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ABSTRACT

A simple, direct and accurate method to predict the pressure
distribution on supercavitating hydrofoils with rounded noses is
presented. The thickness of body and cavity is assumed to be small.
The method adopted in the present work is tﬁat of singular perturbation
theory. Far from the leading edge linearized free streamline theory
is applied. Near the leading edge, however, where singularities of
the linearized theory occur, a non-linear local solution is employed.
The two unknown parameters which characterize this local solution
are determined by a matching procedure. A uniformly valid solution
is then c»onstructed with the aid of the singular perturbation approach.

The present work is divided into two parts. In Part I isolated
supercavitating hydrofoils of arbitrary profile shape with parébolic
‘noses are investigated by the present method and its results are com-
pared with the new computational results made with Wu and Wang's
exact '"functional iterative'' method. The agreement is very good.

In Part II this method is applied to a linear cascade of such hydrofoils
with elliptic noses. A number of cases are worked out over a range of
cascade parameters from which a good idea of the behavior of this
type of important flow configuration is obtained.

Some of the computational aspects of Wu and Wang's functional
iterative method heretofore not successfully applied to this type of

problem are described in an appendix,
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NOMENCILATURE

lower separation point of cavity

upper separation point of cavity

connection point between rounded nose and arbitrary profile
shape

lift coefficient based on the chord length normalized by the
dynamic pressure on the cavity in the difection normal to
the upstream flow

drag coefficient based on the chord length normalized by the
dynamic pressure on the cavit.y in the direction of the
upstream flow

lift coefficient defined in the same way as CL but in the
direction normal to the vector mean of the inlet and outlet
velocity vector

drag coefficient defined in the same way as CD but in the
direction of the vector mean

pressure coefficient defined by (p-pI)/—é— pU%

pressure coefficient defined by (p—pc)/% pUi , Cp: Cpc for
o =0,

space of hydrofoils in linear cascade

auxiliary function for the complex potential W(()
homogeneous solution for the complex potential W(()

length of cavity measured from the leading edge of the

hydrofoil
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pressure
cavity pressure

a rational function

velocity distribution in the inner region

velocity distribution in the outer region

stagnation point

velocity component in the x-direction

velocity component in the y-direction

normalized velocity component of the nJCll order in € only
in the x-direction

normalized velocity component of the n111 order in € only
in the y-direction

normalized velocity components of the ntll order in € and
o respectively in the x-direction

normalized velocity components of the nlcll order in ¢ and
o respectively in the y-direction

complex velocity potential in the physical plane

complex velocity potential defined by iw(z) in the
transform plane

magnitude of the local uniform flow speed in the inner region
magnitudes of the flow speed at upstream and downstream
infinity, respectively

vector mean of the vectors UI and UII

velocity on the cavity (= Ulm)

physical coordinates



ke ¥ i -

C, n

X W3 E, M

-viii-

coordinates in the inner region

complex variable in the linearized physical plane

complex variable in the inner region

flow angles at upstream and downstream infinity, rewritten
by e&l and eén, respectively

geometrical angle between hydrofoil chord and ¥-axis

angle of the body axis with the x-axis (= E:GC)

flow angle of the vector mean

stagger angle

geometric stagger angle used in fully wetted linear cascade

theory, defined by Y - ® -C in the present work

B
contour used for contour integrals
see Or, Opp and e

small quantity in linearized theory
transform planes

flow angle

coordinates in # and { planes respectively

cavitation number based on the upstream pressure, defined

1 2
by (p;-P.)/ 5 0U;
hodograph variable, defined by 6+ ifn(qi/Ui) in the present

work



INTRODUCTION

Long cavitites are often created downstream of vane sections
in pumps, turbines and on the components of the modern high speed
hydrofoil craft. In order to maintain mechanical strength such
supercavitating hydrofoilé necessavrily have rounded or locally blunt
leading edges. It is this feature that poses difficult problems for
analysis. Because of the roundedness or bluntness, thé location of
the cavity separation on the suction side of the lifting body is com-
pletely unknown. Therefore, it is important to predict not only thé
forces but also the pressure distribution on the body, since the latter
may possibly indicate the separation point of the cavity on the curved
surface.

There exist various methods of attacking free streamline
problems of the type associated with hydrofoils. These are the full
non-linear theory and a later linearized free streamline method
modelled on thin wing theory. The archetype of the former theory for
curved surfaces is due to Levi-Civita [17%. This theory represented
hodograph variables in the potential plane. The solutions afforded by
this type of approach are, unfortunately, implicit and cannot be directly
related to the physical coordinates of the foil except for certain simple
flow configurations. Methods of avoiding or minimizing this implicit
nature are desirable, and the functional iterative method proposed by

Wu and Wang [2] seems the most straightforward and useful for this

\3
>INun'lbers in brackets indicate references at the end of Part I.



purpose. But in actual computations with this method numerical
complexities and difficulties often arise. The most troublesome
aspect is computational instability which seems to be inherent in this
type of problem. For example, Lurye [15] who. applied Wu and Wang's
method to base-vented parabolic struts was unable to obtain convergent
solutions.

Many attempts have been made to avoid the non-linearity of the
exact theory and also its computational difficulties. Brodetsky, Oba,
Larock and Street, and Murai and Kinoe [4, 5, 6, 7 respectivély]
expressed the flow angle on the body by power series in the potential.
Larock and Street took only two such terms, while Murai and Kinoe
incorporated leading edge curvature in these power serieé expansions,
The coefficients in these power series are obtained by collocation of
the flow angle or curvature on the body at discrete points. The final
profile found as the result of calculation cannot be determined in
advance unless a very great number of terms in the series are used.

On the other hand the linearized free streamline theory of
Tulin [8] is a simple and direct theory which is useful for the calcu-
lation of the forces on thin bodies. Yet this theory fails to predict
the pressure on the body except far away from the leading edge,
because such linearized theories require singularities at the leading
edge to represent the stagnation flow there.

In view of the situation just outlined, it is very desirable to
have a simple, direct and accurate method which predicts the forces
on the body and which also predicts pressure distributions as these

are useful for design.



The method adopted in the present work for this purpose is
that of singular perturbation theory as described in the books by
Van Dyke [10] and Cole [11]. In what follows we describe the basic
idea of the new application of this theory to the present problem.

Assume that the angle of attack, camber and body- and cavity-
thickness are all sufficiently '""small"., Far from the leading edge
(called here the ""outer region'') the perturbed velocities are considered
to be small in respect to the undisturbed flow so that linearized free
streamline theory can be applied. In terms of this perturbed complex
velocity, one can reduce the problem to a mixed-type Hilbert boundary
value problem which has been thoroughly treated by Muskhelishvili [12].

Near the leading edge of the foil the curvature of the surface is
large and generally there is a stagnation point nearby. This is the
region of the flow which in the parlance of the singular perturbation
literature is called the '"inner region''. In this portion of the flow the
linearized theory is not applicable and in fact the local solution in this
region is very non-linear with the local velocities differing greatly in
magnitude and direction from the free stream velocity.

The flow in this nose region past supercavitating hydrofoils may
be very complex. The flow past a simple supercavitating flat plate,
for example, exhibits a forward facing streamline which has infinite
curvature at the detachment point which decays as arc length to the
inverse fourth power. The distance of the stagnation point from the
leading edge in such a flow is proportional to the fourth power of the

angle of attack. Rounded leading edges pose different problems. The



flow may be fully wetted near the nose; base vented or cavitating

. profiles are an example of this type of configuration. However it may
happen that a free streamline (arising either from cavitation or venti-
lation) may originate near the leading edge. In this case the cavitation
separation may be of two types (as discussed in the literature cited
thus far); these are a 'fixed detachment' point or a '""smooth detach-
ment''. In the former the pressure gradient on the body becomes
infinite on the wetted body at the detachment point and the curvature
of the ensuing free streamline is infinite at this point. The smooth
separation exhibits zero pressure gradient at detachment and the
radius of curvature of the free streamline there matches that of the
body.

All of fhese features occur in the type of problem treated here.
However, we emphasize only one aspect, that of the blunt nose. In
situations of practical interest the cavity detachment point can occur
in the ""outer' region as in the example of the base-vented hydrofoil
or it may occur nearer or actually within the vicinity of the leading
edge radius of the nose. In some cases, the cavity detachment point
is fixed By the location of sites of deliberate forced ventilation by a
gas in a flow which otherwise would not be susceptible to the creation
of a free streamline by natural cavitation. The work to follow is par-
ticularly well suited for this type of situation. Or, as is often the
case, the hydrofoil or strut employs a fixed rearward-facing step at
which a free streamline arising either from cavitation or ventilation

may be stably located. Again, the present work is well suited for



this kind of application. Both cavitation and ventilation occur on bodies
having smooth, rounded leading edges; the position of this type of
separation or detachment is not fixed in advance. It depends upon the
local viscous flow, surface tension, and other physical parameters of
the flow and as of this date cannot be predicted, but must be measured.
The present work, as will be seen, is still applicable to this situation
provided the separation point is known. It should be mentioned that

all of the ""exact' theories suffer the same degree of uncertainty in
regard to free streamline detachment on smooth bodies. It follows
that the criterion of '"'smooth'' separation referred to before does not
necessarily mean that this type of free streamline separation actually
occurs,on bodies in real fluids. A full discussion of this as yet
unresolved problem is beyond the scope of the present work. Itis
brought up here only to note that in what follows the separation point
will be fixed a priori, Whether such a point coincides with a free
streamline '"smooth'' separation point on a continuous body must, as

of this writing, be decided by experiment.

From the foregoing discussion it can be perceived that the local
flow around the nose will fall into two classes. In the first, the local
flow is fully wetted because in this case the free streamline separation
is well downstream. In this situation the "inner flow' is that around
a semi-infinite half body which has the coordinates of the nose region
of the body. This type of problem is a standard one in fluid mechanics
and is readily solved by two-dimensional potential flow methods. In
the present work this is called the ''regular case''. As will be shown,

however, this inner flow depends upon two parameters which to begin



with are unknown. The second class as might be surmised exhibits a
free streamline within the inner region. This considerably complicates
the inner flow because (just as in the full non-linear treatment) the
exact position of this streamline is unknown in advance. However,
‘an '""exact'' knowledge of this inner streamline would exceed the
expectations originally laid out for the present work. To recapitulate,
we hope to find a solution for the set problem everywhere as accurate
as the linear solution where the linear solution itself is appropriate.
We do not therefore need an '"exact' inner solution when a free
streamline is present there, and, as will be seen, a sufficiently
accurate solution can be obtained by a simple assumption. This class
of inner problem, when the inner solution contains a free streamline,
is termed herein a ''critical case'’,

Thus far no assumption has yet been made about the shape of
the nose region itself. Insofar as the present method goes it can be
arbitrary. Nevertheless, there is a considerable advantage in keeping
the inner solution as simple as possible. The reasons for this will
become evident in the section to follow. A particularly simple nose
section is that of a parabola. In fact most airfoil and hydrofoil p‘rofiles
have leading edges reasonably well approximated by parabolas, and
this shape possesses attractively simple, explicit formulations of the
surrounding flow field. This leading edge profile is therefore adopted
in the present work as being expeditious and practical but by no
means is the methodology to be expounded limited to it.

As mentioned, two parameters in the inner flow past the

parabolic nose are unknown. These quantities will be shown to be the



magnitude of the local uniform flow speed and the location of the
stagnation point of the flow about the parabola. These quantities are
determined by '"'matching procedure' of the singular perturbation
method in such a way that the local '"nose'' solution (or inner solution)
blends smoothly into the linear solution far away from the nose (or
outer solution) with the error never exceeding that of each of its
constituent solutions.

The singular perturbation method is completed by constructing
a uniformly valid solution out of the two obtained solutions, inner and
outer. The simplest method of doing this is to add the inner and outer
solution and to subtract the part they have in common. In this process
the deficiencies of the linearized theory are removed by eliminating
its singularities.

In the present work only two-term outer and one-term inner
expansions have been used.

In the first part of this thesis we show the mathematical basis
of the singular perturbation method, using simple flow profiles for
isolated supercavitating hydrofoils and with those sections prove the
validity and accuracy of this method by comparison with an exact theory.
The profile used is that of an isolated supercavitating parabolic wedge.
This work is then extended to account for an arbitrary camber function
downstream of the parabolic nose and for non-zero cavitation number,

In Part II of this thesis the present method has been applied to

a linear cascade of supercavitating hydrofoils with elliptic noses.



Although the nose shape is changed to that of an ellipse, it still has a
parabolic nose locally as mentioned earlier. Therefore the inner solu-
tions remain exactly the same as those in Part I,

Linearized free streamline theory should be carefully applied
to find outer solutions when it is used for cascade problems. Since the
flow is turned or deflected through the cascade, the relevant perturba-
tion of the velocities should be made in respect to the vector mean of
the inlet and outlet velocity, and at the same time the vector mean
should be correctly aligned with the linearized flow configuration so
that a consistent representation within the framework of the linearized
theory is carried out. This point has escaped many workers using
linearized free streamline theories for linear cascade problems in the
recent past as will be discussed later, The many parameters and the
variable flow geometry make the computation of cascade flows very
tedious. Nevertheless as will be shown these cases can be treated
with only somewhat more complexity than for isolated hydrofoils. In
the numerical work on these flows profile shapes consisting of an ellip-
tical forebody connected to a straight line and a circular arc after
profile were used. These kinds of profiles resemble (except for the
leading edge thickness) supercavitating propeller sections now in use.
They exhibit surprisingly good lift-to-drag ratios for the circular arc

hydrofoil cases,



PART .1

ISOLATED SUPERCAVITATING HYDROFOILS
WITH ROUNDED NOSES

1. Statement of the Problem. Consider a flow configuration of an

isolated supercavitating hydrofoil as shown in Fig. 1, assuming two
dimensional, incompressible potential flow. The rounded nose of the
hydrofoil is defined by a parabola y=+€/x, € being a small parameter.
The lower side of the nose is smoothly connected to an arbitrary pro-
file shape of y = €h(x) at a point denoted by ""C" (x:xc). The point '"'C"
is arbitrary but assumed to be located sufficiently far away from the
leading edge in this method. We also gésume that a cavity detaches at
two points; namely, at A and B on the body. The separation is fixed
but arbitrary and extends downstream the distance '"¢"', The pressure
P, in the cavity is assumed to be constant, Therefore we can define a

pressure coefficient normalized by the dynamic pressure on the cavity

by
Cp Sl o) (1)

and cavitation number by

o= > _ 2)

where Py and UI are the static pressure and flow velocity at upstream

infinity respectively and P, and Uc are on the cavity. The cavitation
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number 0 is also assumed to be small and of the same order as €. The
flow approaches the body at a small angle Or.I with x-axis, which is
rewritten by €6I for notational convenience,

With the flow model as stated above we proceed now to consider
a regular pertufbation method, namely, linearized free streamline
theory of Tulin [8] to find the outer solution.

In our particular small perturbation problem there are two
small parameters which control the perturbations rather than one.
These are € and 0, and they are independent. We now obtain in the

usual way perturbation expansions in terms of these variables, i.e,,

- 2 ] [ 2 ]
—U:_l'l' €u1€+€ U.2€+--- + O'u10+0' uZO-l-... | (33)
T - : ] i ]
T = [evle+e v2€+... + [cvlc+o v20+... : (3b)
where
Uc:UI 1+0 . (4)

using the Bernoulli equation. With the original form in mind U e and

" and ey and v__ are combined to rewrite Eqs. (3a) and (35) as

unO’ € nCO

follows
B e e b e (3a")
Uc = 1 2
Y o B Py ' (3b")
R V1 - M

where
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(o]
1

n un€+<gj‘unc (3)

o
Vn vne+<5>nvnc (6)

The complex velocity potential w can be defined by

w u-iv
ﬁ— = T (7)
c c
=1+ew,+ ¢? 2 8
— W1 w2 Iy (8)
where
woo=(u -1vn)/UC (9)

The term W, is that of the fully linearized free streamline theory. It
is regular and uniform far from the leading edge, but it is singular
near the leading edge, because the assumption of small disturbances
around the stagnation point is violated there. Since the regular pertur-
bation theory breaks down near a stagnation point, the idea of a singu-
lar perturbation theory becomes relevant,

The first step for this theory is to find a local non-linear
solution in the region where the singularities of the linearized theory
are located. This ""inner" region can be easily found from the nature
of singularities in the outer solution. But one can also infer the scale
of the inner region in the present situation by inspecting the body profile
for the flow, in this case, around a parabolic nose defined by y=%* e/x :
the first characteristic length is obviously its thickness the order of
which is ""e¢'", and the second is the leading‘edge radius "62/2”. This

second characteristic length, "€2 /2", indicates the scale of the inner
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region, (i.e., =z :O(sz) is the inner region, e. g., [10]) and this checks

/2

with the singularity l/x1 in the linearized solution obtained later.

2. Outer Solution. The boundary conditions in the present problem

which should be satisfied by the complex velocity potential w(z)=u-iv
are:
(i) thev flow is tangent to the body so that on the wetted portion of

the hydrofoil
v 4 e
e e {eg(x)} =eg'(x) (10)

where €g(x) denotes the profile of the hydrofoil,

(ii) the magnitude of the flow velocity on the cavity is Uc e
aoFv = U, (11)

(iii) at infinity

(o]
1

UI cos QI = UI cos 661

s (12)
v = UI sinaI = UI sin 661
(iv) closure condition; in the present work the cavity-body system
is assumed to form a closed body. This condition is expressed
as

ggdy = fﬁ %dx:O (13)
cavity-body (C.B.) C.B.

When the series expansions for u and v in Eqgs. (3a) and (3b)
are substituted into these boundary conditions (i) ~(iv) and are equated

in like powers of € and0, the linearized boundary conditions for U,y and
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v, on the x-axis and at infinity, are found and tabulated in Table 1,

1
Note that velocity components away from the x-axis can be obtained

by Taylor series expansions about y=0,

Table 1, Linearized Boundary Conditions

Y1e Y10 B =0 T e e
Boundaries in z -plane and /or and/or and/or
(0}
Vie V1o =% e e
(1) D<zx<x =<+0 V. S yole= ) V. B 13
iz R le~2/% 10~ 1°27%
1 1
On th = - - — - o —
Bodye O<x<xc . ¥ 0 vle Wi le‘ 0 vy 5=
’ ¢
xc<x<1 , y=-0 Vle:‘h (x) le:O vl_h (x)
(ii)
. u = u = Ty =
Cavity 1 Ly gt ol 1€ 1o 1
(1ii) " T .. e
a Uy =4 Y16="2 o B
s Z =00
Inflnlty vl€:61 VIU:O VI:GI
(iv)
Im HS w_(z)dz = 0 where I' is a contour in clockwise
Closure 1 z
Condition I‘Z direction as depicted in Fig. 2(a).

Figure 2(a) shows linearized boundary conditions for first order
complex velocity wl(z) in the z =x+ iy plane where the cavity-body sys-

tem appears as a slit on the x-axis.
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The most convenient way to find an analytic function wl(z) is to
unfold the cavity-body slit onto a single line in another plane and to
reduce the problem to a Hilbert mixed-type boundary value problem.
See, e.g., Muskhelishvili [12] for this type of problem in detail.

The mapping function for this purpose is

C=ciiy (14)

where € = E+in
and c=/1-1 (15)

which maps the z-plane onto {-plane as follows.

a) The cavity-body slit in z-plane —» the real axis & of (-plane,

b) The whole flow field in z-plane —» the upper half of {-plane.

c) The end point of the cavity —» the infinity in C-plane.

d) The infinity in z-plane —» (=ic. (16)

e) The coordinate x in z-plane —

for >0, n=+0 (17a)

F% = nidemte far B<D | He0. (17b)

The boundary conditions are also mapped onto {-plane and are shown

in Fig. 2(b). Defining a new function Wl(C) as

WI(C) = iwl(z(C)) = v1+iu (18)

1 b
we analytically continue WI(C) into the lower half (-plane by the

reflection principle
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W () = W, (C) = v, -iu, .
1 1 1 1
Introducing the notations

= W, (§+4i0) = v, (E, 0)+iu,(§, 0)

= W, (5-i0) = v, (§, 0) -iu, (5, 0)

[
|

one can write the boundary conditions as

W} - W =2iu (§0) =0 for ~c0<§<-1

1~ Yy
W1+ W) = 2v(E,0) = 2h'(x(8)) for -1<E<-E_
W‘;+wi = v2v1(§,0) 5 /!—%Zf_zgiz- for -E_<E<E,
wJ; W = 2iu (5,0) = 0 for E <E<oo

(19)

(20a)

(20b)

(21a)

(21b)

(21c)

(21d)

where the relation between x and § in Eq. (17) has been used to obtain

Eq. (21c). The homogeneous problem corresponding to the present

prbblem is

-H, =0 for -co<E<-1

+ =

H.+H. =0 for -1<§<-§C

HE4HT =0 for -5 <8<E
G B

-H. =0 for §B<§<oo y

By inspection the homogeneous solution can be easily found to be

H, (€)= V(C+1)(C -5,
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considering the conditions that no singularities be allowed at the trailing
edges., With the right choice of a branch cut, i.e., -1 to EB on E-axis,

one obtains the relationships

HT::i (145)(85-6) = -H] , -1<B<g, (23a)
H‘I:HI T L R I (23b)

which are useful in finding the particular solution. The use of those
relationships and the introduction of the new function

W, (0)

FI(C) = m)— (24)

yield the particular solution as follows: The boundary conditions for

FI(C) now read

+ L oy e
F -F‘:———-—:——(W -W ):O -for ~c0o<E<-1 (242a)
(Rt | B - B  a |
H 131 H
1 1 1
wt w; ;
s C e ST SN e P L R P (24b)
15 + = F\U 1 1 x C
H H H H
1 1 1 1
+ =
JeB; 2
+ R i 10 .1 ( + ) 1 V/E%4c
FI-FI_—T———-__T W1+W1 o ey | - i for -§C<§< gB (24c)
H; H, H H; "¢
1 1 1 1
A VV{ Wy + -
F -F = ———:—(W -W >: O fOI' § <§<(D (24d)
FaT R = - R Tl Ry | B
Hy 8y . By

from Eqgs. (21a) to (21d), using the relations (23a) and (23b). If F-;-Fl
is known on an arc I', the analytic solution for FI(C) can be obtained by

using Plemelj's Formula as
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4 (25)

Then one can write down the particular solution for WI(C) as

-g

G ’ / ’
1 2h (x(€7)) dg
W), =H . C)F, €) = y/ (C+1)(C-E,) [ x
i] )P 1 1 B 211‘1_{ ; (1+€/)(gB_€/) §'-g
B S
i 1 >.j«B A €12+C2 dg/} (26)
Z'rrl_g 111/25'\/(1+§’)(§B-§') gz_g
G

using Egs. (22) and (25), where E’ are dummy variables for integrals.

The general complementary solution has the form of

W, (0 = H (0P, (0 @7)
where
l0o)
PI(C) = Z Cn Cn
n=-00

and PI(C) can be determined by the following two conditions that
i) Wl(C)C can not have stronger singularities than WI(C)P ,
and that
ii) wl(z) behaves like 1//z-¢ as z=¢, or WI(C,) behaves like C
as {~o0o.
With these restrictions the only possible form for PI(C) is

By

PI(C) = A1+T i (28)

where Ay and B1 are real constants. Now the unique solution for WI(C)
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can be built up from Eqgs. (26) and (27) as

€
1. [ C 2n/(x(&)) dg

™ 1RE) (B E) E-C

4

W, (C) = V(C+1)(C—§B)'{2

h : ﬂf ¥ 4 it dgl +A + ——Bl}
2mi . 1/2 ’ ’ Tig ’ il C
S 1 CEV(14E)(B5-8) E'-C

(29)
where the symbol (*) denotes that the Cauchy principal value is taken
for the integrals if necessary, and A1 . B1 and ¢ are yet unknown real
constants.

- In order to determine three unknown quatities the boundary
condition at infinity (iii) and the closure condition (iv) are used.

First define the new notations by

VT T

I,(0)= : (30a)
1 2mi s, i/(1+€/)(gB_§/) g/_g
VY A —S—s
L (0) = (€+2113;C-5B)*f]3 172 it & | (30b)
g it TEV(1+E)(€5-8) E-C
I,(8) =1,(5)+1,(C) (30c)
7,00 = H(C+1)(C-Ep) ~(30d)
(E+1)(6-ER)
J, (€)= T : (30e)

then WI(C) in Eq. (29) is rewritten as

W, (0) =1,(8)+ AT () + B, T,(0) . (299
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The boundary condition at infinity ({=ic) is épplied to WI(C), then -

Wl(lc) =¥y + iu,

1l

61"'1( Zi>:IO(iC)+A1J1(ic)+B1J2(ic) : (31)

also the closure condition to WI(Q), then

Im ggwl(z)dz = Imjwl(z(g))%z- dc

I‘z I"C
:—RejW (Q)—C
e
:—ReJI C)dCdC A ReJJ —ZCdQ-Bl-ReIJZ(Q)g—ZCdC:O
5 2

(32)
where I‘g is a corresponding contour in { plane to Tz in z-plane. (See
Figs. 2(a) and 2(b).) -We have three equations (two from Eq. (31) and
one frvom Eq. (32)) for the unknowns, Al’ B1 and ¢, therefore we can
uniquely determine them as follows. Since these three equations have

turned out to be linear in Al’ B1 and '"0"" (instead of ''¢"'), we can write

them in the matrix form as

0 m12 m13 (o N1
1
TE o Bas o Fhs |18y |5 (>3]
0 Mg, B 1By Ny
where
Pty = R.e{Jl(ic)} o T Re{Jz(ic)}
(34)

1}
1

m,, Im{J’l(ic)} , Ty, Im{JZ(ic)}
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dz
m,, = Re{IJ (C) dC} m,, = R.e{JJZ(g)d—Cdg}
Tg I‘g
(34)
N; = 8. -Re {Io(ic)} con‘F.
N2 = -Im {I 1c)}
N3 = {.J‘I C)dg } g )
Therefore the explicit expressions for A, B and O are
: By Fhyn
AR et (35)
1 D
2y g
N e Ny |
B1 = D_l s = (36).
3253
0 = 26(N,-m,,A, -m,,B,) (37)
where
e T
D1 = . (38)
e e

Now the problem is restated: given a geometry of the hydrofoil,
its upstream flow condition and the length of cavity '"¢" (instead of ''0'"),
we have found the first order linearized solution, the outer solution,

and the cavitation number ""0'. Now one can write the velocity distri-

bution q, on the body as follows. Since
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2
99 =N u2+v2
b b
body
2
= 1+2¢€u; + O(e%)
body
with Eqs. (2') and (3'), thus
q
0 2
body
where
u =Im{W, (§,+0)} for -1<E<E (40)
1 1 B
body

using relation (18). One can notice that the asymptotic expansion for
the outer solution of Eq. (39) is not valid for £=0(€) or x:O(€2) because

Im{W1(§,+O)} has 1/€ or l/xl/2

singularities, which can be easily seen
from Eq. (29). The series expansion in € then diverges for that region
(the inner region), This fact suggests that we stretch the x-y coordi-

nates in this region by the factor 62, and find the local non-linear

solution of the inner solution in the inner region so obtained.

3. Inner Solution., As implied in the foregoing discussion, we stretch

the coordinate system near the leading edge by the stretching factor 62
to find the inner region. Therefore the new coordinates X and Y
(called the 'inner variables'') are expressed by

X= €2X and vy = €2Y A (41)

so that the parabolic nose y=+€/x by
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Y = +/X . (42)
The flow configuration in the inner region (after stretching) is shown
in Fig. 3(a) or Fig. 3(b), depending on the location of the upper separa-
tion point of the cavity.
Figure 3(a) shows the regular case in which the cavity separa-
tion point is in the outer region, whereas Fig. 3(b) shows the critical

case in which the separation point is within the inner region.

3.1, Regular Case. The flow around the infinitely long parabolic strut

in the inner region can be constructed by the superposition of two simple
flows; the parallel uniform flow to the axis of the parabola and the
exterior corner flow turning around the parabolic nose, as schemati-
cally shown in Fig. 3(a). One can easily find the complex potential for
this flow with the help of conformal mapping function

AR (43)

This function transforms the flow field made by the parabolic strut

Y =+/X in the Z-plane onto the left half #-plane where %= A+iu. Now
the two flows mentioned above appear in the #-plane as a local stagnation
flow perpendicular to the wall and a parallel flow along the wall. The

complex potentials which express the flows are

W_ = -U.x _ (44a)
S 1

and

W_ = -iU % : (44b)
P p

respectively, where Ui and Up are the magnitudes of local uniform

flow speeds which are unknown.
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Superposing these two complex potentials, one obtains the

complex potential Wi for the inner solution as follows

W. =W +W
i s P
= UK* - iU %
i p
il
= -U, (t+ib)" +d (45)

where additional as yet unknown constants b and d have been introduced.

The velocity profile q; on the parabolic strut is then

- ()]

- (46)

body -

Since

S R 1
; [ In ]‘ st R e

Eq. (46) becomes

2 xi-ib(n-iubz

=40 T mim + 4n

body

2 2[K+1b nlb
1 =&l T-2n" 1-2%

q.
body

On the body %I:uz, H-%=2iMd, #+%=0, and uZ =X due to the transforma-

tion of Eq. (43), q; is now written in the inner variable X as

B uPe2by £b° % (/2 1 )2
ql 1 2 T 71 1/4+ X
1+4u /
93 _\/ X b
or T ”‘“X[lixml' (47)

or in terms of x= eZX, the velocity profile on the body is then

e !1 (47)

€ /4+

C:IH

i
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where the upper sign is used for the upper half portion of the body, and
the lower sign for the lower half portion of the body. Ui and b are as
yet unknown parameters which represent the magnitude of the local
uniform flow speed and the location of the stagnation point respectively.
These two parameters which characterize the inner flow are determi.ned
later by matching with the outer solution. Before proceeding to this

matching procedure we first treat the critical case mentioned before.

3.2. Critical Case. Due to the appearance of the free streamline in

the inner region there is no easy way to find the exact inner solution as
for the regular case, See Fig. 3(b) for the flow configuration. Never-
theless, a simple assumption on the location of the free streamline makes
it possible to formulate and solve the problem with the hodograph vari-
able to a sufficient accuracy. The assumption made here is to satisfy
the boundary condition for the free streamline on the extension of the
nose shape; that is, the upper body-cavity profile is also expressed by
Y = /X, so that the same transformation used for the regular case will
map the body-cavity systerh onto a straight line. All other boundary
conditions used for the non-linear technique remain exact. This
approximate inner solution so obtained is verified later to be sufficiently
complete to permit matching with the outer solution. The final results
are then found to be accurate for the order desired.

The hodograph variable w, is defined by

dWi i6 10
" 4 i i (45)

where Wi is a complex potential and Ui is the magnitude of the local
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uniform flow speed in Z-plane, Therefore

= ; : a
wi_6+1'r : T—KnUi. (49)

The conformal mapping

Z =iK+K2 5. = keRd (50)
maps the boundary of the parabolic body-cavity system onto the real
\ axis and also the flow field in the Z-plane onto the upper half #-plane.

The coordinate relation between X and A on the body is found to be

I (51)

Therefore, one can write the boundary conditions in the %-plane as

= tan~ 1 8% )
6:60 5 eo_tan IxX ) —co<)\<->\s
~1aY
=wHtan” Tz, =A<A<)y ? (52)
T=0 |, )‘B<)‘<°° )

S B

conditions in the #-plane are shown in Fig. 6. Again this problem can

where -)\S and )‘B correspond to X, and X respectively. The boundary

be reduced to a Hilbert mixed-type boundary value problem as was done
for the outer solution in Chapter 2. First the analytical continuation of

w, (%) into the lower half #-plane is done by
w, (%) = W 1A, (53)
which leads one to write the boundary conditions as

e
wi+wi'290 . -oo<)\<>\B

(52")

+
- &= X
w, -, 0 3 B< A<oo.
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Consider the new function Fi(n) defined by

Fl(%) b

where H, (%) is the homogeneous solution to this problem which is easily
3] )
found to be «/K-)\B by inspection. Now the boundary conditions of

Eqgs. (52) for the new function Fi(%) are written as

26
B L i e : -oo<>\<>\B
ST
(52%)
+ - 3
F.-F. =0 s A <A<oo .
i i B

We now observe that
R B -
Hi = MXB-}\ = 'Hi : -oo<)\<>\B
and

LT A A
Hi Hi k B< <00,

One can solve for wi(ﬂ.) by applying Plemelj's formula to Egs. (52",

namely,

w, (%) = H, (%) F; (%)

A

B 26 '
NH- >‘B [21. f g )\d); J (54)
P W

The arbitrary polynomial P(%) must be zero in this case to satisfy the
boundary conditions at infinity, namely, w, = 8+iT=0Q.

Substituting 90 of Eq. (52) into Eq. (54), we can write
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,/K-AB
w, (%) = - 1T—{Ia(u.) + Ib(u)} (54")

where
A
B
d
I (%)= e (55)
a _‘Ix JE w5 R
sV'B
A -1dy
B tan = —
dxX dA
I (%) =J == %% (56)
_(x) B
Ia(n) has the closed form
-xs-n
1L, =-—L=m 7 - : (55%)
Ag-% 2 )\B+}\S\/ g%t 2Ag+ Agn

The contour integral method is used to find a closed form for Ib(K) as

follows. Since

vy 1 _ 1
d > /X 2Ah
then i
tan-lgz_t ik =i-£n X+? [
dXx 2A 2i )\_%

Define a new contour integral in the t plane, defined in Fig. 7, by

tan”
s 2t dt i gl TR
Lo0= f : (57)
i 21 i t-%
a, V-2 -3 Vi-lg

where C0 is the contour deplcted in Fig. 7. The reason why tan~1 o~

1
2
is rewritten as Ziiln (t+i/2)/(t-i/2) is that it is easier to identify the
branch points in this form. By the Cauchy integral formula

’can—1 -2—1-

L(#%) = 2mi ———=" (58)

a=
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The contour integral itself along CO is a tedious but str.aightforward

calculation and here only the result is given

R, +(Ag-%) +2R

—lO |
/m_\
-
=
D
o
o S
1
B

AR = oL (s ity . (59)
i 1 b /-—————KB_K 2 90\
RO+(>\B—K)-2RO <51n T/J)\B-%
Equating Eqgs. (58) and (59), one can find
e 10
st R R, +(A -n)+2R2( —°>/>\
I (%) = - K_ TI‘ Pn 0 2 B~ (56,)
b / Vv 1
%'NB Ag-* 2 eo\
R +(}\B—K)—2RO (51n—2—/¢ KB-%
where
1/2
AR |
Bo ™ (%*Z)
(60)

and )\ is found by Eq. (51) such that )‘B XI/Z. Equations (55) and

(56') are now substituted into Eq. (54") to obtain

_}\S_n

wi(K) = tan_l 2_1% +ifn
Z/AB+XS /%B-n +20g + Ag-%

| =

8
RN | DY & YD
R +(A,=%) +2R sin —=- -n
O >\B xB . (54//)

i
+ —Z—En

=IO N

5 0
s e
Py T Ny 0 = g vl A=
We are now able to express the velocity distribution on the body using

the original definition for wi in Eq. (48), i.e.,
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Since

(wi —wi )

= 2iImi{w, (%)} |
body ' =Xz X
il

and

lxs+>\l

Im{wi(%)}| - m

K< szB+ xs JxB-x +2Ag+ xs- %

i2 .9

T
RO+(>\B->\)+2RO 51nT-

5
R+ (g-N - 2R P i O

0 z

we finally obtain the inner velocity distribution for the critical case

'KS:I:XUZ I

: Z
t <\/;(]1?’/2$X1/2+«/X]1?’/2+ >\S>

0

0

B B

Tk T e R L

B e ki

with the aid of Eq. (51).

2
xp=€ XB’ Eq. (61) becomes

e —_——
1/2;X1/2>_2R1/zs, _nguz:FXl/z

1/2

’

In terms of the outer variable x= €2X with

(61)
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L2
T e
1T >
i B 7 T 172
B + B + A
€ € S
1/2
iy 12 5 ST \
T v S T e B - R
0 c (i B ) c ;

xl/2 =Fx1/2 ) xl/2 ?xl/z
R+ B ZR1/2 e 0} B :
0 3 Rhcids " Sl ok . B €

where Ry 60 are given by Eq. (60). Two unknown parameters U; and
>\S appear in this result. These have exactly the same meaning as

those in the regular case, and they are to be determined by matching.

4, Matching. The basic notion of matching is that there exists a
common region where both the outer and inner expansions agree,
Mathematically speaking, the behavior of the outer solution as the outer
variable x tends to zero and the inner solution as the inner variable X
tends to infinity should be in agreement with each order of expansion

of the small parameter. Alternatively, the '"asymptotic matching
principle'' described by Van Dyke (Ref. [10], pg. 64-68) can be applied.
In words this is

"The m-term inner expansion of (the n-term outer expansion)

= the n-term outer expansion of (the m-term inner expansion)"
(62)
m and n may be taken as any two integers, equal or unequal. The actual
procedure following the principle of Eq. (62) is that the m-term expan-

sion is taken after expanding the n-term outer expansion rewritten by



=31

the inner variables; and conversely for the right-hand side of Eq. (62).
(In the present problem m=1 and n=2,)

In order to save time in rewriting the solutions for expansions,
one can expand both inner and outer solutions in terms of the outer
variable x only. In the present case the outer solution is expanded in
terms of x the order of which is “62 "' (the inner region), and also the

inner solution in terms of x the order of which is "'1'' (the outer region).

4,1, Expansion of the Outer Solution. The two term expansion for the

outer solution is, from Eq. (39),

9y k
i 1+ eul (39°)
¢ body
and from Eq. (40)
u | =1m{W1(g,+0)} y Te12E<E, .

body
Now we further expand Eq. (39’) for small x (note that near the nose the

order of x is like €2). From Eqs, (17a,b) we obtain

X = -%é g O I (63)

Therefore, as
g~0€) , x=0(e%). (64)
We now explicitly expand the velocity u; on the body as

Im{W, (£ ,+0)} = Im{1, (8, +0)}+ Im{L, (§, +0)}
body

+A -Im{J1(€,+0)}+Bl.Im{J2(€,+0)} R P N=+0 (40")

1 B ’
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Each of these terms is expanded first in terms of € and then in x
through Eq. (63). There are two cases to consider, the regular case
and the critical case. We consider first the regular case. The first

term in Eq. (40’) becomes

mf1) (5,40} = - - JIFE(EG-F) -1{(5, +0) (65)

body
2 -%\liB 1(0,+0)+ O(e) (65")

where

: *f'gc
T840 =
-1

Ll (66)
V(1+8)(85-8) &'-€

For the second term we have

/(559

Im{L,(E,+0)} = - I,(E,+0) (67)
“ body Zﬂll/z 5
gB ’ ’
= - TIZ(O,+O)+ O(e) (%) (67°)
2y '
where
g e g
B / s *n"B ’ P e O
Ié(§,+0):-l§ SE dg g +cg _J‘ dg vE "tc (68)

. 8 J1+E)(E-F) B T8 /(1+8)(55-F)

The third term is

Im{J1(§,+O)}‘ 7 «/(1+§)(§B-€) (69)

body

= V&5 + O(e) (69"

R
<Ié(§,+0) seems to have a singularity as E-0(€?), because of the 1/§
term in front of the bracket, but this behaves like a constant as £-0.
The proof is given in Appendix A,
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and lastly the fourth term is

V(1+8)(E,-8)
Im{7, (5, +0)} o - B (70)
body

Ve

B = 1 ¢
:_g__+fg;<1_ B>+0(e). (70")

un

Therefore for the regular case the leading term required for matching

with the inner solution is found in Eq. (70"), i.e.,

9y VEg
et = P EB
T_ 1 E

where €B =0O(1l). In terms of x this is

q, V1€

B .k
T 175 2 (71)

We now treat the critical case (xB =O(€2) , B..=0(€)). The

B

expansion is slightly different because "§B-§” is now of the same order

as €, so that

qo VgB‘g
U—C = 1+€B1——§-—.—.

Again, this is rewritten in terms of x using Eq. (63) to obtain

1/4 ‘Vxl/z + xl/2

£ B
S 1/2
C %

9
-.[—J— =1-¢€eB (72}

c
The negative sign is used here because the matching process is

carried out on the lower half of the body.
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4. 2. Expansions of the Inner Solution. As before we begin by treating

the regular case. From Eq. (47'),

b
U_l.:,/ezx ’“: e172'
—Z—’FX &

which has the two term expansion

Vo)

i €b

itk Iy vt | (73)

i %

The critical case is obtained from Eq. (61’). After the lengthy algebraic

calculations one can find the expansion as

£ \/x1/2+xl/2 e
e A YR S T W
172 e S “®o
X
” Lz, 1f2
2 2
AR %y tE . X113/2+ . +€2]§ <B; ”‘s)' 3/2
2\ 172 e T s -5 . O[]
(74)
where
)
12w Yy
SO:ZR.O/ sin »—. (75)

3/2

Note that the last term is found to be of order €77, not 62 as in the

regular case,

4,3, Matching for the Regular Case, We now equate the leading terms

of Eqgs. (71), (73) to determine the unknown parameters‘ Ui and. b.

They are

U, =U (76a)



(76b)

4.4 Matching for the Critical Case. A similar process with Eqgs. (72),

(74) allows the parameters U. and )\S to be found,
i

U.=U (77a)

/x]13/2 1/2 £1/4
2 _—6—'+ >\S-SO = € BICTE, (77b)

or
2 _1/2
1/4 x ;
] 1/2 / B ’
)\s = Z<€ B]. ;VE-'—SO) e (7 7b)

The matching has been done so that both the inner and outer solutions
behave in the same manner to the order of € in some intermediate region.
We should notice, however, that the next higher order term not matched
is of order 63/2 unlike the regular case which is matched through the
order of 62. But this was quite expected because of the assumption made
on the location of the free streamline. Nevertheless, the errors due to

this assumption have turned out to be as seen above of higher order.

5. Construction of Uniformly Valid Solutions, The simplest way to

construct uniformly valid solutions among others is to add the inner
and outer solutions and subtract the part they have in common. (This

is so-called ""additive composition'' of Ref. [10].) Applying this method
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both to the regular and critical cases, one can find the uniformly valid

solutions as follows.

5.1, Uniformly Valid Solution for the Regular Case, Since the
/2

common part is given by 1+ €'b/x1 from Eq. (73), the uniformly valid

solution on the body is

[5 €b :
Tk ez/:+x i XI/Z|+e,/(1+§(x))(gB-§(x))

{2

[Ii(g(x),m) I, (§(x), +0) J
o = +A1

™ 1/2

2/l

J(1+E(x))(E5-E(x) VB

2
; ) F 7z + O(€%) (78)

+ €B

c

from Eqs. (47') and (40’) with (65) - (69). The upper signs are used for
the upper porfion of the body and the lower signs for the lower portion
of the body. 1'1(§(x),+'0) and Ié(g(x),+0) are given by (66) and (68)

respectively, b by (76 b), A1 and B1 by (35) and (36). Also x and £ are

related through the Egs., (17a) and (17b).

5.2, Uniformly Valid Solution for the Critical Case. Since the common

part is

1/2 1/2
:F
£1/4 Xp x

12€B, =y 172
(2 =X

from Eq. (72), the uniformly valid solution on the body is given by

applying the '"additive composition' again,
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1/2
e = ]
e - S (>
Yo </X1/2 e 172 )2
B B
Ll
1/2
X]13/2=Fx1/2 1/2 60 x113/2 :Fxl/z
RO+ —_E-_ +2RO sin

B 0% TR N S )

X1/2 q:xl/z 8 X1/2 q:xl/Z

R4 _]2’__._.__ -2R1/2 sin-—g- _]i_____
0 e 0 Z €

I1(E(x), +0) I,(5(x), +0) ]
- +A,

5 eﬁ1+ §(x))(§B- g(x)) {-

™ Zﬂlfz
V(1+E(x))(B5-B(x)  ,1/4 xléz V) -
+ €B1 & ¥ 72 173 + O(¢€ ) (79)
c X

where 1’1-(§(x),+0) and Ié(g(x),+0) are given by (66) and (68), Ag by (77b")
with (60‘), (51) and (75), and x and § are related by Eqgs. (17a,b). We
notice that in both cases the uniformly valid solutions do not have any
singularities as x—=0, Also notice that the solution for the critical

3/2

case has the error € instead of ez for the regular case,

6. Special Cases,

6. 1. Infinite Cavity Case (/o0 or 0=0) for an Arbitrary Profile Shape

‘with a Parabolic Nose. For f-oco, the mapping function is simplified to

C=/z (80)

or



~38-

E-+/x. (81)

on the real axis. Therefore Ié(g(x),+0)/£1/2 now assumes the form

Ié(g(x), +0) 1 [&gB dgl *gB d§'
1/2 —’"%_ ’ 7 o i ’ 7 B
! “E. EW(1+E)(B5-E)  ZBL (5-8)J(1+E)(E5-E) |

from Eq. (68). Since

wb

i it

TEL(E - (148 (E5-E)

B

=D, (§)

g (Ec+E(1+85)

- Mn
JD(E,-0 (O BBt E) + JIFENES-0) ) + (EtE)

(82)
and
fs 4 e Sl 514 Ep)
e ifnaenEsg) VB b -e e e vl P
(83)

the uniformly valid velocity profile on the body is then for the regular

case

-[%_ i "Z—X— llﬂ:ﬁ'z—l+€,\/<1:l:x1/2><x1B/2:Fx1/2>

c e” /4 + x (84)
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I (§(x), +0) % |
x[_ 1 = iz 11/2 <D1(0)~D1(§(x))> +A1] l
™

| P (84)
eB ! Cont

v it weN e 12 [1/2 25l

+ x1/2 (;\/Kl:bx ><XB X > - J*g > + O(¢€ )/:

where

b= By x113/2 " (85)

from Eq. (76b) and 1’1(§(x), +0) is given by Eq. (66) and the remaining

terms in the bracket are given in Eqs. (82), (83). The constants Al’

B1 and 0 defined by Eqgs. (35), (36) and (37) are reduced to simpler

forms
A =0 (86)
L [ s
31:51'1?-[ : = 48 - 5 (87)
1 (148858
g =0 (88)
For the critical case we obtain from Eq. (79)
1/2 )
%
g Az Z—|
'

. e 172 .
B : Ak g > (89)

e

3
Note, this expression seems singular at first sight. But emphasis is
again placed on the fact that these terms are regular,
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1/2
1/2 1/2 1/2 1/2
x Fix 8 x Fx
R +<—-—B—-——>+2Rl/2 sin -—-Q- B
% 0 € 0 2 €
X1/2 1/2 XIIB/Z - XI/Z

+ € f(l:!:xl/z ><x];/2 F x1/2> [—

F X 8
R+ (-B—e———>- 213\10/2 ey

2

™

1
*ﬁ‘z 172
X

€

I7 (8(x),+0)

(D1<0)-D1(§<x))>J

:I::TB% <\/<l:bx1/2>(xg2 =Fx1/2> - \/x113/2 :Fxl/2 > + 0(63/2) )

where A, becomes

S

: 2
1( 1/2 B
A —\e B1+SO> -

s~ 4

x1/2

€

with Eqs. (51), (60) and (75) and B1 remains the same,

6.2 Parabolic Strut at Zero Cavitation Number,
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We obtain the velocity distribution
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6.3. Base-Vented Parabolic Strut., This is the case in which the two

detachment points are fixed at x=1 followed by the infinite cavity.

The velocity follows from setting Xp = 1 in Eq. (91). We obtain

e S0 7 TR ,“‘ Ve it ( s Rl ol ko)
c € /4 +x x x

This result is similar to Johnson and Rasnick's [13] semi-exact ad

hoc calculation for the zero angle of attack case.

7. Numerical Results and Discussion, Theoretically the uniformly

valid solutions obtained here are expected to be accurate to the order
of €, yet it is very desirable to check the accuracy by the present
method against an exact theory since singular perturbation methods
have not been applied to cavity flows of this type before. For this

purpose the flow past a parabolic strut defined by y=+0.1/x with an
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infinite cavity was analyzed. The upper detachment points we fixed at were

Xp = 1.0, 0.05, 0.01, 0, and the angle of attack was set at one degree.

Note that the leading edge diameter, ez, is 0.01. Using the Eqs. (91),

(92) and (94), we calculated the pressure distribution on these bodies.

The results of these calculations are presented in Figs. 8-11 together

with original calculations using Wu and Wang's exact theory [2]. This

latter method appears to be the most direct and useful of the several

exact methods now available but there are definitely numerical diffi-

culties in obtaining convergent solutions, These are described more

at length in Appendix B. The main point to be established here is that

the present approximate method agrees very well with the exact results,
We should mention, however, differences in the two methods

in the cases Xp = 0.0, 0.05 (Figs. 11,9). These errors are however of

the expected order in € and they are not large. It should be mentioned

that the matchings of the present problem have been carried out around

the nose. The expansions used are not appropriate for the critical case

when the cavity separation point lies in an intermediate position between

the nose and the outer region. The small differences observed for the

xB=O.05 case (Fig. 9) are due to this reason. The differences occuring

for the separation at the leading edge (xB =0, Fig. 11) are due to a

different source. In this case the upper free streamline cannot be

expected to be well approximated by the parabolic shape. As mentioned,

3/2 which came from the inner solution.

the error in this case is of order €
Although the profile of the leading edge in the present method is not

necessarily that of parabola or ellipse (this shape has been used for
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linear cascade problems in Part II of this thesis), the accuracy of this
method then depends on that of the inner solution. In the case where
the simple inner flow can not be easily solved to a sufficient accuracy
for ma’cching, or where the angle of attack and/or the cavity thickness
are large, it seems more appropriate to use nonlinear exact theories
[2,4] directly.

The pressure coefficients CL, CD calculated at the same time
also show good agreement with the exact values which are included in
the caption of each figure,

All computations were carried out on the IBM Comptiter 370-
155 at the Booth Computing Center, California Institute of Technology.
It took about 6 to 14 minutes to obtain each convergent solution after
14 to 25 functional iterations of Wu and Wang's non-linear method,
whereas the computations by the present work took just two seconds.

Figure 12 shows the comparison of drag coefficients computed
by the present work with those determined from the full linearized free
streamline theory [14] for the base-vented parabolic struts defined by
y=+¢/x. Wu and W.ang's non-linear calculation showed the same
value as those of the present work as the limiting case (£—0o0) both for
€=0.05 and 0.1. The overestimation on the drag coefficients by the
linearized theory of Ref. [14] is due to its poor representation of
bluntness of the foil, especially for finite cavity length. The over-
estimation of forces is characteristic of linearized free streamline
theory.

In Figs. (13) to (15) attention has beén paid to the variations of

the pressure coefficients near the upper detachment point with various
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angles of attack, This type of information may possibly indicate
the cavitation separation point in a real flow, but otherwise these
distributions are applicable in non-cavitating ventilating flow, It is
interesting to note that in Fig., 13 the zero degree angle of attack
case indicates a smooth type of separation for Xp = 0.01, We can
also observe smooth separations for long cavity lengths at two degree
angle of attack (Fig. 14). For other angles of attack and for shorter
cavity lengths negative pressure coefficients are developed near the
nose (Figs. 14, 15) and the change of the fixed separation point has a
strong effect (Figs. 14-16).

Figures (16) and (17) show the variations of drag and lift
coefficients fof parabolic struts with the fixed separation point

x5, =0,01 as a function of cavitation number and angle of attack,

B

8. Summary. The singular perturbation method has been applied

to correct the deficiencies of linearized theory of flow past cavitating
hydrofoils with rounded noses. The differences of the local pressure
coefficient between the present work and an exact theory have been
found to be not large even for the most '""critical' case, i.e., the

case in which the cavity separation point is fixed right on the nose
itself, Otherwise the agreement is excellent. The procedure of the
singular perturbation method is straightforward with the aid of
linearized free streamline theories and the standard method of complex
variable analysis. Because of its simplicity, economy, and direct

approach the present method should be useful for design purposes.
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LIST OF FIGURE CAPTIONS

Fig. 1. Sketch showing an isolated supercavitating hydrofoil with a

parabolic nose smoothly followed by an arbitrary profile shape.

Fig. 2. Linearized boundary conditions for the complex velocity
Wy Yy iv, in the physical (z) plane and transform (()

planes.

Figs 3. Sketch showing the inner flow about the basic parabola.
(a) shows the regular case and (b) shows the critical case

in which a free streamline appears.

Fig. 4. Physical interpretation of the flow past a parabola for the

regular case.

Figs 5. Transform plane (Z =% - %2) for the solution of the regular

inner flow,

Fig. 6. Boundary conditions for the hodograph variable w =0 +it in

the transform plane to obtain the solution for the critical

inner flow.
Fig. T, Contour Co to find the integral Ii(%) in Eq. (57).

Fig. 8. Pressure distribution on a base ventilated, (xB =1,0)
parabolic strut with € =0.1 at zero cavitation number at
one degree angle of attack. The calculations of the present
work give a drag coefficient based on chord of CD =0,0152
and a lift coefficient CL =0, 0494. The exact values are

0.0148 and 0. 0478 respectively.

Fig. 9. Pressure distribution on the parabolic strut of Fig. 8 with
cavity detachment at x_, =0.05. The present method gives

B
Cp= 0.0189, C. =0.0521,exact values being 0.0182, 0.0470
respectively.,
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Pressure distribution on the parabolic strut of Fig. 8 with
cavity detachment at x, =0.01. The present method gives

B
CD =i0.0191,, CL= 0.0547 with corresponding exact values
of 0.0186, 0,0511.

Pressure distribution on the parabolic strut of Fig. 8 with

cavity detachment at the nose itself (xB =0.0). The present '
D= 0.0193, CL
exact values of 0,0167 and 0.0594.

method gives C =0.0762 with corresponding

Comparison of drag coefficients by the present work with
those by linearized theory in Ref. [14] for symmetric flow

around parabolic struts,

Variation of the pressure coefficients as a function of the

angle of attack on the parabolic strut of Fig. 8 with Xp = 0.01
and =3,

Variation of the pressure coefficients as a function of cavity
length on the parabolic strut of Fig. 8 with Xp = 0.01 and

=2
I .

Variation of the pressure coefficients as a function of detach-

ment point of cavity on the parabolic strut of Fig. 8 with

. =2° and £=3,

il

Drag coefficient as function of angle of attack and cavitation

number on the parabolic strut of Fig. 8 with Xp = 0.0%,

Lift coefficient as function of angle of attack and cavitation

number on the parabolic strut of Fig. 8 with Xp = 0.01,

Comparison of the flow configuration to be solved with that

of the basic flow used to start the iterative method,

An example of divergence by Wu and Wang's functional

iterative method on the parabolic strut of Fig. 8 with Xp = 4 8 )

An example of convergence by Wu and Wang's functional

iterative method for the same flow as in Fig. B2,
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Fig. B4, Another example of convergence by Wu and Wang's method
for the same flow as Fig. B2 except that €=0.05 and

XB = 0.05.
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Fig. 1. Sketch showing an isolated supercavitating hydrofoil with a
parabolic nose smoothly followed by an arbitrary profile shape,
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Linearized boundary conditions for the complex velocity

W= ul-ivl in the physical (z) plane and transform () planes,
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Z =X+iY plane

Y =./X

(a)

Fig. 3(a). Sketch showing the inner flow about the

basic parabola — regular case,

(b)

Fig. 3(b). Sketch showing the inner flow about the basic parabola —
critical case in which a free streamline appears.
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Fig. 4. Physical interpretation of the flow past a
parabola for the regular case,

n
4
£ k plane

Fig. 5. Transform plane (Z = K—-KZ) for the solution
of the regular inner flow,
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Fig. 6. Boundary conditions for the hodograph variable w=8+iT
in the transform plane to obtain the solution for the
critical inner flow,

Fig. 7. Contour C0 to find the integral Ii(K)_in Eq. (57).
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APPENDIX A

THE BEHAVIOR OF THE TERM 12(5,0)

IN EQUATION (68) AS £-0

The complex velocity potential W1 can not have any stronger
singularities than 1/§. Therefore the only possible expansion form
of the second term of Ié(g, +0) in Eq. (68) around £=0 is E0+E1€+
E2§2+ ... where Ei are constants, But as £-0, we obéerve that this

second term reduces to the first term so that we can identify EO as
EO = the first term in Eq, (68)

or

: s
2 9(;Bd? g/2+C2
0 Jg. B Va+g)(55-8)

Now the expansion for Ié(g, 4+0) around E=0O(e) is written by

Ié(§,+0) = -lg-[(First Term) - (Second Term)]
p %;[#o 5 <¢O+E1§+ E2€2+ 2 )]

:»%(—Elg—Eziz-k...)

= -E[-EfS+-.-

1
Therefore Ié(§,+0) '*-El (a constant) as E-0., The term 12(@,0) has
now been proved to be regular as £-0 so that the expansion made in

Eq. (67) is seen to be correct.
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APPENDIX B

COMPUTATIONAL TECHNIQUES OF WU AND WANG'S
NON-LINEAR FUNCTIONAL ITERATIVE METHOD

Generally speaking, functional iterative methods for non-linear
equations are very unstable if the solutions have singular behaviors.
The combination of the present problem with Wu and Wang's functional
iterative method exactly corresponds to this situation as stated above.
Inevitably we have experienced stubborn instability problems in the
actual computations. One typical example which exhibits divergent
iterations is shown in Fig, B-2. This oscillatory result in the iterations
was obtained by applying the method proposed in Wu and Wang's paper
to the present problem. We also have Lurye's report (Ref, 15) in which
this method was applied to the same problem (base-vented parabolic
struts) and failed to get the convergent solutions. But it seems to be
too hasty to abandon Wu and Wang's method because of its straight-
forwardness and usefu]ne.ss. We observed several points to which the
convergence of iterations is very sensitive., By paying careful attention
to them we have obtained nice convergent solutions finally.

In what follows we describe the most important items of them,
and leave the details of numerical techniques with Wu and Wang's
method to an Engineering Report of the California Institute of Technology
which will be published in the near future. .

Throughout the discussions, the cavity was taken to be infinite.
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1. Basic. Flow

For any functional iterative method we need a first-guess
function to start the iterations with. In the present problem the
starting function is given by a flow which is similar to the problem to
be solved and whose analytical solution should be completely known.

The basic flow taken here was that of the inclined flat plate with
infinite cavity downstream by two reasons; first, the solution can be
analytically obtained so that it can be used for the next iteration,
secondly, its stagnation flow represents that of the problem to be
solved so that the stagnation point is easily controlled by changing the

angle of attack a (See Fig. B-1).

Basic’

We observed that this o played an important role on

Basic
convergence of the iteration. One should find a right OBasic prob-
lem in such a way that it gives convergent iterations and, moreover,

quick convergence by placing its stagnation points as close to the

real one as possible.

2. Successive Overrelaxation Method

This method is usually used to accelerate the speed of the
convergence in an iterative process. Here we used it rather to dampen
the speed of convergence and in return to get the convergence itself,
The quantities which we feed back to the next iteration are given by,

for example,

o By (g (P2,
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The weighting parameter "®W'" should be determined by experience. We
observed that the range of "w' which gives the convergence of iteration

is fairly narrow for each problem.

3. Spatial Increments for Integration

Especially in the range of the steep change of the function the
spatial increments for numerical integrations should be small enough
to reduce big errors there. This is also essential for this method to

reach a convergent solution.

4, Double Precision in Computer

Single precision was found to be not precise enough to express
the rapid change in the singular region. Double precision is required.

Lack of one of these requirements may create the serious
divergence problem as already seen in Fig. B-2, After considerable
trial and error on computer programs and satisfying all requirements
as stated above, the same problem once diverged as shown in Fig. B-2
reached the convergent solution after 17 iterations and about nine
minutes by IBM 370. The way of convergence is shown in Fig, B-3,
Another example of convergence in which the flow configuration is
exactly the same except that thickness is half and the detachment point

Xp = 0.05 is shown in Fig, B-4.
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. FLAT PLATE
THE FLOW TO BE SOLVED THE BASIC FLOW TO START

Fig. B1l, Comparison of the flow configuration to be solved with
that of the basic flow used to start the iterative method,
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PART II

LINEAR CASCADES OF SUPERCAVITATING HY DROFOILS
WITH ROUNDED NOSES

1. Statement of the Problem. The singular perturbation method is

now applied to linear cascades of supercavitating hydrofoils with
elliptic noses, assuming as before two-dimensional, incompressible
potential flow;. Although the nose shape is changed from that of a
parabola in Part I to an ellipse in this part, the local inner flow in the
present problem remains exactly the same as in Part I. Suppose we
define an elliptic nose by y= iem. We now express this ellipse in
the inner coordinates used before for the parabola, i.e., we use the
transformations X=x/ €2, = y/ez. In terms of the stretched variables

the equation of the ellipse becomes
2
Y= Ea50 o < i'\/)?(l-%—x +O(€4)>.

The local nose shape in the inner region is again found to be
that of a parabola, Y=+4X., The inner solutions obtained in Part I can
therefore be directly used here.

The outer solutions, however, must be newly obtained by
application of the linearized free streamline theory. But when the
linearized theory is applied to linear cascade problems, much more
attention has to be paid to the perturbation expansions in order to re-
tain the accuracy of the theory. This kind of problem did not arise in

the isolated hydrofoil problems treated earlier, because the flow was
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unbounded. In cascade problems, however, the flow field is divided
into two regions by the cascade, one upstream and one downstream.
The velocity and direction in far up- and downstream locations are
different and this effect should be taken into account in the linearized
theory.

The perturbation expansions for velocities in previous publica-
tions dealing with the cascade problem [1, 2] were made around either
the upstream velocity UI or the velocity on the cavity Uc’ A schematic
sketch of the cascade flow configuration used by these authors is shown
in Fig. 1(a), for a cascade of flat plate hydrofoils. In this model of the
flow, the upstream velocity is taken to be parallel to the x-axis of a
coordinate system. In this coordinate system the body-cavity system
is assumed to lie along this x-axis. The angle between the y-axis
normal to the x-axis and the line passing through the leading edges of
the hydrofoils is called the stagger angle, Y. The angle between the
upstream velocity UI and the chord line, Op in Fig. 1(a), is then a
prescribed part of the problem and with a specification of the camber
function of the profile and cavitation number, a fully defined linear
potential problem is obtained as indicated in [1, 2], This procedure is
modelled directly on that for the isolated hydrofoil; it is certainly
satisfactory when the deflection of the flow through the cascade is
infinitesimal. As will be shown the linearized solution procedure hinges
upon a mapping function which transforms a slit representing the body-
cavity system into an infinite straight line. One of the characteristics

of this mapping function is the angle Y, the complement of which is the
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angle between the body-cavity axis and the line joining the leading edges.
In the works referred to and as shown in Fig. 1(a), the slit is taken to

be parallel to the upstream velocity. It should be immediately clear
that this assumption as to the orientation of the slit is in error by an
amount equal to the average inclination of the body and its attached
cavity and that this amount will be proportional to the deflection of the
flow through the cascade. This problem does not arise for the

isolated hycfrofoil as there is only one reference velocity in this
situation. It may be expected therefore that the basic geometry of

the cascade through the definition of the stagger angle Y will be in

error by an amount proportional to this angular misalignment, Insofar
as practical calculations go it turns out that this effect is small for
small stagger angles. However; for large stagger angles representative
of propeller sections and pump cascades, the effect is of first order as
will be later shown.

In the present work an attempt to avoid this deficiency is made
by requiring the body-cavity slit to lie along the x-axis as shown in
Fig. 1(b). The body-cavity slit is assumed to be defined by the line
joining the nose of the leading edge and the end point of the cavity. This
is the usual approximation in treating fully wetted hydrofoil cascades
and it seems appropriate here. In addition, it will be seen that for
the present problem the vector mean angle Uoo (Fig. 1(b)) is aligned
with the body-cavity axis within.the order of linearized theory. There
is a good reason for this as the end of the cavity for the model adopted

is a singularity of the flow which supports a point force. This force is
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aligned with the x-axis described above and accounts for the drag of
the forebody from elementary cascade principles parallel to the vector
mean velocity. Therefore, the errors in the lift and drag forces due to
the first order off-set of the body-cavity system from the x-axis can
remain still of second and third order respectively in the present
problem.

The disadvantage of the present procedure is that the geometri-
cal angle of the wetted portion of the body, o in Fig. 1{b), is not known
in advance. It is determined in such a way that for a given cavity length
and stagger angle Y, the end of the cavity lies on the x-axis, It will be
seen in the examples later to be discussed that the angle o is not
necessarily small. The geometric stagger angle which gives the actual
blade setting in Fig. 1(b) is then Y = Y-a_. (Note that Y= v. o -ap for
the models used in the present calculations.)

Except for this new condition imposed on the linearized theory,
the procedure of singular perturbation method is exactly the same as
that used in Part I,

Figure 2 shows a supercavitating cascade having elliptic nose
defined by ;: €V2xC§-;2 which is smoothly connected to an arbitrary
profile shape ";r,= € f(;) at point "C" (:c: XC) on the lower half profile.

% and';r are new coordinate systems which are tilted by o from the
x-y axes where ac(E e(SC) is to be calculated by the new condition stated
above. The chord length is fixed to be 1 and the blades are spaced by
"d'" so that the solidity is defined by 1/d. The cavity is assumed to

detach from the two points on the body, A(x=1) and B(x= xB), fixed but
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arbitrary, and to extend dowmstream and close on the x-axis at x={,
The flow approaches the cascade with velocity UI at an angle cxI(Ee GI)
with x-axis and is turned by the cascade so that the velocity at far
downstream is U2 and the angle is aH(E € GH) with x-axis, Now we
can define the conventional stagger angle which is used in fully wetted

linear cascade theory by

Y :Y-ac-aB (1)

and the angle of vector mean ﬁoo to x-axis by

(2)

2 cos (Y+ay) cos(Y+aH)}

%o:"an_l{ m2Y+o. F o)
sS1n C(,I II

where Y, Qp» Ogps Op are depicted in Fig. 2.
In addition throughout this work the same terminology is used
as defined in Part I of this thesis, such as "outer region', '"inner

region', ''regular case' and ''critical case!''.

2. Outer Solution. The boundary conditions in the present problem

remain the same as those of Parf I (see Chapter 2 of Part I) except the
new condition added for the location of the cavity end.

(i) The body is a streamline so that —E: %XY- .
(ii) In the cavity the flow speed is constant,bf?}?eyn u +v2= Ui.
(iii) At upstream infinity u= UI cos ay= UI cos (ech), v:UI sin 0= UI sin (eaI).
(iv) The closure condition on the body-cavity system is equivalently

interpreted as a continuity equation for the flow through the

cascade, then UI cos (Y +0.I) =UII cos (Y+0L2), where O'I: 661 and



e d i

(v) The new condition which places the cavity end on x-axis is
written as
J
[ for)
0 Body-Cavity (B. C.)

Expanding u and v around the velocity on the cavity in the same
manner as was shown in Eqgs.(1)and(2)of Part I, one can find the
linearized boundary conditions to be

XX

(i) on the body, v1=—-6c for 0<x<xB, vy=+0

K. 2xCx-x2
- (Xc~%)
v1=——————6 for 0<x<xB, y=-0

N Zxcx-x2 ¥

vlzf'(x)-éc for x.<x<l, y=-0

B
(ii) - on the cavity, u, =0
(iii) at upstream infinity,
L i 2%: i e
(iv) at downstream infinity,
o

u= (8- &) tany- 52, v, =8,

given by the continuity equation (equivalent to the closure condition)

(v) for the body-cavity system,

dx=0




B 4o

where uy and v, are the velocity components of the first order in x-
and y-direction respectively. (Note that the tilted coordinate % can be
- expressed by x in the linearized theory.) These boundary conditions
are shown in Fig. 3(a) where the body-cavity system is collapsed to a
slit on x-axis. With these boundary conditions given, one can find the
complex velocity function Wy =ug- i vy by. using complex variable
technique. As a first step, the cascade of body-cavity slits shown in
Fig. 3(a) is mapped into a straight line in the transformed plane,

namely, the real axis, by a mapping function (see, e.g., Durand,

pp. 91-96, Vol. 2, Ref. [3] and Sutherland and Cohen, Ref. [1]).

2= & fo i C—%%)*‘e”m(i 2;2;)} (3)
where

C=E+in
Co= oo i(w/2-0) (42)
QiI: orre i(w/2 +o) (4b)

3/2

&0 (Q+cich) cgs- VcosY 2k
Prery = :i:g‘lsﬁy >2 e
Q= (coshz B- sinzY)llz (4e)
g 1(s1n'Y) (4f)

B in these expressions is a parameter which is determined by the

relative scaling of z and ( planes., This scaling is fixed if the
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coordinate relation between two planes is stated. For mathematical
convenience we map the end point of the cavity in z-plane onto the
infinity of (-plane. Therefore from Eq. (3) the condition to determine
B is

=

3o

P11
(cosY«ﬂn¥+2cp-sinY). (5)

With this mapping function (3) the coordinate relations between z and
C planes are found to be that: .
(2) the points QI and QII correspond to the upstream and down-
stream infinity in z-plane respectively,

(b)="as C tends to zero

S 2i QCOS (gcp—Y) - = (ZZCP+Y)> C2+higher order terms
™
i P
or
2 ;
2~ (6a)
e :
where

eZ: Zw/d (cos (gcp-Y)_ cos (§CP+Y)> :

O

(7)

OR%)

ksl
(c) as z tends to infinity

z-ﬂ"'?, (6b)

(*)(*%*): The proofs of these relations are shown in Appendix C at the
end of this part.
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(d) the general relation between x and £ is given by

2
1¥2(E/p,) sin o+ (E/p,)
x:%{cogYﬂn i :: +sinY-<tan-

1:i:2(§/pH) sincp+(§/pn)

1 :i:(E/pI)cos ©®
1¥(§/DI) sin

(8)

-tan

e :I:(glpH)coscp >
l:l:(E/pH)sincp J

where the upper signs are used for £>0 and the lower signs for £<0.
The boundary conditions are also mapped onto the (-plane as

shown in Fig. 3(b) where the coordinates EA, 'EB’ §c are given by

Eq. (8). The procedure to find the complex velocity W, hereafter is

essentially the same as Chapter 2 of Part I in this thesis.

Define a new analytic function by
W, (0)=iw(2(0))= v, +iu,. (9)

With analytical continuation of Wl(g) into the lower half (-plane by

Wl(g) = Wl(g) one can write the boundary conditions as

W;-WI:Ziul(§,0)=0 for -c0<E<-£, (10a)
w'{+w1=2vl(g,0)=2(f'(x(z))-5c) for -€,<E<-E. (10b)
FUE 2(x - (5))
W]+ W] = 2v,(E,0)= - 228 for <, cRalh bl106)
N, C C
V2x x(2)-x2(5)
i 2(x % (€))
W+ W] = 2v,(£,0)= -25  for O<E<E (104)
51 c B
Vax x(2)-x2(2)
W;-WI:Ziul(E,O)zo for E;<E<o  (l0e)
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where W-; and Wi' are the values of Wl((;) on the real axis g approached

from the upper and lower side of the axis respectively, The homo-

geneous solution to the present problem is easily found to be

V(g+§A)(g- iB) since no singularities are allowed at the trailing edges
of the hydrofoils. The general solution can then be uniquely determined

by the two conditions that wl(z) behaves like fl_— near the nose or
zZ

Wl(g) ~% as (-0 and that WI(Z) o~ near the cavity end or Wl(g) e

1
Nz-f
as (—o00. (The relations (6a) and (6b) between z and ( planes have been

used). Therefore,

26 (xEN-8)  ger
W (0= CTE 5 Lo 1 | < =
1 ) Lo 25y V(G +EN BB ©  C

T

B 2(x-x(8)/V2x x(8)-x2E) -2

+ ]

B iV(E4+E)(ER-E)

'Eq’% fra Ecl']

where the plus sign in the integrand of the second integral is used for

E’>0 and the minus sign for £'<0. Al’ Bl’

We now simplify the above equation: since

6C are yet unknown constants.

g
J\B 6C dgl o Gc'ﬂ'

e, G TENGGET ¢ VT CEL)

and

fB e () axx() () !
& WEFE) (Bg-8) e
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[;Bi<—§—r> o =EN2x (B 5 (E) g

L3 VG T Eg-5) EC
= . SHGACIEY)
e
where
A fB |27 (e x(EN Nax H(E)-2(E) g o
2 7 7 E E’- (&
o V(B +E) (E5-T))
and
B+ (x - x(81) /12 x(E) -x(E)
Cy=C(0)= fﬁ : = ae’ (12)
€ (B, +8) (E5-8)
the expression for Wl(g) becomes
£7(x(E")) ag’
W, (€) =-8_+V(C+E,)(C-5p) :
a)( { _ng V(E, +E")(Eg-E") E'-C
(13)
B
1 1
+E{C0-C(C)} +A.1+ -C—] .
Introducing the notations
M1 -fc fx())  dg’
THC) = VICHE NC- 551 | -=
1 A L 7 R &~
T 2g, VEHEN(EG-E)
(14a)

% Tr_lg‘ {co_ C(g)}]

14¢) =\IT+E NC-8] (14b)
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740) =V(c+ENC-EG) / ¢, (14c)

Eq. (13) can be written by
W(C) = -8 +T,(C)+ A T,(C) + B, T.(C). (11%

The problem will be completed when we find yet-unknown constants

Al’ B1 and 5C by applying the boundary conditions to WI(Q). The

boundary condition at upstream infinity (iii) gives
5+ ('zie> =-8_+T,(C;) +A T,(C)) +B T,(C ) (15)
That of downstream infinity (iv) yields
b+ (-2 +(8,- 8) tan Y) == 8 +3,(C) + A L(C) +B T (C) (16)
(v) provides |

JlRe {Wl(g(x), % 0)} dx=0
0

since

vy= Re{Wl(g(x), +0)} .
Or using Eq. (11" for the above integral, one finds
L £
- GC!Z + Re [()[ J'l(g(x),+0)dx]+AlRe[ 0‘[ J'Z(g(x),+0)dx]

(17)

+B1Re[ J2J3(§(x), +0) dx:] -0.
0
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We have five equations (two from Egq. (15), two from Eq.(16) and one
from Eq. (17)) and five unknowns, Al’ v éc, O; 611' Since the equations
obtained here are linear in these unknowns, we can easily find them in

a matrix form as follows

M@B=N (18)
where
(s A ]T
@'—' c’ 6]:1: o, 1, Bl (193.)
— =
-1 0 0 my, m15
0 0 1/ 2e m,, M,
M=|-1 -1 0 ma, Mg ' (19b)
0 a=tanY Wi/ 2e my, ™My
-1 0 0 m54 mS_E'j
N =[ng; n,, 0., n,, ngl* (19¢)
ket TR gt G A i -l

The components T, 37 n, are all constants and are defined by

myy=Im 7,0 » mgg=Im {T,C00)]

¢ '
W = %Re{bf L(E(), +0)ax} , my=LRe{ [ 7,(2(x),+0)ax]
0
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1‘11: 6I“R-e {JI(CI)} | ] n2: —I‘ITI{JI(CH)}
n,= -Re {Jl(gu)} n,=- 8 tan y-Im {JI(QH)}.

(20)
cont.

Therefore the explicit expressions for the unknown quantities are

’ (n4-n2) - (n3-n1)tan Y (m45-m25)-(m35-m15)tanY
Aj=g (21a)
4 g Mg5-My5
¥ (m44—m24) - (m34-m14) tanY ( n4-n2)—(n3 -n, )tanY
Blzﬁ (21Db)
1 b s - |
6C :m14A1+m15B1--n1 (21c)
R e i L Nl i e 1 o e {oha)
g = 2€(n2—m24A1-m25B) (21e)

where

(my, -my )-(myy-m, Jtan¥ (m, -m,q)-(m,,-m, )tany

]31 =
BEg "4 e i
(211)

Now we can restate the present problem as follows; given the geometry
of cascade and the length of the cavity we first find the parameter B in
Eq. (5). Then one can find the complex velocity of the first order, its

cavitation number, and the downstream flow speed and angle by giving

the incoming flow speed and its angle.
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The velocity distribution on the wetted portion of the hydrofoils

to the first order is then given by

d_, 22
U—C — 80 €u1 ( )
Body
where
uli :Im{Wl(g,+0)} for -E,<E<Ep (23)
Body

or from Egq. (13)

-5

£7(x(g')) ag’

R
U, =\/(§A+§(X))@B~5(X)) ["‘ J : = ECE(
i m e WEETE Ry o
B (24)
1 iy
e (cO-C(g(x))+Al+ o e

Notice that this outer expansion of Eq. (22) has 1/ (~ 1/x2) singularities

at the leading edges of the cascade.

3. Inner Solution. As suggested from the nature of the singularities

in the outer expansion obtained, the stretching factor to find the inner
region near the leading edge is of order 62. The exact stretching
factor in the present problem is slightly changed. We multiply 62 by
a factor ZxC so that the local nose shape becomes Y = +y X' as follows.

The elliptic nose y= :I:e:"IZJccx-x2 is stretched by

x= ey X | y:ez.ZxCY : (25)

then
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2 ) 2 2 2
€ - ZxCY = :l:e:\/ZxC(e ZXCX)-(e . ZXCX)

or

Y= 24X (1-1 &#x +0(eh)). (26)

N

Therefore the leading term of the inner expansion for shape of the
elliptic nose is Y = +4/X so that the inner solutions obtained in Part I
of this thesis can be again usable without any other change.

The inner solution for the regular case was

e 10 (@ SO TN
Ui— 174+X ;172

from Eq. (47) in Part I, which is rewritten in the inner variable 'x'"' by

the relation of (25) as

eb
Ui— Ze /4+x Ili 1;2 l o

where

2
noE ZXC. (28)

Note that VZxC b has been replaced by b again since both are still

unknown.,

The inner solution for the critical case was

j_i__ I:l:’\/f"' )\S|
U % 1 1 2
i 1/2 1/2 1/2
(JXB FX +JXB +XS>
oA . ool f o
12 12 1/2 $30 0 1/2 1/2
: R0+< B )+2R0 n—- XB FX
)
R +<X1/2 X1/2> ZR1/2 0 X1/2=FX12

§. PRRTOTNENAN
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from Eq. (61) in Part I, Using the outer variable in Eq.(25), one can

write the above equation as

1/2
qi g l 4 5 Jen + A Sl
U, g 1 V 1 2
i X1/2.:FX1/2 x1/2
i TR s W
€n €En S
12 1/2 71z \2
xp FX 90 XB Tar
R +<——-——>+2R 51n—
0 €En

(29)

1/2 1/2 / 7 172°
R0+<XB it > ZR s1n—— £

where the relation of XB = :»cB/e:zn2 from Eq. (24) has been used, RO and

GO are given by Eqgs. (60) in Part I and rewritten again,

L 141/2 Gy fhan” T eat
RO—( B+ /4) 5 O—T!' an m (30)
where )\B is found by Eq. (51) in Part I to be
1/2 1/2
Ag=Xg =xg /en. (31)

4, Matching. Use the matching technique which was used in the
previous part (Part I). First, expand the outer solution for small £
the order of which is €. This is equivalent to expand that solution in
the physical variable x of order €2, since the relation of Eq. (5) shows
that x~§2 as x -0,

The leading terms in the expansion of the outer solution required

for matching are found to be
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U—c=1+€ /iAgB E—(;I-j (31)
for the regular case since 1/ (CO- C(E)) in Eq. (24) has been proved to
behave like constant as §—-O(c) (see Appendix A in Part I) and for the

critical case

U
c

1 (32)

207 v V' “;f)-g(x) B

where §B: O(e).

For matching purposes Egs. (31) and (32) are rewritten by the

1/2

physical coordinate '""x'" with the relation of E=*ex™ in Eq.(62) as

regular case,

G _,, %8B g
i B e (319
C e X
critical case,
T
99 JEy )l Rg AX )
B e o B T A58

1/2

- where §B=exB from Eq. (62) has been used. (Since x_= O(€2) in the

B
critical case, then the relation between Xp and §B in Eq. (62) can be
used.) In the critical case only the velocity on the lower portion of the
body was left since the matching is taken place there unlike the
regular case,

The leading terms in the expansions of the inner solutions for

x=0(1) are for the regular case,




=Y

%:u%- (33)
1 xX

from Eq. (27) and for the critical case from Eq. (29),

1/2
9 Wy Te T 0 Sngmer ST ST
W:l—(en) —XITZ— (2 XB /en+ )\S —ZRO sin —2->

1 "11_:,2+x12 . (12 = _ap . %Y
+(en) -2-<72—> <2 xp /en+ )‘S -ZRO sin ?> (34)

xll?’/z/en><xlB/2/en+ )\S> 3/2)

+2(€en) = +0(e

The matching of the inner and outer expansions requires for the

regular case,

S
Us=U_ , b:———é—f—l (35)

from Egs. (31°) and (33), and for the critical case,

8 /€
- [1]2 TP RO ¥l T
Ui—UC 3 (2 Xn Jen + )\S - ZéO sin -z-)n =€ — B1

(01

g 2
/ 32 .0 1/2
Ui:Uc - )\52( €§A/ne B1+2R0 sin 7) /4—xB fen (36)
from Egs. (32) and (34).
We can again notice that the third group of terms in Eq. (34)
become of the order 62 after matching and finding the relations of
Eq. (36). Now the next higher order terms which have not been matched

with the outer expansion are of the order €3/2 as shown in Eq. (34).
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5. Uniformly Valid Solutions. The standard method to construct

uniformly valid solutions out of the inner and outer solution is that of

""additive composition' which was used for Part I also, i.e.,

(Uniformly valid solution)
(37)
= (Outer solution)+(Inner solution)-(The common part).

The common parts are given during the matching procedure in most
cases, in the present problem Egs. (31’) and (32") for the regular and
critical case respectively. Therefore, the uniformly valid velocity

distribution on the body is, from Eqs. (22), (27) and (31'): regular case

' e /8 B B
2 Dl SR R P 1
Ye n2€2/4+x exl}Z
: 'gc . 2 3
+e A/(§A+€(x))(§B.g,(x))[_% I £ (x(8)) dg

2 JEEE ST =t B

; *B || (- %(EN/ fox x(E)-x2(E) g
= o (Co'f ' » ; g’-z'(x)>+A1]
B, JEAE G5 E) -

(E, +E(X))E - E(x)) e
+ €B; (A/ A ) 2 ¥ {:‘UZB>+O(€2) (38)

where the upper signs are used for the upper portion of the body and

the lower signs for the lower portion. The quantities n, e, Al’ B1 and
CO are given by Egs. (28), (7), (21a) (21b) and (12). _EA and EB

corresponding to x=1, and Xp in the physical z-plane are calculated by

Eq. (8).
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The velocity profile on the body for the critical case is

+ 1/2/€n+)\ l
e I
u /1/2 172 /[(1/2 >
1/2
1/2 1/2
xB 60 XB =X
RO+( en >+2Ros1n 2 eEn
2 12 _1/2 2% <172
Xp Fx 0 B Fx
R0+( en >—2RO kil €n
L x (E9) dg’
+ €,/(§,+ E(X))(En - E(X)) |-= (39)
N B [ _LA & +E)(§B =7 Tt
1), Iz b2 2 r'
biaE fB £l X €N/ 2 XN -xE) g
+1TE(X) 0 7 Ly ’ El-E(}Q +A1
5 -§c ‘\/@A+€ ) (iB- A il
(Ex+E(x))(E, - E(x)) ./ 172 xx;
+ eB, [«FA g(X)EB. / ]+O('e3/2)

from Egs. (22), (29) and (32). The quantities ‘g ™ Ry, 850 A, By

and C, are given by Egs. (36), (28), (30), (21a), (21b) and (12)

0

respectively. These solutions are uniformly valid everywhere on the
body since the singularities in the outer solutions were eliminated by

the present method.

6. Numerical Calculations and Discussions. Using the results

obtained in the present work, we have tried to design a supercavitating
linear cascade on a trial and error basis. The design criteria here

are to specify a lift and the nose thickness required for mechanical
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strength, then to find a cascade geometry, its flow configuration and
cavitation number which give a small drag. Although there are many
free parameters involved in cascade problems, such as incidence angle,
stagger angle and solidity besides their blade shapes and cavitation
number, it is not impractical to take all these combinations of the
parameters for computations with the present approach because of its
short computational time. However, a rough estimate on a cascade
system which meets the required specifications can be made with much
less calculations.

Calculations have been made on two different types of hydrofoil
shapes in linear cascades. One consists of a straight line, the other of

a circular arc both having elliptic noses at the leading edges. The

elliptic nose y=teN2x % -5 , € and x

C C

respectively, is connected smoothly to a straight line or a circular arc

being taken to be 0.1 and 0.25

at 0.25. Therefore, the leading edge diameter is found to be 0.005, and
the upper separation point of the cavity is fixed at the same as this
diameter, i.e., Xp =0.005. The hydrofoil sections used here are shown
in Fig. 4.

Figure 5 shows the pressure distributions on the straight line
cascade with elliptic noses as defined above with the solidity 1.0,
the stagger angle* yY=30°, and the cavity length #=2.0 as a func-
tion of the flow angle Oy For 0= 4°, 6° the negative pressure appears

on the suction side of the body, and for a=0° 2° on the pressure side of

"The conventional stagger angle Y which is used in the linear cascade
theory has been defined in Eq. (1) which is different from the stagger
angle Y appearing in the flow configuration (Fig. 2) for mathematical
calculations.
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body. Moreover, the pressure on a blade is greatly lowered by the
existence of the cavity on the next blade because of the high solidity
(1.0) so that the lift obtained here is too small for practical use

(e. g., CLoo = 0,02 at aI =2°). Now let the solidity be smaller (0.5) to
avoid this effect, Figure 6 shows the pressure distribution of such
cases for the stagger angle Y =0° as a function of the angle O The
case in which Oy = 2° indicates ''mear'' smooth separation, although the
natural separation point of the cavity is slightly different from the one
which is obtained by the smooth separation condition. Keeping O.I:Z",
the stagger angle Y has been varied and the pressure distributions are
plotted in Fig. 7. In all cases the pressure distributions on the suction
sides are favorable for the smooth separation, and the lift coefficients
(CLOO) normal to the direction of the vector mean of the inlet and outlet
angles obtained here are shown in Fig, 8 together with the lift-drag
ratio (cLoo/CLD) and also the case in which £=1 0. The main reason
for larger lifts at higher stagger angles for £=2 is that a blade is not
located right above the cavity of the adjacent blade but shifted to the
right so that the effect of the cavity to the pressure side of the above
blaae is greatly reduced., Therefore, the pressure on the body is not
lowered and larger lifts are obtained for higher stagger angle cases.
This fact is checked with the case of the cavity length £=10 in the same
figure (Fig. 8) in which the cavity length is long enough to effect the
adjacent blade even for the higher stagger angle cases. Then the lift

becomes simply smaller as the stagger angle increases because the

flow is more confined between two body-cavity systems to create less
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momentum change (i.e,, the lift), In Fig. 9 we show the angles of the
body axis s (defined in Fig. 2) vs, various incoming flow angles, O
with the parameter of the stagger angle Y for the same cascade as in
Fig. 8 except that Yy is variable here, & is found to be of the order ¢
and cannot be neglected in the linearized theory as mentioned earlier,
especially for large stagger angle (Y) and large flow angle (CtI) cases.
This accounts for the differehces between the linearized theories and
experiments in the present work [2].

The lift coefficients CLoo for #=2 are, however, at most 0.1 for
the straight-line cascade as seen in Fig. 8. For the machinery which
requires higher lift the hydrofoils of cascades need '"camber'', Fig-
ure 10 shows the pressure distribution on the cascades of such hydro-
foils with the trailing edge angle with x-axis, Op = 5° (see Fig. 4) with
the stagger angle Y=30°, The solidity and the cavity length were taken
to be 0.5 and 2 respectively to obtain larger lifts as seen in the straight
cascade cases, With the favorable pressure distribution at crl =0F Hor
the smooth separation of the cavity the effect of the stagger angle is
investigated and it is found that the slight negative pressure appeared
only for the case Y=75°, as shown in Fig. 11. The lift coefficients

C and the ratio of CL

Leo 0o
of the stagger angle Y on the same hydrofoil as in Fig. 7. The lift

to C;, are shown in Fig. 12 as a function
D

coefficient CLoo obtained is now about 0,2 and CLoo/CLD is 13 for
Y=70°. These values seem to be reasonable for pumps and turbines

in practical use,
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As already seen from the pressure distributions on the several
linear cascades of different types of hydrofoils, the alternative way to
increase the lift may be the shift of the now fixed separation point of
the cavity closer to the leading edges so as to avoid the appearance of
strong negative pressure (if the leading edge thickness is allowed to be
thi:nnér). Then the angle 0 and/or the body camber can be increased
with the smooth separation of the cavity for the newly fixed separation
point so that a larger lift can be obtained. ZFigure 13 shows the same
type of graph as Fig. 9 except for the circular arc cascade case and
again a, neglected in previous works is found to be considerably large
(order of €). We should here show how to find the upstream flow angle
and also the angle of the yector mean to the chord line, (We call them
the '"geometric incidence angle' and '"geometric vector mean angle''.)
These quantities are calculated from the following relations,

geometric incidence angle = GI+ (c.c+ O.B)
geometric vector mean angle = aoo+ (c‘c+ cr.B)

where Op is depicted in Fig. 2 or Fig. 4 and a.,a . are obtained from
the data in Fig. 9 or Fig. 13. From Fig,. 4 (xB's in the pres.ent calcu-
lations are found to be about 1,.5° for the straight-line cascade and
about 4° for the circular arc cascade,

We must mention that we are not able to éofnpare the present

results with any calculated or experimental data as there has been no

work done so far on this type of problem,
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7. Summary. The singular perturbation method used for isolated
supercavitating hydrofoils with blunt noses has been applied to cascades
of such hydrofoils. In the formulation of this problem the camber
function of the hydrofoil is arbitrary but the nose itself is locally
parabolic. A number of calculations of pressure distributions have
been made on cascades of profiles having elliptic forebodies with
straight-line or circular arc afterbodies. Some of these latter cases

indicate that cascades of cavitating hydrofoils can have quite good lift-

drag ratios,
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Pressure distributions on the circular arc hydrofoils of
linear cascades with elliptic noses. The solidity is 0.5,
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0o oo D
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mean & as function of the upstream flow-angle % and the
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with the solidity 0.5, £=2 and Xp = 0.005,
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Fig, 1. Two different flow models of linearized theory applied to
linear cascade, (a) showing the usual model used in
previous works and (b) showing the improved flow set-up
used in the present work, ‘



-103-

DETAILS OF HYDROFOILS

Fig. 2. Definition sketch of a supercavitating cascade.
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APPENDIX C

THE BEHAVIOR OF THE MAPPING FUNCTION

IN EQUATION (3) OF PART II

It is necessary for the present analysis to find the behavior of
the mapping function in Eq. (3) especially as z=0 ({=0) and z=¢({—~o0).

Equation (3) is written again here

: 1-¢/¢C : =L/
, d { -iY T iy it
z = =—<e fn—c7-c—+e m—--\, (C-1)

First we find the behavior of this function as {—0.

or

where i=I or II. The first terms (*) in the big brackets in Eq. (C-2)

are
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oA o e B
R e (s
= 2-Real [(—-Cl;-f- Zi;) -IY:I

or

2 1 1 -1y
(*) = 2. Real - : + - e
{< p1‘31(11-/2-%)) 5 el(‘n‘/2+CP)) }

II

by substituting Eqs. (4a) and (4b) in Part II, Then

o o
(%) = 2. C—‘Fj—sﬁ{-tancp.(pilﬂ)- cos Y+<—511- > sin YJ . (C-3)
i I 1

Using the relations p/p; ={(Q+cos v)/sinh B} in Eqs. (4a) and
(4b), and the relations of Eqs. (4e), (4f), the above equation is found to

be zero after some simple algebra, Therefore, Eq. (C-2) is now

written
d 2 3
d 2 1 1 -iy 1 1 Y, &
Z:E-C {<—_€_2+E—2_>e Sy <--C_2+-CT>61 }+O<lz—l >
il 4 TR .
or
2 3
2= Se0(] £ ) (C-4)
e i
where
e2_ 21 (C-5)

i {d (cos (20-Y) cos (29+Y) >}
2 2
P1 P11
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Now we proceed to find the behavior of this mapping function as

z={ (or {»o0) by expanding Eq. (3) for big (. First Eq. (3) is written

. AR 157 o § o PR O < R G L

d { =i .y I iy °n 1 >
Z = el in * +e  Mm—.—
2m < CI l'zn;C ?I I-ZII/C

or expanded for big C,

)e'iY ¢ (-'CI+ZH> eiY}

ro(d) o

{e_iy<-g12+gfl> = eiY<‘sz+ II £

Since the first terms (%*%) in Eq.(C-6)are —dTll using Eq.(5)of Part II

and the second terms are found to be zero, using the relation in
Eq. (C-3), Eq. (C-6) becomes
2
Z =0k % + O(%)
¢ ¢

where
o?s e MG ad )+ M)

or
14

Therefore this mapping function in Eq. (3) behaves like 1//z-/ as

C=o00.



