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l. ABSTRACT 

The experimental portion of this thesis tries to estimate the 

density of the power spectrum of very low frequency semiconductor noise, 
. - -6 
from 10 ·3 cps to 1. cps with a greater accuracy than that achieved in 

previous similar attempts: it is concluded that the spectrum is l/fa 

with a approximately 1. 3 over most of the frequency range, but appear-

ing to have a value of about 1 in the lowest decade. The noise sources 

are, among others, the first stage circuits of a grounded input silicon 

epitaxial operational amplifier . This thesis also investigates a pecu-

liar form of stationarity which seems to distinguish flicker noise from 

other semiconductor noise. 

In order to decrease by an order of magnitude the pernicious 

effects of t emperature drifts, semiconductor naging", and possible 

me chanical failures associated with prolonged periods of data taking, 

10 independent noise sources were time-multiplexed and their spectral 

estimates were subsequently averaged . If the sources have similar 

spectra, it is demonstrated that this reduces the necessary data-taking 

time by a factor of 10 for a giYen accuracy. 

In view of the measured high temperature sensitivity of the 

noise sources, it was necessary to combine the passive attenuation of 

a special-material container with active control. The noise sources 

were placed in a copper-epoxy container of high heat capacity and medium 

heat conductivity, and that container was immersed in a temperature con-

trolled circulating ethylene-glycol bath. 
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Other spectra of interest, estimated from data taken concurrently 

with the semiconductor noise data were the spectra of the bath's con

trolled temperature, the semiconductor surface temperature, and the power 

supply voltage amplitude fluctuations. A brief description of the equip

ment constructed to obtain theaforementioned ~ata is included. 

The analytical portion of this work is concerned with the follow

ing questions: what is the best final spectral density estimate given 

10 statistically independent ones of varying quality and magnitude? How 

can the Blackman and Tukey algorithm which is used for spectral estima

tion in this work be improved upon? How can non-equidistant sampling 

reduce data processing cost? Should one try to remove common trands 

shared by supposedly statistically independent noise sources and, if so) 

what are the mathematical difficulties involved? What is a physically 

plausible mathematical model that can account for flicker noise and what 

are the mathematical implicat~ons on its statistical properties? Finally) 

the variance of the spectral estimate obtained through the Blackman/Tukey 

algorithm is analyzed in greater detail; the variance is shown to diverge 

for a ;;:o:: 1 in an assumed power spectrum of k/ If la, unless the asswned 

spectrum is "truncated". 
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CHAPI'ER 2 

INTRODUCTION 

Why is flicker noise important? 

Nature ha.s been generous in displaying many kinds of noise. 

Semiconductors, in particular, are mainly affected by five kinds: thermal 

noise, generation-recombination noise, partition noise, shot noise and 

flicker noise. Thermal noise is well understood in principle(l) and is 

attributed to random collision of carriers within the lattice. Gener-

ation-recombipation noise refers to the random generation and recombLna

tion of hole-electron pairs, and of car'riers with traps . ( 2 ) Partition 

noise has been explained essentially in terms of a carrier current being 

split into two parts that flow to dif;erent electrodes. (l) Shot noise 

has had more than its share of attention for many years and has been 

found to be caused by the random emission of electrons and photons; more 

recently, a s i.mple shot noise picture has reasonably described such 

effects in diodes, transistors, FET's and avalanche diodes. (l) Flicker 

noise refers to the noise hhose spectral density is observed to increase 

as frequency decreas es ; it is also known as "excess noise", 111/f noise", 

"semiconductor noise", "low frequency noise", "pink noise", and "contact 

noise"; indeed, it is quite ubiquitous: it was discovered in tubes, (J) 

in quartz crystal oscillators, C4) semiconductor diodes, resistors, C5 ) · 

light sources, (6) field effect transistors, (7) bipolar transistors, (8) 

thermistors, (8) carbon microphones, (9) thin films, (lo) biological mem

brane potentials, (ll) the frequency of the rotation of the earth, (l2 ) 
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and even galactic radiation nois·e . (l3 ) One is indeed very tempted to 

suspect the presence of an underlying physical law that would explain 

the existence of flicker noise in so many different physical situations, 

Flicker noise is important in precise experimentation. Whereas 

any desired precision can be obtained for a measurement contaminated 

with white noise by increasing the duration of the experiment, a measure-

ment with results whose accuracy is lDnited by l/f noise may not be 

improved by prolonging the data-taking time. (l4) In a typical applica-

tion a quartz crystal was used in a slave os cillator; were it not for 

flicker noise which produced frequency fluctuat ions of at least three 

parts in 1013, (l5,l6) the precision of ten second interval measurements 

would be better than one part in 1014 . (l7 ) 

Several formal theories have been presented in the past trying 

to explain flicker noise. Experiments with germanium by McWhorter (lS) 

showed that there exists a set of surface states with a re laxation time 

of the order of minutes; the phys ical mode l suggested is a plaus ible one 

and also applicable to FET 's and to s emiconductor filaments . Fonger( l9) 

and Watkins( 20) extended the model to junction diodes and transistors , 

and recently Van Der Ziel (l) further developed this theory on the model 

that the carriers in the material interact with trapping levels at some 

·depth in the surface oxide by tunneling. The mathematics of it are 

fairly straightforward and concise, yet the underlying implication is 

that if one measures long enough to estimate spectra at low enough 

frequenc i es he will indeed find a leveling-off of the spectral density 

estimate. 
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Somewhat along the same vein, though concerned more with the 

(14' 
mathematics of it, D. Halford ) has shown that any class of "reasonable" 

time-dependent pex·turbations (such as a series of exponential decays 

appropriately scaled in amplitude and time) occurring at random can resu..lt 

into l/f spectra for frequencies in an arbitrarily large but finite range. 

Schonfield and Barnes( 22 ) have also advanced a method of generating 

l/f noise which pays special attention to the shape of each of the perti.lr -

bations; yet a phys ical explanation of an l/f spectrum extending over more 

than a couple of decades of frequency would require postulating the exist-

ence of very specially shaped disturbances which would be hard to justify-

on physical grounds . 

Mathematica.lly inclined researchers, on the other hand, have 

claimed that it is the blind extrapolation of the l/f behavior to f ~ 0 

which incorre ctly suggests that the total energy is infinite ("infrared 

catastrophe"); based on some recent experiments by J. Brophy( 5) suggest-

ing a peculiar lack of conventional stationarity in l/f noise samples, 

Mandelbrot( 23) conjectures that the "infrared catastrophe" paradox is a 

consequence of applying.the usual Wiener mathematics on a sample whkh is 

not stationary and thus not elig ible for that mathematics; accordingly he 

introduces the concept of the "conditional spectrum" to be applied to 

such "sporadic fuJ1ctions". 

The mathematics of spectrum analysis is a topic Ln itself having 

gone through three or four eras of improvements. An often- used in the 

past and intuitively appealing way to estimate power spectral densities 

is by means of the "periodogram" . As is discussed in Section 3 .1. J how-
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ever, t:tie periodogra.m gives an estimate of spectral density which is in 

some cases quite questionable; it thus proved unsatisfactory. The 

estimation of spectra via mean lagged products originally advanced by 

Blackman and Tukey, ( 24 ) instead, proved effective in answering many 

questions and provided insight about the essential limitations of the 

problem. It is via mean lagged products that the spectral estimates of 

the experimental portion of this thesis are arrived at. Indeed, it takes 

considerably fewer arithmetic operations to calculate approximately one-

tenth as many mean lagged products as there are data points, and then to 

Fourier-transform the results, than it does to calculate all the Fourier 

coefficients of a time series . Yet the very straightforwardness of this 

approach suggests that some improvements could be made to optimize the 

computational operat ions involved such as the recording of data points 

which are not equally spa ced in time . Such questions are considered in 

detail in Section i .i. 

A new algorithmic process for calculating with great computational 

efficiency the spectrum of a time series has been advanced by Tukey ( 26 ) 

under the name of the
11 

Fast Fourier Transform~ There are at least ·two 

t ~ t . f II somewhat different approaches to implementing he Fas. Fourier Trans arm, 

one due to Cooley and Tukey (the CT method), and another programmed by 

Sande along lines suggested in lectures by Tukey. The fast Fourier trans-

form requires on the order of 2Tlog
2

T arithmetic operations (where T is 

a power of 2) whereas the convolution operations in computing mean lagged 

products require approximately nT multiply-and-add operations for n 

data points and for a maximum lag of T Indeed there are a variety of 
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potential applications of the fast Fourier transform, especially when 

quick estimation of the frequency content of a nonstationary signal are 

essential. 

The theoretical analysis of the Blackman/Tukey algorithm (and 

of other algorithms) is incomplete in that it is not known how the 

quality of the final spectral density estimate deteriorates if the input 

data deviates from various assumptions built into the Blackrnan/Tukey 

algorithm. 

On the experimental side, prior spectral estimates have not gone 

-6 0 below the f = 10 · cps frequency; worse yet, the best available such 

estimate( 25 )is of q~estionable reliability at the low frequency end for 

reasons related to the mathematics of the spectral estimator used. The 

fundamental difficulty in obtaining reliable spectral density estimates 

at very low frequencies is that excessively long data-taking periods are 

required, during which all pertinent equipment must be highly stable and 

insensitive to environmental variables such as temperature, line voltage 

fluctuations, etc.; indeed, it can be readily appreciated that the 

experimental difficulties associated with a doubling of the data-taking 

period from one month to two months are considerably l ess than half of 
. 

the difficulty involved in moving from a two-month to a four month data-

taking period. 

This thesis deals extensively with the above theoretical questions; 

it also extends the experimentally measured spectral density estimates by 

an octave at the low end, while concurrently giving more r e liable esti

mates at such frequencies as the lo-6cps figure mentioned above. 
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It appears from the foregoing that the problem of flicker noise 

has some very specific areas where questions are waiting for answers and 

mathematical procedures need improvement. Is semiconductor flicker noise 

such that it indeed does not go like l/f to sufficiently low frequencies 

but levels off instead? Is flicker noise perhaps nonstationary in a 

specific measurable way? What mathematical yet physically plausible 

model can result in l/f noise and be consistent with the observed statis

tics of the experimental portion of this thesis? How can one optimize 

the well-developed mean-lagged-product approach in the sense of achieving 

higher computational efficiency? 

It is hoped that this thesis will provide considerable light on 

the above questions, too. 

2.1 PRESENTATION OF THE MATERIAL 

In a dissertation dealing with a number of interrelated topics , 

the particular order of presentation is, to a degree, a matter of sub

jective choice. 

The material in :the present work is presented in a way which 

appears most logical to this author, and which will facilitate understand

ing even by a reader who is not a specialist in this particular field. 

Spectral estimation mathematics are discussed first with some 

emphasis on why this apparently well-knm.rn topic presents some difficulties 

in experimental practice. 

A detailed exposition of the particular spectral estimator used 

in the experimental part of this work is presented next in order to provide 
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the necessary ground work on which subsequent analyses are based . This 

author is well aware that the reader may not be familiar with specific 

steps in the algorithm at this stage. Accordingly, Chapter 5 considers 

in adequate detail those aspects of the estimator which the reader may 

not see the justification for . 

The reliability of the final estimate is of maj or importance in 

explaining why some, possibly unfamiliar, steps are included in the 

estimator; this is discussed in Chapter 4 which precedes the detailed 

analysis of such unfamiliar steps. 

Chapter 6 points out some major sources of possible distortion 

of the spectral estimate as obtained experimentally . 

Chapter 7 considers some mathematical and physical implications 

of flicker noise and compares those with the experimental evidence avail-

a.ble. 

This is followed by an application-oriented consideration of 

cost-reducing data-taking or data-processing algorithms ; this chapter 

is motivated by the generally high expense involved in obtaining reliable 

low-frequency spectral density estimates . 

This concludes the theoretical portion of this work. Chapter 9 

considers the experimental set-up used in this work as well as the reasons 

.for the particular choices made ~ By this tim8> all necessary background 

information has been presented for a meaningful evaluation of the actual 

experimental results obtained ; this is done in Chapter lO which presents 

and discusses experimental results in the chronological order in which 

they were obtained; this approach has the advantage of indicating why 

certain improvements were necessitated on the exper imental set- up while 
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this work was in progr ess; the final spectral density es timate is thus, 

naturally, g iven last and it is accompanied by other data relevant to 

it, 

Very little material is of clearly peripheral nature, and such 

material is relegated to appendices . 

Except for the material on the spectral estimator for a single 

stochastic process and the associated elaborations on some parts of 

Chapter 5, this work is entirely the work of this author except for 

contributions in the form of thought -provoking discussions by this 

author's thesis advisor. 
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CHAPTER 3 

SPECTRAL ESTJMATION 

3.1 General 

Before settling on a specific mathematical technique for esti-

mating the spectral densities of the noise sources for this thesisJ it 

was deemed worthwhile reviewing other than the latest techniques; aside 

from gaining insight into the specific difficulties of mathematical 

spectral density estimation} it was thought that some refinement of an 

olderJ intuitively "natural" approach known as the periodogram might 

produce a usable algorithm for a "good" estimate . Letting 

T 
j irnt 

= J x(t)e dt (1) 
0 

and assuming ergodicity} then the quantity 

(2) 

called the "periodogram"J appears to provide a power spectral density 

estimate of the random process x(t)J t2[0;T] In particularJ letting 

T ~ 00 J would (incorrectly in some cases) suggest that 

lim ST(f) = S(f) ~ True Spectral Density. 
T--> OJ 

This procedure has been shown( 27) to fail for a large class of examples; 

such as for real gaussian processes. The "catch" i s that although 
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. lim E[ST(f)] = S (f) 
T-> co 

where E is the expectation operator, the variance 

will not necessarily tend to zero, as T .... 00 

been shown( 27) that for a real gaussian process 

Specifically, it has 

(3) 

(4) 

(5) 

for all T It follows that the variance of ST(f) does not approach 

zero in the limit as T .... co for all f such that S (f) > O; that is, 

the estimate ST(f) does not converge in the mean to the ~rue spectrum 

for any frequency except possibly those for which S(f) = O 

The next logical step is to go back to the definition of the power 

spectral density and try to apply it to a discrete time series with the 

minimum of distortion. This is the Blackman and Tukey( 24) type spectral 

estimator and. it is through the use of this estimator tha t the experi-

mental results of this thes is are derived. The estimator is basically 

a plausible finite-difference approximation to the exact definition of 

spectral density given by 

S(f) = J R(~)eimt dt (6) 
_co 

Since one has available at best a small number of sample functions 

extended in time rather than an extended number of short-duration sample 

functions, ergodicity of the autocorrelation and of the mean are essential 

assumptions. Specifically, it has been showJ28)that the necessary and 
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sufficient condition for the ergodicity of the mean is that 

T 

lim l I R(T)dT 112 
2T = 

T-oo -T 

(7) 

where R(T) is the autocorrelation function and Tl is the mean of the 

(stationary) process; the necessary and sufficient condition for ergo

dicity of the autocorrelation has been shown( 2S) to be 

2T 

lim 
l r T 
T J (1 - 2T) C(T,A.)dT = 0 (8) 

0 

for any given A.J where C(T,A.) is the autocovariance of the process 

x(t + A.) x(t) 

Whereas to test for the ergodicity of the mean it is sufficient to know 

Tl (which in practice is never known exactly) and R(T) , testing for the 

ergodicity of the autocorrelation requires knowledge of fourth-order 

moments not readily available from a finite duration sample function. 

Assuming ergodicity, . the autocorrelation of a continuous 

stochastic process x(t), tE(-00, 00 ) is defined for any T as 

lim 
T....co 

T 
1 ,, 

2
T j x(t + T)x(t)dt 

-T 

(9) 

The closest equivalent to this definition for a discrete time series of 

n samples taken at equidistant sampling intervals is 

1 
n-r 

n-r 
~ x(q6T) ' x[(q+r)6T] 

q=I 
(10) 
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r = 0,1,2, •.. m < n 

with C(-r6T) 
6 

C(rT) (ll) 

These C(r6T)'s are Blackman and Tukey's "mean lagged products", where 

6T is the sampling interval. 

In order to have a reasonable variance for S(f) at the low 

frequencies, it is shown below that it is necessary to restr~ct m to a 

value much less than n m in this work is taken equal to n/100 or 

n/10 depending on whether a single source or 10 noise sources are 

being tested. 

Distortion has already been introduced by an :i.mplii::it time 

window associated with the finite length of the sample function chosen. 

Forgetting momentarily such subtle issues as prewhitening, transforma-

tions and windows, the effects of which have been amply discussed in the 

literature, ( 24 ), (25 ) the Fourier transform of the function C(r6T) is 

needed next, The problem is that in the finite-difference approximation 

C(r6T) is not defined for times other than 

t = k • 6T, k = 0, ± l, ± ~ ' ... , (n-l) 

Blackman and Tukey have selected the· intuitively plausible 

·alternative to the Fourier transform of C(r6T) 

where 

V(f ) 
r 

m-1 
= 6T[C(0)+2 2: C(qAT )cosqr:rr + C(mln)cos rrr)J 

m 
q=l 

o.:q6T = rq:rr/m 
' 

and r = 1, 2, ... m 

(12) 

(13) 
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It is interesting to point out that Eq. (12) can be looked upon 

as an approximate Fourier transform of the finite-length staircase shown 

in Fig. 1 below. 
~ c: (0) 

L_._ 
• 

Fig. l 

Modified Autocorrelation Function 

It is clearly important that this approximation is most valid if 

the truncated C ( q6:r) has nearly the same Fourier trans form as the non-· 

truncated C(q6T) ; this, in turn_i implies the desirability that C(q6T) 

have a small magnitude outside the jm6TI band . 

The result of Fourier-transforming this quantity is equivalent 

to the convolution of a 11window11 with unity he i ght and width 2m6T 
' 

centered at the origin, convolved with C(k6T) which is in principle 

known over a much longer interval, jk6Tj < n6T 

Then l etting V(f ) ~ V for notational simplicity, 
r r 

Equation (12) is 

where: 

D (T) is the aforementioned window 
0 

F.T. is the Fourier transform 

* stands for convolutions. 

of 

(14) 
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The well documented topic of optimal windows is discussed to 

some extent in Section 5.2; for the present introductory purposes, suffice 

it to say that a smoother window than D (T) 
0 

above, results in lower 

variance of the final spectral density estiniate. 

Considering that the Blackman/Tukey estimator is the best avail-

able estimator in terms of accuracy, computational econom;>', and conceptual 

simplicity, it was actually used for the data processing of the experi-

mental part of this thesis. 

3.2 The Estimator Used in this Experiment 

The exact algorithm used in deriving a spectral density estimate 

in the experimental part of this work is that given by Blackman/Tu.key's 

. . 1 (24) origina paper . 

The steps indicated below may not be all immediately obvious, and 

the reader ·is referred to the.aforementioned original presentation; a few 

aspects of the algorithm which are of special interest in the pres ent 

work are elaborated upon in detail in Chapter 5. 

The purpose of this presentation of the algorithm at this par-

ticular stage in this work is to provide the essential definitions, 

symbols, and notations used throughout this work. Reference will be made 

to these equations in later sections. 

Given n equidistant data samples 

x. iE[ l, n] 
i 

, 
form the 11prewhitened" set of data samples 

k 
z. = L: A. x . ., j = 1, 2, .•. (n-k) 

J i l+J i=O 
k = 9 :i.n this work. (l5) 
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where A. 's 
1 

are appropriate constants . 

Form the mean-lagged products, n-k 

n-k-r I: z 2 
D. 1 r q=l q-1 

C(rb.T) = c = I: z . z - L J r 
(n-k)-r q=l 

q q + r n-k (16) 

The mean-lagged-products e'quation (16) is functionally different 

to a s~all degree, from Equation (10) in that it incorporates removal of 

the mean as well. This rather peculiar way of removing the inean has been 

extensively analyzed by Blakemore, and will thus not be el aborated upon 

in this work. 

Compute the 11raw spectral density estimates" 

m-1 
V = D.T[C + 2 I: C cosqrrr + C cos rrr] 

r o q=l q m m 

Compute the refined ("windowed" ) spectral density estimates 

ll=aV +aV+aV r -1 r-1 o r l r+l , 

Postgreen the above r efined spectral estimates by dividing each 
2 

IY I to obtain the aliased spectral estimates 
r 

(17) 

(18) 

u 
r 

by 

(19) 

where Yr depends on the prewhitening performed earlier, which, in turn, 

depends on the (guessed or approximately estimated) power spectral density 

of the process in question. 

De-alias the above aliased spectral estimates to obtain the final 

dealiased estimates given by 
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s (f ) 
r 

i::Q [ • q q I: s (- - f ) + s (-;:.- + f ) ] 
q=l /'J.T r uT r 

(20) 

Although the S appearing in the swnmation should be the true 

spectral density, in.pract ice it must be an estimate or an experimental 

value that i s used to effect the dealiasing. 

For notational simplicity, the above notation will be adhered to 

in this· nork, and no special symbols such as "- will be used to denote 

an e s timate, unless it is not clear fro!!l the discussion whether a quantity 

is an esti.m~te or not. 

The significa.-rice of prei·1hi tening, postt;reenirig; 11wind.o·.1ing11
, ancl 

de-aliasinc ;·;ill be clea l t id th to so~e extent in Chapter 5. 
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CHAPI'ER 4 

RELIABILITY OF THE SELECTED ESTJMATOR 

The estimator V(f ) given in Equation (l2) is a linear function 
r 

of the mean-lagged-products which, in turn, were defined to be functions 

of random variables (the raw data); as such, V(f ) is a random variable 
r 

itself>having a mean and a variance. - It is in terms of its mean and 

variance therefore that we can answer the pertinent question "how good an 

estimator is it?". The computational details have amply been explored by 

both Blackman and Tukey's original presentation of the estimator( 24 ) and, 

subsequently, by Blakemore 's review and additional analysi~ of some of 

its properties. 

The reason for studying the variance of the spectral estimate is 

twofold: 

l) We want a measure of the accuracy of the final estimate . 

2) We specifically want to observe if the variance of the 

estimate increases for any particular shape of power spectra, 

and, if so, in what way. 

Trying to analytically express the variance of the spectral 

estimate is no straightforward task. Blackm~n and Tukey started by 

-calculating the covariance between the spectral estimate at two differ-

ent frequencies; this approach also provides the correlation between 

adjacent estimates, In the interest of deriving a variance expression 

which is simple to use for quick evaluations, Blackman and Tukey and 

· subsequently, Blakemore, had to resort to simplif'ying assumptions; such 

assumptions have no bearing on the eligib ility of a particular stochastic 
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process to be analyzed by this estimator, but only imply that the vari-

ance of the estimator will then be harder to calculate. The afore-

mentioned assumptions are that x(t) is a sample function from a zero 

mean stationary gaussian stochastic process. The resulting covariance 

can be written as in Reference (24). * Let Q .. (f) denote the Fourier 
1 

transform of a window D.(-r) whose shape may or may not be rectangular; 
1 

then, for the continuous data case, 

00 

(21) 

where 00 2 

4 J f I )s ( f - f I )[ 

s in ( ru ' TN) -, 
f (f) s (f + 

(ru' TN) J df 1 ( 22) 
00 

- _ oo 

and TN = nf:.T The desired variance, thus reduces to 

(23) 
_oo 

The need for some simpler-looking measure of the quality of the 

estimate S(f~) is obvious, and an additional simpl:Lfying assumption is 
J.. 

thus in order. The motivation for this assumption is purely mathematical 

in that it greatly simplifies the actual computation of f(f) given in 

Equation 22 . Indeed, the only functional form of s (f.) 
1 

for which the 

variance, Eq. (23 ), has been evaluated is the case of S(f) = K, where 

* i is a bookkeeping index of different window shapes; see Section 5.2. 
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K =constant. This case is of particular interest because, as is shown 

later in this work, "prewhitening" of any nonconstant power spectrum is 

highly desirable because among other reasons it appears to result in 

lower variance of the estimated spectrum. 

4,1 Exact Spectral Estimate Variance for Prewhitened Processes 

Then 

· Let the prewhitened spectrum S(f) be approximated by a constant. 

f (f) 
_oo 

sin
2 

2rcTNf' 

(2rcTNf 1 
)
2 

df I J where K = Sprewhitened 

This integral is extensively tabulated, and its derivation will 

not be repeated here. The result is 

The derivation will thus continue from this stage. 
CXl 

2 

I [Q.(f+f. ) + Q.(f-f.)] f(f)df 
l J l J 

For computational simplicity the analysis will procee.d with the zeroth 

window, D
0 

of width 2 TM = 2 ml:.'1" Substituting i = 0 in Eq. (23 ) 

-above, yields 
CXl 

1 > 2 
var =4 j [Qo(f+fl) + Q

0
(f-f1 )J f(f) 

_oo 

2K2 sin2rcfTM 
where f (f) - TN 

and Q (f) = 2 TM 2rcfTM J 0 



co 

.. var = 2i J 
N _co 

= 

(+ 2:r~2 
TN 

2o 

co 2 
r sin [ 2rr (f-f1 )TM] 
j 2 

df + ) 
4 / 

_oo [2rr (f-f 1)TM] 
df/ 

c· 4T~2 co 
r sin[ 2rr (f-f 1 )TM] • sin[2rr(f+f1 )TM] 

+ 
TN 

J . 
_co [2rr(f-f1 )TM] [2n (f+f1 )TM] 

df 

Let the first additive term on the right hand side of the l ast 

equation be denoted by 11 , the second one by 1
2 

and the third by 1
3

. 

It i s well known that co 

and that 00 

j:~ sin( ax+k) • 
ax+k 

In our case 

var = 
T 
N 

J sin
2

(ax-b) dx 

(ax-b) 2 
_co 

sin(ax+t) rr sin(k-t) 
ax+t dx = a (k-t ) 

and therefore 

1( 

-- + 
2rrTM 

1( 

a 
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var TM TM 2TM sin(4f1irTM) 
-= -+ +-

(4irf1 TM) K2 TN T TN N 

2TM 
(l + s~¥2~) where ~ 2f1 irTM = 

TN 
= 

An approximate, and simpler, way to estimate the integral 

co 

· is as follows • 

Avoiding the .inconclusive result, 

lim Q2(f) = 
T _. cf} 

M 

one observes that 

lim 
T-= 

M 

sin
2

(2 irfTM) 

[ 
sinL(f-f) - ~ 2 ~ F 

L(f-f.) J -
J 

= undefined) 

(24) 

is a function of a given shape which 11 shrinks" in width as L increases, 

without changing shape, as shown below. 

F >.-

Li>>L 1 
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When this function F is multiplied by L2 , it becomes spike-like in 

behavior as a factor of an integrand ; in fact, it behaves in this con-

text as a delta function of weight 

= = 

hence 
ro 

var[S(f)],..., 2;N J [ 2TM o(f+fi) + 2TM o(f-f1 )Js 2
(r)df 

_r:t:> 

which agrees basically with Eq .(24). 

In a similar way,. one can approximately evaluate the variance for 

other windows. The details can be found in Ref . 24 and are not repeated 

here . For the commonly used windows (usually referred to as Q11 Q
2 

and Q
3

) · 

the result is: 

[ S ( f ) J = K !tJ S 2 ( f. ) vari j- TN J (25) . 

· 'where K is slightly l ess than 1 , the actual value depending on both 

the index i and the frequency f. 
J 

a 
4.2 Variance Considerations for l/l(f)I Processes. 
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The question raised next is if this spectral estimate's vari-

ance can be analytically derived for a more complicated power spectral 

density; the bothersome case of 

S = K/f
1 

is of great interest in the framework of this work. 

Difficulties may be foreseen if one thinks of the problem as a 

regular integration of a diverg ing integrand ; l/f does diverge, after 

all, at f = 0 Arbitrary truncation of the l/f behavior is a way 

out, although a poor one as shown belaw. 

The two questions of significant interest are: 

(a) Does the estimate's var iance of an asswned K/lfla pawer 

spectrum diverge for certain values of a ? 

(b) If so, what is the significance of ndivergence n of the 

variance for actual experimental data-processing situations? The per -

tinent question thus is: which is the critical exponent.) CY~ J 

a>O 
the 

, above which~variance of the spectral estimate 

diverges? The question is of pract ical interest in evaluating spectral 

estimates of unprewhitened processes; it is also of theoretical interest 

in that it establishes once and for all the critical value of the param-

eter a below which the ninfrared catastrophyn does not exist as a 

possibility. 

Letting 

_co 
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Substituting S(f) = K/jfja: in 

CX> 

f (f) 4 j 
sin21ryTN 2 

= S(f+y)S(f-y)( 2 T ) dy 
rcy N 

_ro 

yields 
K 

[ 
s in2 rcyTNJ_,2 -

2 T dyjdf 
rcy N 

It can readily be seen that the quantity in the brackets will 

diverge for those values of the parameter a: where 

r l 

-~ lxla: dx 

will diverge. 

It is quite clear that the above integral will diverge for Ci ;;:: l 

but will not diverge for 0 ~ a: < l 

Since the quantity in the brackets is part of the integrand of 

vari[S(fl)] , and since the divergence is in no way "undone" by the rest 

of the integrand, vari[S(fl)] will diverge, too. 

In the interest of completeness it is of inte.rest to consider if 

the above results hold for sampled data systems too. 

If, in the derivation of the spectral variance bf sampled data 

systems, the appropriate mathematical changes are made to allow for the 

sampled nature of the input data, it has been shown( 24 ) that for equi-

distant sampling 



where 

25 

co 

co 

= ~ j• [QiA(f + ~T) + QiA(f - ~T)J2r6T(f)df 
_co 

co 

1 r· r co r q_ co r "' -,2 
= .. J. L. L: Q . ( f + ) + L: Q . ( f .- ,..,._ " ... - _'"l. ) i r ( f) df 

~ q_=-co i 2mllT - 6T P=-co i QilLl• 6T J 
6

T 
_co 

co 

r 6 T(f) = 4 J s(f + y)S(f ) ( S in2 rrynfi T)2 
dy 

y \_iis in2 n:y6 T 

where n, 6T, m, are constants. Consider r
6

T(f) first. Let 

S(f) ~ K/lfja 

co 
K 

Clearly, the analysis which indicated divergence for a ~I for · 

continuous data systems applies eq_ually weD_ to sampl.ed data systems. 

It is important to consider, at this stage, what the implica-

~ions of the above results are in an actual experimental situation. The 

experimental results to be presented later do imply a nearly l/f 

spectrum over a remarkably wide range . However, they do not appear to be 

consistent with an infinite variance for the spectral estimate. It may 

well be that this seeming discrepancy is due to the experimental proce-

dures used in taking data. 
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It does appear quite plaus ible, however, that some form of 

variance-increase must be expected if a noise source is not prewhitened 

prior to subsequent data processing. This will be discussed further in 

the final chapter of the thesis, 

4 .• 2 .1 Effect of Truncation of the Assumed Spectrum on the Variance. 

· Assume a power spectrum of the form 

The brief analysis which indicated divergence for the nontrun

cated spectrum makes it trivially obvious that the estimate
1
s variance 

does not diverge if the power spectrum is in reality truncated, but 

grows beyond any bound as the truncation frequency approaches zero. 

i~.3 Discussion of the Variance Considerations 

The desirability for prewhitening even in actual experimental 

* situations was indicated above , and the spectral variance for the zeroth 

window was evaluated . Reference 24 includes derivations of the .spectral 

. variance for other windows . 

-)(-

Variance considerations are not the only considerations pointing towards 
the desirability of prewhitening. Intermodulation distortion considera 

tions, for example, are l east damaging if the analyzed spectrum is 
r elatively flat . In addition, References 24 and 25 analyze in considerable 
detail why the spectrum of the noise source should not vary significantly 
over distances of a few l 1s ; these analyses will, naturally, not be 
repeated here. 2TM 
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Even these results, however, are the cons equences of a set of assump-

tions whose violation can only increase the true estimate's variance. 

These assumptions are: 

(a) TM << TN , this assumption was invoked by Blackman and 

Tukey in simplifying integration limits while deriving Equation 23 

above. Blakemore( 25 ) has shown that a consequence of not satisfying 

this . inequality can be evaluated by replacing in this 

general expression for var.[S ( f .)] ; 
l J 

Q'.' 
J. 

is found to be a weighted sum 

of more than one "window", and the predictable effect is to increase 

the numerical value of the variance . 

(b) A potentially serious disadvantage of time-m\.J.ltiplexing 

used to reduce the overall data-taking period is the possibility of 

statistical correlation among the multiplexed sources . Every effort 

has been made to e l .iminate such effects ;in the experi..mental part of 

this thesis, and, indeed, no such obvious correlation has been detected 

in the data on which the final r esults are based . In the worst case, 

that of complete correlation between noise sources, the spectral esti-

mate's variance can increase t enfold, as shown in part 5.5. 

In view of the aforementioned considerat ions, the evaluated 

expression for the spectral estimate's variance 

T 
var[S(f.)] = K ..E! s2(f.) 

J TN J 

is too optimistic. 
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Although the effect of violating the TM << TN asswnption has 

not been quantitatively determined to any great accuracy, and although 

no means have been devised for precisely measuring the amount of 

correl ation be tween noise sources, it is the opinion of this author that 

a value of K = 3 is a realistic one for the present work. 

It must be stressed at this stage that it is very hard to 

quantitatively apprec iate the degree to which the various assumptions 

us ed in deriving the above express ion were satisfied; it is hard, for 

instance, to measure how truly "white'.' an unknown power spectrum has 

become after b e ing prewhitened by a filter designed to prewhiten K/f1 

spectra only. 

Given that TM/TN ~ 1/10 per noise source, for each and every 

sampling rate used in this work, and that 10 noise sources were multi

* plexed , the above variance expression becomes 

fvar[S(f)J 

s (f.) 
J 

For a gaussian.ly distributed random variable s (f.) 
J 

(a plausible assump-

tion), this means that 68% of the time the estimate .. would be within 17 

percent of its average value ; we thus basically have a 11 l 7<fo est i mator". 

This result is further elaborated on in Section 5. 2 below. 

In conclusion, Equation (25) means that if variance is L~portant, 

given TN' TM . must be kept small; but then, as will be shown in Section 

* This is anaJ_yzed in det a il in part 5.5 below. Equation (45) shows that 
the variance is then reduced by a factor of 10. 
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5.2, the time window D. ('r) 
1 

ge ts narrow and its transform widens; this 

in turn affects the frequency resolution adversely. Much has been 

written, some helpfully, on this point; the need to balance bandwidth 

of a spectrum estimate, which it is desired to make narrow, versus the 

estimate's statistical stability, which it is desired to make great, is 

commonplace. It is quite obvious that where the detection of specific 

frequency peaks is of inter es t, such as a "radar cross section" problem 

where each extra frequency peak may a.mount to an extra corner of the 

oncoming missile ), frequency resolution is of great importance . In flicker 

noise measurements, on the other hand, where a reasonably smooth spectrum 

is almost always the case, the concern of statistical stability will be 

great; a happy medium is thus chosen. Obviously there is tbe alternative 

of a longer TN' i.e., a l onger data taking period which will be bene

ficial to both frequency resolution and s-tatistical stability; the probl ems 

t hen are ones of equipment instability during the low-sampling speed runs. 
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CHAPTER 5 

CONSIDERATION OF PARTICULAR STEPS IN THE ESTIMATOR USED IN THIS WORK 

While the Blackman/Tukey estimator is used in this work, the 

justification for some particular aspects of it may not be immediately 

obvious. 

This section does not attempt to repeat the entire theory 

behind .the Black.man/Tukey estimator; specific topics are only treated 

to the extent necessary to justify particular choices in this thesis. 

For a thorough background, the reader is referred to References 24 and 

25. 

5.1 Prewhitening and Postgreening 

Section 4.3 above has discussed some of the reasons for the 

desirability of prewhitening. Experimental work for this thesis indi-

cates an increased variance of the spectral estimate if it is obtained 

without prewhitening; Figures . 2 and 3 below show two ordinary-looking 

noise source outputs and the two corresponding spectral estimates for 

each one of them obtained with no prewhitening and with prewhitening; 

the increase in variance is quite evident. 

What is needed is a filter Y(f) such that 

s (f) IY<Ol
2 s (f) , where IY(f)l2 If I ' l f i < _l_ 

z x - 21:::.T 

The filter will be periodic in frequency with period 
1 

!:::.T 
like the 

aliased spectral density (aliasing is discussed in Section 5.3 below.) 

Letting 
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l B.R,cos 27T£f 

.R-=-k 

33 

(26) 

k clearly is determined by the degree of the. desired accuracy, and 

the Bi's are determined by imposing the desired analytic expression 

on the left hand side of this equation. 

A finite summation is required for computer implementation. 

Furthermore, it is desired that the finite summation be zero at f = 0 

Imposing these requir ements results( 2
S) in the following expression: 

4 k 1 
2 I 2 cos ( 29-"R f .6.T ) 

7T £=1 -€ 
(27) 

which def ines the (k+l ) constant s B9, and hence the prewhitening fil --

ter in the frequency domain. · It is only practical to prewhit en da ta 

* ' in the time doma in. One such scheme is proposed by Blaclanan-Tukey 

in the discrete cas e the prewh:f-ten ed data are forme d from the raw 

x 's by 
j_ 

z. 
J 

j=l,2,···,n-k 

Blakemore has shown(
2

S) that the A.'s can be viewed as the 
1 

sampled-data version of t he impulse response of a linear filter; 

·· accordingly, they are obtained from the filter chara ct erist i cs, the 

* This , time domain approa ch is clearly preferable, since prewhitening 

can then be done before any subs equent data processing, as desired. 
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B 's, by self-convolution, which yields 

B A2 + Ai+ ... + ~ 
0 0 

Bl = Ao Al + ... i\-11\ 

B2 = AoA2 + ... i\ A -2 k 

(28) 

The solution of these nonlinear algebraic equations, whe'Yt "inverted, 

gives the desired A. 's . It was found by Blakemore( 2S) that very 
1. 

adequate results were obtained with k = 9 (i.e. , 10 A. 's) . 
1. 

The inverse procedure, "postgreening", is quite simple in the 

frequency domain; we are passing the power spectrum s (t) 
z 

through a 

filter which is 

s (f) 
x 

1 6 - 1- · that · I y ( f) 12 I f I ' 1.S , 

1 s (f) 
IY(f)j2 z 

(29) 

The procedure thus involves simple division of each frequency-domain 

estimate. 

5.2 "Windows" 

It is desired to concentrate the maln lobe of Q.(f) (see 
1. 

equation 21) near the zero frequency and to minimize the area under 

the side lobes; whereas the reduction of the side lobes of Q. (f) 
1. 

implies a smoothly changing time-domain window D.(T), the desired 
1. 

concentration of the main lobe implies a flat and blocky D. (T) . 
1. 
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Different attempts at a happy compromise of the above con-

flicting requirements have resulted in different windows D. (T) , i 
1 

being just a bookkeeping index. 

The original work of Blackman/Tukey has indicated that the 

theoretical variance of the final spectral estimate is approximately 

the same for all usual windows except the zeroth one, 

has twice the variance associated with it. 

The window used in this work is the "hanning" 

D
2

(T) ! (1 + 'ITT ) IT I < T cos -
2 TM M 

0 !Tl > T 
M 

The corresponding Fourier transfonn is easily obtained 

where 
Q (£) 

0 

sin 2'Tf f TM 
2TM 2'Tff TM 

D (T) which 
0 

window 

(30) 

to be 

(31) 

(32) 

Since multiplication in the time domain is equivalent to con-

volution in the frequency domain, and since convolution in sampled-

d d . . . h b h <24 ) ata systems amounts to a iscrete summation, it as- een s own 

that "windowing " is preferable in the frequE!ncy domain because it only 

·· amounts to a simple summa tion. 

For the window chosen, we simply have 

(33) 

Since this is an extensively documented topic, it will not 

be pursued ~ny further in this work. 
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5.3 Aliasing and De-Aliasing 

Since one cannot tell how many wiggles a certain signal has 

between two successive sampled values without some a priori knowledge 

of its spectrum, it is possible that high frequency energy can mas-

querade as energy at lower frequencies. · This follows trivially from 

the associated mathematics, as shown below, and is often referred to 

as "aliasing". 

Applying the estimator given by Section 3.2 to an infinitely 

long stationary random process yields(2
S) 

Thus 

00 

I 
q=-00 

00 

s (f ) + \ rs c.L - f ) r l L 6T r 
q=l 

+ s c..L + f ) J tn r 

where the notation of Section 3.2 is adhered to. 

(34) 

(35) 

Since S(f ) is never estimated in practice at frequencies 
r 

1 f > 26-[ , the arguments of s ( f ) 
r 

above are all positive . 

The sketch below indica tes the aliased frequ encies corresponding 

to an estimate-frequency f 
r 

-r-a--·-----·---g-t~------t-t-· -----~,_..,..__~"> f 
9z.c.i:. '/ti't %t.i: 2/a·c. 

It follows that all one needs to do to remove this bias . from 

the estimate is to subtract the quantity 
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00 

l [S(_g_- f) + S(~+ f )] 
6T r t..1T r 

q=l 

where the spectra at these frequencies must either be obtained through 

other measurements or be estimated. 

For a typical K/f spectrum with 6-r = 100 sec, n = 10,000 

data points, m = 100 discrete frequency estimates, the estimator used 

in thi.s work will provide estimates from 1 -3 
f = 26 T = 5 x 10 cps to 

1 -5 5 x 10 cps , that is, two decades in frequency. Let us 2(m=l00]6T 

first consider the aliasing correction at the low-frequency end. Its 

1 5 -2 nearest alias is at [ 6T = 100 - 5 x 10- ] ~ 10 cps, and has a magnitude 

of K/ f = K x 10
2 

, i.e., thr ee orders of magnitude smaller than the 

spectral density at the low frequency'end. 

-2 Similarly, the second nea rest alia s is at approximately 10 

cps with magnitude 

K x 102 

the third nearest alias is at approximately -2 2 x 10 cps with magni-

tude 

l x K x 102 
t 

2 
, e c. 

The overall sum of aliases is therefore 

If only a few aliasing terms are allowed to exist, then this quantity 

is much smaller than 

~ x io5 



38 

Appendix B discusses the effects·of a large number of alias -

ing terms. 

In the high frequency end of the estimated spectnnn , aliasing 

results in significantly more distortion. 

For a highest frequency estimate at 

f = 

with magnitude 

1 
2fiT 

K 
7 

-3 5 x 10 cps 

= 

the first alias is at 5 x 10-
3 

cps with magnitude ~(K x 10
3
). The 

second alias is at 15 x10-
3

cps with magnitude i
5

(K x10
3
), etc. The 

total aliasing is thus 

K x 103 K x 103 K x 103 K x 103 K x 103 
---+ + + + + ... 

5 15 15 25 25 

which is a growing numb er as more terms are added. This shows that 

aliasing is a definite problem· even for l/f spectra, and even more 

of a problem for l/lfla, a< 1 spectra. 

It also shows the de-aliasing algorithm. From simple mathe-

matical considerations, the sum of the aliases will not diverge 

however, for spectra of the type l/lfla, a> 1 . 

A low-pass filter to cut off the high frequencies at a rate 

faster than l/f is, thus, clearly desirable. Given the cutoff fre-

quency of the low pass filter associated with the process being 

measured, the above equations provide the de-aliasing algorithm; this 

algorithm was, in fact, used in de-aliasing spectral estimates of this 

work. A detailed example of the procedure is given in Appendix B. 
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Since an ideal low-pass filter is unrealizable, a single RC 

filter was, instead, used in this work. Ideally, different RC filters 

with appropriately scaled timed-constants ought to be used for dif-

ferent sampling rates; this is not essential, however, for two reasons: 

(a) The aliasing effect is always a measurable quantity. 

(b) The above "appropriate" time constants can amount to 

very sizable capacitors for the lowest samp ling rate runs. If, for 

example, ~T = 10,000 sec, the highest frequency estimate is at 

1 -4 2 x 10 cps; an appropriate RC filter would then have to have 

T = RC ~ 
4 2 x 10 sec 

Keeping in mind that it is desirable to keep noise pickup to a minimum , 

and that the input i mpedance of the voltme t er ought to be much larger 

than the series r esistor R, one can select 

R 1 megohm 

in which case C = 1/5 Farad, which is an outrageously large value for 

any realizable capacitor . 

It is of interest to point out that in reality, of course, 

there exists an eff ec tive built-in low-pass filter in any semiconduc-

tor, since there is always a frequency above wh ich the semiconductor 

. 
is capacitive in nature. It is desirable for practical purposes, 

however, not to depend on the unknown cap a cit'ive nature of the semi-

conductor for de-aliasing purposes. 

The particular choices of low pas s filters used in the experi-

mental part of this thesis are discussed logica lly together with the 

experimental results themselves. Further discussion on de-aliasing is 
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relegated to Appendix B. 

5.4 Constant Mean Removal 

Most derivations concerning stochastic processes are tradi-

tionally carried out for zero-mean processes for notational simplicity; 

ordinarily there is no loss of generality in so doing, since one can 

always redefine a new set of processes through a simple linear trans-

fonnation 

-X-(t) 
new xold(t) M (36) 

where X(t) is an n-dimensional vector in the most general case. 

Unfortunately, there may actually be a loss of generality if a 

complicated sequence of linear and nonlinear transfonnations is per-

formed on the zero mean process; the original stochastic processes do 

not appear explicitly in the final result, and a final substitution of 

the type given by Eq. (36) is thus out of the question. There are two 

·options at that stage; one either rederives the algorithm for a non-

zero-mean process and is thus able to analytically account for the 

bias which may appear at the end, or one simply takes the mean out of 

the random function before any data processing. 

All the stochastic processes treated experimentally in this 

work had nonzero means; in fact, in the case of the ten multiplexed 

noise sources, different nonzero means were actually imposed on each, 

for purposes of identification. 

The question of what is the best estimate of the mean comes 

first. It would be the sample mean if the noise process was a sample 

from a normal distribution of known variance; it would be a 
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conditionally unbiased, sufficient and consistent estimator of the 

true mean. But the process isn't always gaussian. Experimental 

results where a sizable linear trend or a low-frequency sinusoidal 

variation were superimposed on the data are discussed in Section 6.1 

below. The conclusions drawn there are that the final result is 

practically unaffected despite the imposed distortion, and they 

strongly support the intuitive belief that any estimator of the mean 

which is more refined than the sample mean is totally unnec~ssary. 

The estimated mean can be removed from the data at any of 

many stages of the Blackman/Tukey algorithm; it can be removed from 

each data point ~(t) 
1 

by simple subtraction, 

;::-(t) 
1 

~(t) - M 
1 

its square can be removed from the computed correlation function 

R (T), 
x 

R (T) 
n 

2 R (T) - M 
x 

(37) 

(38) 

or an appropriate more complicated function of it can be removed from 

the raw spec tral estimates or from any other stage of the algorithm; 

in principle. Blakemore(2S) has worked out the computational details 

indicating that either of the two approachei suggested by Eqs . (37) 

· · and (38) give, predictably, very comparable results in terms of bias; 

indeed, there appears to be little reason, if any, to consider remov-

ing some complicated function of the mean from still some other stage 

of the overall algorithm. As can be readily seen fron~ Eq. (16), the 

mean was removed in the experimental results by a method very analogous 



42 

to that suggested by Eq. (38). 

Since the quantity removed from the data is really an 

approximation to the true mean, one is concerned what the effect of 

an inaccurately approximated mean removal is. 

5.4.1 Effect of removing an inaccurately estimated constant mean 

If the data x(t) is indeed a sample from a stationary zero 

mean noise process n(t) plus an additive constant M ; that is, if 

x(t) = n(t) + M (39) 

then the correlation functions are 

R (T) = R (T) + M2 
x n 

(40) 

and removing (M2) from the approximately one hundred mean lagged 

products is on the average equivalent to r emoving (M) from the 

approximately ten thousand data points usually recorded for each run. 

The quantity (M), however , is a random variable and its com-

puted value need not coincide with the true mean of the process 

x(t) ; it is of interest, therefore, to have an unders tanding of the 

effect of a poor estimate of the true mean of the process x(t) · on 

the corresponding spectral density estimate fo~ that process as 

obtained by the Blackman-Tukey algorithm. 

An estimate of the true mean which is smaller ·o r larger in 

absolute value than the true mean, will result in mean-lagged-

products which are correspondingly larger or smaller in algebraic 

value than the true values. This effect can be easily modeled mathe-

matically by letting 
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C actual 
r 

= C true+ 6 
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(4l) 

c actual = mean-lagged-products computed using the estimated 
r 

value of the mean of the process in subtractjng M2 • 

= corresponding coefficients obtained by using the 

(unknown) true mean of the process. 

- the unwanted additive constant resulting from a 

poor estimate of the mean of the process; it can 

be positive or negative . 

The actual algorithm for spectral estimation will now be used to trace 

the pernicious effects of the above quantity 6 

The raw spectral density estimates are computed according to the 

formula 
q=m-l 

Vr = 6T [C0 + 2 ~=l 
qrrc 

C cos -- + C cosrrc ] 
q m m 

For all estimates in this research, m = lOO If the 

i E [O,m] above are replaced by the corresponding ctrue 6 
' 

. + 
l 

Vestimated 99 qrrc qr rc 
= M·[c + 2 L: c cos --+ 6 cos -- + 

r 0 q=l q m m 

99 qr:rr c cosr:rr + 6 cosr:rr ] 6'C [C + 2 L: c c = cos -- + m 0 q=l q m m 

99 qrrc 
(6T[6 + 26 ~=l cos 100 + 6 cosrrc]} Thus, 

' 
then 

, 
cosr:rrJ + 

V estimated 
r 

true 99 qr:rr 
= Vr + ( (6) • 6T[l + 2 ~=l cos 100 + cosr:rr ]} 



kt: 

44 

6 
!(l + cosrrr) K · r' 

this can be either zero or one. 

99 
kt: [l + 2 ~=1cos y~~ + cosrrr] =Gr 

The quantity within the braces is of interest. Given specific constant 

values for the error 6 and the sampling period 6T , the frequency 

dependence of the error is given by t abl e1 below. 

The error introduced is of alternating sign, hence the distortion 

of the final result cannot be an overall increase or decrease of the true 

magnitude of the spectral density . 

The magnitude of this distortion can be appreciated -by assigning 

typical nwnerical values to the para.meters involved . For a sampling 

period of 6T = 100 sec. and a plausible error of mean estimation of 

* ~ 0. 2 volts the additive error G1 at the l ow frequency end of the 

estimate is 

G
1 
~ (4 x l0-2 )(102 )(1. 725 x lo-4) = 6.9 x lo- 4 volt2 sec 

The corresponding typical nwnerical value V estimated 
l 

determined experimentally for that sampling period is approximately 7db 

or 

estimated . ( ) 2 v1 = antilog10 0.7 ~ 5 . 01 volt sec . 

. which is four orders of magnitude larger ; minor inaccuracies in mean 

estimation are thus of no consequence for high sampling rates. 

For a sampling period of 6T = 10,000 sec. and a plausible error 

of + 0.2 volts, the worst additive error, G1 is 

* This value is based on the noise amplitude values actually recorded after 
adequate amplification, and is consistent with the rest of this discussion 
which is based on the same values . 
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(4 - 2 )( 4)' -4) ,-: -2 2 Gl ~ x 10 10 ~1.725 x 10 ~ 0 .9 x 10 volt sec. 

The cor responding nu.merical value observed experimentally for this new 

srunpling period is approximately 20 db or 

v~stimated = ant i l og
10 

(2 ) = 100 _volt2 sec. 

agajn, four orders of magnitude larger • 

. It follows that accurate mean estimation is unnecessary when the 

amplitude of the noise source measured is of the order observed in this 

research. 

5.5 Multiple Noise Source Treatment 

As Chapter 9, which deals with the experimental se,tup, di scusses 

in detail, 10 different noise sources were time-muitiplexed for the f inal 

spectral density estj.mate . 

The following quest ions are of immedi ate interest: 

a) What is the best est i mation technique if the individual 

* spectral estimates of 10 independent noise sources are available? 

b) How is the answer to the first question modif i ed if the 10 

noise sources are correlated? 

An essential set of assumptions for a meaning£ul combination of est j.mates 
· from multiple noise sources is that : 

a) The nois e sources are statistically independent . 
b) The noise sources have power spectra which may only differ by a multi-

plicative constant. 
Assumption (b) i s satisf i ed to a reasonable degree as evidenced by indivi
dual spectral density estimates of various noise sources . Assumption (a) 
is also satisfied t o an extent dis cussed both theoretically below, and 
experimentally later . 
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In trying to answer the first question, the conditional maximum 

likelihood estimator of the mean( 3o)approach is a likely candidate for an 

estimator . For purely algebraic convenience and for lack of any evidence 

to the contrary, it may be assumed that t~e 10 available estimates s. (f.) 
J J. 

at each discrete frequency (i) are samples ~rom a normal distribution 

-
having some variance 2 

(J. In accordance with the definition of the 
J 

maximum likelihood es timator, one wants to maximize 

p(µ ls) = p(s/µ~p(µ) 
p(S) 

--+ 
where µ is the unknown mean, S is a 10-dimensional vector, and p(µ) 

is a measure of any available a priori information concerning the value 

of what is wanted; in the absence of any such informat ion, the sol ution 

of( 31 ) 

log p (s/µ ) = o 

l eads to the conditional maxDnum likelihood est i mator of µ 

algebra, yields : 

log p(s/µ) 

= 
10 2 T log 2rrcr j 

10 2 
-l: (S.-µ) 
j=l J 
-----] .. 

2 
20. 

J 

10 2 
L: (S . -µ) 
j=l J 

Setting the derivative equal to zero and solving for µ , 

(42 ) 

Doing the 

(43) 



yields 

. ..... 
ologp(S/µ ) 

dµ = 0 

..... 
. µ (s) 

l lO 
= 10 l: s. 

,j=l J 

1 
2 

0 . 
J 
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K 
2.: (s . -µ ) 
. 1 J J= 

' ..... µ=µ (s) 

(44) 

(45) 

This is all very nice and seems to validate one's intuitive feel-

ing that this should be the case; if the real data ci.T"e considered, however, 

certain doubts are raised. Figure 4 is a plot of the raw da ta obtained 

from the lO nois e sources used in part 'of the experimental part of this 

thesis for a particular sampling rate. As can be seen from that figure, 

the individual outputs appear to vary considerably in relative amplitude; 

the corresponding individual spectral estimates are thus, quite predict

ably, shifted in magnitude from.each other. The simple averag ing of 
Equation (45) would then, in essenc~ attenuate the contributions of the 

least noisy sources , and at the same time amplify the overall trend and 

random spectral fJ_uctuations of the ''noisy" noise sources ; this would in 

turn invalidate any claim that the variance of the estimated mean µ(S) 

is one-tenth that of just "any" · individual spectral estimate s. (f.) 
J 1. 

The nois e observed as raw data from each noise source is, as will 

be discussed in Section 9.2, essentially that of the first stage of a 

high gain d.c. amplifier. A.J.1 off-the - shelf remedy for the above observed 

nonuniformity of the output amplitudes of the individual noise sources 

would then be to scale them all through appropriate multiplicative 
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constants; this can be done either on the raw data itself, or on the 

individual spectral estimates s. (f.) 
J 1 

; the latter is preferable be-

cause of the highly r educed amount of computat ional work involved, and 

also because it eliminates the likely possible need for an iterative 

procedure where a noise gain is guessed from the raw data, and the effect 

on the spectrum is then observed in preparation for the next guess. 

A closer look at the data plot of Figure 4, however,. indicates 

that over and above the aforementioned difficulty, the individual noise 

sources display outputs which are significantly different in nature; 

* noise source #h is "popcorning" with a time constant of a few hours; 

noise sources #e, h, . deviate considerably from the ir sample mean, while · 

other sources display still different behavior. One is thllS left with 

the impression that perhaps some noise sources ought to be attenuated 

and others amplified in inverse proportion to their "quality". Quality 

should be measurabl e then, and the only sensible yardstick is how close 

each particular noise source comes to the mathematical model used in 

deriving the spectral estimator. 

In developing the estimator in Section 3 .1, it was found 

necessary to assume : (a) Fourth order stationarity ·of the noise source. 

(b) Ergodicity of the mean and of the autocorrelation. 

The first requirement (on which the second is essentially de-

pendent) is at best hard to check; even second order ("wide-sense") 

-)(-

"Popcorning" refers to an output whose mean fluctuates between two or 
more well-def ined levels; the Hausition times can be random with 

different transition probabilities associated with each state. 
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stationarity which is all that is required for ergodicity of the mean is 

hard enough to verify experi mentally. The fundamental difficulty involved 

here is that one must agree on a minimum time span over which stationarity 

can be expected. It is mentioned earlier in connection with Figure 4 that 

noise source #h is "popcorning" with a time constant often exceeding 6 

hours; it follows that for that particular sourceJ stationarity is not an 

accurate assumption for experimental runs shorter than a few times the 

above time constant; thu~ noise source #h would be of relatively poor 

quality for the short duration runs but not necessarily so for the long 

duration (low sampling rate) ones . 

Checking for ergodicity of the mean is relatively simple if the 

analytic expression of the autocovariance or of the autocorrelation is 

available. Specifically} it has been shown that if 

-x-
2 

lim R(T) -/= rl 
T_. co 

the ergodic theorem is not satisfied . 

(46) 

No such scheme is as yet available for checking for the ergodic -

ity of the autocorrelation . 

As can be deduced from the above discussion} checking the 

"quality" of each noise source i s a rather subjective matter, basically 

based on: 

(a) How stationary is the mean of that source during that par-

* ticular run? 

* This is not easy to check in an experimental situation . 
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(b) How smooth is the corresponding estimated spectrum? 

These criteria are by no means complete ; as was shown earlier, 

they are at best usable guidelines in assessing the 11 quali ty" of a 

particular noise source. 

Figure 5 shows histograms of the absolute value of the amplitude 

distributions of each of lO noise sources used in deriving prelimL~ary 

estimates in experimental work, in an attempt to assess the stationarity 

** of each, somewhat l ess subjectively. The presence of a ga.ussian shape, 

or absence thereof, is of no great significance in this context, since 

the only place where a gaussian assumption was used was as a ma.thematical 

simplification in deriving a simple-looking property of the estimator, · 

namely its variance. A significant feature observable in these figures 

is that the shape of the distribution ·of the amplitudes of the first half 

of some noise sources differs from that of the second half; doe s this imply 

nonstationa.rity? Not necessarily: stationarity has no built-in time 

interval during which it must be displayed. Stationarity is, thus, 

difficult to check, even through the use of such histograms. It appears 

that the only valid conculs ions that may be. drawn from Figure 5 for the 

time being are that a particular recording of a run .at a particular time 

is not as useful as it could have been at another time. Reference will be 

'made later on, to these figures in Section 7 .l. 2 in connect ion with the 

* This is a measure of quality in the sense that, for example, a popcorning 
source with just one l evel shift during the run in question is not a good 
source. 

** The statistical properties of the sources will be examined later in this 
work. 

*** This is a relevant measur~2~f quality for reasons related to the spectral 
variance. (See Blakemore )for details). 
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expected statistics from a postulated mathematical model of flicker 

noise. 

A highly relevant point of interest is the q_uestion "at what 

freq_uency (for each run) should the weighted averaging be attempted?". 

The high freq_uency end is a poor choice in that it is most affected by 

aliasing; the low freq_uency end is also a poor choice in that it is very 

susceptible to bias. A rational a..Dd convenient, however arbitrary, choice 

is a freq_uency near the middl e of the ra..Dge for which that particular run 

has provided spectral estimates . 

The scheme actually used in averaging the 10 individual spectra 

in this work involved the following steps: 

1. Find the average value of the ten spectra at f = f wher e 
c 

the fr eq_uency in the middle of the range avail ab l e . 

f is 
c 

2 . At that one freq_uency find the appropr i ate 9 multiplicative factors 

3. 

4. 

aK' KE[ 2,10] such that all 10 individual spectra have the same 

magnitude as one of them . 

Repeat steps 1 and 2 for 
l 

f = fc + 4 6F and 
l 

f = f - r 6F where c LI· 

6F is the total fr~q_uency span available. Record the new multiplica-

tive constants obtained as ~K and YK 

The q_uantities 
3 

multiplicative factors sought . 
' 

KE[2, 10] are the unweighted 

5. Through good judgment based on the discussion of the present section 

assign weights o.8 < SK< 1. 2, KE[l,10] to the lO nois e sources 

respectively. 
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6. The final "weighted" average spectrum is then given by 

1 

10 

A quantity of interest at this stage is the variance of the 

(47) 

final estimate. In order that the result be a usable onE'.! it is neces-

sary to use Eq. (25) which gives the variance for a single noise source 

as a starting point; the further assumption that 6J(3K(f), KE[2,l0] are 

samples from a gaussian distribution [not a very accurate .assumption 

but a realistic one] simplifies the mathematics considerably . It was 

shown in Eq . (45) that 

" 
µ!s[(f.)J 

1. 

1 10 " ** 
I: S.(f.) 
. 1 J 1. J= 

=-
10 

" 
Replacing s; (f.) 

J J. 
by & .s.( f .) 

J J J. 
in the equation above, is a step in the 

right direction towards approaching the assumption of gaussianly dis-

tributed spectral estimates . Hence 

" 
µ[s(f.)J 

1. 

l 
10 

10 
I: o. s.(f.) 

J J J. j=l 
(48) 

* As explained in the experimental part of the thesis, SK(fi) is obtained 
at 100 frequencies for such data 

*-* The symbol will be used, as an exception, in this section only, to 
indicate an estimate because it is not always clear; this is cons i stent 
with the notation convention adopted since Sect ion 3 . 2 . 
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Since µ[S(f.)] is the sum. of 10 gaussian random variables, it is itself 
. l 

a gaussian random variable having a mean and a variance of its own. 

Thus( 32 ) 

A 

1 
10 A 

" 
E{µ[S(f.)]} r, S.(f.) 

.... 
[S(f.)] - = µ = µ 

l 10 . 1 J l l 
J= 

(49) 

and 

,., 2 10 10 1 A " 2 -E[[µ [S ( f. ) ] - µ} } 
= 102 

I: I: S.(f.)S (f.) - µ 
l j =l e=l J i e i 

10 10 
l .... " 

= 102 I: I: s . (f. )s (f.) 
j=l e=l J i e i 

(50) . 

where E is the expectation operator, and µ was defined hi Eq. (49). 

Now recalling that in general 

2 2 2 
a = E[x ] - E [x] 

and that for uncorrelated gaussian random variables (therefore independent 

ones) having the same mean (assured by the incorporation of 

expressions ) 

·Equation (50) simplifies toC33 )' 

a~ 
J =-

10 

6 1s 
K 

in the 
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where cr~ is the variance of each individual spectral estimate given by 
. J 

Eq. (25) earlier, i.e., 

"' 2 TM 
Var [S.(f.)] = µ [S.(f.)] -

J i J i TN 

In other words, the variance of the result of multiplexing 10 

· noise sources for time TN is the same as the variance of the result of 

having 1 noise source and measuring it for time lO•TN' assuming that 

the appropriate multiplicative constants have been incorporated as above. 

This is so if and only if the individual noise sources are not correlated. 

The magnitude of the subjectively assigned coefficients S. · has been 1. . 

deliberately kept close to unity because doing otherwise would r es ult in 

an increased variance of the final estimate, according to the discussion 

earlier in this section; in f act the very presence of these near-unity 

(but not always unity) multiplicative constants is part of the reason for 

allowing a variance of 

3T 
var[S(f.) ] = ~ / s 2

(f.) 
1. TN i 

For the overall final spectral estimate as opposed to the computed figure 

of 

(for windows other than the zeroth window, as already stated.) 
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Orie additional point related t o the above is a consequence of the 

fact that any one given noise source could exhib it a behavior which could 

be more acceptable for one sampling speed than for another ; accordingly, 

no attempt was made to associate any one noise source with one subjective 

quality coefficient Si for all sampling speeds associated with that 

particular source. 

While the criteria and the narrow ranges related to the assign-

ment of a particular 

-x-

$. have been already given, the actual 50 
1 

coefficients have not because they would be r elatively meaningless with-

out proper substE.ntiation; such substantiation, if it were _to be complete 

would require the insertion of 50 raw -data plots and aI'-other 50 pre-

liminary spectral density estimates. 

It must be stressed that in averaging the final spectral density 

estimates, it was not the logarithms of the individual spectral estimates 

which were linearly averaged but the actual individual spectral est~nates 

themselves. Since the ass ignrnent of the subjective factors Si required 

human intervent ion before any further computer process i ng, and since the 

individual spectral est_imates were deliberately punched in data cards in 

logarithmic form for easy evaluation, the "averaging " compute:::.· program 

had to reconvert each of these numbers to their antilog equivalents, 

average them, and reconvert them to one final set of lOO logarithms rep-

resenting the 100 discrete estimates. 

* Corresponding to 10 coefficients for 5 different sampling rates . 
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CHAPTER 6 . 

COMMON SOURCES OF BIAS IN THE ESTIMATE 

If the assumptions of ergodicity, stationarity, and appropriate 

spectral smoothness needed in deriving the Blackman/Tukey estimator are 

met, if the unprewhitened power spectrum· of the source is indeed l/f , 

if the raw dataare not hiding a sharp spectral peak, then we can have 

some faith in the final estimate; but we have no usable test for 

checking the ergodicity of the autocorrelation and we have no test for 

checking high order (or any order, actually) stationarity. Applying 

this estimator's mathematics to the ineligible noise source may, and 

does, result in final estimates which are "reasonable-looking", well 

within the variance bounds of Eq. (25); yet heavily biased. 

Experience from some hundred dif ferent spectral estimates 

obtained from an equivalent number of noise sources indicates tha t 

there are a few persistent and identifiable common sources of spectral 

estimate bias plot. 

The spectral density of a disturbance which is uncorrelated 

with the "signal", in this case noise, is t _heoretically additive to 

the signal 's spectral density; indeed, given n(t) and d(t) as the 

stochastic representation of a noise in time and of a corresponding 

disturbance, then, assuming wide-sense stationarity and defining 

S(t) = n(t) + d(t), 

R ('r) = E { [n(t) + d(t)] [n(t +T) + d(t +T)]} 
SS 

= E[n(t) n(t+T)] + E[d(t) d(t+ T)] = Rnn(T) +Rdd(T) (51) 
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with the cross-products vanishing in the limit. Then, 

s (f) = 
s 

()() 

J 
iWT R (T) e dT + nn 

()() 

There are three points of interest at this stage: 

(52) 

a) A finite-duration random process S(t), t E [O,T] which 

has a seemingly out-of-place delta function or unit step or something 

similar in it, cannot be called "stationary" as such. Although it 

could indeed have resulted from some stationary ensemble, it is not 

very realistic physically. 

b) The algorithm used in t his work for estimating sp ectral 

densities is based on many assumptions discussed already, which were 

imposed by the practical limitations of the actual problem; deviation 

from such assumptions, consequently, results in biases of various 

kinds. Equation (52) is thus , at best, only approximate in the experi-

mental part of this thesis; an equivalent relation must be obtained 

which is based on the numerical details of the actual algorithm used 

in spectral estimation. 

c) Spectral density estimates should not be expected to be 

additive on the log scale which is used in this work. 

The raw data distortions most often encountered which result 

in bias of some form are shown in Fig. 6 below. A delta function in 

time, whose amplitude is much larger than the r.rn.s. value of the 

noise, like the one simulated by the digital computer on Fig. 6a, is 

not too common; it can be caused by an uncorrected error in the raw 

data, or by an unintentionally introduced card-punching error while 

manually correcting for a multiplexing-synchronization error. Spectral 
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* density estimates were obtained from all noise sources used in the 

final spectral estimate, with computer-created delta functions of 

amplitudes of 1 - 2 v, -lv, and -2v ; these amplitudes are not much 

larger than the typical noise deviations, but are certainly represen-

tative of the situation encountered in actual experimental runs. The 

lower left-hand side of Fig. 7 shows the expected gradual "whitening" 

of the undisturbed spectral density estimate of noise source No. 1 as 

the amplitude of the spike in the time domain is increased. 

Figures 7 through 11 indicate the anticipated result, namely 

that a particular disturbance such as a single data point out of 1000 

being displaced by the mean by a given amount results in a specific 

additive spectrum; this additive spectral density is independent of 

the particular noise source and is, naturally, not very distinguishable 

if the spectra l density of the noise · source itself is of considerably 

larger magnitud e . 

A more common source of spectral estimate bias caused by a step 

type disturbance of the raw data is simulated and depicted in Fig. 6b. 

It is almost invariably caused by a missing data card which throws the 

remainder of the data ~ff the preciously guarded multiplexing synchron-

ization. A simple mathematical derivation of the "extra spectral 

density to be added" is quite misleading; assuming f(t) A U(t), then 

* 

A2 
T 

A2 
T 

A2 
R(-r) lim f u2

(t) dt lim J dt = 
T + co 

2T T + co 
2T 2 

-T 0 

(53) 

Estimates were obtained for one only sampling speed; it is believed 
that this provides an adequa te measure of a noise source's nature for 
the purposes of this section. 
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and 2 S(m) = rr.A. o(ill) 

This is certainly not the effect obtained experimentally and 

depicted in the lower right side of Figs. 7 and 8. What is observed 

there is a bias on the low frequency side . of the spectral estimates 

which makes the estimate look steeper than it .really is. Blakemore( 25) 

has shown that for the simplified cas e where A > > cr2 = variance, the 

above-observed bias is to be expected as a consequence of the interaction 

of the data with the window. This case is complicated by the fact that 

it arises from 11 interchang ing 11 sources. which means that the general nois e 

l evel is different on the two sides of the step . Since such an event 

occQTS on all 20 records it cannot escape detection . 

Whereas the power spectrum for a unit step function in time is a 

spike at the origin, as Eq . (53 ) indicated, the power spectrum for the 

r ectangular pulse pT(t) of the half-·width T is not. Its Fourier 

transform is easily obtained by direct integration 

F (m) = 2sinmT 
ill 

hence the power spectrum 

A
2

(m) 4sin2mT 
(51-) = 

Tm2 T 

Depending on the width of the center lobe of the last equation above, one 

can expect anything from an additive 11white" spectrum to an additive 

spectral density biasing mainly the low frequency edge of the unbiased 

spectral density estimate . This is readily confirmed by the plots in 

the middle of Figs. 7 and 8. As with delta-function-type disturbances , 
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the amount of additive spectral.energy is de t ermined by t he disturbance

parameters and by the data-processing algorithm, and is independent of 

the particular noise source; this is readily seen in Fig. 10 which depicts· 

a "noisy" source whose unbiased spectral density energy is sufficiently 

large to "mask" the additive energy of the disturbance. 

One might be tempted at this stage to try to increase the "signal 

to noise" ratio, "signal" being the l/f noise and "nois e" being all such 

step-like disturbances; this way, biases of all the aforementioned kinds 

should vanish . This is not always pos_s ible, however; quite often, the 

step-like disturbance is caused by a malfunction of either the r egulated 

power supply or the temperature regulator; this is perceived by the first 

stage of noise-creation, and no amount of subsequent amplification can 

subsequently sel ectively discard that disturbance only . 

Fig . 11 depicts a "popcorning" source. This new type is treat ed 

in great detail in Ref . 34 . A quick glance at the steepness of the 

spectral estimate's low frequency side might s uggest the distorting 

presence of one (or more) superimposed rectangular pulses in the raw 

data, in line with all the discussion of this section; indeed, there are 

such pulses, only they are part of the noise. R~moving them digit

ally would produce an artificial array of data, representing nothing 

physical; keeping the noise source as it is would steepen the overall 

final estimate; yet the latter can hardly be called "dis t ortion" or 

"bias" since "popcorning" does exist in semiconductors and is as natural 

as flicker noise itself. 
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6 .1 Linear Trend RemovaJ_ 

The question of linear trend removal from a zero mean process 

(averaged over the available time) will now be considered. 

One is concerned with the presence of a specific and simple kind 

of nonconstant-in-time sample-mean: a linearly varying mean . The under

lying reluctance to generalize to other forms . of time dependence is the 

fear of throwing away low-frequency information in the process of mean 

removal. 

Fig. 10 has shown convincingly that an obviously extraneous time 

dependence of the mean whose period was about one-tenth the data length 

had no noticeable effect on the estimate. Having removed it would cer

tainly have caused no foreseeable deterioration of the estimate's quality. 

The traditional noise source whose mean varies linearly with time 

is computer- simulated in Figs, 12 and 13 from two otherwise genuine noise 

sources of constant mean, and the spectral estimates are compared . As 

can be readily seen, the effe~t of a linear mean shift by about 50 t imes 

the standard deviation had practically no effect whatsoever on the 

accuracy of the result. In short, there is no need at all for removing 

either any reasonable linear trend or any other nonlinear trend which is 

slowly varying so that its main power comes from frequencies too low to 

affect t he spectral estimate . 

What is left then to worry about is a slowly varying extraneous 

disturbance whose characteristic time constant is at least an order of 

magnitude smaller than the total length of the run, and is nonlinear, too . 

Such a disturbance is, conveniently, rather unlikely on physical grounds; 

disturbances tend to be, for the most part, either abrupt, or character-

istic of some aging process and hence monotonic. 
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CHAPI'ER 7 

FURTHER GENERAL THEORETICAL CONSIBERA.TIONS 

Physical reasoning, as well as experience from other kinds of 

noise, seem to sugges t that flicker noise is the result of a superposition 

of a very large nwnber of repetitive - though not periodic - disturbances. 

As it is not the goal of this thesis to venture into the physics of semi-

conductors, the emphasis in this chapter will be on the details of 

mathematical models. 

7.1 Mathematically Modeling the Flicker Noise Mechanism 

The little available literature on this topic seems to concentrate 

on either of two extremes : one deals exclusively wi th semiconductor 

physics, while the other deals exclusively with mathematical models having 
) 

for the most part, little contact with reality ; a tyv~ical exrunple of the 

l atter approach is swnrnarized very briefly below. 

Given an ergodic ensemble of functions , whose ensemb1.e average is 

zero and whose ensemble-autocorrelation is assumed to be 

hence its power spectrum is 

then if one assumes that 

g(t) g(t) = f(t) 

then utilizing the well-established relation( 27) 

2 
Sf(m) = Im! Sf(m) 

(55) 

(56 ) 

(57) 

(58) 



one obtains 

s ((I)) = k 
g 1(1)1 2 

If one now defines S (m) ((I) ) 
f 

k 

l(l)l 2m 
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to be the m·-fold integral of f( t) 

and to describe flicker noise it is enough to let 2m = 1 

(59) 

, then 

. (60) 

This mathematical device of fractional order of integration gen

erates flicker noise from white noise; it is due to Barnes and All~n . ( 22 ) 

The author of this thesis fails to see any practica l use associated with 

fractional orders of integration. 

Something much more concrete and tangible is clearly needed in 

providing a formal justification for flicker noise. The specific questions 

that this section considers are the following: 

a) Can the physically plausible model of a swmnation of "random telegraph 

signals" result in l/f noise? If so, what are the necessary con-

straints? 

b) Does the above model imply either the exi stence o::c the absence of any. 

specific probability distribution? 

c) How do the experimental data obtained in this work compare with the 

anticipated predictions from the above theoretical considerations? 

This question is also treated in Section 7.1.'2. below. 

Puckett (34 )has very recently worked out the mathematics giving the 

autocorrelation and spectrum of a single but generalized ra..Ddom telegraph 
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signal where the expected time spent in one state does not necessarily 

coincide with the expected time spent in the other state. 

For the simpler case of a common semirandom-telegraph-signal x(t)· 

taking the values +B or -B with zero crossings which are Poisson dis

tributed with an average frequency A , ~any texts, (35, 28 )established 

the following relation for the associated autocorrelation: 

(61) 

The power spectrum follows trivially by Fourier-transforming the above, 

namely: 

(62) 

S (ru) x 
( 63) . 

Sketches of R ( 'f ) and of s· (ru) appear in Fi g . ll+a below: 
xx x 

R (-r:) S(w) 

Fig. 14a 
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Quite clearly, there exists a point, mf somewher e in between thes e 

extremes where the slope of S (m) is that of some spectrum x 

which would pass through that point; the region "near" that point will, 

accordingly, be "almost" like k
3
/f: Matpematically speaking, one 

requires that value of m = mf 

taneous solution of 

d 
dm [Sx (m)] [S (m)] 

y 

and of w~ich resulU. from the simul-

(65) 

(66) 

that is, letting 4t...~2 = k1 and 4A. 2 = k2 for notational convenience, 

Eq. (66 ) becomes 

2 2 
(k2 + ().) ) 

The positive real solution of the simultaneous equations (66 ) 

and (67 ) provides the desired wf 

It is clear now, that by superimpos ing rnany independent random 

telegraph signals of appropriately scaled ~ 's and A.'s one can synthe-

size a spectral density displaying a k
3
/f behavior over arbitrarily 

many decades of frequency. The rule for selecting such "appropr iate" 

parameters to artificially synthesize a k
3
/f spectrum will clearly 

depend on the amount of "ripple" one will allow in the resulting spectrum, 

as illustrated in Fig . 14b; 
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Ripple from Superposition of Many Telegraph 
Signals to Form a K/f Process. 

Fig. 14b 

The existence of such a discrete set of parameters is rather unlikely; 

it is physically more plausible to assume the presence of a continuous 

distribution in A and ~ 

Any further arg~~ents specifying physically realistic numeri-

cal upper and lower limits for the distributions of A and ~ J are 

bound to get deeply involved with the kinetics of the oxide l ayers of 

the semiconductors; this is not the purpose of this work. It i s of 

direct interest in the framework of this research) however, to examine 

the mathematical i~mplications of the model introduced in this section . 

It has been a peculiar trend in the past to misinterpret the 

applicat ions of the Central Limit Theorem and to take it for granted that 

·a summation of an infinite number of any independent random processes has 

a gaussian distribution. In fact, a clos er look at the mathematics of 

the Central Limit Theorem indicates tha.t this is patently false in some 

cases. 

Many texts( 28, 36 )establish the ui1idimensional central limit 
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theorem: given N statistically i ndependent r andom variables 

x.,iE[l,N] and defining 
J. 

1 N 
z = - 2: 

/N i=l 
(x. - x) 

J. ' 
x. 

J. 
(68) 

where x is the mean value of the x. 's , and such that z = O , and 
J. 

o2 = o2 = (the shared variance of all random variables regardless of N), z x 

then 
2 

y 
rb rb - ~ 

lim j P z (z )dz = J e Y dy 
a a a:rr/0 

N->CX> y 

(69) 

Indeed the central limit theorem does not at all impJ.y that pz 

approaches the gaussian density function, but that the integral of pz 

between fixed lLmits approaches the value of the integrated gaussian 

density function between the same limits. In other words, the opera·· 

tions of limit-taking and integration are not always interchangeable. 

Mathematically inclined researchers( 37)have pointed out that a set of 

sufficient conditions for p (z) itself to be gauss ian as N ··•co in Eq_ . z 

(69) is that 

a) 

co 

••• + 02 _, co 
n 

b) r a J x fi(x)dx < c =constant, a> 2 
_ co 

(70) 

(71) 

Indeed, (70) is easily satisfied if the g iven random variables 

have all eq_ual variances. Eq_uation (71) is satisfied if all densities 
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fi(x) are zero for !xi > c2 (71) 

What is of relevant interest in this work is not the undimensional 

central limit theorem which was presented above to highlight points which 

will subsequently be harder to pinpoint in view of the forthcoming mathe-

matical complexity. It is the multidimensional central limit theorem 

which is of interest here. We have been observing a process, the output 

of a noise source, and have been wondering if indeed it could have re-

sulted from a summation of many random telegraph waves; having shown that 

it could, we are presently trying to see if the so-modeled noise source 

j_s then gaussian, as was comm.only believed, (3S)or not. 

We have k samplings of the noise sources output; these compose 

a k-d:imensional vector which contains all the available information on 

that source ; accordingly, we can think of the contributing individual 

telegraph signals a s a set of N K-dimensional vectors, too. The de-

velopment of the muitivariate central limit theorem exactly mirrors the 

development of the corresponding one-dimensional theorem referred to 

earlier in this section; the deve lopment proceeds through the use of the 

joint characteristic fun9tion 

and is well documented in relevant textbooks: Given 

* h 1. t• 1 T e norma iza ion ~ 
IN 

N 1 
I: x.,* 

/N i=l 1 

is such that the covariance matrix [J\) 

(72) 

(73 ) 

= [J\ ] z 
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where each k-component vector x. 
l 

is statistically independent of all 

others , i.e., 

and assuming that each such x. 
1 

has the same density function px. 
l 

[A ] and characteristic function 
x with zero mean, covariance matrix 

then 

l~""' (_,) [ -+ [ h J ~ TJ .u.u M w = exp - ~ w Jl. ....... z z 
N-+ro 

(74) 

' 
M 

x 

(75) 

and the density is obtained by taking the inverse transform.of (75 ) above . 

It i s of great interest that here, aga~n, as N-+ co 
' 

pz(z) does not neces -

sarily converge to a gauss ian density; the fundamental "catch" is that if 

px contains impuls es , mult i dimensional or unidimensional, so does pz 

regardless of the numerical value of N What does always become 

gaussian in the limit is the distribution function F z 

In the interest of completeness, letting k = 1 in (7s ) above 

yields 

lim M (w) z ( i ···' ) = exp(- ~2 "'2~2 ) exp - 2 llY'llw - ....... v (76) 

N-+co 

which is in accord with the one - dimensional central limit result stated 

earlier in Eq . (69). 

Can this theoretically-derived result be easily checked against 

available experimental evidence? The unfortunate answer is a flat 11 no 11
; 

given a set of time-sampled values of a nois e source can only result in 

a histogram-looking plot of the probability density estimate; any such 
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histogram, by its very nature, befogs the issue as to whether or not it 

is an envelope of a much finer structure, and if so, what is that struc--

ture. 

A histogram of that type which estimates the probability density 

is shedding some light on the fashionable talk about a lack of station

arity that some researchers( 5 )have observed u;_ their noise sources of 

flicker noise. 

7.1.2 Related F~periment Evidence 

It has been noted(39)that the inference that the spectral power 

density remains inversely proportional to zero frequency implying infinite 

total noise power is appropriate only for .stationary random processes. 

Reput able researche rsin this field( 39)have claimed that l/f noise may not 

be stationary in the usual sense, but rather may possess a weaker form of 

conditional stationarity. 

The first recorded attempt to examine the statistics of l/f noise 

goes back to 1955;( 40)the experiment's failure has subsequently been 

attributed ( 5 \o the measurement technique's inability to detect any "con

ditional stationarity11
• A subsequent attempt by J. Brophy( 5 )claimed to 

have observed some significant statistical difference between l/f and 

Nyquist noise: specifically, although the probability 1?JllPlitudes of 

both types of noise were similar, the variances of the distributions of 

different samples fluctuated considerably in the case of l/f noise. Al-

though that experiment's published report was somewhat oversummarized, no 

attempt was made to duplicate it because of the enormous amount of data 
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handling required to obtain, f or example, 100 sample variances. This 

thesis, having already documented the presence of "popcorning11 noise 

sources whose time constant is occasionally of the order of 8-10 hours, 

makes it obvious that taking 100 11good" sample variances at 2-3 dif

ferent sampling r a tes would take a prohibitively large amount of time 

and computer time . 

. What is of interest in the context of this work is to actually 

observe the probability distributions of the various raw data-sets from 

which the final experimental results of this thesis are obtained. Are 

the amplitude distributions truly gaussian? How do the shapes differ 

between two different halves of each unknown data-taking session? What 

cons equence does that have on stationarity considerations? What can one 

-infer from these amplitude distributions as to the corresponding raw 

data or even spectral estimate? 

Figure 5 <i.Gove shows the distribution of the absolute values of 

the amplitudes of all ten noise sources for each sampling speed used; 

each "run11 is artificially split into two halves for stationarity obser

vation considerations . 

A bell-shaped plot of a zero-mean process which displays more 

than one peak is indicative of a noise source which has two or more 

_:.preferred 11 states 11 and whose sample mean may be neither. of those; this 

is typical of "popcorning 11 noise sources and, occasionally, of error in 

the multiplexing-synchronization, as explained in Chapter 9 below. 

A rather "flat" plot reminiscent of low-pass-filtered white noise 

is suggestive of a noise source which is uniformly distributed in ampli

tude; this is somewhat of an oversimplified statement, however, in view 



of .the fact that the plots are essentially histograms which can take any 

of twenty discrete values. 

Any striking difference in the arnplitude distribution between 

the first a,nd the second half of an experimental run tends to imply non-

stationarity; alternatively, however, it may only imply, for example, 

that the noise source's intrinsic time constants are large, perhaps as 

large as references (1) and (18) have suggested that they may be. Ap

proaching the stationarity question through Brophy's way( 5)by making 

histograms of the variances of many different runs , is a venture of 

questionable use for two reasons: 

a) Since the time constants involved from the physics of the 

semiconductors may be large, (l)one will have to take long-lasting runs. 

Time-multiplexing is inapplicable, since it is the changing statistics 

of only one source that one is after . If.each run is one month long, 

getting 30 variances would require equipment of extremely good stability . 

Indeed, it would be next to impossible to avoid envirorunental influence 

from creeping into the system . The results would thus be highly question-

able. 

b) Since no physically sensible upper limit has yet been de-

termined for the intrinsic time constants of ~emiconductor kinetics, one 

would still wonder if, perhaps, each run should have been even longer! 

Normalized distribution plots of the absolute value of the 

amplitude were made for two noise sources on probability paper, so that 

the gaussian shape of the plot could be verified easier. The longest 

available records were selected, so that the nature of the statistics of 
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the sources in their most interesting regions could be studied. 

Noise source #4-, depicted in Fig. 15a below was selected because 

its linear plot (already presented in Fig . 5 earlier) appeared to 

resemble the familiar bell-shape to a considerable extent . Its probabil

ity-paper graph verifies this. 

Noise source #9, depicted in Fig . 15b below~ wa s selected because 

its linear plot displayed a peculiar dip near the peak of the bell-shaped 

curve . Its probab ility-paper graph depicts this peculiarity at point X 

on the graph because the integral of t he bell-shaped curve increases only 

slightly as the area under the aforement ioned 11 dip" i s integrated . 

There are two points of interest at this stage : 

a) Since thes e graphs are graphs of the absol ute value and not 

of t he a l gebraic value of the amplitudes , the distribution is postulated 

to be symmetric around the mean , This fact i s r efl e cted on the probabil- · 

ity-paper graphs, too. 

b) Even if the curves seem truly gaussian, it is important that 

they have r esulted from histograms . Accordingly, they are at best en

velopes of a true distribution . 

This s ection has attempted to experimentally determine the 

amplitude -distribution of two noise sources whose spectra are believed 

to be l/f in nature. It has been found that, within t he limits of 

reasonable experimental accuracy, the sources are gaussianly dis t ribu

ted in amplitude . This is in agreement with the the oretical discussion 

of Se ction 7 .1 with the understanding t hat the experi mentally obtained 

distribution curve is onl y the envelope of the true distribution. 
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CHAPTER 8 

COST REDUCING DATA-TAKING ALGORITHMS 

The sampling technique discussed so far where the available 

samples are spaced equally in time has been motivated by sheer con-

ceptual and computational simplicity; no~here in the derivation was 

any attempt at optimization made. 

The first part of this analysis deals with the following 

situation: Suppose it is of interest to obtain an estimate at a 

very low frequency by increasing drastically m of Eq. (12); this 

will clearly result in an estimate of very high variance, but the 

interesting question is the following: Since it is evident from 

c 
r = 1 

n-r 

n-r 

l x[ ( qLlT)] • x[ (q+r)LlT] 
q=O 

that there will be, percentagewise, more. terms in the sum for r 

small than for r large, the reliability of the low-indexed C 's 
r 

(77) 

will be statistically bett er than the reliab ility of the high indexed 

ones; how will this reflect on the reliability of the spectral esti-

mates at low frequencies and how at high frequencies? Is it "best" 

to have a constant number of terms in the summation -of the afore-

mentioned Eq. (77)? 

Even in the usual cases where TH/TN is of the appropriate 

order of 1:100 or thereabouts, are we perhaps detennining some of the 

mean-lagged products with unnecessary accuracy? Couldn't we approach 

the economy of the fast Fourier transform and yet stay away from its 
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algorithmic complexity by refining our present algorithm? 

The second part of this analysis considers the following question: 

How can one process samples taken at a known but not constant rate? 

Is there any condition to be satisfied by the times at which sampling 

is made? Can we get alias-free sampling through this approach? 

8.1 Non-Constant but Non-Random Sampling 

I h b . 1 h. d . h <24 •25 ) h h d 1 · t as een serious y inte in t e past t at t e eve op-

ment of "the right" sampling algorithm, where samples are taken at 

nonequal but prescribed nonrandom intervals of time would do such 

wonderful things as optimize data processing, eliminate the need for 

de-aliasing, etc. 

As the derivations and discussion below suggest, such hopes are, 

unfortunatel0 unrealizable . 

It is of interest to start this discussion by expanding the 

fund amental equation (17) above as follows: 

vl 
l rr 6T[C

0
+2c

1
cos(100) + 2C2 

211" 
cos(lOO) + ' • · + c

100
cos (TI)) 

(7 8 ) 

v2 
21?' 6T[C

0
+2c

1
cos(

100
) + 2C

2 
4rr 

cos (lOO) + • · · + c100cos (2TI)) 

(79) 

Indeed, "fitting cosines to the data" is a misleading oversimplifica-

tion, in that every single "raw estimate" depends on all autocorrela-

tion coefficients. The degree of dependence of any one "raw esirnate" 

on a particular Ci is direct ly relate d to the actual power spectral 

density of the stochastic proces s being considered. 
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It thus follows , in ay,swer to the questi~ ~oed in the i nt ro-

duction to this chapter , that there is no need to reduce the 

reliability of the low indexed C 's 
i 

unless the cost of an excessive 

number of digital cros s correlations becomes prohibitively expensive; 

indeed, it has been shown ( 26 ) tha t the autocorrelation is the most 

expensive step of the entire pro cedure used in this thesis; such 

shortcuts as the "Fast Fourier Transform" have been devised in an 

effort · to by-pass the expensive correlation-taking . It is i n such 

cases that the algorithms suggested below could be o f use . 

The motivation is to r ecord and subsequently process no more 

data points than are enough to provide an almost equal number of C. 's 
l 

for all desired i , i E: [ 0 ;m] , m to be pr e-specified. Although the 

total number of r ecorded data points is k ep t constant f or both t he 

"old" (Tukey) and the "new" algorithms, the time span r eq ui red for 

data-recording for the "new " algorithm is s omewhat long er . Quantita-

tive comparison is ma de later. 

In the following sampling algorithm, f o r instance, 

,...,~ Sampling Instances 
~-~ 

__,9g._~~!'i--+l-4~..._~e...._...-~~~__..,a~,~1 ~~·-D'--+:~~~-~~~~~~~~~~~~~ 
Time axis 

if we are to collect n points, this will take 3/2 the time it would 

take to collect the s ame numbe r of points without any skipping . 

The r elat ive ab undance of the various C. 's is now clearly 
l 
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No. of c 's is 100% . Tl 0 
C 's 

1 
is 50% . il 

C 's 
2 . 

is 50% • il, 

C IS 
3 

is 100% • 'Tl Assuming Tl» 6 

C IS 
4 

is 50% • 11 

C 's 
5 

is etc. • "Tl 

The above information is plotted as "SPACING B" in Figs. 16 

and 17. (In Fig. 17, m is allowed to increas indefinitely up to 'Tl , 

assuming 11,.= 10,000. From Fig. 17 it can be seen that for large m 

there exists a higher abundance* of C. 's than if scheme "A" (the 
i~m 

Tukey approach) had been used. This is to be expected sinc e we are 

sampling for a longer time; the price we pay, or seem to, is that some 

mean lagged products are not quite as reliable, ( e .g., c
1

, c
2

, etc. are 

50% • T\, available only) . 

This is not as bad as it seems to be; the difficulty can be 

somewhat alleviated by adjusting these unreliable values through a 

weighted averaging with adjacent reliable values. In so doing , we have 

essentially sacrificed some frequency resolution. 

Along the same line of thought, one can consider similar , yet 

more sophisticated algorithms, e.g., 

(Scheme C) 

tr 
~-GQ..-..&· -t/~~n--~1~· -+--,~9---if.~,~-~: -+~~~~~~~~~~~~~~--· t 

* Not relative to higher ind exed ones but as compared to the Tukey 
algorithm.) 
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whose relative availabilities of C. 's are shown in Fig. 16 and Fig. 17; 
:L 

for that scheme the time factor ·expansion is 2/1 , that is, twice the 

time is needed to gather a total of 'Tl, data points than if the Black-

man-Tukey algorithm were used. 

8 .1. 2. Mathematics Pertaining to Noncons·tan t, Nonrandom Sampling 

The problem of processing data obtained at unevenly spaced, 

nonrandom, but knmm times, can always be reduced, as discussed below, 

to one which can be treated by the Blackrnan-Tukey algorithm which has 

been extensively discussed. The obvious penalty for so doing is the 

irrevocable loss of any and all potential benefits that could be 

inherent in a scheme where data points are not evenly spaced. A curve 

would thus be fitted, through simple digital processing, thro ugh the 

availabl e points of C(T.), and the value of the resulting curve could 
]. 

subsequently be read at equidistant intervals, as indicated in Fig. 18 

below; from that stage on, the usual algorithm, namely the sequence of 

AC (t) ..... .---~-- Times at which C (T) 

----z. ------- --- "Least Squares" fit 
y- - -----

can be computed . 
through above 

points. --;..~~Times when C(T) is r ead for further 
~ processing. 

r 
I 
I 

i I I 
I I I I 

-------·~l~.---.-'l--.. -l~--1----~--~--..:::::.::-~ T 

Fig. 18. Autocorrelation Sampling 
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steps outlined in Section 3.2> can be used as is; such an approach is 

not in the least disreputable, since the resulting accuracy should not 

be, on the average, any worse than that obtained from data collected 

at equally spaced time intervals. 

An alternative approach will provide considerably more in-

sight into the nature of uneven sampling. 

It can be recalled from Fig. 1 that the Blackman-Tukey algo-

rithm involved fitting a staircase-like function through C(kLh) 

such that the transition in the magnitude of the resulting curve 

occurred halfway bebveen every two subsequent 

defined as zero at T > T 
M 

T 's ; the function was 
i 

Figure 19 below suggests a very analogous approach tailored for 

uneven sampling. 

f L_ I 
I 

__ ,,, ___ - -
I 

I I 
I I 

I 

-:li!-

T, 12. 1: 

Fig. 19 
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The following related points of interest should be mentioned: 

(a) Unless the sampling scheme is periodic with period much 

smaller than T , the record length, any one C(T.) will be the 
N i 

result of one, or at mostl a very few cross-correlation multiplications, 

and will be very unreliable. 

(b) If the sampling schem~ is purposely not periodic, then the 

aforementioned unreliability of the lagged products can be compensated 

for by the greatly increased mnnber of the now available lag_ged 

products. Indeed, if the T. 's 
i 

are not, loosely spea.king, linearly 

related, there can be up to 

m ·= ( 'll.2 )-'\'l_! 
2(n.-2) ! 

(80) 

such products (e.g., in the case of random s ampling where time i s a lso 

recorded). 

For a typical Tl.= 10,000 this amounts to 

10,000! 
2(9,998)! 

1 8 
2 

x 10 products 

As this thesis is not concerne d with random sampling , a topic in · 

itself, we will not pursue the consequences of this scheme any fur-

ther. 

In the following it is assumed tha t through a da ta-taking 

scheme such as the one described in Chapter 3, mean lagged products 

C(Tk), k E: [O ,m] have been obtained through the use of 

1 

11.k 
l x(t.) x(t. + Tk) 
k i i 

(81) 
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where the summation extends over all possible intervals which are Tk 

in width; 'r\.k is the number of such availab le intervals and depends 

on the particular sampling scheme us ed , as is obvious from this dis-

cussion, and on the record length. 

Fourier transforming the function depicted in Fig. 19 yields 

the analytical expression of the estimator as follows 

00 

. s (f) J C(T) 
-iWT 

e dT 
_oo 

C (T) cos WT dT 

0 

T 

J C(T)cos WT dT 

-T 

Tl 
~ 2C - + 

0 2 

C cos(wT )dT 
m m + 2 C cos(wT) dT + ··· + 2 2 2 

(82) 

Carrying out the integration gives : 

s (f) WT [T 3 - Tll 
2 2 2j + 

T T 
••• + 2C cos(WT )[ T -(~+ m-l)] 

m m m 2 2 

Defining T - 0 , and T . 
0 -1 

-T. 
1 

for notational convenience yields 

m-1 
s (f) TlCl + l c. •cos(wT. )(T.+1-T. l)+C cos WT (T -T 1) 

i=l 1 1 1 i- m m m m-
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or, letting the nonexisting Tlml+l be defined :i,dentically equal to 

Timi for notational simplicity, then 

T 

f 
1 m 

S(f) = 2 l 
-T -m 

(84) 

Interchanging summation and integra tion gives 

00 

J 
1 

m -iWT. 
S(f) l Ci[Tlil+l -Tlil-l)O(T-Ti)) 

1 
dT 2 e 

-m 
(85) 

-00 

where 6 T 
-(m+l) T -m 

6 
Tm+l T m 

which is the es tima tor 's expected value . 

The traditiona l question at this stage i s how this estimate 

S(f) is r ela t ed to the t rue power spectrum of the stochastic process . 

Equation (85) can be rewritten as 

S(f) = 

1 
2 

f 
m 

1 
2 

m 

I 
-m 

I [Tlil+l - T lil-11 
-m 

00 

-iWT 
i 

f 
-iWT 

i 
C(T) o (T-Ti) e dT 

and, by the convolution property of the Fourier trans form , 

iWT. 
[Tlil+l -Tlil-1) • {.: 1 @ P(f)} 

dT 

. (86) 

where P(f) ~ F.T.[C(T)) and is equal, to an approxlination , to the 

"true sp ec tral density" of the process in ques tion. 
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~ stands ~or convolution. Simplifying yields 

S(f) -} P(f) @ (87) 

This important relation, aside from implicitly evaluating how "good" 

S(f) is, provides a necessary condition between the T 's such that 
k 

the estimate is nontrivial, namely that 

m 

l 
-m 

-foll 
i :f 0 (88) 

In the interest of completeness , it is easily shown below that 

Eq. (87) is a generalized version o f the Blackman-Tukey relation given 

in Eq . (90). Indeed , letting Tjij+l - Tjij-l = 26-r and letting 

+m -+± 00 in Eq . (86) 

S(f) I cl (T) 6 (-r-i6T)eiWT dT 

- 00 

and through the use of the transform pair 

00 00 

6-r l 0 ( t -k6T) <==> I 6 (f 
k - -) 

k=-00 k=- 00 6-r 

reduces to 

00 
S(f) I P(f -

i 
L°'l'f) 

i=-00 

(89) 

(90) 

which is a restatement of Eq. (34), if S(f) is replaced by SA (fr) 

and P (f) by s (f ) . 
r 

Equation (89) could form a convenient starting point to 

elaborate on whether or not appropriate t. 's exist , such that alias-
1 
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free spectral estimates can be obtained through the generaliz ed estim-

a tor of Eq. (85) 

It follows from (89) that if and only if 

(91) 

then only 

s (£) (92) 

where k
1 

and k
2 

are appropriate multiplicative constants. Equation 

(91) can be rewritten as 

m 

l (TliJ+l - TJ iJ-l ) cos 
-m 

? 
WT . k 0 (f) 

l 
(93) 

and it is quite clear that, even if Jml were allowed t o increase 

beyond any bounds, the left-hand side of Eq . (93) could not result to 

* a single delta flll1cti on . 

This result, disappointing as it may be, is of significance in 

that it says . something about the "generalized" estimator of Eq. ( 85 ): 

that particular estimator as it is defined in this section cannot 

give unaliased estimates regardless of any elaborations such as pre-

whitening , statistical analyses, and the like . 

8.2 Alternate Co st - Reducing Data Processing Algorithms 

All the above algorithms necessitate the construction of a 

somewhat fancy master clock, which will determine the uneven s amp ling 

* A string ot delta functions can 
l 2 

cosines. l o ( t-T1-kT ) =T+T 
k=-00 

result from an inf i nite summation of 
co 

l 
k=l 
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times, and the insertion of a "flag" in the data every--.t:ime ,the 

"scheme-cycle" is repeated (unless, of course, one has total faith 

in the infallibility of the apparatus). An alternative approach is 

to use even sampling and to use some very elementary statistics and 

process no more data than a~e required for a given accuracy; this 

approach has the advantage that it takes the burden off the lab and 

into the computer's hands, which are friendlier . 

. s . . . <41 ) h b d h . 1. . tat1st1c1ans ave o serve t at a very conservative 1m1t 

of statistical error is given by 

n 

I Id -<ll 2 

1 
R - 3 ------

n 
(94) 

where d in our case, can be the value of the last additive term in 

Eq. (77) and d is the mean so far, i.e., the (possibly unfinished) 

estimate for that particular mean lagged product. The main program 

could thus be modified somewhat to compute R every, say, 10 points 

after the first 100 additive terms, and compare it with the Id -<ll 
at that time; should 10 consecutive such operat i ons indicate that 

Id - <ll < R , the program would stop doing any more multiplications 

for that particular c. 
1 
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CHA.PI'ER 9 

LCNl FREQUENCY SPECTRAL ESTil.ffi.TION EXPERIMENTS 

The experimental part of this thes is is concerned with obtaining 

reliable spectral density estimates of semiconductor flicker noise . The 

present section covers the designs · of some of the e l ectronics used and 

the motivat ion for t heir us e ; included are designs of noise genera.tors, 

electronic implementation of automatic data collection, environmental 

parameter ' s attenuation, and auxiliary equipment design . 

Specific statements as to which design was used in what stage of 

the experiment are made in Chapter lO where the experimental r es ults are 

presented. ; also discussed in Chapte r 10 are the observed r easons why the 

various design improvements were undertaken. The final experimental 

results are given in Chapter 10. 

9.1 General Cons iderations 

Recent developments related to the kinetics of the oxide t raps 

in semiconduc'tors and the associated long time constants involved (l) 

have revitalized the faith that l/f noise should stop being l/f at 

some very low frequency, thereby resolving once and for all the paradox 

of the "infrared catastrophe 11 dis cussed in S~ction 2 . 

Concurrent developments · in the r ealm of mathematics have pointed 

out that an often observed lack of the assumed stationarity and the con

sequent application of the tradit ional mathematics to an ineligible 

physical s i tuation might expl a in the paradox of the 11 l.nfrared catastrophe" . 

The motivation for the extens i ve experimental investigation of 

low frequency l/f nois e reported below is to obtain r eliable experimental 
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evidence of the behavior of flicker noise at frequencies even lower than 

have been reported so far. Indeed, it is not the intent of the experi-

mental portion of this thes is to attempt to verify any of the many 

flicker noise models put forth by solid state physicists or mathematicians, 

although some of the results of this work may help one to select the most 

promising models. 

9.2 Noise-Source Des i gn 

The prime motivation behind the selection of the source of n.oise 

chosen has been to use a r eal-life semiconductor operating in a real life 

situation . Four years ago, when this research started, real life was 

somewhat different from today insofar as semiconductor technology is con-

cerned. A d.c. amplifier, 11Mark II11
, utilizing discrete components and a 

carefully matched pair of trans istors in a differential input configuration 

was then designed by H. C. Martel ; spectral density es timates (reported in 

Chapter 10) and measurements of this noise source, such as its temperature 

sensitivity, dictated the subsequent use of a 2N2060 dual-in-line package 

of a t emperature-matched pair of bipolar transistors in the input stage . 

A schematic diagram of these noise sources is given in Fig. 20. Power 

density estimates were obtained down to lo-4·2 cps with the above improved 

noise source, referred to as 11Mark III" hereafter . As discussed later in 

Chapter lO, in connection with "Mark III", it became quite apparent at 

this stage that the accuracy of the results would increase if the various 

drifts associated with temperature, supply voltage, &nd semiconductor 

"aging" were reduced through shorter data-taking periods. Time-multiplex-

ing t en statistically independent noise sources (for a tenth of the data-
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taking time needed if only one noise source were u~ed) would provide 

results of, theoretically, the same accuracy as has been shown earlier. 

In practice, the accuracy could be even better since the various drifts 

would have only a tenth of the time to display themselves. 

Recent advances in integrated circuits have taken the operational 

amplifier out of the laboratory and into an extremely wide range of ap-

plications. Further advances in monolithic integrated circuits and 

hybrid thick film devices, plus startling decreases in prices, have made 

operational amplifiers an obvious choice in areas where they were not 

even considered earlier . It was , therefore, appropriate that integrated-

circuit operational amplifiers be used as the ten noise sources for the 

best controlled spectral density estimates to be reported in this work . 

It is significant that the attempt to measure the noise character

istics of one transistor alone is not entirely defect.ted by utilizing a 

grounded input differential amplifier . Indeed, i f the reasonable asswnp-

tion is made that each of these two paired trans i stors is a statistically 

independent sample from an ensemble, then the measured spectrum is the 

same as that for a single transistor except.for a multiplicative constant. 

In the interest of keeping up with the present state of semi-

conductor technology, and of avoiding repe tition, a brief circuit analysis 

will be given for the noise source utilizing integrated circuit operational 

amplifiers only; many of the arguments carry through to the discrete-

component noise sources with minor modifications; for specific details 

pertinent only to the discrete component noise source,' Blakemore( 25 \as 

an adequate analysis. 
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Many considerations ent er into the design of a noise source, not the 

leas t of which i s that the final design represent a typical one r a ther 

than a laboratory attraction. 

The fundamental non-inverting circuit shown in Fig. 2l is used 

exclusively. 

Because of very high gain (approximate ly J.00 db) required to make 

microvolt noise voltages l arge enough to be reliably read by standard 

laboratory equi pment, drifts as well as voltage and current effects are 

most important in noise-source design . Input vol tage offset (due to un -

equal base-emitter voltages in the input transistor pafr despite manufactur-

ing attempts to minimize it) is there; so is 9urrent offset, which is 

Gaus ed by current l eaking into the input terminal s of the amplifier ; both 

vary with supply voltage , and with t emperature, thereby causing voltage 

drift. D.C. balanc ing techniques are thus needed to overcome input off -

sets; high quality regulation of the ambient temperature and the supply 

voltages is also essential to minimize drift and will be discussed in 

Sections 9.3 and 9.4 below . Offset voltage adjusting is a chieved by 
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simply providing the small constant d , c, bias voltage needed at the dif-

ferential input, A straightforward implementation of this idea is shown 

in Fig. 22. The complete schematic of the noise source is shmm in Fig. 

23. 

The gain is easily obtained to be 

(96) . 

tV 

-v 

J 

Fig. 22 

and the total offset voltage-adjustment range from the cascaded voJ .tage 
R3 

divider is ± V ~ (referred to the input). 
y 

The effect of having assumed infinite bandwidth and zero output 

impedance are of very little consequence for the specific purposes of this 

experimental work; in fact, a low controllabl e bandwidth is highly desir-

able if aliasing is to be minimized; h.f. spurious oscillations are also 
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eliminated by drastically reducing the closed loop bandwidth of the 

amplifiers, 

Through force of habit from the discrete component days, one 

could argue that the noise observed at the output of the noise source 

of Fig, 23 is basically that of the first two transistors in the dif-

ferential input circuit, since any other noise would have to be beta 

times larger amplitude in order to be equally significant, Although a 

complete schematic of the particular operational amplifier used is 

available(43)with each "transistor" cle_arly marked, it is this author's 

opinion that such a discrete component analysis is of little interes t 

* for two reasons: 

a) The integrated circuit op-amp is an entity in itself; it is 

an electronic component which can survive no more su.rglcaJ. 

di section than a sjngle transistor or tube . 

b) Although the first "stage " of amplification i s mos tly 

responsible for the observed noise, a more realistic and 

accurate view is to consider the entire op-amp a,s a "noise 

source''. 

One is thus referring to the noise properties of the amplifier. 

9,3 Design of the Power Supply 

In an attempt to prevent power-line voltage fluctuations from 

affecting the data, batteries were originally used to supply the Mark II 

* The integrated circuit manufacturer could, of course, modify the design 
of the circuit and this would be of considerable interest, then. 
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noise source. Both dry and rechargeable nickel-cadmium batteries were 

tried; unfortunately, the batteries' voltage drift caused by gradual 

discharge and by room temperature fluctuations was excessive. A highly 

r egulated power supply was thus constructed in the conventional pattern 

shown in Fig .2.4 below. Two cascaded stages of a series pass transistor 

driven by a differential voltage-sensing transistor-pair formed the heart 

of this supply which was used to power the Mark III noise source. 

In the absence of any linear trends or oscillations in the raw 

data suggestive of regulator inadequacies, experimental measurements .of 

the degree of regulation actually required were taken only later in con

nection with a new power supply for the ten integrated-circuit noise 

sources. 

In keeping up with the technological improvements in integrated 

circuits, the supply which powered the ten integrated-circuit noise 

sources utilized integrated circuits itself . The µA723 monolithic volt

age regulator made by Fairchild was s elected; it consists of a tempera

ture compensated zener, an error amplifier, a low-level series-pass 

transistor and some current limiting circuitry, all very much in the 

pattern of earlier discrete component designs; external series-pass 

power transistor was used to handle the current needed by all ten noise 

sources . The complete schematic shown in Fig. 2S has been measured to 

have a .05% voltage regulation; that is, for an input voltage fluctuation 

of 3V the output voltage fluctuation should not exceed 1.5 mV at any 

load. The need for a measure of the actually desired degree of regula

tion is now obvious. Is the above .05% truly r epresentative of the 

behavior of the circuit? If so, is this regulation enough? How important 
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is the fluctuation of the power supply's ambient temperature? These 

questions are all answered experimentally below. 

The question of the true (measured) voltage-regulation character

istics of the voltage regulator is the simplest to answer . Assuming a 

linearity in the regulation characteristics, the input voltage was 

varied through the use of a variac, just enough to produce a reliably 

measurable change in the output; it was found necessary to reduce through 

the regulator the 11 constant 11 output voltage to less than 10 volts so as 

to gain an extra decimal figure of resolution in the digital voltmeter. 

The regulation was found to be well within the advertised limits mentioned 

earlier. 

Direct measurement of the required voltage r egulation by time

multiplexed recording of both the regulated voltage and of the nois e 

sources is next to impossible with a four~digit digital volt..__.meter; a 

fluctuation of ± ~ mV on a l5V ~.c. voltage would simply not be detected . 

A free-running mult i vibrator, followed by a cascade of frequency 

dividers was therefore constructed as shown in Fig. 26a, and was used to 

induce square wave volt~e excursions of 40 mV p.p. amplitude and ap

proximately 10 minute period on the nominally regulated B+ line to the 

noise sources , as shown in Fig. 26b . 

The time -multiplexed response of nine voltage sources and the 

offending stimulus were digitally recorded and are shovm in Fig. 27 and 

28. A 4o mV p.p. variation on the + side only of the power supply 

produces obvious output response of varying degrees, but of the order of 

lV p.p. This amounts to an error-amplification of approximately 25 . The 
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unregulated input voltage to the regulator, however, was measured and 

found not to exceed lV p.p. oveT a period of 30 days; this amounts to 

lV = unregulated voltage chang;i tl.5 m~--. o 3V µA723 attenuation 

2 = factor inserted because th~ 
negative voltage will also 
change in the algebraicall_Jy 
opposite direction 

= • 25 mV 

which, when amplified by the above-measured "error 8lnplific:ation" of 25, 

gives 6.25 mV maximwn attributable to input voltage fluctuations. 

However, the typical raw data output excursions are about lV p.p. 

hence 

G
ower-supply caused maximwn voltage excursionj 

= .6% 
bserved raw noise output voltage excursions 

This is not obviously negligible. Noise source #'7 does not seem to be 

excessively sensitive to supply-voltage fluctuations in Fig. 28. Figure 

37, however, appears to suggest that noise source f7 is quite sensitive 

to voltage fluctuations; this is not so, though, because noise source #'7 

is, in fact, responding to temperature fluctuations a:nd not to voltage 

fluctuations; indeed, the voltage fluctuations observed in Figure 37 are 

themselves caused by the primary disturbance which is the temperatUYe -

regulating current applied to the thermostatically-controlled heater; 

this current- drain affects the line voltage which, in turn appears as a 

"power-supply-disturbance 11
• 
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Noise source #7 was replaced for all subsequent runs as discussed 

in more detail later in this section. 

It may be noticed from Figs. 27 and 28 that there is a sudden 

transition in the noise sources' outputs after about 2~ hours of data 

taking, and a subsequent return to the original state. These Low changes 

of state were produced by deliberately altering the ambient temperature 

of the voltage regulators, so as to measure their exact susceptibility to 

such environmental changes. 

By removing the forced-air cooling from the power supply, the 

surface temperature of the case of the µA723's was raised by 6o°F, as 

* measured by a contact thermocouple . The effect on noise output as seen 

in Figs. 27 and 28 is, on the average, less than one volt; assuming a 

linear dependence over small t emperature cha..r1ges this a."llounts to 17 mV /°F, 

and since the typical raw nois e output voltage amplitudes are about lV, 

and the typical room temperature variations are about 2°F, 

Effe ct of room temperature on noise through power supply 
= 3 .4% max. 

Observed raw noise output voltage excursions 

Tbe comments made earlier in this section in connection with the 

effect of the power supply variations on the final spectral estimate apply 

here, too. In this case of temperature fluctuations, however, experiments 

have revealed the presence of a single, rather well-defined, prominent 

frequency of approximately 1 cycle per 20 minutes . This rather unusual 

* Precision calibrated thermocouple was borrowed through the courtesy of 
the Optical Rad iation Corporation, 2626 S. Peck Road, Monrovia, Calif. 
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frequency was carefully traced and was found to be the frequency of the 

thermostatic system controlling the temperature of the liquid bath in 

which the noise soUTces were immersed • [The line voltage was also 

affected due to the non zero impedance of the210V line; this indirect 

effect, however, is negligible because of the higher attenuation of the 

system to voltage variations (.6%) than to temperatUTe fluctuations 

(3 .4%)]. 

Since noise soUTce #7 in Fig. 37 appeared to be affected quite 

significantly, it was replaced. No significent residual response was 

observed at this frequency in any of the final data-runs . _In any· case, 

a small component at this frequency wo~d not affect the general trend 

-6 3 of the spectral respons e in the 1'a1\ge 1 cps to 10 • cpsJ but would at 

most appear as a small peak near 10-3 cps. 
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A final word on the somewhat periodic excursions of noise source 

#9 in Fig. 28. As will be shown later in this chapter, noise source #9 

is particularly sensit ive to temperature fluctuations. The very low 

frequency sinusoidal fluctuations shown in Fig . 28 are believed to be 

caused by the slow time constant of the thermostat of the refrigerator 

itself, to be discussed shortly. 

9.4 Temperature Regulation 

Whereas a Dewar flask was chosen for the Mark II and Mark III 

nois e sources based on intuitive notions of "thermal insulation", this 

s ort of a passive attenuator was found unsuitable for the ~ubsequent more 

careful work. Indeed, the thermal characteristic of an average size 

Dewar flask are such that a measured l watt of heat dissipated inside it 

can abnost linearly raise the inside temperature to l 60°F within three 

days and still keep raising it. Such an ambient temperature is hardl y 

among the natural and average situations where a circuit i s usually 

ut ilized . 

The approach ultimately resorted to in this research was to 

combine active temperature control, to be discussed in detail in Section 

9.4. 2, with a more sophisticated passive attenuation scheme, to be dis

.cus sed below. 

9.4.l Passive Attenuation 

From an intuitive point of view, the properties desired from the 

attenuator 's mat erial are : 
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a) low heat conductivity, but not so low that the inside tem.-

perature builds up too high; 

b) high specific heat capacity so that transients will be 

attenuated tQrough dissipation. 

The heat equation 

oT 1 'V2T 
ot = k 

. (97) 

where 

p (r+) 
..... 

1 C(r) 
k = k (r) 

0 

(98) 

p is the density 

c is the specific heat capacity 

k is the thermal diffusivity 

k is the thermal conductivity 
0 

..... 
and r is the polar position vector 

was thus resorted to. 

In awareness of the notoriously slow convergence of the resulting 

infinite series for the heat equation, the geometry was severely simpli-

fied to the one-dimensional case illustrated in Fig .. 29 below. 
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Equation (104) then becomes 

oT 
ot = 

oTI 
dX" X=O 

T(LJ t) 

} 

= 0 

A sin mt + B 

T · =T(x,O) 
0 

(99) 

The specific algebraic expressions are far too lengthy to make it worth-

while to repeat them here. There a.re some quantities of significant 

interest, though, which have been de~ived from the above. Assuming that 

the slab side next to the fluid is subjected to oscillations, it is in-

teresting to know how the slab attenuates these oscillations as a function 

of frequency (by the time these oscillations have reached the other end of 

the slab.) 



122 

The steady state ratio of the amplitudes is, after a very con-

siderable amount of algebra, found to be 

2k2 2 
(l) 1L 

+ l + 
4 

- (l) 

2 4k2 
rr[m + 1L ] 

l6L4 

(lOO) 

to a first approximation (neglecting higher order terms in the infinite 

series). As a quick check, one may notice that 

a ) lim R 
L -1 0 

l 

b) lim R = 0 
(l) -> ro 

c) lim R = 1 
(l) .... 0 

which agree with intuitive expectations. 

Thermal properties of materials were then considered in an attempt 

to find a material of convenient cost, weight, mechanical properties, and 

noncorrosive, with precisely known thermal properties so that the exact 

effect of temperatures and heat flows could be found from the derivations 

of this section; the material would have to have high heat capacity and 

average coriducti vi ty. One - inch thick al.uminum met all criteria except 

cost and weight , A special epoxy-like substance made locally to specifi-

cations , courtesy of the Magnetika, Inc . of Santa Monica, California, 

solved the problem. 

To verify the existence of the advertised properties of the mate-

rial, a 9-inch cube was constructed and placed in a controlled-temperature 
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bath; calibrated thermistors connected to the amplifiers shown in Fig. 

30 cons tructed for that purpose were installed to measure the tempera-

ture of the outside and of the inside walls of the box ; time-multiplexed 

digital recordings were then made of deliberately created temperature 

changes on the bath's temperature; plots of the "inside" and "outside" 

temperatures were then made. Finally, the digital computer was asked to 

simulate the characteristics of the above temperature -fluctuation 

attenuating box and to come up with a plot of what the inside tcmperatu~e 

would have been if the parameters claimed and the associated mathematics 

* summarized earlier in this section were correct. For completeness, to 

eliminate the unlikely 

(Note : 

* 

The high common-mode and supply 
circuit give a null independent 
null drift is negligibly small . 
Fairchild Applications Dept.) 

Temperature Amplifier 

Fig. 30 

rejection of this 
of supply voltage; 

The design i s by 

A measure of the frequency response of the attenuating box was g iven by 
Eq. (100). 
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possibility of temperature spikes having been :introduced extraneous ly 

or accidentally, all steps involved i n, for exampl e, the introduct ion 

of a cold bath-spike, were carried out except the actual pouring of cold 

liquid, and the response was observed. Figure 31 displays these results; 

the likeness between the computer simulated result and the actually 

obtained result is, :indeed, striking. Appendix A has all the relevant 

mathematical details and discuss ion of the computer simulation. 

A significant quantity, :in the interest of assuring that the 

circuits be operating under normal conditions, is the steady-state . 

temperature rise :inside the pass ive attenuator . 

In the steady state case where the outside temperatu~e is held 

constant through active control, to be described l ater i n Section 9.4.2, 

the applicable equation is a simplified vers ion of the generalized heat 

condition equation 

(101) 

where 

k = thermal conductivity in G calories -1 * 
e c.-cm-degree_£j 

oT 
0 for steady state 

ot = 

Q = :internal energy source . [alorieJ i n 
3 

density :in gramB /c:m3 cm - se c 
p = 

= specific heat capacity 

Equation (101) thus reduces to 
_, 2 _, 

Q(r) + k9 T(r ) = 0 (102 ) 

* The C. G.S. system of units is invoked here . 



Effects of Environmental Parameters on Temperature. 

(Measured and Mathematically Estimated) 

·"""'t''~":.. ·~ 

Spike Ill Spike # 2 
Fictic ious 
Spike Ficticious 

Thermom. 'l'he rmom. 

k ~- -"Ij ~ ....,. 
~ 
~ 
~ 
(D 

'--" ....... 

T 
~01°<:. 

_L 

T 
.01°G . 

_J_ ~ Sc."'- I! ~~2.<-•· 

t i '. I Reset . reset. 

~~·~~------~~,.__,,-_,_~~ 

---~~---

Bath Temperature Record • 

Measured Surface Temp. of Source 

Mathematically Estimate d Surface 
Temperature of Noise Source #2 . 

!--' 

/12. ~ 



126 

But 

q = -kVT(r') (103) 

where k thermal conductivity, assuming that heat flows from hot to 

cold, k > O 

Solving for q in spherical coordinates yields an expression 

very similar to the electrostatic equivalent, namely 

. where 

q = 
4:rrkr r. 

0 l 

r - r. 
0 l 

(T. - T ) 
l 0 

r = outside radius 
0 

r. = inside r adius 
l 

T. outside temperature 
l 

T = inside temperatui-e 
0 

J?or the epoxy material chosen, C = 0.38 calories/
0 c gram 

p 
= 721 86 watt • sec 

• lb • 0 c 

= 0.00468 watts/in . • 0 c 

= 0.825 lbs/in3 

The ref ore -5 k = 7 .85 x 10 is the thermal diffusivity. l 
A 4 - irich 

(104) 

thick material was selected. For these values, approximating the 13" 

cube by a 13" dia.rneter sphere, substituting ·values in Eq. (104), and 

· solving for T , one obtains 

for an assumed power consumption of 3W inside the box, a number very 

close to the measured power consumption of 2 .86 watts of al.l ten noise 

sources. 
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9.4.2 Active Temperature Control, and Overall Setup 

A stage of active temperature control in cascade with a stage of 

passive control is essentially one more buffer stage insulating the 

temperature-sensitive machine from the outside world's random temperature 

fluctuations, especially the very low frequency ones. 

It has been maintained in the past( 25 \hat active temperature 

control is difficult to accomplish and maintain over long periois of time; 

this indeed may be the case if analog devices such as thermistors are 

called upon to do the sensing . A merc.ury thermometer whose mercury colu..mn 

makes or breaks an electrical contact, however, presumably does not suffer 

from the aging that some analog devices, such as thermistors, are prone to. 

A commercially available device such as this, made by the Chemical Rubber 

Company, was purchased and used in this endeavor. Its advertised accuracy. 

is ±.01°c To maintain this accuracy throughout the temperature-

controlled liquid, one caP..not tolerate any t emperature gradients in the 

liquid; furthermore, there should be no time delay between the thermometer ' s 

command to "warm up" tnd the uniform application of heat; since none of 

these conditions can be fully realized, an accuracy of 2 x ± . 01°c is a 

* more realistic measure for temperature fluctuations. 

Many considerations enter into the design of a very accurate, 

* The precision thermometer used has an advertised precision of better than 
±.01oc; such a claim seems quite reasonable in view of the length of the 
mercury colwnn, and no attempt was made to verify it using a higher precision 
instrument. In fact, this mercury thermometer was used to calibrate a ther
mistor circuit (discussed in Section 6 .1. 3 ); the thermistor was then used to 
measure the temperature variations of the circulating ethylene glycol . The 
accQTacy figure of 2 x (±.01°c) is the direct result of these thermistor 
measurements. 
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practical - yet not prohfoitively expensive - regu.lator of the temperature 

of the liquid surrounding a box : 

a) The liquid must be highly nonvolatile to avoid constant adding; 

it must be noncorrosive, reasonably nonconductive, and of low 

viscosity to facilitate agita tion to prevent t emperature gradients. 

It must also not react with the common polyethylene plastic sheets 

used in "wat erproofing" . Pure ethylene glycol (anti-freeze ) met 

all the above requirements and was thus selected. 

b) The amount of liquid must be minimal so as to minimize time.de-

lays for a given amount of stirring) and to raise tµe frequency 

of the heating-cooling cycles ~o that the effect will be highly 

attenuated by the passive attenuator box s urrounded by the liquid. 

At the saine ti.me, need for stirr ing calls for some extra liquid-

f illed space l arge enough for a propeller . This problem was 

solved by substitut ing a 20 gallon/min pump which created more 

than enough stirring, whil e requiring very J..i ttle extra liquid. 

c) Heating and cooling must be as evenly and uniformly distributed 

as possible. Fl.U'ther more , to keep the heating-cooling frequency 

high, a large amount of energy should be quickly going in and out 

of the liquid. While ohmic heating can easily handle the heati ng 
-)(· 

part, no efficient cooling analog seems to be available. 

-)(-

A small r everse -biased semiconductor cooler was tried; de spite its powe r 
consumption of approximately 3a.v, its cooling ability was not sufficient 
for this experiment . Cons i dering the cost and high D.C. power requirements 
of an adequately larger unit, a compr~ss or-type refrigerator was judged to 
be more appropr iate for the purposes of this experL~ent. 
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Figure 32 shows the physical setup used. The only reason the 

pump P is moved outside the refrigerator is that a strong 60 cps magnetic 

* coupling was noticed when the pump was physically near the noise sources. 

The heater coil circuitry was somewhat of a problem; if a high 

current were to be switched on and off, it would be nice to use an SCR 

to avoid relay arcing; but then it would be imperative to use a.c. to 

commutate the SCR in a simple way; high current a.c., however, is most 

likely to be picked up by the noise sources! A happy compromise is shown 

in Fig. 33. 

+ 

r 
------iHE:ATC::'~ 

< 
~7 

Heating System Regulation 

Fig. 33 

* The magnetic nature of the 60 cps coupling was first suspected. because the 
relative orientation of the pump with respect to the noise sources was very 
pronounced. 
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Figure 34 shows a plot of the temperature of the bath, as moni-

tored by a thermistor and plotted by a chart recorder. Indeed, the 

combination of time constants, heat capaci'cies and slight temperature 

gradients involved is such that no square-wave output exists; yet it does 

not follow that this noisy output contains high frequencies alone . 

Figure 35 shows the relation between the surface temperature 

change of a noise source (as measured by a calibrated thermistor in thermal 

contact with the first op-amp) and the raw noise itself. For that r ather 

typical noise source, .01°c ambient change results in a noise source 

amplitude shift by no more than four times that source's standard devia

tion. As Fig. 36 shows, it took a .8°c peak to peak t emperature hike in 

the surrounding bath to produce the aforementioned typical shift in the 

output of any noise source; were it not for the refrigerator -caused low 

frequency sinusoidal temperature var i at ion first observed in Fig. 37 

below, it would seem that the temperature control is indeed quite satis

factory. 

9.4.3 Bias Due to Temperature Regu~ation 

If the period of the heating-cooling cycle is prolonged by re

ducing the heating and cooling powers, the cycle will propagate through 

.the passive temperature -stabilizer with less attenuat ion. Figure 37 is 

a set of concurrent raw-data plots of seven noise sources, of the noise 

source supply before the regulator and, at the bottom, of the bath tem

perature. The earlier "noisy look" of the bath temperature has been 

replaced by a fairly orderly on-off sequence of cycles with the usual 
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superimposed low frequency caused ~y the refrigerator's own thermostatic 

control. 

This Fig. 37 shows quite predictably that each source has its own 

degree of sensitivity to temperature; one might, in fact, use this in-

formation in evaluating spectral estimates of individual noise sources. 

The power spectrum of a source which is heavily affected by 

extraneous temperature and power-supply variations may or may not be 

k/lfl in nature any more. In that case it is only logical to suspect 

that prewhitening and subsequent postgreening, both assuming k/f 

spectral densities, may not be the best scheme of data processing . With 

this in mind, the raw data of Fig. 37 were each processed in two ways: 

once with l/f prewhitening, and once without. Figures 38 through 43 

depict the results. 

Noise sources #1, #2, #3, #6, and t'7 of Figs. 38, 39, 4o, 41 and 

42, depict the typical effe ct of the absence of prewhitening : their un

prewhitened estimates have singularly distorted frequency estimates at 

such peculiar periods at 167 minutes , 83 minutes, etc . 

It is indeed quite obvious , in retrospect, that a stochastic 

process which is not exactly l/f will be flatter a~d, consequently, 

best prepared for further processing by the Tukey algorithm if it is pre

. whitened than if it is left alone as l/f2 or whatever it happened to 

be. 

Unfortunately: this argument cannot be stretched to cover pro

cesses which are white .in the first place or which go like (1 - e -f), for 

example. A "cut and try" iterative procedure might be best jn that case. 
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A typical example is the bath temperature shown on Fig. 43; both the un-

prewhitened and the prewhitened spectral estimates look almost identical, 

thereby suggesting that both approaches process a signal with similar 

* lack of spectral flatness. 

Finally, just as all proc~sses do not have to be k/f ones, 

there is no reason why some unlikely processes could not turn out to be 

k/f ones. Figure 44 depicting the spectral estimates of the unregulated 

supply voltage shows again the typical low frequency bias of the unpre-

whitened estimate; although no conclusions can really be drawn from that 

alone, it is mildly indicative that the true spectrwn behav~s something 

like k/f 

9.5 Automatic Data-Collecting Circuitry 

As mentioned earlier, equidistant samples were used in this 

experimental project which utilized the Blackman-Tul~ey estimator of the 

spectral density of a process. Although the process of obtaining equi-

distant samples visually displayed on a digital voltmeter was trivial, 

the process of accurately recording these readings took a very consider-

able amount of time, which was spent to a great extent in the construction 

and troubleshooting of the electronics desighed . 

The problem is simple to state: as soon as the digital voltmeter 

(dvm for brevity) has settled on its reading consisting of four digits 

and scale, a "coupler" must look at one digit at a time, encode it to 

* This argwnent is by no means conclusive, however, because the major effect 
of prewhitening is on the spectral estimates variance and not on its mean. 
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provide for single-error correcting automatically, then it must be syn

chronized with a rotating paper-tape punching machine, punch the first 

digit, and then return to do the same with the other digits and scale; 

at the end it must also punch an "end of reading" mark. For the case of 

ten multiplexed noise sources, an extra "end 0f round" mark is also de

sirable. 

The four-digit digital voltmeter and the seven-channel high speed 

paper punching machine were selected mainly because of their availability; 

in fact, they were perfectly adequate for the pQrposes of this experirnent. 

Once the data had been collected in punched paper tape form, it 

was ready for the sequence of steps itemized in Section 3 . 2, carried out 

by the IBM 360/75 computer, with deliberately introduced need for hwnan 

intervention between these steps . A block diagram of the data processing 

cy·cle is shown in Fig. 45. The diagram of Fig. 45 is meant to be read in 

a clockwis e fashion starting from the bottom l eft . 

The noise sources, the regulated power supply, the heater coil 

circuitry and the thermister amplifiers have all been discus sed individu

ally in detail above. 

The main precision-clock, whose detailed schematic is shown in 

Fig. 46, is composed of a 100 KHz crystal oscillator followed by a cascade 

of divide-by-ten frequency dividers; additional provision for 2x and 5x, 

the periods available from the aforementioned dividers, is made through 

appropriate digital circuitry shown in Fig. 46. The function of · the 

inverter following the clock is to provide a 180° "phase" difference be

tween the time the multipJ_exing relay is actuated and the time the volt-
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meter is told t o sample-·and.-hold . 

As discussed earlier, an antialiasing filter is absolutely neces

sary even in l/f noise measurements; a single low-pass R.C. filter was 

used in this work; the precise effects are discussed in detail in 

Chapter 10 in connection with the experimental results. 

The various level-matching networks are essentially for compati

bility between the inputs and outputs of different circuits; the logical 

"zero" of the digital voltmeter, for example, is -24V, and its logical 

"one" is -lV. These values mus t be converted to the input requirements 

of the Translator Logic which expe cts the log ical zero to be O.OV and the 

logical "one" to be +2V, ±lV, hence the need for the box marked "level 

matching 3 11
• Similar considerations hold for the other "leve l matching" 

networks. 

By far the most interest ing, yet highly complicated device con

structed, is the multiple function rectangle boxed with double lines in 

Fig. 45 above . The exact specification of the tasks to be performed by 

this device were briefly summarized earlier in this section and are 

specifically the follow~g, listed in the order they ought to be performed: 

a) Read-and-hold the entire reading of the digital voltmeter as soon 

as it is available as a B.C.D . output . 

b) Get into "ready" pos ition as soon as the digital voltmete r trans

mits the pulse indicating that it is ready to be read. 

c) Wait for appropriate synchronizing signal from the paper ta.pe 

punch; this is necessary because the coding and subsequent actual 

punching of the first peice of information will be practically 

instantaneous. 
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d) Upon receipt of the aforementioned first synchronizing puJ_se, 

code the first digit. The coding is discussed in detail in 

Section 9.5.l below, since it carries the burden of error correct

ing and error detecting. 

e) Synchronously activate the .paper-advance relay and the proper 

relays to punch the coded first digit. 

f) Upon receipt of the next synchronizing pulse, l/60th second later, 

code the second digit. Repeat step (e) for that digit. 

g) Repeat step (f) for the third and f ourth digits and for the scale 

information. 

h) Upon receipt of the sixth synchronizing signal, r epeat step (e) 

to punch an "end of reading" mark. 

i) Upon receipt of the seventh synchronizing signal, activate only 

the paper-advance relay so as to provide for a single-space 

separat ion between adjacent readings on the tape for subsequent 

visual inspection . 

j) Upon receipt of the eight synchronizing signal, reset the synchron

izing signal's counter so that it i gnores any further such signals 

until it is ordered again into a "ready" position by the digital 

voltmeter for a new reading . 

The complete schematic diagram of the circuit is shown in Fig. 47. 

A number of incidental constraints are partly responsible for its com

plexity: 

a) The total number of bits r equired to fully describe a single

error-correcting and double-error-detecting coded decimal figure 
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exceeded the available number of bits per vertical column on the 

paper tape; each decimal figure, therefore, had to be split into 

two parts which were punched sequentially in two successive 

vertical columns of the paper tape. 

b) No decimal or scale reading could be coded into a series of zeros 

(corresponding to no-hole on that column of the tape) because the 

pape r tape reader automatically disregards such blanks. 

c) Multiple function digital integrated circuits were not available 

at r easonable prices e,t the time of the construction of the unit, 

hence the entire logic circuitry was done with inve.rters, "nor

gates 11 and 11J .K. flip flops ", ~:mly. 

9 .5.l Error Correcting Coding 

Since the most frequent malfunction was cause d by margillally-set 

synchronization timillg resulting ill an occasional punchillg-relay failure 

to activate in time, a single-error-correcting scheme was considered 

des irable ; additional simpl e parity checking could then take care of 

double errors. The coding devised for the occasion is shown in Fig. 48. 

A total of 8 bits per word is needed per source symbol; an additional bit 

is required for an easily visible end-of-word flag, unless one is willing 

to settle for a visually unidentifiable flag coded into still another com

bination of the 8 bits above . The information carrying binary digits are 

x
3

, x
5

, xy' x
7 

, while the rest of the binary digits compose the error

correcting and detecting schemes mentioned above. 

Decoding the pattern of holes on the paper tape is the job of a 
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machine language program written by <T. Hughes of the Caltech Computing 

Center. Four modulo-2 operations are performed in the set of eight 

digits into which each symbol. is coded; these operations scan for errors, 

and they are 

= a 

= b (!)-:: Modulo-2 addition (105) 

= c 

The binary number a b c indicates the exact position of the single 

error; e .g ., if a = 1, b = l, c = o, digit x6 is wrong and ought to 

be changed before any further processing. Digit x 
0 

alone takes care 

of detecting any even nwnber of errors through simple parit y check. 

It may be noted from the coding table of Fig . 48 that the symbol 

zero is coded into no-holes-at-all, which is not pe:cmissible, as mentioned 

earlier. This oversight was found at a later time and was remedied by 

punching an x8 whenever all x. , i E [O, '7] 
l 

were logical zeros. 

Fancy and conveni ent as this scheme may be - ind.eed, it was used 

extensively for all the work before the multiplexed noise sources were 

constructed -, it suffers from two disadvantages: 

a) It cons wnes twice as much paper tape as a simpl e -minded s chern.e 

would, which would punch only the information carrying digits ; 

this is most significant when ten noises have to be meas ured 

and the need to change reels in the middle of a run becomes 

very pronounced . 

b) Data processing cos t of carrying out the aforementioned four 
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modulo- 2 operations and of i mplementing the error correcting 

rises unnecessarily high; this judgment is a cons equence of the 

observation that singl e errors were actually present in approxi

mately one out of 6000 symbols, and double errors were 

practically absent. 

A simple circuit modification of the original diagram was thus 

performed which resulted in punching only the four information digits, 

all in one column, reserving one paper tape track for x8 , one for a 

readily visible end of r eading mark; and one for "multiplexing cy<.:le 

compl eted" mark . An error-detecting scheme was included in the new 

machine language program written by Jam~s Lo, t hen with Caltech 's Comput

ing Cent er staff ; the error-detecting scheme simply checks f or disallowed 

combinations of hole patterns and reports them as such on t he computer 

printout . 

The electronics impl ementing the logic were originally built on 

two double-sided p . c. boards , whos e design and actual cons truction were 

done by this author. After a cert ain amount of 11 debugging 11 and replacing 

of 14--pin integr ated circuits firmly soldered in thin copper, a dnplicate 

was constructed by R. Dukelow with all wiring done with wires rather than 

thin copper strips. 

9.6 Auxiliary Data Colle cting Circuits 

The "noisy signal cleaner" appearing in the block diagram of Fig. 

45 is necessary because the pulse log ic J.K. flip-flops need a clean-cut 

square wave to operate satisfe.ctorily, whereas the me chanical contact-
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created square wave from the tape punch is noisy. 

The "signal cleaner" simply passes the noisy 60 cps from the tape 

punch through a tuned 60 cps LC filter which is subsequently squared again 

through a Schmidt trigger, or a cascade of saturated d.c. amplifiers. The 

circuit is shown in Fig . 50. The schematic diagram of the paper tape 

punch driver is also shown in Fig. 49; the few points of interest are: 

a) Protective diodes across the relay coils are inadvisable despite 

the prevailing standard practice; they invariably prolong the 

activated state of the r el ay beyond 1/60 sec, thereby ruining the 

punched data . 

b) In view of the high d.c. voltages present, experience has dictated 

the use of series diodes jn the bases of the powe r transistors to 

protect the entire logic circuitry should something go wrong . 

To obtain a t angibl e measure of the quality of the overall data 

collection system, the noise output of a sou.Tce was sampled by the 

elaborate data-collecting scheme discussed in this section, and by a 

chart recorder (an Easterline Angus milliameter). The digitally processed 

data were plotted side by s ide with the analog--obtained one, and the results 

were identical. 

* 9.7 The Paper -Punch Recorder. 

As has already been stated, the data W€re recorded on computer 

paper tape before any data processing . For the purposes of this experi

ment, namely the recording of data at relatively low rates, a recorder 

Teletype Corporation, Model BRP- 2 
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of this kind was perfectly adequate; the recorder used had a total of 

seven binary channels) that is) it could record a maximum of seven bits 

at a time. Four bits are adequate for any decimal digit (or any hexa

decimal digit) for that matter ); one channel was reserved for an "end of 

word" synchronization mark while still another channeJ_ was reserved for 

an "end of multiplexing cycle" synchronization mark . Some econonzy- could 

clearly have been achieved through proper coding of these synchronization 

marks but this was considered undesirable because the synchronization 

marks would no longer be as obvious for visual inspection . 

The most bothersome problem encountered in the use of the paper-

punch recorder itself, was the wear and tear associated with its critical 

mechanical settings; this problem was, naturally, most pronounced during 

the long data-taking runs. Carefu..l inspection of the data collected at 

the end of each run at various stages of the data-processing procedure 

insured against false data points. 

It is this author's opinion that, should long data-taking runs be 

made in the future , the relatively-low cost and high mechanical reliability 

of magnetic-tape recorders would make them ideally suited for such appli

cations. If it is further desired to extend the experiments to higher 

frequencies; a magnetic tape recorder will b~ necessary and perhaps even 

.an analog-to-digital converter as well . 

9.8 The Compute r Program 

The computer program used in this work is an expanded version of 

an earlier program. (25) In painful awareness of the truthfulness of the 
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slogan tha t "humans can make mistakes but it takes a computer to really 

* foul things up", the above "program" is r eally a sequence of programs 

with human intervention between them. Data processing is checked at 5 

successive intermediate stages before it . is allowed to proceed to t he 

next stage . The above-mentioned stages are: 

a) Convert punched paper tape into binary cards . Check for hole-

punching errors and report each and its exact position. Che ck 

for multiplexer's synchronization, i. e ., t hat no noise source 

was either skipped or punched more than once on the paper tape 

* by mistake; report any error and identify the suspected data 

point. 

b) Print out the manually- corrected raw data in lO columns, each 

column representing one noise ·source so that the data can be 

readily checked visually before any further processing. 

c) Plot the above raw data to recreate the lO noise sources ' out-

puts so that the subsequent 10 individual spectral estimates can 

each be appropriately evaluated before spectral averaging . 

d) Provide spectral.estimates for each of the ten noise sources in 

punched cards, in computer - printed output, and in log-log plots 

for evaluation. 

e) Average the individual spectra according to the algorithm indi-

cated in detail earl ier . 

f) De-alias the estimate obtained from (c) above _and plot it versus 

* One t ypical reason why human intervention between successive segments of 
the data-processing algorithm is des irable is given in Section 9.8. 
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frequency on a log-log scale. 

It is of interest to point out some pertinent details associated 

with the computer-processing of the data. 

Except for punched-paper error detection, the transfer of infor-

mation from paper-tape to binary data cards was done without any other 

processing; accordingly, the data points appeared on the cards in the 

order they were recorded, that is, time multiplexed. It would thus have 

been very desirable to have as many data points per computer-card as the 

number of multiplexed noise sources; this was unfortunately unfeasible 

because the maximum numbe:c of four-digit numbers, each accompanied by its 

sign, by the appropriate power to ten, and by the sign of that number is 

seven; this allows for a desirable one-blank spacing between successive 

four-digit numbers . It follows that if one data card was misplaced in 

the deck, this created a los s of the necessary synchronization for proper 

demu.ltiplexing . It was considerations like this which w.ade it desirable 

to inspect the data process ing at various stages by dividing the overall 

data-processing into smaller segments . Furthermore, it is the above-

discussed possible loss of the necessary synchronization for demultiplex-

ing which prompted the analysis of Sect:i.on 6 as to th_e effects of a 

step-function in the unprocessed data of any .one noise source on its 

* corresponding spectral density estimate. 

* Because of the deliberately set different mean output voltage of each 
different noise source (for purposes of identification), a loss of syn
chronization in demultiplexing clearly results in a step-function change 
in the unprocessed data of all ten noise sources. 
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CHAPTER 10 

SEMICONDUCTOR NOISE EXPERIMENTAL RESULTS 

This section concentrates on the results and their interpreta

tion for the various semiconductor-noise sources measured in this 

work; these are: Mark II noise generator, Mark III noise generator, 

and the time-multiplexed noise sources constructed of integrated cir

cuit operational amplifiers. 

Extensive experimentation with, and spectral estimation of the 

actively controlled bath temperature, of the surface temperature of 

the noise-generating operational amplifiers, and of the unregulated 

input to the voltage regulator of the power supply have already been 

presented; they have appeared in the appropriate sections'above per

taining to the temperature and voltage regulation used. 

While Chapter 9 dealt with the experimental method us ed in 

obtaining spectral density estimates, this chapter deals almost ex

clusively with the presentat ion of the pertinent results obtained. 

In an effort to avoid duplication, each experimental result 

presented in this chapter wil~ not be followed by a repetition of the 

discussion of Chapter 9 as to exactly why each change in the experi

mental set up was made prior to the next series of experiments; it 

will be presumed that the reader has read Chapter 9 where all such 

points are clarified. 

The experimental results are presented in their natural 

chronological order in which they were obtained. 

The mathematical algorithm used has been discussed in great 

detail in earlier sections (see Section 3.2 for a comprehensive 
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summary) while the experimen tal implementation of the algorithm has 

been discussed in Section 9.7 above. 

10 .1 Prel~minary Power Spectral Estimates (Mk.. II and Hk, III) 

Throughout the experiments associated with this work, various 

low pass R. C. filters were used; it follows that the amount of aliasing 

included in the prelimina ry results may vary from one experiment to 

* another, depending on the R.C. characteristics used. 

The noise sources went through three basic stages of improvement: 

th e first stage involved a discrete-component differential input con-

figuration shoi;.vn. in Fig. 20, and us e d a discrete-component regulated 

powe r supply with two cas caded series-pass circuits (shown in Fig. 21). 

Temperature stability was achieved ( to .a limited extent only ) through 

the use of a Dewar flask enclosing a 1/4-inch thick all aluminum 

enclosure of the single noise source . 

Approximately 10,000 data po in t s were taken for all single-source 

runs , and 100 freq uency estimates were made at equidistant fr equency 

int ervals covering t wo frequency deca des . 

~·,.* 
Figure 51 shows~ t he result s ob tained from that noise source, 

referred to as Mark II C"Mk I" stands for the noise source used by 

Blakemore(2S) in his work .) 

* 

** 

For de-al iased runs the de·-aliasing algorithm discussed earlier was 
properly tailored to the particular R.C. par&~eters used; a detailed 
example of de-aliasing is given in Appendix B. 

Figure 48 do es not depic t 100 estimates per run because it was plot-
ted by hand using a selected few points from a computer printout. 
This was remed ied in later experiments, excluding ~he one depicted 
in Fig. 49. 
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The R.C. filter asymp totes on this figure are not a ligned 

with the coordinates but merely indicate the associa ted attenuation 

slope; the 3 db point is at 1 cps for the higher-f requency run, and 

at another frequency for the low frequen cy run; as the purpose of 

this original set of estimates was basi~ally to test the equipment 

and to obtain a crude measure of the require_d temperature stabiliza

tion and voltage stab ilizat i on , no detailed r ecords were made of the 

specifications of the second low-pass filter, or of parameters which 

were not of di rect interest at that time . 

The above set up was found to. be in need of improvement 

because of a persistent linear trend superimposed ori the r aw data; 

the most plausible explanat ion for this drift appeared to be a slowly 

rising t emperature inside the Dewar flask. 

Instead of radica lly revisin g the temperature regula tion set

up , it appeared simpler to select a temperature-matched set of tran

sistors housed in the same metal case so that any ambient temperature 

dri ft would not produc e any drift from the differential amplifier . 

The power-supply, whose regulation was measured to be better than one 

part pe r thousan~was l eft intact. 

Figure 52 shows the power sp ectral density estimate obtained 

with this source ; again , as stated , 10,QOO data points were recorded 

pe r run, and 100 discrete-frequency estimates were made per run, each 

run spanning two decades in frequency . This time a single R.C. 

filter was used for all four runs with 3 db point at 1.5 cps, hence 

the increasing aliasing-distort ion as the sampling period is increased 

in successive runs . This noise source is referred to as Mk III. 
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Instead of pursuing the problem .using rather poor noise 

sources and measuring techniques it was decided to optimize both 

the quality* of the noise sources, and the quality of the entire 

apparatus. The latter would include improvements of the temperature 

stability, of the voltage regulation, a.nd would use 10 time-multiplexErl 

noise sources (see appropriate theoretical discussion on this point 

presented in Section S.'S . ) 

10.2 Mark IV Time-Multiplexed Noise Sources 

In painful awareness of the ever-present temperature build-up 

inside any insula ted container, and of the separate problem of what 

can gently be referred to as 11operator 's fatigue 11 over the· mere pros-

pect of year-long data collection sessions** , radical improvements 

were undertaken before the next round of measurements. 

The noise sources were redesigned with integrated circuit 

operational amplifiers of very low offset, large input common mode 

* Strictly speaking , no nois e source is 11worse 11 than any other. The 
criterion implied here is that the noise source is desired to 
exhibit predominantly l/f spectra; furthermore, its raw data out
put is desired to be free from the usual sources of bias discus sed 
earlier in this thesis . Whereas the use of integrated circuits 
does not in itself improve the 11 quality 11 of the noise source, the 
small physical size of the int egra ted circuits makes it much easier 
to use 10 noise sources instead of just 1, thereby improving the 
overall experimental procedure as discussed earlier. 

· · **If a single noise source we~e used to produce spectral estimates 
down to 1Q-6.3cps with the same variance as that required of the 
combined one of 10 noise sources, a run of about two years' length 
would be required. 
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range, high gain, low power consumption and exceptional temperature 

stability; the circuit appeared in Fig . 23 above and was amply 

analyzed in Section 9.2. The voltage regulation was, similarly, 

improved through the use of a precision integrated voltage regulator 

with a measured line regulation well within .05%, and low temperature 

drift through the use of a temper.ature compensated reference amplifier; 

this circuit which appeared in Fig. 25 above was discussed in Section 

9.3. Temperature control, finally, was significantly improyed upon, 

as discussed in detail in Section 9.4. Most important , the sensiti

vity of each and every noise source to both voltage and temperature 

was actually determined through the direct measurement discussed in 

Sections 9.3 and 9.4. In the interest of completeness , the effect of 

temperature on the power supply alone was also determined. Equipped 

with all these "case histories" of the noise sources one could rather 

easily spot any disorder in the raw data, before any subsequent proces

sing. It must be stated that during the initial phases of setting up 

the 10·-noise-source experimens many different op-amps were tried as 

noise sources; on the average, one out of every three was rejected 

because it either di d not display l/f noise, or it displayed the 

distorting biases discussed at length in Section 6 . .. It follows, thus, 

that the numbers assigned to noise sources tefer to "socket numbers" 

more than to any one op-amp, unless otherwise stated in the text . 

· Figure 53a shows the raw data output of noise source No . 5; 

its only peculiarity is the persistent presence of a sawtooth wave 

appearance; is it "noise", or not? A new measurement was thus made 

at a higher sampling rate, roughly equivalent to passing the raw data 
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through a finer grid; the result shown in Fig. 53b hints what the 

* cause of the "sawtooth 11 wave may be; a ground-loop problem was then 

found to be the cause of the extraneous square wave . In order to 

settle the question of an additional possible "popcorning" noise, the 

graph of Fig. 53c was obtained; a hot "spike11 was induced in the bath 

liquid, and the subsequent gradual response verified that the square 

wave was not 11 popcorn noise 11 but a response to thermostatic controls. 

The reason why the period is about 4 minutes and not the longer time 

specified earli er for the refrigerator's own cooling then10stat, is 

that this new disturbance is associated with the period of the heat-

ing circuit \.1hich heated the ethylene glycol bath with a th e::mostat 

of its own as discussed in Section 9.4 and Figs. 32 and 33. The 

period of 20 minutes of Fig . 43 is du~ to the refrigerator' s cooling 

** temperature control 

The first series of spectral estimate measurement s of 10 care-

fully chosen sources was compl~ted in January 1970 and i s depicted in 

Fig. 54. A single R.C. fiJ_tei with a time-constant of .5 sec was us ed 

for all runs, each of which sampled each source at 1000 equidistant 

times. De-aliasing was done without the aid of a compute r on a . 

t~ 
K/f model which th ese sources appear to display and was based on 

* 

** 

The hint is that the superimposed disturb ance is not a gradual one 
as the sawtooth wave suggested but an abrupt one; this implies 
that it is not a gradual temperature-propagation effect but an 
abrupt voltage change in all likelihood. 

The effect of the heater's thermostat was hardly noticeable in 
recordings of the temperature; it appeared he~e indirectly through 
a ground-loop. 
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the discussion of Section 5.3; this manual de-aliasing was done only 

for a selected few points and even at those points it was only 

approximate because of the total amount of arithmetic involved. This 

set of plots (Fig . 54) was again made for trial purposes only in the 

sense of checking the new laboratory set~up and the new computer 

algorithms; accordingly no great emphasis was placed on precise de-

aliasing. 

A closer look was then taken at the raw data from which the 

three averaged-up spectral estimates of Fig. 54 resulted. These raw 

data, 1000 points per plot, a re depicted in Figs. 55 through 61+ and 

have the following two important characteristics: 

'i< 

(a) Not only the variance, but the "character" of the noise 

of each source is clearly differen t from that of another 

nois e source . 

(b) The sources designated as No. 2, No. 10, and especially 

* No. 4 and No. 8 have a few very noticeable 1-volt spikes ; 

these clearly extraneous spikes are sufficient grounds for 

replacing these noise sources. Y€t the very prospect of 

adjusting another group of sensitive d.c. amplifiers seemed 

to hint an alternate possibility. It was conjectured that 

one could perhaps "finger-print" each noise source by 

recording its raw data output so as to make appropriate 

allowances later for biases in their spectral estimates; 

this idea was abandoned , however, because it violated the 

assumption that all 10 noise sources had similar spectra. 

The offending sources were thus replaced by ones whose raw 

The magnitudes referred to are the arrtplitudes of the output of the 
noise sources; recall that each noise source is really a 100 db 
amplifier, approximately. 
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data outputs and preliminary spectral estimates did not 

indicate the presence of such bothersome biases. 

A major series of data collecting runs were made at 5 different 

* sampling rates , each differing by an order of magnitude from the 

** next In the interest of checking the variance of the results, the 

sampling rates were arranged so that at any one frequency in the range 

of interest there are exactly two available estimates, one or both of 

which may be just the line connecting two discrete adjacent frequen-

cies at which estimates were made. The number of samples per noise 

source per run is about n = 1200. As the purpose of these experiments 

was to est i mat.e reliably the very lowest frequencies 1 spectral densi-· 

ties, no effor t was made to obtain estimates at any frequency which 

i s higher th an five decades above the lowest frequency considered. 

One reason why even such an extended frequency range was considered 

was to have solid evidence of the K / If I a behavior in high frequency 

estimates in order to accura tely de-alias the lowest frequency esti-

*** mates this argument can be invoked in support of obtaining still 

higher frequency estimates, but the aliasing effect is then almost 

absent due to the singl~ low pass filter utilized. Of course, a five 

fr eq uency-decade wh ose 3 db points were at 2 cps spectral estimate is 

* 
';"* 

**..;, 

~T = 1, 10, 100, 1000, and 10,000 sec for each source. 

Although the raw data outputs of these sources appear dissimilar, 
preliminary spectral estimates established that they all_ have 
simila:;:- sp ectra . 

De-aliasing was done by the digital computer this time and was 
based on K/f1 ·3 noise, where K was obtained through extrapola
tion at f = 1 cps; the technique of Section S.3 was, naturally, 
used. 
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not rec11indant since it is not only the possibility of a low break-

freque1w,y- (break in the K/f 11 law 11
) which is of interest; the low-

frequen1.·;ir spectral behavior as such is of just as much interest) too. 

As indicated in Section 9 .7J a rather extended sequence of 

steps fo. carried out, with various plotted a~iJ_iary results being 

produce ,~ in the process, before the final "best" result (in the sense 

of Sect:~.0n 5.5) is determined. Each distinct sampling-rate run pro-

duced a}-~roximately lOO pages of computer-printout) a minimum of 10 

raw dat::\ f ull page plots if the raw da.ta contain no dete ctable e rro1·s, 

an add :i. ~ i onal 10 individual, aliased, spe ctral estimate plots J and one 

final d, ... -aliased spectral density est i ma te plot; a total of 1 20, on the 

average_, c omputer-generated page s are thus accumulate d pe r sampling rate, 

or 600 ~'<:;.~e s for t he entire experiment of five dj_fferent sampling rates; 

a coup:~,, of hundred feet of chart recordings of the bath temperature is 

also pr1.."-',0.ced by the Este r l ine Angus chart recorder to assure one of 

tempera-: ,':.:;·e stability without occupying any channe l of the nois e - sou:cce 

multipl~'~er . The quantities of greatest interes t are : 

a) -~11 r aw-data noise outputs. 

b) !:'he final spectral estimates, one for each s ampling rate , all 

~uperimposed on the s ame sheet of graph paper. 

c) ~~casional records of pe culiar behavior by the noise sources in 

~upport of arguments related to any otherwise inexplicabl e biases 

~:n the spectral density estimates . 

Figures ;-~5 , 66, and . 67, depict some of the r aw data output of all noise 

* sources ·~n which the five final estimates are bas ed. Figures 68 through 
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77 depict the aliased spectral density estimates for each of the lO 

noise sources UBed in deriving the final, averaged spectral density 

estimate; it must be remembe~l'.'ed that the variance associated with each 

of those individual estimates is approximately ten times as large as 

that of the final estimate. Figu:re 78 depicts the final dealiased 

spectral density estimate. Appendix B shows in detail how dealiasing 

was done by using the aliased spectral estimate of all individual noise 

source as an example. 

10.3 Interpretations of Experimental Results of t his Work 

This final experimental result, depicted in Fig. 78, has the 

following interesting characteristic: 

It depicts, for the first time, an estimate of the actual spectral 

characteristics of semicondncto:c flicker noise i n the uncharted regions 

-6 -6 3 between 10 and 10 · cps. The power spectrum appears to be of the 
I ·.· 

(l/f .... ) type over most of the frequency range, except the lowest decade 

I 
where it appears to become a (l/f ) spectrum. 

'.11he behaviur, subject to variance considerations discussed below, is 

roughly in character; this is still within the broad theoretical 

limits implied by the two major postulated models for flicker noise, i.e. 

the "physical" model which attributes the l/f behavior to associated 
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long time -constants within the semiconductor lattice (l)' and the 

"mathematical" mode1 which views the l/f behavior as a consequence 

of having used mathematics which are not applicable to the physical 

process under investigation . 

In view of the theoretical results presented in this thesis i n 

relation to the spectral est imate 1 s variance, the experimental r esult 

of Fig. (78) can be expected to be within 17% of its average value, i.e. 

within ± 2 .3 db, only 68% of the time. A subtle point worth ment ioning 

i s that "t ime " is also l ogaritlunically rather than linearly depicted on 

the log-log scal es of Fig. (78 ) ; that is, the linear l ength of the log-

log plot of Fig. (78) is not proportional to the "time 11 that an estirn'.1te 

is expe cted to be within a certain band . 

Two specific comments on the results of Fig . (78) are in order 

now before any conclusions can be drawn: 

a) The apparently disturbing difference between the two estimates 

at f ~ lo-4cps is indeed explicable with the help of the individual 

spectral estimates of Figures (68) through (•:7 ). The spectral peak 

shown by one of the two estimates is a valid one, and it is present in 

the individual spectral estimates in varying degrees; the physical cause 

for it has been already identified earlier in this thesis. The reason 

why this spectral peak is not easily identifiable on the "lower" 

estimate i n the plots is a matter of resolution: as it has been shown 

by Blakemore ( 25 ), the Blackman/Tukey estimator creates distortion in 

the detection and reproduction of narrow spectral peaks. 

b) The entire graph, including the aforement ioned region around 
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-4 10 cps, is well within the theoretical limit of the variance es tab-

lished in this work. 

It is interestfog to discuss at this point why the theoretically 

predicted divergence of the var i ance of the spectral estimate of un-

prewhitened l/f noise does not in fact appear in the experimental 

results pertaining to unprewhitened spectra . There can basically be 

three expl.a.nations given for this apparent discrepancy: 

1) The variance is a statistical average and, consequently, the 

spectral variance need not diverge in any particular estimate or group 

of estimat es . 

2 ) The variance cannot be observed because the theoretice.lly 

predicted divergence in this thesis d id not take into considera tion the 

actual algorithm used in collecting and processing the data . 

3) The variance cannot be observed because of the inherent limita-

tion.s of the nois e source amplifiers and of the measuring equipment which 

would ttcliptt any data sample outsicle a given range. 

While the first of the above explanations is, in principle , 

correct, it i s not the only reason why the unprewhi tened experimental 

results of this thes is do not seem to have an infinite spectral variance. 

I n fact, the variance of the spectral estima~es of unprewhitened l/f 

noise obtained in the manner des cribed in this thesis cannot be infinite . 

It is, indeed, true that if one or more raw data samples were 

of infinite value the resulting spectral variance would be infinite; 

this cannot occur in an actual experimental situation, however, because 

any such value will be "clipped " by the noise source ampJ..ifiers or by 

the measuring equipment . Such clipping however, would register in the 
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raw data output as a readily distinguishable spike, and this was , in 

fact, never observed . 

By far the most subtl e reason why the spectral variance can 

never diverge if the dataare processed in the manner described in this 

work is the algorithm its el f . Specifically, the mean value of any one 

given noise source was approxi..rnat eJ_y reset to a predetermined constant 

prior to each data-collecting run; any noise effect whose frequency is 

low enough to appear disguised as a drifting-mean is thus r emoved even 

before the data~te re corded; t he effect i s the same as if a constant 

mean i s removed from a prewhitened set of data points : the power 

spectrum of the noise s ource is effectively truncated at some ver;,r low 

frequency in the manner analyzed in detail in Ref. (25 ). It has been 

shown in the present work that a truncated l/f process has spectral 

estimates whose variance does not diverge . 

While it seems desirable, from a theoretical viewpoint, to 

never reset the mean value of a given noise source ' s output, significant 

experi,'llental difficulties can be encountered if this is not done; these 

difficulties include the possibilities that : 

a ) the noise source ' s mean change is a result due to environmental 

onl~f parameters ; such a drift can only degrade the final spectral 

est ink,te . 

b) The nois e s ource 's mean change is indeed a manifes tation of 

very low frequency noise, but the a.mount of the change is such that the 

nois e source is driven out of its linear operatiilg r egion and into 

saturation. 
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CHAPTER 11 

FURTHER WORK 

Despite the time-saving benefits of time-multiplexing, first 

introduced in spectral estimation in this work, it appears that spec

tral estimates at a frequency substantially lower than the one 

presented in this work are not too likely to be calculated in the 

foreseeable future because of the data~iaking times involved. 

Optimization of a parameter of one's personal choice such as 

alias-free sampling through nonrandom sampling, or high resolution in 

frequency have been studied in d~tail only to show that data-reduction 

costs reach d i.sproportionate levels. 

One promising area for further work may cover the domain of 

recording only the zero-·cross ing times of the low-pass filtered 

stochastic process in ques tion; the associated complexity of the exper

imental set-up need not b e high at all; the mathematics for such a new 

data-processing algorithm may be quite challenging , though. 

The growing popularity of the "Fast Fourier Transform" i;.,rhich 

is still in its developmental stage, suggests tha t faster data-

processing technologies may later bring to actual life such rather 

exotic techniqL!es as semi random sampling. Indeed, there is a great 

·d~nand for fast spectral analyses: Doppler-radar measutements of 

orbital objects or traffic, and seismic exploration are typical 

examples. 

Many theoretical problems, some raised by results in this 

thesis, are of interest: Is there a physical law that explains why 
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the variance of a true l/f' noise is infinite , while that of a 

l/(fl-o) is not? Is there a physically underlying principle behind 

the multiplicity of natural processes exhibiting l/f noise? This 

thesis has gone into considerable theoretical and experimental depth 

to answer some questions; in the process is has raised new ones of 

even greater interest . 
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Appendix A 

Summary of the Comput_er Simulation of the Tempera ture 

Characteristics of the Noise Sources' Containe r 

The heat equation is a distributed-parameter equation, and its 

infinite series solution is well known t o converge notoriously slowly. 

A lumped-parameter model was thus substituted using electrical passive 

circuit elements, and it was this model which was simula ted with the 

digital computer. 

Realizing that a clos ed container behaves basically like a 

low-pass filter, a three-stage RC filter was analyzed whose six par3J1l-

eters were appropriately defined. An infinite cascade of RC's could 

provide an exac t equivalent to the heat equation; a three-stage model, 

however, was chosen for th2 following .reasons: 

a) Its unit-step response could be easily obtained. 

b) It successfully modeled the frequency fall-off obtained 

from the heat equation analytically. 

c) It successfully modeled the three main layers of the 

actual container: the external polyethylene bag, the 

epoxy layer, .and the air space. 

The parameters of the three resistors and three capacitors 

were defined so as to match the true "low-pass" character obtained 

analytically from the heat equation*. 

* The analytic expression giving 
exciting stimulus and that of 
frequency was actually used. 
6.1.3. 

the ratio of the mnplitude of the 
the response as a · function of angular 
This expression was derived in Section 
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The circuit is 

Defining 

response of network at time t to unit step 
occurring at time Tk ~ t 

and realizing that the quantity desir e d is the overall response to 

many successive step-stimuli of varying amp litudes, we c a n write 

where R(O) 

f (t) 
out 

0 f o r realizability reasons. This can be rewritten as 

t =T 
k 

l 
k=l 

[Of. (Tk)) [ R(t-Tk)) 
in 

The computer program impl ements exactly this last equation . 

The quantity R is of some interest since it really involves 

._solving a cascade of linea r differential equations, on~ per stage. 

,For the first stage 
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d_g_ ' ] ( ) = dt + RC q t 
1 R e < t), where e(t) = unit step. 

Using µ (t) :: e t/RC as integrating factor gives V1 (t) = l-e-t/Rc. 

Using v1 (t) as a forcing- term to obtain the output from the second 

stage gives 

V
2
(t) 

·Repeating the procedure once again with considerable algebraic 

manipulations yields 

This concludes the essential derivations associated with this otherwise 

peripheral part of this work. 
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Appendix B 

The aliased spectral estimates of the ten noise sources on 

which the final spectral estimate of Fig . 78 is based, were shown in 

Figures 68 through 77. This appendix focuses on the dealiasing 

requirements dictated by the particular low-pass filter used in the 

~perimental runs which produced the final spectral estimate. 

The following points are of interest in properly interpret-

ing the discussion of this appendix: 

a) The variance of the spectral estimate of any one source is 

approximately 10 times as large as that of the final averaged estimate. 

Specifically, for any one noise source 

!Var S. ( f.) 
1. 1 

S:-Cf.) 
1. J 

0-:: 
~ v 3x T 

H 

.56 

i.e., for a ~aussianly distributed random variable S.(f. ) the esti
J 1. 

mate must be within 56% of its average value 68% of the time. (This 

applies to the deal iased estimate). 

b) In view of the large variance of the estimate for any one 

source, and for computational economy, one dealiasing was performed on 

· 'the aliased final spectral density estimate rather than one dealiasing 

for each noise source separately. This was done only after visually 

inspecting the 10 individual spectral estimates for the purpose of 

being assured that they were all similar in functional fonn. The 

dealiasing procedure shown in this appendix is to illustrate the 
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procedure used on the final estLrnate. 

c) Dealiasing of the final estimate was done by the digital 

computer in view of the extensive summations required. The arithmetic 

results shown in this appendix are only approximate, although the 

mathematical procedure is the same. 

d) A single R.C. filter was used for all data runs; its 3 db 

point was selected to be at 2 cps. As shown below, this results in a 

progressively larger aliasing effect as the sampling rate is decreased, 

especially on the "high frequency portion" of each data run's sp ectral 

estimate. 

The aliasing effec t will now be examined on each of the five 

sampl ing rates, given that the same low·-pass filter was used for all. 

Since the summations involved are so extensive, a quantitative measure-

of the effect of aliasing will be given for the spectral estimates at 

the lowest and at the highest .frequencies at which spectral estimates 

were obtained from each data run. 

The fundamental aliasing equation has been shown to be 

S(f) 
aliased 

s (f) + 
true 

co 

l 
q=l 

s c-5L - o + s c-5L .+ o true 6T true 6T 

·Each sampling rate will be considered individually: 

la. Sampling Rate = 1 sample per second 

If the true spectrll.l11 is K/f , the magnitude at the high.est 

frequency at which an estimate is made. is 
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l/(26T) = 2K 
K 

S (.5 cps) 
true 

1 
S l" d(f = 2"T) a iase u 

s ( . 5) + s ( . 5 ) + s (1 t) + s (1 t) + s ( 2%-)" + ... 

= 2K + 2K + _2K + 2~ + _2K + 
. 3 3 5 

= 2K { 2 [ 1 + ~ + i + ~ + ~ + · · · ] } 

Approximating the R.C .• filter for illustrative purposes as a cutoff 

filter at 3 cps, yields 

s i· d(.5) a_ i.ase { 
1 1 s (.5) 2[1 + -3 + -5) tru e 3.1} (B. l) 

But 10 log(3.l) ~ 5 db, hence a 5 db increase is to b e expected at the 

high-frequency end of the estimate . 

lb. Sampling Rate = 1/10 samples per second 

Highest frequency estimate at f = .05 cps, with true magnitude 

K/(1/26.T) = 20K. 

8aliased(.05) ~ 8true(.05) {Z[l + ~ +; + ... + ;9]} 

where the approximating assumpticn was made 'again that the low pass 

filter is a cutoff filter at 3 cps. Then, 

{ 
1 1 1 

10 log 2 [ 1 + J + 5 + · · · + 59] } ~ 7 .1 (B. 2) 

Thus a 7 .1 db increase is to be expected at the high-frequency end 

of this estimate. 
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le. Sampling Rates : 1/100, 1/1000, 1/10000 samples per second 

A similar analysis can be extended to these lower sampling 

rates; each such analysis involves a summation of ten times as many 

additive terms in equations of the form (B.l), (B.2), as the number 

of additive terms corresponding to the next highest sampling rate. 

The overall results are: 

3.1 db are attributable to aliasing at f .5 cps for /xr = 1 sec 

7.1 db are attributable to aliasing at f .05 cps for /::;T =10 II 

8.8 db are attributable to aliasing at f = . 005 cps for M =100 II 

10.0 db are attribu table to aliasing at f=.0005 cps for /::;T = 1000" 

10.9 db are attributable to aliasing at f =.00005 cps for . tn = 10000" 

A brief look at Figures 69 and 70 suggests tha t these quantities 

are indeed plausible within the increased variance limits for indivi-

dua l noise sources discu ssed above. 

The effect of aliasing on the low-frequency end of each data run 

will be examined next. 

2a. Sampling Rate = 1 sample per second 

The lowest frequency at which an estimate is made is 

l/IlOO • 2Ln] 5 x 10-3 cps; assuming again a true spectrum of K/f 

implies 

S (5 x 10-3 cps) = 200K 
true 

-3 s l' d (5 x 10 ) a iase 
s (. 005) + s (1 .005) + S(l + .005) 

+ S(2 - .005) + S(2 + .005) + ··· 



S l' d(5Xl0-
3

) a 1ase 
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1 1 1 
~ 200K . + 2K[ l + 2 + ) + 4 + · · ·) (B.3) 

Invoking again the assump tion that we have a cutoff filter at 3 cps 

yields 

-3 ~ S 1 . d (5 x 10 ) 200K + 3. 6K a iase 

i.e., the estimate is expected to be 1.8% larger, which on a logarith

* mic sca le is less than .1 db. 

2b. Sampling Rates: 1/10, 1/100, 1 /1000, l.L!:.Q_OOO samples per second 

Similar considerations can be applied to the low-f requency 

ends of the remaining four s ampling rates; the effect, aga in, is an 

increase in the number of additive terms in equations analogous to 

( B. 3). The results are For 6.T= 

-3 (sec ) 
1. 8% i ncrease (.08 db) is due to aliasing and f 5 v 10 cps 1 

( .16 db) al i a sing 
-11 

10 3.8% increase is due to and f - 5 -..: 10 cps 

6.1% (.2 6 db) due aliasing and f -5 100 increase is to 5 .,. 10 cps 

9.5% (. 39 db) due aliasing and f -6 1000 incr ease is to 5 )r 10 cps 

12.9% increase (.53 db) fa due to aliasing and f -7 10000 = 5 " 10 cps 

These quantiti es are quite small in ei logarithmic scale, but 

are nonethel es s compensated for in the actua l dealiasing of the final 

spectral density estimate performed by the digital computer. 

* This effect was, nonetheless, r emoved in the actual dealiasing per-
formed by the digital computer . 
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(D ealiasing was done on each and every es timate for the result of 

Fig. -rs ). The program di d not assume a sharp cutoff filter but, 

instead took into cons id era tion the actual attenuation char.ac teris·

tics of the RC fi lter. 
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