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Abstract

The centralized paradigm of a single controller and a single plant upon which modern

control theory is built is no longer applicable to modern cyber-physical systems of

interest, such as the power-grid, software defined networks or automated highways

systems, as these are all large-scale and spatially distributed. Both the scale and

the distributed nature of these systems has motivated the decentralization of control

schemes into local sub-controllers that measure, exchange and act on locally available

subsets of the globally available system information. This decentralization of con-

trol logic leads to different decision makers acting on asymmetric information sets,

introduces the need for coordination between them, and perhaps not surprisingly

makes the resulting optimal control problem much harder to solve. In fact, shortly

after such questions were posed, it was realized that seemingly simple decentralized

optimal control problems are computationally intractable to solve, with the Wisten-

hausen counterexample being a famous instance of this phenomenon. Spurred on

by this perhaps discouraging result, a concerted 40 year effort to identify tractable

classes of distributed optimal control problems culminated in the notion of quadratic

invariance, which loosely states that if sub-controllers can exchange information with

each other at least as quickly as the effect of their control actions propagates through

the plant, then the resulting distributed optimal control problem admits a convex

formulation.

The identification of quadratic invariance as an appropriate means of “convexify-

ing” distributed optimal control problems led to a renewed enthusiasm in the controller

synthesis community, resulting in a rich set of results over the past decade. The con-

tributions of this thesis can be seen as being a part of this broader family of results,



xvi

with a particular focus on closing the gap between theory and practice by relaxing or

removing assumptions made in the traditional distributed optimal control framework.

Our contributions are to the foundational theory of distributed optimal control, and

fall under three broad categories, namely controller synthesis, architecture design and

system identification.

We begin by providing two novel controller synthesis algorithms. The first is a

solution to the distributed H∞ optimal control problem subject to delay constraints,

and provides the only known exact characterization of delay-constrained distributed

controllers satisfying an H∞ norm bound. The second is an explicit dynamic pro-

gramming solution to a two player LQR state-feedback problem with varying delays.

Accommodating varying delays represents an important first step in combining dis-

tributed optimal control theory with the area of Networked Control Systems that

considers lossy channels in the feedback loop. Our next set of results are concerned

with controller architecture design. When designing controllers for large-scale sys-

tems, the architectural aspects of the controller such as the placement of actuators,

sensors, and the communication links between them can no longer be taken as given

– indeed the task of designing this architecture is now as important as the design of

the control laws themselves. To address this task, we formulate the Regularization for

Design (RFD) framework, which is a unifying computationally tractable approach,

based on the model matching framework and atomic norm regularization, for the si-

multaneous co-design of a structured optimal controller and the architecture needed

to implement it. Our final result is a contribution to distributed system identification.

Traditional system identification techniques such as subspace identification are not

computationally scalable, and destroy rather than leverage any a priori information

about the system’s interconnection structure. We argue that in the context of system

identification, an essential building block of any scalable algorithm is the ability to

estimate local dynamics within a large interconnected system. To that end we pro-

pose a promising heuristic for identifying the dynamics of a subsystem that is still

connected to a large system. We exploit the fact that the transfer function of the

local dynamics is low-order, but full-rank, while the transfer function of the global
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dynamics is high-order, but low-rank, to formulate this separation task as a nuclear

norm minimization problem. Finally, we conclude with a brief discussion of future

research directions, with a particular emphasis on how to incorporate the results of

this thesis, and those of optimal control theory in general, into a broader theory of

dynamics, control and optimization in layered architectures.
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Chapter 1

Introduction

Plant

Controller

M
ea

su
re

m
en

ts

C
on

trol
A

ction
s

Environment

Closed Loop System

Norm optimal control:
minimize
Controller

kClosed Loop Systemk

Figure 1.1: A schematic diagram
of norm-optimal control. The ob-
jective is to design a feedback
controller that minimizes the size
(as measured by an appropriate
signal-to-signal norm) of the sys-
tem’s closed-loop response to the
environment.

Robust and optimal control theory [2, 3] have

been active areas of research since the 1970s:

they aim to provide rigorous mathematical meth-

ods for analyzing and designing complex cyber-

physical systems that are composed of a physical

plant coupled in feedback with a controller. The

need for control theory, and robust control theory

in particular, arises from the inherent uncertainty

present in any model of a complex physical sys-

tem – this uncertainty captures un-modeled dy-

namics, measurement errors, and exogenous dis-

turbances from the environment. Indeed even if

we could obtain a perfect model of a given phys-

ical system and its environment, it would be too

complex (i.e., high-dimensional and nonlinear) to

be amenable to any kind of useful analysis. The

role of feedback control is thus to mitigate and

minimize undesirable behavior in a system despite our inability to exactly model the

world.

Minimizing the undesirable behavior of a system due to uncertainty has been

formalized via the concept of norm optimal control, in which one seeks to compute
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a feedback controller that minimizes the size (as capture by an appropriate signal-

to-signal norm) of the system’s closed-loop response to the environment (this may

include model-uncertainty, exogenous disturbances or measurement errors) – see Fig.

1.1 for an illustration. When dealing with linear systems, as we do in this thesis, this

formulation establishes a natural connection to mathematical optimization theory,

and to convex analysis and optimization in particular. This connection will be a

cornerstone of our results, and play a determining role when we move to extend

classical centralized results to distributed settings.

1.1 Non-Classical Information Sharing Constraints

Robust and optimal control theory were originally formulated in the context of cen-

tralized control: that is to say a single physical system coupled in feedback with a

single control unit (cf. Fig 1.2a) – this was indeed a reasonable paradigm for the

dominant applications of the time such as aerospace and chemical process control.

However, modern cyber-physical systems such as the smart-grid, software defined

networks and automated highway systems are large-scale and spatially distributed

– this shift has motivated the study of decentralized and distributed control prob-

lems. In such problems, the plant is modeled as being composed of a collection of

subsystems interacting according to some physical topology, and each subsystem is

equipped with a sub-controller. These sub-controllers acquire and exchange local mea-

surements according to a communication topology, and take actions based on their

locally available subsets of the global plant information. In this thesis we use the term

decentralized (cf. Fig 1.2b) to refer to control schemes in which local sub-controllers

exchange no information with other sub-controllers, and distributed (cf. Fig 1.2c) to

refer to control schemes in which local sub-controllers exchange information. We use

the blanket term non-classical information sharing to refer to a setting in which the

control scheme is not centralized.
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(c) Distributed control for a sys-
tem composed of two subsystems.

Figure 1.2: Schematics of centralized, decentralized and distributed control architec-
tures.

We now provide a brief overview of the relevant aspects of the rich literature

on norm optimal control subject to non-classical information sharing, and refer the

interested reader to the excellent review paper [4] and the references therein for a

more exhaustive and in depth exploration of these ideas. Non-classical information

sharing leads to an asymmetry in the information available to each sub-controller –

it was realized early on that this asymmetry can make seemingly simple optimal con-

trol problems (e.g., those with linear dynamics, Gaussian disturbances and quadratic

costs) have extremely complex solutions. The canonical example of such a “hard sim-

ple” problem is the Witsenhausen counterexample [5], illustrated in Fig. 1.3 – this

well studied problem (cf. [6, 7] and references therein) is one for which a nonlinear

control policy can perform arbitrarily better than a linear control policy. Informally,

Witsenhausen’s counterexample is a difficult control problem because it involves an

implicit communication problem: controller C1 must attempt to communicate the

value x0 (via x1 = x0 +u1) to controller C2 through a channel corrupted by the Gaus-

sian noise z, all while minimizing control effort. It is this mixing of communication

and control that can be viewed as leading to the computational difficulties of the

problem.
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Figure 1.3: A schematic of Witsenhausen’s counterexample [courtesy of wikipedia],
a control problem subject to non-classical information sharing constraints for which
nonlinear control can arbitrarily outperform linear control.

This observation led to a concerted effort in the control community to identify

computationally tractable control problems subject to non-classical information shar-

ing. An early and important result in this direction was the work by Ho and Chu

on partial nestedness [8] which stated that an LQG control problem subject to non-

classical information sharing constraints admits a unique optimal control policy that

is linear in the information of each sub-controller if information is shared quickly

enough between sub-controllers. We defer a formal discussion of partial nestedness

to Chapter 3, and instead provide here some intuition behind the result. In [8], the

authors show that optimal control policies are unique and linear if sub-controllers can

exchange information at least as quickly as their control actions propagate through

the plant. In this way, any incentive for sub-controllers to attempt to signal to each

other through the plant (as in the Witsenhausen counterexample) is removed, thus re-

establishing a separation between communication and control and yielding a tractable

problem. Indeed this intuition of removing the incentive for sub-controllers to signal

to each other through the plant is a common theme in the subsequent generaliza-

tions of partial nestedness upon which much of modern distributed optimal control

theory is built. These efforts to identify tractable classes of distributed optimal con-

trol problems culminated with the notion of quadratic invariance [9, 10], which is a

simple algebraic condition that ensures that model-matching problems subject to non-

classical information sharing constraints admit a convex reformulation via the Youla

parameterization. As our later work builds on these results, we introduce and discuss

relevant concepts from model matching and quadratic invariance theory as needed in
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Chapters 2, 4 and 5.

It is important to note however, that convexity is often necessary but not imme-

diately sufficient to guarantee the computational tractability of an optimal control

problem. This is because in general, even if a distributed optimal control problem

admits a convex formulation, the resulting convex optimization problem may still be

infinite dimensional. Indeed, it was a great triumph of centralized modern control the-

ory to reduce the solution of infinite dimensional robust and optimal control problems

to solving two finite dimensional Algebraic Riccati Equations (AREs) [11]. Likewise,

a renewed enthusiasm in the controller synthesis community has led to a bevy of

results that show how certain distributed optimal control problems can be reduced to

solving a finite dimensional optimization problem or set of equations (e.g., [2,12–17]).

1.2 Thesis Contribution and Outline

The contributions of this thesis are to the foundational theory of distributed optimal

control, and can be divided into three categories: synthesis, architecture design and

system identification. Our contributions to distributed optimal controller synthesis

can be found in

• Chapter 2, where we provide a characterization of distributed controllers subject

to delay constraints induced by a strongly connected communication graph that

achieve a prescribed closed loop H∞ norm. Inspired by the solution to the H2

problem subject to delays, we exploit the fact that the communication graph is

strongly connected to decompose the controller into a local finite impulse response

component and a global but delayed infinite impulse response component. This

allows us to reduce the control synthesis problem to a linear matrix inequality

feasibility test. The results of this chapter have been published in [17].

• Chapter 3, where we present an explicit solution to a two player distributed LQR

problem in which communication between controllers occurs across a communica-

tion link with varying delay. We extend known dynamic programming methods to
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accommodate this varying delay, and show that under suitable assumptions, the

optimal control actions are linear in their information, and that the resulting con-

troller has piecewise linear dynamics dictated by the current effective delay regime.

The results of this chapter have been published in [18,19].

The results of Chapter 3 should be viewed as part of a broader agenda of removing

or relaxing the unrealistic assumptions that are made in the distributed optimal

control framework. In Chapter 3, by no longer assuming that delays are fixed, we

allow for a more realistic model of communication channels in which packet drop-outs,

coding, noise, and congestion are captured by the varying end-to-end delay. The rest

of the contributions of this thesis are in line with the overall aim of relaxing unrealistic

assumptions in the existing distributed optimal control literature so as to help close

the gap between theory and practice.

The next assumption that we tackle is that of a preexisting controller architec-

ture, that is to say a preexisting set of sensors, actuators and communication links

connecting them. Indeed, for large-scale cyber-physical systems, the architectural

aspects of the controller can no longer be taken as given, and the task of designing

this architecture is now as important as the design of the control laws themselves. To

that end, in

• Chapter 4 we introduce the Regularization for Design (RFD) framework, which

is a unified computationally tractable approach, built around the model matching

framework and atomic norm minimization [20], for the simultaneous co-design of

a structured optimal controller and the actuation, sensing and communication ar-

chitecture required to implement it. Further, we show that problems formulated

in this framework are natural control-theoretic analogs of prominent approaches

such as the Lasso, the Group Lasso, the Elastic Net, and others that are employed

in structured inference. In analogy to that literature, we show that our approach

identifies optimally structured controllers under a suitable condition on a “signal-

to-noise” type ratio. The results of this chapter have been published in [21,22].

• Chapter 5 we give an explicit construction for an atomic norm useful for the
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design of communication topologies that are well suited to distributed optimal

control. Using this atomic norm we then show that in the context of H2 distributed

optimal control, the communication architecture/control law co-design task can be

performed through the use of finite dimensional second order cone programming.

The results of this chapter have been published in [23].

Finally, an underlying assumption in all of the previous results is that the state-

space parameters specifying the model of the distributed system are given. Such state-

space parameters are most often obtained through system identification techniques.

However, traditional system identification methods developed for centralized systems,

such as subspace identification or prediction error, are not computationally scalable

and do not preserve or identify the structure of the underlying distributed system.

To that end, in

• Chapter 6 we argue that in the context of system identification, an essential

building block of any scalable algorithm is the ability to estimate local dynamics

within a large interconnected system. We show that in what we term the “full

interconnection measurement” setting, this task is easily solved using existing sys-

tem identification methods. We also propose a promising heuristic for the “hidden

interconnection measurement” case, in which contributions to local measurements

from both local and global dynamics need to be separated. Inspired by the machine

learning literature, and in particular by convex approaches to rank minimization

and matrix decomposition, we exploit the fact that the transfer function of the

local dynamics is low-order, but full-rank, while the transfer function of the global

dynamics is high-order, but low-rank, to formulate this separation task as a nuclear

norm minimization. The results of this chapter are based on the preprint [24].

Finally, we end with concluding remarks and directions for future work in Chap-

ter 7.

A note on chapter content: Due to the length of this thesis, we aim to make each

chapter self-contained so as to allow for a modular reading of the document – in doing

so, some redundancy had to be introduced across chapters.
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Chapter 2

Distributed Control subject to Delays
Satisfying an H∞ Norm Bound

2.1 Introduction

The identification of Quadratic Invariance1(QI) [9] as an appropriate condition for

the convexification of structured model matching problems has brought a renewed

enthusiasm and excitement to optimal controller synthesis. In the following discus-

sion, we survey recent results in this area, and in particular comment on three classes

of quadratically invariant constraints: (1) sparsity constraints, in which we assume

no delay in information sharing, but rather a restriction of what measurements each

controller has access to, (2) delay constraints, in which we assume that controllers

communicate with each other subject to delays induced by a strongly connected com-

munication graph, and hence eventually have access to global, but delayed, infor-

mation, and (3) delay-sparsity constraints, in which we allow both restrictions on

measurement access and communication delay between controllers.

Related work: Before proceeding into a more detailed review of QI based results,

it is worth mentioning that novel approaches to distributed control, not based on the

QI framework, have begun to appear in the literature. Representative examples

include: sparsity inducing control [26, 27], convex relaxations of rank constrained

problems [28, 29], the minimization of convex surrogates to traditional performance
1QI [9] is closely related to funnel causality [25], partial nestedness [8] and poset causality [14].
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metrics [30, 31], spatial truncation [32, 33], positive systems [34, 35], and localized

distributed control [36–38].

Returning to QI constraint sets, in the H2 case, explicit state-space solutions exist

for fixed and varying delay constrained [19,39] , sparsity constrained [14,40] and delay-

sparsity constrained [41] state-feedback problems. For the special case of the one-step

delay information sharing pattern, the general H2 problem was solved in the 1970s

using dynamic programming ( [42–44]). When moving to the output feedback case,

specific sparsity constrained problems have been solved explicitly, such as the state-

space solution for the two-player problem [12] and for lower-triangular systems [45].

The delay-sparsity-constrained case has earned considerable attention, with solutions

via vectorization [9] and semi-definite programming [46, 47] existing – we note that

although computationally tractable, in contrast with the sparsity constrained setting,

none of these methods claim to yield a controller of minimal order. In the case of

delay constraints without sparsity, the aforementioned results are applicable, but

an additional method based on quadratic programming and spectral factorization

[16] also exists. It is worth noting that for specific systems, sufficient statistics and

a generalized separation principle have been identified and successfully applied in

work by [48]. Furthermore, recent work by [49, 50] provides dynamic programming

decompositions for the general delayed sharing model.

The landscape of distributed H∞ controller synthesis is comparably much sparser,

so to speak. However, especially in the sparsity constrained case, there has recently

been some progress. In particular, [13] provides a semi-definite programming solution

for the structured optimal H∞ output-feedback problem subject to nested sparsity

constraints. In [51], an explicit state-space representation of the minimum-entropy

solution to the two-player version of this problem is presented. A more general ap-

proach, applicable to all three classes of constraint types, is presented in [52]. It allows

for a principled approximation of the problem via a semi-definite programming based

solution that computes an optimal H∞ controller within a fixed finite-dimensional

subspace. By allowing this finite impulse response (FIR) approximation to be of

large enough order, they are able to achieve near optimal performance in a computa-
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tionally tractable manner.

Contributions: This chapter is based on [17], and aims to provide a solution

to the sub-optimal distributed H∞ control problem subject to delay constraints – in

particular, we seek a delay constrained controller that achieves a prescribed closed

loop norm. Inspired by the results in [16], we exploit the fact that the controller can

be written as a direct sum of a local FIR filter and a delayed, but global, infinite

impulse response (IIR) element, and show that the synthesis problem can be reduced

to a linear matrix inequality (LMI) feasibility test.

A caveat is that our method is based on the so-called “1984” approach to H∞
control, and as such, suffers from the same computational burden that the centralized

solution is subject to. We do not claim that our solution is computationally scalable,

but provide it rather as evidence that in the case of delay constrained H∞ synthesis,

the problem admits a finite-dimensional formulation. Our hope is that this result,

much as was the case for its centralized analogue, will be a stepping stone to more

computationally scalable and explicit results.

Chapter organization: This chapter is organized as follows: Section 2.2 estab-

lishes notation, and formalizes the distributed H∞ model matching problem subject

to delay constraints. In Section 2.3, we provide a refresher on the “1984” solution

to the H∞ problem, as described in [53]. Section 2.4 provides the main result of the

chapter, and we demonstrate our algorithm on a three-player chain example in Section

2.5. We end with a discussion and conclusions in Section 2.6, and Section 2.7 contains

useful formulae for computing the transfer matrix factorizations and approximations

required by our method.

2.2 Problem Formulation

In all of the following, we work in discrete-time.
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2.2.1 Notation and Operator Theoretic Preliminaries

Here we establish notation and remind the reader of some standard results from

operator theory, taken from [53].

• H2 denotes the set of stable proper transfer matrices that are norm square integrable

on the unit circle with vanishing negative Fourier coefficients; i.e. if G ∈ H2 then

H(z) =
∑∞

i=0 Hiz
−i and ‖H‖2

2 = trace (
∑∞

i=0 H
∗
iHi).

• H∞ denotes the set of stable proper transfer matrices. Note that G ∈ H∞ implies

G ∈ H2.

• L∞ denotes the frequency domain Lesbesgue space of essentially bounded functions.

• The prefix R to a set X indicates the restriction to real-rational members of X .

• ‖ · ‖∞ denotes the norm on L∞.

• For R ∈ L∞, let dist (R,H∞) := inf{‖R−X‖∞ : X ∈ H∞}.

• ‖ · ‖ denotes the spectral norm (maximum singular value).

• For a transfer matrix G ∈ RL∞, G∼ denotes its conjugate, i.e. G∼(z) = G∗(z−1).

• For a transfer matrix G ∈ RL∞, G† denotes its Moore-Penrose pseudo-inverse.

• ⊕, and ⊥, denote the direct sum, and orthogonality, respectively, as defined with

respect to the standard inner product on H2.

• Decompose R ∈ RL∞ as R = R∼1 + R2, with R1, R2 ∈ RH∞, and R1 strictly

proper. We shall refer to (R1, R2) as an anti-stable/stable decomposition of R.

• ΓF denotes the Hankel operator with symbol F , that is to say the Hankel mapping

from H2 to H⊥2 . Note that if (F1, F2) is an anti-stable/stable decomposition of F ,

then ΓF = ΓF∼1 .
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• Γ̃F denotes the adjoint Hankel operator with symbol F , that is to say the Hankel

mapping from H⊥2 to H2. The following useful fact then holds:

‖ΓF‖ = ‖ΓF∼1 ‖ = ‖Γ̃F1‖. (2.1)

• ∆N denotes the N-delay operator, i.e. ∆NG = 1
zN
G.

2.2.2 The model-matching problem subject to delay

We provide a brief overview of the distributed optimal control problem subject to

delay, and refer the reader to [16] for a much more thorough and general exposition.

Let P be a stable discrete-time plant given by

P =




A B1 B2

C1 0 D12

C2 D21 0


 =


P11 P12

P21 P22


 (2.2)

with inputs of dimension p1, p2 and outputs of dimension q1, q2. We restrict attention

to stable plants for simplicity. These methods could also be applied to an unstable

plant if a stable stabilizing nominal controller can be found, as in [9]. Future work

will look to incorporate the results in [16], which are based on those in [54], into our

procedure so as to have a general solution to the model matching problem.

Throughout, we assume thatDT
12D12 > 0, D21D

T
21 >0, CT

1 D12 = 0, and B1D
T
21 = 0,

so as to ensure the existence of stabilizing solutions to the necessary discrete algebraic

Riccati equations (DAREs).

ForN ≥ 1, define the space ofRH∞ FIR transfer matrices by XN = ⊕N−1
i=0

1
zi
Cp2×q2 .

In this paper, we are concerned with controller constraints described by delay

patterns that are imposed by strongly connected communication graphs. As such, let

S ⊂ RH∞ be a subspace of the form

S = Y ⊕∆NRH∞ (2.3)
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Fig. 2. The graph depicts the the communication structure of the three-
player chain problem. Players 1 and 3 pass information to player 2 after
a single step delay, while player 2 passes information to players 1 and 3
after a single step of delay.

V. NUMERICAL EXAMPLES

The results in this paper demonstrate that decentralized
model matching with communication delays can be effi-
ciently solved by optimization. In particular, aside from cen-
tralized Riccati equations, the only numerical computation
required is a quadratic program specified by Equations (26)
and (27). This section demonstrates the method with a few
examples.

A. The Chain Problem

The three-player chain structure, [8], is a delayed informa-
tion sharing pattern specified by the graph in Figure 2. In the
frequency domain, the information structure is represented
by the constraint K ∈ SCh = YCh ⊕ 1

z3 Rp, where YCh is
given in Equation (4). Consider the plant specified by

A =




0.5 0.2 0
0.2 0.5 0.2
0 0.2 0.5


 ,

B =
�

I3×3 03×3 I3×3

�
,

C =




I3×3

03×3

I3×3


 ,

D =




03×3 03×3 03×3

03×3 03×3 I3×3

03×3 I3×3 03×3


 .

For comparison purposes, the optimal H2 norm was com-
puted using model matching from this paper, the LMI method
of [16], [17], and the vectorization method of [15]. In all
three cases the norm was found to be 2.1082. In contrast, the
centralized controller, Q0, gives a norm of 2.0853, while the
delayed controller, Q2, gives a norm of 2.1780. This is to be
expected, since the controller obeying the three-player chain
structure is more constrained than Q0, but less constrained
than Q2: 1

z3 H2 ⊂
�
SCh ∩ 1

z H2

�
⊂ 1

z H2.

B. Increasing Delays

Consider the plant with matrices given by

A =




1 0.2 0 0
−0.2 0.8 0 0.2

0 0 1 0.2
0 −0.2 −0.2 0.8


 ,

B =




0 0 0 0 0 0
0.2 −0.2 0 0 0.2 0
0 0 0 0 0 0

0.2 0.2 0 0 0 0.2


 ,

10 20 30 40 50 60 70 80 90 100
6

6.2

6.4

6.6

6.8

7

7.2

Delay (N)

N
or

m

Undelayed
Triangular
Diagonal
Lower
Pure Delay

Fig. 3. This plot shows the closed-loop norm for QN
Tri, QN

Di, QN
Low, and

QN (the pure delay case). For a given N , the controllers with fewer sparsity
constraints give rise to lower norms. As N increases, all of the norms
increase monotonically since the controllers have access to less information.
The dotted lines correspond to the optimal norms for sparsity structures
given in Equation (28). For pure delay, QN → 0 as N → ∞, and thus the
norm approaches the open-loop value.

C =




10 0 −10 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0




,

D =




0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0




.

For N ≥ 1, let QN
Tri, QN

Di, and QN
Low solve the decentral-

ized model matching problem, Equation (3), with the form

QN
Tri = UN

Tri + V N
Tri,

QN
Di = UN

Di + V N
Di ,

QN
Low = UN

Low + V N
Low.

Here UN
Tri, UN

Di, UN
Low ∈ 1

zN+1 H2 and V N
Tri, V N

Di , V N
Low are

FIR transfer matrices with sparsity structure given by

V N
Tri =

N�

i=1

1

zi

�
∗ 0
∗ ∗

�
,

V N
Di =

N�

i=1

1

zi

�
∗ 0
0 ∗

�
,

V N
Low =

N�

i=1

1

zi

�
0 0
0 ∗

�
.

The resulting norms are plotted in Figure (3).
As N → ∞, the resulting controllers appear to approach

Figure 2.1: The graph depicts the communication structure of the three-player chain problem.
Edge weights (not shown) indicate the delay required to transmit information between nodes.

where

Y = ⊕N−1
i=0

1

zi
Yi ⊂ ⊕N−1

i=0

1

zi
Rp2×q2 ⊂ XN . (2.4)

Specifically, this implies that every decision-making agent has access to all mea-

surements that are at least N time-steps old.

We can therefore partition the measured outputs y and control inputs u according

to the dimension of the subsystems:

y = [ yT1 · · · yTm]T u = [ uT1 · · · uTn ]T

and then further partition each constraint set Yi as

Yi =




Y11
i · · · Y1m

i

...
. . .

...

Yn1
i · · · Ynmi


 , (2.5)

where

Yjki =




Rpj2×qk2 if uj has access to yk at time i

0 otherwise

(2.6)

and
∑n

j=1 p
j
2 = p2,

∑m
k=1 q

k
2 = q2.

Example 2.1 Consider the three player chain problem as illustrated in Figure 2.1,
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with communication delay τc between nodes. Then

S =




RH∞ 1
zτc
RH∞ 1

z2τcRH∞
1
zτc
RH∞ RH∞ 1

zτc
RH∞

1
z2τcRH∞ 1

zτc
RH∞ RH∞




= ⊕2τc−1
i=0

1
zi
Yi ⊕∆2τcRH∞

(2.7)

with

Yi =








∗ 0 0

0 ∗ 0

0 0 ∗




for 0 ≤ i < τc




∗ ∗ 0

∗ ∗ ∗

0 ∗ ∗




for τc ≤ i < 2τc,

(2.8)

where, for compactness, * is used to denote a space of appropriately sized real matrices.

In this setting, every decision maker then has access to all measurements that are at

least 2τc time-steps old.

The distributed control problem of interest is to design a controller K ∈ S so as

to achieve a pre-defined closed loop H∞ norm. Specifically, the problem is to find an

internally stabilizing K ∈ S such that

||P11 + P12K(I − P22K)−1P21||∞ ≤ γ (2.9)

for some pre-defined γ > γinf , where γinf is the optimal achievable closed loop H∞
norm.

In order to reformulate this problem as a convex model matching problem, we

require the notion of QI.
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Definition 2.1 A set S is quadratically invariant under P22 if

KP22K ∈ S for all K ∈ S

In [9], it was shown that if S is quadratically invariant under P22, then K ∈ S
if and only if Q = K(I − P22K)−1 ∈ S. In the case of delay-constraints imposed

by a communication graph, intuitive and easily verifiable conditions for QI can be

stated [10]. Essentially these conditions say that in order to have QI, controllers must

be able to communicate with each other faster than their control actions propagate

through the plant – this is closely related to funnel causality [25], partial nestedness [8]

and poset causality [14].

Thus, if quadratic invariance holds, the feasibility problem (2.9) can be reduced,

via the Youla parameterization, to the following equivalent model matching problem:

Problem 2.1 Find Q ∈ S ⋂RH∞ such that

||T1 − T2QT3||∞ ≤ γ (2.10)

for some γ > γinf , with T1 = P11, T2 = P12 and T3 = P21.

2.3 A Review of “1984” H∞ Control

As our solution is based on the so-called “1984” approach to H∞ control, we review

it in this section. The following is based on material found in chapter 8 of [53].

2.3.1 T3 = I Case

We begin with the solution to the sub-optimal model matching problem with T3 = I

first, as the general case follows from a nearly identical derivation. Specifically, we

consider the problem:
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Problem 2.2 Find Q ∈ RH∞ such that ‖T1 − T2Q‖∞ ≤ γ for some γ > γinf ≥ 0,

where γinf is the optimal achievable closed loop H∞ norm.

In order to state the main result, we first define the following transfer matrices:

1. Let Ui, Uo be an inner-outer factorization of T2 such that T2 = UiUo, with U∼i Ui =

I, and Ui, Uo, U †o ∈ RH∞.

2. Let Y := (I − UiU∼i )T1.

3. For γ > ‖Y ‖∞, let Yo be a bi-stable spectral factor of γ2I − Y ∼Y such that

γ2I − Y ∼Y = Y ∼o Yo, with Yo, Y −1
o ∈ RH∞.

4. Define the RL∞ matrix R := U∼i T1Y
−1
o .

Theorem 2.1 Let α := inf{‖T1 − T2Q‖∞ : Q ∈ RH∞}. Then

1. α = inf{γ : ‖Y ‖∞ < γ, dist (R,RH∞) < 1}, and

2. For γ > α and Q, X ∈ RH∞ such that

• ‖R−X‖∞ ≤ 1, and

• X = UoQY
−1
o ,

we have that ‖T1 − T2Q‖∞ ≤ γ.

Before proving this result, we need the following two preliminary lemmas:

Lemma 2.1 Let U be inner and E ∈ RL∞ be given by

E :=


 U∼

I − UU∼


 .

Then for all G ∈ RL∞, we have that ‖EG‖∞ = ‖G‖∞.
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Lemma 2.2 For F, G ∈ RL∞ with the same number of columns, if

∥∥∥∥∥∥


F
G



∥∥∥∥∥∥
∞

< γ (2.11)

then ‖G‖∞ < γ and ‖FG−1
o ‖∞ < 1, where Go is a bi-stable spectral factor of γ2I −

G∼G.

Conversely, if ‖G‖∞ < γ and ‖FG−1
o ‖∞ ≤ 1, then (2.11) holds.

Lemma 2.3 (Nehari’s Theorem) For any R ∈ RL∞, we have that

dist (R,RH∞) = dist (R,H∞) = ‖ΓR‖,

and that there exists X ∈ RH∞ such that ‖R−X‖∞ = dist (R,RH∞).

We may now prove Theorem 2.1.

Proof:

1) Let γinf := inf{γ : ‖Y ‖∞ < γ, dist (R,RH∞) < 1}.
Choose ε > 0 such that α < γ < α+ ε, implying that there exists Q ∈ RH∞ such

that ‖T1 − T2Q‖∞ < γ. Then, by Lemma 2.1, we have that

∥∥∥∥∥∥


 U∼i

I − UiU∼i


 (T1 − T2Q)

∥∥∥∥∥∥
∞

< γ. (2.12)

Now, notice that 
 U∼i

I − UiU∼i


 T2 =


Uo

0


 , (2.13)

making (2.12) equivalent to

∥∥∥∥∥∥


U

∼
i T1 − UoQ

Y



∥∥∥∥∥∥
∞

< γ. (2.14)
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Applying Lemma 2.2, this then implies that

‖Y ‖∞ < γ, (2.15)

and

‖U∼i T1Y
−1
o − UoQY −1

o ‖∞ < 1 (2.16)

By Lemma 2.3, this in turn implies that dist (R,Uo(RH∞)Y −1
o ) < 1, which, noting

that Uo is right invertible in RH∞ and that Yo is invertible in RH∞, is equivalent to

dist (R,RH∞) < 1 (2.17)

Then, from (2.15) and (2.17), and the definition of γinf we conclude that γinf ≤ γ,

and thus that γ < α + ε. Since ε was arbitrary, we then have that γinf ≤ α.

To prove the reverse inequality, again choose ε > 0 and γ such that γinf < γ <

γinf + ε. Then (2.15) and (2.17) hold, so (2.16) holds for some Q ∈ RH∞. Applying

the converse of Lemma 2.2, this in turn implies that

∥∥∥∥∥∥


U

∼
i T1 − UoQ

Y



∥∥∥∥∥∥
∞

≤ γ. (2.18)

Finally, reversing the above steps, this leads to ‖T1 − T2Q‖∞ ≤ γ. Thus α ≤ γ <

γinf + ε, and hence α ≤ γinf .

2) This follows immediately from the previous derivation.

Thus, a high level outline for computing an H∞ controller satisfying a γ bound in

closed loop is

1. Compute Y and ‖Y ‖∞.

2. Select a trial value γ > ‖Y ‖∞.

3. Compute R and ‖ΓR‖. Then ‖ΓR‖ < 1 if and only if α < γ, so increase or decrease

γ accordingly, and return to step 2 until a sufficiently accurate upper bound for α

is obtained.
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4. Find a matrix X ∈ RH∞ such that ‖R−X‖∞ ≤ 1.

5. Solve X = UoQY
−1
o for a Q ∈ RH∞ satisfying ‖T1 − T2Q‖∞ ≤ γ.

2.3.2 General T3

We now state the result for general T3. First, define the following matrices

1. Let Ui, Uo be an inner-outer factorization of T2 such that T2 = UiUo, with U∼i Ui =

I, and Ui, Uo, U †o ∈ RH∞.

2. Let Y := (I − UiU∼i )T1.

3. For γ > ‖Y ‖∞, let Yo be a bi-stable spectral factor of γ2I − Y ∼Y such that

γ2I − Y ∼Y = Y ∼o Yo, with Yo, Y −1
o ∈ RH∞.

4. Let Vco, Vci be a co-inner-outer factorization of T3Y
−1
o such that T3Y

−1
o = VcoVci

and Vci, Vco, V †co ∈ RH∞.

5. Let Z := U∼i T1Y
−1
o (I − V ∼ci Vci) .

6. If ‖Z‖∞ < 1, let Zco be a bi-stable co-spectral factor of I − ZZ∼ such that I −
ZZ∼ = ZcoZ

∼
co, with Zco, Z−1

co ∈ RH∞.

7. Let R := Z−1
co U

∼
i T1Y

−1
o V ∼ci .

Theorem 2.2 Let α := inf{‖T1 − T2QT3‖∞ : Q ∈ RH∞}. Then

1. α = inf{γ : ‖Y ‖∞ < γ, ‖Z‖∞ < 1, dist (R,RH∞) < 1}, and

2. For γ > α and Q, X ∈ RH∞ such that

• ‖R−X‖∞ ≤ 1, and

• X = Z−1
co UoQVco,

we have that ‖T1 − T2QT3‖∞ ≤ γ.
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Proof: Analogous from that of Theorem 2.1, and therefore omitted.

Similarly, we may outline a general high level algorithm for computing a controller

using Theorem 2.2:

1. Compute Y and ‖Y ‖∞.

2. Select a trial value γ > ‖Y ‖∞.

3. Compute Z and ‖Z‖∞.

4. If ‖Z‖∞ < 1, continue; if not, increase γ and return to step 3.

5. Compute R and ‖ΓR‖. Then ‖ΓR‖ < 1 if and only if α < γ, so increase or decrease

γ accordingly, and return to step 3 until a sufficiently accurate upper bound for α

is obtained.

6. Find a matrix X ∈ RH∞ such that ‖R−X‖∞ ≤ 1.

7. Solve X = Z−1
co UoQVco for a Q ∈ RH∞ satisfying ‖T1 − T2QT3‖∞ ≤ γ.

2.4 Distributed H∞ Control Subject to Delays

As in [16], we exploit the fact that the communication graph is strongly connected

to decompose Q into a local distributed FIR filter V ∈ Y and a global, but delayed,

IIR component ∆ND ∈ 1
zN
RH∞, where in particular, D ∈ RH∞ is unconstrained:

Q = V + ∆D ∈ S, with V ∈ Y , D ∈ RH∞ (2.19)

We will show that when Q admits such a decomposition, the norm bound test

of Theorem 2.1 reduces to verifying the existence of a FIR filter V ∈ Y such that

‖ΓR̂(V )‖ < 1, where R̂(V ) is a transfer matrix to be defined that depends affinely on

V . Further we will show that verifying the existence of such a V , and constructing it

if it exists, can be done by solving a LMI.
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2.4.1 T3 = I Case

We begin with a solution to the T3 = I case to simplify the exposition, as the general

case, much as in the centralized problem, follows from an analogous argument.

Let

• T̂1(V ) := T1 − T2V ,

• T̂2 := T2∆N ,

• Ûi := Ui∆N , Ûo = Uo ∈ RH∞ be inner and outer, respectively, such that T̂2 = ÛiÛo,

and Û−1
o ∈ RH∞.

• R̂(V ) := ∆∼NR− Ûo(∆∼NV )Y −1
o ,

with Y −1
o and R defined as in Section 2.3.1. We then have that

Theorem 2.3 Let α := inf{‖T̂1(V )− T̂2D‖∞ : D ∈ RH∞, V ∈ Y}. Then

1. α = inf{γ : ‖Y ‖∞ < γ, ∃V ∈ Y s.t. dist
(
R̂(V ),RH∞

)
< 1}, and

2. For γ > α and D, X ∈ RH∞ such that

• ‖R̂(V )−X‖∞ ≤ 1, and

• X = ÛoDY
−1
o ,

we have that ‖T̂1(V )− T̂2D‖∞ ≤ γ.

Before proving this result, we will need the following lemma:

Lemma 2.4 For Ŷ (V ) := (I − ÛiÛ∼i )T̂1(V ), we have that Ŷ (V ) = Y , where Y is as

defined in Section 2.3.1.

Proof: Straightforward, and thus omitted.

We may now prove Theorem 2.3.

Proof: 1) Choose ε > 0 such that α < γ < α + ε, implying that there exists

V ∈ Y and D ∈ RH∞ such that ‖T̂1(V )− T̂2D‖∞ < γ.
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We now proceed as in the proof of Theorem 2.1, and premultiply by


 Û∼i

(I − ÛiÛ∼i )


 , (2.20)

and apply Lemma 2.2 to obtain the equivalence between ‖T̂1(V )− T̂2D‖∞ ≤ γ and

∥∥∥∥∥∥


(Û∼i T̂1(V )− ÛoD)

Ŷ (V )



∥∥∥∥∥∥
∞

< γ. (2.21)

By Lemma 2.2 and Lemma 2.4, (2.21) is equivalent to

‖Y ‖∞ < γ (2.22)

and

‖Û∼i T̂1(V )Y −1
o − ÛoDY −1

o ‖∞ < 1. (2.23)

Noting that

Û∼i T̂1(V )Y −1
o = Û∼i T1Y

−1
o − Û∼i (T2∆N)∆∼NV Y

−1
o

= ∆∼NR− Ûo∆∼NV Y −1
o

= R̂(V )

(2.24)

this is then equivalent to

‖R̂(V )− ÛoDY −1
o ‖∞ < 1, (2.25)

which by the arguments of the proof of Theorem 2.1, is equivalent to ‖ΓR̂(V )‖ < 1.

The rest of the proof proceeds as that of Theorem 2.1.

Thus, for a fixed γ, we have reduced the problem to a feasibility test: does there

exist a FIR filter V ∈ Y such that ‖ΓR̂(V )‖ < 1. As per identity (2.1), this is equivalent

to ‖Γ̃R̂1(V )‖ < 1, with (R̂1(V ), R̂2(V )) an anti-stable/stable decomposition of R̂(V ).
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Reduction to a LMI

Let R1 and R2 be an anti-stable/stable decomposition of ∆∼NR. Now, define G(V ) ∈
RH∞ as

G(V ) := ÛoV Y
−1
o

=
∑∞

i=0
1
zi
Gi(V ).

(2.26)

where the terms Gi(V ) are the impulse response elements of G. It is easily verified

that these terms are affine in {Vi}, the impulse response elements of V (i.e. V =
∑N−1

i=0
1
zi
Vi). Note that G(V ) ∈ RH∞ follows from Uo, V, Y

−1
o ∈ RH∞. As such, let

G(V ) :=


 AG BG

CG DG




be a minimal stable realization of G.

We then have that

Ûo∆
∼
NV Y

−1
o = ∆∼NG

= zN
∑∞

i=0
1
zi
Gi(V )

=
∑N

k=1 z
kGN−k(V ) +

∑∞
j=0

1
zj
Gj+N(V )

=: q(V )∼ +NG(V ).

(2.27)

with q(V ) =
∑N

k=1
1
zk
G>N−k(V ) ∈ RH∞ and strictly proper.

Also note that NG(V ) has the following state space representation

NG(V ) =


 AG BG

CGA
N
G CGA

N−1
G BG


 , (2.28)

and is therefore also clearly in RH∞.
The following lemma is an immediate consequence of the previous discussion.

Lemma 2.5 Let R̂(V ) be as defined. Then an anti-stable/stable decomposition of
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R̂(V ) is given by

R̂1(V ) = R1 − q(V )

R̂2(V ) = R2 −NG(V )
(2.29)

From our previous discussion, we have thus reduced the problem to finding an

FIR filter V such that ‖Γ̃R̂1(V )‖ < 1, for R̂1(V ) given as in (2.29).

We begin by deriving a state space representation for R̂1(V ), and then use this

representation to formulate the Hankel norm bound test as a LMI.

First note that q(V ) is simply a strictly causal FIR filter, and thus has a state

space representation given by

q(V ) =


 Aq Bq

Cq(V ) 0


 , (2.30)

where Aq is the down-shift operator (i.e. a block matrix with appropriately dimen-

sioned Identity matrices along the first sub block diagonal, and zeros elsewhere),

Bq = [I, 0 . . . , 0]>, and Cq(V ) = [GN−1(V )>, . . . , G0(V )>]. Note that only Cq(V ) is

a function of our design variable V .

Letting the strictly proper R1 ∈ RH∞ have a minimal stable realization

R1 =


 Ar Br

Cr 0


 (2.31)

we then have the following realization for R̂1(V ) ∈ RH∞:

R̂1(V ) =




Ar 0

0 Aq

Br

Bq

Cr −Cq(V ) 0


 =:


 AR BR

CR(V ) 0


 . (2.32)

We emphasize again that our design variable V appears only in CR(V ).

We now recall the variational formulation for the Hankel norm of a strictly proper

transfer matrix F ∈ RH∞.
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Proposition 2.1 For a system

F =


 A B

C 0


 ∈ RH∞,

we have that ‖Γ̃F‖ < 1 if and only if there exist matrices P, Q ≥ 0 and scalar λ ≥ 0

such that 
A
>QA−Q C>

C −λI


 ≤ 0




−P PB PA

B>P −I 0

A>P 0 −P


 ≤ 0

P −Q ≥ 0

λ < 1

(2.33)

Proof: This is the discrete-time analog of the variational formulation found in

Section 6.3.1 of [55].

Substituting our realization (2.32) into (2.33), we see that this is an LMI in the

variables {Vi}N−1
i=0 , P , Q, and λ, and is feasible if and only if there exists an FIR filter

V ∈ Y such that ‖Γ̃R̂1(V )‖ < 1.

Thus, a high level outline for computing a distributed controller satisfying an H∞
norm bound of γ in closed loop is

1. Compute Y and ‖Y ‖∞.

2. Select a trial value γ > ‖Y ‖∞.
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3. Construct R̂1(V ) and check if the LMI in variables {Vi}N−1
i=0 , Q, P and λ


A
>
RQAR −Q CR(V )>

CR(V ) −λI


 ≤ 0




−P PBR PAR

B>RP −I 0

A>RP 0 −P


 ≤ 0

P −Q ≥ 0

λ < 1

(2.34)

is feasible for V =
∑N−1

i=0
1
zi
Vi ∈ Y . This LMI is feasible if and only if ‖Γ̃R̂1(V )‖ < 1,

which in turn occurs if and only if α < γ, so increase or decrease γ accordingly.

This feasibility test will additionally yield an FIR filter V ∈ Y that satisfies this

bound.

4. Find a matrix X ∈ RH∞, implicitly dependent on V , such that ‖R̂(V )−X‖∞ ≤ 1

(such a matrix is guaranteed to exist by the same arguments as those used in the

centralized case).

5. Solve X = ÛoDY
−1
o for D ∈ RH∞ satisfying ‖T̂1(V )− T̂2D‖∞ ≤ γ.

6. Set Q = V + ∆ND ∈ S
⋂RH∞

2.4.2 General T3

Define the following transfer matrices

1. Ẑ = Û∼i T1Y
−1
o (I − VciV ∼ci ),

2. R̂(V ) := ∆∼NR− Z−1
co Ûo(∆

∼
NV )Vco,

and let Y −1
o , R, Vco and Z−1

co be as defined in Section 2.3.2, and T̂1(V ), T̂2, Ûi and Ûo

be as defined in Section 2.4.1. We note that just as Ŷ (V ) was independent of V , so

too would be the analogous Ẑ(V ) – as such we simply define Ẑ and not Ẑ(V ).
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Theorem 2.4 Let α := inf{‖T̂1(V )− T̂2DT3‖∞ : D ∈ RH∞, V ∈ Y}. Then

1. α = inf{γ : ‖Y ‖∞ < γ, ‖Z‖∞ < 1,∃V ∈ Y s.t. dist
(
R̂(V ),RH∞

)
< 1}, and

2. For γ > α and D, X ∈ RH∞ such that

• ‖R̂(V )−X‖∞ ≤ 1, and

• X = Z−1
co ÛoDVco,

we have that ‖T̂1(V )− T̂2DT3‖∞ ≤ γ.

Proof: Analogous to that of Theorem 2.3, and therefore omitted.

Just as in the T3 = I case, this problem has now been reduced to finding an FIR

filter V ∈ Y such that ‖Γ̃R̂(V )‖ < 1. The arguments of the preceding section apply

nearly verbatim, with the exception of replacing equation (2.26) with

G(V ) := Z−1
co ÛoV Vco (2.35)

Therefore, a high level outline for computing a distributed controller satisfying an

H∞ norm bound of γ in closed loop is

1. Compute Y and ‖Y ‖∞.

2. Select a trial value γ > ‖Y ‖∞.

3. Compute Ẑ and ‖Ẑ‖∞.

4. If ‖Ẑ‖∞ < 1, continue; if not, increase γ and return to step 3.

5. Construct R̂1(V ) according to (2.29), with G(V ) defined as in (2.35), and check if

there exists V ∈ Y such that LMI (2.34) is feasible. This LMI is feasible if and

only if ‖Γ̃R̂1(V )‖ < 1, which in turn occurs if and only if α < γ, so increase or

decrease γ accordingly. This feasibility test will additionally yield an FIR filter

V ∈ Y that satisfies this bound.
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6. Find a matrix X ∈ RH∞, implicilty dependent on V , such that ‖R̂(V )−X‖∞ ≤ 1.

7. Solve X = Z−1
co ÛoDVco for D ∈ RH∞ satisfying ‖T̂1(V )− T̂2DT3‖∞ ≤ γ.

8. Set Q = V + ∆ND ∈ S
⋂RH∞

2.5 Example

For the convenience of the reader, we provide explicit state-space formulae for the

factorizations and approximations required to implement our algorithm in Section

2.7.

We consider a three-player chain with communication delay of τc = 1 – the sparsity

constraint Y on the FIR filter is as given in equation (2.8). We first consider the

simplified case of P21 = I – the remaining dynamics of P11, P12 and P22 are given by

A =




.5 .2 0

.2 .5 .2

0 .2 .5


 , B1 = [I3×3 03×3] B2 = I3×3,

C1 =


I3×3

03×3


 , D11 = 06×6, D12 =


03×3

I3×3




C2 = I3×3, D21 = [03×3 I3×3] , D22 = 03×3,

(2.36)

Note that this is a suitably modified version of the output feedback problem considered

in [16].

We first computed the optimal centralized norm of the system using classical

results [2], and obtained a centralized closed loop norm of .9772. We note that this

is the theoretical lower bound as given by ‖Y ‖∞ from the algorithms we described

above. To verify the consistency of our algorithm, we used our LMI formulation to

compute a centralized controller as well. This was done by allowing the elements of

the FIR filter V0 and V1 to be unconstrained, and not suprisingly, we were also able

to achieve a closed loop norm of .9772 in this manner. We then constrained V to lie

in the subspace Y as given by (2.8), and surprisingly, we were still able to achieve a
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closed loop norm of .9772. This is a significant improvement over the delayed system

(i.e.V0 and V1 constrained to be zero), for which we were only able to achieve a closed

loop norm of 1.6856.

We then considered the general output-feedback problem, with P21 given by the

parameters in (2.36) as well. The centralized and LMI computed centralized closed

loop norms were both found to be 1.502, with the best distributed norm found to

be 1.515. Once again, we see near identical performance from the centralized and

distributed solutions, whereas the delayed controller was only able to achieve a closed

loop norm of 2.213.

2.6 Conclusion

This chapter presented an LMI based characterization of the sub-optimal delay-

constrained distributed H∞ control problem. By exploiting the strongly connected

nature of the communication graph, we were able to reduce the problem to a feasi-

bility test in terms of the Hankel norm of a certain transfer matrix that is a function

of the localized FIR component of the controller. We note that much as in the H2

case, by reducing the control synthesis problem to one that is convex in the FIR filter,

communication delay co-design [23,56] and augmentation [57] methods are applicable.

However, although finite dimensional, this method is based on the “1984” approach to

H∞ control – as such, the computational burden is quite high, limiting the scalability

of the approach.

Future work will therefore focus on the following three aspects: (1) adapting

the parameterization used in [16] so as to relax the assumption of a stable plant,

(2) formally integrating communication delay co-design methods into the controller

synthesis procedure, and most pressingly (3) seeking more direct and computationally

scalable means of identifying appropriate FIR filters.
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2.7 Factorization Formulas

In all of the following, we assume that the conditions needed for the existence of the

required stabilizing solution of the corresponding Discrete Algebraic Riccati Equations

(DARE) are met – the reader is referred to [2] and [58] for more details. All “co-

X” factorizations, where “X” may be either inner-outer or bi-stable spectral, can be

obtained by transposing the “X” factorization of the transpose system.

2.7.1 Inner-Outer Factorizations

Let

G :=


 A B

C D


 ∈ RH∞.

From [2], an inner-outer factorization G = UiUo of G, with Ui inner and Uo outer, is

given by

Ui =


 A+BF BH−1

C +DF DH−1


 (2.37)

Uo =


 A B

−HF H


 (2.38)

with H = (D>D +B>XB)
1
2 , and X the stabilizing solution of the following DARE

X = A>XA+ C>C + A>XBF,

F = −(D>D +B>XB)−1B>XA.
(2.39)

2.7.2 Bi-stable Spectral Factorizations

Let Y ∈ RH∞ be strictly proper, and let

GY =


 AY BY

CY 0




be a state-space realization of the strictly proper RH∞ component of Y ∼Y .
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If AY is invertible, then it holds that

γ2I − Y ∼Y = GY +G∼Y +DY +D>Y

where DY = 1
2

(
γ2I +B>Y A

−>
Y C>Y

)
.

A bi-stable spectral factorization γ2I − Y ∼Y = M∼M , with M, M−1 ∈ RH∞ is

then given by

M =


 AY BY

H−1(CY +B>YXAY ) H


 (2.40)

with H = (DY + D>Y + B>YXBY )
1
2 , and X the stabilizing solution of the following

DARE
X = A>YXAY + (A>YXBY + C>Y )F,

F = −(D>Y +DY +B>YXBY )−1(B>YXAY + CY ).
(2.41)

This result follows directly from standard results on spectral factors and positive

real systems [2]

2.7.3 Stable Approximations

The following is taken from [58]. Let

G :=


 A B

C D


 ∈ RH∞

be a minimal state-space representation, and assume that ρ = ‖Γ̃G‖ < γ. Let X and

Y be the controllability and observability Gramians of G, respectively.

Let Q ∈ RH∞ have the state-space representation

Q :=


 AQ BQ

CQ DQ




with
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AQ = A−BCQ, BQ = AXC> +BE>,

CQ = (E>C +B>Y A)N, DQ = D> − E>,

where N = (γ2I −XY )−1, and for any unitary matrix U ,

E = −(I + CNXC>)−1CNXA>Y B

+ γ(I + CNXC>)−
1
2U(I +B>Y NB)−

1
2 .

Then ‖G−Q∼‖∞ = γ and (G−Q∼)∼(G−Q∼) = γ2I.
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Chapter 3

Optimal Two Player LQR State
Feedback with Varying Delay

3.1 Introduction

As described in Section 2.1, quadratic invariance has spurred on a flurry of activ-

ity in distributed optimal control synthesis subject to sparsity and delay constraints.

However, an underlying assumption in the aforementioned results is that information,

albeit delayed, can be transmitted perfectly across a communication network with a

fixed delay. A realistic communication network, however, is subject to data rate lim-

its, quantization, noise and packet drops – all of these issues result in possibly varying

delays (due to variable decoding times) and imperfect transmission (due to data rate

limits/quantization). The assumption that these delays are fixed necessarily intro-

duces a significant level of conservatism in the control design procedure. In particular,

to ensure that the delays under which controllers exchange information do not vary,

worst case delay times must be used for control design, sacrificing performance and

robustness in the process.

Related work: These issues have been addressed by the networked control sys-

tems (NCS) community, leading to a plethora of results for channel-in-the loop type

problems: see the recent survey by [59], and the references therein. Some of the

more relevant results from this field include the work by [60] and [61], which address

optimal LQG control of a single plant over a packet dropping channel. Very few
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results exist, however, that seek to combine NCS and decentralized optimal control.

A notable exception is the work by [62], in which an explicit state space solution to

a sparsity constrained two-player decentralized LQG state-feedback problem over a

TCP erasure channel is solved.

Chapter contributions: We take a different view from these results, and sup-

press the underlying details of the communication network, and instead assume that

packet drops, noise, and congestion manifest themselves to the controllers as varying

delays. Indeed, as shown in [63], delays play a dominant role in determining closed-

loop performance relative to channel issues such as quantization. In particular, we

seek to extend the distributed state-feedback results of [39, 64] and [15] to accom-

modate varying delays. In addition to allowing for communication channels to be

more explicitly accounted for in the control design procedure, the ability to accom-

modate varying delays provides flexibility in the coding design aspect of this problem

– we are currently exploring the application of deadline based coding schemes devel-

oped by [65], initially designed for real-time video streaming, to optimal decentralized

control.

In this chapter, we focus on a two plant system in which communication between

controllers occurs across a communication link with varying delay. We extend the

dynamic programming methods in [39] and [15] to accommodate this varying delay,

and show that under suitable assumptions, the optimal control actions are linear

in their information, and that the resulting controller has piecewise linear dynamics

dictated by the current effective delay regime. The results in this chapter were first

presented in [18,19].

Chapter organization: This chapter is structured as follows: in Section 3.2

we fix notation, and present the problem to be solved in the chapter. Section 3.3

introduces the concepts of effective delay, partial nestedness (c.f. [8]) and a system’s

information graph (c.f. [15,39]) before presenting our main result. Section 3.4 derives

the optimal control actions and controller, and Section 3.5 ends with conclusions and

directions for future work. Proofs of all intermediary results can be found in Section

3.6.
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3.2 Problem Formulation

We begin by describing the general problem of interest, and then specialize the for-

mulation to the particular case to be addressed in this paper.

Notation

For a matrix partitioned into blocks

M =




M11 · · · M1N

...
. . .

...

MN1 · · · MNN




and s, v ⊂ {1, . . . , N}, we let M s,v = (Mij)i∈s,j∈v.

For example

M{1,2,3}{1,2} =




M11 M12

M21 M22

M31 M32


 .

We denote the sequence xt0 , ..., xt0+t by xt0:t0+t, and given the history of a random

process r0:t, we denote the conditional probability of an event A occurring given this

history by Pr0:t(A). If Y = {y1, . . . , yM} is a set of random vectors (possibly of

different sizes), we say that z ∈ lin (Y) if there exist appropriately sized real matrices

C1, . . . , CM such that z =
∑M

i=1C
iyi.

3.2.1 The two-player problem

This paper focuses on a two plant system with physical propagation delay of D

between plants, and varying communication delays dit ∈ {0, . . . , D} – to ease notation,
we let dt := (d1

t , d
2
t ). We impose some additional assumptions on the stochastic process

dt in Section 3.3 such that the infinite horizon solution is well defined.

The dynamics of the sub-system i are then captured by the following difference
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x1 x2�1 �2 �3

Figure 3.1: The distributed plant considered in (3.6), shown here for D = 4. Dummy
nodes δit, i = 1, . . . , D − 1, as defined by (3.5), are introduced to make explicit the
propagation delay of D between plants.

equation:

xit+1 = Aiix
i
t + Aijx

j
t−(D−1) +Biu

i
t + wit (3.1)

with mutually independent Gaussian initial conditions and noise vectors

xi0 ∼ N (µi0,Σ
i
0), wit ∼ N (0,W i

t ) (3.2)

We may describe the information available to controller i at time t, denoted by

I it , via the following recursion:

I i0 = {xi0}
I it+1 = I it ∪ {xit+1} ∪ {xjk : 1 ≤ k ≤ t+ 1− djt+1}

(3.3)

The inputs are then constrained to be of the form

uit = γit(I it) (3.4)

for Borel measurable γit.

In order to build on the results in [15], we model the two plant system as a

D + 1 node graph, with “dummy delay” nodes introduced to explicitly enforce the

propagation delay between plants. Specifically, letting

δit =


 x1

t−i

x2
t−(D−i)


 , i = 1, . . . , D − 1 (3.5)

where δi is the state of the ith dummy node, we obtain the following state space
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{1}

{2}{�3, 2}

{1, �1}{1, �1, �2}

{�2, �3, 2}

{1, �1, �2, �3}

{�1, �2, �3, 2}

{1, �1:3, 2}

w1
t

w2
t

w2
t�1w2

t�2w2
t�3w2

t�4

w1
t�4 w1

t�3 w1
t�2 w1

t�1
w1

0:t�5

w2
0:t�5

LV
t = {w0:t�4, w

2
t�3}

Figure 3.2: The information graph G = (V , E), and label sets {Lst}s∈V , for system
(3.6), shown here for D = 4, and et = (3, 2). Notice that: (i) for each (r, s) ∈ E , with
|r| < D+1, we have that |s| = |r|+1, (ii) that |s| corresponds exactly to how delayed
the information in the label set is, and (iii) that LVt contains all of the information
at nodes s.t. |s| > eit, s 3 i. We also see that the graph is naturally divided into
two branches, with each branch corresponding to information pertaining to a specific
plant.

representation for the system

xt+1 = Axt +But + wt (3.6)

where, to condense notation, we let

x =




x1

δ1

...

δD−1

x2




u =




u1

0
...

0

u2




w =




w1

0
...

0

w2




, (3.7)

and A and B are such that (3.6) is consistent with (3.1) and (3.5). The physical

topology of the plant is illustrated in Figure 3.1.

Problem 3.1 Given the linear time invariant (LTI) system described by (3.1), (3.5)

and (3.6), with disturbance statistics (3.2), minimize the infinite horizon expected cost

lim
N→∞

1

N
E

[
N∑

t=1

x(t)TQx(t) + u(t)TRu(t)

]
(3.8)
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subject to the input constraints (3.4).

The weight matrices are assumed to be partitioned into blocks of appropriate

dimension, i.e. Q = (Qij) and R = (Rij), conforming to the partitions of x and

u. We assume Q to be positive semi-definite, and R to be positive definite, and in

order to guarantee existence of the stabilizing solution to the corresponding Riccati

equation, we assume (A,B) to be stabilizable and (Q
1
2 , A) to be detectable.

3.3 Main Result

3.3.1 Effective delay

The information constraint sets (3.3) are defined in such a way that controllers do not

forget information that they have already received. This leads to the xj component

of the information set I it being a function of the effective delay seen by the controller,

as opposed to the current delay value of the communication channel djt .

Definition 3.1 Let

ejt := min{djt , djt−1 + 1, djt−2 + 2, . . . , djt−(D−2) + (D − 2), djt−(D−1) + (D − 1)} (3.9)

be the effective delay in transmitting information from controller j to controller i.

Lemma 3.1 The information set available to controller i at time t may be written

as

I it = I it−1 ∪ {xit} ∪ Ijt−ejt (3.10)

Proof: See §3.6.

In order to ensure that the infinite horizon solution is well defined, we assume

that

lim
T→∞

1

T

T−1∑

t=0

Pd0:t

(
eit+1 ≤ d

)
(3.11)
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exists for any integer d, i.e. we assume that the asymptotic distribution of ei, condi-

tioned on its history, is stationary and well defined.

3.3.2 Partial Nestedness

Here we show that the information constraints (3.4) and system (3.6) are partially

nested (c.f. [8]), and hence that the optimal control policies γit are linear in their

information set.

Definition 3.2 A system (3.6) and information structure (3.4) is partially nested if,

for every admissible policy γ, whenever uiτ affects Ijt , then I iτ ⊂ Ijt .

Lemma 3.2 (see [8]) Given a partially nested information structure, the optimal

control law that minimizes a quadratic cost of the form (3.8) exists, is unique, and is

linear.

Using partial nestedness, the following lemma shows that the optimal state and

input lie in the linear span of I it and Ht, where Ht is the noise history of the system

given by

Ht = {x0, w0:t−1} (3.12)

Lemma 3.3 The system (3.6) and information structure (3.4) is partially nested,

and for any linear controller, we have that

xit, u
i
t ∈ lin

(
I it
)

xt, ut ∈ lin (Ht) (3.13)

Proof: See §3.6.
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3.3.3 Information Graph and Controller Coordinates

Lemma 3.3 indicates that each I it is a subspace of Ht: in this section, we exploit

this observation to define pairwise independent controller coordinates. An explicit

characterization of these subspaces is given in Section 3.4.

We begin by defining the information graph, as in [15], associated with system

(3.6) by G = (V , E), with

V :=
{
{1} , {1, δ1} , . . . ,

{
1, δ1, . . . , δD−1

}}
∪

{
{2} ,

{
δD−1, 2

}
, . . . ,

{
δ1, . . . , δD−1, 2

}}
∪ V

E := {(r, s) ∈ V × V : |s| = |r|+ 1} ∪ {(V, V )}
(3.14)

where V :=
{

1, δ1, . . . , δD−1, 2
}
. For the case of D = 4, the graph G is illustrated in

Figure 3.2.

Before proceeding, we define the following sets, which will help us state the main

result. Let
vi,+t := {s ∈ V\V | i ∈ s, |s| ≥ eit}
vi,++
t := {s ∈ V\V | i ∈ s, |s| > eit}

(3.15)

and similarly define vi,−t and vi,−−t as in (3.15), but with the (strict) inequality re-

versed.

Theorem 3.1 Consider Problem 3.1, and let G(V , E) be the associated information

graph. Let
XV = Q+ A>XVA+ A>XVBKV

KV := −
(
R +B>XVB

)−1
B>A,

(3.16)

be the stabilizing solution to the discrete algebraic Riccati equation, and the centralized

LQR gain, respectively. Now, assume that Xs is given, and let r 6= s ∈ V be the unique
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node such that (r, s) ∈ E. Define the matrices

Λr = Qrr + pr(AV r)>XVAV r + qr(Asr)>XsAsr

Ψr = Rrr + pr(BV r)>XVBV r + qr(Bsr)>XsBsr

Ωr = pr(AV r)>XVBV r + qr(Asr)>XsBsr

Xr = Λr + ΩrKr

Kr = − (Ψr)−1 (Ωr)>

(3.17)

where pr is given by

pr := lim
T→∞

1

T

T−1∑

t=0

Pd0:t

(
r ∈ vi,++

t+1

)
(3.18)

and qr = 1− pr.
The optimal control decisions then satisfy

ζVt+1 = AζVt +BϕVt +
∑2

i=1

∑
r∈vi,++

t+1
(AV rζrt +BV rϕrt )

ζst+1 =




Asrζrt +Bsrϕrt if s ∈ ∪ivi,−t+1, (r, s) ∈ E

0 otherwise

ζ it+1 = wit

ζ i0 = xi0

uit = ϕVt +
∑

s∈vi,−t IV,sϕst

ϕrt = Krζrt

(3.19)

and the corresponding infinite horizon expected cost is

2∑

i=1

Trace
(
X{i}W i

)
(3.20)

Proof: See Section 3.4.

Remark 3.1 Notice that the global action taken based on ζV must be taken simul-

taneously by both players. In other words, it is assumed that an acknowledgment
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mechanism is in place such that the et is known to both players; relaxing this assump-

tion will be the subject of future work.

Remark 3.2 The probabilities pr and qr can be computed directly if we assume the

{pi,dt } to be independently and identically distributed. In this case, ejt evolves accord-

ing to an irreducible and aperiodic Markov chain with transition probability matrix

computable directly from the definition of effective delay and the pmf of dt. As such,

pr and qr can be computed from the chain’s stationary distribution, which is guaran-

teed to exist. Future work will explore what additional distributions on dt will lead to

closed form expressions for pr and qr. Failing the existence of closed form expressions

for these asymptotic distributions, computing estimates via simulation should be a

feasible option for many interesting pmfs {pi,dt } .

3.4 Controller Derivation

3.4.1 Controller States and Decoupled Dynamics

As mentioned previously, each I it is a subspace of Ht: in this section, we aim to

explicitly characterize these subspaces by assigning label sets {Ls0:t}s∈V to the graph

G = (V , E) as defined by (3.14). In particular, they are defined recursively as:

Ls0 = ∅, for |s| > 1

Li0 = {xi0}
Lit+1 = {wit}
Lst+1 = Lrt , for (r, s) ∈ E , 1 < |s| < D + 1

LVt+1 = LVt ∪i ∪s∈vi,+t+1
Lst

(3.21)

where we have let ∪i denote ∪2
i=1 to lighten notational burden. An example of these

label sets for the case of D = 4 is illustrated in Figure 3.2.

Before delving in to the technical justification for these label sets, we provide some

intuition. The information graph G characterizes how the effect of noise terms spread

through the system, and labels are introduced as a means of explicitly tracking this
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spreading. As can be seen in Figure 3.2, for each (r, s) ∈ E , with |r| < D+1, we have

that |s| = |r| + 1, and additionally, that |s| corresponds exactly to how delayed the

information in the label set is. We also see that the graph is naturally divided into

two disjoint branches, with each branch corresponding to information about a specific

plant. Finally, the label corresponding to the root node V can be interpreted as the

information available to both controllers – this is reflected by its explicit dependence

on the effective delay eit.

Remark 3.3 Note that in contrast to [15], the label sets as defined will in general

not be disjoint. However, as will be made explicit in Lemma 3.5, an effective delay

dependent subset of the label sets will indeed form a partition (i.e. a pairwise disjoint

cover) of the noise history.

We may now characterize the subspaces of Ht that are associated with each I it .
This characterization will be shown to depend on the effective delay ejt seen at node

i, and will lead to an intuitive partitioning of both the state and the control input.

We begin by pointing out the following useful facts that will be used repeatedly

in the derivation to come

Lemma 3.4 Let vi,∗t , ∗ ∈ {−,−−}, be given as in (3.15). Then, for a fixed i, we

have that

∪s∈vi,−t+1
Lst+1 = ∪r∈vi,−−t+1

Lrt ∪ Lit+1, (3.22)

and for integers a, b ∈ {0, . . . , D − 1}

∪a<|s|≤b+1 Lst+1 = ∪a≤|r|≤bLrt (3.23)

Proof: Follows immediately by applying the recursion rules (3.21) and the fact that

for each (r, s) ∈ E , with |r| < D + 1, we have that |s| = |r|+ 1.

Lemma 3.5 Consider the information graph G as defined in equation (3.14), and

the label sets defined as in (3.21). We then have that
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1. For all t ≥ 0, a subset of the labels form a partition of the noise history. In

particular, we have that

Ht = LVt ∪i ∪s∈vi,−t L
s
t (3.24)

where the union is disjoint, i.e. LVt ∩ Lst = ∅ if s ∈ vi,−t , and Lst ∩ Ls
′
t = ∅ for any

s 6= s′, s, s′ ∈ ∪ivi,−t .

2. For i = 1, 2

lin
(
I it
)

= lin
(
LVt ∪s∈vi,−t L

s
t

)
. (3.25)

Proof: See §3.6.

Remark 3.4 Although the proof of this result is notationally cumbersome, it is mainly

an exercise in bookkeeping. The idea is illustrated in Figure 3.2: labels for nodes v 6= V

track the propagation of a disturbance through the plant, whereas the label for V se-

lects those labels corresponding to globally available information, as dictated by the

effective delay.

With the previous lemmas at our disposal, we may now write

xt = ζVt +
∑2

i=1

∑
s∈vi,−t IV,sζst

ut = ϕVt +
∑2

i=1

∑
s∈vi,−t IV,sϕst

(3.26)

where each ζst , ϕst ∈ lin (Lst).
We may accordingly derive update dynamics for these state and control compo-

nents.

Lemma 3.6 If the control components are such that ϕts ∈ lin (Lst), then the state
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components {ζst } satisfy the following update dynamics

ζVt+1 = AζVt +BϕVt +
∑2

i=1

∑
r∈vi,++

t+1
(AV rζrt +BV rϕrt )

ζst+1 =




Asrζrt +Bsrϕrt if s ∈ ∪ivi,−t+1, (r, s) ∈ E

0 otherwise

ζ it+1 = wit

ζ i0 = xi0

(3.27)

Proof: See §3.6.

In particular, notice that the dynamics (3.27) imply ζst = 0 for all s ∈ ∪ivi,++
t ,

allowing us to rewrite the decomposition for xt as

xt =
∑

s∈V
IV sζst , (3.28)

where have simply added the zero valued state components to the expression in (3.26).

We now have all of the elements required to solve for the optimal control law via

dynamic programming.

3.4.2 Finite Horizon Dynamic Programming Solution

Let γt = {γst }s∈V be the set of policies at time t. By Lemma 3.3, we may assume the

γst to be linear. Define the cost-to-go

Vt(γ0:t−1) = min
γt:T−1

Eγ×d
(
T−1∑

k=t

x>kQxk + u>k Ruk + x>TQTxT

)
(3.29)

where the expectation is taken with respect to the joint probability measure on

(xt:T , ut:T−1)×(dt:T−1) induced by the choice of γ = γ0:T−1 (note that the dt component

is assumed to be independent of the policy choice). Via the dynamic programming

principle, we may iterate the minimizations and write a recursive formulation for the
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cost-to-go:

Vt(γ0:t−1) = min
γt:T−1

Eγ×d
(
x>t Qxt + u>t Rut + Vt+1(γ0:t−1, γt)

)
. (3.30)

We begin with the terminal time-step, T , and use the decomposition (3.28) to

obtain

VT (γ0:T−1) = Eγ×d
(
x>TQTxT

)
= Eγ

∑

s∈V
(ζsT )>Qss

T (ζsT ), (3.31)

where in the last step we have used the pairwise independence of the coordinates ζsT .

By induction, we shall show that the value function, for some t ≥ 0, always takes the

form

Vt+1(γ0:t) = Eγ
∑

s∈V
((ζst+1)>Xs

t+1(ζst+1) + ct+1 (3.32)

where {Xs
t+1}s∈V is a set of matrices and ct+1 is a scalar. We now solve for Vt(γ0:t−1)

via the recursion (3.30). Given et, apply (3.28) and the independence result to write

Vt(γ0:t−1) = min
γt

Eγ×d
(∑

s∈V
(ζst )

>Qss(ζst ) + (ϕst)
>Rss(ϕst) +

∑

s∈V
(ζst+1)>Xs

t+1(ζst+1) + ct+1

)

(3.33)

We now substitute the update equations (3.27), average over dt+1 and use inde-

pendence to obtain

Vt(γ0:t−1) = min
γt

Eγ



∑

r∈V


ζ

r
t

ϕrt



>

Γrt


ζ

r
t

ϕrt


+ ct


 (3.34)

where Γr0:T−1 and c0:T−1 are given by:

Γrt =


Q

rr 0

0 Rrr


+ Pd0:t(r ∈ vi,++

t+1 )
[
AV r BV r

]>
XV
t+1

[
AV r BV r

]
+

Pd0:t(r ∈ vi,−t+1)
[
Asr Bsr

]>
Xs
t+1

[
Asr Bsr

]
(3.35)
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ct = ct+1 +
2∑

i=1

Trace
(
X
{i}
t+1W

i
)
. (3.36)

The terminal conditions are cT = 0 and Γr = Qrr
T , and s is the unique node such that

(r, s) ∈ E .
Let prt := Pd0:t(r ∈ vi,++

t+1 ) and qrt := Pd0:t(r ∈ vi,−t+1), and introduce the following

matrices:
Λr
t+1 = Qrr + prt (A

V r)>XV
t+1A

V r + qrt (A
sr)>Xs

t+1A
sr

Ψr
t+1 = Rrr + prt (B

V r)>XV
t+1B

V r + qrt (B
sr)>Xs

t+1B
sr

Ωr
t+1 = prt (A

V r)>XV
t+1B

V r + qrt (A
sr)>Xs

t+1B
sr

(3.37)

Then each expression of the sum in (3.34) can be written as

(ζrt )>Λr
t+1(ζrt ) + (ϕrt )

>Ψr
t+1(ϕrt ) + 2(ζrt )>Ωr

t+1(ϕrt ). (3.38)

Due to the definitions of ζ and ϕ, it is clear that the terms (3.38) are pairwise

independent and hence can be optimized independently. Removing the information

constraints, and optimizing over ϕrt , we see that the optimal action is given by

ϕrt = −
(
Ψr
t+1

)−1 (
Ωr
t+1

)>
ζrt (3.39)

which, by construction, satisfies the information constraints I it . Substituting this

solution back in to (3.38), we see that the matrices Xr
t must satisfy

Xr
t = Λr

t+1 + Ωr
t+1K

r
t

Kr
t := −

(
Ψr
t+1

)−1 (
Ωr
t+1

)> (3.40)

The finite horizon optimal cost is then given by

V0 = E
∑2

i=1(xi0)>X{i}(xi0) + c0

= E
∑2

i=1(µi0)>X{i}0 (µi0) + Trace
(
X
{i}
0 Σi

0

)
+ c0

(3.41)

where c0 can be computed according to (3.36) beginning with terminal conditions

cT = 0.
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3.4.3 Infinite Horizon Solution

In order to determine the infinite horizon solution, we first notice that for r = V ,

pVt = 1, qVt = 0 and that the recursions (3.40) for r = V are then simply given by

XV
t = Q+ A>XV

t+1A+ A>XV
t+1BK

V
t

KV
t :=

(
R +B>XV

t+1B
)−1

B>A,
(3.42)

that is to say the standard discrete algebraic Riccati recursion/gain. By assump-

tion, we have that (XV
t , K

V
t ) → (XV , KV ), where XV and KV are, respectively, the

stabilizing solution the discrete algebraic riccati equation, and the centralized LQR

gain.

Now assume that Xs
t is defined, and let r 6= s ∈ V be the unique node such that

(r, s) ∈ E . Much as in the finite horizon case, define the following matrices:

Λr = Qrr + pr(AV r)>XVAV r + qr(Asr)>XsAsr

Ψr = Rrr + pr(BV r)>XVBV r + qr(Bsr)>XsBsr

Ωr = pr(AV r)>XVBV r + qr(Asr)>XsBsr

(3.43)

where we have let

(pr, qr) = limT→∞
1
T

∑T−1
t=0 (prt , q

r
t ). (3.44)

Note that these limits are well defined by the assumption (3.11).

We then have that
Xr = Λr + ΩrKr

Kr := − (Ψr)−1 (Ωr)> .
(3.45)

What remains to be computed is the infinite horizon average cost, which is given

by (ignoring without loss the cost incurred by the uncertainty in the initial conditions)

lim
N→∞

1

N

N∑

t=1

2∑

i=1

Trace
(
X
{i}
t W i

)
=

2∑

i=1

Trace
(
X{i}W i

)
(3.46)
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3.5 Conclusion

This chapter presented extensions of a Riccati-based solution to a distributed control

problem with communication delays – in particular, we now allow the communication

delays to vary, but impose that they preserve partial nestedness. It was seen that the

varying delay pattern induces piecewise linear dynamics in the state of the resulting

optimal controller, with changes in dynamics dictated by the current effective delay

regime.

Future work will be to extend the results to systems with several players with

more general delay patterns, and to remove the assumption of strong connectedness,

much as was done in [15] for the case of constant delays. We will also seek to identify

conditions on the delay process dt such that assumption (3.11) holds. Additionally,

we will explore the setting in which the global delay regime is not known. Finally,

we are also currently exploring a principled integration of these results with recent

deadline based coding techniques developed in [65].

3.6 Proofs of Intermediate Lemmas

Proof of Lemma 3.1: The first two terms of (3.10) follow directly from (3.3). The

xj component of I it is then given by

∪tτ=0 {xjk : 0 ≤ k ≤ τ − djτ} = ∪tτ=0{xjk : 0 ≤ k ≤ t− (djτ + (t− τ))} =

{xjk : 0 ≤ k ≤ t− min
τ=0,...,t

(djτ + (t− τ))} = {xjk : 0 ≤ k ≤ t− ejt} (3.47)

where the last equality follows from djt ≤ D ∀t ≥ 0 and the definition of ejt . Noting

that this is precisely the local information available to plant j at time t−ejt , and that

the xi component of Ij
t−ejt

is contained in I it−1 ∪ {xit}, the claim follows.
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Proof of Lemma 3.3: Note that I it ⊂ I it+1, and that I it ⊂ Ijt+D:

I it = {xi1:t} ∪ {xj : 1 ≤ k ≤ t− ejt} ⊂ {xi1:t} ∪ {xj : 1 ≤ k ≤ t+D} ⊂

{xik : 1 ≤ k ≤ t+D − eit+D} ∪ {xj1:t+D} = Ijt+D−1 ∪ {xjt+D} ∪ I it+D−eit+D = Ijt+D
(3.48)

where the final inclusion follows from eiτ ≤ D for all τ ≥ 0, and the final equalities

from Lemma 3.1. Partial nestedness then follows from the fact that uiτ only affects

Ijt for t ≥ τ + D due to the propagation delay between plants. By Lemma 3.2, uit is

a linear function of I it and the same is trivially true for xit ∈ I it . We prove the final

claim of the lemma by induction.

We first note that that x0, u0 ∈ lin (x0) = lin (H0). We now proceed by induction,

and assume that for some t ≥ 0 we have that xt, ut ∈ lin (Ht). We then have that

xt+1 ∈ lin (Ht ∪ {wt}) = lin (Ht+1)

ut+1 ∈ lin
(
I1
t+1 ∪ I2

t+1

)
= lin ({xt+1} ∪ Ht) = lin (Ht+1)

(3.49)

Proof of Lemma 3.5: (i) We begin by showing that the union in the RHS of

(3.24) is disjoint. This easily verified to hold for t = 0, as all labels are the empty

set except for Li0 = xi0. We now proceed by induction, and suppose that the union in

(3.24) is a disjoint one for some t ≥ 0. We then have that

LVt+1 ∪i ∪s∈vi,−t+1
Lst+1 = LVt ∪i ∪s∈vi,+t+1

Lst ∪s∈vi,−−t+1
Lst ∪ Lit+1 (3.50)

where the equality follows from simply applying the recursion rules (3.21) and Lemma

3.4. We first note that by the induction hypothesis, LVt ∩ ∪i ∪s∈vi,−−t+1
Lst = ∅. Addi-

tionally, by construction, we have that ∪i ∪s∈vi,+t+1
Lst ∩ ∪i ∪s∈vi,−−t+1

Lst = ∅. We note

that Lit+1 = wit is the new information available at time t+ 1, and thus Lit+1 ∩Lst = ∅
for all s ∈ V . Finally, noting that for all L1

t+1 ∩ L2
t+1 = ∅, we have that (3.50) is a

disjoint union, proving the claim.
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It now suffices to show that (3.24) is also a covering of the noise history. To that

end, notice that for t = 0, this follows immediately from Li0 = {xi0}, and H0 = {x0}.
Now suppose that (3.24) is a covering for some t ≥ 0. We then have that

Ht+1 = Ht ∪i Lit+1 = LVt ∪i ∪s∈vi,−t L
s
t ∪ Lit+1 = LVt ∪i ∪s3i, |s|≤eit+1Lst+1

= LVt ∪i ∪s∈vi,−t+1
Lst+1 ∪s′3i, eit+1<|s′|≤eit+1 Ls

′

t+1 = LVt+1 ∪i ∪s∈vi,−t+1
Lst+1. (3.51)

The third equality follows from applying the induction hypothesis, the fourth by

applying the recursion rules for the label sets, and the before last equality notic-

ing that eit+1 ≤ eit + 1. To prove the final equality, it suffices to show that LVt ∪i
∪s′3i, eit+1<|s′|≤eit+1Ls

′
t+1 = LVt+1. This follows by applying the recursion rules and

Lemma 3.4 as follows:

LVt ∪i ∪s′3i, eit+1<|s′|≤eit+1Ls
′

t+1 = LVt ∪i ∪s′3i ∪eit+1≤|s′|≤eit L
s′

t ∪|s′|≥eit L
s′

t−1

= LVt ∪i ∪s′3i ∪eit+1≤|s′|≤eit L
s′

t ∪|s′|≥eit+1 Ls
′

t = LVt ∪i ∪s∈vi,+t+1
Lst = LVt+1 (3.52)

(ii) We proceed by induction once again. This holds trivially for t = 0. Now

suppose it to be true for some t ≥ 0. We have that I it+1 = I it ∪ Ijt−(ejt+1−1)
∪ {xit+1}.

Taking the linear span of both sides, we then obtain

lin
(
I it+1

)
= lin

(
I it
)

+ lin

(
Ij
t−(ejt+1−1)

)
+ lin

(
wit
)

= lin
(
LVt
)

+
∑

s∈vi,−t

lin (Lst) +
∑

r∈vj,−−t+1

lin
(
Lr
t−(ejt+1−1)

)
+ lin

(
Lit+1

)
(3.53)

By the same arguments used in the second part of the proof of part (i), we have

that lin
(∑

s∈vi,++
t
Lst
)
⊂ lin

(
LVt
)
. Also notice that applying the recursion for Lst+1

to the Lr
t−(ejt+1−1)

term ejt+1 − 1 times, and that for r → · · · → s′, we have that
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|s′| = |r|+ ejt+1 − 1 ≥ ejt+1. We may then write (3.53) as

lin
(
LVt
)

+
∑

s3i
lin (Lst) +

∑

s′∈vj,+t+1

lin
(
Ls′t
)

= lin
(
LVt
)

+
2∑

k=1

∑

s∈vk,+t+1

lin (Lst) +
∑

s∈vi,−−t+1

lin (Lst) + lin
(
Lit+1

)
. (3.54)

The first two terms of the final equality are precisely the expression for lin
(
LVt+1

)
,

whereas the final two terms may be combined by applying the recursion rules to the

summation, yielding
∑

s∈vi,−t+1
lin
(
Lst+1

)
. We therefore have that (3.54) is equal to

lin
(
LVt+1

)
+
∑

s∈vi,−t+1

lin
(
Lst+1

)
= lin

(
LVt+1 ∪s∈vi,−t+1

Lst+1

)
(3.55)

proving the claim.

Proof of Lemma 3.6: The recursive nature of the label sets ensure that ζs ∈
lin (Lst) for all t ≥ 0. Thus it suffices to show that these dynamics preserve the state

decomposition (3.26).

ζVt+1 +
2∑

i=1

∑

s∈vi,−t+1

IV,sζst+1

= AζVt +BϕVt +
2∑

i=1

∑

r∈vi,++
t+1

(AV rζrt +BV rϕrt ) +
2∑

i=1

∑

s∈vi,−t+1

IV,s (Asrζrt +Bsrϕrt ) + wt

= A

(
ζVt +

∑

s∈V
IV,sζst

)
+B

(
ϕVt +

∑

s∈V
IV,sϕst

)
+ wt

= A


ζVt +

2∑

i=1

∑

s∈vi,−t

IV,sζst


+B


ϕVt +

2∑

i=1

∑

s∈vi,−t

IV,sϕst


+ wt

= Axt +But + wt = xt+1 (3.56)

where the first equality followed from applying the update dynamics (3.27), and the

third from noting that certain components of the state and control decomposition are
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zero due to the effective delays seen by the controllers. The fourth equality follows

from equation (3.26), and the final one from (3.6).
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Chapter 4

Regularization for Design

4.1 Introduction

As argued in the previous chapters of this thesis, the move to large-scale systems

such as the smart-grid, software defined networking and automated highways, makes

the design of control systems much more challenging. Thus far we have focused on

settings for which the controller architecture, that is to say the sensors, actuators

and communication links between them, is taken as a given. However, as we now

argue, in large-scale distributed settings, designing the controller architecture is now

as important as the traditional design of the control laws themselves.

A conceptually useful viewpoint in the design of controller architectures is to con-

sider complicated systems as being composed of multiple simpler atomic subsystems.

For example, if the task is to design the actuation architecture of a controller, a nat-

ural atomic element is a controller with a single actuator – it is then clear that a

general architecture can be built out of such atoms. In general, controllers with a

dense actuation, sensing and communication architecture (i.e., systems that consist of

many atomic subsystems) achieve better closed loop performance in comparison with

those with sparse architectures (i.e., systems composed of a small number of atomic

subsystems). However, as these architectural resources translate into actual hardware

requirements, it is desirable from both a maintenance and a cost perspective that we

minimize the total number of atomic elements used. Hence, the problem of controller

architecture/control law co-design is one of jointly optimizing an appropriately de-
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fined structural measure of the controller and its closed loop performance by trading

off between these two competing metrics in a principled manner. In other words, we

seek an approximation of a given optimal controller by one that utilizes fewer atomic

elements without a significant loss in performance. This goal has parallels with the

approximation theory literature in which one seeks approximations of complicated

functions as combinations of elements from a simpler class of functions such as the

Fourier basis or a wavelet basis [66].

In an appropriate parameterization, pure controller synthesis methods in a model

matching framework can be interpreted as techniques for solving a particular linear

inverse problem in which one is given an open loop response of a system Y and a

linear map L from the controller to the closed loop response, and one seeks a controller

U such that Y − L(U) ≈ 0 (as measured in a suitable performance metric). From

this perspective, our objective in joint controller architecture/control law co-design

is to obtain structured solutions to the linear inverse problem underlying controller

synthesis. Such structured linear inverse problems (SLIP) are of interest in diverse

applications across applied mathematics – for instance, computing sparse solutions to

linear inverse problems or computing low-rank solutions to systems of linear matrix

equations arise prominently in many contexts in signal processing and in statistics

[67–70].

In these problem domains, minimizing the `1 norm subject to constraints described

by the specified equations is useful for obtaining sparse solutions [67,68], and similarly,

nuclear norm minimization is useful for obtaining low-rank solutions to linear matrix

equations [69, 70]. These ideas were extended in [20], where the authors describe a

generic convex programming approach – based on minimizing an appropriate atomic

norm [66]– for inducing a desired type of structure in solutions to linear inverse

problems. Motivated by these developments, our approach to the problem of joint

architecture/control law co-design is to augment variational formulations of controller

synthesis methods with suitable convex regularization functions. The role of these

regularizers is to penalize controllers with more complex architectures in favor of those

with less complex ones, thus inducing controllers with a simpler architecture. We call
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this framework Regularization for Design (RFD).

Related work: Regularization techniques based on `1 norms and, more gener-

ally, atomic norms have already been employed extensively in system identification,

e.g., to identify systems of small Hankel order (cf. [24, 71, 72]), and in linear regres-

sion based methods [73]. Although the resulting solutions yield structured systems,

they typically do not have a direct interpretation in terms of the architecture of a

control system (i.e., actuators, sensors and the communication links between them).

The use of regularization explicitly for the purpose of designing the architecture of a

controller can also be found in the literature. Examples include the use of `1 regular-

ization to design sparse structures in H2 static state feedback gains [27], treatment

therapies [74], and synchronization topologies [75]; the use of group norm penalties

to design actuation/sensing schemes [21,76]; and the use of an atomic norm to design

communication delay constraints that are well-suited to H2 distributed optimal con-

trol [23, 56]. Although these methods provide an algorithmic approach for designing

controller architectures in certain specialized settings, they do not enjoy the same the-

oretical support that regularization techniques for structured inverse problems enjoy

in other settings [66–70].

Chapter contributions: This chapter is based on [21, 22] and presents novel

computational and theoretical contributions to the area of optimal controller ar-

chitecture/control law co-design. From a computational perspective, we propose a

general RFD framework that is applicable in a much broader range of settings than

the previous approaches mentioned above. We restrict ourselves to problems for

which the linear optimal structured controller is specified as the solution to a convex

optimization problem [9, 10, 77]. As a result, RFD optimization problems with con-

vex regularization functions for inducing a desired architecture are convex programs.

Specifically, (i) we provide a catalog of atomic norms useful for control architecture

design. In particular, in addition to known penalties for actuator, sensor and commu-

nication design, we provide novel penalties for simultaneous actuator, sensor and/or

communication design; (ii) we describe a unifying framework for RFD that encom-

passes state and output feedback problems in centralized and distributed settings,
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and in which any subset of actuation, sensing, and/or communication architectures

are co-designed; and (iii) we present a two-step algorithm that first identifies the con-

troller architecture via a finite-dimensional convex RFD optimization problem, and

then solves for the potentially infinite dimensional linear optimal controller restricted

to the designed architecture using methods from classical and distributed optimal

control [2, 12–17].

To provide theoretical support for our computational framework, we make explicit

links between RFD optimization problems and the use of convex optimization based

approaches for structured inference problems. We build on these links to analyze

the properties of the structured controllers generated by RFD synthesis methods,

which leads to conditions under which RFD methods successfully identify optimally-

structured controllers. Our analysis and results are natural control-theoretic analogs

of similar results in the structured inference literature. Specifically, (i) we show that

finite-horizon finite-order convex approximations of an RFD optimization problem

can recover the structure of an underlying infinite dimensional optimal controller;

(ii) we define control-theoretic analogs of identifiability conditions and signal-to-noise

ratios (SNRs), and we provide sufficient conditions based on these for a controller

architecture to be identified by RFD. In particular, we show that controllers that

maximize this SNR-like quantity are more easily recovered via RFD than those that

do not, and (iii) we provide a concrete example of a system satisfying the above

identifiability and SNR conditions. As far as we are aware, this is the first example

in the literature of a system for which convex optimization provably recovers the

actuation architecture of an underlying optimally structured controller.

Chapter organization: In §4.2, we define notation and discuss the relevant

concepts from operator theory. This chapter is then organized in a modular fashion:

§4.3-4.5 focus on the computational aspects of controller architecture design, whereas

§4.6 and §4.8 focus on conditions for optimal architecture recovery. Specifically, in

§4.3, we introduce the RFD framework as a natural blend of controller synthesis

methods and regularization techniques. In §4.4, we focus on RFD problems with an

H2 performance metric and an atomic norm penalty; we present a catalog of atomic
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norms that are useful for controller architecture design, and make connections to

the structured inference literature. The computational component of the chapter

concludes in §4.5, in which we formally describe the two-step RFD procedure, and

we apply the RFD framework to a simultaneous actuator, sensor and communication

design problem. In §4.6, we shift our focus to analyzing the theoretical properties of

the RFD procedure: we make connections between structured controller design and

structured inference problems by framing both tasks as finding structured solutions

to linear inverse problems, and we leverage these connections to describe sufficient

conditions for the success of a finite-dimensional RFD optimization problem. In §4.8,

we provide a case study to further illustrate the applicability of these results.

4.2 Preliminaries & Notation

We use standard definitions of the Hardy spaces H2 and H∞. We denote the restric-

tions of H2 and H∞ to the space of real rational proper transfer matrices Rp by RH2

and RH∞. As we work in discrete time, the two spaces are equal, and as a matter of

convention we refer to this space asRH∞. We refer the reader to [2] for a review of this

material. LetRH≤t∞ denote the subspace ofRH∞ composed of finite impulse response

(FIR) transfer matrices of length t, i.e., RH≤t∞ := {G ∈ RH∞ |G =
∑t

i=0
1
zi
G(i)}. We

denote the projection of an element G ∈ Rp onto the subspace RH≤t∞ by G≤t. Un-

less required, we do not explicitly denote dimensions and we assume that all vectors,

operators and spaces are of compatible dimension throughout. We denote elements

of Rp with upper case Latin letters, and temporal indices and horizons by lower case

Latin letters. Linear maps from Rp to Rp are denoted by upper case Fraktur letters

such as L. For such a linear map, we denote the ith impulse response element of L

by L(i). We further use L≤t to denote the restriction of the range of L to RH≤t∞ ,

and L≤t,v to denote the restriction of L≤t to the domain RH≤v∞ . Thus L≤t,v is a map

from RH≤v∞ to RH≤t∞ . In particular, if L is represented as a semi-infinite lower block

triangular matrix, then L≤t,v corresponds to the t by v block row by block column

sub matrix (L)ij, i = 1, . . . , t, j = 1, . . . , v. Sets are denoted by upper case script
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letters, such as S , whereas subspaces of an inner product space are denoted by upper

case calligraphic letters, such as S. The restriction of a linear map L to a subspace

S ∈ RH∞ is denoted by LS ; similarly, the projection of an operator G ∈ Rp onto a

subspace A ⊂ Rp is denoted by GA. We denote the adjoint of a linear map L by L†.

The most complicated expression that we use is of the form
[
L≤t,vS

]†
: this denotes

the adjoint of the map L≤t restricted to RH≤v∞ ∩ S. We denote the n-dimensional

identity matrix and down-shift matrices by In and Zn, respectively. In particular, Zn

is a matrix with all ones along its first sub-diagonal and zero elsewhere. We use ei

to denote a standard basis element in Rn, and Eij to denote the matrix with (i, j)th

element set to 1 and all others set to 0.

4.3 RFD as Structured Approximation

Under standard assumptions [2], traditional controller synthesis methods within the

framework of model matching can be framed as linear inverse problems of the form

minimize
U∈RH∞

Ψ (U ;Y,L) (4.1)

where Y is the open loop response of the system, U is the Youla parameter, L is a

suitably defined linear map from the Youla parameter U to the closed loop response,

and Ψ (·;Y,L) is a performance metric that measures the size of the closed loop

response (i.e., the size of the deviation between Y and L(U)), such as the H2 or H∞
norm. We make this connection clear in the following subsection and we also recall

how to incorporate quadratically invariant [9] distributed constraints on the controller

into this framework.

Remark 4.1 We use this non-standard notation to facilitate comparisons with the

structured inference literature. This notation emphasizes that the optimal linear con-

troller synthesis task can be viewed as one of solving a linear inverse problem with

“data” specified by the open loop response Y and the map L from the Youla parameter

to the closed loop response.
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4.3.1 Convex Model Matching

P11

P21

P12

P22

K

wy

um

Figure 4.1: A diagram of the generalized plant defined in (4.2).

In order to discuss a broad range of model matching problems, we introduce the

generalized plant, a standard tool in robust and optimal control [2]. In particular,

consider the system described by

P =


P11 P12

P21 P22


 =




A B1 B2

C1 0 D12

C2 D21 0


 (4.2)

where Pij = Ci(zI−A)−1Bj +Dij. As illustrated in Figure 4.1, this system describes

the four transfer matrices from the disturbance and control inputs w and u, respec-

tively, to the controlled and measured outputs y and m, respectively. We make the

standard orthogonality assumptions that

D12

[
C>1 D>12

]
=
[
0 ρuI

]
, D>21

[
B1 D21

]
=
[
0 ρwI

]
(4.3)

for some ρu, ρw ≥ 0. At times we separate the state component of the open and

closed loop responses from the components of these transfer matrices that measure

control effort. To that end, we define the state component of an element X to be the

projection of X onto the range of C1.

Letting u(z) = K(z)m(z) for a causal linear controller K ∈ Rp, the closed loop

map from the disturbance w to the controlled output y is given by the linear fractional

transform P11−P12K(I−P22K)−1P21.When the open-loop plant is stable (we remark

on the unstable case at the end of the subsection), a typical optimal control problem
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in this framework is then formulated as

minimize
K∈Rp

‖P11 − P12K(I − P22K)−1P21‖

s.t. K(I − P22K)−1 ∈ RH∞
(4.4)

where ‖·‖ is a suitable norm, and the constraint ensures internal stability of the closed

loop system [2]. Notice however that the optimal control problem (4.4) is non-convex

as stated.

A standard and general approach to solving the optimal control problem (4.4) is

to convert it into a model matching problem through the Youla change of variables

U := K(I − P22K)−1; the optimal controller K can then be recovered via K =

(I + UP22)−1U . The resulting convex optimization problem is then given by

minimize
U∈RH∞

‖P11 − P12UP21‖ , (4.5)

which is of the form of the linear inverse problem (4.1) if we take Y := P11, L =

P12 ⊗ P21 (where (P12 ⊗ P21) (U) := P12UP21) and Ψ (U ;Y,L) := ‖Y − L(U)‖.
We also often want to impose a distributed constraint on the controller K by re-

quiring K to lie in some subspace S, which specifies information exchange constraints

between the sensors and actuators of the controller. It is known that a necessary and

sufficient condition for such a distributed constraint to be invariant under the Youla

change of variables is that it be quadratically invariant with respect to P22 [9,10,77].

Definition 4.1 A subspace S is quadratically invariant (QI) with respect to P22 if

KP22K ∈ S ∀K ∈ S.

In particular, when a subspace S is QI with respect to P22, we have that K ∈ S
if and only if K(I − P22K)−1 ∈ S, allowing us to convert the general optimal control

problem (4.1) with the additional constraint that K ∈ S to the following convex

optimization problem

minimize
U∈RH∞

Ψ (U ;Y,L) s.t. U ∈ S. (4.6)
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This optimization problem is again precisely of the form of the linear inverse problem

(4.1) save for the addition of the subspace constraint U ∈ S. This framework is fairly

general in that it allows for a unified treatment of all structured optimal control

problems in which the linear optimal structured controller can be computed via convex

optimization [9, 77]. These include state and output feedback problems in either

centralized or QI distributed settings. Further, if the optimal control problem is

centralized with respect to the H2, H∞ or L1 metrics, or is QI distributed with a

finite horizon H2 cost, the linear optimal control is globally optimal [2, 8, 77,78].

Remark 4.2 (Unstable Plants) The above discussion extends to unstable plants

through the use of an appropriate structure preserving Youla-Kucera parameterization

built around arbitrary coprime factorizations, which are always available. See [4, 16,

79] for examples of such parameterizations, and [23] for an example of using such a

parameterization with a structure inducing penalty. Note that although the structured

synthesis task for unstable plants is addressed by these previous results, finding a

structured realization for the resulting optimal controller may still be challenging [80].

4.3.2 Architecture Design through Structured Solutions

We seek a modification of the optimal controller synthesis procedure to design the

controller’s architecture. We reiterate that by the architecture of a controller, we mean

the actuators, sensors, and communication links between them. In particular, we view

the controllerK as a map from all potential sensors to all potential actuators, using all

potential communication links between these actuators and sensors. The architectural

design task is that of selecting which actuators, sensors and communication links need

to be used to achieve a certain performance level. This task is naturally viewed as

one of finding a structured approximation of the optimal controller (4.4) that utilizes

all of the available architectural choices.

The components of the controller architecture being designed determine the type

of structured approximation that we attempt to identify. In particular, each nonzero
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row of K(z) corresponds to an actuator used by the controller, and likewise, each

nonzero column corresponds to a sensor employed by the controller. Further sparsity

patterns present within rows/columns of the power series elements K(t) of K(z) can

be interpreted as information exchange constraints imposed by an underlying com-

munication network between the sensors and actuators. It is thus clear that specific

sparsity patterns in K have direct interpretations in terms of the architectural com-

ponents of the controller: nonzero rows correspond to actuators, nonzero columns

correspond to sensors, and additional sparsity structure corresponds to communica-

tion constraints.

Although we seek seek to identify a suitably structured controller K, for the

computational reasons described in §4.3.1 it is preferable to solve a problem in terms

of the Youla parameter U as this parameterization leads to the convex optimization

problem (4.6). Therefore, in the following definition RFD problems are defined as

a regularized version of the model matching problem (4.6) with a penalty function

added to the objective to induce suitable structure, rather than as a modification of

the controller synthesis problem (4.4). In the sequel, we justify that for architectural

design problems of interest, the structure underlying the controller K is equivalent

to the structure underlying the Youla parameter U ; to that end, we show that in the

case of actuator, sensor, and/or QI communication topology design, the structure of

the Youla parameter U corresponds to the structure of the controller K.

Definition 4.2 Let U, Y ∈ RH∞, and L : RH∞ → RH∞ be of compatible dimen-

sion. The optimization

minimize
U∈RH∞

Ψ (U ;Y,L) + 2λΩ (U) s.t. U ∈ S (4.7)

is called a RFD optimization problem with cost function Ψ (·;Y,L) and penalty Ω (·).

Remark 4.3 With the exception of the centralized state-feedback setting, it is known

that the optimal linear controller is dynamic [2], and therefore restricting our analy-

sis to dynamic controllers is natural. In the centralized setting (given the equivalence
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between static and dynamic state-feedback), once an actuation architecture is identi-

fied, traditional methods can then be used to solve for a static state-feedback controller

restricted to that architecture. Further as we show in §4.6, the dynamic controller

synthesis approach is amenable to analysis that guarantees optimal structure recov-

ery.

We discuss natural costs Ψ (·;Y,L) and penalties Ω (·) in §4.4, and we focus now

on justifying why we can perform the structural design on the Youla parameter U

rather than the controller K.

Actuator/Sensor Design Recall that the actuators (sensors) that a controller K

uses are identified by the nonzero rows (columns) of K: the actuator (sensor) design

problem therefore corresponds to finding a controller K that achieves a good closed

loop response and that is sparse row-wise (column-wise). This corresponds exactly

to finding a row (column) sparse solution U to the RFD optimization problem (4.7).

This is true because any subspace D that is defined solely in terms of row (column)

sparsity is QI with respect to any P22. In particular, it is easily verified that if

K ∈ D, then right (left) multiplication leaves D invariant, i.e., KX ∈ D (XK ∈ D)
for all compatible X. It then follows from Definition 4.1 that D is QI with respect to

any plant P22. We can extend this analysis to incorporate additional QI distributed

constraints S by leveraging the results in [10]: in particular, if S is QI with respect

to P22, then so is D ∩ S.1

Joint Actuator and Sensor Design By virtue of the previous discussion joint ac-

tuator and sensor design corresponds to finding a controller K that is simultaneously

sparse row-wise and column-wise. It follows immediately from the previous discus-

sion that this corresponds exactly to finding a simultaneously row and column sparse

solution U to the RFD optimization problem (4.7). In particular, any subspace D
defined solely in terms of row and column sparsity is QI with respect to any plant P22,

1In particular, since removing actuators does not change the communication delays between
the remaining actuators and sensors, if the delay based conditions in [10] hold when all actuators
(sensors) are present they also hold with any subset of them being present.
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we can incorporate additional QI distributed constraints S by leveraging the results

in [10].

Communication Design In an analogous manner to the above, one can also as-

sociate subspaces to structures corresponding to suitable information exchange con-

straints that a distributed controller must satisfy.2 Recall in particular that the

information exchange constraints between the sensors and actuators of a controller K

are identified by the sparsity structure found within the nonzero rows and columns

of K. In [23], the first author showed that a specific type of sparsity structure in

K corresponds exactly to sensors and actuators exchanging information according

to an underlying communication graph. In particular, given a communication graph

between sensors and actuators with adjacency matrix Γ, a distributed controller K

can be implemented using the graph defined by Γ if the power series elements K(t) of

the controller satisfy supp
(
K(t)

)
⊆ supp (Γt−1).3 The interpretation of the support

nesting condition is that the delay from sensor j to actuator i is given by the length

of the shortest path from node j to node i in the graph defined by Γ. This support

nesting condition thus defines the distributed subspace constraint S in which K must

lie – based on the discussion in §4.3.1, one can pose the distributed controller synthe-

sis problem as a distributed model matching problem (4.6) if and only if S is QI with

respect to P22. In light of this, we consider the communication design task proposed

in [23]: given an initial graph with adjacency matrix ΓQI that induces a QI distributed

subspace constraint S, what minimal set of additional edges should be added to the

graph to achieve a desired performance level.4 It is additionally shown in [23] that

any communication graph constructed in this manner results in a subspace constraint

S that is QI with respect to P22. Therefore the structure imposed on the controller

K by an underlying QI communication graph corresponds exactly to the structure
2We restrict ourselves to communications delays that satisfy the triangle inequality defined in [10].

This assumption implies that information exchanged between sensors and actuators is transmitted
along shortest delay paths in the underlying communication graph.

3We assume that K is square for simplicity; cf. [23] for the general case.
4It is shown in [23] that under mild assumptions on the plant P22, the propagation delays of P22

can be used to define an adjacency matrix ΓQI that induces a distributed subspace constraint that
is QI with respect to P22.



66

imposed on the Youla parameter U .

Joint Communication, Actuator and/or Sensor Design By virtue of the pre-

vious discussion and the results of [10], combining QI communication design with

actuator and/or sensor design still leads to the underlying structure of the controller

K corresponding to the underlying structure of the Youla parameter U .

Thus for architecture design problems the RFD task can be performed via a model

matching problem.

Example 4.1 Suppose that different RFD optimization problems are solved for a

system with three possible actuators and three possible sensors, resulting in the vari-

ous sparsity patterns in U(z) shown on the far right of Figure 4.2. It is easily seen

by inspection that the resulting sparsity patterns are QI. In particular Figures 4.2a)

through 4.2c) correspond to centralized RFD optimization problems (this can be seen

from the full matrices in the center of the left hand side), and 2d) to a RFD opti-

mization problem subject to lower triangular constraints, a special case of a nested

information constraint.5
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Figure 4.2: Examples of QI sparsity patterns generated via a) actuator, b) sensor,
and c) actuator/sensor RFD procedures without any distributed constraints, and d)
actuator RFD subject to nested information constraints.

5Nested information constraints are a well studied class of QI distributed constraints, cf. [12–14]
for examples.
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4.4 RFD Cost Functions and Regularizers

In this section we examine convex formulations of the RFD optimization problem (4.7)

by restricting our attention to convex cost functions Ψ (·;Y,L) and convex penalty

functions Ω (·).

4.4.1 Convex Cost Functions

Any suitable convex cost function Ψ (·;Y,L) can be used in (4.7): traditional exam-

ples from robust and optimal control include the H2, H∞ [2] and L1 norms [78]. We

focus on theH2 norm as a performance metric because it allows us to make direct con-

nections between the RFD optimization problem (4.7) and well-established methods

employed in structured inference such as ordinary least squares, Ridge Regression [81],

Group Lasso [82] and Group Elastic Net [83].

We begin by introducing a specialized form of the model matching problem (4.6),

and show how state-feedback problems with H2 performance metrics can be put into

this form.

Definition 4.3 Let U, Y ∈ RH∞, and L : RH∞ → RH∞ be of compatible dimen-

sion. The optimization problem

minimize
U∈RH∞

‖Y − L(U)‖2
H2

+ ρu‖U‖2
H2

s.t. U ∈ S (4.8)

is the H2 optimal control problem for a suitable control penalty weight ρu and a

distributed constraint S.

In this definition, Y is the state component of the open loop response, and L is

the map from the Youla parameter to state component of the closed loop response.

Explicitly separating the cost of the state component ‖Y −L(U)‖2
H2

of the closed loop

response from the control cost ρu‖U‖2
H2

allows us to connect theH2 RFD optimization

to several well-established methods in the inference literature. Before elaborating on

some of these connections, we provide two examples of standard control problems

that can be put into this form.
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Example 4.2 (Basic LQR) Consider the basic LQR problem given by

minimize
u∈`2

∑∞
t=0 ‖Cxt‖2

`2
+ ‖Dut‖2

`2

s.t. xt+1 = Axt +But, x0 = ξ,
(4.9)

and assume that D>D = ρuI, for some ρu ≥ 0. Define ρ = ρu, X(t) = CAtξ for t ≥ 0,

U (t) = ut, and L(U) = −H ∗ U , where H ∈ Rp with H(0) = 0, and H(t) = CAt−1B

for t ≥ 1. We can then rewrite the basic LQR problem in the form of optimization

problem (4.8) (with no distributed constraint S).

Example 4.3 (H2 State Feedback) Assume either that the generalized plant (4.2)

is open-loop stable or that the control problem is over a finite horizon. Let C2 = I and

D21 = 0 in the generalized plant (4.2) such that the problem is one of synthesizing

an optimal state-feedback controller, and for clarity of exposition, assume that B1 is

invertible.6 Define the Youla parameterization for the controller synthesis problem

(4.4) as follows [2]:

P̃12 = 1
z
P12, P̃21 = AP21 +B1, Ũ = K(I − P22K)−1P̃21,

with all other parameters remaining the same. Under this parameterization, the op-

timal control problem (4.4) (with additional QI distributed constraint S) with perfor-

mance metric ‖ · ‖2
H2

can be written as

minimize
Ũ∈RH∞

‖P11 − P̃12Ũ‖2
H2

+ ρu‖Ũ‖2
H2

s.t. Ũ P̃−1
21 ∈ S, (4.10)

The optimal controller K is then recovered from the solution to (4.10) as K =

(I + Ũ P̃−1
21 P22)−1Ũ P̃−1

21 . The state-feedback assumption and the choice of Youla pa-

rameterization ensure that P̃21 is invertible in RH∞ and that K ∈ S.

Remark 4.4 A dual argument applies to H2 filter design by considering the “full-
6The assumption that B1 is invertible simply implies that no component of the state is deter-

ministic, and can be relaxed at the expense of more complicated formulas.
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control” setting, cf. [2] for more details.

As illustrated by Example 4.3, the H2 optimal control problem (4.8) is simply

a more general way of writing the H2 state feedback model matching problem – in

Remark 4.7 we show how H2 output feedback model matching problems can also be

put in a similar form. Writing the H2 problem as a linear inverse problem with a least

squares like state cost and an explicitly separated control cost already allows us to

make connections to classical techniques from structured inference. These connections

(along with others we make later in this section) are summarized in Table 4.1. In

order to keep the discussion as streamlined as possible, we make these connections in

the context of the Basic LQR problem presented in Example 4.2.

4.4.1.1 ρu = 0

In an inferential context, this is simply ordinary least squares, and is commonly

used when U∗ is not known a priori to have any structure. Further, the resulting

estimate of U∗ is unbiased, but often suffers from high error variance. Moving now

to a control context, It is easy to see that this setting corresponds to “cheap control”

LQR, in which there is no cost on ut – under suitable controllability and observability

assumptions, the resulting state trajectory is deadbeat, but the optimal control law

is not necessarily unique.

4.4.1.2 ρu > 0

This corresponds to Ridge Regression or Tikhonov Regularization [81]. In an infer-

ential context, this regularizer has the effect of shrinking estimates towards 0 – this

introduces bias into the estimator, but reduces its variance, and is often a favorable

tradeoff from a statistical perspective. From a linear algebraic perspective, this is a

commonly used technique to improve the numerical conditioning of an inverse prob-

lem. Once again, the interpretation in RFD is clear: this corresponds to standard

LQR control with R = ρI; the parameter ρ allows for a tradeoff between control effort
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and state deviation. The optimal control action is then unique and the resulting state

trajectory is generally not deadbeat.

4.4.2 The H2 RFD Problem with an Atomic Norm Penalty

Recall that our strategy for designing controller architectures is to augment the tra-

ditional model matching problem (4.6) with a structure inducing penalty, resulting in

the RFD optimization problem (4.7). In light of the previous subsection, we further

specialize the RFD optimization problem to have an H2 performance metric and an

atomic norm penalty ‖·‖A .

Definition 4.4 Let U, Y ∈ RH∞ and L : RH∞ → RH∞ be of compatible dimen-

sion. The optimization problem

minimize
U∈RH∞

‖Y − L(U)‖2
H2

+ ρ‖U‖2
H2

+ 2λ ‖U‖A s.t. U ∈ S (4.11)

is called the H2 RFD optimization problem with parameters (ρ, λ), distributed con-

straint S, and atomic norm penalty ‖·‖A .

There are two components of note in this definition. The first is that ρ need not be

equal to ρu, the control cost parameter of the original non-penalized control problem

(4.8); the reasons why a different choice of ρ may be desirable are explained in §4.6.

The second is the use of an atomic norm penalty function to induce structure. Indeed,

if one seeks a solution U∗ that can be composed as a linear combination of a small

number of “atoms” A , then a useful approach, as described in [20, 67–70], to induce

such structure in the solution of an inverse problem is to employ a convex penalty

function that is given by the atomic norm induced by the atoms A [66]. Examples

of the types of structured solutions one may desire in linear inverse problems include

sparse, group sparse and signed vectors, and low-rank, permutation and orthogonal

matrices (cf. [20]).
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Specifically, if one assumes that

U =
r∑

i=1

ciAi, Ai ∈ A , ci ≥ 0 (4.12)

for a set of appropriately scaled and centered atoms A , and a small number r relative

to the ambient dimension, then solving

minimize
U

Ψ (U ;Y,L) + 2λ‖U‖A (4.13)

with the atomic norm ‖ · ‖A given by the gauge function7

||U ||A : = inf{t ≥ 0
∣∣U ∈ tconv(A )}

= inf{∑A∈A cA
∣∣U =

∑
A∈A cAA, cA ≥ 0}

(4.14)

results in solutions that are both consistent with the data as measured in terms of

the cost function Ψ (·;Y,L), and that are sparse in terms of their atomic descriptions,

i.e., are a combination of a small number of elements from A .

Our discussion in §4.3.2 on designing controller architecture by finding struc-

tured solutions to the model matching problem (4.6) suggests natural atomic sets

for constructing suitable penalty functions for RFD. We make this point precise by

showing that actuator, sensor, and/or communication delay design can all be per-

formed through the use of a purposefully constructed atomic norm. We introduce

several novel penalty functions for controller architecture design, most notably for

the simultaneous design of actuator, sensor and communication delays. Further, all

regularizers that have been considered for control architecture design in the literature

(cf. [21, 23, 27, 56, 74–76], among others) may be viewed as special instances of the

atomic norms described below.

In what follows, the atomic sets that we define are of the form

A =
⋃

A∈M

A ∩ kABH2 , (4.15)

7If no such t exists, then ‖X‖A =∞.
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for M an appropriate set of subspaces, {kA} a set of normalization constants indexed

by the subspaces A ∈M , and BH2 the H2 unit norm ball; see the concrete examples

below. Note that we normalize our atoms relative to the H2 norm as this norm is

isotropic; hence this normalization ensures that no atom is preferred over another

within a given family of atoms A . We use ns and na to denote the total number of

sensors and actuators, respectively, available for the RFD task.

4.4.2.1 Actuator/Sensor Norm

For the Actuator Norm, we choose the atomic set to be transfer functions in RHna×ns
∞

that have exactly one nonzero row with unit H2 norm, i.e., suitably normalized Youla

parameters that use only one actuator. Specifically, the set of subspaces (4.15) in this

context is

Mact :=
{
A ⊂ RHna×ns

∞
∣∣A has one nonzero row

}
, (4.16)

leading to the atomic set

Aact :=
{
eiV

∣∣V ∈ RH1×ns
∞ , ‖V ‖H2 = 1

}
. (4.17)

The resulting atomic norm is then given by

‖U‖act =
na∑

i=1

‖e>i U‖H2 . (4.18)

In particular, each “group” corresponds to a row of the Youla parameter. For the

Sensor Norm, we similarly choose transfer functions with exactly one nonzero column

with unit H2 norm, leading to the atomic norm

‖U‖sns =
ns∑

i=1

‖Uei‖H2 . (4.19)

Both of these norms are akin to a Group Lasso penalty [82].



73

4.4.2.2 Joint Actuator and Sensor Norm

Conceptually, each atom corresponds to a controller that uses only a small subset of

actuators and sensors. As each row of the Youla parameter U corresponds to an actu-

ator and each column to a sensor, the atomic transfer matrices have support defined

by a submatrix of U(z). Specifically, we choose atoms with at most ka actuators and

ks sensors:

Mact+sns :=
{
A ⊂ RHns×na

∞
∣∣ supp (A) is a submatrix

with at most ka nonzero rows and ks nonzero columns}
(4.20)

The scaling terms kA in the definition of the atomic set (4.15) are given by kA =

(card(A) + .1)−
1
2 , and are necessary as some of the atoms are nested within others

– the additional .1 can be any positive constant, and controls how much an atom of

larger cardinality is preferred over several atoms of lower cardinality. The resulting

Actuator+Sensor Norm is then constructed according to (4.15) and is akin to the

latent Group Lasso [84].

4.4.2.3 Communication Link Norm

As described in §4.3.2, the communication design task is to select which additional

links to introduce into an existing base communication graph. An atom in Acomm

corresponds to such an additional link. We provide an example of such an atomic

set for a simple system, and refer the reader to Chapter 5 and [23] for a more gen-

eral construction. In particular, consider a three player chain system, with physical

1 2 3

Figure 4.3: Three player chain system



74

topology illustrated in Figure 4.3, such that P22 lies in the subspace

S :=
1

z




∗ 0 0

0 ∗ 0

0 0 ∗


⊕

1

z2




∗ ∗ 0

∗ ∗ ∗
0 ∗ ∗


⊕

1

z3
Rp,

where ∗ is used to denote R to reduce notational clutter. We consider an existing

communication graph matching the physical topology illustrated in Figure 4.3 so that

the induced distributed subspace constraint, as described in §4.3.2, is given precisely

by S. It can be checked that S is then QI with respect to P22. We consider choosing

from two additional links to augment the communication graph: a directed link from

node 1 to node 3, and a directed link from node 3 to node 1. Then Mcomm =

{A13,A31}, where its component subspaces are given by

A13 = 1
z2




0 0 0

0 0 0

∗ 0 0


 ,A31 = 1

z2




0 0 ∗
0 0 0

0 0 0


 .

In particular, each subspace Aij corresponds to the additional information available

to the controller uniquely due to the added link from sensor j to actuator i. The

resulting Communication Link Norm ‖·‖comm is then constructed according to (4.15)

with all normalization constants kA = 1. We note that this penalty is also akin to

the latent Group Lasso [84].

4.4.2.4 Joint Actuator (and/or Sensor) and Communication Link Norm

This penalty can be viewed as simultaneously inducing sparsity at the communication

link level, while further inducing row sparsity as well. The general strategy is to

combine the actuator and communication link penalties in a convex manner. We

suggest two such approaches, one based on taking their weighted sums and the other

based on taking their “weighted maximum.” In particular, we define the joint actuator
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plus communication link penalty to be:

‖U‖act+comm = (1− θ) ‖U‖comm + θ ‖U‖act , (4.21)

for some θ ∈ [0, 1], and the max actuator/communication link penalty to be

‖U‖max{act,comm} = max {(1− θ) ‖U‖comm , θ ‖U‖act} , (4.22)

for some θ ∈ [0, 1]. The analogous Sensor and Communication Link penalties, as well

as Sensor+Actuator and Communication link penalties can be derived by replacing

Aact with either Asns or Aact+sns.

4.4.3 Further Connections with Structured Inference

As already noted in §4.4.1, by choosing different values of ρ for λ = 0 we are able to

recover control-theoretic analogs to Ordinary Least Squares and Ridge Regression [81].

Noting that the actuator norm penalty (4.18) is akin to the Group Lasso [82], we now

discuss how control theoretic analogs of the Group Lasso and Group Elastic Net [83]

can be obtained by setting λ > 0 in (4.11) and using the Actuator Norm (4.18)

penalty – these connections are summarized in Table 4.1. To simplify the discussion,

we once again consider these connections in the context of the basic LQR problem

introduced in Example 4.2, now augmented with the actuator norm penalty (4.18).

In structured inference problems, the setting λ > 0, ρ > 0 corresponds to Group

Elastic-Net regression. If the groups are single elements, this becomes the traditional

Elastic Net and Lasso. The singleton group setting with λ > 0, ρ = 0 corresponds to

Lasso regression, and this inference method is employed when the underlying model is

known to be sparse – in particular, the Lasso penalty is used to select which elements

U∗i of the model are non-zero [67, 68]. Continuing with the singleton group setting,

if both λ > 0 and ρ > 0, then the corresponding inferential approach is called the

Elastic Net. In addition to the sparsity-inducing properties of the Lasso, the Elastic

Net also encourages automatic clustering of the elements [83] – in particular, ρ > 0
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Parameters Inference
Method

Inference
Structure

Inference
Tradeoff

RFD
Method

RFD Struc-
ture

RFD Tradeoff

λ = 0,
ρ = 0

Ordinary
Least
Squares

None N/A Cheap
Control
LQR

Deadbeat
response

N/A

λ = 0,
ρ > 0

Ridge
Regres-
sion

Small
Euclidean
norm

Bias, Vari-
ance

LQR Small con-
trol action

State devia-
tion,
Control effort

λ > 0,
ρ = 0

Group
LASSO

Group
sparsity

Bias, Vari-
ance,
Model
complex-
ity

RFD
LQR

Sparse ac-
tuation

State devia-
tion, Control
effort,
Actuation
complexity

λ > 0,
ρ > 0

Group
Elastic
Net

Correlated
group
sparsity

Bias, Vari-
ance,
Model
complex-
ity

RFD
LQR

Correlated
sparse ac-
tuation

State devia-
tion, Control
effort,
Actuation
complexity

Table 4.1: A dictionary relating various SLIP methods in structured inference and
Actuator RFD problems.

encourages the simultaneous selection of highly correlated elements (two elements U∗i
and U∗j are said to be highly correlated if L(U∗i ) ≈ L(U∗j )). Thus ρ can be seen as a

parameter that can be adjusted to leverage a prior of correlation in the underlying

measurement operator L. These interpretations carry over to more general groups in

a natural way.

In RFD, this setting corresponds to our motivating Example 4.2 augmented with

the actuator norm penalty, in which we design the controller’s actuation architecture.

As each atom corresponds to an actuator, this RFD procedure then selects a small

number of actuators. Porting the clustering effect interpretation from the structured

inference setting, we see that ρ promotes the selection of actuators that have similar

effects on the closed loop response. In particular, this suggests that for systems in

which no such similarities are expected, ρ should be chosen to be small (or 0) during

the RFD process, even if the original LQR problem had non-zero control cost.
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4.5 The RFD Procedure

4.5.1 The Two-Step Algorithm

We now introduce the convex optimization based RFD procedure for the co-design of

an optimal controller and the architecture on which it is implemented. The remaining

computational challenge is the possibly infinite dimensional nature of the RFD opti-

mization problem (4.7). To address this issue, we propose a two step procedure: first,

a finite dimensional approximation of optimization problem (4.7) is solved to identify

a potential controller architecture and its defining subspace constraint D. Once this

architecture has been identified, a traditional (and possibly infinite dimensional) opti-

mal control problem (4.1) with Youla prameter restricted to lie in D∩S is then solved

– in particular, in many interesting settings the resulting optimal controller restricted

to the designed architecture can then be computed exactly leveraging results from

the optimal controller synthesis literature [2, 12–17].

Formally, we begin by fixing an optimization horizon t and a controller order v.

We suggest initially choosing t and v to be small (i.e., 2 or 3), and then gradually

increasing these parameters until a suitable controller architecture/control law pair

is found. Our motivations for this approach are twofold: (i) first, selecting a small

horizon t and small controller order v leads to a smaller optimization problem that

is computationally easier to solve; and (ii) as we show in the next section, a smaller

horizon t and smaller controller order v can actually aid in the identification of optimal

controller architectures. For a given performance metric Ψ (·;Y,L) and atomic norm

penalty ‖ · ‖A, the two step RFD procedure consists of an architecture design step

and an optimal control law design step:

1) Architecture design: Select the regularization weight λ and solve the finite

dimensional RFD optimization problem

minimize
U∈RH≤v∞ ∩S

Ψ
(
U ;Y ≤t,L≤t,v

)
+ 2λ ‖U‖A (4.23)

The actuators, sensors and communication links defining the designed architecture are
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specified by the non-zero atoms that constitute the solution Û to optimization problem

(4.23). The architectural components employed in Û in turn define a subspace D(Û)

which corresponds to all controllers (within the Youla parameterization) that have

the same architecture as Û .8

2) Optimal control law design: Solve the infinite dimensional optimal control

problem with Youla parameter additionally constrained to lie in the designed subspace

D(Û) ∩ S:
minimize
U∈RH∞

Ψ (U ;Y,L) s.t. U ∈ D(Û) ∩ S. (4.24)

If the resulting controller architecture and controller performance are acceptable, the

RFD procedure terminates. Otherwise, adjust λ accordingly to vary the tradeoff be-

tween architectural complexity and closed loop performance. If no suitable controller

architecture/controller can be found, increase t and v and repeat the procedure.

Remark 4.5 (Removing Bias) The method of solving a regularized optimization

problem to identify the architectural structure of a controller and then solving a stan-

dard model matching problem restricted to the identified architecture is analogous to a

procedure that is commonly employed in structured inference. In structured inference

problems, a regularized problem is solved first to identify a subspace corresponding to

the structure of an underlying model U∗. Subsequently, a non-regularized optimiza-

tion problem with solution restricted to that identified subspace is solved to obtain an

unbiased estimator of the underlying model U∗.

4.5.2 Simultaneous Actuator, Sensor and Communication RFD

In this subsection we demonstrate the full power and flexibility of the RFD frame-

work in designing a distributed controller architecture, jointly incorporating actuator,

sensor and communication link design. In particular we consider a plant with eleven

subsystems with topology as illustrated in Figure 4.4. The solid lines correspond to

the physical interconnection between subsystems. Choosing C2 = B2 = I, the adja-

8As described in §4.3, the subspace D(Û)∩S is QI by construction, and hence this subspace also
corresponds to all controllers with the same architecture as K̂ = (I + ÛP22)−1Û .
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cency matrix of this graph then defines the support of the A matrix in the state space

realization of the generalized plant (4.2), as well as the required communication links

between nodes such that the distributed constraint is QI under P22 [10, 23].

Figure 4.4: Topology of system considered for RFD example. Solid lines indicate
both physical interconnections and existing communication links between controllers.
Dashed lines correspond to possible additional edges to be added.

The non-zero entries of A were generated randomly and normalized such that

|λmax (A) | = .999. The remaining state space parameters of the generalized plant (4.2)

satisfy D12

[
C>1 D>12

]
=
[
0 25I

]
, and D>21

[
B1 D21

]
=
[
0 .01I

]
, with C1C

>
1 =

100I and B>1 B1 = I.

For the RFD task, we choose an H2 norm performance metric; we allow each node

to be equipped with an actuator and/or a sensor (for a total of 11 possible actuators

and sensors), and we allow the communication graph to be augmented with any subset

of the interconnections denoted by the dashed lines in Figure 4.4, in addition to the

already present links given by the solid lines. This leads to 536,870,911 different

possible controller architectures.

We solved the RFD optimization (4.43) with atomic norm ‖·‖act+sns+comm as de-

fined in §4.4.2, with weighting parameter θ = .75 and with ks = ka = 1. We performed

the RFD procedure for two different horizon/order pairs: t = 4 and v = 2, as well as

t = 6 and v = 3; for these latter horizon/order values acceptable tradeoffs between

architecture complexity and closed loop performance were identified, and hence the

RFD procedure terminated. For each horizon/order pair (t, v), we vary λ, and for

each resulting optimal solution Û , we identified the designed architecture and corre-

sponding subspace D(Û). We then used the method from [16] to exactly solve the

resulting non-regularized distributed H2 model matching problem with subspace con-
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straint D(Û). Note that the Youla parameter solving this non-regularized problem is

not restricted to have a finite impulse response. In particular, we can compute the

optimal Youla parameter and the corresponding optimal controller restricted to the

architecture underlying Û in a computationally tractable fashion because we guar-

antee that the subspace corresponding to the designed architecture is QI, as per the

discussion in Section 4.4.

For horizon t = 6 and order v = 3, the resulting architectural complexity is plot-

ted against the closed loop norm of the system in Figure 4.5. As λ is increased, the

architectural complexity (i.e. the number of actuators, sensors and communication

links) decreases, but at the expense of deviations from the performance achieved by

the controller that uses all of the available architectural resources. We also show the

resulting architecture for λ = 500 in Figure 4.6: as can be seen, a non-obvious com-

bination of eight actuators, eight sensors and five additional communication links are

chosen, resulting in only a 0.71% degradation in performance over the distributed con-

troller using all eleven actuators, eleven sensors and seven additional communication

links.

As this example shows, the RFD procedure is effective at identifying simple con-

troller architectures that approximate the performance of a controller that maximally

utilizes the available architectural resources. In the next section, we offer some theo-

retical justification for the success of our procedure by suitably interpreting the RFD

optimization problem (4.7) in the context of approximation theory and by making

connections to analogous problems in structured inference.

4.6 Recovery of Optimal Actuation Structure

This section is dedicated to the analysis of the H2 RFD optimization problem (4.11)

with no distributed constraint, actuator norm penalty (4.18), and Y and L as given

in Example 4.3 – a nearly identical argument applies to a sensor norm regularized

problem. We discuss how to extend the analysis to output feedback and distributed

problems at the end of the section.



81

80 90 100 110 120 1300

2

4

6

8

10

12

Closed loop norm

N
um

be
r o

f c
om

po
ne

nt
s

 

 
Actuators
Sensors
Comm Links

Figure 4.5: A small degradation in closed loop performance allows for a significant
decrease in architectural complexity.

Figure 4.6: Resulting architecture for λ = 500: despite only using eight actuators (or-
ange squares), eight sensors (blue triangles) and five additional communication links
(green arrows), the performance only degraded by 0.71% relative to the distributed
controller using all eleven actuators, eleven sensors and seven communication links.

Viewing the model matching problem (4.6) as a linear inverse problem makes it

clear that designing a structured controller is akin to obtaining a structured solution

to a linear inverse problem. The problem of obtaining structured solutions to linear

inverse problems arises prominently in many contexts, most notably in statistical
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estimation and inference. In that setting, one posits a linear measurement model9

Y = L(U∗) +W, (4.25)

where Y is the vector of observations, L is the measurement map, U∗ parametrizes

an underlying model and W is the measurement error. The linear model (4.25) also

has an appealing interpretation from a control-theoretic perspective. In particular,

letting Y ∈ RH∞ be the state component of the open loop response of a LTI system,

U∗ ∈ RH∞ be a suitably defined Youla parameter, and L : RH∞ → RH∞ be the

map from Youla parameter to the state component of the closed loop response, it is

then immediate that

W := Y − L(U∗) (4.26)

represents the state component of the closed loop response achieved by the controller

U∗. Table 4.2 summarizes the correspondence between these two perspectives.

Parameter Structured Controller Design Structured Inference
Y Open loop system Observations
L Map to closed loop Measurement map
U∗ Desired controller Underlying model
W Closed loop response Measurement noise

Table 4.2: Interpretation of parameters in Structured Controller Design and Struc-
tured Inference.

This conceptual connection suggests a novel interpretation of the role of the closed

loop response W achieved by a controller U∗. In an inferential context, since W

corresponds to measurement noise, a smaller W makes the task of identifying the

structure of the underlying model U∗ much easier, as the measurements are more

accurate. In a similar spirit, we demonstrate that structured controller design is

easier (via the solution to an RFD optimization problem (4.7)) if the corresponding

state component of the closed loop response is small. Thus the state component of the

closed loop response of the system plays the role of noise when trying to identify the
9We purposefully use non-standard notation to facilitate comparisons between RFD and SLIP.
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structure of a suitably defined controller U∗. In the sequel, we describe an appropriate

notion of smallness for the state component of the closed loop response in the context

of designing structured controllers.

The remainder of the discussion in this section builds on prominent results from

the structured inference literature [67–70]. The flavor of these results is somewhat

non-standard in the controls literature, and we therefore pause briefly to frame the

setup in this section appropriately and to discuss how the results of this section

should be interpreted. The main result of this section proceeds by assuming that

there exists an architecturally simple controller U∗ (i.e., one with a small number of

actuators) that achieves a good closed loop response, (i.e., that achieves a small W

as defined in (4.26)). Under suitable conditions, Theorems 4.1 and 4.2 state that the

architectural structure of U∗ can be recovered via tractable convex optimization using

the RFD procedure. These conditions are phrased in terms of quantities associated

to U∗ which are typically unknown in advance – however, these conditions are not

meant to be checked prior to solving a RFD optimization problem. Although the

results are stated in terms of a nominal controller U∗, they should be interpreted

as describing the properties satisfied by controller architectures identified via the

RFD procedure of §4.5. In particular, the RFD procedure requires solving RFD

optimization problems across a range of controller orders v, optimization horizons t

and regularization weights λ: this process leads to a set of controller architectures

being identified. Our results allow a practitioner to be confident that all controller

architectures satisfying the conditions of our theorems – i.e., those that have a small

number of actuators and that achieve a small closed loop state response – are included

in this set of identified controller architectures. In this way, the RFD procedure

provably identifies good controller architectures, should they exist.

We study finite dimensional variants of the H2 RFD optimization problem (4.11)

with the actuator norm penalty (4.18), and show that such finite dimensional ap-

proximations are sufficient to identify the structure of a desired controller U∗. In

particular, we truncate the optimization problem (4.11) to a finite horizon t by re-

stricting Y − L(U) ∈ RH∞ to the first t elements of its impulse response, and to
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a finite controller order v by restricting U to lie in RH≤v∞ . The resulting optimiza-

tion problem is thus finite dimensional, and corresponds to the first step of the RFD

procedure defined in the previous section. At this point, it is convenient to intro-

duce the temporally truncated version of (4.26) for a fixed optimization horizon t and

controller order v:
W≤t = Y ≤t − L≤t,t(U≤t∗ )

= Y ≤t − L≤t,v(U≤v∗ )− T≤t,v
(4.27)

with

T≤t,v := L≤t,t
(
U≤t∗ − U≤v∗

)
(4.28)

corresponding to the effect of the “tail” of U∗ on the state component W≤t of the

truncated closed loop response.

The flexibility in the choice of the optimization horizon t and controller order v

will be the focus of much of our discussion. In particular, it is of interest to find the

smallest t and v for which we can guarantee that the RFD procedure recovers the

structure underlying U∗ – the smaller the horizon and controller order, the smaller the

size of the optimization problem that needs to be solved. Perhaps counter-intuitively,

we show that larger t and v do not necessarily help in recovering the structure of

an underlying parameter U∗. We make this statement precise in what follows, but

again drawing on intuition from the structured inference literature, we note that

increasing v in RFD is analogous to increasing the allowed model complexity when

solving an inference problem: if the model class is too rich, we risk over-fitting and

thus obfuscating the structure of the underlying model U∗.

Our goal is to prove that the solution Ũ to the finite dimensional H2 RFD opti-

mization problem

Ũ = argmin
U∈RH≤v∞

‖Y ≤t + L≤t,v(U)‖2
H2

+ ρ‖U‖2
H2

+ 2λ ‖U‖act (4.29)

has the same architectural structure as U∗ for appropriately chosen t and v. To show
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this, we study the solution Û to the following architect optimization problem:

Û = argmin
U∈RH≤v∞

‖Y ≤t + L≤t,v(U)‖2
H2

+ ρ‖U‖2
H2

+ 2λ ‖U‖act

s.t. U ∈ A∗
(4.30)

where A∗ is a subspace of Youla parameters U with the property that a row of U∗

being zero implies that the corresponding row of U is zero. In words, A∗ may be

viewed as the set of Youla parameters corresponding to actuation schemes matching

the actuation scheme of U∗. We also define M∗ ⊂ Mact, with Mact defined as in

(4.16), to be

M∗ := {A ∈Mact | (U∗)A 6= 0} . (4.31)

In words, the elements of M∗ correspond to actuation schemes that use a single actu-

ator, where these actuators are defined by the nonzero rows of the desired controller

U∗.

We show under suitable conditions on t, v, U∗ and L≤t,v that Û = Ũ ; that is

to say that the architect solution Û is also the unique optimal solution to the RFD

optimization problem (4.29) without the additional constraint U ∈ A∗. As a result,

since Û is constrained to lie in A∗, the solution to the RFD optimization problem Ũ

also lies in A∗ and hence has the same architectural structure as U∗. We emphasize

that at no stage during the RFD procedure described in §4.5 do we require knowledge

of A∗ and M∗ – the investigation of the architect problem (4.30) is only a theoretical

tool used to prove structural recovery results.

4.6.1 Identifiability Conditions in Control

We begin by introducing two restricted gains in terms of the subspace A∗ and its

orthogonal complement A⊥∗ . In order to do so, we introduce the dual norm to ‖·‖act,

which is given by

‖U‖?act = max
A∈Mact

‖UA‖H2 . (4.32)

These restricted gains are then
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α≤t,v := min
∆

∥∥∥∥
([

L≤t,vA∗

]†
L≤t,vA∗ + ρI

)
(∆)

∥∥∥∥
?

act

s.t. ‖∆‖?act = 1, ∆ ∈ A∗ ∩RH≤v∞
(4.33)

β≤t,v := max

∥∥∥∥
[
L≤t,vA⊥∗

]†
L≤t,vA∗ (∆)

∥∥∥∥
?

act

s.t. ‖∆‖?act ≤ 1, ∆ ∈ A∗ ∩RH≤v∞ .
(4.34)

The minimum gain α≤t,v is a quantitative measure of the injectivity of the operator

L≤t,v×√ρI restricted to the subspace A∗. Intuitively, it characterizes the distinctions
among the effects of the different actuators within A∗. The maximum gain β≤t,v, on

the other hand, is a measure of how different the effects of actuators in A∗ are from

those of actuators in A⊥∗ .
We can already see some immediate implications of different choices of the horizon

t and and controller order v on these quantities. In particular, α≤t,v is non-increasing

in the controller order v. This minimum gain’s dependence on the horizon t is more

subtle. Define the mixing time of M∗ to be

τM∗ := max
{
t ∈ Z+

∣∣ [L≤tA
]†
L≤tB = 0, ∀A 6= B ∈M∗

}
. (4.35)

If no t exists such that the condition within the max {·} is satisfied, we set τM∗ = 0.

The mixing time τM∗ measures how long it takes for the effects of the distinct actuators

used by U∗ to overlap, or mix, in the closed loop response. Consequently the minimum

gain α≤t,v is non-decreasing in t so long as t ≤ τM∗ , i.e., so long as t is sufficiently

small that the effects of the different actuators used by U∗ do not overlap. We then

have the following lemma:

Lemma 4.1 Let τM∗ be as defined in (4.35). Then

α≤t,v = ρ+ min
A∈M∗

σmin

([
L≤t,vA

]†
L≤t,vA

)
(4.36)

for all 1 ≤ t ≤ τM∗. In particular, α≤t,v is non-decreasing in t for all 1 ≤ t ≤ τM∗.

Proof: It is easily verified that forA 6= B ∈M∗ and t ≤ τM∗ , we have
[
L≤t,vA

]†
L≤t,vB =
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0, from which (4.36) follows. To see that α≤t,v as given in (4.36) is non-decreasing in

t, it suffices to note that

[
L≤t+1,v
A

]†
L≤t,vA =

[
L≤t,vA

]†
L≤t,vA , (4.37)

leading to the conclusion that

[
L≤t+1,v
A

]†
L≤t+1,v
A =

[
L≤t,vA

]†
L≤t,vA +

[
L≤t+1,v
A − L≤t,vA

]† (
L≤t+1,v
A − L≤t,vA

)
. (4.38)

The result follows by noting that the final term in this expression is positive semidef-

inite.

In particular, this result suggests that actuation schemes with more evenly dis-

tributed actuators (i.e., those with larger mixing times τM∗ (4.35)) are easier to iden-

tify.

The maximum gain β≤t,v, however, is clearly seen to be non-decreasing both in

the controller order v and the horizon t. This is consistent with our interpretation

of β≤t,v as a measure of similarity between actuators: as either v or t increase, there

is more time for the mixing of the actuators’ control actions via the propagation of

dynamics in the system, increasing their worst-case “similarity.” We now assume that

the following identifiability condition is satisfied.

Assumption 4.1 (Identifiability) There exist 1 ≤ v ≤ t <∞ such that

β≤t,v

α≤t,v
=: δ ∈ [0, 1) . (4.39)

In light of the previous discussion, it is immediate that a larger controller order

v decreases the likelihood of the identifiability condition being satisfied, and should

therefore be taken as small as possible. The effect of increasing the horizon t is less

clear, but we see that it may help if the minimum gain α≤t,v increases sufficiently fast

with t relative to the increase in the gain β≤t,v with respect to t – further there is no
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need to increase t beyond the mixing time τM∗ .

In the inference literature, the analog of these identifiability assumptions are given

by conditions known as the restricted eigenvalue condition [85] and the restricted

isometry property [86]. In the sequel, we give an example of deterministic and struc-

tured state space matrices that satisfy these identifiability conditions. Specifically, we

focus on systems (4.2) that have block diagonal B2 and C1 matrices (i.e., decoupled

actuators and state costs), and block banded state matrices A (i.e., locally coupled

dynamics).

Remark 4.6 Notice that if L≤t,v = I, then α≤t,v ≥ 1, β≤t,v = 0 and δ = 0. These

conditions are satisfied if B = C = I and v = t = 1 in Example 4.2 (Basic LQR),

or if C1 = B2 = I and v = 1, t = 2 in Example 4.3 (H2 State Feedback). Thus

sufficiently small values of v and t ensure that condition (4.39) holds. However, the

resulting optimization problem only incorporates low order effects of the dynamics (as

encoded in L≤t,v) in the RFD optimization problem, suggesting that t and v should be

also be chosen large enough to sufficiently capture the dynamics of the system. This

observation and Lemma 4.1 motivate our suggestion in Section 4.5 to begin with small

horizon t and controller order v and to then gradually increase these values until a

suitable controller architecture/control law pair is found.

4.6.2 Sufficient Conditions for Recovery

The following theorem provides sufficient conditions for (i) the architect solution Û

to be the unique optimal solution to the finite dimensional RFD optimization (4.29),

and (ii) an actuator of the desired controller, identified by a subspace A ∈M∗, to be

identified by the RFD procedure.

Theorem 4.1 (Structural Recovery) Fix a horizon 1 ≤ t < ∞, and a controller
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order 1 ≤ v ≤ t such that Assumption 4.1 holds. If

λ > δ
1−δ

(∥∥∥∥
[
L≤t,vA∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act

+ ρ
∥∥U≤v∗

∥∥?
act

)
+

∥∥∥∥∥
[
L≤t,v
A⊥∗

]†
(W≤t+T≤t,v)

∥∥∥∥∥
?

act

1−δ

(4.40)

we have that Û as defined in (4.30) is the unique optimal solution to (4.29), and that

the row support of Û is contained within the row support of U∗. Further if A ∈ M∗

and

‖(U≤v∗ )A‖H2 >
1
α

(
λ+

∥∥∥∥
[
L≤t,vA∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act

+ ρ
∥∥U≤v∗

∥∥?
act

)
, (4.41)

then ÛA 6= 0.

The condition (4.40) states that, under suitable identifiability assumptions, the

regularization weight λ needs to be sufficiently large to guarantee that the architect

solution Û is also the solution to (4.30). However, this can always be made to hold

by choosing λ sufficiently large so that Û = Ũ = 0. The second condition (4.41)

provides an upper bound on the values of λ for which a specific actuator (i.e., a

specific component (U≤v∗ )A, A ∈ M∗) is identified by the architect solution Û . The

following corollary then guarantees the recovery of M∗.

Corollary 4.1 Let µ := minA∈M∗ ‖(U≤v∗ )A‖H2, and suppose that the open interval

Λ :=


 δ

1−δ

[∥∥∥∥
[
L≤t,vA∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act

+ ρ
∥∥U≤v∗

∥∥?
act

]
+

∥∥∥∥∥
[
L≤t,v
A⊥∗

]†
(W≤t+T≤t,v)

∥∥∥∥∥
?

act

1−δ ,

α≤t,vµ−
∥∥∥∥
[
L≤t,vA∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act

− ρ
∥∥U≤v∗

∥∥?
act

)

(4.42)

is non-empty. Then the solution Ũ to the RFD optimization (4.29), with any regu-

larization weight λ chosen within Λ, has row support equal to that of U∗.

Note that it is useful to have a given architecture be identifiable for a range of

regularization weights λ, as prior information about the values needed to specify (4.42)
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are typically not available. We exploited this fact when we defined the RFD procedure

in Section 4.5 by suggesting that λ be varied until a suitable architecture/control law

pair is identified. This corollary also makes explicit that larger values of ρ shrinks the

range of λ for which the RFD procedure is successful. It also shows that larger T≤t,v

tail terms (4.28) are deleterious to the performance of the RFD procedure as well –

therefore although we previously stated that the controller order v should be chosen

as small as possible, it should not be so small that the tail term T≤t,v is too large.

Remark 4.7 (Extension to Output Feedback) A similar argument applies to the

output feedback problem, but at the expense of more complicated formulas. In partic-

ular the H2 RFD optimization takes the form

minimize
U∈RH∞

‖Y − L(U)‖2
H2

+ ‖F(U)‖2
H2

+ 2λ ‖U‖act , (4.43)

for Y = P11, L(U) = P12UP21, and F(U) =
[
P12UD21 D12UP21 D12UD21

]
. Notice

that if D12 and D21 are set to 0 in the RFD optimization problem (4.43), we recover

an optimization problem of exactly the same form as (4.11) with ρ = 0, in which case

the analyses of this section and the next section are applicable.

Remark 4.8 (Extension to Distributed Constraints) For the purposes of anal-

ysis, the additional constraint that U ∈ S can be incorporated by considering the re-

striction of L to S, resulting in a centralized problem (cf. [9] for an example of how

this can be done).

4.7 A RFD Signal to Noise Ratio

Theorem 4.1 as stated does not yet provide an immediate interpretation of the effect of

the choices of the horizon t and the controller order v on the performance of the RFD

procedure. In order to better understand the effects of the horizon t and controller

order v on the success of the RFD procedure, we describe more interpretable bounds

on α≤t,v and β≤t,v.
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Lemma 4.2 Fix 1 ≤ t < ∞ and 1 ≤ v ≤ t. The parameters α≤t,v and β≤t,v,

as defined in equations (4.33) and (4.34), can be bounded from below and above,

respectively, as follows:

α≤t,v ≥ ρ+ γ≤t,v, (4.44)

where

γ≤t,v := min
B⊆M∗,|B|≥1

max
A∈B

[
σmin

([
L≤t,vA

]†
L≤t,vA

)
−

∑

B6=A∈B

σmax

([
L≤t,vA

]†
L≤t,vB

)]

(4.45)

and

β≤t,v ≤ max
A∈(Mact\M∗)

∑

B∈M∗

σmax

([
L≤t,vA

]†
L≤t,vB

)
. (4.46)

Consequently, we can upper bound the ratio (4.39) as

δ ≤ β≤t,v

ρ+ γ≤t,v
. (4.47)

In particular, it is a straightforward consequence of Lemma 4.1 that for all t ≤
τM∗ (where the mixing time τM∗ is as in (4.35)), the intermediate quantity γ≤t,v, as

introduced in Lemma 4.2, is given by

γ≤t,v = min
A∈M∗

σmin

([
L≤t,vA

]†
L≤t,vA

)
,

and is non-decreasing in t. Further it is easily verified that the bounds (4.44), (4.46)

and (4.47) can be taken with equality if v = 1, as each L≤t,1A is isomorphic to a column

vector.

The bounds computed in Lemma 4.2 can be combined with the sufficient condi-

tions of Theorem 4.1 to describe sufficient conditions for the successful recovery of

the architecture of U∗ in terms of a signal to noise like quantity – to that end, we

introduce the following definitions.

Definition 4.5 (RFD Noise) We define the RFD Noise level η≤t,vM∗
for an H2 RFD
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optimization problem (4.29) to be

η≤t,vM∗
:=

∥∥∥∥
[
L≤t,vA∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act

+

∥∥∥∥
[
L≤t,vA⊥∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act

. (4.48)

The control theoretic interpretation (4.26) of the linear model (4.25) used in in-

ference problems motivates our terminology – recall in particular that in (4.26) the

state component of the closed loop response W is interpreted as measurement noise

in the context of identifying a structured controller. Likewise, T≤t,v can be viewed

as additional noise introduced into the architecture identification procedure by the

temporal truncation procedure described in (4.27). We proceed to define a control

theoretic analog to the signal in the context of RFD optimization problems.

Definition 4.6 (RFD SNR) In the context of architecture recovery via RFD, the

magnitude of each atom, ‖(U≤v∗ )A‖H2 plays the role of a signal, and the RFD Noise

level η≤t,vM∗
that of noise, leading to the definition of the SNR of a component (U≤v∗ )A, A ∈

M∗ as

SNR
(
(U≤v∗ )A

)
:=
‖(U≤v∗ )A‖H2

η≤t,vM∗

. (4.49)

These definitions allow us to state simple conditions in terms of the SNR (4.49)

for the successful recovery of an actuation architecture via the solution to the H2

RFD optimization problem (4.29).

Theorem 4.2 Let ρ = 0, λ = λ′ + κ, where λ′ is given by the right hand side of

(4.40), and κ > 0 is an arbitrarily small constant, and assume that β≤t,v/γ≤t,v < 1. If

SNR
(
(U≤v∗ )A

)
>

1

γ≤t,v − β≤t,v (4.50)

for all A ∈ M∗, then for sufficiently small κ, the solution Ũ to the H2 RFD opti-

mization problem (4.29) has the same row support as U≤v∗ .
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Proof: Follows from rearranging terms in (4.41), Definition 4.6 and letting κ tend

to 0 from above.

Setting ρ = 0 increases the range Λ, as defined in (4.42), for which the RFD opti-

mization problem is successful in recovering the structure of U∗, and the assumption

that β≤t,v/γ≤t,v < 1 ensures that Assumption 4.1 holds. Thus Theorem 4.2 can be

viewed as a slightly stronger, but more interpretable, set of sufficient conditions for

the success of the RFD procedure.

Notice in particular that the left hand side of condition (4.50), i.e., the SNR, is

mainly a function of the desired controller U≤v∗ and the closed loop performance W≤t

that it achieves, whereas the right hand side of (4.50) is mainly a function of the

structure of the optimal controller and L≤t,v. Thus we expect controllers with sparse

and evenly distributed actuation, i.e., controllers that minimize the SNR threshold

(γ≤t,v−β≤t,v)−1, that act quickly and aggressively to achieve a good closed loop norm,

i.e., controllers that maximize the SNR (4.49), to be recovered by the RFD procedure.

4.8 Case Study

The following case study illustrates the concepts introduced in the previous section

on a concrete system that satisfies our sufficient conditions.

x1 x2 x5 x9 x10…" …"

w1 w5 w9

y1 y2 y5 y9 y10

w2 w10

Figure 4.7: A diagram of the Stable Unidirectional Chain System case study.

We consider a H2 RFD optimization with control cost ρu = .1, and the remaining

generalized plant (4.2) state space parameters set as B2 = C1 = I10, A = 1
2
I10 + 1

2
Z10,

and B1 = 1.1(E11 +E55)+ .7E99 + .1I10. This system is illustrated in Figure 4.7. This

simple example is chosen in order to allow a direct computation of various bounds

and parameters, and to easily interpret the propagation of inputs and disturbances.
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(c) Fixed controller order
v = 2.

Figure 4.8: Behavior of identifiability parameters γ≤t,v and β≤t,v.

We consider the task of recovering the optimal actuation schemes that use either

2 actuators or 3 actuators. In particular, we take the desired controller Us, for s = 2

and s = 3, to be

Us := argmin
U∈RH∞

‖Y − L(U)‖2
H2

+ .1‖U‖2
H2

s.t. U has at most s nonzero rows,
(4.51)

with open loop state response Y and map L as defined in Example 4.3. We solve

this optimization problem by enumerating all possible actuation schemes, and we find

that the optimal actuation scheme for s = 2 is given by actuators at nodes 1 and 5,

and for s = 3 by actuators at nodes 1, 5 and 9.

We emphasize that the goal of this case study is to illustrate the concepts intro-

duced in the previous section, and to help the reader understand how the various

parameters affect the recovery conditions – in practice, M∗ and A∗ are not available.

Further, we note that the case study presented is, as far as we are aware, the first ex-

ample in the literature of a system for which convex optimization provably identifies

an optimal actuation architecture.

With these optimal actuation schemes at our disposal, we vary the parameters t

and v to investigate how our recovery conditions are affected. As per the discussion

in §4.7, we set ρ = 0. We also show that for appropriate fixed controller order v

and horizon t, increasing λ shifts the identified architecture from actuators at nodes

1, 5 and 9 to actuators at nodes 1 and 5. This is a very desirable property from
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an architecture design perspective, as it suggests that increasing the regularization

weight λ causes the identified architecture to move to a simpler, but still optimal,

actuator configuration. As predicted by Corollary 4.1, each optimal architecture is

identified for a range of regularization weights λ. Further, as predicted by Theorem

4.2, the identified architectures are those for which the optimal control law achieves

a small closed loop norm.

We begin by examining how the lower bound parameter γ≤t,v and the maximum

gain β≤t,v are affected as we vary the horizon t and the controller order v. In par-

ticular, for actuation sparsity s = 2, we compute γ≤t,v and β≤t,v for (i) t = 6 and

v ∈ {1, 2, 3} (shown in Figure 4.8a), (ii) for v = 1 and t ∈ {1, 2, 3, 4} (shown in Figure

4.8b), and (iii) for v = 2 and t ∈ {2, 3, 4} (shown in Figure 4.8c). As expected, there

is a decrease in the lower bound parameter γ≤t,v and an increase in the maximum

gain β≤t,v as v increases, while both γ≤t,v and β≤t,v are non-decreasing for a fixed

controller order v and increasing horizon t as long as t ≤ τM∗ . For this problem, the

mixing time τM∗ = 5. Further we see that γ≤t,v begins to decrease for horizons t > 6

when v = 2.

t 1
γ≤t,v−β≤t,v SNR1 SNR5 λ ‖∆‖?act Bound

2 1 1.27 1.27 .8 .73 .89
3 .8 .87 .88 1.46 .91 1.03
4 .727 .732 .735 2.01 1.00 1.12
5 .7 .67 .68 2.45 1.05 1.16

Table 4.3: Summary of relevant values for the controller U2 with actuators at nodes
1 and 5.

The conditions of Theorem 4.2 are satisfied for v = 1 and several values of t. For

example, if we select t = 4, v = 1, ρ = 0 and U∗ as defined in (4.51), we can compute

(γ≤4,1 − β≤4,1)−1 = .7273, SNR
(
(U≤1
∗ )1

)
= .7324, and SNR

(
(U≤1
∗ )5

)
= .7353, thus

satisfying condition (4.50) for each of the two actuators. Further, selecting λ =

2.0119 ∈ Λ, and using this value for λ in the truncated RFD optimization (4.29)

recovers a solution with non-zero first and fifth rows.

Perhaps surprisingly, similar positive recovery results can be verified for all 2 ≤
t ≤ τM∗ – the relevant values are summarized in Table 4.3. In this table, SNRi
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corresponds to the SNR achieved by the controller component corresponding to the

actuator at node i. Further, ∆ := Û − U≤v∗ is the approximation error between the

architect parameter Û and underlying parameter U≤v∗ , and the values in the “Bound”

column are given by equation (4.52) in the appendix giving upper bounds on ‖∆‖?act.

It is worth noting that for t = 5, we do not satisfy the sufficient conditions of Theorem

4.2, but nonetheless recover the correct actuation architecture.

We now consider the case of actuation sparsity s = 3. Much as in the s = 2 case,

we can verify that the conditions of Theorem 4.2 hold for v = 1, and 2 ≤ t ≤ τM∗ ,

where the mixing time τM∗ is still 5. However, since the controller with 3 actuators

is able to achieve a much better closed loop norm, the SNRs are significantly larger,

while the SNR threshold (γ≤t,v−β≤t,v)−1 does not change significantly. In particular,

for the case of t = 5, we have a threshold of (γ≤5,1 − β≤5,1)−1 = .82, and SNRs of

4.04, 4.04 and 2.67 for the three actuator components.

This is consistent with our original interpretation of the closed loop state re-

sponse W≤t playing the role of measurement noise – the better the performance of

the controller, the easier it is to identify via RFD. These experiments demonstrate

that controllers with sparse and diffuse actuation schemes that achieve a small state

response W≤t are easy to identify as the solutions to RFD optimization problems. In

summary, our analysis and case studies demonstrate that: (i) the parameter ρ can

be set to 0 in the RFD optimization problem (4.7), even if the original model match-

ing problem (4.6) had non-zero control cost ρu; (ii) choosing small controller order

v and horizon t can actually lead to a favorable threshold (γ≤t,v − β≤t,v)−1 (4.50);

(iii) actuation schemes that are more evenly distributed (so that they lead to large

mixing times τM∗ in (4.35)) are easier to identify; and (iv) controller components that

maximize the RFD analog of a SNR (4.49) are more likely to satisfy our recovery con-

ditions. These consist of controllers that have a concentration of energy in their early

impulse response elements, and that achieve a closed loop with small state response

component.
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4.9 Future Work

A priori bounds on incoherence: It is of great interest to derive a priori bounds

on the gain parameters α≤t,v (4.33) and β≤t,v (4.34) in terms of the state-space pa-

rameters of the system and a lower bound on the mixing time τM∗ (4.35). We are

currently pursuing semidefinite relaxation based methods to obtain bounds on these

parameters [87].

Scalability: The scalability of the RFD framework is limited by the underlying

quadratic invariance based controller synthesis algorithms upon which it is built.

In order to allow the RFD framework, and distributed optimal control theory in

general, to scale to large heterogeneous systems, the first author and co-authors have

developed the localized optimal control framework (cf. [88] and references therein).

The algorithmic component of the RFD framework has already been ported [89]; it

is of interest to see if analogous recovery conditions can also be developed.

4.10 Proofs

Proof: [Proof of Theorem 4.1] The proof of Theorem 4.1 centers around showing that

under Assumption 4.1, the unique solution to the architect optimization (4.30) is also

the unique solution of the original unconstrained optimization (4.29). We emphasize

that at no point during the RFD process do we assume knowledge of A∗ or of the

architect optimization problem (4.30).

The proof consists of two parts: we first show that if α≤t,v > 0, the architect

optimization problem (4.30) has a unique optimal solution Û , and control its deviation

from the underlying desired controller U≤v∗ . We then use Û and its error bound to

construct a strictly dual-feasible primal/dual pair for the original RFD optimization

problem (4.29), showing that Û is indeed its unique optimal solution as well.

Proposition 4.1 (Bounded Errors) Fix a horizon 1 ≤ t < ∞, and a controller

order 1 ≤ v ≤ t. Assume that α≤t,v as defined in (4.33) is strictly positive, and let

∆ := Û − U≤v∗ . Then



98

‖∆‖?act ≤ 1
α

(
λ+

∥∥∥∥
[
L≤t,vA∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act

+ ρ
∥∥U≤v∗

∥∥?
act

)
. (4.52)

Proof: It is clear that under the assumption that α≤t,v > 0, the architect optimiza-

tion problem (4.30) is strongly convex, and hence has a unique optimal solution Û .

Letting ∆ := Û −U≤v∗ , and using the relation (4.27), the optimality conditions of the

architect optimization problem (4.30) are then given by
([

L≤t,vA∗

]†
L≤t,vA∗ + ρI

)
(∆)−

[
L≤t,vA∗

]†
(W≤t + T≤t,v) + ρU≤v∗ + λZ + ΛA⊥∗ 3 0,

where Z ∈ ∂
∥∥∥Û
∥∥∥

act
satisfies ‖ZA∗‖?act = 1,

∥∥ZA⊥∗
∥∥?

act
≤ 1, and ΛA⊥∗ ∈ A⊥∗ is the

Lagrange multiplier corresponding to the architect constraint U ∈ A∗. Projecting

(4.10) onto A∗, and leveraging that ∆ ∈ A∗, we then obtain

([
L≤t,vA∗

]†
L≤t,vA∗ + ρI

)
(∆) =

([
L≤t,vA∗

]†
(W≤t + T≤t,v)− ρU≤v∗ − λZA∗

)
. (4.53)

We then have the following chain of inequalities

α≤t,v ‖∆‖?act ≤
∥∥∥∥
([

L≤t,vA∗

]†
L≤t,vA∗ + ρI

)
(∆)

∥∥∥∥
?

act

≤ λ+

∥∥∥∥
[
L≤t,vA∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act

+ ρ
∥∥U≤v∗

∥∥?
act

where the first inequality follows from (4.33), and the second from (4.53) and the

triangle inequality. Rearranging terms yields the error bound (4.52).

Strict dual feasibility

In order to construct a primal/dual feasible pair for optimization (4.29) from Û , we

first set ZA∗ to be a member of the sub differential ∂ ‖·‖act evaluated at Û . We now

choose ZA⊥∗ to be

ZA⊥∗ :=

([
L≤t,v
A⊥∗

]†
(W≤t+T≤t,v)−

[
L≤t,v
A⊥∗

]†
L≤t,vA∗ (∆)

)
λ

(4.54)
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In doing so, we guarantee that (Û , Z) satisfy the optimality conditions of optimiza-

tion (4.29). What remains to be shown is the ZA⊥∗ is an element of the sub-differential.

In order to do so, we show that under the assumptions of the theorem,
∥∥ZA⊥∗

∥∥?
act
< 1.

This guarantees that Z is indeed in ∂
∥∥∥Û
∥∥∥

act
, and that ÛA = 0 for all A /∈M∗.

To that end, notice that
∥∥ZA⊥∗

∥∥?
act

can be upper bounded by

(∥∥∥∥
[
L≤t,vA⊥∗

]†
L≤t,vA∗ (∆)

∥∥∥∥
?

act

+

∥∥∥∥
[
L≤t,vA⊥∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act

)

λ

≤ 1

λ

(
β≤t,v ‖∆‖?act +

∥∥∥∥
[
L≤t,vA⊥∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act

)

≤ 1

λ
δ

(
ρ
∥∥U≤v∗

∥∥?
act

+

∥∥∥∥
[
L≤t,vA∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act

)

+ δ +
1

λ

∥∥∥∥
[
L≤t,vA⊥∗

]†
(W≤t + T≤t,v)

∥∥∥∥
?

act

< 1,

where the first inequality follows from applying the triangle inequality to (4.54), the

second from applying definition (4.34), the third from applying the error bound (4.52),

and the fourth from (4.40). Thus we have shown that under the assumptions of the

Theorem, Û is also the optimal solution of the original problem (4.29) – its uniqueness

follows from the local strong convexity of the cost function around Û . Finally, if for

A ∈M∗, we have that (4.41) holds, then ÛA 6= 0.

Proof: [Proof of Lemma 4.2] The gain α≤t,v is bounded below by

min

‖∆‖?act = 1

∆ ∈ A∗

max
A∈M∗

‖
([

L≤t,vA

]†
L≤t,vA + ρI

)
∆A‖H2 −

∑

B6=A∈M∗

‖
[
L≤t,vA

]†
L≤t,vB ∆B‖H2

≥ ρ+ min
B⊆M∗,|B|≥1

max
A∈B

σmin

([
L≤t,vA

]†
L≤t,vA

)
−

∑

B6=A∈B

σmax

([
L≤t,vA

]†
L≤t,vB

)
,

where the inequalities follow from the fact that ‖∆‖?act = 1 implies that there exists

A ∈ M∗ such that ‖∆A‖H2 = 1, and the definition of the respective norms. The

derivation of the bound on β≤t,v is similar, and hence omitted.
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Chapter 5

Communication Delay Co-design in
H2 Distributed Control Using Atomic
Norm Minimization

5.1 Introduction

In the previous chapter, we address the problem of jointly optimizing the architectural

complexity of a distributed optimal controller and the closed loop performance that

it achieves by introducing the Regularization for Design (RFD) framework. In RFD,

controllers with complicated architectures are viewed as being composed of atomic

controllers with simpler architectures – this family of simple controllers is then used

to construct various atomic norms [20, 66, 90] that penalize the use of specific ar-

chitectural resources, such as actuators, sensors or additional communication links.

These atomic norms are then added as a penalty function to the variational solution

to an optimal control problem (formulated in the model matching framework), allow-

ing the controller designer to explore the tradeoff between architectural complexity

and closed loop performance by varying the weight on the atomic norm penalty in

the resulting convex optimization problem.

In [22] we give explicit constructions of atomic norms useful for the design of ac-

tuation, sensing and joint actuation/sensing architectures, but do not address how to

construct an atomic norm for communication architecture design. Indeed construct-

ing a suitable atomic norm for communication architecture design has substantial
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technical challenges that do not arise in actuation and sensing architecture design:

we address these challenges in this chapter. We model a distributed controller as a

collection of sub-controllers, each equipped with a set of actuators and sensors, that

exchange their respective measurements with each other subject to communication

delays imposed by an underlying communication graph. Keeping with the philosophy

adopted in RFD [22], we view dense communication architectures, i.e., ones with a

large number of communication links between sub-controllers, as being composed of

multiple simple atomic communication architectures, i.e., ones with a small number of

communication links between sub-controllers. Thus the problem of controller commu-

nication architecture/control law co-design can be framed as the joint optimization

of a suitably defined measure of the communication complexity of the distributed

controller and its closed loop performance, in which these two competing metrics are

traded off against each other in a principled manner.

In general one can select communication architectures that range in complexity

from completely decentralized, i.e., distributed controllers with no communication

allowed between sub-controllers, to essentially centralized and without delay, i.e.,

distributed controllers with instantaneous communication allowed between all sub-

controllers. However, if we ask that the distributed optimal controller restricted to

the designed communication architecture be specified by the solution to a convex

optimization problem then this limits the simplicity of the designed communication

scheme [5, 9, 10, 77]. In particular a sufficient, and under mild assumptions neces-

sary, condition for a distributed optimal controller to be specified by the solution to

a convex optimization problem1 is that the communication architecture allow sub-

controllers to communicate with each other as quickly as their control actions prop-

agate through the plant [10]. Although this condition may seem restrictive, it can

often be met in practice by constructing a communication topology that mimics or

is a superset of the physical topology of the plant. For example, these delay based

conditions may be satisfied in a smart-grid setting if fiber-optic cables are laid down
1For a more detailed overview of the relationship between information exchange constraints and

the convexity of distributed optimal control problems, we refer the reader to [4, 9, 10, 25] and the
references therein.
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in parallel to transmission lines; in a SDN setting if control packets are given prior-

ity in routing protocols; and in an automated highway system setting if vehicles are

allowed to communicate wirelessly with nearby vehicles.

When the aforementioned delay based condition is satisfied by a distributed con-

straint, it is said to be quadratically invariant (QI) [9, 10]. While the resulting dis-

tributed optimal control problem is convex when quadratic invariance holds, it may

still be infinite dimensional. Recently it has been shown that in the case of H2 dis-

tributed optimal control subject to QI constraints imposed by a strongly connected

communication architecture, i.e. one in which every sub-controller can exchange in-

formation with every other sub-controller subject to delay, the resulting distributed

optimal controller synthesis problem can be reduced to a finite dimensional convex

program, and hence admits an efficient solution [16, 91].2 In light of these observa-

tions, we look to design strongly connected communication architectures that induce

QI constraint sets – once such a communication architecture is obtained, the methods

from [16,91] can then be used to compute the optimal distributed controller restricted

to that communication architecture exactly.

Related work: We refer the reader to the related work paragraph of §4.1 for an

overview of literature relevant to the use of regularization in the control literature.

Chapter contributions: We show that the communication complexity of a dis-

tributed controller can be inferred from the structure of its impulse response ele-

ments. We use this observation to provide an explicit construction of an atomic

norm [20,66,90], which we call the communication link norm, that can be incorporated

into the RFD framework [22] to design strongly connected communication graphs that

generate QI subspaces. As argued above, these two structural properties allow for

the distributed optimal controller implemented using the designed communication ar-

chitecture to be specified by the solution to a finite dimensional convex optimization

problem [16,91]. We also show that by augmenting the variational solution to the H2

distributed optimal control problem presented in [16,91] with the communication link
2Other solutions exist to the H2 distributed control problem subject to delay constraints – we

refer the reader to the discussion and references in [16] for a more extensive overview of this literature.
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norm as a regularizer, the communication architecture/control law co-design problem

can be formulated as a second order cone program. By varying the weight on the com-

munication link norm penalty function, the controller designer can use our co-design

algorithm to explore the tradeoff between communication architecture complexity and

closed loop performance in a principled way via convex optimization. We use these

results to formulate a communication architecture/control law co-design algorithm

that yields a distributed optimal controller and the communication architecture on

which it is to be implemented.

Chapter organization: In §5.2 we introduce necessary operator theoretic con-

cepts and establish notation. In §5.3 we formulate the communication architec-

ture/control law co-design problem as the joint optimization of a suitably defined

measure of the communication complexity of a distributed controller and the closed

loop performance that it achieves. In §5.4, we show how communication graphs can

be used to generate distributed constraints, and show that if a communication graph

that generates a QI subspace is augmented with additional communication links, the

subspace generated by the resulting communication graph is also QI. We use this

observation and techniques from structured linear inverse problems [20] in §5.5 to

construct a convex regularizer that penalizes the use of additional communication

links by a distributed controller, and formulate the co-design procedure. In §5.6 we

discuss the computational complexity of the co-design procedure and illustrate the

usefulness of our approach with two numerical examples. We end with a discussion

in §5.7.

5.2 Preliminaries

5.2.1 Operator Theoretic Preliminaries

We use standard definitions of the Hardy spaces H2 and H∞. We denote the restric-

tions of H∞ and H2 to the space of real rational proper transfer matrices Rp by RH∞
and RH2, respectively. As we work in discrete time, the two spaces are equal, and as
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a matter of convention we refer to this space as RH∞. We refer the reader to [2] for a

review of this standard material. For a signal f = (f (t))∞t=0, we use f≤d to denote the

truncation of f to its elements f (t) satisfying t ≤ d, i.e., f≤d := (f (t))dt=0. We extend

the Banach space `n2 to the space

`n2,e := {f : Z+ → Rn | f≤d ∈ `n2 for all d ∈ Z+}, (5.1)

where Z+ (Z++) denotes the set of non-negative (positive) integers. A plant G ∈
Rm×n
p can then be viewed as a linear map from `n2,e to `m2,e. Unless required, we do not

explicitly denote dimensions and we assume that all vectors, operators and spaces are

of compatible dimension throughout.

5.2.2 Notation

We denote elements of `2,e with boldface lower case Latin letters, elements of Rp

(which include matrices) with upper case Latin letters, and affine maps from RH∞
to RH∞ with upper case Fraktur letters such as M. We denote temporal indices,

horizons and delays by lower case Latin letters.

We denote the elements of the power series expansion of a map G ∈ RH∞ by

G(t), i.e., G =
∑∞

t=0
1
zt
G(t). We use RH≤d∞ to denote the subspace of RH∞ composed

of finite impulse response (FIR) transfer matrices of horizon d, i.e., RH≤d∞ := {G ∈
RH∞ |G =

∑d
t=0

1
zt
G(t)}. Similarly, we use RH≥d+1

∞ to denote the subspace of RH∞
composed of transfer matrices with power series expansion elements satisfyingG(t) = 0

for all t ≤ d, i.e., RH≥d+1
∞ := {G ∈ RH∞ |G =

∑∞
t=d+1

1
zt
G(t)}. For an element

G ∈ RH∞, we use G≤d to denote the projection of G ontoRH≤d∞ , and G≥d+1 to denote

the projection of G ontoRH≥d+1
∞ , i.e., G≤d =

∑d
t=0

1
zt
G(t) and G≥d+1 =

∑∞
t=d+1

1
zt
G(t).

Sets are denoted by upper case script letters, such as S , whereas subspaces of

an inner product space are denoted by upper case calligraphic letters, such as S. We

denote the orthogonal complement of S with respect to the standard inner product

on RH2 by S⊥. We use the greek letter Γ to denote the adjacency matrix of a graph,
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and use labels in the subscript to distinguish among different graphs, i.e., Γbase and

Γ1 correspond to different graphs labeled “base” and “1.” We use Eij to denote the

matrix with (i, j)th element set to 1 and all others set to 0. We use In and 0n to

denote the n× n dimensional identity matrix and all zeros matrix, respectively. For

a p by q block row by block column transfer matrix M partitioned as M = (Mij), we

define the block support bsupp (M) of the transfer matrix M to be the p by q integer

matrix with (i, j)th element set to 1 if Mij is nonzero, and 0 otherwise. Finally, we

use the ? superscript to denote that a parameter is the solution to an optimization

problem.

5.3 Communication Architecture Co-Design

In this section we formulate the communication architecture/control law co-design

problem as the joint optimization of a suitably defined measure of the communication

complexity of the distributed controller and its closed loop performance. In particular,

we introduce the convex optimization based solution to the H2 distributed optimal

control problem subject to delays presented in [16, 91], and modify this method to

perform the communication architecture/control law co-design task.

5.3.1 Distributed H2 Optimal Control subject to Delays

K

w

y u

z G11

G21

G12

G22

Figure 5.1: A diagram of the generalized plant defined in (5.2).

To review the relevant results of [16,91], we introduce the discrete-time generalized
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plant G given by

G =




A B1 B2

C1 0 D12

C2 D21 0


 =


G11 G12

G21 G22


 (5.2)

with inputs of dimension p1, p2 and outputs of dimension q1, q2. As illustrated in

Figure 5.1, this system describes the four transfer matrices from the disturbance and

control inputs w and u, respectively, to the controlled and measured outputs z and

y, respectively. In order to ensure the existence of solutions to the necessary Riccati

equations and to obtain simpler formulas, we assume that (A,B1, C1) and (A,B2, C2)

are both stabilizable and detectable, and that

D>12D12 = I, D21D
>
21 = I, C>1 D12 = 0, B1D

>
21 = 0. (5.3)

Let S be a subspace that encodes the distributed constraints imposed on the con-

troller K. For example, when some sub-controllers cannot access the measurements

of other sub-controllers, the subspace S enforces corresponding sparsity constraints

on the controller K. Alternatively, when sub-controllers can only gain access to other

sub-controllers’ measurements after a given delay, the subspace S enforces correspond-

ing delay constraints on the controller K.

The distributed H2 optimal control problem with subspace constraint S is then

given by
minimize
K∈Rp

‖G11 −G12K(I −G22K)−1G21‖2
H2

s.t. K ∈ S
K internally stabilizes G

(5.4)

where the objective function measures theH2 norm of the closed loop transfer function

from the exogenous disturbance w to the controlled output z, and the first constraint

ensures that the controller K respects the distributed constraints imposed by the

subspace S.
Optimization problem (5.4) is in general both infinite dimensional and non-convex.

In [16, 91], the authors provide an exact and computationally tractable solution to
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optimization problem (5.4) when the distributed constraint S is QI [9] with respect

to G22
3 and is generated by a strongly connected communication graph. We say that a

distributed constraint S is generated by a strongly connected communication graph4

if it admits a decomposition of the form

S = Y ⊕ 1

zd+1
Rp, Y = ⊕dt=1

1

zt
Y(t) (5.5)

for some positive integer d, and some subspaces Y(t) ⊂ Rp2×q2 . In §5.4 we show how

a strongly connected communication graph between sub-controllers can be used to

define a subspace S that admits a decomposition (5.5).

Restricting ourselves to distributed constraints S that are QI with respect to G22

and that admit a decomposition of the form (5.5) allows us to pose the optimal control

problem (5.4) as the following convex model matching problem

minimize
Q∈RH∞

‖P11 − P12QP21‖2
H2

s.t. C
(
Q≤d

)
∈ Y

(5.6)

through the use of a suitable Youla parameterization, where the Pij ∈ RH∞ are

appropriately defined stable transfer matrices and C : RH≤d∞ → RH≤d∞ is an appro-

priately defined affine map (cf. §III-B of [16]). It is further shown in [16] that the

solution Q? to the distributed model matching problem (5.6) with QI constraint S ad-

mitting decomposition (5.5) is specified in terms of the solution to a finite dimensional

convex quadratic program.

Theorem 5.1 (Theorem 3 in [16]) Let S be QI under G22 and admit a decompo-

sition as in (5.5). Let Q? ∈ S ∩ RH∞ be the optimal solution to the convex model
3A subspace S is said to be QI with respect to G22 if KG22K ∈ S for all K ∈ S. When quadratic

invariance holds, we have that K ∈ S if and only if K(I − G22K)−1 ∈ S; this key property allows
for the convex parameterization (5.6) of the distributed optimal control problem (5.4).

4 We consider subspaces S that are strictly proper so that the reader can use the exact results
presented in [16]. The authors of [16] do however note that their method extends to non-strictly
proper controllers at the expense of more complicated formulas.
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matching problem (5.6). Then (Q?)≥d+1 = 0 and

(Q?)≤d = arg min
V ∈RH≤d∞

‖L (V ) ‖2
H2

s.t. C (V ) ∈ Y , (5.7)

where L is a linear map from RH≤d∞ to RH≤d∞ , and C is the affine map from RH≤d∞
to RH≤d∞ used to specify the model matching problem (5.6). Furthermore, the optimal

cost achieved by Q? in the optimization problem (5.6) is given by

‖P11‖2
H2

+ ‖L
(
(Q?)≤d

)
‖2
H2
. (5.8)

Remark 5.1 The term ‖L
(
(Q?)≤d

)
‖2
H2

in the optimal cost (5.8) quantifies the de-

viation of the performance achieved by the distributed optimal controller from that

achieved by the centralized optimal controller.

The optimization problem (5.7) is finite dimensional because the maps L and C

are both finite dimensional (they map the finite dimensional space RH≤d∞ into itself)

and act on the finite dimensional transfer matrix V ∈ RH≤d∞ . These maps can be

computed in terms of the state-space parameters of the generalized plant (5.2) and

the solution to appropriate Riccati equations (cf. §III-B and §IV-A of [16]). Under

the assumptions (5.3) the map L is injective, and hence the convex quadratic program

(5.7) has a unique optimal solution (Q?)≤d.

As the distributed constraint S is assumed to be QI, the optimal distributed

controller K? ∈ S specified by the solution to the non-convex optimization problem

(5.4) can be recovered from the optimal Youla parameter Q? ∈ S through a suitable

linear fractional transformation (cf. Theorem 3 of [16]).

Remark 5.2 If the state-space matrix A specified in the generalized plant (5.2) is

of dimension s × s, then the resulting optimal controller K? admits a state-space

realization of order s + q2d. As argued in [16], this is at worst within a constant

factor of the minimal realization order.
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5.3.2 Communication Delay Co-Design via Convex Optimiza-

tion

Although our objective is to design the communication graph on which the distributed

controller K is implemented, for the computational reasons described in §5.3.1 it is

preferable to solve a problem in terms of the Youla parameter Q as this leads to the

convex optimization problems (5.6) and (5.7). In order to perform the communica-

tion architecture/control law co-design task in the Youla domain, we restrict ourselves

to designing strongly connected communication architectures that generate QI sub-

spaces, i.e., subspaces that are QI and that admit a decomposition of the form (5.5).

As argued in §5.1, this is a practically relevant class of communication architectures to

consider, and further, based on the previous discussion it is then possible to solve for

the resulting distributed optimal controller restricted to the designed communication

architecture using the results of Theorem 5.1.

Our approach to accomplish the co-design task is to remove the subspace con-

straint C (V ) ∈ Y , which encodes the distributed structure of the controller, from the

optimization problem (5.7) and to augment the objective of the optimization problem

with a convex penalty function that instead induces suitable structure in C (V ). In

particular, we seek a convex penalty function ‖·‖comm and horizon d such that the

structure of C (V ?), where V ? is the solution to

minimize
V ∈RH≤d∞

‖L (V ) ‖2
H2

+ λ ‖C (V )‖comm , (5.9)

can be used to define an appropriate QI subspace S that admits a decomposition

of the form (5.5). Imposing that the designed subspace S be QI ensures that the

structure induced in C (V ?) corresponds to the structure of the resulting distributed

controller K?. Further imposing that the designed subspace S admit a decomposition

of the form (5.5) ensures that the distributed optimal controller restricted to lie in

the subspace S can be computed using Theorem 5.1.

Remark 5.3 The regularization weight λ ≥ 0 allows the controller designer to trade-
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off between closed loop performance (as measured by ‖L (V ) ‖2
H2
) and communication

complexity (as measured by ‖C (V )‖comm).

In order to define an appropriate convex penalty ‖·‖comm, we need to understand

how a communication graph between sub-controllers defines the subspace Y in which

C (V ) is constrained to lie in optimization problem (5.7) – this in turn informs what

structure to induce in C (V ?) in the regularized optimization problem (5.9). To that

end, in §5.4 we define a simple communication protocol between sub-controllers that

allows communication graphs to be associated with distributed subspace constraints

in a natural way. Within this framework, we show that if a communication graph

generates a distributed subspace S that is QI with respect to G22, then adding addi-

tional communication links to this graph preserves the QI property of the distributed

subspace that it generates. We use this observation to pose the communication archi-

tecture design problem as one of augmenting a suitably defined base communication

graph, namely a simple graph that generates a QI subspace, with additional commu-

nication links.

5.4 Communication Graphs and Quadratically In-

variant Subspaces

This section first shows how a communication graph connecting sub-controllers can

be used to define the subspace S in which the controller K is constrained to lie in

the distributed optimal control problem (5.4). In particular, if two sub-controllers

exchange information using the shortest path between them on an underlying com-

munication graph, then there is a natural way of generating a subspace constraint

from the adjacency matrix of that graph. Under this information exchange proto-

col, we then define a set of strongly connected communication graphs that generate

subspace constraints that are QI with respect to a plant G22 in terms of a base and

a maximal communication graph. This approach allows the controller designer to

specify which communication links between sub-controllers are physically realizable,
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i.e., which communication links can be built subject to the physical constraints of the

system.

5.4.1 Generating Subspaces from Communication Graphs

Consider a generalized plant (5.2) comprised of n sub-plants, each equipped with its

own sub-controller. Let N := {1, . . . , n} and label each sub-controller by a number

i ∈ N . To each such sub-controller i associate a space of possible control actions

Ui = `
p2,i

2,e and a space of possible output measurements Yi = `
q2,i
2,e , and define the

overall control and measurement spaces as U := U1×· · ·×Un and Y := Y1×· · ·×Yn,
respectively.

Then, for any pair of sub-controllers i and j, the (i, j)th block of G22 is the mapping

from the control action uj taken by sub-controller j to the measurement yi of sub-

controller i, i.e., (G22)ij : Uj → Yi. Similarly, the mapping from the measurement yj,

transmitted by sub-controller j, to the control action ui taken by sub-controller i is

given by Kij : Yj → Ui.
We then form the overall measurement and control vectors

y =
[
(y1)> · · · (yn)>

]>
, u =

[
(u1)> · · · (un)>

]>
(5.10)

leading to the natural block-wise partitions of the plant G22

G22 =




(G22)11 · · · (G22)1n

...
. . .

...

(G22)n1 · · · (G22)nn


 (5.11)

and of the controller K

K =




K11 · · · K1n

...
. . .

...

Kn1 · · · Knn


 . (5.12)

We assume that sub-controllers exchange measurements with each other subject to
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delays imposed by an underlying communication graph – specifically, we assume that

sub-controller i has access to sub-controller j’s measurement yj with delay specified

by the length of the shortest path from sub-controller j to sub-controller i in the

communication graph. Formally, let Γ be the adjacency matrix of the communication

graph between sub-controllers, i.e., Γ is the integer matrix with rows and columns

indexed by N , such that Γkl is equal to 1 if there is an edge from l to k, and 0

otherwise. The communication delay from sub-controller j to sub-controller i is then

given by the length of the shortest path from j to i as specified by the adjacency matrix

gamma Γ. In particular, we define5 the communication delay from sub-controller j

to sub-controller i to be given by

cij := min
{
d ∈ Z+

∣∣Γdij 6= 0
}

(5.13)

if an integer satisfying the condition in (5.13) exists, and set cij =∞ otherwise.

We say that a strictly proper distributed controller K can be implemented on a

communication graph with adjacency matrix Γ if for all i, j ∈ N , we have that the

the (i, j)th block of the controller K satisfies K(t)
ij = 0 for all positive integers t ≤ cij,

or equivalently, that Kij ∈ 1

zcij+1Rp. In words, this says that sub-controller j only has

access to the measurement yi from sub-controller i after cij time steps, the length of

the shortest path from j to i in the communication graph, and can only take actions

based on this measurement after a computational delay of one time step.6 More

succinctly, this condition holds if bsupp
(
K(t)

)
⊆ supp (Γt−1) for all t ≥ 1.

If Γ is the adjacency matrix of a strongly connected graph, then there exists a path

between all ordered pairs of sub-controllers (i, j) ∈ N ×N – this implies that there

exists a positive delay d(Γ) after which a given measurement yj is available to all

sub-controllers. In particular, we define the delay d(Γ) associated with the adjacency

matrix Γ to be

d (Γ) := sup
{
τ ∈ Z++

∣∣∃(k, l) ∈ N ×N s.t. Γτ−1
kl = 0

}
. (5.14)

5See Lemma 8.1.2 of [92] for a graph theoretic justification of this definition.
6This computational delay is included to ensure that the resulting controller is strictly proper.
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1 2 3

Figure 5.2: Three subsystem chain example

Using this convention all measurements y(t)
j are available to all sub-controllers by time

t + d(Γ) + 1. When the delay d(Γ) is finite, we say that Γ is a strongly connected

adjacency matrix, as it defines a strongly connected communication graph.

We define the subspace S(Γ) generated by a strongly connected adjacency matrix

Γ to be

S(Γ) := Y(Γ)⊕ 1

zd(Γ)+1
Rp, (5.15)

where d(Γ) is as defined in (5.14), and Y(Γ) := ⊕dt=1
1
zt
Y(t)(Γ) is specified by the

subspaces

Y(t)(Γ) :=
{
M ∈ Rp2×q2

∣∣ bsupp (M) ⊆ supp
(
Γt−1

)}
. (5.16)

It is then immediate that a controller K can be implemented on the communication

graph Γ if and only if K ∈ S(Γ).

Example 5.1 Consider the communication graph illustrated in Figure 5.2 with strongly

connected adjacency matrix Γ3-chain given by

Γ3-chain =




1 1 0

1 1 1

0 1 1


 . (5.17)

This communication graph generates the subspace

S(Γ3-chain) :=
1

z




∗ 0 0

0 ∗ 0

0 0 ∗


⊕

1

z2




∗ ∗ 0

∗ ∗ ∗
0 ∗ ∗


⊕

1

z3
Rp, (5.18)

where ∗ is used to denote a space of appropriately sized real matrices. The communi-
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cation delays associated with this graph are then given by cij = |i− j| (e.g., c11 = 0,

c12 = 1 and c13 = 2). We also have that d(Γ3-chain) = 2, which is the length of the

longest path between nodes in this graph, and that

Y(Γ3-chain) =
1

z




∗ 0 0

0 ∗ 0

0 0 ∗


⊕

1

z2




∗ ∗ 0

∗ ∗ ∗
0 ∗ ∗


 ⊂ RH

≤2
∞ .

Thus, given such a strongly connected adjacency matrix Γ, the distributed opti-

mal controller K? implemented using the graph specified by Γ can be obtained by

solving the optimization problem (5.4) with subspace constraint S(Γ) – however, this

optimization problem can only be reformulated as the convex programs (5.6) and

(5.7) if the subspace S(Γ) is QI with respect to G22 [77].

5.4.2 Quadratically Invariant Communication Graphs

The discussion of §5.3 and §5.4.1 shows that communication graphs that are strongly

connected and that generate a subspace (5.15) that is QI with respect to G22 allow for

the distributed optimal control problem (5.4) to be solved via the finite dimensional

convex program (5.7). In this subsection, we characterize a set of such communication

graphs in terms of a base QI and a maximal QI communication graph corresponding

to a plant G22. The base QI communication graph defines a simple communication

architecture that generates a QI subspace, whereas the maximal QI communication

graph is the densest communication architecture that can be built given the physical

constraints of the system.

We assume that the sub-controllers have disjoint measurement and actuation chan-

nels, i.e., that B2 and C2 are block-diagonal, and that the dynamics of the system

are strongly connected, i.e., that bsupp (A) corresponds to the adjacency matrix of a

strongly connected graph. We discuss alternative approaches for when these assump-

tions do not hold in §5.7. For the sake of brevity, we often refer to a communication
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graph by its adjacency matrix Γ.

The base QI communication graph

Our objective is to identify a simple communication graph, i.e., a graph defined by

a sparse adjacency matrix Γbase, such that the resulting subspace S(Γbase) is QI with

respect to G22. To that end, let the base QI communication graph of plant G22 with

realization (5.2) be specified by the adjacency matrix

Γbase := bsupp (A) . (5.19)

Notice that under the block-diagonal assumptions imposed on the state-space pa-

rameters B2 and C2, this implies that Γbase mimics or is a superset of the physical

topology of the plant G22, as bsupp
(
G

(t)
22

)
= bsupp (C2A

t−1B2) ⊆ bsupp (A)t−1.

Define the propagation delay from sub-plant j to sub-plant i of a plant G22 to be

the largest integer pij such that

(G22)ij ∈
1

zpij
Rp. (5.20)

It is shown in [10] that if a subspace S constrains the blocks of the controller K

to satisfy Kkl ∈ 1
zckl+1Rp, and the communication delays7 {ckl} satisfy the triangle

inequality cki + cij ≥ ckj, then S is QI with respect to G22 if

cij ≤ pij + 1 (5.21)

for all i, j ∈ N . An intuitive interpretation of this condition is that S is QI if it

allows sub-controllers to communicate with each other as fast as their control actions

propagate through the plant. Since we take the base QI communication graph Γbase

to mimic the topology of the plant G22, we expect this condition to hold and for

S(Γbase) to be QI with respect to G22. We formalize this intuition in the following

lemma.
7These are equivalent to the prior definition (5.13) of communication delays {ckl}.
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Lemma 5.1 Let the plant G22 be specified by state-space parameters (A,B2, C2), and

suppose that B2 and C2 are block diagonal. Let {pij} denote the propagation delays

of the plant G22 as defined in (5.20). Assume that Γbase, as specified as in equation

(5.19), is a strongly connected adjacency matrix, and let {bij} denote the communica-

tion delays (5.13) imposed by the adjacency matrix Γbase. The communication delays

{bij} then satisfy condition (5.21) and the subspace S(Γbase) is quadratically invariant

with respect to G22.

Proof: The definition of the base QI communication graph Γbase and the assump-

tion that B2 and C2 are block-diagonal imply that bsupp
(
G

(t)
22

)
⊆ bsupp (At−1) ⊆

supp
(
Γt−1

base

)
. This in turn can be verified to guarantee that (5.21) holds. Thus it

suffices to show that the communication delays {bkl} satisfy the triangle inequality

bki + bij ≥ bkj for all i, j, k ∈ N . First observe that (i) bii + bii ≥ bii, and (ii)

bii+ bij ≥ bij, as all bij ≥ 0. Thus it remains to show that bki+ bij ≥ bkj for i 6= j 6= k.

Suppose, seeking contradiction, that

bki + bij < bkj. (5.22)

Note that by definition (5.13) of the communication delays and Lemma 8.1.2 of [92],

the inequality (5.22) is equivalent to

min{r | ∃ path of length r from i to k}+ min{r | ∃ path of length r from j to i}

< min{r | ∃ path of length r from j to k}. (5.23)

Notice however that we must have that

min{r | ∃ path of length r from j to k} ≤

min{r | ∃ path of length r from j to i}+ min{r | ∃ path of length r from i to k},
(5.24)

as the concatenation of a path from j to i and a path from i to k yields a path from
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j to k. Combining inequalities (5.22) and (5.24) yields the desired contradiction,

proving the result.

Lemma 5.1 thus provides a simple means of constructing a base QI communication

graph by taking a communication topology that mimics the physical topology of the

plant G22.

Augmenting the base QI communication graph

The delay condition (5.21) suggests that a natural way of constructing QI commu-

nication architectures given a base QI communication graph is to augment the base

graph with additional communication links, as adding a link to a communication

graph can only decrease its communication delays cij.

Proposition 5.1 Let Γbase be defined as in (5.19), and let Γ be an adjacency matrix

satisfying supp (Γbase) ⊂ supp (Γ). Then the generated subspace S(Γ), as defined in

(5.15), is quadratically invariant with respect to G22.

Proof: Let {bij} and {cij} denote the communication delays associated with the

base QI communication graph Γbase and the augmented communication graph Γ,

respectively. It follows from the definition of the communication delays (5.13) that

the support nesting condition supp (Γbase) ⊂ supp (Γ) implies that bij ≥ cij for all

i, j ∈ N . By Lemma 5.1 we have that bij ≤ pij + 1, and therefore cij ≤ bij ≤ pij + 1.

An identical argument to that used to prove Lemma 5.1 shows that the delays cij

satisfy the required triangle inequality, implying that S(Γ) is QI with respect to G22.

In words, the nesting condition supp (Γbase) ⊂ supp (Γ) simply means that the

communication graph Γ can be constructed by adding communication links to the

base QI communication graph Γbase. It follows that any graph built by augmenting

Γbase with additional communication links generates a QI subspace (5.15).

Remark 5.4 Although we have suggested a specific construction for Γbase, Propo-

sition 5.1 makes clear that any strongly connected graph that generates a subspace
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constraint that is QI with respect to G22 can be used as the base QI communication

graph. We discuss the implications of this added flexibility in §5.7.

The maximal QI communication graph

In order to augment the base QI communication graph in a physically relevant way,

one must first specify what additional communication links can be built given the

physical constraints of the system. For example, if two sub-controllers are separated

by a large physical distance, it may not be possible to build a direct communication

link between them. The set of additional communication links that can be physically

constructed is application dependent – we therefore assume that the controller de-

signer has specified a collection E of directed edges that define what communication

links can be built in addition to those already present in the base QI communication

graph. In particular, we assume that it is possible to build a direct communication

link from sub-controller j to sub-controller i, i.e., to build a communication graph

Γbuilt = Γbase + Γ with Γij = 1, only if (i, j) ∈ E .

Given a collection of directed edges E , the maximal QI communication graph Γmax

is given by

Γmax := Γbase +M, (5.25)

whereM is a n×n dimensional matrix withMij set to 1 if (i, j) ∈ E and 0 otherwise.

In words, the maximal QI adjacency matrix Γmax specifies a communication graph

that uses all possible communication links listed in the set E , in addition to those

links already used by the base QI communication graph. Consequently, we say that

a communication graph can be physically built if its adjacency matrix Γ satisfies

supp (Γ) ⊆ supp (Γmax) , (5.26)

i.e., if it can be built from communication links used by the base QI communication

graph and/or those listed in the set E .
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The QI communication graph design set

We now define a set of strongly connected and physically realizable communication

graphs that generate QI subspace constraints as specified in equation (5.15) – in

particular, the base and maximal QI graphs correspond to the boundary points of

this set.

Proposition 5.2 Given a plant G22 and a set of directed edges E , let the adjacency

matrices Γbase and Γmax of the base and maximal QI communication graphs be defined

as in (5.19) and (5.25), respectively. Then an adjacency matrix Γ corresponds to a

strongly connected communication graph that can be physically built and that generates

a quadratically invariant subspace S(Γ) of the form (5.15) if

supp (Γbase) ⊆ supp (Γ) ⊆ supp (Γmax) . (5.27)

Proof: Follows from Prop. 5.1 and definitions (5.25) and (5.26).

The following corollary is then immediate.

Corollary 5.1 Let Γ1 and Γ2 be adjacency matrices that satisfy the nesting con-

dition (5.27) and suppose further that supp (Γ1) ⊆ supp (Γ2). Let δ•, with • ∈
{base, 1, 2,max} be the closed loop norm achieved by the optimal distributed controller

implemented using communication graph Γ•. Then

d(Γbase) ≥ d(Γ1) ≥ d(Γ2) ≥ d(Γmax), (5.28)

S(Γbase) ⊆ S(Γ1) ⊆ S(Γ2) ⊆ S(Γmax), (5.29)

and

δbase ≥ δ1 ≥ δ2 ≥ δmax (5.30)
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Proof: Relations (5.28) and (5.29) follow immediately from the hypotheses of

the corollary and the definitions of the delays d(Γ•) and the subspaces S(Γ•) as

given in (5.14) and (5.15), respectively. The condition (5.30) on the norms δ• follows

immediately from the subspace nesting condition (5.29) and the fact that the optimal

norm δ• achievable by a distributed controller implemented using a communication

graph with adjacency matrix Γ• is specified by the optimal value of the objective

function of the optimization problem (5.4) with distributed constraint S(Γ•).

Corollary 5.1 states that as more edges are added to the base QI communica-

tion graph, the performance of the optimal distributed controller implemented on

the resulting communication graph improves. Thus there is a quantifiable tradeoff

between the communication complexity and the closed loop performance of the re-

sulting distributed optimal controller. To fully explore this tradeoff, the controller

designer would have to enumerate the QI communication graph design set which is

composed of adjacency matrices satisfying the nesting condition (5.27). Denoting this

set by G , a simple computation shows that |G | = 2|E | – thus the controller designer

has to consider a set of graphs of cardinality exponential in the number of possible

additional communication links. This poor scaling motivates the need for a principled

approach to exploring the design space of communication graphs via the regularized

optimization problem (5.9).

5.5 The Communication Graph Co-Design Algorithm

In this section we leverage Propositions 5.1 and 5.2 as well as tools from approxima-

tion theory [20], [66] to construct a convex penalty function ‖·‖comm, which we call

the communication link norm, that allows the controller designer to explore the QI

communication graph design set G in a principled manner via the regularized convex

optimization problem (5.9). We then propose a communication architecture/control

law co-design algorithm based on this optimization problem and show that it indeed

does produce strongly connected communication graphs that generate quadratically

invariant subspaces.
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5.5.1 The Communication Link Norm

Recall that our approach to the co-design task is to induce suitable structure in the

expression C (V ?), where V ? is the solution to the regularized convex optimization

problem (5.9) employing the yet to be specified convex penalty function ‖·‖comm.

We argued that the structure induced in the expression C (V ?) should correspond

to a strongly connected communication graph that generates a QI subspace of the

form (5.5), and characterized a set of graphs satisfying these properties, namely the

QI communication graph design set G . To explore the QI communication graph

design set G , we begin with the base QI communication graph Γbase and augment

it with additional communication links drawn from the set E . The convex penalty

function ‖·‖comm used in the regularized optimization problem (5.9) should therefore

penalize the use of such additional communication links – in this way the controller

designer can tradeoff between communication complexity and closed loop performance

by varying the regularization weight λ in optimization problem (5.9).

We view distributed controllers implemented using a dense communication graph

as being composed of a superposition of simple atomic controllers that are imple-

mented using simple communication graphs, i.e., using communication graphs ob-

tained by adding a small number of edges to the base QI communication graph. This

viewpoint suggests choosing the convex penalty function ‖·‖comm to be an atomic

norm [20,66,90].

Indeed, if one seeks a solution X? that can be composed as a linear combination

of a small number of atoms drawn from a set A , then a useful approach, as described

in [20, 67, 69, 70, 93–95], to induce such structure in the solution of an optimization

problem is to employ a convex penalty function that is given by the atomic norm

induced by the atoms A [66, 90]. Examples of the types of structured solutions one

may desire include sparse, group sparse and signed vectors, and low-rank, permutation

and orthogonal matrices [20]. Specifically, if one desires a solution X? that admits a
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decomposition of the form

X? =
r∑

i=1

ciAi, Ai ∈ A , ci ≥ 0 (5.31)

for a set of appropriately scaled and centered atoms A , and a small number r relative

to the ambient dimension, then solving

minimize
X

‖A(X)‖2
H2

+ λ‖X‖A (5.32)

with A(·) an affine map, and the atomic norm ‖ · ‖A given by8

‖X‖A := inf
{∑

A∈A cA
∣∣X =

∑
A∈A cAA, cA ≥ 0

}
(5.33)

results in solutions that are both consistent with the data as measured in terms of

the cost function ‖A(X)‖2
H2

, and that admit sparse atomic decompositions, i.e., that

are a combination of a small number of elements from A .

We can therefore fully characterize our desired convex penalty function ‖·‖comm

by specifying its defining atomic set Acomm and then invoking definition (5.33). As

alluded to earlier, we choose the atoms in Acomm to correspond to distributed con-

trollers implemented on communication graphs that can be constructed by adding a

small number of communication links from the set of allowed edges E to the base

QI communication graph Γbase. In order to avoid introducing additional notation we

describe the atomic set specified by communication graphs that can be constructed

by adding a single communication link from the set E to the base QI communication

graph Γbase – the presented concepts then extend to the general case in a natural way.

We explain why a controller designer may wish to construct an atomic set specified

by more complex communication graphs in §5.7.
8If no such decomposition exists, then ‖X‖A =∞.
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The atomic set Acomm

To each communication link (i, j) ∈ E we associate the subspace Eij given by

Eij := S⊥(Γbase) ∩ S(Γbase + Eij). (5.34)

Each subspace Eij encodes the additional information available to the controller, rel-

ative to the base communication graph Γbase, that is uniquely due to the added

communication link (i, j) from sub-controller j to sub-controller i. Note that the sub-

spaces Eij are finite dimensional due to the strong connectedness assumption imposed

on Γbase, which leads to the equality S⊥(Γbase) = Y⊥(Γbase) ∩RH≤d(Γbase)
∞ .

Example 5.2 Consider the base QI communication graph Γbase illustrated in Figure

5.2 and specified by (5.17). This communication graph generates the subspace S(Γbase)

shown in (5.18). We consider choosing from two additional links to augment the base

communication graph Γbase: a directed link from node 1 to node 3, and a directed link

from node 3 to node 1. Then E = {(1, 3), (3, 1)} and the corresponding subspaces Eij
are given by

E13 = 1
z2




0 0 0

0 0 0

∗ 0 0


 , E31 = 1

z2




0 0 ∗
0 0 0

0 0 0


 .

The atomic set is then composed of suitably normalized elements of these sub-

spaces:
Acomm :=

⋃

(i,j)∈E

{
A ∈ Eij

∣∣ ‖A‖H2 = 1
}
. (5.35)

Note that we normalize our atoms relative to the H2 norm as this norm is isotropic;

hence this normalization ensures that no atom is preferred over another within the

family of atoms defined by a subspace Eij. The resulting atomic norm, which we

denote the communication link norm, is defined on elements X ∈ RH≤d(Γbase)
∞ and is
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given by9

‖X‖comm = min
Abase,{Aij}∈RH

≤d(Γbase)
∞

∑

(i,j)∈E

‖Aij‖H2

s.t. X = Abase +
∑

(i,j)∈E

Aij

Abase ∈ Y(Γbase)

Aij ∈ Eij ∀(i, j) ∈ E ,

(5.36)

when this optimization problem is feasible – when it is not, we set ‖X‖comm = ∞.

Applying definition (5.36) of the communication link norm to the regularized opti-

mization problem (5.9) yields the convex optimization problem

minimize
V,Abase,{Aij}∈RH

≤d(Γbase)
∞

‖L(V )‖2
H2

+ λ


 ∑

(i,j)∈E

‖Aij‖H2




s.t. C(V ) = Abase +
∑

(i,j)∈E

Aij

Abase ∈ Y(Γbase)

Aij ∈ Eij ∀(i, j) ∈ E .

(5.37)

Recall that in optimization problem (5.9) our approach to communication ar-

chitecture design is to induce structure in the term C(V ) through the use of the

communication link norm as a penalty function. Letting
(
V ?, {A?ij}, A?base

)
denote

the solution to the optimization problem (5.37), we have that each nonzero A?ij in the

atomic decomposition of C(V ) corresponds to an additional link from sub-controller j

to sub-controller i being added to the base QI communication graph (in what follows

we make precise how the structure of C(V ?) can be used to specify a communica-

tion graph). As desired, the communication link norm (5.36) penalizes the use of

such additional links, and optimization problem (5.37) allows for a tradeoff between
9We apply definition (5.33) to the components of X that lie in S⊥(Γbase) to obtain an atomic

norm defined on elements of that space. We then introduce an unpenalized variable Abase ∈ Y(Γbase)
to the atomic decomposition so that the resulting penalty function may be applied to elements
X ∈ RH≤d(Γbase)

∞ . The resulting penalty is actually a seminorm on RH≤d(Γbase)
∞ but we refer to it as

a norm to maintain consistency with the terminology of [20].
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communication complexity (as measured by
∑

(i,j)∈E ‖Aij‖H2) and closed loop perfor-

mance (as measured by ‖L(V )‖2
H2

) of the resulting distributed controller through the

regularization weight λ. Note further that A?base is not penalized by the communica-

tion link norm, ensuring that the communication graph defined by the structure of

C(V ?) has Γbase as a subgraph.

Remark 5.5 Optimization problem (5.37) is finite dimensional, and hence can be

formulated as a second order cone program by associating the finite impulse response

transfer matrices (V,Abase, {Aij}), C(V ) and L(V ) with their matrix representations.

To see this, note that Y(Γbase) ⊆ RH≤d(Γbase)
∞ , and that by the discussion after the

definition (5.34) of the subspaces Eij, they too satisfy Eij ⊆ RH≤d(Γbase)
∞ . Thus the

horizon d(Γbase) over which the optimization problem (5.37) is solved is finite.

5.5.2 Co-Design Algorithm and Solution Properties

In this section we formally define the communication architecture/control law co-

design algorithm in terms of the optimization problem (5.37), and show that it can

be used to co-design a strongly connected communication graph Γ that generates a

QI subspace S(Γ) as defined in (5.15).

The co-design procedure is described in Algorithm 1. The algorithm consists of

first solving the regularized optimization problem (5.37) to obtain solutions
(
V ?, {A?ij}, A?base

)
. Using these solutions, we produce the designed communication

graph Γdes by augmenting the base QI communication graph Γbase with all edges (i, j)

such that A?ij 6= 0. In particular, each non-zero term A?ij corresponds to an additional

edge (i, j) ∈ E that the co-designed distributed control law will use – thus by varying

the regularization weight λ the controller designer can control how much the use of

an additional link is penalized by the optimization problem (5.37). As supp (Γbase) ⊆
supp (Γdes) ⊆ supp (Γmax) by construction, the designed communication graph Γdes

satisfies the assumptions of Proposition 5.2 – it is therefore strongly connected, can

be physically built, and generates a subspace S(Γdes), according to (5.15), that is QI

with respect to G22 and that admits a decomposition of the form (5.5). The subspace
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input : regularization weight λ, generalized plant G, base QI
communication graph Γbase, edge set E ;

output : designed communication graph adjacency matrix Γdes, optimal
Youla parameter Q?

des ∈ S(Γdes);
initialize:: Γdes ← Γbase, Q?

des ← 0;
co-design communication graph(

V ?, {A?ij}, A?base

)
← solution to optimization problem (5.37) with

regularization weight λ;
foreach (i, j) ∈ E s.t. A?ij 6= 0 do

Γdes ← Γdes + Eij;
end

end
refine optimal controller

Q?
des ← solution to optimization problem (5.7) with distributed constraint
Y(Γdes), as specified by Theorem 5.1;

end
return : Γdes, Q?

des;

Algorithm 1: Communication Architecture Co-Design

S(Γdes) thus satisfies the assumptions of Theorem 5.1, meaning that the distributed

optimal controller K?
des restricted to the designed subspace S(Γdes) is specified in

terms of the solution Q?
des to the convex quadratic program (5.7). In this way the

optimal distributed controller restricted to the designed communication architecture,

as well as the performance that it achieves, can be computed exactly.

Although the solution V ? to optimization problem (5.37) could be used to generate

a distributed controller that can be implemented on the designed communication

graph Γdes, we claim that it is preferable to use the solutionQ?
des to the non-regularized

optimization problem (5.7). First, the use of the communication link norm penalty

in the optimization problem (5.7) has the effect of shrinking the solution towards the

origin. This means that the resulting controller specified by V ? is less aggressive,

i.e., has smaller control gains, than the controller specified by the solution to the

optimization problem (5.7) with subspace constraint Y(Γdes).

Second, notice that for two graphs Γij and Γkl obtained by augmenting the base QI

communication graph Γbase with the communication links (i, j) and (k, l), respectively,

it holds that S(Γij) + S(Γkl) ⊆ S(supp (Γij + Γkl)), with the inclusion being strict in
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general. In words, the linear superposition of the subspaces (5.15) generated by the

two communications graphs Γij and Γkl is in general a strict subset of the subspace

generated by the single communication graph supp (Γij + Γkl). Suppose now that

the corresponding solutions A?ij and A?kl to optimization problem (5.37) are non-

zero: then Γdes = Γbase + Eij + Ekl, but the expression C(V ?) lies in the subspace

given by S(Γij) + S(Γkl). By the previous discussion S(Γij) + S(Γkl) ⊂ S(Γdes), and

thus we are imposing additional structure on the the expression C(V ?) relative to

that imposed on the solution to the non-regularized optimization problem (5.7) with

subspace constraint Y(Γdes). This can be interpreted as the controller specified by the

structure of C(V ?) not utilizing paths in the communication graph that contain both

links (i, j) and (k, l). These sources of conservatism in the control law are however

completely removed if one uses the solution Q?
des to the non-regularized optimization

problem (5.7).

Thus we have met our objective of developing a convex optimization based proce-

dure for co-designing a distributed optimal controller and the communication architec-

ture upon which it is implemented. In the next section we discuss the computational

complexity of the proposed method and illustrate its efficacy on numerical examples.

5.6 Computational Examples

We show that the number of scalar optimization variables needed to formulate the

regularized optimization problem (5.37) scales, up to constant factors, in a manner

identical to the number of variables needed to formulate the non-regularized opti-

mization problem (5.7). We then illustrate the usefulness of our approach via two

examples.

Computational Complexity

We assume that the number of control inputs p2 and the number of measurements q2

scale as O(n), where n is the number of sub-controllers in the system, i.e., we assume

that there is an order constant number of actuators and sensors at each sub-controller.
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For an element V ∈ RH≤d∞ , each term V (t) in its power-series expansion is a real matrix

of dimension O(n) × O(n), and thus V is defined by O(n2d) scalar variables. The

convex quadratic program (5.7) is therefore specified in terms of O(n2d) variables.

To describe the number of scalar optimization variables in the regularized op-

timization problem (5.37), we need to take into account the contributions from V ,

Abase and {Aij}. As per the discussion in the previous paragraph, V and Abase are

composed of at most O(n2d) scalar optimization variables. It can be checked that

each Aij has O(d) optimization variables, and hence the collection {Aij} contributes
O(d|E |) scalar optimization variables. Each sub-controller can have at most O(n)

additional links originating from it, and thus |E | scales, at worst, as O(n2). It follows

that the regularized optimization problem (5.37) can also be specified in terms of

O(n2d) scalar optimization variables.

Finally, we note that the regularized optimization problem (5.37) is a second order

cone program (SOCP) with at most O(n2d) second order constraints. It therefore

enjoys favorable iteration complexity that scales as O(
√
dn) [96], and its per-iteration

complexity is at worst O(d3n6) [97], but is typically much less when structure is

exploited. In particular it is not atypical to solve a SOCP with tens to hundreds of

thousands of variables [98]: noting that d scales at worst as O(n), we therefore expect

our method to be applicable to problems with hundreds of sub-controllers. Further, as

we illustrate in the 20 sub-controller ring example below, the computational benefits

of our approach compared to a brute force search are already tangible for systems

with tens of sub-controllers.

6 sub-controller chain system

Consider a generalized plant (5.2) specified by a tridiagonal matrix A6-chain ∈ R6×6

with randomly generated nonzero entries, B2 = C2 = I6, B1 = C>1 =
[
I6 06

]
and

D21 = D>12 =
[
06 I6

]
. The physical topology of the plant G22 is that of a 6 subsystem

chain (a 3 subsystem chain is illustrated in Figure 5.2), and therefore the base QI

communication graph Γ6-chain = bsupp (A6-chain) also defines a 6 sub-controller chain.
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We define the set of edges that can be added to the base graph to be

E = {(i, j) ∈ N ×N
∣∣ |i− j| = 2}, (5.38)

i.e., the communication graph/control law co-design task consists of determining

which additional directed communication links between second neighbors should be

added to the base QI communication graph Γ6-chain to best improve the performance

of the distributed optimal controller implemented on the resulting augmented com-

munication graph.
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Figure 5.3: The closed loop norms achieved by distributed optimal controllers imple-
mented on communication graphs constructed by adding k = 1, . . . , |E | links to the
base QI communication graph Γ6-chain are plotted as circles. The solid line denotes the
performance achieved by distributed optimal controllers implemented on the commu-
nication graphs identified by the co-design procedure described in Algorithm 1. The
dotted/dashed lines indicate the closed loop norm achieved by the distributed op-
timal controllers implemented on the base and maximal QI communication graphs,
respectively.

In order to assess the efficacy of the proposed method in uncovering communica-

tion topologies that are well suited to distributed optimal control, we first computed
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the optimal closed loop performance achievable by a distributed controller imple-

mented on every possible communication graph that can be constructed by augment-

ing the base QI communicating graph Γ6-chain with k = 1, . . . , |E | additional links
drawn from the set E . In particular, we exhaustively explored the QI communication

graph set G and computed the achievable closed loop norms – these closed loop norms

are plotted as blue circles in Figure 5.3. We then performed the co-design procedure

described in Algorithm 1 for different values of regularization weight λ ∈ [0, 50].

The resulting closed loop norms achieved by the co-designed communication archi-

tecture/control law are plotted as a solid blue line in Figure 5.3. We also plot the

closed loop norms achieved by controllers implemented using the base and maximal

QI communication graphs.

We observe that as the regularization weight λ is increased, simpler communication

topologies are generated by the co-design procedure. Further, our algorithm is able

to successfully identify the optimal communication topology and the corresponding

distributed optimal control law for every fixed number of additional links.

20 sub-controller ring system

Consider a generalized plant (5.2) specified by a matrix A20-ring ∈ R20×20 with (i, j)th

entry set to a nonzero randomly generated number if |i−j| ≤ 1 where the subtraction

is modulo 20 (e.g., 1-20 = 1), and 0 otherwise. The additional state-space parameters

are given by B2 = C2 = I20, B1 = C>1 =
[
I20 020

]
and D21 = D>12 =

[
020 I20

]
. For

the example considered below, |λmax(A20-ring)| = 2.91. The physical topology of the

plant G22 is that of a 20 subsystem ring, i.e., a chain topology with first and last nodes

connected, and therefore the base QI communication graph Γ20-ring = bsupp (A20-ring)

also defines a 20 sub-controller ring. We again define the set of edges E that can

be added to the base graph to be those between second neighbors as in (5.38). In

this case, the QI communication graph set G is too large to exhaustively explore:

in particular |G | = 240 ≈ 1012. We performed the co-design procedure described in

Algorithm 1 for different values of regularization weight λ ∈ [0, 1000]. The resulting

closed loop norms achieved by the co-designed communication architecture/control
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law are plotted as a solid blue line in Figure 5.4. We also plot the closed loop norms

achieved by controllers implemented using the base and maximal QI communication

graphs. We observe again that as the regularization weight λ is increased, simpler

and simpler communication topologies are designed. Notice that our method selected

10 carefully placed communication links to add to the base QI communication graph,

leading to a closed loop performance only 2% higher than that achieved by the optimal

controller implemented using the maximal QI communication graph.
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Figure 5.4: The solid line denotes the performance achieved by distributed optimal
controllers implemented on the communication graphs identified by the co-design
procedure described in Algorithm 1. The dotted and dashed lines indicate the closed
loop norm achieved by the distributed optimal controllers implemented on the base
and maximal QI communication graphs, respectively.

5.7 Discussion

Optimal structural recovery: We showed in the previous chapter (and in [22])

that the variational solution to an H2 optimal control problem augmented with an
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atomic norm that penalizes the use of actuators can succeed in identifying an optimal

actuation architecture when the dynamics of the plant satisfy certain conditions.

The numerical experiments of §5.6 provide empirical evidence that our approach to

communication architecture design identifies optimally structured controllers as well

– it is of interest to see whether conditions analogous to those of the previous chapter

(and of [22]) can provide theoretical support to the empirical success of our approach.

The k-communication link norm: The communication link norm was defined in

terms of atoms corresponding to communication graphs constructed by adding a sin-

gle link to the base QI communication graph. However it is possible to include atoms

corresponding to communication graphs augmented with at most k-links instead, for

any positive integer k; denote the resulting k-communication link norm by ‖·‖k−comm.

If the atoms are suitably normalized,10 for all positive integers k1 and k2 satisfying

k1 ≤ k2 it then holds that ‖G‖k1−comm ≤ ‖G‖k2−comm for all transfer matrices G

satisfying ‖G‖k1−comm < ∞. Geometrically, restricted to the domain of ‖·‖k1−comm,

the unit ball of ‖·‖k2−comm is an inner approximation to that of ‖·‖k1−comm, and may

therefore lead to simpler communication graphs when used as a penalty function in

the regularized optimization problem (5.9). How to choose k will likely be informed

by the aforementioned conditions on optimal structure recovery, and by computa-

tional considerations, as the number of elements {Aij} required to implement the

k-communication link norm scales as O(n2k).

Constructing base QI communication graphs: The structural assumptions

made on (A,B2, C2) in §5.4 are needed to ensure that the base QI communication

graph as specified in (5.19) is strongly connected and generates a QI subspace. How-

ever, as we note in Remark 5.4, any strongly connected communication topology

leading to a QI subspace can be used as the base QI communication graph. Ex-

ploring how to construct base QI communication graphs in a principled way when

the structural assumptions on (A,B2, C2) are relaxed, perhaps utilizing the methods

in [99], is an interesting direction for future work. We emphasize however that the
10In particular, elements A ∈ Ak-comm constrained to lie in a subspace E should be normalized as
‖A‖H2

= (card (E) + κ)
− 1

2 , where κ > 0 is a positive constant that controls how much a single atom
of larger cardinality is preferred over several atoms of lower cardinality.
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rest of the discussion in §5.4 remains valid once a base QI communication graph is

identified even if the structural assumptions on (A,B2, C2) are relaxed . We also

note that these issues are a consequence of the communication protocol imposed be-

tween sub-controllers – determining alternative communication protocols that allow

the structural assumptions to be relaxed is also an interesting direction for future

work.

Scalability: Although we expect the methods presented to be applicable to systems

composed of hundreds of sub-controllers, it is important that the general approach of

the RFD framework be applicable to truly large-scale systems composed of hetero-

geneous subsystems. The limits on the scalability of our proposed method are due

to the underlying controller synthesis method [16], as opposed to being inherent to

the communication link norm. To that end we have been pursuing localized optimal

control [37] as a scalable distributed optimal controller synthesis method – a direction

for future work is to see if communication architecture co-design can be incorporated

into the localized optimal control framework.
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Chapter 6

Low-Rank and Low-Order
Decompositions for Local System
Identification

6.1 Introduction

Thus far this thesis has presented tractable algorithms for the synthesis of distributed

optimal controllers, as well as computational tools for exploring the tradeoff between

controller architecture complexity and closed-loop performance. Of course, none of

these algorithms can be applied without first identifying the state-space parameters

of the underlying large-scale distributed system. However, traditional system iden-

tification techniques such as subspace identification or prediction error are not com-

putationally scalable – furthermore, the former technique also destroys, rather than

leverages, any a priori information about the system’s interconnection structure.

Related work: We are not the first to make this observation, and indeed [100]

presents a local, structure preserving subspace identification algorithm for large scale

(multi) banded systems (such as those that arise from the linearization of 2D and 3D

partial differential equations), based on identifying local subsystem dynamics. Their

approach is to approximate neighboring subsystems’ states with linear combinations

of inputs and outputs collected from a local neighborhood of subsystems, and they

show that the size of this neighborhood is dependent on the conditioning of the so-

called structured observability matrix of the global system.
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In this chapter, we focus on the local identification problem, and leave the task of

identifying the dynamics of the interconnection between these subsystems to future

work, although we are able to solve this problem in what we term the “full intercon-

nection measurement” setting (to be formally defined in Section 6.2). Our method is

different from the approach suggested in [100] in three respects: (1) we focus on iden-

tifying impulse response elements, rather than reconstructing state sequences, and (2)

our methods are purely local, in that we do not require the exchange of information

with any neighboring subsystems, and finally, (3) we do not need to assume a (multi)

banded structure. In light of this, we view our contribution as complementary to

those presented in [100], and it will be interesting to to see if the two approaches can

be combined in future work.

Our approach is based on two simple observations. First, if all of the signals

connecting the local subsystem to the global system, or interconnection signals, can be

measured, then under mild technical assumptions, the local observations are sufficient

to identify both the local dynamics, and the coupling with the global system. In

effect, measuring the interconnection signals isolates the local subsystem, reducing

the problem to a classical system identification problem. Second, if an interconnection

signal is not measured, then we have that the transfer function from local inputs and

observed interconnection signals to local measurements naturally decomposes as the

sum of two elements: one corresponding to local dynamics, which in general we expect

to have full-rank, but low order, and one corresponding to global dynamics, which will

be of low-rank, but high order (see Figure 6.1 for a pictorial representation of both

settings).

Chapter contributions: Inspired by convex approaches to rank [72] and atomic

norm minimization [101] in system identification, and to matrix decomposition in

latent variable identification in graphical models [102], we conjecture that this dif-

ference in structure provides sufficient incoherence (c.f. [103] and [104] for examples

of incoherence conditions) to allow the two signals to be separated through convex

methods, in particular using nuclear norm minimization techniques. Indeed a similar

idea has been applied successfully to blind source separation problems [105]. The
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Figure 6.1: Illustrated in Figures 6.1 (a) and (b) are the full and hidden intercon-
nection measurement cases, respectively. Dashed green lines correspond to low-order
signals, and dotted/solid black/red lines correspond to measured/hidden high-order
interconnection signals. In the full measurement case, the high order dynamics of the
large scale system are isolated from the local measurements, as the interconnection
signals can simply be treated as inputs to the system. In the hidden interconnection
measurement setting, high order global signals “leak” into our local measurements via
the hidden interconnection signal (solid red), but do so through a low-rank transfer
function.

results of this chapter were originally published in [24].

Chapter organization: This chapter is organized as follows: in Section 6.2,

we establish notation, and formally define the two variants of the problem to be

solved, namely full and hidden interconnection measurement problems. In Sections

6.3 and 6.4, we provide nuclear norm minimization based algorithms for identifying

local subsystem dynamics in both the full and hidden interconnection measurement

settings, respectively. We present numerical experiments supporting our approach in

Section 6.5, and end with conclusions and directions for future work in Section 6.6.

6.2 Problem Formulation

6.2.1 Notation

For a matrix

X =
[
X0 X1 . . . X2N

]
(6.1)
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we define the Hankel operator H(X) to be

H(X) :=




X1 X2 . . . XN

X2 X3 . .
.

XX

... . .
. . . .

...

XN XN+1 . . . X2N



, (6.2)

and its Fourier transform to be given by

F(X)(ejωk) =
2N−1∑

t=0

Xte
−jωkt (6.3)

for ωk = πk
N
, k ∈ {0, . . . , 2N − 1}.

For a set of measurements {mi
t}Nt=0, mi

t ∈ RC , and natural numbers, N , M and r,

with N even, we define M i
N,M,r ∈ RC(r+1)×(M+1) by

M i
N,M,r :=




mi
N−M mi

N−(M−1) . . . mi
N

mi
N−(M+1) mi

N−M . . . mi
N−1

...
...

. . .
...

mi
N−(M+r) mi

N−(M−1+r) . . . mi
N−r



, (6.4)

where we adopt the convention that mi
t = 0 for all t < 0. When N , M and r are clear

from context, we drop the subscripts and simply denote the matrix by M i.

For a general matrix M , we let ‖M‖F denote its Froebenius norm, i.e. ‖M‖2
F =

traceM>M , and ‖M‖∗ denote its nuclear norm, i.e. ‖M‖∗ =
∑

i σi, where σi are the

singular values of M .

For a subspace S, we denote by PS (·) the orthogonal projection operator onto S
with respect to the euclidean inner-product, and by S⊥ the orthogonal complement

of the subspace, once again with respect to the euclidean inner-product.
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6.2.2 Distributed systems with sparse interconnections

We consider a distributed system comprised of n linear time invariant (LTI) sub-

systems, which interact with each other according to a physical interaction graph

G = (X , E). We denote by i ∈ X the ith node in the graph, and by xi the state of the

corresponding subsystem. We assume that each subsystem i ∈ X has its own con-

trol input ui and centered white noise process noise wi (satisfying E[witw
j
t

>
] = W ij,

E[wisw
j
t

>
] = 0 ∀s 6= t), and that plants physically interact with each other accord-

ing to E. In particular, an edge eij ∈ E is non-zero if and only if subsystem j

directly affects the dynamics of subsystem i. Defining the neighbor set of node i as

Ni = {j ∈ X : eij 6= 0}, we can then write the dynamics of each subsystem as

xit+1 = Aiixit +
∑

j∈Ni
Aijxjt +Biuit + wit, (6.5)

with initial conditions xi(0) = 0, subsystem state xi ∈ Rni , neighboring subsystem

states xjt ∈ Rnj , subsystem input ui ∈ Rpi and subsystem process noise wit ∈ Rni .

For reasons that will become apparent, we will refer to the signals (Aijxjt)
N
t=0 as the

interconnection signals at node i over a horizon N ≥ 0.

6.2.3 Local and interconnection observations

In the following we distinguish between two types of observations that can be col-

lected at node i. The first, which we call local observations, correspond to standard

measurements of the local state, i.e. we call yit ∈ Rqi , as given by

yit = Cixit +Diuit + δit, (6.6)

the local state observations at time t, with δit ∈ Rqi a centered white noise process.

The second, which we term interconnection observations, correspond to measure-

ments of incoming signals from neighboring nodes, i.e. we call zit ∈ Rmi , as given
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by

zit = C̄ix̄it + δ̄it, (6.7)

the interconnection observations at time t, where x̄it = (xjt)j∈Ni ∈ R
∑
j∈Ni

nj , and

δ̄it ∈ R
∑
j∈Ni

nj is a centered white noise process.

6.2.4 Local system identification

Our system identification goal is to identify, up to a similarity transformation, the the

tuple (Aii, Bi, Ci, Di) given only the time history of (ui, yi, zi) – that is to say we seek

a local estimation procedure for the subsystem dynamics. This task is non-trivial as

the subsystem is connected to the remaining full system, and thus even identifying

the true order of the local subsystem can be challenging.

In the sequel, we assume that the full system is Hurwitz, that (Aii, Ci) is observ-

able, and without loss that each Ci has full row rank, and once again distinguish

between two cases. The first is when we have that all interconnection signals are

contained within the linear span of the interconnection observations – we refer to this

case as the full interconnection measurement case. Formally, this can be stated as

Aijxjt ∈ lin
(
C̄ix̄it

)
, ∀t ≥ 0, ∀j ∈ Ni, (6.8)

or more succinctly, that there exists a linear transformation Lij such that

Aij = Lij(C̄i), ∀j ∈ Ni. (6.9)

We also define Li as the linear operator

Li := [Lij1 , . . . ,Lij|Ni |] (6.10)

such that
∑

j∈Ni
Aijxjt = Li(C̄)x̄it, ∀t ≥ 0. (6.11)
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We will show that under mild coordination with neighboring subsystems, we are

able to identify (Aii, Bi, Ci, Di) (to within the accuracy allowable by the noise) using

only local information. Intuitively, by measuring these connecting signals, they can

be treated as inputs to the subsystem, effectively isolating node i from the global

dynamics (see Figure 6.1(a)) – however, in order to ensure persistence of excitation

under this setting, non-local elements of randomness need to be injected into the

system, hence the need for coordination.

The second case, which we call the hidden interconnection measurement setting,

occurs when not all interconnection signals are observed, i.e. when conditions (6.8)

or (6.9) do not hold. The local dynamics can no longer be isolated from the global

dynamics due to these unobserved interconnection signals – as such, our full inter-

connection measurement method would lead to the identification of a high order local

model due to the “hidden” connection to the full system (see Figure 6.1(b)). Inspired

by the success of convex methods for sparse and low-rank decomposition techniques

in identifying latent variables in graphical models [102], and for blind source separa-

tion [105], we propose a convex programming method for identifying and separating

out the local low-order dynamics from the global high-order dynamics, which are due

to the hidden connection with the full system.

6.3 Full interconnection measurements

We begin by assuming that (6.8) and (6.9) hold, and consider the case when all noise

terms are identically zero. A robust variant of our solution will be presented at the

end of this section when noise is present in the system.

For any t ≥ 0, we may then write

yit =
t∑

k=0

sik


u

i
t−k

zit−k


 , (6.12)

with si0 = [Di, 0], sit = Ci(Aii)t−1[Bi,L(C̄i)] the subsystem’s impulse response ele-

ments.
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With this in mind, fix natural numbers N , M and r, with N even, and let vit =

[uit
>
, zit
>

]>, V i
N,M,r be given by (6.4), and

Y i =
[
yiN−M yiN−(M−1) . . . yiN

]
(6.13)

Si =
[
si0 si1 . . . sir

]
. (6.14)

Choosing r = N , we may then write

Y i = SiV i. (6.15)

Thus we seek conditions under which (6.15) has a unique solution – i.e. we seek

conditions under which

V i ∈ R(N+1)(pi+mi)×(M+1)

has a right inverse, yielding the solution

Si = Y i(V i)†, (6.16)

where X† denotes the pseudo-inverse of X.

A necessary condition, that we assume holds in the sequel, is thatM is sufficiently

large such that M + 1 ≥ (N + 1)(pi +mi).

Remark 6.1 One may choose to approximate outputs as coming from a finite impulse

response system of order r by choosing r < N ; as the system is assumed to be stable,

picking a sufficiently large r then allows for a computational gain without sacrificing

accuracy. In this case, the aforementioned necessary condition then becomes M +1 ≥
(r + 1)(pi +mi).

Next we characterize necessary and sufficient conditions for V i to have full row-

rank. In order to make the analysis more transparent, introduce the auxiliary matrices
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U i and Zi, constructed from {uit}Nt=0 and {zit}Nt=0, respectively, and note that

rank(V i) = rank




U

i

Zi




 .

Therefore, necessary and sufficient conditions are that each of (i) U i and (ii)

PU i⊥ (Zi) (the projection of Zi onto the orthogonal complement of the row space of

U i) have full row rank. Condition (i) is easily satisfied (with probability one) by

choosing uit to be a white random process – we therefore assume this holds and focus

on condition (ii).

It should be immediate to see that if no other inputs are administered to the

system then PU i⊥ (Zi) = 0, as the system’s trajectory lies entirely in the span of the

row space of U i. Therefore, let Ai := {j ∈ X : uj 6≡ 0} denote the set of “active”

inputs in the rest of the system, and let u−it =
(
ujt
)
j 6=i∈Ai .

Then Zi ∈ lin (U i, U−i), where U−i is generated by {u−it }Nt=0. If (i) the transfer

function from u−i to zi has full row rank, and (ii) sufficiently many active inputs are

present (specifically, a number greater than or equal to mi), and chosen to be such

that U−i is full row rank (which, again, is generically true for white input processes),

then indeed PU i⊥ (Zi) will have full row rank.

Thus we see that through a marginal amount of coordination (signaling other sub-

systems to inject exciting inputs into the system), a purely local estimation procedure

can be used to exactly recover the first N impulse response elements s0, . . . , sN of

the local subsystem, to which standard realization procedures can then be applied to

extract (up to a similarity transformation), the tuple (Aii, [Bi,L(C̄i)], Ci, Di).

6.3.1 A robust variant

Following [72], we can formulate a robust variant of our previous approach when the

noise terms are non-zero. Defining

∆i := Y i − SiV i (6.17)
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we then solve the following nuclear norm minimization

minimizeSi ‖H(Si)‖∗
s.t. ‖∆i‖F ≤ δ

(6.18)

where δ is a tuning parameter that ensures consistency of the estimated impulse re-

sponse elements with the observed data. Note that this approach can also be suitably

modified to accommodate bounded noise [72], or unbounded noise with known co-

variance [73], or to handle missing time points in the output signal data as described

in [106].

6.4 Hidden interconnection measurements

When condition (6.8) does not hold, the local identification task becomes much more

difficult – by not measuring all of the connecting signals, global high-order dynamics

“leak” into our local estimation procedure (see Figure 6.1(b)). Inspired by sparse and

low-rank decomposition methods used to identify latent variables in graphical models

[102], and by Hankel rank minimization techniques used in blind source separation

problems [105], this section proposes a regularized variant of program (6.18) that has

shown promise in numerical experiments.

Formal results proving the success of this technique (analogous to those found

in [70, 102]) are the subject of current work. This subsection aims rather to provide

some intuition and justification for the method. In particular, define the number of

hidden signals at node i to be

ki =
∑

j∈Ni
dim

(
P

lin(C̄)
⊥
(
lin
(
Aij
)))

(6.19)

that is to say, the dimension of the subspace of the hidden interconnection signals.

We may then write, analogous to (6.12)
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yit =
t∑

k=0

sik


u

i
t−k

zit−k


+

t∑

k=0

hik




uit−k

zit−k

u−it−k


 . (6.20)

where the si are once again the impulse response elements of the local-subsystem,

whereas hi0 = 0, and (hit) are the impulse response elements describing the global dy-

namics that are “leaking” in to our subsystem via the hidden interconnection signals.

Let wit = [vit
>
, u−it

>
]>, and W i be as in (6.4), and

H i =
[
H i
N−M H i

N−(M−1) . . . H i
N

]
, (6.21)

allowing us to write

Y i =
[
Si H i

]

V

i

W i


 . (6.22)

We now make the key observation that the transfer function H(ejωk) = F(H i)

can have rank at most ki, the number of hidden interconnection signals. In all of the

following, we assume that the transfer function from (ui, zi) to yi is full rank, and

that

min (pi +mi, qi) > ki (6.23)

holds. Specifically, we ask that both the dimension qi of the subspace spanned by

our local observations, and the dimension pi + mi of the subspace spanned by the

“inputs” ui and zi, be larger than the dimension ki of the subspace spanned by the

hidden interconnection signals. Interpreted in terms of the rank of transfer functions,

we ask that the rank of the local component of transfer function from (ui, zi) to yi,

given by min (pi +mi, qi) under our full rank assumption, be larger than the rank ki

of the global component of the transfer function from (ui, zi) to yi.

If these conditions hold, we then have a structural means of distinguishing be-

tween the two components of the impulse response of the local subsystem. First, we

expect H(Si) to have low rank, as it describes the low-order dynamics of the local

model, whereas H(H i) will not, as it corresponds to the high-order global dynamics
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that leak in via the hidden connecting signals. Secondly, by our local full rank as-

sumption, we will have that S (ejωk) is full rank (with rank min (pi +mi, qi)), whereas

rank (H (ejωk)) ≤ ki; as mentioned above, the hidden interconnection signals act as a

structural “choke” point, limiting the rank of the interconnecting transfer function.

This suggests a natural decomposition of the impulse response elements of yi into

a local full rank but low-order component with simple dynamics, and a hidden high-

order but low-rank component. Using the nuclear-norm heuristic for low-rank approx-

imations [70], we may then modify program (6.18) to control the rank of H (ejωk):

minimizeSi, Hi ‖H(Si)‖∗
s.t. ∆i = 0

‖H (ejωk) ‖∗ ≤ δh, ωk = 2πk
M
, k = 0, 1, . . . ,M − 1

(6.24)

where now

∆i = Y i −



[
Si H i

]

V

i

W i




 , (6.25)

and δh is an additional tuning parameter used to control the rank of H (ejωk) across

frequencies. When noise is present, we relax the constraint on ∆i to ‖∆i‖F ≤ δ, as

in the robust variant of the full interconnection measurement case.

This method is, however, non-local in that it requires the communication of U−i

to node i in order to implement it. In light of this, we also suggest the following local

approximation to (6.24). In particular, we define

∆̃i = Y i −



[
Si H i

]

V

i

V i




 (6.26)

and propose solving

minimizeSi, Hi ‖H(Si)‖∗
s.t. ‖∆̃i‖F ≤ δ

‖H (ejωk) ‖∗ ≤ δh, ωk = 2πk
M
, k = 0, 1, . . . ,M − 1.

(6.27)
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Fig. 2. The graph depicts the the communication structure of the three-
player chain problem. Players 1 and 3 pass information to player 2 after
a single step delay, while player 2 passes information to players 1 and 3
after a single step of delay.

V. NUMERICAL EXAMPLES

The results in this paper demonstrate that decentralized
model matching with communication delays can be effi-
ciently solved by optimization. In particular, aside from cen-
tralized Riccati equations, the only numerical computation
required is a quadratic program specified by Equations (26)
and (27). This section demonstrates the method with a few
examples.

A. The Chain Problem

The three-player chain structure, [8], is a delayed informa-
tion sharing pattern specified by the graph in Figure 2. In the
frequency domain, the information structure is represented
by the constraint K ∈ SCh = YCh ⊕ 1

z3 Rp, where YCh is
given in Equation (4). Consider the plant specified by

A =




0.5 0.2 0
0.2 0.5 0.2
0 0.2 0.5


 ,

B =
�

I3×3 03×3 I3×3

�
,

C =




I3×3

03×3

I3×3


 ,

D =




03×3 03×3 03×3

03×3 03×3 I3×3

03×3 I3×3 03×3


 .

For comparison purposes, the optimal H2 norm was com-
puted using model matching from this paper, the LMI method
of [16], [17], and the vectorization method of [15]. In all
three cases the norm was found to be 2.1082. In contrast, the
centralized controller, Q0, gives a norm of 2.0853, while the
delayed controller, Q2, gives a norm of 2.1780. This is to be
expected, since the controller obeying the three-player chain
structure is more constrained than Q0, but less constrained
than Q2: 1

z3 H2 ⊂
�
SCh ∩ 1

z H2

�
⊂ 1

z H2.

B. Increasing Delays

Consider the plant with matrices given by

A =




1 0.2 0 0
−0.2 0.8 0 0.2

0 0 1 0.2
0 −0.2 −0.2 0.8


 ,

B =




0 0 0 0 0 0
0.2 −0.2 0 0 0.2 0
0 0 0 0 0 0

0.2 0.2 0 0 0 0.2


 ,
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6
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Delay (N)

N
or

m

Undelayed
Triangular
Diagonal
Lower
Pure Delay

Fig. 3. This plot shows the closed-loop norm for QN
Tri, QN

Di, QN
Low, and

QN (the pure delay case). For a given N , the controllers with fewer sparsity
constraints give rise to lower norms. As N increases, all of the norms
increase monotonically since the controllers have access to less information.
The dotted lines correspond to the optimal norms for sparsity structures
given in Equation (28). For pure delay, QN → 0 as N → ∞, and thus the
norm approaches the open-loop value.

C =




10 0 −10 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0




,

D =




0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0




.

For N ≥ 1, let QN
Tri, QN

Di, and QN
Low solve the decentral-

ized model matching problem, Equation (3), with the form

QN
Tri = UN

Tri + V N
Tri,

QN
Di = UN

Di + V N
Di ,

QN
Low = UN

Low + V N
Low.

Here UN
Tri, UN

Di, UN
Low ∈ 1

zN+1 H2 and V N
Tri, V N

Di , V N
Low are

FIR transfer matrices with sparsity structure given by

V N
Tri =

N�

i=1

1

zi

�
∗ 0
∗ ∗

�
,

V N
Di =

N�

i=1

1

zi

�
∗ 0
0 ∗

�
,

V N
Low =

N�

i=1

1

zi

�
0 0
0 ∗

�
.

The resulting norms are plotted in Figure (3).
As N → ∞, the resulting controllers appear to approach

Figure 6.2: The graph depicts the physical interconnection structure of the three-
subsystem chain.

Essentially, we treat the unknown active inputs U−i as disturbances entering the

system through H i(ejωk), and therefore allow ∆̃i to deviate from 0, but still insist on

consistency with the observed data.

6.5 Numerical Experiments

We consider the following three subsystem chain (as illustrated in Figure 6.2), with

xt, wt ∈ R9 and u ∈ R5,

xt = Axt +But + wt (6.28)

with A and B given as in equations (6.35) and (6.36) (found at the end of the paper),

and identically and independently distributed wt ∼ N (0, .012I). Each node has a

state xit ∈ R3, which we assume are ordered such that

xt =




x1
t

x2
t

x3
t


 .

We will consider the task of identifying node 1’s system parameters, namely we

seek to identify the tuple (A11, B1, C1, D1) where

A11 =




0.2839 0.2125 −0.3097

0.1528 −0.3525 0.2400

0.0183 −0.1709 −0.0109


 , (6.29)



147

B1 =




0.6394 −0.3201

0.8742 −0.1374

1.7524 0.6158


 (6.30)

C1 =


0.6348 −0.1760 −0.1274

0.8204 0.5625 0.5542


 (6.31)

D1 =


−1.0973 1.4047

−0.7313 −0.6202


 (6.32)

given local observations y1
t = C1x1

t + δ1
t , with δ1

t ∼ N (0, .012I) and varying amounts

of interconnection measurements. Note that in this system x̄it = x2
t , and that indeed

this fact remains true regardless of the number of subsystems in the chain.

We begin with the full interconnection measurement setting, with measurement

noise δ̄1
t ∼ N (0, .012I) and

z1
t =




0.4895 0.6449 0.4762

−1.5874 0.1367 0.6874

0.8908 0.1401 0.9721


x

2
t + δ̄1

t =: C̄ix2
t + δ̄1

t . (6.33)

It is easily verified that C̄i is invertible, and thus satisfies (6.8) and (6.9). Solving

program (6.18) with N = 600, M = 300, r = 21 and δ = 0.5, we obtain an estimation

error of ‖Ŝi − Si‖F = .008, relative to ‖S‖F = 2.871; i.e. we recover the impulse

response elements to within the limits set by the noise. Additionally, rank (H(Si)) =

3, the true order of the system.

Next we consider the case where we have hidden interconnection signals. In par-

ticular, we let

z1
t =


 0.4895 0.6449 0.4762

−1.5874 0.1367 0.6874


x2

t =: C̄ix2
t . (6.34)

Once again, we easily verify that C̄i has full row-rank of 2, and therefore conclude

that the dimension of the hidden interconnection subspace is 1, which is less than
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p1 + m1 = 4 and q1 = 2. We solve program (6.27) with N = 600, M = 300, r = 21,

δh = .05 and δ = 4.5, and obtain an estimation error of ‖Ŝi − Si‖F = .093, relative

to ‖S‖F = 2.871; although our error is above the noise level, it is still a reasonable

estimate of the local dynamics. Most importantly we believe, however, is that (i) the

top three singular values of H(Si) were at least an order of magnitude larger than

the remaining singular values for a fairly broad range of δ and δh (see Figure 6.3),

and that (ii) the rank of each H(ejωk) term was correctly identified as 1 for all values

of δh ∈ [0, 0.15] across a broad range of values of δ. Indeed, numerical experiments

seem to suggest that the method is well suited to identifying the true order of the

local dynamics, and the dimension of the hidden interconnection subspace, opening

up the possibility of further refining results using parametric methods.

6.6 Conclusion

We presented a nuclear norm minimization based approach to separating local and

global dynamics from local observations, and argued that this method can be used

as part of a distributed system identification algorithm. In particular, we noted that

when all interconnection signals can be measured, the problem essentially reduces to

a classical system identification problem. When some interconnection signals are not

measured, we exploit the fact that the transfer function from (ui, zi) to yi naturally

decomposes into a local contribution that is low-order, but full rank, and a global con-

tribution that is high-order, but low rank to formulate the local system identification

problem as a matrix decomposition problem amenable to convex programming.

In future work, we will look to develop non-asymptotic consistency results for

our estimation procedure, analogous to those found in [70, 101, 102]. It is also of

importance to develop a principled method for interconnecting our local subsystems

properly to ultimately yield an accurate global model, analogous to the algorithm

presented in [100]. Finally, more numerical experiments need to be conducted to

further validate the efficacy of this method, especially on real world, as opposed to

synthetic, data.
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Figure 6.3: By examining how the values of the singular values of H(Ŝi) vary across
different values of δ and δh, the order of the local subsystem is correctly identified as
three.
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Chapter 7

Conclusions and Future Work

This thesis has focussed on the feedback control laws of distributed large-scale cyber-

physical systems. It is important to recognize however that feedback control, as

discussed in this thesis, is but one element of the overall control scheme of a cyber-

physical system. As we preview in the following section, integrating distributed opti-

mal control into a general theory of layered architectures for cyber-physical systems

is an exciting and important direction for future work.

7.1 Future Work: A theory of dynamics, control and

optimization in layered architectures

Distributed Controller
ui

t = �i
t(Ii

t)

Distributed Plant
xt+1 = Atxt + Btut + Htwtwt

r0:N

ut

x
t �

r
t

minimize
r0:N

C(r0:N ) + ftrack(r0:N )

s.t. r0:N 2 R

Tracking

Planning

Utility + Virtual Model

Figure 7.1: A functional
schematic of the layered ar-
chitecture derived in [1].

While layered control architectures have become

ubiquitous and arguably necessary in achieving

predictable and desirable behavior in complex

cyber-physical systems, there is no general theory

that offers a principled approach to designing and

reverse-engineering layered architectures. Future

work will aim to address this gap by integrating

the results of this thesis (and those that it builds

on) into such a broad theory.

The starting point for this theory is the ob-

servation that there are two complementary tasks that must be addressed by the
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controller of a cyber-physical system: (i) identifying an optimal trajectory with re-

spect to a functional or economic utility function, and (ii) efficiently making the state

of the system follow this optimal trajectory despite model uncertainty, disturbances,

sensor noise, and distributed information sharing constraints. While traditional ap-

proaches to layered architectures treat these two tasks in a fairly independent manner

(i.e., static set-point planning is done using little to no modeling of the dynamics of

the underlying system), we argue that in order to develop a truly integrated theory,

these two tasks must be considered together. To that end, in recent work [1] we

generalized the Layering as Optimization (LAO) framework [107,108] to incorporate

not only optimization, but dynamics and control as well. We show that by suitably

relaxing an optimal control problem that jointly addresses determining and following

an optimal trajectory, one can naturally recover a layered architecture composed of

a low-level tracking layer and a top-level planning layer (cf. Fig 7.1). The tracking

layer consists of a distributed optimal controller that takes as an input a reference

trajectory generated by the top-level layer, where this top-level layer consists of a

trajectory planning problem that optimizes the weighted sum of a utility function

and a “tracking penalty” regularizer. This latter term can be viewed as the planning

layer’s “virtual model” of the underlying physics of the system, and serves as a balance

between the two by ensuring that the planned trajectory can indeed be efficiently fol-

lowed by the tracking layer. These results form the foundation of a new theoretical

framework, firmly rooted in distributed optimization and control, that informs when

and how to use layering in the design of a dynamical cyber-physical system.

An important benefit of integrating distributed optimal control theory into such

a theory of layered architectures is that it makes immediate the usefulness of these

ideas in the context of timely application areas such as software defined networking.

We briefly comment on some of our current and future work in this area.
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7.1.1 Software Defined Networking

Software defined networking (SDN) is a huge paradigm shift in the networking com-

munity. A defining feature of SDN is the abstraction introduced between the tra-

ditional forwarding (data) plane and the control plane. This abstraction allows for

an explicit separation between data forwarding and data control, and provides an

interface through which network applications (such as traffic engineering, congestion

control and caching) can programmatically control the network. This in turn allows

for diverse, distributed application software to be run using diverse, distributed hard-

ware in a seamless way: in essence, SDN enables the implementation of a network

operating system. This added flexibility leads to new architectural and algorithmic

design challenges, such as deciding which aspects of network functionality should be

implemented in a centralized fashion in the application plane, which components of

network structure should be virtualized by the control plane, and which elements of

network control should remain in the data plane. In principle any combination of

centralized, virtualized and decentralized functionality can be implemented via SDN.

The Layering as Optimization (LAO) decomposition approach to Network Utility

Maximization (NUM) [107] problems is widely regarded as the “theory of architecture”

for networking. However it is important to note that the LAO/NUM approach to ar-

chitecture design was developed in the pre-SDN era, and hence does not incorporate

the added flexibility and elasticity that SDN affords to network control applications.

In particular, LAO/NUM problems focus exclusively on solving static network re-

source allocation problems that do not explicitly incorporate transient performance

or fast-time scale dynamics. In [109], we use traditional ideas from distributed op-

timal control theory to study the effect of delay in admission control problems by

comparing the performance of centralized, decentralized and distributed controllers.

In [110], we incorporated these ideas into our new dynamic theory of layered archi-

tectures [1] and developed a theory that combines the LAO/NUM framework with

distributed optimal control. We argued argued that this approach should be viewed

as a natural generalization of NUM to the SDN paradigm, and applied this novel
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framework to a novel joint traffic engineering/admission control problem. We showed

that a hybrid SDN approach in which a modified traffic engineering problem is solved

in the application plane and a distributed admission controller is implemented in

the data plane leads to robust and efficient network behavior that outperforms both

traditional distributed and fully centralized SDN approaches.

7.2 Concluding Remarks

This thesis presented contributions to three aspects of the foundational theory of

distributed optimal control: controller synthesis, controller architecture design and

distributed system identification. However, as we argued in this final chapter, there is

a need for a principled and unified theory for the analysis and design of cyber-physical

systems. We believe that the results of this thesis, as well as those outlined in §7.1,

will be important pieces of this broader theory.
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