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ABSTRACT 

The object of this report is to calculate the electron 

density profile of plane stratified inhomogeneous plasmas. The 

electron density profile is obtained through a numerical solution 

of the inverse scattering algorithm. 

The inverse scattering algorithm connects the time depen­

dent reflected field resulting from a a-function field incident 

normally on the plasma to the inhomogeneous plasma density. 

Examples show that the method produces uniquely the 

electron density on or behind maxima of the plasma frequency. 

It is shown that the a-function incident field used in 

the inverse scattering algorithm can be replaced by a thin square 

pulse. 
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I. INTRODUCTION 

A. Why Inverse Scattering 

There exist situations in physics where we want to determine 

the properties of a medium without measuring them directly. Examples 

of such media are the ionosphere and dielectrics. Even though 

rockets can be equipped with devices that measure the dielectric 

constant of the ionosphere, we prefer other methods because of the 

huge costs involved in the construction and shooting of the rockets. 

The case of the ionosphere is a particularly illuminating 

example. The ionosphere is a region surrounding the earth where 

there are appreciable concentrations of electrons and ions. To 

measure its dielectric constant we shoot vertically up an electro­

magnetic wave. When the reflected wave comes back we analyze it 

to infer properties of the ionosphere . 

For dielectrics we have a variety of methods. Again we 

can study the reflected wave of an incident electromagnetic wave. 

However it is also possible to place the dielectric in a cavity 

resonator and observe the cavity resonant frequencies. 

Methods which analyze the scattered wave from a medium and 

infer properties of the medium are called inverse scattering methods. 

The name inverse is attached to differentiate from situations where 

we know the properties of the medium and we are interested in the 

scattered wave properties. 
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B. Inverse Scattering Problems 

As early as 1894 Lord Rayleigh(l) considers the problem of 

determining the tones of a slightly inhomogeneous vibrating string. 

-iwt For small displacements y(z,t) and a time dependence e the 

string equation becomes 

d
2 

2 Q.W_ 
- 2 y(z,w) + w T(z) y(z,w) = O 
dz 

Lord Rayleigh finds that for a string clamped at both ends 

(y(o,w)=y(L,w)=O) and for an almost constant mass density 

p(z) = p + 6p(z) 
0 

the tones are given by 

T 
n 

2 
(1 + a ) 

n 

h . h . d f h th 'b . 1 d L h . I w ere T is t e perio o t e n vi rationa mo e , t e string s 
n 

length, T its tension (assumed constant) and a 
o n 

a 
n 

2 
L 

L/2 

( 6P(z') (1 - cos 2~z') dz' 
po 

Assuming that 6p(z) is synunetric about the midpoint of the 

string and expanding in a Fourier Series 

1 

/\p (z) 

Po 
A A 27Tz + 

o + 1 cos L 

See Reference 10. 

+ A Cos 27rnz + 
• • • n L 



Lord Rayleigh shows that 

a 
n 

A 
0 

1 --A 2 n 
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Lord Rayleigh realizes the importance of his results and remarks 

that it is possible to describe the inhomogeneity 6p(z) from a 

knowledge of p and T • 
o n 

In 1929 V.A. Ambartsumyan( 2) considers the eigenvalue problem 

n 2 
2 + [k - V(z)] ~(z,k) = O 

dz 

~ (o,k) 
dz 

d 
dz ~(TI,k) = 0 

2 
He shows that if the eigenvalues are k 

n 
2 n , then V(z) must be 

identically zero. His conclusions reveal the exciting possibility 

that the spectrum of the eigenvalue problem determines the function 

V(z). In essence this marks the beginning of the inverse scattering 

theory. 

Motivated by Ambartsumyan's results G. Borg(3) in 1946 and later 

B.M. Levitan and M.G. Gasymov( 4) consider the eigenvalue problem 

n 
2 + [A - V(z)] ¢(z,A) = O 

dz 

under two sets of boundary conditions 

2 
See Reference 11. 

3 See Reference 12. 
4 See Reference 14. 
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¢ 1 (0,A) - h1 ¢(0,A) o 

¢'(TI,A) + H ¢(TI,A) 0 

¢ 1 (0,µ) - h2 ¢(0,µ) = 0 

cp'(TI,µ) + H cp(TI,µ) 0 

They prove that both sets of eigenvalues A
1

, A2 , ... , An·, .•. and 

µ1 , µ2 , ... ,µn•··· are needed to determine uniquely V(z), h1 , h2 , 

and H. Ambartsumyan's example is an exceptional case. 

In 1933 R.E. Langer(S) considers the possibility of determining 

the conductivity of the earth as a function of depth. He supposes 

that a small electrode supplies a direct electric current to the 

earth's surface and the resulting surface potential ¢(p,o) is 

measured as a function of the radius p from the electrode. He 

questions whether the surf ace potential determines uniquely the 

conductivity as a function of depth. 

Using Maxwell's equations 

'V • 0E = 0 

and 

E = - 1/¢ 

the potential ¢(p,z) solves the differential equation 

5 See Reference 15. 
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where z is the depth and p the horizontal radius from the electrode. 

Separating the variables Langer obtains two differential 

equations 

2 
d V + 1. dV + A2V(p,A) = O 
d 

2 p d p . p 

(i) 
2 
~ + a'(z) du - A2u(z,A) = 0 
dz2 a(z) dz 

Since ¢ (p,A) is finite for small p 

V (p, A) J (Ap) 
0 

Then 

¢(p, z) = f
00 

A(A)U(z,A)J
0

(Ap) dA 

0 

where U(z,_A) is the solution of (i) that decreases exponentially with 

z. Incorporating the boundary conditions at z = 0, namely 

M. ()z (p , o) 

M.(p o) = 0 
dZ ' 

I 1 ---
27Ta0(o) ./ 2 2 

p < a 

a - p 

p .::_ a 

where a is the electrode radius, I the current injected on the surface, 

0(0) the conductivity at the surface, 

Langer shows that the potential is given by 

¢(p,z) = - --'I=---
27Ta0(o) 

0 

U(z,A) 

U'(o,A) 
J (Ap)sinAa dA 

0 



Defining .Q.(A) 
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£(A) =-A U(o, f. ) 
U' (o,f.) 

Fourier-Bessel Transform techniques yield 

I s i nA a 
£(A) 2 

2rra>. cr(o) 

Langer observes that ¢ (p,o) and a(o) determine in principle 

Q_(A) . Relating the conductivity cr(z) to .Q.(A) is no simple matter. 

However , Langer is able to show t hat .Q.(A) determines the ratio ~ ~~)) 

He deduces that the potential at the surface of the earth and 

the value of the conductivity at the surface determine uniquely the 

conductivity cr (z) as a function of depth z. 

In the 1950's inverse scattering theory experiences a tremendous 

growth. Leading quantum physicists and mathematicians strongly hint 

that the interaction between two particles can uniquely determine the 

Hamiltonian of the system. 

Under certain approximations the interaction between two particles 

is governed by the radial Schrodingers equation 

(ii) d2* + [k2 - iu,;1) -v(r)J 1/l (r ,k) 
dr r 

0, r > 0 

1/1 (o, k) 0 ~ r ijl (o,k) = 1 

For V(r) decreasing sufficiently fast as r + oo, ijl (r,k) takes the 

form 



~(r,k) ~ A~k) sin[kr 
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TI .Q, 
- - - n(k)] 

2 
as r -+ 00 

The question concerning quantum physicists is: Does ~ (r,k) for 

larger determine uniquely V(r)? Assuming that n(k) determines 

uniquely V(r), Heisenberg( 6) suggests that perhaps the scattering 

operator S(k) 

S(k) = e2in(k) 

is a more fundamental quantity than the Hamiltonian. 

In 1951 a basic paper by I.M. Gelfand and Levitan(l) describes 

a procedure that produces the potential V(r) from a knowledge of the 

spectral function associated with ~ (r,k). In 1952(B) Marchenko 

shows that when there are bound states one needs to know the bound 

states as well as appropriate normalizing constants in order to deter-

mine uniquely V(r). 

Gelfan:l's formulation where applied to (ii) for .Q, 0 and no 

bound states shows that if one knows W(k) 

W(k) 
1 

A
2 

(k) 

for all k then 

V(r) d = 2 dr K(r,r) 

6 See Reference 21. 
7 See Reference·s 16' 21. 
8 

See References 17, 21. 
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where K(r,y) is the solution of the integral equation 

with 

r 

K(r,y) + .Q.(r,y) + J 
0 

K(r,r') .Q.(r',y)dr' 

Q.(r ,y) 
2 
7T J

oo 

sinkr sinky [W(k) - l] dk 

0 

0, y < r 

Marchenko's formulation for t = 0 and no bound states shows 

that if one knows S(k) 

s (k) 
-2in(k) 
e 

for all k then 

V(r) = -2 L A(r r) 
dr ' 

where A(r,y) is the solution of the integral equation 

with 

00 

A(r,y) = F(r,y) + J A(r,r')F(r'+y) dr' , r < y 

r 

27T 
[S (k)_-1] eikr dk F(r) 1 =-

-00 

(9) 
Agranovitch and Marchenko at a later time expand the previous 

. formulations to include the case t f. 0. 

In 1955 I. Kay(lO) examines the one dimensional inverse scattering 

9 See Reference 18 . 
10see References 1,2,3. 
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~ 2 
2 + [k - V(z)] ~ (z,k) 

dz 

2 q + k
2 ~ (z,k) 

dz 
0 

0 z > 0 

z < 0 

Assuming that for z < 0 ~(z,k) is a combination of an incident wave 

ikz -ikz 
e and a reflected wave r(k)e , Kay shows that r(k) determines 

uniquely V(z). Then he proceeds to deduce V(z) when r(k) is a 

rational function of k. 

In 1963 C.B. Sharpe(ll) transforms the basic equations for loss-

less nonuniform transmission lines to the one dimensional Schrodinger's 

equation. He shows that when the input admittance to the line is 

a known rational function of the frequency, the characteristic 

resistance of the line can be found . 

Using similar ideas with Sharpe, in 1963 Moses and dERidder(lZ) 

reduce the equations governing the propagation of a plane wave inside 

a plane stratified dielectric to the one dimensional Schrodinger's 

equation and then proceed to solve examples when the reflected wave 

in the frequency domain is a known rational function of k. 

11
see Reference 7. 

12see Reference 9. 
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C. Statement of the Problem 

Up to today very little research has been devoted to solving 

inverse scattering problems. Mostly the theory has concentrated 

on developing algorithms relating scattering parameters to the 

potential of Schrodinger's equation. Few researchers have solved 

the algorithms where the scattering parameters are rational 

functions of frequency. 

In reality the scattering parameters are complex irrational 

functions of the frequency. Then how does one solve an inverse 

scattering problem? 

Statement of the Problem ---
A cold, collisionless and unbiased plasma exists in the region 

z > 0 . The plasma is plane stratified in the z-direction. The plasma 

3 density N(z) (Electrons/m ) is an arbitrary function of z. Air of 

a constant index of refraction n=l fills the whole space. 

A plane electromagnetic wave is incident normally on the plasma 

from the region z < 0. The incident electric field is an "ideal" 

pulse, a 6-function o(z-ct), where c =speed of light in free space, 

t = time. A reflected wave results and propagates in the -z direction. 

An observer in the region z < 0 measures the reflected wave as 

it evolves with time. From the time record of the reflected wave 

the observer deduces the plasma density as a function of z. 

The thesis chapter material is divided as follows: 
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In Chapter 2 we present the inverse scattering theory. 

We show that a relation exists between the time dependent reflected 

wave and N(z). 

In Chapter 3 we solve the relation between the reflected 

wave and N(z) by numerical means. A computer program is formulated 

that has as input uniformly sampled values of the reflected wave. 

The output is the electron density N(z). If the incident probing 

wave is not a a-function but a thin square pulse we show that 

we can still use . the program. 

In Chapter 4 we sketch an alternative method for finding 

N(Z). We compare the inverse scattering method with the other 

method. 

• 
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II. PLASMA INVERSE SCATTERING THEORY 

This chapter presents the inverse scattering theory from 

first principles. First, the direct scattering problem is developed 

in the time domain. The causality condition is introduced. Next 

the inverse scattering problem is solved and an integral equation 

relating the reflected wave with the electron density is obtained. 

Certain interesting details are followed through. 

A. Direct Scattering Theory 

In this section we develop the need to introduce causality 

into the direct scattering problem in the time domain. 

We consider that a plasma is located in region z > 0. The 

plasma has a density N(z) (electrons/m3) that depends on z and falls 

to zero for large z. Air of constant index of refraction n = 1 fills 

the ·whole space. A plane electromagnetic wave E. 
-inc 

o(z-ct) e -x 

is indicent on the plasma and a reflected field ~efl = R(z+ct)~ 

results. The equations governing the propagation of the plasma 

fields are to be derived. 

In the M.K.S. system of units Maxwell's equations give 

ClE ClH -= -µoat dZ 
(1) 

()H 
-J .Qli -= -e: 

dZ 0 Clt 
(2) 



where 
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µ
0 

= magnetic permittivity of free space 

£ electric permeability of free space 
0 

J induced current density produced by the motion of the 

changed particles because of the presence of an electric 

field 

1 = speed of light in free space c 

The incident electromagnetic field produces a plasma field 

polarized in the x direction which drags along the charged particles 

to create the current density J = Je . The ions, which are much - -x 

heavier than the electrons, move very little. The ion produced 

current density is negligible where compared to the electron current 

density. 

Balancing the forces on an electron and neglecting the small 

magnetic force gives 

(3) 

where m,q are the mass and change of an electron. The time derivative 

of a current density is given by 

Cl J 2 
q N(z) 

d )( 
at= 

dt 
2 

Simple substitution shows that 

() J 2 
(4) -= g N(z) 

E Clt m 
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Using (1), (2), (3), (4) we obtain the equation for the 

electric field inside the plasma 

O, z > 0 

where 
2 

2 µoq 
k (z) = -- N(z) 

p m 
2 

)Joq -14 
The constant -m-- has a value of 3.54 x 10 , the variable kp(z) is 

the plasma wave number. 

The time variable, for reasons of convenience, is repla'ced by 

the distance variable ct in all of the work to follow. 

Boundary conditions at the interface between air and plasma 

show that the electric and magnetic fields must be continuous. So, 

E(z,ct), ~ ~ (z,ct) continuous across z 0 

The plasma electric field created by the incident a-function 

solves the problem 

1 a2
E ----

2 "I 2 
C o t 

2 
k E(z,ct) 

p 
0, z > 0 

C3E 
E(z,ct), a;Cz,ct) continuous across z 

E(z,ct) = o(z-ct) + R(z+ct), z < 0 

2 -14 
k (z) = 3.54 x 10 N(z) 

p 

(5) 

0 (6) 

(7) 

(8) 
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2 
For the direct scattering problem one knows k (z) and 

p 

finds R(z+ct). It is interesting to see whether the above equations 

yield a unique reflected wave. 

Introducing Fourier transforms for the time dependent fields 

+co 

E(z,ct) 1 
f E(z,k)eikct dk 

2TI 
-00 

+co 
1 

f eik(z-ct) dk 
2TI o(z-ct) 

- 00 

00 

1 I r(k)eik(z+ct) dk 
2TI 

R(z+ct) 

--00 

with r(k) the familiar reflection coefficient equations (5) - (8) 

become 

a2 2 2 A 

- 2 E(z,k) + [k - k (z) ]E(z,k) = 0, z > 0 
dZ p 

A 

A ()E 
E(z,k), ()z (z,k) continuous across z 

E(z,k) = eikz + r(k)eikz , 

k2 (z) = 3.54 x 1614 N(z) 
p 

z < 0 

0 

(9) 

(10) 

(11) 

(12) 

It is well known that the direct problem as posed in equations 

(9), (10), (11) does not give a unique reflection coefficient. To get 

unique conditions one uses the Sonunerfeld radiation condition 
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" C3 E " (jz (z,k) -ik E(z,k) ~ 0 as z + 00 provided N(z) + O 

· as z + 00 • 

The f orm of E(z, k) s a tis f y i ng the Sommer fe ld condit ion is 

" ikz E(z,k) ~ t(k)e as z + 00 (13) 

Equations (9), (10), (11), (12), (13) yield a unique 

" reflection coefficient and field E(z,k). 

The time domain description of a radiation condition is 

not included in the time domain equations (5), (6), (7), (8) for 

the plasma field E(z,ct) . 

The time domain radiation condition must convey the idea that 

the time dependent field evolves as a wave propagating in the z-

direction. At a point inside the plasma there are no fields until 

the plasma fields generated by the incoming a-function reach the point. 

The appropriate condition is the causality condition. With 

the causality condition the equations describing the electric field 

inside the plasma become 

h_Lh_ 2 

2 2 2 
k (z) E(z,ct) 

az c (j t p 
0, z > 0 

C3 E 
E(z,ct), a; (z , ct) continuous across z 

E(z,ct) o(z-ct) + R(z+ct), z < 0 

0 

E(z,ct) 0 for t < ~ 
c 

(causality condition) 

(14) 

(15) 

(16) 

(17) 
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k (z) 

p 
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-14 3.54 x 10 N(z) 

Knowing N(z) we can, in principle, find E(z,ct) and R(z+ct). 

B. Plasma Inverse Problem 
(1) 

(18) 

In this section we use the equations describing the time 

dependent fields inside the plasma to derive an integral equation 

relating the reflected wave to the plasma density. 

The previous section has shown that the electric field 

inside the plasma obeys theequations 

()2E - L ()2E - 2 
2 k (z)E(z,ct) = 0 , 

Clz 2 
C Clt 2 p 

z > 0 

E(z,ct) = o(z-ct) + R(z+ct) , z < 0 

E(z,ct), ~! (z,ct) continuous across z 0 

E(z,ct) 0 for t < ~ (causality condition) 
c 

(1) 

(2) 

(3) 

(4) 

(5) 

A relation is to be found between the time record of the 

reflected wave and the electron density. Expressing the fields in 

their Fourier Transforms 

1This section is an outgrowth of a careful study of the works of I. 
Kay. See References 1,2,3. 
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-j--00 

E(z,ct) 
1 

f E(z,k)eikct dk 27T 
- 00 

-j--00 

o(z-ct) 
1 

J 
eik(z-ct) dk 

2TI 
- 00 

-j--00 

R(z+ct) 
1 

f r(k)eik(z+ct) 
2TI 

-00 

equations (1), (2), (3), (4), (5) become 

a2E 2 "' - + [k - k2(z)]E(z,k) 
dz2 p 

0 ' z > 0 

E(z,k) = eikz + r(k)eikz , z < o 

A dE 
E(z,k), a;<z,k) continuous across z 

E(z,ct) 0 t < z 
c 

2 -14 
k (z) = 3.54 x 10 N(z) 

p 

We need certain concepts. 

Characteristic Fields 

dk 

0 

(6) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

Definition: 
i kz Let the total field in region z < 0 be e 

By characteristic f i eld a t a point z = z1 inside the pla sma we mean 

the difference between the actual field at z = z
1 

and the field 

resulting at z1 if the outside field (field in region z < O) was left 

free to propagate in space. We write this characteristic field 

c1 (z,k). If the total outside field is eikz then a similar procedure 
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A 

defines c2 (z,k). 

From its definition 

0, z < 0 
A 

cl (z,k) (14) 
A ikz 
F1 (z,k)-e , z > O 

A ikz 
where F

1 
(z,k) is the plasma field due to an outside field e 

From its definition 

0, z < 0 

(15) 
A -ikz 
F2 (z,k)-e , z > 0 

t . 
where F2 (z,k) is the field inside the plasma due to an outside field 

-ikz 
e 

Equations (14), (15) show that the time dependent character-

istic fields obey the equations 

0, z < 0 

c
1

(z,ct) (16) 

F
1 

(z,ct) - o(z-ct)) z > 0 

0, z < 0 

c2 (z,ct) (17) 

F2 (z,ct) - o(z+ct), z > 0 

where 

+oo 

cl (z,ct) 
1 I cl (z,k)eikct dk (18) =-
27T 

-00 



c2 (z,ct) 1 
2'Tf 
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+oo 

J C2(z,k)~ikct dk 

- 00 

Properties of Characteristic Fields 

1. The characteristic fields are unique. The field 

F
1 

(z,k) was defined to be the plasma field for an outside field 
,... 

(19) 

ikz 
e F

1 
(z,k) is the solution of (9), (10), (11) where r(k) = 0. 

Setting 

a2F 
[k2 -

2 ,... __ l + 
kp(z)]F1 0, z > 0 

Cl z2 

,... ikz 
Fl e z < 0 

,... 
,... ClF l 
Fl , continuous across z = 0 

() z 

,... ikz ,... 

Fl = e +cl we get 

2 2 ,... 
[k - kp(z)]C

1 
(z,k) = 

2 .k 
k (z)e1 z 

p 

,... 
,... ac

1 
cl (o,k) = az-<o,k) 0 

2
1 

(z,k) 0, z < 0 

z > 0 (20) 

(21) 

(22) 

Equation (20) is an ordinary differential equation. When 

2 
k (z) is known, boundary conditions (21) uniquely determine the p . 

solution of (20). We conclude that 21 (z,k) is unique . 
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A similar procedure for c2 (z,k) shows that c
2

(z,k) 

is unique. 

Equations (18), (19) show that c
1 

(z,ct) and c 2 (z,ct) 

are unique. 

2. The characteristic fields are~ outside the pl a sma. 

This property is a direct consequence of the definitions 

of the characteristic fields for z < O. 

3. The characteristic fields are related. 

It is easy to show that c 2 (z,k) obeys the differential 

equation 

d2c 2 2 A 2 -ikz 2 + (k - kp)c2 = k e z > 0 
dz

2 p (23) 

A 
ci c2 

c2 (o,k) 
() Z 

(o, k) 0 (24) 

Comparison with (20), (21) shows that 

cl (z ,-k) (25) 

Equations (25) and (19) show 

( 2 6) 

4. A characteristic field uniquely determines the plasma. 

If one knows c1 (z,k) in a neighborhood of z1 and at a wave 

2 
number k1 , he solves for kp(z1) in equation (20) . Equation (23) shows 

that the same procedure can be followed for c2 (z,k). 
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In the time domain the characteristic fields uniquely 
2 

determine k (z). Fourier Transforming equations (20), (21), (22) 
p 

according to (18) we obtain 

2 
2 1 a cl 

- - --(z ct) 2 2 , 
c Clt 

k (z)o(z-ct), z > o 
p 

()Cl 
cl (o,ct) = a;-<o,ct) 0 

Appendix A shows that equations (27), (28) are equivalent to(2) 

a2c 
1 

--
2
-(z,ct) 

dZ 

2 
1 a cl 

- 2 - 2-(z,ct) 
c at 

2 
- kp(z)c1 (z,ct) o, -z < ct < z 

d 1 2 
~l (z,z) = 2 kp(z) 

(27) 

(28) 

(29) 

(30) 

d 
Signature equation ( - = total derivative with respect to z) dz 

cl (z,-z) 0 (31) 

cl (z,ct) 0 , ct > z (32) 

cl (z,ct) = 0 , ct < -z (33) 

The time domain characteristic fields uniquely describe 

the plasma. If one knows c1 (z,ct) around z = z
1

, ct = ct
1

, he can 

2 
determine kp(z1) from equation (29). However, if he knows c1 (z,ct) 

2
Equations (29), (30), (31) form the Goursat problem of partial 

differential equations. See Reference 24, p. 27. 
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2 
near z = z

1 
and ct= z1 he can also determine kp(z

1
) from the 

signature equation. 

Equation (30) provides the simplest way by which one can 

2 
find k (z) from the characteristic fields. Using equation (13) 

p 

relating the plasma wave number to the electron density, he finds 

N(z). 

Similar procedures show that one can find N(z) from 

Plasma Inverse Problem (continued) 

We return to the inverse problem in the frequency doma:i.n. 

ikz Let e be an incident wave to a plasma with an electron 

density N(z) and k
2

(z) = 3.54 x 1014 
x N(z). The plasma density 

p 

is assumed to be zero for z < 0. Due to the presence of the plasma 

a reflected field will appear. Using the principle of superposition 

and the definition of characteristic fields we write the solution 

of (9), (10), (11) as 

E cz, k) eikz + r(k)eikz + 2
1 

cz,k) + r(k)c
1 

cz,-k), z > o C35) 

2 
where cl (z,k) is the characteristic field determined by kp(z). 

Equation (35) does not correspond to the physical situation 

of incident eikz and reflected r(k)eikz waves. We haven't imposed 

the requirement of no sources at z = 00 • To insure E(z,k) is the 

actual plasma field we need to satisfy the causality condition (12). 
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Taking Fourier transforms according to (6), (7 ) , (8), (18) we obta in 

-t<X> 

E(z,ct) o(z-ct) + R(z+ct) + c
1 

(z,ct) +~TI i r(k)C
1 

(z,-k)dikct dk 

-00 

The last integral is a convolution integral. Doing the algebra we 

find 
-t<X> 

E(z,ct) = o(z-ct) + R(z+ct) + c
1 

(z,ct) + f c
1 

(z,z')R(z'+,ct)dz', 

-oo 

z > 0 

c
1 

(z,ct) is the plasma characteristic field. Equation (32) shows 

that we can replace the upper limit of the integral. We obtain 

E(z,ct) = o(z-ct) + R(z+ct) + f 
z 

c
1 

(z,z')R(z'+ct)dz' + c
1 

(z,ct), 

-00 

z > 0 

Imposing the causality condition on E(z,ct) we find 

J
z 

R(z+ct) + c
1 

(z,ct) + c1 (z,z')R(z'+ct)dz' = 0 z > 0, ct < z 

-00 

The above equation was first obtained by I . Kay in 1955~!) In 

Appendix B we show that the equation is satisfied even for ct = z. 

Thus, 

z 

R(z+ct) + c
1 

(z,ct) + J c
1 

(z,z')R(z'+ct)dz' 0, z > 0, ct < z 

-oo 

In Appendix C we show that if the integral equation 

3see Reference 1, p. 13. Note that here we have no poles of E(z,k) 
in the upper half-k plane since k2(z) > O. 

p -

(36) 
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R(z,ct) + f(z,ct) + J
z 

f(z,z')R(z'+ct)dz' 0, z > 0, ct < z 

- 00 

has a solution f(z,ct) for ct ~ z, then the solution is unique. 

Since equation (36) shows that the characteristic field is one 

solution of (37), then the solution of (37) coincides with the 

characteristic fi eld in the region ct 2. z. There f ore f (z,ct) 

satisfies equations (29), (31), (34). In particular the signature 

equation is satisfied 

d 1 2 
dzf(z,z) = 2 kp(z) 

We have shown that equation (36) uniquely determines c
1 

(z,ct) in 

the region ct ~ z. 

The function R (z+ct) has a meaning explained by the 

characteristic field definition. R(z+ct) is a free space field in 

the region z > 0 propagating towards the -z direction. When this 

field reaches the region z ~ 0 it becomes indistinguishable from 

the observed reflected wave. In short, R(z+ct) is the reflected 

wave travelling freely in all space. 

In the Appendix D we show that 

R(z+ct) = 0, z + ct ~ 0 (38) 

Using equations (31), (34), (36) we find this equation (38) satisfied 

With the help of equations (31), (34) equation (36) takes 

its final form. (4) 

4
Equation (39) is a Fredholm integral equation. See Reference 25 
for more details. 



-26-

J
z 

R(z+ct) + c
1 

(z,ct) + c1 (z,z')R(z'+ct)dz' = 0 

-ct 

z .::_ O, -z < ct < z (39) 

Main Integral Equation 

Equation (39) along with the signature equation and the 

2 
equation relating k (z) to N(z) 

p 

d 
~l (z,z) 

k2 (z) 
p 

-14 
3.54 x 10 N(z) 

Signature Equation 

2 
k - N Relation 

p 

(40) 

(41) 

completely describe the electron density N(z) when the reflected 

wave time record (reflected wave as recorded by an observer situated 

at the origin z = 0) R(ct) is given. 

Summary 

We have seen that if a a-function field, o(z-ct) is incident 

on a plane stratified plasma located in the region z > 0, a reflected 

wave results. We assume that the reflected wave is recorded by an 

observer situated at z = O. 

We have shown that the reflected wave determines the plasma 

density N(z) as a function of z. One solves the main integral equa-

tion for the characteristic field cl (z,ct). Using the signature 

2 
equation and the k - N relation he obtains N(z). 

p 
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z 

R(z+ct) + c
1 

(z,ct) + f c1 (z,z')R(z'+ct)dz' = 0 

-ct 

z ~ 0, -z < ct < z 

Main Integral Equation 

d 1 2 
dz Cl (z,z) = z kp(z) Signature Equation 

k
2

(z) = 3.54 x l0-14 N(z) 
p 

Relation 

(42) 

(43) 

(44) 

Equations (42), (43), (44) describe the inverse scattering algorithm 

for the plane stratified plasma. 
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C. Inverse Scattering Algorithm 

In this section we explain the inverse scattering algorithm 

obtained in the last section. We provide a simple conceptual 

model of the procedure one follows to solve the algorithm. Useful 

properties of the reflected wave are given. 

We have shown an algorithm, equations (1), (2), (3), 

which provides the electron density N(z) from the reflected wave 

R(z+ct) + c
1 

(z,ct) + f 
z 

c
1 

(z,z')R(z'+ct)dz' 0, z > 0 

-ct 

-z < ct < z 

Main Integral Equation 

d 
dz cl (z,z) Signature Equation 

2 2 
k (z) 

p 
-14 

3.54 x 10 N(z) k - N Relation 
p 

(1) 

(2) 

(3) 

Our problem considers a a-function field o( z-ct) normally 

incident on the plasma from the region z < 0. The a-function arrives 

at z = 0 at time t = 0. R(ct) is the reflected wave which an 

observer at z = 0 observes passing by. 

We can show that R(ct) is a continuous function of ct. 

R(ct) is a continuous function of ct(l) · (4) 

R(ct) is equal to zero for z _:::. 0. 

1see Appendix D. 
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R(ct) 0, ct < 0 (5) 

We define as "distance" record of the reflected wave t he 

graph as a function of ct, time x speed of light, produced by a 

monitor stationed at z = O. 

The distance record of the reflected wave is an easily 

measured quantity. Any observer in the region z < 0 obtains the 

"distance" record by proper time shifting. 

We formulate a simple conceptual model for solving the 

inverse scattering algorithm (equations (1), (2), (3)). An observer 

in the region z < 0 finds the electron density N(z) as follows: 

Step 1 He decides at which distance inside the plasma 

he wants the electron density. Say, he wants to find the electron 

density at z z
1

. 

Step 2 Using the distance record of R(ct) from ct = 0 

to ct = 2z
1

, he solves the main integral equation (1) for c1 (z
1
,ct). 

ae obtains cl (zl,zl). 

Step 3 He repeats the steps 2,3 for z = zli, i small. 

Step 4 

Step 5 

2 
He uses the signature equat i on(2) to find k (z) 

p 

2 
He uses the kp - N relation (3) to find N(z

1
) 
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The above mentioned procedure is a simple structural model 

of the way one goes about solving the inverse scattering 

algorithm. The next chapter shows how one carries out steps 

2,3,4. 

Until this point in the thesis we haven't pointed out 

any requirements on the nature of k2 (z) for z > O. We have assumed p -

that k
2

(z) is a non-negative( 2), continuous, bounded function of z 
p 

which drops to zero "fast enough" when z is large. Under these 

assumptions c
1 

(z,ct) is a continuous function in z > 0, -z < ct < z. 

Also R(ct) is a continuous function of ct. 

However, it seems that the requirements are too strict. 

2 
We have shown that to find kp(z

1
) at z = z

1
, one needs the distance 

record of the reflected wave from ct 0 to ct= 2z1 . . This means 

that one needs to know the time record of the reflected wave from 

the moment the 6-function hits the beginning of the plasma to the 

time it takes for the a-function generated plasma fields to travel 

with the speed of light to the point z = z
1 

and come back . It is 

clear that the time record of the reflected wave for time 

2z1 
0 < t < -­

c 

2 
cannot depend on the values of kp(z

1
) for z > z1 . 

Appendix D shows that the reflected wave R(ct) is a con-

tinuous function of ct for piecewise continuous, bounded, positive 

2 
k (z) which drop to zero when z is large . Assuming that the main 

p 

2 2The requirement that k (z) be a non-negative function of z expresses 
the physical constrain~ that the number of electrons/m3 N(z) is 
always a number greater than or equal to zero. 
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2 
integral equation (1) holds for piecewise continuous k (z), then 

p 

. cl (z,ct) must be a continuous function for z > 0, -z < ct ~ z. 

It seems possible that one can extend formally the inverse 

scattering algorithm to include a wide class of allowable electron 

densities N(z). In particular it seems permissible to use the 

inverse scattering algorithm equations (1), (2), (3) to obtain 

N (z) in a region 0 < z < L when N (z) is positive, piecewise con-

tinuous, bounded function of z in the region 0 < z < L. The 

functions R(ct), c
1 

(z,ct) will be continuous, 

R(ct) continuous for 0 < ct < 21 - -

cl (z,ct) continuous for 0 ~ z ~ L, -z < ct < z. 
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III. NUMERICAL METHOD 

This chapter describes a numerical method solving the plasma 

inverse scattering algorithm. Examples are provided to test the 

accuracy of the solution. We show that a thin square pulse can be 

used instead of a a-function incident wave. 

A. Numerical Solution 

This section describes a numerical solution of the inverse 

scattering algorithm. 

+ J
z 

R(z+ct) + c
1 

(z,ct) c
1 

(z,z')R(z'+ct)dz' = 0 

-ct 

d 
dz cl (z,z) 

1 2 
2 kp(z) 

k
2

(z) = 3.54 x 1614 N(z) 
p 

a. Characteristic Field 

z 2:_ 0, -z < ct ~ z 

Main Integral Equation 

Signature Equation 

2 
k - N Relation 

p 

This subsection describes a numerical solution of the 

(1) 

(2) 

(3) 

main integral equation for the characteristic field c
1 

(z,ct) at any 

point inside the plasma. 

The characteristic field c
1 

(z,ct) and the reflected wave 

R(ct) are related by the main integral equation 
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+ J

z 
R(z+ct) + c

1 
(z,ct) c1 (z,z')R(z'+ct)dz' 0 , z > 0, 

-ct 
-z < ct < z (4) 

We solve (4) by matrix inversion. That is, we fix z to 

a certain value and then we divide the ct-interval from -z to +z into 

2M equal intervals of width h. Then we write a system of integral 

equations. In each equation ct takes a different value. 

0, i l,2 ... 2M+l 

where 

ct. 
1 

h 

-z + (i-l)h 

z 
M 

(5) 

In each of equations (5) we expand the integrals using some integration 

rule which involves c1 (z,ct.), R(z+ct.). 
1 1 

We obtain 2M+l linear equations for 2M+l unknowns 

c
1 

(z,cti). Solving the system by matrix inversion, we obtain 

The details for the linearization of (4) are rather 

cumbersome to write down because of the inconvenience which arises 

from the fact that the lower limit of integration in the integrals 
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of equation (5) is a function of ct. This property of the lower 

limit forces us to choose a combination of Simson and trapezoidal 

rules for finding out the approximate value of the integrals. Simson's 

rule alone does not work because it requires that the number of 

division sub-intervals in the interval -ct . < ct< z is an even 
l - -

number(l) and in our integrations this is not always the case. For 

example the integral 

J
z 

-ct 
i 

c
1 

(z,z')R(z'+ct)dz' 

contains an odd number od division sub-intervals for ct. = 2M, 2M-2, •.. 2. 
l 

For these cases we take care of the extra interval by writing 

J
z 

-ct. 
l 

c
1 

(z,z')R(z'+cti)dz' J
z 

z-h 

z-h 

+ I 
-ct. 

l 

c
1 

(z,z')R(z'+cti)dz' + 

c
1 

(z,z')R(z'+cti)dz' 

The first integral on the right hand side of (6) is found by the 

(6) 

trapezoidal rule. The second integral on the right hand side has an 

even number of division sub-intervals. We use Simson's rule for its 

evaluation. 

1 See Reference 26. 
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The numerical procedure yields a matrix equation of 

ax+R 0 

x (x.)' X is a 2M+l vector 
l 

x. c1 [z,(M+l-i)h] for i = 1,2, ... ,2M+l 
l 

R (r i)' R is a 2M+l vector 

r. = R[ (i-l)h] 
l 

h=~ 
M 

for i = 1, 2, ... , 2M+l 

CZ.= (a .. ), {(is a (2M+l) x (2M+l) matrix 
lJ 

a .. 
l] 

a I•• 
l] + 0i,2M+l-j for i,j = l,2 ... ,2M+l 

The elements a' .. are 
l,J 

h for i 1 and k 1, 3, 5 ... , 2M-l 2 rk+l = = 

(7) 

' a ·+k . 
l 'l 

~ r lcl-1 for i = 2,3 ... ,2M+l-k and k = l,3,5 ... ,2M-l 3 

h for i 1 and k 2, 4, 6, ... , 2M-2 3 rk+l = = 

' a ·+k . 
l 'l 

Sh for i 2 and k 2, 4, 6, ... , 2M-2 6 rk+l 

2h 
3 rk+l for i 3,5,7, ••. 2M+l-k and k 2, 4, 6, ... , 2M-2 

0 for i = 1 

a' = 
i,i 

h for i 2 2 rl = 

h for i 3 ,4 ..• , 2M+l 3 rl = 
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0 for i < j 

The Kronecker o-function is defined to be 

oi . ,J 

0 for i 'f j 

1 for i j 

We invert matrix equation (7). We obtain X 

-1 X=a (-R) 

The value of the characteristic field at ct = z is found from x1 

The numerical method described in this section has been 

(8) 

(9) 

incorporated into a main computer program in the form of a sub-routine 

named INVER. (2) Vector R is the input to INVER. The output is 

c
1

(z,z). 

We show some examples of the numerical procedure. 

For M = 1, the matrices in equation (7) have the form 

0 0 1 cl (z,z) R(o) 

a h h 
0 x c1 (z,O) 2 r2 l+ 2 rl R= R(h) 

h 4h h 
cl (z,-z) R(2h) l+ 3 r3 3 r2 -r 

3 1 

2see Appendix E for computer flow chart. 
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with 

h = z 

For M = 3, we find 

0 0 0 0 0 0 1 l hr1 h 0 0 0 1 0 
?'2 2 

h 4h h 0 1 0 0 
JT3 JT2 ?1 

a h Sh 4h h 
0 0 0 = 

?'4 °61"3 JT2 l+ ?1 
h 4h 2h 4h h 

0 0 Ys JT4 l+ JT3 JT2 ?1 
h Sh 4h 2h 4h h 

0 
?°6 l+ "61"s JT4 JT3 ~2 ?1 

h 4h 2h 4h 2h 4h h 
l+ JT7 JT6 JTs zr4 ~3 ~2 l+ Y1 

x (x.) x. = c
1

[z,(4-i)h] for i 1, ... '7 
1. 1. 

R = (r.) r. R[ (i-l)h] for i = 1, ... '7 
1. 1. 

h z = -
3 

b. Electron Density 

This subsection describes a method with whi ch we obtain 

the electron density N(z) from the characteristic field c
1 

(z,z) . 

The last subsection describes a me thod with which we 

obtain the character i stic f ield c1 (z,z) f rom the distance r ecord 

of the reflected wave R(ct). We show how to find N(z) from c
1 

(z,z). 
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Taylor series expansion shows 

cl (z+£) - cl (z,z) 
d 

£ dz cl (z,z) + higher order terms (10) 

d 
cl (z-£,z-£) - cl (z,z) = - £ dz cl (z,z) + h.o.t. (11) 

Subtracting (11) from (10) we get 

d 
dz cl (z,z) 

cl (z+£,z+£) - cl (z-£ ,z-£) 
__:::;~~~~~~---"'----~~~~ + h.o.t. (12) 

2 
Using the signature equation and the k - N relation we obtain 

p 

N (z) rv ---2
---

3. 54 x 1614 

cl (z+£ ,z+£) - cl (z-£ ,z-£) 

£ 
(13) 

Equation (13) shows how we obtain N(z) from c1 (z+£ ,z+£), 

c
1 

(z-£,z-£), £small and£> 0. The numerical method described in 

this section has been incorporated into a main computer program in 

the form of a subroutine named ELECTRON DENSITY. (3) cl (z+£ ,z+£), 

c1 (z-£,z-£) are the inputs to ELECTRON DENSITY. The subroutine 

provides N(z) using equation (13). 

c. Errors 

In this sub-section we discuss the accuracy of the numerical 

solution of the inverse scattering. algorithm. 

We define the approximate quantities cl (z,z;M), N(z;M) 

and percent errors E(z;M), µ(z;M). 

3 See Appendix E. 
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Definitions 

c
1 

(z,z;M) is an approx i mate value for the characteristic 

-
field at z,ct = z. We obtain c

1 
(z,z;M) with the numerical method 

described in Section A.a. M is the number of intervals we divide 

the distance from 0 to z. 

N(z;M) is an approximate value for the electron density 

at z. We obtain N(z;M) with the numerical method described in 

Section A.b. µ(z;M) is the percent error in the characteristic field 

µ(z;M) 
c

1 
(z,z) - c

1 
(z,z;M) 

x 100 (14) 
cl (z,z) 

E(z;M) is the percent error in the electron density 

-
E(z;M) 

N(z) - N(z;M) 
x 100 (15) 

N(z) 

c
1 

(z,z) is the exact value of the characteristic field. It is 

obtained when one solves exactly the inverse scattering algorithm. 

N(z) is the exact value of the electron density . It is 

obtained when one solves exactly the inverse scattering algorithm. 

The percent error E(z;M) is a useful quantity. It indi-

cates how well the numerical method produces the electron density 

of the plasma . However, we cannot give an exact formula for E(z; M). 

We do not know ~· We developed the inverse scattering algorithm 

!.Q. find ~· The only thing we know about N(z) is the distance 

record of the reflected wave R(ct). We have reason to believe that 

the relation between R(ct) and N(z) is complicated. Only complex 
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mathematical abstractions, such as the inverse scattering algorithm, 

describe the relation. It is clear that we should not ask for an 

expression for the percent error s(z;M) that involves N(z). 

The numerical method described in Sections Aa, Ab, shows that 

we have at our disposal two parameters which we can change at will 

when we calculate the approximate electron density N(z;M). The 

two parameters are £, and M. 

The parameter £ has dimensions of length. We introduced 

it in order to carry out numerically the differentiation described 

by the signature equation (2). The error introduced by the numerical 

differentiation of the signature equation is negligible if £ is small. 

N (z ;M) 

To find N(z;M) we use equation (15) 

2 

3.54xlo14 x 
cl (z+£ ,z+£) - cl (z-£,z-£) 

i (16) 

In theory, we can take £ as small as we want. C4) For £ sufficiently 

small (S) the right hand side of equation (16) becomes 

N(z;M) - ---2---
3.54 x 1014 

d 
dz 

c1 (z,z;M) 

From the signature equation (2) and the k2-N relation we get 
p 

(17) 

4care must be exercised so tha t we do not choose £ too small. Other­
wise single precision programming gives 0 for the difference 
c1 (z+£ ,z+£;M) - C1(z-£ ,z-£ ;M) . 

5The magnitude of the parameter £ is connected with the local variation 
of the electron density at z. If A is the wavelength of the variation 
of N(z) at z, then for A >> £ equation (17) is satisfied. 
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2 N(z) = -----
3.54 x 1014 

d 
dz cl (z,z) (18) 

Equations (17) and (18) show that N(z;M) is close to N(z) if 

c
1 

(z,z;M) is close to c
1 

(z,z). 

From the definition of the percent error in the characteris-

tic field we obtain 

d d -
d [dz c1 (z,z) - dz c1 (z,z;M)] c1 (z,z) 
dz µ(z,M) = ~-"'------2--~----..;:;;_-- x 100 

cl (z,z) 

d 
[Cl (z,z) - c1 (z,z;M)Jd; c

1 
(z,z) 

c2 (z,z) 
1 

x 100 

Multiplying both sides of the above equation by the ratio 

cl (z,z) 

d 
dz cl (z,z) 

and using (17), (18) we get 

cl (z,z) d 
dz µ(z;M) 

N(z) - N(z;M) Cl (z,z)-Cl (z,z;M) 
x 100 - x 100 

d 
dz cl (z,z) 

N(z) c
1

(z,z) 

Equations (14) and (15) used on the equation above show that 

t:(z;M) µ(z;M) + 
cl (z,z) 

d 
dz cl (z,z) 

d 
dz µ(z;M) (19) 



From the signature equation 

we obtain 

2 

d 
dz cl (z,z) 

cl (z,z) 
1 
2 

Using the k - N relation 
p 

2 
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z 

f 
0 

k (z) = 
p 

-14 3.54 x 10 N(z) 

we find that 

cl (z,z) 

d 
dz cl (z,z) 

= 

. Finally equation (19) becomes 

f z N(f,;)dt,; 

E (z ;M) = µ (z ;M) + 0 

N (z) 

r N(f,;)dt,; 
0 

N(z) 

d cl; µ(z;M) 

Equation (20) relates the percent error E(z;M) in the 

electron density to the percent error in the characteristic field 

µ(z;M). We show that the percent error E(z;M) decreases with M. 

(20) 

The parameter M is a number. We introduced M in Section 

A.a as the number of equal subintervals we divide the interval from 

0 to z. The parameter M serves an important function. It controls 

the percent error E(z;M). The bigger Mis, the smaller the error 

E:(z;M). 
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Error Statement 

For small (6) percent errors s(z;M), s(z;M) is to a good 

approximation inversely proportional to the fourth power of M. 

In Appendix F we prove the statement by showing that 

1 µ(z;M) = --
0.9M4 

R(z'+z)C
1 

(z,z') I z I I < z 

Equation (21) when substituted into (20) shows the statement. 

(21) 

The error statement shows that the numerical method con-

verges. That is for small s(z,M) increasing the number of sub-

intervals we divide the interval 0 to z, increases the accuracy of 

the method. 

This property of the converging error shows that one can 

say ~ posteriori something about the accuracy of the approximate 

· electron density. For example suppose we obtain a value N
1 

(z;M1) 

for the approximate electron density at z and M = M
1

. Then we 

increase M to M2 , say M2 = 2M1 , and we use the numerical method 

-again to find another approximate value N2 (z;M
2
). If the percent 

error 

is small, we can say that N2 (z~M2 ) is close to the exact electron 

density. 

6 Our examples show that we can take as small percent errors t.(z;M) 
all errors s(z;M) whose absolute value is less than 20%. 
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Additional comments on the error E(z;M), and in particular 

about the range for which we expect E(z;M) to be small, are pro­

vided under Section D of this chapter. 
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B. Examples 

This section provides examples to test the accuracy of 

the numerical solution of the inverse scattering algoritlun. 

For certain special electron density profiles, the inverse 

scattering algoritlun has been solved exactly by analytical means. 

Each of these special electron density profiles has parameters. 

To indicate certain important features of the numerical solution 

we create 3 general categories of electron density "levels" by 

appropriately choosing the parameters for each example. The cate-

gories are the Low-Level category, the Medium-Level category, and the 

High-Level category. 

(1) the maximum electron density 
In the Low-Level category 

N is approximately 104 
electrons/m

3 . 
max 

In the Medium-Level category(Z) the maximum electron density 

N is approximately 108 electrons/m3 . 
max 

In the High-Level category(3) the maximum electron density 

N is approximately 1016 electrons/m3 . 
max 

Examples 1,2,3,4 appear in a paper written by Sims(
4
). 

Example 5 is easily obtained by solving the direct scattering problem 

for a constant electron density. Examples 1,4,5 have the same maximum 

electron density N . It occurs at z = 0. However in each of these 
max 

examples the electron density behaves differently when z is large. 

1 These electron densities appear in interstellar space. 
2 These electron densities appear in the ionospheric D-layer. 
3 These electron densities appear in laboratory plasmas. 
4see Reference 5. 
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In example 1, the electron density drops to zero for 

large z like 1z . 
z 

In example 4, the electron density drops to zero for 

large z like a decaying exponential. 

In example 5, the electron density is constant. We do not 

test the nurr•erical method for the Medium and High-Level categories of 

examples 2 and 3. They do not demonstrate any important principles. 

The function H(z) appearing in the examples is defined by 

O, z < 0 

H(z) = 
1, z > 0 

Example 1. 

1 N(z) = -----
8 

3. 54 x lc>1
4 

(D + 2z) 
2 

H(z) 

R(ct) 
2 -ct/D = - D e sin(ct/D) H(ct) 

Low-Level D = 105 m 

N = N(o) 4 3 - 2 x 10 el/m max 

Medium Level D = 103 m 

N N(o) 2 x 108 el/m 3 -max 

High-Level . D = 10 cm 

N N(o) = 
max - 2 x 1016 el/m 3 



Example l 

1 N(z) = -~---
3.54 x 1614 
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2 
4Cc1 + 1) 

------- H (z) 
dz -dz 2 

a(c
1

e + e ) 

b 

R(ct) 
2 - 2act 

~--2--- e sin 
14a - b

2 
----ct 

2a 

where 

Low-Level : 

Example .1 

N(z) 

R(ct) 

. where 

/4a-b 

a - b2 b 
cl a a 

d lb2 - 2a 
a 

b = 1.5 x 105 
m 

1010 m2 a = 

2 lb - 2a 

N N(o) - 104 el/m3 
max 

2 
1 16 ( c

1 
+ 1) 

3.54 x 1614 b2 
('l_edz+ -dz 2 

e ) 

b 
4ct - 2dct 

sin 
14a - b2 

=- e ct 
b2 2a 

(3 + 2/2) 

H(z) 

H(ct) 

H(ct) 
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Low-Level b = 105 m 

N = N(o) - 4 x 104 el/m3 
max 

Example !±.. 

2 

N(z) 
1 

8 (c
1 

+ 1) 

3 .54 x 10
14 

b2( dz d 
2 H(z) 

cle + ~ z) 

where 

R(ct) 

Low-Level 

- !±.. 
b 

Medium-Level 

High-Level 

3 
- 2b ct 

e sinh 

7 + 315 
2 

5 b = 10 m 

N = N(o) -max 

3 b = 10 m 

N = N(o) -
max 

-1 b = 10 m 

N = N(o) -max 

Example 2. 

1 N ( z) = ----'"'----

3. 54 x 1514 

2 
k

1 
H(z) 

R(ct) 

ct 
2b H(ct) 

2 x io4 el/m 

2 x io8 el/m 

3 

3 

2 x 1016 el/m3 



Low-Level 

Medium-Level 

High-Level 
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kl 
2/2 -1 a--m 
105 

N ."' N(z) - 4 3 -2~ x 10 el/m max 

kl 
2/2 -1 • --m 
103 

.. N(z) ;;;; 8 3 N 2 x 10 el/m max 

k = 212 x 10 m-l 
1 

( ) - 16 I 3 N = N z = 2 x 10 el m max 

The examplesgiven in this section have a common characteris-

tic. For z..?. 0 their electron densities are either mono~onically 

decreasing or constant. We do not know of the existence of any other 

method except inverse scattering which can produce the electron den-

sity profile in a plasma region where the plasma density is decreasing 

with distance z. 

The reflected waves examples 1,2,3,4,5 have been provided as 

inputs to the MAIN PROGRAM described in Appendix E. The resulting 

approximate electron densities profiles are plotted in the graphs 

appearing in Chapter 5 of the thesis. Each graph is labeled XXX 

The first X indicates the example displayed. The second x . is the 

letter a orb. The letter a stands for results obtained with the 

parameter M = 20 ~ The letter b stands for results with the parameter 

M • 10. The last Xis a capital letter . It is LP Mor H. It 

indicates the different plasma density category. For each example 
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in each category and for the same value of M we show two graphs. 

One has as its abscissa the percent error j€(z) I 

le <z) I N(z) - N(z) I x 100 

N(z) 

between the exact value of the electron density N(z), and the appro-

-
ximate value N(z) obtained with the numerical solution of the 

inverse scattering algorithm. The coordinate is the distance z 

inside the plasma. The other graph displays the exact and approx-

imate electron densities. Again the coordinate is the distance 

z inside the plasma. 
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C. Square Pulse 

In this section we concern ourselves with the possibility of 

replacing the reflected wave R(ct) appearing in the inverse scatter-

ing algorithm. We consider a replacement of R(ct) by B(ct). 

B(ct) is the reflected wave due to an incident thin square pulse. 

We observe that probing the plasma with a a-function pulse is 

of theoretical importance. However, it presents experimental dif-

ficulties. We can never expect to manufacture the high frequency 

part of the a-function spectrum. Can we use as a probing wave another 

wave that approximates in some "sense" a a-function? 

The inverse scattering algorithm is given by 

z 

R(z+ct)+c
1

(z,ct)+ J c1 (z,z')R(z'+ct)dz' 0, 

-ct 

z > 0 , -z < ct < z 

d 
.dz cl (z, z) 

MAIN INTEGRAL EQUATION 

SIGNATURE RELATION 

k
2

-N . RELATION 
p 

(1) 

(2) 

( 3) 

The reflected wave appearing in (1) is the transform of the reflection 

coefficient r(k) 

-too 

R(ct) ;TI J r(k) 
-ikct 

dk = e (4) 

-00 

-too 

r(k) = J R(f,;) eikf,; df,; (5) 

-00 
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In Appendix D we show that 

o(L) 
(1) 

r(k) as k -+ 00 

k2 
(6) 

We can also show that 

0 (l:.) 
(1) 

t (k) 1 + as k -+ 00 

k 
( 7) 

A typical graph of the reflection coefficient appears in Figure 1. 

For ikl > k the reflection coefficient is very close to zero. 
max 

1~ Ir ( k) I 

I 
--{:--~~~~~~~~~~~~~-~~~~~~~~~~~~~~~.-::::> 

I I 

-kmax kmax 

Figure 1 ( 2) 

It seems reasonable to believe that the high frequency part of 

the spectrum of r(k) is negligible for inverse scattering 

1Equations (7) and (8) show that the plasma behaves like a high pass 
filter. The high frequencies go through; the low frequencies a~e 
reflected. 

2 
The plot of lr(k) I is symmetric around k = 0 This happens be-
cause r(k) is the Fourier transform of a real function and thus 

r(-k) = r*(k) 
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calculations. After all, it is almost nonexistent because the high 

frequencies pass through the plasma. Thus the high frequencies of the 

reflection coefficient do not contain any information about the plasma 

except, of course, the information that they do not appear in the 

reflection coefficient. 

The low frequencies of the incident 6-function probing wave go 

into the plasma and get reflected by the plasma . During this reflec-

tion the plasma leaves its imprint on the low frequencies. The inverse 

scattering algorithm is the means by which we unscramble the informa-

tion about the plasma from these low frequencies of the reflected wave. 

The direct scattering problem for the incident 6- function has 

been formulated in Chapter 2, Section A. We found that the Fourier 

transform of the electric field in the plasma obeys equations (8), 

(9), (10)' (11) 

d2i 2 2 A -+ [k -k (z)] E(z,k) 
dz2 p 

0 ' z > 0 (8) 

A 

E (z, k) 
ClE 
~(z,k) continuous across z = 0 (9) 

E(z,k) eikz + r(k)e-ikz , z < 0 (10) 

E(z,k) ~ t(k)eikz as z + 00 (11) 

Equation (8) shows that if k is greater than the maximum value 
A 

(k ) of the plasma wave number, then E(z,k) behaves like a p max 

sinusoidal throughout the region z > 0 However, if k is less 

than (k ) , then E(z,k) behaves like a damped exponential in some p max 
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parts of the region z > 0 . This means that for k > (k ) there 
p max 

is much transmission through the plasma, but little reflection. For 

k < (k ) there is little transmission but much reflection from the 
p max 

plasma. We conclude that k of Figure 1 is the maximum value of max 

the plasma wave number 

k = (k ) 
max p max 

(12) 

Suppose that we have a plasma about which we have limited 

information, namely that its plasma density never becomes bigger than 

a certain number, say N. Then its wave number has an upper bound K 

K = J 3. 5 x l0-14N . We show that this information is enough to des-

scribe the properties of probing incident waves that can be used for 

the inverse scattering algorithm. Our ohject is to use this limited 

information to describe properties of other incident waves, say 

A(z-ct), such that where we plug their reflected wave, say B(z+ct), 

into the main integral equation, we still get the electron density by 

solving the inverse scattering algorithm. 

Suppose that a wave A(z-ct) is nonnally incident on a plasma 

whose maximum wave number is K . A reflected wave B(z+ct) results. 

The incident wave is given by (13) 

A(z+ct) 

-too 

1 J a(k) eik(z-ct) dk 
27T 

The reflected wave is given by (14) 

-too 

B(z+ct) = 1 
2 J 

a(k) r(k)e-ik(z+ct) dk 

-oo 

(13) 

(14) 
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The inverse scattering altorithm unscrambles the information about the 

profile of the electron density from r(k), -K < k < K. For 

Jk J > K there is no information of value; r(k) is essentially zero 

for JkJ > K • To make B(z+ct) "look like" R(z+ct) for the inverse 

scattering altorithm we need to preserve the plasma imprint for the 

low frequencies. Thus we need 

a(k) 1 for (15) 

For the high frequencies we need to preserve the idea that there are 

no sizable reflections. In particular we need to retain the idea that 

for JkJ > K r(k) goes to zero. Thus we need 

a(k) < 1 for (16) 

Equations (15) and (16) describe properties of the spectrum of an 

incident wave A(z-ct). These properties must be satisfied if we 

want to replace R(z+ct) by B(z+ct) in the inverse scattering algo-

rithm. 

From equation (13) we obtain 

a(k) (17) 

-00 

For an A(~) that is not a a-function, but has some spread, say 

A(~) 1' 0 -d < ~ < 0 
(18) 

A(~) 0 for ~ > 0, ~ < -d 

equations (15) and (16) show that equations (19) and (20) must be 
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satisfied 

Kd << 2TI (19) 

0 

f A(t.;) d~ 1 (20) 

-d 

Equation (19) for d = ct and K 2TI F 
c 

K =} 3.54 x l0-14 N gives 

equation (21) 

T << 1 
(21) 

9/N 

where 

T time duration of the incident wave 

N maximum of the plasma electron density 

Equation (20) shows that the incident wave must behave like a 6-function 

in the integral sense(_)) 

We test equations (20) and (21) with a square pulse incident wave. 

For the electron density profile we take the profile of example 1 des-

cribed in Section B. 

For a square pulse incident wave A(z-ct), at t 

A(z) 

0 , 

1 
2L ' 

z > 0 

-2L < z < 0 

0 we have 

(22) 

3Equation (20) is important. The main integral equation shows that if 
one doubles R(z+ct), c1 (z,ct) does not double. The relation 
between the reflected wave R(z+ct) and the electron density N(z) 
is a nonlinear one. 
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Its Fourier spectrum a(k) is 

-too 

a(k) J A(z)e-ikz dz 
kL 

ikL sin kL 
e 

- 00 

At z = 0 the reflected wave B(ct) becomes 

-too 

B(ct) J A(y) R(y+ct) dy 

For example 

R(ct) 

k
2

(z) = 
p 

-00 

1, R(ct) and k
2

(z) p are given by 

. (ct) sin D ct > 0 

ct < 0 

z .?:. 0 

z < 0 

(24) 

(25) 

(26) 

The maximum value K of the plasma wave number occurs at z = 0 and 

is given by (27) 

K :::: 2.8/D 

Equations (22),(25) when substituted into (24) give 

B(ct) 

0 ct < 0 

;L {e-ct/D(sin ~t+cos c~) - l } , 0 2_ ct < 2L 

1 { -ct/D . ct ct 
2L e (sin D +cos D)- e 

ct-2L 
D [ . (ct-2L) 

sin D 

ct-2L } + cos ( D ) ] , ct > 2L 

(27) 

(28) 
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For the square pulse the spread d is given by 

d 21 (29) 

Using equations (27) and (29) on equation (19) we obtain 

or 

2 . 8 
D 

21 « 2TI 

.!:. << 1 
D 

(30) 

Graph 1 of Chapter 5 gives the results that we obtained when we 

used B(ct) as given by equation (28) in the place of R(ct) appear-

ing in the main integral equation of the inverse scattering altorithm. 

In Graph 1 the abcissa is the percent error jE(z)j . 

by (31) 

c: (z) = N(z) - N(z) x 100 
N(z) 

N(z) is the electron density for example 1, 

N(z) = 1 2 z > 0 
14 D 2 ' 3 .54 x 10- (z+2) 

E(z) is given 

( 31) 

N(z) is the approximate electron density obtained by solving numeri-

cally the inverse scattering algorithm with reflected wave B(ct). 

Example 1 is in the low level category and thus the parameter D 

has the value 10
5
m 

D 100 km ( 32) 

The coordinate is the distance z inside the plasma. The parameter i 
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needed for the numerical method has been t a ken to be 2 km. The value 

of the parameter M is 10; that is, we use a standard matrix size o f 

21 for all calculations. This means that to find t h e electron density 

at any point z inside the plasma we divide the distance record of 

B(ct) for ct = 0 to ct = 2z into 20 equal intervals. For example, 

for z = 100 km we sample B(ct) every 6ct = 10 km. For z = 200 km 

we sample B(ct) every 20 km. The curves labeled L/D show the 

percent error for different values of L/D . The curve with L/D = lD 

shows that the error is big even for z's in the range 50 to 150 km. 

However, for this range of z the error for L/D = 0.1, 0.01, 0.001 

is much smaller, in fact, it is close to zero. The only reason f or 

this is equation (30). For L/D = 1.0 equation (30) is not satisfied 

and thus we expect that we will not get good answers for the e l ectron 

density. We cannot plot the results for L/D = 10. The percent 

error for L/D = lD is extremely big (more than 200 %). The curves 

for L/D = 0.1, 0.01, 0.001 show that the percent error is less than 

10% . For the case of L/D 0.001 we see from Graph 1 and Graph 2 

(Graph 2 shows results for z < 50 km) that the error is less than 1% 

in the region 5 km < z < 150 km . Such accuracy is quite remarkable. 

The curve marked "with a-function" has been included for com­

parison . The curve shows that the percent error is almost zero f or 

z < 250 km. However, in the region 200 < z < 250 km the L/D curves 

exhibit errors which are quite high. In t h e region 250 < z < 300 km 

all percent errors displayed by the L/D curves are more than 50%. 

If we define the range of the numerical solution of the inverse 

scattering algorithm the distance inside the plasma for which we get 
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errors less than 10% for a given M,t Graph 1 shows that for high 

ratios L/D the range is smaller than for low ratios L/D This is 

not unexpected. In fact since D is constant the smaller the ratio 

L/D the smaller L And the smaller L the more A(z), see equa-

tion (22), looks like a 6-function. In short, we expect that for 

L/D -+ 0 the L/D error curves will fall on the 6-function curve. 

Graph 2 shows that for z < 5 km the percent errors for 

L/D 0.1, 0.001 become quite high. This is not surprising. In fact 

at z = 0 both errors should be 100%. To see this we go to equation 

(1) and we substitute B(z+ct) for R(z+ct). We obtain 

z 

B(z+ct) + c1 (z,ct) + J c1 (z,z')B(z'+ct)dz' 0 

-ct 

For ct = z we obtain 

z 

B(2z) + c
1 

(z,z) + J c1 (z,z')B(z'+z) dz' 0 

-z 

Taking the derivative with respect to z we get 

d 
2B(2z) +dz c

1 
(z,z) +c1 (z,z)B(2z) - c1 (z,-z)B(O) 

z z 

+ J ~z c1 (z,z')B(z'+z)dz' + J c1 (z,z') ~~(z'+z)dz' 
-z -z 

But from (28) we see that 

B(O) 0 

From Chapter 2, Section B we find that 

c
1 

(O,O) = 0 

0 (33) 

(34) 

(35) 
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Taking the limit of equation (33) as z + 0 , we find 

d 
2B(O) +dz c1 (z,z)]z=O 0 

Using the signature equation the above equation becomes 

(36) 

Using equation (28) we find that 

B (O) o 

Thus equation (36) yields and the k
2- N relation shows 
p 

N(O) 0 (37) 

The inverse scattering algorithm for B(ct) shows that the electron 

density at z = 0 must be 0 . However, from equation (26) we see 

that 

N(O) 
1 8 

3. 54 x l0-14 n2 D 100 km 

The same calculations for R(ct) instead of B(ct) in the inverse 

scattering algorithm show that indeed equation (36) is satisfied. That 

is, R(O) is such that 

4R(O) (38) 

From equation (25) we get 

R(O) 
2 

- D2 
(39) 

Equation (26) shows that 

k
2

(0) 
8 

= 
p n2 

(40) 
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Equations (39),(40) when substituted into (38) produce an identity. 

This discrepancy is explained when one considers the difference 

between a o-function probing wave and a square pulse . We have 

reason to believe that the high frequency part of the reflection 

coefficient r(k) carries the information about jump discontinuities 

in the plasma density. This shows that the high freq uency content of 

the incident 0-function is important in determining these jump discon­

tinuities. The square pulse incident wave has a spectrum that falls 

to zero for high frequencies. Thus, the square pulse reflection coef­

ficient has a high frequency spectrum that is much smaller than the 

high frequency spectrum of r(k). Hence , the inverse scattering algo­

rithm sees not enough high frequencies in B(ct) and concludes that there 

are no jump discontinuities. We need to point out, however, that this 

is not a big error of the inverse scattering algorithm. As Graph 2 

shows for z > 10 km the approximate electron density N(z) comes 

close to the actual electron density N(z) . In effect then, by using 

a square pulse we smooth out the jurnp discontinuities. 
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D. Physical Explanations 

In this section we discuss the range of accuracy for the numeri-

cal solution of the inverse scattering algorithm . We provide a 

physical mechanism explaining the inverse scattering algorithm. We 

discuss graphs obtained by the numerical method for examples 1, 2, 3, 

4, 5. We suggest possible ways for improving the numerical solution 

of the inverse scattering algorithm. 

It is of interest to see how information about the plasma den-

sity profile gets recorded into the reflection coefficient. 
ik

1
z 

An incident plane wave e falls on the plasma. The electric 

field inside the plasma obeys equation (1) 

d2~ + [k2 
dz2 1 

Suppose that k2 (z) 
p 

has the profile shown in Figure 1. 

2 A k (z) 
p . 

, -------
! 
I 
I 
I 
l 
I 

(1) 

~~~~~~~~--l~;__~~~"'"'-~~~~~~~~..1..-~~~....::..~~:>-

a b z=O 
Figure 1 

At points z = a and z = b the plasma wave number k (z) is equal to 
p 

k1 • Equation (1) shows that for 0 ~ z ~a, z 2:_ b the electric 

z 
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field behaves like a sinusoidal. For a~ z ~ b the field b ehaves 
ik

1
z 

like an exponential. The incident field e creates a sinusoidal 

plasma field which propagates in the +z direction. As soon as this 

field reaches the point z = a a reflection results. At z > a the 

field must change to a damped exponential. This drastic cha nge 

creates a reflection. The field transmitted reaches the point z = b 

but it loses strength since it behaves like a damped exponential in 

region a < z < b . At z = b the field again undergoes a drastic 

change. Thus another reflected field appears. This reflected field 

returns to z = a; again it loses strength. At z = a part of it 

gets transmitted. The transmitted part arrives at z = 0 . This dis-

cussion points out that the reflected field at z = 0 has two parts. 

One part comes from a direct reflection at z = a and the other from a 

reflection at z = b . However, this second part has a much smaller 

amplitude resulting from the attenuation of the field in the region 

a < z < b 

Suppose that a a-function a(z-ct) is incident on the profile 

k 2 (z) of Figure 1. The reflectd wave R(ct) is given by (2) 
p 

R(ct) 
1 
2 

r(k) e-ikct dk (2) 

The a-function propagates in the plasma and hits the electron concen-

(1) 
trations of Figure 1 The electrons interact with the a-function 

and this interaction produces fields. The fields created by electrons 

1 
The electron density N(z) is proportional to 

2 k (z). 
p 
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located at disturb other electrons located at The fields 

generated by this interaction of electrons at and disturb 

other electrons at z
3 

, etc. In short, the reflected field R(ct) at 

any time t = T contains information from all electrons in the region 

Z < c T/2 

The inverse scattering algorithm 

zl 

R(z1+ct) + c1 (z1 ,ct) + f c1 (z1 ,z')R(z'+ct)dz' = 0 

-ct 

-14 
3.54 x 10 N(z

1
) 

MAIN INTEGRAL EQUATION 

SIGNATURE RELATION 

k
2
-N RELATION 

p 

( 3) 

(4) 

(5) 

obtains the electron density N(z
1

) using the values of the reflected 

wave in the time interval 0 ..:::_ t ..:::_ 2z
1
/c Information about N(z

1
) 

appears "near" times t = 
(2) 

2z
1
/c . The algorithm unscrambles this 

information about N(z
1

) by using the whole record of R(ct) for 

0 ..:::_ t ..:::_ 2z
1
/c . We expect that if the information about N(z

1
) is 

weakly recorded at times t "near" 2z
1
/c , then the numerical solution 

will have difficulty in obtaining N(z
1

) . 

Examples 1 and 4 discussed in Section B have the same maximum 

electron density. For both examples the maximum of N(z) occurs at 

z = 0 . However, away from z = 0 the electron densities behave dif-

ferently. In example 1 N(z) goes as l/z
2 

for large z whereas in 

2
For a continuous electron density profile, information about the value 
of the electron density in a neighborhood of z 1 is just as good as 
information about the value of the electron density exactly at z

1 
. 
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example 4 N(z) behaves like a damped exponential for large z , In 

Chapter 5 we show a table of values of the reflection coefficient for 

each example. For example 1 the magnitude of r(k) is given by 

1/2 
I r(k) I (6) 

For example 4, r(k) is given by 

(7) 

The parameter D has the value D = 10
5 

meters corresponding to the 

low level category. The wave number k is taken to be equal to the 

plasma wave number k (z) 
p 

of each example. This corresponds to the 

= k
2

(b) . The table has been constructed 
p 

case of Figure 1 where ki 

by varying the distance z inside the plasma. The table shows that 

at about z = 400 km, lr(k)I for example 1 is 0.999. The magnitude 

of the reflection coefficient of example 4 is 0.999 at about 200 km . 

This shows that the information about the value of k (400 km) of 
p 

example 1 is recorded in the reflected wave R(ct) of example 1 at 

II II 2 400 X 103 h h 1 d f near wit t e same amp itu e o the information 
c 

times t 

about the value of k (200 km) of example 4 which is recorded in the 
p 

f 1 4 
II II 

2 
200 X 103 

o examp e at times near 
c 

We reflected wave R(ct) 

expect then that the numerical method will show the same percent error 

for the electron density of example 1 at z = 400 km as for the elec-

tron density of example 4 at z = 200 km provided that we use the same 

M for both calculations. Graphs laL and 4aL verify our expectations. 
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Graph laL shows that the percent error at z = 400 km is about 10%. The 

same percent error is shown in Graph 4aL at z = 200 km . 

Simple calculations for the field inside the region a -2_ z -2_ b 

of Figure 1 show that the information about the value of k (z) 
p 

at 

z = b is recorded in the reflection coefficient with strength given 

by 

strength of jr(k1)j due to reflection at 

-2 f jk2
(b) - k2 (~) d~ 

z = b ~ e a p p (8) 

The discussion for examples 1 and 4 shows that the smaller the quantity 

the bigger the percent error between the actual electron density at 

z = b and the approximate one obtained by the nt.nnerical solution of 

the inverse scattering algorithm~ 3). 

Graphs lbL and laL point out that by increasing M one is able 

to obtain the electron density farther inside the plasma. Graph lbL 

shows that for M = 10 the percent error is negligible for z < 300 km. 

Graph laL shows that for M = 20 we can find the electron density up 

to a distance of 400 km inside the plasma . We expect that by taking M 

bigger than 20, say M = 40, we can find the electron density for dis-

tances bigger than 400 km inside the plasma of example 1. 

3This points out that it is difficult to obtain the electron density 
near the bottom of a deep valley in the plasma electron density profile. 
Nevertheless, theoretically we can find the electron density at the 
bottom of a deep valley provided that we use the numerical method with 
M sufficiently large. 
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The graphs XXX for the electron densities of examples 1, 2, 3, 4, 

5 show for a given value of M the percent error between the actual 

electron density and the approximate electron density obtained by 

the numerical solution . The graphs give the percent error for 

three categories: Low, Medium and High. The Low level category corres-

ponds to electron densities which have a maximum density of about 

4 3 
10 el/m . The Medium level corresponds to plasma densities which have 

a maximum density of about 10
8
el/m

3
. The High level corresponds to 

16 3 
plasma densities which have a maximum density of about 10 el/m . All 

the graphs show that the percent error is almost zero up to a distance 

S inside the plasma. Then the error begins to climb very rapidly. 

The distance S is the range of accuracy of the numerical solution for 

a given M All the graphs show that by increasing M we increase S 

The graphs also show that S changes value drastically from category 

to category. Graph laL gives . . a value of 400 km for S . Graph laM 

gives a value of 4 km for S . Graph laH gives a value of 40 cm for 

S . Similar drastic variations of S are exhibited by Graphs 4aL, 

4aM, 4aH and SaL, SaM, SaH. Graphs laL, 4aL, SaL show that even within 

the same category and same M the value of S varies from example to 

example. It is clear that the range of accuracy depends on the electron 

density profile and the parameter M Since the electron density pro-

file is unknown, it is of no use to search for an exact formula for 

S(M) However, with a little knowledge about N(z) an upper bound for 

S can be found. The upper bound is useful in a priori estimates of 

how far inside the plasma the numerical method can give the electron 

density profile. 
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The range of accuracy has an upper bound for a given M . 

Suppose that the plasma electron density has an upper bound N . Then 

the plasma wave number is smaller than K , K J3.54 x l0-14 N . In 

Section C we showed that the magnitude of the reflection coefficient 

drops to zero for jk j > K . The reflected wave is given by 

R(ct) = 1 
2 

+oo 

J 
r(k) e-ikct dk 

-oo 

(9) 

Equation (9) shows that R(ct) is composed of sinusoidals of wave 

number k where 0 < k < K . The numerical solution to the inverse 

scattering algorithm uses uniformly samples values of R(ct) instead 

of the time record of R(ct) . In Section C we showed that information 

about the plasma electron density profile is recorded in the spectrum 

of r(k) for -K < k < K We expect that if we sample well the 

reflected wave R(ct) then all information about N(z) will be pre-

served in the sampled values of R(ct). We sample well R(ct) i f we 

sample adequately the sinusoidal with the maximum wave number K 

existing in R(ct) . A sampling of sin K ct five times in half a 

period seems adequate. We deduce we must sample R(ct) every 6 ct 

where 6ct is given by 

6ct < 
7T 

SK (10) 

To obtain the electron density at z we divide the distance record o f 

R(ct) for 0 < ct < 2z into 2M equal subintervals of length 6 ct 

6 ct 
z 
M 

(11) 
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Equations (10),(11) show that the range of accuracy S(M) has the 

upper boi.md given by 

S(M) < 
TIM 
SK 

Using the relation equations (10) and (12) become 

< 1 

9ov'N 

(4) 

3.3x1Q6 x M 
S(M) < 

(4) 

(12) 

(13) 

(14) 

Equation (13) shows that if the plasma has a maximum electron 

density N , then we must sample the reflected wave at time intervals 

~t given by (13). For 

cannot be greater than 

fied for all our graphs. 

a given M 

3. 3 x 106 x M 

IN 

the range of accuracy S(M) 

Equation (14) is easily veri-

The numerical method presented in this report can be improved 

to yield bigger ranges of accuracy. All the graphs show that S(M) 

increases with M . The parameter M is approximately equal to half 

the number of rows of the (2M+l) x (2M+l) square matrix CL described 

in Section A . Our numerical method centers on the inversion of the 

matrix equation 

4we note that equations (13) and (14) have been derived using intui­
tive arguments to avoid immense mathematical difficulties encountered 
when one tries to describe rigorously the percent error. However, 
equations (13), (14) give good "ball-park" numbers that are necessary 
for a priori estimates. 
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ax = -R (15) 

described in Section A. We enlist the help of a computer to invert 

(15) . For most computers practical reasons limit M to values up to 

200 C
5). It is clear then that one cannot take M as big as one 

would wish. However, a good iterative solution of (15) can increase 

dramatically the permissible value of M especially since Section A 

shows that a has lots of zeros and symmetries. Also one can improve 

on the implementation of our numerical method by creating an efficient 

matrix inversion subroutine that takes advantage of the zeros and 

symmetries of Cl . We use a standard IBM 360 subroutine designed to 

b ff . . f . . 1 . ( 6) e e icient or inverting genera matrices . Also one can improve 

the range of accuracy by using higher order integration rules instead 

of the sinusoidal and trapezoidal rules used in Section A. 

5 
Values of 
computers. 
of matrix 

M bigger than 200 strain the storage capabilities of most 
This happens because the computer places all the elements 

Cl in its storage. For M = 200, Cl. has 160 ,000 elements. 

6see Appendix E. 
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IV. ALTERNATIVE METHOD 

This chapter presents an alternative method to the inverse scat-

tering method for finding the electron density profile of a plane 

stratified plasma. The method is commonly known as the ionogram 

method. 

A. Ionogram Method 

This section describes briefly the ionogram method for obtaining 

the plasma density profile. The material in this section is drawn 

mainly from the excellent books of Budden and Davies(l). We briefly 

sketch the method. 

The W.K.B. solution to the direct scattering problem posed in 

Chapter II, Section A 

d2E 2 2 A - + [k - k (z)] E(z ,k) 
dz2 p 

0 

A dE 
E(z,k), az (z,k) continuous across z 0 

A 

E(z,k) eikz + r(k)e-ikz 

E(z,k) ~ t(k)eikz 

-14 3.54 x 10 N(z) 

z < 0 

as z -+ 00 

shows that if the electron density N(z) is a monotonically 

(1) 

(2) 

(3) 

(4) 

(5) 

increasing function of z , then for k = k 
1 

the reflection coeffi-

cient r(k
1

) is given by 

1 See References 28,29. 
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z1 

2 i f Jr-kz ___ k_2 _( ~-) d~ 
0 1 p 

-i e (6) 

where 

Equation (6) is derived if we assume that the incident wave 
ik

1
z 

e is a decaying exponential in the region z > z
1 

and then we 

use the connection fonnulas(Z) of the W.K.B. method. 
I\ ikl z 

For an incident wave E(O,k
1

)e the reflected wave 

becomes 

(7) 

If the incident wave in the time domain is a square pulse of 

duration T multiplied by a sinusoidal sin(k
1

ct) where 

F = 2TI k 
1 c 1 

A 

then the incident wave E(z,ct) has a Fourier transform E(z,k) 

which is peaked around k = k 
1 

The reflected wave in the time 

domain becomes 
z1 

+co 

(8) 

2i f }k
2 

1 J{-i R(ct) ~ e 0 1 
2TI 

k2 (~) d~ -ikct } 
p e ico ,k) dk (9) 

- 00 

Using the principle of stationary phase in equation (9) we obtain 

2 
See References 34,35. 
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(10) 

Calling ct/2 a virtual height h'(k
1

) we obtain Abel's integral 

equation 

(11) 

The quantity can be measured experimentally. It is 
c 

half the time that it takes for the incident wave of predominant fre-

quency F = F 
1 

to reach the point in the plasma where 

get reflected, and come back to z = 0 Experimentally one finds 

h'(k
1

) from the time it takes for the signal to reach the reflection 

point z
1 

and come back to the station emitting the signal. 

One finds h'(k
1

) for all k
1 

up to k • Then he inverts 

equation (11) to obtain (12) (
3

) 

z(k) 
2 
1T 

rr/2 

J 
0 

h' (k sin ¢) d¢ (12) 

Using h'(k
1

) for 0 ~ k
1 
~ k , he obtains z(k) from equation (12). 

The record of htk
1

) for the different k
1

's is called the ionogram 

r-ecord. 

Unfortunately the method has deficiencies( 4 ): 

3
see Reference 30 

4
see Reference 31 



-7S-

1. It fails in regions where there are valleys in the 

plasma density. 

Suppose we had a linear profile as shown in Figure 1. 

B 
-----~ ~---------
_______ / _ _i__ 

j I 

I I 
I l 
I I I 

- - - 1- -+- -'r - - -
I I I IA 
I I I I 
I I I ! 

Z4 Zj 
Figure 1 

The region BAC is called a valley of the electron density N(z), 

N(z) = 1 k
2

(z). The valley region is "masked" by the region 
3.S4XlQ-l4 p 

0 < z ..:_ z
1 

. In order that one finds the valley electron density at 

z = zS, he has tv consider penetrations of wave numbers k , 

2 < k2 2 k
2 

..:_ k
1 

. In short, he has to include reflections from the point 

F in Figure 1. This requires that he sets up the full W.K.B. solu-

tions in region z
4 

..:_ z < zS . However, it is not clear whether such 

a treatment will yield an integral equation which can be inverted to 

find the distance 

An approach that appears in the literature is to try to deter-

mine the valley electron density from measurements of the virtual 

height for wave numbers k greater than k
1 

. However, this is 

erroneous. In Appendix G we show that even if we assume that the point 

A (minimum of the valley) lies on the line and we also assume 

z 
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that the valley is composed of two straigh t lines t ha t start a t 

points B and C and meet at A, even then we show there is an in f inite 

set of linear valleys that give the same virtual heights for k > k
1 

. 

This observation is in direct contradiction to suggestions in the 

literature. We quote: 

"It seems perhaps that the best method of dealing with 

the valley problem would be to assume some simple model for 

the ionosphere within that region, perhaps with two parameters 

specifying the height and the depth of the valley, then using 

values of h' for the higher region, fit the parameters of 

the valley, taking into account the retardation produced 

above the valley by the ionization already computed as exist­

ing below it." ( 5) 

2. It fails near maxima of the electron density. 

The reason for this failure of the ionogram method is directly 

traced to the W.K.B. approximation involved. 

3. The method does not have a "built-in" error control. 

That is, if we get an answer for the electron density 

profile the method does not provide a mechanism by which 

we can check the answer . 

4. The method fails when the electron density has steep 

gradients . 

In regions where the electron density increases rapidly, the 

accuracy of the W.K.B. approximations decreases. Hence the 

5 See Reference 32, p. 1158 
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reliability of the virtual height record diminishes. We quote: 

"Virtual height precision of +1.0 km is desirable everywhere ... 11
(
6 ) 

6 See Reference 33, p . 1159 
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B. Comparisons 

The inverse scattering numerical method has several advantages 

over the ionogram method. The inverse scattering method shows that 

the electron density can be found on, in front , or behind maxima of 

the plasma frequency. Also the method does well in regions of sharp 

gradients of the plasma frequency . The inverse scattering method 

shows that the electron density can be found and then verified through 

an error control feature. 
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V. GRAPHS 

This chapter contains all the graphs obtained by our numerical 

method. 

Table 1 and Graphs 1,2 are explained in Chapter 2, Section D. 

Graphs labeled XXX are explained in Chapter 2, Sections B and D. In 

each page of Graphs XXX there is a plot of the exact electron den­

sity, the approximate electron density which is obtained by solving 

the inverse algorithm numerically, and the percent error between them. 

The coordinate is always z, the distance inside the plasma. 



Example 1 

(1) Jr(k)j = [ 2 21 ] ~ 
k..1L._ + 1 

2 

where 

2 2 

k = ( z+ ~)2 

D = 105 met 

z = 50 Ian lr<k) I o. 707 

z = 100 Ian lr<k) I = 0 . 914 

z = 150 Ian lr<k) I 0.970 

z = 200 Ian Ir (k) I = 0.987 

z = 250 Ian lr<k) I 0.994 

z = 300 Ian Jr(k) I = 0.997 

z = 350 Ian lr(k)j 0.998 

z = 400 Ian lr<k) I 0.999 

z = 450 Ian lr<k)I = 0.999 

z = 500 Ian jr(k)j = 1.000 
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TABLE 1 

Low-Level Category 

<2) Ir (k) I 

where 

7+315 
cl = - 2 

d = rs 
D 

5 D = 10 met 

z = 50 Ian 

z = 100 Ian 

z = 150 km 

z = 200 km 

z = 250 Ian 

lr<k) I = o. 724 

Ir (k) I 0.960 

lr<k) I 0.996 

lr<k) I = 0.999 

lr<k) I = 1. 000 
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GRAPH 2 
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VI. CONCLUSIONS 

In this report a numerical solution has been developed for the 

inverse scattering problem of inhomogeneous plane-stratified plasmas . 

The theory has been applied to the problem of determining the profile 

of a collisionless, unbiased plasma from .a knowledge of the back­

scattered wave of a normally incident pulse. 

The back-scattered wave is monitored as a function of time and 

sampled with a uniform sampling rate. The sampled values are fed 

into a computer program that produces the electron density at each 

desired point inside the plasma. 

It has been discovered that a square pulse can serve as the 

normally incident wave. A relation exists between the time duration 

of the pulse and the sampling time interval used on the backscattered 

wave . Both time intervals must be much less than l/F, where F is 

the maximum of the plasma frequency in the region included between 

the beginning of the plasma and the point inside the plasma where the 

electron density is desired. 

The inverse scattering theory is an exact theory. In particular, 

it does not employ the "popular" W.K.B. approximation. A consequence 

of the exactness of the theory is the dependence of the error on the 

back scattered wave sampling rate . The faster we sample the back 

scattered wave, the smaller the difference between the actual and 

deduced electron densities. 

Many of the troubles encountered in applying the currently 

employed ionogram method for plasma inverse scattering do not appear 

when one uses the inverse scattering method. In particular, we have 
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demonstrated that the inverse scattering method reproduces maxima and 

valleys of the plasma profile. 

We hope that more research on the inverse scattering method will 

create a practical alternative to the ionogram method for ionospheric 

studies. 
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APPENDIX A 

This appendix shows a claim made in Chapter 2, Section B, 

namely that the boundary value problem 

a2c1 1 a2c1 
-- - - -- - kp

2
(z) c

1
(z,t) = kp

2
(z) o(z-ct), z > 0 (1) 

~ 2 2 ~ 2 oz c o t 

is equivalent to 

ac
1 c

1
(0,ct) = ~- (O,ct) dZ 

a2c1 1 a2c1 
-- - - -- - kp

2
(z) c

1
(z ,ct) 

~ 2 2 ~ 2 oz c oz 
0 

d 
"dz"" cl (z,z) 

c
1

(z,-z) 0 

cl (z,ct) 0 

cl (z,ct) 0 

Proof of Claim 

Equation (1) shows that 

k
2

(z) C ( ) p 1 z,ct 0 

and thus equation (3) is established. 

0 (2) 

-z < ct < z· ( 3) 

(4) 

(5) 

ct > z (6) 

ct < -z ( 7) 

ct# z, z > 0 (8) 

The theory of characteristics for hyperbolic partial differen-

tial equations (equation (8) in a hyperbolic p.d.e.) shows that Cauchy 
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type boundary conditions on a line determine the solution in a region 

bounded by the line and the characteristic curves passing from the end 

points of the line. The characteristic curves of (8) are lines paral-

lel to the lines ct= z , ct = -z The Cauchy boundary cond i t ions 

(2) nn<l eq uotion (8) allow that in region Q of l"lgure l c
1 

(z, c t) 

must be zero. This proves equation (6). The Cauchy boundary condi-

tions (2) and equation (8) show that in region @ of Figure 1, 

c
1 

(z,ct) must be zero. This proves equations (5) and ( 7). 

' 
ct REGION Q) / 

" 
ct >z, z>O / 

" 
/ 

" 
/ 

/ 

' / 

' / 

" / 
'\. / 

'-,/ / 
/" C> 

/ ' z 
/ " / " / '\. 

/ " / 

' / 
REGION @ "' / 

/ ct<-z z>O - , - ,. 
Figure 1 

The 6-function on the right hand side of equation (2) shows 

that cl (z,ct) has discontinuous derivatives across the line z = ct. 

To find the nature of the discontinuity we introduce the characteris-

tic coordinates 

~ z + ct 

n z - ct 

In this new coordinate system equation (1) becomes 
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k 2 < ~+n ) o (n) 
p 2 

where c
1

(z,ct) is in the new coordinate system 

Q( ; ,n) cl (z,ct) 

(9) 

(10) 

Integrating equation (9) around a small region including n = 0 we find 

a 
4 ~ Q(;,o) (11) 

Equations (10) and (11) prove equation (4). 
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APPENDIX B 

This appendix shows a claim made in Chapter 2, Section B, 

namely that 

z 

R(z+ct) + c
1 

(z,ct) ~ f c
1 

(z,z') R(z'+ct)dz' 0, z > 0, ct < z (1) 
_co 

is satisfied even for ct = z 

Mathematically speaking it is intuitively clear that (1) must 

hold even for ct= z , since the functions R(z+ct), c
1 

(z,ct) are 

continuous. 

We prove the claim using the description of the direct scatter-

ing problem given in Chapter 2, Section A. We can show that the 

solution E(z,k) of 

0 (2) 

A 

A 8E 
E(z,k), a;(z,k) continuous across z = 0 (3) 

E(z,k) = eikz + r(k)e-ikz , z < 0 (4) 

E(z,k) ~ t(k)eikz , z -+ co (5) 

obeys the integral equation(l) 

1Equation (6) is easily obtained with the use of Green's function for 
the problem (2),(3),(4),(5). 
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where 

f(z,k) = 

00 

eikz + I 
z 
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sin k~y-z) k~(y) f(y,k) dy 

t(k) given by 

1 
t (k) 

f (y, k) is 

f (y, k) 

We write 

f (z, k) 

t(k) 

00 

1 - 2~k I e 
-iky k2 ( ) p y f(y,k) dy 

0 

defined to be 

A 

E (y, k) 

t(k) 

00 

ikz k2( ) -
eikz I 

e Zik p y dy + f 1 (z,k) 

z 
00 

1 + 2~k J k~(y) dy + t 1 (k) 

0 

Using (9) and (10) we write 

.k z 
A .k 1 z I 1 z e 
E(z,k) = e + Zik 

0 

Taking Fourier transfonn of (11) with ct = z , we obtain 

where 

z 

E(z,z) = o (O) - t J k!(y) dy + E1 (z,z) 

0 

+oo 

1 I "' -ikz E1 (z,z) = Zn E1 (z,k) e dk 

Using (8), (9), (10), (11) we can show that 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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E1 (z,k) 6 + iT , T ~ 0 

Thus E1 (z,z) 0 . Finally we obtain 

z 

E(z,z) 8 (O) - i; J k2 ( ) p y dy 

0 

In Chapter 2, Section B we found that the electric field 

"' E(z,k) is given by 

"' E(z,k) ikz -ikz "' 
e + r(k) e +cl (z,k) + r(k) cl (z,-k), z ~ 0 

Taking the Fourier transform of (14) 

z 

E(z,ct) o(z-ct) + R(z+ct) + J c1 (z,z') o(z'-ct) dz' 
_ oo 

z 

+ J c1 (z,z') R(z'+ct)dz' , z > 0 

where 
+co 

( ) 1 J E( k) e-ikct dk E z,ct = Zn z, 
- 00 

+co 

O(z-ct) = ~TI J eik(z-ct) dk 

- 00 

+co 

R(z+ct) = .!._ fr (k) e-ik(z+ct) dk 
2TI 

cl (z,ct) 

+co 

1 J Cl(z,k)e-ikct dk 
2TI 

We let ct= z in equation (15). We obtain 

(13) 

(14) 

(15) 
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z 

E(z,z) 0(0) + R(2z) + t c1 (z,z) + J c
1 

(z,z') R(z'+z)dz' 

z ~ 0 (16) 

From the signature equation 

d 1 2 
dz cl (z,z) = - k (z) 2 p (17) 

we obtain 
z 

cl (z,z) if k2 ( ) p y dy (18) 

0 

Equating equations (13) and (16) and using (18) we obtain 

z 

R(2z) + c
1 

(z,z) + J c
1 

(z,z') R(z'+z)dz' 0, z ~ 0, (19) 

z = ct 

Equation (19) proves the claim. 
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APPENDIX C 

This appendix shows a claim made in Chapter 2, Section B, 

namely that if the integral equation 

z 

R(z+ct) + f(z,ct) + J f(z,z') R(z'+ct)dz' = 0, z > 0, ct _.'.S. z 

- oo 

has a solution f(z,ct), then the solution is unique. 

Statement 

If the integral equation 

z 

R(z+ct) + f(z,ct) + J f(z,z') R(z'+ct) dz' 0, z > 0, ct ..'.::. z 

-"'O (1) 

has a solution f(z,ct), then the. solution is unique. 

Proof: 

(1) 
The proof of this statement has been given by I. Kay. We just 

sketch his proof . 

Suppose (1) is solved by two different solutions f
1 

(z,ct) and 

f
2
(z,ct). Their difference W(z,ct) solves 

z 

W(z,ct) + J W(z,z') R(z'+ct) dz' 0 , z > O, ct..'.::. z (2) 

- 00 

The statement is proved if it is shown that W(z,ct) is necessarily 

equal to zero . 

I . Kay uses equations (3), (4) 

r*(k) = r(-k) (3) 

(a consequence of the fact that the reflected wave is a real function) 

l See Reference l 



-113-

jr(k) j
2 

+ j t(k)j
2 

1 (energy conservation) (4) 

where r(k), t(k) are the reflection and transmission coefficients 

to establish the identity 

00 

O(z'-ct) + R(z'+ct) =~TI J jt(k) j 2 eik(z'-ct) dk 

0 
0 

+~TI J [eikz'+ r(k)e-ikz'] { [eikct+ r(k)e-ikct]}* dk (5 ) 

-00 

He writes (2) in the form 

z 

J W(z,z')[o(z' -ct)+ R(z'+ct)]dz' 0 , z ~ 0, ct..:::_ z (6) 

_ oo 

Using (5) on equation (6) he is able to show 

z 

J 
-kz' W(z,z ')e dz' 0 

It follows that 

W(z,ct) 0 

* complex conjugate 
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APPENDIX D 

This appendix shows that for plasma wave numbers 

have the properties 

the 

k
2

(z) is a piecewise continuous, bounded 
p 

function of z 

k
2

(z) -+ 0 "fast enough" as 
p 

k
2

(z) 
p 

0 for z < 0 

reflected wave R(ct) 

+oo 

R(ct) ~ J r(k) 
-ikct 

dk e 

- 00 

z 

k (z) which 
p 

(1) 

(2) 

(3) 

(4) 

where r(k) is the reflection coefficient of the plasma, is a con-

tinuous function of ct 

R(ct) continuous f unction of ct (5) 

bounded function of ct 

R(ct) bounded function o f ct (6) 

and equal to zero for ct .:::_ 0 

R(ct) = 0 for ct < 0 (7) 

Proof: 

To prove the properties (5), (6), (7) of the reflected wa ve , we 

need to show that the reflect i on coefficient r(k) obeys equations 

(8)' (9)' (10) 

r(k) has no poles in the upper half of the 

complex k-plane (8) 
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r(k) as lkl +co , k real (9) 

r(k) is a regular function of k , k real (10) 

Properties (9) and (10) show that 

+co 

J lr(k) ldk exists (11) 

Schwartz on page 180 of Reference 23 shows that (11),(10) imply 

equation (5) and (6). 

Taking the Fourier transform in the upper half complex k-plane 

and using equations (8),(9) and Cauchy's theorem we easily show equa-

tion (7). 

Under the conditions that k
2

(z) satisfies 
p 

co 

J 
0 

co 

J y k~(y) dy 

0 

(12) 

(13) 

I. Kay(l) shows that equations (8),(10) are satisfied. Equations (12), 

(13) are satisfied by properties (1), (2), (3) of Thus we 

only need to show equation (9). 

The direct scattering problem posed in Chapter 2, Section A shows 

" that E(z,k) satisfies 

0 (14) 

1 
See Reference 3, p. 374 
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,... 
"' ClE 
E(z,k), ~(z,k) continuous across z = 0 

,... 
E(z,k) eikz + r(k)e-ikz , 

"' ikz E(z,k) ~ t(k)e , 

Defining f(z,k) 

f(z,k) = 
,... 
E(z,k) 
t(k) 

z 2- 0 

as z -+ 00 

and using Green's function techniques we obtain 

f(z,k) 

r(k) 
t(k) 

1 
t(k) 

00 

eikz + 
J 

sin[k(y-z)] k2 ( ) f(y,k) dy 
k p y 

z 

00 

2:k J e 
iky k.2 ( ) p y f(y ,k) dy 

0 

00 

1 - 2~k I e -iky k2 ( ) p y f(y ,k) dy 

0 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

Stone(2) has shown that for any satisfying (12),(13), 

f(z,k) is given by 

f(z'k) -- eikz[l + m(~,k)] f 1 h k or arge enoug (22) 

The function m(z,k) is a uniformly bounded function of z and of k . 

Using (22) we easily show that 

t~k) = 1 + O(~) as k -+ 00 (23) 

2 See Reference 20 
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Equations (23) and (22) when substituted in equation (20) show 

that 

r(k) as jkj ~ 00 , k real 

Thus, we proved equation (9). This completes the proof of equations 

(5), (6), (7) under assumptions (1), (2), (3). 
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APPENDIX E 

In this appendix we present a computer program designed to carry 

out the numerical solution of the inverse scattering algorithm pre-

sented in Chapter 3, Sections Aa, Ab. 

A computer program named MAIN PROGRAM implements the numerical 

solution of the inverse scattering algorithm described in Chapter 3, 

Sections Aa, Ab. The program has two main parts, a subroutine named 

INVER and a subroutine named ELECTRON DENSITY. 

Subroutine INVER performs two jobs. INVER uses the supplied 

uniformly samples values of the distance record of the reflected wave 

R(ct) from ct = 0 to ct = 2z to create the (2M+l) x 1 vector R 

and the (2M+l) x (2M+l) matrix a.. 

R = (r.) 
l. 

r = R[(i-l)h] for i=l,2,3,··· ,2M+l 
i 

h = z/M 

a= (a .. ) 
l.J 

a.. as defined in Chapter 3, Section Aa 
l.J 

Then subroutine INVER solves the matrix equation 

a.x=-R 

using a standard IBM 360 subroutine called MATIN(l) 

1 
MATIN solves equation (1) a...x = -R , through matrix inversion. 

x = cr1 c-R) 

(1) 

MATIN is a general purpose subroutine . It inverts equation (1) for 
any square matrix 0- . 
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Subroutine INVER selects the top element of X which is c1 (z,z). 

The output of INVER is c
1 

(z,z). 

Subroutine ELECTRON DENSITY has as its inputs the characteristic 

fields c
1 

(z+£ ,z+£), c
1 

(z-£ ,z-£) . ELECTRON DENSITY finds N(z) from 

2 N(z) = -----
3.54 x 10-14 

cl (z+£ ,z+£) - cl (z-£ ,z-£) 

£ 

The flow chart of MAIN PROGRAM is as follows 

R(O)-R(2z + 21) R(O)-R(2z-2l) 

l 

\
7 ., 

INVER 

\7 I-' 

ELECTRON 
DENSITY 

V N(z) 

COMPUTER PROGRAM FLOW CHART 

I 
~ 

INVER 
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APPENDIX F 

This appendix shows the following statement made in Chapter 3, 

Section Ac. 

Error Statement 

For small percent errors E(z;M) , E(z;M) is to a good approxi-

mation inversely proportional to the fourth power of M . 

To prove the statement we recall that we find the electron density 

N(z) from a numerical solution of the -inverse scattering algorithm. 

by 

We replaced the algorithm 

z 

R(z+ct) + cl (z,ct) + I cl (z,z') R(z'+ct) dz' 

-ct 

d 
dz cl (z,z) l k2 (z) 

2 p 

3.54 x l0-14 N(z) 

d 
dz cl (z,z) 

i? (z) 
p 

3.54 x 10-14 N(z) 

0 

where I (z ;M) is an expansion of the integral 

z I cl (z,z') R(z'+cti) dz' 

-ct. 
]. 

using a combination of Simson's and trapezoidal rules. 

0 (1) 

(2) 

(3) 

(4) 

(5) 

(6) 

For ct. = z 
]. 
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equation (4) becomes 

R(2z) + c
1 

(z,z) + I(z;M) 0 

where I(z;M) is the Simson rule approximation to the integral 

I (z ;M) 

z 

J Cl (z,z') R(z'+z) dz' 

-z 

is given by 

I(z;M) h -J ( c
1 

(z,z;M) R(2z) + 4C
1 

(z,z-h;M) R(2z-h) 

-+ 2C
1 

(z,z-2h;M) R(2z-2h) + · · · + c
1 

(z,-z) R(O)] 

where h z/M. 

For small percent errors E(z;M) 

E (z ;M) N(z) - N(z;M) x lOO 
N(z) 

(7) 

(8) 

(9) 

the approximate characteristic field values C(z,ct.) are close to the 
l 

exact characteristic field values C(z,cti). Equation (8) can be 

rewritten as 

I(z;M) ~ % {c1 (z,z;M) R(2z) + 4C1 (z,z-h;M) R(2z-h) 

+ 2C1 (z,z-2h;M) R(2z-2h) + ··· + c1 (z,-z) R(O)} (10) 

Subtracting equation (4) from equation (1) evaluated at ct z , 

we find 
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z 

c1 (z,z) - c1 (z,z;M) ~ J c1 (z,z') R(z'+z)dz' - I(z;M) 

-z 

(11) 

where I(z;M) is given by (10). The value of (11) is the error created 

when one approximates the integral in the right hand side of (11) by 

its Simson sum . The value of the right hand side of (11) is(l) 

c
1 

(z,z) - c1 (z,z;M) 
M 5 a4 

~ go h (jz ' 4 Cl (z,z') R(z'+z) 

I z I I 2- z 

The characteristic field percent error µ(z;M) is defined by 

µ (z ;M) 
c

1
(z,z) - c

1 
(z,z;M) 

~~~---..,-~--,...,.~~- x 100 
cl (z,z') 

Using (12) and (13) we get 

(12) 

(13) 

µ (z ;M) 
a4 
--

4 
{c

1 
(z,z') R(z'+z)} , lz' I < z (14) 

(jz ' 

In Chapter 3, Section Ac we show that simple differentiation of 

(13) .gives 

E: (z ;M) µ (z ;M) 
cl (z,z) 

+ d 
dZC1 (z,z) 

d - µ(z·M) 
dz ' 

Equations (14) and (15) show that E:(z;M) depends on l/M4 . This 

proves the statement. 

1 See Reference 

(15) 
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APPENDIX G 

This appendix discusses the non-uniqueness of valley profiles 

when deduced by the ionogram method. 

Suppose the plasma frequency profile is as shown with solid lines 

in Figure 1. Another possible profile is the one with dotted lines. 

Both profiles are the same in regions z 2_ z
1

, z ~ z
3 

. They differ 

only in the valley region z
1 

< z < z
3 

2 
k (z) 

p 

z 
Figure 1 

The phase acquired by the wave when it passes over the valley region 

BAC is 

where 
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k2 
1 

- k2 
2 

pl 
z2 - zl 

k2 
1 

- k2 
2 

Pz z -
3 z2 

Using the values for pl ,p2 one gets 

We see tha~ the phase acquired in passing over the valley is 

independent of the position z
2 

of point A . Clearly there is an 

infinite set of linear valleys that will give the same phase delay for 

k > k
1 

and thus the same virtual height . 
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