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Abstract

Earthquake early warning systems have become popular these days, and many seis-
mologists and engineers are making research efforts for their practical application.
The existing earthquake early warning systems provide estimates of the location and
size of earthquakes, and then ground motions at a site are estimated as a function
of the epicentral distance and site soil properties. However, for large earthquakes,
the energy is radiated from a large area surrounding the entire fault plane, and the

epicenter indicates only where rupture starts.

In this project, we focus on an earthquake early warning system considering fault
finiteness. We provide a new methodology to estimate rupture geometry and slip size

on a finite fault in real time for the purpose of earthquake early warning.

We propose a new model to simulate high-frequency motions from earthquakes
with large fault dimension: the envelope of high-frequency ground motion from a
large earthquake can be expressed as a root-mean-squared combination of envelope
functions from smaller earthquakes. We parameterize the fault geometry with an epi-
center, a fault strike, and two along-strike rupture lengths, and find these parameters
by minimizing the residual sum of squares of errors between ground motion models

and observed ground motion envelopes.

To provide the information on the spatial extent of rupture geometry, we present
a methodology to estimate a fault dimension of an earthquake in real time by classi-
fying seismic records into near-source or far-source records. We analyze peak ground
motions and use Bayesian model class selection to find a function that best classi-
fies near-source and far-source records based on these parameters. This discriminant

function is useful to estimate the fault rupture dimension in real time, especially for
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large earthquakes.

In order to characterize slip on the fault in real time, we construct an analytical
function to estimate slip on the fault from near-source ground displacement observa-
tions. In real-time analysis, we back project the recorded displacement data onto the
fault line to estimate the size of the slip on the fault. The simulation results show that
the slip size estimation predicts the observed GPS static displacement on the fault
quite well. This current slip size on the fault is used for a probabilistic prediction
of additional rupture length in the near future. We characterize the distribution of
additional rupture length conditioned on the current slip on the fault for the ongoing
rupture from the simulation with a 1-D slip model. The probability density of addi-
tional rupture length can be approximated by a lognormal distribution conditioned

on the current slip size.
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Chapter 1

Introduction

1.1 Motivation

Recently, with advances in data analysis and increased awareness of the seismic haz-
ard, the topic of earthquake early warning has attracted more research attention,
and various early warning methods have been proposed from seismologists and engi-
neers (Nakamura and Tucker, 1988; Allen and Kanamori, 2003; Odaka et al., 2003;
Wu and Kanamori, 2005a). Currently, the most ambitious system is the earthquake
early warning system provided by the Japan Meteorological Agency, which is in a
testing phase. The news of the system was broadcasted widely and attracted con-
siderable public attention in Japan. The goal of seismic early warning is to initiate
optimal mitigating actions based on the arrival time and amplitude of seismic waves
predicted at a given location. To achieve this, an earthquake early warning system
must collect and quickly analyze seismic data in a manner that can be used to predict
future shaking. In principle, this could be achieved by using the present value of an
approximately known wavefield as a boundary condition to predict future wavefields
using Navier’s equation (Baker et al., 2005). However, from a practical viewpoint,
there are advantages to data analysis schemes that involve characterization of the
earthquake source. Predictions of future shaking can be achieved by utilizing the
extensive existing work on predicting ground shaking from seismic sources. Ideally,
an early warning system would provide the best estimate of slip in time and space

that can be deduced from seismic data available at any given instant in time.
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Cua and Heaton developed the Virtual Seismologist (VS) method (Cua, 2005; Cua
and Heaton, 2006). It is a Bayesian approach to seismic early warning designed for
modern seismic networks, and is proposed for small to moderate earthquakes with
ruptures that can be approximately modeled as a point source. The VS algorithm
uses an envelope attenuation relationship and the predominant frequency content
from the first few seconds after the P-wave arrival. The advantage of the VS method
is its capacity to assimilate different types of information that may be useful to find
quick and reliable estimates of magnitude and location (Cua, 2005). It gives the
best estimate of an earthquake property in terms of a probability density function.
The Bayesian approach is a scheme to emulate human capabilities to judge complex
information by modeling uncertainty in a probabilistic way.

Our goal is to extend the VS method to large earthquakes where fault finiteness
is important. Most other earthquake early warning systems focus on estimating
epicenters and magnitudes of earthquakes, not the fault geometry (Nakamura and
Tucker, 1988; Allen and Kanamori, 2003). However, for large earthquakes, rupture
length can be on the order of tens to hundreds of kilometers, and the inhomogeneous
slip distribution significantly affects the ground motion amplitude at a site. For
example, the fault rupture in the 1999 Chi-Chi earthquake was longer than 80 km,
and the largest slip was recorded at the northern end of the fault. It would be difficult,
if not impossible, to predict such large shaking at large distances from the epicenter
when using a scheme that only characterizes the earthquake as a point source.

Early warning for large earthquakes provides two types of predictions: 1) At
a given instant, it recognizes the present geometry of an ongoing earthquake, and
predicts the shaking from waves that are traveling to another site; 2) Given the
present dimensions of a rupture, what is the probability distribution for the final
dimensions of the rupture?

We introduce a two-step strategy to accomplish the first type of predictions; 1)
we determine the spatial and temporal extent of an ongoing rupture by analyzing
waveform envelopes of high-frequency shaking, 2) we determine approximate slip from

simple projections of long-period shaking onto the approximately known location of
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the rupture. Based on the current configuration of the fault, the second type of

prediction can be accomplished.

1.2 Background on seismic early warning system

1.2.1 History of research efforts in seismic early warning sys-

tem

Lee and Espinosa-Aranda (2003) and Kanamori (2005) provide a recent review and
history of research efforts in seismic early warning. According to the quotation in
Nakamura (1988), the concept of a seismic early warning system dates as far back
as 140 years ago. Cooper (1868) proposed to “arrange a very simple mechanical

> and “instan-

contrivance at various points from 10 to 100 miles from San Francisco,’
taneously ring an alarm bell, which should be hung in a high tower near the center
of the city” when the “very simple mechanical contrivance” detects an earthquake.
This article explains the fundamentals of a seismic early warning system. It refers
to the automation of the system, danger of false alarms, and weakness of the system
for very near-source earthquakes (see Appendix A for the quotation). Unfortunately,
Cooper’s concept was never implemented. A hundred years later, a railway company,
Japan Railways (JR) designed an earthquake warning system in 1965 and started
operation the next year (Nakamura and Tucker, 1988; Nakamura, 1988).

In the United States, Heaton (1985) developed a model for a seismic computerized
alert network (SCAN), which is a system to provide short-term warning for imminent
strong ground motion from large earthquake in southern California. By using this
model, the relationship between the size of the ground motions, warning time, and
area where the warning is issued was analyzed. According to the results, although
warning times are likely to be short for areas greatly damaged by relatively small to
moderate earthquakes, large areas that experience very strong shaking during large
earthquakes would receive longer warning times. He also comments that large earth-

quakes have a long rupture length, so the system can provide substantial warning
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times. Toksoz et al. (1990) described a prototype earthquake warning system for
strike-slip earthquakes whose slip can be approximated by only horizontal displace-
ment. As the first practical application in US, a prototype early warning system for
aftershocks was operated by the United States Geological Survey (USGS) in the San
Francisco Bay area after the 1989 Loma Prieta earthquake, M,=6.9 (Bakun et al.,
1994).

The concept of amplitude-based location estimate was introduced by Kanamori
(1993). In his method, an attenuation relationship is fit to the observed peak accel-
eration data, and parameters of magnitude, latitude, and longitude are determined
by minimizing the error between observations and predictions. This technique is the
fundamental principle used in VS method. Kanamori et al. (1997) describe examples
of seismic early warning system developed in several parts of the world. They dis-
cussed the current configuration of the seismic network in California and technical
issues for providing real-time information. In the paper, they pointed out an issue
that the energy is radiated from a large area for major earthquakes, and estimating
the epicenter location is not enough to determine the ground motion at a site. It is
proposed to locate not only the traditional hypocenter, but the center of the energy
radiation, which is referred to as the ground motion centroid.

Kanamori (2005) classifies early warning approaches as either on-site or regional.
An on-site approach uses available ground motions at a given site to predict the later-
arriving main shock at the same site. This method is suitable for the region close
to the epicenter. The regional approach predicts the ground motion at a site based
on an estimate of the size and magnitude of the event from the near-source records.
This approach is more reliable and provides more accurate information for stations
relatively distant from the epicenter. The on-site approach can make a more rapid
warning for the region close to the epicenter, since there is no need to compute the
magnitude or location of the earthquake. On the other hand, the regional approach
is useful for issuing a regional warning for the relatively distant stations. The merits
and demerits of these approaches are shown in table 1.1.

Allen and Kanamori (2003) introduced the Earthquake Alarm System (ElarmS),



Table 1.1: On-site and regional approaches for the earthquake early warning system.
Examples of each approach are explained in Section 1.2.2.

Type

On-site EWS

Regional EWS

Data to be used

Records of a station whose
ground motion is estimated.

All  the
records.

current available

Output information

Peak ground motion at a site.
(additionaly, magnitude and
epicenter location)

Source information.

(ground motion at a site can be
estimated from attenuation re-
lationships)

Merits

Simple and quick.

Reliable and acculate.

Demerits

Large uncertainty.

Taking time for data collection
and computation.

Suitable for

Regions close to the epicenter.

Relatively distant regions.

Examples

-UrEDAS (Nakamura, 1988)
-Elarm$S

(Allen and Kanamori, 2003)
-Taiwan EWS

(Wu and Kanamori, 2005b)

-Mexico city SAS
(Espinosa-Aranda et al., 1995)
-Japan EWS

(Odaka et al., 2003)

-VS method (Cua, 2005)

which is an on-site approach for the California Integrated Seismic Network (CISN).

This algorithm determines the magnitude of events from the predominant period of

the first few seconds of the P-wave, based on the assumption that the seismic mag-

nitude has a linear relationship with the predominant period of the ground motion.

Wu and Kanamori (2005a) introduced an approach based on a predominant period

and displacement amplitude for the Taiwan early warning system. The regional ap-

proach for seismic early warning is employed in Japan and Mexico (Odaka et al.,

2003; Espinosa-Aranda et al., 1995, respectively). The VS method is also categorized

as a regional approach.

1.2.2 Seismic early warning systems in the world

We review earthquake early warning systems that are currently in operation around

the world (Normile, 2004).
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1.2.2.1 Earthquake early warning system in Japan
1) Urgent Earthquake Detection and Alarm System (UrEDAS)

The Bullet Train, or Shinkansen, of the Japan Railways (JR) started operation in
1964. The next year, Shizuoka earthquake (M6.1) hit the route of the train and
damaged the train track. From the concern for the potential of serious damage
from large earthquakes, the earthquake early warning system began operation in
1966 (Nakamura and Tucker, 1988). The system consists of accelerometers installed
at the transforming stations along the train route, each separated by about 20 km
(Nakamura and Tucker, 1988; Saita and Nakamura, 2003). When acceleration exceeds
40 gals, the electric power to the Bullet Train is automatically shut off and the brakes
are applied (Nakamura and Tucker, 1988; Saita and Nakamura, 2003).

Starting from 1983, an intelligent earthquake warning system called UrEDAS
(Urgent Earthquake Detection and Alarm System) was implemented (Nakamura,
1996b,a). In this upgraded system, the accelerometers are installed on the coastal line,
which is closer to the Japanese subduction zone, to provide more warning time (Naka-
mura and Tucker, 1988). When the accelerometers record a strong ground motion,
each station estimates the epicentral azimuth, magnitude, and hypocentral distance
of the earthquake from the first few seconds of the records (Nakamura, 1996a). Based
on this information, it then issues an alarm and automatically shuts off the electric
power for trains which are running at high speed. The system worked during the
Niigata Chuetsu earthquake in 2004. It immediately detected the P-wave arrival and

shut off the train’s power in less than 3 seconds (Nakamura et al., 2006).

2) Early Warning System in Japan (extended Nowcast system)

The Japan Meteorological Agency (JMA) and National Research Institute for Earth
Science and Disaster Prevention (NIED) recently implemented a prototype emergency
earthquake warning system in Japan (Doi, 2003; Odaka et al., 2003; Horiuchi et al.,
2005).

It uses a method of estimating the epicentral distance from a single seismic record
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in a short amount of time (Odaka et al., 2003). They fit a function Bt - exp(—At) to
the initial part of the waveform envelopes of the past earthquakes and determine A
and B by the least-squares method. It is found that the log B is inversely proportional
to log of epicentral distance. Therefore, in real-time analysis, the observed envelopes
are fit to the empirical function to estimate the epicentral distance.

After deciding distance estimate, they estimate the magnitude from the maximum
amplitude observed within a given short time interval after the P-wave arrival by using
an empirical magnitude-amplitude relation that includes the epicentral distance as
a parameter. Using epicentral location, depth, and magnitude as input data, the
amplitude of the maximum velocity on local site bedrock and the arrival time are
estimated from a velocity attenuation relationship (Si and Midorikawa, 1999). In
order to obtain the peak ground velocity estimate from the site bedrock velocity
estimate, the latter is multiplied by a site amplification factor from an available
database called the digital national land information. Currently, this early warning
system is under going a testing phase, and the distribution of the early warning

information is limited to the people in charge of emergency services.

1.2.2.2 Seismic Alert System (SAS) of Mexico city

Seismic Alert System (SAS) is a seismic early warning system for Mexico city (Espinosa-
Aranda et al., 1995, 1996; Lee and Espinosa-Aranda, 2003). From the lesson of the
aftermath of the 1985 Michoacan earthquake, the SAS was implemented to detect
subduction earthquakes occuring in the Mexican subduction zone located several
hundred kilometers south-west of Mexico city. The system consists of a seismic de-
tector on the Pacific coast, telecommunications, central control, and radio warning.
The local magnitude is estimated from an empirical relation embedded in each seis-
mic detector, and a warning message is sent via the telecommunications unit if the
estimated magnitude is greater than 6. The system is effective since Mexico city is
located 300 km from the coast line and it takes about 1 minute for seismic waves to
travel from the coast to the central city. The characteristics of the seismic damage

in the Mexico city is the collapse of high-rise buildings because of the very soft soil
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structure. The SAS would be more useful if the warning information is effectively

used for those high-rise buildings.

1.2.2.3 Early warning system in Taiwan

Taiwan has established several research programs that are actively pursuing earth-
quake early warning and rapid reporting systems (e.g., Teng et al., 1997; Wu et al.,
1998). The early warning system established by the Taiwan Central Weather Bureau
(CWB) uses a real-time strong-motion accelerograph network consisting of 86 stations
distributed around Taiwan (Wu and Kanamori, 2005b). The system takes an on-site
approach and the predominant period (7.) and peak amplitude of displacement in
the first 3 seconds after the P-wave arrival (Pd) determine the seismic magnitude
(Wu et al., 2006). Wu and Kanamori (2005a) also found that Pd correlates well with
the peak ground displacement (PGD) and peak ground velocity (PGV) at the same
site. Therefore, P-wave arrival time, 7., and Pd can jointly be used to determine the
hypocenter, magnitude, and the ground motion intensity at the site. For an event
with the same location as the 1999 Chi-Chi earthquake, the Taipei metropolitan area,
at 145 km from the epicenter, would have more than 20 sec of early warning time

with this early warning system (Wu and Kanamori, 2005b).

1.2.2.4 Early warning system in the United States

The U. S. Geological Survey (USGS) has sponsored the development of a telemetered
earthquake monitoring system in California to provide rapid earthquake information
for the benefit of public safety, emergency response, and loss mitigation.

In Southern California, the CUBE (Caltech-USGS Broadcast of Earthquakes)
project, started in 1991, had a goal to develop near real-time earthquake information
systems (Kanamori and Hauksson, 1991). The seismic network in the original CUBE
system used digital data from a seismic network with analog telemetry, which severely
limited the dynamic range of the data. The increasing demand of rapid earthquake
information after the 1994 Northridge earthquake led to the deployment of 24-bit

digital communications as a part of the TriNet project (Heaton et al., 1996).
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In northern California the REDI (Rapid Earthquake Data Integration) system was
operated by the University of California at Berkeley in collaboration with the USGS.
Since 1994, the CUBE and REDI systems have been upgraded to the California Inte-
grated Seismic Network (CISN). Recently, Allen and Kanamori (2003) demonstrated
the feasibility of a short-term earthquake warning using the extensive data set from
CISN. The proposed system, ElarmS (Earthquake Alarm Systems), could issue a
warning a few to tens of seconds ahead of damaging ground motion (Lockman and
Allen, 2005; Simons et al., 2006; Allen, 2006). Currently, universities, federal and
state government agencies, and the private sector are collaborating for the practical

implementation of an early warning system on CISN.

1.2.2.5 Early warning systems in other countries

As a result of increased public perception of the benefits of earthquake early warning
systems, such systems are being developed all over the world. Southern Europe is an
earthquake-prone zone and their national and local governments have a great interest
in mitigating seismic damage by installing seismic early warning systems.

In Campania Region, southern Italy, a prototype system for seismic early warning

and rapid shake map evaluation is being developed and tested (Zollo et al., 2006).

In Istanbul, Turkey, one hundred strong motion accelerometers have been placed
in populated areas, and ten strong motion stations are sited at locations as close as
possible to the main fault (Great Marmara Fault) in on-line data transmission mode
to provide earthquake early warning information (Zschau et al., 2003; Erdik et al.,
2003).

Seismicity in Bucharest, Romania, has special properties such as the invariability
of the location of epicenters and the stability of radiation patterns (Wenzel et al.,
2003). A Mexico city-type SAS system would be adequate for those kinds of areas.

The city of Yerevan, Armenia, is planning to install 13-15 seismic detectors around
the city with a radius of 30 km. Approximately 3 to 8 seconds of warning time is

expected (Balassanian et al., 2003).
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1.3 Objectives and road map for this thesis

In order to construct an early warning system for large earthquakes, we characterize
the rupture extent and the slip on the fault in real time and predict ground motions
at a given site based on the current rupture configuration. The objectives of this

thesis are:
e Characterize the present rupture extent from high-frequency ground motions
e Characterize the present slip on the fault from low-frequency ground motions
e Predict the rupture extent from the on-going rupture.

The thesis is organized as follows: In chapter 1 we outline the research area of
earthquake early warning systems and look at the previous research in this area. In
chapter 2 we briefly discuss the basic procedures of the Virtual Seismologist (VS)
method, a seismic early warning system developed by Cua and Heaton (Cua, 2005;
Cua and Heaton, 2006). In chapter 3 we discuss a strategy to extend the VS method
to large earthquakes. To work this problem, we first recognize the statistical obser-
vations of high-frequency and low-frequency ground motions for large earthquakes
with magnitude greater than 6.0. In chapters 4 and 5 we introduce two different
methodologies that can estimate the rupture geometry from acceleration envelopes.
In the first method the rupture geometry can be characterized with three parame-
ters, an azimuthal direction, and two rupture lengths, one in the positive direction
and one in the negative direction, as measured from the epicenter. These parameters
can be estimated from acceleration envelopes in real time. In chapter 5 we propose
a technique to classify near-source and far-source stations. In chapter 6 we propose
a methodology to determine the slip on the fault and predict the total length of the
rupture propagation possible conditioned on the current slip. Finally, in chapter 7

we provide conclusions and future work.
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Chapter 2

General Virtual Seismologist
Method

In this chapter, we briefly discuss the basic procedures of the Virtual Seismologist (VS)
method developed by Cua and Heaton (Cua, 2005; Cua and Heaton, 2006), which
forms a foundation for the work in this thesis. The VS method is a Bayesian approach
for seismic early warning systems. The Bayesian framework provides a means to
incorporate previous experiece and judgment that is not traditionally and explicitly
incorporated into automated decision making. When making a decision, a human
processes many kinds of information, combines and analyzes them simultaneously,
and makes a judgment based on the analyzed information. The Bayesian approach
is a scheme to emulate human capabilities to judge multiple pieces of information

comprehensively and make judgements from limited information.

One component of the VS method is a method to estimate: 1) magnitude from
observed ground motion ratios between vertical acceleration and vertical filtered dis-
placement; and 2) magnitude and location from P- and S-wave amplitudes of vertical
and horizontal acceleration, velocity, and filtered displacement. Any seismic early
warning system estimates the earthquake information from the sparse set of available
observations immediately after the initial P wave detection. What differentiates the
VS method from other proposed seismic early warning systems is the use of prior
information. Prior information (i.e. the state of health of the seismic network, fault

locations, and previously observed seismic activity) can help to reduce the uncertainty
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of the initial estimate of the event information.

2.1 Bayes’ theorem for seismic early warning sys-

tem

Bayes’ Theorem is a simple mathematical formula to calculate conditional probabili-
ties. The probability of event A conditioned on the occurrence of event B is called a
posterior probability for the event A. This can be expressed as a normalized product

of a prior probability density function (pdf) and a likelihood function:

likel(ihorjdél) pri(ZA)

prob(B X prob

prob(A|B) = 2.1
post(eri(|;r ) p’I“Ob(B) ( )

normalizing constant

The posterior probability for the earthquake early warning system is the probability
of the parameter we would like to estimate (e.g., magnitude, location of the epicenter)
given observed ground motion data (e.g., accelerograms, GPS displacement). For the

VS method, Bayes’ Theorem can therefore be expressed as:

prob(M, B A) :prob(A|M, R) x prob(M, R)
poster,ior pTOb(A)

xprob(A|M, R) x prob(M, R), (2.2)

likelihood prior

where A is the observed ground motion amplitude, M is the magnitude of the earth-
quake, and R is the location (i.e., latitude and longitude) of the epicenter. The pos-
terior pdf, prob(M, R|A), is proportional to the product of the prior pdf, prob(M, R),
and the likelihood function, prob(A|M, R), since the constant, prob(A), is independent
of the magnitude and the location of the earthquake. The posterior pdf represents the
conditional probability of magnitude and location when we observe the ground mo-
tion amplitude. The best estimation of the magnitude and location can be obtained
by maximizing the posterior to give the most probable values (see Figure 2.1).

The likelihood function is the probability of the ground motion amplitude ob-



During the event

Observed ground |

prob(AIM,R)

motions (4) Least square
error Likelihood
( ) of MR
Ground motion SA- A ’

model (A=fim,R))

prob(M,RIA)

Posterior
Before the event

(Most likely M,R)
Location of known faults _
Previously observed seismicity Prior
Geometric considerations of M,R
Gutenberg-Richter law prob(M,R)

Figure 2.1: A block diagram to compute the posterior pdf of Bayes’ theorem from
the prior information and real-time ground motion data.

servation given the magnitude and distance. It is defined using a ground motion
attenuation relationship for ground motion amplitudes in terms of magnitude and
distance. The sum of square errors (2(A — A)?) is often used to define the likelihood
function which corresponds to taking a Gaussian probability model for each predic-
tion error, the error between the observation (A) and prediction (A) based on the
models. The Bayesian approach reduces to some other geophysical inverse methods if
the prior information is not considered; then it is the same as the maximum likelihood

method and corresponds to a least-square approach in the case of Gaussian prediction

errrors.

The prior pdf expresses information known before examining waveform data for
the ongoing earthquake rupture. Station geometry, location of faults, or previously
observed seismicity can be expressed as probability density functions and used as prior
information. For example, the regions where earthquakes were observed on previous
days have a higher probability of producing additional earthquakes. Therefore, the

prior pdf is higher for regions that are near events on previous days. The prior pdf
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is also higher for areas near known faults. Other prior information (e.g., station

geometry, Gutenberg-Richter law) can be included in the same way.

2.2 Defining the prior prob(M, R)

The prior pdf is a probability of magnitude (M) and location (R) based only on the
information obtained before an earthquake occurs. If there is no prior information,
the magnitude and location of an earthquake are treated as equally likely to be any
size and at any place, and so a uniform prior is used. However, generally speaking,
there is usually some information before the initiation of an earthquake rupture, and
that information can be used to constrain the magnitude and location estimates in

seismic early warning. The following information is considered as prior information:

Location of known faults

Previously observed seismicity

Geometric consideration of stations

Gutenberg-Richter law

2.2.1 Location of known faults

Recognized active faults are more likely sources of future large earthquake than regions
without recognized faults. Even though there are many faults hidden underground
which are too small to extend from earthquake depths to ground level, the information
of active faults helps to confine the source location. The prior pdf, considering the
location of known faults, can be defined as an exponential function of the distance

from fault lines (Felzer and Brodsky, 2006):

prob(r) = cr= '3 (2.3)
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where

r =the shortest distance between fault lines and a station,

¢ =constant.

An example of the prior pdf for the known faults is shown in Figure 2.2.
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Figure 2.2: An example of the prior pdf for the known faults for the 2004 Parkfield
earthquake. Solid lines indicate the location of the fault lines in California and dark-
ness of the shade around the lines show higher prior pdf values. The star symbol
shows the epicenter of the Parkfield earthquake.

2.2.2 Previously observed seismicity

Since observations of foreshocks preceding large earthquakes are significantly related
to subsequent earthquakes, the regions where an earthquake was observed on the
previous day have a higher probability of an earthquake occurrence (Abercrombie and
Mori, 1996). Abercrombie and Mori (1996) found that 44% of the earthquakes in their
California dataset had foreshocks. Therefore, the prior pdf is higher at regions near

the source of events on the previous day. The prior pdf considering the previously
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observed seismicity is expressed by the exponential function (Felzer and Brodsky,

2006):
prob(r) = cr— 34, (2.4)
where

r =z — x|,
x =location of the station,
x; =location of the foreshock epicenter(i =1, ...,n),

¢ =constant.

An example of the prior pdf for the known faults is shown in Figure 2.3.
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Figure 2.3: An example of the prior pdf for the previously observed seismicity of
the 2004 Parkfield earthquake. Open circles indicate the location of the previously
observed seismicity and darkness of the shade around the circle show higher prior pdf
values. The star symbol shows the epicenter of the Parkfield earthquake.
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2.2.3 Geometric consideration of stations

Station geometry also provides a geometric constraint to the location of an earthquake
epicenter. Rydelek and Pujol (2004), Cua (2005), and Horiuchi et al. (2005) developed
a new technique to constrain the location of an earthquake from the P-wave arrival
time using the Voronoi cell concept (Sambridge, 1999a,b). The Voronoi cell of a
station is a convex polygon around the station, which is a set of all points closer to
a station than to any other stations. The location of the earthquake epicenter must

be inside of the Voronoi cell of the station first triggered by a P-wave arrival (Figure

2.4).
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Figure 2.4: Voronoi cells of strong motion stations for 2004 Parkfield earthquake.
Triangles denote strong motion station locations. The shaded region is that of possible
location of epicenter when the closest station PKD detects the first P-wave arrival.
The star symbol shows the epicenter of the Parkfield earthquake.

After the first P-wave arrives at the first station, not-yet-arrived data can shrink
the probable region of the epicenter location inside the Voronoi cell (Figure 2.5). From
Rydelek and Pujol (2004), the region of likely location of the epicenter based on the
first two P-wave arrivals forms a hyperbola, which is a set of points the difference

of whose distances from the first and the second arrival stations is a given positive
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Figure 2.5: Voronoi cells of strong motion stations for 2004 Parkfield earthquake.
Triangles denote strong motion station locations. The shaded region is that of possible
location of epicenter at the 3 seconds after the first P-wave detection. The star symbol
shows the epicenter of the Parkfield earthquake.

constant k (Figure 2.6). Furthermore, the use of not-arrived data after the first two
P-wave arrivals can provide continuously evolving constraints on the region of likely

location.
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Figure 2.6: Voronoi cells of strong motion stations for 2004 Parkfield earthquake.
Triangles denote strong motion station locations. The shaded region is that of possible
location of epicenter at the second P-wave detection. The star symbol shows the
epicenter of the Parkfield earthquake.
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2.2.4 Gutenberg-Richter law

The Gutenberg-Richter law states that the number of earthquakes per year, N, of
Richter magnitude M is statistically proportional to 107°™ (see Figure 2.7). This

relationship is mathematically expressed as:
N(M) = 10°7"M (2.5)

where a and b are constant, and the size of the constant b is typically around 1.

According to the Gutenberg-Richter law, there are a lot more small earthquakes
than large ones. Therefore, the prior pdf corresponding to the Gutenberg-Richter law

is defined as:

prob(M) oc 10*7"M, (2.6)
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Figure 2.7: Histogram of the magnitude of the earthquakes in Southern California
during 2000~2006. The distribution follows the Gutenberg-Richter law.
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2.3 Defining the likelihood function prob(A|M, R)

The likelihood function is the probability of the ground motion amplitude observation
(A) given the magnitude (M) and distance (R). Cua (2005) defined a likelihood func-
tion in terms of the ratio between vertical acceleration and displacement amplitudes,
and the envelope attenuation relationships for vertical acceleration and horizontal ac-
celeration, velocity, and displacement. This section describes the magnitude ground
motion relationships, P-wave and S-wave discriminant, and ground motion models as

components of the likelihood function.

2.3.1 Magnitude ground motion relationships

Magnitude ground motion relationship is one of the measurements to find magnitude
of an earthquake from the ground motion. Many seismologists have pointed out that
the P-wave predominant period is linearly correlated with the ultimate magnitude
(Nakamura and Tucker, 1988; Allen and Kanamori, 2003). Cua and Heaton (2006)
use ratios of the ground motion as indicative of the predominant frequency of the
seismograms. Since the acceleration is equal to the square of frequency (w?) times
displacement in the frequency domain, the magnitude is proportional to the ratio

between acceleration and displacement.

M ox wy? (2.7)

= ¢y log(acceleration) + ¢ log(displacement) + ¢z,

where wy is the predominant frequency of the ground motion, and ¢y, ¢o, and c3 are
coefficients. Cua (2005) performed a linear discriminant analysis with over 30,000
seismograms in Southern California to determine these coefficients. Figure 2.8 shows
the dataset and the most probable linear discriminant function which classifies the
dataset with different magnitudes. The best magnitude ground motion relationship

is:
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Linear Discriminant Analysis of P-wave Amplitude Ratios
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Figure 2.8: Linear discriminant analysis of P-wave log(acc) and log(disp) as indicators
of magnitude. Z = X, - u = 0.361og(acc) — 0.93log(disp) (Cua, 2005).

. —1.627(0.36 log(Zacc) — 0.93log(Zdisp)) +8.94 : if P-wave,
M = (2.8)

—1.459(0.36 log(Zacc) — 0.93log(Zdisp)) +8.05 : if S-wave,
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where Zacc and Zdisp are vertical acceleration and vertical displacement, respectively

and standard deviations are:

0.45 : if P-wave,

0.41 : if S-wave.

By using this relationship, the observed and predicted ground motion ratios in

equation 2.19 are expressed as follows:

Z; = 0.36log(Zacc) — 0.93 log(Zdisp), (2.10)

(—M +8.94)/1.627 : if P-wave,
Z/(M) = (2.11)

(—M +8.05)/1.459 : if S-wave.

2.3.2 P-wave and S-wave discriminant

In equation 2.11, the magnitude ground motion relationship is defined separately for
P-wave and S-wave. Although it is not significantly sensitive to whether the observed
amplitudes are P- or S-wave (see equation 2.11), we can obtain better source estimates
if we can identify phases (Cua, 2005). Cua (2005) defined a discriminant function as a
linear combination of ground motion measures, and found the best combinations and
coefficients for seismograms in Southern California by linear discriminant analysis.
The result of the P/S wave discriminant is shown in figure 2.9. The most probable

discriminant function is:

PS = 0.441og(Zacc) + 0.55 log(Zvel) — 0.46 log(Hacc) — 0.55log(Hvel)  (2.12)

Zacc®* Zvel%%

= log(———~— S —
08( 57— 5as) T 108(5 —s5):
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P/S discriminant using acceleration, velocity
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Figure 2.9: P/S wave discriminant using vertical and horizontal ground motion ac-
celeration and velocity (Cua, 2005).

PS > 0: P-wave,
of
PS <0 : S-wave,

where Zacc, Zvel, Hacc, and Hvel are vertical acceleration and velocity, and hori-

zontal acceleration and velocity, respectively.

2.3.3 Ground motion models

Cua and Heaton examined over 30,000 seismograms in Southern California and de-

veloped relationships that predict waveform envelopes as a function of magnitude,
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distance and station corrections (Cua, 2005; Cua and Heaton, 2006). First, the en-
velopes of the ground motions are modeled as a combination of the envelopes of

P-wave, S-wave, and ambient noise.

Eapservea(t) = \/ B3 (8) + E3(1) + By + € (2.13)

where

Eopserved(t) =envelope of observed ground motion,
Ep(t) =envelope of P-wave,
Es(t) =envelope of S-wave and later-arriving phases,
E o mpiens =ambient noise at the site,

e =difference between predicted and observed envelope.

The ambient noise, Fyppient, for a given time history is modeled as a station constant.
The P- and S-wave envelopes, Ep(t) and Fg(t), are defined by a rise time (4,5, and
trises), a constant amplitude (Ap and Ag), a duration (Atp and Atg), and two decay
parameters (yp and vg) and (7p and 7g) respectively. See figure 2.10 for the physical

interpretation of these parameters.

The general form of the envelope function is:

(

0 ;o t<T;
ti(t_ﬂ) ; E§t<ﬂ+trisei]‘7
Eylt) ={
Aij ; T; + trisei]- S t < T; + trisei]- + Atz'ja
1 .
[ Aij CTitriney, Aty o L2 T + trige,; + Al

(2.14)
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Figure 2.10: Observed envelope for accelerogram and P-wave and S-wave envelopes
for the ground motion model defined in equation 2.14 (Cua, 2005).

where

1 =P-, S-wave,
T; =P-, S-wave arrival times,

j =horizontal and vertical acceleration, velocity, and displacement.

Cua and Heaton parameterized each seismogram as a set of eleven parameters (five
for the P-wave envelope, five for the S-wave envelope, and one for the ambient noise).
Furthermore, each parameter is described by magnitude, distance, log of distance,
and site dependent constants based on the traditional strong motion attenuation
relationships (Campbell, 1981; Boore and Joyner, 1982; Boore et al., 1993). The
functional forms which describe the P- and S- wave envelope functions are given

below:
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loglo Az’j :ai]‘M + bij (R1 + Cij (M)) + di]‘ 10g10(31 + C’Z](M)) + eij + Gij, (215)

logm Bij :ai]‘M + binl + dij logm R1 + €ij + €ij, (216)
where

1 =P-, S-wave,

J =horizontal and vertical acceleration, velocity, and displacement,
A;; =ground motion envelope amplitude,
B;j =rise time (t,;s¢), duration (A7), and decay parameters (7, ),
M =local magnitude (M, for M > 5.0),

R = epicentral distance in km for M < 5,

closest distance to fault for M > 5.0 (when available),
Ry =\/(R*+9),
Ci; (M) =(arctan(M — 5) + 1.4)(c145 exp(cai; (M — 5))),
a;j, bij, C1ij, C2ij, d;j, €;; =regression constants,

€;; =statistical (or prediction) error, ~ NID(0,07).

The A;js are the ground motion envelope amplitudes (P- or S-wave) from fitting
equations 2.13 and 2.14 to the observed ground motion envelopes in the database.
The B;;s are the parameters characterizing the envelope function (¢, AT, 7, and
7). Coefficients in equations 2.15 and 2.16 are determined by regression analysis of
the database using the Neighborhood Algorithm (described later in Section 4.2). An
example of set of coefficients (for horizontal and vertical accelerations on soil sites) are
shown in table 2.1. Table 2.1 and equations 2.13 — 2.16 can determine the envelope
function of ground motions with magnitude M and epicentral distance R. Figure
2.10 shows an observed ground motion envelope and the best P-wave, S-wave, and

ambient noise envelopes based on equations 2.13 — 2.16.
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Table 2.1: Coefficients for the envelope attenuation relationships for rms horizontal
and vertical acceleration on a soil site in equation 2.16. All attenuation relationships

model log,, of the envelope parameter as functions of magnitude and distance (Cua,
2005).

Coefficients for rms horizontal acceleration on soil sites

a (M) b (R) d (log(R)) | cl c2 e o
Ap 0.740 | —3.30 x 1073 —1.26 2.41 | 0.95 | —0.90 | 0.29
Ag 0.840 | —2.30 x 103 —1.56 2.42 | 1.05 | —0.19 | 0.31
Tyise,p | 0.070 | 1.25 x 1073 0.24 - - | —0.380.26
ATp | 0.030 | 2.37 x 1073 0.39 - - | -0.59 | 0.36
TP 0.087 | —1.89 x 103 0.58 - - | =077 | 0.31
vp - - - - - 0.07 | 0.21
Trise,s | 0.055 | 1.21 x 1073 0.34 - - | —=0.66 | 0.25
ATg 0.028 - 0.07 - - | -0.10]0.23
TS 0.056 | —8.30 x 10~* 0.51 - - | —0.58 | 0.24
vs - - - - - 0.07 | 0.13
noise - - - - - —2.50 -

Coefficients for vertical acceleration on soil sites

a (M) b (R) d (log(R)) | ¢l c2 e o
Ap 0.739 | —4.13 x 1073 —1.20 2.03 | 0.97 | —0.62 | 0.32
Ag 0.751 | —2.47 x 103 —1.47 1.59 | 1.02 | —0.21 | 0.30
Trise,p | 0.057 | 5.86 x 101 0.23 - - | -0.3710.23
ATp 0.000 | 1.76 x 1073 0.36 - - | —0.48 | 0.41
TP 0.057 | —1.36 x 1073 0.63 - - | —0.89 | 0.28
vp - - - - - 0.05 | 0.18
Tyise,s | 0.060 | 2.18 x 1073 0.26 - - | —0.66 | 0.25
ATs 0.029 - 0.31 - - | —0.31]0.24
Tg 0.060 | —1.45 x 1073 0.51 - - | —0.54 | 0.22
vs - - - - - 0.05 | 0.09
noise - - - - - —1.96 -

2.3.4 Complete form of the likelihood function

As we discussed at the top of this section, the likelihood function is defined in terms of
the ground motion ratio between vertical acceleration and displacement amplitudes,
and the envelope attenuation relationships for vertical acceleration and horizontal

acceleration, velocity, and displacement.

The ground motion ratio estimates the magnitude of earthquakes. To find the
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best estimate, the error between the observation and prediction from the magnitude

ground motion relationships is minimized.

1 Z; — Z;(M))?
prob(Z;|M) =——=——exp (—( 2( ) ), (2.17)
V27og, 207
where
1 =1,...,n, where n is the number of stations with P detections,

0z, = standard deviation in equation 2.9,
Z; = observed ground motion ratio in equation 2.10,
Z; = ground motion ratio predicted by the magnitude ground motion,

relationship in equation 2.11.

The amplitude of the ground motion envelopes estimate the magnitude and lo-
cation of earthquakes. The errors between the observed envelopes and predicted

envelopes from the ground motion models are also approximated by a Gaussian dis-

tribution.
1 Yiie — Yiin(M, R))?
prob(Yije| M, R) =—=———exp (—( ik Zﬂ;( ) ), (2.18)
V2T Ok 20551,

where

j =1,...,4, for peak amplitudes of vertical velocity, and

horizontal acceleration, velocity, and displacement,
k =1,...,nt, time in 1-second intervals from the event onset,

oijr = standard deviation of j channels and time k at station i
Yijr =log,, of peak observed amplitude of j channels and time k at station i

Yijr =log,o of peak amplitude of k channels and phase j at station i

predicted by ground motion models in equations 2.13 — 2.16
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The vertical acceleration and displacement are used to estimate the magnitude,
and the amplitudes of the vertical velocity and three horizontal components solve the
trade-off between the magnitude and location of the epicenter. From equations 2.17
and 2.18, the likelihood function of 1-second-interval ground motion envelopes (A)

conditioned on the magnitude (A/) and location (R) is:

prob(A|M, R) HHHprob Zi|M)prob(Y;x|M, R)

i=1 j=1 k=1
N ((Zi= Zi(M))? | o~ xm (Vige — Yige (M, R))?
xexp| - 3 (AR L 5n Y B -
i=1 Zi j=1 k=1 ijk

(2.19)

2.4 Finding the best estimates

In order to operate the VS method in real time, we first assume that seismic waveform
data are transmitted to a central processor by a seismic network with sufficient station
density to quickly characterize the seismic wave field. The central processing station
processes currently available seismic records and produces updates as additional data
are received. The prior probability incorporated in the real-time Bayesian analysis
includes information about magnitude likelihood (e.g., Gutenberg-Richter frequency
magnitude) and location likelihood (e.g., known faults, or previously observed seis-
micity). This prior pdf has been calculated before the occurrence of any earthquake
which the VS method is intended to provide a warning for. As the seismic data
arrives, the processor can use it to evaluate the likelihood function for any location
and size of the earthquake in order to maximize the posterior in equation 2.2 to get
the best estimate of magnitude and location of the earthquake; this is done using
updated information every second. The predicted ground motion at any site can be
computed by the ground motion model in equations 2.13 and 2.14, since a magni-
tude and distance define the ground motion envelope uniquely in the model. This
strategy assumes a point-source model and works for small to moderate earthquakes

(magnitude < 6.5).
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2.5 Summary

In this chapter, we briefly discussed the basic procedures of the VS method developed
by Cua and Heaton (Cua, 2005; Cua and Heaton, 2006).

The VS method is a Bayesian approach for seismic early warning systems. It in-
corporates prior information which can be obtained before an event and a likelihood
function computed from the ground motion data available after the initial P-wave
detection, and finds the most probable estimate for magnitude and location by maxi-
mizing the posterior, which is equivalent to maximizing the product of prior pdf and
likelihood function.

We discussed how to define prior pdf and likelihood function from available set of
data in this chapter. The location of known faults, and previously observed seismicity,
geometric consideration of stations, and Gutenberg-Richter law are considered as the
prior information. Likelihood function is defined in terms of the magnitude ground
motion relationship and envelope ground motion amplitudes. More detail about the
VS method and examples of the application of the VS method are shown in Cua’s
Ph.D. thesis (Cua, 2005).
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Chapter 3

Extended Virtual Seismologist
Method

This chapter discusses a strategy to extend the Virtual Seismologist method to large
earthquakes. We obtain the finite-rupture information by inverting high-frequency
and low-frequency ground motions respectively. To understand this procedure, it is
important to recognize the characteristics of high-frequency and low-frequency ground
motions. This chapter also analyzes the statistical features of observed high-frequency
and low-frequency ground motions for large earthquakes with magnitude greater than

6.0.

3.1 Road map for Virtual Seismologist Finite-Source

method

The previous chapter briefly discusses the general VS method. In its current level
of development, this methodology seems effective for earthquakes (M < 6.5), where
rupture can be modelled with a point source. However, for large earthquakes, rupture
length can be on the order of tens to hundreds of kilometers, and the heterogeneous
slip distribution significantly affects the ground motion amplitude expected at a site.
For example, the fault rupture in the 1999 Chi-Chi earthquake was longer than 80
km, and the largest slip was recorded near the end of the rupture at the northern end

of the fault. It would be difficult, if not impossible, to predict such large shaking at



33

large distances from the epicenter when using a scheme that only characterizes the

earthquake as a point source.

In order to extend the VS method to earthquakes with M > 6.5, we need to con-
sider the fault rupture geometry and the size of slip on the fault. To differentiate the
VS method considering the fault finiteness, we call the general VS method described
in the previous chapter “VS Point-Source (PS) method” and the VS method for large

earthquakes “VS Finite-Source (FS) method.”

Our strategy for large earthquakes is as follows. (See also figure 3.1.)

01

[ Prior ] [ Real-time seismic data

information

Acceleration

1. Acceleration envelope fitting
2.Near-source/far-source classification

A

Displacement

Displacement
envelope fitting

Approximate current rupture geometry > Estimate current slip on the rupture

Y

Prediction of future rupture

[ Prediction of future shaking at a site ]

Figure 3.1: The algorithm of the VS method for finite source (VS-FS method). First,
we estimate the rupture geometry from the accelerations by the methods discussed by
Yamada and Heaton (2006) and Yamada et al. (2006). Based on this geometry, slip on
the fault can be estimated from displacement records. By combining current rupture
information and prior information, the predicted probability of rupture extent can be

obtained.
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1) Apply the VS-PS method

First, apply the VS-PS method to the ongoing rupture. Estimate the epicenter and
magnitude of an event when the closest stations record the P-waves. If the magnitude
is less than a certain threshold (e.g. M < 5.5), the estimated location and magnitude
of the earthquake is accepted. If it exceeds the threshold, then there is a reasonable
possibility that the earthquake is large, and it might not be adequately modeled as
a point source. In this case, we apply VS Finite-Source (FS) method to find the

location of the finite fault.

2) Estimating the current rupture extent

The VS-FS method determines the ongoing rupture geometry in real time from high
frequency ground motions. Acceleration records are used to estimate the temporal
and spatial evolution of the rupture front. Use of Bayes’ theorem in equation 2.1 is
also helpful here. The posterior pdf of the problem of estimating a rupture extent is
the probability of the rupture location (S) given observed ground motion data (A).

Bayes’ Theorem for the problem to estimate rupture geometry is:

prob(S|A) ocprob(A|S) x prob(S). (3.1)

The prior prob(S) is information known before examining waveform data, such
as the location of known faults. Large earthquakes often occur on recognized active
faults, and information about the location and activity of these faults is potentially
a valuable set of prior information. After an earthquake initiates and ground motion
data becomes available, the likelihood function will be computed.

The likelihood function prob(A|S) is the probability of the ground motion ampli-
tude observation given the rupture location. Two separate methodologies have been
developed to estimate the evolving rupture geometry:

i) the multiple source model described in chapter 4 determines the rupture geom-
etry that best predicts the envelopes of high-frequency ground motions (Yamada and
Heaton, 2006); and
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ii) a near-source versus far-source station discriminator in chapter 5 has been
developed which allows us to map the location of an ongoing rupture front (Yamada
et al., 2006).
These techniques are used to characterize the likelihood function. They are also

valuable for predicting the future ground motions.

3) Estimating size of the current slip on the fault

We determine the slip on the fault that is compatible with both the observed low-
frequency motions and also with the rupture geometry determined from high-frequency
motions. Aagaard et al. (2004) simulated near-source ground motions and investi-
gated the near-source displacement as a function of distance from the fault. We use
the result of their simulations to characterize the slip on the fault, and construct an
analytical function to estimate slip on the fault from observations of displacement
away from the fault.

The probability of the slip on the fault (D) given the rupture geometry and real-

time seismic data is also written by Bayes’ Theorem:

prob(D|A, S) «xcprob(A|D, S) x prob(A|S). (3.2)

The likelihood function prob(A|D, S) is the probability of the ground motion ampli-
tude observation given rupture location and size of the slip. Substituting prob(A|S)

from equation 3.1, the probability is expressed as:

prob(D|A, S) oxprob(A|D, S) x prob(A|S) x prob(S). (3.3)

Currently, the displacement data is obtained from the double integration of strong
motion accelerations, and it can be difficult to remove erroneous baselines in real-
time analysis. However, quite a few high-frequency GPS—which record displacement
directly—are installed these days, so we assume displacement data will be available

in real time. In real-time analysis, we back project the recorded displacement data
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onto the fault line to estimate the size of the slip on the fault. The fault slip makes it
possible to predict long-period seismic waves, which is important to estimate seismic
damage. The current size of the slip on the fault allows for a probabilistic prediction

of additional rupture in the near future.

4) Predicting the probability of rupture extent

We also create a methodology to predict the total length of the rupture propagation
conditioned on the current slip size. Liu-Zeng et al. (2005) created a methodology to
generate simple 1-D models of spatially heterogeneous slip. By using this methodol-
ogy, we compute the probability of the final rupture length (L) conditioned on the
current slip on the fault (D) in a statistical way. Intuitively, a rupture is much more
likely to terminate in the near future if its present value is small. Our final goal is to

predict final rupture extent from ground motion data available in real time.

3.2 Statistics of observed high-frequency and low-

frequency ground motions

The ground motions at a site could be different for different earthquakes of the same
magnitude at the same distance, because of differences in source mechanisms, path
effect, or site conditions. One of the most commonly used ground motion parameters
is peak ground acceleration (PGA), and Campbell (1981) found that the uncertainty
of peak ground acceleration can be modeled using a lognormal distribution. In other
words, the distribution of the amplitude of ground motions with constant magnitude
and distance follows a lognormal distribution.

Studies of near-source records show that the high frequency ground motion satu-
rates as a function of magnitude for large earthquakes, and it weakly depends on the
magnitude in the near-source (Hanks and Johnson, 1976; Joyner and Boore, 1981;
Hanks and Mcguire, 1981). Therefore, if we constrain the size of the magnitude

greater than a certain number, the distribution of the near-source PGA of those
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earthquakes can be assumed to be a lognormal distribution.

However, the low frequency ground motion has a strong correlation with the mag-
nitude of an earthquake, as we see in the formula of the seismic moment and aver-
age slip on the fault. We use power law distributions to describe the statistics of
near-source peak ground displacement (PGD). Gutenberg-Richter Law of earthquake
magnitudes obeys a power law. The number of earthquakes per year of magnitude
M is proportional to the base-ten exponential of the magnitude M. The relationship
between magnitude and the PGD is expected to be a power law distribution, i.e., the
PGD increases as seismic magnitude becomes large.

In this section, we analyze near-source PGA and PGD of 10 major earthquakes
with magnitude greater than 6.0 and show the near-source ground motion distribu-

tions.

3.2.1 Data

We investigate strong motion datasets of ten earthquakes with magnitude greater
than 6.0 and containing records of near-source stations. The earthquakes are shallow
crustal earthquake with focal depths less than 25 km. The selected earthquake dataset
is shown in table 3.1. Here, we defined the near-source station as a station with fault
distance less than 10 km. Fault models used to determine the fault distance are also
shown in table 3.1. 147 near-source records are used in total.

Those near-source accelerograms are processed according to the following method.
The DC offset of accelerograms is corrected by subtracting the mean of the pre-event
portion. This process sets the initial velocity and displacement to zero, which is
important because a small DC offset has a large effect when the record is integrated.
This process is used for all accelerograms.

The horizontal peak ground motions are calculated by the square root of the sum
of the squares of the peak value of the EW and NS components. The vertical peak
ground motions are the peak value of the UD component. The following processes

are completed for all the data.
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Table 3.1: Earthquake data set used for the near-source ground motion analysis.
Moment magnitude (M,,) and focal depth are cited from Harvard CMT solution. The
preliminary determination of epicenter is used for the focal depth. The definition of
the near-source station is a station with fault distance less than 10 km. The numbers
of near-source data for each earthquake are also shown. The fault models are used as
selection criteria to classify near-source stations.

Earthquake ‘ M,, Records Focal Depth Fault Model
Imperial Valley (1979) 6.5 14 12.0 Hartzell and Heaton (1983)
Loma Prieta (1989) 6.9 8 19.0 Wald et al. (1991)
Landers (1992) 7.3 1 15.0 Wald and Heaton (1994)
Northridge (1994) 6.6 17 16.8 Wald et al. (1996)
Hyogoken-Nanbu (1995) 6.9 4 20.3 Wald (1996)

Izmit (1999) 7.6 4 17.0 Sekiguchi and Iwata (2002)
Chi-Chi (1999) 76 42 21.2 Ji et al. (2003)
Denali (2002) 7.8 1 15.0 Tsuboi et al. (2003)

Parkfield (2004) 6.0 47 12.0 Ji et al. (2004)
Niigataken-Chuetsu (2004) | 6.6 9 13.0 Honda et al. (2005)
Total 147

Acceleration: The accelerograms from which the DC offset is corrected are used
to compute the PGA.

Displacement: The accelerograms from which the DC offset is corrected are
integrated twice in the time domain and high-pass filtered using a forth-order But-
terworth filter with a corner frequency of 0.075 Hz, avoiding most complications due
to baseline shifts. However, the computed PGD from filtered displacement records
can be significantly smaller than actual PGD.

Since it is difficult to compute the actual peak displacement, the filtering process is

performed. The computed PGD from filtered displacement records are much smaller

than actual PGD.

3.2.2 Statistics of observed high-frequency ground motions

Based on the collected near-source ground motion data (i.e., horizontal and vertical
components of the PGA and PGD), we examine the statistical features of the near-

source ground motions for large earthquakes.



PGA (cm/sz)

Figure 3.2: A plot of near-source (fault distance less than 10 km) PGA as a function
of moment magnitude. The dashed lines are trendlines for the horizontal and vertical
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Figure 3.3: A histogram of the near-source (fault distance less than 10 km) PGA
for earthquakes with magnitude > 6.0. The dashed lines are lognormal distribution
fitting to the histograms. The circles on the x-axis indicate the geometric mean of
each component. The values of the geometric means and natural log of the geometric
standard deviations are shown on the plot (1 and o).
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Figure 3.2 shows horizontal and vertical near-source PGA in this dataset as a
function of moment magnitude. Even though data from the same earthquake are
scattered, the slope of regression line is almost equal to zero. Based on the two
tailed Student’s t-test, these slopes fall inside of the 95% confidence interval of the
zero slope. This is consistent with past studies which indicate the high frequency
ground motion at near-source region saturate as a function of magnitude for large

earthquakes.

We also examine the marginal distribution of PGA. Figure 3.3 show histograms
of horizontal and vertical PGA. The horizontal and vertical acceleration histograms
show a good fit to the lognormal distribution. This is reasonable since the uncertainty
of PGA for earthquakes of the same magnitude at the same distance can be modeled
using a lognormal distribution. Also, the PGA of near-source stations weakly depends
on the magnitude for large earthquakes. Therefore, all the PGA data with magni-
tude greater than 6.0 are approximately independent of magnitude and lognormally

distributed.

3.2.3 Statistics of observed low-frequency ground motions

The distributions of horizontal and vertical PGD as a function of moment magnitude
are shown in figure 3.4. The log of PGD is proportional to the magnitude. The high
frequency motion does not depend on magnitude for large earthquake and observed
PGA do not exceed 2g. However, low frequency motion is highly correlated with mag-
nitude, and the amplitude seems to follow a power law. There is evidence that average
fault slip (D) scales with rupture length (L), even for large earthquake (Scholz, 1982;
Liu-Zeng et al., 2005). In this case we expect that seismic moment My oc LD oc D?
for large crustal earthquakes. Since moment magnitude M o 2/3log My, we expect
that log D oc 3/4M. If near-source ground displacement is a linear function of the
fault slip and rupture length (L) > rupture width (W), then we expect that near

source displacement should scale as 3/4M. The slopes of the near-source ground

displacement in figure 3.4 are 0.6 and 0.71 for horizontal and vertical components,
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respectively. These numbers are consistent with this theoretical interpretation.
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Figure 3.4: A plot of near-source (fault distance less than 10 km) PGD as a function
of moment magnitude. The dashed lines are trendlines for the horizontal and vertical
component and the regression equations are shown on the plot.

The histogram of PGD does not follow a lognormal distribution. We discuss the
theoretical form of the PGD distribution.
From the Gutenberg Richter Law, Ng, the number of earthquakes having magni-

tude greater than M, is proportional to the base-ten exponential of —M.

Np 107, (3.4)
dNg v
- x1 . .
T~ 0 (3.5)

Since the moment scales as 2/3 of log of the product of average slip (D) and fault

rupture area (S), equation 3.5 becomes:

Np 10 o8P

x(DS)~/3, (3.6)
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Figure 3.5: A histogram of the near-source (fault distance less than 10 km) PGD for
earthquakes with magnitude > 6.0. The circles on the x-axis indicate the geometric
mean of each component and their values are shown on the plot ().

We assume the number of the near-source stations is proportional to the fault rupture
area (S) times station distribution density (ps). The number of records (N,) of

earthquakes with magnitude M is:

N,« xNpg X S % Ps
x(DS)~2/2Sp,

x D383, (3.7)
Assuming homogeneous station distribution (ps=constant), equation 3.7 is:
N, D 2/38%/3, (3.8)

The fault rupture surface is equal to the product of fault rupture length (L) and
fault rupture width (W). For large earthquakes, L > W, and W has an upper limit

(Scholz, 1982). Assuming constant stress drop, the average slip scales as the fault
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rupture area, which is proportional to the rupture length (D o S oc L). Substituting

this relationship into equation 3.8,

N, D~ 2/384/3 (3.9)
xD23D3 (3.10)
x D713, (3.11)

This shows that the number of records of earthquakes with a certain amplitude slowly
decays with its amplitude. Our observations of large earthquakes are too few to verify
this theory experimentally, and there are some assumptions which do not hold in our
dataset (e.g., homogeneous station distribution). However, this simple derivation
considering the Gutenberg Richter Law and fault rupture dimension shows that the
probability that a site will experience large ground displacement is not as small as
we can ignore. In figure 3.5, the distribution of PGD does not seem to follow the
distribution in equation 3.11, but it shows records of large ground displacements
as many as those of small ground displacements. This observation is important for
high-rise buildings, telling us there are high probability that buildings are subjected

to large ground displacements.

3.2.4 Comparison of high-frequency and low-frequency ground

motions

We compare horizontal PGA and PGD distributions in figures 3.6 and 3.7. Figure
3.6 shows the moment magnitude versus PGA and PGD. The amplitudes of the PGA
and PGD are normalized by the geometric mean of each. The PGA saturate as a
function of moment magnitude, and the slope of the trendline is about zero. On the
other hand, the PGD trendline is log proportional to the moment magnitude.
Figure 3.7 shows the histogram of horizontal PGA and PGD normalized by the
geometric mean of each component. The PGA follows a lognormal distribution cen-

tered at 464 cm/s?. The variance for the high-frequency motions is smaller than that
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Figure 3.6: A comparison of near-source PGA and PGD as a function of moment
magnitude. The dashed lines are trendlines for each component. The numbers on the
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of the low-frequency motions. This is reasonable since the high-frequency ground

motions saturate as a function of magnitude, the variance of PGA is not as large as

that of PGD.

3.2.5 Definitions of the horizontal component

The horizontal component in this thesis is computed by the square root of the sum of
squares of peak EW component and peak NS component. However, there are other
definitions for the horizontal acceleration.

For example, in some cases, a peak value over time of the largest of the two
accelerations from each of the recorded horizontal channel is also used. We compared
the three different definitions of horizontal components.

(1) square root of sum of squares (srss) horizontal components =

v/max(EW)?2 4+ max(NS)?2: the square root of sum of squares of peak EW component
and peak NS component.

(2) magnitude of horizontal vector = max(v/EW?2 + NS?) : peak over time of the
amplitude of the srss horizontal acceleration vector.

(3) root mean squares (rms) horizontal components =

\/% (max(EW)? +max(NS)?) : the root mean squares of peak EW component and
peak NS component.

It is obvious that the rms horizontal components in definition (3) is 1/1/2 as large
as the srss horizontal components in definition (1), so the horizontal components only
in definition (1) and (2) are compared.

Figures 3.8 and 3.9 show the PGA and PGD as a function of magnitude, and
figures 3.10 and 3.11 show the distributions of PGA and PGD. For both PGA and
PGD, the definition (1) is a little larger than definition (2). The geometric means
of PGA for definition (1) and (2) are 464 ¢cm/s* and 393 cm/s?, and the geometric
means of PGD for definition (1) and (2) are 17.0 cm and 15.3 cm. Therefore, the
definition (2) is 85% smaller for PGA, and 90% smaller for PGD, than the definition

(1). This means it is easy to estimate the horizontal component of one definition from
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that of the other definition.
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Figure 3.8: Comparison of the srss horizontal PGA (definition (1)) and magnitude
of horizontal accelerations (definition (2)) as a function of magnitude.The regression
curves and regression equations are also shown in the plot.
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Figure 3.9: Comparison of the srss horizontal PGD (definition (1)) and magnitude of
horizontal displacements (definition (2)) as a function of magnitude.The regression
curves and regression equations are also shown in the plot.
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Figure 3.10: A histogram of the srss horizontal PGA (definition (1)) and magnitude
of horizontal accelerations (definition (2)) for earthquakes with magnitude > 6.0. The
numbers on the plot (u) are the geometric mean of each acceleration.
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3.3 Summary

In this chapter, we explained a strategy to extend the VS-PS method to large earth-
quakes. For large earthquakes, the rupture length can be on the order of tens to
hundreds of kilometers, and the heterogeneous slip distribution significantly affects
the ground motion amplitude at a site. In order to estimate the size and location of
an earthquake or the expected ground motion at a given site, we need to characterize
the fault geometry and size of the slip on the fault in real time.

The statistical features of high-frequency and low-frequency ground motions for
large earthquakes with magnitude greater than 6.0 were analyzed. The observations
show that the near-source peak ground accelerations saturate as a function of magni-
tude for large earthquakes, and is almost independent of magnitude if the magnitude
is greater than 6.0. The marginal distribution of PGA follows the lognormal dis-
tribution with mean 464 and 211 ¢m/s? for the horizontal and vertical acceleration,
respectively. On the other hand, the near-source low frequency ground motion for
large earthquakes has strong correlation with the magnitude of an earthquake, and
the PGD scales by a power law with the magnitude.

We compute the horizontal components of ground motion from three definitions
and compare the results. The three definitions (srss horizontal components, magni-
tude of horizontal vector, and rms horizontal components) are linear scale of each
other. The horizontal component of one definition can be estimated from that of the
other definition.

For early warning of large earthquakes, we use high-frequency seismic radiation to
determine ongoing fault rupture geometry in real-time and low-frequency ground mo-
tion to estimate the slip on the fault. In chapters 4 and 5, we propose two approaches
to determine the ongoing fault rupture geometry from accelerograms in real time. In
chapter 7, we focus on estimating slip on the fault in real time and the probabilistic

prediction of additional rupture in the near future.
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Chapter 4

Estimating the Location of Fault
Rupture Using Envelopes of
Acceleration

Early warning information based on a point-source model may underestimate the
ground motion at a site, if a station is close to the fault and distant from the epicenter.
This occurs because, for large earthquakes, the peak characteristics of ground motion,
such as peak ground acceleration, have stronger correlation with the fault rupture
distance rather than with the epicentral or hypocentral distance (Campbell, 1981).
(The definition of the fault rupture distance in this paper is the shortest distance
between the station and the surface projection of the fault rupture surface.)

In order to construct an early warning system that is more reliable for large
earthquakes, it is necessary to estimate the fault rupture extent and slip on the fault
in real time. The VS-FS method uses high-frequency ground motions to estimate
the temporal and spatial evolution of the rupture. Two separate methodologies have
been developed to estimate the evolving rupture geometry:

i) the multiple source model described in this paper determines the rupture ge-
ometry that best predicts the envelopes of high-frequency ground motions (Yamada
and Heaton, 2006) and

ii) a near-source versus far-source station discriminator has been developed which

allows us to map the location of an ongoing rupture front (Yamada et al., 2006).

In this chapter, we introduce a methodology that can estimate the rupture ge-
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ometry from acceleration envelopes. The second methodology will be introduced in
the next chapter. In this analysis, we characterize the rupture geometry with three
parameters, an azimuthal direction, and two rupture lengths, one in the positive di-
rection and one in the negative direction as measured from the epicenter. These

parameters can be estimated from acceleration envelopes in real time.

4.1 Ground motion models for large earthquakes

As we saw in the previous chapter, accelerations recorded close to a rupture saturate
at magnitudes larger than 6, whereas distant sites do not demonstrate comparable
saturation as a function of magnitude. Examples of the near-source accelerations and
their envelopes are shown in figures 4.1 - 4.4 The envelope functions (Cua, 2005) are
made from the dataset including earthquakes with magnitudes ranging between 2 and
7, assuming point-source model. Therefore, we need a new envelope function which
can fit the acceleration envelopes of large earthquakes.

We introduce a multiple source model to express the fault finiteness. The fault
surface is divided into subfaults, and each subfault is represented by a single point
source, called “subsources” (figure 4.5). To simplify the problem, we assume that
the dimensions of all subsources are uniform. Each source nucleates, and the P- and
S-waves are radiated when the rupture front arrives at the subsource.

The ground motion at a site is modeled as the combination of the responses of
each subsource. For high-frequency motions with approximately random phase, we
found that the square root of the sum of the squares of the envelope amplitudes from

each subsource provides a good estimation of an acceleration envelope.

(4.1)

where Ejq(t) is the estimated envelope as a function of time, E;(t) is the envelope
of the ith source, and n is the total number of subsources. FE;(t) is actually a fairly

complex function of time, magnitude, distance, and station corrections, although its



09 09

- 10+9009°'C 135340
B 000°£¢:9%:G0
00 ' (] N
N 13 380M
| 9q0Yy

1 1 1 _
[ 00+9200¢ :135410
i 009'££:10:€0
666 *(622) 11 .90V

i Jwz)
— I

00+9000G 1135490
09 SKLH Ll

— 1043006} :13S440
| 000°0%:¢}:2C
- 7007 ' (£0%). £0.AQN
2 (0)Sd
ljousq

(10} X

1 1 1 _
L0-389/v~- 135440
008°00-9G:})
AV)9, U U
Z 609N
0)obuy

| |Q|
BOIFTNSNT N — © ~—
¢+0) X

(t01 X (10} X

(t0} X

Figure 4.1: Near-source accelerations in the vertical component.
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Figure 4.3: Near-source accelerations in the EW component.



95

09

09

014

0¢

0¢

0)

{an]

R AR L [ —

000°£2:9%'G0

G661 ‘(£10) L) Nvr
713 390

aqoy

|
TR S

009°££:10:50
666} ‘(622) L} 9NV

o 1dk
ywz|

[ 0080587135446

0L9°GhLYL)
666} ‘(£92) 07 d3S
5 8700

14914)

0000%:2):2¢
200Z ‘(£0€) €0 AON
1G9 0)Sd
__ccmo

! |

|
So < N

¢t0} X

}0-°000Y -I3SJ30
008°00:9G:L}

¥00Z ‘(£62) €T 100
9 609N

0jobuy

NOOVOTNOM N —

-~ ——

¢t0} X

(10} X

C+0} X

Figure 4.4: Envelopes of near-source accelerations in the EW component.



26

station

vp,Vs A

station

A

station

Figure 4.5: Schematic diagram of the multiple source model. The fault rupture is
assumed to propagate from the epicenter at the constant velocity vg. The fault is
parameterized by 6, N1, and N2, where 0 is the azimuthal angle of the fault, N1 and
N2 are the number of subsources north and south of the epicenter, respectively. The
ground motion at a station is expressed as a combination of the envelope from each
subsource.

forward calculation is very fast since it only involves analytic functions (Cua, 2005;

Cua and Heaton, 2006).

This model only works for high-frequency ground motions. Unlike longer-period
ground motions, high-frequency motions seem to be insensitive to either radiation
pattern (Liu and Helmberger, 1985) or directivity (Boatwright and Boore, 1982).
Furthermore, near-source high-frequency motions saturate as a function of magnitude.
That is, near-source high-frequency ground motions are independent of the amplitude
of the slip for large earthquakes (Kanamori and Jennings, 1978; Cua and Heaton,

2006).

Heaton and Hartzell (1989) pointed out that the assumptions of a Brune (1970)
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source spectrum combined with constant stress drop leads to high-frequency energy
radiated from a subfault that is independent of the slip on the subfault. A conse-
quence of the fact that high-frequency near-source ground motions can be modeled
as random noise whose amplitude is independent of slip is that the high-frequency
radiated energy in earthquakes is proportional to the rupture surface area. This is
consistent with the observation of Boatwright (1982), who showed that high-frequency
spectral acceleration amplitudes are proportional to the root-mean-square (rms) dy-
namic stress drop and the square root of the rupture area. Our simple model for
simulating high-frequency motions is also compatible with the observation of Hanks
and Mcguire (1981) that high-frequency ground accelerations are remarkably simi-
lar from one event to another. Subsources for our multiple source model are evenly
spaced, so the surface area and high-frequency radiated energy corresponding to each
subsource are also constant. Based on this theoretical interpretation, we estimated
the ground motion envelopes with the multiple source model for the 1999 Chi-Chi
earthquake.

Figure 4.6 (top) shows an example of predicted envelopes for vertical accelerations
using the multiple source model. It shows the envelopes of the vertical acceleration
record for each subsource with magnitude 6.0. Figure 4.6 (bottom) shows the time
history envelope of the accelerogram (vertical component) at the station C024, a sta-
tion on the foot wall side and 10 km from the Chelungpu faultline (shown in figure
4.7, southwest of the epicenter). Figure 4.6 also shows that the vertical acceleration
envelopes predicted by the multiple source model for the VS-F'S method fit the ob-
served envelopes much better than the envelopes predicted by the single source model

for the VS-PS method.

Even though the Ch-Chi rupture has large spatial variations in the amplitude of
the slip, it appears that the high-frequency accelerations can be modeled as a sum
of the radiation from a uniform tiling of the magnitude 6.0 subfaults, based on the

random-phase assumption and saturation with regard to magnitude.
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Figure 4.6: Envelopes of vertical acceleration recorded at the station C024 for the
Chi-Chi earthquake. Top: predicted envelopes of the vertical acceleration record for
each subsource with magnitude 6.0. Bottom: Observed envelope (in dotted black
line), and predicted envelopes of the point-source model in VS-PS method (in solid
gray line) and of the multiple source model in VS-FS method (in solid black line).

4.2 Finding the best estimates

We assume that the location of the epicenter is already estimated from the VS-PS
method, and that the fault ruptures bilaterally from the epicenter with constant
rupture velocity. Thus, the time delay for each subsource rupture is the distance
from the epicenter divided by the rupture velocity. Therefore, parameters that we
need to estimate from the observed data are the azimuthal angle () of the rupture
direction, and N1 and N2, that are used to simulate each of the segments of the

bilateral rupture.

The best estimate of the model parameters minimizes the residual sum of the
squares (RSS) between observed ground motion envelopes and predicted envelopes

from the multiple source model. The misfit function as a measure of goodness of fit
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is defined as follows:

ns t

RSS(t) ="

2
i=1 j=1 k=1

(A — Az’jk)2a (4.2)

where ns is the number of stations, ¢ is the time in 1 second intervals (At = 1) from
the event onset, and A;;, and flijk are observed and predicted envelopes of component

j at station 7 at time kA€,

This form of the misfit function tends to emphasize the importance of fitting
stations with large accelerations. That is, distant stations have small observed and
predicted accelerations and even if there are serious discrepancies in the ratio of the
predicted and observed amplitudes, they will have little impact on the inversion. The

results of different misfit functions are shown in Section 4.3.5.

Our parameterization scheme has the advantage that we characterize the source
with relatively few parameters (6, N1, N2), none of which require high-precision
estimates. However, for this strategy to be effective, we will need to solve a nonlinear
inverse problem in real time. In this study, we solve this nonlinear inverse problem by
using the Neighborhood Algorithm (Sambridge, 1999a,b). We recognize that other
inverse techniques may ultimately be chosen for real-time applications. However, since
the purpose of this study is to determine the effectiveness of our parameterization,
we use the Neighborhood Algorithm to characterize and solve this nonlinear inverse

problem.

The Neighborhood Algorithm is a direct search method for finding models of
acceptable data fit in a multidimensional parameter space. We generate samples in
the parameter space and draw the Voronoi cells for these samples. Voronoi cells are
nearest neighbor regions defined under a suitable distance norm, and the shape and
the size of each Voronoi cell is determined by the sample distribution in the parameter
space. See figure 4.7 as an example of Voronoi cells that are used to define the nearest
neighbors to seismic stations. We calculate the misfit function for each sample and
choose the model with the lowest misfit. New samples are generated by performing

a uniform random walk in the chosen Voronoi cell. By repeating these steps, we will
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Figure 4.7: The fault geometry and the station distribution of the Chi-Chi earth-
quake. The shaded area around the epicenter displays the map projection of the
fault geometry proposed by Ji et al. (2003). Small circles indicate the location of
subsources determined based on the fault model. The area within 50 km and 100 km
from the epicenter is shown by large circles. Stations used in this analysis are shown
by solid triangles. The polygon surrounding each station is the Voronoi cell for the
station.

find a set of samples that identifies those regions of the parameter space that provide
the best fit to the data. This is an approach for constructing the posterior probability

density function from the ensemble samples based on the Voronoi cell concept.

4.3 Example from the Chi-Chi earthquake

4.3.1 Data used for the VS-FS method

The data for this analysis is the strong motion dataset from the 21 September 1999
Chi-Chi Earthquake that occurred in central Taiwan (Lee et al., 2001). The epicenter



61

was located at 120.82 N, 23.85 E, with a focal depth of 8 km according to the Central
Weather Bureau (CWB) of Taiwan (Shin and Teng, 2001). It is currently the largest
well-recorded earthquake with moment magnitude 7.6. 441 strong motion stations
recorded the main event, and 69 of those were at distances of less than 50 km from
the epicenter. We use three component (NS, EW, and UD) strong motion records
from the data set collected by CWB. They classified the recorded accelerograms into
four quality groups based on the existence of absolute timing, pre-events, and defects.
For this analysis, we use QA-class data (best for any studies), QB-class data (next
best but no absolute timing) and a part of QQC-class data (covering the principal
strong motions but not having pre-event or post-event data) which includes the pre-
event. Stations of which we use the records are shown in 4.8. The color code of
each station indicates soil condition. Cua (2005) classified those station classes into
a binary rock-soil classes. Class A and B are classified as “rock,” and class C, D,
and E as “soil.” Most of the stations in Taiwan are class C and below, so we use
the ground motion model for soil only. Figure 4.8 shows that the soil conditions of
the stations corresponds to the geographical formation. Western part of the Taiwan
island is soft soil basin, where most of the major cities are located. Eastern part of the
island is mountainous area, and there are not many stations. On the east coast, there
are cities such as Yilan or Hualien where station distribution is very high. The Chi-
Chi earthquake occurred at the boundary of western basin and eastern mountains.
Around the epicenter the station distribution is very inhomogeneous (see figure 4.11):
there are many stations on the west side (foot-wall side of Chelungpu fault) and few
stations on the east side (hanging-wall side of Chelungpu fault).

Figures 4.9 — 4.11 are closer looks of figure 4.8 with station code. The station code
has four characters: the first alphabet is an abbreviation of the district, and the last
three numbers are a sequencing number. Prefix “C” indicates Chiayi, “H,” Hualien,
“I,” Yilan, “N,” Taitung, “P,” Taipei, and “T,” Taichung.

Table 4.1 describes the crustal model for P-wave and S-wave velocity in central
Taiwan (Ma et al., 1996). P-wave and S-wave arrival time for the predicted envelope

are computed with this 1-D layered crustal model. Since the original seismic records
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Table 4.1: P-wave and S-wave velocity model in central Taiwan (Ma et al., 1996).

Thickness(km) V,(km/s) Vi(km/s)

1.0 3.50 2.00
3.0 3.78 2.20
5.0 5.04 3.03
4.0 5.71 3.26
4.0 6.05 3.47
8.0 6.44 3.72
5.0 6.83 3.99
0.0 7.28 4.21

reported incorrect universal time, we use the data modified by Lee et al. (2001). They
compared picked P-wave arrival times with computed theoretical P-wave arrival times.
If the P-time residual was larger than 1 second for accelerograms at the distance within
50 km, they corrected the P-wave arrival time (Lee et al., 2001). Therefore, the error

of the time stamp of the modified data is less than 1 second.
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Figure 4.8: Topographic map of Taiwan. Soil condition of each station are shown in
colored symbols. The Chelungpu fault lines are shown in the solid lines. The star
symbol denotes the epicenter of the earthquake.
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4.3.2 Results from the analysis of the VS-FS method

We have run many different inversions by varying both the inversion parameters
and the data sampling, such as the number of records used for the inversion, the
components of the records, etc. Table 4.2 contains a list of the models investigated.
We consider model 1 as a standard against which all other models are compared. It

uses the horizontal and vertical records of the stations within 120 km of the epicenter.

Table 4.2: Model parameters for estimating a fault geometry. Distance is the max-
imum epicentral distance of the records used for the inversion. Component H and
V stand for the horizontal and vertical component respectively. See the text for the
area weight and data sampling.

Model No. of stations Distance(km) Component Area weight Data sampling

1 239 120 H+V - -

2 239 120 H - -

3 239 120 \Y% - -

4 239 120 H+V X -

) 126 120 H+V - even only
6 56 120 H+V - 6 and 8 only

To simplify the problem, we assume each subsource has the same magnitude 6.0
and is located at the same depth, 8 km. The distance between each virtual source
is 10 km. We assume constant rupture velocity to construct the predicted envelopes
from subsources. In order to check the sensitivity of the parameter estimate to the
rupture velocity, we run four simulations for model 1 with different rupture velocities.
Figure 4.12 shows the estimated parameters, N1 and N2, for the rupture velocities
from 2.0 km/s to 3.5 km/s. Even though we let the rupture velocity be faster than the
real rupture velocity 2.0 km/s (Ji et al., 2003), N1 and N2 do not increase faster than
2 km/s (one per 5 seconds). In other words, the way that N1 and N2 change with
the duration of the data tells us the rupture velocity. For the following simulations,

we use the constant rupture velocity 2.0 km/s.
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Figure 4.12: The estimated parameters, N1 and N2, for different rupture velocities.
The solid thin lines are the upper limits for N1 and N2 for the rupture velocity 2
km/s and 3.5 km/s. The broken lines are the best estimates based on the fault model
proposed by Ji et al. (2003). Time is relative to the origin. The parameters are
computed at each second using only the data available at that time.

4.3.3 Comparison between predicted envelopes and observed

envelopes

Figures 4.13 and 4.14 are a comparison of observed envelopes and predicted envelopes
for model 1. Figures 4.15 and 4.16 are the same waveforms as figures 4.13 and 4.14
with different scaling (the waveforms are scaled so that the peak amplitude of the
predicted envelopes becomes a unit length). The best-fit source model for model 1
consists of 14 subsources distributed along a line trending 17 degrees clockwise from
north; there are 7 subsources north of the epicenter and 4 subsources to the south.
That is, the best fitting model 1 is given by (=17 degrees, N1=7, N2=4). The

predicted acceleration envelopes for this model agree well with the observed envelopes.
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Predicted envelopes of near-source stations have some discrepancy depending on the
source process, but predicted envelopes of far-source stations fit the observation well.

The vertical predicted envelopes of the stations in the epicentral region (e.g.,
stations T078, T079, T084, and T089; see 4.17 and 4.18) are of particular interest.
Model 1 overestimates these observed envelopes for the first 10 seconds, but then
underpredicts the observed records 20 seconds after the earthquakes origin. The fact
that the largest accelerations in the epicentral region occurred 20 seconds after the
origin time seems to indicate that there may have been some rupture complexity
in the hypocentral region; perhaps there was an early aftershock in the epicentral
region 20 seconds after the first rupture. Although this feature is noteworthy, it does
not have a significant effect on the inversions since the epicentral stations are less
important for estimating azimuthal angle and length of the fault.

Note that there is a discrepancy between the predicted and observed horizontal
envelopes of the stations along the east coast of Taiwan, especially near Hualien
around 40 seconds after the origin time (see figures 4.15 and 4.16). The observed
envelopes of those stations have large amplitudes which cannot be captured by the
predicted envelopes. The P-wave and S-wave should arrive at Hualien about 15 and
26 seconds after the origin time, respectively, based on the velocity structure in central
Taiwan (table 4.1). That is, the large amplitude at Hualien is neither a first arrival
P-wave or S-wave. While critically reflected shear waves off the Moho discontinuity
have been suggested for large amplitude high-frequency phases at similar distances
(Somerville and Yoshimura, 1990), the large amplitude waves on the east coast of
Taiwan seem too late to be Moho critical reflections. Perhaps a secondary triggered
event occurred east of the epicenter.

Another major discrepancy is the sharp pulse that appears about 40 seconds after
the event onset in the records of stations located about 40 km north of the recognized
northern terminus of the Chelungpu fault rupture (e.g., stations T045, T047, and
T095). Shin and Teng (2001) suggested that these large accelerations were generated
by a secondary rupture, perhaps on the Shihtan fault.
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Figure 4.13: Predicted and observed envelopes in the horizontal component. The red
and black lines are the predicted and observed envelopes, respectively. The locations
of the subsources estimated from model 1 are shown in a small yellow circles. The
area within 50 km and 100 km from the epicenter are shown by large circles. Only
characteristic records of the stations are shown in this figure.
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Figure 4.15: Predicted and observed envelopes in the horizontal component with dif-
ferent scaling. The waveforms are scaled so that the peak amplitude of the predicted
envelopes becomes a unit length. The predicted and observed envelopes of the same
station have the same scaling. The peak values are shown at the upper right of each
station. The symbols are in the same format as in figure 4.13.
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Figure 4.16: Predicted and observed envelopes in the vertical component with differ-
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Figure 4.17: Enlarged map of figure 4.13. All of the stations near the epicenter are
shown in this figure.
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Figure 4.19 shows the estimation results of three parameters (azimuthal angle
of fault line (@), number of the point sources to the north (N1) and to the south
(N2)). Three parameters are computed at each second using only the data available
at that time. The estimation is updated every second as the ground motion data are

observed.

4.3.3.1 Result of model 1 (horizontal and vertical data)

Model 1 includes all of the data considered in this study. Although it does a good job
at characterizing the rupture length and timing, we see that it is difficult to resolve 6
until 15 seconds after the event onset since the event can be approximated as a point
source at the beginning. The estimated 6 at 15 seconds is about -20 degrees and it
increases gradually after 20 seconds due to a impulsive acceleration arrival at station
CO080 which is located at the south of the epicenter. Estimates of 6 stabilize at about
13 degrees with respect to additional data after 26 seconds. There is an additional
small shift at 44 seconds, at which point the inversion achieves its final solution of
15 degrees, which compares favorably with the observed average fault strike of the
Chelungpu fault rupture.

Since the subsources are equally spaced, the length of the fault is represented by
the number of the point sources to the north (N1) and to the south (N2). Figure
4.19 (bottom) shows values of N1 and N2 as a function of time after the origin. From
the figure, we can see the fault length grows bilaterally along the dashed black lines.
At 26 seconds, the rupture stops growing to the south. It also stops to the north
temporarily, but it grows again around 40 seconds. This is due to the delayed high-
frequency radiation at stations north of the Chenlungpu surface rupture and may
have been caused by rupture on the Shihtan fault. Even though the result of the
simulation fits the actual location of the fault accurately, the multiple source model
does not consider “rupture jumping dislocations” (i.e., the rupture at the adjacent
active faults triggered by the main shock) (Shin and Teng, 2001). The final result
shows 7 point sources to the north and 4 point sources to the south. This fault length

is comparable to the total length from the Chelungpu fault to the Shihtan fault in
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figure 4.7.

4.3.3.2 Result of model 2 (horizontal data) and model 3 (vertical data)

Model 2 only uses the horizontal acceleration data for the analysis whereas model 3
only uses the vertical acceleration data. The azimuthal angles of the fault for models
2 and 3 are not significantly different from model 1. The estimation of the angle, N1
and N2 from the horizontal component data (model 2) is similar to the estimation
of model 1. However, the estimation of rupture length from the vertical component
data (model 3) is a little smaller than that of model 1. In particular, the inversion
indicates unilateral rupture to the north (i.e., N2 is zero) until 18 seconds after the
origin. The reason is that the predicted envelopes overestimate the observed envelopes
in the epicentral region for the first 10 seconds (see figure 4.14). Overall, the predicted
envelope is larger than the observed envelope for the vertical component and smaller

for the horizontal component.

4.3.3.3 Result of model 4 (effect of area weight)

Model 4 considers the heterogeneity of station distribution and applies an area weight
when we characterize the misfit function. The area weight is a coefficient applied for
each station. Since the station distribution is not uniform for the Chi-Chi earthquake
dataset, we attempt to normalize the effect of each station. We assume a station in
a sparse area is more important than a station in a dense area. Therefore, when we
compute the misfit function in equation 4.2, the misfit of each station is weighted by
the area weight, which is proportional to the area of the Voronoi cell of each station
(shown in figure 4.7).

There are quite a few differences between the estimates for N1 and N2 of model
1 and model 4. The real-time estimation of the azimuthal angle has unique charac-
teristics. It stays around -20 degrees at the beginning of the rupture, and it jumps
to 35 degrees suddenly at 36 seconds. The angle estimation is very unstable even
after 40 seconds. Moreover, the estimate for N1 and N2 are a lot smaller than that

of model 1. The reason for this sudden transition is that a few stations with large
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area weighting (e.g., T088, T074, C074) control the parameters. When the envelopes
of those stations are weighted, the residual sum of squares changes greatly, and the
Neighborhood Algorithm chooses the parameter to reduce the residuals. We would
like to obtain accurate information of the fault location as soon as possible. For this
purpose, model 1 is more robust than model 4. In a larger sense though, it means
that it becomes difficult to determine the fault geometry if the station distribution is

sparse and uneven.

4.3.3.4 Result of model 5 and model 6 (the effect of station distribution)

In models 5 and 6, the effect of station distribution is examined further. To sample
the stations randomly, we use the records with an even station code number for model
5. For model 6, the records with a station code ending in 6 or 8 (e.g., T078) are used.
Even though the station distribution is not homogeneous as shown in figure 4.7, the
average station density is 214 km? /station for model 5, and 482 km? /station for model
6. The stations are located in an area of about 27,000 km?. Even though the station
density is different, the estimated parameters are quite similar. In figure 4.19, the
time series of # and N2 for models 1, 5, and 6 are almost the same. N1 for models
5 and 6 stays around 5 after 30 seconds, and the increase observed in Model 1 due
to the Shihtan fault rupture does not appear. The reason is that several near-source
stations of the Shihtan fault have an odd number station code and are not included
in this analysis (e.g., T045, T047, and T095). Considering that the rupture of the
Shihtan fault is quite small compared to that of the Chelungpu fault, model 5 and
model 6 can express the Chi-Chi earthquake rupture well. The VS-FS method for
large earthquakes works well even if the station density is reduced to a quarter of the

original density, as long as the station distribution is uniform.

4.3.4 Geometry of the parameter space

We have solved the optimization problem in parameter space (#, N1, and N2) by a

Neighborhood Algorithm. Here, we discuss the geometry of the parameter space.
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Figure 4.20: Error surface of # and N1 for Model 1 at the fixed N2 = 5 at 60 seconds
after the origin time. Since the surface is peaked around 6 = 0, it is easy to converge
in . However, the optimal N1 will change easily depending on the misfit function
(see equation 4.2).

Figure 4.20 shows the error surface of # and N1 for model 1 at a fixed N2 of 5 and
assuming that all data is used in the inversion. The surface is smooth and has a deep
and narrow valley at # = 10. The solution easily converges to this minimum. Figure
4.21 shows the error surface of N1 and N2 for model 1 at a fixed 6 of 10. The surface
is very smooth in both N1 and N2 directions. The global minimum is very sensitive
to the choice of the dataset, as shown in the results of model 5 and 6.

Contour maps of the error surface of N1 and N2 at 10 second intervals are shown
in figure 4.22. 0 is fixed at 10 degrees which is the optimal final solution. At 10
seconds, the minimum of this error surface is (N1, N2) = (0, 1). However, it is not
the global minimum in the parameter space since # = 10 is not the optimal solution
at 10 seconds. At 20 and 30 seconds, the minimum of the error surface is at the

maximum N1 and N2 in the possible parameter space even though # is not optimal.
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Figure 4.21: Error surface of N1 and N2 for model 1 at the fixed # = 10 at 60 seconds
after the origin time. Since the surface is smooth in both N1 and N2 direction, the
optimal solution is sensitive to a small disturbance.

There is high possibility that the rupture is still ongoing at this point. At 40 seconds,
the minimum of the contour is around (N1, N2) = (6, 4) and it suggests that the
rupture has stopped rupturing toward the south. After 40 seconds, the shape of
contour map does not change much, and the elliptic shape of the smallest contour
indicates that N2 is determined uniquely, but that considerable uncertainty about N1
remains.

The Neighborhood Algorithm generates samples in the parameter space and con-
structs the posterior probability density (ppd) from the ensemble samples. (In this
simulation, the prior pdf is assumed to be uniform.) The 1-D marginal posterior ppd
of parameter #, N1, and N2 are shown in are shown in figures 4.23 — 4.25. The ppd
for 0 is more peaked than those for N1 and N2, and it is consistent with the geometry
of the error surface which enables a solution to converge easily to the minimum. The

more data is available as the rupture propagates, the smaller the deviations of the ppd
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Figure 4.22: Contour maps of the error surface of N1 and N2 for model 1 at the fixed
0 = 10. The maps are shown in 10 second intervals. The blank area in the boxes is
the region where there is no solution due to the constraint that the rupture velocity
is less than 2 km/s.

becomes for all three parameters. Figure 4.26 is the 2-D marginal of parameters N1
and N2. The difference between figure 4.22 and figure 4.26 is as follows: figure 4.22
is the error surface where the misfit function (equation 4.2) is evaluated and figure
4.26 is the posterior probability density of the parameter space. The location of the
most probable solution is almost identical between figure 4.22 and 4.26, but figure
4.26 shows the ppd which represents the probability for each value of the parameters.

The maximum value of ppd becomes larger with time.
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Figure 4.26: Two-dimensional posterior probability for the parameters N1 and N2.
The plots are shown in 10-second intervals.
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4.3.5 Effects of different misfit functions

In the course of this study, we also tried inversions in which we defined misfit function
in terms of log of amplitudes and PGA. Figure 4.27 shows the simulation results with
the same dataset as model 1 but different misfit functions. The misfit function used

in the main analysis was:

ns 2 t
RSS - Z Z Z ijk zyk 2- (43)

i=1 j=1 k=1
In the ground motion analysis, the distribution of log of amplitude follows the
Gaussian distribution, so the log of amplitudes is often used as a misfit function. The

misfit function in terms of log of amplitudes is:

RS Syoy(t) Z Z Z log Ayjr, — log Agjr,). (4.4)
i=1 j=1 k=1

This misfit function emphasizes the ratio of predicted and observed amplitudes;
large amplitude data is no more important than small amplitude data. However, we
found that such a misfit function emphasized misfits in the coda for near-source data;
furthermore, the distant data was often not well explained by our simple descriptions
of wave envelopes that have been developed to explain the “average” effects of waves
propagating through the crust. That is, it is important to emphasize the data from the
near-source records and a logarithmic misfit function was not appropriate to recover

the timing and location of the rupture.
We also tried the misfit function defined in terms of the error when the each

ground motion records the peak value (PGA):

2

RS Spax(t) Z Z max{ Ak =1,...,t} —max{A |k =1,...,t})%  (4.5)

i=1 j=1
The fault length estimate from this misfit function is very unstable even after most
of the rupture terminated. This is because far-source stations which receive propa-

gating seismic waves with delay affect the misfit function. As we mentioned in the



86

100r
E 50 [
D
Q
S o 1
S N
E
'~ _50 [
© — RSS
— RSS_log
— RSS_max
_100 1 1 1 1 T J
0 10 20 30 40 50 60
time(s)
15¢
10+ V=20kmis [

o1

N1 (north)

(south) N2
&

-10
— RSS_log
—— RSS_max
_15 T 1 1 1 1 J
0 10 20 30 40 50 60

time(s)

Figure 4.27: Effects of different error functions. RSS error function gives the best
estimate of the model parameters.

logarithmic misfit function, it is important to emphasize the data from the near-source
records, and so the best estimate of the model parameters minimizes the RSS between
observed ground motion envelopes and predicted envelopes from the multiple source

model.
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4.4 Summary

We outlined a strategy to estimate slip in time and space for an ongoing earthquake
rupture. A key aspect of this strategy is to map the location of the rupture using
envelopes of high-frequency acceleration data. Once the location of the rupture is
estimated, long-period displacement data can be projected back onto the fault to

determine the slip in real time.

Our strategy for using high-frequency radiation to determine the timing and length
of the rupture relies on the observation that high-frequency seismic waves can be
modeled as random-phase waves whose total radiated energy scales linearly with the
rupture area. By using this assumption, we show that we can simulate the ground
motion of a large earthquake by tiling the surface of the large event with smaller
events and then summing the random phase signals from the smaller events. In
our example of the Chi-Chi earthquake, we showed that a sum of 10 km interval
magnitude 6.0 subevents provided a good prediction of the acceleration envelopes
for this earthquake. In order to turn this simulation into a real-time inverse, we
parameterize the rupture with a linear alignment of magnitude 6.0 earthquakes. We
then invert for the azimuth angle of the alignment as well as two integers, N1 and
N2, which are the number of additional 10 km patches in the positive and negative

directions from the epicenter, respectively.

The best estimate of the model parameters minimizes the residual sum of the
squares between observed ground motion envelopes and predicted envelopes from the
multiple source model (in equation 4.2). This misfit function with linear amplitudes
of ground motions can provide better estimates than that of logarithmic amplitudes,
since the linear misfit function tends to emphasize the importance of fitting stations
with large amplitudes.

Our study of the Chi-Chi data set indicates that it is more difficult to deter-
mine rupture length than it is to determine rupture azimuth. Furthermore, for this
method to work well, an adequate near-source station distribution is important. Real-

time mapping of an on-going rupture using this strategy becomes a simple matter of
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tracking the spatial evolution of near-source seismic stations. Although this strategy

appears promising, it requires adequate station coverage to track near-source stations.
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Chapter 5

Near-Source versus Far-Source
Classification Analysis

We introduced the methodology that can estimate the rupture geometry from ac-
celeration envelopes in the previous chapter. In this chapter, we propose another
approach to recognize the fault rupture extent. We develop a methodology to classify
stations into near-source and far-source by using the Bayesian model selection anal-
ysis so that we can identify the fault geometry if there is a sufficiently dense seismic
network. Peak ground motions recorded in past earthquakes are analyzed to predict
whether a station recording ground motion is close to the earthquake fault area. This
classification problem can be stated as follows: given ground motion data from past
earthquake records, what is the probability that a station is near-source when a new

observation is obtained?
To approach this problem, we:

1) Collect strong motion data from earthquake strong motion archives and classify
these samples into two predefined groups: records from near-source stations and far-

source stations. This particular set of data is called the training set.

2) Discover a discriminant function of the samples features (e.g., peak ground
acceleration (PGA), velocity (PGV), displacement (PGD)) which provides the best
performance in terms of near-source versus far-source classification.

3) Allocate new observations when they are obtained to one of the two groups

based on the discriminant function.
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The first step is quite straightforward; strong motion data from past earthquakes
are collected based on certain selection criteria. The second step is the main topic of
this paper; and we investigate linear discriminant functions by using the traditional
Fisher method and two Bayesian methods. The third step can then be accomplished in
a real-time analysis. Given a new ground motion observation from on-going rupture,
the discriminant function gives the probability that the observation is located in the

near-source.

5.1 Strong motion data

We used strong motion datasets from nine earthquakes with magnitude greater than
6.0 and containing records of near-source stations. The selected earthquake dataset
is shown in table 5.1. Here, we define a near-source station as a station whose fault
rupture distance is less than 10km. 695 three-component strong motion data are used

for the classification analysis and 14% (100 stations) are from near-source stations.

Table 5.1: The earthquake dataset used for the classification analysis. Moment mag-
nitude (M) is cited from Harvard CMT solution. The numbers of near-source (NS)
and far-source (FS) data for each earthquake are also shown. The fault models are
used as selection criteria to classify near-source and far-source stations.

Earthquake ‘ M, NS FS Total Fault Model
Imperial Valley (1979) 6.5 14 20 34  Hartzell and Heaton, 1983
Loma Prieta (1989) 69 8 39 47 Wald et al., 1991
Landers (1992) 73 1 112 113 Wald and Heaton, 1994
Northridge (1994) 6.6 17 138 155 Wald et al., 1996
Hyogoken-Nanbu (1995) | 69 4 14 18 Wald, 1996
Izmit (1999) 76 4 13 17  Sekiguchi and Iwata, 2002
Chi-Chi (1999) 76 42 172 214 Ji et al., 2003
Denali (2002) 7.8 1 29 30 Tsuboi et al., 2003
Niigataken-Chuetsu (2004) | 6.6 9 58 67 Honda et al., 2004
Total 100 595 695
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5.1.1 Data sources

We obtained the strong motion dataset for the Imperial Valley (October 15, 1979),
Loma Prieta (October 18, 1989), Landers (June 28, 1992), Northridge (January 17,
1994), and Denali (November 3, 2002) earthquakes from the COSMOS Virtual Data
Center (http://db.cosmos-eq.org) which includes data from the California Strong Mo-
tion Instrumentation Program (CSMIP) seismic network and the United States Ge-
ological Survey (USGS) seismic network. The Northridge earthquake dataset in the
COSMOS Virtual Data Center also includes records from seismic networks of the
California Institute of Technology, Los Angeles Department of Water and Power,
Metropolitan Water District, Southern California Earthquake Center, and University
of Southern California. All these data were recorded by accelerometers and pro-
cessed appropriately before distribution to users. The correction process may apply
baseline corrections, band-pass filters to remove noise contamination, and instru-
ment correction to remove the effects of frequency-dependent instrument response

(http://nsmp.wr.usgs.gov/processing.html).

Strong motion data from the Hyogoken-nanbu earthquake (January 16, 1995)
are provided by Japan Meteorological Agency (JMA), the Committee of Earthquake
Observation and Research in the Kansai Area (CEORKA) in Japan (Toki et al., 1995),
and the Japan Railway Institute (JR) whose records were scanned and digitized by
Wald (1996). Seismometers installed in the CEORKA network record velocity, and

those records are differentiated once to obtain accelerograms.

The national strong-motion accelerograph network in Turkey recorded the strong
motions during the Izmit earthquake (August 17, 1999) (Akkar and Giilkan, 2002).
They can be downloaded from the ftp site of the Earthquake Research Department
of General Directorate of Disaster Affairs, Ministry of Public Works and Settlement,
Ankara, Turkey (ftp://angora.deprem.gov.tr/). The COSMOS Virtual Data Center
archived the dataset of another network operated by Kandilli Observatory and Earth-
quake Research Institute, Earthquake Engineering Department, Bogazici University,

Istanbul, Turkey. Stations with fault distance greater than 200 km are excluded since
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ground motion amplitudes of those stations are quite small which results in a low
signal-to-noise ratio. We use four digital and six analog acceleration records from the
national network and eight digital acceleration records from the Bogazici University
network.

The Chi-Chi earthquake (September 20, 1999) is one of the best recorded earth-
quakes with a large number of stations and a dense station distribution both in the
near-source and far-source. Strong motion records for the Chi-Chi earthquake are
available on the attached CD in the Special Issue of the Bulletin of the Seismological
Society of America, vol. 93, no. 5 (Lee et al., 2001). These records were produced
by the Central Weather Bureau Seismic Network (CWBSN) and they are the largest
set of strong motion data recorded from a major earthquake (Shin and Teng, 2001).
Shin and Teng (2001) classified the recorded accelerograms into four quality groups
based on the existence of absolute timing, pre-events, and defects. For this analysis,
QA-class data (best for any studies) and QB-class data (next best but no absolute
timing) are used.

Strong motion data from the Niigataken-chuetsu earthquake (October 23, 2004)
were recorded by the K-NET and KiK-net seismic networks operated by the National
Research Institute for Earth Science and Disaster Prevention in Japan. Those data are
available at their websites (http://www.k-net.bosai.go.jp/ and http://www.kik.bosai.
go.jp/). The stations with epicentral distance less than 100 km are used for this

analysis.

5.1.2 Data processing

We processed the accelerograms obtained from the nine earthquakes according to the
following method. The DC offset of the accelerograms is corrected by subtracting the
mean of the pre-event portion. Because a small DC offset has a large effect when the
record is integrated, this process is applied to all accelerograms.

The peak amplitude of the horizontal components is calculated by the square

root of the sum of the squares of the peaks of NS and EW components. If one of
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the horizontal components (NS or EW) of a station has been clipped or is not well
recorded, the square root of twice the other well-recorded horizontal component is
used for the peak amplitude of the horizontal component.

The peak amplitude of UD (up-down) component is used directly for the peak
vertical component. The station records that have defects in the vertical component
are excluded.

The following processes are completed for all the data.

Jerk: The three-component accelerograms are differentiated in the time domain,
using a simple finite-difference approximation. The peak value of each component is
selected.

Acceleration: Original accelerograms are used to select the peak value.

Velocity: Some velocity records have a linear trend due to either tilting, the
response of the transducer to strong shaking, or problems in the analog-to-digital
converter. The baseline correction scheme applied to obtain appropriate velocity
records is as follows (Iwan et al., 1985; Boore, 2001):

1) Determine the straight line to be subtracted from the velocity trace. The line

is given by the equation:

vr(t) = a1t + ag, (5.1)

where coefficients a; and a, are determined by least-squares fitting to the velocity
trace after the strong shaking. The segment of the record used for least-squares
fitting is from t; to ty (see figure 5.1). ¢; is the time when the strong shaking has
subsided. The results of baseline correction are not very sensitive to the choice of
t; (Boore, 2001). The second cut-off time, t, is generally chosen as the end of the
record;

2) Remove this linear trend from the velocity record.

This baseline correction scheme assumes the baseline shift of the acceleration
occurs only once. There may be records that have more than one baseline shift

during strong shaking. However, our purpose is to get the peak value of each velocity
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record, and this does not require accurate integration of the entire record. After
time-domain integration, the distortion is not very large in the first portion of the

record where the peak value is generally recorded.

150 t

100

velocity (cm/s)

-50

Original velocity
—— Corrected velocity
- Linear trend

_1 ! )
OOO 50 100 150

time (s)

Figure 5.1: An example of baseline correction for a velocity record from the Chi-Chi
earthquake. The corrected velocity trend is obtained by subtracting the linear trend
from the original velocity record. The portion of the record from t; to t5 is used for
least-square fitting to obtain the linear trend.

Displacement: The corrected velocity records are integrated once in the time
domain and high-pass filtered using a fourth-order Butterworth filter with a corner
frequency of 0.075 Hz.

The peak features used for the classification analysis are shown in table 5.2. Sev-
eral combinations of these 8 features are tried to find the best performance of the

classification.

5.1.3 Data classification

The classification as near-source or far-source in the training set is based on rupture
area models used for waveform inversions. These rupture area models are typically

determined from the aftershock distribution (Sekiguchi et al., 1996), and the shape
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Table 5.2: Eight measurements of peak ground motions are calculated from three
component accelerograms. Codes and units of the components used in this paper are
shown.

Code ‘ Measurement Unit
Hj Horizontal Peak Ground Jerk (cm/s?)
Zj Vertical Peak Ground Jerk (cm/s?)
Ha | Horizontal Peak Ground Acceleration (cm/s?)
Za Vertical Peak Ground Acceleration  (cm/s?)
Hv Horizontal Peak Ground Velocity (cm/s)
v Vertical Peak Ground Velocity (cm/s)

Hd | Horizontal Peak Ground Displacement  (cm)
Zd Vertical Peak Ground Displacement (cm)

of the rupture area is approximated by a rectangular box. Fault models used for
classifying stations are shown in table 5.1 and figure 5.2. In figure 5.2, black solid
lines indicate the surface projection of the fault rupture surface based on the fault
models. Stations within 10 km of this fault projection (the white area in the figures)
are classified as near-source, indicated by solid circles. Far-source stations are shown

in open circles.

High-frequency near-source ground motions have long been researched by engi-
neers and seismologists. High-frequency ground motions depend weakly on magni-
tude in the near-source (Hanks and Johnson, 1976; Joyner and Boore, 1981; Hanks
and Mcguire, 1981). This helps to analyze ground motions with a wide range of
magnitudes. Figure 3.2 shows horizontal and vertical PGA of near-source records
in our training set as a function of moment magnitude. The slope of a regression
line would be almost equal to zero, which is consistent with past studies. On the
other hand, low-frequency motion has a strong correlation with magnitude. Figure
3.4 shows horizontal and vertical PGD as a function of moment magnitude. The PGD
are log proportional to the magnitude. Based on such observations, we assume that
high-frequency motion does not depend on magnitude for large earthquake and that
accelerations do not exceed 2g, whereas low-frequency motion is highly correlated

with magnitude, and its amplitude increases as the magnitude becomes large.
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Figure 5.2: Maps of the fault projections and station distributions. The fault projec-
tions are shown in the solid lines. The white area around the fault lines indicates the
area with distance less than 10 km from the fault projections. The stations in this
area are classified as near-source and marked as solid circles. Far-source stations are
shown in open circles. The star symbol denotes the epicenter of the earthquake.
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Figure 5.2: Maps of the fault projections and station distributions (continued).

High-frequency ground motion decays in amplitude more rapidly with distance
than low-frequency motion (Hanks and Mcguire, 1981). Therefore, high-frequency
motions (e.g., acceleration, jerk) have high correlations with the fault distance. We
compute the log of the ground motion amplitudes and find the means and standard

deviations for the near-source and far-source records. Figure 5.3 shows the histograms
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and Gaussian densities given by the sample means and standard deviations for the
near-source and far-source records. The Gaussian densities are good approximations
of the histograms of the log of the ground motion data. Figure 5.3 also shows that the
distance between means for the near-source and far-source datasets is larger in high-
frequency than low-frequency motions. Therefore, we expect that the high-frequency

motions is a good measure to classify near-source and far-source records.

Horizontal Vertical
2 2 = 1ear-source
far-source near-source = = far-source
g1 a1 -
0 0
2 3 4 5 6 2 3 4 5 6
o log(jerk) 2 log(jerk)
g g1 -
Vi
il
0 ,_aﬂﬂﬂﬂ 0
0 1 2 3 4 0 1 2 3 4
2r log(acc) 2 log(acc)
SRR T 1l Q ﬂ @ !
o ¢ o .
0 ”rﬂ 0
1 0 1 2 3 1 0 1 2 3
2 log(vel) 2r log(vel)

1 0 1 2 3 1 ' 0 1 2 3
log(dis) log(dis)

Figure 5.3: Histograms and Gaussian densities based on the sample means and stan-
dard deviations of the log of ground motions for the near-source and far-source records.
These are distributions for jerk, acceleration, velocity, and displacement from the top.
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5.2 Near-source versus far-source discriminant func-

tion

We assume the discriminant function to classify records into near-source and far-

source is expressed as a linear combination of the log of ground motion amplitudes:

f(Xi|0) =c1zi1 + 2wz + ... + CTim — d (5.2)
= Z CrTil — d
k=1
:Xz -C — d,

where

x;x = kth feature parameter of the ground motion at the ith station,
m = the number of feature parameters,
X; =[x, Tioy ooy Tim)
=[log,,(componentl), log,,(component2), ..., log,,(componentm) |,
1, .-, ¢y =the regression coefficients,
d = decision boundary constant,

0 =[c1, cay ...y Cm, d]T.

We may use m components out of the eight ground motion components shown in
table 5.2. The coefficients ¢y, ..., ¢,,, and d are determined from the training data
set by two different approaches: Fisher’s linear discriminant analysis and Bayesian
analysis.

This discriminant function is used to allocate new observations to one of the near-
source or far-source groups, where f(X;|¢) = 0 is the boundary between the two
groups in the feature parameter space. The station with observation X is classified
as near-source if f(X;|0) is positive. If f(X;|0) is negative, the station is classified as

a far-source station. Note that the decision boundary may also be expressed using
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equation 5.2 as: X;-c =d.

5.2.1 Fisher’s linear discriminant analysis

Fisher’s Linear Discriminant Analysis (LDA) is a method to classify data by using a
linear function (5.2) that best discriminates two or more naturally occurring groups.
LDA was first described by Fisher (1936) to separate two groups optimally. In general,
LDA requires placing objects (e.g., humans) in predefined groups (e.g., Caucasoid,
Mongoloid, and Negroid) based on certain feature parameters (e.g., related to physical
characteristics), and finding a function to distinguish the groups. The parameters
¢ in the linear function (5.2) are selected to minimize the within-group variance
(variance of the samples centered on the group mean) and maximize the between-
group variance (variance between group means). The following is a brief discussion

about the procedure of linear discriminant analysis (Venables and Ripley, 2002):

Consider n x m data matrix X where n is the number of samples and m
is the number of different features of samples. Each sample is assigned
to one of g groups Nj,j = 1,...,g, with n; observations in each group.
Let GG denote the group indicator matrix, which indicates the group each
sample is assigned to, and let M denote the group mean matrix, then
within-group covariance matrix W and between-group covariance matrix

B are:

— (X—G]\i)i(;(—GM), 53)
(GM —1p)"(GM —1p)

g—1

B =

, (5.4)
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where

X =[z4] : n x m data matrix,

G =lgi;] : n x g group indicator matrix,
M =[mjj| : g X m group mean matrix,
W=[p, Hoy .y m] 1 1 X m mean vector,
1 =n x 1 column vector of 1s,

i = kth feature of the ith sample,

gij =1 &= X; = [Ti1, T2, ..., Tim| is assigned to group j,

1
mjp =— E Tk,
T

1EN;
n
1
M =— E Tik-
n <
=1

We would like to find a linear combination X - ¢ of the data such that
the different groups are maximally separated, that is, maximizing the

following separation ratio A:

\ c'Be  between-group variance

= ) 5.5
IWe within-group variance (55)

A necessary condition to maximize \ is % = (0. By substituting equation

5.5 into this condition, we get:
W 'Bc = Ac, (5.6)

assuming W is invertible. This is an eigenvalue problem, and the weight
vector ¢ and the separation ratio A are eigenvectors and eigenvalues of
W 1B, respectively. X - ¢ is called a canonical variate, and the canonical
variate of the eigenvector ¢ which corresponds to the largest eigenvalue is

called the first canonical variate.
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For the near-source versus far-source classification problem, the data matrix X is
the dataset of peak seismic ground motions, where n is the number of stations, and m
is number of the object features (PGA, PGV, PGD, etc.). We have two groups: near-
source group and far-source group (g = 2). LDA finds the optimal set of coefficients

of ground motion amplitudes to classify near-source or far-source records.

Since the traditional LDA does not treat which choice of the ground motion pa-
rameters is the best, Bayesian model class selection is performed (the results are
shown later). According to this analysis, the best selection is (Za and Hv), and their

coefficients obtained from LDA are shown in table 5.3.

Table 5.3: Estimated model parameters by Fisher’s LDA, Bayesian approach with
asymptotic approximation, and Bayesian approach with the Metropolis algorithm.
The standard deviations for each parameter are shown in brackets.

Method | ¢ (Za) co (Hv) d
LDA 7.233 6.813 25.903
Bayesian-Asym. 6.046 7.886 27.090
(0) (£ 0.903) (&£ 1.206) (&£ 3.163)
Bayesian-MA 6.194 8.150 27.872
(0) (£ 0.946) (£ 1.224) (&£ 3.330)

We choose the decision boundary constant d to maximize the classification perfor-
mance for the set of coefficients obtained by the LDA. The classification performance

is evaluated by the following function:

Pe(d) =(P(f(Xi]0) = 0]Y; = 1) + P(f(X;]0) < 0]Y; = —1))/2, (5.7)

where

1 if near-source,
Y, =

—1 if far-source.
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This is the average probability between the probability that a near-source station is
classified correctly and the probability that a far-source is classified correctly. The
parameter d which maximizes this function for the given coefficients (table 5.3) is
25.903, and the performance defined by the function above is 93.4%. Another way
to compute d is to take the midpoint of the two group means of the first canonical
variate. This method makes it easier to compute the value of d and it gives d = 25.045,

a good approximation to d = 25.903 which shows maximum performance.

As a conclusion, the discriminant function computed from the LDA is:

f(X;]0) =7.2331og,, Za + 6.813 log,, Hv — 25.903, (5.8)

" f(X;]0) > 0 near-source,
i
f(X;]0) <0 far-source.

This discriminant function is applied to all the dataset, and the values of f(X;|0)
are shown in figure 5.4. The figure shows that most of the near-source data lie on
the right side of the decision boundary, which means the classification performance

is very good.

5.2.2 Bayesian approach

In this section, a Bayesian approach is applied to determine the coefficients of the
discriminant function that classifies near-source and far-source data. The probability
density function (pdf) of parameter 6 conditioned on data D,, and model class M can

be expressed using Bayes’ theorem:

p(0| Dy, M) o< p(Dn|0, M) x p(6] M)

posterior likelihood prior

o [T P(vil X, 0) x p(6] M), (5.9)

i=1



Figure 5.4: Histogram of the near-source and far-source data to which the discrim-
inant function obtained from traditional LDA is applied. The column heights are
normalized by the number of the data in each group. f(X;|#) = 0 is the decision
boundary between the two groups. The curves are the Gaussian distribution with the
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same mean and standard deviation as the values of f(X;|#) for each group.

where

0 =[c1, ¢, ..., Cm, d]" : parameter vector,

D, ={(X;,Y;) :i=1,..., n} : available set of data,

X; =[x, i, ..., Tim| : ground motion at the station ¢
=[logy,(componentl), log,,(component2), ..., log,,(componentm)],
1 ; if near-source o
Y, = at the station i,
—1 ; if far-source

m = the number of object features,

n = the number of data.
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Note that the model class M defines the likelihood for each value of # in some set of

values and also the prior pdf p(0).

We determine the parameters cy, ..., c,,d based on a Bayesian approach using
the same notation as the LDA. The goal of the Bayesian approach is to obtain the
posterior pdf of the model parameters (f) and determine the most plausible value of
f by maximizing this pdf.

Choice of Prior Distribution

Assume that the model class M is globally identifiable based on D,, (Beck and
Katafygiotis, 1998), that is, there is a unique § maximizing the likelihood p(D,, |0, M).
In this case, given a sufficiently large dataset D,,, the choice of prior pdf does not
affect the resulting posterior pdf, and all posteriors with different priors will converge
to the same answer (Sivia, 1996). Here, the prior is chosen to cover a wide range of
the parameter space by selecting the prior of each model parameter to be a Gaussian

pdf with zero mean and standard deviation 0=100, so:

m

&+ d).

k=1

1 1 1 1
OIM) = ———— —— ") = S
p(0]M) (Varo)mit exp(—5—0"0) (Varo)mh exp(—5

(5.10)

Choice of Likelihood function

Let the predictive probability that station ¢ is near-source be P(Y; = 1|X;,0).
The predictive probability that a station is far-source is then P(Y; = —1|X;,0) =
1 — P(Y; = 1|X;,60). A standard approach in Bayesian classification is to define the
predictive probability by applying the logistic sigmoid function ¢(z) = 1/(1+¢e ®) to
the linear function f(X;|f) that is also used in the traditional LDA (Li et al., 2002).
The logistic sigmoid function is a smooth, positive, and monotonically increasing
function, as shown in figure 5.5. The predictive probability that the ith station is

near-source is therefore defined here by:

1
P(Y; = 11X,,0) = o(f (Xil0)) = ;- (5.11)
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e(x)=1/(1+e™)
0.8f .

o(x)

Figure 5.5: Logistic sigmoid function ¢(z) = 1/(1 + e~®) is used to express the
predictive probability for classification. The function approaches zero as xr — -o0,

and one as x — oo. The function is 0.5 when z is zero.

As f(X;]0) becomes larger, the station is more likely to be near-source, and the

probability that the station is near-source becomes closer to one. Note that the

predictive probability that the station is far-source is then:

P(Y; = —11X,0) = 1 - 6(/(Xi6)) = 6(~/ (X,l0)) = —— o

where, from equation 5.2,

m

f(Xz'|9) = ch%’k —d=X, -c—d.
k=1

From equations 5.11 and 5.12, the likelihood function can be expressed as:

n n n

p(Dnl0, M) = ] P(YViIXi,0) = [ o(Vif (X:16)) = [ | W

=1 =1 i=1

Posterior Distribution

(5.12)

(5.13)
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By substituting equations 5.10 and 5.13 into equation 5.9, the posterior can be

expressed as:

n

1 1 1
0\D,,, M —_— ——079 —— 5.14
p(0) ) o (V2mo)m+l exp( 902 )1_]1: 1+ e Vif(Xi[0) ( )

1=

Both an asymptotic approximation and stochastic simulation are performed to
characterize the pdf defined by equation 5.14. In the asymptotic approach, the pos-
terior is represented by a Gaussian distribution for # with mean é, the most probable
value of #, and a covariance matrix S defined later. Stochastic simulation uses the
Metropolis algorithm to generate random samples of the parameter vector # from
the posterior pdf. It is noted that it is computationally challenging to evaluate the
proportionality constant in equation 5.14 that normalizes the posterior pdf because
it requires numerical integration over a high-dimensional parameter space. However,
this evaluation can be avoided in both the asymptotic approximation and stochastic

simulation methods.

5.2.2.1 Asymptotic approximation

We first find the optimal value 6 of # that maximizes the posterior pdf. This mul-
tidimensional optimization problem is solved by a numerical optimization algorithm

provided by Matlab.

Using Laplace’s method of asymptotic approximation, Beck and Katafygiotis
(1998) show that the posterior pdf for a set of model parameters 6 for a globally
identifiable model class M (which has a unique most probable value) may be approx-
imated accurately by a Gaussian distribution with mean f and covariance matrix ¥,

given a large amount of data. Define H () by:

H(6) =~V loglp(D, 6, M)p(6]0)] = — V5 log[ | POVIX0O)p(6]M)],  (5.15)

=1

then 3 = H(é)’l. By substituting equations 5.10 and 5.13 into equation 5.15;
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[H(0)](a,5) =[~VVlog [ [ P(Y;|X;,0) — VV log p(6]M)](a.)

i=1

0? 1
a 60a805 log H ¢Z aﬁ

i=1

1
o Z 8ca805 (log ¢:) + ?50‘5

_ o(Yif(Xil6)), , 1
—_Zaﬁ¢l¢zl_¢z) Dy ]+§50¢5

1
= Z ¢Z 1 - ¢z xzaxzﬁ + 6(1[3, (516)

where ¢; = ¢(Y;f(X;|0)), and equation 5.2, along with ¥;* = 1, has been used. The
optimal parameter values and their standard deviations for the selection of features
Za and Hv are shown in table 5.3. Note that for large o, the effect of the prior in
equation 5.16 is negligible.

In order to examine the sensitivity of the Bayesian approach to the training
dataset, we perform a cross-validation analysis. First, the training dataset is ran-
domly divided into two datasets and the discriminant function is constructed from
one dataset (training set). This discriminant function is applied to the other dataset
(validation set) to check its classification performance. We then switch the testing
set, and validation set, and repeat this cross-validation analysis. We set the near-
source versus far-source boundary so that the probability is a half that the station is
near-source, that is, the station is classified as near-source if the probability that it is
near-source is more than 1/2. The confusion matrices of these two analysis and the
previous analysis which uses all of the dataset are shown in table 5.4. The classifica-
tion error with half of the dataset is as small as that of the analysis which uses all
of the dataset. Therefore, we confirm that the sensitivity to the training dataset is
small, giving more confidence that the discriminant function from Bayesian analysis

will perform well for future earthquake data.
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Table 5.4: The confusion matrix for the cross-validation analysis with the Bayesian
method with asymptotic approximation. “All dataset” is the analysis which uses the
whole dataset as a training set and a validation set. “Half of dataset” is the analysis
which uses half of dataset as a training set and the other half as a validation set.
“Other half of dataset” is the analysis which switches the training and validation set.
NS and FS stand for near-source and far-source, respectively.

Dataset H NS/FS ‘ Near-source Far-source

All dataset 1;2 7182 ((728%0)) 52823 ((2928@)
Half of dataset gg 32 gé;y)o) 21941 (5969@)
Other half of dataset 1;3 3; g?%(y)()) 21902 (5917@)

5.2.2.2 Stochastic simulation using Metropolis algorithm

The asymptotic approximation is valid only if the posterior pdf for the model param-
eters can be approximated well with a Gaussian distribution. This requires a large
sample size and that the class of models M is globally identifiable based on data D,
(Beck and Katafygiotis, 1998). On the other hand, a stochastic simulation algorithm
can be applied to the problem which generates samples from a Markov Chain whose
stationary pdf is the posterior pdf, that is, the samples are asymptotically distributed
according to the posterior pdf for the parameters. The Metropolis algorithm is used
to solve this high-dimensional problem, because it does not require evaluation of the

normalizing constant for sampling the posterior pdf in equation 5.14.

The Metropolis algorithm is a Markov chain Monte Carlo (MCMC) method pro-
posed by Metropolis et al. (1953). It is a simulation technique for generating random
samples from any given probability distribution. The algorithm uses a proposal pdf
@) which depends on the current sample of parameters, 8() at tth iteration (MacKay,
1999). Here, we choose as the proposal density a Gaussian pdf centered on the cur-
rent parameters () with the covariance matrix ¥ of the parameters in the asymptotic

approximation. The optimal parameters estimated from direct optimization of the
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posterior pdf are used as an initial #*). The expression for @ is:

1

Lo aNTs—1 0 ()

Q19" - :

where |X| is the determinant of the covariance matrix, and m’ is the dimension of
the parameter 6, which is m + 1. A candidate sample is drawn from Q(¢'|§")). The
ratio of the posterior pdf in equation 5.9 at the current sample §Vand the candidate

sample ¢ determines whether to accept the candidate sample, according to:

_ p@'|Dy,, M)

S S b S 1
(60| Dy, M) (5.18)

¢ with probability min(1,r),
Pl = (5.19)

0®  with probability 1 — min(1,7).

If » > 1 then the candidate is accepted as the next sample in the Markov Chain.
Otherwise, the candidate is accepted with probability r as follows; we generate a
random number uniformly distributed between zero and one, and if it is less than
r, the candidate is accepted, that is, 0D = @'. If it is not accepted, the current
sample is repeated (9(t+1) = G(t)). This procedure is repeated until the desired number
of samples are generated. There is a burn-in period at the beginning of the MCMC
method until the probability distribution of the current sample #®) is sufficiently close
to the posterior pdf, which is the stationary pdf of the Markov chain, so judgment is

used to discard initial samples.

Figure 5.6 shows 5000 parameter samples generated with the Metropolis algorithm
for the optimal selection of features Za and Hv. This selection of the ground motion
features comes from Bayesian model class selection explained later. After discarding
the samples in the burn-in period (taken as the first 100 samples), the mean and
standard deviation of the samples are shown in table 5.3. The average acceptance

ratio of the candidate samples €' is 44%, which indicates the method works well
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(Roberts et al., 1997). The stability of the sample mean and standard deviation of
each parameter is examined in figure 5.7. The mean and standard deviation of the
samples converge after the first 1000 samples are added. The most probable values of
the parameters from maximization of the posterior pdf are also shown in figure 5.7.
Note that the means of the marginal pdf’s and the most probable values of the joint

posterior pdf need not agree if these pdf’s are skewed.

The distribution of sample values for parameters # and the resulting histogram of
probability that a station is near-source calculated by the generated set of parameters
are shown in figure 5.8. The distribution of parameter samples agrees well with the
Gaussian distribution defined by the optimal parameters and standard deviations
given by the asymptotic approximation. The standard deviations of ¢; and ¢, are
similar to each other and the distribution is peaked close to the mean of the samples.
The distribution of samples for the decision boundary constant d has a standard
deviation almost three times as large as that of ¢; and ¢;. However, in terms of
coefficient of variation, the uncertainty in d is smaller than that of other parameters

(11.7% compared with 14.9% and 15.3% for ¢; and ¢y, respectively).

Figure 5.9 shows the correlation of samples of model parameters generated from
the simulation. This is the result of the model class with all parameters corresponding
to the eight ground motion parameters, not the result of the optimal model class.
The figure shows that the parameter d is not correlated significantly with any other
parameter. The combinations of parameters which have significant interaction are
horizontal and vertical jerk (c¢; and ¢), horizontal and vertical acceleration (c3 and
¢4), and horizontal and vertical displacement (c; and cg). Parameters with the same
component and similar frequency range (e.g., jerk and acceleration (¢; and ¢3, and ¢y
and ¢;), acceleration and velocity (c3 and ¢5, and ¢4 and ¢g), velocity and displacement
(cs and ¢7, and ¢g and cg)) are also strongly correlated. This result agrees with our
intuition; horizontal and vertical components of the same quantity are correlated, and
records with similar frequency ranges have similar attenuation relationships and so

are correlated.
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Figure 5.6: Samples generated by the Metropolis algorithm plotted in the parameter
space. The x-axis denotes the sample number. The vertical dotted lines indicate the

end of the burn-in period (100 samples).
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Figure 5.7: Mean and standard deviation of samples plotted against the number of
samples included (excluding first 100 samples). The solid line is the sample mean,
and the dashed lines represent the mean plus and minus one standard deviation.
The small circle is the most probable values of the model parameters estimated from

optimization.
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Figure 5.8: Distribution of samples for 3 parameters generated by the Metropolis
algorithm. The Gaussian distributions obtained from the asymptotic approximation
are added in the figure, and fit the histogram well.

5.2.3 Comparison between traditional LDA and Bayesian ap-

proach

Parameters for the linear discriminant function f(X;|0) = >./", cxxiu — d are esti-
mated by traditional LDA and by the Bayesian approach with two different techniques
to characterize the posterior pdf. The results are shown in table 5.3. The parameters
for LDA are scaled such that the norm of the vector ¢ = [¢;, ¢] is equal to the
norm of the vector from the asymptotic approximation. Note that the discriminant
function f(X;|0) is a linear function, so for the traditional LDA, multiplying all ¢
and d by an arbitrary positive constant does not change the result of classification.
However, this is not true for the Bayesian approach, where the modulus of f(X;|0)
affects the probability that a station is near-source.

The estimated parameters are close for the three methods. The coefficients from
LDA are within one standard deviation of those from both Bayesian methods, except
that ¢; from LDA is slightly over one standard deviation from the corresponding mean

and most probable values from the Bayesian methods.
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Figure 5.9: Correlation plot of posterior samples of the model parameters generated

by the Metropolis algorithm. The most probable values of the parameters are shown

as “x”. The numbers in the figure are the correlation coefficient of parameters.

For the asymptotic approximation and Metropolis algorithm, the estimates and
standard deviations for the posterior parameter distribution are very close. If the
posterior is a skewed pdf, the mean is not necessarily equal to the most probable
value (e.g., consider lognormal distribution), as mentioned before. However, figure
5.8 suggests that the posterior pdf is almost symmetric, and the means of the samples
and the most probable values should show very good agreement. In this case, the

Gaussian distribution is a good approximation for the posterior pdf of the parameters.

By using the discriminant functions defined by the values of the parameters in
table 5.3, we performed a classification analysis using the whole dataset. The clas-

sification performance for the discriminant function from LDA and two Bayesian



115

approaches are shown in table 5.5. The results for LDA show 100% of near-source
data and 86% of far-source data are classified correctly, and the result of Bayesian
approach shows 78% of near-source data and 98% of far-source data are classified
correctly. This discriminant function is the function which has the smallest predic-
tion error. To obtain this function, the misclassification of near-source data and that
of far-source data are considered to be of equal importance. Generally speaking, the
misclassifications of near-source data is more critical than that of far-source data, and
we may want to decrease the misclassification rate of near-source data. This misclas-
sification rate can be easily controlled by changing the decision boundary constant
d. We also can control this by shifting the near-source versus far-source boundary in
the Bayesian approach to correspond to some other probability than the 1/2 used in
this classification analysis.

Table 5.5: The confusion matrix for near-source versus far-source classification by

the discriminant function obtained from LDA, Bayesian approach with asymptotic
approximation, and Bayesian approach with Metropolis algorithm.

Dataset | NS/FS | Near-source Far-source
NS 100 (100%) 0 (0%)

FS 82 (14%) 513 (86%)
NS 78 (78%) 22 (22%)

LDA

Bayesian-Assym.

FS 12 (2%) 583 (98%)
. NS 8 (78%) 22 (22%)
Bayesian-MA FS 12 (2%) 583 (98%)

We performed the leave-one-out cross-validation to compare the misclassification
rate between LDA and the Bayesian method with asymptotic approximation. The
idea of this method is to predict the probability of a station from the discriminant
function constructed from the dataset from which that station is excluded. This
process is repeated for all 695 data and the accuracy of prediction is computed. The
percentage of misclassified data is shown in table 5.6. It shows the prediction error of
the Bayesian approach is much smaller than that of LDA. In other words, the Bayesian
approach is able to construct a more robust discriminant function. Therefore, we

use the discriminant function obtained from the Bayesian method with asymptotic
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approximation for further analysis.

Table 5.6: Results of leave-one-out cross-validation for LDA and Bayesian approach.

Method ‘ Prediction Error

LDA 82 /695 (12%)
Bayesian approach | 36 / 695 (5%)

5.3 Bayesian model class selection

5.3.1 Method

Bayesian model class selection determines which combination of the eight ground
motion parameters gives the best classification for the near-source and far-source.
The essential idea is to find the most probable model class based on data D, within
a set of candidate model classes M;, j = 1,...,J (Beck and Yuen, 2004). Applying

Bayes’ theorem, the probability of model class M; can be expressed as follows:

evidence prior

p(Dn| M;) P(M;| M)
p(Dy|M) ’

normalizing constant

P(M,|D,, M) = (5.20)

where

M ={M;, My, ..., M;} : aset of candidate model classes,

J =number of the model classes.

The left-hand side of equation 5.20 is the probability of a particular model class
M; given the dataset and a set of candidate model classes. On the right-hand side,
p(D,|M;) is the evidence for each model class, P(M;|M) is the prior over the can-

didate model classes evaluated for M;, and p(D,,|M) is a normalizing constant given
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J
p(Da| M) = " p(Dy| M;)P(M;|M). (5.21)

7=1
Assuming a uniform prior for the model class, P(M;|M) in the numerator and de-
nominator of equation 5.20 cancel. By the total probability theorem, the evidence

for M; provided by the dataset D, is given as:

p(Dn|M;) = /‘P(Dn|9jaMJ)P(9j|Mj)d9j- (5.22)

0;

This is simply the integral of the likelihood of the data for a vector of parameters
weighted by its prior probability integrated over the whole parameter set for 6; for

model class M;.

An asymptotic approximation for large sample sizes n can be used to compute the

evidence of the model (Papadimitriou et al., 1997):

21 Ni l2p(0;| M; .
( z| J) X p(an], Mj), (523)
|Hj (9]) | likelihood

Ockham factor

p(Dn|Mj) ~

where

H;(0;) = — V'V log[p(Dn|0;, M;)p(0;] M;)],

~

f; = optimal parameter vector (most probable value) for model class M;,

N; = number of parameters for model class M;.

Here, H;(0;) is given by equation 5.16 for the choice of parameters ¢, corresponding
to model class M;. p(f;|M;) is the prior defined in equation 5.10 and p(D,|0;, M;) is
the likelihood function defined in equation 5.13, evaluated at the optimal parameter
vector for model class M;. For the model class selection, the effect of the number of

the parameters, N;, in the Gaussian prior is significant if the standard deviation, o,
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is large. However, the prior we chose is not affected by this issue (we demonstrate

this later).

5.3.2 Results of Bayesian model class selection

We used Bayesian Model Class Selection to find the best combination of the eight
ground motion parameters with the same dataset as the previous classification prob-
lem. First, we impose the condition that both horizontal and vertical components
be included in the model for any selected ground motion quantity. Under this con-
dition, there are four groups of ground motion parameters (peak jerk, acceleration,
velocity, and filtered displacement) giving fifteen possible combinations. These fifteen

candidate model classes are shown in table 5.7.

Table 5.7: Results for Bayesian model class selection when fifteen combinations of
the ground motion parameters are examined under the condition that the horizontal
and vertical components are used together. The most probable value of the decision
boundary parameter corresponding to each ground-motion parameter is given first
for each model class. The values for the Ockham factor (Ock.), likelihood (like.), and
evidence (evi.) of each model class are log scaled. The last column is the posterior
probability that measures how plausible the model class is. It is scaled such that the
total probability of the fifteen model classes is 100%.

model | Hj Zj Ha  Za Hv Zv.  Hd Zd d | Ock. Like. Evi. [ P(%)

j 1.53  4.30 - - - - - - 23.8 | -17 -140 -156| 0.0
a - - 4.38 4.37 - - - - 214 | -16  -117 -133| 0.0
v - - - - 8.57 0.87 - - 16.3 | -16 -118 -134 | 0.0
d - - - - - - 249 144 58 -7 -192  -209 | 0.0
ja -2.74 2.04 6.60 2.95 - - - - 208 | -25 -114 -139 | 0.0
v 257 279 - - 7.00  2.00 - - 36.1 | -25 -80  -105 | 324
jd 344 3.43 - - - - 348 0.79 332 | -26 -94  -120 | 0.0
av - - 254 438 7.01 0091 - - 295 | -24 -80  -104 | 62.1
ad - - 493 5.02 - 3.89 0.22 294 -25 -82  -106 | 5.3

- - - - 12,55 230 -338 -0.25 200 | -25 -106 -131| 0.0
jav 136 147 1.36 228 693 1.50 - - 33.8 | -33 -78  -111 | 0.1
jad 0.55 043 435 4.49 - - 3.89 0.27 30.7 | -33 -81  -115 | 0.0
jvd 272 2.68 - - 6.66 291 0.66 -1.12 36.7 | -34 -80  -113 | 0.0
- - 347 450 458 1.06 180 -0.47 30.2]| -33 -79  -112 | 0.0
javd 1.40 129 205 249 5.05 211 169 -1.0 343 | 41 -78  -119 | 0.0

The results in table 5.7 indicate that the combination of acceleration and veloc-
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ity is the model with highest probability, although the jerk and velocity combina-
tion also has significant probability. The log of prior (p(é]|M])) is simply a func-
tion of N; and becomes smaller as the number of parameters increases. The factor
p(0,)M;)(2xNi/2) /A/|H;(0;)| in equation 5.23 is called the Ockham factor by Gull
(Gull, 1988; Beck and Yuen, 2004). It penalizes a more complicated model and so
makes a simpler model preferable. The Ockham factor is also shown in table 5.7.
Although the coefficient 27/ and /|H;(6;)| are included in the Ockham factor,
the effect of prior p(d,|M,) is dominant.

The log of the likelihood function p(D,|8;, M;) becomes larger as the number of
the parameters in the model class increases because a more complicated model class
will fit the data better than a less complicated one. However, the Bayesian model
class selection automatically accounts for the trade-off between the complexity of the
model (e.g., number of parameters) and the fit of the data to find a well-balanced

model (Beck and Yuen, 2004).

To examine the possible model classes further, the constraint that horizontal and
vertical components be used together is removed. We test all 255 model classes
created from the combinations of 8 parameters. The results for the best five model
classes are shown in table 5.8. The sum of the posterior probability of the five model

classes is 95% out of all 255 model classes.

Table 5.8: The best five model classes in the Bayesian model class selection when 255
combinations of the ground motion parameters are examined. The columns are in
the same format as in table 5.7.

model | Hj Zij Ha Za Hv Zv Hd Zd d | Ock. Like. Evi. | P(%)

1 - - - 6.05 789 - - - 271 -15 -81 -96 | 80.8
2 1.91 - - 441 831 - - - 319 -20 -79 -99 6.6
3 - - 1.86 4.88 786 - - - 29.2 | -20 -80  -100 | 2.9
4 - 1.59 - 431 8.02 - - - 29.7 ) -20 -80  -100 | 2.5
) - 4.43 - - 8.52 - - - 322 -16 -84 -100 | 1.9

Model class 1, which has the coefficients of the vertical acceleration and horizon-

tal velocity, is the most probable model within the set of 255 model classes. The
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discriminant function for the most probable model in model class 1 is:

F(X;]0) =6.046log,, Za + 7.885 log,, Hv — 27.091, (5.24)

where

1

POG=11X.0) = T o

(5.25)

is the probability that station 7 is near-source. This result indicates that the amplitude
of high-frequency components is effective in classifying near-source and far-source
stations. Note that the probability that the station is near-source is higher, if f is

larger.

5.3.3 Effect of the choice of prior

In this section, we examine the choice of prior for the parameters in the model class
selection. As we stated, for the Gaussian prior distribution, the effect of the number
of parameters, N;, is significant if the prior standard deviation, o, is large (Lindley,
1957; Muto, 2006). We demonstrate this feature by performing model class selection
with a Gaussian prior with different values of o and a uniform prior with different
widths of boundary b. The posterior probabilities of the model class selections are
shown in table 5.9.

In the table, we can see the effect of the prior standard deviation in the Gaussian
prior. As we increase o, it tends to bias the posterior probability toward simpler
models (i.e., models with fewer parameters). For example, the probability of model
jav slightly decreases as ¢ increases. The small probability of model jv with Gaussian
prior (0=10) is caused by the narrow prior range. If o is too small, it restrict the range
of parameters as shown in table 5.10. Therefore, the choice of =100 is reasonably
wide enough to find the most probable parameters, so we chose it in the Bayesian
approach.

For the uniform prior, we are able to choose the small width of the boundary
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Table 5.9: The posterior probability of the model class selection with different types
of prior distribution for parameters. o is the standard deviation for the Gaussian
distribution and |b| is the width of the boundary for the uniform distribution.

Gaussian prior Uniform prior

Model —"—75 [0=100 [ 0=1000 | [b] <20 | [b] <100
] 0.0 0.0 0.0 0.0 0.0
a 0.0 0.0 0.0 0.0 0.0
\Y 0.0 0.0 0.0 0.0 0.0
d 0.0 0.0 0.0 0.0 0.0
ja 0.0 0.0 0.0 0.0 0.0
Jv 7.2 32.4 33.0 31.5 32.9
jd 0.0 0.0 0.0 0.0 0.0
av 78.9 62.1 61.7 59.0 61.6
ad 7.3 5.3 5.3 5.0 5.3
vd 0.0 0.0 0.0 0.0 0.0
jav 3.3 0.1 0.0 3.0 0.1
jad 0.1 0.0 0.0 0.0 0.0
jvd 0.1 0.0 0.0 0.3 0.0
avd 3.0 0.0 0.0 1.1 0.0
javd 0.1 0.0 0.0 0.0 0.0

Table 5.10: The estimated parameters from Bayesian approach with different types
of prior distribution for parameters.

Prior ‘ c1 (Za) ¢y (Hv) d
Gaussian(c=10) 5.522  T7.147  24.686
Gaussian(0=100) | 6.046  7.885  27.091
Gaussian(c=1000) | 6.053  7.895  27.122

Uniform Cases 6.053 7.895 27.122

since the uniform prior does not affect the most probable parameter if the parameter
is inside the boundary. We show the results of model class selection of uniform prior
with |b| < 20 and |b] < 100 (|b] < 10 is not wide enough to find the most probable
parameters). They are almost the same, but the probability of model jav decreases a

little as |b| increases.

We conclude that in this problem, the effect of the choice of prior is small. In

other words, the likelihood in equation 5.23 is very peaked and the prior pdf does not
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significantly affect the probability of the model.

5.4 Results and discussion

We apply the optimal discriminant function from Bayesian approach (in equations
5.24 and 5.25) to all the stations in the dataset. Figure 5.10 shows the classification
results. The distribution of stations with a high probability of being in the near-
source is consistent with the fault geometry. As mentioned before, the fault models
that are used here are those from the source inversion, and they are not necessarily
the best indicator of near-source and far-source stations.

To examine the application for real-time analysis, the optimal discriminant func-
tion in equations 5.24 and 5.25 is applied to the Chi-Chi earthquake strong motion
records. We generated snapshots of the probability that a station is near-source from
10 to 40 seconds after the beginning of rupture. Peak ground motions used for this
classification analysis are computed from the observed data every 10 seconds for each
station and evaluated in the discriminant function. The results are shown in figure
5.11. A darker mark at a station in figure 5.11 indicates that the station is more
likely to be near-source, and a lighter mark indicates that the station is more likely
to be far-source.

Ten seconds after the rupture initiation, the map shows that stations with high
probability of being in the near-source are located near the epicenter, and it indicates
that the rupture area is propagating concentrically. At 20 seconds, the probability
of being in the near-source at thirteen stations is computed to be greater than 50%,
but the concentric station distribution makes it difficult to identify any directivity
of rupture propagation. The average slip velocity is 2 km/s (Ji et al., 2003), and
the rupture front propagates 40 km from the hypocenter at this point. We can
see the North — South character of the rupture direction clearly after 30 seconds of
rupture. At 40 seconds, the distribution of stations with high near-source probability
agrees with the fault surface projection, and stations at the near-source and far-source

boundary have around 50% probability. Even though the fault geometries used for
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the wave inversion are not necessarily the actual extent of the fault, to a first-order

approximation, the classification results are in good agreement with them.

5.5 Summary

We presented a methodology to classify seismic records into near-source or far-source
records as a prelude to estimating fault dimension in an earthquake early warning
system. Ground motion records from some past earthquakes are analyzed to find a
linear function that best discriminates near-source and far-source records. Peak values
of jerk, acceleration, velocity, and displacement are used in a traditional LDA and
in a Bayesian approach to find the linear combination of peak values which provides
the best performance to classify near-source and far-source records. All methods
gave similar discriminant functions. We also analyzed which combination of ground
motion features had the best performance for classification using Bayesian model class

selection, and the best discriminant function is:

f(Xi]0) =6.0461log,, Za + 7.885 log,, Hv — 27.091, (5.26)

1

P(Y; =1]X;,0) 1T e Jx

(5.27)

where Za and Hv denote the peak values of the vertical acceleration and horizontal
velocity, respectively, and P(Y; = 1|X},0) is the probability that a station is near-
source. This function indicates that the amplitude of high-frequency components is

effective in classifying near-source and far-source stations.

The probability that a station is near-source obtained using this optimal discrim-
inant function for all the earthquakes shows the extent of the near-source area quite
well, suggesting that the approach provides a good indicator of near-source and far-
source stations for real-time analyses. Note that this function is constructed by the

training dataset with magnitude greater than 6.0, so it only works for large earth-
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Figure 5.10: Probabilities of near-source based on the optimal discriminant function
obtained by the Bayesian approach. Darker marks have higher probability that the
station is located at near-source. All stations in the figures use the same color code
for scale. The symbols for the fault and epicenter are the same as in figure 5.2.
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Figure 5.11: Snapshots of the probabilities of near-source for the Chi-Chi earthquake,
based on the optimal discriminant function from the Bayesian approach. The large
circle is the theoretical rupture front assuming the rupture velocity 2km/s.
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Chapter 6

Estimating the Slip on the Fault
from Low-Frequency Ground
Motion

We developed a methodology to recognize the fault rupture geometry by incorporating
the characteristics that high-frequency ground motions have stronger correlation with
the fault rupture distance. However, it is difficult to predict the slip on the fault from
high-frequency ground motions, since the near-source high-frequency ground motions
saturate as a function of magnitude for large earthquakes. Therefore, we use low-

frequency ground motions to determine the slip on the fault.

Low-frequency ground motion is important in a sense that it allows for the pre-
diction of long-period seismic waves and the present value of slip on a rupture allows
for a probabilistic prediction of additional rupture in the near future. Additionally,
low-frequency ground motion increases exponentially as a function of magnitude, and
is important to estimate seismic damage.

In this chapter, we propose a methodology to determine the slip on the fault that
is compatible with both the observed low-frequency motions and also with the rupture
geometry determined from high-frequency motions. We also create a methodology to
predict the total length of the rupture propagation conditioned on the current slip
size.

Currently, the displacement data is obtained from the double integration of strong

motion records, and it is difficult to remove the linear trend from inertial seismometers
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in real-time analysis (Clinton, 2004). To determine the fault slip in real time, the
future incorporation of real-time high-sample-rate GPS into early warning systems
may be quite important.
Our method to recognize the slip on the fault in real time also works for tsunami
warning because tsunami energy can be estimated by the slip on the fault. It is more
effective for tsunami warning since the warning time is generally much larger than

earthquake early warning.

6.1 Data

The strong motion data for Chi-Chi earthquake (September 20, 1999) are used for
this analysis. This is the same dataset as the one in the near-source versus far-source
classification analysis, and the data source is explained in section 5.1.1.

To obtain the real displacement data from strong motion records, we applied
the following procedure. First, the DC offset of the accelerograms is corrected by
subtracting the mean of the pre-event portion. The corrected accelerograms are inte-
grated once to obtain the velocity records. Some velocity records have a linear trend
due to either tilting, the response of the transducer to strong shaking, or problems in
the analog-to-digital converter. Therefore, the baseline correction scheme explained
in section 5.2.2 is applied to obtain appropriate velocity records. After time-domain
integration of this corrected velocity, the approximated real displacements will be
obtained. If the post-events displacement is not constant, the coefficients a; and as
in equation 5.1 are manually determined so that the post-events velocity is zero. In
this way, approximated real displacement records are obtained.

This baseline correction scheme does not necessarily produce the real displacement
records, since the scheme assumes the baseline shift of the acceleration occurs only
once. Therefore, we compare the static displacement measured after the event with
the GPS displacement data. The location of GPS stations are not the same as that
of strong motion stations, but the displacement of the GPS station which is the

nearest neighbor of the strong motion station is compared with the displacements
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Figure 6.1: Distribution of the static displacements for the Chi-Chi earthquake (EW
component). The star symbol denotes the epicenter of the earthquake. The rectan-
gular boxes display the map projection of the fault geometry proposed by Ji et al.
(2003). The distribution of static displacements computed from strong motion records
agrees well with the one from GPS displacements.
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Figure 6.2: Distribution of the static displacements for the Chi-Chi earthquake (NS
component). The symbols are in the same format as in figure 6.1.
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(b) Static displacements from strong motion records.

Figure 6.3: Distribution of the static displacements for the Chi-Chi earthquake (UD
component). The symbols are in the same format as in figure 6.1.
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obtained from double integration of strong motion records. Figures 6.1 — 6.3 show
the comparison between the GPS displacement and static displacement computed
from the strong motion records by applying the baseline correction scheme. The map
for GPS displacement shows higher values on the hanging wall since there are more
GPS stations than strong motion stations on the hanging wall. However, overall,
the static displacement distribution computed from strong motion records agrees well
with the GPS displacement and this suggests that our baseline correction scheme is

reasonable.

6.2 Estimating the slip on the fault from low-frequency

ground motion

6.2.1 Constructing a slip function as a function of fault dis-

tance

Aagaard et al. (2004) simulated near-source ground motions for five fault geometries
with different combinations of fault dip and rake angles. Four of the simulated near-
source peak ground displacements as a function of distance from the fault for scenarios
with the shallow hypocenter are shown in figure 6.4. The average slip and fault area
for scenarios across the different fault dip angles are constant. In figure 6.4, the value
of maximum ground displacement normalized by the unit average slip is shown on
the vertical axis. The peak ground displacement per unit slip is not significantly
different for different fault scenarios, except the displacement for the strike-slip fault
scenario (dip angle = 90°) is symmetric along the fault line and the displacement for
the thrust fault scenario (dip angle = 45°, 60°, and 75°) is asymmetric and records
larger amplitude on the hanging wall.

We fit an analytical function to this simulated ground displacement (z) as a func-
tion of fault distance (r). Using a bell-shape function x(r) = x(0)//1 + (a|r])?, we

find  and by minimizing the least-square errors between the simulated near-field
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Figure 6.4: A displacement per unit slip as a function of fault distance obtained from
ground motion simulations (Aagaard et al., 2004). An approximated curve for the
strike-slip fault scenario (dip angle = 90°) is added in the thick line.

ground displacements and the bell-shape function. Assuming the ground displacement
is proportional to the slip on the fault, the analytical function which approximates

the simulated ground displacement is:

0.7
X
V/1+ (0.125]r[)15

x(r) = slip. (6.1)

For the proposed real-time analysis method, we back project the recorded dis-
placement data onto the fault line to estimate the size of the slip on the fault. In
the current state-of-the-art seismic network, the seismometer directly measuring the
ground displacement, such as high-sampling GPS, is not as common as strong mo-
tion seismometer. We obtain the ground displacement by the double integration of

the strong motion records or the single integration of the records of the broadband
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seismometer.

The location of the epicenter and the direction of the fault rupture are assumed to
be estimated from the previous technique to recognize a rupture geometry (chapters
4 and 5). We define the fault line as a straight line on the epicenter oriented in
the direction of the fault rupture, and the fault distance as the distance between
the station and the fault line (see figure 6.5 as an example of calculating the fault
distance). From equation 6.1, the slip on the fault line when the displacement (z) is

recorded at the fault distance (r) is estimated by the following equation:

- z(r)
sy = 0.7/+/1+ (0.125]r[)155 (6:2)

6.2.2 Estimating the slip on the fault and predicting the ad-

ditional rupture extent

We estimated the slip on the fault of the Chi-Chi earthquake from the strong motion
records and compared with the slip distribution computed it from the seismic wave-
form inversion (Ji et al., 2003). Figure 6.6 shows the slip distribution of the Chi-Chi

earthquake (1999) obtained from the seismic waveform inversion (Ji et al., 2003).

The solid line in figure 6.7 shows the cross section of the slip distribution along
AB which is identical to the fault line in figure 6.5. Figure 6.7 also shows the back
projection of the observed ground displacement data onto the fault line after 10, 20,
and 30 seconds after the origin time. Only the records of the stations where the
rupture front arrived are shown in the figure. From the figure, we can see the back
projection of the displacement records agrees with the slip distribution obtained from
the waveform inversion to a first-order approximation. There is a large discrepancy
at the north end of the fault line (40 km north from the epicenter). It shows that the
most of the displacement records underestimate the slip on the fault and one station
which significantly overestimate the slip on the fault. This is because there are many

stations on the foot wall and few stations on the hanging wall of the fault for the Chi-
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Figure 6.5: A slip on the fault can be obtained by backprojecting the displacement
from the strong motion data onto the fault line shown as a thick broken line.

Chi earthquake. Additionally, we use the slip function which fits to the near-source
ground motion simulation for strike-slip fault, while the Chi-Chi earthquake source is

thrust fault and the slip on the fault is significantly asymmetric along the fault line.
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Figure 6.6: Slip distribution for the Chi-Chi earthquake proposed by Ji et al. (2003).
The model consists three rectangular planes crossing in three dimension. The cross
section along the fault line AB is shown in figure 6.7

6.3 Predicting the probability of the additional rup-

ture extent

Given the current slip on the fault, what is the probability that the rupture length
exceeds a certain number? To answer this question, we create a methodology to
predict the total length of the rupture propagation conditioned on the current slip size.
Liu-Zeng et al. (2005) constructed a methodology to generate simple 1-D models of
spatially heterogeneous slip. By using this methodology, we compute the probability
of the rupture length (L) conditioned on the current slip on the fault (D) in a statistic

way.
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Figure 6.7: Cross section of the slip distribution in figure 6.6. The estimated slip from
real-time displacement data are also shown. “Foot” and “hang” indicate stations on
the footwall and hanging wall, respectively. The records from the stations on the
hanging wall show higher value than that of footwall stations.

6.3.1 Generating 1-D slip models

In this section, we briefly discuss the basic procedures of the technique developed by
Liu-Zeng et al. (2005).
Let w(x) be white noise with mean zero and standard deviation one, and then

W (t) be a Fourier transform of w(z).
W(k) = Flw(z)} (6.3)
Applying a low-pass filter (k) to W (k),
Y (k) = W (k) F(k), (6.4)

where F(k) = k=%, «=1.25 — 1.5 (Liu-Zeng et al., 2005). If a=1, applying the low-

pass filter is equivalent to a single integration. If a=2, it is equivalent to a double
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Figure 6.8: An example of the 1-D slip models. Top: an original white noise. Bottom:
a parent series generated by the low-pass filtering of the white noise.

integration. Taking a inverse transform of Y(k), a low-pass filtered white noise is

obtained.

y(z) = F Y (k)} (6.5)

Figure 6.8 shows an example of the white noise w(x) and low-pass filtered white
noise y(z). We call this generated series y(x) the “parent series.” We define the end
of an individual rupture when the parent series crosses the zero line, and then take
the absolute value of the individual series. In this way, each parent series is split
into a set of earthquake slip models of varying length with approximately the same
smoothness a. Taking a modulus of the parent series, the slip D as a function of

position z is:
D(z) = Dyly(z)], (6.6)

where Dy is constant defined from the observation. The distance between adjacent
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Figure 6.9: The effect of the low-pass filter with different order o on the slip models.
Larger « can generate smoother series.

data points Az is assumed to be Az = 10 m.

6.3.2 Characteristics of the 1-D slip models

The order of the low-pass filter () can control the smoothness or roughness of the
slip models. By definition of low-pass filter, o is the slope of its Fourier spectral
amplitude with wave number. Therefore, as a increases, the applied filter removes
more high-frequency components. Figure 6.9 shows generated parent series with three
different orders of the low-pass filter. Applying the low-pass filter with smaller o, the
generated series consists of much higher frequency component. If o of the low-pass
filter is large, the generated series becomes smoother. The value of o controls not only
the roughness of the slip model. A model with a rougher slip distribution (smaller
«) has higher chance to cross the zero line. Therefore, models with smaller o will
generate more short events.

Figure 6.10 shows the relationship of the average slip (D) and the rupture length

(L) of each model for three different oe. The regression curves and regression equations
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Figure 6.10: Plot for the average slip (D) and rupture length (L) for the slip models
with different a.. Regression lines for each a are added in the figure. The parameter
a controls the slope of the regression lines.

for each case are also added in the figure. The slope of the regression curves varies
with different «, and the slip model with smaller a shows the steepest slope. This
means the rougher slip distributions (smaller /) produce longer ruptures for a given
average slip. That is because for a given slip, a rupture is more likely to terminate in

a short distance.

The parameter « is determined so that the regression curve for D and L agrees
with the observation. Figure 6.11 shows the D and L relationship of real earthquakes
in a log-log plot. The strike-slip events from the dataset by Wells and Coppersmith
(1994) and Liu-Zeng et al. (2005) are used in this figure. The trend of the regression
line for non-interplate events and interplate events are similar, so the regression line
for total dataset (log;; D = 0.85log;, L —1.43) is added in the figure. The slope of the
regression curve for D and L scales with « (see figure 6.12), so the value of o which

corresponds to the observed slope for log,, D/ log,, L =0.85 is 1.33. The intersection

of the regression line for D and L depends on « and the constant Dy in equation 6.6,
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Figure 6.11: Plot for the average slip (D) and rupture length (L) for the observed
earthquake data in Wells and Coppersmith (1994) and Liu-Zeng et al. (2005).
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Figure 6.13: Plot for the average slip (D) and rupture length (L) for the observed
data and simulation results from the slip model with o = 1.33.

and the value of Dy which agrees with the observation is 0.02. Figure 6.13 shows D
and L generated by the model with a=1.33 and Dy=0.02. The samples generated
from models with these parameters agree with the real observations very well.
Figure 6.14 shows the comparison of the models with different numbers of the
parent series (n). Even though the models with smaller n generate more short events,
the slope of D and L does not change so much in the range of n = 2'% 2! and 2%,
We conclude that the number of the parent series is not important to control the

roughness of the models.

6.3.3 Statistical distribution of the additional rupture length

Using the Liu’s method to generate 1-D slip models (Section 6.3.1), the statistical
distribution of the rupture length conditioned on current slip on the fault is exam-
ined. First, we generated 1000 parent series with length 22°, and 5254 models are
obtained from the series. For each model, when the slip exceeds a certain value, the

length between the current location and the location where the rupture terminates
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Figure 6.15: 3-D histogram of the additional rupture length (L,) as a function of
current slip (D).
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is computed. We call this length the additional rupture length L,, as opposed to
the total rupture length of each model L. The statistical distribution of additional

rupture length for different current slip sizes is shown in figure 6.15.

Figure 6.15 shows a histogram of additional rupture length conditioned on current
slip on the fault. Here, the bin size of the histogram is 10 km. The figure shows that
the rupture with small current slip has high probability that the additional rupture
length is small and more likely to terminate in the near future. The 2-D plot of figure

6.15 is shown in figure 6.16 for later comparison.

Next, we try to describe the probability density for these samples by an analytical
function. Using a Gaussian function as a kernel function (Silverman, 1986), the
probability density can be estimated as a summation of Gaussian distributions. Given
the samples C' = [c1, ¢g,..., ¢,], the probability density of the samples can be
estimated by:

11 (z —¢)”
p(z) = on ;exp <—T‘2> ) (6.7)
where n is the number of the samples and o is a standard deviation of the kernel
function. The o controls the smoothness of the estimated density and we found the
kernel function with constant 0 = 10 estimates reasonably smooth distribution to
approximate the original histogram. The estimated probability density is shown in

figure 6.17, which is a very good approximation of the histogram in figure 6.16 .

The probability density estimated from the Gaussian kernel function is very ac-
curate, but expensive to compute, since the function (equation 6.7) includes n expo-
nential terms. Therefore, we try to approximate the probability density by using a

single lognormal distribution.

Lognormal distribution is a probability distribution of any random variable whose

logarithm is Normally distributed. The lognormal distribution has the probability
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density function (pdf):

1

_ —(lnz—p)? /202
T) = e . 6.8
p( ) ToN\ 2T ( )

The distribution is defined by two parameters: mean p and standard deviation o
of the variable’s logarithm. These two parameters are computed by fitting mode of
the distribution (the value of the term that occurs the most often) and the probability
density at the mode (peak value of the probability density). The mode of the log-
normal distribution is e~ 7" and the probability density at the mode is ﬁe’”*‘ﬁ/?.
The computed p and o for each slip size D are shown in figure 6.18. Since the rela-
tionship between p and D seems logarithmic, a logarithmic trendline is added in the
figure. The regression function is u(D) = 1.16In(D) + 4.94. On the other hand, the
parameter o does not show any dependence with D. Therefore, we select a constant

o=1.6.

The lognormal distribution with parameters which are best fit to the probability
density is shown in figure 6.19, which is a good approximation of the probability
density shown in figure 6.17. The lognormal distribution with parameters p(D) =
1.161In(D) + 4.94 and ¢ = 1.6 is also shown in figure 6.20. The difference between
figures 6.19 and 6.20 are very minor, so the equations to compute the p and o are

reasonable and valid for the general case.

Figures 6.21 - 6.24 are enlarged graphs of figures 6.16 - 6.20. In those figures, we
can see the slope of the approximated lognormal distribution around origin is much
higher than that of kernel probability density. They also decay slower than that of
probability density after the peak. However, it is important to express this kernel
probability density with simpler expression for convenience, and the approximated

lognormal distribution is close enough to express the kernel probability density.

From the probability density of the additional rupture length, we also compute
the probability that the current rupture propagates more beyond a threshold value
Lypre conditioned on the current slip size D. The probabilities for different L.

are shown in figure 6.25. The figure shows for larger D, there is higher probability



146
that the additional rupture length exceeds L;,,... Besides, the probability increases
significantly for the D greater than 0.2 m. Therefore, if the slip size is less than
0.2 m at the beginning of the rupture, it is difficult to tell how far the rupture can
propagate. Once the slip exceeds 0.4 m, there is higher probability that the rupture
extends to a large event.
In summary, the probability density obtained from the simulations with 1-D slip

models is expressed by:

p(z) =

1 1 (. —¢)’
- _\FG) 6.9
e ] 69)
where

n =number of the samples,
ci,t =1,...,n =samples,

o =a standard deviation of kernel function (= 10).

And the probability density function for the approximated lognormal distribution is:

1 ‘
p(x) = e~ (nz=p)?/20% (6.10)
o/ 2T

where p(D) = 1.161n(D) 4 4.94 and o0 = 1.6.
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Figure 6.16: Histogram of the additional rupture length (L,) as a function of current
slip (D). The bin size of the histogram is 10 km.
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Figure 6.17: Probability density of the additional rupture length (L,) as a function
of current slip (D) by the kernel smoothing method.
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Figure 6.19: Probability density of lognormal distribution which is the approximation
of the additional rupture length (L,).
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Figure 6.20: Probability density of lognormal distribution with mean from the formula
pu(D) =1.161In(D) + 4.94 and constant o.
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Figure 6.21: Histogram of the additional rupture length (L,) as a function of current
slip (D). The bin size of the histogram is 10 km.
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Figure 6.22: Probability density of the additional rupture length (L,) as a function
of current slip (D) by the kernel smoothing method.
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Figure 6.23: Probability density of lognormal distribution which is the approximation
of the additional rupture length (L,).
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Figure 6.24: Probability density of lognormal distribution with mean from the formula
p(D) = 1.161n(D) + 4.94 and constant o.
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6.4 Summary

In this chapter, we propose a methodology to determine the slip on the fault that and
predict the total length of the rupture propagation conditioned on the current slip.

In order to characterize a slip on the fault in real time, we construct an analytical
function to estimate slip on the fault from observations of displacement away from
the fault by using the result of a ground motion simulation (Aagaard et al., 2004).
In real-time analysis, we back project the recorded displacement data onto the fault
line scaled by the analytical function to estimate the size of the slip on the fault. The
fault slip makes it possible to predict long-period seismic waves, which is important
to estimate seismic damage.

This current size of the slip on the fault is used for a probabilistic prediction of
additional rupture in the near future. We characterize the distribution of additional
rupture length conditioned on the current slip on the fault for the ongoing rupture
from the simulation with a 1-D slip model. The probability density of additional
rupture length (L,) can be approximated by a lognormal distribution conditioned on

the current slip size (D).

1
p(La|D) — e*(lnLa*M(D))Q/%'Q, (6].].)
ToV 2T

where p(D) =1.161n(D) 4 4.94 and o0 = 1.6.

The pdf shows the expectation of additional rupture length is longer as the current
slip size is larger. This means a rupture with large current slip is more likely to
continue propagating, and a rupture with small current slip tends to terminate shortly.
However, the observation is not always the case: for example, rupture of Chi-Chi
earthquake in figure 6.7 terminates right after the largest slip occurs at the north end
of the fault. Since the mechanism of the rupture propagation is very complicated, it
is difficult to predict the end of a rupture. The model proposed here is crude and
may not agree with these observation completely, but the technique to generate pdf

of additional rupture length from a slip model can apply to other slip models.
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Chapter 7

Conclusions

Recently, according to advances in data analysis and an increased public perception of
seismic hazards, the topic of early warning has attracted more research attention from
seismologists and engineers. Earthquake early warning systems collect seismic data
from an occurring event, analyze them quickly, and provide estimates for location
and magnitude of the event.

Cua and Heaton developed the Virtual Seismologist (VS) method (Cua, 2005;
Cua and Heaton, 2006). It is a Bayesian approach to seismic early warning designed
for modern seismic networks, and proposed for small to moderate earthquakes with
ruptures that can be approximately modeled as a point source. The VS algorithm
uses an envelope attenuation relationship and the predominant frequency content
from the first few seconds after the P-wave arrival. The advantage of the VS method
is its capacity to assimilate different types of information that may be useful to find
quick and reliable estimates of magnitude and location (Cua, 2005).

In order to construct an early warning system for large earthquakes, we charac-
terize the rupture extent and the slip on the fault in real time and predict ground
motions at a given site based on the current rupture configuration. Our strategy for

large earthquakes is as follows:
e Characterize the present rupture extent from high-frequency ground motions.
e Characterize the present slip on the fault from low-frequency ground motions.

e Predict the final rupture extent from the on-going rupture.
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e Estimate the ground motion at a given site based on the present rupture geom-

etry.

The ground motions at a site could be different for different earthquakes of the
same magnitude at the same distance, because of differences in source mechanisms,
path effect, or site conditions. One of the most commonly used ground motion param-
eters is peak ground accelerations (PGA), and Campbell (1981) found this uncertainty
of peak ground acceleration can be modeled using a lognormal distribution. In other
words, the distribution of the amplitude of ground motions with constant magnitude
and distance follows a lognormal distribution.

The statistical observations of high-frequency and low-frequency ground motions
for large earthquakes show that the near-source high-frequency ground motion satu-
rates as a function of magnitude for large earthquakes, and weakly depends on the
magnitude. On the other hand, the low frequency ground motion has strong correla-

tion with the magnitude of an earthquake.

1) Characterize the present rupture extent from high-frequency ground

motions

We propose a new model to simulate high-frequency motions from earthquakes with
large fault dimension: the envelope of high-frequency ground motion from a large
earthquake can be expressed as a root-mean-squared combination of envelope func-
tions from smaller earthquakes. We parameterize the fault geometry with an epicen-
ter, a fault strike, and two along-strike rupture lengths, and find these parameters by
minimizing residual sum of squares of errors between simulation and observed ground
motion envelopes.

To provide the information on the spatial extent of rupture geometry, we present
a methodology to estimate the fault dimension of an earthquake in real time by classi-
fying seismic records into near-source or far-source records. We analyzes peak ground
motions and finds the function that best classifies near-source and far-source records

based on these parameters by Bayesian model class selection. This discriminant func-
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tion is useful to estimate the fault rupture dimension in real time, especially for large

earthquakes.

2) Characterize the present slip on the fault from low-frequency ground

motions.

In order to characterize a slip on the fault in real time, we construct an analytical
function to estimate slip on the fault from observations of displacements away from
the fault by using the result of a ground motion simulation (Aagaard et al., 2004).
In real-time analysis, we back project the recorded displacement data onto the fault
line scaled by the analytical function to estimate the size of the slip on the fault. The
fault slip makes it possible to predict long-period seismic waves, which is important

to estimate seismic damage.

3) Predict the final rupture extent from the on-going rupture

This current size of the slip on the fault is used for a probabilistic prediction of
additional rupture in the near future. We characterize the distribution of additional
rupture length as a conditioned on the current slip on the fault for the ongoing rupture
from the simulation with a 1-D slip model. The probability density of additional
rupture length (L,) can be approximated by a lognormal distribution conditioned on

the current slip size (D):

]_ 2 2
Le|D) = ¢ (LD /207 7.1
P(La|D) = — NeT: (7.1)

where p(D) =1.161n(D) 4 4.94 and 0 = 1.6.

4) Estimate the ground motion at a given site based on the present rupture

geometry

In the current earthquake early warning system, the ground motion at a given site
can be estimated by the velocity attenuation relationship as a function of magnitude

and epicentral distance, and multiplying site amplification factors. There are imple-
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mentation issues on this ground motion estimate, since the ground motion models for
large earthquakes depends on rupture dimension and slip size, too. We found out that
the high-frequency ground motion at a site can be expressed as a root-mean-squared
combination of envelope functions from smaller earthquakes. However, this model
does not work for velocity and displacement estimates since it relies on the random
phase assumption of high frequency ground motions. Constructing ground motion
models for low-frequency ground motions by considering the fault distance and slip

size on the fault still remains as future work.
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Appendix A

An Article in the San Francisco
Daily Evening Bulletin

This is an article about the concept of seismic early warning system in the San

Francisco Daily Evening Bulletin (Cooper, 1868).

we are now obliged to look for some ... means of prognosticating
[earthquakes| and T wish to suggest the following mode by which we may
make electricity the means, perhaps, of saving thousands of lives in case
of the occurrence of more severe shocks than we have yet experienced. It
is well known that those shocks are produced by a wave-motion on the
surface of the earth, the waves radiating from a center just as they do in
water when a stone is thrown in. If this center happens to be far enough
from [San Francisco], we may be easily notified of the coming wave in time

for all to escape from dangerous buildings before it reaches us...

A very simple mechanical contrivance can be arranged at various points
from 10 to 100 miles from San Francisco, by which a wave of the earth
high enough to do damage will start an electric current over the wires
now radiating from this city and almost instantaneously ring an alarm
bell, which should be hung in a high tower near the center of the city.
This bell should be very large, of peculiar sound, and known to everybody
as the earthquake bell. Of course, nothing but the distant undulation of

the surface of the earth should ring it. This machinery would be self-
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acting, and not dependent on the telegraph operators, who might not
always retain presence of mind enough to telegraph at the moment or

might sound the alarm too often.

Of course, there might be shocks the central force of which is too near

this city to be thus protected but that is not likely to occur [often].
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Peak Ground Motion Database

This chapter shows the dataset of the peak value of strong motion records used in

chapters 3 and 5. The summary of the dataset is shown in table B.1. It consists

of strong motion records of ten earthquake with magnitude greater than 6.0. Table

B.2 is a list of the peak values of the strong motion records. The jerk, acceleration,

velocity and displacement of EW, NS, srss horizontal, UD components are shown in

the table.

Table B.1: Earthquake data set used for the near-source (NS) and far-source (FS)
ground motion analysis. The left column is the earthquake ID number corresponding
to the next table. Moment magnitude (M,,) is cited from Harvard CMT solution.
The definition of the near-source station is a station with fault distance less than 10
km. The fault models are used as selection criteria to classify near-source stations.

No. Earthquake ‘ M, NS FS Total Fault Model
1 TImperial Valley (1979) 6.5 14 20 34  Hartzell and Heaton (1983)
2 Loma Prieta (1989) 6.9 8 39 47 Wald et al. (1991)
3 Landers (1992) 73 1 112 113  Wald and Heaton (1994)
4 Northridge (1994) 6.6 17 138 155  Wald et al. (1996)
5  Hyogoken-Nanbu (1995) 69 4 14 18  Wald (1996)
6  Izmit (1999) 7.6 4 13 17 Sekiguchi and Iwata (2002)
7 Chi-Chi (1999) 7.6 42 172 214 Jiet al. (2003)
8  Denali (2002) 7.8 1 29 30 Tsuboi et al. (2003)
9  Parkfield (2004) 6.0 47 28 75 Ji et al. (2004)
10  Niigataken-Chuetsu (2004) | 6.6 9 58 67  Honda et al. (2005)
Total 147 623 770




Table B.2: Peak values of the strong motion records for ten earthquakes. The first column is the earthquake ID number
corresponding to the table B.1, and the sequencial number of the records. Station ID, Longitude and latitude of the station are
shown the next column. NF is a binary near-source and far-source classification. NF is 1 if the station is near-source record,
and 0 if far-source.

Jerk (¢cm/s?) Acceleration (cm/s?) Velocity (cm/s) Displacement (cm)
EW NS Hor. UD | EW NS Hor. UD EW NS Hor. UD | EW NS Hor. UD
8205 9305 12406 18129 232 208 311 244 74.7  41.0 85.2 18.1 | 42.8 16.4 458 9.1
9146 4600 10238 3487 183 108 212 72 8.3 4.6 9.4 1.9 1.5 2.7 3.0 0.6
6341 6692 9219 3930 174 219 280 99 54.1  52.1 75.2 9.9 | 274 20.3 34.1 7.3
3040 2267 3792 2623 108 68 128 34 12.3  10.6 16.2 3.7 6.3 5.2 8.1 2.3
3499 4504 5703 3921 116 140 181 61 20.0 22.6 30.1 74 | 13.7 126 18.6 4.4
14733 23356 27615 24910 375 548 664 478 88.9 579 106.1 36.8 | 58.6  34.8 68.2 13.6
8585 10490 13555 15260 368 488 611 203 79.8  42.0 90.2 18.0 | 53.9 20.3 57.6 8.6
7531 7718 10783 32582 450 326 555 470 | 101.4 50.6 113.3 27.2 | 479 27.1 55.0 10.1
4694 3627 5932 5702 199 111 228 156 154 16.5 22.5 6.6 | 10.0 11.2 15.0 5.6
1808 1438 2310 1062 52 41 67 27 3.8 3.5 5.1 2.6 1.2 1.6 2.0 1.4
6343 7061 9491 8984 200 270 336 170 20.7  20.9 29.4 5.1 | 13.4 8.6  16.0 1.7
52190 70005 87318 104450 763 583 960 435 54.7  45.0 70.8 11.9 | 15.0 11.9 19.1 3.9
7440 5644 9338 13115 212 250 328 202 429 484 64.7 10.2 | 27.3 28.1 39.2 6.9
4783 6632 8177 3244 124 138 186 49 12.6  16.3 20.6 3.7 6.7 8.4 10.7 1.7
8713 10616 13734 8156 210 272 344 113 40.0  43.7 59.2 8.0 | 23.7 16.7 29.0 5.6
9937 11116 14910 6417 366 352 508 127 38.7  33.3 51.1 119 | 21.3 174 27.5 7.4
5364 3605 6463 2228 132 111 172 43 14.1 16.1 21.4 4.1 7.3 8.8 11.5 2.4
5807 6019 8363 8415 231 160 281 156 41.1  32.1 52.1 8.8 | 141 19.9 244 3.6
2201 4005 4570 2506 77T 125 147 48 129 13.6 18.7 4.0 6.4 10.2 12.0 1.2
1635 1653 2325 617 127 114 171 37 15.7  12.0 19.7 4.0 2.2 2.5 3.4 1.1
13584 13619 19235 6673 372 307 483 103 26.5 30.8 40.7 6.4 | 179 13.1 22.2 4.4
4765 5194 7049 13108 291 311 426 247 94.6 70.2 117.8 28.7 | 40.8 26.7 48.8 8.4
15085 19803 24894 99299 447 332 557 1612 | 106.0 63.1 123.3 63.1 | 65.1 31.6 72.4 20.3
19563 16220 25413 24051 426 611 744 352 55.2  54.5 77.6 21.3 | 341 27.6 43.8  12.7
12918 11963 17606 39181 368 482 606 452 80.3 42.2 90.7 21.5 | 41.3 12.9 43.3 15.0
5850 7620 9607 14170 154 163 224 196 19.1  13.1 23.2 7.7 7.4 5.1 9.0 3.3
9490 16410 18956 13970 231 340 411 149 26.4 349 43.8 13.7 | 142 17.2 22.3 8.1
6900 8620 11041 5380 119 165 203 57 7.2 8.1 10.9 1.4 2.1 1.8 2.8 0.7
29310 27180 39973 16790 256 319 409 156 229 375 43.9 6.3 5.3 109 121 3.5
26390 41580 49248 149320 230 351 420 889 31.6 28.1 42.3 13.7 | 10.6 11.5 15.6 7.3

No. ID lon. lat.

Z
5|

1-1 0117 —115.56  32.79
1-2 0286 —115.82  32.95
1-3 0412 —115.57 32.78
1-4 0724 —115.51 33.24
1-5 0931 —115.64 32.72
1-6 0952 —115.47 32.86
1-7 0955 —115.43 32.86
1-8 5028 —115.50 32.83
1<) 5051 —115.70  32.93
1-10 | 5052 —115.86  32.79
1-11 | 5053 —115.49  32.67
1-12 | 5054 —115.34  32.69
1-13 | 5055 —115.38 32.81
1-14 | 5056 —115.32  32.96
1-15 | 5057 —115.38  32.89
1-16 | 5058 —115.59  32.75
1-17 | 5059 —115.68 32.71
1-18 | 5060 —115.51  32.99
1-19 | 5061 —115.52 33.13
1-20 | 5066 —115.59  33.36
1-21 | 5115 —115.37 32.92
1-22 | 5155 —115.45  32.77
1-23 | 5158 —115.49 32.84
1-24 | 5159 —115.53  32.81
1-25 | 5165 —115.54  32.80
1-26 | 6604 —115.30  32.42
1-27 | 6605 —115.19 32.36
1-28 | 6610 —115.10  32.29
1-29 | 6616 —115.33  32.65
1-30 | 6618 —115.30  32.62
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Table B.2: Continued.

Jerk (cm/s3)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD | EW NS Hor. UD EW NS Hor. UDb | EW NS Hor. UD
1-31 6619 —115.44 32.62 1 36710 17360 40608 27770 435 238 496 328 334  21.2 39.6 10.0 8.7 72 113 2.8
1-32 6621 —115.24 32.48 0 7620 10090 12644 14940 251 262 363 211 254 222 33.7 5.7 7.3 8.7 11.3 2.3
1-33 6622 —115.08 32.57 0 5300 8310 9856 5310 145 184 234 72 8.5 124 15.0 3.6 2.6 3.4 4.2 1.6
1-34 | 11369 —115.62  33.04 0 2071 3539 4101 8538 74 110 133 84 23.5 235 33.2 7.0 | 15.6 9.9 18,5 2.5
2-1 47179 —121.64 36.67 0 3608 2357 4310 4162 110 88 141 100 16.1 10.9 19.5 6.9 6.3 6.9 9.3 3.1
2-2 47189 —121.40 36.75 0 1153 1591 1965 950 71 65 96 58 10.2 9.4 13.9 7.3 2.8 6.1 6.7 4.6
2-3 47377 —121.90 36.60 0 2037 2581 3288 1601 61 69 92 29 4.8 Boid) 5.9 B2 0.8 0.6 1.0 0.5
2-4 47379 —121.57  36.97 1 22524 21196 30929 11158 434 427 608 206 33.7  32.0 46.5 14.7 6.8 9.1 11.3 7.3
2-5 47380 —121.56  36.98 1 10193 8142 13046 14602 316 344 467 273 39.2 33.7 51.7 15.3 | 10.8 10.3 14.9 6.5
2-6 47381 —121.54  36.99 0 14190 19671 24255 25708 362 532 643 360 43.9 354 56.4 14.8 | 13.2 7.6 152 7.0
2-7 47459 —121.76  36.91 1 13173 6478 14680 18041 352 267 442 499 55.0 33.1 64.2 159 | 14.2 105 17.7 4.7
2-8 47524 —121.40  36.85 0 3768 6531 7539 6861 175 362 402 193 30.7  63.0 70.1 156 | 23.2 19.6 30.4 7.1
2-9 57007 —121.80 37.05 1 15571 12030 19677 18973 469 618 776 431 46.1  55.2 71.9 20.7 | 15.0 8.7 17.3 9.0
2-10 | 57064 —121.92  37.53 0 4078 3939 5670 3778 100 118 155 81 8.6 10.8 13.8 9.0 4.5 5.2 6.9 5.5
2-11 | 57066 —121.95 37.40 0 4777 4906 6847 5135 158 163 227 82 18.5 31.7 36.7 9.3 9.6 183  20.6 5.3
2-12 | 57180 —121.95  37.20 1 5559 4562 7192 4238 384 375 537 207 | 1025 76.4 1279 31.1 | 35.4 23.3 424 11.1
2-13 | 57191 —121.71 37.34 0 1809 1903 2626 1674 110 128 169 56 14.1  12.7 19.0 9.0 7.3 3.6 8.1 4.6
2-14 | 57217 —121.55 37.12 0 16234 6432 17462 3592 471 149 494 71 384 15.6 414 8.7 | 10.0 5.8 11.6 4.2
2-15 | 57382 —121.52 37.01 0 5170 8427 9886 5989 210 408 459 149 38.3  39.4 54.9 149 8.4 10.1 13.1 7.1
2-16 | 57383 —121.48  37.03 0 5220 5036 7253 4214 167 112 201 100 13.9 13.1 19.1 9.8 3.5 3.6 5.0 4.4
2-17 | 57504 —121.55 37.12 0 4464 5832 7344 3245 175 155 233 92 21.5 12.8 25.1 9.8 7.9 5.4 9.5 4.6
2-18 | 57563 —121.80 37.21 0 11210 11547 16093 15433 223 269 350 205 209 26.4 33.7  17.1 58 15.2 16.3 5.8
2-19 | 58043 —122.52 37.82 0 887 1798 2004 407 71 70 100 34 13.7 119 18.1 7.4 Boid) B2 4.6 2.0
2-20 | 58133 —122.41  37.80 0 1613 1255 2044 727 91 51 104 32 10.4 7.1 12.5 4.2 4.1 1.9 4.5 1.9
2-21 | 58151 —122.39 37.79 0 1635 1994 2578 1027 89 79 118 28 11.5 7.3 13.6 3.8 3.8 2.7 4.7 2.0
2-22 | 58219 —122.06 37.66 0 2124 2824 3533 1422 83 73 110 44 7.3 5.6 9.2 4.6 3.8 3.3 5.0 3.3
2-23 | 58222 —122.46 37.79 0 3760 2037 4276 1218 195 98 218 56 33.5 134 36.0 11.5 7.9 3.6 8.6 3.0
2-24 | 58223 —122.40 37.62 0 5907 5387 7994 1959 326 231 399 63 29.1  26.3 39.2 5.5 6.6 5.5 8.6 2.3
2-25 | 58233 —122.36 37.53 0 2596 1854 3190 903 85 56 102 31 10.2 5.3 11.4 3.8 3.5 1.4 3.8 1.2
2-26 | 58375 —122.23  37.55 0 4326 3586 5619 2779 278 253 375 101 45.2 318 55.2 8.3 | 17.8 7.1 19.2 3.4
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Table B.2: Continued.

Jerk (cm/s3)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UD
2-27 | 58378 —122.31 37.49 0 2456 2467 3481 1419 85 154 175 60 | 14.1 17.2 222 6.2 5.1 5.3 7.4 2.8
2-28 | 58471 —122.25 37.88 0 1714 873 1924 502 114 48 124 38 | 22.0 8.5  23.6 4.3 5.1 2.2 5.6 1.6
2-29 | 58505 —122.34 37.94 0 2406 2073 3176 813 104 123 161 30 | 149 17.0 227 4.6 3.4 Boid) 4.7 1.2
2-30 | 68003 —122.80 38.04 0 1983 1938 2773 453 100 158 187 55 | 16.3 18.6  24.7 6.5 3.4 3.9 5.1 1.3
2-31 | 47006 —121.57 36.97 1 17498 12329 21405 8722 349 310 467 153 | 29.2 229 37.1 127 7.0 7.5 10.3 7.0
2-32 | 47125 —121.95 36.97 1 12366 17513 21439 42672 391 463 606 500 | 31.5 36.4 48.2 19.0 6.6 10.0 12.0 5.8
2-33 | 57425 —121.43 37.03 0 8327 10832 13663 7301 314 206 376 101 | 16.5 16.5 23.3 5.4 3.7 2.6 4.5 2.8
2-34 | 58065 —122.03  37.26 1 10525 12397 16262 19499 316 494 587 353 | 44.6 415 60.9 26.6 | 27.4 12.2 30.0 13.2
2-35 | 58117 —122.37 37.83 0 3620 2437 4363 370 156 98 184 16 | 33.2 15.6 36.7 1.2 | 10.2 4.8 11.2 1.2
2-36 | 58127 —122.26  37.43 0 1740 1104 2061 865 80 79 113 49 | 15.2 15.1 214 6.6 6.3 6.4 8.9 2.5
2-37 | 58130 —122.43 37.74 0 1793 2114 2772 1036 111 96 147 42 | 14.2 105 17.7 6.9 3.4 2.6 4.3 1.9
2-38 | 58131 —122.43  37.79 0 721 909 1160 389 60 46 76 31 | 14.3 9.8 17.3 6.1 4.9 3.1 5.8 2.5
2-39 | 58132 —122.51 37.78 0 1109 1011 1500 631 106 73 129 61 | 21.0 114 239 7.7 5.2 3.8 6.4 2.0
2-40 | 58135 —122.06 37.00 0 12514 16536 20737 17567 | 402 433 591 325 | 21.6 21.7 30.7 122 6.4 6.8 9.3 7.3
2-41 | 58163 —122.36 37.81 0 1480 898 1731 609 66 28 72 27 | 14.7 4.5 154 4.0 3.8 1.7 4.2 1.2
2-42 | 58338 —122.23  37.82 0 1315 1745 2185 616 70 81 107 25 9.8 9.1 134 2.3 2.9 3.0 4.2 1.5
2-43 | 58373 —122.34  37.47 0 1210 1818 2184 1156 86 101 133 36 | 22.4 13.6 26.2 7.9 7.5 6.2 9.7 2.8
2-44 | 58393 —122.08 37.66 0 4110 4539 6123 4818 136 167 215 91 | 12.6 13.9 18.8 4.0 4.4 3.5 5.6 2.8
2-45 | 58498 —122.09 37.67 0 4410 6111 7536 2949 155 153 218 81 | 11.6 144 184 4.8 3.7 3.6 5.1 2.6
2-46 | 58539 —122.39  37.67 0 1850 2262 2922 1160 57 103 118 31 6.3 8.4 10.5 4.5 1.8 2.7 3.2 1.6
2-47 | 58596 —122.14 37.49 0 2054 2607 3319 3222 126 125 177 57 | 19.1 21.2  28.6 7.2 9.7 8.8 13.1 3.3
3-1 02 —117.94 33.72 0 979 832 1284 532 61 69 92 14 | 12.1 158 199 1.5 3.7 8.2 8.9 0.3
3-2 03 —118.52 34.21 0 602 568 827 379 35 40 53 16 | 144 16.5 219 4.5 8.2 16.8 18.7 2.0
3-3 04 —118.57 34.36 0 396 392 557 238 32 29 43 19 6.8 4.3 8.0 3.6 5.4 1.7 5.6 1.4
3-4 06 —118.42 34.22 0 507 615 797 433 26 37 45 20 6.5 16.6 17.9 5.1 2.8 186 18.8 2.3
3-5 07 —118.44 34.22 0 514 453 685 792 38 34 51 22 6.9 7.8 10.4 3.8 2.3 2.7 3.5 0.8
3-6 08 —118.37 34.24 0 358 360 508 280 23 17 29 12 B2 2.9 4.3 1.1 0.6 0.6 0.8 0.2
3-7 12 —118.33 34.17 0 875 930 1277 793 55 62 82 24 6.9 11.2 13.2 4.1 2.4 2.7 3.6 1.1
3-8 18 —118.37 34.09 0 326 347 476 310 22 15 27 10 3oy 2.4 4.1 1.1 0.9 0.7 1.1 0.2
3-9 19  —118.09 34.09 0 570 553 794 404 35 48 60 20 | 11.3 14.3 18.2 6.0 7.8 140 16.0 3.2
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Table B.2: Continued.

Jerk (cm/s?)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UD
3-10 | 20 —118.30 34.05 0 396 584 706 249 25 34 42 15 7.3 7.0 10.1 ol 54 1.9 5.7 1.1
3-11 | 21 —118.30 34.08 0 696 860 1106 351 31 40 50 15 5.4 3.8 6.6 2.3 1.3 1.1 1.7 0.5
3-12 | 22 —118.28 34.01 0 611 582 844 376 30 41 51 16 4.7 6.5 8.0 2.6 1.8 3.3 3.8 0.5
3-13 | 23 —118.29 33.98 0 745 750 1058 360 48 57 74 11 | 11.0 7.1 13.1 1.8 3.6 3.6 5.1 0.6
3-14 | 256 —118.23  34.00 0 606 644 885 483 33 35 49 20 8.5 8.6 12.1 2.3 5.6 3.5 6.6 0.6
3-15 | 32 —118.19 34.11 0 625 804 1018 401 27 37 46 16 3.9 4.1 5.6 2.5 1.0 1.0 1.4 0.5
3-16 | 33 —118.22  34.09 0 451 368 582 196 21 25 33 10 3.7 5.1 6.3 0.9 1.1 1.5 1.9 0.1
3-17 | 34 —118.24 34.12 0 631 619 884 450 33 43 54 20 5.1 5.7 7.7 3.1 1.2 1.6 2.0 0.8
3-18 | 40 —118.27 33.81 0 285 243 374 253 18 10 20 3.1 1.0 3.2 0.8 0.7 0.2 0.7 0.1
3-19 | 42 —118.41 33.78 0 201 270 337 223 9 11 14 0.6 0.7 1.0 0.7 0.1 0.2 0.2 0.1
3-20 | 45 —118.35 33.90 0 185 169 251 291 6 8 10 0.4 0.6 0.7 04 0.1 0.1 0.1 0.1
3-21 | 46 —118.39  33.89 0 407 371 550 295 32 23 40 13 5.0 4.9 7.0 2.2 1.7 2.1 2.7 0.8
3-22 | 48 —118.49 34.01 0 266 313 410 192 17 25 30 9 5.8 6.8 8.9 1.7 3.8 41 5.6 0.5
3-23 | 49 —118.55 34.04 0 268 304 406 152 13 11 17 4 1.3 1.2 1.7 0.6 0.3 0.3 0.4 0.1
3-24 | 51 —118.79 34.02 0 263 242 358 189 15 18 24 2.6 2.9 3.9 1.0 0.8 0.7 1.1 0.3
3-25 | 52 —118.70 34.15 0 229 365 431 221 13 18 22 12 2.2 3.1 3.8 1.3 1.0 0.8 1.3 0.3
3-26 | 56 —118.62 34.39 0 293 316 431 234 15 20 25 10 1.7 5.3 5.6 0.7 0.2 2.6 2.7 0.1
3-27 | 57 —118.43  34.42 0 258 250 359 483 13 13 19 10 1.7 1.3 2.1 0.8 0.4 0.2 0.5 0.2
3-28 | 58 —118.30 34.27 0 430 371 568 377 28 29 41 18 5.1 5.0 7.2 ol 14 1.3 1.9 1.0
3-29 | 60 —118.25 34.24 0 538 406 674 517 24 29 38 13 3.0 6.1 6.8 1.7 0.7 1.1 1.3 0.4
3-30 | 61 —118.23  34.29 0 812 779 1125 804 24 27 36 16 3.0 3.1 44 2.7 0.7 0.9 1.1 1.0
3-31 | 62 —118.08 34.39 0 375 335 503 166 22 22 31 8 1.6 2.1 2.6 0.5 0.1 0.3 0.3 0.1
3-32 | 63 —118.23  34.20 0 1002 823 1296 859 67 41 79 27 4.6 4.9 6.7 2.1 0.7 1.1 1.3 0.6
3-33 | 656 —117.88 34.14 0 708 1211 1403 883 37 60 71 27 59 106 12.1 3.5 1.4 3.2 3.5 0.8
3-34 | 66 —118.02 34.09 0 504 467 687 533 41 34 53 19 | 12.1 7.0 14.0 438 8.5 3.1 9.1 1.3
3-35 | 67 —117.94 34.15 0 539 400 672 314 29 17 34 20 3.5 2.8 44 35 0.9 1.1 1.5 1.3
3-36 | 68 —117.87 34.08 0 731 851 1122 684 42 58 72 33 79 152 17.1 5.8 2.2 438 5.3 1.5
3-37 | 69 —117.97 34.10 0 310 317 443 370 24 32 40 18 8.6 8.2 11.9 3.8 5.3 5.1 7.3 1.3
3-38 | 70 —117.92 34.09 0 978 974 1380 820 45 64 78 28 8.6 155 17.7 5.7 21 94 9.6 2oty
3-39 | 71 —117.95 34.06 0 787 698 1052 793 43 52 68 24 | 16.2 8.9 18.5 5.3 | 129 24 132 2.3
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Table B.2: Continued.

Jerk (cm/s3)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UD
3-40 72 —117.92 34.03 0 591 670 893 440 42 34 54 22 | 10.7 8.7 138 2.9 5.4 4.9 7.3 0.8
3-41 73 —117.94  33.99 0 874 1051 1367 859 48 45 66 26 6.3 8.3 10.4 3.0 1.6 2.8 3.2 1.1
3-42 74 —117.97 33.92 0 609 647 888 884 44 39 59 26 9.8 10.3 14.3 2.0 3.0 3.9 5.0 0.7
3-43 77 —118.09 33.94 0 862 1067 1372 920 50 61 79 24 8.9 6.3 10.9 2.0 4.5 3.2 5.5 0.7
3-44 78 —118.20 33.90 0 1295 926 1592 674 64 61 88 19 | 129 124 179 1.2 3.9 5:2 6.5 0.3
3-45 79 —118.14  33.92 0 501 517 720 427 33 34 48 12 5.9 8.5 10.4 0.7 2.2 4.9 54 0.1
3-46 80 —118.18 33.88 0 1046 760 1293 796 59 48 76 20 | 11.2 9.6  14.7 1.5 4.6 4.1 6.2 0.4
3-47 81 —118.24 33.84 0 828 511 973 298 48 50 69 13 | 109 9.7 145 1.6 4.1 4.1 5.8 0.5
3-48 83 —118.04 33.73 0 1056 850 1356 349 59 52 79 12 | 13.0 9.0 15.8 1.1 4.8 5:2 7.1 0.3
3-49 84 —118.10 33.85 0 976 1080 1455 701 53 53 75 15 | 12,5 13,5 184 2.0 5.3 6.8 8.6 0.5
3-50 85 —118.01 33.79 0 682 606 912 141 33 46 57 3 6.8 8.8 11.2 0.2 B3 4.9 5.9 0.1
3-51 86 —118.02 33.85 0 779 596 981 346 45 46 64 10 | 13.2 9.9 16.4 1.1 5.5 4.6 7.2 0.3
3-52 87 —117.90 33.92 0 604 638 879 668 41 41 58 18 | 11.6 8.8 14.5 3.2 7.2 5.6 9.1 1.3
3-53 88 —117.95 33.82 0 743 885 1156 656 37 48 61 17 | 10.4 119 158 3.6 3.9 8.0 8.9 1.3
3-54 89 —117.82 33.73 0 705 902 1145 597 40 40 56 15 | 124 8.1 14.8 ol 6.6 Poid) 7.0 1.1
3-55 90 —117.82  33.82 0 721 546 905 439 37 28 46 18 8.5 7.8 11.6 3.0 2.9 5.4 6.2 0.9
3-56 91 —118.36 34.05 0 387 394 553 185 37 26 45 9 | 15.2 4.8 16.0 1.9 7.8 2.6 8.2 0.7
3-57 93 —118.04 34.13 0 968 803 1257 723 51 48 70 23 | 11.8 8.6 14.6 3.6 6.8 3.4 7.6 1.3
3-58 94 —118.16  33.97 0 824 809 1155 469 46 34 57 14 | 13.2 4.2 139 1.0 4.2 1.4 44 0.3
3-59 95 —118.08  34.17 0 1377 1079 1750 813 60 52 79 27 6.5 6.6 9.2 2.6 1.8 2.3 2.9 0.5
3-60 99 —118.06 34.13 0 401 343 528 453 27 26 37 16 8.7 6.5 10.9 2.5 6.5 2.9 7.1 0.5
3-61 | 0637 —118.48 34.25 0 510 539 742 516 31 28 42 24 7.3 123 143 6.6 3.5 9.2 9.8 3.0
3-62 | 0655 —118.50 34.31 0 570 461 733 485 45 40 60 20 9.1 9.4 13.1 4.6 6.6 7.2 9.8 2.9
3-63 | 5068 —116.40 33.82 0 3979 8686 9554 10645 114 99 151 85 | 18.3 25.1 31.0 13.2 6.0 8.5 105 4.8
3-64 | 5069 —116.39 33.93 0 6266 6448 8991 6351 204 213 294 103 | 15.7 21.0 26.2 24.7 5! 6.3 8.1 3.2
3-65 | 5071 —116.58  34.05 0 3377 5844 6750 15840 161 216 270 170 | 25.3 30.7 39.8 14.1 9.3 109 144 4.1
3-66 | 5072 —116.66  33.99 0 6208 5133 8055 8170 125 124 176 111 | 10.6 154 18.6 8.4 4.5 5.2 6.9 ol
3-67 | 5075 —116.92  34.09 0 4072 4080 5764 8376 87 113 143 81 | 12.3 17.2 21.1 8.2 6.2 5.8 8.5 1.5
3-68 | 5294 —116.22 33.75 0 9972 5864 11568 4716 302 126 327 82 | 36.4 20.1 41.6 11.9 | 12.5 6.7 142 4.9
3-69 | 5295 —116.55  33.93 0 5224 3852 6491 6685 137 137 194 99 | 30.0 255 394 21.8 7.5 5.9 9.5 3.9
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Table B.2: Continued.

Jerk (cm/s3)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS  Hor. UD | EW NS Hor. UD | EW NS Hor. UDb | EW NS Hor. UD
3-70 | 11591 —115.83 33.42 0 1236 1906 2272 930 56 99 114 46 8.7 125 152 5.6 5.5 4.9 74 2.7
3-71 | 11613 —115.91  33.50 0 2006 2502 3207 1717 130 116 174 53 | 17.6 14.3  22.7 8.0 | 10.3 7.1 125 4.1
3-72 | 11625 —115.99 33.56 0 2091 2362 3155 1586 114 115 162 37 | 18.1 9.7  20.5 6.2 | 13.4 3.9 140 5.0
3-73 | 11628 —115.98  33.28 0 4049 3151 5130 1136 122 150 193 23 | 10.5 12.1  16.0 3.5 5.7 4.3 7.2 1.4
3-74 | 12025 —116.50 33.83 0 2761 3537 4487 6873 87 74 115 106 | 13.8 11.1 17.7 6.7 GL(( 5.3 7.8 24
3-75 | 12026 —116.16 33.72 0 1926 2606 3240 2390 107 102 148 41 | 15.1 9.5 17.8 6.6 7.5 4.6 8.8 3.6
3-76 | 12149 —116.51 33.96 0 3282 5010 5989 6974 151 167 225 164 | 20.8 19.2  28.3 9.9 8.0 79 113 3.7
3-77 | 12168 —116.68  33.32 0 1931 1928 2729 1833 43 46 63 37 2.0 2.1 2.8 1.7 0.5 0.5 0.7 0.5
3-78 | 12331 —116.98 33.73 0 3568 3718 5153 3163 95 80 124 61 5.8 5.5 8.0 2.9 2.2 1.2 2.5 1.2
3-79 | 12543 —116.22  33.72 0 2170 3386 4022 2876 85 81 117 53 | 30.3 13.2 33.1 8.7 | 18.2 6.6 19.4 4.7
3-80 | 12624 —116.28  33.63 0 2127 2194 3056 1919 40 48 62 21 3.9 2.5 4.6 1.9 2.0 1.0 22 09
3-81 | 12626 —116.08  33.43 0 1230 1710 2106 1342 44 44 62 23 4.9 2.7 5.6 2.1 2.1 1.3 2.5 0.8
3-82 | 12630 —116.68  33.89 0 4077 6463 7641 4904 48 51 70 39 3.8 2.5 4.6 2.5 2.7 1.2 3.0 1.1
3-83 | 13122 —117.71  33.87 0 1388 1217 1846 995 51 50 71 25 4.6 6.9 8.3 2.2 2.2 3.2 39 09
3-84 | 13123 —117.45 33.95 0 1715 1886 2549 2172 40 42 58 39 3.1 3.0 4.3 1.7 1.4 14 2.0 0.7
3-85 | 14196 —118.28 33.91 0 591 669 893 369 34 42 54 15 | 10.5 156  18.8 4.8 | 10.3 17.0 199 4.6
3-86 | 14368 —118.17 33.92 0 727 801 1082 678 39 50 64 16 | 11.3 18.3 21.5 6.4 8.6 21.4 23.0 4.7
3-87 | 14403 —118.26  33.93 0 877 594 1059 400 41 41 58 13 | 12.1  14.1 185 5.3 | 11.4 169 204 3.9
3-88 | 21081 —115.74 34.56 0 5077 3680 6271 5486 143 113 182 88 | 20.0 184 27.1 109 9.7 9.3 134 4.0
3-89 | 22074 —116.82  34.90 0 4187 4924 6463 7370 240 149 282 133 | 51.3 29.6 59.3 129 | 36.7 252 445 5.0
3-90 | 22161 —116.01 34.02 0 3267 3890 5080 2613 59 79 98 39 4.8 3.7 6.1 3.2 3.5 2.2 4.2 1.8
3-91 | 22170 —116.31  34.13 1 5250 4069 6642 9157 278 268 387 178 | 427 272  50.6 15.0 | 11.8 7.9 142 6.2
3-92 | 22561 —116.94 34.24 0 5702 6366 8546 6190 162 188 248 79 7.6 140 159 4.1 3.0 9.9 104 1.4
3-93 | 23522 —117.29  34.10 0 2810 2815 3978 3740 95 84 126 69 | 13.2 15.7 20.5 4.7 5.6 7.7 9.6 1.4
3-94 | 23525 —117.75 34.06 0 1425 1288 1920 1173 43 66 78 34 8.5 12.8 154 2.8 3.6 6.4 7.3 1.2
3-95 | 23572 —117.66  34.23 0 1746 1641 2396 2154 42 40 58 30 3.9 7.8 8.7 2.3 2.1 7.4 7.7 20
3-96 | 23573 —117.54 34.31 0 3168 2998 4361 3743 81 80 113 55 6.5 11.4 13.1 3.4 Poid) 7.7 8.0 1.7
3-97 | 23583 —117.31 34.41 0 2078 1829 2768 2788 64 58 86 55 | 12.4 13.1  18.0 5.4 7.2 8.6 11.2 2.9
3-98 | 23584 —117.91 34.46 0 1018 1549 1854 1574 38 57 68 29 5.3 5.7 7.8 4.9 3.6 4.5 5.8 1.8
3-99 | 23585 —117.73  34.59 0 1517 2194 2667 1132 33 32 46 20 3.2 5.5 6.4 4.9 2.6 4.7 54 21

LLT



Table B.2: Continued.

Jerk (cm/s3)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF
EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UDb | EW NS Hor. UD
3-100 | 23590 —117.74 34.38 0 903 803 1208 1240 38 46 60 28 5.5 10.1 11.5 3.0 3.2 6.6 7.3 1.7
3-101 | 23595 —117.98  34.49 0 661 958 1164 1064 24 38 45 23 5.3 6.9 8.7 4.3 3.8 4.8 6.1 2.2
3-102 | 23597 —117.52  34.47 0 3663 3364 4973 3870 95 84 127 62 7.6 9.7 123 5.2 3.1 7.5 8.1 2.6
3-103 | 23598 —117.58  34.17 0 1822 1322 2251 1081 75 66 100 37 8.7 9.6  13.0 3.0 3.5 6.8 7.6 1.5
3-104 | 24400 —118.18 34.04 0 1171 947 1506 510 63 42 76 20 7.6 155 17.3 4.1 5.6 15.8 16.8 2.9
3-105 | 24436 —118.53 34.16 0 696 1353 1521 572 42 65 7 25 5.3 9.4 10.8 2.6 3.0 5.8 6.5 1.1
3-106 | 24575 —118.39  34.66 0 1336 1145 1760 774 60 48 7 21 4.7 7.4 8.8 3.4 1.3 2.8 3.1 1.5
3-107 | 24577 —116.68  35.27 0 3517 3724 5122 2467 120 111 164 55 | 16.4 9.5 18.9 5.5 | 18.3 3.7 187 35
3-108 | 24592 —118.17 34.05 0 1357 1393 1944 785 517 55 79 32 7.4 115  13.7 4.2 39 11.8 124 2oty
3-109 | 24605 —118.20 34.06 0 867 982 1310 448 42 40 58 21 6.7 9.5 11.7 3.8 34 109 114 2.4
3-110 | 24611 —118.25  34.06 0 588 717 927 395 31 31 43 19 7.0 109 13.0 3.9 3.6 9.0 9.7 2.6
3-111 | 24612 —118.27  34.04 0 367 414 553 292 34 26 43 17 72 102 125 3.5 6.1 11.8 13.2 2.5
3-112 | 32075 —116.07 35.27 0 3703 2946 4732 2565 106 104 148 55 9.4 109 144 4.9 5.5 6.9 8.9 3.8
3-113 | 33083 —117.65  35.00 0 1856 2297 2954 1186 88 117 146 53 9.6 12.8 16.0 5.0 3.8 7.0 8.0 2.7
4-1 03 —118.52 34.21 1 12835 11220 17048 39102 319 444 547 785 | 429 60.6 74.3 39.1 | 11.9 20.3 235 9.3
4-2 06 —118.42 34.22 1 7438 9030 11699 16158 430 262 504 279 | 40.9 23.3 47.0 164 8.9 6.7 11.2 4.5
4-3 09 —118.41 34.19 1 7690 10331 12879 14031 248 296 386 256 | 31.6 25.2 40.4 11.6 | 13.0 9.2 16.0 5.4
4-4 11 —118.11  33.99 0 4254 4656 6306 2962 120 163 203 76 7.8 11.0 135 4.3 2.0 2.6 3.3 0.8
4-5 13 —118.44 34.13 1 11126 10830 15527 11597 477 434 645 313 | 69.2 57.2 89.8 19.7 | 11.9 17.7 214 5.5
4-6 14 —118.41 34.13 0 15911 16152 22673 12181 434 577 722 278 | 27.9 29.8 40.8 23.5 4.2 9.0 10.0 6.5
4-7 15 —118.48 34.09 1 6320 3685 7316 6510 207 176 272 136 | 18.3 294 34.6 6.8 3.7 6.0 7.0 1.2
4-8 16 —118.43  34.09 0 5578 5858 8088 9642 257 273 375 158 | 26.3 17.0 31.3 8.6 5.1 3.4 6.2 1.8
4-9 17  —118.38 34.11 0 4459 5466 7055 3820 102 156 186 90 | 11.1 145 18.2 4.5 1.4 3.0 Boid) 0.7
4-10 18 —118.37  34.09 0 5436 4703 7188 7161 132 245 278 139 | 14.0 28.1 314 11.8 4.7 5.4 7.2 3.5
4-11 19 —118.09 34.09 0 6057 6347 8773 3487 234 135 270 65 | 12.6 9.2 15.6 4.9 2.1 2oty 3.1 1.5
4-12 20 —118.30 34.05 0 2245 3923 4520 1446 96 167 192 48 | 149 122 193 5.6 4.9 3.4 5.9 1.3
4-13 21 —118.30 34.08 0 7055 12743 14566 5899 322 409 521 81 | 29.8 25.2 39.0 7.3 4.2 4.2 5.9 1.3
4-14 22 —118.28 34.01 0 7081 5607 9032 3261 246 271 366 97 | 25.4 19.9 323 4.8 3.7 1.8 4.1 1.1
4-15 32 —118.19 34.11 0 4347 5562 7059 4199 129 155 201 98 | 11.6 8.4 144 5.6 1.9 2.2 3.0 2.0
4-16 33 —118.22  34.09 0 5518 4046 6842 4108 204 151 254 76 | 154 10.2 184 4.4 2.5 2.9 3.8 1.1
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Table B.2: Continued.

Jerk (cm/s®)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD | EW NS Hor. UD EW NS Hor. UD | EW NS Hor. UD
4-17 | 34 —118.24 34.12 0 4483 5032 6739 3839 241 167 293 109 25.3 14.7 29.2  10.5 3.0 3.2 4.4 1.9
4-18 | 40 —118.27 33.81 0 2779 2251 3577 1327 94 90 130 48 7.3 5.2 9.0 3.3 1.7 1.6 2.3 0.6
4-19 | 44 —118.33 33.74 0 2290 2621 3480 1767 121 150 193 72 7.8 10.8 133 4.4 1.7 1.4 2.2 0.9
4-20 | 45 —118.35 33.90 0 3246 5531 6413 2838 77 140 160 49 11.7 8.9 14.7 4.9 3.2 3.6 4.8 0.9
4-21 | 46 —118.39 33.89 0 4198 3356 5374 2450 120 155 196 79 10.6  18.8 21.6 7.1 5.9 2.5 6.4 2.3
4-22 | 47 —118.43 33.96 0 2161 2774 3516 2512 68 139 155 51 16.6 15.4 22.6 9.8 8.1 3.5 8.9 3.8
4-23 | 49 —118.55 34.04 0 5817 10181 11726 7466 188 438 476 157 14.0 404 42.8 15.1 4.0 6.6 7.7 44
4-24 | 51 —118.79  34.02 0 513 424 666 287 24 18 29 12 3.4 3.3 4.7 1.5 1.0 0.7 1.2 0.5
4-25 | 53 —118.61 34.21 1 13331 10048 16694 23192 343 381 513 410 39.7 64.2 75.5 14.4 | 10.0 16.7 195 44
4-26 | 54 —118.43  34.00 0 13349 15044 20113 4969 324 433 541 101 29.4 223 36.9 10.3 7.1 4.1 8.2 4.3
4-27 | 55 —118.67 34.26 1 16262 18166 24381 18950 503 713 873 341 46.2  52.3 69.8 13.6 6.3 6.6 9.1 2.8
4-28 | 56 —118.62  34.39 1 4140 3427 5375 8492 411 348 539 281 | 117.2 60.9 1321 28.9 | 52.5 19.2 55.9 7.6
4-29 | 57 —118.43 34.42 0 18793 10379 21469 8171 447 389 592 280 379 438 57.9 18.5 9.4 11.3 147 6.9
4-30 | 58 —118.30 34.27 0 3451 3332 4797 5899 151 127 198 175 16.2  15.7 22.6 9.8 4.7 4.8 6.7 1.9
4-31 | 59 —118.30 34.20 0 2785 4973 5700 2971 107 153 186 81 10.7  13.0 16.9 2.8 2.2 2.9 3.6 0.9
4-32 | 60 —118.25 34.24 0 6496 4710 8023 4279 201 137 243 104 12.0 11.8 16.8 6.0 2.2 1.7 2.8 1.2
4-33 | 61 —118.23  34.29 0 5871 9938 11543 8448 162 242 291 149 11.2 123 16.6 5.6 2.4 2.2 3.2 1.3
4-34 | 63 —118.23  34.20 0 11234 14486 18332 6145 167 330 370 121 10.9  20.0 22.8 6.9 2.6 5.9 6.5 1.5
4-35 | 65 —117.88 34.14 0 1459 2489 2885 1309 45 89 100 46 3.5 5.1 6.2 3.4 0.7 1.2 1.4 0.8
4-36 | 66 —118.02  34.09 0 4078 4287 5917 2622 123 155 198 57 11.2 9.6 14.8 2.8 3.6 2.8 4.6 0.8
4-37 | 67 —117.94 34.15 0 1933 1239 2296 1288 78 26 83 47 4.8 2.4 5.4 3.2 0.8 0.5 0.9 1.0
4-38 | 68 —117.87 34.08 0 1250 1529 1975 1485 71 64 96 55 5.3 6.5 8.3 4.4 1.0 2.2 2.4 1.0
4-39 | 69 —117.97 34.10 0 3168 2839 4254 1777 132 92 161 42 7.7 5.6 9.6 2.7 1.6 1.9 2.5 14
4-40 | 70 —117.92  34.09 0 1754 2366 2945 1955 80 100 128 43 8.2 4.8 9.5 4.1 2.2 1.2 2.5 1.7
4-41 | 71 —117.95 34.06 0 1859 1667 2497 2376 64 62 89 43 4.6 7.3 8.6 3.6 1.4 1.6 2.1 0.8
4-42 | 72 —117.92 34.03 0 2126 1967 2897 1209 114 92 147 45 8.4 8.0 11.6 4.1 1.1 2.0 2.2 0.8
4-43 | 73 —117.94 33.99 0 1572 1969 2519 1267 47 74 88 38 6.3 6.0 8.7 2.6 14 1.5 2.0 0.6
4-44 | 74 —117.97 33.92 0 4175 2142 4693 1480 198 105 224 57 10.2 9.9 14.2 2.6 1.9 1.6 2.5 0.6
4-45 | 75 —118.03  34.02 0 1193 1540 1947 594 43 73 85 22 3.1 7.0 7.7 2.0 0.7 1.2 1.4 0.3
4-46 | 77 —118.09 33.94 0 4045 3955 5657 2186 129 131 184 51 10.2 8.4 13.2 3.2 3.5 2.1 4.0 0.5
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Table B.2: Continued.

Jerk (cm/s®)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UD
4-47 78 —118.20 33.90 0 4570 2816 5368 1604 117 82 142 41 9.4 7.8 122 4.0 2.8 2.3 3.6 0.8
4-48 79 —118.14 33.92 0 3430 3313 4769 2669 139 156 209 54 | 10.3 10.2 144 5.2 2.2 2.2 3.1 1.2
4-49 81 —118.24 33.84 0 3027 3944 4972 2212 85 85 120 41 8.4 76 113 2.2 24 1.5 2.9 0.7
4-50 82 —118.27 33.74 0 3576 5118 6244 1145 145 179 230 49 | 145 149  20.8 3.5 2.5 2.8 3.7 1.8
4-51 83 —118.04 33.73 0 2266 2077 3074 T 74 87 114 18 7.7 6.1 9.9 1.6 1.6 2.0 2.6 0.3
4-52 84 —118.10 33.85 0 3668 5094 6277 3823 119 129 176 61 9.8 12.0 155 2.8 23 1.9 3.0 0.6
4-53 86 —118.02 33.85 0 4545 2548 5211 892 147 92 173 29 | 11.1 8.9 14.2 1.9 1.8 2.0 2.7 0.7
4-54 87 —117.90 33.92 0 2210 2093 3044 1255 100 95 138 37 6.8 5.9 9.0 3.2 1.7 1.0 2.0 0.5
4-55 88 —117.95 33.82 0 1648 1822 2457 1230 65 72 97 40 6.9 6.4 9.4 2oty 1.7 1.3 2.1 0.5
4-56 89 —117.82 33.73 0 1828 1664 2472 1199 66 70 96 24 4.8 4.1 6.3 2.2 1.5 0.9 1.7 0.5
4-57 90 —117.82 33.82 0 1243 1144 1689 715 43 37 57 27 3.7 2.4 4.4 2.0 1.3 0.8 1.5 0.5
4-58 91 —118.36  34.05 0 11558 8323 14243 2954 | 420 433 604 98 | 43.4 38.0 57.6 8.4 6.2 7.0 9.3 1.6
4-59 93 —118.04 34.13 0 3213 3347 4639 2758 112 87 142 52 9.0 6.7 11.2 3.6 22 2.6 3.4 0.9
4-60 94 —118.16  33.97 0 2685 2823 3896 1748 62 98 116 51 8.4 7.3 11.1 4.3 1.8 1.7 2.5 1.1
4-61 95 —118.08 34.17 0 6358 4901 8028 4834 186 256 316 145 | 12.8 134 185 8.3 29 25 3.8 2.8
4-62 96 —118.29  34.02 0 2771 4766 5513 4594 63 131 145 229 7.8 10.7 13.2 20.0 1.8 2.3 3.0 3.9
4-63 99 —118.06 34.13 0 3456 2394 4204 2623 90 88 126 83 8.0 8.7 11.8 4.6 1.6 1.9 2.5 1.2
4-64 | 0141 —118.30 34.12 0 13053 8551 15604 8070 282 163 326 137 | 29.8 13,5 32,7 10.2 3.7 2.2 4.3 1.8
4-65 | 0634 —118.07 33.92 0 2111 1962 2882 2120 55 86 102 45 7.9 8.1 11.3 3.7 3.5 2.7 4.4 1.8
4-66 | 0638 —118.46  34.06 0 3732 4328 5715 10683 162 184 245 136 | 19.0 21.5  28.7 8.4 6.8 5.2 8.6 2.5
4-67 | 0757 —118.48 34.10 1 24208 9299 25932 15391 455 258 523 155 | 31.3 25.8 40.5 8.0 46 5.1 6.8 1.7
4-68 | 5030 —117.99  34.52 0 4786 7068 8536 3177 121 163 203 78 | 11.3 8.6 14.2 5.7 26 1.6 3.0 1.5
4-69 | 5080 —118.69 34.08 0 11108 16413 19819 13671 161 180 242 121 | 109 10.2 149 5.9 2.4 4.0 4.6 1.9
4-70 | 5081 —118.60  34.08 0 7303 12992 14904 17248 192 327 379 189 | 12.7 159 204 8.9 22 4.9 5.3 2.7
4-71 | 5082 —118.45 34.05 0 9170 11619 14801 10282 250 252 355 160 | 36.2 20.3 41.5 10.5 9.5 55 11.0 3.8
4-72 | 5106 —118.12  33.78 0 1968 1756 2637 1601 67 63 92 32 8.7 5.9 10.5 5.5 3.1 1.7 3.5 1.7
4-73 | 5108 —118.71 34.23 1 13045 11179 17180 13929 279 228 360 148 | 17.5 17.6 24.8 13.7 4.6 6.9 8.2 2.7
4-74 | 5129 —118.16  34.00 0 4342 6570 7875 3543 154 260 302 82 | 13.2 194 235 5.7 3.9 2.1 4.5 1.5
4-75 | 5243 —118.38  33.90 0 4326 5675 7135 3625 120 185 220 84 | 12.6 14.3 19.1 7.0 51 2.9 5.9 2.1
4-76 | 5288 —118.02 33.70 0 3100 2956 4284 878 110 117 161 20 | 16.4 10.6 19.5 4.5 2.5 3.1 3.9 1.1
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Table B.2: Continued.

Jerk (cm/s®)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UD
4-77 5296 —118.13 34.14 0 6712 6605 9417 5290 143 161 215 103 | 10.0 134 16.7 5.6 2.7 21 3.4 1.7
4-78 5466 —117.84 33.68 0 2146 1902 2867 1409 102 68 123 32 9.4 7.8 123 2.5 21 1.5 26 0.9
4-79 12673 —116.96  33.79 0 661 1980 2087 1689 22 97 100 79 3.7 7.6 8.5 8.1 1.2 1.9 2.2 1.6
4-80 13122 —117.71  33.87 0 2726 1028 2913 2506 98 24 101 102 5.8 1.6 6.0 7.6 0.4 0.2 0.5 0.8
4-81 13123 —117.45 33.95 0 1937 726 2068 1746 58 21 61 62 2.7 2.3 3.5 3.1 0.3 0.5 0.6 0.5
4-82 13160 —117.90 33.63 0 1465 313 1498 999 60 17 62 40 5.2 2.3 5.6 4.3 1.8 0.8 1.9 1.9
4-83 13197 —118.00 33.66 0 1288 1233 1783 1930 68 18 71 89 5.7 Poid) 6.2 5.4 1.5 0.8 1.7 1.5
4-84 13610 —117.93  33.62 0 1579 513 1660 1783 79 19 82 103 7.3 2.1 7.6 7.1 2.4 09 2.5 1.9
4-85 13660 —117.02  33.73 0 696 838 1090 978 27 45 52 63 2.0 4.7 5.1 4.5 0.2 0.6 0.6 0.6
4-86 14159 —118.31  33.72 0 2133 1682 2716 2199 93 69 116 99 6.6 2.9 7.2 5.5 1.1 0.3 1.1 0.5
4-87 14196 —118.28 33.91 0 2905 2283 3694 4212 99 54 113 89 | 10.2 2.7 10.6 7.0 3.1 1.1 32 21
4-88 14242 —118.19  33.84 0 2415 2110 3207 1979 68 38 78 63 8.1 2.6 8.6 4.8 2.8 1.1 3.0 21
4-89 14368 —118.17  33.92 0 7720 7178 10541 5366 174 129 216 218 9.9 3.5 10.5 12.7 3.5 1.2 3.7 1.9
4-90 14403 —118.26  33.93 0 4984 2403 5533 4381 194 56 202 139 | 15.8 2.7 16.0 13.2 3.6 14 3.8 3.2
4-91 14404 —118.40 33.75 0 1363 1822 2275 1308 53 42 68 71 3.4 1.8 3.8 5.0 0.9 04 1.0 0.7
4-92 14405 —118.36  33.79 0 2659 1069 2865 2184 113 40 120 104 8.8 2.0 9.1 5.7 1.2 0.5 1.3 0.9
4-93 14560 —118.20 33.77 0 1220 810 1464 1929 36 22 42 50 4.9 2.1 5.3 4.0 1.6 0.6 1.7 1.3
4-94 14578 —118.08  33.76 0 1822 2825 3361 2093 36 82 90 60 2.1 6.9 7.2 5.7 1.4 22 26 21
4-95 23497 —117.57 34.10 0 1586 1101 1931 2016 45 2 55 71 B2 2.0 3.8 3.8 0.7 0.3 0.7 0.5
4-96 23542 —117.29  34.07 0 1850 1155 2181 1657 94 43 103 83 6.5 2.6 7.0 5.9 1.1 0.5 1.2 1.0
4-97 23572 —117.66 34.23 0 2764 1549 3168 2852 68 36 7 78 4.3 2.2 4.8 3.8 0.3 04 0.5 0.6
4-98 23573 —117.54  34.31 0 1246 903 1538 1430 41 21 46 41 3.2 1.3 3.4 2.9 0.6 0.2 0.6 0.5
4-99 23574 —117.66  34.37 0 2510 1892 3143 1548 59 33 67 46 3.7 2.0 4.2 3.7 0.5 0.2 0.5 04
4-100 | 23590 —117.74 34.38 0 776 1032 1291 1151 36 33 49 55 3.5 2.9 4.5 5.0 0.9 0.3 0.9 0.7
4-101 | 23595 —117.98 34.49 0 1693 1880 2530 1429 59 35 69 71 6.3 2.2 6.7 6.0 1.5 0.5 1.6 1.3
4-102 | 23597 —117.52  34.47 0 1575 1037 1886 1391 56 35 66 46 4.0 2.3 4.6 5.0 1.3 0.5 1.4 1.0
4-103 | 23598 —117.58  34.17 0 1409 744 1593 1796 50 25 56 70 5.8 2.2 6.3 4.1 0.6 04 0.7 0.5
4-104 | 23672 —117.32  34.18 0 569 1968 2049 1025 20 67 70 33 1.5 4.0 4.3 2.8 0.3 0.7 0.8 0.3
4-105 | 24047 —118.33 34.49 0 6138 2616 6672 6888 137 84 161 148 | 12.4 6.7 14.1 18.3 28 1.5 3.2 26
4-106 | 24055 —118.24  34.60 0 3496 3944 5270 2325 90 95 131 144 | 104 11.5 15.5 149 3.0 21 36 24

181



Table B.2: Continued.

Jerk (cm/s3)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD EW NS  Hor. UD EW NS Hor. UD | EW NS Hor. UD
4-107 | 24087 —118.44 34.24 1 9328 30716 32101 8898 337 541 638 302 394 174 43.0 22.7 8.7 6.9 11.1 9.7
4-108 | 24088 —118.38  34.29 1 5176 7079 8769 8025 295 177 344 424 31.1  14.1 34.1 50.8 | 10.9 4.7 11.9 8.7
4-109 | 24092 —118.21 34.87 0 1098 854 1391 2234 39 23 45 74 3.5 1.4 3.7 4.6 0.8 0.3 0.9 0.4
4-110 | 24157 —118.36  34.01 0 7403 3538 8205 7660 234 89 251 164 14.9 8.4 17.1 17.3 6.2 3.3 7.0 5.4
4-111 | 24207 —118.40 34.33 1 59557 58000 83133 59156 | 1205 1554 1966 1260 49.1 54.5 73.3 104.0 7.8 6.3 10.0 16.7
4-112 | 24207 —118.40 34.33 1 18936 6362 19976 13751 407 180 445 426 44.8 16.2 47.6 30.7 5.9 2.6 6.5 5.0
4-113 | 24271 —118.43 34.67 0 2089 3239 3854 2300 75 97 123 85 9.5 7.0 11.8 9.4 2.8 2.7 3.9 Boid)
4-114 | 24272 —118.56  34.61 0 6930 6123 9247 5008 221 78 235 155 13.5 3.6 14.0 8.7 2.9 3.1 4.3 4.2
4-115 | 24278 —118.64 34.56 0 17168 6496 18356 9424 557 213 596 504 51.8 12.3 53:3 52.1 | 11.1 4.6 12.0 13.7
4-116 | 24279 —118.53  34.39 1 19864 16952 26114 14717 572 537 785 578 747 30.7 80.8 95.6 | 19.2 10.5 21.9 259
4-117 | 24283 —118.88  34.29 0 5273 8347 9873 4745 143 286 320 189 6.6 20.5 21.5 20.0 ol 5.0 5.9 3.9
4-118 | 24303 —118.34  34.09 0 8987 10501 13822 12154 227 139 266 381 18.3 9.8 20.8 22.2 4.8 2.6 5.4 3.5
4-119 | 24305 —118.24 34.59 0 2157 2284 3142 3067 72 49 87 87 7.1 6.8 9.8 7.8 1.7 1.8 2.5 1.5
4-120 | 24306 —118.24  34.60 0 2159 1440 2595 2716 62 57 84 89 7.2 7.1 10.1 7.5 2.0 1.9 2.8 1.5
4-121 | 24307 —118.24 34.60 0 2004 1988 2823 2693 104 50 115 83 8.1 6.9 10.6 8.5 1.9 1.8 2.6 1.9
4-122 | 24308 —118.24  34.60 0 2380 1363 2743 1670 56 47 73 78 8.0 7.9 11.2 8.6 2.2 1.9 2.8 1.8
4-123 | 24309 —118.24 34.60 0 5210 2544 5797 3601 174 61 185 128 14.3 8.2 16.5 9.9 2.1 1.5 2.6 1.2
4-124 | 24310 —118.36  34.76 0 1949 1583 2511 1133 67 28 73 45 4.3 3.6 5.5 3.4 2.1 2.2 3.0 2.5
4-125 | 24389 —118.42 34.06 0 6649 7232 9824 5931 251 113 275 217 20.9 8.7 22.7 25.1 6.2 2.8 6.8 5.8
4-126 | 24396 —118.80 34.01 0 3051 3753 4836 2814 127 85 153 92 8.4 4.3 9.4 9.2 2.0 1.0 2.2 2.0
4-127 | 24399 —118.06 34.22 0 4811 3792 6126 6265 131 87 157 229 5.4 2.9 6.2 7.6 0.5 0.6 0.8 0.7
4-128 | 24400 —118.18 34.04 0 11754 4498 12585 13785 348 110 365 400 14.6 4.3 15.2 30.8 4.4 1.6 4.6 2.7
4-129 | 24401 —118.13 34.12 0 4414 3796 5822 7406 122 88 151 148 7.9 3.8 8.8 6.6 1.1 0.7 1.3 1.1
4-130 | 24436 —118.53 34.16 1 74693 41614 85503 51510 | 1745 1028 2025 971 | 109.7 725 1315 779 | 21,5 17.5 277 24.8
4-131 | 24461 —118.15 34.07 0 3486 1546 3813 2869 99 45 109 78 10.9 4.2 11.7 4.9 2.4 1.2 2.7 1.6
4-132 | 24469 —118.48 34.65 0 3566 2914 4605 2331 82 52 97 56 6.2 4.1 74 6.5 1.9 2.7 3.3 3.2
4-133 | 24475 —118.21 34.74 0 1479 2232 2678 2185 63 47 78 80 5.3 4.0 6.6 7.0 1.3 0.8 1.5 1.4
4-134 | 24514 —118.44  34.33 1 12925 25450 28544 31897 593 525 792 827 774  19.1 79.7 1289 | 19.9 7.6 21.3 353
4-135 | 24521 —118.14 34.58 0 2772 1685 3244 2579 65 40 77 60 8.4 4.0 9.3 7.4 1.8 1.3 2.2 2.1
4-136 | 24523 —118.48  34.65 0 2877 1665 3324 945 62 41 74 36 5.3 3.7 6.5 3.1 2.0 3.0 3.6 2.1
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Table B.2: Continued.

Jerk (cm/s3)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF
EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UDb | EW NS Hor. UD
4-137 | 24538 —118.49 34.01 0 28643 10815 30617 14973 866 228 895 363 | 41.0 14.2 434 25.1 | 13.2 4.5 139 8.2
4-138 | 24575 —118.39  34.66 0 4043 4085 5747 4175 112 48 122 152 8.1 4.6 9.3 7.3 1.9 2.3 3.0 2.1
4-139 | 24576 —118.20 34.58 0 2035 2804 3465 908 59 43 73 43 5.5 4.7 7.2 3.9 1.2 1.3 1.8 1.0
4-140 | 24586 —118.54  34.85 0 660 1863 1976 914 68 46 82 55 | 13.1 7.2 149 9.9 6.5 3.8 7.6 5.6
4-141 | 24592 —118.17 34.05 0 14568 5977 15747 8899 310 132 337 258 | 14.0 7.6 159 128 2.3 1.6 2.8 3.1
4-142 | 24605 —118.20 34.06 0 5328 10839 12078 7971 117 483 497 210 6.4 31.1 31.7 10.7 1.3 2.5 2.8 2.6
4-143 | 24607 —118.56  34.57 0 10635 8104 13371 6284 253 115 278 171 | 11.9 4.5 127 11.8 5.4 3.8 6.6 3.7
4-144 | 24611 —118.25  34.06 0 6159 4964 7910 4894 180 95 204 124 | 20.0 4.6  20.5 139 2.7 1.3 3.0 3.4
4-145 | 24612 —118.27 34.04 0 3611 2507 4396 3745 183 64 193 101 | 14.2 5.3 152 122 2.2 1.6 2.7 3.6
4-146 | 24644 —118.72 34.74 0 1474 1613 2185 1296 97 43 106 89 8.8 6.4 109 12.2 4.1 3.5 5.4 3.5
4-147 | 24688 —118.44  34.07 0 11286 8397 14067 20131 272 261 377 465 | 21.8 9.6 23.8 222 3.6 B3 4.9 6.4
4-148 | 25091 —119.85 34.42 0 1209 1086 1625 2094 68 38 78 76 6.7 3.0 7.3 7.0 1.6 0.7 1.8 1.6
4-149 | 25147 —119.12 34.11 0 4102 2341 4723 5339 141 63 154 174 | 16.2 4.3 16.7 13.1 2.7 1.0 2.8 2.1
4-150 | 25148 —119.07 34.11 0 4806 3190 5768 3296 219 66 228 132 | 19.0 3.3 19.3  10.2 1.9 0.5 2.0 1.4
4-151 | 25281 —119.21 34.15 0 1766 2665 3197 2221 36 84 92 101 4.6 9.6 10.7 11.3 Poid) 5.4 5.9 6.5
4-152 | 25282 —119.08 34.21 0 2690 2525 3690 2066 122 48 131 118 | 10.8 4.9 119 117 3.8 1.2 4.0 2.9
4-153 | 25340 —119.29 34.28 0 961 581 1123 1276 53 25 58 74 7.9 Gl 9.4 12.0 2.4 2.9 3.8 3.1
4-154 | 34093 —118.18  35.07 0 1156 1207 1671 847 52 26 58 37 4.0 1.8 4.4 4.5 0.4 0.3 0.5 0.7
4-155 | 34237 —118.38 35.04 0 1407 1193 1845 1524 58 25 63 49 3.4 2.0 3.9 3.1 0.4 0.5 0.6 0.5
5-1 ABN  135.52 34.64 0 7228 6557 9759 12711 226 213 310 115 | 24.8 21.3 32.6 6.2 7.9 9.2 12.1 2.6
5-2 CHY  135.66 34.44 0 5982 3998 7195 5188 108 91 141 76 4.9 5:2 7.1 2.4 1.0 2.0 2.3 0.9
5-3 FKS 135.47  34.69 0 7485 3114 8106 12772 211 179 276 191 | 29.8 31.0 43.0 9.6 | 13.2 155  20.3 5.0
5-4 MRG  135.57 34.68 0 7851 7228 10672 9499 125 210 244 162 | 246 27.0 36.6 6.1 9.6 10.8 144 2.7
5-5 SKI 135.47  34.56 0 18156 6178 19178 6459 182 149 235 95 | 15.7 159 223 6.6 8.0 10.8 134 3.5
5-6 TDO  135.41 34.48 0 6520 8523 10731 10757 190 290 347 129 | 147 244 285 5.9 8.6 6.9 11.1 2.5
5-7 YAE 135.61  34.68 0 2167 2136 3043 6806 144 154 211 128 | 21.8 21.2 304 7.0 9.2 9.3 13.1 3.4
5-8 aida 134.17  34.94 0 879 508 1016 673 36 20 42 30 2.4 - 3.4 1.6 1.8 - 2.5 1.1
5-9 awaj 134.91  34.34 0 2909 7418 7968 1501 162 200 257 53 | 11.7 - 16.5 5.9 3.3 - 4.7 3.6
5-10 hegu 135.68  34.65 0 643 546 843 398 20 21 29 13 2.5 - 3.6 1.9 2.4 - 3.4 1.2
5-11 kak 134.84  34.76 0 9631 8818 13058 8068 318 235 395 168 | 27.5 204 34.2 10.2 9.6 6.2 114 3.2
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Table B.2: Continued.

Jerk (cm/s?)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD | EW NS Hor. UD EW NS Hor. UDb | EW NS Hor. UD
5-12 kob 135.18  34.69 1 9028 14150 16785 10431 617 818 1025 332 75.8 924 119.5 40.6 | 18.6 18.0 25.8 10.6
5-13 koya  135.59  34.22 0 1520 1175 1921 620 46 50 68 21 2.7 2.9 4.0 1.8 1.6 2.9 3.3 1.4
5-14 nis 134.96  34.66 1 11392 11182 15963 11811 455 474 657 380 41.8 44.3 60.9 24.1 | 14.2 106 17.7 6.1
5-15 osa 135.52  34.68 0 1444 1141 1840 2343 66 81 104 65 65.9 80.9 104.3 64.5 8.0 8.6 11.7 3.1
5-16 tat 135.14  34.65 1 21608 14120 25812 14402 657 606 893 279 | 122.0 122.7 173.0 20.5 | 31.4 349 47.0 6.8
5-17 taz 135.34  34.81 1 18990 11646 22277 16572 601 684 910 418 88.8 66.7 111.1 33.8 | 16.7 23.5  28.9 8.3
5-18 | wach 135.40 35.28 0 278 561 626 296 21 16 26 14 3.0 - 4.3 ol 1.3 - 1.9 2.1
6-1 ATS 28.69 40.98 0 3748 5237 6440 4199 186 253 314 80 35.3 37.6 51.6 10.7 | 19.2 27.2 333 8.5
6-2 BRS 29.13 40.18 0 733 834 1110 1005 53 44 69 25 9.5 8.6 12.8 6.9 6.2 3.9 7.3 4.2
6-3 BTS 27.98 40.99 0 2918 2087 3587 623 99 87 132 24 11.7 11.2 16.2 4.0 3.8 9.3 10.0 3.6
6-4 CNA 28.76 41.02 0 3955 5139 6485 3064 132 177 221 58 10.3 16.8 19.7 7.3 4.4 12.0 128 5.1
6-5 FAT 28.95 41.02 0 10559 14307 17782 15881 162 190 249 132 15.2 18.9 24.3 8.8 8.8 11.7 14.6 6.7
6-6 IST 29.09 41.08 0 1782 1175 2135 1328 59 42 73 35 9.6 7.7 12.2 5.8 7.7 5.3 9.3 5.7
6-7 KMP 28.93 41.00 0 4150 4358 6018 4224 128 107 167 83 14.3 18.4 23.2 102 | 10.2 10.3 14.5 6.1
6-8 SKR 30.38 40.74 1 - 28717 40612 20561 - 399 564 254 - 80.2 113.5 42.6 - 619 875 232
6-9 TKR 27.52 40.98 0 721 745 1036 263 32 33 46 10 5.8 3.2 6.7 1.3 4.8 1.9 5.2 0.6
6-10 | YKP 29.01 41.08 0 1086 964 1453 964 36 41 54 27 7.2 9.2 11.7 6.1 3.9 7.0 8.1 5.9
6-11 | YPT 29.76 40.76 1 10010 8081 12865 17065 230 322 396 241 88.4 88.3 1249 31.7 | 55.7 524 76.5 209
6-12 cek 28.70 40.97 0 2496 3092 3973 2476 88 115 145 49 15.0 11.9 19.2 5.5 8.3 8.3 11.8 4.0
6-13 erg 27.79 40.98 0 2770 2159 3512 1745 99 88 132 55 13.2 14.1 19.3 7.1 4.6 8.5 9.6 5.4
6-14 gbz 29.44  40.82 1 8095 9169 12231 20366 141 262 297 192 47.2 44.4 64.8 33.0 | 34.3 44.1 55.9 8.9
6-15 gyn 30.73 40.39 0 8175 8048 11472 10192 117 136 179 128 14.3 13.1 19.4 173 6.1 5.1 79 119
6-16 izn 29.69 40.44 0 3510 5282 6341 7452 121 90 151 80 28.0 23.3 36.4 7.7 | 17.6  10.7  20.6 5.2
6-17 izt 29.96 40.79 1 11082 9150 14371 13825 222 166 277 145 58.9 35.5 68.7 15.0 | 21.5 14.7 26.0 10.7
7-1 C002 12041 23.72 0 2168 3424 4053 5667 108 135 173 96 43.2 56.0 70.8 17.8 | 38.7 57.5 69.3 16.8
7-2 C004  120.17  23.60 0 2138 1974 2910 2452 95 93 133 39 21.6 14.7 26.1 6.0 | 15.5 13.5  20.6 4.9
7-3 C006  120.55  23.58 1 8583 8464 12054 12905 348 351 495 211 60.0 42.8 73.7 21.7 | 25.5 145 29.3 124
7-4 C008  120.27  23.49 0 3768 3125 4896 4441 126 117 172 72 30.6 23.3 384 116 | 176 145 228 9.4
7-5 C010  120.54  23.47 0 6879 6490 9457 10482 221 171 279 139 18.6 24.4 30.7 10.2 5.0 9.1 104 6.0
7-6 C012  120.15  23.33 0 1256 1525 1976 987 52 61 80 29 12.6 15.0 19.6 9.1 9.6 121 154 7.8
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Table B.2: Continued.

Jerk (cm/s®)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UD
-7 C014  120.58 23.30 0 3080 5638 6424 1705 224 255 339 98 | 24.1 234 33.6 11.5 6.8 4.4 8.1 4.3
7-8 C015 120.41  23.36 0 3095 3439 4627 1077 141 149 205 33 | 23.7 24.0 33.7 7.0 6.6 134 149 4.4
7-9 C016  120.15  23.22 0 2602 2408 3545 1107 97 105 143 45 | 13.8 16.2 21.3 10.7 | 10.5 145 179 7.1
7-10 | CO17  120.27 23.22 0 1241 1241 1755 942 51 54 74 29 | 17.0 17.1 24.1 5.9 9.6 175  20.0 5.8
7-11 | C019 120.48 23.18 0 1316 1705 2154 822 50 64 82 23 GL(( 6.0 8.2 4.3 4.2 3.3 5.4 4.2
7-12 | C022 120.46  23.05 0 1480 942 1755 733 64 44 7 23 7.0 5.4 8.8 4.4 6.3 5.6 8.4 4.6
7-13 | C023 120.28 22.97 0 912 927 1301 598 46 58 74 18 7.3 8.4 11.2 5.5 4.5 8.5 9.7 6.4
7-14 | C024 120.61 23.76 1 5730 6065 8344 5898 276 162 320 141 | 51.3 43.1 67.0 47.0 | 36.8 33.9 50.1 339
7-15 | C025 120.51 23.78 0 5359 8506 10053 8924 159 152 220 170 | 51.1 329 60.8 37.7 | 35.5 28.3 454 314
7-16 | C026 120.41  23.80 0 3086 1735 3540 4390 76 66 101 70 | 41.5  26.3 49.1 242 | 36.0 22.6 42.5 16.3
7-17 | C027 120.25 23.75 0 1328 1902 2320 3625 54 51 74 46 | 204 15.7 25.7 8.0 [ 159 13,5 20.9 5.7
7-18 | C028 120.61 23.63 1 43593 42600 60952 41021 624 750 976 335 | 63.0 83.8 104.9 30.5 | 209 21.2 298 154
7-19 | C029 120.53 23.61 1 4594 4606 6505 6209 283 233 367 158 | 35.1 39.9 53.1 17.7 | 12.2 304 32.8 114
7-20 | C032 120.29 23.58 0 1771 2345 2938 3637 86 73 113 62 | 26.8 19.7 33.3 7.9 | 185 149 23.7 6.0
7-21 | C033 120.22 23.54 0 1699 1460 2240 1615 68 59 90 34 | 19.6 17.7 26.4 8.5 | 145 13.8 20.1 7.0
7-22 | C034 120.54  23.52 0 4905 4860 6905 4127 243 294 381 91 | 34.6 449 56.7 16.0 | 10.1 16.7 19.6 7.9
7-23 | C035 120.58 23.52 0 13781 8231 16052 3625 246 244 346 106 | 44.3 30.8 53.9 17.8 | 11.2 11.6 16.2 6.2
7-24 | C036  120.48 23.61 0 7357 6269 9666 6627 267 200 333 104 | 41.6 44.1 60.6 14.1 | 22.6 344 41.1 9.8
7-25 | C039 120.34  23.52 0 1986 2572 3249 2106 114 97 149 38 | 24.2 248 34.7 11.3 | 12.0 16.2 20.2 7.1
7-26 | C041  120.60 23.44 0 9295 10946 14360 5359 297 630 697 123 | 20.3 37.3 42.5 9.7 7.1 89 114 6.1
7-27 | C042 120.58 23.36 0 1412 1783 2274 1328 98 65 117 63 | 14.5 10.5 18.0 8.7 6.5 7.6 10.0 4.0
7-28 | C046  120.46  23.48 0 5156 7226 8877 3924 143 186 235 80 | 20.7 20.9 29.4 7.7 8.7 9.0 125 5.8
7-29 | C047 120.45 23.49 0 5159 5204 7328 3918 165 178 243 83 | 23.1 26.7 353 14.7 | 128 10.1 16.3 8.9
7-30 | C052  120.50 23.29 0 1555 2632 3057 1032 84 151 172 40 | 11.2 149 18.6 7.1 6.5 6.0 8.9 6.0
7-31 | C054 120.31 23.31 0 1591 1723 2345 1364 93 94 132 33 | 17.8 179 25.2 8.0 | 12.2 13.5 18.2 5.4
7-32 | CO55  120.27  23.27 0 1809 2318 2940 2064 97 88 131 40 | 16.4 273 31.9 7.1 | 104 184 21.1 7.1
7-33 | CO57 120.41 23.15 0 1113 1436 1816 550 39 53 65 21 6.5 6.5 9.2 4.3 4.2 4.4 6.1 5.8
7-34 | CO58  120.32 23.17 0 1531 6388 6569 1029 47 57 74 25 | 10.9 14.2 17.9 5.0 5.3 10.8 12.0 4.2
7-35 | C063 120.34 23.03 0 825 1029 1319 467 58 65 87 26 7.8 9.1 12.0 5.8 4.2 7.1 8.3 4.6
7-36 | C065  120.34 2291 0 1483 1376 2023 634 114 93 147 29 | 17.2 132 21.6 5.1 6.3 7.6 9.9 6.4
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Table B.2: Continued.

Jerk (cm/s®)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD | EW NS Hor. UD EW NS Hor. UD | EW NS Hor. UD
7-37 | C067  120.18  23.00 0 1391 1062 1750 957 57 57 81 21 9.4 11.9 15.1 5.6 6.1 8.1 10.1 6.4
7-38 | C069 120.18 22.97 0 909 837 1236 598 43 38 58 25 10.7 9.3 14.2 5.2 6.2 7.2 9.5 6.8
7-39 | CO70 120.23 22.97 0 658 634 914 467 38 47 61 17 9.4 12.7 15.8 5.2 5.3 8.4 9.9 5.9
7-40 | CO74  120.81 23.51 1 2787 4642 5414 2237 229 157 278 98 32.3 21.2 386 149 | 14.3 9.1 17.0 8.2
7-41 | CO79 120.53 23.19 0 861 1089 1388 610 42 50 65 28 5.5 6.6 8.6 4.5 4.7 3.6 5.9 4.4
7-42 | C0O80  120.68  23.60 1 22191 24536 33083 19703 792 842 1156 716 | 108.2 93.6 143.1 40.6 | 17.7 35.8 39.9 17.2
7-43 | C0O81 120.50  23.27 0 981 969 1379 490 53 44 69 26 9.1 9.5 13.2 6.0 5.8 6.0 8.3 5.5
7-44 | C0O86  120.59  23.35 0 1902 2249 2946 1208 99 202 225 50 17.9 18.1 25.4 8.6 6.6 8.1 104 4.3
7-45 | CO87  120.52  23.38 0 3146 4115 5180 1507 132 125 182 55 10.2 14.3 17.6 7.6 5.5 5.9 8.1 4.5
7-46 | C088  120.43 23.35 0 3996 4713 6179 1962 148 207 255 42 17.9 20.4 27.1 8.5 7.2 106 128 5.1
7-47 | C093 120.15 23.65 0 2094 2393 3179 2662 53 65 83 36 19.8 14.3 24.4 59 | 14.4 133 19.6 5.5
7-48 | C094  120.32  23.79 0 1690 1690 2390 2766 64 53 83 41 24.5 19.2 31.1 14.0 | 206 17.7 27.1 9.0
7-49 | C099 120.28 23.14 0 1002 1002 1417 718 61 51 79 27 14.1 18.4 23.2 8.5 7.8 13.3 154 5.9
7-50 | C100 120.34 23.23 0 1630 1974 2560 778 66 60 89 28 11.1 17.1 20.4 5.8 6.4 124 14.0 4.5
7-51 | C101 120.56  23.69 1 12346 11006 16540 8613 333 390 513 162 66.6 108.3 127.1 279 | 43.8 75.7 87.5 21.7
7-52 | C104 120.46  23.67 0 3409 4980 6035 3903 143 177 228 130 55.5 53.1 76.8 324 | 41.4 470 62.6 21.7
7-53 | C107 120.29 23.30 0 2557 2079 3295 1690 101 92 136 40 20.1 17.3 26.5 8.9 | 12.6 14.1 18.9 6.1
7-54 | C111  120.23  23.79 0 2228 2826 3599 2901 58 85 103 42 19.6 11.4 22.7 9.0 | 19.2 10.0 21.7 6.5
7-55 | Cl114 120.12 23.04 0 957 1151 1497 628 54 47 71 15 16.3 14.2 21.6 8.4 | 153 156 21.9 6.0
7-56 | Cl115 120.10 23.15 0 1047 1525 1850 523 48 61 7 13 13.5 15.8 20.8 6.8 | 13.3 13.6 19.0 6.4
7-57 | C116  120.11  23.08 0 1600 1510 2200 643 63 51 81 19 15.0 20.5 25.4 7.1 | 14.4  20.0 24.6 7.5
7-58 | H002 121.51  23.60 0 1151 1271 1715 1107 51 89 102 32 9.4 12.7 15.8 7.1 4.5 6.0 7.5 5.2
7-59 | HO05 121.41 23.66 0 3439 2542 4277 2363 144 132 195 50 11.7 18.0 21.5 7.6 5.7 5.5 7.9 4.3
7-60 | HO06  121.42  23.67 0 2153 1989 2931 3484 90 85 124 61 7.8 8.0 11.2 7.0 5.5 4.9 7.4 4.8
7-61 | HO09 121.62 23.99 0 1735 2153 2765 3039 84 101 131 39 16.6 14.1 21.8 11.3 | 114 11.6 16.3 7.8
7-62 | HO11  121.59  24.00 0 2261 1866 2932 1998 87 97 130 37 19.4 25.1 31.7 8.5 | 11.2 8.9 143 8.6
7-63 | HO13 121.59 23.98 0 3804 2094 4342 2680 140 111 179 61 29.8 24.3 38.4 8.9 | 14.1 8.4 16.4 7.0
7-64 | HO14 121.60 23.97 0 1842 2058 2762 1842 102 89 135 39 21.1 25.2 32.9 9.9 | 11.8 9.0 14.8 6.6
7-65 | HO15 121.55 23.98 0 2213 1806 2857 2022 104 70 126 51! 14.0 14.0 19.8 10.0 8.9 5.7 10.5 6.1
7-66 | HO16  121.56  23.97 0 1555 1448 2125 3242 101 82 130 50 15.7 13.8 20.8 10.9 8.5 5.2 10.0 7.0
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Table B.2: Continued.

Jerk (cm/s®)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UDb | EW NS Hor. UD
7-67 HO17 121.54  23.95 0 1806 2608 3172 1723 81 83 116 49 | 11.4 9.5 149 9.3 7.0 4.2 8.1 7.0
7-68 HO019 121.61  23.98 0 2548 2333 3455 1998 126 133 183 47 | 183 20.1 272 106 | 11.2 11.9 16.3 6.2
7-69 H020 121.43  23.81 0 2728 2608 3774 2405 57 67 87 52 | 10.5 8.9 138 8.3 4.9 3.6 6.1 6.9
7-70 HO027 121.59  24.06 0 2177 1926 2907 1723 120 92 152 37 | 15,8 124 20.1 7.2 7.7 5.7 9.6 6.0
7-71 H028 121.60 24.02 0 2787 2309 3619 3505 101 85 132 49 | 15.2 145 21.0 8.5 9.0 9.1 128 7.8
7-72 HO031 121.49  23.77 0 2237 1543 2718 2297 91 98 134 70 | 179 17.2 249 146 7.0 5.5 8.9 10.9
7-73 H032 121.41  23.71 0 8924 7118 11415 4355 150 108 185 87 | 12.6 8.4 15.2 8.7 6.2 4.3 7.5 5.3
7-74 H033 121.47  23.69 0 2010 2464 3180 1603 162 164 230 51 | 19.8 16.5  25.7 8.6 7.4 7.5  10.6 8.2
7-75 H034 121.38  23.59 0 4199 4510 6162 1436 134 139 193 66 | 11.9 10.7 16.0 8.0 4.7 4.0 6.1 4.4
7-76 HO035 121.44  23.73 0 3828 3804 5397 5060 7 72 106 52 | 12.0 6.9 139 8.8 5.0 5.2 7.2 5.9
-7 HO037 121.38  23.45 0 1974 1699 2604 1316 108 124 164 78 | 13.0 23.3 26.6 12.7 4.6 8.6 9.7 5.4
7-78 HO038 121.34  23.46 0 969 1364 1673 1053 36 57 67 40 7.8 9.2 12.0 6.5 5.0 4.9 7.0 3.2
7-79 H039 121.35  23.38 0 1137 1460 1850 718 81 74 110 39 | 11.1 149 18.6 7.6 4.1 4.0 GL(( 5.3
7-80 HO045 121.74  24.31 0 3724 4920 6170 1914 123 186 223 71| 159 319 35.6 9.3 5.8 7.3 9.3 5.9
7-81 H048 121.57 24.01 0 2991 2318 3784 2482 122 166 206 53 | 20.0 224 30.0 11.3 | 104 11.3 154 6.5
7-82 H049 121.56  24.00 0 2243 1944 2968 1705 98 84 129 37 | 199 222 299 8.1 | 11.1 8.3 13.9 7.3
7-83 HO050 121.58  23.99 0 2632 2318 3507 2034 90 92 129 53 | 15.0 10.3 18.2 9.0 8.1 5.3 9.7 6.4
7-84 HO051 121.55  23.87 0 3439 4755 5869 2348 165 149 223 50 | 21.4 20.7 29.8 114 5.9 5.5 8.1 9.6
7-85 HO055 121.33  23.32 0 1107 1331 1731 733 87 85 121 61 | 19.4 146 24.3 8.6 6.3 5.2 8.2 6.6
7-86 H056 121.51  24.18 0 3326 4139 5310 2034 102 106 147 59 8.8 10.7 13.8 7.8 7.2 7.2  10.2 6.8
7-87 HO058 121.48  23.97 0 3756 3732 5295 2740 92 114 146 57 | 10.9 10.3 15.0 8.2 5.2 3.6 6.3 6.6
7-88 H059 121.50  23.87 0 6257 3134 6998 2871 135 118 180 53 | 14.7 155 214 9.9 4.7 3.9 6.1 8.5
7-89 | HWA2 121.61 23.98 0 2584 2381 3513 2070 129 132 185 48 | 189 199 274 11.0 | 114 11.7 164 6.5
7-90 1003 121.78  24.80 0 1092 852 1385 568 57 71 91 18 | 20.2 187 275 7.6 | 17.0 12.1 209 7.5
7-91 1005 121.81  24.70 0 1271 987 1609 449 69 79 105 25 | 199 154 252 10.8 | 181 11.7 21.5 10.1
7-92 1006 121.83  24.64 0 1585 1406 2119 493 e 68 103 37 | 13.3  14.6 19.7 10.8 8.5 7.2  11.1 7.7
7-93 1008 121.76  24.71 0 1480 912 1739 957 e 56 96 33 | 188 15.0 24.0 10.0 | 14.7 11.8 18.9 9.4
7-94 1012 121.73  24.78 0 1077 1137 1566 673 81 61 101 27 | 17.5 182 252 9.5 8.9 7.9 119 9.0
7-95 1013 121.73  24.74 0 2901 4396 5267 1062 134 147 199 40 | 29.5 21.5 36.5 11.9 | 13.5 9.2 164 9.2
7-96 1014 121.72  24.69 0 1181 1062 1588 434 60 62 86 28 | 11.7 129 17.5 10.0 9.6 7.7 123 9.7

18T



Table B.2: Continued.

Jerk (cm/s?)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS  Hor. UD | EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UD
7-97 1016 121.68  24.75 0 927 972 1343 748 79 71 106 37 | 16.4 12.8 20.8 7.6 8.1 7.0 10.7 8.0
7-98 1021 121.64  24.71 0 957 1077 1441 1062 60 69 91 27 | 11.7 8.3 144 11.3 7.0 5.9 9.1 8.7
7-99 1027 121.76  24.69 0 1627 1531 2234 670 103 67 123 22 | 17.7 154 235 5.0 72 11.3 134 4.4
7-100 1041 121.79  24.72 0 987 1062 1450 733 100 62 117 23 | 29.2 215 36.3 11.3 | 225 17.9  28.7 8.0
7-101 1044 121.76  24.66 0 1286 1256 1798 1032 80 70 106 29 | 24.2 16.5 29.3 10.3 | 14.6 9.0 17.1 7.9
7-102 1048 121.76  24.77 0 1645 1540 2253 1047 89 75 116 30 | 224 244  33.1 102 | 14.7 16.9 224 8.9
7-103 1055 121.81 24.74 0 1391 1735 2223 568 75 68 101 25 | 29.3 235 376 129 | 23.2 20.0 30.6 7.8
7-104 1056 121.81  24.76 0 1077 2348 2583 942 69 64 95 23 | 32.5 309 449 10.2 | 29.1 25,5 38.6 8.4
7-105 1059 121.82  24.67 0 1690 1660 2369 808 62 70 93 30 | 14.8 14.0 20.4 8.9 | 11.2 8.8 14.2 10.3
7-106 1061 121.83  24.52 0 613 822 1026 643 52 49 72 25 74 102 126 7.2 6.9 7.2 10.0 6.5
7-107 | 1062 121.79  24.47 0 1660 1555 2275 1525 81 72 108 47 | 10.5 124  16.2 8.5 6.4 7.2 9.6 5.2
7-108 1066 121.77  24.45 0 1944 2153 2901 1525 95 74 121 53 | 11.6 12.0 16.6 12.0 6.1 7.7 9.9 5.9
7-109 1067 121.37 24.44 0 6125 6783 9139 5551 195 168 257 94 | 11.8 18.7 22.1 12.5 5.7 122 134 8.8
7-110 | K001 120.64 23.16 0 852 598 1041 822 43 22 48 40 6.1 6.1 8.6 7.5 2.9 6.2 6.8 5.3
7-111 | K010 120.28 22.79 0 825 335 465 227 32 31 44 11 | 11.5 149 188 5.1 8.9 145 17.0 6.6
7-112 | K011  120.26  22.76 0 634 778 1003 407 56 54 78 14 | 12.2 134 181 5.3 | 10.0 11.6 15.3 6.5
7-113 | K020 120.54 22.90 0 742 790 1083 395 54 75 93 19 | 13.0 16.3 20.9 5.0 5.2 4.0 6.5 4.2
7-114 | K085 120.32  22.89 0 628 822 1035 329 50 52 72 23 9.0 13.7 164 7.9 6.9 8.0 10.6 5.9
7-115 | NOO1 121.44 23.32 0 808 763 1111 613 94 61 112 39 | 15.6 9.3 18.1 9.8 6.7 5.4 8.6 6.4
7-116 | N041 121.12 23.13 0 1929 1869 2686 1346 79 64 102 39 7.1 6.2 9.4 4.5 5.3 2.5 5.9 3.9
7-117 | N042 121.28 23.00 0 867 1256 1526 808 57 56 81 20 5.7 7.6 9.4 5.8 4.8 2.4 5.4 4.8
7-118 | N044 121.17 23.01 0 628 613 878 493 49 55 74 32 9.7 9.9 138 5.6 6.2 5.6 8.3 3.3
7-119 | N045 121.15 22.98 0 419 523 670 479 39 33 51 16 9.4 8.4 12.6 3.9 5.2 4.1 6.6 2.6
7-120 | N046  121.23  22.97 0 1585 972 1859 718 112 65 129 19 9.5 7.7 12.2 5.4 5.4 2.1 5.8 4.5
7-121 | P003  121.45 25.09 0 1655 2327 2855 1385 127 106 165 43 | 289 31.0 424 11.2 | 140 13.5 19.5 7.5
7-122 | P005  121.51 25.11 0 1684 1909 2546 1203 127 81 151 24 | 31.1 20.8 374 6.7 | 10.3 7.7 12.8 6.2
7-123 | P006  121.51 25.10 0 795 842 1158 741 99 68 120 31 | 20.3 13.6 245 6.9 8.8 6.2 10.8 5.7
7-124 | P0OO7  121.51  25.08 0 1134 724 1345 847 105 72 127 29 | 20.1 16.7  26.1 7.8 9.3 59 11.0 6.1
7-125 | P008  121.53 25.08 0 1970 2927 3528 973 73 59 95 18 | 20.6 154  25.7 5.9 | 11.5 9.4 14.8 6.0
7-126 | P010  121.48 25.07 0 1076 1056 1508 1256 115 86 144 27 | 26.9 26.2 375 6.3 | 11.7 104 15.6 6.8
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Table B.2: Continued.

Jerk (cm/s3)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS  Hor. UD | EW NS Hor. UD | EW NS Hor. UDb | EW NS Hor. UD
7-127 | P012 121.51 25.06 0 842 716 1105 1046 96 54 110 28 | 19.2 153 245 6.4 9.4 6.3 11.3 7.0
7-128 | P013  121.53  25.06 0 991 720 1224 766 87 75 115 24 | 21.5 16.4  27.0 7.4 9.5 7.3 12.0 6.9
7-129 | P014 121.54 25.06 0 1436 908 1699 921 107 69 127 28 | 28.5 183 339 7.6 | 10.2 8.4 13.2 6.4
7-130 | PO17  121.45  25.05 0 1943 1586 2507 1189 111 97 147 34 | 243 286 375 114 | 145 156 21.3 8.7
7-131 | P020 121.53 25.04 0 619 748 971 840 60 66 89 32 | 21.8 14.2  26.0 7.4 | 10.6 9.2 14.0 7.1
7-132 | P021 121.54 25.04 0 1747 2034 2681 954 98 99 140 36 | 29.9 18.0 349 7.5 | 10.7 6.8 12.7 7.0
7-133 | P024 121.47 25.02 0 684 874 1109 721 62 76 98 23 | 16.8 20.0 26.1 7.8 | 152 11.1  18.8 8.6
7-134 | P026  121.50  25.02 0 967 983 1378 2025 e 69 104 49 | 147 13.8  20.2 7.8 | 11.9 8.4 14.6 7.1
7-135 | P032 121.47  25.00 0 2357 1627 2864 1137 108 112 156 57 | 23.8 19.5  30.8 9.9 | 12.1 9.1 15.1 8.3
7-136 | P066  121.52  25.19 0 467 718 856 371 49 71 86 21 8.6 12.8 154 4.5 8.5 7.2 11.2 4.8
7-137 | PO75 121.73  25.03 0 1122 1122 1586 673 81 49 95 24 | 10.8 8.9 14.0 5.8 7.6 5.1 9.1 7.5
7-138 | P083  121.49  25.26 0 837 658 1065 508 36 61 71 18 | 13.7 16.1 21.1 7.0 | 17.3 9.0 19.5 6.0
7-139 | P088  121.58 25.04 0 1320 1655 2117 930 89 115 145 42 | 16.9 16.8 23.9 8.3 7.2 5.2 8.9 7.4
7-140 | P089  121.56  25.03 0 723 667 984 391 42 39 58 23 9.2 74 118 7.7 8.5 6.1  10.5 8.0
7-141 | P090 121.59  25.06 0 1404 931 1684 711 136 88 162 29 | 32.7 19.2 379 7.1 8.9 5.8 10.6 5.8
7-142 | P094  121.48 25.14 0 836 616 1038 461 63 83 104 29 | 16.2 16.8 23.3 9.2 9.3 7.3 119 7.3
7-143 | P095 121.49 25.14 0 3706 3294 4958 1960 138 92 166 47 | 30.0 17.8 349 7.3 8.9 5.5 10.4 7.0
7-144 | P097  121.53  25.02 0 628 643 899 404 72 81 108 23 | 14.0 18.3 23.1 8.6 | 11.6 8.8 14.5 8.3
7-145 | P098 121.54 25.10 0 1176 956 1516 874 62 55 83 26 | 13.7 9.0 16.4 5.2 8.5 5.4  10.1 5.4
7-146 | P100  121.51  25.04 0 838 823 1174 735 56 85 102 23 | 15.6 13.6  20.7 7.8 | 10.4 8.2 13.3 6.9
7-147 | T015 120.93 24.76 0 3613 2548 4421 2668 128 122 177 66 | 40.3 25.0 47.5 158 | 47.6 25.8 54.2 13.5
7-148 | T029 120.75 24.56 0 5670 6185 8391 3051 155 194 248 62 | 38.1 51.2 63.8 205 | 42.6 40.4 58.7 21.8
7-149 | T031 120.70 24.56 0 1531 2799 3191 2512 113 123 166 65 | 55.7 46.9 72.8 269 | 51.0 34.1 614 234
7-150 | T033 120.86 24.69 0 4235 5060 6599 3924 154 181 238 73 | 41.6 24.3 48.1 15.1 | 48.5 188 52.0 13.1
7-151 | T034 120.86 24.64 0 5503 3098 6315 3972 248 103 268 70 | 43.7 24.1 49.9 12.7 | 46.5 20.8 50.9 10.5
7-152 | T035 120.79 24.62 0 2393 2871 3737 2680 116 114 163 60 | 34.6 29.5 454 179 | 382 19.0 42.7 13.1
7-153 | T036  120.70 24.45 0 2369 2369 3350 2058 134 122 182 61 | 57.9 47.1 747 216 | 604 48.0 77.2 19.8
7-154 | T038 120.66  24.49 0 4570 5838 7414 4115 142 143 201 66 | 56.2 385 68.1 32.2 | 55.2 42.8 69.8 27.5
7-155 | T039 120.78 24.49 0 4163 6245 7505 7417 193 136 236 122 | 54.8 56.9 79.0 50.6 | 56.3 39.3 68.6 46.5
7-156 | T040  120.65 24.45 0 4139 3039 5135 5228 159 122 200 79 | 57.0 47.0 73.9 180 | 54.2 52.7 756 17.2
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Table B.2: Continued.

Jerk (cm/s3)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD | EW NS Hor. UD EW NS Hor. UD EW NS Hor. UD
7-157 | T042 120.81 24.55 0 9355 5024 10619 3685 248 208 825 82 36.9 36.6 52.0 19.5 44.5 23.8 50.5 20.1
7-158 | T045 120.91 24.54 1 18710 21330 28373 37372 463 512 690 353 49.3 46.4 67.7 21.2 36.4 14.4 39.1 12.2
7-159 | T046  120.85 24.47 1 3242 3075 4468 4187 140 116 182 97 28.6 25.4 38.2 32.9 37.2 21.3 42.8 28.8
7-160 | T047 120.94 24.62 1 12597 23603 26754 14296 292 399 495 261 42.2 35.8 55.3 22.3 32.8 21.1 39.0 18.8
7-161 | T048 120.59 24.18 0 4055 5551 6874 3374 117 176 211 97 36.3 47.4 59.7 25.2 29.8 52.9 60.7 20.1
7-162 | T049 120.69 24.18 1 10683 8745 13806 8434 273 242 365 178 56.9 59.3 82.2 27.1 48.5 41.7 64.0 19.1
7-163 | T050 120.63 24.18 1 3768 4044 5527 2883 143 128 192 87 40.0 43.5 59.1 43.2 30.1 47.1 55.9 26.8
7-164 | T051  120.65 24.16 1 5467 8242 9891 5635 157 231 279 110 51.2 40.3 65.1 30.5 39.8 44.2 59.4 22.8
7-165 | T052 120.74 24.20 1 6962 7728 10402 11975 349 439 560 194 | 180.7 220.0 284.7 169.0 | 154.8 139.8 208.6 114.0
7-166 | T053  120.67 24.19 1 8266 3649 9036 4929 225 132 261 121 42.9 44.0 61.5 32.5 38.2 42.0 56.8 17.9
7-167 | T054 120.68 24.16 1 3948 5312 6618 7034 143 190 238 133 45.9 45.3 64.6 29.7 49.1 35.2 60.4 21.8
7-168 | T056  120.62 24.16 1 4450 3709 5793 3685 154 140 208 117 414 40.3 57.8 40.7 38.7 46.6 60.5 27.8
7-169 | T057 120.61 24.17 0 5898 8817 10607 2273 111 100 150 81 40.7 49.4 64.0 34.0 30.7 49.4 58.2 22.4
7-170 | T059  120.56  24.27 0 2596 2261 3443 1651 157 162 225 64 52.2 53.9 75.0 13.9 56.5 51.9 76.7 12.1
7-171 | T060  120.64 24.23 1 4139 3003 5114 3350 197 101 221 86 36.7 42.8 56.4 28.4 34.0 44.6 56.1 19.6
7-172 | T061  120.55 24.14 0 2919 6077 6742 3948 133 154 204 86 41.1 379 55.9 27.6 37.2 304 48.0 25.8
7-173 | T063 120.62 24.11 1 8350 3326 8988 7309 179 130 222 133 44.2 82.4 93.5 57.4 48.0 58.8 75.9 37.3
7-174 | T064  120.61  24.35 0 1555 2153 2656 1794 109 113 157 82 42.6 56.1 70.4 32.0 50.1 56.0 75.1 22.5
7-175 | T065 120.69 24.06 1 13159 15600 20409 6998 774 563 958 258 | 132.1 929 161.5 68.7 99.4 58.0 115.1 47.1
7-176 | T067  120.72  24.09 1 12717 11269 16992 12334 489 313 580 231 97.8 55.8 112.6 50.1 51.8 31.8 60.8 25.8
7-177 | T068  120.77 24.28 1 12992 20720 24456 14894 501 362 618 519 | 280.9 291.3 404.6 228.7 | 159.3 252.7 298.7 131.4
7-178 | TO70  120.54  24.20 0 6520 4319 7820 5766 249 157 294 76 45.9 60.0 75.5 35.9 35.2 54.6 65.0 25.1
7-179 | TOo71  120.79  23.99 1 21772 29297 36501 27251 518 639 822 416 70.1 82.8 108.5 59.3 34.3 36.0 49.7 28.9
7-180 | T072 120.85 24.04 1 16844 23196 28667 16198 465 371 595 275 87.6 69.3 111.8 38.9 29.1 30.2 42.0 25.4
7-181 | T074 120.96 23.96 1 22682 23268 32494 20600 586 368 692 270 70.2 49.0 85.6 24.9 27.4 17.5 32.5 14.5
7-182 | T075  120.68  23.98 1 18291 9331 20534 10432 325 257 415 224 | 116.1 37.0 1218 50.0 69.4 25.9 74.1 23.2
7-183 | T076  120.68 23.91 1 27969 23268 36382 16844 340 420 540 275 69.1 63.2 93.6 32.8 32.8 33.2 46.7 17.0
7-184 | T0O78 120.85 23.81 1 21138 14320 25532 11221 440 302 534 171 43.3 32.3 54.0 19.4 22.2 8.8 23.9 13.5
7-185 | T079 120.89 23.84 1 25625 18375 31532 22909 580 417 714 384 67.4 31.5 74.4 22.9 14.6 15.4 21.2 13.8
7-186 | T082 120.68 24.15 1 5407 5204 7505 4701 221 182 287 129 51.6 43.3 67.4 35.0 50.6 40.4 64.8 27.4
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Table B.2: Continued.

Jerk (cm/s3)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD | EW NS Hor. UD EW NS Hor. UD | EW NS Hor. UD

7-187 | T084  120.90 23.88 1 16916 13829 21849 13638 989 423 1076 312 | 116.2 54.1 128.2 29.8 | 41.1 23.7 475 17.2
7-188 | T087  120.77 24.35 1 1890 1962 2724 1830 119 112 163 91 43.6  44.2 62.1 58.5 | 48.7 249 54.7 53.9
7-189 | T088 121.18 24.25 1 36690 35446 51015 19464 509 515 724 224 13.3  36.5 38.8 129 6.1 18.8 19.8 9.4
7-190 | T089  120.86  23.90 1 10097 11090 14998 13315 348 225 414 190 454 34.9 57.3 21.7 | 19.6 20.0 28.0 14.2
7-191 | T095 121.01 24.69 1 13590 30996 33844 21772 367 685 776 251 48.6  49.2 69.2 229 | 41.4 21.0 46.4 16.7
7-192 | T098 120.90 24.74 0 3505 2919 4561 2979 104 98 142 48 45.6  27.1 53.0 17.3 | 48.6 25.8 55.1 12.2
7-193 | T100 120.62 24.19 0 2931 4067 5013 4534 108 111 155 84 40.6  43.1 59.2 39.7 | 30.5 49.0 57.7 29.6
7-194 | T102 120.72 24.25 1 3541 2835 4536 3864 298 169 343 173 87.0 71.7 112.7 68.0 | 75.2 414 859 34.0
7-195 | T103 120.71 24.31 1 3780 3948 5466 12729 126 149 196 142 68.5 224 72.1 609 | 63.1 145 64.8 48.0
7-196 | T104 120.60 24.25 0 2381 1902 3047 2512 101 87 134 90 30.9 48.2 57.3 24.3 | 35.1 44.7 56.8 17.7
7-197 | T105 120.56 24.24 0 2046 2429 3175 2440 111 124 167 61 32.6 425 53.6 23.6 | 356.8 40.7 54.2 16.5
7-198 | T106  120.55 24.08 0 4953 4725 6845 5922 157 122 199 116 40.5  39.3 56.4 23.3 | 40.0 285 49.2 228
7-199 | T107 120.54 24.07 0 2381 3517 4247 3409 128 144 192 94 34.0 46.2 574 25.6 | 343 319 46.9 254
7-200 | T109 120.57 24.09 0 4498 3685 5815 8936 149 159 218 133 55.0 56.0 78.5 23.7 | 46.2 34.7 57.8 225
7-201 | T111 120.49 24.11 0 2787 3158 4212 3350 125 94 156 7 52.9 31.7 61.7 23.4 | 49.5 33.7 59.8 20.9
7-202 | T116  120.58 23.86 0 4402 6364 7739 4965 185 133 228 119 39.7  52.8 66.1 34.6 | 35.1 35.1 49.6 26.9
7-203 | T117 120.46 24.13 0 2010 1878 2751 4809 121 113 166 90 56.4  57.9 80.8 22.8 | 43.5 422 60.6 17.5
7-204 | T118 120.42 24.00 0 2740 2704 3849 7644 116 92 148 100 29.7  35.1 46.0 18.7 | 224 34.2 409 20.6
7-205 | T120 120.61 23.98 1 7812 8350 11435 11317 223 193 295 167 62.6 34.8 71.6 35.5 | 34.1 326 47.2 24.2
7-206 | T122 120.61 23.81 1 11736 8362 14410 24213 207 256 329 236 44.6 428 61.8 40.9 | 35.5 27.7 45.0 36.3
7-207 | T128 120.76 24.42 0 2787 2775 3934 5180 141 163 216 90 62.0 62.2 87.8 44.6 | 74.3 46.1 87.4 39.7
7-208 | T129 120.68 23.88 1 40961 25708 48360 8207 | 983 611 1157 335 68.1 54.9 87.5 37.5 | 38.9 254 46.5 19.2
7-209 | T131 120.82 24.57 0 2464 2656 3623 2393 118 123 170 54 379 39.1 544 19.3 | 37.5 31.6 49.0 16.7
7-210 | T136  120.65 24.26 1 2916 2482 3829 3365 167 171 239 112 43.3 529 68.4 33.4 | 55.7 43.3 T70.6 25.2
7-211 | T138 120.60 23.92 1 5937 5772 8280 4710 202 207 290 110 33.3 38.5 50.9 25.7 | 24.2 258 354 19.8
7-212 | T140 120.36  23.96 0 1824 2288 2926 3978 71 53 89 68 24.1 216 324 19.3 | 21.8 19.0 289 17.0
7-213 | T141 120.46 23.83 0 4187 1615 4488 4621 86 89 124 107 46.0 28.4 54.1 25.2 | 37.1 222 43.3 22.2
7-214 | T145 120.34  23.98 0 1959 1884 2718 2363 70 60 92 52 24.6  19.8 316 19.2 | 26.3 203 332 16.9
8-1 2723 —146.36  61.13 0 297 220 370 167 9 9 13 6 2.7 2.1 3.4 2.0 3.6 1.9 4.1 1.7
8-2 2767 —147.18  64.79 0 871 673 1101 454 42 30 52 15 5.5 4.2 6.9 2.7 1.7 2.1 2.7 1.4
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Table B.2: Continued.

Jerk (cm/s®)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD | EW NS Hor. UD EW NS Hor. UD | EW NS Hor. UD
8-3 2784 —146.35 61.13 0 271 243 364 271 26 21 34 12 4.6 3.0 5.5 2.2 3.8 2.1 4.3 1.8
8-4 2797 —147.85 64.86 0 1883 1408 2351 1539 108 63 125 40 8.9 5.3 10.4 3.4 2.3 1.8 2.9 1.5
8-5 8016 —149.86 61.19 0 452 367 582 109 21 16 26 6 3.0 2.5 3.9 1.5 2.1 1.7 2.7 0.7
8-6 8017 —149.95 61.20 0 221 198 296 134 16 18 24 10 3.7 4.2 5.6 1.8 2.6 2.9 3.9 0.7
8-7 8019 —149.54 61.35 0 238 229 330 86 5 6 8 4 1.9 1.2 2.2 1.1 1.6 0.9 1.8 1.3
8-8 8022 —147.86  64.87 0 1552 1344 2053 1708 85 69 109 47 7.1 6.3 9.5 3.7 2.2 2.4 3.2 1.9
8-9 8024 —149.89 61.18 0 240 226 329 94 10 14 17 5 2.5 2.4 3.4 1.1 2.1 Poid) 3.1 0.6
8-10 8027 —149.89 61.16 0 232 222 321 163 13 12 18 6 2.7 2.5 3.7 1.8 2.2 2.2 3.1 0.7
8-11 8030 —149.81 61.18 0 168 160 232 89 10 9 13 5 2.2 1.9 2.9 1.3 1.8 1.7 2.4 0.9
8-12 8034 —146.36 61.13 0 99 143 174 85 6 6 9 6 2.7 2.2 3.5 2.1 3.5 1.9 4.0 1.6
8-13 8036 —149.97 61.18 0 172 253 306 101 12 22 26 8 3.4 4.0 5.2 1.5 2.4 3.0 3.9 0.7
8-14 8037 —149.98 61.16 0 193 299 356 203 14 19 24 7 3.6 4.3 5.6 1.1 2.4 2.8 3.7 0.7
8-15 8038 —149.88 61.22 0 168 174 242 123 17 18 25 8 3.1 4.2 5.2 1.6 2.2 2.5 3.3 0.9
8-16 8039 —149.95 61.14 0 420 380 567 154 20 20 29 8 3.8 3.3 5.0 1.3 2.2 3.4 4.1 0.7
8-17 | CARL —148.81 63.55 0 4637 3251 5663 3863 98 86 130 70 7.6 104 12.8 8.5 B3 4.0 5.2 2.8
8-18 FA02 —148.01 64.85 0 1665 1285 2103 1189 47 40 62 24 5.4 3.0 6.1 3.8 2.0 2.0 2.8 2.5
8-19 K202 —149.82 61.22 0 204 208 292 138 11 12 16 7 2.8 2.9 4.0 1.3 1.8 1.8 2.5 0.9
8-20 K203 —149.72 61.22 0 177 149 232 99 8 9 12 5 2.5 1.9 3.1 1.1 1.8 1.6 2.4 1.0
8-21 K204 —150.01 61.18 0 233 227 325 187 13 11 17 7 4.6 3.4 5.7 1.7 2.3 2.7 3.5 0.9
8-22 K205 —149.91 61.20 0 238 232 333 153 16 15 21 7 3.0 3.2 4.4 1.7 2.1 2.8 3.5 0.7
8-23 K206 —149.82 61.19 0 224 297 372 114 10 11 14 5 2.2 2oty 3.2 1.3 1.9 2.2 2.9 0.9
8-24 PS07 —148.28 65.31 0 235 234 332 206 18 17 24 10 3.4 3.2 4.7 1.7 1.7 2.1 2.7 1.4
8-25 PS08 —146.82 64.54 0 1277 1621 2063 1567 46 35 58 24 5.3 4.3 6.8 3.1 2.4 3.0 3.8 2.7
8-26 PS09 —145.77 63.93 0 4156 3279 5294 4655 73 55 91 52 12.5  11.7 17.1 9.8 9.4 8.2 124 3.9
8-27 PS10 —145.77 63.42 1 5542 9273 10803 11842 330 290 440 233 | 113.7 64.0 1304 52.0 | 44.3 33.8 55.7 244
8-28 PS11 —145.48 62.09 0 4054 3777 5541 2138 70 85 110 32 10.0 15.9 18.8 9.0 | 11.0 129 16.9 8.8
8-29 PS12 —145.14 61.48 0 972 712 1205 670 38 34 51 23 5.4 5.6 7.8 5.1 3.8 3.5 5.2 3.0
8-30 R109 -—148.65 63.40 0 1646 1880 2499 1618 59 107 122 48 6.2 129 14.3 5.7 3.4 3.8 5.2 2.8
9-1 1575 —121.40 36.85 0 128 146 194 76 14 11 18 6 3.2 3.2 4.5 1.7 1.7 1.3 2.2 0.7
9-2 1747 —120.36  36.14 0 1966 1206 2306 1242 78 44 89 27 6.0 5.8 8.4 3.9 2.6 1.7 3.1 1.2
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Table B.2: Continued.

Jerk (cm/s3)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UDb | EW NS Hor. UD
9-3 1748 —119.73 36.74 0 107 55 120 146 5 3 6 5 0.4 0.3 0.5 0.2 0.2 0.1 0.2 0.0
9-4 1797 —121.40 36.89 0 64 112 129 47 9 10 14 5 3.3 2.8 4.3 1.5 1.5 1.2 1.9 0.6
9-5 1840 —119.78  36.77 0 123 113 167 108 7 5 9 4 0.5 0.4 0.7 0.2 0.2 0.2 0.3 0.0
9-6 35219 —119.45  35.40 0 113 130 172 170 6 10 12 6 1.0 1.1 1.5 0.5 0.2 0.2 0.3 0.1
9-7 36138 —120.43  35.90 1 4904 3810 6210 6237 271 297 402 135 | 39.3 474 61.6 9.6 | 10.1 11.5 15.3 2.2
9-8 36153 —120.46  35.21 0 930 658 1140 456 20 12 23 9 0.6 0.8 1.0 0.6 0.1 0.1 0.1 0.1
9-9 36176 —120.53 35.92 0 12344 14942 19381 10179 258 297 394 246 | 18.2 19.6 26.8 8.7 5.2 4.1 6.7 2.2
9-10 | 36177 —120.47 35.97 1 7967 6461 10257 3452 352 224 418 93 | 23.7 121 26.6 8.3 6.2 3.0 6.9 2.9
9-11 | 36227 —120.33 35.70 1 8785 7432 11507 9700 245 228 334 169 | 18.6 11.8 22.0 7.0 2.7 1.3 3.0 0.8
9-12 | 36228 —120.29 35.73 1 10994 10462 15176 11440 593 362 695 182 | 63.3 44.1 772 143 | 11.2 7.2 133 3.6
9-13 | 36229 —120.40 35.64 0 3729 4749 6039 2113 74 83 111 40 6.7 4.1 7.9 2.9 0.7 1.0 1.2 0.7
9-14 | 36230 —120.26  35.75 1 19116 18203 26396 13703 455 465 650 183 | 22.6 223 31.8 5.7 3.5 2.1 4.0 1.0
9-15 | 36407 —120.31 35.76 1 15224 15421 21670 11188 581 803 991 256 | 62.5 80.7 102.0 9.9 9.3 109 144 2.6
9-16 | 36408 —120.34  35.80 1 15988 18637 24555 26887 363 382 528 372 | 22,5 19.7 29.9 11.8 3.7 2.6 4.5 1.8
9-17 | 36410 —120.30 35.73 1 10900 10851 15380 6117 314 554 637 156 | 28.0 38.3 47.5 9.7 5.0 7.4 8.9 1.2
9-18 | 36411 —120.31  35.72 1 14151 11127 18002 6786 565 503 757 146 | 31.6  27.0 41.6  10.0 5.2 4.2 6.7 1.7
9-19 | 36412 —120.32 35.71 1 9874 7336 12301 10562 293 275 402 111 | 26.5 16.6 31.3 5.0 4.4 3.1 5.3 1.6
9-20 | 36414 —120.40 35.84 1 2215 3484 4129 4275 129 105 167 68 | 16.5 13.6 21.4 4.5 3.4 1.6 3.8 1.1
9-21 | 36415 —120.38  35.82 1 8956 6304 10952 3777 146 139 202 68 9.9 7.4 12.4 2.6 2.0 1.6 2.6 0.9
9-22 | 36416 —120.39 35.81 1 7399 13404 15310 5247 157 265 308 91 | 14.5 9.8 17.5 3.6 1.7 1.9 2.6 0.6
9-23 | 36419 —120.29 35.79 1 24705 29660 38601 14912 665 793 1035 299 | 34.6 38.6 51.8 15.9 5.9 4.0 7.1 1.8
9-24 | 36420 —120.41  35.80 1 32185 23222 39688 10259 665 409 781 162 | 232 15.7 28.0 4.4 3.1 2.8 4.2 1.2
9-25 | 36421 —120.35 35.84 1 10253 8396 13252 5910 159 204 259 89 7.7 104 13.0 3.9 1.4 1.8 Poid) 0.8
9-26 | 36422 —120.28  35.81 1 9416 7961 12330 10868 177 180 253 121 | 12.5 9.8 15.9 4.2 2.2 1.5 2.7 1.0
9-27 | 36427 —120.89 35.27 0 569 348 667 345 13 10 16 8 1.0 0.9 1.3 0.5 0.2 0.2 0.2 0.1
9-28 | 36431 —120.40 35.87 1 12457 10793 16482 7021 224 249 335 145 | 18.6 21.6 28.5 74 4.7 4.8 6.7 1.6
9-29 | 36432 —120.51 35.74 0 4528 3840 5937 2862 103 98 142 83 4.3 4.4 6.1 2.2 0.8 1.2 1.5 0.9
9-30 | 36433 —120.44 35.79 1 27373 22161 35219 7045 377 305 485 86 | 12.6 7.7 14.8 3.0 2.1 1.6 2.7 0.9
9-31 | 36434 —120.48 35.77 0 9064 8956 12743 3833 243 171 297 55 7.7 7.0 10.4 2.7 1.3 1.3 1.8 1.0
9-32 | 36437 —120.27 35.83 1 8019 10866 13505 3794 188 195 271 47 8.6 9.7 13.0 3.0 2.3 2.5 3.4 0.9
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Table B.2: Continued.

Jerk (cm/s3)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UD
9-33 | 36439 —120.33 35.87 1 9010 4615 10123 3806 199 103 224 59 | 12.1 7.1 141 2.3 25 1.5 29 0.7
9-34 | 36440 —120.56  35.89 1 6033 8449 10382 8961 154 179 237 157 | 10.6 10.5  15.0 4.3 3.0 28 4.1 1.1
9-35 | 36441 —120.60 35.86 0 4461 4084 6047 5061 112 98 149 97 9.0 7.8 11.9 3.4 3.2 24 3.9 1.1
9-36 | 36443 —120.44 35.88 1 2809 3268 4309 5013 148 94 176 77 | 240 142 279 3.5 6.2 44 7.6 1.0
9-37 | 36445 —120.48 35.92 1 4487 6182 7639 5960 139 224 264 135 | 23.0 18.3 29.3 114 6.9 5.6 89 3.1
9-38 | 36446 —120.55 35.91 1 4817 3186 5776 3625 98 86 131 71 6.1 7.8 9.9 3.4 2.2 21 3.0 1.1
9-39 | 36447 —120.51 35.93 1 16759 10413 19731 7866 507 375 631 120 | 27.6 17.7  32.8 6.8 3.4 3.2 4.7 1.0
9-40 | 36448 —120.50 35.93 1 5818 6716 8886 4495 161 131 208 104 | 183 114 21.6 6.0 5.2 4.0 6.5 1.9
9-41 | 36449 —120.38 35.88 1 26384 16561 31151 16453 536 487 724 246 | 20.2 16.6 26.2 9.1 2.1 2.0 29 22
9-42 | 36450 —120.25 35.77 1 13150 32617 35168 16278 503 735 890 245 | 23.5 27.8 36.4 5.7 2.7 26 3.8 0.8
9-43 | 36451 —120.34 35.68 0 6846 11627 13493 7467 228 369 434 128 | 11.8 18.1 21.6 5.4 2.0 22 3.0 0.6
9-44 | 36452 —120.27 35.74 1 12241 9705 15621 9687 418 337 537 236 | 40.3 39.1 56.2 9.8 8.2 7.0 10.8 1.9
9-45 | 36453 —120.40 35.90 1 32491 60011 68242 34664 450 903 1009 403 | 15.3 26.0 30.2 10.2 1.9 1.9 2.7 3.0
9-46 | 36454 —120.42  35.86 1 9269 9160 13031 9850 171 178 247 109 | 24.4 8.5 25.8 5.0 49 2.0 5.3 1.0
9-47 | 36455 —120.48  35.96 1 9351 12330 15475 5383 260 284 385 174 | 29.5 25.8 39.2 13.7 8.1 4.7 9.3 28
9-48 | 36456 —120.46  35.91 1 43945 25082 50599 21935 | 1286 528 1390 547 | 82.8 423 93.0 235 | 158 7.6 17.6 4.6
9-49 | 36510 —120.17 35.71 0 3147 2730 4166 1537 100 76 125 32 6.5 7.1 9.6 2.5 1.0 1.1 1.4 0.6
9-50 | 36529 —120.36  35.88 1 4885 4236 6466 3934 241 191 307 70 | 146 11.5 18.6 4.7 2.1 1.7 2.7 1.5
9-51 | 36535 —120.00 35.66 0 5149 7226 8873 4334 156 190 245 72 7.0 6.8 9.7 2.5 1.0 0.8 1.3 05
9-52 | 36712 —120.72  35.56 0 1125 1077 1557 847 37 34 50 19 2.1 2.2 3.1 1.0 04 0.5 0.6 0.2
9-53 | 37737 —121.12 35.59 0 233 222 322 148 9 10 13 5 0.6 0.8 1.0 0.3 0.1 0.1 0.2 0.0
9-54 | 46174 —120.71  36.19 1 368 504 624 442 22 27 35 16 3.2 4.6 5.6 3.5 1.7 1.6 2.3 1.0
9-55 | 46175 —120.59  36.03 1 3248 6461 7231 3521 207 341 399 105 | 25.8 52.5 58.5 8.6 74 74 105 1.8
9-56 | 47125 —121.95 36.97 0 277 305 411 142 8 10 13 4 0.6 0.7 0.9 0.3 0.1 0.1 0.1 0.0
9-57 | 47136 —121.78  36.25 0 235 336 410 239 7 8 11 5 0.5 0.7 0.9 0.3 0.1 0.1 0.1 0.1
9-58 | 47179 —121.64 36.67 0 199 257 325 309 10 11 15 7 1.4 1.6 2.2 0.6 04 04 0.6 0.2
9-59 | 47216 —121.78  36.81 0 177 188 258 163 10 11 15 6 2.1 1.2 2.4 1.0 0.5 0.5 0.7 0.2
9-60 | 47232 —121.13 36.21 0 2000 2812 3451 4903 58 44 73 59 3.1 2.5 3.9 1.4 04 04 0.5 0.1
9-61 | 47460 —121.24  36.32 0 1230 1024 1601 1602 32 23 40 21 2.1 1.8 2.8 0.8 0.3 0.5 0.6 0.2
9-62 | 47524 —121.40 36.85 0 222 178 285 320 10 13 17 5 2.1 3.0 3.6 1.2 0.8 1.1 1.3 04
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Table B.2: Continued.

Jerk (cm/s3)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UD
9-63 47762 —121.63  36.70 0 169 189 253 122 16 11 20 5 1.7 1.8 2.5 0.6 0.3 0.5 0.6 0.1
9-64 61022 —120.54 35.95 1 5824 5700 8149 3259 160 146 216 87 8.5 9.2 126 4.7 2.7 3.3 4.2 0.9
9-65 DFU —120.42 35.94 1 11967 16610 20472 12574 289 366 466 171 | 15.1 139 20.5 9.0 3.3 1.7 3.7 20
9-66 EFU  —120.42 35.89 1 23969 29082 37687 14486 312 384 494 192 | 26.7 259 37.2 7.4 7.1 5.1 8.7 1.7
9-67 FFU —-120.49 3591 1 29822 23653 38063 21584 448 373 583 215 | 17.5 11.1  20.7 6.7 3.0 2.8 4.0 1.5
9-68 GFU  —120.35 35.83 1 10389 9237 13901 8959 168 136 216 116 6.0 5.7 8.3 2.1 1.0 1.1 1.5 0.6
9-69 JFU —120.43 35.94 1 44427 29030 53071 20444 487 609 780 301 | 30.2 25.6 39.6 9.6 4.6 2.7 5.4 1.9
9-70 KFU  —120.20 35.71 0 8738 777l 11694 12730 144 167 220 159 6.1 10.7 123 44 1.0 1.9 2.1 0.3
9-71 MFU —120.50 35.96 1 6310 8970 10967 4167 181 402 441 108 | 26.0 29.4 39.3 8.4 8.2 6.7 10.6 2.4
9-72 PHOB —120.48 35.87 1 15383 9903 18295 11940 269 251 367 171 | 22,5 19.6  29.8 9.2 5.0 3.8 6.3 1.4
9-73 RFU  —120.25 35.62 1 1948 1942 2751 3742 45 47 65 53 1.8 3.1 3.6 1.7 0.3 04 0.5 0.3
9-74 VFU  —120.53 35.92 1 12080 8032 14507 9496 184 256 315 145 | 16.9 224  28.1 6.3 3.8 4.5 5.9 1.7
9-75 WFU —120.51 35.81 0 22457 17785 28647 10001 335 183 382 167 9.9 58 114 4.4 1.0 1.5 1.8 0.4
10-1 FKS021 139.87  37.65 0 2742 5700 6326 1144 103 135 170 22 6.6 4.5 8.0 1.5 1.7 2.6 3.1 0.7
10-2 FKS022 139.65  37.60 0 4387 5041 6682 4602 148 132 198 71 7.7 9.6 123 B2 1.6 2.2 2.7 1.0
10-3 FKS023 139.93  37.47 0 1352 1114 1752 940 62 51 80 17 4.7 4.6 6.6 1.6 2.0 1.5 2.5 1.0
10-4 FKS025 139.90 37.31 0 2855 3450 4478 2321 59 50 7 44 2.5 1.9 3.1 1.5 1.0 0.9 1.3 0.7
10-5 FKS026 139.54  37.26 0 7255 5068 8849 6031 132 111 173 60 4.7 3.6 5.9 3.7 1.8 1.3 2.2 1.2
10-6 FKS027 139.68  37.07 0 6990 6326 9428 3288 84 70 109 33 1.4 1.7 2.2 3.0 0.7 1.0 1.3 1.5
10-7 FKS028 139.32  37.35 0 9252 6429 11266 11436 167 141 219 123 | 12.3  12.1 173 4.3 3.1 3.1 4.4 1.3
10-8 FKS029 139.38  37.01 0 11551 14292 18376 6367 172 215 275 70 3.6 3.6 5! 2.8 1.1 0.7 1.2 1.6
10-9 FKS030 139.52  37.45 0 6553 10413 12304 4124 98 145 175 50 5.4 4.4 6.9 2.3 1.8 1.7 2.5 1.2
10-10 | FKSHO1 139.72 37.75 0 4300 3837 5763 1786 59 49 7 17 1.5 2.6 3.0 0.9 0.8 0.9 1.2 0.7
10-11 | FKSHO03 139.76 37.61 0 2353 2517 3445 2191 79 101 128 53 6.9 4.8 8.4 3.1 1.5 1.8 2.4 1.0
10-12 | FKSHO04 139.82 37.45 0 5187 2035 5572 1592 95 41 104 21 2.7 2.8 3.9 1.9 1.6 1.7 2oty 1.4
10-13 | FKSHO5 139.88 37.25 0 3056 2629 4031 2174 67 60 90 26 2.3 3.0 3.8 14 1.0 0.9 1.4 08
10-14 | FKSHO6 139.52 37.17 0 7319 5694 9273 6677 147 126 194 76 4.2 4.6 6.2 3.4 1.6 1.0 1.9 1.7
10-15 | FKSHO7 139.38 37.01 0 10731 17377 20423 10275 101 149 180 90 2.8 2.5 3.8 2.6 1.0 0.6 1.2 1.6
10-16 | FKSH21 139.32 37.34 0 19418 9751 21729 13091 362 247 438 137 | 188 156 244 5.0 3.1 1.8 3.5 1.1
10-17 | GNMO002 138.97 36.78 0 17211 19606 26089 17473 279 341 441 195 7.0 6.4 9.4 3.1 1.1 1.2 1.7 1.7
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Table B.2: Continued.

Jerk (cm/s3)

Acceleration (cm/s?)

Velocity (cm/s)

Displacement (cm)

No. ID lon. lat. NF

EW NS Hor. UD EW NS Hor. UD EW NS Hor. UDb | EW NS Hor. UD
10-18 | GNMO003  139.08 36.66 0 19772 26288 32894 8373 293 359 463 126 6.8 8.7 11.1 3.4 1.4 1.8 Poid) 1.7
10-19 | GNMOO7  139.01 36.46 0 2970 3770 4800 1462 52 82 97 39 3.2 3.3 4.6 1.8 2.2 1.7 2.7 1.1
10-20 | GNMHO07 139.21 36.70 0 7315 5514 9160 7448 103 69 124 65 2.5 2.2 B 2.1 1.3 1.7 2.2 1.6
10-21 | GNMHO08 138.53  36.49 0 389 433 582 267 15 13 19 3.4 3.3 4.8 1.3 2.2 2.1 3.0 0.7
10-22 | GNMHO09 13891 36.62 0 1186 1406 1840 699 20 25 32 1.7 1.8 2.5 1.5 0.9 1.4 1.6 1.3
10-23 NGNO001 138.37  36.85 0 1933 2213 2938 1610 78 74 107 34 8.1 5.7 9.9 3.6 3.1 1.3 3.3 1.5
10-24 NGN002 138.21  36.80 0 3417 2922 4496 1011 101 114 152 34 5.2 5.8 7.8 3.4 2.5 ol 4.0 1.8
10-25 NGN003 138.42  36.74 0 3631 4840 6051 2563 70 93 117 29 3.2 2.5 4.1 1.2 0.7 0.8 1.1 0.7
10-26 NIG003 138.33  38.00 0 4840 4382 6529 4009 76 89 117 41 3.4 4.3 5.5 1.3 2.1 2.0 2.9 0.5
10-27 NIGO008 139.41  38.05 0 2653 2796 3854 2354 53 47 71 26 2.4 2.3 3.3 1.2 1.2 1.3 1.7 0.9
10-28 NIGO10 139.01 37.91 0 3450 2818 4454 1321 104 69 124 34 8.1 7.7 11.2 2.4 5.2 4.8 7.1 1.7
10-29 NIGO11 139.15  37.80 0 1657 1338 2130 661 57 55 79 17 6.3 7.4 9.7 2.7 4.2 4.2 5.9 1.6
10-30 NIGO012 139.48  37.68 0 22084 11263 24790 3376 291 237 375 63 15.1 16.3 22.2 3.8 2.6 3.4 4.3 1.3
10-31 NIGO013 138.89  37.76 0 4669 2405 5252 1242 129 95 161 39 12.2 13.6 18.2 4.4 6.4 8.1 10.3 2.4
10-32 NIGO014 138.96  37.64 0 2137 3801 4360 3777 96 118 152 76 14.9 14.8 21.0 7.0 8.0 7.0 10.6 B2
10-33 NIGO015 139.19  37.69 0 3638 3074 4763 2133 79 67 103 29 3.8 5.1 6.3 2.6 1.7 2.2 2.8 1.5
10-34 NIGO016 138.77  37.64 0 3611 4513 5780 1648 86 103 134 37 5.6 6.3 8.4 2.4 2.9 2.2 3.7 1.6
10-35 NIGO17 138.85  37.44 1 20586 15758 25925 18012 369 468 596 331 21.6 49.0 53.5 15.7 | 14.1 15.6  21.0 4.8
10-36 NIGO018 138.56  37.37 0 4639 4850 6711 3125 144 98 174 76 Sl 14.0 34.3 6.6 9.2 4.7 10.3 4.7
10-37 NIGO019 138.79  37.30 1 39122 27548 47848 73872 | 1308 1147 1740 820 | 170.7 130.0 214.6 34.3 | 31.1 18.0 359 13.3
10-38 NIG020 138.97 37.23 1 18744 23183 29813 22737 407 521 662 312 30.6 32.4 446 123 8.5 11.8 145 5.8
10-39 NIG021 138.75  37.13 1 44384 71142 83852 27738 850 1716 1914 564 44.5 51.0 67.7 13.4 6.0 10.1 11.8 5.2
10-40 NIG022 138.85  37.03 1 12139 10519 16063 8634 342 342 483 127 20.0 21.0 29.0 3.9 3.9 4.8 6.2 14
10-41 NIG023 138.66  37.01 0 11115 12164 16477 3551 275 397 483 86 26.2 25.0 36.2 10.2 4.8 6.9 8.4 5.4
10-42 NIG024 138.45 37.12 0 9373 7205 11822 2704 218 240 324 55 9.4 13.3 16.3 3.8 4.3 3.8 5.8 2.9
10-43 NIG025 138.23  37.16 0 2917 2983 4172 1159 200 190 276 38 18.1 16.3 24.3 2.9 3.6 2.3 4.2 2.1
10-44 NIG026 138.25  37.02 0 1959 2692 3329 1271 78 71 106 18 4.2 3.7 5.6 2.7 2.2 3.0 3.7 2.0
10-45 NIG027 137.87  37.02 0 2899 2125 3594 1135 61 58 84 16 1.8 2.5 3.1 1.1 1.1 1.1 1.5 0.9
10-46 NIG028 138.89  37.42 1 33284 65947 73870 27991 706 870 1121 436 67.6 66.3 94.7 25.0 | 12.0 14.7 18.9 8.0
10-47 NIGHO1 138.89  37.42 1 21865 31770 38567 20851 655 818 1048 375 64.6 59.8 88.0 27.5 | 12.1 14.7 19.0 7.9
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Table B.2: Continued.

No. D lon. lat. NF Jerk (cm/s3) Acceleration (cm/s?) Velocity (cm/s) Displacement (cm)
EW NS Hor. UD | EW NS Hor. UD | EW NS Hor. UDb | EW NS Hor. UD
10-48 NIGHO05 139.28  37.97 0 3260 3837 5035 1532 88 93 128 17 4.3 5.6 7.1 1.9 3.3 2.5 4.1 1.3
10-49 NIGHO06 139.07  37.65 0 7198 8939 11476 6292 410 357 543 205 | 29.1 36.8 46.9 12.7 3.3 4.0 5.2 1.7
10-50 NIGHO07 139.26  37.66 0 8433 5179 9896 4462 128 115 172 50 3.5 3.3 4.8 1.8 0.8 1.7 1.9 1.2
10-51 NIGHO08 139.47  37.67 0 7804 5569 9587 4245 140 126 188 59 9.9 109 14.7 4.0 2.4 5.0 5.5 1.4
10-52 NIGHO09 139.13  37.54 0 17092 17885 24739 27925 390 368 537 245 | 17.8 149 23.3 5.6 2.8 3.0 4.1 1.6
10-53 NIGH10 139.37  37.54 0 8859 8082 11992 6496 131 214 251 99 7.8 114 13.8 3.3 1.5 2.2 2.7 1.3
10-54 NIGH11 138.75  37.17 1 30584 26406 40406 28540 588 454 743 325 | 56.2 36.1 66.8 12.7 | 12.3 10.8 16.3 4.7
10-55 NIGH12 138.99  37.22 1 15530 21580 26587 38015 345 410 536 325 | 21.1 209 29.7 9.1 7.8 6.0 9.8 4.1
10-56 NIGH13 138.40 37.05 0 3163 2193 3849 1496 84 67 107 28 5.6 5.6 7.9 3.3 2.1 2.6 3.3 2.8
10-57 NIGH15 139.00 37.05 0 12812 24317 27486 8154 183 243 304 119 9.1 7.2 11.6 5.3 1.7 2.6 3.1 2.1
10-58 NIGH16 137.85  36.94 0 1586 1594 2249 1671 30 29 41 18 1.1 1.2 1.7 0.6 0.4 0.9 1.0 0.4
10-59 NIGH17  138.10 36.85 0 856 980 1301 634 52 67 85 39 6.4 5.3 8.3 3.4 2.3 1.7 2.8 1.5
10-60 NIGH18 138.26  36.94 0 3082 2804 4167 1049 110 96 146 44 6.0 8.9 10.7 3.4 3.8 3.4 5.1 2.4
10-61 NIGH19 138.79  36.81 0 3736 4536 5876 3008 75 72 103 33 2.3 3.2 3.9 1.9 1.4 0.8 1.6 1.2
10-62 TCG003 139.72  36.81 0 1766 1715 2461 298 52 47 70 5 2.3 1.6 2.8 0.4 0.6 0.8 1.0 0.3
10-63 | TCGO09  139.72  36.72 0 3224 2278 3947 3048 120 86 148 61 4.4 4.4 6.2 1.5 0.9 0.9 1.2 0.6
10-64 | TCGHO7 139.46 36.88 0 7213 7191 10186 8740 100 160 189 74 2.7 4.2 5.0 1.9 1.1 0.8 1.4 1.7
10-65 | TCGHO08 139.65 36.88 0 2373 2459 3417 2072 43 51 67 28 2.0 2.3 3.1 1.6 0.7 0.8 1.1 1.0
10-66 | TCGH09 139.84 36.86 0 1858 1584 2441 1101 31 28 42 21 1.6 1.5 2.2 1.6 0.9 0.8 1.2 1.3
10-67 | TCGHI7 139.70  36.98 0 6378 5714 8563 4652 66 53 85 38 1.6 1.3 2.0 1.5 0.9 0.7 1.1 1.1
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