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ABSTRACT

In this thesis, a collection of novel numerical techniques culminating in a fast, paral-

lel method for the direct numerical simulation of incompressible viscous flows around

surfaces immersed in unbounded fluid domains is presented. At the core of all these

techniques is the use of the fundamental solutions, or lattice Green’s functions, of

discrete operators to solve inhomogeneous elliptic difference equations arising in the

discretization of the three-dimensional incompressible Navier-Stokes equations on

unbounded regular grids. In addition to automatically enforcing the natural free-

space boundary conditions, these new lattice Green’s function techniques facilitate

the implementation of robust staggered-Cartesian-grid flow solvers with efficient

nodal distributions and fast multipole methods. The provable conservation and

stability properties of the appropriately combined discretization and solution tech-

niques ensure robust numerical solutions. Numerical experiments on thin vortex

rings, low-aspect-ratio flat plates, and spheres are used verify the accuracy, physical

fidelity, and computational efficiency of the present formulations.
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C h a p t e r 1

INTRODUCTION

The goal of computational fluid dynamics is to develop and use numerical techniques

to understand and predict the mechanics of fluid flows. An inherent limitation on

the wide-spread use of detailed and accurate numerical investigations of many fluid

flows is the finite amount and associated cost of present day computational resources.

Consequently, the development of accurate, robust, computationally efficient meth-

ods is of central importance to the field. This thesis is composed of three journal

articles that detail the development of new computationally efficient techniques for

numerically solving viscous incompressible flows on three-dimensional unbounded

fluid domains.

Underlying all the numerical techniques discussed in this thesis are solution methods

for partial difference equations resulting from the formal discretization of partial dif-

ferential equations (PDEs) on unbounded regular grids. Though unbounded regular

grids are often used in the analysis of numerical methods and for modeling discrete

physical phenomena, they are rarely used in practice to solve discretized PDEs since

the conventional grid-based approach of tracking values on all grid points renders

unbounded grid methods impractical. On the other hand, there are several numer-

ical methods, such as particle and vortex methods, that obtain practical solutions

to PDEs on unbounded domains by numerically evaluating convolutions between

the fundamental solution, or Green’s function, of differential operators and com-

pactly supported source terms. Motivated by the Green’s function approach of

these techniques, the methods discussed in subsequent chapters compute solutions

to inhomogeneous difference equations by numerically evaluating discrete convolu-

tions between the fundamental solution, or lattice Green’s function (LGF), of dis-

crete operators and compactly supported source terms. By blending some of the

best features of grid-based methods (robustness, discrete conservation laws, etc.)
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with those of particle-methods (efficient nodal distribution, fast free-space solvers,

etc.), the present set of techniques offers an entirely new methodology for efficient

incompressible flow simulations.

In Chapter 2, a fast solution method for elliptic constant-coefficient difference equa-

tions relevant to incompressible flows, e.g. discrete Poisson problems, on unbounded

Cartesian grids is presented. This technique is developed as a kernel-independent,

interpolation-based fast multipole method (FMM) that is accelerated by taking ad-

vantage of the regularity of the underlying grid and the efficiency of FFT-based

discrete convolutions. Computational rates and parallel scaling for discrete (7-pt)

free-space Poisson problems are shown to be comparable to those obtained for con-

tinuum free-space Poisson problems by other highly-optimized FMMs.

In Chapter 3, the LGF-FMM of Chapter 2 is used to develop a fast, robust in-

compressible flow solver. The incompressible Navier-Stokes equations are formally

discretized on an unbounded staggered Cartesian grid using a second-order finite-

volume scheme. An integrating factor (IF) technique is combined with a half-explicit

Runge-Kutta (HERK) method in order to efficiently integrate the system of differ-

ential algebraic equations (of index 2) resulting from the spatial discretization of the

momentum equations and the divergence-free constraint. A splitting-error-free pro-

jection method is used to cast the solution to the linear system of equations arising

at each the stage of IF-HERK method as an equivalent discrete Poisson problem,

which are in turn is computed using the LGF-FMM method. Solutions of unsteady

flows are efficiently computed on small finite computational grids by combining a

block-wise adaptive grid with a velocity refresh technique. The accuracy, physical

fidelity, and computational rates of the LGF flow solver are demonstrated through

numerical simulations of vortex rings at Reynolds numbers up to 20,000.

Lastly, in Chapter 4, the LGF flow solver of Chapter 3 is extended to include rigid

immersed surfaces using an immersed boundary (IB) method. The method uses the

discrete delta function approach of classical IB methods to regularize surface stresses
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and the no-slip constraint. But, unlike classical IB methods, the present approach

does not explicitly compute boundary forces from constitutive equations; instead

the boundary forces are treated as Lagrange multipliers that are used to satisfy

the no-slip constraint. This approach is shown to result in a system of semi-discrete

equations that retains most of the structure of the semi-discrete equations of the flow

solver of Chapter 2. Using appropriately modified IF-HERK schemes and an aug-

mented (nested) projection technique, it is demonstrated that the IB-LGF method

numerically solves practical flows with rigid surfaces at a computational rate that is

typically one-and-a-half (at most two) times slower than the LGF flow solver. Nu-

merical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers

up to 3,700 are used to verify the accuracy and physical fidelity of the formulation.
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C h a p t e r 2

A PARALLEL FAST MULTIPOLE METHOD FOR ELLIPTIC
DIFFERENCE EQUATIONS

Published in Journal of Computational Physics, December 2014

Chapter abstract

A new fast multipole formulation for solving elliptic difference equations on unbounded
domains and its parallel implementation are presented. These difference equations can
arise directly in the description of physical systems, e.g. crystal structures, or indirectly
through the discretization of PDEs. In the analog to solving continuous inhomogeneous
differential equations using Green’s functions, the proposed method uses the funda-
mental solution of the discrete operator on an infinite grid, or lattice Green’s function.
Fast solutions O(N) are achieved by using a kernel-independent interpolation-based
fast multipole method. Unlike other fast multipole algorithms, our approach exploits
the regularity of the underlying Cartesian grid and the efficiency of FFTs to reduce the
computation time. Our parallel implementation allows communications and compu-
tations to be overlapped and requires minimal global synchronization. The accuracy,
efficiency, and parallel performance of the method are demonstrated through numerical
experiments on the discrete 3D Poisson equation.

2.1 Introduction

Numerical simulations of physical phenomena often require fast solutions to lin-

ear, elliptic difference equations with constant coefficients on regular, unbounded

domains. These difference equations naturally arise in the description of physical

phenomena including random walks [5], crystal physics [6], and quantum mechan-

ics [7]. Additionally, such difference equations can result from the discretization

of PDEs on infinite regular grids or meshes [8–11]. Apart from the accuracy with

which the underlying PDE is solved, an accurate solution of the difference equations

themselves is relevant for compatible spatial discretization schemes that enforce dis-

crete conservation laws [12, 13]. Examples of these techniques include finite-volume

methods, mimetic schemes, covolume methods, and discrete calculus methods.
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The present method considers difference equations formally defined on unbounded

Cartesian grids. Solutions to the difference equations are obtained through the con-

volution of the fundamental solution of the discrete operator with the source terms

of the difference equations. As a result, the formally infinite grid can be truncated to

a finite computational grid by removing cells that contain negligible source strength.

The ease with which this technique is able to adapt the computational domain makes

it well-suited for applications involving the temporal evolution of irregular source

distributions. For problems that are efficiently described by block-structured grids

it is possible to adapt the computational domain by simply adding or removing

blocks; an example of this technique applied to an incompressible flow is provided

in Section 2.5.

The fundamental solution of discrete operators on regular grids, or lattices, are often

referred to as lattice Green’s functions (LGFs). Expressions for LGFs can be readily

obtained in the form of Fourier integrals, but it is typically not possible to reduce

the integral representations to expressions only involving a few elementary functions

[14, 15]. The analytical treatment and the numerical evaluation of many LGFs is

facilitated by the availability of asymptotic expansions [16–18]. Although LGFs

have been extensively studied, they have rarely been used for solving large systems

of elliptic difference equations (exceptions include 2D problems [10, 11, 19]). The

present work extends the use of LGFs to large scale computations involving solutions

to 3D elliptic difference equations.

Solving the system of difference equations using LGFs requires evaluating discrete

convolutions of the form

u(xi) = [K ∗ f ](xi) =
M−1∑
j=0

K(xi,yj)f(yj), i = 0, 1, . . . , N − 1, (2.1)

where K(xi,yj) is the kernel describing the influence of a source located at yj with

strength f(yj) has on the field u(x) at location xi. For the case of M = N , the

straightforward approach to evaluate Eq. 2.1 requires O(N2) operations. There are
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several techniques for evaluating Eq. 2.1 in O(N) or O(N logN) operations. A

few of these techniques are FMMs, FFT-based methods, particle-in-cell methods,

particle-mesh methods, multigrid techniques, multilevel local-correction methods,

and hierarchical matrix techniques. In the interest of brevity, a literature review of

all the methods related to the fast evaluation of Eq. 2.1 is omitted; instead we focus

our attention on FMMs.

The performance of FMMs relies on the existence of a compressed, or low-rank,

representation of the far-field behavior of K(x,y) that can be used to evaluate

Eq. 2.1 to a prescribed tolerance. Classical fast multipole methods [20, 21] require

analytical expansions of the far-field behavior of kernels in order to derived low-rank

approximations. Although classical FMMs can be developed for the asymptotic

expansion of LGFs, alternative FMMs that are better suited for complicated kernel

expressions have been developed. Kernel-independent FMMs [11, 22–26] do not

require analytical expansions of the far-field; instead, for suitable kernels, these

methods only require numerical evaluations of the kernel.

The present method is a kernel-independent interpolation-based FMM for non-os-

cillatory translation-invariant kernels [25, 27]. These FMMs achieve low-rank ap-

proximations of the kernel by projecting the kernel onto a finite basis of interpo-

lation functions. Interpolation-based FMMs [25, 27] use Chebyshev interpolation

and accelerate convolutions involving the compressed kernel using singular-value-

decompositions (SVDs). In contrast, our method uses polynomial interpolation on

equidistant nodes and accelerates convolutions involving the compressed kernel us-

ing FFTs. Intermediate regular grids and fast FFT-based convolutions have been

used by other FMMs [23, 28–30], and have been shown to be particularly useful in

accelerating the computations of 3D methods [23]. The use of intermediate regular

grids in our method has the added advantage of simplifying the multilevel algorithm,

since sources and evaluation points are defined on Cartesian grids at all levels of

the multilevel scheme. The spatial regularity allows for the same fast convolution
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techniques to be used in determining near-field and far-field contributions. In ad-

dition to the base algorithm, our method allows for pre-computations that further

accelerate the solver.

The present FMM is similar to the recent 2D FMM [11] in that they both solve dif-

ference equations on unbounded domains. In contrast to our method, this method

uses skeleton/proxy points and rank-revealing factorizations to obtain low-rank ap-

proximations of the kernel. Although we think it is possible to extend this method

to 3D, we refrain from speculating on the performance of the algorithm since such

extensions are not explored in current literature and their details are unclear to us.

Details regarding LGFs and their relation to solving difference equations on un-

bounded domains are presented in Section 2.2. This section also describes methods

for performing fast convolutions based on kernel compression and FFT techniques,

and presents a context in which these two techniques can be combined to yield an

even faster convolution scheme. The resulting fast multipole algorithm and its paral-

lel extension are then described in Section 2.3. Finally, serial and parallel numerical

experiments are reported and analyzed in Section 2.4.

2.2 Lattice Green’s functions and fast block-wise convolution techniques

2.2.1 Solving difference equations on infinite Cartesian grids

The method proposed in this paper is designed to solve inhomogeneous, linear, con-

stant-coefficient difference equations on unbounded domains. As a representative

problem, we consider in detail the difference equations resulting from the discretiza-

tion of Poisson’s equation in 3D. Consider the Poisson equation

[∆u](x) = f(x), supp(f) ∈ Ω, (2.2)
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where x ∈ R3, Ω is a bounded domain in R3, and u(x) decays as 1/|x| at infinity.

Eq. 2.2 has the analytic solution

u(x) = [G ∗ f ](x) =
∫

Ω
G(x− ξ)f(ξ) dξ, (2.3)

where G(x) = −1/4π|x| is the fundamental solution of the Laplace operator. Dis-

cretizing Eq. 2.2 on an infinite uniform Cartesian grid using a standard second-order

finite-difference or finite-volume scheme produces a set of difference equations

[Lu](n) = f(n), supp(f) ∈ Ωh, (2.4)

where L is the standard 7-pt discrete Laplace operator, n ∈ Z3, and Ωh is a bounded

domain in Z3. In practice, the constraint on supp(f) can be relaxed by prescribing

a finite tolerance and requiring that all non-negligible sources, i.e. sources with a

magnitude greater than the prescribed tolerance, be located in a bounded region.

The solution to Eq. 2.4 is given by

u(n) = [G ∗ f](n) =
∑

m∈Ωh

G(n−m)f(m), (2.5)

where G(n) is the fundamental solution of the discrete Laplace operator. An ex-

pression for G(n) in terms of Fourier integrals is provided by

G(n) = 1
8π3

∫
[−π,π]3

exp (−in · ξ)
2 cos(ξ1) + 2 cos(ξ2) + 2 cos(ξ3)− 6 dξ. (2.6)

The expression in Eq. 2.6 is readily obtained by first using Discrete Fourier Trans-

forms (DFTs) to diagonalize L. The diagonalized operator is then inverted and

subsequently transformed back to the original space using inverse DFTs. Infinite

sums in the resulting expression are converted to integrals using appropriate limiting

procedures. Details regarding the construction of Eq. 2.6 and expressions for the

fundamental solutions to other discrete operators are found in [5, 16, 18]. Addition-

ally, Appendix 2.A provides an outline of the numerical procedures used to evaluate

G(n) for small values of |n|.
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Although it is possible to compute G(n) by numerically evaluating Eq. 2.6, for large

values of |n| it is more efficient to evaluate the LGF via its asymptotic expansion.

Techniques for constructing asymptotic expansions of LGFs to arbitrary order are

described in [16–18]. Let AqG(x) denote the q-term asymptotic expansion of G(n).

For the 3D case, we define AqG(x) as the unique rational function such that

G(n) = AqG(n) +O
(
|n|−2q−1

)
(2.7)

as |n| → ∞. For q = 2, this asymptotic expansion is given by

A2
G(x) = − 1

4π|x| −
x4

1 + x4
2 + x4

3 − 3x2
1x

2
2 − 3x2

1x
2
3 − 3x2

2x
2
3

16π|x|7 , (2.8)

where x = (x1, x2, x3). As expected, the first term in Eq. 2.8 corresponds to the

fundamental solution of the Laplace operator. We note that, as is the case for

many asymptotic expansions, it is not always possible to increase the accuracy of

the expression for a fixed argument by increasing the number of terms.1

Despite the fact that G(x) and G(n) share the same asymptotic behavior, there

are significant differences in their behavior near the origin. Unlike G(x), which is

singular at the origin, G(n) remains finite for all values of n. G(x) is scale-invariant,

i.e. there exists a k such that G(αx) = αkG(x), whereas G(n) is not scale-invariant.

Furthermore, G(x) is spherically symmetric about the origin, as opposed to G(n),

which has reflectional symmetry about the principal axes and is invariant under

index permutations.

In addition to providing expressions for the fast evaluation of LGFs, asymptotic

expansions of LGFs allow for the sum given in Eq. 2.5 to be decomposed into three

parts:

u(n) = udirect(n) + uasympt,q(n) + ε(n), (2.9)

1For example, for |n| = 10 the minimum value of |AqG(n) − G(n)|/G(n) is approximately 10−7

and is achieved by n = 6. Increasing or decreasing n, i.e. the number of terms in the asymptotic
expansion, increases the relative difference between the AqG(n) and G(n) for |n| = 10.
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where

udirect(n) =
∑

m∈Ωdirect
h

(n)

G(n−m)f(m) , (2.10)

uasympt,q(n) =
∑

m∈ΩhrΩdirect
h

(n)

AqG(n−m)f(m) , (2.11)

and ε(n) is the error due to approximating G(n) with AqG(n) over the region Ωh r

Ωdirect
h . The region Ωdirect

h (n) is a subset of Ωh for which the LGF is evaluated

directly, i.e. via numerical evaluation of Eq. 2.6, as opposed to being evaluated

via its asymptotic expansion. Typically, the region Ωdirect
h (n) is defined by a small

cubic box centered at the grid point n.2 The first term of Eq. 2.9, udirect(n), is a

grid function evaluated at the grid point n, whereas the second term, uasympt,q(n),

is a continuous function evaluated at the location of the grid point n. As will be

discussed in subsequent sections, this decomposition allows for uasympt,q(n) to be

evaluated using fast techniques developed for continuous kernels.

2.2.2 Fast convolutions on regular grids via FFTs

Although discrete convolutions via FFTs is a well-known technique, a brief de-

scription is provided in order to introduce procedures and notation subsequently

referenced in different steps of the overall algorithm. Consider the one-dimensional

convolution given by

u(xi) =
M−1∑
j=0

K(xi, yj)f(yj) , i = 0, 1, . . . , N − 1. (2.12)

where xi = x0 + ih for i = 0, 1, . . . , N − 1, and yj = y0 + jh for j = 0, 1, . . . ,M − 1.

If the kernel K(x, y) is translation invariant, i.e. K(x, y) = K(x− y), then Eq. 2.12

2For the case of the 3D discrete Laplace operator, choosing Ωdirect
h to be a cubic box with

side lengths of 14, 41, and 134 grid points is sufficient to achieve relative errors less than 10−5,
10−10, and 10−15, respectively, using the five term asymptotic expansion. The size of Ωdirect

h can
be reduced by including more terms in the asymptotic expansion, for example, relative errors less
than 10−15 are achieved by using the thirteen term asymptotic expansion and a box with 38 grid
points on each side.
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can be expressed as the discrete convolution between two vectors,

ui =
M−1∑
j=0

kN−1+j−ifj , i = 0, 1, . . . , N − 1 , (2.13)

where ui = u(xi), fj = f(xj), and kN−1+j−i = K(xj − yi). Discrete linear convo-

lutions of this form can be cast into circular convolutions by appropriate padding

of the vectors u and f . Performing these convolutions using DFTs leads to the fast

FFT-based convolution technique given by

1. Pad sequence with zeros: append N − 1 zeros to vector f .

f̄i = [Pad(f)]i =

 fi i = 0, 1, . . . , N − 1

0 i = N,N + 1, . . . , N +M − 2
(2.14)

2. Forward DFT: compute the DFT of sequences f̄ and k via FFTs.

f̂ = FFT(f̄), k̂ = FFT(k) (2.15)

3. Convolution of DFTs: multiply complex coefficients of f̂ and k̂.

ûi = [Prod(g, k)]i = f̂ik̂i , i = 0, 1, . . . , N +M − 2 (2.16)

4. Backward DFT: compute the inverse DFT of sequence û via FFT.

ū = FFT−1(û) (2.17)

5. Truncate sequence: remove the first M − 1 entries of ū to obtain u.

ui = [Trunc(ū)]i = ūM+i , i = 0, 1, . . . , N − 1 (2.18)

This technique requires O ((N +M) log(N +M)) operations and is readily general-

ized to higher dimensions for the case of tensor-product grids by recursively applying

the 1D version to each directions.
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2.2.3 Adaptive block-structured grid

Fast convolutions via FFTs discussed in Section 2.2.2 can be used to accelerate the

evaluation of Eq. 2.5. In order to use this technique, the support of f needs to be

padded with zeros to form a box. Similarly, the region where u is evaluated needs

to be extended to also form a box. For cases where the domain defined by the

support of the source terms is not a box, the cost of the additional computational

elements can outweigh the reduced operation count per grid point of the FFT-based

convolution technique.

Computational domains defined by the union of blocks can, however, be used to

avoid excessive padding and still retain sufficient regularity to benefit from the

fast FFT-based convolution technique. Our formulation partitions the infinite grid

into blocks defined on a logically Cartesian grid. Blocks can potentially have a

different number of grid points in each direction, but all blocks are required to have

the same dimensions. An active source block denotes a block containing non-zero

sources. Similarly, an active evaluation block denotes a block containing grid points

on which the induced field is evaluated. The union of active source (evaluation)

blocks is referred to as the active source (evaluation) grid. We emphasize that grid

adaptivity is achieved through the selective choice of active blocks in order to define

efficient computational domains, the present method does not consider problems

with multiple spatial resolutions.

Let Bs and Be denote the sets of active source and evaluation blocks, respectively.

The convolution given in Eq. 2.5 can be evaluated by

uP =
∑
Q∈Bs

conv(kQ−P , fQ), ∀P ∈ Be, (2.19)

where uP and fP denote vectors containing the values of u(n) and f(n), respectively,

evaluated on the grid points belonging to block P . Similarly, kQ−P denotes the

vector containing the unique values of G(m − n), as described in Section 2.2.2, for

values of n and m corresponding to the indices of grid points belonging to block Q
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and P , respectively. If blocks P and Q are sufficiently well-separated then AqG(m−n)

is used instead of G(m − n) for constructing kQ−P . The operator conv(kQ−P , fQ)

denotes the generalization of Eq. 2.12 to arbitrary dimensions. Details regarding the

construction of vectors uP , fP , and kQ−P are omitted, since it immediately follows

the discussion regarding the tensor-product grid generalization of Eq. 2.12.

Computing each instance of conv(kQ−P , fQ) in Eq. 2.19 using the fast FFT-based

convolution technique leads to a scheme that evaluates Eq. 2.5, for the case of

Bs = Be, in O(N2
BNb log(Nb)) operations, where NB is the number of blocks be-

longing to Bs, and Nb is the number of grid points belonging to each block. The

operation count can be further reduced to O(NBNb log(Nb) +N2
BNb) if the DFT of

the kernel blocks, k̂Q−P , are pre-computed, and if the DFT of source and evaluation

blocks are preformed as pre-processing and post-processing step, respectively. De-

tails regarding pre-computations, and pre- and post-processing steps are discussed

in subsequent sections.

2.2.4 Fast convolutions via interpolation-based kernel compression

Interpolation-based FMMs obtain a low-rank representation of the kernel, K(x,y),

by projecting it onto a finite basis of interpolation functions. Consider a function

f(x) sampled at n points, x0,x1, . . . ,xn−1. An approximation for f(x) is given by

f̃n(x) =
n−1∑
i=0

φi(x)f(xi), (2.20)

where φi(x) is a interpolation function associated with the interpolation node xi.

An approximation for K(x,y) is obtained by recursively applying Eq. 2.20 to each

argument of K(x,y),

K̃n(x,y) =
n−1∑
i=0

n−1∑
j=0

ψi(x)K(xi,yj)φj(y), (2.21)

where {φ} = {φ0, φ1, . . . , φn−1} and {ψ} = {ψ0, ψ1, . . . , ψm−1} are potentially dis-

tinct bases of interpolation functions. In order to make the kernel-compression
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technique symmetric, only schemes with {φ} = {ψ} are considered. Directly apply-

ing this kernel compression technique to discrete convolutions of the form of Eq. 2.1

leads to an approximation of u(xi) given by

u(xi) ≈
M−1∑
j=0

n−1∑
p=0

n−1∑
q=0

φp(xi)K(xp,yq)φq(yj)f(yj), i = 0, 1, . . . , N − 1. (2.22)

For cases involving multiple sets of either evaluation points, xi, or source points, yj ,

it is advantageous to decompose the evaluation of Eq. 2.22 into three steps:

1. Regularization: compute effective source terms using the adjoint of the inter-

polation procedure.

f̃(yq) =
M−1∑
j=0

φq(yj)f(yj), q = 0, 1, . . . , n− 1 (2.23)

2. Convolution: compute the field induced by effective source terms on interpo-

lation nodes.

ũ(xp) =
n−1∑
q=0

K(xp,yq)f̃(yq), p = 0, 1, . . . , n− 1 (2.24)

3. Interpolation: compute the field at evaluation points using the interpolation

procedure.

u(yi) =
n−1∑
p=0

φp(xi)ũ(xj), i = 0, 1, . . . , N − 1 (2.25)

If the values of φq(xi) and φq(yj) are known, the number of operations required by

this procedure, for the case of M = N , is O(2nN +n2). For the case of n� N this

procedures represents a significant reduction in the number of operations compared

to straightforward method of evaluating Eq. 2.1.

2.2.5 Fast convolution on regular grids using polynomial interpolation and FFTs

The fast convolution techniques presented in Sections 2.2.2 and 2.2.4 can be com-

bined to yield a faster method for evaluating the block-wise convolutions involved in

Eq. 2.19. This technique follows from the observation that Eq. 2.24 can be evaluated
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using FFTs if the kernel is translation-invariant and the interpolation nodes on which

the kernel is evaluated are restricted to be on a regular grid. The first requirement

is assumed since the kernels corresponding to the fundamental solutions of the lin-

ear, constant-coefficient elliptic difference equations are translation-invariant. The

second condition is achieved by using an interpolation scheme based on equidistant

interpolation nodes on tensor-product grids. Although many interpolation schemes

satisfy the latter condition, only polynomial interpolation schemes on tensor-prod-

uct grids are presently considered since they are fast, simple to implement, and their

behavior is well-understood.3

Polynomial interpolation on tensor-product grids is performed by recursively ap-

plying 1D polynomial interpolation along each direction. This generalization has

the advantage of maintaining the number of operation per grid point independent

of dimension, and allows the behavior of the interpolation process to be readily

generalized from its 1D version.

In the absence of rounding errors, 1D polynomial interpolants converge geomet-

rically if the function being interpolated is analytic in a region on the complex

plane near the interpolation interval. The size and shape of this convergence region

depends on the choice of interpolation nodes [31]. The kernels being considered

correspond to the asymptotic expansion of the LGFs that are only discontinuous

at the origin. Although convergence conditions should be verified for each kernel,

the requirement that source and evaluation blocks be sufficiently well-separated to

accurately evaluate the LGF using its asymptotic expansion is often sufficient to

guarantee convergence.

Unlike Chebyshev interpolation, polynomial interpolation on equidistant nodes is

3Alternative interpolation procedures, with the exception of Fourier interpolation on non-peri-
odic domains, have not been explored. Although Fourier interpolation is particularly appropriate
given FFTs are used in our method to accelerate local computations, preliminary results have
shown that this procedure is less efficient (in terms of points per unit accuracy) than the procedure
described in this section.
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ill-conditioned. Ill-conditioning can cause rounding errors due to finite numeric pre-

cision can be amplified. The Lebesgue constant, Λn(X), for a set of n interpolation

points X = x0, x1, . . . , xn − 1, can be used to bound the growth of perturbations in

the data [32],

max
x∈I
|p(x)− p̃(x)| ≤ Λn(X) max

0≤i≤n−1
|f(xi)− f̃(xi)| , (2.26)

where I is the interpolation interval, p(x) and p̃(x) are the polynomials interpolants

resulting from the nodal values f(xi) and f̃(xi), respectively. The Lebesgue constant

is given by

Λ(X) = max
x∈I

n−1∑
i=0
|φi(x)| , (2.27)

where φi(x) is the Lagrange characteristic polynomial associate with xi. Eq. 2.26

can be extended to polynomial interpolation on tensor product grids, with equal

number of points and spacing in each direction, by replacing Λ(X) with (Λn(X))d,

where d is the dimension of the problem.

In the limit of very large n, the Lebesgue constant of a set of equally spaced nodes is

known to grow exponentially [32]. In order to avoid very large Lebesgue constants,

the present scheme restricts the number of nodes used for polynomial interpolation

to be at most nmax. If nmax nodes are insufficient to achieve a desired interpolation

error, additional nodes are added to the interval, but only the closest nmax nodes to

the evaluation point are used for interpolation. Thus, this hybrid scheme performs

both p- and h-refinement to increase the accuracy of the interpolations procedure.

As a result, geometric convergence rates are expected for n ≤ nmax, and polynomial

convergence rates of order nmax−1 are expected for n > nmax. The values of n and

nmax required to interpolate a function f(x) over an interval I with an interpolation

error less than ε are obtained in two steps:

1. Find the largest nmax such that Λnmax(X)εp is less than ε, where εp is the

precision of the floating-point scheme.
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2. Progressively increase the number of n until the difference between f(x) and

it approximation are less than ε.

The same procedure can be used in higher dimensions by having n and nmax cor-

respond to the number of interpolation points along each direction, and replacing

Λnmax(X) with (Λnmax(X))d. For example, approximating an analytic function in

3D using double-precision arithmetic to relative tolerance of ε = 1.25×10−12 requires

nmax ≤ 10.

We omit a step-wise description of the combined fast algorithm for block-wise con-

volutions, since it readily follows from the discussion. Instead, we introduce the

notation fP = Interp(fQ) and fP = Reg(fQ) to denote the interpolation and reg-

ularization (adjoint of interpolation) operations, respectively, Instead, we introduce

use the notation fP = Interp(fQ) and fP = Reg(fQ), respectively, to denote the

interpolation and regularization (adjoint of interpolation) of f from block/interval

Q to block/interval P .

2.3 The Fast Lattice Green’s Function method

2.3.1 Basic algorithm

Thus far we have discussed methods for accelerating the evaluation of Eq. 2.19 by

performing fast block-wise convolutions involving interpolation-based kernel com-

pression and/or FFT techniques. Asymptotically these schemes require O(N2) op-

erations, though the constant in front of the N2 term can be significantly smaller

compared to that of the straightforward method. For kernels that decay or exhibit

progressively smoother behavior away from the origin, e.g. the fundamental solution

of the discrete Laplace operator, it is possible to combine the fast block-wise convo-

lution techniques discussed in Sections 2.2 with the multilevel scheme of the original

FMM [20]. To facilitate the discussion, we will assume that the active evaluation

grid is the same as the active source grid.
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Our multilevel scheme follows a tree (octree in 3D) structure similar to that de-

scribed in [20]. Tree nodes at all levels are said to correspond to intervals.4 Each

interval is defined by the tensor-product grid associated with the nodes of the inter-

polation scheme. The tree is constructed by first creating one tree leaf, i.e. tree node

with no children, for each active grid block. The intervals of tree leaves are defined

such that they occupy the same spatial region as their associated grid blocks. After

defining all tree leaves, siblings are recursively merged to generate the multilevel

structure. We use the convention that all tree leaves are located at level 1 and that

the root of the tree is located at level L.

The set of intervals at level ` is denoted by B`, and N `
B denotes the size of B`. In

order to facilitate the discussion, intervals at level ` are chosen to contain n`b nodes

in each directions. The total number of points in each interval at level ` is given by

N `
b = (n`b)d, where d is the dimension of the problem. The set of blocks defining the

underlying active grid is denoted by B0. N0
B, n0

b , and N0
b have definitions analogous

to N `
B, n`b, and N `

b , respectively. We note that level zero, ` = 0, is not part of

the tree structure, but the slight abuse of notation facilitates the description of the

algorithm.

By construction, all intervals are Cartesian grids. As a result the union of intervals

belonging to the same level defines an analogous grid to that of the underlying adap-

tive block-structured grid. Therefore, the techniques for fast block-wise convolutions

discussed in Section 2.2 are readily generalized to all levels of the tree structure.

Our overall algorithm for solving systems of difference equations of the form given by

Eq. 2.4 on adaptive block-structured grids is referred to as the Fast Lattice Green’s

Function (FLGF) method. The FLGF method is described in the following steps:

4In the context of the hierarchical algorithm and structure, the term “interval” is equivalent to
term “box” used in [20]. We reserve the term “box” for geometric descriptions, and do not associate
any specific structure or information with the term.
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0. Pre-computation: compute and store all unique k̂P−Q used in Step 2.

k̂P = FFT(kP−Q) (2.28)

1. Upwards Pass: ∀P ∈ B`, for ` = 0, 1, . . . , L

a) Regularize: compute effective source terms at interpolation nodes

f̃P =
∑

Q∈RegSupp(P )
Reg(f̃Q), (2.29)

b) Padded forward DFT: prepare vectors for DFT convolutions

f̂P = FFT(Pad(f̃P )), (2.30)

2. Level Interactions: ∀P ∈ B`, for ` = 0, 1, . . . , L

ûP =
∑

Q∈InflList(P )
Prod(f̂Q, k̂P−Q), (2.31)

3. Downwards Pass: ∀P ∈ B`, for ` = L,L− 1, . . . , 0

a) Truncated backwards DFT: extract relevant data from DFT convolution

ṽP = Trunc(FFT−1(ûP )) (2.32)

b) Interpolate: compute and aggregate the induced field at interpolation

nodes

ũP = ṽP + Interp(ũIntrpSupp(P )) (2.33)

We note that the operations performed in Steps 1, 2, and 3 are commonly referred to

as themultipole-to-multipole, multipole-to-local, and local-to-local operations, respec-

tively, in the FMM literature. The lists of blocks/intervals used by the algorithm
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are given by

RegSupp(P ) =


block P if P ∈ B0

block ∼ interval P if P ∈ B1

children of interval P if P ∈ B`, 2 ≤ ` ≤ L

(2.34)

IntrpSupp(P ) =


interval ∼ block P if P ∈ B0

parent of interval P if P ∈ B`, 1 ≤ ` < L

∅ if P ∈ BL

(2.35)

InflList(P ) =

 near-neighbors of block P if P ∈ B0

interaction list of interval P if P ∈ B`, 1 ≤ ` ≤ L
(2.36)

where the symbol ∼ is taken here to mean associated with. Children, parents,

near-neighbors, and interaction lists follow the same definitions those of the original

FMM [20]. Based on these definitions, we note that Eq. 2.29 reduces to f̃P = fP

for P ∈ B0, and Eq. 2.33 reduces to ũP = ṽP for P ∈ BL.

2.3.2 Algorithmic complexity

The overall complexity of our algorithm is O(N), as is the case for the original

FMM. For simplicity, the discussion concerning the cost of each step is limited to

the 3D version of the algorithm. Details regarding to the cost of each block/interval

are presented in Table 2.1. The factor of 8 in front of C`Interp for the Upwards Pass

(` > 1) is due to the fact that each interval has eight children. The constants, 27

and 189, associated with the cost of Level Interactions correspond to the number of

near-neighbors and the number of members of each interaction list, respectively.

The specific values and a brief discussion of the constants presented in Table 2.1 are

provided:

1. C`EvalKernel: Cost of kernel evaluation performed in Eq. 2.28. Constructing

the vector kQ−P , where Q and P are blocks/intervals at level `, requires 8N `
b
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Table 2.1: Operation counts per interval/block for each step of the FLGF method.

cost order
Pre-computations C`EvalKernel + C`PadFFT N `

b logN `
b

Upwards pass (` = 0) C0
PadFFT N0

b logN0
b

Upwards pass (` = 1) C`Interp + C`PadFFT N `
b logN `

b

Upwards pass (` > 1) 8C`Interp + C`PadFFT N `
b logN `

b

Level interactions (` = 0) 27C`Prod 27N0
b

Level interactions (` > 0) 189C`Prod 189N `
b

Downwards pass C`Interp + C`PadFFT N `
b logN `

b

kernel evaluations. For small values of |n − m| a look-up table is used to

evaluate G(n−m); otherwise the kernel is evaluated using AnG(n−m).

2. C`Interp: Cost of polynomial interpolation performed in Eq. 2.33. The co-

efficient mapping interpolation nodes to evaluation nodes are precomputed

(only needed for 1D interpolation); therefore computing the values of a single

block/interval at level ` requires min(n`+1
b , nmax)N `

b operations (1 real addi-

tion and 1 real multiplication per operation), where nmax is described in Sec-

tion 2.2.5. In 3D, nmax is typically set to be no greater than 10. C`Interp also

describes the cost of performing the regularization, adjoint of interpolation,

operation involved in each term of the sum in Eq. 2.29.

3. C`PadFFT: Cost of performing a 3D FFT (real-to-complex) or inverse FFT

(complex-to-real) on the padded vectors present in Eq. 2.28, 2.30, and 2.32.

The operation count (total number of real additions and multiplications) for

each FFT performed using the FFTW library is approximately 2(8N `
b ) ×

log2(8N `
b ) [33], where 8N `

b is the size of the padded vectors. Since all FFTs

are real-to-complex or complex-to-real approximately half of the coefficients

are redundant and neither need be stored nor operated on.

4. C`Prod: Cost of performing DFT convolutions, i.e. multiplication of complex

coefficients, in Eq. 2.31. If blocks/intervals Q and P belong to level `, then

performing Prod(f̂P , k̂P−Q) requires approximately 4N `
b operations (1 com-
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plex multiplication per operation), where 4N `
b is the number of non-redundant

DFT coefficients per block/interval.

The cost per level of each operation, except for the Pre-computation step, can be

obtained by multiplying the values of each row by the N `
B. In regards to the Pre-

computation step, the cost per level for ` = 0 and ` > 0 is obtained by multiplying

the cost per block/interval by 27 and 317, respectively, which correspond to the

number of unique k̂P−Q vectors that are used at each level. If the kernel shares the

same symmetry as the LGF of the discrete Laplace operator, the number of unique

k̂P−Q vectors per level is reduced to 4 and 36 for ` = 0 and ` > 0, respectively. If

symmetry is used to reduce number of pre-computed k̂P−Q vectors, then C`Prod is

roughly doubled since a twiddle factor needs to be applied to the DFT coefficients

for cases involving reflections.

2.3.3 Parallel implementation

A brief overview of our MPI-based algorithm is included to demonstrate that the

present method allows for a simple parallel implementation suitable for practical

large-scale scientific computing. In the present implementation the tree structure

and load balancing estimates are redundantly computed (in serial) by all MPI-pro-

cesses.5 As a result, all the information necessary to evaluate RegSupp, IntrpSupp,

and InflList for any block/interval is known by all processes. The tree structure is

constructed following the bottom-up approach discussed in Section 2.3.1. Prior to

partitioning the problem, the load balancing scheme first assigns a weight to every

block and interval based on an estimate of its runtime cost. Next, parent tree nodes

are recursively grouped with one of its child tree nodes, and tree leaves are grouped

with their associated grid blocks. The set of groups is then partitioned into clusters

5Equivalently, the tree structure and load balancing estimates could be computed by a single
MPI-process and then scattered to all processes, but this approach would result in additional
communication costs.
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in such a way that the weight of each cluster (aggregate weight of all interval/blocks

belonging to all groups in the cluster) is roughly the same. Each cluster is then

assigned to an MPI process. Given each group contains only one block, a Morton

or Z-order curve [34] is used to preserve data locality during partitioning.

The parallel algorithm closely resembles the serial algorithm, since each process

executes steps analogous to the Upwards Pass, Level Interactions, and Downwards

Pass. Non-blocking routines are used for all communications, allowing for compu-

tations to be overlapped with communications. Furthermore, our algorithms use

these routines to avoid any global synchronization within each steps and between

steps.

The parallel execution of each step follows a similar event-driven paradigm, where

processes perform particular “work units” based on the information that has been

received or is locally available, and send information to other processes as soon as a

set of “work units” have been completed. Send and receive buffers are used to avoid

excessive memory requirements. The algorithm gives priority to “work units” yield-

ing results that are sent to other processes. The time spent waiting to either receive

information or to clear send buffers is used to perform local “work units”, i.e. opera-

tions that only require data and yield results pertinent to the same process. During

the Upward and Downward Pass a non-blocking send is posted after each interval-

/block-wise regulation and interpolation operation is completed. In contrast, during

Level Interactions step the influence of all intervals/blocks belonging to a process

on all intervals/blocks belonging another process is aggregated and packaged before

sending; thus each process sends at most one message to every other process during

this step. For convenience, pseudo-codes for the communication patterns described

in this section are given in Appendix 2.B.
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2.4 Numerical results

In this section we present numerical results that demonstrate the accuracy, compu-

tational cost, and parallel performance of the FLGF method. The results reported

are for the discrete Poisson equation in 3D. We clarify that the solution error is mea-

sured with respect to the exact solution of the discrete Poisson problem, as opposed

to the exact solution of the continuous Poisson problem.

As in Section 2.3, the active evaluation grid is defined to be equal to the active source

grid. For all test cases, blocks/intervals belonging to level ` are chosen to contain n`b
points in each directions. In the interest of brevity, we only consider schemes where

the number of interpolation nodes per interval is the same for all levels, n`b = nI

for ` = 1, 2, . . . , L, and require that nI = n0
b + 1.6 These considerations reduce the

parameter space of possible schemes to cases where the spacing between nodes of

parent intervals is twice that of child intervals. Furthermore, there is effectively no

regularization/interpolation between level 0 and level 1, since the nodes on level 1

coincide with the underlying grid points. Following the discussion of Section 2.2.5

we set the maximum number of nodes used for interpolating a value at single point,

nmax, to be 10 for all test cases.

We note that the previous restrictions are only imposed for the purpose of a concise

exposition. The non-scale-invariant behavior of most LGFs suggests that, in general,

non-trivial performance gains can be achieved by tuning n`b for each level. Given that

the LGF of the discrete Laplace operator is approximately scale-invariant away from

the origin, possible performance gains achieved by varying n`b are not considered in

the present discussion.

The present MPI-based implementation is written in Fortran and makes use of the

6Our implementation requires that intervals belonging to ` > 0 have a one grid point overlap
with their neighboring intervals along (n1, n2, n3) directions, where ni = {0, 1} and at least one ni
is non-zero.
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FFTW3 [33] library to compute FFTs. Numerical experiments are performed using

our local computing facility which consists of 60 compute nodes connected by a

QDR InfiniBand network. Each node contains 2 Intel Xeon X5650 processors (6-

core, 12MB cache, 2.66GHz clock speed) and 48GB of RAM.

2.4.1 Error

The accuracy of the proposed methodology is investigated on cubic active grids

containing different numbers of active grid points and partitioned into blocks of

different sizes. A procedure based on random manufactured solutions is used to

determine the error of each test case. In this procedure a solution, urand(n), is

manufactured by assigning a random value between −1 and +1 to each grid points,

except for grid points on the boundary of the active grid which are set to zero. The

source distribution, f(n), which serves as the input for each test case, is computed

by taking the discrete Laplacian of the prescribed solution, i.e. f(n) = [Lurand](n).

The normalized error for each test case is computed by εp = ||u − urand||p/||up||p,

where u(n) is determined by solving [Lup](n) = f(n), and ||u||p is the Lp-norm of

u computed over the active grid. The error for various problem sizes and schemes

based on different blocks sizes is presented in Figure 2.1.
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Figure 2.1: Left: max error, ε∞, for cubic active grids containing N grid points
partitioned into blocks with n0

b = nI−1 grid points along each direction. Right: error
for test cases containing 108 grid points as function of nI ; the curve corresponding to
ε∞ is equivalent to the values on the left plot intersecting the vertical dashed line.
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Test cases involving a small number blocks do not make use of the interpolation-

based kernel compression technique; they only make use of the block-wise FFT-based

convolution technique, which incurs an error close to machine precision. As a result,

the three cases with the smallest values of N for each series have significantly smaller

errors compared to their respective asymptotic (large N) error.

Given that we chose nmax = 10 and constrained n0
b to be proportional to nI , the

error is expected to decay as n−10
I for nI > nmax (one order greater than interpo-

lation order due to the ∼ |x|−1 decay of the LGF). The data shown in Figure 2.1

are consistent with our estimates, exhibiting a behavior proportional to n−10.7
I for

values of nI between 11 and 28. The significant difference in the magnitude of ε1

and ε2 compared to ε∞ suggests that the maximum error is concentrated in lower

dimensional regions of the grid. Spatial plots of the error (not included) confirm

that larger errors are always observed near or on the boundary points of blocks.

These observations are characteristic of the interpolation scheme being used, which

is known to exhibit larger errors near the boundaries of the interpolation interval

(Runge phenomena).

Although the error for schemes with nI 6= n0
b+1 is not presented, it is readily deduced

from our reported results that for any choice of n0
b the error can be controlled by

changing nI . Furthermore, different choices of nmax have not been explored since

nmax = 10 allows for schemes with errors as small as ∼ 10−12, which are sufficient for

many practical applications. Errors smaller than 10−12 can be obtained by reducing

nmax and increasing nI .

2.4.2 Computation time

The test cases used to examine the computation time of the FLGF method follow the

same setup as in Section 2.4.1, except that we now consider three types of active grid

geometries: cubes, spheres, and spherical-shells (with a thickness of 0.1 diameters).

For cases of spheres and spherical-shells, the set of blocks that defines the active grid
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is constructed so as to approximate these geometries. Computation times for various

schemes and problem sizes are presented in Figure 2.2, and asymptotic computation

rates (number of active grid points per computation time) for a few schemes are

included in Table 2.2.
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Figure 2.2: Computation times for active grids containing N grid points partitioned
into blocks with n0

b = nI − 1 point in each direction. The curve labeled “FFT Conv.”
corresponds to the special cases where the entire active grid is a single block. Results
are presented for active grids with geometries approximating: cubes (left), spheres
(middle), and spherical-shells (right).

Table 2.2: Approximate asymptotic computation rates for selected test cases pre-
sented in Figure 2.2. Values given in units of 105 pts/s. Rates are based on the test
cases with 108 active grid points (values interpolated from nearest two data points).
Asterisk (∗) indicates rates that are not strictly asymptotic since they correspond to
O(N logN) schemes.

scheme box sphere spherical-shell
nI = 7 1.187 1.167 1.267
nI = 13 1.189 1.169 1.315
nI = 28 1.384 1.341 1.150

FFT Conv. 3.540∗ n/a n/a

As expected, the results for all schemes presented in Figure 2.2, with the exception

of the one labeled “FFT Conv.”, have an asymptotic computational complexity of

O(N). FFT Conv. refers to the special case where the entire active grid is a

single block for which the FLGF method reduces to a single FFT-based convolution.

We note that in 3D the operation count of an FFT Conv. is roughly 8 times
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the operation count of solving the systems of equations obtained from the spectral

discretization of differential operators on periodic domains using FFTs (referred to

as “FFT Periodic” in the subsequent discussion). FFT Conv. is a useful point of

comparison since (1) many methods can readily consider the case of a single block

with uniformly distributed sources, (2) it is well-established that for regular grids

FFT-based elliptic solvers achieve very high, if not the highest, computation rates,

and (3) the performance of an algorithm relative to FFT Conv. is approximately

hardware independent.

Figure 2.2 demonstrates that the computation rates of our multi-block algorithm

are within a factor of 10 of those corresponding to FFT Conv.. For large problems

(our interest here), e.g. N = O(108), Table 2.2 indicates that our algorithm achieves

computation rates that are roughly a third of the rate of FFT Conv. with up to 10

digits of accuracy. By comparison, the next closest method to ours, the 2D LGF

FMM of Gillman and Martinsson [11], is claimed to be two orders of magnitude

slower than an FFT Periodic. Even after accounting for the fact that in 2D an FFT

Conv. is a factor of 4 slower than an FFT Periodic, we observe that our method has

a significantly higher computation rate.7 We also compare the performance of the

present method to that of the black-box FMM of Fong and Darve [25]. In solving

a 3D free-space Poisson problem with 106 uniformly distributed point sources over

a cube with strengths ±1, [25] reported a computation rate of about 1.8 × 103

points per second for 8 digits of accuracy. 8 Our method achieves a rate of about

1.2 × 105 points per second for 10 digits of accuracy, a speedup of about 65 times

even with 2 more digits of accuracy. Finally, we observe that our computation

7For the numerical experiments reported, [11] stated that “the method was run at a requested
relative precision of 10−10”. Given that [11] did not report the error of the experiments, we assume
that computation rates quoted are for approximately 10 digits of accuracy, which is the same
accuracy of the rates reported for the present method.

8We note that 8 digits is the maximum accuracy [25] reported for the 3D Laplace kernel.
Additionally, we note that the hardware [25] used to perform the numerical experiments is not
reported; therefore no attempt has been made to account for hardware differences.
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rates are comparable with those of the adaptive (locally-refined) volume FMM of

Langston et al. [35]. In solving a 3D free-space Poisson problem in a cube with

sources corresponding to Gaussian bump solution, [35] reported computation rates

between 2.6× 104 and 1.3× 105 points per second for cases with either 7 or 8 digits

of accuracy (with number of unknowns between 2.8× 106 and 2.6× 107).9

A detail report of the computation time of the Pre-computation step is omitted,

since this step is observed to require only a small fraction of the computation time

of a single solve. We substantiate this claim by reporting that for test cases involving

cubic active grids containing O(101), O(102), and O(104) blocks the Pre-computa-

tion step required less than 10%, 1%, and 0.1%, respectively, of the computation

time of a single solve. These results are consistent with the fact that the opera-

tion count of the pre-computation step increases with the number of levels, which

in turn increase logarithmically with the number of blocks for test cases involving

cubic active grids.

2.4.3 Parallel performance

The parallel performance of the FLGF method is investigated by considering cu-

bic active grids and using the scheme corresponding to nI = 13 described in Sec-

tions 2.4.1 and 2.4.2. Computation rates and parallel efficiencies for various problem

sizes with core counts between 12 and 660 are included in Figure 2.3. For all re-

ported test cases the number of cores is a multiple of 12 (there are 12 cores per node

in our test machine), and each MPI-process is mapped to a single core. The parallel

9The numerical experiments reported in [35] were performed using a shared-memory (OpenMP)
implementation running on 16 cores of an Intel Xeon X7560 (2.27 GHz) based system. The rates
included in the main text correspond to the rates we would expect to observe if the numerical
experiments of [35] were performed on a single core of our local system; both the parallel efficiency
(reported to be approximately 75% for 16 cores) and the difference in processor clock speed have
been accounted for.
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efficiency for each test series is defined by

eN (p) = pmin
p

TN (pmin)
TN (p) , (2.37)

where N is the total number of active grid points in the test series, p is the number

of cores, pmin is the minimal number of cores considered in the test series, and TN (p)

is the runtime of the test problem.
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Figure 2.3: Computation rates (left) and parallel efficiencies (right) for cubic active
grid of various sizes. The parameter nI is set to 13 for all test cases. The listed values
of N , in ascending order, correspond to problems containing 5.8 × 103, 4.6 × 104,
1.8× 105, 4.4× 105, 8.3× 105, and 1.6× 106 active blocks.

Both strong and weak scaling can be inferred from the left plot in Figure 2.3. Strong

scaling, i.e. fixed N and increasing p, corresponds to the individual curves associated

with each test series. Weak scaling, i.e. fixed N/p and increasing p, is achieved when

the curves associated with different test series collapse. Figure 2.3 demonstrates

that, over a reasonable range p, the curves for most of the test series collapse to

a single line with a slope approximately equal to unity. This indicates that our

implementation exhibits both good strong and weak scaling.

There are two main considerations that affect the performance of our parallel imple-

mentation. The first is the number of blocks per core. The FLGF method is broken

into block-wise operations. If there are too few blocks per core our total work can-

not be evenly distributed across all cores. Furthermore, given our communication

scheme for the Level Interactions step, fewer blocks per core are likely to increase the
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total number of MPI messages sent and received. The second consideration is the

amount work per core. If the work per core is too small then communication cost can

take an overwhelming fraction of the net run-time. Based on these considerations

and the reported results, we conclude that if each core has, on average, more than

300,000 active grid points and 200 blocks, then the parallel efficiency, as defined in

Eq. 2.37, is expected to be above 80%. This observation seems consistent with the

results reported on other MPI-based implementations of kernel-independent FMMs,

for example [36, 37].

In the interest of completeness, we note that computation rates reported in Fig-

ure 2.3, in particular those corresponding to 12 cores, are roughly half the rates

expected based on the our serial results. This decrease in performance is due to an

increase in cache-misses when more than one core per node is used. We expect that

future higher-quality implementations of the FLGF method can readily mitigate

this feature.

2.5 Conclusions

We have presented a new kernel-independent fast multipole method for elliptic differ-

ence equations on infinite Cartesian grids. The FLGF method exploits the regularity

of the underlying grid to achieve small computation times by using a fast convolution

technique that combines interpolation-based kernel compression and FFTs. Inter-

polation based on equidistant nodes, along with a p- and h-refinement technique, is

shown to be an effective scheme for obtaining low-rank representations of kernels,

while still preserving sufficient regularity to allow discrete convolutions to be per-

formed quickly using FFTs. The adaptive block-structured grid strategy blends well

with the overall algorithm, and the reported numerical experiments demonstrate

that computation rates remain roughly invariant of source distributions.

The efficiency of the FLGF method is demonstrated through several numerical ex-

periments solving the discrete 3D Poisson equation for cases involving up to 2 billion
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grid points and 660 cores. Serial test cases confirm that the algorithm archives an

asymptotic linear complexity. Computation rates of approximately 1.2 × 105 pts/s

or, equivalently, grind times of 8.3µs are observed for problems containing 108 grid

points. The computation rate is shown to be roughly invariant to different source

distributions and block sizes. Furthermore, the time required to perform all pre-

computations for typical problems is shown to negligible. Test cases investigating

the parallel performance of our implementation demonstrate that parallel efficien-

cies higher than 80% are achieved under modest considerations (at least 200 blocks

and 300, 000 grid points per core).

Figure 2.4: Vortex ring at a Reynolds number of 7,500. Isocontours correspond to the
absolute value of vorticity (log scale), color corresponds to the streamwise velocity,
and gray boxes correspond to the location of grid blocks used in the simulation. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

The FLGF method is particularly useful for solving PDEs that have been discretized

using a numerical scheme that enforces discrete conservation laws. In such cases,

accurate solutions to the difference equations, but not necessarily the original PDE,

are necessary to preserve physical fidelity. We have applied the present method
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to solve incompressible, viscous, external flows using a finite volume scheme and

an infinite staggered Cartesian grid. Figure 2.4 includes a snapshot of thin vortex

ring at a Reynolds number (based on ring circulation) of 7,500 simulated using this

scheme. A detailed description and results pertaining to the application of the FLGF

method to the incompressible Navier-Stokes are the subject of future publications.

In the interest of brevity, our discussion and reported results only pertain to the dis-

crete Laplace kernel, yet the FLGF method can be applied to other non-oscillatory

LGFs. In fact, our method can be readily generalized to any non-oscillatory kernel

(including singular kernels); the only restriction is that sources and evaluation points

be defined on a regular grid. Based on these observations, and the simple/standard

routines and data-structures involved in the algorithm, it is expected that the FLGF

method can be readily incorporated into a wide range of existing methods and codes

that solve elliptic PDEs on unbounded domains.

APPENDICES

2.A Evaluating the LGF of the discrete Laplace operator numerically

Values of G(n) for small |n| are frequently used by the FLGF method. Therefore

it is advantageous to program an accurate look-up table for values of n confined

to a small cubic box centered at the origin. The symmetry of G(n), discussed

in Section 2.2.1, suggests that only approximately 1/48-th of the total number of

points in the box need to be numerically evaluated. It is possible to reduce the triple

integral in Eq. 2.6 to a single semi-infinite integral [38] given by

G(n) = −
∫ ∞

0
e−6tIn1 (2t) In2 (2t) In3 (2t) dt, (2.38)

where Ik(x) is the modified Bessel function of the first kind of order k, and n =

(n1, n2, n3) ∈ Z3. In our experience, it is easier and faster to numerically integrate

Eq. 2.38 instead of Eq. 2.6. The integrand of Eq. 2.38 is non-oscillatory and smooth

throughout the domain of integration. A simple adaptive Gauss-Kronrod scheme
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can be used to perform the numerical integration and obtain error estimates. Fur-

thermore, the semi-infinite integral can be partitioned into two intervals [0, α] and

[α,∞], where α is chosen such that the latter integral can be evaluated analytically

using the asymptotic expansion (for large arguments) of In(x) [39]. More efficient

implementations might consider partitioning the integration interval into multiple

subintervals, exploiting both the ascending series representation and the asymptotic

expansion of each Bessel function.

2.B Communication patterns of MPI-based implementation

The pseudo-codes provided in this appendix complement the discussion regarding

the parallel implementation of the present method included in Section 2.3.3. For

convenience, in this appendix the term “node” is used to denote either grid blocks,

grid intervals, or tree-nodes as defined in Section 2.3.1 and its precise meaning is

deduced from the context. The algorithms discussed in this appendix are based on

non-blocking MPI operations; we refer the reader to [40] for an introduction to these

operations.

2.B.1 Level Interactions

The pseudo-code for the parallel implementation of Level Interactions, Step 2 of the

FLGF algorithm of Section 2.3.1, is provided in Algorithm 1. A description of the

terms and operations of Algorithm 1 is as follows:

· Done sending (receiving): all non-blocking MPI messages being sent (received)

have been posted and completed.

· Done local-work: any intra-MPI-process operations have been completed.

· Send-/receive-messages: As described in Section 2.3.3, each MPI-process sends,

at most, one message to any other MPI-process. A message is composed of sub-

messages, one for each target node. Each sub-message contains information iden-
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Algorithm 1: Communication pattern of Level Interactions.
while not done sending or receiving or local-work do

check status of all active messages;
forall the receive-messages that have completed receive do

process receive-message;
mark receive-buffer unit associated with receive-message as available;

forall the available receive-buffer units do
if not done posting receive-messages then

associate receive-message with receive-buffer unit;
post non-blocking receive for receive-message;

forall the send-messages that have completed send do
mark send-buffer associated with send-message as available;

if not done with all send-work units and send-buffer unit is available then
if send-work unit corresponds to new send-message then

associate send-message with send-buffer unit;

perform M send-work units of send-message;
if done building send-massage then

post non-blocking send for send-message;

else if not done with all local-work units then
perform N local-work units;

tifying the target node, and the field induced on target node by all source nodes

that belong to the sending MPI-process and interact with the target node.

· Buffer and buffer units: messages are buffered before being posted. The send-

buffer and receive-buffer are composed of a fixed number of buffer-units. Each

buffer-unit is allocated enough memory to handle any message that will be posted.

The examples included in Section 2.4.3 use a total of four buffer units, two for

sending and two for receiving.

· Process receive-message: read receive-message and add field contribution from

non-local source nodes to local target nodes.

· Send-work unit: compute the field induced from a single local node to a target



36

node belonging to the current target MPI-process. The induced field of each target

node is aggregated in send-buffer. Operations performed by a single send-work

unit correspond to those of a single entry of the sum given in Eq. 2.31.

· Local-work unit: same as send-work unit, except that the induced field is added

to the local storage of the target node (no need to buffer or perform any MPI

communication).

· Done building send-message: the results from all send-work units required by

send-message (or, equivalently, target MPI-process) have been packaged into a

message.

· Parameters M and N : determine the number of work units performed at each

iteration of the main loop. The examples included in Section 2.4.3 use M = N =

20.

2.B.2 Upwards and Downwards Pass

Algorithm 2: Communication pattern of Upwards Pass.
forall the local nodes do

forall the non-local children of node do
post non-blocking receive for message sent by child;

while not done sending or receiving or local-work do
check status of all active messages and update receive-tracker;
select M ready-for-processing nodes using receive-tracker;
forall the selected nodes do

if node has children then
build node’s weights by regularizing child nodes’ weights;

perform padded-FFT on node’s weights;
if node has a parent then

if parent is non-local then
post non-blocking send for message received by parent;

else
update local parent node’s weights;
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The pseudo-code for the parallel implementation of Upwards Pass, Step 1 of the

FLGF algorithm of Section 2.3.1, is provided in Algorithm 2. A description of the

terms and operations of Algorithm 2 is as follows:

· Done sending (receiving) and done local-work: same as in Appendix 2.B.1.

· Message: a messages contain a node’s weights (sources or regularized sources

from child nodes). Each node is provided enough auxiliary storage to receive the

weights from all of its children.

· Receive-tracker : a tree-like data-structure that contains information regarding the

progress of all communication and operations associated with each local node. It

can be used to determine whether a node has finished receiving messages from all

of its children (if any), whether a padded-FFT has been performed on its weights,

and whether it has posted a non-blocking send to its parent (if any).

· Ready-for-processing node: a node that has not be processed, but has finished

receiving messages from all of its children (if any). A node is said to be processed

if its weights have been computed (or are known), i.e. Eq. 2.29, a padded-FFT

has been performed on its weights, i.e. Eq. 2.30, and a non-blocking send to its

parent-node has been posted (if parent exists).

· Selecting ready-for-processing nodes: the receive-tracker is transversed in leaf-

to-root order and nodes that meet the ready-for-processing criteria are selected.

Priority is given to nodes whose parent are non-local, i.e. belong to a different

MPI-process.

· Parameter M : determine the number of nodes to be processed at each iteration

of the main loop.

Pseudo-code for Downwards Pass is omitted since the communication pattern is

very similar that of Upwards Pass. The only significant differences are that nodes

send to their children, as opposed to their parent, and that when selecting ready-for-

processing nodes the receive-tracker is transversed in root-to-leaf order, as opposed
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to leaf-to-root order. The operations performed at each step and the ready-for-

processing criteria are readily deduced from the discussion included in Sections 2.3.1

and 2.3.3.
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C h a p t e r 3

A FAST LATTICE GREEN’S FUNCTION METHOD FOR
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Chapter abstract

A computationally efficient method for solving three-dimensional, viscous, incompress-
ible flows on unbounded domains is presented. The method formally discretizes the
incompressible Navier-Stokes equations on an unbounded staggered Cartesian grid.
Operations are limited to a finite computational domain through a lattice Green’s func-
tion technique. This technique obtains solutions to inhomogeneous difference equa-
tions through the discrete convolution of source terms with the fundamental solutions
of the discrete operators. The differential algebraic equations describing the temporal
evolution of the discrete momentum equation and incompressibility constraint are nu-
merically solved by combining an integrating factor technique for the viscous term and
a half-explicit Runge-Kutta scheme for the convective term. A projection method that
exploits the mimetic and commutativity properties of the discrete operators is used
to efficiently solve the system of equations that arises in each stage of the time inte-
gration scheme. Linear complexity, fast computation rates, and parallel scalability are
achieved using recently developed fast multipole methods for difference equations. The
accuracy and physical fidelity of solutions is verified through numerical simulations of
vortex rings.

3.1 Introduction

Numerical simulations of viscous, incompressible flows on unbounded fluid domains

require numerical techniques that can accurately approximate unbounded compu-

tational domains using only a finite number of operations. Spatial truncation and

artificial boundary conditions have been developed for this purpose but they can ad-

versely affect the accuracy of the solution and even change the dynamics of the flow

[41–44]. Furthermore, minimizing the error due to artificial boundaries by employ-

ing large computational domains increases the number of computational elements
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and often requires the use of solvers that are less efficient than those used on regular

grids (e.g. FFT techniques, multigrid, etc.).

Recently, fast multipole methods (FMMs) for solving constant coefficient elliptic dif-

ference equations on unbounded regular grids have been developed for 2D [10, 11]

and 3D [1] problems. These methods obtain solutions to inhomogeneous difference

equations by using fast summation techniques to evaluate the discrete convolution

of source terms with the fundamental solutions of the discrete operators. The fun-

damental solutions of discrete operators on unbounded regular grids, or lattices, are

also referred to as lattice Green’s functions (LGFs).

Similar to particle and vortex methods, e.g. [20, 23, 30, 45–54] and references

therein, the LGF techniques discussed in [1, 10, 11] have efficient nodal distributions

and automatically enforce free-space boundary conditions. As a result, needlessly

large computational domains and artificial boundary conditions can be avoided when

solving flows on unbounded regular grids by using LGF techniques to compute the

action of solution operators. A significant advantage of recently developed particle

and vortex methods is their ability to efficiently solve large scale problems relevant

to 3D incompressible flows using fast, parallel methods based on techniques such as

tree-codes, FMMs, dynamic error estimators, hybrid Eulerian-Lagrangian formula-

tions, hierarchical grids, FFT methods, and domain decomposition techniques [23,

30, 47–49, 52–54]. It is demonstrated in [1] that LGF FMMs can achieve computa-

tional rates and parallel scaling for 3D discrete (7-pt Laplacian) Poisson problems

comparable to existing fast 3D Poisson solvers.

The present formulation numerically solves the incompressible Navier-Stokes equa-

tions expressed in the non-dimensional form given by

∂u
∂t

+ u · ∇u = −∇p+ 1
Re∇

2u, (3.1a)

∇ · u = 0, (3.1b)

where u, p, and Re correspond to the velocity, the pressure, and the Reynolds
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number, respectively. The equations are defined on an unbounded domain in all

directions, and are subject to the boundary conditions

u (x, t)→ u∞ (t) as |x| → ∞, (3.2)

where u∞ is a known time-dependent function. We limit our attention to flows in

which the vorticity, ω = ∇× u, decay exponentially fast as |x| → ∞.

The present formulation is simplified by considering the evolution of the velocity

perturbation, u′ (x, t) = u (x, t) − u∞ (t), and pressure perturbation, p′ (x, t) =

p (x, t)− p∞ (x, t). The freestream pressure, p∞, is given by

p∞ (x, t) = du∞
dt
· x, (3.3)

where we have taken the arbitrary time-dependent constant to be zero. Subtracting

the uniform freestream equations from Eq. (3.1) yields

∂u′

∂t
+
(
u′ + u∞

)
· ∇u′ = −∇p′ + 1

Re∇
2u′, ∇ · u′ = 0, (3.4)

subject to the boundary conditions u′ (x, t)→ 0 as |x| → ∞. The boundary condi-

tions on u′ and the irrotational nature of the flow at large distances imply that p′

is subject to the compatibility condition1

p′ (x, t)→ 0 as |x| → ∞. (3.5)

The remainder of the paper is organized as follows. In Section 3.2, we describe the

spatial discretization of the governing equations on formally unbounded staggered

Cartesian grids and discuss LGF techniques that can be used to obtain fast solutions

to the associated discrete elliptic problems. Additionally, we present an integrating

1In the absence of sources and sinks, the velocity of an irrotational flow subject to zero boundary
conditions at infinity is given by v = ∇φ, where the leading order term of φ is −M · x/r3 [55].
Consequently, p = −

(
∂φ
∂t

+ 1
2 |∇φ|

2) → 0 as r → ∞, where we have taken the arbitrary time-
dependent constant to be zero.
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factor technique that facilitates the implementation of efficient, robust time integra-

tion schemes. In Section 3.3, the system of differential algebraic equations (DAEs)

resulting from the spatial discretization and integrating factor techniques is numer-

ically solved using a half-explicit Runge-Kutta method. We show that the linear

systems of equations that arise at each stage of the time integration scheme can

be efficiently solved, without splitting errors or additional stability constraints, by

a fast projection method based on LGF techniques and the properties of the dis-

crete operators. In Section 3.4, we demonstrate that an adaptive block-structured

grid padded with appropriately sized buffer regions can be used to efficiently com-

pute numerical solutions to a prescribed tolerance. In Section 3.5, we summarize

the algorithm and discuss a few practical considerations including computational

costs and performance optimization. Finally, in Section 3.6, we perform numerical

experiments on vortex rings to verify the present formulation.

3.2 Spatial discretization

3.2.1 Unbounded staggered Cartesian grids

Figure 3.1: Unit cell of the staggered Cartesian grid. The vertex enclosed by the circle
corresponds to the (i, j, k) vertex. The (i, j, k) cell, faces, and edges correspond to
the depicted elements intersecting the (i, j, k) vertex. There are three faces and edges
per vertex. The superscript “(q)” is used to denote faces (edges) normal (parallel) to
xq axis.

In this section we describe the discretization of Eq. (3.4) on a formally unbounded
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staggered Cartesian grid. Figure 3.1 depicts our staggered grid, which consists of

cells (C) and vertices (V) that house scalar quantities, and faces (F) and edges (E)

that house vector quantities. The notation RQ denotes the set of real-valued grid

functions with values defined on Q ∈ {C,F , E ,V}. The value of a grid function q

evaluated at n = (i, j, k) ∈ Z3 is given by q(n) and qi,j,k. For the case of a vector-

valued grid function q, i.e. q ∈ RF or q ∈ RE , q(k)(n) denotes the component of

q(n) in the k-th direction.

The spatial discretization of Eq. (3.4) is performed using the techniques of Nicolaides

and Wu [56], and Zhang et al. [57]. The resulting discrete operators are similar or

equivalent to those obtained from standard second-order finite-volume or finite-

difference schemes, e.g. [58]. Yet we refer to the more general techniques of [56]

and [57] since their discussions emphasize many of the algebraic properties of the

discrete operators used by the present formulation. For convenience, point-operator

representations of the discrete operators are included in Appendix 3.A.

The semi-discrete system of equations obtained from the spatial discretization of

Eq. (3.4) is

du
dt

+ N(u + u∞) = −Gp + 1
ReLFu, Du = 0, (3.6)

where u ∈ RF × R and p ∈ RC × R denote the time-dependent grid functions

associated with the discrete velocity and pressure perturbation fields, respectively.2

The time-dependent grid function u∞ ∈ RF × R is constant in space with values

given by u∞(n, t) = u∞(t). Discrete operators G : RC 7→ RF , D : RF 7→ RC ,

and LF : RF 7→ RF correspond to the discretizations of the gradient, divergence,

and vector Laplacian operators, respectively. Finally, N : RF 7→ RF denotes the

discrete nonlinear operator approximating the convective term, i.e. N(u + u∞) ≈

2In order to avoid a cumbersome notation, the prime symbols, ′, are omitted from variables
denoting grid functions associated with the perturbations of the discrete velocity and pressure fields.
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(u′ + u∞) · ∇ (u′ + u∞) = (u′ + u∞) · ∇u′.3

In addition to the aforementioned discrete operators, the subsequent discussion

makes use of the discrete gradient operator G : RV 7→ RE , the discrete curl op-

erators C : RF 7→ RE and C : RE 7→ RF , and the discrete Laplacian operators

LQ : RQ 7→ RQ, where Q ∈ {C, E ,V}. A summary of all the discrete vector opera-

tors and their definitions is also provided in Appendix 3.A.

The choice of discretization technique yields a numerical scheme with the following

properties:

• Second-order accuracy: all discrete operators are second-order accurate in space.

• Conservation properties: using appropriate discretizations of the nonlinear con-

vective term leads to a scheme that conserves momentum, kinetic energy, and

circulation in the absence of time-differencing errors and viscosity [57, 59, 60].

The benefits of discrete conservation properties related to numerical stability and

physical fidelity are discussed in the review by Perot [13] and references therein.

• Mimetic properties: discrete operators and their corresponding vector calculus

operators satisfy similar symmetry and orthogonality properties in addition to

similar integration by parts formulas [56, 57, 61, 62]. Specific properties pertinent

to the discussion of the present method are:

D = −G†, C = C†, G = −D†, (3.7a)

Null(C) = Im(G), Null(D) = Im(C), (3.7b)

LC = −G†G, LF = −GG† − C†C, LE = −D†D− CC†, LV = −DD†. (3.7c)

Many of the mimetic properties of discrete operators are closely related to the

conservation properties [56, 57].

3No particular form (e.g. convection, rotational, divergence, skew-symmetric) or discretization
scheme for the convection term is assumed by Eq. (3.6).
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• Commutativity properties: on unbounded staggered grids, discrete Laplacians and

integrating factors (to be introduced in Section 3.2.3) are able to commute with

other operators in the sense ATX = TYA, where A : RX 7→ RY is any of the

previously mentioned linear operators, and TX (TY) is either the discrete Lapla-

cian or integrating factor mapping RX to RX (RY to RY). Similar commutativity

properties result in discretizations of periodic domains using uniform staggered

grids.

In subsequent sections we discuss how the mimetic and commutativity properties

facilitate the construction of fast, stable methods for numerically solving Eq. (3.6).

It is convenient to define

d = p + 1
2P (u + u∞, u + u∞) , (3.8)

where P : RF × RF 7→ RC is an arbitrary discrete approximation of the vector

dot-product, i.e. P(u, v) ≈ u · v. The time-dependent grid function d ∈ RC × R

can be regarded as a discrete approximation of the total pressure perturbation, i.e.

d ≈ p′ + 1
2 |u
′ + u∞|2. Using Eq. (3.8), we express Eq. (3.6) as

du
dt

+ Ñ(u + u∞) = −Gd + 1
ReLFu, G†u = 0, (3.9)

where Ñ(v) = N(v)− 1
2GP(v, v). Consequently, Ñ(u+u∞) is a discrete approximation

of ω × (u + u∞).4 As will be demonstrated in Section 3.4, an advantage of using

Ñ(u + u∞) instead of N(u + u∞) is that the former typically has a smaller support

than that of the latter, which in turn reduces the number of operations and storage

required to numerically solve the flow. We emphasize that Eq. (3.9) is equivalent to

Eq. (3.6), and no additional discretization errors have been introduced.

4The discretization of Eq. (3.4) naturally assumes the form given by Eq. (3.9) if the convection
term is discretized in its rotational form, (∇× v)×v+ 1

2∇v2, with the gradient term approximated
by 1

2 GP(v, v).
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3.2.2 Lattice Green’s function techniques

The procedure for solving difference equations on unbounded regular grids using

LGFs is analogous to the procedure for solving inhomogeneous PDEs on unbounded

domains using the fundamental solution of continuum operators. As a representative

example, we consider the (continuum) scalar Poisson equation

[∆u](x) = f(x), supp(f) ⊆ Ω, (3.10)

where x ∈ R and Ω is a bounded domain in R3. The solution to Eq. (3.10) is given

by

u(x) = [G ∗ f ](x) =
∫

Ω
G(x− y)f(y) dy, (3.11)

where G(x) = −1/(4π|x|) is the fundamental solution of the Laplace operator.

Similarly, we consider the discrete scalar Poisson equation

[LQu](n) = f(n), supp(f) ⊆ D, (3.12)

where u, f ∈ RQ, D is a bounded region in Z3, and Q ∈ {C,V}. The solution to

Eq. (3.12) is given by

u(n) = [GL ∗ f](n) =
∑

m∈D
GL(n−m)f(m) (3.13)

where GL : Z3 7→ R is the fundamental solution, or LGF, of the discrete scalar

Laplacian [1, 11]. Subsequently, we refer to the grid functions f and u as the source

field and the induced field, respectively.

It is evident from the definitions of LF and LE that each component of a discrete

vector Poisson problem corresponds to a discrete scalar Poisson problem. As a

result, the q-th component of solutions to Eq. (3.12) for Q ∈ {F , E} are given by

Eq. (3.13) with u → u(q) and f → f(q). Procedures for obtaining expressions for

GL(n) are discussed in [5, 9, 16, 18]. For convenience, expressions for GL(n) are

provided in Appendix 3.B.
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Fast numerical methods for evaluating discrete convolutions involving LGFs have

recently been proposed in 2D by Gillman and Martinsson [11] and in 3D by Liska

and Colonius [1]. The 3D Fast Lattice Green’s Function (FLGF) method of [1] is

used to evaluate discrete convolutions involving GL. The FLGF method is a kernel-

independent interpolation based fast multipole method (FMM) specifically designed

for solving difference equations on unbounded Cartesian grids. In addition to its

asymptotic linear algorithmic complexity, it has been shown that the FLGF method

achieves high computation rates and good parallel scaling for the case of GL [1].

As final remark, the FLGF method is a direct solver that computes solutions to a

prescribed tolerance ε, ‖ytrue− y‖∞/‖ytrue‖∞ ≤ ε, where y is the numerical solution

and ytrue is the exact solution to the system of difference equations. In order to

obtain accurate error bounds for the FLGF method it is necessary to profile the

method once for each kernel and scheme used. Error estimates for the discrete 7-pt

Laplace kernel and different schemes are provided in [1]. In the present formulation,

all instances of EQ and L−1
Q are computed using values of ε that are less than or

equal to prescribed value of εFLGF.

3.2.3 Integrating factor techniques

In this section we describe an integrating factor technique for integrating the stiff

viscous term of Eq. (3.9) analytically. Analytical integration has the advantage

of neither introducing discretization errors nor imposing stability constraints on

the time marching scheme. Integrating factor techniques for the viscous term are

widely used in Fourier pseudo-spectral methods. These methods typically compute

the action of the integrating factor in Fourier-space. In contrast, the present method

computes the action of the integrating factor in real-space, since the Fourier series of

an arbitrary grid function on an unbounded domain is not computationally practical.

We consider integrating factors defined as the solution operators of the discrete
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diffusion equation of the form

dh
dt

= κLQh, h(n, t)→ h∞(t) as |n| → ∞, (3.14)

where κ ∈ R≥0 and h ∈ RQ. As discussed in Appendix 3.A, the discrete Laplace

operator LQ is diagonalized by the Fourier series operator FQ,

(∆x)2LQ = F−1
Q σL

QFQ, (3.15)

where σL
Q(ξ) for ξ ∈ (π, π)3 is the spectrum of (∆x)2LQ. Next, we define the

exponential of the LQ as

EQ(α) = F−1
Q exp(ασL

Q)FQ, (3.16)

where α = κ(t− τ)/(∆x)2. An immediate consequence of Eq. (3.16) is that

d

dα
EQ(α) = F−1

Q σL
Q exp(ασL

Q)F−1
Q = LQEQ(α) = EQ(α)LQ, (3.17)

which implies that the solution to Eq. (3.14) is given by

h(n, t) =
[
EQ
(
κ(t− τ)
(∆x)2

)
hτ
]

(n, t), t ≥ τ, ∀n ∈ Z3, (3.18)

where h(n, τ) = hτ (n).

We now consider using EQ(α) as an integrating factor for Eq. (3.9). Operating from

the left on the semi-discrete momentum equation of Eq. (3.9) with EF
(

t−τ
(∆x)2Re

)
and introducing the transformed variable v = EF

(
t−τ

(∆x)2Re

)
u yields the transformed

system of semi-discrete equations

dv
dt

= −HF Ñ
(
H−1
F v + u∞

)
− HFGd, G†H−1

C v = 0, (3.19)

where HQ = EQ
(

t−τ
(∆x)2Re

)
. Using the commutativity properties of integrating fac-

tors, Eq. (3.19) simplifies to

dv
dt

= −HF Ñ
(
H−1
F v + u∞

)
− Gb, G†v = 0, (3.20)
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where b = HFd. We emphasize that the transformed system of equations Eq. (3.20)

is equivalent to the original system of equation Eq. (3.9). Furthermore, as is the

case for Eq. (3.9), Eq. (3.20) represents a system of DAEs of index 2.

The procedures for obtaining expressions GL(n) can be readily extended to the case

of [GE(α)](n), where GE(α) is the LGF of the integrating factor EQ(−α). Expressions

for GE(n) are also provided in Appendix 3.B. As for the case of L−1
Q , fast solutions

to expressions involving GE(α) are computed using the FLGF method.

An important distinction between GL(n) and [GE(α)](n) is found in their asymptotic

behavior. Whereas the value of |GL(n)| decays as 1/|n| as |n| → ∞, the value of

|[GE(α)](n)| decays faster than any exponential as |n| → ∞ for a fixed α.5 The

fast decay of GE implies that, for typical computations, the application of EQ can

be consider a local operation, i.e. values computed at a particular grid location

only depend on the values of a few neighboring grid cells. Consequently, the FLGF

method requires significantly fewer operations to evaluate the action of EQ compared

to the action of L−1
Q .6

3.3 Time integration

3.3.1 Half-explicit Runge-Kutta methods

Failing to properly identify the semi-discrete form of the governing equations, i.e.

Eq. (3.9), as a system of differential algebraic equations (DAEs) of index 2 prior to

choosing a time integration scheme can have undesirable consequences on the quality

of the numerical solution [63, 64]. Half-explicit Runge-Kutta (HERK) methods are

5Consider [GE(α)](n) for the case n = (n, 0, 0). As n → ∞, [GE(α)](n) ∼ αn/n!. For α = 0.1
and α = 1.0, the value of [GE(α)](n)/[GE(α)](0) is less than 10−10 at n = 7 and n = 13, respectively.
The numerical simulations of Section 3.6 make use of integrating factors with α < 1, but larger
values of α are allowed.

6For the run parameters of the numerical experiments of Section 3.6, the action of EQ only
requires approximately 10% of the total number of operations required to compute L−1

Q .
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a type of one-step time integration schemes developed for DAEs of index 2 [63, 65,

66]. Although there are multiple HERK methods [63], we limit our attention to the

original HERK method proposed by Hairer et al. [65].

Consider DAE systems of index 2 of the form

dy

dt
= f (y, z) , g (y) = 0, (3.21)

where f and g are sufficiently differentiable, and z is an unknown that must be

computed so as to have y satisfy g(y) = 0. Problems of this form are of index 2

if the product of partial derivatives gy(y)fz(y, z) is non-singular in a neighborhood

of the solution. The HERK method applied to Eq. (3.21) is given by an algorithm

similar to that of explicit Runge-Kutta (ERK) methods except that the implicit

constraint equation g (y) = 0 is solved at each stage of the ERK scheme.

Similarly to standard RK methods, HERK methods can be described by their

Butcher tableau:
c A

b†
, (3.22)

where A = [ai,j ] is the Runge-Kutta matrix, b = [bi] is the weight vector, and

c = [ci] is the node vector. In subsequent sections, it is often convenient to use the

shifted tableau notation:

ãi,j =

 ai+1,j for i = 1, 2, . . . , s− 1

bj for i = s
, c̃i =

 ci+1 for i = 1, 2, . . . , s− 1

1 for i = s
.

(3.23)

We refer the reader to the discussions of [65, 66] for a detailed algorithm and a list

of order-conditions for the general case of Eq. (3.21).

We now turn our attention to the special case of the transformed semi-discrete

governing equations given by Eq. (3.20). It is convenient to express the non-au-

tonomous system of Eq. (3.20) in terms of the autonomous system of Eq. (3.21).

This is achieved by letting y = [v, t] and z = b, and by adding t′ = 1 to Eq. (3.20).
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For this case, gy = [ G†, 0] and fz = g†y, where gy = [gu, gt] and fz = fb. By construc-

tion, the operator G is a constant, which implies that fz and gy are also constants.

As a result, order-conditions for the general system of Eq. (3.21) involving high-or-

der derivatives of fz and gy are trivially satisfied for the case of Eq. (3.20). Fewer

order-conditions permit a wider range of RK tableaus to be used for a given order

of accuracy. This is particularly relevant for high-order HERK schemes, since the

number of order-conditions is significantly larger than that of standard RK schemes

[66].

The simplifications in the order-conditions obtained for the special case of constant

fz and gy are well-described in the literature of HERK methods [63, 65–67]. Or-

der-conditions up to order 4 for the y-component reduce to those of standard RK

methods [67]. Similarly, order-conditions of order r ≤ 3 for the z-component (up to

fourth-order accurate z-component) reduce to having the shifted sub-tableau [ãi,j ]

for i, j = 1, 2, . . . s − 1 satisfy the y-component order-conditions up to order r [66,

67]. It is beyond the scope of the present work to provide an extended discussion

on the properties and implementation details of the HERK method for particular

RK tableaus. Instead, the order of accuracy and linear stability of a few selected

schemes used to perform the numerical experiments of Section 3.6 is discussed in

Section 3.3.2 and Appendix 3.C, respectively.

3.3.2 Combined integrating factor and half-explicit Runge-Kutta method

In this section we present a method for obtaining numerical solutions for the (un-

transformed) discrete velocity and total pressure perturbation by combining the in-

tegrating factor technique of Section 3.2.3 with the HERK method of Section 3.3.1.

The combined method, referred to as the IF-HERK method, integrates Eq. (3.6)

over t ∈ [0, T ] subject to the initial condition u(n, 0) = u0(n).

Formally, the IF-HERK method partitions the original problem into a sequences of

n sub-problems, where the k-th sub-problem corresponds to numerical integration
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of Eq. (3.6) from tk to tk+1 subject to the initial condition u(n, tk) = uk(n). We

restrict our discussion to the case of equispaced time-steps, i.e. tk = tk−1 +∆t, since

the more general case of variable time-step size is readily deduced.

The k-th sub-problem is solved by first introducing the transformed variables

v(n, t) =
[
EF
(

∆t
(∆x)2Re

)]
u(n, t), b(n, t) =

[
EF
(

∆t
(∆x)2Re

)]
q(n, t), (3.24)

and using EF
(

∆t
(∆x)2Re

)
as an integrating factor for Eq. (3.9). Next, the HERK

method is used to integrate the transformed nonlinear equations from tk to tk+1 in

order to obtain vk+1(n) ≈ v(n, tk+1) and bk+1 ≈ b(n, tk+1). Finally, values for the

discrete velocity and total pressure perturbation at tk+1, i.e. uk+1(n) ≈ u(n, tk+1)

and dk+1(n) ≈ d(n, tk+1), are obtained from vk+1 and bk+1 by using the integrating

factor EF
(
−∆t

(∆x)2Re

)
.

A computationally convenient algorithm for the k-th time-step of the IF-HERK

method, subsequently denoted by (uk+1, tk+1, pk+1)← IF-HERK(uk, tk), is given by:

1. initialize: copy solution values from the k-th time-step,

u0
k = uk, t0k = tk. (3.25)

2. multi-stage: for i = 1, 2, . . . , s, solve the linear system (Hi
F
)−1 G

G† 0


 uik

d̂ik

 =

 rik
0

 , (3.26)

where

Hi
F = EF

(
(c̃i−c̃i−1)∆t

(∆x)2Re

)
, rik = qik + ∆t

i−1∑
j=1

ãi,jwi,jk + gik, (3.27)

gik = −ãi,i∆t Ñ
(
ui−1
k + u∞(ti−1

k )
)
, tik = tk + c̃i∆t. (3.28)
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For i > 1 and j > i, qik and wi,jk are recursively computed using7

qik = Hi−1
F qi−1

k , q1
k = u0

k (3.29)

wi,jk = Hi−1
F wi−1,j

k , wi,ik = (ãi,i∆t)−1
(
gik − Gd̂ik

)
. (3.30)

3. finalize: define the solution and constraint values of the (k + 1)-th time-step,

uk+1 = usk, dk+1 = (ãs,s∆t)−1 d̂sk, tk+1 = tsk. (3.31)

The above algorithm is obtained by applying the HERK method to either Eq. (3.20)

or, equivalently, Eq. (3.19) for the k-th sub-problem, and introducing the auxiliary

variables

uik(n) =
[
EF
(
−c̃i∆t

(∆x)2Re

)]
vik(n), dik(n) =

[
EF
(
−c̃i∆t

(∆x)2Re

)]
bik(n), (3.32)

for i = 1, 2, . . . s. Additionally, the intermediate steps used to obtained the final

form IF-HERK algorithm make frequent use of the commutativity properties of EQ

and the identity EQ(α1)EQ(α2) = EQ(α1 + α2).

The linear operator on the left-hand-side (LHS) of Eq. (3.26) is symmetric positive

semi-definite and its null-space is spanned by the set of [0, a]†, where a ∈ RC × R

is any discrete linear polynomial. Consequently, the compatibility condition on the

pressure field given by Eq. (3.5) guarantees Eq. (3.26) has a unique solution. As

presented, the IF-HERK algorithm is compatible with any HERK scheme since

no assumptions have been made on the RK coefficients. Of course, more efficient

versions of this algorithm can potentially be obtained for specific families of RK

coefficients, but such details are beyond the scope of the present work.

7An efficient implementation of the IF-HERK algorithm recognizes that the application
of s − 1 integrating factors can be avoided during final, i = s, stage by computing rsk =
Hi−1
F

(
qs−1
k + ∆t

∑i−1
j=1 ãi,jw

i−1,j
k

)
+ gik, as opposed to Eq. (3.28). This modification avoids having

to explicitly compute qsk and ws,jk for j = 1, 2, . . . s− 1.
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The IF-HERK schemes used to performed the numerical experiments of Section 3.6

are given by the following tableaus:

Scheme A

0 0 0 0
1
2

1
2 0 0

1
√

3
3

3−
√

3
3 0

3+
√

3
6 −

√
3

3
3+
√

3
6

,

Scheme B

0 0 0 0
1
3

1
3 0 0

1 −1 2 0

0 3
4

1
4

,

Scheme C

0 0 0 0
8
15

8
15 0 0

2
3

1
4

5
12 0

1
4 0 3

4

. (3.33)

The order of accuracy, based on the simplified order-conditions discussed in Sec-

tion 3.3.1, for each scheme is provided in Table 3.1. As a point of comparison,

Table 3.1 also provides the expected order of accuracy for general semi-explicit

DAEs of index 2, i.e. Eq. (3.21).

Table 3.1: Expected order of accuracy of the solution y variable (velocity) and the
constraint z variable (pressure) of HERK schemes. The superscript ∗ denotes values
for general semi-explicit DAEs of index 2.

y-Order z-Order y-Order∗ z-Order∗

Scheme A 2 2 2 2
Scheme B 3 2 3 2
Scheme C 3 1 2 1

The tableaus for Schemes B and C were obtained from [66] and [67]. As discussed

in [67], the tableau for Scheme C corresponds to the RK coefficients of the popular

three-stage fractional step method of [68]. Unlike Schemes B and C, the tableau

for Scheme A was specifically defined for the IF-HERK method. An advantage of

Scheme A over Schemes B and C is that the RK nodes, ci’s, are equally spaced.

As a result, the IF-HERK method only requires a single non-trivial integrating

factor.8 This reduction in the number of distinct LGFs reduces the number of pre-

processing operations and lowers the storage requirements of the FLGF method.

Additionally, extensions of the present method including immersed surfaces, e.g.

8One additional integrating factor is required during the last stage of the IF-HERK algorithm,
but for the case of cs = 1 this additional integrating factor reduces to the identify operator.
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via the treatment of immersed boundaries of [69], can potentially enjoy similar

reductions in the computational costs of pre-processing operations by only having

to consider a single non-trivial integrating factor. We will report on immersed

boundary methods based on the present flow solver in subsequent publications. The

linear stability analysis of the IF-HERK method is provided in Appendix 3.C.

3.3.3 Projection method

It is readily verified that the computationally expensive operation performed by

the IF-HERK method corresponds to solving Eq. (3.26) for each stage. Systems of

continuum or discrete equations similar to Eq. (3.26) often arise in the literature

of numerical methods for simulating incompressible flows. Solutions to these sys-

tem are frequently obtained through classical projection, fractional-step, or pressure

Schur complement methods [70, 71]. These methods can be regarded as approximate

block-wise LU decompositions of the original system [70, 71]. More recently, exact

projection techniques that are free of any matrix/operator approximations have been

proposed, e.g. [69, 72]. These techniques have the advantage of not introducing any

“splitting errors” and do not require artificial pressure boundary conditions. The

present formulation uses an exact projection method to solve Eq. (3.26), but differs

from the methods of [69, 72] in that it does not use the null-space of the discrete

operators to obtain solutions to the linear system.

The block-wise LU decomposition of the operator in Eq. (3.26) suggests a solution

procedure, expressed in the standard correction form, given by:

u∗ = Hi
F rik (compute intermediate velocity) (3.34a)

Sd̂ik = G†u∗ (solve for total pressure) (3.34b)

uik = u∗ − Hi
FGd̂ik (projection step), (3.34c)

where S = G†Hi
FG is the Schur complement of the system.9 By taking into account

9Without additional information the (scaled) total pressure perturbation, d̂ik, obtained from
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the commutativity and mimetic properties of the spatial discretization scheme the

procedure given by Eq. (3.34) simplifies to:

d̂ik = −L−1
C G†rik, uik = Hi

F

(
rik − Gd̂ik

)
, (3.35)

where x = L−1
C y is equivalent to solving LCx = y subject to uniform boundary

conditions at infinity. In this form, one of the two integrating factors has been

eliminated and the original elliptic problem G†Hi
FGx = y has been replaced by

the Poisson problem Lx = y. Reducing the original discrete elliptic problem to a

discrete Poisson problem is of significant practical importance since it permits the

use of the FLGF method with known LGF expressions [1]. As will be discussed in

Section 3.4, the operation count of our overall algorithm is dominated by the cost of

solving for the discrete pressure perturbation; therefore, a projection method that

is compatible with fast, robust discrete elliptic solvers greatly facilitates obtaining

fast flow solutions.

3.4 Adaptive computational grid

3.4.1 Restricting operations to a finite computational grid

Thus far we have described algorithms for discretizing and computing the incom-

pressible Navier-Stokes equations on unbounded grids. In this section, we present a

method for computing solutions, to a prescribed tolerance, using only a finite num-

ber of operations. This approximation is accomplished by limiting all operations to a

finite computational grid obtained by removing grid cells of the original unbounded

grid containing field values that are sufficiently small so as not to significantly affect

the evolution of the flow field. As will be demonstrated in the following discussion,

the ability of the present method to only track a finite region of the unbounded

Eq. (3.34b) is unique up to a discrete linear polynomial. Yet, a unique d̂ik is obtained by taking
into account the compatibility condition p(n, t)→ 0 as |n| → ∞, i.e. d̂ik(n)→ cik as |n| → ∞ where
cik = 1

2 |u∞(tik)|2, discussed in Section 3.2.1.
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domain is a consequence of the exponential decay of the vorticity at large distances,

which is assumed for all flows under consideration.

We first consider the error resulting from neglecting field values outside a finite

region when solving the elliptic problems of the IF-HERK method.10 Using the

notation of Section 3.2.2, the solution to the discrete Poisson problem of Eq. (3.35)

is given by

d̂(n) = [GL
C ∗ f](n), f(n) = [−G†rik](n). (3.36)

The source field G†rik is a discrete approximation of ∇·` at t ≈ k∆t, where ` = ω×u

is the Lamb vector. It follows from the assumption that ω is exponentially small at

large distances that∇·` and G†rik must also be exponentially small at large distances.

As a result, the induced field of Eq. (3.36) is computed to a prescribed tolerance by

defining the finite computational domain such that it includes the region where the

magnitude of G†rik is greater than some positive value.

The action of all operators present in the IF-HERK and projection algorithms, with

the exception of L−1
C , are evaluated using only a few local operations. Many of these

local operators act on fields that typically decay algebraically, e.g. u and d. As a

result, the technique of only tracking regions with non-negligible source terms used

for Eq. (3.35) is impractical for most other operations required by the IF-HERK

method. Unlike the action of L−1
C , the action of local operators only incurs an error

limited to a few cells near the boundary of a finite region if field values of outside

the region are ignored, i.e. taken to be zero. Furthermore, repeated applications

of local operators only propagate the error into the interior of the region by a few

grid cells per application. This type of error is prevented from significantly affecting

the solution in the interior by padding the interior with buffer grid cells and by

periodically computing (“refreshing”) u from the discrete vorticity, w = Cu, which,

like G†rik, has bounded approximate support. As a result, the approximate support

10Field values outside the finite region being tracked are treated as zero.
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of both G†rik and w must be contained in the finite computational domain. Bounds

for the error resulting from approximating the support of these fields and estimates

for the number of time steps that can elapse before the velocity needs to refreshed

will be discussed in Sections 3.4.3 and 3.4.4, respectively.

We recall that the discrete velocity perturbation u is subject to the constraint G†u =

0 and that the null-space of G† is spanned by the image of C†. As a result, it is

possible to express u as

u = C†a, (3.37)

where a ∈ RE can be regarded as the discrete vector potential or streamfunction.

Additionally, we require Da = 0. The discrete vorticity, w, can now be expressed in

terms of a as

w = CC†a =
(
CC† + D†D

)
a = −LEa. Dw = 0 (3.38)

Finally, Eq. (3.37) and (3.38) provide an expression for u in terms of w,

u = −C†L−1
E w, (3.39)

where L−1
E imposes zero boundary conditions at infinity.11 As expected, the expres-

sions relating u, w, and a are analogous to the continuum expressions relating the

velocity, vorticity, and streamfunction fields. We emphasize that Eq. (3.37), (3.38),

and (3.39) were obtained through the algebraic properties of the discrete operators,

as opposed to the discretization of continuum equations.

The present formulation can be cast into an equivalent vorticity formulation simply

by taking the discrete curl of Eq. (3.9) and computing u, which is required to eval-

uate the non-linear term, using Eq. (3.39). This formulation is not pursued since

each stage of the IF-HERK would require solving a discrete vector Poisson prob-

lem, as opposed to a discrete scalar Poisson problem, which would in turn roughly

11Without further considerations Eq. (3.38) implies that a is unique up to a discrete linear
polynomial. Given that w is exponentially small at large distances and that u tends to zero at
infinity, it follows that a is unique up to an arbitrary constant taken to be zero.



59

triple the cost of each stage.12 The vorticity formulation has the advantage of not

having to periodically evaluate Eq. (3.39) to refresh u, but, as will be discussed in

Sections 3.4.4, this operation occurs, at most, once per time step. Based on the

stability analysis of Appendix 3.C, RK schemes with a minimum of three stages are

required to ensure stable solutions. As a result, the primitive variable formulation

is approximately 1.5 to 3 times faster than the vorticity formulation. Differences in

the errors between the two algebraically-equivalent formulations resulting from the

finite tolerances used to compute the FLGF and the adaptive grid algorithms can

be used to further distinguish each formulation, but such differences in errors are

not considered here since they are expected to be on the order of the prescribed tol-

erances, which, as will be discussed in Section 3.5, are specified to be much smaller

than the discretization errors for practical flows.

3.4.2 Block-structured active computational grid

We now turn our attention to the formal definition of the finite region of the un-

bounded computational domain tracked by our formulation, which we refer to as

the active computational domain. Consider partitioning the unbounded staggered

Cartesian grid described in Section 3.2 into an infinite set of equally sized blocks

arranged on a logically Cartesian grid. The block corresponding to the n = (i, j, k)

location is denoted by B(n) or, equivalently, Bi,j,k, and the union of all blocks

is denoted by D∞. Each block is defined as a finite staggered Cartesian grid of

nb1 × nb2 × nb3 cells. We limit our attention to the case in which each block contains

the same number of cells in each direction, i.e. nbi = nb, but note that the subse-

quent discussion readily extends to the general case. As a practical consideration, a

layer of buffer or ghost grid cells surrounding each block is introduced to facilitate

12For the test case of the extremely thin δ/R = 0.0125 vortex ring discussed in Section 6.3, the
wall-time ratio of a vector to a scalar discrete Poisson solve is approximately 2.8, which is slightly
less than the expected ratio of 3 based on operation count estimates of the FLGF method due to
the larger parallel communication costs per problem unknown for the scalar case.



60

the implementation of the present algorithm.

Figure 3.2: Depiction of the finite computational domain in two-dimensions. (Left)
distant view of the three nested sub-domains Dsupp ⊆ Dsoln ⊂ Dxsoln defined in the
main text. (Middle) zoomed-in view illustrating the union of blocks used to define
the domain. (Right) magnified view of an individual block. Each block is defined as a
finite staggered Cartesian grid; dashed cells surrounding the interior grid correspond
to buffer or ghost grid cells.

Figure 3.2 depicts the three nested sub-domains Dsupp ⊆ Dsoln ⊂ Dxsoln ⊂ D∞ that

constitute the active computational domain. These sub-domains are defined as:

• Support blocks (Dsupp): union of blocks that defines the support of the source

field of the discrete Poisson problems of Eq. (3.35) and (3.38).

• Solution blocks (Dsoln): union of blocks that tracks the solution fields u and

d. All field values defined in the blocks belonging to Dsoln are regarded as

accurate approximations of the field values computed using an unbounded

domain.

• Expanded solution blocks (Dxsoln): union of blocks given by a non-trivial neigh-

borhood of Dsoln. We limit our attention to neighborhoods defined by the

union of blocks that are at most Nb blocks away from any block contained in

Dsoln,

Dxsoln =
{
B(m) : |n−m| ≤ Nb, B(n) ∈ Dsoln, m,n ∈ Z3

}
. (3.40)
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• Buffer blocks (Dbuffer): union of blocks belonging to Dxsoln, but not belonging

to Dsoln, i.e. Dbuffer = Dxsoln \ Dsoln. (The domain Dbuffer is not one of the

three primary sub-domains, but it is introduced to facilitate the subsequent

discussion.)

The criteria for selecting which blocks belong to Dsupp and Dsoln are discussed in

Section 3.4.3, and the techniques for selecting values of Nn discussed in Section 3.4.4.

We now introduce the “mask operator” Mγ
Q : RQ 7→ RQ associated with the grid

space Q and the domain γ, which is defined by

[Mγ
Qq](n) =

 q(n) if n ∈ ind[B] and B ∈ Dγ

0 otherwise
, (3.41)

where q ∈ RQ, and ind[B] denotes the set of all indices of the unbounded staggered

grid associated with block B. Mask operators are subsequently used to formally de-

fine operations performed on finite domains. For example, the operation Gd perform

over Dxsoln is defined as Mxsoln
F GMxsoln

C d. For this particular operation, the values of

Mxsoln
C GMxsoln

C d and Gd are equivalent for grid cells in Dxsoln, except for a single layer

of grid cells on the boundary of Dxsoln. Computationally efficient implementations

of Mγ′

Q′AMγ
Q recognize that all non-trivial numerical operations are limited to grid

cells contained in either Dγ and Dγ′ .

3.4.3 Adaptivity

In this section we discuss the criteria used to select the blocks belonging toDsupp and

Dsoln. It follows from subsequent discussions that the field values on Dsoln \Dsupp

can be computed as a post-processing step from the field values on Dsupp; therefore,

only the criteria used to define the Dsupp affects the accuracy of the computed flow

field. We allow for Dsoln 6= Dsupp in order to emphasize that the present algorithm

is able to track values of u and d over arbitrary regions of interest.
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Consider a function W that maps an unbounded grid of blocks, i.e. D∞, to an

unbounded grid of positive real scalars. We define the support and solution regions

as

Dsupp =
{
B(n) : [Wsupp(D∞)](n) > εsupp, n ∈ Z3

}
, (3.42a)

Dsoln =
{
B(n) : [Wsoln(D∞)](n) > εsoln, n ∈ Z3

}
, (3.42b)

respectively. The functions Wsupp and Wsoln, and the scalars εsupp and εsoln are

referred to as weight functions and threshold levels, respectively.

Although the weight function Wsupp can be defined to reflect any block selection

criteria, we limit our attention to cases for which [Wsupp(D∞)](n) reflects the mag-

nitude of the fields Cu and G†Ñ(u + u∞) over the block B(n). This choice of Wsupp

facilitates establishing relationships between the threshold level εsupp and the error

incurred by neglecting source terms values outside Dsupp when solving the discrete

Poisson problems of Eq.(3.35) and (3.38). As a representative example, we consider

the weight function Wsupp given by

[Wsupp(D∞)](n) = max (µ(n)/µglobal, ν(n)/νglobal) , (3.43a)

µ(n) = max
m∈ind[B(n)]

(|[Cu](n)|), µglobal = max
n∈Z3

(µ(n)), (3.43b)

ν(n) = max
m∈ind[B(n)]

(|[G†Ñ(u + u∞)](n)|), νglobal = max
n∈Z3

(ν(n)). (3.43c)

In the absence of any error associated with computing the action of L−1
Q , this ex-

pression for Wsupp results in an upper bound of εsupp for the point-wise normalized

residual of the active domain approximations of Eq. (3.35) and (3.38).13 For these

cases, the point-wise normalized residual is defined as ‖r‖∞/‖x‖∞, where

r = x −MsuppLQy, y = Mxsoln
Q LQ

−1Msupp
Q x, (3.44)

13Formally, εsupp is only an approximate upper bound for the active domain case of Eq. (3.35)
since the source field for this problem is not exactly equal to −G†Ñ(u + u∞). Yet, for the present
error estimates, numerical experiments of representative flows indicate that −G†Ñ(u+u∞) at t = tk

is a good approximation to G†rik of each stage of the k-th time-step.
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and x is the source field of the corresponding discrete Poisson problem.

In general, as the solution changes over time the domain Dsupp, as defined by

Eq. (3.42) and Eq. (3.42a), will also change. Significant amounts of non-negligible

source terms are prevented from being advected or diffused outside Dsupp by recom-

puting and, if necessary, reinitializing the active domain at the beginning of a time-

step. This operation is performed by first computing w← Cu and q← −G†Ñ(u+u∞)

on Dxsoln. Next, values of w and q of grid cells belonging to block in Dbuffer that

have been significantly contaminated by finite boundary errors are zeroed. Finally,

[Wsupp(D∞)](n) and [Wsoln(D∞)](n) are computed using Eq. (3.42a) for all n ∈ Z3

such that B(n) ∈ Dxsoln and are set to zero otherwise.

If either of the newly computed Dsupp or Dsoln differ from their respective previous

values, then it is necessary to reinitialize the active grid and compute the discrete

velocity perturbation, u, over the new Dxsoln. By construction, all non-negligible

values of the discrete vorticity, w, are contained in Dsupp; therefore, u over Dxsoln

can be computed as

a← −Mxsoln
E LQ

−1Msupp
E w, u← Mxsoln

E C†Mxsoln
E a. (3.45)

Subsequently, we denote the procedure given by Eq. (3.45) as u← Vor2Vel(w).

We emphasize that the present algorithm is also compatible with other choices

of weight functions. Using weight functions that are well-suited for capturing the

relevant flow physics of a particular application can potentially reduce the size of the

active domain and the number of operations required to accurately simulate the flow.

For example, if we are primarily interested in capturing the local physics of a flow

over a particular region centered at x0, then a weight function |n−x0|−α[W (D∞)](n)

with α > 0 and W given by Eq. (3.42a) might be an appropriate choice. Unless

otherwise stated, subsequent discussions assume thatWsupp is defined by Eq. (3.43a).
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3.4.4 Velocity refresh

In this section we present a set of techniques for limiting the error introduced from

truncating non-compact fields that decay algebraically, e.g. u and d, when comput-

ing the action of local operators. We limit the present discussion to issues that arise

from evaluating expressions involving EL
Q(α) on the finite active domain since this

operator has the largest stencil of all local operators involved in the IF-HERK and

projection methods.

We recall that the action of EL
Q(α) on q ∈ RQ is computed as [GE(α)∗q](n). Formally,

GE(α) has an infinite support, but, as discussed in Section 3.2.2, [GE(α)](n) decays

rapidly as |n| → ∞; therefore, it is possible to approximate GE(α) to prescribed

tolerance using a finite support. Consequently, for a given α, there exists some

nE ∈ Z such that the field induced from an arbitrary source field can be computed

at a distance nE∆x from ∂Dxsoln to a prescribed accuracy εE. By choosing the

parameter Nb, used to define Dxsoln in Eq. (3.40), to be equal or greater than

dnE/n
be it is possible to evaluate the action of EL

Q(α) on Dsoln to an accuracy εE. As

a result, the flow inside Dsoln remains an accurate approximation of the flow that

would have been obtained using the entire unbounded grid.

As the solution is evolved using the IF-HERK method, the operator EL
Q(α) is repeat-

edly applied to various grid functions, causing the error associated with truncated

non-compact source fields to progressively propagate into the interior of Dxsoln.

The action of
∏n
i=1 Mxsoln

Q EL
Q(αi)Mxsoln

Q is well-approximated by Mxsoln
Q EL

Q(β)Mxsoln
Q ,

where β =
∑n
i=1 αi. Given that the physical values of the nonlinear terms in the

IF-HERK algorithm are approximately zero on Dbuffer, the minimum buffer region

required to integrate u over q time-steps is determined by the support of GE(qβ),

where β =
∑s
i=1

∆c̃i∆t
(∆x)2Re = ∆t

(∆x)2Re . A procedure for obtaining estimates for nE

from q and β is provided in Appendix 3.D. This procedure is extended to obtain an

upper bound, qmax, on the number of time-steps, q, before the error at prescribed

distance nE∆x away from ∂Dxsoln exceeds a prescribed value of εE. At its minimum,
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the depth of the buffer region is nbNb∆x; therefore, the present method takes nE to

be equal to nbNb.

Provided qmax ≥ 1, the solution is integrated over multiple time-steps before the

error from truncating non-compact source field starts to significantly affect the ac-

curacy of the solution on Dsoln.14 In order to maintain the prescribed accuracy,

after qmax time-steps the discrete velocity perturbation on Dxsoln is recomputed or

refreshed from the discrete vorticity on Dsupp using the Vor2Vel procedure.

3.5 Algorithm summary

The present method for solving the incompressible Navier-Stokes on formally un-

bounded Cartesian grids using a finite number of operations and storage, referred

to as the NSLGF method, is summarized in this section. Implementation details

are omitted since they are beyond the scope of the present work. Instead, we refer

the reader to the parallel implementation of the FLGF method [1], which can be

readily extended to accommodate the additional operations required by the NSLGF

method.

An outline of the steps performed by the NSLGF algorithm at k-th time-step is as

follows:

1. Preliminary: compute the discrete vorticity, wk, and divergence of the Lamb

vector, qk.

wk ← Mxsoln
E CMxsoln

F uk, (3.46a)

qk ← −Mxsoln
C G†Mxsoln

F Ñ(Mxsoln
F (uk + u∞(tk))). (3.46b)

2. Grid update: update the computational grid based on prescribed criteria.

14Combinations of nb, Nb, and β resulting in qmax = 0 are not allow. For a given β, the value of
qmax = 0 can always be increased by using larger values of nb or Nb.
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a) Query: use weight functions Wsupp and Wsoln, threshold values εsupp and

εsoln, and fields wk and qk to determine whether Dsupp or Dsoln need to

be updated.

b) Update: (if necessary) update Dsupp, Dsoln, and Dxsoln by adding or re-

moving blocks. Copy the values of the discrete vorticity from the old to

the new computational grid for ∀B ∈ Dnew
supp ∩ Dold

supp, where Dnew
supp and

Dold
supp denote Dsupp before and after the update, respectively.

3. Velocity refresh: compute the discrete velocity perturbation, uk, from the

discrete vorticity, wk.

a) Query: this operation is required if either the grid has been updated or

if the number of time-steps since the last refresh is equal or greater than

qmax.

b) Refresh: (if necessary) compute uk using:

uk ← Vor2Vel(wk), (3.47)

where the Vor2Vel procedure given by Eq. (3.45).

4. Time integration: compute uk+1, tk+1, and pk+1 using:

(uk+1, tk+1, pk+1)← xIF-HERK(uk, tk), (3.48)

where the xIF-HERK algorithm is the active computational domain version

of the IF-HERK algorithm.

The xIF-HERK algorithm is identical to the IF-HERK algorithm, except for the

presence of mask operators which are used to confine all operations to the finite

active domain. With the exception of a few special cases, the xIF-HERK algorithm

is obtained by operating from the left all operators and grid functions present in the

IF-HERK algorithm by the appropriate Mxsoln
Q , e.g. A→ Mxsoln

Q A and y→ Mxsoln
Q y.
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The exceptions to this rule correspond to the expressions for gik and d̂ik, which are

given by

gik = ãi,i∆tMsoln
F Ñ

(
Mxsoln
F (ui−1

k + u∞(ti−1
k ))

)
, (3.49a)

d̂ik = −Mxsoln
C L−1

C Msupp
C G†Mxsoln

F rik. (3.49b)

Both Eq. (3.49a) and (3.49b) reflect the fact that, by construction, the non-negligible

physical values of wk and qk are contained in Wsupp.

The operation count for the k-th time-step of the NSLGF method, denoted by

NNSLGF
k , is dominated by the number of operations required to evaluate the actions

of L−1
Q and EL

Q. As a result, an estimate for NNSLGF
k is given by:

NNSLGF
k ≈ sNL

k + 3C(s)NE
k + d3NL

k ck, (3.50)

where s is the number of stages of the HERK scheme. NL
k andNE

k denote the number

of operations required to compute the action of Mxsoln
Q L−1

Q Msupp
Q and Mxsoln

Q L−1
Q Mxsoln

Q ,

respectively, using the FLGF method for scalar grid spaces.15 Detailed estimates for

the values of NL
k and NE

k can be obtained from the discussion of the FLGF method

[1], but we note here that both NL
k and NE

k scale as O(N) for sufficiently large values

of N , where N is the total number of grid cells of the active domain. The notation

d · ck is used to clarify that cost associated with velocity update, i.e. 3NL
k , should

only be included if a velocity update is performed. Lastly, C(s) specifies the number

of integrating factors required by an s-stage IF-HERK scheme. In general, C(s) is

equal to C0(s), where

C0(s) = s+
[(s− 1)s

2

]
. (3.51)

For special case of second-order IF-HERK schemes, C(s) reduces to C0(s)− 1.16

15The factor of 3 that appears in the second and third terms of Eq. (3.50) accounts for the
additional operations required to solve vector Poisson problems and vector integrating factors.

16The expression cs = 1 is one of the HERK order-conditions associated with second-order
accurate constraints. For the case of cs = c̃s−1 = 1, the integrating factor HsF , defined by Eq. (3.27),
simplifies to the identity operator.
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For convenience, a summary of the parameters used in our treatment of the active

computational domain is provided by Table 3.2. Of the parameters listed in Ta-

Table 3.2: Finite computational domain parameters used by the NSLGF method.

Symbol Description Section
Nb Width of Wbuffer (no. blocks) 3.4.1
nb Block size (no. cells) 3.4.1

εFLGF FLGF method tolerance 3.2.2
εsupp Support region threshold 3.4.3
εE Buffer region tolerance 3.4.4

ble 3.2, only εFLGF, εE, and εsupp affect the accuracy of the numerical simulation.

The solution error of the NSLGF method, i.e. the error associated with approx-

imately solving the fully discretized unbounded grid equations, is approximately

bounded above by the sum of these three parameters.

The field values used to compute Dsupp should represent field values that would be

obtained using the unbounded grid in the absence of numerical errors associated

with the evaluation of discrete operators. Spurious and unnecessary changes to the

active domain are avoided by requiring

max(εFLGF, εE) < αεsupp, (3.52)

where α < 1 is a safety parameter specifying the sensitivity of the adaptive scheme to

the solution errors associated with εFLGF and εE.17 Furthermore, using parameters

that satisfy Eq. (3.52) eliminates the inclusion of blocks that only contain field values

that are on the same order as the solution error.

The values for nb and Nb can also significantly affect the number of numerical

operations performed by the NSLGF method. Smaller values of nb typically result

in smaller active domains, but require more frequent velocity updates and often

17Numerical experiments of representative flows have shown that α ≈ 0.1 is sufficiently small as
to avoid most spurious and unnecessary changes to the computational grid.
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require the use of FLGF schemes with less than optimal computational rates. In

practice, computationally efficient schemes are obtained by setting Nb = 1 and

determining the lower bound for nb, denoted by nb0, from the prescribed value of

εE. Next, starting from nb0, progressively larger values of nb are considered until

an efficient FLGF scheme that achieves the prescribed εFLGF tolerance is obtained.

The construction and computational performance of FLGF schemes are discussed

in [1].

3.6 Verification examples

The behavior of the NSLGF method is verified through numerical simulations of

thin vortex rings. We consider vortex rings of ring-radius R and core-radius δ, with

circulation Γ and Reynolds number Re = Γ
ν , where ν is the kinematic viscosity of the

fluid. Unless otherwise stated, simulations are initiated with a vorticity distribution

given by

ωθ(r, z) = Γ
πδ2 exp

(
z2 + (r −R)2

δ2

)
, ωz(r, z) = 0, (3.53)

where r = x2 + y2 and θ = tan−1(y/x). As a result, the vortex ring initially

translates in the positive z-direction due to its self-induced velocity [55].

The numerical experiments discussed in this section are initialized by first specifying

an initial discrete vorticity, w0, and then using Eq. (3.45) to obtain an initial discrete

velocity perturbation, u0. This procedure naturally leads to a u0 that is compatible

with the IF-HERK method, i.e. G†u0 = 0. The initial active domain is chosen such

that the |ω| < 10−10 outside the Dsupp. In order to avoid significant numerical

artifacts due to the jump in the direction of the vorticity field at the ring origin, we

limit our attention to vortex rings for which |ωcenter| < 10−10 max |ω|, where ωcenter

is the value of ω at the center of the ring. For the case of Eq. (3.53), this condition

is satisfied for δ/R < 0.2.

Provided a sufficiently large initial active domain, any sufficiently accurate process

for computing w0 from ω0 can be used to initialize the numerical simulations. Yet
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it is convenient to use a process that naturally leads to a w0 such that Dw0 ≈ 0. In

the absence of any numerical errors, w̃0 = Cu0 is equal to w0 if and only if Dw0 = 0.

For the case of Dw0 6= 0, the support of w̃0 is typically larger than the support of w0,

which in turn leads to larger active domains and complicates initial error estimates,

i.e. |w0| < ε in Dsupp does not imply |w̃0| < ε in Dsupp. Provided ∇ · ω = 0, it is

possible to construct w0 such that the magnitude of Dw0 is less than a prescribed

tolerance by computing approximate values of the vorticity flux over the faces of the

dual grid and applying the Divergence theorem to each dual cell.18 For all test cases,

a high-order quadrature scheme is used to integrate the initial vorticity distribution

over the faces of the dual grid such that the resulting w0 satisfies ‖Dw0‖∞ ≈ 10−10.

Test cases are performed using nb = 16 and Nb = 1. This choice of parameters leads

to εFLGF < 10−8 for all values of ∆x, ∆t, and Re considered. The values of εsupp and

εE are taken to be εsupp = 0.1ε∗ and εE = ε∗. The value of ε∗ is varied across different

sets of simulations, but is always such that 10−8 ≤ ε∗ ≤ 10−2. The support domain

Dsupp is computed using Eq. (3.42a) and Eq. (3.43a), and the solution domain Dsoln

is set to be equal to Dsupp. It follows from our choice of parameters that the overall

solution error is always bounded above by ε∗.19

With the exception of a few test cases discussed in Section 3.6.1, all numerical

experiments are performed using the IF-HERK scheme denoted as “Scheme A” in

Section 3.3.2. The time-step size, ∆t, is held fixed during each simulation and chosen

such that the CFL, based on the maximum point-wise velocity magnitude, does not

exceed 0.75. Unless otherwise stated, the freestream velocity, u∞, is set to be zero.

18The dual grid corresponds to a copy of the original staggered grid that has been shifted by half
a grid cell in each direction. Cells, faces, edges, and vertices of the original grid can be regarded as
vertices, edges, faces, and cells, respectively, of the dual grid.

19The solution error, as defined in Section 3.5, should not be confused with the error of the
solution.
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3.6.1 Discretization error

The order of accuracy of the discretization techniques is verified using spatial and

temporal refinement studies on the early evolution of vortex rings at Re0 = 1,000

with initial vorticity distributions given by

ωθ(r, z) =

 α Γ
R2 exp

(
−4s2/(R2 − s2)

)
if s ≤ R

0 otherwise
, ωz(r, z) = 0, (3.54)

where s2 = z2 + (r − R)2 and α is chosen such that ωθ integrates to Γ, i.e. α '

0.54857674.20 Test cases are performed using fixed grids that are sufficiently large

such that at any time-step of the simulation the active domain corresponds to a

value of ε∗ less than 10−8.

We use εu = ‖u − TFu∗‖∞/‖u∗‖∞ and εp = ‖p − TCp∗‖∞/‖p∗‖∞ to approximate

the error at time T of the velocity field, u, and the pressure field, p, respectively.

The superscript ∗ is used to denote grid functions obtained from the test case with

the highest resolution, i.e. smallest ∆x or ∆t, included in the corresponding refine-

ment study. Point-wise comparisons between grid functions at different refinement

levels are made possible through the use of the coarsening operators TF and TC .

Finally, we define ‖x‖∞ as the maximum value of |x(n)| for all n associated with

grid locations in Dsoln.

The spatial refinement study consists of seven test cases corresponding to ∆x/∆x0 =

20, 2−1, . . . , 2−6. Test cases are performed using the same ∆t, and εu and εp are

evaluated at T = 10∆t. The computational grids are constructed such that the

location of vertices of coarser grids always coincide with the location of vertices of

finer grids. This enables the coarsened solution fields TCp∗ and TFu∗ to be computed

by recursively averaging the values of the 8 (4) fine grid cells (faces) occupying the

same physical region as the corresponding coarse grid cell (face). The slope of the

20The computational cost of the spatial convergence tests are reduced by using “fat” vortex
rings such as those given by Eq. (3.54), which, unlike similar “fat” rings given by Eq. (3.53), are
continuous and differentiable at the origin.
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Figure 3.3: Velocity error, εu, and pressure error, εp, for test cases. Spatial refine-
ment study verifies second-order accuracy of the spatial discretization technique (left).
Temporal refinement studies verify the expected order of accuracy of the three time
integration schemes defined in Section 3.3.2 (right).

error curves depicted in the left plot of Figure 3.3 verifies that the solutions are

second-order accurate in ∆x.

Temporal refinement studies are performed for the three IF-HERK schemes, Scheme

A–C, included in Section 3.3.2. For each scheme, a series of eight test cases is per-

formed using ∆t/∆t0 = 20, 2−1, . . . , 2−7. All test cases employ the same computa-

tional grid, and εu and εp are evaluated at T = 10∆t0. Consequently, TF and TC

are taken to be identity operators. The slopes of the error curves depicted in the

right plot of Figure 3.3 verify that the accuracy with respect to ∆t of each scheme is

the same as the order of accuracy expected from the IF-HERK order-conditions.21

3.6.2 Quality metrics for thin vortex rings

In this section we consider the laminar evolution of a thin vortex ring at Re0 = 7,500

initiated with δ0/R0 = 0.2. Six test cases for different values of ∆x and ∆t are

performed. The ratio ∆t/∆x = 0.5734R0/Γ0 is held constant across all test cases.

21We note that the spatial discretization error associated with the computational grid is signif-
icantly larger than the temporal discretization error for some test cases. This does not affect the
present refinement studies since the spatial discretization error is the same for all test cases and
our error estimates are computed as the difference of two numerical solutions.
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Unlike the numerical experiments of Section 3.6.1, the grid is allowed to freely adapt

as the solution evolves. For all test cases, ε∗ is taken to be 10−6, which is significantly

smaller than the discretization error inferred from the discussion of Section 3.6.1.

The evolution of isolated vortex rings is often characterized by the time-history of a

few fundamental volume integrals. Quantities considered in the following numerical

experiments include the hydrodynamic impulse I, the kinetic energy K, enstrophy

E , the helicity J , the Saffman-centroid X , and the ring-velocity U . Expressions for

these quantities for unbounded fluid domains and exponentially decaying ω fields

are given by [55]:

I(t) = 1
2

∫
R3

x× ω dx,

K(t) =
∫
R3

u · (x× ω) dx,

E(t) = 1
2

∫
R3
|ω|2 dx,

J (t) =
∫
R3

u · ω dx,

X (t) = 1
2

∫
R3

(x× ω) · I
|I|2 x dx−

∫ t

0
u∞(t′) dt′

U(t) = dX
dt
.

(3.55)

The hydrodynamic impulse, I, is a conserved quantity in the absence of non-conser-

vative forces [55]. As a result, I provides a useful metric for assessing the accuracy

and physical fidelity of numerical solutions. The time rate of change of K is related

to E by the relationship d
dtK = −2νE . Differences in the time history of d

dtK between

different numerical simulations of the same flow are commonly used to characterize

the accuracy of solutions of unsteady flows [73–75]. In the absence of viscosity, the

helicity, J , is an invariant of the flow and provides a measure for the degree of

linkage of the vortex lines of the flow [76]. Although the present simulations con-

sider viscous flows, differences in J between test cases of the same flow are used

as part of our quality metrics. Our definitions for the vortex ring centroid, X , and

propagation velocity, U , are equivalent to those used by Saffman [55, 77]. Although

all the integrals of Eq. (3.55) are formally over R3, they can be accurately computed

for solutions obtained by the NSLGF method since the support of the integrands is
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approximately contained in Dsoln.22

Figure 3.4: Time histories of E , K, Iz, and Uz (respectively, left to right) for a vortex
ring at Re0 = 7,500 initiated with δ0/R0 = 0.2. Numerical experiments are performed
using different values of δ0/∆x while holding ∆t/∆x constant.

Table 3.3: Maximum difference in E , K, Iz, and Uz during tΓ0/R
2
0 ∈ [0, 40] between

test cases with δ0/∆x < 24 and the test case with δ0/∆x = 24. Listed differences have
been normalized by the maximum value of the respective quantity during tΓ0/R

2
0 ∈

[0, 40].

δ0/∆x E K Iz Uz
4 1.8× 10−2 1.5× 10−2 7.5× 10−6 4.9× 10−3

8 4.0× 10−3 3.5× 10−3 6.6× 10−6 4.8× 10−4

12 1.5× 10−3 1.3× 10−3 4.8× 10−6 1.7× 10−4

16 6.0× 10−4 5.3× 10−4 4.4× 10−6 7.3× 10−5

20 2.0× 10−4 2.2× 10−4 2.3× 10−6 2.7× 10−5

The time history for the values of E , K, Iz, and Uz, where subscripts “q” denotes the

component of a vector quantity in q-th direction, are shown in Figure 3.4. The values

for J and the components of I and U in the x- and y-directions were also computed,

but are not depicted since the magnitude of these values remained less than 10−8,

which is significantly smaller than ε∗, for all test cases. Visual inspection of the

curves included in Figure 3.4 suggests good agreement between all tests cases. This

is quantified by Table 3.3, which lists the maximum difference between test cases

22Numerical solutions set the vorticity outside the computational to be zero. As a result, the only
error involved in evaluating the integrals of Eq. (3.55) is the error resulting from their discretization.
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with δ0/∆x < 24 and the test case with δ0/∆x = 24.

Figure 3.4 demonstrates that E , K, and Uz are most sensitive to changes in the

resolution at early times, tΓ0/R
2
0 ∈ [0, 15]. We attribute this to the rapid changes

in the vorticity distribution observed shortly after the ring is initiated. For cases

initiated with finite values of δ/R, it is well-known that vortex rings undergo an

“equilibration” phase shortly after being initiated [73, 74, 78].23 During this phase,

vorticity starts to be shed into the wake and, over time, the core region of the ring

assumes a more relaxed axisymmetric vorticity distribution in which ωθ is no longer

symmetric, but instead skewed so as to concentrate the vorticity away from the ring

center. After the equilibration phase, i.e. approximately after tΓ0/R
2
0 > 15 for test

cases under consideration, the ring assumes a quasi-steady distribution that persists

until the growth of linear instabilities causes the ring to transition into turbulence.

This transition does not occur during the simulation time of the present study, but

will be investigated in Section 3.6.4.

For each test case, the value of I remained nearly constant throughout the simulation

time, only exhibiting deviations on the same order as ε∗ (taken to be 10−6 for all

test cases). Interestingly, the value I appears to be insensitive to changes in ∆x, at

least when maintaining ∆t/∆x constant, as demonstrated by Table 3.3. We refrain

from speculating on whether the present method results in additional conservation

properties beyond those mentioned in Section 3.2.1, since such investigations are

beyond the scope of the present work. Instead, we simply note that I appears to

be conserved approximately up to the solution error, i.e. ε∗, which further verifies

the physical fidelity of solutions obtained using the NSLGF method.

The difference between the LHS and RHS of d
dtK = −2νE is often used as a metric

for the spatial discretization error. The maximum value of
∣∣∣ ddtK − (−2νE)

∣∣∣ / (2νE)

23Vortex rings initiated with vorticity distributions given by Eq. (3.53) are only solutions to the
Navier-Stokes equations in the limit of δ/R→ 0.
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for tΓ0/R
2
0 ∈ [0, 40] is 6.8× 10−2, 2.1× 10−2, 9.6× 10−3, 5.3× 10−3, 3.4× 10−3, and

2.3×10−3 for the tests cases considered, sorted in ascending order of δ0/∆x. Values

for dK
dt and 2νE were computed at each half-time step using standard second-order

differencing and averaging, respectively.

3.6.3 Propagation speed of thin vortex rings

The results of this section verify that the solutions obtained using the NSLGF

method are indeed physical solutions to the incompressible Navier-Stokes equations.

The translational speed of laminar vortex rings has been extensively studied through

experimental, numerical, and theoretical investigations [55, 73, 79–81]. Saffman

[77] showed that the propagation speed of viscous vortex rings with a vorticity

distributions given by Eq. (3.53), in the limit of δ/R→ 0, is

USaffman = Γ0
4πR0

[
log

(8
ε

)
− β0 +O (ε log ε)

]
, (3.56)

where ε = δ/R, β0 = 1
2 (1− γ + log 2) ' 0.557966, and γ ' 0.577216 is Euler’s

constant. Subsequent numerical [73] and theoretical [82] investigations have shown

that the error term is actually smaller, and is given by O
(
ε2 log ε

)
.

Figure 3.5: Propagation speed of thin vortex rings at Re0 = 7,500 for the different
values of ε = δ0/R0 (left). Difference between the computed values at Re0 = 7,500, Uz,
and the theoretical estimates, USaffman, for propagation speed of vortex rings (middle).
Time history of the propagation speed of vortex rings initiated with δ0/R0 = 0.1 at
different Re (right).
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The initial propagation speed of vortex rings, taken to be Uz as defined in Eq. (3.55),

is computed for test cases at Re0 = 7,500 that have been initiated with ε =

0.2, 0.1, 0.05, 0.025, and 0.0125. For all test cases, δ0/∆x = 20, ∆tΓ0/R
2
0 = 10−6

and ε∗ = 10−6. Values of Uz are computed via central differencing the values of

X between adjacent time-steps. The value Uz at t∗ = ∆t/2 for each test case is

shown in the left plot of Figure 3.5. Visual inspection indicates good agreement

between Uz and USaffman, which in turn verifies that numerical solutions obtained

by the NSLGF method approximate actual physical solutions.

We further verify the present formulation by confirming the form of the error term

of USaffman, i.e. O
(
ε2 log ε

)
. Theoretical estimates for the effective ring and core

radii for early times24 indicate that, at time t∗, the ring and core size have not

deviated enough from their initial values to significantly affect the value USaffman

as to hinder the present comparison. The middle plot of Figure 3.5 shows the

difference in the ring propagation speed between the numerical experiments, Uz,

and theoretical estimates, USaffman. For large values of ε, i.e. ε > 0.05, the rate

of change of ∆Ũz = (USaffman − Uz)R0/Γ0 with respect to ε is consistent with the

theoretical O(ε2 log ε) error estimate. On the other hand, for ε < 0.05 the observed

rate of change of ∆Ũz with respect to ε suggests the error term in Eq. (3.56) is

closer to O(ε2) than O(ε2 log ε). We refrain from attributing any physical meaning

to the difference in the behavior of the error at smaller values of ε since we have not

thoroughly determined the numerical error for such test cases.25

We further verify the present implementation by comparing the time and Reynolds

number dependence of Uz with previously reported theoretical [81] and numerical

24The radius of the core and the vorticity centroid in the radial direction are approximately
2
√
vt and R0 + 3vt/R0 at

√
vt� R0 [81].

25Extrapolating from the results of Table 3.3 to the present tests cases, we estimate that the
error of Uz to be between 10−5 and 10−4. As a result, the assumption that Uz is more accurate
than USaffman might need to be revisited for test cases resulting in values of ∆Ũz < 10−4.
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[73] results. To facilitate the comparisons, it is convenient to define

tΓ = δ2
0

4ν + t. (3.57)

The discussion of [81] provides theoretical bounds on Uz of vortex rings initiated

with δ/R→ 0. In the low-Re limit Uz tends to

UFukumoto,0 = Γ0
4πR0

[
log

(8
η

)
− β0 −

9
5

(
log

(8
η

)
− β1

)(
η

2

)2
]
, (3.58)

and in the high-Re limit Uz tends to

UFukumoto,1 = Γ0
4πR0

[
log

(8
η

)
− β0 − β2

(
η

2

)2
]
, (3.59)

where η = 2
√
νtΓ/R0, β0 is the same as in Eq. (3.56), β1 ' 1.057967, and β2 '

3.671591. For all test cases, δ0/∆x = 15 and ∆t is determined by requiring the initial

CFL to be 0.5. Test cases correspond to vortex rings at Re0 = 100, 200, and 400

that are initiated with δ0/R0 = 0.1. The right plot of Figure 3.5 demonstrates that,

for all test cases, Uz remains bounded between UFukumoto,0 and UFukumoto,1, except

at early times for the case of Re0 = 400 where the numerical Uz slightly exceeds the

UFukumoto,1. This discrepancy is not surprising since the theory of Fukumoto [81]

assumes that the vortex ring is initiated with δ/R → 0, and, as a result, does not

properly account for the changes in the vorticity distribution that occur during the

equilibration phase of vortex rings initiated with finite δ/R. Although not shown

in Figure 3.5, the time history of Uz for all test cases has been compared to the

numerical results of [73], and found to be in good agreement (overlaying the curves

of both investigations reveal nearly identical results).

3.6.4 Finite active computational domain error

In this section, we investigate the effect that our adaptive grid technique has on the

numerical solutions by considering the evolution of thin vortex rings computed using

different values of ε∗. These test cases are used to verify that the solutions converge
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as ε∗ tends to zero and to verify, via comparisons with numerical investigations of

other authors, the physical fidelity of the solutions.

For all test cases, the vortex ring is initiated with δ0/R0 = 0.2 and a constant uniform

flow, u∞ =
[
0, 0, u(z)

∞
]
, is superimposed to partially oppose the translational motion

of the vortex ring. The value of u(z)
∞ R0/Γ0 is taken to be −0.18686, which reduces

the initial speed of the vortex ring by approximately 75%. Solutions are computed

using δ0/∆x = 10 and ∆tΓ0/R
2
0 ≈ 0.01721. The error estimates of Section 3.6.2

indicate that, for all test cases, the discretization error is on the order of 10−3.

Figure 3.6: Time histories of E , K, Iz, and Uz (respectively, left to right) for a vortex
ring at Re0 = 500 initiated with δ0/R0 = 0.2. All parameters, with the exception of
ε∗, are held constant across all test cases.

Figure 3.6 depicts the time histories of E , K, Iz, and Uz for a vortex ring at Re = 500

computed using ε∗ = 10−2, 10−3, 10−4, 10−5, and 10−6. The smooth decay of E and

K indicates that the vortex ring remains laminar throughout the entire simulation

time. This follows from the fact that a pronounced peak in E is observed during

the transition to the early stages of turbulence resulting from a significant increase

in the stretching of vortex filaments [74]. Figure 3.6 verifies that, for laminar flows,

numerical solutions converge as ε∗ tends to zero. For all test cases with values of

ε∗ > 10−2, the error26 in the computed values E , K and Iz is inversely proportional

26 The error is estimated by assuming that the test case corresponding to ε∗ = 10−6 is the true
solution.
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to ε∗ for tΓ0/R
2
0 ∈ [10, 80]. The large oscillations in Uz are due to shifts in X

resulting from the addition or removal of a single layer blocks in the z-direction.

For times at which all test cases exhibit an approximate local minimum in Uz, e.g.

tΓ0/R
2
0 ≈ 70.5, the error in Uz is also inversely proportional to ε∗.

Next, we consider the effect ε∗ has on solutions of unsteady flows that are sensitive

to small perturbations. The numerical investigations of [74, 83] on thin vortex rings

with Gaussian vorticity distributions at Re0 = 7,500 have shown that small sinu-

soidal perturbations to the vortex ring centerline result in the growth of azimuthal

instabilities, which in turn facilitate the laminar to turbulent transition of the flow.

Here, we consider the evolution of a vortex ring at Re0 = 7,500 computed using

values of ε∗ = 10−2, 10−3, 10−4, 10−5, and 10−6. Unlike the numerical experiments

of [74, 83], the vortex ring is initiated without imposing any perturbations beyond

those implied by the numerical scheme.

Figure 3.7: Time histories of E for a vortex ring at Re0 = 7,500 initiated with δ0/R0 =
0.2 (left). Data point labeled as “Archer” where obtained from Archer et al. [74]. All
parameters, with the exception of ε∗, are held constant across all test cases. Vorticity
isosurfaces at tΓ0/R

2
0 = 137.6 for test case ε∗ = 10−4 (right).

The time history of E for all test cases is shown in the left plot of Figure 3.7. The

transition into the early stages of turbulence, characterized by a peak in E resulting

from an increase in the stretching of vortex filaments, is observed for all test cases.

The growth of azimuthal instabilities and the development of secondary or “halo”



81

vortices occurring at beginning of the transition phase [74, 83] are depicted in the

right plot of Figure 3.7.

As expected from the previous test cases for Re0 = 500, the values of E during

the laminar regime for all test cases converge as ε∗ tends zero. Also included in

Figure 3.7 are the values of E reported in the numerical investigations of Archer

et al. [74] for same vortex ring, which are nearly identical to values obtained from

our test cases during the laminar regime.27 Additionally, the vorticity isosurfaces

shown in right plot of Figure 3.7 are qualitatively similar to the vorticity isosurfaces

provided by Archer et al. [74] depicting the nonlinear growth of instabilities. In

particular, the isosurfaces of both investigations demonstrate the noticeable presence

of the n = 1 azimuthal Fourier mode and the presence of halo vortices (isosurfaces

of ωz in Figure 3.7) of similar magnitudes but alternating sign wedged between the

approximately sinusoidally displaced inner-core (isosurfaces of ωθ in Figure 3.7).

The time histories of E shown in Figure 3.7 indicate that the time at which E starts

to increase prior to reaching its peak value, i.e. the time at which the flow starts to

transition, increases as ε∗ decreases, but converges as ε∗ tend to zero. This trend is

an expected consequence of the present adaptive grid technique since the flow field

is slightly perturbed each time a block is removed, i.e. vorticity is implicitly set

to zero outside Dsupp. The magnitude of these perturbations is correlated to the

value of ε∗ used to compute the numerical solution. Over time, the perturbations

introduced by the adaptive grid lead to changes in the flow field that break the

axial symmetry of the solution, which in turn promotes the growth of instabilities.

Figure 3.8 provides vorticity contours at different times that depict the breakdown

of axial symmetry and the subsequent laminar to turbulent transition for a few test

cases.

27In the discussion of Archer et al. [74], the test case corresponding to a vortex ring at Re0 = 7,500
initiated with δ0/R0 = 0.2 is denoted as case “B3”. Unlike the present test cases, the initial vorticity
distribution for case B3 of Archer et al. [74] was slightly perturbed to promote an early transition.
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Figure 3.8: Vorticity magnitude on the y-z plane at x = 0 for test cases of ε∗ =
10−2, 10−4, and 10−6 at different times, t̃ = tΓ0/R

2
0. Contours correspond to values

of |ω|R2
0/Γ0 = 4×

( 1
2
)i for i = 8, 7, . . . , 0. Contours have been shifted the z-direction

to account for the constant freestream velocity, z̃ = z − u(z)
∞ t. Thick lines depict the

boundary of Dxsoln.

Figure 3.8 also depicts the computational domains that result from using differ-

ent values of ε∗. As expected, higher values of ε∗ result in tighter domains, but

lead to some significant changes in the flow that are potentially relevant to specific

applications. For example, Figure 3.8 indicates that using a value ε∗ of 10−2 is

sufficient to accurately track the laminar evolution of the vortex core, but does not

adequately capture the large wake that develops behind the vortex ring.28 We recall

that the computational domain is determined by the particular choice of Wsupp and

εsupp, both of which can be readily modified to accurately and efficiently capture

the relevant physics of specific applications.

Figure 3.9 depicts vorticity isosurfaces during the transition phase (tΓ0/R
2
0 = 137.6)

and early turbulent regime (tΓ0/R
2
0 = 206.4 and 275.2) for the test case of ε∗ = 10−4.

At tΓ0/R
2
0 = 206.4 and 275.2, the presence of multiple thin vortex filaments and

28The maximum length, in terms of R0, of the computational in the z-direction for is approxi-
mately 10, 26, 34, 46, 46 for test case with ε∗ equal to 10−2, 10−3, 10−4, 10−5, and 10−6, respectively.
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Figure 3.9: Translucent isosurfaces of the vorticity magnitude for the test case
of ε∗ = 10−4 at different times. Isosurfaces correspond to values of |ω|R2

0/Γ0 =
0.03125, 0.125, 0.5, and 2.

the absence of a coherent core indicate that the vortex ring is in its early turbulent

regime [74, 83]. A comparison of the vorticity isosurfaces at tΓ0/R
2
0 = 206.4 and

at tΓ0/R
2
0 = 275.2 demonstrates that interwoven vorticity filaments near the core

region are gradually pushed into the wake. As some of these structures are convected

into the wake, they form hairpin vortices which persist for some time in the wake

region. The periodic shedding of hairpin vortices into the wake is consistent with

the numerical investigations of [74, 83], which in turn further verifies the physical

fidelity of our solutions.

3.7 Conclusions

We have reported on a new fast, parallel solver for 3D, viscous, incompressible flows

on unbounded domains based on LGFs. In this method, the incompressible Navier-

Stokes equations are formally discretized on an unbounded staggered Cartesian grid

using a second-order finite-volume scheme. This discretization technique has the

advantage of enforcing discrete conservation laws and producing discrete operators

with mimetic and commutativity properties that facilitate the implementation of

fast, robust solvers. The system of DAEs resulting from the spatial-discretization

of the momentum equation and the incompressibility constraint are integrated in
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time by using an integrating factor technique for the viscous terms and a HERK

scheme for the convective term and the incompressibility constraint. Computation-

ally efficient expressions for the integrating factors are obtained via Fourier analysis

on unbounded Cartesian grids. A projection method that takes advantage of the

mimetic and commutativity properties of the discrete operators is used to efficiently

solve the linear system of equations arising at each stage of the time integration

scheme. This projection technique has the advantage of being equivalent to the LU

decomposition of the system of equations, and, as a result, does not introduce any

splitting-error and does not change the stability of the discretized equations.

In our formulation, solutions to the discrete Poisson problems and integration fac-

tor that are required to advance the flow are obtained through LGF techniques.

These techniques express the solutions to inhomogeneous difference equations as

the discrete convolution between source terms and the fundamental solutions of the

discrete operators on unbounded regular grids. Fast, parallel solutions to the expres-

sions resulting from the application of LGF techniques to discrete Poisson problems

and integrating factors are obtained using the FMM for LGFs of [1].

As a result of our LGF formulation, the flow is solved using only information con-

tained in the grid region where the vorticity and the divergence of the Lamb vector

have non-negligible values. An adaptive block-structured grid and a velocity refresh

technique are used to limit operations to a small finite computational domain. In

order to efficiently compute solutions to a prescribed tolerance, weight functions

and threshold values are used to determine the behavior of the adaptive grid. For

the case of thin vortex rings, this approach results in computational domains that

extend, at most, for approximately two ring radii in the radial direction. This is in

contrast to previous grid-based methods which use a uniform grid to cover a box

domain with lateral dimensions equal to seven [75] and eight [74] ring radii and

impose periodic boundary conditions. In addition to the operation count reductions

resulting from smaller computational grids, the automatically imposed natural free-
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space boundary conditions of the present method circumvent the need to consider

the physical implications of the non-negligible velocity field induced by the infinite

array of vortex rings associated with periodic boundary conditions [74, 75].

The order of accuracy of the discretization and solution techniques is verified through

refinement studies. The physical fidelity of the method is demonstrated in compar-

isons between computed and theoretical values for the propagation speed of thin vor-

tex rings. Additionally, results for the evolution of a thin vortex ring at Re0 = 7,500

from the laminar to the early turbulent regime are shown to be in good agreement

with investigations of other authors.
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APPENDICES

3.A Discrete operators

In this appendix we provide point-operator and Fourier representations for the dis-

crete operators of the present formulation. For operators that map onto RF or

RE , expressions for only one component of the resulting vector fields are provided

since expressions for the other components are readily deduced. In the following

discussion c ∈ RC , f ∈ RF , e ∈ E , and v ∈ RV are arbitrary grid functions.

Point-operator representation based on the indexing convention depicted in Fig-

ure 3.1 are as follows:

Discrete gradient operators:

G : RC 7→ RF , ∆x[Gc](1)
i,j,k = ci+1,j,k − ci,j,k, (3.60)
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G = −D† : RV 7→ RE , −∆x[D†v](1)
i,j,k = v(1)

i,j,k − v(1)
i−1,j,k. (3.61)

Discrete curl operators:

C : RF 7→ RE , ∆x[Cf](1)
i,j,k = f(2)

i,j,k − f(2)
i,j,k+1 + f(3)

i,j+1,k − f(3)
i,j,k, (3.62)

C = C† : RE 7→ RF , ∆x[C†e](1)
i,j,k = e(2)

i,j,k−1 − e(2)
i,j,k + e(3)

i,j,k − e(3)
i,j−1,k. (3.63)

Discrete divergence operators:

D : RE 7→ RV , ∆x[De]i,j,k = e(1)
i+1,j,k + e(2)

i,j+1,k + e(3)
i,j,k+1 −

3∑
q=1

e(q)
i,j,k, (3.64)

D = −G† : RF 7→ RC , −∆x[G†f]i,j,k =
3∑
q=1

f(q)
i,j,k − f(1)

i−1,j,k − f(2)
i,j−1,k − f(3)

i,j,k−1. (3.65)

Discrete Laplace operators:

LC : RC 7→ RC , LC = −G†G, LV : RV 7→ RV , LV = −DD†, (3.66)

LF : RF 7→ RF , LF = −GG† − C†C, LE : RE 7→ RE , LE = −D†D− CC†. (3.67)

Expressions for [LCc], [LVv], [LF f](`), and [LEe](`) are of the form:

(∆x)2[La]i,j,k = −6ai,j,k +
∑

q∈{−1,1}
(ai+q,j,k + ai,j+q,k + ai,j,k+q) . (3.68)

Discrete nonlinear operator :29

Ñ : RF 7→ RF , [Ñ(f)](1)
i,j,k

= 1
4

∑
q∈{−1,0}

[
e(2)
i,j,k+q

(
f(3)
i,j,k+q + f(3)

i+1,j,k+q

)
− e(3)

i,j+q,k

(
f(2)
i,j+q,k + f(2)

i+1,j+q,k

)]
, (3.69)

where e = Cf.

Linearized discrete nonlinear operator :

29The discrete nonlinear operator presented here is based on the discretization of the convective
term in its rotational form, i.e. ω×u− 1

2∇(u ·u), following the technique described in Zhang et al.
[57]. As discussed in Section 3.2.1, Ñ(f) is an approximation of (∇× f)× f .
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The linearized form of Ñ(f) about a constant uniform base flow, fbase(n, t) = fbase,

is given by Mf ′ = [K(fbase)]Cf ′, where f ′ = f − fbase and

K(fbase) : RE 7→ RF , [[K(fbase)]e′](1)
i,j,k = 1

2
∑

q∈{−1,0}

(
f

(3)
basee

(2)
i,j,k+q − f

(2)
basee

(3)
i,j+q,k

)
.

(3.70)

Discussions regarding the properties of discrete operators are often facilitated by

using a block vector/matrix notation to describe the grid functions and linear op-

erators. Consider the grid spaces X and Y corresponding to either F or E . Using

block vector notation, a vector-valued grid function x ∈ RX is expressed as

x = SX [x̄1, x̄2, x̄3]†, (3.71)

where the q-th block, x̄q, corresponds to the values of the q-th component of x. Each

xq is a scalar real-valued grid function defined on an infinite Cartesian reference grid,

which we denote by RΛ.30 The shift operator SX : RΛ 7→ RX is used to transfer, or

“shift”, the values of grid functions defined on RΛ to RX such that [x](q)(n) = x̄q(n).

Similarly, the transpose of SX , denoted by S†X , transfers values of grid functions

defined on RX to RΛ. The block vector notation and shift operators readily extend to

the case of linear operators. Using block matrix notation, a discrete linear operator

T : RX 7→ RY is expressed as

T = SY [Ti,j ]S†X , i, j = 1, 2, 3, (3.72)

where Ti,j : RΛ 7→ RΛ.

We now turn our attention to the Fourier representations of grid functions and

discrete linear operators. Consider the Fourier series, F, and the inverse Fourier

transform, F−1, given by:

[Fū](ξ) =
∑

m∈Z3

eim·ξū, [F−1û](m) = 1
(2π)3

∫
ξ∈Π

e−iξ·mū(ξ) dξ, (3.73)

30Grid functions in RΛ can also be regarded as functions mapping Z3 to R.
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respectively, where Π = (−π, π)3, u : Z3 7→ R, and û : Π 7→ C. Using block matrix

notation, we extend F and F−1 to the case of grid functions in RX by defining:

FX = diag(F,F,F)SX , F−1
X = S†Xdiag(F,F,F). (3.74)

Next, let Ξ denote the set of all linear operators Q : RΛ 7→ RΛ such that the action

of Q on an arbitrary grid function ū ∈ RΛ is given by

[Qū](n) = [KQ ∗ ū](n) =
∑

m∈Z3

KQ(m− n)ū(m), (3.75)

where KQ : Z3 7→ R is a well-behaved discrete kernel function. Any operator be-

longing to Ξ is diagonalized using F and F−1,

[Qū](n) = [KQ ∗ ū](n) = [F−1(K̂Qû)](n), (3.76)

where K̂Q = FKQ and û = Fu. The block operators of all linear operators used in

the present method belong to Ξ.

3.B Lattice Green’s functions representations

The NSLGF method uses the LGFs GL and GE(α) to computed the action of L−1
Q

and EQ(α), respectively. Fourier and Bessel integrals for GL and GE are given by

(∆x)2GL(n) = 1
8π3

∫
Π

exp (−in · ξ)
σ(ξ) dξ = −

∫ ∞
0

e−6tIn1(2t)In2(2t)In3(2t) dt

(3.77a)

[GE(α)](n) = 1
8π3

∫
Π

exp (−in · ξ − σ(ξ)) dξ = e−6αIn1(2α)In2(2α)In3(2α)

(3.77b)

where σ(ξ) = 2 cos(ξ1) + 2 cos(ξ2) + 2 cos(ξ3) − 6, Π = (−π, π)3, and In(z) is the

modified Bessel function of the first kind of order n.

Insights into the approximate behavior of GL(n) can be obtained by considering the

case of |n| → ∞. Asymptotic expansions in terms of unique rational functions for
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GL(n) are provided in [18]. For example,

(∆x)2GL(n) = − 1
4π|n| −

n4
1 + n4

2 + n4
3 − 3n2

1n
2
2 − 3n2

1n
2
3 − 3n2

2n
2
3

16π|n|7 +O
(
|n|−5

)
,

(3.78)

as |n| → ∞. As expected, the leading order term corresponds to the fundamental

solution of the Laplace operator.

Numerical procedures for efficiently evaluating GL(n) are provided in [1]. Values

for [GE(α)](n) can be readily computed using its Bessel form given by Eq. (3.77b).

Although computing values of GL(n) and [GE(α)](n) can potentially require a non-

trivial number of operations, the FLGF method, used to compute the action of L−1
Q

and EQ(α), employs pre-processing techniques that limit the evaluation of point-wise

values of LGFs to once per simulation.

3.C Stability analysis

Consider the linearization of Eq. (3.20) with respect to v about a uniform, constant

base flow, vbase(n, t) = ũ, for the case of u∞ = 0,

dv′
dt

= [K(ũ)]Cv′ + Gb′, G†v′ = 0, (3.79)

where v = vbase + v′ and K(ũ) is defined by Eq. (3.70).31 The stability analysis

of Eq. (3.79) is facilitated by using a null-space approach to transform the original

DAE index 2 system to an equivalent ODE,

dq
dt

= C†[K(vbase)]q (3.80)

where q = Cv′, v′ = C†s, and LEs = q with s → 0 as |n| → 0. The details

regarding the feasibility and equivalence of this transformation will be discussed in

Section 3.4.1. It is readily verified that the discrete equations corresponding to the

31It is not necessary to linearize the integrating factors present in Eq. (3.20), since they can be
commuted and made to cancel out after the linearization of Ñ.
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HERK method for Eq. (3.79) and for Eq. (3.80) are also equivalent; hence, Eq. (3.79)

and Eq. (3.80) have the same stability region.

The ODE given by Eq. (3.80) is diagonalized by the component-wise Fourier series

FE , defined by Eq. (3.74),

dq̂k
dt

= |ũ|∆t∆x σ(ξ)q̂k ∀i = 1, 2, 3, (3.81a)

σ(ξ) = −i
3∑
j=1

ũj
|ũ| sin ξi, (3.81b)

where ξ ∈ Π = (−π, π)3.32 It follows from Eq. (3.81b) that <(σ(ξ)) = 0 and

|=(σ(ξ))| ≤
√

3 for all ξ ∈ Π. As a result, the linear stability Eq. (3.20) is determined

by the stability of the scalar ODEs:

dy

dt
= iµy ∀µ ∈ (−γ, γ), γ =

√
3 |ũ|∆t∆x . (3.82)

Consider integrating the ODE given by Eq. (3.82) using the HERK method. In

the absence of algebraic constraints, an HERK scheme reduces to a standard ERK

scheme with the same tableau. Consequently, the region of absolute stability for the

ODE of Eq. (3.82) is given by

Ω = {µ ∈ R : |R(iµ)| < 1} , R(z) = 1 + zb† (I− zA)−1 e, (3.83)

where b and A are defined by Eq. (3.22), and e = [ 1, 1, . . . , 1 ] [63]. Eq. (3.83)

implies that the IF-HERK method is linearly stable if the following CFL condition

is satisfied:

CFL = |ũ|∆t∆x < CFLmax, CFLmax = µ∗

γ
(3.84)

where µ∗ = sup (Ω) depends on the RK coefficients of the scheme. For all the

IF-HERK schemes defined in Eq. (3.33), the value of CFLmax is unity.

32In order to simplify the expression for σ(ξ) to the form given by Eq. (3.81a) it is necessary to
account for Dq = 0.
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3.D Error estimates for integrating factors on finite domains

In this appendix we provide estimates for the difference between EQ(α) and

Mγ
QEQ(α)Mγ

Q inside Dγ , which are pertinent to the discussion of Section 3.4.4.

Consider the constant uniform scalar field u ∈ RQ and the domain Dγ , where Dγ

is infinite in the x- and y-directions and semi-infinite in the z-direction. For this

simplified case, it is sufficient to consider the 1D problem of computing

y =
[
E′(α)−M′E′(α)M′

]
u =

[
I−M′E′(α)M′

]
u, (3.85)

where I is the identity operator,

E′(α)u = G′E(α) ∗ u, G′E(n) = e−2αIn(2α), (3.86)

and

[M′u](k) =

 u(k) if k > 0

0 otherwise
. (3.87)

As a result, the magnitude of the normalized difference, d, at k > 0 is given by

d(k) = y(k)
|u|

=
∞∑
j=0

e−2αIk−j+1(2α), (3.88)

where |u| is the magnitude of the uniform field u. Numerical approximations for

d(k) are obtained by truncating the infinite sum of Eq. (3.88) to a finite number of

terms, N , such that Ik−N+1(2α)/Ik+1(2α) is less than a prescribed value.33

As discussed in Section 3.4.4, the current implementation of the NSLGF method

uses Eq. (3.88) to estimate the error associated with approximating EQ(α)u by

Mxsoln
Q EQ(α)Mxsoln

Q u, where u is the velocity perturbation field. For this case, |u| in

Eq. (3.88) is set to be the maximum value of any component of u in Dsoln. Numerical

experiments of flows similar to those considered in Section 3.6 demonstrate that this

technique leads to fairly conservative error estimates; in all experiments the actual

33For a fixed z > 0, In(z) decreases as n increases. For a fixed z > 0, In(z) decays faster than
any exponential as n→∞.
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error was less than 10% of the estimated error. Tighter error bounds that account

for the domain shape and the distribution of u can potentially be obtained, but are

not explored in the present work.

3.E Computation rates and parallel performance

The parallel performance of a MPI-based implementation of the present flow solver

is investigated by computing a thin δ0/R0 = 0.2 vortex ring at Re0 = 7,500 using

different grid resolutions and core counts. Depicted in Figure 3.10 are the compu-

tation rates and parallel efficiencies of an average HERK stage computed on the US

Army Research Laboratory’s Cray XC40 (Excalibur) cluster. The parallel efficiency

for each test series of constant problem size is reported as

e(p) = pmin
p

T (pmin)
T (p) , (3.89)

where p is the number of cores, pmin is the minimal number of cores considered in

the test series, and T (p) is the wall-time. Values are averaged over the first 100

time-steps and the problem size of each test case held constant by disabling the grid

adaptivity.

Figure 3.10: Average computation rates (left) and parallel efficiencies (right) for a
single HERK stage of a thin δ0/R0 = 0.2 vortex ring at Re0 = 500 computed using
different grid resolutions and core counts. Each test series, depicted as points of the
same color, corresponds to multiple test cases performed with same grid resolution,
but with different core counts.
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Figure 3.10 demonstrates that for appropriate problem size to core count ratios the

present implementation achieves good parallel efficiency even for problems involving

approximately 1010 grid cells and 3×104 cores. Based on the left plot of Figure 3.10

we expect parallel efficiency above 80% for flows computed using at least 2×105 grid

cells per core. This constraint on the parallel efficiency of the flow solver is expected

from the numerical experiments reported for FLGF method [1] and consistent with

the parallel considerations of other FMM-based solvers [36, 37].

3.F Thin vortex ring at Re = 20,000

As a final demonstration of the capabilities of the LGF flow solver, we compute

the evolution from the laminar to the early turbulent regime of a thin δ0/R0 = 0.1

vortex ring at Re0 = 20,000. Recent direct numerical simulations [74, 83, 84] have

considered the evolution of thin vortex rings at Reynolds numbers between 5,000

and 10,000. To our knowledge this is the first reported direct numerical simulation

of a viscous, incompressible vortex ring at a Reynolds number above 10,000.

In contrast to the initially unperturbed vortex rings reported in Section 3.6, a small

perturbation to the centreline path of the ring has been added, i.e. the ring radius is

now R′(θ) = R+ ε(θ), to break the initial axial symmetry and promote the laminar

to turbulent transition of the flow. Here, we follow the perturbation procedure of

Archer et al. [74] and consider perturbations of the form ε(θ) = ζfN (θ), where fN (θ)

is the superposition of the first N Fourier modes (excluding the zeroth mode) each

with unit amplitude and random phase. Perturbation amplitudes of ζ = 10−5 are

imposed on the first N = 32 azimuthal modes of the initial vortex ring considered

in this section.

Depicted in Figure 3.11 is the enstrophy time history of the vortex ring obtained

using different grid resolutions. The curves for δ0/R0 = 16 and δ0/R0 = 20 are vi-

sually indistinguishable up to the point of transition, and result in enstrophy peaks

with nearly identical shapes. This indicates that the fine scales resulting from the
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Figure 3.11: Time history of E for a vortex ring at Re0 = 20,000 initiated with
δ0/R0 = 0.1 computed using different grid resolutions (left). Vorticity iso-surfaces
at tΓ0/R

2
0 = 127 and tΓ0/R

2
0 = 174 for the test case computed using δ0/∆x = 20

(right). Iso-surface color based on the stream-wise vorticity.

stretching vorticity filaments during the transition phase are well-resolved by the

test case using δ0/R0 = 20. Past the enstrophy peak, e.g. tΓ0/R
2
0 ≥ 150, the curves

for all test cases diverge, which is expected from the sensitivity of instantaneous

measurements of turbulent flows to small perturbations. The creation of fine vor-

ticity filaments during the transition phase is confirmed by visual inspection of the

vorticity strength isosurfaces shown in Figure 3.11 for tΓ0/R
2
0 = 127. Also shown

by the isosurfaces included in Figure 3.11 is the loss of a coherent ring core and the

wrapping of thin vorticity filaments about the new nominal core region during the

early turbulent regime, e.g. tΓ0/R
2
0 = 174, which are expected from the Re0 = 7,500

test cases discussed in Section 3.6.4. As a point of reference, approximately 2.25×108

grid cells split across 2,048 cores were used to compute the δ0/R0 = 20 test case at

tΓ0/R
2
0 = 174.
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Chapter abstract

A new parallel, computationally efficient immersed boundary method for solving three-
dimensional, viscous, incompressible flows on unbounded domains is presented. Im-
mersed surfaces with prescribed motions are generated using the interpolation and reg-
ularization operators obtained from the discrete delta function approach of the original
(Peskin’s) immersed boundary method. Unlike Peskin’s method, boundary forces are
regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The
incompressible Navier-Stokes equations are discretized on an unbounded staggered
Cartesian grid and are solved in a finite number of operations using lattice Green’s
function techniques. These techniques are used to automatically enforce the natu-
ral free-space boundary conditions and to implement a novel block-wise adaptive grid
that significantly reduces the run-time cost of solutions by limiting operations to grid
cells in the immediate vicinity and near-wake region of the immersed surface. These
techniques also enable the construction of practical discrete viscous integrating factors
that are used in combination with specialized half-explicit Runge-Kutta schemes to
accurately and efficiently solve the differential algebraic equations describing the dis-
crete momentum equation, incompressibility constraint, and no-slip constraint. Linear
systems of equations resulting from the time integration scheme are efficiently solved
using an approximation-free nested projection technique. The algebraic properties of
the discrete operators are used to reduce projection steps to simple discrete elliptic
problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast
multipole methods for difference equations. Numerical experiments on low-aspect-ra-
tio flat plates and spheres at Reynolds numbers up to 3,700 are used to verify the
accuracy and physical fidelity of the formulation.

4.1 Introduction

Immersed boundary (IB) methods are numerical techniques for solving PDEs on

Eulerian grids with immersed surfaces that are described by Lagrangian structures
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[85–87]. Immersed surfaces are emulated without modifying the underlying PDE

discretization by the addition of forcing terms and constraint equations resulting

from the regularization of Dirac delta convolutions linking Eulerian and Lagrangian

quantities. In addition to circumventing computationally expensive body-fitted grid

generation, this approach facilitates the extensions of robust and efficient solvers,

e.g. Cartesian-grid methods, to problems involving immersed surfaces. The original

IB method [88] was developed for flexible elastic structures, but has since been

extended to handle more general fluid-structure interactions, including rigid bodies

and bodies with prescribed motions [69, 89–95]. The numerous variants of the IB

method and some of their higher-order extensions are reviewed in [85–87]. Here,

we focus on distributed Lagrange multiplier (DLM) methods [69, 91, 93, 94, 96–98]

since they are particularly robust IB methods for computing flows around bodies

with prescribed motions [87].

DLM methods treat boundary forces as Lagrange multipliers used to enforce pre-

scribed surface boundary conditions. For the case of fluid flows, these methods are

typically expressible in forms analogous to traditional fractional-step and projection

methods and can be distinguished in part by differences in splitting errors, underly-

ing PDEs, discretization schemes, and numerical solvers [87, 93, 94]. The null-space

(discrete streamfunction) projection approach [69] and the Rigid-IBAMR solver [94]

are examples of robust incompressible Navier-Stokes DLM methods free of splitting

errors. The absence of splitting errors ensures that solutions retain the accuracy,

stability, and physical fidelity of the PDE discretization scheme [69, 70, 72, 93, 94].

IB methods for external flows typically employ spatially truncated fluid domains

with approximate free-space boundary conditions, which in turn introduce block-

age errors that adversely affect the accuracy and can even change the dynamics

of the numerical solution [41–44]. Large computational domains in combination

with stretched grids [93, 99, 100], local grid refinement [94, 101, 102], and far-field

approximation techniques [69] are commonly used to reduce blockage errors. In ad-
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dition to increasing the number of computational elements, these techniques often

require the use of numerical solvers that are less efficient than regular-grid solvers

(e.g. FFT techniques, multigrid, etc.) and typically result in discretization schemes

that do not formally share the same conservation, commutativity, orthogonality,

and symmetry properties of standard staggered Cartesian discretizations of infinite

(periodic or unbounded) domains.

In order to eliminate the errors associated with artificial boundary conditions and to

limit operations to small regions dictating the flow evolution (e.g. regions of signifi-

cant vorticity), while preserving the efficiency and robustness inherent to Cartesian

staggered grid methods, we proposed [2] a fast incompressible Navier-Stokes solver

based on the fundamental solution, or lattice Green’s function (LGF), of discrete

operators. Similar to particle and vortex methods, LGF techniques have efficient

nodal distributions, automatically enforce natural free-space boundary conditions,

and can be evaluated using fast multipole methods (FMMs), e.g. the 2D serial

method [11] and the 3D parallel method [1]. Using the LGF-FMM [1] in combina-

tion with an projection technique that is free of splitting errors, the LGF flow solver

[2] computes fast, parallel solutions to the viscous integrating factor (IF) half-ex-

plicit Runge-Kutta (HERK) time integration scheme used to solve the velocity and

pressure of the flow.

The present method numerically solves the IB formulation for the incompressible

Navier-Stokes equations given, in its continuous form, by

∂u
∂t

+ u · ∇u = −∇p+ 1
Re∇

2u +
∫

Γ(t)
fΓ (ξ, t) δ (X (ξ, t)− x) dξ, (4.1a)

∇ · u = 0, (4.1b)∫
R3

u (x, t) δ (x−X (ξ, t)) dx = uΓ (ξ, t) , (4.1c)

where the immersed surface Γ(t) is parametrized by ξ, and X (ξ, t) ∈ Γ(t). The

velocity, pressure, and Reynolds number of the flow are denoted by u (x, t), p (x, t),

and Re. Here, Eq. (4.1c) is taken to be the no-slip condition on Γ(t), where
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uΓ (ξ, t) = [∂X/∂t] (ξ, t).1 The body force term in Eq. (4.1a), with unknown force

density fΓ (ξ, t), is computed so that u (x, t) satisfies Eq. (4.1c). The fluid variables

u (x, t) and p (x, t) are defined for all x ∈ R3, and subject to the boundary condition

u (x, t)→ 0 as |x| → ∞.

Computationally efficient solutions for moving non-deformable (rigid) immersed sur-

faces are facilitated by writing Eq. (4.1) in an accelerating frame of reference (moving

with the body), but with a change of dependent variable to the velocity in the iner-

tial reference frame [103–105]. This change of variable is useful because the velocity

in resulting equations tends to zero a large distances and source terms resulting

from the accelerating reference frame can be absorbed into the non-linear and pres-

sure gradient terms. The governing equations written in the accelerating frame of

reference are give by

∂u
∂t

+ (ua · ∇)(ua + 2Ω× xa) = −∇q + 1
Re∇

2u + δ (Γ(t), fΓ,x) (4.2a)

∇ · u = 0, δ (Γ(t),u, ξ) = uΓ,a (ξ, t) + ur (X (ξ, t) , t) . (4.2b)

Here, x and xa = x−R(t) denote the position vector of a point relative to the origin

of the inertial- and accelerating-frame coordinates, respectively. The accelerating-

frame coordinates are taken to be centered about R(t), to translate with a velocity

U(t) = [dR
dt ](t), and to rotate about R(t) with an angular velocity Ω(t) when viewed

from the inertial frame. For ease of notation, we have re-used the same symbols

for the differentials as in Eq. (4.1), but they now refer to the accelerating-frame

coordinates, i.e. ∂
∂t means differentiation holding xa fixed, ∇ refers to the gradi-

ent in the accelerating-frame coordinates, etc. The vectors u(x, t) and ua(x, t) =

u(x, t) − ur(xa, t), respectively, correspond to the velocity in the inertial and ac-

celerating reference frames, where ur(xa, t) = U(t) + Ω(t) × xa is the velocity of

1For the case of closed immersed surfaces, we limit our attention to prescribed motions that are
volume conserving or, equivalently, surface velocities that satisfy the incompressibility condition∫

Γ(t) uΓ (ξ, t) · n̂(ξ, t) dξ = 0, where n̂ is the surface normal unit vector.
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a point in the accelerating frame relative to the inertial frame. The scalar q(x, t)

is a pressure-like quantity that can be related to the inertial-frame pressure p(x, t),

up to an arbitrary time-dependent constant, using q(x, t) = p(x, t) − 1
2 |ur(xa, t)|

2.

Operators δ (Γ(t), fΓ,x) and δ (Γ(t),u, ξ) are shorthands for the δ-function convo-

lutions of Eq. (4.1a) and Eq. (4.1c). The vectors Xa(ξ, t) = X(ξ, t) − R(t) and

uΓ,a(ξ, t) = uΓ(ξ, t) − ur(Xa(ξ, t), t), respectively, denote the position and corre-

sponding of velocity of a point on Γ(t) in the accelerating reference frame. Lastly, we

clarify that the Eulerian grid and Lagrangian structure used to discretized Eq. (4.2)

are constructed in the accelerating-frame coordinates, which implies that the La-

grangian structure of rigid surfaces can be made stationary with respect to the

Eulerian grid by specifying appropriate values for R(t) and Ω(t). This simplifica-

tion is used to construct efficient solvers and pre-processing techniques that greatly

reduce the run-time cost of practical flows around accelerating rigid surfaces.

In this paper, we extend the unbounded domain LGF flow solver [2] to include im-

mersed surfaces with prescribed motions using a Lagrange multiplier approach. In

Section 4.2, we discuss the discretization of Eq. (4.1) on unbounded fluid domains

emphasizing the modifications to the LGF techniques and IF-HERK time integra-

tion schemes of [2] used to efficiently and accurately include immersed boundaries.

Linear systems of equations arising at each Runge-Kutta stage are solved using the

fast, LGF-based, exact nested projection technique described in Section 4.3. Com-

putationally expensive projection steps are shown to be reducible to simple Poisson,

Poisson-like, or viscous integrating factor problems that are compatible with the

LGF-FMM [1] and make use of LGFs that are readily computed. Significant oper-

ation count reductions for the numerical solutions of discrete elliptic equations are

demonstrated for problems involving the IB regularization and interpolation oper-

ators by limiting operations to small source and target regions near the immersed

surface. Additionally, we discuss the computational considerations of some iterative

and direct solution techniques for the boundary force Schur complement problem ar-
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sing in the nested projection, and demonstrate that for many practical flows around

rigid surfaces a dense linear algebra pre-processing technique results in boundary

force solutions that contribute negligibly to the total run time. In Section 4.4, we

modify the block-wise adaptive computational grid and specialize the adaptivity

criteria [2] to efficiently accommodate immersed surfaces. Finally, in Section 4.5,

we verify the formulation through numerical experiments on flows around flat plates

and spheres at Reynolds numbers up to 3,700.

4.2 Discretization

4.2.1 Immersed boundary method on unbounded staggered Cartesian grids

In this section we highlight important features of the spatial discretization of

Eq. 4.1. Additional details pertaining to the flow discretization and the IB reg-

ularization/interpolation operators are provided in the discussions of the LGF flow

solver [2] and of the IB-DLM methods [69, 93, 94], respectively.

To begin, we formally discretize Eq. (4.2) on an unbounded staggered Cartesian grid

using second-order finite-volume operators,

du
dt

+ N(u, t) = −Gq + 1
ReLFu + [R(t)]f, (4.3a)

Du = 0, [I (t)]u = u, (4.3b)

where u(n, t) and q(n, t) are the discrete velocity and pressure-like variables, i.e.

u ≈ u and q ≈ q, at time t ∈ R≥0 and grid location n ∈ Z3. Operators G,

D, and LF are discrete gradient, divergence, and vector-Laplace operators. The

non-linear operator N(u, t) is a discrete approximation of (ua · ∇)(ua − 2Ω × xa).2

The surface functions f(i, t) and u(i, t) correspond to the discrete body force and

2The present formulation does not assume a particular form or discretization scheme for the
non-linear term (ua · ∇)(ua + 2Ω × xa). For example, standard inertial-frame techniques can be
used to discretize the non-linear term in its divergence form ∇ · (ua(ua + 2Ω × xa)) [103] or in
its rotational form (∇ × u) × ua + 1

2∇|ua|
2 [105]. The numerical experiments of Section 4.5 are

computed using the latter form and the operator stencils provided in [2].
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surface velocity of the i-th Lagrangian marker located at X(ξi, t) ∈ Γ(t), where

i ∈ [1, NL]. We clarify that u(i, t) = uΓ(ξi, t) includes the relative velocity of the

Lagrangian structure with respect to the Eulerian grid uΓ,a(ξi, t) (equal to zero for

rigid surfaces) and the relative velocity of the accelerating-frame with respect to the

inertial-frame ur(Xa(ξi, t), t). The time-dependent interpolation and regularization

operators I (t) and R(t) are constructed by regularizing the δ-function convolutions

of Eq. (4.1a) and Eq. (4.1c). We limit our attention to discretizations of the form

[[I (t)]v](k) (i, t) = (∆x)3 ∑
n∈Z3

v(k)(n, t)δ∆x
(
x(k)
F (n)−X(ξi, t)

)
, (4.4a)

[[R(t)]g](k) (n, t) =
∑

i∈[1,NL]
g(k)(i, t)δ∆x

(
x(k)
F (n)−X(ξi, t)

)
, (4.4b)

where ∆x is the grid cell size, (·)(k) denotes the k-th vector component, x(k)
F (n) is

the location of the k-th face of the n-th grid cell, and δh(x) = h−3∏3
k=1 φ(xk/h) is

a discrete delta function defined as the tensor product of the single-variable kernel

function φ(x). The operators I (t) and R(t) are adjoints (up to a scalar factor)

under the standard inner product, i.e. I (t) = (∆x)3[R(t)]†.

The staggered grid consists of cells (C) and vertices (V) containing scalar flow quan-

tities, and faces (F) and edges (E) containing vector flow quantities. We denote

real-valued grid functions with values on Q ∈ {C,F , E ,V} by RQ, e.g. [u](t) ∈ RF

and [q](t) ∈ RC . Similarly, real-valued functions with vector values specified at each

Lagrangian point are denoted by RΓ, e.g. [f](t), [u](t) ∈ RΓ. The full set of discrete

vector operators used in subsequent discussions is given by the discrete gradients

G : RC 7→ RF and G : RV 7→ RE , the discrete curls C : RF 7→ RE and C : RE 7→ RF ,

the discrete divergences D : RE 7→ RV and D : RF 7→ RC , and the discrete Lapla-

cians LQ : RQ 7→ RQ for all Q in {C,F , E ,V}. The present formulation extensively

makes use of the symmetry (e.g. D = −G†), orthogonality (e.g. Im(G) = Null(C)),

mimetic (e.g. LC = −G†G, LF = −GG†−C†C), and commutativity (e.g. LFG = GLC)

properties of the discretization scheme. Related to these properties is the fact that

the scheme conserves momentum, kinetic energy, and circulation in the absence of
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time-differencing errors, viscosity, and immersed surfaces provided N is suitably dis-

cretized [57, 60]. Under similar provisions, the adjointness of R(t) : RΓ 7→ RF and

I (t) : RF 7→ RΓ also ensures the conservation kinetic energy [85] for the case of

stationary immersed surfaces.

The practical implementation of Eq. (4.3) is facilitated by subtracting 1
2GP(u− ur),

where P(v) is a discrete approximation of |v|2, from both sides of Eq. (4.3a) and by

writing f as −(∆x)3f̃. This yields

du
dt

+ Ñ(u, t) = −Gd + 1
ReLFu + [I (t)]† f̃, (4.5a)

Du = 0, (4.5b)

[I (t)] u = u, (4.5c)

where Ñ(u, t) = N(u, t) − 1
2GP(u − ur), d = q + 1

2P(u − ur), and u(k)
r (n, t) =

u(k)
r (x(k)

F (n), t). The non-linear term Ñ(u, t) is a discrete approximation of (ua ·

∇)(ua + 2Ω×xa)− 1
2∇|ua|

2 = (∇×u)×ua, and has the computational advantage

having values that decay significantly faster at large distances compared to N(u, t);

additional details for inertial-frame flows without immersed surfaces are discussed

in [2]. We call attention to the fact that the discrete equations resulting from the

temporal discretizations of Eq. (4.3) and Eq. (4.5) are, in general, different. But, as

will be shown in Section 4.2.3, the present time integration scheme evaluates Ñ(u, t)

and Gd at the same times, and effectively computes the contributions from these

terms as Ñ(u, t) + Gd = N(u, t) + Gq. This implies that the numerically integrated

solutions to Eq. (4.3) and Eq. (4.5) are equivalent in the absence of finite precision

errors. Lastly, we note that the q(n, t) tends to an arbitrary time-dependent con-

stant (taken to be zero) as |n| → ∞ and discrete pressure p(n, t) can be computed

from q(n, t) using the expression p = q + 1
2 (P(u− ur)− P(ur)).
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4.2.2 Lattice Green’s function technique

In this section we provide an overview of the LGF techniques [1, 2] and some ex-

tensions used to solve inhomogeneous, elliptic difference equations relevant to in-

compressible flows on unbounded domains with immersed surfaces. We consider the

representative problem of the discrete (7-pt) scalar Poisson equation

[Lx](n) = y(n), supp(f) ⊆ D, (4.6)

where both x and y belong to either RC or RV , and D is a bounded region in Z3. The

procedure for solving Eq. (4.6) using the LGF of L is analogous to the procedure

for solving free-space Poisson problems using the fundamental solution of ∇2, i.e.

−1/(4π|x|). The solution to Eq. (4.6) is given by the discrete convolution

u(n) = [GL ∗ f](n) =
∑

m∈D
GL(n−m)f(m), (4.7)

where GL : Z3 7→ R denotes the fundamental solution, or LGF, of L [1, 11].

The present formulation computes the actions of L−1, E(α), and K−1 = [E(−α)L]−1

by evaluating expressions analogous to Eq. (4.7) for the LGFs GL, GE(α), and GK(α),

where E(α) is the operator exponential of L that is used as a viscous integrating factor

in the discussion of Section 4.2.3. Although the action of K−1 can be computed in

two steps either as [E(α)]L−1 or L−1[E(α)], significant operation count reductions

are obtained by directly using GK(α) to evaluate solutions to problems with source

and target regions that are limited to a small neighborhood around the immersed

surface, e.g. the support region of discrete delta functions. This follows from the

fact that the target and source regions of the first and second operator of either

two-step approach must be enlarged in each direction approximately by the size of

the support of GE(α).

The 3D LGF-FMM [1] is used by the present implementation to evaluate discrete

LGF convolutions of the form given by Eq. (4.7). The LGF-FMM method is a ker-

nel-independent, interpolation-based FMM for solving elliptic, constant-coefficient
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difference equations on unbounded Cartesian grids to prescribed tolerances in lin-

ear algorithmic complexity. Computational rates and parallel scaling comparable

to existing fast 3D free-space Poisson solvers have been demonstrated for the case

of GL [1]. LGF-specific computational considerations for problems involving GL and

GE(α) are discussed in [1] and [2], respectively. Here, we note that the fast decay

of GE(α) allows for the nearly identical far-field treatment of GK(α) compared to

GL, since for sufficiently large values |n| the asymptotic expansions of GL(n) [1, 18]

are also accurate approximations to [GK(α)](n).3 Numerical procedures for com-

puting GK(α), and expressions in terms of Fourier and Bessel integrals for all the

aforementioned LGFs are included in Appendix 4.A.

4.2.3 Time integration

Modifications to the IF-HERK time integration technique for incompressible flows

[2] necessary to include immersed surfaces are discussed in this section. We begin

by considering the discrete integrating factor EQ(α) corresponding to the solution

operator of the discrete heat equation dh/dt = κLQh with h(n, t) → 0 as |n| →

∞.4 Taking u to be known at time τ and using the integrating factor HQ(t) =

EQ
(

t−τ
(∆x)2Re

)
, an equivalent expression for Eq. (4.5) for t ≥ τ is given by

dv
dt

+
[
HF (t)

]
Ñ
([

H−1
F (t)

]
v, t
)

= −Gb−
[
HF (t)

][
I (t)

]†
f̃, (4.8a)

G†v = 0, (4.8b)[
I (t)

][
H−1
F (t)

]
v = u, (4.8c)

3The value of [GE(α)](n) decays faster than any exponential as |n| → ∞ for a given
α ≥ 0 [2]. For typical flows, e.g. numerical experiments discussed in Section 4.5 and [2],
α < ∆t/

(
(∆x)2Re

)
. 1; for all α ∈ [0, 1] and |n| > 10, the values of |[GE(α)] (n)| / |[GE(α)] (0)| and

|[GK(α)] (n)− GL(n)| / |GL(0)| are less than 10−7 and 10−9, respectively.

4The solution to dh/dt = κLQh with h(n, t) → 0 as |n| → ∞ is given by h(n, t) =[
EQ
(
κ(t− τ)/(∆x)2) hτ

]
(n, t), where hτ (n) = h(n, τ). An expression for EQ in terms of the Fourier

series operator FQ and the spectrum σL
Q(ξ) of (∆x)2LQ is given by EQ(α) = F−1

Q exp(ασL
Q)FQ [2].
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where v = [HF (t)]u and b = [HC(t)]d. The effect of the HF (t) and H−1
F (t) on

the regularized forces and the no-slip constraint cannot be absorbed into f̃ and u

since, in general, there does not exist an operator M(t) : RΓ 7→ RΓ such that

[HF (t)][I (t)]† = [I (t)]†[M(t)]. This implies that, even for the case of stationary

immersed surfaces, the constraint operators explicitly depend on t. The explicit

temporal dependence of the constraint operators changes the character of the present

system of differential algebraic equations (DAEs), i.e. Eq. (4.8), compared to the

analogous system of DAEs formulated in [2], i.e. Eq. (4.8a) and (4.8b) with f = 0.

As a result, the simplifications to the HERK order-conditions for the case of trivial

immersed surfaces [2] need to be modified in order to develop schemes for Eq. (4.8)

that achieve a prescribed order of accuracy.

HERK methods [63, 66] are used to integrate DAE systems of index 2

dy

dt
= f (y, z) , g (y) = 0, (4.9)

where the product of partial derivatives gy(y)fz(y, z) is non-singular in a neighbor-

hood about the solution, and z is an unknown that must be computed so that y

satisfies g(y) = 0. For the case of Eq. (4.8), or equivalently Eq. (4.5), the operator

gy(y)fz(y, z) is invertible if and only if DG and [I (t)](I − G(DG)−1D)[I (t)]† are

invertible. The invertibility of DG = LC follows from taking u and d to tend to

zero as |n| → ∞ [2], and the invertibility of [I (t)]
(
I− GL−1

C D
)

[I (t)]† is inferred,

for practical flows, from the representative numerical experiments of Section 4.5

and from the discussions of similar operators arising in other IB-DLM methods [4,

69, 93, 94].5 By considering Eq. (4.8) in its autonomous form6 with y = [v, t] and

5The operators that arise in the discretizations [4, 69, 93, 94] are of the form B = [I (t)]A(I−
GL−1D)[I (t)]†, where A is an operator resulting from to implicit treatment of the viscous term.
Previous numerical experiments of [4, 69, 94] have found B to be well-conditioned and solvable
under grid refinement for sufficiently well-spaced IB markers.

6The non-autonomous system Eq. (4.8) can be written as an equivalent autonomous system by
taking t to be part of the solution variables, e.g. y = [v, t], and by augmenting the system of DAEs
by including the trivial ODE dt/dt = 1.
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z = [b, f] reveals that the corresponding partial derivatives fz and gy depend on t

but do not depend either u or z. Simplifications to the general HERK order-con-

ditions for the special case of solely time-dependent fz and gy are well-described in

[65–67]. Tableaus and expected orders of accuracy for four representative schemes

that are used to perform the numerical experiments in Section 4.5 are provided in

Appendix 4.B.

Next, we consider the IF-HERK algorithm obtained using a s-stage HERK scheme

with shifted coefficients ãi,j and shifted nodes c̃i to integrate Eq. (4.8) from tk = k∆t

to tk+1 = (k + 1)∆t. The present IF-HERK algorithm is constructed by including

the additional IB terms to the IF-HERK algorithm of [2]. Introducing the auxiliary

variables

uik(n) =
[
EF
(
−c̃i∆t

(∆x)2Re

)]
vik(n), dik(n) =

[
EF
(
−c̃i∆t

(∆x)2Re

)]
bik(n), ∀i ∈ [1, s], (4.10)

and grouping the constraint variables, RHSs, and operators

λik =

 dik
f̃ik

 , ζik =

 0

u(tik)

 , Qik =
[

G [I (tik)]†
]
, ∀i ∈ [1, s], (4.11)

the k-th time-step of the time integration algorithm, IF-HERK(uk, tk), is as follows:

1. initialize: set u0
k = uk and t0k = tk.

2. multi-stage: for i = 1, 2, . . . , s, solve the linear system (Hi
F )−1 Qi−1

k

(Qik)† 0


 uik
λ̂ik

 =

 rik
ζik

 , (4.12)

where

Hi
F = EF

(
(c̃i−c̃i−1)∆t

(∆x)2Re

)
, rik = hik + ∆t

i−1∑
j=1

ãi,jwi,jk + gik, (4.13)

gik = −ãi,i∆t Ñ
(
ui−1
k , ti−1

k

)
, tik = tk + c̃i∆t. (4.14)
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Variables hik and wi,jk are recursively computed for i > 1 and j > i using

hik = Hi−1
F hi−1

k , h1
k = u0

k (4.15)

wi,jk = Hi−1
F wi−1,j

k , wi,ik = (ãi,i∆t)−1
(
gik −Qi−1

k λ̂ik

)
. (4.16)

3. finalize: set uk+1 = usk, λk+1 = (ãs,s∆t)−1 λ̂sk, and tk+1 = tsk.

Solving Eq. (4.12) is expected to dominate the overall run-time cost of each IF-

HERK stage, and is discussed in the next section.

4.3 Fast linear system solver

4.3.1 Nested projection technique

In this section we demonstrate that Eq. (4.12) is efficiently solved using an operator-

block decomposition that is analogous to standard matrix-block LU decompositions.

Unlike traditional projection and fractional-step techniques [106, 107], which can be

viewed as approximate LU decompositions [70], the present approach is an exact, i.e.

free of operator approximations, projection technique [72]. As a result, the method

is free of “splitting errors” and does not make use of artificial pressure boundary

conditions [2, 69, 70, 72]. In contrast to 2D discrete null-space (discrete stream-

function) methods [69, 72], we do not cast the discrete velocity-pressure equations

into equivalent discrete streamfunction-vorticity equations since for 3D flows both

formulation require solutions to an equal number of discrete Poisson problems but

these are scalar problems in the former and vector problems in the latter. The issue

of which formulation is computationally faster is less obvious in the finite computa-

tional domain algorithm, discussed in Section 4.4, since the discrete velocity in the

velocity-pressure formulation is periodically “refreshed” from the discrete vorticity

by solving a discrete vector Poisson problem. The arguments by the LGF flow solver

[2] supporting the velocity-pressure formulation are readily extended to the present

IB formulation.
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We consider Eq. (4.12) written in terms of both Lagrange multipliers dik and f̃ik,

M i
k


uik
d̂ik
f̂ik

 =


(Hi
F )−1 G (I i−1

k )†

G† 0 0

I i
k 0 0




uik
d̂ik
f̂ik

 =


rik
0

uik

 , (4.17)

where d̂ik/dik = f̂ik/̃f
i
k = ãs,s, uik = u(tik), and I i

k = I (tik). In general,M i
k is not sym-

metric and cannot be symmetrized by rescaling f̂ik since the image of (I i−1
k )† and of

(I i
k)† are different. This is in contrast to similar IB methods, e.g. [69, 93, 94], which

solve symmetric systems of equations analogous to Eq. (4.12). The asymmetry of

M i
k is inherent to HERK integrations of DAE system of index 2 with time-dependent

constraint operators [65, 66].7 Special cases of interest for which M i
k reduces to a

symmetric operator include flows around rigid surfaces and the i-th stage of HERK

schemes with c̃i−1 = c̃i. Lastly, we call attention to the fact that the DAE index 2

conditions discussed in Section 4.2.3 ensure the solvability of Eq. (4.17) [66, 109],

but emphasize that these conditions are satisfied only if [I (t)]
(
I− GL−1

C D
)

[I (t)]†

is invertible. The invertibility of this operator is demonstrated for a few practical

flows in Section 4.5. Additionally, the invertibility of similar operators arising in

other IB-DLM formulations has been discussed and numerically demonstrated for

several practical flows by previous IB methods [4, 69, 93, 94].

Solutions to Eq. (4.17) obtained from an operator-block LU decomposition of M i
k

7Similar asymmetries in the (1, 3) and (3, 1) operators are expected for operators analogous
to M i

k arising from other standard semi-explicit single- or multi-step integration schemes for DAE
systems of index 2, e.g. [63] and references therein. For example, the semi-explicit two-step Adams-
Bashforth method [108] solves Eq. (4.9) as yk+1 = yk + ∆t

2 (3f(yk, zk)− f(yk−1, zk−1)), where the
unknown zk is computed so that 0 = g(yk+1). Here, the regularization operator [I (tk)]† acting
on the unknown body forces included in f(yk, zk) is evaluated at an earlier time (t is part of y)
compared to the interpolation operator I (tk+1) included in g(yk+1).
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can be written in the projection-like form

Aiu∗ = rik

Bid∗ = G†u∗

Cikf
∗ = I i

k [u∗ − (Ai)−1Gd∗]− uik

f̂ik = f∗

d̂ik = d∗ − (Bi)−1G†(Ai)−1(I i−1
k )†f̂ik ,

uik = u∗ − (Ai)−1[Gd̂ik + (I i−1
k )†f̂ik]

(4.18)

where

Ai = (Hi
F )−1, Bi = G†(Ai)−1G, (4.19)

Cik = I i
k(Ai)−1[IF − G(Bi)−1G†(Ai)−1](I i−1

k )†, (4.20)

and IF is the identity operator for RF . Taking in account the mimetic, orthogonality,

and commutativity properties of the discrete grid operators, the nested projection

method Eq. (4.18) is reduced to the more computationally convenient form

LCd∗ = −G†rik (4.21a)

Cik f̂
i
k = I i

kHi
C [rik − G†d∗]− uik (4.21b)

d̂ik = d∗ + L−1
C G†(I i−1

k )†f̂ik (4.21c)

uik = Hi
F [rik − Gd̂ik − (I i−1

k )†f̂ik]. (4.21d)

Similar considerations are used to reduce the force Schur complement operator Cik
to the more computationally efficient form

Cik = I i
k [Hi
F + G(KiC)−1G†](I i−1

k )†, (4.22)

where KC = (Hi
C)−1LC . As an aside, the physical interpretation of Cik and its similar-

ity to analogous operators arising in other IB methods, e.g. [69, 94], are facilitated

by writing the operator as I i
kHi
FS(I i−1

k )†, where S = IF −GL−1
F D = −CL−1

E C is the

orthogonal discrete divergence-free projection operator.

Efficient computations of Eq. (4.21) make use of the flexible source and target regions

of the LGF-FMM. This is particularly relevant to computations of Cik, I i
kHi
C , and

L−1
C G†(I i−1

k )† since the target and source regions can be limited to a small neigh-

borhoods about the support of the discrete delta functions. Since the IB markers
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are confined to a lower dimensional sub-region of the overall computational grid,

significant operation count reductions are expected when compared to schemes that

do not limit the source and target regions of elliptic problems.8 Formal definitions

for the various sub-regions of the adaptive block-wise grid used in the present im-

plementation are discussed in Section 4.4.1.

With the exception of f̂ik, every term in Eq. (4.21) is efficiently computed either using

the point-operator representation of discrete operators or using the LGF-FMM. The

remaining problem of efficient techniques for solving equations of the form Cik f̂ = r

is discussed in the following section.

4.3.2 Force Schur complement solvers

In this section we consider solutions to Cik f̂ = r obtained using either iterative

methods or dense linear algebra techniques. We clarify that although the discussion

of this section describes techniques for solving flows around immersed surfaces with

general prescribed motions, the present implementation only considers the case of

rigid surfaces. Here, it is assumed that for asymptotically large problems the number

of Lagrangian points, NL, scales like N
2
3
E , where NE is the total number of Eulerian

grid cells used in the finite computational domain. Additionally, the action of Cik is

taken to be evaluated in O(NL) by limiting operations of the LGF-FMM solver to

a few grid cells near the immersed surface.

We begin by considering the cases resulting in I i−1
k = I i

k , which include flows

around rigid immersed surfaces and RK stages with c̃i−1 = c̃i. For these cases

Cik is symmetric positive-definite (SPD), which makes the conjugate gradient (CG)

method the natural iterative solver for Cik f̂ = r. This iterative method is used in

8For test cases included in Section 4.5, the typical computational time for Eq. (4.21c) is less
than 50% of that for Eq. (4.21a). Although Eq. (4.21c) typically requires significantly fewer than
50% of the number of operations required by Eq. (4.21a), parallel load balancing aiming to opti-
mize Eq. (4.21a) (most computationally expensive step) results in a parallel work imbalance when
computing Eq. (4.21c).
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[69] to solve for the body forces from similar systems of equations, but, in contrast

to the present technique, each iteration requires O(NE logNE) instead of O(NL).

Estimating the number of iterations to scale like N
1
2
L [69], we expect the body

forces for each RK stage to be computed in O(N
3
2
L ) operations, that is to say,

O(NE) operations. As a result, the overall operation count of the nested projection

technique, i.e. Eq. 4.21, is O(NE).

In order to estimate the computation time of parallel algorithms it is necessary to

account for the parallel scaling of the technique. Similar to most parallel FMMs,

the LGF-FMM requires a minimum number of grid cells per processor, γeff, in order

to sustain reasonable parallel efficiencies, e.g. greater than 80%, as the number

of processes, Np, increases.9 In practice, we expect an approximately constant

NE/Np ≈ γ > γeff, which implies that the action of Cik is computed with NL/Np ≈

αNL/NE ∼ O(N−
1
3 ) grid cells per processor. For sufficiently large problems, NL/Np

will be less than γeff and continue to decrease as the problem size increases; thus, the

CG body force solver is not expected to scale well.10 Provided γ is held constant, we

expect the computation time of evaluating Cik to be O(NE) and of the CG method

be to O(N
1
2
LNE) or, equivalently, O(N2

L) ∼ O(N
4
3
E ).

An alternative approach is to use dense linear algebra to build and factor the matrix

corresponding to Cik, and use its factored form to solve for f̂. For the case of rigid

surfaces, the construction (O(N2
L) operations) and factorization (O(N3

L) operations)

of the matrix C =
[
Cik
]
only needs to be performed once per simulation as a pre-

processing step. In fact, the factored form of C can be reused to compute flows that

share the same geometry, RK tableau, and value of ∆t
(∆x)2Re . Here, the Cholesky

decomposition of the C, i.e. C = LLT where L is a lower-triangular matrix, is

9Here, we define the parallel efficiency as Tp=1/
(
Tp=NpNp

)
, where Tp=n is the wall-time of the

algorithm.

10Most simulations performed in Section 4.5 were performed with γ ≈ γeff and with NL/NE <

10−3 (for fully developed wakes). For these test cases, the parallel efficiency of evaluating Cik can
be estimated to be less than 10%.
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computed in parallel using the ScaLAPACK library [110]. Backward and forward

substitutions can be used to evaluate [̂f] = f = L−TL−1r in O(N2
L) operations, but

the inherent sequential nature of backward substitution limits the parallel speed-up

of this approach. We circumvent this potential bottleneck by explicitly computing

W = L−1 (O(N3
L) operations) as part of the pre-processing step, and solve for f

by evaluating y = Wr and f = WTy using parallel matrix-vector multiplications

(O(N2
L) operations).11 By distributing the columns or rows of W and maintaining

a local copy of r, the parallel matrix-vector multiplication is expected to achieve

nearly perfect parallel efficiency for Np � NL, which is typical for most practical

simulations. As a point of reference, the largest problem considered in Section 4.5,

a sphere defined by approximately 8× 104 IB markers, the average fraction of time

spent evaluating f̂ compared to the rest of Eq. (4.21) was less than 3%.

Asymptotically, the computation time factoring C and inverting L, and the memory

requirements associated with storing W are expected to render the pre-processing

technique less efficient than the CG solver and potentially unfeasible on some com-

putational resources. Yet, for many practical problems, such as the test cases of

Section 4.5, the pre-processing technique is expected to take a small fraction of the

overall computation time and memory, and to yield significantly faster body forces

solutions compared to the CG method.12

11Although possible reductions, up to a factor of two, in the computation time of f are achieved
by pre-computing WTW and evaluating f using a single parallel matrix-vector multiplication, this
approach is expected to lead to a greater amplification of numerical errors compared to the two
step approach described in the main text.

12For the largest simulation in Section 4.5, i.e. sphere at Re = 3700, pre-processing only required
approximately 10% of the total computation time, with less than 10% of the pre-processing time
dedicated to factoring C and inverting L. For this test case, the time spent evaluating Cik (roughly
equal to the time a single CG iteration) is approximately 60% of the time spent computing f =
WT (Wr). Estimating the number of CG iterations to reduce the initial residual by ε to be 1

2
√
κ ln 2

ε

[111], and taking ε = 0.1 (assumes a good initial guess) and κ ' 1.1 × 103 (computed condition
number of C), we expect the CG solver to require 50 iterations and, as a result, to be 30 times
slower than f = WT (Wy).
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The general case of immersed surfaces with prescribed motion requires additional

solution techniques since, for at least one RK stage, Cik is only approximately sym-

metric, i.e. I i−1
k = I i

k+O(∆t). Efficient parallel implementations of Krylov solvers

such as GMRES and BiCGSTAB, and their “flexible” extensions [112, 113], can be

used to solve for f̂ for the case of non-symmetric Cik.13 Another approach that takes

advantage of the efficiency of the CG method is to symmetrize M i
k by introducing

an O(∆t) error so that I i−1
k is replaced by I i

k . Although this O(∆t) approxima-

tion results in solutions that still satisfy the discrete divergence-free and non-slip

constraints, further analysis is required to determine its effect on the global (entire

integration period) accuracy and stability of the solution.

4.4 Adaptive computational domain

4.4.1 Block-wise adaptive grid

The present incompressible flow solver is implemented using the block-wise adap-

tive grid of LGF flow solver [2]. When coupled with the LGF techniques discussed

in Section 4.2.2, this approach has the advantage of limiting the computational

domain to a small, finite region of the unbounded domain that efficiently accom-

modates temporally evolving solutions by dynamically adding and removing blocks.

Errors concentrated near the finite boundaries that result from neglecting values out-

side the finite computation domain are prevented from significantly contaminating

the solution by padding the interior domain with buffer grid cells and periodically

computing (“refreshing”) the algebraically-decaying velocity perturbation from the

exponentially-decaying vorticity [2],

w← Cu, s← L−1w, u← C†s. (4.23)

13Flexible Krylov methods are often used to iteratively solve preconditioned linear systems that
require additional (“inner”) iterations to approximate the action of the preconditioner. For the
present case, one possible preconditioner is the symmetrized version of Cik obtained by approximat-
ing I i−1

k as I i
k , which in turn allows for efficient “inner” CG iterations.
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Estimates for the number of time-steps, Qmax, before u needs to be refreshed from

w are provided in [2], but we note here that for typical schemes multiple time-steps,

e.g. Qmax & 10, can elapse before this refresh operation is required. In the following

discussion, we highlight additional key features of this approach and extend the base

method [2] to efficiently incorporate the immersed surfaces.

Figure 4.1: Depiction of a 2D finite computational grid, solution grid, comprised of
blocks arranged on a Cartesian grid, block grid. Distant view of nested sub-domains
Dflow ⊂ Dxflow and Dbody ⊂ Dxbody, where Dbody ⊆ Dflow and Dxbody ⊆ Dxbody

(left). Zoomed-in view illustrating the union of blocks used to define the domain
(middle). Magnified view of the finite staggered Cartesian grid and IB markers asso-
ciated with a single block (right). Dashed cells surrounding the interior cells of the
isolated block correspond to ghost cells used to facilitate the parallel implementation.

We consider partitioning the unbounded solution grid into blocks arranged on a

Cartesian block grid. Approximate values for each term of the IF-HERK and the

velocity refresh algorithms are computed by limiting the source (domain) and target

(co-domain) regions of discrete operators to the sub-domains depicted in Figure 4.1.

These sub-domains are defined as follows:

• Flow domain Dflow: union of blocks containing non-negligible source terms

for any discrete Poisson problem solved in the present formulation, i.e.

Eq. (4.21a)–(4.21c) and velocity refresh. Flow quantities on Dflow are taken to

be accurate approximations of the corresponding flow quantities that would

have been obtained by numerically operating on the entire unbounded do-
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main.14

• Expanded flow domain Dxflow: union of blocks that are at most Nflow
buf blocks

in any direction from any block in Dflow. The value of Nflow
buf is determined

using the procedure discussed in [2] so that the error in Dflow remains below

a prescribed threshold for the time-steps between velocity refreshes.

• Body blocks Dbody: union of blocks containing grid cells that are at most one

grid cell away from the support of any discrete delta function during a single

time-step. This implies, for example, that all non-zero values of G†[I †(t)] are

contained within Dbody.

• Expanded body domain Dxbody: union of blocks that are at mostNbody
buf ≤ Nflow

buf

blocks in any direction from any block in Dbody. We limit our attention to

the case of Nbody
buf = Nflow

buf = Nbuf, and note that the subsequent discussions

readily extend to the general case of Nbody
buf 6= Nflow

buf .

Unlike domains Dflow and Dxflow which are recomputed only when the grid adapts

[2], domains Dbody and Dxbody are recomputed at every time-step during which the

immersed surface moves.

Summarized in Table 4.1 are the source and target regions used in the present

formulation to evaluate the action of discrete operators with wide, or potentially

wide, stencils (discrete kernels), i.e. L−1
Q , EQ(α), and K−1

Q (α). Similar source and

target region considerations are readily deduced for all other operators, but are not

discussed here since the operation count and propagation of finite boundary errors

associated with these compact-stencil operators are significantly smaller than those

of the operators listed in Table 4.1. Also highlighted by Table 4.1 are the significant

14In general, the solution can be tracked over arbitrary regions that include Dflow; such gener-
alizations are discussed in [2].
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Eq. (4.21a)∗ (4.21b)† (4.21c)† (4.21d) (4.22)† (4.22)† (4.23)
Operator L−1

C Hi
F L−1

C Hi
F (KiF )−1 Hi

F L−1
F

Source Dflow Dxbody Dbody Dxflow Dbody Dbody Dflow

Target Dxflow Dbody Dxflow Dxflow Dbody Dbody Dxflow

Op. Count ML
f→xf 3ME

xb→b ML
b→xf 3ME

xf→xf MK
b→b 3ME

b→b 3ML
f→xf

Op. Scaling O(NE) O(NL) O(NE) O(NE) O(NL) O(NL) O(NE)

Table 4.1: Source and target regions used to approximate the action of non-compact
discrete operators. The number of operations required to compute the action of each
operator is denoted in the second to last row; operation counts for vector operations
are approximated as three corresponding scalar operations. Superscript ∗ indicates
equations originally given in the form Lx = y that are written here as y = L−1x.
Superscript † indicate equations that are not computed for cases without immersed
surfaces.

operation count reductions achieved by taking advantage of the flexible source and

target regions of LGF-FMM for cases involving immersed surfaces with NL � NE .

Temporal variations in the non-negligible support regions of discrete operators are

facilitated by adding and removing blocks to Dflow and Dbody (Dxflow and Dxbody

are updated accordingly). At the end of every time-step, flow quantities on a region

that is a few grid cells greater than Dflow are used to compute the block-wise weight

function Wflow for each block in Dxflow, which in turn is used to define Dflow of the

next time-step,

Dk+1
flow =

{
B : [Wflow(B′)] > εsupp, B

′ ∈ Dk
xflow

}
. (4.24)

Here, we use the block-wise weight function proposed in [2],

Wflow(B) = W (pos(B)) max
B∈Dxflow

(µ(B)/µglobal, ν(B)/νglobal) , (4.25)

where W (pos(B)) is a function of the position of block B,

µ(B) = max
m∈ind(B)

|w(n)|, µglobal = max
B∈Dxflow

µ(B), (4.26a)

ν(B) = max
m∈ind(B)

|h(n)|, νglobal = max
B∈Dxflow

ν(B). (4.26b)

Solution grid variables w = Cu and h = DÑ(u, t) correspond to the discrete vorticity

and divergence of the Lamb vector.
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For the case of W (r) = 1, Eq. 4.25 approximates the maximum normalized residual

of the discrete Poisson problems Eq. (4.21a) and (4.23) resulting from excluding

source terms outside of Dflow [2].15 Accurate solutions to the laminar-to-turbulence

transition of thin vortex rings at Reynolds numbers up to 7,500 resulting in small

solution grids near the ring core are reported in [2] using W (r) = 1. In contrast,

small solution grids are not expected to result from flows around immersed surfaces

computed with W (r) = 1 since vorticity is constantly generated at the surface and

convected downstream. In practice, we are often interested in accurately reproducing

the flow physics in the vicinity of the immersed surface, and are willing to reduce

computational costs by neglecting flow features in far-downstream wake regions

that do not significantly affect the near-surface flow. Point-wise estimates for the

residuals of Eq. (4.21a) and (4.23) based on the asymptotic O(|n|−1) decay of GL

[1] indicate that errors near the immersed surface resulting from

W (r) = 1
max (η,dist(r)) , (4.27)

where η ≥ 1 is a prescribed parameter and dist(r) is the non-dimensionalized

distance from Γ(t), are comparable in magnitude to those resulting from using

W (r) = 1. Unless otherwise stated, subsequent discussions and numerical experi-

ments take Wflow to be given by Eq. (4.25) and (4.27).

4.4.2 Algorithm summary

In this section we summarize the present IB-LGF method for incompressible flows

on unbounded staggered Cartesian grids. The sequence of steps performed in the

IB-LGF algorithm for an s-stage IF-HERK scheme is outlined as follows:

1. Pre-processing [Sec. 4.3.2]: (rigid surface only, optional) for each unique force

15The residuals resulting from neglecting source terms outside Dbody when solving the discrete
Poisson problems in Eq. (4.21c) and (4.22) are zero since, by construction, Dbody contains all
non-zero source terms for these problems.
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Schur complement operator Ĉ ∈
{
Ci,∀ i = [1, s]

}
, build its dense SPD matrix

representation C by applying the operator to each standard basis vector, com-

pute the Cholesky decomposition of C and invert the Cholesky factor L using

ScaLAPACK, and store W = L−1.

2. Time integration: for the k-th time-step:

a) Grid body update [Sec. 4.4.1]: use the prescribed motion of Γ(t) and the

support region of discrete delta functions to compute Dbody and Dxbody

for t ∈ [tk, tk+1].

b) Grid flow update [Sec. 4.4.1]: use Dbody ⊆ Dflow, weight function Wflow,

threshold values εsupp, and wk ← Cuk and hk ← DÑ(uk, tk) to construct

new Dflow. If necessary, update old Dflow and Dxflow by adding or re-

moving blocks. Copy wk from the old to the new solution grid and zero

values on Dbuffer.

c) Velocity refresh [Sec. 4.4.1]: if either Dbody has been updated or the

number of time-steps since last refresh exceeds Qmax, compute uk from

wk using Eq. (4.23).

d) IF-HERK [Sec. 4.2.3]: use xIF-HERK(uk, tk) to compute uk+1, tk+1,

qk+1, and fk+1, where xIF-HERK is the version of the IF-HERK algo-

rithm that restricts the source and target regions of discrete operators

to finite sub-regions of the solution grid, e.g. operations defined in Ta-

ble 4.1. Linear systems arising at each RK stage are solved using the

nested projection technique Eq. (4.21) with an appropriate body forces

solver (Section 4.3.2).

An operation count estimate for a single time-step based on the action of all non-

compact operators, i.e. operators listed in Table (4.1) and C−1, is given by M =

Mflow +Mib, where Mflow is the number of operations used to solve the flow without
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immersed surfaces [2],

Mflow = sML
f→xf + 3C(s)ME

xf→xf + d3ML
f→xfc, (4.28)

Mib is the number of operations required to compute the additional IB terms,

Mib = sML
b→xf + sMC

f→f + 3sME
xb→b, (4.29)

and MC is the number of operations used to solve for the body forces. For a general

s-stage HERK scheme with second-order accurate constraint variables C(s) is equal

to s+ ((s− 1)s) /2− 1 [2]. The last term in Eq. (4.28) is associated with the vector

Poisson solve (roughly equal to three scalar Poisson solves) required by the velocity

refresh procedure, which is not necessarily performed at every time-step as indicated

by the notation d · c. All terms in Eq. (4.28) and (4.29), except forMC
f→f andME

xb→b,

scale as O(NE). The termME
xb→b scales as O(NL) and, for typical flows, is negligible

compared to any of the ML
x terms. Estimates and scaling for MC

f→f are discussed in

Section 4.3.2, but we note here that computation time spent solving for body forces

is less than 3% of the total run time for all test cases included in Section 4.5.

The present MPI-based parallel implementation partitions and distributes the sup-

port of the discrete delta functions according to the block-wise partition and dis-

tribution of the solution grid. Values for all IB markers are taken to be known by

all processors, which is accomplished by having values broadcast before and aggre-

gated after the application of I † and I , respectively. Details regarding the parallel

implementation of the flow solver, i.e. the IB-LGF method without an immersed

surface, are discussed in [1, 2]. Load balancing is performed every time Dflow or

Dxflow are updated. This operation consists of optimizing the most computationally

expensive operations, i.e. Eq. (4.21a) and (4.23), following the procedure described

in [1] with the additional requirement of having all blocks belonging to Dbody be

distributed as equally as possible across all processors.16 Each RK stage of the

16 The assumption that solving Eq. (4.21a) and (4.23) are the most computationally expensive
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representative problems of Section 4.5 is evaluated at a typical computation rate

(normalized by the total number of MPI processes) of approximately 80 micro-sec-

onds per active grid cell or, equivalently, 20 micro-seconds per active flow variable

(3 velocity components and 1 pressure per grid cell).

Lastly, we clarify that the LGF-FMM [1] and the LGF flow solver [2] are direct

solvers that compute solutions to prescribed tolerances based on a set of param-

eters. Aside from convergence criteria required for the case of iterative boundary

force solutions, the IB-LGF method does not depend on any additional parameters

beyond those of the LGF flow solver [2]. Furthermore, having limited our attention

to cases with Dbody ⊆ Dflow, Dxbody ⊆ Dxflow, and Nbody
buf = Nflow

buf ensures that

the procedures of LGF flow solver used to determine appropriate values for all pa-

rameters based on single threshold ε∗ extend to the IB-LGF method. Subsequent

discussions take ε∗ to be equal to the grid adaptivity parameter εsupp.

4.5 Verification examples

Numerical experiments on flows around infinitely thin rectangular flat plates and

spherical shells are used to verify the IB-LGF method. Rectangular flat plates are

generated by a set of IB markers arranged in a 2D uniform Cartesian grid with

a prescribed aspect-ratio AR and angle-of-attack α. Spherical shells, subsequently

referred to as spheres, are generated by placing IB markers at the centroids of the

faces of an icosphere. Icospheres are triangulated surfaces constructed by recursively

subdividing the faces and radially projecting newly created vertices onto the unit

sphere of an initial icosahedron [114]. The ratio of the minimum to maximum

distances between any two IB markers tends to approximately 0.28 after a large

number of subdivisions.

For all test cases, the minimum spacing between any two IB markers, ∆s∗ =

operations is based on the numerical experiments of Section 4.5 for rigid surfaces solved using the
pre-processing technique.
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min∀(i,j) |X(ξi)−X(ξj)|, is taken to be approximately equal to the grid spacing

(1.0 < ∆s∗/∆x < 1.1), and the smoothed version [115] of the 3-pt δh [101] is used

to construct I . Boundary forces are computed using the parameter-free Cholesky

pre-processing technique discussed in Section 4.3.2. Unless otherwise stated, the

adaptivity threshold parameter ε∗ is taken to be 5 × 10−4, a choice that will be

justified in Section 4.5.3. All test cases, except those for the temporal refinement

studies, are performed using the HERK coefficients of Scheme A included in Ap-

pendix 4.B and are subject to the CFL condition |u|∆t/∆x < 1. The time-step

size is specified so that the CFL based on the maximum point-wise velocity remains

below 0.5 and 0.9 for flows at Re ≤ 500 and Re = 3,700, respectively, except for

the first few time-steps of impulsively started flows during which the CFL is allowed

to be approximately equal to unity. We clarify that the average CFL for spheres

at Re = 3,700 is approximately 0.6, which is significantly lower than the large-time

maximum of 0.9.

4.5.1 Discretization error

The convergence rates of the discretization technique is examined through spatial

and temporal refinement studies of flows around spheres of radius D with a pre-

scribed velocity U(t) = (Ux(t), 0, 0),

Ux(t) =


4βU

∫ t

0
e

−1
1−(4t′−1)2

dt′ for 0 ≤ tU
D ≤

1
2

U for 1
2 <

tU
D

, (4.30)

where β ' 2.25228 is taken so that Ux(t) is infinitely differentiable for all t (assuming

Ux(t) = 0 for t < 0). The instantaneous Reynolds number Re = Ux(t)D/ν levels

to a constant equal to 100 for t > 1
2D/U∞. All numerical experiments discussed in

this section are performed using ε∗ = 10−8.

The spatial convergence study is performed using a total of seven test cases, S.I–

S.VII, corresponding to spheres generated by 20×4i−1 for i = 1, 2, . . . , 8 IB markers.

The time-step size, ∆t, is held fixed across all test cases, and chosen so that the
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maximum CFL for S.VII is less than 0.25. Estimates for the errors obtained by

taking S.VII to be the reference, or true, solution are reported in Figure 4.2. As

expected from analysis [116, 117] and numerical experiments [69, 93, 94] of similar

IB methods, the velocity u ≈ u is verified to be first-order accurate in the L∞ norm.

Less intuitive is the fact that the pressure p ≈ p and the net body force F ≈
∑
i fi

also exhibit first-order convergence rates under the L∞ norm.

Figure 4.2: Differences in the velocity (left), pressure (middle), and net body force
(right) for different values of ∆x while holding ∆t fixed. The value of ∆x0 is equal
to ∆x of coarsest test case (S.I).

It is well-known that the spatial smoothing inherent to the regularized delta function

treatment of the immersed surfaces is unable to correctly capture the discontinuous

pressure across interfaces. The spatial regularization resulting from δh has been

shown to lead to O(1) errors in the pressure near the immersed surface [116, 118],

which in turn prevents the L∞ convergence of the discrete pressure to the actual,

continuum pressure. The first-order L∞ convergence rate of the pressure shown in

Figure 4.2 is a consequence of taking the reference solution to be that of S.VII as

opposed to the actual solution to Eq. (4.1). Convergence rates equal or greater to

first-order follow from the fact that the continuum pressure across surfaces regu-

larized by δh(x) is continuous and differentiable (provided a sufficiently smooth δh)

[119]. However, for the present refinement study the convergence rate is at most

first order since the regularization length-scale h is taken to be equal to ∆x of the
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reference (finest) solution and, as a result, will change as progressively finer test

cases are considered.

Next, we consider the slightly greater than first-order convergence rate of the body

forces. Surface stresses obtained from most IB methods are known to exhibit less

than first-order point-wise convergence rates [4, 94, 115] and can even grow as the

immersed surface is refined [4]. Yet, it is also known that the low-order moments

for the surface stresses, such as the net force on the immersed body, are physically

accurate. This is verified by the right plot of Figure 4.2, which shows that the

net body force, F, convergence at a rate that is slightly greater than first-order.

Approximate first-order convergence rates for the net force on rigid surfaces also

have been demonstrated for other IB-DLM methods [4, 94].

Lastly, we report the L2 condition number, κ, of the force Schur complement of the

last RK stage, Cs, for each test case in Table 4.2. As points of comparison, Table 4.2

also includes values for κ resulting from using values ∆s∗/∆x that are smaller (1.00

and 0.95) than those used for S.I–S.VII (1.05). Table 4.2 verifies the intuitive fact,

based on the finite spatial resolution of the fluid solver, that the matrix correspond-

ing to Cs rapidly becomes ill-conditioned for values ∆s/∆x below certain threshold,

which is approximately unity for the present test cases. The heuristic constraint

of requiring ∆s∗/∆x ≥ 1 is not universal across IB-DLM methods; [69] states that

∆s/∆x ≈ 1 results in “reasonable” condition numbers for C-like matrices computed

using the 3-pt δh of [101], and [94] numerically demonstrates that ∆s/∆x ≈ 2 results

in condition numbers for C-like matrices computed using the 6-pt δh of [120] compa-

rable to those listed in Table 4.2 for the case of steady Stokes flow around a sphere.17

We clarify that, in the continuum limit, the boundary integral operator associated

with C has a zero-eigenvalue mode corresponding to the uniform compression of the

sphere. Typically, we expect that the small geometric irregularities, strict symme-

17Condition numbers of O(106 − 107) are reported in [94] for the case of steady Stokes flow
around a sphere with ∆s/∆x ≈ 1.
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try-breaking, and slight porosity18 of numerical immersed surfaces generated using

standard discrete delta functions and well-spaced IB-markers, i.e. ∆s/∆x ≈ 1, to

result in non-singular discrete C operators, even if the continuous version of C is sin-

gular. Small-eigenvalue discrete modes associated with zero-eigenvalue continuous

modes that do not satisfy the continuous divergence-free constraint are expected to

be only a small part of the solution of Cf = r, i.e. the dot product of these modes

with r is small, since r is interpolated from a discrete divergence-free field. Addi-

tional discussions and numerical examples regarding the null-space, or lack thereof,

and conditioning of C-like operators arising in other IB-DLM discretizations are pro-

vided in [4, 94]. Here, the results of Table 4.2 are used to verify the well-posedness

of Eq. (4.8) as a (solvable) DAE system of index 2 and to motivate the nominal

value of ∆s∗ ≈ 1.05∆x used in subsequent numerical experiments.

No. IB markers 20 80 320 1,280 5,120 20,480 81,920
∆s∗/∆x ' 1.05 0.19 0.20 0.18 0.17 0.19 0.44 1.31
∆s∗/∆x ' 1.00 0.19 0.52 0.36 0.42 1.61 1.41 –
∆s∗/∆x ' 0.90 2.06 3.13 1.72 2.69 8.51 27.94 –

Table 4.2: L2 condition number of Cs for different ratios of ∆s∗/∆x. Values of
∆s∗/∆x ' 1.05 are used in the numerical experiments S.I–S.VII.

We now turn our attention to the temporal discretization error. The temporal

convergence studies are performed for each of the four IF-HERK schemes included

in Appendix 4.B, Scheme A – D, for a sphere generated by 1280 IB markers. A

total of nine test cases, T.I – T.IX, of varying time-step size, ∆t/∆t0 = 2−i+1 for

i = 1, 2, . . . , 9, are considered for each scheme. Here, ∆t0 is chosen such that the

maximum CFL of test case T.I is less than 0.5. Error estimates for each test case are

obtained by taking T.IX of the corresponding IF-HERK scheme to be the reference

solution.19 The L∞ norm of the errors, depicted in Figure 4.3, verifies that the

18The no-slip constraint is only enforced at a finite number of points. The velocity at points
located between IB markers is not required to satisfy the no-slip constraint.

19For some cases, the spatial discretization error is significantly larger than the temporal dis-
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computed convergence rates of each IF-HERK scheme with respect to ∆t is equal

to the expected order of accuracy based on the HERK order conditions discussed in

Section 4.2.3 and Appendix 4.B.

Figure 4.3: Differences in the velocity (left), pressure (middle), and net body force
(right) for different values of ∆t while holding ∆x fixed. The value of ∆t0 is equal to
∆t of coarsest test case (T.I). Entries for the velocity error for Scheme B and D that
are below 10−8 are excluded from the left plot since the error for these cases saturates
between 10−9 and 10−8 due to prescribed adaptivity threshold ε∗ = 10−8.

We emphasize that the refinement studies of this section have only verified that

numerical solutions converge at the expected rate under ∆x and ∆t refinements. The

tests cases discussed in the following sections will demonstrate that the computed

solutions are in fact accurate physical approximation to Eq. (4.1).

4.5.2 Flow around low-aspect-ratio rectangular plates

The physical fidelity of the IB-LGF method is verified in this section by comparing

solutions for impulsively-started rectangular flat plates of chord-length c and area

A to previously published results. We begin by considering the experimentally-

validated test cases [121] of flows around plates of AR = 2 at Re = 100 and 0◦ ≤

α ≤ 90◦. Here, test cases are performed taking ∆x = 0.020c, which is comparable

cretization error. This does not affect the present study since the spatial discretization error is
approximately the same for all test cases and our error estimates are computed as the difference of
two test case solutions.
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to the near-surface grid spacing of 0.025c used to compute these flows by other IB

methods [100, 121]. Previous refinement studies and comparisons with experimental

data [121] indicate that the flow is sufficiently well-resolved using the present value

of ∆x.

The left plot of Figure 4.4 demonstrates that the computed drag and lift coefficients,

CD = −Fx/(1
2ρU

2A) and CL = Fy/(1
2ρU

2A), at tU/c = 13 are in good agreement

with previously reported values [100, 121]. The force coefficients from the three

methods are nearly indistinguishable for 0◦ ≤ α ≤ 50◦ and by less than 5% for

60◦ ≤ α ≤ 90◦. The large-time (50 ≤ tU/c ≤ 75) behavior of the mean and

fluctuating components of CD and CL are summarized in the right plot of Figure 4.4.

This plot demonstrates that for 60◦ ≤ α < 90◦ the flow is unsteady and that the

large-time mean forces are significantly different from the instantaneous forces at

tU/c = 13.20 For α = 60◦ and α = 70◦ the flow is periodic with Strouhal numbers

St = Fyc sinα/U equal to 0.13 and 0.11, respectively. In contrast, for α = 80◦ and

α = 90◦ the flow is a aperiodic (at least during 50 ≤ tU/c ≤ 75) since the force

coefficients neither have a constant mean value nor a clear dominant frequency.21

We suspect that the sensitivity of instantaneous measurements of unsteady flows to

small perturbations is responsible for the larger differences across the three numerical

investigations presently considered for test cases with 60◦ ≤ α ≤ 90◦ when compared

to the same differences for test cases with 0◦ ≤ α ≤ 50◦.

Next, we consider impulsively started plates of different ARs at α = 30◦ and Re =

300. Previous numerical experiments on these flows [100, 121, 122] have used grid

spacings of approximately 0.025c in the immediate vicinity of the plate (same as for

20The discussion of [100] regarding the present test cases states that the flow has reached a steady
state at tU/c = 13. A comparison between the force coefficients shown in the left and right plots
of Figure 4.4 indicates that only flows with 0◦ ≤ α ≤ 50◦ have reach a steady state at tU/c = 13.

21The value of CL for α = 90◦ is approximately zero for tU/c < 10 and decreases non-uniformly
(oscillates about local mean) to approximately −3 × 10−3 at tU/c = 75. As a point of reference,
the value of |CL| for α = 0◦ is less than 5× 10−4 throughout the entire simulation period.
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Figure 4.4: Drag and lift coefficients for rectangular flat plates of AR = 2 at Re = 100
and different values of α. Instantaneous values at tU/c = 13 (left). Range (shaded
regions) and mean value (solid circles) of force coefficients during 50 ≤ tU/c ≤ 75
(right).

the previously referenced Re = 100 test cases). Here, each flow is computed using

(A) ∆x = 0.025c and (B) ∆x = 0.015c.

Vortical structures in the wake of plates of AR = 1, 2, and 4 are illustrated as iso-

surfaces of constant vorticity strength in Figure 4.5. The depicted structures are in

good visual agreement with the structures reported in previous numerical experi-

ments for AR = 1, 2, 4 [121] and AR = 4 [100, 122]. Also shown in Figure 4.5 are

snapshots of cross-sectional cuts of the finite computational domains resulting from

the block-wise adaptive computational grid algorithm. As expected from the adap-

tivity criteria discussed in Section 4.4.1, strong vortical regions near the immersed

surface are efficiently tracked by adding and removing computational blocks. For

the test case of AR = 4, the stream-wise length of the union of blocks is approxi-

mately [−1c, 9c] (about the leading edge), which can be compared to the stream-wise

length [−4c, 6.1c] of the finite domain (with approximate boundary conditions) used

in [100, 121].

The large-time (50 ≤ tU/c ≤ 80) temporal statistics for the force coefficients of

the plates depicted in Figure 4.5 are included in Table 4.3. Strouhal numbers of

0.12 for AR = 4 obtained for (A) and (B) are also reported in [100, 121]. For all



128

Figure 4.5: Vortices in the wakes of rectangular flat plates of different ARs at α = 30◦

and Re = 300. Shown above are iso-surfaces of |ω|c/U = 2, 4, 8 at tU/c ' 46.2 com-
puted using ∆x = 0.015c. The union of boxes shown on the x − y plane centered
about the plate center depict the cross-sectional cut of the block-wise adaptive com-
putational domain. Depicted blocks have been coarsened by a factor of two in each
direction for visualization purposes.

ARs, differences in mean force coefficients between (B) and [100, 121, 122] are less

than 12%. The effect of the grid resolution on the accuracy of the solution can be

approximated by comparing the results of the low-resolution test cases (A) with the

results of the high-resolution test cases (B). The values of Table 4.3 indicate that

the differences in mean force coefficients between (A) and (B) are less than 4% for

all ARs. Since the grid resolutions of (A) and [100, 121, 122] are approximately

the same, we suspect that modeling errors resulting from the small computational

domains and approximate boundary conditions used in [100, 121, 122] account for

most of the differences in the mean force values.22

4.5.3 Flow around spheres

In this section we further verify the IB-LGF method by computing flows around

impulsively started spheres. A small perturbation (0, û(t), 0) is introduced to the

nominal velocity of the sphere (U, 0, 0) in order to break axial symmetry. We take

û(t) to be non-zero for 1 < tU/D < 4
3 with values equal to the bump function

22The numerical methods of [121] and [100, 122] use stretched and locally refined grids, respec-
tively, to discretize computational domains of size [−4c, 6.1c]× [−5c, 5c]× [−5c, 5c].
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AR = 1 AR = 2 AR = 4
CD CL CD CL CD ∆CD CL ∆CL St

Present (A) 0.543 0.627 0.504 0.571 0.620 0.018 0.791 0.074 0.118
Present (B) 0.526 0.644 0.488 0.587 0.593 0.016 0.798 0.053 0.124
TC09 [121] 0.56 0.60 0.53 0.57 0.66 – 0.80 – 0.12
WZ11 [100] – – – – – – – – 0.12
WZ13 [122] – – – – – – 0.79 – –

Table 4.3: Drag and lift coefficients, and Strouhal numbers for rectangular flat plates
of different ARs at α = 30◦ and Re = 300. Present (A) and (B) correspond to test
cases computed using ∆x/c = 2.5×10−2 and ∆x/c = 1.5×10−2, respectively. Results
from TC09 – Taira and Colonius [121], WZ11 – Wang and Zhang [100], and WZ13 –
Wang et al. [122] are also provided.

1
10Ue

1−1/(1−τ2) with τ = 8t − 9. Net body forces are reported as non-dimensional

force coefficients Cq = Fq/(1
2ρU

2π(D2 )2) for q ∈ {x, y, z}, and correspond to the drag

(CD = Cx), lateral (CL = Cy), and side (CS = Cz) coefficients.

First, we demonstrate that the grid adaptivity criteria and the nominal threshold

value ε∗ = 5×10−4 accurately capture the unbounded domain flow by only tracking

the solution on a small, finite region near the surface and immediate wake of a

sphere at Re = 300. Periodic flows exhibiting planar symmetry are limited to

a narrow range of Reynolds numbers that has been numerically estimated to be

280 < Re < 375 [123, 124]. The temporal periodicity and spatial symmetry about

the x-y plane of the flow [123, 125, 126] makes this test case a challenging problem

that still permits meaningful force coefficient comparisons.

The time histories for CD and CL, and snapshots of the vorticity field for spheres

generated by 20,480 IB markers (∆x ' 9.33× 10−3) computed with values of ε∗ =

5 × 10−i for i = 2, 3, 4, and 5 are shown in Figure 4.6. The maximum value of

|CS| for 0 ≤ tU/D ≤ 90 is less than 2 × 10−2, 1 × 10−2, 5 × 10−3, and 2 × 10−3,

respectively, for the present test cases sorted in decreasing order of ε∗, which in turn

confirm the expect planar symmetry of the flow. Periodic oscillations in the time

history of force coefficients are clearly observed for ε∗ ≤ 5× 10−4, but not for ε∗ ≥

5× 10−3. The apparent stabilization of the flow for ε∗ ≥ 5× 10−3 is expected from
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the fact that the finite computational domains of these test cases do not support a

complete wavelength of the wake instability. In contrast, the computational domain

of ε∗ = 5× 10−4 supports at least one full wavelength of the instability and is able

to accurately reproduce the large-time mean and oscillatory components of CD and

CL obtained by the most conservative test case, i.e. ε∗ = 5× 10−5.

Figure 4.6: Flow around a sphere at Re = 300 computed using different adaptive
threshold, ε∗, values. Time history of drag and lateral force coefficients (left). Side-
view of finite computational domains at tU/D = 80.3 (right). For each case, the
finite computational domain corresponds to the non-white region near the body and
its wake. For the case of ε∗ = 5× 10−5 the finite computational domain continues for
an additional 15D beyond solid black line.

Quantitative estimates for the errors resulting from non-zero values of ε∗ are com-

puted here as the differences in the force coefficient C between two test cases:

εI(C) = maxt∈TA |C(t)− C ′(t)|, εIIext(C) = |extt∈TBC(t)− extt∈TBC ′(t)| , (4.31)

where TAU/D = [2, 30], TBU/D = [75, 90], and ext is either the minimum (min) or

maximum (max) extremum. Error estimates obtained by taking the force coefficients

of ε∗ = 5× 10−5 to be the reference values are provided in Table 4.4. As expected,

the error associated with neglecting values outside Dflow based on the criteria of

Section 4.4.1 is approximately proportional to ε∗. The results of Table 4.4 indicate

that, in the absence of discretization errors, the forces computed using the nominal
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threshold, ε∗ = 5× 10−4, are accurate up to 0.6% of the actual physical forces.23

ε∗ εI(CD) εIImin(CD) εIImax(CD) εI(CL) εIImin(CL) εIImax(CL)

5× 10−2 0.1600 0.1117 0.1386 0.1038 0.0470 0.0522
5× 10−3 0.0311 0.0269 0.0235 0.0509 0.0108 0.0116
5× 10−4 0.0030 0.0027 0.0022 0.0041 0.0003 0.0002

Table 4.4: Estimates for the error resulting from non-zero values of ε∗ for a sphere
at Re = 300. Reference values, i.e. C ′ in Eq. (4.31), are taken from test case with
ε∗ = 5× 10−5.

Having verified the error of the adaptive grid, we now turn our attention to con-

firming the physical fidelity of the IB-LGF method by comparing with previous

investigations of flow around spheres. Large-time (90 ≤ tU/D ≤ 150) force statis-

tics of spheres computed at Re = 100, 200, and 300 are compared in Table 4.5. The

flow is steady and axi-symmetric at Re = 100, and steady and planar x-y sym-

metric at Re = 250. At Re = 250 and Re = 300 the absence of axial symmetry

results in a non-zero CL. Values computed using a coarse (5,120 IB markers and

∆x ' 1.8 × 10−2) and a fine (20,480 IB markers and ∆x ' 8.8 × 10−3) grid are

shown by Table 4.5 to be consistent with the range of previously reported values.

The spread of values shown in Table 4.5 for spheres at Re = 300 indicates that this

test case is difficult to compute accurately. The large spread of values for ∆CL and

∆CD (largest spread based on relative differences) has been attributed to differences

in the domain size and boundary conditions of different numerical methods [126].

Consistent with this argument are the small differences in ∆CL and ∆CD between

the present (B) results and those of the unbounded domain vortex method [126].

The numerical experiments on spheres discussed thus far have considered the steady

axis-symmetric (Re = 100), the steady planar-symmetric (Re = 250), and the pe-

riodic planar-symmetric (Re = 300) flow regimes. Next we verify that the flow is

23Error percentage is computed as the maximum value obtained after normalizing the errors in
CD and CL provided in Table 4.4 by the large-time total force coefficient CT = |F|/( 1

2ρU
2π(D2 )2) '

0.66.
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Re = 100 Re = 250 Re = 300
CD CD CL CD ∆CD CL ∆CL St

Present (A) 1.084 0.709 0.060 0.665 0.0024 0.067 0.013 0.133
Present (B) 1.086 0.694 0.059 0.656 0.0024 0.065 0.014 0.134
JP99 [123] 1.10 – 0.062 0.656 0.0035 0.069 0.016 0.137
TO00 [125] – – – 0.671 0.0028 – – 0.136
KK01 [127] 1.087 0.701 0.059 0.657 – 0.067 – 0.134
PW02 [126] – – – 0.683 0.0025 0.061 0.014 0.135
CS03 [128] – 0.70 0.062 0.655 – 0.065 – 0.136
WZ11 [100] 1.13 – – 0.68 – 0.071 – 0.135

Table 4.5: Drag and lift coefficients, and Strouhal numbers for a sphere at different
Reynolds numbers. Present (A) and (B) correspond to test cases computed using
∆x/D ' 1.8 × 10−2 and ∆x/D ' 8.8 × 10−2, respectively. Results from JP99 –
Johnson and Patel [123], TO00 – Tomboulides and Orszag [125], KK01 – Kim et al.
[127], PW02 – Ploumhans et al. [126], CS03 – Constantinescu and Squires [128], and
WZ11 – Wang and Zhang [100] are also provided.

unsteady with no fixed planar symmetry at Re = 500 [125, 126]. Figure 4.7 provides

snapshots of stream-wise vorticity iso-surfaces for the aforementioned flow regimes

(case of Re = 100 is not shown since stream-wise vorticity is of negligible magni-

tude). The flow at Re = 500 is approximately symmetric about the x-y plane at

early times (similar to the Re = 300 test case), but such symmetry is lost at later

times as shown in Figure 4.7 by the axial rotation of the stream-wise vortices.

Figure 4.7: Stream-wise (x-direction) vortices in the wake of spheres at different
Reynolds numbers depicted as iso-surfaces of constant ωx. Iso-surfaces are for values
of ωx = ±0.20, 0.10, and 0.05 at Re = 250, and of ωx = ±1.0, 0.50, and 0.25 at
Re = 300 and 500. Depicted boxes are described in the caption of Figure 4.5.

As a final demonstration of the IB-LGF method, we consider the turbulent flow
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around a sphere at Re = 3,700. This flow has been characterized in previous nu-

merical [99, 129, 130] and experimental [131] investigations.24 The flow is computed

for 0 ≤ t∗/U ≤ 60 using 81,920 markers and ∆x ' 4.3 × 10−3, where t∗ is used

to indicate that flow was initialized from the large-time solution of a sphere at

Re = 1,000. Subsequently reported time-averaged values are computed over the last

five large-scale vortex shedding cycles (St = 0.215 [130]).

The thin boundary layer on the surface of the sphere is expected to be sufficiently

well-resolved since the present value of (∆x)Re
1
2 (scaling based on the expected

O(Re−
1
2 ) laminar boundary layer thickness [132]) is between the values of (∆x)Re

1
2

used to compute test cases (A) and (B) at Re = 300. As a point of reference, spheres

at Re = 3,700 have been previously computed using a IB/LES method combined

with a stretched grid with a near-surface minimum spacings of 9× 10−3D [99] and

using a unstructured mesh with a near-surface minimum element side lengths of 1.5×

10−3D [130]. The a posteriori grid analysis of [130] demonstrates that the turbulent

flow, with a minimum Kolmogorov length scale of η/D = 1.34 × 10−2 occurring in

the x/D < 3 wake region, is well-resolved by a second-order unstructured mesh

with an average element side length of h/D = 8 × 10−3 over the x/D < 3 wake

region. Based on these grid considerations, we assume that the present set of grid

parameters are adequate to capture both the thin laminar boundary layer on the

surface and the turbulent wake of the flow.

The core of vortical structures in the wake are depicted as iso-surfaces of constant

Q-value in Figure 4.8. The Q-criterion [133] defines coherent vorticies as connected

regions where Q, the second invariant of ∇u, is positive. Positive Q-values indicate

a local excess of the rotation rate compared to the strain rate. Figure 4.8 con-

firms the previously reported [99, 130] pronounced helical-like pattern of large-scale

vortical structures in wake. A visual analysis of multiple snapshots verifies that

24Previous investigations were conducted at Re = 3,700 [99, 130], Re = 4,200 [131], and Re =
5,000 [129].
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the dominant vorticies forming the helical-like pattern are convected downstream

without significant axial rotations and that the pattern is the result of the apparent

random azimuthal position of growing shear layer instabilities [99, 130]. We clarify

that the strong small-scale vortical filament- and horseshoe-like structures in the

downstream wake regions shown in Figure 4.8 are not readily seen in comparable

plots of previous numerical experiments [99, 130], but this is expected from the fact

that these previous experiments aggressively coarsen downstream grid regions.

Figure 4.8: Vortex cores in the wake of a sphere at Re = 3,700 are illustrated by
iso-surfaces of constant Q-value. Depicted are iso-surface of QD2/U2 = 2 colored
according to the radial distance from the center-line of the sphere in the stream-wise
direction. Depicted boxes are described in the caption of Figure 4.5.

We further characterize the flow by reporting on the large-time mean surface stresses

and net body forces. The i-th component of the stress vector, σi = [t]i, at the

location of the q-th IB marker can be approximated as σi(ξq) ≈ [fq]i /Aq, where

Aq is the area associated with the q-th IB marker. Given that our IB markers are

located at the centroids of the faces (triangles) of an icosphere, we take the Aq to

be equal to the area of the corresponding face. The non-dimensional surface stress

coefficients in spherical coordinates are taken to be

Cσ,r = σr − p0
ρU

, Cσ,θ = σθ
ρU

, Cσ,φ = σφ
ρU

, (4.32)

where t = σrr̂ + σθθ̂ + σφφ̂, and θ and φ correspond to the polar and azimuthal

angles, respectively (stagnation point located at θ = 0). Here, the reference pressure
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p0 is taken to be p∞−psphere, where psphere is the value of the approximately uniform

pressure distribution inside the sphere.25 In the continuum limit, the surface normal

stress coefficient Cσ,r is equal to half of the pressure coefficient Cp = (p−p∞)/(1
2ρU).

As discussed in Section 4.5.1, raw point-wise values of σ contain unphysical large

high-frequency oscillations. These oscillations are partially filtered out and the

point-wise accuracy of σ is significantly improved using the boundary force post-

processing technique [4], which can be interpreted as a spatial weighted moving

average smoothing technique that uses δ∆x as the smoothing kernel. This technique

constructs smoothed boundary forces f̂ by evaluating the expression f̂ = I WI †f,

where W(n) is equal to 1/γ(n) for the case of non-zero γ(n) = [I †1](n) and equal

to zero otherwise.

Time-averaged values of Cp and Cσ,θ as functions of the polar angle, θ, are depicted

in Figure 4.9.26 The present values are in good visual agreement with the body-

fitted mesh DNS values reported in [130]. We clarify that the curves shown in

Figure 4.9 include a small O(∆s) post-processing error resulting from interpolating

values of f̂, which is defined on the faces of a six-times subdivided icosphere, onto

geodesic lines between θ = 0◦ and θ = 180◦. Small remnants of the unphysical

high-frequency oscillations in f are visually noticeable in the values of Cσ,θ over the

region of 0◦ ≤ θ . 50◦.27 Although these are undesirable features of the present

25The slight porosity of the numerical immersed surface results in an approximately uniform
time-dependent pressure distribution inside the sphere. At tU/D ≈ 50 the difference between the
minimum and maximum pressure inside the sphere, but not in the support of I , is approximately
0.3% of 1

2ρU
2. The maximum difference in psphere between any two instantaneous measurements

during 30 ≤ tU/D ≤ 60 is approximately 1% of 1
2ρU

2.

26The normalized skin-friction coefficient, Cσ,θRe
1
2 , depicted in [130] for the computations of

[129] are approximately 16% larger than to those shown in the left plot of Figure 4.9. The curve
shown in Figure 4.9 was computed by scaling the values of σθRe/ρU reported in [129] by Re− 1

2 ,
where Re is taken to be the Reynolds number at which the numerical simulation was performed,
i.e Re = 5,000.

27Visual inspections three-dimensional plots of the distribution of σ indicate that the oscillations
Cσ,θ for 0◦ ≤ θ . 50◦ are in fact small oscillations in σ as opposed to oscillatory errors resulting
from the interpolating values onto geodesic lines.
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non-body-conforming discretization, we find the magnitude of this error, ∆Cσ,θ ≈

0.1Re−
1
2 ≈ 0.006, to be acceptable.

Figure 4.9: Time averaged pressure (left) and skin-friction (right) coefficients as func-
tions of the polar angle, θ, for a sphere at Re = 3,700. Results compared to values
reported by Rodriguez et al. [130] (DNS at Re = 3,700), Kim and Durbin [131] (exp.
at Re = 4,200), and Seidl et al. [129] (DNS at Re = 5,000).

Lastly, we report in Table 4.6 mean values for the drag coefficient (CD), base pressure

coefficient (Cp,b), separation angle (θs), and polar locations of the minimum surface

pressure (θp,min) and of the maximum skin friction (θτ ,max). With the exception of

Cp,b, the present values are within 2.1% of those reported in [130]. The difference

in Cp,b is also seen to be small, i.e. approximately 2.3%, when compared to the

maximum Cp shown in Figure 4.9. The value of CD reported in [99] (LES) is

approximately 12% lower than the CD values reported here and in [130] (DNS).

The grid refinement and mean turbulent statistics studies of [130] attribute this

discrepancy in CD value to the sub-grid model used in the numerical experiments

of [99].

4.6 Conclusions

A computationally efficient IB method for external, viscous, incompressible flows

around immersed surfaces with prescribed kinematics has been presented. The IB-

LGF method is a significant extension of the LGF flow solver [2], which retains

the efficiency and robustness of the flow solver by coupling a Lagrange multiplier
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Re CD Cp,b θs θp,min θτ ,max

Present DNS 3,700 0.389 −0.230 88.9◦ 73◦ 47◦

YK06 [99] LES 3,700 0.355 −0.194 90◦ – –
RB11 [130] DNS 3,700 0.393 −0.207 89.3◦ 72◦ 48◦

KD88 [131] exp. 4,200 – −0.224 – – –
SM98 [129] DNS 5,000 0.38 – 89.5◦ 71◦ 50◦

Table 4.6: Mean flow features of a sphere at Reynolds numbers between 3,700 and
5,000. Results from YK06 – Yun et al. [99], RB11 – Rodriguez et al. [130], KD88 –
Kim and Durbin [131], and SM98 – Seidl et al. [129] are provided.

treatment of the discrete boundary forces and the discretized no-slip constraint

with existing and new LGF techniques. The semi-discrete equations resulting from

the formal spatial discretization of the incompressible Navier-Stokes equations on

unbounded staggered Cartesian grids and the discrete delta function treatment of the

IB regularization and interpolation operators is shown to constitute a DAE system

of index 2. Using appropriately specialized order conditions for HERK integrators

we proposed a few time integration schemes, which, when coupled with a viscous

integrating factor technique, efficiently solve the discrete momentum ODE and the

discrete divergence-free and no-slip constraints under a well-understood theoretical

framework.

Fast flow solutions are facilitated by using a projection-like solver for the linear

systems of equations arising from the implicit coupling the velocity, pressure, and

boundary forces of the IF-HERK scheme. Unlike classical projection techniques,

the present nested projection method is free of operator approximations, which in

turn preserves the formal properties of the DAE time integration technique. This

method is equivalent to a LU decomposition of the linear system and is formulated

as two sequential intermediate velocity and pressure computation steps, followed by

a single boundary force solution step, and finalized by two sequential pressure and

velocity correction steps. Computational considerations for efficient iterative and

direct boundary force solution techniques are discussed, and it is demonstrated that
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for many practical flows involving rigid surfaces a Cholesky-based pre-processing

technique results in force solutions that require negligible computation times. The

pre-processing technique results in a flow solver that depends on the solution of

one additional discrete elliptic problem, i.e. force correction on the pressure, which

is shown, by virtue of the flexible source and target regions of the LGF solver,

to require significantly less computation time than the discrete pressure Poisson

problem inherent to the flow solver (less than 50% for the numerical experiments

considered).

We implemented a parallel version of the IB-LGF method for the case of rigid sur-

faces following the block-wise adaptive grid of the LGF flow solver. Modifications

to the adaptivity criteria, grid sub-domains, and parallel load balancing procedures

were performed in order to efficiently and accurately capture the flow near immersed

surfaces. Detailed spatial and temporal refinement studies on flows around spheres

were used to verify the expected convergence rates of the formulation. Comparisons

with previous numerical investigations on flows around rectangular flat plates and

spheres at Reynolds numbers up to 3,700 were used to confirm the physical fidelity of

computed solutions. We also showed that accurate surface stresses can be obtained

from the computed boundary forces using the post-processing technique of [4]. All

together, the present numerical experiments have demonstrated that the IB-LGF

method can overcome many of the limitations of previous IB methods including

robust rigid-surface solutions, accurate and efficient unbounded domain flow solu-

tions, physical surface stress solutions, and the feasibility of fast, accurate numerical

solutions to high (based on present day DNS capabilities) Reynolds numbers flows.
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APPENDICES

4.A Lattice Green’s functions representations

The present formulation computes the action of L−1, E(α), and K(α) as discrete

convolutions, e.g. Eq (4.7), of GL, GE(α), and GK(α). Expressions for these LGFs

in terms of Fourier and Bessel integrals are given by

[GE(α)](n) = 1
8π3

∫
Π
e−in·ξ−σ(ξ) dξ =

∏
q∈n

[
e−2αIq(2α)

]
, (4.33a)

(∆x)2GL(n) = 1
8π3

∫
Π

e−in·ξ

σ(ξ) dξ = −
∫ ∞

0
[GE(t)](n) dt, (4.33b)

(∆x)2[GK(α)](n) = 1
8π3

∫
Π

e−in·ξ−σ(ξ)

σ(ξ) dξ = −
∫ ∞
α

[GE(t)](n) dt, (4.33c)

where σ(ξ) = 2 cos(ξ1) + 2 cos(ξ2) + 2 cos(ξ3) − 6, Π = (−π, π)3, and In(z) is the

modified Bessel function of the first kind of order n.

Here, we introduce a simple procedure for efficiently computing [GK(α)] (n) and refer

the reader to the discussions of [1] and [2] for examples of numerical techniques used

to evaluate GL(n) and [GE(t)](n). We consider the partition of [GK(α)] (n) given by

[GK(α)] (n) = GL(n) + [R(α)] (n), (4.34)

where [R(α)] (n) = (∆x)−2 ∫ α
0 [GE(t)](n) dt. The combined look-up table and asymp-

totic expansion approach of [1] is used to compute the first term, GL(n), and an

adaptive Gauss-Kronrod (GK) integration scheme is used to evaluate the second

term, [R(α)] (n). For large values of n few, if any, subdivisions are required by the

GK scheme since the value of [R(α)] (n) is significantly smaller than the value of

GL(n).28 Lastly, we note that evaluating discrete convolution of LGFs using the

28The leading order term in the asymptotic expansion of GL(n) is 1/(4π|n|) [1]. For a fixed α,
the integrand [R(α)] (n), i.e. [GE(t)](n), decays faster than any exponential [2].
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LGF-FMM [1] only requires the point-wise values of LGFs to be computed once, as

a pre-processing step, per simulation.

4.B Half-explicit Runge-Kutta schemes

The IF-HERK schemes used to perform the numerical experiments of Section 4.5

are:

Scheme A

0
1
2

1
2

1
√

3
3

3−
√

3
3

3+
√

3
6

−
√

3
3

3+
√

3
6

Scheme B

0
1
3

1
3

1 −1 2

0 3
4

1
4

Scheme C

0
8
15

8
15

2
3

1
4

5
12

1
4 0 3

4

Scheme D

0
1
2

1
2

1
2 0 1

2

1 1
4 0 0 1
1
6

1
3

1
3

1
6

(4.35)

The expected order of accuracy for Schemes A–D based on the simplified HERK

order-conditions discussed in Section 4.2.3 are included in Table 4.7. As a point

of comparison, Table 4.7 also includes the expected order of accuracy for problems

with no immersed surfaces (i.e. Eq. (4.8a) and (4.8b) with f = 0) and for general

semi-explicit DAEs of index 2 (i.e. Eq. (4.9)).

Scheme y z y+ z+ y∗ z∗

A 2 2 2 2 2 2
B 3 2 3 2 3 2
C 2 1 3 1 2 1
D 3 1 4 1 2 1

Table 4.7: Expected order of accuracy of HERK schemes for the solution variable y
(velocity) and for the constraint variable z (pressure and body forces). The super-
scripts + and ∗ denotes values for problems with no immersed surface and for general
semi-explicit DAEs of index 2, respectively.

Scheme B is the only three-stage scheme with a third-order accurate solution variable

for general semi-explicit DAEs of index 2 [66]. The RK coefficients of Scheme C and

Scheme D correspond to the popular three-stage fractional step method of [68] and
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the four-stage “original” RK method, respectively. As discussed in [2], Scheme

A has the advantage of having equispaced RK nodes, i.e. ci’s, which reduce the

number of distinct integrating factors. Fewer distinct integrating factors reduces

the number of pre-processing operations and lowers the storage requirements of

the LGF-FMM [1] and of the Cholesky-based force Schur complement technique

discussed in Section 4.3.2. Scheme A and D only require two distinct integrating

factors (with one of them being the identity operator), as opposed to the three

distinct integrating factors required by Scheme B and C.

In the absence of an immersed surface, a linear stability analysis about a uniform

base flow U of the IF-HERK method [2] indicates that solutions are subject to the

CFL condition

CFL = |U|∆t∆x < CFLmax, (4.36)

where CFLmax depends on the RK coefficients of the scheme. The value of CFLmax

is unity for Schemes A–C and 2
√

2√
3 for Scheme D. In practice, we expect solutions to

the non-linear governing equations to remain stable as long as the CFL conditions

resulting from linearizing the flow at each grid point are satisfied, i.e. as long as

max(|u|)∆t/∆x < CFLmax.

The CFL condition ∆x ∼ ∆t and the second-order accuracy (in the absence of

immersed surfaces) of the present solver imply that the potential reduction in the

operation count resulting from higher than second-order HERK schemes is limited.

As a result, the lower pre-processing cost of Scheme A compared to Scheme C makes

Scheme A the preferred HERK scheme for the present formulation. Here, we did

not consider Schemes C and D to be potential “preferred” schemes since they are

only first-order accurate in the constraint variables.
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C h a p t e r 5

CONCLUSIONS

This thesis presents a fundamentally new approach to numerically solving viscous,

incompressible flows on unbounded fluid domains. The novelty of the approach

stems from the use of lattice Green’s function techniques to obtain practical solu-

tions to difference equations resulting from the discretization of the Navier-Stokes

equations on unbounded regular grids.

In Chapter 2 solutions to difference equations on unbounded Cartesian grids with

compactly supported source terms are shown to be expressible as discrete convolu-

tions between the lattice Green’s function of difference operators and the discrete

source terms. This approach enables the computation of practical solutions to el-

liptic difference equations relevant to incompressible flows by limiting operations

to a finite region of non-negligible source terms. The O(N2) operations required

to evaluate the resulting discrete convolutions with the straightforward approach is

reduced to O(N) operations by a new FMM specifically designed to solve difference

equations. The LGF-FMM is a kernel-independent method that combines the hi-

erarchical structure of traditional FMMs with piece-wise polynomial interpolation

kernel-compression techniques and fast FFT-based discrete convolution methods

to solve elliptic, constant-coefficient, difference equations on unbounded Cartesian

grids. In addition to its asymptotic linear algorithmic complexity, it is demonstrated

for the case of discrete 7-pt Poisson problems that the LGF-FMM achieves compu-

tation rates and parallel scalings comparable to those obtained for Poisson problems

by other state of the art FMMs.

In Chapter 3, the LGF-FMM is used as the basic building block of a fast, robust

parallel incompressible flow solver. It is shown that the finite-volume discretization

of the incompressible Navier-Stokes equations on an unbounded staggered Cartesian

grid is efficiently integrated in time by combining a discrete viscous integration factor
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and a half-explicit Runge-Kutta technique. The resulting equations are shown to be

solved in a finite number of operations and in linear algorithmic complexity by using

the LGF-FMM to evaluate the discrete pressure Poisson equation and integrating

factors arising in an approximation-free projection method. A block-wise structured

adaptive grid and velocity refresh technique are implemented so as to efficiently

compute solutions of unsteady flows by limiting operations to small computational

grids that track relevant flow regions by adding and removing grid blocks. An

extensive set of numerical experiments on the evolution of thin vortex rings at

Reynolds numbers up to 20,000 are used to verify the accuracy and computational

efficiency of the formulation.

In Chapter 4, a fast, robust immersed boundary method is constructed using the

LGF flow solver. Following a Lagrange multiplier treatment of the regularized

boundary forces, the IB-LGF method extends the IF-HERK time integration scheme

and the projection method of the LGF flow solver to efficiently simulate flows around

surfaces with prescribed motions. It is shown that significant operation count reduc-

tions are obtained by taking advantage of the flexible source and target regions of

the LGF-FMM when evaluating terms involving the compactly supported IB force

regularization and velocity interpolation operators. The base algorithm is further ac-

celerated for a wide-range of practical flows through the implementation of a dense

linear algebra pre-processing technique for computing boundary forces. The ex-

pected convergence rates and the physical fidelity of computed solutions are verified

by performing grid refinement studies and comparisons to previous investigations

on flows around low-aspect-ratio flat plates and spheres at Reynolds numbers up to

3,700. It is also shown that post-processing the computed boundary forces with the

kernel smoothing technique [4] produces accurate point-wise surface stresses for the

test case of a sphere at Re = 3,700.

There are several extensions to the LGF techniques discussed in this thesis that

can be readily implemented in order to significantly enlarge the range of fluid flow
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problems that can be practically investigated. Some of the extensions discussed

below are being actively developed by other members of the Computational Flow

Physics Group.

The present methods can be readily extended to handle 2D-unbounded and 2D-

unbounded / 1D-periodic problems. Aside from a few implementation details, a

2D-unbounded flow solver can be obtained using the 2D version of the standard

difference operators presently employed. Expressions for the relevant 2D LGFs a

readily deduced from the discussions of previous chapters and are explicitly provided

for the 4-pt Laplacian in [5, 16, 18]. Similar considerations are necessary for a 2D-

unbounded / 1D-periodic flow solver, but this version is likely to be implemented

using a Fourier treatment of the 1D periodic direction, which in turn would require

solutions to discrete Helmholtz equations with imaginary wavenumbers (modified

Helmholtz equations). A Fourier integral representation for the LGF of the discrete

modified Helmholtz operator is readily obtained following the procedures discussed

in Section 2.2.1. Higher order discretization schemes on staggered Cartesian grids

can also be incorporated into the present framework through considerations similar

to those mentioned above. It is worth emphasizing that the pre-processing technique

of the LGF-FMM prevents the potentially large computational cost of numerically

evaluating LGFs from affecting the run-time cost of the flows solver.

The Immersed Boundary method is only one of the many embedded boundary meth-

ods that compute solutions to PDEs over non-trivial domains using regular-grid

discretizations. Higher order Immersed Interface [134], Ghost Fluid [135], Volume

Penalty [136], and Smooth Extension [95] methods can be used within the LGF

framework to remove some of the practical limitations imposed by the first-order

accuracy of the Immersed Boundary method. Although some of these methods have

the advantage of being higher-order, they often require more sophisticated imple-

mentations, impose constraints on the allowable geometries, and result in discretized

equations that are not readily compatible with the fast solution techniques of the
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IB-LGF method. An alternative approach to reducing the error (without increasing

the order) of the IB method is to use “smooth” discrete delta functions [115, 120,

137], but the efficacy of this approach remains an active area of research.

The inefficiencies inherent to use of uniform grids to accurately resolve flows with

localized small-scale features can be reduced by using standard local grid refinement

techniques [138, 139]. These techniques have been previously used in combination

with IB methods to efficiently resolve thin laminar boundary layers on immersed

surfaces [101, 140, 141], and are expected to also be compatible with the present IB

method. Block-wise adaptive mesh refinement techniques, e.g. [142, 143], are par-

ticularly compatible with the block-wise grid partitioning employed by the present

algorithms. Furthermore, the octree and grid hierarchy already implemented for the

LGF-FMM are expected to expedite the implementation of block-wise locally-refined

flow solvers.

The prohibitive grid resolution requirements of direct numerical simulations dictates

the use of turbulence models for computing practical solutions to high Reynolds

number flows. Large Eddy Simulation (LES) techniques, such as those reviewed in

[144–147], are suitable candidates for reducing the range of time- and length-scales

that need to be resolved. The conservation and stability properties of the LGF

flow solver are expected to facilitate the robust implementation of these techniques

within the LGF framework. Furthermore, for flows around immersed surfaces with

turbulent boundary layers, a LES implementation could be extended to include

wall-models, such those discussed in [148–152], in an attempt to model the effect of

near-wall eddies at sub-grid scales.

The LGF techniques described in this thesis have efficient nodal distributions, auto-

matically impose natural boundary conditions, are compatible with fast free-space

solvers, and have provable conservation and stability properties. Altogether, the

present collection of LGF techniques provides a new framework for efficient and

robust numerical simulations of incompressible flows, and is expected to serve as
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a solid base for future numerical methods capable of investigating the increasingly

complex flows of emerging scientific and engineering applications.
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