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ABSTRACT 

Proper encoding of transmitted information can improve the 

performance of a communication system. To recover the information 

at the receiver it is necessary to decode the received signal. For 

many codes the complexity and slowness of the decoder is so severe 

that the code is not feasible for practical use. This thesis considers 

the decoding problem for one such class of codes, the comma-free codes 

related to the first-order Reed-Muller codes. 

A factorization of the code matrix is found which leads to a 

simple, fast, minimum memory, decoder. The decoder is modular and 

only n modules are needed to decode a code of length 2n. The 

relevant factorization is extended to any code defined by a sequence 

of Kronecker products. 

The problem of monitoring the correct synchronization position is 

also considered. A general answer seems to depend upon more detailed 

knowledge of the structure of comma-free codes. However, a technique 

is presented which gives useful r esults in many specific cases. 
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CHAPI'ER I 

INTRODUCTION 

One approach to evaluating the performance of communication 

systems is to examine the rate of transfer of information as a function 

of the probability of making an error. Shannon's results demonstrate 

that if the information to be transmitted is encoded into a form more 

suited to the channel, an improvement in performance can be 

realized [l ]. If this technique is used, then to recover the desired 

information at the receiver, it is necessary to decode the received 

signals. 

The decoding operation is usually well specified and straight 

forward mathematically. However, in real systems the size, complexity, 

and hence slow operation of the equipment necessary to implement the 

mathematics, are frequently so overwhelming as to virtually prohibit 

the use of coded transmission. 

Coding schemes and decoding techniques specifically to avoid this 

problem are of much current interest. Among other methods being 

studied are sequential decoding [ 2 ], majority-logic decodable codes [3 ], 

and threshold decoding [ 4 ] • 

A class of codes which have useful information handling proper

ties are the first-order Reed-Muller codes [ 5 ], and the comma free 

codes based on them. This thesis examines the decoding problem for 

these codes. The objective is, where possible, to provide general 

purpose decoding equipment which will deal effectively with any such 

code. When this is not possible, insight into the underlying problems 

is sought. 
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CHAPTER II 

DEFINING THE DECODIN1 PROBLEM 

2.l. System Model. 

The communication system model which will be used to discuss 

decoding is very simple. Figure 2.l gives the block diagram for 

the model. Specifically, it will be assumed that all the frequency 

translation, modulation, detection, etc., which a.re parts of a real 

communication system can be considered to be pa.rt of the channel 

connecting the encoder and decoder. 

H Encoder I 
Channel 

1 Decoder~ Data 
~ data Source 
Noise 

Figure 2.l 

It will be assumed that the data source is a binary source whose 

output is considered n bits at a time. This means that the source 

may be regarded as emitting 2n possible data vectors of length n. 

These possible vectors will be taken to be equally probable. 

The encoder will be taken to provide a one-to-one mapping between 

the input data vectors and a set of 2n binary code words of length 

m. To avoid confusion, components of the binary data vectors will be 

referred to as bits while components of the code words will be called 

symbols. The set of code words may be represented as a 2n x m 

matrix of ±l's, K, where each row represents a code word. It is 
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assumed that each code word to be transmitted is converted to a 

binary function of time and transmitted over the channel. The time 

required to transmit the symbols will be taken to be T seconds per 

symbol, and hence mT seconds per code word. All the time functions 

generated by the encoder are presumed to be transmitted with equal 

energy. In this case, the 1:1 mapping between the data vectors and 

the code words may be chosen arbitrarily. 

The noise added by the channel will be white Gaussian noise. 

The decoder is to examine the received signal, call it x(t), 

and make a decision about which one of the code words was transmitted, 

and hence what corresponding data vector appeared at the source. The 

decoder is to be optimum in the sense that it is to select that code 

word which is most likely to have b.een transmitted. This is called 

maximum likelihood decoding. 

It will be further assumed that the decoder has perfect knowledge 

of symbol timing. In other words it is known exactly when one symbol 

has been completed and the next symbol begins. In actual communication 

systems this information is usually provided by either coherence 

between the symbol frequency and one of the subcarriers or the 

carrier involved, or by a separate tracking loop monitoring the symbol 

timing itself. Of course in reality these estimates are not perfect 

and do lead to a source of errors which will not b.e considered here. 

Initially it will be assumed that the decoder also knows word 

timing precisely. Later, comma-free codes will be assumed, to remove 

this restriction. 

Under these assumptions, it is known [ 6 J that the maximum 
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likelihood decoder selects j such that 1 ~ j ~ 2n and 

where 

x(t)k. (t)dt and k. (t) is the 
l. l. 

b · f d · to the i· th row f K inary wave orm correspon ing o • By suitable 

scaling, it may be assumed that 

be defined by: 

k.(t) = ± 1 for all t. 
l. 

Let x s 

!:::. 1 
IDT r x(t)dt for 1 ~ s ~ m 

then 

m 

L 

(s-l)T 

k. x ' l.S S 
k. =the sth symbol of 

l.S 
k.(t). 

l. 

Write both x and y as vectors, x a vector of m real numbers 

and y a vector of n 2 real numbers. (As done by Gale [ 7 ] , no 

distinction will generally be made between the artificial concepts 

of row vectors and column vectors.) Then: 

y = Kx 

where, in order to do maximum likelihood decoding, we wish to know 

which component of y has the maximum magnitude. 
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The block diagram for the first part of the decoder, for any 

dictionary K, is shown in Figure 2.2. 

x(t) l 
m'f 

J x(t)dt 

( i-l) 'f 

Figure 2 .2 

Analog
Digital 

Converter 
x. 

l. 

As it is anticipated that the operation Kx will be evaluated using 

digital techniques, an analog to digital converter is shown. This 

device takes the analog output of the integrator and 

converts it to a digital binary number suitable for f\lrther digital 

processing. 

2.2. First-Order Reed-Muller Codes. 

A particularly interesting class of codes are the first-order 

Reed-Muller codes. There are two reasons for this. First, they 

~xhibit a structure over GF(2), the finite field of 2 elements, 

which makes them particularly easy to manipulate. The code words may 

be taken to be the rows of a Hadamard matrix. Second, Stiffler has 

found a class of connna-free codes which a.re closely related to the 

first-order Reed~Muller codes [8 ]. As the word synchronization 

properties of comma-free codes can be used to eliminate power wasted 

transmitting synchronization information, techniques for decoding them 

are well worth studying. 

The Hadamard matrices of size 2n by 2n may be defined and 
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constructed by using the Kronecker product. The 2 x 2 Hada.ma.rd ma-

trix, denoted H1, is: 

Larger Hada.ma.rd matrices may be defined inductively 

Here, ® denotes the Kronecker product, which is defined as 

A® B = (a .. B) for two matrices A and B. It should be noted that 
l.J 

these matrices are symmetric and that their rows are mutually 

orthogonal. Indeed, H~l = 2-~. Since the 2n rows of Hn are 

n mutually orthogonal and are elements of Euclidian 2 -space, they 

form a bas is • 

The set of all binary vectors of length written with their 

elements +l and -l, form an Abelian group under the operation of 

term by term multiplication. The rows of Hn form a subgroup under 

the same operation. The identity element, or identity vector, of 

this group is the all l's vector, (l, l, • • •, l). 

Suppose that some binary vector 11 of length 2n which is not a 

row of Hn' is term by term multiplied with every vector which is a 

row of H • n The resulting set of binary vectors is called a cos et 

of the subgroup defined by the rows of H. As the identity vector n 

is one of the rows of H ' n namely the first, the vector 11 itself 

is a member of the coset. 'T) is referred to as the coset leader. 
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The coset can be represented easily in matrix form. Let ~ be a 

diagonal matrix with all elements not on the main diagonal zero and 

the diagonal elements the components of ~' in order. Then if h. 
l. 

is one of the rows of Hn and c. 
l. 

is the element of the coset 

which results when h. and ~ are multiplied, c. = h.A~. Thus if 
l. l. l. " 

C is a matrix whose rows are the elements of the coset C = HnA~. 

Note that the subgroup defined by the rows of H may be considered 
n 

to be a coset also, by letting ~ be the identity vector. In this 

case A = I and C = H • 
~ n 

If the code dictionary discussed in 3 .1 is selected to be a first-

order Reed-Muller code or a coset of a first-order Reed-Muller code, 

then K = H n 
or K = HnA~ respectively, and 

operation for these cases is 

2 .3 . Comma- Free Codes. 

Y=Hx n and 

n 
m = 2 • The decoding 

respectively. 

Recall that in defining the system model in Section 2.1, it was 

assumed that the decoder had exact information about when one trans-

mitted code word ended and the next one began. In actual practice, 

this synchronization information is quite f'requently transmitted on a 

separate, low power, subcarrier. The power required for this, and 

consequently not available for transmitting information, can be as 

much as l(Jl/o of the available transmitter power. This power loss can 

be avoided, however, by the use of comma,- f'ree or self-synchronizing 

codes. 

For any coset of a first-order Reed-Muller code, the correlation 

between any pair of elements in the coset appears as a term in: 
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It is thus apparent that the correlation properties, assuming word 

synchronization, are the same for the coset as for the original 

subgroup. However, if it is assumed that word synchronization is not 

available, then evaluating y = Kx will amount to correlating words 

in the dictionary with received words formed by taking the last i 

symbols from one unknown code word and the first 2n-i symbols from 

another unknown code for an unknown value of i. This out of phase 

correlation property will, in general, be different for different 

cosets. Stiffler has found that there exist cosets for which every 

word in the coset differs from every possible word formed by out of 

phase sequences from two joined words in at least p positions, for 

some integer p. Such cosets, when used as code dictionaries, are 

called comma-free codes. p is called the index of comma freedom. 

In order to decode one of these comma-free codes, the decoding 

apparatus must first find the correct word synchronization position. 

If the decoder is only capable of evaluating y = Kx for the 

received vector x, a search technique must be used to achieve 

synchronization. One method of searching is to assume some arbitrary 

position is the correct phase. The vector y is computed for some 

predetermined number, W, of input vectors x. A sum, µ, is formed 

from the maximum magnitude components of each y, i.e. letting the W 

vectors y be denoted 1 2 w y,y,···,y and letting the maximum 
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magnitude component of i 
y be then µ = These 

computations are repeated for each of the 2n-l other possible phase 

positions. After this search has been completed, the most probable 

location of the correct synchronization point is that for which µ is 

the largest. The question of probability of a correct decision as a 

function of index of comma freedom, W, and signal to noise ratio has 

been examined [ 9 ] • 

Once a decision has been reached, the decoder assumes that word 

synchronization is fixed. Decoding then proceeds as discussed in 

Section 2.l. 

2.4. The Decoding Problem. 

In order to decode any coset of a first-order Reed-Muller code 

it is only necessary to evaluate y = Kx = H A x. 
n T\ 

However, as in 

many engineering problems, while it is clear what needs to be done, 

there are practical difficulties involved which render the job all 

but impossible. 
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CHAPTER III 

A METHOD FOR DECODING 
3.1. Motivation. 

The major portion of the aritlunetic manipulation involved in 

decoding is in calculating the vector y = Kx. The complexity of 

this calculation becomes significant for a combination of two 

reasons. First, in cases of interest, K is very large and has no 

zero elements. Since K is 2n x 2n, if the operation Kx were 

evaluated directly, there would need to be 2n(2n-l) additions or 

subtractions performed. The smallest value of n for which ~ can 

be found to make K a comma-free dictionary is n = 4 [10], and in 

order to more fully exploit the improvement in error probability 

offered by these codes, it is desirable to have n = 7 or 10 or 15. 

Even for n = 10, direct evaluation of Kx would involve more than 

106 additions or subtractions. 

Even these large numbers of calculations could be accommodated, 

given an adequate length of time, but for the second complicating 

reason, the data rate. For systems of current practical interest, 

the data rates used imply typical code word rates of 103 to 104 

code words per second. This allows only 100 to 1000 microseconds to 

calculate Kx if decoding is to be accomplished in real time. For 

example, the Mariner Mars fly-by mission in 1969 includes a coded 

system using n = 5, data rate= 16,200 bits per second, 2700 code 

words per second, and thus 3 x 106 additions or subtractions per second. 

This high calculation rate places the job of direct evaluation of 

Kx beyond the current level of technology of general purpose digital 

computers. Both the size of K and its complexity make the construe-
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tion of special purpose equipment with sufficient speed to evaluate 

Kx directly, term by term, prohibitively expensive. Thus, it 

becomes of interest to investigate more subtle approaches to the 

evaluation of Kx. Since special purpose digital equipment is almost 

always faster for a given task than a general purpose computer, any 

different approach should be directed toward an a~orithm which could 

be easily implemented with hardware. 

There is at least one intuitive reason to believe that a reduction 

in the number of calculations in Kx is possible. The first addition 

performed in computing the first component, of y = Kx = Hn'°~'Tf 

would be The first addition for Y2 would be 

~lxl - ~2x2 • For subsequent components of y, say yi' for i odd 

the first sum is always ~l xl + ~x2 ; for i even, ~ xl - ~2x2 • 

Instead of computing ~lxl ± ~2x2 separately for each component of y, 

it seems more reasonable to compute each of the 2 sums once, store them, 

and use them as needed. Since all components of K are either + l 

or - l, there are only 4 possible sums for any pair of components of 

x, namely x.+x., x.-x., -x.+x., and -x.-x .• 
1J 1J 1J 1J 

Thus , the same type 

of argument used for and can be extended to any pair of 

components of x. In other words, the idea is to try to store, keep 

track of, and use intermediate results of the computation process to 

eliminate duplication of individual calculations. 

For the first-order Reed-Muller codes, and thus for any coset of 

the first-order Reed-Muller codes, a reduction in the number of 

calculations required in computing Kx is possible. As will be 

shown, the reduction is achieved by factoring H 
n 

into the matrix 
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product of n different 

M(l) M(2) • • • M(n) 

2n x 2n matrices, which will be denoted 

n' n' 'n· Each of these matrices, M( i) will have 
n ' 

only 2 nonzero elements per row. 

3.2. Kronecker Product and Notation. 

Before proceeding further, there are some notation standards 

which should be explicitly mentioned. Capital letters are used to 

represent square matrices, with I being used exclusively for 

identity matrices and A for other diagonal matrices. Lower case 

Roman letters used as subscripts on matrices denote log2 of the 

dimension of the ma tr ix; e.g. A implies A is 2n x 2n. Note 
n 

that if n = 0 then A is a l x 1 matrix or just a real number. 
n 

In particular, I = 1. Lower case Greek letters used as subscripts 
0 

on diagonal matrices denote the diagonal elements as a vector; e.g., 

, i\n) then A'T1 is defined by A.ii = lli and 

A.ij = 0 for i I= j. Vectors are represented by lower case letters. 

The Kronecker product of matrices is used in deriving the proper-

ties of the factor matrices, 

of two matrices, say A and 

product is associative, i.e. 

Recall that the Kronecker product 

B, is defined by A@ B ~ (a .. B). This 
l.J 

(A® B)@ c =A@ (B® c), and it is 

clearly not commitative, i.e. A® B I= B@ A in general. If the 

dimensions are correct for the necessary ordinary matrix products to 

be defined, (A@ B) (C ® D) = AC@ BD [~. 

From the foregoing, the following useful relations can be easily 

proved: 
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2. (Im® An)( Im® Bn) = Im® AnBn 

3. (An® Im) (Bn ® Im) = AnBn ® Im 

4. (An® Im)(In ® Bm) =An® Bm 

= (In® Bm) (An® Im) 

3 .3. Analysis. 

Define a new matrix M(i) as follows: 
n 

M(i) D. ® ® = I . H1 I . l n n-1 1- for 

An example of one of these matrices for n = 3 

follows: 

l 0 l 0 0 0 0 0 

0 l 0 l 0 0 0 0 

l 0 -1 0 0 0 0 0 

~2) 
0 l 0 -1 0 0 0 0 

= 
0 0 0 0 l 0 l 0 

0 0 0 0 0 l 0 l 

0 0 0 0 l 0 -1 0 

0 0 0 0 0 l 0 -l 

Figure 3 .1 

and i = 2 is as 

Note that this is a block diagonal matrix, with the diagonal sub-

matrix being H1 ® Ii-l' which is repeated on the main diagonal as 

many times as there are l's in I . • Also, it is important that n-1 
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there are only 2 nonzero elements per row of for any n and 

any i. 

The first important property these matrices possess is that any 

two of them commute under ordinary matrix multiplication. 

then; 

Theorem: 

Proof: If i = j there is nothing to prove. Assume i > j 

M(i)M(j) = (I . @ H
1

@ I. 
1
)(I . @ H

1
@ I. 

1
) 

n n n-1 1- n-J J-

= ([I . @ Hl ® I. . l]@ I.)(I . @ [Hl ® I. l]) n-1 i-J- J n-J J-

=I .@H1®I. ·1®H1®I.1 n-1 i-J- J-

= (I . i® [I. . i® H1® I. l])([I . ® Hl] ®I. l) n-i+ l.-J- J- n-i 1-

= (I . @ Hl ®I. 1) (I . ® Hl ® I. 1) n-J J- n-1 1-

Q.E.D'. 

Thus, when discussing matrix products of the M(i), it is not 
n 

necessary to keep track of the order in which the matrices appear. 

That these matrices commute is useful in discussing the result of 

multiplying together the first m of them. 

Theorem: -rr M( i) = I ® H 
i=l n n-m m 

where l ~ m ~ n. 

Proof: This theorem is very simply proved by induction. 

For m = l we have: 
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-fr M(i) = M(l) 6 
1 1 = I l@ H1 @ I = In-l@ H1 i=l n n n- o 

Assume the result is true for m and prove that it follows for m + 1: 

M(i) = M(m+l) TI M(i) = (I @ H ®I )(I ® H ) 
n n i=l n n-m-1 1 m n-m m 

Thus, by induction, the result is true for any value of m between 

1 and n. Q.E.D. 

In particular, letting m = n 

Tr M( i) = I ® H = I (i> H = H • 
. 1 n n-n n o n n 
J.= 

in this theorem yields: 

Thus, H has been factored into 
n 

the product of n different matrices. The original problem of com-

puting y = Kx 

M( 2) M(l) A 
n n if' 

= HnA~x may now be written y = M~n) M~n-l) ••• 

where the M(i) could be written in any arbitrary 
n 

order because of their connnutivity relationship. If we let 

M(n) n-1 etc., and finally y = n z , 

it becomes apparent that if a piece of equipment can be constructed 

which takes a vector of numbers at its input, multiplies them by 

M(i) 1 . n for some va ue of i between 1 and n, and outputs the re-

sulting vector, that a cascade of n of these will accomplish the 

transformation y = H z. That such a piece of equipment not only can 
n 

be constructed but is relatively simple is, at least in part, due to 

the simple structure of 
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So 

Theorem: 

for any value 

Proof: 

16 

M(j) has 2 and only 2 nonzero elements in each 
n 

of j between 1 and n. 

(") 1 M J = I . ® (H1 ® I. 1 ) for ~ j ~ n. n n-J J-

letting t. gives ( j) Thus M(j) A. = H1 ®I. l M =I .@A .• 
J J- n n-J J n 

block diagonal matrix with the off-diagonal blocks all identically 

is a 

zero. Therefore, M(j) has 2 and only 2 nonzero elements per row if 
n 

and only if A . has 2 and only 2 nonzero elements per row. But 
J 

I. 1 I. 1 J- J-
which is a block matrix. Any row of 

A. 
J 

I. 1 -I. 1 J- J-

is constructed from the juxtaposition of 2 rows of ± I. 1 and 
J-

each row of any identity matrix has exactl¥ one nonzero element. 

Thus each row of A. has exactl¥ 2 nonzero elements and hence so 
J 

does M(j) 
n . Q.E.D. 

Since M(i) is a 2n x 2n matrix having exactl¥ 2 nonzero n 

elements per row, there are 2n additions necessary to calculate 

zi given zi-l by zi = M(i)zi-l. Calculating y =Hz requires 
n n 

n such operations, giving the total number of calculations necessary 

to produce y, given z, as n n2 • Letting the 

number of calculations necessary to produce y by direct evaluation 

n 
of y = Hnz' and gf = n2 , 

produce y using the M(i) 
n 

3.4. Implementation. 

the number of calculations necessary to 

factor matrices, we have 

Since arithmetic manipulations on digital binary number require 

much less hardware if the numbers are in serial form rather than in 

parallel form, special purpose digital equipment is usually designed 
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for serial numbers. Parallel operation is used only where extreme 

calculation speed is required and then only when the much greater cost 

can be justified. For the symbol rates of current interest in practical 

communication systems, viz. Mariner Mars 1969, the current level of 

technology in digital hardware allows serial number representation 

in the decoder. There is nothing inherent in the mathematics or in 

the block diagram (to be discussed) of the decoder which would prohibit 

construction using parallel techniques if the need a.rose . However, the 

simplicity of the equipment is most striking in the serial case. Thus, 

in the following discussion, it will be assumed that the components of 

the vector x a.re available sequentially, one component every symbol 

time, T, and are represented as serial binary numbers of q bits 

each. Since the decoder produces the components of y by adding all 

2n components of x, the equipment must have a digital world length 

of at least m bits where m ~ n + q~ In this form, the components of 

x are represented as the q least significant bits of the m bit 

word. 

The first operation to be performed is to compute z = "lx. The 

.th t f i componen o z is One simple method of implementation 

is: 

Sign 
x----~ Changer i---z 

Storage 

Figure 3.2 
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Here the coset leader, '!\, is stored in a n bit cyclic binary shif't 

register which is shifted every T seconds and timed so that ~l is 

at the output of the shift register simultaneously with the appearance 

of the first bit of x1 at the input of the sign changer. The sign 

changer block consists of one flip-flop and the necessary gating 

to change the sign of the jth component of x if the jth bit of 

is -l. 

the next task is to generate then Given z, 

z2 = M(2)zl 
n ' 

... Y = M(n)zn-l. 
' n 

Fortunately a general block diagram 

(i) 
can be exhibited, Figure 3.3, which is a realization of Mn for a 

i-l general i. The memory element is 2 m-bit words of serial 

memory which could be constructed, for example, from delay lines or 

integrated circuit shif't registers. The gating structure, where 

indicates an "and" gate and + an "or" gate, serves to connect the 

input line to the memory input and the output line to the memory 

output when the signal W is "true". When W is "false", the gating 

connects the memory input to the subtractor output and the output line 

to the adder output. The signals W and W come from the opposite 

sides of a flip-flop which changes its state every T2i-l seconds, 

i-l i.e. every 2 digital word times, and is timed so that W goes true 

simultaneously with the appearance of the first bit of the first 

i-l component of z on the input line . This signal can be taken as 

the output of the ith flip-flop in a binary counter of n flip-flops 

which is pulsed every T seconds. 

The serial binary adder and subtracter are very simple pieces of 

digital equipment. They take two binary numbers at their input and 



i-1 z 

w 
i-1 . 1 2 words of seria memory 

w 

w 

w 

-------1+ 
serial 
adder 

-----r----------------------------------+-----1 + 

Figure 3 .3 

-------+ 
serial 

subtracter 

i z 

I-' 
\0 
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produce the sum or difference as binary numbers at their output • 

. th t ll ai· To see that the i stage of he decoder rea y re izes 

consider the example for n = 3, i = 2 illustrated in Figure 3.1. 

For this example the memory consists of 22- 1 = 21 = 2 words of 

memory, and the W flip-flop changes state energy 2T seconds or 

every 2 digital word times. The result of allowing this stage to 

run through 7 input numbers is presented in Figure 3.4. Notice that 

after 7T seconds the equipment is in the same state as after 3T 

seconds except that the subscripts are now greater by 4. 

decoder's ith stage really implements the diagonal block of 

H1 x Ii-l' and repeats this operation time and again. 

Thus, the 

M(i) 
n ' 

To actually construct the decoder, n pieces of equipment, or 

stages, would be constructed, following the block diagram of Figure 

3.3, one for each value of i, l ~ i ~ n. The operation of decoding 

would then be done by cascading the n stages of the decoder and the 

sign changer as shown in Figure 3.5. This decoder does the n2n 

arithmetic operations necessary to calculate y = Kx. Since there are 

T seconds available for processing each of the m bit digital numbers 

making up x, m . the digital bit rate must be at least - bits per 
T 

second to do the decoding in real time. Expressed another way, if we 

let s ~ the digital speed in bits per second, r ~ the source data 

rate in bits per second then the maximum data rate this decoder can 

q = 7, m = n + q = 14, and 

ns 
r = --- • For example, let n = 7, 

max m2n 
s = 107 (implying 10 megacycle logic, 

handle for orthogonal codes is 

which is only moderately fast at the present development of digital 

technology) then r = 39062.5 bits per second. max 



Memory Output 
Time in Input Line Input Memory Adder Sub tractor Output 
,.. sec. w w Connection Connection Nllillber Contents Output Output Number 

1 T F Input Memory 1 ? ? ? ? ? zl . ' . 

2 T F Input Memory 1 1 ? ? ? ? z2 zl'. 

3 F T Subtractor Adder 1 1 1 1 1 1 1 1 1 2 
z3 z2,zl zl+z3 zl-z3 zl+Z3=Zl 

4 F T Subtractor Adder 1 1 3 1 1 1 1 1 1 1 2 
Z4 zl-zl,z2 z2+ z4 z2-z4 z2+Z4=Z2 

5 T F Input Memory 1 1 1 1 don't don't 1 1 2 
z5 z2-zY' zl -z3 zl-Z3=Z3 t\) 

care care I-' 

6 T F Input Memory 1 1 1 1 don't don't 1 1 2 
z6 z5' z2-z4 z2-Z4=Z4 

care care 

7 F T Subtractor Adder 1 1 1 1 1 1 1 1 1 2 
z7 z6, z5 z5+z7 z5-z7 z5+ Z7=Z5 

Figure 3 .4 
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Considering r to be a fixed quantity and s the variable 
rm2n 

yields a different look at the decoder. Naturally, s == --n 
n 1 2nr 

But, symbol rate == 2n • code word rate == 2 • - • data rate == -- , n n 

thus 
m 

s == - • ,. In other words the logic speed need only be great 

enough to perform one addition of two m-bit binary numbers every r 

seconds or every symbol time, r. 

This decoder is an optimum decoder with respect to the amount of 

memory involved. In Appendix B it is shown that any decoder for these 

codes which produces the components of y by taking linear combinations 

of the components of x and outputs the components of y sequentially 

mus·t have at least 2n-l storage registers. This decoder involves 

i-1 th 2 storage registers in the i stage and there are n such 

stages, thus total storage == 
n 
[ i-1 n 

2 == 2 -1. 
i==l 

The final step in actually doing maximum-likelihood decoding of 

these codes is to determine the component of y which is the largest 

in magnitude. If, for example, were determined to be the 

largest, then the most likely code word to have been transmitted is 

the sequence of ± l's of row of the dictionary matrix K. 

However, the quantity of immediate interest is the n bit data 

vector associated with the code word, not the code word itself. Recall, 

that the encoding algorithm, which is a 1:1 mapping between the 

2n possible data vectors of n bits each and the 2n code words of 

K, may be assigned in an arbitrary fashion when all the data vectors 

are equally probable. 

As the decoder in Figure 3.5 operates, the binary counter from 

which the W signals to each stage are derived, cyclically runs 

through all the possible 2n combinations of its n binary bits. 
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Thus, on successive iterations of the operation of the decoder, when-

ever Yi appears at the output, the counter is always in the same 

state and this state is unique to the ith component of y. The 

particular state in any actual decoder would depend upon the details 

of construction. In any case, this cyclic counter action serves to 

define a particular l:l mapping between the group of binary n 

vectors and the code words. 

Hence if the encoding mapping is designated to be the mapping 

defined by the decoder counter, recovery of the actual data bits is 

very simple • As each component of y emerges from the output, it is 

examined to determine whether it is larger in magnitude than the 

previous largest (of course Yi is always so chosen). Whenever a 

component of y is determined to be the largest in magnitude, the 

counter value is examined and recorded in place of that value associated 

with the previous largest. After all 2n components of y have been 

so examined, the currently recorded counter value is the most likely 

transmitted binary data vector. 

This operation could take place inside a general purpose computer 

attached to the decoder output, y, and to the counter, or it could 

be implemented with more special purpose equipment. The special purpose 

equipment required to do these operations is again quite simple. There 

would need to be 3 storage registers, 2 of length 2n and l of length 

n, and a few decision elements to perform the magnitude comparison. 
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3.5. Unexploited Properties. 

Recall that it has been proved that The 

direct implication of this result on the hardware of the decoder is 

that the n stages of the decoder may be connected together in any 

arbitrary order without disturbing the output. This would not be a 

surprising result if the various stages were identical, but as no 

two are alike, it does seem to merit examination. It appeals to 

engineering intuition that there should be some question, the answer 

to which would be to connect the stages of the decoder in some 

particular order. 

This feeling that there were yet unexploited properties of the 

decoder led to consideration of the subject matter of Chapter IV. 

Unfortunately, the conclusions of that chapter only place one small 

constraint on the ordering of the stages of the decoder and this 

constraint does not seem to be something which can be proved in 

general. Therefore, there is still a strong feeling that further 

research into decoding techniques for first-order Reed-Muller codes 

would yield interesting results. 
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CHAPTER IV 

ADJACENT SYMBOL MONITORING TECHNIQUES 

4.1. Importance of Adjacent Symbol Monitoring. 

After word synchronization has been obtained in an actual 

telemetry system, and decoding of the transmitted information is 

proceeding, it is possible that word syncronization may be lost. 

As mentioned by Stiffler in his doctoral thesis, if this loss of 

syncronization occurs it is most probably lost to a symbol adjacent 

to the formerly correct position [12]. One of the reasons that this 

can occur is due to the use of phase-lock loops in receiving systems. 

In typical telemetry systems there is a high frequency carrier 

which is modulated by, perhaps, several lower frequency subcarriers. 

The subcarrier or subcarriers are, in turn, modulated by the information 

to be transmitted, in either coded or uncoded form. Reception of 

these signals, in current practice, employs phase lock loops. The 

first phase lock loop is used to track and remove the carrier. This 

loop is followed by a set of loops, one to track and remove each of 

the subcarriers . Finally, in a coded system there frequently would be a 

squaring or Costas loop to provide an estimate of symbol timing [15]. It is 

a characteristic of phase lock loops that they occasionally slip cycles. 

When this phenomenon occurs, it is most probable that they slip by one 

cycle. If this happens in the symbol timing loop, of course the 

correct syncronization position is immediately slipped to one of the 

adjacent symbols. In a telemetry system using the carrier and sub-

carrier loop frequency estimates to derive symbol timing, the cycle 

slipping in these loops may lead to a loss of synchronization. 
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It would, therefore, be advantageous to continuously monitor not 

only the synchronization position believed to be correct, but also 

each of the two adjacent positions. If this could be done, the 

decision to change estimates of the correct synchronization position 

could be made at the optimum moment. Additionally, no time would be 

lost, and hence data lost, while using a search algorithm to find the 

new phase estimate. 

Of course, this adjacent symbol monitoring could be accomplished 

by constructing 3 decoders as discussed in Chapter III. However, the 

three received vectors for one symbol before and one symbol after the 

l l correct phase, call them x, and x respectively, each share a 

connnon set of 2n-l components with the vector for the correct phase, 

x. Presumably, y = Kx is already computed or at least the equipment 

necessary to compute y is at hand. The new task is to compute 

1 t. 1 1 t. 1 y = Kx and y = K-x. Again it seems intuitively reasonable that 

since the components of K are all ±l's, and hence many of the 

individual pairwise calculations involved in computing y1 and 1y 

~ust be identical with those in computing y, proper use of 

intermediate results and use of y itself may reduce the number of 

calculations required. 

4.2. Formulation and Analysis. 

In this chapter there is no use made of the Kronecker product of 

matrices. Therefore keeping track of the dimension of individual 

matrices is not so critical and the logarithmic dimension subscript 

notation will be dropped, i.e. 

matrices will be assumed to be 

H will be written simply H. All 
n 

2n x 2n unless explicitly stated 
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otherwise. 

The first task in formulating the adjacent symbol monitoring 

bl · t x1 and 1x pro em is o express in convenient form. If a 

typical sequence of successive outputs from the integrator is 

enumerated as s
0

, s1, s 2, s
3

, ••• , and the current estimate of word 

synchronization identifies x = (s1,s2,•••,s
2
n) then 

1 1 x = (s ,s1,···,s ) and x = (s 2,s3
,··· ,s ). (For simplicity 

0 2~1 2~1 
in this chapter, define m ~ 2n.) Define a permutation matrix P by 

Pm 1 = l, P. . 1 = l for i = l, • • • , m-1, P . . = O otherwise. 
' ~H ~ 

Then x1 
= Px + em(sm+1-s1 ) where ei is a column vector with all 

1 t t th 1.th whi"ch ~s l F 1 l t 2 e emen s zero excep e , • + • or examp e, e n = 

then: 

s2 0 1 

l s3 0 0 
x = = 

s4 0 0 

s5 1 0 

The reason P 1 is chosen to be 
m, 

having P be a singular ma tr ix. 

0 0 sl 0 

1 0 s2 0 
+ (s5-sl) 

0 l s3 0 

0 0 s4 l 

+l instead of zero is to avoid 

Also, 

The desired calculation may now be written 



and 

1 
y = 12-x = 

29 

T l 
KPx+ Ke (s -s )) o m 

As before, only linear combinations of the components of x, y, 

and the extra necessary outputs of the integrator are considered in 

trying to calculate l 1 y and y. Clearly, 1 
y are functions 

of x and the integrator outputs, and indeed the functions are linear. 

The adjacent symbol monitoring problem will be to investigate the 

functional dependence of 1 y and 1 
y upon x, the integrator outputs, 

and y, where attention is restricted to linear functions. The 

problem may then be formulated, for y1 as: 

where the matrices A, B, and Q and the vector v are to be selected. 

Strictly, the matrix Q is unnecessary and could be dispensed with, 

however it simplifies the understanding of the problem to include it. 

Substituting y = Kx, equating the two expressions for y1 and 

grouping terms gives: 

Equating like terms gives two characteristic equations for this 

problem: 

KP = Q(AK+B) and m 
Ke = Qv 
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If exactly the same steps were performed for 
l y the only difference 

in the above equations would be; PT would replace p and l would e 

replace m Therefore, only the problem involving 1 will be dis-e . y 

cussed, since if it can be solved so can the problem for 1 y. 

Since all that is required is to monitor the adjacent symbol 

position the quantity of interest is 

necessary to actually decode the adjacent position, the value of j 

for which the maximum is achieved would be needed. However, since only 

monitoring is required and the value of j is unimportant, any per-

mutation of l would serve as well 1 itself. If Q is y as y 

restricted to be a permutation matrix, then 6 -l T Z=Q Y=Qy serves as 

well as 1 
y itself for the output of the monitor. Further, since it 

is the magnitude of the components of 1 
y ' and hence z, that are of 

interest, the nonzero components of Q may be -1 instead of +l if 

desired. 

The second characteristic equation can now be solved for the 

vector 

where 

v· 
' 

th represents the m , last, column of H. 

Selecting the matrices Q, A, and B is not so simple. Indeed, 

it is here that the first of two major problems preventing a general 

solution, or even a general approach to a solution, to adjacent symbol 

monitoring is encountered. The difficulty is that A and B are 



31 

required to be "simple" where a precise mathematical definition of 

"simple" cannot be given. 

Of course there are many possible choices of the three matrices 

which will satisfy the first characteristic equation. Indeed given 

any signed premutation matrix Q and any other matrix for A, a 

feasible matrix B is obtained from B = QTKP-AK since there is no 

requirement that either A or B be non-singular. However, to be 

useful, A and B must be of a form which may be implemented with 

less equipment than would be required to build a whole new decoder. 

In order to place such a constraint on the matrices, it would be 

necessary to somehow give a general mathematical characterization of 

all simple, constructable, linear digital machines. This task would 

make a formidable research project in its own right. 

One way to proceed to obtain an answer to the problem is to 

over-constrain either or both of the matrices to forms for which 

simple mechanizations are known. Of course, taking this approach, 

while it does yield useful results, provides no guarantee that some 

different set of constraints would not give an even better result . 

Examples of the type of constraints which have been investigated 

are; A must be an identity matrix, B an identity matrix, A must 

be a band matrix with bandwidth k<< m , B a band matrix with 

k << m. Although Q has been constrained to be a signed permutation 

matrix, there are ' 2m m. such matrices possible. The particular Q 

matrix selected from among the possibilities will also have a profound 

effect upon the usefulness of the resulting A and B matrices. 

However, whatever constraints were selected, they all led both to 
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useful results an:l, ultimately, to the second major stumbling block. 

In view of this only the approach which gave the most useful results 

in the examples considered in Section 4.3 will be examined here. 

Let A be an identity matrix, then the first characteristic 

equation becomes: 

KP = Q(K+B) or 

Recall that B expressed the contribution of x to the evaluation 

1 of y • Any component of x that is used must be stored. So, to 

minimize storage, it seems reasonable to investigate . the implications 

of requiring a column of B, 
s 

say b , to be all zeros. Clearly, 

this will impose some requirements on Q which may or may not conflict 

with the constraint that Q be a signed permutation matrix. 

Recall that K =HA~ and let QT= DA~P-~-l. (Clearly any 

permutation matrix, QT, can be written in this form by picking 

T 
D = Q KPA~.) Then: 

B = DA P-lK-1KP-HA 
~ ~ 

= DA -HA 
~ ~ 

be denoted as either or Letting the 

aj and the 

jth column of a matrix A 

ith row be (A)i or ai' gives, for the jth column of B: 
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bj = (DAT)) j - (HJ\ )j 
T) 

= T).dj-1).hj = T).(dj-hj) 
J J J 

= 0 if and only if dj = hj 

Suppose then, that we specify dj = hj for l ~ j ~ n; i.e. pick 

D = H and hence B = O. Then QT = KP-lK-l = ! HJ\ PTA H Note that 
m T) T\. 

/\,,.,PTA~= P where P is a matrix with (P ) .. = O if 
. 11 I I s s s 1.J 

T and only if (P ) .. = 
1.J 

0 and (P ) .. = ± l when (PT) .. = +l. Therefore QT 
s 1.J 1.J 

l 
= m (HPs )H, but 

for an arbitrary coset leader T), a row of HPs is not in general 

some row (column) of H. Since the columns of H form a maximal 

orthogonal set in Euclidian m-space, ! HP H is not a permutation m s 

matrix. Thus, it is clear that there is no possibility of letting 

dj -- hj f ll . or a J. The best which can be done is to try to maximize 

the number of columns for which this choice can be made. 

Now examine the requirement that the ith row of QT be 

for some j. 

(QT)i = (DAT)PTAT)H-l)i 

= ~ (D)i (AT)PTAT))H 

Here it is necessary to introduce two operators. If a= (al,a2,···,am) 

is a vector, then define a shi~ operator by ac = (a2,a3
,···,am,al) 

and a-c = (am,al,a2,•••,am-l). Note that (ac)-c = (a-c)c =a. 
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This leads to several easily verified identities: Pa= ac 

T -c -c T c P a = a , aP = a , aP = a , PA a =A P, c 
a 

PA -c = AaP' 
a 

PTA 
a 

=A PT PTA =A PT. If a 
-c ' c a 

and b are both vectors then 
a a 

define their term by term product by 

Using these operators we may now write: 

1 c c 
= - d. •11 •TJ H m J. 

= e. for some j if and only if: 
J 

or: 

or: 

c c 
d. ·11 ·11 = h. 

J. J 

d.c = 
J. 

c 11 ·TJ·h. 
J 

d = TJ·TJ-c·h~c 
i J 

Specifying a for some j implies that d .. = h ..• 
J.J J.J 

Thus, 

the question of interest is to select as many bits of d. as possible 
J. 

as the ith bit of hj while still satisfying the preceding equation. 

Now the second major difficulty is encountered. In order to 

proceed further it is necessary to know something about the properties 

of coset leaders which generate cosets of the first-order Reed-Muller 

codes which are comma-free. Unfortunately very little is known at this 

time. This question is presently being actively investigated by, among 

others, L. Baumert and H. Rumsey [13]. As there is insufficient 
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knowledge of the general properties of comma-free coset leaders to be 

able to deal with the selection of d. 
J. 

analytically, it seems hopeless 

to try to say in general what the maximum number of zero columns is 

for B. Lacking any general theory relating to this, ta.king any 

particular coset leader leads to an enormously complicated, not very 

enlightening bit matching task . However, there is a different, less 

elegant but very straight-forward approach to selecting B and Q 

when A = I which leads to useful answers. 

As part of his work Baumert has found coset leaders for all the 

cosets for n = 4 and n = 5 which have maximum index of comma 

freedom [13][14]. For n = 4, the maximum index of comma freedom is 

2 and there are 372 distinct cosets which achieve this bound. For 

n = 5 the maximum index is 7 and there are 32 distinct cosets 

achieving the bound. This provides a usefully large number of 

examples for evaluating the effectiveness of the following approach. 

Instead of trying to get the maximum number of zero columns 

in B, the problem of inserting a large number of zeros into B can 

be approached by maximizing the number of zeros in each row (and 

hoping that they will naturally tend to fall into columns). Recall 

that: 

Thus, asking for the maximum number of zeros in some row of B, say 

bi' is equivalent to trying to pick QT that T such (Q KP) .. = k .. 
J.J J.J 

for the largest number of values of j. Since Q is a signed 
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permutation matrix, this is then equivalent to finding that value of 

t for which for the largest number of values of j either 

(KP) tj = 

or 

k .. 
l.J 

This may be simply done by evaluating the matrix KPTKT ~ F. Then 

and T Q may be selected by: 

q .. = 0 if \r .. I <Ir.kl for some k, l~k~m 
l.J l.J l. 

q .. = +l if f .. > 0 and Ir .. 1 :2: lrikl for all k, 
l.J l.J l.J 

1 ~k ~m 

qij = -1 if f .. <O and \rij I :2: lrikl for all k, 
l.J 

1 ~ k ~ m 

In those cases where the above process results in exactly one nonzero 

element per row, it is a remarkable and as yet unexplained fact 

(related of course to the general structure of comma-free coset 

leaders) that the resulting matrix is a signed permutation matrix in 

every case tried. In those cases where the process results in more 

than one nonzero element per row it is then necessary to delete 
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sufficient nonzero entries to make QT a signed permutation matrix. 

Again it is true that in all cases tried it is possible to perform the 

deletions so that a signed permutation matrix results, although some 

selections may result in more identically zero columns of B than others. 

Since the largest magnitude element in a raw of F is always 

greater than zero in magnitude, there are always more than n-l 2 zeros 

in each row of B. And since B is the difference between two matrices, 

all of whose elements are ±l, the only possible values for elements 

of B are o, or ±2 . 

4.3 . An Adjacent Symbol Monitor for n = 5. 

The previously discussed technique has been applied to all 32 

maximum index cosets for n = 5 and to several of the maximum index 

cosets for n = 4. The example given here is one for which the 

maximum magnitude element in each row of F is unique. For this 

example the coset leader was: 

T\ = ( l, -l, -l, -l, l, -l, -l, -l, l, l, -l, -l, l, l, -l, l, -l, 1, -l, -l, 1, -l, -1, -1, -1, 

-l, l, -l, l, -l, -l, l) 

The resulting matrix QT is shown in Figure 4.1. This implies the 

matrix B is as shown in Figure 4.2. Notice that there are 20 identic-

ally zero columns in B. Thus only l2 components of x need to be 

1 stored for use in computing y. Notice, also, that columns l,5,9,•••,29 

have nonzero elements whose values are constant over sets of 4 rows, 

this can be exploited to further reduce the equipment needed. Since the 
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third stage of the decoder has a delay of 4 digital words, its outputs 

include z1 ± z
5

, z
9 

± z
13

, ••• , z
25 

± z
29

• Hence its outputs 

include all (both) possible magnitudes of x1 ± x
5
, ••• , x

25 
± x

29 

and some of the computation work can be saved by placing the third 

decoder stage first in line. Of course the details of these matrices, 

and hence their detailed implementation, depend upon which coset 

leader is being used. 

Figure 4.3 shows a block diagram of the adjacent symbol position 

monitor. In this particular example there are 24 storage registers 

and 11 adder-subtractors in the arithmetic block. The details of the 

gating structure to select those components of x to be stored, the 

outputs of S3 to be used, etc., can be obtained by standard digital 

design practice. Of course, the particular details of the structure 

of the monitor depend heavily on the particular coset leader chosen. 

4.4. Conclusions and Future Research. 

As has been seen, the question of how best to do adjacent symbol 

position monitoring is hampered by insufficient knowledge of the 

nature of coset leaders and of "simple" digital machines. In spite of 

these difficulties an answer, which of course may not be and 

probably is not optimum in any sense, can be reached. Unfortunately, 

the answer obtained does not place a heavy constraint on the order in 

which the stages of the decoder must be corrected. 

Any future progress in either the understanding of coset leaders or 

the characterization of digital machines in terms of their input-output 

properties would open new possibilities on the subject at hand. 

Failing any new progress in either of these areas, it may be that a 
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different approach to selecting the matrices A, B, and Q might yield 

useful generalizable results. 

Conceivably a whole new approach to the problem could be taken. 

One such approach which has been briefly considered but discarded as 

beyond the scope of the present work is as follows. There is r ea.11.y no 

particular reason for considering the problems of computing 1 
y,~ 

and 1 y separately. It may be t hat the output of the integrator should 

be considered as a length m + z vector which is then operated upon to 

produce the required outputs. 
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CMPIERV 

CONCLUSIONS 

The problem of doing the mathematical manipulations necessary to 

do maximum likelihood decoding of any coset of the first-order Reed

Muller codes rapidly and economically has been solved in general. 

The decoder exhibited is optimum in that it requires the minimum 

possible amount of storage. The technique used to solve the problem 

and construct the decoder has been extended to include codes other than 

the first-order Reed-Muller. 

The related problem of adjacent symbol position monitoring has 

been considered. It has been demonstrated that a general solution to 

this problem awaits further development of two other areas of research. 

Failing a general solution, an approach which, though it does not 

provide generalizable insight, yields satisfactory answers in all 

cases examined, is presented. The resulting monitor, while not 

provably optimum in any sense, is simpler than building a separate 

decoder to monitor the adjacent symbol position. 

The most striking indication that there is still some worthwhile 

understanding to be achieved through further research in this area 

comes from t he decoder itself. Thus far, the only limitation that can 

be imposed upon the ordering of the stages of the decoder arises from 

a heuristic approach to the adjacent symbol monitoring problem. It 

appeals, very strongly, to engineering intuition, that finding a 

question which will impose a strict ordering to the decoder stages would 

yield further useful insight into the decoding problem. 
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APPENDIX A 

MATHEMATICAL EXTENSIONS 

The mathematics of Chapter III can be extended to a larger 

class of codes. 

Let m and i be integers and for l ~ i ~ m let n. ~ l be 
J. 

an integer. Let Ai be a square, n. x n., matrix of real numbers. 
l. l. 

For integers i and j, define an integer valued function P(i,j) by: 

P(i,j) = "TT Il:k for l ~ i ~ j ~ m, P(i,j) = l for i > j. Let 
isk~ 

IP(i,j) denote the P(i,j) x P(i,j) identity matrix. (For P(i,j) = 

l, IP(i,j) = l.) Finally, let a matrix K be defined by: 

ID 

since P(l,m) = lT nk. 
k=l 

The matrix K could be the 2m x 2m Hadamard matrix of Chapter 

III, f or example, by letting n. = 2 
l. 

for all For 

coding purposes, the elements of A. are usually restricted to ± l, 
l. 

however, that restriction is unnecessary for establishing the following 

results. 

Define: 
(i) !::, 

N = IP(l, i-l) @Ai® IP(i+l,m) for l ~ i ~ m. 

i-l ID ID 
Since P(l, i-l) • n . • P(i+l,m) = lT n • n. • TT ~ = 1T nk = 

l. k=l k l. k:::i+l k=l 

(l ) N(i) 
p , m ' is P(l,m) x P(l,m). This definition gives a matrix 

related to K in the same way that defined in Chapter III, was 

related to Hn' the 2n x 2n Hadamard matrix. As might be expected, 
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the same type of commutivity result holds. 

Theorem: 

Proof: If i = j, there is nothing to prove. Assume that 

i < j, then: 

1P(j+l,m) J) 

Q.E.D. 

This theorem shows that, as before, the order in which the 

matrices appear in products of N(i) for various values of i is 

unimportant. The following theorem gives the result of multiplying 

together an arbitrary subset of these matrices. 

Theorem: For t ~ m define a set R by: 

i < j then r. < r .. 
1 J 

Then: 



Proof: 

t = l, 
i ER 
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This theorem is proved by induction on t. When 
(rl) 

= N , which is in the required form by definition. 

Now, assume the result is true for an arbitrary t and prove it for 

t + l. So let R have t + l elements, i.e. IRJ = t + l then 

lT N(i) = N (rl) 1T N(i) • 

i ER iER-(rl} 
But jR-(rl}\ = t thus the theorem 

holds by assumption for i E R - (rl}. 

Thus: 

Q.E.D. 



In particular if ri = m+i-t this theorem gives -rTN(i) = 
iER 

IP(l,m-t) ® Am+l-t ® \i+2-t ® • • • ®Am and if t = m, 

A1 ~ A2 @· • • ®Am= K. Again, to get the results for the first-order 

Reed-Muller codes we let n. = 2 and A. = H
1 

for all i. In this 
1. 1. 

( i) 
case the theorem gives }TR N = IP(l,m-t) ®Ht and for t = m, 

1.E 

TI N(i) = H as before. 
n 

The factorization of the code matrix K into a product of 

matrices of the form of N(i), leads to a decoder having desirable 

properties in the case of the first-order Reed-Muller codes. Whether 

or not this approach leads to a useful result in any other case 

depends upon the elements and dimensions of the component matrices 
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APPENDIX B 

MEMORY REQUIREMENTS FOR DECODERS 

If a piece of digital equipment is constructed which does the 

operation y =Hz, n 
with certain restrictions on its mode of operation, 

there will be a lower bound on the number of storage registers required. 

If the machine is required to form components y only by taking linear 

combinations of components of z and is required to output the 

components of y one by one, then there must be at least 2n-l 

storage registers. This limit can be achieved only if the first 

component of y begins emerging from the output as the last component 

of z is entering the input. If, instead, it is required that the 

first component of y not appear at the output until after the last 

component of z has entered the input, then at least 2n storage 

registers are required. 

These facts are most easily seen by an induction type argument. 

Consider first the 2 x 2 case of y = Hlz. Explicitly, 

and When zl appears at the input 

neither nor may yet appear at the output so zl must be 

stored. This requires l 2 -l = l storage registers. When 

appears at the input both and may be ccmputed. If is 

:immediately emitted f'rom the output only y
2 

need be stored in the 

single storage register. If, however, Yi is not to be emitted until 

a new number appears at the input, then both and or both 

and must be stored, which of course requires 2 storage 

registers. 

Assume that the result has been established for the 2n x 2n case 



y = H z and consider the problem y = H 1z. Recall that n n+ 

H n+l = Hl ® Hn = C:-:J. Write y =[::J and z =[:j where 

zl' z2' y1, and Y2 are all 2n vectors, then y = H z may be n 

y2 = Hnzl - Hnz2 • By assumption Hnzl requires 2n storage registers 

since the components of z2 are needed before any components of y 

can be emitted. Likewise, computing Hnz2 requires 2n-l storage 

registers or 2n storage registers, depending on which output 

condition is being met. In either event or 

2n+2n = 2n+l, thus establishing the result for the 2n+l x 2n+l 

operation y = Hn+lz. 

Thus, by induction, any suitably constrained piece of equipment 

which does the mathematical manipulation involved in decoding a first-

order Reed-Muller code of length n 2 must have at least storage 

registers. 
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