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ABSTRACT

A general class of single degree of freedom systems possessing
rate-independent hysteresis is defined. The hysteretic behavior in a
system belonging to this class is depicted as a sequence of single-
valued functions; at any given time, the current function is determined
by some set of mathematical rules concerning the entire previous
response of the system. Existence and uniqueness of solutions are
established and boundedness of solutions is examined.

An asymptotic solution procedure is used to derive an approxi-
mation to the response of viscously damped systems with a small
hysteretic nonlinearity and trigonometric excitation. Two properties
of the hysteresis loops associated with any given system completely
determine this approximation to the response: the area enclosed by
each loop, and the average of the ascending and descending branches of
each loop.

The approximation, supplemented by numerical calculations, is
applied to investigate the steady-state response of a system with limited
slip. Such features as disconnected response curves and jumps in
response exist for a certain range of system parameters for any finite
amount of slip.

To further understand the response of this system, solutions of
the initial-value problem are examined. The boundedness of solutions
is investigated first. Then the relationship between initial conditions
and resulting steady-state solution is examined when multiple steady-

state solutions exist. Using the approximate analysis and numerical



=1V=

calculations, it is found that significant regions of initial conditions in
the initial condition plane lead to the different asymptotically stable

steady-state solutions,
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I. INTRODUCTION

Hysteresis is derived from a Greek word meaning ''to lag'". It
is commonly used to describe the phenomenon exhibited by physical
systems in which changes in one or more dependent system variables
lag behind those of their independent variables. Hysteretic systems
include both systems which are history dependent (hereditary) and
those which are not.

Hysteresis is present in a wide range of physical systems. For
example, the force-deflection relation of virtually all structural sys-
tems behave hysteretically as a result of the yielding of one or more
elements or of interface effects between elements. In many situations
it is necessary to include hysteretic behavior in formulating a mathe-
matical model to adequately describe the dynamical nature of a physical
system.

The hysteretic systems considered in this investigation are
those whose motion can be described by a single variable. The
mathematical models representing hysteresis in these systems are
assumed to belong to a class which depends upon the previous trajec-
tory of this variable, but not upon the rate at which it is traversed.
This type of hereditary dependence is called rate-independent hystere-
sis., The terms hysteresis and rate-independent hysteresis are used
interchangeably in the text.

The following definitions present the distinction made in this
thesis between a '"hereditary function' and a '"slip-function' which

both appear in the dynamical equation studied:



hereditary function: A mathematical representation for the history

dependent behavior of a system. This function is formulated as a
sequence of continuous, single-valued functions of x(t) where x(t) is
the system response. At any given time, the current function is
determined from the entire previous history of x(t). During a transi-

tion from one function to the next, the value of both functions are equal.

slip-function: A mathematical representation for slip-friction in a

physical system. It is defined as a positive (negative) constant when

x(t)> 0 (%(t)< 0) where x(t) is the system response.

Even though a slip-function is not a hereditary function by
these definitions, the presence of slip elements, whose properties are
described by slip-functions, in a physical model may result in behavior
which can be described by a hereditary function. (e.g., a system with
bilinear hysteresis. Figures 3 and 4 in Chapter II show the restoring
force and the physical model, respectively.) Some hysteretic systems
consisting of a configuration of elements must be described by an
equation of motion in which both a slip-function and a hereditary func-
tion appear explicitly.

Hysteretic systems possessing a single degree of freedom have
been the object of considerable study. The analysis of mathematical
models describing such systems is complicated when a hereditary
function of the type considered here is present since this function is
formulated as a sequence of functions, each of which is determined by

a set of mathematical rules concerning the entire previous response of



the system. Possibly for this reason, there has been practically no
effort to determine fundamental properties of solutions of this type of
hysteretic system using exact analytical techniques. However, there
have been analytical investigations dealing with dynamical equations in
which a slip-function appears explicitly. References 1 and 2 examine
the problems of existence, uniqueness, boundedness, and existence
and stability of periodic solutions for certain systems of this general
type.

Reference 1 considers a system containing a slip-function de-
fined as the signum function, which vanishes when X%(t) = 0 where x(t) is
the system response. The use of this function presents some difficul-
ties in physical interpretation and leads to certain complications in
treating such problems as existence and uniqueness of solutions.

In Reference 2, a more physically meaningful representation for
slip-friction is used. At x(t) =0, the slip-function is defined to have a
value which leaves %(t) =0 provided the net force on the system exclud-
ing friction is less than the current slip level. When the net force
excluding friction is greater than the slip level, the slip-function is
defined to have a value equal to the slip level and slipping occurs. No
mathematical complications arise when this particular representation
is used for the slip-function.

Neither Reference 1 nor Reference 2 considers a system with
history dependence. The state of the systems examined is completely

determined by specifying the current values of time, the response, and
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the time derivative of the response. It may be noted, however, that if
the particular representation of Reference 2 for the slip-function is
used to describe the properties of a slip element in 2 model to generate
a hereditary function, no mathematical difficulties arise.

Due to the difficulty in using exact analytical techniques to deter-
mine properties of the solutions to hysteretic systems, most investiga-

tions have been made using approximate analytical techniques(3'1 1),

(12-17) (18-21) .o

numerical methods , and electric analog techniques
existence of solutions has been verified by the numerical and electric
analog solutions. Both bounded and constantly growing solutions have

d(3, 6-10,13, 15,19, 20)

been observe The steady-state frequency

response curves for most hysteretic systems are single-valued and
possess a softening cha.racter(3’ 68,9, 13). Unusual features of the
harmonic steady-state response have been found for models of systems
in which the hysteretic behavior is limited to only an interval of values

of the response(7’ ¥ 20).

The most striking of these is the presence
of a disconnected portion of the response curve for certain values of
system parameters. This feature inherently leads to the existence of
multiple steady-state solutions for a given excitation frequency and to
jump phenomenon. Steady-state ultraharmonic response to trigono-
metric excitation has also been observed in hysteretic systems.
Recently, the nature of the third-order ultraharmonic oscillation in a
hysteretic system has been discussed in detail(ll).

The objectives of the present investigation are:

1. To define a general class of dynamical systems possessing



hysteresis and to determine fundamental properties of the exact
solutions of these systems.

2. To develop, using a consistent mathematical procedure, a first
order approximation to the harmonic response of a class of
hysteretic systems to trigonometric excitation.

3. To apply the approximation to gain further insight into the general
behavior of the harmonic response of a system with limited slip.

Chapter II begins with the mathematical description of a class
of dynamical systems with rate-independent hysteresis. It is shown
that there exists a unique solution to the corresponding initial-value
problem. The remainder of the chapter is devoted to examining the
boundedness of solutions to the initial-value problem for general exci-
tation.

The response of a viscously damped system with a small history
dependent nonlinearity and trigonometric excitation is examined in
Chapter III. Since it is rarely possible to find explicit solutions to
nonlinear nonautonomous systems, an approximate method of analysis
is used. In Section 3.1, an asymptotic solution procedure is applied to
derive an approximation (Approximation I) to the response near a
periodic solution of a viscously damped system with trigonometric
excitation. Only the nonlinearity is Of) as €=0. Asymptotic solution
procedures similar to the one presented have been used to determine
harmonic resonant response in single degree of freedom nonautonomous

(22, 23, 24)

systems , but they are not usually applied to the case where



the level of viscous damping is independent of the nonlinearity para-

meter.

With the additional assumptions that the levels of excitation
and viscous damping and the frequency detuning areOf) as €-0, the
procedure followed above is used to obtain an approximation (Approxi-
mation II) to the general harmonic response of the system. The
procedure then parallels one given in Reference 22. The steady-state
response predicted by Approximations I and II are identical. Thus it
is shown that the steady-state response predictions of Approximation II
are valid for a larger range of system parameters than are required
for the validity of the general response predictions.

Section 3. 2 is devoted to the examination of the response pre-
dicted by Approximation II for history dependent nonlinearities.

In Chapters IV and V, the general formulation derived in
Chapter III is applied to investigate the response of a limited slip
system, In addition to providing an example of the application of the
general formulation, the system itself is important in several respects:
1. The system can be formulated from a physical model. Thus no

arbitrary mathematical assumptions are required to determine
its transient behavior.

2. The physical model is an element common in many systems. Most
hysteretic models do not allow for ''limiting' behavior. Thus this
investigation provides insight into understanding the dynamic behav-
ior of similar systems or more complicated systems which possess

elements of this type.



3. The system exhibits unusual steady-state response behavior not
found in standard hysteretic models.

In Chapter IV, the harmonic steady-state response of the limited
slip system to trigonometric excitation is examined in detail. The
system possesses finite viscous damping in all the examples illustrated
since some viscous damping is probably present in most physical
systems. One of the features of the response is the possibility of
triple-valued steady-state solutions for a given frequency of excitation.

To gain further insight into the response of the system, solu-
tions to the initial-value problem are studied in Chapter V. In
Section 5.1, boundedness of solutions to the initial-value problem with
general excitation is examined. In Section 5.2, the relationship between
initial conditions and resulting steady-state solution is examined when
multiple steady-state solutions are possible. The study of relation-
ships of this type have been made for nonlinear systems with no
hysteresis where multiple steady-state solution behavior is a
more common occurrence. However, this aspect of the harmonic
response has not been previously investigated for rate-independent

hysteretic systems.



II. DYNAMICAL SYSTEMS WITH HYSTERESIS

A class of dynamical systems with rate-independent hysteresis
is formulated and discussed in this chapter. The first section deals
with the description of the system. The remaining sections are con-
cerned with properties of solutions to the corresponding initial-value
problem. Existence and uniqueness of solutions are shown. With
assumptions concerning the physical nature of the hysteresis, bounded
solution behavior is concluded for the unforced problem. It is then
shown that all solutions are bounded for a class of forced hysteretic
systems with viscous dissipation. When there is no viscous dissipation,
either bounded or unbounded solution behavior can occur in forced
hysteretic systems. Two examples with one of the most widely used

hysteretic models illustrate this behavior.

a1 Description of the Dynamic System

Consider the system
¥ +¥{x(t)} + R(x, x) + 8[x, G(t) - ¥{x(t)} - R(x, %), c]= G(t) (2. 1)

with the following assumptions:

Assumption 1 (Al): G(t) is piecewise continuous and bounded.

Assumption 2 (A2): N{x(t)} represents a hereditary function and

is defined on the space of all functions (called ""admissible paths'')
x(T) EQIEO, t] with x(0)= 0 and t€[0, ). ¥{x(t)} satisfies the following:
1." There exists a virgin state from which time and path begin

such that t=0, x(0) =0, and ¥ {x(t) }=0.
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2. During any admissible path, x(T) for T€ [0, t],

a. #{x(t)}is defined as a sequence of continuous, single-
valued functions of x between path reversals. Denote
the sequence, beginning with the initial function at
T=0, by Ry, WMy o v,

b. At T=0, h(o)(x) is known for - oo <x<oo.

c. During each reversal x=0 at x= x(q) into x >0 (;c< 0),
the next member of the sequence is known for
x(q)Sx<oo(-oo<xSx(q)).

d. The transition between any two successive functions
h(i)(x) and h(i ¥ 1)(x) occurs only at a reversal
te. g, x=x), and hM (D) =nli+1) )y

e. At time T, the current h(i) (x) is determined uniquely by
the path history from the virgin state.

3. The sequence of functions comprising ¥ {x(t)} for a given
path is independent of the rate at which the path is

traversed.

Assumption 3 (A3): R(x, :':) is a single-valued function continuous in x

and x.

Assumption 4 (A4): S[x, ¥(x, :.c, t, (x(t)}), ] represents a slip-function

where &(x, }.c, t,{x(t)}) =G(t) - N{x(t)} - R(x, :.:) and c is a positive constant.

When x# 0,

8lx, (x, x, t, {x(t)}),c)=c sgn (%) (2.2)
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1 for z>0
where sgn(z)=( 0 for z=0 (2. 3)
-1 for z<0

When x= 0,
c for 3(x, 0, t,{x(t)})>c
8[0, F(x, 0, t, (x(t)}),cl=( F(x, 0, t,{x(t)}) for [B(x, 0, t, ()Y <c (2.4)
-C for F(x, 0, t,{x(t)})<-c
Remarks

The value of ¥ {x(t)} at time t is dependent upon the previous

path history. Define the state of ¥ {x(t)} at t=tg as: A configuration

of ¥{x(t)} at t=t. sufficient to determine the h'*)(x) uniquely for any

0
x(t)ECll:tO, ). In view of Assumptions 1 and 2 of (A2), the state of

¥ {x(t)} is known at t,=0. In view of Assumption 3 of (A2), the state

0
of ¥{x(t)} can be determined from the sequence of turning points during
t€(0, t,l.

¥ {x(t)} is unique to within a single-valued function of %, e. g.,
¥ {x(t)}+ R(x, %) = g{x(t)} +§(x, xX) where i(x, x) = R(x, ) - g(x) and
B () = nV(x) + g(x) for i=0,1,---.

8[x, 3(x, x, t,{x(t)}), c] describes the properties of slip-friction
where F(x, %, t, {x(t)})=G(t) - ¥ {x(t)} - R(x, X). Some inve stigators have
used c sgn (%) where sgn (%) is defined in (2. 3). However, since
csgn(0)=0, a difficulty arises in some situations. Consider the case
where the response of (2. 1) comes to rest from x>0 at x:x(s) when
t=ty. Also let (G(t) - ¥ fx(t)} - R(x®), 0))€(0, ) for telty, t,] where
t1>t0. If c sgn (X) is used for the slip-function, then 'J':(to)> 0. Thus
(s)

the solution can not remain at x=x In addition, there exists no
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solution of (2. 1) leaving x(to) =x(s) with either x>0 or X< 0. Conse-

quently, the solution of (2. 1) ceases to exist after t=t;. On the other
hand, if S$[%, ¥(x, %, t, {x(t)}), c] is used for the slip-function, then

s[o, 3(x(s), 0, t, {x(t)}), cl= G(t) - N‘{x(t)} - R(x(s), 0) for tE[tO, tl] and the
solution remains at rest. 8[%, F(x, X, t, {x(t)}), c] is generally discon-

tinuous.

Figure 1 shows a slip-function 3[%, % c] which is formed by
adding a part of R(x, %) to 8[%, 3 c}: R(x, %)+ 8%, 3, cJ=R(x, %) + &[%, 3, ]
where R(x, %) = R(x, %) - s(k), 3[%, 3 c]=8[%, 3, c] +s(%) and s(X)€C(-0, o).
Therefore, even though (A4) describes a slip-function with only con-
stant slip level for x#0, the system (2.1) can possess the more general

slip properties of 3[x, 3 cl.

4. 2 Existence and Uniqueness of Solutions to the Initial-Value

Problem
Consider the initial-value problem of (2. 1)

% +¥{x(t)}+R(x, x) + 8[x, G(t) - ¥ {x(t)} - R(x, %), c]=G(t)
x(0)=0 (2. 5)
x(0)=0

The properties of ¥ {x(t)} and 8[%k, F(x, X, t, {x(t)}), c] exclude any direct
application of classical techniques to determine the existence and
uniqueness of solutions to (2.5). For example, the Lipschitz condition
cannot be applied to ¥ {x(t)} which changes form when X changes sign, or
to S[x, 3 c] which is a discontinuous and multi-valued function of x.
However, ¥{x(t)} consists of a sequence of single-valued functions

which change only at x=0, and 8[%, & c] becomes multi-valued only at
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Figure 1: Slip-Function
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x=0. Thus by considering the response during time intervals in which
x# 0 and by continuing the response through intervals when x=0, it may
be shown that there exists a unique solution to (2. 5).

Since SB{, 3, c] and G(t) are discontinuous, the solutions x(t) of
(2.5) are no more than continuously differentiable,

The following additional assumptions upon R(x, x) and ¥ {x(t)}

z
will be needed. (The vector notation 3:{21} is used below.)
2

Assumption 5 (A5):

|R(x;, x,) - Rly,, yp)[sQllx-yll  for lIxll,lyll<e (2. 6)
where ” ” is any vector norm and Q is a finite constant.

Assumption 6 (A6): Each h(l)(x) satisfies a Lipschitz condition over its
()

respective region of definition. For the iﬂl- function defined over x€
P -2 | sMPlx-y | for x, yerl? (2.7)

where M(i) is a finite constant.
Theorem 1

If Assumptions (Al)-(A6) are satisfied, then there exists a
unique, continuously differentiable solution to (2. 5).

Preliminaries: The vector form of (2. 5) with X, =% and X, = X is

dx -
x(0)=0

(q)

If the system changes from xX) =X and X, = 0 into x2>0 or x,<0

2

(choose x2> 0 for illustration), (2. 8) becomes



e

dx *2 (q)
de W) - Riwy 2 ) R aoilf 1B Y for X S xFand,R 0 15.9

where N{xl(t)} has the form h(i)(xl). Using the taxicab norm for illus-
tration,(2. 9) implies

I, @, 0 - £(y, Oll= 1%, -y, + 0D ) -2D g )+ [Rx) %) - ROy, 7,)]
(2.10)

Substituting (2. 6) and (2. 7) into (2. 10) gives
It 0 - £, (g, S KDx -y || for x,y,2xVandx, y,20  (2.11)

where K(l) = Max(1, M(l), Q). A similar statement may be made if the
(q)

system changes from x, =% and X, = 0 into x,<0. Therefore, the
right member of (2. 8) satisfies a vector Lipschitz condition for time
intervals between reversals.

The concept of a ""stagnation strip' is helpful in understanding

(26)

v
the behavior of (2. 8). This concept was used by Zelezcov to exa-
mine the response of a linear oscillator with slip-f riction similar to
that shown in Figure 1. Consider a trajectory of (2. 8) in the space

X xz,t over the time interval tEl:ti,ti + 1] where ti and ti are the

+1
times of two consecutive reversals. The stagnation strips (there may

be none or several) lie in the Xy = 0 plane and include all X, such that

G(t) —cSh(i)(xl) +R(x,0)S G(t) +c for t€lt,t. . ] (2.12)

i+l
An example is shown in Figure 2. Equations (2.4) and (2. 12) imply

that a trajectory beginning in or entering the X, = 0 plane in a strip re-

mains there with constant X, until it passes through the boundary of the
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Figure 2: Stagnation Strip
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strip. Then it must go into the x, sgn (G(t) -h(i) (xl) - R(xl, 0))> 0 half-
space. A trajectory beginning in or entering the X, = 0 plane outside of
the strips passes immediately into the x, sgn (G(t) -h(i) (xl) - R(xl, 0)>0
half-space. During a reversal from h(i)(xl) to h(i +1)(x1), the corres-
ponding stagnation strips do not necessarily coincide. Let the ig}
strips denote those associated with h(i)(xl). By (2. 12) and Assumption
2d of (A2) it is seen that during a reversal, if the trajectory does not
lie in an it-ll strip, it does not lieinani+1 th strip; if it lies in an ii-:ll
strip, it lies inani+1 & strip, and both i111 and i+1 8 boundaries
must pass through the trajectory at the same time in the same direc-
tion. Therefore, the motion is still uniquely determined independent
of the stagnation strips used during the reversal.

If a trajectory is at x, =x(q) and X, = 0 when t=T, one of three
types of motion can occur:

1. x_,=0 only an instant.

2
2, X, = 0 over a finite interval.
3, X, = 0 for t€[T, ). A necessary and sufficient condition for this to
occur is
Max G(t) - c<h(x(?) + R(x(?, 0)< Min G(t) + ¢ (2.13)
t€[T, o0) t€[T, o)

where h(x(q)) is the value of ¥ {x(t)} at t="T.
In any event the motion is determined uniquely.

Proof of Theorem 1: At t=0 (2. 8) becomes

. *2
at "{-h‘o)(xl) -R(xp, %,) -80x, Git) - b Vix) - Rix, x,), c]+G(t)} (2. 14)

x(0)=0



17

Three cases are possible:

1. x,=0is in a stagnation strip for t€[0, o).

1

2; X, = 0 is in a stagnation strip at t=0 and passes through the

boundary at t= tl'

3z X, = 0 is not in a stagnation strip at t=0.
Case 1: The system (2. 14) becomes
dx_{*2]
dt ~ L0
(2.15)
x(0)=0

The unique solution of (2. 8) is x(t) =0 for t€[0, o).
Cases 2 and 3: The unique solution for t€[0, tl] (for Case3, t,=0)

is x(t)=0. When t>t,, the solution must go into either the x2> 0 or

1’
x2< 0 half-space. (Choose x2> 0 for illustration.) Then, (2. 8) is

e

9x_{ _(0)
dt \-h (xl) - R(xl, xz) - c +G(t) (2..16)

Consider the initial-value problem for (2. 16) with

x(t,)=0 (2.17)

The right member of (2. 16) satisfies a vector Lipschitz condition for
%, =0, x22 0, and t= tl' Under the hypotheses in the statement of
Theorem 1, a proof (27) for the existence and uniqueness of solutions
to nonautonomous initial-value problems can be applied. It follows
that there exists a unique solution to (2. 16) and (2. 17), 5(0)(1:), which
can be continued until either H_J_c(o)(t) “"oo as t"tz, or xz(o)(tz) =0. De-

fine the continuous function
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for t€[o, tl)

x(t) =
9 3(0)(1:) for t€[t1, t,)

(2.18)

If 1:2 is unbounded, then (2. 18) gives the unique solution of (2. 8). If
H_}E(O)(t) ”-'oo as t-’t2< o, then (2. 18) gives the unique solution of (2. 8)
which is mapped out completely for t€[0, tz). Similar statements may
be made for the existence of a unique solution for t€[0, tz) if the solu-

tion goes into xz< 0 half-space for t>t Finally, if xz(o)(tz) =0 for

1’
t2< o0, then repeated application of this procedure with the appropriate
h(l)(x) leads to the conclusion that there exists a unique, continuous

solution, x(t), to (2.8). This proves Theorem 1.

Other Initial Conditions

The reasoning in the above proof may be applied to show the
existence of a unique, continuously differentiable solution to the initial-
value problem (2. 5) with x(0)= 0 and X(0) = ¥'%40.

The initial-value problem (2. 5) gives initial data at t=0 to
insure a unique determination of the sequence of functions h(o)(x),
h(l)(x), +++, From the Remarks in Section 2.1, it is also meaningful
to consider the initial-value problem at t= t0> 0 with initial data
x(to) = x(o), i(to) = 5:(0), and the state of ¥{x(t)} at t= to. The solution of
this initial-value problem is the continuation of some unique, con-
tinuously differentiable solution of (2. 5) which began at t=0.

Remarks
If 8[%, & c]=0 and G(t)€C[0, ), there exists a unique, twice

continuously differentiable solution to (2. 5).
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The proof can be generalized to include a slip-function with
slip levels which are either unequal for different signs of velocity, or
discontinuous functions of displacement.

The backward problem, where the solution is desired for de-
creasing time, has no meaning for this class of hysteresis since

Assumptions 1 and 2 of (A2) define % {x(t)} only for increasing time.

2.3 Boundedness of Solutions to the Initial-Value Problem

Even including the additional mathematical restrictions to
prove Theorem 1 in Section 2. 2, the Assumptions (Al)-~(A6) describe
a quite general class of dynamical systems.

The assumptions on ¥ {x(t)} are sufficiently broad to encompass
most models presented to represent history dependent behavior in
physical systems.

This section deals with viscously damped systems in which only
a hereditary function appears explicitly. Systems possessing slip-
friction are included as long as the effect of the friction is incorporated
into the formulation of ¥ {x(t)} (as in the bilinear hysteretic model).

The system considered is

% +2zx +¥ {x(t)} = G(t)

x(t) = x'0) (2.19)

;’c(to) ER1

State of ¥ {x(t)} at t= t0

where z 20,
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Boundedness for G(t)=0

Thus far there have been no assumptions upon the nature of the
h(i) (x) or the dissipative properties of ¥{x(t)}. The following assump-

tions are now needed.

Assumption 7 (A7): If the path changes from x= x(q) and x =0 into

x>0 (x<0), then the corresponding h(l)(x) must satisfy
(1)
%2_45_:)2 0. -=for xzx(q)(x Sx(q)) (2. 20)

and

tim h® () = U (1m n® ) = v)

(2.21)
X~ 00 X—-

where 0<U <00 (-00 =V <0).

Assumption 8 (A8): Define—I(l) to be the closed x interval between two

path reversals while N {x(t)}= h(i) (x). At each reversal into x > 0(x<0)

from kit (x) to g 1)(x),
' h(i * ”(x) _h(i)(x) 20(=<0) for xef(i) (2.22)

Assumption (A7) restricts the class of hereditary functions to those
which do not decrease (increase) with increasing (decreasing) x. ¥ {x(t)}
must also resist motion as |x| becomes large. If all |h(i)(x) | are
bounded, the system is a fully yielding, saturating, or slipping type.
Assumption (A8) represents a requirement upon the dissipative charac-
ter of ¥ {x(t)}. Upon reversal from increasing (decreasing) x, the new
function h(i E 1)(x) is always less (greater) than or equal to h(i)(x) over

the x interval between the previous two path reversals. Thus, if the
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work done by ¥{x(t)} is calculated along a path beginning with any given
(2) 4 (1)

state at x= x(l)to X=X and back to x= x(l), then it must be either
0 or positive. If it is 0, no energy has been dissipated; if it is positive,
energy has been dissipated through some physical mechanism. Assump-
tion (A8) is by no means a necessary condition for N{x(t)} to be dissipa-
tive. Most hysteretic models still satisfy the additional assumptions;
however, (A8) excludes some. (e.g., a degrading stiffness model pre-
sented to describe the behavior of reinforced concrete( 16))
Theorem 2

If G(t)=0, z=0, and ¥{x(t)} satisfies Assumptions (A2) and (A6)-
(A8), then all solutions of (2.19) are bounded.

Proof: The solution of (2. 19) will be discussed in the x, x plane. Let

h(i)(x) be the current form of ¥ {x(t)}. Then (2.19) becomes

%+hW =0

x(t ) LoV (2. 23)
:':(to) = (0)

For (9= 0: Either AW (x'?) =0 or h®(x(®)y 0. 1f the former is true,
then x(t) = x(o) for t€ [to, o). If the latter is true, then motion occurs.
Choose h(i) (x(o)) >0 for illustration. Then the trajectory in the x <0

half-plane passing through (x(o), 0) is described by

X -
2. zf h® myan (2. 24)
(0)

x
By (A7) as x = - 0 from x(o), the right member of (2. 24) monotonically

increases from 0, then monotonically decreases to - . Therefore, a
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(1), (0)

unique x exists where

X(l) .
[ 2®@man=o (2. 25)
0

X

and the motion reverses. Then ¥{x(t)} takes the form h(i % 1)(x). By a

similar argument, a unique x(2)>x(1) exists where
3
[" 28+ Diman-= o (2. 26)
(Y
and the next reversal occurs. Either x(2)>x(o)or x(z)Sx(o). Assume
x3>x® From (2,25) and (A8)
i X i)
o= | n®manz [ nlE*tNman (2. 27)
x(o) <0
which implies
X" g
[" 0%+ Dman =0 (2. 28)
0

Kon
As x = oo from x(l), ‘fa)h(l i l)m)d'ﬂ monotonically decreases from 0,
x

then monotonically increases to co. Thus (2. 28) contradicts (2. 26).

Consequently, x(2)<x(?), The equality holds only if h¥(x)=h *1)(x)
(1) (@),

for x€[x Similar reasoning leads to the conclusion that
=32 21) with equality only if B0 Dy =0+ By gor xex!l), <131,
This second result also applies to the initial case ;{(0) =0 and

R (x )< 0 1 xP 20 5B x@ 104D ) 0y D), anant + 2z -

h(i+1)(x).
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Continuing this procedure, it is seen that the solution remains
bounded in the interval xE[x(l), x(o)] . If ¥{x(t)} loses its hysteretic

property on some path interval in which two consecutive reversals occur,

(1)

e.g.,x=x""'and x= x(1 7 1), then the motion is just the conservative os-

(1) and x= x(i * 1).

cillation of an autonomous system with reversals at x=x
Otherwise, the distance between any two consecutive reversals must
decrease as t —* oo.

For }-{(0);‘ 0: The trajectory of (2.23) in the X sgn (}'c(o))z 0 half-plane

passing through (x(o), }-{(0)) is

X /.
2= &2 .2 [n@man (2. 29)

x
(0) 0) @
By (A7) as xsgn(x' ')~ o from x' "/, -J(O)h (Mdn either monotonically
x
decreases from 0 and then monotonically increases to co, or monoto-

(1)

nically increases to oo from 0. A unique x'~’ exists such that

x(l) sgn (5!(0))>x(0) sgn (:’{(0)),

622 [" u@man-o (2. 30)
o

x
and x=0. The problem has thus been reduced to that handled in the
previous case. This completes the proof.
Remarks

On each segment h(i)(x) the system (2. 19) appears to be conser-
vative. The dissipative property is detected only by considering a

reversal and (A8),
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Boundedness of solutions for G(t)= 0 can be shown using a similar
proof for a more general system. In addition to ¥ {x(t)} satisfying (A2)
and (A6)-(A8), (2.19) may also include 1) R(x, X) = r(x) where r(x)x= 0
for all x, 2) slip-friction S[k, & cJ, or 3) both 1) and 2), For any of
these cases, the distance between reversals decreases as t— o even if

¥ {x(t)} loses its hysteretic property.

Boundedness for a Class of Forced Hysteretic Systems with Viscous

Dissipation

The class of hereditary functions N{x(t)} considered here satisfy

the following additional assumption.

(q)

Assumption 9 (A9): If the path changes from x=x"*"and x=0 into x>0

(x< 0), then the corresponding h(i)(x) satisfies

X -8 Sh(i)(x) <x+s forx= x(q)(x < x(q)) (2. 31)

where s is some positive number.

Assumption (A9) requires each h(i)(x) to be within the band enclosed by
x -8 and x+s. With the appropriate coordinate transformation, several
hysteretic models, including the well known bilinear hysteretic model,
satisfy (A9).

Theorem 3

If z€(0, 1),Max |G(t)| <P <o, and Assumptions (Al), (A2), (A6),
t€[tg, )

and (A9) are satisfied, then all solutions of (2. 19) are bounded. In
addition, let R be the closed region in the x, x plane whose boundary is

the curve described by the parametric equations
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- (P+s)(1 +coth(;—(znb

x(p) = m e-zm(z sinw®+wcoswWYP)+P +s
(2. 32)
. (P+s)i+coth(ZZ))
x(p) = = e Z%Psin we
and
(P+s)<1 +coth(-T2r—Z)>
x() = = e ZPzsinwp+wcoswy) -P-s
®+8) n (12) (2. 33)
-(P+s)(1+co oy
X0 = = 2w e %Pgin we
where w=4/1 - z2 and the range of the parameter @ is from 0 to I, If

w
(x(o), }-{(0)) €R, then the solution trajectory (x(t), x(t)) in the x, x plane

remains in ® for tE[tO, o). If (x(o), i(o))ﬁ, then (x(t), x(t)) intersects
the x= 0 axis with decreasing amplitudes until it enters R.

Proof: The basic procedure is similar to that used to prove Theorems
1 and 2. The solution of (2. 19) is considered for a time interval in
which the velocity does not vanish, all possible cases which may occur
are discussed, and the proof is concluded by repeated application of the
results. The proof consists of four parts.

At t=t0, (2. 19) becomes

212z 40V = am

(0)

x(to) —h (2. 34)

x(tg) = %0

Part 1: Let 5((0) =0. Then either the solution remains at x(o) for

(0) the instant after t=t,=t,.

tE[tO,oo), or it leaves x 12t



CaEr

If the solution remains at x(o) for tEEtO,oo), then (A9), (2. 34),
and the hypothesis lG(t)l < P imply that lx(o) | <P+s. Thus (x(t),0)=
(x(o), 0)ER for tE[to,oo).

If the solution leaves x(o) the instant after t= tl2 to, then assume
x(t)>0 for tE(tl, tz) where 5:(1:2) =0. (Thus it is necessary that x(0)<P +8.)
When t= t, (2.19) is

%420 + 1 = ce)
x(t,) = x'?) (2. 35)
x(tl) =0
The following parametric curve is considered in the x, x plane:

x0)_p_g)
W

(0)
}.{(Qp) = (Eﬁ.u-.)_}(__)e_ chsinwcp

x() = e Zcp(zsinwcpﬂ.ocos wy)+P+s

(2. 36)

where W =~/i:—2, X(O)S - (P +s8) coth (12\'_:))’ and the range of the para-
meter ©is from 0 to % The expressions in (2. 36) describe a curve
in the x 2 0 half-plane which intersects x=0 only at its two end-points,
x(0) = X(O) and x (%))EX(I). If X(o) -(P+s) coth( ), then it can be
shown that (P +s) coth (%) <xN < . x(0) 1 x(°)= - (P +5) coth (3%),
then X(V= (P +5) coth (J2), and (2. 36) coincides with R for X = 0.

The slope of (2. 36) at any point (x@), x@))=(%, %) is given by

=P+S—x-22& (2-37)
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The slope of a trajectory of (2. 35) at the point (x,%) in the x = 0 half-

plane is

. (i) .
dx _G(t)-h'Y(x) -2
Sl < o3 el (2. 38)

S|P

Let @(X(0)> be defined as the open region in the x 2 0 half-plane whose
boundary is composed of the curve defined by (2. 36) and the x=0 axis.
Then Equations (2. 37) and (2. 38), Assumption (A9), and the hypothesis
|G(t)|< P imply that at any point on the curve (2. 36), except at the end-
points, the trajectory of (2. 35) must be directed into S(X(o)) At
(X(O), 0) and (X(l), 0), the slope of the curve (2. 36) and the slope of the
trajectory of (2. 35) are infinite.

The case for x(0)< - (P +s) coth (%%)is examined first. Let
X(O)z x(o) in (2. 36). From (2. 37) and (2. 38) it can be seen that as soon
as the trajectory of (2. 35) leaves (x(o), 0), its slope in the x, x plane is
less than the slope of (2. 36). Thus the trajectory immediately enters
the open region Qéc(o)). From the discussion in the preceding paragraph,
it can be concluded that the trajectory leaves A@Q:(ob only through its
boundary at x=0. Therefore x(t,)< %) gince xM)e . X(o),
lx(t,)[<}x{?)]. 1ft, is unbounded, then it can be shown that Lim (x(t), X(t))
- <'1, 0) R

For x(o)G[—(P +s) coth (g—z , P +8), let X(o)z-(P +8) coth (%)

TZ

Then the trajectory of (2. 35) immediately enters AS(- (P +s) coth (-2-65>>

and leaves only through the boundary at x=0. For this case,
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(x(o), 0)ER. Since §(—(P +s) coth (127_z )Cﬁ, the trajectory remains in ®
for t€lt, t,1.

Past 2: Let 050, Only the time interval t€[t0, tl:l is considered,
where t, >t

10
If (x(o), 3{(0))639 -(P +s) coth (g—ﬁ)), then the trajectory of (2. 34)

is the first instant 5;(1:1) =,

may leave 5(—(P +s) coth (12%)) only through the boundary at x=0.
Tzr—zw)>if and only if (x(o), i(o))éﬁ.
Thus if (x(o), i(o))e?ﬁ, then the trajectory remains in R for tE[to, tll

Let (x(o), i(o))é ﬁ(— (P +s) coth (%—@) Multiplying the first of

For %005 0, ({9}, £(0)e ﬁ(—u3 +5) coth(

Equations (2. 34) by 2x and integrating from t, to t gives

t x(t)
(3(£))%=(%(0))2 +2JG(I‘)x(’r)dT 4z [ (xt)%ar- zf nWiman  (2.39)

Using (A9) and the hypotheses |G(t)|<P and z >0, (2. 39) implies

()2 < (024 2 0aect) - x(O) - () 24 28 (6) +x ©) 222620 2. 40)

This gives a bound upon the velocity of the solution of (2. 34) as a
function of x(t), and implies that the velocity must vanish when x(t) is
finite. For x(0)> 0, (x(o) (0))q§-( (P +5s) coth(2w>> if and only if
(x(o), x(o))éﬂ. Thus if (x(o), x(o))éﬁ, x(tl) =0 with x(t1)< o, If t is
unbounded, then it can be shown that lim (x(t), k(t)) = =™, 0)eR.

Part 3: Parts 1 and 2 discuss motion only into x>0, For motion into
x <0, the substitution x(t) = - { (t) transforms (2. 34) into an initial-value

problem of the type already considered. The results in Parts 1 and 2

applied to the | system may readily be transformed into the x system.
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The conclusions are as follows:

(0= 0: x(t)=x(?) for t€lty, t;] and k(t)< 0 for te(t;, t,) with k(t,)=0.
, is umbounded, then lim (x(t), (1)) = (1), 0)€R. 1ft, is bounded,
then either (x(o), 0)¢R and |x(t2)1<|x(0)|, or (x(o), 0)ER and (x(t), X(t))ER

Ift

for telty, t,1.

x(00<0: %(t)< 0 for t€lty, t;) with k(t)=0. If t, is unbounded, then
Lim (x(), k(1)) - (M, 0)€R. If t, is bounded, then either (x'*), %(*))eR
ango(x(t), x(t))ER for t€[t0, tl], or (x(o), 5:(0))4@- and Ix(t1)|< .

Part 4: For 5<(°)=o, repeated application of Parts 1 and 3 show that
either (x%), x(9)eq and (x(t), %(t))€R for t€lty, w), or (9, x)¢a

and the solution trajectory must intersect x= 0 with decreasing ampli-
tudes until it enters R. For 5:(0);!0, Parts 2 and 3 and repeated applica-

tion of Parts 1 and 3 yield the same result. This concludes the proof.

Other Values of z

Corresponding theorems can be proved if z=1 or if z> 1. When
z=1, the region R in the statement of Theorem 3 becomes the closed

region whose boundary is the curve described by the parametric

equations
x@) =-2(P+s)(1+qp) e P+P+s
(2. 41)
%@ =2(P +s)pe”?
and
x(@) = 2(P +s)(1 +p)e ~P-P-s
(2. 42)

%(@) = - 2(P +s)pe” 7
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where ©€[0,00). When z > 1, the boundary of the region R® is the curve

described by

x(®) = - Z(_%i‘_i) e %%(z sinh P + pcosh pp) +P +s
(2.43)
x() = —Z—Qp—*i) e %P sinh po
and )
x(@) = LPD'FE_) e-ch(z sinhpyp + Pcosh py) -P - s
(2. 44)

x(®) = - 2———-—-)-(Pp+ =2, e-chsinhpcp

where p=+/z"-1 and ©€[0,0). The conclusions of Theorem 3 are valid
for z=1 and for z > 1 with the respective R described above. It may be

(0), i(o))dﬁ, then there is at most one re-

added in each case that if (x
versal of the solution before it enters R.

Thus it may be concluded that all solutions of (2. 19) are bounded
for z>0. The quantitative bound upon the solutions becomes unbounded
as z =0 and nothing can be concluded for the limiting value z=0, This
is to be expected since the simple example with z=0, ¥ {x(t)}=x, and

G(t) = cos tillustrates a case in which all solutions of (2. 19) are un-

bounded as t - oo.

Boundedness for Forced Hysteretic Systems with No Viscous Dissipation

When there is no viscous dissipation, it is not possible to show
that all solutions to (2. 19) are bounded for general excitation. Two
examples will be used to demonstrate that (2. 19) can have both bounded
and unbounded solution behavior. In the first example the bilinear

hysteretic model with appropriate parameters will be shown to have
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all solutions bounded for sufficiently small excitation. In the second
example the elastoplastic model, a limiting case of the bilinear model,
will be shown to have an unbounded solution for vanishingly small exci-

tation.

Bilinear Hysteretic Model

The bilinear hysteretic model Ba{x(t)} in Figure 3 can be
described as follows. The virgin curve is
ax+(l-a forx=21
bff)(x)= x for |x|<1 (2. 45)

ox-(l-0a) forx<-1

Define p=1(p=- 1) if a reversal occurs on the upper (lower) segment of
slope a. After a reversal from either upper or lower segment of slope

aat x=%, B {x(t)} becomes

ax +p(l - @) for px 2 pX
Bidax) =(x - (- p)(1 - 0)  for p¥ -2 < px< pX (2. 46)
ax -p(l - a) for px < px - 2

For a€(0, 1) and the limiting values a=0 and a =1, Ba{x(t)} satisfies (A2)

and (A6)-(A8). bg()(x) changes only if a reversal occurs on either seg-

ment of slope . The value of x(t) and ﬁa{x(t)} at t= to specify the

state of ﬁa{x(t)}at t= to.
The motion of the bilinear hysteretic oscillator shown in Fig-

ure 4 will be considered. The system (2.19) is now

%+ Ba{x(t)}z G(t)

(0) (2. 47)

x(to) 712
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Figure 3: Bilinear Hysteretic Model
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¢: Slip Element with Slip Levels=1-a

Figure 4: Bilinear Hysteretic Oscillator



-3 3=

Sc(to)= 349)
(2. 47)

sl o .
BQ{X(t)}— ba (x) at t= tO con

Example 1: Bounded Solution Behavior of the Forced Bilinear

Hysteretic Oscillator

Theorem 4
If aE[%, 1) and Mex |G)(t)|$ Bacl-n, then sl solutons mber
, 00
(2.47) are bounded. Furthermore, if (x(o), }-{(0)) is contained in the

closed region R in the x, x plane whose boundary is described by

3 >
\/:o.(x+l—7—§;P) +a(;2+-1-'—§-’—P) ~4(1 - q) for 605 Fu ot

JxE(1 - 20) +2x(P + (1 - R)(1 - @) +%°- 2R(P +1 - o) for x€[£-2, 5]

n=
—,/xz(l -20) - 2x(P +(1 -x)(1 - @) . 2%(P +1 - 0) for x€[-%, -x +2]
/ P+a-1 % l1-a-P -
‘«.‘0‘("*“‘@_-) +a(§+%—) -4(1 - ) for x€[-%x+2, xJ
(2. 48)
~ -Q 1-0 « (0
where x= i——_——ﬁ, then lx(t)ls T—a-D for te[to,oo). If (x(o), x( ))ﬂ,

then the solution trajectory (x(t), x(t)) in the x, x plane intersects the
x=0 axis with decreasing amplitudes until it enters R.

Proof: Att= to, (2. 47) becomes
480 (x) = G(t)

x(ty) = x(0) (2. 49)

Xb5)'= %(0)

Part 1: Let ;{(0): 0. Then either the solution remains at x(o) for

(0) the instant after t=t, 2 t,.

E -
t [to ,0), or it leaves x 12t
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If the solution remains at x(o) for te[to,oo), (2. 49) implies

Gi(t) = bg)(x(o)) for tEEtO,oo). Consequently, from the formulation of

B {x(t)} and the hypothesis |G(t)|<P, x(O[sEE=2  por acly, 1)
P+l-0a _ 1l=1@a ¢ 2 2 0 l1-a

and P<1 - @, = ST o-P which implies |x( )IS TP It

then follows that (x(o), 0)ER and ‘x(t)lS —11—%3 for tE[to,oo).

If the solution leaves x(o) the instant after t= tl 2 tO’ then
assume x(t) >0 for tE(tl, t2) where i(t2)= 0. (Thus it is necessary that
x(o) < P—*-é—:&.) When t=t1, (2. 47) is

3 +B0 (x) = G(t)
x(t,) = (0) (2. 50)

iuﬂ=o

Multiplying the first of Equations (2. 50) by 2x and integrating from ty

to t gives

t s N
&)%=2 [ Gmxmar-2 f b myan (2.51)
t O
1 x

Since IG(t)ISP, (2.51) implies

x@)
()%= 2 Px(t) -x(?) - 2 _L) bofl)m)dn (2. 52)
xX

Define
ax+ (1 - a) for x2x(0)+ 2
B ox )=~ (xD+1)1- ) for x(Vex <xPi2 (253
(0)

ax - (1 -a) for x<x

From the formulation of Ba{x(t)} it can be seen that along any path
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increasing from x= x(o), Ba(x; x(o))sbé‘l)(x) for any possible bél)(x).

Ba(x; x(o)) is illustrated in Figure 5. Thus (2. 52) can be written

(t)
k(0= 2Pee(t) -x%)-2 [ B s x@yan (2. 54)
0
where
2 (ON2
X x4 1)(1 -0 - ("—2—)) +x 04 1)1 - q)
. for xE[x(o), x(0)+ 2]

&;@gn:xphdn%
* 2 (ON2

X i x(1-0)-a 6‘73 - &Y 20 o)sor x 2202

(2. 55)

Equations (2. 54) and (2. 55) give a bound upon the velocity of the solution
of (2.50) as a function of x(t). This bound is independent of the specific

form of bél)(x) and does not depend upon time explicitly. If x oo from

(0)

p
x' ’, then J'(O) Bam; x(o))d’n either increases to oo quadratically in x, or

St
monotonically decreases and then increases to co quadratically in x.
Recalling that x(t) >0 for tE(tl, t2), it follows that a unique X(l)(x(o),0)>x(o)

exists such that

x
P(x - x(o)) - j Ba('n;x(o))d‘n> 0 for xE(x(o), X(l)(x(o), 0)) (2.56)
©

X

and

pxMNx(®,0)-x®) - [ B m;xMan=0 (2.57)
©

%
Equations (2. 54) to (2. 57) imply that the velocity of the solution of

(2. 50) must vanish before x(t)>X(1)(x(o), 0). It is assumed that
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Figure 5: Illustration of

Ba(x; x(o))
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5;(1:2) =0 ty is either unbounded or bounded.

is unbounded, then x(t)>0 and x(t)SX(l)(x(o), 0) for
(L)sx(l)(x(o), 0).

If ty

t€ (tl,oo) Consequently, lim x(t)=0 and lim x(t)=x
t o0 t =

The formulation of & {x(t)} the hy'potheses oné[ 1) and IG(t)|SP<1 -Q

and (2. 49) imply that if |x(L)|> s then %(t) is bounded away from

0. | <
0 for t€[T, o) for a sufficiently large T. This gives lim x(t) = oo which
t=* 00
is a contradiction. Therefore |x(L)|S % so that lim (x(t), x(t)) =
£ =

) 0)€eR.

If t 0 and x(t,) <X (x(?), 0). For acl}, 1)

a-1 (0) _P+l-a
f RO TR % gy

XM, 0y 22— . 1= (0) "1‘—_{‘—? then X1zl0) 0y<.x(9,

Therefore either (x( ) , 0)ER and |x(t)|s
=9, 0)¢R and |x(t,)|<|x?].

2 is bounded, x(tz) =

and P<1 - a, it can be shown that if then

_—-CI._:FT for tE[to,tZJ, or

In summary: If x(t)= x(O) for tE[to,oo), then (x(o), 0)ER and

(0).1-0a
e

x(t2)= 0, two cases may occur:

If x(t) = x(o) for t€[t0,t1] and x(t)>0 for tE(tl,tZ) with

1. t, is unbounded. Then lim (x(t), k(1)) = (x'™), 0) €%.
t - 00

2. t,is bounded. Then either (x(o) 0)€R and lx('c)ls g 5

tE[to,tZJ with (x(tz), 0)€ER, or (x( ), 0)¢R and |x(t2)|<|x(o)|.

for

Part 2: Let %(0)