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ABSTRACT 

This thesis examines two problems concerned with surface 

effects in simple molecular systems. The first is the problem asso­

ciated with the interaction of a fluid with a solid boundary, and the 

second originates from the interaction of a liquid with its own vapor. 

For a fluid in contact with a solid wall, two sets of integro­

differential equations, involving the molecular distribution functions 

of the system, are derived. One of these is a particular form of the 

well-known Bogolyubov-Born-Green-Kirkwood-Yvon equations. For 

the second set, the derivation,in contrast with the formulation of the 

B.B.G.K. Y. hierarchy, is independent of the pair-potential assump­

tion. The density of the fluid, expressed as a power series in the 

uniform fluid density, is obtained by solving these equations under the 

requirement that the wall be ideal. 

The liqµid-vapor interface is analyzed with the aid of equations 

that describe the density and pair -correlation function. These equa­

tions are simplified and then solved by employing the superposition 

and the low vapor density approximations. The solutions are sub­

stituted into formulas for the surface energy and surface tension, and 

numerical results are obtained for selected systems. Finally, the 

liquid-vapor system near the critical point is examined by means of 

the lowest order B. B. G. K. Y. equation. 
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I. GENERAL INTRODUCTION 

Whenever macroscopically dissimilar materials are in contact, 

the molecules or atoms of one material near the contact surface in-

teract with their counterparts across the surface. These interactions 

may giv e rise to important macroscopic effects. Examples of phe-

nomena where surface effects play an important role include phase 

transition, nucleation, gas adsorption, behavior of solid state com-

ponents, fluid-gas interactions and various chemical reactions. 

In this thesis we use the equilibrium statistical mechanical 

theory of classical fluids to investigate liquid-solid interactions 

(adsorption) and the surface characteristics of liquid-vapor phase 

transitions. Because of the technological and scientific importance of 

fluid-solid interactions and phase transitions, a study of these phe-

nomena is certainly justified. A rigorous statistical mechanical ap-

proach is employed so that the basic goal of predicting observables 

solely from a knowledge of intermolecular forces can be achieved. 

The thesis is divided into two parts. In Part I we discuss the 

liquid-solid and gas-solid interactions, withparticular emphasis 

placed upon the gas -solid interaction. Previous attempts[ 1 ] ' [ 2 ] 

to describe gas adsorption have usually been based upon the kinetic 

theory of gases - - an approach quite different than the one presented 

here. A discussion of the advantages and disadvantages of the kinetic 

theory method is presented in Chapter II. Past work involving a 

rigorous statistical mechanical approach has utilized the so -called 

B. B. G. K. Y. hierarchy. The B. B. G. K. Y. hierarchy is a set of 
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N equations involving the various distribution functions of statistical 

mechanics for a classical N-particle system. Slight variations of 

these equations were developed independently by Bogolyubov, Born, 

Green, Kirkwood, and Yvon. Th 
th . 

e n equation of the set involves 

not only the nth_ order distribution function, but also the (n+l )th. 

Hence, a complete analysis of any problem would involve solving N 

coupled,integro-differential equations. The B. B. G. K. Y. equations 

are valid only if the pair-potential condition, Eq. (2. I), is satisfied. 

In Chapter II we apply the B. B. G. K. Y. equations to the prob-

lem of a fluid interacting with a plane wall. Although the solution to 

this problem has been obtained by Fisher (Ref. 3, p. I 06 ), we be -

lieved it instructive to formulate the equations and the statement of 

the problem in a manner paralleling the development of a different set 

of equations, presented in Chapter III. These new equations have an 

advantage over those obtained from the B. B. G. K. Y. approach in that 

their validity is in no way limited by the assumption of pair -wise in-

teractions. They are, therefore, completely general. It is also 

demonstrated in Chapter III that the solution of the new equations 

reduces to the solution of the B.B.G.K. Y. equations when the pair-

wise interaction condition of Eq. (2. I) is imposed. From these solu-

tions one may calculate most of the important,measurable quantities 

associated with the adsorption process. 

Part II is concerned with the liquid-vapor interface. Kirkwood 

and Buff[ 
4

], using the pair-potential condition, have derived formulas 

giving the surface tension and surface energy of a simple fluid in 
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terms of the density and the second-order distribution function. 

Numerical results have been obtained[ 4 ] ' [ S] from these equations 

when the microstructure of the interface is ignored. In Chapter IV 

we include, in an approximate manner, the effect of the mic rostruc -

ture and thereby improve upon these calculations. 

The transition region has been analyzed by several 

authors[ b] ' [ ?] ' [ 8 ] ' [ 9 ] ' [ lO]' [ 11 ]using methods grounded in ther-

modynamical reasoning. The fact that the results predicted by such 

methods compare poorly with experiment (at least when the system is 

far from its critical point) supports the widely held opinion that 

thermodynamic theories of the interface cannot accurately explain 

interfacial properties. It has long been recognized that a solution of 

the B. B. G. K. Y. equations, applied to the liquid-vapor problem,would 

provide the necessary information about the transition region for a 

system whose total potential energy can be expressed by the sum of 

pair-potentials. The number of these equations must, of course, be 

drastically reduced so that a solution can be found without reaching 

the limit of present computational techniques. The simplest way to 

achieve this reduction is to use the superposition approximation, first 

introduced by Kirkwood, which approximates the third order distri-

bution function in terms of a product of second order distribution 

functions. Unfortunately, even this resulting system of two equations 

is nearly impossible to solve. 

In Chapter IV we extend the principles used to derive the 

equations presented in Chapter III to the liquid-vapor problem. By 
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so doing, we derive a system of N equations that describes the 

transition region when the vapor density is much smaller than the 

liquid density. These equations, when simplified by the superposition 

approximation, can be solved easily. The resulting solutions are 

substituted into the expressions for the surface energy and surface 

tension, and numerical results are obtained for the liquid-vapor sys -

terns: oxygen, nitrogen, neon, and krypton. 

One of the more interesting aspects of the transition region is 

the manner in which the density of the fluid changes as one proceeds 

from the vapor side to the liquid side. The theory presented in 

Chapter IV predicts the existence of a length scale that characterizes 

the density variation through the interface. This characteristic 

length depends on the liquid density, temperature, and the inter -

molecular potential. In particular, the length scale increases with 

temperature, decreases with liquid density, and decreases with in-

creasing strength of the intermolecular potential. If in fact, the 

potential is too weak, no physical solution to the equations exists. 

This result suggests that a dominant factor in the formation of two 

phases is the existence of a sufficiently strong ,attractive intermolec -

ular potential. 

Finally, in Chapter V we analyze the liquid-vapor system near 

the critical point. Because of the fact that the transition region be-

comes very broad as the critical point is approached, several 

authors[ 8 ] ' [ 9 J' [ lO]' [ ll] have used thermodynamics to describe 

the resulting "macroscopic" interface. Using the B. B. G. K. Y. 



-5-

equations, modified by certain critical point assumptions, we re­

produce the thermodynamically derived results. 
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PART I 

THE FLUID-SO LID INTERFACE 
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II. REVIEW AND MODIFICATION OF PREVIOUS THEORIES 

A. INTRODUCTION 

There exist various theories that attempt to describe the 

interaction between a solid and a collection of fluid molecules':'. Most 

of these utilize the kinetic theory of gases at some stage in their 

development. Thus, the actual dynamics of the molecules - - in 

particular the molecular flux impinging on the solid and the corre -

sponding residence time of the molecules near the surface of the solid 

is studied. To obtain reasonable results, interactions between 

the adsorbed molecules must be considered, and it is this considera-

tion that inevitably leads to the use of simplifying models. For 

example, the Langmuir theory[ 1 ] '[Z] attempts to include the effect 

of these interactions by supposing that only one "layer" of molecules 

can be adsorbed. Hence, the physical presence of adsorbed mole -

cules prevents others from being adsorbed. 

It is obvious that an assumption of this type does not take into 

consideration the complex nature of molecular interactions. Con-

sequently, we shall not discuss at length the usual approach to adsorp-

tion; rather our attention will be directed toward a rigorous, statistical 

:i:c"~ 
mechanical theory of a simple fluid interacting with a plane, solid wall. 

':'usually the density of molecules is greater near the solid than it is 
far away. The molecules are then said to be adsorbed by the solid. 

:i:c:::c 
The potential of the interaction between molecules of a simple fluid 

depends only on the distances between the molecules. 
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B. THE B. B. G.K. Y. APPROACH 

Previous attempts to construct a rigorous statistical 

mechanical theory of a simple fluid interacting with a plane, solid wall 

have been centered around the B. B. G. K. Y. equations for a non­

uniform fluid (Ref. 3 , p. 98 ). Due to inherent complexities, the 

search for a general solution of these equations, valid for any limit­

ing value of the fluid number density as the distance from the solid 

approaches infinity, has not been successful. However, a power 

series solution in the asymptotic fluid density variable has been ob­

tained (Ref. 3, p. I 08 ). A series solution of this type is useful for 

the low density fluid problem, but of little value for the treatment of 

dense fluids - - much as the virial approach to the equation of state is 

useful at low densities but not at high densities. 

In the following sections we develop a power series solution to 

our problem using a set of equations that can be derived from the 

B.B.G.K. Y. equations. This task is undertaken for three main rea­

sons. First, the modified equations are of a form paralleling the 

development of a new set of equations to be presented in Chapter III. 

Thus, one is able to use similar solution techniques for both sets. 

Secondly, we feel that the solution method used for the modified equa­

tions is more straightforward, Thirdly, the solution presented in 

Ref. [ 3] is partially in error. 

C. MODIFICATION OF B.B.G.K. Y. APPROACH 

The following problem is posed. A fluid occupies the half 
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space z > O. At z = 0 there exists a solid wall which exerts a force 

on the fluid molecules given by - d~(z) --e ' where e is a unit 
z z z 

vector in the z direction. U(z} is the external potential applied to 

the fluid due to the existence of the solid wall. We would like to solve 

for the statistical mechanical distribution functions that describe the 

fluid-wall system. 

Before we construct the basic equations governing the distri-

bution functions, it is useful to cite some results from the theory of 

uniform fluids which will be used as boundary conditions for these 

equations. From the B. B. G. K. Y. equations for a uniform fluid, or 

from a more general approach using the modified U-functions, (Ref. 

12, p. 145) one can derive a power series expansion in the fluid density 

parameter for the distribution functions associated with a uniform 

fluid. The former method is valid only if the so-called pair-potential 

assumption is satisfied. Narriely, the total potential energy of a 

system of N particles, ~(r ' • ....., 1 . ,EN), must be written as 

~{r . 
,.....1 

N 

= 21 \ <p( Ir. -r. I ) L ,..1 ""J 
it=j =l 

( 2. 1) 

where <p (I r . -r . j ) = <p.. is the intermolecular potential and r. is the 
~ 1 ,VJ lJ ,__.,l 

position vector of the i th particle. The U -function method is thus 

more general. In either case. if n is the density of the uniform fluid, 

then 
00 

· ~h) = l c~~~ (_:1 • • 

k=l 

k+1 
·!h)n ( 2. 2) 
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where n (j) is the j th - order distribution function (2 ~ j ~ N) for an 

N particle system defined by 

1 \ -13<P(r • 
j e ,.....1 

= (N-j)!QN 

( 2. 3) 

and 

13 is k~ , where k is Boltzmann's constant and T is the tempera­

ture. For a uniform fluid n(h) can only depend on the distances be-

tween the molecules so that we may write Eq. (2. 2) as 

(2. 4) 

h 
and l. Ki (r lm) is an ordering operator allow-

ing l to vary from 2 to h, and for each l, ordering the values of 

m < l from m = 1- l to 1. Thus, for example, 

4 
_p (r ) = r r r r r r 
£m l.m Zl, 3Z, 3.1, 43, 4:Z., 41 

h h 
For h ~ 5, n (1bi(r1m)) has redundant arguments since not 

all the r lm listed are independent. We shall, however, list all the 

r
1

m without loss of generality. Equation (2. 4) is strictly valid only 

in the thermodynamic limit: N-+ oo, V -+ oo such that the ratio 

N/ V = n is finite. Hereafter this limit will be under stood. Equation 

(2. 3) must be interpreted accordingly. 
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For a nonuniform system of particles the B. B. G. K. Y. equa-

tions are 

. . ) 

(2. 5) 

Again, <P •• = <P (Ir. -r. j ) is the intermolecular potential, r. is any 
lJ ~ ""'] ""'1 

of .E1 . • • !.h' and 

h h 

<I?(~l • • • !.h) = ~ ll <P ij + l u (~i) 
it:j i= I 

U(r.) is any external potential that is applied to the system. Due to 
"-'l 

the plane nature of the problem, we may write 

,..(h) h 
. . rh } = n I -P ( r ~ } , z , z , . 

"-' rm Lm 1 2 
. , (2. 6) 

where we have again included a redundancy in the arguments of n 
(h) 

for h ~ 4 

A 0 
ez. Bz:-

1 1 

equations 

with no loss of generality. If we specialize \l to 
r. 

,....,1 

in (2. 5) and for each value of h add together the several 

produced by allowing i to vary from I to h, we obtain, 

with aid of the definition, 

rThe A notation is used to indicate the change in independent variables. 
It will be omitted hereafter. 
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(h) (h) 
n (~P(rn ),z, x.m x.m l 

dn(
1 

)(z) 
kT 1 

dz 
l 

and for h ~ 2, 

( 1 ) dU (z ) " z ( ) ( ) ( ) 
= -n (z ) d 1 - \ r 12 

<P 1 (r )n 
1 

(z )n 
1 

(z )g 
2 

(r , z , z )dr 
l z J 12 l 2 12 l 2 ""'2 

l 12 

for h = 1 ( 2. 7) 

dU(z.) 
l 

dz. 
l 

1 (1) (h+1) 
<P (ri,h+1)n (zh+1)g 8!.h+1 

(2. 8) 

where <P 1 (r) = drpd~) and the arguments of g(h) are understood to be 
h 

( nP (r n ), z, • . . zh). We have also employed the following: 
x.m x.,m 1 

h 

II 
i f= j 

<P •• lJ = 0 and 

If Eq. (2. 7) is used to simplify (2. 8 ), one obtains 

h z 

( (hl=I r i,h+l l(r. )n(1)( ) [ (h+l) 
g ') r . <P i h +1 zh + l g 

l, h+1 , 
i=l 

-g(h)g(2 ) (r z z )] dr 
i, h + l , i, h +i "-"h + l 

(2. 9) 

(l) -(3U(z) 
Ifwedefine p(z) by n (z )=p(z )e 1 , andassumethat the wall 

1 l l 
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-~U(z ) 
at z = 0 is ideal in the sense that e 1 = H(z ), where H(z ) is 

1 1 

the Heaviside step function, (2. 7) simplifies to 

dp(z) 
1 

dz 
1 

z 
12 cp'(r )p(z)g(

2
)(r ,z,z)dr 

r 12 2 12 i 2 ""'Z 
z > 0 

2 

and (2. 9) simplifies to 

h h 

12 

\ . 8 (h) l \ s z i, h H 
~Elzkg =-kTL r.h 

k l . l > 1, H 
= 1= zh+l o 

(h) (2 ) 
g g (r. h+ , z., zh+ )] drh+ 

1, 1 1 l "' 1 

I [ (h+ l) 
<p ( r i h + 1 )p ( zh + 1 ) g -

' . 

(2.10) 

( 2. 11) 

Equations (2. l 0) and (2. 11) are not valid if p(z) becomes infinite 
1 

for z < O. It is known, however, that p(z) possesses discontinuous 
l 1 

derivatives if and only if the intermolecular potential function has 

discontinuous derivatives. 

hard sphere interaction, 

Even in the case when <p •• 
lJ 

p(z )e C(Ref. 13., p. II-47). 
1 

Eqs. (2. l 0) and (2. 11) are correct. 

represents the 

Therefore, 

It is of some interest to examine the question of whether or 

not the solution of Eqs. (2.10) and (2.11), subject to certain boundary 

conditions to be presented in the next section, is identical to the 

solution of the original B. B. G. K. Y. equations subject to the same 

boundary conditions. This question is discussed in Appendix A. 

':'rt should be realized that the operator ~ operates on r .. (jf i) 
zi ~ 

as well as on zi in the argument of g(h)! 
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Finally, we should mention that the expression 

is the differential change in g{h)as the z values of all the h points m 

three-space r . . . rh 
"" l ,,., 

are changed from z. to z. +dz , while 
l l 0 

the distances between the h points are held fixed. Thus, letting 

z. = z? + z ( i = 1, . . . h), we can use the chain rule and the fact 
l l 0 

that 

(r
1 

} = 0 
,m 

1 t= m., i., m= 1, . . . h 

to obtain 

d (h} h 0 = d- g <e P(r1 }, z +z , z
0 

. m . m 1 o 

Hence, 

00 s h 
d (h}( P( ),zo+ 

dz g 1rn r1m 1 zo, 
0 

• zh+z }dz = 
0 0 

0 
0 

lim 
z. -oo 

l 

(i=l'. 
r 

(h) h 
g <1i\i<r1m},z1, · · ·2h_) 

. h} (h} h 0 

- g (
1
P(r1 ),z, 
m m i 

(2. 12} 

(2.13) 
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Consequently, if is known for all values of 

0 
z . = z. + z for z > 0 and fixed r A , and if 

i i o o x., m 

lim 
z. -oo 
i=1i' . . . h 

is known for the same fixed r A , then from Eq. (2. 13) we can 
x., m 

uniquely determine 

D. THE SERlES SOLUTION 

A series solution in powers of the asymptotic fluid density 

n is written as 

(h) h 
g (AP(rA ),z, 

x.m x.m i 

00 

p(z) =I nkpk(z) 

k=l 

The boundary condition on p(z) is simply 

p(z) - n as 

Examining Eq. (2.14), we see that Eq. (2.16) implies 

p (z) - l as 
1 

pk(z)-o as 

(2. 14) 

(2. 15) 

(2.16) 

(2.17) 
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The boundary conditions for g~) are obtained by comparing Eq. (2. 15) 

to Eq. (2. 4) and using the definition of g(h). The result is 

(2.18) 

as 

r ~ fixed ..r.,m 

In particular, we now have in Eq. (2. 13) 

l ;.,.,... (h)( hp ( ) 
...... u g ~ r ~ , z, 

z·-+oo ..r.m ..r.m i 

(l=l, ... h) 
(2.19) 

We shall now substitute Eqs. (2.14) and (2.15) into Eqs. (2.10) 

th and (2. 11 ), and equate powers of n. For the k power of n we 

obtain a linear,first-order differential equation for pk and g~h) in-

. (h ) (h +i ) ( z ) . 
valving p., g. , g. , g. for 1 = 2, . • . k-1. Boundary con9.itions 

1 1 1 1 

(2.17) and (2.18) will be used in the solution of these equations. For 

example, by equating terms of order n in Eq. (2. 10) and of order 

unity in Eq. (2. 11 ),we immediately have 

d 
~ p (z) = 0 
uz 1 1 

1 

g(h) = 0 
0 

Equation (2. 20) and boundary condition (2. 17) require 

p (z ) = I 
1 1 

(2. 20) 

(2.21) 

(2.22) 
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By referring to the derivation of Eq. (2.13),we see that Eq. (2. 21 ), 

subject to boundary condition (2. 18), implies that 

(h) h 
g (~P(r~ ),z, 

o x.m x.m 1 
(2.23) 

By equating terms of order n2 in Eq. (2. 10) and order n in Eq. 

(2. II),we obtain, with the aid of Eq. (2.23), 

h 

I 

dp (z) 
2 1 

dz 
1 

k
1
T s 

z >o 
2 

z 
_g_ 
r 

12 

cp '(r )C2 (r )dr 
12 0 12 ""'2 

(2. 24) 

(2. 25) 

The results of Eq. (2.13) suggest that Eqs. (2. 24) and (2. 25) 

can be treated as first order differential equations (after the sub-

0 
stitution z. = z. + z ) of the form 

1 1 0 

with boundary conditions 

Y(a,z )-Y (a) 
0 0 

as 

where a represents a set of constant parameters and F(a, z ) may 
0 

be considered a known function. Consequently, Eqs. (2. 24) and 

(2. 25 ), subject to the given boundary conditions, have a unique solu-

tion. Proceeding in this manner, we can construct solutions for all 
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and (h) 
pk gk 

In general the integrals appearing in Eqs. (2. 24) and (2. 25) 

are difficult to evaluate as explicit functions of the z.(i = 1, . . . h). 
1 

Thus, the solutions to (2. 24), (2. 25) must usually be obtained 

numerically. We recall, however, that the B. B. G. K. Y. equations 

are valid only if the pair-potential condition, Eq. (2. I ),is satisfied . 

By using Eq. (2. I), one calculates C(h) functions which, surprisingly, 
1 

permit Eqs. (2. 24) and (2. 25) and the equations governing the higher 

order terms to be solved analytically. Some of the 

using condition (2. I) are (Ref. 3. p. I 05) 

(
2 ) -13rp ( r ) 

C (r ) = e 12 

0 12 

( 3 ) -13qi ( r ) - S<p ( r ) -13qi ( r } 
C (r r r } = e 12 e 23 e 13 

0 12 23 13 

and 

-13rp(r ) s -13rp(r ) -13qi(r ) 
C(z)(r } = e 12 dr (e 13 -I)(e 23 -i) 

l 12 NJ 

Relations (2. 26) - (2. 28) enable us to calculate 

p ( z } g (Z ) ( r ,z , z ) and p ( z ) 
2 l lZ l 2 3 1 

c~h) calculated 
1 

(2.26) 

(2. 27) 

(2.28} 

Substituting Eq. (2.26) into Eq. (2.24} we obtain 

dp (z) I s z -13qi(r ) 
2 l ....!L <p I (r )e 12 dr = - kT dz r 12 ,_;z 

l z >o 12 

2 

d s -13qi(r ) 
(e 12 -I )dr = dz "'2 

1 z >o 
2 
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Thus, 

p (z } = S f (r } dr + a 
2 i 12 ~2 

z>o 
2 

where a is a constant and 

-13<p {r } 
f(r } = (e iz. -I} 

lZ. 

However, boundar y conditions (2. I 7} imply that 

a = -S f{r } dr = -13 
12 ""2 1 

where 13 is the first irreducible integral to be introduced in the 
1 

virial treatment of the equation of state. Therefore, 

p (z} = S f(r }dr -13 
Z 1 lZ "'z l 

(2.29} 

z>o 
2 

Upon substituting Eqs. (2. 26} and (2. 27) into Eq. (2. 25} we obtain 

( 
a a) (2) 1 S az- + az- g1 = - kT d~ 

z -13<p ( r ) -13 cp ( r ) 
_E.<p'(r )e 12 e 13 f(r ) 
r u Z3 

l z z > 0 13 

k~ s 
z >o 

3 

= (~ 

z 
dr 23 

"'3 r 
Z3 

3 

-13 <p ( r ) -13<p ( r } 
<p 1(r )e 12 e 23 f(r ) 

Z3 13 

(2. 30) 
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Equation (2. 30) implies that 

(z) -[3qi(r ) s 
g (r , z , z ) = e 12 dr f (r )f(r ) + G(r ) 

1 lZ 1 Z ""3 Z3 13 lZ 
z>o 

3 

where G(r ) is an arbitrary function of r Boundary condition 
lZ lZ 

(2. 18) coupled with Eq. (2. 28) requires G(r ) = 0. Therefore 
lZ 

g<z ) (r z , 
1 lz' 1 

-[3<p(r )S 
z ) = e 12 dr f(r )f(r ) 

z "'3 Z3 13 
z >o 

3 

(2.31) 

It is now possible to solve for p (z ). 
3 1 

By equating terms of 

order n3 in Eq. (2. 10) and using previous results, we have that 

dp (z ) 
3 1 
dz 

1 

= 
z 

lZ 
r 

12 

-[3 <p(r ) 
<p' ( r )e lZ dr 

lZ ~z 

- ~T s z -[3<p(r ) 
_g <p'(r )e lZp(z)dr 
r lZ 2 Z "'Z 

1 
- kT 

= p (z ) z 1 

s 

z >o 
z 

lZ 

S <p '(r )e -[3<p (r lZ)[S f(r )f(r )dr ] dr 
lZ 23 13 ~3 ~z 

z>o z>o 
z 3 

dp (z ) 
z 1 

dz 
1 

+ ~[S f(r )p cz )dr J uz 12 z 2 ""z 
1 z > 0 

z 

a 
f(r )f(r ) =- f(r )dr dr 

Z3 13 0 z 1 z ~2 "".} 

z>oz>o 1 

z 3 

(2.32) 
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However, 

s s a 
f(r )f(r ) -

8
z f(r )dr dr 

23 13 12. ""'2. ""3 

z>o z>o l 

2. 3 

s f(r )f(r )f(r )dr dr 
12. 23 13 "'2. "'3 

z >o 
3 

-S S f(r )f(r ) ~ f(r )dr dr 
12. 23 0 z . 13 ""Z. ""') 

z>o z>o 1 

2. 3 

(2. 33) 

Upon interchanging indices 2 and 3, we see that the last term on 

the right hand side of Eq. (2. 33) is equal to the left hand side of Eq. 

(2. 33). Equation (2. 33) is therefore equivalent to 

s s f(r )f(r ) ~ f(r )dr dr 
23 13 0 z 12. "'2. "'3 

l 
= 

z >o z >o 
2. 3 

~ dzd S S f(r )f (r )f (r )dr dr 
G 12. 23 13 r-'2. "'3 

1 z>o z>o 
2. 3 

Hence ,Eq. (2. 32) simplifies to 

or 

dp (z) 
3 1 

dz 
1 

d (p(z} )z. 
- 2. 1 -crz -2-

1 

+ I d C 
2 dz J 

1 z>0 
2. 

+ dd S f(r }p (z )dr 
z 12. 2. 2. ~2 

1 z > 0 
2. 

S f(r }f(r )f(r )dr dr 
12. 23 13 ,....2. "3 

z >o 
3 

( 2. 34) 
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+ S f (r )p (z )dr 
12 2 2 r-1z 

z>o 
z 

,-. 
I . 

+ 2 J S f(r )f(r )f(r )dr dr 
lZ Z3 13 ~z "-3 

z > oz>o 
2 3 

+ 'I (2.35) 

wher e y is a constant. From boundary condition (2. I 7) we se e that 

I s r 'I = - -
2 

\ f (r )f(r )f{r )dr dr = -~ · , J lZ Z3 13 ~2 ~3 2 

where ~ is the second irreducible integral occurring in the v irial 
2 

theory of the equation of state. Adding together Eqs. (2. 35), (2. 29) 

and (2. 22) ,one obtains 

p{z
1

) = n + n[S f{r )dr - ~ l + n3 
[ 2 

11 
{ S f(r )dr - ~ ) l 12 ""2 1J ~ lZ ~2 1 

z>o z>o 

+S 
z >o 

2 

2 z 

S f(r )f{r )dr dr - ~ S f(r )dr + 
12 2 3 ""2 "'3 1 1 2 "2 

z>o z>o 
3 2 

2 

}S 
z >o 

2 

S f{r )f{r )f{r )dr dr - ~] + O{n4
) • 

lZ Z3 13 ""2 "1 2 

z >o 
3 

(2. 36) 

Likewise, adding together Eq. {2. 23) for h = 2 and Eq. (2. 31 ), we 

have 

-~q>{r > -~q>(r >S 
g{

2
)(r z ,z) = e 12 +ne 12 dr f{r )f(r ) +O(n2

) 
lZ, 1 Z ""3 Z3 13 

. (2. 37) 

z >o 
3 
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It is important to realize that Eqs, (2. 36), (2. 37) and their 

extensions to the higher order distribution functions are valid only if 

the pair-potential condition , Eq. (2. I ),is satisfied. If we want to con­

sider multi-body interactions , or if we need to generate expressions 

like (2. 36) and (2. 37) where the only assumption involved is the intro­

duction of a suitable approximate theory of the uniform fluid state, 

then a completely general set of equations is needed. In the next 

chapter we develop these equations~ 
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III. FORMULATION OF A NEW APPROACH 

A. DERIVATION OF THE EQUATIONS 

As a starting point for deriving a general set of equations 

th 
describing the fluid-solid interaction, we cite the definition of the q 

order distribution function in a suitable ensemble. In the Grand 

Canonical Ensemble [ 14], 

( 3. I) 

.. d~N' 

where X. = 3/2 .tn(2iTmkT/h2
), 13 = kIT and µ is the chemical potential. 

~(r . . . rN) is the total potential energy of an N particle system and 
~l ~ 

can be written as 

cl>( r . . . r _ J = cl>'( r . . 
~1 ,....,N ,..,1 

U(r.) 
~1 

~'(r 1 . . . rN) is the interaction energy of a configuration of N 

molecules, and U(.£i) is the external potential that acts on the system. 

Z is the grand canonical partition function defined by 

00 

z =I Jr s exp{N(X.+[3µ) - [3<1>(~1· . ·E.N)}d!1· .. d_EN 

N=l 

Equation (3. I) allows us to study the effect of an infinitesimal change 

inthe external potential U(r.) on the n(h) functions. 
-'l 

It is easy to prove that 
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( 3. 2) 

and 

h 

on(h) (r. • . r ) =n(h)(r. 
,....1 ~h r-1 

.rh)\ -[36U(r.) _, L ~1 
i=l 

(h 2'. 2) ( 3. 3) 

where oX stands for "infinitesimal change in11 X. By using the 

definition, 

one can transform Eq. (3. 2} to 

on(
1 

)(r) = n(
1

)(r >[ -[36U(r }+Sdrn(
1

)(r )(-f36U(r) )(g(z)(r, r)-1)] (3. 5) 
"'l ,..,,1 ~l "'2. ~2. ,...,2. "'1 ,v2. 

and Eq. (3. 3) to 

where the arguments of g(h) are understood. If we now define 
[3U(r.) 

(1 ) "'l 
P(r.)=n (r.)e , Eq. (3.5)andEq. (3.6)canbewrittenas 
~1 ~1 . 
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S 2 -f3 U(r ) 
6p(r) = p(r) drp(r)(g( )(r,r)-l)o[e ~2 ] 

~ 1 '1 ~z ~2 ,....1 ......,2 
( 3. 7) 

and 

Again we consider a semi-infinite fluid occupying the regl.on 

z > 0 bounded by a plane, solid wall at z == 0 and assume that the inter -

action of the wall with the fluid is due to the existence of a potential 

field associated with the wall. To generate a new set of equations we 

specialize Eqs. (3. 5) and (3. 6) to the situation where 6U(r.) is 
1 

created by a displacement of the wall an infinitesimal distance dz 

toward the negative z direction. Figure (3. I) is a graph of a typical 

U(z) as a function of z. The dotted line represents the same function 

translated to the left by a distance dz. The vertical distance between 

the dotted and solid curves represents 6 U(z ). It follows that 6 U(z) 

can be expressed as 

6U(z) = U(z+dz) - U(z) = ~~(z) dz + O(dzl t (3. 9) 

To calculate 6p(r) and 6g(h)(r .•. !",h)' we use the follow-
"'1 ~1 ~ 

ing principle of. equivalence. The value of any function, with direct 

physical significance, of the h points r. • • rh is unchanged when 
"'l ,.... 

t It is assumed that U(z) does not change as the wall displaces pro­
vided z is always measured from the wall. 



-27 -

u ( z) 

I\ 
I \ 
I \ 
I 
I \ 

I \ 
\ 

I \ 
I \ 
I \ 
I \ Zo 

z 

dz 

Fig . 3 . 1 A T ypical U (z ). 
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the wall is displaced parallel to the z axis provided the coordinate 

system used to evaluate r. . • rh moves with the wall. The above 
"1. ,.,,, 

statement can only be true to order I /V, where V is the volume of 

the system. Since the system is infinite, the principle must be exact, 

unless one is attempting to describe a two-phase system. The reason 

for this restriction will be made clear in Part II. 

and 

Thus, defining ~ = ezdz, we have that 

op(z) = p(ztdz) - p(z) = d~~z) dz+ O(dz)2 

(h) . (h) 
• . rh) = g ( r + s . . . rh + s ) -g ( r . . . r i.. ) 

,......,, ,.vl ,;J ,...,, r-J "'l """11 

h 

= \ 'V g(h)(r ... _Eh)·~ + O(dz)2 

/_; !k ---1 ~ 
k=l 

h =I a:k (Jhh:l. . • ;:h) }dz + O(dz )z 

k =l 

(3. I 0) 

(3.11) 

SubstitutingEqs. (3.9), (3.IO)and(3.Il)intoEqs. (3.7)and(3.8), 

we obtain, in the limit dz - 0, 

dp(z) 
1 

dz 
l 

and 

= p(z )Sdr p(z) (g(z)(r ,z ,z )-I) dzd 
l "'2 2 l z 1 2 z 

-f3 U(z ) 
e z (3. 12) 
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(3.13) 

where we have used the notation of the previous chapter and where it 

must be realized that a:. operates on r ik as well as on zi in the 
l 

indicated arguments of g(h). 

If the wall is ideal, e -(3U(z) = H(z) and the expression 

d~ e -(3U(z) - 6 (z ), where 6 (z) is the Dirac delta function. Equations 

(3.12) and (3.13) then become 

dp(z) 
1 

dz 
1 

and, 

z = 0 
z 

dS p(z) {g(
2 

)(r , z , z) -1} 
Z · Z lZ 1 2 

(3. 14) 

(3. 15) 

We can use the divergence theorem plus the fact that the bracketed 

expressions in the integrals of Eqs. (3.14) and (3.15) approach zero 

for fixed, finite r . 
IV! . . r,h as r,h+ 1 approaches infinity[l 4 ]to further 
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transform Eqs. (3.14) and (3.15) to 

dp(z) s 
dz 

1 = - p ( z
1
) dr ~ 

""z oz 
1 z > 0 2 

2 

and 

(p(z )(g(z )(r , z, z )-1)) 
2 12 1 2 

(3.16) 

It is interesting to note the similarity between Eqs. (3. 16) and (2. I 0) 

and between Eqs. (3. 17) and (2. 11 ). 

Equations (3. 16) and (3.17) together with the boundary con-

ditions, 

p(z)-+ n 
1 

as 

(h) h 
g (

1
P(r

1 
), z, 

m m i 

z -+oo 
1 

as z' 
1 

•. zh -+oo, r 1m fixed, 

(3. 18) 

where g~) is the modified h th_ order distribution function of a 

uniform fluid at density n, represent a general formulation of 

the problem. LikeEqs. (2.IO)and(2.ll), Eqs. (3.16)and(3.17) 

are extremely difficult to solve for any value of n. We may, however, 

again seek a series solution in powers of n. Thus, by substituting 



-31-

Eqs. (2.14) and (2.15) into Eqs. (3.16) and (3.17) and using the 

boundary conditions (2. 1 7) and (2. 18 ), we obtain a new set of equations 

that is independent of the pair-potential assumption. 

If the above equations are correct, the series solution of these 

equations in powers of n, when condition (2. 1) is used to calculate 

the boundary conditions, must be identical to Eqs. (2. 36), (2. 37), etc. 

This fact is demonstrated in Section C of the current chapter. 

B. OBSERVATIONS AND EXTENSIONS 

The equations described above can be used to give some 

indication of the effect of the pair-potential assumption on non-

uniform systems. Practially speaking, this cannot be accomplished 

until multi-body interactions are better under stood, or until a suit-

able approximate theory of the uniform fluid state is extended to in­

clude nonuniformities . With respect to the latter possibility, we 

expectthatanintegralequationfor n(z) involving n(i) would 

usually result. This integral equation, together with either Eq. 

(3.16) or Eq. (2.10),could be solved by using a series solution 

technique. A comparison of the two solutions would indicate the ef­

fects of assumption (2.1 ). Unfortunately, the usefulness of this ap-

proach is somewhat limited since the approximate theories mentioned 

above are of value mainly in the regime of relatively large n, where 

the series solution would converge slowly or might possibly diverge. 

Still another aspect of the problem is the possibility of solv-

ing Eqs. (3. 16) and (3. 1 7) without using the series expansion 
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approach. Obviously, the infinite set of equations must be terminated , 

and the easiest way to do this is to use the so-called superposition 

approximation, 

(3. 20) 

We would then have two coupled, nonlinear, integro-differential 

equations in the v ariables p ( z ) and g ( 
2 

) ( r , z , z ~ 
l lZ l Z 

If, indeed, a 

numerical solution of Eqs. (2. l 0) and (2. 11) is possible using Eq. 

(3. 20), one would also expect a numerical solution of Eqs. (3. 16) and 

(3. 17) to be possible. The latter would not be restricted to cases 

where condition (2. 1) is applicable. 

Finally, we mention some possible contributions to the theory 

of gas adsorption. In reality solid walls are not ideal. The potential 

U(z) is such that the molecules are usually attracted to the wall. 

Equations (3.16) and (3.17) as well as Eqs. (2.10) and (2.11) can 

easily be extended to the case where the wall is non-ideal. Con-

sequently, one could solve, at least numerically, for the density 

n(z) and the distribution functions g(h). By computing 

00 

a = S (n(z )-n)dz (3.21) 

Z=O 

we would obtain an expression for the number of adsorbed molecules 

per unit area. For constant n, Eq. (3. 21) yields the adsorption 

isochore . If we express n in terms of p and T, we obtain from 

Eq. (3. 21) the adsorption isobar (for constant p) and the adsorption 

isotherm (for constant T). Since these quantities are measurable, 
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their calculation is the aim of all adsorption theories. 

The statistical mechanical approach is, in some respects, 

superior to other methods because the former does not invol ve model 

assumptions. In particular, the theory presented in this chapter is 

rigorous if the potential field produced by the wall is known. This 

would include taking into effect the surface irregularities that must be 

pre sent on any real solid - - a task of enormous complexity. We 

must also rule out the case where two phases, liquid and vapor, are 

present. The reason for the one phase restriction is discussed in 

Appendix A and involves the question of uniqueness. Practically 

speaking, this means that for a given temperature, the pressure of 

the system must be less than the equilibrium vapor pressure at that 

temperature. Thus, if one is willing to accept the assumption of a 

mathematically plane wall with perhaps some simple extensions to in­

clude the effect of surface irregularities, is satisfied with his know-

ledge of the potential field produced by the wall, 
:::< 

and is only interest-

ed in one-phase systems, then the approaches outlined in the preced­

ing two chapters are useful. 

The equations developed above have advantages over those 

developed in Chapter II. Some of these advantages, especially 

those concerned with relation (2. I ),have been detailed. When dealing 

with adsorption problems, one is usually concerned with rather 

complex molecules possessing several internal degrees of freedom. 

':c 
At present such knowledge is limited. 
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The interaction potential is therefore quite complicated. The method 

developed in this chapter seems to be more easily extendable to cases 

involv ing such complicated interactions. The basic equations, (2. 2) 

and (2. 3 ), do not contain the two-body potential function ,and it is easy 

to see that this will also be true of the extended equations. Thus, al-

though the integration over molecular coordinates becomes more 

complicated, the complexity of molecular interactions enters only 

through the boundary conditions. The B. B. G.K. Y. equations, how-

ever, explicitly contain the potential function and, in the general 

case,appear more complicated. 

C. SERIES SOLUTION USING THE PAIR-POTENTIAL CONDITION 

We shall now substitute expressions (2.14) and (2.15) into 

Eqs. (3.16) and (3.17). Using boundary conditions (2.17) and (2.19), 

where the C~) in (2.19) are calculated by using the pair-potential 

condition, we shall then solve Eqs. (3. 16) and (3.17) and show that the 

results are identical to Eqs. (2. 36) and (2. 37). 

Equating terms of order n in Eq. (3. 16). we find that 

dp(z) 
1 1 
dz 

1 

= 0 (3.22) 

which, when coupled with boundary condition (2.17),proves that 

p (z ) = 1 
1 1 

(3. 23} 

Equating terms of order nz. and n3 in Eq. (3. 16} and using condition 

(3. 23},one obtains 



dp (z) 
3 1 

dz 
1 

dp (z) 
2 1 

dz 
1 

= p (z ) 
2 1 

z > 0 
2 

dp (z ) 
2 1 

dz 
1 
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3 (2) 
dr ....---

2 
(g (r , z , z ) - l) 

~2 oz 0 12 1 2 
2 

- C' dr J "'2 
z >o 

2 

-=--zo [ (~2 tr , z, z )-1 )p (z )] 
oz 0 12 1 2 2 2 

2 

-s dr ""2 
z>o 

2 

(3,24) 

(3.25) 

Likewise, by equating terms of order unity and order n in Eq. (3. 17) 

for h = 2, and order unity in Eq. (3. l 7) for h = 3 ,one finds that 

( 
3 3 ) (2) -=-- + -n- g (r , z, z ) = 0 

oz uz 0 12 1 2 
1 2 

(3. 26) 

-g( 2 )(r ,z,z) (g( 2 )(r ,z,z) tg(
2

)(r ,z ,z)-1)} 
0 12 1 2 0 13 1 3 0 2 3 2 3 

(3. 27) 

and 

( 
3z

0

1 

+ nz
3 + ~) g3 (r , r , r , z , z , z ) = O 

u u z 0 12 23 13 1 2 3 
2 3 

(3.28) 

The relevant boundary conditions,derived from Eqs. (2. 17) and (2.19), 

are 

p (z ) -+ 0 
2 1 

p(z)-+O 
3 1 

z) -(3cp(r ) 
g( (r z,z)-+e 12 

0 lz' 1 2 

as z -+ oo 
1 

as z , z -+ oo , for fixed r 
1 2 12 

(3,29) 

(3. 30) 
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( 3 ) - f3<p ( r ) - f3 <p ( r ) - f3 ( <p ( r ) 
g ( r , r , r , z z z ) - l2 Z3 13 

o lZ 23 13 l' z' 3 e e e 

as z , z , z - oo for fixed r , r , r 
1 2 3 12 Z3 13 

(3.31) 

and 

(2 ) -[3 <p ( r ) s 
g (r , z , z ) - e 12 dr f(r )f(r ) 

1 12 1 z ""'3 13 23 

as z, z -oo, r fixed ( 3. 32) 
1 2 1 z 

where 
-[3 cp(r ) 

f(r ) = (e 12 -1) 
12 

Recalling the methods used in Chapter II,we immediately have 

-[3 <p(r ) 
g ( 2 )(r z z ) = e 12 

0 lz' l' z (3. 33) 

and 

p ( z ) = S f ( r )dr - f3 
2 l lZ ,..,z l 

(3. 34) 

z >o 
z 

where 

f3 = S f(r )d; 
1 12 z 

and 

(3. 35) 

By using Eqs. (3. 33) and (3. 35), we obtain from Eq. (3. 27), 
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( 
a a ) (z ) =- + ~ (g (r , z, z)) = 

oz oz ! lZ 1 Z 
1 z 

-s [ 0 
l(f(r )+I )(f(r )+I )(f(r )+I)] 
~ lZ 13 Z3 

z > 0 
3 

3 

Since 

a -~~(r ) -~~(r ) -~~(r ) - az ( e 12 e Z3 e · 13 ) 

3 

and 

=-za (f(r )+f(r )+I) = -(.J-- + ~) (f(r )+f(r )+I) 
0 z 13 Z3 0 z 0 z 13 Z3 

3 1 2 

the solution to Eq. (3. 36) can be written as 

z -f3<p(r ) s 
g< \r , z, z) = e 12 dr f(r )f(r ) + G(r ) 

1 lZ 1 Z ,.....3 13 Z3 lZ 

z >o 
3 

where G(r ) is an arbitrary function of r . Boundary conditions 
lZ lZ 

(3. 32) imply that G(r ) = O. Thus, 
lZ 

(z ) 
g (r , z, z ) = 

1 12 1 2 

-~~(r ) s 
e 12 dr f(r )f(r ) 

,..,3 13 Z3 

z > 0 
3 

We can now write Eq. (3. 25) as 

(3. 37) 
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dp (z ) dp (z ) s s ( ) 
3 1 = p (z) _2_1_ + dd dr p (z )f(r ) - dr f(r ) dzd

2 

p
2
(z

2
) 

dz z 1 dz z ,.....2 2 z 12 ..-2 12 
1 1 1 

- C dr ,}- [ e -f3<P(r12) S dr f(r )f(r >] 
J ,,....2 uz ~ 13 23 

z >o 2 z >o 

(3. 38) 

2 3 

However, 

-S dr ~[ e-!3<P(r12)S drf(r )f(r ) ] 
2. oz "'3 13 23 

z>o 2 z>o 
2 3 

= - S dr ~ [ f(r ) S dr f(r )f(r )]- S dr ~[s dr f(r )f(r >] 
~2 oz 12 "'3 13 23 ~2 oz ,...,3 13 23 

z>o 2 z>o z>o 2 z>o 
2. 3 2. 3 

= - S dr ~[f(r >S dr f(r )f(r )1 + S dr f(r ) dd (p (z )) ~2. uz 12. ~3 13 23J "-3 13 z 2. 3 

z>o 2 z>o z>o 3 

2 3 3 

(3,39) 

= ~[ S dr S dr f (r )£ (r )£ (r >] uz ,,....2. "j' 12. 2.3 13 . 
1 z >o z >o 

2 3 

+ s dr f(r ) s dr r~ f(r >) f(r ) 
~2 12 "3 oz 13 23 

z>o z>o 3 

2 3 

+S dr f(r ) dd (P (z >\_ S dr f(r ) S dr f(r ) ~(f(r >) ~3 13 z 2 3; ~2 12 "'3 13 oz 23 

z>o 3 z>o z>o 2 

(3,40) 

3 2 3 

A comparison of Eqs. (3. 39) and (3.40) indicates that Eq. (3. 39) is 
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equivalent to 

1 d ) [' -
2 

-dz dr \ dr f(r )f(r )f(r ) 
~ ""'2...J 'i 12 23 13 

1 z>o z>o 
2 3 

z >o 
3 

dr f(r 
""'3 13 

~ p (z) 
dz 2 3 

3 

Therefore, we may write the solution of Eq. (3. 38), subject to boundary 

condition (3. 29), as 

p (z ) = 
3 1 

where 

(p (z ))2 
2 1 

2 + \ dr f(r )p (z )+-
2
1s J ""2 12 2 2 

z>o z >o 
2 z 

s 
z >o 

3 

f3 = 2
1 SSdr drf(r )f(r )f(r ) 

2 "'2 'i i z 13 2 3 

drdrf(r )f(r )f(r )-(3 
"2 ~ l 2 2.3 13 2 

(3.41) 

Adding together the results of this section, we see that re la-

tions (2. 36) and (2. 37), derived from the modified B. B. G. K. Y. 

method, have been duplicated by the current, more general method 

when condition (2. 1) was imposed on the latter. In Appendix B we 

derive Eq. (2. 36) by using a different approach based on a functional 

expansion technique developed by J. K. Percus (Ref. 4, p. II-54). 

In reference to the adsorption of a gas by an ideal, plane wall, 

we may note that when condition (2. 1) is accepted, 
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00 

a = S (n(z)-n)dz 

z=o 

00 

= -;rn2 . ~ r 3f(r)dr + O(n3
) 

0 

(3. 42) 

Or, anticipating that f(r) = g ( ar ) , 
0 

where a is a length scale factor 
0 

of the size of a molecular radius, we find that Eq. (3. 42) becomes 

00 

a= n
2
a 0

6
[- :, S dxx'g(x)] (3.43) 

0 0 

Finally, we should remark that Eq. (2. 37), evaluated at z = 0, 
l 

yields 

p(z 
f3 

= O) = n - n 2 
_L 2 

which, for the first three terms, is identical to the series _E_ 
kT 

(3. 44) 

expanded in powers of n (the virial equation of state). Actually, the 

equation 

p(z=O) = _E_ 
kT 

can be derived by using a different method (Ref. 3, p. 109). 
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PART II 

THE LIQUID-VAPOR INTERFACE 
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IV: THE GENERAL LlQUID-VAPOR INTERFACE 

A. THE THERMODYNAMIC APPROACH 

Due to the complexities associated with a statistical mechan-

ical study of nonuniform systems, most attempts to describe the 

liquid-vapor interface have, to some deg ree, eni.ployed thermodynam-

ic concepts and reasoning. The pur e thermodynamic theory, initi­

ated by Gibbs and refined by Tolman[ 6 ], was the first attempt to 

describe surface phenomena. Tolni.an is careful, however, to empha-

size the difficulties associated with the presence of thermodynamically 

undefined functions in his theory. Another approach inv olves the use 

of a free energy density for nonuniform fluids. This method has 

been used extensively to describe the interface near the critical point 

and will be discussed in Chapter V. The last basic approach was 

de v eloped by Hill[?] and involves finding an expression for the chemi-

cal potential of the liquid-vapor system. Hill adopts the 

van der Waals description of the uniform fluid state and then general-

izes this description to include nonuniform fluid regions. For a 

van der Waals fluid, 

v = 1n[ 8/1+8] + ( 8/I-8] - a8 (4. I) 

where 

v = (µ-µ 0
(T) - kT.fn(kT/b)] /kT 

8 = NbN = nb a = 2a/bkT 
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Here,µ is the chemical potential of the fluid, a and b are the 

standard van der Waals constants, N is the number of molecules, V 

is the volume occupied by the fluid, and µ
0

(T) is a function of T 

only. The quantity -aOkT is interpreted as the interaction energy of 

a given molecule with the rest of the molecules. The intermolecular 

potential is taken to be 

<P (r) ( r':') 6 = - E - r 
(4. 2) 

= + 00 

and the radial distribution function is taken to be 

··-
g(r) = I r>r 

,,. 

( 4. 3) 
.... 

= 0 r < r 
,,. 

Hill suggests that Eq. (4. I) can be generalized to apply to a non-

uniform fluid by changing Cl' appropriately and letting e - 8(r ), 

where O(r) = bn(r ). The ql!llantity -a8 is replaced by ~(r ), where, 

specializing to a plane interface problem, 

00 'IT 2ir 

~(z)kT = S,:, S S </J(r')n(z+z')r'
2
sin8'dcp'd8'dr' 

r o o 

(4. 4) 

~(z )kT is the potential energy of interaction of a molecule at z with 

all the rest of the molecules under the assumption that Eqs. (4. 2) and 

(4. 3) are valid. The requirement that µ is a constant for phase 

equilibrium implies that v is a constant for a given temperature T. 
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Equation (4. 1 ), modified by 

e - 8(z) = n(z)b 

and 

-a8kT - <li(z )kT 

where <li(z)kT is giv en by Eq. (4. 4), reduces to an integral equation 

for n(z) when v is set equal to a constant. For numerical calcula-

tio ns Hill uses Tonks' equation of state for a gas of hard spher e s 

instead of the v an der Waals equation, but treats the potential energy 

term in the same way as above. To calculate the surface tension, he 

uses an expression derived by Tolman[b] 

00 

O' = S (p-p'(z) )dz (4. 5) 

-00 

p is the pressure of the system,and p'(z) is a generalization of p 

in exactly the same way that µ is generalized. The surface energy, 

a well defined quantity involving only the potential of interaction, is 

also calculated. Table (4. 1) compares Hill's results for argon at 

90°K with those obtained from another method dev eloped by Kirkwood 

and Buff[ 4 ]. The latter method will be discussed in detail in the next 

section. 

It is clear that Hill's approach involves assumptions that are 

difficult to justify . In fact, the assumptions present in Eqs. (4. 2) 

and (4. 3) are simply not valid. We also note from Table (4. 1) that 

there is considerable disagreement between the experimental results 

and those calculated from the theory. Thus, one is certainly 
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encouraged to investigate the problem from a different \'iewpoint. 

rJ(ergs/cm2
) 

E (ergs/ cmz) 
s 

6.0 

19.0 

TABLE 4. I 

Argon, 90°K 

Kirkwood 

and Buff[ 4 ] 

14.9 

27.2 

B. THE KIRKWOOD-BUFF METHOD 

Experiment[ 4 ] 

11. 9 

35 

The discussion in Section A of this chapter demonstrates the 

need for a statistical mechanical theory of the liquid-vapor interface. 

The first attempt in this direction was due to Fowler. He derives (1 5 J 

expressions for the surface tension and surface energy under the as -

sumption that a step interface separates the two phases. A more 

complete description is given by Kirkwood and Buff [ 4 .J which, in 

principle, eliminates the above restriction. Since their method plays 

an important role in obtaining the numerical results found in Section 

D of Chapter IV, a summary and extension of the method are pre-

sented below. 

Consider a plane interface with the z-direction normal to the 

plane of the interface. Under the assumption that the pair-potential 

condition of Eq. (2. I) is valid, one can derive the following expre s -

sion for the force acting in the x-direction across a strip in the (y, z) 
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plane of unit width in the y direction and extending from 

in the z direction: 
P. 
L" 

J. 
+-

P. P. 
- L" to L" 

2: = -k T S n ( 
1 

) ( z }dz + 
x 1 1 

P. 

2 z 

I. S dz [S x lZ cp ' ( r )n ( z) ( z , r )dr ] 
2 1 r 1Z 1 ""lZ ""lZ 

p_ lZ 
- Z" -z-

(4. 6) 

where n( l)(z) is the density or first order distribution function as 
1 

in Chapter II, n(z )(z, r ) is the second order distribution function, 
1 lZ . 

r is the vector between points r and r , r is the distance be-
"'lZ "'1 ,.....Z lZ 

dcp(r ) 
tween r and r · and cp'(r ) = lZ 

"'l "'Z 1 Z dr 
is the derivative of the inter -

lZ 

molecular potential. Obviously, 

1 

where 

p'(z) = kTn(1 )(z) -
. 1 l 

= -s 2: x 

I_ _g S
x2 

2 r 
12 

Z" 

p'(z )dz 
1 1 

(z ' 
cp'(r )n 1(z,r )dr 

12 l ,..,12 "'12 
(4. 7) 

From the mechanical definition of the surface tension, we must have 

00 

a = S (p-p'(z) )dz 
1 1 

-oo 

(4. 8) 

where p is the thermodynamic pressure of the system. If the pair-

potential condition holds, the pressure of the system may be written 

in two equivalent forms (Ref. 3, p. 48 ): 



-47-

p = kTnn - J-Sr <P'(r )n~2 )(r }dr 
.l'.. o 12 12 .l'.. 12 "'12 

(4. 9) 

or 

p = kTn - ~ Sr <P '(r )n (z. ) (r )dr 
v 0 12 12. v 12 "i.2 

(4.10) 

where the subscripts l and v refer to the uniform liquid and uniform 

':.: 
v apor states respectively. It is convenient to define the functions 

n1v and ni:) as 

n 4 (z) = (l -H(z -z ) )n + H(z -z )n
1 r.v o v . o 

(4.II) 

= (1-H(z-z ))n(
2

)(r )+H(z-z )n
1
( 2

)(r) 
0 v 12. 0 12 

where 
l z > 0 

H(z) = 
0 z < 0 

The surface z = z is an arbitrary Gibbs dividing surface. There­
o 

fore, p can be written as 

p = kTn
1
v(z

1
) - ~ Sr <P'(r )n1(z.) (r , z )dr 

0 12 12 .. v 42 1 "12 
(4. 12) 

Substitution of Eqs. (4. 12) and (4. 7) into Eq. (4. 8) yields 

er = -r( 1 )kT + .!_ S x 122 
<p 1(r )r(2 )(r )dr 

s 2 r 12. s "'12 ""'12 
.. (4. 13) 

12. 

):c 
nv 1s the uniform vapor density and n

1 
is the uniform liquid density. 



where 

and 

-48-

r(l) = S00

n (z )dz 
s s 1 1 

-co 
00 ,.... 

r( 2 
) ( r ) = \ n ( 2 

) ( z , r )dz 
S lZ J S l ~z 1 

-00 

n (z ) = n (l ) (z ) - IlA (z ) 
s 1 1 x.v 1 

r(l ) is the Gibbs superficial density relative to the surface 
s 

One can see from Eq. (4. 13) that a is independent of z . 
0 

(4.14) 

(4.15) 

z = z . 
0 

If the pair-potential condition is satisfied, the functions 

n(h)(r .. Ith) must satisfy the B.B.G.K. Y . equations. In particular 
"' l 

dz 
1 

or, because 

= + 1 s zr1z cp'{r )n(z )(r 'z )dr 
kT lZ ""lZ 1 ~12 

lZ 

S z f{r )dr = 0 
lZ lZ "'lZ 

for arbitrary f{r ), 
lZ 

dn (z) 
s 1 

dz 
1 

= {n -nl )o (z -z ) + kl s zr1z <P '{r )n (z )(z , r )dr 
v · 1 o T 

12 
iz s 1 'lz -iz 

(4.16) 

Multiplication of Eq. (4. 17) by (z -z ) and integration from z = -co 
1 0 1 

to z = + oo gives 
1 
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00 

s dn (z) s z s 00 

( z - z ) s 1 dz 
1 _g_ cp 1 ( r ) ( z - z )n ( z ) ( z , r )dz dr 

1 o dz 1 = k T r iz 1 o s i J'.z i "'1z 
-oo 1 12 

-00 

or 
00 . 

\ l d d d f ( z - z )n ( z )) - n ( z )] dz J Lcrz--i i o s i s 1 1 
-00 1 

00 

- 1_ s zlZ s (Z ) = kT r <P '(r ) (z -z )n (z , r )dz dr 
lZ 1 0 S 1 ""'lZ 1 "'l Z 

lZ -oo 

and by assuming lim z n (z )- 0, we have that 
z -+oo 1 s 1 

where 

l 
or z --oo 

1 

r(l) = I s zrlZ cp'(r ){r(z)(r )} dr 
s - kT lZ S "-'lZ 1 "'1z 

lZ 

00 

{ r(Z ) } = s ( z - z )n ( z ) ( z ' r )dz 
S 1 1 0 S 1 ""lZ 1 

-00 

Substituting Eq. (4.18) into Eq. (4.13), we obtain 

(J=S-1- cp'(r >[z {r(z)(r n +~ r(z)(r >]dr 
r iz iz s ""'1z 1 c. s ""'1z ~12 

lZ 

The Gibbs surface energy is, by definition, 

E = 
2
1 S cp(r )r(z )(r )dr 

S 12. S "'1z ""lZ 

(4. 18) 

(4.19) 

(4.20) 

(4 . 21) 

wh e r e i n th e d e finition of r( 
2 

)' i s determined by the condition 
s 
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00 

C (n( 1 )(z )-n )dz + J 1 v 1 
S (n( 

1
)(z

1
)-n

1
)dz

1 
= 0 

-oo 

In other words, 

Thus, a 

z 
0 

and 

z 
0 

is chosen so that r(l) = o. 
s 

E can be determined if n (1 )(z ) and 
s l 

are known. Unfortunately, these functions can be determined only by 

solving the B.B.G.K. Y. equations. Progress can be made, however, 

if one as sum es a particular n ( 
1 

)(z ) and n (
2 

)(z, r ) and then sub -
l 1 ""12 

stitutes these quantities into Eqs. (4. 20) and (4. 21 ). The step inter-

face model is defined aB 

n( 2 )(z,r) 
g( 2 )(z,r) 1 ~12. 

= 
n(l )(z )n( 1 )(z) 

= 
1 ~12 

1 z. 

n 
v 

gl (r 1) 

g (r 
v 12. 

) 

z > 0 
l 

z < 0 
1 

z > 
1 

z < 
1 

glv(r 1) z < 
1 

g.lv(r 12. ) z > 
1 

0 

0 

0 ' 

0 ' 

where z = 0 is the position of the step interface. 
1 

(4. 22) 

z > 0 
2 

z < 0 
2 

(4.23) 

z > 0 
z. 

z < 0 
2 

~:' 
If we choose 

':'If n(
1 

)(z) and n(z. ~z, r ) are related by Eq. (4.16),then a, as 
1 1 ~12 

expressed by (4. 20),is independent of z
0

. For the step model, 

a is likewise independent of z . For a general model, however, a 
0 

will depend on z . This problem is not present in the expression for 
0 

the surface energy, Eq. (4. 21). 
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and r( z )(r ) can be calculated from relations 
s "'12 

(4. 22) and (4. 23 ). Substituting the results into Eq. (4. 20), we obtain 

cr ~ ~ s"' r'<P'(r) {(n1 )'g1(r) + (n)'g)r) - 2n1nvgl)r)}dr , ( 4. 24) 

0 

Since z = 0 is the surface where r( 
1

) = 0, expression (4. 21) for 
0 s 

the surface energy, with the step interface assumption, becomes 

00 

Es = - ~ S r 3 
cp(r ){ (n1 )

2 
g1(r) + (nv)

2
g)r) - 2n1nvg.t)r )}dr 

0 

(4. 25) 

Kirkwood and Buff[ 4 ] assume and,in the low vapor density 

limit,obtain 
00 

(J = ~ (n.l)
2S r 4 cp'(r)g.l(r)dr 

0 

00 ,. 
Es= - ; (n1 )2 J r 3

cp(r)g1(r)dr 

0 

(4. 26) 

(4. 27) 

Equations (4. 26) and (4. 27) can be evaluated if the intermolecular 

potential and the liquid pair-correlation function are known. Table 

(4. l) contains the results calculated from Eqs. (4. 26) and (4. 27) for 

Argon[ 4] at 90°K. Shoemaker, Paul, and Marc de Chazal[ 5 ] have 

recently evaluated Eqs. (4. 26) and (4. 27) using more accurate g
1
(r) 

data for several simple liquid-vapor systems. Their results com-

pare favorably with experiment and will be presented in Section D 

of this chapter. 

An interesting problem concerning the two expressions for the 
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surface tension, Eqs. (4. 20) and (4. 13) ,exists. Instead of substituting 

Eqs. (4. 22) and (4. 23) into Eq. (4. 2 0) and evaluating the surface 

tension, we could just as easily substitute these relations into Eq. 

(4. 13). One then obtains, for the low-vapor-density approximation, 

00 

1T z r -4, 
a = - 8 (n1 ) J r <p'(r)g1(r)dr (4.28) 

0 

or exactly the negative of Eq. (4. 26). Since the surface tension deriv-

ed from Eq. (4. 26) is usually close to the experimental results, one 

must conclude that the surface tension values derived from Eq. (4. 28) 

are nonphysical . Fowler (l S]computes the surface tension for the 

step interface model (low vapor density) by defining the surface ten-

sion to be one half the work of adhesion between two columns of liquid 

phase of unit cross sectional area. His results are identical to those 

derived from Eq. (4. 20) when the same approximations are employed. 

Since the two definitions of the surface tension must be compatible, 

one must consider a as defined by Eq. (4. 20) to be the proper expres -

sion to use with model assumptions like Eqs. (4. 22) and (4. 23). As a 

final remark, we should note that Eq. (4. 21) for the surface energy is 

free from any such ambiguity. 

C. STRUCTURE OF THE INTERFACE 

The structure of the liquid-vapor interface can be determined 

if the distribution functions of classical statistical mechanics are 

known. The most commonly suggested method of solution involves 

solving the B. B. G. K. Y. equations under the superposition hypothesis, 



-53-

Eq. (3. 20). The solution of the resulting system of two equations is 

extremely difficult and must be accomplished numerically. To our 

knowledge, no solution has been obtained for a nonuniform problem 

such as the liquid-vapor interface. 

There exists another set of equations, mentioned in Chapter 

III, that will prove useful in dealing with the liquid-vapor interface. 

We have derived a set of equations describing the infinitesimal change 

produced in the various distribution functions by an arbitrary ,infi-

nitesimal change in the external potential function. Recall that 

(3. 5) 

and h 

og(h) = cdr n(l)(r )[g(htl)_g(h}\ (g( 2 )(r r.)tl)] (-RoU(r )), J "'h+1 ,,.,h+1 L r-h+1 '"'J t"' ~hti 
j=l 

(3. 6) 

where 

Equations (3. 5) and (3. 6) will now be applied to a particular two-

phase problem described below. A liquid-vapor system is contained 

in a very large box with ideal walls. We assume that a plane inter -

face exists between the liquid and vapor phases, located near z , 

'" where z ' is the point of inflection of the density profile. An ideal 

wall is located at z = z , bounding the vapor phase ,and another ideal 
0 
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wall, bounding the liquid phase, is at z -oo. The distance z 
,,, -.-

- z 
0 

is arbitrary and can be made as large as desired. A qualitative 

picture of the density profile is indicated in Fig. (4. 1 ). Notice that 

near the wall located at z = z , the vapor density changes from its 
0 

as ymptotic value. An interesting set of equations results from Eqs. 

(3. 5) and (3. 6) if the change in the external potential corresponds to 

a dis p lacement of the ideal w:all, located at z = z
0

, an infinitesimal 

distance dz in the minus z direction. 
0 

The density must change in response to the displacement of the 

':::: 
wall. We assume that the density profile in the region near z 

n 
translates a distance ....:::!... dz in the positive z direction when the n

1 
o 

wall is mov ed an infinitesimal distance dz in the negative z 
0 

direction,t This assumption implies that the structure of the inter-

face is independent of the volume of the system at a given tempera-

ture ,and that the total number of particles contained in the changing 

volume is a constant. If the microstructure of the interface and, in 

particular, the density profile changed in a more complicated man-

ner, then the surface tension and surface energy would in general 

depend on the volume of the system. This dependence is certainly 

not observed. One might also note that the assumption above is 

not true near z = z
0

, since the analysis in Chapter III 

demonstrated that the density profile near the wall translates a 

distance dz in the negative z direction. Thus, 
0 

twe have assumed that nv «n.£' 
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6U(z} = U(z+dz } - U(z} 
0 

Equation (3. 5 }, with the substitution 

p(z} = n( 1 }(z}e f3U(z} 

becomes 

n dp(z } 
v 1 

dz 
1 

= p(z} \ dr (g(z }(r , r} - I }p(z} dzd 
1 j "'Z ~1 "'2 Z 

z 

-f3U(z} 
e z 

and with the ideal-wall assumption, Eq. (4. 29) simplifies to 

n dp {z } 
v 1 

dz 
1 

= p(z }p(z } S 
1 0 

Z =Z 
2 0 

dS ( g ( 2 
) ( r , r ) - I ) 

z "'l ""'Z 

, (4.29) 

(4. 30) 

where the surface integral is over the surface of the wall and p(z ) 
0 

is the density at the surface of the wall (p(z) = n(
1

)(z} for z > z · ). 
0 

From symmetry, we have that 

g ( z ) (r r ) - I f (2 ) t } , = (z,z,c,, 
~1 ""2 1 z 12 

where 

s z = ( r -r } · ( r -r ) - ( z -z }2 

1 z ~2 '""1 ~z "1. 2 1 
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Equation (4. 30) therefore becomes equal to 

n 
v 

n.f 

dp(z) 
1 

dz 
l 

00 

= - P ( z ) P ( z ) jr 2 1TS ds f ( 
2 

> < z , z , s ) 
1 0 12 12 l 0 12 

0 

(4.31) 

Equation (4. 30) or Eq. (4. 31) illustrate an interesting property of the 

function (g(
2 

)(r , r )-1) for a two-phase system. For the usual one 
"'l ~ 

phase system, g( 
2
'lr, r )-1 - 0 as j r -r j - oo (Ref. I 3 p. II-39). 

""1 '""2 ""1 ,..,...2 ' 

The function g(
2 

)(.*i, ~) is said to approach unity beyond an effective 

~~ 

correlation length. Since (z -z ) can be as large as desired and 
,,, 0 

dpdz ''') is finite, Eq. (4. 30) implies that no effective correlation length 
z . 

exists for this two-phase system. 

The dependence of f( 
2 

)(z , z , s ) on s can be examined by 
1 12 lZ 12 

using a simple physical argument. Suppose that the volume of the 

system is bounded by the right circular cylinder, x 2 + y2 = R 2
, 

0 

z < z < oo, instead of having infinite extent in the x and y directions. 
0 

R is of macroscopic dimensions, and we shall later take the limit as 
0 

R - oo. The interface at z = z will remain plane for any values of 
0 l 

x and y except near the boundary, x 2 + y 2 = R 2 
• If we focus attention 

0 

on the z dependence of the density when x = y = 0, the same analysis 

as before will lead to the equation, 

dp(z) 
1 

dz 
1 

R 

= -p(z )p(z ) r 
l 0 J 

0 

0 

21Ts <ls f(
2 

)(z , z , s ) 
12 12 l 0 12 

(4. 32) 

Suppose now that the wall at z = z 
0 

is constructed with a movable 

circular piston of radius R, where R <. R . 
0 

If the piston is 
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retracted a distance dz , then the density profile must translate to 
0 

n TrR2 
the right a distance, v dz In this case the equation for the 

n£ o TrR2 
0 

density profile when x = y = 0 is 

dp(z ) 
1 

dz 
1 

R 

= -p(z )p(z ) S 2Trs <ls £(
2 

)(z, z , s ) 
1 0 12 12 0 12 

b 

(4.33) 

Since p(z) is the same function in both Eq. (4. 32) and Eq. (4. 33), 
1 

we must have that R 

= 
s 

0 

R 
0 

s 
0 

s <ls f ( 
2 

) ( z , z , s ) 
12 12 1 0 12 

(4. 34) 

; <ls f ( 
2

) ( z , z , ; ) 
12 12 1 0 12 

where R is arbitrary. Equation (4. 34) can be satisfied for arbitrary 

R if and only if f(
2

) does not depend on ; . Equation (4. 32) there-
12 

fore simplifies to 

n dp(z ) 
· V 1 

= 
n.t ~ 

-p(z)p(z )~ f(
2 )(z,z) 

1 0 0 1 0 
(4.35) 

where ~ is the area of the wall at z = z . In particular, one is 
0 0 

interested in the situation when the vapor density is small. From our 

discussion in Chapters II and III, we know that the gas density at the 

surface of an ideal,plane wall is of the form 

p(z ) = n + O(n 2 ) 
0 v v 

so that,neglecting terms of O(n )2 , we can write Eq. (4. 35) as 
v 
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-p(z )n~~ f( z. )(z , z ) 
1 L 0 l 0 

We must now determine the function, 

Simplifying Eq. (3. 6) by using the superposition approximation, 

(4. 36) 

g(
3 

)(r, r, r) = g(z. )(r, r) g( z.)(r, r) g( z.)(r, r) and specializing to plane 
~1 ~z. ""3 ""'l ,..,z. ""'l "-1 --'Z. ~ ' 

symmetry, we have 

n -~U(~) 
= g (r, r) \ d£ p(z }(g(r, r )-1 )(g(r, r )-1) dd (e J )dz 

~1 ""Z. J 3 3 ,..,1 ""') ~z. ~3 z 0 
3 

If the wall is ideal, Eq. (4. 37) becomes 

dz 
0 

= g(r , r )p (z ) S 
'""l "'Z. 0 

Z =Z 
3 0 

dS ( g ( r , r ) - l )( g ( r , r ) -1 ) 
3 ~1 "'3 ,....,,z. ~3 

(4. 37) 

(4.38) 

By examining Eq. (4. 38) when r , r are both near the interface region, 
""'1 "'Z. 

one can obtain an equation describing the change in g(r, r ) when 
"'1 "'Z. 

:::: :::: 
z :::::: z , z :::::: z . Likewise, when r is near the interface region and 

1 z. "'l 

r lies on z = z , one can obtain an equation involving the function 
~z z. o 
f(z.)(z,z ). 

1 0 

If r is a point near the interface region and r is a point on 
~l tvz. 

the surface of the wall at z = z , Eq. (4. 38) becomes 
z. 0 

= p(z )(f(
2
)(z,z )+l)f(

2
)(z,z )S dS(g(r,r)-1) 

0 1 0 l 0 3 ,....,,z. '"') 

z3, Zz.=zo (4. 39) 

tThe superscript notation is understood. 

t 
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To determine of{z){z, z ), we apply Eq. (4. 36) to the case where the 
1 2. 

wall is at z = z - dz . If the wall is at z = z
0

, Eq. {4.36) implies 
0 0 

that 

dp{z ) 
1 crz- = 

1 

-p{z )nA~ f{z )(z, z ) 
1 .!'. 0 1 0 

If th e wall i s moved to z = z - dz Eq. (4. 36) becomes o o' 

dp I { Z ) 
1 

dz 
1 

= -p ' ( z )n ~ f 1 
{ 

2 
) { z , z -dz ) 

1 1 0 1 0 0 
(4. 40) 

where p '{z ) is the new density function and f' {z ){z, z -dz ) the new 
1 1 0 0 

correlation function. From the previous discussion, we have noted 

that 

n 
v 

Evaluating Eq. {4. 40) at z = z + dz , one obtains 
1 i n1 o 

Substitution of Eq. (4. 41) into Eq. (4. 42) yields 

dp(z) 
1 

dz 
1 

= -p { z )n f' { 2 ) ( z + n v dz , z -dz ) 
1 1 1 n1 o o o 

dz , z -dz l 0 0 0 

Comparing Eq. (4. 43) to Eq. (4. 36),one concludes that 

{4.41) 

( 4. 42) 

(4,43) 
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is equal to 

or 

lim 
dz._ o 

0 
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n 
f( 2 )(z,z ) = f'(

2
)(z + v dz , z -dz ) . 

i o i n1 o o o 

dz 
0 

= dz 
0 

f'(
2

}(z
1
,z

0
)-f'(

2
}fz

1 
+ :; dz

0
,z

0
-dz

0
) 

dz 
0 

( 4. 44) 

6f(2)(\, zo) 

dz = 
8f'(2)( nv l 

+ .,,.---- z + - dz , z )1 J • 
oz

2 
1 n1 o 2 j 0 

Equation (4. 39} therefore reduces to 

8f( z )(zl, zo) 

az 
l 

= - n (l+f( 
2
)(z z })£(

2
)(z z >S dS(g(r ,r )-1) 

1 i' 0 i' 0 3 ,...,2 "1 

Z, Z =O 
2 3 

Z = Z -dz z. 0 0 

(4.45) 

where we have again neglected terms of order (n )2 
• Equation {4. 45) 

v 

can be further simplified by considering the z dependence of f(
2

)(z, z). 
2 l 2 

If z ::::: z we assume that the only reason for f(
2 

){z , z ) to depend 
2 o' 1 2 

upon z is the nonuniformity in the gas phase due to the presence of 
2 

the wall. This nonuniformity is conveniently described by the inverse 
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length scale, nh = p(z) dpJ:> • As 1 ~z)-0, the nonuniformity 

v anishes, and if 1(z} is small, the nonuniformity is large. Thus, we 

assume that 

(z} ( z)( 1 dp(z) ) (z) 
f (z , z ) = h z , ~ d = h (z , £ (z ) ) 

1 2 1 p\Z I Z 1 2 
2 2 

and,taking the derivative with respect to z
2

, one obtains 

of( 2 
> 

(z , z ) 
oh ( z} 

(z,s(z )) d ( I ::~'l 8z = a; ~ P1ZT 1 0 1 0 
2 2 2 

From Eq. (3.14}, one obtains the relation 

1 

PTzT 2 

Therefore, 

dp(z} 
2 

dz 
2 

=S dS p ( z } { g ( 
2 

} ( r , z , z ) -1 } 
3 3 Z3 2 3 

Z =Z 
3 0 

= nv S dS
3 

( e -~q>(r")-1 ) + O(<) 

Z =Z 
3 0 

2 
=Z 

0 

d ( 1 
dZ PTzT 

2 2 

dp(zz}) s 
d = n dS z v 3 

z Z =O 

(z -z ) 
2 0 
r 

23 

d -13cp(r ) 
dr e 

23 + O(n~) 
23 

3 

or 

d ( 1 az PCzT 
2 2 

Thus, with neglect of terms of O(n 2
), Eq. (4.45) simplifies to 

v 
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Clf(2 ) 
.s---z (z, z ) = - nn (f(z)(z , z )+l)f( 2 )(z , z )C 
U !0 L 10 1 0 

1 

where 

00 
(' 

dS(g(r ,r )-1) = \ 2irrdr(e-~cp(r)_l) 
3 "'3 ""2 J 

0 

(4. 46) 

In the following discussion C will be assumed positive. Equation 

(4.46) is a first-orderJordinary differential equation. The relevant 

boundary condition is f( 
2

) (z , z ) -+- 0 as z -+ oo. 
1 0 1 

We expect (See Eq.(4. 36))that f(2)(z ,z ) """~!_ and hence in the 
1 0 0 

limit L: -+-oo,f(z)(z,z) should be small compared to unity. Assuming 
0 1 0 

that this is the case, we can simplify Eq. (4.46) to 

which has the solution 

az 
1 

= - n Cf ( 2 )(z z ) 
1 i' 0 

(4.47) 

( 4. 48) 

with D being an arbitrary constant. Substituting Eq. (4. 48) into Eq. 

(4. 36 ),one obtains 

dp(z) 
1 

dz 
1 

-n Cz 
= -p(z )nnL: De 

1 1 
1 L 0 

(4. 49) 

The constant D can be expressed in terms of the point of inflection 

for the density profile. Taking the derivative of Eq. (4. 49) ,we have 



Thus, 

~~ 

d 2 p(z) 
1 

dz2 

1 

= 
dp(z) 

1 

dz 
1 
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-n Cz 
+ p(z )(n~)2 L: DC e l 1 

1 .I'.. 0 

-n Cz 
= p(zi)nlL:oDe l l(nl 

c 
D = - ~ 

0 

where z is the point of inflection. Equation (4. 48) implies that 

i 2 )(z , z ) = C 
1 0 - ~ 

0 

(4. 50) 

and in the limit L:
0
-+ oo we see that f( 

2
) is indeed small compared to 

unity. Equation (4. 49) becomes 

I 

P1ZT 
1 

dp(z) 
1 

dz 
1 

where we have fixed the point of inflection to be z 

(4.51) 

':{ 
= o. The solution 

of Eq. (4. 51), subject to the boundary condition p(z
1
)-+ n

1 
as z

1 
-+oo, 

is 

( 4. 52) 

Figure (4. 2) is a plot of p( +)/n1, wher e Ii = nl ~ 
If both r and r lie in the region of the interface, Eq. (4. 38) 

"'1 ""2 



-2 

p { z) 

n1 

-I 

0.9 

0.8 

0.7 

0.6 

0.5 

-65-
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Fig. 4. 2 T h e Density Profile at th e In t e r fa c e 
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transforms to 

dz 
0 

(4. 53) 

To determine 6g(
2
)(r, r ), we suppose that the two points are 

. "'l "'Z 

physically equivalent points if they both translate with the interface. 

Thus, 

and 

6 g ( 2) (£1, £2) 

dz 
0 

dz 
0 

Therefore, Eq. (4. 53) becomes, to order (n )2
, 

v 

( 
a a ) (2 ) _fz, ( z) . .( 2) - ,....-- + ~ g ( r , z , z ) = g' ? ( r , z , z )n A £ ( z , z )1 ( z , z )~ 

oz oz 12 1 2 lZ 1 2 "- l O 2 O O 
1 2 

(2 ) . [ c2 
,:, >:' j = g (r , z, z )n1 ~ exp{ -nA C(z -z )-nA C(z -z )} • 

lZ 1 2 .t:.1
0 

"- 1 "- 2 
(4. 54) 

From the analysis presented in Chapter III, one can conclude that 

Eq. (4. 54) is equivalent to 

d ( 2) O O 
~z g (r ,z +z,z +z) 
uz lZ l Z 

( z) 0 0 = -g (r , z +z, z +z) n
1 lZ 1 Z [ 

C2 >:< 0 0 1 r exp{Zn1 Cz -n1C(z +z)-n1C(z +z)} j 
0 1 z 

(4.55) 
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where r is fixed and z
0 

and z
0 

are constants. Integrating Eq. (4. 55) 
lZ. 1 z. 

from z = 0 to z-+ oo and supplying the boundary condition, 

(Z. ) 0 0 
lim g ( r , z +z, z +z) = g1 ( r ) 

z- 00 lZ. 1 z. 1 z. 
(4.56) 

where g~ (r ) is t..h.e radial distribution function for the uniform liquid 
A:. lZ. 

state, we have that 

00 

log g ~ (r ) 
A:. lZ. 

= S dznl. ~z. exp{2n1.cz ':' -n1.C(z~+z)-n1.C(z~+z)} 
0 

0 

( 4. 57) 

Hence, in the limit ~o -> iXJ, we have 

0 0 
g(r , z , z ) -+ g

1 
(r ) , 

lZ. 1 z. lZ. 
( 4. 58) 

if z
0 

and z
0 

are both near Equation (4. 58) and Eq. (4. 52) form 
1 z. 

the basic results of this section. In the next section we shall use the 

two expressions to evaluate the surface properties of simple molecular 

systems. 

Several observations can be made at this point. First, it is 

important to realize that the equationq derived above to describe p(z) 
1 

and g(r , z, z ) are approximate ones. The approximations involved 
lZ. 1 2 

are: 

(a) The superposition approximation. 

(b) The low-vapor-density approximation. 
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{c) The approximate nature of the equations describing 

p{z ), g{r , z , z ) when z , z approach the vapor side 
1 lZ 1 2 1 2 

of the interface. 

Approximation {c) obviously results from the fact that the expressions 

:::::: 
for 6 p{z ) and 6 g{r , z , z ) are not correct if z « z or 

1 12 1 2 . 1 
as 

the analysis in Chapter III concerning the change in those functions 

near a plane ideal wall indicates. For this reason, one is not disturbed 

by the fact that g{r , z , z ) does not tend to its known value as the vapor 
lZ 1 Z 

phase is approached from the interface region. In addition to these 

approximations we have made the following assumptions; 

{a) The assumption that the properties of the vapor near the 

ideal wall are not affected by the presence of the interface. 

(b) The assumption that 

ar<z ){zl, zo) 

az 
2 

= O{n )2 
, 

v 

where z is the position of the ideal wall. 
0 

{c) The basic assumption that the density profile shifts 
n 

a distance dz ~ in the positive z direction when the 
o n

1 
wall moves a distance dz in the negative z direction. 

0 

{d) The assumption that 

g { 2 
) ' { r , z , z ) = g { 2

)( r , z - n v dz 
12 i 2 12 1 n1 o 

z - nv dzo) 
2 n1 

where g{
2

){r , z, z) is the pair-correlation function for 
12 1 2 

z ::::: z 
1 

and 

z = z , and 
0 

~::: 

z ::::: z , when the position of the ideal wall i s 
2 

g{2
)

1

{r ,z,z) 
12 1 2 

is the pair-correlation function 



for 
~~ 

z ::::: z • 
1 
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, ,, 

z ::::: z -,- , when the wall is located at z = z -dz . 
z 0 0 

(e) The assumption that C is positive. 

The last assumption has interesting implications. Recall that 

00 

C = 2rr S rdr(e-f3qJ(r)_l) 

0 

I where qJ(r) is the intermolecular potential, and that 6 = is a 
n

1
C 

characteristic length-scale describing the interface. From Fig. (4. 2) 

we see that the density changes from zero to approximately 0. 95 n
1 

in a distance of 56. It is evident that the sign of C (and hence 6) is 

related to the intermolecular potential function. For a "hard sphere" 

system 

= 0 

if 

if 

r <a 
0 

r >a 
0 

so that C = -rra 2 and therefore is negative. To insure that C is 0 • 

positive, the intermolecular potential must be sufficiently attractive 

(relative to the energy kT). If C is negative, the analysis above 

indicates that no solution to the equations with physical meaning exists. 

This fact suggests that the intermolecular force must be sufficiently 

attractive if a molecular system is to exhibit two-phase behavior. We 

also note that 6 decreases with increasing n
1 

and increases with in­

creasing temperature (see Table (4. 4) ). Consequently, 6 behaves 

qualitatively as one would expect. The expression for C even predicts 

the existence of a critical temperature. Since the low-vapor-density 

approximation is not valid in the critical region, one does not, however, 
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expect that the condition C = 0 will determine the actual critical point. 

D. NUMERlCAL RESULTS 

The numerical methods used here are closely associated with 

those developed by Shoemaker, Paul, and Marc de Ghazal [ 5 J They 

calculate the surface tension and surface energy from expressions 

(4. 26) and (4. 27), derived by Kirkwood and Buff[ 
4

], for the liquid-

vapor systems: argon, krypton, xenon, neon, nitrogen, oxygen and 

methane at certain selected temperatures. To employ Eqs. (4. 26) 

and ( 4. 2 7) one must know g
1 

(r) and the intermolecular potential. The 

former can be measured by using X-ray or neutron diffraction data. 

The intermolecular potential is assumed to be of the Lennard-Jones 

(L-J) form 

(4. 59) 

where e and r
0 

are constants that must be determined. In Ref. [SJ, 

the L-J parameters are calculated by using the relationships 

and 

p ~ nl kT - ~ ir(nl 'f f gl (r )<p '(r )r
3
dr 

0 

00 

u = 21rn1 NS g1 (r )cp (r )r2 dr 

0 

(4. 60) 

(4. 61) 

where cp(r) is given by Eq. (4. 59), p is the pressure, u is the con-

figurational part of the internal energy per mole, and N is Avogadro's 
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number, together with the experimental values of p and u at a 

particular temperature. The L-J parameters should be independent of 

temperature. A slight temperature dependence is, however, observed. 

Moreover, when E and r are determined by gas viscosity data or 
0 

second virial coefficient data, the results differ considerably from 

those derived in Ref. [ 5] . The va.lues of surface ten~ion and surface 

energy, when the potential is calo1lated from Eqs. (4. 60) and (4. 61 ), 

are much closer to the experimental results than those obtained by 

using any other set of experimentally determined L-J parameters. 

Table (4. 2) contains L-J parameters for various molecular systems. 

The g.R. (r) data are taken from Ref. [ 16] for krypton, Ref. [ 17] for 

neon and Ref. [ 18] for oxygen and nitrogen. 

Once values of e, r
0

, and n.R. are available, one can calculate 

6 from the equation 

Soo r (dr) -f3cp(r/ro) 
- - (e -1) 
r r 

0 0 
0 

where,for numerical purposes,we take 

00 

( r) -~l'(r/ro) r .... 

d( r:) j r d - (e -1):::: 
r 

( -1 ) 
r r r 

0 0 0 
0 0 

6 
( ) -~l'(r/r ) 

00 

+S f ~"( ,:) r 
d( r:) 

r d 2:. (e 0 -1) -r r r 
0.8 0 0 0 

(4.62) 

Table (4. 3) gives values of 6 for some of the L-J parameters in 

Table (4. 2) along with the critical temperatures of the systems in 



TABLE (4. 2) - - L-J PARAMETERS 

From g..e_(r ), p, u Data From Second F 'rom Gas Viscosity 
Virial Data Data 

n
1

(A- 3
) T(°K.) r (A) 

0 
E/k(°K) r (A) 

0 
E/k(°K) r (A} 

0 
E/k(°K) 

Krypton 0.0176 117. 3.599 168.51 3. 827(a) 164 o(a) 3. 721(c) 165. 02(c) 

3.597(b) 158.0(b} 

Neon 0.0325 33. 1 2. 761 34.44 2. 749(b) 35. 60(b) 2. 789(b) 35 7(b) 

2 858(b) 27 5 (b) 

Nitrogen 0.0186 64. 3.341 146.43 3 745(a) 95. 2(a) 3. 722(c) 85 23(c) 
I . 
-.J 

3. 749(b) 79. 8 (b) 
N 
I 

Nitrogen 0.0174 77. 3.339 146.78 

Oxygen 0,0239 64. 3.026 197.72 3 46 (b) 118. (b) 3.433(b) 113. (b) 

3 541 (b) 88. (b) 

Oxygen 0.0228 77. 3.032 199.30 3. 46 (b) 118. (b) 

(a)A.E. Sherwood and J.M. Brausnitz, J. Chem. Phys. 41, 429 (1964). 

(b) 
Ref.12, pp. 1110 - 1111. 

(c) 
L.S. Tee, S. Gotoh, and W.E. Stewart, Ind. Eng. Chem. Fundamentals 5, 356 (1966). 



-73-

TABLE (4. 3) - - 6 

T{°K) r {A.) E /k(°K} 
0 T o (K)(a} o(A) 

0 c 

Krypton 117. 3.599 168.51 o. 78 209.4 

3.597 158. o. 91 

Neon 33.l 2. 761 34.44 1.66 44.8 

2.858 27.5 3.53 

Nitrogen 64. 3.749 79.8 0.96 126.0 

3.341 146.43 0.29 

Nitrogen 77. 3. 749 79.8 I. 71 126.0 

3.339 146.78 0.48 

Oxygen 64. 3.541 88.0 0.66 154.3 

3.026 197. 72 0.13 

Oxygen 77. 3.541 88.0 1.11 154.3 

3.032 199.30 0.21 

{a) 
Ref.19, p. 136 

question. 

Recalling that the "width" of the interface is approximately 56, 

we notic~ that the values of 6 associated with L-J parameters deter-

mined from g
1 

(r} data appear much too small. Indeed, we will see 

that the corrections to the step-model calculations of the surface tension 

and surface energy are extremely small when those values of 6 are 

used. We also note that 6 involves an integral of the pair-correlation 

function for the vapor. This fact suggests that the best values of 6 
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would b e obtained by using L-J parameters determined from second 

v irial coefficients or gas viscosity measurements. In any case, since 

o is so sensitive to variations in e and r , we shall treat o as a 
0 

variable. It is also of interest to examine the temperature dependence 

of o. Table (4. 4) contains values of o for the molecular system, 

oxygen, at several temperatures ranging from 77°K to 65°K under the 

assumption that n1 is a constant. 

Substituting Eqs. (4. 52) for the density and (4. 58) for the pair-

correlation function into Eqs. (4. 21) for the surface energy and (4. 20) 

for the surface tension>:<, one can arrive at new expressions for these 

quantities reflecting the fact that the transition region has a finite width. 

The surface energy is, according to Eq. (4. 21 ), given by 

E = 
2
1 C <P(r )r(2 )(r )dr 

s J 12 s ""12 "'12 

where 

00 

r ( 2 
) ( r ) = S ( n ( 

2
) ( z , r ) - n ~ z)( z , r ) }dz 

s "'12 1 "'12 .t'. v l "'12 1 

-a 

r( 
2

) (r ), according to Eq. (4. 58 ),is equal to 
s ""'12 

(4.21) 

~:~ 

Although the relationship , g(r , z, z } = gl. (r ), can only be justified 
.f d h . ,1

2 1 2 . 12 h 1. .d .d f h i z an z are near t e intertace region or on t e iqu1 s1 e o t e 
intefface, tfie extension of the relationship to all z, z results in 
negligible error for the numerical calculations that

1
£ohow. This is 

because the important quantity in these calculations is 
p{z }p(z )g(r , z, z ), where p(z) is extremely small as z approaches 

1 2 12 1 2 1 l 
the vapor side of the interface. 
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TABLE (4. 4) 

Temperature Dependence of 6 for Oxygen (nl 
1

) = 0.0228A -
3

) 

0 

(L-J Parameters: r = 3.433A, e /k = 113. 0 °K) 
0 

T(°K) o(A) 

77 0.63 

75 o. 60 

73 0.56 

71 0.52 

69 0.49 

67 0.46 

65 0.43 

x 00 
n 0 

\ p(z )p(z +z )gA (r )dz + \ [p(z )p(z +z )-(nA)z]gA (r ).dz 
j 1 1 lZ .c. lZ 1 j 1 1 lZ .c. .c. lZ 1 
-00 x 

where x is determined by the equation 

x 00 

s p(z )dz =S (n
1 

- p(z) )dz 

-00 x 

or, if 

( ) -z/ 6 p z = n1 exp(-e ) 

x 
-z Io 00 n 0 I 

=j -z/6 j exp( -e )dz (1-exp(-e )}dz 

-oo x 

(4.63) 
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It is e asily demonstrated that 

X='{O (y=0.5772 ... ) 

where y is Euler's Constant. Equation (4. 63) then becomes . 

[

:f -z/6 -z /6 
r( 2 ) (r ) = (nn)2gn (r \ exp{-e 1 (l+e 12 )}dz 

S "1.2 x. x. lZ j 1 

0 

X1 -z Io -z Io ~ 
+ j (exp{-e 1 (l+e 12 )}-I)dz

1
+ yo , 

0 

which is equivalent to 

-z /6 
I'( z)(r ) = -(nn )2 gn (r )6 log(l +e lZ ) 

s ~12 x. x. 12 

so that the surface energy becomes 

or 

E 
s 

0 0 

oo r/6 

E 
s 

= -rr(n
1 

)zoz S rcp(r)g1 (r)dr S -u 
log( I +e )du 

Letting 

o -r/6 

E 
so 

= - ~ (n/. )2 Soo r 3 cp(r )g
1 

(r )dr 

0 

( 4. 64) 

(4.65) 

(4. 66) 

be the surface energy based on the step-interface, low-vapor-density 

model, we have 

oo { . r/6 J 
D.E = E -E = -;r(n

1
)26 2 S rcp(r )gA (r )d \ log( I +e -u)du - ~-

s s s 0 x. J 2 ( 6 )2 

o -r/6 (4.67) 
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AE represents a correction to the surface energy determined from 
s 

the step interface model used by previous author) 4 ] ' [ 5 ] . As 

expected, the correction depends on the width of the interface through 

the parameter 6. For numerical purposes, we write Eq. (4.67) as 

(4. 68) 

Both integrals approach a constant value rapidly as r I 6 becomes 

large. The u integrations were evaluated for each value of r at which 

g
1 

(r) data were available. Both the g1 (r) data and the point function of 

r resulting from the integration over u were fitted with a ninth order 

polynomial curve (centered on the sub-range of integration) and then the 

integration over r was performed using Simpson's rule, The L-J 

parameters for the intermolecular potential in Eq. (4. 68) were deter-

mined from the g
1 

(r), p, and u data. g
1 

(r) was set equal to unity 

for values of r greater than the maximum r for which g
1 

(r) data 

were available. Since negative g1 (r) values are unphysical, g1 (r) was 

set equal to zero for all r less than the largest r where g
1 

(r) was 

zero or negative. 

In Table (4. 5) we present the values of E as calculated m 
so 

Ref. [ 5] as well as from our own calculations. Table (4. 5) also con-

tains the .AE results for several values of 6 (for each molecular 
s 

system) and the experimental values of E [ 5 ]. The second smallest 
s 
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v alue of 6 included in Table (4. 5) is, with the exception of neon and 

krypton, the largest one a v ailable from Table (4. 3). The values of 6 

calculated from the gl. (r), p and u data lead to rather small correct­

ions in the surface energy - - less than 1. 0 erg/ cm2 in all cases. The 

values of 6 obtained from gas experiments lead to more significant 

corrections, and even larger values of 6 yield E values very close 
s 

to the experimental ones. These larger values of 6 imply an inter-

face thickness of about the size that one would expect intuitively (one 

or two molecular diameters). 

To calculate the surface tension from Eq. (4. 20),we need 

Choosing 

0 

::.:: 
z = 0 and using Eq. (4. 58) we have 

0 

{r( z )(r ) } = S z p(z )p(z +z )g
1 

(r )dz 
s ..vl z l l l l 1 z 1 z l 

-oo 

00 

+S z [p(z )p(z +z ) - (nl.)2
] gl. (r )dz • 

l . l 1 l z 12 1 
0 

Substituting Eq. (4. 52) into Eq. (4. 69),we find that 

-z /6 -z I 6 dz 
exp{-e 1 (1 +e lZ )} _1_ 

6 

+ S
oo :-

1 
-z /6 -z /6 

0 
(exp{-e 1 (l+e 12 )}-I) dz1 J 

6 . 
0 

(4.69) 

(4. 70) 

>!< 
The dependence of a on z for the following model was found to be 

negligible. o 



TABLE (4. 5) ~E (erg/cm2
) 

s 

Experimental 

T(°K} E ( 5 } 0 E ( 5 ) 0 

E o(A) ~E E r (A) E /k(°K} so so s s s 0 

Krypton 117 33.44 33.49 0.96 3. 74 37.23(37.18} 40. 1 3.599 168.51 

1. 3 6.57 40. 06(40. 01} 

Neon 33.l 8.05 8.02 1. 71 3.99 1 2 . 01 ( 1 2 . 04 } 14.3 2. 761 34.44 

2.2 6.00 14. 02(14. 05} 

Nitrogen 64. 22.93 22.93 0.83 1. 99 24. 92(24. 92} 27.5 3.341 146.43 

0.96 2.66 25. 59(25. 59) 

1. 3 4.71 2 7 . 64 ( 2 7 . 64} 

1. 43 5.63 28. 56(28. 56} 
I 

Nitrogen 77. 19.79 19.76 1. 43 4.78 24. 54(24. 57} 26.4 3,339 146. 78 -.J 
-.!) 

1. 71 6.55 
I 

2 6. 31 ( 2 6. 34} 

1. 9 7.89 27. 65(27. 68} 

Oxygen 64. 33.91 33.97 0.39 0.81 34. 78(34. 72} ? 3.026 197. 72 

0.66 2.27 36.24(36.18) 

Oxygen 77. 30.85 30.96 0.63 1. 85 32. 81(32~ 70) 37. 1 3.032 199.30 

1. 11 5.50 36.46(36.35) 

1. 3 7.41 38. 37(38. 26) 

1. 5 9.61 40, 57(40, 46} 
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z 
If we let u = T and 

-u 
v = e 

-z Jo 
and define A = l +e 12 

Eq. (4. 70) becomes 

0 ,. 
e -Av dv + j 

l 

log v 
v 

-Av J 
( e -1 )d] . 

D efining 1 0 

" 
F(A) =.) lo~ v e -Av dv + j log v (e -Av _1 )dv 

v 
00 1 

we have that 

F '(A) -- d~~) soo 1 -Avd = og ve v 

0 

where y is Euler 1 s constant. Thus, 

F(A) = -y log A - } (logA)2 +a 

where a is a constant, Therefore, 

{r( )(r )} = -(nA)2 gn(r )o 2 ylog(l+e 12 )+-
2 

(log(l+e 12 
))2+a. 

2 [ -r cos 8/o 1 r cos e/o J 
s """l z -'- -'- l z 

1 

The constant a may be set equal to zero since 

s~ 
lZ 

<p 1(r )z (-(nA)2 gn(r )o 2 a)dr = O 
lZ lZ -'- -'- lZ "'lZ 

for any value of a. The expression for then becomes 



-81-

(4.71) 

From Eqs. (4. 64) and (4. 65) it follows that r(Z )(r ), evaluated for the 
s ,.,.,12. 

dividing surface z = 0 , 
0 

is given by 

r cos 8/6 
r~ 2 \~1z) = - (n1 )

2 
g.l (\z.)6(log(l+e 

12 
) + y) (4. 72) 

Substituting Eqs. (4. 71) and (4. 72) into Eq. (4. 20),we obtain 

or 

00 'Tr 

cr = -(n
1

)2 62 2'Tr S r 2cp'(r)g
1

(r)dr S sin8cos8[ylcg(l+e-rcos 8 / 6 ) 

cr = 

0 0 

+ ~ (log(l+e -r cos 8/6) )zJ d 8 

00 2ir 'Tr 

-(n1)2 ~ s r 3 cp'(r)g1(r)dr s sin2cp dcp s sin3 8(log(l+e -r cos 
816

)+y}d8 

0 0 0 

oo r/6 

-(n
1

)2 64 ir S cp'(r}g1 (r)dr S u[2ylog(l+e-u) 

o -r/6 

+(log(l+e-u))2 - ~ log(l+e-u)Jdu 

00 

z ~ \ 3 -(n1 ) yo .) J r cp'(r)g1 (r)dr 

0 

oo r/6 

S r 2 <P'(r)g1 (r)dr S 
o -r/6 

-u 
(log( I +e ) )du 

Recalling that 
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00 

S r 4
<p 1 (r )dr 

0 

where a
0 

is the surface tension based on the step model, low-vapor -

density approx imation, one can derive the following expression for 

(J - (J : 
0 

00 r/o 

Di.a =Cl -a 
0 
= -(n1 )

2o4
1T S <p 1 (r )g_l(r }drS u[2)' log(l +e -u)- Z<log( I +e -u) ) 

0 0 

+(log(l +e -u} }2 J du 

oo r/6 

-(n1 r Oz ~ s rl.<p I (r )g1 (r }dr s log(l +e -U)du 

0 0 

00 . 0 

-(n1 )2o4
1T S .p 1(r}g1(r)dr S u[2)'(log(l+e-u)+u) 

o -r/o 

00 0 

-(n~)2o 2 ; S r 2<p 1(r)g1(r)dr S (log(l+e-u)+u)du (4. 73) 

o -r/o 

Each integral above approaches a constant value for large r / o and is 

therefore easy to evaluate numerically. The methods and assumptions 

employed to evaluate Eq. (4. 73) are the same as those used in the 6E 
s 

calculations. Table (4. 6} contains the values of 6a for the same 

values of 6 used in Table (4. 5}. The experimental values of a are 

also listed. 

It is interesting to note that the correction 6a to a is 
0 
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positive for small o and then becomes negative as o increases. 

This behavior is indicated in Figs. (4.8} - (4.12} where a is plotted 

against o for the molecular systems: oxygen (77°K}, nitrogen (64°K}, 

nitrogen (77°K}, krypton (117 °K}, and neon (33. l °K}. Figures (4. 3} -

(4. 7} illustrate the a -dependence of E for the same systems. The 
s 

degree to which one can predict the correct surface tension and surface 

energy depends on the value of 6. Since 6 is rather sensitive to 

changes in the L-J parameters and presumably e v en to variations of 

the potential-model, more work is needed to determine the best model 

and model-parameters for this application. An investigation into the 

-·-
potential model dependence of a and E would also be worthwhile···. 

0 so 

If model and model-parameter improvements do not significantly change 

the value of o from the range indicated in Table (4. 3}, then the results 

of the above interfacial theory imply small to moderate improv ement in 

the surface energy calculations and a slight increase in the surface 

tension away from the experimental values (except for neon at 33.1°K}. 

If, on the other hand, larger values of o result from potential model 

improv ements, or if o is treated as a variable, it is possible to cal-

culate surface energy values extremely close to the experimental 

results while also improving upon the surface tension predictions. In 

connection with this possibility one should note that the difference be -

tween the surface tension calculated from the step model and the experi-

mental results is much smaller than the corresponding difference for 

the surface energy. Consequently, for larger values of 6 the abov e 

'" 'See Ref. [20] for a discussion of potential models. 



TABLE (4. 6) A<J(dyne/ cm) 

T(oK) <J( 5) 0 
Experimental 

0 
<J 6 (A) bi.a <J cr r (A) E /k( °K) 

0 0 0 

Krypton 117. 17,09 17. 7 0.96 0,27 17.97(17,36) i6. l 3.599 168,51 

1. 3 -0.17 17. 64(16, 92) 

Neon 33. l 4.49 4,43 l. 71 -0.66 3, 77(3. 86) 2, 7 2, 761 34,44 

2,2 -1. 06 3,37(3,43) 

Nitrogen 64, 12,73 12, 73 0.83 0.58 13.31(13.31) 12. 0 3.341 146.43 

0,96 o. 51 13. 24(13. 24) 

1.3 o. 07 12. 80(12, 80) 

1. 43 -0.19 12. 54(12. 54) 
I 

00 
Nitrogen 77. 11.47 11, 33 1. 43 -0.20 11.13(11.27) 8,9 3,339 146. 78 *"' I 

1. 71 -0.69 10.62(10.76) 

-1.04 10.29(10.33) 

Oxygen 64. 18,64 18. 71 0.39 0.58 19.29(19.22) ? 3.026 197. 72 

0.66 0.95 19. 66(19. 59) 

Oxygen 77, 17.62 17.69 0.63 0.92 l 8 . 61 ( l 8 . 54) 16.5 3.032 199.30 

1, 11 0.38 18.00(17.93) 

l. 3 -0.20 17.49(17.42) 

l. 5 -0.81 16. 88(16. 81) 
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theory represents a significant improvement over the step-interface 

theory. 

E. SUMMARY AND CONCLUSIONS 

The main result of this chapter is the development of a non­

triv ial model for the liquid-vapor transition region. By studying the 

functional relationship between the statistical mechanical distribution 

functions and an externally applied potential, we have been able to de­

rive, with the aid of the superposition approximation, approximate equa­

tions that describe the variations in these functions near the transition 

region. In particular: the resulting density function contains a para­

meter that characterizes the width of the interface region. This para­

meter exhibits a physically reasonable dependence on temperature, 

liquid density, and strength of the intermolecular potential. 

In order to test the solutions, we numerically evaluated the 

statistical mechanical expressions for the surface energy and surface 

tension. The results offer an improvement over the step-interface 

calculations; howe ver, the degree of improv ement depends on the afore -

mentioned length parameter. The parameter 6 in turn depends on the 

assumed potential model and the constants associated with the model. 

For the Lennard -Jones model we found that 6 varied considerably, 

depending upon which set of experimentally determined parameters 

were used. The smaller values of 6 in this range produced very small 

corrections to the step-model results. The larger values of 6 pro­

duced considerable improvement in the surface energy, while the sur -

face tension calculations did not agree with experiment as well as the 
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corresponding step-interface values. Better results were obtained with 

even larger (though physically reasonable) values of o. In this case 

the surface energy predictions were close to the experimental values, 

and the surface tension calculations improved slightly. 

Suggestions for further research include an examination of the 

potential-model problem, particularly as it applies to the determination 

of o. It is also suggested that the original step-interface calculations 

be examined in the light of different potential-model assumptions. 

Efforts to eliminate some of the approximations used to derive the 

transition region model appear difficult and not especially fruitful. 

Rather, we feel that solutions to the non-uniform B. B. G. K. Y. equa­

tions would yield more insight into the complexities of the liquid-vapor 

interface than any extension of the current theory. Finally, the effect 

of the pair-potential assumption on the expressions for the surface 

energy and surface tension should be examined. 
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V. THE LIQUID-VAPOR SYSTEM NEAR THE CRITICAL POINT 

A. INTRODUCTION 

In this chapter we consider a macroscopic system composed of 

simple molecules enclosed in a volume V, where: 

(a) both liquid and vapor phases are present, 

(b) the state of the system is near the critical state. 

We assume that a plane interface exists between the two phases so that 

the particle density, n = n(z), is only a function of z. Figure (5. 1) 

qualitatively illustrates the z dependence of the density. The uniform 

liquid density is denoted by n
1

, and the uniform vapor density is 

denoted by n . As the critical point is approached, (nn -n )/n will 
v ~ v c 

become small, and the width of the interface region will become large. 

It is observed that sufficiently close to the critical point the density 

profile is symmetric in the following sense. Let n = n tn', 
c 

p = p +p', and T = T -T', where n , p , T are the critical density, c c c c c 

pressure, and temperature respectively. Then 

and 

n = n + n' (T') 1 c co 

n =n -n' (T') 
v c co 

( 5. I) 

Figure (5. 2) is a standard p-n diagram for the above system at two 
T' 

temperatures, T = T -T' and T = T -T', where Tl «I and 
c 1 c 2 c 

T'< T'. The locus of points, X and Y, form the coexistence curve. 
2 1 

We shall frequently refer to its projection on to the n-T plane. This 
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Fig. 5 . 1 The Density Profile Near the Critical Point 
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T = Tc - T~ 
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n n 

Fig. 5 . 2 Qualitative p -n Diag rams 
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projection is qualitatively depicted in Fig. (5. 3). At any temperature, 

T = T - T', below T , one can determine n' (T') from the relation-
c c co 

ship 

n~0 = n1 (T') - nc 

or 

n' = n - n (T') co c v 

There have been several attempts to treat the macroscopic in-

homogeneities that characterize the liquid-vapor interface near the 

critical point as a nonuniform , thermodynamic system. In 1958, 

Cahn and Hilliard [ 8 ], refining a theory originally due to van der Waals 

presented their "square gradient" approach to nonuniform systems. 

In 1965, Widom [ 9 ] modified the Cahn-Hilliard Theory to circumvent 

some theoretical difficulties associated with the equation of state of the 

system, and in 1969, Fisk and Widom[lO] extended the "square 

gradient" concept to include more realistic limiting forms of the equa-

tion of state. Cahn and Hilliard asswned that the classical 

van der Waals equation of state is a valid description of a molecular 

system near its critical point. This assumption, however, leads to 

results which do not agree with experiment. 

Since the "square gradient" approach has been used extensively 

to analyze critical point behavior of nonuniform systems, it is of 

interest to present a summary of the theory, below. If the origin of the 

system, z = 0, is defined as the location of the Gibbs dividing sur-

face of vanishing superficial density, i.e. 
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0 00 

S (n(z) - n)dz + S (n(z) - n1 )dz = 0 (5, 2) 

-00 0 

then the surface tension a becomes equal to the superficial density of 

the Helmholtz free energy. Thus, if ljJ (z) can be identified as the 

local free energy per unit volume in the nonuniform fluid, and if c/>(n) 

is the thermodynamic free energy density for a uniform fluid of density 

n, then 

0 00 

CJ = S (lji(z)-c/>(n) )dz + S (lji(z)-c/>(n1 ) )dz (5. 3) 

-oo 0 

Whe.reas c/>(n) is a well-defined thermodynamic function, one must 

make the assumption that ljJ (z) exists. The chemical potential µ(n) 

and the isothermal compressibility x(n) are defined by 

µ(n) dc/>(n) 
=~ 

1 = d
2 c/> (n) 

dn2 

In Fig. (5. 4) we plot c/>(n) as a function of n for a typical two-phase 

system. A basic assumption present in the Cahn-Hilliard Theory is 

that c/> (n), a well-defined function for n < nv and n > n1 , can be 

analytically continued into the region, nv < n < n1 . The analytic con-

tinuation of + c/> (n), c/> (n), is represented by the dotted curve in Fig. 

(5. 4}. One further assumes that, for a two-phase system near its 

critical point, ljJ (z) is the sum of two terms. The first term is 

+ c/> (n(z} ), and the second term is proportional to the square of the 

(
dn(z ) ) 

2 

density gradient dz 1 
• Thus, 

1 
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+ 1 (dn(z)) z lj;(z) = <P (n(z)) + 2 'I crz ' (5.4) 

where 'I is an unknown, positive constant. Expression (5. 4) can be 

interpreted as a truncated expansion of the free energy density. One 

would expect Eq. (5. 4) to become more accurate as the inhomogenities 

in the system become smaller. We now consider cr, given by Eq. 

(5. 3), when ·.\J(z) is given by Eq. (5.4), to be a functional of n(z) 

and assume that the physical n(z) minimizes cr subject to the con-

straint of Eq. (5. 2). The resulting Euler-Lagrange equation is 

+ = µ (n(z)) - µ(n1 ) 

+ = µ (n(z) ) - µ(n ) 
v 

and the boundary conditions are 

n(z) - n1 

n(z) -n 
v 

as 

as z - -00 

( 5. 5) 

We shall obtain the solution of Eq. (5. 5) when µ + (n) is determined 

from the classical van der Waals theory in Section B of this Chapter. 

Wid~m and Fisk[ IO] modify the Cahn-Hilliard Theory with the 

following generalizations: 

(a). They assume that 'I may exhibit a weak temperature 

dependence near the critical point. 

(b ). They let 
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+ a-1 [Tc -'T(n}J 
µ (n) -µ(n1 ) = (n-nc)(T-T(n))(T;T) h Tc-T , 

where 'T(n)=T -aln-n 1
11 13 istheequationgivingthe 

c c 

projection of the coexistence curve, a and 13 are constants, 

and h is an arbitrary function. 

(c). They require only that 

and 

Other modifications of the "square gradient" approach are discussed in 

Ref. [ 21]. 

The theory presented above is subject to criticism for two 

reasons. First, it is necessary to deal with cf> +(n) for the values of 

n in the range nv < n < n1 , where the function can never be deter-

mined by experiment. Secondly, the validity of Eq. ( 5. 4) is 

t . bl [14],[22],[23],[24],[25] I S t" B h 11 1 ques iona e . n ec ion we s a ana yze 

the problem by using a statistical mechanical approach which circum-

vents some of these difficulties. 

B. A STATISTICAL MECHANICAL APPROACH 

The first statistical treatment of the liquid-vapor interface is 

due to Fowler [ 151. He assumed that the interface can be treated as a 

step discontinuity and, by making mathematical assumptions concerning 
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the temperature dependence of the pair-correlation function, deduced 

the temperature dependence of the surface tension near the critical 

point. From the discussion in Section A of this chapter, we note that 

the assumption of a step interface is certainly incorrect. Consequently, 

there must be limits to the validity of Fowler's theory. 

Before we analyze the system with the aid of the first B.B.G.K. Y. 

equation, it is necessary to discuss the limiting form of the equation of 

state. Van der Waals assumed that the equation of state p(n, T) can 

be expanded in a Taylor series about the critical parameters, 

n . He further assumed that ~ P is finite and 
c 

ap 
an = 0 

at the critical point, and concluded that 

p' = 
AkT 
__ c_ n'3 - Bkn'T' - Cn kT' + O(n'2 T') + O(n'4 ) 

c 

T and 
c 

(5. 6) 

where A, B, and C are positive constants. By using the condition 

that the chemical potentials of both phases are equal, one can demon-

strate that the coexistence curve is symmetric as discussed above. 

Furthermore, Eq. (5. 6) implies that the equation describing the pro-

jection of the coexistence curve is 

(
n' )

2 
_ B T' 

n-AT 
c c 

(5. 7) 

Equation (5. 7) does not agree with experiment. This fact implies that 

the classical van der Waals assumptions are not correct. We shall, 
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however, use the van der Waals equation of state since the algebraic 

expressions encountered will be simplified by its use. The possibility 

of using more physical equations of state will be discussed later. 

In the spirit of the van der Waals theory, we assume that the 

pair correlation function for a uniform fluid near the critical point can 

be expanded as a Taylor series in the variables T' and n 1
• Thus, 

( n') ( n') 2 

g(r,n, T) = gc(r} + 2a'(r) nc + (2b'(r) + c'(r)) nc 

+ 2(d'(r) + e'(r))(:J + f'(r)(JJ + 2g'(r)({)(:~) 

(5. 8) 

where g (r) is the pair-correlation function for a system in its critical 
c 

state. This assumption can be extended to a nonuniform fluid by writ-

ting 

+ g(r,z ,z) = g (r,n(z ),n(z ), T) 
1 2. 1 2. 

+ and assuming that g can be expanded as a Taylor series in n'(z ), 
1 

n' (z ), and T'. Therefore, 
2. 

g +(r, n(z ), n(z), T) = g (r) + a(r}[ y(z )+ y{z )] 
1 2. c 1 2. 

+ b ( r )[ y ( z )2 + y ( z )2 
] + c { r )[ y ( z )y ( z ) ] 

1 2 1 2. 

+ d(r)[ y(z f + y(z f J + e(r) [ y(z }2 y(z} + y(z )2 y(z )] 
1 2. 1 2. 2 1 

+ f(r) ( J} g(r) ( JJ [ y(z
1
) + y(z,J] + O(y4

) + o[v'(i:)], (5. 9) 
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where y(z) = n' (z )/ n . Note that the symmetry condition, 
1 1 c 

g(r, z, z) = g(r, z, z ), has been satisfied. The requirement 
1 z z 1 

g ( r, z , z ) -+ g ( r, n, T )l i 

l z J::~ = (~ (~J 
(5.10) 

as 

implies that a(r) = a'(r), 2b(r) + c(r) = 2b'(r) + c'(r), etc., provided 

we require Eq. (5.10) to hold independently of the value of A/B. At 

this point the a'(r), etc. are unknown. By using the relationship be-

tween the pressure and the pair-correlation function, 

nkT-p 

nz 

00 

= ~ S r3 <p 1(r)g(r,n, T)dr 

0 

one can obtain useful relations involving these unknown functions. 

(5.11) 

Expansion of the left hand side of Eq. (5. 11) about the critical para-

meters and substitution of Eq. (5.8) into Eq. (5. 11) give 



..:107-

00 

~ S r 3 qi'(r)(2b'(r) + c'(r))dr ::: A. (I 
0 

~ S- j r 3 qi'(r)f'(r)dr =A. (C-1) 

0 

3p ) 
n k~ 

c c 

00 

( 4p -1-A) 41T s r 3 
<P ' ( r )( d' ( r ) + e' ( r) ) dr = A. n k~ 5 

c c 
0 

00 

41T s r 3 cp ' ( r )g ' ( r ) d r =A. (l+B-2C) 3 
0 

(5. 12) 

where A. = 
kT c 
n 

c 
Note that the relations (5. 12) also hold if a'(r) is 

replaced by a(r), 2b'(r) + c'(r) is replaced by 2b(r) + c(r), etc. 

To determine the differential equation for the density, one can 

employ the first B. B. G. K. Y. equation 



where 

1 
Il(Z) 

1 
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r = Ir -r I . A more convenient form is 
""'1 ""z 

dn(z ) 
l 

dz 
1 

z tr 

= ~; S
00

rp'(r)[ s 1 

g(r, zl, zz)n(z2)(z2-zl)dzz] dr 

o z -r 
1 

We can express Eq. (5. 13) as 

1 
i1(z1 

l 

dn(z) 
1 

dz 
l 

2'IT 
t kT 

z tr 

= ;; f rp'(r)[s 

1 

g(r,z1,z2)n(z}(z2-z
1
)dz

2
J dr 

o z -r 
1 

z tr 

S
00

rp 1 (r)[ \ 

1 

g(r,z ,z )n(z )(z -z )dz ] dr J 12 221 2 
a z -r 

l 

(5. 13) 

(5. 14) 

Form (5. 14) is useful if the system is close to the critical point be-

cause one can choose a large compared to the non-zero range of the 

intermolecular potential but small compared to the length scale 

characterizing the nonuniformities in n(z ) and g(r, z, z ). For a 
l 1 2 

large 

rp'(r)-~(:)7 
where c is a constant and a is a length characteristic of the molecu-

lar diameter. Therefore, the second term on the right hand side of Eq. 

(5. 14) can be expressed as 

00 s [ 

z tr J 7 ,... 1 

~ ( a ) \ g(r, z, z )n(z )(z -z )dz dr 
ar J 12 221 2 

z -r 

(5.15) 

l 
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We shall assume, and shall later verify, that Eq. (5. 15) is negligible 

compared to other terms in Eq. (5. 14). With this assumption, Eq. 

(5. 14) becomes 

1 
Il(ZT 

1 

dn(z) 
1 

dz 
1 

(5. 16) 

Since the range of z is z - a < z < z + a, 
2 1 2 1 

and a is small compared 

to the length scale characterizing the nonuniformity of n(z ) and 
1 

g(r, z, z). we are justified in expanding these quantities in a Taylor 
1 2 

series in z about z = z. Consequently, 
2 2 1 

dn(z) 
n(z2) = n(zl} + dz 1 

1 

l d2n(z } 
(z -z} + - 1 

2 1 2 di 

1 cf n(z
1

) 

( z - z }2 + '7' ( z - z t + 
z i o dz3 z i 

1 1 

and 

g ( r , z • z ) = g ( r , z , z )+ 
1 2 1 1 

8g(r, z ,z) l 82g(r,z ,z) 
. 1 1 1 1 

----a-z-- (zz-z1) + 2 -----
z az 2 

2 

l a3 g(r, z , z ) 
+ 1 1 (z -z f + . 

b az3 2 1 

2 

(z -z )2 

2 1 

Substituting Eqs. (5. 18) and (5.17) into Eq. (5.16), and letting 

n(z)=n +n'(z) and g(r,z,z)=g (r)+g'(r,z,z), we obtain 
c 1 2 c 1 2 

(5. 17) 

(5.18) 
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8
3
g'(r, z, z )J 

g(r,z,z)+n(z) 1 1 dr 
1 1 1 oz3 

z 

\ rs cp, ( r) i 
f>a [d~' (z ) 

J dz 2 

og'(r,z,z) 
1 1 az + 

dn' (z) 
1 

dz 
1 

1 1 dr 
8

2 
g' ( r, z, z )] 

oz z 
z 0 l 

2 

(5. 19) 

Expansion of n(z ) about n and T about T , and substitution of 
1 c c 

Eq. (5. 9) into Eq. (5. 19) give 

4'TT 
3kT 

c 

dn 
1 

( z ) Sa · [ ( n 1 ( z ) ) 
dz 1 cp'(r)r

3 
gc(r)+a(r)+(2b(r)+c(r)+3a(r)) ~ 

1 c 
0 

(
n'(z ))

2 

( ) ] 
+(3d (r )+3e(r )+4b(r )+2c(r)) nc 1 + T:' (f(r )+g(r)) dr 

4'TT ( T') dn'(z) f + 3kT Tc dzl 1 r3 cp'(r)(a(r)+gc(.r) )dr 
c 

0 

cPn'(z} a 
4'TT s c:p '(r )rs (a(r )+g (r) )dr + 

l 

30kT 
dz3 c 

c 
l 0 

(5. 20) 
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where we have neglected terms of o[( ~J d~'] . ~::Jr:' ) d~: 'J , 

O [ d
dzssn'] and the nonlinear part of the third term on the right hand 

1 

side of Eq. (5. 19). If, in addition, we replace a in Eq. (5. 20) by 

infinity and assume that the resulting error can be neglected, we obtain, 

with the aid of the integral relations of Eq. (5 . 12), 

3A (n'(z1) )2 - B (-T') -1 _dn-'(_z1..._) 
n T n dz 

c c c 1 

If we define a2 by 
0 

00 

30kT 
c 

S <p'(r)r
5 

(gc(r) + a(r)) = 

0 

Eq. (5. 2 .1) becomes 

Therefore, 

az 
0 

dy(z) 

dz2 

a2 
0 

n 
c 

where y(z) = n' (z) and {3 is a constant. · However, as 
n 

c 
dy2 (z) _ !BT" - o and y -±V~ . This implies that {3 = o. 

dz2 c 

z ' = z/ a and defining f(z') by 
0 

~~r J , y(z) =\/ii~ I f(z ) 

(5.21) 

(5. 22) 

(5.23) 

z-±oo, 

Letting 
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one obtains 

d2
f(z') (T') z = B Tc f(z')[f(z') -1] (5.24) 
dz'2 

with the boundary conditions 

f(z')-1 as z' -+ +oo 

f(z'}--1 as z' -+ -oo 

The solution of Eq. (5. 25} subject to these boundary conditions is 

or 

(5.25) 

1 

Since n'(z)/nc is proportional to (T'/Tc}2 , and each derivative with 
1 

respect to z introduces a multiplicative factor of ( T' IT )2 , we see 
c 

that the terms in Eq. (5.21} are of order (T'/T fl.. It is easy to verify 
c 

that all the terms that have been neglected are at least of order (T' / T )s/z c . 

For example, Eq. (5. 15} becomes 

2lT c 
kT J 

2lT 
= kT 

z +r 
00 

c(a)
7
[\ 

1 

(g (r}+g'(r,z,z})(n +n'(z))(z-z}dz] dr ar j C lZ C Z Zl Z 

z -r 
1 

oo 7[ z1+r 

S ~(a) S (n g'(r,z ,z }+n'(z }g (r)+n'(z }g'(r,z ,z })(z -z }dz] dr 
ar c lZ zc z iz 21 z 

a z -r 
1 

which can be bounded by 
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00 7[ z/r l cs (a ) s j(n g'(r,z ,z )+n'(z )g (r)+n'(z )g'(r,z ,z))liz-zjdz dr 
a r C lZ zC Z lZ 21 Z 

et z -r 
1 

(5.26) 
,:, 

If r > et and a is large compared to a molecular diameter , the term 

within the absolute value signs in Eq. (5. 26) can be bounded by a term 
1 

proportional to ( T 1 
/ T )2 . Thus, if the constant of proportionality is 

c 

D, Eq. (5. 26) is less than or equal to 

~ n(T:')t s'°l:)7r'dr = 
Ct 

cD (T:r [~)' (5.27) 

However, since the length scale characterizing the nonuniformity in 

n(z) is, from Eq. (5. 25 ), 

1 

we can choose et= K(T'/Tc)-t, where K « a0 (~ ) 2 Therefore, Eq. 

(5. 27) demonstrates that Eq. (5. 15) is of order (T'/T )512
• Likewise, 

c 

the nonlinear terms in Eq. (5. 19) and the error terms involved in the 

replacement of a by oo in Eq. (5.20) are of order (T'/T )5/z. 
c 

We note that the approach due to Cahn and Hilliard essentially 

reproduces the result of Eq. (5. 25). If the quantity µ+(n(z))-µ(n
1

) is 

computed by using the van der Waals theory, we obtain 

'~ . Note that the requirements g(r, z, z ) -+- 1 and g (r) -+- 1 as r -+- vo 
1 z c 

imply that the a(r ), etc., of Eq. (5. 9) must be o(l) as r -+- oo. 
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+ [AT Bk] µ (n(z)) - µ(n
1

) = n'(z) __ c_ n'(z)2 - T' n . 
Bn 2 c 

c 

Substitution of this result into Eq, (5. 5) yields an equation for the 

density of the same form as Eq. (5.24). 

C. TEMPERATURE DEPENDENCE OF THE SURF ACE TENSION 

As a two-phase system is allowed to approach its critical point, 

the surface tension of the system vanishes. A primary goal of critical 

. point theory is to predict the temperature dependence of the surface 

tension near the critical point. Toward this end, we recall the defini-

tion of the surface energy per unit area introduced in Chapter IV, 

00 

E = }S[\ (n(z )n(z )g(r,z ,z )-n1
2 g1 (r)')<p(r)dz] d~ 

s .) 1 z 12 . 1 

z 
0 

z 0 . 

+ 
2

1 S[\ (n(z )n(z )g(r,z ,z )-n 2 g (r)}q>(r)dz] d,t, J 1 2 12 vv 1 
(5.28) 

-00 

where z = z is the Gibbs dividing surface of zero superficial density. 
1 0 

The surface tension is related to the surface energy per unit area by 

dO' 
a - T dT =Es (5.29) 

Integrating Eq. (5. 29) and using the condition, O(T ) = 0, we find that 
c 

E (T)dT 
s 

(5.30) 

Substituting Eqs. (5. 25) and (5. 9) into Eq. (5. 28), with z = 0, we 
0 

have 
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00 1T 00 

E = 1T \ <P(r)r2clrS sin8d8s{13nz(g (r)+a(r))(tanhaz+tanha-z -2) 
s J c c 1 z 

0 0 0 

+nz 13z [ (g (r )+2a{r )tc(r )){tanh az tanh az ) 
c c 1 z 

+(a(r )+b(r ))(tanh az -1 )'I. t(tanh az -1 )z)] +0(13 3 )}dz 
1 z 1 

00 1T 0 

t 7T \ <P{r )rz dr s sin 8 d8 s {13 nz {g {r )ta{r ) ){tanh O'Z +tanh az t 2) J c c 1 z 
0 0 -oo 

tn 2p2 [(g {r )+2a{r )+c{r) )(tanh az tanh az -1) 
c c 1 z 

+ (a(r )+b(r) ){ {tanh az -1 )2t(tanh az -1 )2 
)] +o{f33 )}dz , (5. 31) 

1 z 1 

where 

-(BT')t 13 - AT 
c 

and 

z = z + r cos e 
2 1 

Integration over z of the terms proportional to 13 gives no contribu-
1 

tion. The terms proportional to [32 are of two types: 

and 

00 
('\ 

(gc(r) + 2a(r) + c(r)) J 
-oo 

(tanh az tanh az -1 )dz 
1 2 1 

(5.32) 

00 00 

(a(r) + b(r))[S (tanhaz. -1 )'dz
1 

+ S (tanhaz
2 

-1 )2 dzJ . (5. 33) 

-00 -oo 
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Equation (5. 33) is seen to be equal to 

which integrates to 

00 

4(a(r) + b(r)) S (tanh2az
1 

-1 )dz
1 

0 

4 
- - (a(r) + b(r)) 

Q' 

Equation (5. 34), when integrated over B in Eq. (5. 31 ),gives 

8 
- - (a(r) + b(r)) 

Q' 

( 5. 34) 

Equation (5. 32) is more complicated to analyze. From the identity, 

( tanh az tanh az -I ) 
1 z = l +tanh O'Z tanh ar COS(} 

1 

where ,, = tanh ar cos e' we have that 

= 

Q'

I s oo a sechzaz s oo 
-,,----=---1- dz - (tanh az tanh az - I )dz 
I +,, tanh az 1 - i z i 

-oo 1 -oo 

tanh2az -I 
1 

I +tanh az TJ 
1 

= I log( I +11)/ (I -TJ.) 
Q',, 

Therefore, we must consider 

1T 

Q'~ s 
0 

ar sine 
tanh(ar cos e) 

lo (I +tanh ar cos e ) dB 
g I -tanh ar cos 8 

Equation (5. 35) can be transformed to 

(5. 35) 
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tanhar 

a~ s dv lo ( l+v) g 1-v (5.36) 

0 

With regard to the integration over r in Eq. (5. 31 ), we assume that, 

because of the presence of the potential function qi(r ), the integrand is 

effectively zero for r greater than a few molecular diameters. There-

fore, the upper limit of integration can be replaced by 6, where 6 

can be several hundred molecular diameters. Since r is then bounded 

from above, and a is very small near the critical point, we can treat 

ar in Eq. (5. 36) as a small quantity. Equation (5. 36) can then be re -

placed by 

4 - - + O(a) 
a 

(5. 37) 

Equation (5. 31) therefore becomes equal to 

00 

E = -
4

7!" nz.[32 S r1,o(r)(g (r)+4a(r)+c(r)+2b(r})dr + 0([32
) 

s a c c 
(5. 38) 

0 

From Eq. (5. 30), we find that 

00 

S r\>(r )(g
0 

(r )+4a(r )+c(r )+2b(r) )dr+9( T:') 1 
0 

(5.39) 

The integral in Eq. (5. 39) can be determined by using the relationship 

for the configurational internal energy per molecule, 

00 

u = 27rn S rz.<P (r )g(r, n, T}dr 

0 

(5.40) 
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We can find the limiting form of u from the equation of state, Eq. (5. 6). 

Substitution of Eq. (5. 8) into Eq. (5. 40) yields the following integral 

relationships: 

n~ ( :: - CkT c) = 2-rr f <p(r )r~gc (r) + Za(r ))dr (5.41) 

0 

and 

00 

= 2Tr S r 2 cp(r)(2a(r)+2b(r)-tc (r ))dr 

0 
(5.42) 

From these equations, we see that 

00 

2Trn S r 2cp(r)(g (r)+4a(r)+2b(r)+c(r))dr= 
c c 

BkT c 
2 

0 

Therefore, Eq. (5. 39) becomes 

( 8 )~ B3

/

2 

( T') 3/

2 

[( T') 2J CJ' = n kT a - -;; - + 0 -c c o 9 fi T T 
c c 

We note that the theory of Cahn and Hilliard, when the 

(5.43) 

van der Waals limiting form of the equation of state is employed, yields 

the same three-halves power law for the temperature dependence of the 

surface tension. The prediction that 

is reasonably close to the approximate experimental result (Ref. 19 , 

p. 164) 
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D. SUMMARY AND CONCLUSIONS 

In this chapter we have demonstrated that the first B. B. G. K. Y. 

equation can be reduced to a simple equation for the density profile 

if the pair-correlation function is assumed to be an analytic function 

of the temperature and density. This assumption is in the spirit of the 

van der Waals approach to the limiting form of the equation of state. 

We have also remarked that the thermodynamic theory of Cahn and 

Hilliard predicts essentially the same results as those derived from the 

statistical mechanical theory. The latter theory has the following 

advantages over the former: 

(a}. In the thermodynamic theory, it is necessary to intro -

duce a phenomenological constant. In the statistical mechanical 

theory, every constant is expressible in terms of well-defined 

quantities. 

(b ). In the thermodynamic theory, one must deal with the 

analytic extension of the free energy density into the two-phase 

region. This problem does not arise in the statistical mechan­

ical theory. 

( c }. It is not necessary to introduce the concept of a free energy 

density expansion in the derivation of the statistical mechanical 

theory. 

The theory based on the first B. B. G. K. Y. equation can be 

modified, in certain cases, to include more realistic forms of the equa­

tion of state. Unfortunately, the exact behavior of the critical isotherm, 

the coexistence curve, and the equation of state is difficult to 
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d t 
. [26],[27].[28],[29] If h . f . d e ermine . t e equation o state is assume to 

be[ 27], [ 28] 

p' =An'ln'lv-BT'n' -CT' 

where v is some positive number greater than or equal to 2, one could 

alter the density expansions in Section B to include terms of order 

(n')v+i. However, if n is not an integer, the algebra involved be-

comes complicated. At best, extensions of this type appear awkward. 
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APPENDIX A 

COMMENTS ON UNIQUENESS 

Specialized to the plane ideal wall problem, the B. B. G. K. Y. 

equations become 

and 

a 
"l1z. 

1 

dp(z} 
1 

dz 
l 

= - p~zl S 
z > 0 

2. 

z 
12. 

r 
12. 

cp'(r }p(z}g(z}(r ,z,z}dr 
12. 2. 12. l 2. ""2. 

(h} ___ 1 [S zi, h+1 '( > ( > [ (h+i > 
g - kT <P r · h+ P zh+ g r. h 1, 1 1 > 1, +1 

zh+1 o 

(A-I} 

(A-2} 

where the arguments of g(h) are upderstood. The modified equations 

are 

dp(z ) 
l 

and 

h 

dz 
1 

I 
k=l 

p(z) ('z 
__j_ j ......l.l... cp' ( r ) p ( z ) g ( z ) ( r , z , z ) d r 

kT r iz z 12 1 z ""z 
Z:t>O 12. 

(A-3) 

(A-4) 
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Suppose that Pa and g~h) are solutions to Eqs. (A-1) and 

(A-2), and that pb and g~h) are solutions to Eqs. (A-3) and (A-4), 

subject to the boundary conditions 

and 

p (z ) 
a I 

-n as z - + oo 
l 

(h) h 
g ( np ( r n ) , z , . . . zh) 

a xm xm i 

(A-5) 

(A-6) 

fixed 

where n and g~h) are given functions. Then, is it true that Pa (z
1

) = 

pb (z 
1
) and g~h) = g~h)? One can easily see that Pa = pb and 

(h) (h) "f d (h) . d d (h) . t ga = gb , 1 pb an gb are unique, an Pa an ga ex1s . 

Since Eq. (A-4) is just a sum over i of Eq. (A-3), any solution, Pa 

and g~h), to Eqs. (A-1) and (A-2) is also a solution of Eqs. (A-3) and 

(A-4). If the solution to Eqs. (A-3) and (A-4) is unique, then we must 

have that: 

a. Pa and are unique. 

b d g (h) - g(h) 
· Pa = Pb an a - b 

Physically, we expect that the solution of Eqs. (A-3) and (A-4), 

subject to the boundary conditions (A-5) and (A-6),will be unique, 

provided two phases are not present. There is experimental 
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evidence, for two-phase systems, that supports the conclusion that 

no unique solution of Eqs. (A-3) and (A-4), subject to the boundary 

conditions (A-5) and (A-6), exists. We must, therefore, exclude two­

phase systems from the considerations of Chapter II. The method 

presented in Chapter III is likewise not applicable to two-phase 

systems. The reason for this fact is discussed in Part 11. 
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APPENDIX B 

THE FUNCTIONAL EXPANSION TECHNIQUE 

Percus (Ref. 13, p. II-54) has derived a functional expansion 

for the change in density resulting from the application of an arbitrary 

external potential. We have that 

S 
-(3u(~) 

n(rju)e-(3u(~) = n(r) + ~(r, r )(e 1 -l)dr 
"' ..., z. ,.., ""! . "'1 

1 IT: -(3u(_;s ) -(3u(i) 
+ -

2 
Y(r, r, r )(e 2 -l)(e 1 -l)dr dr + . 

3 ..., "'1 ,...,z ""1 "'z . ' 

(B-1) 

where a:' s are the Ursell distribution functions and n(r) is the density 

before the potential is applied. n(r,lu) is the density fupction when the 

potential is acting on the system. We note that 

and 

By considering the initial system to be uniform and letting u(r) 
rV 

represent an ideal wall at z = 0, one obtains 



-125-

p(z) :::: n-nz S (g( z)(r, r )-l)dr 
1 ~1 /Vz "'"'z 

z <O 
z 

n3 r> 

+ T j s 
z <O z <0 

z. 3 

+2) dr dr + O(n4) 
""z ,.,,.,3 

(B -2) 

We notice that Eq. (B-2) can be expanded as a density series and thus 

should duplicate Eq. (2. 36). Using the fact that for a uniform fluid, 

(z) -~<p(r )[ s ] g (r,r):::e iz l+n drf(r)f(r )+O(nz), 
"'1 ""z "'1 13 z 3 

where 
-~(r ) 

f ( r ) = e 13 
- 1 

13 

we can express Eq. (B-2) as 

p('.) = n-n2 S f (\)d_;:,tn'[~ S 
z <O z < 0 

S f(r )f(r )f(r )dr dr + 
lZ Z3 13 "'? 'i 

z <O 

or 

z z 3 

-
2
1 S S (f(r )f(r )+f(r )f(r )+f(r )f(r ))dr d~ 

lZ Z' 13 Z3 1 Z 13 "'Z -' 

z<O z<O 
z 3 

r 
- I 

.J S (f(r )+l)f(r )f(r )dr dJ+ O{n4 ) 
lZ 13 D ""z "lj 

z < 0 
z 

all 
z 
3 
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p(z) = n-n2 S f(r )dr +n3 
[-

1 ll ,..,z 
z<O 

2
1 s s f(r )f(r )f(r )dr dr 

lZ Z3 13 ~Z ") 

z <O z<O 
z z 3 

-s s 1 
f(r )f(r )f(r )dr dr + -

2 lZ Z3 13 "'z "".3 S S f(r )f(r )dr dr 
lZ 13 "'z "'3 

z<O z >O z<O z <0 
z 3 z 3 

-s 
z < 0 

z 

S f(r )f(r )dr dr J + O(n4) 
13 Z3 ,...,z ~3 

z>O 
3 

We shallnowshow that Eq. (2. 36), 

p(z) = n+nz.[S f(r )d£ -13 l + n
3

[ 2
1 (S f(r )dr, -13) 

1 lZ Z 1 lZ. Z 1 
z>O z>O 
z z 

+ S S f(r )f(r )d.r, dr -(3 S f(r )dr 
i z z. 3 z ""'3 1 i z ""'z 

z>Oz>O z>O 
z 3 z 

z 

+ -2
1 S S f(r )f(r )f(r )dr dr -(3 ] +O(n4

) 
lZ Z 3 13 ""z ""3 Z 

z >Oz>O 
z 3 

is equivalent to Eq. (B-3). 

Since 

13 = sf(r )dr = sf(r )d~ 
1 1 z ""z z 3 3 

and 

(B- 3) 
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f3 = \j\ f(r )f(r )f(r )dr dr 
Z J 1 Z Z3 13 "'z "j 

Eq. (2. 36) can be written as 

p(z )=n-n2 
(' f(r )dr +n3 

[-2
1 S S f(r )f(r )dr dr 

1 J lZ "'z lZ 13 · "i "'3 
z<O z<O z<O 
z z 3 

-s S f(r )f(r )di d~ + 
l Z Z3 Z :s 

~ S S f(r )f(r )f(r )dr dx 
z>O z>O lZ Z3 -13 "2 '1 

z>O z<O z 3 z 3 

-
2
1 sr f(r )f(r )f(r )dr dr] + O(n") j lZ Z 3 13 ,...,z ""3 

or 

p(z) = n-n2 r f(r )dt +n1 [2
1 s s f(r )f(r )dr di: 

l J 1 Z Z lZ 1 3 "'z :s 
z <0 z<O z<O 

z z 3 

-S S f(\}f (rZ3 )d;;z d~3 - J s f(r )f(r )f(r )dr dr 
lZ Z3 13 "i rj 

z>O z <O z<O z > 0 
z 3 z 3 

- ~ J 
z < 0 
z 
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Because 
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z 3 z 

(' f(r )f(r )dr dr J 13 Z3 "2 'i 
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this last expression is the same as Eq. (B-3). 

We should remark that the above functional expansion technique 

is closely related to the method presented in Chapter III and, for the 

purposes of obtaining a density series solution to the problem, appears 

simpler to implement. 
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