl′n − (l∗∞ +
1

n
l∗∗∞))

1

n

∂Pn(cos θ)

∂θ
(4.195)

for the horizontal-displacement response. The Legendre sums without Love-number coef-

ficients may be determined analytically (Eqs. 4.190–4.193). The Legendre contributions to

the final terms in Eqs. 4.194 and 4.195 are computed recursively (Sec. 4.3.3). Since Eq.

4.193 is undefined for θ = 180◦, I compute the LGFs at that angular distance by linear in-

terpolation of the values for θ = 179.998◦ and θ = 179.999◦ and subsequent extrapolation

to θ = 180◦ (Guo et al., 2004).

4.3.3 Legendre Polynomial Recursion Relations

To evaluate the final terms in Eqs. 4.194 and 4.195, the Legendre functions and their deriva-

tives must be determined for every n. Recursion relations, derived from the Legendre gen-

erating function, are commonly used (e.g., Farrell, 1972a; Guo et al., 2004; Na & Baek,

2011).

Two useful recursion, or recurrence, relations are (e.g., Boas, 1983):

nPn(x) = (2n− 1)xPn−1(x)− (n− 1)Pn−2(x) (4.196)

(1− x2)
∂Pn(x)

∂x
= nPn−1(x)− nxPn(x). (4.197)

For x = cos θ, the recursion relations become:

nPn(cos θ) = (2n− 1) cos θPn−1(cos θ)− (4.198)

(n− 1)Pn−2(cos θ)
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(1− cos2 θ)
∂Pn(cos θ)

∂cos θ
= nPn−1(cos θ)− n cos θPn(cos θ). (4.199)

Since Eq. 4.195 requires the derivative of the Legendre function with respect to θ (as

opposed to cos θ), each side of Eq. 4.199 can be multiplied by ∂cos θ
∂θ , leading to:

(1− cos2 θ)
∂Pn(cos θ)

∂cos θ

∂cos θ

∂θ
= [nPn−1(cos θ)− n cos θPn(cos θ)]

∂cos θ

∂θ

(sin2 θ)
∂Pn(cos θ)

∂θ
= [nPn−1(cos θ)− n cos θPn(cos θ)](− sin θ)

∂Pn(cos θ)

∂θ
= − n

sin θ
[Pn−1(cos θ)− cos θPn(cos θ)]. (4.200)

4.3.4 Disk Factor

To speed the convergence of the series in Eqs. 4.194 and 4.195, distant loads (e.g., several

tens of degrees away from the observer) may be approximated by finite circular caps rather

than delta functions (e.g., Farrell, 1972a). In practice, the disk factor from Eq. 4.140 may be

inserted back into Eqs. 4.194 and 4.195. For displacement LGFs, which converge relatively

rapidly, disk factors are generally not necessary; however, disk factors can be very useful

for other types of LGFs, such as tilt and strain (e.g., Na & Baek, 2011).

The disk factor, [
− (1 + cosα)

n(n+ 1) sinα

∂Pn(cosα)

∂α

]
, (4.201)

is only valid in the limit α → 0, where α specifies the finiteness of the circular cap (e.g.,

Farrell, 1972a); thus, the disk factor should only be invoked with small α (e.g., ∼ 0.004◦).

4.3.5 Reference Frames

The vector displacement field generated by surface mass loading depends both on the phys-

ical characteristics of the deformation as well as the chosen reference frame (e.g., Blewitt,

2003; Petit & Luzum, 2010). The load Love numbers and corresponding load Green’s

functions described thus far have been computed in a reference frame fixed to the cen-

ter of mass of the solid Earth, abbreviated CE. The CE reference frame is convenient for

computing Love numbers and Green’s functions, but not directly observable in practice
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(e.g., Farrell, 1972a; Blewitt, 2003; Agnew, 2012). A more appropriate reference frame for

GNSS-inferred surface displacements is one fixed to the center of mass of the entire Earth

system, abbreviated CM, which includes the solid Earth as well as its fluid exterior (e.g.,

oceans and atmosphere) (e.g., Blewitt, 2003; Fu et al., 2012).

Blewitt (2003) demonstrated that conversions between the various reference frames involve

only simple transformations of the degree-one load Love numbers. The conversions for CE

to CM, for example, are given by:

[h′1]CM = [h′1]CE − 1

[l′1]CM = [l′1]CE − 1

[1 + k′1]CM = [1 + k′1]CE − 1. (4.202)

Similarly, the conversions for CE to CF (center of figure) are given by:

[h′1]CF =
2

3
[h′1 − l′1]CE

[l′1]CF = −1

3
[h′1 − l′1]CE

[1 + k′1]CF =

[
1− 1

3
h′1 −

2

3
l′1

]
CE

. (4.203)

From the equations for the displacement LGFs (Eqs. 4.182 and 4.183), the degree-1 com-

ponents are:

u1 =
a

mE
h′1 cos θ (4.204)

and

v1 =
a

mE
l′1
∂

∂θ
cos θ = − a

mE
l′1 sin θ (4.205)

for the vertical- and horizontal-displacement components, respectively.

The difference between LGFs computed in the CM and CE frames involves only a degree-

one transformation. Thus, (e.g., Agnew, 2012):

uCM − uCE = uCM
1 − uCE

1 =
a

mE
cos θ ([h′1]CM − [h′1]CE) = − a

mE
cos θ (4.206)
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for the vertical-displacement component, and

vCM − vCE = vCM
1 − vCE

1 = − a

mE
sin θ ([l′1]CM − [l′1]CE) =

a

mE
sin θ (4.207)

for the horizontal-displacement component.

The straightforward conversions between the CE and CM LGFs simplify to (Agnew, 2012):

uCM = uCE − a

mE
cos θ (4.208)

for the vertical-displacement component, and

vCM = vCE +
a

mE
sin θ (4.209)

for the horizontal-displacement component.

The vertical- and horizontal-displacement LGFs computed in the CE, CM, and CF refer-

ence frames for the Preliminary Reference Earth Model (PREM) (Dziewonski & Anderson,

1981) are shown in Fig. 4.1. The different reference frames clearly have a significant effect

on the displacement LGFs (e.g., Farrell, 1972a).

4.3.6 Loading and Gravitational Self-Attraction

The parameters h′n and l′n account for the combined effect of pressure due to the loading

and attraction of the additional applied mass; thus, loading and gravitational attraction (both

direct due to the applied external mass and indirect due to the redistributed internal mass)

are accounted for in the displacement LGFs (e.g., Munk & MacDonald, 1960).

On a perfectly rigid Earth, for example, SML would induce gravity and tilt responses but

not displacements, since h′n and l′n would be zero (e.g., Farrell, 1972a; Agnew, 2015). The

gravity and tilt LGFs may therefore be partitioned into two components: Newtonian, re-

sulting from direct attraction of the load, and elastic, due to Earth’s elastic yielding (e.g.,

Farrell, 1972a,b, 1973; Agnew, 1997; Bos & Baker, 2005; Agnew, 2012, 2015). The di-

rect attraction component is also referred to as self attraction of the load (e.g., Ray, 1998).
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Accounting for the effects of loading and self-attraction (LSA) is also essential for the de-

velopment of accurate ocean tide models (e.g., Hendershott, 1972) and for the analysis of

satellite altimetry data (e.g., Ray, 1998).

4.3.7 Mass Conservation

To ensure conservation of mass in ocean tidal loading problems, which can be particularly

important for gravity and tilt LGFs (e.g., Melchior, 1983), the total integrated tide height

over all the oceans should be zero (e.g., Farrell, 1972b; Agnew, 1983). As an extreme

case, I consider a tidal harmonic that has the same phase everywhere in the oceans. In

other words, the entire ocean will experience maximum tide at the same time and, half

a tidal cycle later, experience minimum tide at the same time. Based on this scenario, a

mass imbalance occurs over the course of the tidal cycle: water is “created” during high

tide and “destroyed” during low tide, requiring a migration of water across the oceanic

boundaries. The ocean-continent boundaries, however, should not permit a significant flux

of water across the interface. Moreover, a perfectly modeled ocean tide would satisfy the

mass-conservation constraint of the bounded system.

Mass conservation may be approximated by discarding the degree-0 term in the LGFs (e.g.,

Farrell, 1973; Guo et al., 2004); Agnew (1983) pointed out, however, that removing the

degree-0 term is not strictly correct for Newtonian components of LGFs. Furthermore,

retaining the degree-0 term in the vertical-displacement LGFs, which allows for Earth com-

pressibility (Hendershott, 1972), remains the prevailing convention (e.g., Farrell, 1972a;

Guo et al., 2004). Horizontal displacements do not include a degree-0 term by definition.

Another option for enforcing mass conservation is to subtract a mass layer of constant

amplitude and phase from the ocean model just prior to convolution with the LGFs (e.g.,

Farrell, 1972b, 1973; Agnew, 1983; Bos & Baker, 2005).

Alternatively, the ocean model itself can be designed to prevent the flow of water across

boundaries (e.g., Farrell, 1973). The advent of satellite altimetry and advancements in data-

assimilation and hydrodynamic-modeling methods have dramatically improved the ability

to constrain tidal circulation systems and therefore to conserve mass in global ocean tide
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models (e.g., Stammer et al., 2014). Older, now-obsolete ocean tide models struggled to

conserve mass primarily due to insufficient treatment of bottom friction, coastline morphol-

ogy, bathymetry, and loading and self-attraction (LSA) effects (e.g., Hendershott, 1972;

Schwiderski, 1980); modern ocean models, however, are far more accurate (Ray, 2013;

Stammer et al., 2014). The precision of contemporary ocean models renders the mass-

imbalance issue of little concern in the modern era (e.g., Bos & Baker, 2005).

4.4 Convolution Methods

SML-induced surface displacements may now be computed for loads of finite size through

a convolution of LGFs with a load model. Eqs. 4.182 and 4.183 represent the load-induced

displacements per 1-kg load. For an applied load of arbitrary mass, dm, the induced dis-

placements, du and dv, are given by (e.g., Scherneck & Bos, 2002):

du =
a

mE

∞∑
n=0

h′n Pn(cos θ) dm = Gu(θ) dm (4.210)

and

dv =
a

mE

∞∑
n=1

l′n
∂Pn(cos θ)

∂θ
dm = Gv(θ) dm, (4.211)

where Gu(θ) and Gv(θ) represent the vertical- and horizontal-displacement LGFs, respec-

tively.

For a spatially variable, non-point-source load, the LGFs are convolved with a load model:

U j(r, S, ρsea, Zj) =

∫
Ω
G(|r − r′|, S) ρsea(r

′)Zj(r
′) dΩ. (4.212)

In the context of ocean tidal loading (OTL), U j represents the surface displacement at ob-

servation point r due to loading by tidal harmonic j, ρsea is the density of seawater at the

load point r′,G represents the displacement LGF, and Zj is the complex-valued tidal height

at the load point r′ (e.g., Farrell, 1973; Melchior, 1983; Baker, 1984; Harrison, 1985; Fran-

cis & Mazzega, 1990; Scherneck, 1991; Agnew, 1997; Jentzsch, 1997; Bos & Baker, 2005;

Agnew, 2012; Bos & Scherneck, 2013). The LGF depends on distance to the load as well
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as Earth structure, S, which is assumed radially symmetric (e.g., PREM). The mass of the

load, dm, at each load point, r′, is equivalent to the product of the amplitude, area element

for a spherical surface, and density of the load (Eqs. 4.210 and 4.211).

Since OTL is confined to Earth’s surface, Eq. 4.212 may be re-expressed as:

U j(Θ, λ, ρsea, Zj , S) =

∫ 2π

0

∫ π

0
ρsea(Θ

′, λ′) Zj(Θ
′, λ′) G(θ, S) T (α) a2 sin Θ′ dΘ′dλ′,

(4.213)

where Θ and λ are the co-latitude and longitude of the observation point, respectively; Θ′

and λ′ are the co-latitude and longitude of the load point; G is the displacement LGF;

T (α) is a trigonometric factor that decomposes the horizontal-displacement response into

two-component vectors (for the vertical response, T (α) = 1); α is the azimuth (measured

clockwise from north); Zj is the complex-valued tide height at the load point; and a is

Earth’s radius. Note that a2 sin Θ′ dΘ′ dλ′ represents an area element for a spherical

surface.

As an alternative to the spatial-convolution approach, the load model and the predicted re-

sponse may be developed in the frequency domain in terms of spherical harmonics (e.g.,

Farrell, 1972a; Agnew, 2015, Sec. 3.06.4.1). The spherical-harmonic approach can be

highly efficient, particularly when seeking the deformation response globally (Farrell, 1972a;

Agnew, 2015, Sec. 3.06.4.1). The spherical harmonics, however, must be expanded to high

degree and order to mitigate the Gibbs phenomenon at coastal boundaries and to character-

ize fine-scale features of the ocean-tide model. The spatial-convolution method also allows

for enhanced accuracy very near to the receiver without requiring a global refinement in the

integration mesh (e.g., Farrell, 1972a; Bos & Baker, 2005; Agnew, 2015, Sec. 3.06.4.2).

Furthermore, the spatial convolution allows for easy combination of multiple loading mod-

els from different grids (e.g., Agnew, 1997, 2015, Sec. 3.06.4.2). I have adopted the spatial-

convolution approach in the development presented here; however, with modern computing

power and recent advancements in ocean-tide modeling, the spherical-harmonic method

might now be a viable (and preferred) option.
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4.4.1 Integration Mesh

For practical implementation, the integral in Eq. 4.213 is replaced by a sum over discrete

cells. The discrete cells are collectively known as the integration mesh. The integration

mesh may be defined in two primary ways (e.g., Hofmann-Wellenhof & Moritz, 2005):

templates or gridlines. Templates are formed by subdividing concentric circles about the

observation point. Gridlines are formed by subdividing a geographic coordinate system into

discrete blocks. Since ocean tide models are commonly distributed in gridline format, and

the gridline method is not specific to an observation point, defining the integration mesh in

terms of gridlines may seem the natural and obvious choice (e.g., Scherneck, 1991; Scher-

neck & Bos, 2002; Bos & Baker, 2005; Yeh et al., 2008). Defining the integration mesh in

terms of templates, however, has distinct advantages for OTL analysis (e.g., Goad, 1980;

Harrison, 1985; Agnew, 1997, 2012). First, since the LGFs depend only on the angular

distance between the load and receiver, the station-centric coordinate system requires rel-

atively few LGFs to be computed. Second, the integration mesh does not change with the

load model and, thus, easily facilitates the combination of multiple load models, even on

irregular grids. Third, the singularity in the LGFs at small θ is easily mitigated through

appropriate scaling factors and integration over the area of the cells.

A drawback to the template method is that it requires interpolation of the load model onto

the integration mesh and, therefore, does not represent the load model exactly. The ocean

model itself, however, is also an approximation of the true load. Moreover, the gridline

method also might require some interpolation of the load model (e.g., if a finer integration

mesh is adopted near the station). In practice, Bos & Baker (2005) determined through

rigorous testing that the choice of template or gridline method had little effect on predicted

OTL-induced surface displacements.

As a result of the straightforward implementation and algorithmic flexibility, I have adopted

the template method. Since the template grid is centered on the station, Eq. 4.213 becomes
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(e.g., Harrison, 1985; Agnew, 1997):

U j(Θ, λ, ρsea, Zj , S) =

∫ 2π

0

∫ π

0
ρsea(θ, α) Zj(θ, α) G(θ, S) T (α) a2 sin θ dθ dα,

(4.214)

where the load model, Z, and load density, ρsea, have been interpolated onto the integration

mesh. Due to the rapid changes in the LGFs as θ → 0, the integration mesh should be

refined near the station and neighboring coastlines in order to obtain accurate response

predictions (e.g., Scherneck & Bos, 2002; Bos & Baker, 2005; Penna et al., 2008; Agnew,

2012).

4.4.2 Interpolation and Integration of Load Green’s Function

One method to alleviate the singularity in the displacement LGFs at θ = 0 is to scale the

LGFs by a factor proportional to θ. Following (Agnew, 2012),

G′(θ) = a2 G(θ) 2 sin(θ/2), (4.215)

where G′(θ) is the normalized LGF, G(θ) is the original LGF, and a is Earth’s radius. With

the singularity reduced, the normalized LGFs are easily interpolated to intermediary values

of θ using, e.g., cubic-spline interpolation. Since tabulated LGFs necessarily contain a

greater number of entries at small θ, where the LGFs vary rapidly, interpolation on log θ

provides a more even spacing (e.g., Bos & Baker, 2005). When working with a template

grid, another option is to integrate the LGFs directly at the LLN-summation stage (e.g.,

Goad, 1980), which has the added benefit of improving the convergence of the series.

Using the normalized LGFs, Eq. 6.9 becomes:

U j(Θ, λ, ρsea, Zj , S) =

∫ 2π

0

∫ π

0
ρsea Z(θ, α) G′(θ) T (α)

sin θ

2 sin(θ/2)
dθ dα. (4.216)

The tide height, seawater density, and normalized LGFs are given by the value at the mid-
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point of each cell. Thus, I rewrite Eq. 4.216 as:

U j(Θ, λ, ρsea, Zj , S) = ρsea Z(θ, α) G′(θ)

∫ π

0

sin θ

2 sin(θ/2)
dθ

∫ 2π

0
T (α) dα. (4.217)

In this form, the integration may be performed over individual cells and then summed to-

gether (Agnew, 2012):

U j(Θ, λ, ρsea, Zj , S) =
N∑
i=1

ρi Zi G
′(θi)

∫ θi+
δ
2

θi− δ2

sin θ

2 sin(θ/2)
dθ

∫ αi+
β
2

αi−β2
T (α) dα,

(4.218)

where N is the total number of cells in the integration mesh, Zi is the tide height at the

center of cell i, ρi is the seawater density at the center of cell i, G′(θi) is the normalized

LGF computed for the center of cell i, θi is the angular separation between the station and

the center of the load patch, δi is the inclination width of the load patch, αi is the azimuth

between the station and center of the load patch (as measured at the station in degrees

clockwise from north), and βi is the azimuthal width of the load patch.

For vertical-displacement response, T (α) = 1. For the north component of the horizontal

response, T (α) = − cos(α). For the east component of the horizontal response, T (α) =

− sin(α). The minus signs are required because the horizontal response is directed radially

outwards from the load point; thus, the azimuth of the response at the receiver is α+ 180◦,

where α is the vector geodesic pointing from the receiver to the load point (e.g., Scherneck,

1991).

The integral over θ reduces to (Agnew, 2012):

∫ θi+
δi
2

θi−
δi
2

sin θ

2 sin(θ/2)
dθ = 4 cos

(
θi
2

)
sin

(
δi
4

)
. (4.219)

Since θi and δi are determined solely from the integration mesh, the integrated LGFs may

be computed and stored prior to convolution with a load model. The integral over α for the
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vertical-displacement response reduces to:

∫ αi+
βi
2

αi−
βi
2

T (α) dα =

∫ αi+
βi
2

αi−
βi
2

dα = βi. (4.220)

The integral over α for the horizontal-displacement response (north component) reduces to:

∫ αi+
βi
2

αi−
βi
2

T (α) dα = −
∫ αi+

βi
2

αi−
βi
2

cos(α) dα

= −
{

sin

(
αi +

βi
2

)
− sin

(
αi −

βi
2

)}
= −

[
sin(αi) cos

(
βi
2

)
+ cos(αi) sin

(
βi
2

)]
+[

sin(αi) cos

(
βi
2

)
− cos(αi) sin

(
βi
2

)]
= −2 sin

(
βi
2

)
cos(αi). (4.221)

The integral over α for the horizontal-displacement response (east component) reduces to:

∫ αi+
βi
2

αi−
βi
2

T (α) dα = −
∫ αi+

βi
2

αi−
βi
2

sin(α) dα

= −
{

cos

(
αi −

βi
2

)
− cos

(
αi +

βi
2

)}
= −

[
cos(αi) cos

(
βi
2

)
+ sin(αi) sin

(
βi
2

)]
+[

cos(αi) cos

(
βi
2

)
− sin(αi) sin

(
βi
2

)]
= −2 sin

(
βi
2

)
sin(αi). (4.222)

4.4.3 Convolution Procedure

After the integration mesh has been defined and the LGFs have been normalized and in-

tegrated, the next step is to determine the geographic coordinates for the midpoint of each

cell. From spherical trigonometry, I compute the latitude and longitude of the cell midpoints
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(Φi, λi) using the so-called direct geodesic problem (e.g., Karney, 2013):

Φi = arcsin( sin ΦR cos θi + cos ΦR sin θi cosαi) (4.223)

λi = λR + arctan

(
sinαi sin θi cos ΦR

cos θi − sin ΦR sin Φi

)
, (4.224)

where Φi = 90 − Θi is the latitude at the midpoint of mesh cell i, λi is the longitude

at the midpoint of mesh cell i, ΦR is the latitude of the station, λR is the longitude of

the station, θi is the inclination angle between the station and the midpoint of mesh cell

i, and αi is the azimuth from the station to the midpoint of mesh cell i (measured at the

station in degrees clockwise from north). Note that to account for Earth flattening effects,

the geographic coordinates may be converted to geocentric coordinates when computing

azimuth and inclination.

The load model, provided on a geographic coordinate grid, may now be interpolated to the

specific geographic coordinates at the center of each integration-mesh cell. One option is

to use bilinear interpolation of the four neighboring load points (e.g., Penna et al., 2008;

Agnew, 2012). Another option, as long as the grid is rectangular, is to use two-dimensional

bivariate spline interpolation, which is provided as a built-in function within python.

The discrete convolution now may be written as (e.g., Harrison, 1985; Agnew, 1997):

Uvert(Θ, λ) = 4

N∑
i=1

Zi ρiG
′(θi) cos

(
θi
2

)
sin

(
δi
4

)
βi (4.225)

Unorth(Θ, λ) = 8
N∑
i=1

Zi ρiG
′(θi) cos

(
θi
2

)
sin

(
δi
4

)
sin

(
βi
2

)
cos(αi + 180◦) (4.226)

U east(Θ, λ) = 8
N∑
i=1

Zi ρiG
′(θi) cos

(
θi
2

)
sin

(
δi
4

)
sin

(
βi
2

)
sin(αi + 180◦). (4.227)

For complex-valued loads, including the ocean tides, the amplitudes and phases are parti-
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tioned into real and imaginary components (e.g., Bos & Baker, 2005):

Zi = Ai cosφi + i Ai sinφi = c+ i s, (4.228)

where Ai is the amplitude of the load at the center of mesh cell i and φi is the phase at the

center of mesh cell i. The real and imaginary components are convolved separately over

all cells in the integration mesh using Eqs. 4.225–4.227. The convolution results for each

harmonic coefficient, Uc and Us, are then recombined into the amplitude and phase for each

spatial component:

A =
√
U2
c + U2

s (4.229)

φ = atan2(Us, Uc). (4.230)

In addition to a spatially variable load model, a spatially variable model for seawater densi-

ties may also be included (e.g., Bos & Baker, 2005; Agnew, 2012; Ray, 2013). As with the

load model, the densities would be interpolated onto the integration mesh, designed such

that the average density within each cell is approximately equal to the value at the midpoint

of each cell. Alternatively, the seawater density may be approximated as constant every-

where and applied after the convolution. The approximation of constant seawater density is

good to about 1% (e.g., Bos & Baker, 2005).

4.4.4 Additional Considerations

To improve the convolution further, the load model should be refined around coastal bound-

aries, perhaps using bilinear interpolation (e.g., Agnew, 2012). Locally redistributing the

water mass within the area of coastal refinement has been shown to be less effective than in-

terpolation (Penna et al., 2008). Particularly for older ocean tide models, grid cells were too

coarse to accurately reflect the coastline, leading to substantial inaccuracies for loads close

to the observer or in shallow seas (e.g., Bos & Baker, 2005; Penna et al., 2008). Recent

ocean tide models, such as TPXO8-Atlas and FES2012, do a much better job of fitting the

coastline (e.g., Penna et al., 2008); thus, refining the ocean tide models around the coastline
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has become less critical, but still influencial.

Further improvements may be made by supplementing global ocean tide models with local

models. Care must be taken so as not to double-count loads, but the template method is well

designed for combining multiple models, whereby unique cells in the mesh can be assigned

to unique ocean tide models (e.g., Agnew, 1997, 2012).

It is also worth noting that the development presented here applies to an elastic Earth. For a

viscoelastic Earth, the elastic moduli are frequency dependent and the load Love numbers

become complex-valued (e.g., Lambeck, 1988; Pagiatakis, 1990; Bos et al., 2015). Francis

& Mazzega (1990) reported differences between OTL-induced surface displacements of up

to 1.5% in amplitude and 0.3◦ in phase when comparing elastic and anelastic models. More

recently, Bos et al. (2015) found that discrepancies between observed and predicted OTL-

induced surface displacements in western Europe could be reduced by about 0.2 mm on

average by accounting for mantle anelasticity.

4.5 Suggestions for Further Reading

For computing the Love numbers, the texts I have found most helpful include: Alterman

et al. (1959), Longman (1962, 1963), Takeuchi & Saito (1972), Saito (1978), Lapwood

& Usami (1981), Lanzano (1982), Okubo & Saito (1983), Bos & Scherneck (2013), and

Smylie (2013). For more information on deriving the displacement load Green’s functions,

I recommend Farrell (1972a), Okubo (1988a,b), and Guo et al. (2004). To learn more about

the convolution procedure, I suggest Farrell (1973), Agnew (2012, 2015), and Harrison

(1985). Overviews of the entire procedure are provided in Melchior (1983), Baker (1984),

Jentzsch (1997), Bos & Scherneck (2013), and Agnew (2015).
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5
Some Remarks on the Inverse Problem

for Surface Mass Loading

5.1 Theory and Implementation

To investigate the elastic structure of the solid Earth from observations of OTL-induced sur-

face displacements, the forward model developed in Ch. 4 may be adapted to an inversion

framework. Although many inversion algorithms exist, here I review the straightforward

technique of solving the weakly non-linear problem in a least-squares sense. Thus, I lin-

earize the forward model, G(m), around an initial model for the elastic structure, mprior,

using a first-order Taylor series expansion (e.g., Tarantola, 2005; Aster et al., 2013):

G(m) ≈ G(mprior) + J(mprior) ∆m, (5.1)

where

∆m = (m−mprior) (5.2)

and

Jiα(mprior) =

(
∂[G(m)]i
∂mα

)
mprior

(5.3)

is the Jacobian. Furthermore, α corresponds to a specific model parameter and i corre-

sponds to the real or imaginary component of the predicted OTL-induced surface displace-

ments for a particular geographic location and spatial component. For Earth’s elastic re-

sponse to surface mass loading, the model parameters may be defined as logarithms of the

two elastic moduli, µ and κ, and density, ρ, at various discrete depths, or knots, positioned

through the crust and mantle. The differential model vector in Eq. 5.1, ∆m, represents

small perturbations to the model parameters at each knot.
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Written more explicitly, Eq. 5.1 becomes:

(G(m))1

(G(m))2

(G(m))3

(G(m))4
...


≈



(G(mprior))1

(G(mprior))2

(G(mprior))3

(G(mprior))4
...


+



∂[G(m)]1
∂m1

∂[G(m)]1
∂m2

∂[G(m)]1
∂m3

∂[G(m)]1
∂m4

· · ·
∂[G(m)]2
∂m1

∂[G(m)]2
∂m2

∂[G(m)]2
∂m3

∂[G(m)]2
∂m4

· · ·
∂[G(m)]3
∂m1

∂[G(m)]3
∂m2

∂[G(m)]3
∂m3

∂[G(m)]3
∂m4

· · ·
∂[G(m)]4
∂m1

∂[G(m)]4
∂m2

∂[G(m)]4
∂m3

∂[G(m)]4
∂m4

· · ·
...

...
...

...
...





∆m1

∆m2

∆m3

∆m4

...


.

(5.4)

G(m) represents the forward model, which may be compared against observations of

OTL-induced surface displacements inferred from the GPS data. In other words, I aim to

derive a model vector, m, that best describes the data. In the ideal case, the observed data

vector, d, would perfectly match the set of forward-modeled predictions:

d = G(m). (5.5)

To find the optimal solution, I combine Eq. 5.5 with Eq. 5.1 to obtain:

G(m) = d ≈ G(mprior) + J(mprior) ∆m, (5.6)

which, upon rearranging, becomes:

J(mprior) ∆m ≈ d−G(mprior). (5.7)

This problem may be solved iteratively for the model perturbations, ∆m. Model parameters

are updated at each iteration until a suitable convergence is achieved.

To generate the Jacobian matrix, each model parameter is perturbed individually to gen-

erate a series of updated models for Earth structure. Multiple evaluations of the forward

model are then performed to determine the change in predicted OTL-induced displace-

ments at the surface due to perturbations in the model parameters. The process repeats until

the effects of perturbations to all model parameters have been considered. In other words,

the predicted OTL-induced surface displacements from each perturbed forward model are

compared against the predicted OTL-induced surface displacements from the unperturbed
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model (∂[G(m)]i) and divided by the perturbation to the model parameter (∂mα), where

i corresponds to a particular station/component/data-type and α corresponds to a particu-

lar model parameter. The model-parameter perturbations must be small enough to ensure

stability in the inversion, although perturbations too small can increase computational time

unnecessarily. The Jacobian will need to be recomputed when the perturbations to the orig-

inal model parameters exceed a certain threshold, such as 2% (Ito & Simons, 2011).

For the nonlinear least-squares problem, the a posteriori probability density is approxi-

mately Gaussian and centered on (Tarantola, 2005):

m̃ ≈ mprior + (JtC−1
D J + C−1

M )−1 JtC−1
D [dobs −G(mprior)]

= mprior + CM Jt (JCM Jt + CD)−1 [dobs −G(mprior)], (5.8)

where CM is the model covariance matrix, CD is the data covariance matrix, and a super-

script t indicates a matrix transpose. A variety of optimization algorithms exist to facilitate

convergence upon the maximum likelihood model, mML, including Newton’s method, the

steepest descent method, the conjugate gradient method, and Monte Carlo methods (e.g.,

Tarantola, 2005; Aster et al., 2013).

For Newton’s method, the updated model parameters at each iteration are given by:

mn+1 = mn−µn (JtnC
−1
D Jn+C−1

M )−1 {JtnC−1
D [G(mn)−dobs]+C−1

M [mn−mprior]},

(5.9)

where

(Jn)iα =

(
∂[G(m)]i
∂mα

)
mn

(5.10)

and µn parameterizes the step size at each iteration (e.g., Tarantola, 2005). Typically, µn =

1 for Newton’s method (Tarantola, 2005). If multiple minima exist, then Newton’s method

will converge upon a local optimum. Thus, for the case of multiple minima, the prior model

must initiate the inversion near to the global minimum when using Newton’s method.

For the steepest descent method, the updated model parameters are given by (e.g., Tarantola,
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2005):

mn+1 = mn − µn {CM JtnC
−1
D [G(mn)− dobs] + [mn −mprior]}. (5.11)

Conjugate gradient least squares (CGLS) algorithms (e.g., Aster et al., 2013) are similar to

steepest descent methods, but have more flexibility in exploring the model space. In cases

where a nonlinear model cannot be linearized or a large number of local minima are present,

Monte Carlo methods are generally preferred (e.g., Tarantola, 2005).

Since the elastic moduli and density are Jeffrey’s parameters (Tarantola, 2005) (i.e., the

quantities must remain positive), I parameterize the model vector in terms of ratios of the

elastic moduli and density. For each knot in the model, the model parameters could be

defined as:

mknot =

{
log

(
κt
κb

)
, log

(
µt
µb

)
, log

(
ρt
ρb

)}
, (5.12)

where t corresponds to the model parameter in the upper layer and b corresponds to the

model parameter in the lower layer. For a starting layer at the base of the model space, the

model parameters at the first knot would be:

m0 =

{
log
(κ0

κ∗

)
, log

(
µ0

µ∗

)
, log

(
ρ0

ρ∗

)}
, (5.13)

where κ∗, µ∗, and ρ∗ represent scaling factors. For a given set of model parameters, one

can determine the starting parameters (ρ0, µ0, κ0) and subsequently “unwind” the remaining

parameters. Parameterizing the model vector in terms of ratios of the elastic parameters also

facilitates the inclusion of two knots at the same depth level, which allows for the possibility

of a discrete jump in material properties at a boundary layer (e.g., compositional, chemical,

thermal, etc.).

The initial model vector is constructed based on an a priori Earth model, such as PREM.

After each iteration, k, of the non-linear least-squares inversion, the model vector will be

updated:

mk+1 = mk + ∆m. (5.14)
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5.2 Sensitivity Analysis

Here, I review quasi-analytical and numerical methods for computing load Love number

and displacement LGF sensitivity kernels. Several previous studies have examined the sen-

sitivity of OTL-induced deformation to input Earth model (e.g., Baker, 1980b, 1984; Baker

& Bos, 2003; Penna et al., 2008; Bos, 2010; Na & Baek, 2011; Wang et al., 2012; Yuan

et al., 2013), but none have yet performed a systematic investigation into the relative im-

pacts of various model factors. Ito & Simons (2011) provided the most detailed sensitivity

analysis to date, but also inadvertently contaminated the density kernel with extraneous

perturbations to the elastic moduli. Exploring the sensitivity of OTL-induced deformation

to perturbations in density and elastic structure provides some insight into the feasibility

of inverting the observed OTL-induced deformation for the material properties (e.g., Ito &

Simons, 2011; Baker, 1980b, and references therein).

Former studies have demonstrated that the LGFs associated with various SNREI Earth mod-

els, which typically differ most substantially in the crust and upper mantle, exhibit discrep-

ancies primarily within 1◦ (or ∼100 km) of the loading point (e.g., Farrell, 1972a; Baker,

1984; Francis & Mazzega, 1990; Na & Baek, 2011; Wang et al., 2012; Yuan et al., 2013).

For hydrological and atmospheric loading, with stations and loads nearly collocated, the

influence of the crustal properties on the displacement LGFs can be upwards of 10-20%

or more (Wang et al., 2012; Dill et al., 2015). Therefore, for the case of OTL-induced

deformation, GPS stations located near the coastline are generally the most sensitive to

structural perturbations of the solid Earth (Francis & Mazzega, 1990). Coastal stations,

however, are also highly sensitive to errors in the input OTL model as well as the method

of coastline refinement adopted by the convolution algorithm (Bos & Baker, 2005; Penna

et al., 2008). Furthermore, stations located very near to the load are mostly sensitive to

near-surface structure.

For a variety of seismologically derived Earth models, predicted OTL-induced deformation

generally matches the observed OTL-induced deformation to within the current levels of

instrumental and model precision (e.g., Baker, 1980b; Baker & Bos, 2003; Penna et al.,



148

2008; Bos, 2010; Pugh et al., 2011), implying that sensitivities to perturbations in spher-

ically symmetric, elastic and isotropic Earth structure are relatively minor compared with

sources of uncertainty (e.g., Bos & Baker, 2005; Penna et al., 2008; Bos, 2010; Bos et al.,

2015). Claims to the contrary have been controversial (Richter et al., 2009; Bos, 2010;

Richter et al., 2010).

5.2.1 Love Number Partial Derivatives

Sensitivity kernels for load Love numbers may be computed both numerically (Ito & Si-

mons, 2011) and quasi-analytically (Okubo & Saito, 1983; Okubo et al., 1984; Okubo &

Endo, 1986; Okubo, 1988a). A discussion of both methods is provided in the following

chapter (Ch. 6). In this section, I review additional details of the quasi-analytical approach.

In general, I follow the procedure of Okubo & Saito (1983) to derive the partial derivatives

of the Love numbers, supplemented by the theory of Okubo & Endo (1986) for the special

case of n = 1. In the following development, I consider only perturbations to the solid

mantle and crust, where deformation induced by ocean tidal loading is concentrated (e.g.,

Ito & Simons, 2011; Bos et al., 2015).

The variational equations for the Love numbers are developed analogously to the variational

equations for seismic surface waves (e.g., Takeuchi & Saito, 1972, Sec. III). In particular,

a function, f , may be developed that satisfies Euler’s equation (e.g., Thornton & Marion,

2004, Sec. 6.3). For spheroidal deformation of Earth’s solid regions (e.g., crust and mantle),

the function is given by:

fS = [κ+
4

3
µ] r2 ẋ1 ẏ1 + [κ− 2

3
µ] r (ẋ1 Y + ẏ1 X) + [κ+

1

3
µ] X Y +

n (n+ 1) µ [(rẏ3 + y1 − y3) (rẋ3 + x1 − x3) + (n− 1)(n+ 2) x3 y3] +

(n+ 1) ρ r [y5(x1 − nx3) + x5(y1 − ny3)]− ρ g r (x1 Y + y1 X) +

1

4πG
[rẏ5 − 4πGρry1 + (n+ 1)y5] [rẋ5 − 4πGρrx1 + (n+ 1)x5], (5.15)
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where

X = 2x1 − n(n+ 1)x3

Y = 2y1 − n(n+ 1)y3. (5.16)

Importantly, fS satisfies the Euler equations:

d

dr

∂fS
∂ẏj

=
∂fS
∂yj

d

dr

∂fS
∂ẋj

=
∂fS
∂xj

(5.17)

for j = 1, 3, 5. The variables xj and yj , which are functions of radius r, represent solutions

to the equations of motion (Sec. 4.2.6, Eq. 4.79) that accommodate various boundary

conditions (Table 4.1). Dots above the variables indicate a partial derivative with respect to

r. When xj = yj , fS is equivalent to a Lagrangian function (Okubo & Saito, 1983).

Now consider a perturbation to a structural parameter, pi, by an amount δpi, where i cor-

responds to one of the elastic moduli or density. The perturbations generate new solutions

to the equations of motion: xj + δxj and yj + δyj . Using calculus of variations, the

new solutions may be used to determine the predicted change in a Love number due to

the perturbation in structure. From (Okubo & Saito, 1983), the partial derivative of the

vertical-displacement load Love number, h′, with respect to parameter pi is given by:

∂h′n
∂pi

=
∂

∂pi
[IPL − ILL + γ(2h′n − hn)ρr2], (5.18)

where γ = (4πG)/(a2 g(a)) and

I = − 4πG

(2n+ 1)a

[
fS(pi) + ρr2

(∫ a

r
4πG

1

s2

∂fS
∂g

(s)ds

)]
. (5.19)

As a reminder, core regions have been neglected here. The subscripts P and L correspond

to potential and load solutions to the equations of motion, respectively. The order of as-

signment to xj and yj is unimportant (i.e., IPL = ILP ). Note that the third term on the
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right-hand side of Eq. 5.18 arises as a result of the density perturbation, which necessarily

also changes the surface gravity. According to the boundary-condition convention of Okubo

& Saito (1983), δy1 expands as:

δy1 = δ(hn/g(a))

δ(hn/g(a)) =
δhn
g(a)

− hn
δg(a)

g(a)2
. (5.20)

My definition for the surface boundary conditions (and, thus, for the Love numbers) differs

from Okubo & Saito (1983) by a factor of a g(a), where a is Earth’s radius and g(a) is

the gravitational acceleration at Earth’s surface. Solutions to the equations of motion com-

puted using either definition are equivalent, however, since both conventions are internally

consistent.

Similarly, the partial derivative of the tangential-displacement load Love number, l′, with

respect to parameter pi is given by:

∂l′n
∂pi

=
∂

∂pi
[ILS + γ(l′n − h′′n)ρr2], (5.21)

where S indicates the shear-traction solution to the equations of motion and h′′n represents

the vertical-displacement shear Love number.

For additional details on the quasi-analytical procedure, including equations for the remain-

ing Love number partial derivatives, the reader is referred to Okubo & Saito (1983). With

the partial derivatives computed, the predicted change in a Love number due to perturba-

tions in elastic structure may be derived. Specifically, each partial derivative, which is a

function of the radius r, is multiplied by a radial profile of perturbations to the elastic pa-

rameters. The profiles for each of the two elastic moduli and density are then summed

together and integrated over the entire perturbed region. Formally, the perturbation to a

Love number induced by elastic structural perturbations is given by:

δHn =

∫ a

CMB

{[
∂Hn

∂ρ
(r)

]
κµ

δρ(r) +

[
∂Hn

∂κ
(r)

]
µρ

δκ(r) +

[
∂Hn

∂µ
(r)

]
ρκ

δµ(r)

}
dr,

(5.22)
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where Hn represents a particular Love number (e.g., hn, l′n, or k′′n), CMB represents the

core-mantle boundary, a is Earth’s radius, and the partial derivatives are defined per unit

thickness of the perturbed layer.

For the special case of n = 0, the tangential-displacement load Love number, l′0, is zero;

thus, the partial derivatives of l′0 with respect to the elastic parameters are also zero. For the

vertical-displacement load Love number, h′0, the quasi-analytical partial derivative may be

reduced to:
∂h′0
∂pi

=
∂

∂pi
[−ILL + γ(2h′0)ρr2], (5.23)

since the potential Love numbers are zero for n = 0 and ∂
∂pi
IPL = 0. For the special case

of n = 1, I follow the methods outlined in Okubo & Endo (1986) and compute the partial

derivatives of the load and stress Love numbers only.

Recall that only six of the nine Love numbers are independent. The Love numbers may

therefore be related by the following expressions (e.g., Okubo & Saito, 1983; Okubo &

Endo, 1986):

kn − hn = k′n (5.24)

ln = k′′n (5.25)

k′′n = h′′n + l′n (5.26)

h′′′n = h′n − l′n, (5.27)

where h′′′n denotes the vertical displacement stress Love number. Figs. D.1–D.14 in Ap-

pendix D show the partial derivatives of Love numbers, derived from PREM (as well as

1066A for comparison with the former studies), for a range of spherical harmonic degrees.

In the quasi-analytical development presented here, the Taylor-series expansions of the

Love number partial derivatives were truncated at first-order. The formulas for the par-

tial derivatives are therefore most accurate for small perturbations to structure that generate

localized changes in the Love numbers. As an alternative to the quasi-analytical approach,

finite differences of the Love numbers may be computed explicitly for structural pertur-
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bations of any magnitude. From comparisons of the quasi-analytical and numerical tech-

niques, I find that small perturbations to the elastic moduli and density (<1%) generate

differences in the partial derivatives of order 1%. As perturbations increase, however, the

truncated quasi-analytical approach fails to accurately describe the partial derivatives at

higher order. Table 5.1 compares changes in degree-2 load Love numbers for perturbations

to a homogeneous sphere, computed using both quasi-analytical and numerical techniques.

5.2.2 Load Green’s Function Partial Derivatives

As a natural extension from the load Love number partial derivatives, the partial derivatives

of LGFs to perturbations in elastic structure may also be computed both numerically using

finite-differences and quasi-analytically using calculus of variations. Numerically derived

partial derivatives of LGFs are discussed in the following chapter (Ch. 6). For details on

the quasi-analytical approach, the reader is referred to Okubo (1988a) and Okubo (1988b).
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6
The Sensitivity of Surface Mass Loading

Displacement Response to

Perturbations in the Elastic Structure of

the Crust and Mantle

The work discussed in this chapter has been accepted for publication as:

Martens, H.R., L. Rivera, M. Simons, and T. Ito, 2016. The Sensitivity of Surface Mass

Loading Displacement Response to Perturbations in the Elastic Structure of the Crust and

Mantle, J. Geophys. Res. Solid Earth, 121, doi:10.1002/2015JB012456.

6.1 Abstract

Surface mass loads generate a rich spectrum of deformation responses in the solid Earth

that might be exploited to probe the material properties of the crust and mantle. Here we

present a detailed examination of load-induced surface displacements and their sensitivi-

ties to systematic perturbations in elastic Earth structure. We compute Love numbers and

displacement load Green’s functions (LGFs) by integrating the equations of motion for

spheroidal deformation of a radially heterogeneous and self-gravitating Earth. Sensitivity

kernels are derived for individual Love numbers numerically using finite differences and

quasi-analytically using calculus of variations. We then generate sensitivity kernels for dis-

placement LGFs by systematically perturbing the Preliminary Reference Earth Model. We

find that displacement LGFs are most sensitive to elastic structural perturbations within

500 km depth from the surface and for short source-receiver distances. For separate pertur-

bations to the shear modulus, bulk modulus, and density within the crust and mantle, the
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sensitivity kernels exhibit unique patterns, consistent with the possibility to constrain the

parameters independently given a spatially distributed set of sufficiently accurate loading

response observations. The sensitivity to density structure, however, is generally weak in

comparison to elastic structure. We also examine the sensitivity of surface displacements

caused by M2 ocean tidal loading (OTL) to systematic perturbations in the elastic mod-

uli and density. Since OTL-induced surface displacements are load- and site-dependent, we

focus on high-resolution profiles across Iceland as a case study. The sensitivity kernels con-

stitute a key element in the formulation of the inverse problem with application to geodetic

tomography.

6.2 Introduction

Surface mass loading (SML) deforms the solid Earth in a manner controlled by the material

properties of the interior. Examples of surface mass loads include oceans, lakes, rivers,

reservoirs, the atmosphere, and seasonal precipitation. Since surface mass loads excite both

elastic and gravitational responses in the solid Earth, we are motivated by the prospect of

using observed SML-induced surface displacements, perhaps in combination with seismic

observations, to probe the composition of the crust and mantle (e.g., Baker, 1980b; Ito &

Simons, 2011). In addition to refining models of Earth’s rheological structure, the geode-

tically inferred constraints on material properties could potentially shed light on mantle

mechanics, such as the long-term stability of continental cratons (e.g., Jordan, 1978).

The concept of using SML-induced deformation to probe Earth’s interior structure emerged

several decades ago (e.g., Takeuchi, 1950; Longman, 1962, 1963; Farrell, 1972a), yet early

attempts to implement the theory using gravity, strain, and tilt measurements were limited

in effectiveness due to insufficient spatial coverage of available observations, calibration

uncertainties, and high sensitivities to local variations in material properties (e.g., Baker,

1980b, 1984; Baker & Bos, 2003). Space-based geodetic techniques, such as the Global

Positioning System (GPS), do not suffer from the same sparsity or sensitivity constraints

and may be used to discern centimeter-level SML-induced surface displacements with sub-

millimeter precision (e.g., Agnew, 2015; Penna et al., 2015; Martens et al., 2016).
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One type of prominent surface mass loading comes from the periodic redistribution of ocean

water by tidal forcing, known as ocean tidal loading (OTL). Although the theories that we

discuss in this manuscript apply generally to the elastic displacement of the solid Earth in

response to any surface mass load, we often refer to OTL-induced surface displacements as

pertinent and illustrative examples.

Ito & Simons (2011) used residual OTL-induced surface displacements to invert for small

deviations in the elastic moduli and density relative to the Preliminary Reference Earth

Model (PREM) (Dziewonski & Anderson, 1981) beneath the western United States. The

study, however, inadvertently neglected the geocenter motion induced by the redistribution

of surface mass when computing the forward model (e.g., Fu et al., 2012; Wu et al., 2012).

As a result, the displacement load Green’s functions (LGFs) yielded OTL response predic-

tions in a reference frame inconsistent with the corresponding GPS observations. Thus, the

residual surface displacements, which the authors attributed to unmodeled Earth structure,

primarily reflected the long-wavelength differences between the two reference frames. Fur-

thermore, the study used just a single year of GPS data, assumed an errorless model for the

solid Earth body tides (SEBTs), and disregarded contributions to the time series from minor

tidal harmonics, which compounded the uncertainties in their derived Earth model (Yuan &

Chao, 2012).

More recently, Yuan & Chao (2012) and Yuan et al. (2013) reported spatially coherent

residuals between GPS-inferred and forward-modeled OTL-induced surface displacements

across a global distribution of sites located more than 150 km inland of the coast, where

the influence of errors in the ocean-tide models is significantly diminished. The regional-

scale spatial coherency was interpreted to indicate possible deficiencies in the adopted

SEBT model. Moreover, Penna et al. (2015) and Bos et al. (2015) found spatially co-

herent discrepancies between observed and predicted OTL-induced surface displacements

across western Europe. Adjusting the value for the shear modulus in the asthenosphere by

invoking frequency-dependent dissipation effects within the mantle improved the model fit

to their observations. In addition, Martens et al. (2016) observed spatial coherency among

residual M2 OTL-induced surface displacements across South America.
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Given the inferred spatial coherencies in residual OTL-induced surface displacements, as

well as the accuracy of modern Global Navigation Satellite System (GNSS) measurements

(e.g., Penna et al., 2015) and of modern tide models (e.g., Stammer et al., 2014), the possi-

bility to constrain Earth structure from observations of SML-induced deformation appears

increasingly tractable. Prior to inversions for material properties, however, the sensitivity

of the deformation response to perturbations in Earth structure must be investigated. Here,

we focus on the sensitivities of SML-induced displacements to systematic perturbations in

the elasticity and density of the crust and mantle.

Previous studies that explored the level of structural sensitivity contained within load-

generated response signals have focused primarily on comparisons between published LGFs

for a few seismologically derived Earth models (e.g., Francis & Mazzega, 1990; Penna et al.,

2008; Wang et al., 2012; Yuan et al., 2013), which cannot resolve the sensitivities to individ-

ual model parameters independently. In other words, comparisons of LGFs from different

reference Earth models provide a general sense for the average magnitude and pattern of

structural sensitivity, but do not provide distinct information about the effects of layer thick-

ness, perturbation depth, or elastic parameter. Vector differences between pairs of predicted

OTL-induced surface displacements derived from various combinations of one-dimensional

Earth models and modern ocean-tide models are at the sub-millimeter level or less for most

land-based locations (e.g., Penna et al., 2008; Wang et al., 2012; Yuan et al., 2013; Martens

et al., 2016).

Isolating the influence of various factors, such as the particular elastic parameter and depth

of the perturbation, can further elucidate details of Earth’s elastic response to SML. In

particular, Baker (1980b) computed variations in tilt LGFs derived from individual pertur-

bations to the two elastic moduli and density, albeit for only two separate layers in the crust

and upper mantle. Other studies have also explored changes in the LGFs due to controlled

differences in the material properties, but focused solely on near-surface structure (e.g.,

Bos, 2010; Wang et al., 2012; Dill et al., 2015). As expected, perturbations to crustal struc-

ture predominantly affect the high-degree load Love numbers and therefore the LGFs in the

near field (< 1◦) (e.g., Baker, 1980b; Francis & Mazzega, 1990).
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For regional or global analyses of SML-generated deformation, however, mantle structure

also has a significant influence on the deformation response (e.g., Ito & Simons, 2011).

Furthermore, in the case of OTL, coastal stations near to the load, which are very sensitive

to local crustal structure, are also highly susceptible to errors in the input tide model as well

as to the method of coastline refinement adopted by the requisite convolution process, and

therefore may be of limited use in OTL-based geodetic tomography (Bos & Baker, 2005;

Penna et al., 2008; Yuan et al., 2013).

Ito & Simons (2011) computed displacement LGF sensitivities numerically for perturba-

tions to the two elastic moduli and density as a function of depth and distance to the load.

They concluded that displacements excited by SML are most sensitive to elastic structural

perturbations within a few hundred kilometers of the surface and also found a lack of trade-

off between the kernels for density and the elastic moduli. The study did not, however,

control the effects of layer thickness on response amplitude and also inadvertently contam-

inated the density kernel with extraneous perturbations to the elastic moduli. The contam-

ination stemmed from parameterizing the input Earth model in terms of seismic velocities

rather than the elastic moduli. In other words, density was perturbed with the p-wave (VP )

and s-wave (VS) velocities held constant instead of the shear (µ) and bulk (κ) moduli held

constant, resulting in unintended perturbations to the elastic moduli with each density per-

turbation.

Adopting a more analytical approach, Okubo & Saito (1983) used calculus of variations

to explore the sensitivities of potential, load, and shear Love numbers to independent per-

turbations of the two elastic moduli and density as a function of depth. Okubo & Endo

(1986) expanded upon the theory of Okubo & Saito (1983) to address the special case of

the degree-1 spherical harmonic. Further, Okubo (1988a) and Okubo (1988b) outlined a

method to derive partial derivatives of the vertical- and horizontal-displacement LGFs from

summations of the load Love number partial derivatives.

Here, we quantify the sensitivities of Love numbers, displacement LGFs, and OTL-induced

surface displacements to systematic perturbations in elastic and density structure through

the crust and mantle at a variety of spatial scales. We begin by reviewing the numerical and
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quasi-analytical methods for computing partial derivatives of the Love numbers. Our results

include a specific discussion of the partial derivatives for high-degree load Love numbers,

which had not been included in previous studies. We then compute LGF sensitivity kernels

numerically, revising and expanding upon the work of Ito & Simons (2011) by recomputing

the density kernel as well as varying the layer thicknesses in a controlled manner. Finally,

we perform a case study to quantify the sensitivity of OTL-induced surface displacements

to systematic perturbations in elastic and density structure along two high-resolution (≈1

km spacing) profiles across Iceland.

In summary, we compute sensitivity kernels for the Love numbers, displacement LGFs, and

OTL-induced surface displacements as a function of (1) elastic model parameter, (2) dis-

placement spatial-component, (3) distance between the applied load and the measurement

site, (4) depth of the perturbation, and (5) thickness of the perturbed layer. Our objective is

to characterize the sensitivity of OTL-induced surface displacements to variations in elastic

Earth structure. The techniques we develop here are directly applicable to future tomo-

graphic inversions using observations of SML-induced surface deformation. In particular,

sensitivity kernels representing the effects of perturbed elastic material properties on the

SML-induced surface displacements may be used to relate a model for Earth structure to

the surface-displacement observations in the linearized inverse problem.

6.3 Methodology

Love numbers are dimensionless parameters that characterize the elastic deformation of

Earth to applied body forces and surface tractions (Love, 1911; Munk & MacDonald, 1960).

For example, we commonly represent the response of an elastic Earth to an external gravi-

tational potential, V , by a set of three real-valued and dimensionless Love numbers: hn(r),

kn(r), and ln(r). The ln(r) parameter is alternatively referred to as the Shida number. Al-

though the parameters exhibit a radial dependence, here we consider deformation observed

only at Earth’s surface, and thus drop the (r) notation.

The radial displacement, un, of Earth’s surface in response to the application of an external
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gravitational potential of spherical harmonic degree, n, is given by (e.g., Agnew, 2015):

un = hn
Vn
g
, (6.1)

where g is the gravitational acceleration at Earth’s surface, Vng represents the equilibrium

potential height, and hn scales the equilibrium height to a vertical-displacement response

commensurate with the density and elastic properties of Earth’s interior. Gravitational self-

attraction, generated by the redistributed mass, is accounted for in the response parameter

hn (e.g., Munk & MacDonald, 1960). Analogously, the Shida number ln is defined as

the horizontal displacement of a realistic Earth relative to the gradient of the equilibrium

potential height. The parameter kn characterizes the change in the gravitational potential

resulting from the redistribution of mass that occurs in response to the external potential

field.

The Love and Shida numbers presented thus far describe the response of the elastic Earth

to an external gravitational potential; thus, we refer to them as potential Love numbers.

A second class of Love numbers, referred to as load Love numbers (LLNs), describes the

elastic deformation of Earth in response to normal tractions, typically applied at Earth’s

surface (e.g., Munk & MacDonald, 1960; Longman, 1962; Saito, 1978). External surface

mass loads come from a variety of sources, including glaciers, lakes, the atmosphere, and

oceans. The load Love numbers are distinguished from the potential Love numbers by a

superscript prime: h′n, l′n, and k′n. A third class of Love numbers characterizes Earth’s

response to tangential tractions (e.g., Saito, 1978), distinguished from the other classes by

superscript double primes (h′′n, l′′n, k′′n) and known as shear Love numbers. Only six of

the nine Love numbers from the three sets (potential, load, and shear) are independent and

expressions exist to relate the Love numbers to one another (e.g., Molodenskiy, 1977; Saito,

1978; Lambeck, 1988).

To derive the various sets of Love numbers, we solve the equations of motion for spheroidal

deformation of a self-gravitating, radially heterogeneous, spherically symmetric, non-rotating,

elastic and isotropic (SNREI) Earth (e.g., Alterman et al., 1959; Longman, 1962; Takeuchi
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& Saito, 1972). The equations of motion are given by:

ẏ1 =
−2λ

A

y1

r
+
y2

A
+
λC

A

y3

r
,

ẏ2 =

[
−ω2ρr2 − 4ρgr +

4µB

A

]
y1

r2
− 4µ

A

y2

r

+

[
Cρgr − 2µB C

A

]
y3

r2
+ C

y4

r
− ρy6,

ẏ3 = −y1

r
+
y3

r
+
y4

µ
,

ẏ4 =

[
gρr − 2µB

A

]
y1

r2
− λ

A

y2

r

+

[
−ω2ρr2 +

2µ

A
[λ(2n2 + 2n− 1) + 2µ(n2 + n− 1)]

]
y3

r2
− 3y4

r
− ρy5

r
,

ẏ5 = 4πGρy1 + y6,

ẏ6 = −4πGρC
y3

r
+ C

y5

r2
− 2y6

r
, (6.2)

where A = λ+ 2µ, B = 3λ+ 2µ, C = n(n+ 1), λ and µ are Lamé parameters, ρ is den-

sity, g is gravity, G is the universal gravitational constant, and ω is the forcing frequency.

The variables y1 and y3 characterize the radial and tangential displacements, respectively;

y2 and y4 characterize the radial and tangential stress, respectively; y5 characterizes the

gravitational potential; and the equation for ẏ5 defines y6. Dots represent differentiation

with respect to r. As an aside, we note that Takeuchi & Saito (1972) adopt a different con-

vention for the definition of y6, which requires a slight adjustment to the surface boundary

conditions.

Only three of the six linearly independent solutions to the equations of motion (Eq. 6.3)

are bounded at the origin. We compute the three sets of starting solutions using analytical

formulae for a homogeneous sphere (Takeuchi & Saito, 1972). We then propagate the three

solution sets through a radially heterogeneous Earth model to the surface for each spherical

harmonic degree. Appropriate boundary conditions are applied across each internal inter-

face, including solid-fluid boundaries (Takeuchi & Saito, 1972), as well as at the surface.

Our internally developed software package (LoadDef) integrates the equations of motion

using a Runge-Kutta algorithm and adaptive step sizing. Beyond spherical harmonic degree

20, we begin integration within the mantle for reasons of numerical stability. We retain the
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inertial factors in the equations of motion and set the forcing frequency equivalent to the

M2 tidal harmonic.

Although here we focus primarily on LLNs derived for mass-loading boundary conditions

at the surface (e.g., Longman, 1962, 1963; Melchior, 1983; Guo et al., 2004), additional

Love numbers, including potential and shear, are easily computed by adopting alternative

surface boundary conditions, several of which are listed in Table 6.1.

To compute the displacement LGFs, which represent the response to a delta-function unit

normal force at Earth’s surface, we combine the LLNs in spherical harmonic expansions

(Farrell, 1972a). The amplitudes of the vertical- and horizontal-displacement LGFs, per

unit of load mass, are given by:

u(θ) =
a

mE

∞∑
n=0

h′n Pn(cos θ) (6.3)

and

v(θ) =
a

mE

∞∑
n=1

l′n
∂Pn(cos θ)

∂θ
, (6.4)

where a is the Earth radius, mE is the Earth mass, n represents the spherical harmonic

degree, Pn represents the Legendre polynomial of spherical harmonic degree n, θ represents

the angular distance between a measurement site and the load point, h′n is the vertical-

displacement load Love number, and l′n is the horizontal-displacement load Love number.

To facilitate convergence of the LGFs, we compute asymptotic expressions of the LLNs

(Guo et al., 2004) and apply Kummer’s series transformation to Eqs. 6.3 and 6.4 (e.g.,

Abramowitz & Stegun, 1964; Farrell, 1972a; Na & Baek, 2011). In practice, the LLN

computations are carried out to spherical harmonic degree 10000, beyond which the LLNs

are assumed to be equivalent to the asymptotic values (Farrell, 1972a; Guo et al., 2004).

The asymptotic expressions are generally accurate to at least 0.01% and often accurate to

within 0.0001% of the true values at n =10000.
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In summary, the displacement LGFs are computed using the formulae:

u(θ) ≈ a

mE
h∗∞

∞∑
n=1

Pn(cos θ) +
a

mE
h∗∗∞

∞∑
n=1

1

n
Pn(cos θ)

+
a

mE
h′0 +

a

mE

N=10000∑
n=1

(h′n − (h∗∞ +
1

n
h∗∗∞))Pn(cos θ) (6.5)

for the vertical-displacement response, and

v(θ) ≈ a

mE
l∗∞

∞∑
n=1

1

n

∂Pn(cos θ)

∂θ
+

a

mE
l∗∗∞

∞∑
n=1

1

n2

∂Pn(cos θ)

∂θ

+
a

mE

N=10000∑
n=1

(nl′n − (l∗∞ +
1

n
l∗∗∞))

1

n

∂Pn(cos θ)

∂θ
(6.6)

for the horizontal-displacement response, where h∗∞ and h∗∗∞ represent the first- and second-

order coefficients of the asymptotic expansions, respectively, for the vertical-displacement

LLN (i.e., limn→∞ h
′
n ≈ h∗∞ + 1

nh
∗∗
∞), and l∗∞ and l∗∗∞ represent the first- and second-order

coefficients of the asymptotic expansions, respectively, for the horizontal-displacement

LLN (i.e., limn→∞ nl
′
n ≈ l∗∞ + 1

n l
∗∗
∞) (Guo et al., 2004). Because the analytical expres-

sion for the second-order Legendre sum (second term in Eq. 6.6) becomes undefined for

θ = 180◦, the displacement LGFs at that angular distance are computed by extrapolation of

neighboring values with a resolution of 1 in 1000 (Guo et al., 2004).

Since estimates of site positions derived from analysis of GPS observations are usually

referred to the center of mass of the entire Earth system (CM) (e.g., Wu et al., 2012; Agnew,

2015), we convert the LGFs, computed initially in a solid-Earth centered (CE) reference

frame, to the CM reference frame by making the appropriate modifications to the degree-

one LLNs (Blewitt, 2003):

[h′1]CM = [h′1]CE − 1

[l′1]CM = [l′1]CE − 1

[1 + k′1]CM = [1 + k′1]CE − 1. (6.7)

To predict SML-induced surface displacements for a load of finite size, we convolve the
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displacement LGFs with a model for the surface mass load (e.g., Farrell, 1973; Baker, 1984;

Agnew, 2015). The equation for the predicted displacement response is given by:

U(r, S, ρz, Z) =

∫
Ω′
G(|r − r′|, S) ρz(r

′) Z(r′) dΩ′, (6.8)

where U is the SML-induced surface displacement at observation point r, ρz is the mass

density of the load at the load point r′,G is the LGF representing the displacement response

of a radially symmetric Earth to a 1-kg point-load, and Z represents the height of the load

at point r′. The integral is taken over the entire surface of the Earth, Ω′. Note that the LGF

depends on distance to the load as well as Earth structure, S, which varies with radius inside

the SNREI Earth (e.g., PREM). Thus, the predicted response, U , depends on the position

of the measurement site relative to the applied load as well as on Earth structure and the

particular load model.

For the special case of OTL, ρz is the density of seawater, Z is complex-valued to represent

both the amplitude and phase of the tide height, and the integral is evaluated only over the

surface area of the oceans. Since ocean tidal loads are complex-valued, U also becomes

complex-valued, returning both amplitude and phase components for the predicted OTL-

induced surface displacements. The frequency of the response is equivalent to the frequency

of the tidal harmonic.

To complete the work flow, we compute the entire forward model, from integration of the

equations of motion to the convolution of the LGFs with a load model, within our LoadDef

software. Our evaluation of Eq. 6.8, however, is closely modeled after the SPOTL package

(Agnew, 1997, 2012). In particular, LoadDef adopts a station-centric template grid, which

simplifies the ability to refine the integration grid around a station, include multiple loading

models, and compute specific LGFs at the grid nodes (Goad, 1980; Agnew, 1997, 2012).

Since the mass loads that we consider are confined to Earth’s surface, Eq. 6.8 may be

expanded as (e.g., Harrison, 1985; Agnew, 1997):

U(r, S, ρz, Z) =

∫ 2π

0

∫ π

0
G(θ, S) ρz(θ, α) Z(θ, α) T (α) a2 sin θ dθ dα, (6.9)
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where θ is the angular distance between the observer at r and a particular load point; T (α)

is a trigonometric factor used to decompose the predicted horizontal displacements into

separate vector components (for the vertical displacements, T (α) = 1); α is the azimuth

of a particular load point relative to the observer, measured clockwise from north; and a is

Earth’s radius. Note that for a station-centered template grid, the station is considered to be

located at the pole of a spherical coordinate system, where θ is the polar angle and α is the

azimuthal angle.

We evaluate Eq. 6.9 using numerical integration methods. Specifically, we discretize the

surface integral into finite-sized cells and evaluate the integrand at the midpoint of each cell.

Since the LGFs vary most rapidly in the near field, we increase the spatial resolution of the

grid substantially in the immediate vicinity of the station (measurement site) by reducing

the increment in the polar angle, ∆θ. The increment in the polar angle may be greater in

the far field since changes in the LGF as a function of θ, as well as the absolute value of

the LGF, diminish dramatically at large θ. We therefore generate an integration grid with

tapered resolution as a function of distance to the station: ∆θ = 0.001◦, or about 100

m, within θ = 1◦; ∆θ = 0.01◦ from θ = 1–10◦; ∆θ = 0.1◦ from θ = 10–90◦; and

∆θ = 1.0◦ beyond θ = 90◦. For each θ in the integration grid, we set the increment in the

azimuthal angle, ∆α, to 0.1◦. The integration over finite grid cells alleviates the problem

of the singularity in the LGFs at θ = 0, which we also mitigate prior to integration using

suitable normalization factors (Agnew, 1997, 2012).

Since the integration mesh is irregular, standard methods for estimating the quadrature ac-

curacy cannot be directly applied (e.g., Press et al., 2007, Chpt. 4). Given the numerical-

integration technique described above, an analytical estimation of the quadrature error

would require an evaluation of the variation in the second derivative of the integrand from

Eq. 6.9 over each cell. Instead, we compare predicted displacements derived from grids of

different resolution to place bounds on the uncertainty in the discrete convolution. Using

this strategy, we estimate that the bounds on the absolute error in the predicted displace-

ments, U , are on the order of 0.01–0.1 mm for M2 OTL. Furthermore, we are primarily

concerned with the vector differences, |U1 − U2|, between pairs of predicted OTL-induced
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surface displacements derived from different Earth models. Since the derivatives of the in-

tegrand in Eq. 6.9 do not vary much for small perturbations to Earth structure, the bounds

on the quadrature error may be reduced to about 0.1 micron when considering the vector

differences between pairs of predicted displacements.

In addition to quadrature errors, the discrete tide models can be imprecise near coastal

boundaries. Thus, we refine the ocean-tide models around the coastlines by first extrapolat-

ing the complex-valued tide heights inland by one grid cell, then interpolating the tide model

onto the integration grid, and finally applying a land-sea mask based on ETOPO1 (Amante

& Eakins, 2009) in the far field and GSHHS (Wessel & Smith, 1996) within 1.5◦ of the

measurement site. ETOPO1 provides global topographic and bathymetric relief informa-

tion at 1 arc-minute resolution. The Global Self-consistent, Hierarchical, High-resolution

Shoreline database (GSHHS) provides global shoreline information, which we adopt at full

resolution. Around the Antarctic, we allow the ocean-model grid to define the coastline

since ETOPO1 registers floating ice shelves as landmasses, but the tides remain active in

those regions.

Although the tide models, method of coastline refinement, and adopted values for seawater

density have been shown to generate erroneous OTL-induced displacement predictions at

the level of≈1–5% (e.g., Bos & Baker, 2005; Penna et al., 2008), here we only consider the

differential displacement response. Thus, our results are not sensitive to the usual, and often

dominant, sources of prediction error. In other words, we focus on perturbing the structural

properties of the solid Earth, while keeping the load model, load density, and convolution

procedure consistent throughout each comparison.
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6.4 Results

6.4.1 Love Number Sensitivities

We first explore the sensitivity of Love numbers to perturbations in the elastic moduli, µ

and κ, and density, ρ. The sensitivity kernels, K, are computed as:

Kj
p,H =

H(m + ∆mj
p)−H(m)

∆mj
p

=
∆H

∆mj
p

, (6.10)

where j corresponds to a particular perturbed layer, p corresponds to the model parameter

being perturbed (µ, κ, or ρ), andH corresponds to a particular Love number, which depends

on Earth structure, m. The perturbation to structure, ∆mj
p, involves a perturbation to the p

model parameter in layer j; all other model parameters remain unperturbed.

The sensitivity kernels may be computed both numerically (Ito & Simons, 2011) and quasi-

analytically (Okubo & Saito, 1983; Okubo & Endo, 1986; Okubo, 1988a). For the nu-

merical computation, we derive the Love numbers using two Earth models, the reference

model and the perturbed model, and compute the finite differences explicitly. For the quasi-

analytical computation, we follow the procedure of Okubo & Saito (1983) to derive the par-

tial derivatives of the Love numbers, supplemented by the theory of Okubo & Endo (1986)

for the special case of spherical harmonic degree n = 1. We consider only perturbations to

the solid mantle and disregard the core regions. Unlike the SEBTs, the deformational influ-

ence of OTL is concentrated primarily within the upper mantle and crust, thereby justifying

our neglect of perturbations to core structure (e.g., Ito & Simons, 2011; Bos et al., 2015).

The quasi-analytical technique, which is rooted in variational calculus, employs the same

approach used to derive partial derivatives of surface-wave phase velocities in seismology

(e.g., Jeffreys, 1961; Takeuchi & Saito, 1972). In particular, the method takes advantage

of Rayleigh’s principle to estimate variations in the LLNs due to small perturbations in the

elastic and density structure, without relying on numerical differentiation (Okubo & Saito,

1983).

Integrated combinations of the partial derivatives yield the predicted variations in the Love
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Figure 6.1: Partial derivatives of degree-2 load Love numbers with respect to the shear
modulus, µ, the bulk modulus, κ, and density, ρ, for Earth model PREM (Dziewonski &
Anderson, 1981). The partials have been multiplied by the depth profile of each elastic
parameter, making them dimensionless. The horizontal axes are in units of 10−4 km−1.
The figure may be compared with fig. 1b in Okubo & Saito (1983), which was computed
for Earth model 1066A.
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Figure 6.2: Same as Fig. 6.1, but for spherical harmonic degree n=100. Note that the
sensitivity drops off rapidly beneath about 300 km depth from the surface. Perturbations to
the density structure at deeper depths continue to affect the load Love numbers due to the
associated change in mass.
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Figure 6.3: Same as Fig. 6.1, but for spherical harmonic degree n=10000. Note that the
sensitivity drops off rapidly beneath about 3 km depth from the surface. Perturbations to the
density structure at deeper depths continue to affect the LLNs due to the associated change
in mass. Furthermore, we note that the magnitude range of the partial derivatives for the
vertical-displacement load Love number, h′, at n=10000 is significantly larger than for the
lower spherical harmonic degrees (cf., Figs. 6.1 and 6.2), indicating that the sensitivities
are heightened for the higher degrees, but also limited to the very near surface.
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Table 6.1: Summary of surface boundary conditions and Love number definitions for the
cases of (A) the presence of an external gravitational potential, (B) surface mass loading, (C)
surface shear forcing, and (D) surface stress conditions (Longman, 1962, 1963; Wiggins,
1968; Farrell, 1972a; Lanzano, 1982; Melchior, 1983; Okubo & Saito, 1983; Okubo &
Endo, 1986; Guo et al., 2004). The surface stress solution satisfies the consistency relation
and thus provides an important linearly independent solution for the evaluation of degree-1
modes (Okubo & Endo, 1986). Note that our definitions for the Love numbers and surface
boundary conditions differ from Okubo & Saito (1983) by a factor of a gS , where a is
Earth’s radius and gS is the gravitational acceleration at Earth’s surface.

Surface Boundary Conditions
(A) (B) (C) (D)

External Surface Surface Surface
Potential Mass Loading Shear Forcing Stress (n = 1)

y2 0 −g2
S

2n+1
4πG 0 − 3 g2S

4πG

y4 0 0 (2n+1) g2S
4πGn (n+1)

3 g2S
8πG

y6 + n+1
a y5 (2n+ 1) gS (2n+ 1) gS 0 0

Love Numbers
y1/a hn h′n h′′n h′′′1
y3/a ln l′n l′′n l′′′1

y5/(a gS) (kn + 1) (k′n + 1) k′′n k′′′1

numbers (Takeuchi & Saito, 1972; Okubo & Saito, 1983). Formally, the change in a Love

number due to elastic structural perturbations is given by

δHn =

∫ a

CMB

{[
∂Hn

∂ρ
(r)

]
κµ

δρ(r) +

[
∂Hn

∂κ
(r)

]
µρ

δκ(r) +

[
∂Hn

∂µ
(r)

]
κρ

δµ(r)

}
dr

(6.11)

when we use (ρ, κ, µ) as independent parameters. In Eq. 6.11, Hn represents a particular

Love number (e.g., h′n, l′n, k′n, hn, or h′′n), CMB represents the core-mantle boundary, a is

the Earth radius, and the partial derivatives are defined per unit thickness of the perturbed

layer.

Fig. 6.1 shows partial derivatives of degree-2 LLNs based on the crust and mantle struc-

ture of PREM. The partial derivatives are computed with respect to the bulk modulus, κ,

shear modulus, µ, and density, ρ. Partial derivatives of the potential, load, and shear Love

numbers derived from PREM for additional spherical harmonic degrees as well as from

reference Earth model 1066A (Gilbert & Dziewonski, 1975) for spherical harmonic degree

2 (cf., fig. 1 of Okubo & Saito (1983)) are provided in Appendix D. As noted by Okubo &
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Saito (1983), the partial derivatives of h′2 with respect to κ and of l′′2 with respect to µ are

largest in the crust due to the strong influence of compressibility and rigidity on normal and

tangential tractions, respectively, applied at the surface.

The quasi-analytical computation, although more complicated to implement than the nu-

merical approach, reduces overall processing time since the Love numbers need only be

computed once for a given Earth model. The development of the quasi-analytical approach

outlined by Okubo & Saito (1983), however, involves a Taylor series expansion truncated

to first-order. To investigate the consequences of a first-order truncation to the series on the

computed sensitivities, we compare the quasi-analytically and numerically derived partial

derivatives of degree-2 LLNs for a homogeneous sphere model in Table 6.2. Specifically,

we compare ratios of the quasi-analytical partial derivatives to the numerical partial deriva-

tives for a variety of model-parameter perturbations.

Note that we compute the quasi-analytical partial derivatives independent of any specified

perturbation to a model parameter, since the quasi-analytical approach avoids explicit nu-

merical differentiation (Jeffreys, 1961). For linear perturbations to the model parameters

of 1% or less, the quasi-analytically and numerically derived LLN partial derivatives of

degree-2 differ by less than about 1%. On the contrary, for 10% perturbations to the model

parameters, the two methods of computation generate LLN partial derivatives that differ on

the order of 10%.

Partial derivatives of the LLNs at higher degrees are shown in Figs. 6.2 and 6.3 as well as in

Appendix D. As the spherical harmonic degree increases, the “skin depth” of the sensitivity

decreases. For n=100 (Fig. 6.2), the sensitivity of the LLNs to perturbations in the elastic

moduli effectively drops to zero (<10−4 of the peak sensitivity) below about 300–400 km

depth; for n=10000 (Fig. 6.3), the sensitivity effectively drops to zero below about 3–4

km depth. The observations are not surprising, since the load-induced displacements are

proportional to (r/a)n, where r is a particular radius within the Earth, a is Earth’s radius,

and n is the spherical harmonic degree (e.g., Farrell, 1972a). Note as well the significant

increase in peak sensitivity at higher degrees. The most striking variations in peak sensi-

tivity occur for the partial derivatives of the vertical-displacement LLN, h′, with respect to
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Table 6.2: Comparison of degree-2 load Love number partial derivatives for a homogeneous
sphere, computed quasi-analytically using calculus of variations (Okubo & Saito, 1983) and
numerically using finite differences. The model parameters considered here are the shear
modulus, µ, bulk modulus, κ, and density, ρ. The original (unperturbed) homogeneous
sphere has properties of VP = 10000 m s−1, VS = 5000 m s−1, and ρ = 5000 kg m−3.
The perturbations are computed as a linear percentage of the original model and applied
to the entire sphere. All parameters were normalized: µ and κ by a factor [ρ̄ × a2 ×
t̄−2] and ρ by a factor ρ̄, where a is Earth’s radius (6371000 m), ρ̄ is Earth’s approximate
mean density (5500 kg/m3), and t̄ = 1√

ρ̄πG
. The Love numbers are, by definition, non-

dimensional. Note that the quasi-analytical partial derivatives are derived independent of a
specified perturbation to the elastic parameters (i.e., they do not require explicit numerical
differentiation).

Magnitude of Linear Perturbation
+0.1% +0.5% +1.0% +5.0% +10.0% +20.0%

Quasi- Ratio of Quasi-Analytical
Analytical to Numerical Partial Derivatives
Solution

∂h′2/∂µnorm 0.5891 1.0008 1.0040 1.0079 1.0396 1.0792 1.1580
∂l′2/∂µnorm 0.1292 1.0008 1.0040 1.0079 1.0396 1.0793 1.1593
∂k′2/∂µnorm 0.3374 1.0008 1.0041 1.0081 1.0405 1.0810 1.1620
∂h′2/∂κnorm 0.2409 1.0011 1.0056 1.0113 1.0563 1.1126 1.2251
∂l′2/∂κnorm -0.0851 1.0011 1.0056 1.0113 1.0563 1.1126 1.2252
∂k′2/∂κnorm 0.0194 1.0011 1.0057 1.0113 1.0566 1.1132 1.2263
∂h′2/∂ρnorm -1.3124 0.9980 0.9957 0.9929 0.9703 0.9423 0.8865
∂l′2/∂ρnorm 0.1050 0.9994 0.9891 0.9765 0.8821 0.7793 0.6129
∂k′2/∂ρnorm -0.4139 0.9974 0.9962 0.9947 0.9829 0.9687 0.9408

perturbations in the two elastic moduli (cf., Figs. 6.1, 6.2, and 6.3). The characteristic pro-

files of the LLN partial derivatives allow us to both visualize and quantify the sensitivity of

the Love numbers to perturbations applied to individual structural parameters at each depth

and for each spherical harmonic degree.

The work done to compute the LLN partial derivatives may be extended without much

additional effort to compute partial derivatives of the potential and shear Love numbers as

well (Okubo & Saito, 1983). We show partial derivatives of the potential and shear Love

numbers, derived from PREM and 1066A for spherical harmonic degree 2, in Appendix D.

Table 6.3 lists vertical- and horizontal-displacement potential Love numbers, h and l, for

several seismologically derived Earth models.
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Table 6.3: Degree-2 potential Love numbers for several seismologically derived SNREI
Earth models.

Model h2 l2

PREM 0.6067 0.0841
STW105 0.6078 0.0839
AK135f 0.6074 0.0847

SNA 0.6069 0.0844
CR 0.6054 0.0837

1066A 0.6130 0.0851

6.4.2 Load Green’s Function Sensitivities

We now consider the influence of small (1%) perturbations in the elastic and density struc-

ture on the displacement LGFs (Eqs. 6.5 and 6.6). To illustrate our methodology, we first

perturb the bulk modulus, shear modulus, and density separately for a single layer of PREM

within the upper mantle (6291–6346.6 km). We adopt an isotropic and oceanless version

of PREM as our reference model (see Appendix A for details). Since the two elastic mod-

uli and density are Jeffrey’s parameters (Tarantola, 2005), we parameterize the variables in

common-log space.

We apply perturbations in the amount of ∆mj
p = log10(1.01) to the two elastic moduli

and density of the reference model independently while holding the other two parameters

fixed, thus generating three new Earth models that are perturbed with respect to PREM. The

perturbation of ∆mj
p = log10(1.01), where j represents the perturbed region from 6291–

6346.6 km and p represents the model parameter (κ, µ, or ρ), corresponds to a +1% linear

perturbation to the original material properties. The four Earth models (original PREM and

three perturbed) are shown in Fig. 6.4.

The four Earth models may now be used to compute four sets of displacement LGFs. The

direct differences between the three perturbed and the unperturbed displacement LGFs are

shown in Fig. 6.5. We scale the displacement LGFs by a conventional factor of 1012aθ

(solid lines in Fig. 6.5), where a is Earth’s radius and θ is the angular distance between

the load point and the measurement site, to mitigate the singularity at the load point and to

accentuate mid- and far-field features of the LGFs that are otherwise difficult to discern.
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We note, however, that multiplying the LGFs by θ can also obscure LGF differences in the

near field. The near-field LGFs are particularly significant for loads approximately collo-

cated with a measurement site, such as in the cases of local hydrological or atmospheric

loading. For globally distributed loads, on the other hand, the near-field loads generally

account for only a small fraction of the total load. In our development of the LGF sensi-

tivity kernels, we typically illustrate the LGF differences using the θ-scaling convention for

clarity, recognizing that sensitivities in the very near field can be more substantial than the

results might suggest. For comparison, we show LGF differences that are both scaled (solid

lines) and unscaled (dashed lines) with respect to θ in Fig. 6.5.

In general, a perturbation of 1% to the density structure in the upper mantle yields relatively

small changes in the displacement LGFs in comparison to a perturbation of 1% to either the

bulk or shear modulus (Fig. 6.5). Within a few kilometers of the load point, however,

the sensitivity of the LGFs to perturbations in density structure increases significantly. A

perturbation to the shear modulus in the upper mantle generates both positive and negative

changes in the LGFs as a function of distance to the load point, with the transition between

the regimes occurring at approximately the same distance to the load point as the depth of

the perturbation. Moreover, positive perturbations to the bulk modulus in the upper mantle

generate predominantly positive differences between the perturbed and unperturbed LGFs.

For SML-induced vertical depressions (i.e., negative-valued LGFs), a positive change in the

LGFs indicates less deformation, or a smaller vertical displacement.

We now expand upon the direct differences between displacement LGFs to generate sen-

sitivity kernels from finite differences. The sensitivities of displacement LGFs to small

perturbations in the elasticity and density parameters are computed according to the equa-

tion:

Kj
p,G(θ) =

G(θ,m + ∆mj
p)−G(θ,m)

∆mj
p

=
∆G

∆mj
p

(6.12)

where j corresponds to a particular perturbed layer, p corresponds to the model parameter

being perturbed (µ, κ, or ρ), and G represents the displacement LGF (vertical or horizon-

tal), which depends on Earth structure, m, and the angular distance between the load and

the observer, θ. The perturbation to structure, ∆mj
p, involves a perturbation to the model
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parameter p in layer j; all other model parameters remain unperturbed.

In comparison, Ito & Simons (2011) defined their sensitivity kernels as a percentage dif-

ference between the perturbed and unperturbed LGFs, computed in response to 1% pertur-

bations to the elastic structure. It is also worth noting that the sensitivity kernels, Kj
p,G,

depend on the thickness of the perturbed layer, j, and that Eq. 6.12 does not explicitly

normalize by layer thickness. Thus, we document specifically the layer thicknesses used

throughout our analysis. Recall also that, since we have assumed a SNREI Earth structure,

all perturbations are made to spherically symmetric shells.

Fig. 6.6 shows displacement LGFs and their corresponding sensitivity kernels, scaled by

1012aθ, for perturbations to the bulk modulus (panels C and D), shear modulus (panels E

and F), and density (panels G and H) for each of the major PREM regions above the core.

We have adopted the CM reference frame for the LGF computations in order to remain

consistent with conventional GPS analysis. We note, however, that the sensitivity kernels

are reference-frame independent with the exception of the density kernel, which exhibits

minor sensitivity differences between reference frames due to the change in total Earth

mass associated with the perturbation.

We find that the magnitudes of the LGF sensitivities to perturbations in the elastic mod-

uli are greatest when the perturbations are applied to near-surface structure and diminish

with perturbations to deeper layers, even for perturbations to layers of far greater thick-

ness than the shallowest layers. Perturbing a region as expansive as the central lower

mantle (3630-5600 km), for example, yields peak sensitivities approximately an order-of-

magnitude smaller than the estimated peak sensitivities for perturbations to much thinner,

near-surface layers.

Furthermore, the peak sensitivity to perturbations in the elastic moduli occurs further from

the load point as the perturbation depth increases. Perturbations to near-surface structure

predominantly affect the LGFs in the near field, whereas perturbations to deeper structure

have increasing influence over the LGFs at angular distances further from the load point.

The characteristic “move-out” of the sensitivity kernels for the bulk and shear moduli could

be predicted from the Love number analysis: the high-degree LLNs, which largely define
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the displacement LGFs in the near field, are predominantly sensitive to near-surface struc-

ture (e.g., Fig. 6.3). The sensitivity kernels for the bulk and shear moduli exhibit strong

resemblance, except the shear-modulus sensitivity transitions between positive and negative

regimes whereas the bulk-modulus sensitivity remains mostly positive.

The density kernels, in contrast, exhibit peak sensitivities at short angular distances be-

tween the load point and the measurement site, regardless of perturbation depth. Moreover,

perturbations to the thick central lower mantle generate the largest load-induced displace-

ment differences. The observations are consistent with an increase to the total Earth mass

that enhances the gravitational force on the applied mass load. The magnitude of density

sensitivity, Kj
ρ,G, as a function of angular distance between load and observer, θ, generally

follows the pattern of the original displacement LGF. In essence, the larger the magnitude

of a displacement LGF at a particular angular distance, the larger the LGF sensitivity will

be for a given density perturbation.

Since the layer thicknesses differ significantly among the regions of the PREM model, we

also computed the LGF sensitivities for perturbations to layers of constant thicknesses.

Again using the isotropic and oceanless version of PREM as our reference model, we sub-

divided the crust and mantle into 20-km-thick layers, or spherical shells, down to a depth of

800 km. Fig. 6.7 depicts LGF sensitivities derived from perturbations to the 20-km-thick

shells. We perturbed the model parameters by an amount of ∆mj
p = log10(1.01). With the

thickness of the layers held fixed, we find that the magnitude of peak sensitivity decreases

with perturbation depth for the two elastic moduli and that most of the sensitivity stems

from perturbations applied to the Earth’s outermost 500 km. The density sensitivity, on the

other hand, remains relatively constant as a function of perturbation depth. Furthermore, the

sensitivity to 1% perturbations in density structure is significantly lower than the sensitivity

to 1% perturbations in elastic structure.

To examine variations in the LGF sensitivities as a function of perturbation depth, Fig. 6.8

depicts slices through the sensitivity diagrams from Fig. 6.7 at an angular distance of 2.5◦

from the applied load. The range of the density sensitivity is far smaller than the sensitivity

ranges for the two elastic moduli and, again, illustrates that the kernel remains approxi-
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mately constant in magnitude regardless of the depth at which density is perturbed. The

profiles also show that the density kernel remains mostly negative, the bulk-modulus kernel

remains mostly positive, and the shear-modulus kernel exhibits both positive and nega-

tive sensitivity, depending on the perturbation depth. Note as well that the sensitivities are

strongest within about 250 km depth from the surface, which is approximately equivalent

to the distance of 2.5◦ between the profile line and the load point (cf., Okubo, 1988b).

For completeness, we acknowledge that alternative approaches exist for defining the model

parameters. For example, rather than defining the model parameters in terms of common

logarithms of the elastic moduli and density directly, one could instead use ratios of the

elastic properties: mj
µ = log10

µj+1

µj
, mj

κ = log10
κj+1

κj
and mj

ρ = log10
ρj+1

ρj
. Reference

values (µ0, κ0 and ρ0) must necessarily be defined for the elastic properties of the starting

layer, which may be either at the top or the base of the model space in depth. According

to this definition, LGF sensitivities would be computed based on perturbations to interface

contrasts, rather than based on perturbations to distinct layers.

Furthermore, building upon the Love number partial derivatives, LGF sensitivities may

also be computed quasi-analytically (Okubo, 1988a,b). The methodology combines the

Love number partial derivatives already developed with Legendre polynomials in large al-

gebraic expansions analogous to Eqs. 6.5 and 6.6. We defer a more complete analysis and

description of the quasi-analytical LGF sensitivities to the future.

Finally, we consider the sensitivity of displacement LGFs to a variety of standard Earth

models in order to obtain a general sense for the range of acceptable structural perturba-

tions and LGF differences expected for a SNREI Earth. The models that we consider here

include: PREM, STW105 (Kustowski et al., 2008), AK135f (Kennett et al., 1995), SNA

(Grand & Helmberger, 1984), CR (Chu et al., 2012), and 1066A. AK135f represents the ra-

dially symmetric AK135 seismic velocity model of Kennett et al. (1995), supplemented by

the density model of Montagner & Kennett (1996). PREM, STW105, AK135f, and 1066A

represent globally averaged structure, whereas CR and SNA represent regional cratonic

and stable North American structures, respectively. Below approximately 1000 km depth,

both CR and SNA assume the structural properties of AK135f. For PREM, STW105, and
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AK135f, we replaced the water layer at the surface with typical values for the upper crust:

VP=5800 m s−1, VS=3200 m s−1, and ρ=2600 kg m−3.

Fig. 6.9 shows profiles of the elastic moduli and density for the six reference Earth models

as well as the deviation of each model from PREM. Discrepancies between the SNREI

models are largest in the crust and upper mantle, primarily due to variations in crustal

properties and different definitions of the Moho depth. In general, however, the differences

are less than 0.05, or ≈ log10(1.1), which corresponds to variations in κ, µ, and ρ (in linear

space) of about 10% or less at a given depth.

Fig. 6.10 shows displacement LGFs derived from each of the SNREI Earth models depicted

in Fig. 6.9. The LGFs in panels C–H were multiplied by the factor 1012 a θ, whereas

the LGFs in panels A and B remain unscaled with respect to θ. When the LGFs remain

unscaled with respect to θ, the diminishing amplitudes of the load-induced displacements

as a function of angular distance away from the load point are more apparent. Tables of the

displacement LGFs and LLNs are provided in Appendix C.

Based on the direct differences between the displacement LGFs shown in Figs. 6.10G and

6.10H, we infer that the vertical-displacement sensitivities are generally larger in magnitude

than the horizontal-displacement sensitivities. Sensitivities computed as a percentage dif-

ference of the reference LGF rather than a direct difference, however, are generally larger

for the horizontal-displacement component (Ito & Simons, 2011). The LGFs associated

with Earth model 1066A exhibit the largest differences with respect to PREM, particularly

in the near-field (within 0.1◦ of the load point), mostly due to significant differences in the

material properties of the upper crust.

In general, the LGF sensitivities for the reference Earth models tend to be largest at mea-

surement sites within ∼1◦ of the load, and taper off substantially beyond 10◦, even with

perturbations to deep structure. Since we defined the globally averaged models PREM,

STW105, and AK135f to have the same upper-crustal structure, the LGF differences be-

tween the models are very small in the near field and decrease toward zero as the angular

distance between load and observer, θ, approaches zero. Even small perturbations to upper-

crustal layers, however, can yield large variations in the LGFs at short observer-to-load
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angular distances (cf., Wang et al., 2012; Dill et al., 2015; Bos et al., 2015), as exempli-

fied by the high-degree LLNs shown in Fig. 6.3, the LGF differences between 1066A and

PREM, and the LGF differences between the region-specific (CR and SNA) and globally

averaged Earth models (PREM, STW105, and AK135f).

6.4.3 Predicted OTL-Induced Surface Displacements

So far, we have explored the patterns of load-induced surface displacements caused by

point loads of unit mass. In reality, surface mass loads are not point sources, but rather

distributed across regional and global scales. Furthermore, the mass density of a load can

be highly spatially variable. Whereas the sensitivity kernels for the displacement LGFs are

characterized in terms of perturbation depth and the angular distance between the point-

load and the measurement site, sensitivity kernels for the surface displacements induced by

a load of finite size are specific to the location of a measurement site in relation to the entire,

distributed load.

Predicting the surface displacements generated by a spatially variable mass load of finite

size requires a convolution of displacement LGFs with the load model (Eqs. 6.8 and 6.9).

The predicted displacements depend on the spatial and temporal characteristics of the load,

the LGFs derived for a particular Earth structure, and the location of the measurement site

relative to the load. For the special case of OTL, measurement sites located directly adja-

cent to large-amplitude tides offshore tend to exhibit relatively large OTL-induced surface

displacements (Fig. 6.10 and Eq. 6.8).

As an example, we consider OTL-induced surface displacements generated by the principal

lunar semidiurnal (M2) tidal harmonic. Fig. 6.11 shows a map of Iceland surrounded by

the M2 ocean tide from the TPXO8-Atlas model, which was constrained in part by empir-

ical data from multiple satellite altimetry missions and validated against local tide gauge

measurements (Egbert & Erofeeva, 2002; Egbert et al., 2010). Predicted surface displace-

ments, produced by a convolution of the TPXO8-Atlas tide model with displacement LGFs

based on PREM, are overlain on the map and depicted as particle motion ellipses (PMEs).

Each of the PMEs, which are centered on the geographic locations of the prediction sites
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Figure 6.4: Three Earth models derived from perturbations applied to PREM in the upper
mantle from 80–24.4 km depth. The top panels show profiles of the bulk modulus (left),
shear modulus (center), and density (right) for each Earth model as a function of depth.
The bottom panels show the differences in the bulk modulus (left), shear modulus (center),
and density (right) profiles between each Earth model and the unperturbed PREM. All pro-
files are depicted in common-log space. To generate the three models, we perturbed the
bulk modulus, shear modulus, and density separately by a factor of 1% in linear space, or
log10(1.01) = 0.0043 in common-log space. The perturbed Earth models may be used
to explore the sensitivities of load Green’s functions (Fig. 6.5) and OTL-induced surface
displacements (Fig. 6.18) to small perturbations in Earth structure.
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Figure 6.5: Direct differences between displacement load Green’s functions derived from
the three perturbed Earth models shown in Fig. 6.4 and the unperturbed PREM. The top
panels show the horizontal component of the displacement LGF differences; the bottom
panels show the vertical component of the displacement LGF differences. The perturbed
models were generated by augmenting the bulk modulus (left), shear modulus (center), and
density (right) profiles by a factor of 1% in linear space between 80 and 24.4 km depth
(upper mantle). All panels are depicted on the same scale for comparison. The solid black
lines show the direct LGF differences normalized by a factor of 1012aθ, where a is Earth’s
radius and θ is the angular distance between the load point and the measurement site. The
scales on the left pertain to the solid black lines. The dashed black lines show the direct
LGF differences normalized by a factor of 1012a (i.e., without multiplication by the angular
distance, θ). The scales on the right pertain to the dashed black lines. Note that we depict
the angular-distance dependence of the LGF differences on logarithmic scales.
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Figure 6.6: The sensitivity of displacement LGFs to perturbations in elastic structure for a
radially heterogeneous Earth model. We adopt an isotropic and oceanless version of PREM
as the reference model. We examine the sensitivity of the displacement LGFs to linear
perturbations of 1% to the bulk modulus (panels C and D), shear modulus (panels E and
F), and density (panels G and H) as a function of depth using Eq. 6.12. We independently
perturb each of the major regions of PREM beyond the core as distinct blocks, separated by
dashed lines in the figure. The regions include the lower mantle from 2891–2741 km depth,
the lower mantle from 2741–771 km depth, the lower mantle from 771–670 km depth, the
transition zone from 670–600 km depth, the transition zone from 600–400 km depth, the
transition zone from 400–220 km depth, the low-velocity zone (LVZ) from 220–80 km
depth, the region above the LVZ (LID) from 80–24.4 km depth, the lower crust from 24.4–
15 km depth, the upper crust from 15–3 km depth, and the top layer from 3–0 km depth.
Model parameters are defined in common-log space as mµ = log10 µ, mκ = log10 κ and
mρ = log10 ρ. The model parameter perturbation is ∆mj

p = log10(1.01). The horizontal
components of the displacement LGFs and sensitivity kernels are shown in the left panels;
the vertical components are shown in the right panels. The top panels (A & B) depict the
the displacement LGFs in the CM reference frame derived from the reference model. The
displacement LGFs, as well as the sensitivity kernels, were multiplied by the factor 1012aθ
to remove the singularity at the load point and to scale the magnitude of the response, where
a is Earth’s radius in meters and θ is the angular distance from the load point in radians.
Units of the unscaled LGFs are meters per kilogram.
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Figure 6.8: Sensitivity kernels for the displacement LGFs at an angular distance of 2.5◦

from the load point. The kernels depict slices through the sensitivity diagrams in Fig. 6.7
at θ = 2.5◦.
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Figure 6.9: A comparison between seismologically derived Earth models: PREM (black),
STW105 (red), AK135f (green), SNA (blue), CR (orange), and 1066A (purple). All mod-
els are assumed spherically symmetric, non-rotating, elastic, and isotropic (SNREI). The
SNA and CR models, derived for stable North America and cratonic structures, assume a
structure equivalent to AK135f below ∼1000 km depth. The top panels (A, B, & C) show
profiles of the bulk modulus (κ), shear modulus (µ), and density (ρ) in log-space. The bot-
tom panels (D, E & F) show the maximum differences between the models (in log-space)
as a function of depth.
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Figure 6.10: Displacement LGFs for various seismologically derived Earth models (Fig.
6.9). The top panels (A & B) show the horizontal and vertical components of the displace-
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and B, respectively, but multiplied by an additional factor of a θ, where a is Earth’s radius
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the CE reference frame. The bottom panels, G and H, show the differences between the
horizontal and vertical displacement LGFs, respectively, relative to the displacement LGFs
derived from PREM. Since the total Earth mass varies only slightly between the different
Earth models, the dependence of the LGF differences on reference frame is negligible.
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(0.2◦ × 0.2◦ resolution), depicts the displacement of Earth’s surface due to the M2 ocean

tide. Each ellipse is traced out completely during a single tidal period of 12.42 hours.

We selected Iceland as a case study for several reasons: (1) Iceland is sufficiently small

to facilitate the computation of many sets of predicted OTL-induced surface displacements

along very high-resolution profiles that span from coast to coast; (2) the island is sufficiently

large to examine differences in the predicted surface displacements even a couple hundred

kilometers inland of the coast; (3) the amplitude of the M2 tide is relatively large off the

southwest shore of the island; (4) the amplitude of the M2 tide is asymmetrical about the

island, which allows for an examination of the effect of tide amplitude on response sensi-

tivity, notwithstanding distance to the coast; and (5) Iceland is a place of great geophysical

interest that could benefit from future tomographic inversions of observed deformation from

OTL.

Fig. 6.12 shows the vector differences between pairs of M2 OTL-induced surface displace-

ments throughout Iceland derived from PREM and STW105. On the western coast, where

the tide heights are largest, the vector differences between predicted displacements reach

about 0.5 mm. Note that, since we use the same ocean-tide model and convolution pro-

cedure to generate each set of predictions, errors in the ocean-tide model and convolution

scheme effectively cancel out when the predicted displacements are differenced. As men-

tioned previously, we estimate that the maximum quadrature error associated with comput-

ing the vector differences between pairs of predicted surface displacements, |U1 − U2|, is

on the order of a fraction of a micron (Fig. 6.19).

For a 2◦ × 2◦ global grid of land-based locations (coarsened relative to the Iceland grid

for reasons of computational efficiency), 90% of the predicted M2 OTL-induced surface

displacements fall below about 3.1, 3.5, and 10.9 mm in the east, north, and vertical com-

ponents, respectively. Fig. 6.13 shows the vector differences between pairs of predicted M2

OTL-induced surface displacements derived from PREM and STW105 across the global

grid as a function of distance to the nearest coastline. Histograms showing the magni-

tudes of the vector differences for additional SNREI-model pairs (Fig. 6.9) are shown in

Fig. 6.14. Even for prediction sites located within 25 km of a coastline, the mean vec-
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Figure 6.11: Predicted OTL-induced surface displacements for the M2 tidal harmonic, de-
rived from the TPXO8-Atlas ocean tide model (Egbert & Erofeeva, 2002; Egbert et al.,
2010) and PREM, shown as particle motion ellipses (PMEs) on a 0.2◦ × 0.2◦ grid across
Iceland. The size and orientation of each ellipse represent the horizontal-displacement re-
sponse; the color of each ellipse represents the vertical displacement response (right color
bar). A reference ellipse for the horizontal motion is provided in the lower right corner of
the figure. The left color bar depicts the M2 tide amplitude in the oceans. Two profile lines
(A–A′ and B–B′) are superimposed. In subsequent figures, we explore changes in predicted
OTL-induced surface displacements due to small perturbations in the elastic structure of the
crust and mantle at high spatial-resolution along the profile lines (Figs. 6.20–6.23).
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Figure 6.12: Vector differences between pairs of predicted M2 OTL-induced surface dis-
placements derived from PREM and STW105, shown as PMEs on a 0.2◦ × 0.2◦ grid
across Iceland. The size and orientation of each ellipse represent the differential horizontal-
displacement response; the color of each ellipse represents the differential vertical displace-
ment response (right color bar). A reference PME for the horizontal motion is provided in
the lower right corner of the figure. Note the change in scale of the PMEs relative to Fig.
6.11. The left color bar depicts the M2 tide amplitude in the oceans.
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Figure 6.13: Vector differences between pairs of predicted M2 OTL-induced surface dis-
placements for PREM and STW105 as a function of distance to the nearest coastline. The
two sets of predicted OTL-induced surface displacements (one set for PREM and one set
for STW105) were computed on a 2◦ × 2◦ global grid of land-based locations. Only the
SNREI Earth model changes between the forward model computations; all other parame-
ters, including the ocean tide model and convolution procedure, remain the same. Panels
A, B, and C depict the east, north, and vertical components, respectively, of the vector dif-
ferences between the pairs of predictions. The black dots indicate the vector differences for
individual grid nodes. The horizontal lines in each panel represent the 50th- (blue), 90th-
(orange), and 99th-percentiles (green) of the vector differences. Panels D, E, and F depict
the mean vector differences as a function of distance to the coastline, computed in 25-km
bins.
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Figure 6.14: Histograms showing the magnitudes of the vector differences between pre-
dicted OTL-induced surface displacements for pairs of reference Earth models. Only the
elastic Earth model changes between the forward model computations; all other parameters,
including the ocean tide model and convolution procedure, remain the same. We consider
only the M2 tidal harmonic and predict the response on a 2◦ × 2◦ global grid of land-based
locations. The left, center, and right panels depict the east, north, and vertical components
of the vector differences, respectively. The top row of panels shows the vector differences
on a linear scale; the bottom row of panels shows the vector differences on a log scale.
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Figure 6.15: Magnitudes of the vector differences between predicted OTL-induced surface
displacements in the east component across a 2◦ × 2◦ global grid for two forward models:
one computed using LGFs derived from PREM and the other computed using LGFs de-
rived from STW105. All other parameters, including the ocean tide model (FES2012) and
convolution procedure, remain consistent in each forward model computation. Histograms
showing the magnitudes of the vector differences between predicted displacements for addi-
tional pairs of standard Earth models are shown in Fig. 6.14. The vector differences provide
information about the sensitivity of OTL-induced surface displacements to different SNREI
Earth models.
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Figure 6.16: Same as Fig. 6.15, but for the north component of the predicted displacements.
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Figure 6.17: Same as Fig. 6.15, but for the vertical component of the predicted displace-
ments.
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tor difference between the PREM predictions and the STW105 predictions is only about

0.1 mm. For prediction sites located very near to the coastline and in close proximity to

large-amplitude tides, however, vector differences between the OTL-induced surface dis-

placements can reach several tenths of a mm or more (Fig. 6.12). Figs. 6.15, 6.16, and

6.17 provide a sense for the spatial variations in the predicted vector differences across the

global grid (2◦ × 2◦), derived from PREM and STW105.

Since the various reference Earth models vary irregularly as a function of depth and model

parameter, we also explore changes in OTL-induced surface displacements generated by

systematic perturbations to elastic and density structure. Specifically, we investigate the

effects of independent perturbations to the two elastic moduli and density on M2 OTL-

induced surface displacements along two high-resolution (0.01◦, or≈1 km) profiles through

Iceland (Fig. 6.11). One of the profiles spans from west to east across the island along

64.7◦N latitude (A–A′); the second profile spans from south to north across the island along

341◦E longitude (B–B′).

As with the displacement LGFs (Fig. 6.5), we first consider the direct differences between

OTL-induced surface displacements derived from the three perturbed models in Fig. 6.4 and

unperturbed PREM. We define our model parameters in common-log space: mµ = log10 µ,

mκ = log10 κ and mρ = log10 ρ. Furthermore, we compute the response differences based

on perturbations to the model parameters of ∆mj
p = log10(1.01), which correspond to +1%

linear perturbations to the original elastic parameters.

For each prediction site along the high-resolution profiles (Fig. 6.11), the magnitudes of

the vector differences between the predicted OTL-induced surface displacements derived

from the perturbed Earth models and the unperturbed PREM are shown in Fig. 6.18. The

procedure is analogous to the methods used to develop Fig. 6.5, although we now consider

the finite-sized M2 OTL rather than a point-source load of unit mass. For perturbations of

1% to the elastic moduli and density, the magnitudes of the vector differences are less than

0.02 mm (20 micron). Despite the extraordinarily small differences, Fig. 6.19 shows that

the estimated bounds on the quadrature errors for the vector differences are sufficiently low

(of order 10 nanometers) to allow for interpretation of the differences. For the vertical-
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displacement component, a perturbation to the bulk modulus generates a larger change in

the induced surface displacements on the western coast than on the eastern coast presum-

ably due to the larger tidal amplitudes along the western coast. Consistent with the dis-

placement LGFs, the 1% perturbation to density structure yields the smallest changes to the

load-induced surface displacements overall. Specific details of the displacement differences

along the profile, however, can be difficult to interpret, since the displacements depend on

many factors, including the spatial distribution of the load relative to the prediction site and

the characteristics of the LGFs as a function of distance to each load point.

We now extend our analysis of the direct vector-differences between OTL-induced surface

displacements to explicit finite differences. The sensitivity kernels are given by:

Kj
p,G(r, ρz, Z) =

U(r, ρz, Z,m + ∆mj
p)− U(r, ρz, Z,m)

∆mj
p

=
∆U

∆mj
p

, (6.13)

where j corresponds to a particular perturbed layer, p corresponds to the model parameter

being perturbed (µ, κ, or ρ), and U represents a predicted OTL-induced surface displace-

ment (Eq. 6.8), which depends on Earth structure, m, the load model, Zρz , and the location

of the prediction site, r, relative to the load. The perturbation to structure, ∆mj
p, involves a

perturbation to the model parameter p in layer j; all other model parameters remain unper-

turbed.

Fig. 6.20 shows the sensitivity kernels for the west-to-east profile (A–A′). The results

for the south-to-north profile (B–B′) are shown in Fig. 6.21. All of the sensitivity kernels,

derived from Eq. 6.13, are depicted at full resolution (i.e., 0.01◦ spacing between prediction

sites). Here, we have perturbed the major regions of PREM down to 400 km depth. Without

accounting for the thickness of each perturbed layer, we find that perturbations to relatively

thick layers in the upper mantle can influence the OTL-induced surface displacements more

than perturbations to relatively thin layers in the crust. In particular, the sensitivity of the

surface displacements to perturbations in elastic and density structure in the upper three km

of the crust is weaker overall than the sensitivity to perturbations in any other layer.

In Fig. 6.22, we show the same sensitivity kernels depicted in Fig. 6.20, but normalized
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by the thicknesses of the perturbed layers. Normalization by layer thickness allows us to

better explore the effects of perturbation depth on the OTL-induced surface displacements.

Particularly for the sensitivity of the displacements to perturbations in the shear modulus, it

is apparent from Fig. 6.22 that the location of the peak sensitivity as a function of distance to

the coast shifts further inland for perturbations to deeper structure. In general, perturbations

to shallow crustal structure primarily affect the predicted surface displacements at coastal

sites and at short wavelengths. In contrast, perturbations to mantle structure mostly affect

the predicted surface displacements at longer wavelengths and beyond about 50 km inland

of the coast.

Sensitivities in the vertical component tend to be higher at prediction sites on the southern

and western edges of the profiles, where the tidal amplitudes are larger. Moreover, small

deviations from a smooth coastline can generate jumps in the sensitivity profiles, such as

when an ocean inlet is encountered on the eastern side of the profile line (e.g., Fig. 6.22).

Analogous to the displacement LGFs, the sensitivity to 1% perturbations in density structure

is generally weaker than the sensitivity to 1% perturbations in the elastic structure, and

probably mostly reflects changes in the total Earth mass generated by the perturbation.

When scaled by the layer thickness, sensitivities are typically strongest for perturbations to

shallow structure, particularly near the coastlines.

It is important to note that the sensitivity kernels we present here are specific to the pre-

diction sites that we have selected in Iceland as well as to the M2 ocean-tide model. Thus,

the sensitivity kernels for the predicted OTL-induced surface displacements across the pro-

files in Iceland should be considered examples, albeit illustrative and representative of the

sensitivities expected for M2 OTL in many locations around the globe.

The sensitivity kernels for the OTL-induced surface displacements (e.g., Fig. 6.20) consti-

tute a key element in formulating the inverse problem. In particular, the kernels could be

used to relate structural models to displacement observations in a linear inverse problem

and to investigate the resolution of the model parameters (e.g., the two elastic moduli and

density for the distinct layers of the PREM model) with application to geodetic tomogra-

phy. Synthetic testing could reveal better the extent to which perturbations in the elastic
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moduli and density could be resolved independently for the particular geographic locations

considered and the M2 ocean-tide model.

6.5 Discussion

We have explored the theoretical sensitivities of potential, load, and shear Love numbers

as well as displacement LGFs to systematic perturbations in elastic Earth structure using

both quasi-analytical and numerical techniques. Following the methodology of Okubo &

Saito (1983), we developed profiles of LLN partial derivatives for a variety of spherical

harmonic degrees (Figs. 6.1, 6.2, 6.3, and Appendix D). Perturbations to the elastic struc-

ture very near to the surface strongly affect the high-degree LLNs, as expected due to the

short wavelengths of Legendre polynomials at large n. The high-degree LLNs are most

sensitive to structural perturbations within a “skin depth” of approximately (a/n) of the

surface (Okubo, 1988a), where a is Earth’s radius and n is the spherical harmonic degree.

The sensitivity of the high-degree LLNs to perturbations in elastic and density structure

rapidly approaches zero beyond a few skin depths (Figs. 6.2 and 6.3). The density kernel

constitutes an exception, since a perturbation to density at any depth generates a change in

the total Earth mass.

We also computed numerically the sensitivities of displacement LGFs to systematic per-

turbations in elastic material properties (Figs. 6.6–6.8). The patterns of sensitivity vary as

a function of perturbation depth as well as the angular distance between the measurement

site and the load point for each of the three model parameters considered. The distinct

patterns exhibited by each of the model parameters leave open the possibility that the two

elastic moduli and density may be independently constrained through inversion of observed

SML-induced surface displacements.

As a general rule of thumb, illustrated by Figs. 6.6 and 6.7, the elastic structure at a depth

of D km strongly influences the displacement LGFs at a horizontal distance of D km from

the load point (cf., Okubo, 1988b; Ito & Simons, 2011). We can also see from Figs. 6.6 and

6.7 that the sensitivities of SML-induced surface displacements to perturbations in density

structure appear to be much weaker than for equivalent perturbations to the two elastic
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Figure 6.18: Differences between M2 OTL-induced surface displacements derived from
the three perturbed Earth models shown in Fig. 6.4 and the unperturbed PREM along the
profile A–A′ in Fig. 6.11 at 0.01◦ (≈1 km) resolution. The left column of panels depicts the
magnitudes of the vector differences between load-induced displacements computed from
the κ-perturbed model and the unperturbed PREM. The center column of panels depicts the
magnitudes of the vector differences between load-induced displacements computed from
the µ-perturbed model and the unperturbed PREM. The right column of panels depicts the
magnitudes of the vector differences between load-induced displacements computed from
the ρ-perturbed model and the unperturbed PREM. The rows of panels show the east (top),
north (center), and vertical (bottom) components of the differential displacements. The
perturbed models were generated by augmenting the bulk modulus (left), shear modulus
(center), and density (right) profiles by a factor of 1% in linear space between 80 and 24.4
km depth (upper mantle). All panels are depicted on the same scale for comparison; note
that the units are in microns.
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Figure 6.19: Estimated bounds on quadrature errors associated with the vector differences,
|U1 − U2|, shown in Fig. 6.18. The error estimates, which correspond to the numerical
uncertainties in the differences between predicted M2 OTL-induced surface displacements,
were computed along the profile A–A′ (Fig. 6.11) at 0.01◦ (≈1 km) resolution. All panels
are depicted on the same scale for comparison; note that the units are in nanometers. We
estimated the quadrature errors, σU , associated with deriving the predicted OTL-induced
surface displacements, U , by varying the resolution of the integration grid. We then com-
puted the vector difference between two sets of estimated errors: σ∆U = |σU1 − σU2 |.
For very small perturbations to structure, such as the 1% perturbations explored here, the
higher-order derivatives of the integrand in Eq. 6.8 do not vary much. Thus, the quadrature
errors also do not change much during comparisons of the different Earth models. Here, the
errors do not exceed approximately 20 nm, and are therefore sufficiently small to resolve
the 1–20 micron discrepancies between models shown in Fig. 6.18.
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Figure 6.20: The sensitivity of predicted OTL-induced surface displacements to perturba-
tions in elastic and density structure, computed along the profile A–A′ in Fig. 6.11. The
profile maintains constant latitude at 64.7◦N and a node spacing of 0.01◦ (≈1 km). The
left column of panels shows the sensitivity of predicted surface displacements to pertur-
bations in the bulk-modulus model parameter, ∆ log10 κ. The center column of panels
shows the sensitivity to perturbations in the shear-modulus model parameter, ∆ log10 µ.
The right column of panels shows the sensitivity to perturbations in the density model pa-
rameter, ∆ log10 ρ. In each case, we perturb the parameters by 1% in linear space, or by
∆m = log10(1.01) in log space, where m = log10 κ, log10 µ, or log10 ρ. The top, middle,
and bottom rows of panels show sensitivity kernels for M2 OTL-induced surface displace-
ments in the east, north, and vertical components, respectively. The colored lines denote
perturbations to distinct layers of PREM down to a depth of 400 km and correspond to the
same layer in every panel (see legend). The sensitivity kernels are computed, separately for
each layer, as the magnitudes of the vector differences between the predicted OTL-induced
surface displacements (in millimeters) for the perturbed and reference (unperturbed PREM)
models divided by the model-parameter perturbation, log10(1.01).
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Figure 6.21: Sensitivities of OTL-induced surface displacements to perturbations in elas-
tic and density structure along a great-circle path through Iceland (profile B–B′ from Fig.
6.11). The profile maintains constant longitude along the 341◦E meridian and a node spac-
ing of 0.01◦ (≈1 km). The left column of panels shows the sensitivity of predicted surface
displacements to perturbations in the bulk-modulus model parameter, ∆ log10 κ. The center
column of panels shows the sensitivity to perturbations in the shear-modulus model param-
eter, ∆ log10 µ. The right column of panels shows the sensitivity to perturbations in the
density model parameter, ∆ log10 ρ. In each case, we perturb the parameters by 1% in lin-
ear space, or by ∆m = log10(1.01) in log space, where m = log10 κ, log10 µ, or log10 ρ.
The top, middle, and bottom rows of panels show sensitivity kernels for M2 OTL-induced
surface displacements in the east, north, and vertical components, respectively. The colored
lines denote perturbations to distinct layers of PREM down to a depth of 400 km and corre-
spond to the same layer in every panel (see legend). The sensitivity kernels are computed,
separately for each layer, as the magnitudes of vector differences between the predicted
OTL-induced surface displacements (in millimeters) for the perturbed and reference (un-
perturbed PREM) models divided by the model-parameter perturbation, log10(1.01).
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Figure 6.22: Same as Fig. 6.20, but normalized by the layer thickness, T, in kilometers.
The discontinuous jump in the sensitivity just west of 346◦, derived from perturbed upper
crustal structure (orange line), is caused by the presence of an ocean inlet encountered along
the profile.
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Figure 6.23: Same as Fig. 6.21, but normalized by the layer thickness, T (in kilometers).
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moduli (cf., Baker, 1980b).

Furthermore, since the equations of motion account for the gravitational force exerted on

the surface mass, increasing the density in any layer will increase the magnitude of the grav-

itational force exerted at the surface. An increased gravitational force attracting the mass

load is consistent with the predominantly negative sensitivity of the displacement LGFs

to positive perturbations in density, the approximately constant sensitivity as a function of

perturbation depth, and the relatively weak sensitivity observed for perturbations to thin

crustal layers (Fig. 6.7) (cf., Baker, 1980b). By this interpretation, we suggest that changes

in the gravitational force, arising from changes to the total Earth mass due to perturbations

in density structure, account for the most significant contribution toKρ. Unsurprisingly, the

magnitude of LGF sensitivity to density perturbations increases with thickness of the per-

turbed layer. In contrast, the depth of a perturbation to the elastic moduli plays a significant

role in enhancing (shallower) or diminishing (deeper) the LGF sensitivity.

Since combinations of positive and negative perturbations to an array of spherical shells

and elastic parameters can theoretically produce equivalent surface displacements at a va-

riety of observer-to-load angular distances, the inverse problem exhibits non-uniqueness,

particularly when only a small number of measurement sites are considered (cf., Baker,

1980b). In other words, different Earth models could potentially explain the same obser-

vations of SML-induced surface displacements. Moreover, Figs. 6.20 and 6.21 show that

perturbations to thick layers in the mantle can produce larger changes in the OTL-induced

surface displacements than perturbations to thin layers in the crust. Perturbations applied

to near-surface structure, however, predominantly affect the OTL-induced surface displace-

ments at locations near to the load, corresponding to stations along the coast; perturbations

to deeper structure generate changes at longer wavelengths and often exhibit peak sensitiv-

ities further inland. The non-uniqueness of the inverse problem may therefore be mitigated

with a large and spatially distributed set of SML-response observations, which should be

explored further through case-specific investigations of model resolution. The sensitivity of

load-induced surface displacements to perturbations in structure also depends strongly on

the distribution of the global load. Thus, the structural sensitivities of SML-induced surface
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displacements are load- and site-specific.

In addition to adequate model resolution, the ability to use observations of SML-induced

surface displacements to constrain solid Earth structure also requires the structural sensitiv-

ity of the deformation response to exceed observational and modeling errors. In the special

case of OTL, peak sensitivities to structure are typically associated with the locations of the

largest OTL-induced surface displacements, which generally coincide with coastal sites im-

mediately adjacent to large-amplitude tides offshore. For most geodetic networks, however,

only a spatially limited number of stations are deployed near the coast. Furthermore, even

with a very dense network along the coast, the primary sensitivity would be to near-surface

structure. Thus, to improve the ability to detect deeper mantle structure, OTL-induced sur-

face displacements detected further inland must also be explored. The inland sites, however,

tend to exhibit smaller displacement-responses as well as weaker structural sensitivities and

therefore require more accurate empirical measurements of the OTL-induced deformation

as well as minimal errors in the forward model.

Errors affecting the precision and accuracy of the forward model might arise from the nu-

merical derivation of the LGFs, the development and resolution of the ocean-tide model,

deficiencies in the SNREI Earth model, and the numerical convolution scheme. Errors

in the ocean-tide model, in particular, tend to be largest near the coast and therefore dis-

proportionately impact measurement sites near the coastline. Uncertainties affecting the

observational precision may include contributions from the data acquisition and processing

as well as the modeling techniques used to extract the individual tidal harmonics. SEBT

displacement-response estimates, for example, are often removed at the GPS processing

stage and can be erroneous at the ∼1 mm level (e.g., Yuan et al., 2013). The SEBTs, how-

ever, operate primarily at long wavelengths, or global spatial scales, and therefore sample

more or less an average of Earth structure (e.g., Latychev et al., 2009). Thus, for a regional

GPS network, any inaccuracies in the SEBT model would likely manifest predominantly as

a residual displacement common to the entire network.

Recently, Bos et al. (2015) reported that observations and predictions of OTL-induced sur-

face displacements across western Europe were of sufficient precision to explore structural
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deficiencies, including both elastic and anelastic deficiencies. In addition, Martens et al.

(2016) demonstrated that, after the removal of a uniform-displacement factor, vector dif-

ferences between predicted M2 OTL-induced surface displacements generated from a se-

lection of modern ocean-tide models coincided with the approximate level of structural

sensitivity for reasonable variations in SNREI Earth structure (Fig. 6.12). It should also

be recalled that the sensitivity analyses presented here involve differential OTL-induced

surface displacements and, therefore, errors related to the particular tide model and convo-

lution scheme, which do not change between forward-model computations, cancel out to

within about a fraction of a micron.

We also reiterate that the sensitivity kernels were derived for SNREI Earth models. At

this stage, we have not considered the effects of anelasticity, anisotropy, or lateral hetero-

geneities on the sensitivities of LLNs, LGFs, and OTL-induced surface displacements to

perturbations in structure. Bos et al. (2015) found that dissipation effects within the as-

thenosphere could account for up to about 0.3 mm of residual OTL-induced surface dis-

placements in western Europe and that allowing for anisotropy could reduce the mean

residual by approximately 0.1 mm. Incorporating an anelastic constitutive relation into

the equations of motion produces complex-valued LLNs; thus, the differences between ob-

served and predicted OTL-induced surface displacements would also include a small phase

delay.

Regarding lateral heterogeneities, the computations of the LLNs and LGFs require radi-

ally symmetric structure by design. To explore the effects of lateral heterogeneities on the

predicted SML-induced surface displacements, one might compute discrete grids of local

LGFs (e.g., Dill et al., 2015). The Earth’s displacement response to SML, however, depends

on global Earth structure and particularly on the material properties spanning the region be-

tween the load and the observer. Thus, grids of local LGFs would not be particularly useful

for regional or global studies, where stations might be located at a variety of distances from

spatially complicated loads, as in the case of OTL. A better technique would be to use fully

numerical approaches, such as finite element or spectral element methods. Using numerical

techniques, albeit applied to the SEBTs rather than SML, Latychev et al. (2009) showed
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that realistic three-dimensional variations in structure can perturb radial displacements by

an amount on the order of 1 mm in the semi-diurnal tidal band.

It is also worth recalling that the forward model generates predicted SML-induced surface

displacements based on a model for Earth structure as well as a load model. Here, we have

focused on the sensitivity of OTL-induced surface displacements to perturbations in elastic

structure, and taken the load model as given. In some cases, however, the Earth model could

be considered given and the observations of SML-induced surface displacements used to

constrain the spatial extent and volume of a load.

6.6 Summary and Conclusions

We have computed the sensitivities of Love numbers (potential, load, and shear), displace-

ment load Green’s functions, and M2 OTL-induced surface displacements to perturbations

in elastic and density structure through the crust and mantle. In each case, the sensitivi-

ties depend on the depth of the structural perturbation, the thickness of the perturbed layer,

and the particular parameter that was perturbed (e.g., κ, µ, ρ). The sensitivities of the

Love numbers additionally depend on the spherical harmonic degree of the deformation,

since different degrees sample structure across different depth ranges. The sensitivities

of the LGFs further depend on the angular separation between the measurement site and

the location of the applied (point source) mass load. Furthermore, the sensitivities of the

OTL-induced surface displacements are influenced by the specific tide model as well as the

location of the measurement site.

Although the LLNs, LGFs, and OTL-induced surface displacements are sensitive to per-

turbations in both elastic and density structure, the sensitivity of the deformation response

to perturbations in density structure appears to be relatively weak unless applied to a very

thick layer (Figs. 6.6 and 6.7). We attribute the patterns of density sensitivity primarily to

increases in the total Earth mass that occur with perturbations to the density and that gener-

ate deviations in the surface gravity. We find that most of the sensitivity to perturbations in

the elastic moduli is concentrated within 500 km depth of the surface and within 10◦ of the

load point (i.e., within an angular distance of 10◦ between the load and the observer).
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Different combinations of positive and negative perturbations to the elastic and density

structure of the crust and upper mantle can theoretically generate equivalent OTL-induced

surface displacements at prediction sites on the surface, implying a non-uniqueness of the

inverse problem. The apparent non-uniqueness might be mitigated through appropriately

dense and strategically distributed geodetic networks, since structural perturbations applied

at different depths influence the surface deformation more strongly at different distances

from the load point (Figs. 6.7, 6.20 and 6.22). Moreover, the spatially and temporally

complicated patterns of ocean tidal loads can further facilitate the sampling of structure at

a variety of wavelengths.

In conclusion, the possibility of performing geodetic tomography using observations of

Earth deformation induced by surface mass loading depends on many factors, including the

specific geodetic network, the quality of the geodetic data, the computational methods, the

quality and spatial distribution of the load model, and the sensitivity to structure. The sen-

sitivity kernels presented here, however, lay the foundation for future tomographic studies

since, along with models for the observational and prediction error, the kernels could be

used to formulate the inverse problem.
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7
Observations of Ocean Tidal Load

Response in South America from

Sub-daily GPS Positions

The work discussed in this chapter has been published as:

Martens, H.R., M. Simons, S. Owen, and L. Rivera, 2016. Observations of Ocean Tidal

Load Response in South America from Sub-daily GPS Positions, Geophys. J. Int., 205(3),

doi:10.1093/gji/ggw087, pp. 1637–1664.

7.1 Abstract

We explore Earth’s elastic deformation response to ocean tidal loading (OTL) using kine-

matic Global Positioning System (GPS) observations and forward-modeled predictions

across South America. Harmonic coefficients are extracted from up to fourteen years of

GPS-inferred receiver locations, which we estimate at five-minute intervals using precise

point positioning. We compare the observed OTL-induced surface displacements against

predictions derived from spherically symmetric, non-rotating, elastic, and isotropic (SNREI)

Earth models. We also compare sets of modeled predictions directly for various ocean-tide

and Earth-model combinations. The vector differences between predicted displacements

computed using separate ocean tide models reveal uniform-displacement components com-

mon to all stations in the South America network. Removal of the network-mean OTL-

induced displacements from each site substantially reduces the vector differences between

observed and predicted displacements. We focus on the dominant astronomical tidal har-

monics from three distinct frequency bands: semidiurnal (M2), diurnal (O1), and fortnightly

(Mf ). In each band, the observed OTL-induced surface displacements strongly resemble the
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modeled displacement-response patterns, and the residuals agree to about 0.3 mm or better.

Even with the sub-mm correspondence between observations and predictions, we detect

regional-scale spatial coherency in the final set of residuals, most notably for the M2 har-

monic. The spatial coherency appears to be relatively insensitive to the specific choice

of ocean-tide or SNREI-Earth model. Varying the load model or one-dimensional elastic

structure yields predicted OTL-induced displacement differences of order 0.1 mm or less

for the network. Furthermore, estimates of the observational uncertainty place the noise

level below the magnitude of the residual displacements for most stations, supporting our

interpretation that random errors cannot account for the entire misfit. Therefore, the spa-

tially coherent residuals may reveal deficiencies in the a priori SNREI Earth models. In

particular, the residuals may indicate sensitivity to regional deviations from standard glob-

ally averaged Earth structure due to the presence of the South American craton.

7.2 Introduction

Tidal forces, generated primarily by gravitational interactions with the moon and sun, de-

form the Earth both directly through the gravitational potential (body tides) and indirectly

through the periodic redistribution of fluid mass loading Earth’s surface (e.g., oceanic and

atmospheric load tides). The density and elastic structure of Earth’s interior controls the

spatiotemporal characteristics of the deformation response; thus, observations of surface

displacements caused by the tidal potential and tidal loading may potentially be exploited

to study the material properties of the solid Earth (e.g., Love, 1909; Melchior, 1983; Baker,

1984; Bos et al., 2015).

Whereas body tides are long-wavelength phenomena that sample a large-scale average

of Earth structure (e.g., Latychev et al., 2009), ocean tidal loads are shorter-wavelength

features that probe Earth’s material properties at finer spatial scales (e.g., Baker, 1984;

Jentzsch, 1997; Agnew, 2015). Moreover, whereas the spatial distribution of amplitude and

phase for body tides generally follows that of the equilibrium tide derived directly from the

gravitational potential, ocean tides exhibit a complitcated spatial pattern due to interactions

with continental boundaries and bathymetry (e.g., Zahel, 1997; Pugh & Woodworth, 2014),



213

thereby generating a rich spectrum of deformation responses.

Seismology remains a primary means for investigating Earth’s interior structure, but is also

limited in its ability to distinguish between variations in the two elastic moduli and density

inside the Earth. Separating the three unknown parameters contained within measurements

of body wave velocities necessarily involves scaling laws and assumptions about Earth’s

interior state (e.g., Dziewonski & Anderson, 1981), or additional information, such as nor-

mal mode or surface wave data (Ishii & Tromp, 1999; Lin et al., 2012), which are limited in

spatial resolution and/or depth extent. Alternatively, ocean tidal loading (OTL) excites both

elastic and gravitational deformation responses in the Earth at a variety of wavelengths that

sample the crust and the upper mantle. Thus, combinations of OTL-induced deformation

measurements and seismic body-wave observations should allow the two elastic moduli and

the density to be independently constrained as a function of depth.

Although Earth’s deformation response to OTL may be monitored using a variety of tech-

niques, including very long baseline interferometry (VLBI), gravity, tilt, strain, and Global

Positioning System (GPS)-inferred displacements (e.g., Baker, 1980b, 1984; Baker et al.,

1991, 1996; Petrov & Ma, 2003; Pugh et al., 2011; Yuan et al., 2013; Penna et al., 2015),

the load Green’s functions (LGFs) for tilt and strain decrease as r−2 from the load point,

where r is distance, and gravity and displacement LGFs decrease as r−1 from the load

point. Thus, the gravitational and displacement responses are sensitive to a wider expanse

of ocean loads and regional solid Earth structure than tilt and strain (Baker, 1984). In addi-

tion, local inhomogeneities in mechanical properties limit the effectiveness of using strain

and tilt observations to investigate OTL response (Jentzsch, 1997; Baker, 1984). VLBI in-

stallations measure tidal response with high accuracy (Petrov & Ma, 2003; Thomas et al.,

2007), but only a small number exist worldwide (King, 2006). GPS stations, in contrast, are

now deployed extensively around the globe and also measure tidal deformation very accu-

rately. Therefore, GPS has emerged as a preferred method for OTL-response investigations

(e.g., Schenewerk et al., 2001; King, 2006; Thomas et al., 2007; Ito & Simons, 2011; Yuan

& Chao, 2012; Bos et al., 2015).

Recent studies have explored various GPS processing techniques used to isolate tidal har-
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monic signals (e.g., King, 2006; King et al., 2008; Penna et al., 2015). In particular, two

main strategies have been proposed for extracting tidal harmonic information from GPS

data: static and kinematic. In the static approach, also referred to as the harmonic pa-

rameter estimation approach (Penna et al., 2015), tidal harmonic coefficients are estimated

along with daily station positions as part of a static GPS solution, generally using precise

point positioning (PPP) or network estimation techniques (e.g., Schenewerk et al., 2001;

Allinson et al., 2004; King, 2006; Thomas et al., 2007; Yuan & Chao, 2012; Yuan et al.,

2013). A series of static solutions, along with their full variance-covariance matrices, are

subsequently combined to form the final estimates for the harmonic coefficients, typically

using a Kalman filter. For the kinematic approach, station positions are estimated from the

GPS data at sub-daily intervals, without simultaneously estimating the OTL-induced dis-

placements (e.g., Khan & Tscherning, 2001; King & Aoki, 2003; King, 2006; Penna et al.,

2015). A post-processing analysis is then performed to extract harmonic coefficients from

the kinematic time series. We adopt the kinematic approach in this study.

Since deformation responses induced by OTL depend on the material properties of Earth’s

interior, precise observations may potentially be exploited to constrain solid-Earth structure.

Motivated by recent advancements in ocean tide models and deployments of dense GPS net-

works, Ito & Simons (2011) were the first to attempt to invert GPS-inferred observations

of OTL-generated surface displacements for one-dimensional profiles of the elastic moduli

and density through the crust and upper mantle beneath the western United States. Their

forward modeling procedure, however, neglected to account for the motion of the geocenter

induced by variations in the surface mass loads, which resulted in an inconsistent mapping

between observations and predictions (Blewitt, 2003; Fu et al., 2012; Wu et al., 2012; De-

sai & Ray, 2014). The use of inconsistent reference frames introduced long-wavelength

artifacts into the displacement-response residuals, which critically biased the analysis and

results.

Furthermore, ocean tide models have long been considered a dominant source of error in

predicting Earth’s response to OTL, particularly near the coast (e.g., Francis & Mazzega,

1990; Agnew, 1997; Khan & Scherneck, 2003; Bos & Baker, 2005; Penna et al., 2008;
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Yuan & Chao, 2012; Yuan et al., 2013). Citing the large coastal errors, Yuan & Chao

(2012) and Yuan et al. (2013) opted to examine OTL and body-tide response residuals

only at GPS stations located more than 150–200 km inland of the coast. Operating under

the assumption that, at the accuracy of their GPS observations, the OTL prediction error

could be neglected beyond 150–200 km of the coast, they attributed continental-scale spatial

coherency with non-diminishing amplitudes exhibited by the inland residuals to possible

elastic and anelsatic deficiencies in the a priori body tide model. They made no attempt to

invert the residuals for perturbations to their pre-assumed Earth model, however, claiming

that sensitivity to structure appears to be small compared with sources of error and requires

further investigation.

Penna et al. (2015) and Bos et al. (2015) recently completed a study examining OTL-

induced surface displacements in western Europe using kinematic GPS processing meth-

ods. For the M2 harmonic, they found statistically significant residual displacements that

exceeded the observational uncertainties of 0.2–0.4 mm, and suggested that the discrepancy

could be explained in large part by accounting for mantle anelasticity and anisotropy.

Improving the ability to extract tidal harmonics from GPS data and to forward-model

Earth’s response to OTL not only enhances the possibility of constraining material prop-

erties from observations of Earth’s OTL-induced deformation, but also of better accounting

for the effects of loading response when examining other geodetic signals of interest, such

as aseismic transients. Here, we investigate the precision and spatiotemporal characteristics

of observed and predicted OTL-induced surface displacements across a regional network of

GPS stations in Brazil, Argentina, and Uruguay. Since the tidal harmonics within a given

tidal species exhibit similar patterns (e.g., Pugh, 1987), we focus our analysis on the dom-

inant tides from three distinct frequency bands: the principal lunar semidiurnal tide (M2),

which has a period of 12.42 hours; the principal lunar diurnal tide (O1), which has a period

of 25.82 hours; and the principal lunar fortnightly tide (Mf ), which has a period of 13.66

days. The global distributions of the tide amplitudes for the three harmonics are shown in

Fig. 7.1.

We begin by introducing our procedure for modeling OTL-induced surface displacements
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Figure 7.1: Spatial distribution of tide amplitudes based on the FES2012 ocean tide model
(Carrère et al., 2012; Lyard et al., 2006) for the (A) principal lunar semidiurnal harmonic,
M2; (B) principal lunar diurnal harmonic, O1; and (C) principal lunar fortnightly harmonic,
Mf . The black box in panel A outlines our study area. Note also that the tides remain active
beneath the floating ice shelves in Antarctica.
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and exploring the sensitivity of the predicted deformation to a selection of ocean tide and

elastic Earth models. We then transition into a discussion of the observational methods and

results. Finally, we compare the observed and predicted OTL-induced surface displace-

ments and consider the implications of the residual displacements. Additional details of our

GPS processing and harmonic analysis techniques are provided in the Appendices.

7.3 Predictions

To predict Earth’s elastic displacement response to surface mass loading, we convolve an

ocean tide model with displacement LGFs that represent the response of a spherically sym-

metric, non-rotating, elastic, and isotropic (SNREI) Earth to a point load of unit mass. The

predicted surface displacements induced by OTL are given by:

U(r, S, Z, ρsea) =

∫
Ω
ρsea(r

′)G(|r − r′|, S)Z(r′) dΩ, (7.1)

where U is the complex-valued response of Earth at observation point r, ρsea is the density

of sea water at the load point r′,G is the Green’s function per kg load, andZ is the complex-

valued height of the ocean tide at the load point. The integral is taken over the surface

area of the oceans, Ω. The LGFs depend on the angular distance to the load as well as

Earth structure, S, where the structure is assumed SNREI (e.g., PREM). The LGFs are

formed by spherical harmonic combinations of load Love numbers, which are derived from

integrating the equations of motion through the layered Earth structure with normal-traction

boundary conditions applied at the surface (Farrell, 1973). We evaluate Eq. 7.1 using

software developed in-house, LoadDef, which is parallelized and written in Python.

Initially, we compute the load Love numbers with respect to the center of mass of the

solid Earth, known as the CE reference frame (Blewitt, 2003). The GPS orbit and clock

products from our observational analysis, however, are provided in the CM reference frame,

which is referenced to the center of mass of the entire Earth system (including the solid

Earth, oceans, and atmosphere) (Desai & Ray, 2014). For investigations into Earth’s OTL

response, predictions and observations must be computed in the same reference frame;
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otherwise, positioning errors of order 1 mm or more may arise (Wu et al., 2012; Fu et al.,

2012; Desai & Ray, 2014). Thus, we transform the degree-1 load Love numbers into the

CM reference frame prior to computation of the LGFs (Blewitt, 2003; Wang et al., 2012;

Agnew, 2012).

For the convolution (Eq. 7.1), we adopt a station-centered template grid, which simplifies

the integration of the LGFs across individual cells, easily facilitates the inclusion of multiple

loading models, and naturally allows us to refine the resolution of the integration mesh near

the station (Goad, 1980; Agnew, 1997, 2012). To develop the template grid, we place a

station at the pole of a spherical coordinate system, where θ represents the polar angle and

α represents the azimuthal angle, and vary the resolution in polar angle as a function of

distance to the station: ∆θ = 0.001◦, or about 100 m, within θ = 1◦; ∆θ = 0.01◦ from

θ = 1–10◦; ∆θ = 0.1◦ from θ = 10–90◦; and ∆θ = 1.0◦ beyond θ = 90◦. For each θ in

the mesh, ∆α = 0.1◦.

To also refine the integration mesh around the coastline, we first extrapolate the ocean

model inland by one grid cell and then apply a land-sea mask. In the far-field, we define

the land-sea mask with ETOPO1, which provides global topographic and bathymetric relief

information at 1 arc-minute resolution (Amante & Eakins, 2009). In the near-field (within

1.5◦ of a station), we use the Global Self-consistent, Hierarchical, High-resolution Shore-

line (GSHHS) database at full resolution (Wessel & Smith, 1996). Since ETOPO1 registers

floating ice shelves as landmasses, but the tides remain active in those regions (Fig. 7.6),

we use the Scientific Committee on Antarctic Research (SCAR) Antarctic Digital Database

version 6.0 to define the Antarctic coastline. The value for seawater density in Eq. 7.1

should represent the density of ocean water at the seafloor (Ray, 2013); here, we adopt a

uniform value of 1035 kg m−3.

LoadDef differs from most other OTL-response modeling software in that it derives LGFs

on-the-fly from an input Earth model, rather than uses pre-computed LGFs from published

tables. The convolution portion of LoadDef, however, is modeled after, and therefore

not significantly different algorithmically from, the widely used SPOTL package (Agnew,

2012) and both codes yield very similar results (to within about 1–2% for SPOTL version
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3.3.0.2). Minor differences arise from details of the coastline refinement, resolution of the

integration mesh, and values adopted for seawater density.

In addition to an SNREI Earth model, the forward model (Eq. 7.1) also requires the input

of an ocean tide model. One class of modern ocean tide models assimilates satellite al-

timetry and tide gauge data into global hydrodynamic simulations. A second class of ocean

tide models involves purely empirical developments, relying primarily on satellite altimetry

constraints. The models are often made available on regularly spaced latitude-longitude

grids, with amplitude and phase values supplied for up to 30 tidal harmonics or more.

The ocean-basin and Earth-rotational effects produce tidal circulation systems, centered on

points of zero tidal amplitude called amphidromes. Complicated ocean-land interactions

present challenges for global hydrodynamic modeling. Furthermore, altimetry satellites,

which provide some of the primary data for ocean tide models, have difficulty sampling at

high latitudes and near coastlines. Thus, the ocean tides are notoriously difficult to model,

particularly in the polar regions and shallow seas, as depicted in Fig. 7.2. The resolution

and accuracy of the ocean tide models, however, have improved considerably over the last

decade (e.g., Stammer et al., 2014; Ray, 2013).

To investigate the sensitivity of the predicted OTL-induced surface displacements to vari-

ous ocean tide and SNREI Earth models, we compare the vector differences between for-

ward models. The magnitude of the vector difference, δ, between two sets of predicted

OTL-induced surface displacements, P1 and P2, for each spatial component and at each

prediction site is given by:

δ =
√

(AP1 cosφP1 −AP2 cosφP2)2 + (AP1 sinφP1 −AP2 sinφP2)2, (7.2)

where A is the amplitude and φ is the phase. For an individual tidal harmonic, the OTL-

induced displacements at a particular geographic location may be represented by a closed

ellipse in three-dimensional space and traced out completely during each tidal period. To

illustrate the harmonic displacements graphically, we depict the combined east and north

displacement by a horizontal particle motion ellipse (PME) and denote the vertical motion

by the color of the ellipse.



220

180˚ 90˚W 0˚ 90˚E
90˚S

60˚S

30˚S

0˚

30˚N

60˚N

90˚N
M2 | FES2012 − GOT4.10 A

180˚ 90˚W 0˚ 90˚E
90˚S

60˚S

30˚S

0˚

30˚N

60˚N

90˚N
M2 | FES2012 − TPXO8−Atlas B

180˚ 90˚W 0˚ 90˚E
90˚S

60˚S

30˚S

0˚

30˚N

60˚N

90˚N
M2 | FES2012 − EOT11A C

0.0 0.5 1.0 1.5 2.0

Tide amplitude difference (cm)

Figure 7.2: Differences in tide amplitude between the (A) FES2012 and GOT4.10, (B)
FES2012 and TPX08-Atlas, and (C) FES2012 and EOT11A ocean tide models for the M2

harmonic. The differences, denoted by the colorbar, represent the magnitude of vector
differences between the complex-valued tide amplitudes at each grid cell.
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7.3.1 Ocean Tide Model Comparisons

Acknowledging the availability of a large number of ocean tide models, we opt for a rep-

resentative sampling in the interest of clarity. We consider FES2012 (Carrère et al., 2012;

Lyard et al., 2006), TPXO8-Atlas (Egbert & Erofeeva, 2002; Egbert et al., 2010), EOT11A

(Savcenko & Bosch, 2012) and GOT4.10 (Ray, 1999, 2013). FES2012 and TPXO8-Atlas

were generated from global hydrodynamic simulations that assimilated tide gauge and satel-

lite altimetry data, whereas EOT11A and GOT4.10 rely primarily on empirical altimetry

observations. Moreover, the models FES2012, TPXO8-Atlas and EOT11A include esti-

mates for the fortnightly astronomical tide, Mf . TPXO8-Atlas also has local tide models

incorporated into its final solution.

As discussed in Desai & Ray (2014), a majority of altimetry-based ocean tide models do not

yet account for the effects of tide-induced geocenter variations on altimetric determinations

of ocean-tide heights. To the best of our knowledge, the four models considered here are

no exception. Recently, however, the altimetry observations used to constrain GOT4.10

were adjusted for tidal geocenter variations, culminating in an updated model: GOT4.10c.

To remain internally consistent in our comparisons of ocean tide models, we focus here on

the four models that are presumably uncorrected for geocenter variations (i.e., FES2012,

TPXO8-Atlas, EOT11A, and GOT4.10), but include a basic assessment of GOT4.10c with

the Discussion.

Fig. 7.3 shows the vector differences between predicted OTL-induced surface displace-

ments as PMEs for the M2 tidal harmonic. Note the spatial coherency in size and orienta-

tion of many of the ellipses, suggesting the presence of a uniform OTL-induced displace-

ment, or “common-mode,” component that is constant across the entire network. In the

context of this manuscript, a common-mode component refers to a constant OTL-response

amplitude and a constant OTL-response phase-lag that are common to all stations in the

network for a particular tidal harmonic (not to be confused with a network-averaged dis-

placement removed from a geodetic time series). For example, a comparison of FES2012

with TPXO8-Atlas (Fig. 7.3, panel A) reveals ellipses oriented primarily in the north-south
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Figure 7.3: Particle motion ellipses (PMEs) depicting the vector differences between pairs
of predicted OTL-induced surface displacements for the M2 tidal harmonic made using se-
lected ocean tide models: (A) FES2012 and TPXO8-Atlas, (B) FES2012 and GOT4.10, (C)
FES2012 and EOT11A, (D) TPXO8-Atlas and GOT4.10, (E) TPXO8-Atlas and EOT11A,
and (F) GOT4.10 and EOT11A. In each case, we adopted PREM as the input SNREI Earth
model. The size and orientation of each ellipse represent the displacement differences for
the horizontal components, with a reference ellipse shown in the lower right corner of each
panel; the color of each ellipse represents the displacement difference for the vertical com-
ponent (upper color bar). The lower color bar depicts the M2 tide amplitude difference
between each model pair (Fig. 7.2). Ellipses outlined in white (e.g., in Uruguay) indicate
stations that recorded fewer than 1000 days of data during our study period, which we refer
to later in the context of the observations.
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Figure 7.4: Same as Fig. 7.3, but with the common-mode component (network-mean OTL-
induced displacement) removed across the network. The common-mode ellipse that was
subtracted from all stations is shown in the black-box inset of each panel. Note the large
residuals remaining near the Amazon river delta and Patagonian shelf, which are notori-
ously difficult regions to constrain in the development of the ocean tide models. Due to the
large uncertainties, we remove stations immediately adjacent to Patagonia and the mouth
of the Amazon from our analysis.
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direction, with non-diminishing amplitudes inland of the coast. Removing the network-

mean OTL-induced displacement from each station significantly reduces the magnitude of

the differences, as depicted in Fig. 7.4.

With the common-mode component removed, regions of enhanced ocean tide model un-

certainties appear prominently. Unsurprisingly, the coastal areas around the Amazon river

delta and Patagonian shelf, which are difficult to constrain with satellite altimetry and dif-

ficult to model hydrodynamically, exhibit substantial inter-model discrepancies (Fig. 7.4).

We therefore exclude nineteen of the most severely affected stations, located immediately

adjacent to Patagonia and the mouth of the Amazon, from all of our subsequent analysis.

In Fig. 7.5, we show the root-mean-square (RMS) differences between pairs of displacement-

response predictions for the M2, O1 and Mf tidal harmonics. The hatching on the bars

denotes the RMS differences after the common-mode component has been removed (see

also Table 7.1). Note that a substantial portion of the differences between models may be

explained by the common mode. For the horizontal components of the M2 harmonic, in

particular, removing the network-mean OTL-induced displacement reduces the sensitivity

to choice of ocean tide model by up to severalfold and, in some cases, even reduces it to

below the sensitivity to some choices of SNREI Earth model (cf., Fig. 7.9, Tables 7.1 and

7.2).

The RMS values represent the network-averaged discrepancies between predicted OTL-

induced surface displacements derived using different ocean tide models. A total of 97 sta-

tions were used in the computation of the RMS statistics, after the exclusion of the Patag-

onian and Amazon stations as well as stations that recorded less than 1000 days of data.

Although the forward models are unaffected by data length and quality, we elect to remove

the short-record stations from all RMS computations in order to allow direct comparisons

with observational residuals (shown later). Unless specified otherwise, we continue to show

the PMEs for stations that recorded less than 1000 days of data, but we distinguish them by

white outlines (e.g., Figs. 7.3 and 7.4).
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Figure 7.5: Root-mean-square (RMS) differences between pairs of predicted OTL-induced
surface displacements for the South America network made using different ocean tide mod-
els. The hatching on the bars illustrates the RMS misfits after a common-mode component
(network-mean OTL-induced displacement) was removed from all stations. The models
considered include FES2012 (FES), TPXO8-Atlas (TPXO), EOT11A (EOT), and GOT4.10
(GOT). The ordering of the legend corresponds directly to the ordering of the bars in the fig-
ure. Note that the GOT4.10 model does not include the Mf harmonic. In each comparison,
we adopted PREM as the input SNREI Earth model. As with all RMS statistics presented
in this manuscript, we exclude stations immediately adjacent to Patagonia and the mouth of
the Amazon as well as stations that recorded fewer than 1000 days of data.
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Table 7.2: RMS differences between pairs of predicted OTL-induced surface displacements
for selected SNREI Earth models. For each comparison, we adopted the FES2012 ocean
tide model. The values listed in the table correspond to the bars in Fig. 7.9.

SNREI Earth Model Comparisons
East (mm) North (mm) Vertical (mm)

M2 O1 Mf M2 O1 Mf M2 O1 Mf

PREM – STW105 0.138 0.026 0.004 0.074 0.033 0.004 0.112 0.018 0.003
PREM – AK135f 0.023 0.003 0.001 0.020 0.006 0.001 0.060 0.011 0.001
PREM – SNA 0.032 0.010 0.001 0.040 0.013 0.002 0.045 0.009 0.001
STW105 – AK135f 0.125 0.026 0.004 0.069 0.029 0.003 0.118 0.018 0.003
STW105 – SNA 0.139 0.033 0.004 0.094 0.043 0.006 0.145 0.025 0.004
AK135f – SNA 0.046 0.010 0.001 0.053 0.018 0.003 0.061 0.011 0.002

7.3.2 SNREI Earth Model Comparisons

We now explore discrepancies between predicted OTL-induced surface displacements com-

puted using four reference Earth models: PREM (Dziewonski & Anderson, 1981), STW105

(Kustowski et al., 2008), AK135f (Kennett et al., 1995; Montagner & Kennett, 1996), and

SNA (Grand & Helmberger, 1984). PREM, STW105, and AK135f represent globally aver-

aged structure, whereas SNA represents stable continental shield structure. Below approx-

imately 1000 km depth, SNA assumes the structural properties of AK135f. For PREM,

STW105, and AK135f, we replaced the water layer at the surface with typical values for

the upper crust: VP=5800 m s−1, VS=3200 m s−1, and ρ=2600 kg m−3. Profiles of the

elastic moduli and density for the reference Earth models are shown in Fig. 7.6. The dis-

placement LGFs derived from each model are depicted in Fig. 7.7.
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Figure 7.6: Profiles of PREM (black), STW105 (red), AK135f (green), and SNA (blue)
through the crust and upper mantle. Panels A, B, and C show the shear modulus, bulk
modulus, and density profiles, respectively. Panels D, E, and F show the differences in
shear modulus, bulk modulus, and density, respectively, relative to PREM. Note that the
elastic moduli are shown on common-log scales.
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Figure 7.7: Displacement load Green’s functions (LGFs) in the CM reference frame for the
PREM (black), STW105 (red), AK135f (green), and SNA (blue) Earth models. The left
panels show the horizontal-displacement component of the LGFs and the right panels show
the vertical-displacement component. Panels A and B depict the LGFs over the angular dis-
tance range of 0.01–170◦. The remaining panels show a zoomed-in section from 0.1–10◦.
Although the LGFs for STW105 track well the LGFs for PREM, they remain consistently
negative in relation to PREM. In contrast, AK135f and SNA oscillate about PREM. Further-
more, note that the angular distances are plotted on a common-log scale. The displacement
LGFs are scaled by a factor 1012aθ, where a is Earth’s radius (meters) and θ is the angular
distance between the load point and the receiver (radians).
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Figure 7.8: PMEs depicting the differences between pairs of predicted OTL-induced sur-
face displacements for the M2 tidal harmonic made using selected SNREI Earth models:
(A) PREM and STW105, (B) PREM and AK135f, (C) PREM and SNA, (D) STW105
and AK135f, (E) STW105 and SNA, and (F) AK135f and SNA. In each case, we adopted
FES2012 as the input ocean tide model. The size and orientation of each ellipse repre-
sent the differential horizontal-displacement response, with a reference ellipse shown in the
lower right corner of each panel; the color of each ellipse represents the differential vertical-
displacement response (upper color bar). The lower color bar depicts M2 tide amplitude in
the oceans.
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Figure 7.9: RMS differences between pairs of predicted OTL-induced surface displace-
ments for the South America network made using selected reference Earth models (Fig.
7.6). The input ocean tide model, FES2012, remains consistent for each comparison. The
ordering of the legend corresponds directly to the ordering of the bars in the figure.
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Differences between predicted OTL-induced surface displacements for the M2 harmonic,

derived from the SNREI Earth models depicted in Fig. 7.6, are shown in Fig. 7.8 as PMEs.

Consistent with previous studies, the largest sensitivities are observed near the coast, or at

small observer-to-load angular distances (e.g., Ito & Simons, 2011; Bos et al., 2015). Rather

surprisingly, STW105 exhibits the largest discrepancies in OTL-induced displacement rel-

ative to the other models. Although the displacement LGFs appear to suggest strong simi-

larities between STW105 and PREM (Fig. 7.7), closer inspection reveals that the STW105

LGFs are most discrepant relative to the mean of the four models. In particular, integra-

tion of the LGFs shows that STW105 differs from the mean integrated-response of the four

models by a factor of 0.3% in the horizontal and vertical displacement components. For

PREM, AK135f and SNA, the discrepancies are generally less than 0.1% from the mean.

Note that the LGFs in Fig. 7.7 have been plotted on a log-scale and that the AK135f and

SNA LGFs oscillate about PREM, whereas STW105 remains consistently negative relative

to PREM.

The specific structural reasons for the discrepancies between LGFs are not obvious, but

the bulk modulus profile for STW105 remains relatively low within the upper 300 km,

which might provide part of the explanation. Ultimately, despite the differences in elastic

moduli and density, the corresponding perturbations to the LGFs, and by extension the

OTL-response predictions, are very small. Fig. 7.9 shows the RMS differences between the

selected models. The RMS differences for the M2 tidal harmonic are largest, a reflection

of its relatively large load amplitude. Despite the large contrast exhibited by STW105,

however, the RMS differences never exceed 0.15 mm and are significantly smaller than that

for both the O1 and Mf tides, suggesting only a subtle sensitivity to SNREI-based structural

variations. Table 7.2 lists the RMS differences explicitly.
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7.4 Observations

7.4.1 Kinematic GPS Processing

For many geodetic studies, the OTL-response signal is an inconvenient source of noise;

thus, the signal is often removed at the GPS processing stage using forward-modeled co-

efficients for the dominant tidal harmonics. Smaller tidal harmonics are typically modeled

and removed as well by interpolation of the admittance for the dominant harmonics, where

the admittance is assumed smooth across each tidal constituent band (e.g., Foreman, 1977;

Agnew, 2012). We, however, aim to retain and isolate the OTL displacement-response sig-

nal by initially generating sub-daily time series of site displacements and then performing

harmonic analyses to extract individual tidal harmonics.

We use GIPSY version 6.2 (Zumberge et al., 1997) in precise point positioning (PPP) mode

to process the GPS data at individual receiver sites without requiring inter-station double-

differencing. PPP implementation relies on precise satellite orbit and clock products deter-

mined from a global network of GPS satellites and permanent receivers (Zumberge et al.,

1997). Our data set consists of up to 14 years of time series from 160 stations in South

America. Tables of geographic coordinates and data availability for each station are pro-

vided in Appendix E. The median time-series length is 1760 days, or nearly 5 years.

GIPSY performs single-receiver ambiguity resolution by estimating wide-lane and phase

biases for each station individually using double-differences relative to an extensive global

network of other ground-based stations in view of the same satellites (Bertiger et al., 2010).

The wide-lane and phase bias estimates are pre-computed and distributed by the Jet Propul-

sion Laboratory (JPL) along with the precise satellite orbit and clock products. Our stan-

dard, kinematic PPP methodology involves processing 30-second data to obtain position

estimates every 5 minutes using a random-walk stochastic parameterization of the position

estimate. We process the data in 30-hour batches (i.e., a full day plus 3 hours on either side

of the day) and extract only the central 24 hours of positions in order to mitigate end effects

(King & Aoki, 2003; King, 2006; Penna et al., 2015). The OTL displacement-response

signals remain unmodeled at the GPS processing stage. Tidal harmonics are extracted from
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the position time series using harmonic analysis (discussed later).

We use JPL’s precise satellite orbit and clock products in final and fiducial form (“flinnR”

format; version “repro2.0”). The reference frame adopted for the orbit and clock products

at the time of processing was IGS08 (Altamimi et al., 2011; Rebischung et al., 2012), which

has its coordinate origin at the center of mass of the total Earth system (CM) (Blewitt, 2003;

Wu et al., 2011). To ensure consistency with the observations, we compute predictions

of OTL-induced surface displacements in the CM frame as well (Fu et al., 2012). The

ocean tide model used to develop the “repro2.0” version of the orbit and clock products

was FES2004 (Lyard et al., 2006), which did not account for the effects of tidal geocenter

variations on the altimetric observations used to constrain the ocean tide model (Desai &

Ray, 2014).

Tropospheric zenith delay terms are estimated stochastically relative to nominal values

provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) and

mapped to lower elevation angles using the Vienna Mapping Functions (VMF1) (Boehm

et al., 2006). We apply an elevation-angle cutoff of 7◦ and assume elevation-dependent

weighting according to the square root of the sine of the elevation. Guided by synthetic test

results discussed in Sec. 7.8, we adopt a process noise setting for the tropospheric zenith

delay of 5.0 × 10−8 km s−
1
2 , or 3 mm hr−

1
2 (cf., Yuan & Chao, 2012; Yuan et al., 2013).

Horizontal tropospheric gradient parameters are also estimated using a process noise value

of 5.0× 10−9 km s−
1
2 , or 0.3 mm hr−

1
2 (Bar-Sever et al., 1998; Larson et al., 2010).

We apply phase-center corrections to the receiver antennas, extrapolating the models down

to 7◦-elevation as needed. The effects of solid Earth and pole tides are modeled and removed

according to IERS conventions (Petit & Luzum, 2010). The JPL orbit and clock products

did not include a second-order ionospheric correction at the time of our analysis. Since

using different correction factors for a PPP analysis compared with those adopted by the

orbit and clock products can lead to artifacts in the position estimates, we opted instead for

first-order ionospheric corrections in our PPP computations to mitigate any potential bias.

The choice of stochastic parameters for the station-position estimates can critically control

the ability to resolve an OTL-response signal. For a random-walk formulation, overly strict
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stochastic parameters can dampen the true signal due to excessive smoothing. In contrast,

overly loose stochastic parameters, such as in the extreme case of a white-noise parame-

terization, might unnecessarily keep noise levels high and therefore reduce the ability to

extract the signal of interest (e.g., Larson et al., 2001; King & Aoki, 2003). To explore

the tradeoff, we performed a second series of synthetic tests to determine an appropriate

coordinate process noise setting, which we ultimately set to 5.0× 10−7 km s−
1
2 . Details of

the synthetic tests are provided in Sec. 7.8.

7.4.2 Harmonic Analysis

The forcing function that generates the tides (i.e., the astronomical ephemeris) may be

broken down into discrete periods that can be combined algebraically to excite responses

within and on the Earth that are also periodic. A tidal harmonic, η, may be characterized by

a harmonic expression of the form (e.g., Foreman et al., 2009):

Aηfη(t) cos(Vη(t) + uη(t)− φη), (7.3)

where Aη is the amplitude of tidal harmonic η, Vη represents the astronomical argument

relative to the Greenwich Meridian at time t, and φη is the phase lag in degrees measured

relative to the equilibrium tide observed at Greenwich. We adopt the convention of phase

lags positive. The time-dependent factors fη and uη correct for amplitude and phase mod-

ulations that arise due to the presence of subsidiary peaks in the frequency domain, which

alter the complex-valued amplitude of a primary harmonic over time (e.g., Foreman, 1977;

Foreman et al., 2009). The subsidiary harmonics are most commonly separated from a

main harmonic by cycles of the lunar perigee (8.85 years) and lunar ascending node (18.6

years). Some harmonics are also separated by the cycles of perihelion, but since the pe-

riod of perihelion is so long (>20 000 years), they are often neglected. Following Foreman

et al. (2009), we update the astronomical argument as well as the amplitude- and phase-

modulation factors at every epoch in the time series.

For the selection of primary harmonics, we consider the Rayleigh criterion (with a cutoff
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Figure 7.10: The left panels show time series of GPS-inferred receiver positions (top panel
in each pair) and residuals (bottom panel in each pair) for station RIO2 during one week
in 2010. Each pair of panels depicts the data (blue dots), model fit (solid black line), and
residuals (black dots) for each spatial component of the displacement. The fits to the data
for each component, which were made to the full seven-year time series, include tidal har-
monics and a linear trend term; the mean has been subtracted from the position estimates.
The right panels show histograms of residuals from the full seven-year time series for the
east- (top), north- (center) and vertical-displacement (bottom) components.

factor of 1.1 cycles) to determine the ability to separate two constituents in frequency space

over a given time span of observations. To prevent aliasing, we only consider harmonics

that have frequencies less than half the sampling rate. We perform the Rayleigh compari-

son in hierarchical fashion, beginning with the largest-amplitude harmonics, based on the

Cartwright-Taylor-Edden (CTE) equilibrium tide catalogue (Cartwright & Taylor, 1971;

Cartwright & Edden, 1973).

In the pelagic ocean, where the tide amplitudes are much smaller than the water depth and

the tide wavelengths are much longer than the water depth, the tides are well described
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by the astronomical harmonics. In shallow seas and estuaries, however, non-linear effects

become important and produce higher-order harmonics, including overtides and compound

tides (e.g., Doodson & Warburg, 1941; Doodson, 1957; Parker, 2007; Pugh & Woodworth,

2014). We account for contributions to the time series by a selection of non-linear, or

shallow-water, harmonics that arise from distortions and interactions of the semi-diurnal

and diurnal astronomical harmonics. We follow the suggestions of Godin (1972) and Fore-

man (1977) to guide our selection and ordering of shallow-water harmonics to test using

the Rayleigh criterion. We also refrain from including a particular shallow-water harmonic

until all of its contributing astronomical tides have also been included.

Fig. 7.10 shows an example of our model fit to a kinematic GPS time series. In this par-

ticular case, the fit was made to seven years of data recorded at coastal station RIO2, from

which we extracted a random snapshot of one week. To clean the data prior to the har-

monic analysis, we removed isolated segments that spanned less than 30 days and that were

separated from other data in the time series by more than 60 days. We also removed large

outliers prior to the harmonic analysis based on a running median absolute deviation, with a

cutoff criterion of three standard deviations. Further details of our estimation procedure are

discussed in Sec. 7.9. After deriving an initial solution for the complex-valued amplitudes

of the tidal harmonics, we applied a sidereal filter (20-day window) to the residuals to esti-

mate the contribution of repeating multipath signals to the original time series. An estimate

of the multipath was made for every epoch in the time series by averaging nearby position

estimates (using a 10-day window on either side of each epoch) that were separated in time

by integer multiples of the sidereal day. We then removed the receiver-specific multipath

signals from the original time series and re-estimated the harmonic coefficients.

7.4.3 Residuals

The comparisons of predicted OTL-induced site displacements from Secs. 7.3.1 and 7.3.2

provide a general appreciation for the sensitivity of Earth’s elastic response to different

load and structural model inputs. To ascertain the applicability of the models to the South

American continent, however, we must compare the predictions against GPS-inferred ob-
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servations of OTL-induced surface displacements. In particular, we are motivated to explore

the suitability of different elastic Earth models with application to the South American con-

tinent, which has been shown by seismic tomography to support a deep cratonic keel (Fig.

7.11).

The observational results for the M2, O1 and Mf tidal harmonics are shown in Fig. 7.12

as PMEs at each of the GPS stations considered in our analysis. The figure also shows a

corresponding set of predictions derived from PREM and FES2012 using our convolution

software LoadDef. In general, the observations and predictions show great resemblance

for each harmonic, including the small-amplitude Mf harmonic. One notable discrepancy

between observations and predictions, however, is the apparent northward offset of the

vertical-displacement response for the Mf harmonic seen in the mid-continent (Fig. 7.12,

panels E and F, 30◦S–10◦S). In particular, the smallest response amplitudes for the vertical

component occur further to the north in the observational results (panel E) relative to the

predicted results (panel F). Since the observations exhibit spatial coherency, the offset is

unlikely to result solely from random observational error. Uncertainties in the ocean tide

models, which are difficult to constrain for the small-amplitude long-period tides, might

account for some of the spatial discrepancy.

Fig. 7.14 shows the residuals between observed and predicted OTL-induced surface dis-

placements for the M2 tidal harmonic based on multiple forward models. The common-

mode components (network-mean OTL-induced displacements) have been removed (boxed

PMEs). From Fig. 7.14, we note two important results. First, the residuals remain consis-

tent across the various forward models. The consistency in the residuals, regardless of the

SNREI Earth model or ocean tide model used to generate the predictions, implies a general

insensitivity to variations in the particular forward models considered here. Second, each

unique set of residuals (e.g., panel A of Fig. 7.14) exhibits a regional spatial coherency.

Random observational errors are unlikely to produce such systematic results. We therefore

suggest that the spatially non-random patterns of the PMEs across South America might re-

sult from deficiencies in our forward-model assumptions, such as spherical symmetry and

pure frequency-independent elasticity.
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Figure 7.11: Top (annulus): Vertical profile through the global VS seismic tomography
model, TXBW, from Grand (2002), extending along the line A–A′ shown in the bottom
panel and crossing the Amazonian Craton in South America. The reference model for
TXBW is an average of the models TNA and SNA (Grand & Helmberger, 1984) for the
upper mantle and PREM (Dziewonski & Anderson, 1981) for the lower mantle. Bottom:
Horizontal map view slice at 213 km depth. White points depict GPS stations used in our
analysis.
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Figure 7.12: Observed and predicted OTL-induced surface displacements for the M2 (top),
O1 (center) and Mf (bottom) tidal harmonics. The color bars on the left denote tidal am-
plitudes. The color bars on the right denote OTL-induced vertical displacements. The size
and orientation of each ellipse indicate the horizontal-displacement response, with a refer-
ence ellipse shown in the lower-right corner of each panel. The predictions were computed
using PREM and the FES2012 ocean tide model. Note that the PMEs do not show phase
information explicitly.
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Table 7.3: RMS misfits between observed and predicted OTL-induced surface displace-
ments (from Figs. 7.20 and 7.21). Solid Earth body tides were removed according to IERS
conventions at the GPS processing stage. A common-mode component (network-mean
OTL-induced displacement) was also removed prior to the RMS computation. The SNREI
Earth and ocean tide models used in each comparison are noted in the first column of the
table.

Observational Residuals
East (mm) North (mm) Vertical (mm)

M2 O1 Mf M2 O1 Mf M2 O1 Mf

STW105 & FES2012 0.237 0.125 0.082 0.255 0.130 0.073 0.342 0.206 0.251
AK135f & FES2012 0.180 0.124 0.081 0.234 0.128 0.073 0.340 0.207 0.251
SNA & FES2012 0.188 0.124 0.081 0.239 0.129 0.072 0.330 0.205 0.251
PREM & FES2012 0.177 0.124 0.081 0.234 0.127 0.072 0.319 0.205 0.251
PREM & TPXO8-Atlas 0.167 0.129 0.078 0.253 0.130 0.074 0.298 0.214 0.248
PREM & EOT11A 0.163 0.118 0.079 0.248 0.127 0.072 0.340 0.208 0.249
PREM & GOT4.10 0.195 0.127 – 0.237 0.129 – 0.321 0.210 –

Figs. 7.15 and 7.16 show the residuals for the O1 and Mf tidal harmonics, respectively,

also with the common-mode component removed. The residuals for O1 and Mf are smaller

than for M2, albeit not substantially. As with M2, the residuals remain consistent regardless

of the adopted forward model, corroborating the general insensitivity to choice of SNREI

Earth model and modern ocean tide model at the precision of the observations. In contrast

to the residuals for M2, the residuals for O1 and Mf lack pronounced regional spatial co-

herency. However, many of the O1 residual ellipses appear to be oriented in the direction of

maximum loading, potentially indicating forward-model deficiencies (cf., Fig. 7.8). More-

over, some of the smaller Mf residual ellipses appear to be systematically oriented in the

east-west direction. Figs. 7.20 and 7.21 show the RMS misfits between the observed and

predicted OTL-induced surface displacements derived from combinations of SNREI-Earth

and ocean-tide models, respectively. Table 7.3 lists the RMS misfits explicitly. Since PMEs

do not show phase information explicitly, Figs. 7.17 and 7.18 show the residuals as vectors.

7.4.4 Uncertainty Estimates

To estimate the statistical significance of the residuals relative to observational noise levels,

we compute errors for the derived amplitude and phase parameters using the techniques
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Figure 7.13: A periodogram of time series residuals for the vertical-displacement compo-
nent of station RIO2 (cf., Fig. 7.10). The residuals represent the difference between the
original GPS-inferred displacement time series and the harmonic fit to the displacement
time series. In other words, the tidal contributions to the original time series were mod-
eled and removed to generate the residual time series. I also applied a sidereal filter to the
residuals prior to generation of the periodogram to mitigate multipath effects.

outlined in Pawlowicz et al. (2002). In particular, we determined the average power spec-

tral density of the post-fit residuals within a frequency window of width 0.4 cycles per

day centered around each tidal harmonic. The width of the frequency window is chosen

such that the power spectrum may be assumed approximately flat within the window. A

representative power spectrum is shown in Fig. 7.13.

Since the average power spectral density provides a variance estimate for the harmonic

coefficients (c and s in Eq. 7.13), we must also map the error estimates into amplitude and

phase values. We use a parametric bootstrap algorithm to derive distributions of several

thousand amplitude and phase values for each harmonic. To derive each instance, we add

noise to the original amplitude and phase values based on randomly selected samples from
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a normal distribution, with the variance of the normal distribution determined from the

power spectra. Standard statistical analyses may then be performed on the bootstrapped

distributions. The results are shown as PMEs in Fig. 7.19.

To verify the appropriateness of the error estimates, we made a second assessment of the

observational uncertainties using an alternative technique. For the second method, we per-

formed independent harmonic analyses on yearly chunks of time series data. For thirteen

stations that recorded at least ten years of data, we computed statistics on the distributions

of harmonic coefficients derived from the yearly analyses. The two-sigma standard devi-

ations for the amplitudes and phases are listed in Table 7.4. Although the estimates may

seem relatively high, in this case we have only performed the harmonic analyses on up to

one year of data at a time, rather than on multiple years of data. Performing the power-

spectrum analysis (Method 1) on a single year of data also shows similarly larger errors

(Table 7.4, center columns) and provides an additional level of confidence in the error es-

timates. Moreover, the estimates of observational uncertainty are generally consistent with

the 0.2 mm-level uncertainties derived by Penna et al. (2015) through rigorous synthetic

testing.

The accuracy of the harmonic estimates generally improves with longer time spans of data.

Since good convergence for the lunar-derived harmonics may be achieved with at least

∼1000 days of data (Yuan et al., 2013) and the median time series length for our station

network is nearly five years, we elect to exclude all stations that recorded less than 1000

days of data from the RMS computations. As stated previously, we also removed nineteen

stations with demonstrable sensitivity to large ocean tide model errors around Patagonia and

the Amazon delta. Unless stated otherwise, we retain the short-record stations in the fig-

ures showing PMEs, which we distinguish from the long-record stations by white-outlined

PMEs (e.g., Fig. 7.12).
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Figure 7.14: Residuals between observed and predicted OTL-induced surface displace-
ments for the M2 harmonic, shown as PMEs. The size and orientation of each ellipse repre-
sent the residual horizontal-displacement response; the color of each ellipse represents the
residual vertical-displacement response (upper color bar). A mean particle motion ellipse
(common-mode component) has been removed from the residual displacements in each
panel (shown in the black box inset). The lower color bar depicts the M2 tide amplitude.
The predicted OTL-induced displacements were computed using the following ocean and
Earth model combinations: (A) PREM and FES2012; (B) STW105 and FES2012; (C) SNA
and FES2012; (D) PREM and TPXO8-Atlas; (E) PREM and EOT11A; and (F) PREM and
GOT4.10. Here, we have excluded stations that recorded fewer than 1000 days of data in
addition to the stations already removed near the Amazon basin and Patagonian shelf; a
total of 97 stations remain.
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Figure 7.15: Same as Fig. 7.14, but for the O1 tidal harmonic. Note, however, that the
scales for the ellipses and ocean-tide amplitude differ from Fig. 7.14.
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Figure 7.16: Same as Fig. 7.14, but for the Mf tidal harmonic. Note, however, that the scales
for the ellipses and ocean-tide amplitude differ from Fig. 7.14. The GOT4.10 model does
not include Mf ; therefore, panel F shows the residuals between the observed and predicted
OTL-induced surface displacements computed using AK135f and FES2012.
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7.5 Discussion

We have derived observations and predictions of OTL-induced surface displacements across

South America for the M2, O1 and Mf tidal harmonics. For each harmonic, the observed

OTL responses exhibit spatiotemporal coherency and match the predicted responses at most

stations to within about 0.3 mm (Figs. 7.12–7.16). Both modeling and observational un-

certainties contribute to the sub-mm residuals, and an improved understanding of each

contribution may potentially be used to refine ocean tide models and to constrain solid

Earth structure. In particular, we find large uniform-displacement components in the dif-

ferences between predicted OTL-induced site displacements for various ocean tide models.

Removal of the “common-mode” component (network-mean OTL-induced displacement)

significantly reduces the discrepancies between predictions of OTL response made using

different ocean tide models (Figs. 7.4 and 7.5). Moreover, the residuals between the ob-

served and predicted OTL-induced surface displacements are also substantially reduced by

removing the common-mode component, particularly for the O1 harmonic (Fig. 7.15).

Although a detailed investigation into the origin(s) of the common-mode component is

beyond the scope of this paper, we suggest that large ocean tide model uncertainties in the

polar regions, such as under the Antarctic ice shelves, could contribute to the offset in OTL-

induced displacement. Direct differences between three pairs of ocean tide models reveal

large discrepancies in the polar regions around both the Arctic and the Antarctic (Fig. 7.2).

In Fig. 7.22, we partition the direct differences for the M2 harmonic into latitude bands and

compute the predicted displacement response in South America due to the discrepancies

between ocean tide models. Notice the strong north-south trend in the PMEs in response to

the southern-most band from 90◦S to 60◦S (Fig. 7.22, panel F; cf., Fig. 7.3). Significant

contributions, however, also come from mid-latitude bands.

We suggest that a second contributor to the common-mode component could involve reference-

frame inconsistencies. Reference-frame inconsistencies can manifest at several points in an

analysis of OTL response. First, if the load Green’s functions used to predict the OTL-

induced surface displacements are computed in a reference frame that differs from that
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Figure 7.17: Residual OTL-induced displacements for the M2 (top), O1 (center) and Mf

(bottom) tidal harmonics shown as vectors for each spatial component. The pink vectors
highlight stations that are located within 150 km of the coastline. The residuals represent
the vector differences between the observations and predictions computed using PREM and
the FES2012 ocean tide model (Carrère et al., 2012; Lyard et al., 2006). The angle of each
residual vector, defined counter-clockwise relative to the positive real axis (east direction on
the map projection), represents the phase residual for each spatial component. We define
phase lags positive and relative to the equilibrium tide at Greenwich. The magnitude of
each vector represents the residual OTL-induced displacement amplitude. The color bars
on the right provide the scaling for the background ocean tide models.
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Figure 7.18: Same as Fig. 7.17, but with the common-mode component (network-mean
OTL-induced displacement) removed. Subtracting the common-mode component reduces
some of the spatial coherency for O1 and Mf , but the residuals remain largely non-random
for M2. Note the change in vector scale for O1 and Mf . The green arrows, arbitrarily placed
outside the South American continent, denote the common-mode component removed from
all stations.
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Figure 7.19: Observational uncertainties computed from a windowed power spectrum and
bootstrap analysis (see text for details). The left panels show two-sigma (2σ) standard-
deviation error ellipses for the observed OTL-induced surface displacements. Specifically,
the size of each ellipse denotes the horizontal-amplitude uncertainty in both the east and
north components; the color of each ellipse denotes the vertical-amplitude uncertainty.
Phase-uncertainty information is not displayed. For comparison, the right panels show the
residual surface displacements derived from PREM and FES2012, reproduced from Figs.
7.14–7.16 (panel A in each case). All ellipses and vertical-displacement color bars (right)
are shown on the same scale to facilitate comparison (note that the horizontal scale for the
M2 residuals shown in panel B differs from the scale in Fig. 7.14A by a factor of two). The
left color bars show tidal amplitude in the oceans.
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Figure 7.20: RMS misfits between observed and predicted OTL-induced surface displace-
ments made using selected ocean tide models. In each case, we adopted the SNREI Earth
structure of PREM. As with all other RMS computations, we excluded stations immediately
adjacent to the Amazon river delta and the Patagonian shelf (Fig. 7.4) as well as stations
that recorded fewer than 1000 days of data (Table 7.4). The hatching on the bars shows the
RMS misfits after the removal of the common-mode component.
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Figure 7.21: Same as Fig. 7.20, but showing the RMS misfits between observed and pre-
dicted OTL-induced surface displacements made using selected SNREI Earth models. In
each case, we adopted the FES2012 ocean tide model. The orange bars (PREM) therefore
match exactly the orange bars (FES2012) in Fig. 7.20.
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Figure 7.22: Predicted M2 OTL-induced surface displacements across South America due
to the direct differences between the ocean tide models FES2012 and TPXO8-Atlas, parti-
tioned into six latitudinal bands: (A) 60◦–90◦N, (B) 30◦–60◦N, (C) 0◦–30◦N, (D) 30◦–0◦S,
(E) 60◦–30◦S, and (F) 90◦–60◦S. Note that the PMEs in panel F, derived from ocean tide
model discrepancies around the Antarctic continent, are oriented strongly in the north-south
direction and exhibit non-diminishing amplitudes as a function of distance from the coast
(cf., Fig. 7.3). The colorbar to the left of panel E represents the magnitude of the vector
differences between ocean tide models and the colorbar to the right of panel F represents
the predicted OTL-induced vertical displacement due to the ocean model differences.
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of the observations, then errors of order 1–2 mm may arise in the residual displacements

(e.g., Fu et al., 2012). The JPL orbit and clock products used in our analysis (version

“repro2.0”) were referenced to CM; therefore, we transformed the load Green’s functions

to the CM frame prior to the convolution with a load model (Eq. 7.1). Second, since

most ocean tide models are constrained by satellite altimetry, with orbits typically refer-

enced to CM (Desai et al., 2014), the altimetric observations of sea-surface height must

be adjusted for load-induced variations in the geocenter (Desai & Ray, 2014). Fig. 7.23

shows the vector differences between predicted OTL-induced surface displacements com-

puted using GOT4.10c and GOT4.10. The two ocean tide models differ only in one aspect:

the altimetric measurements used to constrain GOT4.10c were adjusted for tidal geocen-

ter variations, whereas the measurements used to constrain GOT4.10 were not. Desai &

Ray (2014) demonstrated that, by accounting for the effects of tidal geocenter variations

on altimetry-based observations of sea-surface height, the residual variance between ocean

tide models and bottom-pressure observations could be improved by up to 30–40%, with

the O1 and K1 tidal harmonics exhibiting the largest variance reduction. For South Amer-

ica, the average vector differences between predicted OTL-induced surface displacements

computed using GOT4.10c and GOT4.10 for the M2 harmonic are 0.13, 0.29, and 0.24

mm in the east, north, and vertical components, respectively (denoted by the mean ellipse

in panel B of Fig. 7.23). The average vector differences for the O1 harmonic are 0.26,

0.40, and 0.12 mm in the east, north, and vertical components, respectively (panel D of

Fig. 7.23). Since the geocenter-motion correction is primarily a degree-1 adjustment, the

substantial diminishment of the inter-model response differences after the removal of the

common-mode component is not surprising. Thus, removing the common-mode factor

can effectively eliminate OTL-response discrepancies due to inconsistent reference frames.

Third, the development of CM-referenced orbit and clock products for the GPS processing

requires an input ocean tide model to account for load-induced displacements. We used

JPL orbit and clock products version “repro2.0” for our GPS processing, which adopted

FES2004 (Lyard et al., 2006) as the input ocean tide model. The altimetric measurements

used to constrain FES2004 were not corrected for the effects of tidal geocenter variations

(Desai & Ray, 2014). To our knowledge, none of the ocean tide models compared in Sec.
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7.3.1 were adjusted to account for geocenter motion, and should therefore be internally

consistent with the “repro2.0” orbit and clock products. Interestingly, prior to removal of

the common-mode component, the residuals between observed and predicted OTL-induced

surface displacements are smaller for predictions made using GOT4.10 than for predictions

made using GOT4.10c (Fig. 7.20). Consistent with the results of Desai & Ray (2014), the

discrepancies are largest for the O1 tidal harmonic. Furthermore, the discrepancies effec-

tively vanish after removal of the common-mode component, as expected for a reference-

frame inconsistency (cf., Fig. 7.23). Future investigations should explore these matters fur-

ther and consistently use geocenter-corrected ocean tide models for both the development

of the GPS orbit and clock products (now available in version “repro2.1” of the JPL orbit

and clock products) as well as for the computation of the predicted OTL-induced surface

displacements.

Regardless of the origin of the common-model component, however, the removal of the

network-mean OTL-induced displacement can significantly reduce the magnitude of the

residuals (Figs. 7.14–7.16). With the size of the residuals reduced, the remaining response

appears markedly non-random for the M2 harmonic (Fig. 7.14), suggesting that random

GPS measurement errors probably do not account for a majority of the discrepancy be-

tween observations and predictions. In contrast, the smaller amplitude harmonics, O1 and

Mf , show less obvious signs of regional spatial coherency and are closer to the level of

observational uncertainty due to random errors. The consistency between forward models,

observed most prominently after the removal of the common-mode component, indicates

that the sensitivity to errors in the ocean tide models may no longer be a limiting factor in

predicting OTL-induced surface displacements (Fig. 7.14).

With the common-mode component removed, the sensitivity to choice of ocean model is

reduced to a level comparable with the sensitivity to choice of SNREI Earth model. In both

cases, the response differences between forward models are predominantly less than 0.1

mm. Thus, to discern the appropriateness of one model over another, the observed OTL-

induced surface displacements would need to be accurate to at least within 0.1 mm and often

much better. For comparisons of SNREI Earth models, the discrepancies between predicted
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Figure 7.23: Vector differences between predicted OTL-induced surface displacements
computed using the GOT4.10c and GOT4.10 ocean tide models. The direct differences
between the ocean tide models, shown in the global maps to the left for the M2 (top) and O1

(bottom) tidal harmonics, reflect the influence of tidal geocenter variations on the satellite
altimetry measurements of sea-surface height that are used to constrain the ocean tide mod-
els. The elastic surface displacements generated by loading due to the direct differences
between GOT4.10c and GOT4.10 are shown in panel A for the M2 harmonic and in panel
C for the O1 harmonic. Panels B and D show the remaining elastic surface displacements
after a common-mode component (mean ellipse outlined by the black box) is removed.
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OTL-induced displacements for our station network are generally less than 0.1 mm for the

M2 tidal harmonic, less than 0.02 mm for the O1 tidal harmonic, and less than 0.001 mm

(1 micron!) for the Mf tidal harmonic. At this level of sensitivity, supporting or rejecting

SNREI Earth models based on measurements of OTL response remains tenuous, given

the observational uncertainties. The large-amplitude M2 and, perhaps, O1 OTL responses

provide the most promising outlooks at present.

The final set of residuals between observations and predictions for our station network ex-

hibits RMS misfits of order 0.1–0.3 mm for each spatial component and tidal harmonic

(Figs. 7.20 and 7.21). Differences between the ocean tide models or SNREI Earth models

probably cannot account for all of the misfit. Indeed, swapping out the various forward

models has little effect on the size of the RMS misfits after the common-mode component

has been removed. Even the Earth model designed to represent stable continental shield

structure, SNA, does not generate significantly better predictions of the OTL-induced sur-

face displacements for South America than the globally averaged models. Other contribu-

tors to the misfit include observational uncertainties (e.g., GPS data acquisition, GPS data

processing, harmonic analysis) and deficiencies in the forward model (e.g., coastline refine-

ment within the convolution, spatial variations in seawater density, deviations from SNREI

structure).

We estimated the observational error using two different techniques, which yielded similar

results (Table 7.4). Processing multiple years of data in a single inversion clearly has the

potential to improve the accuracy of observed OTL-induced surface displacements, as evi-

denced by the reduction of error for analyses of several years of data compared to analyses

of one year of data. In particular, for thirteen stations with long data records (> 10 years),

we estimate that the horizontal-displacement errors for the M2 and O1 tidal harmonics are,

remarkably, less than 0.1 mm at two standard deviations, which rivals the sensitivity to

choice of ocean tide model and SNREI Earth structure for many of the stations in the South

America network.

In general, the residuals derived for the M2 tidal harmonic in South America significantly

outweigh the two-sigma observational uncertainties (Fig. 7.19), leaving open the possibil-



259

ity to invert for structural deficiencies at that frequency. Furthermore, the spatiotemporal

characteristics of the M2 residuals remain regionally coherent as well as consistent between

forward models (Fig. 7.14), indicating that all of the RMS misfit cannot apparently be ex-

plained by errors in the observations and adopted forward models. Rather, we suggest that a

significant part of the RMS misfit may be due to deviations from our assumed SNREI Earth

structure, such as laterally heterogeneous and anelastic material properties (e.g., Latychev

et al., 2009; Yuan et al., 2013; Bos et al., 2015).

Deficiencies in the solid Earth body tide (SEBT) model, removed at the GPS processing

stage, could also contribute to the residual displacements; however, solid Earth body tides

operate at very long (global) wavelengths and would thus produce residuals coherent across

similarly large scales. Such long-wavelength coherency in the residuals could consequently

contribute to the common-mode component for a regional GPS network. The removal of

a uniform-displacement component from residual OTL-induced surface displacements at

each station could therefore eliminate information about the long-wavelength deficiencies

in the SEBT model. Notwithstanding, a significant contribution to the common-mode com-

ponent appears to be derived from inaccuracies in the ocean tide models and inconsistencies

in reference frames.

For the O1 tidal harmonic, the residuals are more comparable to the noise levels, but nev-

ertheless appear to exceed slightly the level of uncertainty at many of the South America

stations and particularly in the horizontal components (Fig. 7.19, Tables 7.4 and 7.3). Fig.

7.15 shows consistency between forward models and some evidence for regional spatial

coherency. In particular, many of the ellipses are oriented such that the semi-major axis

points toward the maximum load amplitude. For the Mf tidal harmonic, the residuals are

close to or below the level of observational uncertainty at most stations and therefore less

conclusive (Fig. 7.19). The observed OTL-induced surface displacements, however, exhibit

spatial coherency as well as a coherent northward offset in the vertical component of the

displacements relative to the predictions (Fig. 7.12, panels E and F).
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7.6 Summary & Conclusions

We derived OTL-induced surface displacements from sub-daily GPS time series using kine-

matic precise point positioning and harmonic analysis for a network of stations in Brazil,

Argentina, and Uruguay. After a common-mode component representing the network-mean

OTL response is removed from each station, the misfits between the observed and predicted

OTL-induced displacements are approximately 0.1–0.3 mm for the dominant tidal harmon-

ics in three distinct frequency bands: M2, O1 and Mf . An assessment of the observational

error suggests that, at least for the M2 harmonic and sufficiently long time series, the OTL-

response residuals exceed random noise from the data processing. Therefore, OTL-response

residuals may potentially be used to refine ocean tide models and to constrain solid-Earth

structure.

Comparisons of forward-modeled predictions for South America suggest that the sensitiv-

ity to choice of ocean tide model still generally exceeds the sensitivity to choice of SNREI

reference Earth model, albeit not substantially. Removal of the common-mode component

across the network substantially reduces the discrepancies between ocean tide models. We

suggest that possible sources for the common-mode component might include deficiencies

in the ocean tide models at high latitude as well as reference-frame inconsistencies. Based

on comparisons of selected ocean tide models and SNREI Earth models, RMS difference

between predictions of OTL-induced displacements are at the sub-mm level for each har-

monic considered, and often much less than 0.1 mm.

We find evidence for regional spatial coherency in the residuals between observed and pre-

dicted OTL-induced displacements that remains consistent for a variety of ocean-tide and

SNREI-Earth model combinations. We postulate that part of the spatial coherency could

be attributed to deficiencies in the a priori Earth model, which would undoubtedly include

deviations from an assumed SNREI structure (e.g., anelasticity, anisotropy, and lateral het-

erogeneities). As ocean tide models, OTL-response modeling, and data processing methods

continue to improve, the ability to probe Earth structure through observations of OTL-

induced surface displacements becomes increasingly tractable.
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7.8 Appendix A: Process Noise Settings for GPS Analysis

We performed basic synthetic tests to inform our selection of appropriate coordinate and

tropospheric process noise settings for the GPS data processing. We generated the synthetic

signals within GIPSY by differencing pre-fit residuals computed using two different OTL-

response models: (1) the OTL-response model for a coastal station in Brazil with a large

offshore tide (“master site”) and (2) the OTL-response model at a separate station in the

network (“test site”). We selected six test sites for our analysis, each exhibiting small

OTL-response amplitudes relative to the master site. The displacement-response signal at

the master site has a vertical amplitude of 3.69 cm for the M2 harmonic, whereas the M2

displacement-response amplitudes at the test sites do not exceed 1 cm.

We then added the differenced pre-fit-residuals to the raw GPS data of each test site as

modifications to the pseudorange and phase observables for each transmitter-reciever pair
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in the GIPSY quick-measurement files. The raw GPS data contain information about the

actual OTL response at each test site; thus, when the differenced pre-fit residuals (i.e.,

master-site residuals − test-site residuals) are added to the original data, the revised data

should contain only the OTL-response signal for the master site, along with any pre-existing

noise and non-tidal signals. Note that we deliberately selected test sites with small OTL-

response amplitudes, since errors in our prediction of the tidal response signals at the test

sites can bias our attempts to recover the synthetic tidal signal (i.e., the predicted OTL

response at the master site). All synthetic tests used up to one year of data from 2010 at

each of the six test stations in South America.

To guide our exploration of coordinate process noise values to test, we first computed a

range of theoretically suitable values. We estimated the instantaneous velocity, vinst, expe-

rienced by any given station as:

vinst =
d

dt
(A cosωt) = −A ω sinωt, (7.4)

where A is the signal amplitude, ω is the frequency of the signal, and t is time. The abso-

lute value of the instantaneous velocity given by Eq. 7.4 is maximized when the quantity

sinωt = ±1, which occurs at the maximum slope of the harmonic wave. For the M2 tidal

harmonic, ω = 0.5059 rad hr−1 and the response amplitudes in South America reach as

high as∼4 cm. Thus, the maximum instantaneous velocity, vmax, expected for our network

is ∼20 mm hr−1.

To parameterize the coordinate process noise within GIPSY, one must specify the variance

per unit time of the allowed site displacement (or, more specifically, the square root of

the variance per unit time). Constraints that are too strict will bias the solutions, whereas

constraints that are too loose will retain large data outliers. Following Elosegui et al. (1996),

the variance per unit time, σ2
RW, may be related to the maximum site velocity, vmax, and

the time between solution epochs, ∆t, by a constant of proportionality, ξRW, known as the
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dynamic resolution parameter:

ξRW =
σRW

vmax

√
∆t

. (7.5)

For ξRW � 1, solutions will be weakly constrained; for ξRW � 1, solutions will be tightly

constrained. Elosegui et al. (1996) opted for a “standard,” yet somewhat arbitrary, value

of ξRW = 10. For vmax = 20 mm hr−1 and ∆t = 300 s between solution epochs, a

plausible range of random-walk standard deviations to test should include 1.9 × 10−7 <

σRW < 1.9 × 10−6 km s−
1
2 , corresponding to dynamic resolution parameters in the range

of 2 < ξRW < 20.

The root-mean-square (RMS) misfits between the recovered and synthetic signals, averaged

across all six test stations, are shown in Fig. 7.24. We examined six settings for the coordi-

nate process noise: 1.0×10−8, 1.0×10−7, 3.0×10−7, 5.0×10−7, 7.0×10−7 and 1.0×10−3

km s−
1
2 . In each case, we held the process noise setting for the tropospheric zenith delay

fixed at 5.0 × 10−8 km s−
1
2 , which is the GIPSY-recommended value for slow-moving

platforms. We find that the tightest random-walk constraint we considered, 1.0× 10−8 km

s−
1
2 , severely dampens the amplitudes of the station-position estimates and of the recov-

ered tidal signals. The constraint of 1.0 × 10−7 km s−
1
2 also somewhat overdamped the

recovered tidal response, particularly for the vertical component of the M2 harmonic. The

exceptionally loose random-walk constraint of 1.0×10−3 km s−
1
2 produced good amplitude

recovery of the synthetic tidal response, but also limited the constraint on the noise. Tests

of intermediary values revealed that a coordinate process noise value of 5.0×10−7 km s−
1
2

recovers both the amplitude and the phase of the synthetic tidal response to relatively high

precision. Loosening the parameter does not significantly affect the ability to resolve the

synthetic signals, even compared with very loose parameterizations such as 1.0× 10−3 km

s−
1
2 , yet any stricter constraints begin to bias the recovered signal towards zero. Further-

more, the preferred parameterization of 5.0 × 10−7 km s−
1
2 is suitable for even the largest

OTL-induced surface displacements observed in South America, yet strict enough to limit

noise substantially.
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For a random-walk coordinate setting of σRW = 5.0 × 10−7 km s−
1
2 and for ∆t = 300 s

between solution epochs, we derive a dynamic resolution parameter of:

ξRW =
σRW

vmax

√
∆t

=
5.0× 10−7

20×10−6

3600

√
300
≈ 5. (7.6)

Our result of ξRW = 5 from the synthetic tests is very near to the value adopted by Elosegui

et al. (1996), albeit with a slightly tighter constraint on the solution to limit noise contami-

nation, thus lending support to the validity of our preferred random-walk parameterization.

The selection of a relatively tight random-walk constraint also mitigates the effects of mul-

tipath (e.g., Larson et al., 2010).

In comparison, Penna et al. (2015) derived an optimal (minimum) coordinate process noise

setting of 3.2×10−6 km s−
1
2 , which is somewhat looser than 5.0×10−7 km s−

1
2 . We have,

however, constructed the synthetic tests to explore the ability of the GPS processing to

retain the full OTL-response signals, as opposed to the residuals after OTL is removed, and

we find that 5.0 × 10−7 km s−
1
2 is sufficiently loose to recover even the largest amplitude

OTL responses predicted for our station network.

In addition to the coordinate process noise setting, recovering the OTL-response signal also

depends largely on the ability to account for propagation delays in the transmitted carrier

wave signals through the troposphere (e.g., Bar-Sever et al., 1998; Dach & Dietrich, 2000;

Dragert et al., 2000; Vey et al., 2002; Khan & Scherneck, 2003; Larson et al., 2010; Penna

et al., 2015). The tropospheric wet delay (non-hydrostatic) arises from the interaction be-

tween the electromagnetic (EM) carrier wave signal and the static dipole moment of water

molecules in the atmosphere (e.g., Blewitt, 2015). The tropospheric dry delay (hydrostatic)

refers to the dynamic dipole moment induced on all atmospheric molecules, including wa-

ter, by the propagating EM wave. In our analysis, we account for both types of delays.

We find that the tropospheric zenith delays are best estimated stochastically along with the

station coordinates in a single kinematic run. We therefore explored the effects of varying

the tropospheric process noise on the ability to recover the synthetic tidal response. In

each test, we supplied the kinematic runs with initial tropospheric zenith delay estimates
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from ECMWF. With the coordinate process noise held fixed at 5.0 × 10−7 km s−
1
2 , we

examined five settings for the tropospheric process noise: 1.0×10−8, 2.5×10−8, 5.0×10−8,

1.0× 10−7, and 2.0× 10−7 km s−
1
2 . The RMS misfits between the recovered and synthetic

OTL-response signals for each process noise setting are depicted in Fig. 7.25.

The vertical-displacement component clearly exhibits greater sensitivity to tropospheric

process noise than the horizontal-displacement components. For the M2 harmonic, the RMS

misfits in the vertical-displacement component are minimized for a tropospheric process

noise setting of 2.5 × 10−8 km s−
1
2 , followed closely by a setting of 5.0 × 10−8 km s−

1
2 .

For the O1 tidal harmonic, looser constraints of 1.0 × 10−7 and 2.0 × 10−7 km s−
1
2 seem

more suitable, although a setting of 5.0 × 10−8 km s−
1
2 yields similar results. The RMS

misfits for the Mf harmonic do not vary substantially with changes to the tropospheric

process noise.

Consistent with the results of Penna et al. (2015), we do not find significant leakage of

the synthetic signal between the spatial components. The synthetic signal applied to the

M2 harmonic band, for example, had an amplitude of 36.9 mm, 4.4 mm, and 7.6 mm in

the vertical, east, and north components, respectively. Given that the vector differences

between the recovered and synthetic signals are sub-mm in each component, we infer that

nearly all of the input signal for a particular coordinate maps directly into the recovered

signal for the same coordinate.

Based on the six test sites that we considered, the optimal setting for the tropospheric pro-

cess noise is not sharply defined, but a setting of 5.0× 10−8 km s−
1
2 performs well overall

and corresponds to the value recommended by GIPSY for slow-moving objects. We there-

fore adopt a tropospheric process noise setting of 5.0 × 10−8 km s−
1
2 for our analysis,

recognizing that the truly optimal value will likely differ between individual tidal harmon-

ics and various geographic locations. The optimal tropospheric process noise value found

by Penna et al. (2015), 1.0×10−7 km s−
1
2 , differs from 5.0×10−8 km s−

1
2 by only a factor

of two, which might be due in part to different climatic settings between western Europe

and South America. The two parameterizations do not, however, yield appreciably different

RMS misfits in our analysis for South America (Fig. 7.25).
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Figure 7.24: Root-mean-square (RMS) misfits between recovered and synthetic OTL-
induced surface displacements. Here, we compare coordinate process noise settings used
to estimate receiver positions during the kinematic PPP GPS data processing.
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Figure 7.25: RMS misfits between recovered and synthetic OTL-induced surface displace-
ments. Here, we compare a selection of tropospheric process noise settings.
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The smallest RMS misfits from Figs. 7.24 and 7.25 are generally consistent with our 2σ

uncertainty estimates from Table 7.4 for one year of data or less. It should be recalled,

however, that our synthetic tests were developed by adding modeled OTL-response signals

to real data in the dominant tidal bands, and therefore should not be used to make strict

assertions about uncertainties in tidal-response estimation from GPS data. Notably, any

errors in the predicted OTL response at a particular test site will be contained within our

RMS estimates of signal recovery, and therefore compound the uncertainties derived from

noise in the time series. Although injecting the synthetic signal into a non-dominant tidal

band could reduce the prediction errors considerably and thereby allow for better estimation

of the uncertainties in GPS estimates of OTL response using synthetic tests (Penna et al.,

2015), the errors should remain consistent between each synthetic test and thus should not

significantly bias our selection of suitable process noise parameters.

7.9 Appendix B: Harmonic Analysis Procedure

The equation representing the model fit, Z(t), to the GPS-inferred displacement time series

is given by:

Z(t) = m0 +m1t+

N∑
η=1

Aη fη(t) cos(Vη(t) + uη(t)− φη), (7.7)

where m0 is a constant-offset term, m1 is a linear-trend term, fη represents the harmonic-

modulation correction factor for the amplitude, uη represents the harmonic-modulation cor-

rection factor for the phase, η represents a particular tidal harmonic, N represents the total

number of tidal harmonics used in the model, and t is time.

We seek the set of model terms [m0, m1, Aη, φη] by minimizing the misfit between data

and model using an iterative re-weighted least-squares (IRLS) approach. To perform the

inversion, we first separate the harmonic portion of Eq. 7.7 into in-phase and quadrature

components:

Aη fη(t) cos(Vη(t) + uη(t)− φη) = Aη cos(φη) fη(t) cos(Vη(t) + uη(t))
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+ Aη sin(φη) fη(t) sin(Vη(t) + uη(t)). (7.8)

Defining cη ≡ Aη cos(φη) and sη ≡ Aη sin(φη), Eq. 7.8 becomes:

Aη fη(t) cos(Vη(t) + uη(t)− φη) = cη fη(t) cos(Vη(t) + uη(t))

+ sη fη(t) sin(Vη(t) + uη(t)). (7.9)

The amplitude and phase modulation factors, fη(t) and uη(t), as well as the astronomi-

cal argument, Vη(t), are known functions derived from the astronomical ephemeris (e.g.,

Foreman, 1977). We incorporate harmonic-modulation correction factors directly into our

inversion framework (Foreman et al., 2009), rather than apply constant and thus approxi-

mate correction terms at the post-processing stage, thereby allowing multiple years of data

to be processed in a single analysis.

Substituting Eq. 7.9 back into the full formula for a tidal signal, Eq. 7.7, we have:

Z(t) = m0 +m1t+
N∑
η=1

[cη fη(t) cos(Vη(t) + uη(t))

+ sη fη(t) sin(Vη(t) + uη(t))]. (7.10)

Eq. 7.10 may now be used to invert real tidal data for the unknown model parameters (i.e.,

m0, m1, cη and sη). Note that if Z0 (mean sea level) is included as a tidal constituent, then

m0 must be removed from the model parameters to avoid ill-conditioning in the matrix

inversion.

We develop a system of linear equations of the form:

Gm = d, (7.11)

where d is the observed tidal data, m is a vector of model parameters, and G is a matrix

of known quantities that interact with the model parameters. We aim to match the model,

Gm, with the observed data, d, by initially minimizing the norm of the squared residuals,
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and then iterating on the solution residuals. The data and model vectors are given by:

d = [ d(t0) d(t1) d(t2) d(t3) d(t4) d(t5) d(t6) d(t7) · · · ]T (7.12)

and

m = [ m0 m1 c1 s1 c2 s2 c3 s3 c4 s4 · · · cN sN ]T , (7.13)

respectively. The subscripts for c and s represent individual tidal harmonics (e.g., M2).

The GT matrix (transpose of G) is given by:

GT =



1 1 1 · · ·

t0 t1 t2 · · ·

f1(t0) cos[V1(t0) + u1(t0)] f1(t1) cos[V1(t1) + u1(t1)] · · · · · ·

f1(t0) sin[V1(t0) + u1(t0)] f1(t1) sin[V1(t1) + u1(t1)] · · · · · ·

f2(t0) cos[V2(t0) + u2(t0)] f2(t1) cos[V2(t1) + u2(t1)] · · · · · ·

f2(t0) sin[V2(t0) + u2(t0)] f2(t1) sin[V2(t1) + u2(t1)] · · · · · ·

f3(t0) cos[V3(t0) + u3(t0)] f3(t1) cos[V3(t1) + u3(t1)] · · · · · ·

f3(t0) sin[V3(t0) + u3(t0)] f3(t1) sin[V3(t1) + u3(t1)] · · · · · ·

f4(t0) cos[V4(t0) + u4(t0)] f4(t1) cos[V4(t1) + u4(t1)] · · · · · ·

f4(t0) sin[V4(t0) + u4(t0)] f4(t1) sin[V4(t1) + u4(t1)] · · · · · ·
...

...
...

...

fN (t0) cos[VN (t0) + uN (t0)] fN (t1) cos[VN (t1) + uN (t1)] · · · · · ·

fN (t0) sin[VN (t0) + uN (t0)] fN (t1) sin[VN (t1) + uN (t1)] · · · · · ·



.

To solve for the model vector, we perform an iterative re-weighted least squares (IRLS)

inversion, which evaluates a series of weighted least-squares problems that converge to

an L1-norm solution (Aster et al., 2013). The L1-norm minimizes the absolute value of

the residuals and is therefore highly effective at down-weighting outliers. For the initial

model vector, we compute an L2-norm solution, from which a weighting matrix may be

constructed based on the residuals between the observations and the forward model. Since

the weighting matrix is a nonlinear function of the model vector, the normal equations must
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be solved iteratively. Thus, updated model vectors are derived from subsequent L1-norm

solutions to the normal equations and tested against a tolerance value. The process repeats

until a suitable level of convergence is achieved.

The resulting in-phase and quadrature coefficients for each isolable tidal harmonic may be

re-combined to obtain amplitude and phase values:

Aη =
√
c2
η + s2

η (7.14)

φη = atan2 (sη, cη) . (7.15)
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8
Some Remarks on Surface Mass

Loading from Non-OTL Sources

8.1 Introduction

The procedure for predicting Earth’s deformation response to surface mass loading (SML)

outlined in Ch. 4 extends beyond the ocean tides to include any type of surface mass load.

Surface mass loads come from many different sources with very different frequencies. The

redistribution of mass in Earth’s atmosphere, for example, loads the surface of the Earth and

thus causes load-induced deformation (e.g., Stolz & Larden, 1979; van Dam et al., 1994;

Tregoning & van Dam, 2005). Atmospheric loading (ATML) occurs at tidal periods due to

solar heating and gravitational forcing as well as at non-tidal periods due to weather and

climate systems. In addition to the atmosphere, changes in ocean mass at non-tidal periods

apply pressure to Earth’s surface (e.g., Williams & Penna, 2011; van Dam et al., 2012).

Spatiotemporal variations in non-tidal ocean loading (NTOL) arise from internal instabil-

ities, which are driven primarily by wind stress, atmospheric loading, and internal density

gradients. The density gradients develop due to spatial variations in ocean temperature

and salinity. Furthermore, variations in terrestrial water storage due to precipitation and

mass-exchange between hydrological systems, known as hydrological loading (HYDL),

contribute to the dynamic load-generated deformation response of the solid Earth (e.g., Fu

et al., 2015). Rivers, lakes, glaciers, snow fields, reservoirs, and tsunami waves constitute

additional examples of surface mass loads (e.g., Bevis et al., 2005; Tsai et al., 2013).

Geodetic time series are typically corrected for OTL response, but accounting for the effects

of other mass loads is not yet standard practice. In the future, routine corrections for ATML,

NTOL, and HYDL, in particular, could help to improve the precision of a geodetic time se-
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ries and to facilitate the detection of subtle geophysical signals, such as aseismic tectonic

transients and postglacial rebound (e.g., van Dam et al., 2010). An improved understand-

ing of atmosphere-ocean interactions, including mass loading, also enhances the ability to

measure sea-surface height using satellite altimetry, estimate ocean-bottom pressure, and

model global sea-level rise (e.g., van Dam et al., 1997; Ponte & Ray, 2002; Ponte, 2006;

Vinogradova et al., 2007; Ray & Byrne, 2010; Ray et al., 2013; Ray, 2013).

Here, I briefly discuss three of the primary sources of non-OTL surface mass loading:

ATML, NTOL, and HYDL. For ATML and NTOL, I compute predicted surface displace-

ments generated by the mass loading at three locations globally. The predicted load-induced

surface displacements are derived from convolutions of the load model (e.g., atmospheric

pressure) with load Green’s functions for Earth structure (Eq. 4.1). I compare the mag-

nitudes of the ATML- and NTOL-induced surface displacements to OTL-induced surface

displacements at the same locations. The purpose of this chapter is to provide a brief intro-

duction to surface mass loading derived from sources other than the ocean tides. Moreover,

I compare predicted surface displacements induced by ATML and NTOL to recent work by

Williams & Penna (2011) as a preliminary validation of the methods.

8.2 Atmospheric Loading

Variations in atmospheric pressure manifest due to direct solar heating, temperature gradi-

ents at Earth’s surface, Earth rotation, land-sea interactions, and individual weather systems

(e.g., van den Dool et al., 1997). Anomalies in atmospheric surface pressure are typically on

the order of 0.1–5 kPa (e.g., Wunsch & Stammer, 1997), as depicted in Fig. 8.1. Estimates

of the atmospheric surface pressure on global grids are routinely computed by reanalysis

centers such as the European Centre for Medium-Range Weather Forecasts (ECMWF) and

the National Centers for Environmental Prediction/National Center for Atmospheric Re-

search (NCEP/NCAR).

Fig. 8.1 shows atmospheric pressure anomalies from the ECMWF. The ECMWF models

are distributed with six-hour temporal resolution on global grids of 0.75◦ × 0.75◦ spatial

resolution. ECMWF uses data assimilation techniques to incorporate a range of space- and
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Figure 8.1: Global grids of atmospheric surface pressure from ECMWF. The top-left panel
shows a snapshot of the atmospheric pressure anomaly from a single epoch on 1 January
2007. The center-right panel shows the standard deviation in the atmospheric pressure
anomaly during 2007. The bottom-left panel shows the maximum anomaly in surface pres-
sure at each grid node during 2007. I removed a spatial mean of the pressure anomaly from
every temporal epoch as well as a temporal mean for 2007 from every grid node.

land-based empirical weather measurements into general circulation models. Variations in

atmospheric pressure tend to be largest at high latitude due to geostrophic force balance

(e.g., Wunsch & Stammer, 1997), where vertical surface displacements induced by atmo-

spheric loading can sometimes exceed one centimeter (e.g., van Dam et al., 1994; Petrov

& Boy, 2004). Petrov & Boy (2004) were the first to detect atmosphere-induced surface

displacements in the horizontal component, which were on the order of a few millimeters.

For comparison, Fig. 8.2 depicts the pressure exerted by ocean tides at the M2, O1, and Mf

harmonics. In general, typical variations in atmospheric pressure are similar in magnitude

to ocean loading by the O1 harmonic.
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As a first-order approximation, the oceans respond to atmospheric pressure forcing as in-

verted barometers, whereby an increase in atmospheric pressure generates a drop in sea

level (e.g., Doodson, 1924b; Wunsch & Stammer, 1997; Ponte & Gaspar, 1999). The in-

verted barometer effect does not happen instantaneously; rather, the equilibration between

atmosphere and oceans generally occurs over time scales of hours to days (e.g., Ponte &

Gaspar, 1999). To first-order, however, the oceans compensate for variations in atmospheric

pressure such that the total pressure at the sea floor remains roughly unchanged. Due

to pressure-compensation by advection of ocean mass, Earth’s displacement response to

ATML tends to be largest at inland sites (e.g., van Dam et al., 2010).

ATML-induced deformation signals are ubiquitous in geodetic time series, and should

therefore be accounted for in routine analysis. van Dam et al. (1994), for example, found

that accounting for Earth’s deformation response to atmospheric pressure loading could re-

duce the variance in GPS coordinate time series by upwards of 25%. Atmospheric loading

has also been shown to have a measurable effect on VLBI baselines (van Dam & Herring,

1994). Estimates of predicted ATML-induced surface displacements at several hundred

geodetic monitoring stations worldwide may be obtained from a NASA-maintained atmo-

spheric pressure loading service.3

Here, I estimate ATML-induced surface displacements using Eq. 4.1 at the locations of

three GPS stations: TERS (5.219◦E, 53.363◦N) in the Netherlands, AC34 (-153.279◦E,

57.220◦N) in Alaska, and RIO2 (-67.751◦E, -53.785◦N) in Argentina. I generate the predic-

tions using the ECMWF model for atmospheric surface pressure (with the oceans masked

out) and LGFs from PREM in the CM reference frame. Figs. 8.3, 8.4 and 8.5 show time

series of ATML-induced surface displacements for TERS, AC34, and RIO2, respectively,

during 2007. Horizontal-displacement amplitudes are generally on the order of a few mil-

limeters, whereas maximum vertical displacements reach about 1 centimeter. The three

sites considered are located in coastal areas; inland sites could exhibit larger displacements.

As an aside, it is perhaps worth noting that the coarseness of atmospheric pressure models

can lead to inaccuracies in predicted ATML-induced surface displacements, particularly in
3http://gemini.gsfc.nasa.gov/aplo/
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regions with complicated surface topography (van Dam et al., 2010). More information

about ATML may be found in the literature (e.g., Ray & Ponte, 2003; Guo et al., 2004; Tre-

goning & van Dam, 2005; Bingham & Hughes, 2008; Tregoning & Watson, 2009, 2011).

In Fig. 8.6, I compare ATML-induced surface displacements computed using LoadDef

with modeled and observed displacements from Williams & Penna (2011) for station TERS.

The LoadDef predictions, which were computed based on the ECMWF model for surface

pressure variations and CE LGFs from PREM, are superimposed on the Williams & Penna

(2011) predictions, which were computed based on the NCEP/NCAR model for surface

pressure variations and CE LGFs from PREM. Despite the difference in pressure models,

however, the correspondence between the two sets of predicted displacements is strong.

The two sets of predictions match best when I apply the atmospheric load only over land

(i.e., I assume that variations in atmospheric pressure over the oceans are effectively neu-

tralized due to the inverted barometer effect). The Williams & Penna (2011) datasets used

to generate Fig. 8.6 were provided by Simon Williams through personal communication

(27–28 April 2016).4 Fig. 8.7 is identical to Fig. 8.6, except that I have now included per-

sonally derived estimates for the GPS station positions (in the CM frame), rather than the

position estimates derived by Williams & Penna (2011), as well as CM-referenced predicted

displacements from LoadDef.

8.3 Non-Tidal Ocean Loading

NASA’s Estimating the Circulation and Climate of the Oceans (ECCO) consortium pro-

vides time series of non-tidal ocean loading (NTOL) on global grids (e.g., Stammer et al.,

2002). The most recent installment of the consortium, the ECCO2 model,5 includes daily

estimates of ocean bottom-pressure potential anomalies on a global grid of resolution 0.25◦×

0.25◦ for the years 1992–2015. The ECCO2 estimates of bottom-pressure anomalies are

diagnostic quantities derived from anomalous water-column height (e.g., van Dam et al.,
4As a preliminary observation, I noticed that removing an annual signal from the LoadDef-modeled

CM-referenced displacements improved the fit to the CE-referenced (modeled) displacements provided by S.
Williams. The interpretation here is that reference-frame inconsistencies could manifest much like the harmonic
signals in a displacement time series.

5http://ecco2.jpl.nasa.gov/products/
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Figure 8.2: Global grids of ocean tide pressure from FES2012 for the M2 (A, top left), O1

(B, center right), and Mf (C, lower left) tidal harmonics. Note the change in scale with re-
spect to Fig. 8.1. The yellow circles in panel A denote the locations of three GNSS stations
referred to throughout the chapter. The three stations are TERS (5.219◦E, 53.363◦N) in the
Netherlands, AC34 (-153.279◦E, 57.220◦N) in Alaska, and RIO2 (-67.751◦E, -53.785◦N)
in Argentina. The amplitudes of the vertical-displacement response for the M2 harmonic
are 7.6 mm, 29.8 mm, and 23.8 mm for TERS, AC34, and RIO2, respectively. For the
O1 harmonic, the vertical-displacement response amplitudes are 0.9 mm, 14.1 mm, and
12.4 mm for TERS, AC34, and RIO2, respectively. For the Mf harmonic, the vertical-
displacement response amplitudes are 0.4 mm, 1.2 mm, and 1.8 mm for TERS, AC34, and
RIO2, respectively.
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Figure 8.3: East (top), north (center), and vertical (bottom) displacements (in the CM refer-
ence frame) induced by variations in atmospheric pressure from ECMWF at the location of
GNSS station TERS (denoted by a yellow circle in Fig. 8.2) during 2007. Constant-offset,
linear-trend, and annual signals have been removed. Assuming first-order compensation
due to the inverted barometer effect, I did not include the ocean regions in the convolution
of the atmospheric pressure model with the load Green’s functions (derived from PREM
structure). The vertical displacements may be compared with the modeled displacements
due to atmospheric loading shown in fig. 2 (upper-right panel, solid black lines) of Williams
& Penna (2011). Note that Williams & Penna (2011) did not use the atmospheric pressure
model of ECMWF, which has a spatial resolution of 0.75◦ × 0.75◦; they instead used the
atmospheric pressure model of NCEP/NCAR with a spatial resolution of 2.5◦ × 2.5◦.
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Figure 8.4: East (top), north (center), and vertical (bottom) displacements (in the CM refer-
ence frame) induced by variations in atmospheric pressure at the location of GNSS station
AC34 (denoted by a yellow circle in Fig. 8.2) during 2007. Constant-offset, linear-trend,
and annual signals have been removed. Assuming first-order compensation due to the in-
verted barometer effect, I did not include the ocean regions in the convolution of the atmo-
spheric pressure model (ECMWF) with the load Green’s functions (derived from PREM
structure).
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Figure 8.5: East (top), north (center), and vertical (bottom) displacements (in the CM refer-
ence frame) induced by variations in atmospheric pressure at the location of GNSS station
RIO2 (denoted by a yellow circle in Fig. 8.2) during 2007. Constant-offset, linear-trend,
and annual signals have been removed. Assuming first-order compensation due to the in-
verted barometer effect, I did not include the ocean regions in the convolution of the atmo-
spheric pressure model (ECMWF) with the load Green’s functions (derived from PREM
structure).
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Figure 8.6: Predicted surface displacements in the vertical component induced by vari-
ations in atmospheric pressure (top) and by variations in the combined atmospheric and
non-tidal oceanic pressure (middle and bottom) at the location of GNSS station TERS (Fig.
8.2) during 2007. The figure has been adapted from fig. 2 of Williams & Penna (2011)
(WP2011). GNSS-inferred displacements estimated by WP2011 are shown in red. Mod-
eled displacements derived by WP2011 are depicted in black. Both the measured (red)
and predicted (black) displacements were furnished by Simon Williams (personal commu-
nication, 28 April 2016) to facilitate reproduction of the figure. The LoadDef-modeled
displacements (blue) were computed in the CE reference frame to remain consistent with
the methods of WP2011. The LoadDef-modeled response to ATML was computed only
over land, and not over the oceans, using the ECMWF atmospheric pressure model; com-
pensation due to the inverted barometer effect was assumed. A constant offset was removed
from the LoadDef results, but not linear or annual signals. The LoadDef predictions in
the middle and bottom panels are identical and represent the combined response due to at-
mospheric and non-tidal oceanic pressure variations from the ECMWF and ECCO2 models,
respectively. The WP2011 predictions in the middle panel represent the combined response
due to atmospheric and non-tidal oceanic pressure variations from the NCEP/NCAR and
ECCO models, respectively. The WP2011 predictions in the bottom panel represent the
combined response due to atmospheric and non-tidal oceanic pressure variations from the
NCEP/NCAR and POLSSM models, respectively. Note that the predicted displacements
due to variations in atmospheric pressure match remarkably well (top panel); it is difficult
to discern the black line beneath the blue line. See also Figs. 8.3 and 8.9.
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Figure 8.7: Same as Fig. 8.6, but with GPS-inferred vertical displacements com-
puted locally using GIPSY-OASIS II (yellow) and with LoadDef-modeled displace-
ments referenced to the CM frame (blue). I estimated the daily (static) GPS site po-
sitions using methods similar to those discussed in Ch. 3, albeit without random-walk
position estimation. In particular, I adopted a tropospheric process noise parameter of
5.0 × 10−8 km s−

1
2 , provided nominal tropospheric zenith delay estimates (at the data

rate of 30 s) as input, used VMF1 mapping functions, applied an elevation angle cut-
off of 10◦, modeled and removed the solid Earth body tides and ocean tidal loading
(http://holt.oso.chalmers.se/loading/), included antenna calibration and
ambiguity resolution, and used the JPL orbit and clock products in final and fiducial form
(‘flinnR’ format, version ‘repro2.0’). A constant offset was removed from the data. The
RINEX data were retrieved from gnss1.tudelft.nl/dpga/rinex/. The GPS-
inferred estimates of site positions (yellow) are referenced to the CM frame. The modeled
displacements from WP2011 (black) are referenced to the CE frame (as in Fig. 8.6).
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1997). Fig. 8.8 shows global distributions of non-tidal ocean pressure anomalies from 2007.

It is recommended that global and temporal averages be removed from the ECCO2 bottom-

pressure anomalies to account for drifts in the global balance of evaporation and precip-

itation (D. Menemenlis and H. Zhang, personal communication). Moreover, the ECCO2

simulations of ocean-bottom pressure anomalies do not include the effects of atmospheric

or tidal forcing (D. Menemenlis, personal communication). Recall, however, that the ocean-

bottom pressure does not change (to first-order) with variations in atmospheric pressure due

to the inverted barometer effect, but could have issues on timescales less than a few days.

NTOL can generate vertical surface displacements on the order of 5–10 mm or more at

coastal stations (e.g., van Dam et al., 1997; Zerbini et al., 2004; van Dam et al., 2012;

Nordman et al., 2015), as depicted in Fig. 8.9 for station TERS. Predicted surface dis-

placements caused by non-tidal ocean loads at stations AC34 and RIO2 are shown in Figs.

8.10 and 8.11, respectively. For the coastal stations considered here, the surface displace-

ments induced by NTOL are roughly equivalent to the surface displacements induced by

ATML (both on the order of 1–10 mm) (e.g., Williams & Penna, 2011). Contributions

to the displacement time series from OTL tend to be larger, but not substantially so (Fig.

8.2). In particular, the M2 OTL-induced displacements at stations AC34 and RIO2 exceed

2 cm. The Mf OTL-induced displacements, in contrast, hardly exceed 1 mm. The com-

bined effects of atmospheric and non-tidal oceanic pressure forcing are shown in Fig. 8.12

for station TERS, which may be compared with Fig. 8.6 (cf., fig. 2 in Williams & Penna

(2011)). In combination, the NTOL and ATML effects can account for up to about 50% of

the residual variance in a GNSS coordinate time series (Williams & Penna, 2011).

8.4 Hydrological Loading

Variations in continental water storage occur largely on seasonal cycles, generating typical

vertical displacements on the order of millimeters, but ranging up to a centimeter or more

(e.g., van Dam et al., 2001; Ray et al., 2013). Localized surface displacements can be even

higher. Bevis et al. (2005), for example, detected vertical displacement amplitudes of about

2–4 cm in the immediate vicinity of the Amazon river basin due to seasonal hydrological
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Figure 8.8: Global grids of anomalous non-tidal ocean pressure from ECCO2. The top-left
panel shows a snapshot of the non-tidal ocean pressure from 1 January 2007. The center-
right panel shows the standard deviation in the non-tidal ocean pressure anomaly during
2007. The bottom-left panel shows the maximum anomaly in non-tidal ocean pressure at
each grid node during 2007. I removed a spatial mean of the pressure anomaly from every
temporal epoch as well as a temporal mean for 2007 from every grid node. Note the change
in scale with respect to Figs. 8.1 and 8.2.
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Figure 8.9: East (top), north (center), and vertical (bottom) displacements (in the CM refer-
ence frame) induced by variations in non-tidal ocean loading from ECCO2 at the location
of GNSS station TERS in the Netherlands (cf., Fig. 8.2) during 2007. Constant-offset,
linear-trend, and annual signals have been removed. The load Green’s functions used in the
convolution were derived from PREM structure.
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Figure 8.10: East (top), north (center), and vertical (bottom) displacements (in the CM ref-
erence frame) induced by variations in non-tidal ocean loading from ECCO2 at the location
of GNSS station AC34 in Alaska (cf., Fig. 8.2) during 2007. Constant-offset, linear-trend,
and annual signals have been removed. The load Green’s functions used in the convolution
were derived from PREM structure.
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Figure 8.11: East (top), north (center), and vertical (bottom) displacements (in the CM
reference frame) induced by variations in non-tidal ocean loading from ECCO2 at the lo-
cation of GNSS station RIO2 in Argentina (cf., Fig. 8.2) during 2007. Constant-offset,
linear-trend, and annual signals have been removed. The load Green’s functions used in the
convolution were derived from PREM structure.
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Figure 8.12: East (top), north (center), and vertical (bottom) displacements (in the CM
reference frame) induced by variations in atmospheric (ECMWF) and non-tidal oceanic
(ECCO2) pressure at the location of GNSS station TERS in the Netherlands during 2007.
Constant-offset, linear-trend, and annual signals have been removed. Assuming first-order
compensation due to the inverted barometer effect, I did not include the ocean regions in
the convolution of the atmospheric pressure model with the load Green’s functions (derived
from PREM structure). The vertical displacements may be compared with the modeled
displacements due to atmospheric loading shown in fig. 2 (center-right panel, solid black
lines) of Williams & Penna (2011). Slight discrepancies are present, probably due in part
to the use of different versions of the ECCO model for non-tidal ocean loading (I used
ECCO2; Williams & Penna (2011) used ECCO), different atmospheric pressure models
(I used ECMWF; Williams & Penna (2011) used NCEP/NCAR), and possibly different
reference frames for the convolution (I used CM; Williams & Penna (2011) appear to have
used CE). See also Figs. 8.3 and 8.6.
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loading. The hemispherical exchange of hydrological mass with the seasons, due to changes

in snow cover, soil moisture, and the atmosphere, produces a degree-one displacement re-

sponse of the Earth at the level of a few millimeters (Blewitt et al., 2001). Mangiarotti et al.

(2001) also examined vertical displacements caused by annual variations in atmospheric

pressure, oceanic pressure, soil moisture, and snow cover. Contributions from soil mois-

ture and snow cover to Earth’s vertical-displacement response at annual time scales were

found to range from about 1–10 mm in amplitude. In the Himalaya region specifically, sea-

sonal hydrological loading generates maximum surface pressures on the order of 1–5 kPa

(Chanard et al., 2014), as seen in data collected by the Gravity Recovery and Climate Ex-

periment (GRACE) satellite mission. Chanard et al. (2014) show that the monsoon-driven

hydrological loading causes vertical displacements of up to several millimeters or more on

annual time scales.

Particularly in regions that experience substantial variations in river flow, lake levels, pre-

cipitation, and snow pack, the HYDL signal may contribute significantly to the noise of

a geodetic time series. Moreover, the HYDL signal is large enough to be interpreted at

some locations. As with other types of surface mass loading, surface displacements in-

duced by HYDL are sensitive to the material properties of Earth’s interior. Chanard et al.

(2014), for example, inverted observations of HYDL-induced surface displacements in the

Himalaya region for a new local model of one-dimensional elastic structure. Chanard et al.

(2014), however, made no mention of reference frames used in the analysis; the described

methodology suggests that CE load Green’s functions may have been compared with CM

observations, which would have introduced long-wavelength artifacts in the residual dis-

placements and thus biased the inferred Earth model. Dill et al. (2015) explored the effects

of local variations in crustal structure on Earth’s response to HYDL. Alternatively, observed

HYDL-induced surface displacements may be used to constrain the spatial extent and vol-

ume of the load. Recently, Fu et al. (2015) demonstrated that GNSS-inferred measurements

of surface displacements on the west coast of the United States provide an effective means

for constraining spatiotemporal variations in terrestrial water storage in that area.
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9
Summary and Future Directions

In this thesis, I have described both a theoretical framework and an experimental method-

ology that may be used to explore the response of a spherically symmetric, non-rotating,

elastic, and isotropic (SNREI) Earth (e.g., Dahlen & Tromp, 1998, Sec. 8.2) to surface mass

loading (SML). Even with SNREI structure assumed, observed and predicted OTL-induced

surface displacements generally coincide at the sub-millimeter level (Ch. 7), implying that

models for the ocean tides and solid-Earth structure as well as methods for processing

the geodetic data are already quite good. The apparent regional spatial coherency in the

residual displacements, however, suggests that random observational errors are unlikely to

account for all of the discrepancy, particularly for the M2 harmonic. Thus, the residual dis-

placements potentially contain useful information about deficiencies in the forward model,

which probably arise due to errors in both the ocean-tide and SNREI-Earth models.

Variations in SNREI-Earth structure seem to have very little effect on predicted OTL-

induced surface displacements (generally much less than 0.1 mm), and spatiotemporal

characteristics of the residuals do not change much with different SNREI-Earth models

employed in the convolution (Ch. 7). The residual displacements also remain consistent

for different ocean-tide models. The consistency of the spatially coherent residuals be-

tween forward models implies that additional deficiencies, not yet considered here, likely

persist in the forward models. In particular, the residuals might indicate sensitivity to non-

sphericity, lateral heterogeneities, Earth rotation, anelasticity, and anisotropy in the crust

and mantle. A natural extension of the work presented here would be to investigate the

effects of non-SNREI structure on the induced deformation (cf., Bos et al., 2015).

For now, research into Earth’s deformation response to surface mass loading relies primarily

on Love-number and Green’s-function theory. The theory, however, applies specifically to

Earth structure that is spherically symmetric. To generalize the analysis to include non-
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sphericity and lateral heterogeneities, perturbation techniques (e.g., Wang, 1997) or fully

numerical procedures may be adopted (e.g., Agnew, 2015, Sec. 3.06.3.3). Fully numerical

approaches probably represent the future of investigations into SML-induced deformation,

but they also require a substantial re-working of the current SML-modeling framework.

Latychev et al. (2009) explored the effects of lateral heterogeneities on the solid Earth body

tides and found that the displacement response could be perturbed by up to about 1 mm.

Earth rotation perturbs the spheroidal shape of the Earth and couples the deformation re-

sponse to additional spherical harmonic degrees and modes of deformation (e.g., Agnew,

2015, Sec. 3.06.3.2). Toroidal modes of deformation, for example, become coupled to the

spheroidal modes (e.g., Wang, 1997; Dahlen & Tromp, 1998; Smylie, 2013). Moreover, to

first-order, the Love numbers acquire a small dependence on latitude (Wang, 1997; Agnew,

2015). In addition, the interaction between the outer core and the mantle generates a res-

onance effect known as the nearly diurnal free wobble (NDFW) (e.g., Zürn, 1997; Agnew,

2015). The frequency of the NDFW coincides with the diurnal tidal band.

Anelastic dispersion, particularly within the mantle, can also have a significant effect on the

SML-induced deformation (e.g., Bos et al., 2015). Anelastic dispersion causes the elastic

moduli and the Love numbers to become both frequency-dependent and complex-valued

(e.g., Agnew, 2015, Sec. 3.06.3.2.3). At present, scaling relationships exist to extrapolate

the elastic moduli to frequencies outside the seismic band (e.g., Dahlen & Tromp, 1998, Sec.

9.7). Not much is known, however, about Earth’s anelastic response at non-seismic periods,

including tidal periods. Thus, detecting and modeling the effects of anelastic dispersion at

tidal periods can provide important constraints on the Q structure of the solid Earth at lower

frequencies (e.g., Agnew, 2015). Based on observations of OTL in western Europe, Bos

et al. (2015) determined that the phase changes associated with imaginary components of

the M2-period deformation were very small (≈0.2◦). Extrapolating the shear modulus to

tidal periods, however, improved the model fit to the observations (Bos et al., 2015).

The procedure outlined in Ch. 4 to compute Earth deformation caused by SML may be

extended without too much additional effort to account for some forms of anisotropy within

the solid Earth. In effect, the equations of motion must be expanded to include additional
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elastic parameters (e.g., Takeuchi & Saito, 1972). To model the spheroidal deformation of

a transversely isotropic Earth, for example, radial variations in five elastic moduli as well

as density are required (e.g., Dahlen & Tromp, 1998, Sec. 8.9).

Relaxing the assumptions of SNREI Earth structure constitutes one avenue of future ex-

ploration in geodetic tomography using observations of load-generated deformation. Addi-

tional future projects could exploit observations of load-generated deformation to constrain

the spatial extent and volume of dynamic loads, such as seasonal fluctuations in continental

water storage (e.g., Fu et al., 2015). Dense local arrays of GNSS receivers could also be

used to develop local ocean-tide models where coastal morphology is complicated, such

as Puget Sound. Moreover, GNSS receivers deployed near rivers or lakes could track the

volume of seasonal runoff. The possibilities of using SML to perform geodetic tomography

and to constrain surface mass loads are immense and varied.

Still, most studies consider SML an inconvenient source of noise. The effects of OTL are

routinely removed from GNSS time series; the effects of additional forms of SML, however,

are not. Models for atmospheric, non-tidal oceanic, and hydrological loading are typically

less accurate and spatially coarser than the models for OTL. Ocean tides, which are forced

directly by the astronomical ephemeris, are more predictable. Furthermore, OTL signals

are generally larger in magnitude than the ATML, NTOL, and HYDL signals. Nevertheless,

geodetic measurements are now sufficiently precise to detect load-induced deformation of

the solid Earth from a variety of sources. Therefore, accounting for the combined effects of

Earth’s deformation response to OTL, ATML, NTOL, and HYDL can lead to improvements,

for example, in the ability to investigate subtle tectonic signals, detect aseismic transients,

assess glacial isostatic adjustment, and monitor sea-level rise.

Moreover, models of OTL are sometimes imprecise, particularly near coastlines and shal-

low seas (e.g., Fig. 7.4). At sites with large ocean-tide model uncertainties, empirical

estimates of OTL-induced surface displacements may be more accurate than modeled pre-

dictions. Accurate empirical estimates can improve the ability to infer accurate station

positions from GPS time series and to constrain ocean-tide models.
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A
Earth Models

Here, I provide information on six radially symmetric Earth models that were used as ex-

amples within the thesis: 1066A (Gilbert & Dziewonski, 1975), PREM (Dziewonski &

Anderson, 1981), STW105 (Kustowski et al., 2008), AK135f (Kennett et al., 1995; Mon-

tagner & Kennett, 1996), SNA (Grand & Helmberger, 1984), and CR (Chu et al., 2012).

Fig. A.1 shows profiles of the elastic parameters for each model down to 1000 km depth.

The model 1066A, which I acquired directly from Table 5 of Gilbert & Dziewonski (1975),

was derived using normal mode data constrained by Earth mass and moment of inertia. I

generated the model PREM using the polynomial functions from Table 1 of Dziewonski &

Anderson (1981), evaluated every 100 km within the core regions and every 100 m within

the mantle and crust. I also assumed effective isotropic velocities between 24.4 and 220 km

depth (using the formulae from Table 1 of Dziewonski & Anderson (1981)) and replaced

the water layer at the surface by the properties of the upper-most crust: VP = 5.8 km/s, VS

= 3.2 km/s, and ρ = 2.6 g/cc. The water layer could alternatively be removed altogether, but

then the radius of the Earth would be slightly smaller than average to satisfy the assumption

of spherical symmetry (Ch. 4). The PREM model was derived from normal-mode and

body-wave data, as well as moment of inertia and mass constraints.

Models STW105 and AK135f were acquired directly from the Incorporated Research In-

stitutions for Seismology (IRIS) Data Management Center (DMC) (Trabant et al., 2012).

STW105 was derived from observed body- and surface-wave data as well as long-period

waveforms (Kustowski et al., 2008). AK135f was derived from seismic body waves (Ken-

nett et al., 1995), with density and Q structure contributed by Montagner & Kennett (1996).

For both models, I have replaced the water layers at the surface by the elastic properties of

the upper-most crust: VP = 5.8 km/s, VS = 3.2 km/s, and ρ = 2.6 g/cc.

Whereas 1066A, PREM, STW105, and AK135f represent globally averaged structure, the
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Earth Model SNA
Radius (km) VP (km/s) VS (km/s) ρ (g/cc)

6371.0 6.422 3.700 2.730
6341.0 6.422 3.700 2.730
6341.0 6.933 4.000 2.920
6331.0 7.192 4.000 2.920
6331.0 8.630 4.800 3.323
6296.0 8.562 4.775 3.344
6221.0 8.611 4.775 3.390
6196.0 8.558 4.710 3.407
6171.0 8.477 4.630 3.423
6021.0 8.793 4.755 3.514
5965.0 8.862 4.780 3.548
5965.0 9.269 5.000 3.548
5711.0 9.974 5.500 4.370
5711.0 10.717 5.910 4.370
5621.0 11.062 6.200 4.424
5346.0 11.470 6.385 4.571

Table A.1: Tabulated values were provided by Risheng Chu (personal communication).
Details on the model derivation may be found in Grand & Helmberger (1984). Below
1000 km depth, the model assumes the elastic properties of AK135f (Kennett et al., 1995;
Montagner & Kennett, 1996; Trabant et al., 2012).

models CR and SNA represent regional cratonic and stable North American structure, re-

spectively. SNA was derived from an average of upper mantle shear-wave velocity structure

in North America (Grand & Helmberger, 1984). CR was derived from an average of upper

mantle P -wave velocity structure beneath stable North America (Chu et al., 2012); the val-

ues for VS and ρ were obtained from ratios of AK135 (R. Chu, personal communication).

The elastic properties for models SNA and CR are provided in Tables A.1 and A.2. Below

1000 km depth, the SNA and CR models assume the structural properties of AK135f.
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Earth Model CR
Radius (km) VP (km/s) VS (km/s) ρ (g/cc)

6371.000 6.422 3.572 2.730
6331.125 6.422 3.572 2.713
6331.125 8.254 4.636 3.327
6252.123 8.243 4.642 3.286
6252.123 8.341 4.661 3.286
6208.118 8.502 4.689 3.406
6174.107 8.347 4.554 3.447
6068.421 8.547 4.608 3.481
5959.866 8.808 4.726 3.542
5959.866 9.216 4.973 3.561
5710.773 10.256 5.649 4.162
5710.773 10.404 5.898 4.375
5694.662 10.583 5.989 4.407
5694.662 10.740 5.989 4.442
5623.601 11.004 6.165 4.425
5369.145 11.412 6.358 4.554

Table A.2: Tabulated values were provided by Risheng Chu (personal communication).
Details on the model derivation may be found in Chu et al. (2012). Below 1000 km depth,
the model assumes the elastic properties of AK135f (Kennett et al., 1995; Montagner &
Kennett, 1996; Trabant et al., 2012).
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B
Ocean Tide Models

One of the most prominent forms of SML comes from the periodic rise and fall in sea-

level due to the ocean tides. Cartwright (1999) provides a detailed account of the historical

development of ocean tide models through the end of the 20th century. Pugh (1987) also

discusses important aspects of pre-satellite-era tidal predictions. Modern ocean tide models

fall predominantly into two classes: empirical models and data-assimilation models (e.g.,

Zahel, 1997; Lyard et al., 2006). Generally, the first class of models are constrained mostly

by satellite altimetry measurements of sea-surface height as well as tide-gauge observations.

For the second class of models, the satellite-altimetry and tide-gauge data are assimilated

into global hydrodynamic solutions. The hydrodynamic models are formed by numerically

solving the Laplace tidal equations (LTEs), including terms for eddy dissipation and bottom

friction as well as loading and self-attraction (LSA, or sometimes SAL (Ray, 1998)), at

each tidal frequency of interest (Hendershott, 1972; Schwiderski, 1980; Melchior, 1983;

Cartwright, 1999; Zahel, 1997).

Modern ocean tide models are typically distributed on regularly spaced latitude-longitude

grids, with amplitude and phase values computed for up to 30 tidal harmonics or more.

In contrast to the solid Earth body tides, which respond essentially coincident with the

equilibrium tide, the ocean tides exhibit a complicated spatial structure due to interactions

with continental boundaries, bathymetry, and the Coriolis force (Melchior, 1983; Pugh,

1987; Zahel, 1997; Cartwright, 1999). The ocean basins and earth rotational effects produce

tidal circulation systems, centered on points of zero tidal amplitude called amphidromes.

Lines of equal phase radiating away from the amphidromic points are called cotidal lines.
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B.1 Global Ocean Tide Models

FES20126 is a recent installment in a series of tidal atlases produced by the “French Tidal

Group” under the generic name of Finite Element Solution (FES) (Le Provost et al., 1994;

Lyard et al., 2006; Carrère et al., 2012). The FES2012 atlas, generated by assimilating

satellite altimetry observations into a global hydrodynamic model, provides the complex-

valued amplitudes of 32 tidal harmonics on a 0.0625◦ × 0.0625◦ grid. FES2012 represents

an improvement upon previous atlases, such as FES2004 (Lyard et al., 2006), in grid and

bathymetry resolution, data assimilation techniques, enhanced coastlines around Antarctica,

and longer-term altimetry data acquired from multiple missions (Carrère et al., 2012). Fig.

B.1 shows the amplitude of the M2 ocean tide from the FES2012 model.

TPXO8-Atlas7, developed at Oregon State University, integrates a global tidal solution

(TPXO8) with a multitude of high-resolution local solutions produced for shelf and coastal

regions at several locations around the world (Egbert et al., 1994; Egbert & Erofeeva, 2002;

Egbert et al., 2010). Tidal amplitudes and phases are provided on a global grid of 1
30

◦

resolution for the harmonics M2, S2, N2, K2, K1, O1, P1, Q1, and M4. Additional long-

period and compound tidal harmonics (Mf , Mm, MS4, and MN4) are provided on a 1
6

◦-

resolution grid. Satellite altimetry data from the TOPEX/Poseidon and Jason missions are

assimilated into global solutions of the LTEs to generate TPXO8. Tide gauges are primarily

used for validation, particularly in the shelf and coastal regions.

EOT11A8, a purely empirical ocean tide model generated from a harmonic analysis of

multi-mission satellite altimetry data, provides amplitudes and phases for thirteen tidal har-

monics (Savcenko & Bosch, 2012). The harmonic analysis was performed on the combined

altimetry residuals, using FES2004 (Lyard et al., 2006) as a reference model.

HAMTIDE11A9 (i.e., the Hamburg direct data Assimilation Methods for TIDEs) provides

amplitude and phase information for nine tidal harmonics on a regular grid of 0.125◦ res-

olution. A direct minimization of model and observational residuals using least-squares
6www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes.html
7volkov.oce.orst.edu/tides/
8ftp://ftp.dgfi.badw.de/pub/EOT11a
9ftp://ftp.icdc.zmaw.de/hamtide
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inversion generates the HAMTIDE11A atlas.

GOT4.10c10, generated by performing a harmonic analysis of satellite altimetry residuals

with respect to an a priori hydrodynamic model, is the latest release in a series of global

ocean tide models developed by Richard Ray at the Goddard Space Flight Center (Ray,

1999; Ray & Egbert, 2004; Ray, 2013). The satellite altimetry observations of sea-surface

height were corrected for tidal geocenter variations induced by the loading (Desai & Ray,

2014).

OSU1211, developed and distributed by The Ohio State University, is an empirical global

ocean tide model based on multi-mission satellite altimetry data (Fok et al., 2013). Ten tidal

harmonics are provided at a spatial resolution of 0.25◦ × 0.25◦. Gaps in the polar regions

are patched with the GOT4.7 ocean tide model.

B.2 Local Ocean Tide Models

Tidal predictions near coastlines and in shallow seas are less reliable than in the open ocean

due to nonlinearities in the tidal equations and limited empirical constraints (e.g., Ray et al.,

2011). High-resolution, local ocean tide models may be obtained from Oregon State Uni-

versity12 (Egbert & Erofeeva, 2002; Egbert et al., 1994, 2010). Additional providers of

local tidal models are listed in Agnew (2012), and the references therein. Local models for

Canadian waters have also been developed by Lambert et al. (1998).

B.3 Quality Assessment

Modern ocean tide models are typically accurate to about 1 cm in pelagic zones of the ocean

and to about 5 cm in shelf and coastal regions (Stammer et al., 2014). Errors can arise from a

misrepresentation of the coastline, discretization of the model grid, inaccurate bathymetry,

hydrodynamic modeling uncertainties, incomplete depictions of non-linear tidal interac-

tions, insufficient or sparse empirical observations, satellite altimetry and tide gauge data
10Richard Ray, personal communication.
11http://geodeticscience.org/oceantides/OSU12v1.0/
12volkov.oce.orst.edu/tides/region.html
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uncertainties, and inaccurate LSA estimates, among other issues (e.g., Bosch et al., 2009;

Ray et al., 2011). Ocean tide models have traditionally been considered the largest source

of error in forward-modeled predictions of OTL response (e.g., Bos & Baker, 2005; Penna

et al., 2008); however, ocean tide models are continually being improved (Stammer et al.,

2014) and evidence now suggests that ocean tide models may no longer be the limiting fac-

tor in analyses of OTL-induced surface displacements (e.g., Yuan et al., 2013; Penna et al.,

2015; Bos et al., 2015).
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C
Love Number and Green’s Function

Tables

Here, I present Love numbers of four different types (potential, load, shear, and stress) and

displacement load Green’s functions for the six radially symmetric Earth models described

in Appendix A, as well as a homogeneous sphere model with the elastic properties VP = 10

km/s, VS = 5 km/s, and ρ = 5 g/cc. Details on the boundary conditions used to derive the

four types of Love numbers may be found in Table 6.1. Figs. C.1, C.2, C.3, and C.4 show

profiles of the potential, load, shear, and stress Love numbers, respectively, as a function

of spherical harmonic degree n. Fig. C.5 shows the displacement load Green’s functions

derived from the load Love numbers in the CE and CM reference frames (Blewitt, 2003).

The Love numbers may be compared with, e.g., Table 2 from Longman (1963), Table 2

from Okubo & Endo (1986), Table 1 from Saito (1978), Table 1 from Merriam (1985),

Table 2 from Merriam (1986), Table 1 from Guo et al. (2004), Table 2.1 from Jentzsch

(1997), Table 1 from Varga (1992), and Table 1 from Varga (1983)13. The displacement

LGFs may be compared with, e.g., Table 2 from Guo et al. (2004), Table A5 from Farrell

(1972a), and Table A.1 from Jentzsch (1997). Caution must be exercised when making

detailed comparisons, however, since even slight variations in the input Earth structural

model (e.g., different versions of PREM for different crustal types) can yield significant

differences in the Love numbers and, by extension, the LGFs.

To aid in comparisons, Tables C.1–C.4 provide lists of Love numbers for a subset of mod-

els: 1066A, PREM, AK135f, and the homogeneous sphere. Similarly, Tables C.5 through

C.11 provide lists of displacement LGFs in both the CE and CM reference frames for all

seven Earth models. The only difference between the CE and CM reference frames for the
13Note, however, that the double-prime notation in (Varga, 1983) represents potential-free normal stress

boundary conditions rather than shear traction.
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displacement LGFs involves a shift of the degree-1 load Love numbers (Blewitt, 2003). For

more details on the conversion between the two types of displacement LGFs, please refer

to Sec. 4.3.5. Note that the Love numbers associated with the homogeneous sphere may be

computed either analytically (Sec. 4.2.9 and Takeuchi & Saito (1972)) or numerically via

an integration of the equations of motion through a radially homogeneous Earth (Ch. 4).
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Table C.5: Displacement load Green’s functions for Earth model 1066A in the CM and CE
reference frames. The angular distance from the load is given by θ in degrees. The vertical
and horizontal displacement responses are given by u and v, respectively. The variables a
and θ in the normalization factor (1012aθ) represent Earth’s radius in meters and the angular
distance from the load point in radians, respectively.

Displacement Load Green’s Functions for Earth Model 1066A (×1012aθ) [m/kg]

θ (◦) uCM vCM uCE vCE

0.0001000000 -7.688756e+01 -2.324888e+01 -7.688755e+01 -2.324888e+01

0.0001354588 -7.685841e+01 -2.324901e+01 -7.685840e+01 -2.324901e+01

0.0001834909 -7.681896e+01 -2.324912e+01 -7.681893e+01 -2.324912e+01

0.0002485545 -7.676555e+01 -2.324925e+01 -7.676552e+01 -2.324925e+01

0.0003366890 -7.669326e+01 -2.324937e+01 -7.669322e+01 -2.324937e+01

0.0004560749 -7.659541e+01 -2.324929e+01 -7.659536e+01 -2.324929e+01

0.0006177936 -7.646297e+01 -2.324910e+01 -7.646289e+01 -2.324910e+01

0.0008368557 -7.628371e+01 -2.324863e+01 -7.628361e+01 -2.324863e+01

0.0011335948 -7.604108e+01 -2.324764e+01 -7.604094e+01 -2.324764e+01

0.0015355539 -7.571270e+01 -2.324562e+01 -7.571252e+01 -2.324562e+01

0.0020800429 -7.526830e+01 -2.324168e+01 -7.526806e+01 -2.324168e+01

0.0028176012 -7.466699e+01 -2.323412e+01 -7.466666e+01 -2.323412e+01

0.0038166888 -7.385358e+01 -2.321978e+01 -7.385313e+01 -2.321978e+01

0.0051700409 -7.275384e+01 -2.319289e+01 -7.275323e+01 -2.319289e+01

0.0070032754 -7.126839e+01 -2.314282e+01 -7.126756e+01 -2.314282e+01

0.0094865529 -6.926552e+01 -2.305017e+01 -6.926439e+01 -2.305017e+01

0.0128503709 -6.657389e+01 -2.287985e+01 -6.657237e+01 -2.287985e+01

0.0174069584 -6.297908e+01 -2.256938e+01 -6.297702e+01 -2.256939e+01

0.0235792572 -5.823393e+01 -2.201066e+01 -5.823113e+01 -2.201066e+01

0.0319401793 -5.210592e+01 -2.102672e+01 -5.210214e+01 -2.102672e+01

0.0432657841 -4.449903e+01 -1.935875e+01 -4.449390e+01 -1.935875e+01

0.0586073126 -3.569368e+01 -1.671493e+01 -3.568674e+01 -1.671493e+01

0.0793887632 -2.672419e+01 -1.299320e+01 -2.671478e+01 -1.299321e+01

0.1075390672 -1.947195e+01 -8.748884e+00 -1.945921e+01 -8.748908e+00

0.1456711316 -1.572768e+01 -5.465633e+00 -1.571041e+01 -5.465677e+00

0.1973243691 -1.528689e+01 -4.542910e+00 -1.526351e+01 -4.542991e+00
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0.2672932255 -1.589656e+01 -5.509410e+00 -1.586488e+01 -5.509558e+00

0.3620721999 -1.601560e+01 -6.642114e+00 -1.597268e+01 -6.642385e+00

0.4904586627 -1.566417e+01 -7.144690e+00 -1.560604e+01 -7.145188e+00

0.6643694266 -1.500941e+01 -7.117618e+00 -1.493067e+01 -7.118531e+00

0.8999468630 -1.406740e+01 -6.785275e+00 -1.396075e+01 -6.786951e+00

1.2190572352 -1.283999e+01 -6.284972e+00 -1.269554e+01 -6.288046e+00

1.6513203209 -1.134816e+01 -5.643566e+00 -1.115252e+01 -5.649206e+00

2.2368587164 -9.682043e+00 -4.853655e+00 -9.417119e+00 -4.864003e+00

3.0300220094 -8.019086e+00 -3.948233e+00 -7.660451e+00 -3.967217e+00

4.1044315004 -6.584909e+00 -3.026243e+00 -6.099674e+00 -3.061063e+00

5.5598137207 -5.563136e+00 -2.222489e+00 -4.907252e+00 -2.286335e+00

7.5312570341 -5.007031e+00 -1.636923e+00 -4.122080e+00 -1.753920e+00

10.2017505195 -4.824342e+00 -1.269606e+00 -3.634283e+00 -1.483768e+00

13.8191689902 -4.839278e+00 -1.002523e+00 -3.248754e+00 -1.393757e+00

18.7192806974 -4.882451e+00 -6.406382e-01 -2.781089e+00 -1.352698e+00

25.3569132902 -4.790463e+00 2.723662e-02 -2.074555e+00 -1.259869e+00

32.0000000000 -4.486702e+00 9.041241e-01 -1.270190e+00 -1.105776e+00

38.0000000000 -4.053226e+00 1.852527e+00 -5.040262e-01 -9.204123e-01

44.0000000000 -3.512083e+00 2.912780e+00 2.393877e-01 -7.099729e-01

50.0000000000 -2.905174e+00 4.038245e+00 9.041884e-01 -5.015759e-01

56.0000000000 -2.264412e+00 5.179052e+00 1.447216e+00 -3.236629e-01

62.0000000000 -1.608333e+00 6.289639e+00 1.841641e+00 -1.988166e-01

68.0000000000 -9.436271e-01 7.331495e+00 2.075623e+00 -1.414107e-01

74.0000000000 -2.683737e-01 8.274943e+00 2.149227e+00 -1.562324e-01

80.0000000000 4.233922e-01 9.098534e+00 2.069942e+00 -2.395160e-01

86.0000000000 1.140706e+00 9.787195e+00 1.851752e+00 -3.812368e-01

92.0000000000 1.891581e+00 1.033039e+01 1.511022e+00 -5.673848e-01

98.0000000000 2.682695e+00 1.072125e+01 1.066119e+00 -7.812833e-01

104.0000000000 3.518543e+00 1.095529e+01 5.364362e-01 -1.005289e+00

110.0000000000 4.399545e+00 1.102961e+01 -5.967754e-02 -1.222004e+00

116.0000000000 5.322669e+00 1.094154e+01 -7.045182e-01 -1.416023e+00

122.0000000000 6.281573e+00 1.069004e+01 -1.381171e+00 -1.572913e+00
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128.0000000000 7.266001e+00 1.027409e+01 -2.074425e+00 -1.681114e+00

134.0000000000 8.264737e+00 9.693803e+00 -2.768193e+00 -1.731129e+00

140.0000000000 9.262455e+00 8.948596e+00 -3.449044e+00 -1.717618e+00

146.0000000000 1.024225e+01 8.039950e+00 -4.104113e+00 -1.636794e+00

152.0000000000 1.118667e+01 6.970683e+00 -4.720513e+00 -1.487316e+00

158.0000000000 1.207890e+01 5.744304e+00 -5.284613e+00 -1.271012e+00

164.0000000000 1.290106e+01 4.365319e+00 -5.784249e+00 -9.926061e-01

170.0000000000 1.363568e+01 2.840381e+00 -6.207672e+00 -6.585386e-01

176.0000000000 1.426542e+01 1.178142e+00 -6.544390e+00 -2.770222e-01

177.0000000000 1.436008e+01 8.900904e-01 -6.590320e+00 -2.078738e-01

178.0000000000 1.444888e+01 5.976930e-01 -6.635947e+00 -1.386055e-01

179.0000000000 1.453013e+01 3.012988e-01 -6.682847e+00 -6.897513e-02

180.0000000000 1.458125e+01 -5.648395e-08 -6.753484e+00 -6.062143e-08
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Table C.6: Displacement load Green’s functions for Earth model PREM in the CM and CE
reference frames. The angular distance from the load is given by θ in degrees. The vertical
and horizontal displacement responses are given by u and v, respectively. The variables a
and θ in the normalization factor (1012aθ) represent Earth’s radius in meters and the angular
distance from the load point in radians, respectively.

Displacement Load Green’s Functions for Earth Model PREM (×1012aθ) [m/kg]

θ (◦) uCM vCM uCE vCE

0.0001000000 -4.218585e+01 -1.284773e+01 -4.218584e+01 -1.284773e+01

0.0001354588 -4.217820e+01 -1.284780e+01 -4.217818e+01 -1.284780e+01

0.0001834909 -4.216784e+01 -1.284784e+01 -4.216782e+01 -1.284784e+01

0.0002485545 -4.215383e+01 -1.284791e+01 -4.215380e+01 -1.284791e+01

0.0003366890 -4.213488e+01 -1.284798e+01 -4.213484e+01 -1.284798e+01

0.0004560749 -4.210923e+01 -1.284796e+01 -4.210918e+01 -1.284796e+01

0.0006177936 -4.207453e+01 -1.284793e+01 -4.207446e+01 -1.284793e+01

0.0008368557 -4.202759e+01 -1.284786e+01 -4.202749e+01 -1.284786e+01

0.0011335948 -4.196407e+01 -1.284770e+01 -4.196394e+01 -1.284770e+01

0.0015355539 -4.187814e+01 -1.284738e+01 -4.187796e+01 -1.284738e+01

0.0020800429 -4.176189e+01 -1.284676e+01 -4.176165e+01 -1.284676e+01

0.0028176012 -4.160464e+01 -1.284556e+01 -4.160430e+01 -1.284556e+01

0.0038166888 -4.139193e+01 -1.284328e+01 -4.139148e+01 -1.284328e+01

0.0051700409 -4.110430e+01 -1.283901e+01 -4.110369e+01 -1.283901e+01

0.0070032754 -4.071551e+01 -1.283105e+01 -4.071468e+01 -1.283105e+01

0.0094865529 -4.019040e+01 -1.281630e+01 -4.018928e+01 -1.281630e+01

0.0128503709 -3.948219e+01 -1.278908e+01 -3.948066e+01 -1.278908e+01

0.0174069584 -3.852953e+01 -1.273912e+01 -3.852747e+01 -1.273912e+01

0.0235792572 -3.725424e+01 -1.264803e+01 -3.725144e+01 -1.264803e+01

0.0319401793 -3.556201e+01 -1.248371e+01 -3.555822e+01 -1.248372e+01

0.0432657841 -3.335219e+01 -1.219251e+01 -3.334706e+01 -1.219252e+01

0.0586073126 -3.054848e+01 -1.169223e+01 -3.054153e+01 -1.169224e+01

0.0793887632 -2.716863e+01 -1.087829e+01 -2.715922e+01 -1.087830e+01

0.1075390672 -2.343884e+01 -9.673026e+00 -2.342609e+01 -9.673050e+00

0.1456711316 -1.988314e+01 -8.149030e+00 -1.986587e+01 -8.149074e+00

0.1973243691 -1.718174e+01 -6.656794e+00 -1.715835e+01 -6.656875e+00
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0.2672932255 -1.568668e+01 -5.695364e+00 -1.565499e+01 -5.695511e+00

0.3620721999 -1.507745e+01 -5.463118e+00 -1.503452e+01 -5.463389e+00

0.4904586627 -1.471141e+01 -5.665808e+00 -1.465327e+01 -5.666306e+00

0.6643694266 -1.417007e+01 -5.864808e+00 -1.409131e+01 -5.865722e+00

0.8999468630 -1.334248e+01 -5.822978e+00 -1.323580e+01 -5.824654e+00

1.2190572352 -1.223907e+01 -5.521001e+00 -1.209458e+01 -5.524076e+00

1.6513203209 -1.090051e+01 -5.017747e+00 -1.070482e+01 -5.023388e+00

2.2368587164 -9.410675e+00 -4.366012e+00 -9.145698e+00 -4.376362e+00

3.0300220094 -7.913853e+00 -3.618278e+00 -7.555147e+00 -3.637265e+00

4.1044315004 -6.588431e+00 -2.850626e+00 -6.103100e+00 -2.885453e+00

5.5598137207 -5.593566e+00 -2.152679e+00 -4.937553e+00 -2.216538e+00

7.5312570341 -5.014084e+00 -1.607771e+00 -4.128957e+00 -1.724791e+00

10.2017505195 -4.804800e+00 -1.245216e+00 -3.614507e+00 -1.459421e+00

13.8191689902 -4.808587e+00 -9.758500e-01 -3.217749e+00 -1.367162e+00

18.7192806974 -4.852672e+00 -6.140062e-01 -2.750896e+00 -1.326207e+00

25.3569132902 -4.769587e+00 5.115946e-02 -2.053143e+00 -1.236200e+00

32.0000000000 -4.477697e+00 9.241335e-01 -1.260551e+00 -1.086163e+00

38.0000000000 -4.055452e+00 1.868088e+00 -5.055521e-01 -9.053975e-01

44.0000000000 -3.524391e+00 2.923510e+00 2.278194e-01 -6.999573e-01

50.0000000000 -2.925861e+00 4.044308e+00 8.842526e-01 -4.964083e-01

56.0000000000 -2.290952e+00 5.181385e+00 1.421408e+00 -3.224148e-01

62.0000000000 -1.638117e+00 6.289182e+00 1.812537e+00 -2.005537e-01

68.0000000000 -9.742118e-01 7.329543e+00 2.045634e+00 -1.448363e-01

74.0000000000 -2.980199e-01 8.272899e+00 2.120057e+00 -1.599387e-01

80.0000000000 3.966275e-01 9.097383e+00 2.043502e+00 -2.425087e-01

86.0000000000 1.118093e+00 9.787892e+00 1.829280e+00 -3.825447e-01

92.0000000000 1.874481e+00 1.033344e+01 1.493847e+00 -5.664832e-01

98.0000000000 2.672367e+00 1.072742e+01 1.055472e+00 -7.773827e-01

104.0000000000 3.514946e+00 1.096457e+01 5.322504e-01 -9.983653e-01

110.0000000000 4.402892e+00 1.104187e+01 -5.720993e-02 -1.212156e+00

116.0000000000 5.332872e+00 1.095681e+01 -6.955037e-01 -1.403188e+00

122.0000000000 6.298574e+00 1.070749e+01 -1.365680e+00 -1.557883e+00



318

128.0000000000 7.289795e+00 1.029308e+01 -2.052473e+00 -1.664481e+00

134.0000000000 8.294881e+00 9.712964e+00 -2.740223e+00 -1.714221e+00

140.0000000000 9.298373e+00 8.967889e+00 -3.415632e+00 -1.700428e+00

146.0000000000 1.028470e+01 8.058243e+00 -4.064488e+00 -1.620409e+00

152.0000000000 1.123528e+01 6.987418e+00 -4.675043e+00 -1.472249e+00

158.0000000000 1.213308e+01 5.758580e+00 -5.233860e+00 -1.258119e+00

164.0000000000 1.295890e+01 4.376660e+00 -5.730092e+00 -9.823223e-01

170.0000000000 1.369669e+01 2.848864e+00 -6.150577e+00 -6.507448e-01

176.0000000000 1.432746e+01 1.182523e+00 -6.486460e+00 -2.729284e-01

177.0000000000 1.442066e+01 8.921684e-01 -6.533876e+00 -2.060123e-01

178.0000000000 1.451034e+01 5.981970e-01 -6.578648e+00 -1.382467e-01

179.0000000000 1.459776e+01 3.022136e-01 -6.619403e+00 -6.813331e-02

180.0000000000 1.468281e+01 -1.155252e-07 -6.656134e+00 -1.196635e-07
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Table C.7: Displacement load Green’s functions for Earth model STW105 in the CM and
CE reference frames. The angular distance from the load is given by θ in degrees. The
vertical and horizontal displacement responses are given by u and v, respectively. The
variables a and θ in the normalization factor (1012aθ) represent Earth’s radius in meters
and the angular distance from the load point in radians, respectively.

Displacement Load Green’s Functions for Earth Model STW105 (×1012aθ) [m/kg]

θ (◦) uCM vCM uCE vCE

0.0001000000 -4.219078e+01 -1.284916e+01 -4.219077e+01 -1.284916e+01

0.0001354588 -4.218322e+01 -1.284922e+01 -4.218320e+01 -1.284922e+01

0.0001834909 -4.217298e+01 -1.284927e+01 -4.217296e+01 -1.284927e+01

0.0002485545 -4.215913e+01 -1.284934e+01 -4.215910e+01 -1.284934e+01

0.0003366890 -4.214039e+01 -1.284941e+01 -4.214035e+01 -1.284941e+01

0.0004560749 -4.211504e+01 -1.284939e+01 -4.211499e+01 -1.284939e+01

0.0006177936 -4.208075e+01 -1.284936e+01 -4.208067e+01 -1.284936e+01

0.0008368557 -4.203435e+01 -1.284929e+01 -4.203425e+01 -1.284929e+01

0.0011335948 -4.197157e+01 -1.284913e+01 -4.197144e+01 -1.284913e+01

0.0015355539 -4.188664e+01 -1.284882e+01 -4.188646e+01 -1.284882e+01

0.0020800429 -4.177174e+01 -1.284820e+01 -4.177150e+01 -1.284820e+01

0.0028176012 -4.161632e+01 -1.284701e+01 -4.161599e+01 -1.284701e+01

0.0038166888 -4.140610e+01 -1.284476e+01 -4.140565e+01 -1.284476e+01

0.0051700409 -4.112183e+01 -1.284054e+01 -4.112122e+01 -1.284054e+01

0.0070032754 -4.073760e+01 -1.283267e+01 -4.073677e+01 -1.283267e+01

0.0094865529 -4.021865e+01 -1.281807e+01 -4.021753e+01 -1.281807e+01

0.0128503709 -3.951878e+01 -1.279115e+01 -3.951726e+01 -1.279115e+01

0.0174069584 -3.857741e+01 -1.274172e+01 -3.857535e+01 -1.274172e+01

0.0235792572 -3.731736e+01 -1.265161e+01 -3.731457e+01 -1.265161e+01

0.0319401793 -3.564567e+01 -1.248908e+01 -3.564188e+01 -1.248908e+01

0.0432657841 -3.346339e+01 -1.220113e+01 -3.345827e+01 -1.220113e+01

0.0586073126 -3.069632e+01 -1.170673e+01 -3.068937e+01 -1.170673e+01

0.0793887632 -2.736446e+01 -1.090330e+01 -2.735505e+01 -1.090331e+01

0.1075390672 -2.369582e+01 -9.716439e+00 -2.368307e+01 -9.716463e+00

0.1456711316 -2.021422e+01 -8.223474e+00 -2.019695e+01 -8.223518e+00

0.1973243691 -1.759489e+01 -6.780318e+00 -1.757150e+01 -6.780398e+00
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0.2672932255 -1.617695e+01 -5.888833e+00 -1.614526e+01 -5.888980e+00

0.3620721999 -1.561954e+01 -5.741704e+00 -1.557662e+01 -5.741975e+00

0.4904586627 -1.526041e+01 -6.026836e+00 -1.520228e+01 -6.027333e+00

0.6643694266 -1.467359e+01 -6.281332e+00 -1.459484e+01 -6.282245e+00

0.8999468630 -1.375804e+01 -6.250399e+00 -1.365137e+01 -6.252074e+00

1.2190572352 -1.255008e+01 -5.915938e+00 -1.240561e+01 -5.919013e+00

1.6513203209 -1.112068e+01 -5.359609e+00 -1.092502e+01 -5.365250e+00

2.2368587164 -9.566336e+00 -4.660809e+00 -9.301389e+00 -4.671158e+00

3.0300220094 -8.018488e+00 -3.874579e+00 -7.659822e+00 -3.893564e+00

4.1044315004 -6.644532e+00 -3.059097e+00 -6.159255e+00 -3.093920e+00

5.5598137207 -5.615069e+00 -2.303295e+00 -4.959128e+00 -2.367146e+00

7.5312570341 -5.024535e+00 -1.710612e+00 -4.139508e+00 -1.827620e+00

10.2017505195 -4.818548e+00 -1.320428e+00 -3.628386e+00 -1.534610e+00

13.8191689902 -4.825386e+00 -1.036446e+00 -3.234724e+00 -1.427714e+00

18.7192806974 -4.867090e+00 -6.624486e-01 -2.765547e+00 -1.374570e+00

25.3569132902 -4.779020e+00 1.448268e-02 -2.062878e+00 -1.272734e+00

32.0000000000 -4.481793e+00 8.952195e-01 -1.265004e+00 -1.114854e+00

38.0000000000 -4.054584e+00 1.844677e+00 -5.050780e-01 -9.285010e-01

44.0000000000 -3.519313e+00 2.904842e+00 2.324808e-01 -7.182232e-01

50.0000000000 -2.917118e+00 4.030142e+00 8.925725e-01 -5.100704e-01

56.0000000000 -2.279801e+00 5.170872e+00 1.432147e+00 -3.323170e-01

62.0000000000 -1.625658e+00 6.281828e+00 1.824613e+00 -2.071875e-01

68.0000000000 -9.615428e-01 7.324353e+00 2.057968e+00 -1.491982e-01

74.0000000000 -2.860534e-01 8.269290e+00 2.131756e+00 -1.626121e-01

80.0000000000 4.072639e-01 9.094471e+00 2.053956e+00 -2.443848e-01

86.0000000000 1.126554e+00 9.785121e+00 1.837662e+00 -3.841884e-01

92.0000000000 1.880753e+00 1.033028e+01 1.500161e+00 -5.684391e-01

98.0000000000 2.675840e+00 1.072350e+01 1.059124e+00 -7.800303e-01

104.0000000000 3.516030e+00 1.095981e+01 5.336654e-01 -1.001801e+00

110.0000000000 4.401025e+00 1.103617e+01 -5.858221e-02 -1.216498e+00

116.0000000000 5.328418e+00 1.095027e+01 -6.992895e-01 -1.408364e+00

122.0000000000 6.291514e+00 1.070019e+01 -1.371891e+00 -1.563816e+00
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128.0000000000 7.280671e+00 1.028553e+01 -2.060561e+00 -1.670702e+00

134.0000000000 8.283166e+00 9.705057e+00 -2.750715e+00 -1.720861e+00

140.0000000000 9.284597e+00 8.960300e+00 -3.427998e+00 -1.706834e+00

146.0000000000 1.026903e+01 8.050736e+00 -4.078569e+00 -1.626843e+00

152.0000000000 1.121806e+01 6.980924e+00 -4.690498e+00 -1.477804e+00

158.0000000000 1.211436e+01 5.752606e+00 -5.250651e+00 -1.263315e+00

164.0000000000 1.293873e+01 4.372575e+00 -5.748190e+00 -9.858132e-01

170.0000000000 1.367504e+01 2.845823e+00 -6.170027e+00 -6.533978e-01

176.0000000000 1.430496e+01 1.181457e+00 -6.506652e+00 -2.738328e-01

177.0000000000 1.439964e+01 8.907968e-01 -6.552576e+00 -2.072621e-01

178.0000000000 1.448880e+01 5.961972e-01 -6.597854e+00 -1.401648e-01

179.0000000000 1.457557e+01 3.028999e-01 -6.639235e+00 -6.740590e-02

180.0000000000 1.466630e+01 7.901050e-09 -6.670281e+00 3.763218e-09
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Table C.8: Displacement load Green’s functions for Earth model AK135f in the CM and CE
reference frames. The angular distance from the load is given by θ in degrees. The vertical
and horizontal displacement responses are given by u and v, respectively. The variables a
and θ in the normalization factor (1012aθ) represent Earth’s radius in meters and the angular
distance from the load point in radians, respectively.

Displacement Load Green’s Functions for Earth Model AK135f (×1012aθ) [m/kg]

θ (◦) uCM vCM uCE vCE

0.0001000000 -4.217821e+01 -1.284856e+01 -4.217820e+01 -1.284856e+01

0.0001354588 -4.216688e+01 -1.284861e+01 -4.216687e+01 -1.284861e+01

0.0001834909 -4.215155e+01 -1.284865e+01 -4.215153e+01 -1.284865e+01

0.0002485545 -4.213081e+01 -1.284871e+01 -4.213078e+01 -1.284871e+01

0.0003366890 -4.210272e+01 -1.284875e+01 -4.210268e+01 -1.284875e+01

0.0004560749 -4.206471e+01 -1.284869e+01 -4.206466e+01 -1.284869e+01

0.0006177936 -4.201327e+01 -1.284858e+01 -4.201319e+01 -1.284858e+01

0.0008368557 -4.194364e+01 -1.284836e+01 -4.194354e+01 -1.284836e+01

0.0011335948 -4.184940e+01 -1.284794e+01 -4.184927e+01 -1.284794e+01

0.0015355539 -4.172187e+01 -1.284712e+01 -4.172169e+01 -1.284712e+01

0.0020800429 -4.154928e+01 -1.284559e+01 -4.154903e+01 -1.284559e+01

0.0028176012 -4.131577e+01 -1.284273e+01 -4.131543e+01 -1.284273e+01

0.0038166888 -4.099990e+01 -1.283740e+01 -4.099945e+01 -1.283740e+01

0.0051700409 -4.057287e+01 -1.282755e+01 -4.057226e+01 -1.282755e+01

0.0070032754 -3.999611e+01 -1.280938e+01 -3.999528e+01 -1.280938e+01

0.0094865529 -3.921848e+01 -1.277600e+01 -3.921736e+01 -1.277600e+01

0.0128503709 -3.817341e+01 -1.271498e+01 -3.817189e+01 -1.271498e+01

0.0174069584 -3.677717e+01 -1.260423e+01 -3.677510e+01 -1.260423e+01

0.0235792572 -3.493168e+01 -1.240564e+01 -3.492888e+01 -1.240564e+01

0.0319401793 -3.253940e+01 -1.205701e+01 -3.253561e+01 -1.205702e+01

0.0432657841 -2.954442e+01 -1.146744e+01 -2.953929e+01 -1.146745e+01

0.0586073126 -2.601709e+01 -1.053351e+01 -2.601014e+01 -1.053352e+01

0.0793887632 -2.227145e+01 -9.210229e+00 -2.226204e+01 -9.210242e+00

0.1075390672 -1.890286e+01 -7.647968e+00 -1.889011e+01 -7.647992e+00

0.1456711316 -1.653309e+01 -6.259481e+00 -1.651582e+01 -6.259525e+00

0.1973243691 -1.533088e+01 -5.469103e+00 -1.530749e+01 -5.469183e+00
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0.2672932255 -1.490904e+01 -5.330191e+00 -1.487735e+01 -5.330338e+00

0.3620721999 -1.473661e+01 -5.552469e+00 -1.469369e+01 -5.552740e+00

0.4904586627 -1.445984e+01 -5.788531e+00 -1.440170e+01 -5.789028e+00

0.6643694266 -1.395144e+01 -5.832148e+00 -1.387269e+01 -5.833061e+00

0.8999468630 -1.319634e+01 -5.664126e+00 -1.308967e+01 -5.665802e+00

1.2190572352 -1.219157e+01 -5.341816e+00 -1.204709e+01 -5.344891e+00

1.6513203209 -1.094094e+01 -4.896534e+00 -1.074527e+01 -4.902175e+00

2.2368587164 -9.493570e+00 -4.320951e+00 -9.228610e+00 -4.331301e+00

3.0300220094 -7.983588e+00 -3.617926e+00 -7.624905e+00 -3.636912e+00

4.1044315004 -6.622533e+00 -2.851933e+00 -6.137233e+00 -2.886758e+00

5.5598137207 -5.615785e+00 -2.147869e+00 -4.959814e+00 -2.211723e+00

7.5312570341 -5.046926e+00 -1.618745e+00 -4.161857e+00 -1.735758e+00

10.2017505195 -4.838408e+00 -1.274228e+00 -3.648191e+00 -1.488420e+00

13.8191689902 -4.829514e+00 -1.002679e+00 -3.238778e+00 -1.393966e+00

18.7192806974 -4.862385e+00 -6.284633e-01 -2.760744e+00 -1.340618e+00

25.3569132902 -4.773392e+00 4.602523e-02 -2.057123e+00 -1.241252e+00

32.0000000000 -4.479072e+00 9.224234e-01 -1.262132e+00 -1.087744e+00

38.0000000000 -4.055805e+00 1.866724e+00 -5.061335e-01 -9.065835e-01

44.0000000000 -3.524513e+00 2.920977e+00 2.274564e-01 -7.022576e-01

50.0000000000 -2.926068e+00 4.039855e+00 8.838003e-01 -5.005693e-01

56.0000000000 -2.291234e+00 5.174540e+00 1.420888e+00 -3.289063e-01

62.0000000000 -1.638489e+00 6.280221e+00 1.811943e+00 -2.090976e-01

68.0000000000 -9.746483e-01 7.318922e+00 2.045003e+00 -1.549768e-01

74.0000000000 -2.984873e-01 8.261020e+00 2.119435e+00 -1.712760e-01

80.0000000000 3.962118e-01 9.084935e+00 2.042981e+00 -2.543561e-01

86.0000000000 1.117835e+00 9.775159e+00 1.828976e+00 -3.946245e-01

92.0000000000 1.873923e+00 1.032120e+01 1.493314e+00 -5.780246e-01

98.0000000000 2.671529e+00 1.071563e+01 1.054738e+00 -7.884341e-01

104.0000000000 3.513533e+00 1.095380e+01 5.310298e-01 -1.008372e+00

110.0000000000 4.400883e+00 1.103190e+01 -5.893232e-02 -1.221337e+00

116.0000000000 5.330180e+00 1.094767e+01 -6.978086e-01 -1.411539e+00

122.0000000000 6.294612e+00 1.069950e+01 -1.369150e+00 -1.565085e+00
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128.0000000000 7.284877e+00 1.028605e+01 -2.056791e+00 -1.670740e+00

134.0000000000 8.288367e+00 9.707013e+00 -2.746029e+00 -1.719438e+00

140.0000000000 9.290696e+00 8.962584e+00 -3.422492e+00 -1.705048e+00

146.0000000000 1.027525e+01 8.054192e+00 -4.073015e+00 -1.623839e+00

152.0000000000 1.122487e+01 6.983796e+00 -4.684423e+00 -1.475327e+00

158.0000000000 1.212079e+01 5.755632e+00 -5.245035e+00 -1.260617e+00

164.0000000000 1.294605e+01 4.374621e+00 -5.741737e+00 -9.840165e-01

170.0000000000 1.368160e+01 2.847026e+00 -6.164391e+00 -6.523583e-01

176.0000000000 1.431335e+01 1.182143e+00 -6.499228e+00 -2.732144e-01

177.0000000000 1.440744e+01 8.923812e-01 -6.545745e+00 -2.057290e-01

178.0000000000 1.449543e+01 5.977719e-01 -6.592205e+00 -1.386245e-01

179.0000000000 1.458503e+01 3.009079e-01 -6.630769e+00 -6.941518e-02

180.0000000000 1.465755e+01 -2.395484e-08 -6.680016e+00 -2.809286e-08
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Table C.9: Displacement load Green’s functions for Earth model SNA in the CM and CE
reference frames. The angular distance from the load is given by θ in degrees. The vertical
and horizontal displacement responses are given by u and v, respectively. The variables a
and θ in the normalization factor (1012aθ) represent Earth’s radius in meters and the angular
distance from the load point in radians, respectively.

Displacement Load Green’s Functions for Earth Model SNA (×1012aθ) [m/kg]

θ (◦) uCM vCM uCE vCE

0.0001000000 -3.131425e+01 -1.039663e+01 -3.131424e+01 -1.039663e+01

0.0001354588 -3.131182e+01 -1.039668e+01 -3.131181e+01 -1.039668e+01

0.0001834909 -3.130854e+01 -1.039672e+01 -3.130852e+01 -1.039672e+01

0.0002485545 -3.130410e+01 -1.039678e+01 -3.130407e+01 -1.039678e+01

0.0003366890 -3.129810e+01 -1.039684e+01 -3.129806e+01 -1.039684e+01

0.0004560749 -3.128998e+01 -1.039683e+01 -3.128993e+01 -1.039683e+01

0.0006177936 -3.127901e+01 -1.039684e+01 -3.127893e+01 -1.039684e+01

0.0008368557 -3.126417e+01 -1.039684e+01 -3.126407e+01 -1.039684e+01

0.0011335948 -3.124410e+01 -1.039683e+01 -3.124396e+01 -1.039683e+01

0.0015355539 -3.121697e+01 -1.039680e+01 -3.121678e+01 -1.039680e+01

0.0020800429 -3.118028e+01 -1.039673e+01 -3.118003e+01 -1.039673e+01

0.0028176012 -3.113067e+01 -1.039659e+01 -3.113033e+01 -1.039659e+01

0.0038166888 -3.106359e+01 -1.039630e+01 -3.106314e+01 -1.039630e+01

0.0051700409 -3.097290e+01 -1.039574e+01 -3.097229e+01 -1.039574e+01

0.0070032754 -3.085030e+01 -1.039466e+01 -3.084947e+01 -1.039466e+01

0.0094865529 -3.068458e+01 -1.039261e+01 -3.068346e+01 -1.039261e+01

0.0128503709 -3.046066e+01 -1.038876e+01 -3.045913e+01 -1.038876e+01

0.0174069584 -3.015824e+01 -1.038161e+01 -3.015617e+01 -1.038161e+01

0.0235792572 -2.975023e+01 -1.036834e+01 -2.974743e+01 -1.036834e+01

0.0319401793 -2.920080e+01 -1.034389e+01 -2.919702e+01 -1.034389e+01

0.0432657841 -2.846349e+01 -1.029910e+01 -2.845836e+01 -1.029911e+01

0.0586073126 -2.748021e+01 -1.021773e+01 -2.747327e+01 -1.021773e+01

0.0793887632 -2.618388e+01 -1.007184e+01 -2.617448e+01 -1.007185e+01

0.1075390672 -2.450991e+01 -9.816168e+00 -2.449717e+01 -9.816192e+00

0.1456711316 -2.242702e+01 -9.385560e+00 -2.240976e+01 -9.385604e+00

0.1973243691 -1.999842e+01 -8.708666e+00 -1.997504e+01 -8.708747e+00



326

0.2672932255 -1.746183e+01 -7.762425e+00 -1.743015e+01 -7.762573e+00

0.3620721999 -1.524025e+01 -6.671915e+00 -1.519735e+01 -6.672187e+00

0.4904586627 -1.372830e+01 -5.750186e+00 -1.367018e+01 -5.750683e+00

0.6643694266 -1.291445e+01 -5.285970e+00 -1.283573e+01 -5.286883e+00

0.8999468630 -1.234552e+01 -5.211242e+00 -1.223889e+01 -5.212917e+00

1.2190572352 -1.160788e+01 -5.176945e+00 -1.146346e+01 -5.180018e+00

1.6513203209 -1.059677e+01 -4.946460e+00 -1.040118e+01 -4.952099e+00

2.2368587164 -9.352851e+00 -4.479938e+00 -9.087993e+00 -4.490283e+00

3.0300220094 -7.979534e+00 -3.810861e+00 -7.620989e+00 -3.829840e+00

4.1044315004 -6.664088e+00 -3.017489e+00 -6.178974e+00 -3.052300e+00

5.5598137207 -5.632718e+00 -2.237311e+00 -4.976998e+00 -2.301140e+00

7.5312570341 -5.029588e+00 -1.623556e+00 -4.144858e+00 -1.740524e+00

10.2017505195 -4.816520e+00 -1.234366e+00 -3.626759e+00 -1.448476e+00

13.8191689902 -4.817267e+00 -9.607311e-01 -3.227141e+00 -1.351868e+00

18.7192806974 -4.854318e+00 -5.952856e-01 -2.753482e+00 -1.307167e+00

25.3569132902 -4.766571e+00 7.300001e-02 -2.051343e+00 -1.213784e+00

32.0000000000 -4.474112e+00 9.450270e-01 -1.258405e+00 -1.064370e+00

38.0000000000 -4.052932e+00 1.885553e+00 -5.046206e-01 -8.866916e-01

44.0000000000 -3.523813e+00 2.935926e+00 2.267185e-01 -6.859196e-01

50.0000000000 -2.927294e+00 4.050887e+00 8.811144e-01 -4.877979e-01

56.0000000000 -2.294112e+00 5.181975e+00 1.416587e+00 -3.193618e-01

62.0000000000 -1.642477e+00 6.284312e+00 1.806633e+00 -2.025193e-01

68.0000000000 -9.792783e-01 7.320163e+00 2.039216e+00 -1.508728e-01

74.0000000000 -3.033421e-01 8.260087e+00 2.113653e+00 -1.689777e-01

80.0000000000 3.914989e-01 9.082354e+00 2.037637e+00 -2.533589e-01

86.0000000000 1.113456e+00 9.771528e+00 1.824324e+00 -3.943589e-01

92.0000000000 1.870409e+00 1.031696e+01 1.489945e+00 -5.780925e-01

98.0000000000 2.668712e+00 1.071127e+01 1.052540e+00 -7.883830e-01

104.0000000000 3.511811e+00 1.094944e+01 5.304506e-01 -1.008147e+00

110.0000000000 4.399959e+00 1.102798e+01 -5.814745e-02 -1.220568e+00

116.0000000000 5.329947e+00 1.094438e+01 -6.957314e-01 -1.410094e+00

122.0000000000 6.295168e+00 1.069681e+01 -1.365657e+00 -1.563071e+00



327

128.0000000000 7.286170e+00 1.028396e+01 -2.051918e+00 -1.668243e+00

134.0000000000 8.290294e+00 9.705380e+00 -2.739874e+00 -1.716693e+00

140.0000000000 9.293000e+00 8.961374e+00 -3.415317e+00 -1.702170e+00

146.0000000000 1.027799e+01 8.053321e+00 -4.064779e+00 -1.621000e+00

152.0000000000 1.122773e+01 6.983532e+00 -4.675468e+00 -1.472349e+00

158.0000000000 1.212439e+01 5.755560e+00 -5.234784e+00 -1.258000e+00

164.0000000000 1.294951e+01 4.374579e+00 -5.731124e+00 -9.820058e-01

170.0000000000 1.368589e+01 2.847254e+00 -6.152497e+00 -6.507895e-01

176.0000000000 1.431676e+01 1.182051e+00 -6.487848e+00 -2.727483e-01

177.0000000000 1.441025e+01 8.917301e-01 -6.534908e+00 -2.059593e-01

178.0000000000 1.450087e+01 5.978491e-01 -6.578681e+00 -1.382651e-01

179.0000000000 1.458739e+01 3.006820e-01 -6.620277e+00 -6.949919e-02

180.0000000000 1.467189e+01 3.765835e-08 -6.657506e+00 3.352191e-08
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Table C.10: Displacement load Green’s functions for Earth model CR in the CM and CE
reference frames. The angular distance from the load is given by θ in degrees. The vertical
and horizontal displacement responses are given by u and v, respectively. The variables a
and θ in the normalization factor (1012aθ) represent Earth’s radius in meters and the angular
distance from the load point in radians, respectively.

Displacement Load Green’s Functions for Earth Model CR (×1012aθ) [m/kg]

θ (◦) uCM vCM uCE vCE

0.0001000000 -3.243024e+01 -1.003482e+01 -3.243023e+01 -1.003482e+01

0.0001354588 -3.242801e+01 -1.003487e+01 -3.242799e+01 -1.003487e+01

0.0001834909 -3.242500e+01 -1.003490e+01 -3.242497e+01 -1.003490e+01

0.0002485545 -3.242092e+01 -1.003496e+01 -3.242090e+01 -1.003496e+01

0.0003366890 -3.241542e+01 -1.003501e+01 -3.241538e+01 -1.003501e+01

0.0004560749 -3.240799e+01 -1.003501e+01 -3.240794e+01 -1.003501e+01

0.0006177936 -3.239795e+01 -1.003501e+01 -3.239788e+01 -1.003501e+01

0.0008368557 -3.238439e+01 -1.003501e+01 -3.238429e+01 -1.003501e+01

0.0011335948 -3.236607e+01 -1.003501e+01 -3.236593e+01 -1.003501e+01

0.0015355539 -3.234131e+01 -1.003500e+01 -3.234113e+01 -1.003500e+01

0.0020800429 -3.230786e+01 -1.003497e+01 -3.230762e+01 -1.003497e+01

0.0028176012 -3.226266e+01 -1.003491e+01 -3.226233e+01 -1.003491e+01

0.0038166888 -3.220157e+01 -1.003480e+01 -3.220111e+01 -1.003480e+01

0.0051700409 -3.211895e+01 -1.003457e+01 -3.211833e+01 -1.003457e+01

0.0070032754 -3.200714e+01 -1.003412e+01 -3.200631e+01 -1.003412e+01

0.0094865529 -3.185564e+01 -1.003320e+01 -3.185452e+01 -1.003320e+01

0.0128503709 -3.165004e+01 -1.003126e+01 -3.164851e+01 -1.003126e+01

0.0174069584 -3.137059e+01 -1.002708e+01 -3.136852e+01 -1.002708e+01

0.0235792572 -3.099106e+01 -1.001804e+01 -3.098826e+01 -1.001804e+01

0.0319401793 -3.047856e+01 -9.999466e+00 -3.047477e+01 -9.999468e+00

0.0432657841 -2.979132e+01 -9.964854e+00 -2.978618e+01 -9.964858e+00

0.0586073126 -2.886762e+01 -9.902141e+00 -2.886066e+01 -9.902148e+00

0.0793887632 -2.764019e+01 -9.785023e+00 -2.763076e+01 -9.785036e+00

0.1075390672 -2.603383e+01 -9.576513e+00 -2.602106e+01 -9.576537e+00

0.1456711316 -2.399475e+01 -9.214874e+00 -2.397745e+01 -9.214918e+00

0.1973243691 -2.153698e+01 -8.623152e+00 -2.151355e+01 -8.623232e+00
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0.2672932255 -1.883214e+01 -7.744061e+00 -1.880040e+01 -7.744209e+00

0.3620721999 -1.628179e+01 -6.641414e+00 -1.623879e+01 -6.641685e+00

0.4904586627 -1.439444e+01 -5.607596e+00 -1.433620e+01 -5.608095e+00

0.6643694266 -1.334777e+01 -5.040644e+00 -1.326887e+01 -5.041559e+00

0.8999468630 -1.271359e+01 -5.004429e+00 -1.260673e+01 -5.006108e+00

1.2190572352 -1.193759e+01 -5.102658e+00 -1.179285e+01 -5.105738e+00

1.6513203209 -1.085364e+01 -4.978256e+00 -1.065761e+01 -4.983907e+00

2.2368587164 -9.528339e+00 -4.560086e+00 -9.262899e+00 -4.570454e+00

3.0300220094 -8.078426e+00 -3.897131e+00 -7.719092e+00 -3.916152e+00

4.1044315004 -6.696454e+00 -3.079494e+00 -6.210274e+00 -3.114382e+00

5.5598137207 -5.624306e+00 -2.261694e+00 -4.967145e+00 -2.325664e+00

7.5312570341 -5.014870e+00 -1.625812e+00 -4.128196e+00 -1.743037e+00

10.2017505195 -4.813259e+00 -1.240188e+00 -3.620884e+00 -1.454768e+00

13.8191689902 -4.822484e+00 -9.785198e-01 -3.228864e+00 -1.370516e+00

18.7192806974 -4.862332e+00 -6.184127e-01 -2.756881e+00 -1.331858e+00

25.3569132902 -4.775433e+00 5.150879e-02 -2.054239e+00 -1.238102e+00

32.0000000000 -4.482596e+00 9.282443e-01 -1.259824e+00 -1.085567e+00

38.0000000000 -4.060461e+00 1.874503e+00 -5.043535e-01 -9.038322e-01

44.0000000000 -3.530049e+00 2.931586e+00 2.287224e-01 -6.982173e-01

50.0000000000 -2.932124e+00 4.053647e+00 8.846519e-01 -4.950087e-01

56.0000000000 -2.297664e+00 5.191753e+00 1.421187e+00 -3.216712e-01

62.0000000000 -1.644810e+00 6.300600e+00 1.811877e+00 -2.004838e-01

68.0000000000 -9.805296e-01 7.342117e+00 2.044596e+00 -1.453330e-01

74.0000000000 -3.035135e-01 8.286708e+00 2.118792e+00 -1.608754e-01

80.0000000000 3.924237e-01 9.112588e+00 2.042178e+00 -2.436349e-01

86.0000000000 1.115570e+00 9.804390e+00 1.828000e+00 -3.838318e-01

92.0000000000 1.874053e+00 1.035144e+01 1.492754e+00 -5.675484e-01

98.0000000000 2.673963e+00 1.074655e+01 1.054241e+00 -7.783711e-01

104.0000000000 3.519055e+00 1.098488e+01 5.311438e-01 -9.989791e-01

110.0000000000 4.409485e+00 1.106296e+01 -5.841577e-02 -1.212499e+00

116.0000000000 5.342112e+00 1.097827e+01 -6.968049e-01 -1.403341e+00

122.0000000000 6.310216e+00 1.072911e+01 -1.367440e+00 -1.557709e+00
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128.0000000000 7.304101e+00 1.031445e+01 -2.054503e+00 -1.664016e+00

134.0000000000 8.311521e+00 9.733648e+00 -2.742879e+00 -1.713519e+00

140.0000000000 9.317486e+00 8.987060e+00 -3.418751e+00 -1.699912e+00

146.0000000000 1.030570e+01 8.076014e+00 -4.068582e+00 -1.619563e+00

152.0000000000 1.125869e+01 7.002945e+00 -4.679448e+00 -1.471514e+00

158.0000000000 1.215834e+01 5.771445e+00 -5.238973e+00 -1.257525e+00

164.0000000000 1.298631e+01 4.386510e+00 -5.735363e+00 -9.818424e-01

170.0000000000 1.372487e+01 2.855172e+00 -6.157102e+00 -6.505569e-01

176.0000000000 1.435772e+01 1.185482e+00 -6.492593e+00 -2.725138e-01

177.0000000000 1.445168e+01 8.943100e-01 -6.539499e+00 -2.057910e-01

178.0000000000 1.454249e+01 5.995070e-01 -6.583370e+00 -1.382244e-01

179.0000000000 1.462901e+01 3.011713e-01 -6.625248e+00 -6.982324e-02

180.0000000000 1.471259e+01 1.755699e-08 -6.663669e+00 1.341147e-08
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Table C.11: Displacement load Green’s functions for a homogeneous Earth with elastic
properties VP = 10 km/s, VS = 5 km/s, and ρ = 5 g/cc in the CM and CE reference frames.
The angular distance from the load is given by θ in degrees. The vertical and horizontal
displacement responses are given by u and v, respectively. The variables a and θ in the
normalization factor (1012aθ) represent Earth’s radius in meters and the angular distance
from the load point in radians, respectively.

Displacement Load Green’s Functions for a Homogeneous Earth (×1012aθ) [m/kg]

of Elastic Properties VP = 10 km/s, VS = 5 km/s, and ρ = 5 g/cc.

θ (◦) uCM vCM uCE vCE

0.0001000000 -7.556604e+00 -1.889169e+00 -7.556590e+00 -1.889169e+00

0.0001354588 -7.556522e+00 -1.889174e+00 -7.556505e+00 -1.889174e+00

0.0001834909 -7.556415e+00 -1.889175e+00 -7.556391e+00 -1.889175e+00

0.0002485545 -7.556274e+00 -1.889178e+00 -7.556242e+00 -1.889178e+00

0.0003366890 -7.556089e+00 -1.889179e+00 -7.556045e+00 -1.889179e+00

0.0004560749 -7.555845e+00 -1.889166e+00 -7.555785e+00 -1.889166e+00

0.0006177936 -7.555524e+00 -1.889149e+00 -7.555443e+00 -1.889149e+00

0.0008368557 -7.555102e+00 -1.889126e+00 -7.554993e+00 -1.889126e+00

0.0011335948 -7.554549e+00 -1.889096e+00 -7.554401e+00 -1.889096e+00

0.0015355539 -7.553824e+00 -1.889054e+00 -7.553623e+00 -1.889054e+00

0.0020800429 -7.552875e+00 -1.888998e+00 -7.552603e+00 -1.888998e+00

0.0028176012 -7.551635e+00 -1.888921e+00 -7.551266e+00 -1.888921e+00

0.0038166888 -7.550015e+00 -1.888817e+00 -7.549516e+00 -1.888817e+00

0.0051700409 -7.547903e+00 -1.888676e+00 -7.547227e+00 -1.888676e+00

0.0070032754 -7.545153e+00 -1.888486e+00 -7.544237e+00 -1.888486e+00

0.0094865529 -7.541578e+00 -1.888228e+00 -7.540338e+00 -1.888228e+00

0.0128503709 -7.536940e+00 -1.887878e+00 -7.535259e+00 -1.887879e+00

0.0174069584 -7.530933e+00 -1.887405e+00 -7.528656e+00 -1.887406e+00

0.0235792572 -7.523170e+00 -1.886764e+00 -7.520086e+00 -1.886765e+00

0.0319401793 -7.513160e+00 -1.885897e+00 -7.508982e+00 -1.885899e+00

0.0432657841 -7.500287e+00 -1.884722e+00 -7.494627e+00 -1.884726e+00

0.0586073126 -7.483776e+00 -1.883132e+00 -7.476110e+00 -1.883140e+00

0.0793887632 -7.462667e+00 -1.880981e+00 -7.452283e+00 -1.880995e+00

0.1075390672 -7.435772e+00 -1.878070e+00 -7.421706e+00 -1.878097e+00
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0.1456711316 -7.401639e+00 -1.874134e+00 -7.382586e+00 -1.874182e+00

0.1973243691 -7.358512e+00 -1.868811e+00 -7.332702e+00 -1.868900e+00

0.2672932255 -7.304291e+00 -1.861618e+00 -7.269329e+00 -1.861781e+00

0.3620721999 -7.236512e+00 -1.851902e+00 -7.189153e+00 -1.852201e+00

0.4904586627 -7.152342e+00 -1.838783e+00 -7.088191e+00 -1.839332e+00

0.6643694266 -7.048615e+00 -1.821081e+00 -6.961720e+00 -1.822089e+00

0.8999468630 -6.921929e+00 -1.797207e+00 -6.804230e+00 -1.799056e+00

1.2190572352 -6.768841e+00 -1.765022e+00 -6.609423e+00 -1.768414e+00

1.6513203209 -6.586190e+00 -1.721639e+00 -6.370285e+00 -1.727863e+00

2.2368587164 -6.371618e+00 -1.663146e+00 -6.079258e+00 -1.674566e+00

3.0300220094 -6.124330e+00 -1.584196e+00 -5.728554e+00 -1.605146e+00

4.1044315004 -5.846145e+00 -1.477383e+00 -5.310658e+00 -1.515809e+00

5.5598137207 -5.542854e+00 -1.332261e+00 -4.819046e+00 -1.402718e+00

7.5312570341 -5.225763e+00 -1.133707e+00 -4.249164e+00 -1.262821e+00

10.2017505195 -4.913028e+00 -8.591439e-01 -3.599725e+00 -1.095486e+00

13.8191689902 -4.629708e+00 -4.737342e-01 -2.874468e+00 -9.054854e-01

18.7192806974 -4.403839e+00 7.776147e-02 -2.084858e+00 -7.080402e-01

25.3569132902 -4.252236e+00 8.838003e-01 -1.255065e+00 -5.365997e-01

32.0000000000 -4.169625e+00 1.758016e+00 -6.200073e-01 -4.600312e-01

38.0000000000 -4.091593e+00 2.599851e+00 -1.748338e-01 -4.602563e-01

44.0000000000 -3.970715e+00 3.481925e+00 1.692616e-01 -5.160043e-01

50.0000000000 -3.779030e+00 4.392161e+00 4.248335e-01 -6.178086e-01

56.0000000000 -3.495633e+00 5.316077e+00 6.003758e-01 -7.565052e-01

62.0000000000 -3.105185e+00 6.237260e+00 7.020714e-01 -9.231475e-01

68.0000000000 -2.597088e+00 7.137828e+00 7.348389e-01 -1.108981e+00

74.0000000000 -1.964979e+00 7.998862e+00 7.029913e-01 -1.305455e+00

80.0000000000 -1.206401e+00 8.800841e+00 6.106676e-01 -1.504268e+00

86.0000000000 -3.225653e-01 9.524067e+00 4.621174e-01 -1.697419e+00

92.0000000000 6.818592e-01 1.014908e+01 2.618893e-01 -1.877287e+00

98.0000000000 1.798940e+00 1.065705e+01 1.494989e-02 -2.036703e+00

104.0000000000 3.017689e+00 1.103019e+01 -2.732484e-01 -2.169038e+00

110.0000000000 4.324285e+00 1.125212e+01 -5.967389e-01 -2.268285e+00
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116.0000000000 5.702325e+00 1.130819e+01 -9.490445e-01 -2.329142e+00

122.0000000000 7.133099e+00 1.118583e+01 -1.323207e+00 -2.347090e+00

128.0000000000 8.595895e+00 1.087483e+01 -1.711837e+00 -2.318467e+00

134.0000000000 1.006833e+01 1.036758e+01 -2.107185e+00 -2.240528e+00

140.0000000000 1.152669e+01 9.659316e+00 -2.501226e+00 -2.111503e+00

146.0000000000 1.294633e+01 8.748245e+00 -2.885755e+00 -1.930634e+00

152.0000000000 1.430205e+01 7.635707e+00 -3.252494e+00 -1.698212e+00

158.0000000000 1.556849e+01 6.326244e+00 -3.593209e+00 -1.415587e+00

164.0000000000 1.672055e+01 4.827626e+00 -3.899832e+00 -1.085173e+00

170.0000000000 1.773377e+01 3.150836e+00 -4.164582e+00 -7.104348e-01

176.0000000000 1.858480e+01 1.310005e+00 -4.380102e+00 -2.958577e-01

177.0000000000 1.870931e+01 9.884122e-01 -4.410748e+00 -2.232585e-01

178.0000000000 1.882859e+01 6.628214e-01 -4.439805e+00 -1.497290e-01

179.0000000000 1.894257e+01 3.333204e-01 -4.467245e+00 -7.529946e-02

180.0000000000 1.905114e+01 3.285706e-08 -4.493047e+00 2.829110e-08
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D
Partial Derivatives of Love Numbers

Here, I include additional figures of partial derivatives of potential, load, shear, and stress

Love numbers for multiple spherical harmonic degrees.
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Figure D.1: Partial derivatives of degree-1 load Love numbers with respect to µ, κ, and
ρ, derived from PREM. The horizontal axes are in units of 10−4/km (cf., Okubo & Endo
(1986), Fig. 3). The partial derivatives for l do not match those of Okubo & Endo (1986);
however, I verified my results against the numerically derived partial derivatives (from finite
differences) to confirm the shape of the partial derivatives plotted here.
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Figure D.2: Same as Fig. D.1, but for degree-1 stress Love numbers.
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Figure D.3: Partial derivatives of degree-2 potential Love numbers with respect to the shear
modulus, µ, the bulk modulus, κ, and density, ρ, derived from PREM. The partials have
been multiplied by the depth profile of each elastic parameter to remove scaling dependen-
cies. The horizontal axes are in units of 10−4/km (cf., Okubo & Saito (1983), Fig. 1).
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Figure D.4: Same as Fig. D.3, but for degree-2 load Love numbers.
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Figure D.5: Same as Fig. D.3, but for degree-2 shear Love numbers.
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Figure D.6: Same as Fig. D.3, but derived from the Earth model 1066A rather than PREM.
The figure may be compared directly with fig. 1a in Okubo & Saito (1983) for Earth’s crust
and mantle.
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Figure D.7: Same as Fig. D.6, but for load, rather than potential, Love numbers (cf., Okubo
& Saito (1983), fig. 1b).
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Figure D.8: Same as Fig. D.6, but for shear, rather than potential, Love numbers (cf., Okubo
& Saito (1983), fig. 1c).
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Figure D.9: Same as Fig. D.4, but for spherical harmonic degree n = 3.



344

Figure D.10: Same as Fig. D.4, but for spherical harmonic degree n = 4.
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Figure D.11: Same as Fig. D.4, but for spherical harmonic degree n = 10.
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Figure D.12: Same as Fig. D.4, but for spherical harmonic degree n = 100.
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Figure D.13: Same as Fig. D.4, but for spherical harmonic degree n = 1000.
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Figure D.14: Same as Fig. D.4, but for spherical harmonic degree n = 10000.
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Figure D.15: Partial derivatives of degree-2 potential Love numbers with respect to the
shear modulus, µ, the bulk modulus, κ, and density, ρ, derived from a homogeneous sphere
with properties: VP = 10000 m s−1, VS = 5000 m s−1, and ρ = 5000 kg m−3. The par-
tials have been multiplied by the depth profile of each elastic parameter to remove scaling
dependencies. The horizontal axes are in units of 10−4/km.
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Figure D.16: Same as Fig. D.15, but for degree-2 load Love numbers.
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Figure D.17: Same as Fig. D.15, but for degree-2 shear Love numbers.
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E
GPS Station Network

Table E.1: Names and locations for each GPS station used in the case study from Ch. 7.
The locations are given as latitude (positive North), longitude (positive East), and country.
The country codes A, B, and U represent Argentina, Brazil, and Uruguay, respectively.

GPS Station Network

Country Name Latitude (◦) Longitude (◦) Country Name Latitude (◦) Longitude (◦)

A ABRA -22.72203 -65.69731 B PAAT -3.20098 -52.18131

B ALAR -9.74922 -36.65342 B PAIT -4.28766 -56.03636

A ALUM -27.32343 -66.59663 B PARA -25.44837 -49.23095

B AMCO -4.87199 -65.33398 B PAST -2.50473 -54.72197

B AMHU -7.50325 -63.02852 B PBCG -7.21368 -35.90714

B AMTE -3.34569 -64.70665 B PBJP -7.13628 -34.87342

B APSA -0.06026 -51.16747 A PDE2 -47.75663 -65.89938

A AUTF -54.83953 -68.30357 B PEAF -7.76411 -37.63196

A AZUL -36.76702 -59.88128 A PEJO -35.80632 -61.89464

B BABR -12.15004 -44.99490 B PEPE -9.38442 -40.50612

B BAIL -14.79660 -39.17239 B PISR -9.03069 -42.70276

B BAIR -11.30565 -41.85852 B PITN -5.10248 -42.793030

B BATF -17.55487 -39.74334 B POAL -30.07404 -51.11976

B BAVC -14.88831 -40.80270 B POLI -23.55565 -46.73031

A BCAR -37.76123 -58.30110 B POVE -8.70934 -63.89632

B BELE -1.40879 -48.46255 B PPTE -22.11990 -51.40853

B BOAV 2.84518 -60.70112 B PRCV -24.96275 -53.46633

B BOMJ -13.25556 -43.42174 B PRGU -25.38400 -51.48758

A BORC -60.73978 -44.74062 B PRMA -23.40969 -51.93842

B BRAZ -15.94747 -47.87787 A PRNA -31.78144 -60.46944

B BRFT -3.87745 -38.42554 B RECF -8.05096 -34.95152

A CATA -28.47098 -65.77412 A RIO2 -53.78547 -67.75112

B CEEU -3.87755 -38.42554 A RIO4 -33.12525 -64.34939

B CEFE -20.31079 -40.31946 B RIOB -9.96546 -67.80281

B CEFT -3.71081 -38.47292 B RIOD -22.81784 -43.30628

B CESB -3.68127 -40.33749 B RJCG -21.76486 -41.32616

A CFAG -31.60217 -68.23265 B RNMO -5.20423 -37.32546
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A CHLT -49.34046 -72.88556 B RNNA -5.83614 -35.20771

B CHPI -22.68715 -44.98516 B ROCD -13.12228 -60.54391

B CRAT -7.23802 -39.41561 B ROGM -10.78424 -65.33061

B CRUZ -7.61116 -72.67211 B ROJI -10.86390 -61.95972

A CSJ1 -31.98053 -68.42724 B ROSA -22.52330 -52.95209

A CSLO -31.78489 -69.30221 B RSAL -29.78944 -55.76884

B CUIB -15.55526 -56.06987 B SAGA -0.14385 -67.05778

A EBYP -27.36894 -55.89217 B SALU -2.59346 -44.21248

B EESC -22.00495 -47.89918 B SALV -13.00867 -38.51236

A ESQU -42.91711 -71.32340 B SAVO -12.93925 -38.43225

B FORT -3.87745 -38.42561 A SBAL -30.30878 -61.22656

B GOGY -16.66473 -49.25467 B SCAQ -26.39376 -48.73744

B GOJA -17.88328 -51.72611 B SCCH -27.13756 -52.59951

B GVAL -18.85561 -41.95762 B SCFL -27.59938 -48.51953

A IGM0 -34.57220 -58.43937 B SCLA -27.79283 -50.30426

A IGM1 -34.57224 -58.43932 B SEAJ -10.92963 -37.10428

B ILHA -20.42778 -51.34338 B SJRP -20.78552 -49.35995

B IMBT -28.23484 -48.65572 B SJSP -23.20713 -45.86174

B IMPZ -5.49177 -47.49723 A SL01 -33.15636 -66.31401

A JBAL -27.58441 -65.62275 B SMAR -29.71892 -53.71659

A LHCL -38.00266 -65.59525 B SPAR -21.18467 -50.43979

B MABA -5.36238 -49.12230 B SPBO -22.85247 -48.43230

B MABB -4.24096 -44.81572 B SPCA -22.81629 -47.06269

B MABS -7.53381 -46.03972 B SPJA -21.24107 -48.28670

B MAPA 0.04669 -51.09734 B SSA1 -12.97516 -38.51648

B MCLA -16.72039 -43.88132 A SVIC -26.99371 -54.48752

A MECO -29.18489 -58.07585 A TERO -27.78914 -64.25678

B MGBH -19.94190 -43.92490 B TOGU -11.74671 -49.04910

B MGIN -22.31856 -46.32802 B TOPL -10.17105 -48.33068

B MGMC -16.71639 -43.85832 A TUC1 -26.83265 -65.19567

B MGRP -19.20986 -46.13255 A TUCU -26.84326 -65.23035

B MGUB -18.91916 -48.25605 B UBA1 -23.50018 -45.11890

B MGVA -21.54262 -45.43499 B UBAT -23.50018 -45.11890

A MPL2 -38.00577 -57.57130 B UBER -18.88957 -48.31706

B MSCG -20.44090 -54.54070 A UCOR -31.43496 -64.19350

B MSCO -19.00352 -57.63698 B UEPP -22.11990 -51.40853

B MSDR -22.19410 -54.93040 B UFPR -25.44837 -49.23095

B MTBA -15.88997 -52.26473 A UNPA -51.64799 -69.20865

B MTCN -13.55583 -52.27136 A UNRO -32.95935 -60.62843

B MTCO -10.80386 -55.45626 A UNSA -24.72746 -65.40764
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B MTJU -11.42733 -58.76932 A UNSJ -31.54126 -68.57706

B MTSF -11.61928 -50.66351 U UYDU -33.31588 -55.60243

B MTSR -12.54523 -55.72741 U UYLP -34.65570 -54.14210

B MTVB -15.00643 -59.95156 U UYMO -34.88832 -56.25988

A MZAC -32.89515 -68.87557 U UYPA -32.29125 -58.06719

A MZAE -33.25484 -68.15006 U UYRI -30.89576 -55.55911

A MZAU -33.73596 -69.11842 U UYRO -34.00100 -53.55483

A MZSR -34.61547 -68.33431 U UYSO -33.26126 -58.01362

B NAUS -3.02292 -60.05502 U UYTA -31.68307 -55.93753

B NEIA -25.02024 -47.92497 B VARG -21.54268 -45.43488

A NESA -40.10539 -64.45401 A VBCA -38.70077 -62.26923

A NGAQ -26.68591 -60.72935 B VICO -20.76150 -42.86999

B ONRJ -22.89570 -43.22433

B OURI -22.94917 -49.89504
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Figure E.1: Timeline of station activity for the first 40 receivers in the GPS network across
Brazil, Argentina, and Uruguay, ordered alphabetically by station name.
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Figure E.2: Continued timeline of station activity for the next 40 receivers.
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Figure E.3: Continued timeline of station activity for the next 40 receivers.
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Figure E.4: Continued timeline of station activity for the next 40 receivers.
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F
Supplemental GPS Theory

F.1 Carrier Wave Signals and Satellite Orbits

Electromagnetic (EM) signals are transmitted from satellite to receiver at two distinct fre-

quencies: 1575.42 MHz (L1) and 1227.60 MHz (L2) (e.g., Blewitt, 2015, Sec. 3.11.2.2).

The two signals are generated from a sinusoidal base wave that has a frequency of 10.23

MHz (e.g., Blewitt, 2015, Sec. 3.11.2.4). The frequency of the base signal is modulated by

factors of 154 and 120 to create the L1 and L2 carrier wave channels, respectively. Each

carrier wave signal is encoded into binary via phase modulation and contains three distinct

codes: the Course Acquisition (C/A) Code, the Precise (P) Code, and the Navigation Mes-

sage (e.g., Blewitt, 1997, Sec. 2.3.1). The C/A Code is a pseudo-random number sequence,

encoded only onto the L1 signal, that contains the time of signal transmission by the satel-

lite. The P Code carries the same information as the C/A Code, but it has ten times the

resolution and is transmitted on both the L1 and L2 channels. The P Code is also encrypted

with Anti-Spoofing (A/S) technology by the US Department of Defense (e.g., Blewitt, 1997,

Sec. 2.3.2).14 C/A Code is generally used by the receiver to initialize communication with

a GPS satellite, whereas the P Code is generally used for precise positioning.

The Navigation Message, transmitted at a slow data rate, delivers information about satel-

lite orbital parameters and clock biases to the receiver (e.g., Blewitt, 1997, Sec. 2.3.1).

The receiver can then use the orbital information to derive cartesian coordinates of satellite

position in a geocentric coordinate system (e.g., WGS84). If high-precision positioning is

required (e.g., mm-level precision), then the Navigation Message on its own is insufficient

for providing ephemeris data (satellite location and clock bias) to the receiver. To improve

the satellite ephemeris, the International GNSS Service (IGS) computes orbital and clock
14An additional “denial of accuracy” technique called Selective Availability was phased out in May 2000.
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parameters for each satellite using a global array of reference receivers.15 Although ultra-

rapid orbital products are available from IGS within a 3-9 hour latency period, product ac-

curacy improves with greater latency. Final orbit and clock products are typically available

after a two-week latency period. Methods for circumventing inaccurate satellite ephemeris

include relative positioning (e.g., double-differencing) or solving for satellite clock bias (in

addition to the receiver clock bias) at every epoch (e.g., Blewitt, 2015, Sec. 3.11.2.3).

NASA’s JPL also provides continually updated orbit and clock products to the community.16

JPL releases three orbital and clock products that differ by latency period: Ultra-Rapid,

with a latency period of less than 2 hours; Rapid, with a latency period of approximately

24 hours; and Final, with a latency period of up to two weeks. The Ultra-Rapid products

are released almost in real-time, but suffer slightly in accuracy, with a characteristic 3D

RMS accuracy of 5 cm. The accuracy of the Rapid products is improved to 3.5 cm and the

accuracy of the Final products is enhanced further to 2.5 cm, on average. High-rate (i.e.,

30-second) clock products are only available for the Rapid and Final products and only

since May 2000 (following the discontinuation of Selective Availability).

The receiver-perceived geometry of the satellite constellation has significant implications

for precise position estimates. The degradation of receiver position due to unfavorable

satellite geometries is referred to as Dilution of Precision (DOP) (e.g., Blewitt, 1997, Sec.

4.2.4). DOP is divided into five separate categories: vertical (VDOP), horizontal (HDOP),

time (TDOP), position (PDOP), and geometric (GDOP). All are derived from elements of

a covariance matrix, which itself is derived from the least-squares solution for the receiver

position. For satellites that are not well distributed and appear in approximately the same

position in the sky, the covariance matrix approaches singularity (e.g., Blewitt, 1997, Sec.

4.2.4).

Signal delay during transmission through the ionosphere, which is dispersive at L-band

frequencies, may be self-calibrated by computing both pseudorange and carrier phase ob-

servables for signals transmitted at two different L-band wavelengths: 19.0 cm (L1) and

24.4 cm (L2) (e.g., Blewitt, 2015, Sec. 3.11.2.4).
15http://igscb.jpl.nasa.gov/components/prods.html
16ftp://sideshow.jpl.nasa.gov/pub/JPL GPS Products/Final/
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F.2 Pseudorange and Carrier Phase Observables

Distances, or ranges, between GPS satellites and a receiver cannot be measured directly,

but are instead derived from the time it takes for an EM signal to travel from the satellite to

a receiver multiplied by the speed of light (e.g., Blewitt, 2015, Sec. 3.11.2.4). The result

has units of distance and is known as a pseudorange because it differs from the true range

by biases in clock error, actual speed of signal transmission, and so on. The equation for

pseudorange, p, is given by (e.g., Blewitt, 2015, Sec. 3.11.2.1):

p = (tR − tS) c, (F.1)

where tS is the time the EM signal leaves the satellite according to an atomic clock on

board the satellite, tR is the time the signal is received according to the receiver’s local

clock, and c is the speed of light in a vacuum. The receiver computes the time difference,

tR − tS , by cross-correlating a replica signal generated in situ with the incoming satel-

lite signal. One important thing to note here is that any bias in the receiver clock will be

the same for all observed satellites at any moment in time; thus, receiver clock bias may be

solved for as an additional parameter in the location computation. Obtaining an estimate for

receiver clock bias along with receiver position requires a minimum of four pseudorange

observations (e.g., Blewitt, 1997, Sec. 2.1.3). Timing uncertainties in the atomic clocks

aboard the satellites are much less significant than receiver clock bias, but are nonetheless

relayed to the receiver along with other timing and navigation information (e.g., Blewitt,

1997, Sec. 2.3.1). Monitoring and predicting satellite clock errors is performed by the US

Department of Defense and uploaded to the satellites, which can then transmit the informa-

tion to the receiver. GPS positioning using this method yields location information at an

accuracy of meters and furthermore provides a feedback system, by which receiver clocks

may periodically synchronize with the more accurate satellite clocks (e.g., Blewitt, 2015,

Sec. 3.11.2.3).

The carrier phase observable is another means by which the precision of receiver positioning

may be enhanced. In contrast to the pseudorange, the carrier phase observable represents
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the difference in phase (i.e., the beat phase) between the incoming signal (or carrier wave)

and the receiver-generated replica signal (e.g., Blewitt, 2015, Sec. 3.11.2.3). Multiplying

the phase difference by the wavelength of the signal (≈20 cm) yields an estimate for the

distance between the satellite and the receiver that is approximately 100 times more precise

than a pseudorange observable (e.g., Blewitt, 2015, Sec. 3.11.2.3). The drawback to this

technique, however, is that an ambiguity of an integer number of wavelengths is introduced

as an additional bias (e.g, Bertiger et al., 2010; Blewitt, 2015). Accounting for the phase-

ambiguity bias, the carrier phase observable, φC , may be written as (e.g., Blewitt, 2015,

Sec. 3.11.2.3):

φC = (φR − φS + i) λC , (F.2)

where φR is the phase of the reference signal generated by the receiver clock, φS is the

phase of the carrier wave transmitted by the satellite, i represents the integer-wavelength

ambiguity, and λC is the wavelength of the transmitted carrier signal. Since precise GPS

positioning relies primarily on the beat phase of the carrier wave itself with the replica

receiver signal, as opposed to the pseudorange of the P Code, the Anti-Spoofing encryption

of the P Code is generally not significant. Acquiring pseudorange observables from both the

L1 and L2 channels also reduces the impact of the Anti-Spoofing encryption (e.g., Blewitt,

1997, Sec. 2.3.2).

F.3 Ambiguity Resolution, Cycle Slips, and Multipath

Ambiguity resolution is the process by which an unknown integer number of signal wave-

lengths between the satellite and receiver (i.e., variable i in Eq. F.2) may be estimated

(e.g., Blewitt, 2015). For single station precise point positioning, ambiguity resolution may

be accomplished using wide-lane and phase bias estimates from a network of reference

receivers (e.g., Bertiger et al., 2010). Otherwise, double- or triple-differencing the satellite-

to-receiver pseudorange and phase observables may be used.

Occasionally a GPS receiver may lose contact with a communicating GPS satellite. This

could occur, for example, if a GPS receiver temporarily loses power or if an object temporar-
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ily obstructs the line-of-sight path between the satellite and the receiver. In such situations,

large outliers or sudden steps in the integer ambiguity may occur in the data stream. When

the so-called cycle slips occur, combinations of the pseudorange and phase observables may

be used to correct for the bias introduced by the short-term communication gaps (e.g., Ble-

witt, 2015, Sec. 3.11.2.3). The ability to detect and correct for cycle slips is now standard

in most modern GPS processing packages.

Since the ground tracks of GPS satellites repeat at the period of one sidereal day, any errors

associated with the geometry of the satellite constellation repeat with the same periodicity

(e.g., Blewitt, 2015, Sec. 3.11.2.2). Multipath signals, for example, occur when satellite-

transmitted EM waves arrive at the receiver indirectly (i.e., the waves are refracted through

or reflected from neighboring objects, such as vegetation or buildings). As a rule of thumb,

an elevation mask up to 15◦ above the horizon may be set in order to limit multipath er-

rors, cycle slips, and tropospheric delays (Blewitt, 1997). Filtering the repeating multipath

signals remains an active area of research (e.g., Larson et al., 2010; Ragheb et al., 2007;

Blewitt, 2015, Sec. 3.11.1.7, and references therein).

F.4 Reference Frame Considerations

Spatial and temporal changes in mass loading at Earth’s surface generate a deformation re-

sponse of the solid Earth. One such response is due to a change in the “load moment” or,

in other words, a shift in the center of mass of the global system of surface loads relative

to the center of mass of the solid Earth (Blewitt et al., 2001). Such a shift is characterized

by degree-one deformation. In tidal analysis, it is imperative that data and models be deter-

mined using consistent reference frames (e.g., Blewitt et al., 2001; Blewitt, 2003; Fu et al.,

2012). Since GPS observations are often made relative to the entire Earth system (CM),

it is best to predict deformations using load Love numbers computed in the CM reference

frame (Blewitt, 2003; Fu et al., 2012). In GPS processing, orbit and clock products that are

defined in, or tied to, a particular reference frame are referred to as fiducial. For orbit and

clock products distributed by the Jet Propulsion Laboratory (JPL), information about the
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adopted reference frame is provided in the .frame file.17

The International Terrestrial Reference Frame (ITRF), for example, is a realization of the

International Terrestrial Reference System (ITRS) (Boucher, 2000; Altamimi et al., 2002;

Ray et al., 2004; Altamimi et al., 2011). The reference frame is derived using a variety

of space geodetic techniques: Very Long Baseline Interferometry (VLBI), Lunar Laser

Ranging (LLR), Satellite Laser Ranging (SLR), Doppler and Radiopositioning Integrated

by Satellite (DORIS), and GNSS. The ITRS, from which the ITRF is based, is geocen-

tric, with the center of mass defined as that of the whole Earth system (including the solid

Earth, oceans, and atmosphere) (Boucher, 2000). Such a reference frame is abbreviated

CM, which stands for “center of mass of the Earth system” (Blewitt, 2003). CM is a nat-

ural reference frame for space geodetic techniques, such as the GPS, which observe the

whole Earth system. Blewitt (2003) documents the CM frame, along with other isomorphic

frames, and the relationships between them. For isomorphic reference frames, which are

compatible with Love number theory, load Love numbers from one frame may be trans-

formed into a different frame by a simple constant of proportionality, α (Blewitt, 2003).

17ftp://sideshow.jpl.nasa.gov/pub/JPL GPS Products/Final/
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57(1), 167–179.

Okubo, S., Saito, M., Endo, T., & Okubo, S., 1984. A correction to “Partial derivative of

Love numbers”, J. Geod., 58(1), 73–74.

Pagiatakis, S. D., 1990. The response of a realistic earth to ocean tide loading, Geophys. J.

Int., 103(2), 541–560.

Parker, B. B., 2007. Tidal analysis and prediction, vol. NOAA Special Publication: NOS

CO-OPS 3, US Department of Commerce, National Oceanic and Atmospheric Admin-

istration, National Ocean Service, Center for Operational Oceanographic Products and

Services.

Pawlowicz, R., Beardsley, B., & Lentz, S., 2002. Classical tidal harmonic analysis including

error estimates in MATLAB using T TIDE, Computers & Geosciences, 28(8), 929–937.

Penna, N. T., Bos, M. S., Baker, T. F., & Scherneck, H.-G., 2008. Assessing the accuracy

of predicted ocean tide loading displacement values, J. Geod., 82(12), 893–907.

Penna, N. T., Clarke, P. J., Bos, M. S., & Baker, T. F., 2015. Ocean tide loading displace-

ments in western Europe. Part 1: Validation of kinematic GPS estimates, J. Geophys.

Res. Solid Earth, 120(9), 6523–6539.



377

Petit, G. & Luzum, B., 2010. IERS Technical Note No. 36, IERS Conventions (2010),

International Earth Rotation and Reference Systems Service: Frankfurt, Germany.

Petrov, L. & Boy, J.-P., 2004. Study of the atmospheric pressure loading signal in very long

baseline interferometry observations, J. Geophys. Res., 109(B3).

Petrov, L. & Ma, C., 2003. Study of harmonic site position variations determined by very

long baseline interferometry, J. Geophys. Res. Solid Earth, 108(B4).

Ponte, R. M., 2006. Low-frequency sea level variability and the inverted barometer effect,

J. Atmos. Oceanic Technol., 23(4), 619–629.

Ponte, R. M. & Gaspar, P., 1999. Regional analysis of the inverted barometer effect over

the global ocean using TOPEX/POSEIDON data and model results, J. Geophys. Res.

Oceans, 104(C7), 15587–15601.

Ponte, R. M. & Ray, R. D., 2002. Atmospheric pressure corrections in geodesy and

oceanography: A strategy for handling air tides, Geophys. Res. Lett., 29(24).

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P., 2007. Numerical

recipes, 3rd Edition: The art of scientific computing, Cambridge University Press.

Pugh, D., 1987. Tides, Surges and Mean Sea-Level, John Wiley & Sons Ltd.

Pugh, D., 2004. Changing sea levels: Effects of tides, weather and climate, Cambridge

University Press.

Pugh, D. & Woodworth, P., 2014. Sea-level Science: Understanding Tides, Surges,

Tsunamis and Mean Sea-level Changes, Cambridge University Press.

Pugh, D. T., Woodworth, P. L., & Bos, M. S., 2011. Lunar tides in Loch Ness, Scotland, J.

Geophys. Res. Oceans, 116(C11).

Ragheb, A., Clarke, P., & Edwards, S., 2007. Gps sidereal filtering: coordinate-and carrier-

phase-level strategies, J. Geod., 81(5), 325–335.

Ray, J., Dong, D., & Altamimi, Z., 2004. IGS reference frames: Status and future improve-

ments, GPS Solut., 8(4), 251–266.



378

Ray, R., 1998. Ocean self-attraction and loading in numerical tidal models, Mar. Geod.,

21(3), 181–192.

Ray, R., 2013. Precise comparisons of bottom-pressure and altimetric ocean tides, J. Geo-

phys. Res. Oceans, 118(9), 4570–4584.

Ray, R. & Ponte, R., 2003. Barometric tides from ECMWF operational analyses, Annales

Geophysicae, European Geophysical Union, 21(8), 1897–1910.

Ray, R., Egbert, G., & Erofeeva, S., 2011. Tide predictions in shelf and coastal waters:

Status and prospects, in Coastal Altimetry, pp. 191–216, Springer.

Ray, R., Luthcke, S., & van Dam, T., 2013. Monthly crustal loading corrections for satellite

altimetry, J. Atmos. Oceanic Technol., 30, 999–1005.

Ray, R. D., 1999. A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.

2., NASA Technical Memorandum 209478.

Ray, R. D. & Byrne, D. A., 2010. Bottom pressure tides along a line in the southeast

Atlantic Ocean and comparisons with satellite altimetry, Ocean Dyn., 60(5), 1167–1176.

Ray, R. D. & Egbert, G. D., 2004. The global S1 tide, J. Phys. Oceanogr., 34(8), 1922–

1935.

Rebischung, P., Griffiths, J., Ray, J., Schmid, R., Collilieux, X., & Garayt, B., 2012. IGS08:

The IGS realization of ITRF2008, GPS Solut., 16(4), 483–494.

Richter, A., Hormaechea, J., Dietrich, R., Perdomo, R., Fritsche, M., Del Cogliano, D.,

Liebsch, G., & Mendoza, L., 2009. Anomalous ocean load tide signal observed in lake-

level variations in Tierra del Fuego, Geophys. Res. Lett., 36(5).

Richter, A., Hormaechea, J., Dietrich, R., Perdomo, R., Fritsche, M., Del Cogliano, D.,

Liebsch, G., & Mendoza, L., 2010. Reply to comment by MS Bos on “Anomalous ocean

load tide signal observed in lake-level variations in Tierra del Fuego”, Geophys. Res.

Lett., 37(4).



379

Roosbeek, F., 1996. RATGP95: a harmonic development of the tide-generating potential

using an analytical method, Geophys. J. Int., 126, 197–204.

Sabadini, R. & Vermeersen, B., 2004. Global dynamics of the Earth: Applications of

normal mode relaxation theory to solid-earth geophysics, Kluwer Academic Publishers.

Saito, M., 1974. Some problems of static deformation of the Earth., J. Phys. Earth, 22(1),

123–140.

Saito, M., 1978. Relationship between tidal and load Love numbers, J. Phys. Earth, 26(1),

13–16.

Savcenko, R. & Bosch, W., 2012. EOT11a–empirical ocean tide model from multi-mission

satellite altimetry, DGFI Report, 89.

Schenewerk, M. S., Marshall, J., & Dillinger, W., 2001. Vertical ocean-loading deforma-

tions derived from a global GPS network., J. Geod. Soc. Japan, 47(1), 237–242.

Scherneck, H.-G., 1991. A parametrized solid earth tide model and ocean tide loading

effects for global geodetic baseline measurements, Geophys. J. Int., 106(3), 677–694.

Scherneck, H.-G. & Bos, M. S., 2002. Ocean tide and atmospheric loading, in IVS 2002

General Meeting Proceedings, pp. 205–214.

Schureman, P., 1971. Manual of Harmonic Analysis and Prediction of Tides, U.S. Depart-

ment of Commerce, Coast and Geodetic Survey.

Schwiderski, E. W., 1980. On charting global ocean tides, Rev. Geophys., 18(1), 243–268.

Smylie, D., 2013. Earth Dynamics: Deformations and Oscillations of the Rotating Earth,

Cambridge University Press.

Souchay, J., Mathis, S., & Tokieda, T., 2012. Tides in astronomy and astrophysics, vol. 861,

Springer.

Stacey, F. D. & Davis, P. M., 2009. Physics of the Earth: Fourth Edition, Cambridge

University Press.



380

Stammer, D., Wunsch, C., Fukumori, I., & Marshall, J., 2002. State estimation improves

prospects for ocean research, Eos Transactions, 83(27), 289–295.

Stammer, D., Ray, R., Andersen, O., Arbic, B., Bosch, W., Carrère, L., Cheng, Y., Chinn,

D., Dushaw, B., Egbert, G., et al., 2014. Accuracy assessment of global barotropic ocean

tide models, Rev. Geophys., 52(3), 243–282.

Stolz, A. & Larden, D., 1979. Seasonal displacement and deformation of the earth by the

atmosphere, Journal of Geophysical Research: Solid Earth, 84(B11), 6185–6194.

Sun, W. & Okubo, S., 1993. Surface potential and gravity changes due to internal dislo-

cations in a spherical earth – i. theory for a point dislocation, Geophys. J. Int., 114(3),

569–592.

Takeuchi, H., 1950. On the Earth tide of the compressible Earth of variable density and

elasticity, Eos Transactions, 31(5), 651–689.

Takeuchi, H., 1966. Theory of the Earth’s Interior, Blaisdell Publishing Company.

Takeuchi, H. & Saito, M., 1972. Seismic surface waves, in Methods in Computational

Physics, Volume 11/Seismology: Surface Waves and Earth Oscillations, pp. 217–295,

Academic Press.

Tarantola, A., 2005. Inverse problem theory: And methods for model parameter estimation,

Society for Industrial and Applied Mathematics.

Thomas, I. D., King, M. A., & Clarke, P. J., 2007. A comparison of GPS, VLBI and model

estimates of ocean tide loading displacements, J. Geod., 81(5), 359–368.

Thornton, S. & Marion, J., 2004. Classical Dynamics of Particles and Systems 5th Ed.,

Brooks/Cole: Belmont, CA.

Trabant, C., Hutko, A. R., Bahavar, M., Karstens, R., Ahern, T., & Aster, R., 2012. Data

products at the IRIS DMC: Stepping stones for research and other applications, Seismol.

Res. Lett., 83(5), 846–854.



381

Tregoning, P. & van Dam, T., 2005. Atmospheric pressure loading corrections applied to

GPS data at the observation level, Geophys. Res. Lett., 32(22).

Tregoning, P. & Watson, C., 2009. Atmospheric effects and spurious signals in GPS analy-

ses, J. Geophys. Res., 114(B9).

Tregoning, P. & Watson, C., 2011. Correction to “Atmospheric effects and spurious signals

in GPS analyses”, J. Geophys. Res., 116(B2).

Tsai, V. C., Ampuero, J.-P., Kanamori, H., & Stevenson, D. J., 2013. Estimating the effect

of earth elasticity and variable water density on tsunami speeds, Geophysical Research

Letters, 40(3), 492–496.

van Dam, T. & Herring, T., 1994. Detection of atmospheric pressure loading using very

long baseline interferometry measurements, J. Geophys. Res. Solid Earth, 99(B3), 4505–

4517.

van Dam, T., Wahr, J., Chao, Y., & Leuliette, E., 1997. Predictions of crustal deforma-

tion and of geoid and sea-level variability caused by oceanic and atmospheric loading,

Geophys. J. Int., 129(3), 507–517.

van Dam, T., Wahr, J., Milly, P., Shmakin, A., Blewitt, G., Lavallée, D., & Larson, K., 2001.

Crustal displacements due to continental water loading, Geophys. Res. Lett., 28(4), 651–

654.

van Dam, T., Altamimi, Z., Collilieux, X., & Ray, J., 2010. Topographically induced height

errors in predicted atmospheric loading effects, J. Geophys. Res. Solid Earth, 115(B7).

van Dam, T., Collilieux, X., Wuite, J., Altamimi, Z., & Ray, J., 2012. Nontidal ocean

loading: Amplitudes and potential effects in GPS height time series, J. Geod., 86(11),

1043–1057.

van Dam, T. M., Blewitt, G., & Heflin, M. B., 1994. Atmospheric pressure loading effects

on Global Positioning System coordinate determinations, J. Geophys. Res., 99(B12),

23939–23950.



382

van den Dool, H., Saha, S., Schemm, J., & Huang, J., 1997. A temporal interpolation

method to obtain hourly atmospheric surface pressure tides in reanalysis 1979–1995, J.

Geophys. Res. Atmos., 102(D18), 22013–22024.

Varga, P., 1983. Potential free love numbers, Manuscripta Geodetica, 8, 85–92.

Varga, P., 1992. Complete description of forced tangential elastic deformations, Phys. Earth

Planet. Inter., 73(3), 199–205.

Vey, S., Calais, E., Llubes, M., Florsch, N., Woppelmann, G., Hinderer, J., Amalvict, M.,

Lalancette, M., Simon, B., Duquenne, F., et al., 2002. GPS measurements of ocean

loading and its impact on zenith tropospheric delay estimates: A case study in Brittany,

France, J. Geod., 76(8), 419–427.

Vinogradova, N. T., Ponte, R. M., & Stammer, D., 2007. Relation between sea level and

bottom pressure and the vertical dependence of oceanic variability, Geophys. Res. Lett.,

34(3).

Wang, H., Xiang, L., Jia, L., Jiang, L., Wang, Z., Hu, B., & Gao, P., 2012. Load Love

numbers and Green’s functions for elastic Earth models PREM, iasp91, ak135, and mod-

ified models with refined crustal structure from Crust 2.0, Computers & Geosciences, 49,

190–199.

Wang, R., 1997. Tidal response of the solid Earth, in Tidal Phenomena, pp. 27–57, eds

Wilhelm, H., Zürn, W., & Wenzel, H.-G., Springer.

Wenzel, H.-G., 1997. Tide-generating potential for the Earth, in Tidal Phenomena, pp.

9–26, Springer.

Wessel, P. & Smith, W. H., 1996. A global, self-consistent, hierarchical, high-resolution

shoreline database, J. Geophys. Res. Solid Earth, 101(B4), 8741–8743.

Wessel, P., Smith, W. H., Scharroo, R., Luis, J., & Wobbe, F., 2013. Generic mapping tools:

Improved version released, Eos Transactions, 94(45), 409–410.



383

Widmer, R., Masters, G., & Gilbert, F., 1991. Spherically symmetric attenuation within the

Earth from normal mode data, Geophys. J. Int., 104(3), 541–553.

Wiggins, R. A., 1968. Terrestrial variational tables for the periods and attenuation of the

free oscillations, Phys. Earth Planet. Inter., 1(4), 201–266.

Williams, S. & Penna, N., 2011. Non-tidal ocean loading effects on geodetic GPS heights,

Geophys. Res. Lett., 38(9).

Woodhouse, J., 1988. The calculation of eigenfrequencies and eigenfunctions of the free

oscillations of the Earth and the Sun, in Seismological Algorithms: Computational Meth-

ods and Computer Programs, pp. 321–370, Academic Press.

Wright, J., Colling, A., & Park, D., 1999. Waves, tides, and shallow-water processes,

Butterworth-Heinemann, in association with The Open University.

Wu, P. & Peltier, W., 1982. Viscous gravitational relaxation, Geophys. J. Int., 70(2), 435–

485.

Wu, X., Collilieux, X., Altamimi, Z., Vermeersen, B., Gross, R., & Fukumori, I., 2011.

Accuracy of the International Terrestrial Reference Frame origin and earth expansion,

Geophys. Res. Lett., 38(13).

Wu, X., Ray, J., & van Dam, T., 2012. Geocenter motion and its geodetic and geophysical

implications, J. Geodyn., 58, 44–61.

Wunsch, C. & Stammer, D., 1997. Atmospheric loading and the oceanic “inverted barom-

eter” effect, Rev. Geophys., 35(1), 79–107.

Yeh, T.-K., Huang, C., & Xu, G., 2008. GPS height and gravity variations due to ocean

tidal loading around Taiwan, Surv. Geophy., 29(1), 37–50.

Yuan, L. & Chao, B. F., 2012. Analysis of tidal signals in surface displacement measured

by a dense continuous GPS array, Earth Planet. Sci. Lett., 355, 255–261.



384

Yuan, L., Chao, B. F., Ding, X., & Zhong, P., 2013. The tidal displacement field at Earth’s

surface determined using global GPS observations, J. Geophys. Res. Solid Earth, 118,

2618–2632.

Zahel, W., 1997. Ocean Tides, in Tidal Phenomena, pp. 113–143, Springer.

Zerbini, S., Matonti, F., Raicich, F., Richter, B., & van Dam, T., 2004. Observing and

assessing nontidal ocean loading using ocean, continuous GPS and gravity data in the

Adriatic area, Geophys. Res. Lett., 31(23).

Zumberge, J., Heflin, M., Jefferson, D., Watkins, M., & Webb, F., 1997. Precise point

positioning for the efficient and robust analysis of GPS data from large networks, J.

Geophys. Res., 102(B3), 5005–5017.

Zürn, W., 1997. The nearly-diurnal free wobble-resonance, in Tidal Phenomena, pp. 95–

109, eds Wilhelm, H., Zürn, W., & Wenzel, H.-G., Springer.


