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Abstract

Surface mass loads come in many different varieties, including the oceans, atmosphere,
rivers, lakes, glaciers, ice caps, and snow fields. The loads migrate over Earth’s surface on
time scales that range from less than a day to many thousand years. The weights of the shift-
ing loads exert normal forces on Earth’s surface. Since the Earth is not perfectly rigid, the
applied pressure deforms the shape of the solid Earth in a manner controlled by the material
properties of Earth’s interior. One of the most prominent types of surface mass loading,
ocean tidal loading (OTL), comes from the periodic rise and fall in sea-surface height due
to the gravitational influence of celestial objects, such as the moon and sun. Depending on
geographic location, the surface displacements induced by OTL typically range from mil-
limeters to several centimeters in amplitude, which may be inferred from Global Navigation
and Satellite System (GNSS) measurements with sub-millimeter precision. Spatiotemporal
characteristics of observed OTL-induced surface displacements may therefore be exploited
to probe Earth structure. In this thesis, I present descriptions of contemporary observational
and modeling techniques used to explore Earth’s deformation response to OTL and other
varieties of surface mass loading. With the aim to extract information about Earth’s density
and elastic structure from observations of the response to OTL, I investigate the sensitiv-
ity of OTL-induced surface displacements to perturbations in the material structure. As a
case study, I compute and compare the observed and predicted OTL-induced surface dis-
placements for a network of GNSS receivers across South America. The residuals in three
distinct and dominant tidal bands are sub-millimeter in amplitude, indicating that modern
ocean-tide and elastic-Earth models well predict the observed displacement response in
that region. Nevertheless, the sub-millimeter residuals exhibit regional spatial coherency
that cannot be explained entirely by random observational uncertainties and that suggests
deficiencies in the forward-model assumptions. In particular, the discrepancies may reveal
sensitivities to deviations from spherically symmetric, non-rotating, elastic, and isotropic

(SNREI) Earth structure due to the presence of the South American craton.
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Tidal Theory

1.1 Introduction and Motivation

Gravitational forcing by the moon and sun deforms the solid Earth both directly through
the gravitational potential (body tides) and indirectly through loading by the periodic re-
distribution of Earth’s oceans (load tides). Ocean tidal loading (OTL) refers to the process
by which tidally redistributed seawater exerts a normal force on Earth’s surface. The mate-
rial properties of the crust and upper mantle govern the flexural response of the solid Earth
to the weight of the additional water; thus, the OTL response signal, contained within all

geodetic measurements, may be exploited to explore Earth’s interior structure.

Whereas the spatial distribution of the body-tide response generally follows that of the equi-
librium tide derived directly from the gravitational potential, ocean tides exhibit a complex
spatial pattern due to interactions with continental boundaries and bathymetry (Jentzsch,
1997). Thus, whereas body tides are long wavelength phenomena that sample a very
large-scale average of Earth structure (e.g., Farrell, 1972a; Latychev et al., 2009), ocean
tidal loads are shorter wavelength features that probe Earth’s material properties at finer
spatial scales (e.g., Farrell, 1972a; Baker, 1984; Ito & Simons, 2011; Agnew, 2015; Bos
et al., 2015). Constraints on Earth’s interior properties derived from surface mass loading
(SML) provide an independent means of testing scaling laws and assumptions commonly
adopted in seismology, rejecting existing proposed Earth models that are inconsistent with
the geodetic observations (e.g., [to & Simons, 2011; Bos et al., 2015), and addressing out-
standing questions in geophysics, such as the long-term stability of continental cratons

against tectonic deformation (e.g., Jordan, 1978).

Although the concept of using tidal displacements to probe the Earth’s interior emerged

several decades ago (Takeuchi, 1950; Longman, 1962; Farrell, 1972a), early attempts to



implement the theory using gravity, strain and tilt measurements were limited in effective-
ness due to insufficient spatial coverage and high sensitivities to local variations in mate-
rial properties (Baker, 1984; Agnew, 2015). Modern Global Navigation Satellite System
(GNSS) receivers do not suffer from the same sparsity or sensitivity constraints and record
Earth’s response to OTL with sub-millimeter precision (e.g., Penna et al., 2015). Given
the precision of modern GNSS observations (Blewitt, 2015), the rapid expansion of global
and regional GNSS networks, and the accuracy of contemporary ocean-tide models (Stam-
mer et al., 2014), the possibility of using observed OTL-induced surface displacements to

investigate Earth’s interior structure has become increasingly tractable.

The current chapter provides a basic introduction to tidal theory, including a derivation of
the equilibrium tide and a decomposition of the tidal potential into individual harmonic
terms. Ch. 2 reviews one of the most successful and widely used methods for extracting
the amplitudes and phases of major tidal constituents from a displacement time series: har-
monic analysis. Ch. 3 discusses the details of processing Global Positioning System (GPS)
data for use in OTL-response analysis. Ch. 4 considers techniques used to model Earth’s
deformation response to surface mass loading. I first discuss the computational procedure
for deriving load Love numbers and load Green’s functions for spherically symmetric, non-
rotating, elastic, and isotropic (SNREI) Earth models. I then document a strategy for con-
volving the load Green’s functions with a spatially distributed load. Ch. 5 briefly describes
methods that may be used to develop an inverse problem relating measured load-induced
surface displacements to structural model parameters. In Ch. 6, I analyze the sensitivity of
load-induced surface displacements to SNREI Earth structure. Ch. 7 presents a case study
that explores observed and predicted OTL-induced surface displacements in South Amer-
ica. In Ch. 8, I provide some remarks on extending the methodology for predicting surface
displacements induced by ocean tidal loading to surface displacements induced by varia-
tions in surface pressure from additional sources, such as the atmosphere and hydrosphere.
Ch. 9 includes a brief summary and a short discussion on possible future directions in the
field. The appendices provide additional data tables and figures, information about the GPS

station network, and supplementary information about GPS data processing.



1.2 Tide-Generating Forces

According to Newton’s law of universal gravitation, the force of gravity, F;, on a test mass,

m, is given by:
— GMm
Fg = T, (] . 1)
where G is the universal gravitational constant, M is the mass of the reference body, and R

is the distance between the center of mass of the reference body and the center of mass of

the test body.

Taking the sun as a reference body and the Earth as a test body, followed by the moon as a
reference body and the Earth again as a test body, demonstrates that the gravitational force
of the sun on the Earth is about 178 times greater than the gravitational force of the moon
on the Earth. Thus, although the moon orbits the Earth, the Earth-moon system orbits the

sun.

The moon, on the other hand, generates tidal disturbances that are more than twice as large
as those due to the sun. Since the tides are created by gravitational forcing, and the sun
exerts a greater gravitational pull on the Earth, the relatively large lunar tides might seem

counterintuitive.

The key to resolving the apparent discrepancy lies in the definition of the tides as the peri-
odic rise and fall in sea level (or deformation of the solid Earth) that results from differential,
or unbalanced, gravitational forces throughout the Earth (e.g., Doodson & Warburg, 1941,
Sec. 2.2). The differential forces arise because the Earth has a finite diameter over which the
gravitational forces are distributed. In other words, the unequal distances between various
points on and in the Earth with respect to the external attracting body lead to an unbalanced

response to the gravitational forcing.

The Earth and moon, for example, revolve around a common center of mass known as the
barycenter, generating a centrifugal force (in a non-inertial, rotating reference frame) that
is always directed away from the center of revolution. Since the Earth revolves about the

barycenter as a coherent body, the centrifugal force is the same everywhere inside and on



Figure 1.1: Schematic diagram depicting tidal forces, or accelerations, generated by a two-
body system. For the Earth-Moon system, the largest arrows represent an acceleration of
1.14 um s~2. The elliptical outline illustrates a tide-generated equipotential surface (greatly
exaggerated). The points A—D, indicated by the dashed lines, are referred to within the text.
The diagram has been reproduced and modified with permission from Agnew (2015).

the surface of the Earth, and always directed away from the moon (e.g., Godin, 1972; Pugh,

1987; Pugh & Woodworth, 2014).

The centrifugal force due to revolution about the barycenter is perfectly balanced at the
Earth’s center of mass by the gravitational force due to the moon. At other locations in and
on the Earth, however, the gravitational force varies, but the centrifugal force remains the
same, thereby giving rise to differential forces. Fig. 1.1 illustrates the tidal forces generated

by a two-body system.

Since the centrifugal force balances the lunar gravitational force at the center of mass of the
Earth, the equation for the centrifugal force on a test mass, m, is given by (e.g., Pugh &
Woodworth, 2014, Sec. 3.1):

_ GMpm
Fcentrifugal = Tv (1-2)
LE

where M7, is the mass of the moon and R g is the distance between the center of mass of
the moon and the center of mass of Earth. For a test mass located at the sub-lunar point

(point A, Fig. 1.1), the centrifugal force would remain the same, but the gravitational force



would instead be given by (e.g., Pugh & Woodworth, 2014):

— G Mrm
F, = —"— 1.3
gA (RLE‘—G)2’ ( )

where a is the radius of the Earth (assumed spherical). The difference between the gravita-

tional and centrifugal forces yields the tide-generating force, F'r,, at point A:

FTA = Iy, — Fcentrifugal (1.4)
. G ML m G ML m
(RLE — a)? R? .
GMrm 1
= ~1
R? 2
LE 1_ _a
(1-#5)
GM
z;m0+2“.~—g
Rip Rrp
_ 2GMpma
Rip

a
RLE

Since is only about & (e.g., Pugh & Woodworth, 2014), I have only kept the first non-
zero term in the expansion. Repeating the procedure for point B in Fig. 1.1 yields a vector
of the same magnitude, but pointed in the opposite direction (i.e., away from the moon),

which generates the familiar tidal bulges.

To examine what happens at the poles, I decompose the tidal forces, or tide-generating
forces, into radial and tangential components relative to Earth’s surface (e.g., Doodson &
Warburg, 1941). Since Ry is approximately equal to Ry, where Ry¢ is the distance
between point C and the center of mass of the moon, the tangential components of the force
vectors effectively cancel. The unit vector situated at point C and directed along the path
Rpc, however, also has a small surface-normal component, which is approximately equal

to — 5% (e.g., Doodson & Warburg, 1941, Sec. 2.3). Thus, the tidal force at point C in

RrE

Fig. 1.1 is given approximately by:

Fr, = ———F£F"2 (1.5)



Analogously, F'r, is equivalent in magnitude but opposite in direction to F'7..

It turns out that the components of the tidal forces directed tangential to the surface, other-
wise known as the tidal tractive forces (e.g., Doodson & Warburg, 1941), are principally
responsible for generating the tides (e.g., Doodson & Warburg, 1941; Boon, 2004). Com-
puting the radial component of the force helps to elucidate this point. In particular, I exam-
ine the gravitational force due to the moon versus the gravitational force due to the Earth

on a test mass at point A. The gravitational force due to the Earth is given by

F N GMEm

B= (1.6)
and the gravitational force due to the moon is given by
— GM
Fp == (17)
R
LA

where Ry 4 is the distance between point A and the center of mass of the moon. The force

due to the moon relative to the force due to the Earth is therefore:

— M a?

F=-—* Fp~34x10°Fp. (1.8)

Thus, for a test mass on the surface of the Earth, the radial component of the gravitational
force due to the moon is extremely small relative to Earth’s gravity and does not play a
significant role in the generation of the tides (e.g., Doodson & Warburg, 1941, Sec. 2.3).
The tangential component of the tidal-force vector, however, does not face an opposing
gravitational force, thereby allowing the water to move freely across Earth’s surface. As
illustrated by Fig. 1.2, the flow direction due to the tidal forcing is away from points C
and D (Fig. 1.1) and towards points A and B. The solid Earth cannot move as freely as the

liquid ocean water, but still responds to the forcing by material deformation.



To Moon

Figure 1.2: The surface-tangential components of the tidal force vectors resolved onto
Earth’s surface. The so-called tractive forces are unopposed by Earth’s gravity and therefore
principally responsible for generating the tidal response.

1.3 Tidal Potential

Computing the tide-generating forces is worthwhile for gaining some physical intuition
about tides, but for more complete analyses of the tidal spectrum, deriving the tidal poten-
tial is preferable. The tidal potential is a scalar, rather than a vector, quantity and hence
much easier to develop in computations. The gravitational potential at a point, P, on the
Earth’s surface due to the gravitational influence of an external body may be written as

(e.g., Doodson, 1921; Melchior, 1983; Pugh & Woodworth, 2014, Sec. 3.2.1):

V= , (1.9)

where G is the universal gravitational constant, M is the mass of the external body (e.g.,
the moon), and r is the distance between the observation point, P, and the center of mass
of the external body. In geodesy, the convention is to define the gravitational potential as a
positive quantity such that an increase in potential results in an increase in the height of the

geoid (e.g., Pugh & Woodworth, 2014).



Using the geometry shown in Fig. 1.3, I apply the law of cosines to obtain a formula for 7:
r? = a® + R* — 2aRcos (1.10)

and use this to re-write the equation for the potential:

1
M a? "2
V= GR {1—2R0086’+Rz} . (1.11)

The bracketed term is a generating function for Legendre polynomials (e.g., Boas, 1983,

Sec. 12.5). Thus, the potential may be expanded as:

GM a a?
vV = T Py(cos ) + RPl(cos 0) + Iz — P5(cos @) + R—Pg(cos ) +
GM X fa\n
- == (E) Py(cos ), (1.12)

where P, (cosf) are the Legendre polynomials. The first few Legendre polynomials are

(e.g., Boas, 1983; Pugh & Woodworth, 2014):

Py(cosh) = 1
Pi(cosf) = cosb
1
Py(cosf) = 5(3 cos> — 1)

1
Ps(cosf) = 5(5C0830—3C089).

The first term in Eq. 1.12 is constant-valued and does not generate a force. The second term
represents a uniform force in the direction of OC, and therefore does not generate a tidal ef-
fect. The third term, in contrast, produces the largest tidal effect (e.g., Pugh & Woodworth,
2014). Higher-degree terms (beyond the third term) are sometimes neglected, since the po-
tential is proportional to (%)n, where n represents the spherical harmonic degree (Pugh &

Woodworth, 2014). For the moon and for the sun, R ~ 4.3 x 10~°. Contributions

’ R 60’

to the tidal potential therefore drop off rapidly with increasing n. Note that, even though

the sun is much more massive than the moon, the sun is also much further away. Since the



Figure 1.3: Schematic diagram depicting the geometry used to construct the gravitational
potential observed at point P on the Earth due to the gravitational forcing imposed by a
secondary body, “Body 2.” Body 2 is typically the moon or sun, but may be any external
body, such as another planet.

magnitude of the potential drops off as %, it is not necessary to expand the potential for
the sun to as high of a degree as for the moon. In the case of the second-degree expansion,
for example, A}g—g = 0.46%, where Mg is the mass of the sun, M7, is the mass of the
moon, and Rg and R, are the distances between the center of mass of the Earth and the sun
and moon, respectively. Furthermore, it is generally not necessary for practical purposes to

expand the potential for either body beyond the third- or fourth-degree (e.g., Cartwright &

Taylor, 1971).

Focusing on the degree-2 expansion, the tide-generating potential, V7, may be written as:
1 2
Vi = §GM—(3COS 0—1). (1.13)

This equation, however, is not very useful, since 6 and R are complicated functions of the
astronomical ephemeris and P is an arbitrary point on the Earth’s surface. Fortunately, the
angle between OP and OC (i.e., f) may be related to the astronomical ephemeris using
spherical trigonometry. For the Earth-moon system, # depends on the declination angle
of the moon north of the equator, dy; the latitude of point P (positive north), ¢ p; and the

hour angle of the moon, C;. The lunar hour angle is the difference in longitude between
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the meridian of point P and the meridian of the sub-lunar point. The spherical trigonomet-
ric formula relating these quantities is (e.g., Doodson, 1921; Doodson & Warburg, 1941;

Schureman, 1971; Pugh & Woodworth, 2014):

cosf = singpsindy, + cos ¢pp cosdy, cos C,. (1.14)
As such,
cos’ = sin?¢psin®dy + cos? ¢p cos® dy cos> Cp, +
2sin ¢ppsindy, cos ¢pp cosdy, cos Cf.. (1.15)

Using the trigonometric identity

sin 2u = 2 sin u cos u, (1.16)
Eq. 1.15 simplifies to:
cos’f = sin? op sin? d; + cos? op cos? dy cos® Cp +
1
§sin2¢psin2chosCL. (1.17)

To reduce the order of terms in cos Cp,, I use
2 1
cos* O = §(COS2C'L+1) (1.18)
to re-arrange Eq. 1.17, which results in:

1
cos’f = sin? ppsin®dy + cos® ¢p cos? dy, <2(cos 2CT + 1)) +
1. .
§sm2¢p sin 2dy, cos C',,
1
= sin®¢psin?dy + 5 cos? ¢p cos® dy, cos 20, +

1 1
50032 ¢p(:082 dr, + Qsin2q§psin2dL cosCy. (1.19)
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Following (Pugh & Woodworth, 2014), the trigonometric identity

cos?u=1—sin’u (1.20)

may be used to re-write Eq. 1.19 as:

cos’ = sin? op sin?dy + %COSQ op cos® dy cos 207 +
%(1 —sin? ¢p)(1 —sin®dy) + % sin 2¢ p sin 2dy, cos C,,
= sin?¢psin®dy + %cos2 ép cos® dy, cos 2C, +
%(1 — sin? ¢p — sin? dy, + sin? ¢p sin? dr) +
%sin2¢p sin 2dy, cos C7,
1

= = cos? op cos? dy cos 20, +

—(1 —sin® ¢pp — sin dy, + 3sin® ¢psin?dr) +

=N =N

— sin 2¢p sin 2dy, cos C7,

wW N

1
= Zgin? op sin®dy + 3 cos? op cos® dy cos 20 +

— N

1
—(1- sin® ¢p — sin? dr) + B sin 2¢p sin 2dy, cos Cf,

1 3 1 1
= - 5 <sin2 QZ)P — 3) (Sin2 dL - 3) +

1
cos? pp cos? dy, cos 2C, + 3 sin 2¢p sin 2dy, cos C',. (1.21)

\V]

N — W

Eq. 1.21 can then be substituted into Eq. 1.13 to obtain a formula for the lunar tide-
generating potential, Vy, in terms of the astronomical ephemeris (e.g., Doodson, 1921;

Pugh, 1987; Pugh & Woodworth, 2014):
3 M 3 (3 1 1
VL = §gaM—; (%) {2 (Sin2 dL — 3) <Sin2 QZ)P — 3> +
1 1
3 sin 2dy, sin 2¢p cos Cf, + 5 cos? d, cos® ¢p cos 2C’L} , (1.22)

where M7, is the mass of the moon and I have made use of the relationship

G=2" (1.23)
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where Mg is the mass of the Earth and g is the gravitational acceleration at Earth’s surface.

This formulation provides the foundation for a development of the equilibrium tide, which
is equivalent to the tidal equipotential on a perfectly rigid Earth (e.g., Agnew, 2015). Note,
however, that Eq. 1.22 is only of second-degree (i.e., spherical harmonic degree n = 2),
though for practical purposes the potential is typically expanded to at least the third- or
fourth-degree for the moon and at least second- or third-degree for the sun (e.g., Cartwright

& Taylor, 1971; Cartwright & Edden, 1973; Hartmann & Wenzel, 1995).

Furthermore, Eq. 1.22 does not account for the flattening of the Earth due to rotation or
other distortions of the geoid (e.g., Cartwright & Taylor, 1971). Accounting for the shape
of the geoid introduces higher-order terms into the development of the tidal potential (e.g.,
Hartmann & Wenzel, 1995; Roosbeek, 1996, Sec. 4.5), but the effect is apparently small:
~1.8 ngal for lunar tidal gravity (Roosbeek, 1996). The tidal potential catalogues devel-
oped by Doodson (1921), Cartwright & Taylor (1971), and Cartwright & Edden (1973),
for example, were not adjusted to account for the secondary effects that arise due to the

non-spherical shape of the geoid.

1.4 Equilibrium Tide Formulation

1.4.1 Direct Mathematical Approach

Much of the following development has been reproduced from Pugh (1987) and Pugh &
Woodworth (2014), but may also be found in other sources dating back to the cardinal
works on tidal harmonic analysis by Darwin (1898) and Doodson (1921) in the late 19th

and early 20th centuries.

The equilibrium tide, or the height of an ideal ocean that is in perfect equilibrium with the
tidal forcing (assuming negligible self-attraction effects) (e.g., Schureman, 1971, Par. 88),
is given by:

E=—, (1.24)

which has units of length. Eq. 1.24 may be roughly derived by relating the gravitational
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and tide-generating forces to the slope of the equilibrium sea surface (Pugh & Woodworth,

2014).

Combining Eq. 1.24 with Eq. 1.22, an expression for the degree-2 equilibrium tide due to
the moon may be derived (e.g., Doodson, 1921; Melchior, 1983; Pugh & Woodworth, 2014,
Sec. 3.2.2):

ult) = 2 [Co(t) (3 sin? pp — 1) T C1(t)sin 20p + O (t) cos? @»} . 12s)
E 2 2

where

Co(t) = <R§(t)>: (g sin? d (t) —;) (1.26)
Ct) = <R§(t)> (i sin 2d, (£) cos CL(t)> (1.27)
Co(t) = < R;‘(t)>3(z cos? dp (¢) cosch(t)>. (1.28)

Eq. 1.25 expresses the equilibrium tide in terms of the north latitude of the observation
point P (¢ p) and three time-dependent coefficients, which vary with lunar declination (dy,),
the distance between the center of mass of the Earth and moon (R;), and the lunar hour

angle (Cp).

For clarity, a general geodetic factor, G*, may be defined:

_3agMp &
_4 ME 03’

G* (1.29)
where M is the mass of the moon, Mg is the mass of Earth, g is the mean acceleration due
to gravity at Earth’s surface, a is the radius of the Earth (assumed spherical), and % is the
mean value of }% (e.g., Doodson, 1921; Melchior, 1983). Dropping the time-dependent
notation and multiplying by g to convert tidal height back to gravitational potential, Eq.
1.25 may be re-written as (Doodson, 1921):

3
Degree=2 g _ y/Degree=2 _ <RCL> (GyHo + GiHy + G3Hs),  (1.30)
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Doodson’s Geodetic Coefficients
Symbol ‘ Formula
Second Degree (n = 2)

G} 5G*(1— 3 sin® ¢p)
G G* sin(2¢p)
G5 G* cos? ¢p

Third Degree (n = 3)
Gy 1.11803 G* sin ¢p(3 — 5sin” ¢p)
GY 0.72618 G* cos pp(1 — 5sin’ ¢p)
GY 2.59808 G* sin ¢ p cos” pp

GY G* cos® pp

Fourth Degree (n = 4)

Gy’ 0.12500 G* (3 — 30sin? ¢p + 35sin? ¢p)
Gy’ 0.47346 G* sin(2¢p) (3 — Tsin? ¢p)
Gy’ 0.77778 G* cos? pp(1 — Tsin? ¢p)

Gy’ 3.07920 G* sin ¢p cos® ¢p

Gy G* cos ¢p

Table 1.1: The general geodetic factor G* = %a%ﬁL gé where M, is the mass of the

moon, Mg is the mass of Earth, g is the mean acceleration due to gravity at Earth’s surface,
a is the radius of Earth (assumed spherical), and % is the mean value of }%' The numerical
coefficients that precede G* in the third- and fourth-degree coefficients are derived from the
quantity ¢, which is approximately equivalent to the sine of the mean equatorial horizontal
parallax (Doodson, 1921).

where

Hy = g—QsinQdL (1.31)
Hi = sin2dyp cosCf, (1.32)
Hy, = cos?dy cos 2C, (1.33)

and G, G7, and G5 are Doodson’s Geodetic Coefficients, defined in Table 1.1.

Additional details regarding the expansion of the equilibrium tide may be found in, e.g.,
Cartwright & Taylor (1971); Doodson (1921); Doodson & Warburg (1941), Ch. 4; Godin
(1972), pg. 16-27 and Appendix 1; Pugh (1987), Chs. 3 and 4; and Pugh & Woodworth
(2014). Note that, for solar terms, G'¢ = 0.46 G*. A short discussion of equilibrium tide

catalogues will be provided later in this chapter (Sec. 1.5).

From Eq. 1.25 for the equilibrium tide, along with its time-dependent coefficients, note
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that each coefficient depends on the lunar hour angle as a cosine term with a different
frequency: the Cy(t) coefficient includes a cos(2C'L,(t)) term, the C (¢) coefficient includes
acos(Cp(t)) term, and the Cy(t) coefficient does not include a cosine term with dependence
on the hour angle. The response of the equilibrium tide to astronomical forcing is separated
into these three coefficients, which vary in spherical harmonic mode as a result of their

dependence on the hour angle (e.g., Pugh & Woodworth, 2014).

Tides that do not depend on the hour angle (i.e., coefficient Cp(t)) are known as long-
period tides and are characterized by a zonal spherical harmonic function (i.e., n = 2,
m = 0, where m is the spherical harmonic order) (e.g., Melchior, 1983, Ch. 1). Tidal
signals proportional to cos(CL(t)) (i.e., C1(t)), characterized by a frequency of one cycle
per day, are known as diurnal tides and are represented by a tesseral spherical harmonic
function (i.e., n = 2, m = 1). Tidal signals proportional to cos(2CL(t)) (i.e., Ca(t)),
characterized by a frequency of two cycles per day, are known as semidiurnal tides and are

represented by a sectorial spherical harmonic function (i.e., n = 2, m = 2).

Note also the dependence of the coefficients on lunar declination. From the (% sin? dy (t) — %)
portion of the C(t) term, it is clear that the long-period tides reach a maximum amplitude at
the poles and zero amplitude at +35.27° declination (e.g., Pugh & Woodworth, 2014, Sec.
3.2.2). The C(t) term, which is proportional to sin 2d,(t), also varies at twice the rate of
variations in lunar declination, reaching a maximum amplitude at £45° and a minimum am-
plitude at the equator and poles. The Cy(t) term varies with cos? dy,(¢); thus, semidiurnal

tides reach a maximum amplitude at the equator and zero amplitude at the poles.

Similarly, the equilibrium tide depends on the latitude (positive north) of the observation
point, ¢p. The long-period tides, proportional to sin® ¢p, reach maximum values at the
poles. The diurnal tides, proportional to sin 2¢p, are maximized at +45° latitude. The

semidiurnal tides, proportional to cos? ¢ p, are maximized at the equator.

Plugging in average values for a, Ry, Mg, and My, the amplitude of the semidiurnal

equilibrium tide is 0.27 m (54 cm peak-to-peak) at the equator (assuming dy, = 0°).

To compute the equilibrium tide due to the sun, the variables dy, My, and Ry, in Eq. 1.25
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Parameter Description Symbol Temporal Evolution

Lunar Hour Angle (radians) Ap+ (wo+ws)t —m— A
Solar Hour Angle (radians) Ap + (wo + w3)t —m — Ag
Mean longitude of moon (°) 277.02 + 481267.897 + 0.001177
Mean longitude of sun (°) 280.19 + 36000.777 + 0.00037°
Longitude of lunar perigee (°) 334.39 + 4069.047 — 0.010372
Longitude of lunar ascending node (°) 259.16 — 1934.14T + 0.002172
Longitude of perihelion (°) 281.22 + 1.72T + 0.000572

Spatiotemporal Variables
365(Y —1900) - (D—1)+it HMS

SAPLS :*%@Q

Time in Julian centuries T

36525
Current year Y
Current day D
Current hour, minute, second HMS units of days
Leap year correction 1 integer part of (Y-1901)/4
East longitude of observation point P Ap units of radians
Sidereal time at Greenwich Meridian t measured from First Point of Aries
Right Ascension of Moon/Sun Ar/Ag see text for equations

Table 1.2: Astronomical parameters used to describe the temporal variations of the moon
and sun relative to the Earth (e.g., Pugh, 1987). Only six of the seven parameters listed
are independent. The variables wy and ws represent angular speeds of the astronomical
parameters, which are listed in Table 1.3. See also, e.g., Doodson (1921), Doodson &
Warburg (1941), Schureman (1971), Melchior (1983), and Meeus (1998).

are replaced with dg, Mg, and Rg, respectively, where dg represents the solar declination,
Mg is the mass of the sun, and Rg is the distance between the center of mass of the Earth
and the center of mass of the sun. Furthermore, the hour angle, C'g, represents the angular

separation between the sub-solar point and the observation point, P.

Earth-Sun System: The distance between the Earth and sun, Rg, is given by (e.g., Dood-
son & Warburg, 1941; Munk & Cartwright, 1966; Pugh, 1987; Pugh & Woodworth, 2014):

Ry

R pr—
s 1+ egcos(h—p')’

(1.34)

where eg is the eccentricity of the Earth’s orbit about the sun (~0.0167504 from Munk &
Cartwright (1966)), R is proportional to 1/(mean equatorial parallax) (Munk & Cartwright,
1966) or equal to the mean solar distance (Doodson & Warburg, 1941; Pugh, 1987; Pugh

& Woodworth, 2014), and h and p’ are defined in Table 1.2. Note that the mean equatorial
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(solar) parallax, 8.79415"” from Munk & Cartwright (1966), may be related to the mean

earth-sun distance by:

6371 km

1 8.79415 7w
60 60 180

~ 1.5 x 108 km. (1.35)

Additional tabulations of astronomical parameters can be found in Wenzel (1997) and

Meeus (1998).

The right ascension for the sun, in equatorial coordinates, is (e.g., Pugh & Woodworth,
2014):
Ag = \g — tan? (%) sin(2\g), (1.36)

where

As = h + 2esin(h — p') (1.37)

and eg is the solar ecliptic latitude, or ~ 23.452° (Munk & Cartwright, 1966). The solar

declination in terms of equatorial coordinates is then (e.g., Pugh & Woodworth, 2014):

ds = sin"!(sin(\g) sin(eg)). (1.38)

Earth-Moon System: The distance between the Earth and moon, Ry, is given by (Pugh,

1987; Pugh & Woodworth, 2014):

Ry = i
Y7 14 ep cos(s — p) + solar perturbations ’

(1.39)

where ey, is the eccentricity of the moon’s orbit about the Earth, which varies from 0.044 to
0.067, and R7 is the mean lunar distance. The right ascension for the moon is (e.g., Pugh
& Woodworth, 2014):

A = A — tan? (%) sin(2Ar), (1.40)

where

AL = s+ 2 e sin(s — p) + solar perturbations , (1.41)

and

er, = sin!(sin(A;, — N) sin(5°09")) (1.42)
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is the lunar ecliptic latitude. The lunar declination is given by:

dr, = sin"!(sin(\) sin(eg)) . (1.43)

Characteristics of the actual ocean tides turn out to be quite different from the ideal equi-
librium tide due to complicated effects related to finite ocean depths, bathymetry, and con-

tinental boundaries.

1.4.2 Harmonic Decomposition Approach

Six independent parameters are necessary to describe the temporal variations of R, d, and
C in the tidal potential for both the sun and moon. After careful consideration, Doodson
(1921) selected six astronomical parameters that are well-suited to harmonic analysis and

often used in practice (e.g., Foreman, 1977, Sec. 2.1.1):

7 = local mean lunar time,
s = mean longitude of moon,
h = mean longitude of sun,
p = mean longitude of lunar perigee,
N’ = —N, where N is the mean longitude of lunar ascending node,
p’ = mean longitude of perihelion.

Local mean lunar time is typically measured relative to the Greenwich Meridian. The mean
longitudes of the moon, sun, perigee, lunar ascending node, and perihelion are typically ref-
erenced to the mean vernal equinox of the date (Meeus, 1998; Pugh & Woodworth, 2014).
Relationships describing how the astronomical parameters vary in time are provided in Ta-
ble 1.2 as well as in the literature (e.g., Meeus, 1998). Time derivatives of the astronomical
parameters yield angular speeds, which may be combined by integer sums and differences
to compute the periods of individual tidal harmonics. The period of s, for example, is a

sidereal month (27.32 days) and the period of & is a tropical year (365.24 days).
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Note that 7 is equivalent to C;, when referenced to the same observation point, which is
typically set at the Greenwich Meridian. Furthermore, the two parameters have the same
angular speed. Alternatively, the mean solar time, ¢, may be used in place of 7; the two
parameters are related by other fundamental astronomical parameters: 7 =t — s + h (e.g.,

Doodson, 1921).

The expression for the equilibrium tide may now be expanded into a series of harmonic
terms. For example, I make use of Eq. 1.39 and Doodson’s astronomical parameters to

re-write Eq. 1.28 as (e.g., Pugh & Woodworth, 2014, Sec. 4.2.1):

a\*3
(RZ) ZCOSQdL

3
(;* ) Zcos2 dL] [cos(2wot +2h —2s) + geL cos(2wot +2h —3s+p) +
L

Cy(t) = [1+ e cos(s —p)]® cos(20L)

1
6L cos(2wot +2h —s —p+ 1800)] , (1.44)

where ey, is the lunar eccentricity and I have kept only the lowest-degree terms. For the
full expansion, one would need to substitute expressions for the declination in terms of
the astronomical parameters as well. A more complete expansion of the equilibrium tide
contains thousands of terms (infinite in a full expansion), but in practice, only a few dom-
inant harmonics are essential. Equilibrium tide catalogues, expanded to include hundreds
to thousands of tidal harmonics, may be found in the literature (e.g., Cartwright & Taylor,

1971; Cartwright & Edden, 1973; Hartmann & Wenzel, 1995).

The C»(t) term from the expansion of the equilibrium tide contains the semidiurnal tidal
harmonics. The first harmonic term in Eq. 1.44, cos(2wot + 2h — 2s), has an angular
speed of 2(wy — wa + ws3), where wy is the angular speed of C'g, wo is the angular speed
of s, and ws is the angular speed of h. Table 1.3 lists the frequencies and periods of each
astronomical parameter. Note that 2(wy — w2 + w3) = 0.5059 rad/hour = 28.9842°/hour,
which is equivalent to 2w, or twice the frequency of the mean lunar day. The tidal harmonic
that arises from this combination of astronomical parameters is called the My harmonic, by

convention. The second harmonic term in Eq. 1.44, given the name Ng, has an angular
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Angular Speeds of Astronomical Parameters

Period Frequency Angular Speed
Parameter (days) (cycles/day) | Symbol (rad/hour) (°/hour)
Mean solar day | 1.00 1.00 Cg=t wo =0.26 00=15.00
Mean lunar day | 1.04 9.66E-1 CrL=1 wy =0.25 01=14.49
Sidereal month | 27.32 3.66E-2 $ wo =9.58E-3 | 09=0.55
Tropical year 365.24 2.74E-3 h ws =7.173E-4 | 03=0.04
Lunar perigee 8.85 (years) 3.09E-4 P wy = 8.03E-5 | 04=4.6E-3
Lunar nodal
regression 18.61 (years) | 1.47E-4 —N =N’ | w5 =3.84E-5 | 05=2.2E-3
Perihelion 20942 (years) | - ' we ~ 0 og~ 0

Table 1.3: Angular speeds, or frequencies, of the astronomical parameters from Table 1.2.
The angular speeds, w, represent the mean rates of change, in radians per hour, of the
astronomical parameters: Cg, Cr, s, h, p, N’, p'. For units of degrees per hour, the angular
speeds are denoted by o. A dot above an astronomical parameter indicates differentiation
with respect to time. Since the astronomical parameters vary in time with terms higher than
first order, the angular speeds also change with time, albeit slowly (see text for details).

speed of 2wy + 2w3 — 3w2 + wy = 2w — w2 + wyq = 0.4964 rad/hour = 28.4398°/hour.
Furthermore, the third harmonic term in Eq. 1.44, given the name Lo, has an angular speed
of 2wg + 2wz — wWo — wyg = 2wy + wo — wy = 0.5154 rad/hour = 29.5286°/hour. Note that
the three harmonics differ in amplitude, which is modulated in this case by the lunar orbital

eccentricity.

Recall that I have made many simplifying assumptions to arrive at the succinct form of Eq.
1.44. In reality, the tidal potential contains an infinite number of unique harmonics. A more
rigorous expansion would account not only for changes in lunar perigee and hour angle, but
also for variations in declination. Moreover, expressions for the astronomical parameters
could be expanded to include higher order terms as well. Note also that this expansion can
be done for both the moon and the sun (and planets, etc.) as well as for higher degrees
of the gravitational potential (only second-degree has been developed here), which would

eventually yield an extensive collection of tidal constituents.
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Angular Speed: The general form for the angular speed, w, of a given tidal harmonic, 7,

is (e.g., Pugh & Woodworth, 2014, Sec. 2.4.1):

Wy = Mo W1 + My W2 + e W3 +1)qg W4 + e W5 + 1 We, (1.45)

where w; to wg are angular speeds, generally in rad/hour, derived from the lunar and solar
ephemera. First-order approximations of the angular speeds are provided in Table 1.3.
More precise values may be obtained by taking the first time derivatives of the astronomical
parameters (Table 1.2). The coefficients 7, to 1y are small integer values that form the
Doodson number for harmonic 7. Distinct sets of integer coefficients (1), through 7;)
are used to determine unique sums and differences of the astronomical frequencies, which
represent individual tidal harmonics in the expansion of the equilibrium tide (e.g., Doodson

& Warburg, 1941; Pugh & Woodworth, 2014).

The M5 harmonic, for example, has a Doodson number of [2 0 0 0 0 0]; thus, the M5 tide
has a frequency of wys, = 2w + Owg + Ows + ... = 0.5059 rad/hour = 28.9842° /hour.
Note that it is not necessary to include wg, since wy may be written in terms of other as-
tronomical frequencies (i.e., wg = w1 + w2 — w3). For a degree-2 expansion of the tidal
potential, the coefficient 17, may only be 0, 1, or 2, representing the long-period, diurnal,
and semidiurnal tidal species, respectively (e.g., Pugh & Woodworth, 2014, Sec. 4.2.1).
The value of coefficient 7, defines the tidal group and the value of coefficient 7). defines the
tidal constituent. Coefficients 7, through 7 generally range from -5 to +5. Values greater
than two for coefficient 7, represent species at frequencies higher than semidiurnal, such as
terdiurnal tides (7, = 3), that arise from higher-order expansions of the tidal potential. The
full set of six integer coefficients defines a tidal harmonic, also sometimes referred to as a

tidal argument.

To make the connection back to the spherical harmonic expansion of the tidal potential, the
tidal species coefficient, 7,, is equivalent to the spherical harmonic order, m. Some tidal
harmonics arise from the second-degree (n = 2) expansion of the equilibrium tide, whereas
others arise only from a higher-order expansion and are generally smaller in amplitude. As

in spherical harmonics, the order m cannot exceed the degree n. Therefore, terdiurnal tides
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Astronomical Frequencies to Higher Order
Element Frequency Formula (deg/hour) Symbols
Mean solar day 1 (360/24) wo | Cs =1
Mean lunar day 1+ ws -ws w1 | CL=1
Sidereal month [(481267.89 4 0.0022 T") /36525] /24 wy | §
Tropical year [(36000.77 4 0.0006 T") /36525] /24 wg | h
Lunar perigee [(4069.04 — 0.0206 T") /36525] /24 wy | P
Lunar nodal regression | —{[(—1934.14 + 0.0042 T')/36525]/24} | ws | N' = —N
Perihelion [(1.72 +0.0010 T") /36525] /24 we | P’

Table 1.4: Astronomical frequencies in general form. The angular speeds, w, represent
the mean rates of change of the astronomical parameters: Cg, Cp, s, h, p, N', p’. Time
derivates were taken of the astronomical parameters in Table 1.2 to derive the frequency
formulae in column 2. 7 is in Julian centuries.

only manifest after an expansion to at least the third degree (e.g., Godin, 1972).

To avoid negative numbers in the six-digit set, Doodson added +5 to each of the integers
through ny. With the arithmetic adjustment to the Doodson number, the angular speed must
also be adjusted by subtracting w;, = 5 w2 +5 w3+5 ws+5 ws+5 wg. Unadjusted Doodson
numbers, which include negative values, are also common in the literature (e.g., Cartwright
& Taylor, 1971; Godin, 1972). Here, I adopt the unadjusted Doodson-number convention,
and therefore eliminate the need to correct for the offset in computing the angular speed (as

well as other parameters, such as the astronomical argument, that are discussed later).

Constituent clusters in the development of the equilibrium tide contain many individual
tidal harmonics with different amplitudes. A given harmonic may be separated from an-
other harmonic, in the frequency domain, by only one cycle in 8.85 years (A f; = 3.094E-
4 cycles per day), 18.6 years (Afs; = 1.471E-4 cycles per day), or even 20942 years
(Afs = 1.037E-7 cycles per day). 8.85 years represents the period of precession of the
lunar perigee, 18.6 years represents the period of regression of the lunar ascending node,
and 20942 years represents the precession of perihelion (Table 1.3). Fig. 1.4 shows spectra

of tidal amplitudes as a function of frequency.
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Astronomical Argument: Analogous to the angular speed, the astronomical argument

may be written as (e.g., Godin, 1972, Sec. 0.4.2):

Vi (t) = na 7(t) + 1 5(t) 4 ne h(t) +1a p(t) +ne N'(t) + 17 D' (2). (1.46)

The astronomical argument, which may be evaluated using Table 1.2 (and V;,(t) modulo

360° for large angles), provides the reference phase angle for tidal harmonic 7 at time .

1.5 Tidal Potential Catalogues

Tidal potential catalogues, or equilibrium tide catalogues, distill the gravitational inter-
actions between the Earth and neighboring astronomical bodies into individual harmonic
terms, each with a unique Doodson number and a potential height. Sir G.H. Darwin de-
veloped the first tidal potential catalogue of harmonic terms in the late 19th century (Dar-
win, 1898). Subsequently, Doodson made great advancements in the theory of tidal har-
monic analysis, expanding substantially upon the number of catalogued harmonics (Dood-
son, 1921). Doodson’s catalogue was used for most of the 20th century until Cartwright &
Taylor (1971) and Cartwright & Edden (1973) further expanded and improved the catalogue
using modern computer power. Although the Cartwright, Taylor, and Edden catalogue (ab-
breviated as the CTE catalogue) is still often used today, additional and yet more extensive
catalogues have since been developed. For example, Hartmann & Wenzel (1995) expanded
the tidal potential to include nearly 13000 harmonics, with gravitational contributions from
the moon and sun as well as from Mercury, Venus, Mars, Jupiter, and Saturn. More on the
history of tidal analysis and the development of tidal potential catalogues may be found in

Cartwright (1999).

The total tidal potential, Vr, is given by:

Vr = Vi, + Vg + contributions from other external bodies, (1.47)

where V7, is the contribution to the tidal potential by the moon and Vg is the contribution to

the tidal potential by the sun.
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Dominant Tidal Harmonics
Doodson Number Speed Equilibrium
Constituent | 7, 75 7 Nqa Ne Ny | o (°/hour)  f (cycles/day) | Amplitude
Zy O 0 0o 0 0 O 0.0000 0.0000 0.73869G,
Sa o 0 1 0 0 -1 0.0411 0.0027 0.01160G
Ssa 0O 0 2 0 0 O 0.0821 0.0055 0.07299G
My, 0O 1 0 -1 0 O 0.5444 0.0363 0.08254G
M; 0O 2 0 0 0 O 1.0980 0.0732 0.15642G
201 1 3 0 2 0 O 12.8543 0.8570 0.00955GT
o1 1 3 2 0 0 O 12.9271 0.8618 0.01153G7
Q1 1 2 0 1 0 O 13.3987 0.8932 0.07216G7
o1 1 2 2 -1 0 O 13.4715 0.8981 0.01371G7
O 1 -1 0 0 0 O 13.9430 0.9295 0.37689G7
T 1 -1 2 0 0 O 14.0252 0.9350 0.00491G7
M, 1 0o 0 -1 0 O 14.4874 0.9658 0.01065G7
NO; 1 0 0 1 0 O 14.4967 0.9664 0.02964G7
X1 1 0 2 -1 0 O 14.5695 0.9713 0.00566G7
m 1 1 -3 0 0 1 14.9179 0.9945 0.01029G7
P 1 1 2 0 0 O 14.9589 0.9973 0.17584G7
S1 1 1 -1 0 0 1 15.0000 1.0000 0.00423G7
K 1 1 0 0 0 O 15.0411 1.0027 0.53050G7
U 1 1 1 0 0 -1] 150821 1.0055 0.00423G7
o1 1 1 2 0 0 O 15.1232 1.0082 0.00756G7
01 1 2 -2 1 0 O 15.5126 1.0342 0.00566G7
Ji 1 2 0 -1 0 O 15.5854 1.0390 0.02964G7
00, 1 3 0 0 0 O 16.1391 1.0759 0.01623G7
€2 2 3 2 1 0 0] 274238 1.8283 0.00671G35
2N, 2 2 0 2 0 0] 27894 1.8597 0.02301G35
142 2 2 2 0 0 0] 279682 1.8645 0.02777G5
No 2 -1 0 1 0 0| 284397 1.8960 0.17387G5
Vo 2 -1 2 -1 0 0| 285126 1.9008 0.03303G5
Mo 2 0 0 0 0 0] 289841 1.9322 0.90812G5
A2 2 1 -2 1 0 0] 294556 1.9637 0.00670G5
Lo 2 1 0 -1 0 0] 295285 1.9686 0.02567G5
T 2 2 -3 0 0 1 29.9589 1.9973 0.02479G5
So 2 2 -2 0 0 0| 30.0000 2.0000 0.42358G35
Ry 2 2 -1 0 0 -1] 300411 2.0027 0.00354G35
Ky 2 2 0 0 0 | 30.0821 2.0055 0.11506G5
2 2 3 0 -1 0 0| 3062065 2.0418 0.00643G5

Table 1.5: A selection of important tidal harmonics, including all named constituents from
the Doodson expansion of the tidal potential (Doodson, 1921), also found in Appendix 1
of Godin (1972). The formulas for the geodetic coefficients are listed in Table 1.1 and are
used to convert the normalized amplitudes to actual equilibrium tidal heights.



25

In terms of the astronomical parameters, the expansion of the tidal potential to spherical

harmonic degree-3 may be written as (Godin, 1972):

Vi, = > (Gro D Anenenaneny X €os(aT + 18 + nch + nap + neN' + nsp) +
Na=0,2 Mo Ne Nd Ne N f
G, Z Buamynenaneny X ST + 0ys + nch + nap + neN' +npp)],  (1.48)
b Te 1d Me 1N f

for the long-period and semidiurnal tidal harmonics, and:

Vi, = Y. G > Anmpmenaneny X €000 + 15 + neh + nap + neN' + ngp') +
na=1,3 Mb Ne Nd Ne Nf
G:;a Z B ny ne nane np X sin(na7 + 75 + nch + nap + neN' + nfp’)]- (1.49)
M Ne Nd Ne 1y

for the diurnal and terdiurnal tidal harmonics. G} and Gj;; are Doodson’s geodetic co-
efficients for degree-2 and degree-3 harmonic species (Table 1.1), respectively, (7,7 +
n6S + neh + ngp + neN’ + nyp’) defines the astronomical argument for harmonic 7, and
Ana nynenane ny and By, nyneng ey, represent the (scaled) amplitude coefficients of the har-
monic terms (Godin, 1972). All variables and coefficients are equivalent in Egs. 1.48 and
1.49, but note the swap of the geodetic coefficients. Also note that, for an expansion up to
degree-3 only, G5 is undefined and all the sine terms will be zero (Godin, 1972; Cartwright

& Taylor, 1971).

Either A or B will be nonzero for a particular tidal harmonic (i.e., for a unique sequence
[7a 16 Me Ma Me M¢]), but not both. Tidal potential catalogues list each unique sequence
[7a 16 e Ma Me Mf], Which is also the Doodson number of each harmonic, along with its cor-
responding amplitude coefficient, typically scaled. In Eqgs. 1.48 and 1.49, the amplitudes
are scaled by Doodson’s geodetic coefficients. In this case, it is simple to convert catalogue
amplitudes (given as the A and B coefficient terms) back to actual tidal heights:

G

Ap = f Ana ny nenane ny (1.50)
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and

*/
By, = f By ne naneng - (151
Section 0.4 of Godin (1972) provides more information on the Doodson catalogue scheme.
Also note that G = 0.46G*, and hence tidal heights derived from solar ephemeris must

be adjusted by this constant factor, which is based on the mass ratio between the moon and

the sun as well as the ratio of earth-moon distance to earth-sun distance.

Cartwright & Taylor (1971) adopted an alternative approach to Doodson’s lengthy algebraic
expansions: they generated the time-dependent, spherical harmonic coefficients directly us-
ing the most up-to-date lunar and solar ephemeris and the “response method” of tidal anal-
ysis (Munk & Cartwright, 1966). Amplitudes of individual tidal harmonics, shown in Fig.
1.4 using the Doodson scaling convention, were then extracted from the time series using
filtering methods. Agnew (2015) reviews this approach. The CTE scaling convention dif-
fers from that of Doodson, though the definitions are directly related (Cartwright & Taylor

(1971), Table 2).

Regardless of the tidal potential catalogue adopted for a tidal harmonic analysis, making
note of the catalogue’s sign convention is important. The most common variation in sign
convention occurs with the fifth astronomical parameter pertaining to the regression of the
lunar ascending node. Sometimes the fifth astronomical parameter is taken to be the pre-
cession of the lunar ascending node, NV, but perhaps more commonly, the fifth astronomical
parameter is taken to be the regression of the lunar ascending node, N’ = —N. The adopted
convention therefore affects the sign of the fifth Doodson coefficient, 7., as well as the sign
of wy and the astronomical parameter itself. It is simply important to be consistent through-

out an analysis, regardless of which convention is assumed.

1.6 Physical Interpretation of Tidal Harmonics

To gain intuition for the physical meaning of individual tidal harmonics, imagine that each
tidal harmonic is the result of a unique “fictitious” body that has specific characteristics

and orbital properties that generate a specific contribution to the total equilibrium tide (e.g.,
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Darwin, 1898; Pugh & Woodworth, 2014, Sec. 4.2.1). Here, I highlight a few examples that
elucidate the origins of some of the most prominent astronomical constituents, beginning

with the semidiurnal species.

From Eqgs. 1.30 and 1.33, the lunar semidiurnal equilibrium tide varies as:

<;LL>3 cos?dy, cos2C]. (1.52)
First, imagine a fictitious body that moves only in the plane of Earth’s equator (i.e., dr, = 0).
Next, suppose that the fictitious body moves at the moon’s mean speed and at the moon’s
mean distance from Earth (i.e., ]‘;L—LL = 1). The two stipulations yield a lunar semidiurnal
tide that is proportional only to cos 2C,, which has a period of half a lunar day, a Doodson
number of [2 0 0 0 0 0], and an angular speed of 2w;. The particular harmonic just de-
scribed is the principal lunar semidiurnal tide and, due to its large amplitude and significant
presence around the world, has been given a special name: the My tidal harmonic (e.g.,

Doodson & Warburg, 1941; Pugh & Woodworth, 2014).

Next, I consider a situation in which the moon remains in the plane of the equator, but
the orbital distance of the moon is allowed to vary (i.e., Ry # const). This gives rise to,
in the first instance, two additional “fictitious” bodies that have angular speeds that differ
from that of My by the addition and subtraction of the speed of variation in moon-Earth
separation distance, R;. The variation in moon-Earth separation distance has a period
27.555 mean solar days, which is nearly but not precisely equivalent to the length of a
sidereal month (or the period of revolution of the moon in longitude). In terms of the
six fundamental astronomical parameters defined previously, the astronomical argument
for this special type of lunar month could be expressed either as (—s + p) or (s — p).
Each of these combinations of astronomical parameters yields a period equivalent to that
of the period of variation in moon-Earth separation distance (e.g., drawing from Table

1.3, f; 70 0.0366009_10‘00030937 = 27.555 days). Therefore, the two tides generated

from the modulation of My by variations in lunar distance have astronomical arguments
of (27 — s + p) and (27 + s — p). The tide that arises from a fictitious body that orbits

Earth with an angular speed of (2w; — wy + wy) is called N2 and the tide that arises from
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a fictitious body that orbits Earth with an angular speed of (2w + w2 — wy) is called Lo
(e.g., Pugh & Woodworth, 2014, Sec. 4.2.1). N, is also referred to as the larger lunar el-
liptic semidiurnal tidal harmonic, whereas Lo is also referred to as the smaller lunar elliptic

semidiurnal harmonic (e.g., Doodson & Warburg, 1941, Ch. 6).

From Egs. 1.30 and 1.32, the lunar diurnal equilibrium tide varies as:

3
(CL> sin 2d;, cos Cr.. (1.53)
Ry,

Note that, according to the degree-2 expansion of the equilibrium tide (Eq. 1.30), all diurnal
tides generated from fictitious bodies that orbit in the plane of the equator (d;, = 0) have
zero amplitude. Due to the finite size of the Earth, however, a small diurnal tide, M, arises
even for d;, = 0 because the tide at the sub-lunar point will be slightly larger than the tide
at the antipode. The first three Doodson numbers for the M; constituent cluster are [1 0 0].
Within that cluster, the harmonic with the largest amplitude has a Doodson number of [1 0
0 -1 0 0], which matches the frequency of a prominent shallow-water tide, to be discussed
later. The harmonics [1 0000 0] and [1 00 1 0 0] also make significant contributions to the
constituent cluster. The harmonic [1 0 0 0 0 0] has a frequency of 14.4921° per mean solar
hour and represents the difference in tidal heights on opposite sides of Earth for a mean
moon, which orbits Earth in the equatorial plane at a mean distance and at mean speed. The
harmonics [1 0 0 1 0 0] and [1 0 0 -1 0 O] differ from the harmonic [1 0 0 0 0 0] by the

8.85-year cycle of the longitude of lunar perigee.

The largest diurnal tides occur when the absolute value of (sin 2dy,) is maximized, or when
(sin2dy)" = 2cos2d;, = 0, which corresponds to lunar declinations of +45°. The period
over which the moon completes one full declinational cycle, north and south of the equator,
is equivalent to the lunar orbital period, which is referred to as a sidereal month. A sidereal
month has a period of 27.3217 mean solar days, which is equivalent to the period of Doo-
dson’s second astronomical parameter, s (see Table 1.3). Modulating the principle lunar
diurnal cycle by the period of the declinational cycle yields two of the largest diurnal tidal
harmonics: K; and O; (e.g., Doodson & Warburg, 1941, Ch. 6). K; has an astronomical

argument of (7 + s) and O has an astronomical argument of (7 — s). Additional harmonics
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arise by accounting for variations in the moon-Earth separation distance, as for the semidi-
urnal tides. Recalling that variations in lunar distance, or lunar parallax, are represented by
astronomical arguments of (s —p) or (—s+ p), four new harmonics may be readily derived:
[T4+s+(s—p)l,[t+s+(=s+p),[T—s+(s—p)|,and [T — s + (—s + p)]. The
first has an angular speed of 14.4921 + 0.5490 + 0.5490 — 0.0046 = 15.5855° per mean
solar hour and has been given the special name of J; (e.g., Pugh & Woodworth, 2014, Sec.
4.2.1). The second and third are simply [1 00 1 0 0] and [1 0 0 -1 0 0], which are harmonics
within the M; constituent cluster as mentioned previously. The fourth, Q;, has an angular

speed of 14.4921 — 0.5490 — 0.5490 + 0.0046 = 13.3987° per mean solar hour.

The conceptual key to understanding diurnal tides is visualizing a tidal bulge that is inclined
relative to the equator (Boon, 2004). Thus, as Earth rotates, an observer at a nonzero lati-
tude will observe a slightly larger high-tide at one time of day and a slightly lower high-tide
approximately half a day later. This difference in the tidal heights may roughly be con-
sidered the diurnal tide, though other processes (including contributions from long-period

tides) will also play a role.

From Eqgs. 1.30 and 1.31, the lunar equilibrium /long-period tide varies as:

(o) (bee)
RL 3 sm-ary, | . .

In this case, tidal height does not depend on lunar hour angle, and hence tidal periods of the
so-called long-period harmonics are never shorter than one day in length. The first Doodson
number, which defines the tidal species, is therefore zero for all long-period harmonic terms.
Tides of this nature arise as a consequence of the longer period astronomical parameters,

such as the sidereal month and the cycle of lunar perigee.

One of the most important long-period tides is the lunar fortnightly tide, M¢. Noting that
sin? d;, may be re-written as % by the half-angle formula, the lunar equilibrium

long-period tide varies as:

e \? /1 1
— — 2d;, — =] . 1.
<RL) <2 cos 2dj, 6> (1.55)
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Thus, the period of the declination-dependent term is one-half of the full declinational cycle,
or one-half of a sidereal month, which corresponds to an angular speed of 209 = 1.0980°
per mean solar hour and a Doodson number of [0 2 0 0 0 O]. The variation in lunar parallax
(or moon-Earth distance), which has an angular speed of 02 — 04 = 0.5444° per mean solar

hour, yields the lunar monthly harmonic constituent, My,, with a period of 27.555 days.

Solar constituents are, of course, derived in much the same way, except that solar parameters
are substituted for the lunar parameters (e.g., Rg is substituted for Ry, dg is substituted for
dr,, and Cyg is substituted for C7). More information may be found in, e.g., Boon (2004),

Ch. 6 of Doodson & Warburg (1941), and Ch. 4 of Pugh & Woodworth (2014).

1.7 Tidal Dynamics

Here, I briefly summarize a few important points related to tidal dynamics. For more elab-
orate introductions, the reader may consult, e.g., Doodson & Warburg (1941) or Pugh &
Woodworth (2014). The concept of the equilibrium tide does not apply directly to the dy-
namic ocean tides observed on Earth. The true ocean tides contend with sharp continental
boundaries, bathymetry, Earth rotation, elastic deformation of the sea floor, and frictional

interfaces.

Neglecting non-linear effects, the dispersion relation for gravity waves is given by (e.g.,

c= /%tanh(kH), (1.56)

where c is the wave speed, ¢ is the gravitational acceleration at Earth’s surface, H is the

Wright et al., 1999):

water depth, and k is the wavenumber. If the water depth is much less than the wavelength,
A, then tanh(kH) =~ kH. Thus, the wave speed reduces to (e.g., Doodson & Warburg,
1941; Pugh & Woodworth, 2014):

c=+/gH (1.57)

in the so-called “shallow-water approximation,” which well describes tides in the pelagic
ocean (e.g., Pugh & Woodworth, 2014). In practice, Eq. 1.57 is assumed to apply when
H/\ is less than about 1/20 (e.g., Wright et al., 1999). In addition to a small ratio of
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water depth to tidal wavelength, the amplitude of the tidal wave must also be much smaller
than the water depth in order to mitigate non-linear effects (e.g., Parker, 2007; Pugh &
Woodworth, 2014). Note that A = ¢T', where T is the tidal period, and that w = ¢ k, where

w is the angular frequency of the tidal wave.

The continental boundaries form ocean basins as well as constricted bays and seas, leading
to local resonance effects. In general, the world’s oceans exhibit resonant frequencies near
to the semidiurnal tidal frequency, reinforcing the strength and amplitude of the tidal waves
(e.g., Pugh & Woodworth, 2014). In some parts of the world, such as the Bay of Fundy,
resonant effects generate tidal amplitudes in excess of 10 m (e.g., Pugh & Woodworth,

2014, Sec. 1.3).

Although it may be natural to assume that the ocean tides respond directly in-phase with the
lunar and solar gravitational forcing, it turns out that the actual response of Earth’s oceans is
very complicated. The discrete continental boundaries, for example, have a large effect on
tidal phase. Even in the absence of continental boundaries, however, a global ocean would
generally respond out-of-phase, or inverted, with respect to the forcing body (Souchay et al.,
2012; Pugh & Woodworth, 2014). To estimate the phase of the response, the period of the
forcing may be compared with the natural period of the responding body. As an analogy,
Souchay et al. (2012) considers the response of a simple pendulum to external forcing at
different frequencies. For a forcing frequency that is very low with respect to the natural
frequency, the response is approximately in-phase with the source. For a forcing frequency
that is very high with respect to the natural frequency, the response is approximately out-of-
phase with the source. The phase-response (as well as the amplitude-response) of the simple
pendulum is therefore a function of the frequency, with perfectly in-phase and perfectly
out-of-phase end members. Considering a mass on a spring, forced oscillations at very high
frequency will not allow the mass time to respond; therefore, the mass remains effectively
static and its motion (from the perspective of the source) will be minus the applied motion
to the spring. In this case, the mass is seen to be completely out-of-phase (47) with the
source. On the other end of the spectrum, forced oscillations at very low frequency provide

the mass with ample time to respond to the forcing. In this case, the relative motion between
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the source and the mass (amplitude response) is approximately zero, and the relative phase

between the source and the mass (phase response) is also approximately zero.

For Earth’s oceans, the natural period may be estimated as the time required for a wave
to propagate a quarter of the Earth’s circumference and back again (Souchay et al., 2012).
Assuming that the speed of the wave is given by Eq. 1.57 with no impeding continents,
the natural period of Earth’s oceans is approximately equivalent to 30 hours for a water
depth of 4 km, which is significantly longer than the semidiurnal tidal period of ~12 hours.
In this idealized case, the oceans are generally out-of-phase with respect to the moon and
sun at semidiurnal and diurnal periods. To be in-phase with the gravitational forcing, the
oceans would need to be significantly deeper (>~20 km). The solid Earth, in contrast,
exhibits a natural period of ~1 hour (derived from Earth’s free oscillations), which is much
shorter than the forcing period and therefore more or less in-phase with the gravitational
forcing. Recall, however, that the oceans are much more complicated than this simple

thought experiment might suggest, largely due to continental boundaries and Earth rotation.

1.8 Suggestions for Further Reading

Cartwright (1999), Boon (2004), and Pugh (2004) provide introductions to tidal theory and
analysis with an emphasis on qualitative and conceptual understanding over mathematical
development. For one interested in a more quantitative, yet still accessible and comprehen-
sive, overview of tidal analysis, I recommend Agnew (2015), Pugh & Woodworth (2014),
Pugh (1987), Melchior (1983), Godin (1972), Schureman (1971), Doodson & Warburg
(1941), Doodson’s classic papers on harmonic analysis (Doodson, 1921, 1924a, 1928), and
Darwin (1898). A comprehensive and quantitative, albeit now somewhat out-dated, account
of geophysical methods as applied to geodesy, including a development of the gravitational

potential as well as details about tides and Earth rotation, is given by Lambeck (1988).
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Harmonic Analysis

2.1 Introduction

The forcing function that generates the tides (i.e., the astronomical ephemeris) may be bro-
ken down into individual harmonic periods (e.g., Darwin, 1898; Doodson, 1921; Doodson
& Warburg, 1941). The total forcing from the combined harmonics excites responses within
and on the Earth that are also periodic. Harmonic analysis aims to extract the amplitude and
phase of individual tidal harmonics, each with a unique frequency, from a time series of ar-
bitrary length. In other words, the tidal signal at a particular location may be represented by
the summation of a series of cosine terms. It is worth noting that non-harmonic techniques
have also been developed to describe the tidal response, such as the response method (e.g.,

Munk & Cartwright, 1966; Pugh & Woodworth, 2014).

Formally, a tidal harmonic, 1, may be characterized by a harmonic expression of the form

(e.g., Pugh & Woodworth, 2014, Sec. 4.2):

Ay cos(oyt — ), @.1)

where A is the amplitude, o is the angular speed in degrees per mean solar hour (¢ =

(180

7) w), t is the time in mean solar hours, and ¢ is the phase lag in degrees measured

relative to the start of the time series.

Rather than reference the phase of a harmonic, ¢, to the start of the time series, it is more
useful for comparison to reference the phase to a common standard. Typically, phases
are referenced to the peak in the equilibrium tide height for the harmonic 7 at a certain
longitude, such as the Greenwich Meridian (e.g., Doodson & Warburg, 1941; Godin, 1972;

Foreman, 1977). For long-period tides, which do not depend on the lunar hour angle, the
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phases are generally referenced to the peak in the equilibrium tide at the equator (e.g., Bos
etal., 2000). Thus, an additional term must be included: the astronomical argument, 1/, (to).

With the astronomical argument included, the harmonic expression becomes:

Ay cos(Vy(to) + ont — o). (2.2)

Since the angular speed contains higher-order secular terms, the expression may be written
more precisely. Rather than evaluating the astronomical argument at the beginning of the
time series and assuming a linear relationship in its temporal progression, the astronomical

argument may be computed explicitly at every epoch (e.g., Foreman et al., 2009). Formally,

Ay cos(Vy(t) — éy), (2.3)

where

Vi (t) ~ Vi (to) + oyt. 2.4)

Time series of tidal data contain many individual harmonics, some of which may be very
close in the frequency domain. If two harmonics are not separable in frequency over the
length of the time series, then the smaller amplitude harmonic will modulate the amplitude
and phase of the larger amplitude harmonic over time. Given a time series less than 18.6
years in length, for example, two tidal harmonics separated by one cycle in the regression
of the lunar ascending node will not be resolvable. Attempts to extract the amplitude and
phase of one of the harmonics, however, will be contaminated by the other harmonic. Thus,
correction factors are introduced to account for the modulations introduced by the sub-
sidiary harmonics in the frequency domain (e.g., Doodson, 1924a; Doodson & Warburg,

1941; Godin, 1972; Pugh & Woodworth, 2014):

Ay fn(t) cos(Vy(t) +uy(t) — ¢p), (2.5)

where f,(t) is the harmonic-modulation correction factor for the amplitude and wu,,(t) is

the harmonic-modulation correction factor for the phase. In the special case that harmonics
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are separated from a primary harmonic by integer cycles in the lunar ascending node, the
harmonic-modulation correction factors are referred to as nodal modulations (e.g., Pugh
& Woodworth, 2014). Since modulations also occur due to harmonic separations in other
astronomical cycles, such as lunar perigee, the modulations have also been more generally
referred to as satellite modulations (Foreman et al., 2009). The nomenclature of satellite
modulations, however, may cause confusion with modern space-based geodesy platforms;

thus, I refer to the modulations in a generic sense as harmonic modulations.

Traditionally, to save on computational resources, tidal analyses have applied harmonic-
modulation correction factors after an initial least squares fit to the time series (e.g., Godin,
1972; Pawlowicz et al., 2002). Accounting for the harmonic modulations a posteriori often
involves the application of constant correction factors that may be assumed constant only
over short time windows, such as one year of data or less (e.g., Schureman, 1971, Par. 346).
Correcting for the harmonic modulations at the post-processing stage and thereby limiting
an analysis to a short time span of data are unnecessary sacrifices with modern computa-
tional resources (Foreman et al., 2009). Updating the harmonic-modulation corrections, as
well as the astronomical argument, at every epoch in the time series allows for seamless

processing of multiple years of data in a single estimation step.

2.2 Harmonic Modulations and Corrections

Recall that a tidal constituent represents a cluster of tidal harmonics that share the same first
three coefficients in a Doodson number (i.e., 74, 1, and 7.). The harmonic with the largest
amplitude from the tidal potential catalogue is typically taken to be the primary, or domi-
nant, harmonic. Additional harmonics within the same constituent cluster are referred to as
satellite (e.g., Godin, 1972; Foreman, 1977; Foreman et al., 2009) or subsidiary (e.g., Doo-
dson, 1924a) harmonics. For very long time series, many of the subsidiary harmonics may
be resolvable from the primary harmonic outright. For harmonics separated in frequency by
cycles of the lunar perigee, a time series of at least 8.9 years in length is required for sepa-
ration. For harmonics separated in frequency by cycles of the lunar ascending node, a time

series of at least 18.6 years in length is required for separation. Any additional harmonics
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Harmonic Modulations

Constituent | f U

My, 1.000 — 0.130 cos N 0.0°

M 1.043 + 0.414 cos N —23.7°sin N + 2.7°sin(2N) -

0.4° sin(3N)

Q1,01 1.009 + 0.187cos N - | 10.8°sin N — 1.3°sin(2N)+
0.015 cos(2N) 0.2°sin(3N)

Ky 1.006 +0.115cos N - | —8.9°sin N + 0.7° sin(2N)
0.009 cos(2N)

Ji 1.013 4+ 0.168 cos N - | —12.9°sin N + 1.3°sin(2N) -
0.017 cos(2N) 0.2°sin(3N)

2Na, 2,02,

N, Mo 1.000 — 0.037 cos N —2.1°sin N

Ky 1.024 4+ 0.286 cos N + | —17.7°sin N + 0.7°sin(2N)
0.008 cos(2N)

Lo fecosu =1.00—0.25cos(2p) — 0.11cos(2p — N)—

0.02cos(2p — 2N) — 0.04 cos N
fsinu = —0.25sin(2p) — 0.11sin(2p — N)—
0.02sin(2p — 2N) — 0.04sin N

M, feosu=2cosp—+0.4cos(p— N)

fsinu = sinp +0.2sin(p — N)

Table 2.1: Harmonic-modulation corrections for primary tidal harmonics from several dom-
inant constituents (e.g., Doodson & Warburg, 1941; Pugh & Woodworth, 2014).

that are too close in frequency to separate outright will contaminate the complex-valued
amplitude of the primary harmonic during an inversion. Correction factors are therefore
invoked to treat the effects of the harmonic modulation (e.g., Doodson & Warburg, 1941;
Godin, 1972; Pawlowicz et al., 2002; Foreman et al., 2009; Pugh & Woodworth, 2014).
Alternatively, the response method of Munk & Cartwright (1966) includes the correction

factors implicitly.

Table 2.1 provides a list of harmonic-modulation corrections for dominant tidal harmonics
in various constituent clusters. Note that the harmonic modulations have a much greater ef-
fect on the diurnal and long-period harmonics than on most of the semidiurnal harmonics.
Ly and M; require corrections that address both the 8.85- and 18.6-year modulations. To
distinguish the different origins of modulations, the lunar-perigee modulations are some-
times denoted by j and v instead of the conventional f and w. Here, I use f and u to

represent harmonic-modulation corrections from both origins.
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To develop a general formulation for deriving harmonic-modulation corrections, I return to
the expansion of the tidal potential. In particular, the signal for a particular tidal constituent
(primary harmonic + subsidiary harmonics) may be written as (e.g., Doodson, 1924a; Fore-

man, 1977):

a, cos(Vy, — éy) + Z Apk g cos(Vor, — i) + Z Ap ag sin(Viyg — o),  (2.6)
k l

for long-period and semidiurnal constituents, and

ay sin(Vy = éy) + Y Apk are sin(Vog — b)) + > Ay agg cos(Vyy — o), (2.7)
k l

for diurnal constituents, where a is the equilibrium-tide amplitude (obtained from a tidal
potential catalogue), ¢ is the phase of harmonic 7 referenced to Greenwich, and V' is the
astronomical argument. A single 1 subscript refers to the primary harmonic in the tidal con-
stituent cluster, whereas the nk and nl subscripts refer to subsidiary harmonics of second-
and third-degree, respectively, in the development of the tidal potential. A is an interaction
matrix that accounts for the interference between the primary harmonic and its subsidiary
harmonics (Godin, 1972; Foreman, 1977), computed as:

_ sin[NAt(op, — 0y) /2]
™ Nsin[At(og, — 00)/2]

(2.8)

where N is the number of consecutive observations, At is time difference between observa-
tions, oy, is the frequency of subsidiary harmonic k, and o, is the frequency of the primary

harmonic 7. In practice, A is very close to one.

Since terdiurnal terms arise only in the third-degree expansion of the tidal potential (n = 3,
m = 3), they are treated slightly differently. Both the primary and the subsidiary harmonics
are due to third-order terms and, since m is odd, the third-order contribution will be in the
form of a cosine term (e.g., Foreman, 1977, Sec. 2.3.2). This is analogous to the diurnal
terms, where the third-degree subsidiary harmonics are cosines, except that in this case, the

primary harmonic is also of third-degree, and hence