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ABSTRACT

Two topics in plane strain perfect plasticity are studied using
the method of characteristics. The first is the steady-state indenta-
tion of an infinite medium by either a rigid wedge having a triangular
cross section or a smooth plate inclined to the direction of motion.
Solutions are exact and results include deformation patterns and forces
of resistance; the latter are also applicable for the case of incipient
failure. Experiments on sharp wedges in clay, where forces and de-
formations are recorded, showed a good agreement with the mechanism
of cutting assumed by the theory; on the other hand the indentation pro-
cess for blunt wedges transforms into that of compression with a rigid
part of clay moving with the wedge. Finite element solutions, for a
bilinear material model, were obtained to establish a correspondence
between the response of the plane strain wedge and its axi-symmetric
counterpart, the cone. Results of the study afford a better understand-
ing of the process of indentation of soils by penetrometers and piles as
well as the mechanism of failure of deep foundations (piles and anchor
plates).

The second topic concerns the plane strain steady-state free
rolling of a rigid roller on clays. The problem is solved approximately
for small loads by getting the exact solution of two problems that en-
compass the one of interest; the first is a steady-state with a geometry
that approximates the one of the roller and the second is an instantane-
ous solution of the rolling process but is not a steady-state. Deforma-
tions and rolling resistance are derived. When compared with existing

empirical formulae the latter was found to agree closely.
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CHAPTER I

THEORETICAL PRELIMINARIES AND
FUNDAMENTAL CONCEPTS

I-1, Introduction, problems treated

Two topics are treated in this text. The first concerns the
plane strain steady-state motion of rigid indenters in an infinite
space, Fig. I-1. The indenters are either a wedge with a triangular
cross section, Fig. I-1-a, or a plate inclined to the direction of
motion, Fig. I-1-b. The solution of these problems is given in
chapter II for a rigid-perfectly plastic infinite medium using the
method of characteristics. Results of experiments simulating the
wedge problem are also given in chapter Il as well as results of
finite element solutions that extend results of the plane strain wedge
to its axi-symmetric counterpart, the cone.

The second topic is on the theory of rolling; it is covered in
c hapters III and IV. In chapter III the solutions of two problems
in perfect plasticity are obtained. The first is the ironing plate
problem shown in Fig. I-2-a, it is that of an inclined rigid smooth
plate moving steadily parallel to the surface of a rigid-perfectly
plastic half-space. Ahead of the plate, a heap is present; the shape
of the heap must be found such that the steady-state condition is
satisfied. The second problem is the instantaneous solution of the
rolling problem , Fig. I-2-b; it is the incipient failure of a wedge
(or half-space) indented by a smooth rigid roller. The wedge is

made of a rigid-perfectly plastic material and has the upper surface



(a) Rigid wedge

(b) Smooth inclined plate

Fig. I-1. Steady-state motion of rigid indenters in an infinite space,
the problems treated in Chapter II.



Smooth rigid plaf\\

(a) The ironing plate problem

(b) Instantaneous solution

Fig. I-2. Fundamental solutions for the plane strain rolling; the
problems treated in Chapter IIIL.



e
GABDE as shown in Fig. I-2-b. The roller is fitted such that AB

is the arc of contact and then an instantaneous horizontal velocity U
and an angular rotational velocity w are given to the roller. The
results of the above two problems represent the fundamental solu-
tion of the rolling theory formulated in Chapter IV,

In chapter IV the general formulation of the steady-state
free rolling of a rigid cylinder is first presented. A discussion of
why the rigid-perfectly plastic material was chosen to idealize the
half-space material follows. Finally using the results of chapter III
expressions for the rolling resistanceé are derived and compared with
existing empirical formulae.

Chapter I is devoted to the main theoretical preliminaries and
fundamental concepts used subsequently. First, the theory of plane strain
ideal plasticity is briefly presented; definitions and notations follow

“the lines of Hill [ 1] v apart from some concepts that are special to
our steady-state solutions. Next the apparatus used for plane strain
testing of clay is described. It allows the measurement of deforma-
tions on a plane of symmetry instead ofat the walls of a container as
previous investigators have done [ 2,3] . Finally the fundamentals of
Wilson's finite element technique [8]of solving for a bilinear material
arepresented as well as the modifications made in. it to suit our |

problems.

- A
Numbers in brackets refer to the bibliography at the end of the
chapter.
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I-2. Definitions and notations in perfect plasticity

The following part is intended to outline the notations used
subsequently rather than to present a rigorous and complete treatment

of the theory of ideal plasticity as discussed in Hill [1] or Prager [4].

I-2-1. The rigid-perfectly plastic material

For plasticity solutions in the following section, the defor-
mable material will be taken to be a homogeneous, isotropic, mass-
less, rigid-perfectly plastic, and incompressible with a yield
criterion independent of the hydrostatic pressure. This material is
often described as "rigid-perfectly plastic" and for convenience will
be called "rigid-plastic" or "plastic" herein whenever no confusion is
caused.

The formulation of problems dealing with this material can
either be analytical or graphic; the latter method will be used here
for its simplicity and convenience of representation. Knowing the
ngaphical solution of a problem enables its analytical counterpart to

be derived.

I-2-2. The plastic state

In plane strain problems, as considered here, a material

point is said to be in a plastic state if:

(0'1.1 20'22)2 +0'?2:k2 (1)

where ¢y and ozz are the normal components of the stress tensor in
the right-handed orthogonal cartesian frame X,

Unless otherwise mentioned X will be taken as



b

in Fig. I-3-a.

e is the shearing component of the stress tensor
il X,
k is a material constant

= Y/2 for a Tresca material
= Y/¥3 for a Von Mises material, where
Y is the major principal stress at yield in simple
axial extension.

Equation (1) can be represented in a Mohr diagram, Fig. I-3-b, where
the radius of the circle, describing the state of stress at the material
point, has a radius equal to k. Material points in a "rigid" or
unyielding state have corresponding Mohr circles with radii less than

k. Referring to Fig. I-3

o is the compressive hydrostatic stress at the
point.
L is the normal stress on a plane with outward

normal £ taken to be positive when tensile.

T is the shearing stress on the plane with outward
normal 2. taken to be positive if it acts in the
direction of £ where S0 £, form a right-
handed orthogonal system.

The pole P is the point on the circle through which a straight line
drawn parallel to g, will intersect the circle at a point with co-
ordinates equal to the stresses acting on a plane whose normal is (S

The o and P directions are the directions of the planes on which

maximum shearing stresses occur at the material point and thus form



(a) Sign convention in the physical plane

| v

/p,..d/rechon

: \

C 0;’ (tve)
5 P dlr‘ecﬁon 3

(b) Mohr Diagram

Fig. I-3, The stress space showing Mohr circle for a material point
in a plastic state.
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a right-handed orthogonal frame (in that order). The «-line makes
an angle © with the horizontal, being measured counterclockwise.
The principal stress directions thus make angles of 45° = 0 with
the horizontal. In a yielding domain two sets of curves will be
formed by lines parallel to a- and B-directions; they will be cailed

the "a-family" and the'B-family" respectively.

It is thus clear that if a point is at a plastic state, given the
pole P the state of stress at this point is fully determined. In this
sense we can regard the stress plane, or Mohr diagram, as a mapping
of the stress state at every point in the physical plane into its cor-

responding pole location in Mohr diagram and thus describe the stress

field in a plastic domain,

I-2-3. The conjugate problem

Since we consider massless materials exclusively, the problem
of a rigid indenter moving in a rigid-plastic material with a constant
velocity +U (to the right) is statically identical to the one in which
the material is moving with a velocity - U (to the left) with respect
to a fixed indenter. The latter case, which is equivalent to taking the
coordinate axes fixed to the indenter, will be referred to as the con-
jugate problem. The kinematics of a conjugate problem are such that
its velocity field is equal to the velocity field of the initial problem

superimposed on a constant field of magnitude - U.

I-2-4. Field equations, characteristics and slip lines

Substituting from (1) in the equilibrium equations to eliminate



G

derivatives of o12 we get a quasi-linear system of hyperbolic equa-
tions in o311 and oz2. The characteristics, which are the curves
across which discontinuities of field variables may exist, are thus
real and are found to coincide with the @ and P directions at every
point in the plastic domain.

"Slip lines" at a point are defined as the planes on which the
maximum shear strain rate occurs; isotropy of the material implies
that they must also coincide with the @ and B directions at any
point in a plastic state. Invoking isotropy again, we can show that
the slip lines are the characteristics of the velocity field.

We thus conclude that for the material considered, the o and
B lines form an orthogonal net that coincides with the slip lines
which are also the characteristic directions of both stress and
velocity fields.

Using the graphical method of solution developed by Prager
[4] , we need to draw the following three diagrams for each problem:

(a) Field of characteristics or the physical plane

The field of characteristics in a massless domain in a plastic
state needs to satisfy the "Hencky-Prandtl" net requirements. These
restrictions, which are implied by equilibrium, are: (1) the angle
between two characteristics of one family, where they are cut by a
characteristic of the other family, must be constant along their length,
i.e., independent of the particular intersecting member of the other
family; (2) along a characteristic, the radius of curvature of each

characteristic of the other family at its point of intersection must
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change in proportion to the distance travelled.
(b) The stress plane
Writing the equilibrium equations in terms of ¢ and 6 along
the characteristics, one can show that the image of a characteristic
must trace a cycloid in Mohr diagram; moreover infinitesimal
sections of this characteristic in physical space must be orthogonal
to their images on the cycloid.
(c) The velocity plane or the hodograph
The velocity of every material point in the physical plane can
be mapped into a point in a hodograph. The position vector of the
latter, with respect to some origin, is defined to be the velocity
vector of the material point.
To satisfy the requirement of incompressibility of the
material, corresponding line ségments in the physical plane and the

hodograph, along slip lines, must be orthogonal.

[-2-5. Discontinuities and singular points

The two mappings described above from the physical plane
into the stress plane and the hodograph are one to one and smooth
except in special cases that we now point out in some detail.

From the Hencky-Prandtl mesh requirements, the discontinui-

ties in curvature of a member of one family of slip lines can only
occur at its intersection with a member of the other family. Dis-
continuities in stresses may occur across any plane through a point
in a plastic domain except on directions parallel to the slip lines.

This becomes clear by looking at Fig. I-4. Suppose P _ and C_
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(a) Physical plane

e C+

(b) Stress plane

Fig. I-4. Discontinuity in the stress field.
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are the pole and the circle of stress corresponding to the stress state
at physical point A, lying on a curve I' (I' is not a physical °
boundary) when approached from below. Also let BRB be parallel to
the tangent to I"' at A. Clearly o and 7, at A are as shown in
Fig. I-4. Now if the stress field undergoes a discontinuity across T,
so that P+ and C+ are the location of the pole and the circle when
A 1is approached from above, then equilibrium across I' implies
that the location of P, and C_ are determined uniquely as shown in
Fig. I-4. In the case where P, coincides with E or F, no dis-
continuity can exist.

The orthogonality between a line segment of a characteristic
and its image in the stress plane and the hodograph implies the following
conditions: :

(1) If one characteristic is a straight line, which also implies
that its family is straight lines,its image in the stress plane is a point.
Its image in the hodograph can however be either a straight line or a
point.

(2) If a family of characteristics meet at a point, a singularity
of stresses and velocity is implied and the point has an infinite num-
ber of image points; it must therefore be excluded from the domain.

Velocity discontinuities may exist either inside a plastic
domain or at the boundary between plastic and rigid domains. By
looking at a jump in velocity as the limit of a rapid change of a
continuous velocity in a layer whose.thickness tends to zero, we can
directly deduce that the discontinuity must be in the tangential

velocity component across a slip line. A point on this slip line will
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have two image points in the hodograph, one corresponding to each
side from which this point is approached; the vector joining the two
images is called a "jump" and will be represented by a heavy line in
the hodograph. At the boundary between a plastic zone and a smooth
surface, a velocity discontinuity may also exist. This also is repre-

sented by a jump in the hodograph.

I-2-6. Bouudaries of a plastic domain, free, smooth and rough

A "free surface" is a boundary of a plastic domain along which
the normal and shearing tractions vanish.

A "free surface fixed in space” is a free surface with a fixed
position in space for all time. If a boundary of a domain in a plastic
state is a free surface fixed in space, it thus follows that the normal
component of velocity at points in the plastic domain, in the neighbor-
hood of the surface, will vanish. ‘

A "smooth surface” is a boundary along which the shearing
component of the surface traction vanishes. Moreover, the normal
component of the relative velocity with respect to this surface of
adjacent points on the boundary and within the plastic region must
vanish.

A "rough surface” with coefficient of friction p is a boundary
along which points in the plastic domain adjacent to the boundary have
no normal relative velocity with respect to this surface. In case
there exists a relative tangential velocity between the surface and
adjacent points, the ratio of shearing to normal stresses at this point

is given by p. If, on the other hand, no relative tangential velocity
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exists at this point, then the stress ratio is less than or equal to .

From the previous definitions, it is clear that:

(a) For free and smooth surfaces, the slip lines at a point on
the surface makes an angle equal to :t% with the normal to the sur-
tace.

(b) For rough surfaces, there do not exist perfectly rough or
imperfectly rough surfaces as are often mentioned in the literature
[5] and [6], i.e., there exists one degree of roughness which is
completely defined by specifying the parameter p which is a property
of the two bodies in contact (solid friction). On the other hand the
definition, being only applicable to points adjacent to the boundary,
does not rule out the possibility of having any permissible velocity
field within the plastic domain which may or may not have velocity
discontinuities.

As an example, let us consider the rough surface I' with
coefficient of friction g shown in Fig. I-5. Let I' be fixed in space
and the plastic material below it occupy regions D; and Dz. Let
D; and Dz be separated by a characteristic Z which is taken, for
simplicity, to be a straight line. Suppose that a permissible plastic
state exists in D; and Dg, such that at any arbitrary point A on T
the ratio of tangential to normal stresses does not exceed p. It is
clear that along I' the definition of a rough surface is satisfied if D,
is fixed in space, while Dg may or may not be moving (e.g. parallel
to £ as a rigid body). Note: In fact D; may be in a rigid state and
the same mode of deformation would still occur. However such

generalizations will not be needed herein.
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Fig. I-5. Example of a permissible velocity field solution
in the vicinity of a rough surface I'.
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I-2-7. Assumed steady free surfaces; uniqueness of solutions

All the rigid indenters treated here (smooth or rough)
will provide us with well-defined boundary conditions for at least part
of the total boundary of the plastic domain. To find a steady-state
solution to some of the problems of interest here requires the
existence of a free surface which will have to be assumed. This type
of surface will now be discussed in some detail since it is critical to
the solutions obtained.

The two-dimensional symmetric rigid wedge in Fig. II-1 is an
illustration. It has a smooth surface and is moving with constant
velocity +U in a full space of a rigid-perfectly plastic material.
Along the front boundary ABC of the plastic domain, we have a
smooth surface with properties previously defined. Now for the
rear part we have two alternatives:

(1) Require that the rigid-plastic material extend over the
full space and in particular to remain in contact with surface AC.
This approach is physically attractive because, if we begin with the
wedge embedded in a full space of an incompressible material, as a
reasonable initial condition, the volume of material should remain
constant after any subsequent deformation; that is, the material
should fill the space apart from the wedge entirely. However, with
the ideal material model of perfect plasticity, solutions under those
restrictions could not be obtained.

(2) Allow the existence of a free surface behind the wedge at
all times (air gap) ADC in Fig. II-1 and look for the shape of this

surface that would satisfy a steady-state condition. It is easier at
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this stage to consider the conjugate problem where the rigid-plastic
material moves past the indenter with a velocity - U. To satisfy
the condition of steady-state, the assumed free surface needs to be a
free surface fixed in space, i.e., the velocity of any point on the
surface must be parallel to the tangent to the surface at this point.

The main advantage of the second technique, which will be
used in this text, is that it allowed us to reach solutions by means of
the relatively simple theory of perfect plasticity. These solutions
are exact if the motion is begun with the free surface having the
assumed shape. On the other hand if motion is started with the
wedge completely in contact with the full space one needs to study
the unsteady transition from the initial configuration to the st=:ady-
state motion. This method which requires changes in the model of
the deformable medium, for example, the introduction of compres-
sibility, was not done.

After assuming the location of part of the boundary, no
uniqueness proof could be obtained. For this reason we will rely on
experiments to show how close is the assumption to real steady-

states.
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I-3. Apparatus for plane strain testing

Before actually solving the indentation problems described in
the introduction and since the object of this chapter is to give a
theoretical background for subsequent work, we now present the
idea behind the apparatus used in plane strain testing.

After the theoretical solution of an indentation problem had
been obtained using the rigid-perfectly plastic model, it was felt
that an experiment on a real material exhibiting properties similar,
but not identical, to the one in the theory would be useful in under-
standing how differences '1er properties affect the results. Moreover
in cases where part of the boundary had been assumed in the theoreti-
cal solution, the experiment would represent a check on this assump-
tion. To this end, a special box was constructed which when filled
with clay afforded plane strain testing with particular emphasis on

the pattern of deformation.

I-3-1, Clay, the plastic material

A modelling clay was chosen to simulate the rigid-perfectly
plastic material; our choice was made because of the following
reasons:

(a) Convenience in handling

The clay, having been mixed with oil during its manufacture,
is sensitive to temperature., At 60° C it is in a near fluid state,
while at room temperature (260 C) it is in a solid state. This allows
the relatively convenient casting and molding of the clay into the

required geometry at 60° C, before performing all tests at room
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temperature.

The changes in strength due to room temperature fluctuations
were measured after each test, using a vane test [7] and found
negligible.

(b) The stress-strain behavior of the clay

The results of a set of one-dimensional compression tests
on this clay, performed at room temperature, are showninFig, I-6.
In these tests, the increments of load were added at equal time
intervals and the strains were recorded before each increment. The
test specimens were cylindrical with both diameter and height
approximately equal to 3.5 cms. No correction was made for the
change in geometry due to straining. No brittle fracture occurred
in any of the tests.

In Fig. I-6, it can be seen that the clay behaves as a rigid-
plastic material with respect to:

(1) Rate of loading: comparing curves A and B, Fig. I-6-a, the
rate of loading has a negligible effect up to 5% strain, while for
20% strain, an increase in rate of 400% changes the stress by less
than 15%.

(2) Unloading: the clay has virtually no elastic recovery upon
unloading, Fig. I-6-b, and in this respect is similar to the ideal
material. Along the first portion of the unloading curve, the strain
is still increasing while the stress is being decreased; this behavior
is believed to be caused by the time-dependent properties of clay.

On the other hand the clay behaves quite differently from the
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Fig. I-6-a. Effect of rate of loading on modeling clay behavior.
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Fig. I-6-b. Unloading curves for modeling clay.
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rigid-plastic material in the loading part of the curve. It has a near-
parabolic shape and no definite yield stress can be seen. This fact
makes our tests more interesting, since most clays behave in this
manner and an estimate of how close the theory can get to real test

behavior is of prime importance.

I-3-2. Apparatus

~ Since the main object of the experiments was to determine the
pattern and mode of deformations iﬁ plane strain problems, a special
box was designed to sgit that purpose. Instead of recording defor-
mations at the walls of the container as most previous experimenters
have done [ 2], [ 3] , we make use of the symmetry about the center
plane to reduce the effect of boundary shearing stress unaccounted
for in the theory.

The box is shown in Fig. I-7-a and its dimensions given in

Fig. I-7-b; the enclosed space, where the clay is to be fitted, is
40 X 40 X 10 cm. The basic components of the box are four parts A
and two sliders B. Each two of the parts A can be assembled
separately to form half the box; we are interested in having each
half on either side of the center plane, to behave as a unit. Such a
half is shown in Fig, I-7-c. The two halves can then be held together
by means of bolts and nuts to form the static part in the experiment.
Sliders B are held together at both ends by means of aluminum
blocks D. The surfaces of the sliders in contact with A are covered
with teflon to minimize friction. Part C fits in a cut made in the

slider B; it has properly spaced holes to allow the fixation of the
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Fig. I-7-a Apparatus for plane strain testing.
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Fig. I-7-c Half the box on one side of the center plane
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indenter E to the sliders by means of screws. The cut in the slider
is necessary to insert and adjust the indenter into its proper position.
The movable part of the experiment which includes B, C, D and E is

shown in Fig. I-7-d.

I-3-3. Plane strain testing

a. Specimen preparation

A test specimen representin;g an infinite medium is made by
filling the box with clay. This is done as follows:

The clay is heated to 60°C and poured into each half of the
box on both sides of the center plane separately. At this stage, each
slider B is attached to half of the box and the indenter secured in the
proper position to start a test. After the clay has ‘solidified at room
temperature, an orthogonal grid is drawn on the surface of the clay
which represents the center plane. One set of lines is drawn parallel
to the direction of motién of the sliders. It was found that securing
the indenters in position before pouring the clay is more convenient
and accurate than cutting 2 hole in the hardened clay and then inserting
the indenter; this however requires having two identical indenters to
" attach each to one half of the box during clay preparation.

b. Testing |

After 48 hours of cooling, the two halves of the box are brought
together, and blocks D and the indenter fixed to the sliders. To avoid
buckling of the sliders two stiffening U channels were added; the

test set up is shown in Fig. I-7-e.
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Fig. I-7-d Movable parts in plane strain testing.
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Fig. I-7-e Test setup
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The box is rested on two parallel I beams of a 10-ton capactity
compression machine spaced with a sufficiently large gap for the
sliders to move between them. To measure the load, a proving ring
is inserted between the upper block D and the head of the machine H
which can be driven by an electric motor to move downwards at a
constant speed of 1.36 mm /sec. The indenter is driven through the
clay by the motion of the driving head of the machine.

In this setting, we take readings of the load as the testing
proceeds. During the motion of the indenter a deformation pattern
is recorded at the center plane by the distortion of the grid. After
the test, when the two halves are separated, the distortions can be

measured on the grid.
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I-4. Finite element solutions, the bilinear technique

Besides the experimental verification on perfect plasticity
solutions a second check will be made using the fi‘nite element
technique, the essentials of which now follow. Let curve B in
Fig. I-8-a represent the stress-strain deviatoric behavior of the
modelling clay used in testing. When this type of behavior, which
is typical of a wide class of saturated clays, is incorporated into
the field equations, it makes the solution of general problems im-
possible; to obtain.solutions requires further simplifications. If a
piecewise linear curve is used to approximate curve B, solutions
can be found either theoretically or through numerical techniques
depending on how the idealization has been made.

A first step in idealizing curve B is through the rigid-
perfectly plastié behavior, curve A, Fig. I-8-a. Theoretical solutions
now can be found and generalizations are easy to make because of the
relative simplicity of describing the material. On the other hand
although such an approximation may be acceptable in some problems,
it may not be for others and a more accurate description is necessary.

A better idealization may be achieved through the bilinear
curve C. Theoretical solutions are no longer possible and numerical
techniques must be introduced. Out of these techniques we chose the
finite element method developed by Wilson [8] with corrections and
modifications. In addition to filling the gap between ideal plasticity
and real material behavior, the finite-element method gives insight
into the deformation and stress fields. Furthermore, once plane-

strain solutions have been found and compared with ideal plasticity



R =

s
X

Deviaroric stress

A: rigid-perfectly plastic

B: Modeling clay, nonlinear
/ C: Bilinear material

Deviatorrc strain €
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and test results, the extension to axi-symmetric problems is not
difficult and requires a new meaning and credibility.

Finally we wish to make it clear that since bilinear solutions
rely on solving successive infinitesimal elasticity problems, as will
be seen shortly, the technique as usually employed does not allow for
the large deformations associated with steady state problems. In
that respect, the finite element solutions apply for incipient failure

while ideal plasticity covers the steady state.

I-4-1., Definitions and notations

The following definitions apply only to the discussion of finite
element solutions in the rest of this chapter as well as in Appendix A;
they were simplified to cover the discussion of the problem at the
price of generality. The basics of finite element theory canbe found in
Zienkiewicz [9] while the elasticity terminology is that described by
Turteltaub [10].

(1) Elastostatic state

ILet R be a bounded regular region (see Kellog [11]) in -
Euclidean 3-space. We call the ordered array of functions
8 = [E’X’E] an elastostatic state on R with the vector-valued
displacement field u, the 2-tensor strain field Y and the 2-tensor
stress field ¢ correspoﬁding to the 4-tensor elasticity tensor field

c and the vector-valued body-force density field f, provided:

(a) Continuity conditions

q € AIRY N clB), v RN o (i), chcl(I.{)ﬂc(R)}
% 3 = (2)

c € c(R) and invertible, £ ¢& c(R)
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(b) field equations (3), (4) and (5) hold on R
1

= = #+
My el (3)

et Sy - Siaa= S = S ij
ik E, =0 (5)
i,j,k,£ =1,2,3 with summation convention implied
For the special case when c is isotropic, i.e. in the form

+
G8y; By + 83,85,

This amounts to replacing (4) by (4'), where:

i
= e + - 1
Y5 < ® [(1 ey kakaij] ()
where
Young's modulus E
Poisson's ratio v
The sh dit G =it
e S e;r moaulus —m
; " 4 vE
ILamé modulus N = A FT =)

(2) A deviatoric state
We call the ordered array (s,e) a deviatoric state with scalar

fields s and e associated with the elastostatic state 8 provided:
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the deviatoric stress s = 'j_—z‘ J(m -02)? +(02 - 03 )a +(oa-0y)°

(6)

and the deviatoric strain e = —‘;E\ﬂyl -v2)?+(ya-va)® +(ya-y1)?

~

where o, and y; are the principal values of the 2-tensor fields ¢
and Y respectively.\’

Notes.

(a) The invariance of s ,under rotation of the frame of refer-
ence,and subsequently of e can easily be proved (see [ 12]) which
makes the definition of a deviatoric state meaningful.

(b) For an isotropic material upon substitution from (4') into
(6) we get

s = 2Ge (7)

(3) Bilinear material

By a bilinear material we mean a linear isotropic material,
with elastic modulii G and v, for values of s less than a particular
value of s*, For s larger than s* its shear modulus becomes nG.

The s -e relationship for the material is thus given by:

*
s 2Ge for s =s z

(7")
ZG[e* +n(e - e*)] for 5

0}
i

* * i
where the deviatoric yield strain e =s /2G, the deviatoric yield

*
stress is s and the ratio of plastic to initial modulii is n.
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*
This material is defined through G, v, s . and n in a graph which
is given by curve Cin Fig. I-8-a.
According to (6) substituting oy =Y and oz = 0a = 0 and

*
calling the corresponding s = s , we get
Rt (8)

This relation describes the yield condition for a uniaxial stress
testing with Y as the one-dimensional yield stress.

(4) The error and the average error.

Associated with an (s,e) state and a bilinear rr;aterial in the
element i, we define an error As.l as the ratio of the difference
between s and the deviatoric stress s', corresponding to e on the

*
bilinear curve, to s , i.e.

; *
An example of s (As) is shown in Fig. I-8-b, it is represented by
the vertical distance 34.

The average error As is defined as

A5 [i (As,F ] /m (9)
i=1

where m is the total number of elements in a F.E. mesh.

[-4-2. Wilson's technique

Suppose we have a well-posed problem in elastostatics within
the framework of infinitesimal elasticity. ILet the elastic material be

isotropic with G and v the elastic shear modulus and Poisson's
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ratio describing it. Now keeping all other properties the same, let
it be bilinear in deviator behavior, i.e., its s-e diagram is 012
Fig. I-8-b instead of C13. By a solution to this problem we mean
that it is required to find a state 8 = (B,y,c) in which every point in
the field has an (s,e) state lying on 012 instead of 013.

Wilson's technique was developed to achieve this goal by
solving the same problem several times, each solution being called
an approximation. At every element in the field the rigidity is
changed according to the (s,e) state at this element in the previous
approximation. The technique thus amounts to solving several in-
homogeneous linear elasticity problems.

In a more systematic manner, this is done as follows:

(1) The first approximation is the solution for a linearly
elastic material with a rigidity equal to the initial part of the curve 01
Fig. I-8-b.

(2) Let point 3 be the (s,e) state within a certain element;
point 3 lies on the straight line 013. Let point 4 be directly below 3,
but on line 12, i.e. points 3 and 4 are two deviatoric states having
the same strain e. Then for this element, in the second approxi-
mation, the s-e line will be taken to be 04.

(3) Repeating the same procedure for all elements in the
field, the second approximation will thus be the solution of a nonhomo-
geneous linearly elastic material.

(4) The subsequent approximations are carried out in a
similar manner until the (s,e) state at every element lies close

enough to line 012 to be considered satisfactory. The method that
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will reach such a state in the least number of approximations is con-

sidered superior because of the cost of computations.

I-4-3. Modifications made on Wilson's technique

The successful convergence of the (s,e) states to‘ line 012 by
successively changing the stiffness of each element hinges on the
following assumption.

Let the (s,e) state of a point in an elastostatic field subject
to certain boundary conditions be repfesented by point 3, Fig. I-8-¢;
point 3 lies on line A representing the stiffness of the elastic
material. Then a change in the stiffness of every point in the field,
under the same boundary conditions, will change the (s,e) state at
that point from 3 to 5 or 7. Point 5 which lies in the second quadrant
on line B corresponds to an increase in stiffness, and point 7 which
lies in the fourth quadrant on line C corresponds to a decrease in
the stiffness. Repeating the same argument, for other lines suchas D,
E and F we get a"convergence curve'which represent the locus of the
(s,e) states at a point in a problem when its rigidity varies. The
assumption of the technique is that the slope of the convergence
curve is non-positive.

The assumption is certainly true for homogeneous elastiéity
fields (S is constant on R) when all points have the same stiffness.
On the other hand, for the general case, when the material is in-
homogeneous the assumption neglects the effect of the variation of the
stiffness of other points on the (s,e) state at a particular one. It is

for this reason that Wilson's convergence technique was not proved,
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as pointed out by Clough [13] and checked by solving different prob-
lems, simply because the assumption on which it relies is not
always true. However by trying the technique on a variety of prob-
lems, we found that, depending on the problem, one can reach a
satisfactory degree of accuracy by changing the method of selection
of the rigidity of an element after each approximation. Here we now
give the main modifications made on Wilson's code. Some examples
of how to make these changes are given in Appendix A.

(1) From equation (6), the slope of the (s,e) line is 2G.
In Wilson's code this value was taken as E such that instead of
converging to the correct bilinear line 012, Fig. I-8-d, the solution
converges to the dotted line in the same figure which does not have
a particular meaning.

(2) Since the intersection of the convergence curve with the
line 012 is the solution to the problem, point B in Fig. I-8-d,
a technique that would reach that point in a smaller number of approxi-
mations will certainly be better. With line 012 known and the conver-
gence curve having a non-positive slope let us investigate special
cases of the convergence curve.

Suppose we have a uniform field of stresses or strains. 'For
a first type boundary value problem, where the displacements are
specified along the boundary, the strains at every point will be
constant for any value of stiffness of the material; hence the con-
vergence curve will be given by the vertical line 34 where 4 is the
intersection required. Similarly for a second type of boundary value

problem, where the surface tractions are specified along the boundary,
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the stresses at every point will be independent of the stiffness of the
material; hence the convergence will be given by the horizontal line
36 where 6 is the intersection required.

In general problems when the fields of stresses and strains
are non-uniform, it was found by solving a variety of problems that
the intersection is close to either of points 4 or 6 depending on
how close the sroblem is to being of the first or second type. The
computer program was thus modified to perform one of three con-
vergence methods after any approximation:

(a) The first method which we call the "strain controlled
method" is Wilson's; it uses line 04, Fig. I-8-d.. It is suitable for
problems close to being of the first type.

(b) The second method we call the "stress controlled method," it
uses line 06. It is appropriate to problems close to being of the
second type.

(c) The third method we call the "average method" uses
line 07, point 7 being at mid-length between 4 and 6 along line 12.

It is suitable for mixed problems.

The choice between the three methods is left either to intuition
or to experience and trial. In our rigid indenter problems which
are of a mixed-mixed type, the fastest convergence was achieved by
using the average method for the second approximation and the strain-

controlled method for the following ones.
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CHAPTER II

PIL ANE STRAIN STEADY-STATE INDENTATION
OF AN INFINITE MEDIUM

In this chapter two problems in the plane strain steady-state
motion of rigid indenters in an infinite medium are treate&. The
first is for a symmetric wedge, Fig. II-1-a, with a surface either
smooth or rough; the second is for a smooth rigid plate inclined to
the direction of motion Fig. II-31. Solutions are obtained using the
method of characteristics when the infinite medium is rigid-perfectly
plastic. Furthermore, the wedge solution is checked by experiments

and finite element analysis.
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II-1. Indentation by a rigid symmetric wedge

II-1-1. The problem and its applications

Let us consider the plane strain problem of the rigid symmetric
wedge shown in Fig. II-1-a. The semi-angle of the wedge is J,
0<A»< -g- , and the length of the side AB is L. The wedge is made
of a rigid material with its surface either smooth or rough. In case
it is rough, we assume its coefficient of friction with respect to the
surrounding material p to be larger than a particular value Fo
which depends on & (0 < o =< 0.175 for the range of > considered);
this condition will prove necessary in subsequent analysis.

It is required to find a steady-state solution to the problem
when the wedge is moving at a constant velocity U, to the right, in an
entire space of a deformable medium.

The solution to this problem is useful in connection with pile
foundations since it gives insight into the mechanism of pile driving
and pile resistance under axial and lateral loading. In particular,
questions like the extent of disturbance due to driving and its relation
to the shape of the pile tip, the effect of the compressibility and strain-
hardening properties of the supporting clay, may be answered at
least qualitatively.

Another application of the wedge problem is in connection with
the standard cone penetrometer used in determining soil properties
at depth. However, to do so one must assume or develop a correspon-
dence between the plain strain case of the wedge and the axially
symmetric cone. This correspondence is recognized from sglutions

and experiments on related problems; some examples include:
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a. The indentation of a half-space by a rigid indenter

For the indentation of a rigid-plastic half-space by
a rigid smooth flat ended punch, plane strain solutions
by Prandtl [ 1] 5 and Hill [ 2] for different modes of failure
(velocity fields), give the same contact pressure at yield.
The latter is 10% smaller than the one obtained by Shield
[ 3] in the case of a circular punch.

When the indenter is a smooth wedge and the half-
space is rigid-plastic, Hill et al. [ 4] obtained the plane
strain solution. It was later checked and extended to
various degrees of roughness by Grunzweig et al. [5].
When compared with the smooth cone solution by
Lockett [ 6], the plane strain solution was found to give
indentation pressure consistently lower by 10 to 14 per cent
depending on the half-angle & in the range /2= %= w/3,
When 5 is less than 52.5° Lockett's solution ceases to
hold (because the assumed plastic field is no longer valid)
and no comparison can be made. For blunt wedges (3
larger than m/4 say) and for materials with low E/Y
ratio (E is Young's modulus and Y the uniaxial yield
strength) the measured deformations in experiments of
Dugdale [ 7, 8, 9], Samuels et al. [10], Hirst et al. [ 11],

Atkins et al. [12] showed that the deformation mode is

*
Numbers in brackets refer to the bibliography at the end of the
chapter.
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more of a compression nature than the cutting assumed
by perfect plasticity and which was experimentally
verified for small .

Along suggestions by Bishop et al. [ 13] , March [ 14]
applied Hill's theory for the expansion of a spherical cavity
in a semi-infinite elastic-plastic medium to Vicker's
hardness test. The same idea of using the results of the
expansion of a cylindrical and a spherical cavity in a half-
space to simulate the indentation by a blunt wedge and a
pyramid was later used by Johnson [ 15] . The results in
both cases compare favorably with test results by previous
investigatiors. The contact pressure in the axially sym-
metric case is larger than plane strain by zero to 14
per cent depending on the parameter a = -]%: cot & in the

range 7 = a = 100. (> enters the analysis by determining

the geometry of the expanding cavity.)

Expansion of cavities in an infinite medium and the point

resistance of piles

On parallel lines as in the case of the half-space,
and initiated by Bishop et al. [ 13], the point resistance
of deep foundations has been interpreted in terms of the
pressure required to expand a spherical or cylindrical
cavity in an infinite medium. In this context the succes-

sion of work done by Gibson [ 16] , Chadwick [ 17],

Skempton et al. [ 18] led to the most general formulation
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of the problem by Vesic [19] . It allows for the infinite
medium to behave in an elastic-plastic manner, have
internal friction and be compressible when in a plastic
stage. For materials with no internal friction and incom-
pressible in a plastic state, the comparison between the
pressure required to expand both spherical and cylindrical
cavities shows that the axi-symmetric pressure is roughly
33% more when G/Y lies between 2.5 and 250 (G is the
shear modulus). Moreover, while the effect of compres-
sibility (in the plastic stage) on the difference between
plane strain and axial symmetry pressures is small, the

effect of internal friction is considerable [ 19].

The bearing capacity of shallow and deep foundations
On the basis of intuition, experiments, and less

rigorous solutions, the analogy between axial symmetry

and plane strain has been recognized or simply used by

earlier investigators (Terzaghi [ 20] and Meyerhof

[ 21]). Empirical factors were used to determine the

bearing capacity of axially symmetric foundations from

analysis of plane strain problems.



(a) Problem identification

(b) Physical plane for a smooth wesdge

Fig. II-1. Steady-state motion of a rigid symmetric wedge in a
rigid-perfectly plastic full space
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Here we will use the finite element technique to extend the
plane strain solution to the axially symmetric cone,

Finally the solution to the wedge problem is needed in the
design of a scoop that will pick up mineral balls imbedded and scattered
along a clayey ocean floor. The scoop consists of steel fingers at
some distance apart each having a cross section given by the wedge
described above. When the fingers are pushed into the clay a distance
h, where %‘- << 1, and moved parallel to the ocean floor, a condition
of plane strain steady state is reasonably satisfied.

In the following part we first solve the wedge problem when the
full-space material is rigid-plastic using the method of characteristics
of perfect plasticity. Test results are then presented and comparéd
with the theory. Finally we use the finite element method to solve
the problem when the full-space material is bilinear in deviatoric
behavior. The solution is then extended to the problem of the axi-

symmetric cone.

II-1-2. Solution by ideal plasticity

Let us assume that the deformable material surrounding the
wedge Fig. II-1-a is rigid-perfectly plastic. For a solution it is
required to find a stress field and a velocity field in the rigid-plastic
material that would comply with the field equations proper to the
material, and satisfy the boundary conditions when the wedge is

moving with velocity U.
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a. Smooth wedge

Along the front part of the wedge, AB and BC, the boundaries
are well defined as being smooth and rigid. The part behind the
wedge can either have a zone of separation as in Fig. II-1-b or not.
We will assume that there exists a separation zone (air gap) and
hence AD and DC are free surfaces. Furthermore, when the
angles ADE and CDE are equalto » and AD and CD are
straight lines, we will show that these assumptions produce a per-
missible steady state.

The physical plane is shown in Fig. II-1-b. Under the previous
assumptions, the symmetry about DB is clear and we need only
discuss one symmetrical half of the solution. Considering the part
below DB, in the solution shown,the domain in a plastic state occupies
the following three zones:

Zone I : determined by the triangular ADF in which both families of
characteristics are straight and the distance AD =1,

Zone II : determined by the circular fan FAG in which the character-
istics are straight and the P-lines consist of circular arcs.

Zone III: determined by the triangle ABG in which both families are
straight and the distance AB = L.

The field satisfies the "Hencky-Prandtl" net requirements and
is thus permissible.

The stress plane is shown in Fig. II-2. The upper diagram is
the mapping of the upper half of the physical plane (above DB) and
the lower diagram is the mapping of the lower half. Considering the

latter, we can see that Zones I and IIIl map into their corresponding
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image points I' and III'. In Zone II since the radial o-lines are
straight, the image of each is a point; the P-lines are mapped into
the cycloid which satisfies the orthogonality requirement.

The normal stress p at the interface is found to be:
p=kim+4y +2) (2)

The shearing stresses at the interface, by the definition of a smooth
surface, vanish. Integrating the known stresses at the interface,
and noting the symmetry of the problem, it follows that the resulting

force, H, required to drive the wedge is horizontal and given by:

H=2Lk sind[m + 4y + 2] (3)

A graph of H as a function of & is shown in Fig. II-8.

The hodograph is shown in Fig. II-3 with the origin atO. The
rigid part of the full space outside the plastic domain, which is fixed
in space, is mapped into O. The rigid wedge is mapped into point W
at a distance U to the right of O. In Zones I and III both families
of characteristics are straight, and the Zones move as rigid bodies
with their corresponding images occurring at the two points I" and
IO" whose location is still unknown.

Zone III moves parallel to BG and Zone I moves parallel to
FD, and the directions of OI" and OII" must be at *(Z + ) with
the horizontal. Since interface AB is smooth, a jump between the
indenter velocity and the velocity of adjacent points in Zone III,
parallel to AB, is permissible. The jump J is assumed to exist,

and thus point III" lies on a line through W making an angle o



B

with the horizontal. The location of III" is now fully determined.

In Zone II the radial o@-lines are straight. As the outside
rigid domain is static, the velocity at any point can only be in a
tangential direction, i.e. parallel to the P-line through the point.
Now applying the orthogonality condition, the image of each «-line
is a point and the image of any PB-line such as 54321 is the curve
5"4"3"2"1{" which must be an arc of a circle centered at O.

From the previous treatment, the proposed fields of stress
and velocity are instantaneously satisfied. It remains however to
prove continuity, in the sense that for an observer moving with the
wedge this velocity field yields a solution that will maintain the
geometry of deformation unaltered at any time. For this it is neces-
sary and sufficient to show that in the conjugate problem, AD is a
free surface fixed in space.

The conjugate problem is, by definition, the same as the
original problem treated above but with the origin of the hodograph
at W instead of O. From the symmetry of the hodograph, it is
clear that WI" makes an angle o with the horizontal which means
that points adjacent to AD move parallel to it and the surface is a
free surface fixed in space as required.

Now that the problem is solved, the distortion of elements of
the medium near the indenter can be computed; however this will not
be done here but will be treated later for the case of a rough wedge.

b. Rough wedge

Consider a rigid symmetric wedge identical to the one in the

previous problem and shown in Fig. II-4. In this case however, the
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Fig. II-6. Hodograph for a rough wedge.
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surface of the wedge is taken to be rough with a coefficient of friction

p larger or equal to po(,ér)o This restriction on p will prove to be

necessary for the following solutions to hold; hence values of u (3),
o

later derived, are now presented as conditions identifying the problem.

1
4ol = T TR ) o

where y(J) is given by

sin >

via) = are sin<—72—> (5)

Graphs of vy(3) and (y) are shown in Fig. II-7 in which
P y B g

we note that for the range of definition of &, 0 <3< % » the value of
o is less than 0.175.

If p is indeed equal to or larger than po(,&), which is a
condition frequently satisfied in practice, the solution to this problem
is taken to be symmetrical about DB and follows the same lines as
for the case of a smooth wedge.

The following assumptions are made: (1) the plastic material
adjacent to the interface is taken to be sticking to the wedge and moves
with it. At an infinitesimal distance along the normal to AB,

(Fig. II-4) in the plastic domain, a characteristic parallel to AB is
assumed to exist. This amounts to considering AB as a characteris-
tic of the plastic domain; (2) to be able to satisfy the steady-state
requirements, the free surface AD is assumed to be straight and at

an angle vy, given by Equation (5), with the horizontal.

The physical plane given in Fig. II-4 is similar to that for the
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smooth wedge but in which Zone III disappears and angle BAF is now
equal to %T—T T Y.

The stress plane in Fig, II-5 describes the stress field in the
plastic domain. From it,the normal stresses at the interface are

found to be

p:k[%z+1+2(,:)+y)] (6)

The shearing stress at the interface is given by

T =k (7

The total force acting on the wedge is again horizontal and is given by
H:ZLkg -3711+1+2(,&+y)]sin§ +cos ¥ (8)

A graph of H as a function of » is given in Fig. II-8,

The hodograph in Fig. II-6 is analogous to the one in Fig. II-3,
The origin at O is the image of the static material outside the plastic
domain. The rigid wedge is mapped into W which lies at a distance
Ub to the right of O. A jump J between the plastic material sticking
to the wedge and the material at an infinitesimal distance from AB
is permissible and is assumed to exist. It thus follows that point 6",
the image of the point 6 in the plastic Zone (Fig. II-4) just below AB,
lies on a line through W making an angle o to the horizontal.

Furthermore,as the component of velocity at 6 along the a-line is

zero, the line O6" must be at an angle Y to the vertical, i.e. is

perpendicular to W6"., The location of 6" is now determined and

O6" = U sin ».



5B

oL 1B Cycloid
Lu /——YCG/

) { =%
,\9
B s

k 6
T
4’
. 8 / V\ﬁ “/
3‘
4 e ot 2k (TT/2 +1%) 4 2k(T4 +¥) n R

p=lk[ 3z +1 +2(4+¥)]

Fig. II-5. Stress plane for a rough wedge.



Slope of free surface y deg.

50

40

30

20

10

0.20

40,16

10.12

1 0.08

1 0.04

ko (D)
v(¥) = arc sin (sin ,&/\/—2)
po(,&) = 1/[3n/2+1 +2(> ty)] M

i free surface

! N Alr gap

0 10 20 30 40 50 60 70 80

Half angle of wedge » deg.

Fig. II-7. Slope y of the free surface behind the wedge and minimum coefficient of

friction p
plastic ful

Ps

for a rough rigild wedge moving in a steady state in a rigid-
pace.

90

o

Minimum coefficient of friction p

_65_



24

=
U
20 e
~ a®
| H
T -~
e
16 e
/
Ve
L it
g
Ve
Mi2F ” £y
Ik o
// Smooth wedge
~ 1
7
B it wndie o H = 2Lk sin 3] w+2 + 4] c%;
8 | _—>/ Rough wedge
// H = 2Lk{[3w/2 +1 +2(3 +y)] siny +cos 3}
o « Smooth wedge
4 S
o
7~

e
0 o 1 1 1 1 o S =S "

0 10 20 30 40 50 60 70 80 90

~ Degrees

Fig.11-8. Force required to produce the steady-state motion of a
rigid wedge in a rigid-perfectly plastic full space.



Bl

Since the curve 6"5"4"3"2"1", the image of any B-line 654321,
is a circular arc centered at O, and knowing that the velocity of
Zone I must be at an angle (45 + y) to the horizontal, then OI" is
equal to U sin 3 and is at an angle 45 +y to the horizontal., Calling
Y the angle OWI", then to satisfy the steady-state condition, we need
to show that y = y. This result is immediately obvious when we use
eq. (5) and consider the triangle OWI" in the hodograph in which

U T sin D
sin(w/24 +vy-5) ~ siny

Now that the solution is complete, the distortion of a square
grid can be carried out. This is done graphically using the hodograph
for the conjugate problem. Knowing the direction of the velocity at
points in the deformable medium as they move past the wedge, the
stream lines are first obtained. Next the distortion of originally
vertical lines is determined by following every point along a stream
line as it approaches the wedge; the known magnitude of the velocity
allows us to determine the- location of the deformed vertical lines
through a step-by-step procedure. Finally and as a check on both the
- hodograph and the accuracy of the distortion computation, the area
inside each quadrilateral should remain the same; this is the expres-
sion of the incompressibility of the material.

The results of this calculation are shown in Figs. II-9, II-10
and 1I-11 for & = 10°, 30° and 45° respectively. The accuracy of
the curves in these figures depends, of course, on the graphical

integration technique employed; it is sufficiently accurate for engineer-
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ing purposes. With regards to the distorted mesh in any one of the

three figures, we note:

(1) The distortions occur only within the plastic domain. This is due
to the assumption that the material is rigid below yield stresses.

(2) The slope of the stream lines undergoes a discontinuity at the
boundary between the rigid and the plastic domains. This is due
to the jump in velocity that exists across the boundary.

(3) The horizontal lines ére horizontal and at the same level after
passing through the pla stic domain. This is a result of the in-
compressibility of the material.

(4) The distorted vertical lines have a slope that changes from
negative to positive as one approaches the centerline of the wedge.
Physically this means that some material is pushed backwards as
the wedge is moved forward. This phenoménon arises because
the material is incompressible and the plastic zone is finite and
small.

Comparing the three figures II-9, II-10, and II-11 to see the effect

of » on the distorted mesh we note that for a constant wedge thick-

ness B:

(1) The plastic zone decreases in size as 3 increases.

(2) The curvature of the stream lines, in the conjugate problem,
increases as o increases.

(3) The slope of the distorted vertical lines becomes larger as o
increases.

Points (2) and (3) above mean that for a constant indentation velocity

U the rate of straining and the intensity of straining become larger

as & ' Increases.
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II-1-3. Summary of theoretical results and their implications

The problems of a rigid smooth and rough wedge moving with
constant velocity in a full space of a rigid-perfectly plastic material
have been solved assuming the existence of a free surface behind the
Wedge, To satisfy the steady-state condition, the free surface behind
the wedge was taken to be a straight line with a specified slope y to
the horizontal. Values of y are given in Fig. II-7 for different
values of the semi-wedge angle . The geometry associated with
this surface was the only one found to satisfy the steady-state condi-
tion.

The total force to drive the wedge H 1is given as a function
of 3 in Figs. II-8. An interesting result may be deduced from this
figure, namely that the curves corresponding to rough and smooth
wedges intersect at = 68.7°. According to this result, if we were
to carry out a test using a wedge of this angle to determine the shear
strength of a rigid-plastic material, the state of surface roughness
of the wedge would be immaterial. The value of k is difectly given

by

where H 1is the force per unit length of the wedge at right angles to
its direction of motion.

For values of » larger than 68.7° the force required to drive
a smooth wedge is larger than the rough one. This unexpected result
is a consequence of the assumed free surfacé behind the wedges and

the associated plastic fields. A detailed discussion of this result
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will be carried out in connection with Fig. II-12 where the variation

of H/Bk with 3 is plotted rather than H/Lk. The reason behind

studying this relationship is that, in practice, the question of the
resistance of a wedge (or cone) is usually presented as follows: Given

a certain plastic material with yield shear strength k and a rigid

wedge with width B (or a cone with diameter B) what is the relation-

ship between the resisting force and the wedge angle? To answer this
question we consider Fig. 1I-12. For materials used in practice,
unless continuous lubrication at the interface is supplied, the coef-
ficient of friction between the wedge and the plastic material exceeds

0.175, and thus falls in the range for which our solution for rough

wedges holds.

The dotted curve abc in Fig. II-12 corresponding to a rough
wedge indicates that:

(1) The resistance force H per unit width has a minimum (point b
on the graph). This minimum is reached at & = 33. 6° and is
given by H = 9.194 Bk. ‘

(2) From curve abc of Fig. II-12 when & lies between 15° and 90°,
the value of H/Bk is bounded between 10.5 and this minimum
value 9.194. Thus over a wide range of wedge angle 23, the
value of H/Bk changes only slightly (less than 15%). This weak
dependence of H/Bk on & has been experimentally observed
in soil mechanics tests [22]. Some previous observations in
this regard, as found in a number of references [23][24] are:

a., The value of H/Bk for a wedge (H is the load per unit

width) is roughly the same as for a cone (H is the total
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load and B is the projected area of the cone). This value
is about 9. This is the reason that the results of plane
strain solutions are used in connection with the axi-
symmetric point resistence of piles (Terzaghi [20],
Meyerhof [21], Berezantzev [ 25], Skempton [ 26]).
b. The effect of » on H/Bk for a cone is negligibly small
for a range of practical values of » (say Lt 90°).
This leads to the use of the cone penetrometer test
(5 = 30°) to estimate pile resistance where, in piles,
60° < 5 < 90°, see [27].
(3) For small ¥, (3 < 10°) the value of H/Bk rises sharply as »
decreases. This is due to the substantial effect of the interface

shearing stresses s As an example, when 3 = 10, the value of

£
H/Bk is 63.06 of which 91% is due to Sy
It is interesting to compare the results of the present solution,
for small , with the indentation of a rigid-plastic half-space by a
rigid rough infinite wedge, Grunzweig _g,_g.l.. [5 ]. The latter is the
plaﬁe strain counterpart of the driven, axially loaded, tapered pile,
When the coefficient of interface friction p is larger than 0.39, a
condition frequently met in applications, both solutions hold and are
thus comparable. The mechanism of failure is similar; specifically

the interface shearing stress s, is equal to k (the cohesion of the

t
clay) in both cases. For N = 19 Grunzweig's solution gives a value
of H/Bk less than 10% lower than the present solution. Since the

main difference between the two problems is in the location of the

free surface this result means that, for small &, the geometry of the
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plastic material has only a small effect onthe indentation force. More
over, when Grunzweig's problem was checked experimentally [11],
his failure mechanism proved correct for small . Other experi-
ments with cones and pyramids [12], [14] have shown similar
results and proved the plane strain solution to be a good start to
interpreting the more complicated case.

In this perspective one may now look at the problem of axial
loading of straight piles, so far unresolved, as a limit of tapered
ones when  tends to zero. The case of » = 0, though by far the
most widely used, is particularly difficult to solve because of the
ambiguity associated with its mechanism of resistance and in turn
with the boundary condition needed to start any rational solution.

For example materials that compress during indentation will induce
smaller normal loads B oh the shaft than the relatively incompres-
sible ones. | Hence the interface shearing stress St is no longer
equal to k but is probably dependent on the normal stress B and

. Such unaccounted-for factors like the compressibility no doubt lie
behind the wide scatter in the experimentai literature [28]. The
influence of such factors however is believed to be reduced by tapering
of piles which will force a Grunsweig's mechanism of failure to come
into play. In a medium to stiff clay where experiments [29] have
shown that for a straightpile (3 = 0) the value of st/k is small
(around 0.5) tapering is expected to increase this value. The amount
of tapering required to produce st/kb-' 1 depends on the compressi- ’

bility of the material. On the other hand for soft clays where experi-

ments [30 ] have shown that straight piles have a high value of St/k
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(near 1) tapering will naturally have little effect.

The above interpretation of tapering effect is in line with the
current estimates of St/k values (see Scott et al. [31]). Recom-
mended values between 0. 6 and 0. 9 for straight piles are increased
to lie between 0.7 and 1.0 for tapered ones; the di‘fferences within
each class depend on the type of clay, and the pile-placing technique.

Let us now return to Fig.II-12 and compare the behavior of
both the smooth wedge (straight line eh) and the rough one (curve
abc). As mentioned earlier, for values of 29. larger than 68. 7°, the
force required to drive a smooth wedge is higher than the rough one.
This unexpected result is a consequence of the assumed failure
mechanisms. The associated solutions, though satisfying all field
equations, were not proven unique; hence failure modes including a
dead zone ahead of the wedges, when ¢ becomes large (9> 45° say),
is what will probably occur. Such mechanisms of failure whereby,
for large ¥, an inert zone of the deformable material moves with
the wedge is supported by: 1 - the requirement that yield should not
be reached in the rigid part outside the plastic domain. This considera-
tion, which so far was neglected because of the weak dependence of H
on ¥, restricts the given solution for a rough wedge to & < 45° (see
ref. 30 in chapter IV). 2- The presence of the inert zone was ex-
perimentally observed in the indentation of a half-space by a rigid
wedge [15]. From the symmetry of the problem, a dead zone, if
present, will also be symmetric. A first attempt to incorporate it in
the solution is to assume that it has straight boundaries; in which case

the solution is readily available and is given by the rough wedge
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results. Now, however, ? represents the half-angle of the dead
zone.

Suppose that the criterion governing the motion of wedges is
that the energy dissipated in the indentation process is a minimum.
The previously mentioned dead zones develop if necessary in order
to meet this condition. Assuming that dead zones have straight
boundaries, a rough wedge with ¢ up to 33.6° will thus develop no
dead zones and the value of H is given by curve ab in Fig.II-12;
however, when # exceeds 33. 6°, a dead zone develops with half-
angle equal to 33.6°. The result of this is a constant value of H
equal to 9. 194 Bk, this is represented by the straight horizontal line
bd in Fig,II-12. On the other hand, a smooth wedge will develop no
dead zones up to ¥ = 58.05° and the value of H is given by straight
line of Fig. 1I-12, however when % exceeds 58. 05° , a dead zone
develops with half-angle equal to 33.6°. The result is a constant
value of H equal to 9.194 Bk, which is represented by the straight
horizontal line fd in Fig. II-12.

The above speculations with respect to the dead zones ahead
of the wedges require either that they be in a plastic state but moving
with a constant velocity U or that the yield criterion is not reached
anywhere. A theoretical study of the existence and geometry of the
dead zones is difficult to conceive and we will have to rely on
experiments. The prime target of those experiments will be to
determine the pattern of deformation as a function of ¢ because the
measurement of indentation forces alone is expected to be inconclu-

sive in view of their weak dependence on ¢ .
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II-1-4., Experimental results

Together with the modeling clay and the apparatus described in
chapter I, aluminum wedges were used, Fig. II-13. The coefficient of
friction p between the aluminum and the clay was determined from
a classical solid friction experiment. The shearing force required
to cause a cylinder to slide (parallel to its axis) over the surface of
a sufficiently thick clay layer was determined for different values
of normal forces. The value of p was found to be 0.8 well above
the lower limit 0.175 required by the theory; hence results of testing
are to be compared with the previously obtained solutions for a rough
interface.

After the modeling clay has been processed in the manner
earlier described in chapter I, it fits into a rigid npox and is
divided by the center plane into two separate identical parts.

An orthogonal grid is then drawn on one of the two halves of the clay
mass; the lines parallel to the direction of motion (horizontal) con-
sist of grooves made with a thin knife (0.6 mm) and are about 1 mm
deep. The vertical lines were made with colored ink so that the
distinction between the two sets of lines after deformation would be
made easier.

All the aluminum wedges have a breadth of 3 cmm and a width
of 10 cm . which is the thickness of the clay in the box. To determine
the effect of the wedge angle on the results, wedges with half angles
> =102, 30° and 45° were used. To reduce the friction between the
sliding arms holding the wedges and the clay, they were lubricated

with petroleum jelly. Moreover, after each test, the wedge was
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Fig, II-13, Wedges used in plane strain testing.
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removed and the sliding arms pushed while recording the frictional
load due to the mechanism. In no test did the friction exceed 5%

of the total load.

A. Existence of a steady state and repeatability of experiments

The development of a steady state and its independence of the
initial conditions were presumed by the perfect plasticity solution;
this had to be checked first. Consequently two tests were carried
out on a wedge with » = 30° having all parameters kept the same
except for the initial geometry of the problem. The first test was
started with the clay entirely surrounding the wedge, while the
second was started with an air gap behind the wedge. The gap was
made such that it had the same dimensions as the wedge, i.e. an
initial condition as represented in Fig. II-1-b.

Comparing the results of the two tests, it was found that:

(1) In both tests a steady state, with respect to load and

deformation, was reached after a distance £~ 2L.

(2) The load required to produce a steady state in the first
test was found to be 5% larger than that of the second
test. This difference is believed to be caused by test
imperfections (friction between sliding arms and clay,
specimen preparation, etc.) rather than the effect of the
initial conditions.

(3) The deformation pattern in the two tests is nearly identi-
cal, Theair gap behind the wedge has the same shape inboth
tests exceptforthe cutinitially presentinthe second test,

This cutkeptits shape without noticeable change. Fig.II-14.



(a) Wedge initially surrounded by clay

(b) Wedge initially has a gap behind it

Fig. 'II-14, Effect of initial conditions.
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We conclude that the steady state for the wedge problem is
indeed developed and is independent of the initial geometry. Further-

more the deformation patterns proved to be stable and repeatable.

B. Deformation patterns

The deformed shape of a square grid after a steady state has
been reached is shown in Fig. II-15 for wedge angles of ¥ = 10°, 30°
and 45°. All experimental wedges had a breadth B = 3 cms. The
motion was started with the clay surrounding the wedge entirely and
the pictures shown were taken after. dismantling the box, i.e. about
30 minutes after the motion was stopped. Checking the deformed
grid after a further 24 hours did not show any noticeable change in
the deformation pattern. The grooves representing the originally
horizontal lines cause the discontinuities seen in the deformed
vertical lines; this effect is not related to the basic problem being
studied.

Comparing the three patterns of deformations given in Fig.
II-15, we note the following results that were predicted by perfect
plasticity:

(1) The distortion of a line perpendicular to the direction of

motion (vertical) increases as Y increases.

(2) The height of the distortion zone decreases as 3 increases,
These results which might seem obvious are worth noting since they
will be used in the discussion of loads required to produce a steady
state.

On the other hand, the discrepancies between the theoretical
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Fig. II-15. Deformation pattern in steady-state testing.
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solutions and the test results become clear when comparing Figs.

II-9, II-10, II-11 with II-15. They can be summarized as follows:

(1)

The free surface behind the wedge which was assumed
straight for plasticity solutions has instead a curved
shape with a convexity towards the air gap. Moreover

a definite area of contact with the back of the wedge is
present in the test results.

In plasticity solutions, the plastic domain, where de-
formations occur, is well defined by a boundary separat-
ing it from the rigid part. Along this boundary, disconti-
nuities in velocity exist to produce a discontinuous slope
of the deformed orthogonal grid. In the experiments
however this plastic zone is not as clear, and deforma-
tions in the domain which is rigid in the theoretical solu-
tions are noticeable. As a consequence, the field of
deformation is smooth with no discontinuities.

For a better comparison, we plot the deformation
pattern according to both theory and experiment to the
same scale in Fig. II-16 and II-17 for 3 = 10° and 30°
respectively. If the stream lines in both theory and
experiment are reasonably close, the differences appear
clearly in two aspects:

(a) The rigid domain ahead of the wedge which according
to theory suffers no deformation actually deforms in
in the test. The amount of deformation becomes more

pronounced as & increases.
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(b) The slope of the deformed vertical lines ,which accord-
ing to the theory is discontinuous at the boundary
between the rigid and plastic domains and changes
direction from positive to negative, is found in the
experiment to be smooth with virtually no change in
sign, i.e., instead of having part of the deformed
line move forward and the rest backwards, it dis-
places only backwards.

(3) The incompressibility of the material in perfect plasticity
is not supported by the tests even at the relatively small
stresses employed. Instead, the change in volume of the
clay which is measured by the size of the air gap left
behind the wedge seems to increase with increasing J.

Through two addit.ional tests, we will now study the reasons

behind the differences between theory and experiment with respect to:

(1) The free surface behind the wedge.

(2) The deformation zone and pattern.

The first test was carried out with a 3 = 45° wedge and the second
with & = 30°. In these tests the wedge was reinserted into position,
24 houré after the pictures of Fig. II-15 were taken and the test was
continued. We call this testing in the second stage and the results
are given in Figs. II-18 and II- 19. The velocity of the wedge was
kept constant throughout the second stage of Fig. II-18 with no halts.
In Fig. II-19 (3 = 30°) the loading was stopped twice, each stop
lasting for 30 seconds. The location where this was done is clear by

the dents in the free surface. Moreover a fresh orthogonal grid



End of first stage;
beginning of second stage

Figo II-18'

(b) End of second stage.

Testing in the second stage with & = 45°,
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End of second stage at
higher magnification

Fig. II-18. Testing in the second stage with o = 45°,
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Old grid drawn at the beginning
of the first stage

(b) New grid drawn at the beginning
of the second stage

a k“ ¥

Fig. II-19, Testing in the second stage with & = 30°
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drawn on the second half of the clay mass (the clay occupies the two

halves of the box) before beginning the second stage deformed as

shown in Fig. II-19-b. This distorted new grid is drawn together

with the theoretical solution on Fig. II-20.

Using Figs. II-18, II-19, II-20 it is concluded that:

(1)

(2)

Concerning the free surface behind the wedge

Between the time the loading was halted and the picture
taken, the free surface changed in shape by creep due to
the tine -dependent properties of the clay. The major

part of this creep takes place during the 5 minutes
required to dismantle the box. Moreover, by noting the
sudden change of curvature of the stream lines near the
corner of the wedge, Fig. II-15-a in particular, we believe
that this is another effect of the creep. This suggests

that the steady-state free surface behind the wedge is less
convex than the pictures show it to be and instead, it is
closer to the straight line shape assumed by the theory.
The deformation zone and patterns

By eliminating in effect the distortion of.the clay ahead

of the wedge through redrawing the grid, the deformation
of the fresh grid in Fig. II-20 improves the correspondence
between theoretical and experimental deformation fields
considerably. Moreover this distortion which masked the
change of the slope in the distorted vertical lines from
positive to negative in the first stage, now shows that the

slope change indeed occurs in the test, confirming the
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prediction of the theory in that respect.

C. Steady state loads

The loads required to produce a steady state were recorded

©, 30° and 45° and the results,after subtracting frictional

for &> =10
resistances,are plotted in Fig. II-21. On the same figure are also
drawn curves representing the relationship between the loads and 3
as given by the plasticity solution for rough wedges using a Tresca
hypothesis for the yielding of the material. The uniaxial yield strength
Y of the curve with higher resistance was chosen to be 1.25 Kg/cm®
and the second corresponds to Y = 1.00 Kg/cm®. These values of Y
will give uniaxial stress-strain curves as shown by curves C and

D on Fig. II-22. On the same figure are plotted the stress-strain
curves of the modeling clay for rates of loading of 0.6 Kg/cmz/min
(A) and 0.15 Kg/cm® /min (B) respectively. These curves are the
same as the fitted experimental results previously given in Fig. I-6-a
except that the stresses are now corrected for the change in area
occurring during loading. To do this we assumed no volume change
and that the cylindrical shape of the specimen is preserved at any
load. Also under these assumptions we computed A« the change in

slope of a diagonal plane and used it as another measure for the

strain to compare with the wedge results.

To be able to detect the effect of changes of the room tempera-
ture on the shearing strength, the cohesion of the clay at various
locations was recorded after each test using the vane test. The

cohesion varied due to inhomogeneity and vane test imperfections
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Fig, II-21. Indentation loads.

Comparison between perfect plasticity
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from 0.58 to 0.62 Kg/cm® without noticeable variations from one test
to another. This cohesive shear strength corresponds to a uniaxial
strength of 1.16 to 1.24 Kg/cm®.

In Fig. II-21 we note that by increasiné ~, the value of the
steady state experimental force H tends to approach the force pre-
dicted by the theory for a stronger material. This is believed to be
caused by the deformation gradients as functions of . It is clear
W comparing Fig. II-16 and II-17 that the gradients are larger for
larger . 'i‘his causes two properties of the clay, unaccounted for
in the theoretical model, to come into play: the strain hardening
effect and the rate of straining effect. Specifically what happens is:

(1) The slope of the distorted vertical lines which are a
measure of the strains in the clay are larger for larger
>. This result is also predicted by the theory and implies
that for our strain-hardening clay the larger_ ~ is, the
more resistance one would expect to develop, compared
with the non-strain-hardening theoretical model, depend-
ing on the value assumed for the strength of the material
in the theoretical solution.

(2) The curvature of the distorted horizontal lines increases
by increasing ». Since this curvature, for a constant
wedge velocity U, is a measure of the straining rate,
thus as » increases the straining rate increases.

The combined effect of the above properties of the modeling

clay makes us believe that if curve B Fig. II-22 represents the

stress-strain curve for the clay, on the average, for > = 10° and is
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idealized by D; then curve A better represents the higher straining

rates in the » = 45° case; this is idealized by curve C,

D. Behavior of blunt wedges, the formation of a rigid part

ahead of the wedge

From the previous study of the deformation patterns it was
seen that as & increases the test results deviate from the theoreti-
cal solutions. Consequently the direct comparison between theory
and experiment made for & = 10° and 30° in Figs. II-16 and II-17
could not be made for the case of O = 45°, In the latter case, the
mesh near the wedge-clay interface is highly compressed and the
horizontal streamline near the axis of the wedge which, according
to the theory, should remain straight until it reaches the tip, bends
from a considerable distance ahead of the wedge Fig. II-18. These,
we believe, are indications of the existence of a rigid part of clay
ahead of the wedge that moves with it. Sﬁch a mechanism involving
a rigid part ahead of the wedge was reported inthe indentation of a
half space by a rigid wedge [15]. However to get a definite
picture of how this rigid part looks like in such steady state prob-
lems, an additional test was performed with » = 78", ‘The rigid part,
if indeed present in the M = 45° case, should reveal itself better in
this test. |

To be able to attach the wedge to the sliding arms, the
triangular cross section of the wedge had to be abandoned and the
shape shown in Fig. II-23 was used. In the same figure the distorted
mesh is shown; it bears a strong resemblance to that of the wedge

(e]

with & = 45 In both cases, the gap behind the wedge is large



Fig. II-23. Distortion of an orthogonal grid (3 = 78°).
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c;)mpared with that behind a sharp wedge thus showing that the clay
undergoes a large compression during its indentation by a blunt‘
wedge. Furthermore, the zone ahead of the wedge is heavily strained
such that the distorted mesh can no longer be seen, this we believe

is the indication of the existence of a rigid part.

We thus conclude that starting from a value of ¥ between 30
and 45°, a rigid part of the clay is formed ahead of the wedge. The
theoretical solution, presented earlier, which assumes a process of
cutting to take place, whereby no such rigid part exists, ceases to
describe the indentation process adequately. Untillmore tests have
been made to determine the value of & after which the rigid part
starts to develop, it can reasonably be taken as the value & = 33.6°
previously derived as the one giving the least resistance for a given
width. Furthermore, as in the case of the indentation of a half
space by a rough wedge, the indentation process of an entire space
by blunt wedges becomes more of a compression nature than the

cutting assumed by perfect plasticity.

II-1-5. Finite element solutions

Wilson's modified finite element technique (see chapter I)
was used to solve the indentation problem for a bilinear material.
The purpose of the solutions is twofold: -

(1) To interpret the discrepancies between perfect plasticity

sc;lutions and the experiments. These are most obvious
in the far field, i.e. at the boundary of the rigid domain

with the plastic zone.
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The use of the finite element method which relies
on equations elliptic in character is expected to smooth
out discontinuities given by plasticity theory and absent
in the experiments. Furthermore, the finite element
method allows us to control the properties of the model
"material" closely. |

(2) To extend and compare the plane strain solution to the

axi-symmetric case of a cone.

The problems treated are a wedge and a cone both with semi-
angle o = 30° as in the case of the Dutch cone penetrometer. The
modeling clay properties were simulated by assigning the following
values to the bilinear material of the finite element analysis:
E=31.5Kg/cm®, Y = 1.18 Kg/cm®, and the moduli ratio n = 0.035.
Poisson's ratio v was taken equal to 0.45 and then changed to 0. 35
to determine the effect of compressibility on the results. These
material constants give anaxial-compression stress-strain response
shown by curve F in Fig. II-24. It clearly affords a better ideali-
zation of the c-lay (curve B), than the rigid-plastic material does
(curve C or D), especially at small values of stresses and strains.
On the other hand the relatively low rigidity of this particular clé.y
is not best suited for the present F.E. technique because of the
associated large strains and the resulting geometrical non-linearity.
Since most clays encountered in engineering problems have a much
higher rigidity (in the order of 10 times the modeling clay value),
which will make the present technique more applicable,we will go

ahead and use it, to get comparative and qualitative results. The
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accuracy of the near field however, which includes large strains
unaccounted for in this analysis, should be assessed in the light
of this approximation.

The geometry, some of the 1tA)Aou.ndary conditions and the F.E, (#=30°)
mesh are shown in Fig. II-25. The symmetry about the z axis -
allows the c.onsideration of only half the problem. The geometry of
the free surface behind the wedge is taken from the ideal plasticity
solution for a rough wedge (y = 20. ) Along boundary ab, nodes
have a normal component of displacement G = 0 and a tangential
component of traction s, = 0. This is the symmetry condition.

Along bcdefg, the nodes have w =u = 0 representing the clay
sticking to the box used in actual testing. Along ghk the boundary

is stress-free representing the surface of the clay behind the indenter
which in the tests did not close behind the wedge. For a closer look
at the nodes inside circle X, we plot the grid again to a larger scale
in Fig. 1I-26. The contact surface of the indenter with the clay is
represented by kfmn. Along this boundary we ideally want to specify

the non-zero tangential tractions s, for a rough interface, and the

t
normal displacement unaﬁ 0. Denoting the forward displacement of
the indenter by 6, we thus have B = 6§ sin . To be able to specify
s, and u we face the following difficulties:

t

(1) The value of St is not only dependent on the frictional
properties of the interface but also on & and subsequently
on u_.
n

(2) The boundary conditions to be specified at the tip and at

the edge of the indenter, i.e. at nodes n and k, Fig.
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II-26. These are singular points and need a special
consideration.,

Other investigators, e.g. Ellison et al. [32], introduce
elements of zero volume at the interface. When given a shear load
versus displacement behavior they would simulate the frictional
behavior of the interface. In this text such elements were not needed
because of the relatively large values of displacement & used. In
addition the existence of slip at the interface coupled with the develop—
ment of maximum shear resistance is presumed. This argument is
based on one hand on solid friction load-displacement measurements
by Bowden et al. [33] and on the other on load transfer measurements,
of axially loaded piles by D'Appolonia et al. [34] and Whitaker et al.
[35]. Their results show that full interface friction is developed
at small displacements. It is thus assumed in the following solutions
that s, = 0.6 Kg/cm‘Z along the boundary kIfmn. This is the yield
shear strength of the clay corresponding to the value used in perfect
plasticity.

As for the condition at both tip and edge of the indenter,
the contribution of the elements at these points was minimized by
reducing the node spacing near the interface without however
eliminating the error involved in any boundary condition to be given to
nodes n and k. Because of our greater interest in simulating the
geometry of indentation, only the effect of the shearing stresses was
given to nodes n and k in the form of a force component in the =z
direction. They were left free in the R direction. An alternative

would have been to specify u and s, as for the other interface
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nodes. It might be argued that this approach will give more
realistic indentation loads but on the other hand it will certainly
represent a process of an expansion rather than indentation.

To avoid such difficulties other workers, e.g. Hoeg [36]
prefer to specify the tractions along the interface. After solving the
problem they determine an average value of displacement of the
interface nodes and plot this value in a load-displacement type of
curve. The stresses in this case are assumed uniform because no
other distribution is more justified. The results are then referred
to as "flexible foundations" solutions which have a very restricted
use. We tried this concept but found the deformed interface taking
a strongly concave shape which defied any averaging procedure and
which exhibited no similarity with the indentation.

Finally the use in the model of two materials, a soft one for
the clay and a rigid one for the indenter, showed that the oscillations
in the displacement and stress fields near the interface were large.
This phenomenon which often occurs near singularities when using
the F.E. brought us back to the method previously described.

Improvement in the Finite Element technique to reduce the
errors mentioned above can be achieved by:

(1) Reducing the size of the mesh.

(2) Using a step-by-step method in which each u = increment
would be small and the nodes displaced to their new
location after deformation.

When estimated, the cost of such improvements did not

justify their use in the comparative study presently conducted. It was
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thus left for a more accurate quantitative research project.

The results obtained by the analysis of different problems are
given in Fig.II-27 through II-30, In Fig.II-27 is shown a load-
displacement plot for both a cone and wedge when v = 0.45. In
each case three points were obtained at values of 8§/B equal to 0.066,
0.1666, and 0. 667, and joined by straight lines. The initial part
of the curve in Fig.II-27 corresponds to the linear solution obtained
(as a first approximation) in case of §/B = 0.066. The indentation
loads were evaluated by integrating the stress components in the
z-direction along circle ¥ in Fig.II-25. The circle represents
either a cylinder in the plane strain case, or a sphere in the axi-
symmetric case. This affords a more reliable evaluation of the
force away from the stress concentration near the interface. Com-
paring the graphs of the cone with that of the wedge, the former gives
loads 10 to 25 per cent higher for 6/B between 0.1 and 0. 65.
Moreover, at §/B = 0. 667 which is already too high to neglect
geometrical nonlinearity in the near field, the value of H/Ak for
a wedge is 6. 95 which is still below the 9.21 value obtained by perfect
plasticity. Such large values of displacements associated with this
 problem are caused by the low rigidity of the material used. However
since the shape of the curves in Fig.II-27 indicates that higher loads
are expected for larger § , the steady-state predicted by plasticity
is presumably reached for &/B near the value 2 found in actual testing.

The development of the plastic zone as §/B increasesA is
shown in Fig. II-28. The black region is where the deviatoric
straining is large and thus we call it the zone of substantial s.hearing.

The ratio of the deviatoric stress to deviatoric strain 2G', within this.
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§/B
Fig. II-27. Load-displacement relationship for = 30°,

solutions according to finite element for a
bilinear material. (E = 31,5 Kg/cm?®,
Y =1.18 Kg/ecm®, v = 0.45, n = 0.035)
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Fig. II-28. Development of the yiclded zone.
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region is less than 0.2G. The shaded region is a transition region
between the zone of substantial shearing and that of the elastic zone
where the stresses did not reach the yield stress. The similarity
between the wedge and cone is clear by comparing (a) and (b) of
Fig. TI-28. Moreover the yielded zones lie mainly ahead of the
indenter and do not extend as far behind it as perfect plasticity
predicts. This phenomenon was also found in solving for the inden-
tation of a half-space by a smooth circular punch described in the
Appendix. using the same F.E. Technique. Other investigators using
different numerical procedures have reached similar results, e.g.
Ellison et al. [32] in their step-by-step finite element solutions for
a pile with a flat toe.

The displacement field when §/B = 16.67% for both wedge
and cone is given in Figs. II-29 and II-30. Comparing these two
figures we note:

(1) The displacement patterns are similar. In the case of a
cone however, the displacements are generally smaller
and, as expected, die off faster as the distance from the
interface increases. Moreover the deformation near the
tip, in the case of a cone, simulates the indentation pro-
cess better than the wedge.

(2) In both cases, the region ahead of the indenter is the
most heavily distorted. Displacements are detectable
up to a distance of about 3B for a wedge and 2B for

a cone. (These distances vary of course with §/B.)
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(3) In both cases the displacement field is smoothly varying
with no discontinuities in its gradient. This condition is
found in actual testing and differs from the results of
perfect-plasticity which assumes the existence of a rigid
domain,

(4) The displacement field is predominantly in the z direc-
tion. However, within half the field, ahead of the indenter,
the velocity vector may be considered to be radial. This
would justify recent approaches to pile bearing capacity
which assume that the process of pile resistance to axial
loading can be idealized by that of the expansion of a
cavity under condition of radial symmetry. On the other
hand, the displacement field behind the indenter is clearly
in the 2z direction which does not agree with the above
mentioned approach.

Other results of interest are:

(1) When &/B = 0.0667, by computing the part of the load
carried by the rear half of circle ¥, Fig. II -22, it was
found to be 38% of the total load for a wedge and 46% in
the case of a cone, Since these values are large, the
early approach to bearing capacity of deep foundations in
which a mechanism of failure is assumed in the front half
only, and the half behind the base level is considered only
as a surcharge (Terzaghi, Prandtl, Reissner, Caquot,

see [37] and [ 38]) is by no means justified.
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(2) To see the effect of compressibility, the wedge problem
was repeated with v =0.35 at §/B = 0.166; the load
decreased by 16.5% as compared with the v = 0,45 case.
The displacement field was virtually unaltered to the
scale of Fig. II-29,.

(3) When v = 0,45, the direction of the z component of dis-
plécement is positive except for points close to the
boundary (r = 20 cms) at the level of the indenter ('z[
small). These points are not shown in either Fig. II-29
or II-30., The tendency to move in a direction opposite
to that of the motion is more pronounced in the case of
a wedge. It is believed to be caused by two factors:

a. The existence of the fixed boundary

b. The relative incompressibility of the material,
When v was changed to 0.35, for 6§/B = 16.65%, the
region of negative z displacement component was
eliminated. This result is of practical interest in pile
driving since it is common while driving a pile in a
relatively incompressible medium to cause predriven ones
(simulated here by the fixed boundary) to move upwards.
This is obviously due to the upward movement of the soil
and the positive shearing stresses that develop due to the
lateral restraint. It is interesting to note that even at a
distance of about 7B, compared with the 3B common

spacing between piles such a phenomenon is felt.
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II-2. Indentation by an inclined smooth rigid plate

II-2-1. The problem and its applications

Let us consider the rigid smooth plate of length L shown in
Fig. II-31. The plate moves in a rigid-perfectly plastic material,
under a plane strain condition, with a constant velocity U (to the
right). Its inclination Y to the horizontal is such that 0< =< w/2.

In Soil Mechanics applications the plate represents an anchor
plate buried deeply under the surface of a clay layer. This is a
suitable type of foundation for structures whose stability involves
horizontal components of force, e.g. suspension bridges and sheet
piles. Also in circumstances where the gravity effect is not efficient
in resisting forces of pull (e.g. underwater structures subject to
uplift forces) anchor plates are often found more economical to use
than dead loads.

A previous solution to this problem has been obtained only
for the special case of » = /2 and for a particular failure pattern
[39]. The following solution however is more general in the sense
that:

(1) It applies for 0<» =< w/2 which covers a wide range of
forces of resistance. The knowledge of the variation of
these forces with 3 allows both an estimate of the effect
of imperfect construction of an anchor plate and the use
of » in controlling the resistance force according to
the particular application.

(2) The failure modes found are infinite in number. Of those

modes only one is presently found in the literature [39].
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Fig. II-31, Plane strain steady-state motion of an inclined
smooth rigid plate.
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(3) The steady state solution applies for any value of velocity
U> 0. In particular it thus covers the incipient failure
case with a velocity field perfectly satisfied. The latter
has only recently been considered by Soil Mechanics

workers.

II-2-2, Perfect plasticity solution

As mentioned earlier the problem has an infinite number of
possible solutions with regard to the shape of the plastic domain.
However all these solutions give the same stresses at the interface,
a fact that justifies considering a problem which would otherwise be
practically meaningless. KEach of the solutions has its proper velocity
field and may be classified into one of two main types:

(1) The Hill;ty-pe of failure, Fig. II-32, where the plastic
zone occupies two distinct domains with one singular
point C in common. The point C lies between A and
B, the distance AC is called I_R (the rear length)
which can take any value in the range 0 = Lp = 1. The
special cases of LR = 0, the front failure; and LR =i 1
the rear failure, are shown in Fig., II-33.

(2) The Prandtl-type failure is shown in Fig. II-34 and is the
one given by Broms [39] for the special case of ¥ = m/2,

In either type of failure no air gaps were introduced in the

solution, i.e. the plate is completely embedded in the rigid-plastic

space at all times.
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Fig, II-32. Physical plane in a Hill-type of
failure mechanism.,



I_R=I_

(b) Rear failure,

(a) Front failure, LR =0

Fig. II-33. Special cases of a Hill-type of failure.



-115-

Fig. II-34. Physical plane in a Prandtl-type of
failure mechanism.,
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The physical planes corresponding to each type of failure

pattern are shown in Figs, 1I-32, II-33 and II-34. Each individual

plastic domain consists of three distinct zones.

Zone I is a triangle in which both families of characteristics are
straight. The hypotenuse of the triangle is equal to either
LR’ L - LR or L depending on the type of fabilure.

Zone II is a circular fan centered either at A or B with a central
angle equal to 3mw/2, i.e. the a@-lines are radial and the
B-lines are circular arcs or vice versa

Zone III is a triangle in which both families are straight; it is an

image of zone I with respect to the plate.

The stress plane for all types of failure is shown in Fig. II-35,

The upper diagram is the mapping of the front failure zone and the
lower one the mapping of the rear failure zone. The origin of the
Mohr diagram was located by assuming that the pressure along the
back of the plate is zero. The orthogonality between any circular
arc in Fig, II-33 such as 12345678, ana-line, and its cycloidal image
1'2'3'4'5'6'7'8"' in Fig. II-35 is clearly satisfied. The normal stress

along the surface of the plate was found to be:

p=ax(3f 4 1) (9)

The shearing stresses along the interface, as assumed, are zero.
Integrating the stresses along the length of the plate, the forces of

drag (horizontal) and lift (vertical) acting on the plate are:



P=2R (32 +1)
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H= (37 + 2)kL sin &
(10)
P = (3w + 2)kI. cos ¥
In case the pressure along the back of the plate is non-zero,
it is not possible to deduce it from solutions of this type. However.
equations (9) and (10) will still hold with p, H, P now being re-
defined in terms of the difference between the front and back pres-
sures on the plate; the quantities one would generally be interested
I
The hodographs are shown in Figs, II-36 and II-37. In both
diagrams, the origin is taken at O, the image of the statié space
outside the plastic zone. The rigid plate moving with velocity U is
mapped into P a distance U to the right of O. After choosing the
numbering scheme shown in figures, the front and rear plastic zones
map into the same points in the hodograph.
The velocity field of a Hill-type failure is shown in Fig. II-36.
The main points in drawing the hodograph are:
(1) The smoothness of the plate allows a jump in the tangential
velocity between the plate and the rigid parts I and III.
It thus follows that I" and III" must lie on a line through
P at an angle 3 with the horizontal. Furthermore, due
to the presence of the material in a rigid state outside the
plastic domain, I and III can only move in directions of
(%E - ) and (—Z—— - ) respectively with the horizontal. The

location of I" and III" is thus determined.
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(2) In zone II a circular arc with arbitrary radius such
as 12345678, is mapped into the circular arc
1"2"3M"4"s5"e"7"8" ", Points 1" and 8" coincide with
I" and III" respectively and the orthogonality con-
ditioﬁ is satisfied.

(3) To satisfy the condition of a steady state we only need to
show that, in the conjugate problem, zones I and III
move parallel to the plate, i.e. at an angle » with the
horizontal. It is immediately clear from the hodograph,
with the origin now at P, that the segments ﬁ and
PIII" satisfy this condition.

The velocity field for a Prandtl-type of failure is given by

the hodograph in Fig. II-37; the main points for drawing the diagram
are:

(1) Due to the smoothness of the plate, the points I" and
III" lie on a line through P at an angle » to the hori-
zontal. The presence of the rigid static material outside
the plastic domain implies that points 1 and 8, lying in
zone II, must hvave velocities perpendicular to AD and
BD (or BE and AE) respectively; i.e. OI" and O8"
need make angles (%‘E - ) and (-g- - ) with the hori-
zontal. Furthermore the jump of velocity between zone I
and II, if present, needs to be parallel to a characteristic,
which implies that I"1" and I"8" be parallel to AD and
BD respectively, i.e. I"8" is orthogonal to O8" and

I"1" is orthogonal to O1",
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To satisfy the above conditions points I", 1" and 8"
are located uniquely as shown in Fig. II-37. A similar
argument will show that III" must coincide with I".

(2) The orthogonality and the steady state conditions follow
the same lines as for Hill-type of solution é.nd are
satisfied.

Now that the problem has been solved, one can easily get

the stream lines of particles as they move past the plate in the con-
jugate problem. The stream lines will give a good idea of the process
of deformation and are in many applications of crucial importance,
e.g. in the study of heat transfer problems. The stream lines are
shown in Figs. II-38, II-39 and II-40. Moreover, the distortion of
vertical lines as they move past the plate are drawn in Fig. II-39.
To draw all those diagrams, the graphical technique was used know-
ing the velocity at every point. Bearing this in mind, one should
consider these figures as a rough indication of the deformation pro-
cess to get an idea of the order of magnitude of the permanent de-
formation. It is not recommended that they be used to deduce
results requiring accuracy such as the determination of the slopes of
the distorted originally vertical lines.

To further study the permanent deformation in a Hill-type of
failure for any value of LR with the range 0= LR =1, itis
sufficient to consider the two special cases of LR =0 and LR =
This is because the permanent deformations of a plastic material
going through two consecutive and separate plastic domains are

additive. The incompressibility of the material and the continuity
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Fig. II-38. Stream lines in a Prandtl-type of failure.
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Fig. II-40. Stream lines in a rear failure pattern.
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imply that the permanent vertical displacement must vanish. Let
8(y) be the permanent horizontal displacement, taken positive when
in the direction of the velocity U, at a distance y above the mid-
length of the plate. Fig. II-41 shows &(y) for a plate inclined by an
angle > = 15° to the direction of motion. Using the superposition
of &(y) caused by different plastic fields, and with the proper

scaling, Fig. II-42 was drawn as an example for L_ = 0.5L,

R
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Fig. II-42. Permanent deformation of a vertical line

in a Hill-type failure mechanism (¥ = 15°

and Lp =1/2).
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CHAPTER III

PI ANE STRAIN INDENTATION OF A RIGID-PERFECTLY
PILASTIC HALF-SPACE

This chapter deals with two problems in plane strain perfect
plasticity. The first we call the ironing plate is a steady state solu-
tion for a plate moving parallel to the surface of a half space. The
second is the incipient failure solution of a cylinder indenting a
wedge of a particular shape. The two problems, in addition to being
examples in the use of perfect plasticity, are the fundamental solu-

tions for the rolling theory treated in chapter IV.
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III-1. The ironing plate problem

Consider the plane strain problem of a rigid smooth plate
moving with a constant velocity U parallel to the surface of a rigid-
perfectly plastic half space, Fig. III-1. The plate is inclined by‘an
angle &, (0< » < n/4), to the horizontal and its lowest point is at
the same level of the surface of the half space. A heap ahead of
the plate acts with the half space as a continuum and has a contact
length L with the plate. It is required to find a steady-state
solution to the problem,i. e. find the stress and velocity fields in the
half space complying with the field equations and yielding a constant
shape for the heap at all times.

In accordance with perfect plasticity techniques, the shape of
the heap has first to be assumed and then the field equations checked.
Several trials led to the symmetric shape in Fig. III-2; it will be

shown to satisfy the steady-state conditions.

III-1-1. The stress field

In Fig. IlI-2 for 0<a < 45° a stress field is shown. The
geometrical symmetry about the vertical through B is assumed,
then AB=BE=1.

Zone I is deterrﬁined by the triangle ABC - has both families

of characteﬂstics straight.

Zone II is determined by the triangle BDE - has both families

of characteristics straight.

Zone III is determined by the circular fan CBD - has the $3-

lines straight and the a-lines consisting of circular
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Fig. III-1. The ironing plate problem.



Fig. III-2. Physical plane for the ironing plate.
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Fig. III-3. Stress plane for the ironing plate.
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arcs,

The field satisfies the "Hencky-Prandtl" net requirements
and is thus permissible. Since all B-lines are straight, then no
variation of stresses along pB-lines is present. In Zones I and II,
the a-lines are also straight, thus the state of stress in both zones
is constant. Knowing that the surface BE is stress free, and that
the path of the pole is a cycloid in Mohr diagram, a graphical con-
struction of the solution is given in Fig. III-3,

Let p be the contact pressure at the interface, » the
counterclockwise slope of the plate to the horizontal and k the

yield stress in shear, then

p=(m+2-43k (1)

III-1-2. The velocity field

Let the plate be moving to the right with a constant velocity
U, Fig. IlI-4. The velocity field is fully described by the hodograph
in Fig, III-5. The nonplastic zone outside ABEDC is at rest and thus
located at the origin O of the hodograph. The plate being smooth,

a jump in velocity J between the plate and the adjacent material
is permissible and was assumed to exist.

To satisfy the requirement of incompressibility of the material,
the hodograph should be such that along slip lines the images of cor-
responding points in the physical plane and the hodograph be orthogonal.
This is easily checked by noting that

- Zones I and II which in Fig. III-4 have straight slip lines

move as rigid bodies and thus have their corresponding
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stafic half-space

Fig. III-4. The velocity field for the ironing plate.
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Fig. III-5. Hodograph for the ironing plate.
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images at points I and II respectively, Fig. III-5. Zone I
moves parallel to AC and Zone II parallel to DE thus
directions O I and O II are determined.‘

- For Zone III we consider any a-line such as bcd with BC'
the B-line through c. BC' being straight, then velocity

v along B-line is constant; and since v at C' is zero,

then all velocities in Zone III are tangential, i.e., along @

lines. Moreover, the velocities u, along any o«-line, are

constant. Zone IIl is now fully determined by arc I - II

centered at O in hodograph, the velocity at any point c

along BC' is given by the vector OC in hodograph where

OC is perpendicular to BC' and C lies on arc I - II.

The analyticderivation ofthe above statements is carried outin
part III-1-3 where energy is(treated). From the previous treatment,
the proposed fields of stresses and velocities are instantaneously
satisfied. Now it remains to prove continuity in the sense that this
velocity field yields a solution that will maintain the geometry un-
altered at any time. For this, a necessary and sufficient condition
is that the free surface BE remains straight and at an angle (mw - 3)
with the horizontal. Necessity being clear from boundary changes
and sufficiency by the use of incompressibility. It is difficult how-
ever in the present formulation to check continuity; for this and to
calculate plastic deformations it is better to introduce an Eulerian
frame of reference moving with the same velocity U as that of the
plate. The new problem later referred to as the conjugate problem,

is reduced to that of a moving half space with respect to a fixed rigid
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static plate

/

Fig. III-6. Velocity field for the conjugate ironing plate problem.
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Fig. III-7. Hodograph for the conjugate ironing plate problem.
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Fig. III-8. Variables for evaluating the energy dissipation.
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smooth pléte, and with the surface as shown in Fig. III-6. The
stress field remains unchanged and is still given by Fig. III-3. The
velocity field is given by Fig III-7 which differs from III-5 by a shift
of the origin O by an amount U. Thus, in Fig. III-7, O, Ap’ Bp
coincide (Ap and Bp are points on the plate surface).

In this new setting with any point in Zone II moving parallel
to BE at an angle w - o, to the horizontal, both conditions for
continuity (BE remaining straight and at an angle = - & to the

horizontal) are clearly satisfied.

IIT-1-3. Energy considerations

We let
W, = Power expended by external loading
W.1 = Power dissipated in solid
W.lh = Power dissipated in solid in the form of heat
Wid = Power dissipated in solid in permanent distortion.

Thus,
i ih id
for power equilibrium
W =W, (3)
(1) External power
From Fig. III-8, we have

W = [pL sin 3] U

Using (1), then
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We = kLU(r + 2 - 43) sin » (4)

(2) Internal power

1.

Internal power of distortion
With u and v the velocities along o and B lines re-
spectively, Fig. III-8, thus with 6 being the counterclock-

wise angle between the «a-line and the horizontal

du

v d® along a-line
(5)

dv = -ud6 along p-line

In Zone I and II, we have
d6 = 0, thus, using (5), du = dv = 0;

which, in turn means that in both zones

Ww., = S. c..€..dV =0
id 13743

vol

In Zone III

Along B lines d6 = 0, then using (5) v = constant

along P line and since v =0 at C', then
=0 in zone IIT. (6)

(A result that directly follows from Fig. III-5).
Using (5), thus u = constant along a lines, and since u is
constant along BC, then u = constant in zone III. (7)
Taking polar coordinates (r,08) for region IIl as in Fig.

III-8, then using (6) and (7)



then (8)

(The negative sign corresponds to negative shearing stresses).

From hodograph in Fig. III-5, we have
u=UvV2 sin 3 (9)

Using the condition of plane strain (€zz = 0) together with (8)

and (9)
strain energy - > i _ °
Golt Hime L T R 0 I
e U\/erm )

Wid = S‘ O-ije'lj dv

vol
2 S' l:S‘L/‘[ZS kU\/—Z smb b % d6:| do
Wid=kLU(%— m)sin;& (10)

Heat power of dissipation

The power released at discontinuities of velocity where shear-
ing stresses are acting is considered to be dissipated in the

form of heat.

In our problem, the discontinuities occur along the boundaries
AB, AC, CD, DE. Along AB, the surface of the plate pre-

viously assumed to be smooth gives no energy dissipation.
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Along the other boundaries which are an @-line, the shearing
stresses are equal to k and the velocity is constant and equal
to u.

Knowing that AC= DE = L
V2

ST T (11)

and arc CD =
y2 ¢

and exterior material is static

then using (9) and (11):

W.lh=KLU[2 +X. z&] ain & (12)
(2), (10) and (12) imply

W, = kLU |:1r+2 -45] sin & (13)

We note that (4) and (13) satisfy (3) and power is equilibrated.

Dividing (10) by (13) and using (3), thus

m
Waars Pags 3o
L e ok 2 ay

For small », neglecting higher orders, thus

id m
We o T +ZT!= 0.306

i.e. the energy of distortion is about 30% of the total energy

dissipated.

III-1-4. Distortion of a square grid

To evaluate the distortion of a square grid we shall compute

the time IZ (y) required for a particle at a height y above level B'E’,
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in Fig. III-9, starting from the plane EE' (or x = 0) to reach BB'
(or x =1L cos ») in the conjugate problem.

Using the symmetry of Figs. III-6 and III-7 we can directly
deduce that

- No vertical distortion is present.

- The material below B'E' is left undisturbed, thus

% 4 |Y<O - él—"—i?ﬂ = constant (i)

- For 6 denoting the total horizontal distortion of an
originally vertical line in the direction of U (direction of

-x in Fig. III-9). Then

6y) =[T(y) - T_]U
Using (i)
5ly) = [T(y) : EL—‘{J"—S—“’] U (i)

- From the hodograph Fig. III-10, the following velocity

relations are deduced

—\2
(%) =1 +2sin® 3 - 2V2 sin y cos © (iii)

where v = v (0) = velocity of a particle at location 6 in
region BB'DB, Fig. III-9, for 6 = 45 - 3, then specializing
(iii):

v

(000 o B ;
Sl = cos N - sin ¥ (iv)

where ;0 = v(45 - M) = velocity of a particle in region DBED.



Y, = L/z [VZ - (smd +cos9)]

% = L (yz -sind)

Lsind

~Zone A

- JP Zone B

L/a [ cosP +sin¥]

L/ [cos? - sin¥] |
+ 1

L cosi?

Variables for evaluating the distortion in zone A in the conjugate

Fig. III-9.
problem.

“9%1-
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Also from Fig. III-10,
¥(8) cos (6 +¥) = U(cos 8- V2 sin 3) (v)

where W is the angle between the velocity direction and
the positive x axis.

To get the particle path in region BB'DB, we note the
independence of v on r; applying the incompressibility
condition to Zone FHNCBE, with BC being the radial line
at an angle 6, FHNC and BE are both stream lines and

v makes an angle (6 + ¥) to the normal to BC, then
55 I. ; .
v(0) cos (6 + ¥) * r(y,0) = U[-z—(\[Z - 2 sin ) -y] (vi)

'Using (v) in (vi), then

2

> (V2 - 2sind) -y

(vii)

r(y,0) =
cos 6 - V2 sin &

where r(y,0) = radial distance of a particle at an angle 6
from BB' originally starting at a level y above B'E'.
From (vii) and with y = y, = %’-[wfz - (sin & + cos M)],

we get the equation of B"D

-ZI:(cos S - gin )

cos © - Y2 sin »

(viii)

r(0) =

Computation of T

Since particles follow two distinct types of paths we shall
divide the region into two zones: Zone A, bounded by BB"GEB and

Zone B, bounded by B"B'E'GB", Fig. III-9.
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1 (o]
ol Circular are (orisin)

I8 u %

+—

Fig. III-10. Geometric relationships in the hodograph.

Fig. III-11. Infinitesimal length along a streamline.
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Zone A: y1<y<ys
Let s be the length along the path

ILet t be the time

and for t = 0 we let the particle be at F with coordinates

(0,y), Fig. III-9,

for t T we let the particle be at H

R
for t = -TZ—B we let the particle be at N
for t= % we let the particle be at Q

From Fto H

the velocity is constant and equal to U and FH straight;

. T1. va-y. DG . lya-¥y) i
Rl s - Srat ; Tl oSl

XL_1| cos & t sin thse)

1 ;
Tl__I_J—[T_sm'}_ cos Ny - sin ¥

2

From Hto N

the velocity is constant and equal to 70 and HN straight;
[cosf& + sin & +-2-f - \/-Z:I
N

Ta = Ty o NH
L )

=
Z S
v v

(cos & - sin
O o)
using (iv) then

; 2y :l
2L I:cosa}ﬂ‘sm,&Jr—f Al

& - T B W) (x)

From N to Q

the velocity is v(6) given by (iii) and the path by r(y,8)
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in (vi). Consider y as constant (the original location

of the particle at t = 0) and let

a=+v2 sin

A= r(y,0)

%—(V—Z—Zsin,&)—y =71-'2—(1—a)-y

i =2 sin ¥

(xi) in (vi) —

r(8) = All - a) =z

sin ©

dr = A(1 - a)m do
From Fig. III-11, (vi)' and (xii) —=

- ds = [dr? + 2 a%0)

Using (vi)' and (xii), we get

1 -a

(xi)

&

1
+ a . -2
ds = - A(l - a) [t +a° - 2a cos 8] 49 (xiii)
(cos 6 - a)?
but'dt = _c-l__s , by using (iii), (xi), (xii) we get
v
; 2
it s ~Alsa) [ 4+ —Zacosae] A8 1
ek St U[ 1+a® - 2acos 0]
A A(1U- a) de Yk

(cos © - a)®

integrating both sides of (xiv)

T/2 6=0

S‘ o i) ‘Sﬁ de
= - g Pl L e
Tz /2 0=45-5 (cos O - a
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0=45-y
2A(1 - a) de

i.e. T - Ta = —_—_—
e 0=0 (cos 6 - a)?

Evaluating the integral and using (xi), we get

2L [7%' BB - }1’71 iy

I ey cos 23 (xv)
sihere BlEy="1% 22 sind -t
(cos 23)%
{_ 1 +vV2 sin tan(45 - g})} (cv")
(cos 2,&)E Z
Adding (ix), (x) and (xv)
L BLY A o vy X cos § + ain ¥ B(ﬁ))
s U {({2 An'g L)(cos N - sin ¥ ’ cos 2%
cos > +tsiny-v2 + Eﬁ’-
* 1 - sin 2y (evi)

where B(Y) is given by (xv)'
It is clear from (ii) and (xvi) that &(y) is linear in
Zone A. To describe the function completely it is
sufficient to get values at end points y =y, and y =ya.
1
For = = L( - sin ﬁ), using (ii) and (xvi
y = ya i g (xvi)

_ " [ sin » cos 23]
Sl = 8 Srelieps ey

(xvii)
For y=y1 = %[\[2 - (sin > + cos )]

5(yy) = & =L [[]i(c“:’s) < i°:.mz*§1 (xviii)
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Zone B: 0<y <y
Let MRS be the path of a particle at height y above
B'E*, Fig. 111-12,
ILet t =0 for the particle at M
Let .t = for the particle at R

let t= for the particle at S

o MH |3

From M to

The velocity is constant and equal to U and MR straight

. Si - MR
AT P |

1. ; .
O i | :\/-ZTJ,—[JZ cos & - sin @] (xix)

where & 1is the angle between BB' and BR, such that

y:% (1 - cos &) or (xx)
&.s coa L (1 ﬁl) (s}
i il

From: R to-S

The path of the particle is defined by (vii) because the
incompressibility condition used for Zone A still holds.
Then (vi)' applies to path between R and S considering

y (or @) as a constant, then using (xx)

r(0) = All - a) (vi)'bis

where

a=v2 sin ¥

1
=72— (1—3)_Y__£(cos<1> - a)

s = 7 o (xi)'bis

A




~ B L
_1
l ¥ £
l 1
2]
y
Lz L Zone A
7 y .L
05 v
s é D ) '
- ot T ot S K] :
X [
| \
LAZ sing P L [cos¥-sind/yz]
L cos¥

Fig. MI-12. Variables for evaluating the distortion in zone B in the conjugate problem.
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In a similar treatment as that of Zone A we get

Al - a) do

dt = - T

(xiv)bis

(cos 0 - a)2

Integrating both sides of (xiv) with their respective limits:

T/2 0
5 e A(1U— a) %e
T, /2 gty oE = 5]

P |

= 2A(1 - a)
Lox kg = S. lcos@-ai'

Evaluating the integral and using (xi)', we get

Ty =

I\/Z I_2 s1n¢’+2{2 sin & (cos ® -V 2 sin M)
Jcos 2y Yoe 2,&)%

1:amh_1 <1 tV2sind tan g):l (xxi)

(cos 23)”° “

Adding (xix) and (xxi), we get

d -1[3—1“{\/2 cosy-sin®

5 121&[511&4) +Z\f2 sin,&(cosfb V2 sin 3)
i (cos 2 )“

-1 1 +v2 sin » @):] ;
tanh R T tan 5 (xxii)
Lx < (cos 23)% s }

Using (ii) and (xxii), we get

1
6—J2 L{(m- 1) sin@

2\[2 sin cos ® - V2 sin )

(cos 23) 3/e
>} (xxiii)

o]

tanh L < 1 +v2 sin d .

(cos 22})E
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for @ ~+~0 then &-+0 i.e. no discontinuity at y = 0
fox: -y == 0)

for ® =45 -y then y =y, =%[wf2 - (sin » + cos V)]

and

_ 1 L[B®) - 23]
6n) =L (cos » ‘;':Ossin )

where B(Y) is given by (xv')

Comparing with (xviii) the function is continuous at y = y;;
from the above results it is clear that &(y) is continuous
for all »~ in the considered range (0<% <% )

To get the slope of the curve &(y) w.r.t. vy, differentiate

o dé _ db d¢
(xxiii) w.r.t. y, and use (xx) in e we get

dé ( 1 ) 4Y2 sin »
—_— = 2l —=———— - 1) cot &+
dy cos 2v (cos 2,&) 372
[(cos & - V2 sin Y)(cos 2,&) (1 +v2 sin )
2 sin® (cos 2% - 2 sin® —(1 +vY2 sin 9)
1 +v2 sin » gt %] (exiv)
(cos Z,&)é
dé 1
for ¢ — 0 then s 38 O T ~ o for all » (xxv)
y
{or ¥ =~ 0)
Special case » small
Writing
afn ¥ =5 +O0*)
cos » =1 + O(¥®)
tan & =8 +0OQ%) S
Iazl < 1

o*

e +_] + O(3)

wl%

t:anh-1 (¢ +0W)) = [1 -
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from (xv)' and (xxvi)

B(y) & 1 +1.2454 3

(xxvii)
inZone At WS y=Evw
(xxvi) in (xvii) yield
sen 1
ﬁma;x =~ 21 (xvii)
(xxvi) and (xxvii) in (xviii) yield
1 +1,2454y - 1
Slys) = 8 wor LA 2128540 - 1]
s 6y = 11,2454 1LY (xviii)'
) - &
slope of &(y) line = r;;a:i o & 0'715_)‘;2 g 1.5
(xxviii)
in Zone B: 0=y=vy (or 0= &= 45 -))
(xxvi) in (xxiii) yield
5=~ V2 L% 22 & cosd: taph ) ((1 +v2.9) tan-%’)%
~4 d
= 413 cos & tanh ~ (tan 7)
2 4
& l: (tan%) (tan%’)
6 41) cos & tani 1 3 + z + :]
(xxiii)’

(xxvi) in (xxiv) yield

dé ik -1 ¢
-d—};u 4\[2 A [m - tanh (tan 7)]

for & =45 -y
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2 4
2P afzs[ o044z (14 (0.4142)" , (0.4142)" , )]
y V2 3 > /
& 42 [ % J 0.4142(1.063)]
~ 1,51 9 (xxix)

Compare (xxviii) and (xxix), it is clear that 48 is continuous

dy

everywhere.

III-1-5, Summéry of results

The ironing plate problem has been solved assuming that the

heap ahead of the plate is an isosceles triangle, Fig. III-2. This

shape of the heap was the only one found to satisfy the steady-state

requirements; however, without a proof of uniqueness, other shapes

cannot be ruled out.

The main results of the solution are:

(1)

(2)

The slip line field of Fig. III-2 gives a uniform normal

stress at the interface p equal to
= (r +2 - 43k (1)bis
The shearing stresses at the interface being zero by

definition of a smooth plate, the resultant force thus

acts at an angle & to the vertical and is given by

P=(r+2-23kL (14)

After one plate traversal, the permanent deformations
are in the same direction as that of the motion (horizontal)

with no vertical displacements.
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For small values of > (0 <> < 10° say), which is the range
of interest in applications to the rolling theory of Chapter IV,
a summary of the dimensions and permanent horizontal de-
formation 6 is given in Fig. III-13, We can see that the
distribution of 6 at different heights y can be divided into
two zones: An upper zone A (y1=vy = yz) where § is linear
and a lower one B (0 <y <y;) where it is curved. For depths
larger than ya, (y<0) 6 is zero. Moreover the slope of
&(y) is continuous everywhere except at y = 0. For a more
detailed graph of the curved part in zone B, Fig. III-14 was
drawn. Noting the difference in scale between the two co-
ordinates in this figure the curve is thus very flat with an
infinite slope at y = 0.

For large values of » (100 <y < 450) second order terms
may not be neglected and need to be used. The pattern of
deformation & is still the same as for small » however vy,

and yz are now given by:
L 7 :
yi & 7[ 2 - (sin & *+ cos V)] (15)

o = T é v gl ) (16)

6max and 6, describing the linear variation of 6§ in zone A
are given by equation (xvii) and (xviii) respectively.

6(y) in zone B is given by equation (xxiii).



. Smax
v Y
ol > Zone A
% -
Initially
vertical |ine :
rZone B

-6971-

Fig. III-13.

For sma// ¥ : o= .51 ¥
y,= 0.207 L § = 1245LY
Y, = 0.707 L Spay= 2 L¥

Summary of the computed distortion of a square grid for small values of .
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Zone A

- Zone B

Fig. III-14. Normalized §-y relationship
in zone B for small values

6f

Straight Jine }i_ =1,519 ]

]
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(b)

Fig. IlI-15. The instantaneous solution of the rolling
problem.
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III-2. Wedge indentation by a rigid smooth roller, the instantaneous

solution of plane strain rolling

Consider the plane strain problem of a rigid smooth cylinder
with radius R and a rigid-perfectly plastic wedge Fig.IIl-15-a,
with the upper surface GABE. The portion GA is horizontal, BE
is straight and makes a clockwise angle ¥ from the horizontal.
Portion AB 1is a circular arc with the same radius R as that of
the cylinder and a center of curvature O' which lies vertically
above A. The angle between the two radii O'A and O'B is 3.
The cylinder is to be fitted so that its center O coincides with O
and then an instantaneous horizontal velocity U, to the right, is
given to O. Simultaneously an angular velocity w is given to the
cylinder about its center.

In the following part we present two failure mechanisms to
the problem.

(1) A front failure pattern in which the plastic zone within
the wedge lies ahead of.the roller. It is an exact solution
and will be proven to apply in the case when the surface
of the wedge has the shape GABDF, Fig. III-15-b, which
is the same as thé previous problem but now DF is
horizontal and BD is equal to RY. The latter problem
will be used in chapter IV where the rolling <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>