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ABSTRACT 

The equations of relativi.Stic, perfect-fluid hydrodynamics 

are cast in Eulerian form using six scalar "velocity-potential" 

fields, each of which has an equation of evolution. These equations 

determine the motion of the fluid through the equation 

Einstein's equations and the velocity-potential hydrodynamical equations 

follow from a variational principle whose action is 

I = 
1/2 4 

(R + 16~ p) (-g) d x 

where R is the scalar curvature of spacetime and p is the pressure of 

the fluid. These equations are also cast into Hamiltonian form, 

. " 0 00 -1/2 with Hamiltonian density -T0 (-g ) • 

The second variation of the action is used as the Lagrangian 

governing the evolution of small perturbations of differentially 

rotating stellar models. In Newtonian gravity this leads to linear 

dynamical stability criteria already known. In general relativity 

it leads to a new sufficient condition for the stability of such models 

against arbitrary perturbations. 

By introducing three scalar fields defined by 

P . ~ = !J. + 'V'~(!)C;.t, + ~Xy!) 
rv ,..,. 

(where~ is the vector displacement of the perturbed fluid element,P is 
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the mass-density, and i is an arbitrary vector), the Newtonian stability 

criteria are greatly simplified for thepurp.se of practical applications. 

The relativistic stability criterion is not yet in a form that permits 

practical calculations, but ways to place it in such a form are 

discussed. 
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CHAPTER 1 

INTRODUCTION AND OVERVIEW 
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The investigations reported in this thesis began two 

years agQ as a search far stability criteria for relativistic stars. 

Thorne and Campolattaro (1967) had derived the equations governing 

the evolution of small nonradial perturbations of fully relativistic, 

spherically symmetric stellar mod.els. These equations have yielded 

much information about cenvection (IslS.Jll 1970) and about the 

emmission of and damping by gravitational radiation (Thorne 1969, 

Ipser 1971), and it was expected that they would also yield inf or-

mation about the stability of stars against such perturbations. 

Accordingly, I attempted to use the techniques pioneered 

in Newtonian gravity by Chandrasekhar and Lebovitz ( see the ref-

erences in the introduction to Chapter 4) to derive stability criteria. 

Basically, the idea was to find a Lagrangian from which the Thorne-

Campolattaro equations could be derived, and then to obtain stability 

criteria that used the associated Hamiltoni.an (cf. the theorems of 

Kulsrud (1968)]. But it soon became apparent that there did not 

exist a:rry simple polynollial Lagrangian for the Thorne-Campolattaro 
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equations. 

We now know the reason for this: Thorne and Campolattaro 

had incorrectly formulated the perturbation equations as a fifth-

order system of coupled partial differential equations. The equations 

can acturally be formulated as a fourth-order system (Ipser and 

Thorne 1971), which presumably does admit a Lagrangian (though 

this has not yet been verified directly). At the time, however, 

the puzzling absence of a Lagrangian led me to search for alternate 

ways of deriving stability criteria, independent of the Thorne-

Campolattaro computations. 

The search has been both interesting and fruitful, with 

implications that may axtend beyond the theory of stellar '1tabili ty. 

The search led first to a new formulation of the equations of re-

lativistic perfect-fluid hydrodynamics, based upon the nonrelativistic 

work of Seliger (1968) and Seliger and Whitham (1968). This 11veloci ty-

potential" version of hydrodynamics had actually been developed 

independently by Schmid in special relativity in a series of papers 
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beginning in 1966 (§lee Schmid (1970 a,b) for references]. The general-

relativistic version of velocity-potential hydrodynamics is explored 

in Chapter 2, which was published in Phys. Rev. D. g_,2762(1970). 

For our purposes the meat interesting feature of velocity-

potential hydrodynamics is a variational principle from which its 

equations can be derived. In Chapter 3 the variational principle 

is used to cast the equations in Hamiltonian (Poisson-bracket) form. 

This forms the foundation of our approach to stability in Chapter 5. 

Chapter 3 has been subnitted to the Physical Review. 

Chapter 4 considers the stability of stars in the framework 

of Newtonian gravity. '!'he second variation of the Seliger-Whitham 

Lagrangian is used as the Lagrangian f Gr the perturbations of an 

arbitrary differentially rotating star. Stability criteria derived 

fro this Lagrangian are identical to those derived by previous 

workers using the techniques of Chandrasekhar and Lebovitz (see 

references in Chapter 4). 

In Chapter 4 I also present a technique that hopefully 
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will permit a significant simplification of the calculations whereby 

Gne tests realistic stellar models for stability. 

Chapter 5 investigates the linear pulsations and stability of 

ful.ly relativistic, differentially rotating stellar models. It and 

Chapter 4 have been sul::mitted together to the Astrophysical Journal. 

AB in Chapter 4, the second variation of the velocity-potential 

Lagrangian . is used as the Lagrangian for the perturbations. This 

is equivalent to the Lagrangian I was unable to obtain from the 

Thorne-C&11polattaro equations, with a bonus: it is applicable to 

rotating stars as well as to the nonrotating models considered by 

Thorne and Campolattaro (1967). 

The sufficient condition for stability that follows from the 

Lagrangian is the .first exact criterion anyone has obtained for the 

stability of relativistic stars against aspherical perturbations. 

It is unfortunately not yet in a useful. form for astrophysical appli-

cations, because of complications introduced by gravitational radiation. 

At the end of Chapter 5 are discussed the remaining steps that must 
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be performed before the criterion is ready for astrophysical use. 

In Chapter 6 I suggest some possible future applications of 

the results of this thesis, and I mention some problems that must be 

solv94 before the theory of the linear dynamical stability of relativistic 

stars can be considered in good shape. 

The appendix is an article that will be published by 

Springer-Verlag (Lecture Notes in:. Physics series) in the 
, I 

the Pittsburgh Conference on R~tivity,, July 1970. Its subject is 

not really germane to velocity-potential hydrodynamics,, but because 

it is referred to several tillles in Chapter 3,, and because it is not 

yet readily aTailable in the literature , I have appended it here. 
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CHAPTEE '2 

PERFECT FLUIDS IN GENERAL RELATIVITY: VELOCITY POTEmIALS 

AND A VARIATIONAL PRINCIPLE 

Published in the Physical Review D, l,, 2762 (1970) 
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Prliited la U. 5. A. 

Perfect Fluids in General Relativity: Velocity Potentials and 
a Variational Principle* 

BDNAllD F. Saron, Ja.t 
Califoni4 lrutilMI• of T«ln1ology, Pasadtna, California 9JJ09 

(Received 9 April l9i0; revised manusaipt received 22 June 19i0) 

Tbe equations or hydrodynamics for a perfect fluid in general relativity are cast in Eulerian form, with 
the four-velocity being exprnsed in terms of six velocity potentials: U,=1c' <<1> .• +o,j ,+BS.,). Each of the 
velocity potentials bas its own "cquation of motion." These equations furnish a description of hydrody­
namics that is cquivalent to the usual cquations based on the div~l'g"nce of the stress-<!ncrgy tens~r. The 
velocity-potential description lead1 to a variational principle whoSC' Lagrangian density is especially simple : 
.C• (-il''"(R+16r,), 11·here R is the scalar curvature of spacetime and -' is the pressure of the fluid. 
Variation of the action with respect to the metric tensor yields Einstein's licld equations for a perfect fluid. 
Variation with respect to the velocity potentiaJs reproduces the Eulerian equations of motion. 

L IRTRODUCTI01' 

I N this paper we introduce a velocity-potential 
reprmentation for the four-velocity of a perfect 

fluid in general relativity. This representation permits a 
new formulation of relativistic hydrodynamics, in 
which the velocity potentials themselves have first­
order "equations of motion," and in which the changes 
of the four-velocity with time are expressed in terms of 
Eulerian' changes in the potentials. Einstein's field 
equations plus the equations of evolution in this new 
formulation can in turn be obtained from a variational 
principle whose Lagrangian density is 

.C•(-g}1"(R+l6rp), (1.1) 

where R is the scalar curvature and p is the fluid's 
pressure. 

Velocity potentials are not new to Newtonian hydro­
dynamics, but they have been of limited usefulness. 
It is well known that irrotational motions can be 
derived from a single potential, v-~+. In 1859, 
Clebsch1 proved that a11y (Newtonian) motion can be 
represented by three potentials: 

(1.2) 

The Clebsch representation had the disadvan.tage that 
+,a, and fJ were not physically useful individually; in 
particular, there were no Individual equ;i.tions of 
evolution for 4>, a, and fJ that could give changes in v 
directly, without reference to the usual equations of 
hydrodynamics. 

•Supported in part by the National Science Foundation 
[GP-15911, GP-9114) and the Office of Naval Research [Nonr-
220(47)1 

t NDl:A Title IV Predoctoral Fellow. 
•History bas men:ileWy given us hair a dozen different uses for 

tbe names of Lagrange and Euler. The adjectives Lagrartgiart and 
E.J.un. refer, respectively, to ob!ervers comoving " ·ith the fluid 
« lixed with respect to some arbitrary reference frame through 
wbida the fluid 8o11-s (see also Re£. 9). The .functional who5e 
intqral la cxtn:mized in • variational principle is the Lagr1111~iart 
~,. Finally the cquatiorts that e:<preas the extremal conditions 
are the Likr-Z..tNlllC• cquations. Bteause ..-e wish to emphasize 
tbe Eulerian nature of the velocity potentials, ..-e 1hall hence­
fQn)a lpe&k al their equations of nolutiC'll rather than of their 
equations al lfloliola. 

•A. Cleblcb, J. Riene Agnew. Math. S6, I (1859) . 

By contrast, the Newtonian velocity-potential 
representation introduced by Seliger and Whitham1 in 
1968 avoids this difficulty. By using five poten.tials 
(two more than the minimum necessary), Seliger and 
Whitham were able to give to each potential an equation 
of evolution and to some an independent physical 
interpretation. For example, one poten tial is the 
entropy ; another is the "thennasy" of van Dantzig.• 

The representation presentoo in this paper is a 
relativistic generalization of the one given by Seliger 
and Whitham. The sb: velocity potentials (one more 
than in the Newtonian case because we have a four­
velocity rather than a three-velocity) all have equations 
of evolution that determine how they change with time . 
These ·equations constitute an alternatire to the usual 
equation.~ of hydrodynamics (i.e., to those based upon 
the divergence of a stress-energy tensor), rather than 
simply an adjunct. 

Seliger and Whitham derived their equations from a 
variational principle. \\' e here generalize their principle 
to include the effects of a general-relativistic gravita­
tional field. In additi n we place the velocity-potential 
equations of evolution on a firm foundation apart from 
the variational principle by giving a rigorous proof that 
they are . equivalent to the standard equations of 
hydrodynamics. If the reader desires a more intuitive 
feeling for why the fluid's Lagrangian density should 
be simply the pressure, or for how one oribrinally came 
to the velocity-potential representation, he is invited 
to read Seliger and Whitham and the references they 
cite. 

The present paper is divided into two main parts 
plus four Appendixes. The first part discusses the 
equations of hydrodynamks, first in their standard 
form and then in terms of velocity potentials. The 
proof of equivalence between these two versions of 
hydrodynamics is left to Appendix B. The second main 
part presents the variational principle. Appendix A 

• R. L. ~liger and G. B. Wbitbam, Proc. Roy. Soc. (London) 
AlOS, I (19681. Their representation w:t.S based i" pnrt on 11·ork. 
by C. C. Lin, in Liquid II J;.,,,. (lntern:i.tional School of Physics 
"Enrico Fermi", coune 21), edited by G. Careri (Academic, New 
Yorlt, 1963).!. p. 93. 

• D. van uan~&ig, Physica 6, 693 (1939). 
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contains PfalT's th1:orcm, an old thL'Urcm in <lilTert:ntial 
fonns that is l'SSential tu understanding the vclndty­
potential representation; we include it here (without 
proof) because it is not \\·di known to physkists in its 
most gcner.il Conn. ,\ppcn1li.x..:s C and D discuss in 
detail questions that ma~' interest only the spt-cialist: 
respecti\·ely, the uni<p1enl·~5 of the vclodty-potential 
representation an<l an inilial-valt<c fonm;l:Ltiun of the 
equations of evolution. 

A word about conventi:ms: \\"c use ''gcomctri7.e<l 
units," with c=G=l. Grcc·k inclic<'S run from 0 to 3; 
Latin from l to .t The 1111:tric has positi\·e signalt:re, 
so that timelike intervals arc neg:iti\·c. We <lcline proper 
time.,. by 

(1.J) 

so that dT is real and positive for a particle movin;; 
forward in time. \\'e adopt the notation that D/ DT 
means covariant differentiation :dung a world line, 
while d/dT means p.'lrtbl differmti:ition: a semicolon 
denotes a general covariant dcri,·ative and a comma 
denotes a general ·partial derivative. Thus, the four­
velocity is defined as 

•lt rest in the ftuid. Then the density of total mass­
energy isp•po(l+ll). 

\\'e assume an tquation of state of the fonn 
f'•p(po,n>. Such a two-parameter expression is 
sutlicicnt for any one-component fluid. 1 The applicabil­
ity uf the results of this paper to a real baryonic ftuid 
depends in part on how well a two-pammeter equation 
of state characterizes the fluid. 

The amount of energy per unit rest mass, &q, added 
to the ftui<l in any quasistatic process is (first law of 
thermodynamics) 

&q=-dil+pd(l/po). (2.1) 

Because of the two-p.'lrameter equation of state, Pfaff's 
theorem (Appendix A) implies that there exist functions 
S{po,n) and T(po,n), the specific entropy and the 
temperature, respectively, such that1 

dn+pd(l/p0) aTJS-&q. (2.2) 

If one now defines the specific inertial mass by7 

,.. .. (p+p)/p,- i+n+p/po, (2.3) 

one c-.in use dp to eliminate dn in Eq. (2.2) and obtain 

so that we have 
u·-c1.t"/11T, (t.4) 

d,..-p.-•dp-TdS. 

(1.S) We will often use this in the fonn u·u.- -1. 

(2.4) 

Then for any function X, (2.S) 

DX/DTE U•(X);o 
and 

(1.6) Clearly one can express p0 and n as functions of"' and 
S, so that one can put the equation of state in the fonn 

(1.7) 

Finally, four-vectors are written in boldface sans 
serif: A. Three-vectors appear in boldface: A. 

D. RELATMSTIC THEORY OF ONE­
COMPONENT PERFECT FLUID 

A. Standard Ver:;ion 

T""1tioJy11umics of 011e-C om po11c11l Per/tel Fluid 

\Ve consider a perfect fluid composed of baryons. 
Because baryons can undergo tmnsmutation, the true 
rest mass of a group of baryons may not be conserved; 
but their baryon number .\' is conscrvccl. Hence, we 
define the {consenre<l) rest mass of a s.'lmple of matter 

· containing N baryons to be mu.\', where m 11 is the mass 
of a hydrogen atom in its ground state. The difference 
between the total mass-cnergv and mu.\" is called the 
internal energy U. Thus i.f indmks the difference 
between "'"N and the true rest mass of the actual 
atoms and baryons; and it also inclt:dc:s the cner;;y of 
electron-positron pairs, of Jlll·sons, nf photons, of 
thermal motions, nnd of "zero-point" Fem1i-:r.1s 
"motions." We denote hy Pu the 1k·11sity oi n·~ t mass so 
defined, and by firJ l ','11111.\' the spcdt'1c inkrnal cnl·r;!y, 
both as measured in a local incrti.'1 frame momcnta:ily 

p-p(p,s). (2.6) 

Slress-E11ugy Te11sOT a11d Eqtialions of .\{olio11 

The relativistic one-component perfect Ruid is defined 
by its equation of state, Eq. (2.6), and by the stress­
energy tensor 

T"'-<.P+p)U•U•+Pt"' 
-po11U•U•+Pi"'· 

(2.7) 

In a locally comoving inertial frame, T,.. is diag(p,p,p,p ). 
Because the tluid is perfect, the stress-energy tensor 

• F.. Fermi, T/ie,,n11dyflamics (Dover, Xew York, 1936), p. 91. 
• For a many-component system (i.e., one whose equatioo of 

•late has more than two independent parameters), i'faff's theorem 
'"""' not sulfice to re•1uire &1 = TdS, i.e., to ensure an intei:rating 
factor for a.,. O:ie must then in\·oke " ,.·eak form of the Sttond 
Jaw of tht•rmn·l\'n:imics. Se.: S. Chandrasekhar, A11 /11/rt•irlcli~11 
'"the St11dv ,,,· Siclla• Sl•ucl1<•• (Dover, Xcw \'ork, 1939), Ch:ip. I. 
Fnr an iS<;laied o~e-component tluid, Plaff's theorem makes the 
secon1l law a mathematical i1lcntil\·. 

'The qu:intity P+P plays the 'role of inertial mus per unit 
\'olume in a perfect lluicl. s...., t:q. (2.19) of this P.~l"'r, or the article 
hy K. S. Thorne in lli~/i-farcr~y ,1 slrlfpl1yJics, edited hy C. DeWitt, 
t:. Schatzmann, and P. \'cron !Cordon and llreach. Xew \"ork, 
tlJ67), Vol. J. I thank Prolcssor Thorne for pointini: out to me that 
111 1111is11!so the injtetiou cncr~y at constant cntrorv: 111.- ener1t,\' 
n.•1uir.:1l to ctt11te one baryon ll'l<l place it in the 1)uid with the 
aanic cncri:" I mull) n n«ii;bhoring b.iryona, doing work •11P P• 
t.> .:n:atc th;• ~me ,·olume (INu pal for it u the other Laryona ha\·c. 
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contains no viscosity or ener1ry-transport tenns. 1 The 
conservation of baryon number, rewritten in tenns of 
rest mass Po, is embodied in the equation 

Nonnalization of the four-velocity reads 

u·u.--1, 

(2.8) 

(2.9) 

covariant differentiation of which yields the useful 
equation 

u·u .... -o. (2.10) 

The equations of motion . obeyed hy the fluid nre 
eitpressed in conservation fonn by requiring the strcss­
energy tensor to be divergence-free: 

(2.11) 

These four equations supplcnu:nh.-d by Eqs. (2.8) and 
(2.9) detennine the motion of a lluid whose equation 
of state is known. 

The physical meaning of the four equations (2.1 t) 
becomes clearer upon separating out their components 
parallel and perpendicular to the four-velocity. The 
equation parallel to U, 

reduces [by Eqs. (2.8)-(2.10)] to 

By Eq. (2.5) this becomes 

PGTU·s .• -o. 

(2.12) 

(2.13) 

(2.14) 

Thus, the motions of a · perfect fluid conserve the 
entropy per baryon. Because aq = TdS, this confim1s 
that no heat flows in or out of am· clement of the 
perfect fluid during its motions. · 

One can construct the three independent equations 
of motion perpendicular to U by using the projection 
tensor 

(2.15) 

The equations are 

(2.16) 

By using Eqs. (2.8)-(2.10), one can reduce this to 

(2.17) 

(2.18) 

In a locally comoving intcrtial frame, P.• picks out the 
sp11tial gradient of p. If v is the (instantaneously zero) 
sp11tiru part of U, Eq. (2.18) bt.'\:omes 

-"Vp•(p+p)JT/JI. (2.19) 

1 Newto11lan f>H{ttt lluiil• 1>C?rmit lw11t con1luctlon. In ttlath·lt", 
llowewr, conJuctlon In•'• to a n11n•rro momentum de~alh· aml io 
aniaotroplc •t~ In the mt Imme of the bllryon1; "it must 
tlwttfntt M nclu1ltd !rum /)tr ittl fluill• in ttlRlivitr. 

This is the familiar force law; it justifies calling (p+ p) 
the inertial mass per unit .volume. 

B. Velocity-Potential Version 

Ytl«ity-Polenlial Represt11lalio11 a111l 
F,quat io11s of J[ ol io11 

One usually interprets the equations of motion in the 
"standard version" in a I.agr.ingian sense. One regards 
the four-velocity as vector representing the change of 
a particle's position in proper time. It is a v1:ctor "field" 
only in the continuum approximation, in which one 
overlooks the fact that the tluid is "really" compos1:d 
of discrete partick-s p.'lckcd nry closely together. 
Because ont: tends to regard the four-vdocity as a 
little arrow carried along by the particl<:S, one also 
tends to interpret the equations of motion in tt:mis of 
what happens to little fluid elements. Thus, Eq. (2.19) 
dl-scribes the n.'Sponse of a ftuid element to a pressure 
gradient, and Eqs. (2.8) and (2.1-l) require the conserva­
tion of the number of barrnns and the amount of 
entropy contained in a fluid ~lement. 

The "velocity-potential version" of hydrodynamics, 
by contrast, lends itsell most naturally to an Eulerian 
interpretation. One regards the four-velocity as a 
vector field over spacetime. As such it can be represented 
in tenns of scalar fidds and their gradients. While the 
particles move through space, the scalars at a given 
point of space simply change their amplitudes with 
time.• 

According to Pfaff's the->rem (Appendix A), four 
potentials are sufficient to describe the four-velocity : 

u.-AB .• +CD .•. (2.20) 

While four such potentials are guaranteed to exist, 
they may not ·be physically useful. In this paper we 
introduce instead a six-potential representation that 
has a ready and important physical interpretation. 
This representation is10 

(2.21) 

The potentials ,. and S are just the specific inertial 
mass and the specific entropy as defined above. The 
physical significance of the remaining potentials q,, a, 
/J, and 8 11 will be explored below. 

t The distinction between Eultriitn and Lagrangi11n coordinat•s, 
11·hile U!!eful, is not rigid in gcn•ral relativity, because all equations 
are independent of coorclinate system. Lagrangian interpretations 
are valid only in comoving frames. The "Eulerian" equations for 
the velocity potenti:ils are i:oo·I in a•y ttfettnce frame ; in fact, 
however, they are most easily interpreted in a comoving frame. 
(Stt the !tttion 011 Phy!lic11I Interpretation below.) 

•SclillCI' and Whith1m rqihce the term.S .• with -SB .• in their 
Newtonian rq>mientatiun, and thus achiC\'e the nonrel>tivi•tic 
Yenion ol Sc:hmid't representation (Rel. 26) . Note al«> th•t F.q . 
(2.21 l It a loul e<juatlon; the e•istence ol 11 glob:il act of polr11ti11I• 
It not gu11rantttd. 

u To m\' lr.nowle lge, D. van Dantilg (Rd. -&) was the 6rst to 
define I . He called It the "therma~y . " 
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PE R F E CT. F L U I D S I N G E N E R A L R E LAT I V I T V • · • 

The equations of evolution in this representation are 

(poU•);.-0, (2.22a) 

u·s,.-dS/d.,.-o. (2.22b) 

u•a,.-da/d.,.-0. (2.22c) 

U•fJ,.-dfJ/J.,.-o, (2.22d) 

,, .••.• -J./J.,.- -,.. • (2.22e) 

u•s .• -ds/J.,.-T. (2.22f) 

From Eqs. (2.21), (2.22b), (2.22d), and (2.22e) follows 
the result 

u·u.--1. (2.23) 

There is no equation for ,.. Its evoluthn can be com­
puted from Eqs. (2.22a), (2.22b}, and the equation of 
state. 
Appendi~ B contains the proof that these velocity­

potential equations are equivalent to the standard 
version of the equations of motion. 

Plrysieal Sipijicance of V docity-Poltntial V ersio11 

Cinlllatio,.. The representation Eq. (2.21) is well 
suited to Taub's12 Eulerian anah·sis of circulation. Taub 
defines a current vector v-,.l.J,1a which in our rep­
resentation is 

v •• ,,.u .-•.• +atJ .• +ss .•. (2.24) 

He \hen defines the circulation tensor n.A- 2Vr.;A], 
where square brackets denote the antisymmetric part. 
In our representation this becomes 

D.1•2Y1r.Al-2ar.Afl .• 1+2B1.As... . (2.25) 

Taub then defines circulation C in the following manner. 
Consider a spacelike hypersurface 2: through the world 
lines of the ftuid's particles. A closed curve A in 2: may 
in general enclose some circulating fluid. If >. is the 
ordinary length parntneter along A, and l"'=-1/X"/d>. is 
the tangent vector to A in %, then the circulation C Is 
defined as the integral 

c-f .. v J•J>. c2.26) 

around the closed curve. From Eq. (2.24) we see that 

c-f ';11fl:..+ f :i1s.,, c2.21) 

•A.H. Taub, Al't'h. Ratl. l\lech. Anal. l, 312 (1959) . 
. •Br Ref. 7, •aV is the four-momentum :a h:aryon mu5t have 
to be m~ed into the Ouid. In the nMrelath·istk limit (,. - I); 
we have V- U. Thus, both U and V are relath·istic genernliz:i­
tiona of the thn:e-velocity " · In cil't'ulation it is more u5eful to 
deal with V (lee Ref. 121. For enmrle, Bemoulli'1 equatio'I for 
llOlllte.dy lnOtatlonal iientroric flow generalizes u1ing V be­
cauae In that cue It can be derived fron1 a single rotcntial • · .\s 
another example, the tan~ntial COm£'0'1ent of V is cun'!rl'\"~I 
aa'Oll shock frunta. The simple lorm the rim1la_tion e11untions 
usume In terms of \'Clocity £'0tentia 11 is another Indication of the 
•tility of v. 

where the subscript A on 1//J and JS means that the 
differentials are directed along the curve. Clearly, if 
a is a function only of {J, and if either 8 or S is a con­
stant, 14 then C will be zero for any choice of !: and .\. 
.Jn this ease, n •• is also zero. One can easily see, then, 
that C will vanish for n:ery curve A in tttry hypersurface 
:? if and only if n •• =O, "·hich is a result Taub also 
mentions. This establishes the significance of n •• in 
circulation. 

In order to see the roles of a, {J, 8, and S more clearly, 
let us lock at the circulation in a momentarily comoving 
loc:il Lorentz frame, with g.,a=diag(-1, 1, 1, 1). Then 
V•• -V0 .;.,., V;= V, -o. Define the vorticity vector 

V'-!(-g)-112e .. A<U,UA;• 

-1,.-~(-g}-"'e .. A<V Jh. ' 
(2.28) 

where (-g)-112e .. ~• is the completely antis)mrnetric 
contravariant tensor. In the comoving frame, because 
V;•O, V'. has vanishing time component. In fact, we 
have 

(2.29) 

(2.30) 

That is, if VSmO, surfaces of constant a and f3 intersect 
along vorteit lines, which are carried along with• the 
ftuid bf-cause da/ dT-ilfj/ d.,.-0.16 If initially a- const, 
/J=-const, but S;i<!const, then surfaces of constant 8 and 
S determine vortex lines whose orientation with respect 
to the fluid's particles changes in time because d8/ dr"" T . 

Uniqut11tss of lite r:tlocity-pole11tial represe11talio11 . 
Formulation of Eqs. (2.22) In terms of initial values 
will give us more insight into the velocity-potential 
representation. The first-order nature of Eqs. (2.22) 
makes an initial-value approach especially simple for 
the restricted case of no sell-gravitation, i.e., the case 
where the tluid does not disturb the background 
geometry of spacetime. The case with self-gravitation, 
although important, is mo~e difficult and would not 
add substantially to our understanding of the potential 
representation itseU, so we ignore. it here. 

The first question-which has nothing to do with 
self-gravitation-concerns the uniqueness of the rep­
resentation. Given a physical situation, how much 
"gauge freedom" does one have to choose the initial 
values of the potentials without changing the physical 
situation they de5crihe? If any such freedom exists, 
Eqs. (2.22) clearly imply that it lies only in the choice 
of initial values: The evolution of the potentials away 
from their initial values is fully determined by the 
physical situation (U, /J• and T). Before we can deal 

"If I and S are not both constant, ndther can be a function 
only of the other, because dR dr • T while dS 'dr •O. If eit))er of 
them is constant, the seconJ integral in Eq. (2.27) i• zero. Only 
ii T•O can I he con5tant. 

" Circulntion 1lue to a and fJ will not chAni;c In a comovin11 
frame. Such circulation may, however, emit 11r:l\"itntionlll ratlin­
tion and be damped out as -n by a di.iant, noncomovin1 
ot.erver .. 
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with this evolution we must resolve the question of 
gauge freedom among the potentials. 

There is no gauge freedom in " and S because 
changing tht:m changes the physical situation. The 
question Is whether there are two scls of potentials, 
(9',a./J,fl) and (•' p' .fl',fl'), differing in initial values, 
which give the same U when substituted into Eq. 

· (2.21) using the same " and S. Two such sets are said 
to be equivalent. The equivalence transformations by 
which one set is obtained from another are discusS(.-d 
in detail in Appendix C. These transfom1ations are 
essentially contact transformations. The result of 
interest here is: T/1e itlitial rc1l11e of a11y 011e pote11lial 
_, 6e chosn• arbitrarily; tl1e remai11i11g initial ralties 
on tlmt conslrai11ed 6y the pliysica/ co11Jition of tlie fluid 
(6y U, "• S, and ll1e equation of stale).11 

Let us <liscuM the physical meaning of the equi .. •alence 
transformations. Circulation in the tluid is an observ­
able and hence must be preserved by· the transfom1a­
tion. In the isentropic case (S .. -0), circulation proceeds 
around intersections of surfaces of constant a and {J. 
The effect of the equivalence transfomiation Eqs. 
(C2l) is to preserve these intersections while changing 
a and{J. 

Intersecting surfaces of constant fl and S determine 
a kind of thermal circulation. Because physical condi­
tions fix S, equivalence transformation on fl but not on 
cs and fl must leave Vfl unchanged except for parts 
parallel to VS. This is why requiring any equivalence 
transformation to leave a and fJ unchanged leads to 
the equation B'-1+ f(S). 

A general equivalence transformation changes a and 
/J as well as I, but it keeps the sum Ta xVfJ+Vfl xVS 
constant by transferring some circulation from one 
term to the other. The two types of circulation cannot 
therefore be separated from each other uniquely on any 
given spacelike hypersurface; they can be distinguished, 
however, by the way they change as the fluid moves off 
that hypersurface. 

Ralrided i"ilial-Nlue form11/alio11. Sup~ one 
chooses initial vulues of the velocity potentials on some 
initial hypersurface; what kind of initial.value informa­
tion is necessary to determine a unique fluid motion in 
the background metric? Are the initial values of the 
six velocity potentials "• S, +, a, {J, and I sufficient; 
or are their derivatives off the hypersurface also 
necessary? Once the set of initial values is chosen, the 
equivalence transformation of Appendix C can lead to 
other sets that give the s.'\Itle fluid motion. N everthelcss, 
each set can be so chosen that it determine.; one and 
Ollly one fluid motion. Appendix D presents two 

"Tbe remaining lnitilll valurs Arc constrained but nnt fully 
determined br. tho: ph)'sics. Stt Ref. JS. :\lu\-eover, the arbitruy 
clloice al tbe nililll value al one potcnti:il "'"' !Clld to dh-ert:encrs 
In otbers. Tbao dlvcrgenca • ·ill not AITcct any obecrv:at.ks like 
U or tbe circulation. •·OI' e:.:unplc, il the term n/J., is nonttro in 
- repracntatlon, cboosing a'-0 ,.m not ~ncr:illy climh11te 
tJils term; it will only force ft lo dh-crge in order to keep a'~ .. 
- &lid 6nite. 

different initial-value schemes whereby the four-velocity 
and thermodynamic state of the fluid are detem1inCd 
throughout spacetime by the specification of certain 
data on an initial hypersurface. The first scheme shows 
that specif}ing values of all six potentials and th~ 
equation of state is sufficient. The second scheme shows 
that specifying the thermodynamic condition (p and S) 
is not essential: The equation of state, the initial values 
of ti>, a, {J, and fl, and the derivatives of any two of those 
four potentials normal to the hypersurface 11·iU fully 
determine"• S, and U. Appendbc D also leads to an 
ob\ious consistency condition on the initial values: 
Tlze i11itial ra/ues of"• S, ti>, a, fJ, aml (J musl 6e so clzosen 
tlial Ille lliree-space rtlocily of tile fluid parallel lo ihe 
i11itia/ /1ypersurface mm.·liere exceeds tlie re/ocily of light. 

Once sufficient Cauchy data have been specified, the 
subsequent evolution of the velocity potentials is most 
easily discussed from a Lagrangian point of view. From 
Eqs. (2.22) one can see that the initial values of a, fJ, 
S, and baryon number N are carried along by the fluid: 
Each fluid element sees no change in these four func­
tions. They are therefore "initial-value parameters." 
By contrast, the functions (J and • are "dynamical 
variables": Their evolution is determined by the 

· thermod}11amic condition of the fluid. Changes in them 
cause the changes in the motion of the tluid seen in a · 
comoving (Lagrangian) frame. They are dynamical 
in the sense that the complete history of a fluid element 
can be given by a plot of I against +, along which the 
given values of S, a, {J, and N are constant. That there 
are only two dyn1.1mical variables in this sense does 
not imply that there are only two "degrees of freedom" 
in the fluid's motion. The question of degrees of freedom 
is taken up at the end of Appendi:c C. 

III. EULERIAN VARIATIONAL PRINCIPLE 

In 195-l, Taub11 gnve a variational principle whose 
Euler-Lagrange equations were the general-relativistic 
field equations plus the equations of motion for a perfect 
fluid in what we have called the standard version. An 
essential feature of any such variational principle is 
that the world lines of the fluid's particles be among the 
quantities varied. Consistent with the Lagrangian 
interpretation of the standard version that we discussed 
in Sec. II A, in Taub's principle one varies the world 
lines in a Lagrangian manner: One attaches a label to 
every particle and directly changes the particle's 
path by changing the position of its label in spacetime. 

The variational principle given in this section uses 
the velocity.potential version of hydrodynamics and 
hence is Eulerian. The independent coordinates with 
respect to which the Lagrangian density is varied are 
the velocity potentials themselves. Val")ing the poten­
tials varies the four.velocity and thence implicitly the 
world lines. 

n A. H. Taub, Phys. R~v. 94, l-168 (195-1). 
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T/tc aclion pri1tciple. In step-by-step form, 
(l) Select an equation of state for the one-component 

perfect fluid. Express it in the form 

(3.1) 

Then Eq. (2.5) follows from basic thermodynamics: 

dp•pr#p.-poTdS. (3.2) 

(2) Define the four-velocity vector field in terms of 
six scalar velocity-potential fields: 

U0 •µ-t(4> .• +aP .. +BS .• ). (3.3) 

Normalization of U implies 

,. •• -r<• ... +ai3.,.+ss.,.)(4> .• +at1 .• +ss .• ). (3.4) 

which defines the functional dept:ndence of p. upon the 
independent variables of our variational principle, 4>, 
a, {J, I, S, and t"'· 

(3) Define the action I as 

I• f (R+t6rp)(-g)t12J 4z, (J.5) 

where R is the scalar curvature, taken as a function of 
r and its derivatives, and where p is the ordinary 
pressure, which depends on all the independent variables 
through Eqs. (3.1), (3.2), and {3.4). 

(4) ExtremUe I to obtain the following Euler­
Lagrange equations": 

'C-: G,..-Sr[(p+p)U,.U.+pg,.]•O, (3.6a) 

.. : (p,U•);.•O, (3.6b) 

II: u·s .. -o. 
IS: U-1,.•T, 

la: U•fJ,.•O, 

l{J: U'a,.•O. 

Equations (3.3), (3.4), (3.6c), and {3.6e) i~ply 

.u-... --1'· 

{3.6c) 

{3.6d) 

(3.6e) 

(3.6f) 

(3.6g) 

We have thus reproduced Eqs. (2.22) of the velocity­
potcntial representation. This establishes the validity 
of the variational principle. 

COMpaTisott willa olhn action prillciple:s. Our varia­
tional principle is equivalent to Taub's 1954 principle. IT 

To prove this we use a procedure taken from Seliger 
and Whitham. 1 Taub extremi.zes the action 

Ir• f [R-16r(p-PoTS+>.g .. l..'•(/•)] 

. X(-1)t1Yz, (J.7) 

where >. is a Lagnuige multiplier that ensun:s nonnal-

•See, e.R., L Landau ancl E. T .ifshit1, Th. O•uical TAft>ry of 
'~ (~·Walev. Rudin"· Masa., 1962), Sec. 9J. 

ization of U. Since we impose that nom1alization 
explicitly in our principle, we c:m drop the >. tenr. and 
work with 

!~'-/ [R-16r(p-p0TS)](-g) 1t:J•x. (J.8) 

Taub imposes two explicit constraints upon varia­
tions of Ir'. The first is conservation of baryons, and 
the second is that there exist a field 8 such that lJ•B .• = T 
{Taub USt'Sa rather than 8). The St.'Cond is not a physical 
constraint, of course, since 8 exists for all U and T. 
Nevertheless, it is a mathematical constraint. We 
can eliminate both constraints by using Lagrange 
multipliers: 

,. 
Ir"- j (R-16r(p-poTS-q>(l"p0) .. -8~C·S) , ,J) 

X(-1)lltJ4z . (J.9) 

Variations of • and 8 give the equations of conserva­
tion of baryons and entropy. Variation of S gives 
T• U•B ... Variation with respect to p0 gives [noting 
that (clp/clpo)s-µ] 

U•q> •"' -"· (J.10) 

To complete the .identification of Taub's principle with 
ours, we add to the Lagrangian density the divergence 

Y-,.-16r[(-g}11'(U'pot/l+U•poBS)].. . (3.1 1) 

We obtain 

.,."'-J [R-t6r(p-poTS+poC.:•4> .• +poSl:·s .• )] 

which reduces to 
X(-g)111d4z, (J.12) 

Ir"'-f (R+l6rp)(-1)•tttJ4z. (3.13) 

The modified version of Taub's prindple is thus equiv­
alent to ours, except for the technical point that Taub's 
variations are Lagrangian and do not use velocity 
pi:ltentials, while ours arc Eulerian and rely on the 
velocity potentials. 11 

lfore recently, Taub published a variational principle 
expressed in comoving coordinates, in which the action 

• Tbne c::ilculations give the potentials I and• richer meaning; 
one might ask if a and fJ have similar mcanini:s. They do, in a 
formal way (sec Seligcr and Whitham, Ref. 3): One can make the 
transition from Taub's variables to the Eulerian variables com­
plete by requiring "conservation of L3i;rnni:i:in coordinates" 
(I.e., once a fluid clement is la~lccl ..-ith a comoving c:Oordinate, 
that coordinate ne\·cr chan~l'lll. Let /J ~ such a coordinate and a 
be its l.aR"!lng.: multiplier. Then one arlds the term p,pf./•IJ:, 
into Eq. (3.9); varfation of a and /J then iti\'CS the awropriate 
equation~ ,.·ithout changing either Eq. (J.10) or Eq. 13. IJ). This 
device, tlue orginally to Lin (R~f. J), ls somewhlll mysterious, 
npeci:lllv since only one Ullf3n;;ian coordinate is required, an<l 
not all t~. 
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is the same as the prc:st:nl one."'·11 In fact, by spt.'Cial­
izing the calculations of this section to a comoving 
coordinate system, one can show that variation of gl" 
is equivalent to Taub's first variation of the action. 
~e price paid for working in a como,·ing system is 
that the potential represt:ntation is rendered usdcss 
while the equations for conservation of rest mass and 
for normalization of the four-velocity have to be 
assumed ad /1oc, because the "comoving" constraint is 
nonholonomic in the Yariablcs !/>, a, {J, fl, and S. 

Bardeenn has rece11tly obtained an Eulerian action 
principle for axially S)mmctric, differentially rotatin~ 
configurations; we will show that one version of his 
action principle is equivalent to ours, spt.'Cializl-d to such 
configurations. Ba1deen extremi?.cs the action 

la•Zff ff (-R/1611'-T''u-«l>pul""-A(p+p)F.,l'"] 

X(-1) 111tlz2Jr, (3.1-1) 

where r and r are any two coordinates such that 
iJ/iJr and iJ/iJr are both orthogonal to the Killing 
vecton iJ/iJI and iJ/iJip. The independent \"ari;1bk'3 are 
the nonzero components of g.6 and four "internal" 
variables governing changes in the tluid and its motions: 
,., U•/lP, ~.and 'I· The variables H-~' .. "') and 11(x',x') 
are Lagrangian coordinates giving the position of a 
ftuid element in the r-r subspace, and are actually 
redundant: Only one of them is needl-d to extrac't the 
full physical content of the principle.'1 ConS<.-quently 
there are really only three internal variables. The only 
constraint on the variations is that U be normalized. 
The two Lagrange multipliers 4>(~.11) and .\(~.11) ensure 
that the baryon number and angular momentum, 
respectively, of a fluid element be unaffocted by 
variations of l•a· When the actual values of cl> and A 
are put in (4>•11/lP, A• U"/lJO), ls reduces to 

u--i JJ (R+1~p)(-g)112.1.-rr1z1. (J.15) 

This is the same action as in our principle .. Morrover, 
our principle also has three internal variables: The five 
variables •• a, fl, B, and S are reduced to three by the 
relations U1 • U1•0. These three may differ from 

•A. H. Taub, in Fluides ti Cl1a111p Gmri/.,fi1•1111tl tN Rt/al hill 
Glrcbale (Centre National de In 11.ccherche ~icntifir1ue, !':iris, 
1969), pp. 57-72. 

•A. H. Taub, Commun. ~fath . Phys. 15, 235 ( 1969). 
•James ~I. Bardeen, Astrophys. J. 162, 71 (l9i0). 
•Variations ol E an<l 'I give the E 3nd ' components of lhe 

(vector) equation of hydrostlllic ~uilihrium. Since 1he }llcohi:in 
cl(E,,)/cl(.i',.r) ia assumed well hd1avcd, hydrustlltic equilibrium 
in M space implies equilibrium in .r'-.r' sp:ice. Howc\·er, l'ince ~ 
and , are arbitrary runctions or .r' llnd r', the Eulcr-La;;r:ir.i.'C 
equation for citbcr E '" , is sufficient to gttllr:int<e hydrost111ic 
equilibrium everywhere in r'-.r' space. This ~" redundancy 1ttms 
doeely related to the problem me,..tioncd at the end or kc!. 19, 
namely, that ~uiring .conserntion or only M• L:lgr:ingi:in 
coordinate iasuflic:ient to complete the transformation from Taub's 
lint principle to Ollrs. 

Bardeen's three, lmt their Euler-Lag.-~ng•• l'(jUations 
will be l·quh·aknt to his b~-t:ause thl·y arc a complt:te 
set of vari:i.bks: a one-component tlui<l cunstraine<l to 
mover in only the .; dirt-t:tion has three degrees of 
freooom-two thennodynamic and one kinetic. Since 
the only constraint on our variational principle is 
also the nomialization of U, the two principles are 
equivalent. 

IV. CONCLUDING REMARKS 

The work reportl-d in this paper was originally 
undertaken in the hope or finding stability criteria for 
self-gravitating masses or 1luid. :\!though that goal is 
still far oil, the existence or an Eulerian variational 
principle may be a beginning. 

What is needed, I believe, is a Hamiltonian principle 
in a minimum number or variables. The present action 
principle sc.-cms to have '"too many" free variables: 
\Vitness the existence of l'<]Uivalence transfom1ations 
among 4>, a, fl, un<l fl; witn1-ss also the fact that varia­
tions of the Lagr.rngian violate the conservation of p0• 

Perhaps the methods or .\rnowitt, l>escr, and Misner" 
or of Dir.u:~• can be applied to isolate the "true ,.-ari­
abk'S" or the principle. Then one might be able to 
obtain a sl"lf-adjoint \·ariational principle that could 
lead to stability criteria. 

It may also be possible to extend this work to viscous 
tluids and chargL'<i tluids. The key step would be the 
extension of Thl'Ort:m 1 of :\ppendix H to the appro­
priate case. 

Nole added ill proiJ/. An equivalent set of veloci ty 
potentials and a similar variational principle have bt:cn 
obtained independently by Schmid from a very dilT1:renl 
approach.!• His potenth1ls nicely illustrate a S)mmctry 
of the velocity-potential fom1ulation. He defines ti> 
differently: dti>/dr= -µ+TS. Then all the n:sults of 
this paper carry through if one replaces es .. by -se ... 
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APPENDIX A: PFAFF'S THEOREM 

We have occasion to use Pfaff's theorem several 
times in this paper; we state it here without proof. 
An application of the theorem familiar to physicists 
concerns aite. ia for the integrability of a so-called 
"Pfaffian fonn," 

N 

E f,(x6)dz'. .... 
These criteria are closely related to the second law of 
thennodynamics and lead to definitions of entropy and 
temperature for many-component systems.• Pfaft's 
theorem is much more gener.il than the second law, 
however. It says" that if /,(x6) are N functions of N 
independent variables x•, then there exist functions 
.4.(%4), B.(%4), and C(x4) such that 

N N/t 

I: J,b'- I: A.dB. if N is even ... -· 
<N-ll/t (Al) 

-dC+ E A.dB. if N is odd . -· 
Consequently we have 

or 
;,c <N-ll1t aB. 

f,--+ I: .-1.-, 
ax, -· ax' 

(Al) 

respectively. The number of functions remains the 
same, but the number of differentials is cut essentially 
in half. Pfaff's theorem sets a least upper bound on the 
number of differentials required: One might need fewer 
but one never needs more. This least upper bound 
depends only on the number of independent variables. 
For example, if a;(x6) and /J,(x6) are 2N functions 
(i-1, ... , N) of 11<N independent variables, then 

The expressions 

II ilfla 
Ea.­
.... a%4 

are ,. functions of n variables; from Pfaff's theorem we 
therefore obtain (if, for example, 11 is even) 

II •ft 
l: a.Ji',-I: ..t.dB •. (AJ) - -· 

•See Sellger and Whitham (Rd. 3) or A. R. Fonythe. Tun'l 
eJ Dif..Uiil £""41iolu (Cambridge U. P., London, 1900), Vol. . 

. For N-2, Eq. (Al) becomes the familiar statement 
that every differential fonn in two variables has an 
integrating factor. 

APPENDIX B: EQUIVALENCE OF STANDARD 
VERSION AND VELOCITY-POTENTIAL 

VERSIOK 

The proof of equivalence between the equations of 
the standard version and those of the velocity-potential 
version rests upon Theorem 1 below. Once the theorem 
is established it will allow us to show that the equations 
of each version imply those of the others. Theorem 1 
should be regarded as an algebraic identity: No 
equations are assumed other than those explicitly 
stated in the theorem. 

Theorem J. Let U be the four-velocity of a one- · 
component fluid. Define a tensor T.• with components 

(Bl) 

Define the scalar functions <P and 8 by the differential 
equations 

dB/dr-T. 

Define the entropy by the equation 

TdS-d"-p.-•dp . 

(B2) 

(BJ) 

(B4) 

Require conservation of entropy" and baryons during 
motions of the fluid: 

dS/dr-0, 

(p,U•) ;.-0. 

(BS) 

(B6) 

Do not impose any other equations of motion. Then the 
following is an identity: 

S:.u(p.U.-.P .• -BS .• )-po-•T.•;•, (B7) 

where·s:.u denotes the Lie derivative" with respect to U. 
We note that Theorem 1 is true even if T.•;.;oo!O, i.e., 

when T.• as defined by Eq. (B 1) is not the complete 
stress-energy tensor of the fluid. For example, in 
magnetohydrodynamics Eqs. (BS) and (B6) still hold, 
90 Theorem I is still valid. 

Proof. The proof of Theorem 1 is an elementary 
exercise in Lie derivations, whose properties can be 
found in many references.• We simply note that the 
definitions of 8 and .p and Eqs. (B4) and (BS) )ield 

S:.u(p.U.-,P .• -BS .• )-U•(p.U.);.+Po-•p,.. {BS) 

Similarly, application of Eq. (B6) to 'the divergence of 

• Accordln1 to Ref. 8, taf«I ftuid1 m111t bave '9 • TdS • O 
d11rln1 tbrir motions. 

• 1 am indebted to Professor K. S. Thome fOC' 1U1lR'9ting rhc use 
ol Lie dcrivatlva In ~rovin11 cq11ivalcnce between the two venions. 

•See, e.g., K \ ano, Th• Theo'' of U1 0.firatiru 0114 il• 
A'1lico1i.,,,1 (North-Holland, Amsterdam, 1955), Cbap. l. 
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F.q. (Bl) gives 

,.-•T.•;.-U•(pU.);.+p,-•p.,. (89) 
Q.E.D. 

Let us now turn to the first hall of the proof of 
equivalepce: the proof that the equations of the 
velccity-potential version imply those of the standard 
venion. The velocity-potential representation of U, Eq. 
(2.21), gives 

,.u.-+ .. -65 .. -afJ ... 

Therefore, we have 

S!u(pU.-+ .. -65 .• )-S!u(a/1 .• ) •0, (BIO) 

where the last equality follows from da/JT•d{J/dT•O. 
Then Theorem 1 gives 

T,•,.-o, (Bll) 

which is the standard version of the equation of motion. 
The second half of the equivalence proof is the proof 

that the equations of the standard version imply those 
of the velocity-potential version. We already have the 
three equations d9/dT""' -11. dfJ/dT-T, and dS/JT-.0. 
from the requirements of Theorem I. We need only 
show that the velocity-potential repres.:ntatiun of U, 

U.-11-1(+ .. +afJ .. +BS.,), (Bl2a) 

and the two remaining equations of evolution, 

ia/dr-0, (B12b) 

d{J/dT•O, (Bl2c) 

follow from Theorem I and the standard version's 
equations of motion, 

T.•,.-o. 
F.quation (Bl3) and Theorem 1 imply 

S!u<PU.-• .• -ss .• )-o. 
This leads to the following theorem. 

(Bl3) 

(B14) 

T~ Z. There e:dst functions a, {J, and 'Y.such that 

(BIS) 
and 

tla./dT-d{J/dT-d..,/dT-0. (Bl6} 

Proof. 11 Define 

w.-,,u.-+ .• -es ... (Bl7) 

Then W. is orthogonal to and Lie-dragged by U• (i.e., 
its Lie derivative along U• is zero); e:o;pr~ in 
COlnOving coordinates (T, yi SUCh that u•-60') this 
means W,•O, W;.o-0. Then Pfaff's theorem (Appendi~ 
A) for N - 3 implies . 

w ;41'-adfJ+d-y. (B18) 

with a. {J, and 'Y functions only of y'. Consequently, 

• 1'1111 proof wu kindly 1U118ftled by J. Eblns (private com· 
munlcatlon). 

F.qs.. (BIS) and (Bl6) are valid in any coordinate 
system. Q.E.D. 

We now note that 9 was defined only by the differen­
tial equation dt;/dT=- -11, so that any function in­
dependent of T can be added tot; without changing any 
of the pre\;ous results. Such a function is 'Y· Con­
sequently we can "absorb" 'Y into 9 and obtain from 
Theorem 2 the velocity-potential representation 

u.-,,-•c,; .. +atJ .• +es .• ). (Bl9) 

This completes the proof that the equations of the 
standard version imply the equations of the vclocity­
potential version. The two versions are equivalent. 

By way of relating Theorem 1 to results more familiar 
in Newtonian hydrodynamics, we establish a corollary 
that is a generalization of Weber's transformation.12 

Define the spacelike vector separating two neighboring 
particles in the fluid, b', in the following manner. 
Let (b•)o be their separation on some arbitrary initial 
spacelike hypersurface. Then let &x' be the vector that 
results when (6x')0 .is Lie-dragged off the initial hyper­
surface by the fluid's four-velocity; i.e., let ox' be the 
separation between the particles after they have 
advanced equal proper times off the initial hypersurface. 
Then by construction we have 

S!v(b•)-0. (B20) 

Consequently, Theorem I implies (with T,•;.•O) 

S!u[(pU.-t; .• -BS,.)b·]-o. (821) 

But the quant·ity inside the square brackets in Eq. 
(B21) is a scalar, and Lie differentiation of a scalar is 
simply differentiation in proper time: 

d 
-[(pU.-+ .• -65,.)W]-o. 
d.,. 

(822) 

Define &x, the change in any scalar field X along the 
vector 6.x', by 

n-x . .w. 
Then Eq. (B22) implies the following corollary of 
Theorem 1. 

Corollary (xenerali:td Weber's transformation). Let the 
subscript 0 denote the value of a quantity on some 
initial spacelike hypersurface, and let the subscript T 

denote its value on some hypersurface advanced a 
proper time T from the initial hypersurface. Then the 
equations of hydrod)11amics are equivalent to 

(pU.W).-(pU.&z>)o- ("tP).-("tP)o 
+(BIS).- (B&S')o. (B23} 

•See H. Lamb, llydrodyrcomiu (Cambrirlge U. P., London, 
l9J2), Sec. IS. for the Newtonian version of Weber's trnnsforma­
don In the restricted case ,.,1,). •·or the general ,.,r,,S), 
tee J. Serrin, in llnt1dbwl1 d1r Physill (Sprin;er-Vcrlag, Berlin, 
19.59), Vol. 8, Sec. 29A. 
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APPENDIX C: PHYSICALLY EQUIVALENT 
REPRESENTATIONS 

Two sets of velocity potentials arc said to be equiv­
alent if they give the same four-nlocity for the !\.<me 
thennodynamic state of the tlui<l. The purpose of this 
appendi:t is to <lerive the l"<(Uations of transfom1ation 
whereby one set of Yclocity potentials may be obtained 
from an equivalent one amt thereby to <lctennine how 
much "gauge frcl-dom" one has to choose the potentials 
arbitranly.n 

Equivalent sets by <lctinition have the sameµ. and S. 
We therefore seek transfom1ations between two sets 
of potentials (4>,a,/3,8) and (•',o' ,P',8') sud! that [from 
Eq. (2.21)] 

• .• +aP .• +8s .• -•· .• +a·~· .• +8'S... (Cl) 

The potentials must in<lividually s.'llisfy these .equa­
tions : 

J•fJT-J4>'/JT""' -,. , 

J8/JT-J8'/JTs. T, 

(C2a) 

(C2b) 

JS/dT-Ja./JT-tla'/JT=tl;J, 'dT=J{j'/ JT=O. (C2c) 

We write Eq. (Cl) in a. more useful fom1: 

•,,-•' .• -a'fl' .• -aP,,+(8'-8)S .•. (CJ) 

In general,• and 4>' will differ by some scalar field F: 

•-•'-F. (C4) 

By Eq. (C2a) v.•e have 

oF/iJa'•O. (C9b) 

Having rhosen some F and found its derivatives, we 
see that F will generate an equivalence transfomiation 
if and only if it satisfies Eq. (C6). Comparison with 
Eq. (CS) reveals the equations34 

a.'-aF/af3', 

a--aF/ofJ, 

9'-8-iJF/aS. 

(C9c) 

(C9d) 

(C9e) 

Thus the function F generates a transfonnation from 
<•.aJt,8) to (•',a'Jj',8'). We include Eqs. (C9a) and 
(C9b) as a fonnal device that will enable u:. to obtain 
other equivalence transfonnations in the following 
p.•rngraphs. Equations (C2b) and (C2c) arc clearly 
fulfilled. 

The restriction of F to functions of {3, {3', and S can 
be rela:ted by a device called the Legendre transfonna­
tion. For e:tample, define 

(Cto) 

The subscript 2 distinguishes this form of F from Eq. 
(C7)_ Then Eqs. (C9) become, in tenns of F,, 

a.' -aF .,JafJ', 

o-aF.,Jaf3, 

9'-B-aF.,JoS. 

{J-aF,Jaa., 
o-aF,Jaa.'. 

(Clla) 

(Cllb) 

(Cllc) 

(Clld) 

(Clle) 

dF/dT-F .. u·-o. (C5) From Eq. (C4) we find 

Equation (CJ) becomes 

F,.-a.'fl' .• -a/l .• +(8'-8)S... (C6) 

As we shall see, each different choice of F generates a 
different equivalence trnnsfom1ation. The only m;tric­
tion on the choice of F is Eq. (CS). Accordingly, we 
can take F to be some arbitr.iry function of any three 
functions that are independent of T. Equation (C6) 
suggests the choice · 

(C7) 

Differentiation of F gh;es 

aF aF aF 

(Cllf) 

Notice that these equations would also follow directly 
from Eqs. (C6) and (CtO). One special case of this 
type is the identity trnnsfonnation, generated by 

Fi•afJ' - (C12) 

Then Eqs. (Cit) give 

a'ssa, (C13a) 

{J' •{J, (ClJb) 

l'-8, (C13c) 

··-·· (C13d) 

F,.- -~ .• + -fJ' .• + -S .•. 
iJfJ iJfJ' as 

(CS) Infinitesimal transfonnations can be generated by a 
function Gadded to the identity generator : 

Treating a. and a.' as in<lependent variables for the 
moment, we have 

iJF/iJa.•O, (C9a) 

•For a brief hut similar ianah·si• of 1hc Clch...:h reprnentiatinn, 
- C. Eckart, rhys. t'luiii' l, ·UI ( lll(i()1 • . \pf"'n<fo. For" rc\'icw 
ol contact translurm:llion• and t hdr u>e in cla<-<knl mrcb.~nia, 
.. H. Golclstcin, Cl11Ui,ol ll«h<J11ici (AJdison~\\"caley, Rc:ading, 
Yua. 1930), Cb:ip. II. 

(Ct4) 

where • is the infinitesimal parameter. The resulting 
transfonnation is 

(Ct5a) 

11 The ph•"Sical intcrpnotation ol thHC and other tqWltions of 
trallllormatlon ia discussed more fully in Sec. II B. 



19 

BERNARD F. SCHUTZ, JR . 

ff •{J-. .aG/iJo., 

l'•B+.aG/iJS, 

•' ••+e(aaG/iJo.-G). 

(Cl5b) 

(Cl5c) 

(Cl5d) 

By analogy with F2 we can define two other types of 
generating (unctions: 

P•Fa(a,a' ,s)-o/Ha'{J' (Cl6) 

and 

F• F4(JJ,a', S)+a'{J'. (C17) 

The nontrivial equations or transforfnation generated 
byF1 are 

ff• -iJFJiJo.'' (Cl8a) 

{J•iJFJiJo., (Cl8b) 

l'-B•iJFJiJS, (Cl8c) 

•' -f• -F1+aaF JiJo.+a'iJF JiJa'. (Cl8d) 

The corresponding set for F • is 

ff• -aF JiJo.', (Cl9a) 

a• -iJF JiJfJ, (C19b) 

I' -B•iJF JiJS, (C19c) 

•'-•• -F.+a'iJFJiJo.'~ (C19d) 

The generator F4 • -a'{J also generates the identity 
transformation and can serve as a starting point for 
infinitesinial tramfonnations. A special case of F • is 

F.- -a'1(JJ), (ClO) 
which generates 

ff •1(JJ)' (C2la) 

a' •a(dtJd{J)-1 , (C21b} ,,_,, (C21c} 

··-·· (C2ld) 

This is the simplest equivalence transformation; it 
just reshuflles a and {J without touching • and fl. 

Notice that if {J' is not a monotonic function of /J in 
Eqs. (C21), a' will be infinite wherever d{J' / d{J-0. This 
divergence is not of course physically observable. In 
fact, it ensures that the term a'fJ'.• in the velocity­
potential representation will equal a/J .•• This exampl~ is 
an omen: Ill-chosen transformations will introduce 
divergences into some or the velocity potentials in order 
to keep the observablt!S of the fluid's motion unchanged 
under the transformation. 

Inconvenient as such divergences are, they do not 
fundamentally affect the gauge freedom in •· a, /J, and 
B. Suppose one has a set of velocity potentials that 
determines the thermodynamic condition and motion of 
a 8uid. An equivalent set can be obtained by choosing 
the value of any one potential arbitr.irily at each point 
on the initial hypersurface. The equations of trans-

formation then show how the initial values of the other 
three potentials must be changt'<i in compensation. 
(Only initial values are atTccll'<l because dF/ dr=O. ) It 
is not possible to choose a second potential arbitrarily 
at every point of the initial hypcrsurface without 
affecting the Yalue of the first . one. Xone of the trans­
formations that leaYe one potential invariant have 
enough freedom to permit choice of a second one 
arbitrarily at every point. A simple example is Eq. 
(C21), which transfom1s a and /3 but le:1ves <f> and fl 
alone. It permits only ti-ansfomiations that leave 
surfaces of constant /3 invaria11t : C'hoosin~ /3 at one 
point fixes its value on a whole two-dimensional sub­
space of the hypersurfacc. We therefore conclude that 
the initial value of one and only one potential is 
completely arbitrary. The n:mainin;t initial valut-s are 
constrained (but not fully clctcm1incd) by the physical 
condition or the fluid. 3• 

I thank Professor Kip S. Thorne for pointing out 
that the arbitrariness of one potential is consistent wi th 
intuitive ideas of the number of degrees of freedom in a 
fluid. That is, it should be possible to describe a fluid 
completely with five functions at each point: two 
thermodynamic variables (p. and S) and three indepen­
dent components of velocity. Because we use six poten­
tials to describe the fluid, one and only one of them 
must be completely arbitra_ry. 

APPENDIX D: RESTRICTED INITIAL-VALUE 
FORMULATION 

Whereas in Appendh: C we began with a physical 
situation and as'' ed what sets of potentials could 
descnoe that situation equally well, in this appendh: 
we begin with the potentials and ask what physical 
situation they determine. Accordingly we present here 
two different prescriptions for constructing tluid motions 
from knowledge of the potentials on some init ial 
hypersurface, under the restriction thnt the background 
metric r~main unchanged by the fluid's motions. 

The 6rst pr~ription requires knowledi:c only of the 
potentials on an initial hypcrsurface, and not of their 

.derivatives off that hypersurfacc : 
(1) Choose an initial spacelike hypersurface ! with 

future timelike nomial N. On ! specify the them10~ 
dvnamic state of the fluid by i,.;ving p. and S. Also 
specify the initial values of <t>, a, {J, and fl on ::!::. Say 
nothing about their derivatives normal to !. 

(2) From these initial values, 6nd the three compo­
nents of U paralld to ! from Eq. (2.21). Thcr. the 
equation U · U"" -1 yields a quadratic equation for 

u The same situntion exists in electroma)('lctikm. Choice of the 
Lorentz g:iui:e (which corresponds to our choosini: o~~ poten tial 
arbitrarily) d~ not completely fix the j.'llUj.<e. Oth<·r l.ort•r. lz 
~UJ.i'n may he J:encrntetl hy any (u~ction .\ that !i<i..,lislit·s t he 
homoj.!'tncou!' w;i\·c e•tU:ition, O.\ •O. Such transf1,rm:t1io'1S 1lj' n t,l 
establish an arlJitrnry .:nui:c at cvcry poi~l IH."ca use of t he 
n::1triction on .\, but they du modify the g:iu~c without than;;in i; 
the phy•ic• .. 
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U· N. U this equation has imaginary solutions any­
where on Z, then er, fJ, •· and I have bttn chosen wrong: 
They have yielded a three-space velocity parallel to 
Z greater than the speed of light.. This is the only 
c:omistency requirement on •· a. fJ, and I. If the 
quadratic equation has real solutions for U· N every­
where, choose the sign of U · N negative. One now has 
determined U on l:. 

(3) Using this value for U, proa:ed to cilculate the 
cundition of the ftuid on a hypetsurface l:' slightly 
advanced in time from l:. Construct this second hyper­
surface by advancing off the first a proper time dT in 
the direction of U. Points of l: and !:' joined by U we 
shall call "corresponding points." The values of S, 
er, and fJ at corresponding points are equal. The value of 
I has increased from any poin t:in !: to the corresponding 
point of l:' by the amount TJT, while that of • has 
decreased by ,.dT. 

(4) Finally, use the equation (p.U·);.-0 to relate 
the (as yet unknown) values of Pe and U· N' on !:' 
(where N' is the future timelike normal to l:'). Use the 
equation of state to e:q>ress Po in terms of S and ,. ; 
because Sis known on l:', onenow'has a relation between 
,,. and U· N' there. Equation (2.21) )ields a relation 
between ,. and the spalial part of U on l:', since only 
derivatives of._ fJ, and S parallel to l:' are known. Use 
the equation U· U- -1 to get a third relation, this 
one among "' the spatial part of U, and U · N'. Solve 
these relations simultaneously for ,. and the four 
'components of U on l:'. One now has enough informa­
tion to advance to a third hypersurface, and so on. 

In step (2) we imposed the consistency requirement 
that the tpatial velocity of the fluid on the initial 
bypeTSUrface be less than that of light.. Are we guar­
anteed that the solutions in step four for ,. and U on 
the new hypersurface will satisfy this requirement: 
Will " and all the components of U be real? It is not 
hard to show that if the initial conditions are so chosen 
that the spatial pnrt of U is zero, and if there are no 
infinite gradients of p, then the relations of step (-1) 
imply that, on the new hypersurfaee, U· N'- -1 
+o(clt'), the spatial part of U is O(clT), and ,. has 
changed to order dT: i.e.., that the new condition of the 
fluid is physically acceptable. Moreover, any physical 
situation that satisfies the consistency requirement of 
step ·(2) admits of a choice of initial spacelike hyper­
surface on which the spatial part of U is zero. Since the 

physics cinnot be affected by such a choice, and since 
the equations of motion in the potential representation 
are not affected by such a choice, we conclude that if 
the potentials are constructed to be self-consistent on 
some initial hypersurface, then they will remain self­
consistent throughout spacetime if infinite gradients of 
p do not develop. 

The second prescription for constructing the fluid 
motions from the potentials is more compleic. It does 
not require kno\\·ledge of the initial the modynamic 
state of the ttuid but does require knowledge of the 
derivatives of • and I off the initial hypersurface: 

(1) On!: specify a, fJ, •• •··• B, B •• and the equation of 
state. Note that p, S, and the derivatives of a, fJ, and S 
normal to l: are unnecessary. 

(2) From the known data, determine U and the 
thermodynamic state of the fluid on l: in the following 
manner. The equation U · U - -1 gives a relation 
between U (the part of U parallel to l:) and U · N; let 
us write this as A (U· N, U)•O. The equation U·s .• -T 
similarly gives a relation of the form B(,,,S,U· N,U)-0 
after the equation of state has been used to eicpress T 
in terms of" ands. The equation u····- -p gives a 
third relation: CC,,,U· N,U)•O. We therefore have 
three relations in siic unknowns. They can be ·solvedH to 
express three of the unknowns in te~ms of the other 
three. Thus we can write ,, _ /(U), S • g(U), and 
U· N-Al(U). Finally, we use the potential representa­
tion, Eq. (2.21), to determine pU-IV S, a three-vector 
parallel to%. Because we know,. and S in terms of U, 
we can solve for the three components of U. From 
these we determine,., S, and U · N. 

(3) We now have as much information as at the end 
of step (2) of the first prescription. To find the condition 
of the fluid on l:', follow steps (3) and (4) of the first 
prescription. 

The second prescription distittguishes between what 
we refer to in the text as initial-value parameters an<' 
dynamical variables. The initial data for the dynamica_ 
variables • and I were their values on ::; plus their 
derivatives off it. By contrast, only the initial values of 
a and fJ are required. This breakup of initial data is 
not unique, however. One could have specified the · 
derivatives of, say, • and a normal to l: ; the calculations 
would in fact have been e&sier. 

"As in the first prncription, if thele equations have complex 
IOlutions, the initial data have been cboeen inconsistently. 
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CHAPTER 3 

THE HAMILTONIAN THEORY OF A RELATIVISTIC PERFECT FLUID 
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ABSTRACT 

'l'h.e velocity-potential version o:t the I:vdrodynamics e:r a 

relativistic perfect fluid is put into Hamiltonian form by applying 

Dirac's method to the version's degenerate Lagrangian. There is 

only one independent momentum, and the Hamiltonian density is 

-T 0 (-gOO)-l/2 • The Einstein equations for a perfect fiuid are then 
0 

put into Hamiltonian form by analogue with Arnowitt, Deser, and 

Misner's vacuum Einstein equations. The Hamiltonian density splits 

into two pieces, which are the coordinate densities or energy ap.d 

mom.entwn of the fluid relative to an observer at rest on the 

hypersurface. 
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urmooucnoN 

The velocity-potential version of perfect-fluid hydrodynamics as formulated 
. 1 2 . 

by Seliger and Whitham, generalized to relativity by Schutz, and independently 

discovered by Schmid, 3a,b can be regarded as a nonlinear relativistic field 

theory for five coupled scalar fields, vhose Lagrangian density is simply the 

pressure of the fluid. The theory is degenerate: not all the generalized 

momenta are independent, so they cannot be solved for the generalized velo-

4 cities. In this paper we use Dirac's algorithm for degenerate theories to 

cast the equations of perfect-fluid hydrodynamics into Hamiltonian form, whose 

Hamiltonian density is the energy density of the fluid. We then match the 

5 6 
theory to the Arnowitt, Deser, and Misner ' (hereafter referred to as ADa.~) 

canonical theory for the vacuum gravitational field. 

The independent variables of the theory are the velocity potentials: 

five acalar fields (>, a, t3, e, and s. Here S i• the entropy per baryon, 

2 3a while the others have less obvious interpretations. ' The fluid' a four-
7 

velocity is a combination of the potentials and their gradients : 

, (1) 

wh~re µ ia the specific enthalphy of the fluid, 

µ • (p + p)/Po (2) 

(Here p0 is the rest-mass density, p is the density of total mass-energy, 

and pis the pressure.) 'nlrough the equation of state, 

P • p(µ,s} I (3) 

all ther.nodynamic quantities are expressed in terms of S (one of the velocity 
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potentials) and µ. In its turn, µ is a function of all the velocity poten-

tials throush the equation 

(4) 

which is just the normalization constraint on the four-velocity. 

'nle dynamical field equations are five coupled nonlinear first-order 

equations: 

UV + ,. ,v - µ , (Sa) 

UV a • 0 I (Sb) ,v 
UV fS • 0 , (Sc) ,v 
UV 8 • T I (Sd) ,v 
Uy S • 0 I (Se) ,v 

(where T is the temperature) plus one nonlinear second-order equation: 

(6) 

'nlere are really only two independent equations among the three Eqs. (Sa,c,e) 

because of Eq. (4), so that there are five in4ependent equations altogether. 

'nlese equations follow frcm extremizing the action 

4 
I - Ip ./-g d x 

First-order changes in p are computed from the equation 

(7) 

which expresses the first law of thermodynamics. Equation (4) is used to 

obtain ~µ in tet1lls of the independent variation~ of ~, a, ~, e, and s. 
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\\h\ln oml formulates these equations in terms of a Hamiltonian, one 

singl~s out the ticc coordinate for special attention, thereby destroying 

the e~uations' four-dimensional symmetry. In what follows we will there- · 

fore us~ :h~ ADaM notation appropriate to such a 3 + 1 dimensional split 
. . 4 

of spacetime: the four-dimensional metric ~ is replaced by the three-

4 ij 4 ij 
di.I:iensional metric gij = gij (whose inverse is g ::f g ), by the lapse 

function N = ·c- 4 s00r 1f 2, and by the shift functions N
1 

= 
4 

g01• Deriva­

tives covariant with respect _to gij are denoted by '7i or by a subscripted 

slash (e.g. hijjk). Dots Cbi· hij) denote partial derivatives in time. 

'n\e action (7) becanes 

, 

so tr.a Lagrangian density of the fluid is L • p N gi. In all but the last 
- 4 . 

section of this paper, we will treat the metric 8aa as a constant, not as 

part of tha dynamics of the fluid. It will suffice until then to take as 

the fluid Lagrangian ~ensity 

, 

so that the action can be written in the standard way 

I• ! L d(three-volume) dt 

CONSTRAINTS ON THE M<Jo!ENTA 

Let q · stand for the five fields ~, a, ~' e, S. 'n\e lllOlllenta conju­a 

gate to qa are 

(8) 

(9) 
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P' a - Po UO N 

a 9 
p "'p "'0 

, 

, 
(10) 

, 

Since only one momentum is independent, there are four constraints on the 

momenta (the Dirac ql-equations): 

a 
cpl • p • 0 , 

8 
cp2. p ,. 0 , 

cp
3 

• p~ - a p + • o 

ql4 • PS - 8 p+ • 0 

(ll) 

, 

There are no arbitrary functions of time in velocity-potential hydro-

dynamics: _ what gauge freedom exists lies only in the choice of initial 

values for the potentials. Consequently we do not expect any of theseq•s 

to be first-class: none of them has vanishing Poisson bracket .(see Eq. 16) 

with all the others. 

That there is only one independent momentum is surprising. One might 

expect at least three (for the spatial components of velocity), if not more. 

'nle mathematical reason seems to be that, of all the field equations, only 

Eq. (6) is second order in time derivatives. Equation (6) is obtained by 

varying ~ in the Lagrangian, and p~ is the only independent momentum. 

The physical reason (if one exists) that there is only one independent 

mo:ioentum is not clear. It would be a mistake tQ conclude that a perfect 
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fluid has only one dynamical "degree of freedom": that such constraints 

as zero viscosity and conservation of entropy have wiped out the other 

degrees of freedom. The relationship between independent m0C1enta and 

degrees of freedom is not well understood. In the velocity-potential 

representation one must specify six independent functions on an initial 

Cauchy hypersurface in order to determine the future evolution of the per­

fect fluid. 2 This indicates the existence of three dynamical degrees of 

freedom. 

What seems to be the case here is that two of the three second-order 

dynaz:ical equations (one for each component of velocity} have been replaced 

by four first order equations (the four independent equations among Eqs. [5] }. 

Hidden among the four potentials a, ~' e, and S are two dynamical variables 

and their momenta. Since all four are treated as coordinates here, they 

appear to have no independent momenta among them. 

'l'here are some tantalizing suggestions that this may be just the hint 

of a deeper canonical relationship among the potentials. Seliger and Whitham1 

show that one can modify the formalism slightly and introduce a function 'JI 

such that da./dT • ?:91/~ and ~/dT • - '?JI/?/:!.. Moreover, Schmid!& points out 

that~ obeys the relativistic .Hamilton-Jacobi' equation 

where 

is positive-definite because the vector ~ a + es a is spacelilce (it is , , 
orthogonal to ·ua}. We have nothing more to ·add to theae considerations 

here, so we return to the Dirac method. 
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THE HA.~ILTO~IAN A..~D THE. EQUATIONS OF MOTION 

The Hamiltonian density is defined tn the conventional way: 

a • 
H =-Ea P qa - L (12a} 

.. p·(~ + ~ + eS) - p N (l2b) 

.. - (12c) 

. 
Although Q, ~' and S appear explicitly in H, we still have (dH/dq ) = O, a p,q 

a • 
so that we can differentiate H with respect to p and q while holding q a a 

constant. 

Because of. the tp -equations 

a of p •a. Instead one introduces 

calls ua) in place of the qa's. 

. 
one cannot solve for all the q 's in terms a 

4 
additional variables A (which Dirac a 

If one varies Eq. (12a) with respect to 

q and pa, the A 'a serve as Lagrange multipliers that ensure that varia-a a 
a tions in the q 's and p 's maintain the cp-equations. Then one gets . a 

• a ' I a q8 • 3H/op + ~m ofm'op , (13) 

(A sum on m from l to 4 is implied here and throughout.) For the perfect 

fluid, Eqs. (13) can be solved for the~ '• to give 
m 

. 
A-1 .. a ' A4. :a S (15) 

Thus in this case the A1 & are self-consistent: Eqs. (14) imply nothing 

new. So the ~amiltonian variables-now are p+, Al' A2, A3, A4, +, a, ~' e, 

s. 

The power of the Dirac approach is that ·the Poisson bracket version of 
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HaQilton's equations, 

q .. ( q, H) 

p • [ p, H] ' 

can easily be generalized to the degenerate· case. Before applying this to 

fluids, however, we must define a Poisson bracket for fields in a curved 

three-di~ensional space. The conventional definition from particle dyna-

mies, 

is not sufficient when A and B are functions of the spatial derivatives of 

a 
the fields q and p • In the appendix we generalize this definition to fields. 

a 

For the perfect fluid (five scalar fields) the result is 

_QL 0 ...§!.. 
-:-. a ".'>-.i Bq

8 op i OA 

' 
OA o ...§!.. t (ls) -:-. a V j ".'>-.i e,q

8 
+. • • • ' 

op 1ilJ OA 

· 8 
where ·A and B are any functions of q , p , and their spatial derivatives a 

(of any order), and where BB/Bq is the spatial va~iational derivative a . 

- + ••• (17) 

I 
In the Poisson bracket all q's and p's are treated as if they were inde-

pendent: the <.p-equationa are used only after the Poisson bracket has 

been co::iputed. 
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Dirac

8 
shows that the time-derivative of any function f of the q's, 

p's, and their spatial derivatives (and possibly explicitly of time) can 

be expressed in the form 

f = [£,HJ + (£,>. qi 1 + (of/ot) 
Ill Ill p, q (18) 

a In the second teI't:l, one is to regard >. as independent of q and p but 
m a 

dependent upon position. For example, one contribution to that term will 

be from a term like 

8 >.m<9m 0 >. q> 0 >. cp m m 
"1 

m m • - + - ••• a Op& Opali 8P 

A. 
ocp. 

'iii >.11l 
ocpm - - + - ••• 

1D Op& Opali 

In Eq. (la) one must treat H as a funetion only of the independent 

momenta (cf. Eq. (12b]}. Contributions to f from the other momenta come 

irom the (/ brackets. Equation (18) can be stated concisely as 

i. Ct,s'1 + of/ot 

by defining a generalized Hamiltonian 

B
1 

• B ·+ >. d 
1ll T 1ll 

' Because the (./)'s are all zero, H is numerically equal to H. 

(19) 

(20) 
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The equations of motion aro a special case of Eq. (19): 

·~ i P • (?o N u ) Ii , 

·a \I . 
N p :a - Po U ~ ,v 

• f3 i 
(21) p a (po u a N) Ii , 

·8 \I N p = - p u s , 
0 .. \I 

·s p ,. (po u i e N)li - Po T N 

The first is the continuity equation, Eq. (6). Upon application of the cp -

equations and the continuity equation we see that the remaining four equa-

tions are the four independent velocity-potential equations among Eqs. (5). 

One must also demand that the qi -equations be maintained in time, i.e. 

that 

[q> ,H') • 0 
1ll 

(22) 

These equations are just the four independent velocity-potential equations, 

Eqs. (5): there are no Dirac x-equations; i.e., there are no equations 

from Eq. (22) that involve p's and q's without A'• or q's, which would thus 
I 

be constraints like tho cp-equations. For example,q>
1 

the constraint 
a . . v 

on p is preserved at zero·by the equation U ~ • O, which is obtained .,v 

from the original variational ·principle by varying a. Thia equation can be 

rearra~ged to read 

_..J. Po N . ij 
~ • ~ ~ i + - ... g f3 i(f j +a~ J + e s J) 

.. 11 p'I' .. .. .. , 
(23) 

This is not really solved for A3 in terms of p~ and qa b~cause p
0 

and µ 

on tha right-hand side implicitly depend on all the ~·a. Nevertheless, all 

th• A's do have unique solutions (through the velocity-potential •quations) 
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in terms of p$ and q • 
a lhis means that there are no first-class ((-equations 

(as we gu~ssed earlier) and no arbitrary functions of time in the solutions. 

COOPLING TO GRAVITY' 

Until now we have treated the metric tensor ~ as a constant because 

we were interested in the canonical theory of the fluid. lhe fluid is, 

however, coupled to the gravitational field, and one ought to treat the 

full dynamical system, fluid plus field. 

'nla Hal:l.iltonian density. of the free gravitational field ia516 

(24) 

1 ij 
1l - - 2 2( (J , (25) 

a.a • - gt[3a + ate; 2(2 - Jtij ttij)] 
' 

(26) 

and 

.. N 8ic4rokl 4ro mn) ik Jl - gkl mn I g I (27) 

Here 3a is the scalar curvature of the hypersurface, and Jtij is the mOl:lentum 

canonical to gij" Since the Lagrangian density of the fluid, pNg!, does not 

depend upon time derivatives of the metric, the full Hamiltonian is 

(28) 

Note that He splits into two pieces, with RO and R1 independent of 

N and Ni. Dirac6 shows that this will also be true 1of the Hamiltonian density 

for any field. In our case, we split up a'gt in two steps: i) Differentiate 
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with r~sp~ct to & while holding p and qa constant, 

µv a 

33 

; ~(H' l>!o(4
gµJ= - o(p(~ 4i>Yo(4

gµJ= - i T1"C- 4
g)l 

4 and ii) convert derivatives with respect to l\iv to derivatives with 

9 respect to N, -Ni, gij with the formula given by Schutz. We obtain 

o(H' gi)/o Ni~ - ,i N(TOi +Ni Too) = - gi N gij Toj (29) 

"',Ji P~ giJc+,J +a ~,J + e s,J> (3o) 

and 

, (31) 

(32) 

Equation (32) implies 

o H1 o ' 
H' • N dN + Ni d :i + >..mq>m (35) 

Since o(H
1 

gi)/o Ni is manifestly independent of N and Ni' differentiation 

of Eq. (33) shows that o(H' gi)/o N is also independent of N and Ni. 

The two .pieces of H' have.straightforward physical interpretations, as 

9 a 4 oa 
is shown by Schutz. Let ~ = - N g be the unit normal to the apacelike 

hypersurface. Then the two pieces of H
1 

gi are 

(34) 

and 

{35) 

They are, respectively, the coordinate densities of energy and momentum 

measured by an observer at rest in the hypersurface. 
I 

By analogy with Eq. (16) we may define a general Poisson bracket for 

any two functions of ~ij, giJ' pa, and their spatial derivatives (but not 
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of ~ or ~i' which are arbitrary functions that contain coordinate informa­

tion but h.:ivc no dynamica..l content): 

(A, B) = 

(3S) 

!hen the time derivative of any such function that does not depend explicitly 

on timia is . 
A• [A,~ 

In particular, the ADa.~ form of the Einstein field equations follows by 

using gij. and rtij for A: 

gij • gij(VAC) ' 

ttij • ~ij(VAC) + 8JC N gi(Tij - Ni Nj TOO) , 

where (VAC) indicates the terms that are there in the vacuum case (see 

(37) 

(39) 

(40) 

AD&)t). These must be supplemented by the constraint equations that come 

( ij • a • } fro::i varying the Lagrangian density ..t. 2 - " + JC gij + t
4 

p q
4 

with 

respect to N and Ni (which are not Hamiltonian variables): 

0 
B. + 162t t • 0 , (41) 

1 i B. + 16JC (I • 0 (42) 
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Equ.:i~i.ons (:59)-(42) are identical to those derived by Schutz9 for a general 

stress-energy tensor. 

Tile constraints, Eqs. (41) and (42), must be maintained in time; i.e., 

we must have 

ra0 
+ loit £,N'J = o (43) 

and 

1 1 [R + 161t (I ,N'] =- 0 (44) 

In the vacuuc case these are the Bianchi identities. In our case the 

Bianchi id~ntities reduce these to the equations of motion, T"Y = O. niese ;v 
four equations can be used to replace the four independent velocity-potential 

equations among Eqs. (5), lO which themselves guaranteed the maintenance of 

theq~equations. Tilerefore the full canonical set of equations is 

. 
81j • [ 81j' N'] (4Sa} 

itij .. [ 1(ij, N'] (45b) 

. 
+ :II [ +, N'] ,. - ) \ • .,c 

p+,. [p•, N'] (4sd) 

with either the constraints (41) and (42) (maintained in time)~ the q>­

equations (11) (also maintained in time). 

CONCLUDING REMARKS 

Tile direction of any further analysis of these equations must depend 

U?On the application they are intended for. It would in principle be pos­

sible to reduce the twelve gravitational variables (ttij and g ) to four in 
ij 
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exact:.y tho smne manner as ADa."l. Solving the constraint equations would 

then involve the fluid variables Q and p~, but the coordinate conditions 

would be unaltered (as was pointed out by ADaM). 

Methods very similar to thesE7 have been used by the author to derive 

the Hamiltonian density and from it a conserved energy density for the pul-

sations of and gravitational radiation from a differentially rotating rela-

tivistic star. TI\ese results will be published elsewhere. 
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APPENDIX 

POISSON BRACKETS FOR FIELDS IN CURVED SPACES 

For a system with n degrees of freedom, the Poisson bracket ("P. b.") 

a 
of two functions of p and q is 

a 

(4€) 

A classical field has an infinite number of degrees of freedom, one (or more) 

for each point in space. Functions like A and B may be functions not only 
. a 

of the fields p and q , but also of their spatial derivatives. In this 
a 

case, a simple definition like Eq. (46) above is not sufficient. 

Let us suppose that the field variable is a vector field qi with canoni­

i . 
cal momentum p = oL/oqi. Our results can be extended in a straightforward 

manner to cases where the field is a higher-rank tensor or a scalar. 

Because the field variables at different points are independent, we 

wish the P.b. of two functions to be nonzero only if they are evaluated at 

the same point. Accordingly we define the canonical P.b.'s: 

(47a) 

(47b) 

Here nj'i is the derivative of Synge's world function
11 O(!, !')with 

respect to xi ·and x' J, wi th the index j
1 

raised by the metric 

of the delta function the only properties ·of nj' i that we will 

(l) its limit as !' approaches ~' 

j' 
limn i·­
x'•x 

~j 
i I 

at x 1 
• Because 

11 
need are 

(4aa) 
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and (2) chc soic:.? limit of its covariant derivatives, 

(48b) 

where ~k' is a covariant derivative at x' and acts only on primed indices, 

and vice-versa for ~k. 

'nle delta function is normalized to proper volume, 

I (49a) 

and has the usual property 

0 3 0 3 
~i 5 (! - !') "" - ~i' 5 (! - !') (49b) 

Equation (48b) permits us to generalize Eq. (49b) to covariant dif-

ferentiation: 

We define the differentiated canonical P.b.'s: 

[q1(!), vik' pJ(!')l 2 - 'Vk•{nJ'1 53(! - !'>} 

['Vk qi(!), pJ(!') l = - 'Vk{nj' i 53(~ - ~· >} 

and so on for higher derivatives. 'nle Poisson bracket [ , 

(50) 

(Sla) 

(Slb) 

is the bilinear 

ant i s)'lt?etric two-point diffe.rential operator whose domain is all c1 functions 

1 of p , qi' and their covariant derivatives and which obeys relations (47) and 

(51). 
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ay ~pplication of the chain rule we find 

[A(~), S(~')] (-A ( ) = -;;;-- x 
oqi -

[qi(x_), pj(x')] oB (x') 
- opj -

~ 
+ -i (!) 

op 

+ oA (x) 
aqilk -

+ ••• , 

·={ii-: (x) oBi (x') - OAi (x) ft (x' >} 53(~ - ~·) 
qi-Ot> - op - qi .. 

- o OA (!) oBj (?:') 'Vk{nj' i 53(! - !' )} 
q11k op 

+ oiA (x) ~ (x') 'Vk{nij' 63(x - x' )} 
op lk - oqj - - -

- o~ (~) ~ ~B (~·) 'Vk•{nj' i 63(~ - ~· >} 
i op lk 

+ OAi (x) (Jq oB (x') 'Vk'~nij' 63(x - x' >} 
oP - j lk - .. -

+ ••• 

(52) 

(53) 

Tilis is the usual definition of a Poisson bracket in classical field · 

theories. But for the purpose of practical calculations it is useful to 

obtain a one-point P.b. by integrating. Tile left (right) integrated P.b. 

is the integral of the P.b. over all x' (!)· We denote these by [ , x 

and [ , 1 respectively. x' Integrating Eq. (53) on ~· and using Eq. (50) 
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(A, ·B] = x j 
all space 

40 

. CA 5B CA M_ 
+ :§qi!k 'Vk 5Pi - opi lk 'Vk Mi 

where 5B/oqi is the variational derivative 

{S4} 

+ ••• , (55) 

+ ••• 

Although one cannot generally integrate a tensor over a curved space, as we 

(56) 

have done in Eq. (54), in this case the delta ·function limits the integration 

to only one point, so that the integral is unambiguous. 

'Ihis integrated P.b. is the generalization of the simple P.b., Eq. (46), 

to which it reduces when neither A nor B depends upon derivatives of q1 and 

pi. When such derivatives are involved, the left integrated P.b. is the 

P.b. of A at the point ~with the entire field B: values of B at other 

points influence the bracket through the spatial derivatives of B at x. 

Note also that the integrated. P.b.'s are independent of any coordinate system. 

'Ihe following interesting properties follow directly from the defini-

tion of the integrated brackets: 

1. [A, B] [B, AJ ; (57a) 
x ~ 

2. [A, B] = - [B, A] if and only if both A and B are independent x x 

of derivatives of 1 
qi and p ; (57b) 

3. J (A, B] lt d3x - J [A, B]x g~ d3x (57c) 
all x 

space - all space . -
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if x(A, B] is a scalar (if not, the integrals are undefined); 

~i ~(A, B] = x[vi A, B] 

v1(A, B)x = (A, Vi B)x 

(57d) 

(57e) 

TI1~ integrated brackets fit into the Hamiltonian theory because the 

canonical equations are (for a system whose momenta are all independent) 

qi= 8H/8P
1 

•i 
P = oH/Bq1 

, (sea) 

{58b) 

They translate to (from now on we will use only the left integrated brackets): 

' 
• 1 
p1 • '!( P , H) 

By property 4 above these imply 

which in turn imply 

. 
qi I k • '![qi I k' H) ' 

•i 1 
p lk • ~ p lk' H) ' 

. 
A= (A, H] 

! 

{59a) 

{59b) 

(60a) 

(60b) 

(61) 

i 
for any function A (not necessarily a scalar) of qi' p , and their spatial 

derivatives that does not explicitly depend on time • . 
Property 2 implies that in general H I O. This is to be expected: 

energy can be transferred from point to point. We should only expect that 

• .l. 3 I . B ,~dz • 0 
all apace ' 

(62) 
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which is t=ue b~cause of properties 3 and 1. Thus, in general there exists 

a canonical Poynting vector Si such that 

. i 
H +'Vi S = 0 

For the simple case where H depends on no derivatives of qi and pi higher 

than first order {which includes almost all physical systems), the Poynting 

vector is 

(63) 

For a degenerate system {momenta not all independent) the equations of 
4 . 

motion are almost as simple. Dirac shows that for a system with a finite 

number of degrees of freedom, 

, (64a) 

(64b) 

For a degenerate field theory these become 

qi • ![qi' H] + x[ qi, ~m <Pm] (65a) 

•i i t 
p • ![ p ' H] + x[ p ' ~m cpm] (65b) 

In these equations ~ appears inside the integrated bracket because it 
m 

is generally a function of .position. To campute a bracket that has k inside, 
m 

i one treats k as a function of x independent of p and qi. For example, 
m -

the variational derivative of Eq. (56) is 

(66) 
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Con$crvation laws for the Hamiltonian can be derived here, too. 'nley 

are .especially simple in the case where H depends on no derivatives of pi 

and only first derivatives of qi, and where Cjm is independent of any deri­

vatives. 'nle equation maintaining the cp -equations is 

(67) 

!he ti.mo? derivative of H is 

. 
a =- r a, H] + ( H, ~ Cl l r x m m 

Using the properties of the integrated bracket, our assumptions about H and 

'Pm' and Eq. (67), we can show that this becomes 

• i 
H + v1 S • 0 , (68) 

with 

Si • _ ( ~Hj. ~ Off 111) oH 
Ul" + Ill Opj ~qJli 

(69) 

But by Eq. (65a) this is just 

, (70) 

which is the canonical flux in the nondegenerate case as well. 

In the body of this paper we will consistently use the left-integrated 

Poisson bracket, which we refer t o simpl y as the Poisson bracket, denoted by 

( , ] . 
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ABSTRACT 

A systematic method is presented for deriving the Lagrangian 

governing the evolution of small perturbations of arbitrary flows of 

a self-gravitating perfect fluid. The method is applied to a differen-

tially rotating stellar model; the result is a Lagrangian equivalent to 

that of Lynden-Bell and Ostriker (196 7). A sufficient condition for 

:3tability of rotating stars, derived from this Lagrangian, is simplified 

greatly by using as trial functions, not the three components of the 

Lagrangian displacement ·vector ~, but three scalar functions defined 

by 

PS = v A + v x (X i + v x y i), 
- "1rtl ,..., ,..., ,..., ,..., 

where i is an arbitrary vector field. This change of variables saves 

une from integrating twice over the star to find the effect of the per-

turbed gravitational field. 
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INTRODUCTION AND SUMMARY 

There is usually a very close connection between variational 

principles and stability criteria. , If one has a variational principle 

that gives the dynamical equations for small perturbations of some 

equilibrium state, he usually can obtain directly a criterion that tells 

him whether those perturbations will remain small. In fact, Cotsaftis 

(1968) has shown that it is in principle always possible to derive at 

least a sufficient condition for stability from the Lagrangian. The 

most familiar example of this is the use of the Hamiltonian as a 

Lyapunov function in cases where energy is conserved or dissipated 

by the perturbations: then positive-definiteness of the Hamiltonian 

guarantees stability. 

In the theory of small pulsations of stellar models made of 

perfect fluid, the problem of finding a Lagrangian for the pulsational 

equations has been solved only in the past decade (Chandrasekhar 

1964, Chandrasekhar and Lebovitz 1964, Clement 1964, Lynden-Bell 

and Ostriker 1967, Chandrasekhar and Lebovitz 1968). The. 

Lagrangian for the nonradial pulsations of a nonrotating star was 

deduced directly from the perturbed equations of motion by 

Chandrasekhar ( 1964) and by Chandrasekhar and Lebovitz (1964). 

Using these same techniques, Lynden-Bell and Ostriker (1967) 

obtained the Lagrangian for small perturbations of any stationary 
' 

equilibrium configuration of perfect fluid; and they derived from their 

Lagrangian a sufficient condition for ~tability, which is essentially 

that the conserved Hamiltonian be positive-definite. In principle this 
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nearly solves the stability problem, though in practice the criterion 

is still very difficult to use. 

The purpose of this paper is to show that the Lagrangian can 

also be deduced in a potentially more powerful way from the general 

perfect-fluid variational ·principle of Seliger and Whitham (1968); 

and to show that the resulting stability criterion can be simplified 

greatly for the purpose of testing realistic models. The method 

introduced here is potentially more powerful for two reasons. 

First, it provides a straightforward, conceptually simple procedure 

for deducing the Lagrangian for perturbations of any initial flow (not 
I 

necessarily stationary) with arbitrary boundary conditions on the per-

turbations (boundary conditions have required special considerations 

in previous work). Second, it is easily generalized to general-

relativistic stellar models, where the pulsational equations (cf. 

Thorne and Campolattaro 1967) are so complicated that they have 

defied the earlier techniques. In the second paper in this series 

(Paper II, Schutz 1971a}, we will apply the method illustrated here to 

fully relativistic, differentially rotating stellar models, starting 

from the relativistic version of the Seliger- Whitham variational 

principle obtained by Schutz (1970) (and obtained independently for 

special relativity by Schmid [ 1970a, b]). In the present paper we 

confine ourselves to the Newtonian regime. 

The general plan of the paper is as follows. In §II we pre-

sent the general Lagrangian for the perturbations of any motion of a 

self-gravitating perfect fluid (not restricted to stationary motions). 
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It is the second variation of the Seliger- Whitham Lagrangian. In 

§III we specialize to the case where the unperturbed flow is a differ-

entially rotating stellar model. We reduce the Lagrangian to a 

function only of the fluid displacement vector, ~; and we express the 

action as an integral over the interior of the star plus an integral 

over the surface of the star (the surface integral permits the pertur-

bation to obey any boundary condition). 

In §IV we write down the sufficient condition for stability, 

first discovered by Lynden-Bell and Ostriker (1967). We then show 

that a considerable simplification of the criterion can be effected by 

dealing not with £ but with three scalar fields from which £ can be ,.., ,.., 

obtained (in complete generality) by the following construction: 

p£ = 'VA. + 'V X (X e ... + V X ye ... ) • ,..,, ,.., ,._ ,,.,,,r ,.., """' r 

Finally, in §V we examine the special cases of. (i) axial~y symmetric 

perturbations of a rotating star (as treated by Chandrasekhar and 

Lebovitz 1968) and (ii) perturbations of a nonrotating star (treated 

by Chandrasekhar and Lebovitz 1964). We find that the stability 

criteria for those cases can also be simplified by using the above 

expression for ~· In order to preserve the continuity of the dis­

cussion, details of the longer calculations have been placed in 

appendices. 



50 

II. PERTURBATIONS. OF AN ARBITRARY FLOW 

a) The Velocity-Potential Variational Principle 

The starting point for our analysis is the variational principle 

discovered by Seliger and Whitham {1968). It is by no means the only 

variational principle for perfect fluids, but it is especially well-suited 

for examining perturbations because it is an Eulerian variational 

principle. That is, all fluid quantities are expressed in terms of five 

scalar fields (the velocity potentials ljJ, a, f3, a, S); one never needs to 

deal explicitly with "fluid elements 11 or "particle paths." Perturba-

tions in the flow come from simple Eulerian perturbations of the 

velocity potentials, and are much easier to deal with than perturba-

tions in particle paths. 

The basis of the variational principle is the representation 

of the velocity field of the perfect .fluid in terms of the five velocity 

potentials: 

v = v~ + av f3 - s v a , 
l"'W ,,,,_ ,..,, ~ 

(1) 

where S is the entropy per unit mass. The notation follows that of 

Schutz ( 1970), with the definition 

ljJ = ~+as, (2) 

where 4> was used by Schutz (1970) but will not be used here. It 

turns out to be more con.venient in this paper and especially in Paper 

II to use the set (lj; ,a,{3,8,S}, rather than (cp,a,{3,8,S). To convert 

from this notation to that of Seliger and Whitham {1968), make the 
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replacements 4i - ~. a- - T) • . (T.hese are changes in name only: 

Seliger and Whitham 's cf> is the same as our ljJ.) 

Each velocity potential obeys a simple "equation of evolution": 

~ + v • ~4i = - h + TS - cp t.!.v• v, at 2_ (3a) 

aa + v • 'Va= 0, at - (3b) 

a13 +v· ~13=0, at (3c) 

as + v • 'VS = 0, at - (3d) 

ae + v ·• 'VS = T. at (3e) 

Here T is the temperature; cp is the gravitational potential, 

2 
'V cp = 4trGp; (4) 

and h is the specific enthalpy, 

h = (E + p) /p, (5) 

where E is the internal thermodynamic energy density, p is the 

pres sure, and p is the mass density. The evolution of the velocity 

potentials fixes the evolution of v through equation ( 1). In order to -
make this a well-determined set of equations one must add an equa-

ti on of state, 

p=p(h,S), (6) 
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and the continuity equation 

~+\I•() 0 a v pv = • 
t .... .... 

(7) 

Equations (3), (4), and (7) constitute seven equations for the seven 

functions cI>, h, S, .j;, a, 13, a. They are completely equivalent to 

the Euler equation, 

a~ 1 
- + (v • 'V)v = - -'Vp - 'V cI>, (8) at ,.., .... ,., p ,., 

supplemented by equations (3d), (4), and (7). A rigorous proof of 

this equivalence has been given by Schutz (1970) for the relativistic 

version, but it applies equally well here. 

Equations (3), (4), and (7) follow from extremizing the action 

I = s ('~cI> • ~cl> - 811'Gp) dt dV, (9) 

where the integral is over all space and time (dV is an element of 

volume). The pressure is taken to be a function of h and S through 

equation (6), and the enthalpy in turn is defined formally as a function 

of cI> and of the velocity potentials: 

Variations in the pressure with respect to the independent variables 

(~ ,4;,a,13,a ~S) are accomplished through the first law of thermo-

dynamics: 

dp = p dh - pT dS. ( 11) 



53 

The vanishing of the "first variation 11 

oI = s (27cI> • 

= s (2~<P • 

~5q.. - 81TG6p) dt dV 

\locI> - 8irGpoh + 8irGpT6S) dt dV ,., 

--when oh is expressed in terms of the independent variations 

o<I>, o<j;, oa, 6{3, o9, oS--gives equations (4), (7), and (3b) - (3e}. 

(12) 

Equation (3a) follows from the rest of equations (3) and equation (10), 

so it is not an independent Euler-Lagrange equation. 

In this paper it is often convenient to use the notation of 

differential geometry because we wish our expressions to be valid 

in any curvilinear coordinate system. Thus, we denote partial differ-

entiation by a subscripted comma (as in eq. [ 1 O]) and covariant 

differentiation by a subscripted semicolon. We understand the 

gradient, \7, to be a covariant derivative. We distinguish contra­

variant components, vi, from covariant components, vi; and we raise 

and lower indices with the metric tensor gi. [which for spherical 
J 

polar coordinates is just diag(1, r 2 , r 2 sin2~)] . We always integrate 

over proper volume, 
l 

dV = g2 3 .!. 
d x, where g 2 --the root of the deter-

minant of the matrix g
1
j--is the Jacobian of the transformation from 

Cartesian coordinates to the general curvilinear coordinate system. 

We are able to integrate by parts because of the identity for any vector 
l . l . l 

A that \7 • ~ g2 = AJ •. gz = (AJgz) .• 
·- ,J ,J 
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b} The Second Variation 

It is well known that the second variation of a Lagrangian 

serves itself as a L~grangian for the small perturbations of whatever 
I 

state of motion ca us es the first variation to vanish (cf. Taub [ 1969] 

for a recent application to the stability of relativistic stars against 

radial pulsations). The second variation of equation (9) is just the 

part of I that is quadratic in the variations o<I>, oljl, oa, 6'3, 60, o5. 

Thus , starting from equation ( 12) , we find 
1 

2 s .. 2 6 I= [26<l> . 04> .giJ _ 8irG6p6h-8irGpo h+8irG6(pT) 65) dtdV. (13) 
, l , J 

Now, the second variation in h comes from equation (10): 

Thus, the Lagrangian density for the perturbations is (dividing eq. [13] 

by 8TrG) 

1 .. 
L 2 = 4 G g

1
J 64> . 64> . - op oh+ 6(pT) o5 +Pov • ov 

Tl' ,l •J - -

' k k 
+ 2p 60! (of3, t +v 6'3 ,k) - 2p 65 (60, t +v 60 ,k). ( 15) 

This Lagrangian is perfectly general and makes no assumption about 

the unperturbed state except that it satisfy the unperturbed velocity­

potential equations. In the case of the differentially rotating star, 

1 
Note that we are looking for second-order changes in functions of the 
potentials when the potentials are perturbed. By definition, then, 
the second variation of a potential itself is zero; e.g., o2tf> = O. 
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the unperturbed motion is steady, so the coefficients of the quadratic 

perturbation terms in L
2 

will be independent of time; this will 

enable us to obtain stability criteria. 

In using L 2 as the Lagrangian density for the perturbed 

fluid, we have changed the meaning of 6<I>, 6l\J, 6a, 6{3, 60, 6S. In the 

first variation, 6<I> was . a "virtual 11 change in the gravitational field. 

Here, o<I> is the real Eulerian change in <I> produced by the perturbed 

state of the fluid. Extremizing J L
2 

dV dt with respect to virtual 

changes in o<I> gives the perturbed source equation, 

2 'V o<I> = 4irG op. 

Similarly, extremizing J L 2 dV dt with respect to virtual changes in 

the other perturbations gives the Eulerian perturbations of equations 

(3b- e) and (7). These equations are completely equivalent to the 

perturbed Euler equation (eq. [8]), which we write down for future 

reference: 

(16) 

c) Discussion 

For two reasons the Lagrangian density L
2 

is not in a form 

suitable for a stability analysis. 

First, the Lagrangian is degenerate. That is, the momenta 

aL 2/a 6<.P ,t' 8L2/a 6l\J,t' ••• are not all independent; in fact, three of 
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them are zero and only one of the remaining three is independent. 

This is partly a reflection of the fact that not all the six variables are 

dynamical (cf. Schutz [ 1971 b] for further discuss ion of this point). 

Second, the usual criterion for stability is that the pertur-

bations not grow without .bound. But even the unperturbed potentials 

ljJ, 13, and e grow in time at any given point (cf. eqs. [ 3] or [ 18]), 

so we can expect that even for a stable, physically bounded pertur-

bation the perturbations oljJ, 013, and 69 will grow without limit. This 

presents no physical difficulty because the potentials themselves are 

not physically observable. But it presents a mathematical difficulty 

in that the boundedness of the perturbed velocity potentials is neither 
. I ! 

necessary nor sufficient for stability. 

For these reasons we prefer to express L 2 as a function 

only of the dynamical variable f (the displacement vector of a fluid 

element). 2 This is accomplished in §III for the case of the differ-

entially rotating star. 

It is important to understand that the perturbed action, 

(1 7) 

is an integral over all space between two arbitrary moments of time. 

The reason for this is that the Euler-Lagrange equations extremize 

2 An alternative procedure is followed in Paper II: We find the (non­
conserved) Hamiltonian from Lz. and construct from it a conserved 
energy density, whose positive-definiteness ensures stability by 
Lyaponov's second theorem (La Salle and Lefschetz 1961). The com­
plexity of the relativistic equations makes that the easier procedure; 
but in the Newtonian case the procedure we follow here is less diffi­
cult and physically more satisfying. 
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I 2 only under the condition that the variables 6<I>, 64', • • • be held 

fixed at the boundary of the region of integration. The only way to 

ensure that this represents no physical constraint on the perturbations 

is to put the spatial boundary at infinity, where all the perturbations 

must vanish anyway. 3 (Only cS<I> is observable outside the star, and 

it must approach zero at infinity at least as fast as 2. 1/ r • The velocity 

potentials have no physical significance outside the fluid because p 

and p are zero the re, but it is convenient to think of them as existing 

in the exterior and going smoothly to zero at infinity.) In §III, after 

we have introduced ~, we will bring the boundary of the region of 

integration in to just inside the surface of the star, expressing the 

contribution from the rest of space as a surface integral at the star's 

surface. In this manner we will ensure that r2 be an extremum among 

all perturbations that obey any physically permissible boundary con-

ditions at the star's surface. 

3By contrast, requiring the perturbations to vanish at the endpoints 
in time is not a physical restriction: it is a direct carry-over from 
particle mechanics, where it is the heart of Hamilton's principle. 
In continuum mechanics one cannot demand as well that the variation 
vanish at some point in space for all time, for that would be a physi­
cal constraint. 
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III. PERTURBATIONS OF DIFFERENTIALLY ROTATING STARS 

a) The Unperturbed Equilibrium 

From now on we will consider the Lagrangian, equation (15), 

only in the context of rotating stars. In this Section and the next we 

make no assumptions about the initial equilibrium except that it be 

axially symmetric, stationary, and, of course, composed of perfect 

fluid (no heat flux, no viscosity). In §V we specialize the equilibrium 

configuration further. 

The general stationary axially symmetric flow can be repre-

sented by the following set of velocity potentials (r, ~. <p are the usual 

spherical polar coordinates, and t is time): 

S = arbitrary function of r and ~ (18a) 

0 = arbitrary function of r and ~ (1 Sb) 

(18c) 

~ = cp - Ot (18d) 

e = Tt (1 Se) 

y; = (-ht TS - <I> + ir2 sin2~ 0 2
)t. (18£) 

From equation ( 1) we find 

v =a=Og , 
<P cpcp 

(19) 

which means that 0 is the angular velocity, 

0 = v'P = dcp /dt. (20) 
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v to zero in equation (1) gives the equation of 

r 

p -
1

p + cl> - i Oa . + i aO . = O • 
,j ,j ,J ,J 

(21a) 

(21 b) 

The source equation for cl>, equation (4), has of course the formal 

solution 

S 
Gp(x') 

,.., I 

cl> (x) = - Ix - x I I d V • 
,., ,.., 

(22) 

Note that although the velocity potentials are conveniently 

expressed in terms of the spherical polar coordinates, they are 

scalars and keep the same values in other coordinate systems. 

b) Reduction of L 2 

We now eliminate the variables 6<P, 6\fl, 6a, 613, 60, and 6S 

from L 2 (eq. [ 15]), replacing them with ~· The details of the reduc­

tion are given in Appendix A. The essential steps are: 

i) Solve the perturbed ' velocity-potential equations for 6S, 6a I 

and 613 in terms of S: 

6S = - ~ •V'S; (23a) 

6a = - s · V' a; (23b) 

6{3 = - s . \71). (23c) -
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ii) Express o.v and op in terms of ;: -
a; 

ov = '2- + (v • V'); - (s • V') v; ,..,,, ot - ,..., ,..., ,..,,, ,,,,,, ,..., (24) 

op = - V' • (ps). (25) - -
iii) Formally solve the perturbed source equation for 04': 

(26) 

iv) Plug all these expressions into L 2• Perform some inte­

grations by parts so that explicit expressions for ol\J and 66 are 

never needed. Discard all divergences because the integral extends 

to spatial infinity. Obtain the result 

1 . . 2 
L 2 = -;;--?. 04' . 04' .g

1J - yp(V. s) - 2<v. ;·Hs • Vp) 
':t'Ti"U 1 l 1 J ,..., ,..., ,..,,, ,..., ,,.,,, ,_ 

(27) 

where 6 CI> is given by equation (26), y is the adiabatic index 

- p ( 8p) 
Y-p BP • s 

(28) 

and all quantities except 64' and s have their unperturbed values. -
This is equivalent to the Lagrangian of Lynden-Bell and Ostriker 

( 1967), specialized to the case of the differentially rotating star. 

One ought to wonder i£ L 2(~) is really still the Lagrangian: 
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might not the substitutions of step (iv) fundamentally alter its 

character? The proof that they don't is, of course, that they don't: 

it is not hard to show that varying L
2 

with respect to ~ gives just 

the perturbed Euler equation, equation (16), when all perturbed 

quantities are expressed in terms of £. 

This is reasonable on general grounds: the action I
2 

is 

an extremum for motions obeying the perturbed versions of equations 

(3), (4), and (7). If we solve some of these equations for some of the 

variables in terms of the o~hers and then substitute the solutions back 

into L 2 , then I 2 must still be an extremum for the solution of the rest 

of the equations. That this is what we have done is evident from 

equations (23). In the general case, \i'S, \lo:, and \7(3 are linearly ,.., ,.., ,.., 

independent vectors. We have simply relabeled some of the variables 

by defining s to be a vector whose component on \i'S is - oS, ,.., ,.., 

whose component on \lo: is - oa, and whose component on \713 is ,.., ,.., 

- o{3. We then eliminated oS, olj;, and oti> in terms of these three 

componen~s of ~. I
2 

ought still to be an extremum for whatever 

oS, oo:, 5{3 made it an extremum before. 

What about uniqueness? It is still possible that our procedure 

could introduce spurious solutions that extremize the reduced I2 but 

not the original. This w;ll in fact happen if one reduces the number 

of variables in a Lagrangian below the number of true degrees of 

freedom the system has, because then one has implicitly assumed 

some relation between one or more degrees of freedom that isn't 

generally true. As a simple example, consider the free-particle 

•2 ·2 
Lagrangian, ~ = x + y , whose Euler-Lagrange equations have the 
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solution x ::: canst, y ::: canst. 
. 

Assume that x = ky. Substitute this 

into J:: J: ::: k
2

y
2 + Y.2 • The Euler-Lagrange equations still have as 

one solution y = 0 (=>~ = y = 0), but they also have the spurious 

solution y = exp(kt .fi.). So in general one must exercise care not to 

infringe on a system's dynamical freedom. In our case we have not 

introduced spurious solutions: the three components of ~ are the 

only dynamical variables the pulsating star has. 

c) Surface Boundary Conditions: Expressing the Action as an Integral 
over the Interior of the Star Plus a Surface Integral 

One generally prefers to express the action as an integral 

over the interior of the star, where all the dynamics occurs. Our 

action, I
2 

= J L 2 dV dt, with L
2 

from equation (27), includes an 

integral over all of space. The only contribution outside the star is 

from the term in o<I?. We shall see that it can be expressed as a diver-

gence plus a term that is zero outside the star; thus the integral of 

L
2 

outside the star can be expressed as a surface integral evaluated 

just above the surface of the star. 

The star's surface is defined as that place where p = O. 

For some equations of state this does not imply p = O. Outside the 

surface we must of course have p = 0, so that p may be discontinu-

ous and the terms tn L
2 

that contain gradients of p may be delta­

functions at the surface. Therefore, bringing the limit of integration 

in I 2 to just inside the star's surface will bring in a surface integral. 

We consider separately the two steps: first bringing the 

limit in to E+, a surface just outside the star's surface E; and 

second, bringing the limit into '!;-, a surface just inside 'E. 
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i) The Integral over the Exterior Region 

The only nonzero term in I
2 

outside the star comes from 

cS<D. Ignoring for the moment the integral on time, we have 

S ~ cS<I> • ~ o<I> dV = S [ ~ · (o<l> yo<I>) - o<I>V
2 

ocI>] dV 

= - 4TTGS o<I> op dV + s :! · (o<I>~ o9) dV. (2.8) 

If the region of integration is all space, the second term in the right­

hand side vanishes. But if the region of integration is from ~ + out-

ward, then the first term is zero and the second term is a surface 

integral ( n is the unit outward normal to 1:): 

S ~ o<I> • ~ o<I> dV = - S o<I> ~ o<I> • n dcr. 

exterior E+ 

With this, I
2 

becomes _ 

I 2 = s L 2 dV dt - 4~Gs c5<1> Y o<I> • ~ dcr dt. 

out to l:+ 

(2. 9) 

1:+ 

ii) The Surface Integral 

If we integrate the first term on the right-hand side in 

equation (29) only out to l:-, we omit only an infinitesimal volume of 

space. Only if L
2 

has delta-functions at the surface will this region 

contribute to I
2

• As we mentioned previously, a discontinuity in p 

would give such a delta-function. We do not need to worry about dis-

continuities in s or 0: we can perfectly well define fields s and 
~ -

0 outside the star that are continuous at its surface. They don't 

affect I 2 because p and p are zero outside. Moreover, there can 
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be no discontinuities in p and cS<I> at I:. 

One contribution to the integral of L
2 

between !:- and };+ 

might come from the term \l o<I> • \l oib. This has no delta-functions, - ..., 

so its net contribution is zero. However, from equation (28) we see 

that this means 

'Y.+ 
4rrG(' ~ o<P op dV = \ +6<P\lo<J? • n da- -s _ cS<J?\lo<J? • n da-. (30) 

J~ J'E - ..., ~ ..., ..., 
l 

If p is discontinuous, the term op = - \l • (ps) contributes to the ..., ..., 

left-hand side, and the result is 

S +o<J?\l o<J? • n da- = S oib\l o<J? • n da- + 41TGS o<J?ps • n da-
~ #'V ,.,,, ~- ,.., ,.., ~- ,..., ,.., 

= 5'Y._o<I>C7o<I> +4TrGpf) • ~da-. 
. 'J 

(31) 

This enables us to move the surface integral in equation (29) from 

~ + to I:-. 

The only contribution to the integral of L
2 

between ~- and 

~+ comes from the fourth term in equation (27): 

-p-1 <s • Vp)(s • Vp). - ..., 

Its integral is 

~+ -S~- p -l<f. ~p)(f. ~p) dV = s z;- Cf. 7PHf. !:) do-. (3 2) 

Note that because ~ is a surface of constant pressure, \lp and n 
. . - -

are parallel there. With equations (29), (31), and (32), the action 

becomes 
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L
2 

dVdt +S _(; •yp)(; • n) da-dt 
I; """' ,..,, f"fltl 

interior 

r 
J 

-S-z- 5q,(p~ + 4~G S?o4>) • n da- dt~ (33) 

where by "interior" we mean the region inside -z-. 

We should mention that these same surface integrals can be 

obtained if, instead of integrating L
2 

over all space and then bringing 

the limit of integration in 1 one always integrates L
2 

just over the 

inte rior but adds surface terms in order to make 'Z a free boundary. 

Thi s procedure is examined in detail by Courant and Hilbert (1953) 
\ 

under the name "natural boundary conditions. 11 The procedure 

followed in this section was first suggested to me by Professor 

Kip Thorne. 
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IV. STABILITY OF DIFFERENTIALLY ROTATING STARS 

a) The Stability Criterion 

The Lagrangian density, equation (27), has the form 

• 
L2 = P~,t· E,t +a[~ ·~,t] + c[!·!J' (34) 

where a and c are homogeneous quadratic time-independent opera-

tors. Moreover, a is antisymmetric and C is symmetric when L
2 

is integrated over all space. Note that C includes all except the last 

two terms of equation (27). It is easy to show (cf. Kulsrud 1968) that a 

sufficient condition for stability is (for all .5. bounded everywhere and 

zero at infinity) 

-s 
all 

space 

C[ £ , £] d V > O • (35) - ,.., 

This is sufficient for stability because it guarantees that the "kinetic 

energy," 

K= s P~,t • ~,t dV, (36) 

all 
space 

will remain bounded for all time for all perturbations. 

Another way of obtaining the same result is ~o construct the 

Hamiltonian density 

~= p£ • £ - C[£,£]. ,.,,t ,.,,t ,..,,., (3 7) 
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Because the operator C is time-independent, the total energy 

e - s l:i dV, 

all 
space 

is constant, so that l:i is a Lyapunov function whose positive-

(3 8) 

definiteness guarantees stability. Clearly inequality (3 5) guarantees 

the positive-definiteness of J:i. It is this Lyapunov criterion to which 

we will appeal in Paper II in order to obtain a sufficient condition for 

the stability of relativistic 'stars. 

For the realistic Newtonian star, inequality (3 5) is more than 

just a sufficient condition for stability. According to Lynden-Bell 

and Ostriker (1967), it is also the condition for secular stability: 
I 

if friction is introduced, stable modes of pulsation will remain stable 

if and only if equation (35} is satisfied • . It is therefore of great im-

portance to cast the criterion in a form that is easy to test realistic 

models with. That is the subject of the remainder of this paper. 

Although the criterion (35) is not new, our way of handling it is. 

b) The Transverse and Longitudinal Parts of p~ 

The typical procedure for testing a stellar model for stability 

is to choose a trial function for £, which might have . some arbitrary 

parameters in it, and then to plug it into the operator C and see if 

inequality {35) is satisfied for all values of the parameters. This 

procedure is made very difficult by the term 7 64> • \J 64>. In order 

to find o~ at any point inside the star one must integrate p£ over 
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the entire star (cf. eq. [ 26]). This is impractical for all but the 

simplest stellar models and trial functions. 

Fortunately we can overcome this difficulty. The source 

equation for 64? is 

'V • ('164?) 41TG'V · (ps). -
This can be integrated to give 

(3 9) 

where T)L is the longitudinal (curl-free) part of the vector field4 

- { p~ ,, = 
- 0 

inside the star 
(40) 

' outside the star. 

Any piecewise differentiable vector field A that approaches -
zero at infinity at least as fast as 1/r2 can be decomposed into unique 

longitudinal and transverse parts, 

(4la) 

where (cf. Phillips 1933) 

AL = 'V f = 'V [...!...S A(x') • '11 1 
,... _ - 41T - - Ix - x' I dV'] (4lb) - ... 

and 

~T =~X~=yx(11TS~<!')x ~' lx~x'I dv']. (4lc) 
... -

4A good introduction to longitudinal and transverse parts of vector 
fields can be found in Phillips (1933). 
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The function f and the vector F are the unique continuous scalar ,.., 

and divergence-free vector potentials of the field A. Note that F is 

unique only if we demand that it be divergence-free: we can--and later 

we will- -add a divergence to F without changing ~ T. 

From equation (26) we see that the scalar potential for 2} 

-1 
is just -(4'4rG) ocI>, which proves equation (39). Thus, the gravitational 

term in C becomes 

(42) 

We can achieve a considerable savings of effort in testing a 

stellar model for stability if instead of choosing a trial function for 

£ we choose one for T}L and one for 11 T. The search for a suitable 

L 
curl-free vector for l'} and a suitable divergence-free vector for 

2}T might still prove difficult, so in the next subsection we will 

simplify the task even more by introducing three arbitrary scalar 

functions in place of iJ T and l'}L. But first it is convenient to re-

express the stability criterion (35) in terms of 11· 

Inequality (35) has C integrated over all space. If we bring 

the limits of integration in to ~-, we pick up the identical surface 

terms as in equation (33). We can therefore write inequality (35) 

in the form 

-s C[~,~] dV - S~- ~[.!!•_!!] 
interior 

• n d<T > 0, (43) 

where C [ri,11] = C [£,£],and where {cf. eq. [33]) 
,,.._ ,.., ,..,, """" 

(44} 



10 

It is understood in equation (44) that oc:l? is -4rrG times the scalar 

potential of 11 • 

The operator C[ :J, !]] has covariant derivatives of .!1 in it. 

When doing calculations one must replace covariant derivatives with 

ordinary partial derivatives and Christoffel symbols. When one does 

this in spherical polar coordinates one finds (now indices j, k run 

over r ,;:;. , <p) 

(L). (L)k 1 2 . k 
C[ 11, ri] = 4irGg . 11 J11 + -0 g. 11 J 11 

,.,, ,.,, Jk P Jk I <P I"' 

1 O 2[ r 2. ;:;. r 2 ;:;. 2] + p (11 ) + 2.r sin 2;:;.11 Tl + r cos 2;:;. (11 ) 

Here we have defined 

8 = Vp - Y..E. v p I ,..., ~ p ,,,,_ 

which is the vector Schwarzschild discriminant. For nonrotating stars, 

g > 0 is necessary for stability against convection. Components 
r 
r ;:;. <p 

T} , ri , T} in eciuation (45) are components on the unnormalized 

coordinate basis vectors e , e<\.., e • 
,...,r ,,.,,,,"' ,,,,_cp 

For future reference it is convenient to write down the entire 

Lagrangian L
2 

from equation (27) in terms of 11· It is 

(46) 
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c) Scalar Potential for p£ -
We have seen that it is possible to reduce the number of inte-

grations necessary to test for stability by replacing £ by 11· We - -
now show that it is possible to express 1'} in terms of three scalars -L T in such a way that the two pieces 1'} and 1'} separate automatically. - -
Then trial functions may be chosen for the scalars without losing the 

advantage obtained by separating ri into !IL and 1'} T. - ,., 

Our procedure rests on the following theorem: For any 

vector fields A and i (i • i :F 0) whose Cartesian components are - - -
analytic functions of position in the neighborhood of some point, there 

exist functions K, X , '{ also analytic in that neighborhood such that 

A =VK +xi +'V X"{i. ,.,., ...., ,.,., ,..,, ,.,., (47) 

The existence of K, x , y follows from the Cauchy-Kowalewski 

existence theorem for systems of first order partial differential 

equations (cf. Courant and Hilbert 1962). The restriction to analytic 

functions is probably not important. In practice one can choose i 

to be analytic almost everywhere. Moreover, the functions K, X, '{ 

probably exist for most well-behaved but nonanalytic A as well. -
Even if they do not exist for some .A, it will usually be possible to -
approximate A as closely as one wishes with analytic functions, 

except at isolated points. Note that one might need several "patches 11 

to represent ~ in a finite region. 

In the previous subsection we showed that there exist ~ and 

A such that 
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'1 = \! >... + \J X A • 

If we now replace A by equation (47), we obtain 

t'l = \J >... + \J x (x i + v x " i) • (48a) 
,.., -

J..' hus, there always exist >.., X, and 'I such that for any analytic, 

nowhere-zero vector field i 

L 
t') = \J >..., (48b) 

(48c) 

We are still free to choose ~ in any way we might wish. In 

this paper we will choose i = e , which is analytic everywhere but at ,.., ,..,r 

r = O; this will allow our results to assume a convenient form in the 

nonrotating, spherical case, where the :J- - and <p-directions are equiva-

lent. One would therefore expect our results to be well-adapted to 

the study of modes that have analogues in the nonrotating star; they 

might do less well on other modes. A variant on this is to choose 

i = \Ip/ I \Ip I (at the surface, i is the normal), which might do ,.., ,.., ,.., 

slightly better for is entropic models, where surfaces of p and p 

coincide. On the other hand, for investigations of highly flattened, 

rapid rotating models, it might be better to choose i = e,..,, where w 
..... .... w 

is the radius in cylindrical polar coordinates (w,~, z). 

ci) Testing for Stability 

We define the trial functions a, b, c by 



13 
L 

'11 ='Va, 

T 
'11 ='VX~, ,.., ,.., 

2 
A = - r c e ,..,r 

2 +'VX(rbe). 
,.., -r 

Since the star has azimuthal symmetry, we expand 

CX> 

(49a) 

(49b) 

(49c) 

a = l [ a~(r ,::;. , t) sin M<p + a~(r ,::;. , t) cos M<p] , (50) 

M=O 

and similarly for b and c. Modes corresponding to different M 

are orthogonal, but plus and minus modes of the same M are mixed 

by the equations of motion and variational principle. Appendix B 

contains the details of the reduction of the stability criterion to a 

. ±b± ±f h condition on a , , c or eac M. The expressions are very com-

plicated; we will deal only with special cases from now on. 
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V. SPECIAL CASES 

a) Axially Symmetric Perturbations 

Axially symmetric perturbations were examined by Lynden-

Bell and Ostriker (1967) and in great detail for uniformly rotating 

stars by Chandrasekhar and Lebovitz (1968). We do not need the 

restriction to uniform rotation. 

Requiring ~ to be independent of <P is equivalent to setting 

M = 0 (cf. eq. [Bl] of Appendix B). Thus, there is no distinction 

between plus and minus modes. Representation (Bl) for 11 becomes 

where 

L ,, 
T 

=a e .... ,r_r 

,, = 

e .... , e~ and 
,.,.,,r ,...,rJ< 

e.- are unit vectors, and where L 
2 = 

-'P 2 --

(Sla) 

(Slb) 

( si
1
n;;;. 

a . <>... a 
a;;;. smr.J· a;;;. - ·~;;;-) is the angular part of the Laplacian. 

sin 

Notice that the scalar c separates from the other two: its 

sole function is to determine the <p-component of 11 • This separation -
shows up in the equations of motion. The equation for c can be 

obtained by varying the Lagrangian, equation (46), with respect to 

ri<P after setting derivatives with respect to <p to zero: 

2 2 . 2 <p 2 n(a) j - - r sin ;;;. 11 - - ~" 7"\" Tl = 0 p , tt p u . , t 
,J 

(52) 

This is just the equation for the coriolis acceleration in the azimuthal 

direction of the displaced fluid element as it is carried around the 

star. We can integrate this equation: 
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cp n 2 . 2 j 
sin ::i- 'l = c = - 2 2 (r sin :;i.) .'l + f(r,:;i.), (53) 

't '::i-t . .... , J r sin l\J' 

where f(r, :;i.) is an arbitrary function that rep res en ts an "initial" 

(i. e . when 'l = 0) azimuthal velocity perturbation. 

Suppose that we take f = 0. Then for this restricted class 

of perturbations we can substitute equation (53) into the Lagrangian 

density {46), which remains a Lagrangian for r{ and T'J:;y., and in which 

there are no terms linear in time derivatives of T'J. From the theorem 

of Laval, Mercier, and Pellat (1965) we obtain the following necessary 

and sufficient condition for the stability of the star against our 

restricted class of perturbations (f = 0): 

S { n2 
2 2 · 

2 
} 

2 . 2 [(r sin ::i-) ,j11J] - C[;J,~] dV 
. t . pr sin ::i-1n er1or 

-s D ( 'I') , 11 ] • n d<r > 0 • 
~ ,..,, ~ ,,,,,.,, 

(54) 

I:-

Here C and D are the same as in equation (43), reduced to the 

axially symmetric case. 

This condition--as was indicated by Chandrasekhar and 

Lebovitz (1968)--is only necessary for stability against all axially 

symmetric perturbations. However, Lynden-.Bell and Ostriker (1967) 

point out that it is nearly sufficient as well, in the following sense: 

If all the stellar models that can be obtained from the one we are 

testing by changing n slightly satisfy inequality (54), then the model 

we are testing is stable against all axially symmetric perturbations. 
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The reason is that a nonzero f in equation (53) ~eans physically that 

when 'l"} = 0 the fluid is given an extra angular velocity of f /p sin;:;. • 

If this mode is unstable for some f then a stellar model differing 

from the one we are testing by an angular velocity f/p sin ;:i. should 

be unstable against perturbations with f = 0. This argument ignores 

the effect of the additional angular velocity on the structure (p, p) 

of the equilibrium model, so it is not completely rigorous. Never-

theless it suggests that inequality (54) ought to be an accurate 

stability criterion, especially for sequences of models. Note that 

inequality (43) is still a sufficient condition for stability. 

By specializing the calcUlations of Appendix B to M = 0, 

inequality (54) can also be put in a form that makes testing models 

easier. This is done in Appendix C. 

The special choice of trial function made in §III of 

Chandrasekhar and Lebovitz (1968) corresponds here to setting b = 0. 

They apparently saw the advantage of using scalars and decomposing 

i) into transverse and longitudinal parts, but their trial function ,.., 

with b = 0 lacked the generality of our equa. tion (51): its transverse 

part vanished. 

b) The Nonrotating Star 

Expressions suitable for analyzing the pulsations of non-

rotating stars can be obtained by setting n to zero in previous results 

M 
and expanding a, b, and c in spherical harmonics Y L • Then the 

representation ( 49) of ri becomes 
5 

5 The b in this section is really L(L+l) times the one in equation 
(49). Consequently one must set b = 0 when L = O. 
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11L = \ (aLM yLMe ... +la y M et- + aLM y M e ... ) , (55a) ..... L ,r ..... r r LM L ,;;;. ..... N' rsin::i- L ,<p ..... <p 
LM 

y M J L ,<p _:,s. 

(55b) 

We should note that one can obtain exactly this expression 

by expanding ;} in Regge- Wheeler (1957) spherical harmonics, and 

then separating 
L T 

11 from 11 • That procedure avoids questions of 
..... 

analyticity raised by the theorem proved in §IVc. 

Because the underlying star is spherically symmetric, modes 

belonging to the same L but different M are degenerate, so it 

suffices to consider the case M = O. Then the action, from equations 

(46) and (33 ) , becomes 

I - s [ !.,, · 11 + 47T11L. 11L - .l_ ('V • 11H11 .g) 
2 - p ...,,t ...,,t ,.., ..., 2 - - ...., ...., 

interior p 

+ _!_ (11 • 'Vp)(11 • 3) - E.Y. {\7• 11)
2

] dV 3 ,..,,, ,..,, ,..., ,...,, 2 ,..,,, ,...,, 
p p 

where R is the radius of the star. 

Inspection of I2 shows that c will enter it only in the 

11 • 11 term. This is because c generates the "odd parity 11 (cf • 
..... ,t ..... ,t ' 

Regge and Wheeler 1957, Thorne and Campolattaro 1967) part of the 
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perturbation, which is a zero-frequency rotational mode. It does not 

couple to other modes and does not affect the star's stability. 

This Lagrangian is equivalent to the variational principle 

contained in the appendix to Chandrasekhar and Lebovitz (1964). It 

is interesting that if one varies it with respect to a one gets the 

divergence of the dynamical equation for 11, while if one varies it -
w it h respect to b and c one gets the two independent parts of the 

cu r l of that equation. Since a vector is zero if and only if its diver-

genc e and curl are zero, the Euler-Lagrange equations of a, b, 

and c are equivalent to that of 11· Thus, the potentials a, b, and 

c are also good variables for the variational principle! This pre-

sumably also holds for the general variational principle for differ-

entially rotating stars. 

The theorem of Laval, et al. (1965) applies to the Lagrangian 

for the nonrotating star and gives a necessary and sufficient condition 

for stability against pulsations of order L: 

SR {- 4 7r(a 2 + L(L +l) a2) + 2S (a + b)(\7 2a _ L(L +l) a) 
· 

0 
,r 2 2 ,r r 2 

r p r 

_ ..2:_ p g(a +b)2 +Pl' (\7 2a _ L(L+l) a)2}r2 dr 
3 ,r ,r 2 r 2 

p p r 

+ R
2 

2 
p (R) [a (R) +b(R)] 2 + 47rGR 2a(R)b(R) > 0, (57) 

p(R) ,r ,r 

whe re g = g = p - ('{p/p)p and where we have defined the r ,r ,r 

operator 
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n2= 1 a 2 a 
vr 2-arr ar' 

r 

which is the radial part of the Laplacian. The terms evaluated at R 

are to be evaluated just inside the star's surface ii there are any 

discontinuities there. 
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VI. CONCLUSIONS 

We have presented a general method for finding the Lagrangian 

for arbitrary perturbations of arbitrary flows of a perfect fluid; and 

we have illustrated the method for the case of differentially rotating 

stars. It enabled us to reproduce the stability criteria of Lynden-Bell 

and Ostriker (1967), as well as those obtained by other authors for 

less general cases. 

We also showed that the testing of realistic stellar models 

with these criteria can be greatly simplified by the introduction of 

three scalar functions in place of the three components of £ in such ,.., 

a manner that one need never perform a Green's function integration 

to determine the perturbed graviational field. We hope that this will 

prove to be a useful technique in the future. 

In Paper II we will extend these results so far as possible 

to the general-relativistic case. 

I am very grateful to Professor K;ip S. ' Thorne for his 

continued advice and encouragement, and for his many helpful sug-

gestions during the writing of this paper. 
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APPENDIX A 

REDUCTION OF L
2 

We wish to transform L
2 

from the form 

1 ij 
L 2 = 4 G g o<I> . o<I> . - op oh + o(pT) oS + p av · av 

'IT ,l ,J -

(Al) 

into an expression involving only the unperturbed state of the fluid and 

g, which is defined as the difference between the position of a fluid 

el e ment in the perturbed state and the position it would have occupied 

at exactly the same time in the unperturbed flow. As a first step we 

will eA-pres s the perturbations themselves in terms of g. Then we 

will substitute them into equation (Al). 

a} Expression of the Eulerian Perturbations in Terms of ~ 

As mentioned in §IIb, the perturbations are Eulerian pertur-

bations, taken at fixed coordinate and time. The vector g, on the 

other hand, is the Lagrangian displacement of the fluid. The relations 

among g and the Eulerian perturbations are well known and need not 

be derived here. One can consult Lynden-Bell and Ostriker (1967) 

or Lebovitz (1961). The relevant ones are 

op= -\l •(pg), (A2) 

oS = - g • 'VS, (A3) 

op = - "{p(\l • ;) - ; • '5:P• - - ..., 
(A4) 
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and 

6T = (~T) op + ( :.~) 6S, 
Ps p 

(AS) 

supplemented by the Maxwell identity 

( aT) _ 1 ( ap) _ 1 ( ap) 
ap 

5 
- PPY as - - 2 as · 

p p p 
(A6) 

In equations {A4) and {A6), '{ is the adiabatic index, 

'{ = £_ ( ~P) . 
p p s (A7) 

Moreover, since oa and oi; obey the same equation as 6S, 

we have 

oa = - s · \la + { oa) , 
,.., 0 

(A8a) 

o'3 = - g • vi; + ( of3) • 
,., ,., 0 

(A8b) 

Here {oa) and (613) are "initial values" of oa and 613: their 
0 0 

values when s = 0. They are constants of integration in the following 

sense: 

and similarly for (6f3)
0

• There were no such initial values in equa­

tions (A2} - (A5} because we assume that the perturbati~n is an initial 

velocity perturbation that does not affect the initial distribution of 

p, p, and S. This does not restrict the generality of our res ult: 

changes in the initial perturbed values of p, p, and S are equivalent 



83 

to changes in the unperturbed p, p, and S. Instabilities due to such 

initial conditions will show up inn~arbymodelswhoseunperburbed p,p, 

and S are the same as those of the original model plus the initial 

perturbations. 

It is not possible to solve explicitly for oljJ and 60. We 

shall need only the equation for 60: 

60 ,t + ~ · ~oe + o~. ;:a= oT, (A9) 

where the perturbed · velocity, o!, is (also from Lynden-Bell and 

Ostriker [ 1967]) 

ov = g + (v • 'V)g - (g • 'V)v ,.., ,.., 't ,.., ,.., ,..,, ,.., """' """' 

:; +:;. _,t v,.., 

(Here £ is the Lie derivative with respect to v.) 
v 

(AlO) 

(All) 

With the definition (AlO}, equations (A2), (A3), (A8a} and 

(A8b) are equivalent to the perturbed versions of equations (7), (3d), 

(3 b), and (3c), respectively. The last remaining perturbation is o<I>, 

which has the formal solution 

o<I> = - Gs dV' p(:')~(x') • 'V' Ix: x' I • 
,.., - (Al2) 

b) Expression of L 2 in Terms of ~ 

In what follows we will often integrate by parts, using the 

identity mentioned at the end of §IIa; and we will throw away the 

resulting divergences, since they become surface integrals at 

infinity. We will also discard total time derivatives (cf. footnote 3). 



84 
It is convenient to treat separately the following pieces of 

L
2 

(eq. [Al]): 

A= 2poa(of3,t +vkof3,k)' 

B= - ZpoS(oe,t +vkoe,k)' 

c = p ov. ov, ,.,, ,.., 

n = - op oh + o(pT) os. 

i) A. By the perturbed version of equation (3c) we have 

k 
A = - 2 p oa f3 I k ov • 

This is the only term in L 2 that explicitly contains (oa) 
0 

(Al3a) 

(Al3b) 

(Al3c) 

(Al3d) 

or (6{3)
0

• Because the equations derived from L
2 

are linear in the 

perturbations, one should not expect initial values to appear in the 

Lagrangian. One can in fact show explicitly that 

k 
A 1 = - Zp (oa) f3 k ov 

0 , 

is zero to within divergences and time derivatives. The procedure 

is much the same as that which follows, so we won't go into it 

explicitly. The remainder of A is 
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This implies 

P. .j.k n dck 
A= 2pa[ ,j,... ,k] £ Ii, ,t + pa(,j\)~ ,k)'=' ':> 

. k 
+ 2pa .f3 kgJ£ g • 

,J ' ~ 

Here and throughout, square brackets around indices denote anti-

sym.metrization, while round brackets denote symmetrization: 

a[,l,kJ=i {a.l.k-a,kf3,j} • 

Q' cl. k) = i- { Q' I l I k + Q' I kf3 I j } • 

ii) B. Equation (A9) converts B to 

k B = - 2p os oT + 2p os(a ,kov ). 

The second term can be handled just as A was to give 

iii) A + B. Before adding A and B, consider the term 

· tj ck · k i. k 1. 
2pa .13 k'=' ! '=' = 2pa .13 ksJ(; ,·£. v - v ,·1. s ) • 

1J I -:: ,J I 

Manipulations similar to those in i) convert this to 

. k 1. J. = 2 pa[ .13 k] SJS ·J. v - 2p [ (a, .f3 1).1 v 
,J I I ~J 1l\.T1 

1 . k 
+ 2a . j3 1 v . k] s J s , 

I J r I 

(Al4) 

(Al5) 
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with a similar expression for the Lie-derivative term in B. Then 

by adding A arid B we get 

. k k J. 
A + B = 2p0k}J<s ,t +; ;1.v ) - 2p cSS cST 

l· j + P < T ks . + n ka . ) ; '"s , , J , , J 

J. J. . k 
- p[(a .[3 k - a .s k)•l. v + 2(a .~ 1- s .a J.)v •k] gJg 

,J , •J ' ' ,J ' •J ' ' 

(Al6} 

where we have introduced the vorticity tensor (not to be confused 

with the angular velocity} 

(Al7} 

Finally, extensive manipulation of the last bracketed term in equation 

(Al6) gives 

. k k J. 
A + B = 2pOkjsJ(s ,t + s ;i.v ) - 2p cSS cST 

k j J. j k 
+pT,ks,js; - 2pn1 jv ;kss. 

iv) C. From equation (All) we have 

. . k k 
P ov · ov = pg .k(sJ t + £ gJ)(s t + : s > 

,_ J I ! I ! 

j k 1 k 1 = p; t. ; t+ 2pgJ.k; t,; .1 v - v .1 ; ) ,.,..,, ,..,.,, , , , 

(A18} 



87 

We treat the last two terms one-by-one: 

· 1. · gi. gk m k gm 
P gJ. k( tJ : ~ v - v J ) ( v v ) ~ • .x. • 1. ;m - ;m 

Assembling terms 1 we get 

(A19) 

v) Adding C to A + B gives 

k ' 
A + B + c = -2p os oT + pT ks .s gJ + ps t • s t 

J ,J f"WJ ,,,.,,, 

(A20) 
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In spherical polar coordinates, part of the last term becomes 

l i i. · l n2 
= - z v v g. J. k = - z ~" g k l , qup , 

1£ we differentiate this with respect to j and symmetrize on j and 

k, we obtain 

i. {je k [ i n l n ] ejek 
p(vk·i.v ) .. ':. ':. = p z Cl'~" k•' - zu<l' k•' '::. '::. • , ,J , ,J , ,J 

vi) D. We add to D two thermodynamic terms from equation 

(A20) and define 

"k 
E = - op oh + o(pT) os - 2p os oT + p T ks .;Jg , , ,J 

1 . k 
_ - - op op - p oT os + p T ks .gJg • 

p , ,J 

(A21) 

(A22) 

Upon using equations (A2) through (A7), we find that this reduces to 

- 2(V' • g)(g . V'p). (A23) 
,., 

vii) The complete Lagrangian is obtained by substituting equa-
; 

tio:ns (A20), (.A21), and (A23) into (Al). Equation (27) is the result. 
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APPENDIX B 

TESTING FOR STABILITY 

a) The Stability Criterion in Terms of the Scalars a, b, c. 

From the definitions of the scalar trial functions, equations 

{49} and {50), we find {sum on M::::: 0 implied) 

L + -ri = {a M sin Mcp +a M cos Mcp)e ... _ , r , r _r 

I + -
+ {1 r){a M~sin Mcp +a M,·~cos Mcp)!;,s. 

I + -+ {M r sin ~)(a Mcos Mcp - a Msin Mcp)!:~ (Bla) 

2 + -
A = - r {c Msin Mcp + c Mcos Mcp}!:r 

I + -+ {rM sin ~){b Mcos Mcp - b Ms in Mcp)!:.S. 

+ -
r{b M,~sin Mcp + b M,~cos Mcp}!;~ (Blb) 

2 
T [( M b+ 1 8 . ~ b+ \ · M 

~ = . 2~ M - sin~ a~ Sln N ' M.~sm cp 
Sln I\)' 

2 
(

M - 1 a . - \ 
+ . 2~ b M - sin~ a~ sin~ bM,~cos 

Sln I\). 

[(
1 a 2 + rM - ) · . 

+ r 1fr r b M, ~ + sin ~ c M sin Mcp 

( 1 a 2 - rM + ) J 
+ r 8r r b M .~ - sin~ c M cos Mcp !:.5-

[( + M 8 2 - ) . 
+ .re M,~ - _r_s_.i-n-~ arr b M sin Mcp 

( - Ma 2+) J + re M,~ +rsin~ arr b M cos M<,i> !!,~·(Blc) 
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Here are unit vectors. 

When these express ions are used in the stability criterion, 

equation (43}, · and the integration on <p is performed, modes cor-

responding to different values of M separate, and we get a separate 

criterion for each M. In what follows we will accordingly drop the 

subscript M on th'e scalars. We will also adopt the notation 

(B2a) 

(ab}[+-] + - - + . =ab -ab. (B2b) 

Note that these are not the conventional symmetry and antisymmetry 

symbols: the plus and minus modes are antisymmetrically coupled by 

the [ +-] operation, but they are not coupled at all by the(+-) opera-

ti on. 

A long but straightforward calculation reduces the stability 

criterion, equations (43), (44), and {45), to this form: A sufficient 

condition for stability of the modes of order M is that for any 

a, b, c (with appropriate boundary conditions -- see below) 

-SS 
interior 

(B3) 

where in both terms we have already integrated on f, and where CM 

and D i 
M 

are: 
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{ [ 2 1 2 M
2 

a2) -CM = -4TrG a r + 2 a ;:,. + 2 2 
. ' r ' r sin ;:,. 

+ ~ (a - L 2b) [ 2M2n2sin ;:,.(a + ~ r 2b) + S v 2a) 
p ,r or r 

- .l.. [ -nn r sin 2;:,. - 2nn 'l..sin
2;:,. 

pr , r 1N· 

+ _!_
2 

(p 'I. 8 + p S'I..)) (a - L 
2
b){a 'I.+ -8

8 
r

2
b 'I. ) 

,N. r ,r N" 1r il\F r 11\F rp 

.!_ [ n2M 2 - no 'I.sin 2:J- + -1
- p 'I. S,J 

p 1N" 2 2 11\F l\F p r 

{ 
4 2 2 . 2 2 2M a 2 

+ - Mr 0 sin ;:,.(a - L b)c 'I. + i ;;,. c:t'I..( \7 a)c p ,r 11\F psn N. 

0 2M 2 M 2 
- ( i <1.. a + re <1..) p r s n N" 1N· 

- r0 ;;;. [ -nO r sin 2::i. - 200 'I.sin 
2

;:,. +_!_2(P '"gr 
p sin 1r 11\F rp 11\F 

2 + p 8;;;.)) (a - L b)c 
1 r ,r 

2M 2 2 . ;;;. [ 0 M - 00 'I. sin z;:,. PS lU ,N.· 

i a 2 } [ +-] 
+ 22' p ;:,. S ;:,.) (a ;:,. + Br r b ;;,.) c ; 

r p . I I I 

(B4) 



D r = - M 

and 
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{ 
2 1 2 2 4 TrGaL b - -

2 
p (a - L b) 

, r , r 
p 

i 2 1 1 ' a 2 } ( +-) - -p (a - Lb)(- a +-~ r b ) 2 ,;:;. , r ·r ,;:;. r ar ,;:;. rp 

+ {- M p (a - L 2b)c} [ +-] ; 
2 . <\. ,;:;. , r 

p S ln"r · 

{ 
1 a 2 

-4'!TG - a - r b 2 ar ,;:;. 
r 

(BS} 

(B6) 

2 
d h h d h i L 2 = _1 _ a sin <\. ~ + 1 a an w ere we ave use t e notat on - sin;;;. a;:;. l\f a;:;. 2. 2 

sin-;;)- acp 
g =p _,YEP ; g =p -YEp • 

r ,r p ,r :':J- ,;:;. p ,;:;. 
i a . <\. a 

- sin ;;;. a;:;. sin I\). a;:;. - 2 
sin :':J-

While this expression is complicated, it should be reasonably 

adaptable to computer calculations. 

b} Boundary Conditions on a, b, c 

Though we have not restricted the perturbation ~ to have 

any particular value at the star 1 s surface, the re are nevertheless 

some weak boundary · conditions on a, b, and c that arise from the 

vanishing of ] (and s) at the star's center and from the vanishing 
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of ij (but not ~) at the star's surface (.I;-) if p vanishes there. 

The demand that lJ vanish at the star's center requires that 

'tlL = - .!] T but not that each vanish separately. This implies 

+ - L 2b+ a - , ,r 

+ o 2 + r
2

M -
a .... =-~rb .... -~c, 

,w vr 1M SLUM 

2 + ~ r 2b + _ r sin;:;. -
a = - or M c ,;:;.' 

at the star's 
center 

plus the conjugate equations (plus and minus interchanged). 

(B7) 

At the surface of the star {actually at .I;-,, where the surface 

integral is evaluated) we demand only that a, b, and c be finite with 

finite derivatives, except if p = 0 there. Then again we must have 

L T 
Tl = - 11 + O{p); that is, 11 must vanish at least as fast as p near 

.I;-. So the same equatio_ns (B7) must hold at the surface, to order p. 

(This is also true, of course, anywhere else that p vanishes.) 

c) Eigenfrequencies of Stable Modes 

If condition (B3) is satisfied, the star is stable. In that case 

the eigenfrequencies of oscillation are the stationary values of the 

roots of the following quadratic expression (cf. Lynden-Bell and 

Ostriker 1967): 

(BS) 

with 
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.!_ 11 • 1'} r2sin~ dr ~ d<p 
p ,., ,.,, 

interior 

2 2 2 } (+-) + r M c2 + M (a + _£_ r2b)2 
. 2~ 2 . 2~ ar sin r.>. r sin r.J' 

+ SS ~ r
2

sin::i. dr d::i. { s~~~ (a,r- L
2
b)c 

interior 

}
[ +-] 

+ ( r ~n/:j- a + re ,;:i.)2 ; 

v 2 = ~ S ~n[ gjklljllk ,q/ Cn) .,,1,1"'J r2sin~ dr ~ d<p 

interior ,J 

2 a z + 2rsin/:j- (a,r-L b)c,;:i.+Zcos::i.(a
1
;:i.+ar r b,;:i. )c,;:i. 

2 } (+-) 2M cos ;:i. ( + a 2b) 
- . 2 a arr c 

sm ::i. 

cos~ c a z a z 
- 2 a ::i. + ar r b .~ )(a + Br r b) 

r s in/:j- ' 

2 [ +-] 
+ r cos ::i. } 

s in ::i. c , J:J. c ; 

(B9) 

(BlO) 
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and 

V3 = s s CMr2sin~ dr ~ + s DMini do-, (BU) 

interior :I;-

i 
where CM and DM are given by equations (B4), (BS), and (B6). 

Thus the trial functions permit estimation of eigenfrequencies for the 

stable case. Unfortunately one cannot estimate e-folding times for 

the unstable modes in this manner (see Lynden-Bell and Ostriker 

1967). 
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APPENDIX C 

STABILITY OF AXIALLY SYMMETRIC PERTURBATIONS 

The necessary condition for stability of axially symmetric 

perturbations obtained by Chandrasekhar and Lebovitz (1968) and by 

Lynden-Bell and Ostriker (1967) can be expressed in terms of 

scalars with the method of Appendix B. 

The condition is (eq. [54]) 

S { n2 
2 2 · 2 } 

2 2 · [ (r sin ~) ,jTtJ] - C[!1•!J] 
. t . pr sin ~ in erior 

dV 

-s D[ l'J , ri] • n d<T > 0 • ,.., ,.., ,.... (Cl) 
I:-

We can obtain C and ~ from Appendix B by setting M = 0 in equa­

tions (B4), (BS), and (B6). We can then expand the first term in 

inequality (Cl) in terms of a, b, and c, and add it to C. The res ult 

is that a necessary condition for stability of a differentially rotating 

star against axially symmetric perturbations is that, for all a, b, c 

satisfying the boundary conditions described in Appendix B, 

-SS 2 
CAr sin~ dr ~ -S_ (C2) 

interior I: 

where 
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- .1.... (-nn r sin 2;;;.- 2nn. ~sin2;;;. + 4n2 sin 2;;;.) pr , r ,N· 

a· 2 2 
X (a ~ + -8 r b ,J(a - L b) 

,N. r '"' ,r 

(C3) 

r 2 1 2 2 
-D = 47TGaL b - - p (a - L b) A 2 ,r ,r 

p 

(C4) 

and 

(CS) 
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ABSTRACT 

• 
The author has previously given a velocity-potential 

variational principle for relativistic perfect-fluid hydro-

dynamics. The second variation of the principle is here used 

as the Lagrangian density for the evolution of small perturba-

tions of fully relativistic, differentially rotating stellar 

models. Noether's theorem is used to construct a globally 

conserved angular momentum density, whose integral over a 

spacelike hypersurface is the second-order correction to be 

the star's total angular momentum. From the Hamiltonian is 

constructed a globally conserved energy density, whose integral 

is the second-order correction to the star's active gravita-

tional mass. By Lyapunov's second theorem, positive-definite­

ness of the energy density guarantees stability of the star. 

In the Newtonian limit and in the special case of relativistic 

radial pulsations, this is equivalent to stability criteria 

already known. Means are discussed whereby the general criterion 

might be made more suitable for practical applications. 
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I. INTRODUCTION AND SUMMARY 

The importance of general relativity to so many astrophysical 

problems makes an analysis of the stability of relativistic systems 

very desirable. In the Newtonian regime the theory of the stability of 

perfect fluid stellar models against small dynamical perturbations is 

well established [cf. Schutz (197la), preceding paper, hereafter refer­

red to as Paper I; see also the references cited therein]. The corre­

sponding relativistic analysis, however, is complicated by two factors: 

the existence of ten components of the gravitational field, and the 

emission of gravitational radiation by the pulsating star. 

Only for radial pulsations of spherical systems has a fully rela­

tivistic dynamical stability analysis been performed: by Chandrasekhar 

(1964) for relativistic stars; and by Ipser and Thorne (1968), Ipser 

(1969), and Fackerell (1970) for relativistic clusters of stars. In 

addition, Chandrasekhar (1965a,b) has analyzed the nonradial pulsations 

of stars in the post~Newtonian approximation, which excludes gravita­

tional radiation. Chandrasekhar and Friedman (1971) have also recently 

investigated criteria for the existence of zero-frequency modes in 

rigidly rotating stars, where radiation is also· negligible. Their work 

should prove useful in determining the stability of stars that become 

unstable through zero-frequency oscillations. The equations governing 

arbitrary nonradial pulsations of fully relativistic nonrotating stars 

were derived by Thorne and Campolattaro (1967) [see also Ipser and 

Thorne (1971)]. They are so complicated, however, that -- although they 

have yielded information about convection (Islam 1970) and about the 

emission of and damping by gravitational radiation (Thorne 1969, Ipser 
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1971) -- they have so far given us no information about dynamical 

stability. 

The existence of ten perturbed metric functions rather t ,han just 

one perturbed gravitational potential is an algebraic complication. It 

means that in general there will be many coupled equations, which will 

rarely possess a solution in closed form. It means that relativistic 

stability analyses will probably have to rely more heavily upon numer-

ical calculations than the corresponding Newtonian analyses do. 

The complication of gravitational radiation is more fundamental. 

It means that realistic pulsations will always have complex frequencies; 

that normal modes will be replaced by "resonances" of finite width; 

that self-adjoint equations (standing-wave boundary conditions) will not 

describe realistic systems; and that a single stability criterion that 

is both necessary and sufficient is probably not to be hoped for. It 

is possible to look for necessary conditions for stability by examining 

standing-wave modes in the zero-frequency limit. This is the approach 

of Chandrasekhar and Friedman (1971). But such approaches neglect 

gravitational radiation damping, so they may not pinpoint the onset of 

instability accurately. It is therefore useful to have sufficient condi-

tions for stability as well. 

In Paper I we showed that all known Newtonian dynamical stability 

criteria could be derived from the velocity-potential variational prin-

ciple of Seliger and Whitham (1968). That variational principle can be 

extended to general relativity [Schutz (1970); see also Schmid (1970a,b) 

for an independent derivation of the special relativistic version]. In 

this paper we show that methods similar to those we used in Paper I lead 
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us in general relativity to a sufficient condition for the stability of 

arbitrary pulsations of fully relativistic, differentially rotating 

stellar models. 

We could presmnably also derive our criterion from the variational 

principle of Taub (1954), or from any of the many other relativistic 

perfect-fluid variational principles. Taub (1969) in fact derived 

Chandrasekhar's (1964) stability criterion for radial pulsations using 

a method very similar to the one we use here, but starting from a differ­

ent variational principle. We have elected to start with the velocity­

potential variational principle because it is an Eulerian principle: 

it does not require us to deal. explicitly with "fluid elements" or 

"particle paths." 

The plan of the paper is as follows. In §II we derive the 

Lagrangian governing arbitrary perturbations of arbitrary flows of a 

relativistic perfect fluid. This Lagrangian is the second variation of 

the Lagrangian for the velocity-potential variational principle of 

Schutz (1970). In §III we specialize the unperturbed state to that of 

an axially symmetric, differentially rotating star. From Noether's 

theorem we construct the conserved angular momentmn density of the per­

turbations (including the gravitational waves), and from the Hamiltonian 

we construct the conserved energy density. Both are quadratic in the 

perturbations. 

We obtain the following results: (i) The total angular momentmn 

and energy (integrals of the densities over a spacelike hypersurface of 

the unperturbed spacetime) are unique and gauge-invariant. (ii) If the 

star is stable, and if the "unperturbed" star is defined to be the star 
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that is left behind after the pulsations have damped out, then all 

first-order contributions to the total angular momentwn and energy 

vanish. (iii) If the star i~ stable, the total angular momentwn and 

energy are the second-order corrections to the total angular momentwn 

and active gravitational mass of the star. (iv) The gravitational wave 

parts of the densities of energy and angular momentum become, in the 

short-wavelength approximation, the appropriate components of the 

Isaacson (1968) stress-energy tensor for gravitational radiation. (v) 

In the case of the nonrotating unperturbed star, the energy density 

reduces in the Newtonian limit to the energy density derived in Paper I. 

In §IV we prove that a sufficient condition for stability is that 

the total energy be positive-definite. Unfortunately, as the energy 

contains contributions from gravitational radiation, it is not yet in 

its most practical form for astrophysical applications. A more practical 

form would be an integral of purely fluid quantities over just the star's 

interior. We therefore discuss what procedures are most likely to sue-

ceed in reducing the stability criterion to such a form. We conclude 

§IV by demonstrating that our sufficient condition for stability reduces 

for the case of radial pulsations to the necessary and sufficient condi-

tion of Chandrasekhar (1964). 

II. PERTURBATIONS OF AN ARBITRARY FLOW 

a) The Velocity-Potential Variational Principle 

As in Paper I we begin from the Eulerian velocity-potential varia-

tional principle, the general-relativistic version of which was obtained 

by Schutz (1970). [We follow the notation and conventions of Schutz 
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(1970) throughout. In particular, Greek indices run from 0 to 3, while 

Latin run from 1 to 3. The metric signature is +2.J 

The four-velocity has the representation 

U = µ - l ( 'ljr + aj3 - SQ ) • v ,v ,v ,v 
( 1) 

[We find it convenient to deal with 'ljr = p + QS rather than with p, 
which was used by Schutz (1970). This is the only way in which our 

conventions differ from those of that paper.] In equation (1), S is 

the specific entropy and µ the specific enthalpy (including rest mass), 

µ = 1 + II + p/ Po = (p + p)/ Po , (2) 

TI is the specific internal energy, p the pressure, p the density of 

total mass-energy, and Po the rest-mass density (number density of 

baryons times rest mass of one baryon), all as measured in a locally 

comoving inertial frame. 

The velocity potentials obey the equations of evolution 

UV 'ljr = - µ + TS , (3a) 
,v 

UV a 
,v = 0 , (3b) 

UV 13 v = 0 , (3c) , 
UV s = 0 , (3d) 

,v 

UV Q = ,v T , (3e) 

where T is the temperature. Note that equations (1), (3a), (3c), and 
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{3e) imply 

Supplemented by an equation of state, 

P = p(µ,s) , 

and the equation of continuity, 

equations (1) and (3) are completely equivalent to the usual hydro-

dynamical equations: equations (4), (5), (6), and 

with 

t"v = 0 
j v , 

Equations (3) and (6) plus the Einstein field equations follow 

. from a variational principle whose action is 

(4) 

(5) 

(6) 

( 7) 

(8) 

where R is the scalar curvature of spacetime {we set c = G = 1). The 

curvature is varied with respect to gov in the usual manner. The pres-

sure is taken to be a function of µ and S through the equation of state; 

its variation is found from the first law of thermodynamics: 

dp = Po dµ - Po T dS (10) 

· av The independent variables of the principle are t, a, ~, Q, s, and g • 
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Equations (1) and (4) combine to give µ as a function of these variables: 

µ2 = - gav (w +a~ - SQ )(w + CXt3 - SQ ). (11) ,a ,a ,a ,v ,v ,v 

Varying v, a, ~' Q, s, and gov gives, respectively, equations (6), (3c), 

(3b), (3d), (3e), and the .field equations 

R - .!. R g = 81f T , av 2 av av 

with T from equation (8). Equation (3a) follows from the rest of av 

(12) 

equations (3) and equation (11); it is not an independent Euler-Lagrange 

equation. 

b) Gauge Freedom in the Perturbations 

A perturbation in the fluid's motion perturbs the geometry of 

spacetime. If the perturbation is small, it is reasonable to separate 

it from the "background" unperturbed spacetime and to treat it as a 

field on the background geometry. We therefore define hav to be the 

(Eulerian) perturbation in gov, and g(B)av to be the background unper­

turbed metric: 

av( ) av av g perturbed spacetime = g(B) + h • (13) 

Now hav is a tensor on the background spacetime. We can therefore raise 

and lower its indices with g(B); e.g., 

Our definition of hav is at slight. variance with the usual usage, 
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where h

0
v is taken to be the perturbation in g

0
v. Here we have 

2 
-8g + O(h ). av 

( 14) 

The "background" geometry is a fiction, however. Because the real 

spacetime possesses fine structure that is absent from the "background", 

there is no unique way to identify points in real spacetime with points 

in the background; thus, there is no unique way to define hav from 

equation { 13) • a If 11 generates a point transformation in the perturbed 

spacetime that is small (i.e., a change in the identification of points 

between the fictitious background and the real perturbed spacetime that 

is on the order of the scale of the "fine structure" of the real space­

time) then hav undergoes the change 

hav £ av = hav _ 11a; v _ 11v;a. 
+ 11 g(B) ( 15) 

Here is the Lie derivative along ~0 , and semicolons {throughout 

this paper) denote derivatives covariant with respect to the unperturbed 

space time. 

Under the same point transformation the perturbations in the velo-

city potentials must also change. For example, we define et, the 

Eulerian change in v, by the equation 

v(perturbed spacetime) = t(B) + ev. 

Then 8v changes by 

a 
et +et + £~ t(B) =et + t(B),a ~ · 

(16) 

(17) 

Similarly, all functions of the perturbed velocity potentials change: 
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e.g.' 

Equations (15) and (17) together are called a gauge transformation. 

Most of our expressions -- such as the energy density in the pulsations 

-- will not be gauge-invariant. Nevertheless, we will see that physi-

cally measurable quantities -- such as the total energy -- are gauge-

invariant. 

In the remainder of this paper we will drop the "(B)" on the back-

ground quantities. Quantities such as g , Uv' w, ... are understood 
CJV 

to take their unperturbed values. 

c) The Second Variation 

In the Newtonian case (Paper I) we constructed the Lagrangian 

density for the perturbations from the second variation of the action, 

equation (9). The analogous calculations in the relativistic case are 

complicated by the perturbation in the geometry, so the details have 

been left to Appendix A. We treat the pressure and curvature parts of 

the action separately. 

i) Second Variation of the Fluid Lagrangian 

1 
The fluid Lagrangian density is p(-g)2. Its second variation is 
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In Appendix A we show that 

- Po gva av av - 2p0 uv (000'3 - oSoQ ), 
µ y 0 ,v ,v 

where we let V denote the Taub (1959) current vector 
y 

V = µU = ~ + ~ - SQ • 
y y ,v ,v ,v 

(20) 

(21) 

In equation (20) it is understood that op0 is a function (through the 

equation of state) of oµ and oS, and that oµ is a function of the inde-

( . w) pendent perturbations o~, oa, o~, oQ, oS, h through the perturbed 

version of equation (11): 

1 VO 0 oµ = - 2 µh u u - u o v • 
y 0 0 

From Appendix A we also have 

and 

where h is the trace of h vo: 

YC1 h=h g • 
- VO 

If we assemble all these terms and define 

(} 5' -g 25 p(-g)2 , ( )_l. 2 [ l.] 

(22) 

(23a) 

(23b) 

(24) 
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we have the fluid perturbations' Lagrangian density 

(} = 

- 2p0 uv (oao(3 - oS8Q ) - 2p0 u hva ev ,v ,v v a 

1 2 _l_ VCJ - op h + ~ p h + 2 p h h • 
va 

(25) 

This is perfectly general: no assumptions have yet been made about 

the unperturbed spacetime. 

ii) Second Variation of the Curvature Lagrangian 

1 
The Lagrangian density for the curvature is R(-g)2. It is simplest 

to treat it the Palatini way: Rat3 is a function only of the Christoffel 

symbols, 

R = rµ ....u rµ r"' -u rv 
a(3 a(3,µ - 1 • Cl!, (3 + vµ a(3 - 1• v(3 qi 

We define the perturbation in ~a(3 to begµ at3: 

It is well known that gµ at3' being the difference between two affine 

connections, is a tensor on the background spacetime • 
.l 

The second variation of R(-g)2 is 

(26) 

(27) 
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82 [ R(-g)!J = 82 [sa~1\:x~(r)(-s)!J 

(28) 

In Appendix A we show that 

where we have used the conventional abbreviation 

(30) 

Again, we have not yet made any assumption about the background. 

iii) Varying the Perturbed Lagrangian 

The action for the perturbations is 

I 

r2 = J ~ (-g)t d4x = J (~ + 16Jf@)(-g)t d4x. (31) 
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Extremizing it with respect to gµ CXl3 gives the equation 

(32) 

This is equivalent to 

(33) 

which is of course the correct expression for the perturbation of the 

Christoffel symbol. (Recall that eq. (14] is responsible for the over­

all minus sign in eq. [33J.) 

Extremizing 12 with respect to hexl3 gives the perturbed field equa­

tions: 

(34a) 

(34b) 

8@ 
-µuauf3ep0 + p0 uauf3 eµ - 2p0 uaevf3 

8hexl3 
= 

(35a) 

- 8p sex13 + p hexl3 + t (Pcf ua u13 + p sa13) h 

= - (-gri 8 [ TCXl3 (-g)~] ; (35b) 
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5
5

h~ = 2(-g)-t 5 [(Gal' - S~Tal')(-g)i] = O. (36) 

Extremizing I 2 with respect to ow, oa, o~, og, and oS gives, 

respectively, the perturbed versions of equations (6), (3c), (3b), (3d), 

and (3e). The perturbed version of equation (3a) follows from these 

and equation (22). 

III. PERTURBATIONS OF DIFFERENTIALLY ROTATING STELLAR MODELS 

In this section we specialize the Lagrangian density of §II to the 

case where the background is an axially symmetric, stationary stellar 

model. For the purpose of a stability analysis, this is hardly any 

restriction at all. A stability analysis would be very difficult if 

the unperturbed state were not stationary, and in general relativity 

by contrast with Newtonian theory -- it is very unlikely that non-

axially symmetric stationary configurations of perfect fluid can exist. 

(They would either emit gravitational waves or require anisotropic 

stresses for their support.) 

Up to this point our analysis has followed closely that of Paper I. 

From now on it will be quite different, however, because of the complica-

tions introduced by gravitational radiation. In Newtonian theory, where 

the gravitational field has no dynamical freedom, we had little diffi-

culty reducing L2 to a function only of ~' the Lagrangian displacement 

of the fluid. We then derived the stability criterion directly from the 

reduced Lagrangian. 

In the relativistic case there are two dynamical degrees of freedom 
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in the gravitational field. In principle it would be possible to choose 

a gauge, to solve the perturbed initial-value equations, and to be left 

TT with two dynamical gravitational variables [e.g., h , by analogy 
µv 

with Arnowitt, Deser, and Misner (1962) -- hereafter referred to as 

ADaM]. Then ~ could be expressed in terms of ~ and these two gravita­

tional variables. Such a program would be very interesting, and it may 

well be necessary before a definitive solution of the stability problem 

is reached. We will discuss this in more detail later. However, there 

is a simpler way to obtain a stability criterion, and it requires no 

prior specialization of gauge. In this section we construct the con-

served energy density and angular momentum density of the pulsations 

and discuss some of their properties. In §IV we use the energy density 

as a Lyapunov function whose positive-definiteness guarantees stability. 

a) The Unperturbed Differentially Rotating Star 

The asymptotically flat spacetime in which the star sits is characterized 

~ ~ 

by two Killing vectors, S(t) and S(~)· The four-velocity of the fluid 

is some timelike normalized linear combination of these: 

(37) 

This equation defines n: it is the angular velocity as seen from 

infinity. 

~ 

We can introduce coordinates t and ~such that S(t) = o/ot and 

~(~) = o/o~, and two other coordinates yA (A = 1,2) such that the line 
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element takes the form [cf. Carter (1969) or review by Thorne (1971)] 

2 2 2 A B 
ds = g00 dt + 2g0cp dtdcp + gcpcp dq> + gAB dy dy • (38) 

However, we will not always want to specialize our coordinates this far; 

in this section we will usually work with three arbitrary spatial co­

ordinates xi and with the line element 

2 2 i i j 
ds = g00 dt + 2gOi dt dx + gij dx dx • 

It is understood, of course, that all gat3 and all other physically 

measurable unperturbed quantities are independent of t and ~· (The 

(39) 

velocity potentials are ~ all independent of t and cp, but their 

physically measurable combinations, such as U , are independent of t 
v --

and cp·) 

The relativistic velocity potentials for this case are similar to 

the Newtonian potentials: 

S = arbitrary function independent of t and cp , 

n = arbitrary function independent of t and cp , 

f3 = cp - nt 

-+ . u , 

, 

0 I-+ -+ -+ -+ ~ -+ l.l. 
Q = Tt/U = Tt !f;(t) • ~(t) + 2~(t) • t;(cp) + n ~(cp) • t;(cp) 2 

, 

1jr = (-µ + TS}t/UO 

That these are the correct velocity potentials is most easily 

(40a) 

(40b) 

(40c) 

(40d) 

(40e) 

(40£) 

demonstrated in the coordinates of equation (38), where the generating 
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-1 ( ) u =µ wv+af3 -SQ, v , ,v ,v (41) 

reduces to an identity for v = t, ~· Demanding that UA = 0 (A = 1, 2) 

in those same coordinates gives the equation of hydrostatic equilibrium, 

1 0 0 
- p - ( ln U ) A + U U 0 A = 0. 
Poµ ,A ' ~ ' 

(42) 

The velocity potentials are scalars, so they keep their same values 

in the more general coordinates of equation (39). There one ought to 

~ 

regard~ as a scalar field geometrically defined by~(~)· 

b) The Conserved Angular Momenttml of Pulsation 

i) Noether's Theorem 

The existence of a Killing vector g(a) in the background spacetime 

makes it possible to define a conserved quantity if the Lagrangian 

~ . 
density L2 is invariant under translations along $(a) during which the 

variables qr: (gµaf3' haf3, 8\jr, Ba, Bf3, 8Q, es} are held fixed. 1 Under 

such conditions Noether's theorem (cf. Trautman 1962, Taub 1970) implies 

the following conservation law: 

P a o 
(a) ;a = ' (43) 

with 

(44) 

1 More precisely, they are "Lie-dragged" along ~{a)' as opposed to being 

parallel-transported (cf. Yano 1955). 
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-+ We now show that L2 is invariant under translations along S(cp) but 

-+ 
not along ~(t)' Though the unperturbed spacetime is invariant under 

both, the unperturbed velocity potentials are not. One must look care-

fully at the way they enter L2 in order to determine if L2 is invariant. 

The unperturbed velocity potentials enter L
2 

only through the term 

5 v = 5'1f + oo t3 + t3 5a - S5Q - Q 5 s, v ,v ,v ,v ,v ,v 
(45) 

which contributes to L
2 

both implicitly (through 5µ) and explicitly. 

Consider how it changes in t and cp if the perturbations are held fixed: 

- n 5a -,v (..!_) 5S /= 0 , uo 
,v 

(~) 5a = o 
cp 'v 

(46) 

(4 7) 

So L2 is cp-invariant but not t-invariant. Note, however, from equation 

(22) that 5µ is t-invariant as well. 

This result can be understood as follows: Even if the perturbation 

eventually dies out completely, 5(3, o\jf 1 and 5Q may continue to change 

linearly in time at rates that vary across the star, just as (3, \jf 1 and Q 

do in the unperturbed state. Therefore, holding 5\jr, 5(3, 5Q fixed during 

a translation in time is not the same as holding the physical perturba-

tion fixed. It is not surprising that Noether's theorem fails in our 

context. Later we will construct the real conserved energy [which must 

-+ 
exist because ~(t) exists] in a different manner. First, however, we 

use the cp-invariance of L2 to construct the angular momentum. 
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ii) The Angular Momentum Density 

The conservation law-(43) can be written in the following form 

= o. (48) 

From now on we use the ADaM notation appropriate to a three-plus-one 

dimensional split of spacetime. In particular, we define the lapse 

( 
00 _1. 

function N e -g ) 2; we denote the determinant of the three-dimen-

sional metric by g and that of the four-dimensional metric by 4 g [which 
4 1. 1. 

are related by the identity (• g)2 = Ng2]; and we use a slash or a bold-

face y to denote differentiation covariant with respect to the three­

dimensional metric. Equation (48) implies that if we define 

9' , 

then the integral of 9' over the entire hypersurface 

1 3 
J - s 9' g2 d x 

is constant in time. Note that any density differing from 9' by a 

(49a) 

(49b) . 

spatial divergence will likewise be conserved, and will give the same 

value for J provided the perturbed region of space is of finite extent. 

From L2 as given in §II we find 

~· = __ 1_ N 30 h°v + _1_ N 3v h°o 
16~ av1 cp 16~ av1 cp 

(50) 

+ s-i e(p0 u
0

N gi)(e vcp -ea) + N Po u0 (ea e~,cp -es eQ
1

cp). 
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To cast this in a more familiar form we add the divergence 

We define the result as the angular momentum density: 

(5la) 

where 

(5lb) 

and 

_J.. ( 0 J..) ( ) 0 ( 9-r = g 2 o Pou N g2 o v - oa + N Pou oa 013 - os oQ ) . cp ,cp ,cp 
(5lc) 

To obtain this form for 9G we have expressed the g's in terms of h's 

from equation (33). The split between 9G and ip is arbitrary. Only 

their sum is conserved. 

The flux associated with 9 is 

(52a) 

with 

(52b) 

and 

(52c) 
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122 

(53) 

Note that since 9 differs from 9 1 by a divergence, the flux ~k differs 

from -l/321t times the flux in equation (48) by the time-derivative 

iii) Heuristic Interpretation of p 

The terms in 9 may be interpreted heuristically (and incompletely) 

as follows: 

i) The terms called 9G may be defined as the angular momentum in 

the gravitational waves. The reasonableness of this definition becomes 

apparent in the short-wavelength limit (wavelength small compared to 

the radius of curvature of the background spacetime). There the average 

of 9G over a few wavelengths in the hypersurface and over a few cycles 

of time is just the angular-momentum canponent of 

stress-energy tensor for gravitational radiation, 

the Isaacson (1968) 

T(GW)O • [More pre­
cp 

cisely, the average is the "Brill-Hartle" average (cf. Isaacson 1968) 

of 9c/N.] The short-wavelength limit is most easily calculated using 

the expressions for T(GW) given by Misner, Thorne, and Wheeler (1972): 
µv 

/a IN">H = _l_ (:l. ~v h ;o _ ~v If' 
VG' /B 161t 2 ;cp av ;v a;cp 

(54) 
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independent of any gauge. 

We emphasize, however, that the dominant radiation from a pulsat-

ing relativistic star may not be of short wavelength near the star. If 

most of the radiation from a star of mass M has frequency greater than 

some w0, then the short-wavelength approximation is good only in the 

region 

(55) 

For a typical neutron star in quadrupole oscillation as studied by 

Thorne (1969) (M"""' 0·.7 M0' w0 """'2 x 104 sec- 1, R"""' 9 km) this becomes 

r >> 14 km, 

which puts r well outside the star. 

Our expression for 9 is only one of many that reduce to the 

Isaacson tensor in the short-wavelength limit. Only in the radiation 

zone far from the star can we relate 9G to the density of angular mo­

mentum being lost by the star, because only there is that density truly 

well defined and measurable. 

ii) The angular momentum in the fluid per unit coordinate volume, 

0 4 l 0 l 
T (- g)2, can be written as p0 U V N g2 • Now V is the angular mo-

cp cp cp 
mentum per particle per unit rest mass: 

V =µU =.e..±..E.U 
cp cp Po cp 

Thus, the angular momentum density is the product: 

(ang. mom. density) = (rest-mass density) x (angular momenttml 

per particle per unit rest mass), 



x (V ) • 
q> 

When the fluid is perturbed, part of the second-order change in this is, 

from equation (51), 8(p
0

u0 Ng!)(8V -8a) • . The term 8(p
0

u0 Ng!) is 
q> 

easy to understand. The term 8 V - 8CX can be related to the Lagrangian 
q> 

change in the angular momentum per particle per unit rest mass as 

follows. If j is the angular momentum per particle per unit rest mass, 

if 6 denotes a Lagrangian change, and if ~ is defined as the Lagrangian 

displacement vector of the fluid element (not to be confused with the 

Killing vectors), then we have 

6j = 8j + ~ • vj .. .. (56) 
= 8V + ~ • vex <p .. 

because in the unperturbed state j = V = a. But in Appendix B we show 
cp 

that 8a = - ~ • "!?' + (8a)0, where (8a)0 is the "initial value" of 8a: 

its value when ~ is zero. Therefore we have 

the 

6j - (8a)0 = 8V - 8a. 
cp 

(57) 

0 iii) The final term in ~ is N Po U (8a 8t3 - 88 8Q ) • This is 
'"' 1cp 1 0 2 same as 2 N Po U 8 V , the contribution from the second-order change 

<p 

in V • Because we lack an explicit expression for 8Q in terms of .. ~' 
cp 1<p 

we have been unable to express this term entirely in terms of ~· 

c) The Conserved Energy of Pulsation 

i) Calculating the Energy Density 

Although Noether's theorem does not give us a conserved energy, we 

can construct one from the Hamiltonian. The calculations required to do 
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this appear in Appendix C. The essential steps are S\DllDarized here: 

i) Define the Hamiltonian density, 

oL2 
H2=I:Nq Od -NL2, r r, q 0 r, 

(58) 

where qr= {gµ at3' ha~, 8t, 8a, 8~, 8Q, 8S}. It is degenerate: not all 

the momenta oL2"oqr,O are independent. 

ii) Find the time-derivative of H2 using the method of Dirac 

(1958a) for degenerate theories. Find that 

, (59) 

(60) 

Thus, the Hamiltonian is not conserved. We should expect this from the 

failure of Noether's theorem. 

iii) Express the last term in equation (60) in terms of ~· Define 

the redshifted temperature, 

0 
~ e T/U , 

and a symmetric (for proof see Appendix C) tensor 

(6la) 

(6lb) 
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Find that 

- 32n N Po evi [n i ea + 7 i es] 
µ ' ' 

o[ o ij o i J = 'dt 161CN Pou M1j ~ i:; - :321CN Pou n,i ~ (8a)0 (62) 

where (8a)0 is the "initial value" of the perturbation in a. The time 

derivative can be brought over to the left-hand side of equation (60) 

and the divergence absorbed into the divergence of f 1• This defines a 

conservation law, 

oe' ,1 dt + ';JI I l = o, (63) 

for a globally conserved energy density, 

' 1 0 i j 0 i() e = 161C H2 - N Po u Mij ~ ~ + 2 N Po u n' i ~ ea O' (64) 

and its flux, 

iv) The energy density is defined only to within a spatial diver-

gence. Subtract a divergence from e' and the appropriate time deriva­

tive from ':J'i to arrive ·at a form of the energy density that is 

quadratic in derivatives of haf3. Write the result as: 

(66) 
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with 

l [CX(3(µ \I µ \I)~ 0 -:-«:) µ] () eG = 82f N g g \.\..1. g o(3 - g vt3 g q.,. - h , o g CXt3 + h , o g q.,. , 6 7 

_.!. ( 0 .!.) ( eF = -2g 2 e Pou N g2 ev0 + n eo +' .res) 

Po w · av 
+-Ng 8V 8V +2NpoU h 8V - N8po8µ µ v a a v 

Po 2 i 
+ N - {8µ) + N8(po T) 8S + 2N Pou (80 8(3 i - 8S 8Q i) (68) µ , . , 

0( ) i j 0 i( ) -Np0 u o,in,j+s, 1.r,j i; ~ +2Np0 u n,i~ eo 0 

+ N h 8p + l~lf N h hat3 Rext3 - N ( 1~2f R + p)(t h
2 

+ i hat3 hat3) 1 

k 1 -:-0(3 k -:-Ok µ ) 
'°G = 8Jt N (-h ,O g 0(3 + h 

1
0 g oµ ' (69) 

and 

(70) 

k k 
The split between eG and eF (and between ~G and ,-F ) is arbitrary: 

only their sum, e = eG + eF, is conserved. As we shall see in the next 

subsection, e is really twice what one would normally call the energy 

density. 

ii) Heuristic Interpretation of e and ~ 

Because of the great number of terms in e it is difficult to 
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identify different kinds of energy. We have split off eG because it is 

the only nonvanishing part in vacuum, and because it contains all the 

tenns that have derivatives of hat3. 

i) In the short-wavelength limit in the vacuum region outside the 

star, the Brill-Hartle average of ecJN is proportional to the Isaacson 

energy density. Outside the star the wave equation is (cf. eq. [34a]) 

(71) 

Then by the identity mentioned in Appendix C (eq, [C15J) we have 

This divergence does not contribute to the Brill-Hartle average of 

ecJN, so we obtain in the short-wavelength limit 

(72) 

This is in accord with our previous remark that e is twice the energy 

density. 

ii) The interpretation, of eF is made difficult by the presence 

of the term 

(73) 

As with a similar term in 9, we have not been able to express this in 

terms of s• Therefore we will not be able to make a comparison of the 

Newtonian limit of e with the Newtonian energy density derived in 
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2 

Paper I. However, this term is not present if the unperturbed star is 

nonrotating, so in that case there is no problem showing that e reduces 

to the Newtonian expression derived in Paper I. We will do that later 

(§Ille, ii). For now we simply note that the similarity between this 

term and one in 9F permits us to rewrite eF in the form 

_.1. ( 0 .1.) ( v ) 0 ~ = - 2 g 2 5 Pou N g 2 u 5 v v + T 5 s /U + 2 n 9r 
( 74) 

+ remainder, 

where "remainder" means all but the term (73) and the first term of eF 

in equation (68). So the kinetic energy associated with the fluid's 

angular momentum makes an explicit contribution to the total energy 

density. 

iii) We can get some feeling for the nature of e by looking at 

its flux, which tells us how energy leaves a volume. The flux of gravi­

k tational energy, ~G , can be averaged over a few wavelengths and cycles 

of time to give (in the short-wavelength limit) 

= _ 2 T(GW)k • 
0 

(75) 

Therefore, far from the star this is twice the physically measurable 

flux of energy in the gravitational waves. 

2 
This is a Newtonian term and even prevents a direct comparison of the 

Newtonian energy density derived by analogue with the present procedure 

with that derived in Paper I. It is difficult to see how they could be 

different, considering especially that in the nonrotating case one can 

show that they are equal. 
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iv) The flow of fluid energy across some surface is 

I 
transport of fluid energy 
in the hypersurface across 
a two-surface E with 
unit normal ~ 

k 
= J ~F ~ da • 

E 

If the surface E is parallel to the unperturbed streamlines (tf ~ = 0), 

this becomes 

l transport of fluid energy! k 
across the unp~rturbed = -2JN(ev0 +ooa+..res)p0 ov nkda, 

streamlines E . 
(76) 

. _Jc 0 
where by vk we mean the coordinate velocity lr/U (not to be confused 

with vk 5 µUk). It can be shown that 

( ' ) 1 IL af3 ( ) ( ) - ev0 + nea+..res =--0 ep + 0 uauf3h + n ev - ea. 11 
p

0
u 2u C? 

Thus the energy carried by the perturbations across the unperturbed 

streamlines is heuristically of three types: (a) work done (or gained) 

because of local changes in pressure; (b) "gravitational potential 

II ( h · h N i l' · 1 u u haf3 1 hoo !;:. th energy note t at in t e ewton an imit, 2 a f3 + 2 + u~, e 

change in the Newtonian potential); and (c) rotational kinetic energy 

(recall that oV - ea is related to the Lagrangian change in j by eq. 
cp 

[57]). 

iii) The Outgoing-Energy Boundary Condition 

Far from the star, where the short-wavelength approximation is valid 

for all but a negligible part of the gravitational energy, it is possible 

to formulate a physically meaningful condition that the net flux of 
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energy be away from the star. On a closed surface E in the short-

wavelength region, the net flux of energy will not be inward if 

s T(GW)kO nk da :t O. 

E 

By equation (75) this is equivalent to 

(78) 

S ~G k/N)BH nkda ~ O. (79) 
I: 

From this and equation (66) follows the important result: The 

total energy of pulsation CJ e gt d3x) inside E never increases if the 

radiation satisfies the outgoing-energy boundary condition on t. 

Note that this is a very weak condition compared to the usual 

outgoing-wave boundary condition, which requires that the flux be out-

ward at every point of E· For our purposes we will need only the weak 

condition, equation (79). 

d) The Total Energy and Angular Momentum 

Three conclusions help us understand the physical meaning of the 

total energy, Ee J e gl d3x, and the total angular momentum, 
l :3 

J e J ~g2 d x: 

(i) E and J are gauge-independent. This follows from reasoning 

similar to that used to prove the coordinate-independence of pseudo-

tensor energies (cf. Landau and Lifshitz 1962). Briefly, assume that 

E or J is different in two different gauges. Choose a third gauge that 

matches the first on one hypersurface and goes smoothly into the second 

on a later hypersurf ace. Then conservation of E and J in every gauge 
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contradicts the assumption. This does not imply that the densities e 

and 9 are gauge-invariant~ Conservation of E and J is fundamental to 

the argument, and the conservation law is valid only if the perturba-

tions satisfy the initial-value equations on every hypersurface. There-

fore the argument implies only that under a gauge transformation e and 

9 change by terms that become spatial divergences after the initial­

value equations are applied. 

(ii) Suppose that a distant observer (outside the furthest wave­

* front) measures the active gravitational mass M and total angular 

* momentum L of the pulsating star. Suppose also that the star is stable, 

so that the pulsations eventually die out and leave behind a star of 

mass M and angular momentum L. For a stable star, the differences 

* * . M - M and L - L are at most second order in the perturbations. 

* The difference M - M is conserved at all orders. If there were a 

* first order piece in M - M, it would have to be radiated away as the 

stable star's pulsations damp out. It could not remain localized inside 

or near the star because by assumption M is the mass left behind. On the 

other hand, the work of Isaacson (1968) shows that there can be no first-

order radiation of physically measurable energy on the stationary back-

ground far from the star. Therefore the first-order contribution to 

* * M - M must vanish. The same argtunent applies to L - L. 

This result is similar to the theorem of Bardeen (1970) that the 

equilibrium configuration of a rotating star extremizes the active gravi-

tational mass of all nearby momentarily stationary configurations with 

the same total baryon number, angular momentlDD, and entropy that satisfy 

the initial-value equations. [This was proved for nonrotating stars by 
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Cocke (1965) and Harrison, Thorne, Wakano, and Wheeler (1965).] Where 

Bardeen compares momentarily stationary configurations with different 

masses but identical angular momenta, we compare momentarily stationary 

configurations whose masses and angular momenta are related by the re-

quirement that one configuration can be obtained from another by the 

emission or absorption of gravitational radiation, (The configuration 

* with mass M can be considered to be momentarily stationary at the 

moment the perturbation is applied, just before it begins to emit 

gravitational waves.) 

(iii) In the notation of (ii), the following equations are correct 

to second order in the perturbations: 

* M =M+iE (80a) 

* L = L + J , (80b) 

where the background star is the star of mass M and angular momentum L 

that is left behind. This result follows from three properties of E 

and J: (a) They are unique apart from additive and multiplicative con-

-+- -+-
s tan ts because they depend only on the Killing vectors ~(t) and ~(~)· 

(b) They vanish when the perturbation vanishes. (c) The change in 
1 3 1 3 J e g2 d x and J 9 g2 d x inside any fixed surface surrounding the star 

and far from it is determined solely by the physically measurable fluxes 

T(GW)k d T(GW)k 
0 an qi. 

* * If there were any other second-order contribution to M or L , it 

would have to be globally conserved. By (c) it would also have to be 

confined forever within a closed surface at some large but finite distance 
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from the star. The use of (b) and of arg'Wllents similar to those of (ii) 

above then implies equations (80). 

e) The Spherically Symmetric, Nonrotating Star 

i) Expressions for the Energy and Flux 

We turn now to a special case in which our expressions simplify 

considerably: the nonrotating star. In curvature coordinates the 

background metric is 

Then we have in the background 

N = -u = l/u0 ·= ev/ 2· , 
' 0 

],_ 2 2 A/2 
g2 = r sin fJ e 

' 
(82) 

In Appendix D we simplify eF for this case as much as possible by 

substituting for the perturbed fluid quantities their expressions in 

terms of~ (cf. Appendix B). The result is 

-v' 2 · -v ( ) 2 -1 ( ) ( ) 
e ' eF = Po µ e 5' o • to + rP ~ . ~ + Po ~ • ~ Po ~ . ~P 

+ 2(~ • ~)(~ • ~p) - iPo T(~ • ~s)(~ • ~v) - µ l ~ • (p0 ~) 
(83) 

+ Pol 8µ + 8p(hj j - l) + ~ (p + 3p) £
2 

+ * (p + 3p) l hj j 

v j jk . 2 
- ie- (p+3p)kjk - i(p-p)h hjk+~(p-p-27p){hJj). 
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In this expression we have defined 

(84a) 

and 

-v/2 . kj _ e hOj , (84b) 

and we mean by 8µ and 8p 

8µ '/'P ( - ~ hj.) - s . \7µ = -- V•s ' Po - - J 
(85a) 

8p = - '/'P (v • s - .l hj ) 
2 j - S • Vp (85b) 

The flux ~Fk is especially simple in this case. Equation (76) 

applies becasue all surfaces are orthogonal to the unperturbed stream-

lines: 

-v/2 k v/2 ( 1 ) k 
e ~F = e 8p + 2 Poµ L s ,o • (86) 

The energy density and flux of gravitational waves do not simplify 

very much from their full form (eqs. [67] and [69]) so we will not re-

produce them here. 

Our previous remark that e is really twice the energy density is 

again verified by the "kinetic energy" term in equation (83), which has 

2 the form mv • 

ii) The Newtonian Limit 

The Newtonian limit of e for the nonrotating star is obtained by 

neglecting p and ~ compared to p (~ is the Newtonian gravitational 

potential). In equation (83), the fifth, seventh, and subsequent terms 

are all of post-Newtonian order or higher. In the Newtonian limit we 
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have l = 2 B~, so that eF becomes 

+ 2 (V • g)(g · Vp) - 2 B~ V • (p ~). 

(87) 

The perturbed source equation for B~ (analogue of relativistic initial-

value equation) is (cf. Paper I) 

v2 B~ = 4rc Bp = - 4rc v • (p ;) • (88) -
Therefore the last term in (eF)NEWT becomes 

- 25~ v • (p ;) = - ~VB~• VB~+ (divergence). 
'+fC -

(89) 

We will discard the divergence. By comparison with equation (27) · of 

Paper I, we see that eF differs from the Newtonian energy density only 

in that the term in equation (89) is twice as large as it should be. We 

therefore expect the Newtonian limit of eG to be (4rc)-l V B~ • 'iJ B~. 

Rather than find the Newtonian limit of eG for arbitrary nonradial 

pulsations, we will restrict ourselves at first to the case of radial 

pulsations, for which we have explicitly calculated the relativistic 

expressions (Appendix D). We will then argue that the nonradial 

Newtonian limit differs from the radial limit in no important respects. 

For relativistic radial pulsations we can choose a gauge such that 

the only two nonzero metric perturbations are 

0 
Bv = - h O' 

r 
B'A = - h • r 

(90a) 

(90b) 
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In terms of the fluid perturbations these are 

).... 
8)... = -81(re Poµ~ , ( 9la) 

Bv' = 81(re)... [ f>p - Poµ ( v' + !> ~ J, (9lb) 

where primes denote differentiation with respect to r. The Newtonian 

limits of these expressions are 

B).... = -8Jt rp ~ , (92a) 

8v' = -81( p ~ (92b) 

From equation (88) applied to the radial case we see that indeed 

8v = 2 8~. Moreover it is clear that 8)... is of the same order as 8v. 

The energy eG for radial pulsations is 

(9:3) 

The first term is post-Newtonian compared to the second (v' << l/r). 

From equations (92) we find the Newtonian limit to be 

If we add the divergence 

, (95) 
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we obtain 

(96) 

This is exactly what we require to make e = ~ + eG reduce to the 

Newtonian energy density for radial pulsations. 

We should expect the same result for nonradial pulsations. The 

nonradial case is made difficult because the appropriate limiting values 

of ha~ depend upon the gauge. Even in the radial case we saw that 5A 

was comparable in size to 8v. Nevertheless, the Newtonian limit of eG 

cannot depend upon the gauge. It should be possible to construct a 

gauge in which the only two metric perturbations that have nonzero 

0 r Newtonian limits will be h 0 and h r· Dragging of inertial frames 

0 (given by h i) and the nonexistence of intrinsically spherical two-

surfaces (due to h IJ and h {J_Q - hep ) are 
cp u cp 

physically of post-Newtonian 

used to make h "_111 h {} and h cp of order. Moreover, gauge freedom can be 
u r' r 

0 r post-Newtonian order, leaving only h 0 and h r at the Newtonian level. 

In such a gauge eG will have a Newtonian limit substantially like equa­

tion (94), only with three-dimensional gradients replacing r-derivatives. 

Then e will limit to the correct Newtonian energy density. 

IV. STABILITY 

a) The Sufficient Condition 

The energy density e has three properties that qualify it as a 

Lyapunov function [see, e.g., La Salle and Lefschetz (1961)]: i) it is 

homogeneous and quadratic . in the perturbation variables; ii) it is 

globally conserved; and iii) its integral over the interior of a large 
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but finite sphere surrounding the star must decrease if the radiation 

satisfies a physically meaningful outgoing wave boundary condition on 

the sphere. Therefore a sufficient condition for stability is that e 

be positive-definite, i.e., that the integral of e over the interior of 

the large sphere be positive for all nontrivial physically acceptable 

perturbations. 

By "physically acceptable" we mean that the perturbation and its 

time derivative must be consistent with the perturbed initial-value 

equations. If one specifies ~ and ~,O on the hypersurface, one is not 

free to specify all ten ha~ and their derivatives. The initial-value 

equations {perturbed versions of GµO - Sn TµO = 0) set four restrictions 

on the twenty functions hat3 and h~ 0 • In addition the choice of a 

' 
gauge sets twelve more restrictions: The gauge completely determines 

four of the ha~ throughout spacetime {four conditions on h~ and four 

conditions on h~ 0 on the hypersurface), plus it permits solving for 

' 
the four perturbed lapse and shift functions in terms of the remaining 

variables [cf. ADaM (1962) or Wheeler (1964)]. Another way to do this 

counting is to .realize that the perturbed geometry is completely speci-

fied by giving the twelve functions hij and hij,O on the hypersurface, 

though coordinate {gauge) arbitrariness off the hypersurface leaves 

some indeterminacy in haf3 ·off the hypersurface. Then imposing a gauge 

in the hypersurface (four conditions) and solving the four initial-

value equations in the h}rpersurf ace reduce the nmnber of free functions 

to four. Thus, e must be positive-definite for arbitrary values of the 

i i at3 six functions ~ and ~ 0 plus the four independent functions among h 

and h~ o· (Unfortunately one is not likely to be able to prove e 
I 
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positive-definite without imposing the initial-value equations, as 

we show in the next paragraph.) 

b) Obstacles to the Application of this Condition 

Both the solution of the initial-value equations and the imposi-

tion of a gauge appear to be crucial before the sufficient condition 

can be used. In Newtonian theory the analogue of the initial-value 

equations is the source equation for the gravitational potential, 

v2~ = 4~p. The contribution of the perturbed potential, o~, to the 

energy of pulsation is negative-definite (cf. Paper I). Only by 

solving for o~ as a Green's functions integral over ~' or in terms of 

the longitudinal part of p~ (as was done in Paper I), can the entire 

pulsation ene~gy be shown to be positive-definite. 

The imposition of a gauge is important because e is not gauge-

invariant (though its integral over the hypersurface is). It may 

happen that even after solving the initial-value equations one may 

be able to prove the positive-definiteness of the energy density 

easily only in some gauges. Thus part of the problem is to find a 

gauge in which eG (or eG plus some of the terms in ~ that are quadra­

tic in ha~) is manifestly positive-definite in the four free gravita-

tional variables that remain. If such a gauge can be found then the 

contribution to e from eG can be discarded, and the sufficient condi­

tion reduced to an integral just over the interior of the star (plus 

possible surface integrals, as in Paper I). In that form, with the 

remaining energy a function only of ~' the condition will be tractable 

and ready for application to realistic stellar models. 
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We should remark that the gauge problem can probably be solved 

without going to a specific stellar model. The purpose of the gauge 

is to prove that the "free" gravitational waves those that can be 

specified on the hypersurface independently of the star's perturbation 

s -- have positive energy. We should also remember that the gauge 

that solves the radiation problem may not be the same gauge that makes 

the dynamical equations simple [e.g., the Regge-Wheeler gauge used by 

Thorne and Campolattaro (1967) for the nonradial pulsations of spherical 

stars]. Generally, one might expect the dynamical fluid equations to 

be simplest in the "near-zone" or "Coulomb"-type gauge, which might be 

poorly behaved at spatial infinity. The gauge that proves the gravita-

tional wave energy to be positive-definite, on the other hand, is likely 

to be a "radiati9n" or "Lorentz"-type gauge. This conflict may pose no 

problem since one need never solve the dynamical fluid equations to use 

the criterion: one need only prove that a certain functional of ~ is -
positive-definite. 

c) An Example: Radial Pulsation 

To illustrate the procedure outlined above on a problem whose solu-

tion is known, we evaluate e for the radial pulsations of a spherical 

star. We will find that e reduces to the same functional whose positive-

definitertess Chandrasekhar (1964) proved was necessary and sufficient 

for stability. 3 The details of the calculations are contained in 

3 
Taub (1969) derived Chandrasekhar's criterion from the second variation 

of a variational principle of his own. This appears to be the first 

application of the second variation to stability problems in relativ­

istic astrophysics. 
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Appendix D. 

i) Choice of a Gauge 

The unperturbed metric is given by equation (81). For radial 

pulsations it is possible to choose a gauge in which the only nonzero 

metric perturbations are Bv = - h0
0 and BA= - brr [see, for example, 

Landau and Lifshitz (1962)]. Both can be made to vanish outside the 

star. 

ii) Eliminating Non-Dynamical Gravitational Variables 

Since there are no gravitational waves, both BA and Bv are deter-

mined completely by the fluid perturbations. The two "initial-value 

equations" that are relevant are 

and 

e-A (rl v' + 12) 1 8 Tr -2= 1f r 
r r 

(97a) 

(97b) 

(where primes denote o/or). Following Chandrasekhar (1964), the per-

turbed versions of these equations can be solved to give 

(98a) 

and 

(98b) 

We will not need the last equation for 6v because e will contain only 
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iii) Calculating the Energy Density 

In Appendix D we show that the two parts of the gravitational 

energy density, equation (67), are 

~(µ v µ v) 
g g vµ g O:f3 - g vf3 g aµ . 

= '¢-v' e-'A (8v-8'A)(8v' -8'A') + ! e-'A8'A(8'A'+8v') 

and 

Lat3 0 ~ µ 
- h ,o g O:f3 + h ,o g aµ = o. 

Adding to the energy density the divergence 

, 

we obtain 

(99) 

-v/ 2 ( e ) = _l_ e -'A 8 'A 8 v' - 1 e -'A 8 v2 ( v" - i 'A' v' + i v' 2 + _g_ v' ) 
e G radial 87tr 647t · 2 2 r 

(100) 

1 -'A 2 _i_ .i_ 2 4 2 4 
- 64,f e 8'A (v" -2'A' v' +2v' + r v' -r 'A' +2). 

1t r 

In Appendix D we also show that eF becomes 

- 8P8.'A+p
0

Tesev-µ8v!· (p0g)+p0 µe'A-v(~10 ) 2 (101) 

+ ?'P(! • ?)2 +2(~ • ~)p'~+p0- 1 p' Po' ~2 -!Po TS' v' ~2 • 

When eG is added to ep, and a convenient divergence added as well, 
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the coefficients of all terms containing Bv vanish by virtue of equation 

(98a) and the unperturbed field equations. When 8A is expressed in 

terms of g from equation (98a) and another divergence added, the result-

ant expression can be simplified to 

(e)radial 
A_..!'. ( )2 v/2 2 = Po µ e 2 i; o + P '1 e X , 

v/2 
e ( I )2 2 
Poµ p S 

4 v/2 , 2 A+..!'. 2 
+ r e p t; + Sn e 2 Poµ p s , 

where x stands for 

Then positive-definiteness of the total energy, 

00 
2 A/2 

Eradial = t e 4nr e dr, 

for all possible i; and i; 0 guarantees stability. , 

(102) 

(103) 

(lo4) 

Chandrasekhar (1964) proved that the positive-definiteness of this 

e integrated from r = 0 to r = R {surface of the star) is necessary and 

sufficient for stability. Since e is zero for r > R and contains no 

delta functions at r = R, we see that our results demonstrate the suffi-

ciency of Chandrasekhar's criterion. In the next section we use our 

methods to show that his criterion is also necessary. 

iv) Lagrangian for Radial Pulsation 

The radial pulsations of a relativistic star are very similar to 

Newtonian pulsations: there is no gravitational radiation, and the 

perturbed gravitational field (8A and ev) can be expressed entirely in 
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terms of ~ on a given hypersurface, without reference to the dynamics on 

previous hypersurfaces (cf. eqs. [98]). It is therefore possible to 

follow the procedure of Paper I here: one can substitute s directly in­

to the Lagrangian density, equation (31), and use the resultant expres-

sion as the reduced Lagrangian density for the radial pulsations. The 

calculations are very similar to those required to reduce e. The 

result is 

( ) A- 'V ( ) 2 2 1 ( I ) 2 2 
L2 radial = - Poµ e S 0 + p '! X - - P S 

' P& (105) 

4 2 " 2 + r p I s + 8Jt e Po µ p s , 

where x was defined by equation (103). Clearly the energy density e is 

the Hamiltonian density associated with this Lagrangian density. 

The theorem of Laval, Mercier, and Pellat (1965) applies to this 

case and implies that the positive-definiteness of Eradial (eq. r1o41) 

is necessary and sufficient for stability. This demonstrates how 

Chandrasekhar's theorem can be obtained with our approach. Needless to 

say, Chandrasekhar's own methods are much better for such a simple case. 

We used ours only to illustrate the more general procedure. 

V. OUTLOOK 

The stability criterion derived in this paper is only the first 

step in what promises to be a difficult but rewarding search for a use-

ful stability criterion for relativistic stars. I have already discussed 

what steps may be needed before the goal is achieved. The most promising 

approach seems to me to be the analogue of the ADaM approach to the full 
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field equations: choose a transverse-traceless gauge and solve the 

initial-value equations. There may be other workable approaches, how­

ever. In Appendix C is derived the rate of transfer of energy from eF 

to eG; it may, happen that with the "outgoing-energy" boundary condition 

and a careful choice of gauge, the initial-value equations imply that 

this rate is positive. Th~n eF itself must decrease in time and so 

its positive-definiteness alone would guarantee stability. Both these 

approaches are under investigation. 

Moreover, the Lagrangian, equation (51), has applications beyond 

the derivation of the sufficient criterion of this paper. It should be 

possible to derive from it the results of Chandrasekhar and Friedman 

(1971) in the zero-frequency approximation. It should also be possible 

to derive from it general criteria for the stability of standing-wave 

modes. Such criteria might well be less complicated than the one pre­

sented in this paper, and might serve as reasonably good indicators of 

the stability of realistic, outgoing-wave pulsations. The Lagrangian 

may prove to be an even more useful tool than the sufficient criterion 

for stability. 

I would like to thank Sandor Kovacs and especially James Bardeen 

for many helpful conversations. I am also deeply grateful to Kip s. 

Thorne for his remarks on this paper and for his continued advice and 

support during the past three years. 
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APPENDIX A 

THE SECOND VARIATION OF THE VELOCITY-POTENTIAL LAGRANGIAN 

The full velocity potential Lagrangian is (Schutz 1970) 

1 
.;!_ = (R + l6~p)(-g)2 • (Al) 

Its second variation is the part that is quadratic in the perturbations 

when the full perturbed values of the independent variables (Palatini 

O'V ')' ) ( ) style: g , r crv' ~' a, ~' Q, S are substituted into equation Al • 

By definition, the second variation of any of the independent variables 

themselves is zero. We treat the two parts of -£ separately. 

a) Second Variation of the Fluid Lagrangian 

.1. 
The fluid Lagrangian is p(-g) 2 • Its second variation is 

Now, the middle term is easy: 

and 

with 

where BV stands for 
v 

Bp = Po Bµ - Po TBS 

- __!.._ h va V V - ..!. g va V 8 V 
2µ v a µ a v 

, 

, 

(A3) 

(A4) 

, (AS) 

av = a~ + a e~ + Ba ~ - s eQ - es o • (As) v ,v ,v ,v ,v ,v 
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1 

The second variation of (-g)2 is also not hard to find: 

o (-g) 2 = o o(-g) 2 = (-g) 2 (k h + ~ h µa • 2 [ i] [ i] ~ 2 µer h ) (A?) 

The second variation of p comes from equation (A4): 

(recall that o2s s 0). 
2 From equation (AS) we can compute o µ: 

2 l ( )2 2 av 1 vcr o µ = - - oµ - - h v o v - - g ev av 
µ µ avµ av 

Finally, we can find o2 V from equation (A6): v 

Equations (A8)-(Al0) combine to give 

Po VCJ V ( ) - - g o v e v - 2 Po u ea e 13 - es oQ • 
µ a v ,v ,v 

(A9) 

(AlO) 

(All) 

This equation plus equations (A3), (A4), and (A?) when substituted into 

equation (A2) give equation (25) in the body of this paper. 

b) Second Variation of the Curvature Lagrangian 

1 
In the Palatini method, the curvature Lagrangian is getl3 Raj3(r)(-g)2. 
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Its second variation is 

The only terms here that we have not yet computed are 

(Al3) 

and 

2 ..u v µ v 
8 R~ = 2 CS' vµ g af3 - 2 8 vf3 g qi • (Al4) 

It is straightf~rward to plug equations (A3), (A7), (Al3), and 

(Al4) into (Al2) to obtain equation (29) in the body of this paper. 
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APPENDIX B 

EULERIAN PERTURBATIONS 

In this paper we often have occasion to convert from o~, oa, ... 

to the fluid displacement, ~· We shall write down the necessary ex­

pressions. More details can be found in Lebovitz (1961) or Lynden-Bell 

and Ostriker ( 1967). We use the language of the 3 + 1 split of the 

background spacetime: s is the displacement of the fluid in the hyper-

surface of constant time, whose metric is g. .• The determinant of g .. 
1J 1J 

is g. Covariant derivatives in the hypersurface are denoted by ? or 

oy a subscripted slash, "I"· 
Because baryons are conserved, the change in rest mass inside a 

coordinate volume equals the transport of rest mass across its surface: 

1 0 
= -g2 y. (po U N ~) 

Because entropy per baryon is conserved, Po S obeys the same 

equat~on as Po· Together with equation (Bl) this implies 

cS = - s · y S • 

(Bl) 

(B2) 

The velocity potentials a and ~ obey the same equation as s, so their 

perturbations are 

oa = - ~ • y a + ( oa) 0 , (B3a) 

(B3b) 

where (oa)0 and (o~) 0 are the values of oa and o~ when ~ = o. They 

represent an initial velocity perturbation. They are "constants" of 
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integration in the following sense: 

(B4) 

Note that for oS the constant of integration is zero (cf. Paper I). 

The potentials ow and BG do not have equations as nice as equations (B3) 

because they are not "conserved" in the way a, t3, and S are. 

The changes in p, µ, p, T, ••• can be computed from equations (Bl) 

and (B2) and the equation of state. We obtain 

with the Maxwell identity 

If we define the three-dimensional coordinate velocity, 

equation 

then we have 

i i i ov =If; 0 + £ ~ , ! 
, 

i i i i j 
= ~ ,o + ~ lj ,,.. - v jj ~ . 

(B6) 

(B7) 

(B8) 

°!' by the 

(B9) 

(BlOa) 

(BlOb) 
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This equation and equation (B2) render the perturbed entropy equation, 

(
1 v ) i i 8 - 0 U S = 88 O + 8V S i + V 8S i = 0 1 u ,v , , , 

(Bll) 

an identity, and similarly for the a, ~, and Po equations. 
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APPENDIX C 

THE ENERGY OF PULSATION 

a) The Hamiltonian 

The generalized momenta of the problem, oL2"oqr,O' are not all 

independent, so one cannot solve for the velocities in terms of the 

momenta. Dirac (1958a,b) has developed an algorithm for expressing 

the equations of motion in Hamiltonian form in such situations, and 

Schutz (197lb) has applied the method to the relativistic perfect fluid, 

starting from the full velocity-potential Lagrangian, equation (9). 

The only result we will need here is a result demonstrated in the 

appendix to Schutz (197lb) for the time derivative of the Hamiltonian. 

The Hamiltonian is 

(Cl) 

[ µ af3 ] where qr s g af3' h , o~, oa, of3, Bg, BS • The overall factor of 

( 
00 _.!. 

N = -g ) 2 ,in H2 arises from our abandoning 
1
general covariance: The 

action is to be expressed in the form 

(C2) 

In order that this should be the same as 

4 1 4 1 3 
I 2 = J L2 ( - g) 2 d x = J L2 N g ~ d x d t, (C3) 

we need to include the factor of N in H2 and in the generalized momenta, 

r p • 
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By the theorem from Schutz (197lb), the time derivative of n

2 
is 

cm2 [ 2lH2 ] Cl 
<§t"" = ~ qr,O dq 

1
. - 'dt (NL2)holding q, q 

0 
fixed 

r 1. Ii r r, 
(c4) 

This is the same as for a nondegenerate Hamiltonian. 

If L2 did not depend explicitly on time, then H2 would be globally 

conserved. However, L2 does depend upon time. From the remarks in 

§IIIb,i we find that 

Po av av = -321rN - (g ov + µU h )(n oa + !' os). 
µ C1 C1 ,v ,v (cs) 

Here we have defined the "redshifted" temperature, 

!' _ T/Uo. (C6) 

The first parenthesis in equation (CS) is just oVv. In terms of 

the coordinate velocity, vi= Ui/u0, equation (CS) becomes 

d 
'dt NL2 = 

0 i 
-321{ N Pou ov ( n . oa + !' . os). 

,i. ,i. 
(C7) 

In obtaining this we used the fact that n and !' are independent of t 

and q>· 

i We can express ov , oa, and oS in terms of ~ by using equations 

(BlO), (B2), and (B3a). Then manipulations similar to those of 

Appendix A of Paper I can simplify equation (C7) considerably. The 

crucial idea in the manipulations is that the quantity 

(ca) 



155 
is synunetric; its antisyxmnetric part is 

which must vanish because the unperturbed flow is stationary. The final 

result of the manipulations is 

0 . 
-32:n:Np

0
u ov1 (n. oa + :- . as) = 

,1 ,1 

(C9) 

[ 
0 i j .t 0 i .t] + 16:rr N Pou Mij s i; v - 32:rr N Pou n, is (ea)0 v 

I .t 

Notice that the initial perturbation in a appears explicitly. 

From this equation we see that the term that prevents H2 from 

being conserved is itself a time-derivative plus a divergence! We can 

therefore rewrite equation (c4) in the form 

(ClO) 

= [~ oH2 0 i j I. 0 i l] 
q 0 ci + 161rNp0 u M.j s g v -32:n:Np

0
u n. s (ea)0 v • 

r' qr I £ l. ' 1. I L 

b) The Energy and its Flux 

We may tentatively identify the energy density of the pulsations 

as 

(cu) 
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Its uniqueness and gauge properties are discussed in §IIId. Here we 

are interested in evaluating e' and its flux. 

From the Lagrangian L2 = 6t + 161f .(} given in equations (25) and 

(29) we find 

N 
oL2 = 2N~ 80 - 2N~~ 8~ (Cl2a) 

()gµa~,o µ µ 
, 

N 
oL2 = 0 (Cl2b) 

cha~ 
, 

,o 

N 
oL2 = - 321f g-i 8(p

0 
UO N gi) (Cl2c) 

d8\lf 0 
, 

, 

N 
oL2 = 0 (Cl2d) 2lea 0 

, 
' 

N 
oL2 1 0 t (Cl2e) 
d8~ 0 

= - 321t g -2 8 (Po u a N g ) , 
' 

N 
oL2 = 0 ( Cl2f) 

d8S O 
, 

, 

N 
oL2 _l. ( 0 i (Cl2g) 

d8Q 0 = + 321t g 2 8 Po U S N g ) 
, 
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These imply that H2 is 

2 -;-al3 °0 - 2 N~h gµ 
H2 = Nh o a13,o ~,o 

_1. ( 0 1.) ( - 32:ir g 2 o Pou N g2 o~ 0 + a 013 0 - s oQ 0) 
' , ' 

(Cl3) 

- N~ - 16:irNQ. 

Consider the gravitational part first: 

-;:at3 0 -:-C{) µ ( 4 ) 
H2(G) = 2Nh g a13,o - 2Nh . g ~,o - N~. Cl 

This would appear to contain second time derivatives of hal3. Actually 

it does not, as we can see with the help of an identity that follows 

from the definition of gµ at3 in terms of ha13 (eq. [33]): 

~13 (gµal3;µ - gµ ~;13) = (-4g)t [c-4s)t cwiv gaµv - hva ~vµ)J a 

' (Cl5) 

This identity converts ~ (eq. [29]) to 
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With this, H2 (G) becomes 

H2 (G) = - 2 N~~ go + 2 Nii°° gµ ,o a~ ,o aµ 

This is quadratic in derivatives of ha~ after we throw away the diver-

gence (we must remember to discard the appropriate time derivative 

from the flux to compensate this divergence). 

We make no modification of the rest of ~ except to note that 

enjr O + a 5~ O - S 5Q O = 5V0 - ~ O 5CX + Q O 8S , , , , , 
(Cl8) 

When all terms are assembled and divided by 16Jt, the result is equa-

tions (67) and (68). 

The energy flux (Poynting vector) is, from equation (ClO), 

£ oH2 0 i j I. 0 i I. 
':J' = -E q ci - 16JtN p0 u M1j ~ ~ v + 52JtN p0 u n 1 ~ (5a)0 v • 

r r,O qr!£ , 

(Cl9) 
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· From expressions similar to equations (Cl2) we find that 

= -

_1. ( 0 1.) ( ) - 321{ Ng 2 0 Pou N g2 oVO + n oo: + 1" oS 

(C20) 

The last tenn in this equation is exactly the one required to 

cancel the divergence in equation (Cl2)! So when we discard it and 

divide by 161{ we get equations (69) and (70) for the flux. 

For completeness we write down what the first three terms of 

H2 (G) (eq. [Cl?J) become if we substitute for the gµo:~'s their expres­

sions in terms of ho:~. This is what in the body of the paper we call 
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+ N~ E°rv·A + Nh 0 h'O + ~Nh'i h. ,o ""11-' , ,i. 
(C21) 

+ .!. N (rcx ~f3 + rf3 ~) (h ;o - 2 ii° ,...
1

• f3). 2 crO crO cx{3 "" 

Similarly, the gravitational part of the flux (first two terms of 

eq. [C20J) becomes 

I. t:<Xf3 - • I. -:-0{3 -£ 1 - - l 
161! '/JG = - N h h , + 2 N h 0 h ,..,,. A + 2 N h h' 

,0 Ctf3 , '-"II-' 1 0 
(C22) 

c) Transfer of Energy Between Fluid and Radiation 

The Hamiltonian formalism permits us to calculate not only the rate 

of change of the total energy density e, but also the rate at which 

different parts of e change. In the body of this paper we define 

(C23) 
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where H2(F) is the Hamiltonian obtained just from the Lagrangian(}: 

_1. ( 0 1.) ( = - 2 g 2 e Pou N g2 ev0 + n ea + 3' es) 
(C24) 

0 
- 2 Pou N (ea et> 0 - es eo 0 ) - r;. 

' ' 
The time derivative of ep can be found in this manner: 

The time derivative of H2(F) is of three parts: a part due to 

the time derivatives of the fluid variables, a part due to the time 

derivatives of the gravitational variables, and a part due to its ex-

plicit time dependence. The last part is cancelled by the time deriva-

tive of the second and third terms in equation (C23) (by the construe-

tion of the previous section!). The first part is just a divergence 

because H2(F) is the Hamiltonian that governs the time-derivatives of 

the fluid variables. Thus we have 

(C25) 

' 

where ~Fk' which is defined in the body of this paper (eq. (70]), 

represents the energy carried out of some volume by the fluid itself. 

Now H2 (F) does not depend upon Cfµ • 
Ct CXl3' from equation (35) we find 
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- N -- = g 2 o T (- g)2 , d{? _.l [ 4 .l] 
dhaf3 a13 

= N [µuau 13 op0 + p0 uau13 oµ + 2p0 µuaou 13 

+ op gaf3 - phaf3 - i Taf3 h J . 

( C26a) 

(C26b) 

[From eq. (C24) one might conclude that H
2

(F) depends on haf3 not only 

through{? but through the first term, which includes o (p
0 

u0 
N gi) • 

_.l ( 0 .l 
This is not true: - 2 g 2 o p

0 
U N g2) is the momentum conjugate to 

o~,dL2"do~ 0 . It is a fluid variable, and its time rate of change is , 
included in ~Fk.J 

Since the last two terms in ~ also depend only on haf3, we can 

write down ()eF/dt innnediately: 

(C27) 

1 µ'VJ + 2 Po µ gaf3 u µ u v h • 

Since the divergence of ~Fk represents transport of energy by the 

fluid, the total rate of transfer of energy from ~ to eG is negative 

of the integral of the right-hand side of equation (C27) over the 

entire star. 
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APPENDIX D 

THE NONROTATING STAR 

a) Arbitrary Pulsations  

The nonrotating star has the background metric 

ds2 	- ev dt2 + e?\ dr2 + r2 (0 + sin
2
0 d cf2). 	 (D1) 

From the equation ua ua -1 we find 

5u0 	e-3v12 hoo 	 (D2a) 

and 

5U 

	

 " - - 1  e-v/2 h00 • 	
(D2b) 0 	2  

From Appendix B we learn 

5S = - "17S = -§r S ,r 	
(D3a) 

, 	 1 

g-2  b ( PoU
0 
 N g2 ) = 	(Po 	= - 	(Po) §) 	 (D3b) 

bv = 	. 	 (D3c) 

In order to put eF in terms only of and h
ap it is convenient to 

treat separately the following pieces of eF : 

1\ I A 	- 2g-2  Eqpo U0  N g2 ) k5Vo + /5S), 	
(D)-1-a) 

	

PO 	, 
B s —

P 0
N  gva 511V 6115 + 2Np U ha  5Vv  + N— kb

2
p.) , 	 (D4b) 

0 a 

C 

- 

- N5po  bp, + N5(p0  T) 5S - po U
o 	

§ 	 (D4c) 

a(3 1 	1 	1 CIP  D 

▪  

N h 5p + 	N hh Rao,  - N (T-67T- R+ p)( h2  + -ffn u  
ibat 	

'Lae). 	 (D4d) 
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i). A. From the above equations and Appe~dix B, we find 

0 .l .l 
o(po u N g2) = - g2 ~. (po~) , 

v/2 1 -v/2 v/2 5 v 0 + % 5 s = - e 5µ - 2 µ e h00 + e T 8 s , 

and 

v/2 ( ) [ -1 i -v J A = - 2e °2 • Po ~ Po 8p + 2 µ e hOO • (D5) 

ii) B. This term contains the kinetic energy of the fluid: 

(D6) 
0 0 i v 

= ucr oµ + µ scro 5U + µ u gcri 5v - µ u h00 

From this we find 

and 

crv -v ( i -v ) -v i -v j u cr h o v v = e 5µ + 2 µ e h00 h00 + µ e h0i ~ , 0 - µ e h0 j h0 • 

These combine to give 

-v/ 2 -v/2 -v/2 j 
B = Po µ e ~, 0 • ~, 0 + Po e hOO 8µ - Po µ e hO hO j 

(D7) 
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iii) C. If we add to C the first term of A from equation (D5) 

and call the result E, we get 

_l.. 1.. 0 ( 1 ) i j + N op g 2 o (g 2 ) - Np U - TS . ~ S • 
0 uo . , 1. 

,J 

(D8) 

The first three terms of this can be written as · 

where 6T is the Lagrangian change in T, 

(oT) 6 dp p 
s 

(DlO) 

1 (
0
Po) =-~ ds 6p. 

Po p 

By writing the · second term in expression (D9) as 

(Dll) 

and using equation (DlO), we find that E becomes 

l l 
(Dl2) 

+ 2 N g-2 o(g2) op - ~N Po T (~ • ~s)(§ · ~v) 

But Appendix B tells us that 

(Dl3a) 
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Moreover, the definition of y is 

(~) 
s 

(Dl3b) 

Therefore E becomes 

E = ev/2 YP ('il. ~;)2 + 2ev/2 (~. ~)(~. ~p) + ev/2 Po-1 (~. ~)(~. '2Po) 

(D14) 

iv) D. Using the unperturbed Einstein equations, we obtain 

(Dl5) 

If we assemble all these terms we obtain equation (83). 

b) Radial Pulsations 

If Nature is reasonable, the stability criterion proved in this 

paper ought to reduce to Chandrasekhar's (1964) necessary and sufficient 

condition for stability against radial pulsations~ In this section we 

show that e does indeed reduce to Chandrasekhar's variational function. 

We can choose a gauge such that the only two nonzero metric per-

turbations are (see, e.g., Landau and Lifshitz 1962) 

-v ov = e hoo (Dl6a) 

and 

-A. r oA.=-e h =-h. rr r (Dl6b) 
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In this gauge we have (§ has only an r-component) 

oµ =- :>'P (v·i;+~o'A) - ~·~µ 
Po - - ·- -

(Dl ?a) 

op = - 'YP (~ • § + ~ o'A) - i; • vp. (Dl?b) 

Since there is no dynamical freedom in the gravitational field (no 

spherical gravitational waves), we ought to be able to express ov and 

o'A in terms of ~· We use the (g) and (~) Einstein equations: 

and 

1 ( -A) I - re 2 
r 

1 0 
- 2 = 8Jr T 0 

r 

e-A (.!. v' + _.!:._) - _.!:._ = 8Jr Tr 
r 2 2 r 

r r 

(Dl8a) 

(Dl8b) 

(where primes denote o/or). Their perturbed versions can be solved to 

give (cf. Chandrasekhar 1964) 

. " 81t re Poµ~ o'A = - , (Dl9a) 

ov' = 8Jr re" [op - Poµ ( v' + ; ) ~ J (19b) 

We will never need ov itself; we will only need to substitute for o'A. 

To calculate eG we need the following g's [which can be read off 

the table of Christoffel symbols in Landau and Lifshitz (1962), §97] 

0 1 
g 00 = 2 ov 0 , 

r , v-'A ( ) g 00 = ~ e [8 VI + VI 0 V - 0 A ] 

00 = _21 ov' 0 Or (D20) 

O i 'A-v 
g rr = 2 e o'A 0 , 

All others that cannot be obtained from these by the symmetry 
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µ - µ 

g O:t3 - g t3CX are zero. 

With these we find 

(D21) 

- .1. v' - 4 -A ( )( ) 1 -A ( ) e ov-o/\ ov' -oA' + - e o/\ of\' +ov' , r 

and 

- -;-Oh t3 oO -:-O()h ol3 - 0 ,o ct O:t3 + ,o ct 0:13 - • (D22) 

Then from equation (67) eG is 

eG = ~ ev/ 2-A (ov-o/\)(ov' -o/\') + 
8

1 ev/ 2 -A o/\(o/\' +ov'). 
32~ ~r 

(D23) . 

By adding the divergence 

I 

1 _.1. l .1. v 12-/\ [ ( )2 4 2] l - 641{ g 2 
. g 2 e I v' ov - of\ + r o/\ ~ , (D24) 

we can eliminate almost all terms that have derivatives of oA and ov. 
1 

[Note that the factors of g2 in eq. (D24) ensure that the expression 

will be a divergence when integrated over proper volume in the hyper­

.1. 3 
surface, g2 d x.J The result is equation (100). 

To calculate eF we begin with equation (83). We shall need the 

following field equations: 

, (D26) 
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l~rc R = - l~rc [v"-tv't.'+t(v 1
)

2
+ ~ (v' -t.')+ r

2
2 (1-e")]=!(p-3p). 

(D27) 

Equation (83) becomes 

-v/2 1\-v ( )2 ( )2 ( ) -1 2 
e eF = Po µ e s '0 + 'YP ~ • ~ + 2 ~ • ~ p I s + Po p I Po I s 

By adding to eF the divergence 

(D29) 

and by adding eF to eG' we obtain for e 

-V/2 -1 -A (l I 4 2 ) ~2 ~ e e =--2 e + rv + 1tr '/'P o" - o"op 
161tr 

+ pOµ eA-v (s,0)2 + 'YP (~ • ~)2 + 2(~ • ~) p' i; (D30) 

-1 I I 2 1 I I 2 
+ Po p Po s - 2 Po T s v i; • 

All terms containing ov have cancelled out by virtue of equations (Dl9a), 

(D25)-(D27), and the equation of hydrostatic equilibrium, 

P, = - ! Po µ v, (D31) 

Now we define 

(D32) 
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The last step follows from equation (Dl9a) and the equation 

" v' + t..' = Src r p0 µ e • 

This equation and the useful identity 

(D33) 

v' +.!.=.!.et.. (1+8rcr2 p) (D34) 
r r 

both follow from the unperturbed Einstein equations. From the defini-

tion of x and equations (D31) and (D34) we obtain for e 

-v12 e I e = A-V ( )2. 2 Po µ e s o + 'YP X + 2p' ~ X 

' (D35) 
1 ( 1 8 ) !::- ..... 2 1 , , 2 _ .l.

2 
Po T 8 , v' 2 - - - + 1( p U/\ + - P p ~ S 0 

16rc r2 Po O 

If we now substitute equation (D19a) for et.., add to e the diyergence 

_.1. [ l v12 i:2] I _ g 2 g2 p I e I '::. , (D36) 

and use the unperturbed TOV equation, we find that e simplifies to 

-v/2 t..-v ( )2 2 _ (p 1
)
2 

2 
e e = Po µ e S, 0 + P 'Y X Po µ S 

(D37) 
~ 2 " 2 + r s + Src e Po µ P s 

This is exactly the function whose positive-definiteness Chandrasekhar 

(1964) proved was necessary and sufficient for stability. Our "energy 

density" e differs from Chandrasekhar's function by the "redshift" 

- v/ 2 h' h · f 3 1 l't f tim tactor e , w 1c arises rom our + sp l. o space e. Our "total 

energy" is the same as his: his is the integral of equation (D37) over 

( 4 )~ d3 - 4 (v+t..)/2 2 d h 1 h l f - g x - rce r r, w i e ours is t e integra o e over 

.1. 3 • 12 2 
g 2 d x = 4rc e'Y r dr. 
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CHAPTER 6 

SUGGESTED LINES OF FUTURE RESEARCH 
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I would like to list some i nteresting questions and research 

problems suggested by the r esults contained in this thesis. 

Chapters 2 and 3. 

1. Van Dantzig (1940) , Schmid (1967 a,b,c), and Seliger (1968) 

have shown that the velocity:::.potential formalism can be extended 

t o charged fluids. Can the results of this thesis thereby be 

generalized to stars with strong magnetic fields? 

2. The remarks in Chapter 3 that there seems to be a deeper 

canonical relationship between a and ~ and between e and S raises 

several possibilities. In the relativistic version, can ~ne find 

some H such that oH/da ~ d~/dT and OH/o~ = -dO/dT? If so, can 

viscosity be introduced into the fluid by modifying H (perhaps 

by making it time-dependent)? Can heat conduction be handled by 

modifying a Hamiltonian f or e and S in a similar manner? 

3. Do the velocity potentials have a foundation in statistical 

mechanics, i.e., are they t he continuum-appr oximation limits of some 

physically meaningful functions of statistical mechanics? If so, 

does this shed light on the canonical relationships among the potentials? 

4, Can the full yeloaj. ty-pqtenti al v~r.iat.ional principle be used to 

investigate nonlinear wave propagation inside stars, and the coupling 

of perfect fluids to gravitational waves? 

Chapters 4 and 5 

5. The problems that need to be solved before the sufficient 

condition for stability can be made useful have been discussed in 

Chapter 5. 

6. When the energy f unctional of Chapter 5 is reduced to a 
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function only of the dynamical variables, the arguments of Low (1,961) 

can almost certainly be used to show that an instability will arise 

in a sequence of models only through modes that make the energy 

vanish. The question then arises whether such modes need always 

have zero frequency. If so, the test for stability reduces to the 

search for zero-frequency modes. 

7. In a sequence of models, do standing-wave zero-frequency modes 

occur in exactly the same model as do realistic (outgoing-wave) 

zero-frequency modes? In other words, does the complex frequency 

of a realistic mode in a sequence of stellar models always approach 

the origin along a curve t'a~gent to the real axis (ratio Im'..l)/Rero 

approaches zero: mode equivalent to standing-wave mode)? If so, 

the self-adjoint standing-wave problem can be used as a good test 

for the stability of. mod.es that: become unstable at zero frequency. 

If ·the curve is not tangent to the real axis, is its slope a measure 

of the accuracy of the standing-wave approximation in pinpointing 

the onset of instability? 
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APPENDIX 

NON-VACUUM ADaM FIELD ~UATIONS 

To be published in the Proceedings of the Pittsburgh 

Conference on Relativity (Springer-Verlag, 

Lecture Notes on Physics series) 
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The canonical version ot the vacuum Einstein field equations formulated 

ten years ago by Arnowitt, Deser, and Misner (ADaM)1 baa stimulated several 

attempts to quantize certain cosmological mQdels, most notably Misner'• ao-

2 
cal1ed. Mixnaater Universe. Some researchers have begun recently to extend 

these methods to non-vacuum apa.cetimes; tor example, Nutku earlier at this 

conference described the canonical theory ot a scalar field in Schwarzachild 

•pa.cetime. The purpose ot this talk is to generalize the ADaM field equations 

to include an arbitrary stress-energy tensor. Thia is not a "first step" to-

va.rd a canonical formulation ot the tu1l non-vacuum field equations; rather, 

it is simply a possible starting point. 

Essentially, the ADaM field equations are a linear canbina.tion ot 

Einltein's G • 0 equations that is particularly well suited to a "tbree-µv 

plus-one split" ot spacetime, i.e., a division ot spa.cetime into three-

dimenaional spa.celike sections labelled by the parameter time. The metric 

ot ea.ch section is the spacelike part of the metric for all ot spa.cetime: 

• (la) 

(Superscript "4" denotes quantities referred to the tul.l four-dimensional 

apa.cetime1 while no superscript implies three-dimensional quantities. Latin 

indices run trcm 1 to ~. Greek from 0 to 3. Signature is - 2.) ADaM replace 

the renaining tour metric components - which give information on how one 
3 

bypersurface fits into the next - with: a three-r.calar 

and a covariant three-vector 

• 

(lb) 

(le) 
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The ADaM field equations are derived f'rom the usual variational principle, 

(2) 

Were one to use {4g11"} as the set of independent variables, one wou1d obtain 

Gµv • 0 f'rom Eq. (2).4 Using the ADaM variables {N,Ni,gij}, on the other 

band, gives the ADe.M equations. 

To obtain the non-vacuum equations, let L be the ~angian for the non­

gravitational fields. Then Eq. (2) gen.eralizes to 

,f,4 4 ; 4 
&I • &J( R + 2 1t L)(- g) d x • 0 • (3) 

Uaing {4gµv} as the variables gives5 

Gµv • 1t Tµv 1 (4) 

where 

. 4 at 2 [ 4 i ~L ] 
Tµv • L gµv - 2 a 4gµv + (- 4g)J (- g) a 4gµ",p 'P • (5) 

The non-vacuum ADe.M equations follow from Eq. (3) if one uses the set {~} 
at ADaM ftriables, defined by 

• ( 4 oo)-t • a .. 4 • a 11 4 • m 4 
aoo - - g ' oi - goi . ' io gio ' aiJ 81J • (6) 

. .. 
It 18 convenient in what follows to ignore the symmetry of a/YA and g • ....,... µv 

For inatance; variations of a
0

i will be taken wh11e holding aio fixed. The 

final results will, ot course, by symmetrized • 

. Because the transformation f'rom {4g11"} to {8ap} is nonsingular and does .. . 
not :lnvolve derivatives of g11" or explicit dependence upon the spacetime 

coordinates, the equations obtained t'rom varying ~ will be the linear 

canbination · 



180 

O • ..!!._ • a~gµv &I 
~ts aa.~ & 4gµy 

(7) 

4 µ\I ot the equations obtained from varying g • We therefore need only find 

a 4sµ"/~, in which it is understood that the derivative is taken holding 

all other a~ fixed. This is the key to the dif't'erence between Einstein and 

ADaM: it means, for example, that a 4s01/'&. is not the same as 
01 

':i. 4 011~ 4 4 00 4 11 { 4 00 o g o g • - g g , because in the first case one holds g , 
01 . 

4s , 4
siJ} fixed wh11e in the second case one holds {

4s , 4s , 4s , os oo oa 03 

fixed. Bearing this in mind, ve write down the equations ot transformation: 

() .. gµv 4 µi 4 vJ 4 oµ 4 ov Ni .1 
::l. - -- g g + g g ff" j 
o aiJ 

a t.gµ\I 4 oµ 4 vi 4 oµ 4 0\1 __ i 
~ - ·- g g - g g Ir j 
v aoi 

.. 4 µ1 4 vo 4 oµ 4 ov Ni 
·- g g - g g i 

io 

It i• straightforward to use Eqs. (7) and (8) to find the non-vacuum 

ADaM field equations. 
iJ . 

(Here X· is the momentum canonical to giJ' defined 

by Eq. (9c) below. Indices on ·it and Ni are raised and lowered by the 

three-dimensional metric, covariant differentiation with respect to which 

is denoted by a slash, "I".) 

(Ba) 

(Sb) 

(8c) 

(8d) 

(9&) 

(9b) 
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. -i 

~t81j • 2 Ng (•lj - !gtj•) + NljJ + NJji ; (9C) 

~·lJ • _ Ngl(3R1J • jg1J 3R) + itfg-l8ij(•mn•mn _ ;_2) 

_ 2 Ng-!(•im• j _ ~.ij) + 8i(NjiJ _ 8 iJNlml ) 
• ID. 

+ <•iJNlm) Im - n1 lm•mj - rr lm.•mi 

+ Klfgi(T1.1 - T~Y) (9d) 

I wish to remark on a few features ot these equations. First, as we 

would expect, they do not contain L, since they are simply a linear combine.­

tion ot Eqs. (4)~ Thia means they can be uaed even U' a Lagrangian is not 

available. Second, F.qa. (9) are instructive in understanding even the A.Da.M 

w.cuum equations, since the particular linear combine.tion used by ADaM is 

-.nitest. And third, the equations contain r1'" 1 the contra variant canponents 

ot the tour-dimensional stress-energy tensor. In many situations (e.g., 

scalar tield) one might teel that the covariant components, T , are physically 
µv 

aare meaningf'ul in a 3 + 1 split, in which case one can rewrite the equations 

a 4 cS:Z as tollowa. Using the unit normal to the three-b;ypersurtace, 'l • - N g , 

one can detine a "preferred" energy and momentum. density tor the matter: 

~. a p 4T.___ 
C-'l'l -up I 

&'l • a 4 
\Tl - 'l Tat • 

Then the stress tensor in the b;ypersurface is 

In tel'lll8 ot these quantities, the relevant parts ot &l_a • ( 9) become 

(lOa) 

(lOb) 

(lOc) 



182 

- 2a/ gtToo • • 2rcit ; 

•Mst(Toi + liiToo) • - •s* p i 

•Ngt(1'1J - Nirr1Too) • rcgt(N"J°ij + Ni@J + NJ@l) ' 

where all 11141cea on @and :J'"' are raised by the three-dimensional metric. 

(lla) 

(llb) 

(llc) 

Steps toward a f'ull canonical theory could well begin here. One method 

vou1d be to specify in advance the motion of' the matter in terms ot the metric 

tensor (e.g., homogeneous cosmology), and then to solve the constraint Eqs. 

(9a1b) b7 analogy with vacuum ADaM. A mare general approach must include 

a canonical tarmulation tor the tields present in spacetime. In any case, 

the basic gravitational constraints and dynamical equations will be Eqa. (9). 
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