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Abstrat
Earthquake early warning systems have beome popular these days, and many seis-mologists and engineers are making researh e�orts for their pratial appliation.The existing earthquake early warning systems provide estimates of the loation andsize of earthquakes, and then ground motions at a site are estimated as a funtionof the epientral distane and site soil properties. However, for large earthquakes,the energy is radiated from a large area surrounding the entire fault plane, and theepienter indiates only where rupture starts.In this projet, we fous on an earthquake early warning system onsidering fault�niteness. We provide a new methodology to estimate rupture geometry and slip sizeon a �nite fault in real time for the purpose of earthquake early warning.We propose a new model to simulate high-frequeny motions from earthquakeswith large fault dimension: the envelope of high-frequeny ground motion from alarge earthquake an be expressed as a root-mean-squared ombination of envelopefuntions from smaller earthquakes. We parameterize the fault geometry with an epi-enter, a fault strike, and two along-strike rupture lengths, and �nd these parametersby minimizing the residual sum of squares of errors between ground motion modelsand observed ground motion envelopes.To provide the information on the spatial extent of rupture geometry, we presenta methodology to estimate a fault dimension of an earthquake in real time by lassi-fying seismi reords into near-soure or far-soure reords. We analyze peak groundmotions and use Bayesian model lass seletion to �nd a funtion that best lassi-�es near-soure and far-soure reords based on these parameters. This disriminantfuntion is useful to estimate the fault rupture dimension in real time, espeially for



vilarge earthquakes.In order to haraterize slip on the fault in real time, we onstrut an analytialfuntion to estimate slip on the fault from near-soure ground displaement observa-tions. In real-time analysis, we bak projet the reorded displaement data onto thefault line to estimate the size of the slip on the fault. The simulation results show thatthe slip size estimation predits the observed GPS stati displaement on the faultquite well. This urrent slip size on the fault is used for a probabilisti preditionof additional rupture length in the near future. We haraterize the distribution ofadditional rupture length onditioned on the urrent slip on the fault for the ongoingrupture from the simulation with a 1-D slip model. The probability density of addi-tional rupture length an be approximated by a lognormal distribution onditionedon the urrent slip size.
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Chapter 1Introdution
1.1 MotivationReently, with advanes in data analysis and inreased awareness of the seismi haz-ard, the topi of earthquake early warning has attrated more researh attention,and various early warning methods have been proposed from seismologists and engi-neers (Nakamura and Tuker, 1988; Allen and Kanamori, 2003; Odaka et al., 2003;Wu and Kanamori, 2005a). Currently, the most ambitious system is the earthquakeearly warning system provided by the Japan Meteorologial Ageny, whih is in atesting phase. The news of the system was broadasted widely and attrated on-siderable publi attention in Japan. The goal of seismi early warning is to initiateoptimal mitigating ations based on the arrival time and amplitude of seismi wavespredited at a given loation. To ahieve this, an earthquake early warning systemmust ollet and quikly analyze seismi data in a manner that an be used to preditfuture shaking. In priniple, this ould be ahieved by using the present value of anapproximately known wave�eld as a boundary ondition to predit future wave�eldsusing Navier's equation (Baker et al., 2005). However, from a pratial viewpoint,there are advantages to data analysis shemes that involve haraterization of theearthquake soure. Preditions of future shaking an be ahieved by utilizing theextensive existing work on prediting ground shaking from seismi soures. Ideally,an early warning system would provide the best estimate of slip in time and spaethat an be dedued from seismi data available at any given instant in time.



2Cua and Heaton developed the Virtual Seismologist (VS) method (Cua, 2005; Cuaand Heaton, 2006). It is a Bayesian approah to seismi early warning designed formodern seismi networks, and is proposed for small to moderate earthquakes withruptures that an be approximately modeled as a point soure. The VS algorithmuses an envelope attenuation relationship and the predominant frequeny ontentfrom the �rst few seonds after the P-wave arrival. The advantage of the VS methodis its apaity to assimilate di�erent types of information that may be useful to �ndquik and reliable estimates of magnitude and loation (Cua, 2005). It gives thebest estimate of an earthquake property in terms of a probability density funtion.The Bayesian approah is a sheme to emulate human apabilities to judge omplexinformation by modeling unertainty in a probabilisti way.Our goal is to extend the VS method to large earthquakes where fault �nitenessis important. Most other earthquake early warning systems fous on estimatingepienters and magnitudes of earthquakes, not the fault geometry (Nakamura andTuker, 1988; Allen and Kanamori, 2003). However, for large earthquakes, rupturelength an be on the order of tens to hundreds of kilometers, and the inhomogeneousslip distribution signi�antly a�ets the ground motion amplitude at a site. Forexample, the fault rupture in the 1999 Chi-Chi earthquake was longer than 80 km,and the largest slip was reorded at the northern end of the fault. It would be diÆult,if not impossible, to predit suh large shaking at large distanes from the epienterwhen using a sheme that only haraterizes the earthquake as a point soure.Early warning for large earthquakes provides two types of preditions: 1) Ata given instant, it reognizes the present geometry of an ongoing earthquake, andpredits the shaking from waves that are traveling to another site; 2) Given thepresent dimensions of a rupture, what is the probability distribution for the �naldimensions of the rupture?We introdue a two-step strategy to aomplish the �rst type of preditions; 1)we determine the spatial and temporal extent of an ongoing rupture by analyzingwaveform envelopes of high-frequeny shaking, 2) we determine approximate slip fromsimple projetions of long-period shaking onto the approximately known loation of



3the rupture. Based on the urrent on�guration of the fault, the seond type ofpredition an be aomplished.1.2 Bakground on seismi early warning system1.2.1 History of researh e�orts in seismi early warning sys-temLee and Espinosa-Aranda (2003) and Kanamori (2005) provide a reent review andhistory of researh e�orts in seismi early warning. Aording to the quotation inNakamura (1988), the onept of a seismi early warning system dates as far bakas 140 years ago. Cooper (1868) proposed to \arrange a very simple mehanialontrivane at various points from 10 to 100 miles from San Franiso," and \instan-taneously ring an alarm bell, whih should be hung in a high tower near the enterof the ity" when the \very simple mehanial ontrivane" detets an earthquake.This artile explains the fundamentals of a seismi early warning system. It refersto the automation of the system, danger of false alarms, and weakness of the systemfor very near-soure earthquakes (see Appendix A for the quotation). Unfortunately,Cooper's onept was never implemented. A hundred years later, a railway ompany,Japan Railways (JR) designed an earthquake warning system in 1965 and startedoperation the next year (Nakamura and Tuker, 1988; Nakamura, 1988).In the United States, Heaton (1985) developed a model for a seismi omputerizedalert network (SCAN), whih is a system to provide short-term warning for imminentstrong ground motion from large earthquake in southern California. By using thismodel, the relationship between the size of the ground motions, warning time, andarea where the warning is issued was analyzed. Aording to the results, althoughwarning times are likely to be short for areas greatly damaged by relatively small tomoderate earthquakes, large areas that experiene very strong shaking during largeearthquakes would reeive longer warning times. He also omments that large earth-quakes have a long rupture length, so the system an provide substantial warning



4times. Toks�oz et al. (1990) desribed a prototype earthquake warning system forstrike-slip earthquakes whose slip an be approximated by only horizontal displae-ment. As the �rst pratial appliation in US, a prototype early warning system foraftershoks was operated by the United States Geologial Survey (USGS) in the SanFraniso Bay area after the 1989 Loma Prieta earthquake, Mw=6.9 (Bakun et al.,1994).The onept of amplitude-based loation estimate was introdued by Kanamori(1993). In his method, an attenuation relationship is �t to the observed peak ael-eration data, and parameters of magnitude, latitude, and longitude are determinedby minimizing the error between observations and preditions. This tehnique is thefundamental priniple used in VS method. Kanamori et al. (1997) desribe examplesof seismi early warning system developed in several parts of the world. They dis-ussed the urrent on�guration of the seismi network in California and tehnialissues for providing real-time information. In the paper, they pointed out an issuethat the energy is radiated from a large area for major earthquakes, and estimatingthe epienter loation is not enough to determine the ground motion at a site. It isproposed to loate not only the traditional hypoenter, but the enter of the energyradiation, whih is referred to as the ground motion entroid.Kanamori (2005) lassi�es early warning approahes as either on-site or regional.An on-site approah uses available ground motions at a given site to predit the later-arriving main shok at the same site. This method is suitable for the region loseto the epienter. The regional approah predits the ground motion at a site basedon an estimate of the size and magnitude of the event from the near-soure reords.This approah is more reliable and provides more aurate information for stationsrelatively distant from the epienter. The on-site approah an make a more rapidwarning for the region lose to the epienter, sine there is no need to ompute themagnitude or loation of the earthquake. On the other hand, the regional approahis useful for issuing a regional warning for the relatively distant stations. The meritsand demerits of these approahes are shown in table 1.1.Allen and Kanamori (2003) introdued the Earthquake Alarm System (ElarmS),



5Table 1.1: On-site and regional approahes for the earthquake early warning system.Examples of eah approah are explained in Setion 1.2.2.Type On-site EWS Regional EWSData to be used Reords of a station whoseground motion is estimated. All the urrent availablereords.Output information Peak ground motion at a site. Soure information.(additionaly, magnitude andepienter loation) (ground motion at a site an beestimated from attenuation re-lationships)Merits Simple and quik. Reliable and aulate.Demerits Large unertainty. Taking time for data olletionand omputation.Suitable for Regions lose to the epienter. Relatively distant regions.Examples -UrEDAS (Nakamura, 1988) -Mexio ity SAS-ElarmS (Espinosa-Aranda et al., 1995)(Allen and Kanamori, 2003) -Japan EWS-Taiwan EWS (Odaka et al., 2003)(Wu and Kanamori, 2005b) -VS method (Cua, 2005)
whih is an on-site approah for the California Integrated Seismi Network (CISN).This algorithm determines the magnitude of events from the predominant period ofthe �rst few seonds of the P-wave, based on the assumption that the seismi mag-nitude has a linear relationship with the predominant period of the ground motion.Wu and Kanamori (2005a) introdued an approah based on a predominant periodand displaement amplitude for the Taiwan early warning system. The regional ap-proah for seismi early warning is employed in Japan and Mexio (Odaka et al.,2003; Espinosa-Aranda et al., 1995, respetively). The VS method is also ategorizedas a regional approah.
1.2.2 Seismi early warning systems in the worldWe review earthquake early warning systems that are urrently in operation aroundthe world (Normile, 2004).



61.2.2.1 Earthquake early warning system in Japan1) Urgent Earthquake Detetion and Alarm System (UrEDAS)The Bullet Train, or Shinkansen, of the Japan Railways (JR) started operation in1964. The next year, Shizuoka earthquake (M6.1) hit the route of the train anddamaged the train trak. From the onern for the potential of serious damagefrom large earthquakes, the earthquake early warning system began operation in1966 (Nakamura and Tuker, 1988). The system onsists of aelerometers installedat the transforming stations along the train route, eah separated by about 20 km(Nakamura and Tuker, 1988; Saita and Nakamura, 2003). When aeleration exeeds40 gals, the eletri power to the Bullet Train is automatially shut o� and the brakesare applied (Nakamura and Tuker, 1988; Saita and Nakamura, 2003).Starting from 1983, an intelligent earthquake warning system alled UrEDAS(Urgent Earthquake Detetion and Alarm System) was implemented (Nakamura,1996b,a). In this upgraded system, the aelerometers are installed on the oastal line,whih is loser to the Japanese subdution zone, to provide more warning time (Naka-mura and Tuker, 1988). When the aelerometers reord a strong ground motion,eah station estimates the epientral azimuth, magnitude, and hypoentral distaneof the earthquake from the �rst few seonds of the reords (Nakamura, 1996a). Basedon this information, it then issues an alarm and automatially shuts o� the eletripower for trains whih are running at high speed. The system worked during theNiigata Chuetsu earthquake in 2004. It immediately deteted the P-wave arrival andshut o� the train's power in less than 3 seonds (Nakamura et al., 2006).2) Early Warning System in Japan (extended Nowast system)The Japan Meteorologial Ageny (JMA) and National Researh Institute for EarthSiene and Disaster Prevention (NIED) reently implemented a prototype emergenyearthquake warning system in Japan (Doi, 2003; Odaka et al., 2003; Horiuhi et al.,2005).It uses a method of estimating the epientral distane from a single seismi reord



7in a short amount of time (Odaka et al., 2003). They �t a funtion Bt � exp(�At) tothe initial part of the waveform envelopes of the past earthquakes and determine Aand B by the least-squares method. It is found that the logB is inversely proportionalto log of epientral distane. Therefore, in real-time analysis, the observed envelopesare �t to the empirial funtion to estimate the epientral distane.After deiding distane estimate, they estimate the magnitude from the maximumamplitude observed within a given short time interval after the P-wave arrival by usingan empirial magnitude-amplitude relation that inludes the epientral distane asa parameter. Using epientral loation, depth, and magnitude as input data, theamplitude of the maximum veloity on loal site bedrok and the arrival time areestimated from a veloity attenuation relationship (Si and Midorikawa, 1999). Inorder to obtain the peak ground veloity estimate from the site bedrok veloityestimate, the latter is multiplied by a site ampli�ation fator from an availabledatabase alled the digital national land information. Currently, this early warningsystem is under going a testing phase, and the distribution of the early warninginformation is limited to the people in harge of emergeny servies.1.2.2.2 Seismi Alert System (SAS) of Mexio itySeismi Alert System (SAS) is a seismi early warning system for Mexio ity (Espinosa-Aranda et al., 1995, 1996; Lee and Espinosa-Aranda, 2003). From the lesson of theaftermath of the 1985 Mihoaan earthquake, the SAS was implemented to detetsubdution earthquakes ouring in the Mexian subdution zone loated severalhundred kilometers south-west of Mexio ity. The system onsists of a seismi de-tetor on the Pai� oast, teleommuniations, entral ontrol, and radio warning.The loal magnitude is estimated from an empirial relation embedded in eah seis-mi detetor, and a warning message is sent via the teleommuniations unit if theestimated magnitude is greater than 6. The system is e�etive sine Mexio ity isloated 300 km from the oast line and it takes about 1 minute for seismi waves totravel from the oast to the entral ity. The harateristis of the seismi damagein the Mexio ity is the ollapse of high-rise buildings beause of the very soft soil



8struture. The SAS would be more useful if the warning information is e�etivelyused for those high-rise buildings.1.2.2.3 Early warning system in TaiwanTaiwan has established several researh programs that are atively pursuing earth-quake early warning and rapid reporting systems (e.g., Teng et al., 1997; Wu et al.,1998). The early warning system established by the Taiwan Central Weather Bureau(CWB) uses a real-time strong-motion aelerograph network onsisting of 86 stationsdistributed around Taiwan (Wu and Kanamori, 2005b). The system takes an on-siteapproah and the predominant period (�) and peak amplitude of displaement inthe �rst 3 seonds after the P-wave arrival (Pd) determine the seismi magnitude(Wu et al., 2006). Wu and Kanamori (2005a) also found that Pd orrelates well withthe peak ground displaement (PGD) and peak ground veloity (PGV) at the samesite. Therefore, P-wave arrival time, �, and Pd an jointly be used to determine thehypoenter, magnitude, and the ground motion intensity at the site. For an eventwith the same loation as the 1999 Chi-Chi earthquake, the Taipei metropolitan area,at 145 km from the epienter, would have more than 20 se of early warning timewith this early warning system (Wu and Kanamori, 2005b).1.2.2.4 Early warning system in the United StatesThe U. S. Geologial Survey (USGS) has sponsored the development of a telemeteredearthquake monitoring system in California to provide rapid earthquake informationfor the bene�t of publi safety, emergeny response, and loss mitigation.In Southern California, the CUBE (Calteh-USGS Broadast of Earthquakes)projet, started in 1991, had a goal to develop near real-time earthquake informationsystems (Kanamori and Hauksson, 1991). The seismi network in the original CUBEsystem used digital data from a seismi network with analog telemetry, whih severelylimited the dynami range of the data. The inreasing demand of rapid earthquakeinformation after the 1994 Northridge earthquake led to the deployment of 24-bitdigital ommuniations as a part of the TriNet projet (Heaton et al., 1996).



9In northern California the REDI (Rapid Earthquake Data Integration) system wasoperated by the University of California at Berkeley in ollaboration with the USGS.Sine 1994, the CUBE and REDI systems have been upgraded to the California Inte-grated Seismi Network (CISN). Reently, Allen and Kanamori (2003) demonstratedthe feasibility of a short-term earthquake warning using the extensive data set fromCISN. The proposed system, ElarmS (Earthquake Alarm Systems), ould issue awarning a few to tens of seonds ahead of damaging ground motion (Lokman andAllen, 2005; Simons et al., 2006; Allen, 2006). Currently, universities, federal andstate government agenies, and the private setor are ollaborating for the pratialimplementation of an early warning system on CISN.1.2.2.5 Early warning systems in other ountriesAs a result of inreased publi pereption of the bene�ts of earthquake early warningsystems, suh systems are being developed all over the world. Southern Europe is anearthquake-prone zone and their national and loal governments have a great interestin mitigating seismi damage by installing seismi early warning systems.In Campania Region, southern Italy, a prototype system for seismi early warningand rapid shake map evaluation is being developed and tested (Zollo et al., 2006).In Istanbul, Turkey, one hundred strong motion aelerometers have been plaedin populated areas, and ten strong motion stations are sited at loations as lose aspossible to the main fault (Great Marmara Fault) in on-line data transmission modeto provide earthquake early warning information (Zshau et al., 2003; Erdik et al.,2003).Seismiity in Buharest, Romania, has speial properties suh as the invariabilityof the loation of epienters and the stability of radiation patterns (Wenzel et al.,2003). A Mexio ity-type SAS system would be adequate for those kinds of areas.The ity of Yerevan, Armenia, is planning to install 13-15 seismi detetors aroundthe ity with a radius of 30 km. Approximately 3 to 8 seonds of warning time isexpeted (Balassanian et al., 2003).



101.3 Objetives and road map for this thesisIn order to onstrut an early warning system for large earthquakes, we haraterizethe rupture extent and the slip on the fault in real time and predit ground motionsat a given site based on the urrent rupture on�guration. The objetives of thisthesis are:� Charaterize the present rupture extent from high-frequeny ground motions� Charaterize the present slip on the fault from low-frequeny ground motions� Predit the rupture extent from the on-going rupture.The thesis is organized as follows: In hapter 1 we outline the researh area ofearthquake early warning systems and look at the previous researh in this area. Inhapter 2 we briey disuss the basi proedures of the Virtual Seismologist (VS)method, a seismi early warning system developed by Cua and Heaton (Cua, 2005;Cua and Heaton, 2006). In hapter 3 we disuss a strategy to extend the VS methodto large earthquakes. To work this problem, we �rst reognize the statistial obser-vations of high-frequeny and low-frequeny ground motions for large earthquakeswith magnitude greater than 6.0. In hapters 4 and 5 we introdue two di�erentmethodologies that an estimate the rupture geometry from aeleration envelopes.In the �rst method the rupture geometry an be haraterized with three parame-ters, an azimuthal diretion, and two rupture lengths, one in the positive diretionand one in the negative diretion, as measured from the epienter. These parametersan be estimated from aeleration envelopes in real time. In hapter 5 we proposea tehnique to lassify near-soure and far-soure stations. In hapter 6 we proposea methodology to determine the slip on the fault and predit the total length of therupture propagation possible onditioned on the urrent slip. Finally, in hapter 7we provide onlusions and future work.
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Chapter 2General Virtual SeismologistMethod
In this hapter, we briey disuss the basi proedures of the Virtual Seismologist (VS)method developed by Cua and Heaton (Cua, 2005; Cua and Heaton, 2006), whihforms a foundation for the work in this thesis. The VS method is a Bayesian approahfor seismi early warning systems. The Bayesian framework provides a means toinorporate previous experiee and judgment that is not traditionally and expliitlyinorporated into automated deision making. When making a deision, a humanproesses many kinds of information, ombines and analyzes them simultaneously,and makes a judgment based on the analyzed information. The Bayesian approahis a sheme to emulate human apabilities to judge multiple piees of informationomprehensively and make judgements from limited information.One omponent of the VS method is a method to estimate: 1) magnitude fromobserved ground motion ratios between vertial aeleration and vertial �ltered dis-plaement; and 2) magnitude and loation from P- and S-wave amplitudes of vertialand horizontal aeleration, veloity, and �ltered displaement. Any seismi earlywarning system estimates the earthquake information from the sparse set of availableobservations immediately after the initial P wave detetion. What di�erentiates theVS method from other proposed seismi early warning systems is the use of priorinformation. Prior information (i.e. the state of health of the seismi network, faultloations, and previously observed seismi ativity) an help to redue the unertainty



12of the initial estimate of the event information.2.1 Bayes' theorem for seismi early warning sys-temBayes' Theorem is a simple mathematial formula to alulate onditional probabili-ties. The probability of event A onditioned on the ourrene of event B is alled aposterior probability for the event A. This an be expressed as a normalized produtof a prior probability density funtion (pdf) and a likelihood funtion:prob(AjB)posterior = likelihoodprob(BjA) � priorprob(A)prob(B)normalizing onstant (2.1)The posterior probability for the earthquake early warning system is the probabilityof the parameter we would like to estimate (e.g., magnitude, loation of the epienter)given observed ground motion data (e.g., aelerograms, GPS displaement). For theVS method, Bayes' Theorem an therefore be expressed as:prob(M;RjA)posterior =prob(AjM;R)� prob(M;R)prob(A)/prob(AjM;R)likelihood � prob(M;R)prior ; (2.2)where A is the observed ground motion amplitude, M is the magnitude of the earth-quake, and R is the loation (i.e., latitude and longitude) of the epienter. The pos-terior pdf, prob(M;RjA), is proportional to the produt of the prior pdf, prob(M;R),and the likelihood funtion, prob(AjM;R), sine the onstant, prob(A), is independentof the magnitude and the loation of the earthquake. The posterior pdf represents theonditional probability of magnitude and loation when we observe the ground mo-tion amplitude. The best estimation of the magnitude and loation an be obtainedby maximizing the posterior to give the most probable values (see Figure 2.1).The likelihood funtion is the probability of the ground motion amplitude ob-
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Figure 2.1: A blok diagram to ompute the posterior pdf of Bayes' theorem fromthe prior information and real-time ground motion data.servation given the magnitude and distane. It is de�ned using a ground motionattenuation relationship for ground motion amplitudes in terms of magnitude anddistane. The sum of square errors (�(A� Â)2) is often used to de�ne the likelihoodfuntion whih orresponds to taking a Gaussian probability model for eah predi-tion error, the error between the observation (A) and predition (Â) based on themodels. The Bayesian approah redues to some other geophysial inverse methods ifthe prior information is not onsidered; then it is the same as the maximum likelihoodmethod and orresponds to a least-square approah in the ase of Gaussian preditionerrrors.The prior pdf expresses information known before examining waveform data forthe ongoing earthquake rupture. Station geometry, loation of faults, or previouslyobserved seismiity an be expressed as probability density funtions and used as priorinformation. For example, the regions where earthquakes were observed on previousdays have a higher probability of produing additional earthquakes. Therefore, theprior pdf is higher for regions that are near events on previous days. The prior pdf



14is also higher for areas near known faults. Other prior information (e.g., stationgeometry, Gutenberg-Rihter law) an be inluded in the same way.2.2 De�ning the prior prob(M;R)The prior pdf is a probability of magnitude (M) and loation (R) based only on theinformation obtained before an earthquake ours. If there is no prior information,the magnitude and loation of an earthquake are treated as equally likely to be anysize and at any plae, and so a uniform prior is used. However, generally speaking,there is usually some information before the initiation of an earthquake rupture, andthat information an be used to onstrain the magnitude and loation estimates inseismi early warning. The following information is onsidered as prior information:� Loation of known faults� Previously observed seismiity� Geometri onsideration of stations� Gutenberg-Rihter law2.2.1 Loation of known faultsReognized ative faults are more likely soures of future large earthquake than regionswithout reognized faults. Even though there are many faults hidden undergroundwhih are too small to extend from earthquake depths to ground level, the informationof ative faults helps to on�ne the soure loation. The prior pdf, onsidering theloation of known faults, an be de�ned as an exponential funtion of the distanefrom fault lines (Felzer and Brodsky, 2006):
prob(r) = r�1:34; (2.3)



15where r =the shortest distane between fault lines and a station, =onstant.An example of the prior pdf for the known faults is shown in Figure 2.2.

Figure 2.2: An example of the prior pdf for the known faults for the 2004 Park�eldearthquake. Solid lines indiate the loation of the fault lines in California and dark-ness of the shade around the lines show higher prior pdf values. The star symbolshows the epienter of the Park�eld earthquake.2.2.2 Previously observed seismiitySine observations of foreshoks preeding large earthquakes are signi�antly relatedto subsequent earthquakes, the regions where an earthquake was observed on theprevious day have a higher probability of an earthquake ourrene (Aberrombie andMori, 1996). Aberrombie and Mori (1996) found that 44% of the earthquakes in theirCalifornia dataset had foreshoks. Therefore, the prior pdf is higher at regions nearthe soure of events on the previous day. The prior pdf onsidering the previously



16observed seismiity is expressed by the exponential funtion (Felzer and Brodsky,2006): prob(r) = r�1:34; (2.4)where r =jx� xij;x =loation of the station;xi =loation of the foreshok epienter(i = 1; :::; n); =onstant:An example of the prior pdf for the known faults is shown in Figure 2.3.

Figure 2.3: An example of the prior pdf for the previously observed seismiity ofthe 2004 Park�eld earthquake. Open irles indiate the loation of the previouslyobserved seismiity and darkness of the shade around the irle show higher prior pdfvalues. The star symbol shows the epienter of the Park�eld earthquake.



172.2.3 Geometri onsideration of stationsStation geometry also provides a geometri onstraint to the loation of an earthquakeepienter. Rydelek and Pujol (2004), Cua (2005), and Horiuhi et al. (2005) developeda new tehnique to onstrain the loation of an earthquake from the P-wave arrivaltime using the Voronoi ell onept (Sambridge, 1999a,b). The Voronoi ell of astation is a onvex polygon around the station, whih is a set of all points loser toa station than to any other stations. The loation of the earthquake epienter mustbe inside of the Voronoi ell of the station �rst triggered by a P-wave arrival (Figure2.4).

Figure 2.4: Voronoi ells of strong motion stations for 2004 Park�eld earthquake.Triangles denote strong motion station loations. The shaded region is that of possibleloation of epienter when the losest station PKD detets the �rst P-wave arrival.The star symbol shows the epienter of the Park�eld earthquake.After the �rst P-wave arrives at the �rst station, not-yet-arrived data an shrinkthe probable region of the epienter loation inside the Voronoi ell (Figure 2.5). FromRydelek and Pujol (2004), the region of likely loation of the epienter based on the�rst two P-wave arrivals forms a hyperbola, whih is a set of points the di�ereneof whose distanes from the �rst and the seond arrival stations is a given positive
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Figure 2.5: Voronoi ells of strong motion stations for 2004 Park�eld earthquake.Triangles denote strong motion station loations. The shaded region is that of possibleloation of epienter at the 3 seonds after the �rst P-wave detetion. The star symbolshows the epienter of the Park�eld earthquake.onstant k (Figure 2.6). Furthermore, the use of not-arrived data after the �rst twoP-wave arrivals an provide ontinuously evolving onstraints on the region of likelyloation.
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Figure 2.6: Voronoi ells of strong motion stations for 2004 Park�eld earthquake.Triangles denote strong motion station loations. The shaded region is that of possibleloation of epienter at the seond P-wave detetion. The star symbol shows theepienter of the Park�eld earthquake.



202.2.4 Gutenberg-Rihter lawThe Gutenberg-Rihter law states that the number of earthquakes per year, N , ofRihter magnitude M is statistially proportional to 10�bM (see Figure 2.7). Thisrelationship is mathematially expressed as:N(M) = 10a�bM ; (2.5)where a and b are onstant, and the size of the onstant b is typially around 1.Aording to the Gutenberg-Rihter law, there are a lot more small earthquakesthan large ones. Therefore, the prior pdf orresponding to the Gutenberg-Rihter lawis de�ned as: prob(M) / 10a�bM : (2.6)
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Figure 2.7: Histogram of the magnitude of the earthquakes in Southern Californiaduring 2000�2006. The distribution follows the Gutenberg-Rihter law.



212.3 De�ning the likelihood funtion prob(AjM;R)The likelihood funtion is the probability of the ground motion amplitude observation(A) given the magnitude (M) and distane (R). Cua (2005) de�ned a likelihood fun-tion in terms of the ratio between vertial aeleration and displaement amplitudes,and the envelope attenuation relationships for vertial aeleration and horizontal a-eleration, veloity, and displaement. This setion desribes the magnitude groundmotion relationships, P-wave and S-wave disriminant, and ground motion models asomponents of the likelihood funtion.2.3.1 Magnitude ground motion relationshipsMagnitude ground motion relationship is one of the measurements to �nd magnitudeof an earthquake from the ground motion. Many seismologists have pointed out thatthe P-wave predominant period is linearly orrelated with the ultimate magnitude(Nakamura and Tuker, 1988; Allen and Kanamori, 2003). Cua and Heaton (2006)use ratios of the ground motion as indiative of the predominant frequeny of theseismograms. Sine the aeleration is equal to the square of frequeny (!2) timesdisplaement in the frequeny domain, the magnitude is proportional to the ratiobetween aeleration and displaement.
M / !�10 (2.7)= 1 log(aeleration) + 2 log(displaement) + 3;where !0 is the predominant frequeny of the ground motion, and 1; 2, and 3 areoeÆients. Cua (2005) performed a linear disriminant analysis with over 30,000seismograms in Southern California to determine these oeÆients. Figure 2.8 showsthe dataset and the most probable linear disriminant funtion whih lassi�es thedataset with di�erent magnitudes. The best magnitude ground motion relationshipis:
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M̂ =8><>:�1:627(0:36 log(Za)� 0:93 log(Zdisp)) + 8:94 : if P-wave;�1:459(0:36 log(Za)� 0:93 log(Zdisp)) + 8:05 : if S-wave; (2.8)



23where Za and Zdisp are vertial aeleration and vertial displaement, respetivelyand standard deviations are:� =8><>:0:45 : if P-wave;0:41 : if S-wave: (2.9)
By using this relationship, the observed and predited ground motion ratios inequation 2.19 are expressed as follows:Zi = 0:36 log(Za)� 0:93 log(Zdisp); (2.10)Ẑi(M) = 8><>:(�M + 8:94)=1:627 : if P-wave;(�M + 8:05)=1:459 : if S-wave: (2.11)

2.3.2 P-wave and S-wave disriminant
In equation 2.11, the magnitude ground motion relationship is de�ned separately forP-wave and S-wave. Although it is not signi�antly sensitive to whether the observedamplitudes are P- or S-wave (see equation 2.11), we an obtain better soure estimatesif we an identify phases (Cua, 2005). Cua (2005) de�ned a disriminant funtion as alinear ombination of ground motion measures, and found the best ombinations andoeÆients for seismograms in Southern California by linear disriminant analysis.The result of the P/S wave disriminant is shown in �gure 2.9. The most probabledisriminant funtion is:

PS = 0:44 log(Za) + 0:55 log(Zvel)� 0:46 log(Ha)� 0:55 log(Hvel) (2.12)= log(Za0:44Ha0:46 ) + log(Zvel0:55Hvel0:55 );
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if 8><>:PS > 0 : P-wave;PS < 0 : S-wave;where Za, Zvel, Ha, and Hvel are vertial aeleration and veloity, and hori-zontal aeleration and veloity, respetively.2.3.3 Ground motion modelsCua and Heaton examined over 30,000 seismograms in Southern California and de-veloped relationships that predit waveform envelopes as a funtion of magnitude,



25distane and station orretions (Cua, 2005; Cua and Heaton, 2006). First, the en-velopes of the ground motions are modeled as a ombination of the envelopes ofP-wave, S-wave, and ambient noise.
Eobserved(t) =qE2P (t) + E2S(t) + E2ambient + �; (2.13)where Eobserved(t) =envelope of observed ground motion;EP (t) =envelope of P-wave;ES(t) =envelope of S-wave and later-arriving phases;Eambient =ambient noise at the site;� =di�erene between predited and observed envelope:The ambient noise, Eambient, for a given time history is modeled as a station onstant.The P- and S-wave envelopes, EP (t) and ES(t), are de�ned by a rise time (triseP andtriseS), a onstant amplitude (AP and AS), a duration (�tP and �tS), and two deayparameters (P and S) and (�P and �S) respetively. See �gure 2.10 for the physialinterpretation of these parameters.

The general form of the envelope funtion is:
Eij(t) = 8>>>>>><>>>>>>:

0 ; t < Ti;Aijtriseij (t� Ti) ; Ti � t < Ti + triseij ;Aij ; Ti + triseij � t < Ti + triseij +�tij;Aij 1(t�Ti�triseij��tij+�ij)ij ; t � Ti + triseij +�tij; (2.14)
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Figure 2.10: Observed envelope for aelerogram and P-wave and S-wave envelopesfor the ground motion model de�ned in equation 2.14 (Cua, 2005).where i =P-, S-wave;Ti =P-, S-wave arrival times;j =horizontal and vertial aeleration, veloity, and displaement:Cua and Heaton parameterized eah seismogram as a set of eleven parameters (�vefor the P-wave envelope, �ve for the S-wave envelope, and one for the ambient noise).Furthermore, eah parameter is desribed by magnitude, distane, log of distane,and site dependent onstants based on the traditional strong motion attenuationrelationships (Campbell, 1981; Boore and Joyner, 1982; Boore et al., 1993). Thefuntional forms whih desribe the P- and S- wave envelope funtions are givenbelow:
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log10Aij =aijM + bij(R1 + Cij(M)) + dij log10(R1 + Cij(M)) + eij + �ij; (2.15)log10Bij =aijM + bijR1 + dij log10R1 + eij + �ij; (2.16)where i =P-, S-wave;j =horizontal and vertial aeleration, veloity, and displaement;Aij =ground motion envelope amplitude;Bij =rise time (trise), duration (�T ), and deay parameters (� , );M =loal magnitude (Mw for M > 5:0);R = epientral distane in km for M < 5;losest distane to fault for M > 5:0 (when available);R1 =p(R2 + 9);Cij(M) =(artan(M � 5) + 1:4)(1ij exp(2ij(M � 5)));aij; bij; 1ij; 2ij; dij; eij =regression onstants;�ij =statistial (or predition) error, � NID(0; �2):The Aijs are the ground motion envelope amplitudes (P- or S-wave) from �ttingequations 2.13 and 2.14 to the observed ground motion envelopes in the database.The Bijs are the parameters haraterizing the envelope funtion (trise, �T , � , and). CoeÆients in equations 2.15 and 2.16 are determined by regression analysis ofthe database using the Neighborhood Algorithm (desribed later in Setion 4.2). Anexample of set of oeÆients (for horizontal and vertial aelerations on soil sites) areshown in table 2.1. Table 2.1 and equations 2.13 { 2.16 an determine the envelopefuntion of ground motions with magnitude M and epientral distane R. Figure2.10 shows an observed ground motion envelope and the best P-wave, S-wave, andambient noise envelopes based on equations 2.13 { 2.16.



28Table 2.1: CoeÆients for the envelope attenuation relationships for rms horizontaland vertial aeleration on a soil site in equation 2.16. All attenuation relationshipsmodel log10 of the envelope parameter as funtions of magnitude and distane (Cua,2005). CoeÆients for rms horizontal aeleration on soil sitesa (M) b (R) d (log(R)) 1 2 e �AP 0.740 �3:30 � 10�3 �1.26 2.41 0.95 �0.90 0.29AS 0.840 �2:30 � 10�3 �1.56 2.42 1.05 �0.19 0.31Trise;P 0.070 1:25� 10�3 0.24 - - �0.38 0.26�TP 0.030 2:37� 10�3 0.39 - - �0.59 0.36�P 0.087 �1:89 � 10�3 0.58 - - �0.77 0.31P - - - - - 0.07 0.21Trise;S 0.055 1:21� 10�3 0.34 - - �0.66 0.25�TS 0.028 - 0.07 - - �0.10 0.23�S 0.056 �8:30 � 10�4 0.51 - - �0.58 0.24S - - - - - 0.07 0.13noise - - - - - �2.50 -CoeÆients for vertial aeleration on soil sitesa (M) b (R) d (log(R)) 1 2 e �AP 0.739 �4:13� 10�3 �1.20 2.03 0.97 �0.62 0.32AS 0.751 �2:47� 10�3 �1.47 1.59 1.02 �0.21 0.30Trise;P 0.057 5:86 � 10�4 0.23 - - �0.37 0.23�TP 0.000 1:76 � 10�3 0.36 - - �0.48 0.41�P 0.057 �1:36� 10�3 0.63 - - �0.89 0.28P - - - - - 0.05 0.18Trise;S 0.060 2:18 � 10�3 0.26 - - �0.66 0.25�TS 0.029 - 0.31 - - �0.31 0.24�S 0.060 �1:45� 10�3 0.51 - - �0.54 0.22S - - - - - 0.05 0.09noise - - - - - �1.96 -2.3.4 Complete form of the likelihood funtionAs we disussed at the top of this setion, the likelihood funtion is de�ned in terms ofthe ground motion ratio between vertial aeleration and displaement amplitudes,and the envelope attenuation relationships for vertial aeleration and horizontalaeleration, veloity, and displaement.The ground motion ratio estimates the magnitude of earthquakes. To �nd the



29best estimate, the error between the observation and predition from the magnitudeground motion relationships is minimized.prob(ZijM) = 1p2��Zi exp��(Zi � Ẑi(M))22�2Zi �; (2.17)where i =1; : : : ; n, where n is the number of stations with P detetions;�Zi = standard deviation in equation 2:9;Zi = observed ground motion ratio in equation 2.10;Ẑi = ground motion ratio predited by the magnitude ground motion;relationship in equation 2.11:The amplitude of the ground motion envelopes estimate the magnitude and lo-ation of earthquakes. The errors between the observed envelopes and preditedenvelopes from the ground motion models are also approximated by a Gaussian dis-tribution. prob(YijkjM;R) = 1p2��ijk exp��(Yijk � Ŷijk(M;R))22�2ijk �; (2.18)where j =1; : : : ; 4, for peak amplitudes of vertial veloity, andhorizontal aeleration, veloity, and displaement;k =1; : : : ; nt, time in 1-seond intervals from the event onset;�ijk = standard deviation of j hannels and time k at station iYijk =log10 of peak observed amplitude of j hannels and time k at station iŶijk =log10 of peak amplitude of k hannels and phase j at station ipredited by ground motion models in equations 2.13 { 2.16



30The vertial aeleration and displaement are used to estimate the magnitude,and the amplitudes of the vertial veloity and three horizontal omponents solve thetrade-o� between the magnitude and loation of the epienter. From equations 2.17and 2.18, the likelihood funtion of 1-seond-interval ground motion envelopes (A)onditioned on the magnitude (M) and loation (R) is:prob(AjM;R) = nYi=1 4Yj=1 ntYk=1 prob(ZijM)prob(YijkjM;R)/ exp�� nXi=1�(Zi � Ẑi(M))22�2Zi + 4Xj=1 ntXk=1 (Yijk � Ŷijk(M;R))22�2ijk ��:(2.19)2.4 Finding the best estimatesIn order to operate the VS method in real time, we �rst assume that seismi waveformdata are transmitted to a entral proessor by a seismi network with suÆient stationdensity to quikly haraterize the seismi wave �eld. The entral proessing stationproesses urrently available seismi reords and produes updates as additional dataare reeived. The prior probability inorporated in the real-time Bayesian analysisinludes information about magnitude likelihood (e.g., Gutenberg-Rihter frequenymagnitude) and loation likelihood (e.g., known faults, or previously observed seis-miity). This prior pdf has been alulated before the ourrene of any earthquakewhih the VS method is intended to provide a warning for. As the seismi dataarrives, the proessor an use it to evaluate the likelihood funtion for any loationand size of the earthquake in order to maximize the posterior in equation 2.2 to getthe best estimate of magnitude and loation of the earthquake; this is done usingupdated information every seond. The predited ground motion at any site an beomputed by the ground motion model in equations 2.13 and 2.14, sine a magni-tude and distane de�ne the ground motion envelope uniquely in the model. Thisstrategy assumes a point-soure model and works for small to moderate earthquakes(magnitude < 6.5).



312.5 SummaryIn this hapter, we briey disussed the basi proedures of the VS method developedby Cua and Heaton (Cua, 2005; Cua and Heaton, 2006).The VS method is a Bayesian approah for seismi early warning systems. It in-orporates prior information whih an be obtained before an event and a likelihoodfuntion omputed from the ground motion data available after the initial P-wavedetetion, and �nds the most probable estimate for magnitude and loation by maxi-mizing the posterior, whih is equivalent to maximizing the produt of prior pdf andlikelihood funtion.We disussed how to de�ne prior pdf and likelihood funtion from available set ofdata in this hapter. The loation of known faults, and previously observed seismiity,geometri onsideration of stations, and Gutenberg-Rihter law are onsidered as theprior information. Likelihood funtion is de�ned in terms of the magnitude groundmotion relationship and envelope ground motion amplitudes. More detail about theVS method and examples of the appliation of the VS method are shown in Cua'sPh.D. thesis (Cua, 2005).



32
Chapter 3Extended Virtual SeismologistMethod
This hapter disusses a strategy to extend the Virtual Seismologist method to largeearthquakes. We obtain the �nite-rupture information by inverting high-frequenyand low-frequeny ground motions respetively. To understand this proedure, it isimportant to reognize the harateristis of high-frequeny and low-frequeny groundmotions. This hapter also analyzes the statistial features of observed high-frequenyand low-frequeny ground motions for large earthquakes with magnitude greater than6.0.3.1 Road map for Virtual Seismologist Finite-SouremethodThe previous hapter briey disusses the general VS method. In its urrent levelof development, this methodology seems e�etive for earthquakes (M < 6.5), whererupture an be modelled with a point soure. However, for large earthquakes, rupturelength an be on the order of tens to hundreds of kilometers, and the heterogeneousslip distribution signi�antly a�ets the ground motion amplitude expeted at a site.For example, the fault rupture in the 1999 Chi-Chi earthquake was longer than 80km, and the largest slip was reorded near the end of the rupture at the northern endof the fault. It would be diÆult, if not impossible, to predit suh large shaking at



33large distanes from the epienter when using a sheme that only haraterizes theearthquake as a point soure.In order to extend the VS method to earthquakes with M > 6.5, we need to on-sider the fault rupture geometry and the size of slip on the fault. To di�erentiate theVS method onsidering the fault �niteness, we all the general VS method desribedin the previous hapter \VS Point-Soure (PS) method" and the VS method for largeearthquakes \VS Finite-Soure (FS) method."Our strategy for large earthquakes is as follows. (See also �gure 3.1.)01
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Figure 3.1: The algorithm of the VS method for �nite soure (VS-FS method). First,we estimate the rupture geometry from the aelerations by the methods disussed byYamada and Heaton (2006) and Yamada et al. (2006). Based on this geometry, slip onthe fault an be estimated from displaement reords. By ombining urrent ruptureinformation and prior information, the predited probability of rupture extent an beobtained.



341) Apply the VS-PS methodFirst, apply the VS-PS method to the ongoing rupture. Estimate the epienter andmagnitude of an event when the losest stations reord the P-waves. If the magnitudeis less than a ertain threshold (e.g. M < 5.5), the estimated loation and magnitudeof the earthquake is aepted. If it exeeds the threshold, then there is a reasonablepossibility that the earthquake is large, and it might not be adequately modeled asa point soure. In this ase, we apply VS Finite-Soure (FS) method to �nd theloation of the �nite fault.2) Estimating the urrent rupture extentThe VS-FS method determines the ongoing rupture geometry in real time from highfrequeny ground motions. Aeleration reords are used to estimate the temporaland spatial evolution of the rupture front. Use of Bayes' theorem in equation 2.1 isalso helpful here. The posterior pdf of the problem of estimating a rupture extent isthe probability of the rupture loation (S) given observed ground motion data (A).Bayes' Theorem for the problem to estimate rupture geometry is:prob(SjA) /prob(AjS)� prob(S): (3.1)The prior prob(S) is information known before examining waveform data, suhas the loation of known faults. Large earthquakes often our on reognized ativefaults, and information about the loation and ativity of these faults is potentiallya valuable set of prior information. After an earthquake initiates and ground motiondata beomes available, the likelihood funtion will be omputed.The likelihood funtion prob(AjS) is the probability of the ground motion ampli-tude observation given the rupture loation. Two separate methodologies have beendeveloped to estimate the evolving rupture geometry:i) the multiple soure model desribed in hapter 4 determines the rupture geom-etry that best predits the envelopes of high-frequeny ground motions (Yamada andHeaton, 2006); and



35ii) a near-soure versus far-soure station disriminator in hapter 5 has beendeveloped whih allows us to map the loation of an ongoing rupture front (Yamadaet al., 2006).These tehniques are used to haraterize the likelihood funtion. They are alsovaluable for prediting the future ground motions.3) Estimating size of the urrent slip on the faultWe determine the slip on the fault that is ompatible with both the observed low-frequeny motions and also with the rupture geometry determined from high-frequenymotions. Aagaard et al. (2004) simulated near-soure ground motions and investi-gated the near-soure displaement as a funtion of distane from the fault. We usethe result of their simulations to haraterize the slip on the fault, and onstrut ananalytial funtion to estimate slip on the fault from observations of displaementaway from the fault.The probability of the slip on the fault (D) given the rupture geometry and real-time seismi data is also written by Bayes' Theorem:prob(DjA; S) /prob(AjD;S)� prob(AjS): (3.2)The likelihood funtion prob(AjD;S) is the probability of the ground motion ampli-tude observation given rupture loation and size of the slip. Substituting prob(AjS)from equation 3.1, the probability is expressed as:prob(DjA; S) /prob(AjD;S)� prob(AjS)� prob(S): (3.3)Currently, the displaement data is obtained from the double integration of strongmotion aelerations, and it an be diÆult to remove erroneous baselines in real-time analysis. However, quite a few high-frequeny GPS|whih reord displaementdiretly|are installed these days, so we assume displaement data will be availablein real time. In real-time analysis, we bak projet the reorded displaement data



36onto the fault line to estimate the size of the slip on the fault. The fault slip makes itpossible to predit long-period seismi waves, whih is important to estimate seismidamage. The urrent size of the slip on the fault allows for a probabilisti preditionof additional rupture in the near future.4) Prediting the probability of rupture extentWe also reate a methodology to predit the total length of the rupture propagationonditioned on the urrent slip size. Liu-Zeng et al. (2005) reated a methodology togenerate simple 1-D models of spatially heterogeneous slip. By using this methodol-ogy, we ompute the probability of the �nal rupture length (L) onditioned on theurrent slip on the fault (D) in a statistial way. Intuitively, a rupture is muh morelikely to terminate in the near future if its present value is small. Our �nal goal is topredit �nal rupture extent from ground motion data available in real time.3.2 Statistis of observed high-frequeny and low-frequeny ground motionsThe ground motions at a site ould be di�erent for di�erent earthquakes of the samemagnitude at the same distane, beause of di�erenes in soure mehanisms, pathe�et, or site onditions. One of the most ommonly used ground motion parametersis peak ground aeleration (PGA), and Campbell (1981) found that the unertaintyof peak ground aeleration an be modeled using a lognormal distribution. In otherwords, the distribution of the amplitude of ground motions with onstant magnitudeand distane follows a lognormal distribution.Studies of near-soure reords show that the high frequeny ground motion satu-rates as a funtion of magnitude for large earthquakes, and it weakly depends on themagnitude in the near-soure (Hanks and Johnson, 1976; Joyner and Boore, 1981;Hanks and Mguire, 1981). Therefore, if we onstrain the size of the magnitudegreater than a ertain number, the distribution of the near-soure PGA of those



37earthquakes an be assumed to be a lognormal distribution.However, the low frequeny ground motion has a strong orrelation with the mag-nitude of an earthquake, as we see in the formula of the seismi moment and aver-age slip on the fault. We use power law distributions to desribe the statistis ofnear-soure peak ground displaement (PGD). Gutenberg-Rihter Law of earthquakemagnitudes obeys a power law. The number of earthquakes per year of magnitudeM is proportional to the base-ten exponential of the magnitude M . The relationshipbetween magnitude and the PGD is expeted to be a power law distribution, i.e., thePGD inreases as seismi magnitude beomes large.In this setion, we analyze near-soure PGA and PGD of 10 major earthquakeswith magnitude greater than 6.0 and show the near-soure ground motion distribu-tions.3.2.1 DataWe investigate strong motion datasets of ten earthquakes with magnitude greaterthan 6.0 and ontaining reords of near-soure stations. The earthquakes are shallowrustal earthquake with foal depths less than 25 km. The seleted earthquake datasetis shown in table 3.1. Here, we de�ned the near-soure station as a station with faultdistane less than 10 km. Fault models used to determine the fault distane are alsoshown in table 3.1. 147 near-soure reords are used in total.Those near-soure aelerograms are proessed aording to the following method.The DC o�set of aelerograms is orreted by subtrating the mean of the pre-eventportion. This proess sets the initial veloity and displaement to zero, whih isimportant beause a small DC o�set has a large e�et when the reord is integrated.This proess is used for all aelerograms.The horizontal peak ground motions are alulated by the square root of the sumof the squares of the peak value of the EW and NS omponents. The vertial peakground motions are the peak value of the UD omponent. The following proessesare ompleted for all the data.



38Table 3.1: Earthquake data set used for the near-soure ground motion analysis.Moment magnitude (Mw) and foal depth are ited from Harvard CMT solution. Thepreliminary determination of epienter is used for the foal depth. The de�nition ofthe near-soure station is a station with fault distane less than 10 km. The numbersof near-soure data for eah earthquake are also shown. The fault models are used asseletion riteria to lassify near-soure stations.Earthquake Mw Reords Foal Depth Fault ModelImperial Valley (1979) 6.5 14 12.0 Hartzell and Heaton (1983)Loma Prieta (1989) 6.9 8 19.0 Wald et al. (1991)Landers (1992) 7.3 1 15.0 Wald and Heaton (1994)Northridge (1994) 6.6 17 16.8 Wald et al. (1996)Hyogoken-Nanbu (1995) 6.9 4 20.3 Wald (1996)Izmit (1999) 7.6 4 17.0 Sekiguhi and Iwata (2002)Chi-Chi (1999) 7.6 42 21.2 Ji et al. (2003)Denali (2002) 7.8 1 15.0 Tsuboi et al. (2003)Park�eld (2004) 6.0 47 12.0 Ji et al. (2004)Niigataken-Chuetsu (2004) 6.6 9 13.0 Honda et al. (2005)Total 147Aeleration: The aelerograms from whih the DC o�set is orreted are usedto ompute the PGA.Displaement: The aelerograms from whih the DC o�set is orreted areintegrated twie in the time domain and high-pass �ltered using a forth-order But-terworth �lter with a orner frequeny of 0.075 Hz, avoiding most ompliations dueto baseline shifts. However, the omputed PGD from �ltered displaement reordsan be signi�antly smaller than atual PGD.Sine it is diÆult to ompute the atual peak displaement, the �ltering proess isperformed. The omputed PGD from �ltered displaement reords are muh smallerthan atual PGD.3.2.2 Statistis of observed high-frequeny ground motionsBased on the olleted near-soure ground motion data (i.e., horizontal and vertialomponents of the PGA and PGD), we examine the statistial features of the near-soure ground motions for large earthquakes.
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40Figure 3.2 shows horizontal and vertial near-soure PGA in this dataset as afuntion of moment magnitude. Even though data from the same earthquake aresattered, the slope of regression line is almost equal to zero. Based on the twotailed Student's t-test, these slopes fall inside of the 95% on�dene interval of thezero slope. This is onsistent with past studies whih indiate the high frequenyground motion at near-soure region saturate as a funtion of magnitude for largeearthquakes.We also examine the marginal distribution of PGA. Figure 3.3 show histogramsof horizontal and vertial PGA. The horizontal and vertial aeleration histogramsshow a good �t to the lognormal distribution. This is reasonable sine the unertaintyof PGA for earthquakes of the same magnitude at the same distane an be modeledusing a lognormal distribution. Also, the PGA of near-soure stations weakly dependson the magnitude for large earthquakes. Therefore, all the PGA data with magni-tude greater than 6.0 are approximately independent of magnitude and lognormallydistributed.3.2.3 Statistis of observed low-frequeny ground motionsThe distributions of horizontal and vertial PGD as a funtion of moment magnitudeare shown in �gure 3.4. The log of PGD is proportional to the magnitude. The highfrequeny motion does not depend on magnitude for large earthquake and observedPGA do not exeed 2g. However, low frequeny motion is highly orrelated with mag-nitude, and the amplitude seems to follow a power law. There is evidene that averagefault slip ( �D) sales with rupture length (L), even for large earthquake (Sholz, 1982;Liu-Zeng et al., 2005). In this ase we expet that seismi moment M0 / L �D / �D2for large rustal earthquakes. Sine moment magnitude M / 2=3 logM0, we expetthat log �D / 3=4M . If near-soure ground displaement is a linear funtion of thefault slip and rupture length (L) � rupture width (W ), then we expet that nearsoure displaement should sale as 3=4M . The slopes of the near-soure grounddisplaement in �gure 3.4 are 0.6 and 0.71 for horizontal and vertial omponents,



41respetively. These numbers are onsistent with this theoretial interpretation.
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43rupture area, whih is proportional to the rupture length ( �D / S / L). Substitutingthis relationship into equation 3.8,Nns / �D�2=3S1=3 (3.9)/ �D�2=3 �D1=3 (3.10)/ �D�1=3: (3.11)This shows that the number of reords of earthquakes with a ertain amplitude slowlydeays with its amplitude. Our observations of large earthquakes are too few to verifythis theory experimentally, and there are some assumptions whih do not hold in ourdataset (e.g., homogeneous station distribution). However, this simple derivationonsidering the Gutenberg Rihter Law and fault rupture dimension shows that theprobability that a site will experiene large ground displaement is not as small aswe an ignore. In �gure 3.5, the distribution of PGD does not seem to follow thedistribution in equation 3.11, but it shows reords of large ground displaementsas many as those of small ground displaements. This observation is important forhigh-rise buildings, telling us there are high probability that buildings are subjetedto large ground displaements.3.2.4 Comparison of high-frequeny and low-frequeny groundmotionsWe ompare horizontal PGA and PGD distributions in �gures 3.6 and 3.7. Figure3.6 shows the moment magnitude versus PGA and PGD. The amplitudes of the PGAand PGD are normalized by the geometri mean of eah. The PGA saturate as afuntion of moment magnitude, and the slope of the trendline is about zero. On theother hand, the PGD trendline is log proportional to the moment magnitude.Figure 3.7 shows the histogram of horizontal PGA and PGD normalized by thegeometri mean of eah omponent. The PGA follows a lognormal distribution en-tered at 464 m/s2. The variane for the high-frequeny motions is smaller than that
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45of the low-frequeny motions. This is reasonable sine the high-frequeny groundmotions saturate as a funtion of magnitude, the variane of PGA is not as large asthat of PGD.3.2.5 De�nitions of the horizontal omponentThe horizontal omponent in this thesis is omputed by the square root of the sum ofsquares of peak EW omponent and peak NS omponent. However, there are otherde�nitions for the horizontal aeleration.For example, in some ases, a peak value over time of the largest of the twoaelerations from eah of the reorded horizontal hannel is also used. We omparedthe three di�erent de�nitions of horizontal omponents.(1) square root of sum of squares (srss) horizontal omponents =pmax(EW )2 +max(NS)2 : the square root of sum of squares of peak EW omponentand peak NS omponent.(2) magnitude of horizontal vetor = max(pEW 2 +NS2) : peak over time of theamplitude of the srss horizontal aeleration vetor.(3) root mean squares (rms) horizontal omponents =q12(max(EW )2 +max(NS)2) : the root mean squares of peak EW omponent andpeak NS omponent.It is obvious that the rms horizontal omponents in de�nition (3) isp1=2 as largeas the srss horizontal omponents in de�nition (1), so the horizontal omponents onlyin de�nition (1) and (2) are ompared.Figures 3.8 and 3.9 show the PGA and PGD as a funtion of magnitude, and�gures 3.10 and 3.11 show the distributions of PGA and PGD. For both PGA andPGD, the de�nition (1) is a little larger than de�nition (2). The geometri meansof PGA for de�nition (1) and (2) are 464 m/s2 and 393 m/s2, and the geometrimeans of PGD for de�nition (1) and (2) are 17.0 m and 15.3 m. Therefore, thede�nition (2) is 85% smaller for PGA, and 90% smaller for PGD, than the de�nition(1). This means it is easy to estimate the horizontal omponent of one de�nition from



46that of the other de�nition.
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493.3 SummaryIn this hapter, we explained a strategy to extend the VS-PS method to large earth-quakes. For large earthquakes, the rupture length an be on the order of tens tohundreds of kilometers, and the heterogeneous slip distribution signi�antly a�etsthe ground motion amplitude at a site. In order to estimate the size and loation ofan earthquake or the expeted ground motion at a given site, we need to haraterizethe fault geometry and size of the slip on the fault in real time.The statistial features of high-frequeny and low-frequeny ground motions forlarge earthquakes with magnitude greater than 6.0 were analyzed. The observationsshow that the near-soure peak ground aelerations saturate as a funtion of magni-tude for large earthquakes, and is almost independent of magnitude if the magnitudeis greater than 6.0. The marginal distribution of PGA follows the lognormal dis-tribution with mean 464 and 211 m/s2 for the horizontal and vertial aeleration,respetively. On the other hand, the near-soure low frequeny ground motion forlarge earthquakes has strong orrelation with the magnitude of an earthquake, andthe PGD sales by a power law with the magnitude.We ompute the horizontal omponents of ground motion from three de�nitionsand ompare the results. The three de�nitions (srss horizontal omponents, magni-tude of horizontal vetor, and rms horizontal omponents) are linear sale of eahother. The horizontal omponent of one de�nition an be estimated from that of theother de�nition.For early warning of large earthquakes, we use high-frequeny seismi radiation todetermine ongoing fault rupture geometry in real-time and low-frequeny ground mo-tion to estimate the slip on the fault. In hapters 4 and 5, we propose two approahesto determine the ongoing fault rupture geometry from aelerograms in real time. Inhapter 7, we fous on estimating slip on the fault in real time and the probabilistipredition of additional rupture in the near future.
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Chapter 4Estimating the Loation of FaultRupture Using Envelopes ofAeleration
Early warning information based on a point-soure model may underestimate theground motion at a site, if a station is lose to the fault and distant from the epienter.This ours beause, for large earthquakes, the peak harateristis of ground motion,suh as peak ground aeleration, have stronger orrelation with the fault rupturedistane rather than with the epientral or hypoentral distane (Campbell, 1981).(The de�nition of the fault rupture distane in this paper is the shortest distanebetween the station and the surfae projetion of the fault rupture surfae.)In order to onstrut an early warning system that is more reliable for largeearthquakes, it is neessary to estimate the fault rupture extent and slip on the faultin real time. The VS-FS method uses high-frequeny ground motions to estimatethe temporal and spatial evolution of the rupture. Two separate methodologies havebeen developed to estimate the evolving rupture geometry:i) the multiple soure model desribed in this paper determines the rupture ge-ometry that best predits the envelopes of high-frequeny ground motions (Yamadaand Heaton, 2006) andii) a near-soure versus far-soure station disriminator has been developed whihallows us to map the loation of an ongoing rupture front (Yamada et al., 2006).In this hapter, we introdue a methodology that an estimate the rupture ge-



51ometry from aeleration envelopes. The seond methodology will be introdued inthe next hapter. In this analysis, we haraterize the rupture geometry with threeparameters, an azimuthal diretion, and two rupture lengths, one in the positive di-retion and one in the negative diretion as measured from the epienter. Theseparameters an be estimated from aeleration envelopes in real time.4.1 Ground motion models for large earthquakesAs we saw in the previous hapter, aelerations reorded lose to a rupture saturateat magnitudes larger than 6, whereas distant sites do not demonstrate omparablesaturation as a funtion of magnitude. Examples of the near-soure aelerations andtheir envelopes are shown in �gures 4.1 - 4.4 The envelope funtions (Cua, 2005) aremade from the dataset inluding earthquakes with magnitudes ranging between 2 and7, assuming point-soure model. Therefore, we need a new envelope funtion whihan �t the aeleration envelopes of large earthquakes.We introdue a multiple soure model to express the fault �niteness. The faultsurfae is divided into subfaults, and eah subfault is represented by a single pointsoure, alled \subsoures" (�gure 4.5). To simplify the problem, we assume thatthe dimensions of all subsoures are uniform. Eah soure nuleates, and the P- andS-waves are radiated when the rupture front arrives at the subsoure.The ground motion at a site is modeled as the ombination of the responses ofeah subsoure. For high-frequeny motions with approximately random phase, wefound that the square root of the sum of the squares of the envelope amplitudes fromeah subsoure provides a good estimation of an aeleration envelope.Etotal(t) =vuut nXi=1 Ei(t)2; (4.1)where Etotal(t) is the estimated envelope as a funtion of time, Ei(t) is the envelopeof the ith soure, and n is the total number of subsoures. Ei(t) is atually a fairlyomplex funtion of time, magnitude, distane, and station orretions, although its
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Figure 4.1: Near-soure aelerations in the vertial omponent.
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Figure 4.2: Envelopes of near-soure aelerations in the vertial omponent.



54

Figure 4.3: Near-soure aelerations in the EW omponent.
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Figure 4.4: Envelopes of near-soure aelerations in the EW omponent.
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57soure spetrum ombined with onstant stress drop leads to high-frequeny energyradiated from a subfault that is independent of the slip on the subfault. A onse-quene of the fat that high-frequeny near-soure ground motions an be modeledas random noise whose amplitude is independent of slip is that the high-frequenyradiated energy in earthquakes is proportional to the rupture surfae area. This isonsistent with the observation of Boatwright (1982), who showed that high-frequenyspetral aeleration amplitudes are proportional to the root-mean-square (rms) dy-nami stress drop and the square root of the rupture area. Our simple model forsimulating high-frequeny motions is also ompatible with the observation of Hanksand Mguire (1981) that high-frequeny ground aelerations are remarkably simi-lar from one event to another. Subsoures for our multiple soure model are evenlyspaed, so the surfae area and high-frequeny radiated energy orresponding to eahsubsoure are also onstant. Based on this theoretial interpretation, we estimatedthe ground motion envelopes with the multiple soure model for the 1999 Chi-Chiearthquake.Figure 4.6 (top) shows an example of predited envelopes for vertial aelerationsusing the multiple soure model. It shows the envelopes of the vertial aelerationreord for eah subsoure with magnitude 6.0. Figure 4.6 (bottom) shows the timehistory envelope of the aelerogram (vertial omponent) at the station C024, a sta-tion on the foot wall side and 10 km from the Chelungpu faultline (shown in �gure4.7, southwest of the epienter). Figure 4.6 also shows that the vertial aelerationenvelopes predited by the multiple soure model for the VS-FS method �t the ob-served envelopes muh better than the envelopes predited by the single soure modelfor the VS-PS method.Even though the Ch-Chi rupture has large spatial variations in the amplitude ofthe slip, it appears that the high-frequeny aelerations an be modeled as a sumof the radiation from a uniform tiling of the magnitude 6.0 subfaults, based on therandom-phase assumption and saturation with regard to magnitude.
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Figure 4.6: Envelopes of vertial aeleration reorded at the station C024 for theChi-Chi earthquake. Top: predited envelopes of the vertial aeleration reord foreah subsoure with magnitude 6.0. Bottom: Observed envelope (in dotted blakline), and predited envelopes of the point-soure model in VS-PS method (in solidgray line) and of the multiple soure model in VS-FS method (in solid blak line).
4.2 Finding the best estimates
We assume that the loation of the epienter is already estimated from the VS-PSmethod, and that the fault ruptures bilaterally from the epienter with onstantrupture veloity. Thus, the time delay for eah subsoure rupture is the distanefrom the epienter divided by the rupture veloity. Therefore, parameters that weneed to estimate from the observed data are the azimuthal angle (�) of the rupturediretion, and N1 and N2, that are used to simulate eah of the segments of thebilateral rupture.The best estimate of the model parameters minimizes the residual sum of thesquares (RSS) between observed ground motion envelopes and predited envelopesfrom the multiple soure model. The mis�t funtion as a measure of goodness of �t



59is de�ned as follows: RSS(t) = nsXi=1 2Xj=1 tXk=1(Aijk � Âijk)2; (4.2)where ns is the number of stations, t is the time in 1 seond intervals (�t = 1) fromthe event onset, and Aijk and Âijk are observed and predited envelopes of omponentj at station i at time k�t.This form of the mis�t funtion tends to emphasize the importane of �ttingstations with large aelerations. That is, distant stations have small observed andpredited aelerations and even if there are serious disrepanies in the ratio of thepredited and observed amplitudes, they will have little impat on the inversion. Theresults of di�erent mis�t funtions are shown in Setion 4.3.5.Our parameterization sheme has the advantage that we haraterize the sourewith relatively few parameters (�, N1, N2), none of whih require high-preisionestimates. However, for this strategy to be e�etive, we will need to solve a nonlinearinverse problem in real time. In this study, we solve this nonlinear inverse problem byusing the Neighborhood Algorithm (Sambridge, 1999a,b). We reognize that otherinverse tehniques may ultimately be hosen for real-time appliations. However, sinethe purpose of this study is to determine the e�etiveness of our parameterization,we use the Neighborhood Algorithm to haraterize and solve this nonlinear inverseproblem.The Neighborhood Algorithm is a diret searh method for �nding models ofaeptable data �t in a multidimensional parameter spae. We generate samples inthe parameter spae and draw the Voronoi ells for these samples. Voronoi ells arenearest neighbor regions de�ned under a suitable distane norm, and the shape andthe size of eah Voronoi ell is determined by the sample distribution in the parameterspae. See �gure 4.7 as an example of Voronoi ells that are used to de�ne the nearestneighbors to seismi stations. We alulate the mis�t funtion for eah sample andhoose the model with the lowest mis�t. New samples are generated by performinga uniform random walk in the hosen Voronoi ell. By repeating these steps, we will
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Figure 4.7: The fault geometry and the station distribution of the Chi-Chi earth-quake. The shaded area around the epienter displays the map projetion of thefault geometry proposed by Ji et al. (2003). Small irles indiate the loation ofsubsoures determined based on the fault model. The area within 50 km and 100 kmfrom the epienter is shown by large irles. Stations used in this analysis are shownby solid triangles. The polygon surrounding eah station is the Voronoi ell for thestation.�nd a set of samples that identi�es those regions of the parameter spae that providethe best �t to the data. This is an approah for onstruting the posterior probabilitydensity funtion from the ensemble samples based on the Voronoi ell onept.4.3 Example from the Chi-Chi earthquake4.3.1 Data used for the VS-FS methodThe data for this analysis is the strong motion dataset from the 21 September 1999Chi-Chi Earthquake that ourred in entral Taiwan (Lee et al., 2001). The epienter



61was loated at 120.82 N, 23.85 E, with a foal depth of 8 km aording to the CentralWeather Bureau (CWB) of Taiwan (Shin and Teng, 2001). It is urrently the largestwell-reorded earthquake with moment magnitude 7.6. 441 strong motion stationsreorded the main event, and 69 of those were at distanes of less than 50 km fromthe epienter. We use three omponent (NS, EW, and UD) strong motion reordsfrom the data set olleted by CWB. They lassi�ed the reorded aelerograms intofour quality groups based on the existene of absolute timing, pre-events, and defets.For this analysis, we use QA-lass data (best for any studies), QB-lass data (nextbest but no absolute timing) and a part of QC-lass data (overing the prinipalstrong motions but not having pre-event or post-event data) whih inludes the pre-event. Stations of whih we use the reords are shown in 4.8. The olor ode ofeah station indiates soil ondition. Cua (2005) lassi�ed those station lasses intoa binary rok-soil lasses. Class A and B are lassi�ed as \rok," and lass C, D,and E as \soil." Most of the stations in Taiwan are lass C and below, so we usethe ground motion model for soil only. Figure 4.8 shows that the soil onditions ofthe stations orresponds to the geographial formation. Western part of the Taiwanisland is soft soil basin, where most of the major ities are loated. Eastern part of theisland is mountainous area, and there are not many stations. On the east oast, thereare ities suh as Yilan or Hualien where station distribution is very high. The Chi-Chi earthquake ourred at the boundary of western basin and eastern mountains.Around the epienter the station distribution is very inhomogeneous (see �gure 4.11):there are many stations on the west side (foot-wall side of Chelungpu fault) and fewstations on the east side (hanging-wall side of Chelungpu fault).Figures 4.9 { 4.11 are loser looks of �gure 4.8 with station ode. The station odehas four haraters: the �rst alphabet is an abbreviation of the distrit, and the lastthree numbers are a sequening number. Pre�x \C" indiates Chiayi, \H," Hualien,\I," Yilan, \N," Taitung, \P," Taipei, and \T," Taihung.Table 4.1 desribes the rustal model for P-wave and S-wave veloity in entralTaiwan (Ma et al., 1996). P-wave and S-wave arrival time for the predited envelopeare omputed with this 1-D layered rustal model. Sine the original seismi reords



62Table 4.1: P-wave and S-wave veloity model in entral Taiwan (Ma et al., 1996).Thikness(km) Vp(km/s) Vs(km/s)1.0 3.50 2.003.0 3.78 2.205.0 5.04 3.034.0 5.71 3.264.0 6.05 3.478.0 6.44 3.725.0 6.83 3.990.0 7.28 4.21reported inorret universal time, we use the data modi�ed by Lee et al. (2001). Theyompared piked P-wave arrival times with omputed theoretial P-wave arrival times.If the P-time residual was larger than 1 seond for aelerograms at the distane within50 km, they orreted the P-wave arrival time (Lee et al., 2001). Therefore, the errorof the time stamp of the modi�ed data is less than 1 seond.
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Figure 4.8: Topographi map of Taiwan. Soil ondition of eah station are shown inolored symbols. The Chelungpu fault lines are shown in the solid lines. The starsymbol denotes the epienter of the earthquake.
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Figure 4.9: Station ode and soil onditions of the strong motion stations in thesouthern part of Taiwan. The symbols are in the same format as in �gure 4.8.
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Figure 4.10: Station ode and soil onditions of the strong motion stations in thenorthern part of Taiwan. The symbols are in the same format as in �gure 4.8.
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Figure 4.11: Station ode and soil onditions of the strong motion stations in theentral part of Taiwan. The symbols are in the same format as in �gure 4.8.



674.3.2 Results from the analysis of the VS-FS methodWe have run many di�erent inversions by varying both the inversion parametersand the data sampling, suh as the number of reords used for the inversion, theomponents of the reords, et. Table 4.2 ontains a list of the models investigated.We onsider model 1 as a standard against whih all other models are ompared. Ituses the horizontal and vertial reords of the stations within 120 km of the epienter.
Table 4.2: Model parameters for estimating a fault geometry. Distane is the max-imum epientral distane of the reords used for the inversion. Component H andV stand for the horizontal and vertial omponent respetively. See the text for thearea weight and data sampling.Model No. of stations Distane(km) Component Area weight Data sampling1 239 120 H + V - -2 239 120 H - -3 239 120 V - -4 239 120 H + V X -5 126 120 H + V - even only6 56 120 H + V - 6 and 8 only

To simplify the problem, we assume eah subsoure has the same magnitude 6.0and is loated at the same depth, 8 km. The distane between eah virtual soureis 10 km. We assume onstant rupture veloity to onstrut the predited envelopesfrom subsoures. In order to hek the sensitivity of the parameter estimate to therupture veloity, we run four simulations for model 1 with di�erent rupture veloities.Figure 4.12 shows the estimated parameters, N1 and N2, for the rupture veloitiesfrom 2.0 km/s to 3.5 km/s. Even though we let the rupture veloity be faster than thereal rupture veloity 2.0 km/s (Ji et al., 2003), N1 and N2 do not inrease faster than2 km/s (one per 5 seonds). In other words, the way that N1 and N2 hange withthe duration of the data tells us the rupture veloity. For the following simulations,we use the onstant rupture veloity 2.0 km/s.
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Figure 4.12: The estimated parameters, N1 and N2, for di�erent rupture veloities.The solid thin lines are the upper limits for N1 and N2 for the rupture veloity 2km/s and 3.5 km/s. The broken lines are the best estimates based on the fault modelproposed by Ji et al. (2003). Time is relative to the origin. The parameters areomputed at eah seond using only the data available at that time.4.3.3 Comparison between predited envelopes and observedenvelopesFigures 4.13 and 4.14 are a omparison of observed envelopes and predited envelopesfor model 1. Figures 4.15 and 4.16 are the same waveforms as �gures 4.13 and 4.14with di�erent saling (the waveforms are saled so that the peak amplitude of thepredited envelopes beomes a unit length). The best-�t soure model for model 1onsists of 14 subsoures distributed along a line trending 17 degrees lokwise fromnorth; there are 7 subsoures north of the epienter and 4 subsoures to the south.That is, the best �tting model 1 is given by (�=17 degrees, N1=7, N2=4). Thepredited aeleration envelopes for this model agree well with the observed envelopes.



69Predited envelopes of near-soure stations have some disrepany depending on thesoure proess, but predited envelopes of far-soure stations �t the observation well.The vertial predited envelopes of the stations in the epientral region (e.g.,stations T078, T079, T084, and T089; see 4.17 and 4.18) are of partiular interest.Model 1 overestimates these observed envelopes for the �rst 10 seonds, but thenunderpredits the observed reords 20 seonds after the earthquakes origin. The fatthat the largest aelerations in the epientral region ourred 20 seonds after theorigin time seems to indiate that there may have been some rupture omplexityin the hypoentral region; perhaps there was an early aftershok in the epientralregion 20 seonds after the �rst rupture. Although this feature is noteworthy, it doesnot have a signi�ant e�et on the inversions sine the epientral stations are lessimportant for estimating azimuthal angle and length of the fault.Note that there is a disrepany between the predited and observed horizontalenvelopes of the stations along the east oast of Taiwan, espeially near Hualienaround 40 seonds after the origin time (see �gures 4.15 and 4.16). The observedenvelopes of those stations have large amplitudes whih annot be aptured by thepredited envelopes. The P-wave and S-wave should arrive at Hualien about 15 and26 seonds after the origin time, respetively, based on the veloity struture in entralTaiwan (table 4.1). That is, the large amplitude at Hualien is neither a �rst arrivalP-wave or S-wave. While ritially reeted shear waves o� the Moho disontinuityhave been suggested for large amplitude high-frequeny phases at similar distanes(Somerville and Yoshimura, 1990), the large amplitude waves on the east oast ofTaiwan seem too late to be Moho ritial reetions. Perhaps a seondary triggeredevent ourred east of the epienter.Another major disrepany is the sharp pulse that appears about 40 seonds afterthe event onset in the reords of stations loated about 40 km north of the reognizednorthern terminus of the Chelungpu fault rupture (e.g., stations T045, T047, andT095). Shin and Teng (2001) suggested that these large aelerations were generatedby a seondary rupture, perhaps on the Shihtan fault.
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Figure 4.13: Predited and observed envelopes in the horizontal omponent. The redand blak lines are the predited and observed envelopes, respetively. The loationsof the subsoures estimated from model 1 are shown in a small yellow irles. Thearea within 50 km and 100 km from the epienter are shown by large irles. Onlyharateristi reords of the stations are shown in this �gure.
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Figure 4.14: Predited and observed envelopes in the vertial omponent. The sym-bols are in the same format as in �gure 4.13.
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Figure 4.15: Predited and observed envelopes in the horizontal omponent with dif-ferent saling. The waveforms are saled so that the peak amplitude of the preditedenvelopes beomes a unit length. The predited and observed envelopes of the samestation have the same saling. The peak values are shown at the upper right of eahstation. The symbols are in the same format as in �gure 4.13.
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Figure 4.16: Predited and observed envelopes in the vertial omponent with di�er-ent saling. The salings are the same as in �gure 4.15 The symbols are in the sameformat as in �gure 4.13.



74

120˚30' 120˚45' 121˚00'
23˚30'

23˚45'

24˚00'

60 secs.

C006 

C024 

C025 

C028 

C029 

C034 C035 
C074 

C080 

C101 

T065 

T067 

T071 

T072 

T074 

T075 

T076 

T078 

T079 

T084 

T089 

T106 
T107 

T109 

T116 

T120 

T122 

T129 

T138 

Time (s) from eventFigure 4.17: Enlarged map of �gure 4.13. All of the stations near the epienter areshown in this �gure.



75

120˚30' 120˚45' 121˚00'
23˚30'

23˚45'

24˚00'

60 secs.

C006 

C024 

C025 

C028 

C029 

C034 C035 
C074 

C080 

C101 

T065 

T067 

T071 

T072 

T074 

T075 

T076 

T078 

T079 

T084 

T089 

T106 
T107 

T109 

T116 

T120 

T122 

T129 

T138 

Time (s) from eventFigure 4.18: Enlarged map of �gure 4.14. All of the stations near the epienter areshown in this �gure.



76

0 10 20 30 40 50 60
−50

0

50

100
az

im
ut

ha
l a

ng
le

 θ
 (

de
g)

time(s)

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6

0 10 20 30 40 50 60
−15

−10

−5

0

5

10

15

V
r
=2.0 km/s

(s
ou

th
) 

N
2 

   
 N

1 
(n

or
th

)

time(s)

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6

Figure 4.19: Time series of the estimated parameters, �, N1, and N2, for eah model.The model numbers orrespond to the numbers in table 4.2. Time is relative to theorigin. The parameters are omputed at eah seond using only the data available atthat time. The broken lines are the best estimates based on the fault model proposedby Ji et al. (2003). Top: time series estimations for �. Bottom: time series estimationsfor for N1 and N2. The solid thin lines are the upper limits for N1 and N2 for therupture veloity 2 km/s.



77Figure 4.19 shows the estimation results of three parameters (azimuthal angleof fault line (�), number of the point soures to the north (N1) and to the south(N2)). Three parameters are omputed at eah seond using only the data availableat that time. The estimation is updated every seond as the ground motion data areobserved.4.3.3.1 Result of model 1 (horizontal and vertial data)Model 1 inludes all of the data onsidered in this study. Although it does a good jobat haraterizing the rupture length and timing, we see that it is diÆult to resolve �until 15 seonds after the event onset sine the event an be approximated as a pointsoure at the beginning. The estimated � at 15 seonds is about -20 degrees and itinreases gradually after 20 seonds due to a impulsive aeleration arrival at stationC080 whih is loated at the south of the epienter. Estimates of � stabilize at about13 degrees with respet to additional data after 26 seonds. There is an additionalsmall shift at 44 seonds, at whih point the inversion ahieves its �nal solution of15 degrees, whih ompares favorably with the observed average fault strike of theChelungpu fault rupture.Sine the subsoures are equally spaed, the length of the fault is represented bythe number of the point soures to the north (N1) and to the south (N2). Figure4.19 (bottom) shows values of N1 and N2 as a funtion of time after the origin. Fromthe �gure, we an see the fault length grows bilaterally along the dashed blak lines.At 26 seonds, the rupture stops growing to the south. It also stops to the northtemporarily, but it grows again around 40 seonds. This is due to the delayed high-frequeny radiation at stations north of the Chenlungpu surfae rupture and mayhave been aused by rupture on the Shihtan fault. Even though the result of thesimulation �ts the atual loation of the fault aurately, the multiple soure modeldoes not onsider \rupture jumping disloations" (i.e., the rupture at the adjaentative faults triggered by the main shok) (Shin and Teng, 2001). The �nal resultshows 7 point soures to the north and 4 point soures to the south. This fault lengthis omparable to the total length from the Chelungpu fault to the Shihtan fault in



78�gure 4.7.4.3.3.2 Result of model 2 (horizontal data) and model 3 (vertial data)Model 2 only uses the horizontal aeleration data for the analysis whereas model 3only uses the vertial aeleration data. The azimuthal angles of the fault for models2 and 3 are not signi�antly di�erent from model 1. The estimation of the angle, N1and N2 from the horizontal omponent data (model 2) is similar to the estimationof model 1. However, the estimation of rupture length from the vertial omponentdata (model 3) is a little smaller than that of model 1. In partiular, the inversionindiates unilateral rupture to the north (i.e., N2 is zero) until 18 seonds after theorigin. The reason is that the predited envelopes overestimate the observed envelopesin the epientral region for the �rst 10 seonds (see �gure 4.14). Overall, the preditedenvelope is larger than the observed envelope for the vertial omponent and smallerfor the horizontal omponent.4.3.3.3 Result of model 4 (e�et of area weight)Model 4 onsiders the heterogeneity of station distribution and applies an area weightwhen we haraterize the mis�t funtion. The area weight is a oeÆient applied foreah station. Sine the station distribution is not uniform for the Chi-Chi earthquakedataset, we attempt to normalize the e�et of eah station. We assume a station ina sparse area is more important than a station in a dense area. Therefore, when weompute the mis�t funtion in equation 4.2, the mis�t of eah station is weighted bythe area weight, whih is proportional to the area of the Voronoi ell of eah station(shown in �gure 4.7).There are quite a few di�erenes between the estimates for N1 and N2 of model1 and model 4. The real-time estimation of the azimuthal angle has unique hara-teristis. It stays around -20 degrees at the beginning of the rupture, and it jumpsto 35 degrees suddenly at 36 seonds. The angle estimation is very unstable evenafter 40 seonds. Moreover, the estimate for N1 and N2 are a lot smaller than thatof model 1. The reason for this sudden transition is that a few stations with large



79area weighting (e.g., T088, T074, C074) ontrol the parameters. When the envelopesof those stations are weighted, the residual sum of squares hanges greatly, and theNeighborhood Algorithm hooses the parameter to redue the residuals. We wouldlike to obtain aurate information of the fault loation as soon as possible. For thispurpose, model 1 is more robust than model 4. In a larger sense though, it meansthat it beomes diÆult to determine the fault geometry if the station distribution issparse and uneven.4.3.3.4 Result of model 5 and model 6 (the e�et of station distribution)In models 5 and 6, the e�et of station distribution is examined further. To samplethe stations randomly, we use the reords with an even station ode number for model5. For model 6, the reords with a station ode ending in 6 or 8 (e.g., T078) are used.Even though the station distribution is not homogeneous as shown in �gure 4.7, theaverage station density is 214 km2/station for model 5, and 482 km2/station for model6. The stations are loated in an area of about 27,000 km2. Even though the stationdensity is di�erent, the estimated parameters are quite similar. In �gure 4.19, thetime series of � and N2 for models 1, 5, and 6 are almost the same. N1 for models5 and 6 stays around 5 after 30 seonds, and the inrease observed in Model 1 dueto the Shihtan fault rupture does not appear. The reason is that several near-sourestations of the Shihtan fault have an odd number station ode and are not inludedin this analysis (e.g., T045, T047, and T095). Considering that the rupture of theShihtan fault is quite small ompared to that of the Chelungpu fault, model 5 andmodel 6 an express the Chi-Chi earthquake rupture well. The VS-FS method forlarge earthquakes works well even if the station density is redued to a quarter of theoriginal density, as long as the station distribution is uniform.4.3.4 Geometry of the parameter spaeWe have solved the optimization problem in parameter spae (�, N1, and N2) by aNeighborhood Algorithm. Here, we disuss the geometry of the parameter spae.
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Figure 4.26: Two-dimensional posterior probability for the parameters N1 and N2.The plots are shown in 10-seond intervals.



854.3.5 E�ets of di�erent mis�t funtionsIn the ourse of this study, we also tried inversions in whih we de�ned mis�t funtionin terms of log of amplitudes and PGA. Figure 4.27 shows the simulation results withthe same dataset as model 1 but di�erent mis�t funtions. The mis�t funtion usedin the main analysis was:RSS(t) = nsXi=1 2Xj=1 tXk=1(Aijk � Âijk)2: (4.3)In the ground motion analysis, the distribution of log of amplitude follows theGaussian distribution, so the log of amplitudes is often used as a mis�t funtion. Themis�t funtion in terms of log of amplitudes is:RSSlog(t) = nsXi=1 2Xj=1 tXk=1(logAijk � log Âijk)2: (4.4)This mis�t funtion emphasizes the ratio of predited and observed amplitudes;large amplitude data is no more important than small amplitude data. However, wefound that suh a mis�t funtion emphasized mis�ts in the oda for near-soure data;furthermore, the distant data was often not well explained by our simple desriptionsof wave envelopes that have been developed to explain the \average" e�ets of wavespropagating through the rust. That is, it is important to emphasize the data from thenear-soure reords and a logarithmi mis�t funtion was not appropriate to reoverthe timing and loation of the rupture.We also tried the mis�t funtion de�ned in terms of the error when the eahground motion reords the peak value (PGA):RSSmax(t) = nsXi=1 2Xj=1(maxfAijkjk = 1; : : : ; tg �maxfÂijkjk = 1; : : : ; tg)2: (4.5)The fault length estimate from this mis�t funtion is very unstable even after mostof the rupture terminated. This is beause far-soure stations whih reeive propa-gating seismi waves with delay a�et the mis�t funtion. As we mentioned in the



86

0 10 20 30 40 50 60
−100

−50

0

50

100

az
im

ut
ha

l a
ng

le
 θ

 (
de

g)

time(s)

RSS
RSS_log
RSS_max

0 10 20 30 40 50 60
−15

−10

−5

0

5

10

15

V
r
=2.0 km/s

(s
ou

th
) 

N
2 

   
 N

1 
(n

or
th

)

time(s)

RSS
RSS_log
RSS_max

Figure 4.27: E�ets of di�erent error funtions. RSS error funtion gives the bestestimate of the model parameters.logarithmi mis�t funtion, it is important to emphasize the data from the near-sourereords, and so the best estimate of the model parameters minimizes the RSS betweenobserved ground motion envelopes and predited envelopes from the multiple souremodel.



874.4 SummaryWe outlined a strategy to estimate slip in time and spae for an ongoing earthquakerupture. A key aspet of this strategy is to map the loation of the rupture usingenvelopes of high-frequeny aeleration data. One the loation of the rupture isestimated, long-period displaement data an be projeted bak onto the fault todetermine the slip in real time.Our strategy for using high-frequeny radiation to determine the timing and lengthof the rupture relies on the observation that high-frequeny seismi waves an bemodeled as random-phase waves whose total radiated energy sales linearly with therupture area. By using this assumption, we show that we an simulate the groundmotion of a large earthquake by tiling the surfae of the large event with smallerevents and then summing the random phase signals from the smaller events. Inour example of the Chi-Chi earthquake, we showed that a sum of 10 km intervalmagnitude 6.0 subevents provided a good predition of the aeleration envelopesfor this earthquake. In order to turn this simulation into a real-time inverse, weparameterize the rupture with a linear alignment of magnitude 6.0 earthquakes. Wethen invert for the azimuth angle of the alignment as well as two integers, N1 andN2, whih are the number of additional 10 km pathes in the positive and negativediretions from the epienter, respetively.The best estimate of the model parameters minimizes the residual sum of thesquares between observed ground motion envelopes and predited envelopes from themultiple soure model (in equation 4.2). This mis�t funtion with linear amplitudesof ground motions an provide better estimates than that of logarithmi amplitudes,sine the linear mis�t funtion tends to emphasize the importane of �tting stationswith large amplitudes.Our study of the Chi-Chi data set indiates that it is more diÆult to deter-mine rupture length than it is to determine rupture azimuth. Furthermore, for thismethod to work well, an adequate near-soure station distribution is important. Real-time mapping of an on-going rupture using this strategy beomes a simple matter of



88traking the spatial evolution of near-soure seismi stations. Although this strategyappears promising, it requires adequate station overage to trak near-soure stations.
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Chapter 5Near-Soure versus Far-SoureClassi�ation Analysis
We introdued the methodology that an estimate the rupture geometry from a-eleration envelopes in the previous hapter. In this hapter, we propose anotherapproah to reognize the fault rupture extent. We develop a methodology to lassifystations into near-soure and far-soure by using the Bayesian model seletion anal-ysis so that we an identify the fault geometry if there is a suÆiently dense seisminetwork. Peak ground motions reorded in past earthquakes are analyzed to preditwhether a station reording ground motion is lose to the earthquake fault area. Thislassi�ation problem an be stated as follows: given ground motion data from pastearthquake reords, what is the probability that a station is near-soure when a newobservation is obtained?To approah this problem, we:1) Collet strong motion data from earthquake strong motion arhives and lassifythese samples into two prede�ned groups: reords from near-soure stations and far-soure stations. This partiular set of data is alled the training set.2) Disover a disriminant funtion of the samples features (e.g., peak groundaeleration (PGA), veloity (PGV), displaement (PGD)) whih provides the bestperformane in terms of near-soure versus far-soure lassi�ation.3) Alloate new observations when they are obtained to one of the two groupsbased on the disriminant funtion.



90The �rst step is quite straightforward; strong motion data from past earthquakesare olleted based on ertain seletion riteria. The seond step is the main topi ofthis paper; and we investigate linear disriminant funtions by using the traditionalFisher method and two Bayesian methods. The third step an then be aomplished ina real-time analysis. Given a new ground motion observation from on-going rupture,the disriminant funtion gives the probability that the observation is loated in thenear-soure.
5.1 Strong motion dataWe used strong motion datasets from nine earthquakes with magnitude greater than6.0 and ontaining reords of near-soure stations. The seleted earthquake datasetis shown in table 5.1. Here, we de�ne a near-soure station as a station whose faultrupture distane is less than 10km. 695 three-omponent strong motion data are usedfor the lassi�ation analysis and 14% (100 stations) are from near-soure stations.Table 5.1: The earthquake dataset used for the lassi�ation analysis. Moment mag-nitude (Mw) is ited from Harvard CMT solution. The numbers of near-soure (NS)and far-soure (FS) data for eah earthquake are also shown. The fault models areused as seletion riteria to lassify near-soure and far-soure stations.Earthquake Mw NS FS Total Fault ModelImperial Valley (1979) 6.5 14 20 34 Hartzell and Heaton, 1983Loma Prieta (1989) 6.9 8 39 47 Wald et al., 1991Landers (1992) 7.3 1 112 113 Wald and Heaton, 1994Northridge (1994) 6.6 17 138 155 Wald et al., 1996Hyogoken-Nanbu (1995) 6.9 4 14 18 Wald, 1996Izmit (1999) 7.6 4 13 17 Sekiguhi and Iwata, 2002Chi-Chi (1999) 7.6 42 172 214 Ji et al., 2003Denali (2002) 7.8 1 29 30 Tsuboi et al., 2003Niigataken-Chuetsu (2004) 6.6 9 58 67 Honda et al., 2004Total 100 595 695



915.1.1 Data souresWe obtained the strong motion dataset for the Imperial Valley (Otober 15, 1979),Loma Prieta (Otober 18, 1989), Landers (June 28, 1992), Northridge (January 17,1994), and Denali (November 3, 2002) earthquakes from the COSMOS Virtual DataCenter (http://db.osmos-eq.org) whih inludes data from the California Strong Mo-tion Instrumentation Program (CSMIP) seismi network and the United States Ge-ologial Survey (USGS) seismi network. The Northridge earthquake dataset in theCOSMOS Virtual Data Center also inludes reords from seismi networks of theCalifornia Institute of Tehnology, Los Angeles Department of Water and Power,Metropolitan Water Distrit, Southern California Earthquake Center, and Universityof Southern California. All these data were reorded by aelerometers and pro-essed appropriately before distribution to users. The orretion proess may applybaseline orretions, band-pass �lters to remove noise ontamination, and instru-ment orretion to remove the e�ets of frequeny-dependent instrument response(http://nsmp.wr.usgs.gov/proessing.html).Strong motion data from the Hyogoken-nanbu earthquake (January 16, 1995)are provided by Japan Meteorologial Ageny (JMA), the Committee of EarthquakeObservation and Researh in the Kansai Area (CEORKA) in Japan (Toki et al., 1995),and the Japan Railway Institute (JR) whose reords were sanned and digitized byWald (1996). Seismometers installed in the CEORKA network reord veloity, andthose reords are di�erentiated one to obtain aelerograms.The national strong-motion aelerograph network in Turkey reorded the strongmotions during the Izmit earthquake (August 17, 1999) (Akkar and G�ulkan, 2002).They an be downloaded from the ftp site of the Earthquake Researh Departmentof General Diretorate of Disaster A�airs, Ministry of Publi Works and Settlement,Ankara, Turkey (ftp://angora.deprem.gov.tr/). The COSMOS Virtual Data Centerarhived the dataset of another network operated by Kandilli Observatory and Earth-quake Researh Institute, Earthquake Engineering Department, Bogazi�i University,Istanbul, Turkey. Stations with fault distane greater than 200 km are exluded sine



92ground motion amplitudes of those stations are quite small whih results in a lowsignal-to-noise ratio. We use four digital and six analog aeleration reords from thenational network and eight digital aeleration reords from the Bogazi�i Universitynetwork.The Chi-Chi earthquake (September 20, 1999) is one of the best reorded earth-quakes with a large number of stations and a dense station distribution both in thenear-soure and far-soure. Strong motion reords for the Chi-Chi earthquake areavailable on the attahed CD in the Speial Issue of the Bulletin of the SeismologialSoiety of Ameria, vol. 93, no. 5 (Lee et al., 2001). These reords were produedby the Central Weather Bureau Seismi Network (CWBSN) and they are the largestset of strong motion data reorded from a major earthquake (Shin and Teng, 2001).Shin and Teng (2001) lassi�ed the reorded aelerograms into four quality groupsbased on the existene of absolute timing, pre-events, and defets. For this analysis,QA-lass data (best for any studies) and QB-lass data (next best but no absolutetiming) are used.Strong motion data from the Niigataken-huetsu earthquake (Otober 23, 2004)were reorded by the K-NET and KiK-net seismi networks operated by the NationalResearh Institute for Earth Siene and Disaster Prevention in Japan. Those data areavailable at their websites (http://www.k-net.bosai.go.jp/ and http://www.kik.bosai.go.jp/). The stations with epientral distane less than 100 km are used for thisanalysis.5.1.2 Data proessingWe proessed the aelerograms obtained from the nine earthquakes aording to thefollowing method. The DC o�set of the aelerograms is orreted by subtrating themean of the pre-event portion. Beause a small DC o�set has a large e�et when thereord is integrated, this proess is applied to all aelerograms.The peak amplitude of the horizontal omponents is alulated by the squareroot of the sum of the squares of the peaks of NS and EW omponents. If one of



93the horizontal omponents (NS or EW) of a station has been lipped or is not wellreorded, the square root of twie the other well-reorded horizontal omponent isused for the peak amplitude of the horizontal omponent.The peak amplitude of UD (up-down) omponent is used diretly for the peakvertial omponent. The station reords that have defets in the vertial omponentare exluded.The following proesses are ompleted for all the data.Jerk: The three-omponent aelerograms are di�erentiated in the time domain,using a simple �nite-di�erene approximation. The peak value of eah omponent isseleted.Aeleration: Original aelerograms are used to selet the peak value.Veloity: Some veloity reords have a linear trend due to either tilting, theresponse of the transduer to strong shaking, or problems in the analog-to-digitalonverter. The baseline orretion sheme applied to obtain appropriate veloityreords is as follows (Iwan et al., 1985; Boore, 2001):1) Determine the straight line to be subtrated from the veloity trae. The lineis given by the equation: vf(t) = a1t + a2; (5.1)where oeÆients a1 and a2 are determined by least-squares �tting to the veloitytrae after the strong shaking. The segment of the reord used for least-squares�tting is from t1 to t2 (see �gure 5.1). t1 is the time when the strong shaking hassubsided. The results of baseline orretion are not very sensitive to the hoie oft1 (Boore, 2001). The seond ut-o� time, t2, is generally hosen as the end of thereord;2) Remove this linear trend from the veloity reord.This baseline orretion sheme assumes the baseline shift of the aelerationours only one. There may be reords that have more than one baseline shiftduring strong shaking. However, our purpose is to get the peak value of eah veloity



94reord, and this does not require aurate integration of the entire reord. Aftertime-domain integration, the distortion is not very large in the �rst portion of thereord where the peak value is generally reorded.
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Figure 5.1: An example of baseline orretion for a veloity reord from the Chi-Chiearthquake. The orreted veloity trend is obtained by subtrating the linear trendfrom the original veloity reord. The portion of the reord from t1 to t2 is used forleast-square �tting to obtain the linear trend.Displaement: The orreted veloity reords are integrated one in the timedomain and high-pass �ltered using a fourth-order Butterworth �lter with a ornerfrequeny of 0.075 Hz.The peak features used for the lassi�ation analysis are shown in table 5.2. Sev-eral ombinations of these 8 features are tried to �nd the best performane of thelassi�ation.5.1.3 Data lassi�ationThe lassi�ation as near-soure or far-soure in the training set is based on rupturearea models used for waveform inversions. These rupture area models are typiallydetermined from the aftershok distribution (Sekiguhi et al., 1996), and the shape



95Table 5.2: Eight measurements of peak ground motions are alulated from threeomponent aelerograms. Codes and units of the omponents used in this paper areshown. Code Measurement UnitHj Horizontal Peak Ground Jerk (m/s3)Zj Vertial Peak Ground Jerk (m/s3)Ha Horizontal Peak Ground Aeleration (m/s2)Za Vertial Peak Ground Aeleration (m/s2)Hv Horizontal Peak Ground Veloity (m/s)Zv Vertial Peak Ground Veloity (m/s)Hd Horizontal Peak Ground Displaement (m)Zd Vertial Peak Ground Displaement (m)
of the rupture area is approximated by a retangular box. Fault models used forlassifying stations are shown in table 5.1 and �gure 5.2. In �gure 5.2, blak solidlines indiate the surfae projetion of the fault rupture surfae based on the faultmodels. Stations within 10 km of this fault projetion (the white area in the �gures)are lassi�ed as near-soure, indiated by solid irles. Far-soure stations are shownin open irles.High-frequeny near-soure ground motions have long been researhed by engi-neers and seismologists. High-frequeny ground motions depend weakly on magni-tude in the near-soure (Hanks and Johnson, 1976; Joyner and Boore, 1981; Hanksand Mguire, 1981). This helps to analyze ground motions with a wide range ofmagnitudes. Figure 3.2 shows horizontal and vertial PGA of near-soure reordsin our training set as a funtion of moment magnitude. The slope of a regressionline would be almost equal to zero, whih is onsistent with past studies. On theother hand, low-frequeny motion has a strong orrelation with magnitude. Figure3.4 shows horizontal and vertial PGD as a funtion of moment magnitude. The PGDare log proportional to the magnitude. Based on suh observations, we assume thathigh-frequeny motion does not depend on magnitude for large earthquake and thataelerations do not exeed 2g, whereas low-frequeny motion is highly orrelatedwith magnitude, and its amplitude inreases as the magnitude beomes large.
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km(f) Izmit (1999)Figure 5.2: Maps of the fault projetions and station distributions. The fault proje-tions are shown in the solid lines. The white area around the fault lines indiates thearea with distane less than 10 km from the fault projetions. The stations in thisarea are lassi�ed as near-soure and marked as solid irles. Far-soure stations areshown in open irles. The star symbol denotes the epienter of the earthquake.
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(i) Niigataken-Chietsu (2004)Figure 5.2: Maps of the fault projetions and station distributions (ontinued).High-frequeny ground motion deays in amplitude more rapidly with distanethan low-frequeny motion (Hanks and Mguire, 1981). Therefore, high-frequenymotions (e.g., aeleration, jerk) have high orrelations with the fault distane. Weompute the log of the ground motion amplitudes and �nd the means and standarddeviations for the near-soure and far-soure reords. Figure 5.3 shows the histograms



98and Gaussian densities given by the sample means and standard deviations for thenear-soure and far-soure reords. The Gaussian densities are good approximationsof the histograms of the log of the ground motion data. Figure 5.3 also shows that thedistane between means for the near-soure and far-soure datasets is larger in high-frequeny than low-frequeny motions. Therefore, we expet that the high-frequenymotions is a good measure to lassify near-soure and far-soure reords.

2 3 4 5 6
0

1

2
Horizontal

far-source near-source

p
d

f

2 3 4 5 6
0

1

2
Vertical

p
d

f

near-source
far- source

0 1 2 3 4
0

1

2

p
d

f

0 1 2 3 4
0

1

2

p
d

f

� 1 0 1 2 3
0

1

2

p
d

f

� 1 0 1 2 3
0

1

2

p
d

f

� 1 0 1 2 3
0

1

2

log(dis)

p
d

f

� 1 0 1 2 3
0

1

2

log(dis)

p
d

f

log(jerk) log(jerk)

log(acc) log(acc)

log(vel)log(vel)

Figure 5.3: Histograms and Gaussian densities based on the sample means and stan-dard deviations of the log of ground motions for the near-soure and far-soure reords.These are distributions for jerk, aeleration, veloity, and displaement from the top.



995.2 Near-soure versus far-soure disriminant fun-tionWe assume the disriminant funtion to lassify reords into near-soure and far-soure is expressed as a linear ombination of the log of ground motion amplitudes:f(Xij�) =1xi1 + 2xi2 + ::: + mxim � d (5.2)= mXk=1 kxik � d=Xi � � d;where xik = kth feature parameter of the ground motion at the ith station;m = the number of feature parameters;Xi =[xi1; xi2; : : : ; xim℄=[log10(omponent1); log10(omponent2); :::; log10(omponentm) ℄;1; :::; m =the regression oeÆients;d = deision boundary onstant;� =[1; 2; :::; m; d℄T :We may use m omponents out of the eight ground motion omponents shown intable 5.2. The oeÆients 1; :::; m; and d are determined from the training dataset by two di�erent approahes: Fisher's linear disriminant analysis and Bayesiananalysis.This disriminant funtion is used to alloate new observations to one of the near-soure or far-soure groups, where f(Xij�) = 0 is the boundary between the twogroups in the feature parameter spae. The station with observation Xi is lassi�edas near-soure if f(Xij�) is positive. If f(Xij�) is negative, the station is lassi�ed asa far-soure station. Note that the deision boundary may also be expressed using



100equation 5.2 as: Xi �  = d.
5.2.1 Fisher's linear disriminant analysisFisher's Linear Disriminant Analysis (LDA) is a method to lassify data by using alinear funtion (5.2) that best disriminates two or more naturally ourring groups.LDA was �rst desribed by Fisher (1936) to separate two groups optimally. In general,LDA requires plaing objets (e.g., humans) in prede�ned groups (e.g., Cauasoid,Mongoloid, and Negroid) based on ertain feature parameters (e.g., related to physialharateristis), and �nding a funtion to distinguish the groups. The parametersk in the linear funtion (5.2) are seleted to minimize the within-group variane(variane of the samples entered on the group mean) and maximize the between-group variane (variane between group means). The following is a brief disussionabout the proedure of linear disriminant analysis (Venables and Ripley, 2002):

Consider n�m data matrix X where n is the number of samples and mis the number of di�erent features of samples. Eah sample is assignedto one of g groups Nj; j = 1; :::; g, with nj observations in eah group.Let G denote the group indiator matrix, whih indiates the group eahsample is assigned to, and let M denote the group mean matrix, thenwithin-group ovariane matrix W and between-group ovariane matrixB are: W = (X �GM)T (X �GM)n� g ; (5.3)B = (GM � 1�)T (GM � 1�)g � 1 ; (5.4)



101where X =[xik℄ : n�m data matrix;G =[gij℄ : n� g group indiator matrix;M =[mjk℄ : g �m group mean matrix;� =[�1; �2; :::; �m℄ : 1�m mean vetor;1 =n� 1 olumn vetor of 1s;xik = kth feature of the ith sample;gij =1 () Xi = [xi1; xi2; :::; xim℄ is assigned to group j;mjk = 1nj Xi2Nj xik;�k =1n nXi=1 xik:We would like to �nd a linear ombination X �  of the data suh thatthe di�erent groups are maximally separated, that is, maximizing thefollowing separation ratio �:� = TBTW = between-group varianewithin-group variane : (5.5)A neessary ondition to maximize � is ��� = 0. By substituting equation5.5 into this ondition, we get:W�1B = �; (5.6)assuming W is invertible. This is an eigenvalue problem, and the weightvetor  and the separation ratio � are eigenvetors and eigenvalues ofW�1B, respetively. X �  is alled a anonial variate, and the anonialvariate of the eigenvetor  whih orresponds to the largest eigenvalue isalled the �rst anonial variate.



102For the near-soure versus far-soure lassi�ation problem, the data matrix X isthe dataset of peak seismi ground motions, where n is the number of stations, and mis number of the objet features (PGA, PGV, PGD, et.). We have two groups: near-soure group and far-soure group (g = 2). LDA �nds the optimal set of oeÆientsof ground motion amplitudes to lassify near-soure or far-soure reords.Sine the traditional LDA does not treat whih hoie of the ground motion pa-rameters is the best, Bayesian model lass seletion is performed (the results areshown later). Aording to this analysis, the best seletion is (Za and Hv), and theiroeÆients obtained from LDA are shown in table 5.3.Table 5.3: Estimated model parameters by Fisher's LDA, Bayesian approah withasymptoti approximation, and Bayesian approah with the Metropolis algorithm.The standard deviations for eah parameter are shown in brakets.Method 1 (Za) 2 (Hv) dLDA 7.233 6.813 25.903Bayesian-Asym. 6.046 7.886 27.090(�) (� 0.903) (� 1.206) (� 3.163)Bayesian-MA 6.194 8.150 27.872(�) (� 0.946) (� 1.224) (� 3.330)
We hoose the deision boundary onstant d to maximize the lassi�ation perfor-mane for the set of oeÆients obtained by the LDA. The lassi�ation performaneis evaluated by the following funtion:P(d) =(P (f(Xij�) � 0jYi = 1) + P (f(Xij�) < 0jYi = �1))=2; (5.7)where f(Xij�) =Xi � � d;Yi =8><>:1 if near-soure;�1 if far-soure:



103This is the average probability between the probability that a near-soure station islassi�ed orretly and the probability that a far-soure is lassi�ed orretly. Theparameter d whih maximizes this funtion for the given oeÆients (table 5.3) is25.903, and the performane de�ned by the funtion above is 93.4%. Another wayto ompute d is to take the midpoint of the two group means of the �rst anonialvariate. This method makes it easier to ompute the value of d and it gives d = 25:045,a good approximation to d = 25:903 whih shows maximum performane.As a onlusion, the disriminant funtion omputed from the LDA is:f(Xij�) =7:233 log10 Za + 6:813 log10Hv � 25:903; (5.8)
if 8><>:f(Xij�) � 0 near-soure;f(Xij�) < 0 far-soure:This disriminant funtion is applied to all the dataset, and the values of f(Xij�)are shown in �gure 5.4. The �gure shows that most of the near-soure data lie onthe right side of the deision boundary, whih means the lassi�ation performaneis very good.5.2.2 Bayesian approahIn this setion, a Bayesian approah is applied to determine the oeÆients of thedisriminant funtion that lassi�es near-soure and far-soure data. The probabilitydensity funtion (pdf) of parameter � onditioned on data Dn and model lass M anbe expressed using Bayes' theorem:p(�jDn;M)posterior / p(Dnj�;M)likelihood � p(�jM)prior/ nYi=1 P (YijXi; �)� p(�jM); (5.9)



104

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Far−source Near−source

f(X
i
|θ)

pd
f

near−source
far−source

Figure 5.4: Histogram of the near-soure and far-soure data to whih the disrim-inant funtion obtained from traditional LDA is applied. The olumn heights arenormalized by the number of the data in eah group. f(Xij�) = 0 is the deisionboundary between the two groups. The urves are the Gaussian distribution with thesame mean and standard deviation as the values of f(Xij�) for eah group.
where � =[1; 2; :::; m; d℄T : parameter vetor;Dn =f(Xi; Yi) : i = 1; :::; ng : available set of data;Xi =[xi1; xi2; :::; xim℄ : ground motion at the station i=[log10(omponent1); log10(omponent2); :::; log10(omponentm)℄;Yi =8<: 1 ; if near-soure�1 ; if far-soure at the station i;m = the number of objet features;n = the number of data:



105Note that the model lass M de�nes the likelihood for eah value of � in some set ofvalues and also the prior pdf p(�).We determine the parameters 1; :::; m; d based on a Bayesian approah usingthe same notation as the LDA. The goal of the Bayesian approah is to obtain theposterior pdf of the model parameters (�) and determine the most plausible value of� by maximizing this pdf.Choie of Prior DistributionAssume that the model lass M is globally identi�able based on Dn (Bek andKatafygiotis, 1998), that is, there is a unique � maximizing the likelihood p(Dnj�;M).In this ase, given a suÆiently large dataset Dn, the hoie of prior pdf does nota�et the resulting posterior pdf, and all posteriors with di�erent priors will onvergeto the same answer (Sivia, 1996). Here, the prior is hosen to over a wide range ofthe parameter spae by seleting the prior of eah model parameter to be a Gaussianpdf with zero mean and standard deviation �=100, so:p(�jM) = 1(p2��)m+1 exp(� 12�2 �T �) = 1(p2��)m+1 exp(� 12�2 ( mXk=1 2k + d2)):(5.10)Choie of Likelihood funtionLet the preditive probability that station i is near-soure be P (Yi = 1jXi; �).The preditive probability that a station is far-soure is then P (Yi = �1jXi; �) =1 � P (Yi = 1jXi; �). A standard approah in Bayesian lassi�ation is to de�ne thepreditive probability by applying the logisti sigmoid funtion �(x) = 1=(1+ e�x) tothe linear funtion f(Xij�) that is also used in the traditional LDA (Li et al., 2002).The logisti sigmoid funtion is a smooth, positive, and monotonially inreasingfuntion, as shown in �gure 5.5. The preditive probability that the ith station isnear-soure is therefore de�ned here by:P (Yi = 1jXi; �) = �(f(Xij�)) = 11 + e�f(Xij�) : (5.11)
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Figure 5.5: Logisti sigmoid funtion �(x) = 1=(1 + e�x) is used to express thepreditive probability for lassi�ation. The funtion approahes zero as x ! -1,and one as x ! 1. The funtion is 0.5 when x is zero.As f(Xij�) beomes larger, the station is more likely to be near-soure, and theprobability that the station is near-soure beomes loser to one. Note that thepreditive probability that the station is far-soure is then:P (Yi = �1jXi; �) = 1� �(f(Xij�)) = �(�f(Xij�)) = 11 + ef(Xij�) ; (5.12)where, from equation 5.2,f(Xij�) = mXk=1 kxik � d = Xi � � d:From equations 5.11 and 5.12, the likelihood funtion an be expressed as:p(Dnj�;M) = nYi=1 P (YijXi; �) = nYi=1 �(Yif(Xij�)) = nYi=1 11 + e�Yif(Xij�) : (5.13)Posterior Distribution



107By substituting equations 5.10 and 5.13 into equation 5.9, the posterior an beexpressed as:p(�jDn;M) / 1(p2��)m+1 exp(� 12�2 �T �) nYi=1 11 + e�Yif(Xij�) : (5.14)Both an asymptoti approximation and stohasti simulation are performed toharaterize the pdf de�ned by equation 5.14. In the asymptoti approah, the pos-terior is represented by a Gaussian distribution for � with mean �̂, the most probablevalue of �, and a ovariane matrix �̂ de�ned later. Stohasti simulation uses theMetropolis algorithm to generate random samples of the parameter vetor � fromthe posterior pdf. It is noted that it is omputationally hallenging to evaluate theproportionality onstant in equation 5.14 that normalizes the posterior pdf beauseit requires numerial integration over a high-dimensional parameter spae. However,this evaluation an be avoided in both the asymptoti approximation and stohastisimulation methods.5.2.2.1 Asymptoti approximationWe �rst �nd the optimal value �̂ of � that maximizes the posterior pdf. This mul-tidimensional optimization problem is solved by a numerial optimization algorithmprovided by Matlab.Using Laplae's method of asymptoti approximation, Bek and Katafygiotis(1998) show that the posterior pdf for a set of model parameters � for a globallyidenti�able model lass M (whih has a unique most probable value) may be approx-imated aurately by a Gaussian distribution with mean �̂ and ovariane matrix �̂,given a large amount of data. De�ne H(�) by:H(�) = �rr log[p(Dnj�;M)p(�jM)℄ = �rr log[ nYi=1 P (YijXi; �)p(�jM)℄; (5.15)then �̂ = H(�̂)�1. By substituting equations 5.10 and 5.13 into equation 5.15;
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[H(�)℄(�;�) =[�rr log nYi=1 P (YijXi; �)�rr log p(�jM)℄(�;�)=� �2���� (log nYi=1 �i) + 1�2 Æ��=� nXi=1 �2���� (log�i) + 1�2 Æ��=� nXi=1 ��� [ 1�i�i(1� �i)�(Yif(Xij�))�� ℄ + 1�2 Æ��= nXi=1 �i(1� �i)xi�xi� + 1�2 Æ��; (5.16)where �i = �(Yif(Xij�)), and equation 5.2, along with Y 2i = 1, has been used. Theoptimal parameter values and their standard deviations for the seletion of featuresZa and Hv are shown in table 5.3. Note that for large �, the e�et of the prior inequation 5.16 is negligible.In order to examine the sensitivity of the Bayesian approah to the trainingdataset, we perform a ross-validation analysis. First, the training dataset is ran-domly divided into two datasets and the disriminant funtion is onstruted fromone dataset (training set). This disriminant funtion is applied to the other dataset(validation set) to hek its lassi�ation performane. We then swith the testingset and validation set, and repeat this ross-validation analysis. We set the near-soure versus far-soure boundary so that the probability is a half that the station isnear-soure, that is, the station is lassi�ed as near-soure if the probability that it isnear-soure is more than 1/2. The onfusion matries of these two analysis and theprevious analysis whih uses all of the dataset are shown in table 5.4. The lassi�a-tion error with half of the dataset is as small as that of the analysis whih uses allof the dataset. Therefore, we on�rm that the sensitivity to the training dataset issmall, giving more on�dene that the disriminant funtion from Bayesian analysiswill perform well for future earthquake data.



109Table 5.4: The onfusion matrix for the ross-validation analysis with the Bayesianmethod with asymptoti approximation. \All dataset" is the analysis whih uses thewhole dataset as a training set and a validation set. \Half of dataset" is the analysiswhih uses half of dataset as a training set and the other half as a validation set.\Other half of dataset" is the analysis whih swithes the training and validation set.NS and FS stand for near-soure and far-soure, respetively.Dataset NS/FS Near-soure Far-soureAll dataset NS 78 (78%) 22 (22%)FS 12 (2%) 583 (98%)Half of dataset NS 39 (74%) 14 (26%)FS 4 (1%) 291 (99%)Other half of dataset NS 37 (79%) 10 (21%)FS 8 (3%) 292 (97%)
5.2.2.2 Stohasti simulation using Metropolis algorithmThe asymptoti approximation is valid only if the posterior pdf for the model param-eters an be approximated well with a Gaussian distribution. This requires a largesample size and that the lass of models M is globally identi�able based on data Dn(Bek and Katafygiotis, 1998). On the other hand, a stohasti simulation algorithman be applied to the problem whih generates samples from a Markov Chain whosestationary pdf is the posterior pdf, that is, the samples are asymptotially distributedaording to the posterior pdf for the parameters. The Metropolis algorithm is usedto solve this high-dimensional problem, beause it does not require evaluation of thenormalizing onstant for sampling the posterior pdf in equation 5.14.The Metropolis algorithm is a Markov hain Monte Carlo (MCMC) method pro-posed by Metropolis et al. (1953). It is a simulation tehnique for generating randomsamples from any given probability distribution. The algorithm uses a proposal pdfQ whih depends on the urrent sample of parameters, �(t) at tth iteration (MaKay,1999). Here, we hoose as the proposal density a Gaussian pdf entered on the ur-rent parameters �(t) with the ovariane matrix � of the parameters in the asymptotiapproximation. The optimal parameters estimated from diret optimization of the



110posterior pdf are used as an initial �(t). The expression for Q is:Q(�0j�(t)) = 1(2�)m0=2j�j1=2 exp(�12(�0 � �(t))T��1(�0 � �(t))); (5.17)where j�j is the determinant of the ovariane matrix, and m0 is the dimension ofthe parameter �, whih is m + 1. A andidate sample is drawn from Q(�0j�(t)). Theratio of the posterior pdf in equation 5.9 at the urrent sample �(t)and the andidatesample �0 determines whether to aept the andidate sample, aording to:r = p(�0jDn;M)p(�(t)jDn;M) ; (5.18)
�(t+1) = 8><>:�0 with probabilitymin(1; r);�(t) with probability 1�min(1; r): (5.19)If r � 1 then the andidate is aepted as the next sample in the Markov Chain.Otherwise, the andidate is aepted with probability r as follows; we generate arandom number uniformly distributed between zero and one, and if it is less thanr, the andidate is aepted, that is, �(t+1) = �0. If it is not aepted, the urrentsample is repeated (�(t+1) = �(t)). This proedure is repeated until the desired numberof samples are generated. There is a burn-in period at the beginning of the MCMCmethod until the probability distribution of the urrent sample �(t) is suÆiently loseto the posterior pdf, whih is the stationary pdf of the Markov hain, so judgment isused to disard initial samples.Figure 5.6 shows 5000 parameter samples generated with the Metropolis algorithmfor the optimal seletion of features Za and Hv. This seletion of the ground motionfeatures omes from Bayesian model lass seletion explained later. After disardingthe samples in the burn-in period (taken as the �rst 100 samples), the mean andstandard deviation of the samples are shown in table 5.3. The average aeptaneratio of the andidate samples �0 is 44%, whih indiates the method works well



111(Roberts et al., 1997). The stability of the sample mean and standard deviation ofeah parameter is examined in �gure 5.7. The mean and standard deviation of thesamples onverge after the �rst 1000 samples are added. The most probable values ofthe parameters from maximization of the posterior pdf are also shown in �gure 5.7.Note that the means of the marginal pdf's and the most probable values of the jointposterior pdf need not agree if these pdf's are skewed.The distribution of sample values for parameters � and the resulting histogram ofprobability that a station is near-soure alulated by the generated set of parametersare shown in �gure 5.8. The distribution of parameter samples agrees well with theGaussian distribution de�ned by the optimal parameters and standard deviationsgiven by the asymptoti approximation. The standard deviations of 1 and 2 aresimilar to eah other and the distribution is peaked lose to the mean of the samples.The distribution of samples for the deision boundary onstant d has a standarddeviation almost three times as large as that of 1 and 2. However, in terms ofoeÆient of variation, the unertainty in d is smaller than that of other parameters(11.7% ompared with 14.9% and 15.3% for 1 and 2, respetively).Figure 5.9 shows the orrelation of samples of model parameters generated fromthe simulation. This is the result of the model lass with all parameters orrespondingto the eight ground motion parameters, not the result of the optimal model lass.The �gure shows that the parameter d is not orrelated signi�antly with any otherparameter. The ombinations of parameters whih have signi�ant interation arehorizontal and vertial jerk (1 and 2), horizontal and vertial aeleration (3 and4), and horizontal and vertial displaement (7 and 8). Parameters with the sameomponent and similar frequeny range (e.g., jerk and aeleration (1 and 3, and 2and 4), aeleration and veloity (3 and 5, and 4 and 6), veloity and displaement(5 and 7, and 6 and 8)) are also strongly orrelated. This result agrees with ourintuition; horizontal and vertial omponents of the same quantity are orrelated, andreords with similar frequeny ranges have similar attenuation relationships and soare orrelated.
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Figure 5.6: Samples generated by the Metropolis algorithm plotted in the parameterspae. The x-axis denotes the sample number. The vertial dotted lines indiate theend of the burn-in period (100 samples).
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Figure 5.7: Mean and standard deviation of samples plotted against the number ofsamples inluded (exluding �rst 100 samples). The solid line is the sample mean,and the dashed lines represent the mean plus and minus one standard deviation.The small irle is the most probable values of the model parameters estimated fromoptimization.
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Figure 5.8: Distribution of samples for 3 parameters generated by the Metropolisalgorithm. The Gaussian distributions obtained from the asymptoti approximationare added in the �gure, and �t the histogram well.5.2.3 Comparison between traditional LDA and Bayesian ap-proahParameters for the linear disriminant funtion f(Xij�) = Pmk=1 kxik � d are esti-mated by traditional LDA and by the Bayesian approah with two di�erent tehniquesto haraterize the posterior pdf. The results are shown in table 5.3. The parametersfor LDA are saled suh that the norm of the vetor  = [1; 2℄ is equal to thenorm of the vetor from the asymptoti approximation. Note that the disriminantfuntion f(Xij�) is a linear funtion, so for the traditional LDA, multiplying all kand d by an arbitrary positive onstant does not hange the result of lassi�ation.However, this is not true for the Bayesian approah, where the modulus of f(Xij�)a�ets the probability that a station is near-soure.The estimated parameters are lose for the three methods. The oeÆients fromLDA are within one standard deviation of those from both Bayesian methods, exeptthat 1 from LDA is slightly over one standard deviation from the orresponding meanand most probable values from the Bayesian methods.
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Figure 5.9: Correlation plot of posterior samples of the model parameters generatedby the Metropolis algorithm. The most probable values of the parameters are shownas \x". The numbers in the �gure are the orrelation oeÆient of parameters.For the asymptoti approximation and Metropolis algorithm, the estimates andstandard deviations for the posterior parameter distribution are very lose. If theposterior is a skewed pdf, the mean is not neessarily equal to the most probablevalue (e.g., onsider lognormal distribution), as mentioned before. However, �gure5.8 suggests that the posterior pdf is almost symmetri, and the means of the samplesand the most probable values should show very good agreement. In this ase, theGaussian distribution is a good approximation for the posterior pdf of the parameters.By using the disriminant funtions de�ned by the values of the parameters intable 5.3, we performed a lassi�ation analysis using the whole dataset. The las-si�ation performane for the disriminant funtion from LDA and two Bayesian



115approahes are shown in table 5.5. The results for LDA show 100% of near-souredata and 86% of far-soure data are lassi�ed orretly, and the result of Bayesianapproah shows 78% of near-soure data and 98% of far-soure data are lassi�edorretly. This disriminant funtion is the funtion whih has the smallest predi-tion error. To obtain this funtion, the mislassi�ation of near-soure data and thatof far-soure data are onsidered to be of equal importane. Generally speaking, themislassi�ations of near-soure data is more ritial than that of far-soure data, andwe may want to derease the mislassi�ation rate of near-soure data. This mislas-si�ation rate an be easily ontrolled by hanging the deision boundary onstantd. We also an ontrol this by shifting the near-soure versus far-soure boundary inthe Bayesian approah to orrespond to some other probability than the 1/2 used inthis lassi�ation analysis.Table 5.5: The onfusion matrix for near-soure versus far-soure lassi�ation bythe disriminant funtion obtained from LDA, Bayesian approah with asymptotiapproximation, and Bayesian approah with Metropolis algorithm.Dataset NS/FS Near-soure Far-soureLDA NS 100 (100%) 0 (0%)FS 82 (14%) 513 (86%)Bayesian-Assym. NS 78 (78%) 22 (22%)FS 12 (2%) 583 (98%)Bayesian-MA NS 78 (78%) 22 (22%)FS 12 (2%) 583 (98%)We performed the leave-one-out ross-validation to ompare the mislassi�ationrate between LDA and the Bayesian method with asymptoti approximation. Theidea of this method is to predit the probability of a station from the disriminantfuntion onstruted from the dataset from whih that station is exluded. Thisproess is repeated for all 695 data and the auray of predition is omputed. Theperentage of mislassi�ed data is shown in table 5.6. It shows the predition error ofthe Bayesian approah is muh smaller than that of LDA. In other words, the Bayesianapproah is able to onstrut a more robust disriminant funtion. Therefore, weuse the disriminant funtion obtained from the Bayesian method with asymptoti



116approximation for further analysis.Table 5.6: Results of leave-one-out ross-validation for LDA and Bayesian approah.Method Predition ErrorLDA 82 / 695 (12%)Bayesian approah 36 / 695 (5%)
5.3 Bayesian model lass seletion5.3.1 MethodBayesian model lass seletion determines whih ombination of the eight groundmotion parameters gives the best lassi�ation for the near-soure and far-soure.The essential idea is to �nd the most probable model lass based on data Dn withina set of andidate model lasses Mj, j = 1; :::; J (Bek and Yuen, 2004). ApplyingBayes' theorem, the probability of model lass Mj an be expressed as follows:P (MjjDn;M) = evidene priorp(DnjMj)P (MjjM)p(DnjM)normalizing onstant ; (5.20)where M =fM1;M2; : : : ; MJg : a set of andidate model lasses;J =number of the model lasses:The left-hand side of equation 5.20 is the probability of a partiular model lassMj given the dataset and a set of andidate model lasses. On the right-hand side,p(DnjMj) is the evidene for eah model lass, P (MjjM) is the prior over the an-didate model lasses evaluated for Mj, and p(DnjM) is a normalizing onstant given



117by: p(DnjM) = JXj=1 p(DnjMj)P (MjjM): (5.21)Assuming a uniform prior for the model lass, P (MjjM) in the numerator and de-nominator of equation 5.20 anel. By the total probability theorem, the evidenefor Mj provided by the dataset Dn is given as:p(DnjMj) = Z�j p(Dnj�j;Mj)p(�jjMj)d�j: (5.22)This is simply the integral of the likelihood of the data for a vetor of parametersweighted by its prior probability integrated over the whole parameter set for �j formodel lass Mj.An asymptoti approximation for large sample sizes n an be used to ompute theevidene of the model (Papadimitriou et al., 1997):p(DnjMj) �2�Nj=2p(�̂jjMj)qjHj(�̂j)jOkham fator � p(Dnj�̂j;Mj)likelihood ; (5.23)whereHj(�j) =�rr log[p(Dnj�j;Mj)p(�jjMj)℄;�̂j = optimal parameter vetor (most probable value) for model lass Mj;Nj = number of parameters for model lass Mj:Here, Hj(�j) is given by equation 5.16 for the hoie of parameters �j orrespondingto model lass Mj. p(�̂jjMj) is the prior de�ned in equation 5.10 and p(Dnj�̂j;Mj) isthe likelihood funtion de�ned in equation 5.13, evaluated at the optimal parametervetor for model lass Mj. For the model lass seletion, the e�et of the number ofthe parameters, Nj, in the Gaussian prior is signi�ant if the standard deviation, �,



118is large. However, the prior we hose is not a�eted by this issue (we demonstratethis later).5.3.2 Results of Bayesian model lass seletionWe used Bayesian Model Class Seletion to �nd the best ombination of the eightground motion parameters with the same dataset as the previous lassi�ation prob-lem. First, we impose the ondition that both horizontal and vertial omponentsbe inluded in the model for any seleted ground motion quantity. Under this on-dition, there are four groups of ground motion parameters (peak jerk, aeleration,veloity, and �ltered displaement) giving �fteen possible ombinations. These �fteenandidate model lasses are shown in table 5.7.Table 5.7: Results for Bayesian model lass seletion when �fteen ombinations ofthe ground motion parameters are examined under the ondition that the horizontaland vertial omponents are used together. The most probable value of the deisionboundary parameter orresponding to eah ground-motion parameter is given �rstfor eah model lass. The values for the Okham fator (Ok.), likelihood (like.), andevidene (evi.) of eah model lass are log saled. The last olumn is the posteriorprobability that measures how plausible the model lass is. It is saled suh that thetotal probability of the �fteen model lasses is 100%.model Hj Zj Ha Za Hv Zv Hd Zd d Ok. Like. Evi. P(%)j 1.53 4.30 - - - - - - 23.8 -17 -140 -156 0.0a - - 4.38 4.37 - - - - 21.4 -16 -117 -133 0.0v - - - - 8.57 0.87 - - 16.3 -16 -118 -134 0.0d - - - - - - 2.49 1.44 5.8 -17 -192 -209 0.0ja -2.74 2.04 6.60 2.95 - - - - 20.8 -25 -114 -139 0.0jv 2.57 2.79 - - 7.00 2.00 - - 36.1 -25 -80 -105 32.4jd 3.44 3.43 - - - - 3.48 0.79 33.2 -26 -94 -120 0.0av - - 2.54 4.38 7.01 0.91 - - 29.5 -24 -80 -104 62.1ad - - 4.93 5.02 - - 3.89 0.22 29.4 -25 -82 -106 5.3vd - - - - 12.55 2.30 -3.38 -0.25 20.0 -25 -106 -131 0.0jav 1.36 1.47 1.36 2.28 6.93 1.50 - - 33.8 -33 -78 -111 0.1jad 0.55 0.43 4.35 4.49 - - 3.89 0.27 30.7 -33 -81 -115 0.0jvd 2.72 2.68 - - 6.66 2.91 0.66 -1.12 36.7 -34 -80 -113 0.0avd - - 3.47 4.50 4.58 1.06 1.80 -0.47 30.2 -33 -79 -112 0.0javd 1.40 1.29 2.05 2.49 5.05 2.11 1.69 -1.0 34.3 -41 -78 -119 0.0The results in table 5.7 indiate that the ombination of aeleration and velo-



119ity is the model with highest probability, although the jerk and veloity ombina-tion also has signi�ant probability. The log of prior (p(�̂jjMj)) is simply a fun-tion of Nj and beomes smaller as the number of parameters inreases. The fatorp(�̂jjMj)(2�Nj=2)=qjHj(�̂j)j in equation 5.23 is alled the Okham fator by Gull(Gull, 1988; Bek and Yuen, 2004). It penalizes a more ompliated model and somakes a simpler model preferable. The Okham fator is also shown in table 5.7.Although the oeÆient 2�Nj=2 and qjHj(�̂j)j are inluded in the Okham fator,the e�et of prior p(�̂jjMj) is dominant.The log of the likelihood funtion p(Dnj�̂j;Mj) beomes larger as the number ofthe parameters in the model lass inreases beause a more ompliated model lasswill �t the data better than a less ompliated one. However, the Bayesian modellass seletion automatially aounts for the trade-o� between the omplexity of themodel (e.g., number of parameters) and the �t of the data to �nd a well-balanedmodel (Bek and Yuen, 2004).To examine the possible model lasses further, the onstraint that horizontal andvertial omponents be used together is removed. We test all 255 model lassesreated from the ombinations of 8 parameters. The results for the best �ve modellasses are shown in table 5.8. The sum of the posterior probability of the �ve modellasses is 95% out of all 255 model lasses.Table 5.8: The best �ve model lasses in the Bayesian model lass seletion when 255ombinations of the ground motion parameters are examined. The olumns are inthe same format as in table 5.7.model Hj Zj Ha Za Hv Zv Hd Zd d Ok. Like. Evi. P(%)1 - - - 6.05 7.89 - - - 27.1 -15 -81 -96 80.82 1.91 - - 4.41 8.31 - - - 31.9 -20 -79 -99 6.63 - - 1.86 4.88 7.86 - - - 29.2 -20 -80 -100 2.94 - 1.59 - 4.31 8.02 - - - 29.7 -20 -80 -100 2.55 - 4.43 - - 8.52 - - - 32.2 -16 -84 -100 1.9
Model lass 1, whih has the oeÆients of the vertial aeleration and horizon-tal veloity, is the most probable model within the set of 255 model lasses. The



120disriminant funtion for the most probable model in model lass 1 is:f(Xij�) =6:046 log10 Za + 7:885 log10Hv � 27:091; (5.24)where P (Yi = 1jXi; �) = 11 + e�f(Xij�) ; (5.25)is the probability that station i is near-soure. This result indiates that the amplitudeof high-frequeny omponents is e�etive in lassifying near-soure and far-sourestations. Note that the probability that the station is near-soure is higher, if f islarger.5.3.3 E�et of the hoie of priorIn this setion, we examine the hoie of prior for the parameters in the model lassseletion. As we stated, for the Gaussian prior distribution, the e�et of the numberof parameters, Nj, is signi�ant if the prior standard deviation, �, is large (Lindley,1957; Muto, 2006). We demonstrate this feature by performing model lass seletionwith a Gaussian prior with di�erent values of � and a uniform prior with di�erentwidths of boundary b. The posterior probabilities of the model lass seletions areshown in table 5.9.In the table, we an see the e�et of the prior standard deviation in the Gaussianprior. As we inrease �, it tends to bias the posterior probability toward simplermodels (i.e., models with fewer parameters). For example, the probability of modeljav slightly dereases as � inreases. The small probability of model jv with Gaussianprior (�=10) is aused by the narrow prior range. If � is too small, it restrit the rangeof parameters as shown in table 5.10. Therefore, the hoie of �=100 is reasonablywide enough to �nd the most probable parameters, so we hose it in the Bayesianapproah.For the uniform prior, we are able to hoose the small width of the boundary



121Table 5.9: The posterior probability of the model lass seletion with di�erent typesof prior distribution for parameters. � is the standard deviation for the Gaussiandistribution and jbj is the width of the boundary for the uniform distribution.Model Gaussian prior Uniform prior�=10 �=100 �=1000 jbj <20 jbj <100j 0.0 0.0 0.0 0.0 0.0a 0.0 0.0 0.0 0.0 0.0v 0.0 0.0 0.0 0.0 0.0d 0.0 0.0 0.0 0.0 0.0ja 0.0 0.0 0.0 0.0 0.0jv 7.2 32.4 33.0 31.5 32.9jd 0.0 0.0 0.0 0.0 0.0av 78.9 62.1 61.7 59.0 61.6ad 7.3 5.3 5.3 5.0 5.3vd 0.0 0.0 0.0 0.0 0.0jav 3.3 0.1 0.0 3.0 0.1jad 0.1 0.0 0.0 0.0 0.0jvd 0.1 0.0 0.0 0.3 0.0avd 3.0 0.0 0.0 1.1 0.0javd 0.1 0.0 0.0 0.0 0.0Table 5.10: The estimated parameters from Bayesian approah with di�erent typesof prior distribution for parameters.Prior 1 (Za) 2 (Hv) dGaussian(�=10) 5.522 7.147 24.686Gaussian(�=100) 6.046 7.885 27.091Gaussian(�=1000) 6.053 7.895 27.122Uniform Cases 6.053 7.895 27.122sine the uniform prior does not a�et the most probable parameter if the parameteris inside the boundary. We show the results of model lass seletion of uniform priorwith jbj < 20 and jbj < 100 (jbj < 10 is not wide enough to �nd the most probableparameters). They are almost the same, but the probability of model jav dereases alittle as jbj inreases.We onlude that in this problem, the e�et of the hoie of prior is small. Inother words, the likelihood in equation 5.23 is very peaked and the prior pdf does not



122signi�antly a�et the probability of the model.5.4 Results and disussionWe apply the optimal disriminant funtion from Bayesian approah (in equations5.24 and 5.25) to all the stations in the dataset. Figure 5.10 shows the lassi�ationresults. The distribution of stations with a high probability of being in the near-soure is onsistent with the fault geometry. As mentioned before, the fault modelsthat are used here are those from the soure inversion, and they are not neessarilythe best indiator of near-soure and far-soure stations.To examine the appliation for real-time analysis, the optimal disriminant fun-tion in equations 5.24 and 5.25 is applied to the Chi-Chi earthquake strong motionreords. We generated snapshots of the probability that a station is near-soure from10 to 40 seonds after the beginning of rupture. Peak ground motions used for thislassi�ation analysis are omputed from the observed data every 10 seonds for eahstation and evaluated in the disriminant funtion. The results are shown in �gure5.11. A darker mark at a station in �gure 5.11 indiates that the station is morelikely to be near-soure, and a lighter mark indiates that the station is more likelyto be far-soure.Ten seonds after the rupture initiation, the map shows that stations with highprobability of being in the near-soure are loated near the epienter, and it indiatesthat the rupture area is propagating onentrially. At 20 seonds, the probabilityof being in the near-soure at thirteen stations is omputed to be greater than 50%,but the onentri station distribution makes it diÆult to identify any diretivityof rupture propagation. The average slip veloity is 2 km/s (Ji et al., 2003), andthe rupture front propagates 40 km from the hypoenter at this point. We ansee the North { South harater of the rupture diretion learly after 30 seonds ofrupture. At 40 seonds, the distribution of stations with high near-soure probabilityagrees with the fault surfae projetion, and stations at the near-soure and far-soureboundary have around 50% probability. Even though the fault geometries used for



123the wave inversion are not neessarily the atual extent of the fault, to a �rst-orderapproximation, the lassi�ation results are in good agreement with them.
5.5 SummaryWe presented a methodology to lassify seismi reords into near-soure or far-sourereords as a prelude to estimating fault dimension in an earthquake early warningsystem. Ground motion reords from some past earthquakes are analyzed to �nd alinear funtion that best disriminates near-soure and far-soure reords. Peak valuesof jerk, aeleration, veloity, and displaement are used in a traditional LDA andin a Bayesian approah to �nd the linear ombination of peak values whih providesthe best performane to lassify near-soure and far-soure reords. All methodsgave similar disriminant funtions. We also analyzed whih ombination of groundmotion features had the best performane for lassi�ation using Bayesian model lassseletion, and the best disriminant funtion is:f(Xij�) =6:046 log10 Za + 7:885 log10Hv � 27:091; (5.26)P (Yi = 1jXi; �) = 11 + e�f(Xij�) ; (5.27)where Za and Hv denote the peak values of the vertial aeleration and horizontalveloity, respetively, and P (Yi = 1jXi; �) is the probability that a station is near-soure. This funtion indiates that the amplitude of high-frequeny omponents ise�etive in lassifying near-soure and far-soure stations.The probability that a station is near-soure obtained using this optimal disrim-inant funtion for all the earthquakes shows the extent of the near-soure area quitewell, suggesting that the approah provides a good indiator of near-soure and far-soure stations for real-time analyses. Note that this funtion is onstruted by thetraining dataset with magnitude greater than 6.0, so it only works for large earth-
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(d) 40 seondsFigure 5.11: Snapshots of the probabilities of near-soure for the Chi-Chi earthquake,based on the optimal disriminant funtion from the Bayesian approah. The largeirle is the theoretial rupture front assuming the rupture veloity 2km/s.
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Chapter 6Estimating the Slip on the Faultfrom Low-Frequeny GroundMotion
We developed a methodology to reognize the fault rupture geometry by inorporatingthe harateristis that high-frequeny ground motions have stronger orrelation withthe fault rupture distane. However, it is diÆult to predit the slip on the fault fromhigh-frequeny ground motions, sine the near-soure high-frequeny ground motionssaturate as a funtion of magnitude for large earthquakes. Therefore, we use low-frequeny ground motions to determine the slip on the fault.Low-frequeny ground motion is important in a sense that it allows for the pre-dition of long-period seismi waves and the present value of slip on a rupture allowsfor a probabilisti predition of additional rupture in the near future. Additionally,low-frequeny ground motion inreases exponentially as a funtion of magnitude, andis important to estimate seismi damage.In this hapter, we propose a methodology to determine the slip on the fault thatis ompatible with both the observed low-frequeny motions and also with the rupturegeometry determined from high-frequeny motions. We also reate a methodology topredit the total length of the rupture propagation onditioned on the urrent slipsize.Currently, the displaement data is obtained from the double integration of strongmotion reords, and it is diÆult to remove the linear trend from inertial seismometers



128in real-time analysis (Clinton, 2004). To determine the fault slip in real time, thefuture inorporation of real-time high-sample-rate GPS into early warning systemsmay be quite important.Our method to reognize the slip on the fault in real time also works for tsunamiwarning beause tsunami energy an be estimated by the slip on the fault. It is moree�etive for tsunami warning sine the warning time is generally muh larger thanearthquake early warning.6.1 DataThe strong motion data for Chi-Chi earthquake (September 20, 1999) are used forthis analysis. This is the same dataset as the one in the near-soure versus far-sourelassi�ation analysis, and the data soure is explained in setion 5.1.1.To obtain the real displaement data from strong motion reords, we appliedthe following proedure. First, the DC o�set of the aelerograms is orreted bysubtrating the mean of the pre-event portion. The orreted aelerograms are inte-grated one to obtain the veloity reords. Some veloity reords have a linear trenddue to either tilting, the response of the transduer to strong shaking, or problems inthe analog-to-digital onverter. Therefore, the baseline orretion sheme explainedin setion 5.2.2 is applied to obtain appropriate veloity reords. After time-domainintegration of this orreted veloity, the approximated real displaements will beobtained. If the post-events displaement is not onstant, the oeÆients a1 and a2in equation 5.1 are manually determined so that the post-events veloity is zero. Inthis way, approximated real displaement reords are obtained.This baseline orretion sheme does not neessarily produe the real displaementreords, sine the sheme assumes the baseline shift of the aeleration ours onlyone. Therefore, we ompare the stati displaement measured after the event withthe GPS displaement data. The loation of GPS stations are not the same as thatof strong motion stations, but the displaement of the GPS station whih is thenearest neighbor of the strong motion station is ompared with the displaements
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(a) Stati displaements from GPS reords. GPS sta-tions are shown by open triangles.

(b) Stati displaements from strong motion reords.Strong motion stations are shown by solid triangles.Figure 6.1: Distribution of the stati displaements for the Chi-Chi earthquake (EWomponent). The star symbol denotes the epienter of the earthquake. The retan-gular boxes display the map projetion of the fault geometry proposed by Ji et al.(2003). The distribution of stati displaements omputed from strong motion reordsagrees well with the one from GPS displaements.
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(a) Stati displaements from GPS reords.

(b) Stati displaements from strong motion reords.Figure 6.2: Distribution of the stati displaements for the Chi-Chi earthquake (NSomponent). The symbols are in the same format as in �gure 6.1.
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(a) Stati displaements from GPS reords.

(b) Stati displaements from strong motion reords.Figure 6.3: Distribution of the stati displaements for the Chi-Chi earthquake (UDomponent). The symbols are in the same format as in �gure 6.1.



132obtained from double integration of strong motion reords. Figures 6.1 { 6.3 showthe omparison between the GPS displaement and stati displaement omputedfrom the strong motion reords by applying the baseline orretion sheme. The mapfor GPS displaement shows higher values on the hanging wall sine there are moreGPS stations than strong motion stations on the hanging wall. However, overall,the stati displaement distribution omputed from strong motion reords agrees wellwith the GPS displaement and this suggests that our baseline orretion sheme isreasonable.
6.2 Estimating the slip on the fault from low-frequenyground motion6.2.1 Construting a slip funtion as a funtion of fault dis-taneAagaard et al. (2004) simulated near-soure ground motions for �ve fault geometrieswith di�erent ombinations of fault dip and rake angles. Four of the simulated near-soure peak ground displaements as a funtion of distane from the fault for senarioswith the shallow hypoenter are shown in �gure 6.4. The average slip and fault areafor senarios aross the di�erent fault dip angles are onstant. In �gure 6.4, the valueof maximum ground displaement normalized by the unit average slip is shown onthe vertial axis. The peak ground displaement per unit slip is not signi�antlydi�erent for di�erent fault senarios, exept the displaement for the strike-slip faultsenario (dip angle = 90Æ) is symmetri along the fault line and the displaement forthe thrust fault senario (dip angle = 45Æ, 60Æ, and 75Æ) is asymmetri and reordslarger amplitude on the hanging wall.We �t an analytial funtion to this simulated ground displaement (x) as a fun-tion of fault distane (r). Using a bell-shape funtion x(r) = x(0)=p1 + (�jrj)�, we�nd � and � by minimizing the least-square errors between the simulated near-�eld
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Figure 6.4: A displaement per unit slip as a funtion of fault distane obtained fromground motion simulations (Aagaard et al., 2004). An approximated urve for thestrike-slip fault senario (dip angle = 90Æ) is added in the thik line.ground displaements and the bell-shape funtion. Assuming the ground displaementis proportional to the slip on the fault, the analytial funtion whih approximatesthe simulated ground displaement is:x(r) = 0:7p1 + (0:125jrj)1:55 � slip: (6.1)For the proposed real-time analysis method, we bak projet the reorded dis-plaement data onto the fault line to estimate the size of the slip on the fault. Inthe urrent state-of-the-art seismi network, the seismometer diretly measuring theground displaement, suh as high-sampling GPS, is not as ommon as strong mo-tion seismometer. We obtain the ground displaement by the double integration ofthe strong motion reords or the single integration of the reords of the broadband



134seismometer.The loation of the epienter and the diretion of the fault rupture are assumed tobe estimated from the previous tehnique to reognize a rupture geometry (hapters4 and 5). We de�ne the fault line as a straight line on the epienter oriented inthe diretion of the fault rupture, and the fault distane as the distane betweenthe station and the fault line (see �gure 6.5 as an example of alulating the faultdistane). From equation 6.1, the slip on the fault line when the displaement (x) isreorded at the fault distane (r) is estimated by the following equation:slip = x(r)0:7=p1 + (0:125jrj)1:55 : (6.2)
6.2.2 Estimating the slip on the fault and prediting the ad-ditional rupture extentWe estimated the slip on the fault of the Chi-Chi earthquake from the strong motionreords and ompared with the slip distribution omputed it from the seismi wave-form inversion (Ji et al., 2003). Figure 6.6 shows the slip distribution of the Chi-Chiearthquake (1999) obtained from the seismi waveform inversion (Ji et al., 2003).The solid line in �gure 6.7 shows the ross setion of the slip distribution alongAB whih is idential to the fault line in �gure 6.5. Figure 6.7 also shows the bakprojetion of the observed ground displaement data onto the fault line after 10, 20,and 30 seonds after the origin time. Only the reords of the stations where therupture front arrived are shown in the �gure. From the �gure, we an see the bakprojetion of the displaement reords agrees with the slip distribution obtained fromthe waveform inversion to a �rst-order approximation. There is a large disrepanyat the north end of the fault line (40 km north from the epienter). It shows that themost of the displaement reords underestimate the slip on the fault and one stationwhih signi�antly overestimate the slip on the fault. This is beause there are manystations on the foot wall and few stations on the hanging wall of the fault for the Chi-
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Figure 6.5: A slip on the fault an be obtained by bakprojeting the displaementfrom the strong motion data onto the fault line shown as a thik broken line.

Chi earthquake. Additionally, we use the slip funtion whih �ts to the near-soureground motion simulation for strike-slip fault, while the Chi-Chi earthquake soure isthrust fault and the slip on the fault is signi�antly asymmetri along the fault line.
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Figure 6.6: Slip distribution for the Chi-Chi earthquake proposed by Ji et al. (2003).The model onsists three retangular planes rossing in three dimension. The rosssetion along the fault line AB is shown in �gure 6.76.3 Prediting the probability of the additional rup-ture extentGiven the urrent slip on the fault, what is the probability that the rupture lengthexeeds a ertain number? To answer this question, we reate a methodology topredit the total length of the rupture propagation onditioned on the urrent slip size.Liu-Zeng et al. (2005) onstruted a methodology to generate simple 1-D models ofspatially heterogeneous slip. By using this methodology, we ompute the probabilityof the rupture length (L) onditioned on the urrent slip on the fault (D) in a statistiway.



137

−60 −40 −20 0 20 40 60
0

5

10

15

20

25

Distance from the epicenter (km)

S
lip

 (
m

)

10s (foot)
10s (hang)
20s (foot)
20s (hang)
30s (foot)
30s (hang)
inversion
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144is omputed. We all this length the additional rupture length La, as opposed tothe total rupture length of eah model L. The statistial distribution of additionalrupture length for di�erent urrent slip sizes is shown in �gure 6.15.Figure 6.15 shows a histogram of additional rupture length onditioned on urrentslip on the fault. Here, the bin size of the histogram is 10 km. The �gure shows thatthe rupture with small urrent slip has high probability that the additional rupturelength is small and more likely to terminate in the near future. The 2-D plot of �gure6.15 is shown in �gure 6.16 for later omparison.Next, we try to desribe the probability density for these samples by an analytialfuntion. Using a Gaussian funtion as a kernel funtion (Silverman, 1986), theprobability density an be estimated as a summation of Gaussian distributions. Giventhe samples C = [1; 2; : : : ; n℄, the probability density of the samples an beestimated by:
p(x) = 1�p2� 1n nXi=1 exp �(x� i)22�2 ! ; (6.7)where n is the number of the samples and � is a standard deviation of the kernelfuntion. The � ontrols the smoothness of the estimated density and we found thekernel funtion with onstant � = 10 estimates reasonably smooth distribution toapproximate the original histogram. The estimated probability density is shown in�gure 6.17, whih is a very good approximation of the histogram in �gure 6.16 .The probability density estimated from the Gaussian kernel funtion is very a-urate, but expensive to ompute, sine the funtion (equation 6.7) inludes n expo-nential terms. Therefore, we try to approximate the probability density by using asingle lognormal distribution.Lognormal distribution is a probability distribution of any random variable whoselogarithm is Normally distributed. The lognormal distribution has the probability



145density funtion (pdf): p(x) = 1x�p2�e�(ln x��)2=2�2 : (6.8)The distribution is de�ned by two parameters: mean � and standard deviation �of the variable's logarithm. These two parameters are omputed by �tting mode ofthe distribution (the value of the term that ours the most often) and the probabilitydensity at the mode (peak value of the probability density). The mode of the log-normal distribution is e���2 and the probability density at the mode is 1�p2�e��+�2=2.The omputed � and � for eah slip size D are shown in �gure 6.18. Sine the rela-tionship between � and D seems logarithmi, a logarithmi trendline is added in the�gure. The regression funtion is �(D) = 1:16 ln(D) + 4:94. On the other hand, theparameter � does not show any dependene with D. Therefore, we selet a onstant� = 1:6.The lognormal distribution with parameters whih are best �t to the probabilitydensity is shown in �gure 6.19, whih is a good approximation of the probabilitydensity shown in �gure 6.17. The lognormal distribution with parameters �(D) =1:16 ln(D) + 4:94 and � = 1:6 is also shown in �gure 6.20. The di�erene between�gures 6.19 and 6.20 are very minor, so the equations to ompute the � and � arereasonable and valid for the general ase.Figures 6.21 - 6.24 are enlarged graphs of �gures 6.16 - 6.20. In those �gures, wean see the slope of the approximated lognormal distribution around origin is muhhigher than that of kernel probability density. They also deay slower than that ofprobability density after the peak. However, it is important to express this kernelprobability density with simpler expression for onveniene, and the approximatedlognormal distribution is lose enough to express the kernel probability density.From the probability density of the additional rupture length, we also omputethe probability that the urrent rupture propagates more beyond a threshold valueLthre onditioned on the urrent slip size D. The probabilities for di�erent Lthreare shown in �gure 6.25. The �gure shows for larger D, there is higher probability



146that the additional rupture length exeeds Lthre. Besides, the probability inreasessigni�antly for the D greater than 0.2 m. Therefore, if the slip size is less than0.2 m at the beginning of the rupture, it is diÆult to tell how far the rupture anpropagate. One the slip exeeds 0.4 m, there is higher probability that the ruptureextends to a large event.In summary, the probability density obtained from the simulations with 1-D slipmodels is expressed by:p(x) = 1�p2� 1n nXi=1 exp �(x� i)22�2 ! ; (6.9)where n =number of the samples;i; i = 1; : : : ; n =samples;� =a standard deviation of kernel funtion (= 10):And the probability density funtion for the approximated lognormal distribution is:p(x) = 1x�p2�e�(ln x��)2=2�2 ; (6.10)where �(D) = 1:16 ln(D) + 4:94 and � = 1:6.
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Figure 6.16: Histogram of the additional rupture length (La) as a funtion of urrentslip (D). The bin size of the histogram is 10 km.
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Figure 6.17: Probability density of the additional rupture length (La) as a funtionof urrent slip (D) by the kernel smoothing method.
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Figure 6.19: Probability density of lognormal distribution whih is the approximationof the additional rupture length (La).
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Figure 6.21: Histogram of the additional rupture length (La) as a funtion of urrentslip (D). The bin size of the histogram is 10 km.
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Figure 6.22: Probability density of the additional rupture length (La) as a funtionof urrent slip (D) by the kernel smoothing method.
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Figure 6.23: Probability density of lognormal distribution whih is the approximationof the additional rupture length (La).
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1536.4 SummaryIn this hapter, we propose a methodology to determine the slip on the fault that andpredit the total length of the rupture propagation onditioned on the urrent slip.In order to haraterize a slip on the fault in real time, we onstrut an analytialfuntion to estimate slip on the fault from observations of displaement away fromthe fault by using the result of a ground motion simulation (Aagaard et al., 2004).In real-time analysis, we bak projet the reorded displaement data onto the faultline saled by the analytial funtion to estimate the size of the slip on the fault. Thefault slip makes it possible to predit long-period seismi waves, whih is importantto estimate seismi damage.This urrent size of the slip on the fault is used for a probabilisti predition ofadditional rupture in the near future. We haraterize the distribution of additionalrupture length onditioned on the urrent slip on the fault for the ongoing rupturefrom the simulation with a 1-D slip model. The probability density of additionalrupture length (La) an be approximated by a lognormal distribution onditioned onthe urrent slip size (D).p(LajD) = 1x�p2�e�(lnLa��(D))2=2�2 ; (6.11)where �(D) = 1:16 ln(D) + 4:94 and � = 1:6.The pdf shows the expetation of additional rupture length is longer as the urrentslip size is larger. This means a rupture with large urrent slip is more likely toontinue propagating, and a rupture with small urrent slip tends to terminate shortly.However, the observation is not always the ase: for example, rupture of Chi-Chiearthquake in �gure 6.7 terminates right after the largest slip ours at the north endof the fault. Sine the mehanism of the rupture propagation is very ompliated, itis diÆult to predit the end of a rupture. The model proposed here is rude andmay not agree with these observation ompletely, but the tehnique to generate pdfof additional rupture length from a slip model an apply to other slip models.
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Chapter 7Conlusions
Reently, aording to advanes in data analysis and an inreased publi pereption ofseismi hazards, the topi of early warning has attrated more researh attention fromseismologists and engineers. Earthquake early warning systems ollet seismi datafrom an ourring event, analyze them quikly, and provide estimates for loationand magnitude of the event.Cua and Heaton developed the Virtual Seismologist (VS) method (Cua, 2005;Cua and Heaton, 2006). It is a Bayesian approah to seismi early warning designedfor modern seismi networks, and proposed for small to moderate earthquakes withruptures that an be approximately modeled as a point soure. The VS algorithmuses an envelope attenuation relationship and the predominant frequeny ontentfrom the �rst few seonds after the P-wave arrival. The advantage of the VS methodis its apaity to assimilate di�erent types of information that may be useful to �ndquik and reliable estimates of magnitude and loation (Cua, 2005).In order to onstrut an early warning system for large earthquakes, we hara-terize the rupture extent and the slip on the fault in real time and predit groundmotions at a given site based on the urrent rupture on�guration. Our strategy forlarge earthquakes is as follows:� Charaterize the present rupture extent from high-frequeny ground motions.� Charaterize the present slip on the fault from low-frequeny ground motions.� Predit the �nal rupture extent from the on-going rupture.



155� Estimate the ground motion at a given site based on the present rupture geom-etry.The ground motions at a site ould be di�erent for di�erent earthquakes of thesame magnitude at the same distane, beause of di�erenes in soure mehanisms,path e�et, or site onditions. One of the most ommonly used ground motion param-eters is peak ground aelerations (PGA), and Campbell (1981) found this unertaintyof peak ground aeleration an be modeled using a lognormal distribution. In otherwords, the distribution of the amplitude of ground motions with onstant magnitudeand distane follows a lognormal distribution.The statistial observations of high-frequeny and low-frequeny ground motionsfor large earthquakes show that the near-soure high-frequeny ground motion satu-rates as a funtion of magnitude for large earthquakes, and weakly depends on themagnitude. On the other hand, the low frequeny ground motion has strong orrela-tion with the magnitude of an earthquake.1) Charaterize the present rupture extent from high-frequeny groundmotionsWe propose a new model to simulate high-frequeny motions from earthquakes withlarge fault dimension: the envelope of high-frequeny ground motion from a largeearthquake an be expressed as a root-mean-squared ombination of envelope fun-tions from smaller earthquakes. We parameterize the fault geometry with an epien-ter, a fault strike, and two along-strike rupture lengths, and �nd these parameters byminimizing residual sum of squares of errors between simulation and observed groundmotion envelopes.To provide the information on the spatial extent of rupture geometry, we presenta methodology to estimate the fault dimension of an earthquake in real time by lassi-fying seismi reords into near-soure or far-soure reords. We analyzes peak groundmotions and �nds the funtion that best lassi�es near-soure and far-soure reordsbased on these parameters by Bayesian model lass seletion. This disriminant fun-



156tion is useful to estimate the fault rupture dimension in real time, espeially for largeearthquakes.2) Charaterize the present slip on the fault from low-frequeny groundmotions.In order to haraterize a slip on the fault in real time, we onstrut an analytialfuntion to estimate slip on the fault from observations of displaements away fromthe fault by using the result of a ground motion simulation (Aagaard et al., 2004).In real-time analysis, we bak projet the reorded displaement data onto the faultline saled by the analytial funtion to estimate the size of the slip on the fault. Thefault slip makes it possible to predit long-period seismi waves, whih is importantto estimate seismi damage.3) Predit the �nal rupture extent from the on-going ruptureThis urrent size of the slip on the fault is used for a probabilisti predition ofadditional rupture in the near future. We haraterize the distribution of additionalrupture length as a onditioned on the urrent slip on the fault for the ongoing rupturefrom the simulation with a 1-D slip model. The probability density of additionalrupture length (La) an be approximated by a lognormal distribution onditioned onthe urrent slip size (D):p(LajD) = 1L�p2�e�(lnLa��(D))2=2�2 ; (7.1)where �(D) = 1:16 ln(D) + 4:94 and � = 1:6.4) Estimate the ground motion at a given site based on the present rupturegeometryIn the urrent earthquake early warning system, the ground motion at a given sitean be estimated by the veloity attenuation relationship as a funtion of magnitudeand epientral distane, and multiplying site ampli�ation fators. There are imple-



157mentation issues on this ground motion estimate, sine the ground motion models forlarge earthquakes depends on rupture dimension and slip size, too. We found out thatthe high-frequeny ground motion at a site an be expressed as a root-mean-squaredombination of envelope funtions from smaller earthquakes. However, this modeldoes not work for veloity and displaement estimates sine it relies on the randomphase assumption of high frequeny ground motions. Construting ground motionmodels for low-frequeny ground motions by onsidering the fault distane and slipsize on the fault still remains as future work.
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Appendix AAn Artile in the San FranisoDaily Evening Bulletin
This is an artile about the onept of seismi early warning system in the SanFraniso Daily Evening Bulletin (Cooper, 1868).... we are now obliged to look for some ... means of prognostiating[earthquakes℄ and I wish to suggest the following mode by whih we maymake eletriity the means, perhaps, of saving thousands of lives in aseof the ourrene of more severe shoks than we have yet experiened. Itis well known that those shoks are produed by a wave-motion on thesurfae of the earth, the waves radiating from a enter just as they do inwater when a stone is thrown in. If this enter happens to be far enoughfrom [San Franiso℄, we may be easily noti�ed of the oming wave in timefor all to esape from dangerous buildings before it reahes us...A very simple mehanial ontrivane an be arranged at various pointsfrom 10 to 100 miles from San Franiso, by whih a wave of the earthhigh enough to do damage will start an eletri urrent over the wiresnow radiating from this ity and almost instantaneously ring an alarmbell, whih should be hung in a high tower near the enter of the ity.This bell should be very large, of peuliar sound, and known to everybodyas the earthquake bell. Of ourse, nothing but the distant undulation ofthe surfae of the earth should ring it. This mahinery would be self-



170ating, and not dependent on the telegraph operators, who might notalways retain presene of mind enough to telegraph at the moment ormight sound the alarm too often.Of ourse, there might be shoks the entral fore of whih is too nearthis ity to be thus proteted but that is not likely to our [often℄.
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Appendix BPeak Ground Motion Database
This hapter shows the dataset of the peak value of strong motion reords used inhapters 3 and 5. The summary of the dataset is shown in table B.1. It onsistsof strong motion reords of ten earthquake with magnitude greater than 6.0. TableB.2 is a list of the peak values of the strong motion reords. The jerk, aeleration,veloity and displaement of EW, NS, srss horizontal, UD omponents are shown inthe table.Table B.1: Earthquake data set used for the near-soure (NS) and far-soure (FS)ground motion analysis. The left olumn is the earthquake ID number orrespondingto the next table. Moment magnitude (Mw) is ited from Harvard CMT solution.The de�nition of the near-soure station is a station with fault distane less than 10km. The fault models are used as seletion riteria to lassify near-soure stations.No. Earthquake Mw NS FS Total Fault Model1 Imperial Valley (1979) 6.5 14 20 34 Hartzell and Heaton (1983)2 Loma Prieta (1989) 6.9 8 39 47 Wald et al. (1991)3 Landers (1992) 7.3 1 112 113 Wald and Heaton (1994)4 Northridge (1994) 6.6 17 138 155 Wald et al. (1996)5 Hyogoken-Nanbu (1995) 6.9 4 14 18 Wald (1996)6 Izmit (1999) 7.6 4 13 17 Sekiguhi and Iwata (2002)7 Chi-Chi (1999) 7.6 42 172 214 Ji et al. (2003)8 Denali (2002) 7.8 1 29 30 Tsuboi et al. (2003)9 Park�eld (2004) 6.0 47 28 75 Ji et al. (2004)10 Niigataken-Chuetsu (2004) 6.6 9 58 67 Honda et al. (2005)Total 147 623 770
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Table B.2: Peak values of the strong motion reords for ten earthquakes. The �rst olumn is the earthquake ID numberorresponding to the table B.1, and the sequenial number of the reords. Station ID, Longitude and latitude of the station areshown the next olumn. NF is a binary near-soure and far-soure lassi�ation. NF is 1 if the station is near-soure reord,and 0 if far-soure.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD1-1 0117 �115.56 32.79 1 8205 9305 12406 18129 232 208 311 244 74.7 41.0 85.2 18.1 42.8 16.4 45.8 9.11-2 0286 �115.82 32.95 0 9146 4600 10238 3487 183 108 212 72 8.3 4.6 9.4 1.9 1.5 2.7 3.0 0.61-3 0412 �115.57 32.78 1 6341 6692 9219 3930 174 219 280 99 54.1 52.1 75.2 9.9 27.4 20.3 34.1 7.31-4 0724 �115.51 33.24 0 3040 2267 3792 2623 108 68 128 34 12.3 10.6 16.2 3.7 6.3 5.2 8.1 2.31-5 0931 �115.64 32.72 0 3499 4504 5703 3921 116 140 181 61 20.0 22.6 30.1 7.4 13.7 12.6 18.6 4.41-6 0952 �115.47 32.86 1 14733 23356 27615 24910 375 548 664 478 88.9 57.9 106.1 36.8 58.6 34.8 68.2 13.61-7 0955 �115.43 32.86 1 8585 10490 13555 15260 368 488 611 203 79.8 42.0 90.2 18.0 53.9 20.3 57.6 8.61-8 5028 �115.50 32.83 1 7531 7718 10783 32582 450 326 555 470 101.4 50.6 113.3 27.2 47.9 27.1 55.0 10.11-9 5051 �115.70 32.93 0 4694 3627 5932 5702 199 111 228 156 15.4 16.5 22.5 6.6 10.0 11.2 15.0 5.61-10 5052 �115.86 32.79 0 1808 1438 2310 1062 52 41 67 27 3.8 3.5 5.1 2.6 1.2 1.6 2.0 1.41-11 5053 �115.49 32.67 0 6343 7061 9491 8984 200 270 336 170 20.7 20.9 29.4 5.1 13.4 8.6 16.0 1.71-12 5054 �115.34 32.69 1 52190 70005 87318 104450 763 583 960 435 54.7 45.0 70.8 11.9 15.0 11.9 19.1 3.91-13 5055 �115.38 32.81 1 7440 5644 9338 13115 212 250 328 202 42.9 48.4 64.7 10.2 27.3 28.1 39.2 6.91-14 5056 �115.32 32.96 0 4783 6632 8177 3244 124 138 186 49 12.6 16.3 20.6 3.7 6.7 8.4 10.7 1.71-15 5057 �115.38 32.89 0 8713 10616 13734 8156 210 272 344 113 40.0 43.7 59.2 8.0 23.7 16.7 29.0 5.61-16 5058 �115.59 32.75 0 9937 11116 14910 6417 366 352 508 127 38.7 33.3 51.1 11.9 21.3 17.4 27.5 7.41-17 5059 �115.68 32.71 0 5364 3605 6463 2228 132 111 172 43 14.1 16.1 21.4 4.1 7.3 8.8 11.5 2.41-18 5060 �115.51 32.99 0 5807 6019 8363 8415 231 160 281 156 41.1 32.1 52.1 8.8 14.1 19.9 24.4 3.61-19 5061 �115.52 33.13 0 2201 4005 4570 2506 77 125 147 48 12.9 13.6 18.7 4.0 6.4 10.2 12.0 1.21-20 5066 �115.59 33.36 0 1635 1653 2325 617 127 114 171 37 15.7 12.0 19.7 4.0 2.2 2.5 3.4 1.11-21 5115 �115.37 32.92 0 13584 13619 19235 6673 372 307 483 103 26.5 30.8 40.7 6.4 17.9 13.1 22.2 4.41-22 5155 �115.45 32.77 1 4765 5194 7049 13108 291 311 426 247 94.6 70.2 117.8 28.7 40.8 26.7 48.8 8.41-23 5158 �115.49 32.84 1 15085 19803 24894 99299 447 332 557 1612 106.0 63.1 123.3 63.1 65.1 31.6 72.4 20.31-24 5159 �115.53 32.81 1 19563 16220 25413 24051 426 611 744 352 55.2 54.5 77.6 21.3 34.1 27.6 43.8 12.71-25 5165 �115.54 32.80 1 12918 11963 17606 39181 368 482 606 452 80.3 42.2 90.7 21.5 41.3 12.9 43.3 15.01-26 6604 �115.30 32.42 0 5850 7620 9607 14170 154 163 224 196 19.1 13.1 23.2 7.7 7.4 5.1 9.0 3.31-27 6605 �115.19 32.36 0 9490 16410 18956 13970 231 340 411 149 26.4 34.9 43.8 13.7 14.2 17.2 22.3 8.11-28 6610 �115.10 32.29 0 6900 8620 11041 5380 119 165 203 57 7.2 8.1 10.9 1.4 2.1 1.8 2.8 0.71-29 6616 �115.33 32.65 1 29310 27180 39973 16790 256 319 409 156 22.9 37.5 43.9 6.3 5.3 10.9 12.1 3.51-30 6618 �115.30 32.62 1 26390 41580 49248 149320 230 351 420 889 31.6 28.1 42.3 13.7 10.6 11.5 15.6 7.3
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD1-31 6619 �115.44 32.62 1 36710 17360 40608 27770 435 238 496 328 33.4 21.2 39.6 10.0 8.7 7.2 11.3 2.81-32 6621 �115.24 32.48 0 7620 10090 12644 14940 251 262 363 211 25.4 22.2 33.7 5.7 7.3 8.7 11.3 2.31-33 6622 �115.08 32.57 0 5300 8310 9856 5310 145 184 234 72 8.5 12.4 15.0 3.6 2.6 3.4 4.2 1.61-34 11369 �115.62 33.04 0 2071 3539 4101 8538 74 110 133 84 23.5 23.5 33.2 7.0 15.6 9.9 18.5 2.52-1 47179 �121.64 36.67 0 3608 2357 4310 4162 110 88 141 100 16.1 10.9 19.5 6.9 6.3 6.9 9.3 3.12-2 47189 �121.40 36.75 0 1153 1591 1965 950 71 65 96 58 10.2 9.4 13.9 7.3 2.8 6.1 6.7 4.62-3 47377 �121.90 36.60 0 2037 2581 3288 1601 61 69 92 29 4.8 3.3 5.9 3.2 0.8 0.6 1.0 0.52-4 47379 �121.57 36.97 1 22524 21196 30929 11158 434 427 608 206 33.7 32.0 46.5 14.7 6.8 9.1 11.3 7.32-5 47380 �121.56 36.98 1 10193 8142 13046 14602 316 344 467 273 39.2 33.7 51.7 15.3 10.8 10.3 14.9 6.52-6 47381 �121.54 36.99 0 14190 19671 24255 25708 362 532 643 360 43.9 35.4 56.4 14.8 13.2 7.6 15.2 7.02-7 47459 �121.76 36.91 1 13173 6478 14680 18041 352 267 442 499 55.0 33.1 64.2 15.9 14.2 10.5 17.7 4.72-8 47524 �121.40 36.85 0 3768 6531 7539 6861 175 362 402 193 30.7 63.0 70.1 15.6 23.2 19.6 30.4 7.12-9 57007 �121.80 37.05 1 15571 12030 19677 18973 469 618 776 431 46.1 55.2 71.9 20.7 15.0 8.7 17.3 9.02-10 57064 �121.92 37.53 0 4078 3939 5670 3778 100 118 155 81 8.6 10.8 13.8 9.0 4.5 5.2 6.9 5.52-11 57066 �121.95 37.40 0 4777 4906 6847 5135 158 163 227 82 18.5 31.7 36.7 9.3 9.6 18.3 20.6 5.32-12 57180 �121.95 37.20 1 5559 4562 7192 4238 384 375 537 207 102.5 76.4 127.9 31.1 35.4 23.3 42.4 11.12-13 57191 �121.71 37.34 0 1809 1903 2626 1674 110 128 169 56 14.1 12.7 19.0 9.0 7.3 3.6 8.1 4.62-14 57217 �121.55 37.12 0 16234 6432 17462 3592 471 149 494 71 38.4 15.6 41.4 8.7 10.0 5.8 11.6 4.22-15 57382 �121.52 37.01 0 5170 8427 9886 5989 210 408 459 149 38.3 39.4 54.9 14.9 8.4 10.1 13.1 7.12-16 57383 �121.48 37.03 0 5220 5036 7253 4214 167 112 201 100 13.9 13.1 19.1 9.8 3.5 3.6 5.0 4.42-17 57504 �121.55 37.12 0 4464 5832 7344 3245 175 155 233 92 21.5 12.8 25.1 9.8 7.9 5.4 9.5 4.62-18 57563 �121.80 37.21 0 11210 11547 16093 15433 223 269 350 205 20.9 26.4 33.7 17.1 5.8 15.2 16.3 5.82-19 58043 �122.52 37.82 0 887 1798 2004 407 71 70 100 34 13.7 11.9 18.1 7.4 3.3 3.2 4.6 2.02-20 58133 �122.41 37.80 0 1613 1255 2044 727 91 51 104 32 10.4 7.1 12.5 4.2 4.1 1.9 4.5 1.92-21 58151 �122.39 37.79 0 1635 1994 2578 1027 89 79 118 28 11.5 7.3 13.6 3.8 3.8 2.7 4.7 2.02-22 58219 �122.06 37.66 0 2124 2824 3533 1422 83 73 110 44 7.3 5.6 9.2 4.6 3.8 3.3 5.0 3.32-23 58222 �122.46 37.79 0 3760 2037 4276 1218 195 98 218 56 33.5 13.4 36.0 11.5 7.9 3.6 8.6 3.02-24 58223 �122.40 37.62 0 5907 5387 7994 1959 326 231 399 63 29.1 26.3 39.2 5.5 6.6 5.5 8.6 2.32-25 58233 �122.36 37.53 0 2596 1854 3190 903 85 56 102 31 10.2 5.3 11.4 3.8 3.5 1.4 3.8 1.22-26 58375 �122.23 37.55 0 4326 3586 5619 2779 278 253 375 101 45.2 31.8 55.2 8.3 17.8 7.1 19.2 3.4
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD2-27 58378 �122.31 37.49 0 2456 2467 3481 1419 85 154 175 60 14.1 17.2 22.2 6.2 5.1 5.3 7.4 2.82-28 58471 �122.25 37.88 0 1714 873 1924 502 114 48 124 38 22.0 8.5 23.6 4.3 5.1 2.2 5.6 1.62-29 58505 �122.34 37.94 0 2406 2073 3176 813 104 123 161 30 14.9 17.0 22.7 4.6 3.4 3.3 4.7 1.22-30 68003 �122.80 38.04 0 1983 1938 2773 453 100 158 187 55 16.3 18.6 24.7 6.5 3.4 3.9 5.1 1.32-31 47006 �121.57 36.97 1 17498 12329 21405 8722 349 310 467 153 29.2 22.9 37.1 12.7 7.0 7.5 10.3 7.02-32 47125 �121.95 36.97 1 12366 17513 21439 42672 391 463 606 500 31.5 36.4 48.2 19.0 6.6 10.0 12.0 5.82-33 57425 �121.43 37.03 0 8327 10832 13663 7301 314 206 376 101 16.5 16.5 23.3 5.4 3.7 2.6 4.5 2.82-34 58065 �122.03 37.26 1 10525 12397 16262 19499 316 494 587 353 44.6 41.5 60.9 26.6 27.4 12.2 30.0 13.22-35 58117 �122.37 37.83 0 3620 2437 4363 370 156 98 184 16 33.2 15.6 36.7 1.2 10.2 4.8 11.2 1.22-36 58127 �122.26 37.43 0 1740 1104 2061 865 80 79 113 49 15.2 15.1 21.4 6.6 6.3 6.4 8.9 2.52-37 58130 �122.43 37.74 0 1793 2114 2772 1036 111 96 147 42 14.2 10.5 17.7 6.9 3.4 2.6 4.3 1.92-38 58131 �122.43 37.79 0 721 909 1160 389 60 46 76 31 14.3 9.8 17.3 6.1 4.9 3.1 5.8 2.52-39 58132 �122.51 37.78 0 1109 1011 1500 631 106 73 129 61 21.0 11.4 23.9 7.7 5.2 3.8 6.4 2.02-40 58135 �122.06 37.00 0 12514 16536 20737 17567 402 433 591 325 21.6 21.7 30.7 12.2 6.4 6.8 9.3 7.32-41 58163 �122.36 37.81 0 1480 898 1731 609 66 28 72 27 14.7 4.5 15.4 4.0 3.8 1.7 4.2 1.22-42 58338 �122.23 37.82 0 1315 1745 2185 616 70 81 107 25 9.8 9.1 13.4 2.3 2.9 3.0 4.2 1.52-43 58373 �122.34 37.47 0 1210 1818 2184 1156 86 101 133 36 22.4 13.6 26.2 7.9 7.5 6.2 9.7 2.82-44 58393 �122.08 37.66 0 4110 4539 6123 4818 136 167 215 91 12.6 13.9 18.8 4.0 4.4 3.5 5.6 2.82-45 58498 �122.09 37.67 0 4410 6111 7536 2949 155 153 218 81 11.6 14.4 18.4 4.8 3.7 3.6 5.1 2.62-46 58539 �122.39 37.67 0 1850 2262 2922 1160 57 103 118 31 6.3 8.4 10.5 4.5 1.8 2.7 3.2 1.62-47 58596 �122.14 37.49 0 2054 2607 3319 3222 126 125 177 57 19.1 21.2 28.6 7.2 9.7 8.8 13.1 3.33-1 02 �117.94 33.72 0 979 832 1284 532 61 69 92 14 12.1 15.8 19.9 1.5 3.7 8.2 8.9 0.33-2 03 �118.52 34.21 0 602 568 827 379 35 40 53 16 14.4 16.5 21.9 4.5 8.2 16.8 18.7 2.03-3 04 �118.57 34.36 0 396 392 557 238 32 29 43 19 6.8 4.3 8.0 3.6 5.4 1.7 5.6 1.43-4 06 �118.42 34.22 0 507 615 797 433 26 37 45 20 6.5 16.6 17.9 5.1 2.8 18.6 18.8 2.33-5 07 �118.44 34.22 0 514 453 685 792 38 34 51 22 6.9 7.8 10.4 3.8 2.3 2.7 3.5 0.83-6 08 �118.37 34.24 0 358 360 508 280 23 17 29 12 3.2 2.9 4.3 1.1 0.6 0.6 0.8 0.23-7 12 �118.33 34.17 0 875 930 1277 793 55 62 82 24 6.9 11.2 13.2 4.1 2.4 2.7 3.6 1.13-8 18 �118.37 34.09 0 326 347 476 310 22 15 27 10 3.3 2.4 4.1 1.1 0.9 0.7 1.1 0.23-9 19 �118.09 34.09 0 570 553 794 404 35 48 60 20 11.3 14.3 18.2 6.0 7.8 14.0 16.0 3.2
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD3-10 20 �118.30 34.05 0 396 584 706 249 25 34 42 15 7.3 7.0 10.1 3.1 5.4 1.9 5.7 1.13-11 21 �118.30 34.08 0 696 860 1106 351 31 40 50 15 5.4 3.8 6.6 2.3 1.3 1.1 1.7 0.53-12 22 �118.28 34.01 0 611 582 844 376 30 41 51 16 4.7 6.5 8.0 2.6 1.8 3.3 3.8 0.53-13 23 �118.29 33.98 0 745 750 1058 360 48 57 74 11 11.0 7.1 13.1 1.8 3.6 3.6 5.1 0.63-14 25 �118.23 34.00 0 606 644 885 483 33 35 49 20 8.5 8.6 12.1 2.3 5.6 3.5 6.6 0.63-15 32 �118.19 34.11 0 625 804 1018 401 27 37 46 16 3.9 4.1 5.6 2.5 1.0 1.0 1.4 0.53-16 33 �118.22 34.09 0 451 368 582 196 21 25 33 10 3.7 5.1 6.3 0.9 1.1 1.5 1.9 0.13-17 34 �118.24 34.12 0 631 619 884 450 33 43 54 20 5.1 5.7 7.7 3.1 1.2 1.6 2.0 0.83-18 40 �118.27 33.81 0 285 243 374 253 18 10 20 8 3.1 1.0 3.2 0.8 0.7 0.2 0.7 0.13-19 42 �118.41 33.78 0 201 270 337 223 9 11 14 9 0.6 0.7 1.0 0.7 0.1 0.2 0.2 0.13-20 45 �118.35 33.90 0 185 169 251 291 6 8 10 7 0.4 0.6 0.7 0.4 0.1 0.1 0.1 0.13-21 46 �118.39 33.89 0 407 371 550 295 32 23 40 13 5.0 4.9 7.0 2.2 1.7 2.1 2.7 0.83-22 48 �118.49 34.01 0 266 313 410 192 17 25 30 9 5.8 6.8 8.9 1.7 3.8 4.1 5.6 0.53-23 49 �118.55 34.04 0 268 304 406 152 13 11 17 4 1.3 1.2 1.7 0.6 0.3 0.3 0.4 0.13-24 51 �118.79 34.02 0 263 242 358 189 15 18 24 8 2.6 2.9 3.9 1.0 0.8 0.7 1.1 0.33-25 52 �118.70 34.15 0 229 365 431 221 13 18 22 12 2.2 3.1 3.8 1.3 1.0 0.8 1.3 0.33-26 56 �118.62 34.39 0 293 316 431 234 15 20 25 10 1.7 5.3 5.6 0.7 0.2 2.6 2.7 0.13-27 57 �118.43 34.42 0 258 250 359 483 13 13 19 10 1.7 1.3 2.1 0.8 0.4 0.2 0.5 0.23-28 58 �118.30 34.27 0 430 371 568 377 28 29 41 18 5.1 5.0 7.2 3.1 1.4 1.3 1.9 1.03-29 60 �118.25 34.24 0 538 406 674 517 24 29 38 13 3.0 6.1 6.8 1.7 0.7 1.1 1.3 0.43-30 61 �118.23 34.29 0 812 779 1125 804 24 27 36 16 3.0 3.1 4.4 2.7 0.7 0.9 1.1 1.03-31 62 �118.08 34.39 0 375 335 503 166 22 22 31 8 1.6 2.1 2.6 0.5 0.1 0.3 0.3 0.13-32 63 �118.23 34.20 0 1002 823 1296 859 67 41 79 27 4.6 4.9 6.7 2.1 0.7 1.1 1.3 0.63-33 65 �117.88 34.14 0 708 1211 1403 883 37 60 71 27 5.9 10.6 12.1 3.5 1.4 3.2 3.5 0.83-34 66 �118.02 34.09 0 504 467 687 533 41 34 53 19 12.1 7.0 14.0 4.8 8.5 3.1 9.1 1.33-35 67 �117.94 34.15 0 539 400 672 314 29 17 34 20 3.5 2.8 4.4 3.5 0.9 1.1 1.5 1.33-36 68 �117.87 34.08 0 731 851 1122 684 42 58 72 33 7.9 15.2 17.1 5.8 2.2 4.8 5.3 1.53-37 69 �117.97 34.10 0 310 317 443 370 24 32 40 18 8.6 8.2 11.9 3.8 5.3 5.1 7.3 1.33-38 70 �117.92 34.09 0 978 974 1380 820 45 64 78 28 8.6 15.5 17.7 5.7 2.1 9.4 9.6 2.33-39 71 �117.95 34.06 0 787 698 1052 793 43 52 68 24 16.2 8.9 18.5 5.3 12.9 2.4 13.2 2.3
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD3-40 72 �117.92 34.03 0 591 670 893 440 42 34 54 22 10.7 8.7 13.8 2.9 5.4 4.9 7.3 0.83-41 73 �117.94 33.99 0 874 1051 1367 859 48 45 66 26 6.3 8.3 10.4 3.0 1.6 2.8 3.2 1.13-42 74 �117.97 33.92 0 609 647 888 884 44 39 59 26 9.8 10.3 14.3 2.0 3.0 3.9 5.0 0.73-43 77 �118.09 33.94 0 862 1067 1372 920 50 61 79 24 8.9 6.3 10.9 2.0 4.5 3.2 5.5 0.73-44 78 �118.20 33.90 0 1295 926 1592 674 64 61 88 19 12.9 12.4 17.9 1.2 3.9 5.2 6.5 0.33-45 79 �118.14 33.92 0 501 517 720 427 33 34 48 12 5.9 8.5 10.4 0.7 2.2 4.9 5.4 0.13-46 80 �118.18 33.88 0 1046 760 1293 796 59 48 76 20 11.2 9.6 14.7 1.5 4.6 4.1 6.2 0.43-47 81 �118.24 33.84 0 828 511 973 298 48 50 69 13 10.9 9.7 14.5 1.6 4.1 4.1 5.8 0.53-48 83 �118.04 33.73 0 1056 850 1356 349 59 52 79 12 13.0 9.0 15.8 1.1 4.8 5.2 7.1 0.33-49 84 �118.10 33.85 0 976 1080 1455 701 53 53 75 15 12.5 13.5 18.4 2.0 5.3 6.8 8.6 0.53-50 85 �118.01 33.79 0 682 606 912 141 33 46 57 3 6.8 8.8 11.2 0.2 3.3 4.9 5.9 0.13-51 86 �118.02 33.85 0 779 596 981 346 45 46 64 10 13.2 9.9 16.4 1.1 5.5 4.6 7.2 0.33-52 87 �117.90 33.92 0 604 638 879 668 41 41 58 18 11.6 8.8 14.5 3.2 7.2 5.6 9.1 1.33-53 88 �117.95 33.82 0 743 885 1156 656 37 48 61 17 10.4 11.9 15.8 3.6 3.9 8.0 8.9 1.33-54 89 �117.82 33.73 0 705 902 1145 597 40 40 56 15 12.4 8.1 14.8 3.1 6.6 2.3 7.0 1.13-55 90 �117.82 33.82 0 721 546 905 439 37 28 46 18 8.5 7.8 11.6 3.0 2.9 5.4 6.2 0.93-56 91 �118.36 34.05 0 387 394 553 185 37 26 45 9 15.2 4.8 16.0 1.9 7.8 2.6 8.2 0.73-57 93 �118.04 34.13 0 968 803 1257 723 51 48 70 23 11.8 8.6 14.6 3.6 6.8 3.4 7.6 1.33-58 94 �118.16 33.97 0 824 809 1155 469 46 34 57 14 13.2 4.2 13.9 1.0 4.2 1.4 4.4 0.33-59 95 �118.08 34.17 0 1377 1079 1750 813 60 52 79 27 6.5 6.6 9.2 2.6 1.8 2.3 2.9 0.53-60 99 �118.06 34.13 0 401 343 528 453 27 26 37 16 8.7 6.5 10.9 2.5 6.5 2.9 7.1 0.53-61 0637 �118.48 34.25 0 510 539 742 516 31 28 42 24 7.3 12.3 14.3 6.6 3.5 9.2 9.8 3.03-62 0655 �118.50 34.31 0 570 461 733 485 45 40 60 20 9.1 9.4 13.1 4.6 6.6 7.2 9.8 2.93-63 5068 �116.40 33.82 0 3979 8686 9554 10645 114 99 151 85 18.3 25.1 31.0 13.2 6.0 8.5 10.5 4.83-64 5069 �116.39 33.93 0 6266 6448 8991 6351 204 213 294 103 15.7 21.0 26.2 24.7 5.1 6.3 8.1 3.23-65 5071 �116.58 34.05 0 3377 5844 6750 15840 161 216 270 170 25.3 30.7 39.8 14.1 9.3 10.9 14.4 4.13-66 5072 �116.66 33.99 0 6208 5133 8055 8170 125 124 176 111 10.6 15.4 18.6 8.4 4.5 5.2 6.9 3.13-67 5075 �116.92 34.09 0 4072 4080 5764 8376 87 113 143 81 12.3 17.2 21.1 8.2 6.2 5.8 8.5 1.53-68 5294 �116.22 33.75 0 9972 5864 11568 4716 302 126 327 82 36.4 20.1 41.6 11.9 12.5 6.7 14.2 4.93-69 5295 �116.55 33.93 0 5224 3852 6491 6685 137 137 194 99 30.0 25.5 39.4 21.8 7.5 5.9 9.5 3.9
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD3-70 11591 �115.83 33.42 0 1236 1906 2272 930 56 99 114 46 8.7 12.5 15.2 5.6 5.5 4.9 7.4 2.73-71 11613 �115.91 33.50 0 2006 2502 3207 1717 130 116 174 53 17.6 14.3 22.7 8.0 10.3 7.1 12.5 4.13-72 11625 �115.99 33.56 0 2091 2362 3155 1586 114 115 162 37 18.1 9.7 20.5 6.2 13.4 3.9 14.0 5.03-73 11628 �115.98 33.28 0 4049 3151 5130 1136 122 150 193 23 10.5 12.1 16.0 3.5 5.7 4.3 7.2 1.43-74 12025 �116.50 33.83 0 2761 3537 4487 6873 87 74 115 106 13.8 11.1 17.7 6.7 5.7 5.3 7.8 2.43-75 12026 �116.16 33.72 0 1926 2606 3240 2390 107 102 148 41 15.1 9.5 17.8 6.6 7.5 4.6 8.8 3.63-76 12149 �116.51 33.96 0 3282 5010 5989 6974 151 167 225 164 20.8 19.2 28.3 9.9 8.0 7.9 11.3 3.73-77 12168 �116.68 33.32 0 1931 1928 2729 1833 43 46 63 37 2.0 2.1 2.8 1.7 0.5 0.5 0.7 0.53-78 12331 �116.98 33.73 0 3568 3718 5153 3163 95 80 124 61 5.8 5.5 8.0 2.9 2.2 1.2 2.5 1.23-79 12543 �116.22 33.72 0 2170 3386 4022 2876 85 81 117 53 30.3 13.2 33.1 8.7 18.2 6.6 19.4 4.73-80 12624 �116.28 33.63 0 2127 2194 3056 1919 40 48 62 21 3.9 2.5 4.6 1.9 2.0 1.0 2.2 0.93-81 12626 �116.08 33.43 0 1230 1710 2106 1342 44 44 62 23 4.9 2.7 5.6 2.1 2.1 1.3 2.5 0.83-82 12630 �116.68 33.89 0 4077 6463 7641 4904 48 51 70 39 3.8 2.5 4.6 2.5 2.7 1.2 3.0 1.13-83 13122 �117.71 33.87 0 1388 1217 1846 995 51 50 71 25 4.6 6.9 8.3 2.2 2.2 3.2 3.9 0.93-84 13123 �117.45 33.95 0 1715 1886 2549 2172 40 42 58 39 3.1 3.0 4.3 1.7 1.4 1.4 2.0 0.73-85 14196 �118.28 33.91 0 591 669 893 369 34 42 54 15 10.5 15.6 18.8 4.8 10.3 17.0 19.9 4.63-86 14368 �118.17 33.92 0 727 801 1082 678 39 50 64 16 11.3 18.3 21.5 6.4 8.6 21.4 23.0 4.73-87 14403 �118.26 33.93 0 877 594 1059 400 41 41 58 13 12.1 14.1 18.5 5.3 11.4 16.9 20.4 3.93-88 21081 �115.74 34.56 0 5077 3680 6271 5486 143 113 182 88 20.0 18.4 27.1 10.9 9.7 9.3 13.4 4.03-89 22074 �116.82 34.90 0 4187 4924 6463 7370 240 149 282 133 51.3 29.6 59.3 12.9 36.7 25.2 44.5 5.03-90 22161 �116.01 34.02 0 3267 3890 5080 2613 59 79 98 39 4.8 3.7 6.1 3.2 3.5 2.2 4.2 1.83-91 22170 �116.31 34.13 1 5250 4069 6642 9157 278 268 387 178 42.7 27.2 50.6 15.0 11.8 7.9 14.2 6.23-92 22561 �116.94 34.24 0 5702 6366 8546 6190 162 188 248 79 7.6 14.0 15.9 4.1 3.0 9.9 10.4 1.43-93 23522 �117.29 34.10 0 2810 2815 3978 3740 95 84 126 69 13.2 15.7 20.5 4.7 5.6 7.7 9.6 1.43-94 23525 �117.75 34.06 0 1425 1288 1920 1173 43 66 78 34 8.5 12.8 15.4 2.8 3.6 6.4 7.3 1.23-95 23572 �117.66 34.23 0 1746 1641 2396 2154 42 40 58 30 3.9 7.8 8.7 2.3 2.1 7.4 7.7 2.03-96 23573 �117.54 34.31 0 3168 2998 4361 3743 81 80 113 55 6.5 11.4 13.1 3.4 2.3 7.7 8.0 1.73-97 23583 �117.31 34.41 0 2078 1829 2768 2788 64 58 86 55 12.4 13.1 18.0 5.4 7.2 8.6 11.2 2.93-98 23584 �117.91 34.46 0 1018 1549 1854 1574 38 57 68 29 5.3 5.7 7.8 4.9 3.6 4.5 5.8 1.83-99 23585 �117.73 34.59 0 1517 2194 2667 1132 33 32 46 20 3.2 5.5 6.4 4.9 2.6 4.7 5.4 2.1
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD3-100 23590 �117.74 34.38 0 903 803 1208 1240 38 46 60 28 5.5 10.1 11.5 3.0 3.2 6.6 7.3 1.73-101 23595 �117.98 34.49 0 661 958 1164 1064 24 38 45 23 5.3 6.9 8.7 4.3 3.8 4.8 6.1 2.23-102 23597 �117.52 34.47 0 3663 3364 4973 3870 95 84 127 62 7.6 9.7 12.3 5.2 3.1 7.5 8.1 2.63-103 23598 �117.58 34.17 0 1822 1322 2251 1081 75 66 100 37 8.7 9.6 13.0 3.0 3.5 6.8 7.6 1.53-104 24400 �118.18 34.04 0 1171 947 1506 510 63 42 76 20 7.6 15.5 17.3 4.1 5.6 15.8 16.8 2.93-105 24436 �118.53 34.16 0 696 1353 1521 572 42 65 77 25 5.3 9.4 10.8 2.6 3.0 5.8 6.5 1.13-106 24575 �118.39 34.66 0 1336 1145 1760 774 60 48 77 21 4.7 7.4 8.8 3.4 1.3 2.8 3.1 1.53-107 24577 �116.68 35.27 0 3517 3724 5122 2467 120 111 164 55 16.4 9.5 18.9 5.5 18.3 3.7 18.7 3.53-108 24592 �118.17 34.05 0 1357 1393 1944 785 57 55 79 32 7.4 11.5 13.7 4.2 3.9 11.8 12.4 2.33-109 24605 �118.20 34.06 0 867 982 1310 448 42 40 58 21 6.7 9.5 11.7 3.8 3.4 10.9 11.4 2.43-110 24611 �118.25 34.06 0 588 717 927 395 31 31 43 19 7.0 10.9 13.0 3.9 3.6 9.0 9.7 2.63-111 24612 �118.27 34.04 0 367 414 553 292 34 26 43 17 7.2 10.2 12.5 3.5 6.1 11.8 13.2 2.53-112 32075 �116.07 35.27 0 3703 2946 4732 2565 106 104 148 55 9.4 10.9 14.4 4.9 5.5 6.9 8.9 3.83-113 33083 �117.65 35.00 0 1856 2297 2954 1186 88 117 146 53 9.6 12.8 16.0 5.0 3.8 7.0 8.0 2.74-1 03 �118.52 34.21 1 12835 11220 17048 39102 319 444 547 785 42.9 60.6 74.3 39.1 11.9 20.3 23.5 9.34-2 06 �118.42 34.22 1 7438 9030 11699 16158 430 262 504 279 40.9 23.3 47.0 16.4 8.9 6.7 11.2 4.54-3 09 �118.41 34.19 1 7690 10331 12879 14031 248 296 386 256 31.6 25.2 40.4 11.6 13.0 9.2 16.0 5.44-4 11 �118.11 33.99 0 4254 4656 6306 2962 120 163 203 76 7.8 11.0 13.5 4.3 2.0 2.6 3.3 0.84-5 13 �118.44 34.13 1 11126 10830 15527 11597 477 434 645 313 69.2 57.2 89.8 19.7 11.9 17.7 21.4 5.54-6 14 �118.41 34.13 0 15911 16152 22673 12181 434 577 722 278 27.9 29.8 40.8 23.5 4.2 9.0 10.0 6.54-7 15 �118.48 34.09 1 6320 3685 7316 6510 207 176 272 136 18.3 29.4 34.6 6.8 3.7 6.0 7.0 1.24-8 16 �118.43 34.09 0 5578 5858 8088 9642 257 273 375 158 26.3 17.0 31.3 8.6 5.1 3.4 6.2 1.84-9 17 �118.38 34.11 0 4459 5466 7055 3820 102 156 186 90 11.1 14.5 18.2 4.5 1.4 3.0 3.3 0.74-10 18 �118.37 34.09 0 5436 4703 7188 7161 132 245 278 139 14.0 28.1 31.4 11.8 4.7 5.4 7.2 3.54-11 19 �118.09 34.09 0 6057 6347 8773 3487 234 135 270 65 12.6 9.2 15.6 4.9 2.1 2.3 3.1 1.54-12 20 �118.30 34.05 0 2245 3923 4520 1446 96 167 192 48 14.9 12.2 19.3 5.6 4.9 3.4 5.9 1.34-13 21 �118.30 34.08 0 7055 12743 14566 5899 322 409 521 81 29.8 25.2 39.0 7.3 4.2 4.2 5.9 1.34-14 22 �118.28 34.01 0 7081 5607 9032 3261 246 271 366 97 25.4 19.9 32.3 4.8 3.7 1.8 4.1 1.14-15 32 �118.19 34.11 0 4347 5562 7059 4199 129 155 201 98 11.6 8.4 14.4 5.6 1.9 2.2 3.0 2.04-16 33 �118.22 34.09 0 5518 4046 6842 4108 204 151 254 76 15.4 10.2 18.4 4.4 2.5 2.9 3.8 1.1
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD4-17 34 �118.24 34.12 0 4483 5032 6739 3839 241 167 293 109 25.3 14.7 29.2 10.5 3.0 3.2 4.4 1.94-18 40 �118.27 33.81 0 2779 2251 3577 1327 94 90 130 48 7.3 5.2 9.0 3.3 1.7 1.6 2.3 0.64-19 44 �118.33 33.74 0 2290 2621 3480 1767 121 150 193 72 7.8 10.8 13.3 4.4 1.7 1.4 2.2 0.94-20 45 �118.35 33.90 0 3246 5531 6413 2838 77 140 160 49 11.7 8.9 14.7 4.9 3.2 3.6 4.8 0.94-21 46 �118.39 33.89 0 4198 3356 5374 2450 120 155 196 79 10.6 18.8 21.6 7.1 5.9 2.5 6.4 2.34-22 47 �118.43 33.96 0 2161 2774 3516 2512 68 139 155 51 16.6 15.4 22.6 9.8 8.1 3.5 8.9 3.84-23 49 �118.55 34.04 0 5817 10181 11726 7466 188 438 476 157 14.0 40.4 42.8 15.1 4.0 6.6 7.7 4.44-24 51 �118.79 34.02 0 513 424 666 287 24 18 29 12 3.4 3.3 4.7 1.5 1.0 0.7 1.2 0.54-25 53 �118.61 34.21 1 13331 10048 16694 23192 343 381 513 410 39.7 64.2 75.5 14.4 10.0 16.7 19.5 4.44-26 54 �118.43 34.00 0 13349 15044 20113 4969 324 433 541 101 29.4 22.3 36.9 10.3 7.1 4.1 8.2 4.34-27 55 �118.67 34.26 1 16262 18166 24381 18950 503 713 873 341 46.2 52.3 69.8 13.6 6.3 6.6 9.1 2.84-28 56 �118.62 34.39 1 4140 3427 5375 8492 411 348 539 281 117.2 60.9 132.1 28.9 52.5 19.2 55.9 7.64-29 57 �118.43 34.42 0 18793 10379 21469 8171 447 389 592 280 37.9 43.8 57.9 18.5 9.4 11.3 14.7 6.94-30 58 �118.30 34.27 0 3451 3332 4797 5899 151 127 198 175 16.2 15.7 22.6 9.8 4.7 4.8 6.7 1.94-31 59 �118.30 34.20 0 2785 4973 5700 2971 107 153 186 81 10.7 13.0 16.9 2.8 2.2 2.9 3.6 0.94-32 60 �118.25 34.24 0 6496 4710 8023 4279 201 137 243 104 12.0 11.8 16.8 6.0 2.2 1.7 2.8 1.24-33 61 �118.23 34.29 0 5871 9938 11543 8448 162 242 291 149 11.2 12.3 16.6 5.6 2.4 2.2 3.2 1.34-34 63 �118.23 34.20 0 11234 14486 18332 6145 167 330 370 121 10.9 20.0 22.8 6.9 2.6 5.9 6.5 1.54-35 65 �117.88 34.14 0 1459 2489 2885 1309 45 89 100 46 3.5 5.1 6.2 3.4 0.7 1.2 1.4 0.84-36 66 �118.02 34.09 0 4078 4287 5917 2622 123 155 198 57 11.2 9.6 14.8 2.8 3.6 2.8 4.6 0.84-37 67 �117.94 34.15 0 1933 1239 2296 1288 78 26 83 47 4.8 2.4 5.4 3.2 0.8 0.5 0.9 1.04-38 68 �117.87 34.08 0 1250 1529 1975 1485 71 64 96 55 5.3 6.5 8.3 4.4 1.0 2.2 2.4 1.04-39 69 �117.97 34.10 0 3168 2839 4254 1777 132 92 161 42 7.7 5.6 9.6 2.7 1.6 1.9 2.5 1.44-40 70 �117.92 34.09 0 1754 2366 2945 1955 80 100 128 43 8.2 4.8 9.5 4.1 2.2 1.2 2.5 1.74-41 71 �117.95 34.06 0 1859 1667 2497 2376 64 62 89 43 4.6 7.3 8.6 3.6 1.4 1.6 2.1 0.84-42 72 �117.92 34.03 0 2126 1967 2897 1209 114 92 147 45 8.4 8.0 11.6 4.1 1.1 2.0 2.2 0.84-43 73 �117.94 33.99 0 1572 1969 2519 1267 47 74 88 38 6.3 6.0 8.7 2.6 1.4 1.5 2.0 0.64-44 74 �117.97 33.92 0 4175 2142 4693 1480 198 105 224 57 10.2 9.9 14.2 2.6 1.9 1.6 2.5 0.64-45 75 �118.03 34.02 0 1193 1540 1947 594 43 73 85 22 3.1 7.0 7.7 2.0 0.7 1.2 1.4 0.34-46 77 �118.09 33.94 0 4045 3955 5657 2186 129 131 184 51 10.2 8.4 13.2 3.2 3.5 2.1 4.0 0.5
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD4-47 78 �118.20 33.90 0 4570 2816 5368 1604 117 82 142 41 9.4 7.8 12.2 4.0 2.8 2.3 3.6 0.84-48 79 �118.14 33.92 0 3430 3313 4769 2669 139 156 209 54 10.3 10.2 14.4 5.2 2.2 2.2 3.1 1.24-49 81 �118.24 33.84 0 3027 3944 4972 2212 85 85 120 41 8.4 7.6 11.3 2.2 2.4 1.5 2.9 0.74-50 82 �118.27 33.74 0 3576 5118 6244 1145 145 179 230 49 14.5 14.9 20.8 3.5 2.5 2.8 3.7 1.84-51 83 �118.04 33.73 0 2266 2077 3074 777 74 87 114 18 7.7 6.1 9.9 1.6 1.6 2.0 2.6 0.34-52 84 �118.10 33.85 0 3668 5094 6277 3823 119 129 176 61 9.8 12.0 15.5 2.8 2.3 1.9 3.0 0.64-53 86 �118.02 33.85 0 4545 2548 5211 892 147 92 173 29 11.1 8.9 14.2 1.9 1.8 2.0 2.7 0.74-54 87 �117.90 33.92 0 2210 2093 3044 1255 100 95 138 37 6.8 5.9 9.0 3.2 1.7 1.0 2.0 0.54-55 88 �117.95 33.82 0 1648 1822 2457 1230 65 72 97 40 6.9 6.4 9.4 2.3 1.7 1.3 2.1 0.54-56 89 �117.82 33.73 0 1828 1664 2472 1199 66 70 96 24 4.8 4.1 6.3 2.2 1.5 0.9 1.7 0.54-57 90 �117.82 33.82 0 1243 1144 1689 715 43 37 57 27 3.7 2.4 4.4 2.0 1.3 0.8 1.5 0.54-58 91 �118.36 34.05 0 11558 8323 14243 2954 420 433 604 98 43.4 38.0 57.6 8.4 6.2 7.0 9.3 1.64-59 93 �118.04 34.13 0 3213 3347 4639 2758 112 87 142 52 9.0 6.7 11.2 3.6 2.2 2.6 3.4 0.94-60 94 �118.16 33.97 0 2685 2823 3896 1748 62 98 116 51 8.4 7.3 11.1 4.3 1.8 1.7 2.5 1.14-61 95 �118.08 34.17 0 6358 4901 8028 4834 186 256 316 145 12.8 13.4 18.5 8.3 2.9 2.5 3.8 2.84-62 96 �118.29 34.02 0 2771 4766 5513 4594 63 131 145 229 7.8 10.7 13.2 20.0 1.8 2.3 3.0 3.94-63 99 �118.06 34.13 0 3456 2394 4204 2623 90 88 126 83 8.0 8.7 11.8 4.6 1.6 1.9 2.5 1.24-64 0141 �118.30 34.12 0 13053 8551 15604 8070 282 163 326 137 29.8 13.5 32.7 10.2 3.7 2.2 4.3 1.84-65 0634 �118.07 33.92 0 2111 1962 2882 2120 55 86 102 45 7.9 8.1 11.3 3.7 3.5 2.7 4.4 1.84-66 0638 �118.46 34.06 0 3732 4328 5715 10683 162 184 245 136 19.0 21.5 28.7 8.4 6.8 5.2 8.6 2.54-67 0757 �118.48 34.10 1 24208 9299 25932 15391 455 258 523 155 31.3 25.8 40.5 8.0 4.6 5.1 6.8 1.74-68 5030 �117.99 34.52 0 4786 7068 8536 3177 121 163 203 78 11.3 8.6 14.2 5.7 2.6 1.6 3.0 1.54-69 5080 �118.69 34.08 0 11108 16413 19819 13671 161 180 242 121 10.9 10.2 14.9 5.9 2.4 4.0 4.6 1.94-70 5081 �118.60 34.08 0 7303 12992 14904 17248 192 327 379 189 12.7 15.9 20.4 8.9 2.2 4.9 5.3 2.74-71 5082 �118.45 34.05 0 9170 11619 14801 10282 250 252 355 160 36.2 20.3 41.5 10.5 9.5 5.5 11.0 3.84-72 5106 �118.12 33.78 0 1968 1756 2637 1601 67 63 92 32 8.7 5.9 10.5 5.5 3.1 1.7 3.5 1.74-73 5108 �118.71 34.23 1 13045 11179 17180 13929 279 228 360 148 17.5 17.6 24.8 13.7 4.6 6.9 8.2 2.74-74 5129 �118.16 34.00 0 4342 6570 7875 3543 154 260 302 82 13.2 19.4 23.5 5.7 3.9 2.1 4.5 1.54-75 5243 �118.38 33.90 0 4326 5675 7135 3625 120 185 220 84 12.6 14.3 19.1 7.0 5.1 2.9 5.9 2.14-76 5288 �118.02 33.70 0 3100 2956 4284 878 110 117 161 20 16.4 10.6 19.5 4.5 2.5 3.1 3.9 1.1
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD4-77 5296 �118.13 34.14 0 6712 6605 9417 5290 143 161 215 103 10.0 13.4 16.7 5.6 2.7 2.1 3.4 1.74-78 5466 �117.84 33.68 0 2146 1902 2867 1409 102 68 123 32 9.4 7.8 12.3 2.5 2.1 1.5 2.6 0.94-79 12673 �116.96 33.79 0 661 1980 2087 1689 22 97 100 79 3.7 7.6 8.5 8.1 1.2 1.9 2.2 1.64-80 13122 �117.71 33.87 0 2726 1028 2913 2506 98 24 101 102 5.8 1.6 6.0 7.6 0.4 0.2 0.5 0.84-81 13123 �117.45 33.95 0 1937 726 2068 1746 58 21 61 62 2.7 2.3 3.5 3.1 0.3 0.5 0.6 0.54-82 13160 �117.90 33.63 0 1465 313 1498 999 60 17 62 40 5.2 2.3 5.6 4.3 1.8 0.8 1.9 1.94-83 13197 �118.00 33.66 0 1288 1233 1783 1930 68 18 71 89 5.7 2.3 6.2 5.4 1.5 0.8 1.7 1.54-84 13610 �117.93 33.62 0 1579 513 1660 1783 79 19 82 103 7.3 2.1 7.6 7.1 2.4 0.9 2.5 1.94-85 13660 �117.02 33.73 0 696 838 1090 978 27 45 52 63 2.0 4.7 5.1 4.5 0.2 0.6 0.6 0.64-86 14159 �118.31 33.72 0 2133 1682 2716 2199 93 69 116 99 6.6 2.9 7.2 5.5 1.1 0.3 1.1 0.54-87 14196 �118.28 33.91 0 2905 2283 3694 4212 99 54 113 89 10.2 2.7 10.6 7.0 3.1 1.1 3.2 2.14-88 14242 �118.19 33.84 0 2415 2110 3207 1979 68 38 78 63 8.1 2.6 8.6 4.8 2.8 1.1 3.0 2.14-89 14368 �118.17 33.92 0 7720 7178 10541 5366 174 129 216 218 9.9 3.5 10.5 12.7 3.5 1.2 3.7 1.94-90 14403 �118.26 33.93 0 4984 2403 5533 4381 194 56 202 139 15.8 2.7 16.0 13.2 3.6 1.4 3.8 3.24-91 14404 �118.40 33.75 0 1363 1822 2275 1308 53 42 68 71 3.4 1.8 3.8 5.0 0.9 0.4 1.0 0.74-92 14405 �118.36 33.79 0 2659 1069 2865 2184 113 40 120 104 8.8 2.0 9.1 5.7 1.2 0.5 1.3 0.94-93 14560 �118.20 33.77 0 1220 810 1464 1929 36 22 42 50 4.9 2.1 5.3 4.0 1.6 0.6 1.7 1.34-94 14578 �118.08 33.76 0 1822 2825 3361 2093 36 82 90 60 2.1 6.9 7.2 5.7 1.4 2.2 2.6 2.14-95 23497 �117.57 34.10 0 1586 1101 1931 2016 45 32 55 71 3.2 2.0 3.8 3.8 0.7 0.3 0.7 0.54-96 23542 �117.29 34.07 0 1850 1155 2181 1657 94 43 103 83 6.5 2.6 7.0 5.9 1.1 0.5 1.2 1.04-97 23572 �117.66 34.23 0 2764 1549 3168 2852 68 36 77 78 4.3 2.2 4.8 3.8 0.3 0.4 0.5 0.64-98 23573 �117.54 34.31 0 1246 903 1538 1430 41 21 46 41 3.2 1.3 3.4 2.9 0.6 0.2 0.6 0.54-99 23574 �117.66 34.37 0 2510 1892 3143 1548 59 33 67 46 3.7 2.0 4.2 3.7 0.5 0.2 0.5 0.44-100 23590 �117.74 34.38 0 776 1032 1291 1151 36 33 49 55 3.5 2.9 4.5 5.0 0.9 0.3 0.9 0.74-101 23595 �117.98 34.49 0 1693 1880 2530 1429 59 35 69 71 6.3 2.2 6.7 6.0 1.5 0.5 1.6 1.34-102 23597 �117.52 34.47 0 1575 1037 1886 1391 56 35 66 46 4.0 2.3 4.6 5.0 1.3 0.5 1.4 1.04-103 23598 �117.58 34.17 0 1409 744 1593 1796 50 25 56 70 5.8 2.2 6.3 4.1 0.6 0.4 0.7 0.54-104 23672 �117.32 34.18 0 569 1968 2049 1025 20 67 70 33 1.5 4.0 4.3 2.8 0.3 0.7 0.8 0.34-105 24047 �118.33 34.49 0 6138 2616 6672 6888 137 84 161 148 12.4 6.7 14.1 18.3 2.8 1.5 3.2 2.64-106 24055 �118.24 34.60 0 3496 3944 5270 2325 90 95 131 144 10.4 11.5 15.5 14.9 3.0 2.1 3.6 2.4
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD4-107 24087 �118.44 34.24 1 9328 30716 32101 8898 337 541 638 302 39.4 17.4 43.0 22.7 8.7 6.9 11.1 9.74-108 24088 �118.38 34.29 1 5176 7079 8769 8025 295 177 344 424 31.1 14.1 34.1 50.8 10.9 4.7 11.9 8.74-109 24092 �118.21 34.87 0 1098 854 1391 2234 39 23 45 74 3.5 1.4 3.7 4.6 0.8 0.3 0.9 0.44-110 24157 �118.36 34.01 0 7403 3538 8205 7660 234 89 251 164 14.9 8.4 17.1 17.3 6.2 3.3 7.0 5.44-111 24207 �118.40 34.33 1 59557 58000 83133 59156 1205 1554 1966 1260 49.1 54.5 73.3 104.0 7.8 6.3 10.0 16.74-112 24207 �118.40 34.33 1 18936 6362 19976 13751 407 180 445 426 44.8 16.2 47.6 30.7 5.9 2.6 6.5 5.04-113 24271 �118.43 34.67 0 2089 3239 3854 2300 75 97 123 85 9.5 7.0 11.8 9.4 2.8 2.7 3.9 3.34-114 24272 �118.56 34.61 0 6930 6123 9247 5008 221 78 235 155 13.5 3.6 14.0 8.7 2.9 3.1 4.3 4.24-115 24278 �118.64 34.56 0 17168 6496 18356 9424 557 213 596 504 51.8 12.3 53.3 52.1 11.1 4.6 12.0 13.74-116 24279 �118.53 34.39 1 19864 16952 26114 14717 572 537 785 578 74.7 30.7 80.8 95.6 19.2 10.5 21.9 25.94-117 24283 �118.88 34.29 0 5273 8347 9873 4745 143 286 320 189 6.6 20.5 21.5 20.0 3.1 5.0 5.9 3.94-118 24303 �118.34 34.09 0 8987 10501 13822 12154 227 139 266 381 18.3 9.8 20.8 22.2 4.8 2.6 5.4 3.54-119 24305 �118.24 34.59 0 2157 2284 3142 3067 72 49 87 87 7.1 6.8 9.8 7.8 1.7 1.8 2.5 1.54-120 24306 �118.24 34.60 0 2159 1440 2595 2716 62 57 84 89 7.2 7.1 10.1 7.5 2.0 1.9 2.8 1.54-121 24307 �118.24 34.60 0 2004 1988 2823 2693 104 50 115 83 8.1 6.9 10.6 8.5 1.9 1.8 2.6 1.94-122 24308 �118.24 34.60 0 2380 1363 2743 1670 56 47 73 78 8.0 7.9 11.2 8.6 2.2 1.9 2.8 1.84-123 24309 �118.24 34.60 0 5210 2544 5797 3601 174 61 185 128 14.3 8.2 16.5 9.9 2.1 1.5 2.6 1.24-124 24310 �118.36 34.76 0 1949 1583 2511 1133 67 28 73 45 4.3 3.6 5.5 3.4 2.1 2.2 3.0 2.54-125 24389 �118.42 34.06 0 6649 7232 9824 5931 251 113 275 217 20.9 8.7 22.7 25.1 6.2 2.8 6.8 5.84-126 24396 �118.80 34.01 0 3051 3753 4836 2814 127 85 153 92 8.4 4.3 9.4 9.2 2.0 1.0 2.2 2.04-127 24399 �118.06 34.22 0 4811 3792 6126 6265 131 87 157 229 5.4 2.9 6.2 7.6 0.5 0.6 0.8 0.74-128 24400 �118.18 34.04 0 11754 4498 12585 13785 348 110 365 400 14.6 4.3 15.2 30.8 4.4 1.6 4.6 2.74-129 24401 �118.13 34.12 0 4414 3796 5822 7406 122 88 151 148 7.9 3.8 8.8 6.6 1.1 0.7 1.3 1.14-130 24436 �118.53 34.16 1 74693 41614 85503 51510 1745 1028 2025 971 109.7 72.5 131.5 77.9 21.5 17.5 27.7 24.84-131 24461 �118.15 34.07 0 3486 1546 3813 2869 99 45 109 78 10.9 4.2 11.7 4.9 2.4 1.2 2.7 1.64-132 24469 �118.48 34.65 0 3566 2914 4605 2331 82 52 97 56 6.2 4.1 7.4 6.5 1.9 2.7 3.3 3.24-133 24475 �118.21 34.74 0 1479 2232 2678 2185 63 47 78 80 5.3 4.0 6.6 7.0 1.3 0.8 1.5 1.44-134 24514 �118.44 34.33 1 12925 25450 28544 31897 593 525 792 827 77.4 19.1 79.7 128.9 19.9 7.6 21.3 35.34-135 24521 �118.14 34.58 0 2772 1685 3244 2579 65 40 77 60 8.4 4.0 9.3 7.4 1.8 1.3 2.2 2.14-136 24523 �118.48 34.65 0 2877 1665 3324 945 62 41 74 36 5.3 3.7 6.5 3.1 2.0 3.0 3.6 2.1
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD4-137 24538 �118.49 34.01 0 28643 10815 30617 14973 866 228 895 363 41.0 14.2 43.4 25.1 13.2 4.5 13.9 8.24-138 24575 �118.39 34.66 0 4043 4085 5747 4175 112 48 122 152 8.1 4.6 9.3 7.3 1.9 2.3 3.0 2.14-139 24576 �118.20 34.58 0 2035 2804 3465 908 59 43 73 43 5.5 4.7 7.2 3.9 1.2 1.3 1.8 1.04-140 24586 �118.54 34.85 0 660 1863 1976 914 68 46 82 55 13.1 7.2 14.9 9.9 6.5 3.8 7.6 5.64-141 24592 �118.17 34.05 0 14568 5977 15747 8899 310 132 337 258 14.0 7.6 15.9 12.8 2.3 1.6 2.8 3.14-142 24605 �118.20 34.06 0 5328 10839 12078 7971 117 483 497 210 6.4 31.1 31.7 10.7 1.3 2.5 2.8 2.64-143 24607 �118.56 34.57 0 10635 8104 13371 6284 253 115 278 171 11.9 4.5 12.7 11.8 5.4 3.8 6.6 3.74-144 24611 �118.25 34.06 0 6159 4964 7910 4894 180 95 204 124 20.0 4.6 20.5 13.9 2.7 1.3 3.0 3.44-145 24612 �118.27 34.04 0 3611 2507 4396 3745 183 64 193 101 14.2 5.3 15.2 12.2 2.2 1.6 2.7 3.64-146 24644 �118.72 34.74 0 1474 1613 2185 1296 97 43 106 89 8.8 6.4 10.9 12.2 4.1 3.5 5.4 3.54-147 24688 �118.44 34.07 0 11286 8397 14067 20131 272 261 377 465 21.8 9.6 23.8 22.2 3.6 3.3 4.9 6.44-148 25091 �119.85 34.42 0 1209 1086 1625 2094 68 38 78 76 6.7 3.0 7.3 7.0 1.6 0.7 1.8 1.64-149 25147 �119.12 34.11 0 4102 2341 4723 5339 141 63 154 174 16.2 4.3 16.7 13.1 2.7 1.0 2.8 2.14-150 25148 �119.07 34.11 0 4806 3190 5768 3296 219 66 228 132 19.0 3.3 19.3 10.2 1.9 0.5 2.0 1.44-151 25281 �119.21 34.15 0 1766 2665 3197 2221 36 84 92 101 4.6 9.6 10.7 11.3 2.3 5.4 5.9 6.54-152 25282 �119.08 34.21 0 2690 2525 3690 2066 122 48 131 118 10.8 4.9 11.9 11.7 3.8 1.2 4.0 2.94-153 25340 �119.29 34.28 0 961 581 1123 1276 53 25 58 74 7.9 5.1 9.4 12.0 2.4 2.9 3.8 3.14-154 34093 �118.18 35.07 0 1156 1207 1671 847 52 26 58 37 4.0 1.8 4.4 4.5 0.4 0.3 0.5 0.74-155 34237 �118.38 35.04 0 1407 1193 1845 1524 58 25 63 49 3.4 2.0 3.9 3.1 0.4 0.5 0.6 0.55-1 ABN 135.52 34.64 0 7228 6557 9759 12711 226 213 310 115 24.8 21.3 32.6 6.2 7.9 9.2 12.1 2.65-2 CHY 135.66 34.44 0 5982 3998 7195 5188 108 91 141 76 4.9 5.2 7.1 2.4 1.0 2.0 2.3 0.95-3 FKS 135.47 34.69 0 7485 3114 8106 12772 211 179 276 191 29.8 31.0 43.0 9.6 13.2 15.5 20.3 5.05-4 MRG 135.57 34.68 0 7851 7228 10672 9499 125 210 244 162 24.6 27.0 36.6 6.1 9.6 10.8 14.4 2.75-5 SKI 135.47 34.56 0 18156 6178 19178 6459 182 149 235 95 15.7 15.9 22.3 6.6 8.0 10.8 13.4 3.55-6 TDO 135.41 34.48 0 6520 8523 10731 10757 190 290 347 129 14.7 24.4 28.5 5.9 8.6 6.9 11.1 2.55-7 YAE 135.61 34.68 0 2167 2136 3043 6806 144 154 211 128 21.8 21.2 30.4 7.0 9.2 9.3 13.1 3.45-8 aida 134.17 34.94 0 879 508 1016 673 36 20 42 30 2.4 - 3.4 1.6 1.8 - 2.5 1.15-9 awaj 134.91 34.34 0 2909 7418 7968 1501 162 200 257 53 11.7 - 16.5 5.9 3.3 - 4.7 3.65-10 hegu 135.68 34.65 0 643 546 843 398 20 21 29 13 2.5 - 3.6 1.9 2.4 - 3.4 1.25-11 kak 134.84 34.76 0 9631 8818 13058 8068 318 235 395 168 27.5 20.4 34.2 10.2 9.6 6.2 11.4 3.2
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD5-12 kob 135.18 34.69 1 9028 14150 16785 10431 617 818 1025 332 75.8 92.4 119.5 40.6 18.6 18.0 25.8 10.65-13 koya 135.59 34.22 0 1520 1175 1921 620 46 50 68 21 2.7 2.9 4.0 1.8 1.6 2.9 3.3 1.45-14 nis 134.96 34.66 1 11392 11182 15963 11811 455 474 657 380 41.8 44.3 60.9 24.1 14.2 10.6 17.7 6.15-15 osa 135.52 34.68 0 1444 1141 1840 2343 66 81 104 65 65.9 80.9 104.3 64.5 8.0 8.6 11.7 3.15-16 tat 135.14 34.65 1 21608 14120 25812 14402 657 606 893 279 122.0 122.7 173.0 20.5 31.4 34.9 47.0 6.85-17 taz 135.34 34.81 1 18990 11646 22277 16572 601 684 910 418 88.8 66.7 111.1 33.8 16.7 23.5 28.9 8.35-18 wah 135.40 35.28 0 278 561 626 296 21 16 26 14 3.0 - 4.3 3.1 1.3 - 1.9 2.16-1 ATS 28.69 40.98 0 3748 5237 6440 4199 186 253 314 80 35.3 37.6 51.6 10.7 19.2 27.2 33.3 8.56-2 BRS 29.13 40.18 0 733 834 1110 1005 53 44 69 25 9.5 8.6 12.8 6.9 6.2 3.9 7.3 4.26-3 BTS 27.98 40.99 0 2918 2087 3587 623 99 87 132 24 11.7 11.2 16.2 4.0 3.8 9.3 10.0 3.66-4 CNA 28.76 41.02 0 3955 5139 6485 3064 132 177 221 58 10.3 16.8 19.7 7.3 4.4 12.0 12.8 5.16-5 FAT 28.95 41.02 0 10559 14307 17782 15881 162 190 249 132 15.2 18.9 24.3 8.8 8.8 11.7 14.6 6.76-6 IST 29.09 41.08 0 1782 1175 2135 1328 59 42 73 35 9.6 7.7 12.2 5.8 7.7 5.3 9.3 5.76-7 KMP 28.93 41.00 0 4150 4358 6018 4224 128 107 167 83 14.3 18.4 23.2 10.2 10.2 10.3 14.5 6.16-8 SKR 30.38 40.74 1 - 28717 40612 20561 - 399 564 254 - 80.2 113.5 42.6 - 61.9 87.5 23.26-9 TKR 27.52 40.98 0 721 745 1036 263 32 33 46 10 5.8 3.2 6.7 1.3 4.8 1.9 5.2 0.66-10 YKP 29.01 41.08 0 1086 964 1453 964 36 41 54 27 7.2 9.2 11.7 6.1 3.9 7.0 8.1 5.96-11 YPT 29.76 40.76 1 10010 8081 12865 17065 230 322 396 241 88.4 88.3 124.9 31.7 55.7 52.4 76.5 20.96-12 ek 28.70 40.97 0 2496 3092 3973 2476 88 115 145 49 15.0 11.9 19.2 5.5 8.3 8.3 11.8 4.06-13 erg 27.79 40.98 0 2770 2159 3512 1745 99 88 132 55 13.2 14.1 19.3 7.1 4.6 8.5 9.6 5.46-14 gbz 29.44 40.82 1 8095 9169 12231 20366 141 262 297 192 47.2 44.4 64.8 33.0 34.3 44.1 55.9 8.96-15 gyn 30.73 40.39 0 8175 8048 11472 10192 117 136 179 128 14.3 13.1 19.4 17.3 6.1 5.1 7.9 11.96-16 izn 29.69 40.44 0 3510 5282 6341 7452 121 90 151 80 28.0 23.3 36.4 7.7 17.6 10.7 20.6 5.26-17 izt 29.96 40.79 1 11082 9150 14371 13825 222 166 277 145 58.9 35.5 68.7 15.0 21.5 14.7 26.0 10.77-1 C002 120.41 23.72 0 2168 3424 4053 5667 108 135 173 96 43.2 56.0 70.8 17.8 38.7 57.5 69.3 16.87-2 C004 120.17 23.60 0 2138 1974 2910 2452 95 93 133 39 21.6 14.7 26.1 6.0 15.5 13.5 20.6 4.97-3 C006 120.55 23.58 1 8583 8464 12054 12905 348 351 495 211 60.0 42.8 73.7 21.7 25.5 14.5 29.3 12.47-4 C008 120.27 23.49 0 3768 3125 4896 4441 126 117 172 72 30.6 23.3 38.4 11.6 17.6 14.5 22.8 9.47-5 C010 120.54 23.47 0 6879 6490 9457 10482 221 171 279 139 18.6 24.4 30.7 10.2 5.0 9.1 10.4 6.07-6 C012 120.15 23.33 0 1256 1525 1976 987 52 61 80 29 12.6 15.0 19.6 9.1 9.6 12.1 15.4 7.8
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD7-7 C014 120.58 23.30 0 3080 5638 6424 1705 224 255 339 98 24.1 23.4 33.6 11.5 6.8 4.4 8.1 4.37-8 C015 120.41 23.36 0 3095 3439 4627 1077 141 149 205 33 23.7 24.0 33.7 7.0 6.6 13.4 14.9 4.47-9 C016 120.15 23.22 0 2602 2408 3545 1107 97 105 143 45 13.8 16.2 21.3 10.7 10.5 14.5 17.9 7.17-10 C017 120.27 23.22 0 1241 1241 1755 942 51 54 74 29 17.0 17.1 24.1 5.9 9.6 17.5 20.0 5.87-11 C019 120.48 23.18 0 1316 1705 2154 822 50 64 82 23 5.7 6.0 8.2 4.3 4.2 3.3 5.4 4.27-12 C022 120.46 23.05 0 1480 942 1755 733 64 44 77 23 7.0 5.4 8.8 4.4 6.3 5.6 8.4 4.67-13 C023 120.28 22.97 0 912 927 1301 598 46 58 74 18 7.3 8.4 11.2 5.5 4.5 8.5 9.7 6.47-14 C024 120.61 23.76 1 5730 6065 8344 5898 276 162 320 141 51.3 43.1 67.0 47.0 36.8 33.9 50.1 33.97-15 C025 120.51 23.78 0 5359 8506 10053 8924 159 152 220 170 51.1 32.9 60.8 37.7 35.5 28.3 45.4 31.47-16 C026 120.41 23.80 0 3086 1735 3540 4390 76 66 101 70 41.5 26.3 49.1 24.2 36.0 22.6 42.5 16.37-17 C027 120.25 23.75 0 1328 1902 2320 3625 54 51 74 46 20.4 15.7 25.7 8.0 15.9 13.5 20.9 5.77-18 C028 120.61 23.63 1 43593 42600 60952 41021 624 750 976 335 63.0 83.8 104.9 30.5 20.9 21.2 29.8 15.47-19 C029 120.53 23.61 1 4594 4606 6505 6209 283 233 367 158 35.1 39.9 53.1 17.7 12.2 30.4 32.8 11.47-20 C032 120.29 23.58 0 1771 2345 2938 3637 86 73 113 62 26.8 19.7 33.3 7.9 18.5 14.9 23.7 6.07-21 C033 120.22 23.54 0 1699 1460 2240 1615 68 59 90 34 19.6 17.7 26.4 8.5 14.5 13.8 20.1 7.07-22 C034 120.54 23.52 0 4905 4860 6905 4127 243 294 381 91 34.6 44.9 56.7 16.0 10.1 16.7 19.6 7.97-23 C035 120.58 23.52 0 13781 8231 16052 3625 246 244 346 106 44.3 30.8 53.9 17.8 11.2 11.6 16.2 6.27-24 C036 120.48 23.61 0 7357 6269 9666 6627 267 200 333 104 41.6 44.1 60.6 14.1 22.6 34.4 41.1 9.87-25 C039 120.34 23.52 0 1986 2572 3249 2106 114 97 149 38 24.2 24.8 34.7 11.3 12.0 16.2 20.2 7.17-26 C041 120.60 23.44 0 9295 10946 14360 5359 297 630 697 123 20.3 37.3 42.5 9.7 7.1 8.9 11.4 6.17-27 C042 120.58 23.36 0 1412 1783 2274 1328 98 65 117 63 14.5 10.5 18.0 8.7 6.5 7.6 10.0 4.07-28 C046 120.46 23.48 0 5156 7226 8877 3924 143 186 235 80 20.7 20.9 29.4 7.7 8.7 9.0 12.5 5.87-29 C047 120.45 23.49 0 5159 5204 7328 3918 165 178 243 83 23.1 26.7 35.3 14.7 12.8 10.1 16.3 8.97-30 C052 120.50 23.29 0 1555 2632 3057 1032 84 151 172 40 11.2 14.9 18.6 7.1 6.5 6.0 8.9 6.07-31 C054 120.31 23.31 0 1591 1723 2345 1364 93 94 132 33 17.8 17.9 25.2 8.0 12.2 13.5 18.2 5.47-32 C055 120.27 23.27 0 1809 2318 2940 2064 97 88 131 40 16.4 27.3 31.9 7.1 10.4 18.4 21.1 7.17-33 C057 120.41 23.15 0 1113 1436 1816 550 39 53 65 21 6.5 6.5 9.2 4.3 4.2 4.4 6.1 5.87-34 C058 120.32 23.17 0 1531 6388 6569 1029 47 57 74 25 10.9 14.2 17.9 5.0 5.3 10.8 12.0 4.27-35 C063 120.34 23.03 0 825 1029 1319 467 58 65 87 26 7.8 9.1 12.0 5.8 4.2 7.1 8.3 4.67-36 C065 120.34 22.91 0 1483 1376 2023 634 114 93 147 29 17.2 13.2 21.6 5.1 6.3 7.6 9.9 6.4
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD7-37 C067 120.18 23.00 0 1391 1062 1750 957 57 57 81 21 9.4 11.9 15.1 5.6 6.1 8.1 10.1 6.47-38 C069 120.18 22.97 0 909 837 1236 598 43 38 58 25 10.7 9.3 14.2 5.2 6.2 7.2 9.5 6.87-39 C070 120.23 22.97 0 658 634 914 467 38 47 61 17 9.4 12.7 15.8 5.2 5.3 8.4 9.9 5.97-40 C074 120.81 23.51 1 2787 4642 5414 2237 229 157 278 98 32.3 21.2 38.6 14.9 14.3 9.1 17.0 8.27-41 C079 120.53 23.19 0 861 1089 1388 610 42 50 65 28 5.5 6.6 8.6 4.5 4.7 3.6 5.9 4.47-42 C080 120.68 23.60 1 22191 24536 33083 19703 792 842 1156 716 108.2 93.6 143.1 40.6 17.7 35.8 39.9 17.27-43 C081 120.50 23.27 0 981 969 1379 490 53 44 69 26 9.1 9.5 13.2 6.0 5.8 6.0 8.3 5.57-44 C086 120.59 23.35 0 1902 2249 2946 1208 99 202 225 50 17.9 18.1 25.4 8.6 6.6 8.1 10.4 4.37-45 C087 120.52 23.38 0 3146 4115 5180 1507 132 125 182 55 10.2 14.3 17.6 7.6 5.5 5.9 8.1 4.57-46 C088 120.43 23.35 0 3996 4713 6179 1962 148 207 255 42 17.9 20.4 27.1 8.5 7.2 10.6 12.8 5.17-47 C093 120.15 23.65 0 2094 2393 3179 2662 53 65 83 36 19.8 14.3 24.4 5.9 14.4 13.3 19.6 5.57-48 C094 120.32 23.79 0 1690 1690 2390 2766 64 53 83 41 24.5 19.2 31.1 14.0 20.6 17.7 27.1 9.07-49 C099 120.28 23.14 0 1002 1002 1417 718 61 51 79 27 14.1 18.4 23.2 8.5 7.8 13.3 15.4 5.97-50 C100 120.34 23.23 0 1630 1974 2560 778 66 60 89 28 11.1 17.1 20.4 5.8 6.4 12.4 14.0 4.57-51 C101 120.56 23.69 1 12346 11006 16540 8613 333 390 513 162 66.6 108.3 127.1 27.9 43.8 75.7 87.5 21.77-52 C104 120.46 23.67 0 3409 4980 6035 3903 143 177 228 130 55.5 53.1 76.8 32.4 41.4 47.0 62.6 21.77-53 C107 120.29 23.30 0 2557 2079 3295 1690 101 92 136 40 20.1 17.3 26.5 8.9 12.6 14.1 18.9 6.17-54 C111 120.23 23.79 0 2228 2826 3599 2901 58 85 103 42 19.6 11.4 22.7 9.0 19.2 10.0 21.7 6.57-55 C114 120.12 23.04 0 957 1151 1497 628 54 47 71 15 16.3 14.2 21.6 8.4 15.3 15.6 21.9 6.07-56 C115 120.10 23.15 0 1047 1525 1850 523 48 61 77 13 13.5 15.8 20.8 6.8 13.3 13.6 19.0 6.47-57 C116 120.11 23.08 0 1600 1510 2200 643 63 51 81 19 15.0 20.5 25.4 7.1 14.4 20.0 24.6 7.57-58 H002 121.51 23.60 0 1151 1271 1715 1107 51 89 102 32 9.4 12.7 15.8 7.1 4.5 6.0 7.5 5.27-59 H005 121.41 23.66 0 3439 2542 4277 2363 144 132 195 50 11.7 18.0 21.5 7.6 5.7 5.5 7.9 4.37-60 H006 121.42 23.67 0 2153 1989 2931 3484 90 85 124 61 7.8 8.0 11.2 7.0 5.5 4.9 7.4 4.87-61 H009 121.62 23.99 0 1735 2153 2765 3039 84 101 131 39 16.6 14.1 21.8 11.3 11.4 11.6 16.3 7.87-62 H011 121.59 24.00 0 2261 1866 2932 1998 87 97 130 37 19.4 25.1 31.7 8.5 11.2 8.9 14.3 8.67-63 H013 121.59 23.98 0 3804 2094 4342 2680 140 111 179 61 29.8 24.3 38.4 8.9 14.1 8.4 16.4 7.07-64 H014 121.60 23.97 0 1842 2058 2762 1842 102 89 135 39 21.1 25.2 32.9 9.9 11.8 9.0 14.8 6.67-65 H015 121.55 23.98 0 2213 1806 2857 2022 104 70 126 51 14.0 14.0 19.8 10.0 8.9 5.7 10.5 6.17-66 H016 121.56 23.97 0 1555 1448 2125 3242 101 82 130 50 15.7 13.8 20.8 10.9 8.5 5.2 10.0 7.0
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD7-67 H017 121.54 23.95 0 1806 2608 3172 1723 81 83 116 49 11.4 9.5 14.9 9.3 7.0 4.2 8.1 7.07-68 H019 121.61 23.98 0 2548 2333 3455 1998 126 133 183 47 18.3 20.1 27.2 10.6 11.2 11.9 16.3 6.27-69 H020 121.43 23.81 0 2728 2608 3774 2405 57 67 87 52 10.5 8.9 13.8 8.3 4.9 3.6 6.1 6.97-70 H027 121.59 24.06 0 2177 1926 2907 1723 120 92 152 37 15.8 12.4 20.1 7.2 7.7 5.7 9.6 6.07-71 H028 121.60 24.02 0 2787 2309 3619 3505 101 85 132 49 15.2 14.5 21.0 8.5 9.0 9.1 12.8 7.87-72 H031 121.49 23.77 0 2237 1543 2718 2297 91 98 134 70 17.9 17.2 24.9 14.6 7.0 5.5 8.9 10.97-73 H032 121.41 23.71 0 8924 7118 11415 4355 150 108 185 87 12.6 8.4 15.2 8.7 6.2 4.3 7.5 5.37-74 H033 121.47 23.69 0 2010 2464 3180 1603 162 164 230 51 19.8 16.5 25.7 8.6 7.4 7.5 10.6 8.27-75 H034 121.38 23.59 0 4199 4510 6162 1436 134 139 193 66 11.9 10.7 16.0 8.0 4.7 4.0 6.1 4.47-76 H035 121.44 23.73 0 3828 3804 5397 5060 77 72 106 52 12.0 6.9 13.9 8.8 5.0 5.2 7.2 5.97-77 H037 121.38 23.45 0 1974 1699 2604 1316 108 124 164 78 13.0 23.3 26.6 12.7 4.6 8.6 9.7 5.47-78 H038 121.34 23.46 0 969 1364 1673 1053 36 57 67 40 7.8 9.2 12.0 6.5 5.0 4.9 7.0 3.27-79 H039 121.35 23.38 0 1137 1460 1850 718 81 74 110 39 11.1 14.9 18.6 7.6 4.1 4.0 5.7 5.37-80 H045 121.74 24.31 0 3724 4920 6170 1914 123 186 223 71 15.9 31.9 35.6 9.3 5.8 7.3 9.3 5.97-81 H048 121.57 24.01 0 2991 2318 3784 2482 122 166 206 53 20.0 22.4 30.0 11.3 10.4 11.3 15.4 6.57-82 H049 121.56 24.00 0 2243 1944 2968 1705 98 84 129 37 19.9 22.2 29.9 8.1 11.1 8.3 13.9 7.37-83 H050 121.58 23.99 0 2632 2318 3507 2034 90 92 129 53 15.0 10.3 18.2 9.0 8.1 5.3 9.7 6.47-84 H051 121.55 23.87 0 3439 4755 5869 2348 165 149 223 50 21.4 20.7 29.8 11.4 5.9 5.5 8.1 9.67-85 H055 121.33 23.32 0 1107 1331 1731 733 87 85 121 61 19.4 14.6 24.3 8.6 6.3 5.2 8.2 6.67-86 H056 121.51 24.18 0 3326 4139 5310 2034 102 106 147 59 8.8 10.7 13.8 7.8 7.2 7.2 10.2 6.87-87 H058 121.48 23.97 0 3756 3732 5295 2740 92 114 146 57 10.9 10.3 15.0 8.2 5.2 3.6 6.3 6.67-88 H059 121.50 23.87 0 6257 3134 6998 2871 135 118 180 53 14.7 15.5 21.4 9.9 4.7 3.9 6.1 8.57-89 HWA2 121.61 23.98 0 2584 2381 3513 2070 129 132 185 48 18.9 19.9 27.4 11.0 11.4 11.7 16.4 6.57-90 I003 121.78 24.80 0 1092 852 1385 568 57 71 91 18 20.2 18.7 27.5 7.6 17.0 12.1 20.9 7.57-91 I005 121.81 24.70 0 1271 987 1609 449 69 79 105 25 19.9 15.4 25.2 10.8 18.1 11.7 21.5 10.17-92 I006 121.83 24.64 0 1585 1406 2119 493 77 68 103 37 13.3 14.6 19.7 10.8 8.5 7.2 11.1 7.77-93 I008 121.76 24.71 0 1480 912 1739 957 77 56 96 33 18.8 15.0 24.0 10.0 14.7 11.8 18.9 9.47-94 I012 121.73 24.78 0 1077 1137 1566 673 81 61 101 27 17.5 18.2 25.2 9.5 8.9 7.9 11.9 9.07-95 I013 121.73 24.74 0 2901 4396 5267 1062 134 147 199 40 29.5 21.5 36.5 11.9 13.5 9.2 16.4 9.27-96 I014 121.72 24.69 0 1181 1062 1588 434 60 62 86 28 11.7 12.9 17.5 10.0 9.6 7.7 12.3 9.7
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD7-97 I016 121.68 24.75 0 927 972 1343 748 79 71 106 37 16.4 12.8 20.8 7.6 8.1 7.0 10.7 8.07-98 I021 121.64 24.71 0 957 1077 1441 1062 60 69 91 27 11.7 8.3 14.4 11.3 7.0 5.9 9.1 8.77-99 I027 121.76 24.69 0 1627 1531 2234 670 103 67 123 22 17.7 15.4 23.5 5.0 7.2 11.3 13.4 4.47-100 I041 121.79 24.72 0 987 1062 1450 733 100 62 117 23 29.2 21.5 36.3 11.3 22.5 17.9 28.7 8.07-101 I044 121.76 24.66 0 1286 1256 1798 1032 80 70 106 29 24.2 16.5 29.3 10.3 14.6 9.0 17.1 7.97-102 I048 121.76 24.77 0 1645 1540 2253 1047 89 75 116 30 22.4 24.4 33.1 10.2 14.7 16.9 22.4 8.97-103 I055 121.81 24.74 0 1391 1735 2223 568 75 68 101 25 29.3 23.5 37.6 12.9 23.2 20.0 30.6 7.87-104 I056 121.81 24.76 0 1077 2348 2583 942 69 64 95 23 32.5 30.9 44.9 10.2 29.1 25.5 38.6 8.47-105 I059 121.82 24.67 0 1690 1660 2369 808 62 70 93 30 14.8 14.0 20.4 8.9 11.2 8.8 14.2 10.37-106 I061 121.83 24.52 0 613 822 1026 643 52 49 72 25 7.4 10.2 12.6 7.2 6.9 7.2 10.0 6.57-107 I062 121.79 24.47 0 1660 1555 2275 1525 81 72 108 47 10.5 12.4 16.2 8.5 6.4 7.2 9.6 5.27-108 I066 121.77 24.45 0 1944 2153 2901 1525 95 74 121 53 11.6 12.0 16.6 12.0 6.1 7.7 9.9 5.97-109 I067 121.37 24.44 0 6125 6783 9139 5551 195 168 257 94 11.8 18.7 22.1 12.5 5.7 12.2 13.4 8.87-110 K001 120.64 23.16 0 852 598 1041 822 43 22 48 40 6.1 6.1 8.6 7.5 2.9 6.2 6.8 5.37-111 K010 120.28 22.79 0 323 335 465 227 32 31 44 11 11.5 14.9 18.8 5.1 8.9 14.5 17.0 6.67-112 K011 120.26 22.76 0 634 778 1003 407 56 54 78 14 12.2 13.4 18.1 5.3 10.0 11.6 15.3 6.57-113 K020 120.54 22.90 0 742 790 1083 395 54 75 93 19 13.0 16.3 20.9 5.0 5.2 4.0 6.5 4.27-114 K085 120.32 22.89 0 628 822 1035 329 50 52 72 23 9.0 13.7 16.4 7.9 6.9 8.0 10.6 5.97-115 N001 121.44 23.32 0 808 763 1111 613 94 61 112 39 15.6 9.3 18.1 9.8 6.7 5.4 8.6 6.47-116 N041 121.12 23.13 0 1929 1869 2686 1346 79 64 102 39 7.1 6.2 9.4 4.5 5.3 2.5 5.9 3.97-117 N042 121.28 23.00 0 867 1256 1526 808 57 56 81 20 5.7 7.6 9.4 5.8 4.8 2.4 5.4 4.87-118 N044 121.17 23.01 0 628 613 878 493 49 55 74 32 9.7 9.9 13.8 5.6 6.2 5.6 8.3 3.37-119 N045 121.15 22.98 0 419 523 670 479 39 33 51 16 9.4 8.4 12.6 3.9 5.2 4.1 6.6 2.67-120 N046 121.23 22.97 0 1585 972 1859 718 112 65 129 19 9.5 7.7 12.2 5.4 5.4 2.1 5.8 4.57-121 P003 121.45 25.09 0 1655 2327 2855 1385 127 106 165 43 28.9 31.0 42.4 11.2 14.0 13.5 19.5 7.57-122 P005 121.51 25.11 0 1684 1909 2546 1203 127 81 151 24 31.1 20.8 37.4 6.7 10.3 7.7 12.8 6.27-123 P006 121.51 25.10 0 795 842 1158 741 99 68 120 31 20.3 13.6 24.5 6.9 8.8 6.2 10.8 5.77-124 P007 121.51 25.08 0 1134 724 1345 847 105 72 127 29 20.1 16.7 26.1 7.8 9.3 5.9 11.0 6.17-125 P008 121.53 25.08 0 1970 2927 3528 973 73 59 95 18 20.6 15.4 25.7 5.9 11.5 9.4 14.8 6.07-126 P010 121.48 25.07 0 1076 1056 1508 1256 115 86 144 27 26.9 26.2 37.5 6.3 11.7 10.4 15.6 6.8
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD7-127 P012 121.51 25.06 0 842 716 1105 1046 96 54 110 28 19.2 15.3 24.5 6.4 9.4 6.3 11.3 7.07-128 P013 121.53 25.06 0 991 720 1224 766 87 75 115 24 21.5 16.4 27.0 7.4 9.5 7.3 12.0 6.97-129 P014 121.54 25.06 0 1436 908 1699 921 107 69 127 28 28.5 18.3 33.9 7.6 10.2 8.4 13.2 6.47-130 P017 121.45 25.05 0 1943 1586 2507 1189 111 97 147 34 24.3 28.6 37.5 11.4 14.5 15.6 21.3 8.77-131 P020 121.53 25.04 0 619 748 971 840 60 66 89 32 21.8 14.2 26.0 7.4 10.6 9.2 14.0 7.17-132 P021 121.54 25.04 0 1747 2034 2681 954 98 99 140 36 29.9 18.0 34.9 7.5 10.7 6.8 12.7 7.07-133 P024 121.47 25.02 0 684 874 1109 721 62 76 98 23 16.8 20.0 26.1 7.8 15.2 11.1 18.8 8.67-134 P026 121.50 25.02 0 967 983 1378 2025 77 69 104 49 14.7 13.8 20.2 7.8 11.9 8.4 14.6 7.17-135 P032 121.47 25.00 0 2357 1627 2864 1137 108 112 156 57 23.8 19.5 30.8 9.9 12.1 9.1 15.1 8.37-136 P066 121.52 25.19 0 467 718 856 371 49 71 86 21 8.6 12.8 15.4 4.5 8.5 7.2 11.2 4.87-137 P075 121.73 25.03 0 1122 1122 1586 673 81 49 95 24 10.8 8.9 14.0 5.8 7.6 5.1 9.1 7.57-138 P083 121.49 25.26 0 837 658 1065 508 36 61 71 18 13.7 16.1 21.1 7.0 17.3 9.0 19.5 6.07-139 P088 121.58 25.04 0 1320 1655 2117 930 89 115 145 42 16.9 16.8 23.9 8.3 7.2 5.2 8.9 7.47-140 P089 121.56 25.03 0 723 667 984 391 42 39 58 23 9.2 7.4 11.8 7.7 8.5 6.1 10.5 8.07-141 P090 121.59 25.06 0 1404 931 1684 711 136 88 162 29 32.7 19.2 37.9 7.1 8.9 5.8 10.6 5.87-142 P094 121.48 25.14 0 836 616 1038 461 63 83 104 29 16.2 16.8 23.3 9.2 9.3 7.3 11.9 7.37-143 P095 121.49 25.14 0 3706 3294 4958 1960 138 92 166 47 30.0 17.8 34.9 7.3 8.9 5.5 10.4 7.07-144 P097 121.53 25.02 0 628 643 899 404 72 81 108 23 14.0 18.3 23.1 8.6 11.6 8.8 14.5 8.37-145 P098 121.54 25.10 0 1176 956 1516 874 62 55 83 26 13.7 9.0 16.4 5.2 8.5 5.4 10.1 5.47-146 P100 121.51 25.04 0 838 823 1174 735 56 85 102 23 15.6 13.6 20.7 7.8 10.4 8.2 13.3 6.97-147 T015 120.93 24.76 0 3613 2548 4421 2668 128 122 177 66 40.3 25.0 47.5 15.8 47.6 25.8 54.2 13.57-148 T029 120.75 24.56 0 5670 6185 8391 3051 155 194 248 62 38.1 51.2 63.8 20.5 42.6 40.4 58.7 21.87-149 T031 120.70 24.56 0 1531 2799 3191 2512 113 123 166 65 55.7 46.9 72.8 26.9 51.0 34.1 61.4 23.47-150 T033 120.86 24.69 0 4235 5060 6599 3924 154 181 238 73 41.6 24.3 48.1 15.1 48.5 18.8 52.0 13.17-151 T034 120.86 24.64 0 5503 3098 6315 3972 248 103 268 70 43.7 24.1 49.9 12.7 46.5 20.8 50.9 10.57-152 T035 120.79 24.62 0 2393 2871 3737 2680 116 114 163 60 34.6 29.5 45.4 17.9 38.2 19.0 42.7 13.17-153 T036 120.70 24.45 0 2369 2369 3350 2058 134 122 182 61 57.9 47.1 74.7 21.6 60.4 48.0 77.2 19.87-154 T038 120.66 24.49 0 4570 5838 7414 4115 142 143 201 66 56.2 38.5 68.1 32.2 55.2 42.8 69.8 27.57-155 T039 120.78 24.49 0 4163 6245 7505 7417 193 136 236 122 54.8 56.9 79.0 50.6 56.3 39.3 68.6 46.57-156 T040 120.65 24.45 0 4139 3039 5135 5228 159 122 200 79 57.0 47.0 73.9 18.0 54.2 52.7 75.6 17.2
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD7-157 T042 120.81 24.55 0 9355 5024 10619 3685 248 208 323 82 36.9 36.6 52.0 19.5 44.5 23.8 50.5 20.17-158 T045 120.91 24.54 1 18710 21330 28373 37372 463 512 690 353 49.3 46.4 67.7 21.2 36.4 14.4 39.1 12.27-159 T046 120.85 24.47 1 3242 3075 4468 4187 140 116 182 97 28.6 25.4 38.2 32.9 37.2 21.3 42.8 28.87-160 T047 120.94 24.62 1 12597 23603 26754 14296 292 399 495 261 42.2 35.8 55.3 22.3 32.8 21.1 39.0 18.87-161 T048 120.59 24.18 0 4055 5551 6874 3374 117 176 211 97 36.3 47.4 59.7 25.2 29.8 52.9 60.7 20.17-162 T049 120.69 24.18 1 10683 8745 13806 8434 273 242 365 178 56.9 59.3 82.2 27.1 48.5 41.7 64.0 19.17-163 T050 120.63 24.18 1 3768 4044 5527 2883 143 128 192 87 40.0 43.5 59.1 43.2 30.1 47.1 55.9 26.87-164 T051 120.65 24.16 1 5467 8242 9891 5635 157 231 279 110 51.2 40.3 65.1 30.5 39.8 44.2 59.4 22.87-165 T052 120.74 24.20 1 6962 7728 10402 11975 349 439 560 194 180.7 220.0 284.7 169.0 154.8 139.8 208.6 114.07-166 T053 120.67 24.19 1 8266 3649 9036 4929 225 132 261 121 42.9 44.0 61.5 32.5 38.2 42.0 56.8 17.97-167 T054 120.68 24.16 1 3948 5312 6618 7034 143 190 238 133 45.9 45.3 64.6 29.7 49.1 35.2 60.4 21.87-168 T056 120.62 24.16 1 4450 3709 5793 3685 154 140 208 117 41.4 40.3 57.8 40.7 38.7 46.6 60.5 27.87-169 T057 120.61 24.17 0 5898 8817 10607 2273 111 100 150 81 40.7 49.4 64.0 34.0 30.7 49.4 58.2 22.47-170 T059 120.56 24.27 0 2596 2261 3443 1651 157 162 225 64 52.2 53.9 75.0 13.9 56.5 51.9 76.7 12.17-171 T060 120.64 24.23 1 4139 3003 5114 3350 197 101 221 86 36.7 42.8 56.4 28.4 34.0 44.6 56.1 19.67-172 T061 120.55 24.14 0 2919 6077 6742 3948 133 154 204 86 41.1 37.9 55.9 27.6 37.2 30.4 48.0 25.87-173 T063 120.62 24.11 1 8350 3326 8988 7309 179 130 222 133 44.2 82.4 93.5 57.4 48.0 58.8 75.9 37.37-174 T064 120.61 24.35 0 1555 2153 2656 1794 109 113 157 82 42.6 56.1 70.4 32.0 50.1 56.0 75.1 22.57-175 T065 120.69 24.06 1 13159 15600 20409 6998 774 563 958 258 132.1 92.9 161.5 68.7 99.4 58.0 115.1 47.17-176 T067 120.72 24.09 1 12717 11269 16992 12334 489 313 580 231 97.8 55.8 112.6 50.1 51.8 31.8 60.8 25.87-177 T068 120.77 24.28 1 12992 20720 24456 14894 501 362 618 519 280.9 291.3 404.6 228.7 159.3 252.7 298.7 131.47-178 T070 120.54 24.20 0 6520 4319 7820 5766 249 157 294 76 45.9 60.0 75.5 35.9 35.2 54.6 65.0 25.17-179 T071 120.79 23.99 1 21772 29297 36501 27251 518 639 822 416 70.1 82.8 108.5 59.3 34.3 36.0 49.7 28.97-180 T072 120.85 24.04 1 16844 23196 28667 16198 465 371 595 275 87.6 69.3 111.8 38.9 29.1 30.2 42.0 25.47-181 T074 120.96 23.96 1 22682 23268 32494 20600 586 368 692 270 70.2 49.0 85.6 24.9 27.4 17.5 32.5 14.57-182 T075 120.68 23.98 1 18291 9331 20534 10432 325 257 415 224 116.1 37.0 121.8 50.0 69.4 25.9 74.1 23.27-183 T076 120.68 23.91 1 27969 23268 36382 16844 340 420 540 275 69.1 63.2 93.6 32.8 32.8 33.2 46.7 17.07-184 T078 120.85 23.81 1 21138 14320 25532 11221 440 302 534 171 43.3 32.3 54.0 19.4 22.2 8.8 23.9 13.57-185 T079 120.89 23.84 1 25625 18375 31532 22909 580 417 714 384 67.4 31.5 74.4 22.9 14.6 15.4 21.2 13.87-186 T082 120.68 24.15 1 5407 5204 7505 4701 221 182 287 129 51.6 43.3 67.4 35.0 50.6 40.4 64.8 27.4
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD7-187 T084 120.90 23.88 1 16916 13829 21849 13638 989 423 1076 312 116.2 54.1 128.2 29.8 41.1 23.7 47.5 17.27-188 T087 120.77 24.35 1 1890 1962 2724 1830 119 112 163 91 43.6 44.2 62.1 58.5 48.7 24.9 54.7 53.97-189 T088 121.18 24.25 1 36690 35446 51015 19464 509 515 724 224 13.3 36.5 38.8 12.9 6.1 18.8 19.8 9.47-190 T089 120.86 23.90 1 10097 11090 14998 13315 348 225 414 190 45.4 34.9 57.3 21.7 19.6 20.0 28.0 14.27-191 T095 121.01 24.69 1 13590 30996 33844 21772 367 685 776 251 48.6 49.2 69.2 22.9 41.4 21.0 46.4 16.77-192 T098 120.90 24.74 0 3505 2919 4561 2979 104 98 142 48 45.6 27.1 53.0 17.3 48.6 25.8 55.1 12.27-193 T100 120.62 24.19 0 2931 4067 5013 4534 108 111 155 84 40.6 43.1 59.2 39.7 30.5 49.0 57.7 29.67-194 T102 120.72 24.25 1 3541 2835 4536 3864 298 169 343 173 87.0 71.7 112.7 68.0 75.2 41.4 85.9 34.07-195 T103 120.71 24.31 1 3780 3948 5466 12729 126 149 196 142 68.5 22.4 72.1 60.9 63.1 14.5 64.8 48.07-196 T104 120.60 24.25 0 2381 1902 3047 2512 101 87 134 90 30.9 48.2 57.3 24.3 35.1 44.7 56.8 17.77-197 T105 120.56 24.24 0 2046 2429 3175 2440 111 124 167 61 32.6 42.5 53.6 23.6 35.8 40.7 54.2 16.57-198 T106 120.55 24.08 0 4953 4725 6845 5922 157 122 199 116 40.5 39.3 56.4 23.3 40.0 28.5 49.2 22.87-199 T107 120.54 24.07 0 2381 3517 4247 3409 128 144 192 94 34.0 46.2 57.4 25.6 34.3 31.9 46.9 25.47-200 T109 120.57 24.09 0 4498 3685 5815 8936 149 159 218 133 55.0 56.0 78.5 23.7 46.2 34.7 57.8 22.57-201 T111 120.49 24.11 0 2787 3158 4212 3350 125 94 156 77 52.9 31.7 61.7 23.4 49.5 33.7 59.8 20.97-202 T116 120.58 23.86 0 4402 6364 7739 4965 185 133 228 119 39.7 52.8 66.1 34.6 35.1 35.1 49.6 26.97-203 T117 120.46 24.13 0 2010 1878 2751 4809 121 113 166 90 56.4 57.9 80.8 22.8 43.5 42.2 60.6 17.57-204 T118 120.42 24.00 0 2740 2704 3849 7644 116 92 148 100 29.7 35.1 46.0 18.7 22.4 34.2 40.9 20.67-205 T120 120.61 23.98 1 7812 8350 11435 11317 223 193 295 167 62.6 34.8 71.6 35.5 34.1 32.6 47.2 24.27-206 T122 120.61 23.81 1 11736 8362 14410 24213 207 256 329 236 44.6 42.8 61.8 40.9 35.5 27.7 45.0 36.37-207 T128 120.76 24.42 0 2787 2775 3934 5180 141 163 216 90 62.0 62.2 87.8 44.6 74.3 46.1 87.4 39.77-208 T129 120.68 23.88 1 40961 25708 48360 8207 983 611 1157 335 68.1 54.9 87.5 37.5 38.9 25.4 46.5 19.27-209 T131 120.82 24.57 0 2464 2656 3623 2393 118 123 170 54 37.9 39.1 54.4 19.3 37.5 31.6 49.0 16.77-210 T136 120.65 24.26 1 2916 2482 3829 3365 167 171 239 112 43.3 52.9 68.4 33.4 55.7 43.3 70.6 25.27-211 T138 120.60 23.92 1 5937 5772 8280 4710 202 207 290 110 33.3 38.5 50.9 25.7 24.2 25.8 35.4 19.87-212 T140 120.36 23.96 0 1824 2288 2926 3978 71 53 89 68 24.1 21.6 32.4 19.3 21.8 19.0 28.9 17.07-213 T141 120.46 23.83 0 4187 1615 4488 4621 86 89 124 107 46.0 28.4 54.1 25.2 37.1 22.2 43.3 22.27-214 T145 120.34 23.98 0 1959 1884 2718 2363 70 60 92 52 24.6 19.8 31.6 19.2 26.3 20.3 33.2 16.98-1 2723 �146.36 61.13 0 297 220 370 167 9 9 13 6 2.7 2.1 3.4 2.0 3.6 1.9 4.1 1.78-2 2767 �147.18 64.79 0 871 673 1101 454 42 30 52 15 5.5 4.2 6.9 2.7 1.7 2.1 2.7 1.4
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD8-3 2784 �146.35 61.13 0 271 243 364 271 26 21 34 12 4.6 3.0 5.5 2.2 3.8 2.1 4.3 1.88-4 2797 �147.85 64.86 0 1883 1408 2351 1539 108 63 125 40 8.9 5.3 10.4 3.4 2.3 1.8 2.9 1.58-5 8016 �149.86 61.19 0 452 367 582 109 21 16 26 6 3.0 2.5 3.9 1.5 2.1 1.7 2.7 0.78-6 8017 �149.95 61.20 0 221 198 296 134 16 18 24 10 3.7 4.2 5.6 1.8 2.6 2.9 3.9 0.78-7 8019 �149.54 61.35 0 238 229 330 86 5 6 8 4 1.9 1.2 2.2 1.1 1.6 0.9 1.8 1.38-8 8022 �147.86 64.87 0 1552 1344 2053 1708 85 69 109 47 7.1 6.3 9.5 3.7 2.2 2.4 3.2 1.98-9 8024 �149.89 61.18 0 240 226 329 94 10 14 17 5 2.5 2.4 3.4 1.1 2.1 2.3 3.1 0.68-10 8027 �149.89 61.16 0 232 222 321 163 13 12 18 6 2.7 2.5 3.7 1.8 2.2 2.2 3.1 0.78-11 8030 �149.81 61.18 0 168 160 232 89 10 9 13 5 2.2 1.9 2.9 1.3 1.8 1.7 2.4 0.98-12 8034 �146.36 61.13 0 99 143 174 85 6 6 9 6 2.7 2.2 3.5 2.1 3.5 1.9 4.0 1.68-13 8036 �149.97 61.18 0 172 253 306 101 12 22 26 8 3.4 4.0 5.2 1.5 2.4 3.0 3.9 0.78-14 8037 �149.98 61.16 0 193 299 356 203 14 19 24 7 3.6 4.3 5.6 1.1 2.4 2.8 3.7 0.78-15 8038 �149.88 61.22 0 168 174 242 123 17 18 25 8 3.1 4.2 5.2 1.6 2.2 2.5 3.3 0.98-16 8039 �149.95 61.14 0 420 380 567 154 20 20 29 8 3.8 3.3 5.0 1.3 2.2 3.4 4.1 0.78-17 CARL �148.81 63.55 0 4637 3251 5663 3863 98 86 130 70 7.6 10.4 12.8 8.5 3.3 4.0 5.2 2.88-18 FA02 �148.01 64.85 0 1665 1285 2103 1189 47 40 62 24 5.4 3.0 6.1 3.8 2.0 2.0 2.8 2.58-19 K202 �149.82 61.22 0 204 208 292 138 11 12 16 7 2.8 2.9 4.0 1.3 1.8 1.8 2.5 0.98-20 K203 �149.72 61.22 0 177 149 232 99 8 9 12 5 2.5 1.9 3.1 1.1 1.8 1.6 2.4 1.08-21 K204 �150.01 61.18 0 233 227 325 187 13 11 17 7 4.6 3.4 5.7 1.7 2.3 2.7 3.5 0.98-22 K205 �149.91 61.20 0 238 232 333 153 16 15 21 7 3.0 3.2 4.4 1.7 2.1 2.8 3.5 0.78-23 K206 �149.82 61.19 0 224 297 372 114 10 11 14 5 2.2 2.3 3.2 1.3 1.9 2.2 2.9 0.98-24 PS07 �148.28 65.31 0 235 234 332 206 18 17 24 10 3.4 3.2 4.7 1.7 1.7 2.1 2.7 1.48-25 PS08 �146.82 64.54 0 1277 1621 2063 1567 46 35 58 24 5.3 4.3 6.8 3.1 2.4 3.0 3.8 2.78-26 PS09 �145.77 63.93 0 4156 3279 5294 4655 73 55 91 52 12.5 11.7 17.1 9.8 9.4 8.2 12.4 3.98-27 PS10 �145.77 63.42 1 5542 9273 10803 11842 330 290 440 233 113.7 64.0 130.4 52.0 44.3 33.8 55.7 24.48-28 PS11 �145.48 62.09 0 4054 3777 5541 2138 70 85 110 32 10.0 15.9 18.8 9.0 11.0 12.9 16.9 8.88-29 PS12 �145.14 61.48 0 972 712 1205 670 38 34 51 23 5.4 5.6 7.8 5.1 3.8 3.5 5.2 3.08-30 R109 �148.65 63.40 0 1646 1880 2499 1618 59 107 122 48 6.2 12.9 14.3 5.7 3.4 3.8 5.2 2.89-1 1575 �121.40 36.85 0 128 146 194 76 14 11 18 6 3.2 3.2 4.5 1.7 1.7 1.3 2.2 0.79-2 1747 �120.36 36.14 0 1966 1206 2306 1242 78 44 89 27 6.0 5.8 8.4 3.9 2.6 1.7 3.1 1.2
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD9-3 1748 �119.73 36.74 0 107 55 120 146 5 3 6 5 0.4 0.3 0.5 0.2 0.2 0.1 0.2 0.09-4 1797 �121.40 36.89 0 64 112 129 47 9 10 14 5 3.3 2.8 4.3 1.5 1.5 1.2 1.9 0.69-5 1840 �119.78 36.77 0 123 113 167 108 7 5 9 4 0.5 0.4 0.7 0.2 0.2 0.2 0.3 0.09-6 35219 �119.45 35.40 0 113 130 172 170 6 10 12 6 1.0 1.1 1.5 0.5 0.2 0.2 0.3 0.19-7 36138 �120.43 35.90 1 4904 3810 6210 6237 271 297 402 135 39.3 47.4 61.6 9.6 10.1 11.5 15.3 2.29-8 36153 �120.46 35.21 0 930 658 1140 456 20 12 23 9 0.6 0.8 1.0 0.6 0.1 0.1 0.1 0.19-9 36176 �120.53 35.92 0 12344 14942 19381 10179 258 297 394 246 18.2 19.6 26.8 8.7 5.2 4.1 6.7 2.29-10 36177 �120.47 35.97 1 7967 6461 10257 3452 352 224 418 93 23.7 12.1 26.6 8.3 6.2 3.0 6.9 2.99-11 36227 �120.33 35.70 1 8785 7432 11507 9700 245 228 334 169 18.6 11.8 22.0 7.0 2.7 1.3 3.0 0.89-12 36228 �120.29 35.73 1 10994 10462 15176 11440 593 362 695 182 63.3 44.1 77.2 14.3 11.2 7.2 13.3 3.69-13 36229 �120.40 35.64 0 3729 4749 6039 2113 74 83 111 40 6.7 4.1 7.9 2.9 0.7 1.0 1.2 0.79-14 36230 �120.26 35.75 1 19116 18203 26396 13703 455 465 650 183 22.6 22.3 31.8 5.7 3.5 2.1 4.0 1.09-15 36407 �120.31 35.76 1 15224 15421 21670 11188 581 803 991 256 62.5 80.7 102.0 9.9 9.3 10.9 14.4 2.69-16 36408 �120.34 35.80 1 15988 18637 24555 26887 363 382 528 372 22.5 19.7 29.9 11.8 3.7 2.6 4.5 1.89-17 36410 �120.30 35.73 1 10900 10851 15380 6117 314 554 637 156 28.0 38.3 47.5 9.7 5.0 7.4 8.9 1.29-18 36411 �120.31 35.72 1 14151 11127 18002 6786 565 503 757 146 31.6 27.0 41.6 10.0 5.2 4.2 6.7 1.79-19 36412 �120.32 35.71 1 9874 7336 12301 10562 293 275 402 111 26.5 16.6 31.3 5.0 4.4 3.1 5.3 1.69-20 36414 �120.40 35.84 1 2215 3484 4129 4275 129 105 167 68 16.5 13.6 21.4 4.5 3.4 1.6 3.8 1.19-21 36415 �120.38 35.82 1 8956 6304 10952 3777 146 139 202 68 9.9 7.4 12.4 2.6 2.0 1.6 2.6 0.99-22 36416 �120.39 35.81 1 7399 13404 15310 5247 157 265 308 91 14.5 9.8 17.5 3.6 1.7 1.9 2.6 0.69-23 36419 �120.29 35.79 1 24705 29660 38601 14912 665 793 1035 299 34.6 38.6 51.8 15.9 5.9 4.0 7.1 1.89-24 36420 �120.41 35.80 1 32185 23222 39688 10259 665 409 781 162 23.2 15.7 28.0 4.4 3.1 2.8 4.2 1.29-25 36421 �120.35 35.84 1 10253 8396 13252 5910 159 204 259 89 7.7 10.4 13.0 3.9 1.4 1.8 2.3 0.89-26 36422 �120.28 35.81 1 9416 7961 12330 10868 177 180 253 121 12.5 9.8 15.9 4.2 2.2 1.5 2.7 1.09-27 36427 �120.89 35.27 0 569 348 667 345 13 10 16 8 1.0 0.9 1.3 0.5 0.2 0.2 0.2 0.19-28 36431 �120.40 35.87 1 12457 10793 16482 7021 224 249 335 145 18.6 21.6 28.5 7.4 4.7 4.8 6.7 1.69-29 36432 �120.51 35.74 0 4528 3840 5937 2862 103 98 142 83 4.3 4.4 6.1 2.2 0.8 1.2 1.5 0.99-30 36433 �120.44 35.79 1 27373 22161 35219 7045 377 305 485 86 12.6 7.7 14.8 3.0 2.1 1.6 2.7 0.99-31 36434 �120.48 35.77 0 9064 8956 12743 3833 243 171 297 55 7.7 7.0 10.4 2.7 1.3 1.3 1.8 1.09-32 36437 �120.27 35.83 1 8019 10866 13505 3794 188 195 271 47 8.6 9.7 13.0 3.0 2.3 2.5 3.4 0.9



194

Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD9-33 36439 �120.33 35.87 1 9010 4615 10123 3806 199 103 224 59 12.1 7.1 14.1 2.3 2.5 1.5 2.9 0.79-34 36440 �120.56 35.89 1 6033 8449 10382 8961 154 179 237 157 10.6 10.5 15.0 4.3 3.0 2.8 4.1 1.19-35 36441 �120.60 35.86 0 4461 4084 6047 5061 112 98 149 97 9.0 7.8 11.9 3.4 3.2 2.4 3.9 1.19-36 36443 �120.44 35.88 1 2809 3268 4309 5013 148 94 176 77 24.0 14.2 27.9 3.5 6.2 4.4 7.6 1.09-37 36445 �120.48 35.92 1 4487 6182 7639 5960 139 224 264 135 23.0 18.3 29.3 11.4 6.9 5.6 8.9 3.19-38 36446 �120.55 35.91 1 4817 3186 5776 3625 98 86 131 71 6.1 7.8 9.9 3.4 2.2 2.1 3.0 1.19-39 36447 �120.51 35.93 1 16759 10413 19731 7866 507 375 631 120 27.6 17.7 32.8 6.8 3.4 3.2 4.7 1.09-40 36448 �120.50 35.93 1 5818 6716 8886 4495 161 131 208 104 18.3 11.4 21.6 6.0 5.2 4.0 6.5 1.99-41 36449 �120.38 35.88 1 26384 16561 31151 16453 536 487 724 246 20.2 16.6 26.2 9.1 2.1 2.0 2.9 2.29-42 36450 �120.25 35.77 1 13150 32617 35168 16278 503 735 890 245 23.5 27.8 36.4 5.7 2.7 2.6 3.8 0.89-43 36451 �120.34 35.68 0 6846 11627 13493 7467 228 369 434 128 11.8 18.1 21.6 5.4 2.0 2.2 3.0 0.69-44 36452 �120.27 35.74 1 12241 9705 15621 9687 418 337 537 236 40.3 39.1 56.2 9.8 8.2 7.0 10.8 1.99-45 36453 �120.40 35.90 1 32491 60011 68242 34664 450 903 1009 403 15.3 26.0 30.2 10.2 1.9 1.9 2.7 3.09-46 36454 �120.42 35.86 1 9269 9160 13031 9850 171 178 247 109 24.4 8.5 25.8 5.0 4.9 2.0 5.3 1.09-47 36455 �120.48 35.96 1 9351 12330 15475 5383 260 284 385 174 29.5 25.8 39.2 13.7 8.1 4.7 9.3 2.89-48 36456 �120.46 35.91 1 43945 25082 50599 21935 1286 528 1390 547 82.8 42.3 93.0 23.5 15.8 7.6 17.6 4.69-49 36510 �120.17 35.71 0 3147 2730 4166 1537 100 76 125 32 6.5 7.1 9.6 2.5 1.0 1.1 1.4 0.69-50 36529 �120.36 35.88 1 4885 4236 6466 3934 241 191 307 70 14.6 11.5 18.6 4.7 2.1 1.7 2.7 1.59-51 36535 �120.00 35.66 0 5149 7226 8873 4334 156 190 245 72 7.0 6.8 9.7 2.5 1.0 0.8 1.3 0.59-52 36712 �120.72 35.56 0 1125 1077 1557 847 37 34 50 19 2.1 2.2 3.1 1.0 0.4 0.5 0.6 0.29-53 37737 �121.12 35.59 0 233 222 322 148 9 10 13 5 0.6 0.8 1.0 0.3 0.1 0.1 0.2 0.09-54 46174 �120.71 36.19 1 368 504 624 442 22 27 35 16 3.2 4.6 5.6 3.5 1.7 1.6 2.3 1.09-55 46175 �120.59 36.03 1 3248 6461 7231 3521 207 341 399 105 25.8 52.5 58.5 8.6 7.4 7.4 10.5 1.89-56 47125 �121.95 36.97 0 277 305 411 142 8 10 13 4 0.6 0.7 0.9 0.3 0.1 0.1 0.1 0.09-57 47136 �121.78 36.25 0 235 336 410 239 7 8 11 5 0.5 0.7 0.9 0.3 0.1 0.1 0.1 0.19-58 47179 �121.64 36.67 0 199 257 325 309 10 11 15 7 1.4 1.6 2.2 0.6 0.4 0.4 0.6 0.29-59 47216 �121.78 36.81 0 177 188 258 163 10 11 15 6 2.1 1.2 2.4 1.0 0.5 0.5 0.7 0.29-60 47232 �121.13 36.21 0 2000 2812 3451 4903 58 44 73 59 3.1 2.5 3.9 1.4 0.4 0.4 0.5 0.19-61 47460 �121.24 36.32 0 1230 1024 1601 1602 32 23 40 21 2.1 1.8 2.8 0.8 0.3 0.5 0.6 0.29-62 47524 �121.40 36.85 0 222 178 285 320 10 13 17 5 2.1 3.0 3.6 1.2 0.8 1.1 1.3 0.4
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD9-63 47762 �121.63 36.70 0 169 189 253 122 16 11 20 5 1.7 1.8 2.5 0.6 0.3 0.5 0.6 0.19-64 61022 �120.54 35.95 1 5824 5700 8149 3259 160 146 216 87 8.5 9.2 12.6 4.7 2.7 3.3 4.2 0.99-65 DFU �120.42 35.94 1 11967 16610 20472 12574 289 366 466 171 15.1 13.9 20.5 9.0 3.3 1.7 3.7 2.09-66 EFU �120.42 35.89 1 23969 29082 37687 14486 312 384 494 192 26.7 25.9 37.2 7.4 7.1 5.1 8.7 1.79-67 FFU �120.49 35.91 1 29822 23653 38063 21584 448 373 583 215 17.5 11.1 20.7 6.7 3.0 2.8 4.0 1.59-68 GFU �120.35 35.83 1 10389 9237 13901 8959 168 136 216 116 6.0 5.7 8.3 2.1 1.0 1.1 1.5 0.69-69 JFU �120.43 35.94 1 44427 29030 53071 20444 487 609 780 301 30.2 25.6 39.6 9.6 4.6 2.7 5.4 1.99-70 KFU �120.20 35.71 0 8738 7771 11694 12730 144 167 220 159 6.1 10.7 12.3 4.4 1.0 1.9 2.1 0.39-71 MFU �120.50 35.96 1 6310 8970 10967 4167 181 402 441 108 26.0 29.4 39.3 8.4 8.2 6.7 10.6 2.49-72 PHOB �120.48 35.87 1 15383 9903 18295 11940 269 251 367 171 22.5 19.6 29.8 9.2 5.0 3.8 6.3 1.49-73 RFU �120.25 35.62 1 1948 1942 2751 3742 45 47 65 53 1.8 3.1 3.6 1.7 0.3 0.4 0.5 0.39-74 VFU �120.53 35.92 1 12080 8032 14507 9496 184 256 315 145 16.9 22.4 28.1 6.3 3.8 4.5 5.9 1.79-75 WFU �120.51 35.81 0 22457 17785 28647 10001 335 183 382 167 9.9 5.8 11.4 4.4 1.0 1.5 1.8 0.410-1 FKS021 139.87 37.65 0 2742 5700 6326 1144 103 135 170 22 6.6 4.5 8.0 1.5 1.7 2.6 3.1 0.710-2 FKS022 139.65 37.60 0 4387 5041 6682 4602 148 132 198 71 7.7 9.6 12.3 3.2 1.6 2.2 2.7 1.010-3 FKS023 139.93 37.47 0 1352 1114 1752 940 62 51 80 17 4.7 4.6 6.6 1.6 2.0 1.5 2.5 1.010-4 FKS025 139.90 37.31 0 2855 3450 4478 2321 59 50 77 44 2.5 1.9 3.1 1.5 1.0 0.9 1.3 0.710-5 FKS026 139.54 37.26 0 7255 5068 8849 6031 132 111 173 60 4.7 3.6 5.9 3.7 1.8 1.3 2.2 1.210-6 FKS027 139.68 37.07 0 6990 6326 9428 3288 84 70 109 33 1.4 1.7 2.2 3.0 0.7 1.0 1.3 1.510-7 FKS028 139.32 37.35 0 9252 6429 11266 11436 167 141 219 123 12.3 12.1 17.3 4.3 3.1 3.1 4.4 1.310-8 FKS029 139.38 37.01 0 11551 14292 18376 6367 172 215 275 70 3.6 3.6 5.1 2.8 1.1 0.7 1.2 1.610-9 FKS030 139.52 37.45 0 6553 10413 12304 4124 98 145 175 50 5.4 4.4 6.9 2.3 1.8 1.7 2.5 1.210-10 FKSH01 139.72 37.75 0 4300 3837 5763 1786 59 49 77 17 1.5 2.6 3.0 0.9 0.8 0.9 1.2 0.710-11 FKSH03 139.76 37.61 0 2353 2517 3445 2191 79 101 128 53 6.9 4.8 8.4 3.1 1.5 1.8 2.4 1.010-12 FKSH04 139.82 37.45 0 5187 2035 5572 1592 95 41 104 21 2.7 2.8 3.9 1.9 1.6 1.7 2.3 1.410-13 FKSH05 139.88 37.25 0 3056 2629 4031 2174 67 60 90 26 2.3 3.0 3.8 1.4 1.0 0.9 1.4 0.810-14 FKSH06 139.52 37.17 0 7319 5694 9273 6677 147 126 194 76 4.2 4.6 6.2 3.4 1.6 1.0 1.9 1.710-15 FKSH07 139.38 37.01 0 10731 17377 20423 10275 101 149 180 90 2.8 2.5 3.8 2.6 1.0 0.6 1.2 1.610-16 FKSH21 139.32 37.34 0 19418 9751 21729 13091 362 247 438 137 18.8 15.6 24.4 5.0 3.1 1.8 3.5 1.110-17 GNM002 138.97 36.78 0 17211 19606 26089 17473 279 341 441 195 7.0 6.4 9.4 3.1 1.1 1.2 1.7 1.7
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD10-18 GNM003 139.08 36.66 0 19772 26288 32894 8373 293 359 463 126 6.8 8.7 11.1 3.4 1.4 1.8 2.3 1.710-19 GNM007 139.01 36.46 0 2970 3770 4800 1462 52 82 97 39 3.2 3.3 4.6 1.8 2.2 1.7 2.7 1.110-20 GNMH07 139.21 36.70 0 7315 5514 9160 7448 103 69 124 65 2.5 2.2 3.3 2.1 1.3 1.7 2.2 1.610-21 GNMH08 138.53 36.49 0 389 433 582 267 15 13 19 8 3.4 3.3 4.8 1.3 2.2 2.1 3.0 0.710-22 GNMH09 138.91 36.62 0 1186 1406 1840 699 20 25 32 8 1.7 1.8 2.5 1.5 0.9 1.4 1.6 1.310-23 NGN001 138.37 36.85 0 1933 2213 2938 1610 78 74 107 34 8.1 5.7 9.9 3.6 3.1 1.3 3.3 1.510-24 NGN002 138.21 36.80 0 3417 2922 4496 1011 101 114 152 34 5.2 5.8 7.8 3.4 2.5 3.1 4.0 1.810-25 NGN003 138.42 36.74 0 3631 4840 6051 2563 70 93 117 29 3.2 2.5 4.1 1.2 0.7 0.8 1.1 0.710-26 NIG003 138.33 38.00 0 4840 4382 6529 4009 76 89 117 41 3.4 4.3 5.5 1.3 2.1 2.0 2.9 0.510-27 NIG008 139.41 38.05 0 2653 2796 3854 2354 53 47 71 26 2.4 2.3 3.3 1.2 1.2 1.3 1.7 0.910-28 NIG010 139.01 37.91 0 3450 2818 4454 1321 104 69 124 34 8.1 7.7 11.2 2.4 5.2 4.8 7.1 1.710-29 NIG011 139.15 37.80 0 1657 1338 2130 661 57 55 79 17 6.3 7.4 9.7 2.7 4.2 4.2 5.9 1.610-30 NIG012 139.48 37.68 0 22084 11263 24790 3376 291 237 375 63 15.1 16.3 22.2 3.8 2.6 3.4 4.3 1.310-31 NIG013 138.89 37.76 0 4669 2405 5252 1242 129 95 161 39 12.2 13.6 18.2 4.4 6.4 8.1 10.3 2.410-32 NIG014 138.96 37.64 0 2137 3801 4360 3777 96 118 152 76 14.9 14.8 21.0 7.0 8.0 7.0 10.6 3.210-33 NIG015 139.19 37.69 0 3638 3074 4763 2133 79 67 103 29 3.8 5.1 6.3 2.6 1.7 2.2 2.8 1.510-34 NIG016 138.77 37.64 0 3611 4513 5780 1648 86 103 134 37 5.6 6.3 8.4 2.4 2.9 2.2 3.7 1.610-35 NIG017 138.85 37.44 1 20586 15758 25925 18012 369 468 596 331 21.6 49.0 53.5 15.7 14.1 15.6 21.0 4.810-36 NIG018 138.56 37.37 0 4639 4850 6711 3125 144 98 174 76 31.3 14.0 34.3 6.6 9.2 4.7 10.3 4.710-37 NIG019 138.79 37.30 1 39122 27548 47848 73872 1308 1147 1740 820 170.7 130.0 214.6 34.3 31.1 18.0 35.9 13.310-38 NIG020 138.97 37.23 1 18744 23183 29813 22737 407 521 662 312 30.6 32.4 44.6 12.3 8.5 11.8 14.5 5.810-39 NIG021 138.75 37.13 1 44384 71142 83852 27738 850 1716 1914 564 44.5 51.0 67.7 13.4 6.0 10.1 11.8 5.210-40 NIG022 138.85 37.03 1 12139 10519 16063 8634 342 342 483 127 20.0 21.0 29.0 3.9 3.9 4.8 6.2 1.410-41 NIG023 138.66 37.01 0 11115 12164 16477 3551 275 397 483 86 26.2 25.0 36.2 10.2 4.8 6.9 8.4 5.410-42 NIG024 138.45 37.12 0 9373 7205 11822 2704 218 240 324 55 9.4 13.3 16.3 3.8 4.3 3.8 5.8 2.910-43 NIG025 138.23 37.16 0 2917 2983 4172 1159 200 190 276 38 18.1 16.3 24.3 2.9 3.6 2.3 4.2 2.110-44 NIG026 138.25 37.02 0 1959 2692 3329 1271 78 71 106 18 4.2 3.7 5.6 2.7 2.2 3.0 3.7 2.010-45 NIG027 137.87 37.02 0 2899 2125 3594 1135 61 58 84 16 1.8 2.5 3.1 1.1 1.1 1.1 1.5 0.910-46 NIG028 138.89 37.42 1 33284 65947 73870 27991 706 870 1121 436 67.6 66.3 94.7 25.0 12.0 14.7 18.9 8.010-47 NIGH01 138.89 37.42 1 21865 31770 38567 20851 655 818 1048 375 64.6 59.8 88.0 27.5 12.1 14.7 19.0 7.9
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Table B.2: Continued.No. ID lon. lat. NF Jerk (m/s3) Aeleration (m/s2) Veloity (m/s) Displaement (m)EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD10-48 NIGH05 139.28 37.97 0 3260 3837 5035 1532 88 93 128 17 4.3 5.6 7.1 1.9 3.3 2.5 4.1 1.310-49 NIGH06 139.07 37.65 0 7198 8939 11476 6292 410 357 543 205 29.1 36.8 46.9 12.7 3.3 4.0 5.2 1.710-50 NIGH07 139.26 37.66 0 8433 5179 9896 4462 128 115 172 50 3.5 3.3 4.8 1.8 0.8 1.7 1.9 1.210-51 NIGH08 139.47 37.67 0 7804 5569 9587 4245 140 126 188 59 9.9 10.9 14.7 4.0 2.4 5.0 5.5 1.410-52 NIGH09 139.13 37.54 0 17092 17885 24739 27925 390 368 537 245 17.8 14.9 23.3 5.6 2.8 3.0 4.1 1.610-53 NIGH10 139.37 37.54 0 8859 8082 11992 6496 131 214 251 99 7.8 11.4 13.8 3.3 1.5 2.2 2.7 1.310-54 NIGH11 138.75 37.17 1 30584 26406 40406 28540 588 454 743 325 56.2 36.1 66.8 12.7 12.3 10.8 16.3 4.710-55 NIGH12 138.99 37.22 1 15530 21580 26587 38015 345 410 536 325 21.1 20.9 29.7 9.1 7.8 6.0 9.8 4.110-56 NIGH13 138.40 37.05 0 3163 2193 3849 1496 84 67 107 28 5.6 5.6 7.9 3.3 2.1 2.6 3.3 2.810-57 NIGH15 139.00 37.05 0 12812 24317 27486 8154 183 243 304 119 9.1 7.2 11.6 5.3 1.7 2.6 3.1 2.110-58 NIGH16 137.85 36.94 0 1586 1594 2249 1671 30 29 41 18 1.1 1.2 1.7 0.6 0.4 0.9 1.0 0.410-59 NIGH17 138.10 36.85 0 856 980 1301 634 52 67 85 39 6.4 5.3 8.3 3.4 2.3 1.7 2.8 1.510-60 NIGH18 138.26 36.94 0 3082 2804 4167 1049 110 96 146 44 6.0 8.9 10.7 3.4 3.8 3.4 5.1 2.410-61 NIGH19 138.79 36.81 0 3736 4536 5876 3008 75 72 103 33 2.3 3.2 3.9 1.9 1.4 0.8 1.6 1.210-62 TCG003 139.72 36.81 0 1766 1715 2461 298 52 47 70 5 2.3 1.6 2.8 0.4 0.6 0.8 1.0 0.310-63 TCG009 139.72 36.72 0 3224 2278 3947 3048 120 86 148 61 4.4 4.4 6.2 1.5 0.9 0.9 1.2 0.610-64 TCGH07 139.46 36.88 0 7213 7191 10186 8740 100 160 189 74 2.7 4.2 5.0 1.9 1.1 0.8 1.4 1.710-65 TCGH08 139.65 36.88 0 2373 2459 3417 2072 43 51 67 28 2.0 2.3 3.1 1.6 0.7 0.8 1.1 1.010-66 TCGH09 139.84 36.86 0 1858 1584 2441 1101 31 28 42 21 1.6 1.5 2.2 1.6 0.9 0.8 1.2 1.310-67 TCGH17 139.70 36.98 0 6378 5714 8563 4652 66 53 85 38 1.6 1.3 2.0 1.5 0.9 0.7 1.1 1.1


