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Abstract

A simple model potential is used to calculate Rydberg
series for the molecules: nitrogen, oxygen, nitric oxide, carbon
monoxide, carbon dioxide, nitrogen dioxide, nitrous oxide, acety-
lene, formaldehyde, formic acid, diazomethane, ketene, ethylene,
allene, acetaldehyde, propyne, acrolein, dimethyl ether, 1, 3-
butadiene, 2-butene, and benzene. The model potential for a
molecule is taken as the sum of atomic potentials, which are
calibrated to atomic data and contain no further parameters. Our
results agree with experimentally measured values to within 5-10%
in all cases. The results of these calculations are applied to
many unresolved problems connécted with the above molecules.
Some of the more notable of these problems are the reassignment
of states in carbon monoxide, the first ionization potential of
nitrogen dioxide, the interpretation of the V state in ethylene, and
the mystery bands in substituted ethylenes, the identification of the
" R and R’ series in benzene and the determination of the orbital

scheme in benzene from electron impact data.
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1. RYDBERG SERIES

Any group of atomic or molecular states of the same spin
and orbital symmetry whose term values v follow the simple

formula:
(1) y = LP. - R/(n - 8)° n=1 2 3 --

where I.P., R, and § are constants, are said to belong to a
Rydberg series, and the states are called Rydberg states. In the
above formula I.P. is called the ionization limit of the series, R
is the Rydberg constant ~ 109, 677.581 cm™ (13.595 eV) and 6 is
the quantum defect. In most cases the quantum defect & depends
somewhat on the value of n, but this dependence is very slight
and is usually ignored.

The above definition is a purely experimental definition and
would have been discarded long ago had it not proven itself useful.
The fact that there are Rydberg series, and indeed Rydberg series
are observed in practically every atom and molecule, suggests that
there is some common, underlying physics behind the simple
Rydberg formula. This is indeed the case. It has been both
inferred experimentally and demonstrated by calculations that
Rydberg states correspond to states with an electronic configura-
tion such that an electron in an orbital, the Rydberg orbital,
occupies mainly a regional space exterior to the region occupied
by the other electrons. These other electrons and the associated

nuclei constitute the "core' about which the Rydberg electron
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travels in much the same fashion as it would travel about an
effective potential field derived from these electrons and nuclei.
The different members of the Rydberg series correspond to dif-
ferent Rydberg orbitals of the same symmetry which occupy posi-
tions more and more removed from the core potential.

The details of how this comes about for atomic sodium have
been given by Slan.ter.1 We shall give a treatment similar to
Slater's here.

First we note that for sodium the Rydberg electron moves
in the potential field created by the nucleus and the inner filled
shells of electrons. The charge density of these filled shells is
spherically symmetrical; furthermore the motion of the electrons
within these shells is practically independent of the behavior of
the outer electron. This means that we may replace the effect of
the nucleus and the inner filled shells of electrons with a single,
spherically symmetric potential field which is the same for all of
the possible Rydberg states of sodium.

The analytical form of this field for sodium, Zp(r), has
been given by Slater2 and is reproduced in Figure la. We note
that for r greater than about 1.5 a.u. the field becomes hydro-
genic. But the energies of sodium are not the same as those for
hydrogen. This means that the outer part of the wavefunctions for
the Rydberg orbitals correspond to the general solutions of the
hydrogen radial wave equation with energies equal to the energies
of the sodium atom. These solutions, which go to zero as r

approaches infinity, are valid down to r, = 1.5 a.u. For values
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of r smaller than this, the wavefunctions of the Rydberg orbitals

are solutions of the Schrddinger equation with the sodium potential
given by Slater. These solutions, which behave properly at the
origin, are the be joined on to the general hydrogenic solutions at
Y = 1.9 a.n.

To proceed further we must investigate the nature of the
general solutions of the hydrogen radial wave equation. Proofs for
the statements we make here will be postponed until the section on
Atomic Calibration.

Figure 2 I-VII shows a series of graphs of the general
hydrogen solution for £ = 1 in the vicinity of the origin. This
function is a function of both r and energy. Each graph corres-
ponds to a different energy. As the energy increases from E <«
-13.6 eV to E =~ -1.5 eV the function takes on the form shown in
graphs 1, 2, 3, °‘etc. The important feature to notice is that at
the energies corresponding to the hydrogen atom solutions 5, 10,
etc., a node is formed at the origin and once formed this node
continues to move outward from the origin. In general, the solu-
tion of the hydrogen radial wave equation with —13.6/(n+1)2 < E <
-13.6/(n +2)2 eV has exactly n nodes. It is possible to renormalize
the functions from Figure 2 II-VII so that they appear as in
Figure 3 I-VIII. In these graphs the designation of the solution is
the same as in Figure 2, but the ordinates are not necessarily to
the same scale either with those of Figure 2 or with one another.

We can see that the solution has the general appearance of

a periodic wave as a function of energy for these small values of
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r. The period is equal to 1 in terms of the variable n, where
n = VyR/E and E is measured in Rydbergs. This being the case,
we can classify the solutions of the hydrogen radial wave equation
with respect to the phase § that this periodic wave has with some
point r,. Setting the phase of the hydrogen atom solutions equal to
zero, the energies of the solutions with phase 6 will have the

values:

() E = -R/-0) hos 1,08 0

Finally, we note that since the solutions with phase & are
all represented by essentially the same periodic wave in the region
of small r, their boundary conditions are all necessarily the same
too. We will find this property most useful later on.

Next, we turn to fhe investigation of the solution of the
Schrédinger equation for the sodium atom potential. It is found
that for small r's the solutions of this equation are nearly indepen-
dent of energy for a reasonable range of energy, i.e. -5 eV < E <
0 eV. This can be seen in Figure 1lb, taken from S]ater,3 where
the 3s and 4s functions calculated for Slater's sodium potential
have been plotted for small values of r. The functions have been
renormalized so as to agree as closely as possible over this
range. The reason for this approximate independence of energy is
that in this range of r the effective potential term of the
Schrodinger equation ZMGZZp(r)/ﬁzr - 2(¢ +1)/r? is very large
numerically compared with the energy eigenvalue term Zp.En/ﬁz.

Thus small variations in B, make very small relative changes in
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the classical kinetic energy, and hence in the wavefunction. In
more physical terms, when the electron penetrates into the interior
of the atom, where Zp(r) is larger than unity, it speeds up so
much on account of the nuclear attraction that its motion is almost
independent of the very small amount of kinetic energy which it
had when it entered the atom.

Knowing the properties of the general hydrogen solution and
the solutions of the Schrddinger equation for the sodium potential
Zp(r), we must now join these functions together at our boundary
r, = 1.5 a.u. From the above, we know that all of the solutions
for the sodium potential have practically identical boundary condi-
tions at r, = 1.5 a.u. since they are nearly energy independent
for this range of r. Using these boundary conditions we search for
the energy which corresponds to the general hydrogen solution with
the same set of boundary conditions at r = r,. Once this energy
is found, we can determine the phase of this solution, and imme-
diately we know of a discrete infinity of solutions with the same
boundary conditions, i.e., those solutions which have the same
phase as our original solution. These other general hydrogen solu-
tions must join onto the other sodium potential solutions since the
boundary conditions are the same at r = r,, and we have con-
structed all of the wavefunctions for the Rydberg orbitals. The

energies of these Rydberg orbitals will then be:

(3) En-_- -R/(n-6)2 n:l’ 2’3...
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We see from the arguments above that the dependence of & upon n
is a function of how nearly alike the boundary conditions are for
the general hydrogen solution with the same phase; and how energy
independent the solutions of the sodium potential are. In practice
these approximations hold to a very high degree so that § is inde-
pendent of n to within a few percent.

Formula 3 can be made to agree with formula 1 given at
the beginning of this section by noting that as n becomes large E_
in formula 3 approaches zero and the Rydberg orbital moves
farther from the core. In the limit the sodium atom is ionized;
hence we see that the purpose of the constant I.P. is simply to
shift the energy scale to give this experimentally measured ioniza-
tion potential its correct value. Thus all of the vterms of equation
1 have now been accounted for.

The above arguments have given us the general form of the
Rydberg formula, but they do nothing to tell us about how &6 depends
on £. For sodium 6 is about 1.35 for s levels, it is 0.86
for p levels, but very small for d and f levels. It is found that
the magnitude of the quantum defect 6 depends on the amount of
penetration of the Rydberg orbital into the interior of the atom. If
we were to plot d and f Rydberg orbitals for the region where
Zp(r) is not unity as we did for the s orbitals in Figure 1lb, we
would find that they were very small in this region. Hence their
boundary condition is that they are practically zero with zero
slope at r, = 1.5 a.u. These are the same boundary conditions

that the d and f functions of the hydrogen atom obey. Hence these
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energy levels are practically the same as for hydrogen (i.e.,
quantum defect 6 ~ 0). On the other hand, the s and p Rydberg
orbitals must penetrate significantly into the core where Zp(r) is
not unity. The reason for this is that a Rydberg orbital with,say,
s symmetry must be orthogonal to all other orbitals with the same
symmetry. This includes the core orbitals. In order to be ortho-
gonal to the core orbitals, the Rydberg orbital must have signifi-
cant density within the core in order for this cancellation to be
possible. Thus, as a simple rule we can say that those £ values
for which there are no occupied states in the atom will have non-
penetrating Rydberg orbitals, and their energies will be almost
hydrogenic. As we go from these { values to the lower ones for
which there are occupied states, the Rydberg orbitals become
penetrating and the quantum defect & increases very rapidly. The
same argument for penetrating and nonpenetrating orbitals holds
for diatomic and polyatomic molecules as well as for atoms.
Occupied core orbitals of the same symmetry as a Rydberg orbital
are sometimes called precursors of the Rydberg orbital.

While we are still considering Rydberg states of atoms we
should consider the case of nonclosed shell cores. Consider the
Rydberg states of beryllium with the electronic configuration
(1s)2(25)(np). There are two Rydberg series represented by this
electronic configuration corresponding to the symmetries P and
'P. The quantum defects & for these series will be different
because of the different exchange energy contributions to the singlet

and triplet states. The question arises, if we are to interpret the
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quantum defect 6§ as a phase shift as we did for the closed shell
sodium core, which & do we use, the singlet or the triplet? The
answer to this question has been given by Mulliken;4 he says,
"The best practical (though approximate) assumption appears to be
to use 6 values corresponding to averages of observed singlet and
triplet energies as suitable measures of the phase shifts.’” In this
way the effects of the exchange contributions to the singlet and
triplet states roughly cancel one another out. The same sort of
averaging process should be carried out when the Rydberg states
of the nonclosed shell atom are doublet and quartet, triplet and
quintet, etc.

We now turn to Rydberg states of diatomic and polyatomic
molecules. In the same way as we joined atomic core solutions on
to the solution of the hydrogen radial wave equation to produce
Rydberg orbitals in the case of the sodium atom, we want to join
molecular core solutions on to the solution of the hydrogen radial
wave equation to produce Rydberg orbitals for molecules. The
difference between these two cases is that the molecular core no
longer has the spherical symmetry that the sodium core and the
general hydrogen solutions have. However, for large enough dis-
tances from the core, the core potential approaches a -e?/r hydro-
genic potential, and we can expect the solutions for the core to
join on smoothly to the general hydrogen solution. The major dif-
ferences in the atomic and molecular cases arise as a consequence
of the departure of the core from spherical symmetry farther in.

For atoms we can always determine the quantum defect &
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unambiguously by counting up the number of radial nodes, noting
the enefgy, and using the relation between the energy and number
of nodes, as was given above. For molecular problems there are
strong distortions of the core solutions corresponding to a mixing
of spherically symmetric solutions of different n and £ in order to
produce the proper core symmetry. This mixing destroys nodes
and makes it impossible to determine quantum defects 6 unambi-
guously, at least for penetrating orbitals. For non-penetrating
orbitals this mixing usually does not interfere with the assignment
of 6. When we cannot assign the quantum defects &6 correctly, it
is frequently wiser to classify observed Rydberg states according

to their effective quantum number n*,
(4) n* = n - 6.

This quantity has the advantage of being experimentally available.
Despite this advantage we shall always classify states according to
their quantum defects 6.

One way of getting around the difficulty in determining §,
for diatomic molecules at least, would seem to be to assign the
quéntum defects of the molecular orbitals on the basis of their
United Atom limits. This has been done for some molecules.
However, it has disadvantages. For instance, in nitrogen the first
PO, Rydberg orbital has one more precursor in the core than the‘
first P, Rydberg orbital does. This means that the two states
with practically identical forms and energies must be assigned the

quantum defects 1.71 and .73 respectively, which surely does not
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display the close similarity which exists between these orbitals.
Another more serious difficulty arises when a Rydberg state lies
somewhere between its United Atom and Separated Atom limits.
At these internuclear distances considerable mixing of different
basis functions occurs and an orbital which becomes an ndr orbital
in the United Atom limit may look like an nps orbital in this region.
In general, the Rydberg orbitals are fairly close to their United
Atom limits, but the above circumstance does arise and must be
accounted for. In the following we have in general ignored the
existence of precursor orbitals and have assigned our Rydberg
states according to the symmetry which they display when they
are plotted. In cases where this symmetry was nof obvious, states
were assigned to the symmetry of the Rydberg series they were a
part of, according to the Rydberg formula. Rydberg states which
had similar forms and energies were assigned similar quantum
numbers and quantum defects regardless of the existence of pre-
cursors. Thus in effect we classify our states according to their
n* values, although our notation is in terms of §.

In cldsmg our discussion of Rydberg states we would like to
consider nonclosed shell cores in molecular Rydberg states. Where
as for atomic nonclosed shell cores we could get different Rydberg
states with different spin symmetry, for diatomic and polyatomic
molecules we can get Rydberg states with both different spin and different
orbital symmetries. Consider the nitric oxide molecule. It can have

Rydberg states with the electronic configuration:

(10)2 (20)? (30)* (40)? (50)% (17)® (27) (nsO)
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corresponding to both doublet and quartet E+, Z~ and 11 Rydberg
series. So far only the ?5" series has been observed experimen-
tally. As in the case with atomic nonclosed shell cores we con-
sider the average of the quantum defects for these different Rydberg
series to be comparable to the quantum defect for closed shell core
molecules. When we discuss our method of calculation further, it
will be seen that this average is the quantity which we calculate
directly. Thus in comparing our results with experiment, we
should average the experimental results over Rydberg states with

the same electronic configuration.
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2. PSEUDOPOTENTIALS AND MODEL POTENTIALS

The pseudopotential method in its present form was intro-
duced when solid state physicis’cs1 realized that in an atom,
molecule or solid there is almost complete cancellation between'
the large negative potential energy V felt by a valence electron
when inside the core of an atom, and its large positive kinetic
energy, which is inherent in the oscillations of its wavefunction
z,bv there.

Mathematically this cancellation can be demonstrated by

showing that the wave equation for the valence electron:

(1) Hy, = (T+VW, = E¥,

can be transformed into a new equation:
(2) [H + Vp)¢v = (T+V+ Vp)qbv = E ¢,

where Vp is a nonlocal repulsive pseudopotential which cancels off
most of V, leaving a weak effective potential (V + Vp). In equa-
tion (2) ¢, is a pseudo-wavefunction which is equal to zpv outside
the core, but inside the core has the oscillations of zpv removed.
There are several ways to present pseudopotentials. One
way would be the historical a.pproa.ch2 showing how the pseudo-
potential idea was developed. Another would be to show how useful
they can be in solving many varied and interesting problems.3 For

our purposes we prefer to work backwards. We will first prove

the most general pseudopotential theorem (which is really very
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simple), then we will use this as a starting point to pick out
interesting special cases and to justify our procedure. This
method has the advantage of allowing us to concentrate very sharply
upon the features of pseudopotentials which we will need for
Rydberg states, while keeping in the background other features
which we do not need.

&

We start™ by calculating the eigenvalues and eigenfunctions

of H + Vp’ where Vp is defined by:

(3) Voo = % (F,|¢) ¥,

The Fc are completely arbitrary functions. The eigenfunctions and
eigenvalues of H are denoted by En and z/)n, where n = c or v
according to whrether we are considering core or valence states.
Physically speaking, we mean by core states the inner shell elec-
trons of an atom or molecule and by ¢y the Rydberg orbitals.

The mathematics of the problem, however, only supposes that the
eigenvalues and eigenvectors are divided into two distinct classes
and does not concern itself with any differences which may exist
between these classes. The eigenvalues and eigenvectors of H + V

P
we denote by En and ¢n, again with n = ¢ or v as above, i.e.:

(4) (H+Vp)¢n= E n=4coryv

n%n

Consider the core states and expand ¢, in terms of the com-

plete orthonormal set of functions zpn. Then:
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(5) ¢, = %} a Y, + % ad,

Substituting equation (5) into equation (4), and using (3), we get:

6) 2 2 [(E, - ﬁc)ac,c” + (Fyr [9 )
e e _

0

I

+ Zc}’ %) o (Fr o, Do, + ? (E, - E o ¥,

In the above equation the coefficient of every zpn must vanish
identically. Looking at the coefficients of the d)v's we see that
unless there is some accidental degeneracy between ﬁc and some
Ev’ all of the av's = 0, and ¢c is a linear combination of the zpc's.
Furthermore, since the last two terms of equation (6) must

vanish, the energy E o will be given by the solution of the secular

equation:

(1) det|[(Er - E )80 0 + (Forlgud| = 0

We shall return to this equation later. For the present we are
more interested in the orbitals ¢V which correspond to our Rydberg
orbitals.

We calculate the valence states ¢v by expanding them in

terms of the z,bn's also:

(8) by = D By + Zi By Uy
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Substituting equation (8) in equation (4), and using (3), we get:

(9) §§ (B, - E)6,r + (F, | 08,00,

+ LT 0,8 18, + 5 (B -E B, = O
Vv

v ¢
This equation can be rearranged to the form:

(10 D% [(B - Boger + (Fld)Ber,
+ DT lo 80, + (B, - E_)8 ¥,

E(EI-E)BI¢I+ EE(FIZPI)B:I,D:O

V'?fV v vitv v v'=ev c c''v v 'C
Again in this equation the coefficient of every zpn must vanish
identically. Looking at the coefficient of zpv we see that ﬁv = Ev'
From the coefficient of z,l)vf we have Q,, = 0 unless there is some

degeneracy. Thus ¢, has the form:

(11) ¢y = ¥y + Zc“z Bo¥,

where the B c's can be determined from the nonvanishing terms of

equation (10), i.e.:

(12) Z[, [(E, - Eoyr + (Folog)1Bor = ~(F, |8,

This equation must have a unique solution for the unknown coeffi-

cients Bcr unless:
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(13) det|(E, - E))8,,» + (F,|¢,s)| = 0

Comparing this criterion with equation (7), we can say that there
is a unique solution for the coefficients B ot unless there is some
accidental degeneracy between Ev and ﬁ ot Throughout this proof,
if some degeneracy does occur, it results in a degree of arbitrari-
ness in the wavefunctions which may, however, still be chosen in
the form described above.

This completes the proof of the general pseudopotential

theorem. In essence it states that the wave equation

(14) HY, = (T + Vi, = E¥,

can be transformed into a new wave equation:

(15) H + Vp)¢v = (T +V + Vp)q)v = E_ ¢,

Provided only that Vp belongs to the very general class of opera-

tors having the property:

(16) Vgt = L (Fo|e),

where the Fc are arbitrary functions. The general form of Vp is
that of a projection operator which projects any function ¢ onto the
space spanned by the functions z/)c. An interesting special case is

when F, = (Ev - E C)z,bc. Then the pseudopotential becomes:

P.K.

an v,-%g - ‘%(Ev - E ¥, |9}y,
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This is the Phillips-Kleinman pseudopotential and is interesting
because its discovery led to all of the recent work on pseudo-
potentials.

If the above were all that we could do with pseudopotentials,
there would not be nearly so much time and effort spent on them
as there is. For in truth, the pseudopotential wave equation (15)
can be just as difficult to solve, if not more so, than the original
wave equation (14). To make any progress, we must inject some
physics into this purely mathematical formalism. This will lead
us ultimately to the subject of model potentials.

Our point of attack will be with the effective potential V +
Vp. This potential depends on Vp, which in turn depends on the
choice of functions Fc. We can, if we want, vary the Fc and
solve the resulting pseudo-wave equations for the resulting pseudo-
wavefunctions. From the definition of V_ it is clear that changes

p
in Vp bring about changes in the effective potential V +V

primarily in the region of the core. Hopefully, then, we pcan find
a simple effective potential which has a pseudo-wavefunction with a
correspondingly simple core part. We will then use this simple
effective potential for problems involving its corresponding core.
Unfortunately, for smooth effective potentials the pseudo-

wavefunctions turn out to have many oscillations; and for simple,
smooth pseudo-wavefunctions the corresponding effective potentials
are oscillatory. Abarenkov and Heine5 attribute this behavior to

the fact that when using pseudopotentials we must work with the

finite subspace of core eigenfunctions, rather than a complete set
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of functions. Thus these difficulties are inherent in the method and
cannot be gotten around within the pseudopotential formalism.

If we are willing to go outside of this formalism we can,
however, make some progress. Our primary interest is in a
simple, smooth pseudo-wavefunction. We then take the effective
potential corresponding to this choice of pseudo-wavefunction, and
approximate it with a simple smooth model potentiai. The model
potential cannot represent all of the oscillations present in the
original effective potential, but we do not care. What we desire is
that the solutions of our model potential behave similarly to the
solutions of the effective potential and provide a reasonable approx-
imation to the pseudo-wavefunction. It is important to realize
that it is not necessary to work within the pseudopotential forma-
lism to define model potentials. One can develop the model
potential in an exact and rigorous manner from an independent
point of view. The only absolute requirement on a pseudo or model
potential is that it gives the same energy eigenstates as the real
potential.

What are, then, acceptable model potentials for atoms?
Abarenkov and Heine tried several model potentials for atoms,
judging their effectiveness by how good agreement they could get
between a given calculated and experimental energy. Based on
this study they suggested a model potential of the form:

¢



22

where:
qub = mé_£<Yim(9: ¢)|¢> Yﬂm(e’ (P)
and
Vf'H'(r) = -Aﬂ r <r,
= |-6z/r T =.r

In the above, Yim(e, ¢) is a spherical harmonic function, A!Z and -
r, are constants, and 6z is the effective charge on the atomic ion.
The fnodel potential is written as a function of the orbital quan-
tum number { because some of the valence orbitals will be pene-
trating while others will be nonpenétrating, depending on their £
values. It was felt on a priori grounds that the model potential
Vm must be very different in these different circumstances. The
results of our calculations and calculations similar to ours6 have
shown that for Rydberg states at least, the effect of penetrating
and nonpenetrating orbitals is more or less taken into account

automatically, and that we may replace the Abarenkov-Heine model

potential by simply its first term. Thus for atoms an acceptable model
potential for Rydberg states is:

(19) Vm(;\) =‘ A r<r

-5z/r r=r

The above potential has three adjustable parameters, A, r,

and 6z. r, is more or less the boundary of the core region. If

we expect to get reasonable results, we see from our previous
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discussion of Rydberg states, that r, must be of the order of 2.0
a.u. The parameter A must be determined by calculation and will
be different for different atoms, 6z for an atomic problem is simply
equal to unity. We will return to this potential in greater detail
in the section on Atomic Calibration, right now we want to go on
to model potentials for molecules.

For the last few paragraphs our discussion has been limited
to atoms. The problem we want to solve is that for molecules.
We ask the question, what is an acceptable pseudo or model
potential for a molecule? The question about pseudopotentials for
molecules is still to be answered. It will probably be the subject
of chemical research for many years to come. For model poten-
tials, however, we can state something definite. Our work, and

6

the work of Hazi and Rice  shows that an acceptable model poten-

tial for molecular Rydberg states is:

Molecule atom
(20) v = 2 Vv
m atoms ™

That is, the model potential for a molecule can be taken as the sum
of the model potentials of its constituent atoms. This is a parti-
cularly simple and convenient result. It suggests that we may
determine the atomic model potentials independently from some
atomic property, and then simply insert these atomic potentials

into our molecular problem. In this way there are no adjustable
parameters in the molecular problem, all of the parameters having

been fixed by the atomic calculations. This avoids a proliferation

of adjustable parameters in the molecular calculation.
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The results to be presented here show that this is a highly
successful approach. However, there is one minor difficulty. This
is due to the parameter 6z, the effective charge on the atomic
ion. For an atomic calculation 6z = 1, as was stated above. In
calculating a homonuclear diatomic molecule we know by symmetry
that we may set 8z = 3 in each one of the atoms. But what is 8z
in a heteronuclear diatomic? The results of our calculations show
that we may take 6z = % here also. But the problem persists for
larger molecules of low symmetry. The charge distribution for
these molecules can be sufficiently distorted so that a simple
hypothesis about the effective charge on each atom (e.g., each
atom has 6z = 1/n in a molecule containing n atoms) gives very
poor results. We have met with this problem in our calculations
on 2-butene, 1, 3-butadiene and acrolein. In these cases we could
get some indication of the proper charge distribution from the
spectroscopy of the molecule, and using these 6z's the results of
our calculations were quite good. Thus our approach has poten-
tially one parameter, the proper charge distribution on the mole-
cule. More work on larger systems may show how to get rid of
this problem.

In closing this section on pseudopotentials and model poten-
tials, we want to briefly discuss the kinds of solutions we expect.
In solving our problems we use a variational approach, minimizing

the quantity:

- (¢n|T+V+VJ)|¢n)
(o l¢n)
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The solutions ¢, where n = v are our Rydberg orbitals, and we
expect them to be smooth, with no nodes inside the core region.
This causes no problems in the solution of equation (21). But what
about the core orbitals ¢ ~where n = c? 1Is it possible that in
solving equation (21) we will get core orbitals along with the
valence orbitals we are seeking? For a pseudopotential defined by
equation (16) the answer is yes! Weeks, Hazi and Rice3 have
| attempted to define a pseudopotential which does not have this some-
what undesirable property, which they call variational collapse.
But we see from our derivation of model potentials that a general
definition of a pseudopotential like equation (16) is necessary if we
want to make the transition to model potentials, and that variational
collapse is always a possibility when working with model potentials.
The fact that core solutions can appear in our calculations at times
makes some of our results a little uncertain, but most of the time
it is no trouble at all.

If we are using a pseudopotential Vp for which we know the
functions Fc’ we can calculate from equation (7) where these core
states lie. Thus, for instance, for the Phillips-Kleinman pseudo-

potential of equation (17) we know that:
(22) F, = (EV - Ec)zpc

where EV is the lowest valence state eigenvalue. Substituting this

into equation (7) for the core eigenvalue Ec’ we see that:

(23) det|(E,s = E )87 » + (E, - E /)@ e ¥ n) | = 0
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and thus that Ec = EV for every c¢. Thus all of the core statesare
degenerate  with the lowest valence state for this particular poten-
tial. Furthermore, the degeneracy between Ev and Ec means that
we cannot solve uniquely for the coefficients Bc of the pseudo wave-
function, in fact the n-fold degeneracy of the above determinant
means that the B c may ber taken completely arbitrarily, and that
there are an infinity of solutions satisfying the Phillips-Kleinman
pseudopotential. The general formula for this infinity of solutions
is given by equation (11), where the coefficients B o are arbitrary.
It is interesting to note that this potential is the only pseudopoten-
tial with such sweeping properties, and that the usual pseudo or
model potential is fairly well behaved.

In practice, in the cases of variational collapse which we
‘have observed in our model potential calculations, the core states
are usually separate and distinguishable from the valence states.
- These states ustlally have large negative energies lying below the
valence states of interest. Sometimes, however, it can be a bit
difficult to decide whether or not a state is the first member of a
Rydberg series or the highest core state. Whenever this happens
we must use the results of calculations on similar molecules and
our "feeling" of how the calculation should behave, to separate

appearance from reality[
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3. ATOMIC CALIBRATION

In the last section on Pseudopotentials and Model Potentials
we explained how we write the model potential for a molecule as a
sum of atomic potentials:

(1) Vmolecule A

atom
5 S IR

atoms M

Once these atomic model potentials have been independently
determined from experimental atomic data we can use them to pro-
duce a parameter-free molecular no del potential. What we want to
do in this section is to calculate the atomic model potentials and
calibrate them using experimental spectroscopic term values. In
the next section on Molecular Calculations we will discuss the
details of how these atomic model potentials are then used in cal-
culating molecular Rydberg states.

The solution of the one-electron Schrédinger equation for an

atom

atomic Rydberg state with the atomic model potential 'VM of the

last section is straightforward, writing:

(2) (-4 V2 + VEIO™) yo = Epp

and putting Yp = [R%(r)/r] Ylm(e, ¢) we see, upon using the defi-

nition of V;l/}om, that equation (2) splits up into two equations,

namely:

2

d'R
(3)

L
E " [2(E_A)+£<.Qt12]R-%:-;O I %1,

dr? ¥
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and

For a complete solution to our problem, we must find a solution
valid in each region separately, with the property that at the
point r = r,, the values and the slopes of the two solutions are

equal. In other words:

Ly ]
N

. F{é (r) T,
(5) RE(r) =

~f
RE(r) r

\Y

Ty

provided that at the point r = r, we have:

(6) —d- £n Rﬂ (r) = =— !Ln ﬁ%:(r)

The solutions of equation (3) which vanish at r = 0 are
simple rational functions in sin 2|E Al r, cos «]zlE A| o
and v 2|E - A| or sinhv 2| -A cosh v2|E-A r, and
v 2|E - AI depending on whether (E - A) is positive or negative

respectively. When E - A = 0, the solution of equation (3) with
2+1

these boundary conditions is simply r~ " ~. In particular if £ = 0
sin 2|E o AI E-A>0
(7 Rg(r): r E-A=0
sin h 2[E-A|1‘ E-A<O
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Solutions of equation (4) are just the Coulomb functions
which decay exponentially at large r. This can be expressed by

the formula: 1

® EBpr = vl E) + y(,0) ‘vl E)

where:
w>ymm=¥“H@4Mmmw-m
T'n +4£ +1)
n = 1YV3[E]

In the above formulae I'(n) is the Euler gamma function, and the
functions °Ul(r, E) and 1Uﬂ(r, E) are the regular and irregular
Coulomb wavefunctions. These functions, as well as the related

functions:

v, E);

(10) °pl(r, E)

1
L]
=4

'vl(r, E)

'p(r, E)

9

gle

have been tabulated for £ = 0, 1, 2 over the range -1.20 < E <
_0.07 Rydbergs and 2.0 s r < 8.3 a.u. by Blume, Briggs and
Brooks.2 In addition to this, Kuhn3 has given double power series
expansions for these functions which converge for small negative

values of the energy. Thus we were able to determine 0Uﬁ(r, E),
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1U!Z(r, E), "Dl(r, E) and 1Dﬁ(r, E) for all negative values
of the energy between -1.2 < E <0.0 Rydbergs.

We can use equations (8) and (9) to prove our assertions
about the behavior of ﬁ%;(r)/r for small r which we made in the
section on Rydberg Series to explain the creation of nodes at the
origin, the interpretation of the quantum defect & as a phase, etc.
To do this we expand °Ul(r, E) and ‘Ul(r, E) in power series in r,

valid for small r, i.e.:

(11) °U'Q(r, E) = r% f}o anrn
n=
1U‘Q(r, E) = rP i b r®
n=0 ™

Putting these expressions into equation (4), and equating the coef-

ficients of the powers of r equal to zero, we obtain:

12) °vl(r,E) =

l+1{1_ 1 E ]r2 +...}

CERRLE = T oy (L +3)

‘v, E) -

E 5 1
(42 -1)  £(42-1)

const r-l{l A P [ Jrz 400}

L

It is clear that the first solution is regular at the origin, and that

the second is irregular there. We note that the second solution
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is not valid for £ = 0. This means that the £ = 0 solution has a
higher order singularity at the origin than can be expressed by a
simple o order pole 1/r".

Using the above expressions, we can write ﬁ;z(r)/r as:

Rg(x)

(13) o {r--;;r2+(é--%)r3 +eee} o+

1

“ 2).,,}{12_ i 1 ¥ (E - l) +}
2|E| r r M

const { tan (

This function is just the un-normalized general hydrogen solution
we were talking about in the Rydberg series section. It is clear
that this function is infinite at the origin unless lEl = 1/2n2, when
it forms a node at the origin. The way in which the function
approaches and recedes from the coordinate axis and reflects in
the abscissa at the energies |E| = 1/2(n + 1)’ is essentially
determined by the factor tan (I/IETEI_ - 2)r. The existence of
the outward moving nodes is established by the principle of con-
tinuity. Finally, the existence of periodic wave solutions and the
phase interpretation of the quantum defect 6 is suggested by the
similarity of the hydrogen atom solutions for small r, together
with the principle of continuity. Using all of these simultaneously
we obtain the picture of ﬁlE(r)/r, for small r, presented earlier.
Now that we have complete solutions for both ﬁ%:(r) and
ﬁj}g(r), obeying proper boundary conditions in their respective

domains, we must join these functions together at the point r = r;.
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This cannot be done for every value of the energy E, but only at
certain discrete values En' These values will be a function of the
atomic parameter A and will represent the discrete energy spec-
trum En(A) for an atom with the parameter A. As we have said
before, to be physically meaningful, r, must be approximately 2.0
a.u. In our calculations we have taken r, = 2.5 a.u. This was
done so that we could compare our results directly with similar

4 The criterion that the fumctions

calculations by Hazi and Rice.
ﬁEl(Z.S) and ﬁ%:(Z.S) must satisfy is, according to equation (6),
that their logarithmic derivatives be equal. The logarithmic

derivative of ﬁ%(2.5) is:

w/2|E-A| cot2.5¢2|E-A']' E-A>0

;: 1/2.5 E-A=0
\’2|E-A| coth2.5¢2|E_A| E-A<O

Similarly, the logarithmic derivative of ﬁ%(Z.S) is:

d =
(14) I In R

d , z0 _ 1 °D°(2.5,E) +ym4) D @.5E)
15) < InRy = = 2 2 2
o Tois Fo% °0°(2.5,E) + y(n, £) 'U°(2.5, E)

These functions are plotted as a function of energy in Figures (1)
and (2) respectively. Figure (1) is fairly straightforward, the
different plots on the graph representing values of A. Figure (2)
however needs some explanation. The most remarkable fact about
this function is the presence of infinite discontinuities. These must

come about every time the energy is such that a node passes
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through the point ry; = 2.5 a.u. Not all of the function a'rq' In ﬁ%
has been plotted on Figure (2). In the hatched region where |E|

is small the branches of the function crowd together with a fre-
quency of roughly 1/n? in the energy coordinate. This is impossible
to represent on a graph.

In order to find the energy spectrum En(A), we merely have
to note the places where the curve of a(—i— In .RC}’E for a given A inter-
sects the curve acil; In ﬁ;: The energies corresponding to these
intersections then form the energy spectrum E n(A). Because the
function a% In ﬁ;: has the nature of a universal function and
because it is so difficult to calculate, we give a more complete
tabulation of it in Table 1. One can use these results to calibrate
different atomic potentials from the ones we have treated here. It
is evident from looking at Figure (2) that only the part for -0.7 <
E Rydbergs need be considered.

In the above, we have treated in detail the case of ’R%(r)
and ﬁ;’g(r). In principle we could use any ﬁ%(r) to determine A.
The A's determined by thesé different functions would then be
slightly different, depending on the value of £. In bractice, we
have restricted ourselves to £ = 0. Once we have the spectrum
En(A) determined from the above functions, we compare this cal-
culated spectrum with the experimentally known term values5 of
the atom we wish to calibrate. By calculating En(A) for several
values of A, we can interpolate to find an acceptable value of A
for the atom we wish-to represent. In Table (2) we list the

energy spectra for several values of the parameter A measured in
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.700
.600
.500
.400
.350
.300
.280
.260
.240
.230
.220
.210
.200
<190
.180
.170
.150
.140
.130
.120
.110

d

dr

In ﬁ;: as a function of E, for r,

d >0
a}—ln RE

.33414
.21309
. 05653
.17819
. 36936
.71416
. 97362
. 45002
. 76303
. 20690
. 99086
. 23922
. 33908
. 37637
.87180
. 54101
. 06740
. 152717
.41112
. 79442
. 68647

37

Table 1

= 2,5 a.u.

|t

.100
. 095
. 090
. 085
. 080
.075
. 070
. 065
. 060
. 058
. 056
. 054
. 052
. 050
. 048
. 046
. 044
. 042
. 040
.038
.036

d
dr

0
lnIRE

.62618
. 44223
. 39588
. 69546
. 28684
. 03778
. 38012
. 90445
.71501
. 92571
.20680
. 04998
. 05932
.56913
. 23827
. 03902
. 32304
.69147
. 37894
.69873
.18654
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.035
.034
.033
.033
.031
.030
. 029
. 028
. 027
. 026
. 025
.024
. 023

022

.021
.020
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Table 1 (Cont.)

é% lnii%

-1,

51187

.85259
.46501
. 17942
. 07080
. 32921
.65139
.17483
.59673
. 84150
.86150
.70115
.17925
. 23309
.75914
. 23536
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Rydbergs. For comparison, in Table (3) we have listed the ex-
perimentally observed spectra, measured in Rydbergs, for the
atoms carbon, nitrogen and oxygen. This table has been con-
structed using the average of the 'P and ’P states with electronic
configuration (1s)2(2s)2(2p)(ns) for carbon, the average of the *P
and ‘P states with electronic configuration (1s)2(2s)2(2p)2(ns) for
nitrogen, and the average of the °S and °S states with electronic
configuration (13)2(28)2(2p)3(ns) for oxygen. It will be remembefed
from the section on Rydberg series that this is the procedure for
evaluating the term values for a non-closed shell atom.

We now only need to list the parameters which we have
determined for the above atoms. Using a least squares fitting

procedure we have decided on the parameters:

Acarbon = ,375 a.u.
Anitrogen ~ 115 a.u.
.045 a.u.

onygen 4

The above values of A are given in atomic units rather than
Rydbergs because our molecular program is scaled in terms of
atomic units. One fact that should be noted, is that the results of
molecular calculations with these parameters show that the above
values can be changed by a factor of two or so with very little

effect upon the resulting energies.
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Table 2

E (A), for n = 3,4, ++,8, -.50 <A? <.75

n. A=-.50 A=-.25 A=0.0 A=.25  A=.50 A=.75
3 . 54P .3694 .3091  .2846 2717 . 2642
4 177 .1448 1276 .1197 1169 .1146
5 . 088 . 0762 .0691 0659 .0642  .0632
6 .053 . 0468 .0433 . 0417 .0408 0403
7 .035 . 0317 .0297  .0288 .0283  .0280
8 .025 .0228 0217 .0210  .021 021

(a) A is measured in Rydbergs

(b) The last digit in each figure is not necessarily significant.

=

X I O O s W

Experimental Spectra for £ = 0

Carbon

.2744
. 1157
.0702
. 0392
. 0280

Table 3

Nitrogen
. 2996

. 1227
.0674
. 0425
. 0296
. 0222

Oxygen

.3149
.1274
.0690
. 0432
. 0296
. 0215
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4. MOLECULAR CALCULATIONS

In this final section we describe the general mechanics of
carrying out the program which we have outlined in earlier sec-

tions. We write a model potential for molecular Rydberg states

V;\n/lolecule as a sum of atomic model potentials:
lecule atom
(1) Vs = 2V
M atom M

and solve the resulting wave equation:

h2
(2) (_m V2 o4 Vﬁolecule)wrfltyd = Esydwrll%yd

d Ryd

for the wavefunctions z/JrII{y and corresponding energies E o of the
molecular Rydberg states. Here we will limit ourselves to general
questions about coordinate systems, basis functions, etc., which
apply to all of our calculations. The remaining parts of this sec-
tion will discuss individually the (1) symmetries, (2) geometries,
(3) spectroscopy, (4) results of calculations, (5) interpretation of
the optical spectrum and (6) electron impact data for each of the
molecules for which we have calculated molecular Rydberg states.

The first point which we want to take up pertains to the
method of choosing coordinates. In the following sections we have
always taken the =z axis to be the axis of highest symmetry in
the molecule, except when explicitly stated otherwise. If the

molecule, or the molecule minus its hydrogen atoms, is planar,

then the y axis is taken in the plane and the x axis is out of the
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plane. Again, there may be specific exceptions to the above
general rules. Distances are in atomic units (~ .529 A), and
energy in hartree's (27.211 eV).

The general assumption used to fix the charge distribution
is that an atom within a molecule containing n atoms has an effec-
tive charge of 6z = 1/n. It is found that this assumptions works
very well for both homonuclear and heteronuclear diatomics and
triatomic molecules. For some of the larger molecules this
assumption had to be altered. Specific details will be found in the
sections describing the molecules individually.

In all cases the hydrogen atoms belonging to the molecule
were disregarded. Besides the fact this assumption gave good
results for all of the cases considered, it was tested specifically
for ethylene. For ethylene the hydrogens were included using a
model potential with A = 0.0 and 6z = 0.04 at each of the hydrogen
positions. Calculations on the nsog series with this molecular

potential gave:

E38 = 3.35; E4s = 1,48, E5s = .83
atomic units, in comparison to:
E3S = 3.42’ E4S = 1.49, E = .84

58

for the calculation neglecting the hydrogens. It is interesting to
compare this difference with the difference caused by a change in

the atomic parameters for the carbon atoms themselves. A
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calculation with the hydrogen atoms absent, and a carbon para-

meter of A = .205 instead of .375, gave the nscrg levels

carbon
in ethylene as:

By, =800 SR, =55, B = .86

Thus, neither the neglect of the hydrogen atoms, nor small
changes in the atomic parameters, have much of an effect on the
results of our calculations. |

We solved the Schrodinger wave equation (2) for our Rydberg
orbitals z,brlzyd by expanding these orbitals in a finite set of basis

functions and variationally minizing the quantity:

(ll)RydIH lszyd)
@ pydy

(3)

The program to do this was constructed from the one-electron part

of a polyatom program, supplied to us by Dr. N. Winter. This

program uses Gaussian basis functions of § and P symmetry.
Although one has to use many such functions due to their incorrect
asymptotic form,we feel that their other properties, expécially the
ease of computation for orbitals of high n, and their general
diffuseness, outweigh other considerations. By placing these func-
tions at other than atomic centers, we were able to calculate
Rydberg series of all except ndé symmetry.

The actual calculations were very rapid. A complete set of

calculations for a molecule, including Rydberg orbitals of ns, np
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and nd symmetries, could be done in less than 30 minutes. The
results are quite accurate, usually within 5-10% of available
experimental results. It was not our intention to develop a scheme
of high accuracy, but simply to illustrate that the use of model
potentials can provide results of comparable accuracy to those of
more tedious and elaborate approaches. It is obvious that direct
SCF calculations of Rydberg states of large polyatomic molecules is
presently not feasible, and it is an open question whether they would

be worthwhile in any event.
We close this section with a comparison of our results with
an experimental correlation for the term values of the lowest Rydberg

- of Bell Laboratories.

states of each symmetry found by M. Robin
Figures (1) and (2) show Robin's experimental results and our results
respectively for the term value of the lowest Rydberg state as a function
of the size of the molecule. In both figures, the p and dw levels are
more or less constant, while the s level moves to higher energy with

increasing size. The agreement is very good, and the correlation can

be considered as established on the basis of both theory and experiment.

References
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4.1 NITROGEN

Nitrogen, being a homonuclear diatomic, belongs of course
to the group Dooh' The selection rules for dipole allowed transi-

tions from the ground state are then:

1_ 4+ foed i

Zu - X 7z transition

1 o Sipw
l'Iu - X X,y transition

Raman spectroscopy gives the nitrogen bond distance as
2.113 a.u. for the ground state .

Orbital energies for nitrogen have been calculated by several
investigators. The orbital energies as given by Nesbet1 are re-

produced below:

10g -15.69623
lou -15. 69262
20g -1.48569
20u -0.78581
3og -0.64278
lﬂu -0. 62261

We see that the 11ru orbital is predicted in the Hartree-Fock

model to lie above the 3og orbital. Experimentally the opposite is
2

observed,” the lnu orbital lies below the 30 _ orbital. The electro-

3
nic configuration of the ground state X of nitrogen is then:

{core}(20u)2(111u)4(30g)2 & 12g+
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where {core} denotes the orbitals:

(1og)2(1ou)2(2og)2 :

To account for the experimentally observed nitrogen spec-
trum, we have to consider the following Rydberg series. The
series converging to the first ionization limit has the electronic

configuration

{core} (Zou)z(lqru)4(3og)(nR)

and the dipole allowed transitions will be 1Z:z(ou) and l'I'Iu(wu), where
the symmetries in parenthesis are the symmetries of the Rydberg
orbitals.

The Rydberg series converging to the second ionization

limit has the electronic configuration
20 ) (1r.)*(30.)°
{core} (20,) (1) ( o) (nR)

and the dipole allowed transitions will be lz;(ﬂg) and ' (0,).
Finally the electronic configurations of those Rydberg states

converging to the third ionization limit are:
4 2
{core} (Zou)(lwu) (3og) (nR)

and the dipole allowed transitions are 1E:'I(Ug) and 1Hu('fr )

The optical spectrum of nitrogen has been extensively
studied. Mulliken3 states that the observed and predicted states
are believed to be complete or very nearly so up to and including

the second dissociation limit of the nitrogen molecule into S and
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’D atoms just above 12 eV. Mulliken's tables give the details of
the assignments of the nitrogen band spectrum, hence we limit our-
selves to the Rydberg states here.

There is one and possibly two Rydberg series converging to
the first ionization limit of nitrogen. This series is the well known
Worley-Jenkins series. Since the series is composed of doublets,
it has been suggested by Ogawa and Tana.ka,4 who have observed the
series very carefully, that each component of the doublet might
correspond to a different electronic transition. It is not possible
as yet to either confirm or deny this hypothesis.

The two series have the formulae

(1) 125666.8 - R/(n + .3697 - .3459/n + .532/n - .960/n4)2
and

(I) 125666.8 - R/(n + .3142 - .0404/n - .4289/n%)

corresponding to the term values:

(I) (I1)
n LB, =9 n LP -y
2) p’ 2.640 (2) ¢ 2.646
(3) e 1.248 (3) 1.252
(3) .731 (4) .735
(4) .481 (5) .483

I.P. = 15.58 eV I.P. = 15.58 eV
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There are two distinct series converging to the second
ionization limit of nitrogen. The first of these is a doublet series,
Worley's third series, whose components converge to the two com-
ponents of the A 2I'Iu(N:) ion, respectively. The second series is
considerably weaker than the first. These series have the for-

mulae:

Worley's third series
2
136598 - R/(n - . 0399 - .0258/nl2 134730 - R/(n - .1906 + . 075/n)

n LP.~yp n LPu~'9

[0y et 3.587

(3) 1.564 (3) 1.693
1.562

(4) .870 (4) . 927

(5) .554 (5) .585

I.P. = 16.93 eV . I.P. = 16.70 eV

Finally there are also two distinct Rydberg series converging
to the third ionization limit of nitrogen. The first of these series
is the well known Hopfield Rydberg series. The second series is
much weaker and is observed on the wings of the Hopfield emission

series. These two series are:
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Hopfield series
2

151233 - R/(n - . 0701 - .0412/n) 151231 - R/(n + .1405 - . 199/n)2

n LP. - v n LP. - v
(2) 3.872

(3) 1.603 (3) 1.439
(4) . 885 4 .812
(5) .563 (5) .523
I.P. = 18.74 eV I.P. = 18.74 eV

The n = 2 member of the Hopfield series is not given by Ogawa
and Tana.ka,4 it is however, listed by Mullil«:en3 as a
IZ; [{core} (Zou)(lﬂu)4(3og)2(3sog)] state.

In addition to these series there are many individual states
which have been identified as Rydberg states. We discuss these
states separately when we interpret the spectrum in the light of
our calculations.

The results of our model calculations on nitrogen are as

follows:

nsg_, 6 =1.1 npo,, &6 = .71 npr., 6 = .73
3.80 2.60 2.63
1.61 1.23 1.26
.88 .72 el

.53 .45 .47
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ndo . 8 = .75 ndg_, 6 = .06
=) <)
2.70 1.58
1.35 1.04
.79 .73
.40

The basis sets used in these calculations are as follows.
Gaussian basis functions were placed at the atomic centers, at the
midpoint of the molecule and at centers 3.0 a.u. and 4.0 a.u. to
either side of the atomic centers on the molecular axis. For the

nscrg and npo, orbitals these functions were:

Center Exponent Type
Nitrogens .45 s and p

.15
Midpoint .05 s and p
.0166
. 0055
.0018
. 0006

For the npr orbitals these functions were:
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Center

Nitrogens

Extended Centers

(3.0 a.u.)

For the ndcrg orbitals they were:

Center

Nitrogens

Extended Centers

(3.0 a.u.)

Exponent
.15

.05

.0166
. 0055
.0018
. 0006

Exponent
.45

.15
.05
. 0166
.0055
.0018
.0006

Finally for the ndr_ orbitals they were:

g

Center

Nitrogens

Exponent
.45

.15
.05
. 0166
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Center Exponent Type
Extended Centers . 0055 Py
(4.0 a.u.) .0018
.0006
.0002

The interpretation of the optical Rydberg spectrum of nitro-
gen is fairly straightforward.

If we assume that the Worley-Jenkins series corresponds to
two different electronic transitions, we see that they fit nicely with
the npo, and nprm series. It is not possible to distinguish which
series is which, with the accuracy of the present calculations. The
best fit, however, is with series I corresponding to the npo, series
and series II as npr . These states are then lZ):;(cru) and 1IIu(vru)
states respectively.

Both of the series converging to the second ionization limit
of nitrogen look like nscrg series. This is also the feeling of
Ogawa and Tanaka4 wh(; first observed these series. They assign
to both series the electronic configuration {core} (Zou)z(lwu)g(Bog)z_
(nsog) and consider the strong series to correspond to the singlet
and the weak series the triplet state. We concur in this conclusion.
The fact that the n = 2 member of the weak series is absent is
understandable due to the forbidden character of the transition and
the large number of bands in this region. We assign these states
then as ﬁ'[u(og) and 8Ilu(O‘g).

The Hopfield Rydberg series looks like another nsorg series.

We assign it as 1Z):;(crg). The other series which converges to the
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third ionization limit of nitrogen fits reasonably well with an ndrp

series. Ogawa and Tana.ka.4 believe that the Hopfield series and

g

this latter series should be assigned as nscrg and ndog. Our cal-
culations definitely rule out the ndog possibility, while suggesting
an nd1rg assignment. We assign these states then as 1I'I(‘ng). This
completes the assignments of the observed Rydberg series. There
are however many individual states which have been assigned as
Rydberg states. In the following, we shall consider some of
these states.

Our predicted term value of 3.80 eV for the 3so e Rydberg
state agrees well with the experimental values of 3.4 and 3.71 eV
for tile 12; [{core} (2ou)2(11ru)4(30g)(3s0g)] and 32; [{core} (2ou)2—
(lﬂ'u) (30g)(3sog)] states arising from a 3og - 3sog transition and
3.89 eV for the 12; [{core} (Zou)(lwu)4(3ag)2(3scg)] state arising
from a 20, - 3sog transition.

In addition to the Worley-Jenkins series, there are other
npo, series observed in the nitrogen spectrum. There is a
D 32; [{core }2 u)2(11111)4(30g)(4pc:u)] state at 2.95 eV and another
y lI'Ig[{core} (Zou)z(lnu)3(3og)2(4pou)] state at 2.11 eV. These
values are consistent with our calculations.

The calculated term value for the lowest member of the
ndo series is 2.70 eV. Mulliken5 has suggested that the n 12;
state at 13.98 eV above the ground state of N, may b_e a member
of the ndog series with configuration {core} (Zou)z(lﬂu)3(3og)(ndog).

This state then has a term value of 2.71 eV in very good
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agreement with our predicted term value of 2.70 eV for this ndog
Rydberg state.

Besides the Worley-Jenkins series, other nprm., states have
been observed in nitrogen. For instance the ll'Iu [{core} (Zou)z-
(lwu)4(3og)(3p1ru)] and 31'[u [{core} (2ou)2(1nu)4(3og)(3pnu)] states
have been identified at 2.11 and 2.40 eV respectively. Also the
z lAg [{core} (2Uu)2(11ru)3(30g)2(3p11u)] and x IEé [{core} (Zou)z-
(lwu)3(30g)2(3p1ru) states are observed at 2.02 and 2.29 eV respec-
tively. While these states are not in as good agreement with our
calculations as the Worley-Jenkins series, they are reasonable
values. This is so, because we expect these lowest members to
deviate more than the higher members from their expected
positions.

Finally no other nd-;;g state has been observed other than
those of the series converging to the 223 (N2+) ion of nitrogen.

The calculated term values for the Rydberg orbitals given
above agree very well with those obtained by Lefebvre-Brion and
Moser6 by direct Hartree-Fock calculations. For example, some
term values obtained from their Tables III-V give 3.68 and 1.68
eV for the 3sog and 4s0‘g members of the nscrg series; 2.48, 1.18
and .68 eV for the members of the npo, series; and 2.48, 1.08
and .58 eV for the 3p17u, 4p1ru and 5pnu members of the npr
series. The term values for the higher members of the Rydberg

series can be obtained much more economically by our procedure

than by direct Hartree-Fock calculations.
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The electron impact spectrum of nitrogen has been observed

3 and by Geiger and St:ickel.8 The spectrum

by Lassettre, et al.,
of Geiger and Stickel is reproduced in Figure 1. We see that it
exhibits considerable similarities to the optical spectrum but shows
striking deviations in the range 12.8-14.5 eV where the intensity
of the electron energy loss spectrum is much greater than that of
the optical spectrum. This difference has been interpreted as due
to the close lying transitions p 12:-— i and c¢ ]‘Ilu - )~( being
perturbed by the c’ 12; and b’ 12;, and b ]IIu states respectively.
In the spectrum we can see the Worley-Jenkins series, Worley's
third series and traces of the Hopfield series.

Finally, we want to compare our results on nitrogen with
those of Lindholm.9 We agree on the assignment of the series
converging to the first ionization limit. We likewise agree with
those converging to the second ionization limit with the exception
of the series which we have identified as 3IIu. Lindholm feels
that the intensity of this series is too great for it to be a triplet
series, and he assigns it as an ndcrg series. OQOur calculations
show that an ndcrg should have a quantum defect 6 ~ .75 which
does not agree at all with Lindholm's assignment. Finally,
Lindholm assigns the two series converging to the third ionization
limit of nitrogen as nso_ and nd')rg but just oppositely to the way

g
we assign them.

10 has observed one and

In closing we note that Codling
perhaps two members of what may be a Rydberg series of the

C ”2; (N,) ion. These states at 22.12 and 22.76 eV would have a



Worley's Third Series (ns)

2(o0' 'My) 3
N B O

Worley - Jenkins Series (np)

2(p'ste'm) 3 4
Agerii o

2}
1

Figure 1,

13 14 15
ENERGY LOSS(eV)

Electron Impact Spectrum of Nitrogen

09



61

quantum defect 6 ~ .95. Both Lindholm and we agree in assigning

them as part of an nso_ series, and hence as 22; (cg) states.

=

[No e o}

10.

g
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4.2 OXYGEN

Molecular oxygen is a homonuclear diatomic belonging to
the group Dooh' The selection rules for dipole allowed transitions

from the ground state are:
T z transition
| R X,y transition

The oxygen bond distance in the ground state has been
determined as 2.282 a.u.
Orbital energies for oxygen have been calculated by several

investigators, the restricted Hartree-Fock values are:1

1o, ~20. 7722

lo, ~20. 7717

2 - 1.5229
%

20 - 1.1679
u

30 - 0.6655
u

T - 0. 6421
u

1 - 0.6074
g

| Herzberg2 gives the electronic configuration of the ground

state }~(, in agreement with the Hartree-Fock result, as:

{Core}(20‘u)2(30‘g)2(11ru)4(11rg)2 - 32g

where {core} represents the orbitals:
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(log) (1 cru) (2O'g)2 L

Thus, the Rydberg series converging to the first ionization
limit of oxygen [i.e., the X N g (0,") ion] has the electronic

configuration:
{core} (20,)'(30,) (Ir,)" (17, @R)

and the dipole allowed transitions from the ground state will be
32; (ﬂu) and 3IIu (ou), where the symmetries in parentheses are
the symmetries of the Rydberg orbitals.

The electronic configuration of the Rydberg states converging

to the a 41'[u and A 2Hu oxygen 02+ ions will be:
2 2 3 2
{core} (Zou) (3og) (11ru) (lng) (nR)

and the dipole allowed transitions will be 82:‘ (ng) and I > (og).
The electronic configuration of the Rydberg states con-

2
gandB Zg

{core} (20u)2(3or g)(lﬂu)4(117g)2(nR)

verging to the b "z oxygen 02+ ions will be:

and the dipole allowed transitions will be °Z_ (0,) and ‘T (7).
Finally, the electronic configuration of the Rydberg states

converging to the c 42; oxygen O; ion will be:
20 )(30.) (1r ) (1)’
{core} (20,)(30,) (17,) (17,) (nR)

and the dipole allowed Rydberg transitions will be 32; (Ug) and
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The optical spectrum of oxygen has been well studied. In
the following we shall deal only with the observed Rydberg series
and states which are believed to be Rydberg states.

There is no Rydberg series which is observed to converge
to the first ionization limit of oxygen. However, Tannaka3 has
observed two progressions starting at 77321 em”™ and 79967 em”™
respectively which he suspects might be the first members of two
Rydberg series. If we take the ionization limit of X *II g (02+) as
12.06 eV, then these states would lie 2.48 and 2.15 eV below the
ionization limit respectively.

Price and Collins4 have observed two progressions con-
verging to the a 4l'Iu (O;) ion which they believe to be the first
two members of a Rydberg series converging to this ion. These
progressions start at 99630 cm™ and 117200 cm™, and are called
by them H and I respectively. Putting these values into the
Rydberg formula the two states are found to lie 3.80 and 1.62 eV
below the ionization limit at 130, 000 em™ (16.15 eV). Price and
Collins4 observed two other progressions H’ and I' at 101400 em”™!
and 118500 cm ™' respectively, which lie 3.71 and 1.60 eV below
an ionization limit of 131,400 cm (16.29 eV). They postulate that
these two states are the first two members of another Rydberg
series different from the first series.

Price and Collins4 have observed yet again two more pro-
gressions which may be the first two members of another Rydberg

series. This series converges to the A 2Hu (02+) ion. These

progressions begin at 104470 ¢cm™' and 121064 em” respectively
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and are 3.83 and 1.77 eV below the ionization limit at 16.78 eV.
They are designated as M and N.

As we have seen at wavelengths longer than about 850 A
only progressions of bands belonging to states which may be parts
of Rydberg series are observed. Below this region complete
Rydberg series have been observed. Kosino and Tanaka5 have
observed both a strong and a weak Rydberg series converging to

the b 42; (0,") ion. These series are:

Strong series Weak series
146568 - R/(n - .67) 146570 - R/(n - .55)°
n L.P = n LE. - ¥
(4) 1.239 (4) 1.133
(5) .724 (5) . #0672
(6) .478 (6) .445
I.P. = 18.17 eV I.P. = 18.17 eV

They also observed a strong and a weak Rydberg series

converging to the B ZZé (0,") ion. These series are:

Strong series Weak series
163702 - R/(n - .70)° 163700 - R/(n - .55)°
n LP. -y n L -y

(4) 1.261
(5) 8%
(6) .484 (6) .455

I.P. = 20.29 eV I.P. = 20.29 eV
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Finally, Codling and Ma.dden6 have observed three Rydberg
series converging to the ¢ “E; (0,") ion. Two of these series are

of strong intensity and the third is weak. They are:

198125 - R/(n - .19)° 198125 - R/(n - .98)°
n L¥P. ~ ¢ n LP. -v
(3) 3.702
(3) 1.700 (4) 1.485
(4) .934 (5) .834
(5) .589 (6) .534
I.P. = 24.56 eV I.P. = 24.56 eV

Weak series

198125 - R/(n - .02)"

n LB, = p
(4) 1.493
(5) e
(6) .541

I.P. = 24.56 eV

In general the members of the weak series lie approximately 50
cm™ to the low energy side of the second strong Rydberg series
above. Codling and Madden6 suggest that this series either repre-
sents the spin orbit splitting of the strong series or the analogous

quintet series to the triplet strong series.
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The results of model calculations on oxygen are as follows:

nso, 6 =1.15 ap. 6= .74 ndo, 6 = .80 ndg , 6 = .04
<) <)

3.97 2.64 2.82 g1.55

1.67 1.25 1.34 1.02
.90 .73 .72 .55
.93 .45

In the above table the npo, and npm results are so similar, they
are simply denoted by np.

The basis sets used in these calculations are as follows.
Gaussian basis functions were placed at the atomic centers,at the
midpoint of the molecule,and at centers 3.0 a.u. to either side of
the atomic centers on the molecular axis. For the nso_ and npo,

g
orbitals these functions were:

Center Exponent Type
Oxygens .45 s and P,

b 1
Midpoint .05 s and P,
.0166
. 0055
.0018
. 0006

For the npm and nd1rg orbitals the functions were:
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Center Exponent Type
Oxygens .15 Py

.05
. 0166
Extended Centers . 0055 Py
.0018
. 0006

Finally for the ndog orbitals they were:

Center Exponent Type
Oxygens .45 P,

.15
.05
Extended Centers . 0166 P,
. 0055
. 0018
. 0006

The interpretation of the optical Rydberg spectrum of
oxygen goes as follows.

The progression observed by Tanaka at 2.48 eV below the
first ionization limit is in reasonable agreement with a 3p Rydberg
state, either 3pou or 3p"u' This state is then either °II (cu) or
SEé (m,). The other progression observed at 2.15 eV below the

ionization limit, despite its large deviation from the calculated
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value, is probably another 3p state. We assign»it as ‘Il (cru) or
32;3; (m,) also.

All of the progressions observed by Price and Collins are
in good agreement with nsog series. This includes the H and I
progressions and the H’ and I’ progressions converging to the
a 4Hu (Oz+) ion as well as the M and N progressions converging to
the A 2l'[u (02+) ion. They all appear to be 330g and 4sog states,
and we assign them as 3l'Iu (og).

When we get away from progressions and into complete
series we are on firmer ground. Both the strong and weak series
observed by Kosino and Tana.ka5 converging to the b 4Eé (02+) ion
appear t6 be np series. Again, the strong and weak series con-
verging to the B ZZé (02+) ion observed by these authors also
appear to be np series. Furthermore, the two strong series seem
to correspond to the same Rydberg orbital as well as do the two
weak series. We cannot decide which is npo, and which is npm
on the basis of our calculations and therefore assign them as
321'1 (0,) and 3IIu (7).

The two strong Rydberg series observed by Codling and
Ma,dden6 seem to be nd'trg and nso'g series. The series with quan-
tum defect & = .19 agrees reasonably well with either assignment,
but because of the absence of an n = 2 member we must assign it
as nd‘;rg and the state as s‘Hu (‘ﬂ'g). The other seri es with quantum

defect 6 = .98 also agrees with both series, but the presence of

an n = 3 member identifies it as nso, and hence 32; (og).
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Thus the various Rydberg states of oxygen, though difficult
to find and identify experimentally, are easily interpreted by our
calculations. On the computational side, our calculations are also
in good agreement with the more extensive treatment of Leclercq.'7

The electron impact spectrum of oxygen has been measured
by Lassettre8 and co-workers. Their spectrum, together with
our assignments, are given in Figure 1. It is clear that the
electron impact spectrum resembles the optical spectrum fairly
closely. One important difference, however, is the clarity with
which the np states converging to the first ionization limit stand
out. We are able to pick out the n = 3, 4 and 5 members of this
series in the electron impact spectrum, whereas in the optical
spectrum we could only find the first member.

It remains for us to compare our results with the predic-
tions of Lindholm.9 In identifying the various progressions observed
in oxygen Lindholm and we differ as to how the progressions are
to be arranged, but agree in which Rydberg series they must
represent.

When we come to the interpretation of actual Rydberg
series, we agree almost completely. We agree on the assignment
+

- T ™ i
g and B Eg (0,) ions. We

also agree with Lindholm's assignment of the nscrg series con-

of the series converging to the b *Z

verging to the c 42; (0,") ion. The only disagreement we can find
is with his assignment of ndog for the other series converging to
the ¢ 42; (O;) ion. Our calculations show that this assignment is

untentable and should be replaced by ndﬂg.
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It should be mentioned that Lindholm attempts tor assign

several more states than we have. We have not considered the

evidence complete enough to make these assignments.

O -1 & - B W
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4.3 NITRIC OXIDE

Nitric oxide is a heteronuclear diatomic belonging to the
group va. The selection rules for dipole allowed transitions

from the ground state are:

‘la X z transition
2+ o A
Z - X X,y transitions

The internuclear distance has been measured as 2.176 a.u.
for the ground state )E

Orbital energies for nitric oxide have been calculated by
several authors. Those given by Brioﬁ, Moser, and Ya.mazaki1

are typical and are given below:

lo -20.6130 -20.6185
20 -15.6206 -15.6450
30 -1.5227 -1.4862
40 -0.8656 -0.8589
17 -0.5427 -0.5593
50 -0.5427 -0.5353
27 -0.3304 -0.3358
E -128.883 -128.737

iL

Thus the electronic configuration for nitric oxide is:
2 4 2
{core} (50) (17) (2m) - °1

where {core} represents the orbitals:
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(10) (20)°(30) (40)"

The Rydberg states converging to the first ionization limit

of nitric oxide will have the electronic configuration:
{core} (50)2(111)4(nR)

and the dipole allowed transitions from ground state will be i (m)
and °z* (0), where the symmetries in parenthesis are the symme-
tries of the Rydberg orbitals.

The Rydberg states converging to the second and third

ionization limits will have the electronic configuration:
2 3
{core} (50) (17) (27)(nR).

Finally the Rydberg states converging to the fourth ioniza-

tion limit will have the electronic configuration:
4
{core} (50)(17) (21)(nR)

y D ; 2 Bt
and the dipole allowed transitions will be TI (0) and Z (7).

The optical Rydberg spectrum of nitric oxide shows
numerous states which can be fitted into Rydberg series converging
to the first ionization limit at 9.27 eV. As measured by

Lagerquist and Miescher,2 these states are:



H
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9.27 - vy

3.
1
. 949

281
755

.806
.301

. 682
. 256

.580
. 502
. 497

Furthermore there is a Rydberg series, a, converging to

the second ionization limit of nitric oxide. As observed by Huber

the formula for this series is:

3

114680 - R/(n - 1.10)°

14

3

n LY, -
(3) 4.013
(4) 1.599
(5) .923
(6) .566
I.LP. = 14.21 eV

Huber™ has also observed the Rydberg series, B, converging

to the third ionization limit of nitric oxide. It is a doublet series
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with the formula:

135530 - R/(n - .67)

n I.P. - v
(3) 2.985
2.740
(4) 1.514
1.261
(5) .983
137
(6) . 726
.483

I.P. = 16.80 eV

Finally, Huber3 has observed the Rydberg series, y, con-

verging to the fourth ionization limit of nitric oxide. It is another

doublet series with the formula:

147830 - R/(n - .78)°

n LP. - v
(3) 2.837
2.630
(4) 1.319
1.116
(5) .767

. 560
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1=

I.P. - v
(6) .500
299

I.P. = 18.32 eV

The results of model calculations on nitric oxide are as

follows:
nso, §=1.13 npo, 6 = .72 ndo, 6§ = .78
3.88 2.62 1.31
1.64 1.24 . 10
.89 .72
.53 .45
ndg, 6 = .74 ndg, &6 = .06
2.65 1.58
1.28 1.03
.74 .55
.46

The basis sets used in these calculations were as follows.
Gaussian basis functions were placed at the atomic centers, at
the midpoint of the molecule and at centers 3.0 a.u. to either side
of the atomic centers on the molecular axis. For the nso and

npo orbitals these functions were:
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Center Exponent Type
Nitrogen .45 s and P,

Oxygen i 5

Midpoint .05 s and p
. 0166
. 0055
.0018
. 0006

For the np-n.and ndr orbitals these functions were:

Center Exponent Type
Nitrogen i £ Py

Oxygen .05
. 0166

Extended Centers . 0055 P
.0018
. 0006

Finally for the ndo orbitals they were:

Center Exponent Type
Nitrogen .45 D,
Oxygen .15

.05
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Center Exponent Type
Extended Centers .0166 D,
. 0055
.0018
. 0006

The interpretation of the optical spectrum of nitric oxide
goes as follows. The states A, E and S fit nicely with an nso
series converging to the first ionization limit. These states would
then be =V (0) states. The states C and K are in reasonable
agreement with an npr series converging to the same limit. We
assign these states as °II (r) states. The states D and M fit well
with the npo series, and we assign them as n (o) states. The
states F, H' and H fit reasonably well with the ndo and ndr
series, but there are three states to assign and only two dipole
allowed transitions to assign them to. We suspect that one of
these states is the dipole forbidden ndé transition. Because these
states are so close together, we cannot decide which is which on
the basis of our approximate calculations.

The a series converging to the second ionization limit of
nitric oxide fits reasonably well with our nsc series. We then
assign these states as T (o) states.

The B and y series converging to the third and fourth
ionization limits respectivel y could conceivably be fit by either
the npo or npr series, or possibly both. If we use the original
data of Tamaka4 the npo assignment looks most likely. Hence we

assign these series as npo series. This means that the y series
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consists of I (o) states. It does not fix the state symmetry of

the B series because the symmetry of the ion core is unknown for

this series.

We can compare our calculations with Hartree-Fock calcu-

lations for the states converging to the first ionization limit of

nitric oxide. These calculations have been performed by Lefebre-

Brion and Moser.5 In the table below we tabulate the results of

both calculations:

State  Symmetry  Lefebre-Brion, Moser Betts, McKoy Exp
A o il 3.64 3.51 3.88 3.79
E ayt 1.51 1.62 1.64 1.72
S o .89 .95
C Il 2.63 2.65 2.78
K B 1.20 1.28 1.30
D 2zt 2.53 2.47 2.62 2.66
M e >4 1.16 1.13 1.24 1.25
F A 1.53 1.58
H’ T 1.46 1.58 1.49
H Bt 1.43 1.31 1.50

The agreement between the two calculations and experiment is in

all cases very good.
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The electron impact spectrum of nitric oxide has been
reported by Lassettre, et al.6 Their spectrum together with
assignments is reproduced in Figure 1. In this spectrum the
Rydberg states converging to the first ionization limit of nitric
oxide stand out quite clearly. This spectrum does not, however,
show us any new states that we did not already know about from

the optical spectrum.
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4.4 CARBON MONOXIDE

Carbon monoxide is a heteronuclear diatomic belonging to
the group va. The selection rules for dipole allowed transitions

from the ground state are:
e % z transition
M~ X X,y transition

The internuclear distance has been determined to be 2.132
a.u. for the ground state i
Orbital energies for carbon monoxide have been calculated

by many investigators. The results of Huo1 are tabulated below:

Minimum Basis Extended Basis

lo -20.66794 -20.66123
20 -11.28564 -11.35927
30 -1.48115 -1.51920
40 -0.72785 -0.80235
50 -0.48416 -0.55304
17 -0.55824 -0.63771
Eq -112,3910 -112.7860

Thus we see that the electronic configuration of the ground state2

is:
{core} (40)’(1m) (50)° - 'zt

where {core} represents the orbitals:
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(10) (20)°(30)".

The electronic configuration of the Rydberg states con-
verging to the first ionization limit of carbon monoxide will be

then:
{core} (40)°(17)"(50)(nR)

and the dipole allowed transitions will be 5% (0) and By (), where
the symmetry in parentheses is the symmetry of the Rydberg
orbital.

The electronic configuration of the Rydberg states con-

verging to the second ionization limit of carbon monoxide will be:
2 3 2
{core} (40) (17) (50) (nR)

and the dipole allowed transitions will be ‘=% (7) and T (0).
Finally the electronic configuration of the Rydberg states

converging to the third ionization limit of carbon monoxide will be:
{core} (40‘)(11r)4(50)2(nR)

and the dipole allowed transitions will be ="' (0) and M (z).

Unlike nitrogen and oxygen the carbon monoxide optical
spectrum displays several states which can be fitted into a Rydberg
series converging to the first ionization limit of the ion. As given

by Tanaka, Jursa and LeBlanc3 these states are:



B Sy 3.224
b b 3 3.608
F ' 1.637
% o rid 2.604
c ot 2.586
E ke 2.480

In the above, the symmetry of each state is assigned on the basis
of spectroscopy and does not necessarily agree with our assign-
ments. The term values have been subtracted from the experi-
mental ionization limit of 14.001 eV in the third column.
Furthermore, Takamine, Tanaka and Iwa.ta4 have observed
the higher members of a Rydberg series converging to this same

ion. - It is:

113029 - R/(n - .88)°

n LP. -~y
(5) .799
(6) .518

I.P. = 14.00 eV

Tana.ka.5 has observed a Rydberg series converging to the
second ionization limit of carbon monoxide. He calls this series

a. It has the formula:
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13380 - R/(n - .70)°

n LP, ~ p
(4) 1.245
(5) L7137
(6) .489

I.P. = 16.53 eV

'l‘a.na.ka5 has also observed two other series, which he calls

B, converging to the third ionization limit of carbon monoxide.
One of these series is observed to be sharp, the other is diffuse.
Ogawa6 has added two more series in addition to these B series.

He calls these series III and IV. The formulae for these series

are;
B (sharp) B (diffuse)
158680 - R/(n - .68)" 158680 - R/(n - .68)°
n LP. -v n L.P. - v
(4) 1.235 (4) 1.189
(5) ST (5) .700
(6) .480 (6) .463

I.P. = 19.67 eV I.P. = 19.67 eV
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I IV
158670 - R/(n - .96)" 158670 - R/(n - .20)°
n LP, -.p n LP, -~ ¢
(4) 1.471 (3) 1.729
(5) .824 (4) .943
(6) .530 (5) .591
I.P. = 19.67 eV I.P. = 19.67 eV

The results of model calculations on carbon monoxide are

as follows:
nso, 6 = 1.08 npo, &6 = .72 ndo;, § = .61
3.68 2.55 2.38
1.57 1.21 1.17
.86 « 12 .65
.52 .45
npr, 6 = .74 ndg, 6 = .07
2.59 1.58
1.26 1.03
.73 .55
.46

The basis sets used were as follows. Gaussian basis func-
tions were placed at the atomic centers, at the midpoint of the

molecule and at centers 3.0 a.u. to either side of the atomic
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centers on the molecular axis. For the nso and npo orbitals these

functions were:

Center Exponent Type
Carbon .45 s and P,

Oxygen .15

Midpoint .05 s and P,
.0166
.0055
.0018
. 0006

For the npr and ndy orbitals the functions were:

Center Exponent Type
Carbon + 15 Py

Oxygen .05
.0166

Extended Centers . 0055 Py
.0018
. 0006

Finally for the ndo orbitals they were:
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Center Exponent Type
Carbon .45 D,

Oxygen .15
.05
Extended Centers .0166 D,
. 0055
.0018
.0006

The interpretation of the optical spectrum of carbon monox-
ide is fairly easy. We see that the states B and F and the
Takamine, Tanaka and Iwata4 Rydberg series all seem to be part
of an nso Rydberg series converging to the lowest ionization limit
of carbon monoxide. For this to be true the state F must be

reassigned from I to 1%, That this assignment is the correct

one has been confirmed recent1y7’ 8

both experimentally and by
calculation. All of these states are then =7 (og) states.

Likewise we recognize the C 'zt state as the first member
of a po series converging to the first ionization limit. If this is
the case, then the E state cannot be a 12+ state also, and we
reassign this state as the first member of a pr series and hence
' (). This is also in agreement with reference 8.

Tanaka's a series converging to the second ionization limit
of carbon monoxide fits very well with an npo or npr series. We
cannot really distinguish which series is correct, the accuracy of

our method being what it is. Therefore we simply assign this

series as ‘= (1) or I (o).
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Similarly Tanaka's B series fit well with both the npo and
npr series, and we assign these series as 'Z¥ (0) and ' (r) with-
out specifying which series is which.

This leaves us with the III and IV series of QOgawa to
assign. Series IV fits reasonably well with our nds series, and
we assign these states as TI (r). Likewise, series III fits well
with an nso series, despite the fact that the n = 3 member is
missing. We therefore assign this series as 5t (0). This com—"
pletes the assignments of all of the Rydberg states and series for
carbon monoxide. |

The results presented here are supported by the extensive
Configuration Interaction calculation of reference 7. In the table
below, we compare our results with those of Lefebvre-Brion,

Moser and Nesbet:

oy = Betts, McKoy
35 3.0 3.7 | e ek
4s 1.4 1.6 1.6
3po 2.5 2.6 2.6
4po 1.2 52 ¥.2
4do 1.5 1.5 2.4

It is seen that the agreement between the two calculations is
excellent with the single exception of the 4do level. We might add
that our calculations were done with only a fraction of the time

and expense required for these more extensive calculations.
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It remains for us to 'compare our assignments with those
of Lindholm.9 On those states which converge to the first ioniza-
tion limit we agree with Lindholm's assignments; except that he
assigns the F state as l1'[, interpreting it as a ndg state, where
we would consider it to be the second member of an nso series.

Likewise we agree with Lindholm on the assignment of the
Tanaka a and B series, and also Ogawa's III series. Lindholm
assigns the IV Ogawa series as ndoc however, and our calculations
suggest that it is ndg. Other than this Lindholm assigns two series
converging to the second ionization limit of carbon monoxide, which

we have not considered as well enough established to assign.
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4,5 CARBON DIOXIDE
The ground state of carbon dioxide ﬁ(IZgJ') is linear (D),

and the same is true for its Rydberg states. Thus, the dipole allowed

transitions from the ground state are:

12u+ - z transition
e R X, y transition

Infrared and Raman spectroscopy give a C=0 bond length of
2.190 a.u. for the ground state. 1
The orbital energies for carbon dioxide in the ground state

have been calculated by McLeam2 and by Peyerimhoff, Buenker, and

Whitten. S The results can be seen in a table from the latter author's
paper:
Peyerimhoff et al? McLea,nb
1o, -20.7508 -20. 6621 -20. 6743
10g -20.7508 -20. 6620 -20. 6742
Zog -11. 8092 -11. 5322 -11.5074
30g - 1.6280 - 1.5689 - 1.5025
20, - 1.5639 - 1.5075 - 1.4632
4og - 0.8361 - 0.7867 - 0.7366
1w, - 0.7927 - 0.7398 - 0.6946 (30,)
3o, .. - 0.7580 - 0.7172 - 0.6792 (1r)
17 - 0.5856 - 0.5389 - 0.4405
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Ep 187.2683 -187.4929 -187.0763

& C=0 length 2.196 a.u.

P =0 length 2.1944 a.u.

It is evident that there is disagreement with the order of the
30, and 11ru orbitals. This seems to be a persistent difficulty with
carbon dioxide calculations. In fact, for some different basis sets,
McLean gets the same ordering as Peyerimhoff, Buenker and Whitten.
This fact notwithstanding, the correct ordering deduced from the

series limits of the various Rydberg series is according to Herzberg4:

{core} (4og)2(30u)2(11ru)4(1ﬂg)4 -zt
where {core} includes the orbitals:
2 2 2 2 2
(1o,) (log) (20g) 3oy) (20,)

In the case of carbon dioxide, there are several different Rydberg
states converging to several different series limits. Thus, the
electronic configuration for Rydberg states converging to the i

(CO,™) ion will be:

g

{core} (40g)2(3ou)2(11tu)4(11tg)3(nR)

and the dipole allowed states will be 12u+ (Hu) and lﬂu(ou).
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The electron configuration for Rydberg states converging to

the *I (CO,") ion will be:
{core} (40,)" B0y (17" (17 )*(oR)

and the dipole allowed states will be ‘%, *(x ), and *IL, (¢; ).
The electron configuration for Rydberg states converging to

the “z_*(CO,") ion will be:
{core} (40, (30,)(17)*(17,)* @R)

and the dipole allowed states will be 12u+(0'g) and ‘M u(ng).
Finally, the electron configuration for Rydberg states con-

verging to the 22g+(C02+) ion will be:
2 4 2
{core} (40g)(3ou) (11ru) (11rg) (nR)

and the dipole allowed states will be 'Z_"(0,) and ‘Il (x ). In all of
the above cases the symmetry in paranthesis is the symmetry of
the Rydberg orbital.

The optical spectrum of CO, begins at about 2100 A. The
region from 1750 A to 1150 A corresponds to transitions to two bent
excited states A ({core} (4<7g)2 (3(711)2(111“)4(:3.1)2 (b,)(a,)) ~ X and B{ core} (clcrg)2
(30‘u)2 (b,)’(a,)(a,)*(b,)%(a,)) ~ X with maximum absorptions at about
1475 A and 1330 A respectively.

Below 1150 A we find mostly Rydberg states, 5 although there
still remain several unassigned progressions in this region.

There are four Rydberg series converging to the first ionization

limit of carbon dioxide. The two strong series of this group are:
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111240 - R/(n - .65) 111060 - R(n - .65)°
n LP, =y n ) P00 ek
8y D - 2.815 B B
4 H 1.323 @4 H 1.254
6) T . 766 (5) . 754
(6) . 507 (6) . 506
I.P. = 13,787 I.P. = 13.765

and the two weak series of the group are:

111250 - R/(n - .97)° 111250 - R/(n - .57)°
n LP, =y n LY, =p
3) E 2.407
@ G 1,47 40 1.156
(5) . 829 (5) . 687
(6) . 529 (6) .457
B By 1o 109 I.P. = 13.789
6

According to Herzberg™ the two strong Rydberg series with
slightly different limits (111060 and 111240 cm™") correspond to the
two components of the 2IIg ground state of C02+. Measurements
on the CO,” spectrum give this splitting as 160 em™,

There are two Rydberg series converging to the second ioniza-
tion limit of carbon dioxide:

139726 - R/(n - .063-.0069/n)" 139634 - R/(n-.044 - .34/n)’

n 1.P. =p n LP., -~y

@ L 1.570 @3 M 1511
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(4) . 880 (4) . 886
(5) . 562 (5) . 566
I.P. = 17.319 I. P. = 17.307

Actually there are sixteen observed series converging to this
ionization potential, corresponding to transitions to different vibra-
tional levels of the Rydberg states. Those listed above correspond to
the v = 0 level, and do not include all of the members of higher n
which have been observed.

The splitting of these two series, approximately 90 em”
corresponds nicely with the splitting of the two components of the
‘I, (Co,™ ion.

There are two Rydberg series converging to the third ioniza-
tion limit of carbon dioxide, known as Henning's sharp series and

Henning's diffuse series respectively.

sharp series diffuse series
145860 - -R/(n - .01)* 145780 - R/(n - .34)°

n 1B, =~ p n I.P. - v

@) §  1.607 @) R 1.909

(4) . 803 (4) 1.002

(5) .548 (5} . 622

(6) .385 (6) .420

I. P. =18.079 I.P. =18.069
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The identification of the lowest members of both these series
is a difficult task. Tanaka,Jursaand Le Blank assigned the R member
to the § = .34 series on the basis of its diffuse appearance, but
another assignment is possible and will be discussed when we interpret
these results. on the basis of our model calculations.

Finally, three Rydberg series have been observed by Tanaka,
Jursa and Le Blank converging to the fourth ionization limit of carbon
dioxide. Two are absorption series and the third appears to be an

emission series.

156350-R/ (n-. 71)? 156410-R/n-. 56)° 156400-Rfn-. 05)°

n LP. =~y n LP, =y n LP,. v
(emission) (3) 1.524
(4) 1.222 (4) 1.131 (4) . 855
(5) .715 (5) . 676 (5) . 539
(6) .471 (6) . 457 (6) .385
I.P. =19.379 I.P. = 19,386 I.P. = 19,385

Again the first members are missing, but the intensities of
these series are very weak. We notice here that the doublet character
of the Rydberg states converging to the two lowest ionization limits
definately establishes their symmetry as 7. Hence, the ordering of
the orbitals, which calculations leave in sbme doubt, is certain.

That the order of the other orbitals is nowcorrect,we shall be able
to show when we discuss the results of our model calculations.

The results of model calculations on carbon dioxide are as
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follows:
nso,, 6=1.00 ndog, 6=.55 ndug, § = 402
3.393 2.272 1,906
1. 502 .918 .936
. 842
. 520
npo,, 6 =.66 npm , 6 =.60
2.471 2.365
1.186 1.108
.702 . 587
.451

The basis sets used in these calculations were as follows.
Gaussian functions were placed at each of the atomic centers and at
extended centers 3.0 a.u. to either side of the atomic centers on the
molecular axis. For the nso'g and npo, orbital calculations these

functions were:

Center Exponent Type
Oxygens .45 s and P,

.15
.05
Carbon .0166 s and o,
.0055
.0018
.0006
. 0002



For the npm orbital calculations they were:

Center

Oxygens

Carbon

For the ndo o orbital calculations they were:

Center

Oxygens

Carbon

100

Exponent
.45

.15
.05
.0166
. 0055
.0018
.0006
.45
.15
.05

Exponent
.45

.15
.05
.0166
.0055
.0018
.0006
.45
.15
.05
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Finally, for the ndw orbital calculations they were:

Center Exponent Type

Oxygens .45 Py
+« 10
.05
. 0166

Extended Centers . 0055 Py
.0018
. 0006
. 0002
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We begin our interpretation of the optical spectrum with
the four Rydberg series converging to the first ionization limit. As
was remarked before, the two strong series with quantum defect

6 = .65 correspond to the two components of the I ground state of

the C02+ ion. We get reasonable agreement betweegn this series
and the npo, calculated series, although agreement with the nprw,,
series is not out of the question. Thus we ass