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ABSTRACT

In this thesis we are concerned with finding representations
of the algebra of SU(3) vector and axial-vector charge densities at
infinite momentum (the "current algebra') to describe the mesons,
idealizing the real continua of multiparticle states as a series of
discrete resonances of zero width. Such representations would
describe the masses and quantum numbers of the mesons, the shapes
of their Regge trajectories, their electromagnetic and weak form
factors, and (approximately, through the PCAC hypothesis) pion
emission or absorption amplitudes.

We assume that the mesons have internal degrees of
freedom equivalent to being made of two quarks (one an antiquark)
and look for models in which the mass is SU(3)-independent and the
current is a sum of contributions from the individual quarks.
Requiring that the current algebra, as well as conditions of
relativistic invariance, be satisfied turns out to be very restrictive,
and, in fact, no model has been found which satisfies all require-
ments and gives a reasonable mass spectrum. We show that using
more general mass and current operators but keeping the same
internal degrees of freedom will not make the problem any more
solvable. In particular, in order for any two-quark solution to
exist it must be possible to solve the "factorized SU(2) problem, "
in which the currents are isospin currents and are carried by only
one of the component quarks (as in the K meson and its excited
states).

In the free-quark model the currents at infinite momentum
are found using a manifestly covariant formalism and are shown to
satisfy the current algebra, but the mass spectrum is unrealistic.

We then consider a pair of quarks bound by a potential, finding the
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current as a power series in 1/m where m is the quark mass.
Here it is found impossible to satisfy the algebra and relativistic
invariance with the type of potential tried, because the current
contributions from the two quarks do not commute with each other
to order 1/ m3. However, it may be possible to solve the
factorized SU(2) problem with this model.

The factorized problem can be solved exactly in the case
where all mesons have the same mass, using a covariant formu-
lation in terms of an internal Lorentz group. For a more
realistic, nondegenerate mass there is difficulty in covariantly
solving even the factorized problem; one model is described
which almost works but appears to require particles of spacelike
4-momentum, which seem unphysical.

Although the search for a completely satisfactory model
has been unsuccessful, the techniques used here might eventually
reveal a working model. There is also a possibility of satisfying

a weaker form of the current algebra with existing models.
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I. THE CURRENT ALGEBRA

The theory of quantum electrodynamics is ""complete"
in that it gives an algorithm for calculating (in principle) any
scattering amplitude or energy level shift, that we wish, to any
order, providing that the proc[ess involves only electromagnetic
interactions. On the other hand, for strong interactions, which
are primarily responsible for the structure zind behavior of the
hadrons (strongly-interacting particles), we have no complete
theory. We can formulate theories analogous to quantum electro-
dynamics involving field operators and/or Feynman diagrams,
but we cannot use them to calculate whatever we want because
perturbation theory is inapplicable due to the size of the coupling
constants. We can only test general assumptions about the
theories, such as unitarity and analyticity, by deriving observable
consequence of them and seeing whether they agree with experi-
ment,

In spite of the difficulties of calculating anything involving
strong interactions, many predictions have been possible thanks
to the symmetries that these interactions have. The isospin
groups, SU(2), appears to be an exact symmetry of strong inter-
actions, and SU(3) an approximate one under which the strong
interactions seem to have simple transformation properties. There
are also SU(6) and higher symmetries, becoming more and more
approximate the higher they are. These symmetries have been
useful in classifying the known hadrons and predicting new ones,

and in describing their masses and quantum numbers.



Here we shall consider the SU(3) algebra [the generators
of the group SU(3)], which consists of a set of operators
Fa (@a=1, ..., 8) obeying the commutation relations

[Fa’ Fb] y: ifabc Fc 4 (12)

(summation over ¢ understood), where the numbers fabc are the
structure constants™ of the Lie algebra of SU(3). In particular,
for a=1,2,3, Fa is just Ia’ the a-component of the isotopic spin,
and the commutation relations of them alone are those of SU(2),
equivalent to the rotation group:

[Ia’ Ib] = abe Fc e

In the SU(3) algebra we also find the hypercharge operator,

_ 2
Y = 73 F8’
other operators which raise and lower the hypercharge or

4 - 1
the electric charge operator, Q = F3 +73 F8’ and

strangeness.

In general the operators Fa could depend on time and
also on which Lorentz frame we are in. The Fa's for different
times and frames are tied together by the assertion that, for a
given time and Lorentz frame, each Fa is the integral over all
space of a "charge' density which is the fourth (time) component

ok
of a current density 4-vector F a%l(x):

We use the notation of Reference 1 for f - as well
as the SU(3) A-matrices.
%

Our notation for 4- vectors is a oroao = (a a ) and
the scalar product is a - b = a b =a. b-a’’.



F_(t) = J‘d33’< TG . (2a)

1’ F2, F3 and F8 are

conserved, so that au?:(x) =0 for a=1,2, 3,8, but the other

Fa are not. As a first approximation, however, we will be

In the limit of strong interactions only F

proposing models in which all- Fa are conserved, so that all
particles in an SU(3) multiplet have the same mass.

The currents &F 2t‘l(x) may be associated with measurable
quantities because they describe first-order electromagnetic and

weak processes. The electromagnetic current is
- 1
g ® = T30+ Fo®) (3)

and, between hadron states, gives the amplitude for emission

or absorption of a virtual photon; in other words, it determines
the electromagnetic form factors. There is also a weak current,
j‘;;(x), which describes the weak coupling of the hadrons to the
leptons. Under the conserved vector current and universality

2)

hypotheses, the vector part of this current is given by

j{;(x) = ['}T(x) + i?;(x)]cos 8
(4a)

+ [Q'Z(X) + i?g(x)] sin6 ,

where 8 (v 15°) is the Cabibbo angle.

The weak current also has an axial-vector part jX(x)
which, according to universality, has the same SU(3) transfor-
mation properties as j‘;l (x). We thus suppose that there is a set

of eight axial-vector currents, ?fu(x), and that



jX(x) = [?f“(x) + i?zsu(x)]cose + [?’f“(x) + i?gu(x)]sm 8,
(4b)

the total hadronic weak current being
), = iy ) - ih ). (4c)

The time components of the axial-currents may be regarded as
densities which, when integrated over space, give a set of "axial

charges' which we call Fa5:
ar o 3250,
F. () = fd xF7 (%, 1) (2b)

In contrast with the vector currents, the axial currents are
generally not conserved, so that Fa5 depends on time as well
as the Lorentz frame in which the space integration is carried
out.

The axial currents are also related to measurable
quantities through the PCAC (partially-conserved axial current)
hypothesis, = which relates the divergence of ?5“, F. 5“, and
?:;5 H to pion emissio%u and absorption amplitudes.

Since the Fa are postulated to transform as an 8-
dimensional vector under SU(3), its commutators with F_ are
determined:

IR = i (1b)

abe ¢



We may then ask what happens when we commute the axial charges
with each other. The simplest possibility is that
5 5

[F°, F

s Bplet B (1c)

abe " ¢?

so that the set of operators {Fa, F:} form a closed algebra.
This algebra is that of SU(3) x SU(3) since the operators

(Fa - Ff)/z form two commuting SU(3) subalgebras.

The most famous experimental test of assumption (ic)
is the Adler-Weisberger sum rule, S which, with the help of
PCAC, predicts the nucleon axial-vector renormalization constant
in terms of pion-nucleon cross sections with good agreement with
experiment,

Assuming that the algebra given by (1a), (1b), and (ic)
holds for the charges and axial charges, our next step is to ask
whether the currents Sr:(x) and G”:H(x) satisfy simple commutation
relations. Since measurements of currents at two points in space
time separated by a spacelike interval should not interfere with
each other, [‘3':(}(), ?g)(x')] = 0 when x - x' is spacelike, and
similarly for commutators involving the axial currents. However,
if x - x' is timelike we expect such commutators to be very
complicated because they involve dynamics: one must solve the
complete time-dependent problem for the system under consider-
ation in order to relate currents at the same point in space but at
different times, for example. So we always consider equal-time
commutators such as [?;(?(, t), '31;)(;5', t)], which must vanish
when X # §', and therefore must be finite linear combinations of

63(;; - x') and derivatives thereof. We can say the most about these



commutators when u = v = 0, because when we integrate over X
and X' we must recover (1a), (1b), and (1c), so the coefficients
of 63(§ - ;;'v) are restricted. We therefore assume the following

equal-time commutation relations for the charge densities:
(o i 0,2, . 0,~ i
[(F, (x, 1), F (x, )] =1if, F (x, 1) 8°(x-x), (5a)

(oG, 0, FOG, 01 =i, FOR, )6°G-X),  (5b)

(F20G, 0,7 G, 01 =i, FOE D62 E-%).  (5e)

It is, of course, a strong assumption that there are no additional
teFms with v6°(% - ¥') or higher derivatives. Equations (5) do
hold in field-theoretic models analogous to quantum electro-
dynamics. 3 On the other hand, commutators between space
and time components of the currents appear to have singular
terms with gradients of é-functions, 1 the significance of which
is not completely understood.

Equations (5) (or their Fourier transforms, which will
be considered later) form what we will call the "current algebra';
it consists of an SU(3) x SU(3) algebra at each point in space.

Given the current algebra we can proceed in two
directions:

(A) By inserting (5) between initial and final particle
states, and putting in a complete set of intermediate states
between the factors in each term of the commutator, we obtain
sum rules relating the form factors of the currents. The sum

rules can be used to test the validity of the algebra (by plugging



in the experimental values), or to predict new values for certain
form factors. '

(B) We can look for simple representations of the algebra
and thereby classify the particles in a generalization of the SU(3)
scheme. If the current algebra does hold, then of course the set
of all states in the universe must form a representation of it, but
hopefully we can find smaller sets of states which also form
representations; in such smaller sets the real continua of many-
particle states would be approximated by discrete particles corre-
sponding to the observed resonances. For example, we should
have an SU(3) octet and single’c>I< of LT mesons (corresponding
to m, K, K, n, and X°), a similar family of 1~ mesons (p, K¥*,
K*, ¢, and w), and higher excited states, the whole representation
having an infinite number of such levels. Similarly, we would
expect another representation or set of representations to include
the baryons and baryon resonances.

Just as the representations of SU(3) predict the quantum
numbers of the particles, the representations of the current
algebra would predict the form factors for the vector and axial-
vector currents, and therefore the first-order amplitudes** for
electromagnetic and weak leptonic processes. Using the PCAC
approximation we could also find pionic decay amplitudes and thus

get some idea of the effective strong coupling constants.

E 3
Since the current algebra contains SU(3) as a subalgebra,
the representations of the current algebra will consist of "levels"
(not necessarily of constant mass), each level being a representation
of SU(3).

*
That is, first order in the electromagnetic or weak inter-
action, but to all orders in the strong interaction, since the current
algebra is assumed to hold exactly.



In searching for a representation which is to describe
the world of particles, we shall be imposing conditions of
relativistic invariance, namely, that in (5) (which is not mani-
festly covariant) ?; and .’ffo must be the time-components of
4-vectors. What kind of mass operator we take for our particle
system will then be crucial; only certain mass spectra will be
allowed. The spectra that we get can be compared with experi-
ment. Furthermore, we can impose a bootstrap condition 8
by requiring that the poles in the vector and axial-vector form
factors (which, as we said above, are also predicted) appear at
values of the momentum transfer equal to the masses of the
vector and axial-vector mesons.

The current algebra actually has a closer connection
with reality when we look at its infinite-momentum limit, to be
considered in the next chapter. It is in this limit that useful
sum rules can be obtained according to Procedure (A), and the
representations found in Procedure (B) will be of the current

algebra in the infinite-momentum limit.



II. THE INFINITE-MOMENTUM LIMIT

Suppose we wish to obtain sum rules from the current
algebra by sandwiching the commutation relations between particle
states. First of all it is convenient to work with the Fourier

transforms of (I.5). Let

~ =\ _ .32 ik. X0,2
F (k) = [d°xe F,(x, 0),
(1)
~5,2 _ 3= ik. x50,
Fo(k) = jd X e Z, x 0).

In particular, ]AE"a(a) =B and 'f«‘Ja5(6) = Fas. Then the current
algebra in momentum variables" is™

[F, (k), (k)] = i, F (K+k), (2a)

~ ,= ~5 = S ~b5H = =

[Fa(k); Fb (k )] - lfabc FC (k + k ): (2b)

[F9®), Fo(k)] = it, F (k+¥) (2¢)
a‘*? b abc ¢ ‘"

Let |P, n) be a state with total 4-momentum P and other

variables (spin, isospin, etc.) described by n. Then since

-—

e-i(P' -P)-x <P',n'l?;(0)lP,n>,

1l

(P, n’I_T;(;{, 0)| P, n)
(3)

*x
Note that (2) is equivalent to (I 5) for any value of t,
since ?;’(55, t) = elHt?§(§, O)e—lHt, etc., where H is the

Hamiltonian.
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we have

(P, n'|¥, @) P, n) = e3s3@ - B-B) (o, n'|F.(0)| P, n).

(4)
We shall always use a covariant normalization of
states:
(P', n'|P, n) = &(P', P)an,n,
(5)
Z jdw(P) |P, n) (P, n| = 1,
5
where
s, P) = 2p°@m)S 3@ - D),
f dw(P) = I : :? )
(2m) 2P

and P° = V1—52 ¥ Mz, M being the (rest) mass of the system
(which could depend on n).

If we put (22) between (P', n'| and |P, n), inserta
complete set of intermediate states |P", n'"), use (4), and
factor out (2 TT)3 63(5' 'S,y ﬂ') from each side of the result,

we get
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1
0) <P" n',?;(O)IP”, n”><P”’ n"l?S(O)lP’ n>-—> - =
" ap* - ”=P+k'
n —
1 1 1 0 Tt " 1" 1" 0
———-——(—)—(P,n]?b(O)]P,nMP anI?a(O),P; n>|—-; i
2PH P”: P+k
. ' " 0
ot R o l’&'c ©)| P, n), (7)

where P' and P are suchthat P' - P=k + k'. Now the matrix
element (P, n'lsf:(o)l P'", n") can be expressed as a linear

combination of independent amplitudes whose coefficients are

form factors depending on the momentum transfer t = —(P'—P")z.
Since B'-B" =k, p'°= VB2, Mﬁ,, and P° =VB? | an,, ,
the momentum transfer represented by this matrix element is
ey g e g I
bl (VP A - V(PRI + B (8)

The other three matrix elements appearing in (7) have momentum
transfers given by similar formulas. Therefore when we express
everything in terms of form factors we get a sum rule in which
the momentum transfers vary with the mass Mn” of the inter-
mediate state, in fact, each t—- « since Mn,,—' «, Sum rules
with variable momentum transfer are inconvenient to test experi-
mentally, and their convergence is difficult to check.

This difficulty can be overcome using the method of
Fubini and Furlan,® which is to let B and B' approach infinity
in some direction, say, the z-direction, while k and k' remain
fixed. Then from (8), the momentum transfer in <P',n'lg§(0)| Pun'")

is



=2 2 =
t - -k +kZ = -k, , 9)
where ' " will always refer to the components perpendicular to

the z-axis. Similarly for the other momentum transfer: they are
either —Ei or —l—{f in the infinite-momentum limit. Thus, we
obtain sum rules in which the form factors have constant values
of the momentum transfer. We can choose momentum transfers
for which the form factors are easily measurable; in some
cases (e.g., the Adler-Weisberger relation) the sum in the sum
rule can be written as a sum of total cross sections in which the
momentum transfer is the mass of an incoming particle. Having
a fixed momentum transfer also makes it easier to justify the
PCAC approximation, which requires that t be near mﬂz, and to
demonstrate the convergence of the sum rules by Regge pole
theory. Other advantages of using the infinite-momentum limit 6,9
will be seen later in this chapter.

The Adler-Weisberger relations™ ® ave derived in-the
above manner and test portions of the current algebra with t = 0.
The sum rule derived directly from the current algebra relates
the nucleon axial vector renormalization constant to nucleon-
neutrino forward scattering cross sections, which are not readily
measured experimentally. The use of the partially conserved
axial current hypothesis enables the sum rule to be written in
terms of total pion-nucleon cross sections, and it is this form
that agrees well with experimental results. Sum rules have also
been worked out for non-zero momentum transferlo. One sum

6,11

rule, obtained by considering the dipole moments (i.e., first-

order in the momentum transfer) of the vector isospin currents,
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gives a relation between the nucleon isovector charge radius,
the anomalous magnetic moment, and total photoproduction
cross sections.

Having demonstrated the usefulness of the current
algebra in the infinite-momentum limit, let us now find out what
this limit is. Consider a matrix element (P',n'|F_(0)| P, n)
and suppose we let P and P' approach « in the z-direction with
B' - B =X tixed. Since (P',n'|P,n) = 20°(@2n)% 3" - B) which
goes like PZ as PZ - « we might expect the matrix elements of
the charge densities to do the same. Such in fact is the case, as
we can show by expressing everything in terms of "rest' states
IMnx, ny, where A" means (0, 1) (a notation which we will use
throughout this work). We assume the states are defined relative
to each other by

[P, n) = D(V )anx, ny, (10)

P/Mn«'-— A

where Vu<- is our notation for the velocity transformation

sending )\Hxinto W (. e. , the state of rest into the state of
4-velocity u) and D is the representation of the Lorentz group
appropriate to the system of states. If g—: and ‘7{ are the
generators of this representation (the angular momentum and
boost operators), then

_iB.#cosh l(PO/Mn)

D(V )=e (11)

P/Mnct- A

Using (10) we find
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(B, ' [F O P, m) = (M A, w[D(V, _por Vo ) X
n' n (12)

X D(VM-P/MH)?:(O)D(VP/MH« I 0 i

Now as P and P'Z » @ with B' - P = k one can show (for example,

using a 2-dimensional representation of the Lorentz group) that

-i7log(M, /M)

PVyepym Vo/m <) ™ © A
(13)
X eikl. (K- eZ x?)/Mn
Also,
DAV P/Mn) Fa D (VP/Mne- . % (VP/Mne UAENC
(14)

P
Z O z A
i IVI; [Qra(O) +G—"a(0)] as P :

Using (13) and (14) in (12) we see that ( P', n’lgf;(O)lP, n)

does go like Pz in the infinite- momentum limit, and furthermore,

(pr, n'lj}"ao(O)l P, n)
ZPZ

= | F,(k,)[n, (152)
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where

s g iR log(M /M) iy - (K-¢,x £)
(ana(k )| n) —m—r—l(Mn,x,nle e

2 i (15b)
[F, 0) +FO[M 2, n).

Note that <n'|Fa(I<' )|n) depends only on k, = By - P, but not

on P; + P, for example. We can consider it as a matrix element
of a "reduced operator" Fa(iz ) which acts only on the internal
variables of the system (described by n and n') but does not

involve the total momenta (which have gone to « in the z—direc’cion).1 :

Similarly we can define F;(EJ_) by

@, n|F7°0) P, n) _

: B
lim 5P {n lFa (k_L)In> : (15c)
P - Z
i By -
Br-P=k

We shall call Fa(l-é ) and F:(I{:L) the "currents at infinite
momentum'',

Dividing equation (7) by ZPZ, taking the infinite momentum
limit,* and doing the same for the corresponding equations involving
the axial currents, we obtain the "current algebra at infinite '

momentum'':

% ,

Assuming that the operations of taking the limit and
summing over intermediate states can be interchanged, a question
to be discussed later.
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(F, (), F (D1 = i, F (K. +K) (162)

[F ®), FO®,)] = if , FO(E + &) (16b)
a 4+’ bV~ abe “g VT T

(FO(R), FO3@)] = . F (& +%/) (16¢)
gt &’ Tpha Cabe e e T

This algebra looks a lot like the one we started with, (2). The
difference is that the F's act on a smaller set of variables (only
the internal variables) and are functions of only a 2-dimensional
momentum transfer.

In the chapters that follow we will be searching for
representations of (16) rather than (2) or (I. 5), for the following
reasons:

(A) The infinite-momentum limit is more readily tested
by sum rules (as we have seen) and thus better established.

(B) We have a better chance of being able to represent
the algebra by a relatively small set of states (discrete particles)
and still approximate the real world. Consider (7) again with
finite momenta. Which states we need to include in our repre-
sentation depends on what states n'"' are necessary in order to
"saturate' the sum rule (7). A typical matrix element in the left
side of (7) is (P", n"lgf:(o)l P, n) (with u = 0), which is given
by the diagram in Figure 1. Here n" is the intermediate state,
k = P" - P, and the wavy line represents the current 9:; . (For
the electromagnetic current it actually stands for a particle, the
virtual photon, but in general there need not be a particle coupling
to every current.) Now if n is a single particle, we could have,
in addition to single-particle intermediate states, more complicated

ones for n'" obtained by disconnected diagrams such as Figure 2.
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1" "
Ph.n

o0 k,u,a

Figure 1, Diagram representing the matrix element of F : .

1"
P'"'n
n

/"\A—’—/\
| %
K. u,a

P,

Figure 2. Example of a disconnected diagram.

-k s M, 2

%k'vb

S

Figure 3. Amplitude involving two currents.
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Here the system n'' has three particles; there is a continuum of
such n" because the mass Mn" can vary from threshold to
infinity. So in addition to single, discrete particles we have to
include continua of three-particle states in our representation,
if we wish to satisfy (7) as is.

Now suppose we take the infinite-momentum limit
P, P~ with P" - P =k remaining fixed. If the mass M,
of the three-particle state in Figure 2 is kept constant, the
diagram cannot contribute because of 4-momentum conservation:
The pair created by the current has finite spatial momentum k
while the free particle has infinite momentum 13, requiring the
three-particle state to have infinite mass in this limit. Thus for
each fixed n" (and therefore fixed Mn,,) the contribution from
disconnected diagrams vanishes in the infinite- momentum limit.
Whether the sum over all n" in (7) due to disconnected diagrams
also vanishes in this limit (without having to put in intermediate
states of infinite mass) depends on whether it was legal to inter-
change the order of limit and sum in going from (7) to (16). This
question in turn depends on whether the ""scattering amplitude"
of Figure 3 satisfies an unsubtracted dispersion relation in the
s-channel. 8 The fact that the sum rules converge (as an analysis
of Regge trajectories shows) and agree reasonably with experi-
ment where compared seems to indicate that we can interchange
the order of limit and summation without having to worry about
infinite-mass intermediate states. [One can also check this
explicitly by evaluating some simple diagrams contributing to (7). ]
The currents in the infinite- momentum limit then come from only

connected diagrams of the form in Figure 1. In such diagrams n"



19

could be a member of a continuum of multiparticle states, but we
will treat such states as a sequence of discrete resonances in the
s-channel. In this approximation we are then assuming that the
sum rules may be saturated by single-particle states (stable
particles plus resonances), and therefore that we can use such
states as a basis for a representation of the current algebra at
infinite momentum.

The general problem on which this research is based is
to find representations of the current algebra at infinite momentum -
which are compatible with relativity and include the existing hier-
archies of mesons and baryons, from which we should be able to
deduce the weak and electromagnetic form factors. To find a
relativistically compatible representation we must find operators
F (k ) and F (k ) which satlsfy (16) and are desirable from
covarlant currents f}'“ and G" o through (15a) and (15b). There

are two methods of attack wh1ch have been used:

(i) ("Non-covariant formalism') We find solutions of
(16) in terms of arbitrary operators, and then impose conditions
on F ( ) and F (k_,_) in order that they be derivable from co-
var1ant currents. These conditions (the angular condition of Gell-
Mann & Dashen) turn out to be quite restrictive and, for the
systems that have been tried, either almost determine the F's

or rule out a solution altogether.

(ii) ("'Covariant formalism'’) We write out manifestly
covariant expressions def1n1ng§' M and 9’ and try them out to
see whether the resulting F (k ) and F 5(k ), defined by (15a)
and (15b), satisfy the algebra (16). Th1s method is more elegant

in principle, but in practice it is often hard to show whether or
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not (16) is satisfied, and, of course, the correct answer (if there
is one) for the F's may not be one which is readily found by

inspection.

We conclude this chapter by showing how Fa(ﬁ—‘-) is
related to the "electric' and ""'magnetic' dipole moments. Assume
(as we shall do throughout) that ?:(x) is conserved: au?:(x) = {),
It follows that F_, defined by (I 2a), is time-independent and
Lorentz-invariant, and thus connects only states of equal P" (in

particular, equal mass):

(P, | F_| P, n) = 2P°(2n)° 6°(B" - B) <u'| F, ),

(17)
(n'lFaln> = 8yr M
o
From (4) with k = 0 it follows that
@, w[F20P, ml, = 2P |F, [0 (18)
a AW a
P'=P
and from (15a) that
Fa(O) o (19)
From (18) (with P'= P) and Lorentz invariance we also find
(P, n’[?:(O)]P, n) = 2P“(n'lFaln>. (20)

We cannot make such statements about the axial current because

it is not conserved.
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Now suppose we look at the lowest-order terms (in k 7%
of F_(k, ):

F (k,) = F_+ik, - h_+ Ok, (21)

where ﬁa = (h h O) is hermitian.

ax’ Tay’
Since ﬁa o aFa/al::’_,_ we might expect Ha to be related
to the dipole moments of ‘}';(x). In general the "electric' dipole

moment corresponding to the "'charge" Fa is
- 3—9 = 0,
£, = fd = x7, (& 0), (22)
and the "magnetic' dipole moment is
1 8 3-» - =3 -
My =§dexx§?’a(x, 0). (23)
Suppose Mn' = Mn = M. Then from (22) and (3),
(P', n'|E = @em?ivsd(@ - B)(p, n'|F0)| P, )
,nIEaIP,n>—-(Tr) ive“(P'- P) ,nl?a() , 1),

which we separate into two parts using the identity

6'(e-y)i-y) = 616eey) LI g eog( 2 - e, ).
Using (20) we find
P, 0| [P, n) = @) ive’ (B -B)@°+P°) (| F, )

e oo e (24)
+ 20°en)° e’ (@ - B) w'|E_(p)|w,
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where
@[E @)n = - =5 (-5 Py nFTeIR, w
2P 3P aP P'=P
. (25)
= -2 nigl0)P, W,
ar 3k v k=0

and (P', n’l“'f:(o)l P, n) is considered a function of k = P' - P
and B' + D, Equation (24) expresses the total dipole moment as
an external moment, which would be present even for a spinless,
structureless particle,* and an internal moment ﬁa‘ Proceeding
similarly with the magnetic moment between states of equal mass,

we find

(P', n'| 4 ,|P, n) = %(m)?’iv §3(B'- B) x (B'+ D) (n'|F,n)

(26)
+ 2p°0em)°® o°@ - B) ('] M (®)|w,
where
- 3 1 d -
M _@)|n) = -—= 55 x (P, n|F_ 0P, 0], . @7
- 27° 2 3k Fa ity

The electric and magnetic moments are most meaningful
when the particle is at rest, i.e., P* = Ma™. Then (25) and (27)
may be used with P' = k/2 and P=- k/2. We can even carry out

the differentiation explicitly by writing

*For such a particle, (P', n' l?;(O)[ P, n) = (P'+P)" x
x(n'| Fa] n) [cf. eq. (20), which holds for a general particle].
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|P', n') = e'm'.ﬁlMx, n), |P, n) = e+m'7(|M)\, ny,

where 7 = & sinh™X(|%[/2M) = &/2M + O(k?) as k- 0. The
result is (since P° = M)

w'|E|n) = 2# am, o] 3 K, F, 03] M, n) (28)

and similarly for the magnetic moment. The latter, however,
may be simplified using current conservation again. Let
(k) = (P, n'|F,(0)|P, n) with P'=k/2 and P=-k/2. Then

since (P'- P)" = (ﬁ, 0), current conservation implies k- 'f"('ﬁ) =0.
Expanding this about kK =0 we get

O

k': 0=0

)

k': F(0) = 0, already derivable from (20),

2, ”
K 3£,(0) +2,8,(0) = 0,

In view of the 2nd-order result, the only internal dipole moments
of gﬁ‘ g are the anti-symmetric ones, i.e., the components of
the magnetic moment (27), and the y-component of (27) may be

written as

@|M__|n) = 22 <P, n|T20)|P, n_
ay 2P0 akX a k=0 (29)

TN .2_;4.2<Mx, n| 3 (£, F 203 Mx, n) .

Now from (15b) we have an explicit expression for ﬁa
defined by (21): for the x-component between states of equal

mass M,
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(| lm = o (M, 0 (K + 4 OIF0) +F 2001 M,
2M y N (30)
1 i 1
3o, w1 108, 448, FOO+F 010, 0

3 : (o] Z "
since 7(X + g’y commutes Wlth’ 7 & +frra . We next expand the anti-

commutator into four terms:
I E e i TS s 2, Z S G
2% " a 2 "X a 2%’ a 2 93:’ a

The first two give Eax and —May by (28) and (29). Because of
(20) and since g’y = Jy on rest states, where Jy is the internal
angular momentum acting only on the internal index, the third

gives F_J y/M and the fourth gives zero. Therefore,

' ._ . a 'y
<nlhaX|n> = (nl(EaX—May+ = )| n)

when M , = M_= M,
n

n

or alternatively,

= a' ¥
hox = Eax - (May~ M )
(31)

+ commutators with M .

Thus h_, the coefficient of ik, in the current at infinite
momentum, is simply related (between states of equal mass)
to the electric and magnetic dipole moments of the system at

rest. Note that although the two-dimensional vector Ea
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transforms as a vector only under rotations about the z-axis,
it is a sum of terms \vhjch are components of a 3-vector (ﬁa)
and an axial 3-vector (Ma - Fa'j/M) under all rotations. We
may think of the axial vector as an "anomalous' magnetic
moment, the '"normal" moment being 2J times the "Bohr

magneton" Fa/ 2M.
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III. THE ANGULAR CONDITION AND THE QUARK MODEL

If we choose to use the non-covariant formalism to search
for representations of the current algebra (which is understood
from now on to be at infinite momentum), the first step is quite

easy. For a set of F's satisfying (II. 16) we could take, for

example,
ik, - h
- ) i 1 4.
Fa(kJ..) -2 )\ae s
e i
iky -
5 1 e
Fa(k.‘.) = —2—Xawe ’
where A, ..., Ag are the standard SU(3) matrices, : h, hy and

w are Hermitian, SU (3)-independent operators which commute with
each other, and w2 = 1. Or we could use more complicated
expressions, to be discussed later.

The hard part comes when we try to make the model
consistent with relativity, that is, ensure that the F's are derivable
from covariant F's. Here we will derive a necessary condition for
this to be so, called the angular condition because it involves the
rotational (angular momentum) properties of the currents. o

Consider the matrix element (P', n'lsf:(O)lP, n). The
vectors P and P' define a "'preferred' plane in 4-space. Iffr’ao(o)
is to be the 4th component of a 4-vector, its matrix element can be
defined arbitrarily except that it must transform properly under
those (proper) Lorentz transformations which leave P and P’
fixed. In the Breit frame, where the spatial momenta are negatives

of each other, these Lorentz transformations are spatial rotations
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about their common direction, and & ;(O) (which in this frame has
a space as well as a time component) must transform as a scalar
plus a vector under these rotations.

To translate this derivation of the angular condition from
a verbal to an algebraic form, let A be a Lorentz transformation
which turns the original frame into a Breit frame. That is, AP is
of the form (q, 0, 0, E) and AP' of the form (-q, 0, 0, E). Then

n'|F,° (0] P, ny = (P, n’ID(A_l)A%?;(O)D‘(A)IP, n)
(2)
2% Y (P, w4 F0)4P, W W),

1—1 n'n' nn

whered) (W) is the matrix (acting on the internal index n) corre-

sponding to the Wigner rotation W =V, _ o /Mn AV 5 /Mné)‘

[recall Eq. (II. 10) defining the states relative to each other], and,
similarly, W'=YV AV
get

Inverting the £ 's we

A< AP /Mn, P /Mn,«x

Yo _ W), wIFLOIP, w W)

¥ 3)
1% P, w|F)0)| 4P, n) .

Let the total angular momentum } be written as an orbital part

(acting on P) plus an internal spin 7 (acting on n):

}' =(ijjx13)+3 y 4)

o P
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If & and 8' are the oriented angles of the Wigner rotations W and

W', then (3) may be rewritten as

-i0' 3 15+ J
(P', n'|e 3 ?;(O)el | P, n)
(5)
- 0 " 1 Vv
ol (AP', n I‘_Ta(O)[AP, -

Now under a rotation about the x-axis, the right side of
(5) transforms as a scalar plus a vector, since SQ’(O) does while
AP and AP' are both invariant (i.e., there is no orbital angular
momentum in the x-direction). Alternatively, the right side of
(5) has IAJXI < 1 in the sense that if the initial and final states
are eigenstates of JX, then the matrix element vanishes unless
the difference in JX is 0 or = 1. The angular condition is

therefore that
@, wle ™ IF 2! P, n) mas [ar ] <1 @)

Dividing by ZPZ jlnd taking the 'mf'mjte—mo—fnentum limit,
we get a fondij;ion on Fa(k , ). We now find 6 and €' in this limit.
Let k = P' - P us before. Since the final results are independent
of kz and P' + P , we will take these components to be zero

without loss of generality, and we will take k in the x-direction.

Thus

(7)
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We must find® A such that AP and AP' are of the form given
previously. Let A = RV, where V is the velocity transformation
(in the z-direction) taking P + P' into a vector along the time
axis, and R rotates (about the y-axis) the space components of
VP and VP' so that they are along the ¥ x-axis. We could find
V and R explicitly, but we can bypass all this by the following
trickery: Since the y-axis is unchanged, the Wigner rotation W

will be a rotation about the y-axis, i.e., 8= e'éy. Recalling that

W = VxeAP/Mn AVP/Mn«-K’

(8)
which leaves )" = (6, 1) invariant, we look for the effect of W on
some other vector. Let

a=V P, a'=V P'. (9)

A
)\eP/Mn ’ }\<—AP/Mn

Then W clearly sends a into a'. To find 8 we need only find
the directions of a and a'. Using the convenient formula for

velocity transformations

G+ 2907 0o nt)
P o= s® 4 e

- U 1 %
re A"V v 1-2-) 2) )‘v (10)

\%

which holds for any unit timelike vectors X and \', one finds

*n is completely determined if we stipulate in addition
that the y-axis be left invariant.



- k2 + Mn'2 - MI? 1
a = (k; O, il oM ) + O( P ) (11)
n Z

as PZ - o, Also from (9) one sees that a' has only an x-

component, which is positive. Therefore,

13, g Een o
6 = tan a— = -tan M &
¥ n
(12a)
M,-M
2 -1 k - n' n
= —(tan -m— + tan K )
n n
The angle 8' may be obtained from 6 by letting P <> P and
M_ <> M_, (and thus k = -k):
n n
; ol L Py
8' = tan M+ M SR e (12b)
n n
The angular condition for the currents at infinite momentum is
then that
M ,-M
. - -1 k -1 "n' n =
(n lexp[-l(tan W - tan '——'——k———)Jy]Fa(keX)
M .-
g -1 k -1 "'n' n
exp[—l(tan IWI;_—'TM; + tan BN Sk )Jy] ' n) (13)

has |ad_ | < 1.
x

This condition can be put into a more concise form by

defining "operators on operators'. Let CZX and ﬁX be the
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operations of commuting and anticommuting with X, respectively.

That is, if Y is another operator, then
Ay = (X, Y], B¥ = (%, Y} (14)

Note that ¢/, and &y are both linear in X as well as their
operands (Y).

Let M be the mass operator, defined by M|n) = M [n).
Since M and Jy commute, the operators a M gM’ a2 Jy, and

gJ all commute. We can then write the angular condition as
y

follows:

. -14Mm g . -1 k -
t —_— - t Bk
[exp 1(@Jy an an ?M)] a( ex)

That (15) is equivalent to (13) may be seen by putting the former
between (n'| and |n), noting that QM and KM may be replaced
by Mn, - Mn and Mn' + Mn respectively, and using relations of

y

(16)

*when (15) is expanded in powers of aM and 3M, for
example.
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The same condition, (15), holds with F o replaced by Fa5‘
The operator in square brackets may be expanded in powers of,
e. g., the mass splitting, giving polynomials in the A's and B's .
each { and 7 then operates on I, or Fa5.
Recall that in Chapter II we found an expression, (IL 15b),
for the current at infinite mmomentum in terms of ""rest' states

IMnx, ny. For k in the x-direction it is

1 LogM, /M) (K,
{n' lF (ke )ln)-..__.__<M )\’nv,e : Zog( ln/ n)el ( X'*'%y)
(17)

[F,(0) +F 2(0)1] M2, n) .

We can check our angular condition by applying it to this expression.
The result (easily found using a spinor representation of the Lorentz
group) is that the matrix element in (13) is equal to

ia

%(
2M (M A,n'|e = [9’5(0) + sine?;:(()) + cos 6 SZ';(O)HMn}\,n),

, (18)
S kz 4 (Mn, - Mn)2
where a = 2 sinh I8, ™ "

which indeed has IAJXI < 1,

Equation (17) can be used to derive other properties of
F(k ). For example, if P and T are the internal parity and
time reversal operators, respectively, then by knowing the
behavior of 9’ (0) under ¥ and J , the total parity and time
reversal, we can find the behavior of F (k_L) under P and T
[applied to the rest states in (17), y P and J = T]. Under
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P and T, ?; is even while ‘j—"a is odd, so one finds that
il imd imd
Fa(kex) is invariant under Pe Y and Te Y. Since 7:“
has the opposite behavior under 7 but the same under &/ : Fa5(kgx)
inJ imJ
is odd under Pe Y and even under Te y

There is also the condition, derivable from (IL 31), that
aFa(kgx)/ak at k = g rlxzztve |aJ| = 1 between states of equal mass,
and other conditions™’ ™" on the higher moments derivable from (17).

Now that we have the relativistic requirements on F (k )
and i (k ), let us see how to satisfy the algebra itself, (1. 16)
the non—convarlant formalism. The simplest non-trivial solution
is (1) already mentioned. In this case the SU(3) '""charges" Fa(ﬁ)
are just % A,» which generate the representation 3 of SU(3). The
system therefore consists of single-quark states, the number of
states possible for each kind of quark depending on the complexity
of the quantum-mechanicam space on which the SU(3)-independent
operators h and w act. In other words, (1) describes a single-
quark with a number of excited states (provided, of course, we can
find h, w, and M such that the angular condition is satisfied).

Since we have not found isolated quarks in nature but do
have mesons and baryons, we should look for more complicated
solutions of (II. 16) which give SU(3) octets, decuplets, and so on.
Here we use the quark model, which has met with some success in
describing cross sections and masses of the hadrons. In this model
the hadrons have an internal structure which is mathematically
describable by saying that they are made out of quarks and anti-
quarks bound together. Let )\;i) be the SU(3) matrix for the ith

component particle; if this co