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ABSTRACT 

Two topics in plane strain perfect plasticity are studied using 

the method of characteristics. The first is the steady-state indenta­

tion of an infinite medium by either a rigid wedge having a triangular 

cross section or a smooth plate inclined to the direction of motion. 

Solutions are exact and results include d e formation patterns and forces 

of resistance; the latter are also applicable for the case of incipi e nt 

failure. £xperiments on sharp wedges in clay, where forces and d e ­

formations are recorded, showed a good agreement with the m e chanism 

of cutting assumed by the theory; on the other hand the indentation pro­

cess for blunt wedges transforms into that of compression with a rigid 

part of clay moving with the wedge. Finite element solutions, for a 

bilinear material model, were obtained to establish a correspondence 

between the response of the plane strain wedge and its axi-symmetric 

counterpart, the cone. Results of the study afford a better understand­

ing of the process of indentation of soils by penetrometers and piles as 

well as the mechanism of failure of deep foundations {piles and anchor 

plates). 

The second topic concerns the 'plane strain steady-state free 

rolling of a rigid roller on clays. The problem is solved approximately 

for small loads by getting the exact solution of two problems that en­

compass the one of interest; the first is a steady-state with a geometry 

that approximates the one of the roller and the second is an instantane­

ous solution of the rolling process but is not a steady- state. Deforma­

tions and rolling resistance are derived. When compared with e xisting 

empirical formulae the latter was found to agree closely. 
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CHAPTER I 

THEORETICAL PRELIMINARIES AND 

FUNDAMENTAL CONCEPTS 

I-1 • Introduction, problems treated 

Two topics are treated in this text. The first concerns the 

plane strain steady- state motion of rigid indenters in an infinite 

space, Fig. I-1. The indenters are either a wedge with a triangular 

cross section, Fig. I-1-a, or a plate inclined to the direction of 

motion, Fig. I-1- b. The solution of these problems is given in 

chapter II for a rigid-perfectly plastic infinite medium using the 

method of characteristics. Results of experiments simulating the 

wedge problem are also given in chapter II as well as results of 

finite element solutions that extend results of the plane strain wedge 

to its axi- symmetric counterpart, the cone. 

The second topic is on the theory of rolling; it is covered in 

chapters III and IV. In chapter III the solutions of two problems 

in perfect plasticity are obtained. The first is the ironing plate 

problem shown in Fig. I-2-a, it is that of an inclined rigid smooth 

plate moving steadily parallel to the surface of a rigid-perfectly 

plastic half- space. Ahead of the plate, a heap is present; the shape 

of the heap must be found such that the steady- state condition is 

satisfied. The second problem is the instantaneous solution of the 

rolling problem , Fig. I-2-b; it is the incipient failure of a wedge 

(or half-space) indented by a smooth rigid roller. The wedge is 

made of a rigid-perfectly plastic material and has the upper surface 
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u 

(a) Rigid wedge 

u 

{b) Smooth inclined plate 

Fig. 1-1. Steady- state motion of rigid indenter s in an infinite space, 
the problems treated in Chapter II. 
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u 
Smooth ri9id plat~ 

(a) The ironing plate problem 

D E 

(b) Instantaneous solution 

Fig. I-2. · Fundamental solutions for the plane strain rolling; the 
problems treated in Chapter III. 
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GABDE as shown in Fig. I-2-b. The roller is fitted such that AB 

is the arc of contact and then an instantaneous horizontal velocity U 

and an angular rotational velocity w are given to the roller. The 

results of the above two problems represent the fundamental solu-

tion of the rolling theory formulated in -Chapter IV. 

In chapter IV the general formulation of the steady- state 

free rolling of a rigid cylinder is first presented. A discussion of 

why the rigid-perfectly plastic material was chosen to idealize the 

half-space material follows. Finally using the results of chapter III 

expressions for the rolling resistance are derived and compared with 

existing empirical formulae. 

Chapter I is devoted to the main theoretical preliminaries and 

fun_damental concepts used subsequently. Fiq;t, the theo:ry of plane strain 

ideal plasticity is briefly presente d; definitions and notations follow 

- ] * the lines of Hill [ 1 apart from some conce pts that are special to 

our steady-state solutions. Ne xt the apparatus used for plane strain 

testing of clay is described. It allow s the measurement of deforma-

tions on a plane of symmetry instead of at the walls of a container as 

previous investigators have done [ 2, 3] • Finally the fundamentals of 

Wilson 1 s finite element technique [8 J of solv ing for a bilinear material 

are presented as well as the modific a tions made in _ it to suit our 

problems. 

* -Numbers in brackets r e fer to the bibliography at the end of the 
chapte r. 
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I- 2. Definitions and notations in perfect plasticity 

The following part is intended to outline the notations used 

subsequently rather than to present a rigorous and complete treatment 

of the theory of ideal plasticity as discussed in Hill ( 1] or Prager [ 4]. 

I-2-1. The rigid-perfectly plastic material 

For plasticity solutions in the following section, the defor-

mable material will be taken to be a homogeneous, isotropic, mass -

less, rigid-perfectly plastic, and incompressible with a yield 

criterion independent of the hydrostatic pressure. This material is 

often described as "rigid-perfectly plastic" and for convenience will 

be called "rigid-plastic" or "plastic" herein whenever no confusion is 

caused. 

The formulation of problems dealing with this material can 

either be analytical or graphic; the latter method will be used here 

for its simplicity and convenience of representation. Knowing the 

graphical solution of a problem enables its analytical counterpart to 

be derived. 

I-2-2. The plastic state 

In plane strain problems, as considered here, a material 

point is said to be in a plastic state if: 

( 1 ) 

where <Tll and <T:a:a are the normal components of the stress tensor in 

the right-handed orthogonal cartesian £ram~ X. 

Unless otherwise mentioned X will be taken as 



-6-

m Fig. I-3-a. 

<r is the shearing component of the stress tensor 
12 

in X. 

k is a material constant 

= Y /2 for a Tresca material 

= Y/./3 for a Von Mises material, where 

Y is the major principal stress at yield in simple 

axial extension. 

Equation (1) can be represented in a Mohr diagram, Fig. I-3-b, where 

the radius of the circle, describing the state of stress at the material 

point, has a radius equal to k. Material points in a "rigid" or 

unyielding state have corresponding Mohr circles with radii less than 

k. Referring to Fig. I-3 

CT" is the compressive hydrostatic stress at the 

point. 

<rn is the normal stress on a plane with outward 

normal e , taken to be positive when tensile. 
~n 

T is the shearing stress on the plane with outward 
n 

normal e taken to be positive if it acts in the 
~n 

direction of ~t, where ~t' ~n form a right­

handed orthogonal system. 

The pole P is the point on the circle through which a straight line 

drawn parallel to ~t will intersect the circle at a point with co-

ordinates equal to the stresses acting on a plane whose normal is 

The a and f3 directions are the directions of the planes on which 

maximum shearing stresses occur at the material point and thus form 
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x 
~. 

(a) Sign convention in the physical plane 

(b) Mohr Diagram 

0: (+-ve) ,, 

Fig. I-3. The stress space showing Mohr circle for a material point 
in a plastic state. 



-8-

a right-handed orthogonal frame (in that order). The Ci:'-line makes 

an angle e with the horizontal, being measured counterclockwise. 

The principal stress directions thus make angles of 45° ± e with 

the horizontal. In a yielding domain two sets of curves will be 

formed by lines parallel to a- and f3-directions; they will be called 

the "a-family" and the"l3-family" respectively. 

It is thus clear that if a point is at a plastic state, given the 

pole P the state of stress at this point is fully determined. In this 

sense we can regard the stress plane, or Mohr diagram, as a mapping 

of the stress state at every point in the physical plane into its cor­

responding pole location in Mohr diagram and thus describe the stress 

field in a plastic domain. 

I-2- 3. The conjugate problem 

Since we consider massless materials exclusively, the problem 

of a rigid indenter moving in a rigid-plastic material with a constant 

velocity + U {to the right) is statically identical to the one in which 

the material is moving with a velocity - U {to the left) with respect 

to a fixed indenter. The latter case, which is equivalent to taking the 

coordinate axes fixed to the indenter, will be referred to as the con­

jugate problem. The kinematics of a conjugate problem are such that 

its velocity field is equal to the velocity field of the initial problem 

superimposed on a constant field of magnitude - U. 

I-2-4. Field equations, characteristics and slip lines 

Substituting from (1) in the equilibrium equations to eliminate 
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derivatives of cr12 we get a quasi-linear system of hyperbolic equa­

tions in 0-11 and 0-22. The characteristics, which ar e the curv e s 

acro ss which discontinuities of field variables may exist, are thus 

real and are found to coincide with the a and ~ directions at eve ry 

point in the plastic domain. 

''Slip lines" at a point are defined as the planes on which the 

maximum shear strain rate occurs; isotropy of the material implies 

that they must also coincide with the a and 13 directions at any 

point in a plastic state. Invoking isotropy again, we can show that 

the slip lines are the characteristics of the velocity field. 

We thus conclude that for the material considered, the a and 

13 lines form an orthogonal net that coincides with the slip lines 

which are also the characteristic directions of both stress and 

v elocity fi e lds. 

Using the graphical method of solution developed by Prager 

[ 4] , we need to draw the following three diagrams for each problem: 

(a) Field of characteristics or the physical plane 

The field of characteristics in a massless domain in a plastic 

state needs to satisfy the "Hencky-Prandtl" net requirements. These 

restrictions, which are implied by equilibrium, are: ( 1) the angle 

between two characteristics of one family, where they are cut by a 

characteristic of the other family, must be constant along their length, 

i.e. , independent of the particular inter sect ing member of the other 

family; (2) along a characteristic, the radius of curvature of each 

characteristic of the other family at its point of intersection must 
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change in proportion to the distance travelled. 

(b) The stress plane 

Writing the equilibrium equations in terms of er and e along 

the characteristics, one can show that the image of a characteristic 

must trace a cycloid in Mohr diagram; moreover infinitesimal 

sections of this characteristic in physical space must be orthogonal 

to their images on the cycloid. 

(c) The velocity plane or the hodograph 

The velocity of every mate rial point in the physical plane can 

be mapped into a point in a hodograph. The position vector of the 

latter, with respect to some origin, is defined to be the velocity 

vector of the material point. 

To satisfy the requirement of incompressibility of the 

material, corresponding line segments in the physical plane and the 

hodograph, along slip lines, must be orthogonal. 

I-2- 5. Discontinuities and singular points 

The two mappings described above from the physical plane 

into the stress plane and the hodograph are one to one and smooth 

except in special cases that we now point out in some detail. 

From the Hencky-Prandtl mesh requirements, the discontinui-

ties in curvature of a member of one family of slip lines can only 

occur at its intersection with a member of the other family. Dis­

continuities in stresses may occur across any plane through a point 

in a plastic domain except on directions parallel to the slip lines. 

This becomes clear by looking at Fig. I-4. Suppose P and C 
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(a) Physical plane 

o;, 

(b) Stress plane 

Fig. I-4. Discontinuity in the stress field. 
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are the pole and the circle of stress corresponding to the stress state 

at physical point A, lying on a curve· r (r is not a physical · 

boundary). when approached from below. Also let 12.B be parallel to 

the tangent te> r at A. Clearly er and 'T , at A are as shown in 
n n 

Fig. I-4. Now if the stress field undergoes a discontinuity across r, 

so that p + and c+ are the location of the pole and the circle when 

A is approached from above, then equilibrium across r implies 

that the location of P + and C+ are determined uniquely as shown in 

Fig. I-4. In the case where P + coincides with E or F, no dis-

continuity can exist. 

The orthogonality between a line segment of a characteristic 

and its image in the stress plane and the hodograph implies the following 

conditions: 

(1) If one characteristic is a straight line, which also implies 

that its family is straight lines, its image in the stress plane is a point. 

Its image in the hodograph can how ever be either a straight line or a 

point. 

(2) If a family of characteristics m e et at a point, a singularity 

of stress es and velocity is implie d an d the point has an infinite nµm-

ber of image points; it must the refore be excluded from the domain. 

Velocity discontinuities may e x ist either inside a plastic 

domain or at the boundary between plastic and rigid domains. By 

looking at a jump in velocity as the limit of a rapid change of a 

continuous velocity in a laye r whose thickne ss tends to zero, we can 

directly deduce that the discontinuity must be in the tange ntial 

velocity component across a slip line. A point on this slip line will 
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have two image points in the hodograph, one corresponding to each 

side from which this point is approached; the vector joining the two 

images is called a 11 jump 1
' and will be represented by a heavy line in 

the hodograph. At the boundary between a plastic zone and a smooth 

surface, a velocity discontinuity may also exist. This also is r e pr e ­

sente d by a jump in the hodograph. 

1-2-6. Bot...11daries of a plastic domain, free, smooth and rough 

A "free surface" is a boundary of a plastic domain along which 

the normal and shearing tractions vanish. 

A "free surface fixed in space" is a free surface with a fixed 

position in space for all time. If a boundary of a domain in a plasti c 

stat e is a free surface fixed in space, it thus follows that the normal 

c omponent of velocity at points in the plastic domain, in the neighbor­

hood of the surface, will vanish. 

A 11 smooth surface 11 is a boundary along which the shearing 

component of the surface traction vanishes. Moreover, the normal 

component of the relative velocity with respect to this surface of 

adjacent points on the boundary and within the plastic region must 

v anish. 

A "rough surface 11 with coefficient of friction µ is a boundary 

along which points in the plastic domain adjacent to the boundary have 

no normal relative velocity with respect to this surface. In case 

ther e ex ists a r e lative tangential velocity between the surface and 

adjacent point s , the r a tio of shearing to normal stresses at this poin t 

is g ive n by µ. If, on the other hand, no relative tangential velocity 
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exists at this point, then the stress ratio is less than or equal to µ. 

From the previous definitions, it is clear that: 

(a) For free and smooth surfaces, the slip lines at a point on 

the surface makes an angle equal to ±; with the normal to the sur­

face. 

(b) For rough surfaces, there do not exist perfectly rough or 

imperfectly rough surfaces as are often mentioned in the literature 

[ 5] and [ 6] , i.e. , there exists one degree of roughness which is 

completely defined by specifying the parameter µ which is a property 

of the two bodies in contact (solid friction). On the other hand the 

definition, being only applicable to points adjacent to the boundary, 

does not rule out the possibility of having any permissible velocity 

field within the plastic domain which may or may not have velocity 

discontinuities. 

As an example, let us consider the rough surface I' with 

coefficient of friction µ shown in Fig. I-5. Let I' be fixed in space 

and the plastic material below it occupy regions Di and D:a. Let 

Di and D2 be separated by a characteristic L: which is taken, for 

simplicity, to be a straight line. Suppose that a permissible plastic 

state exists in Di and Da, such that at any arbitrary point A on r 

the ratio of tangential to normal stresses does not exceed µ. It is 

clear that along r the definition of a rough surface is satisfied if Di 

is fixed in space, while Da may or may not be moving (e.g. parallel 

to L: as a rigid body). Note: In fact Di may be in a rigid state and 

the same mode of deformation would still occur. However such 

generalizations will not be needed herein. 
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D, 

Fig. I-5. Example of a permissible velocity field solution 
in the vicinity of a rough surface r. 
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I- 2- 7. Assumed steady free surfaces; uniqueness of solutions 

All the rigid indenters treated here (smooth or rough) 

w ill provide us with well-defined boundary conditions for at l ea st part 

of t he total boundary of the plastic domain. To find a steady- state 

solution to some of the problems of interest here requires the 

exi s t e nce of a fr e e surface which will have to be assumed. This type 

of surface will now be discussed in some detail since it is critic al to 

the solutions obtained. 

The two-dimensional symmetric rigid wedge in Fig. II-1 is an 

illustration. It has a smooth surface and is moving with constant 

v e locity + U in a full space of a rigid-perfectly plastic material. 

Along the front boundary ABC of the plastic domain, we have a 

smooth surface with properties previously defined. Now for the 

rear part we have two alternatives: 

(1) Require that the rigid-plastic material extend over the 

full space and in particular to remain in contact with surface AC. 

This approach is physically attractive because, if we begin with the 

wedge embedded in a full space of an incompressible material, as a 

reasonable initial condition, the volume of material should remain 

c onstant after any subsequent deformation; that is, the material 

should fill the space apart from the wedge entirely. However, with 

the ideal material model of perfect plasticity, solutions under those 

restrictions could not be obtained. 

(2) Allow the existence of a free surface behind the wedg e at 

all times (air gap) ADC in Fig. II-1 and look for the shape of this 

surface that would satisfy a steady-state condition. It is easier at 
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this stage to consider the conjugate problem where the rigid-plastic 

material moves past the indenter with a velocity - U. To satisfy 

the condition of steady-state, the assumed free surface needs to be a 

free surface fixed in space, i.e., the velocity of any point on the 

surface must be parallel to the tangent to the surface at this point. 

The main advantage of the second technique, which will be 

used in this text, is that it allowed us to reach solutions by means of 

the relatively simple theory of perfect plasticity. These solutions 

are exact if the motion is begun with the free surface having the 

assumed shape. On the other hand if motion is started with the 

wedge completely in contact with the full space one needs to study 

the unsteady transition from the initial configuration to the st•:! 3.dy­

state motion~ This method which requires changes in the model of 

the deformable medium, for example, the introduction of compres -

sibility, was not done. 

After assuming the location of part of the boundary, no 

uniqueness proof could be obtained. For this reason we will rely on 

experiments to show how close is the assumption to real steady­

states. 
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I- 3. Apparatus for plane strain testing 

Before actually solving the indentation problems describ e d in 

the introduction and since the object of this chapter is to give a 

theoretical background for subsequent work, we now present the 

idea behind the apparatus used in plane strain testing. 

After the theoretical solution of an indentation problem had 

been obtained using the rigid-perfectly plastic model, it was felt 

that an experiment on a real material exhibiting properties similar, 

but not identical, to the one in the theory would be useful in uncle r­

standing how differences in properties affect the results. M o reover 

in cases where part of the boundary had been assumed in the theoreti­

cal solution, the experiment would represent a check on this assump ­

tion. To this end, a special box was constructed which when filled 

with clay afforded plane strain testing with particular emphasis on 

the pattern of deformation. 

I-3-1. Clay, the plastic material 

A modelling clay was chosen to simulate the rigid-perfectly 

plastic material; our choice was made because of the following 

reasons: 

(a) Convenience in handling 

The clay, having been mixed with oil during its manufacture, 

is sensitive to temperature. At 60° C it is in a near fluid state, 

while at room temperature (26 ° C) it is in a solid state. This allows · 

the relatively convenient casting and molding of the clay into the 

r e quired geometry at 60° C, before p erforming all tests at room 
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temperature. 

The changes in strength due to room temperature fluctuations 

were measured after each test, using a vane test [7] and found 

negligible. 

{b) The stress -strain behavior of the clay 

The results of a set of one-dimensional compression tests 

on this clay, performed at room temperature, are shown in Fig. I-6. 

In these tests, the increments of load were added at equal time 

intervals and the strains were recorded before each increment. The 

test specimens were cylindrical with both diameter and height 

approximately equal to 3. 5 ems. No correction was made for the 

change in geometry due to straining. No brittle fracture occurred 

in any of the tests. 

In Fig. I-6, it can be seen that the clay behaves as a rigid­

plastic material with respect to : 

(1) Rate of loading: comparing curves A and B, Fig. I- 6-a, the 

rate of loading has a negligible effect up to 5% strain, while for 

20% strain, an increase in rate of 400% changes the stress by less 

than 15% . 

(2) Unloading: the clay has virtually no elastic recovery upon 

unloading, Fig. I-6-b, and in this respect is similar to the ideal 

material. Along the first portion of the unloading curve, the strain 

is still increas ing while the stress is being decreased; this behavior 

is believed to be caused by the time-dependent properties of clay. 

On the other hand the clay behaves quite differently from the 
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Fig. I-6-a. Effect of rate of loading on modeling clay behavior. 
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Fig. I-6-b. Unloading curves for modeling clay~ 
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rigid-plastic material in the loading part of the curve. It has a near­

parabolic shape and no definite yield stress can be seen. This fact 

makes our tests more interesting, since most clays behave in this 

manner and an estimate of how close the theory can get to real test 

behavior is of prime importance. 

I- 3 - 2. Apparatus 

Since the main object of the experiments was to determine the 

pattern and mode of deformations in plane strain problems, a special 

box was designed to suit that purpose. Instead of recording defor­

mations at the walls of the container as most previous experimenters 

have done [ 2], [ 3], we make use of the symmetry about the center 

plane to reduce the effect of boundary shearing stress unaccounted 

for in the theory. 

The box is shown in Fig. I-7 -a and its dimensions given in 

Fig. I-7-b; the enclosed space, where the clay is to be fitted, is 

40 X 40 X 10 cm. The basic components of the box are four parts A 

and two sliders B. Each two of the parts A can be assembled 

separately to form half the box; we are interested in having each 

half on either side of the center plane, to behave as a unit. Such a 

half is shown in Fig. I- 7 -c. The two halves can then be held together 

by means of bolts and nuts to form the static part in the experiment. 

Sliders B are held together at both ends by means of aluminum 

blocks D. The surfaces of the sliders in contact with A are covered 

with teflon to minimize friction. Part C fits in a cut made in the 

slider B; it has properly spaced holes to allow the fixation of the 



23 

Fig. l- 7-a Apparatus for plane strain testing. 
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Fig. I- 7- c Half the box on one side of the center plane 
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indenter E to the sliders by means of screws. The cut in the slider 

is necessary to insert and adjust the indenter into its proper position. 

The movable part of the experiment which includes B, C, D and Eis 

shown in Fig. I-7-d. 

I- 3- 3. Plane strain testing 

a. Specimen preparation 

A test specimen representing an infinite medium is made by 

filling the box with clay. This is done as follows: 

The clay is heated to 60°C and poured into each half of the 

box on both sides of the center plane separately. At this stage, each 

slider B is attached to half of the box and the indenter secured in the 

proper position to start a test. After the clay has solidified at room 

temperature, an orthogonal grid is drawn on the surface of the clay 

which represents the center plane, One set of lines is drawn parallel 

to the direction of motion of the sliders. It was found that securing 

the indenters in position before pouring the clay is more convenient 

and accurate than cutting a hole in the hardened clay and then inserting 

the indenter; this however requires having two identical indenters to 

attach each to one half of the box during clay preparation. 

b. Testing 

After 48 hours of cooling, the two halves of the box are brought 

together, and blocks D and the indenter fixed to the sliders. To avoid 

buckling of the sliders two stiffening U channels were added; the 

test set up is shown in Fig. I- 7- e. 
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Fig. I- 7-d Movable parts in plane strain testing. 



-28-

Fig. I-7-e Test setup 
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The box is rested on two parallel I beams of a 10-ton capactity 

compress ion machine spaced with a sufficiently large gap £or the 

sliders to move between them. To measure the load, a proving ring 

is inserted between the upper block D and the head of the machine H 

which can be driven by an electric motor to move downwards at a 

constant speed of 1. 36 mm / sec. The indenter is driven through the 

clay by the motion of the driving head of the machine. 

In this setting, we take readings of the load as the testing 

proceeds. During the motion of the indenter a deformation pattern 

is recorded at the center plane by the distortion of the grid. After 

the test, when the two halves are separated, the distortions can be 

measured on the grid. 
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I-4. Finite element solutions, the bilinear technique 

B e sides the experimental verification on perfect plasticity 

s o lutions a se c ond check will be made using the finite element 

t e chnique , the essentials of which now follow. Let curve B in 

Fig. I-8-a represent the stress-strain deviatoric behavior of the 

modelling clay used in testing . When this type of behav ior, w hich 

is typical of a wide class of saturated clays, is incorporated into 

the field equations, it makes the solution of general problems im­

p o ssible; to obtain solutions requires further simplifications. If a 

piecewise linear curve is used to approximate curve B, solutions 

can be found either theoretically or through numerical techniques 

depending on how the idealization has been made. 

A first step in idealizing curve B is through the rigid-

perfectly plastic behavior, curve A, Fig. I-8-a. Theoretical solutions 

now can be found and generalizations are easy to make because of the 

relative simplicity of describing the material. On the other hand 

although such an approximation may be acceptable in some problems, 

it may not be for others and a more accurate description is necessary. 

A better idealization may be achieved through the bilinear 

curve C. Theoretical solutions are no longer possible and numerical 

techniques must be introduced. Out of these techniques we chose the 

finite element method developed by Wilson [ 8] with corrections and 

modifications. In addition to filling the gap between ideal plasticity 

and real material behavior, the finite-element method gives insight 

into the deformation and stress fields. Furthermore, once plane -

strain solutions have been found and compared with ideal plas ticity 
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A: rigid-perfectly plastic 

B: Modeling clay, nonlinear 

C: Bilinear material 

Deviator/c strain e 

Fig. I-8-a. Different idealization methods for a nonlinear material. 
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and test results, the extension to axi-symmetric problems is not 

difficult and requires a new meaning and credibility. 

Finally we wish to make it clear that since bilinear solutions 

rely on solving successive infinitesimal elasticity problems, as will 

be seen shortly, the technique as usually employed does not allow for 

the large deformations associated with steady state problems. In 

that respect, the finite element solutions apply for incipient failure 

while ideal plasticity covers the steady state. 

I-4-1. Definitions and notations 

The following definitions apply only to the discussion of finite 

element solutions in the rest of this chapter as well as in Appendix A; 

they were simplified to cover the discuss ion of the problem at the 

price of generality. The basics of finite element theory can be found in 

Zienkiewic z [9 J while the elasticity terminology is that describe d by 

Turteltaub [ 10] • 

(1) Elastostatic state 

Let R be a bounde d regular region (see Kellog [11 J) in · 

Euclidean 3- space. We call the ordered array of functions 

g = [;: <~'.> ~] an elastostatic state on R with the vector-valued 

displacement field u, the 2-tensor strain field y and the 2-tensor 
~ ~ 

stress field ~ corresponding to the 4-tensor elasticity tensor field 

c and the vector-valued b o dy-force density field f, provide d: 

(a) Continuity conditions 

. . 
ti C c3 (R) n c (R), y C c 1 (R) fl c (R), CJ C c 1 (R) n c (R) 

~ Cc (R) and invertible , £Cc (R) 
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{b} field equations (3), (4) and (5) hold on R 

1 
y .. =-

2 
{u .. +u .. ) 

lJ 1 'J J ' 1 

er • . 
lJ 

o-•.. + £. = 0 
lJ 'J 1 

{3) 

(4) 

(5) 

i,j,k,1=1,2,3 with summation convention implied 

For the special case when c is isotropic, i. e, in the form 

This amounts to replacing (4) by (4 1
), where: 

(4 ') 

where 

Young's modulus E 

Pois son's ratio v 

The shear modulus 
E 

G = 2(1 + v) 

Lame modulus 
vE 

A.= (1 + v)(1 - 2v) 

(2) A deviatoric state 

We call the ordered array (s ,e} a deviatoric state with scalar 

fields s and e associated with the elastostatic state g provided: 
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and the deviatoric strain e = .~ )(y1 - y2 )
2 + (y;a -'( 3 )

2 + ()'3 - '(l )2 

v2 · 

where er. and y. are the principal values of the 2-tensor fields 
l l 

\ 

and y_ respectively. 

Notes. 

(a) The invariance of s / under rotation of the frame of refer-

ence,and subsequently of e can easily be proved (see [ 12]) which 

makes the definition of a deviatoric state meaningful. 

(b) For an isotropic material upon substitution from (4 1
) into 

(6) we get 

s = 2Ge (7) 

(3) Bilinear material 

By a bilinear material we mean a linear isotropic material, 

with elastic modulii G and v, for values of s less than a particular 

* * value of s • For s larger than s its shear modulus becomes nG. 

The s - e relationship for the mat e rial is thus given by: 

s = 2Ge 

[ * ( e*)J s = 2G e + n e -

* for s :S s 

* for s > s 

(7 ') 

where the deviatoric yield strain * * e = s /2G, the deviatoric yield 

* stress is s and the ratio of plastic to initial modulii is n. 
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This material is defined through G, * v' s and n in a graph which 

is given by curve C in Fig. I-8-a. 

According to (6) substituting cr1 = Y and cr2 = cr3 = 0 and 

* calling the corresponding s = s , we get 

* s = y (8) 

This relation describes the yield condition for a uniaxial stress 

testing with Y as the one-dimensional yield stress. 

(4) The error and the average error. 

Associated with an (s, e) state and a bilinear material in the 

element i, we define an error ~s. as the ratio of the difference 
1 

between s and the deviatoric stress s', corresponding to e on the 

* bilinear curve, to s , i.e. 

~s. = 
1 

s - s' 

* s 

. * An example of s (~s) is shown in Fig. I-8-b, it is represented by 

the vertical distance 34, 

The average error Ts is defined as 

(9) 

where m is the total number of elements in a F. E. mesh. 

I-4-2. Wilson's technique 

Suppose we have a well-posed problem in elastostatics within 

the framework of infinitesimal elasticity. Let the elastic material be 

isotropic with G and v the elastic shear modulus and Pois son's 
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Oeviator/c strain e 

Fig. I-8-b. Wilson's technique of solution for a 
bilinear material. 
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ratio describing it. Now keeping all other properties the same, let 

it be bilinear in deviator behavior, i.e., its s-e diagram is 012 

Fig. I-8-b instead of 013. By a solution to this problem we mean 

that it is r e quired to find a state g = (u,-y ,CT) in which eve ry point 111 

the field has an (s ,e) state lying on 012 instead of 013. 

Wilson's technique was developed to achieve this goal by 

solving the same problem several times, each solution being called 

an approximation. At every element in the field the rigidity is 

changed according to the (s, e) state at this element in the previous 

approximation. The technique thus amounts to solving several in-

homogeneous linear elasticity problems. 

In a more systematic manner, this is done as follows: 

(1) The first approximation is the solution for a linearly 

elastic material with a rigidity equal to the initial part of the curve 01 

Fig. I-8-b. 

(2) Let point 3 be the (s, e) state within a certain element; 

point 3 lies on the straight line 013. Let point 4 be directly below 3, 

but on line 12, i.e . points 3 and 4 are two deviatoric states having 

the same strain e . Then for this element, in the second approxi-

mation, the s- e line will be taken to be 04 . 

(3) Repeating the same procedure for all elements in the 

field, the second approximation will thus be the solution of a nonhomo-

geneous linearly elastic material. 

(4) The subsequent approximations are carried out in a 

similar manner until the (s ,e) state at every element lies close 

enough to line 012 to be considered satisfactory. The method that 
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will reach such a state in the least number of approximations is con­

sidered superior because of the cost of computations. 

I-4-3. Modifications made on Wilson's technique 

The successful convergence of the {s, e) states to line 012 by 

successively changing the stiffness of each element hinges on the 

following assumption. 

Let the {s ,e) state of a point in an elastostatic field subject 

to certain boundary conditions be represented by point 3, Fig. I-8-cJ 

point 3 lies on line A representing the stiffness of the elastic 

material. Then a change in the stiffness of every point in the field, 

under the same boundary conditions, will change the {s, e) state at 

that point from 3 to 5 or 7. Point 5 which lies in the second quadrant 

on line B corresponds to an inc re as e in stiffness, and point 7 which 

lies in the fourth quadrant on line C corresponds to a decrease in 

the stiffness. Repeating the same argument, for other lines such as D, 

E and F we get a 11convergence curve"which represent the locus of the 

(s, e) states at a point in a problem when its rigidity varies. The 

assumption of the technique is that the slope of the convergence 

curve is non-positive. 

The assumption is certainly true for homogeneous elasticity 

fields {c is constant on R) when all points have the same s ti£fnes s. 

On the other hand, for the general case, when the material is in­

homogeneous the assumption neglects the effect of the variation of the 

stiffness of other points on the (s ,e) state at a particular one. It is 

for this reason that Wilson's convergence technique was not proved, 
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Fig. I-8-c. Construction of the convergence curve. 



-40-

as pointed out by Clough [ 13] and checked by solving different prob­

lems, simply because the assumption on which it relies is not 

always true. However by trying the technique on a variety of prob­

lems, we found that, depending on the problem, one can reach a 

satisfactory degree of accuracy by changing the method of selection 

of the rigidity of an element after each approximation. Here we now 

give the main modifications made on Wilson's code. Some examples 

of how to make these changes are given in Appendix A. 

(1) From equation (6), the slope of the (s ,e) line is 2G. 

In Wilson 1 s code this value was taken as E such that instead of 

converging to the correct biline3.r line 012, Fig. I-8-d, the solution 

converges to the dotted line in the same figure which does not have 

a particular meaning. 

(2) Since the intersection of the convergence curve with the 

line 012 is the solution to the problem, point Bin Fig. I-8-d, 

a technique that would reach that point in a smaller number of approxi­

mations will certainly be better. With line 012 known and the conver­

gence curve having a non-positive slop e let us investigate special 

cases of the convergence curve. 

Suppose we have a uniform field of stresses or strains. · For 

a first type boundary value problem, whe re the displacements are 

specified along the boundary, the strains at every point will be 

constant for any value of stiffness of the material; hence the con­

vergence curve will be given by the vertical line 34 where 4 is the 

intersection required. Similarly for a s e cond type of boundary value 

problem, where the surface tractions are sp e cified along the boundary, 
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Fig. I-8-d. Modified Wilson's technique to solve problems of 
bilinear material by finite element. 
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the stresses at every point will be independent of the stiffness of the 

material; hence the convergence will be given by the horizontal line 

3b where 6 is the intersection required. 

In general problems when the fields of stresses and strains 

are non-uniform, it was found by solving a variety of problems that 

the intersection is close to either of points 4 or 6 depending on 

how close the ~:;roblem is to being of the first or second type. The 

computer program was thus modified to perform one of three con­

vergence methods after any approximation: 

{a) The first method which we call the 11 strain controlled 

method" is Wilson's; it uses line 04, Fig. I-8-d.. It is suitable for 

problems close to being of the first type. 

(b) The second method we call the "stress controlled method,'' it 

uses line 06. It is appropriate to problems close to being of the 

second type. 

{c) The third method we call the "average method" uses 

line 07, point 7 being at mid-length between 4 and 6 along line TI. 

It is suitable for mixed problems. 

The choice between the three methods is left either to intuition 

or to experience and trial. In our rigid indenter problems which 

are of a mixed-mixed type, the fastest convergence was achieved by · 

using the average method for the second approximation and the stram­

controlled method for the following ones. 
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CHAPTER II 

PLANE STRAIN STEADY-STATE INDENTATION 

OF AN INFINITE MEDIUM 

In this chapter two problems in the plane strain steady-state 

motion of rigid indenters in an infinite medium are treated. The 

first is for a symmetric wedge, Fig. II-1-a, with a surface either 

smooth or rough; the second is for a smooth rigid plate inclined to 

the direction of motion Fig. II-31. Solutions are obtained using the 

method of characteristics when the infinite medium is rigid-perfectly 

plastic. Furthermore, · the wedge solution is checked by experiments 

and finite element analysis. 
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II-1. Indentation by a rigid symmetric wedge 

II-1-1. The problem and its applications 

Let us consider the plane strain problem of the rigid symmetric 

wedge shown in Fig. II-1-a. The semi-angle of the wedge is ~, 

'TT --0 < ~ < 2 , and the length of the side AB is L. The wedge is made 

of a rigid material with its surface either smooth or rough. In case 

it is rough, we assume its coefficient of friction with respect to the 

surrounding material µ to be larger than a particular value µ 
0 

which depends on ~ (O < µ $ 0. 1 75 for the range of ~ considered); 
0 

this condition will prove necessary in subsequent analysis. 

It is r_equired to find a steady-state solution to the problem 

when the wedge is moving at a constant velocity U, to the right, in an 

entire space of a deformable medium. 

The solution to this problem is useful in connection with pile 

foundations since it gives insight into the mechanism of pile driving 

and pile resistance under axial and lateral loading. In particular, 

questions like the extent of disturbance due to driving and its relation 

to the shape of the pile tip, the effect of the compressibility and strain -

hardening properties of the supporting clay, may be answered at 

least q ualitati vel y. 

Another application of the wedge problem is in connection with 

the standard cone penetrometer used in determining soil properties 

at depth. However, to do so one must assume or develop a correspon-

dence between the plain strain case of the wedge and the axially 

symmetric cone. This correspondence is recognized from solutions 

and experiments on related problems; some examples include: 
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a. The indentation of a half- space b y a rigid indenter 

For the indentation of a rigid - plastic half- space by 

a rigid smooth flat ended punch, plane strain solutions 

* by Prandtl [ 1] and Hill [ 2] for different modes of failure 

(velocity fields}, give the same contact pressure at yie ld. 

The latter is 10 % smaller than the one obtained by Shield 

[ 3] in the case of a circular punch. 

When the indenter is a smooth wedge and the half-

space is rigid-plastic, Hill et al. [ 4] obtained the pl a ne 

strain solution. It was later checked and extended to 

various degrees of roughness by Grunzweig et al. [ 5] . 

When compared with the smooth cone solution by 

Lockett [ 6] , the plane strain solution was found to give 

indentation pressure consistently lower by 10 to 14 per c e nt 

depending on the half-angle ~ in the range rr / 2 > ,0- 2: rr/ 3. 

When ~ is less than 52. 5° Lockett's solution ceases to 

hold (because the assu;med plastic field is no longer valid) 

and no comparison can be made. For blunt wedges (~ 

larger than 1T/4 say) and for materials with low E / Y 

ratio (E is Young's modulus and Y the uniaxial yield 

strength} the measured deformations in experiments of 

Dugdale [ 7, 8, 9], Samuels et al. [ 10], Hirst et al. [ 11], 

Atkins et al. [ 12] showed that the deformation mode is 

Numbers in brackets refer to the bibliography at the end of t he 
c h apter. 
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mor e of a compression nature than the cutting as surn.e d 

by perfect plasticity and which was experimentally 

verified for small ~ . 

Along suggestions by Bishop et al. [ 13] , March [ 14] 

applied Hill's theory for the exp ans ion of a spherical cavity 

in a semi- infinite elastic-plastic medium to Vicker' s 

hardness test. The same idea of using the results of the 

expansion of a cylindrical and a spherical cavity in a half-

space to simulate the indentation by a blunt wedge and a 

pyramid was later used by Johnson [ 15] • The results in 

both cases compare favorably with test results by pr e vio us 

investigatiors. The contact pressure in the axially sym-

metric case is larger than plane strain by zero to 14 

E 
per cent depending on the parameter a = y cot ~ in the 

range 7 < a .::S 100. {~ enters the analysis by determining 

the geometry of the expanding cavity.) 

b. Exp ans ion of cavities in an infinite medium and the point 

resistance of piles 

On parallel lines as in the case of the half- space, 

and initiated by Bishop et al. [ 13], the point resistance 

of deep foundations has been interpreted in terms of the 

pressure required to expand a spherical or cylindrical 

cavity in an infinite medium. In this context the succes-

s ion of work done by Gibson [ 16] , Chadwick [ 1 7] , 

Skempton et al. [ 18] led to the most general formulation 
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of the problem by Vesic [ 19] • It allows for the infinite 

medium to behave in an elastic-plastic manner, have 

internal friction and be compressible when in a plastic 

stage. For materials with no internal friction and incom­

pressible in a plastic state, the comparison between the 

pressure required to expand both spherical and cylindrical 

cavities shows that the axi-symmetric pressure is roughly 

33% more when G/Y lies between 2. 5 and 250 {G is the 

shear modulus). Moreover, while the effect of compres­

sibility {in the plastic stage) on the difference between 

plane strain and axial symmetry pressures is small, the 

effect of internal friction is considerable [ 19] • 

c. The bearing capacity of shallow and deep foundations 

On the basis of intuition, experiments, and less 

rigorous solutions, the analogy between axial symmetry 

and plane strain has been recognized or simply used by 

earlier investigators {Terzaghi [ 20] and Meyerhof 

[ 21] ). Empirical factors were used to determine the 

bearing capacity of axially symmetric foundations from 

analysis of plane strain problems. 
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Fig. II-1. Steady- state motion of a rigid symmetric wedge in a 
rigid-perfectly plastic full space 
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Here we will use the finite element technique to extend the 

plane strain solution to the axially symmetric cone. 

Finally the solution to the wedge problem is needed in the 

d e sign of a scoop that will pick up mineral balls imbe dded and scattered 

alo ng a clayey ocean floor. The scoop consists of steel fingers at 

some distance apart each having a cross section given by the wedge 

described above. When the fingers are pushed into the clay a distance 

h, where f << 1, and moved parallel to the ocean floor, a condition 

of p 1 ane strain steady state is reasonably satisfied. 

In the following part we first solve the wedge problem when the 

full-space rnaterial is rigid-plastic using the method of characteristics 

of perfect plasticity. Test results are then presented and compared 

with the theory. Finally we use the finite element method to solve 

the problem when the full- space material is bilinear in deviatoric 

behavior. The solution is then extended to the problem of the axi-

symmetric cone. 

II-1- 2. Solution by ideal plasticity 

Let us assume that the deformable material surrounding the 

wedge Fig. II-1-a is rigid-perfectly plastic. For a solution it is 

required to find a stress field and a velocity field in the rigid-plastic 

material that would comply with the field equations proper to the 

material, and satisfy the boundary conditions when the wedge is 

moving with velocity U. 
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a. Smooth wedge 

Along the front part of the wedge, AB and BC, the boundaries 

are well defined as being smooth and rigid. The part behind the 

wedge can either have a zone of separation as in Fig. II-1-b or not. 

We will assume that there exists a separation zone (air gap) and 

hence AD and DC are free surfaces. Furthermore, when the 

angles ADE and CDE are equal to :J. and AD and CD are 

straight lines, we will show that these assumptions produce a per­

missible steady state. 

The physical plane is shown in Fig. II-1-b. Under the previous 

assumptions, the symmetry about DB is clear and we need only 

discuss one symmetrical half of the solution. Considering the part 

below DB, in the solution shown, the domain in a plastic state occupies 

the following three zones: 

Zone I : determined by the triangular ADF in which both families of 

characteristics are straight and the distance AD = L. 

Zone II determined by the circular fan FAG in which the character-

is tics are straight and the 13-lines consist of circular arcs. 

Zone III: determined by the triangle ABG in which both families are 

straight and the distance AB = L. 

The field satisfies the "Hencky-Prandtl" net requirements and 

is thus permissible. 

The stress plane is shown in Fig. II- 2. The upper diagram is 

the mapping of the upper half of the physical plane (above DB) and 

the lower diagram is the mapping of the lower half. Considering the 

latter, we can see that Zones I and III map into their corresponding 
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Fig. II-2. Stress plane for a smooth wedge. 
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Fig. II-3. Hodograph for a smooth wedge. 
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image points I' and III'. In Zone II since the radial Q'-lines are 

straight, the image of each is a point; the f3-lines are mapped into 

the cycloid which satisfies the orthogonality requirement. 

The normal stress p at the interface is found to be: 

p = k( 1T + 4~ + 2) ( 2) 

The shearing stresses at the interface, by the definition of a smooth 

surface, vanish. Integrating the known stresses at the interfac e , 

and noting the symmetry of the problem, it follows that the resulting 

force, H, required to drive the wedge is horizontal and given by: 

H = 2Lk sin ~ ( rr + 4~ + 2] (3) 

A graph of H as a function of . ~ is shown in Fig. II-8. 

The hodograph is shown in Fig. II-3 with the origin at O. The 

rigid part of the full space outside the plastic domain, which is fixed 

in space, is mapped into 0. The rigid wedge is mapped into point W 

at a distance U to the right of O. In Zones I and III both families 

of characteristics are straight, and the Zones move as rigid bodies 

with their corresponding images occurring at the two points I" and 

III" whose location is still unknown. 

Zone III moves parallel to BG and Zone I moves parallel to 

FD, and the directions of Tir'" and Oi1T" must be at ± ( ~ + ~) with 

the horizontal. Since interface AB is smooth, a jump between the 

indenter velocity and the velocity of adjacent points in Zone III, 

parallel to AB, is permissible. The jump J is assumed to e xist, 

and thus point III" lies on a line through W making an a n g l e .J· 
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with the horizontal. The location of III" is now fu lly determined. 

In Zone II the radial a-lines are straight. As the outside 

rigid domain is static, the velocity at any point can only be in a 

tangential direction, i.e. parallel to the 13-line through the po int. 

Now applying the orthogonality condition, the image of each c.;-line 

is a point and the image of any 13-line such as 54321 is the curve 

5 11 4 11 3 11 2" 1 11 which must be an arc of a circle centered at 0. 

From the previous treatment, the proposed fields of stress 

and velocity are instantaneously satisfied. It remains however to 

prove continuity, in the sense that for an observer moving with the 

wedge this veloc ity field yields a solution that will maintain the 

geometry of d efo rmation unaltered at any time. For this it is neces -

sary and sufficient to show that in the conjugate problem, AD is a 

free surface fixed in space. 

The conjugate problem is, by definition, the same as the 

original problem treated above but with the origin of the hodograph 

at W instead of 0. From the symmetry of the hodograph, it is 

clear that WI" makes an angle .:J. with the horizontal which means 

that points adjacent to AD move parallel to it and the surface is a 

free surface fixed in space as required. 

Now that the problem is solved, the distortion of elements of 

the medium near the indenter can be computed; however this will not 

be done here but will be treated later for the case of a rough wedge. 

b. Rough wedge 

Consider a rigid symmetric wedge identical to the one in the 

pr evio us problem and shown in Fig. II-4. In this case however, the 
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Physical plane for a rough wedge (p. > p. ) • 
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Fig. II-6. Hodograph for a rough wedge. 
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surface of the wedge is taken to be rough with a coefficient of friction 

µ larger or equal to µ
0 

(~). This restriction on µ will prove to be 

necessary for the following solutions to hold; hence values of µ
0 

(~), 

l ater derived, are now presented as conditions identifying the proble m. 

1 
µo(~) = 3'1T/2 + 1 + 2(~ + y(~)) ( 4) 

where )'(~) is given by 

)'(~ ) = arc sin( sh ~ ) ( 5) 

Graphs of y(~) and µ (~) are shown in Fig. II-7 in which 
0 

we note that for the range of definition of ~ , 

fl· is less than O. 175. 
0 

TT 
0 < ~ < z , the value of 

If µ is indeed e qual to or larger than µ (~), which is a 
0 

condition frequently satisfied in practice, the solution to this probl em 

is taken to be symmetrical about DB and follows the same lines as 

for the case of a smooth wedge. 

The following assumptions are made: (1) the plastic mate rial 

adjacent to the interface is taken to be sticking to the wedge and moves 

with it. At an infinitesimal distance along the normal to AB, 

(Fig. II-4) in the plastic domain, a characteristic parallel to AB is 

assumed to exist. This amounts to considering AB as a characteris-

tic of the plastic domain; (2) to be able to satisfy the steady-state 

r e quirements, the free surface AD is assumed to be straight and at 

an angle y, given by Equation (5), with the horizontal. 

The physical plane given in Fig. II-4 is similar to that for the 
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smooth w e dg e but in which Zone III disappears and angle B AF i s now 

3rr 
equal to T + ~ + y. 

T he stress plane in Fig. II-5 d e scribes the stre s s fie l d i n t he 

pla stic domain. From it,the normal stre sses at the inte rface ar e 

found t o b e 

(6) 

The s he aring stress at the interface is given by 

T = k ( 7) 

The total force acting on the wedge is again horizontal and is give n by 

H = 2Lk ~ [ 
3
2rr + 1 + 2(~ + y)J sin ~ + cos ~ ~ (8) 

A graph of H as a function of ~ is given in Fig. II-8. 

The hodograph in Fig. II-6 is analogous to the one m Fig. II-3. 

The origin at 0 is the image of the static material outside the plasti c 

domain. The rigid wedge is mapped into W which lies at a distance 

U to the right of O. A jump J between the plastic material sticking 

t o the w e dge and the material at an infinitesimal distance from AB 

is permissible and is assumed to exist. It thus follows that point 6", 

the image of the point 6 in the plastic Zone (Fig. II-4) just below AB, 

lies on a lin e through W making an angle ~ to the horizontal. 

Furthermore, as the component of velocity at 6 along t h e a-line is 

z e ro, the line 06" must be at an angle ~ to the vertical, i.e. is 

p e rpendicular to W6 ''. The location of 6" is now dete rmined and 

(56ll = U sin ~ . 
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Fig. II-5. Stress plane for a rough wedge. 
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Since the curve 6"5"4 11 3 11 2 11 1 11
, the image of any 13-line 654321, 

is a circular arc centered at 0, and knowing that the velocity of 

Zone I must be at an angle (45 + y) to the horizontal, then OI" is 

equal to U sin~ and is at an angle 45 + y to the horizontal. Calling 

y the angle OWI", then to satisfy the steady-state condition, we need 

to show that y = y. This result is immediately obvious when we use 

eq. (5) and consider the triangle OWI" in the hodograph in which 

u U sin ~ 

sin (rr/4 + y = y) sin~ 

Now that the solution is complete, the distortion of a square 

grid can be carried out. This is done graphically using the hodograph 

for the conjugate problem. Knowing the direction of the velocity at 

points in the deformable medium as they move past the wedge, the 

stream lines are first obtained. Next the distortion of originally 

vertical lines is determined by following every point along a stream 

line as it approaches the wedge; the known magnitude of the velocity 

allows us to d e t e rmine the location of the deformed vertical lines 

through a step-by-step procedure. Finally and as a check on both the 

hodograph and the accuracy of the distortion computation, the area 

inside each quadrilateral should rema in the same; this is the exp res -

sion of the incompressibility of the material. 

The results of this calculation are sho wn in Figs. II-9, II-10 

and II-11 for ~ = 10°, 30° and 45° respectively. The accuracy of 

the curves in these figur es depends, of course, on the graphical 

integration technique employed; it is sufficiently accurate for. engineer-
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ing purposes. With regards to the distorted mesh in any one of the 

thr ee figur e s, we note: 

(1) The distortions occur only within the plastic domain. This is due 

to the assumption that the material is rigid below yield stresses. 

(2) The slope of the stream lines undergoes a discontinuity at the 

boundary between the rigid and the plastic domains. This is due 

to the jump in velocity that exists across the boundary. 

(3) The horizontal lines are horizontal and at the same level after 

passing through the plastic domain. This is a result of the in­

compressibility of the material. 

(4) The distorted vertical lines have a slope that changes from 

negative to positive as one approaches the centerline of the wedge. 

Physically this means that some mate rial is pushed backwards as 

the wedge is moved forward. This phenomenon arises because 

the material is incompressible and the plastic zone is finite and 

small. 

Comparing the three figures II-9, II-10, and II-11 to see the effect 

of ~ on the distorted mesh we note that for a constant wedge thick­

ness B: 

(1) The plastic zone decreases in size as ~ increases. 

(2) The curvature of the stream lines, in the conjugate problem, 

increases as ~ increases. 

(3) The slope of the distorted vertical lines becomes larger as ~ 

increases •. 

Points (2) and (3) above mean that for a constant indentation velocity 

U the rate of straining and the intensity of straining become larger 

as ~ increases. 
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u 

Fig. II-10. Distortion of a square grid for ~ = 30°. 

~-~--+--+­
' I 

Fig. II-11. Distortion of a square grid for ~ = 45°. 
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II-1-3. Summary of theoretical results and their implications 

The problems of a rigid smooth and rough wedge moving with 

constant velocity in a full space of a rigid-perfectly plastic material 

have been solved assuming the existence of a free surface behind the 

wedge. To satisfy the steady- state condition, the free surface behind 

the wedge was taken to be a straight line with a specified slope y to 

the horizontal. Values of y are given in Fig. II- 7 for different 

values of the semi-wedge angle ;:;- . The geometry as soc iated with 

this surface was the only one found to satisfy the steady- state condi-

tion. 

The total force to drive the wedge H is given as a function 

of ::;- in Figs. II-8. An interesting result may be deduced fr o m this 

figure, namely that the curves corresponding to rough and smooth 

wedges intersect at ::;- = 68.7°. According to this result, if we were 

to carry out a test using a wedge of this angle to determine the shear 

strength of a rigid-plastic material, the state of surface roughness 

of the wedge would be immaterial. The value of k is directly given 

by 

where H is the force per unit length of the wedge at right angles to 

its direction of motion. 

For values of ::;- larger than 68. 7° the force required to drive 

a smooth wedge is larger than the rough one. This unexpected r es ult 

is a consequence of the assumed free surface behind the wedges and 

the associated plastic fields. A detailed discussion of this res ult 
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will be carried out in connection with Fig. II-12 where the variation 

of H/Bk with ;;;. is plotted rather than H/Lk. The reason behind 

studying this relationship is that, in practice, the question of the 

resistance of a wedge (or cone) is usually presented as follows: Given 

a certain plastic material with yield shear strength k and a rigid 

wedge with width B {or a cone with diameter B) what is the relation­

ship between the resisting force and the wedge angle? To answer this 

question we consider Fig. II-12. For materials used in practice, 

unless continuous lubrication at the interface is supplied, the coef­

ficient of friction between the wedge and the plastic material exceeds 

O. 1 75, and thus falls in the range for which our solution for rough 

wedges holds. 

The dotted curve abc in Fig. II-12 corresponding to a rough 

wedge indicates that: 

(1) The resistance force H per unit width has a minimum {point b 

on the graph). This minimum is reache d at ;;;. = 3 3. 6 ° and is 

given by H = 9. 194 Bk. 

(2) From curve abc of Fig. II-12 when ;;;. lies between 15° and 90°, 

the value of H/Bk is bounded between 10. 5 and this minimum 

value 9. 194. Thus over a wide range of wedge angle 2;;;. , the 

value of H/Bk changes only slightly {less than 15%). This weak 

dependence of H/Bk on ;;;. has been experimentally observed 

in soil mechanics tests [ 22]. Some previous observations in 

this regard, as; found in a number of references [ 23] [ 24] are: 

a, The value of H/Bk for a wedge (H is the load per unit 

width) is roughly the same as for a cone (H is the total 
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load and B is the projected area of the cone). This value 

is about 9. This is the reason that the results of plane 

strain solutions are used in connection with the axi-

symmetric point resistence of piles (Terzaghi [20] , 

Meyerhof [ 21] , Berezantzev [ 25] , Skempton [ 26]). 

b. The effect of ~ on H/Bk for a cone is negligibly small 

for a range of practical values of ~ (say 15° < ~ < 90°). 

This leads to the use of the cone penetrometer test 

{ ~ = 30°) to estimate pile resistance where, in piles, 

60° < ~ < 90°, see [27] • 

{3) For small ~ , {~ < 10°) the value of H/Bk rises sharply as ~ 

decreases. This is due to the substantial effect of the interface 

she aring stresses st. 0 As an example, when ~ = 1 , the value of 

H / Bk is 63.06 of which 91% is due to st. 

It is interesting to compare the results of the present solution, 

for small ~ , with the indentation of a rigid-plastic half- space by a 

rigid rough infinite wedge, Grunzweig et al. [ 5 ] • The latter is the 

plane strain counterpart of the driven, axially loaded, tapered pile. 

When the coefficient of interface friction µ is larger than 0. 3 9, a 

condition frequently met in applications, both solutions hold and are 

thus comparable. The mechanism of failure is similar; specifically 

the interface shearing stress st is equal to k {the cohesion of the 

clay) in both cases. For ~ = 1° Grunzweig's solution gives a value 

of H / Bk less than 10% lower than the present solution. Since the 

main difference between the two problems is in the lo cation of the 

free surface this result means that, for small ~ , the geometry of the 
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plastic mate rial has only a small effect on the indentation force. More 

over, when Grunzweig's problem was checked experimentally [11] , 

his failure mechanism proved correct for small ::;... Other experi-

ments with cones and pyramids [12], [14] have shown similar 

results and proved the plane strain solution to be a good start to 

interpreting the more complicated case. 

In this perspective one may now look at the problem of axial 

loading of straight piles, so far unresolved, as a limit of tapered 

ones when ::;.. tends to zero. The case of :J. = 0, though by far the 

most widely used, is particularly difficult to solve because of the 

ambiguity associated with its mechanism of resistance and in turn 

with the boundary condition needed to start any rational solution. 

For example materials that compress during indentation will induce 

smaller normal loads s on the shaft than the r elatively incompres -
n 

sible ones. Hence the interface shearing stress st is no longer 

equal to k but is probably dependent on the normal stress s and 
n 

µ. Such unaccounted-for factors like the compressibility no doubt lie 

behind the wide scatter in the experimental literature [28]. The 

influence of such factors however is believed to be reduced by tapering 

of piles which will force a Grunsweig's mechanism of failure to come 

into play. In a medium to stiff clay where experiments [29] have 

shown that for a straight pile (:'J- = 0) the value of st/k is small 

(around 0. 5) tapering is expected to increase this value. The .amount , 

of tapering required to produce st/k ~ 1 depends on the compressi­

bility of the material. O n the other hand for soft clays where experi -

ments [30] have shown that straight piles have a high value of st/k 

/ 
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(near 1) tapering will naturally have little effect. 

The above interpretation of tapering effect is rn line with the 

current estimates of s/k values (see Scott et al. [31 ]). Recom­

mended values between 0. 6 and 0. 9 for straight piles are increased 

to lie between 0. 7 and 1. 0 for tapered ones; the differences within 

each class depend on the type of clay, and the pile-placing technique. 

Let us now return to Fig. II-12 and compare the behavior of 

both the smooth wedge (straight line eh) and the rough one (curve 

abc). As mentioned earlier, for values of ~ larger than 68. 7°, the 

force required to drive a smooth wedge is higher than the rough one. 

This unexpected result is a consequence of the assumed failure 

mechanisms. The associated solutions, though satisfying all field 

equations, were not proven unique; hence failure modes including a 

dead zone ahead of the wedges, when ~ becomes large (~ > 45° say), 

is what will probably occur. Such mechanisms of failure whereby, 

for large ~ , an inert zone of the deformable material moves with 

the wedge is supported by: 1 - the requirement that yield should not 

be reached in the rigid part outside the plastic dornain. This considera­

tion, which so far was neglected because of the weak dependence of H 

on~, restricts the given solution for a rough wedge to ~ ~ 45° (see 

ref. 30 in chapter IV). 2- The presence of the inert zone was ex­

perimentally observed in the indentation of a half- space by a rigid 

wedge [ 15 J. From the symmetry of the pro bl em, a dead zone, if 

present, will also be symmetric. A first attempt to incorporate it in 

the solution is to assume that it has straight boundaries; in which case 

the solution is readily available and is given by the rough wedge 
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results. Now, however, 1J represents the half-angle of the dead 

zone. 

Suppose that the criterion governing the motion of wedges is 

that the energy dissipated in the indentation process is a minimum. 

The previously mentioned dead zones develop if necessary in order 

to meet this condition. Assuming that dead zones have straight 

boundaries, a rough wedge with 1J up to 33. 6° will thus develop no 

dead zones and the value of H is given by curve ab in Fig. II- 12; 

however, when 1J exceeds 33. 6 °, a dead zone develops with half­

angle equal to 33. 6 °. The result of this is a constant value of H 

equal to 9. 194 Bk, this is represented by the straight horizontal line 

bd in Fig. II-12. On the other hand, a smooth wedge will develop no 

dead zones up to 1J = 58. 0 5 ° and the value of H is given by straight 

line of Fig. II-12, however when 1J exceeds 58. 05° , a dead zone 

develops with half-angle equal to 33. 6 °. .The result is a constant 

value of H equal to 9. 194 Bk, which is represented by the straight 

horizontal line fd in Fig. II-12. 

The above speculations with respect to the dead zones ahead 

of the wedges require either that they be in a plastic state but moving 

with a constant velocity U or that the yield criterion is not reached 

anywhere. A theoretical· study of the existence and geometry of the 

dead zones is difficult to conceive and we will have to rely on 

experiments. The prime target of those e:;,,..rperiments will be to 

determine the pattern of deformation as a function of 1J be cause the 

measurement of indentation forces alone is expected to be inconclu­

sive in view of their weak dependence on 1J • 
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II-1-4. Experimental results 

Together with the modeling clay and the apparatus d escribed in 

chapter I, aluminum wedges were used, Fig. II-13. The coefficient of 

friction f.J. between the aluminum and the clay was determined from 

a classic al solid friction experiment. The shearing force required 

to cause a cylinder to slide (parallel to its axis) over the surface of 

a sufficiently thick clay layer was determined for different values 

of normal forces. The value of µ was found to be 0. 8 well above 

the lower limit 0. 175 required by the theory; hence results of testing 

are to be compared with the previously obtained solutions for a rough 

interface. 

After the modeling clay has been processed in the manner 

earlier described in chapter I, it fits into a rigid oox and is 

divided by the center plane into two separate identical parts. 

An orthogonal grid is then drawn on one of the two halves of the clay 

mass; the lines parallel to the direction of motion (horizontal) con-

sist of grooves made with a thin knife (O. 6 mµi) and are about 1 mm 

deep. The vertical lines were made with colored ink so that the 

distinction between the two sets of lines after deformation would be 

made easier. 

All the aluminum wedges have a breadth of 3 cm and a width 

of 10 cm . which is the thickness of the clay in the box. To determine 

the effect of the wedge angle on the results, wedges with half angles 

0 0 0 
~ = 10 , 30 and 45 were used. To reduce the friction between the 

sliding arms holding the wedges and the clay, they were lubricated 

with petroleum jelly. Moreover, after each test, the wedge was 
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Fig. II-13. Wedges used in plane strain testing. 
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removed and the sliding arms pushed while recording the frictional 

load due to the mechanism. In no test did the friction exceed 5% 

of the total load. 

A. Existence of a steady state and repeatability of experiments 

The development of a steady state and its independence of the 

initial conditions were presumed by the perfect plasticity solution; 

this had to be checked first. Consequently two tests were carried 

out on a wedge with ~ = 30° having all parameters kept the same 

except for the initial geometry of the problem. The first test was 

started with the clay entirely surrounding the wedge, while the 

second was started with an air gap behind the wedge. The gap was 

made such that it had the same dimensions as the wedge, i.e. an 

initial condition as represented in Fig. II-1-b. 

Comparing the results of the two tests, it was found that: 

(1} In both tests a steady state, with respect to load and 

deformation, was reached after a distance .£ ~ 2L. 

(2) The load required to produce a steady state in the first 

test was found to be 5 % large r than that of the second 

test. This differenc e is believed to be caused by tes~ 

imperfections (friction betw een sliding arms and clay, 

specimen preparation, etc.) rather than the effect of the 

initial conditions. 

(3) The deformation pattern in the two tests is nearly identi­

cal. The air gap behind the wedge has the same shape in both 

tests except for the cut initiallypresent in the second test. 

This cut kept its shape without noticeable change. Fig.II- 14. 
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(a) Wedge initially surrounded b y clay 

(b) Wedge initially has a gap behind it 

Fig. II-14. Effect of initial conditions. 
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We conclude that the steady state for the wedge problem is 

indeed developed and is independent of the initial geometry. Further­

more the deformation patterns proved to be stable and repeatable. 

B. Deformation patterns 

The deformed shape of a square grid after a steady state has 

been reached is shown in Fig. II-15 for wedge angles of ~ = 1 o0
, 30° 

and 45°. All experimental wedges had a breadth B = 3 ems. The 

motion was started with the clay surrounding the wedge entirely and 

the pictures shown were taken after dismantling the box, i.e. about 

30 minutes after the motion was stopped. Checking the deformed 

grid after a further 24 hours did not show any noticeable change in 

the deformation pattern. The grooves representing the originally 

horizontal lines cause the discontinuities seen in the deformed 

vertical lines; this effect is not related to the basic problem being 

studied. 

Comparing the three patterns of deformations given in Fig. 

II-15, we note the following results that were predicted by perfect 

plasticity: 

(1) The distortion of a line perpendicular to the direction of 

motion (vertical) increases as ~ increases. 

(2) The height of the distortion zone decreases as ~ increases. 

These results which might seem obvious are worth noting since they 

will be used in the discussion of loads required to produce a steady 

state. 

On the other hand, the discrepancies between the theoretical 
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Fig. II-15. Deformation pattern in steady-state testing. 
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Fig. II-15. Deformation pattern in steady-state testing. 
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solutions and the t e st results become clear when comparing Figs. 

II-9, II-10, II-11 with II-15. They can be summariz e d as follows: 

(1) The free surface behind the wedge which was assum e d 

straight for plasticity solutions has instead a curved 

shape with a convexity towards the air gap. Mor eover 

a definite area of contact with the back of the wedge is 

pre sent in the test results . 

(2) In plasticity solutions, the plastic domain, where de­

formations occur, is well defined by a boundary separat­

ing it from the rigid part. Along this boundary, disconti­

nuities in v elocity exist to produce a discontinuous slope 

of the deformed orthogonal grid. In the experiments 

however this plastic zone is not as clear, and deforma­

tio ns in the domain which is rigid in the theoretical solu­

tions are noticeable. As a consequence, the field of 

deformation is smooth with no discontinuities. 

For a better comparison, we plot the deformation 

pattern according to both theory and experiment to the 

same scale in Fig. II-16 and II-17 for ~ = 10° and 30° 

respectively. If the stream lines in both theory and 

experiment are reasonably .close, the differences appear 

clearly in two aspects: 

(a) The rigid domain ahead of the wedge which according 

to theory suffers no deformation actually deforms in 

in the test. The amount of deformation becomes more 

pronounced as ~ increases. 
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(b) The slope of the deformed vertical lines which accord-
' 

ing to the theory is discontinuous at the boundary 

between the rigid and plastic domains and changes 

direction from positive to negative, is found in the 

experiment to be smooth with virtually no change in 

sign, i.e., instead of having part of the deformed 

line move forward and the rest backwards, it dis-

places only backwards. 

(3) The incompressibility of the material in perfect plasticity 

is not supported by the tests even at the relatively small 

stresses employed. Instead, the change in volume of the 

clay which is measured by the size of the a ir gap left 

behind the wedge seems to increase with increasing ~-

Through two additional tests, we will now study the reasons 

behind the differences between theory and experiment with respect to: 

{1) The free surface behind the wedge. 

(2) The deformation zone and pattern. 

The first test was carried out w ith a ~ = 45° wedge and the second 

with ~ = 30°. In these tests the wedge was reinserted into position, 

24 hours after the pictures of Fig. II-15 were taken and the test 'was 

continued. We call this testing in the second stage and the results 

are given in Figs. II-18 and II-19. The velocity of the wedge was 

kept constant throughout the second stage of Fig. II-18 with no halts. 

In Fig. II-19 {~ = 30°) the loading was stopped twice, each stop 

lasting for 30 seconds. The location where this was done is clear by 

the dents in the free surface. Moreover a fresh orthogonal grid 
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(a) End of first stage; 
beginning of second stage 

I • 

(b) End of second stage. 

Fig. II-18. Testing in the second stage with ~ = 45°. 



End of second stage at 
higher magnification 

Fig. II-18. Testing in the second stage with ~ = 45°. 
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Old grid drawn at the beginning 
of the first stage 

New grid drawn at the beginning 
of the second stage 

Fig. II-19. Testing in the second stage with ~ = 30°. 
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drawn o n the second half of the clay mass (the clay occupies the two 

halve s of the box) before beginning the second stage deformed as 

shown in Fig. II-19 - b. This distorted new grid is drawn together 

with the theoretical s olution on Fig. II-20. 

Using Figs . II-18, II-19, II-20 it is concluded that: 

(1) Concerning the free surface behind the wedge 

Between the time the loading was halted and the picture 

taken, the free surface changed in shape by creep due to 

the tirre -dependent properties of the clay. The major 

part of this creep takes place during the 5 minutes 

required to dismantle the box. Moreover, by noting the 

sudden change of curvature of the stream lines near the 

corner of the wedge, Fig. II-15-a in particular, we believe 

that this is another effect of the creep. This suggests 

that the steady-state free surface behind the wedge is. less 

convex than the pictures show it to be and instead, it is 

closer to the straight line shape assumed by the theory. 

(2) The deformation zone and patterns 

By eliminating in effect the distortion of .the clay ahead 

of the wedge through redrawing the grid, the deformation 

of the fresh grid in Fig. II-20 improves the correspondence 

between theoretical and experimental deformation fields 

considerably. Moreover this distortion which masked the 

change of the slope in the distorted vertical lines from 

positive to negative in the first stage, now shows that the 

slope change indeed occurs in the test, confirming the 
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prediction of the theory in that respect. 

C. Steady state loads 

The loads required to produce a steady state were recorded 

for ~ = 10°, 30° and 45° and the results,after subtracting frictional 

resistances ,are plotted in Fig. II- 21. On the same figure are also 

drawn curves representing the relationship between the loads and ~ 

as given by the plasticity solution for rough wedges using a Tresca 

hypothesis for the yielding of the material. The uniaxial yield strength 

Y of the curve with higher resistance was chosen to be 1. 25 Kg / cm3 

and the second corresponds to Y = 1. 00 Kg/cm2
• These values of Y 

will give uniaxial stress-strain curves as shown by curves C and 

D on Fig. II-22. On the same figure are plotted the stress-strain 

curves of the modeling clay for rates of loading of O. 6 Kg/cm2 /min 

(A) and o·. 15 Kg/cm2 /min (B) respectively. These curves are the 

same as the fitted experimental results previously given in Fig. I-6-a 

except that the stresses are now corrected for the change in area 

occurring during loading. To do this we assumed no volume change 

and that the cylindrical shape of the specimen is preserved at any 

load. Also under these assumptions we computed .6u the change in 

slope of a diagonal plane and used it as another measure for the 

strain to compare with the wedge results. 

To be able to detect the effect of changes of the room tempera­

ture on the shearing strength, the cohesion of the clay at various 

locations was recorded after each test using the vane test. The 

cohesion varied due to inhomogeneity and vane test imperfectiona 
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from 0. 58 to 0. 62 Kg/cm2 without noticeable v2_riations from one test 

to another. This cohesive shear strength corresponds to a uniaxial 

strength of 1. 16 to 1. 24 Kg/cm2
• 

In Fig. II-21 we note that by increasing ,}, the value of the 

steady state experimental force H tends to approach the force pre-

dieted by the theory for a stronger material. This is believed to be 

caused by the deformation gradients as functions of ,} . It is clear 

by comparing Fig~ II-16 and II-17 that the gradients are larger for 

lar~er ,} • This ca us es two properties of the clay, unaccounted for 

in :the theoretical model, to come into play: the strain hardening 

effect and the rate of straining effect. Specifically what happens is: 

(1) The slope of the distorted vertical lines which are a 

measure of the strains in the clay are larger for larger 

,}. This result is also predicted by the theory and implies 

that for our strain-hardening clay the larg e r ~ is, the 

more resistance one would expect to deve lop, compared 

with the non- strain-hardening theoretical model, depend-

ing on the value assumed for the strength of the material 

in the theoretical solution. 

(2) The curva tur e of the distorted horizontal lines increases 

by increasing ,} . Since this curvature, for a cons tant 

wedge velocity U, is a measure of the straining rate, 

thus as ,} increases the straining rate increases. 

The combined effect of t he above properties of the modeling 

clay makes us believe that if curve B Fig. II-22 repres ents the 

. 0 
stress -strain curve for the clay, on the average, for ,} = 10 and is 
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idealized by D; then curve A better represen.ts the higher straining 

rates in the ~ = 45° case; this is idealized by curve C. 

D. Behavior of blunt wedges, the formation of a rigid part 

ahead of the wedge 

From the previous study of the deformation patterns it was 

seen that as ~ increases the test results deviate from the theoreti-

cal solutions. Consequently the direct comparison between theory 

and experiment made for ~ = 10° and 30° in Figs. II-16 and II-17 

0 could not be made for the case of ~ = 45 • In the latter case, the 

mesh near the wedge-clay interface is highly compressed and the 

horizontal streamline near the axis of the wedge which, according 

to the theory, should remain straight until it reaches the tip, bends 

from a considerable distance ahead of the wedge Fig. II-18. These, 

~e believe, are indications of the existence of a rigid part of clay 

ahead of the wedge that moves with it. Such a mechanism involving 

a rigid part ahead of the wedge was reported in the indentation of a 

half space by a rigid wedge [ 15]. However to get a definite 

picture o.f how this rigid part looks like in such steady state prob­

lems, an addit_ional test was performed with ~ = 78°. The rigid part, 

if indeed present in the ~ = 45° case, should reveal itself better ' in 

this test. 

To be able to attach the wedge to the sliding arms, the 

triangular cross section of the wedge had to be abandoned and the 

shape shown in Fig. II-23 was used. In the same figure the distorted 

mesh is shown; it bears a strong resemblance to that of the wedge 

with ~ = 45°. In both cases, the gap behind the wedge is large 



Fig. II- 23. 

-93-

0 Distortion of an orthogonal grid {~ = 78 ) • 
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compared with that behind a sharp wedge thus showing that the clay 

undergoes a large compression during its indentation by a blunt 

wedge. Furthermore, the zone ahead of the wedge is heavily strained 

such that the distorted mesh can no longer be seen, this we believe 

is the indication of the existence of a rigid part. 

We thus conclude that starting from a value of ~ between 30 

and 45°, a rigid part of the clay is formed ahead of the wedge. The 

theoretical solutfon, presented earlier, which assumes a process of 

cutting to take place, whereby no such rigid part exists, ceases to 

describe the indentation process adequately. Until more tests have 

been made to determine the value of ~ after which the rigid part 

starts to develop, it can reasonably be taken as the value ~ = 33.6° 

previously derived as the one giving the least resistance for a given 

width. Furthermore, as in the case of the indentation of a half 

space by a rough wedge, the indentation process of an entire space 

by blunt wedges becomes more of a compression nature than the 

cutting assumed by perfect plasticity. 

II-1-5 ,• Finite element solutions 

Wilson's modified finite element technique (see chapter I) 

was used to solve the indentation problem for a bilinear material. 

The purpose of the solutions is twofold: · 

(1) To interpret the discrepancies between perfect plasticity 

solutions and the experiments. These are mo st obvious 

in the far field, i.e. at the boundary of the rigid domain 

with the plastic zone. 



-95-

The use of the finite element method which relies 

on equations elliptic in character is expected to smooth 

out discontinuities given by plasticity theory and absent 

in the experiments. Furthermore, the finite element 

method allows us to control the properties of the model 

"material 11 closely. 

(2) To extend and compare the plane strain so.lution to the 

axi-symmetric case of a cone. 

The problems treated are a wedge and a cone both with semi­

angle ;;;. = 30 ° as in the case of the Dutch cone penetromete r. The 

modeling clay properties were simulated by assigning the following 

values to the bilinear material of the finite element analysis: 

E = 31.5 Kg/cm2
, Y = 1.18 Kg/cm2

, and the moduli ratio n = 0.035. 

Poisson 1 s ratio v was taken equal to 0. 45 and then changed to 0. 35 

to determine the effect of compressibility on the results. These 

material constants give an axial- compression stress- strain response 

shown by curve F in Fig. II- 24. It clearly affords a better ideali­

zation of the clay (curve B), than the rigid-plastic material does 

(curve C or D}, especially at small values of stresses and strains. 

On the other hand the relatively low rigidity of this particular clay 

is not best suited for the present F. E. technique because of the 

associated large strains and the resulting geometrical non-linearity. 

Since most clays encountered in engineering problems have a much 

higher rigidity (in the order of 10 times the modeling clay value}, 

which will make the present technique more applicable, we will go 

ahead and use it, to get comparative and qualitative results. The 
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accuracy of the near field however, which includes large strains 

unaccounted for in this analysis, should be assessed in the light 

. of this approximation. 

The geometry, some of the boundary conditions and the F.E, (1'=30°) 

mesh are shown in Fig. II-25. The symmetry about the z axis 

allows the consideration of only half the problem. The geometry of 

the free surface behind the wedge is taken from the ideal plasticity 

solution for a rough wedge 
0 (y = 20. 7, } • Along boundary ab, nodes 

have a normal component of displacement u = 0 and a tangential 
n 

component of traction st = 0. This is the symmetry condition. 

Along bcdefg, the nodes have un = ut = 0 representing the clay 

sticking to the box used in actual testing. Along ghk the boundary 

is stress-free representing the surface of the clay behind the indenter 

which in the tests did not close behind the wedge. For a closer look 

at the nodes inside circle ~. we plot the grid again to a larger scale 

in Fig. II-26. The contact surface of the indenter with the clay is 

represented by k1 mn. Along this boundary we ideally want to specify 

the non-zero tangential tractions st for a rough interface, and the 

normal displacement u =F 0. Denoting the forward displacement of 
n 

the indenter by 6, we thus have u = 6 sin~. 
n 

To be able to specify 

st and u we face the following difficulties: 
n 

(1) The value of st is not only dependent on the frictional 

properties of the interface but also on 6 and subsequently 

on u . 
n 

(2) The boundary conditions to be specified at the tip and at 

the edge of the indenter, i.e. at nodes n and k, Fig. 
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II-26. These are singular points and need a special 

consideration. 

Other investigators, e, g. Ellison et al. [ 32 J , introduce 

elements of zero volume at the interface . When given a shear lo ad 

versus displacement behavior they would simulate the frictional 

behavior of the interface. In this text such elements were not needed 

because of the relatively large values of displacement 6 used. In 

addition the existence of slip at the interface coupled with the develop-

ment of maximum shear resistance is presumed. This argument is 

based on one hand on solid friction load-displacement measurements 

by Bowden et al. [ 33] and on the other on load transfer measurements, 

of axially loaded piles by D 1 Appolonia et al. [ 34] and Whitaker et al. 

[ 3 5 J • Their results show that full interface friction is developed 

at small displacements. It is thus assumed in the following solutions 

2 
that st = O. 6 Kg/cm along the boundary kl mn. This is the yield 

shear strength of the clay corresponding to the value used in perfect 

plasticity. 

As for the condition at both tip and edge of the indenter, 

the contribution of the elements at these points was minimized by 

reducing the node spacing near the interface without however 

eliminating the error involved in any boundary condition to be given to 

nodes n and k. Because of our greater interest in simulating the 

geometry of indentation, only the effect of the shearing stresses was 

given to nodes n and k in the form of a force component in the z 

direction. They were left free in the R direction. An alternative 

would have been to specify u 
n 

and st as for the other interface 
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nodes. It might be argued that this approach will give more 

realistic indentation loads but on the other hand it will certainly 

represent a process of an expansion rather than indentation. 

To avoid such difficulties other workers, e.g. Hoeg [ 36] 

prefer to specify the tractions along the interface. After solving the 

problem they determine an average value of displacement of the 

interface nodes and plot this value in a load-displacement type of 

curve. The stresses in this case are assumed uniform because no 

other distribution is more justified. The results are then referred 

to as "flexible foundations 11 solutions which have a very restricted 

use. We tried this concept but found the deformed interface taking 

a strongly concave shape which defied any averaging procedure and 

which exhibited no similarity with the indentation. 

Final! y the use in the model of two mate rials, a soft one for 

the clay and a rigid one for the indenter, showed that the oscillations 

in the displacement and stress fields near the interface were large. 

This phenomenon which often occurs near singularities when using 

the F. E. brought us back to the method previously described. 

Improvement in the Finite Element technique to reduce the 

errors mentioned above can be achieved byi 

( 1) 

(2) 

Reducing the size of the mesh. 

Using a step-by-step method in which each u increment 
n 

would be small and the nodes displaced to their new 

location after deformation. 

When estimated, the cost of such improvements did not 

justify their use in the comparative study presently conducted. It was 
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thus left for a more accurate quantitative research project. 

The results obtained by the analysis of different problems are 

given in Fig. II- 27 through II- 30. In Fig. II- 27 is shown a load-

displacement plot for both a cone and wedge when v = O. 45. In 

each case three points were obtained at values of o/B equal to O. 066, 

O. 1666, and O. 667, and joined by straight lines. The initial part 

of the curve in Fig. II- 27 corresponds to the linear solution obtained 

(as a first approximation) in case of o/B = O. 066. The indentation 

loads were evaluated by integrating the stress components in the 

z-direction along circle L: in Fig. II-25 • . The circle represents 

either a cylinder in the plane strain case, or a sphere in the axi-

symmetric case. This affords a more reliable evaluation of the 

force away from the stress concentration near the interface. Com-

paring the graphs of the cone with that of the wedge, the former gives 

loads 10 to 25 per cent higher for 0/B between O. 1 and 0. 65. 

Moreover, at o/B = O. 667 which is already too high to neglect 

geometrical nonlinearity in the near field, the value of H/ Ak for 

a wedge is 6. 95 which is still below the 9.21 value obtained by perfect 

plasticity. Such large values of displacements associated with this 

problem are caused by the low rigidity of the material used. However 

since the shape of the curves in Fig. II-27 indicates that higher loads 

are expected for larger 6 , the steady- state predicted by plasticity 

is presumably reached for 15/B near the value 2 found in actual testing. 

The development of the plastic zone as 0 /B increases is 

shown in Fig. II- 28. The black region is where the deviatoric 

straining is large and thus we call it the zone of substantial shearing. 
I 

The ratio of the deviatoric stress to deviatoric strain 2G', within this 
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k = Y/f3 
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{a) Wedge 

5/B = O. 067 o/R = o. 161 5/F =0.667 

{b) Cone 

5/B :ii: O. 067 o/B = 0. 167 5/ri :;: 0.667 

Fig. II- 28. Deve lopment of the yie lded zone. 



-105-

region is less than O. 2 G. The shaded region is a transition region 

between the zone of substantial shearing and that of the elastic zone 

where the stresses did not reach the yield stress. The similarity 

between the wedge and cone is clear by comparing (a) and (b) of 

Fig. II-28. Moreover the yielded zones lie mainly ahead of the 

indenter and do not extend as far behind it as perfect plasticity 

predicts. This phenomenon was also found in solving for the inden­

tation of a half-space by a smooth circular punch described in the 

Appendix , using the same F. E. Technique. Other investigators using 

different numerical procedures have reached similar results, e.g. 

Ellison et al. [32] in their step-by-step finite element solutions for 

a pile with a flat toe. 

The displacement field when o/B = 16. 67% for both wedge 

and cone is given in Figs. II-29 and II-30. Comparing these two 

figures we note: 

(1) The displacement patterns are similar. In the case of a 

cone however, the displacements are generally smaller 

and, as expected, die off faster as the distance from the 

interface increases. Moreover the deformation near the 

tip, in the case of a cone, simulates the indentation pro­

cess better than the wedge. 

(2) In both cases, the region ahead of the indenter is the 

most heavily distorted. Displacements are detectable 

up to a distance of about 3B for a wedge and 2B for 

a cone. (These distances vary of course with o/B.) 
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(3) In both cases the displacement field is smoothly varying 

with no discontinuities in its gradient. This condition is 

found in actual testing and differs from the results of 

perfect-plasticity which assumes the existence of a rigid 

domain. 

(4) The displacement field is predominantly in the z direc­

tion. However, within half the field, ahead of the indenter, 

the velocity vector may be considered to be radial. This 

would justify recent approaches to pile bearing capacity 

which assume that the process of pile resistance to axial 

loading can be idealized by that of the expansion of a 

cavity under condition of radial symmetry. On the other 

hand, the displacement field behind the indenter is clearly 

in the z direction which does not agree with the above 

mentioned approach. 

Other results of interest are: 

(1) When o/B = O. 0667, by computing the part of the load 

carried by the rear half of circle 'E, Fig. II -22, it was 

found to be 38% of the total load for a wedge and 46% in 

the cas e of a cone. Since these values are large, the 

early approach to bearin g capacity of deep foundations in 

which a mechanism of failure is ass urned in the front half 

only, and the half behind the base level is considered only 

as a surcharge {Terzaghi, Prandtl, Reissner, Caquot, 

see [ 37] and [ 38]) is by no means justified. 
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(2) To see the effect of compressibility, the wedge problem 

was repeated with v = Q. 35 at c5/B = 0. 166; the load 

decreased by 16. 5% as compared with the v = O. 45 case. 

The displacement field was virtually unaltered to the 

scale of Fig. II-29. 

(3) When v = O. 45, the direction of the z component of dis­

placement is positive except for points close to the 

boundary (r = 20 ems) at the level of the indenter ( j z j 

small). These points are not shown in either Fig. II-29 

or II-30. The tendency to move in a direction opposite 

to that of the motion is more pronounced in the case of 

a wedge. It is believed to be caused by two factors: 

a. The existence of the fixed boundary 

b. The relative incompressibility of the material. 

When v was changed to 0.35, for c5/B = 16.65%, the 

region of negative z displacement component was 

eliminated. This result is of practical interest in pile 

driving since it is common while driving a pile in a 

relatively incompressible medium to cause predriven ones 

(simulated here by the fixed boundary) to move upwards. 

This is obviously due to the upward movement of the soil 

and the positive shearing stresses that develop due to the 

lateral restraint. It is interesting to note that even at a 

distance of about 7B, compared with the 3B common 

spacing between piles such a phenomenon is felt. 
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II-2. Indentation by an inclined smooth rigid plate 

II- 2-1. The problem and its applications 

Let us consider the rigid smooth plate of length L shown in 

Fig. II-31. The plate moves in a rigid-perfectly plastic material, 

und e r a plane strain condition, with a constant velocity U (to the 

right). Its inclination ~ to the horizontal is such that 0 < ~ :::=. rr/2. 

In Soil Mechanics applications the plate represents an anchor 

plate buried deeply under the surface of a clay layer. This is a 

suitable type of foundation for structures whose stability involves 

horizontal components of force, e.g. suspension bridges and sheet 

piles. Also in circumstances where the gravity effect is not efficient 

in res is ting forces of pull {e.g. underwater structures subject to 

uplift forces) anchor plates are often found more economical to use 

than dead loads. 

A previous solution to this problem has been obtained only 

for the special case of ~ = rr/ 2 and for a particular failure pattern 

[39] • The following solution however is more general in the sense 

that: 

(1) It applies for 0 < ~ :S rr/2 which covers a wide range of 

forces of resistance. The knowledge of the variation of 

these forces with ~ allows both an estimate of the effect 

of imperfect construction of an anchor plate and the use 

of ~ in controlling the resistance force according to 

the particular application. 

(2) The failure modes found are infinite in number. Of those 

modes only one is presently found in the literature [39 ]. 
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u 

Fig. II-31. Plane strain steady-state motion of an inclined 
smooth rigid plate. 
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(3) The steady state solution applies for any value of velocity 

U > 0. In particular it thus covers the incipient failure 

case with a velocity field perfectly satisfied. The latter 

has only recently been consider e d by Soil Mechanics 

workers. 

II- 2- 2. Perfect plasticity solution 

As mentioned earlier the problem has an infinite number of 

possible solutions with regard to the shape of the plastic domain. 

However all these solutions give the same stresses at the interface, 

a fact that justifies considering a problem which would otherwise be 

practically meaningless. Each of the solutions has its proper velocity 

field and may be classified into one of two main types: 

(1) The Hill-type of failure, Fig. II-32, where the plastic 

zone occupies two distinct domains with one singular 

point C in common. The point C lies between A and 

B, the distance AC is called LR (the rear length) 

which can take any value in the range 0 S LR S L. The 

special cases of LR = 0, the front failure; and LR= L 

the rear failure, are shown in Fig. II-33. 

(2) The Prandtl-type failure is shown in Fig. II-34 and is the 

one given by Broms [39 J for the special case of ~ = rr / 2. 

In either type of failure no air gaps were introduced in the 

solution, i.e. the plate is completely embedded in the rigid-plastic 

space at all times. 
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Fig. II-32. Physical plane in a Hill-type of 
failure mechanism. 
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u 

\\ 

Fig. II-34. Physical plane in a Prandtl-type of 
failure mechanism. 
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The physical planes corresponding to each type of failure 

pattern are shown in Figs. II-32, II-33 and II-34. Each individual 

plastic domain consists of three distinct zones. 

Zone I is a triangle in which both families of characteristics are 

straight. The hypotenuse of the triangle is equal to either 

LR, L - LR or L depending on the type of failure. 

Zone II is a circular fan centered either at A or B with a central 

angle equal to 37r/2, i.e. the a-lines are radial and the 

{3-lines are circular arcs or vice versa 

Zone III is a triangle in which both families are straight; it is an 

image of zone I with respect to the plate. 

The stress plane for all types of failure is shown in Fig. II-35. 

The upper diagram is the mapping of the front failure zone and the 

lower one the mapping of the rear failure zone. The origin of the 

Mohr diagram was located by assuming that the pressure along the 

back of the plate is zero. The orthogonality between any circular 

arc in Fig. II-33 such as 12345678, an a-line, and its cycloidal image 

1 1 2 13 14 1 5 1 6 1 7 18 1 in Fig. II-35 is clearly satisfied. The normal stress 

along the surface of the plate was found to be: 

(9) 

The shearing stresses along the interface, as assumed, are zero. 

Integrating the stresses along the length of the plate, the forces of 

drag (horizontal) and lift (vertical) acting on the plate are: 
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H = (3rr + 2)kL sin ~ 

( 1 0) 

P = (3rr + 2)kL cos ~ 

In case the pressure along the back of the plate is non-zero, 

it is not possible to deduce it from solutions of this type. However. 

equations (9) and (10) will still hold with p, H. P now being re­

defined in terms of the difference between the front and back pres -

sures on the plate; the quantities one would generally be interested 

in. 

The hodographs are shown in Figs. II-36 and II-3 7. In both 

diagrams, the origin is taken at 0, the ilnage of the static space 

outsid e the plastic zone. The rigid plate moving with velocity U is 

mapped into P a distance U to the right of O. After choosing the 

numbering scheme shown in figures, the front and rear plastic zones 

map into the same points in the hodograph. 

The velocity field of a Hill-type failure is shown in Fig. II-36. 

The main points in drawing the hodograph are: 

(1) The smoothness of the plate allows a jump in the tangential 

velocity between the plate and the rigid parts I and III. 

It thus follows that I" and III" must lie on a line through 

P at an angle ~ with the horizontal. Furthermore, due 

to the presence of the material in a rigid state outside the 

plastic domain, I and III can only move in directions of 

<-i -~ ) and ( ~ - ~) respectively with the horizontal. The 

location of I" and III" is thus determined. 
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(2) In zone II a circular arc with arbitrary radius such 

as 12345 678, is mapped into the circular arc 

1 11 2 11 3 11 4"5"6"7"8". Points 1 11 and 8 11 coincide with 

I" and III" respectively and the orthogonality con­

dition is satisfied. 

(3) To satisfy the condition of a steady state we only need to 

show that, in the conjugate problem, zones I and III 

move parallel to the plate, i.e. at an angle ~ with the 

horizontal. It is immediately clear from the hodograph, 

with the origin now at P, that the segments PI" and 

PIII" satisfy this condition. 

The velocity field for a Prandtl-type of faUure is given by 

the hodograph in Fig. II-37; the main points for drawing the diagram 

are: 

(1) Due to the smoothness of the plate, the points I" and 

III" lie on a line through P at an angle ~ to the hori­

zontal. The presence of the rigid static material outside 

the plastic domain implies that points 1 and 8, lying in 

zone II, must have velocities perpendicular to AD and 

BD (or BE and AE) respectively; i.e. 01" and 08" 

need make angles (~ - ~) and ( ~ - ~) with the hori­

zontal. Furthermore the jump of velocity between zone I 

and II, if present, needs to be parallel to a characteristic, 

which implies that rrTT and I1"s1'"" be parallel to AD and 

BD respectively, i.e. I 11 8 11 is orthogonal to 08 11 and 

I"1" is orthogonal to 01 11
• 



'6 

5 

JI. 

'4 

'4.' 

1I 

5 ~ 

?/t---- ~ .. I' P t====:::: • 7 

6 

2'' 

J3 th lll" , u 

(a) Physical plane (b) Hodograph 

Fig. II-37. Velocity field in Prandtl-type failure mechanism. 

I ..... 
N ..... 
I 



-122-

To satisfy the above conditions points I", 1 11 and 8 11 

are located uniquely as shown in Fig. II-3 7. A similar 

argument will show that III 11 must coincide with I". 

(2) The orthogonality and the steady state conditions follow 

the same lines as for Hill-type of solution and are 

satisfied. 

Now that the problem has been solved, one can easily get 

the stream lines of particles as they move past the plate in the con­

jugate problem. The stream lines will give a good idea of the process 

of deformation and are in many applications of crucial importance, 

e.g. in the study of heat transfer problems. The stream lines are 

shown in Figs. II-38, II-39 and II-40. Moreover, the distortion of 

vertical lines as they move past the plate are drawn in Fig. II-39. 

To draw all those diagrams, the graphical technique was used know­

ing the ?elocity at every point. Bearing this in mind, one should 

consider these figures as a rough indication of the deformation pro­

cess to get an idea of the order of magnitude of the permanent de­

formation. It is not recommended that they be used to deduce 

results requiring accuracy such as the determination of the slopes of 

the distorted originally vertical lines. 

To further study the permanent deformation in a Hill - type of 

failure for any value of LR with the range 0 5 LR !:: L, it is 

sufficient to consider the two special cases of LR = 0 and LR = L. 

This is because the permanent deformations of a plastic material 

going through two consecutive and separate plastic domains are 

additive. The incompressibility of the material and the continuity 
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Fig. II-38. Stream lines in a Prandtl-type of failure. 
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Fig. II-39. Distortion of a square grid in a front failure pattern. 
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Fig. II-40. Stream lines in a rear failure pattern. 
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imply that the permanent vertical displacement must vanish. Let 

o(y) be the permanent horizontal displacement, taken positive when 

in the direction of the velocity U, at a distance y above the mid­

length of the plate. Fig. II-41 shows o(y) for a plate inclined by an 

angle :;;. = 15° to the direction of motion. Using the superposition 

of o(y) caused by different plastic fields, and with the proper 

scaling, Fig. II-42 was drawn as an example for LR= O. SL. 
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Permanent deformation of a vertical line in a 
Hill-type failure mechanism, ~ = 15°. 
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0. 5. 
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Fig. ll-42. Permanent deformation of a vertical line 
in a Hill-type failure mechanism (~ ::s 15° 
and LR= L/2). 
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CHAPTER III 

PLANE STRAIN INDENTATION OF A RIGID-PERFECTLY 

PLASTIC HALF-SPACE 

This chapter deals with two problems in plane strain perfect 

plasticity. The first we call the ironing plate is a steady state solu­

tion for a plate moving parallel to the surface of a half space. The 

second is the incipient failure solution of a cylinder indenting a 

wedge of a particular shape. The two problems, in addition to being 

examples in the use of perfect plasticity, are the fundamental solu­

tions for the rolling theory treated in chapter IV. 
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III-1. The ironing plate problem 

Consider the plane strain problem of a rigid smooth plate 

moving with a constant velocity U parallel to the surface of a rigid­

perfectly plastic half space, Fig. III-1. The plate is inclined by an 

angle ~. (O < ~ < rr/4), to the horizontal and its lowest point is at 

the same level of the surface of the half space. A heap ahead of 

the plate acts with the half space as ~ continuum and has a contact 

length L with the plate. It is required to find a steady-state 

solution to the problem,f..e-., find the stress and velocity fields in the 

half space complying with the field equations and yielding a constant 

shape for the heap at all times. 

In accordance with perfect plasticity techniques, the shape of 

the heap has first to be assumed and then the field equations checked. 

Several trials led to the symmetric shape in Fig. III- 2; it will be 

shown to satisfy the steady-state conditions. 

III-1-1. The stress field 

In Fig. III- 2 for 0 < ~ < 45° a stress field is shown. The 

geometrical symmetry about the vertical through B is assumed, 

then AB = BE = L. 

Zone I is determined by the triangle ABC - has both families 

of characteristics straight. 

Zone II is determined by the triangle BDE - has both families 

of characteristics straight. 

Zone III is determined by the circular fan CBD - has the (3-

lines straight and the a-lines consisting of circular 
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Smooth Ri9id ,Plate 

Fig. III-1. The ironing platP. pro1Jl~m. 
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__ ---' 

Fig. III- 2. Physical plane for the ironing plate. 

Fig. III-3. Stress plane for the ironing plate. 
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arcs. 

The field satisfies the ''Hencky-Prandtl" net requirements 

and is thus permissible. Since all 13-lines are straight, then no 

variation of stresses along 13-lines is present. In Zones I and II, 

the a-lines are also straight, thus the state of stress in both zones 

is constant. Knowing that the surface BE is stress free, and that 

the path of the pole is a cycloid in Mohr diagram, a graphical con­

struction of the solution is given in Fig. III-3 . 

Let p be the contact pressure at the interface, ~ the 

counterclockwise slope of the plate to the horizontal and k the 

yield stress in shear, then 

p = (ir + 2 - 4~)k 

III-1-2. The velocity field 

( 1 ) 

Let the plate be moving to the right with a constant velocity 

U, Fig. III-4. The velocity field is fully described by the hodograph 

in Fig. III-5. The nonplastic zone outside ABE DC is at rest and thus 

located at the origin 0 of the hodograph. The plate being smooth, 

a jump in velocity J between the plate and the adjacent material 

is permissible and was assume d to exist. 

To satisfy the requirement o f incompressibility of the material, 

the hodograph should be such that along slip lines the images of cor­

responding points in the physical plane and the hodograph be orthogonal. 

This is easily checked by noting that 

- Zones I and II which in Fig. III-4 have straight slip lines 

move as rigid bodies and thus have their corresponding 
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u 

static half-space 

Fig. III-4. The velocity field for the ironing plate. 

C/rcu/ar arc 

0 ~~--+-----+------.----:::;;;Jll" 
(Or1~in l 

r 

Fig. III-5. Hodograph for the ironing plate. 
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images at points I and II respectively, Fig. III-5. Zone I 

moves parallel to AC and Zone II parallel to DE thus 

directions 0 I and 0 II are determined. 

- For Zone III we consider any a ·-line such as bed with BC' 

the {3-line through c. BC' being straight, then velocity 

v along {3-line is constant; and since v at C' is zero, 

then all velocities in Zone III are tangential, i.e., along a 

lines. Moreover, the velocities u, along any a-line, are 

constant. Zone III is now fully determined by arc I - II 

centered at 0 in hodograph, the velocity at any point c 

along BC' is given by the vector OC in hodograph where 

OC is perpendicular to BC' and C li.es on arc I - II. 

The analytic derivation of the above statements is carried out in 

part III-1-3 where energy is treated). From the previou;:; treatment, 

the proposed fields of stresses and velocities are instantaneously 

satisfied. Now it remains to prove continuity in the sense that this 

velocity field yields a solution that will maintain the geometry un­

altered at any time. For this, a necessary and sufficie nt condition 

is that the free surface BE remains stra ight and at an angle (rr - ~) 

with the horizontal. Necessity being clea r from boundary changes 

and sufficiency by the use of incompressibility. It is difficult how­

ever in the present formulation to check continuity; for this and to 

calculate plastic deformations. it is b e tte r to introduce an Eulerian 

frame of reference moving with the same velocity U as that of the 

plate. The ne w problem later referr e d to as the conjuga te problem, 

is reduced to that of a moving half space with r e spect to a fixed rigid 
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static 

s u • 

Fig. III-6. Velocity field for the conjugate ironing plate problem. 

I 

u 
1 

Fig. III-7. Hodograph for the conjugate ironing plate problem. 
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u 

Fig. III-8. Variables for evaluating the energy dissipation. 
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smooth plate, and with the surface as shown in Fig. III-6. Th e 

stress field remains unchanged and is still given by Fig . III-3. The 

velocity field is given by Fig III-7 which differs from III-5 by a shift 

of the origin 0 by an amount U. Thus, in Fig . III- 7, 0, A , B 
p p 

coincide (A and B are points on the plate surface) . 
p p 

In this new setting with any point in Zone II moving parallel 

to BE at an angle 1T - ~ , to the horizontal, both conditions for 

continuity (BE remaining straight and at an angle TT - ~ to the 

horizontal) are clearly satisfied. 

III-1-3. Energy considerations 

We let 

w = Power expended by external loading 
e 

w. = Power dissipated in solid 
l 

wih = Power dissipated in solid in the form of heat 

wid = Power dissipated in solid 

Thus, 

for power equilibrium 

(1) External power 

w = w. e i 

From Fig. III-8, we have 

W =[pLsin~]U 
e 

Using(1), then 

in permanent distortio n . 

(2) 

(3) 
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W = kL U ( rr + 2 - 4~) sin ~ e 

1 . Internal power of distortion 

With u and v the velocities along a and ~ lines re-

( 4) 

spectively, Fig . III-8, thus with 8 being the c o unte relock-

wise angle between the a-line and the horizontal 

du = v d8 along a-line 

dv = - u de along ~-line 

In Zone I and II, we have 

d0=0, thus,using(5), du=dv=O; 

which, in turn means that in both zones 

In Zone III 

wid = S 
vol 

er •• e: .. dV = 0 
lJ lJ 

} (5) 

Along ~ lines d8 = 0, then using (5) v = constant 

along ~ line and since v = 0 at C', then 

in zone III. (6) 

(A result that directly follows frorn Fig. III-5). 

Using (5), thus u = constant along a lines, and sinc e u is 

constant along BC, then u = constant in zone III. ( 7) 

Taking polar coordinates (r, 8) for region III as in Fig. 

III-8, then using (6) and (7) 
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av = ae = o 

= au + ..!.. av ar r ae 
u - - = 
r 

u 
r 

(8) 

(The negative sign corresponds to negative shearing stresses). 

From hodograph in Fig. III- 5, we have 

u = u..f2 sin~ (9) 

Using the condition of plane strain (€ = O) together with (8) 
zz 

and (9) 

strain energy/ . 
:. .t t" unit volume = un1 ime 

wid = S 
vol 

CT .. € .. dv 
lJ lJ 

CT •• € .. = 
lJ lJ 

= k u..f2 sin ~ 
r 

" 2 s; [ SOL/.fz (~ - ~ ku.'; sin~ r dr d9 J dz 

W id = kL U ( ~ - 2~) sin ~ (1 O) 

2. Heat power of dissipation 

The power released at discontinuities of velocity where shear-

ing stresses are acting is considered to be dissipated in the 

form of heat. 

In our problem, the discontinuities occur along the boundaries 

AB, AC, CD, DE. Along AB, the surface of the plate pre-

viously assumed to be smooth gives no energy dissipation . 

' 
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Along the other boundaries which ar.e an a-line, the shearing 

stresses are equal to k and the velocity is constant and equal 

to u. 

Knowing that AC= DE = 
L 

.f2 

and arc CD = J:_ ( lT - 2~) 
.f2 2 

and exterior material is static 

then using (9) and (11): 

(2), (10) and ( 12) imply 

W i = kL U [ lT + 2 - 4~] sin~ 

( 11) 

( 1 2) 

( 13) 

We note that (4) and (13) satisfy (3) and power is equilibrated. 

Dividing (10) by (13) and using (3), thus 

lT 
2 - 2~ 

Tr+2-4~ 

For small ~, neglecting higher orders, thus 

w.d 
_1_C:'-

w 
e 

lT 

2 (rr + 2) C:'- 0.306 

i.e. the energy of distortion is about 30% of the total energy 

dissipated. 

III-1-4. Distortion of a square grid 

To evaluate the distortion of a square grid we shall compute 

the time 
T 
- (y) 
2 

required for a particle at a height y above level B 'E', 
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in Fig . III-9 , starting from the plane EE' (or x=O) t o re ac h BB' 

(or x = L cos~) in the conjugate problem. 

Using the symmetry of Figs. III-6 and III-7 we can directly 

deduce that 

- No vertical distortion is present. 

- The mate rial below B 'E' is left undisturbed, thus 

T =T j 0= 
0 y< 

ZL cos ~ 
u = constant 

- For o denoting the total horizontal distortion of an 

( i) 

originally vertical line in the direction of U (dir ection of 

-x in Fig. III-9). Then 

o(y) = [ T(y) - T
0

] u 

Using (i) 

0 ( y) = [ T ( y) _ 2 L ~o s ~ J U (ii) 

- From the hodograph Fig. III-10, the following velocity 

relations are deduced 

(~r = 1+2 sin2 ~ - zlz sin~ cos 8 (iii) 

where v = v (8) = veiocity of a particle at location 8 in 

region BB'DB, Fig. III-9, for 8=45 - ~ .then specializing 

(iii): 

v 
Uo = cos ~ - sin ~ (iv) 

where v = v(45 - ~) - velocity of a particle m region D B ED. 
0 



':11 ::. L/2 [\fl - (s111"6- +cos 1'J] 

~ ,. L ( Yy,z - .sin1') 

e 

Lsin+ 

l 

L/.rz 

B ~ \<i! :=£:'' 

e'~-=====-~~~~~~~~~~~~~~~~----~~ 

Lt,(<••" - s»>1>] j L/, [cos" +s•O"] ! r· 
L L cos t.9 
1 

Fig. III-9. Variables for evaluating the distortion in zone A in the conjugate 
problem. 
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Also from Fig. III-10, 

v(S) cos (0 +'1') = U(cos 0- ..fz sin~) (v) 

where '1r is the angle between the velocity direction and 

the positive x axis. 

To get the particle path in region BB' DB, we note the 

independence of v on r; applying the incompressibility 

condition to Zone FHNCBE , with BC being the radial line 

at an angle 8, FHNC and BE are both stream lines and 

v makes an angle (0 + '1') to the normal to BC, then 

v(0) cos (0 + '1') • r(y '0) = u[ ~ (..fz - 2 sin~) - y J (vi) 

Using (v) 1n (vi), then 

~ (..fz - 2 sin~) - y 
r(y,0) = (vii) 

cos 0 - ..fz sin~ 

where r(y 1 0) = radial distance of a particle at an angle 0 

from BB 1 
. originally starting at a level y above B 'E '. 

From (vii) and with y = Yl = ~ [ ..fz - (sin~ + cos ~)] , 

we get the equation of B ''D 

r(0) = 
L 
y(cos~ - sin~) 

cos 0 - ..f 2 s in ~ 

Computation of T 

Since particles follow two distinct types of paths we shall 

(viii) 

divide the region into two zones: Zone A, bounded by BB ''GEB and 

Zone B, bounded by B"B'E'GB", Fig. III-9. 
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u ·+ 

Fig. III-10. Geometric relationships in the hodograph. 

B 

p 

Fig. III-11. Infinitesimal length along a streamline. 
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Zone A: yi < y < y2 

Let s be the length along the path 

Let t be the time 

and for t = 0 we let the particle be at F with coordinates 

{O,y), Fig. III-9, 

T1 for t = T we let the particle be at H 

for t = Ta we let the particle be at N 
2 

for t = r we let the particle be at Q 

From F to H 

the velocity is constant and equal to U and FH straight; 

Ti y2 - y DG (y:ci - y) tan (45 + ~) .. T = "EG = u u 

Ti 2L [-1 _ sin~ - r J cos~ +sin~ (ix) = .. u ,fz cos~ - sin~ 

From H to N 

the velocity is constant and equal to v and HN straight; 
0 

NH L [cos~ +sin~ + ¥ -.f2] 

(cos ~ - sin~ ) - -- = 

using (iv) then 

2L =u 

From N to 0 

v 
0 

[cos ~ + sin~ + ¥ -.f2] 

(1 - sTn 2 ~) 
{x) 

the velocity is v{9) given by (iii) and the path by r(y' 9) 
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in (vi). Consider y as constant (the original location 

of the particle at t = 0) and let 

a = ..f2 sin ~ 

L i (../2 - 2 sin ~ ) - y 
A=r(y,0)= 

1 - ../2 sin ~ 

~2 (1 - a) - y 
= Yi,_ (xi) 

1 - a 

(xi) in (vi) -

r(8) = A(1 a) ~-1-~ 
- \COS 8 - a) 

sin 8 
dr ; A(i - a) (cos 8 _ a):a d8 

From Fig. III- 11 , (vi) 1 and (xii) -

2 2 2 t 
- ds = [ dr + r d 8] 

Using (vi) ' and (xii) , we get 

.1. 
[ 1 + a2 

- 2a cos 8] 2 

ds = - A( 1 - a) d8 
(cos 8 - a) 2 

ds 
but dt = -=- , by using (iii) , (xi), (xii) we get 

v 

1,_ 

(vi) I 

(xii) 

(xiii) 

dt = -A(1-a) [ 1 +aa -2a cos 8] 2 d8 . ____ 1 ___ _ 

(cos 8 - a)a U[ 1+a2 - 2acos 8] i 

A(i - a) 
. dt = - u d8 

{cos 8 - a)2 

integrating both sides of (xiv) 

T /2 s . dt = 
Ta /2 

8=0 

_ A(~- a) s 
8=45-~ 

· (xiv) 

d8 

(cos 8 - a)2 
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9=4 5 -~ 

=2A(1-a)S 

u 9=0 

d9 

(cos 9-a)a 

Evaluating the integral and using (xi), we get 

where B(o'l- ) 

2L [Tz- sin ~ - t] 
= U c o s 2~ B(~) 

2./2 sin:;. = 1 -
(cos 2 ,~ ) 2 

-1 
tanh 

{
- 1 +./2 sin ~ tan ( 45

2 
- ~)} 

(cos 2~)! 
Adding (ix), (x) and (xv) 

. T = 2L{(-1 _ .. u ./2 sin;:,. _ L) (cos~ + s~n ~ + B(~ ) ) 
L cos ;:,. - s m ~ cos 2~ 

+ cos ~ + sin ;:,. - ./ 2 + ~ } 
1 - sm 2;,. 

where B(~) is given by (xv)' 

It is clear from (ii) and (xvi) that o(y) is linear in 

Zone A, To describe the function completely it is 

(xv) 

(xv ') 

(xvi) 

sufficient to get values at end points y = y1 and y = ya. 

For y =ya= L(-Jz- sin ~). using (ii) and (xvi) 

For y = y1 

0 
= 2 L [sin ~ cos 2~] 

max (1 - sin 2~ ) 

= L [ .f2 
2 

(sin ~ + cos ~ )] 

[ B(;,.) - cos 2;,.] 
.. o(yi) = 61 = L [cos ~ + sin ~] 

(xvii) 

(xviii) 
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Zone B: 0 < y < Yl 

Let MRS be the path of a particle at height y above 

B'E', Fig. III-12, 

Let t = 0 for the particle at M 

Let t = 

Let t = 

~l for the particle at R 

T 
2 for the particle at S 

From M to R 

The velocity is constant and equal to U and MR straight 

:. T 1 = ...f2 t [...f2 cos .~ - sin <P] (xix) 

where <P is the angle between BB 1 and BR, such that 

L 
y = ...[

2 
(1 - cos <P) or (xx) 

<I>= cos -
1 

( 1 - ...f~y) (xx) I 

From R to S 

The path of the particle is defined by (vii) because the 

incompressibility condition used for Zone A still holds. 

Then (vi)' applies to path between R and S considering 

y (or <P) as a constant, then using (xx) 

1 
r(0) = A(1 - a) cos e - a 

where 

a = ...f2 sin~ 

( 1 - a} - y 
L 

...f2 
A=--...-----

1 - a 
= 

L (cos cl) - a) 
...r2 ( 1 - a) 

(vi) 'bis 

(xi) 'bis 
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In a similar treatment as that of Zone A we get 

A{1 - a) d8 
dt = - u 

{cos e - a{~ 
{xiv) bis 

Integrating both sides of {xiv) with their respective limits: 

T/2 0 s , dt = - A(1 U- a) s 
Ti/2 0=<I> 

<I> 
. T _ T = 2A(1 - a) s 
.. l u . 

0 

d0 
(cos a - a}2 

dS 
(cos a-=-ar 

Evaluating the integral and using {xi) 1 , we get 

T _Ti = .f2 L [sin <I>+ 2.f2 sin :J. (cos~ - ,[ 2 sin ;;;. ) 
U cos 2;J. (cos 2;;;.)'i 

h -1 ( 1 + .f2 sin :J. t <I>)] tan i an z 
{cos 2;;;.) ~ 

Adding {xix) and {xxi) , we get 

T J~/ {,fz cos~ - sin~ 
+ 1 [sin <I> + 2.f2 sin :J. (cos <P - .f2 sin :J.) 

c 0 s 2;;;. (cos 2;J. ) i 

-1 
tanh ( 

1 + .f 2 sin :J. tan <I> )] } 
(cos 2;;;.)i 2 

Using (ii) and {xxii), we get 

+ 2.f2 sin ;J.{cos <I> - .f2 sin ;J.) 

{cos 2;;;.) 3 72 

tanh-1 ( 1 + .f2 sin;;;. tan i )} 
(cos 2:J.)i 

(xxi) 

(xx ii) 

(xx iii) 
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then o - 0 i.e. no discontinuity at y = 0 

for cl> = 45 - ;} then y = y1 = i [ .f2 - (sin ;} +cos :J-)] 

and 

0 ( ) _ L [ B (:J-) - cos 2;}] 
Yl - (cos ;} + s in :J- ) 

where B{:J-) is given by (x v') 

Comparing with (xviii) the function is continuous at y = Yl; 

from the above results it is clear that o{y) is continuous 

for all :J- in the considered range {O < ;} < ~ ) 

To get the slope of the curve o(y) w. r. t. y, differentiate 

do 
{xxiii) w.r.t. y, and use (xx)' in dy 

do d<i: = crcp dy , we get 

do _ 2 ( 1 _ 1) t ..:f-. + 4,[2 sin ::r 
dy - cos 2;} co "J:' . 3/2 

(cos 2:J-) 

• x[<cos cl> - -{2 sin :J-)(cos 2;})'~ (1 + .f2 sin :J-) 

2 sin cl> (cos 2;} - 2 sin2 ~(1 + ...f2 sin :J-) 

1 + ..f2 sin ;} t cl>] 
~~~~~ an -
<co s 2::r rt- 2 

for «P - 0 then ~i = 0 (l) - ro for all ;} 
(or y - 0) 

Special case ;} small 

Writing 

sin ;} = ;} + O(:J-3
) 

cos :J- = 1 + O(:J-2 ) 

tan :J- = :J- + O{;J-3 ) 

for jaj<1 

{xx iv) 

(xxv) 

{xxvi) 

-1 [ ~ '1'4 . J tanh {a + O(:J-)) = a 1 + T + T + - + O(:J-) 
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from (xv) 1 and (xxvi) 

B(~ ) C!'1 1 + 1. 2454 ~ (xx vii) 

in Zone A: y1:S y!Sya 

(xxvi) in (xvii) yield 

o C!'1 2L~ 
max 

(xvii) 1 

(xxvi) and (xxvii) in (xviii ) yield 

o( ) = 0 C!'1 L [ 1 + 1. 2454~ - 1] 
Yl l 1 + ~ 

:. 01 C!'1 1. 2454 L~ (xviii) 1 

0 - 01 max 
slope of o{y) line = ----­

Y:a - Yl 
eo< O. 7546 L~ c,; 1 51 "-

L/2 • (\)' 

(xxviii) 

in Zone B: 0 !S y :S Yl (or O:S<f>$45- ~ ) 

(xxvi) in (xxiii) yield 

o C!'1 .f2 L~ 2-f2 ~ cos <I> tanh-
1 

( (1 + .f2~) tan i) ~ 
- 1 <I> 

C!'1 4 L~ cos <I> tanh (tan 2) 
<I> 2 <I> 4 

<I> [ (tan 2 ) (tan 2 ) J 
:. o C!'1 4L~ cos <I> tan 2 1 + 3 + 5 + -- . 

(xxiii) I 

(xxvi) in (xxiv) yield 

do r. [ 1 -1( <I>)] dy c::<! 4v 2 ~ 2 sin <I> - tanh tan T 

for <I> = 45 - ~ 
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• do C:!. 4,r2 ~ [-1 _ 0 • 4142 ( 1 + (0.4142)
2 + (0.4142)

4 +-\l 
~ h 3 5 ~ 

C:!. 4,(2 ~ [ ~2 - o. 4142(1. 063) J 

C:!. 1. 51 ~ (xxix) 

Compare (xxviii) and (xxix), it is clear that ~i is continuous 

everywhere. 

III-1-5. Summary of results 

The ironing plate problem has been solved assuming that the 

heap ahead of the plate is an isosceles triangle, Fig. III-2. This 

shape of the heap was the only one found to satisfy the steady-state 

requirements; however, without a proof of uniq!J.e:12ss, other shapes 

cannot be ruled out. 

The main results of the solution are: 

(1) The slip line field of Fig. III-2 gives a uniform normal 

stress at the interface p equal to 

p = ( 1T + 2 - 4~) k (1 }bis 

The shearing stresses at the interface being zero by 

definition of a smooth plate, the resultant force thus 

acts at an angle ~ to the vertical and is given by 

P = (,,. + 2 - 2~) kL (14) 

(2) After one plate trav ersal, the permanent deformations 

are in the same direction as that of the motion (horizontal) 

with no vertical displacements. 
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For small values of ~ (O < ~ < 10° say), which is the range 

of interest in applications to the rolling theory of Chapter IV, 

a summary of the dimensions and permanent horizontal de-

formation o is given in Fig. III-13. We can see that the 

distribution of o at different heights y can be divided into 

two zones: An upper zone A (yi :S: y !S y2) where o is linear 

and a lower one B (0 < y < Yl) where it is curved. For depths 

larger than y;1, (y < O) o is zero. Moreover the slope of 

o(y) is continuous everywhere except at y = O. For a more 

detailed graph of the curved part in zone B, Fig. III-14 was 

drawn. Noting the difference in scale between the two co-

ordinates in this figure the curve is thus very flat with an 

infinite slope at y = 0. 

For large values of ~ 
0 0 

(10 < ~ < 45 ) second order terms 

may not be neglected and need to be used. The pattern of 

deformation 6 is still the same as for small ~ however y1 

and y:a are now given by: 

Yl = i [./2 - (sin~ +cos~)] 

y2 = L ( -
1
- - s in ~) 

..f2 

( 1 5) 

( 1 6) 

o and o1 pescribing the linear variation of o in zone A 
max 

are given by equation {xvii) and (xviii) respectively. 

o(y) in zone B is given by equation (xxiii). 
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I 
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0 

R 

(a) 

0 

R 

A D F 

(b) 

Fig. III-1 5. The instantaneous solution of the rolling 
problem. 
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III- 2 . Wedge indentation by a rigid smooth roller, the instantaneous 

solution of plane strain rolling 

Consider the plane strain problem of a rigid smooth cylinder 

with radius R and a rigid-perfectly plastic wedge Fig. III-15-a, 

with the upper surface GABE. The portion GA is horizontal, BE 

is straight and makes a clockwise angle "11' from the horizontal. 

Portion AB is a circular arc with the same radius R as that of 

the cylinder and a center of curvature O' which lies vertically 

above A. The angle between the two radii 0 1A and O'B is ~ . 

The cylinder is to be fitted so that its center 0 coincides with 0 1 

and then an instantaneous horizontal velocity U, to the right, is 

given to 0. Simultaneously an angular velocity w is given to the 

cylinder about its center. 

In the following part we present two failure mechanisms to 

the problem. 

(1) A front failure pattern in which the plastic zone within 

the wedge lies ahead of the roller. It is an exact solution 

and will be proven to apply in the case when the surface 

of the wedge has the shape GABDF, Fig. III-15 - b, which 

is the same as the previous problem but now DF is 

horizontal and BD is equal to R~ . The latter problem 

will be used in chapter IV where the rolling theory is 

treated. 

(2) A rear failure pattern in which although the stress and 

velocity fields are satisfied, the condition that the power 

of dissipation be positive everywhere is violated. From a 
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theoretical standpoint such a violation of a fundamental 

postulate is not permissible, nevertheless it will be 

presented as a first step towards a better solution without 

however using its results in subsequent applications. 

Finally we present the general case where the front and rear pattern 

exist and give the criterion for the development of each. The 

validity of solutions including a rear failure pattern should be assessed 

in the light of the violation of the positive power of dissipation condi­

tion. 

III-2-1. The front failure pattern 

For the indentation problem shown in Fig. III-15-a and 

described earlier we now present a plastic field that lies ahead of the 

roller. Such a front failure pattern will be proven exact and later 

be shown to develop for any value of ~. 

(1) The plastic and stress fields 

A field of characteristics is shown in Fig. III-16. To describe 

the manner in which it was constructed Fig. III-17 was drawn. The 

main parameters are: 

t; is the radial angle, measured counterclockwise, from the 

vertical through the center of the cylinder 0 and the intersection of 

any a-line (such as IJKL) with the rim of the cylinder. 

~ is the maximum value of i; when the a -line is degenerated 

into point B, the intersection of the free surface with the rim of the 

cylinder. 
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0 

Fig. III-16. Typical field of characteristics for a front failure 
mode (~ = 50°, '11' = 10°). 

SH-=- BC:: R~/'12 

AB -:. BD = R.,,. 

E__ 

Fig. III-1 7. Details of t he c onstruction of the field of 
characteristics in a front failure mode . 

E 
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R r is a circle of radius ..f2 centered at 0 and is considered 

as the evolute of all a - lines. 

Zone I is determined by AHBA, where 

AH has I' as an evolute 

BA is the circular arc along the cylinder surface 

HB is straight 

The zone has all 13-lines straight and tangent to r. All 

a-lines are parallel and are formed by unwinding a taut string about r. 
Zone II is determined by the triangle BCDB, and has both 

families straight. 

Zone III is determined by the circular fan BHCB, and has the 

~lines straight and the a-lines consisting of circular arcs. 

For the typical a-line such as IJKL, we have IJ the involute 

of I'; JK a circular arc centered at B and KL straight. A 

moment 1 s thought shows that on one hand the field satisfies the 

"Hencky-Prandtl 11 net requirements and on the other hand satisfies 

the stress boundary conditions along AB and BD. The field is thus 

a solution to the problem. 

To describe the stress field, instead of using the graphical 

technique, the analytical formulation was found simpler and hence 

will be used. 

From the equilibrium of an element in the plastic zone 

one may easily deduce that: 

Along an a- line CT + 2k8 = c 
a I Hencky's equations 

Along a 13- line CT - 2k9 = cl3 

( 16) 

( 1 6) I 
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Where 8 is the slope of the positive a-line to the horizontal 

at any point, - TT< 8 <TT, and the positive direction 

of e being counterclockwise 

CT is the compressive hydrostatic pres sure at that point. 

Ca and C l3 are constants. 

To satisfy the stress-free boundary condition along BD, we 

have at any point along LK: 

e = ~ - w } ( 1 7) 

(17) into (16) - Ca= k.(1 + ~ - 2'11) ( 18) 

(18) into (16) - CT + 2k8 = k(1 + ; - 2'11) ( 1 9) 

TT 
In particular for point I where 8 = I; - 4 

. . (19) - CT(s) = k[ 1 +TT - 2(\J! + !;)] (20) 

For p(I;) the external pressure at I, then 

p(I;,) =CT(!;,)+ k (21) 

(20) and (21) - p(I;) = k[ 2 +TT - 2('11 + !;,)] (22) 

Notes: 

1. Using the fact that all 13-lines are straight, i.e., 

e = constant, in (16) -', together with (19}, the 

stresses at any point in the plastic field are deter-

mined. 

2. The pressure p(I;,) at the interface decreases with 

both \JI and i;. This means that for small s and 
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for small (or negative) "llt the contact pressure 

becomes high. As will later be seen, these con-

ditions cause a plastic zone behind the roller or 

a rear failure pattern to develop. 

3. From the geometry of the field we have 

BH =BC= 
R ,:} 

1 
-rz 

(23) 

AB= BD = R ,:} 

These values are bnportant since they determine 

the size of the plastic domain. 

(2) The velocity field 

As described earlier, the surface of the wedge has the shape 

GAEDE, Fig. III-15-a; thenthe cylinder is fitted such that the arc 

AB is the interface of contact. 

A horizontal velocity U, to the right is instantaneously given 

to the center of the cylinder 0 together with clockwise angular 

velocity w to the cylinder about O. The complete solution of the 

problem is given in Fig. III-18 and III-19. The origin of the hodograph 

lies at 00 and the heavy lines represent the jumps in velocities 

between points on the cylinder's rim, (00, TI, TI, ... , etc.). All 

curves on the hodograph are circular arcs centered at the origin 00 

except arc (00, TI, TI, TI) which is centered at 0. The incompres -

sibility condition is directly checked by the normality of correspond-

ing images in both Figs. III-18 and III-19 along the characteristics . 

Noting that the jump at any point on the rim of the cylinder is parall e l 
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Fig. III-18. Physical plane for a front failure mode. 

(origin) 

LI 

Fig. III-19. Hodograph of Fig. III-18. 
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to the tangent to the cylinder at that point; also that the velocity along 

any [3- line is nil and the velocity along any a has a constant mag­

nitude, the following results are emphasized. 

1. The velocity boundary conditions are satisfied. 

2. Suppose we increase w while keeping U fixed; the only 

change in F i.g. III-19 is the magnification of the radius 

of the circular arc (00, IT, TI, TI) centered at 0. The 

directions of (O ,00), (O ,TI), ... , etc., which are also 

the directions of the jumps, remain unchanged. The 

condition of zero velocity along f3- lines implies that the 

direction of (00, 11), (00, 12), ••• etc. must remain the 

same. It is thus clear that the location of 11, 12, 13, 

etc. is independent of w. In other words, changing w 

does not affect the velocity field in the plastic zone. 

3. The shape of the region outside the plastic zone being im­

material to the present solution, we can consider either 

BDE straight or DF horizontal in Fig. III-15-a and III-15-b. 

4. The direction of the shearing stresses and the shearing 

strain rates at any point in the plastic zone have the same 

sign, thus satisfying the positive power of dissipation 

condition. 

5. Changing the value of U, keeping U > 0, causes only a 

change of the scale of the hodograph but the stress field 

remains unaltered. 
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III-2- 2. The rear failure pattern 

As a second solution to the problem of Fig. III-15-a,a rear 

failure pattern will now be presented. As mentioned earlier, the 

stress and velocity field equations will be proven satisfied but the 

power of dissipation is not positive everywhere. 

(1) The plastic and stress fields 

A field of characteristics is given in Fig. III-20. The manner 

in which it was constructed is shown in Fig. III-21. The details of 

construction are the same as for a front failure but with a and f3 

interchanged. 

To determine the stress field, we apply (16)' to the f3-line 

3'1!' 
IJKL at point L · where 8 = - T and a- = k, then 

c (3 = k( 1 + 3
2 'IT ) 

Thus ( 16) 1 can be written in the form 

(J" - 2k8 = k(1 + 3rr ) 
2 

Tl' 
For point I, where 8 = !;. - 4 

(ix) becomes o-(t;) = k[ 1 + 'IT + 2t;] 

but since the interface pressure p'(t;) is given by 

p'(t;) = a-(!;,) + k 

then 

p I(!;,) = k[ 2 + 1T + 21;,] 

(24) 

(25) 
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Fig. III-20. Typical field of characteristics for a 
rear failure mode. 

Fig. III-21. Details of the construction of the field of 
characteristics in a rear failure mode. 
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(2) The velocity field 

Figs. III-22 and III-23 solve the problem completely. Details 

concerning the velocity field in the case of a front failure may be 

h e lpful to the r e ader noting the interchange of the a and f3 lines. 

Again w does not affect the velocity field in the plastic zone. 

Special attention should be given to the power of dissipation inside 

the plastic field since the shearing stresses and the rates of straining 

are opposite in direction. 

III-2-3. The general case: two failure zones 

From the front and rear failure patterns, the interface contact 

pressure is given by: 

front failure p(l;,) = k[ l!' + 2 - 2('11 + !;,)] 

rear failure p 1 (!;,) = k[ 'If + 2 + 21;,] 

(22) bis} 

~ >i;;,::::o 

(25) bis 

Since a discontinuity of the contact pressure at the point where the 

front and rear failure zones meet the rim is unacceptable, as proven 

by Hill 
_,, 
'•' 

, the contact pressure has to be a continuous function of 

i;,. For a minimum upper bound solution, the minimum of p or p' 

should be us ed. 

Let i;, denote the value of the critical point at which p = p ' ·, 
er 

i.e. , the location where both zones meet the surface of the roller. 

Equating (22) and (25) we get: 

- ('lt + r ) = S 
'='er er 

or '1t = 

':' See reference 3 0 in Chapter IV 
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"43 

Flg. III-22. Physlcal plane for a rear !allure mode. 

u 1 
I U3R j 

4~ l---41~2!0!.--~c+---__...._ ___ -r---=:r· O (centrr ol 
crli;odrr) 

23 

Flg. III-23. Hodograph of Fig. III-22. 
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for it < 0 

In Fig. (III- 21), it is clear that to get a meaningful 

problem we must have I it I < ~ . This implies that 

0 <I; :5 ~/2 and we get two failure zones. er 

for it = 0 

r = 0 
"'er 

for it> 0 

!;er doe s not exist and we get only a front failure 

pattern. However for the present solution to hold 

we mus t have it :5 rr/2 - ~ . 

It is now possible to extend the previous results to the case 

when the surface behind the wedge has a counterclockwise slope it' 

to the horizontal, Fig. III-24. Only the contact pressure for a rear 

failure will be affected; equation (25) in a more general form 

becomes: 

p'(t;) = k[rr + 2 + 2(1; -it')] (26) 

We note that it reduces to equation (25) for the special case when 

it'=O. 

Equations (22) and (26) are plotted in Fig. III- 24 and an 

example clarifying its use now follows. 

Example for the use of Fig. III-24 

Suppose it= - 10°, it'= 20°, ~ = 40° as shown in Fig. III-25. 

Corresponding to these values, the lines p'/k and p/k in Fig. III-24 

intersect at !; = I; = 15° and er 

p = p' = p = 5k max 
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Pressure distri'Qution along rim 

~=40 

)* : 15° 
'='er 

J -=- 40° 

llJ =. - 10• 

ip' :: 20· 

Fig. IIl-25. Example on the use of Fig. ID-24 when 
\.If = -1 o0

, '\.If 1 = 20° and ;;;. = 400. 
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The pressure distribution along the rim of the cylinder is shown in 

Fig. III- 25. 

For F denoting the resultant external force, then 

~( p + p I ( 0) ) ( p + p (~ )) = R max I'. + max (~ 
2 "'er 2 

F _ kR[( 5 + 4. 45) 15'!T + ( 5 + 4. 1) 25ir J 
- 2 180 2 180 

= kR[i.24+1.98] 

= 3. 22 kR 

Noting that the contact pressure is radial (smooth surface) 

and with s F the inclination of F to the vertical, then 

t,F = iR [ s :er p'Rt, dt, + ( pRt, dt, J 
Ser 

c: 19.7° = 0.344 rad 

calling µ = tan SF 

µ c: o. 358 

This is the ratio of horizontal to vertical forces to be applied at the 

center of the cylinder, to produce the assumed instantaneous motion. 
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CHAPTER IV 

ON THE THEORY OF THE STEADY-STATE, 

FREE ROLLING OF RIGID CYLINDERS 

. IV-1. Introduction 

Man has used the rolling process since the discovery of the 

wheel, yet study of the phenomenon did not start until 1712 when 

* . Var lo [ 1] and later Coulomb m 17 8 5 [ 2] began to perform tests 

on rollers. Evers ince, numerous investigations have been made in 

the rolling on metals for its applications to bearings [ 3, 4, 5, 6, 

7, 8, 15, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29] and in the rolling 

on soils for its applications to land locomotion [ 9, 10, 11, 12, 13, 

14, 31, 34]. The two fields progressed separately and although 

rolling on metals is presently fairly advanced, the literature on soils 

is rich in experimental results and empirical formulae but lacks the 

theory that would rationalize the process and would ultimately, with 

proper formulation, improve many engineering designs. The need 

for such a theory, which ordinarily is covered by carrying out more 

tests, was especially felt when a land rover was to be sent to the 

moon. No tests could have reasonably been performed on the moon 1 s 

surface and the empirical formulae, without the proper understanding 

of the rolling mechanism, could hardly be relied upon in a project of 

such magnitude. 

With its application to soils in mind, rolling is first considered 

a mechanism of energy dissipation. The history of development of 

* Number in brackets refers to the bibliography at the end of the 
chapter. 
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the theory of rolling for metal applications is used to outline all 

available models that may account for the energy dissipated. The 

problem of the steady-state free rolling of a rigid cylinder is then 

properly formulated and ideal plasticity was chosen to account for 

the losses. An approximate solution is next derived for rolling under 

light loads; this was achieved by obtaining the exact solution of two 

problems that encompass the one of interest. The first is a steady­

state solution of a problem with a geometry that is not exactly that 

of the cylinder, and the second is an instantaneous 1solution for the 

geometry of the cylinder but is not a steady-state. The combination 

of those two solutions together with that obtained by Marshall [ 26] , 

using the perturbation technique developed by Spencer [ 27] • which 

is another approximate solution to the rolling problem for applica­

tions to metals, provide a good estimate of what the exact solution 

should be. When checked with existing empirical formulae for the 

rolling of wheels on clays, the predicted rolling resistance compares 

favorably. 

IV- 2. Free rolling, the existing models for energy dissipation 

By discovering the wheel, man found a means of reducing the 

energy required to move objects from one place to another. For a 

closer look at the subject, let us consider the plane strain steady­

state free rolling shown in Fig. IV-1. The external force H, called 

the rolling resistance, moving with a constant velocity U dissipates 

energy at the rate of HU per unit time. For energy equilibrium, 

the study of the rolling problem requires the consideration of a 
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u. 

Fig. IV-1. Plane strain steady- state free rolling 
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system exhibiting some form of power dissipation ability. 

The nature of the sink to absorb the power released by the 

external forces is no doubt a cornerstone for any theory dealing with 

the subject. Motivated by metal bearings research, all available 

theories for energy dissipation have been exploited, a brief summary 

of which follows: 

(1) The surface phenomenon, or the friction model 

The dissipated power, as explained by this model, is due to 

the interface stresses undergoing relative velocities between the 

rolling element and the base. Theoretically, the energy is dissipated 

in the form of heat at the interface alone, where discontinuities in 

velocities occur. Some theories based on this phenomenon are 

referred to as "Interfacial Slip theories. 11 

Two types of slip are considered, the first called "Reynolds 

slip" which is present in part of the contact area and is due to the 

difference in elastic compliance between the rolling a:id static parts. 

The second is called "Heathcote micro slip 11 and is only present for 

balls rolling in grooves (tracks), and is due to the non-conformity 

between the ball and the groove. 

Another theory,due to Tomlinson, attributes losses to the 

energy required to break· interfacial joints. 

Experiments showed that the interface losses do contribute to 

the rolling resistance; however Eldredge and Tabor [ 3] establishe d 

experimentally that this contribution is negligible in most practical 

cases, thus the friction model alone is considered to be inadequate 

for d e scribing the rolling process. 
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(2) Plasticity 

After its successful use in solid friction, plasticity seemed 

the natural substitute for the friction model. 

Experiments on the rolling of a hard ball between flat parallel 

horizontal plates of a softer metal, led Eldredge and Tabor [ 3] in 

1955 to derive an empirical formula giving the rolling resistance for 

the first traversal. The area of contact between the ball and the plate 

was assumed to consist of half a circle when projected on the hori­

zontal, the center of the half circle lying directly below the center 

of the ball. Using this assumption and by measuring the applied 

forces, the average value of contact stress was calculated and was 

found to depend on the yield pres sure of the softer metal. 

To rationalize these results Eldredge and Tabor argued that 

the rolling resistance is primarily due to plastic displacement of the 

plate metal ahead of the ball. Thus the use of plasticity is first to 

account for the large permanent deformations of the plate material 

and second for the nearly uniform stress distribution at the contact. 

Evidently, because of the complexity of the problem, no real plasticity 

analysis was performed; nevertheless, the rolling resistance H 

claimed to be valid only for the first traversal, still holds a primary 

rank in the field of the rolling theory because of its reasonable pre­

diction and its interpretation of the phenomenon. 

Theoretically speaking, the plane strain problem of the roller 

is much simpler than the three-dimensional ball problem. However, 

the formula for ball resistance was not extended to the roller, pre­

sumably because of the absence of an exact plasticity analysis. By 
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increasing the number of traversals n, Tabor found that the rolling 

resistance H gradually decreased to approach a constant value 
n 

H for large values of n. Simultaneously, the width of the track ro . 

left behind the ball increa s es and approaches a constant value. 

Since for large n no more detectable permanent deformation was to 

be found, and because of the presumed connection between plasticity 

and large deformation, Tabor and followers rejected plasticity. The 

elastic hysteresis was thus introduced. 

(3) Elastic hysteresis 

Tabor [4] introduced a coefficient a of hysteresis loss to 

account for the energy dissipated in the rolling after a large number 

of traversals (n e! ro). To convey the fact that no permanent defor-

mation is observed, the term elastic was used and thus a was defined 

as the "coefficient of elastic hysteresis." With this ambiguous defi-

nition, it was assumed that all solids to which the theory applied, 

after a certain number of stress cycles, reach a state of imperfect 

elasticity where they dissipate energy without permanent deformation. 

The difficulty in formulating the "imperfect elasticity" is 

clear from its definition; moreover, if a is considered as a distinct 

material property, the theory ends by finding this constant through 

rolling experiments. Unfortunately a is not only a material constant 

but depends on the loads and dim ens ions of the problem [ 4] • 

(4) Viscoelasticity 

Although it may account for the effect of special parameters 

(such as the rolling speed) on the rolling resistance, viscoelasticity 
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has the serious disadvantage of being too complicated to yield closed 

form results of rolling resistance. Another deficiency of the model 

is that materials exhibiting non-viscoelas_tic properties under 

practical conditions and use and/or experiments, e.g. , steel and 

sands, can hardly be expected to obey this model. 

From the previously treated models it is clear that the subject 

of rolling on metals is far from being solved; all four models are 

still used to formulate the rolling resistence [ 17 , 26, 33] • The total 

energy dissipated in actual rolling problems is the sum of the effect 

of these models (surface phenomenon, hysteresis, etc.). Each effect 

contributes to a different proportion depending upon the materials, 

loads, surface roughness, temperature, etc., characterizing the 

problem. An exact solution, including all the parameters, is not 

conceivable; on the other hand, a reasonable solution would be to 

consider the major factors contributing the most to the solution and 

to neglect the parameters of minor importance. 

0££-the- road locomotion or the rolling of wheels on soils is 

a relatively new subject compared with metal bearings. Soils, as a 

half-space material, are weak and have complicated properties, thus 

it is natural to expect that the theory of rolling on soils is where it 

stands today, i.e. , a tremendous amount of experimental results (see, 

for example, Bekker [ 14] for some), yet very little is known about 

the rre chanism of rolling; especially that until the present, no link has 

been made between rolling on metals and that on soils. 

In the rolling on soils, the large deformations near and at the 

surface of the half space represent a difficult problem, because they 
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can no longer be neglected. On the other hand, they give a clear 

insight as to what the rolling process is about and further lead us to 

believe,as most workers in the field do,that plastic flow in the upper 

layers of the half space is the main .source of energy dissipation. 

The final check on the approach is clearly how close the predictions 

are to the experimental results. In this text we will refer rolling 

resistance to plasticity and expect the test results to conform {or 

disagree) with the predictions of the theory. 

IV-3. Plane strain free rolling of a rigid wheel, general formulation 

and simplifying assumptions 

Cons icier the problem of steady state free rolling of a rigid 

cylinder of radius R and infinite length on the surface of a half 

space. A force F, per unit length of the cylinder axis, acts at the 

- 1 center 0 and makes an angle tan µ with the vertical Fig. IV-2. 

The half-space material is a general solid of known properties; the 

surface roughness for both the roller and the half- space are also 

known. 

It is required to find the solution to the problem, i.e. , find 

U, w, p, T, the geometry and the velocity field in the half space 

where 

U is the forward horizontal velocity of the center 0 

of the roller 

w is the angular velocity of the roller about 0 

p and T the normal and shearing stresses at the 

interface AB. 
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u 

0 

Fig. IV-2. Plane strain steady-state free rolling of a 
rigid cylinder 
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(1) Difficulties of the problem 

The major difficulties encountered in solving the problem are: 

i - Along the interface AB 

The stresses and velocities along AB are on one hand part of 

the results and on the other hand represent the boundary conditions 

for the half space. 

Of special interest are the shearing stresses T(0). The 

factors affecting T(0) are: 

- The equilibrium of the roller; at the center 0 we have: 

~
~l 

P = R [ p ( e) cos e + T ( e) sin e] de 
·-~ 

S
~l 

H = R ( p(0) sin 0 - T(0) cos 0] d0 
~ 

S
~l 

Zero = Ra 
-~ 

r(0) d0 

where P and H are the vertical and horizontal com­

ponents of F respectively . 

- The roughness of both surfaces. 

- The velocity in the roller along AB, which is best described 

by 

u 
s = 1 - -wR 

From these factors only, P, H, R and the roughness of 

surfaces are known, while the velocity in the half space, s, 

~1 and ~ are all part of the solution. 

ii - The free surface, BD, or the heap ahead of the roller. 

Being part of the geometry, BD is part of the result of the solution. 
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On the other hand, BD is an essential boundary condition for the half 

space. 

By looking at the above points (i) and (ii) it becomes clear 

that, for any of the available models representing the half-space 

material, an exact solution in the applied mechanics sense is not 

available. The alternative is to try to get approximate results by 

using either of the two methods: 

- Trial and error methods and numerical solutions. Even 

with the availability of computers, these techniques are 

not expected to yield useful results. The reason for this 

failure is the infinite variety of alternatives in the 

assumed values of stresses, velocities and geometry along 

the boundaries of the half- space. 

- Additional assumptions, based on test results of steady 

state free rolling, that would eliminate the variables of 

secondary importance and make the solution possible. 

The latter technique will be used to establish the boundary 

condition along the interface AB. 

(2) Surface roughness of the roller 

Experiments carried out by Halling [ 5] , Noonan and Strange 

[ 6], and Eldredge and Tabor [ 3] in steady-state free rolling on metals, 

have shown that for a constant vertical force P, lubrication has little 

or no effect on the rolling resistance H. This evidence suggests one 

of two interpretations. 

- The shearing stresses at the interface T(0) exist and are 

substantially large. The lubricant, however, cannot pene-
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trate the contact zone and is thus ineffective. 

- The shearing stresses at the interface are small enough, 

such that when these stresses are reduced to zero by the 

lubricant, the rolling resistance is negligibly affected. 

The second of these interpretations seems mo re reasonable, 

particularly that: 

- From the third of (i), T must change sign along the inter-

face. 

- Experiments by Bikerman [ 7] , Halling [ 5] and Drutowski 

[ 8] in rolling on metals, show that reasonable changes in 

the surface roughness (say less than 100%) produced 

negligible changes in the rolling losses (less than 10%). 

It will be thus assumed that the solution for a smooth roller 

(7(0) = O) represents an approximate solution for the general surface 

texture of the roller in the steady state free rolling. 

IV-4. Steady-state rolling of a smooth rigid roller on a rigid­

perfectly plastic half-space 

The relevant properties of the half-space material now have to 

be specified; we postulate that plastic flow of the half- space mate rial 

is the main source of energy dissipation; the validity and accuracy of 

the postulate in describing the free rolling on a certain solid can 

only be checked by its consequences compared with actual testing 

results. The elastic-plastic material, as a tool, is too complicated; 

instead, we will have to settle for the more restrictive material 

previously used in the half space of the plate problem and for con-

venience called rigid-perfectly plastic material. 
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The material being incompressible, the volume preservation 

condition implies that the surface of the half space far ahead and 

behind the roller be at the same level. The absence of elastic effects 

together with the fact that the stresses at the interface can only be 

compressive, suggest that the point A, representing the toe of the 

interface, should be di r ectly below O ; we will thus assume the 

geometry of the proble1n to be as in F i g. IV-3, with t i~e free 

surface BD still unknown. 

A complete solution in the half space, as it is understood in 

plasticity problems, consists mainly of finding a stress field 

together with a velocity field that would be permissible with respect 

to the material properties, and simultaneously satisfy the boundary 

conditions. Now with the curve BD still unknown, the problem 

remains unspecified in terms of plasticity. One way of avoiding 

this deadlock is to assume the curve BD. The technique, however, 

is faced with the infinite variety of alternatives in choosing BD, 

especially that actual roller testing shows it to be of a very compli­

cated shape. (See, for example, Wong and Reece [ 9] • ) Also noting 

that, in solving any particular problem by this trial and error 

method, no generalization of the results seems possible; consequently, 

this tediuus method will not be used. The alternative is to specialize 

the problem further, and this will be done by treating only the special 

case when the angle ::;. is small, Fig. IV- 3. 

With less details, this string of simplifications were assumed 

by Marshall [26] who solves the presently reduced problem using 

the perturbation technique developed by Spencer [ 27]. A known 
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u 

D 

Fig. IV-3. Plane strain steady-state free rolling of 
a smooth rigid cylinder on a rigid­
perfectly plastic half-space 
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exact solution (taken in this case to be the incipient failure of a half-

space indented by a rigid smooth flat ended punch [3 2] at the limit 

state of zero velocity within the plastic field, Fig. IV-4-c) is per-

turbed to account for (1) the translation velocity U and (2) the 

difference in geometry between the cylinder and the punch. The 

values of the rolling resistance H and deformation of the surface of 

the half space o are deduced and are accurate to order ~ . 
max 

This solution however requires the implicit assumption that the free 

surface BD ahead of the roller is a circular arc symmetrical to AB 

with respect to the vertical through B, Fig. IV-3-d. With no esti-

mate of how this assumption affects the results and to get a clear 

picture of where the error in the stress and velocity fields occur 

and also because Marshall's solution breaks at the interface between 

the plastic and rigid domains (when x/x = O(~)) the present solution 
a 

was found necessary. We essentially break the rolling problem into 

two problems and solve each exactly. The first problem (A) is the 

steady- state ironing plate shown in Fig. IV- 4-a, which accounts for 

the translational velocity U but where the geometry of the roller 

is not there. The second problem (B) is an instantaneous s elution, 

Fig. IV-4-b where the geometry of the roller is met but the steady 

state is not. Achieving in two steps what perturbation does in one, 

the approach is physically more attractive and one gets a clear 

picture of where the errors are. Moreover we find that H is not 

affected by the assumed shape of the free surface BD ahead of the 

roller while o is. 
max 
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(a) Problem A, the ironing plate problem 

X,A •• 
I X-t I 

(c} Indentation of a half-space by a rigid 
punch 

(b} Problem B, an instantaneous solution 

0 

(d) Marshall 1s assumption regarding the 
free surface ahead of the roller 

Flg. IV-4. Different idealizations of the rolling process 

I 
~ 

'° l..;J 
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IV-4-1. Problem A - the ironing plate 

Consider a rigid smooth plate moving with constant velocity U 

parallel to the surface of a half space as shown in Fig. IV-5-a. The 

lowest point of the plate is at the level of the surface of the half 

space. The shape of the heap ahead of the plate is by some means 

controllable and acts with the half-space as a continuum. The material 

of the half space is taken as rigid-perfectly plastic. It is required 

to find a steady state solution which would give a constant shape of 

the heap for all times. Compared with the problem of interest in 

Fig. IV-3, the difference between the two is that the arc AB is 

now replaced by straight line AB. 

An exact solution to problem A is given in detail in Chapter III 

when the heap ahead of the plate is an isosceles triangle Fig. IV-5-b. 

The results of interest are: 

(i) The slip line field is shown in Fig. IV-5- b. 

(ii) The stress distribution at the smooth plate/solid interface 

interface AB is uniform and given by 

p = [ 1T + 2 - ~] k (compressive) 

where 

k = yield constant of a material 

= Y /2 for a Tresca material 

= Y /{3 for a Von Mises material 

with Y being the simple tension yield stress 

~ = the inclination of the plate to the horizontal 

the external force on the plate F is such that: 

(1) 

F = [ rr + 2 - 4~] kL and acts at an angle ~ to the vertical. 
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(a) Problem identification 

I 
I 

I 
Solution found for the free surface ahead of the plate 

Fig. IV-5. The ironing plate probl em 
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(iii) The maximum depth affected is 

t = _.!:._ [ 1 - ..f 2 sin ~] 
max ..[2 

( 2) 

where L = length of contact. 

(iv) For o denoting the horizontal displacement of any point 
n 

after n traversals by the plate with respect to its original 

position, we get: 

(n = 1 , 2, ••• ) (3) 

(v) The vertical displacement after any traversal is always 

equal to zero. 

Now let L = R~ 

where R = a fundamental length 

· (1) and (2) imply 

p=(11'+2- ~]k 

t = R~ [ 1 - -/2 sin~] 
max -.[2 ( 4) 

and 

F = ( rr + 2 - ~] kR~ 

Consider the special case of ~ small, equations (4) become: 

p ~ (TT + 2)k 

t ~ 
max 

R~ 

-/2 

F ~ ( rr + 2] kR~ 

(5) 
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The horizontal permanent deformation, for small ;:;. , is 

drawn in Fig. IV- 6 • The maximum horizontal displacement 

cSmax occurs at the surface and for each traversal is given by: 

(6) 

Noting that no p e rmanent vertical deformation is present and 

that o , from equation (6), is of the order of ;:;.2 , we would thus max 

expect that for small ;:;. , the changes in the geometry due to the plate 

traversal cannot be easily observed by looking at the surface of the 

half space. Furthermore, if the connection, later established, 

between the free rolling process of a hard ball or roller and this 

plate problem, for small;:;., is accepted, one can hardly agree with 

Tabor and followers that when no geometry changes are noticed, 

the plastic flow in the half space material ceases to exist. 

IV-4- 2. Problem B: An instantaneous solution to the rolling 

problem 

Consider the plane strain problem of the rigid smooth cylinder 

with radius R and a wedge or half- space with the upper surface 

GABDF as shown in Fig. IV-7 • The curved part of the half space 

AB is a circular arc with the same radius R as that of the cylinder 

with center of curvature at O' vertically above A. The cylinder is 

to be fitted so that its center 0 coincides with 0 1 • Then an 

instantaneous velocity U > 0, in the horizontal direction is given 

to the center 0 of the cylinder. Simultaneously an angular velocity 

w is given to the cylinder about its center. Compared with the problem 

of interest and shown in Fig. IV-3, this solution does not satisfy the 
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6H ~ BC::: Rv/VJ. 

AB ~ BD =RV-

Fig. IV- 7. Problem B, an instantaneous solution of the 
rolling process 

F 
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steady- state condition. The exact solution of problem B is given in 

Chapter III by the front failure pattern. The results of interest are: 

( 1) The value of w, as expected from the smoothness of the 

roller, is immaterial to the solution of both stress and velocity 

fields. 

(2) A variation in the value of U changes only the scale of 

the velocity in the plastic field while t he stress field and velocity 

directions remain unaltered. 

(3) The velocity in the part BCD is not uniform; hence, the 

portion BD of the surface does not remain straight at subsequent 

times. The solution is thus valid only when motion is first started 

(instantaneous solution). 

(4) Measuring the positive direction '11' clockwise, we get 

for '11' < 0 two failure zones - one ahead of the roller and the second 

behind it. For the case of '11' > 0 we get only a front plastic zone. 

(5) The pressure distribution along the circumference AB is 

given by: 

p = [,,. + 2 - 2(9 + '11')] k (7) 

where 

0 ::5 e .::::; ~ , for all 0 < ~ < ; 

(6) The same instantaneous solution is to be found if the half 

space had the surface DF instead of DE. 
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IV-4-3. Connection between problem B, problem A, and the 

rolling of a rigid cylinder 

Suppose ~ and '1r are small, then from (7), by neglecting 

higher orders: 

p ~ ( 1T + 2)k (8) 

Now by comparing (8) and the first of equations (5), we 

realize that the pressure distribution is the same as in the plate 

problem(forsmall ~). Bydecreasing ~ the arc AB, Fig. IV-7 

reduces to the straight line AB, Fig . IV- 6. Furthermore by letting 

'1r = ~ it becomes clea:r that problem B approaches problem A . the 

latter having the advantage of being not only an instantaneous solution 

but also of an acceptable geometry for a steady state. From results 

previously obtained we deduce that for small ~: 

(1) The pressure at the interface p is given by (8) and acts 

radially. The force F is thus inclined by an angle 

~ /2 to the vertical and is given by: 

F ~ ( ir + 2)kR~ (9) 

The coefficient of falling friction µ (the rolling resistance 

per unit weight) defined as the ratio H/P is thus given by: 

-1 
tan 

~ 
µ = 2 ( 10) 

Neglecting higher orders (for small ~), we substitute 

-1 P ~ F and µ ~ tan µ in equations (9) and ( 10) to get: 

p 
( 11) µ ~ 2(ir + 2}kR 
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This result is the first term in the expansion solution 

derived by Marshall [26] assuming the free surface BD 

ahead of the roller to be a circular arc. This shows that 

the geometry of this free surface has no effect on µ 

(for small values of ~). The higher order terms in his 

expansion are incorrect because the stress field, in fact 

the whole solution, is only valid to the zero order of 

magnitude in ~. 

(2) The maximnm depth affected by the rolling process is 

given by 

t ..., ...f2 µR 
max 

( 12) 

In actual rolling, this value is expected to be exceeded 

because of the behavior of real materials. The rigid state 

assumed by the theory for points outside the plastic 

domain cannot be practically achieved. 

(3) On the basis of results of the ironing plastic problem (the 

exact steady-state solution), the distribution of permanent 

horizontal deformation is given in Fig. IV - 6 The 

maximum deformation occurs at the surface and is given by 

6 Q! 2R~2 
max 

( 13) 

This value is twice as large as the one found by Marshall 

However if we calculate 6 on the bas is of 
max 

results of problem B (the exact geometry but not a steady 

state). Referring to Fig. IV -8 we have (for small ~): 
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(b) Marshall's assumption 

Fig. IV-8. Variables for evaluating the surface deformation due 
to rolling 
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o Q.! Sxo v )s) <ls 
max 

0 
U ( 14) 

from the hodograph of Fig. III-19 • The value of v (s) 
x 

is given by 

u 
v Q.! -s 

x R ( 1 5) 

If we now use the symmetry assumed by Marshall Fig. 

IV-8-b, then equations {14) and (15) imply: 

o Q.! ~ e de Q.! R~2 S
R~ 

max R 0 
{ 16) 

Equation {16) is the result obtained by Marshall [26]. 

It is thus clear that although assuming different shapes 

for the free surface BD ahead of the roller does not 

affect the rolling resistance, it does change the value of 

the deformation o. This is caused by the change in the 

velocity field rather than the geometry of the problem. 

Values given by (13) and (16) are thus to be considered 

reasonable estimates to within the order of magnitude 

considered. 

IV-5. Comparison with experimental results 

In applications to the rolling of wheels on soils, the number 

of test results is beyond description, we will thus compare the 

empirical formulae currently in use for the rolling resistance with the 

theoretical expression in equation (11). 

With P' the total vertical load of the wheel and d the width 
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of the wheel, 

Gerstner, Schultz, Grandvoinet, goriatchkin and Garbari propose 

0.54 1 . ( ~·) s s = 1/3 
µ = 
~ 

with 
R 11 11 = 2/3 

( 1 7) 

Bernstein proposes 

o. 5 7 1 . (~')s ~ = 1/2 
µ = 

MS 
. - with 

R 11 11 = 3 /4 
( 18) 

Letoshnev proposes 

1 1 . ( ~·) s with s 11 = 1 µ - • - = 
- 2Ms R 11 

( 19) 

The parameter M is a material property independent of P' 

and R but sometimes dependent on d. 

After more than 20 years of rolling and pushing different 

objects on and in the ground, Bekker [ 14] proposes a general formula 

which for special types of soil .reduces to (17), (18) and (19). His 

formula, restricted to small values of sinkage, for the free rolling 

of a rigid cylinder reads: 

µ = 1 (-3-) 
2

11 1 • _1 [~] s 
(m + 1) 2 11 3 - m Ms R 11 d 

where (20) 

1 s=---2m + 1 
m + 1 

11 = -----2m + 1 

Note: 
{ 

(28)} 
(31) reduces to (29) 

(30) 

M and m are soil parameters to be determined from the relation 
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m 
er= My (21) 

where er and y are the stress and sinkage respectively of a plate 

pushed vertically into the soil, see Fig. IV-9. 

Equations (31) and (32) are the most widely tested and used in 

land locomotion. However, the parameter M is still a subject of 

controversy; Bekker [ 14] proposes 

and Reece [ 31] maintains that 

where kc,k<Ii,k1 and k.a are soils constants. Inanycase,fora 

soil with properties similar to that of a rigid-perfectly plastic 

material, in the plate indentation Fig. IV-9, we expect to get 

m - 0 and er - MC!! (TI' + 2)k. The above value of M was deduced 

from the solution of a long rectangular plate, Hill [ 32] and that of a 

circular plate, Shield [ 16] • 

Substituting m = 0 (i.e. T) = ~ = 1) and M,; (1T + 2)k into 

(31), we get 

1 
er=~--~ 2(1T + 2) 

P' 
kRd 

(22) 

Comparing equation (22) and (11) and noting that P'/d = P, the two 

expressions are identical. Note: Bekker 1 s restriction that the sinkage 

be small is covered in the present theory by µ being small. 
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APPENDIX A 

EXAMPLES OF PROBLEMS SOLVED BY THE 

MODIFIED WILSON TECHNIQUE 

We present now two problems solved by the modified Wilson 

technique. The first is intended to emphasize the importance of 

choosing the proper convergence method according to the type of 

problem treated. This is done by comparing three convergence methods 

with the linear elasticity solution. The second problem, which is of 

the same nature as the rigid indenters problems of chapter II, 

stresses a more important point, nan1ely the applicability of Wilson's 

technique to this class of problems with a reasonable degree of 

accuracy. This is done by comparing the finite element solution to 

both the linear elasticity and the perfect plasticity ones. 

A-1. Short relatively thin cylinder under internal pressure 

The problem with its dimensions and material properties is 

shown in Fig. A-1. It can either be considered as a short, thin 

cylinder under internal pressure, or a reinforcement web for a pipe 

also subjected to internal pressure. 

In cylindrical coordinates (r, e, z)' the rotational symmetry 

makes all variables depend on r and z only. The internal pressure 

p is taken to be unity while the rest of the boundary is traction free, 

hence the problem falls into the second boundary value type for which 

the stress- controlled method of convergence should prove superior 

when solving for a bilinear material. 
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Material properties 

Linear material 

shear modulus G = 100 0 

Pois son's ratio v = 10.4 

Bilinear material 

G = 1000 

v = 0.4 

Ratio of plastic } n = 0.01 
to elastic modulus 

One dimensional } y 1 = yield stress 

13 
I I I 

~p:I 

Fig. A-1. Cylinder under internal pressure 



-213-

A-1-1. Linear elasticity solutions 

Neglecting the variation with respect to z through a plane 

stress approximation, an exact solution may be found m Timoshenko 

and Goodier [ 1] . 

CT r 

CTO 

Here we give the values of CTO and 

:a (1 -::) = a p 

(b2 
- a3

) 

= 
a2p (1 + :: ) (bci - aci) 

CT 
r 

a and b are the inner and outer radii respectively. On the other 

hand, the simplified analysis for thin-walled cylinders gives 

- pa 
CTO - (b:-af 

Using the finite element mesh shown in Fig. A-1 and solving for a 

linear material, we first find that the variation of the inplane stresses 

and strains with respect to z are negligibly small (less than 0. 5%). 

As for u and CT , they are less than 1 % with respect to the inplane z z 

displacement and stresses; hence the plane stress assumption of the 

theory is justified to this order of magnitude, Moreover, by plotting 

CT r and CT 
8 

results together with graphs of the theoretical results in 

Fig. A-3-a, it is seen that the F.E. method gives good results. 

A-1-2. Solutions for bilinear material 

With the same mesh shown in Fig. A-1 and for the properties 

given on the same Figure, we solve the problem for a bilinear material 

using three types of convergence methods, the strain- controlled 
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(Wilson), the stress-controlled and the average method. A compari­

son between the three methods is made in Fig. A-2 and in Tables 

A-1 and A-2. 

For every element we draw the (s, e) state location in 

Fig. A-2 after each approximation for each convergence method. 

Joining the (s, e) states at successive approximations we get what 

we called the convergence curve, the intersection of which with the 

bilinear line should give the s elution. 

Consider element #2 say. All convergence curves start from 

the same point 1 which is the linearly elastic solution. The dotted 

line corresponding to Wilson's convergence, with each approximation, 

moves closer to the bilinear curve; however this is done much more 

slowly than the solid line corresponding to the average technique such 

that after four approximations the error in the strain- controlled 

solution is still very large (~s = 1. 56). As for the stress-controlled 

method, which is especially suitable to this problem, it gives (s, e) 

states,from the second approximation on.which are virtually on the 

bilinear curve. Its location is denoted by a small circle in Fig. A- 2. 

A further proof of the superiority of the stress -controlled 

method is giv~n by Table A-1 in which values of the average error Ts 

app E! a r (see e q • . ( 9), chapter I). The '2SS value is a measure 

of how far are the (s, e) states in the field from the bilinear curve. 

Finally we compare the results of two different convergence 

techniques with each other in Table A- 2 after four approximations. It 

can be seen that differences in results due to different convergence 

methods do not exceed 1 % and are more like 0. 4%. 
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TABLE A-1 

Average error values '6s in the bilinear problem 

according to different convergence techniques 

Approximation # 1 2 3 
{elastic 

Convergence method 
solution) 

Stress - controlled 2.57 0.045 0.017 

Strain-controlled 2.57 2.47 2. 19 
(Wilson) 

Average method . 2.57 0.56 0.085 

4 

0.0068 

1. 56 

0 . 0124 
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TABLE A-2 

Comparison of results by different convergence methods 

after four approximations 

Variable Radial Stresses 
displacement 

Element Convergence u CT CT a-e 
# 

r r z 
type 

stress-
1. 0781 -0.78853 -0.00925 3.4991 

controlled 
1 

Average 1. 0734 -0.78845 -0.00922 3.5005 
method 

stress- 1. 0265 -0.42108 -0.00587 3.2959 
controlled 

2 
Average 1. 0219 -0.42095 -0.00584 3.2969 
method 

stress- 0.98715 -0.12897 -0.00978 3.1476 
controlled 

3 
Average 0.98293 -0.12891 -0.00983 3.1455 
method 
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A-2. Indentation of a half-space by a rigid smooth circular punch 

Tht:. problem with its dimensions and material properties is 

shown in Fig. A-4. In cylindrical coordinates (r,8,z), the rotational 

symmetry makes all variables depend on r and z only. The 

boundary conditions are: 

where 

* u = u v 

s = 0 
T 

S - s = O on a ... R V - T ., 

uv is the normal component of displacement 

sv, sT are normal and tangential components of the 

surface tractions 

81R 1 defined by Ir I < R, z = 0 

o; R defined by Ir I > R' z = 0 

A- 2-1. The linearly elastic solution 

An exact solution may be found in Green and Zerna [ 2], from 

which we lift the results of interest here: 

* 'IT R (1 - vra) 
u = 2 Pav E 

p (r) = Pav 

where 
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Pav is the average contact pressure at the interface 

between the punch and the half space 

p(r) the contact pres sure distribution. 

Graphs of these results are shown in Figs. A-4 and A- 5 for the 

dimensions and material constants of our problem. Also in Fig. A- 5 

are plotted the results of the finite element solution for a linear 

material. 

A-2-2. The perfect-plasticity solution 

A solution to the problem for a Tresca material was derived 

by Shield [ 3] using the method of characteristics. The average 

contact pres sure, for an incipient failure state, is given by 

p =5.69k 
av 

Although, rigorously speaking, the above result does not hold for a 

Von Mises material we assumed, for the sake of comparison, that 

it does and plot the results in Figs. A-4 and A- 6. The incipient 

failure was interpreted as occurring after a sufficiently large value of 

* * u /R had been reached (say u /R > 0. 1). 

A-2-3. F. E. solutions for a bilinear material 

The node points of the F. E. mesh used in the solution are shown 

in Fig. A-8. It consists of 248 nodes and 215 elements. Nodes along 

the boundary be lie on a circular arc with a radius equal to 97 times 

the radius of the punch. For a closer look at the contact zone the 

dark part near the origin in Fig. A-8 was magnified 40 times and 

drawn in Fig. A-9. 
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With the bilinear.properties shown in Fig, A-4, solutions were 

. * obtained for u / R = 0 . 01 , 0. 0 5, 0. 10, 0, 20 using four approximations 

in each c a se . The problem being of the mixed-mixed type a mor e 

sophisticated convergence method than the three described previously 

had to be used , After several trials it was fo und that, for this type 

of problem, faster convergence was achieved when the second approxi-

mation was made using the average method while the third and fourth 

approximations were made using the strain-controlled method, Some 

results are given in Figs. A-4, A-6 and A- 7. 

In Fig. A-4 one can clearly see that the bilinear material 

gives a load-deflection graph typical of the punching of a clay layer 

by a surface footing. The incipient failure values of the load are 

* reached at u /R ~ O. 1. The use of such a diagram for critical 

designs is most valuable since it combines settlement and failure 

criteria in one figure. Usually the problem is divided into two parts, 

solved using linear elasticity and the second using perfect plasticity, 

* For u /R = 0. 2, Fig. A- 7 shows that the extent of the plastic 

zone is much larger than that found by perfect plasticity solutions. 

Moreover a transition zone between elastic and heavily strained 

domains proves to be of substantial dimensions; this seems to replace 

the boundary surfaces between the plastic and rigid domains found in 

the ideally plastic solution. Along these boundaries discontinuities in 

velocities are present in the theoretical case. This phenomenon of the 

spreading of surfaces of discontinuities into region of finite thickness 

is interesting since it reveals itself also in the test results. 
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Elastic G' :c 100 Kg/cm8 

----

Transition zone 

20 < G' < 100 Kg/cm2 

r ems 

G'= L 2e 

Elastic 

70 

Fig. A- 7. L~cation of the plastic zone for a bilinear material 
u /R = O. 2. 
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"Boundary conditions :-

ob u,. = 5z = o -be u .... = uz. = o 

dc s .... = sz. = 0 

Fig. A-8. Finite element mesh for the punching 
problem 
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