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ABSTRACT

The equations of relativigfic, perfect-fluid hydrodynamics
are cast in Eulerian form using six scalar '"velocity-potential"
fields, each of which has an equation of evolution. These equations
determine the motion of the fluid through the equation
-1

Uv =p (g o F aB.v + GS‘v).
’ ’ ’

Einstein's equations and the velocity-potential hydrodynamical equations
follow from a variational principle whose action is

1/2 4
I= (R + 167 p) (-g) dx,

where R is the scalar curvature of spacetime and p is the pressure of
the fluid. These equations are also cast into Hamiltonian form,
with Hamiltonian dengity _TOO(_goo)-l/Z'

The second variation of the action is used as the Lagrangian
governing the evolution of small perturbations of differentially
rotating stellar models. In Newtonian gravity this leads to linear
dynamical stability criteria already known. In general relativity
it leads to a new sufficient condition for the stability of such models
against arbitrary perturbations.

By introducing three scalar fields defined by

PE= D+ (KL + TxYD

(wheref is the vector displacement of the perturbed fluid element,P is



iv
the mass-density, and i is an arbitrary vector), the Newtonian stability
criteria are greatly simplified for the purpese of practical applicatioms.
The relativistic stability criterion is not yet in a form that permits
practical calculations, but ways to place it in such a form are

discussed.
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CHAPTER 1

INTRODUCTION AND OVERVIEW



The investigations reported in this thesis began two
years ago as a seartch for stability criteria for relativistic stars.
Thorne and Campolattaro (1967) had derived the equations governing
the evelution of small nonradial perturbations of fully relativistic,
spherically symmetric stellar models. These equations have yielded
much information about cemvection (Islam 1970) and about the
emmission of and damping by gravitational radiation (Thorne 1969,
Ipser 1971), and it was expected that they would also yield infor-
mation about the stability of stars against such perturbations.

Accordingly, I attempted to use the techniques pioneered
in Newtonian gravity by Chandrasekhar and Lebovitz ( see the ref-
erences in the introduction to Chapter L) to derive stability criteria.
Basically, the idea was to find a Lagrangian from which the Thorne-
Campolattaro equations could be derived, and then to obtain stability
criteria that used the associated Hamiltonian (cf. the theorems of
Kulsrud (1968)]. But it soon became apparent that there did not

exist any simple polynemial Lagrangian for the Thorne-Campolattaro



equations.

We now know the reason for this: Thorne and Campolattaro
had incorrectly formulated the perturbation equations as a fifth-
order system of coupled partial differential equations. The equations
can acturally be formulated as a fourth-order system (Ipser and
Thorne 1971), which presumably does admit a Lagrangian (though
this has not yet been verified directly). At the time, however,
the puzzling absence of a Lagrangian led me to search for alternate
ways of deriving stability criteria, independent of the Thorne-
Campolattaro computations.

The search has been both interesting and fruitful, with
implications that may extend beyond the theory of stellar atability.
The search led first to a new formulation of the equations of re-
lativistic perfect-fluid hydrodynamics, based upon the nonrelativistic
work of Seliger (1968) and Seliger and Whitham (1968). This '"velocity-
potential" version of hydrodynamics had actually been developed

independently by Schmid in special relativity in a series of papers



beginning in 1966 [see Schmid (1970 a,b) for references]. The general-
relativistic version of velocity-potential hydrodynamics is explored
in Chapter 2, which was published in Phys. Rev. D. 2,2762(1970).

For our purposes the mest interesting feature of velocity-
potential hydredynamics is a variational principle from which its
equations can be derived. In Chapter 3 the variational principle
is used to cast the equations in Hamiltonian (Poisson-bracket) form.
This forms the foundation of our approach to stability in Chapter 5.
Chapter 3 has been submitted to the Physical Review.

Chapter L considers the stability of stars in the framework
of Newtonian gravity. The second variation of the Seliger-Whitham

Lagrangian is used as the Lagrangian for the perturbations of an

arbitrary differentially rotating star. Stability criteria derived
frem this Lagrangian are identical to those derived by previous
workers using the techniques of Chandrasekhar and Lebovitz (see
references in Chapter U).

In Chapter L4 I also present a technique that hopefully



will permit a significant simplification of the calculations whereby
one tests realistic stellar models for stability.

Chapter 5 investigates the linear pulsations and stability of
fully relativistic, differentially rotating stellar models. It and
Chapter L have been submitted together to the Astrophysical Journal.

As in Chapter l;, the second variation of the velocity-potential
Lagrangian = is used as the Lagrangian for the perturbations. This
is equivalent to the Lagrangian I was unable to obtain from the
Thorne-Campolattaro equations, with a bonus: it is applicable to
rotating stars as well as to ths nonrotating models considered by
Thorne and Campolattaro (1967).

The sufficient comndition for stability that follows from the
Lagrangian is the first exact criterion anyone has obtained for the
stability of relativistic stars against aspherical perturbations.

It is unfortunately not yet in a useful form for astrophysical appli-
cations, because of complications introduced by gravitational radiation.

At the end of Chapter 5 are discussed the remaining steps that must
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be performed before the criterion is ready for astrophysical use.

In Chapter 6 I suggest some possible future applications of
the results of this thesis, and I mention some problems that must be
solved before the theory of the linear dynamical stability of relativistic
stars can be considered in good shape.

The appendix is an article that will be published by

Springer-Verlag (Lecture Notes in Physics series) in the
]

the Pittsburgh Conference on Re}ativity, July 1970. Its subject is
not really germane to velocity-potential hydrodynamics, but because
it is referred to several times in Chapter 3, and because it is not

yet readily available in the literature , I have appended it here.
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Perfect Fluids in General Relativity: Velocity Potentials and
a Variational Principle*
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The equations of hydrodynamics for a perfect fluid in general relativity are cast in Eulerian form, with
the four-velocity being expressed in terms of six velocity potentials: U,=u"'(¢ ,+a3,+6S,). Each of the
velocity potentials has its own *“‘equation of motion.” These equations furnish a description of hydrody-
namics that is equivalent to the usual equations based on the divergence of the stress-encrgy tensor. The
velocity-potential description leads to a variational principle whose Lagrangian density is especially simple:
8-(—;)”‘(R+161)), where R is the scalar curvature of spacctime and p is the pressure of the fluid.
Variation of the action with respect to the metric tensor yields Einstein's field equ:mons for a perfect fluid.

Variation with respect to the velocity p

L INTRODUCTION

N this paper we introduce a velocity-potential
representation for the four-velocity of a perfect
fluid in general relativity. This representation permits a
new formulation of relativistic hydrodynamics, in
which the velocity potentials themselves have first-
order “equations of motion,” and in which the changes
of the four-velocity with time are expressed in terms of
Eulerian! changes in the potentials. Einstein’s field
equations plus the equations of evolution in this new
formulation can in turn be obtained from a variational
principle whose Lagrangian density is

£=(—g"*(R+16xp), (L1
where R is the scalar curvature and p is the fluid’s

Velocity potentials are not new to Newtonian hydro-
dynamics, but they have been of limited usefulness.
It is well known that irrotational motions can be
derived from a single potential, v=V¢. In 1859,
Clebsch? proved that any (Newtonian) motion can be
represented by three potentials:

v=Vé+aVs. (1.2)

The Clebsch representation had the disadvantage that
é, a, and 8 were not physically useful individually; in
particular, there were no individual equations of
evolution for ¢, @, and B that could give changes in v
directly, without reference to the usual equations of
hydmdvmmﬁm.

S\lgsoﬂ v the National Science Foundation
%)P 15911 GP—9IM] Il‘ld the Office of Naval Research [Nonr-

fND Title IV Predoctoral Fellow.

8 History has mercilessly given us half a dozen different uses for
the names of Lagrange and Euler. The adj jecuves Lagrangian and
Eslerian refer, respectively, to observers comoving with the fluid
or fixed with rapect to some arbitrary reference frame through
which the fluid flows (see also Ref. 9). The functional whose

tials reprod

the Eulerian equations of motion.

By contrast, the Newtonian velocity-potential
representation introduced by Seliger and Whitham® in
1968 avoids this difficulty. By using five potentials
(two more than the minimum necessary), Seliger and
Whitham were able to give to each potential an equation
of evolution and to some an independent physical
interpretation. For example, one potential is the
entropy; another is the “thermasy” of van Dantzig.*

The representation presented in this paper is a
relativistic generalization of the one given by Seliger
and Whitham. The six velocity potentials (one more
than in the Newtonian case because we have a four-
velocity rather than a three-velocity) all have equations
of evolution that determine how they change with time.
These equations constitute an alternatite to the usual
equations of hydrodynamics (i.e., to those based upon
the divergence of a stress-energy tensor), rather than
simply an adjunct.

Seliger and Whitham derived their equations from a
variational principle. We here generalize their principle
to include the effects of a general-relativistic gravita-
tional field. In additi n we place the velocity-potential
equations of evolution on a firm foundation apart from
the variational principle by giving a rigorous proof that
they are equivalent to the standard equations of
hydrodynamics. If the reader desirés a more intuitive
feeling for why the fluid’s Lagrangian density should
be simply the pressure, or for how one originally came
to the velocity-potential representation, he is invited
to read Seliger and Whitham and the references they
cite.

The present paper is divided into two main parts
plus four Appendixes. The first part discusses the
equations of hydrodynamics, first in their standard
form and then in terms of velocity potentials. The
proof of equivalence between these two versions of
hydrodynamics is left to Appendix B. The second main
part presents the variational principle. Appendix A

integral is extrcmized in a variational principle is the Lag
density. Finally the equauons that express the extremal condmons
are the Euler-Lagrange equations. Because we wish to emphasize
the Eulerian nature of the velocity potentials, we shall hence-
fathq)ukddmr«xuuonsd wlion ra than of their

uations of
.q'A. Cleb-tb,] RmeAgnew Math. 56, 1 (1859).

3 R. L. Seliger and G. B. Whitham, Proc. Roy Soc. (London)
A30S, 1 (1968). Their representation was based in part on work
by C. C. Lin, in Liquid Helium (International School of Physics
“Enrico Fermi”, coursc 21), edited by G. Careri (Academic, New

York. 1963), p.
6‘ntug, Physica 6, 693 (1939).
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contains Pfafl’s theorem, an old theorem in differential
forms that is essential to understanding the velocity-
potential representation; we include it here (without
proof) because it is not well known to physicists in its
most general form. Appendixes C and D discuss in
detail questions that may interest only the specialist:
respectively, the uniqueness of the velocity-potential
representation and an initinl-value formulativn of the
equations of evolution.

A word about conventions: We use “geometrized
units,” with ¢=G=1. Greck indices run from 0 to 3;
Latin from 1 to 3. The metric has positive signature,
so that timelike intervals are negative. We define proper
time r by

dri= —ds*= —gdx*dr’, (1.3)

so that dr is real and positive for a particle moving
forward in time. We adopt the notation that D/Dr
means covariant diffcrentiation zlong a world line,
while d/dr means partial dilferentiation: a semicolon
denotes a general covuriant derivative and a comma
denotes a general partial derivative. Thus, the four-
velocity is defined as

Ur=dx/dr, (1.4)
so that we have
Ut,=-1. (1.5)
Then for any function X,
Dx/Dr=U"(x),, (1.6)
and
ax/dr=U"(X).,. .n

Finally, four-vectors are written in boldface sans
serif: A. Three-vectors appear in boldface: A.

II. RELATIVISTIC THEORY OF ONE-
COMPONENT PERFECT FLUID

A. Standard Version
Thermodynamicﬁ of One-Component Perfect Fluid

We consider a perfect fluid composed of baryons.
Because baryons can undergo transmutation, the true
rest mass of a group of baryons may not be conserved;
but their baryon number .\ is conserved. Hence, we
define the (conserved) rest mass of a sample of matter

" containing N baryons to be m .\, where my, is the mass
of a hydrogen atom in its ground state. The ditTerence
between the total mass-cnergy and m,N is called the
internal energy U. Thus U includes the dilference
between mguV and the true rest mass of the actual
atoms and baryons; and it also includes the energy of
clectron-positron pairs, of mesons, of photons, of
thermal mwotions, and of *zero-point” Fermi-gas
“motions.” We denote by p, the density of rest mass so
defined, and by IT=2 {",'mr 1.V the specitic internal energy,
both as measured in a local inertial frame momenta:ily

at rest in the fluid. Then the density of total mass-
energy is p=po(1+1I).

We assume an equation of state of the form
p=p(po.I). Such a two-parameter expression is
suflicient for any one-component fluid.® The applicabil-
ity of the results of this paper to a real baryonic fluid
depends in part on how well a two-parameter equation
of state characterizes the fluid.

The amount of energy per unit rest mass, g, added
to the fluid in any quasistatic process is (first law of
thermodynamics)

8q=dT+pd(1/po). (2.1)

Because of the two-parameter equation of state, Pfaff’s
theorem (Appendix A) implies that there exist functions
S(po,JT) and T(po,IT), the specific entropy and the
temperature, respectively, such that®

dll+pd(1/po) =TdS=dq. (2.2)
1f one now defines the specific inertial mass by”
s=(p+p)/pe=1+1+p/pe, (2.3)
one can use du to eliminate dII in Eq. (2.2) and obtain
du—ps'dp=TdS. (2.4)
We will often use this in the form
dp=podu—poTdS. (2.5)

Clearly one can express po and IT as functions of 4 and
S, so that one can put the equation of state in the form

p=p(5). (2.6)

Stress-Energy Tensor and Equations of Molion

The relativistic one-component perfect fluid is defined
by its equation of state, Eq. (2.6), and by the stress-
energy tensor '

Tw=(p+p)U-U"+pg~
=poulUrU"+pg”.

In a locally comoving inertial frame, T** is diag(p,p,$,2)-
Because the tluid is perfect, the stress-energy tensor

5 E. Fermi, Thermodynamics (Dover, New York, 1936), p. 91.

¢ I'or a many-component system (i.e., one whose equation of
state has more than two independent parameters), Pfafl’s theorem
does not sulfice to require 3= T4dS, i.e., to ensure an integrating
factor for 8;. One must then invoke a weak form of the second
law of thermolypamics. See S. Chandrasekhar, An Imfroduction
to the Study of Stellar Structure (Dover, New York, 1939), Chap. 1.
For an isolated one-<component fluid, Pfafi’s theorem makes the
second law a mathematical identity.

7 The quantity p+p plays the role of inertial mass per unit
volume in a perfect fluid. See Eq. (2.19) of this s)nper, or the article
by K. S. Thornein High-Energy Astrophysics, edited by C. DeWitt,
E. Schatzmann, and P. Viéron (Gordon and Breach, New York,
1967), Vol. 3. [ thank Professor Thorne for pointing out to me that
mpu is a'so the injection energy at constant entropy': the energy
required Lo create one baryon and place it in the Nuid with the
same cnergy (uyll) as neighboring baryons, doing work mup pe
tu create the same volume (i po) for it as the other baryons have.

(2.7)
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contains no viscosity or energy-transport terms.® The
conservation of baryon number, rewritten in terms of
rest mass po, is embodicd in the equation '

(pol*);»=0. (2.8)
Normalization of the four-velocity reads
UU,=-1, (2.9)

covariant differentiation of which yields the useful
equation

U'v,..=0. (2.10)

The equations of motion -obeyed hy the fluid are
expressed in conservation form by requiring the stress-
energy tensor to be divergence-free:

T ,=0. (2.11)

These four equations supplemented by Eqs. (2.8) and
(2.9) determine the motion of a fluid whose equation
of state is known.

The physical meaning of the four equations (2.11)
becomes clearer upon separating out their components
parallel and perpendicular to the four-velocity. The
equation parallel to U,

U, T™,=0, (2.12)
reduces [by Eqgs. (2.8)-(2.10)] to
Upo—poU"s.»=0. (213)
By Eq. (2.5) this becomes
poTU’S ,=0. (2.14)

Thus, the motions of a perfect fluid conserve the
entropy per baryon. Because d¢=T4dS, this confirms
that no heat flows in or out of any clement of the
perfect fluid during its motions.

One can construct the three independent equations
of motion perpendicular to U by using the projection
tensor

Py =, +UU,. ' (2.15)
The equations are
P, T*,=0. (2.16)
By using Eqs. (2.8)-(2.10), one can reduce this to
=Pspo=upol.;, U" (2.17)
=upoDU,/Dr. (2.18)

In a locally comoving intertial frame, P,” picks out the
spatial gradient of p. If v is the (instantaneously zero)
spatial part of U, Eq. (2.18) becomes

—Vp=(p+p)dv/dt. (2.19)

# Newtonian perfect fluitdls permit heat conduction. In relativity,
however, conduction lear's to a nonzero momentum density and to
anisotropic stresses in the rest frame of the barvons; it must
thercfore be excluded from periect fluids in relativity.

This is the familiar force law; it justifies calling (p+p)
the inertial mass per unit volume.

B. Velocity-Potential Version

Velocity-Polential Representation and
Equations of Motion

One usually interprets the equations of motion in the
“standard version” in a Lagrangian sense. One regards
the four-velocity as vector representing the change of
a particle’s position in proper time. It is a vector “field”
only in the continuum approximation, in which one
overlooks the fact that the fluid is “really” composed
of discrete particles packed very closely together.
Because one tends to regard the four-velocity as a
little arrow carried along by the particles, one also
tends to interpret the equations of motion in terms of
what happens to little fluid elements. Thus, Eq. (2.19)
describes the response of a fluid element to a pressure
gradient, and Eqs. (2.8) and (2.14) require the conserva-
tion of the number of baryons and the amount of
entropy contained in a fluid element.

The “velocity-potential version” of hydrodynamics,
by contrast, lends itself most naturally to an Eulerian
interpretation. One regards the four-velocity as a
vector field over spacetime. As such it can be represented
in terms of scalar fields and their gradients. While the
particles move through space, the scalars at a given
point of space simply change their amplitudes with
time.®

According to Pfaff’s theorem (Appendix A), four
potentials are sufficient to describe the four-velocity :

U,=A4B,+CD,. (2.20)

While four such potentials are guaranteed to exist,
they may not be physically useful. In this paper we
introduce instead a six-potential representation that
has a ready and important physical interpretation.
This representation is'

U- -“.l (¢.-+°«3.-+95.-) .

The potentials u and S are just the specific inertial
mass and the specific entropy as defined above. The
physical significance of the remaining potentials ¢, a,
B, and @' will be explored below.

(2.21)

® The distinction between Eulerian and Lagrangian coordinates,
while useful, is not rigid in general relativity, because all equations
are indej)endem of coordinate system. Lagrangian interpretations
are valid only in comoving frames. The “Fulerian” equations for
the velocity potentials are goo in amy reference frame; in fact,
however, they are most easily interpreted in a comoving frame.
(See the section on Physical Interpretation below.)

® Seliger and Whitham replace the term @S, with —58,, in their
Newtonian representation, and thus achieve the nonrelativistic
version of Schmid’s representation (Ref. 26). Note also that Eq.
(2.21) is a local equation; the existence of a global set of potentials
is not guaranteed.

Y To my knowleige, D. van Dantzig (Ref. 4) was the first to
define 0. He called it the “thermasy.”
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The equations of evolution in this representation are

(pol")..=0, (2.22a)
U'S,=dS/dr=0, (2.22b)
Ura,=da/dr=0, (2.22c)
UB,=dB/dr=0, (2.22d)
U, =dp/dr=—pu, (2.22¢)
U8,=d0/dr=T. (2.22f)

From Egs. (2.21), (2.22b), (2.22d), and (2.22¢) follows
the result

Ul,=-—1. (2.23)

There is no equation for u. Its evoluti~n can be com-
puted from Egs. (2.22a), (2.22b), and the equation of
state.

Appendix B contains the proof that these velocity-
potential equations are equivalent to the standard
version of the equations of motion.

Physical Significance of Velocity-Polential Version

Circulation. The representation Eq. (2.21) is well
suited to Taub’s'? Eulerian analysis of circulation. Taub
defines a current vector V=xU,"® which in our rep-
resentation is

Ve -“UO-¢.'M.U+OS.I . (224)

He then defines the circulation tensor Qo =2V,
where square brackets denote the antisymmetric part.
In our representation this becomes

Qo =2V (21 =2a(38,0+20(2S ¢ - (2.25)

Taub then defines circulation C in the following manner.
Consider a spacelike hypersurface = through the world
lines of the fluid’s particles. A closed curve A in £ may
in general enclose some circulating fluid. If A is the
ordinary length parameter along A, and (*=dx2/d\ is
the tangent vector to A in Z, then the circulation C is
defined as the integral )

c= f Vaodr
A

around the closed curve. From Eq. (2.24) we see that

C= f adfst f 0S4,
A A

B A, H. Taub, Arch. Ratl. Mech. Anal. 3, 312 (1959).

. BBy Ref. 7, mg{/ is the four-momentum a baryon must have
to be injected into the fluid. In the nonrelativistic limit (u — 1),
we have \/ — U. Thus, both UJ and V are relativistic generaliza-
tions of the three-velocity v. In circulation it is more useful to
deal with Y/ (see Ref. 12). For example, Bernoulli's equation for
nonsteady ational isentropic flow generalizes using V' be-
cause in that case it can be derived from a single potential ¢. \s
another example, the tangential component of V is conserved
across shock frunts. The simple form the circulation equations
assume in terms of velocity potentials is another indication of the
utility of V.

(2.26)

(2.27)

where the subscript A on d8 and dS means that the
differentials are directed along the curve. Clearly, if
a is a function only of 8, and if either 8 or S is a con-
stant,™ then C will be zero for any choice of = and A.
In this case, Q,, is also zero. One can easily see, then,
that C will vanish for every curve A in every hypersurface
Z if and only if 2,,=0, which is a result Taub also
mentions. This establishes the significance of Q.. in
circulation.

In order to see the roles of a, 8, 8, and S more clearly,
let us lock at the circulation in a momentarily comoving
local Lorentz frame, with g.a=diag(—1, 1, 1, 1). Then
Vo= —Vy=p, Vi=V,=0. Define the vorticity vector

= % (_g)—llﬁ‘nllb"vl"
= 5"—:(_3)—II!.-dzv.ﬂh .
where (—g)~"%¢*« is the completely antisymmetric
contravariant tensor. In the comoving frame, because

V:=0, v has vanishing time component. In fact, we
have

(2.28)

(2.29)
(2.30)

That is, if ¥.S=0, surfaces of constant a and g intersect
along vortex lines, which are carried along with“the
fluid because da/dr=dB/dr=0.'* If initially a=const,
B=const, but S>const, then surfaces of constant # and
S determine vortex lines whose orientation with respect
to the fluid’s particles changesin time because d6/dr=T.

Uniqueness of the velocily-polential represenlalion.
Formulation of Eqs. (2.22) in terms of initial values
will give us more insight into the velocity-potential
representation. The first-order nature of Eqs. (2.22)
makes an initial-value approach especiaily simple for
the restricted case of no self-gravitation, i.e., the case
where the fluid does not disturb the background
geometry of spacetime. The case with self-gravitation,
although important, is more difficult and would not
add substantially to our understanding of the potential
representation itself, so we ignore it here.

The first question—which has nothing to do with
self-gravitation—concerns the uniqueness of the rep-
resentation. Given a physical situation, how much
“gauge freedom” does one have to choose the initial
values of the potentials without changing the physical
situation they describe? If any such freedom exists,
Eqs. (2.22) clearly imply that it lies only in the choice
of initial values: The evolution of the potentials away
from their initial values is fully determined by the
physical situation (U, g, and T). Before we can deal

ur'=1e"Q,

uv=VaxV3+ToxVTS.

MIf 8 and S are not both constant, ncither can be a function
only of the other, because df dr=T while dS dr=0. If either of
them is constant, the second integral in Eq. (2.27) is zero. Only
if T=0 can @ be constant,

1 Circulation duc to @ and 8 will not change in a comoving
frame. Such circulation may, however, emit gravitational radia-
tion and be damped out as scen by a distant, noncomoving
observer, .
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with this evolution we must resolve the question of
gauge freedom among the potentials.

There is no gauge freedom in u and S because
changing them changes the physical situation. The
question is whether there are two sets of potentials,
(¢,28,0) and (¢',a’,3',0), ditfering in initial values,
which give the same U when substituted into Eq.

- (2.21) using the same g and S. Two such sets are said
to be equivalent. The equivalence transformations by
which one set is obtained from another are discussed
in detail in Appendix C. These transformations are
essentially contact transformations. The result of
interest here is: The initial value of any one polential
may be chosen arbilrarily; the remaining initial values
are then constrained by the physical condition of the fluid
by U, u, S, and the equation of stute).'®

Let us discuss the physical meaning of the equivalence
transformations. Circulation in the fluid is an observ-
able and hence must be preserved by the transforma-
tion. In the isentropic case (S,,=0), circulation proceeds
around intersections of surfaces of constant a and 8.
The effect of the equivalence transformation Eqgs.
(C21) is to preserve these intersections while changing
a and 8.

Intersecting surfaces of constant @ and S determine
a kind of thermal circulation, Because physical condi-
tions fix S, equivalence transformation on @ but not on
a and 8 must leave V@ unchanged except for parts
parallel to VS. This is why requiring any equivalence
transformation to leave a and 8 unchanged leads to
the equation 6’ =0+ f(S).

A general equivalence transformation changes a and
B as well as 0, but it keeps the sum VaxVS+Vix¥S
constant by transferring some circulation from one
term to the other. The two types of circulation cannot
therefore be separated from each other uniquely on any
given spacelike hypersurface; they can be distinguished,
however, by the way they change as the fluid moves off
that hypersurface.

Restricted initial-value formulation. Suppose one
chooses initial values of the velocity potentials on some
initial hypersurface; what kind of initial-value informa-
tion is necessary to determine a unique fluid motion in
the background metric? Are the initial values of the
six velocity potentials g, S, ¢, a, 8, and 8 sufficient;
or are their derivatives off the hypersurface also
necessary? Once the set of initial values is chosen, the
equivalence transformation of Appendix C can lead to
other sets that give the same fluid motion. Nevertheless,
each set can be so chosen that it determines one and
only one fluid motion. Appendix D presents two

% The remaining initial values are constrained but not fully
determined by the physics. See Ref. 35. Moveover, the arbitrary
choice of the initial value of one potential may lcad to divergences
in others. These di ncu will not affect any observables like
U or the circul le, if the term a@., is nonzero in
tation, a'=0 will not generally eliminate
tllls term it wtll only force £ to diverge in order to keep o'3’..
onzero and finite.
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ditferent initial-value schemes whereby the four-velocity
and thermodynamic state of the fluid are determined
throughout spacetime by the specification of certain
data on an initial hypersurface. The first scheme shows
that specifying values of all six potentials and the
equation of state is sufficient. The second scheme shows
that specifying the thermodynamic condition (x and S)
is not essential : The equation of state, the initial values
of ¢, @, 3, and 6, and the derivatives of any two of those
four potentials normal to the hypersurface will fully
determine g, S, and U. Appendix D also leads to an
obvious consistency condition on the initial values:
The initial values of u, S, ¢, a, B, and 8 must be so chosen
that the three-space velocily of the fluid parallel to the
initial hypersurface nowhere exceeds the velocily of light.

Once sufficient Cauchy data have been specified, the
subsequent evolution of the velocity potentials is most
easily discussed from a Lagrangian point of view. From
Eqs. (2.22) one can see that the initial values of a, 8,
S, and baryon number .V are carried along by the fluid:
Each fluid element sees no change in these four func-
tions. They are therefore “initial-value parameters.”
By contrast, the functions 6 and ¢ are “dynamical
variables”: Their evolution is determined by the

" thermodymnamic condition of the fluid. Changes in them

cause the changes in the motion of the fluid seen in a -
comoving (Lagrangian) frame. They are dynamical
in the sense that the complete history of a fluid element
can be given by a plot of 6 against ¢, along which the
given values of S, a, 8, and N are constant. That there
are only two dynamical variables in this sense does
not imply that there are only two “degrees of freedom”
in the fluid’s motion. The question of degrees of freedom
is taken up at the end of Appendix C.

II. EULERIAN VARIATIONAL PRINCIPLE

In 1954, Taub' gave a variational principle whose
Euler-Lagrange equations were the general-relativistic
field equations plus the equations of motion for a perfect
fluid in what we have called the standard version. An
essential feature of any such variational principle is
that the world lines of the fluid’s particles be among the
quantities varied. Consistent with the Lagrangian
interpretation of the standard version that we discussed
in Sec. Il A, in Taub’s principle one varies the world
lines in a Lagrangian manner: One attaches a label to
every particle and directly changes the particle’s
path by changing the position of its label in spacetime.

The variational principle given in this section uses
the velocity-potential version of hydrodynamics and
hence is Eulerian. The independent coordinates with
respect to which the Lagrangian density is varied are
the velocity potentials themselves. Varying the poten-
tials varies the four-velocity and thence implicitly the
world lines.

¥ A. H. Taub, Phys. Rzv. 94, 1468 (1954).
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The action principle. In step-by-step form,
(1) Select an equation of state for the one-component
perfect fluid. Express it in the form

p=p®S). @3.1)
Then Eq. (2.5) follows from basic thermodynamics:
dp=pulp—poTdS. (3.2)

(2) Define the four-velocity vector field in terms of
six scalar velocity-potential fields:

Uy=uy""(p,+aB,.1+6S5.,). (3.3)
Normalization of U implies
ur= —g= (9., +a3,+65,) (@, taB.+6S,), (34)

which defines the functional dependence of x upon the
independent variables of our variational principle, ¢,
a, B, 6, S, and g~.

(3) Define the action I as

i f (R+16mp) (g, )

where R is the scalar curvature, taken as a function of
g~ and its derivatives, and where p is the ordinary
pressure, which depends on all the independent variables
through Eqs. (3.1), (3.2), and (3.4).

(4) Extremize I to obtain the following Euler-

Lagrange equations'®: ‘

8: (peU");»=0, (3.6b)

80: U'S.,=0, (3.6c)

3S: Ue,=T, (3.6d)

Sa: UB,=0, (3.6e)

- 8 Ura,=0. (3.6f)
Equations (3.3), (3.4), (3.6c), and (3.6e) i‘mply

Ugp=—p. (3.68)

We have thus reproduced Egs. (2.22) of the velocity-
potential representation. This establishes the validity
of the variational principle. .

Comparison with other aclion principles. Our varia-
tional principle is equivalent to Taub’s 1954 principle.'”
To prove this we use a procedure taken from Seliger
and Whitham.? Taub extremizes the action

Ip= / [R—16x(p—peTS+)gul*U")]
- X(—g)"d'z, (3.7)
where A is a Lagrange multiplier that ensures normal-

® See, e.g., L. Landau and E. Lifshitz, The Classical Theory of
Fidds (Addison-Wesley, Reading, Mass,, 1962), Sec. 93.

ization of U. Since we impose that normalization
explicitly in our principle, we can drop the \ term and
work with

Iyt / [R—16x(o—peTS)](—g)"d's.  (3.8)

Taub imposes two explicit constraints upon varia-
tions of 77", The first is conservation of baryons, and
the second is that there exist a field 8 such that U76,=T
(Taub uses a rather than 8). The second is not a physical
constraint, of course, since @ exists for all U and T.
Nevertheless, it is a mathematical constraint. We
can eliminate both constraints by using Lagrange
multipliers:

I7"= f (R—=16x[p—poTS =6 (L "pe).r—0(pol*S).. ]}
X (=g, (3.9)

Variations of ¢ and 6 give the equations of conserva-
tion of baryons and entropy. Variation of S gives
T=U"9,. Variation with respect to po gives [noting
that (3p/dpo)s=p]

Ug,=—np. (3.10)
To complete the identification of Taub’s principle with
ours, we add to the Lagrangian density the divergence

Y, =16x[(—)"*(Upwdp+Upe8S)],. (3.11)
We obtain

fl"-‘/‘ [R_ l6f(p—poTS+POUI¢_.+P0gL',0.-)]
X(—gd'z, (3.12)
which reduces to

If"’-/(R+167p)(—g)'nd.¥~ (3.13)

The modified version of Taub’s principle is thus equiv-
alent to ours, except for the technical point that Taub’s
variations are Lagrangian and do not use velocity
potentials, while ours arc Eulerian and rely on the
velocity potentials,!? :

More recently, Taub published a variational principle
expressed in comoving coordinates, in which the action

™ These calculations give the potentials 8 and ¢ richer meaning;
one might ask if a and 8 have similar meanings. They do, in a
formal way (see Seliger and Whitham, Ref. 3): One can make the
transition from Taub’s variables to the Eulerian variables com-
plete by uiring “conservation of Lagrangian coordinates”
(i.e., once a fluid element is labelcd with a comoving coordinate,
that coordinate never changes). Let 8 be such a coordinate and a
be its Lagrange multiplicr. Then one adds the term poal’8,
into Eq. (3.9); variation of @ and 8 then gives the appropriate
equations, without changing either Eq. (3.10) or Eq. (3.13). This
device, due orginally to Lin (Ref. 3), is somewhat mysterious,
especiallv since only one Lagrangian coordinate is required, and
not all three.
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is the same as the present one.®? In fact, by special-
izing the calculations of this section to a comoving
coordinate system, one can show that variation of g~
is equivalent to Taub’s first variation of the action.
The price paid for working in a comoving system is
that the potential representation is rendered useless
while the equations for conservation of rest mass and
for normalization of the four-velocity have to be
assumed ad hoc, because the “comoving” constraint is
nonholonomic in the variables ¢, a, 8, 6, and S.
Bardeen?® has recently obtained an Eulerian action
principle for axially symmetric, ditferentially rotating
configurations; we will show that one version of his
action principle is equivalent to ours, specialized to such
configurations. Baideen extremizes the action

Iy=ds [ [ [=R/16% =T —dpyl *~A(p+p) U U]
X(—g)Vuetds®, (3.14)

where 2* and 2*® are any two coordinates such that
3/9x* and 3/0x* are both orthogonal to the Killing
vectors d/d¢ and 9/d¢. The independent variables are
the nonzero components of gas and four “internal”
variables governing changes in the tluid and its motions:
po, U?/UP, &, and 9. The variables £(x%,5%) and n(x%x?)
are Lagrangian coordinates giving the position of a
fluid element in the x®-x* subspace, and are actually
redundant: Only one of them is needed to extract the
full physical content of the principle.** Consequently
there are really only threc internal variables. The only
constraint on the variations is that U be normalized.
The two Lagrange multipliers ®(£,7) and A(£,9) ensure
that the baryon number and angular momentum,
respectively, of a fluid element be unaffected by
variations of g.s. When the actual values of ® and A
are put in (®=u/U° A=U»/U"), I, reduces to

1 .
”"'§ [ / (R+16p)(~g)Vsdxtd®.  (3.15)

This is the same action as in our principle. Moreover,
our principle also has three internal variables: The five
variables ¢, a, 8, 8, and S are reduced to three by the
relations Us=U;=0. These thrce may differ from

® A, H. Taub, in Fluides et Champ Gracitationnel en Relatizité
Générale (Centre National de la Recherche Scientifique, Paris,
1969), pp. S7-72.

2 A, H. Taub, Commun. Math. Phys. 18, 235 (1969).

= James M. Bardeen, Astrophys. J. 162, 71 (1970).

® Variations of £ and » give the £ and » components of the
(vector) equation of hydrostatic equilibrium. Since the Jacobian
O(E.n)/a(x',z‘) is assumed well beha\ed hydrostatic equilibrium
in &n space implies equilibrium in e space. However, since ¢
and y are arbitrary functions of x! and £, the Fuler-Lagrange
equation for either £ or y is sufficient to guarantee hydrostatic
equilibrium everywhere in x*-x* space. This &» redundancy scems
doul{ related to the problem mentioned at the end of Ref. 19,

namcly, that uiring conservation of onl) nn Lagnnglan

coordinate is sufficient to complete the t
first principle to ours.

from Taub's
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Bardeen's three, but their Euler-Lagiange equations
will be equivalent to his because they are a complete
set of variables: a one-component fluid constrained to
mover in only the ¢ direction has three degrees of
freedom—two thermodynamic and one kinetic. Since
the only constraint on our variational principle is
also the normalization of U, the two principles are
equivalent.

" IV. CONCLUDING REMARKS

The work reported in this paper was originally
undertaken in the hope of finding stability criteria for
self-gravitating masses of tluid. Although that goal is
still far off, the existence of an Eulerian variational
principle may be a beginning.

What is needed, I believe, is a Hamiltonian principle
in a2 minimum number of variables. The present action
principle seems to have “too many” free variables:
Witness the existence of equivalence transformations
among ¢, a, 8, and #; witness also the fact that varia-
tions of the Lagrangian violate the conservation of go.
Perhaps the methods of Arnowitt, Deser, and Misner®?
or of Dirac® can be applied to isolate the “true vari-
ables” of the principle. Then one might be able to
obtain a self-adjoint variational principle that could
lead to stability criteria.

It may also be possible to extend this work to viscous
fluids and charged fluids. The key step would be the
extension of Theorem 1 of Appendix B to the appro-
priate case.

Note added in proof. An equivalent set of velocity
potentials and a similar variational principle have been
obtained independently by Schmid from a very different
approach.’® His potentials nicely illustrate a symmetry
of the velocity-potential formulation. He defines ¢
differently: d¢/dr=—p+TS. Then all the results of
this paper carry through if one replaces 6S,, by —S589.,.
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APPENDIX A: PFAFF'S THEOREM

We have occasion to use Pfaff’s theorem several
times in this paper; we state it here without proof.
An application of the theorem familiar to physicists
concerns crite.ia for the integrability of a so-called
“Pfaffian form,”

N
?_:l Si(et)dxs.

These criteria are closely related to the second law of
thermodynamics and lead to definitions of entropy and
temperature for many-component systems.® Pfaff’s
theorem is much more general than the second law,
however. It says? that if f,(x*) are V functions of .V
independent variables x*, then there exist functions
A (z*), B.(2*), and C(x*) such that

N . N/2

T fdzi=3 AdB. if N iseven

=l a=i

(a1

(N-1)/2

=dC+ Y. A.dB. if Nisodd.
o=l :

Consequently we have
N3 9B,
ﬁ-zlA e
or (A2)
aC+(u-zn/: aB.
% Ox; et ’ .ax ;

respectively. The number of functions remains the
same, but the number of differentials is cut essentially
in half. Pfaff’s theorem sets a least upper bound on the
number of differentials required: One might need fewer
but one never needs more. This least upper bound
depends only on the number of independent variables.
For example, if ai(x*) and B.(z*) are 2V functions
(i=1, ..., N) of s<N independent variables, then

a8
i 2 a.dﬁ.-'z_:l ‘Z_:lc.;;dx"
The expressions
LA -1
Eoom

are # functions of n variables; from Pfaff’s theorem we
therefore obtain (if, for example, » is even)

/2 i
z adfi=3. A4B.. (A3)
® See Selllfr and Whitham (Ref. 3) or A, R. Fon{the. Tlmw
of Differential Equations (Cambridge U. P., London, 1900), Vel.

. For N=2, Eq. (A1) becomes the familiar statement
that every differential form in two variables has an
integrating factor.

APPENDIX B: EQUIVALENCE OF STANDARD
VERSION AND VELOCITY-POTENTIAL
VERSION

The proof of equivalence between the equations of
the standard version and those of the velocity-potential
version rests upon Theorem 1 below. Once the theorem
is established it will allow us to show that the equations
of each version imply those of the others. Theorem 1
should be regarded as an algebraic identity: No
equations are assumed other than those explicitly
stated in the theorem.

Theorem 1. Let U be the four-velocity of a one- -
component fluid. Define a tensor T,* with components

T =puU, U+ pd,°. (B1)
Define the scalar functions ¢ and @ by the differential

equations
d¢/dr=—u, (B2)
d0/dr=T. , (B3)
Define the entropy by the equation
TdS=du—pes'dp. (B4)

Require conservation of entropy?® and baryons during
motions of the fluid:

dS/dr=0, (BS)
(polU*),=0. (B6)

Do not impose any other equations of motion. Then the
following is an identity: 2

.Cv(uU.-é..-OS..) ’Po_‘rv';n (B7)

where £y denotes the Lie derivative® with respect to U.

We note that Theorem 1 is true even if T,°,,70, i.e.,
when T,° as defined by Eq. (B1) is not the complete
stress-energy tensor of the fluid. For example, in
magnetohydrodynamics Eqs. (BS) and (B6) still hold,
30 Theorem 1 is still valid.

Proof. The proof of Theorem 1 is an elementary
exercise in Lie derivations, whose properties can be
found in many references.® We simply note that the
definitions of 8 and ¢ and Eqs. (B4) and (BS) yield

£UOAU.—¢_.—OS,.) = U'(ﬂU-):u"'PO.lP.-- (BS)
Similarly, application of Eq. (B6) to the divergencc of
'Accordlng to Ref. 8, perfect fluids must bhave 3¢=TdS=0

during their motions.
® [ am indebted to Professor K. S. Thorne for luguutmg the use
of Lkdedvnim in vain equivalence between the two versions.

® See, e.8., Yano, The Theory of Lie Derivalives and ils
A”laulwtu (North-Holl&nd Amsterdam, 1955), Chap. 1.
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Eq. (B1) gives
”—IT'.;O- U'(l‘”-);.+po")_,.
Q.E.D.

Let us now turn to the first half of the proof of
equivalence: the proof that the equations of the
velccity-potential version imply those of the standard
wversion. The velocity-potential representation of U, Eq.
(2.21), gives

(B9)

wU, -¢J—’S‘! =af},.
Therefore, we have
.Ba(pU.—O,.—OS..)-ﬁu(GB.-)-O. (Blo)

where the last equality follows from da/dr=d8/dr=0.
Then Theorem 1 gives

T,c..=0, (B11)

which is the standard version of the equation of motion.

The second half of the equivalence proof is the proof
that the equations of the standard version imply those
of the velocity-potential version. We already have the
three equations d¢/dr=—pu, d6/dr=T, and dS/dr=0
from the requirements of Theorem 1. We need only
show that the velocity-potential representativn of U,

Uy=p~'(¢,+aB,+6S,), (B12a)

and the two remaining equations of evolution,
da/dr=0, (B12b)
dg/dr=0, (B12c)

follow from Theorem 1 and the standard version’s
equations of motion,

T,%,=0. (B13)
Equation (B13) and Theorem 1 imply
Lo(ul,~¢,—065,)=0. (B14)

This leads to the following theorem.
Theorem 2. There exist functions a, 8, and ¥ such that

" FU--‘J-”.D"’p;HJ (BIS)
an
da/dr=dB/dr=dvy/dr=0. (B16)
Proof 3 Define
W'-“UD-¢J-OS-" (B17)

Then W, is orthogonal to and Lie-dragged by U” (i.e.,
its Lie derivative along U” is zero); expressed in
comoving coordinates (7, y° such that U’=3y’) this
means We=0, W; ¢=0. Then Pfaff’s theorem (Appendix
A) for N=3 implies

Wdy'=adf+dvy, (B18)
with a, 8, and ¥ functions only of y’. Consequently,

& This kindl; ed by J. Ehl t -
o u::;dm y suggest: .yj ers (private com:
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Eqs. (B15) and (B16) are valid in any coordinate
system. Q.E.D.

We now note that ¢ was defined only by the differen-
tial equation d¢/dr=—pu, so that any function in-
dependent of r can be added to ¢ without changing any
of the previous results. Such a function is 4. Con-
sequently we can “absorb” v into ¢ and obtain from
Theorem 2 the velocity-potential representation

U--F-l (¢J+” .-+os .b)‘-

This completes the proof that the equations of the
standard version imply the equations of the velocity-
potential version. The two versions are cquivalent.

By way of relating Theorem 1 to results more familiar
in Newtonian hydrodynamics, we establish a corollary
that is a generalization of Weber’s transformation.’*
Define the spacelike vector scparating two neighboring
particles in the fluid, &+, in the following manner.
Let (8x°)o be their separation on some arbitrary initial
spacelike hypersurface. Then let éx” be the vector that
results when (8x"), is Lie-dragged off the initial hyper-
surface by the fluid’s four-velocity; i.e., let 62" be the
separation between the particles after they have
advanced equal proper times off the initial hypersurface.
Then by construction we have .

Ly(82")=0.

(B19)

(B20)
Consequently, Theorem 1 implies (with T,°,,=0)

Lo[(wU,—¢.,—6S,)8x’]=0. (B21)

But the quantity inside the square brackets in Eq.
(B21) is a scalar, and Lie differentiation of a scalar is
simply differentiation in proper time:

d
d—[(pU »—9.,—065,)8x"]=0. (B22)
T

Define 8X, the change in any scalar field X along the
vector éx°, by k

X=X 2.

Then Eq. (B22) implies the following corollary of
Theorem 1.

Corollary (generalized Weber’s transformation). Let the
subscript 0 denote the value of a quantity on some
initial spacelike hypersurface, and let the subscript =
denote its value on some hypersurface advanced a
proper time 7 from the initial hypersurface. Then the
equations of hydrodynamics are equivalent to

(IIU-&")'- (llUJI')o" (“)r— (“)0
+(63S),—(685)e. (B23)

®See H. Lamb, Hydrodynamics (Cambridge U. P., London,
1932), Sec. 15, for the Newtonian version of \Weber’s transforma-
tion in the restricted case p=p(p). For the general p=p(p.5),
mJ Serrin, in Handbuch der Physik (Springer-Verlag, Berlin,
1959), Vol. 8, Sec. 29A.
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APPENDIX C: PHYSICALLY EQUIVALENT
REPRESENTATIONS

Two sets of velocity potentials are said to be equiv-
alent if they give the same four-velocity for the same
thermodynamic state of the fluid. The purpose of this
appendix is to derive the equations of transformation
whereby one set of velocity potentials may be obtained
from an equivalent one and thereby to determine how
much “gauge freedom” one has to choose the potentials
arbitrarily.®

Equivalent sets by definition have the same u and S.
We therefore seek transformations between two sets
of potentials (¢,e,8,0) and (¢',a’,8,6") such that [from
Eq. (2.21)]

‘.-+uﬁ.-+os.- "¢'.-+ﬂ'ﬂ’.r+0's.- . (Cl)

The potentials must individually satisfy these equa-
tions:

d¢/dr=d¢’/dr=—pu, (C2a)
d0/dr=d¢/dr=T, (C2b)
dS/dr=da/dr=dda’[dr=d3/dr=d3'/dr=0. (C2c)

We write Eq. (C1) in a more useful form:
¢,—¢ s=a’f’,—aB,+(0—0)S.,. (€3)

In general, ¢ and ¢’ will differ by some scalar field F:

¢—¢'=F. (C9)
By Eq. (C2a) we have
dF/dr=F ,U*=0. (C5)
Equation (C3) becomes
F,=a'g’ y—a3,+(6'—6)S.,. (C6)

As we shall sce, each different choice of F generates a
different equivalence transformation. The only restric-
tion on the choice of F is Eq. (C5). Accordingly, we
can take F to be some arbitrary function of any three
functions that are independent of 7. Equation (C6)
suggests the choice f

F=F(Bp’,S). cn
Differentiation of F gives
aF oF oF
F,'- —a.l+ B'.D+ .‘s.'- (CS)
a8 ag’ as

Treating @ and o’ as independent variables for the
moment, we have

3F /da=0, (C9a)

® For a brief but similar analvsis of the Clehsch representation,
see C. Eckart, Phys. Fluids 3, 421 (1960), Appendix. For a review
of contact transformations and their use in classical mechanics,
see H. Goldstein, Clussical Mechanics (Addison-Wesley, Reading,
Mass. 1950), Chap. 8.

dF /3a’=0. (C9b)

Having chosen some F and found its derivatives, we
see that F will generate an equivalence transformation
if and only if it satisfies Eq. (C6). Comparison with
Eq. (C8) reveals the equations®*

o' =aF/3g’, (C9%¢)
a=—3F/a8, (C9d)
@ —0=0F/3S. (C9%)

Thus the function F generates a transformation from
(¢.2.8,0) to (¢',a’,8,8'). We include Egs. (C92) and
(C9b) as a formal device that will enable us to obtain
other equivalence transformations in the following
paragraphs. Equations (C2b) and (C2c) are clearly
fulfilled.

The restriction of F to functions of 8, 8’, and S can
be relaxed by a device called the Legendre transforma-
tion. For example, define

F=F3(a',S)—af. (C10)

The subscript 2 distinguishes this form of F from Eq.
(C7). Then Egs. (C9) become, in terms of F,,

o' =aF,/op’, (C11a)
0=0F,/a8, (C11b)
¢ —0=0F,/dS, (Ci1c)
B=09F;/da, (C11d)
0:=9F,/da’. (Clie)
From Eq. (C4) we find
¢ —¢=—F;3;+adFs/da. (C11f)

Notice that these equations would also follow directly
from Eqs. (C6) and (C10). One special case of this
type is the identity transformation, generated by

Fy=af’. (C12)
Then Eqs. (C11) give
a'=a, (C13a)
B'=8, (C13b)
=0, (C13¢)
¢'=9. (C13d)

Infinitesimal transformations can be generated by a
function G added to the identity generator:

Fy=af'+G(ab',S), (C14)

where ¢ is the infinitesimal parameter. The resulting
transformation is

a' =a+¢G/38’, (C15a)

¥ The physical interpretation of these and other equations of
transformation is discussed more fully in Sec. II B.
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B’ =p—eG/da, (C15b)
@ =0+ ¢3G/3S, (C13¢)
¢’ =¢+e(adG/3a—G). (C15d)

By analogy with F; we can define two other types of
generating functions:
: F=F(aa’S)—of+a'8’ (C16)
and
F=F,8,a’,5)+a's’. (C17)

The nontrivial equations of transforfnation generated
by Fjare

B'=—3F,/3d’, (C18a)
B=0dF;/da, (C18b)
0 —0=9F,;/3S, (C18¢)
¢’ —¢=—F;+0dF;/da+a’dF;/da’. (C18d)
The corresponding set for F is
f'=—0oF /od', (C19a)
a=—93F /a8, (C19b)
¢ —8=9F /aS, (C19c)
¢’ —¢p=—F,+a'oF /3a'. . (C19d)

The generator Fy=—a8 also generates the identity
transformation and can serve as a starting point for
infinitesimal transformations. A special case of F, is

F 4= —G"m) » (Cm)
which generates
8'=3(8), (C21a)
o’ =a(dg/dg)™, (C21b)
=6, (C21¢)
¢'=¢. (C21d)

This is the simplest equivalence transformation; it
just reshuffles @ and 8 without touching ¢ and 6.

Notice that if 8’ is not a monotonic function of 8 in
Eqgs. (C21), o’ will be infinite wherever d8’/d8=0. This
divergence is not of course physically observable. In
fact, it ensures that the term a’8’, in the velocity-
potential representation will equal a,,. This example is
an omen: Ill-chosen transformations will introduce
divergences into some of the velocity potentials in order
to keep the observables of the fluid’s motion unchanged
under the transformation.

Inconvenient as such divergences are, they do not
fundamentally affect the gauge freedom in ¢, a, 8, and
0. Suppose one has a set of velocity potentials that
determines the thermodymamic condition and motion of
a fluid. An equivalent set can be obtained by choosing
the value of any one potential arbitrarily at each point
on the initial hypersurface. The equations of trans-

SCHUTZ, JR.

formation then show how the initial values of the other
three potentials must be changed in compensation.
(Only initial values are affected because ¢F/dr=0.) It
is not possible to choose a second potential arbitrarily
at every point of the initial hypersurface without
affecting the value of the first one. None of the trans-
formations that leave one potential invariant have
enough freedom to permit choice of a second one
arbitrarily at every point. A simple example is Eq.
(C21), which transforms « and g but leaves ¢ and 8
alone. It permits only transformations that leave
surfaces of constant g invariant: Choosing 3 at one
point fixes its value on a whole two-dimensional sub-
space of the hypersurface. We therefore conclude that
the initial value of one and only one potential is
completely arbitrary. The remaining initial values are
constrained (but not fully determined) by the physical
condition of the fluid.®

I thank Professor Kip S. Thorne for pointing out
that the arbitrariness of one potential is consistent with
intuitive ideas of the number of degrees of freedom in a
fluid. That is, it should be possible to describe a fluid
completely with five functions at each point: two
thermodynamic variables (u and S) and three indepen-
dent components of velocity. Because we use six poten-
tials to describe the fluid, one and only one of them
must be completely arbitrary.

APPENDIX D: RESTRICTED INITIAL-VALUE
FORMULATION

Whereas in Appendix C we began with a physical
situation and as ed what sets of potentials could

- descnoe that situation equally well, in this appendix

we begin with the potentials and ask what physical
situation they determine. Accordingly we present here
two different prescriptions for constructing tluid motions
from knowledge of the potentials on some initial
hypersurface, under the restriction that the background
metric remain unchanged by the fluid’s motions.

The first prescription requires knowledge only of the
potentials on an initial hypersurface, and not of their

-derivatives off that hypersurface:

(1) Choose an initial spacclike hypersurface X with
future timelike normal N. On = specify the thermo-
dynamic state of the fluid by giving u and S. Also
specify the initial values of ¢, a, 8, and 8 on Z. Say
nothing about their derivatives normal to =.

(2) From the;e initial values, find the three compo-
nents of U parallel to £ from Eq. (2.21). Thern the
equation U-U=—1 yields a quadratic equation for

# The same situation exists in electromagnetism. Choice of the
Lorentz gauge (which corresponds to our choosing one potential
arbitrarily) does not completely fix the gauge. Other Lorentz
gauges may be gencrated by any function A that satisfies the
homogeneous wave equation, [JA =0. Such transformations do not
establish an arbitrary gauge at every point because of the

restriction on A, but they do modify the gauge without changing
the physics.
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U-N. If this equation has imaginary solutions any-
where on Z, then a, 8, ¢, and @ have been chosen wrong:
They have yielded a three-space velocity parallel to
Z greater than the speed of light. This is the only
cousistency requirement on ¢, a, 8, and 6. If the
quadratic equation has real solutions for U- N every-
where, choose the sign of U- N negative. One now has
determined U on Z.

(3) Using this value for U, proceed to calculate the
condition of the fluid on a hypersurface =’ slightly
advanced in time from Z. Construct this second hyper-
surface by advancing off the first a proper time dr in
the direction of U. Points of = and =’ joined by U we
shall call “corresponding points.” The values of S,
a, and g at corresponding points are equal. The value of
0 has increased from any pointin = to the corresponding
point of 2’ by the amount Tdr, while that of ¢ has
decreased by udr.

(4) Finally, use the equation (poU’).,=0 to relate
the (as yet unknown) values of p and U-N’ on =’
(where N’ is the future timelike normal to Z’). Use the
equation of state to express po in terms of S and u;
because S is known on Z’, onenow'has a relationbetween
u and U-N’ there. Equation (2.21) yields a relation
between u and the spatial part of U on Z’, since only
. derivatives of ¢, 8, and S parallel to 2’ are known. Use
the equation U-U=—1 to get a third relation, this
one among u, the spatial part of U, and U- N’. Solve
these relations simultaneously for x and the four
‘components of U on Z’. One now has enough informa-
tion to advance to a third hypersurface, and so on.

In step (2) we imposed the consistency requirement
that the spatial velocity of the fluid on the initial
hypersurface be less than that of light. Are we guar-
anteed that the solutions in step four for x and U on
the new hypersurface will satisfy this requirement:
Will » and all the components of U be real? It is not
hard to show that if the initial conditions are so chosen
that the spatial part of U is zero, and if there are no
infinite gradients of p, then the relations of step (4)
imply that, on the new hypersurface, U-N'=~—1
+0(d+), the spatial part of U is O(dr), and u has
changed to order dr: i.e., that the new condition of the
fluid is physically acceptable. Moreover, any physical
situation that satisfies the consistency requirement of
step -(2) admits of a choice of initial spacelike hyper-
surface on which the spatial part of U is zero. Since the

physics cannot be affected by such a choice, and since
the equations of motion in the potential representation
are not affected by such a choice, we conclude that if
the potentials are constructed to be self-consistent on
some initial hypersurface, then they will remain self-
consistent throughout spacetime if infinite gradients of
# do not develop.

The second prescription for constructing the fluid
motions from the potentials is more complex. It does
not require knowledge of the initial the modynamic
state of the tluid but does require knowledge of the
derivatives of ¢ and 6 off the initial hypersurface:

(1) On X specify a, 8, ¢, ¢.,, 8, 8,, and the equation of
state. Note that g, S, and the derivatives of a, 8, and §
normal to Z are unnecessary.

(2) From the known data, determine U and the
thermodynamic state of the fluid on Z in the following
manner. The equation U-U=—1 gives a relation
between U (the part of U parallel to Z) and U- N; let
us write this as 4 (U- N, U)=0. The equation U"0,=T
similarly gives a relation of the form B(u,S,U- N,0) =0
after the equation of state has been used to express T
in terms of u and S. The equation U’¢,= —u gives a
third relation: C(u,U-N,U)=0. We therefore have
three relations in six unknowns. They can be solved? to
express three of the unknowns in terms of the other
three. Thus we can write u=f(U), S=¢(U), and
U- N=k(U). Finally, we use the potential representa-
tion, Eq. (2.21), to determine uU—0VS, a three-vector
parallel to Z. Because we know u and S in terms of U,
we can solve for the three components of U. From
these we determine 4, S, and U- N.

(3) We now have as much information as at the end
of step (2) of the first prescription. To find the condition
of the fluid on Z’, follow steps (3) and (4) of the first
prescription.

The second prescription distinguishes between what
we refer to in the text as initial-value parameters and
dynamical variables. The initial data for the dynamica.
variables ¢ and @ were their values on Z plus their
derivatives off it. By contrast, only the initial values of
a and 8 are required. This breakup of initial data is
not unique, however. One could have specified the
derivatives of, say, ¢ and a normal to Z ; the calculations
would in fact have been easier.

# As in the first prescription, if these equations have complex
solutions, the initial data have been chosen inconsistently.
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CHAPTER 3

THE HAMILTONIAN THEORY OF A RELATIVISTIC PERFECT FLUID
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ABSTRACT

The velocity-potential version of the hydredynamics of a
relativistic perfect fluid is put into Hamiltonian form by applying
Dirac's method te the version's degenerate Lagrangian. There is
only one independent momentum, and the Hamiltonian density is
—TOO(-gOO)-l/ 2. The Einstein equations for a perfect fluid are then
put into Hamiltonian form by analogue with Arnowltt, Deser, and
Misner's vacuum Einstein equations. The Hamiltonian density splits
into two pieces, which are the coordinate densities of energy and

momentum of the fluid relative to an observer at rest on the

hypersurface.
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INTRODUCTION

The velocity-potential version of perfect-fluid hydrodynamics as formulated
by Seliger and Hhithaxgl generalized to relativity by Schutz,aandindependently
discovered by Schmid,sa’b can be regarded as a nonlinear relativistic field
theory for five coupled scalar fields, whose Lagrangian density is simply the
pressure of the fluid. The theory is degenerate: not all the generalized
momenta are independent, so they cannot be solved for the generalized velo-
cities. In this paper we use Dirac'sh algorithm for degenetate theories to
cast the equations of petéect—fluid hydrodynamics into Hamiltonian form, whose
Hamiltonian density is the energy density of the fluid. We then match the
theory to the Arnowitt, Deser, and Misner5’6 (hereafter referred to as ADaM)
canonical theory for the vacuum gravitational field.

The independent variables of the theory are the ﬁelocity potentials:
five scalar fields ¢5 a, B, 6, and S. Here S is the entropy per baryop,

2,3a

while the others have less obvious interpretationms. The fluid's four-

7
velocity is a combination of the potentials and their gradients :

-1
U,=n (g o8 +0s ), (1)

where p is the specific enthalphy of the fluid,

p=(p+0)oy - ; (2)

(He;e 35 is the rest-mass density, p is the density of total mass-energy,

and p is the pressure.) Through the equation of state,

p=pl,s) , (3)

all thermodynamic quantities are expressed in terms of S (one of the velocity
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potentials) and u. In its turn, p is a function of all the velocity poten-

tials through the equation

2 ov 3
Lol (¢,6 4 05,0 * es,o)(¢,v * aa,v #:9 v) » (&)

»

which is just the normalization constraint on the four-velocity.
The dynamical field equations are five coupled nonlinear first-order

equations:

v

U ¢v"‘l~‘ ’ (sa)
$

t*a_ =0 ., " (sb)
v

UVB =0 ’ (Sc)
sV

e _ =1 |, (5d)
v

s _=0 |, (Se)
v

(where T is the temperature) plus one nonlinear second-order equation:

v y

(og W), =0 - (6)

There are really only two independent equations among the three Eqs. (Sa,c,e)
because of Eq. (4), so that there are five independent equations altogether.

These equations follow from extremizing the action
L ;
I-.rpfnsd‘ . (7)
First-order changes in p are computed from the equation
6?’90&1"90':55 )

which expresses the first law of thermodynamics. Equation (L) is used to

obtain W in terms of the independent variations of Q, a, B, 6, and S.
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vien one fomulatcsv these equations in terms of a Hamiltonian, one
singles out the time coordinate for special attention, tﬁereby destroying
the equations' four-dimensional symmetry. In what follows we will there-
fore us. the ADaM notation appropriate to such a 3 + 1 dimensional split
of spacetime: the four-dimensional metric hgw is replaced by the three-

dimensional metric gij = l"gij (whose inverse is g“ # lA'gij), by the lapse

function N = (- l"goo)-]'/a‘, and by the shift functions N, = hgoi' Deriva-
tives covariant with respect to gij are denoted by V:I. or by a subscripted

slash (e.g. hijlk)' Dots (e.g. i‘ij) denote partial derivatives in time.

The action (7) becomes
I-Ipﬂgédsxd: F

so the Lagrangian density of the fluid isL=p N g%. In all but the last
section of this paper, we will treat the metric l‘gcﬁ as a constant, not as
part of the dynamics of the fluid. It will suffice until then to take as

the fluid Lagrangian density
L=pN , (8)
so that the action can be written in the standard way

I= IL d(three-volume) dt .

CONSTRAINTS ON THE MOMENTA

Let q, stand for the five fields ¢, @, B, 8 S. The momenta conju-

gate to q_ are

' = 3L/dq, = 3pN/3q, - (9)
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They are explicitly

p¢ = - po Uo N

-

Pa’pe’o » (10)
10

va.ap¢ »

ps-ep¢ .

Since only one momentum is independent, there are four constraints on the

momenta (the Dirac ()-equations):

(04
QI'P_"O ’
8
Qa'p’o ’

g

(11)
¢3’p'ap¢=o ]

Qh = Ps -6 P¢ =0 .

There are no arbitrary functions of time in velocity-potentiai hydro-
dynamics: what gauge freedom exists lies only in the choice of initial
values for the potentials. Consequently we do not expect any of these ¢'s
to be fir#t-class: none of them has vanishing Poisson bracket (see Eq. 16)
with all the others.

That there is only one independent momentum is surprising. Ome might
expect at least three (for the spatial components of velocity), if not more.
The mathematical reason seems to be that, of all the field equatioms, only
Eq. (6) is second order in time derivatives. Equation (6) is obtained by
varying ¢ in the Lagrangian, and p¢ is the only independent momentum.

The physical reason (if one exists) that there is only onme independent

momentum 18 not clear. It would be a mistake to conclude that a perfect
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fluid has only onec dynamical "degree of freedom": that such constraints
as zero viscosity and conservétion of entropy héve wiped out the other
degrees of freedom. The relationship between independent momenta and
degrees of freedom is not well understood. In the velocity-potential
representation one must specify six independent functions on an initial
Cauchy hypersurface in order to determine the future evolution of the per-
fect fluid.2 This indicates the existence of three dynamical degrees of
freedom.

What seems to be the case here is that two of the three second-order
dynamical equ#tions (one‘for each component of velocity) have been replaced
by four first order equations (the four independent equations among Egs. [S]).
Hidden among the four'pocentials Q, B, 6, and S are two dynamical variables
and their momenta. Since ali four are treated as coordinates here, they
appe;t to have no independent momenta among them.

There are somé tantalizing suggestions that this may be just the hint
of a deeper canonical relationship among the potentials. Seliger and Whithaml
show that one can modify the formalism slighgly and introduce a function ¥
such that da/dt = /0B and dB/dr = - /. Moreover, Schmid>® points out

that ¢ obeys the relativistic Hamilton-Jacobi equation

¢ 2
sdaQa¢ *e’l’-a »
2 b
where

2_ o
TR LR NI

is positive-definite because the vector 08 at es = is spacelike (it is
» ?
orthogonal to'Ua). We have nothing more to add to these considerations

here, so we return to the Dirac method.
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THE HAMILTONIAN AND THE EQUATIONS OF MOTION

The Hamiltonian density is defined in the conventional way:

a .
R=g p"q -1 | (12a)
- o¥b e b+ ed)-p (12b)
(4]
=-TyN . (12¢)
Although 0, é, and § appear explicitly in H, we still have (5H/Bia)p i
bl

so that we can differentiate H with respect to pa and T while holding aa
constant. ‘

Because of the () -equations one cannot solve for all the c';"'s in terms
of p"s. Instead one introduces additional variables X‘ (which Ditach
calls u‘) in place of the ;la's' If one varies Eq. (12a) with respect to
9 and pa, the k"s serve as Lagrange multipliers that ensure that varia-

tions ia the qa's and p"s maintain the (P -equations. Then ome gets

q = /%% +n_ 3¢ /%" , (13)
- 3L/dq = dufdq, +\, 39 /3, - (1)

(A sum on m from 1 to 4 is implied here and throughout.) For the perfect

fluid, Eqs. (13) can be solved for the A 's to give
1% 5 A=08 , Ag=B , N =S5 . (15)

Thus in this case the \'s are self-consistent: Egs. (14) imply nothing
new. So the Hamiltonian variables -now are p¢, )'1’ )\2, \3, )‘k’ ¢, Q B, 6,
s.

The power of the Dirac approach is that the Poisson bracket version of

o,



29

Hamilcton's equations,
q=(qH]
p=(pH],
can easily be generalized to the degenerate case. Before applying this to

fluids, however, we must define a Poisson bracket for fields in a curved

three-dimensional space. The conventional definition from particle dyna-

mics,
A 3B A 3B
(A,B] = ¢ = . = ,
; a E;l: Bp‘ apa Bq_l

is not sufiicient when A and B are functions of the spatial derivatives of
the fields q, and pa. In the appendix we generalize this definition to fields.

Por the perfect fluid (five scalar fields) the result is

S
(4,8] = £ cA L‘i é ...a_A; _85_3_
a=1(“%a s&p op %

JA d 8B A 3 8B
+r—— —e - —_—
9,1 &t 8P »° N xt 89
?
dA 3 8B - 3 8B
= E v s o 4 e pbumiesntee Pl I T 7] + eee), (16)
qa,ilj ] axi_ap" ap.,il] : bx" 8q,

where A and B are any functions of 9y 'p‘, and their spatial derivatives

(of any order), and where aB/sq‘ is the spatial variational derivative

88 _ 8B B 3B n ‘
5q, aqa A aqa’i + Vj A m +eee e (17)

In the Poisson bracket all q's and p's are treated as if they were inde-
pendent: the (J-equations are used only after the Poisson bracket has

beea computed.
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Dirac™ shows that the time-derivative of any function f of the q's,

p's, and their spatial derivatives (and possibly explicitly of time) can

be expressed in the form

£=(£H] + (E0 Q] + (3e/3e), o - (18)

In the second term, one is to regard )‘n as independent of 9, and p‘ but
dependent upon position. For example, one contribution to that term will

be from a term like

8 )‘m“Pm - a Xm(pm a xmcpm
- i G e i PO
9 9
= (?ﬂ - 9, A\ ¢ﬂ + = see .

In Eq. (18) one must treat H as a function only of the independent
momenta (cf. Eq. {12b]). Contributions to f from the other momenta come

from the { brackets. Equation (18) can be stated concisely as
£a(£H) 2 dE/dc (19)
by defining a gemeralized Hamiltonian
‘n' =H+M Q. (20)

Because the &P's are all zero, B is numerically equal to H.
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The equations of motion arec a special case of Eq. (19):

.i& = (p, NU")“ ' ,
Pre-py BN ,
= (vt am, E (21)
i°=-pou"s,vn 3
Bsa(pouien?li-po'ru .

The first is the continuity equation, Eq. (6). Upon application of the ¢ -

equations and the continuity equation we see that the remaining four equa-

tions are the four independent velocity-potential equations among Eqs. (5).
One must also demand that the ¢ -equations be maintained in time, i.e.

that

(o E'1=0 . (22)

These equations are just the four independent velocity-potential equationms,
Eqs. (5): there are no Dirac X-equations; i.e., there are no equations
from Eq. (22) that involve p's and q's without \'s or A's, which would thus
be constraints like thc () -equations. For example,cp1 -- the comstraint
on pa -- is preserved at zero by the equation'Uv B,v = 0, vhich'is.obtained
from the original variational principle by wvarying @. This equation can be
rearranged to read

o N . 43
5 ° B,i(Q,jH;B’

=g, v

i* 8s ) (23)
B P g

This is not really solved for XS in terms of pQ and q, because Po and p
on tha right-hand side iﬁplicitly depend on all the A's. Nevertheless, all

the \'s do have unique solutions (through the velocity-potential equations)
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in terms of p' and q,- This means that there are no first-class ¢ -equations

(as we guessed earlier) and no arbitrary functions of time in the solutionms.

COUPLING TO GRAVITY

Until now we have treated the metric tensor &g as a constant because
ve'were interested in the canonical theory of the fluid. The fluid is,
however, coupled to the gravitational field, and one ought to treat the

full dynamical system, fluid plus field.

The Hamiltonian density of the free gravitational field 1.5,6
(s] i
B, =NR +N R (24)
wi:hs
.24, , (25)
13

no 2 - 8*[3R + ‘-l(i 12 - ﬂij Kij)] » (26)

and -

_ b L k31

i n sé( I‘o,‘1 - 84 Pom o e L (27)

Here 3R is the scalar curvature of the hypersurface, and xij is the momentum
canonical to sij’ Since the Lagrangian density of the fluid, pNg2, does not

depend upon time derivatives of the metric, the full Hamiltonian is

¥ =H o+ lsuﬂ'g% . (28)

Note that HG splits into two pieces, with Rp and R1 independent of

N and Ni' Ditacs shows that this will also be true of the Hamiltonian density

for any field. In our case, we split up H.ii in two steps: 1) Differentiate
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with respect to hg“v while holding Pa and 9, constant,

(u’ s%)/a(b's"v)= - dp(- l‘g%-')]/a(hsm,)= - & 7Y l‘s)% 3

and ii) convert derivatives with respect to hguv to derivatives with

Tespect to N"Ni’ 811 with the formula given by Schutz.9 We obtain

' g/ N, = - g2 (1O 4wt 1) - - gE gl '1:°j (29)
= 8% P gij(¢ +aBf ,+658 ) (30)
(] s A e
and
ar' ghfanagd B10. 2™ - 5 (31)

N :
H dH
-3 -3 Ty (s2)
Equation (32) implies
: d H

B =N S o+ N BT'L*“"m‘Pm . (33)

Since J(H' g%)/b N, is manifestly independent of N and N,,

of Eq. (33) shows that 3(H' gi)/b N is also independent of N and N,.

differentiation

The two pieces of H' have'straightforward physical interpretations, as
is shown by Schut:z.9 Let qa == N hgoa be the unit normal to the spacelike

hypersurface. Then the two pieces of H' 55 are

aw' o nagh P Te* £ | (3)
and :

aw' pw =g gt =g (35)

They are, respectively, the coordinate densities of energy and momentum
measuied by an observer at rest in the hypersurface.

By analogy with Eq. (16) we may define a general Poisson bracket for
1]

any two functions of xn -, 313’ p‘, and their spatial derivatives (but not
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of N or Ni’ which are arbitrary functions that contéin coordinate informa-

tion but have no dynamical content):

A 5B A 5B A 8B
(A, Bl = = (;— - R v
81 srid  axid 08y Bijk ¥ patd
. A o 8B +_,_)+2(6A BB 3A 5B
ax“‘k k 8, ‘Wa 5p° 3p* 0%
M d _sB A > 8B )
+ — Sl - Masear 12 4+ oo - (36)
543,1 axi Spa apa’i axi Bqa

Then the time derivative of any such function that does not depend explicicly

on time is

A= [A’ ﬂ] (37)

= N[A, 20 + 16x €] + n(a, ! + 16x o) +(ax @ 1. (38)

In particular, the ADaM form of the Einstein field equations follows by

using 313 and nij for A:

8y = 8y,(VAC) (39)
©d o xt(vac) + ex N gé‘('r*j a1 (ko)

where (VAC) indicates the terms that are there in the vacuum case (see
ADaM). These must be supplemented by the constraint equations that come
from varying the Lagrangian density (£ = - & + nij éij + z. p‘ i.) with

respect to N and Ni (which are not Hamiltonian variables):

R +16xt =0 5 (41)

&t s 16xot=0 . (42)
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Equactions (39)-(%2) are identical to those derived by Schitts” for a general
stress-energy tensor.
The constraints, Eqs. (41) and (42), must be maintained in time; i.e.,
we must have
(R + 162 £,%] = 0 (43)

and

(rR! + 16zt x1 =0 . (L)

In the vacuum case these are the Bianchi identities. In our case the

Bianchi identities reduce these to the equations of motion, I"v.v = 0. These
»

four equations can be used to replace the four independent velocity-potential

equations among Egs. (5),10 which themselves guaranteed the maintenance of

the @-equations. Therefore the full canonical set of equations is

=, (45b)
T" [Q: ¥] {e3e)
ottt | (45d)

with either the conmstraints (41) and (42) (maintained in time) or the -

equations (11) (also maintained in time).

CONCLUDING REMARKS

The direction of any further analysis of these equations must depend
upon the application they are intended for. It would in principle be pos-

sible to reduce the twelve gravitational variables (xij and gij) to four in
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exactly the same manner as ADaM. Solving the constraint equations would
then involve the fluid variables § and p¢, but the coordinate conditions
would be unaltered (as was pointed out by ADaM).
Methods very similar to these have been used by the author to derive
the Hamiltonian density and from it a conserved energy demsity for the pul-
sations of and gravitational radiation from a differentially rotating rela-

tivistic star. These results will be published elsewhere.
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APPENDIX

POISSON BRACKETS FOR FIELDS IN CURVED SPACES

For a system with n degrees of freedom, the Poisson bracket ("P.b.'")

of two functions of pa and 2 is

n /3 B A B
(a,31- F(R & & B) (k)
a=1.§§a p° > %%

A classical field has an infinite number of degrees of freedom,'one (or more)
for each point in space. Functions like A and B may be functions not only
of the fields pa and 9> but also of their spatial derivatives. In this
case, a simple definition like Eq. (h6)4above is not sufficient.

' Let us suppose that the field variable is a vector field 9y with canoni-
cal momentum pi = 3L/8&i. Our results can be extended in a straightforward
manner to cases where the field is a higher-rank tensor or a scalar.

Because the field variables at different points are independent, we
wish the P.b. of two functions to be nonzero only if they are evaluated at

the same point. Accordingly we define the canonical P.b.'s:
La(x), a(x)] = (o' x), pl(x)1 = 0 (47a)
(q (x), 95(5')] = - o), qi(E)]'= - ﬂj'i 63(5 -x') . (k7)

; 5
Here QJ " is the derivative of Synge's world function11 a(x, x') with

respect to xi and x' j, with the index j. raised by the metric at x'. Because

j'

that we will need are11

of the delta function the only properties of Q 1

(1) its limit as x' approaches x,

3 i
lfm Q i = -3 i » (hBa)
x ¢§
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and (2) che same limit of its covariant derivatives,
? ]
;c'ifx ve ol = - lin 9, g e (beb)
where V! is a covariant derivative at x' and acts only on primed indices,

and vice-versa for vk'

The delta fuaction is normalized to proper volume,

3 :
f87( -1, (k9a)
and has the usual property
28 -x) = -2 Sx-x) . (49b)
Ax 3x

Equation (48b) permits us to generalize Eq. (49b) to covariant dif-

ferentiation:
ool B -} - - vufad - v} (50)
k12572 Y 1% EC X *
We define the differentiated canmonical P.b.'s:
b P 3 .3 '
(q;(x), v P7(x')] = - vk-{n g 8 (x-x )} , (51a)

(v, 9;(x), p(x")1 = - Vk{ﬁj'1 8°(x - x' )} ’ (51b)

and so on for higher derivatives. The Poissén bracket [ , ] is the bilinear

antisymoetric two-point differential operator whose domain is all C1 functions

of pi, qy» aad their covariant derivatives and which obeys relations (47) and

(s1).
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3y application of the chain rule we find

[ate), 30101 = 355 (@ (4@, P01 Ty ()

ap
+—(x)[P(x), q (x' )] (X)
p
IR ()'(-) (x')
+-a—q—-:IT‘ = qi!k f, P § ]gp—{ ?_( + oo ’ (52)

=l 9% <x>-—a-—(x)§i<x-)}a(x-x)

m()—(x)vk{ 85 - )}

+ (x)-a——(x)v{ 5°(x - x)}
plk
aA ]
- E(f) (x)Vk{ﬂjiB(x'x)}
e Ak . (x')vk{ PTRSCRPD!
T o 5 (s3)

This is the usual definition of a Poisson bracket in classical field
theories. But for the purpose of practical calculations it is useful to

obtain a one-point P.b. by integrating. The left (right) integrated P.b.

is the integral of the P.b. over all x' (x). We denote these by x[ T

and [ , ]x’ respectively. Integrating Eq. (53) on x' and using Eq. (50)
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gives
(A, B] = [aCx), B(x")1(g")? &' (sk)
X ) BA\Z g = g
~ all space .
A 5B _ oA 3B
%y gt ¥t Y
+ aqu i 831 - BAi Y -55% H oiste 5(55)
1|k 8P dp |k i
where sB/sqi is the variational derivative
8B B 3B JB
= - v + V V Rl + eee . (56)
89, — 3q k 3qy 37k B4y,

Although one cannot generally integrate a tensor over a curved space, as we
have done in Eq. (S4), in this case the delta function limits the integration
to only one point, so that the integral is unambiguous.

This integrated P.b. is the generalization of the simple P.b., Eq. (%&),
to which it reduces when neither A nor B depends upon derivatives of 9 and
pi. When such derivatives are involved, the left integrated P.b. is the
P.b. of A at the point x with the entire field B: values of B at other
points influence the bracket through the spatial derivatives of B at x.

Note also that the integrated. P.b.'s are independent of any coordinate system.

The following interesting properties follow directly from the defini-

tion of the integrated brackets:

1. 4, B]=-[B, Al ; (57a)

2. x[A, B] = - x[B, A) if and only if both A and B are independent
of derivatives of q; and pi; (57b)

s. ! A4 Bl zé x = [ (4, B], 8* dx (57¢)
all space ~ all space . ~
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if x[A, B] is a scalar (if not, the integrals are undefined);
o9y ?S[A, B] = ’.‘[vi A, B] ; _ (s74d)
v,(a, Bl,_: = (4, v, B]:E - (57e)

Tae integrated brackets fit into the Hamiltonian theory because the

canonical equations are (for a system whose momenta are all independent)

- 1
q = sH/sp (sea)

ol sH/eq, - (s8b)

They translate to (from now on we will use only the left integrated brackets):

qi = x[ qii H] i (sga)
= i
Py = 4P, H . (ssb)
By property 4 above these imply
qilk - f[qilk’ H] , (60a)
1 i
Pl xP e B (e0b)
which in turn imply
A= L4 H (61)

for any function A (not necessarily a scalar) of 9y pi, and their spatial
derivatives that does not explicitly depend on time.

Property 2 implies that in general é # 0. This is to be expected:
energy can be transferred from point to point. We should only expect that

-ig*dsx =0 , (s2)
all space
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which is true baocause of properties 3 and 1. Thus, in general there exists

a canonical Poynting vector Si such that

H+Visi=0 e -

For the simple case where H depends on no derivatives of 93 and pi higher

than first order (which includes almost all physical systems), the Poynting

vector is
i OH OH oH oH
s = T‘ i e - e~ é L] (63)
QJ apjlt apj qjli

For a degenerate system (momenta not all independent) the equations of
N
motion are almost as simple. Dirac shows that for a system with a finite

number of degrees of freedom,
qi - [qi! H] + Xu!qi’(?m] $ (sha)
=1 i i
po=0p5 Bl + 2 [0, @0 - (ekb)
For a degenerate field theory these become

qi - x[ qi’ H] + x[ qi’ xll¢m] ) (65a)

2 & i 3

po=,lp, H + [[o, @] - (65b)
In these equations Xm appears inside the integrated bracket because it

is generally a function of .position. To compute a bracket that has Xm inside,

one treats km as a function of x independent of pi and 9. For example,

the variational derivative of Eq. (56) is

8 kmf?m - a xmcpm o v a Xm(Pm
84y oy k dqy

d
m
:Xm—éq—vk (Xmm)i-'- sae . (66)

+ = eee ’
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Conservation laws for the Hamiltonian can be derived here, too. They
are especially simple in the case where H depends on no derivatives of pi
and only first derivatives of 9> and where (?m is independent of any deri-

vatives. The equation maintaining the (§) -equations is
Py = 0 B+ I, N0,
= [, Bl + A §[qn, ¢ l=0 - (67)

The time derivative of H is
H= x[El, H] + x[H, )‘m"m] .

Using the properties of the integrated bracket, our assumptions about H and

©_» and Eq. (67), we can show that this becomes

l.i+v131-0 R (e8)

with a?
i ( ;8 m\ JH
e - P 9 (69)
» ® ap’) 3y

But by Eq. (65a) this is just

« 25 - -
S =-q, =— , (70)

which is the canonical flux in the nondegenerate case as well.
In the body of this paper we will consistently use the left-integrated
Poisson bracket, which we refer to simply as the Poisson bracket, denoted by

[’ ]‘
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ABSTRACT

A systematic method is presented for deriving the Lagrangian
governing the evolution of small perturbations of arbitrary flows of
a self-gravitating perfect fluid. The method is applied to a differen-
tially rotating stellar model; the result is a Lagrangian equivalent to
that of Lynden-Bell and Ostriker (1967). A sufficient condition for
stability of rotating stars, derived from this Lagrangian, is simplified
greatly by using as trial functions, not the three components of the
Lagrangian displacement vector é, but three scalar functions defined

by

pf = YA +Y X (XL +¥ XY,

where 1 is an arbitrary vector field. This change of variables saves

~

one from integrating twice over the star to find the effect of the per-

turbed gravitational field.
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I. INTRODUCTION AND SUMMARY

There is usually a very close connection between variational
principles and stability criteria.. If one has a variational principle
that gives the dynamical equations for small perturbations of some
equilibrium state, he usually can obtain directly a criterion that tells
him whether those perturbations will remain small. In fact, Cotsaftis
(1968) has shown that it is in principle always possible to derive at
least a sufficient condition for stability from the Lagrangian. The
most familiar example of this is the use of the Hamiltonian as a
Lyapunov function in cases where energy is conserved or dissipated
by the perturbations: then positive-definiteness of the Hamiltonian
guarantees stability.

In the theory of small pulsations of stellar models made of
perfect fluid, the problem of finding a Lagrangian for the pulsational
equations has been solved only in the past decade (Chandrasekhar
1964, Chandrasekhar and Lebovitz 1964, Clement 1964, Lynden-Bell
and Ostriker 1967, Chandrasekhar and Lebovitz 1968). The
Lagrangian for the nonradial pulsations of a nonrotating star was
deduced directly from the perturbed equations of motion by
Chandrasekhar (1964) and by Chandrasekhar and Lebovitz (1964).
Using these same techniques, Lynden-Bell and Ostriker (1967)
obtained the Lagrangian for small perturbations of any stationary
equilibrium configuration of perfect fluid; and they derived from their
Lagrangian a sufficient condition for stability, which is essentially

that the conserved Hamiltonian be positive-definite. In principle this
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nearly solves the stability problem, though in practice the criterion
is still very difficult to use.

The purpose of this paper is to show that the Lagrangian can
also be deduced in a potentially more powerful way from the general
perfect-fluid variational principle of Seliger and Whitham (1968);
and to show that the resulting stability criterion can be simplified
greatly for the purpose of testing realistic models. The method
introduced here is potentially more powerful for two reasons.

First, it provides a straightforward, conceptually simple procedure
for deducing the Lagrangian for perturbations of any initial flow (not
necessarily stationary) with arbitrary bound;ry conditions on the per-
turbations (boundary conditions have required special considerations
in previous work). Second, it is easily generalized to general-
relativistic stellar models, where the pulsational equations (cf.
Thorne and Campolattaro 1967) are so complicated that they have
defied the earlier techniques. In the second paper in this series
(Paper II, Schutz 1971a), we will apply the method illustrated here to
fully relativistic, differentially rotating stellar models, starting
from the relativistic version of the Seliger- Whitham variational
principle obtained by Schutz (1970) (and obtained independently for
special relativity by Schmid [ 1970a,b]). In the present paper we
confine ourselves to the Newtonian regime.

The general plan of the paper is as follows. In §II we pre-
sent the general Lagrangian for the perturbations of any motion of a

self-gravitating perfect fluid (not restricted to stationary motions).
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It is the second variation of the Seliger- Whitham Lagrangian. In
§IIT we specialize to the case where the unperturbed flow is a differ-
entially rotating stellar model. We reduce the Lagrangian to a
function only of the fluid displacement vector, g; and we express the
action as an integral over the interior of the star plus an integral
over the surface of the star (the surface integral permits the pertur-
bation to obey any boundary condition).

In §IV we write down the sufficient condition for stability,
first discovered by Lynden-Bell and Ostriker (1967). We then show
that a considerable simplification of the criterion can be effected by
dealing not with £ but with three scalar fields from which £ can be

~ ~

obtained (in complete generality) by the following construction:

Finally, in §V we examine the special cases of (i) axially symmetric
perturbations of a rotating star (as treated by Chandrasekhar and
Lebovitz 1968) and (ii) perturbations of a nonrotating star (treated
by Chandrasekhar and Lebovitz 1964). We find that the stability
criteria for those cases can also be simplified by using the above
expression for é. In order to preserve the continuity of the dis-

cussion, details of the longer calculations have been placed in

appendices.
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II. PERTURBATIONS OF AN ARBITRARY FLOW

a) The Velocity-Potential Variational Principle

The starting point for our analysis is the variational principle
discovered by Seliger and Whitham (1968). It is by no means the only
variational principle for perfect fluids, but it is especially well-suited
for examining perturbations because it is an Eulerian variational
principle. That is, all fluid quantities are expressed in terms of five
scalar fields (the velocity potentials ¢, @, B, 0, S); one never needs to

' Perturba-

deal explicitly with "fluid elements" or "particle paths.'
tions in the flow come from simple Eulerian perturbations of the
velocity potentials, and are much easier to deal with than perturba-
tions in particle paths.

The basis of the variational principle is the representation

of the velocity field of the perfect fluid in terms of the five velocity

potentials:

z:Y\l)'ﬁ'aYﬁ-SYG, (1)

where S is the entropy per unit mass. The notation follows that of

Schutz (1970), with the definition
y=4+6S, (2)

where ¢ was used by Schutz (1970) but will not be used here. It
turns out to be more convenient in this paper and especially in Paper
II to use the set (¢ ,«,p,0,S), rather than (¢,2,p,06,S). To convert

from this notation to that of Seliger and Whitham (1968), make the
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replacements y — ¢, 06— -1n. (These are changes in name only:

Seliger and Whitham's ¢ is the same as our y.)

Each velocity potential obeys a simple "equation of evolution":

Sty W=-htTS- @ +iyy, (3a)
%*I'Y“O' (3b)
%%ﬁ EY E¥p= U : (3¢)
= ty-ys=0, (3d)
2ty Ves=T. (3e)

Here T is the temperature; & is the gravitational potential,

V2 = 4nGp; (4)
and h is the specific enthalpy,

h=(E+p)/P: _ (5)

where E is the internal thermodynamic energy density, p is the
pressure, and p is the mass density. The evolution of the velocity
potentials fixes the evolution of v through equation (1). In order to
make this a well-determined set of equations one must add an equa-

tion of state,

p = p(h,S), (6)
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and the continuity equation

’g?p*Y'(PX)=°- (7)

Equations (3), (4), and (7) constitute seven equations for the seven

functions @, h, S, §,a, B, 6. They are completely equivalent to

the Euler equation,

ov 1

5t Vy=-ve- Ve, ®)
supplemented by equations (3d), (4), and (7). A rigorous proof of
this equivalence has been given by Schutz (1970) for the relativistic
version, but it applies equally well here.

Equations (3), (4), and (7) follow from extremizing the action

I= S' (V® * V& - 8xGp) dt AV, . (9)

where the integral is over all space and time (dV is an element of
volume). The pressure is taken to be a function of h and S through
equation (6), and the enthalpy in turn is defined formally as a function

of & and of the velocity potentials:

h=-& - q",t 2 aﬁ’t + S0 , - %(Yq; + QYP - SYG)Z. (10)

»t

Variations in the pressure ‘w‘;th respect to the independent variables
(®,¢,2,p,0,S) are accomplished through the first law of thermo-

dynamics:

dp = p dh - pT dS. (11)
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The vanishing of the "first variation”

61 =S.(zy<1> * V6& - 8wGép) dt AV

= S (ZY<I> * V6P - 8nGpbh + 8wGpTé8S) dt dV (12)

--when 0h is expressed in terms of the independent variations
5P, &y, 6, 8B, 60, 6S--gives equations (4), (7), and (3b) - (3e).
Equation (3a) follows from the rest of equations (3) and equation (10),
so it is not an independent Euler-Iagrange equation.

In this paper it is often convenient to use the notation of
differential geometry because we wish our expressions to be valid
in any curvilinear coordinate system. Thus, we denote partial differ-
entiation by a subscripted comma (as in eq. [ 10]) and covariant
differentiation by a subscripted semicolon. We understand the
gradient, y, to be a covariant derivative. We distinguish contra-
variant components, vi. from covariant components, vis and we raise

and lower indices with the metric tensor gij [ which for spherical

polar coordinates is just diag(1 ,rz,rzsinzb)] . We always integrate

—

over proper volume, dV = g% d3x, where g-z_--the root of the deter-
minant of the matrix gij--is the Jacobian of the transformation from
Cartesian coordinates to the general curvilinear coordinate system.
We are able to integrate by parts because of the identity for any vector

1 e 1
A that V+« Ag® = AJ,jga = (A%?) 5"
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b) The Second Variation

It is well known that the second variation of a Lagrangian
serves itself as a Lagrangian for the small perturbations of whatever
state of motion causes the first variation to vanish (cf. Taub [ 1969]
for a recent application to the stability of relativistic stars against
radial pulsations). The second variation of equation (9) is just the
part of I that is quadratic in the variations 6%, 6y, 6a, 6B, 66, &S.

Thus, starting from equation (12), we find1

g

& 1 =‘S [268 6@ jgij - 8mG 6p 6h - 8wGp 6°h +8wG 6(pT) 8S] dt dV. (13)

Now, the second variation in h comes from equation (10):

6°h= -26a8p  +26560 ,- v+ bv-26avisp  +265vI 60 . (14)
Thus, the Lagrangian density for the perturbations is (dividing eq. [13]

by 8nG)

N

ij _ .
2 41TGg 5P 6<I>,j 6p6h+6(pT)65+p63 6:

+2p 6o (6B, +vk6ﬁ’k) L as(se,twkae'k). (15)

This Lagrangian is perfectly general and makes no assumption about

the unperturbed state except that it satisfy the unperturbed velocity-

potential equations. In the case of the differentially rotating star,
{

1Not:e that we are looking for second-order changes in functions of the
potentials when the potentials are perturbed. By defi.mtlon, then,
the second variation of a potential itself is zero; e.g., 6 2% = 0.
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the unperturbed motion is steady, so the coefficients of the quadratic
perturbation terms in I_.2 will be independent of time; this will
enable us to obtain stability.criteria..

In using I_2 as the Lagrangian density for the perturbed
fluid, we have changed the meaning of 6%, 6y, 6a, 6B, 60, 6S. In the
first variation, &% was a "virtual" change in the gravitational field.
Here, &% is the real Eulerian change in ® produced by the perturbed
state of the fluid. Extremizing f I..2 dV dt with respect to virtual

changes in 6% gives the perturbed source equation,

V268 = 4nG 6p.

Similarly, extremizing fI_Z dV dt with respect to virtual changes in
the other perturbations gives the Eulerian perturbations of equations
(3b-e) and (7). These equations are completely equivalent to the
perturbed Euler equation (eq. [8]), which we write down for future

reference:

0 &v

~

el A SRR ST

1 1 '
=- =Wép 't :zapyp-yzscb. (16)

c) Discussion
For two reasons the Lagrangian density I_2 is not in a form
suitable for a stability analysis.

First, the Lagrangian is degenerate. That is, the momenta

BI_Z/& Y ¢ 8L2/8 Sy g2 +++ arenot all independent; in fact, three of



56

them are zero and only one of the remaining three is independent.

This is partly a reflection of the fact that not all the six variables are

dynamical (cf. Schutz [1971b] for further discussion of this point).
Second, the usual criterion for stability is that the pertur-

bations not grow without bound. But even the unperturbed potentials

Yy, B, and 6 grow in time at any given point (cf. eqs. [ 3] or [ 18]),
so we can expect that even for a stable, physically bounded pertur-
bation the perturbations &y, 6B, and 66 will grow without limit. This
presents no physical difficulty because the potentials themselves are
not physically observable. But it presents a mathematical difficulty
in that the boundedness of the perturbed velocity potentials is neither
necessary nor sufficient for stability. |

For these reasons we prefer to express LZ as a function
only of the dynamical variable é (the displacement vector of a fluid
element). 2 This is accomplished in §III for the case of the differ-
entially rotating star.

It is important to understand that the perturbed action,

I =S‘ L, dVadt, (17)

is an integral over all space between two arbitrary moments of time.

The reason for this is that the Euler-lLagrange equations extremize

i

2An alternative procedure is followed in Paper II: We find the (non-
conserved) Hamiltonian from L, and construct from it a conserved
energy density, whose positive-definiteness ensures stability by
Lyaponov's second theorem (La Salle and Lefschetz 1961). The com-
plexity of the relativistic equations makes that the easier procedure;
but in the Newtonian case the procedure we follow here is less diffi-
cult and physically more satisfying.
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IZ only under the condition that the variables 6%, 6y, ... be held
fixed at the boundary of the region of integration. The only way to
ensure that this represents no physical constraint on the perturbations
is to put the spatial boundary at infinity, where all the perturbations
must vanish anyway.3 (Only &% is observable outside the star, and

it must approach zero at infinity at least as fast as 1/ rz. The velocity
potentials have no physical significance outside the fluid because p

and p are zero there, but it is convenient to think of them as existing
in the exterior and going smoothly to zero at infinity.) In §III, after
we have introduced é, we will bring the boundary of the region of
integration in to just inside the surface of the star, expressing the
contribution from the rest of space as a surface integral at the star's
surface. In this manner we will ensure that I2 be an extremum among
all perturbations that obey any physically permissible boundary con-

ditions at the star's surface.

3By contrast, requiring the perturbations to vanish at the endpoints
in time is not a physical restriction: it is a direct carry-over from
particle mechanics, where it is the heart of Hamilton's principle.
In continuum mechanics one cannot demand as well that the variation
vanish at some point in space for all time, for that would be a physi-
cal constraint.
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III. PERTURBATIONS OF DIFFERENTIALLY ROTATING STARS

a) The Unperturbed Equilibrium

From now on we will consider the Lagrangian, equation (15),
only in the context of rotating stars. In this Section and the next we
make no assumptions about the initial equilibrium except that it be
axially symmetric, stationary, and, of course, composed of perfect
fluid (no heat flux, no viscosity). In §V we specialize the equilibrium
configuration further.

The general stationary axially symmetric flow can be repre-
sented by the following set of velocity potentials (r, >, ¢ are the usual

spherical polar coordinates, and t is time):

S = arbitrary function of r and & (18a)
Q = arbitrary function of r and (18b)
A 2

a=8 in“d>=Q 18
r~ sin gw (18c¢)
ﬁ =@ - Qt (18d)
0=Tt (18e)
= (-h+TS-& +ir?sin?y Q%t. (189)

From equation (1) we find
v =a=Q¢g , (19)

@ L 4

which means that § is the angular velocity,

Q = v? = de/dt. (20)
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Setting Vo and v. to zero in equation (1) gives the equation of

structure

p—ip j + <I>J. - %Qz(rzsinzf&) j =0, (21a)

or

p—ip.+<I>.—%Qa.+%aQ.=0. (21b)

The source equation for @, equation (4), has of course the formal

solution

Gp(x')
@(X) = -S T}T}E‘r[ dV'o (22)

Note that although the velocity potentials are conveniently
expressed in terms of the Spherical polar coordinates, they are

scalars and keep the same values in other coordinate systems.

b) Reduction of I_2

We now eliminate the variables &%, &y, 6«2, 6B, 66, and &S
from L, (eq. [ 15]), replacing them with é. The details of the reduc-
tion are given in Appendix A. The essential steps are:

i) Solve the perturbed velocity-potential equations for &S, 6«a,

and 6B in terms of §:

~

6S = - é . YS; (23a)
Sa = - é . Ya; (23b)
8B = - S + VB. (23¢c)



60

ii) Express &v and 6p in terms of §:

o€
by =gty DE- G Dy (24)
6p = -V * (p§). (25)

iii) Formally solve the perturbed source equation for &%:

5P (,’f) = - GS dV'p(x")E(x'") V'Tx—t_TT g (26)

~ o~ o~ ~
~ ~

iv) Plug all these expressions into LZ. Perform some inte-
grations by parts so that explicit expressions for &y and 66 are
never needed. Discard all divergences because the integral extends

to spatial infinity. Obtain the result
o il ij .12 AE .
L, = 5g 62,59 ;87 - YP(Y - §)° - 2(7- £)(¢ - Vo)

-2 (6 VoNE - Up) *Epla@ - Qa o )ENE

L m.j .k T
u PE; Y v g ;15 i Zpgjk§ ’tg gV
j £k
Kpgatd 85 (27)
where 6% is given by equation (26), Yy is the adiabatic index
=2 (22 28

and all quantities except 6% and & have their unperturbed values.
This is equivalent to the Lagrangian of Lynden-Bell and Ostriker
(1967), specialized to the case of the differentially rotating star.

One ought to wonder if Lz(g) is really still the Lagrangian:
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might not the substitutions of step (iv) fundamentally alter its
character? The proof that they don't is, of course, that they don't:
it is not hard to show that varying I_2 with respect to E gives just
the perturbed Euler equation, equation (16), when all perturbed
quantities are expressed in terms of é

This is reasonable on general grounds: the action IZ is
an extremum for motions obeying the perturbed versions of equations
(3), (4), and (7). If we solve some of these equations for some of the
variables in terms of the others and then substitute the solutions back
into LZ’ then I2 must still be an extremum for the solution of the rest
of the equations. That this is what we have done is evident from
equations (23). In the general case, YS, Ya, and Yﬁ are linearly
independent vectors. We have simply relabeled some of the variables
by defining E to be a vector whose component on YS is -6S,
whose component on Ya is - 6@, and whose component on Yﬁ is
- . We then eliminated 66, 6y, and &P in terms of these three
components of é. I2 ought still to be an extremum for whatever
58S, 6a, 6 made it an extremum before.

What about uniqueness? It is still possible that our procedure
could introduce spurious solutions that extremize the reduced I2 but
not the original. This will in fact happen if one reduces the number
of variables in a Lagrangian below the number of true degrees of
freedom the system has, because then one has implicitly assumed
some relation between one or more degrees of freedom that isn't
generally true. As a simple example, consider the free-particle

2

Lagrangian, £ = x“ + ;rz, whose Euler-lLagrange equations have the



62
solution x = const, y = const. Assume that x = ky. Substitute this
into £: &£ = k2y2 + Srz. The Euler-Lagrange equations still have as
one solution y =0 (:$;< = 3} = 0), but they also have the spurious
solution y = exp(ktﬁ). So in general one must exercise care not to
infringe on a system's dynamical freedom. In our case we have not
introduced spurious solutions: the three components of é are the
only dynamical variables the pulsating star has.

c) Surface Boundary Conditions: Expressing the Action as an Integral
over the Interior of the Star Plus a Surface Integral

One generally prefers to express the action as an integral
over the interior of the star, where all the dynamics occurs. Our
2 from equation (27), includes an

integral over all of space. The only contribution outside the star is

action, I2 = fI_Z dV dt, with L

from the term in 6®. We shall see thatitcanbe expressed as adiver-
gence plus a term that is zero outside the star; thus the integral of
LZ outside the star can be expressed as a surface integral evaluated
just above the surface of the star.
The star's surface is defined as that place where p = 0.
For some equations of staté this does not imply p = 0, Outside the
surface we must of course have p =0, so that p may be discontinu-
ous and the terms in I"Z that contain gradients of p may be delta-
functions at the surface. Therefore, bringing the limit of integration
in IZ to just inside the star's surface will bring in a surface integral.
We consider separately the two steps: first bringing the

N oL + ]
limit in to 2, a surface just outside the star's surface Z; and

second, bringing the limit into %, a surface just inside =.
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i) The Integral over the Exterior Region

The only nonzero term in I2 outside the star comes from

8®. Ignoring for the moment the integral on time, we have

S‘Vﬁcb-Yﬁ@ av S'[ V- (62V6d) - 60V263] av

- 4-n'G§ 6% 6p AV +S‘y - (88V §3) dV.  (28)

If the region of integration is all space, the second term in the right-
+

hand side vanishes. But if the region of integration is from ¥ out-

ward, then the first term is zero and the second term is a surface

integral ( n is the unit outward normal to I):

SV §@ + V&P dV = - S‘ 6<I>V6<I>-Ed0'.

exterior »t

With this, I‘2 becomes .

2 1 ,

out to =t
2+

ii) The Surface Integral

If we integrate the first term on the right-hand side in
equation (29) only out to =, we omit only an infinitesimal volume of

space., Only if L_ has delta-functions at the surface will this region

Z
contribute to IZ. As we mentioned previously, a discontinuity in p
would give such a delta-function. We do not need to worry about dis-
continuities in £ or Q: we can perfectly well define fields § and

Q outside the star that are continuous at its surface, They don't

affect I2 because p and p are zero outside. Moreover, there can
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be no discontinuities in p and 6% at Z.
One contribution to the integral of L, between Z~ and %'
might come from the term Y&é . YZ 8§®. This has no delta-functions,
so its net contribution is zero. However, from equation (28) we see

that this means

P2
41TGS‘ ol 5@ 8pdV =‘§ +6<I>V5<1> * ndo - S §6PVEP+n do. (30)
z. i i, ; o Lo e a

If p is discontinuous, the term 6p = - V * (p§) contributes to the

left-hand side, and the result is

l

5 +88VES - n d0'=5‘ _6PVEP - nde t 41:'(.':5q _6%pf °n do
B y: e ¥ o2 = e

=S‘ _68(V8d + 4wGpE) * n do. (31)
& i

B4

This enables us to move the surface integral in equation (29) from

Z+ <

The only contribution to the integral of L, between Z” and

¥ comes from the fourth term in equation (27):
-p71(E * VPIE - V).
Its integral is

P
-S. _p (E-Vp)E-Vp) dV=S _(E - Vp)(E * n) do. (32)
= - Tl ke S el

Note that because Z is a surface of constant pressure, Vp and n
are parallel there. With equations (29), (31), and (32), the action

becomes
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it
I2= \ I dth+S‘ (§ *Vp)(E * n) do dt
J 2 z- ~ o ~ ~
interior
1 ;
= S‘z_ 5¢(P§' + ZT[—G.' Y&I’) ® 2 do dt, (33)

where by "interior"™ we mean the region inside Z~.

We should mention that these same surface integrals can be
obtained if, instead of integrating LZ over all space and then bringing
the limit of integration in, one always integrates L2 just over the
interior but adds surface terms in order to make Z a free boundary.
This procedure is examined in det\ail by Courant and Hilbert (1953)
under the name "natural boundary conditions."” The procedure
followed in this section was first suggested to me by Professor

Kip Thorne.
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IV. STABILITY OF DIFFERENTIALLY ROTATING STARS

a) The Stability Criterion

The Lagrangian density, equation (27), has the form

L,=p§ &, +0[E.E ] +cls.tl, (34)

.~y

where G and C are homogeneous quadratic time-independent opera-
tors. Moreover, QO is antisymmetric and C is symmetric when L2
is integrated over all space. Note that C includes all except the last
two terms of equation (27). It is easy to show (cf. Kulsrud 1968) that a
sufficient condition for stability is (for all § bounded everywhere and

zero at infinity)

S C[g',é] av > o. (35)

all
space

This is sufficient for stability because it guarantees that the "kinetic

energy,"

KES pé’ ’E'tdv, (36)
all

space
will remain bounded for all time for all perturbations.

Another way of obtainlng the same result is to construct the

Hamiltonian density

H=pg

§ 276 - ClEl: (37)

~,t ~ o~
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Because the operator C is time-independent, the total energy

(38)

(¢
i
_—
o o
[e R
=

is constant, so that ¥ is a Lyapunov function whose positive-
definiteness guarantees stability. Clearly inequality (35) guarantees
the positive-definiteness of ¥. It is this Lyapunov criterion to which
we will appeal in Paper II in order to obtain a sufficient condition for
the stability of relativistic stars.

For the realistic Newtonian star, inequality (35) is more than
just a sufficient condition for stability. According to Lynden-Bell
and Ostriker (1967), it is also the condition for secular stability:
if friction is introduced, stable modes of pulsation will remain stable
if and only if equation (35) is satisfied. It is therefore of great im-
portance to cast the criterion in a form that is easy to test realistic
models with. That is the subject of the remainder of this paper.

Although the criterion (35) is not new, our way of handling it is.

b) The Transverse and Longitudinal Parts of p§

The typical procedure for testing a stellar model for stability
is to choose a trial function for §, which might have.some arbitrary
parameters in it, and then to plug it into the operator C and see if
inequality (35) is satisfied for all values of the parameters. This
procedure is made very difficult by the term Yﬁ‘é : Y 6®. In order

to find 6% at any point inside the star one must integrate pf over
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the entire star (cf. eq. [26]). This is impractical for all but the

simplest stellar models and trial functions.

Fortunately we can overcome this difficulty. The source

equation for 6% is
vV (VE@) = - 4nGV - (p§).
This can be integrated to give
E

where ‘qL is the longitudinal (curl-free) part of the vector ﬁeld4

~

b

pE inside the star
= (40)

0 ‘outside the star.

Any piecewise differentiable vector field A that approaches
zero at infinity at least as fast as l/r2 can be decomposed into unique

longitudinal and transverse parts,
é = é =t é 5 (41a)
where (cf. Phillips 1933)
Ab=vis= v[ig Alx') + V' — dV']‘ (41b)
ol <" T Alan) <= % [x=x]
and

AT = YX 1': =YX [%"‘S é(?j')x Y' m dV'] . (41c)

4A good introduction to longitudinal and transverse parts of vector
fields can be found in Phillips (1933).
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The function f and the vector E‘ are the unique continuous scalar
and divergence-free vector potentials of the field A. Note that F is
unique only if we demand that it be divergence-free: we can--and later
we will--add a divergence to E‘ without changing QT.
From equation (26) we see that the scalar potential for 1

is just -(417G)-16<I>, which proves equation (39). Thus, the gravitational

term in C becomes

1 A L
G Yﬁ@ Y5¢ = 411'GD B . (42)
We can achieve a considerable savings of effort in testing a
stellar model for stability if instead of choosing a trial function for
¢ we choose one for nL and one for T]T. The search for a suitable

~ ~

curl-free vector for ‘r]L and a suitable divergence-free vector for
BT might still prove difficult, so in the next subsection we will
simplify the task even more by introducing three arbitrary scalar
functions in place of BT and EL' But first it is convenient to re-
express the stability criterion (35) in terms of n.

Inequality (35) has C integrated over all space. If we bring
the limits of integration in to Z~, we pick up the identical surface

terms as in equatiori (33). We can therefore write inequality (35)

in the form

-g Cln,n] dV-S _D[n,n] * nde >0, (43)
interior E

where C [3,3] = C [é,é] , and where (cf. eq. [33])

D [n,n] = p'z(g *Vpin - 5<I>3T- (44)
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It is understood in equation (44) that 6% is -4wG times the scalar

potential of 7.

The operator C[7,n] has covariant derivatives of n in it.
When doing calculations one must replace covariant derivatives with
ordinary partial derivatives and Christoffel symbols. When one does
this in spherical polar coordinates one finds (now indices j, k run
over r,N,@)

n

(L) Lk, 1o2, § .k
N LR AL Y

C[E»E] = 41rGgJ.k'r|
1 o2ra .0 e L (g ink
+ 5 Q (n-)’j(n 'q,q’ M 1],¢)+2‘p (a i SZa'jk)nn

1 92[ (nr)z +2rsin Zb‘r]'&nr + r2

+ = cos 23 (1')'&)2]

- YB.(v- ) ;15(3-29)(34)-%(Y'B)(g-s). (45)

which is the vector Schwarzschild discriminant. For nonrotating stars,

Sr > 0 is necessary for stability against convection. Components

nr, n'&, 'q‘P in equation (45) are components on the unnormalized

coordinate basis vectors e e'&, e¢.

~

For future reference it is convenient to write down the entire

Lagrangian L_ from equation (27) in terms of 7M. Itis

2

» k 2 j
L,= ngn R ﬂgjkn Py

k
14

+ %Q(a)'j(njn‘?,t g ﬂq’nj't) + Cln,g]. (46)
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¢) Scalar Potential for p§

We have seen that it is possible to reduce the number of inte-
grations necessary to test for stability by replacing é by n. We
now show that it is possible to express 1 in terms of three scalars
in such a way that the two pieces BL and ET separate automatically.
Then trial functions may be chosen for the scalars without losing the
advantage obtained by separating n into I]L and ET.

Our procedure rests on the following theorem: For any
vector fields é and ,1.. Q. . L# 0) whose Cartesian components are

analytic functions of position in the neighborhood of some point, there

exist functions K, X , Y also analytic in that neighborhood such that

A=YK+xi +YXy1. (47)

The existence of K, X ,Y follows from the Cauchy-Kowalewski
existence theorem for systems of first order partial differential
equations (cf. Courant and Hilbert 1962). The restriction to analytic
functions is probably not important. In practice one can choose .1.'.

to be analytic almost everywhere. Moreover, the functions «, X,y
probably exist for most well-behaved but nonanalytic A as well.
Even if they do not exist for some é. it will usually be possible to
approximate é as closely as one wishes with analytic functions,
except at isolated points. Note that one might need several "patches”
to represent é in a finite region.

In the previous subsection we showed that there exist N\ and

é such that
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R=V N TNV XA

133

If we now replace A by equation (47), we obtain
Nn=VA+VX(xi +V Xvyi). (48a)

Thus, there always exist A, X, and Y such that for any analytic,

nowhere-zero vector field i

j 5
n

VN, (48Db)

~

T
n

UX(xi+VXyi). (48¢)

We are still free to choose i in any way we might wish. In

this paper we will choose i =e_, which is analytic everywhere but at

r
r = 0; this will allow our results to assume a convenient form in the
nonrotating, spherical case, where the 3 - and ¢-directions are equiva-
lent. One would therefore expect our results to be well-adapted to

the study of modes that have analogues in the nonrotating star; they
might do less well on other modes. A variant on this is to choose

i =Vp/ IYp] (at the surface, i is the normal), which might do
slightly better for isentropic models, where surfaces of p and p
coincide. On the other hand, for investigations of highly flattened,
rapid rotating models, it might be better to choose i = e where

~

is the radius in cylindrical polar coordinates (@,d,z).

d) Testing for Stability

We define the trial functions a, b, ¢ by
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v = N ay (49a)
nT=Vxa, (49b)
A=-rfce_+VX(rbe ). (49¢)

Since the star has azimuthal symmetry, we expand

o}
a = [a;/I(r,,&,t) sin Mg + a;vI(r,.&,t) cos Me] , (50)
M=0
and similarly for b and c. Modes corresponding to different M
are orthogonal, but plus and minus modes of the same M are mixed
by the equations of motion and variational principle. Appendix B
contains the details of the reduction of the stability criterion to a
+

s * * ;
conditionon a ,b ,¢ for each M. The expressions are very com-

plicated; we will deal only with special cases from now on.
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V. SPECIAL CASES

a) Axially Symmetric Perturbations

Axially symmetric perturbations were examined by Lynden-
Bell and Ostriker (1967) and in great detail for uniformly rotating
stars by Chandrasekhar and Lebovitz (1968). We do not need the
restriction to uniform rotation.

Requiring n to be independent of ¢ is equivalent to setting
M =0 (cf. eq. [Bl] of Appendix B). Thus, there is no distinction

between plus and minus modes. Representation (Bl) for m becomes

s

I s =
T 2 10 2,

NTE slrheger e ¥ B 8L Hacges (5ik)

! 2
where e;, e’s and e~ are unit vectors, and where 1L~ =

~P
: . =< sina BN i2-) is the angular part of the Laplacian
sin ¥ o o Bt 2 %

n

Notice that the scalar c separates from the other two: its

sole function is to determine the ¢-component of m. This separation
shows up in the equations of motion. The equation for c can be
obtained by varying the Lagrangian, equation (46), with respect to

‘r]‘P after setting derivatives with respect to ¢ to zero:

D bee ey O
--E)—r sin“y> ¢ e pﬂ(n-) T] =1 (52)
This is just the equation for the coriolis acceleration in the azimuthal

direction of the displaced fluid element as it is carried around the

star. We can integrate this equation:
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sin » 0% g =¢ = —Z—Q-Z— (rzsinz,&) jﬂJ + £(r,d), (53)

ot r sin” Y

where f(r,d) 'is an arbitrary function that represents an "initial"
(i.e. when n 0) azimuthal velocity perturbation.

Suppose that we take f = 0. Then for this restricted class
of perturbations we can substitute equation (53) into the Lagrangian
density (46), which remains a Lagrangian for n° and n'&, and in which
there are no terms linear in time derivatives of D From the theorem
of Laval, Mercier, and Pellat (1965) we obtain the following necessary

and sufficient condition for the stability of the star against our

" restricted class of perturbations (f = 0):

2 A
S‘ {'—29—7— [(rZSinzﬁ) ] - C[Tla"l]} av
: ; pr - sin“y v B
interior

- § 13[3,3] » n de >0, (54)

Here C and ]3 are the same as in equation (43), reduced to the
axially symmetric case.

This condition--as was indicated by Chandrasekhar and
Lebovitz (1968)--is only necessary for stability against all axially
symmetric perturbations. However, Lynden-Bell and Ostriker (1967)
point out that it is nearly sufficient as well, in the following sense:

If all the stellar models that can be obtained from the one we are
testing by changing §2 slightly satisfy inequality (54), then the model

we are testing is stable against all axially symmetric perturbations.
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The reason is that a nonzero f in equation (53) means physically that
when 1;1 = 0 the fluid is given an extra angular velocity of f/p sin d .
If this mode is unstable for some f then a stellar model differing
from the one we are testing by an angular velocity f/p sin & should
be unstable against perturbations with f = 0. This argument ignores
the effect of the additional angular velocity on the structure (p,p)

of the equilibrium model, so it is not completely rigorous. Never-
theless it suggests that inequality (54) ought to be an accurate
stability criterion, especially for sequences of models. Note that
inequality (43) is still a sufficient condition for stability.

By specializing the calculations of Appendix Bto M =0,
inequality (54) can also be put in a form that makes testing models
easier. This is done in Appendix C.

The special choice of trial function made in S§III of
Chandrasekhar and Lebovitz (1968) corresponds here to setting b = 0.
They apparently saw the advantage of using scalars and decomposing
1 into transverse and longitudinal parts, but their trial function
with b = 0 lacked the generality of our equation (51): its transverse

part vanished.

b) The Nonrotating Star

Expressions suitable for analyzing the pulsations of non-
rotating stars can be obtained by setting § to zero in previous results
and expanding a, b, and c in spherical harmonics YLM. Then the

representation (49) of 7 becornes5

°The b in this section is really L(L+l) times the one in equation
(49). Consequently one must set b =0 when L =0.
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a
YM LM M

L M it
- "z(aLM»rYI- st TamYL A8 TEemS TL o) ¢ 1559
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(er

. M L, ry M IM, M
e Z {bLMYL °: +[T L(LH) Yy B S g Yy ,¢] °x
LM
2
(8 )
LM, r M M
5 [L(L+—I)r siny YL , P % rcZLMYI_ ,,&]Sff:} . (55b)

We should note that one can obtain exactly this expression
by expanding 1 in Regge-Wheeler (1957) spherical harmonics, and
then separating 1]1' from ET. That procedure avoids questions of
analyticity raised by the theorem proved in §IVc.
Because the underlying star is spherically symmetric, modes
belonging to the same L but different M are degenerate, so it
/

suffices to consider the case M = 0, Then the action, from equations

(46) and (33), becomes

= l » L' L i . .
e [Lnen, et S 008
interior P
X g8) . BY 2
t =5 (-Ve)n-8) -5 (Vo)™ | dV
i " e Ml o
+g < p _(")?R%sind ab do -S 581 D" R%sind dy dp,
5 IS
530 b 238

(56)

where R 1is the radius of the star.
Inspection of I2 shows that ¢ will enter it only in the

)|

. M, term. This is because c generates the "odd parity" (cf.

~lt
Regge and Wheeler 1957, Thorne and Campolattaro 1967) part of the
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perturbation, which is a zero-frequency rotational mode. It does not
couple to other modes and does not affect the star's stability.

This Lagrangian is equivalent to the variational principle
contained in the appendix to Chandrasekhar and Lebovitz (1964). It
is interesting that if one varies it with respect to a one gets the
divergence of the dynamical equation for n, while if one varies it
with respect to b and ¢ one gets the two independent parts of the
curl of that equation. Since a vector is zero if and only if its diver-
gence and curl are zero, the Euler-Lagrange equations of a, b,
and c¢ are equivalent to that of n. Thus, the potentials a, b, and
c are also good variables for the variational principle! This pre-
sumably also holds for the general variational principle for differ-
entially rotating stars.

The theorem of Laval, et al. (1965) applies to the Lagrangian
for the nonrotating star and gives a necessary and sufficient condition

for stability against pulsations of order L:

R

r P r
- -pi?; p’rs(a’r'l'b)2 +-§% (Vrza - L(:Lzﬂ a.)z}r2 dr
R o L
+ > P (R)[a2 _(R) +b(R)] “ + 4vrGR“a(R)b(R) > 0, (57)
plRY™ ** £

where 8=8 =p - (yp/p)p . and where we have defined the

’

operator



™

v2 —1-81'28
r rz‘ﬁ or

which is the radial part of the Laplacian. The terms evaluated at R
are to be evaluated just inside the star's surface if there are any

discontinuities there.
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VI. CONCLUSIONS

We have presented a general method for finding the Lagrangian
for arbitrary perturbations of arbitrary flows of a perfect fluid; and
we have illustrated the method for the case of differentially rotating
stars. It enabled us to reproduce the stability criteria of Lynden-Bell
and Ostriker (1967), as well as those obtained by other authors for
less general cases.

We also showed that the testing of realistic stellar models
with these criterié. can be greatly simplified by the introduction of
three scalar functions in place of the three components of E in such
a manner that one need never perform a Green's function integration
to determine the perturbed graviational field. We hope that this will
prove to be a useful technique in the future.

In Paper II we will extend these results so far as possible

to the general-relativistic case.

I am very grateful to Professor Kip S. Thorne for his
continued advice and encouragement, and for his many helpful sug-

gestions during the writing of this paper.
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APPENDIX A

REDUCTION OF L

2
We wish to transform I_2 from the form
e o | ij S .
LZ—-mg acb'iﬁq),j-696h+5(PT)5~J+PSX 52

k

+2p 5a(6p | + v5p ) - 2p85(86  +vse (Al)

»
into an expression involving only the unperturbed state of the fluid and
é, which is defined as the difference between the position of a fluid
element in the perturbed state and the position it would have occupied
at exactly the same time in the unperturbed flow. As a first step we
will express the perturbations themselves in terms of §. Then we

~

will substitute them into equation (Al).

a) Expression of the Eulerian Perturbations in Terms of f,_

As mentioned in §IIb, the perturbations are Eulerian pertur-
bations, taken at fixed coordinate and time. The vector E, on the
other hand, is the Lagrangian displacement of the fluid. The relations
among E and the Eulerian perturbations are well known and need not
be derived here-. One can consult Lynden-Bell and Ostriker (1967)

or Lebovitz (1961). The relevant ones are

bp = -V * (pE), (A2)
&S = - g 3 YS: (A3)
6p = - Yp(V - §) - € - VUp, (A4)
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and

§T = (-g—g)s B + (aT) §S, (A5)

supplemented by the Maxwell identity

3 opy _ 1 /98
( )_ppy agp"?('_g)p’ (A6)

In equations (A4) and (A6), y is the adiabatic index,

0
(), - (A7)

Jlo

‘Y:

Moreover, since 6a and 6B obey the same equation as &S,

we have

Sa

o é .‘za +(6a)0’ (ASa)

6p = - £ - VP +(8P),. (A8D)

Here (Ga)o and (Gﬁ)o are "initial values" of 6a and 6&B: their
values when £ = 0. They are constants of integration in the following

seﬁse:
2 (6a) +v - V(6)_ =
t 0 ~ ~ o

and similarly for (5@)0. There were no such initial values in equa-
tions (A2) - (A5) because we assume that the perturbation is an initial
velocity perturbation that does not affect the initial distribution of

p, p» and S. This does not restrict the generality of our result:

changes in the initial perturbed values of p, p, and S are equivalent
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to changes in the unperturbed p, p, and S. Instabilities due to such
initial conditions will show up innearby modelswhose unperburbed p, p,
and S are the same as those of the original model plus the initial
perturbations.

It is not possible to solve explicitly for &y and §60. We

shall need only the equation for &0:

6et+v-Yae+5z-Ve=5T, (A9)

where the perturbed velocity, &y, is (also from Lynden-Bell and

Ostriker [1967])
e RS G Sl el

=§t+£§. (Al1)

(Here SV is the Lie derivative with respect to X‘)

~With the definition (Al0), equations (A2), (A3), (A8a) and
(A8b) are equivalent to the perturbed versions of equations (7), (3d),
(3b), and (3c), respectively. The last remaining perturbation is 6&,

which has the formal solutionl

§d = - GS .dV' p(i{')é(x.') B Y' T—IT;?-I— . (Al2)

b) Expression of L, in Terms of £

In what follows we will often integrate by parts, using the
identity mentioned at the end of §IIa; and we will throw away the
resulting divergences, since they become surface integrals at

infinity. We will also discard total time derivatives (cf. footnote 3).
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It is convenient to treat separately the following pieces of

L, (eq. [Al]):

A= 2p8a(8p . + e 68 1) (Al3a)
B= - 2p065(80 , +vk69,k), (A13b)
C=p 6X . 6x, (Al3c)
D= - 6p 6h + 6(pT) 8S. (A134)

i) A. By the perturbed version of equation (3c) we have
?

This is the only term in I_2 that explicitly contains (Ga)o
or (6{3)0. Because the equations derived from I..z are linear in the
perturbations, one should not expect initial values to appear in the

Lagrangian. One can in fact show explicitly that

A''=- 2p (éa)oﬁ,kavk

is zero to within divergences and time derivatives. The procedure
is much the same as that which follows, so we won't go into it

explicitly. The remainder of A is

i j k k
A= t2plEle B (L7 2,80,

= Jek j k
= 2plap B g te B glEE, t2ee B LR 7,

= zpap B, 18 pgrle puf 76" ZP“.jﬂ.kgjsggk
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This implies

A =zpap B 8"

ik
& P50 8
+ ZpQ’jﬁ,kgj&'vgk. (Al4)

Here and throughout, sqﬁare brackets around indices denote anti-

symmetrization, while round brackets denote symmetrization:

CRETIN

{a,jp’k + a,kﬁ’j} .

(M

L,iPx T

]
=

& O 1

ii) B. Equation (A9) converts B to
k
B=-2p 6S 8T +2p 865(0 k&v 3
The second term can be handled just as A was to give

ek jg ¢k
+ ps(’j'r’k)f; £° -2 ps'je’ké £X§ . (Al15)

iii) A + B. Before adding A and B, consider the term
: j k _ Jizk ok
Zpa’jﬁ’kg svg = Zpa’jﬁ,kg (& ;IV v ;lg )-
Manipulations similar to those in i) convert this to

Al L N gjgkslvl - 2ol B i vt

t2aip v 10",



86
with a similar expression for the Lie-derivative term in B. Then

by adding A and B we get
A+B= zpszkjgj(gk’t + gk;lvi) - 2p 65 6T
+p(T 1S . +S2'ka’j)€k§j
-plle o -0 8 0V rale B - 0 v Te0Ek

(Al6)

where we have introduced the vorticity tensor (not to be confused

with the angular velocity)

o SR e T Al e

Finally, extensive manipulation of the last bracketed term in equation

(Al6) gives
" R k. Ay ;
A+B_2pszkj€ €3 ,t+§ ;Iv) 2p 6S 8T

k.j L ik
+ p'r,ks,jg £’ - Zpﬂljv ;kﬁ &, (A18)

iv) C. From equation (All) we have

" J Jyek k
p&v - 8y pgjk(g t +£X€ WE™ 4 +£X€ )

. S

~y

+pgp (63, v v 8K, VP,
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We treat the last two terms one-by-one:
3ok X kGl
Zngkg ,t(g ;zv v ;zg )

3 k .k £ Tl

j £ _od edyek m_

: L mgj .k jek 4
= PgyV v é;ié ol Zkaj§§ g

£akzd 4 ik
+ : + .
PV;55aV B 67 PV v 1876
Assembling terms, we get

o 9 jrek k1
§ 2k 4 L m,j .k
- Zpgjké ,té gVt PEY v g ;Ig

ym

4 jek

4
PR, T
v) Adding C to A +B gives

A+B+C=-2p 85 6T +pT ,S .§k§3+p€ - &
,k ,J ~,t ~,t

§ ok d L.m.j sk
- Zpgjké ’té v +pgjkv v §;1§ e

TPV v‘);jéjék. (A20)
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In spherical polar coordinates, part of the last term becomes

) N
VigeV T Vi, 2V ‘I'lkf" vi

i 4 : 2
'%Vlv gu’k="%g g

9o,k

]

%(Q’Q’k = Qa,k)'

If we differentiate this with respect to j and symmetrize on j and

k, we obtain
2 : ;
Py gV )y 816 = pld 0@ s - 30a | 1EIEK, (a21)
vi) D. We add to D two thermodynamic terms from equation
(A20) and define
E = - 6p 8h + 6(pT) 6S - 2p 6S 6T +pT | S J.gjgk,
1 jek
=-36p6p—p6T68+kaSj§§. (A22)
Upon using equations (A2) through (A7), we find that this reduces to
2 -1
E=-yp(V-8)"+~p (E - Vp)E - Vp)
- 2(V - £)(§ - Vp). (A23)

vii) The complete Lagrangian is obtained by substituting equa-

tions (A20), (AZl), and (A23) into (Al). Equation (27) is the result.
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APPENDIX B

TESTING FOR STABILITY

a) The Stability Criterion in Terms of the Scalars a, b, c.

From the definitions of the scalar trial functions, equations

(49) and (50), we find (sum on M = 0 implied)
={a” in Mg +a~,, _cos Mp)ea
N =(ayy sin Mg ta,, cos Mples
+ ; -
+ (1/r)(a M 55 in Mg +a M, 5508 Mcp)gs

+ (M/r sin ,&)(a+Mcos Me - a-Msin M«p)s‘; 3 (Bla)

Lyt . -
é = - r(c MR Mg *+c MmEOS Mcp)si._

g + -
+ (rM /sin 3)(b MEOS Mg - b Msin M¢)E,S

+ 12 .
- r(b M,,&Sin Mg tb M, 3508 Mqo)s& 3 (Blb)
2
T _ M= 1. gl oy % k
1 ‘[( 5= b 0 " S B3 SR A Py, p)sin Me
sin“
2
R
+H( == T - SIS B3 SR by y)cos Me|es
sin &
1" 8 po# M- :
e e 2. el hlonell
i [<r Sl T e M) sin Mo

+

P M+
(?’a?rbM,»"{'—sn:rcM)”SM“’]fs
+ TR A R

+[<rc M.,&-rsinb'é?rbM) sin Me

¥ M B2+
+ (xc M.t TS BE TP M) cos Mcp]S&.(Blc)
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Here e~ eg ea are unit vectors.
T s unPy AP —
When these expressions are used in the stability criterion,
equation (43), and the integration on ¢ is performed, modes cor-
responding to different values of M separate, and we get a separate

criterion for each M. In what follows we will accordingly drop the

subscript M on the scalars. We will also adopt the notation
(a2 + bc)(+_) = (a.-i-)2 + (a,-)2 + b+c+ +b ¢, (B2a)
P et R R S (B2b)

Note that these are not the conventional symmetry and antisymmetry
symbols: the plus and minus modes are a.ntisymmetrically coupled by
the [ +-] operation, but they are not coupled at all by the (+-) opera-
tion.

A long but straightforward calculation reduces the stability
criterion, equations (43), (44), and (45), to this form: A sufficient
condition for stability of the modes of order M is that for any

a, b, ¢ (with appropriate boundary conditions -- see below)

: 2 3
- S'S‘ CMr sind dr dy - S‘ DM n, doe >0 (B3)
$-

interior

where in both terms we have already integrated on ¢, and where CM

1 :
and DM are:




T r sinz.&
2 (a,, - L?b)[ 2M°Q%sin bla + 4= r7b) +8_V7a]
+ 2% OIMPQ%sin 23(a + g r%b) +1 8, V%]
2M“Q2“r’cos dcc ( - = ( +'§a—r2b) +§ (Vza)z

%[QZMZ- ZS'ZQ LT sin 25 +Q%cos’y +—l2-p 8 ](a g I_Zb)2
P

1 g 2
E[-Qﬂ,rr sin 23 - Zﬂﬂ’l&sin A}

rzb

5 2 0
+ 73 (p”& Sr+p,r8,&)] (a’r-L b)(a'b"'

BT
rp

1t mdl 2 1
F[QM-QQ”}sinZI&“P zzp’b ﬁ&]

2 (=)
2R cz]}

sin”N

)5

2

p
1 109
X[(F2a s t5377 P,

< 2ndl o 2 2 2M 2
FMr Q°sin ,&(a.’r- 1. b)c”& o > sin’&sl&(v a)c

QiM% M

2
p (r sin & ,:3')

a *re

2 1
i - +
p 51n,3\ [ QQ l' sin 2y ZQQ "&si.n :&‘ v

2(9'&81.
5 Bl - 125
P oie o

Ll [QZM —QQ sinZ:&

T psind

1 . B2 }“‘1 e
dscselit a0 Ee | R )
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N 2 1
-DM = {4TTG8.L b - —p—i p’r(a’

2y 148 L2 }(+-)
ar-Lb)(’?a,,&+?$rb,.&)

- L%p)2
T

‘ . T % E [+] .
+{ F)?_Siml_:,»(a’r 2 b)c} ; (B5)

a +lr.—rr b”&)c}[h:I ; (B6)

NG SR TR e T
0% sinzbaqu

1 0 ; 0 M2 .8
sin“

r=p

While this expression is complicated, it should be reasonably

adaptable to computer calculations.

b) Boundary Conditions on a, b, c

Though we have not restricted the perturbation £ to have
any particular value at the star's surface, there are nevertheless
some weak boundary conditions on a, b, and ¢ that arise from the

vanishing of  (and £) at the star's center and from the vanishing
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of n (but not §) at the star's surface (Z7) if p vanishes there.
The demand that 1 vanish at the star's center requires that
E
N = = ET, but not that each vanish separately. This implies
+
Nty - N
» T
+ gy e
a 5 = - -a—r-l‘ b ’&- m‘ C at the star's (B7)
! f center
FoL B ¥ cePalnd o
F ar M )b‘,

plus the conjugate equations (plus and minus interchanged).

At the surface of the star (actually at Z~,, where the surface
integral is evaluated) we demand only that a, b, and c be finite with
finite derivatives, except if p = 0 there. Then again we must have
EL = - ET +'0O(g); that is, D must vanish at least as fast as p near

Z7. So the same equations (B7) must hold at the surface, to order p.

(This is also true, of course, anywhere else that p vanishes.)

c) Eigenfrequencies of Stable Modes

If condition (B3) is satisfied, the star is stable. In that case
the eigenfrequencies of oscillation are the stationary values of the
roots of the following quadratic expression (cf. Lynden-Bell and
Ostriker 1967):

o.>2V + & V2+V

1 3 =0, (B8)

with



9

—-1—3‘ %n°nrzsin,&drd,&dep

interior

Y 32 W Y 1 S 2
_§S prsin,&drd,&{(a.’r-l_ b)+(? Ao )

interior

2 (+-)
st +—z"£z‘(a+§‘rzb)}
sin™¥ r-sin~ S

a0 ) 1 2
+ =
5‘3 pr sin,&drd,&{

interior

rM

2
siny (a,r- L b)c

+ (e a +1C

r sind ,:&)

g }[ g ; (B9)

! 282 ik Q joeq 2
VZ— = S. -B—[gjknn ,go+ (Q)'jﬂﬂ 1r®siny dr d¥ de

interior
2 2m?

= BS' —r sm,&drdlﬁ{ (a Tr b“&)c
i.nterior

+ 2r sind (a -Lzb)c +2cos M a +_8__ rzb Yo

» T ’l& :la' ar )l& pl&'
+-)
2M“cos & §.. 2 }(
o : 2 ( S -ﬁr b)c
sin"»

29 2 2 2
+35 = sin,&drd,&{(a r—Lb) +;—( -b-—rb )
interior

2

M 0 2 2. 2 202 2 9 2
'—T( +—a——r b) c“& -?(a,r-L b)(a+$r b)
r sin“ N
cos 3 pro2 A2
-—2-.—(a"&+-5?r b"&)(a"'-é?r b)
r siny
[ +]

+ rzcos ) e " (B10)
sin & " } ? ]
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and

o a8 i
V3 = S.g CMr singd dr dy + S‘DM n; do, (B11)
interior z"
i
where CM and Dy, are given by equations (B4), (B5), and (B6).
Thus the trial functions permit estimation of eigenfrequencies for the
stable case. Unfortunately one cannot estimate e-folding times for

the unstable modes in this manner (see Lynden-Bell and Ostriker

1967).
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!

APPENDIX C

STABILITY OF AXIALLY SYMMETRIC PERTURBATIONS

The necessary condition for stability of axially symmetric
perturbations obtained by Chandrasekhar and Lebovitz (1968) and by
Lynden-Bell and Ostriker (1967) can be expressed in terms of
scalars with the method of Appendix B.

The condition is (eq. [54])

S‘ {__29_3_2_[(1- sin :») ] -C[g.nl}

interior © 7T ain b

- S ]2[3,3] » ndo > 0. (C1)
o

We can obtain C and I~) from Appendix B by setting M = 0 in equa-
tions (B4), (B5), and (B6). We can then expand the first term in
inequality (Cl) in terms of a, b, and c, and add it to C. The result
is that a necessary condition for stability of a differentially rotating
star against axially symmetric perturbations is that, for all a, b, ¢

satisfying the boundary conditions described in Appendix B,

.SS. o rsin,&drd,& S‘DA n, do >0, (C2)

interior

where



917
28

- | 2 2os00
-Cp=-4nGla “+5a ) +t—S(a - L)V
28 3
+——2-(a ,&_ -—rb )V a+--\v a.)
pr d p

‘%[-ZQQ rsi.n,&'f'ﬂ (1+3sm,&)+ il 8](3 ..I_Zb)z
p

: -p};(-SZQ’rrsin 25- ZQQ“&sinz.& + 492 sin 23)

e i b“&)(a.,r - I_Zb)

L]

--p—i—é— (—QQ s1n2,&+492cos >t —=— p; 5P ,&)(a +2 rzb”&)z»
(C3)
-D,7 = 4nGal - ;}—p o - 1.%p)2
- le 5P, l&(a -L b)( 5 aa =%b '&) (C4)
and
D" e 4:G 2 5 LN p_lz?:p.r(a,r‘ Lzb)(a,f’gf rzb,b)
by b =
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ABSTRACT
2z

The author has previously given a velocity-potential
variational principle for relativistic perfect-fluid hydro-
dynamics. The second variation of the principle is here used
as the Lagrangian density for the evolution of small perturba-
tions of fully relativistic, differentially rotating stellar
models. Noether's theorem is used to construct a globally
conserved angular momentum density, whose integral over a
spacelike hypersurface is the second-order correction to be
the star's total angular momentum. From the Hamiltonian is
constructed a globally conserved energy density, whose integral
is the second-order correction to the star's active gravita-
tional mass. By Lyapunov's second theorem, positive-definite-
ness of the energy density guarantees stability of the star.

In the Newtonian limit and in the special case of relativistic
radial pulsations, this is equivalent to stability criteria
already known. Means are discussed whereby the general criterion

might be made more suitable for practical applications.
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I. INTRODUCTION AND SUMMARY

The importance of general relativity to so many astrophysical
problems makes an analysis of the stability of relativistic systems
very desirable. In the Newtonian regime the theory of the stability of
perfect fluid stellar models against small dynamical perturbations is
well established [cf. Schutz (1971a), preceding paper, hereafter refer-
red to as Paper I; see also the references cited therein]. The corre-
sponding relativistic analysis, however, is complicated by two factors:
the existence of ten components of the gravitational field, and the
emission of gravitational radiation by the pulsating star.

Only for radial pulsations of spherical systems has a fully rela-
tivistic dynamical stability analysis been performed: by Chandrasekhar
(1964) for relativistic stars; and by Ipser and Thorne (1968), Ipser
(1969), and Fackerell (1970) for relativistic clusters of stars. 1In
addition, Chandrasekhar (1965a,b) has analyzed the nonradial pulsations
of stars in the post-Newtonian approximation, which excludes gravita-
tional radiation. Chandrasekhar and Friedman (1971) have also recently
investigated criteria for the existence of zero-frequency modes in
rigidly rotating stars, where radiation is also negligible. Their work
should prove useful in determining the stability of stars that become
unstable through zero-frequency oscillations. The equations governing
arbitrary nonradial pulsations of fully relativistic nonrotating stars
were derived by Thorne and Campolattaro (1967) [see also Ipser and
Thorne (1971)]. They are so complicated, however, that -- although they
have yielded information about convection (Islam 1970) and about the

emission of and damping by gravitational radiation (Thorne 1969, Ipser
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1971) -- they have so far given us no information about dynamical

stability.

The existence of ten perturbed metric functions rather than just
one perturbed gravitational potential is an algebraic complication. It
means that in general there will be many coupled equations, which will
rarely possess a solution‘in closed form, It means that relativistic
stability analyses will probably have to rely more heavily upon numer-
ical calculations than the corresponding Newtonian analyses do.

The complication of gravitational radiation is more fundamental.

It means that realistic pulsations will always have complex frequencies;
that normal modes will be replaced by '"resonances'" of finite width;

that self-adjoint equations (standing-wave boundary conditions) will not
describe realistic systems; and that a single stability criterion that
is both necessary and sufficient is probably not to be hoped for. It

is possible to look for necessary conditions for stability by examining
standing-wave modes in the zero-frequency limit. This is the approach
of Chandrasekhar and Friedman (1971). But such approaches neglect
gravitational radiation damping, so they may not pinpoint the onset of
instability accurately. It is therefore useful to have sufficient condi-
tions for stability as well.

In Paper I we showed that all known Newtonian dynamical stability
criteria could be derived from the velocity-potential variational prin-
ciple of Seliger and Whitham (1968). That variational principle can be
extended to general relativity [Schutz (1970); see also Schmid (1970a,b)
for an independent derivation of the special relativistic version]. In

this paper we show that methods similar to those we used in Paper I lead
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us in general relativity to a sufficient condition for the stability of
arbitrary pulsations of fully relativistic, differentially rotating
stellar models.

We could presumably also derive our criterion from the variational
principle of Taub (1954), or from any of the many other relativistic
perfect-fluid variational principles. Taub (1969) in fact derived
Chandrasekhar's (1964) stability criterion for radial pulsations using
a method very similar to the one we use here, but starting from a differ-
ent variational principle. We have elected to start with the velocity-
potential variational principle because it is an Eulerian principle:
it does not require us to deal explicitly with "fluid elements" or
"particle paths."

The plan of the paper is as follows. In §II we derive the
Lagrangian governing arbitrary perturbations of arbitrary flows of a
relativistic perfect fluid. This Lagrangian is the second variation of
the Lagrangian for the velocity-potential variational principle of
Schutz (1970). 1In $III we specialize the unperturbed state to that of
an axially symmetric, differentially rotating star. From Noether's
theorem we construct the conserved angular momentum density of the per-
turbations (including the gravitational waves), and from the Hamiltonian
we construct the conserved energy density. Both are quadratic in the
perturbations.

We obtain the following results: (i) The total angular momentum
and energy (integrals of the densities over a spacelike hypersurface of
the unperturbed spacetime) are unique and gauge-invariant. (ii) If the

star is stable, and if the '"unperturbed" star is defined to be the star
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that is left behind after the pulsations have damped out, then all

first-order contributions to the total angular momentum and energy
vanish. (iii) If the star is stable, the total angular momentum and
energy are the second-order corrections to the total angular momentum
and active grévitational mass of the star. (iv) The gravitational wave
parts of the densities of energy and angular momentum become, in the
short-wavelength approximation, the appropriate components of the
Isaacson (1968) stress-energy tensor for gravitational radiation. (V)
In the case of the nonrotating unperturbed star, the energy density
reduces in the Newtonian limit to the energy density derived in Paper I.
In §IV we prove that a sufficient condition for stability is that
the total energy be positive-definite. Unfortunately, as the energy
contains contributions from gravitational radiation, it is not yet in
its most practical form for astrophysigal applications. A more practical
form would be an integral of purely fluid quantities over just the star's
interior. We therefore discuss what procedures are most likely to suc-
ceed in reducing the stability criterion to such a form. We conclude
§1IV by demonstrating that our sufficient condition for stability reduces
for the case of radial pulsations to the necessary and sufficient condi-

tion of Chandrasekhar (1964).

II. PERTURBATIONS OF AN ARBITRARY FLOW

a) The Velocity-Potential Variational Principle

As in Paper I we begin from the Eulerian velocity-potential varia-
tional principle, the general-relativistic version of which was obtained

by Schutz (1970). [We follow the notation and conventions of Schutz



106

(1970) throughout. In particular, Greek indices run from O to 3, while
Latin run from 1 to 3. The metric signature is +2.]

The four-velocity has the representation

-1
U, =p (w,v * aa,v - sg,v). (1)

[We find it convenient to deal with ¥ =  + ©S rather than with p,
which was used by Schutz (1970). This is the only way in which our
conventions differ from those of that paper.] 1In equation (1), S is

the specific entropy and p the specific enthalpy (including rest mass),

p=1+1+p/oy=(p+Pr)eg; (2)

Il is the specific internal energy, p the pressure, p the demsity of
total mass-energy, and P the rest-mass density (number density of
baryons times rest mass of one baryon), all as measured in a locally
comoving inertial frame.

The velocity potentials obey the equations of evolution

[ A = -=p+ TS, (3a)
sV

wwa_. =0 , (3b)
Vv

v, =0 : (3¢)
sV

tys. =0 " (3d)
sV

o .. = T ) (3e)
,V

where T is the temperature. Note that equations (1), (3a), (3c), and
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(3e) imply

1L = (&)

Supplemented by an equation of state,
p=p,s) , (5)

and the equation of continuity,

(0gt™),, =0 (6)

equations (1) and (3) are completely equivalent to the usual hydro-

dynamical equations: equations (%), (5), (6), and

Y =0 ’ (7)

with

THV = Pt Uqu e pguv . (8)

Equations (3) and (6) plus the Einstein field equations follow

from a variational principle whose action is

&

I=[(r+16xp)(-8)¥ d*x , (9)

where R is the scalar curvature of spacetime (we set ¢ = G = 1). The
curvature is varied with respect to gav in the usual manner. The pres-
sure is taken to be a function of p and S through the equation of state;

its variation is found from the first law of thermodynamics:

dp = py du - pyTAS . (10)

The independent variables of the principle are y, @, B, ©, S, and gov.
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Equations (1) and (4) combine to give p as a function of these variables:

e ov
Wo=-8 (‘lr,a +OB =80 )y ,+0B - 50 ). (11)

Varying v, o, B, ©, S, and g’ gives, respectively, equations (8), (3c),

(3b), (3d), (3e), and the field equations

SRR -%Rgov =8xT , , (12)

with T from equation (8). Equation (3a) follows from the rest of
equations (3) and equation (11); it is not an independent Euler-Lagrange

equation.

b) Gauge Freedom in the Perturbations

A perturbation in the fluid's motion perturbs the geometry of
spacetime. If the perturbation is small, it is reasonable to separate
it from the "background'" unperturbed spacetime and to treat it as a
field on the background geometry. We therefore define h?V to be the

gV

(Eulerian) perturbation in g°', and 8(p) to be the background unper-

turbed metric:
g”V(perturbed spacetime) = g(B)UV BT Ve (13)

Now h°Y is a tensor on the background spacetime. We can therefore raise

and lower its indices with g(B); €.8.,

g av
oo i R By

hO’V

Our definition of is at slight variance with the usual usage,
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where hov is taken to be the perturbation in gav' Here we have

e h% 8(B)as B(B)pv = ~OByy * 0(h2). (14)

The "background" geometry is a fiction, however. Because the real
spacetime possesses fine structure that is absent from the '"background",
there is no unique way to identify points in real spacetime with points
in the background; thus, there is no unique way to define h?Y from
equation (13). If n° generates a point transformation in the perturbed
spacetime that is small (1;2': a change in the identification of points
between the fictitious background and the real perturbed spacetime that
is on the order of the scale of the "fine structure" of the real space-

time) then h?' undergoes the change

v v
hO’ v ] hO’

+ no +&, gg)" =h7" - 178 - q¥ic. (15)

Here £1] is the Lie derivative along ﬂa, and semicolons (throughout
this paper) denote derivatives covariant with respect to the unperturbed
spacetime.

Under the same point transformation the perturbations in the velo-
city potentials must also change. For example, we define 8y, the

Eulerian change in y, by the equation
v(perturbed spacetime) = W(B) + &Y. (16)
Then 3} changes by

oy » By + £,n W(B) = Jy + W(B),O ﬂu . (17)

Similarly, all functions of the perturbed velocity potentials change:
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e.g',

ag g
8U, > BU,, + £, Uggy, =80, + Upgy,o o M + Uy 1, - (18)

Equations (15) and (17) together are called a gauge transformation.

Most of our expressions -- such as the energy density in the pulsations
-- will not be gauge-invariant. Nevertheless, we will see that physi-
cally measurable quantities -- such as the total energy -- are gauge-
invariant.

In the remainder of this paper we will drop the "(B)" on the back-
ground quantities. Quantities such as 85y Uv’ ¥, +.. are understood

to take their unperturbed values.

c) The Second Variation

In the Newtonian case (Paper I) we constructed the Lagrangian
density for the perturbations from the second variation of the action,
equation (9). The analogous calculations in the relativistic case are
complicated by the perturbation in the geometry, so the details have
been left to Appendix A. We treat the pressure and curvature parts of

the action separately.

i) Second Variation of the Fluid Lagrangian

1
The fluid Lagrangian density is p(-g)2. 1Its second variation is

62 [p(-sﬁ] - (a%)(-g)i‘ + 28p8 [(-sﬁ] 3 p52[<-g>%] o g
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In Appendix A we show that

2 iy Po 2 vo
8P = Bpydu - ” (3u)< - s(po'r) 88 - 2p U b 8V

g
(20)
220 sy ey - 2p vV (80BB _ - 5560 _)
n & vV o Po Vv st
where we let Vv denote the Taub (1959) current vector
Vv=va=\]f,v+aB’v- so,v. (1)

In equation (20) it is understood that Spo is a function (through the
equation of state) of du and 5S, and that 8y is a function of the inde-
pendent perturbations (dy, dx, 5B, %6, BS, h"?) through the perturbed
version of equation (11):

8w = -+ph"? uu, - U°av°. (22)

From Appendix A we also have

o [(-82] = - 40 (0)? (23)
and
Ple?] - @8+ 307 0, )02, (25b)
where h is the trace of h'7:
h=h" By (24)

If we assemble all these terms and define

o5 Gante? [p(-s)%] :
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we have the fluid perturbations' Lagrangian density

P P
i 0 2 0 wvo
@ 8081 = (3u) a(po'r)as Lo avvavo

S vV (aaaa,v = ssso,v) - 2p, uvh"" oV (25)

- 5ph + &ph° + ipn"h, .

This is perfectly general: no assumptions have yet been made about

the unperturbed spacetime.

ii) Second Variation of the Curvature Lagrangian

1
The Lagrangian density for the curvature is R(-g)2. It is simplest

to treat it the Palatini way: is a function only of the Christoffel

R
ap
symbols,

¥ iy (28)

L THE,
B =T ™ S F“va ol

ap af,p - T o,p

define th turbation i to be 8" __:
We define the perturbation in PuaB o s o8

Fuaa(perturbed) = Fuaﬁ(background) + Sp'aB . (27)

It is well known that 8" , being the difference between two affine
connections, is a tensor on the background spacetime.

1
The second variation of R(-g)2 is
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5 [°‘f’n (r)(- g)]

2 [R(-s)%]

1 1
- P B8R, (-8)% + on™® Ry [(-3)2:!
Ba Ryp (= g)2 + 2ga35 Raas[(-g)%:’

+ SaB Raﬂ 52 [(-g)%} .

In Appendix A we show that

R o (-g)%e2 [R(-s)%].

- o (g¢ . gt OB (gh gV _ gk gV
= 2h (saﬁ,,u sql;B)Jfag (s wS ap svasou)

2
- hn® Ryg * R (Eh° + 3 haahaa),

where we have used the conventional abbreviation

1P e 2T

Again, we have not yet made any assumption about the background.

iii) Varying the Perturbed Lagrangian

The action for the perturbations is

J L (-9)F d'x - [ ® + 16%0) (-8)2 d*x.

(28)

(29)

(30)

(31)



11}

Extremizing it with respect to gH gives the equation

op
dL
0 = =5f3[vasa +E°‘",]+gaas"
Bsp' ] vo sV Knv
op
(04 v B av 0P
- 2 - h .
Ws sl-Ws sk

.This is equivalent to

TR gy B M
8ap = -3 (Wgp+ Bg5 - hyg™)

(32)

(33)

which is of course the correct expression for the perturbation of the

Christoffel symbol. (Recall that eq. [lh] is responsible for the over-

all minus sign in eq. [337.)

Extremizing I

2
tions:

R B _ gk e Y g

sp?® RS oBju 3041;&) gaﬂ(s viu = 8 u;V)
i ¥ (3aﬁhp.v'h043 Suv)'h(RaB'%Rgas)

= 2(-8)-%5[(;% ("8)%] s
R T 0 DR SO I
5P ¥ a"s®Po * Po “a"p Po “a® s

-BP 8yg + Phyg + % (pgpt UyUg + PByg)

<ot 1, (0)?]

with respect to haB gives the perturbed field equa-

(3ka)

(34b)

(35a)

(35b)
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6L2 o) '% %
—% = 20T [(caﬁ-snraﬁﬂ-g)] = 0. (36)

Extremizing I, with respect to bdy, dx, 5B, 89, and &S gives,
respectively, the perturbed versions of equations (6), (3c), (3b), (3d),
and (3e). The perturbed version of equation (3a) follows from these

and equation (22).

III. PERTURBATIONS OF DIFFERENTIALLY ROTATING STELLAR MODELS

In this section we specialize the Lagrangian density of §II to the
case where the background is an axially symmetric, stationary stellar
model. For the purpose of a stability analysis, this is hardly any
restriction at all. A stability analysis would be very difficult if
the unperturbed state were not stationary, and in general relativity --
by contrast with Newtonian theory -- it is very umnlikely that non-
axially symmetric stationary configurations of perfect fluid can exist.
(They would either emit gravitational waves or require anisotropic
stresses for their support.)

Up to this point our analysis has followed closely that of Paper I.
From now on it will be quite different, however, because of the complica-
tions introduced by gravitational radiation. In Newtonian theory, where
the gravitational field has no dynamical freedom, we had little diffi-
culty reducing L2 to a function only of g, the Lagrangian displacement
of the fluid. We then derived the stability criterion directly from the

reduced Lagrangian.

In the relativistic case there are two dynamical degrees of freedom
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in the gravitational field. In principle it would be possible to choose
a gauge, to solve the perturbed initial-value equations, and to be left

with two dynamical gravitational variables [e.g., h TT, by analogy

nv

with Arnowitt, Deser, and Misner (1962) -- hereafter referred to as
ADaM]. Then Ly could be expressed in terms of E and these two gravita-
tional variables. Such a program would be very interesting, and it may
well be necessary before a definitive solution of the stability problem
is reached. We will discuss this in more detail later. However, there
is a simpler way to obtain a stability criterion, and it requires no
prior specialization of gauge. 1In this section we construct the con-
served energy density and angular momentum density of the pulsations

and discuss some of their properties. In §IV we use the energy density

as a Lyapunov function whose positive-definiteness guarantees stability.

a) The Unperturbed Differentially Rotating Star

The asymptotically flat spacetime in which the star sits is characterized
by two Killing vectors, E(t) and E(¢)‘ The four-velocity of the fluid

is some timelike normalized linear combination of these:

B =y + 98V [ e B(e) * 2 8(e) " &) * T o) " B
(37)

This equation defines Q: it is the angular velocity as seen from
infinity.
We can introduce coordinates t and ® such that E(t) = B/Bt and

E(¢) = 3/d¢p, and two other coordinates yA (A = 1,2) such that the line



17
element takes the form [cf. Carter (1969) or review by Thorne (1971)]

2 2

2 A. B
ds® =g dt° + 2g. dtdy + g + 8,0 dy dy . (38)
00 Op P Sexp dop AB

However, we will not always want to specialize our coordinates this far;
in this section we will usually work with three arbitrary spatial co-

ordinates xi and with the line element

2 2

ds® = g, dt® + 2 dt axt + 5 dxtaxd. (39)

It is understood, of course, that all gaB and all other physically
measurable unperturbed quantities are independent of t and . (The
velocity potentials are not all independent of t and ¢, but their
physically measurable combinations, such as Uv,.ggg independent of t
and ¢.)

The relativistic velocity potentials for this case are similar to

the Newtonian potentials:

S = arbitrary function independent of t and 9 s (koa)
Q = arbitrary function independent of t and ¢ , (4ob)
- -+
Q= p.U(p = p,g((P) 2 2 (’-&OC)
B=¢ - Qt ' 5 (4od)
3 (0} by > N > % 2> Ik %
e = Tt/U = Tt 'g(t) g(t) e 29§(t) §(¢) + Q g(cp) g((P)I ) (hOe)
v = (-u+18)t/0° E (40£)

That these are the correct velocity potentials is most easily

demonstrated in the coordinates of equation (38), where the generating
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equation for Uv’

: VB - %), (41)

reduces to an identity for v = t, . Demanding that UA

in those same coordinates gives the equation of hydrostatic equilibrium,

=0(A=1, 2)

£ 2
pou : 4 A

0 0
- (mu o R R o 8 Lo
(m 07) ) + 07U 0, (42)

The velocity potentials are scalars, so they keep their same values
in the more general coordinates of equation (39). There one ought to

regard @ as a scalar field geometrically defined by E(¢).

b) The Conserved Angular Momentum of Pulsation

i) Noether's Theorem

The existence of a Killing vector E(a) in the background spacetime
makes it possible to define a conserved quantity if the Lagrangian
density L2 is invariant under translations along E(a) during which the

- M aB X
variables q_ = {s o’ h", oy, dx, BB, 50, 5S} are held fixed.” Under

such conditions Noether's theorem (cf. Trautman 1962, Taub 1970) implies

the following conservation law:

P(a)°;c =0, (43)
with
o] aLE o
P(a) = }i‘.:‘ <£+ qr> gq_> - L2 g(a) . (hh)
5(a) i

IMore precisely, they are "Lie-dragged" along E(a)’ as opposed to being

parallel-transported (cf. Yano 1955).
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We now show that L2 is invariant under translations along E( ) but
()

not along E(t)' Though the unperturbed spacetime is invariant under
both, the unperturbed velocity potentials are not. One must look care-
fully at the way they enter L. in order to determine if L. is invariant.

2 2

The unperturbed velocity potentials enter L2 only through the term

BV, =By , + OBB , + B B0 - S0 -0 8S, (45)

which contributes to L, both implicitly (through 8u) and explicitly.

Consider how it changes in t and ¢ if the perturbations are held fixed:

<66T 5vv> =-a sa- <—%) 85 £0 ; (46)
q, A U v

d _ (98 g 1

<&E avv>q - <?‘P>,v 8a = O (47)

s

So L2 is @-invariant but not t-invariant. Note, however, from equation

(22) that dy is t-invariant as well.

This result can be understood as follows: Even if the perturbation
eventually dies out completely, 5B, dy, and 56 may continue to change
linearly in time at rates that vary across the star, just as B, ¥, and ©
do in the unperturbed state. Therefore, holding ®y, 5B, 80 fixed during
a translation in time is not the same as holding the physical perturba-
tion fixed. It is not surprising that Noether's theorem fails in our
context. Later we will construct the real conserved energy [which must
exist because E(t) exists] in a different manner. First, however, we

use the g-invariance of L2 to construct the angular momentum.
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ii) The Angular Momentum Density

The conservation law- (43) can be written in the following form

when g(a) is §(¢):

d oL, oL, i
Z Nq - T ~ Ng - T NL,.d = 02
3t r % 9%;0 r P99,y 2" 9 |

i

(48)

From now on we use the ADaM notation appropriate to a three-plus-one

dimensional split of spacetime. In particular, we define the lapse

1
function N = (_800)-2

; we denote the determinant of the three-dimen-

sional metric by g and that of the four-dimensional metric by kg [which

L 1
are related by the identity (ahg)2 = Ng2]; and we use a slash or a bold-

face V to denote differentiation covariant with respect to the three-

dimensional metric. Equation (48) implies that if we define

1 oL,

3' = '—qu )
32n . 5qr;o
then the integral of §' over the entire hypersurface

4 3
Jgj'g'gzdx

is constant in time. Note that any density differing from J' by a

(49a)

(49b)

spatial divergence will likewise be conserved, and will give the same

value for J provided the perturbed region of space is of finite extent.

From L2 as given in §II we find

1 0 oV 1 v Eoo

'=-——- R aat
4 16xn "S v,y S 16x 58 oV,

+ g'% a(pononsi)(sv -8Q) + NpOUO (s dp -8S 80 ).
: ® ¢ ¢

(50)
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To cast this in a more familiar form we add the divergence

d 1 0 —ov v 00
%[mN(gavh e )]

We define the result as the angular momentum density:

(9 = ﬂG & ﬂ}- ’
where
1 t1emov 7 30 gyov 30 ky 0
d6 = Tox ["’ ’ OV ,q;h a3V %Nh,(ph :]
and
"2 5 (p. 1°N ) (5 V ) + Np.1° (508 S50 )
= -3Q) + (04 -9 .
dp=8 P 8 " Po B,¢ g

(51a)

(51b)

(51¢)

To obtain this form for gc we have expressed the 8's in terms of h's

from equation (33). The split between §o and g is arbitrary. Omly

their sum is conserved.

The flux associated with g is

nksﬂck'FﬂFk:

with

s et [Be - F @, 5 - 8,70

and

k-3 Ko & k
N = 8 5(pou Ng )(qu)-sa) + Npy U (3 5B,¢-as 50’ )

+ iNg akcp ‘

(52a)

(52b)

(52¢)
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Then equation (48) becomes

5 o+ 8) + (" + 1)y = 0. (53)

Note that since ¢ differs from ¢' by a divergence, the flux nk differs

from -1/32x times the flux in equation (48) by the time-derivative
g 1.1 0 —ov v =00
_B_t[ISﬂN(S S )é‘

ov ® 3

iii) Heuristic Interpretation of ¢

The terms in g may be interpreted heuristically (and incompletely)
as follows:

i) The terms called.‘gG may be defined as the angular momentum in
the gravitational waves. The reasonableness of this definition becomes
apparent in the short-wavelength limit (wavelength small compared to
the radius of curvature of the background spacetime). There the average
of 9@ over a few wavelengths in the hypersurface and over a few cycles
of time is just the angular-momentum component of the Isaacson (1968)

stress-energy tensor for gravitational radiatiom, T(GW)O .

[More pre-
cisely, the average is the "Brill-Hartle" average (cf. Isaacson 1968)
of gG/N.] The short-wavelength limit is most easily calculated using

(cw)

the expressions for T av given by Misner, Thorne, and Wheeler (1972):

: 1 oV + ;0 —gv =0
B/ gy = SR e By, =B 3V .

-4F S (54)

p(6W)o .
o

05@
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independent of any gauge.

We emphasize, however, that the dominant radiation from a pulsat-
ing relativistic star may not be of short wavelength near the star. If
most of the radiation from a star of mass M has frequency greater than
some w,,

region

then the short-wavelength approximation is good only in the

A
2

r 5> (bt = (hnaW/u ). (55)

For a typical neutron star in quadrupole oscillation as studied by

Thorne (1969) (M = 0.7 My, Wy =2 X 101‘ sec'l, R = 9 km) this becomes

r >> 14 km,

which puts r well outside the star.

Our expression for g is only one of many that reduce to the
Isaacson tensor in the short-wavelength limit. Only in the radiation
zone far from the star can we relate gG to the density of angular mo-
mentum being lost by the star, because only there is that density truly
well defined and measurable.

ii) The angular momentum in the fluid per unit coordinate volume,

TO 0

¢

mentum per particle per unit rest mass:

i i
(-hg)z, can be written as p,U V‘PN g2. Now V(p is the angular mo-

¢ ® Po @

Thus, the angular momentum density is the product:

(ang. mom. density) = (rest-mass density) x (angular momentum

per particle per unit rest mass),
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Toq,(-hs)% = (pOUONs%) X (vcp) .

When the fluid is perturbed, part of the second-order change in this is,
from equation (51), B(pOUONg%) (3 vq)-aa). The term e,(po ©°N g%) is
easy to understand. The term BVCP-Sa can be related to the Lagrangian
change in the angular momentum per particle per unit rest mass as
follows. If j is the angular momentum per particle per unit rest mass,
if A denotes a Lagrangian change, and if s is defined as the Lagrangian

displacement vector of the fluid element (not to be confused with the

Killing vectors), then we have

4]

8 + § * ¥i
Bt it (s6)
3V + & - v
¢

~ ~

because in the unperturbed state j = ch = 0. But in Appendix B we show

that 8 = - € « V& + (aa)o, where (5a)o is the "initial value" of da:

its value when g is zero. Therefore we have

~

NI (‘éa)o = SV(p - Q. (57)

iii) The final term in §p 18 Npg ° (s 5B o 58 50 q,). This is
2 3

the same as N Po U0 52 Vq,, the contribution from the second-order change

in V¢. Because we lack an explicit expression for %0 ? in terms of g,
;] ~

we have been unable to express this term entirely in terms of g.

c) The Conserved Energy of Pulsation

i) Calculating the Enmergy Density

Although Noether's theorem does not give us a conserved energy, we

can construct one from the Hamiltonian. The calculations required to do
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this appear in Appendix C. The essential steps are summarized here:

i) Define the Hamiltonian density,

oL,
H2=§qu’06?;—o-NL2 9 (58)
’

where q_ = {at' . haB, &y, da, 5B, 80, 8S}. It is degenerate: not all

the momenta BLa/qu o are independent.
3

ii) Find the time-derivative of H, using the method of Dirac

(1958a) for degenerate theories. Find that

T

OH, OH, ( ang)
=X q r - N "g- (59)
ot [r r,0 oq |z]ll - holding all 9., qr,o fixed ;

0
=gl _soxnlevi|a,sa+{E) ss| . (60)
| £ m ” ) w° :

’

Thus, the Hamiltonian is not conserved. We should expect this from the

failure of Noether's theorem.

iii) Express the last term in equation (60) in terms of g. Define

the redshifted temperature,

T e TS (61a)

and a symmetric (for proof see Appendix C) tensor

LT e T o)



126
Find that

057 g N R TS
M 1 1

_ 9 0 AN 0 i ]
-a[leﬁNpoU M8 € - 32rN o U 248 (82), (62)

) i3 L 1
+ [1eanou M g g - 32nNp U g (aa)o] ,
|2
where (aa)o is the "initial value" of the perturbation in . The time
derivative can be brought over to the left-hand side of equation (60)
and the divergence absorbed into the divergence of fi. This defines a

conservation law,

]
oe + gt

B Tl (63)

for a globally conserved energy density,

1 0 i 0 i
e' = 1oz - NogUoM e g + 2np U a8 (sa), (64)

and its flux,

) N e
¥ = Tax t - At

L L

M, eled + 2N oo U n,igi (80),- (65)

iv) The energy density is defined only to within a spatial diver-
gence. Subtract a divergence from ¢' and the appropriate time deriva-
tive from 5'1 to arrive at a form of the energy density that is

quadratic in derivatives of haB. Write the result as:

3k (e + &) + (5" + %)) =0, 5]
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with

sk B /.1 P ol v —0B 0 =00 ﬂu
€ BﬁN[g (8, 8ap-8,58)-h ,08ap*+h ’osm],(67)

-1 15
-2g 2 s(po UON g2) (SVO + 08 + JBS)

P :
0 va ov
+—u Ng svvsvo +2N°oUoh SVV-NapOSu

o)
i (6p)2 + Na(po T) 8S + 2Npoujl (5t 8B , - 5S 80 ) (e8)
K )i )i

0 i 0 i
- N pyU (a,in,j + S,if,j)§ gj + 2Np, U 9,15 (sa)o

1
+ Nhop + 7o Nhb™ Rog - N (2= R + p) (3 b° + 3 u%P bog)»

S ;41B k 0ok M
Fo =gz N (BT 58 g+ B 580 (69)
and
st = - 23"%r a(po UkNg%)(B Vo + 080 + J58)

k k i3
- Np, U (s 53’0 - S so’o) - Np, U (oz,in,_1 + s’if’j)g £
k i
+ Np U “,1 g (aa)o. (70)

The split between cG and eF (and between SGk and ‘.r'Fk) is arbitrary:

only their sum, ¢ = + Eps is conserved. As we shall see in the next

€
subsection, ¢ is really twice what one would normally call the energy

density.

ii) Heuristic Interpretation of ¢ and g

Because of the great number of terms in g it is difficult to



128

identify different kinds of energy. We have split off € because it is
the only nonvanishing part in vacuum, and because it contains all the
terms that have derivatives of haﬁ.

i) In the short-wavelength limit in the vacuum region outside the
star, the Brill-Hartle average of eG/N is proportional to the Isaacson

energy density. Outside the star the wave equation is (cf. eq. [3ka])
{roe ot i (71)
Then by the identity mentioned in Appendix C (eq. [C15]) we have

zaﬁ(s“ms"ﬁ-s” Yoy mol RSV g% on o N gt

o vB = o BV vu)ia

This divergence does not contribute to the Brill-Hartle average of

eG/N, so we obtain in the short-wavelength limit
. (ew)o
ee/py = - 2T 0 (72)

This is in accord with our previous remark that ¢ is twice the energy
density.
ii) The interpretation of g is made difficult by the presence

of the term

i e s
2 Np, U (50088 , - 8580 ,) = Np U 3 V,. 73
poU" (3 3B ; ,1) = Neg ki (73)

As with a similar term in ¢, we have not been able to express this in
terms of €. Therefore we will not be able to make a comparison of the

~

Newtonian limit of ¢ with the Newtonian energy density derived in
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Paper g However, this term is not present if the unperturbed star is

nonrotating, so in that case there is no problem showing that ¢ reduces
to the Newtonian expression derived in Paper I. We will do that later
(§1Ile, ii). For now we simply note that the similarity between this

term and one in gF permits us to rewrite eF in the form

” v /

+ remainder,

where '"remainder" means all but the term (73) and the first term of p
in equation (68). So the kinetic energy associated with the fluid's
angular momentum makes an explicit contribution to the total energy
density.

Lii) We can get some feeling for the nature of g¢ by looking at
its flux, which tells us how energy leaves a volume. The flux of gravi-
tational energy, Eck, can be averaged over a few wavelengths and cycles

of time to give (in the short-wavelength limit)

&gy = -2 1 W (75)

Therefore, far from the star this is twice the physically measurable

flux of energy in the gravitational waves.

2This is a Newtonian term and even prevents a direct comparison of the

Newtonian energy density derived by amalogue with the present procedure
with that derived in Paper I. It is difficult to see how they could be
different, considering especially that in the nonrotating case one can

show that they are equal.
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iv) The flow of fluid energy across some surface is

transport of fluid energy

in the hypersurface across k
a two-surface § with y J‘gF e 4 &
z

unit normal .

If the surface y is parallel to the unperturbed streamlines (Uknk=0),

this becomes

transport of fluid energy

k
across the unperturbed = =2 I N(8V0+ WMo +,7'E>S)po 5v n_dg, (76)
z

streamlines k

where by vk we mean the coordinate velocity Uk/Uo (not to be confused

with Vk = p.Uk). It can be shown that
' 1 af
-8V, + OB +.788) = ——8p+-E-UV U b + 0BV -8a). (17
0 0 0 a'B ©
poU 2U

Thus the energy carried by the perturbations across the unperturbed
streamlines is heuristically of three types: (a) work done (or gained)
because of local changes in pressure; (b) "gravitational potential

energy" (note that in the Newtonian limit, $U_U P . -;-hoo + 59, the

a B
change in the Newtonian potential); and (c) rotational kinetic energy
(recall that Sch - 8a is related to the Lagrangian change in j by eq.

[572).

iii) The Outgoing-Energy Boundary Condition

Far from the star, where the short-wavelength approximation is valid
for all but a negligible part of the gravitational energy, it is possible

to formulate a physically meaningful condition that the net flux of
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energy be away from the star. On a closed surface £ in the short-

wavelength region, the net flux of energy will not be inward if

IT(Gw)kO nkdo o (78)
z

By equation (75) this is equivalent to
kN de = 0 (79)
J @6 /Wogyndo 2 0.
)

From this and equation (66) follows the important result: The

total energy of pulsation (I cg% dsx)inside L never increases if the

radiation satisfies the outgoing-energy boundary condition on .

Note that this is a very weak condition compared to the usual
outgoing-wave boundary condition, which requires that the flux be out-
ward at every point of . For our purposes we will need only the weak

condition, equation (79).

d) The Total Energy and Angular Momentum

Three conclusions help us understand the physical meaning of the

total energy, E = J‘ eg% dsx, and the total angular momentum,

% 3
Js‘]'ggedx:

(1) E and J are gauge-independent. This follows from reasoning

similar to that used to prove the coordinate-independence of pseudo-
tensor energies (cf. Landau and Lifshitz 1962). Briefly, assume that
E or J is different in two different gauges. Choose a third gauge that
matches the first on one hypersurface and goes smoothly into the second

on a later hypersurface. Then conservation of E and J in every gauge
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contradicts the assumption. This does not imply that the densities g
and g are gauge-invariant, Conservation of E and J is fundamental to
the argument, and the conservation law is valid only if the perturba-
tions satisfy the initial-value equations on every hypersurface. There-
fore the argument implies only that under a gauge transformation ¢ and
§ change by terms that become spatial divergences after the initial-
value equations are applied.

(i1) Suppose that a distant observer (outside the furthest wave-
front) measures the active gravitational mass M* and total angular
momen tum ﬁ* of the pulsating star. Suppose also that the star is stable,
so that the pulsations eventually die out and leave behind a star of

mass M and angular momentum L. For a stable star, the differences

M?-M and L*-L are at most second order in the perturbations.

The difference M*-M is conserved at all orders. If there were a
first order piece in M*-M, it would have to be radiated away as the
stable star's pulsations damp out. It could not remain localized inside
or near the star because by assumption M is the mass left behind. On the
other hand, the work of Isaacson (1968) shows that there can be no first-
order radiation of physically measurable energy on the stationary back-
ground far from the star. Therefore the first-order contribution to
M* -M must vanish. The same argument applies to L* - L.

This result is similar to the theorem of Bardeen (1970) that the
equilibrium configuratioh of a rotating star extremizes the active gravi-
tational mass of all nearby momentarily stationary configurations with
the same total baryon number, angular momentum, and entropy that satisfy

the initial-value equations. [This was proved for nonrotating stars by



133
Cocke (1965) and Harrison, Thorne, Wakano, and Wheeler (1965).] Where

Bardeen compares momentarily stationary configurations with different
masses but identical angular momenta, we compare momentarily stationary
configurations whose masses and angular momenta are related by the re-
quirement that one configuration can be obtained from another by the
emission or absorption of gravitational radiation. (The configuration
with mass M* can be considered to be momentarily stationary at the
moment the perturbation is applied, just before it begins to emit
gravitational waves.)

(iii) In the notation of (ii), the following equations are correct

to second order in the perturbations:

M =M+ 3LE (80a)
e e (80b)

where the background star is the star of mass M and angular momentum L

that is left behind. This result follows from three properties of E

andl J: (a) They are unique apart from additive and multiplicative con-
stants because they depend only on the Killing vectors E(t) and E(¢).
(b) They vanish when the perturbation vanishes. (c) The change in

J' eg% d°x and ‘J‘ gg% d°x inside any fixed surface surrounding the star

and far from it is determined solely by the physically measurable fluxes
(ew)k
?

- *
If there were any other second-order contribution to M or L, it

T(Gw)ko and T

would have to be globally conserved. By (c¢) it would also have to be

confined forever within a closed surface at some large but finite distance
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from the star. The use of (b) and of arguments similar to those of (ii)

above then implies equations (80).

e) The Spherically Symmetric, Nonrotating Star

i) Expressions for the Energy and Flux

We turn now to a special case in which our expressions simplify
considerably: the nonrotating star. In curvature coordinates the

background metric is

ds® w = e¥ at® 4 M ir® 4 7 (d02 + sin® 9 d(pe). (s1)
Then we have in the background
0 v/2
N 5-U0=1/U et .
i
ge = > sin 9 e.)\/2 3 (82)
tt=q=0 .

In Appendix D we simplify €p for this case as much as possible by
substituting for the perturbed fluid quantities their expressions in
terms of g (cf. Appendix B). The result is

-v/2 __ -V » S eNe -1 . -
e ' ep=poue £ 8 o+ 7P (V8)T + 5 (§TVep) (§TP)

+2(V-E)(E-Vp) - 3pyT(E-VS)(E - VV) - w2tV (o E)
(83)
+ g £BR + 5p(hjj- 1)+ -;— (p +3p) e +1% (p+3p) lhjj

- 2e™" (0 +3p) k, i - 4(p-p) hjkhjk+%(p-p-27p)(hjj)2-
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In this expression we have defined

4 Ee-vhoo (81"’8)
and
-v/2
T S (8kb)
and we mean by du and dp
p=-22(v.g-dnl)-€.m, (85a)
o 0 RSl S e
8p=-7p (V-§-40%)) -g-vp. (85b)

The flux yFk is especially simple in this case. Equation (76)
applies becasue all surfaces are orthogonal to the unperturbed stream-

lines:

ot SR L TV S LA (86)
F 0 ,0

The energy density and flux of gravitational waves do not simplify
very much from their full form (eqs. [67] and [69]) so we will not re-
produce them here.

Our previous remark that ¢ is really twice the energy density is
again verified by the "kinetic energy" term in equation (83), which has

the form mv2.

ii) The Newtonian Limit

The Newtonian limit of ¢ for the nonrotating star is obtained by
neglecting p and pp compared to p (¢ is the Newtonian gravitational
potential). In equation (83), the fifth, seventh, and subsequent terms

are all of post-Newtonian order or higher. 1In the Newtonian limit we
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have f = 2 59, so that eF becomes

(epdymr = © 5,0" 80 *+ 7% (7+8)% + 07" (5~ 90)(5 - 9p)
(87)
+2 (V-E)E-vp) -280 v (pE).

The perturbed source equation for 8¢ (analogue of relativistic initial-

value equation) is (cf. Paper I)

% 80 = bx 8p = - bx v (o ). (88)
Therefore the last term in (eF)NEWT becomes
-280 v*(p E) = - E%-V 50 * v 8¢ + (divergence). (89)

We will disca;d the divergence. By comparison with equation (27) of
Paper I, we see ghat €p differs from the Newtonian energy density only
in that the term in equation (89) is twice as large as it should be. We
therefore expect the Newtonian limit of g, to be (hn)_l v %0 -V 80.
Rather than find the Newtonian limit of eG for arbitrary nonradial
pulsations, we will restrict ourselves at first to the case of radial
pulsations, for which we have explicitly calculated the relativistic
expressions (Appendix D). We will then argue that the nonradial
Newtonian limit differs from the radial limit in no important respects.

For relativistic radial pulsations we can choose a gauge such that

the only two nonzero metric perturbations are

dv = - h (90a)

]
I
=3

BA (90b)
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In terms of the fluid perturbations these are
B\ = -Bﬂre)‘p T84 (91a)
0 )
' A 0,1
dv' = Bnre Sp-pou(v +;)g 3 (91b)

where primes denote differentiation with respect to r. The Newtonian

limits of these expressions are

[}

BA -8nrpg , (92a)

dv'

-8ntpg . (92b)

From equation (88) applied to the radial case we see that indeed
dv = 2 3p. Moreover it is clear that d\ is of the same order as dv.
The energy eG for radial pulsations is

Y2\

(€g)papraL, RELATIVISTIC =~ Bx [* vy -ealiovt - 8A)

(93)
+%8?\ (57\'+5v‘)] ; '

The first term is post-Newtonian compared to the second (v' «< 1/r).

From equations (92) we find the Newtonian limit to be

(eg)rapra, wmr = B {e«w')a : %r[(am"‘]" : (a4)
If we add the divergence
-t e @] - L [f w?] (s5)
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we obtain

1 o
(€g)raprar, NEwr = Tox (BV')” =g 80’ 80' . (96)

This is exactly what we require to make g = eF + eG reduce to the
Newtonian energy density for radial pulsations.

We should expect the same result for nonradial pulsations. The
nonradial case is made difficult because the appropriate limiting values
of haB depend upon the gauge. Even in the radial case we saw that ®A
was comparable in size to dv. Nevertheless, the Newtonian limit of eG
cannot depend upon the gauge. It should be possible to construct a
gauge in which the only two metric perturbations that have nonzero
Newtonian limits will be hoo and hrr. Dragging of inertial frames
(given by hoi) and the nonexistence of intrinsically spherical two-
surfaces (due to hfw and hoo-h¢;) are physically of post-Newtonian
order. Moreover, gauge freedom can be used to make hfo, har, and h‘pr of
post-Newtonian order, leaving only hOO and hrr at the Newtonian level.
In such a gauge € will have a Newtonian limit substantially like equa-

tion (94), only with three-dimensional gradients replacing r-derivatives.

Then ¢ will limit to the correct Newtonian energy density.

IV. STABILITY

a) The Sufficient Condition

The energy density ¢ has three properties that qualify it as a
Lyapunov function [see, e.g., La Salle and Lefschetz (1961)]: i) it is
homogeneous and quadratic in the perturbation variables; ii) it is

globally conserved; and iii) its integral over the interior of a large
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but finite sphere surrounding the star must decrease if the radiation
satisfies a physically meaningful outgoing wave boundary condition on

the sphere. Therefore a sufficient condition for stability is that ¢

be positive-definite, i.e., that the integral of ¢ over the interior of

the large sphere be positive for all nontrivial physically acceptable

perturbations.

By '"physically acceptable'" we mean that the perturbation and its

time derivative must be consistent with the perturbed initial-value

equations. If one specifies £ and on the hypersurface, one is not

noe

§,0

free to specify all ten and their derivatives. The initial-value

equations (perturbed versions of G'_1 - 8xn TL = 0) set four restrictions

0
on the twenty functions hQB and ho‘B

0
o In addition the choice of a
gauge sets twelve more restrictions: The gauge completely determines
four of the ho‘B throughouﬁ spacetime (four conditions on haﬂiggg four
conditions on haﬁ,o on the hypersurface), plus it permits solving for
the four perturbed lapse and shift functions in terms of the remaining
variables [cf. ADaM (1962) or Wheeler (1964)]. Another way to do this
counting is to realize that the perturbed geometry is completely speci-
and h

fied by giving the twelve functions h on the hypersurface,

13 13,0
though coordinate (gauge) arbitrariness off the hypersurface leaves
some indeterminacy in hQB off the hypersurface. Then imposing a gauge
in the hypersurface (four conditions) and solving the four initial-

value equations in the hypersurface reduce the number of free functions

to four. Thus, ¢ must be positive-definite for arbitrary values of the

six functions gi and gi 0 plus the four independent functions among n®®
o

and haB 0° (Unfortunatel& one is not likely to be able to prove ¢
PRS-



140

positive-definite without imposing the initial-value equations, as

we show in the next paragraph.)

b) Obstacles to the Application of this Condition

Both the solution of the initial-value equations and the imposi-
tion of a gauge appear to be crucial before the sufficient.condition
can be used. In Newtonian theory the analogue of the initial-value
equations is the source equation for the gravitational potential,

V2o = bxp. The contribution of the perturbed potential, %9, to the
energy of pulsation is négative-definite (cf. Paper I). Only by
solving for dp as a Green's functions integral over g, or in terms of
the longitudinal part of pg (as was done in Paper I), can the entire
pulsation energy be shown to be positive-definite.

The imposition of a gauge is important because ¢ is not gauge-
invariant (though its integral over the hypersurface is). It may
happen.that even after solving the initial-value equations one may
be able to prove the positive-definiteness of the energy density
easily only in some gauges. Thus part of the problem is to find a
gauge in which € (or €g plus some of the terms in €p that are quadra-
tic in haﬁ) is manifestly positive-definite in the four free gravita-
tional variables that remain. If such a gauge can be found then the
contribution to ¢ from €g can be discarded, and the sufficient condi-
tion reduced to an integral just over the interior of the star (plus
possible surface integrals, as in Paper I). In that form, with the
remaining energy a function only of g, the condition will be tractable

and ready for application to realistic stellar models.
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We should remark that the gauge problem can probably be solved
without going to a specific stellar model. The purpose of the gauge
is to prove that the '"free'" gravitational waves -- those that can be
specified on the hypersurface independently of the star's perturbation
€ -- have positive energy. We should also remember that the gauge
that solves the radiation problem may not be the same gauge that makes
the dynamical equations simple [e.g., the Regge-Wheeler gauge used by
Thorne and Campolattaro (1967) for the nonradial pulsations of spherical
stars]. Generally, one might expect the dynamical fluid equations to
be simplest in the ''near-zone' or "Coulomb'"-type gauge, which might be
poorly behaved at spatial infinity. The gauge that proves the gravita-
tional wave energy to be positive-definite, on the other hand, is likely
to be a '"radiation'" or '"Lorentz'-type gauge. This conflict may pose no
problem since one need never solve the dynamical fluid equations to use
the criterion: one need only prove that a certain functional of § is

~

positive-definite.

c) An Example: Radial Pulsation

To illustrate the procedure outlined above on a problem whose solu-
tion is known, we evaluate ¢ for the radial pulsations of a spherical
star. We will find that ¢ reduces to the same functional whose positive-
definiteness Chandrasekhar (1964) proved was necessary and sufficient

for stability.s The details of the calculations are contained in

*raub (1969) derived Chandrasekhar's criterion from the second variation
of a variational principle of his own. This appears to be the first
application of the second variation to stability problems in relativ-

istic astrophysics.
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Appendix D.

i) Choice of a Gauge

The unperturbed metric is given by equation (81). For radial
pulsations it is possible to choose a gauge in which the only nonzero
metric perturbations are dv = - hoo and BA = - hrr [see, for example,
Landau and Lifshitz (1962)]. Both can be made to vanish outside the

star.

ii) Eliminating Non-Dynamical Gravitational Variables

Since there are no gravitational waves, both A and v are deter-
mined completely by the fluid perturbations. The two "initial-value

equations" that are relevant are

r% (re'7‘)' - —-lé- = 8x '1‘00 (97a)
r
and
-A (1 1 1 r
e (;V'+:2-)-;§=BKTI, (97b)

(where primes denote d/dr). Following Chandrasekhar (1964), the per-

turbed versions of these equations can be solved to give

8\ = - Bxre PoHE (98a)

and

d5v' = Bnre)‘ [Sp - po H (v' + %) g] 4 (98b)

We will not need the last equation for 8v because g¢ will contain only

BA.
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iii) Calculating the Energy Density

In Appendix D we show that the two parts of the gravitational

energy density, equation (67), are

B (qH vV gk v \
B (8, 8ap - 81 8,)
(99)
=4V e (8v-8A)(Bv' -8A\') + % e-7‘67\ (5A' +5v')

and

Adding to the energy density the divergence

-a-lqg'%[%ﬂv e (ov - 82) +l+% 67\] ’
we obtain
e-V/2 (eG)radial = % e Mansy' - —6-,1'—,( e')‘ﬁve_ (v =4n'v' +-§v'2+ -f— v')
+3é—“-e')‘6v87\ (v =3 v'+%v'2;-§-v') (100)

I wR als . 4 v_2 49 L
- g e BN (v-dn v +%v += V' )\+r)

In Appendix D we also show that eF becomes

- 1 3 2 1 2
V2 (€p)radial = = § (P-P+27p) 8N -4 (0 +3p) BABV+ 5 (p+3p) BY

- BPBA+p, TBSBV-pBYY « (o ) +poh J‘“(g’o)2 (101)
ks , 2
+ (7 €)% +2(7 - )p'E+ 0,7 B 0y €2~y TS V' £

When € is added to él” and a convenient divergence added as well,
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the coefficients of all terms containing ®v vanish by virtue of equation
(98a) and the unperturbed field equations. When BA is expressed in
terms of £ from equation (98a) and another divergence added, the result-

ant expression can be simplified to

2
A 2 v/ 2 4 2 2
= 2 et '
() aq5a1 = PoM© (§,o) +pre’ <y . (') €
(102)
+&-ev/2 "2 48 ex+% £
T P~ & T poupf'; )
where ) stands for
e S (103)
r
Then positive-definiteness of the total energy,
00
5 2 N2
E .dia] = £) e bnr® e dr, (104)

for all possible g and g,o guarantees stability.

Chandrasekhar (1964) proved that the positive-definiteness of this
¢ integrated from r = O to r = R (surface of the star) is necessary and
sufficient for stability. Since ¢ is zero for r > R and contains no
delta functions at r = R, we see that our results demonstrate the suffi-
ciency of Chandrasekhar's criterion. In the next section we use our

methods to show that his criterion is also necessary.

iv) Lagrangian for Radial Pulsation

The radial pulsations of a relativistic star are very similar to
Newtonian pulsations: there is no gravitational radiation, and the

perturbed gravitational field (8A and dv) can be expressed entirely in
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terms of € on a given hypersurface, without reference to the dynamics on
previous hypersurfaces (cf. egs. [98]). It is therefore possible to
follow the procedure of Paper I here: one can substitute g directly in-
to the Lagrangian density, equation (31), and use the resultant expres-
sion as the reduced Lagrangian density for the radial pulsations. The
calculations are very similar to those required to reduce g&. The
result is

(Lp)raazar = = Pob e (8,00 + P74 - e (e")? €

(105)

L

b P A
=P 8ne

2
poup§ )
where y was defined by equation (103). Clearly the energy density ¢ is
the Hamiltonian density associated with this Lagrangian density.

The theorem of Laval, Mercier, and Pellat (1965) applies to this
case and implies that the positive-definiteness of E_ .. ., (eq. r1047)
is necessary and sufficient for stability. This demonstrates how
Chandrasekhar's theorem can be obtained with our approach. Needless to
say, Chandrasekhar's own methods are much better for such a simple case.

We used ours only to illustrate the more general procedure.

V. OUTLOOK

The stability criterion derived in this paper is only the first
step in what promises to be a difficult but rewarding search for a use-
ful stability criterion for relativistic stars. I have already dis cussed
what steps may be needed before the goal is achieved. The most promising

approach seems to me to be the analogue of the ADaM approach to the full
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field equations: choose a transverse-traceless gauge and solve the
initial-value equations. There may be other workable approaches, how-
ever. In Appendix C is derived the rate of transfer of energy from €p
to gg; it may happen that with the "outgoing-energy" boundary condition

and a careful choice of gauge, the initial-value equations imply that

this rate is positive. Then gp itself must decrease in time and so
its positive-definiteness alone would guarantee stability. Both these

approaches are under investigation.

Moreover, the Lagrangian, equation (31), has applications beyond
the derivation of the sufficient criterion of this paper. It should be
possible to derive from it the results of Chandrasekhar and Friedman
(1971) in the zero-frequency approximation. It should also be possible
to derive from it general criteria for the stability of standing-wave
modes. Such criteria might well be less complicated than the one pre-
sented in this paper, and might serve as reasonably good indicators of
the stability of realistic, outgoing-wave pulsations. The Lagrangian
may prove to be an even more useful tool than the sufficient criterion

for stability.

I would like to thank Sandor Kovacs and especially James Bardeen
for many helpful conversations. I am also deeply grateful to Kip S.
Thorne for his remarks on this paper and for his continued advice and

support during the past three years.
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APPENDIX A

THE SECOND VARIATION OF THE VELOCITY-POTENTIAL LAGRANGIAN

The full velocity potential Lagrangian is (Schutz 1970)

&= 02+ o) eyt (A1)

Its second variation is the part that is quadratic in the perturbations

when the full perturbed values of the independent variables (Palatini

ave o

style: g , I _, ¥ @ B, 6, S) are substituted into equation (Al).
By definition, the second variation of any of the independent variables

themselves is zero. We treat the two parts of 2 séparately.

a) Second Variation of the Fluid Lagrangian

1
The fluid Lagrangian is p(-g)2. Its second variation is
2 X 2 a: 2 &
® [p(-0)%] = 0% (-3 + 200 [(-0)¥] + ¥ (-] . (a2)
Now, the middle term is easy:

g b7V = -%(-g)%h ’ (a3)

and
op = Po TV poTﬁs ’ (A)‘")
with

1
___ _o VO o Lpyvwoy vy 1,
.Bu o) [( g Vvvc) } o v, e g VUSVV » (as)
where 6VV stands for

5VV=5W,V+°‘55,V+5°‘ a,v- sso’v-ss c’v 3 (a6)
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1
The second variation of (-g)2 is also not hard to find:
2 1 i i 2 HEn T Y. A7
o [(-0)%] -0 [0(-00] = (-0)2 (W24 0 Puo) (e
The second variation of p comes from equation (AL):

2 2
8°p = 8 (py Bk = py TBS) =Bp,du + pyd 1 - 8 (pyT) &S (a8)

2

(recall that 8°S = 0). From equation (AS5) we can compute 82p:

SR T e & oy .1 w
B R e BRI S TN BT e SRR B
(49)
1 vo 2
-—g Vo'c‘) Vv .
Finally, we can find 5% Vv, from equation (a8):
82V = 28088 _ - 2 85 80 _. (A10)
v ,V ,V
Equations (A8)-(Al0) combine to give
2 Po 2 av
5 p = Spobp. - 8(poT) S - —u— (8u)< - 2 Po h UU‘GVV
(Al1)

P
0 vo v
- g 8V 8V -2p,U (3 sa’v - BS 59’v).

This equation plus equations (A3), (A4), and (A7) when substituted into

equation (A2) give equation (25) in the body of this paper.

b) Second Variation of the Curvature Lagrangian

1
In the Palatini method, the curvature Lagrangian is g R‘Q‘B(l")(-g)2
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Its secgnd variation is
82 [R(-g)%] - 2 p% 5Ra3 (-g)% + 2 1% Ros ® [(-g)'&]
+ g% 82(Raﬁ)(-s)% + 2 g% BR,5 8 [(-s)%] (A12)

+ gaB Rbﬁ 82 [(-8)%} .

The only terms here that we have not yet computed are

i . v E v
“aa‘s[r“oe,u Mou,p* Tou T P"vsrou]
(a13)
o ol S
saB;u 806156 4
and
2 - L SN 1} v
s11043_23“‘,“a;oq3 2 g (Al4)

It is straightforward to plug equations (A3), (A7), (Al13), and

(Al%) into (A12) to obtain equation (29) in the body of this paper.
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APPENDIX B

EULERIAN PERTURBATIONS

In this paper we often have occasion to convert from &y, dQ, ...
to the fluid displacement, E- We shall write down the necessary ex-
pressions. More details can be found in Lebovitz (1961) or Lynden-Bell
and Ostriker (1967). We use the language of the 3+ 1 split of the
background spacetime: g is the displacement of the fluid in the hyper-
surface of constant time, whose metric is gij' The determinant of gij
is g. Covariant derivatives in the hypersurface are denoted by v or
by a subscripted slash, "|".

Because baryons are conserved, the change in rest mass inside a

coordinate volume equals the transport of rest mass across its surface:
0.5 & 0
8 (pqU Ng2) =-g2v- (pyU'NE) (81)
Because entropy per baryon is conserved,;%)s obeys the same

equation as . Together with equation (Bl) this implies
q Po

8S = - E£°VS. (82)

~

The velocity potentials @ and B obey the same equation as S, so their

perturbations are

fole

-E-va + (30), , (B3a)

5B

-E'YB 5 (SB)O, (&Sb)

where (Sa)o and (SB)O are the values of 5 and 5B when € = 0. They

~

represent an initial velocity perturbation. They are '"constants" of
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integration in the following sense:

u¥ [(ba)o]

Note that for S the constant of integration is zero (cf. Paper I).

- [(5;3)0] = 0. (B4)

sV 3V

The potentials &y and 80 do not have equations as nice as equations (B3)
because they are not 'conserved" in the way @, B, and S are.
The changes in p, 4, p, T, ... can be computed from equations (Bl)

and (B2) and the equation of state. We obtain

T g
sp = - 7p (Vg + 872 6g?) -g-Vp-%E[a(U°N)+§-v(U°N)],(BS)
s 2 e g
A% B A % o 3 . 2[5 (u® s e
Bu=-<k (v-g + 872 8g°) - Ervp - —2 8(UN) + £+ 9(U'N) | ,
e R e pU N e
(B6)
oT oT
5T = <§5>S dp + (8§)p BS 5 (B7)
with the Maxwell identity
/5T> =_1_(%B> =_l_<ap°> (88)
\55), = mop7 (35 stk

If we define the three-dimensional coordinate velocity, v, by the

equation

vt = uind, (B9)

then we have

i i
5V = E ,0 +& € 3 (B1Oa)

= gi’o + §i|j v - vilj gj . (B1ODb)
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This equation and equation (B2) render the perturbed entropy equation,

 EOR 7 i -
B(TU s,v)-as’o+av S,1+v 88,1-0, (B11)

U

an identity, and similarly for the @, B, and Po equations.
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APPENDIX C

THE ENERGY OF PULSATION

a) The Hamiltonian

The generalized momenta of the problem, BLE/qu’O, are not all
independent, so one cannot solve for the velocities in terms of the
momenta. Dirac (1958a,b) has developed an algorithm for expressing
the equations of motion in Hamiltonian form in such situations, and
Schutz (1971b) has applied the method to the relativistic perfect fluid,
starting from the full velocity-potential Lagrangian, equation (9).

The only result we will need here is a result demonstrated in the
appendix to Schutz (1971b) for the time derivative of the Hamiltonian.

The Hamiltonian is

oL,
H2=2qu’oaq—--NL2, (c1)
r,0
B ap
where q_ = {§ ap? h’", sy, da, 5B, 50, 8S}. The overall factor of

N = (-goo)"E in H, arises from our abandoning general covariance: The

2

action is to be expressed in the form
I, = f (E p- 90t HE) g% aox dt . (c2)
In order that this should be the same as
s T (ot dhs . i L2Ng% dox dt, (c3)

we need to include the factor of N in Hy and in the generalized momenta,

T
12
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By the theorem from Schutz (1971b), the time derivative of H, is

2
OH,, OH, 5
e = |2 Yoz —| -3 (L) ' . (c4)
r £30 9|y t 2’holding 90 9 o fixed
o 2

This is the same as for a nondegenerate Hamiltonian.
16 L2 did not depend explicitly on time, then H2 would be globally
conserved. However, L, does depend upon time. From the remarks in

§IIIb,i we find that

3 k P0 ;. ov ov
s¢ ML, = -32nN e (g 8V_ + uU_ h )(9,\» B3Q + J"v 8S). (c5)

Here we have defined the '"redshifted" temperature,

J = T/Uo. (cs)

The first parenthesis in equation (C5) is just 5V’. 1In terms of

the coordinate velocity, Vv = Ul/Uo, equation (C5) becomes

% NL, = -32anOU08V1 (“,1 B3 + :r,i 8S). (c7)

In obtaining this we used the fact that Q and J are independent of t
and ¢.

We can express avi, dx, and 3S in terms of S by using equations
(B10), (B2), and (B3a). Then manipulations similar to those of
Appendix A of Paper I can simplify equation (C7) considerably. The
crucial idea in the manipulations is that the quantity

Mijr_._.-ain,j+s’ij’j (C8)

2
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is symmetric; its antisymmetric part is

d d
ot V[i;j] "ot (a[,j B)i] 8 S[)j o:i])

i o

which must vanish because the unperturbed flow is stationary. The final

result of the manipulations is

-seprouoavl (o, 8a+7 . 8S) =
2 E

0

% [16:1N oo U° M, ghel - 32aNp U 2 gl (aa)o] (c9)

+ [161:1\1 poUoMijgigj vt - 2N o 10 n’igi (aa)ov‘:] 4

|2
Notice that the initial perturbation in (@ appears explicitly.
From this equation we see that the term that prevents H2 from
being conserved is itself a time-derivative plus a divergence! We can

therefore rewrite equation (Cht) in the form

)

o)
E [H2 & 161{Np0U

i_j 0 i
My EET 4 321N py U n’ig (Sa)o:l
(c10)

OH
o 2 0 ato o KGR 0 i /
= [E" qr,O g-—qr : + lG:thoU Mijg E° v =321 N poU Q,ig (Sa)ov ]“.

b) The Energy and its Flux

We may tentatively identify the energy density of the pulsations

as

¢t e H, - 16xN o, UOMij g* gj + 32aN poUo Q,i gi (aa)o . (c11)
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Its uniqueness and gauge properties are discussed in §IIId. Here we

are interested in evaluating ¢' and its flux.

From the Lagrangian L, =R + 16x& given in equations (25) and

2
(29) we find

N—2 - oNE® 80 - oni®P P
BS'J' 3 K
8,0

5 (c12a)

N =0 5 (c12b)

-1 0
N - e 32x g 2 8(poU Ng%) . (c12c)

K s~ # 0 . ‘ (c12d)

1
RS - Y 3
N T—SBO =-32n g 8(poU aNg?) , (Cl2e)
J

oL
N e =0 * (c12f)

oL
N = + 321 g-% 5(p UOSNg%) . (c12g)
356 0
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These imply that H, is

2
o TOB &0 N =00 i
H, = 2Nh gaa,o 2Nh 3041,0
32 872 8(p,. UON g2 S
- 321 872 8(p, U Ng)(a\y’o+aas,o- 59’0)
(c13)
- 32xNp. 0 (80 5B . - S 80 .)
0 ,0 ,0
- NR - l6xN@.
Consider the gravitational part first:
B 0 =0 _n
H = 2Nh - 2Nh - NR. Cik
Sler % T Sane T s

This would appear to contain second time derivatives of haB. Actually
it does not, as we can see with the help of an identity that follows

from the definition of SP

op y
op in terms of h™" (eq. [33]):

—QB [l B B %0 v & T
B (8 s = 8 ;) = g)z[( el N

e
(c1s)
4 OB .M v _ oM v
This identity converts R (eq. [29]) to
Lo OB /i v 4 ol v
Ro==2g (87, 8" 5= 8 o8 )
0 0 300 u 2 =V L1 : vi LU
+ 2(h SaB h sm),o+N[Nh spv Nh'" 8 ] (c1s)
|1
-h® R+ RE B+ 10 0P,



158
With this, H2(G) becomes

0 -0 K
oSa+2Nh S

L ol
S s 8 ;0.7 oy

Hy e

2

Boog¥ gl
+2N(8WS Sv

v aB
of Sou)+Nhh

-NR(E0Z+ 30 6%)  (c17)

B Rop 8

+ [ s v & w Ii

ap

This is quadratic in derivatives of h™" after we throw away the diver-
gence (we must remember to discard the appropriate time derivative
from the flux to compensate this divergence).

We make no modification of the rest of H2 except to note that

&S

o) ot GBB,O - S 80’0

2

6VO - B,O dx + O,O

(c18)

6VO + Q dx + J BS.
When all terms are assembled and divided by 16x, the result is equa-
tions (67) and (68).
The energy flux (Poynting vector) is, from equation (C10),
OH

14 0 0

t 2 R O, i 2
F'° = -Eqr’om- 167N py U Mijg g Vv +32xNp U n,ig (Sa)ov g

(c19)
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From expressions similar to equations (Cl2) we find that

8H2 aL2

P o ——— =3 Ng
¢ T30 aqul i 15 dq I

- oNR% gH

aB,0 ou,0

1 1
32n g 28(po ©°n ga)(a\y’o+asa,o - sae,o)

321N py o (3 8{3’0 - 3S ae,o)

—QB 2 -l K
= - 2Nh 2Nh S
RO Hom ¥ EOR g Py

N

32nNg

bl
5(p0 UoNga) (zsvO + Q8Q + J 8S)

(ce0)

521N 0o U° (80088 ) - 85 80 )

+ (enE®P ¢! _onE™ gt )

The last term in this equation is exactly the one required to
cancel the divergence in equation (C12)! So when we discard it and
divide by 16xn we get equations (69) and (70) for the flux.

For completeness we write down what the first three terms of
H2(G) (eq. [Cl?]) become if we substitute for the s“aﬁ's their expres-
sions in terms of has. This is what in the body of the paper we call
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16x sG:

167 €g = - 4N

+ NE*® +NE ®w° + iNw°t R (ca1)

Similarly, the gravitational part of the flux (first two terms of

eq. [C20]) becomes

b oaroB e 3l —af I 1n T
16 ¥, = -Nh ,0 hw3 + 2Nh ,oha;B+ZNh h’ " . (c22)

c¢) Transfer of Energy Between Fluid and Radiation

The Hamiltonian formalism permits us to calculate not only the rate
of change of the total energy density g, but also the rate at which

different parts of ¢ change. In the body of this paper we define

€p =€ - &

1

B 0 1 3 0 i
= == HE(F) - NpyU Mijg E” + 2Np U “,15 (w)o (c23)

LU W3} YE 2L T WO
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where HQ(F) is the Hamiltonian obtained just from the Lagrangian &:

L S ok Oy o2
o HE(F) =-2g 8(pOU Ng )(av0 + Q8 + T 8S)

(c2k4)
- 2pOUON (3¢ 5’3,0 - 3S 59,0) - 8.

The time derivative of sF can be found in this manner:

The time derivative of H is of three parts: a part due to

2(F)
the time derivatives of the fluid variables, a part due to the time
derivatives of the gravitational variables, and a part due to its ex-
plicit time dependence. The last part is cancelled by the time deriva-
tive of the second and third terms in equation (C23) (by the construc-
tion of the previous section!). The first part is just a divergence

because H is the Hamiltonian that governs the time-derivatives of

2(F)

the fluid variables. Thus we have

1 0 i 0 i
Ba?['l's? Ho(r) = NegU My € €0 + 2Np U0 (w)o]
(cas)
K 1,08 Hotp) i i Ofa(r)

“Fr |kt Tex M ,0 5,08 T Tex ° aB,0 A
o

where ?Fk, which is defined in the body of this paper (eq. [707),

represents the energy carried out of some volume by the fluid itself.

o)

Now H does not depend upon § e’ from equation (35) we find

2(F)
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OH
1 %em) . e -3 b &

N'[uUaU68p04-pOUaUBBp-k2pouUa6UB
(cesb)

£ g 8
+ Op gaB phaB > TaB h] .

[From eq. (C24) one might conclude that H depends on 2 not only

2(F)
through & but through the first term, which includes % (po ©°n g%) :
This is not true: - 23'% 5(po UONg%) is the momentum conjugate to
6\';,8L2/66\31’o. It is a fluid variable, and its time rate of change is
included in :’r*Fk.]

Since the last two terms in €p also depend only on haB, we can
write down Og;/Ot immediately:

o L S op
b T ?F lk =Nh ,0 [“UGUB Spo - panUsSp.

+ 2001 U, BUg + 8P gy - % (p-p) Bog (ca7)

v
+ -é— po;.LgaBU”.thu ] .

Since the divergence of "JFk represents transport of energy by the
fluid, the total rate of transfer of energy from €p to &g is negative
of the integral of the right-hand side of equation (C27) over the

entire star.
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APPENDIX D

THE NONROTATING STAR

a) Arbitrary Pulsations

The nonrotating star has the background metric

2

ds™ = = ev dt2

v e ar® 4 1? (a9® + sin 9 dgP). (p1)

From the equation UaUa = -1 we find

PR B hog (D2a)
and
S0 - o B (D2b)
0 2 00 °
From Appendix B we learn
8S =-E-VS= -E S _ (D3a)
~ o~ ’
1 i 1 3
- 0 -
g 28(p U Ng2) = g 28(py8%) =- ¥ (o g) (D3D)
i i
BV = E 0" (D3c¢)

In order to put €p in terms only of g and haB it is convenient to

treat separately the following pieces of ep’

3 2k
A= - 2872 8(p, 10N g?) (8Y, + 7 8S), (D4a)
B—p—oN ¢ 8V 8V + 2Np.U_h’'sV. + NE-O- (5u)° (D4b)
= n > v g po g v p‘ e b
C o -N8p.8u + N6(pT)8S - Np U0S .7 .gtel (Dc)
= Po 0 P P At s e e

D= Nhdp + SN REIPR N(Té; R‘+p)(ﬁ-h2 + %has b,

I6x o ()

B)'
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i). A. From the above equations and Appendix B, we find

0 25 i
8(pyU'Ng?) = -82 ¥+ (pgE),
v/ 2 -v/2 v/2
5VO+J'SS=-e/ Bp--é-p.e/ hoo+e/ T 8S ,
and
v/2 -1 =V
A=--2e/ Y'(pog)[po Bp + zue hoo]' (Ds)

ii) B. This term contains the kinetic energy of the fluid:
SVG =U_ du + p SUU

v
=U05p+p6(gch)
(D6)
0 0 i v
=U_ OBn + 850 38U + pu U goi dv: - p U hOO
0

V/2 1 -y j
-8 e (Bp + zue hoo)+50ue

-v/2

i
(g:‘_.Jl sV - th)'
From this we find

oV 2 1 .=V 20 2 =y i j . o1 j
g 6V68Vv =-(Bu+zpe hoo) +u e [gijg ,og ,O'2h01§ ,O+h0 hOj]

and

av _ .=V 1, =V -V s Y 1
U, heV, = e " (Bu+sne Thyg) hygtue Thy €7 o -pe Thy byt

These combine to give

-v/2 v/2

- ]
hoo B - ppue Bo™ Rojy
(D7)
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iii) C. 1If we add to C the first term of A from equation (D5)

and call the result E, we get

-1 -1 % e
E = Np, " g728(py82)8p + Np,BT8S - NpOS’i T g g’

1 1 - 4
2 2 - o
+ N op g 2 5(g3) - NpoyU ( o) TS,i £ e .

U :
»]
The first three terms of this can be written as

L
2

L E:
N g 2 8(g2) 8p + N py . Bpg BP + N py (AT) 88,

where AT is the Lagrangian change in T,

oT
- ()

9%
1 0
=——2<E—S—> Ap.
Po P

By writing the second term in expression (D9) as
g X i
N py  Bpg &P - N oy~ (g 9p) 8p,

and using equation (D10), we find that E becomes

dp
=3 0 <1
E - N g <B?>SAPSP'N°O o0, (5 * 9P)

L L
+ 2Ng 2 5(g2) 5p - %NpOT(g-vs)(g- o) s
But Appendix B tells us that

A
&p == 7P [g- E 4B 5(35)] .

(p9)

(D10)

(p11)

(p12)

(D13a)
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Moreover, the definition of 7 is

_20 (e
7 = P <gp—o-) . (D].Sb)

Therefore E becomes

v/2 2 v/2 2 -1
=2 (96)% + 272 (9-8)(g- w) + &2 o5t (g* W) (g * vy
(D14)
1.v/2 ; y v/2 j\2
-3e’ " o T(g-v8)(g w) - & e’ yp (075
iv) D. Using the unperturbed Einstein equations, we obtain
v/2 -v/2 1 v/2 2 v/2 ap
D=e/ h8P+%e / pouhooh+§e/ (p-p)h -%e/ (p'p)h haB.

(Dp15)

If we assemble all these terms we obtain equation (83).

b) Radial Pulsations

If Nature is reasonable, the stability criterion proved in this
paper ought to reduce to Chandrasekhar's (1964) necessary and sufficient
~condition for stability against radial pulsations. In this section we
show_that ¢ does indeed reduce to Chandrasekhar's variational function.

We can choose a gauge such that the only two nonzero metric per-

turbations are (see, e.g., Landau and Lifshitz 1962)

-v
dv =e " hyy = - h, (Dlea)

and

8A =-e "h__ == h _. (D16b)



167

In this gauge we have (g has only an r-component)

8u=-—g—a(v'g+—é—67\)-§°Vu (D17a)
o ~ = 20
8p = - 7p (y- £ 3 BN) - g - vp- (D17b)

Since there is no dynamical freedom in the gravitational field (no
spherical gravitational waves), we ought to be able to express dv and

®\ in terms of g. We use the (g) and (;:) Einstein equations:

—15 (r e'7\)' - ——lé- = 8x TOo (D18a)
r r
and
ot e ol e
e (—r— v o+ r2) - 2 =8n T _ (D18b)

(where primes denote d/dr). Their perturbed versions can be solved to

give (cf. Chandrasekhar i961+)

BN = - 8nr M PoHE 3 (D19a)

dv'

Bﬁre-)‘ [ap - PoH <v' + %_—) g] . (19b)

We will never need dv itself; we will only need to substitute for dA.
To calculate SG we need the following §'s [which can be read off

the table of Christoffel symbols in Landau and Lifshitz (1962), §97]

Sooo =38V, Sroo = % gt [Bv' +v' (d8v-3A)]
2
0 e r el T o ‘k
8o =2 V' 801‘-25?\,0 8 g9 =re BA (D20)
g =32Men, =i srw = ¢ sia®9 e”MeA.
) .

All others that cannot be obtained from these by the symmetry
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S“ = S"L are zero.

ag o
With these we find

aB oM v alt v
T (8, 8'gp = Fyp By

(Dp21)
1 ] -A ' ' 1 _-A ' 1
=+ vt e (v-3n)(dv —67\)+-1—_e 5N (BA' +5v'),
and
LB g0 R gB S0, (D22)

Then from equation (67) gg is
€ = 3—— "/2 A (8v-3A)(Bv' =BA') + =— e "/2'7‘ SA(BA' +8v').  (D23)

By adding the divergence

" Eﬁ%—g_é iga eV/2-N [v'(&v--sk)2 + %-axa]i > (p24)

T

we can eliminate almost all terms that have derivatives of BA and dv.
[Note that the factors of g% in eq. (D24t) ensure that the expression
will be a divergence when integrated over proper volume in the hyper-
surface, g% dsx.] The result is equation (100).

To calculate g, we begin with equation (83). We shall need the

following field equationms:

1 s
mRoo“EeV?\[V"-%V'W 3 (v') +—V]=1’:ev(o+3p), (D2s)

—
|.-

2
167 Rer = 2,1[- L SR R +%7\']=&e7‘ (p-p) , (D26)

(63
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1 1 R 2 2 2 A
Ta;R:-ﬂﬁwy'-%v'K'+%(W)-+;(v‘-kﬁ+;§(l-e)}:%(p-Sm.
(Dp27)
Equation (83) becomes
-v/2 A-v 2 2 -1 2
e ep =pgre’ " (g o) +p(V-g)"+2(v-g)p' 40, P'ey €
-%QOTS'V'ge-uﬁvy-(pog) +pOT8SSV-5p87\ (p28)
1 2 1 2
+ g(p+3p)6v -L(p+3p)dVaEN - -8—(p-p+27p) A
By adding to €p the divergence
1 1 '
-1 o 1
g ¢ [u ev/ g2 Po & Sv] L (Dp29)
and by adding SF to SG’ we obtain for ¢
3 -1 -
e v/2 g=—>5e A (l+rv'+1+1tr27p) A BAdP
16nr
A-v 2 2
tpgre” T (g )+ (vrE) v 2(V-g)p' g (D30)

2

2
g B B e = AR T 8 v K,

All terms containing ®v have cancelled out by virtue of equations (D19a),

(D25)-(D27), and the equation of hydrostatic equilibrium,

Now we define

xs—lgev/a (rae'v/e E)' =v:g+ 30N (D32)
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The last step follows from equation (D19a) and the equation

. . A

v + A =8nrpype . (D33)
This equation and the useful identity

v' o+ =%e}\ (1+81tr2p) (D34)

=

both follow from the unperturbed Einstein equations. From the defini-

tion of y and equations (D31l) and (D34) we obtain for g

-v/2 A=V 2 2
eV e=pgue " (E5)"+ 7P X +2' gy
(D35)
_l_ L 2 L 1 ' 2__L ¥ wd 2
- 16n<r2+8ﬂp>6}\ +pop Py & 2po'I‘S vie .

If we now substitute equation (D19a) for ®A, add to ¢ the divergence
i L [}
- g [82 p' e §2] s (D36)
and use the unperturbed TOV equation, we find that ¢ simplifies to

2
-v/2 A=V 2 2 ! 2
e / €=polle (g,o) +P7X "%%‘}'E

(D37)
+&-EL§2 - B:te}\ pou.pg2 .

This is exactly the function whose positive-definiteness Chandrasekhar
(1964) proved was necessary and sufficient for stability. Our "energy
density" ¢ differs from Chandrasekhar's function by the "redshift"
factor ev/2’ which arises from our 3 +1 split of spacetime. Our '"total
energy' is the same as his: his is the integral of equation (D37) over
(-ug)% ¢k = h:te(v+)\)/2 r:2 dr, while ours is the integral of g over

3
g2 Ox = b eN2r2 de,
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CHAPTER 6

SUGGESTED LINES OF FUTURE RESEARCH
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I would like to list some interesting questions and research
problems suggested by the results contained in this thesis.

Chapters 2 and 3.

1. Van Dantzig (1940), Schmid (1967 a,b,c), and Seliger (1968)
have shown that the velocity-potential formalism can be extended
to charged fluids. Can the results of this thesis thereby be
generalized to stars with strong magnetic fields?

2, The remarks in Chapter 3 that there seems to be a deeper

canonical relationship between @ and B and between 6 and S raises
several possibilities. 1In the relativistic version, can ®ne find
some H such that OH/3Q = dB/dT and OH/dB = -d®/dT? 1If so, can
viscosity be introduced into the fluid by modifying H (perhaps

by making it time-dependent)? Can heat conduction be handled by

modifying a Hamiltonian for 6 and S in a similar manner?

3. Do the velocity potentials have a foundation in statistical
mechanics, i,e., are they the continuum-approximation limits of some
physically meaningful functions of statistical mechanics? If so,

does this shed light on the canonical relationships among the potentials?

4, Can the full velocity-potential variational principle be used to
investigate nonlinear wave propagation inside stars, and the coupling
of perfect fluids to gravitational waves?

Chapters 4 and 5

5. The problems that need to be solved before the sufficient
condition for stability can be made useful have been discussed in

Chapter 5.

6. When the energy functional of Chapter 5 is reduced to a
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function only of the dynamical variables, the arguments of Low (1961)
can almost certainly be used to show that an instability will arise
in a sequence of models only through modes that make the energy
vanish. The question then arises whether such modes need always
have zero frequency. If so, the test for stability reduces to the
search for zero-frequency modes.

7. In a sequence of models, do standing-wave zero-frequency modes
occur in exactly the same model as do realistic (outgoing-wave)
zero-frequency modes? In other words, does the complex frequency
of a realistic mode in a sequence of stellar models always approach
the origin along a curve tangent to the real axis (ratio Imw/Rew
approaches zero: mode equivalent to standing-wave mode)? If so,
the self-adjoint standing-wave problem can be used as a good test
for the stability of modes that become.unstable at zero frequency.

If ‘the curve is not tangent to the real axis, is its slope a measure
of the accuracy of the standing-wave approximation in pinpointing

the onset of instability?
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The canonical version of the vacuum Einstein field equations formulated
ten years ago by Arnowitt, Deser, and Misner (A.Da.M)l has stimulated several
attempts to quantize certain cosmological models, most notably Misner's so-
called Mixmaster Unil.verse.2 Some researchers have begun recently to extend
these methods to non-vacuum spacetimes; for example, Nutim earlier at this
conference described the canonical theory of a scalar field in Schwarzschild
spacetime. The purpose of this talk is to generalize the ADaM field equations
to include an arbitrary stress-energy tensor. This is not a "first step" to-
ward a canonical formulation of the full non-vacuum field equations; rather,
it is simply a possible starting point.

Essentially, the ADaM field equations are a linear combination of
Einstein’'s G“v = 0 equations that is particularly well suited to a "three-
plus-one split"” of spacetime, i.e., a division of spacetime into three-
dimensional spacelike sections labelled by the parameter time. The metric

of each section is the spacelike part of the metric for all of spacetime:

e bl h‘:d : s

(Superscript "M" denotes quantities referred to the full four-dimensional
spacetime, while no superscript implies three-dimensional quantities. Latin
indices run from 1 to 3, Greek from O to 3. Signature is - 2.) ADaM replace
the remaining four metric components - which give information on how one

hypersurface fits into the nextso with: a three-sgcalar

N = (- %20t (1b)

and a covariant three-vector

1 8 ° (1e)
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The ADaM field equations are derived from the usual variational principle,
bfhk(-hg)éduxno. | (2)_
Were one to use {kg"w} as the set of 1ndependenf. variables, one would obtain

W
hand, gives the ADaM equations.

G - O from Eq. (2).!‘ Using the ADaM variables {N’N:l’gid}’ on the other

To obtain the non-vacuum equations, let L be the Lagrangian for the non-
gravitational fields. Then Eq. (2) generalizes to
51-5(“R+2:L)(-hg)édux-0 . (3)

Using {hg“v} as the variables givess

c'uv =R Tuv > (%)

where

N 3L 2 3 3L
T o=LTg e@—=e 4 [(- g) T—"] . (s)
e u a Gpv (' hs)f a guvoa ’a

The non-vacuum ADaM equations follow from Eq. (3) if one uses the set {aas}
of ADaM variables, defined by

= (- hgoo)-i ; a =h 4 4

. ol Bg1 F %o ® By 38y ® Ry o (6)

00

b

It is convenient in what follows to ignore the symmetry of a__ and 8uv'

apg
For instance, variations of LY will be taken while holding a 5 fixed. The

i
final results will, of course, by symmetrized.

- Because the transformation from {hg“w} to {aap} is nonsingular and does
not involve derivatives of hg"w or explicit dependence upon the spacetime
coordinates, the equations obtained from varying 'aa will be the linear

combination’
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ahuv

81 oI
o BB e—
Bang g Eg“" - R

of the equations obtained from varying l‘g"“'. We therefore need only find

d l‘g""/asa,a, in which it is understood that the derivative is taken holding
all other "76 fixed. This is the key to the difference between Einstein and
ADaM: it means, for example, that o l‘gm"/ae.m. is not the same as

) hg°1/8 hgm - - kgoo hgn, because in the first case one holds {hsoo. l‘g
l‘gm, hgu} fixed while in the second case one holds {kgoo’ l‘gm, l‘gm, ugu}
fixed. Bearing this in mind, we write down the equations of transformation:

’

k pv

a - e, hgui hgvj + ltsou l&gov Ni NJ ; (8&)
i

a""" b op 4 vi L ouh ov

$E— = - g™ g g™ g (8b)
ol

ak * b pi b vo houhovni
e ne g .= 8 8 ; : (8e)
io
b pv

aa. =2 kgw l"g‘wﬂ . (8a)
00

It is straightforward to use Eqs. (7) and (8) to find the non-vacuum
ADaM field equations. (Here IS is the momentum canonical to 8y defined
by Eq. (9c) below. Indices on it and N, are raised and lowered by the
three-dimensional metric, covariant differentiation with respect to which

is dencted by a slash, "|".)

- i[ak + g-l(iia - xi‘jxn)] = - 2uﬂag . " (%a)

- ,13“ = nNg*('roi + Ni,roo) 3 (9v)
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3t - - ned (Y - 26 3p) o }Ng-igi‘j(xmlm - &%)

¥ 2N8-§(xmx-" % LI Bé(nlu T ML

+ (luNIm) ln - nilmlmd - Nilnﬂm

+ mg*('rm - rovivd) . (9d)

I wish to remark on a few features of these equations. First, as we
would expect, they do not contain L, since they are simply a linear combina-
tion of Eqs. (4). This means they can be used even if a Lagrangian is not
available. Second, Eqs. (9) are instructive in understanding even the ADaM
vacuum equations, eince the particular linear combination used by ADaM is
manifest. And third, the equations contain T, the contravariant components
of the four-dimensional stress-energy tensor. In many situations (e.g.,
scalar field) one might feel that the covariant components, ‘l‘w, are physically
more meaningful in a 3 + 1 split, in which case one can rewrite the equations
aa £ollovs. Using the unit normal to ths three-hypersurfacs, 10 = ~ ¥ ‘g,

one can define a "preferred" energy and momentum density for the matter:

62 qana b

_ ; (10a)
el
@1 n Ty . (10p)
Then the streas tensor in the hypersurface is
5; - "-rik : (10¢)

In terms of these quantities, the relevant parts of BEgs. (9) become
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- 20Pa?1%° - - 2ngde ; (112)
lNg*(TOi' I e lgéP‘ ; (11b)
Cangdrtd - widr) - egfH L WP L WPY) (11c)

where all indices on é) and J are raised by the three-dimensional metric.
Steps toward a full canonical theory could well begin here. One method

would be to specify in advance the motion ot the matter in terms ont‘ the metric

tensor (e.g., homogeneocus cosmology), and then to solve the constraint Egs.

(9a,b) by analogy with vacuum ADaM. A more general approach must include

a canonical formulation for the fields present in spacetime. In any case,

the basic gravitational constraints and dynamical equations will be Egs. (9).
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FOOTNOTES

The beat introduction to ADaM is the article by R. Arnowitt, S, Deser,

and C.W, Misner in Gravitation, edited by L. Witten (John Wiley and

Sons, New York, 1962), Chap. T.

For the Mixmaster Universe, see C.W. Misner, Phys. Rev. Lett. 22, 1071
(1969). For its quantization, see C.W. Misner, "Quantum Cosmology I"
(preprint). ,

J.A. Wheeler in Relativity, Groups, and Topology, edited by C. DeWitt

and B, DeWitt (Gordon and Breach, New York, 196k) p. 346,

L. Landau and E. Lifshitz, The Classical Theory of Fields, (Addaison-

Wesley, Reading, Massachusetts, 1962) §95..

ibid., Sok



