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ABSTRACT

A variety (equational class) of lattices is said to be finitely
based if there exists a finite set of identities defining the variety., Let
7)2:: denote the lattice variety generated by all modular lattices of width
not exceeding n, 'mT and 7/(; are both the class of all distributive
lattices and consequently finitely based. B. Jonsson has shown that
773; is also finitely based. On the other hand, K. Baker has shown that

m: is not finitely based for 5 < n < w, This thesis settles the finite

@

4

stronger result that there exist ten varieties which properly contain

basis problem for 7’2:- M, is shown to be finitely based by proving the
772: and such that any variety which properly contains '/72: contains one
of these ten varieties,

The methods developed also yield a characterization of sub-
directly irreducible width four modular lattices. From this character-
ization further results are derived. It is shown that the free Wz: lattice
with n generators is finite. A variety with exactly k covers is
exhibited for all k 215, It is further shown that there are ZRO sub-

varieties of 77{: .



iv

TABLE OF CONTENTS

Page
ACENOWLEDGMENTS ¢ & s v & %5 » o & o % & & 8 # e, 6.5 ii

ABS TR‘AC T L L] . ° . . L] L] . L] . . L] . . . Ll L] . L] . . . . iii

ITRODUCTION < .6 5 o & ¥ 5 3% % s & 6 .93 4 & % % 5 v ¢ 1
CHAPTER
1! Hong's TEEOIWEIN G ‘s &% &08 4 o % o' s s 2l» 6
II Some Useful Modular Lattices with
Four GEnerators i 5 's s s a's & o #. % o o 8 30
III The Fundamental Theorem on Weak
BEOMACHEY ¢ o 's & 3 5 % & % % & © 8 & 676 s 's 45
v The Main Structure Theorem ., . . « .« « « + . . 80
A% APPIicatlons s o v+ e e o 35 & W s e el me ROE

REFERENCES ° . . ] . . . . . . . . . . o . . ° . . L) . 127



INTRODUC TION

A variety of lattices is a class of lattices which is closed with
respect to the formation of sublattices, homomorphic images and
direct products. A fundamental theorem of Birkhoff [4] states that
varieties of lattices are exactly those lattices defined by their
identities. That is, a class C of lattices is a variety if the class of
lattices which satisfy all the identities satisfied by all the members of
C is the class C. If C is any class of lattice then the class of all sub-
direct products of homomorphic images of sublattices of ultraproducts
of members of C is the smallest variety.containing C and is called the
variety generated by &, This theorem, which is due to Bjarni Jonsson
[15], has made possible many advances in the theory of lattice
varieties, Let 772:1n be the variety generated by all modular lattices
whose width does not exceed n and whose length does not exceed m,
where n and m are cardinals. It follows from the finite nature of
identities that the variety generated by the finitely generated members
of a class C is the same as the variety generated by C. It follows from
this that if n, and n, are infinite cardinals and m is any cardinal then
771;1: = 772::; and 77(2 = 77(1;;2. The symbol « is used to replace any
infinite cardinal. For example, the variety generated by all modular
lattices of width not exceeding n, 1 <n < w, is denoted by 77(: This
thesis makes a careful study of 771:.

A variety is finitely based if it is defined by a finite set of

identities, A basic problem in the theory of modular varieties is to



determine the values of m and n for which mrrln is finitely based (Wille
[227). R. McKenzie has shown that the variety generated by a finite
lattice is finitely based [18]. From this it follows that_m;n is finitely
based if both m and n are finite, K, Baker has shown that 77(2 is
finitely based for all n [2,3]. 77Z;° and 77(; are both equal to the variety
of all distributive lattices and thus are finitely based. B, Jdnsson has

shown that 772; is finitely based [16]. On the other hand K. Baker [2]

4

variety for which the above problem is not solved. This thesis com-

has shown that 772: is not finitely based for 5 < n < », M, is the only
pletes the solution by showing that ?7?: is finitely based. This is done
by showing that 772: is covered by ten varieties and that any variety
properly containing WZZ contains one of these ten varieties, It follows
from this result that an independent set of identities which defines

77(2 has ten or less elements and there exist sets of independent
identities defining 7/7: with n elements, n=1,2,...,10.

A problem closely related to Wille's problem but which appears
to be more difficult is to determine which of the varieties 77?::) have the
property that mrrln is covered by a finite set of varieties such that any
variety properly containing m:ln contains one of these covering
varieties, It is a classical theorem that the variety of all distributive
lattices, which is equal to m:, 77(; and 77(010, has this property, As
mentioned above this thesis shows that 77(: has this property. 772; and
?71020 have this property as was shown by B. Jonsson [16]. D. X. Hong
has shown that mi has this property [14]. Of course, m:, the

variety of all modular lattices, has this property, and 7)2:, 5<€n<ow



must fail to have this property. At the present time the question for
m ;n, 5 <n<®®and 4 £ m < », remains unsettled.

The techniques used to show that 772: is finitely based are élso
used to characterize the subdirectly irreducible members of 77(: Two
results of interest follow from this characterization., First, there are
ZRO subvarieties of 772: Since there are countably many finite sets
of identities the above implies that there exists a subvariety of '/VIZ
which is not finitely based. Secondly, it is shown that all members of
'773: are locally finite, This fact has the corollary that the free ’m:
lattice on a finite number of generators is finite (compare with
Birkhoff's Problem 46 [4]). This local finiteness also has the corol-
lary that 772: is generated by its finite members. This fact is known
to be true for the variety of)all lattices (R. Dean [7 7}, false for the
variety of Desargian projective planes (K. Baker [1]), and unsolved
for the variety of all modular lattices.

The proofs of the above results depend heavily on the develop-
ment of a detailed structure theory for modular lattices, Two basic
techniques are employed, First, the classical result that a modular
lattice which is generated by three elements is finite is applied several
times in order to obtain some of the local structure of modular
lattices. In order to piece these bits of local structure together to
obtain an overall picture of the lattice a second technique, the theory
of projectivities, is employed.

In [8] and [9] Dilworth showed that there is a strong connection

between the structure of a lattice and the notion of projectivity.



R. Thrall [21 ] showed that two projective quotients in a modular
lattice could be connected by a sequence of transposes of a standard
form (for definitions see Chapter I)., G. Gr&tzer called such a
sequence normal and applied it to the study of lattice varieties [137].
B. Jdnsson defined the concept of a strongly normal sequence and
showed that in most cases projective quotients in a modular lattice have
subquotients connected by a strongly normal sequence. He employs
this concept to solve the finite basis problem for 7)1; and 'mi

The lattice generated by the six endpoints of three consecutive
quotients in a sequence of transposes is in fact generated by three
elements and thus a homomorphic image of the free modular lattice
on three generators which has 28 elements, For a normal sequence
the lattice generated by the endpoints of three consecutive quotients is
a homomorphic image of a lattice with 15 elements. For a strongly
normal sequence this number is reduced to 10. D, X, Hong further
develops the theory of projectivity by showing how these various
lattices generated by three consecutive quotients can fit together.

Chapter I of this thesis proves a slight extension of Hong's
theorem., Chapter II studies the structure of a modular lattice gen-
erated by four elements satisfying certain relations, It is shown that
any such lattice contains as a sublattice one of three specific lat-
tices, Chapter III applies the result of Chapters I and II to prove that a
modular subdirectly irreducible lattice is weakly atomic if it does not
have any of the lattices AZ’A3' o b ’AIO diagramed in Chapter III as a

homomorphic image of a sublattice. Chapter IV applies the first three



chapters to prove that a modular subdirectly irreducible lattice, which
does not have any of AZ’ v ,A10 as a homomorphic image of a sub-
lattice, has width not exceeding four. Chapter V applies this result
to derive the applications mentioned above.

General references to lattice theory are [2]and [6], to

universal algebra [5], [12], and [19], and to the theory of varieties

201].



CHAPTER 1
HONG'S THEOREM

We begin with several definitions, Let L be a modular lattice.
An ordered pair (a,b) in L X L with b 2 a will be called a quotient of
L. Instead of (a,b) we shall write b/a for this quotient, We shall use
the term quotient and the symbol b/a to denote the sublattice of L
consisting of the elements in the set {x € L|a <x €b}. This will

sometimes be referred to as a quotient sublattice. The quotient b/a

is called a nontrivial quotient if b >a, f/e is a subquotient of b/a if

a<es<f<b, Ifb/aandd/care quotients in L. we write b/a d/c
and we say that b/a transposes uptod/cifa=bAcandd=b Ve, In

this situation we also say that d/c transposes down to b/a, written

d/c \yb/a. We also say that b/a and d/c are transposes.
The quotient b/a is said to be projective to d/c in n steps if
there exists a sequence of quotients b/a = bO/aO’bl /al, v ’bn/an = dle

such that bk/ak and b are transposes, k=0,1,...,n-1,

e+l /241
Much of the following notation is taken from [14] and [16]. The

projective distance between b/a and d/c, written p.d. (b/a, d/c), is the

smallest integer n such that there are mnontrivial subquotients b1 /a1
of b/a and d, /c1 of d/c which are projective in n steps, If no such
integer exists then we write p.d, (b/a, d/c) = =,

A sequence of transposes bo /ao,b1 /a.1 e x ,bn/an is called

normal if the transposes alternate up and down and



//'b/a\\.bk+1 8,y impliesb =b_ Vb and

2, _ l\bk/ak/bkﬂ a,,; impliesa =a ;A a .- The

sequence is called strongly normal if it is normal and

/ak_l/'b /a \b

17301 NP /3y ’/ab T a1 Vi

Suppose we have a sequence of transposes

kl

implies bk-l A bk+1 < ak and

P bk'

k+1/ak+1

bk- implies a

(1) bo/aoz/’bl/al\\‘bzlaz,/”... b_/a_

2 =byA ay,

O’bolal’blpno. is gen-

in a modular lattice. Since a, = bO A ar, b1 = bO/\ a, a

b3 = bz/\ Bgreess the lattice L1 generated by a

erated by b b

0'21°Ppr2gseen o Thus L1 is 2 homomorphic image of the
free modular lattice on n generators, FM(n). This fact furnishes
little information concerning the structure of Ll when n > 3, since in
this case, FM(n) is infinite, However, FM(3) is finite and has only a
few homomorphic images., Hence useful information on the structure
of L1 can be obtained by considering consecutive sets of three
quotients and determining the various ways in which the corresponding
images of FM(3) can fit together. FM(3) and some of its homomorphic
images are exhibited below,

It follows immediately from the definition of normal sequence
that the endpoints of consecutive quotients generate a lattice which is
a homomorphic image of GZ (Fig. 1.2) or its dual, If the sequence

is strongly normal then the endpoints of three consecutive quotients

generate a homomorphic image of G3 or its dual, More specifically



G, = FM(x,,x,,x



GZ = IT‘M(xl,xz,x?’)/(x1 A Xy = Xp A Xy =X, A x3)

Figure 1.2

G3 = FM(XI’XZ’XS)/<XI A Xy = Xp A Xy = Xy A XgiX) Vx3 2x2)

Figure 1.3
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if the sequence b, _; /ak-l\‘ bk/ak/bkﬂ /ak_'_1 is strongly normal

then the lattice it generates is a homomorphic image of

Figure 1.4

We denote the five element modular non-distributive lattice by

M3; M3 with an addition atom is called M4, etc,
u
% 1Y Z @
v
M3 M4 M5

Figure 1.5

We call an ordered five-tuple (v, x,y, z,u) of elements from a

modular lattice a diamond if these elements form a copy of M3 with v
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and u as the bottom and top elements, respectively. Any nonidentity
permutation of x, y and z yields a diamond, which by definition is
distinct from the original diamond, even though they represent the
same sublattice of L,

We see from Fig. 1.4 that if b, /ak_1 is a nontrivial quotient
then the figure contains a nontrivial diamond. More specifically, if
bk-llak-l\bk/ak/'bk+1 /ak_'_1 is part of a strongly normal sequence
we let Dy = (Vi s Vi zk’ “k) = (2021 APiy1r Pro Biepn A Prar

by A by,y) andif b/ 1 byl b

ol D =tv

1+l /2041’ Pie K X%’ Yr?

b bk). In this way

S M my Vass bk-l Va1 2k P Y 2k-1
a strongly normal sequence bo/ao,b1 /al. R ,bn/an of n+1 quotients
generates a sequence of n-1 diamonds Dl’DZ’ - ’Dn-l which is

called the associated sequence of diamonds.

The remainder of this chapter will be devoted to the proof of
a theorem which extends slightly a result of D, X. Hong on the
structure of the lattice generated by two consecutive diamonds in an
associated sequence, In order to state the theorem concisely the fol-
lowing notation will be used, The diamond D1 = (Vl’ XYy zl,ul) is

said to translate up to the diamond D2 - (vz,xz,yz, Z5» uz) if one of the

quotients u, /Xl’ u, /yl, N /z1 transposes up to one of the quotients

xZ/VZ’ yZ/VZ, zZ/vz. The notation

Dy B

1 @)

is used when u, /z.1 transposes up to lev and

2

D\D

1 @)
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is used when z, /v1 transposes down to uZ/XZ‘ D1 is said to transpose
down to DZ if w /vl\.uz/v2 and if Xy T U, A Xy ¥, T U, A and
Z, = Uy A Zg. The notation

Dl\‘Dz

(§ )

means that D1 transposes down to DZ'
IfD=(v,x,vV, z,u) is a diamond then D* is defined to be the
i 3%
diamond (v, z,x, y,u). So D1 (\1sz means u, /v1 \,.uzlv2 and
X AUy T2, VAU, =X, and Zy AYy =Y, The theorem mentioned

above can then be formulated as follows.

Theorem 1.1 Let b/a and d/c be nontrivial quotients in a

modular lattice L such that p.d. (b/a,d/c) = n, 2 <n <®, Then some
nontrivial subquotients /2 and d/¢ of b/a and d/c can be connected by

a strongly normal sequence of transposes b/a = bO/a.o,b1 /al, o

. ,bn/an = d/c such that the associated diamonds Dyye..sD satisfy:
(i) Dk{: Dk+1 or Dké Dk+1 if bk/ak bk+1 /ak+1 and

EH 3
D D or Dy RyDy g B Bl b e
k=1,2,...,n=-2

(i) If D, 77 D¥  or D, GpD.,, then

k @) k+1 1 k+1
—_ ¥ - .’
Dk—Dk+1 | S .

The proof of this theorem is a slight modification of Hong's

proof, First we need

Lemma 1,2 (B, Jonsson [16]). Letb/a and d/c be nontrivial

quotients of a modular lattice L such that p.d. (b/a,d/c) =n, 2<n <o,



13

Then

(i) Any normal sequence of n transposes from b/a to d/c is
also strongly normal.
(ii) There exist nontrivial subquotients b/a and d/< of b/a and

d/c which can be connected by a strongly normal sequence of transposes,

We give a sketch of the proof. A detailed proof appears in

(161
Suppose b/a = bO/ao,b1 /al,. 4 ’bn/an = d/c is a normal
sequence. Then, as mentioned above, the lattice generated by a1’

is a homomorphic image of C',‘r2 or its dual

b b

Pr-1* 2k’ P k41’ Pryl
(Fig. 1.2). Since n > 2 either k-1 >1 or k+1 <n, Assume the

former. Then L contains the configuration pictured below:

Figure 1. 6
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It is easily checked thatb, /ak__1 \bk/ak/ b

451 2
-1 ¥ Py Tt

k+l1

strongly normal if and only if ¢ =b But if ¢

k-1 k-1°

be the image of ¢ in b./a,. Then since bk_z/ck_z/'f/e\\

k-1
bk+1 /ck_'_1 , we have p.d. (b/a,d/c) sn-1, contrary to assumption.

To prove (ii) we take a sequence of n transposes connecting
subquotients of b/a and d/c, which we know exists by definition of pro-
jective distance. It is an easy matter to replace this sequence by a
normal sequence (see [13] or [21]), which, by (i), must be strongly
normal,

The following lemma characterizing direct product sublattices

will be needed in the proof of Theorem 1.1,

The Direct Product Lemma, If L1 and L2 are sublattices of a

modular lattice L with greatest elements v, and u, and a common least

element v such that U A, =V, then the lattice generated by L1 and

L‘2 is isomorphic to the direct product of L1 and L'Z'

Proof, First we show that if ai’bi € Li’ o= L2,

(1) (a1 \% az) A (b1 Vbz) = (a1 A bl) Y (az/\ bz)

For

(a1 \% aZ) A (b1 va) = (a.1 \% az) A (b1 \% bz) A (b1 \% uz)

(fay A (b Vu)Iva,)a (b vb,)

([al/\ u A (b1 Vuz)] Vaz) A (b1 Vbz)

([at1 A (b V(uy A uy)) ]V az) A (b Vb,)

((al A bl) Vaz) A (b1 Vb

2)



Lb

=(a; Ab)) V(a, A (b, VD))
= (2, Aby) V(az A, A (b VD))

= (a1 A bl) \% (a2 A bz)

With the aid of this it is easy to show that (xl,xz) - x, V X, is

1
an isomorphism of L1 X L2 onto the sublattice generated by L1 and LZ‘

For example, to show the map is one-to-one, let a, \% a, = b1 \ bz.

Then u A (a1 Y az) =u; A (b1 Y% bz) which by (1) gives a; = bl' Simi-

2 = by

The proof of Theorem 1.1 will be preceded by some lemmas

larly a

which are more easily stated with the following notation.
LetD = (v, x,Y,2,u) be a diamond. We call u/x, u/y and u/z

upper quotients of D and x/v, y/v and z/v lower quotients of D,

Suppose b/a is a subquotient of an upper or lower quotient of D,
say z <a £b <u. If we assume that z <a <b < u then the lattice gen-
erated by a, b and D is isomorphic to the lattice diagramed below (see
(161).

This lattice has three new diamonds as sublattices. We denote

the middle one by D and the

the upper-most diamond by Du b/a

/b’

lowest diamond by Da/z’ More formally we have

Db =((x ADB) VIyADb), xV(yADb), yV(xADb), b, u)

1) D =(<XAa>V(YAa), G BF V (yrical, (ERak v (3 B

W i)
aA{xAab) V(yab)], (x Ab) V(yA ba

Da/z =(v, XAa, yAa, zA(xXV(YAa)), (X/\a)V(y/\a))
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aA [(xADb) V
(yAb) ]

z A(x V (yA b))

zA (xV(yaa))

Figure 1,7

With these equations the definitions of D s D and D can be
u/b’ “b/a alz
extended to include the possibilities u=b, b=a, ora=2, Ifu=»>b
then the elements of D are all the same; that is, D is a single
u/b u/b

element. In this case Da/b is called a degenerate diamond. It should
also be noted that this is the only way in which Du/b can be degen-
erate; that is, if u # b the five elements of Du/b are distinct., Similar
remarks apply for Db/a and Da/z‘

Similarly three diamonds (some of which may be possibly

degenerate) are obtained if b/a is a subquotient of any upper or lower
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quotient of D, As an illustration note that if b/a is a subquotient
of u/z then x Ab/xA a is a subquotient of x/v and
z A(xV(y Ab))/z A(x V (y A a)) is a subquotient z/v. It is easily

checked that the diamonds D D and

hla' Tx AblxA &’

D are the same,

zA(xVI(y Ab))/z A(x V(yA a))

The next few lemmas are due to Hong [14].

Lemma 1,3, XD = (v,x,vy,2z,u) and D! = (v', x', y', 2',u') are

diamonds in Lwithu=u', x €x', y<sy', z2<2z'thenD'=D

u/x' -
Du/y' = Du/z' .
Proof: Taking b = uand z = z' in (1) gives
Du/z' = ((x/\ 2"y ViyA z2Y), xViy AzY), yVixA 2, =, u)
Now

(xA 2") V(yA 28%) = [(xA 2" Vy)/\ z'

=((x/\x'/\z')Vy)/\z'

((x/\v') \/3)/\ z!

((x/\ %' A yY Vy) A z!
=((x/\y') V})/\ z!

(xVy)Ay'Az'=uAv' =y

x V(y A z')

xV(xAz') V(iyAz')

x Vv!

XV (x'A y)
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=x'A(xVy")

x' A us=sx!

Similarly y V(x Az') = y'. SoD'= Du/z,. The other statements in

the lemma follow by symmetry.

Corollary 1. 4. Let

(1) b1 /241 bk/ak\‘bkﬂ /2141

be a strongly normal sequence with associated diamond D, Let
ci € bi/ai’ i=k-1, k, ktl, be images of one another under the given

1 ]
/ck_ and bk+1 /

(2) by le 1 by lel 1 T b e SNbE el N b e

transpositions, Let b!

k-1 be quotients such that

Y

and

(3) D171 Prl S Py /o5

is strongly normal. Then the diamond associated with (3) is

D =D
bpfey wieg
Proof; It is easily checked that the diamonds associated with
(1) and (3) satisfy the hypothesis of Lemma 1,3. The corollary readily

follows.

Corollary 1, 5. Let

(1) b1/ By /2 byl
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be a strongly normal sequence in L with associated diamond D.
Let c; (S bi/ai’ i=%k-1, k, k+1, be images of one another under the

given transpositions, Then

(2) b1/ 1 NP Vg A /e A Ck+1/bk+1/ck+1

is strongly normal with associated diamond D
bk/ck

Proof: The strong normality of (1) easily implies the strong

normality of (2). The diamonds associated with (1) and (2) are

D =(a b, b

K 21D Prg1? Preo Preo1 A 31 Prog A Pryy)

= (Ck-l ACr1? Sial M Pry1r P Vi Ao )

Bl A Gyt Py A bk+1)

These satisfy the hypothesis of Lemma 1.3, and thus D' =

D But b

b. .Ab. . /b e (P 1 ACL1) S P ACy = O

k-1 N Pkl Pr-1 A Caetl
Thus by the remark preceding Lemma 1.3, D' = Dy /c
k' "k

The following lemma of Hong is the key to the proof of Theorem

Lemma 1. 6. Suppose

by/ag-" by /2, b, /2, by /e,
is a strongly normal sequence such that

p.d. (b ,b3/a3) = 3

0’20
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Then the associated diamonds,
Dl = (vl,xl,yl,zl,ul) = (a0 Vaz, b0 Vaz, a;, 2, VbZ’ bl)

DZ = (VZ’XZ' st 229 uz) = (aZ’ al /\b3, bzy bl A 3-33 bl A b3)

satisfy

%
D, 07

1)

or else one of the following holds:

(i) There exists cy» 2g S €y < by such that if c, €b; /ai is the

image of c, under the given transpositions, i =1,2,3 then

0
bo/co”" by /ey b, Ve, Acg)/e A ey b/c,
is a strongly normal sequence with associated diamonds (:Dl)ul bey =
(Dl)bl /ey and (DZ)yz/cz 3 (Dz)bzlcz with (Dl)bl /cla\)"DZ)bzlcz .

(ii) There exists o 2, < co Sbo, c, i= 1,2,3, the images of

c, in bi/Ci under the given transpositions such that

0
co/ao/' co V cz/a.1 A leg Vv cz)\.czlauz/"c3/a3
is a strongly normal sequence with associated diamonds (Dl)cl /a, =

(Dl)cl /v1 e (DZ)cz/aZ & (DZ)Cz/VZ e (Dl)cl /2y @\)*(Dz)cz/az'

Proof: Note the following relations hold.

v1Vy2=z1 usz1=x2
(1)
zlsleuZSu1 VZS\IZ/\Vl $x2
Hence either vy \Y; u, < u, or v, < u, A v, or else vy Vv u, = u, and

=u, Av,, So we have three cases,

L Rl Sl |
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Case 1: vy \% u, = uy and vy A u, =V,, 80 that
(2) u, /v, A /v,
From (1) we see that this transposition maps v, onto z, and
x, onto M If this transposition sends z, onto x5 loe., if z, \% vy =X
then D, ~\D¥, as asserted. So letx! =z Vv, and suppose x' # x,.
1a 1 2 1 1
Note that v, is a relative complement to both X and xi in U /vl. Thus
X and x'1 are incomparable.
Note that
1
(3) u, /%) ~u,/z, A, /a,
and U A b3 = u,. It follows easily from the Direct Product Lemma

that the lattice generated by ), x'l, Uy Zgs b3, a, is an eight-element

3

Boolean algebra. Consequently
! 1
(4) ullxl/' u, Vb,/x) Va3\b3/a3
Now it is easily checked that

1 !

(5) bO/bO /\x'l/' xl/xll\ x'l/'x1 Vxl/xl/
1 ! )
x, VxpV 3.3/x1 v a3\‘.b3 A (x1 Vx|V 6.3)/8.3

Since X and x'1 are incomparable these quotients must be nontrivial,
Thus we have p. d. (bo/ao,b3/a3) < 2, a contradiction.
Case 2: v Vu2 <u1. Letw = vy V u, and c; =V V(x1 A w)

and let ¢, € bi/ai’ i=0,2,3 be the images of c, under the given trans-

1

positions. Consider

bO/CO/bI/CI\‘bZ v(c1 /\c,j)/c1 A €4 /'b:,’/c3
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This is clearly a normal sequence and so by Lemma 1,2 it is a
strongly normal sequence, By Corollary 1.5 the associated diamonds

are
(Dl)ul /cl = (Dl)u]_ /w = ((xl A W)V (Yl A W)’ xl \ (Yl A w),
Cl, w, ul)

(DZ)YZ/CZ = ((c1 Acgs €, \% X b2 \Y (cl A c3), <, % Zy» uz)

Now u, SW S(x1 Vuz) /\(y1 Vuz) and x

2 syl so that

(xl/\w)v(yl/\w)Vu2=((x Vuz)/\v) ((YIVu)/\w)=w

[(x /\w)Vyl) /\w]/\u2

xlAw)Vyl) A u,

|:(x1 A W) v(y1 A w)] A v,

i
/—\f—\

xlAw)Vy) /\(xZVyz)

X, V ((x1 A W) Vyl) Ay,

= X, \% (c1 A bz)
=X, \ <,
Thus w/(xl A W) V (y1 A w)\nuzlc2 vV x, and thus (i) holds.
Case 3: vy <V A U, If we reverse the order of the reference

of bi/ai and apply the dual of Case 2, we get the third alternative of the

lemma,

Lemma 1,7, Suppose D (Vi' o Vi 2y u), i=1,2 are two

diamonds in L such that either
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(1) D D¥
1{; 2

or

2

(2) Dl{)'DZ .

Letc, €y, /v1 and let ¢

1 = ¢; Vy, be its image in uZ/YZ' Then

2

: £ .
(1) (Dl)Yl/Clz()'(DZ)uz/Cz if (1) holds
(i) (Dy)y /o, & Polupjc, I (2) holds,

Furthermore, if D1 = D¥ then (Dl)Y = (D

s
2 l/cl 2 uZ/c2

Proof: Let us suppose that (2) holds.

X, V (c2 A zz) /(x2/\ cz) \% (c.2 A ZZ)\XZ/XZ A cz\,‘u1 /u1 A e,

Hence
(D,) (D,)
1, lay A cz/a: 2'u,/c,
Now y; A(u; A c;) =¢c, Ay =c, and thus by the remark preceding

u; /ul ACp = (DI)YI/CI.
Let us suppose (1) holds. Then ) Vv

Lemma 1,3 (Dl) This gives conclusion (i).

Vo = and

3 T ¥ae By N Ry

x. Vv, =2z.. Hence

(3) z, \Y; (x2 A CZ) 75 Vv [(Yl \Y; VZ) A c:Z]

z, Vv2 V(y1 A CZ)

z, V (Y1 A Cz)
Recall that
(DZ)uZ/cz = ((x2 A cz) \Y} (z2 A CZ)’ X, \Y; (zz A CZ)'

Cys 2y V(XZA CZ)’ uz)



24
Now by (3)

u Allx, Acy) Vi(zy, Acy)]=1 Ac, /\(z‘2 Vi(x, A c?_))
=u AC, /\(z2 V(y1 A cz))
=u; Acy Alx Vi) A (zz Viy, A Cz))
=u; AC, A (xl vy, (25 Vily A cz)))
=u AC, /\(x1 V(yl/\cz))

Also

u A [z, Vix, A cy) T = (%) Viyy) A (zz Viy, A cza
e (Yl Az VA Cz)))

x Vv (Y1 A <,)

Similarly U A (xz \Y% (z2 A cz)) =¥y V (x1 A cz).

These calculations show that

%
(DZ)uz/cz\(Dl)ul /u1 Ac,

But we have already seen that (Dl) . Hence (ii)

u; /vy Ay = (Dl)yl /ey

holds. The last statement of the LLemma is obvious,

One more lemma is needed.,

Lemma 1.8. Letbg/aj~"b, Foy Wb, fas G fa R e,
be a strongly normal sequence with associated diamonds Dl’ DZ’ and

D, andletp.d. (b,/a

3 b4/a4) = 4, Then at least one of the relations

0" 0’
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o
(1) Dol
D D*

24,03

fails to hold.

1/\u3=b1/\b3

, it follows from the Direct Product Lemma that z), ul 1 Voo Uy s X, u3

Proof: Suppose both relations hold. Since u

=u2

generates an eight element Boolean algebra, Whence
bO/ao/'x1 /vl/ ul/zl/ u, Vv u3/zl v x3\ u3/x3\z3/v3\b4/a4
But this clearly contradicts p.d. (b,/a,,b,/2,) = 4.

Proof of Theorem 1.1: It will be convenient to make an induc-

tion on n, If n=3 property (ii) holds automatically and (i) follows from
Lemma 1,6, Thus we may suppose that 3 <n = p.d. (b/a,d/c) and
that the theorem holds for pairs of quotients of projective distance less
than four, Since p.d. (b/a,d/c) = n, subquotients bb/ab of b/a and
b1'1/ar'1 of d/c exist which can be connected by a sequence of n trans-
poses. Thus bb/ab transposes to a quotient b'1 /a.'1 which can be
connected by a sequence of n-1 transposes (n-1 arrows) to b;-x/aa'n' By
duality it will suffice to consider the case where b /ab/" bj/aj. By
the induction hypothesis there exist subquotients b'l'/a'l' of b'1 /a'1 and

bn/an of br'1/ar'1 which can be connected by a strongly normal sequence
" "
(1) b} /al\bz/az/'b3/a3 cor b la

which satisfies all the conditions of Theorem 1,1, (Note that
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b'l'/a'l'/ bZ/a2 would imply p.d. (b/a,d/c) €£n - 1, a contradiction,)

= 1 e ] -
Let b0 = bb /\b1 and ao = bo A a'l' and b1 = b0 Vb2 and
a; = a‘l' A bl' Then
(2) bo/ao/bl/al\bz/gz/... bn/a.n

is normal and hence by Lemma 1, 2 strongly normal, Let Di =
(Vi’xi’ Yis 240 ui), i=1,2,...,n-1, be the diamonds associated with (2).
are the diamonds associated

Then by Corollary 1.4 D,,D,,...,D

2" 3 n-1
with (1).

Now we can apply Lemma 1, 6 to
bo/axo/"bl/al\sba/az/"'bB./a3

If D bD then property (i) of Theorem 1.1 holds. By Lemma 1,8
2{)"D cannot hold. So by our induction hypothesis DZ,('D and

if Dké'Dk_H or D \Dk+1 then D, = Dk+1, =3,...,n-1, Thus (ii)
holds in this case,

So we may now assume that either condition (i) or (ii) of Lemma

1. 6 applies. If condition (i) holds, then we get a sequence
(3) by/eg”” byl ubyle,” L b_le
which can be normalized to

1 ! ! ] 1
(4) by /e~ bl fei by /et ... bl fet

| =
by letting c Cre1 P i1 and bk = bk Vel for the even and 0 < k <n

and c{( =C and bl'( = bk otherwise, By Lemma 1.2 the sequence (4) is
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strongly normal. By Corollary 1.4 and Corollary 1.5 the diamonds

associated with (4) are (Dl)b /c , (D %o i’

) 3 e e 0 ) (D )
sz/c2 n-1'b A1

n-1

By Lemma 1, 6, (i) (Dl)b /Cl\( Z)bz/cz' Applying Lemma 1.7 to

32 ’Dn-l we see that the rest of the diamonds associated with

(4) satisfy (i) of Theorem 1.1, We may suppose that DZ/(;Dg since

DZ’D

otherwise (ii) holds by the induction assumptions, Thus the situation
may be described as follows: there is a strongly normal sequence

f /e /f /e \f /e s N /en, where fi=b{ andeizc!l,

ig= 1001 wio e, andpad, (f /e fn/en) =n, Furthermore the associ-
ated diamonds, which we again denote D. = (v.,x., ;o zi,u.), 1= Lo

..,n-1, satisfy property (i) of the theorem, D \D o 4D and

property (ii) holds for i 2 3,

Since J‘.'1 = Uy, up = f3 2 Vq and u, = fl A f3, we have

u1/\v3=:f1/\f3/\v3=u‘?‘/\v3=v.2

Thus by the Direct Product Lemma the lattice generated by the sub-

lattices Uy /v and va /v2 is isomorphic to their direct product. Hence

= e
we obtain two new diamonds D1 (V1 k xl,yl 4 zl, ul) = (v1 \% V3

1 ! -—
%y Vv3, v, Vv3, z, Vv3, N VA ) andD = (v 2,y2,z2,u2) =
(V2 Vv3, x, Vv3, v,

See Fig. 1.8,

1

Vv3, Z s

2V V3 Wy Vi) =lvy, 85, %5, ¥4 u,) = Do

Consider the sequence
(5) fo/eo/\li/y'l\x3/v3/f3/e3\f4/e4/f5/e5\... fn/en

The following calculations show that (5) is a normal sequence,
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Figure 1.8

and hence, by Lemma 1.2, a strongly normal sequence,

f2=y2 $x3 and fl =y

(6) fo Vv x, =f0 sz Vx3
=f1 VX3
=u!

Since
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(7) vi e3=(y; Vvy) e,
=V, \% (e3 Yl)
=v3 sz
= v,

Clearly %q \% f4 = f3. The rest of the sequence is normal because the
sequence (4) is normal.
It is easily checked that the diamonds associated with (5) are

DR B BYoae b B Furthermore, the relations D'\.\D'2 and

R8T n-1° 1@

D'2 = D’; are satisfied., Thus the sequence (5) satisfies properties (i)
and (ii) of the theorem.,

A similar argument applies if (ii) of Lemma 1, 6 holds. Thus

the proof of the theorem is complete.
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CHAPTER II

SOME USEFUL MODULAR LATTICES
WITH FOUR GENERATORS

In this chapter a theorem on modular lattices with four gen-
erators satisfying certain specific relations between the generators is
proved. In addition, several corollaries are observed, which will be
useful in Chapter III,

Let M4 and A4 be the lattices diagramed in Figure 2,1,

Figure 2.1

Theorem 2.1. Let L be a modular lattice with four distinct

generators a, b, ¢, d which satisfy

(1) avVvb=aVve

avd=a=bVvVd=eVd=avbVc¥vd

(2) aAb=aAc

aANd=bAd=cAd

aAbAcAd

Then either A4 is isomorphic to a homomorphic image of a sublattice

of L, or LL has a sublattice L' which is isomorphic to M, and if u is the

4
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greatest element of L' then, for one of the atoms x of L', u/x trans-
poses up to a subquotient of a Vv d/d.

The hypotheses of the theorem just says that any pair of gen-
erators except possibly b and c join to the top element of L and any

two except possibly b and c intersect to the bottom element of L.

Proof: We say that an ordered four-tuple (x,y,z,w) satisfies

property (P) if x, y, z and w satisfy (1) withx=a, y=b, z=c and

w = d, The dual property, which is given by (2), is denoted (Pd).
Leta0=a,b = b, € =c,d0=d,a1=a /\(b Vco)and
d1 = do A (b0 \% co). Then (bo,al, 17 €

bOVa1=b0V (aO/\(bOVco))=(b0Va0)/\(bOVcO)=bch0=

bo Va.1 le VCO. Now if we se'cb1 = b0 A (a1 le) and ey =

/\ (a vd ) then as above (a dl) satisfies (P). Inductively

0) satisfies (P). For example,

1’ l’cl’

we define

=a, A (bi \Y ci) d. = di A (bi \% ci)

%it1 i+1
(3)

Pia & By AR o ¥MREa )l o B SR e ¥ By
Thus we obtain four descending chains ag 22 223, 2,.., b0 Zbl >
cy = ¢ 250 d0 zd - e suchthat(a b < d) and(b a1+1,d+1,c)

satisfy (P).
Lete, = bi Ve, and fi =a, Vd,. Then the lattice generated by

e di \% a1 and di+1 \% a, is a (possibly degenerate) diamond with

greatest element f, and least element f.

41" Indeed, since (ai'bi'ci’di)
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has (P) we have a. Vd. =c, Vd, =f,, Hence
;i 1 b § 1 1

e.Vd. Va = b, Ve, Vd: Va =
i i i i ! i

i+l i+l

and

(d; Va, ) Vidy, Va) =a, vd, =1,
From (3) we have e, = b, Vc, 2d.,,. Hence
i i i i+l

e; AMa; Vi, ) =d;, ViegAaa) =dy, Vay, =6g

and

\% di) A (ai \% di+1)

7o (di Alay Vdi+1))

\% di+1 \Y (di A ai)

(a1

Pied

£ V(4 A2y

But a; A di <a, Ad, which is the least element of LL by hypothesis, The

0 0

remaining two calculations are similar,

The lattice generated by fi+1’ bi+1 Ve, bi \% Ciy1 182 homo-

morphic image of the lattice diagramed in Fig, 2,2. The proof is
exactly the same as in the previous case except that bi A c, is not nec-
essarily the least element of L.

< f

Let us suppose that f2 <e, <f1 <f1 \% (b0 A co) <e Then

0 0°
the above agruments show that (fl’ a, \% dl’ a, \% dO’ g fo) = D0 is

a nondegenerate diamond. As was seen in Chapter I the fact that



fi41 VibyAcy)

fi+ 1

€itl

Figure 2,2

fl < fl \% (bo A co) < e implies that DO and f1 V(bo A co) generate the

lattice diagramed in Fig, 2, 3.

Figure 2.3



34

As remarked above, the elements ‘fl, b, V cl, and b, Vc

0 1 0

generate a sublattice which is a homomorphic image of the one dia-

gramed in Fig., 2.2. Furthermore, since e <'f1 < fl \% (b0 A co) this

homomorphism must be an isomorphism, Hence the sublattice gen-

erated by fl’ bO Ve, and b1 Ve, is isomorphic to the lattice diagramed

in Fig, 2.4.

Figure 2.4

As above, the sublattice generated by e1s 24 \% d2’ and a, \% dl

is diagramed in Fig. 2. 5.

Figure 2,5
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With these facts it is easy to see that the sublattice L, generated

v d, is iso-

by a 2 1

0 le, a; \Y do, bOVcl, b1 Vco, a,

morphic to the lattice diagramed in Fig. 2. 6.

Vv d2’ and a

f

Figure 2.6

NowaOVdZVf1 =a0Vd2Va1 le =a0Vd1, andf1 /\(ao/\d

=d2V(a0/\ f1)=dzv(a0/\(a1 le))=dzv(a1 V(ao/\dl))=d2Va

2)

1’

since ag A d1 is the least element of L. Hence aonZ/a1 de /

ay Vd, /fl' Similarly a, V dO/aL2 v dl/al v do/fl. With these facts

V d, and

it is easy to show that the lattice L‘2 generated by L1 » Ay 2
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a, \% do is isomorphic to the lattice diagramed in Fig. 2. 7.

Figure 2.7

Now if fo >e >f1 >e >£2 bute, = e, v(bO/\ co) then Fig. 2,7

0 1 1
suggests,and arguments similar to those above, prove that the sub-
lattice L3 generated by Ll’ a0 vV d2 and at2 \Y, do is isomorphic to the

lattice diagramed by Fig. 2.8.

In Fig. 2.8 note that L3 is a homomorphic image of L2 and L

3
is isomorphic to A4. Hence A4 is a homomorphic image of a sub-

lattice of L in these cases,
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Figure 2.8

For the remaining cases we have fo 2e zfl ze, 2 f2 and

we know that there is at least one equality. It follows immediately from

y = 5

le, e fl)

the definitions of these elements that any equality implies e

It has already been shown that (fZ’ oYY dZ’ a

1 2

o= fz, it follows that f1 =e,.

a, le = b1 \% C,- This, together with the fact that (al’bl’cl’dl)

satisfies (P), shows that any two elements of {al ,b1 »Cpo d1 } join to £

forms a diamond, and since e But then

10

We must show that a b1 » €1 d1 are distinct. If 0 is the

l,

bottom element of L., we note that
(4) £/ dI/O/'fl/al\ bl/o/'f1 /dl\ al/O/fl/cl

Now if any two of {al ’bl’cl’dl} are even comparable, say a; < b,



38

thenb1=a1Vb1=f1. Hence, by (4) a1=b1=c =ad =1  Now

(5) £, Vb,

1Vb1 Vb0=a1 Vb0

(ao A (b0 \% CO)) % b0

=(aovb0)/\ (bOVc0)=e

a

0

It follows that £, /bl/eolbo. Since f, = b, e =b,. Similarly

1

ey =Cpr 2 contradiction to ays bo, CO’ d0 being distinct. We conclude

that a1, bl’ cl, d1 are distinct.

As we have pointed out a,, b d, satisfy (P) and hence

kel e |
equation (1). Since a, <ag, b1 sbo, ¢, ¢, and d1 sdo, a, bl’ s
d1 also satisfy (2). So the same procedure can be applied to the dual
of the lattice generated by al, bl’ ey dl' As above either A4 is a

homomorphic image of a sublattice of L or there exists ai 2a,,

b'1 2b,, ¢! 2c, and d! 2 d, which pairwise intersect to a! A b! A c!

. Lo 1 1 1 1 1 1

A d'l. But since aL'1 za, etc., we also have that a!, b'l, c! . di pair-

wise join to fl' Hence the lattice generated by a!, b'l, c'1 and d'1 is

isomorphic to M,. Moreover, flla'1 Pt /:;11/7f1 vd . /d < a

0/40S 2oV dg/dy

and so the last statement of the theorem is also true.

Let A7 and A9 be the lattices diagramed in Fig. 2.9 and Fig.

2.10, A, is the lattice of subspaces of projective plane of order two,

9
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iy

Figure 2.9

Figure 2.10

Theorem 2.2. Let the modular lattice L have diamonds

D= (v,x,v,2,u) and (v, z,c',v'", z') such that u A z' = z, Then either
A4, A7 or A9 is a homomorphic image of a sublattice of L.
The situation described in the hypotheses of the theorem is

pictured in Fig, 2.11,
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Figure 2,11

Proof: Since uAv!'=uAgz Av'=2zAv'=v the Direct Product

Lemma shows that D and v' generate the lattice M, X 2, diagramed

3

below, In particular, there is another diamond D' = (v Vv', x Vv!',

Yy VY, a Vv, avel) = (v, x, v et ul),

Figure 2,12

Note that
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(6) a'/v/'u'/y\x'/v/u'/z\y'/v/u'/x

Letb €u'/y, a' €x'/v, ¢ €u'/z, b' €y'/v and a € a'/x be the images
of c¢' under the sequence of transposes (6). Since c' is a relative
complement of both z and v' in x'/v, b is a relative complement of

y' and u in u'/y. Similar statements hold for a, a', b' and c. Now let

us suppose that one of the following statements fails

a'Vy =c'Vy =b

alva =biNez =g

B Vx =e¢'!Vxi=a
(7

g A yume ok gt bt

alN z't=b A z'=c'

bA x'=c A x!'=a!

Say, for example, c' Vx # a. Then, since c' V x is the image of c!
under the transposition z'/v/u' /x, we conclude thatc' Vx is a
relative complement of u and x' in u'/x, Since a is also a relative
complement of both u and x! in u'/x, the elements u, a, c' Vv x, x'
satisfy the hypotheses of Theorem 2.1. Since all of the quotients of
(6) are isomorphic it follows that there exists elements r,s € z'/v
such that z, r, s, v' satisfy the hypotheses of Theorem 2.1. Hence
either A4 is a homomorphic image of a sublattice of L. or there exists
a sublattice L' isomorphic to M4 and such that if u is the greatest
element of L' there is an atom of L' w such that u/w.~ £/e o 2t [t

In this case L' and (D')f/e together form a sublattice with A_ as a

7

homomorphic image (see Fig. 2.13).
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Figure 2,13

We conclude from this that the equations in (7) must all hold.
In this case we claim that the sixteen element setS = {a,b,c,a',b',c'}
UD UD! form a lattice isomorphic to A9. First we show that S is
closed under joins. If g,h € D UD" then clearly g Vh € D UD' CS,
Suppose g € {a,b,c,a',b',c'} and h € DUD', We wish to show that
g Vh €S, The equations of (7) show that for several choices of g and

h, g Vh €S, Examples of cases not covered by (7) are
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aVy =aVxVy

=aVu=u'€S
aVylz=aVxVyhzua €5
avx'=nu'

aVx =a

All other cases are similar to one of the above. Now if both g and

h € {a,b,c,a',b’,c'} thenby (7) c' =b A 2z', a' £b and hence

atve! = a' v(bA z2)

]

bA (a' Vv z')

=bA u'=b €S

Alsoc'Va=a asaz2ctandc'Ve=c'VzVec=2"Vc=u', The
remaining cases are similar to these,

Similarly S is closed under meets. Now since we have
virtually calculated all meets and joins, it can be verified directly that

S is isomorphic A Alternatively, it is known that a modular, simple,

9°
length three lattice, with sixteen elements whose top element is a join
of its atoms is isomorphic to the projective plane of order 2, that is,

A9. It is easy to check that S has these properties,

Corollary 2.3, Let D1 = (vl,xl,yl, zl’ul) and D2 = (VZ’XZ’YZ'

ZZ’“Z) be diamond sublattices of L, a modular lattice. Suppose

zl/vl\sbla/"xz/v2 and that u A, = b. Then either A4, A7 or

A9 is a homomorphic image of a sublattice of L,
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Proof: From the hypotheses we have

U A v2=u1/\ uz/\v2=b /\v2=a
From the Direct Product Lemma we obtain a diamond Di = D1 \% v2 =
_ 1 ! 1 1 !
(v1 sz, X sz, v, sz, z, sz, U, VVZ) — (vl,xl,yl,zl,ul).

S : . gt 18 N
Similarly we obtain a diamond D2 = D2 \Y vy = (v2 \Y Vi %X, \% vy

Y, \% Vis Zp \% Vs Uy \% vl) = (v'z,x'z,y'z, z'z,u'z). Furthermore,

N
]
N
<
<
n

z1 Vv sz Z sz

vy Vb sz

]
<
<
w
i
il

Also,

1 l_
U AU, = (u1 sz) /\(u2 Vvl)

((u1 \% vz) A uz) Vv,

vzv(ul/\ uz) Vv

1

vzvau1

=v2Vz =2 =x2

Thus D'1 and D:Z satisfy the hypothesis of Theorem 2.2. Since the con-

clusions of Theorem 2, 2 are the same as Corollary 2. 3, the proof is

complete.



45

CHAPTER III

THE FUNDAMENTAL THEOREM ON
WEAK ATOMICITY

Let Al through A
[

S

10 be the lattices diagramed below,
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A0

Before stating the main result of this chapter we make some
standard definitions., Let L be an arbitrary lattice, H(L) is the class
of all lattices isomorphic to a homomorphic image of L., Within H(L)
we identify isomorphic lattices. Similarly, S(L) is the class of lattices
isomorphic to a sublattice of L,

If a £b are elements of L, and 2 <x £b implies x = b, then b

covers a, written b >a, The quotient b/a is called a prime quotient

if b »a, L is called atomic if L has a least element 0 and if x >0

there is a y € L such that x 2y > 0, L is weakly atomic if x >y

implies there exists b and a suchthatx 2b> a 2y,

A sublattice L' of L is called an isometric sublattice if
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{x €L'la<x sb}={b}implies {x € L|]a<x sb} = {b}for a, b in L',
This means that a prime quotient in L' is a prime quotient in L.

We mention that in a modular, subdirectly irreducible lattice
weak atomicity is equivalent to the existence of elements a and b such
that b > a.

The goal of this chapter is to prove

Theorem 3.1. If L is a modular, subdirectly irreducible lattice

such that none of A .., A, is a homomorphic image of a sublattice

2 " 10
of L, then L is weakly atomic.
As we shall see in the next chapter, the weak atomicity of L is

a powerful tool for analyzing the structure of L. In proving Theorem

3.1 we shall use techniques similar to those explained by Hong [14].

Lemma 3,2 (cf. [14]). Let L be a modular lattice such that
A4 £S(L). LetD = (v,x,V,2z,u) be a diamond in L, Suppose that
b/a.~"u/x. Then either

(iy aVv=x
or (ii) there exists x' and b', x £ x' <uand b €£b' <u such that
Du/x' has u = x' Vb' as its greatest element and b' A x' as its smallest

element,

Proof: It may be assumed that

(1) v<aVv<x

for a Vv £x and if a Vv = x then (i) holds, If v = a V v then (ii) holds
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with x' = xand b'=b + v,
Let u, be the greatest element of D , which is, of course,
1 avv/v

the least element of D That is, u = (avVv Vy) AlaVvv V2=

x/a Vv

(a Vy) A(a Vz). By(l) both these diamonds are nondegenerate. Also,

by the definition of u

1
(2) u, la Vv v/ul V x/x
u1 Vx
- z
aVv \
v
Figure 3.1

Letb'=bVvandt=Db'A (u1 V x). Now, since u/x\,b/a,

we have

Atz xAD /\(xVul)

x A (b Vv)

(x Ab) Vv
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sa vy

XVt

xV [(b Vv) /\(u1 V x)]

(u1 VXY AlxVDE Vv

(u.1 Vx)Au

=u1Vx

It follows that
(3) t/a Vv/'u1 V x/x

Consider the sublattice generated by x, u, and t. By (2) and (3)

1

xVu1=th and x/\u1=aVv=x/\t

The free modular lattice with three generators subject to the above

restrictions is L', which is diagramed in Fig. 3. 2.

xVu1

aVvv
Ll

Figure 3, 2
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That is, the sublattice generated by x, t and u, is a homomorphic
image of L'. Notice that if the diamond in L' is collapsed then

t= u . In this case (ii) holds with x' = u, V x, since x' A b!' =

1
(uIVx)/\b'=t=u

1
Let D1 = Da YVenrfxe DZ o Dx/a Vv’ D3 = (Dl)ul /t A ul’
D4 = (DZ)t Vo fa and let D5 = (v5,x5,t, ul,u5) be the nondegenerate

TRt |
diamond of L'. Then we have p

D1 =(v, aVv, z Aly Va Vv), U, y Alz Va Vv))

D2=(u1, u, Vx, yVaVy, zVaVyv, u
D3 =(V5 /\(Yl V(Zl /\VS)): V5: Y]. V(Zl/\ VS)’ Zl V(Y]_/\ VS)’ ul)

D4=(u1, ug, yZ/\(z2 Vu5), z, /\(y2 Vus), ug V(y2 /\(zz VuS)))

Note that U, /v5 is an upper quotient of D, and a lower quo-

3

tient of D_. and u5/u is a lower quotient of D_. and an upper quotient

5 1 3
of D4. Hence D3, D5 and D4 together form a lattice isomorphic to
Al'
Now let vy = Vg A (Yl \% (zz1 A v5)) be the least element of D3,
uy = ug \% (YZ A (z2 \% u5)) be the greatest element of D4 and let

- - 1l o
y'-.(va3)/\114—(y/\u4)Vv3 and let z -(sz3)/\u4-
(Z/\u4) Vv3.

Since
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g T P

(yva Vv)/\(ZZVu5)
s(qul)/\(ZZVuS)

<s(y vV ul)
it follows that

y' Vo, =V A u4) Vvs Vu

=AY /\u4) Vu1 =u, /\(u1 Vy)

(ug Vyy) A (u Vy)
V4 V(us Aluy A Y))

V4 V(ul V(ug A Y))

]

Now since Ug A Y < Xy AYp =V, = U we have

Wy = Y8y, Sy

Similar calculations show that y' A U =Yg, z' VvV U =z, and
z! A u = Z3e With these facts it follows easily that D3, D5, D4,
y' and z' form a lattice which is isomorphic to A4. This contra-

diction proves the theorem,
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x 00‘

v

w

&

X

2%,
O
%

K

aVvv

Figure 3.3

Corollary 3,3. Let L be a modular lattice such that A4, 7

A A9 ¢ HS(L), LetD = {v,x,v,z,u) and D' = (v, %', v", z',u") be

8!
diamond sublattices of L such that u = u' and x = x'. Then v = v',

Proof: Let us suppose thatv # v'. Then, by symmetry, we

may assume that v' £v. Apply Lemma 3.2 with b = z' and a = v',
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The sublattice generated by D and v V v' is denoted L' (see Fig. 3. 4).

u
xV Yy
p 4 z
vVv!
v
Ll
Figure 3,4

As before we let U, denote the top element of D By Lemma

v Vvv!/ve

3.2 there is an element b', z' = b <b' <u such that b' A (ul Vx} = u)

andb'Vu1 Vx=u Now
(u1 V x) /\z':(ul VYx)A b /\z'=u1/\z'

Hence

xv((u1 VvV x) A z)
(u1 Vx)A(xVz)

%V (u1 A z')

- (u1 Vx)A (x'Vz")

=(u1 Vx)Au

n

(u1 VX)Au

=u1Vx
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Also

x/\ul/\z'=v'

Hence

(1) u; A z.'/v'/'u1 Vx/x

Since u1 V X > x we have u1 A z' >V,

Note that, since u, is the top element of DV vvtfv' %1 depends

1

only on D and v' and not on z'. Hence, if we now letb = y' and a = v',

the above argument yields that

(2) ) A y'/v'/"u1 V x/x

Recall that (x V ul) A b!' = u, so that b' 2u,. Also recall that

1 1

b = b Vv = 2" Vvi Hence

(3) (v Vv') V (u1 Az') =v V (u1 A z')
=u, A (v Vz")
= ‘l11 A b!
= u]_
Similarly
(4) (vvv') Viu Ay =1
Now consider the sublattice L'' generated by v Vv v', u A y' and

U A z'. Since they are less than x, y' and z', respectively, any two
of them intersect to the bottom element of L', v', Using this and (3)

and (4) we see that L' is a .homornorphic image of the lattice diagramed



56

i ig. 3. 5.

vVv!

ulAY“ ulAZ'

Figure 3.5

Since u; A z' > u' we know the diamond in L' is nondegenerate,
Now the diamond D 1 /., has u, as its top element and v V v' as one
v Vvl/y 1
of its atoms and v as its bottom element., Hence by the dual of

Corollary 2, 3 either A8, A4 or A9 € HS(L), a contradiction. This

completes the proof,

Lemma 3.4. Let L be a modular lattice such that A,, A, d
HS(L). Suppose a strongly normal sequence satisfies the conditions
of Theorem 1.1. Then the associated diamonds must alternately trans-

pose and translate, That is, the numbers below the arrows between

the associated diamonds must alternate.

. EN3 s
Proof: We have already seen that Dk_lzﬁ') Dk' kaDkH is

impossible, Suppose

D12y Dkb‘Dkﬂ
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Then it is easy to verify that Dk—l U Dk u Dk+1 U {uk-l Ao
W A Viatd Tieq A Wit V-1 A Vk+1} forms a sublattice with A3 as
a homomorphic image.y

As an illustration of the last lemma suppose b0 /ao/ b1 /a1
bz/az/'. s \‘blo/alo/’bll/all is a strongly normal sequence
satisfying all the conditions of Theorem 1.1 in a modular lattice L

such that AZ’ A3 g HS(L). LetD ,D10 be the associated diamonds.

1, o e o
Suppose D1 m‘ D; Then we must have Dz/é')- D3, D3 = DZ,

i B w I B2

ryDn = D* DS/ Dy, = D¥ . Notice that

8’ (2) 10"

DZ’ T D10 form a sublattice which is a homomorphic image of the

sublattice pictured in Fig. 3. 6.

11 =Y = by

Now we are ready to begin the proof of Theorem 3.1. Since L

Notice that a

is subdirectly irreducible and modular we need only show that there
exist elements a and b in L such that b covers a., By the results of
Jdnsson [16] we may assume that L has a sublattice L1 isomorphic to
the lattice diagramed in Fig. 3.7. A direct proof of this assumption
will be indicated below.,

If x >»v we are done, . Thus let x >x% >v, Now x* and L1
generate the sublattice diagramed in Fig. 3. 8.

We conclude from these observations that L has a sublattice I.;2
which is isomorphic to the lattice diagramed in Fig. 3.9.

There exist subquotients b/a of u'/x' and d/c of e/u' which are
connected by a sequence of transposes satisfying the conditions of

Theorem 1.1. If b/a/’bl/a1 then it is clear that the sublattice
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Figure 3.6
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Figure 3,7

Figure 3.8
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Figure 3.9
1 .
generated by Dl ; Db/a and Du Ablup a has A5 as a homomorphic
image. Here D. is the first diamond associated with the sequence

1

from b/a to d/c. Hence it may be assumed that

(1) Bia = bylag ~wbylape b ja, s .. b_lal = dfe
Furthermore, by applying Theorem 1.1 to the sequence

(2) dfc=b_fa ... b ja, b fa " bija =b/a,

we may assume that (1) is strongly normal satisfies condition (i) of

Theorem 1.1, and
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b ¥ 2 S
(3) DiriPis1  °F  DyomDyy; imely Dy =Dy,

k= 1,2.-..,11-3.

Here Dl’ S ’Dn-l are the diamonds associated with (1).

Note that b1 < b0 =b <c. Itis well known and easy to see that

this implies p.d. (b, /a,, d/c) 23. Hencen =4 and son -3 21, Thus

1’
D14) D’; implies D1 = D’;. But if D1 = D; we may apply Lemma 3,4

with the aid of (3) to the sequence (2) and, as the example after that

lemma illustrates, b _, <b, sc. Butby (1) p.d. (bn-?./ dlc) = 2.

o *.Hg S

As pointed out above these two statements are contradictory. It fol-
lows that

(4) Dlﬁ D,

The next part of the argument again uses techniques developed

in [147. Let Di = (vi,x'l,yi,z'l,u'l) = (D')b/a and D'2 = (V'Z,x'z,y'z,

1 ] o Vs 1 o 1
ZZ’uZ)_(D)b/\u/a/\a' Letb ..uIVu1 and a' = b'A a. Then

b'/a'/b/a. If b'/a'/'x*/v* where x* and v* are elements of a
diamond D* = (v, x%, y¥ z%, u¥) then D! X D'1 and D* form a sublattice

with A5 as a homomorphic image. From this and the fact that
b/a \ub'/a' we conclude p.d. {b'/at, d/c) = p.d. (b/a, d/¢c) =n. Now

it is easy to check that the sequence
(5) b'/a"™\b, /a,~ b /a_s... b /a_=d/c
i L 2" 2 Dt n

has D1 a6 'Dn-l as its associated diamonds and satisfies all the con-

ditions of Theorem 1,1. The situation is diagramed in Fig. 3.10.
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Figure 3.10

Consider the sublattice generated by y'l, a' and u;. The fact
that ui /x'l/ b/a and the definition of b' and a' imply that u, /x'1
b'/a'. Hence it follows that y'l va'=>b' Alsoa'V u = b'. The
free lattice subject to these restrictions is given in Fig, 3.11.

Suppose the diamond in Fig. 3.11, which we denote by

D0 = (vo,xo,yo, Zy» uo), is nondegenerate. Then let (Dl)ul /ul A v
=Dy =l % =0 A Ve, Yok » 8 B ). et (DZ)xz/vz vE, B
By (5) b' A u, = u). Hence Ug A Uy = Uy = 0. Also

1—11 /§1/v zo/v0 and El /El/§1 /72. As we noted in the proof of
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Figure 3.11

Lemma 3. 4, Doa Dl’

image. We conclude from this that the diamond D0 in Fig. 3.11 must

]32 generate a lattice with A, as a homomorphic

be degenerate, That is, that sublattice generated by a', Yi'l and U,
must be distributive. Similarly the sublattice generated by a', z'1
and U, is distributive.

A similar argument shows that if the sublattice generated by
u'l, a' and y, or the sublattice lattice generated by u'l, a' and z, is

not distributive then there exist 8 /r1 and sZ/r2 subquotients of

u'l/x'1 and of ué/z'z, respectively, such that the diamond in (u'l,a', 4 )
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1
and (Dl)sl /rl

phic image. We conclude that {ui ,a',y, } and {ui,a', z, } generate

and (D'z) form a sublattice with A_ as a homomor-
SZ/rZ 5

distributive sublattices., Thus

1 o 1 :
(6) VIVul—(a'/\yl)VulV(a.'/\zl)Vu1
e 1 1
= [(a' Vul) A (y1 Vul)] v [a! Vul) A (z1 Vul)]
- ! 1 !
= l:b'/\(y1 Vul)]V b /\(z1 Vul)]
ey 1
_y1Vu1Vz1Vu1
=u'1Vu1=b'
Similarly
Vi Ty
(7) v1Vu1—b

1

By the Direct Lemma Product there exist diamonds D; = D1 A=

1 ! - =
(vl/\ul, X AU, YA Y, 2 A Y, ul/\ul) andD4-D1/\ul
(vpAups XpAEs Y AR, 2P AT, u AL,

Since

1
(8) ulf\x1 ull\a/\u1

1]
xl/\u1

1 ! ]
’

we have x; = xli. Since u3' = uy Corollary 3. 3 implies that ¥y = Vi

By the construction of Dé and D:} we know that

(9) Dy45, D} and D)) D,

S8 Py g 1 1 ] 1 1 ! .
Now z € \13/v3 - u4/v4 and u3/v3 transposes up to u; /Vl‘ This

transposition is of course an isomorphism; let E; be the image of z;

. 1 1 ] 1
in ul/VI' Then, as Z, <u; $b', we have



(10) Z

Hence the Direct Product LLemma may be applied to the sublat-

tices 'Z:l/za and u2/z:L to obtain a dia/rx:ond D =D, V;"l‘ Since uj%/z:1
=y 1 ey et b= = 2
Vz4[z4Vz4-u1/za x2Vz4/v2Vz4. (See Fig. 3.12.)

/xz/v

20 Uy

e

Y2
xZ ( ZZ
vz

Figure 3,12
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Since x! = x' and since Z:L is a relative complement of xl'; in

3 4
, and Z' is the image of le under the isomorphism

4
u'3/v'3/ ul /v}, it follows that Z! is a relative complement of x} in
!'y x! and Z! is a homo-

Hence the sublattice generated by z] 1 4

| [ 1 ]
ué/v4 = 113/v3

1 1
ul /Vlu

morphic image of the lattice diagramed in Fig, 3.13,

u!

Vl

1
Figure 3,13

Let D, denote the diamond in this sublattice lattice, If this

0

: : ! !
diamond is nondegenerate then DO’ (DZ)u'z/uja/\v and (DS)uO va's/v
Hence D

form a sublattice which has A5 as a homomorphic image.

is degenerate, which implies E!i = z'l. In this case D‘z, Di and D'5

form one of the lattices pictured in Fig, 3. 14,

1
5

0
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\ %

1

Figure 3,14

Remarks, The above arguments show that if L, has two diamond
sublattices D = (v, x,vy,z,u) and D' = (v',x',y', z',u') such that u/z/
z'/v'and u' is not the greatest element of L then one of the lattices of
Fig, 3.14 is a sublattice of L., Furthermore, the two lower diamonds

of Fig, 3.14 are (D)b/a and (D') for some a, b such that

bvv'/avv!
9 La<h '€,

The same arguments can also be used to show that if D = (v, x,

¥, Z,u) is a sublattice of L such that u is not the greatest element of L
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then L has one of the following sublattices.

Figure 3,15

Furthermore, the lower diamond of these lattices is Db/a for some

z<sa<b su,

Before continuing the proof of Theorem 3.1 three additional

lemmas will be needed,

Lemma 3.5. Let L be a modular lattice such that AZ' e ’AIO
¢ HS(L)., Let

Al = bo/ao/bl/al\bzlaz/. o b_/a_=t/e

be a strongly normal sequence from d/c to f/e. Let us also assume

that the associated diamonds satisfy

DIND*Z’ DZ/(z') D3 = D::;, D / D5 = D*

4 (@ 6""'Dn-2(2: Dh-1
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Then f £ c.
N . 3 1l
Proof: Since D1 (\1sz u, A X, = z,. We also know that bl A b3
=, A Uy = u,. Hence
u3 /\X1 =u3/\ ul/\ x1

= uzl\ x1 = z2
Applying the Direct Product Lemma we obtain a diamond
I =
D3—(V3VX1,X3VX1,Y3 3
such that u, /xl/xg/vé and D3<')D'3 (see Fig. 3.16).

- ] | 4 ! ! 1
Vxl, z Vxl, ug Vxl) = (v3,x3,y3,z3,u3)

Figure 3.16
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Y. 1 1 1 ! 1 -
We also set D2 = (VZ’XZ’YZ’ZZ’uZ) = (v2 Vvl, X, Vvl, Y, Vvl,

£ - 3y ok - 11k
z, Vv, U, Vvl) = (Vl,yl,zl,xl,ul) = (Dl) . Also set D:} = (D3) "
Let r =2 AV

4 and s = r Vu,. Then it follows that

5 3

u:l/z:l\s/r/XS/VS

is a normal sequence of transposes. From this it follows that

Y5 A8 =T =8A zz';. Hence the lattice generated by Ygs S and Z:L is a

homomorphic image of the lattice given in Fig. 3.17.

Figure 3.17



71

If the diamond of this lattice, which we denote DO’ is non-

2 ! = I =zt 3

degenerate then, since Yo Vv4 v0 Y, z4 Vv v4 z4, we can invoke
y . .

Corollary 2, 3 on the diamonds D0 and (D4)z'4Vu0/za to arrive at a

contradiction. Hence the sublattice generated by za, ¥s and s is dis-

tributive., Similarly, the sublattice generated by z and s is dis-

4 25
tributive. Hence

ug A z:; (s Vys)’/\ z:l/\(sst)/\z:1

(sn z}) VygAazl)] A Us A zy) V(zg A z))]

[r Viyg Azl alr vizgazy]

- ] ]
T ¥Ry A By KB

'
VSI\Z4

=T

The Direct Product Lemma yields a diamond D_{., = D5 \ z"* &

(v5 \% za, Xg Vot . Vs \% za, z v za) such that Ds/(:)D;.) and

!
4 5 V24 Y5
“:1/211/(1"’{'5/":5' Let D = (D'5)*. Continuing in this way we obtain

3 - 1 ! ! ]
diamonds D} = D ,D},D,...,D! | such that D ) D} and such that

-1

v{( 2 ¢, From the definition of the associated diamonds we know

b
f/e/zn_llvn_l. We also know zn-llvn-l/zim-l/vn-l'

f/e/'z;l_l/v;l_l. But, since v! , 2c, this clearly implies f { c.

Hence

Lemma 3.6. LetD = (v,x,vy,2,u) be 2 diamond in 2 modular

lattice., Set Wo =V, Wy =X and let W SWl Sw, Sw, Sw,., Then there

2 3 4
exist elements x = to < tl < tz < t3 < t4 = u and diamonds Di = (vi’xi’ Y
zi,ui) = Dwi/wi-l such that wi/wi-l/xi/vi and ui/xi/ti/ti-l'

i=1,2,3;4,
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Lemma 3.7. Assume the hypothesis of the previous lemma.
Suppose also that there is another diamond D' = (v',x',y', z',u') such

that u/z.~"z'/v'. Let wl=w, Vv', i=0,1,2,3,4 and let D! = (v},x!,

yi, z;,ui) be the diamonds obtained by applying Lemma 3. 6 to D' and

wb, w'l, W'z, w!, W:L (with z' playing the role of x)., Then

w./w. e tv. o1z, w.Vzlw, /W!/w! /z!/vf
jiae =1 Ty ;o | i i-1Vz T sl |

Furthermore w, V z = zi Au, i=0,1,2,3,4 (see Fig. 3.18).

Figure 3,18
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Proofs: Let u, = (wi Vy) /\(wi Vizy, i=dl,2.3.4; ViR,

<
]

u, g, i= 2y s xi=Vini, ol 2. 3.4, AN Ay Vwi-l) and

N
1}

u; A (z V Wi-l)' Straightforward calculations show that Vi X Vi
z; and w, form a diamond and that wi/wi-l/xilvi' This is the con-
clusion of Lemma 3. 6.

The proof of Lemma 3. 7 will also be complete if we show

Vz ! ! = z!
ui/zi/wi \% Z/Wi-l r'/wi/wi-l’ and W, Vz z; A u.

uini_l Vz=wi__1 VzV((iny) /\(inz))

Wi 1 \% ((wi Vz) A (Wi Vy Vv z))

W.

i-1

Vw.Vz=w,Vz
3 1

Also U A (Wi-l Vz)= z by definition. Hence ui/zi/'wi Vv Z/Wi-l Vz

IIO”’ as z < y
(W. Z’ V‘W, Vv = W. Vv

andaswi/\v'SxAv'zv5z

(wi VvV z) A (wi__1 Vv v') Wi \% ((wi Vz)A v')

w1 \% (z \% (Wi A v').)

i-1

1]

To see that W, Vz= z; A u, first note ui = (w{ Vyl)A (w; Vi)

1 ] 1 , & (e 1 1 1 - 1 !
(inv Vy') /\(inv Vx)_(iny)/\(inx) and zi—vini

v!1Vwi where v;=u{ 1 i=2,3,4 andvi:v'. Also, as u < z',

uA(wivY')=wiv(u/\y')=w.1v(y/\ z'/\y')=in(u/\V')=Win.
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Similarly u A (Wi V. =)= W, V z. Hence
u/\u£=u/\(iny')/\(inx') /\u=inz
Thus if i 18 2, 3, or 4

1 1 = 1
uA z UA(ViVWi) u/\(ui_1 Vwi)

= ! = =
wiv(u/\ui_l) ininz inz
Ifi=1 then

u /\(vi le) =u A (V! le)

u/\z'l

ViuAvY) =w, Vz

5 1

il

1

This completes the proof,
Now we return to the proof of Theorem 3.1. Recall that we
have shown that L has three diamond sublattices D = (v, x, vy, z, u),

D= (v, 2,9, 2, ¢') and DY = (v, 2, " e u"Y guch that
(11) u/z/’z'/v' and ut/z|/ z"/v"

The diamonds D, D', D" form one of the sublattices of Fig, 3. 14,
If these diamonds are isometric diamonds the theorem is true.

Hence there exists Wy € L such that v < Wy <x, Applying the previous

two lemmas to the diamonds D and D! and also D' and D" we obtain

3 | e 1 1 1 1 1 = 1 - ! 1 1 ! 1 =
diamonds D2 = (vZ,x Yy zz,uz) = le P D1 = (Vl’xl’yl’zl’ul) =

1 | J—— ] ! 1 ' 1 - -
(D )Wl VV'/V" D4 > (V4,X4, Y4, 24: u4) = DX/WI’ Dé = (Vg.Xé,Yg, zé,ug)

= (D')val/wl VV' = (D')Z'/Wl Vv]’ D'5 = (vglx'Sv y‘s, z|5’ u'5) =

(D”)u'1 Vv"/v'1 vv" and D'6 g (V;S’ x'6’y'6’ z%)’u'é) . (D”)u'3 Vv"/v'3 Wt such
that
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x/wl/vx:h/v:]:/vu:]:/zl'§/'z'/v'le/'z.!ﬁ/v;5
u'1/z'1/”z'5/v'5 and u&/z%/za/v'é

This is represented in Fig, 3.19,

Figure 3,19
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Since L is subdirectly irreducible and x'1 < v‘3 there exist sub-

quotients d/c of x'3/vg and f/e of x'1 /v’1 which are connected by a
strongly normal sequence of transposes, If d/c\b1 /al/7 . A

then the first associated diamond, D., together with (D and

1’ 3d/c

(D form a sublattice which has A5 as a homomorphic

S)Vng/v Ve
/'

. . g

image. Similarly, if bn-llan-l f/e then D (Dl)f/e and

Hence it may be assumed that the sequence connecting d/c to f/e has

form a sublattice with A, as a homomorphic image.

Vf/v' Ve

the form:
Ut dlerTb fay whyla, e oo b la SN fa = ffe

Furthermore, we may assume this sequence satisfies the conditions of
Theorem 1.1. With the aid of LLemma 3.5, Lemma 3.4 and Theorem

1.1, we can conclude that the diamonds associated with (12) satisfy

.k = D¥ = P*
(15} " Dy cawbe = D8E WEviens s 3\Dn 5 SHDE
It follows from (12) and (13) that

' = b
(14) vi se £v,, | SRS T |
Applying Lemma 3, 6 and the dual of Lemma 3, 7 to the elements
1 ! ! 1
vl <xj ScAXx'<dA x!' £x', diamonds D!7 = (v7,x7,y7,z7,u7) and

D'10 = (v'lo,x'lo,y'lo, z'lo,u'lo) are obtained such that
(15) d/c/xlz/vll

and
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(16) u!z/xli\\ z,'7/v!7\ z'Azh/z'A V.'7\ uA Z.'-{./uAV%\uiO/Z'lO

and

(17) v'lOVv'1=z'/\v'7

Since u'lo/z'lo/vz'/\z.}/z'/\ vl by (16), z]y $2z' Avh. Hence by (17)
] ! 1

(18) 210 SVIO Vv1

- - 1
Now let D'8 = (D'é)v'é,\/dlv'é ve? and let c! = viA Vvh and

d' =d Vc'. The situation is represented in Fig. 3. 20.

1 = !
C —V7/\V1

Figure 3,20

Notice that this situation is the dual of the situation represented
in Fig., 3,10, By using the dual arguments used in that case, we can

conclude that there exists a diamond D:) — DZ A z.’7 such that
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z'7/v1,\\u2/\ z!,/xz/\ zl = u}a/xc'a.

- 1 1 o
Lets—u9Vu10andr-S/\v7.

in Fig. 3.21. us

This situation is represented

FPigure 3,21

Let L' be the sublattice generated by ul, r and x'lo. L!'is a
homomorphic image of the lattice given in Fig, 3.11 with a' = r, b' = s,
= o= pel) = : : ; N2

w =ug, X = xp and Y1 = X0 If the diamond DO in this sublattice is

nondegenerate then as before DO’ (D!

) and
7 v!7 Vuo/v7 Vx

0

; ; ; 8
(Dg)ub Az /ub/\ v, form a sublattice with A; as a homomorphic image

(see Fig. 3.11). Similar arguments show that the sublattices generated
by {u(';, r, ¥l {u'lo, , /(';} and {u'lo, ¥, V'g} are distributive. As

before this implies that



79

(19) viOVu(';=v(')Vu'10=s

By the Direct Product Lemma this yields two new diamonds D'11 =

Dz)/\u'lo and D! =D'10/\ ul. Since u! =u'10/\u'=u' and

12 9 12 9 11
! - ] 1 - 1 1 - 1 1 - !
X]1 XA U9 TUgA T AU, =UgA 21 = Z)5 we may apply Corollary
3.3. Thus

] - o "
(20) v9/\ ullO—v'll'v'IZ_vlloAu"Q

Moreover, z! 2c

By definition v 5

' =v, A zL. By (14) v] SV

9 2 | 2

> v'l. Hence

(21) v<'9 zv‘l

Now by (20) and (21) we have

| g = 1 ]
(22) Vie BV g8 Uy S VMg G5 BV AV

7 3 7 10 10

‘ |} 1
v.'7 p vio Vvl. Hence, by (22), (16) and (18)

Also vl 2zv! = vi by their definitions and v! 2z! _ 2v!_ by (16). Thus

1 1 ] 1
Vip = Vig V(v A vjo)

] ]
ujg A (vig vV V)
=ujg AVEA(vig VYY)

_— 1] 1 1 -
=219 A (Vig VYY) = 2]

This last contradiction proves the theorem.



80

CHAPTER IV

THE MAIN STRUCTURE THEOREM

Let ¥8 be the variety (equatorial class) of all distributive lattices

and 77(: be the variety generated by all modular width four lattices. It

is well-known that if . ¢ & then either M3 € S(L) or N_. € S(L).

5

Figure 4.1

In this chapter we prove an analogous result for 77?:1 If L £ 'mz then

either Ak € HS(L) for some k, 2 £k €10 or N _ € S(L).

5
We begin with

Lemma 4.1, LetD = (v,x,v,2z,u) be an isometric diamond in L

(i.e., x »v). Let us suppose that A4,A.7,A9 g HS(L) and that there is

another diamond D1 = (v1 »Xy5 Yy %05 ul) such that
(1) z/v/'x1 /v1

Then either

(2) u/v/ul /v,
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or

(3) u/v A vl/"x1 /v1

Proof: Note that z < U, A u. Equality cannot hold, for otherwise

Corollary 2.3 would give a contradiction. Since u > z this means

as well, Then, since z €<u <v, would contra-

u su,. Suppose u S x ]

1 1

dict (1), u Vv vy = X again since vy < % Thus we see that (3) holds in
this case.
Now suppose that Xy # u; then u A X, =z and u Vv X, = u. Thus,
by (1),
(4) qul=quVv1
=u V x1 = u1
(5) WAV, =UA X AV,
= ZN v]. =V

Hence (2) holds in this case.

Theorem 4. 2. Let L be a modular, subdirectly irreducible lat-

tice such that A ,A10 ¢ HS(L)., Then M, x 2 € S(L).

IR 3

Figure 4,2
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Proof: If the conclusion of this theorem fails, then there exist

diamonds D = (v, x,vy, z,u) and D' = (v',x',y', z',u') such that
(1) D7) D!

By Theorem 3.1, L is weakly atomic. Consequently there exist a,b € L

b/aé’)

; : o, .
D bt /at’ and so Db/a and D bt /at form a lattice isomorphic to M3 % 2.

Hence we may assume v < X, There also must exist e and f such that

such thatv €<a <b <x, leta'=za Vx'andb'=>b Vx'. Then D

v<e<f<sv' Nowthe diamonds (vVe, xVe, yVe, z Ve, uVe) and

(vvfi, xVE, yVvi, zVE, uVf{) together form an isometric sublattice

isomorphic to M3 x 2. Hence we assume v <v', i,e,, D and D'

together form an isometric sublattice, Recall that a sublattice L' of

L is called isometric if a covers b in L' implies that a covers b in L,
Since L is subdirectly irreducible there is a strongly normal

sequence of transposes
-~ —_ 1 !
(2) bo/a0 = vl fxr, b, /al, bz/az, W bn/an =z'/v

which satisfies the conditions of Theorem 1.1. Furthermore it may be

assumed that
(3) p.d. (v'/v,z'/v") € min {p.d. (v'/v,x'/v'), p.d. (v!/v,y'/v')}

" e 1 £
Suppose v /v/"b1 /al\bz/az/b3/a3 = z'/v! and D, 1y D3.

It follows immediately from the definitions of the associated diamonds

that Z, = vl A Xps and X = 7, Vv'., Thus z, = vl A (zz Vixl) = ' and
= 10 bt -2 = DX
xl_ZZVv = v'., Thus X| =z, 80 thatD1 —DZ.



Figure 4.3

The sequence v'/v\‘b1 /al/bz/az\b3 /a3 = z'/v' is impos-

sible because b, <v' and p. d. (b1 /al’ z'/v') = 2 are contradictory.

b
k+1

is one, we say Dk transposes to Diﬂ; if it is a two, Dk translates to

Recall that if the number under the arrow between Dk and D

Dk+1'

IfD transposes to D* ., then D
n-1 n

s = D* |, provided n >3,

-2
since the sequence (2) satisfies the conditions of Theorem 1.1. The
above argument shows that this is the case even if n = 3,

Let us suppose that

(4) b, /a__ ab_/a_=z'/v!

n

Also suppose that
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= 5k
(5) Dn—Z ) Dn—l

Lemma 3. 4 together with (4) and (5) imply

(6) D mDn—Z

n-3

In fact, since the sequence (2) satisfies the conditions of Theorem 1.1,

we have either

- D* - DX Rk
(7) Dy a®Dj =D}, Dy 3»Dy = DY, +..n D3 9D, , =D},
or
— D¥x = Ty - ¥
(8) D, =D3, D; aD, =D}, ..., D, GwD__,=DF ,
depending on whether n is odd or even. In either casev_ 2v 2 a

2 n-1 n

=v'. Thusa, 2v, >v'. But this contradicts p. d. (bz/az,v'/v) &g

We conclude that (5) cannot hold and hence
(9) Dn-24: Dn-l

Applying Lemma 4.1 to the diamonds D' and Dn-l we conclude

that either

1 ]
(10) u'/v /un-l/vn-l
or
1 |
(11) u'/u Avn-l/xn-l/vn-l
Suppose (10) holds. Consider the set {xn-l S Vv z', b B 1

x'Vv 1, ¥ Vv ;1. By (10) these are all atoms in un_l/v If

n-1°
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/

there are four distinct elements in this set then un contains a

T

sublattice isomorphic to M4 which, together with Dn 2 form a sub-

lattice which has A8 as a homomorphic image. Thus we may assume

y and x' Vv

n-1 n-1 =

v V¥

n-17 e ]

An argument dual to one used above shows that (4) implies that

n 24, Thus
a2) 2T fan N e o e N

Since v =oa Ma =v!'Vv we have that
n-1 n n-2 n-2

| ! ) S L=
(13) Vn-va _vn_ZVv V x =V o1 VvV x!' = z 1

Thus we may apply the Direct Product Lemma to the sublattices

1 3 3 1 = !
zn_l/x and = /Vn__2 to obtain a new diamond Dn-Z = (vn_2 A X',

] 1 1 1 - ] 1 1 1
B A T N oA By g AR, G AR = (Vo Bylor Tigy Bnog)
]
un-Z)'
Now it is easy to check that
1 ] ! 1
A% AR Y L NP NP S AP L

Consequently, p.d. (x'/v',v'/v) €n-1<n=p.d. (z'/v',v'/v), contra-
dicting (3). Hence we conclude (10) cannot hold and so (11) must hold.
As before, if u' A v, ¢ {x',y'} then u'/v' contains M, as a sublattice
which together with Dn-l form a sublattice with A7 as a homomorphic

image, Thus we may assume ¥oal A u' = %', Since Dn 24 D we

n-1

have =z /v u ,/x .. Moreover v =V Vv'!', Now as in
n-1 \ n-2""n=-2 n-1 n-2

n-1

the proof of Lemma 3,4, D', D Dn-Z generate a sublattice with A3

n-1’
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Figure 4, 4

as a homomorphic image. This contradiction shows that (11) cannot
hold. It follows that assumption (4) cannot hold. Hence, it may be

assumed that

(15) b _l/an_l/'bn/an=z'/v'

This leads to the following four cases
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(16a) vifv = bO/aO\bl /al/ lAA bn-llan-l/ bn/an =z'/v!
with

£ ok T
[166)" D45 D5, Dy D, 2 DX, D oD, =B, ooy D, SO,

or
(178 A =holas b 8T ey, s By B B
with

- YR /' Tk Lt
(17b) Dirtay 18, 208, Doy, B Dl 0., D e Dt o
or

/’
(18a) bilae Bila S subalans o i las e . e
with
Sk 3 %

(18b) Dy s B0y Dy sibhy v DB, s =DY
or
(19a) bo/ao/bl/al\bz/az, .y bn_l/an_l/'bn/an
with

B Sl
(19b) S e DY, By e e TGl BT s

Let us suppose that the situation of equations (18a) and (18b)

N
2

S sk A
V w), Then, since D1 (>sD2, D1 = DZ Vvl.

holds. If w is any element of L, let DT V w denote (VZ Vw, Yo VvV w,

zZVw, xZVw, u2
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Furthermore, as everything in D’; is greater than or equal to vz,
£ - X — Ty 9. : > =
D2 Vv -DZ sz Vv -D2 Vv1 _Dl, since v, Vise = a, Vao =V Now

as in the example after Lemma 3.4 (18b) implies u, < z'. Hence,

o N g8 a 1 o
since DZVV_DI’ Uy —uZVv < z', Since vy 2 v, we have D1

But the dimension of z'/v is two; thus u = z' and vy = V. Now the set

< z'/v,

{z, X1 Y7s zl} has at least three elements, so we may assume that z,
X, ¥y are distinct, Then the diamonds (v, Z, X5 Yo z'Y and D = (v, x, vy,
z,u) satisfy the hypotheses of Theorem 2. 2, which gives a contradiction.

Now we suppose (17a) and (17b) hold. As before

(20) u, s 2!

From the definition of the associated diamonds

] =

(21) vilv = bO/ao\;u1 /x1
and

(22) VAW, =2, AU, =X

Now if u, < v', then it would follow from (21) and (22) that uz/xl/v'/v.

But v! > v and X <uy <u, by (17b). Hence we have

(23) u, £v!

: = v! 1 1 =
SmcevZ:«:zlandezl vandeSuZSZ,z Znyz szle‘2
=yt sz 2v!. Thus, since v' < z!', either v VVZ = wliar'y VV2 =t

In either case

(24) szzsz(vVv2)=z'
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Thus we may apply the Direct Product Lemma to the sublattices z'/z
and z'/vz to obtain a new diamond D, Az= (v2 AZs X3 NZ, Yy A Z
Z, A % Uy A z). Now X, V(V2 AR =2 /\(xl sz) =2z AX, and

Xy /\(v2 A Z) =V AZ =V, Hence

(25) ) /vl/xz/\ z/v2 Az

Moreover,

(26) ul/\(uzf\z)=u1/\z=ul/\v'/\z
= A V=X

By (25) and (26) we may apply Corollary 2. 3 to the diamonds D, Az

and D1 to arrive at a contradiction.

In both of the two remaining cases we have the following situa-

tion:
(27)

(28)

n-1

Figure 4.5
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We would like to show that D', Dn__1 and Dn_2 generate a sublattice

with A_ as a homomorphic image, As pointed out before, in order to

2
do this we must show that u' A u =u_ ,. Byits definition u =
n-2 n-1 n-1
! 3 3 1 -— ]
z' Ao, Consider the sublattice L' generated by x 152 AX 5

VA X _p xt A X o All three pairs of these generators intersect to

the least element of the L', For example, x'A X 2 A y' A X 3=

1 - ! s | TN
vl A x 2= Vo qe Also xn_lv(x /\xn_z) -xn_z/\ (xn_ll\x) = x

n- n-2 i

1 1 3 3 1 - !
u', the greatest element of L', Similarly X 1 Vix' A xn-Z) =X ,AU
X 2 A u'. It follows that L' is a2 homomorphic image of the lattice dia-

gramed in Fig. 4. 6.

!
utAx
Xn--l
y'A '
Ls! w x = A ez
n-2
Vil
Figure 4.6
s 1 ] H
Let w = [(x /\xn_z) V(y'A xn_z)] AE g Since TRl AT
i = = = = i
either w X _10orTwW=v, . If w V-l then x A x o which
1 H 1 - 1 — 1 -
implies u AU 5 =1 /\(un_l \% xn-Z) . V(u' A xn-Z) = v B
=R 9 the desired conclusion, K w = X1 then L' is a diamond,

P e g :
which is nontrivial as X1 X Va1 Moreover, uo A(a' A xn_z)
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=u g AX =X . Hence we can apply Theorem 2.2 to the dia-

monds L' and Dn-l , arriving at a contradiction. This final contra-

diction proves the theorem.,

Remark. Let Li be a modular subdirectly irreducible lattice

such that A A10 £ HS(L). The dual to the last part of the above

2’---’

proof shows that the following situation cannot occur: L has three iso-

metric diamonds Di = (vi,xi,yi, zi,ui), i=b,2,3 such that

(1) u /xl/ ZZ/VZ and xz/vz\u3/z3
and
(2) X, Vv =v,

We improve upon this in the next lemma.

Lemma 4.3, Let L be a modular subdirectly irreducible lattice

such that A ,A10 ¢ HS(L). Then L cannot have three isometric

2’ o e o
diamonds Di’ i=1,2,3, which satisfy (1).

Proof: As remarked we need only show that (2) holds. By (1)

(3) (uIVu3)sz=u1Vv2Vu3Vv2
o= Vv =
zy, V%, =,
The Direct Product Lemma, applied to uz/u1 \% ug and DZ’ now yields
M3 X 2 as a sublattice unless u, = u, v us. Thus by Theorem 4. 2 we
have u, =1, V uy. <Hence

2 1 3
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(4) z, Vx z3V(v2/\u1)=v2/\(z3Vu1)

= vy A [(zz/\ u3)Vu1]

Vo A Zy A (u1 Vu3)

Vo AZ, AR, =V

2 Z 2 2
Clearly Vs \% X < Ve Letw = us A (v3 \Y xl). Now V3 Sw < Ve
The second inequality shows that w # Uy, W # x, and w # Vo Ew=v,

then by the Direct Product Lemma v_, V X /v3 and D3 generate the sub-

3

lattice M3 X 2 unless v3 = v3 Y xl. Thus we must have x1 < v3. If

< P . : i
u SV, then ) < vy SV, which violates (1). Since X) <y, vy v

\& by semimodularity, If u, \ v, < u, then u, < U, Vv v, < u, s X,

again violating (1). Hence, since vy <y \% Vas Uy A (u1 \% v3) = ¥y But
then U \ vy /v3 and D3 generate M3 X 2. From this contradiction it

follows that w # V3o Hence w is an atom in the two-dimensional lattice
u3/v3. If w# Zy then uy /v3 contains a copy of M4 which together with

D1 forms a sublattice with A_ as a homomorphic image. Thus Zy =W

74
= uz A (v3 Vxl). Hence Zy $v3 Vxl, which implies vV, \/x1 = Vg Vz3 \%

X = 2y \% X) =V, by (4). Thus (2) holds and the proof is complete.

Theorem 4.4. If L is a subdirectly irreducible modular lattice

is not a sublattice of L, where

such that A ,A o £HS(L) then Mt

2" 3;3
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ul
) Y' Z'
u
V'
+
M_,”3 2 Z v
v

Figure 4,7

Proof; As seen above Theorem 3.1 implies that the existence
of a sublattice isomorphic to M; 3 such that both diamonds are iso-
metric sublattices,

Since L is subdirectly irreducible there is a sequence of trans-

! 1 - 1 3 3 P
poses x'/v' = b,/a,, b, laj, ou., bn/an_C_v /x which satisfy the con

ditions of Theorem 1.1, Let us suppose that bo/ao/vb1 /al. Then

x'/v'/vx1 /Vl' By Lemma 4, 1 either

(1) u'/v'/’ul /v1
or
(2) u'/u' A vl/'x1 /v1

Suppose that (2) holds. Since x'/v'/ X /vl, x' £ v and so u'Av, # x!'

1
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Trivially {y',z'} - {u' A vl} # ¢, let us say that y' # u' A v,. Since
X > Yy, u' > u' A v, by (2). Thus v'< u' A vy < u'. Hence (v',x', y',
uliA MK u') is a diamond, which together with D = (v, x, vy, z,u) and D1
form a sublattice with A5 as a homomorphic image. Thus (2) cannot
hold.

Now suppose that (1) holds, By Theorem 4.2 we must have

ul'= u and v' = vy Thus, since x'/v'/' X /vl, x! = X). Furthermore,

i {y',2"1 4 {y,»2} then u'/v' has M, as a sublattice which together

4
with D would form a sublattice with A8 as a homomorphic image. Thus
we may assume y' = Y and z!' = Zy that is, D' = Dl' Consequently, by

Lemma 4, 3 it cannot happen that D1 %DZ. Thus we may assume that

Dlhl D’;. Theorem 4. 2 implies that D1 = D’;. By Lemma 3., 4

Dzﬁz D3 = Dz, D4 (2)D5 = D’Z, .+. . As pointed out before, this

2 2 ' e - . '
implies thata  , 2v'=a,. Butthis contradicts p.d. (bn_zlan_z,v /z)
=p.d (b ,/2 ,.b /a) =2

The remaining possibility is that x'/v' = by /a, \bllal. In

this case x'/v! \ul /xl. Tets =1V u; and r = s A v'. Now we have

the situation already encountered in Theorem 3.1 (see Fig. 3.21).

Exactly as in the proof of Theorem 3,1 we conclude that

(3) VVu1=Vqu=S

But now the Direct Product Lemma yields M3 X 2 as a sub-

lattice unless u =u=s, Then x = u A V' = Uy A vl = X, Also v = ¥y

by Theorem 2.2. Moreover we may assume that y = V1 and z = Z)y

for otherwise A7 € HS(L) as seen several times before, Thus D =D,
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Now either D 5, D, or D, Df Both of these lead to the same

contradiction as above when Dl equaled D', The proof is complete,

We now introduce the following class of lattices:

2

1

111 e z2 4 YZ x2
S Y1 =y
L xl Y1 z) =V,
g iy By=M; 5
1
v

Figure 4.8



Figure 4.8 (Continued)

In general B_ consists of n diamonds D,,D,,...,D_ such that for
n e Z n

1.2 2% oy D=l

(1) b 1 ot Sl T
(2) z; =V,
(3) ' Zn T Y-l

Boo consists of the diamonds Dl’DZ’ e ’Dn’ ... Wwhich satisfy (1) and

(2). Bi is the dual of B_ and B: consists of diamonds {Di]i €Z)}
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satisfying (1). Note that the dimension of B is n+1 and that
d

(o] 0]
BB S BLIE e

Theorem 4. 5. Let L be a modular subdirectly irreducible lat-

tice such that A ,A10 ¢ HS(L). If the dimension of Liis n+1,

2’ e 0 o
1 €<n <, then Bn € S(L); if L is infinite dimensional then either B

or Bi is a sublattice of L.

Proof: Since L is subdirectly irreducible and of dimension at

least two, L is nondistributive, hence B1= (vl,xl,yl, zl,ul) is a sub-
lattice of L, which by Theorem 3.1 we may take to be an isometric
sublattice. If the dimension of L is two we are done. Otherwise there
L OF S <v1. Let us assume the

former. Now with the aid of Theorem 4.4 and the second remark

exists s € LL such that either s > u

preceding Lemma 3.5 there is a diamond sublattice D2 such that D2

and B1 form BZ’ If the dimension of L is three we are done. If not

we may assume by duality that there exists s € L, such that s > u,.
By the first remark preceding Lemma 3,5 and by Theorem 4. 4 there is

a diamond D3 such that B2 and D3 form B3. If there still exists an s

in L such that s > u, then we apply the same procedure to the lattice

formed by D2 and D, of B,. This yields a diamond D, such that D

3 3
D3, D4 form a sublattice isomorphic to B3.

with D, form By If L is finite dimensional this argument can be

4 2’
This sublattice together

repeated to obtain Bn as a sublattice of L with u the greatest element

of L, By a dual argument and a possible renumbering, it may also be

assumed that vy is the least element of L., Since Bn is an isometric
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sublattice of dimension n+1 L must have dimension n+1,

If L, is infinite dimensional, then as before, B1 is an isometric
sublattice of L., Either there are elements 81 zu; in L such that the
dimension of sk/u1 is greater than for all k > 0, or there are elements
tk < A such that the dimension of v /tk is greater than k for all

k 2 0. If the former is the case then the process above yields B_ as

a sublattice of L., If the latter holds Bi is a sublattice of L.

Remark. The above arguments also show that if B_ is a sub-
lattice of L then we may assume that either vy is the least element of
L or that B: is a sublattice of L.

In summary, if L satisfies the conditions of Theorem 4.5 then
exactly one of the following four situations occur:

(i) for some n, Bn is a sublattice of L with v and u the

least and greatest elements of L, respectively;

(ii) B_ is a sublattice of L and v, is the least element of L;

1
(iii) the dual situation to (ii);
(iv) B: is a sublattice of L.

We define a core of L, denoted core (L), to be

B_ if (i) holds
n
B_ if (ii) holds
core (L) =< d
BS if (iii) holds
(B if (iv) holds

The core of L is to be a specific sublattice of LL whose elements

are numbered in accordance with equations (1), (2) and (3) preceding
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Theorem 4.5. There may be more than one core of L, however, it is
easy to see that they are all isomorphic, Core (L) stands for some
specific core of L. Actually we will see below that the only lattice
satisfying the conditions of Theorem 4, 5 with more than one core is

M4. Consequently we will often refer to the core of L.

Lemma 4. 6. Let Bn’ n 2 4 be a sublattice of L, where L is a

modular subdirectly irreducible lattice such that A AlO ¢ HS(L).

2,.0-’
Then, if s € u /v, either s 2v, or s <u_ ..
n 1 2 n-1

Proof: Let us suppose thats # vy and s £ W Consider

s Au;. Since U >z =v, £s, s Auy <u,. If spA u =V then

Theorem 4, 2 implies that s = vy < un-l’ a contradiction. Hence s Au

is an atom of ul/v1 and s Ay - z) =V, Ifs Ay # X, or y, then

1

u, /v. would contain M4 as a sublattice which with D2 would form A7.

1
Thus we may assume s A u =X, Dually we may assume s V v, = X
It will now be shown that s V v, =8 \% Vo iy = s First note that
(1) Vool S /\(vn_1 V s) Sun_l /\(vnVs) s oy N X

=zZ AX =V
n n n

Since s #Vn_l, s Vv > Hence, by Theorem 4, 2, un_ll\

n-1 n-1°
(vn_1 Vs) # Vo1 Since S (1) now yields wo_p A (vn_1 V s)
=v_; thus v Vs 2v. . Hence s Vv ='d Vv Mwv =x , as
n n-1 n n-1 n n-1 n

desired.

Now s/s A v /x Iv. 8 AY 2% then s/s Av x /v
n n n n n n n n

-1

which is impossible because s/s A Ve has dimension one (since

it
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s/sAv.__x [v)andx /v has dimension two, Thus sA v Sv =
n n n n n-l1 n n

Anp o e

=X, This reduction shows that we may assume n is 5 or 4,

and s A LA £ v 1= Since v, 2%, we have that ;A (s A vn)

Let us suppose thatn = 4, Repeating the above argument we

obtains Av, Sv, =u, and s Av, #ul and u; A (s A v4) = x;. Thus
4 = U since u, < u,. Hence (s A v4) sz = (s /\v4) V x

Furthermore, s A V4 o u, since u; A s Av, =

u, V(s A v4) =%

Vv2=(s/\ v4) u =u

1
2

X). Hence, by the Direct Product Lemma, M, X 2 is a sublattice of L,

3

contradicting Theorem 4, 2.

lLetn =5, As before we have that s A Vg S u, and s A v 4 U,
Thus uy $s A Ve Since s # Voo it follows that s )‘:vs; thus s A vg <
Vg = U, Hence u; V(s A v5) = Vg V(s A v5) = U, which is again a

contradiction by Theorem 4,2, By the argument used several times

before we may assume that u, V(s A v5) = Xj. Since u; A (s A v5) =%,
we have that

(2) x3/s A vs\Au1 /x1 and x3/u1\s A v5/x1

Since S/\V5 5x3 $v5, s /\x3 =8 A Vg Thus

(3) sV x3/s\x3/s A VS\_.u1 /xl\AZ1 /v1

As s Vx, zs ﬁvs, (s Vx3) Vvg =8 Vvg=xg and (s Vx3) Avg = X,

since Vg = u > x This together with the first transposition of (3)

3 5

implies that

(4) S/S/\VS/S Vx3/x3/"x5/v5/'u5/25
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(5) x5/s v x3\;v5/x3 = u3/x3
With the aid of (2), (3), (4) and (5) it is easy to verify that B5
together with S, s Vx, and s A v, form the sublattice A This con-

3

tradiction proves the lemma.,

5 10°

Lemma 4. 7. Let L be a modular, nondistributive subdirectly
irreducible lattice such that AZ" e ,Alo ¢ HS(L). Lets € L, then one
of the following holds

(i) For some Vi U, € core(L) with 0 £ ¢ - k £2, Vi <s Su[

(ii) The core (L) is B_ or B: and s zu for all k,

@

(iii) The core (L) is Bi or B and s = u for all k.

@

Proof: If core(L) = Bn thenv, €8s s u by the remark preceding

1

Lemma 4, 6. A straightforward application of Lemma 4, 6 gives Vie¥,

€core(L) with 0 < g - k€2 andkas Suz.

Hence we may assume the core(L) is B, Bi or B:. Suppose

also that for some n

(1) s Su, and s $un_1

Ifs 2 Ve for some k then the proof may be completed as above.

Thus, in particular, we may assume s $ v lett=8 V 5

-4°

= un_4. Now the

Direct Product Lemma applied to t/vn_4 and t/s yields a sublattice

n-4°

Since s # Vo4 t>s., By Lemma 4.6, t2 Yl

isomorphic to M, X 2, which is impossible by Theorem 4, 2,

3
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Figure 4.9

We conclude that if (1) holds the lemma is true. Dually if

s2v_ands ¢v for some n the lemma is true. If core(L) = B
n n+l ©

then either this last statement holds or s 2 ¥ for all n. In either case

d

the lemma is true. Similarly the lemma is true if core(L) = B_.

Hence it may be assumed that core (L) = B:. Ifs < u for all n then

s £ v_for all n, Hence s #u_ for somen.., If s £ u_ thenn, >n
n ng 0 n; 1 0
and by choosing the smallest such n, we have s < u and s # u,

1 -

This is the case considered above,

By this and the dual argument we may assume

(2) s £ u and s # u for all n
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Suppose

(3) s A u < u and sV u P u, for all n and k

Letn >m, Then s A u <u_ implies thats Au_=s A u_. Similarly
n m n m
sVu =sVu . Thens, s Au, sVu, u, u_ form a sublattice iso-
n m n n n m
morphic to N5, contradicting modularity. Hence by duality we may

assume that for some n and k s Au £u Since s Au Sun, k may

k.
<
and s /\un u

be chosen such that s A u £u But then Lemma 4. 6

k

<s u su
An

k+1°

implies that u Then s 2 U _3» contradicting

[ T | k+1°

(2). This proves the lemma.,.

Lemma 4.8. Let LL be a modular subdirectly irreducible lattice

such that A ’AIO ¢ SH(L). Let C = core (L) and suppose that the

PIREE

dimension of C is greater than two., Let s € L such that Vi <s < U

for some Vk’uk+1 €C thens €C, Ifv, €8 <u € C, then

Kk k42’ Tk k2
either s €C or s Vu_ € {Xk+2’ Yk+2} and s A u,_ € {xk, yk} (see Fig.

4,10).

Proof: K 8 € un/vn for n equal k, k+ 1 or k+ 2 then

s € {V‘n’xn’ PATEIY un} for otherwise un/vn had M4 as a sublattice and

since core (L) has dimension greater than two, A_ or A8 € HS(L). If

v

VS €8s < Wt and s £C then uk/\ s cannot be w =z

For then we would have s € uk+1 /vk+1’

€ C by Theorem 4,3, Thus s A U is an atom

Tl T F > Ve

contradicting the above, If

s/\u.kzvkthens=vk

of u.k/vk which must be either Xp O Vi, for otherwise A, € HS(L).

i

Say that s A o= X . Thus s 2 X and therefore s V Vil =
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Yt 2
et 2 Yi42 okl ~ P42
Yitl 2%kl
Vi e
"k k By = Vi
Yk
Figure 4,10
s ka Vvk_l_1 — R uk Hence u <s vvk+1 Suk+1. Thus either

s Vvk+1 =u_or s Vvk+1 = - I s Vvk.{_1 = then s Euk/vk,

which is the case considered above, If s V Ykl © gy then by
Theorem 4.2, s = W contradicting s £ C,
Now suppose Vi <s s Yo If Vi

Similarly, it may be assumed that s £ U qe An argument similar to

. < s, then the above applies.,

that above shows that if s ¢ C then s V u € {xk+2,yk+2} and s A u,_=
{Xk’ Yk}'

Now we are ready to prove the main theorem of this thesis,

Theorem 4.9. Let L be a modular lattice such that AZ’ a0 ’AIO

¢ HS(L). Then L € mz.

Proof: Assume L ¢ 7)?:. L is a subdirect product of subdirectly




105

irreducible lattices, If all these subdirectly irreducible lattices lie in
771: then L € 771: Hence it may be assumed that L is subdirectly irre-
ducible, Since L ¢ 7)22 there exist five noncomparable elements 8§18,
S35 Sy, Sg in L., It follows from Lemma 4, 7 that if sy 3 o for all k

then S, 2 Uy for all k (uk € core (L) = C). Then the nontrivial quotient
sl/s1 A 8, lies entirely above Uy for all k. Since L is subdirectly
irreducible there exists a sequence of transposes X /v1 = bO/aO,

bl/al’ 5, ,bn/an cs, /s1 A S,. It will be shown that this is impossible

by showing that for some ji and zi’ TR TP, .

(1) V. Saisu

Ji ji+2
VE.Sbisuz.+2 1 =05 ee a
i i
Indeed, bn < u.¢n+2 contradicts bn 2 8 A S, 2 U for all k, We prove

(1) by induction, For i = 0, (1) holds with jo = JZO = 1. Let us suppose
that (1) holds for i = k and suppose that bk/ak/bk+1 /ak+1. Since

b, < uLk'*'z and a, 2 e this transposition implies ka a1 #u

It follows from Lemma 4. 7 that v. <a s
Jgl  KHL O Ty t2

Ek+ 2°

for some jk+1'

is either u.

or covers u.
Jkt1+2

Jep1+2’

i < <
Since ij+1 ak+1 bk+1 Lemma 4.7

By semimodularity bk+1 \% uij_{_2

In either case b P2

kel ® g g4

again implies that (1) holds.
It follows from this that

(2) LT e

0sr <2, i=1,2,3,4,5
i

AL,
15

Clearly the ki's may be picked so that

(3) s; # VicHl



106

Since the si's are incomparable, ki -3 < kj Ski + 3,1 =1, j, 5, Let

ko = min {k ,k,,ky,k, ko). Thenky Sk, Sky+ 3, j=1,2,3,4,5.

0 0 J 0

Hence two of the ki's are equal, say k, = k,., Let us suppose that

1 2
5 £ C. Thus, by Lemma 4, 8 it may be assumed that

(4) g Ve s and S; Ay =x

1 k

1

Now suppose s, ¢ C. Then s, V ukl € {xk1+2, Yk1+2} and s, A uk1 =

{xkl,ykl }. Suppose S5 A u.kl = xkl and s, V ukl = Yk1+2' Since s and

s, are incomparable S; A8, = xkl. Since s, > xkl, it follows that

8; \% s, > Sy By a dimension argument s, % s, = uk1+2. But

sy \% S, Y Vk1+2 = 8, \Y S, % ukl = xkl+2 Vv Yk1+2 = uk1+2, which is
=y, ands, Vu =
k; ky 2 3]

:ﬁ(l_'_z cannot both hold, If s2 A u.k1 = xkl and s2 \% ukl = xk1+2 then it

impossible by Theorem 4,2, Similarly s, Au

is easy to see that uk1+2lvk1 contains A2 as a sublattice, If S5 A ukl =

Ykl and s, V ukl = ykl'*'z then uk1+2/vk1 contains A, as a sublattice.

1° s2 is an element of the core C., By (3) we

may assume we have the following situation:

We conclude that one of s

(5) s, = and s, AW =X

Here either sy £ C or 8, = xkl.

Let us suppose that ky = k) as well. Then s, A ukl € {xkl, ykl 1.
Since Ykl =8, we must have 83 A ukl = xkl. If either 8) = xkl or
8, = xkl then s, and s, are comparable. Thus s, # xkl # s5. By (3)

Sy S5 £ C. But it has already been shown that this leads to a contra-

diction.
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Suppose we have another pair of equal ki's, say k3 =k,. Then

4
as before we may assume 8, = Yk3 = Yk4' Since s, and s, are incom-
parable we must have k3 = k1 1. The situation is symmetric so we
assume that k3 = kl - 1; that is,
(6) 54 Vi -1
Also as before
) T R

Since the lattice generated by sl, sz, s and C has width

3 %4
four, Sg ¢ C. As pointed out above kg 2 k1 - 3 and k5 < k3 3= kl + 2.

If kg = k; - 3, then by Lemma 4.8 sg V uk1'3 € {xkl-l’ykl-l}' Since
sg < sg \% u_kl_3 and xkl'l < s, and Ykl-l = 8.5 it follows that sg is

comparable with s, or Sys 2 contradiction, Similarly k5 = kl -2,

3

implies that Sg is comparable with s, or s,. If k. 2k, + 1 then

1 2 5 1

Sg ka1+1 =uk1__1 Zykl_l = 8, I£k5=k1 or k5=k1 - 1 then we

have three equal ki's, a situation already shown to be impossible,
For the remaining case we have k1 = kz and kl, k3, k4, k5 are

distinct, Recall k, = min {kl,kz,k k4, ks} and k, €<k <k, .+ 3. Thus

0 3 0 1 0
{kl,k3,k4,k5} = [ko, kgt 1, kg+2, ky+ 3}. Alsok 2k, 2k, - 3.
Suppose kO < k1 - 2. Then one of k3, k4, k5 must be kl - 2, say k3 =

kl - 2. By Lemma 4:.8 53 < S3 Vuk3 € {}ik3+z,yk3+2} = {Xkl’ykl }.

So s, is comparable to 8, or s,, contrary to our assumption. Hence

3
ko Zkl - 1., Then one of k3, k4, k5 must be kl + 2, say k3 = kl + 2.
But then s, 2 v =8 This final contradiction

= % = 2y
3% Vg T VigH2 T Yy N

proves the theorem,

2.
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CHAPTER V

APPLICATIONS

In this chapter we present some applications of Theorem 4. 9.
We begin with the characterization of the subdirectly irreducible width
four modular lattices announced in [11], Let L be such a lattice.
Clearly AZ’ s ’AIO ¢ HS(L) so that the previous theorems apply. In
particular L has a core, Recall that the core is one of the sublattices
Bn’ Bm, Bg, B: and, in some sense, it is the largest such sublattice

that will fit in L (see the definition following Theorem 4. 5), Recall

that B: is a sequence of diamonds Di = (Vi’xi’ Vi zi,ui) i € Z such that
(1) oy B, B

and Bn’ Bm, Bg have similar definitions which are given before
Theorem 4. 5.

We would like to find the elements of L, which are not in core (L),
With regard to Theorem 4. 7, suppose s € LL - core L such that
s zu for all k. Ift €L - core(L), t = u for all k and t # s then,
as in the proof of Theorem 4.9, L is not subdirectly irreducible,
contrary to assumption. It follows that s must be the greatest element
of L., A similar argument shows that if t < u for all k then t is the
least element of L.,

It is clear that the only subdirectly irreducible width four

modular lattice of dimension two is M4, and that there is none of
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dimension one, Hence assume that the dimension of L is greater than
two. Let 0 and 1 denote the least and greatest elements of L, if they
exist, Now by Lemma 4. 7 and Lemma 4. 8 it follows that if

s €L - (core L U {0,11}) then

(2) Ve S8 Suk+2’ s évk+1 and s ‘uk+1 for some k
Lemma 4, 8 also tells us that

sV €{x 01 Vi2!

(3)
s Ay € {x, 7]

Thus, for eachs € L - (core L, U {0,11}), there corresponds a k = k(s)
such that (2) and (3) hold.
It was shown in the proof of Theorem 4.9 that if s,t € L -

(core L U {0,1}) and k(s) = k(t) then either A, or A4 is in HS(L). Thus

2
k(s) = k(t) implies s = t,

Theorem 5.1. Let L be a modular subdirectly irreducible lat-

tice of width four. Then either

(i) L= M4.

(ii) L has dimensionn + 1 >2, L has Bn as a sublattice and

for each k, 2 £k €<n - 1 there is at most one elementw, € L - Bn

k
dimension k. Alsow, Vz € {xk+1, Viet 1 }and w, A z, = {xk-l ' Vie1 J*
(iii) L has B_ as a sublattice with vy (the least element of Bm)

equal to the least element of L., For each k 2 2 there is at most one

element W € L - B_ of dimension k, and w, V z, € {x

Kk 141 Viep S and
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Wi A Zy £ {xk-l’ Vie-1 }. L may also have a greatest element.

(iv) L is the dual of one of the lattices of (ii).

(v) L has B: as a sublattice. For all k there is at most one ele-
ment w, € L - B: which is incomparable with z, and z, Vw, € {xk+l :
Yk+l} and Zye A Wy € {Xk-l’ b 2 }. L may also have either a top ele-
ment, a bottom element or both.

Furthermore, all the lattices described in (i)-(v) are sub-
directly irreducible modular lattices of width four. Hence this is a
complete list of such lattices. All the lattices of (i) and (ii) are simple;
all those of (iii) without a greatest element and all those of (iv) without

a least element and all those of (v) without a least or a greatest ele-

ment are simple.

Now we turn to the sﬁbject of lattice varieties. If £ is a class
of lattices, we let V(&) denote the variety (equational class) gene’rated
by #£. Also we let P-u(ae) denote all ultraproducts of elements of £. The
next theorem, which is basic to the study of lattice varieties, is due to

’
B. Jonsson,

Theorem 5.2. Let £ be a class of lattices. Then every sub-

directly irreducible member of V(&) is a member of HSPu(aZ). More-
over, if £ has only finitely many members each of which is finite then
every subdirectly irreducible member of V(£) is a member of HS(Z).
Furthermore, if V and W are lattice varieties then every subdirectly
irreducible member of V VW, the variety generated by V and W, is a

member of either V or W,
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A proof of this theorem appears in [15].

If # is a class of modular lattices, each of which has width at
most four, then Pu(né) is a class of modular lattices, each of width at
most four., Consequently the subdirectly irreducible members of 771:,
the variety generated by width four modular lattices, are just the sub-
directly irreducible lattices of width four or less. The subdirectly
irreducible modular lattices of width exactly four are given by Theorem
51, M3 is the only subdirectly irreducible modular lattice of width
three. This follows from Theorem 4.5 and is also in [16]. The
remaining subdirectly irreducible modular lattices of width less than
three are 2 and 1, the lattices with two and one elements, respectively.

Now we answer the problem suggested in the introduction. Let
Let M be the

@ e . 0
Vi=7714VV(Ai), 2 2.0 10 and V., = 7T(4VV(N

1 5)'

variety of all modular lattices and A the variety of all lattices.

Theorem 5.3. The quotient sublattice A /mz of the lattice of all

varieties is atomic with atoms V a3is Vi Consequently M: is

oty 10°

finitely based.

Proof: Let W be a variety of modular lattices such that W ? 7772:.

Since every lattice is a subdirect product of subdirectly irreducible

4°
Hence L has width greater than four, By Theorem 4.9, Ai € HS(L)

lattices, there exists a subdirectly irreducible lattice L in W - 7

for some i, 2 si £10. But then W D V(L) oV, It only remains to
show that Vi>- 77(:, L=22,3:v:4:10, -Suppose ViEVJ. for some i # j
2 <4, j<10. Then A; €V, = V(AJ.) Vv MZ. A ¢ m: and the last part of

Theorem 5. 2 imply Ai & V(Aj)’ but this contradicts the second part of
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that same theorem. Hence the varieties V V., ., are incomparable,

o SV

Now suppose that for some variety V and some j, 2 <j <10, Vj oV S

@
m4

By the above i = j. HenceV=Vjande>- 772:, J=2,...,10, If Wiis

. Then, by the first part of the proof V > Vi for some 1. 5 2 .« o6 510,

a variety which contains 772: and which is not contained in 7, then

N5 €W, thus W Evl‘ As above it is easy to see that V1 is incom-
. (==}

parable with VZ’ X ,V10 and that V1 > 7/74.

Since varieties are determined by the identities all of their mem-
bers satisfy, Ai ¢ m:, i=2,3,...,10, implies there exist identities
3 @ - -
€31 €300 €10 such that e, holds in all members of '/714 but fails in

Ai’ i=2,...,10. Itfollows easily from the first part of the theorem

that the modular law together with €rreees € determine the variety

1.0"
7 Z That is, all identities of 77(: are derivable from the modular
identity, x A(y V(xA V) =(xA vy) V(X A 2), and €000+ € This

completes the proof,

In [2] K. Baker gives an infinite set of identities ¢, , k= 0,1,

2,..., which define "7?: Let rij and Sij’ i<i, j<5, i# jbe the lat-

tice polynomials in the variable X xj’ zi‘], zlz‘], e g zzJ given by

L ij ij ij ij ij ij
rij = (((((xi \% zl) A ZZ) \% z3) A z4) Vz5) Az
(1)

. TR CN ORI L S -
sij—(((((xiijVzl)/\zz)Vz3)/\z4)Vz5)/‘\z6

Then 0'6 is the identity

(2) (o lllu V) M) V) Aspg).. . Vrg,) Asg,

= (e (W Vrlz) A slz) Vr13) A 813)...Vr54) A gy
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The identity holds in all members of 77(: To see this let L be

a lattice of width four, Hence, if x ,X_. are substituted into L,

17 %5

x, < X, for some i #j, 1 €i, j £5. But then rij = sij' It follows easily
from this that o holds in L. Since each member of 773: is the sub-
direct product of width four lattices 0'6 holds in” Z It can be checked

that g, fails in A,,..., A, ([2] gives an easy method for this; see

6
also [3]). Hence ?77: is defined by o and the modular law.

0'6 has 127 variables. One might ask what is the least number
n such that there exists an identity which together with the modular
defines Wz: The following five variable identity was used by Jonsson

in [16] as an example of an identity which holds in M, but fails in M5:

(3) an A\ (xiVx.)s \ (a/\xi)

1<i<js<4 I 1 i =4

One can show that this identity holds in” Z (use the modular

law). This identity fails in AZ’ A3, A5, A6’ A8’ 1-\.9 but holds in A4
and A10'

J. B. Nation points out that no five variable identity can hold

inmz and fail in A Indeed, A, has eight elements which are both

10° 10

join and meet irreducible, Thus n 2 8.

Now A4 is generated by four elements a1, 2y, ag, a,. (See

Fig, 5.1.) Let & f(zl,. v aiy zk) = g(zl,. s zk) hold in 772: but fail in

A4. Then for some substitution bi €A

# g(bl, s ,bk). Each bi = wi(al 135, a3,a4). Hence the four-variable

AL =i, o o By U LS

5 . T =
identity €y f(wl(xl,... ,x4),... ’Wk(xl"" ,X4)) = g(Wl(Xl,--- ,X4),--
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Figure 5,1

. ,wk(xl, S ,x4)) does not hold in A4. Moreover, since e}l is derived

4’ 621 holds in 77(: Similarly there is an eight-variable identity

which holds in m: and fails in A

from ¢

" y A
lo 10° Since for any two lattice

identities in r and s variables, respectively, there is a lattice
identity in r + s variable equivalent to the conjunction of the first two,

we conclude using (3), ea, eé thatn <17,

In [17] McKenzie raises the following question: For which
integers k is there a variety which possesses an independent basis
with k elements but not one with k+ 1? He shows that such varieties

exist for any k £12. Let Kn be the lattice Bn with w, and wo

2

adjoined such that W, \Y% Z, = X3, Wy A Z, =X, W \% z 1

-1

= X and
n
Woel A2501 = X2 Let Kg be By with w, and W, adjoined such that

WZVz2=x3, wz/\z2=x1,w4Vz4=y4andw4/\z4=y3. LetKgbe
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B5 with w, adjoined so that w, Vz, = Xy and w =X Then, if

3 Pl SRl W
N5, V(Kn) is covered by V(Kn) V V(L) where L is any member of

= 1 1"
the set S = {M4,B KL, K, A A3, A4, A6, A._{,, A8, A9,N5}U

5’ 5, 2’

{Km|4 <m <n}., Furthermore if V is any variety properly containing

n+l’

V(Kn) then V contains V(Kn) V V(L) for some L in S, To see this let

L0 be a subdirectly irreducible lattice in V but not in V(Kn). ¥ L

has width greater than four then one of A

0

..,A _, N_ is in HS(L

2" 10" 758 O)°

I A, €HS(L) then M, € HS(L(); if A| ) € HS(L,) then Ky € HS(L(). If

Lo has width less than four and is modular then it is M3 or a two-

element chain, contrary to L, not in V(Kn). If L, is modular and has

0 0

width four then it is one of the lattices described in Theorem 5.1. Now

it is easily checked that L, not in V(Kn) implies that one of M,, B

4’ Tn+l’
1 1" - = _
KS’ KS’ K4, KS"' " ’Kn-Z’ or Kn-l is a sublattice of LO. In con

clusion, it has been shown that ifn 25 V(Kn) is covered by exactly

0

n + 8 varieties and that any variety properly containing V(Kn) contains
one of these n + 8 covering varieties,

Now we apply to above result to show that V(Kn) has an inde-
pendent basis with n + 8 equation but no independent basis with more
equations, The second part of this statement follows immediately from
the fact that all varieties properly containing V(Kn) contain one of n + 8
covering carieties. Let L. € S, then by Theorem 5.2 L is not in
V((S-L) v Kn). Consequently there is an equation €y, which holds in
V((S-L) VK ) but fails in L. Now it is easy to verify that {¢; [L €S]

is an independent basis with n + 8 elements,

A lattice is called locally finite if its finitely generated sub-

lattices are finite. A variety is locally finite if all its members are
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locally finite,

e}

Theorem 5, 4. ?7(4

is locally finite.

Proof: We must show that finitely generated members of 77(2

are finite, If L is a finitely generated subdirectly irreducible member
of Wz: then it follows from Theorem 5.1 that L is finite, Furthermore
suppose that L = (G) where |G| = n. Since L is finite, it is finite
dimensional; say the dimension of L is m + 1. By Theorem 5.1 the
core of L is Bm’ see Fig. 5: 2.

The only other possible elements of L - Bm are the elements

w,_such that w, Vz, € {Xk+1’ Yk+1} and Wi A Zq € {Xk-l’ Yk-l}’
R e T8

ks 2 ee o= L. Eetk ...,kl_ be those k's such that w
5 &

1’

is a join and meet irreducible Wi sees s Wi e
1 1

k

e n s Since the L

1

Let {jjseees] } be such that {k;,...,k 3N {j,ecerd . 2159

m-r =2
and {k;,... ,kr}'u T Y {2,...,m-1]}. Note that if
W ¢ L then either Xepq OF Yy 18 both meet and join irreducible; say

is join and meet irreducible. Then Vier1 eG, k= jl’ Rees ol

Vi1 m-r=-2"

Thus there must be at least r plus m-r -2 elements in G, Therefore
r+m-r-2=n

Thus

dim(L) = m+1 sn+3

We conclude that if L is a subdirectly irreducible member of 778: which
is generated by n elements then the dimension of L is less than or

equal to n+ 3. Since L has width four or less it follows immediately
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from this that 'mz has only finitely many subdirectly irreducible lattices
with n generators for any fixed n.

Now let L be any member of M Z which is generated by n ele-
ments, Then L is a sublattice of L' which is the direct product of sub-
directly irreducible lattices Li’ i € I each of which is a homomorphic
image of L. That is, L' = : I Li' Since L is generated by n elements
each Li is generated by n élif'nents. Thus, by the above, each Li is
finite and there are only finitely many distinct members of the set
{Lili €I}. In order to complete the proof it is sufficient to show that
L! is locally finite,

Lemma 5.5. LetL'= [ Li where each Li is finite and there

16l
are only finitely many distinct Li's. Then L' is locally finite,

Proof: Let fl’ = Li and let L be the sublattice gen-
i€l
,fn. Since each Li is finite and there are only finitely

erated by fl, “ns
many different Li‘s, the set on the n-tuples {(fl(i), A ,fn(i) ) Ii €l} is

finite. Pick i such that {f,(i),...,£ (i) i €1} = {f,(i,),..

1, e o 0 3 lz
e ,fn(ik) lk =l bls Lot ¢ be the projection homomorphism from

L' to

that is, @(f) = (f(il)’ N ’f(iﬂ,) ). To prove the lemma we need to show
that ¢ restricted to L is an isomorphism. It then follows that L is
finite and so that L' is locally finite, Picki € . Then for some k,

1 £k 4, (fl(i),... ,fn(i)) = (fl(ik),... ’fn(ik))' Now let
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f£,8 EL= (fl,... ,fn). Since f and g are words in SRR S f(i) =
f(ik) and g(i) = g(ik). Consequently, if p(f) = ¢(g), i.e., if f(ij) = g(ij)
j=1,..., 2 then f(i) = g(i) for all i, Thus f = g and so ( restricted to

L is one~-to-one.

Corollary 5. 6. If V is a subvariety of M Z, then V is determined

by its finite members. That is, the variety generated by the finite

members of V is V,

Proof: Any variety is determined by its finitely generated mem-
bers. Since the finitely generated members of V are finite the corollary
follows,

; Ro ..

We now turn to the problem of showing that there are 2 dis-

tinct subvarieties of 7 Z Recall that B_ consists of diamonds

Di = (Vi’xi’yi’zi'ui)’ i=1,2,... 8uch that Uy = Z5F Ve

1.=2,73, . and z; = Ve (See Fig. 5. 3.)

Let C_ be the lattice B_ together with elements w, , k=2,3,...

k,

such that wk \% 2y = xk_{_1 and wk/\ zk = xk-l' Let X be the class of

all sublattices of C_ obtained by deleting some of the w, 's from C_.

k

Let L € X, We associate with L an infinite sequence (a1 yay,a ) of

3,..-

zeros and ones as follows: if Wi € L then a.k__1 =1 and ak_1 =0 if

w, £ L. This is clearly a one-to-one and onto correspondence. Hence

Kk
R
[X| =2 © It will be shown that | {V(L)|L € X}| = 270, With each

finite sequence of zeros and ones (al,a AL ,a.n) associate the lattice L

2

obtained by appending w, to Bn+2 if a = ] in such a way that

T g e Rl S e R T



Figure 5.3

Lemma 5. 7. Suppose L and L' are the lattices associated with
(al, asse.. ,) and (bl’ b ,bn), respectively, Then L' € HSPu(L) if and
Here the

only if for some k (bl,b bn) < (a

guEs s kb1 2427 Pl

less than or equal to sign means that a; Sbk+i’ L=k, Saeatle

Proof: Suppose L' € HSPu(L). Then L' is a homomorphic image
of L1 where Ll € SPu(L). Choose an inverse image of each element of L!

Let L, be the sublattice of Ll generated by these inverse images. If
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we restrict the homomorphism ¢ which maps L1 onto L! to L2 we

into L', But since L2 has an

onto L', Since

obtain a homomorphism ¢ | LZ from L2

inverse image of each element of L', ¢>IL2 maps L,

L, €SSP (L) = SP_(L) S ’”Z and is finitely generated, L. is finite by

2 2
Theorem 5,4, The fact that L2 is finite and L2 € SPu(L) imply L2 € S(L).
Hence L., may be regarded as a sublattice of L., In order to avoid con-

2
fusion we label the elements of L' with primes: Di = (v;,xi, y;, z;,ui),
& ] . L . . A iy
iz 1,8sies, 042, and Wy (if a;, 1 = 1). Since L2 is finite and ¢ maps

L, onto L', there is a smallest element b € L, such that ¢(b) = ux'1+2’
the greatest element of L', It is easy to verify that ¢ restricted to the
quotient sublattice of elements of L2 lying below b is onto L'. Hence,
by replacing L2 with this quotient sublattice we may assume that url1+2
has exactly one inverse image in LZ’ Now by the dual of this argument
we may also assume that v'l, the least element of L', has exactly one
inverse image,

Let¥ be the class of lattices associated with all the (0,1)-
sequences, (Cl’ Cosenns cn), for all n < w together with the lattices M3
and M3’ 3 (Fig. 5. 4).

Figure 5, 4
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Lemma 5,8, Let M be a finite sublattice of the lattice L (of
Lemma 5.7), letN €% and let { be a homomorphism of M onto N, Let

N have dimension n + 2, n 2 0 so that v'1 and u;l

have unique inverse images under

41 2re least and greatest

1 1
elements of N. Suppose vy and U
¥. Then for some k, and r such that k - r =n, ¢ (un+1) =u and
(p-l(v'l) = V. Consequently { is an isomorphism and thus N = M.

Furthermore, M is an isometric sublattice of L.,

Proof: Let dim X denote the dimension of any finite modular

lattice X and let dL be the dimension function on the elements of L. The

first conclusion of the lemma implies that
dim M SdL(uk) - dL(vf,) =k-r+2=n+2 =dim N

Since N is a homomorphic image of M we must have dim M = dim N
and therefore { must be one~-to-one. Also, the fact that dim M =
dL(uk) - dL(ur) implies that M is an isometric sublattice of L.. Hence
it only remains to prove the first conclusions of the lemma, We do

this by induction on n,

En=0thenN =M, =D) = (v],x],y],2],u}). Let¥], X}, 7},
El' be inverse images of vi, x'l, y'l, zi, ui, respectively. It fol-
1

lows from the uniqueness of 7'1 and "ufi that ]31 = (;i ’;'1’;'1 ,-z.'1 ,Ei) is a

2

diamond sublattice of L., Hence 5'1 = Dk for some k, which proves the

lemma in this case,

e

Now suppose dim N =n+2, n >0, Let ux'1+1

and v'l. Let ;r'x denote the smallest

and ;'1 denote the

unique inverse images of u;1+1

inverse image of u!. Applying the induction hypothesis to :;1/;'1, u!'l/v'1
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and W'u_'/'; it follows that u' = u_ and v! = v , where m - r =n - 1,
ol n m 1 r
o giier: e iy ; '
Now let Xntl’ Tnsl and u denote the largest inverse images of X 41
Yr'1+1 and u;l = Zx'1+1' Then xn' +1° Yn'+1 and u=r'1 are incomparable and are
= ; : e
covered by e The only way this can happen in L is sl S e for
o i Do e oS o : 1 1
some k, and {xn+1, Vt1? un} = {xk, Vi e = Y g }. Since %L 1 That
' =l ; v el e =T = : o
and Zp, =4 are incomparable, X041’ Yo+l and u =u_ are incompar
able. Thus u_ is incomparable with X0 Vier It follows that k=m+ 1 so
o ., = vl o= -r= -r = i
that un+1 = uk, v1 =V and k - r = m+1 r = n, proving the lemma.

Now we return to the proof of Lemma 5.7. By the remarks pre-

ceding Lemma 5.8 we may apply that lemma with M = L, N = L' and

2’
2":' L' and L2 is an isometric sublattice of L.

% L'and L' is simple, Also, for

¥ = @. We conclude that L

Moreover, L. is simple, since L

2
is a sublattice of u.k/vr. But the only simple

2

some k, r, k-r=n+1l, L2

sublattices of uk/vr with greatest element U and least element v, are
those obtained by possibly deleting some of the wm‘s from uk/vr. Since

L'z LZ’ (bl’ e ’bn) describes L, as well as L', Consequently

2

(b, =t ,bn) < (a A the desired conclusion, The con-

1’ 2’ k_l)’

version of the lemma is obvious,

r+l’°

R

Now we return to the problem of showing that there are 2 5
varieties generated by single members of ¥. Recall that X consists of

all sublattices of C_ obtained by deleting some of the wk's and associated

with each member of ¥, a sequence of zeros and ones (al,a ++) Such

2"’

that w, is in the lattice if and only if a =1,

k k-1

By a finite block subsequence of (al, az, a3, ...) we mean a sub-
sequence of the form (ak, ak+1, Gy ’ak+r)' Suppose there exists a set of

8 sequences such that if a = (al,a o) Bandb = (b1’b2" ..)are in 8

2l
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then either (i) there exists a finite block subsequence (ak, Bppre ak+r)

of (a1 135500 ) such that

(a ) £(b

1:---:b )

k’ ak+1 el ak+r m’ bm+ m+r

for all choices of m or (ii) there exists a finite block sequence (bk’

b ’bk+r) of (bl’b sy such that

kt1*®°° 2

(b, b ) £(a

& ap

K Pl t o P m ¥m+l’" " mtr

for all choices of m. Let La and Lb be the members of X associated
with a and b, respectively, Then the above conditions imply that L, and
Lb generate distinct varieties, since, by Lemma 5,7 and Theorem 5.2,

the lattice associated with (a ) cannot be in V(Lb) if the

K2R+l Pk

first condition holds and the lattice associated with (bk’b b )

k+1’°°°* Pktr

is not in V(La) if the second condition holds, Thus to show the existence
R
of 2 © varieties it is sufficient to construct a set 8 which satisfies (i)

R
and (ii) such that |8] =2 9, Let

Sl=1001
52=10000001
: (n+1)! zeroes
8 =40 01
n

Let N be the set of positive integers, and let T = {i .} and

IREy Je
U= {jl, Jpsdgsees } be distinct infinite subsets of N, Assume also that

i <i, <ip < and i <, < i3 < . Associate the sequence
s. 8, 8, ++. with T and the sequence s,

- . 8....with U, Here
142 5

8
J1 32 33

s. 8, 8, «+. denote the concatenation of the sequences s, s. s, ..
i B iy ip i3
We may assume that T¢ U, Letn € T, n £ U, Then s is a finite block
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subsequence of the sequence associated with T. Suppose it is less than

or equal to a finite block subsequence (am, RN ERRRY am+(n+1)!+2) of

the sequence associated with U, Then = =1, so'that a_,

dmt(n+l)! +2

and a

. ol g :
k(iYL 42 must be either the beginning or end of one of the sj S.

It follows that for some jr’ jr+1 Tl jk, (am, a1 "am+(n+1) ! +2) has

one of the following four forms.,

(1)
8., -8, ke on TBIT L
Jr Jr+l T

A - e - BRI
Jp Jr+1 Jk

Clearly jt <n, t=r,r+l,...,k. However, each of these four sequences

has length less than or equal to

k

2(k-r+1) + 2 (1)t + 2
t=r

Now if n = 1 then the condition jt <n =1 shows that there can be no such
jt's and, in fact, it is clear that S is not a block subsequence of

8. 8, 8. ... in this case. If n = 2 then since j <n
h J2 )3 t
k
2(k-r+1) + 2 (D! + 2
t=r

n-1
<2(n-1) + 20 (t+1)! + 2
=

<(n+l)! + 2
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The first inequality expresses the fact that the length of the sequences
in (1) is not greater than the length of the sequence 1 $18,83...5 Ir
The second inequality is proved easily by inductioﬁ. Since (n+l)! + 2
is the length of s We see that s is not less than or equal to a finite

block subsequence of the sequence s, s, ... associated with U, Thus

s,
J1 J2 J3
for S we take the sequences associated with the infinite subsets of N,

We have proved the following theorem.

N

Theorem 5.9. There exist 2 O distinct varieties contained in

(=]
My -
Since there are only countably many varieties defined by a finite
set of equation, Theorem 5,9 has the following corollary, which con-

trasts Theorem 5. 3.

R
Corollary 5.10. There exist 2 © distinct varieties contained in

?)2: which are not defined by any finite set of identities.
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