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ABSTRACT 

This thesis has two basic themes: the investigation of new experiments 

which can be used to test relativistic gravity, and the investigation of new 

technologies and new experimental techniques which can be applied to make 

gravitational wave astronomy a reality. 

Advancing technology will soon make possible a new class of gravitation 

experiments: pure laboratory experiments with laboratory sources of non

Newtonian gravity and laboratory detectors. The key advance in techno1ogy 

is the development of resonant sensing systems with very low levels of dissi

pation. Chapter 1 considers three such systems (torque balances, dielectric 

monocrystals, and superconducting microwave resonators), and it proposes 

eight laboratory experiments which use these systems as detectors. For each 

experiment it describes the dominant sources of noise and the technology 

required. 

The coupled electro-mechanical system consisting of a microwave cavity 

and its walls can serve as a gravitational radiation detector. A gravita~ 

tional wave interacts with the walls, and the resulting motion induces 

transitions from a highly excited cavity mode to a nearly unexcited mode. 

Chapter 2 describes briefly a formalism for analyzing such a detector, and 

it proposes a particular design. 

The monitoring of a quantum mechanical harmonic oscillator on which a 

classical force acts is important in a variety of high-precision experiments, 

such as the attempt to detect gravitational radiation. Chapter 3 reviews 

the standard techniques for monitoring the oscillator; and it introduces a 

new technique which, in principle, can determine the details of the force 

with arbitrary accuracy, despite the quantum properties of the oscillator . 

The standard method for monitoring the oscillator is the "amplitude-
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and-phase" method (position or momentum transducer with output fed through 

a linear amplifier). The accuracy obtainable by this method is limited by 

the uncertainty principle. To do better requires a measurement of the type 

which Braginsky has called "quantum nondemolition." A well-known quantum 

nondemolition technique is "quantum counting," which can detect an arbi-

trarily weak force, but which cannot provide good accuracy in determining 

its precise time-dependence. Chapter 3 considers extensively a new type 

of quantum nondemolition measurement - a "back-action-evading" measurement 

of the real part x
1 

(or the imaginary part x
2

) of the oscillator's complex 

amplitude. In principle x
1 

can be measured arbitrarily quickly and arbi-

trarily accurately, and a sequence of such measurements can lead to an 

arbitrarily accurate monitoring of the classical force. 

Chapter 3 describes explicit gedanken experiments which demonstrate that 

x
1 

can be measured arbitrarily quickly and arbitrarily accurately, it con-

siders approximate back-action-evading measurements, and it develops a theory 

of quantum nondemolition measurement for arbitrary quantum mechanical systems. 

In Rosen's "bimetric" theory of gravity the (local) speed of gravita-

tional radiation v is determined by the combined effects of cosmological 
g 

boundary values and nearby concentrations of matter. It is possible for v 
g 

to be less than the speed of light. Chapter 4 shows that emission of gravi-

tional radiation prevents particles of nonzero rest mass from exceeding the 

speed of gravitational radiation. Observations of relativistic particles 

place limits on v and the cosmological boundary values today, and observa
g 

tions of synchrotron radiation from compact radio sources place limits on 

the cosmological boundary values in the past. 
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INTRODUCTION 

Recently I talked with my nephew, who lives in Madison, Wisconsin, on 

his third birthday. He surprised me when he abruptly began the conversation 

by asking, "Do you have any whales in California?" After a moment trying 

to figure out where that question had come from, I remembered that I had 

described to him, during a visit to Madison a couple of months earlier, the 

migration of the gray whale down the California coast. I then assured him 

that we do indeed have whales in California. We exchanged a few pleasantries 

about the peculiar way whales breathe, and he then terminated the conversa

tion as abruptly as it had begun. 

His parents have since reported to me that he still talks about the 

whales in California. Although he has never seen a whale, he is fascinated 

by their great size. They are the feature of California which has caught 

his attention. One hesitates to speculate about his vision of California; 

perhaps he sees a neighborhood not unlike his own in Madison, but with a 

whale in every backyard. 

This three-year-old's vision of California is in some ways similar to 

the modern astrophysicist's view of the Universe. Observations over the 

last fifteen years have shown the Universe to be a far more violent place 

than had previously been thought. The astrophysicist today is confronted 

by a zoo of exceedingly luminous objects, such as quasars, compact radio 

sources, and BL Lac objects. In many of these objects the ultimate source 

of energy lies in a very small region at the center of the source. Ten 

years ago one scarcely dared suggest that this compact energy source might 

contain a massive black hole; today one scarcely dares suggest otherwise. 

Although the modern astrophysicist cannot with complete confidence say 
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that he has "seen" a black hole, he is fascinated by their strong gravita

tional field, which makes them natural candidates for supplying the enormous 

amounts of energy required to power quasars and other highly luminous 

objects. Black holes have certainly caught the attention of astrophysicists, 

and they have been incorporated into a new vision of the Universe - a 

Universe with a black hole at the center of every quasar and compact radio 

source. 

One wonders how time will affect these two visions - the three-year

old' s vision of a California thickly populated by whales and the astrophysi

cist's vision of a Universe thickly populated by massive black holes. Both 

the three-year-old and the astrophysicist will have to search for new 

information, which will almost certainly modify their respective visions. 

The three-year-old will easily obtain the necessary information as he grows 

older. The astrophysicist is likely to find his search more difficult; he 

cannot even say with certainty where or how he ought to look. Much, if not 

most, of his information will continue to come from observations in various 

parts of the electromagnetic spectrum. However, he may turn to experimental 

gravitation to provide additional, perhaps crucial, information. Indeed, 

information from experimental gravitation may help to resolve many of the 

puzzles of modern astrophysics. 

Today the astrophysicist often encounters phenomena in which strong 

gravitational fields play an important role. Quasars and other highly 

luminous objects, perhaps powered by black holes, constitute one class of 

such phenomena. Other examples include the collapse of stars to form 

neutron stars and black holes; the interactions of a new-born neutron star 

or black hole with its environment; and the evolution of dense star clusters 

(globular clusters and galactic nuclei), which may lead to formation of a 
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black hole. Faced with describing these phenomena, the astrophysicist can 

anticipate that experimental gravitation will provide important information 

in two distinct, but related ways: 

(i) Strong-field phenomena cannot be analyzed using Newton's theory of 

gravity. A relativistic theory of gravity must be used, and the theory 

chosen is almost always Einstein's general theory of relativity. Future 

experiments will test general relativity with increasing accuracy; and if 

those experiments confirm general relativity, they will increase the astro

physicist's confidence in using general relativity to analyze strong-field 

phenomena. 

(ii) The catastrophic events which lead to formation of strong-field 

sources, and which may accompany subsequent interactions of the source with 

its environment, are usually veiled by surrounding matter. This obscuring 

veil prevents electromagnetic radiation, and perhaps even neutrinos , from 

escaping directly from the source. Thus no form of electromagnetic astronomy, 

nor even neutrino astronomy, can peer directly into the guts of these sources . 

Only gravitational waves escape unhindered. Future gravitational wave detec

tors will be able to monitor the details of these gravitational waves. By 

ripping away the veil surrounding strong-field sources, gravitational wave 

astronomy will provide information that cannot be obtained in any other way. 

This thesis consists of four chapters, each of which is a paper which 

has been published or which has been submitted for publication. Each paper 

reports on a particular line of research which I have pursued (in two cases 

with collaborators). Thus each chapter is self-contained; each contains 

its own introductory material and its own footnotes, figures, and references. 

However, the four chapters are not unrelated. They are unified by their 

concern with the above two themes: the investigation of new experiments 
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which can probe more deeply into the µature of relativistic gravity, and 

the investigation of new technologies and new experimental techniques which 

can be applied to make gravitational wave astronomy a reality. 

In this Introduction I give an overview of each of the four chapters. 

For each chapter I motivate the research described therein, give the main 

results of that research, and direct the reader to appropriate portions of 

each chapter where detailed analyses can be found. In addition, since two 

of the chapters (Chapters 1 and 3) involved collaborations with other authors, 

I describe briefly my particular contributions to those chapters. 

* * * * * 
Gravitation physicists are in some ways the paupers of physics. Unlike 

physicists in other fields, who are often overwhelmed by a wealth of experi

mental data, gravitation physicists have always been confronted by a dearth 

of data. For some this scarcity of experimental evidence is a blessing. 

Like a mendicant friar of medieval times, whose vow of poverty liberated his 

spirit to soar closer to God, these physicists find that the paucity of 

gravitation experiments liberates their theoretical flights of fancy to soar 

into realms completely detached from the mundane world of experiment. Other 

gravitation physicists react differently to their poverty-stricken condition. 

These physicists embark on self-help programs; they spend long (and usually 

fruitless) hours trying to dream up new experiments. Chapter 1 reports on 

one such self-help program - a search for laboratory experiments to test 

relativistic gravity. 

Traditionally gravitation physicists have looked to astrophysical 

systems to provide the "laboratory" for their experiments. Unfortunately, 

most such systems are so complicated by nongravitational physics that a 
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"clean" test of gravitational effects is impossible. As a result, until 

recently almost all tests of relativistic gravity were restricted to one, 

reasonably clean "laboratory" - the solar system. A few years ago another 

potential relativity "laboratory" - the binary pulsar - was discovered. 

Although there remain some doubts about its "cleanness," it has already 

provided useful information: observations of the decrease of its orbital 

period provide indirect evidence for emission of gravitational radiation as 

predicted by general relativity (see reference 14 of Chapter 4). 

Even these two "clean" systems have drawbacks. Nature does not design 

even its best laboratories with the needs of terrestrial gravitational ex

perimenters in mind. The experimenter can do only those experiments which 

fortuitous astrophysical circumstances allow. How much nicer it would be 

to do experiments entirely in an earth-based or near-space laboratory, with 

both the source and detector of gravity under the control of the experimenter! 

Such purely laboratory experiments have been brought close to the realm of 

possibility by recent technological developments. The key advance has been 

the development of resonant detectors (harmonic oscillators) with very low 

levels of dissipation. Chapter 1 (Sec. II) discusses three such detectors: 

(i) torque-balance systems made, for example, from fused-quartz or sapphire 

fibers at temperatures~ 0.1 °K; (ii) massive dielectric monocrystals at 

millidegree temperatures; and (iii) microwave resonators with superconducting 

mirrors. 

One type of laboratory experiment looks for post-Newtonian gravitational 

effects. Typically such an experiment is designed as follows . A laboratory

size mass is set into motion (by rotation or vibration) so that it produces 

in its vicinity a "post-Newtonian gravitational field" (e.g., the Newtonian

type gravitational fields produced by kinetic energy or pressure, or the 
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magnetic-type gravitational fields produced by momentum). The motion of 

the source mass is modulated in such a way that the desired post-Newtonian 

signal drives resonantly the oscillations of the detector, and the experi-

menter monitors the resulting changes in the detector's motion. 

Such experiments are no panacea. They can examine only certain types 

of post-Newtonian effects. For a typical laboratory source of gravity (size 

L ~ 50 cm, 6 5 -1 mass M ~ 10 g, rotational or vibrational velocity v ~ 10 cm-sec ) , 

some post-Newtonian effects are completely negligible. For example, there 

is no hope of seeing nonlinear gravitational effects. The only post-

Newtonian effects one can hope to see are the gravitational influences of 

velocity and stress. Post-Newtonian experiments are further constrained by 

the problem of "Newtonian noise." The Newtonian gravitational field of a 

laboratory source produces effects which are ~ priori much larger (usually 

2 2 11 by a factorNC /v ~ 10 ) than the largest post-Newtonian effects. Somehow 

one must design the experiment so that, at the detector frequency, Newtonian 

effects are smaller than the post-Newtonian signal. This requirement is a 

severe limitation on the possible experiments. The issue of what types of 

post-Newtonian effects can be measured in laboratory experiments, with par-

ticular attention to the Newtonian-noise problem, is discussed in Sec. III.A. 

The bulk of Chapter 1 (Secs. IV-VI) is devoted to a description of 

eight laboratory experiments which have a chance of beating Newtonian noise. 

(Four of the experiments do not look for post-Newtonian effects; such ex-

periments are not so seriously troubled by Newtonian noise.) For each of 

the experiments the dominant sources of noise are discussed. Particular 

attention is paid to the problem of thermal noise (Nyquist noise) in the 

detector and the stringent demands it places on the properties of the de-

tector, and to the problem of isolating earth-based experiments from the 
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disturbing effects of seismic noise. 

Chapter 1 is the result of a collaboration with Vladimir B. Braginsky 

and Kip S. Thorne. Braginsky and Thorne devised the experiments; I inves

tigated their feasibility. 

* * * * * 

One of the resonant detectors considered in Chapter 1 is a microwave 

cavity with superconducting walls. The response of a microwave cavity to an 

arbitrary time-changing gravitational field is quite complicated: the gravi

tational field interacts directly with the electromagnetic field inside the 

cavity and with the cavity walls; and the electromagnetic field and the walls 

interact at the boundary between the two. I have developed a formalism to 

describe this complicated electro-mechanical system in the presence of a 

weak gravitational field. Chapter 2 briefly describes the formalism and 

then sketches an application of the formalism to analyze a gravitational 

wave detector which uses a microwave cavity. 

Chapter 2 is only the tip of the iceberg as far as applications of this 

formalism go. The formalism can be used to analyze a variety of gravi.tation 

experiments, such as the one described in Sec. V of Chapter 1. However, its 

greatest utility may lie in its ability to analyze microwave cavities with 

moving walls. The formalism can be used to analyze a cavity whose wall s 

move in some predetermined fashion. It can also be used to analyze the 

coupled system consisting of the electromagnetic field inside the cavity 

and the walls of the cavity; in this case the field and walls interact at 

the boundary between the two, the motion of the walls affecting the field 

and the field exerting a force on the walls. 

I have not yet had time to write a detailed description of the formalism, 
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but I intend to do so. This future publication will also include applica

tions of the formalism. 

* * * * * 

Chapter 3 forms the bulk of the thesis, and it contains what I believe 

are its most important results. It considers the problem of monitoring a 

weak, classical force which acts on a simple harmonic oscillator. 

This problem arose in the context of attempts to detect gravitational 

radiation. One type of gravitational wave detector, which was used in the 

past and which is still being refined and improved for use in the future, 

is a mechanical resonant detector (Weber-type detector). In the past such 

detectors were usually massive cylinders of aluminum, but some future detec

tors will employ high-Q monocrystals of sapphire or silicon, or massive 

cylinders of niobium. A gravitational wave incident on the detector inter

acts with the fundamental mode of the detector (harmonic oscillator) and 

drives its oscillations. Theorists can estimate (with considerable uncer

tainty!) the size of gravitational wave bursts which sweep by the earth 

with reasonable frequency. These waves are highly classical (i.e., many 

gravitons pass through a square wavelength during the burst), but they are 

coupled. so weakly to the detector that they deposit one, or even less than 

one, quantum in an initially unexcited detector. If the detector's oscilla

tions are monitored using standard techniques, such waves can be detected 

barely, if at all - even in principle. It is here that the new techniques 

introduced in Chapter 3 come to the rescue. In principle they allow the 

gravitational waves to be monitored with arbitrary accuracy, no matter how 

weak they may be, so long as the monitoring is not so accurate as to reveal 

the quantum nature of the radiation itself. 
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The origin and resolution of this problem can be explained quite simply . 

(A more detailed version of the following argument is given in Sec. II . B.) 

A harmonic oscilla.tor is characterized by its position x, momentum p, mass 

m, and angular frequency w. Classically the state of the oscillator is 

specified by a point in a ''phase plane'' whose coordinates are x and p/mw 

(see Fig, 1 of Chapter 3, p, 204). In the absence of forces this point 

rotates clockwise with angular velocity w. An equivalent description uses 

I coordinates xl and x2 wnich rotate relative to the (x,p/mw) coordinates: 

x
1 

= x cos wt (p/mw) sin wt 

x2 = x sin wt + (p/mw) cos wt 

The quantity x
1 

+ iX2 = (x + ip/mw) eiwt is the oscillator's complex ampl itude . 

In the (X
1

,x2) phase plane the oscillator's state is specified classically 

by a point which is stationary in the absence of forces. 

Quantum mechanically the oscillator's state cannot be a single point. 

The Heisenberg uncertainty principle, 6x 6p/mw ~ -ti./2mw, forbids both x and 

p to be specified with no uncertainty. An equivalent uncertainty relation 

holds for x
1 

and x2 : 6X16X2 :<: -ti/ 2mw . These uncertainty relations mean that 

the oscillator's sharp classical state is spread out into a fuzzy quantum 

mechanical "error box" with area .2: rrfi/ 2mw (see Fig. 1 of Chapter 3, p. 204). 

The standard method of monitoring the oscillator is to couple it to a 

position transducer whose output is averaged over many oscillator periods 

in order to pick out the component of oscillation at frequency w. This 

standard method attempts to determine both x1 and x
2 

with equal precision; 

equivalently, it attempts to determine both the amplitude and phase of the 

oscillator. The uncertainty principle implies that the best accuracy this 

1/2 "amplitude-and-phase" method can achieve is 6X1 = 6X2 = ("lf/2mw) - the 

"st~ndard quantum limit" for amplitude-and-phase measurements. One can view 
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this standard limit as being produced by "back-action'' noise from the 

measuring apparatus; during the measurement this noise perturbs x
1 

and x
2 

by 

equal amounts of order (ii/2mw) 112 . 

The amplitude-and-phase method can detect a classical force on the 

oscillator only if the force changes x1 or x2 by an amount ~ (1'i./2mw) 112 (see 

Sec. II.C). A force of this size would deposit approximately one quantum 

in an oscillator which begins in the ground state. For a gravitational wave 

3 detector with mass m ~ 10 tons and frequency w/2rr ~ 10 Hz , the standard 

1 . . . . 1 10'""19 qua.ntum ;i.m;i.;t :r.s approx;r;mate y cm, To see a reasonable number of 

bursts, one must look out to the Virgo cluster of galaxies, These bursts, 

produced by stellar collapses, are predicted to change the complex amplitude 

-19 
of such a detector by about 10 cm. Thus these waves are at best only 

mat."ginally observable by the amplitude.,-and-phase method, 

The problem with ampl;i.tude..-and.,-phase measurements can be illustrated in 

another way. Suppose a measurement of position x = x
1 

at t = 0 is much more 

precise than the standat."d quantum limit, Then, immediately after the measure-

ment, the oscillator's state is characterized by a long, thin error ellipse 

[Llx«if,./2mw) 1 / 2 «Llp/mw; see Fig. 3(a) of Chapter 3, p. 206]. As time 

passes the error ellipse rotates clockwise; as it rotates, the initial large 

uncertainty in p feeds back and forth between x and p. An amplitude-and-
........ 

phase measurement, which averages over many rotations of the ellipse, will 

have accuracy much worse than the standard quantum limit, unless the initial 

error ellipse was a circle with radius (ii/2mw) 112 . 

One can maintain the precision of the initial measurement of x . However, 

to do so, one does not couple continuously to x; instead one monitors con-

tinuously the quantity that characterizes the thin dimension of the ellipse. 

That quantity is x1 . The crucial difference between coupling to x and 
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coupling to x1 is the following: the error ellipse rotates in the (x,p/mw) 

phase plane (initial uncertainty in p feeds onto x as time passes), bu t it 

remains at rest in the (X
1
,x2) phase plane (initial uncertainty in x

2 
does 

not feed onto x
1
). 

Chapter 3 discusses and develops the basic idea of measuring x
1

• There 

it is shown that measurements of x
1 

can be arbitrarily quick and arbitrarily 

accurate in principle, that the measurements can be repeated as often as 

desired, and that a sequence of such measurements can lead to an arbitrarily 

accurate monitoring of a classical force (see Sec. II.E). In Chapter 3 

measurements of x
1 

are referred to as "back-action-evading" measurements, 

because a properly designed measurement allows x
1 

to evade completely back

ac tion noise from the measuring apparatus, at the expense of increasing the 

back-action on x2. 

Section III of Chapter 3 describes gedanken experiments which demon

strate that x
1 

can be measured arbitrarily quickly and arbitrarily accurately. 

In these experiments the measuring apparatus must be coupled precisely to 

x
1

• This precise coupling requires both a position transducer and a momentum 

transducer coupled to the oscillator. The couplings of the two transducers 

must be modulated sinusoidally, each with the appropriate phase; and the 

outputs of the two transducers must be added to produce a total output pro

portional to x
1

. Designs for measuring apparatuses coupled precisely to x
1 

are described in detail in Appendix B. For a given measurement time the 

strength of the coupling to x
1 

determines the accuracy of the measurement; 

for arbitrarily strong coupling the measurement can be arbitrarily accurate. 

The momentum transducer is constructed by combining a velocity transducer 

with a negative capacitor or negative spring. Appendix A gives examples of 

negative capacitors and clarifies the role they play in a momentum transducer. 
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The modulated transducer couplings are provided by an external, classical 

generator. Appendix B demonstrates that a classical generator can be 

realized as a (quantum mechanical) harmonic osc i llator excited in an arbi

trarily energetic, coherent state, and it discusses the errors introduced 

when the generator is not completely classical. Appendix C analyzes in 

detail a sequence of measurements of x
1

, including the "reduction of the 

wave function" at the end of each measurement; particular attention is paid 

to the behavior of xl and x2 during a sequence. 

One can avoid the use of two transducers by making "stroboscopic measure

ments" of x
1 

(see Sec. II.F.2), in which one measures position (or momentum) 

at half-cycle intervals. Alternatively, one can make "continuous, single

transducer" measurements of x
1 

(see Sec. II.F.3) by modulating appropriately 

the output of a single transducer (position or momentum), and then filtering 

the output to pick out the information about x
1 

and to reject information 

about x
2

• Continuous, single-transducer measurements are useful in the case 

of weak coupling. In this case long measurement times are required to achieve 

good accuracy, and continuous, single-transducer measurements are almost as 

good as perfectly coupled, two-transducer measurements. Appendix D gives 

a detailed quantum mechanical analysis of a simple type of continuous, single

transducer measurement. 

The observables x
1 

and x2 are special observables for a harmonic oscil

lator. Section IV identifies the special features of x
1 

and x2 and gener

alizes those features to arbitrary quantum mechanical systems. The resulting 

special observables are called quantum nondemolition (QND) observables. 

There are two different, but closely related ways to characterize a 

quantum nondemolition observable . The first characterization focuses on the 

uncertainties which are built into a quantum mechanical description of the 
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measured system. It characterizes a QND observable as one that can be 

measured repeatedly, with the result of each measurement being completely 

predictable from the result of an initial, precise measurement. For most 

observables one cannot make such a sequence of measurements. An initial , 

precise measurement produces huge uncertainties in observables which do not 

commute with the measured observable; in general, these uncertainties feed 

onto the measured observable as the system evolves, t hereby ruining the 

accuracy of a subsequent measurement . To make repeated measurements whose 

results are completely predictable, one must measure an observable that does 

not become contaminated by uncertainties in noncommuting observables. Sec

tion IV.A uses this first characterization to define quantum nondemolition 

observables, and it derives from the definition the fundamental property of 

a QND observable: a system which begins in an eigenstate of a QND observable 

remains in an eigenstate of that observable. 

The second characterization focuses on the quantum mechanical nature of 

the measuring apparatus. It characteri zes a QND observable as one that can 

be completely shielded from the back~action noise of the measuring apparatus. 

Any observable can be free of direct back-action from the measuring appara

tus, provided the interaction between the system and the measuring apparatus 

;is des;igned properly (measur ed observable the only observable of the system 

whi.ch appears ;in the i.nteraction Hamiltonian), However, for most observables 

the measuring apparatus will act back indirectly through observables which 

do not commute with the measured observable, Thus this second characteriza

tion is closely related to the first; the essential feature of both is that 

a QND observable is isolated from observables with which it does not commute. 

Section IV.B proves that any QND observable can be shielded from noise in 

the measuring apparatus, and it clarifies the relationship between the two 
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characterizations. 

Chapter 3 is a paper written with four other authors - Kip S. Thorne, 

Ronald W. P. Drever, Vernon D. Sandberg, and Mark Zimmermann. Kip and I 

conceived the idea of measuring x
1 

while under the stress of lunch at the 

Greasy (Chandler Dining Hall). Since that humble beginning the idea has 

been extensively elaborated by the five authors . Chapter 3 is the first of 

two papers reporting our results. (This first paper concentrates on issues 

of principle; the second will consider practical issues . ) I have no qualms 

about associating my name with any part of the paper. However, three major 

parts of the paper - Section IV and Appendices C and D - are entirely my 

work . The ideas, the analysis, and the prose of these three parts are due 

to me. 

* * * * * 

Observations of ultrarelativistic particles might seem to have nothing 

to do with gravity, but in fact such observations can place strong constraints 

on some alternative theories of gravity - theories which allow the speed of 

gravitational radiation to differ from the speed of light. In such theories 

the speed of gravitational radiation is determined by the combined effects 

of the overall structure of the Universe and the presence of nearby concen

trations of matter. It is possible for the speed of gravitational radiation 

to be less than the speed of light. A particle which exceeds the speed of 

gravitational radiation ought to emit a shock wave of gravitational Cherenkov 

radiation. In the absence of some small-scale structure to blur the shock 

front, the energy emitted ought to diverge, thus preventing particles from 

exceeding the speed of gravitational radiation. Observations of ultrarela

tivistic particles then place limits on the speed of gravitational radiation, 
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and these limits in turn constrain the theory's cosmological models. 

Chapter 4 investigates these ideas in the context of Rosen's "bimetric 

theory" of gravity - a theory which can be made to agree with all solar 

system tests. Section 2 lays the foundation for analyzing the radiation 

emitted by weak-field systems in Rosen's theory. Section 3 analyzes the 

radiation emitted by particles moving at speeds near the speed of gravita

tional radiation. This analysis leads one to the tentative conclusion (ten

tative mainly because quantum corrections might cut off the radiation spec

trum at high frequencies) that particles of nonzero rest mass cannot exceed 

the speed of gravitational radiation. Section 4 uses various observations 

to place limits on the speed of gravitational radiation today and in the 

past. 

* * * * * 

The new experiments and new experimental techniques discussed in this 

thesis will not be easy to implement. In particular, it is likely that many 

years of effort will be required to detect gravitational waves, and that 

some further years might be required to make gravitational wave detection a 

working tool of astronomy. The three-year-old, whose misimpression of 

California began this Introduction, will have corrected his misimpression 

long before gravitational waves are detected. As he grows up, developments 

in gravitational wave detection will proceed . Perhaps his generation of 

physics graduate students will be the first to reap the benefits of those 

developments - the first to participate in an exciting new era in which 

gravitational wave astronomy provides useful information about the nature 

of the Universe . 
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CHAPTER 1 

LABORATORY EXPERIMENTS TO TEST RELATIVISTIC GRAVITY 

This chapter is a paper by Vladimir B. Braginsky, Carlton M. 
Caves, and Kip S. Thorne. It was published in the 1977, April 15, 
issue of Physical Review Q_, volume 15, pages 2047-2068. 
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Carlton M. Cavest and Kip S. Thorne 
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(Received 3 January 1977) 

Advancing technology will soon make possible a new class of gravitation experiments: pure laboratory 
experiments with laboratory sources of non-Newtonian gravity and laboratory detectors. This paper proposes· 
seven such experiments; and for each one it describes, briefly, the dominant sources of noise and the 
technology required. Three experiments would utilize a high- Q torque balance as the detector. They include 
(i) an "Am~re-type" experiment to measure the gravitational spin-spin coupling of two rotating bodies, (ii) a 
search for time changes of the gravitation constant, and (iii) a measurement of the gravity produced 
by magnetic stresses __ and energy. Three experiments would utilize a high-Q dielectric crystal as the 
detector. They include (i) a "Faraday-type" experiment to measure the "electric-type" gravity produced by a 
time-changing flux of "magnetic-type" gravity, (ii) a search for "preferred-frame" and "preferred-orientation" 
effects in gravitational coupling, and (iii) a measurement of the gravitational field produced by protons moving 
in a storage ring at nearly the speed of light. One experim<mt would use a high- Q toroidal microwave cavity 
as detector to search for the dragging of inertial frames by a rotating body. 

I. INTRODUCTION 

Until now, almost all tests of relativistic gravity 
in the solar system have involved probes of the 
gravitational fields of the Sun, the Earth, or the 
Moon. 1 Such probes have included light deflection 
and quasar radio-wave deflection by the sun, the 
Shapiro time delay of radio signals passing near 
the Sun, perihelion shifts of planetary orbits, 
laser ranging to the Moon in search of the Nordt
vedt effect, searches for sidereal periodicities in 
earth tides, gravitational red-shift in the earth's 
gravitational field, Eotvos- Dicke experiments in 
the fields of the Earth and Sun, and others. 2 

The purpose of this paper3 is to point out that 
advancing technology will soon make possible a 
new class of experiments: pure laboratory ex
periments, with laboratory sources of post-New
tonian gravity and laboratory detectors. The lab
oratory may be earthbound, or it may be in an 
earth-orbiting satellite where background noise 
is much reduced. In either case, the experi
menter's control over the source of gravity is the 
essential new feature in these experiments. 

The key advance in technology that will make 
possible these new experiments is the development 
of sensing systems with very low levels of dis
sipation. In Sec. II we describe three such systems 
that could be used in gravitation experiments: 
torque-balance systems made, for example, from 
fused-quartz or sapphire fibers at temperatures 
s 0.1°K, massive dielectric monocrystals cooled 
to millidegree temperatures, and microwave 
resonators with superconducting walls. In Sec. 

15 

Ill we briefly review the Nordtv:edt-Will4 param
etrized-post-Newtonian (PPN) formalism for com
paring gravitation experiments with theory, and 
the types of phenomena which occur in post
Newtonian gravity; we argue that because of 
"noise" from Newtonian gravity, the only post
Newtonian phenomena that look promising for 
laboratory measurement are magnetic-type gravita
tion and preferred-frame and preferred-orientation 
effects; and we present a truncated version of the 
PPN formalism specially suited to the analysis of 
magnetic-type gravity. Section IV describes four 
experiments which one might perform using a sen
sitive torque balance: (i) a gravitational "Amp~re" 
experiment to measure the spin- spin gravitational 
coupling of two laboratory bodies ("magnetic- type" 
gravitational effect), (ii) a search for changes with 
time of the gravitational constant (non-post-New
tonian experiment), (iii) an improved-precision 
El>tvCls experiment (non-post-Newtonian experi
ment), and (iv) a m~asurement of the gravity pro
duced by magnetic str esses and energy (non-post
Newtonian experiment). Section V describes the 
use of a toroidal microwave resonator to measure 
the dragging of inertial frames by a rotating body 
("magnetic-type" gravitational effect). Section VI 
describes three experiments that would use cooled 
dielectric monocrystals: (i) a gravitational "Fara
day" experiment to measure the electric-type 
gravity produced by a time-varying flux of magne
tic-type gravity, (ii) experiments to test for the 
existence of a preferred reference frame and pre
ferred orientations in the universe, and (iii) an 
experiment to measure the gravitational force pro-

Copyright© 1977 by The American Physical Society 
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Support 
Bar 

Suspension 
System 

FIG. 1 . A torsion oscillator with test masses m, on 
one of which there acts a post-Newtonian force F at 
right angles to the support bar. The suspension system 
could be a support fiber or an electric or magnetic sup
port system with very high Q and very small restoring 
torque. 

duced by particles moving at nearly the speed of 
light (non-post-Newtonian experiment). 

II. SYSTEMS WITH VERY LOW DISSIPATION 

A. Torsion oscillator 

The typical source of a laboratory post-New
tonian gravitational field might be a mass M- 105 g 
with equatorial radius R- 20 cm, rotating with 
equatorial velocity v-5 x 104 cm/sec. Such a 
generator would produce post-Newtonian gravita
tional accelerations in its vicinity of magnitude 

(F) ( 16kT) 1
'

2 

m Brownian"" m T* If 

aPN a (F/m)PN.,,, (G i M/R2)(v/c)2 

""1x10"17 cm/sec3
• (2 .1) 

Here F is the force that acts on a sensor, and m 
is its mass. 

One attractive type of sensor for such a small 
force is a torque balance (torsion oscillator) 
shown in idealized form in Fig. 1. In a post-New
tonian experiment one would modulate the source 
of gravity at the eigenperiod T0 of the oscillator, 
thereby producing after a time T» r0 (but T« T"' 

= damping time of oscillator) a net change in the 
oscillation amplitude of the masses 

(Ax ) = (F /m)PN To T 
O PN 87T 

<><4x10"9 cm if T0 ""' 104 sec, T-°' 106 sec. 

(2.2) 

Such a displacement of a macroscopic mass 
(m ""30 g) can be detected without serious difficulty 
by a variety of techniques (see Sec. 2 of the book 
by Braginsky and Manukin, 5 cited henceforth as 
BM). 

The three most serious problems for a torque
balance sensor of post- Newtonian forces are 
fluctuational forces (Brownian noise) in the sus
pension system, time-varying gravity due to mo
tion of nearby people , animals, and vehicles, and 
seismic "noise" at the eigenfrequency of the torque 
balance. 

The fluctuational forces depend on the tempera
ture T of the torque-producing suspension system, 
the amplitude damping time T* for torsion oscil
lations, the duration 1- over which the forces act 
("measurement time"), and the mass m: 

""lx 10"18 cm/sec2 if m = 30 g, T= 0.1 °K, r= 106 sec, T* = 1018 sec. (2.3) 

[Equation (2.3) is the Nyquist theorem in a form 
valid for T0 « r «T"'.] The parameters suggested 
here are all very reasonable from the viewpoint of 
present technology except the damping time T* 

= 1013 sec, which corresponds to a mechanical Q 
of 

Q=rrr"' /T0 = 3 x 109 for r*= 1013 sec, T0 = 104 sec. 

(2.4) 

We expect that such damping times can be achieved 
within the next 2 to 5 years. Our reasons are 
these: (1) The present state- of- the-art result is 
T* - 1010 sec. An electrostatic suspension system 

constructed by Everitt, Fairbank, and their co
workers for use on board an Earth-orbiting space
craft has its dominant damping produced by resi
dual gas and is estimated to have T"' ~ 1x1010 

sec, 6 and the tungsten-wire suspens ion system 
used by Braginsky and Panov7 in their 1971 room
temperature Eotvos experiment is believed to 
have had T"' - 3 x 109 sec (though no attempt was 
made to measure it beyond setting the limit 
T* > 6 x 107 sec). (2) The suspension might be a 
fiber of fused quartz, for which losses decrease 
rapidly with decreasing temperature below 
T"" 10 °K, so that it is not unreasonable to expect 
T* ""'1013 sec at 0.1 °K. (3) One could use a 
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thin support fiber cut from a monocrystal of 
sapphire, for which (a) fundamental-mode oscilla
tions of a 1 kg cylinder at w0 ""' 105 rad sec-1 show 
Q ""'5x109 at 4.3 °K,8 (b) losses again decrease 
rapidly with decreasing temperature, (c) losses 
decrease with decreasing frequency , (d) losses 
are lower for torsion oscillations than for the mea
sured compressional oscillations, but (e) losses 
will be larger for a thin fiber than for a cylinder 
because of larger surface-area- to-volume ratio. 
(4) One could use a Meissner-effect suspension 

( 

1T )1/2 3m 
r•""' 2 µ.kT 2nS 

system for which the attainable Q should be rough
ly comparable to that in a superconducting micro
wave cavity at a given frequency w0 (Q- 1010 to 
1012 for present state of the art9), and for which 
the Q should increase with decreasing w0 • (5) 
Damping due to residual gas in the vacuum cham
ber can readily be kept under control; the damping 
time for two spherical test masses m with a total 
projected area S being buffeted by gas molecules 
of mass µ. , number density n, and temperature T 
would be 

""'1 x 1013 sec for m = 30 g, S = 20 cm2
, µ. = 7 x 10-24 g, T = 1 °K, n = 1 x 107 cm-3 (pressure= 10-12 torr). 

(2.5) 

Time-dependent gravity gradients due to the motion of nearby people, animals, and vehicles can be kept 
below the post-Newtonian signal by (i) using a torsion pendulum whose quadrupole and octupole coupling 
to gravity gradients is small, and (ii) performing the experiment in a well...;isolated place, e.g., 
in a sealed, animal-free mine. With modest effort one could construct a torsion pendulum with the 
relevant quadrupole and octupole moments reduced from their usual values of -mb2 and -mb3 , to -10-4mh2 

and -10-4mb3
, where m is the mass on each arm and b is the length of the arms. The torque-producing 

acceleration due to an object of mass M will be less than 10 percent of the post-Newtonian acceleration if 
the object is kept more distant than 

r~max[(10-4 0~:!:N ;)1'
3 ,(~7abP

3

N ;)1'
5

]""'max[(1oom)( 10~kg)1'
3

, (40m)( 10i;1kg)1's] forb=lOcm. 

The first and second terms represent the quadru
pole and hexadecapole couplings, respectively, 
and the factor -r0/ 7 is a bandwidth correction. 
Thus, for M.,;; 1000 kg, an isolation radius of a 
few hundred meters is adequate. 

Seismic "noise" (earth vibrations) at angular 
frequency w0 ""'27T/T0 in the bandwidth ~w0 ""' 1/'r 
will produce accelerations of the torsion oscillator 
that could mask the post-Newtonian signal. Be
cause of the low frequency of the torsion oscilla
tor , these seismic accelerations cannot be re
moved by a passive filtering system. The seismic 
motions can be resolved into floor tilt, floor rota
tion, horizontal motion, and vertical motion. Tilt 
is a problem in the case of a fiber suspension sys
tem because it displaces the test masses relative 
to external, spatially varying force fields (elec
tric, magnetic, gravitational), and thereby leads 
to time-varying torques. Floor rotation will cause 
angular accelerations of the experimental appara
tus that directly mimic the post-Newtonian signal. 
In a perfect torsion oscillator with vanishing ini-

(2.6) 

tial amplitude, horizontal and vertical motions 
would produce no torques; but in any real system 
such motions will couple to the oscillator through 
imperfections and through nonlinearities such as 
Coriolis and centrifugal forces. 

The frequency region of interest, w0 - 10-3 rad/ 
sec, lies above the frequencies of tides and below 
the frequencies of the Ear th's normal modes. The 
data on Earth motions in this regime are not very 
reliable, and presumably the amplitude of the mo
tions varies greatly from one location to another. 
If we characterize the stochastic component of the 
rotational, horizontal, and vertical motions by 
mean-square angular, strain, and acceleration 
amplitudes per unit angular bandwidth 

J~01 = ((~c/>)2)/(rad sec-1), 

J~or = ((~/l)2)/(rad sec-1) , 

J~•r1 =((~)2) /(radsec-1), 

(2. 7a) 

(2. 7b) 

(2. 7c) 

then the observational data suggest, for quiet loca
tions, 10

• 
11 

J~0r- 4 x 10-10 sec(w/ 10-3 sec-1)-3 for 6 x 10"'' ::.; w ~ 6 x 10-3 sec-1 (2.8a) 

(2.8b) J~•rt- 6 x 10-12 sec(cm/sec2 ) 2 (w/10-3 sec- 1r 2 for 6 x 10-s.,;; w.,;; 6 x 10-2 sec-•. 
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There are no data on J~0t , but it may be reasonable to assume 

(2.8c) 

For the torsion oscillator of F ig. 1 the seismic rotations have the same effect as a sinusoidal force F 
acting on one of the masses m with amplitude 

(2.9a) 

If µhor is the dimensionless coupling parameter between horizontal accelerations at frequency w 0 and 
torque accelerations F Im, then horizontal seismic motions produce the same effect as a sinusoidal torque 
acceleration 

(F /m)hor = µhor(:\/27T)W 0
2 (27TJ !or /7)112

- 5 x 10-10 µhor cm/sec2 for A0 ""6000 km, 7"" 106 sec, w0 <><10-3 sec·1
• 

(2.9b) 

Here Ao is a characteristic wavelength, and A0 /27T is a characteristic coherence length for the horizontal 
strains of Eq. (2. 7b). Clearly Ao cannot be much larger than the radius of the Earth (the value chosen 
above) and it might be much smaller. If we similarly characterize the coupling to vertical seismic motions 
by a parameter µv&rt , then 

(F/m)wrt= µvert(27TJ~ert/7')1 12 -6X10-9 µvert cm/sec2 for 1'<><106 sec, W0 ""10"3 sec-1
• (2 .9c) 

These seismic effects appear to be huge com
pared to the tiny signal (F /m)PN ""10-17 cm/sec2 

that one wishes to measure. However, one might 
be able to circumvent them by very careful con
struction of the apparatus to achieve µhor - µv&rt 
- 10"6 , together with construction of an active anti
seismic platform that reduces rotational, hori
zontal, and vertical motions by at least one, two, 
and three orders of magnitude, respectively. 
Tilt-induced torques might be circumvented by a 
combination of antiseismic platform, shielding of 
the torsion pendulum from external electric and 
magnetic fields, and adjustment of the distribution 
of gravitating mass in the nearby laboratory. 

This discussion of seismic-induced torques is 
very incomplete. Any real torsion oscillator has 
a large number of mechanical degrees of freedom 
which can be excited by seismic noise , and which 
are coupled by nonlinearities , imperfections, and 
external force fields. To keep seismic- induced 
torques below the post-Newtonian signal, one must 
understand thoroughly the coupling of these degrees 
of freedom and bring it under control experiment
ally. 

That one can circumvent seismic "noise" in 
principle follows from the fact that it is not a true 
noise, i.e., it is not a stochastically fluctuating 
force originating in a key element of the apparatus. 
However, its circumvention on Earth may prove so 
difficult in practice that one will seek the quieter 
environment of an Earth-orbiting laboratory. 

8. Eigenvibrations of dielectric monocrystals 

Accelerations at the laboratory post-Newtonian 
level, (F/m)PN"" 1x10·17 cm/sec2

, should also be 

measurable with massive (m -10s to 105 g) dielec
tric monocrystals. Monocrystals of sapphire are 
particularly attractive, but quartz and others 
might also be suitable. In a post-Newtonian ex
periment one would modulate the source of gravity 
at an eigenperiod T0 of the crystal's vibrations, 
thereby producing after a time 1t » T0 (but 1' « r* 
=damping time) a net change in the oscillation am
plitude of the crystal 

""5x10-16 cm for r0 ""6x10·4 sec, 

7"" 106 sec. 

(2.10) 

This amplitude change is far larger than that 
which will be measured (-:;;; 10·17 cm) in the second
generation gravitational-wave antennas of the 
Fairbank- Hamilton group12 and of the Braginsky 
group.13 Moreover, the eigenfrequencies in the 
two experiments (post-Newtonian and gravitational
wave) are the same, but in the post-Newtonian ex
periment one can use a much longer time (7 PN 
""106 sec) to measure the amplitude change than in 
the gravitational-wave experiments (7ow<1 sec). 
Thus, the measurement of the post-Newtonian am
plitude changes should present no serious prob
lems. For example, an electromagnetic- resonator 
sensor for displacements in which the inductance 
or capacitance is modulated by the crystal vibra
tions , would produce a fluctuational "back-action" 
force on the crystal itself of only (BM,5 Sec. 5) 
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(F) 4(kTw)11 2 

m aeuor, Brownlu O!!' m~e o 

"'4 x 10-19 cm/sec2 for T 8 ""'4 °K, W 8 ""6 x 1010 sec·1, w0 ""' 104 sec"1, m ""'104 g, '""' 10s sec . 

(2.11) 

Here T 8 is the temperature of the electromagnetic sensor, w. is its angular frequency of oscillation, w0 

is the angular eigenfrequency of the crystal, m is the mass of the crystal, and 7- is the measurement time. 
This back-action force is far smaller than the post-Newtonian force (F/m)PN""' 1x10"17 cm/sec2

• 

Internal fluctuational forces in the crystal (Brownian-motion feeding of energy back and forth between 
various eigenmodes) have a magnitude governed by the crystal temperature T0 , the damping time r* 
= r0Q/rr for crystal vibrations, the time of measurement i', and the mass of the crystal m: 

(~)Brownian "'(!k?f~~ )1'
2 

"'2x10"18 cm/sec2 ifT0 ""10"3 °K, T*""2xl07 sec, m"'l04 g, '"'10°sec. (2.12) 

This fluctuating force of 2 x 10"18 cm/sec2 is ade
quately below the post-Newtonian level of 1x10-17 

cm/ sec2
• To achieve such a small fluctuating 

force we envision a 10 kg monocrystal of sapphire 
with an eigenperiod r0 "'6 x 10"4 sec, cooled to a 
temperature T0 -10·3 °K where its Q is ;.?1 x 1011 , 

and a measurement time of i'"" 106 sec. Such an 
installation should be achievable within the next 2 
or 3 years: (1) Monocrystals of sapphire with 
mass as large as 25 kg are now available com
mercially14; (2) Bagdasarov, Braginsky, and 
Mitrofanov8 have achieved a Q of 5 x 109 for a 1- kg 
sapphire with w0 =2.1x105 sec"1 at T0=4.3°K; (3) 
the Q of this same sapphire (with no improve
ments in polishing or suspension) should rise 
rapidly with decreasing temperature (the mea
sured increase between 77 °K and 4. 3 °K was 
Qcx:T0"

0
•

0
); (4) more massive sapphires should 

have higher Q's (one expects Qcx:w0•
1 roughly); 

(5) the theoretical Q for a pure, dislocation-free, 
impurity-free, perfectly polished, free-floating 
sapphire crystal is 

Q ""'(4C/p)/ KT0 a 2w 0 

-3x1015(T0 /°K)"4 (w0/l0
4 sec"1}"1 at T-£, 10°K, 

(2.13) 

where p is the density, Cp is the specific heat at 
constant pressure, K is the thermal conductivity, 
and a is the thermal-expansion coefficient [BM,5 
Eq. (9. 7) ]; (6) cooling to millidegree temperatures 
can be achieved by adiabatic demagnetization of 
paramagnetic salts (the Fairbank- Hamilton group15 

plan to use this technique to cool a metal gravita
tional-wave antenna with mass m - 5 x 106 g to 
millidegree temperatures). 

Seismic "noise" presents no serious problem 
for such a detector of gravitational forces. At its 
operating frequency (w0 ""' 104 sec"1) and bandwidth 

(Aw0""' 10"6 sec"1) one can filter out the seismic 
noise. This feature makes such a detector much 
more attractive than the low-frequency (w0 ""' 10"3 

sec"1) torsion oscillators of Sec. IIA. 

C. Microwave resonator with superconducting mirrors 

A third type of detector for post-Newtonian 
gravitational fields is a microwave resonator with 
superconducting mirrors, i.e., a superconducting 
cavity in which one excites electromagnetic trav
eling waves or standing waves. In such a detector 
the gravitational forces act on the electromagnetic 
waves, pushing them relative to the fixed walls of 
the cavity. 

Because electromagnetic waves are not slow. 
motion entities (they do not have v « c), the "post
Newtonian acceleration" aPN"" (GiM/R 2)(v/c)2 

""1x10·17 cm/sec2 is not a relevant concept in 
analyzing their response to gravity. In forth
coming papers, Caves16 analyzes in detail the in
teraction of a microwave resonator with gravity, 
and in Sec. V of this paper we shall describe an 
experiment which one might hope to perform using 
a microwave resonator. 17 

The key features of superconducting microwave 
resonators, which make them attractive for gravi
tation experiments, are these: (i) the very low 
surface resistances of their walls, R, -10-0 to 
10·9 ohms,9

•
18 which leads to near-perfect reflec

tion of electromagnetic waves, 

1- <R= R/94 ohms 

- 10-10 to 10-u for normal incidence , 

(2 .14) 

where <R is the reflection coefficient; (ii) the re
sulting very high Q's of the resonators, Q-1010 to 
lD1 2 for cavities excited in low modes9 (e.g., 
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eral relativity y= /3= 1 and all other parameters 
vanish. 

15 

Q= 5 x 1011 for a TE011 mode with eigenfrequency 
10.5 GHz, in a cylindrical niobium cavity with 
length and diameter 1.5 in. and temperature 
1.3 °K)19 ; (iii) their high frequency stability, which 
has enabled Stein and Turneaure20 to construct 
superconducting- cavity- stabilized-oscillator 
clocks (SCSO) with short-term stabilities t:.w/ w 
~6x10-16• 

To conserve space we shall not write down the 
full PPN metric here; instead, we refer the read
er to equations (39.32)-(39.34) and Box 39.5 of the 
book by Misner, Thorne, and Wheeler2 (cited 
henceforth as MTW), and to Eq. (4) of Will's 
paper4 where the parameter tw is added to the 
formalism. 

III. POST-NEWTONIAN GRAVITY IN THE LABORATORY 

A. General remarks 

In the theoretical discussion of many of our ex
periments (Secs. IV-VI) we shall use the 
Nordtvedt-Will parametrized-post-Newtonian 
(PPN) formalism. 4 In this formalism gravity is 
described by a general- relativistic-type metric 
accurate to post-Newtonian order. The metric 
contains eleven unknown, dimensionless constants 
called "PPN parameters" and denoted y, f3, a 1 , a 2 , 

a 3 , ?;1 , ?;2 , /;3 , /;4 , tw,1J· Each "metric theory of 
gravity" (theory obeying the Einstein equivalence 
principle), when specialized to the post-Newtonian 
limit (low velocities and small stresses) is a spe
cial case of the PPN formalism corresponding to 
specific values of the PPN parameters. For gen-

Table I contains, for future reference, a brief 
list of post-Newtonian gravitational phenomena and 
the PPN parameters which describe them. (For 
details see, e.g., Refs. 4 and 21.) 

Consider a source of gravity with mass M , size 
L, internal density p""-M/L 3

, internal energy den
sity pII, internal stresses p, internal strains s, 
velocity v of rotation or motion relative to center 
of mass, and velocity w of motion of center of 
mass relative to mean rest frame of the universe. 
For such a source the dimensionless magnitudes 
of post-Newtonian effects (fractional amounts by 
which post-Newtonian effects differ from New
tonian effects) are 

GM/Lc2 , II/c2
, p/pc 2

, v2/c2
, vw/c2

, w2/c2
• 

When the source of gravity is the Sun 

TABLE I. Some post-Newtonian phenomena and their PPN parameters. For details see, e .g., Refs. 4 and 21. 

Description of phenomenon 

1. Spatial curvature generated by rest mass, 6gJk"' 2c-2yU61k 
2. Nonlinearities in superposition of Newtonian gravitational 

potentials, 6g00 =-2c-2{3U2 

3. Newtonian-type gravity (t:.g00 ) generated by gravitational 
energy (4f32PoU) 

4. Newtonian-type gravity (6g00) generated by kinetic energy 
(4f31Pov2) 

5. The effect of anisotropies in kinetic energy ( p0v
2 with v 

directed toward observer rather than transverse) 
on Newtonian-type gravity (6goo> 

6. Newtonian-type gravity (6g00 ) generated by internal energy 
(2f3ailPo> 

7. Newtonian-type gravity (6g00 ) generated by isotropic part 
of stresses (6(34p) 

8. The effect of anisotropies in stresses (stresses directed 
toward the observer vs transverse stresses) on Newtonian
type gravity (6gool 

9. Magnetic-type gravity (g01 ) generated by momentum (A1p0v) 
10. The dependence of strength of momentum-generated gravity (g01 ) 

on direction of momentum (toward observer vs transverse) 
11. "Preferred-frame effects," i.e., the influence of matter's 

motion relative to universe on the gravity the matter generates 
12. "Preferred-orientation effects," i.e., the gravitational influence 

of the orientation of the experimental apparatus relative to the 
external universe 

13. Breakdowns in global conservation laws for energy, momentum, 
and/or angular momentum 

Parameters 

"Y 

(3 

f32 = + (/; 2 + 3 "Y - 2{3 + 1) 

f31 =t«:¥3+/:1 +2y+2) 

1) 

61 = ..1.(a1 - 0!2 +/;I+ 4 "Y + 3) 
7 

62 = 0'2 - 1:1+1 
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GM/Lc2 ""Il/c2 ""P/pc2 ""2x10"6
, 

v2/c2 ""5x10"11
, 

vw/c2 ""5 x 10"9
, 

w2 / c2 ""5x10"7
• 

(3. la) 

By contrast, a reasonable laboratory source of 
gravity has p"" 10 g/cm3

, L-::;:; 50 cm, M.,,;, 106 g, 
v $105 cm/sec, (p/p)112

-::; 105 cm/sec, s.,,;, 10-2
, 

w.,,;, 2 x 107 cm/ sec, so that at best 

GM /Lc 2 
- 1 x 10"24 

, 

p/pc2 -v2/c2 -1x10-11 , 

Il/c2 ""(v 2 /c2)s -1x10"13 , 

vw/c2
- 2 x 10"9

, 

w2 /c2 -5x10"7
• 

(3.1b) 

A comparison of the numbers in Eqs. (3. lb) and 
(3. la) shows that laboratory experiments to probe 
nonlinear features of the gravitational field (di
mensionless magnitude GM/ Lc 2

, PPN parameters 
{3 and /32 , items 2 and 3 of Table I) are hopeless. 
Similarly, laboratory measurements of the gravity 
produced by internal energy (dimensionless mag
nitude Il/c2 , PPN parameter {33 , item 6 of Table 
I) will be exceedingly difficult and perhaps im
possible. However, there is hope for laboratory 
experiments which probe the gravitational in
fluences of velocity and stress (dimensionless 
magnitudes v2 I c2

, vw I c2
, ui I c2

, and p I pc2
, all 

PPN parameters except y,/3,/32 ,/33 , items 4, 5 , 
and 7-13 of Table I). Whether one can invent a 
laboratory experiment to measure spatial curva
ture (PPN parameter y, item 1 of Table I) is not 
evident to us (see Sec. VB). 

In any experiment one must separate cleanly the 
post-Newtonian effects from all influences of New
tonian gravitational fields. To achieve this one 
obviously must modulate the post-Newtonian grav
itational fields in time, and guarantee that at the 
resulting frequency wPN of the post-Newtonian 
forces all Newtonian forces are negligible. This 
will be extremely difficult in general because, a 
priori, the Newtonian forces are larger than the 
post-Newtonian forces by -c2 /v 2 

- 1011
; and special 

positioning of detectors (accuracy -1 µm out of 
-100 cm) and special orientations (accuracy -o.3 
arcsec) can typically reduce the Newtonian signal 
by only factors of -1 µm/100 cm - 0.3 arcsec/ 90° 
-10-6

• Clearly one must guarantee that Newtonian 
forces with the frequency wPN are sensitive only 
at second order or higher to errors in positions 
and orientations. 

Two types of post- Newtonian effects are espe
cially attractive from this "Newtonian-noise" 
viewpoint: 

(1) Preferred-frame and preferred-orientation 
effects. They can be modulated by rotations of the 
entire laboratory apparatus relative to inertial 
space, i.e., relative to the locally preferred di
rections, induced by solar-system motion through 
the universe or by the mass distribution of the 
universe. In such rotations (produced either arti
fically or by rotation of the Earth) one can main
tain with accuracy «10"6 the relative positions and 
orientations of various pieces of _the experimental 
apparatus. Moreover, such rotations performed 
perfectly will selectively modulate the preferred
frame and preferred-orientation effects without 
modulating Newtonian effects. Examples of this 
will be given in Sec. VI B. Such experiments can 
measure the PPN parameters a 11 a 2 , a 3 , and l:w· 

(2) Magnetic-type gravitational effects, i.e., 
effects associated with the g0 J metric components. 
These effects include the dragging of inertial 
frames by rotating bodies, Lens-Thirring gyro
scope precession, gravitational accelerations 
produced by spin- spin interactions of rotating 
bodies, and gravitational accelerations due to 
spin-orbit coupling. The key property which dis
tinguishes magnetic-type effects from all others 
is their sensitivity to the direction of rotation or 
motion of a laboratory source or detector. As 
source one could use a rapidly rotating, axially 
symmetric body and one could slowly modulate its 
angular velocity 

n= nocos(wmocl). 

Magnetic-type gravitational effects are sensitive 
to the sign of n and therefore are modulated with 
angular frequency wmod and its harmonics 
(2wmod> 3wmod> ... ). Newtonian gravitational ef
fects , and all the other "nonmagnetic" effects, 
are sensitive to n 2 (centrifugal distortions of ro
tating source, etc.) and therefore are modulated 
with angular frequency 2wmod and its harmonics 
(4wmod> 6wmod> ... ). In an ideal experiment there 
is no Newtonian "noise" at the post-Newtonian 
frequency wmoct· Examples of this will be given in 
Secs. IV A, V, and VIA. Such experiments are 
sensitive only to the parameter it.1 + it.2 

= i(a1+4y+ 4).22 
For other post- Newtonian effects Newtonian 

noise might remain insurmountable in the near 
future. However, there are gravitational effects 
not encompassed by the post-Newtonian approxi
mation which should be measurable by the tech
nology described in this paper. These include (i) 
the equality of inertial and passive gravitational 
mass (EotvBs experiment, Sec. IV B) , (ii) the time 
rate of change of the gravitation constant ' (Sec. 
IV C), (iii) the gravity produced by electromagnetic 
stresses (Sec. IV D), and (iv) the gravity produced 
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by particles that move with nearly the speed of 
light (Sec. VIC). 

B. Formalism for analyzing magnetic-type gravity 

In our discussion of experiments to analyze 
magnetic- type gravity we shall utilize a truncated 
and rewritten version of the PPN formalism. Our 
truncation consists of two steps: First, we delete 
from the formalism a number of phenomena that 
are already absent in general relativity, namely 
preferred-frame effects (set w 1 = 0 in Chap. 39 of 
MTW), preferred-orientation effects (set l:w= O), 
and anomalies in g 00 produced by anisotropies of 
stress and kinetic energy (set !:=17=0). Second, 
we delete from the formalism all gravitational 
nonlinearities (set /3 = fJa = O), since there is no 
hope of measuring them in laboratory experiments, 
and we treat the Newtonian potential U formally 
as having magnitude 

U/c2- (v/c)4-(p/pc2)2- (II/c2)2«1 (3.2) 

[cf. Eq. (3. lb) J. In rewriting the PPN formalism 
we replace the gravitational potentials U, '1t, V, 
and W of Chap. 39 of MTW by scalar and vector 
potentials 

<1>=-(u+2'1t), .A=-fA1v-i~w. (3.3) 

and we define an "electric- type" gravitational 
field g and a "magnetic-type" gravitational field 
Hby 

1 a.A 
g=-V<I>---, H=VXA. (3.4) 

c at 

Here the notation is that of flat-space 3-dimen
sional vector analysis, the coordinates (t, x, y, z) 
are those of the PPN coordinate frame of Chap. 
39 of MTW, and we use cgs units ,rather than geo
metrized units. 

In terms of the new notation <I>,A,g,H the metric 
of. spacetime, accurate to post-Newtonian order, 
becomes 

g 00 =-c2 {1+2<I>/c2
) , 

g01 =A/c, (3.5) 

g1~ = o 1~(1- 2y<I>/c2
) 

[cf. Eq. (39.32c) of MTW). The source equation 
for the scalar field <I> is 

V2<I> = 41TGp0(1+2,91 V2 /c 2 + ,93 II/c2 + 3(34 p/ p0c
2

) 

(3 .6) 

[Eqs. (39.34a, d) of MTW combined with Eq. (3. 3) 
above J. The vector potential in the chosen PPN 
gauge has nonzero divergence 

(3. 7a) 

[Eqs. (3.3) above, and (39.27, {39.34b), and 
(39.15a) of MTW]. The Laplacian of the vector 
potential is 

2.. 7 l ) v 1 a .. (3 ) "VA=(- A1 + - A2 4rrGp0 - + A2 - -
1 

"V<I> .7b 
2 2 c c a 

[Eqs. (3.3) above, and (39.27), (39.34b) of MTW). 
By combining Eqs. (3.6) and (3.7) with definitions 
(3.4) of g and H, and by making use of standard 
vector-analysis identities, one can derive the fol
lowing Maxwell-type equations for the electric
type and magnetic-type gravitational fields: 

V•g=-41TGp0 1+2/31 ~ +/33 ~+3/34 -:-;:r ( V2 II p ) 
c c p0C 

1 a2 
7 I ) "-+ ( 2 A1 - 2 A2 ?° 3fl .,, ' 

1 ail vxg=---, c at 

V·H=O, 

(3.8a) 

(3.8b) 

(3.8c) 

= - ( 1 l ) ( 4 p0v 1 a ~) v x H = 2 A1 + 2 A2 - 7TG c + c at i; . 

(3 .8d) 

Throughout these equations y, ,91, ,93 , ,94 , A1, and 
A2 are PPN parameters, p0 is the density of rest 

· mass in the local rest frame of the matter, v is 
the ordinary (coordinate) velocity of the rest mass 
relative to the PPN coordinate frame, II is specific 
internal energy, and p is pressure (see Chap. 39 
of MTW). 

When combined with the standard mathemat.ics of 
general relativity truncated to post-Newtonian 
order, Eqs. (3.4)-(3.8) are a complete set of tools 
for analyzing the "near- zone" region of systems 
satisfying Eq. (3.2). For example a test mass, 
with 4-velocity u"'=dx"'/dT and ordinary velocity 
V= ax/ dt = if./u0

' experiences a gravitational force 
F which one can derive from the geodesic equation. 
After some algebra that geodesic force reduces 
to the Lorentz-type expression 

F _ du d 0 0 ( v x fi V2 ~ ~ m = dt = di (u " = u g + -c- - y ?" if>' 
{3.9) 

[In deriving this e:iqression one must make the ap
proximation e2 ye/c

2(d/ di )(e-2ye lc2u0V) = (d/ dt)(uOV), 
an approximation which is valid for all conceivable 
laboratory- type experiments.] In this paper at
tention will focus on experiments where the de
tectors, like the sources, have velocities Iv I 
'.% 1x105 cm/sec «c. Under these circumstances 
the gravitational force acting on a unit mass re
duces to 

-= 
m [ 

1 )\12]· vxfi 1 + z-(2y + 1 Ci g + -c- . (3 . 10) 
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Equations {3.4)-(3.10) express the law of lab
oratory, post-Newtonian physics in Maxwell-type 
language. Ah analogous formalism for weak-field 
general relativity has been used previously by 
Forward23 in a discussion of conceivable gravita
tion experiments. 

IV. EXPERIMENTS USING TORQUE BALANCES 

In this section we describe several laboratory 
gravitation experiments which one might perform 
using a torque- balance detection system. Through
out we assume that the laboratory is earthbound, 
though one may prefer to perform the experiments 
in space to circumvent seismic "noise" (see Sec. 
IIA). 

A. Gravitational Ampere experiment 

One post-Newtonian experiment that may be 
feasible in the next few years is a gravitational 
analog of Amp~re's experiment,24 which demon
strated magnetic forces between current- carrying 
spiral- shaped wires. Such an experiment is of 
great theoretical interest because it detects mag
netic- type gravitational forces. Magnetic- type 
gravity must exist according to general relativity 
and most (but not all) other relativistic theories of 
gravity, but nobody has ever detected such a 
force. Before describing our proposal for an 
Amp~re-type experiment, we shall review pre
vious ideas and efforts to search for magnetic
type gravity. 

The Everitt- Fairbank gyroscope experiment0 

is designed to detect the magnetic- type gravita
tional torque produced on a gyroscope by the ro
tation of the Earth. Van Patten and Everitt25 have 
proposed an experiment to measure the magnetic
type gravitational force which the Earth's rotation 
exerts on a satellite orbit. Chapman26 has pro
posed an experiment to detect the magnetic- type 
force of the Earth's electric-type gravity acting 
on the orbital motion of spinning hoops (force pro
portional to orbital velocity v and angular mo
mentum of hoop S, spin-orbit coupling). None of 
these experiments (Everitt-\Fairbank, Van Patten
Everitt, or Chapman) is of a "laboratory type" 
since they all rely on the Earth as the source of 
gravity. Also, all three experiments require ex
pensive Earth-orbiting facilities. 

Laboratory- type experiments to detect magnetic
type gravity have been suggested by a number of 
people,27 but in all cases either the originator of 
the idea or his critics28 have concluded that with 
state-of-the-art technology the experiment was 
not feasible. 29 The spin-spin coupling experiment 
described below looks more favorable thanks, pri
marily, to the high-Q technology of near-future 

T 
Rs 

~x~~-1 
Symmetry 

Suspension ~ 
System 

FIG. 2. Experimental configuration for a gravitational 
Am~re experiment (measurement of spin-spin coupling), 
as viewed from above. The source mass M 8 and detector 
mass m4 both rotate about the source's axis of symmetry 
(z axis) . 

torsion oscillators. 
The experimental setup which we envision in

volves as source an axially symmetric body of 
mass M

8
, density p., and outermost radius R8 , 

which rotates rigidly about its axis of symmetry 
(z axis of Fig. 2). The rotational angular velocity 
0

8 
is modulated at a frequency w0 -10-3 sec·1 

(4.1) 

The detector is a small sphere of mass m4 and 
radius R4 which is located on the z axis and ro
tates about that axis with constant angular velocity 
0 4• This detecting sphere is one mass of a torque
balance system of the type discussed in Sec. IIA 
(see Fig. 2). The frequency w0 of source modula
tion is chosen to coincide with the eigenfrequency 
of the torque balance. When the source is rotating 
in the same direction as the detector (i.e., when 
cosw 0t > O), its magnetic-type gravitational force 
repels the detector; when the source rotates in 
the opposite direction, its magnetic- type force 

attracts the detector. This oscillating force on the 
detector (F/m 11 = (v/c) x H with H produced by the 
source and F integrated over the detector] is given 
by 

..!.._ = (! 6.1 + !. 6.2) aGp8 R11 (00 R.)(011 R11 )c·2 cosw0t ; 
m11 s a . 

(4.2) 

[cf. Eqs. (3.8c), (3.8d) with ag/at negligibly small]. 
Here a is a dimensionless constant which de
pends on the precise shape of the source and lo
cation of the detector, but which is of order unity 
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ifMs-PsR/, R11 «R~, and (source-detector sepa
ration) =r- R

8
• One can compute a for any given 

source-detector configuration by applying the 
standard techniques of magnetostatics to Eqs. 
(3. Sc), (3. 8d). If the source is a sphere, then 
a(r/R,,)4 = 9611/75 ,,,,4, 

The amplitude of the oscillating acceleration 
(4.2) is the quantity which enters into the torque
balance discussion of Sec. IIA. In general rela
tivity (.:11 =112 = 1) it is 

(F/ m 11 )"" 1x10~11 cm/sec2 

for p8 =8 g/cm3
, R11 =2 cm, (4.3) 

0 0 Rs=011 Rt1=5X104 cm/sec, a=4. 

These parameters are reasonable for steel. The 
types of ceramics and fibers being developed for 
use on superflywheels30 would have lower densities 
but higher maximum angular velocities, thereby 
yielding similar values of F /m; the chief advantage 
of such materials is that, because of their lower 
density, the Newtonian acceleration produced by 
the source is smaller than for steel, so that both 
types of Newtonian noise discussed below are re-

(F/m)N=+ ! (f• V)2gN ""!(~/Rs )2 (GM/R8
2

) 

duced. 
The considerations of Sec. IIA suggest that a 

torque system to detect the force (4.3) can be built, 
but that in an earthbound laboratory seismic noise 
will not be overcome easily. 

Noise from Newtonian (electric-type) gravity 
should not be an insurmountable problem in the 
above experiment. The Newtonian gravitational 
field will be constant in time , except for small
amplitude modulations due to time-changing centri
fugal deformation of the source sphere, and jitter 
in the source location. 

The jittering displacement t<t) of the ~ource's 
center of mass produces a jitter 

(F/m)N=- ((f• Y')- ~(f• Y')2 + ' '' )gN (4.4) 

in the Newtonian acceleration of the detector. 
Here gN is the longitudinal component (z compo
nent) of the acceleration at the center of mass of 
the detector .in the absence of jitter. Since the de
tector sits on the axis of symmetry of the source, 
a~gN = aygN =O. By appropriately shaping the source 
and positioning the detector one can also guarantee 
that a.gN=O. This is approximately so for the con
figuration of Fig. 1. In this case 

""1x10-18 cm/sec2 for~=lx10"5 cm, Rs=30cm, Ms=3X105 g . 

If a horizontal stability of ~ ""10"5 cm seems ex
cessive, one can shape the source so that a /g N 
« gN/Rs2 and then relax the constraint on ~. 

In an ideal experiment, with 0 11 = n0 cosw0t, the 
centrifugal deformation of the source would oscil
late with frequency 2w0 and would produce no New
tonian force whatsoever on the detector at fre
quency w0• But in any real experiment small de
viations 600 between amplitude of "positive" ro
tation and of "negative" rotation will produce a 
Newtonian signal at frequency w0 : 

where t:.gN is twice the amplitude of centrifugal-flat
tening-induced oscillation of g Nat frequency 2w0 • If 
one designs the source shape so that not only is a .g N 
= 0, but also AgN ~ 10"6 GMs /Rs2 for 0 0 R 8 "" 5 x 104 

cm/sec,31 then 

(.!..) ""GMS x 10·6 600 
m N R,,2 Oo 

""2 x 10-18 cm/sec2 for 60/00 ""' 1x10"7
• 

(4.5) 

Thus, a modulation precision of 60/00 "" la"7 is 
then adequate to keep the Newtonian signal well 
below the post-Newtonian signal. However, it 
may not be easy to design a source which has 
a.glf and AgN as small as desired while still keep
ing the spin- spin coupling coefficient a reasonably 
large. 

B. Improved Eotvos experiment 

A torque-balance system and antiseismic plat
form of the type needed in the above experiment 
could also be used in three other gravitational ex
periments: a new high-precision Eotvos experi
ment, an experiment to search for time changes in 
the gravitation constant, and an experiment to 
measure the gravity produced by magnetic 
stresses. 

An Eotv<Ss experiment of the Dicke32 type would 
search for periodic torques in the torsion balance 
due to rotation of the Earth relative to the Sun's 
gravitational field. The frequency of modulation, 
w0 ""'21T/ (24 h)-10-4 sec"1 is a factor 10 lower than 
that contemplated for the Amp~re experiment (see 
above and see Sec. IIA). As a result, seismic 
noise will present more serious difficulties here 
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FIG. 3. Experimental configuration for measuring a 
time change of the gravitation constant. 

than there , and we think it reasonable to aim for 
an acceleration sensitivity of F/m -10-14 or 10·15 

cm/sec2 rather than 10-17. However, this sen
sitivity would yield a test of the weak-equivalence 
principle at the level 

Og a1 -a2 - = --- - 10-14 or 10-15 
g a , (4. 6) 

where a1 is the acceleration of one material to
ward the Sun, ~is the acceleration of another ma
terial toward the Sun, and a is the mean acceleration 
toward the Sun. This is an improvement by a fac
tor 100 to 1000 over the best present experiment, 7 

but it is a factor 100 to 1000 worse than the 10-17 

precision which one might expect for Eotvos ex
periments performed in Earth-orbiting laborator
ies. 33 At present, however, there is no strong 
theoretical motivation for performing an Eotvl:ls 
experiment with precision 10·14, 10·15 , or even 
10-17• The current accuracy7 of 10-12 is adequate 
to check the gravitational coupling of all nongravi
tational forms of energy, including even weak
interaction energy ,34 and 10-17 is ten orders of 
magnitude too poor for checking the gravitational 
coupling of gravitational energy. 35 (The self
gravitational energy of a 10 g laboratory test mass 
is only -10-27 of its rest mass-energy.) 

C. Time dependence of the gravitation constant 

A search for time changes of the gravitation 
constant could be performed using the same type 
of installation as Eotv6s36 used for measuring the 
absolute value of the gravitation constant (see Fig. 
3). The two large masses M produce, by their 
Newtonian gravity, a restoring torque that greatly 
exceeds the intrinsic torque of the torsion balance. 
The result is small-amplitude torsional oscilla
tions with angular frequency 

(4. 7a) 

(4. 7b) 

where w0 is the intrinsic eigenfrequency of the 
gravity-free torque balance, 

w~ ={ ~~ [(r~b)3 - (r;;)'] ~ 
112 

°' 1 x 10-3 sec·1 

forM,,.108 g, r""50 cm, b""25 cm. 

(4.7c) 

If the gravitation constant changes with time there 
will be a corresponding time change of the oscil
lation frequency 

w/w,,.!G/G. (4.8) 

Changes in the dimensions r and b of the ap
paratus and in the intrinsic eigenfrequency w0 will 
also produce changes in w ("noise"): 

w/w = - 2.6(1'/r) + 1. l(b/b) + (wof w)2(wof wo> 

forr=2b. (4 .9) 

Such changes can be induced by temperature fluctu
ations or material aging. One can probably keep 
them negligibly small by making the entire ap
paratus, including the torque- balance support sys
tem, out of monocrystal sapphire, by cooling the 
apparatus to T °' 2 °K where sapphire has a ther
mal-expansion coefficient a T ""(5 x 10-12 /°K) 
x (T / 2 °Kr', and by maintaining the temperature 
constant to within ~T<><0.01 °K so that thermal
expansion effects produce 

(4.10) 

Whether such an installation would have negligible 
aging effects one cannot be sure; direct measure
ments of sapphire aging are needed. However, 
aging is likely to be far less than the b/b- 10-9 / yr 
of quartz, since quartz has a far lower Debye 
temperature than sapphire (470 °K vs 1040 °K). 

With such an installation it seems reasonable 
to measure w to a precision ~w/w"" 1x10-12 by 
data collection for one week ("" 100 oscillation 
periods), and to thereby obtain during one month 
of measurements a limit on (or value for) G/G at 
the level -1x 10-12/month °' 1x10-11/yr. With 
greater effort one might even achieve 1 x 10-12 /yr. 
For comparison, Shapiro's monitoring of planetary 
orbits (the best current method of measuring G) 
has given a limit of 1 x 10-10 /yr (Ref. 37) and may 
well achieve 1x10·11/ yr before the end of this 
decade. Most theories of gravity, but not general 
relativity, predict G/G inthe range io-12/yr to 
10-10/yr. 

0. Experiment to measure the gravity produced by 

magnetic fields 

Although general relativity predicts that gravity 
should be produced by stress as well as by mass
energy (item 7 of Table I), at present there is no 
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experimental proof that this is so (the PPN param
eter {34 could be zero). Such a proof is particularly 
important for astrophysics because, according to 
general relativity, stress-produced gravity plays 
an important, perhaps crucial role in the maximum 
mass of neutron stars. 38 

A promising way to test whether and how much 
stress gravitates is to measure the gravity pro
duced by a magnetic field. A magnetic field has the 
advantage that its stresses are equal to its energy 
density. In this section we describe briefly an ex
periment to measure magnetically-generated 
gravity. 

Our experiment would make use of a OC mag
netic field which is slowly turned on and off at the 
eigenfrequency w0 of a torque-balance detector. 
For example, one could set up a magnetic field of 
strength B 0 "" 2 x 105 G (the current state of the 
art) in a long cylindrical or toroidal pipe (inner 
diameter b ""10 cm); and one could set up a torsion 
oscillator with one of its masses near the pipe. 
One would turn the magnetic field on an off at the 
eigenfrequency of the torsion oscillator, w 0 "" 10-3 

sec·1 , and watch to see whether gravity due to the 
oscillating magnetic stress energy produces a 
change in the amplitude and phase of the oscilla
tor. 

If only the energy of the magnetic field, and not 
its stress, were to gravitate, then the amplitude 
of the oscillating force would be 

(F/m) ""2(G/c2)(B0
2 /81T)1Tb ""7 x 10·15 cm/ sec2 

, 

(4.11) 

which is measurable with the techniques of Sec. 
IIA providing seismic noise can be controlled. On 
the other hand, in general- relativity theory the 
gravitational acceleration is produced by the en
ergy density plus the trace of the stress tensor, 
which means that for the idealized case of an in
finitely long pipe 

(F/m) =2(G/c2)b.1 [J (T 00 + T")mlfl 21Trdr 

+ J T"21Trdr J. 
walllof pipe 

The last term is the gravity produced by stresses 
that build up in the walls to counteract the mag
netic pressure. Total stress balance, T 111 ,,, = 0, 
enables one to re- express this as 

(F/m) = 2(G/c2)b·1 j 0 

(T°° + T .. )m"ll 21Trdr = 0, 
0 

(4.12) 

where T .. = -B2 /87r = -T°° is the longitudinal com
ponent of the stress. Thus, in general relativity 

there is no oscillating force, except the Newtonian 
"noise" associated with stress- induced changes op 
in the mass density p of the walls. Although 

(F/ rn)N= 2Gb"1 f_ op21Trdr= 0 
wall a 

(4.13) 

for idealized case of an infinitely long pipe, for 
any real solenoid the Newtonian "noise" will be 
nonzero. 

The toughest part of this experiment would prob
ably be designing and monitoring the pipe walls and 
the other laboratory-mass distributions, so as to 
keep the Newtonian noise negligible. It would prob
ably help to rotate the pipe about its central axis 
with an angular velocity n » w0• 

V. EXPERIMENTS USING MICROWAVE RESONATORS 

A. The Davies frame-dragging experiment 

Davies39 has proposed an experiment , which 
might be performed in the 1980's or later, to mea
sure the post-Newtonian "dragging of inertial 
frames" by the rotation of the Sun, and to thereby 
determine the Sun's total angular momentum. The 
technique is to send two electromagnetic signals 
around the Sun along the same path, but in opposite 
directions, and to measure the excess travel time 
for the signal which travels "against" the rotation 
compared with that which travels "with" the rota
tion. In this section we propose a laboratory vari
ant of the Davies experiment. 

The dragging of inertial frames, like spin-spin 
coupling, is a magnetic-type gravitational effect. 
It is most easily analyzed in terms of the vector 
potential A produced by the rotation of a gravitating 
body. Consider an axially symmetric body rotating 
rigidly about the z axis of a cylindrical coordinate 
system (t,r,z,cf>). The body's velocity vis entirely 
in the cf> direction, 

vq, = 0 5 =(angular velocity of rotation) , 

v~ = n5r= (physical component of velocity). 
(5.1) 

In this case symmetry dictates that the vector po
tential A have only a cf> component. The new nota
tion 

(5.2) 

enables one to express in a simple form the in
fluence of the vector potential A 0 on the metric 
[Eq. (3.5)): 

ds 2 = - c2dt2 + r 2 (dcf> - n z!It}2 + dz 2 + dr2
• (5. 3) 

Equations (3.7b) with &4.>/at=O, (5.1), and (5.2) 
give us the following expression for OD: 
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4n J (G/c 2)p (r' z')r' 2 coscp'dr'dcp'dz' Q(rz)=(..7..A+tA)--S .o' . 
D' 

8 1 2 r source[r2 +r12 -2rr'cos<t>'+(z-z')2
]
172 

(5.4) 

The quantity nD is called "the angular velocity of 
dragging of inertial frames," or, sometimes, "the 
angular velocity of a locally nonrotating observ
er."40 The reason for this name is evident from 
Eq. (5.3): Place two ideal light beams of infinites
imal wavelength in a thin toroidal waveguide (reso
nator) centered on the rotation axis of the source 
(Fig. 4). Adjust the angular velocity of rotation of 
the waveguide until the two beams require identi
cally the same time for travel once around the 
guide. Equation (5.3), with ds2 = 0 for the photon 
world lines, then guarantees that the waveguide 
must be rotating, relative to the coordinate sys
tem, and hence relative to inertial frames far 
from the gravitating source, with angular velocity 
d ¢I dt = n D' If instead the waveguide is kept at rest 
relative to distant inertial frames, the standing
wave pattern made by the two traveling waves in 
the guide will move relative to the guide with angu
lar Velocity QD. 

Although the above conclusions are deduced as
suming waves that travel with the speed of light 
(geometric optics limit, wavelength of waves in
finitesimal compared with circumference of wave
guide), one can show16 that they remain true for 
any standing-wave modes of any perfectly smooth, 
perfectly reflecting toroidal microwave resonator 
which surrounds the source and is at rest relative 
to distant inertial frames. The standing-wave pat
tern will always move relative to the resonator 
(waveguide) with angular velocity 

(5.5) 

where nD is an appropriate average16 of nD over 

Standing-Wove 
Pattern 

· FIG. 4. Experimental con:figuration for measuring the 
dragging of inertial frames. 

the interior of the resonator. 
This motion of the standing-wave pattern can be 

regarded as due to a feeding of electromagnetic 
quanta from one normal mode, which has azimuth
al dependence "cosm<t>," to another normal mode 
with dependence "sinm<t>." In an ideal resonator 
these two modes are degenerate and lossless, so 
the feeding proceeds smoothly. However, in any 
real resonator, wall imperfections split the de
generacy and induce losses, thereby producing 
normal modes which respond in a complicated 
manner to frame dragging. One of us (C.M.C.) 
analyzes that complicated response in another 
paper.16 From his analysis it appears that the 
cleanest frame-dragging experiment might be one 
in which (i) one of the two (nearly degenerate) nor
mal modes of the resonator is driven into steady
state excitation at its eigenfrequency w1 ""1012 

sec"1 , (ii) the angular velocity S15 of the rotating 
source of gravity, and hence also the frame-drag
ging angular Velocity S°ID, is modulated With fre
quency Wmod= W1 - W2 =(frequency Split between res
onator's normal modes)~ 10"5 sec"1 : 

(5.6) 

(iii) the modulation of S"iD pumps electromagnetic 
quanta from the driven mode to the undriven mode, 
producing an angular oscillation of the standing
wave pattern in the resonator with frequency wmod 
and amplitude 

(5. 7) 

where r* is the damping time of the normal modes. 
[Formula (5. 7) can be derived either classically or 
quantum mechanically.] 

If the rotating source of gravity has mass M 
""5x106 g and equatorial radius R ,,,,50 cm, and if 
it rotates with equatorial velocity S1 50 R ""105 

cm/sec, then Eq. (5.4) gives 

S°I00 ""0.5(GM/Rc2)S150 ""6 X 10"21 rad/sec. 

(5.8a) 

It is conceivable that a damping time r* ""105 sec 
can be achieved with some years of technological 
effort (see below). If so, then the amplitude of 
standing-wave oscillation will be 

A¢ ""3 x 10-16 rad. (5. 8b) 

One way to measure the oscillation effect would 
be this: Place a small "porthole" in the wall of 
the resonator at a location where the standing-wave 
intensity has its steepest gradient, and extract 
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signal from that hole at just such a rate as to mod
estly degrade the Q of the resonator (50% of pho
tons extracted in one resonator damping time r* 
""105 sec). Then "VN" fluctuations in the signal 
extracted will lead to an uncertainty in the intensity 
oscillation amplitude of 

(AI/I)nolae= ("~0.5;n7-/r•)-112 , (5.9) 

where ;n is the total number of quanta in the reso
nator and,.~ r* is the measurement time. For 
comparison, the frame-dragging;.. induced intensity 
oscillation is 

;Jl"" (27T2a 2R)(B0
2 / 87T)(hc/X.6)-

1 

(AI/ I)alaat = r 1(dl/ dcp)mu 11¢ = (~11'R /X.8)Acp , 

(5.10) 

where R ""50 cm is the radius of the cavity and ;\.
6 

is the azimuthal wavelength of the standing-wave 
pattern (A6 = 211'R / m). Clearly we want ;\.

11 
as small 

as possible and m as large as possible. The mini
mum A6 and maximum magnetic field strength B

0 

that one can put into a resonator without breaking 
the superconductivity of its walls are A11 ""0.2 cm, 
B0 "" 1000 G. If the resonator has large radius R 
and small radius a, then the number of quanta is 

,,,,4 x la24 for a"" 10 cm, R ,,.,50 cm, ;\.6 ""0.2 cm, B0 "" 1000 G (4x109 erg of excitation energy). 

For these parameters the standing-wave oscilla
tion (5.8b) corresponds to the transfer of approxi
mately one quantum from the driven mode to the 
undriven mode during each damping time; and the 
measured signal and noise at the steepest gradient 
of the standing-wave pattern (Eqs. (5.10) and (5.9)] 
are 

(!11/I)alsnal ""1X10-12' (AI//)nolae ""3 X 10·13 

(5.12) 

for ti.¢"" 3 x 10-16 rad, T"" 106 sec ; r* ""105 sec. 
Thus, the signal is detectable in one experiment of 
duration 106 sec ""2 weeks. Of course, one can 
strengthen the signal by measuring for a longer 
time or performing a number of 2-week experi
ments. 

The above parameters for the resonator (B0 

""lOOOG, A6 ""0.2cm, R""50cm, a""lOcm , r* 
""105 sec) are rather extreme, but might be 
achievable with some years of developmental work. 
The main problem is the very long damping time 
r*, corresponding to a Q of 

Q = 1TCT*/;\.6 ""5 X 1016
• (5.13) 

One can make a very rough estimate of the achiev
able Q in terms of the reflection ,coefficient <R for 
microwave& normally incident o~ the mirror walls: 

Q- 1TR/ Ae"" 5 x 1016 if 1- '° ""2 x 10-14 (5.14) 1-<R \J\ . • 

Reflection coefficients of 1- <R - 10-11 are the state 
of the art for the best superconducting cavities 
with 71..,"" 1 cm, excited in very low modes (R - ;\.11) 

(see Sec. IIC). Thus a Q as high as 5 x 1016 is not 
totally out of the question, but it will require ma
jor advances in superconducting technology. 

(5.11) 

Rather than using a closed toroidal cavity, it 
may be better to use an open electromagnetic 
resonator with several, e.g., six carefully shaped 
mirrors that bounce the beam from one to another 
to another around the rotating source of gravity. 
With appropriate mirror shapes and a sufficiently 
large Fresnel parameter, it should be possible to 
keep diffraction losses negligibly small. 41 

To keep the signal clean and big one needs very 
high relative-frequency stability between the driv
ing oscillator (frequency w11) and the eigenfrequen
cies of the resonator (w1 and w2). Their relative 
phases must not drift substantially during the res
onator damping time r*; i.e., their re lative fre
quencies must remain stable to a precision 

!1w/ w-1 / w1r*- l x 10-17 . (5.15) 

For comparison, absolute-frequency stability of 
6 x 10-16 has been achieved by Turneaure,20 except 
for an extrapolatable drift which he is now trying 
to get rid of. Thus, the necessary oscillator sta
bility might be achievable. However, unless one 
can devise a monitoring and feedback scheme to 
stabilize the eigenfrequencies of the resonator, 
the experiment will be impossible to perform. 

Seismic noise would also be a very serious prob
lem for this experiment. Any rotation of the cavi
ty relative to nearby intertial frames will produce 
a counter- rotation of the standing-wave pattern re
lative to the cavity walls. The 24-h rotation of the 
Earth can be, and must be, counteracted by a ro
tation of the cavity relative to the laboratory. 
However, seismic- induced rotations will remain. 
At the eigenfrequency of the experiment wmod• and 
in its bandwidth 1/ 7', these rotations will drive an 
oscillation of the standing-wave pattern with am
plitude 



31 

15 LABORATORY EXPERIMENTS TO TEST RELATIVISTIC GRAVITY 

{A<f.>)~~amtc = wrnod T*(27TJ ~ot / 9-)112 

""(5 x 10-10 rad)(wmod/10-3 sec"1t 112 for r* ""105 sec, 9-"" 106 sec (5.16) 

[cf. Eqs. (2. 7), (2.8), and (5. 7) ]. This amplitude 
is so large that it will swamp the signal (3 x 10"16 

rad) unless some way is found to monitor and sub
tract it with high accuracy. Perhaps the best 
monitor technique would be to construct two 
toroidal resonators and attach them to each other 
rigidly, with one encircling the 1-m-diameter ro
tating mass and the other perhaps 1 m above that 
mass. The frame-dragging effect falls off roughly 
as 1/r3 (Eq. (5.4)], so in the upper resonator it 
would be roughly lo as large as in the lower reso
nator; whereas the rotation- induced effects should 
be the same in the two resonators. By subtracting 
the signals from the two resonators one should 
obtain the frame-dragging effect; and, as a check, 
one can verify that the signal's phase has the cor
rect relationship to the modulation phase of the 
rotating mass. 

Because of the need for a long damping time 
( r* - 105 sec), enormous relative- frequency stabil
ity {Aw/w-10"17), and huge antiseismic compensa
tion (-106), this experiment may well be the most 
difficult one described in our paper. Nevertheless, 
it may be worth pursuing for reasons of technologi
cal spinoff; the toroidal cavity needed for the ex
periment is essentially an electromagnetic gyro
scope, and even if the desired precision of 10"15 

rad/105 sec""' 10-20 rad/sec is never achieved, the 
more modest gyroscope produced by the effort 
could have technological uses. 

8. "Ught-deflection" experiment 

At first sight it looks attractive to attempt a 
measurement of "light" deflection, and thereby of 
the PPN parameter y, using a microwave reso
nator: Let an idealized beam of electromagnetic 
waves bounce back and forth inside an idealized, 
perfect, cylindrical microwave cavity of radius b. 
Place the cavity in a quadrupole gravitational field 
generated by masses M, as shown in Fig. 5. The 
gravitational force (light-deflection effect) will 
cause the orientation of the beam to oscillate with 
angular freq~ency 

0 ""(1 + y)1/2(GM /b3)1/2 

o.10"3 sec"1 forMc..106 g, bc..50 cm. (5.17) 

As indicated above [Eq. (5.14) and associated dis
cussion], one can hope to maintain the beam in the 
cavity for a time T» 10-3 sec, so the experiment 
looks promising. 

Unfortunately, it is not. The simple light-de-

flection description is valid only so long as geo
metric optics is valid, i.e., only so long as the 
beam does not spread over the interior of the cavi
ty, i.e., only for a time 

b b 27Tb 2 

T ma1 ""Vavnad"" cX/27Tb °' ~ 

""'3x10"6 sec for b ""50 cm, X o.0.2 cm. 

(5.18) 

Over this period of time, no measurable effect can 
be built up. Over longer periods the only effect of 
the static quadrupole gravitational field is to pro
duce a frequency splitting 

Aw/wo.(l+y){GM/hc2)""'10"24 (5.19) 

between various otherwise degenerate normal 
modes of the cavity, a splitting so small that it is 
hopeless to measure. (Note: the pendulum effect 
of Eq. (5.17) can be described in terms of mode 
splitting. For Tmaz=27Tb 2/ cX:G'l / O""'(b3/ GM)1

' 2, the 
pendulum angular frequency satisfies O/w '%GM/bc2

; 

and therefore, it can be produced by superpositions 
of many normal modes with the gravitational split
tings (5.19). J 

Taking account of wave-packet spreading, i.e., 
using normal-mode analyses of the resonator, we 
have not been able to invent a viable experimental 
configuration which uses a microwave resonator to 
measure the PPN parameter y. 
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FIG. 5, Experimental configuration for an impossible 
measurement of the deflection of light. 
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VI. EXPERIMENTS USING MASSIVE DIELECTRIC 

CRYSTALS 

The authors have previously suggested3 that one 
might perform post-Newtonian experiments of the 
following type: Rapidly varying post-Newtonian 
and Newtonian accelerations are produced by a 
massive (M "" 1 x 105 g), rotating or vibrating, non
symmetrical body, e.g., a prolate spheroid of iron 
rotating end-over-end. The linear velocity of ro
tation would be v ""105 cm/sec and the angular 
velocity w ""5 x 103 sec·1

; and the Newtonian and 
post-Newtonian fields would vary with w0 = 2w and 
its harmonics, i.e., with a period T 0 ""6 x 10·1 sec. 
At typical locations near the source the Newtonian 
and post-Newtonian accelerations would have am
plitudes 

(F/m)lf"" 10-6 cm/sec2
, (F/m)PN °' 10·17 cm/sec2

• 

(6.1) 
These oscillating accelerations would be detected 
with a dielectric monocrystal (e.g., sapphire) in 
the manner of Sec. II B. It was our idea3 to sepa
rate the post-Newtonian accelerations from the 
Newtonian "noise" by some suitable combination 
of the following: (1) careful choice of shape and 
orientation of source, and of location and orienta
tion of detector so that the Newtonian acceleration 
would not couple to the normal mode of the detec
tor being used, (2) modulation of the orientation of 
the detector with angular frequency wmod and with 
amplitude designed to move the post-Newtonian 
force on the normal mode to a frequency, e.g., 
w 0+ wmod• at which there was no Newtonian force. 

It seemed to us at first that with so many param
eters free for adjustment it should be easy to in
vent viable experimental configurations. However, 
our expectations were naive: As noted in Sec. 
IBA, the necessity to reduce the Newtonian signal 
by ~1012 means that the Newtonian signal produced 
by errors in typical parameters must be second 
order in all the errors, e.g., 

(F/m)N _(error in location of detector)2 

10-6 cm/sec2 size of apparatus 

(
size of defects in source)2 

+ + •••. 
size of source 

(6.2) 
This places so many constraints on the experi
mental design that we have been able to invent only 
two apparently viable sets of post-Newtonian ex
periments that use a crystal detector: (i) gravi
tational "Faraday" experiments to detect the elec
tric- type fields induced by time- changing magnetic
type gravity, and (ii) experiments to detect pre
ferred-frame and preferred-orientation effects. 
These experiments are described below, along 

FIG. 6. Experimental configuration for detecting the 
gravitational analog of Faraday's law of Induction. 

with (iii) a (non-post-Newtonian) experiment to 
measure the gravity of high-velocity particles 
using a crystal detector. 

A. Gravitational Faraday experiments 

Equation (3.8b) implies that time-changing mag
netic-type gravity H produces a gravitational "elec
tromotive force" (EMF) in any ring of matter e: 

i g • d1 = - ~ :e fs ii · d s . (6.3) 

Here 8 is any surface bounded by e. This is the 
gravitational analog of Faraday's42 law of induction. 

As a special application of this law, consider a 
(nearly) nonrotating body at rest in a (nearly) 
homogeneous magnetic- type gravitational field. 
Let the field change by an amount AH. It is easy 
to show from Eq. (6.3) that this change will induce 
a change 

(6.4) 

in the body's angular velocity. 
The following analog of one of Faraday's original 

experiments42 would seek to detect this gravitation
al Faraday effect: A cylinder of mass M, radius 
R, and height h :>; R is set into uniform rotation 
with angular velocity 0 8 (see Fig. 6). This rotating 
cylinder is then moved up and down, along its ro
tation axis, with amplitude . ~ and frequency w. 
Coaxial with this source is an appropriately 
shaped, axially symmetric sapphire crystal, which 
is threaded by the source's magnetic-type gravita
tional field. The motion of the source produces an 
oscillating gravitational EMF [Eq. (6.3)] in the 
sapphire, and this EMF drives torsional oscilla
tions of the crystal with eigenfrequency equal to 
the frequency w of source motion. If the maximum 
radius b and height l of the sapphire are less than 
or of order the radius R of the source, then the 
driving force in the sapphire is 
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~ ""(~~)(~)(~)( Q~R)(:~) 
""1x10-10 cm/sec2 for b c:=l c:=R c:=h ""10 cm, M ""3 x 104 g, ~ ""2 cm, w "'500 sec·1 , 

w~ ""103 cm/sec, 0 8 R c:=5x104 cm/sec. 

(6.5) 

Brownian noise in the crystal can be kept well 
below this level if the crystal has Q ;G-1013 

[ r* ;z. 1010 sec, cf. Eq. (2.12) ]. Seismic "noise" can 
be filtered out at the high frequency (v"" 100 Hz) of 
the crystal's oscillations. "Noise" from Newtonian
type gravity can be kept negligible if one can 
achieve a 10-7 perfection in the alignment and uni
formity of crystal and generator. (Newtonian cou
pling requires imperfections of both generator and 
sensor, and it is proportional to the product of 
those imperfections.) This required perfection 
may be difficult to achieve, and it may also prove 
difficult to construct a sensor that measures the 
required amplitude change in the detector 
(bocf> ""1 x 10-15 cm), without producing so much 
asymmetry on the detector that the Newtonian cou
pling of detector to generator becomes excessive. 

In response to a preliminary version of this 
paper which contained no mention of any Faraday
type experiment, Ronald Drever (private communi
cation) has suggested an experiment similar to this 
one. The key difference is that his generator would 
be a cylinder driven into torsional oscillations at 
the eigenfrequency of the crystal. To prevent 
breaking the generator one might have to keep its 
oscillation amplitude low enough that the post
Newtonian signal would be F/m ""10-19 cm/sec, 
rather than F/m ""io-18 cm/sec2

• 

It might prove feasible to measure the induction 
effect [Eq. (6.4)] by a technique similar to the 
Everitt-Fairbank-Schiff gyroscope experiment. 6 

One would place a nonrotating sphere in an Earth
orbiting satellite with polar orbit and search for 
an angular oscillation of the sphere about the 
Earth's polar axis. The oscillation would be rela
tive to the distant stars, not relative to gyroscopes 
located in the satellite. The oscillation frequency 
would be twice the orbital frequency, and the am
plitude would be 

A.. (GME) nE 4 io-u d ~.,,"" c2RE (GMs/RB3)1f2"" x ra . 

(6.6a) 
Here M 8 , R8 , and '28 are the mass, radius, and 
angular velocity of the Earth. The amplitude ~cf> 
could be increased by using a high-Q resonant de
tector, e.g., a torsion oscillator of the type de
scribed in Sec. IIA with eigenfrequency twice the 
orbital frequency. For such an oscillator the Fara
day- induced change in amplitude after a time r 

« r* = (damping time) would be 

o(~cf>) ""j (~2~;) 0 8 ' ""5 x 10-0 rad for r"" 106 sec. 

(6.6b) 

It would be extremely difficult, but perhaps not 
impossible, to decouple such an oscillator from 
other sources of angular motion, e.g . . , aberration 
of the positions of reference stars. 

Some day one might find a binary pulsar in which 
the induction effect is important. For a neutron 
star in a polar orbit of radius r around a maxi
mally rotating Kerr black hole of mass M, the 
star's rotational angular velocity would be modu
lated with amplitude 

~n""~(e!-)3 
GM c•r 

c:=l x 10-11 sec·1 if Mc:=3M0 and rc:=l x 1011 cm. 

(6.7) 

This is too small to measure at present in the 
known binary pulsar, 13 but too small by only a fac
tor 1000. In a binary pulsar with a 1010-cm orbi
tal radius the induction effect might be measurable, 
but we have not attempted to determine whether one 
could separate it cleanly from other effects. 

B. Preferred-frame and preferred-orientation experiments 

We turn now to experiments which would use 
sapphire crystals to search for preferred-frame 
and preferred-orientation effects (see Sec. III). 
The experimental configuration is shown schemat
ically in Fig. 7(a): The source, perhaps a prolate 
spheroid of mass M and largest radius R, rotates 
around its shortest principal axis, the z axis, with 
angular velocity w c:=6x10-3 sec·1 • The detector, 
a cylindrical monocrystal of length b, is placed 
near the source with its axis of symmetry on the 
z axis (coincident with the rotation axis of the 
source). The rotation of the Earth causes the en
tire experiment to rotate with angular velocity 
n ""7 x 10-5 sec·1 relative to inertial space; and it 
might prove desirable to produce a more rapid 
rotation n"" 10·2 sec·1 by mounting the entire ex
periment on a rotating platform. Due to the motion 
of the solar system and galaxy, the laboratory 
moves with linear velocity w <lwl-2x107 cm/sec) 
relative to the mean rest frame of the universe. 
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velocity 

v= (velocity due to source rotation w) 

The central regions of the galaxy, with mass M 0 
"""1x1011M0 , distance from Earth R 0 """ 10 kpc, and 
direction from Earth k, reach into the laboratory 
gravitationally to produce preferred- orientation 
effects. 

+ (velocity due to platform rotation n) . (6. 8) 

Consider a particular element of mass p<Px' 
inside the source at location x'. It moves relative 
to the center of mass of the detector with linear 

At a point x inside the detector this mass element 
produces the following accelerations due to pre
ferred-frame and preferred-orientation effects : 

(F) = (-r~eJ)PN= Gp2d:x' {-a2(W. ii)v+ Wal - a2)(v ·ii)- a2(w. ii) JW- 2tw(GM olRo)(k. n)k m PN c r 
+ [3a2(v • n)(w • n) + (ia1 - a 2 - a 3)(w • v) 

+ i(a1 - a2 - a 3 )W2 + ~a2(w • ii)2+ 2tw(GM 0 /R 0 )+ 3tw(GM 0 / R 0 )(k • n)2]n} (6. 9) 

[cf. Eqs. (39.32b, c) of MTW2 and Eq. (21) of Will's paper4 ] . Here r is the distance and ii is the direction 
between source point and field point 

r=lx-x'I, n=<x-x'>lr, 
a 1, a 2, a 3 are preferred-frame PPN parameters, and tw is the Whitehead preferred-location PPN param
eter. Simple geometric considerations show that the force (6. 9), integrated over all parts of the source 
and all parts of the detector, will couple to several different normal modes of the detector. By careful 
selection of the rotational angular velocity of the source w, the experimenter can produce a resonant , 
secular driving of any one of those normal modes, and can thereby measure, or place experimental limits 
on, the combination of PPN parameters which couple to that mode. 

As an example, consider the acceleration 

(6.10) 

Geometric considerations show that it couples to the fundamental vibrational mode of the detector [Fig. 
7(b)] with frequency 

Wpff=2(W±S2) 

and with amplitude 

(F/m)PN""' <to GJW'R2)(b/R)[a2W2/c2+2l:w(GM0 /R 0 c2)] 

(6. lla) 

""'(1x1cr12 s:~2)[a2 ( 2 xl07:m/secr+2l:w]forM""' 105 gandR""'b""'20cm. (6.llb) 

In the experiment feedbackwouldbe used on the source to keep wPN equal to the measured eigenfrequency 
w0 of the detector's fundamental mode, i.e., to keep the phase relations between the fundamental mode and 
the acceleration (6.10) constant to within ocp $ 10° over the time T""" 106 sec of the measurement. The tech
niques of Sec. II B would be used to measure the influence of this post-Newtonian force on the amplitude of 
the detector's vibrations. 

As a second example, consider the acceleration 

(F /m)PN = (Gpd3x 1/r2c 2)(i a 1 - a 2 - a 3)(v • w)ii. (6.12) 

Geometric considerations show that it couples to the m = 1 (dipole) normal mode of the detector shown in 
Fig. 7(c) with frequency 

Wpff=2W±S2 

and with amplitude 

(F/m)PN""' !o (~ a 1- a 2- a3 )(GM/Rc2 )(b/R)w /w / 
""" (3 x 10-15 cm/ sec2

)( ~ a 1 - a 2 - a 3) / w / / (2 x 107 cm/sec) 

(6.13a) 

forM.,,.105 g, R""'b""20cm, Rwc.105 cm/sec. (6.13b) 
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(a) 

@ .,. 
. . 

' 
(c) 

FIG. 7. (a) Experimental configuration for a set of 
preferred-frame experiments. (b) Motions of the de
tector excited in its fundamental mode; the type of exci
tation produced by the preferred-frame forces of Eq. 
(6.10). (c) Motions of the detector excited in a dipole 
mode; the type of excitation produced by the preferred
frame force of Eq. (6.12). 

Newtonian "noise" is not a serious problem for 
these experiments. If the apparatus were per
fectly constructed and aligned, there would be no 
Newtonian coupling whatsoever to either the fun
damental mode or the dipole mode (Figs. 7(b), 
7(c)] of the detector. Imperfections will lead to 
a coupling with amplitude and frequency 

(F/m)N-::>10-12 'cm/sec', wH=2w. (6.14) 

If the n rotation is produced by the Earth's ro
tation, there is no way to get any remotely sig
nificant Newtonian signal at the post-Newtonian 
frequencies (6.1la), (6.13a). If the apparatus is 
placed on a rotating platform, there will be some 
Newtonian signal at Wp 10 owing to deformations of 
the source caused by gravitational fields of objects 
in the external, non-0-rotating laboratory. How
ever, simple estimates show that this Newtonian 
signal is far below the accuracy F Im ""3 x 10-18 

cm/ sec2 that one might hope to achieve in the ex
periment. 

From such experiments, performed with various 
orientations of the apparatus, one could hope to 
achieve limits of 

la2(200 !/sec) 2 +2tw I ::>3x10-e' 

1w1 
jia1-a2-asl 200km/sec ::> lx1o·s, 

(6.15) 

or, conceivably, positive measurements in viola
tion of general relativity. It is worth noting that 
a 1, a2 , a 3 , and Lw are known from previous ex-

periments44 to lie in the ranges 

la1 I $0.07, I a2 I ::>0.002, 

ja3 j-::>2x10·5
, ILwl~0.001, 

(6. 16) 

assuming that lw j ""200km/ sec. Consequently , 
the above two variants of the experiment can be 
regarded as new, improved measurements of a 1, 
a 2 , and Lw· 

The "magnetic-type" experiments described in 
Secs. IV A and VA are aimed at measuring 

! A 1 + !. A2=4y+4+a1 • 
8 8 

·(6.17) 

y is known to be unity to within ""2 percent45 and 
will likely be determined to within ""0.3 percent 
by time-delay measurements on the Viking space
craft. Consequently, the magnetic-type experi
ments, like one of the above preferred-frame ex
periments, are attei:npts to measure a 1• ·The 
preferred-frame experiment should be much easier 
to perform than the magnetic- type experiments, 
and can place a much tighter limit on a 1 (-::> 0.001 vs 
-::> 0.3). Thus, if one believed that the PPN formal
ism embodied all possibilities fo r post-Newtonian 
gravity (which we do not), then one would put one's 
efforts into the preferred-frame experiment. On 
the other hand, if one wants to "see" magnetic-type 
gravitational forces for the first time in history , 
one will prefer the more difficult magnetic-type 
experiments. 

C. Gravity at high velocities 

Consider a point particle of mass m0 which flies 
past a stationary observer with velocity v and im
pact parameter b. If gravity is a spin-two class
ical field as described by general relativity, the 
particle's gravity will give the observer an im
pulse 

i •'"(F) 2Gm J 2 = - dt = -b0 (1+2y2v2/c2
), (6.18) 

... m yv 

where y=(l-v2/c2t 112
• If gravity were an at

tractive spin-one field (analog of electromagnet
ism, Exercise 7.2 of MTW2

), the impulse would 
be 

J =J·"'(F\dt = 2Gmo 
1 _.., m") vb ' (6.19) 

and if gravity were a spin-zero field (scalar field, 
Exercise 7.1 of MTW2), the impulse would be 

Jo =J • "( F\ dt = 2Gmo . 
• .., m) yvb 

(6.20) 

At low velocities the impulses are indistinguishable, 
but for y » 1 they are very different-J 2 :J1 :J0 

= 2y:y: 1. There may be other ways of theorizing 
about the y dependence of the impulse, but these 
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elementary considerations already show that it 
is of some interest. 

It may be possible to test the y dependence using 
as a source protons that circulate around a stor
age ring, and as a detector a monocrystal of 
sapphire sitting just outside the beam pipe. In 
such an experiment one would bunch the protons 
so they all fly past the crystal during a time in
terval ll.t short compared to the crystal's eigen
period T0; and one would adjust T0 to equal the pro
ton circuit time in the storage ring, 

(F/m)a.
8
= (l/T0) 1To (F/m)dt =(I /e)J 

T0 = e/c = (3 x 10-e sec)(e/1 km) , (6.21) 

where e =ring circumference. Then the gravita
tional acceleration would occur over and over again 
at the same phase of the crystal oscillation and 
(hopefully) would produce a measurable change in 
the crystal's amplitude and phase. 

If I is the total beam current in the ring, e is 
the proton charge, and b is the distance from the 
center of the beam pipe to the crystal , then the 
time-averaged gravitational acceleration is 

= 2c<;::s(e)I (1+2y 2v2 / c2) for general relativity 

""1x10·19 cm/sec2 for ym"c2 ""1000 GeV, I"" 10 A, b ""10 cm. (6.22) 

This. time-averaged acceleration, hitting impuls
ively at fixed phase, will produce the same long
term amplitude change in the crystal as a sinus
oidal acceleration of amplitude 

(F/m)8u = 2(F/m)u1 = 2 x 10"19 cm/sec2 (6.23) 

for above parameters. For comparison, the in
tersecting storage rings now operating at CERN 
have ym"c2 <><30 GeV, / <><20 A, e<><l km, the 
POPAE storage rings proposed for Fermilab would 
have ym"c2 "'1000 GeV, / <><5 A, e<>< 5.5 km, and 
the ISABELLE storage rings proposed for Brook
haven would have ym "c2 "'200 Ge V,, I "' 10 A, e 
<><2.7 km. Thus, an experiment with (F/m).u 
""1x10-19 cm/sec2 does not seem unreasonable; 
and it may be possible to operate the storage rings 
at somewhat higher beam currents, thereby 
strengthening the signal. 

This experiment would face serious, but per
haps surmountable problems from fluctuational 
forces in the crystal (Eq. (2.12) J and back-action 
forces of the sensor on the crystal (Eq. (2.11)]. 
For the POPAE design parameters with a 10-A 
current rather than 5 A, the signal strength and 
crystal eigenfrequency are (F/m).u <><2 x 10"19 cm/ 
sec2

, w0 =21Tc/e<><3.4Xl05 sec"1
• A sapphire 

crystal with this w0 would have length b ""10 cm, 
and with a radius a"" 10 cm, its mass would be 
m ""104 g. To keep the internal fluctuational forces 
below 5 x 10-20 cm/ sec2 during a measurement time 
r"" 3x106 sec at a crystal temperature T0 "" 1 
x 10"3 "K, one must achieve a crystal damping time 
of T* ""1x1010 sec [Eq. (2.12) J. This corresponds 
to Q = 1TT *IT 0 "" 2 x 1015

• Such a Q is easily com
patible with theoretical limits on sapphire crys
tals [cf. Eq. 2.13); however, several years of 

crystal development and experimentation are 
needed before one can know how hard it will be to 
achieve such a Q in practice. 

For the above parameters and for the sensor de
scribed by Eq. (2.11), the fluctuational back
action force of the sensor on the crystal would be 
F/m<><7x10"19 cm/sec2

• This is a factor 3 larger 
than the signal. Thus, unless a substantial im
p-ovement in beam current were achieved, the reby 
raising the signal substantially, one would have 
to devise a sensor better than that of Eq. (2.11). 
That one can do so, at least in principle (but just 
barely), without resorting to "quantum nondemo
lition techniques ,''46 is evident from the following: 
The signal (F/m)8 u ""2 x 10"19 cm/sec2 produces an 
amplitude change in the crystal 

ll.x0 = ~ (F/ m)eu T / w0 <><9 X 10"19 cm 

which satisfies the constraint for "quantum
demolition" sensors47 

(6.24) 

(6.25) 

These stringent requirements on the Q of the 
crystal and the performance of the sensor would 
be much alleviated (i) if there existed storage rings 
of circumference e» 5 km (thus permitting lower 
w0 and larger m for the crystal) , or (ii) if a ring 
with e"" 5 km could achieve a beam current I 
» 10 A. 

It appears to us that this experiment need not 
encounter serious problems with Newtonian grav
itational noise due to flexing of the beam tube as 
the protons pass and other motions of macro
scopic masses. Nor should electromagnetic forces 
of the passing protons be a problem if the crystal 
is reasonably shielded. 
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However, a very serious problem is the bom
bardment of the crystal by particles produced in 
collisions of the proton beam with residual gas 
in the beam tube. The most serious effect of such 
particles might be heating of the crystal with con
sequent degradation of the Q of its fundamental 
mode. To circumvent this one would have to con
tinually remove thermal energy from the crystal, 
perhaps through a wire by which it is suspended. 
Also serious might be the damage of the crystal 
by particles passing through it, and direct ex
citation of its fundamental mode. It is impossible 
to assess these effects reliably without experimen
tal tests. Our crude estimates suggest that with 
reasonable amounts of shielding one might prevent 
them from seriously degrading the experiment; 
but we would not be surprised if they were so 
serious as to make this experiment even more 
difficult than the Davies frame-dragging experi-

ment (Sec. VA). 

VII. CONCLUSIONS 

None of the experiments described in this paper 
would be easy to perform. They all stretch the 
limits of current technology. However, most of 
them are close to those limits, and may turn out 
to be within those limits if the experimenter is 
sufficiently clever and dedicated. We suggest that 
now is the time for experimenters to begin work 
on detailed feasibility studies and design studies. 
for these experiments, and for others that use 
similar technology. 
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The coupled electro-mechanical system consisting of a microwave cavity and its walls can serve as a gravitational radia
tion detector. A gravitational wave interacts with the walls, and the resulting motion induces transitions from a highly ex
cited cavity mode to a nearly unexcited mode. 

Microwave cavities with superconducting walls may 
have a variety of applications as detectors of non
newtonian gravitational fields. The response of a micro· 
wave cavity to a time-changing gravitational field is 
quite complicated. Both the electromagnetic field in the 
cavity and the cavity walls interact directly with the 
gravitational field; in addition, the electromagnetic 
field and walls interact with one another at the bound· 
ary between the two. 

I have developed a formalism for analyzing this com· 
plicated electro-mechanical system in the presence of 
a weak gravitational field. A previous paper [ 1] sketched 
an application of the formalism to a proposed experi
ment to measure dragging of inertial frames. This letter 
presents results of applying the formalism to micro· 
wave cavities designed to detect gravitational radiation. 
Subsequent papers [2] will give details of the formalism 
and of its various applications. 

In 1971 Braginsky and Menskii [3] suggested using 
microwave cavities to detect high-frequency gravita· 
tional waves (v ~(cavity's fundamental mode fre
quency)). I have analyzed their high-frequency detec
tors and have also found new designs for, and developed 
the theory of, detectors designed to operate at much 
lower frequencies. After the first formal (but unpub· 
lished) write-up of my analysis [4], I became aware 
that Pegoraro et al. [5] had arrived at some similar de· 
signs for low-frequency detectors. 

t. Supported in part by the National Aeronautics and Space 
Administration (NGR 05-002-256 and a grant from PACE) 
and by a Feynman Fellowship. 

Both high· and low-frequency microwave cavity de
tectors operate in essentially the same way. A gravita· 
tional wave incident on the cavity couples its electro· 
magnetic modes and thereby induces transitions be· 
tween modes. The coupling is due to the direct inter· 
action of the electromagnetic field with the wave and 
to an indirect interaction in which the wave interacts 
directly with the cavity walls, whose resulting motion 
couples the electromagnetic modes. In the simplest de· 
tectors, the cavity is designed so that two of its modes 
are strongly coupled by the gravitational wave. One of 
these two modes (mode l) is driven into steady-state 
oscillation at its eigenfrequency; initially the other 
mode (mode 2) is nearly unexcited. A passing gravita· 
tional wave with Fourier components near the splitting 
frequency between the two modes "pumps'' quanta 
from mode l to mode 2, and the wave is detected by 
monitoring the resulting excitation of mode 2. 

Focus attention now and for the remainder of this 
letter on low-frequency detectors - those designed to 
operate at frequencies much lower than the cavity's 
fundamental mode frequency. Since the wave's charac· 
teristic wavelength is much larger than the cavity's di· 
mensions, it is convenient to describe the wave in 
Fermi-normal ("physical") coordinates [6]. In these 
coordinates the motion of the cavity walls is described 
by the local displacement vector ~, which is .governed 
by the usual equations for an elastic medium subject 
to a tidal force produced by the gravitational wave arid 
to stresses at its boundary produced by the electromag
netic field. 

However, analysis of the electromagnetic field in these 
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coordinates is complicated because the boundary of 
the cavity is moving. To handle this difficulty [2], one 
transforms to new coordinates in which the boundary 
is at rest, and one chooses the new coordinates so that 
they differ from the old coordinates only in a small re
gion near the boundary. In the new coordinates one 
uses the artifice of writing the curved~space , generally
covariant Maxwell equations in a form which is identi
cal to the flat-space Maxwell equations for a moving , 
anisotropic medium (7]. With the Maxwell equations 
recast in this form and with the boundary at rest, the 
boundary conditions are the familiar ones. All informa
tion about the interaction of the electromagnetic field 
with the gravitational wave is contained in the "dielec
tric tensor" 6 and the "velocity" g of the (fictitious) 
moving medium. At linear order in the gravitational 
wave amplitude, & and g split cleanly into terms repre
senting the direct and indirect interactions. The indirect 
interaction terms are proportional to the physical dis
placement of the cavity boundary; the direct interac
tion terms are smaller by a factor - (cavity dimension/ 
gravitational wave wavelength)2 and can be neglected 
for low-frequency detectors. 

The recast Maxwell equations and the mechanical 
equations can be qecomposed into normal-mode equa
tions. The Coulomb-gauge vector potential is expanded 
in terms of the cavity's normalized electromagnetic 
eigenmodesAn: A= !:n en An (f An· Am d V = c5 nm); 
and the local displacement vector is expanded in terms 
of the walls' normalized mechanical eigenmodes ~°': ~ 

= !:°'d°'~°' (M-
1 f p~°' ·~fl d V = c5 C1'/J • where p and Mare 

the density and mass of the walls). The result is a set of 
coupled equations for the normal-mode coordinates c11 

and d°' in the absence of dissipation [2). 
In the case of interest, mode I is highly excited at 

its eigenfrequency by an external source (c 1 
= Re(Aeiw1t);(total energy in mode 1) = U1 
= wf IA 12 /87r), and mode 2 is strongly coupled to 
mode 1 by wall motion. Typically, only one mechani
cal mode (a= m) couples strongly to the gravitational 
wave and, at the same time , produces displacements of 
the cavity boundary which strongly couple the two 
electromagnetic modes. Neglecting all other electro
magnetic and mechanical modes, one obtains equations 
for c2 and dm in the presence of a highly excited m<:ide 
I . With addition of empirical damping terms and ne
glect of high-frequency stresses on the walls, these 
equations become 

(la) 

Here w 1 and w 2 are the angular eigenfrequencies of 
modes I and 21 when the cavity is fixed in the shape it 
has after it is distorted by the time-averaged stresses 
produced by the field in mode I; w 111 is the angular 
eigenfrequency of the mechanical mode; .e--1 is a field
wall "matrix element" given by 

.£-1::: j(T2 ·T1 -A 2 · A 1 )(~ 111 ·da), 
s . 

where Tn = w;; 1 V X An and do is the outward-directed 
surface element of the cavity boundary; and 

where the RojOk are the "electric" components of the 
wave's Riemann tensor. The terms in eqs. (I) involving 
12- 1 represent the coupling of modes I and 2 by wall 
motion (eq. (Ia)) and the force exerted on the wall by 
the electromagnetic field (eq. (I b )); .t;11 represents the 
coupling of the mechanical mode to the gravitational 
wave. 

It is convenient to introduce a dimensionless com
plex quantityµ defined by c2 = Re(µAeiw1 1). The 
Green function solution for µ is 

t 

µ(t) = f g(t' t ') f~ (t')<lt'' 
0 

where 

fort~ t'. Here w 21 = w 2 - w 1, and the cS 's are the 
roots of the quartic equation 

(c5 2 - w~1 - 2i(3
111

c5) (c5 2 - w~ 1 - 2i(3c5) 

=WI W21 f!-2(UI /2Af). (3) 

The real parts of the c5 's give the detector's operating 
frequencies. 

The cS 's change as the field in mode I is turned on. 
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p 
I 

Fig. I. Diagram of microwave cavity detector described in text. 

For large fields, they can differ substantially from their 
zero-field values. Unless the entire system is designed 
carefully, one or more of the cS's may have a large and 
negative imaginary part; and mode 2 will be unstable. 
This instability can be avoided by suitably arranging 
the mass in the cavity walls and by suitably choosing 
the cavity's zero-field shape. 

One possible design for such a detector is shown in 
fig. I. The microwave cavity is nearly cylindrical with 
radius R "'=' I 0 cm and length 2L "'=' 500 cm. The micro
wave modes are the two TE1, I, I modes with angular 
frequency w 1 "'=' 6 X I 09 rad s- I ; for a perfect cy lin
der these two modes are degenerate. The magnetic field 
lies principally in the z-direction; in mode l it has a 
"cos ..p" azimuthal dependence, and in mode 2 a "sin .p" 
dependence - where .p is measured from the x-axis. 
Mode I is driven to a magnetic field strength"'=' 750 G, 
which corresponds to to ta 1 enerf,y U 1 "'=' 9 X I 08 erg 
and number of quanta N 1 ""' I 0 6 . Almost all the mass 
in the cavity walls is in four lobes - each of the mass 
m ""' I 06 g - which extend a distance I"'=' 500 cm from 
the axis of the cavity at angles midway between the x
and y-axes. The relevant mechanical mode is the one 
whose motion is indicated by the large arrows in fig. I; 
its angular frequency is w 111 "'=' 103 rad s· 1. The zero
fiel~ sh~pe of the cavity. is chosen so*that cS 1 ""'3.3w111 
+ 3$, c> 2 "'=' 2.8w 111 - 21(j, cS 3 = -cS 2 , and cS 4 = -- d 1 
((operating frequency)"'=' 500 Hz)t 1

• 

i • Mode 2 is unstable on time scales of order the elcclromag
netic damping time [ImtcS2 )"' -2/JI. This weak instability 
is of no concern for measurements made on much shorter 
time scales : it can be eliminated by using "artificial damping". 

The lobes have been placed so that they couple 
strongly to a gravitational wave with "cross" polariza
tion propagating along the axis of the microwave cavity 
and so that the resulting motion of the walls strongly 
couples the electromagnetic modes(£"' R). Such a 
wave, with dimensionless amplitude h, characteristic 
time rg "'=' d ]-1 , and duration f, changes the amplitude 
ofµ by an amount 

l.:lµ 0 1 "'=' (l/6)h(w 1 f)(f/R)(f/r.,)""' 3 X 10- 13, 

for h "'=' 2 X 10- 21 and f "'=' 3r g "'=' 1 o-3 s. This sensitiv
ity goal is comparable to the most optimistic design 
goals for I km baseline laser systems and third-genera
tion bar antennas. 

To detect the wave, one must be able to monitor 
this small change in c2. For example, one might probe 
the magnetic field in mode 2 using a small wire loop 
whose output is fed into a standard linear amplifier 
Such a linear system attempts to measure c2 as a func
tion of time, which means measuring both r2 and i·2; 
the uncertainty principle ((.:lc2) (.:li· 2) ~ 2n1i) guaran
tees that the system cannot determineµ with feater 
precision than l.:lµI ~ (2N 1 r-112 ""'6 X 10- 1 . This 
limit is small enough that a standard linear system, 
provided it is nearly quantum-limited, can detect the 
desired change in c2 . lt should be noted that systems 
which do not attempt to measure both c2 and i.· 2 (quan
tum-nondemolition systems I 8 I) can, in principle, 
achieve greater precision. 

Another serious problem is Nyquist noise (thermal 
fluctuations) in the cavity walls. To achieve a signal-to
noise ratio of 5 for an integration time"'=' f requires 

h> 10(r2/1)(8kT /Mr* f) 112 ""'2X 10 -- 21 
~ g 111 Ill , 

for wall temperature T111 ""'3 X I o-3 Kand mechanical 
damping time T ~1 = fjl·;; I "" 2 x I 03 s, which corresponds 
to a mechanical Q "'=' 106. The mass, wall temperature, 
and mechanical Q assumed here arc similar lo those 
projected for third-generation aluminum-bar antennas. 
Thermal fluctuations in mode 2 itself produce, after a 
time"'=' f, a root-mean-square change inµ of 

for electromagnetic temperature Tc "'=' 4 Kand <lamping 
time r * = (j -- l ""' 3 s. The corresponding electromagnetic 
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Q ~ 1010 has been attained and exceeded in small 
superconducting cavities excited in a fundamental 
mode [9] . This discussion of Nyquist noise assumes 
that one can couple to mode 2 strongly enough to 
measure the small change in c2 in a time ~ f. If a longer 
integration time is required, Nyquist noise will be a 
more serious problem. 

It should not be difficult to design low-frequency 
microwave cavity detectors which operate over a wide 
range of frequencies as detectors of either pulsed or 
CW radiation. For example, by changing its zero-field 
shape and mechanical eigenfrequency, the detector 
described here can be modified to operate at lower 
frequencies (v - 10-100 Hz). Another possible de
sign consists of two long cavities at right angles, weakly 
coupled and excited in a high-frequency mode in which 
the two cavities oscillate in phase . A gravitational wave 
propagating in the direction perpendicular to the plane 
of the cavities induces transitions into a mode in which 
the two cavities oscillate out of phase. Alternatively, 
one could omit the weak coupling and operate the two 
cavities as a Fabry-Perot interferometer. This design 
has been suggested by Pegoraro et al. [5] to detect CW 
radiation from known binary star systems; however, 
Nyquist noise in the walls and seismic noise (earth vi
brations) would pose severe problems for such an at
tempt. Operated as a detector of pulses in the same 
frequency band as the detector described here, this 
design would have comparable sensitivity . 

Although I have referred to these coupled electro
mechanical systems as microwave cavity detectors, they 
can also be regarded as purely mechanical detectors 
with a particular kind of electromagnetic transducer. 
Viewed in this way, they are similar to Braginsky's [10] 
proposal to instrument a bar detector with a microwave 
cavity transducer. In the Braginsky scheme a small 
microwave cavity, which narrows at one place to a 

small gap, sits on the end of the bar; the cavity's funda
mental mode is excited off-resonance, and movement 
of the wall at the gap induces on-resonance excitation 
of the same mode. The main distinguishing features of 
the design considered here are that the cavity is much 
larger, the coupling to wall motion occurs over virtually 
the entire cavity boundary, and - perhaps most im
portant - the signal to be detected appears in a mode 
which is spatially distinct from the highly excited mode. 
This last feature may be very important in reducing con
tamination due to the large field in mode J when one 
attempts to monitor the very weak field in mode 2. 

For helpful suggestions I thank R.W. P. Drever , 
K.S. Thorne, and M. Zimmermann. 
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CHAPTER 3 

ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED 

TO A QUANTUM MECHANICAL OSCILLATOR 

This chapter is a paper by Carlton M. Caves, Kip S. Thorne, Ronald 
W. P. Drever, Vernon D. Sandberg, and Mark Zimmermann. It has 
been submitted for publication to Reviews of Modern Physics. The 
paper is the first part of a two-part treatise dealing with the 
question of making "quantum nondemolition" measurements of har
monic oscillators. Part One (this chapter) concentrates on issues 
of principle; Part Two will consider issues of practice. The 
research reported in this chapter was supported in part by the 
National Aeronautics and Space Administration [NGR 05-002 - 256 and 
a grant from PACE] and by the National Science Foundation [AST76-
80801 A02]. 
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I. INTRODUCTION 

Consider a very classical incoming signal - i.e., a signal carried by 

a boson field with occupation number (number of quanta per quantum mechanical 

state) huge compared to unity. The signal is coupled weakly to a (quantum 

mechanical) harmonic oscillator - so weakly in fact that, if the oscillator 

is initially unexcited, the signal can deposit into it an average of only 

a few quanta per cycle; perhaps even much less than one. The objective is 

to measure the incoming signal by monitoring some aspect of the oscillator's 

motion. Question: With what accuracy can the signal be measured? Answer: 

With arbitrary accuracy, in principle. So long as one concerns oneself only 

with limitations imposed by nonrelativistic quantum mechanics, and so long 

as the signal is arbitrarily classical, then no matter how weak may be the 

coupling of the signal to the oscillator, it can be measured arbitrarily 

accurately. 

However, to obtain good accuracy when the coupling is weak, one must 

not monitor the oscillator's state usjng currently standard methods. Those 

methods ask the oscillator "What is your amplitude and phase of oscillation?" 

- and because amplitude and phase are noncommuting observables, the uncer-

tainty principle forbids a precise answer. For such "amplitude-and-phase" 

methods the amplitude error, expressed in terms of the number of oscillator 
1 

quanta N, must exceed (b.N)min = (N + k)2; the phase error (for large N) must 
1 

exceed (~*)min = ~ N-2 (Serber and Townes, 1960; Braginsky, 1970; Giffard, 

1976). These errors prevent accurate measurement of the incoming signal, 

and prevent any measurement at all in the case of weak signals. 
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To measure the signal more accurately, one must ask the oscillator for 

less information about itself - "less is more"! 1 Specifically, one must ask 

the oscillator for the value of only one observable, and it must be an ob

servable whose future values are precisely predictable (in the absence of 

forces) from the result of an initial, precise measurement. The signal is 

then detected by the changes it produces in the values of this observable. 

A well-known technique of this type is "quantum counting." This 

technique asks the oscillator, "How many quanta N do you have in yourself? 

- But don't tell me anything about your phase." In principle the query 

can be repeated over and over again, and the answers can be completely 

precise and predictable (no uncertainty!) in the absence of external forces. 

When N >> 1, quantwn counting can reveal, in principle, an incoming signal 

far weaker than those detectable by the "amplitude~and-phase" method. 

However, it cannot detect signals so weak as to change N by less than 

unity; and for strong signals, it cannot measure the signal strength more 

precisely than a factor,...., 3 (cf. Sec. II.D below). 

Recently the authors of this article have proposed new methods of 

measurement (Thorne et al., 1978,1979). In these methods one says to the 

oscillator, "What is the real part of your complex amplitude? - But don't 

tell me anything about the imaginary part." In principle the query can be 

repeated as often as desired, the answers can come through with arbitrary 

accuracy, and they can lead to an arbitrarily accurate monitoring of an 

arbitrarily weak, classical incoming signal. We call such measurements 

"back-action-evading" because they permit the real part of the complex 

amplitude to evade the back-action forces of the measuring apparatus (at 

the price of increasing the back-action forces on the imaginary part of the 

amplitude). 2 

The problem of measuring classical signals with a weakly coupled 
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oscillator arises in a variety of contexts - e.g., in experiments to detect 

gravitational radiation; in the reception of long-wavelength electromagne tic 

waves using antennas that are very small compared to a wavelength; in ex-

periments to test general relativity (e.g., Eotvos experiments); in 

gravimeters, gravity gradiometers, accelerometers, gyroscopic devices 

(inertial navigators, gyrocompasses, guidance systems); and elsewhere. In 

most of these areas quantum mechanical properties of the oscillator are not 

an issue at present or even in the near future; but they may become an issue 

in the more distant future - and, equally importantly, the back-action-evading 

methods of measurement described in this paper may improve the signal-to-noise 

ratio even·in the classical regime. 

The task of detecting gravitational waves was the immediate motivation 

for our interest in quantum mechanical oscillators as detectors of classical 

signals. A long-range goal is to detect millisecond-duration bursts of 

gravitational waves from supernovae at a sufficient distance (the Virgo 

cluster of galaxies) to guarantee several events per year (see, e.g. , Thorne, 

1978 or Epstein and Clark, 1979). Bursts from that distance are predicted 

to have a quantum mechanical occupation number n"" 10
75 

for states with the 

wave vector inside the solid angle, till. - lo-
38 

steradians, subtended at Earth 

by the source (cf. Eqs. 6-8 of Thorne et al., 1979). The occupation 

number averaged over all states in the roughly 45-degree beam width of the 

- 37 antenna is n - 10 • This is also the mean number of gravitons that inter-

act with the antenna during one cycle as the wave burst passes. Clearly, the 

force of these gravitons on the antenna should be highly classical •. Unfor-

tunately, a resonant-bar antenna of mass m couples so weakly to these waves 

that they can change the number of phonons in its fundamental mode by only 
1 

oN ;S 0.4 (N + ~)2 (m/10 tons) (cf. Thorne, 1978) - a change so small that 

with standard "amplitude-and-phase" methods of measurement, the uncertainty 
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principle prevents detection. The 1979 gravitational-wave detectors will 

be several orders of magnitude away from this limit, but the limit might be 

reached in 5 or 10 years. 

A Russian experimenter, Vladimir Braginsky, called attention to this 

problem in 1974 in a series of lectures at American centers for experimental 

relativity (Stanford, LSU, MIT, Princeton, and Caltech; see Braginsky, 1977). 

Braginsky and Vorontsov (1974) proposed circumventing the problem by re-

placing amplitude-and-phase methods with "phonon counting." It did not, 

and does not, seem practical to count the phonons directly. Instead one might, 

Braginsky and Vorontsov suggested, couple the bar to a microwave cavity, thereby 

converting phonons into microwave quanta; measure the number of microwave quanta; 

and thereby monitor changes in the number of phonons in the bar. Braginsky 

and Vorontsov (1974) proposed a specific method of measuring the number of 

microwave quanta; see also Braginsky, Vorontsov, and Krivchenkov (1975). 

Three years later Unruh (1977, 1978) proved that this Braginsky-Vorontsov 

method is flawed; and Braginsky, Vorontsov, and Khalili (1977) found the flaw 

in their original, unpublished analysis. However, in these same papers Unruh 

(1977, 1978) and Braginsky et al. (1977) proposed new methods of measuring 

the number of microwave quanta - methods that still look viable in principle. 

Unfortunately, any quantum-counting technique at acoustical or micro-

wave frequencies, including the new Unruh and Braginsky techniques, may be 

extremely difficult to implement in practice. This is because, to avoid 
,.. 

perturbing the number of quanta N while measuring it, one must construct an 
,.. 

interaction Hamiltonian . that commutes with N; such a Hamiltonian must be 

quadratic (or quartic or ••• ) in the amplitude of the oscillator; and at 

these frequencies it is extremely difficult to construct quadratic couplings 

with negligible linear admixtures. For this reason we think that a linearly 
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coupled "back-action-evading" measurement is more promi sing, for gravitational

wave detection, than phonon counting . 

Braginsky has used the phrase "quantum nondemolition" to describe a 

measurement which, in principle, can be made time after time on a single 

system, giving always the same precise result in the absence of external 

forces (signals). Quantum counting can be done accurately and predictably 

in either a demolition or a nondemolition mode: The Unruh-Braginsky 

phonon-counting methods are nondemolition in the limit tha t one takes 

arbitrarily long to perform a measurement; photon counting with X-ray pro

portional counters is demolition. Our proposed back-action-evading measure

ments of the real part of the complex amplitude are nondemolition in principle. 

For further discussion of the phrase "quantum nondemolition" see Secs. II.E 

and IV below. 

This paper serves two purposes: First, it reviews those aspects of the 

measurement of classical signals with a quantum mechanical oscillator which 

we think are important (i) for a conceptual understanding of the subject, and 

(ii) for the future development of the subject. Second, it presents in de t ail 

our own new ideas on back-action-evading measurements of oscillators . This 

paper does not attempt a review of efforts to detect gravitational waves. 

For that topic see, instead, Tyson and Giffard (1978), Braginsky and Rudenko 

(1978), or Douglass and Braginsky (1979). 

This paper is Part One of a two-part treatise. Part One deals with 

issues of principle; Part Two (Paper II) deals with practical realizations 

of back-action-evading measurements. The two Parts rely very little on each 

other. It should be easy to read one without reading the other, but it may 

not be easy to wade through either one. 
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This paper consists of three major sections. In Sec. II we 

discuss measurements of a quantum mechanical oscillator from a somewhat fonnal, 

mathematical point of view. Section II.A gives 'examples of the types of oscil

lators, both mechanical and electromagnetic, that we consider; it motivates 

our neglect of fluctuations due to Nyquist forces; and it introduces a single, 

unified mathematical description of the various oscillators. Section II.B de

rives and discusses the constraints that the Heisenberg uncertainty principle 

places on measurements of an oscillator; and it introduces the three types of 

measurement which we consider: amplitude-and-phase measurements, quantum

counting measurements, and back-action-evading measurements. These three types 

of measurement are then analyzed, each in turn, in Secs. II.C, D, E, with 

emphasis on the accuracy with which each type of measurement can monitor a 

classical force. Section II.F presents and discusses several different inter

action Hamiltonians which could be used in back-action-evading measurements 

of the real part of the complex amplitude. (Practical realizations of these 

Hamiltonians are discussed in Paper II.) Section II.G discusses the zero

frequency limit of back-action-evading measurements - i.e., back-action

evading measurements of "free masses." 

In Sec. III we describe gedanken experiments of the back-action-evading 

type in which, in principle, one can measure the real part of the complex 

amplitude arbitrarily quickly and accurately. Section III.A deals with 

measurements of free masses; Sec. III.B with measurements of harmonic oscil

lators. Much of the detailed discussion of these gedanken experiments is 

relegated to Appendices A-C. 

In Sec. IV we use the results of preceding sections as a foundation for 

a general discussion of "quantum nondemolition measurements" in nonrelativ

istic quantum theory. 
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II. FORMAL DISCUSSION OF MEASUREMENTS OF HARMONIC OSCILLATORS 

The oscillators that we study are macroscopic in size. An example is 

the fundamental mode of mechanical oscillation of a monocrystal of sapphire 

with mass M - 100 kg. Such crystals, cooled to a few millidegrees, might 

be used 5 to 10 years hence as third-generation resonant-bar detectors for 

gravitational waves (cf. Braginsky, 1974; and the lectures by Braginsky, 

Douglass, and Weber in Bertotti, 1977). Such a crystal contains - 3 X 1027 

atoms, and therefore its mechanical oscillati ons have - 3 X (3 x 1027) degrees 

of freedom. The fundamental mode is one of those degrees of freedom, and it 

is almost completely decoupled from all the others. The strength of its 

coupling to other modes is quantified by its "Q" - which is the number of 

radians of oscillation required for its energy to decrease by a factor l/e 

(due to "friction" against the other modes), from an initial energy far above 

thermal. A Q of 4.2 x 109 has been achieved with a small, doubly convex 

quartz lens at 2 °K by Smagin (1974); a Q of 5 x 109 has been achieved for 

a 1 kg sapphire crystal at 4.3 °K by Bagdasarov et al.(1977); a Q of 2 x 109 

has been achieved with a 4.9 kg silicon crystal at 3.5 °K by McGuigan et al. 

13 (1978); and it is not unreasonable to hope for Q - 10 at a temperature of 

a few millidegrees. 

The coupling to other modes produces not only friction; it also produces 

fluctuating forces ("Nyquist forces") which cause the amplitude of the funda-

mental mode to random walk. In thermal equilibrium the mean number of 

phonons in the fundamental mode is N = kT/:tt!w - 10
4 

for T ,..., 0.003 °K and 

w / 2rc -... 5000 Hz. In a time interval .6.t << Q/ w the number of phonons random 
1 

walks by ~ ......, N (2 wb.t/Q)2. Hence, a change of unity requires a mean time of 

b.t ,,., Q/ (2w N 2) ...., 1 sec if Q ,...., 1013 • This is very long compared to the 

0.2 millisecond period of the fundamental mode - so long, in fact, that for 
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such a crystal Nyquist forces should be totally negligible compared to noise 

and quantum mechanical uncertainties in the device that measures the crystal's 

oscillations. 

An obvious second example of a macroscopic oscillator is an electrical 

LC circuit. 

A third example is a normal mode of electromagnetic oscillation of a 

microwave cavity with superconducting walls. Such cavities are being used 

as displacement sensors for resonant-bar gravitational-wave detectors 

(Braginsky, Panov et al., 1977), and they have been proposed as the fundamental 

element in a new type of gravitational-wave detector (Braginsky, Grishchuk 

et al., 1973; Grishchuk and Sazhin, 1975; Pegoraro, Picasso, and Radicati, 

1978; Caves, 1979) and in other gravity experiments (Braginsky, Caves, and 

Thorne, 1977). The normal modes of such a cavity have Q's of - 10
11 

to 10
12 

(Pfister, 1976; Allen et al., 1971) - high enough that for some purposes one 

can ignore thermal (Nyquist) fluctuations in the electromagnetic field. 

Nyquist forces not only are negligible in some contexts of interest; they 

are also irrelevant to the issues of principle which this paper addresses. 

Therefore, we shall ignore them until Paper II - i.e., we shall assume that 

the one mode of interest can be treated as a harmonic oscillator which couples 

only to (i) the weak classical signal which we seek to measure, and (ii) our 

measuring system. 

The oscillator is characterized by its canonical coordinate x and momentum 

p, which are Herm.itian operators (observables); and by its mass m and angular 

frequency w. If the oscillator is the fundamental mode of a resonant bar, 

we shall normalize ~ to equal the displacement from equilibrium of the end 

of the bar. Then m will be roughly half the mass of the bar; and, when 

"' the bar is decoupled fran the measuring apparatus, p will be approximately 

the momentum of the right half of the bar relative to its center. If the 

oscillator is an LC c~rcuit, we shall normalize x to equal the charge on 
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the capacitor. Then m will be the inductance, and p will be the magnetic 

flux in the inductor. If the oscillator is a normal mode of a microwave 

cavity, we shall normalize m to equal unity. 2 .l 
Then x can be (v/4rr.w )2 x 

"' 1 (mean magnetic field in cavity), and p can be (v/4rr.)2 x (mean electric field 

in cavity), where V is the cavity volume. 

No matter what the nature of the oscillator may be, its coordinate and 

momentum have the commutator 

[x,i>J = ill ; 

its Hamiltonian is 

"' - ....... 2/ 1 2 ~2. H =p 2m+ 2 mw .x:,. 
0 

its creation and annihilation operators are 

and the operator representing the number of quanta is 

..... ....t...... ~ I i N=aa = 11 llw-2. 
0 

(2.1) 

(2.2) 

(2.:3) 

(2.4) 

In addition to these standard operators, which one finds in most quantum 

mechanics textbooks, it is useful to introduce the quantities 

X"' ("' "' ) = x cos wt -
1 x,p,t (p/mw) sin wt , 

....... ....... ....... ) "' ("'/ ) x2(x,p,t = x sin wt+ p mw cos wt • 

It is straightforward to show that 

A '°'/ ("' "' ) -iW t x + ip mw = x1 + iX2 e 

(2.5a) 

(2.5b) 

(2.6) 
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" " Thus, x
1 

+ iX2 is the quantum mechanical analogue of the oscillator's 

classical "complex amplitude." As in the classical limit , so also in the 

" "' Heisenberg pictur e of quantum mechanics, x1 and x2 are conserved in the 

absence of interactions with the outside world: 

" " x1 and x2 are Hennitian operators and are therefore observables. One can 

show that they, and linear combinations of them with constant coefficients, 

are the only conserved observables that are linear functions of x and p. 
Notice that x1 and x2 have explicit time dependence (Eqs. 2.5). In this 

they differ from all the other observables considered above (x, p, H , N) 
0 

.and from most, but not all, observables that one encounters in quantum theory. 

B. The Uncertainty Principle and Ways to Measure the Oscillator 
----------------------------------------------------------------

In classical theory it is possible to measure the oscillator's complex 

amplitude X::: Xl + iX
2 

with complete precision. Not so in quantum theory . 

Equations (2.1) and (2.5) imply that x1 and x2 do not conunute: 

(2.8) 

,... ~ 

Therefore, the variances of x1 and x2 in any oscillator state must satisfy 

(2. 9a) 

which is the complex-amplitude analogue of the Heisenberg uncertainty 

principle for position and momentum: 

(2.9b) 
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One can think of x and p/mw as Cartesian coordinates in a phase plane 

{we divide by row to make both coordinates have dimensions of length). Then 

x1 and x2 are Cartesian coordinates that rotate clockwise with angular 

velocity w relative to the (x,p/mw) coordinates (cf. Eqs. 2.5 and 2 . 6). 

The uncertainty relations 6X16X2 ~ ri/2mw, tsx!:::.p/mw ~ ri/2mw are equivalent 

manifestations of the fact that any quantum mechanical state is character-

ized by an "error box" in the phase plane with area at least rffl/2mw; see 

Fig. 1. 

The standard method for measuring the motion of a macroscopic oscillator 

is to couple it to a canonical-coordinate (x) transducer whose output is 

proportional to x, and to feed the output into an amplifier. Figure 2 shows 

a simple example where the oscillator is an LC circuit {part a, to left of 

dashed line). In this example, x is the charge on the capacitor, p is the 

flux through the inductor, no transducer is needed, and the amplifier {part 

b) produces an output voltage A·Q proportional to the total charge Q that 

flows through it ("zero-impedance charge amplifier"). The amplifier 

necessarily is noisy. As a minimum, it has noise due to uncertainty-principle 

constraints on its internal dynamical variables. If this is its only noise, 

it is called an "ideal amplifier." Viewed non-quantum-mechanically, the 

noise is of two types: {i) a stochastically fluctuating noise current 

In{t) = d~dt which, in the case of Fig. 2, gets superimposed on the ampli

fier's input [so V t =A• (x+Q )]; and (ii) a noise voltage V (t) which, 
ou n n 

in Fig. 2, produces a driving force on the oscillator and thereby changes 

its momentum (p = L~ = V ). 
n 

It is useful to distinguish two types of measurements that can be made 

with such a system: "quick measurements" and "amplitude-and-phase measure-

ments." 
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In a quick measurement one reads out the amplifier output in a time ~ 

short compared to the oscillator period (w-r << l; "broad-band amplifier"). 

From the output one infers the instantaneous coordinate x of the oscillator 

to within a precision, for the example in Fig. 2, 

(2. lOa) 

Here SQ is the spectral density of the amplifier's noise charge Q
0
(t) = JI

0
dt, 

and 1/2-r is the bandwidth of the measurement. During this measurement the 

amplifier's "back-action" noise voltage V (t) kicks the oscillator, producing 
n 

an unpredictable momentum change: 

(2. lOb) 

3 where SV is the spectral density of the noise voltage V
0
(t). The Heisenberg 

uncertainty principle places the constraint 

(2.11) 

on the noise perfonnance of any zero-impedance charge amplifier (cf. Weber, 

1959; Heffner, 1962; Eq. 3.7 below). Thus, even with an ideal amplifier, 

a quick measurement produces an uncertainty product 

(2.12) 

This simple example illustrates how the Heisenberg uncertainty principle is 

enforced in any quick measurement of precision ox : Back-action forces 
0 

from the measuring system always perturb the oscillator's momentum by an 

amount op ~ (ri/2)(1/ox ). 
0 0 

A quick measurement produces an uncertainty error box which, for 

ox <<op /mw, is a long thin ellipse in the phase plane (Fig. 3a). As time 
0 0 
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passes, the oscillator's "system point" rotates clockwise in the phase plane : 

. / (X ·x ) -iwt x + 1p mw = 1 + 1 2 e , x
1 

+ iX2 = eons tan t (2.13) 

(Eqs. 2.6 and 2.7), and thus its error box also rotates clockwise; see 

Fig. 3a. As a result, if one tries to predict the outcome of a second quick 

measurement of x, the error in the prediction oscillates in time between ox 
. 0 

8x(t) (2.14) 

If one wants the maximum of these oscillations to be as small an er ror as 

possible, one must arrange for the error box to be round and to have the minimum 
1 

allowed radius ox
0 

= op
0

/mw = oX1 = OX2 = (~/2mw)2. An ideal measurement with 

these uncertainties will necessarily drive the oscillator into a quantum 

mechanical "coherent state" - i.e., a state with a minimum-uncertainty 

Gaussian wave packet that undergoes classical, oscillatory motion without 

spreading; see, e.g. , Merzbacher (1970). 

Turn now from "quick measurements" to "amplitude-and-phase measurements." 

In such measurements one uses an amplifier that amplifies only a narrow band 

of frequencies l:!oJ << w centered on the oscillator frequency w. Such an 

amplifier produces a sinusoidal output with complex amplitude (v
1 

+ iV
2

) = 

A· (x1 + iX2 ), where x 1 + iX2 is a time average of the oscillator's ampli

tude (averaging time ~ = ~/l:!iw >> l/w). Tha accuracy of the measurement is 

constrained by the amplifier's superimposed noise (Q in Fig. 2), and by 
n 

its back-action noise (V in Fig. 2). These noises affect the measurement 
n 

amplitudes xl and x2 equally (neither phase is preferred), producing the 

following probable error when svf sQ is optimized: 



58 

(2.15) 

In the complex-amplitude plane (phase plane) the error box is round; see 

Fig. 3b. We call such measurements "amplitude-and-phase" because they attempt 

to determine both the oscillator's absolute amplitude !xi = lx
1 

+ iX2 1 = 
2 2.!. 4 (x1 + x2 ) 2 (or equivalently its energy or number of quanta), and its phase 

~ = tan-l (x
2
/x

1
). 

An "ideal" amplitude-and-phase measurement (one with the minimum possible 

noise) will drive the oscillator into a quantum mechanical coherent state 
1 

with a round error box of radius ax. = 6p/mw = 6X1 = tJC2 = (n/2mw)2. More-

over, for such an ideal measurement the probability distribution of the 

measured values of x1 and x2 is a two-dimensional Gaussian, centered on the 
...... ,.. 1 

expectation value ((~1 ), (X2)) of x1 and x2 with variances ~l = L:-X2 = (n/2mw)2. 

From the measured values of x
1 

and x2, one can infer the oscillator's number 

of quanta and its phase. It is easy to verify from the Gaussian distribu-

tion that the expected value of the inferred number of quanta is N = 
1 

(mw/2n)((X1)2 + (X
2

) 2 ), and the variance is l'iN = (N + t)2. For large N the 

expected value of the inferred phase is~ = tan-l ((X2)/(X1)), and the 
1 

variance is 6~ = ~ N-2. These variances associated with a coherent state 

are the minimum possible errors obtainable by the amplitude-and-phase method. 

Henceforth, we shall call these minimum errors the "standard quantum 

limits" for amplitude-and-phase measurements: 

Standard l 
Quantum 
Limits 

1 

6N = (N + t)2 
' 

1 

= (h/2mw)2 , 

1 
1 --2 N 2 for 

(2.16) 
N >> 1. 

The fact that these are the very best measurement precisions achievable by 

the amplitude-and-phase method was first discovered , in the context of 
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mechanical oscillators and gravitational-wave detection, by Braginsky (1970) , 

and was first proved with generality by Giffard (1976). However, these 

amplitude-and-phase limits have long been known in the. field of quantum 

electronics; see, e.g., Serber and Townes (1960). 

For a mechanical oscillator of the type to be used in gravitational-wave 

detection (m .:5 10 tons, w/2rt ~ 1000 Hz), the standard quantum limit is .6Xj = 

("'' 1. -19 •¥2mw) 2 ;;: 1 X 10 cm. This is slightly larger than the amplitude changes 

one expects from a gravitational wave burst due to a supernova explosion in 

the Virgo cluster of galaxies. Thus, amplitude-and-phase measurements of 

resonant-bar antennas do not look promising for gravitational-wave astronomy 

(Braginsky, 1977; cf. Sec. I of this paper). 

"Quantum counting" is an alternative method of measuring a harmonic 

A 

oscillator. An ideal quantum counter can measure the number operator N of 

the oscillator with complete precision, and can give repeatedly the same 

" result for a sequence of measurements of N if no external forces are acting 

on the oscillator. Equations (2.4) and (2.5) imply 

1 
2 • (2.17) 

" Hence, a measurement of N is equivalent to a measurement of the absolute 

2 2 1. 
amplitude lxl = (x1 + x

2 
) 2 of the oscillator. Such a measurement, with 

complete precision, must leave the phase * = tan- 1(x2/x1 ) completely un-

determined. In the phase plane the error box for such a measurement is an 

annulus (Fig. 3c). If one attributes to this error annulus a thickness 

corresponding to cN = 1, then its area is 4rt(n/2mw)-i.e., four times the 

minimum allowable area. 

Quanttnn counters with high efficiency (high precision) are common devices 

for photons of optical frequency and higher - e.g., photo-diodes, and X-ray 
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proportional counters. These counters are all demolition devices; they destroy 

the photons they count. For photons at infrared frequencies and below, and for 

phonons at acoustical frequencies, quantum counters with reasonable efficiency 

are not yet available. Unruh (1977, 1978) and Braginsky, Vorontsov, and Khalili 

(1977) have suggested designs of nondemolition devices for measuring the nwnber 

of photons in a microwave cavity; and Braginsky and Vorontsov (1974) have 

proposed that one couple such a cavity to a resonant bar thereby converting bar 

phonons into cavity photons, measure the nwnber of cavity photons, and thereby 

monitor changes in the number of bar phonons. 

Recently the authors (Thorne et al., 1978, 1979) have proposed yet 

another method of measuring an oscillator: a "back-action-evading" measure

ment of the real part of the complex amplitude, x1 (or, if one prefers,_ of 

the imaginary part x2 ). In this method one measures x1 with high precision; 

and in the process, in accordance with the uncertainty principle (2. 9a), one 

perturbs x
2 

by a large amount. In other words, the measuring apparatus is 

carefully designed so its back-action force drives x2, leaving xl largely 

unscathed; and because x 1 and x2 are separately conserved, the resulting 

large uncertainty in x2 does not feed back onto x1 as the oscillator evolves. 

This means that a sequence of high-precision back-action-evading measurements 

can give the same result for x
1 

time and time again. 

The error box for a back-action-evading measurement is a long, thin ellipse 

(Fig. 3d), and it becomes a vertical line (~1 = O, .6X2 =en) in the limit of a 

"perfect measurement." It is instructive to compare the back-action-evading 

error box (Fig. 3d) with the error box for a quick, high-precision measurement 

of x (Fig. 3a). If a first measurement is made at t = o, when x = x1, the 

subsequent error boxes are qualitatively the same. As the oscillator evolves, 

these error boxes remain fixed in the (x1, x2 ) coordinate system (x1 and x2 

are conserved); but they rotate as seen in the (x, p/mw) coordinate system. 
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It is this simple fact which makes possible a sequence of arbitrarily accurate 

measurements of x
1 

all giving the same result, and forbids a similar sequence 

of arbitrarily accurate measurements of x. 

In the next three subsections we compute, for three types of measure-

ments {amplitude-and-phase, quantum counting, and back-action-evading), the 

maximum precision with which one can monitor a weak, classical force F(t) 

that drives the oscillator. 

C. Monitoring a Force by the Amplitude-And-Phase Method 
--------------------------------------------------------

Let an oscillator be driven by a weak classical force F(t), so that its 

Hamiltonian is 

"' "' H = H - XF( t); 
0 

"' H = (expression 2.2) 
0 

(2.18) 

The classical nature of the force is embodied in the fact that F is a real 

function of time t rather than an operator. The unitary evolution operator 

U(t,t
0

), which governs the evolution of the state vector in the Schrodinger. 

picture, satisfies 

iti<lu/<lt = li(t) u 
' 

( 2. 19) 

It is straightforward, using the techniques of §15.9 of Merzbacher (1970), 

to show that 

(2. 20a) 
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t 

( 2mw1'. )- 1I2 i F ( t I ) i· ( • ( I ) ) d I 11 exp + l.lu t - t
0 

t 

to 
t 

f .! i ( CffiCx - Q(ffi) d t I 

t 2 
0 

' 
(2.20b) 

(2. 20c) 

" "t Here a dot denotes a time derivative; a and a are the oscillator's annihila-

tion and creation operators (Eq. 2.3); and a star (*) denotes complex 

conjugation. Notice that a is complex, but ~ is real. The effect of the 

force on the oscillator is characterized by the dimensionless quantity a. 

It will play an important role below. 

Now suppose that the oscillator is being studied by a sequence of 

"amplitude-and-phase" measurements, each of duration 't" ,(: 1/ w. How large 

must the driving force be to produce a measurable change in the oscillator's 

complex amplitude? Classically the change in complex amplitude during the 

time 't' is 

o(X
1 

+ iX
2

) = ~T (F(t')/mw] ieiwt' dt' 

0 

1 
= (2fl/mw)2 a(~,o). (2.21) 

This change is measurable if its absolute magnitude exceeds the diameter of 
1 

the error box 2(fl/2mw)2 (standard quantum limit) - i.e., if 

la(T ,o) I > 1 ,...., "Standard quantum limit." (2.22a) 

Note that la(T,O)I has the physical meaning 
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[

total energy that the force F(t) would deposit] 
in a classical oscillator during time •, if 
the oscillator wereinitially unexcited 

[

the mean number of quanta that the force would ] 
= deposit in a quantum mechanical oscillator, if 

the oscillator were initially in its ground state . (2.22b) 

A fully quantum mechanical derivation of the measurability criterion 

(2.22a) proceeds as follows. Assume that a previous, ideal amplitude-and-phase 

measurement has left the oscillator in a coherent state (Merzbacher, 1970) at 

time t = O: 

(2. 23) 

where p is a complex number and !O) is the ground state. This coherent 

state has 

1/2 
6.Xl = 6X2 = (11/2mw) 

p ' 

Then in the Schrodinger picture the oscillator's state at time < is 

. (2. 24) 

!'11(<)) = u(-r,O) j1jJ(O)), which by virtue of Eqs. (2.23), (2.20a), and the 

[ "' ,.,.t] 1 . connnutator a,a = is 

(2.25) 

Here a= cx(,,o) and~= ~(T,O) are given by Eqs. (2.20b,c). This final state, 

like the initial, is coherent. "' "' 1/2 It has ( x
1 

+ iX2) == (2'n/mtu) {p + ex) and 

Thus, the force F( t) displaces the center of the 

oscillator's uncertainty circle by 
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= (2h/mw) 1/ 2 a(i:,O) Ji: iwt' = [F(t')/mw] ie dt' ' (2.21') 

0 

while leaving the size of the error circle unchanged. As expected, this 

displacement is the same as that derived classically (Eq. 2.21); and because 

the error circle does not change size, the minimum measurable force (Eq. 2.22a) 

is also the same. This minimum measurable force has been derived and discussed 

in the context of gravitation experiments by Braginsky (1970), and with much 

greater generality by Giffard (1976); see also a recent, very elegant treatment 

by Hollenhorst (1979). 

One might have thought that by a sequence of n measurements one could 

h f h · 1 · h \1""-/2mw) 1
/ 2 (1/n) 1/ 2, determine t e center o t e error circ e w~t accuracy 11 

and thereby could measure a force (l/n) 1/ 2 smaller than Eq. (2.22a). This 

is not the case because each measurement of precision (1i/2mw) 1/ 2 perturbs 

the location of the error box by an amount ? (h/2mw) 1/ 2• Viewed heuristi-

cally, a sequence of n measurements produces a " .f n" random walk of the 

error box location that cancels the usual 11 1/.fn" improvement of measure-

ment accuracy. 

D. Monitoring a Force by the Quantum-Counting Method 
-----------------------------------------------------

Next consider quantum-counting measurements of an oscillator on which 

a classical force is acting. Assume that at time t = 0 a precise measure-

ment of the number of quanta puts the oscillator into an energy eigenstate 

IN) with N quanta. Then in the Schrodinger picture the oscillator's state 

evolves to lw(i:)) = u(,,-,o)IN) during the time interval •• From Eq. (2.20a), 

the commutation relation [a,at] == 1, and the raising and lowering relations 

it!N) = (N + 1) 1/ 2 IN+ 1), i!N) = N1/ 2 IN- 1), one can derive the probabil-

ity P(N + N';T) that in the time interval T the number of quanta changes 



65 

from N to N': 

P(N + N' ;-r) = l(N' !u(-r, o) IN) !2 

" :; r~·-r) ( 1<>12)]2 1a12(s-r) 
2 

- 10:1 
e ' (2.26) 

where s = max(N,N'), r = min(N,N'), and L(n)(x) is the generalized Laguerre 
r 

polynomial . 

The probability that the force has induced any change at all is 

2 2 
1 - P(N + N;-r) 1 - e- lo:j [ LN( 10:12)] 

2 
l~ 2 

= 1 - e- lo:I (1 - N!o:! 2 
+ ~ N(N - l) 10:1 - ••• ) . (2.27) 

This probability is significant if and only if lo:l 2 ? (N + 1)-
1, i.e., 

lo:(-r,O)I? (N + 1)-l/2 (2.28) 

This is the criterion for measurability of the force by quantum-counting 

techniques. It has been derived and discussed by Braginsky (1970) and by 

Braginsky and Vorontsov (1974); see also the elegant recent treatment by 

Hollenhorst (1979). 

A semiclassical derivation of criterion (2.28) proceeds as follows: 

Orient the axes of the complex frequency plane so the (unknowable) phase 

of the initial state is t = O; then the initial energy is E I 2 2 
= 2 mw xl; 

the initial number of quanta is N = E/nw - -!- = -!- [ (rnw/11.) x
1

2 - l]; the force

induced change in N is 5N = (mw/h) x1cx1 = [(2N + l)(mw/ti)]
1

/ 2 5x1, where 

5(X
1 

+ iX
2

) is given by the classical expression (2. 21) except for an 

unknowable phase; to within a factor of order unity, which is fixed by the 
I 

unknowable phase, 0x
1 
~ (ti/rn0ir2 I cx(T,o) I; the criterion of measurability, 
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5N;::: 1, then comes out to be (2.28), to within a factor of order unity. 

Criterion (2.28) implies that, no matter how weak the force F may be, 

and no matter how short the time interval -r between measurements may be, 

one can detect the force by preparing the oscillator in a sufficiently 

energetic initial state (state of sufficiently large N). 

When F is large enough to be measured (criterion 2.28 satisfied), 

then the probability distribution (2.26) is not narrowly peaked. Even 

under the best of circumstances it can reveal It° F(t') eiwt' dt' I= 
0 

(2mwli) l/2 lo:( -r, 0) I only to within a multiplicative factor of ~ 3 at the 

9CP/o confidence level; cf. Fig. 4. This is far from enough information to 

permit reconstruction of F(t). 

On the other hand, if one had an infinite number of oscillators all 

coupled to the same classical force (e.g., to a gravitational wave), and 

all excited to sufficiently high energies, then from the statistics of 

quantum-counting measurements one could compute the probability distribu

tion (2.26), and from it one could i~fer la(t2 , t 1 ) 1
2 

for any desired t 1 and 
2 iwt' 2 

t 2• Equivalently one could infer If t F(t') e dt' I - which is suf-
1 

ficient to reveal all details of F(t) except an overall, time-independent 

sign. 

Turn next to our proposed "back-action-evading" method of measuring the 

" x1 of an oscillator on which a classical force acts. 

In principle, nonrelativistic quantum theory permits ~l to be measured 

"arbitrarily quickly and arbitrarily accurately. 115 By this we mean that, 
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"' if the oscillator begins the measurement in a near-eigenstate of x
1

, then 

the measurement can determine the eigenvalue with arbitrary accuracy for 

any measurement time, no matter how short. We also mean that, regardless 

of the initial state of the oscillator, the measurement can leave the 

oscillator in a state arbitrarily close to an eigenstate of SC
1 

whose eigen

value is the measured value ("measurement of the first kind"; Pauli, 1958, 

and footnote 6 later in this article). 

Such an "arbitrarily quick and accurate" measurement can be achieved by 

a measuring system which satisfies two requirements: (i) the measuring 

apparatus must be coupled precisely to xl - i.e., it must be coupled to )Cl 

and to no other observable of the oscillator; and (ii) the coupling between 

6 the measuring apparatus and the oscillator must be arbitrarily strong. 

"' When requirement (i) is satisfied, x1 is completely shielded from noise in 

the measuring apparatus; then the arbitrarily strong coupling of requirement 

(ii) can lead to arbitrarily good accuracy for any measurement time, no matter 

how short. (The crucial property of SC1 - that it is completely shielded from 

the measuring apparatus when requirement (i) is satisfied - is a general 

property of "quantum nondemolition observables"; for a precise definition of 

"quantum nondemolition observable" and a proof of this property, see Sec. IV.) 

"' A skeptic will mistrust this justification of our claim that x1 can be 

measured arbitrarily quickly and accurately. He might worry about the perfec-

tion witJ:i. which one can achieve the time-dependent coupling (Sec. II.F below) 

"' "' required for a measurement of x
1

, or he might not believe that x
1 

can be isolated 

from the measuring apparatus. To alleviate such worries, we describe in 

Sec. III.B a gedanken experiment which shows that arbitrarily quick and 

accurate measurements can be made. 
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Of course in practice there are limits to the quickness and precision 

"' with which x
1 

can be measured - limits imposed by the strengths of real 

materials, voltage breakdown in capacitors, etc. In Paper II 

we discuss some of these practical issues. Until then, however, we restrict 

attention to limits of principle which are imposed by nonrelativistic quantum 

mechanics. In this context the crucial point is that, whereas the uncertain-

ty principle of nonrelativistic quantum theory places severe restrictions 

on the accuracy of amplitude-and-phase measurements, it places no restric

tion whatsoever on the speed or accuracy of measurements of ~1 • 

We now compute the precision with which one can monitor a classical 

"' force F(t) by back-action-evading measurements of x1• Our computation is 

carried out in the Heisenberg picture. Suppose that an initial precise 

"' measurement of x1, at time t = t 0 , gives a value So and leaves the oscillator 

in the corresponding eigenstate ls
0

) of x1• (The spectrum of x1, like the 

spectra of x and p, is continuous; thus s0 can be any real number.) As 

time passes the state of the oscillator remains fixed in the Heisenberg 

picture, lw(t)) = li;o>; but xl evolves: 

..... ax
1 dXl i [x

1
,liJ F( t) sin dt = - i1 +dt wt mw (2.29) 

( Eqs. 2.18, 2.2, 2.5a, 2.1). Integrating this equation, we obtain 

t 
X1(t) = x1(t0)-f (F(t')/mw] sin(wt') dt 1 

. (2.30) 

to 
Because IW(t)) = lso) is an eigenstate of x

1
(t0), and because 

t J [F(t')/mw] sin(wt') dt' is a real number, lw(t)) is also an eigenstate 
to ... 

of x
1
(t) with eigenvalue 
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t 
s(t,t

0
) =so- ( [F(t')/mw] sin(wt') dt' 

Jto , 
( 2.31) 

A precise measurement of x1(t) at time t must then yield this eigenvalue s(t,t0 ) 

and must leave the state of the oscillator unchanged (except for overall 

phase). 

This remarkable fact - that even when a classical force is acting, 

successive perfect measurements of xl leave the oscillator's state 

unchanged - means that perfect measurements of xl are "quantum nondemolition" 

in a stronger sense than quantum-counting measurements can ever be. In the 

quantum-counting case the classical fore~ drives the oscillator away from 

eigenstates of the measured operator N, and a subsequent perfect measurement 

then "demolishes" the oscillator's evolved state - i.e., it "reduces the 

wave function" back into an eigenstate of N. Perfect quantum-counting 

experiments are truly nondemolition only in the absence of an external driving 

force. 

By a sequence of arbitrarily quick and accurate back-action-evading 
,... 

measurements of x
1 

one can monitor, in principle, the precise time evolu-

tion of the oscillator's eigenvalue ~(t,t0) (Eq. 2.31); and from s(t,t0 ) 

one can compute the precise time evolution of the driving force (signal): 

F(t) = -(mwdg/dt)/(sin wt) (2.32) 

Of course, in the realistic case of imperfect measurements, the inferred 

F(t) will be highly inaccurate at times t ~ n~/w, when sin wt~ O. However, 

when the force is produced by a classical field (e.g., a gravitational or 

electromagnetic wave) whose wavelength is long compared to the size of the 

measuring apparatus, one can couple two different oscillators to F. On the 
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first oscillator one can measure xl getting ~(t,to), and on the second one can 
A t 

measure x2 getting t(t,t0 ) = ~O +ft [F(t')/mw] cos(wt') dt'. One can infer 
0 

F(t) independently from the two measurements, and the accuracies of the two 

methods will be complementary: The second is good at t ~ nrr/w when the 

first is bad; the first is good at t = (n + !) rrj w ·when the second is 

bad. 
A 

This technique of measuring x1 on one oscillator and x
2 

on another 

completely circumvents the uncertainty principle. In the complex amplitude 

plane the vertical error line associated with xl (first oscillator), and the 

horizontal error line associated with x2 (second oscillator), intersect in 

a point. This point moves, under the action of F(t), in precisely the same 

manner as the system point of a single classical oscillator driven by F(t); 

see Fig. 5. 

A 

That measurements of x1 can reveal all details of F(t), while quantum-

counting measurements cannot, is intimately connected with the fact that 

A 

measurements of x1 are quantum nondemolition even in the presence of a 

classical force while quantum-counting measurements are not. For further 

discussion see Sec. IV. 

Of course, in practice there are limits to the accuracy with which 

back-action evasion can monitor an external force F(t). The most serious 

limits arise fran Nyquist noise in the oscillator, and from constraints on 

the strength of coupling of real transducers to the oscillator - constraints 

due to the finite strengths of real materials, voltage breakdown in real 

capacitors, and superconducting breakdown in real circuits; see Paper II. 

Less serious in practice, but important in principle, are limits due to 

special relativistic effects, 5 and a limit due to the quantum mechanical 

properties of any real external force. 
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The latter limit, which we shall call the "real quantum limit," arises 

when one is monitoring the external force F so accurately that one discovers 

it is not classical, but rather is being produced by a boson system with a 

finite occupation number per quantum mechanical state. The magnitude of 

this real quantum limit on the force F is a function of the strength of 

coupling of the boson system to the oscillator: The weaker the coupling, 

the smaller will be the magnitude of the force at which the system's quantum 

properties are felt. We can quantify the coupling as follows: Consider all 

quantum states associated with the driving force (e.g., if the force is a broad-band 

electromagnetic or gravitational wave, consider all states in the beam pattern 

of the antenna with frequencies w in range Aw....., w). Let nSQL be the average 

occupation number of these states when the force is just strong enough to be 

detectable in one cycle by amplitude-and...:phase methods (force at level of 

"standard quantum limit," Eqs. 2.16 and 2.22a). Then nSQL characterizes the 

strength of coupling of the oscillator to the boson system. In the special 

case of an antenna for electromagnetic or gravitational waves, one can show 

that 

~ 1038 for resonant-bar gravitational-wave antennas, (2.35) 

(cf. Sec. I). Here~= c/w is the reduced wavelength of the waves and a
0 

is the cross section of the antenna (equal to w-l Ja(w')dw' where the 

integral is over the antenna's resonance and o(w') is the cross section at 

frequency w'; cf. Chapter 37 of Misner, Thorne, and Wheeler, 1973). 

The real quantum limit for measurements that last one cycle is reached 
l 

at a level that is smaller than the standard quantum limit by (1/nsQL) 2 : 
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Real } 
Quantum 
Limit 

' 
(2.34) 

If one were monitoring the force F(t) by back-action-evading techniques at 

this level of accuracy, one's measurements would be sensitive to zero-point 

(vacuum) fluctuations in the system that produces the force F. 

Henceforth, as previously, we shall ignore these issues and shall regard 

the force F(t) as truly classical (nSQL =en). 
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Measurements of X 
-----------------1 

l. Continuous, Two-Transducer Meas~rements 

A back-action-evading measurement of ~l is made by (i) coupling the 

oscillator to a measuring apparatus which produces an output large enough 

to be essentially classical, (ii) reading out the output of the measuring 

apparatus, and (iii) inferring a value for x
1 

from that output. The 

coupling of the oscillator to the measuring apparatus is embodied, mathe

matically, in the "interaction part" of the Hamiltonian, I\· To prevent 

back-action of the measuring apparatus on xl it is necessary that HI commute 

" with x
1

• To make the measurement of very small x1
1 s experimentally feasible, 

it is advantageous to use a linear coupling of the measuring apparatus to 

the oscillator's position and momentum. These constraints of linear 

" " coupling and commutation with x
1 

force H1 to have the form 

KX1Q = K[x cos wt - (p/mw) sin wt] ~ • (2.35) 

" Here K is a "coupling constant" that may be time-dependent, and Q is an 

operator (observable) of the measuring apparatus. (Q commutes with all the 

oscillator observables.) The total Hamiltonian for the coupled system con-

sisting of the oscillator, the measuring apparatus, and the classical 

driving force has the form 

" H (2.36) 

" Here l\i is the Hamiltonian of the measuring apparatus - i.e., it is the part 

of the Hamiltonian that depends only on measuring apparatus observables. 
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When K is time-independent, the interaction Hamiltonian (2.35) can be 

realized as follows: One couples the oscillator to a coordinate (x) 

transducer, and one sinusoidally modulates the transducer output at the 

frequency w of the oscillator; one also couples the oscillator to a 

momentum (p) transducer and modulates its output sinusoidally with a phase 

which leads that of the coordinate transducer by a quarter cycle; one adds 

the two outputs and sends the sum into an amplifier. (The sinusoidal 

modulations must be produced by a classical signal generator - e.g., another 

oscillator with the same frequency as the primary oscillator, vibrating in 

a large-amplitude coherent state.) Specific design~ for this type of 

measuring apparatus will be described in Appendix B of thi~ paper, and in 

Paper II. In Sec. III.B we shall see that, if the coupling constant K is 

A 

made arbitrarily large, then in principle the measurement of x
1 

can be made 

arbitrarily quickly and arbitrarily accurately. 

We shall characterize such measurements as "continuous, two-transducer 

measurements." 

2. Stroboscopic Measurements 

If one is willing to make measurements only twice per cycle, then one 

can avoid the necessity for both coordinate and momentum transducers. In 

particular, if one pulses on the coupling at times t = nn/w, so 

K = K o(sin wt)_, then the interaction Hamiltonian (2. 35) becomes 
0 

A AA 

H1 = K
0 

cos wt o(sin wt) xQ -
K 
o A" L ( )n ( nn) - xQ -1 f> t - - , w w 

n 
(2.37a) 

which requires only a coordinate transducer for its realization. [The factor 

(-l)n, i.e., the sign change in the coupling between even and odd pulses, 

A A A ( )n ..... compensates for the sign change in the relation between x and x1: x1 = -1 x.] 
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If one pulses on the coupling at t (n + -})rr./ w, then 

HI= (K
0

/mw) [-sin wt ti(cos t.it)) pQ 
' 

(2.37b) 

which requires only a momentum transducer. The possibility of such pulsed 

measurements was discovered independently and simultaneously by Zinunermann 

in our research group (see Thorne et al., 1978), and by Braginsky, Vorontsov, 

and Khalili (1978) in Moscow. Braginsky et al. call such measurements 

"stroboscopic." 

Stroboscopic measurements with the interaction Hamiltonian (2.37a) can 

be described semiclassically as follows: One measures the oscillator's 

coordinate x = x1 at t = O, obtaining a precise value s
0 

and in the process 

giving the momentum a huge, unknowable, uncertainty-principle kick. The 

kick causes x to evolve in an unknown way. However, because the oscillator's 

period is independent of its amplitude, after precisely a half cycle x must 

be precisely equal to -s in the absence of an external force, or equal to 
0 

-<Cn/w,O) =-l <0 - J"/w [F(t')/mwl sin wt' dt' l (2.38) 

0 

in the presence of a classical force F (cf. Eq. 2.31). At t = 1c/w a second 

pulsed measurement is made, giving precisely this value for x = -X1, and 

again kicking the momentum by a huge, unknowable amount. Subsequent pulsed 

measurements at t = nrr/w give values 

x = (-l)n s(nrr/w,o) (-l)n I So - Ln,if w [F( t' )/row) sin o>t' dt' I' (2.39) 

which are unaffected by the unknown kick of each measurement. 

In the Schrodinger picture of quantum mechanics these stroboscopic 
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measurements are described as follows: A precise measurement of x at t = O 

gives the value So and collapses the oscillator's wave function w(x,O) into 
1 

an arbitrarily narrow function peaked at i;0 -i.e., ijr(x,O)::::: [o(x-i;
0

)]"2-. 

Immediately after the measurement the wave function ijr(x,t) spreads out over 

all space; but as t approaches rr/w, 1jr gathers itself into an arbitrarily 

narrow function again, now centered on x = -i;(rr/w,o) (Eq. 2.38). A precise 
,,.. 

measurement of x at this time gives this precise value and leaves the 

oscillator's state unchanged except for phase (no collapse of wave function; 

quantum nondemolition measurement). Just before each subsequent measure-

ment ( t = nrr/ w) the wave function again collects itself into an arbitrarily 

narrow function, and a perfect nondemolition measurement can again be made. 

In practice, of course, no measurement can be made perfectly. The 

following simple argument reveals the limit of accuracy for stroboscopic 

measurements which require a finite time 2At, or which are made at times 

that differ by At from precise half-cycle timing. (A more rigorous calcu-

lation gives the same limit.) Let a be the precision of such a measurement 

at t ~ O. Then immediately after the measurement the oscillator's wave 

function must have variances ~O = a, Ap0 >- h/2a. The next measurement will 

have optimal accuracy only if the first measurement has put the wave function 

into a minimum..:uncertainty wave packet (Ap0 = h/2a). Then, as time passes the 

variances of x and p feed each other so that, at the time t = (~/w ± At) of 

the next measurement, 

2 2 I 2.2 l_ = [(D.x
0

) cos wt+ (Apo mw) sin wt]2 

1 

= [a
2 + (hAt/2Ill0')

2
]
2 

for t.t << rr/w. 

This is the minimum possible uncertainty for the next measurement. It is 
1 

minimized (optimal strategy!) by setting a (t16t/~?m) >, which gives 

l 

t.."'C
1 

= t.x = ( (h/mw) ( wM) f' (2.i~1) 
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for the best possible accuracy of stroboscopic measurements with timing 

imperfections 6t. This result has been derived independently by Thorne 

et al. (1978) and by Braginsky, Vorontsov, and Khalili (1978). 

3. Continuous, Single-Transducer Measurements 

Return now to continuous measurements. The more rapidly one seeks to 

measure, the larger must be the coupling constant K. This fact will be quanti

fied in Eq. (3.21) below and in Paper II. In many situations, practical con-

siderations will force K to be so small that measurements of the desired 

accuracy will require a time T far longer than one cycle. In such cases, as 

in stroboscopic measurements, one can avoid the use of two transducers. For 

example, one · can construct an interaction Hamiltonian of the form 

" "" 1 "'<"' "' "' 2wt) HI = KQx cos wt = 2 KQ x
1 

+ x1 cos 2wt +X2 sin . 
' 

(2.42a) 

or 

"' (K/mw) "" 1 "('"' " 
,.. 

2l0t); 
HI = Qp sin wt = - ·2 KQ x1 - x1 cos 2wt - x2 sin (2.1~2b) 

cf. Eq, (2.6). The first of these is achieved by a coordinate transducer with 

sinusoidally modulated output; the second, by a momentum transducer with 

modulated output. Measurements with such Hamiltonians we shall call "con-

tinuous, single-transducer measurements." 

In such single-transducer measurements, the apparatus which follows the 

transducer must average over a time T >> 2~/w in producing its output - i.e., 

it must contain a "low-pass filter" with high-frequency cutoff at 

w ~ 1cj T << w. Then the sinusoidal output due to the sinusoidal terms 
max 

·" 
in ft

1 
(Eqs. 2.42) will average away to near zero. To free x1 from back-

action forces of the measuring apparatus, one must ensure that the back-

action forces have negligible Fourier components at frequency 2w. This 
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can be arranged, for ~xample, by placing a low-pass filter between the trans

ducer and the subsequent apparatus. See Paper II for full details. 

Such a continuous, single-transducer back-action-evading measurement is 

similar to a lock-in amplifier. In the lock-in amplifier a slowly changing 

signal S is given an initial "carrier" modulation, S • cos wt, before it 

acquires (through amplification and other signal processing) a noise N. The 

noisy signal S cos wt + N is then subjected to "phase-sensitive detection" -

i.e., it is multiplied by cos wt and then is sent through a low-pass filter 

to give a signal i S which is nearly free of the noise N. By contrast, in 

our back-action-evading measurement of an oscillator, the oscillator itself 

provides the initial modulation of the "signal" xl to produce a "carrier" 

x = xl cos wt + x2 sin wt - which then enters the signal-processing apparatus 

through a transducer. The subsequent modulation and filtering of the carrier 

are identical to the phase-sensitive detection of the lock-in amplifier, 

except for this key difference: In the lock-in amplifier the phase-sensitive 

detection follows amplification, and its purpose is to remove from the signal 

the noise inserted during signal processing; in our back-action-evading 

measurement the phase-sensitive detection precedes amplification, and its 

purpose is to make one's measurement insensitive to the noisy back-action of 

theamplifier on the oscillator, which was the source of the initial modula

tion. (For comments on the related issue of the similarity between our back

action-evading measurements and the operation of a degenerate parametric 

amplifier, see footnote 2.) 

The modulation in our single-transducer interaction Hamiltonian (2.!~2) 

need not be sinusoidal, nor need it be at the oscillator frequency. A 

variety of other types of modulation will do the job - if they are accompanied 

by appropriate filters placed between the transducer and the subsequent 
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apparatus. For details see Paper II; for a semi-practical example see 

Thorne et al. (1979). 

In Appendix D we show that continuous, single-transducer, back-action-

evading measurements with averaging times T >> 2~/w are capable of accuracies 

at least as good as 

l 1 
~l ~ (:ri/2mw)2 ( 1/ w-r) 2 ; {2.43) 

and perhaps with cleverness one can do better. (Appendix D is best read 

after Sec. III and Appendix C.) Paper II discusses practical limitations 

on modulated measurements - including limitations due to finite strength of 

coupling K. 

Continuous, single-transducer, back-action-evading measurements of x1 

are analogous to the single-transducer quantum-counting measurements pro-

posed by Unruh (1977, 1978) and by Braginsky, Vorontsov, and Khalili (1977). 

The Unruh-Braginsky interaction Hamiltonian has the form 

(2.44) 

(cf. Eqs. 2.17 and 2.5), which is analogous to our (2.42); and they measure 

N by averaging over a time T >> 2~/w. 

G. The Zero-Frequency Limit of Back-Action-Evading Measurements 
------------------------------------------------------~---------

In the limit w -~ O a mechanical oscillator becomes a "free mass," and 

the real and imaginary parts of the complex amplitude become 

,... 
-- x - (p/m) t ; 

" 
Ill lu x2 -- p 
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For a free mass these quantities, p and ~ - (p/m) t, are conserved in the 

absence of external forces; and one can monitor a classical external force 

by "back-action-evading measurements" of either of these quantities. 
,.. 

To measure p requires only a momentum transducer - i.e., a transducer 

whose interaction Hamiltonian is 

(2.l~6) 

,.. 
To measure x

1 
requires both a position transducer and momentum transducer 

= K~ - KpQt/m . (2.4 7) 

As in the case of a harmonic oscillator, so also for a free mass, a measure-
,.. ,.. ,.. 

ment of x1 or p = mw x2 can be arbitrarily quick and arbitrarily accurate 

in principle (so long as one ignores issues of strengths of materials, 

relativistic effects, etc.). This we demonstrate in the next section. 
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III. GEDANKEN EXPERIMENTS FOR ARBITRARILY QUICK AND :ACCURATE 

BACK-ACTION-EVADING MEASUREMENTS OF xl OR x2 

In this section we describe and analyze gedanken experiments by which, 

in principle, one can measure arbitrarily quickly and accurately (i) the 

momentum p = limw-+ 0 ( mwX2) of a free mass, and (ii) the real part xl of 

the complex amplitude of a harmonic oscillator. Throughout this section, 

as above, the phrase "in principle one can measure arbitrarily quickly and 

accurately" implicitly contains the caveat "within the framework of non-

relativistic quantum mechanics and ignoring constraints due to strengths 

of materials, voltage breakdown in capacitors, relativistic effects, etc." 

Consequently, in this section and related appendices we shall, without further 

comment or shame, take limits in which sizes of capacitors go to infinity, 

energies in electromagnetic frequency generators (clocks) go to infinity, etc. 

To alleviate queasiness caused by this cavalier approach, we shall administer 

a trong dose of practical constraints in Paper II. 

In this section we shall first (§A) discuss measurements of free masses, 

then (§B) measurements of oscillators. 

A. Measurements of a Free Mass 

1. The Standard Quantum Limit 

Gedanken experiments described in the literature suggest a possible 

li it 

"standard quantum limit" (3.1) 

o the accuracy with which one can measure a weak classical force F acting 

o a free mass m, with a measurement of duration T. 
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This "standard quantum limit" is correct and unavoidable (Braginsky 

and Vorontsov, 1974) if one tries to study F by measurements of the mass 1 s 

position (analog of "amplitude and phase" method for an oscillator; cf. Eqs. 

3.1 and .2.22). An initial position measurement of precision ~ produces, 

by the position-momentum uncertainty relation, a variance 6p ~ 6pmin = h/2tsx.i in 

the mass's initial momentum, which in turn produces the following variance of 

position after a time -r : 

1 

mc(-r) ~ [ <~i)2 + (~Ji?nijm)2-r2T~· = 

("standard quantum limit for free-mass position"). In this same time T a 

constant force F produces a change of position ox=~ (F/m)T2 . Comparing the 

signal ox with the noise (3.2), we .obtain the standard quantum limit (3.1) 

on the force F, to within a factor 2. A laser-interferometer detector for 

gravitational waves is an example of a system which studies weak classical 

forces by position measurements, and which is therefore subject to the con-

straint (3.1); see, e.g., Drever et al. (1977). For laser detectors this con-

straint is a serious potential problem at low gravitational-wave frequencies, 

f < 1 Hz. 

Another measuring system that is subject to the constraint (3.1) is a 

"velocity sensor." By "velocity sensor" we mean a measuring system in which, 

viewed classically, the velocity x of the mass m produces an emf in a cir-

cuit, and the effects of that emf are measured using a voltage or current or 

charge amplifier. An idealized, simple-minded version of such a sensor is shown 

in Fig. 6a. For that sensor or any "velocity sensor," the Lagrangian of 

the entire system, with amplifier disconnected, has the fonn 

• (3.3) 
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Here F is the force on m, which one seeks to measure; Q is the charge that has 

flowed onto the upper plate of the capacitance C; Q is the current in the circuit; 

and for the system of Fig. 6a the coupling constant is K = aB/mc, where a is the 

height of the magnetic-field region, B is the field strength, and c is the 

speed of light. The generalized momenta of this system are 

p = o..ejo ;.._ = m(~ - KQ), n = o.1!/c Q = r.Q ; (3.4) 

and the Hamiltonian H px + TIQ - .t , after quantization, is 

(3.5) 

. 
Notice that the velocity coupling -K rn x Q in the Lagrangian is equivalent 

AA 2 
to a momentum coupling K p Q in the Hamiltonian plus a capacitance C :::= l/rrtl( 

. K 

in the readout circuit. It is the capacitance CK which prevents such a 

velocity sensor even in principle from monitoring the momentum p and force F 

with arbitrary speep and accuracy. 

A semiclassical derivation of the quantum limit (3.1) for such a velocity 

sensor proceeds as follows: If the mass is initially in an eigenstate (or 

near eigenstate) of p with eigenvalue p , then the fonn (3.5) of the 
0 

Hamiltonian guarantees it will remain in an eigenstate of p but with eigen-

value p(t) = p ; +Ft. (Here Fis assumed constant, for simplicity.) Figure 6b 
0 

is then an equivalent circuit for the measuring apparatus. Simple analysis of 

this circuit, with voltage amplifier included, shows that the output Va of the 

amplifier at frequency f is 

(3.6a) 

Here a tilde denotes a Fourier transform, and for simplicity we have assumed that 

the amplifier has infinite input impedance and that initially there is zero charge 

on the capacitor and zero current through the inductor. For a quick measurement of 
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duration T (frequency and bandwidth f,..,,, 6f ~ 1/2~), the signal-to-noise ratio 

is optimized by setting C = L = O; then 

K(p + FT/2) 
SNR l"W 

0 (3.6b) 

Here S (f) is the spectral density of the amplifier's voltage noise V and 
V n 

s
1

(f) is the spectral density of its current noise In. The Heisenberg uncer-

tainty principle constrains the noise temperature of the· amplifier to be 

T ~ 21l'tff/k ~n 2 (Weber, 1959; Heffner~ 1962) which, by virtue of Eq. (12.33) 
n 

of Robinson (1974), is equivalent to the constraint 

(3. 7) 

(cf. Eq. 2.11), The ratio S/S1 can be adjusted by preceding the amplifier with 

a transformer. The optimal SNR occurs when SV/s1 = 1/ (2nfCK) 2 , which - together 

with f ,,...., Af ,..,,, l/2T - gives 

Since CK = l/triK.2, this optimal SNR does not improve as K ·>- oo. In fact, 

independent of K the minimum detectable force (SNR Z 1) is the "standard 

quantum limit" (3.1). For the case of a charge or current amplifier in 

(3.8) 

series with the circuit (and for optimization of the circuit impedances to 

C= 00 , L= 0), a similar analysis gives the same limit. 

Wagoner, Will, and Paik (1978) have proposed a design for a free-mass 

gravitational-wave detector which makes use of a velocity sensor. Their tech-

nique for coupling the circuit to the mass is essentially equivalent to the 

technique shown in Figure 6a, but is a more practical variant of it. Their 

Lagrangian has the standard velocity-sensor form (3.3); and therefore, i.ts 

performance can never exceed the "standard quantum limit" (3.1). 
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2. Momentum Sensors Can Be Arbitrarily Quick and Accurate 

From a velocity sensor such as that in Fig. 6 one can construct a 

momentum sensor by inserting into the circuit a capacitor with negative 

capacitance, -CK= -1/rriK.2 • A negative capacitor is not a common electronic 

component. Nevertheless, such capacitors can exist in principle~ and in 

principle their internal noise can be made negligible; see Appendix A for 

details. 

The momentum sensing system, which one obtains from the velocity sensor 

of Eq. (3.3) by inserting the negative capacitance -CK = -1/rriK.2, has the 

Lagrangian 

l •2 ·2 (rriK.
2 

1 ) 2 • :l = 2 mx + ! LQ + 2 - 2C Q - KmxQ + Fx. (3.9) 

Its velocities and momenta are related by (3.4); and its quantized Hamiltonian 

is (3.5) with negative capacitance inserted: 

-£ n2 _!__ A2 A A A H - 2m + 2L + 2C Q + K p Q - Fx • (3.10) 

In principle the positive capacitance C and the inductance L can be adjusted 

to whatever values one wishes. 

Such a measuring system can make arbitrarily quick and accurate measure-

A 

ments of p, and of the classical force F which drives p. One way to s ee this 

is by a semiclassical voltage-amplifier analysis of the type sketched in 

Eqs. (3.6)-(3.8). Another way is by a fully quantum mechanical analysis 

corresponding to the case of a charge or current amplifier in series with 

the circuit (which now has C = 00), rather than a voltage amplifier in paral-

lel. In this analysis we leave the amplifier out of the circuit initially; 

we let the circuit evolve freely until a reasonably strong current is flowing; 
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and we then insert our amplifier and quickly measure that current, or meas-

ure the charge on the infinite capacitor C. The free evolution of the system 

is governed by the Heisenberg equations for the Hamiltonian (3.10): 

dx/dt 
A A 

= p/m + KQ 

dp/dt = F 
A 

IT/L dQ/dt = ' 

( 3 .11) 

"' dII/dt = -K p 

These Heisenberg equations are easily integrated to give 

p(t) = p(O) + Ft , 

,.. ,.. 1 2] 
TI(t) = n(o) - K[p(O)t + 2 Ft ' 

Q(t) = Q(O) + (l/L)[TI(O)t - ~ Kp(O)t
2 

- _! KFt3 ] 
6 ' 

(3.12) 

A A 1 2 A l"' 2 1 A 3 ] '• 
x(O) +p(O)t+-z Ft +KQ(O)t+ (K/L)[z IT(O)t -6 Kp(O)t - 24 KFt ]. 

A 

x(t) = 

From these integrals we can infer the following. If the circuit is ini-

tially (at t = O) prepared in a Gaussian wave-packet state with 

" ,. 
(TI(O)) = (Q(O)) = O, 

1 
lill(O) = (Lh/2T)2, 6Q( 0) 

1 

(hT/2L)2 , 
(3 . 13) 

and if the "free mass" is initially in a near-eigenstate of p with eigenvalue 

p
0

, then after time T has elapsed the expectation values and variances of the 

circuit variables are 
"' 2 (Il(T))=-K'.(p T +!FT), 
. 0 

1 

till(T) = (Ln/2T)2 , 
"' 2 1 'Z 

( Q ( T) ) = -( K/ L )( ! p 0 T + G FT .J) , 
1 

6Q(T) = (rn/1r2 
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At time T we go into the circuit, disconnect it from the transducer if we 

"' "' wish, and measure either TI (the flux in the inductor), or IT/L (the current in 

"' the circuit), or Q (the charge on the infinite capacitor) . With appropriately 

designed amplifiers, in prinsiple we can make one or another of these mea-

surements to within the variances (3.14), in a time ~ T.. [This can be 

verified using the standard quantum limit on the noise performances of ampli

fiers. Note, moreover, that the precisions desired, oIT '" (Lft/2T)l/2 and 

OQ "' (fl.T /L) l/2 , are sufficiently modest that the uncertainty principle 
A A 

oTI oQ_2: 11/2 even permits us to make the II and Q measurements si.multaneously ! ] 

"' "' "' From the measured value of TI or II/Lor Q we can infer p ,in the absence of an 
0 

external force F, to within probable error 

op "' tig(T) '\, 
llIT (T) 

"' A 0 3<Q(T)>/2Jp 3<IT(T)>/3p 
0 0 

'\, (Ifil/K2T3)1/2 (3. lSa) 

or, if p is known to this precision from previous measurements, we can infer 
0 

the external force F to within probable error 

Equations (3.15) reveal that, no matter how quick (T) the entire experiment 

must be, we can make the coupling constant K large enough in principle to 

produce any desired accuracy for our inferred values of the "free-mass" momen-

tum p and force F. 
0 

The above argument is similar to the one by which Aharanov and Bohm 

(1961, 1964) refute a conimon misinterpretation of the energy-time uncertainty 

relation; cf. footnote£. The Aharanov-Bohm argument has been criticized by 

Fock (1962) because it involves turning the coupling constant K on and off at 
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t = 0 and t = T, so that the mass m will be truly free of all coupling 

before and after the experiment. Fock suspects that the turn-on and turn-

off cannot be done with the required precision. We, like Aharanov and Bohm 

(1964), disagree with Fock - but Fock's worries and our disagreement are irrel-

evant to the present analysis, because our objective here is merely to 

measure the momentum p and force F with arbitrary accuracy, and that can be 
0 

done without any time changes in the coupling constant K. 

B. Measurements of a Harmonic Oscillator 

We now return to our discussion of harmonic oscillators, and present a 

"' gedanken experiment which shows that the x
1 

of an oscillator can be measured 

arbitrarily quickly and accurately, in principle. In this section we shall 

describe our gedanken experiment in somewhat abstract terms - focusing 

attention on the dynamical variables of the system and measuring apparatus, 

on the Hamiltonian which governs their evolution, and on a mathematical sketch 

of the measurement process and its potential accuracy. In Appendix B we 

describe apparatus which, in principle, could give a physical realization of 

the experiment; and in Appendix C we present a full mathematical analysis 

of the measurement process, complete with "reduction of the wave function" 

and repetitive measurements. 

The oscillator to be measured is described by the variables of Eqs. (2.1)-

A A A A (2.5), including coordinate x, momentum p, complex amplitude x
1 

+ iX.
2

, fre-

quency w, and mass m. 

The measuring apparatus consists of three parts: a "generator," which 

provides energy for and regulates the sinusoidal coupling of the interaction 
A 

Hamiltonian; a "meter," which is coupled to x
1 

by the generator; and a 

"readout system" for studying the x1-induced motion of the meter. 
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The generator is a quantum mechanical oscillator, which has precisely 

the same frequency w as the oscillator being measured. Before the measurement, 

the generator is prepared in a coherent state of arbitrarily large amplitude. 

As is discussed in Appendix B.l.c, this means that the generator can be treated 

classically, and that it is not loaded by the experimental apparatus - and, 

consequently, that it produces perfect "cos wt" and "sin wt" terms in the 

Hamiltonian. 

The meter is a one-dimensional quantum mechanical "free mass," with 

A A 

generalized coordinate Q, generalized momentum IT, and generalized mass L. 
A 

The coupling of the meter to the oscillator's x
1 

will be so strong that a 

tiny change oxl will make Q "swing" by an amount large compared to the width 

of its wave packet (cf. Eqs. 3.19 below). This swinging can then be observed 

with a classical readout sys tern - i.e., we can put the "quantum-classical 

cut" of our analysis between the meter and the readout sys tern, thereby avoi.d-

ing the necessity to describe the readout sys tern quantum mechanically; see 

discussion in Appendix C. 

The total Hamiltonian for the coupled system, excluding the readout, 

is 

"' "' +~ "' (3. l6a) H H + HI' 0 

A "2/ 1 2 ..... 2 
(3.16b) H == p 2m + 2 mw x, 

0 

~ == rr2/2L, (3.l6c) 

"' "' A 
"' K(x cos _l "' 
HI == wt sin wt)Q KXl Q (3.16c1) mw 

"' "' Here H ia 
0 

the Hamiltonian of the free oscillator, HM is the Hamiltonian of 

the 
7 

meter, "' and HI is the interaction Hamiltonian for the oscillator 

coupled, via the classical generator ("cos wt" and "sin wt" terms),• to the 
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meter. In the Heisenberg picture of quantum mechanics the state of the 

system is constant, and the observables Xl = X COS Wt - (p/t~) sin Wt, 

X = ~ sin tut + (p/rnw) cos wt, Q, and fi evolve in accordance with the 2 

Heisenberg equations 

aX/dt 0 (3.17a) 

"' A 

dX
2
/dt = -(K/mw)Q (3.17b) 

A 

IT/L dQ/dt = (3.17c) 

arr/at 
A 

= -KX (3.17d) 1 

These are algebraically identical to the classical Hamiltonian equations of 

" the system. Note that x
1 

is completely unaffected by the coupling to the 

measuring apparatus. 

We presume that at time t = t
0

, before the measurement begins, the 

oscillator is in a state (perhaps pure; perhaps mixed) with probability dis-

" tribution -G'(x
1

) whose expectation value is <X
1
(t

0
)> ; and whose variance 

0 

is 6X
1
(t

0
) = ~. At t = t

0 
the meter is prepared in a pure Gaussian wave

packet state with <Q(t
0

)> = <H(t
0

)> = 0 , 6Q(t
0

) = (;fi.T/2L)
112 , 

1/2 
6IT(t

0
) = (1\L/2T) , where T is the duration of the planned measurement. 

A 

These variances are chosen to minimize the variance of Q after a time T. 

The preparation of the meter can be done either with the oscillator-meter 

coupling turned on (in which case K = constant before, during, and after the 

entire experiment), or with the coupling turned off (K = 0 fort< t
0 

, 

K = const: for t
0 

< t < t
0 

+ T). Ti1e probability distribution -G'(X
1

) is left 

unaffected by the physical manipulations of Q and IT involved in the prepara-

tion; cf. Eq. (3.17a). 
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After preparation of the meter, the system is allowed to evolve freely 

"' (Eqs. 3.17) for a time T. During this interval x
1 

is conserved, and the 

"' evolution of Q is given by 

"' "' fi<to> rci1 2 
Q(t) = Q(t0) + L (t-t0) - zi:- (t-t 0) (3.18) 

The interaction produces a strong correlation between the states of the oscil-

la tor and meter: At time t 1 = t 0 + T the meter's mean coordinate gets dis-

placed to 

(3.19a) 

(cf . Eq. 3.18), while its variance grows to 

(3.19b) 

At time t
1 

the readout system "reads out" a value Qm for the meter coor-

"' dinate, where ~ is likely to lie somewhere in the range <Q(t
1

)> ~ (a few) 

x b.Q( t
1
). (This readout can be done leaving the coupling K on, or turning 

it off, as one wishes; it makes no difference.) Using formula (3.19a) the 

experimenter infers from ~ a value 

2 
~ = -(2L/KT ) Q m m (3. 20a) 

for x
1

. In a set of measurements on an ensemble of identical systems, the 

mean of this inferred value is ~ , and its variance is 
0 

(3.20b) 

Of course, as (3. 20b) shows, one cannot determine ~ accurately if the probao 

bility distribution t?(X
1

) has a large spread; however, if ti>(X
1

) is highly 

peaked about ~o n:: << (4fiL/K
2

T
3
)l/Z], the measurement can determine ~ with 

0 

a probable error 
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(3. 21) 

No matter how small the measurement time T may be, by choosing K2/L large 

enough one can make the measure~ent error ~; as small as one wishes. [Note 
m 

that this remains true even if the readout of Q is much less accurate than 
1 

(ri.-r:/L)2; see analysis in Appendix C.7.] The measurements can be "arbitrarily 

quick and arbitrarily accurate." 

If a weak, classical force is driving the oscillator (term -x F(t) 

added to the Hamiltonian; cf. Eq. 2.18), then during the ti.me T the cxpecta-

" tion value of x
1 

changes by an amount 

tl 
ot;; = - I [F(t')/mw] sin wt' dt' (3.22) 

to 

(cf. Eq. 2.31); and the meter's mean coordinate gets displaced to 

"' -(KT
2 

/2L)(t;; <Q(tl)> = + ~) 
' 0 

(3.23a) 

r t' t" 

'!J = - (2/i) dt' I dt" f dt"' [F(t'") /mw]sin wt"' (3. 23b) 

to to to 

while the variance of Q(t
1

) is still given by (3.19b). For measurement times 

short enough that F(t)sin wt is nearly constant during the measurement, 

'!J ~ (l/3)ot;; ~ -(T/3)[F(t
0

)/mw]sin wt
0

• If t;;
0 

is known from previous meas-

" urements to within the error (3.21), a measurement of Q .at time t
1 

allows one 

to determine '!J (or ot;;) with accuracy 

(3. 24) 

Such a measurement permits one (in principle) to monitor the force F arbi

trarily quickly and accurately, in the limit as T and (11L/K
2

T5) 112 are made 

arbitrarily small. 

The preceding analysis is rigorous, but it is far from complete. In 

Appendix C we present a more detailed analysis; in particular, we analyze a 
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sequence of measurements of x1 , including the "reduction of the wave function" 

at the end of each measurement. This more detailed analysis allows us to 

investigate the behavior of x
1 

and x
2 

during a sequence of measurements. The 

most important results concern x
2

. We show that a "feedback force" on the 
A 

meter can keep the expectation value of x2 close to zero. However, the vari-

A 

ance of x
2 

inevitably increases during a sequence, and the increase is pro-

portional to the square root of the number of measurements. Practical impli-

cations of this "random walk of x2" are discussed in Paper II. 

IV. FORMAL DISCUSSION OF QUANTUM NONDEMOLITION MEASUREMENT8 

In this section we shall distill from our analysis of oscillators and 

free masses the essence of "quantum nondemolition measurement" and label 

that essence using the formal and precise language of nonrelativistic quantum 

mechanics. The final product may be unpalatable to the practical-minded 

reader, but we hope it will clarify the fundamental principles underlying 

"nondemolition measurement." 

A. Definition of Quantum Nondemolition Measurement 
~ ...... .,,~.,,,..~~-...... ~~~~· 

and Its Implications 

Our investigation of quantum nondemolition measurement was stimulated 

by the desire to monitor a classical force acting on a harmonic oscillator 

with better accuracy than can be obtained using standard "amplitude-and-

phase" techniques. Braginsky (1970), and later Giffard (1976), had pointed 

out the limitations of the standard techniques (see Sec. II.C), and Braginsky 

and Vorontsov (1974) had proposed overcoming these limitations by making 

what they called "quantum nondemolition measurements." In such a measurement 

one monitors a single observable of the oscillator, and it must be an ob-
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servable that can be measured over and over again with the result of each 

measurement being completely determined (in the absence of a classical force) 

by the result of an initial, precise measurement. The force is detected by 

changes it produces in this sequence of precisely predictable values. 

The key feature of such a nondemolitiori measurement is repeatability - once 

is not enough! If one can couple strongly enough to a physical system, then any 

of its observables can be measured (in principle) with arbitrary precision at a 

particular instant. (This is the content of a controversial general "theorem" 

in nonrelativistic quantum theory; see discussion in footnote 6). Such a 

precise measurement "localizes" the system at the measured value of the ob

servable. An initial, precise measurement can be regarded as preparing the 

system in a state with a nearly definite value of the measured observable. 

The goal of a subsequent measurement is to determine this value. However, 

the initial, precise measurement inevitably produces huge uncertainties in 

observables that do not commute with the measured observable, and in general, 

these uncertainties "feed back" into the measured observable as the system 

evolves. Consequently, the result of a subsequent measurement is uncertain. 

If one wishes to make repeated precise measurements whose results are com

pletely predictable (no uncertainty!), one must measure an observable that 

does not become contaminated by uncertainties in other, noncommuting obser

vables. 

It is easy to formulate a general condition for making such a sequence 

of completely predictable measurements: The system being measured must be 

in an eigenstate of the measured observable at the time of each measurement. 

Then the result of each measurement is exactly equal to the eigenvalue at the 

time of the measurement, and immediately after the measurement the system is 

left in the same eigenstate ("measurement of the first kind"; cf. footnote 6). 
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This condition clarifies the nature of nondemolition measurement 

and, at the same time, makes it clear that what is not being demolished is 

the state of the system; it is left unchanged by each measurement except 

for an unknown (and irrelevant) phase factor. 

To formalize these ideas, consider an arbitrary quantum mechanical sys-

A 

tern with free Hamiltonian H • 
0 

The objective is to measure an observable A 

of this system. (A is a Hennitian operator; it may have explicit time-

dependence). For a resonant-bar gravitational wave detector, the system 

would be the fundamental mode of the bar, which can be idealized as a 

A 

simple harmonic oscillator; and A might be the number of quanta in the 

oscillator or the real part of the oscillator's complex amplitude. For 

A 

such a detector, one measures A in order to monitor the classical force on 

the oscillator produced by a gravitational wave; to allow for that possibility 

here, we include in the Hamiltonian a term DF(t), where Dis some observable 

" of the system and F(t) is the "classical force." To insure that A responds 

A A 

to F(t), we require [A,D] f 0 . 

In order to measure A, one must couple the system to a measuring appara-

tus. The details of the system's interaction with the measuring apparatus 

" are described by the interaction Hamiltonian H1 , which contains all tenns in 

the Hamiltonian that depend on variables of both the system and the meas~ring 

apparatus. The total Hamiltonian - including the system, its coupling to the 

"classical force," and the measuring apparatus - has the form 

" H (4.1) 

" where~ is the Hamiltonian of the measuring apparatus - i.e., that part of 

the Hamiltonian which depends only on measuring apparatus variables (cf. Eq. 

2.36). 
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" We now define a quantum nondemolition (QND) measurement of A as a 

" sequence of precise measurements of A such that the result of each measure-

ment (after the first) is completely predictable (in the absence of a clas-

sical force) from the result of the preceding measurement. If an observable 

can be measured this way (in principle), we call it a quantum nondemolition 

observable. 

This definition can be used to derive a condition for a QND observable-

a condition most easily formulated by ignoring the details of the interac-

tion with the measuring apparatus. This is not to say that these details are 

unimportant: For example, the strength of the coupling between the system 

and measuring apparatus determines how quickly a given measurement precision 

can be achieved (see Sec. III). However, the fundamental limits on the pre-

" dictability of a sequence of measurements of A are determined not by the 

interaction with the measuring apparatus, but by uncertainties (variances of 

observables) which are built into a quantum mechanical description of the 

free evolution of the system. Of course, the interaction with the measuring 

apparatus, if chosen poorly, can ruin a QND measurement by increasing the 

variance of the measured. observable; however, as we demonstrate in Sec. IV.R, 

the interaction need not degrade the measurement at all in principle. There-

fore, for the remainder of this subsection, we ignore the interaction term in 
,.. 

the Hamiltonian; we simply assume that there is a way to measure A with 

arbitrary precision at any instant (infinitely strong coupling!) and that 

" such a measurement leaves the system in an eigenstate of A whose eigenvalue 

is the measured value ("tneasurement of the first kind"; cf. footnote 6). 

We also ignore, for the moment, the classical force. 
,.. 

We now consider a sequence of measurements of A. The analysis proceeds 

most smoothly in the Heisenberg picture of quantum mechanics, which we use 



97 

throughout the rest of this subsection. The initial measurement is made at 

time t
0

, and we assume that the experimenter has no control over the state 

of the system before this initial measurement. (This may be a bad assumption; 

see discussion in Sec. IV.C.) The nonnalized eigenstates of A(t
0

) are 

denoted by IA,a.>, where A(t0)!A,a> = AIA,a> and where a. labels the states in 

"' any degenerate subspaces of A(t0 ). 

The result of the initial measurement is one of the eigenvalues A
0 

of 

A(t
0
), and the state of the system inunediately after the measurement is an 

"' eigenstate of A(t
0

) with this eigenvalue: lljl(t
0
)> = I c IA ,a>, where the 

a. a. 0 
ca.' s are arbitrary (subject to normalization) constants. In the interval 

before the next measurement the system evolves freely, and in the Heisenberg 

picture the state of the system does not change: lljl(t)> = l'l'(t
0

)>. If a 

second measurement at t = t
1 

is to yield a completely predictable result, then 

all of the states IA0 ,a.~ must be eigenstates of A(t
1

) with the same eigen

value, although the new eigenvalue need not equal A
0

. Hence, one obtains the 

requirement 

for all a. 

where f
1 

is an arbitrary real-valued function. Equation (4.2) guarantees 

that the result of a measurement at t = t
1 

will be f
1 

(A0), because !'l'(t0)> 

will be an eigenstate of A(t
1

) with eigenvalue f 1 (A0) for arbitrary ca.'s. 

By asswnption, the result of the initial measurement can be any of the 

eigenvalues of A(t
0
). Thus Eq. (4.2) must hold for al1 values of A

0
, and 

A(t
1

) must satisfy the operator equation A(t
1

) = f
1

[A(t
0
)].

9 
In a sequence 

of measurements a similar operator equation must hold at each step in the 

sequence. Therefore, one obtains the following set of requirements for a QND 

observable that is to be measured at times t = t 0 ,···,tn: 
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for k = l,•·•,n, (4. 3) 

where each fk is some real-valued function. These formal constraints on the 

free evolution of A in the Heisenberg picture embody t .he fundamental principle 

"' of QND measurement: If the system begins in an eigenstate of A, its free 

"' evolution must leave it in an eigenstate of A at the time of each measurement. 

The conditions (4. 3) for a QND observable were given previously by the authors 

(Thorne et al., 1978). 

One is usually interested in making QND measurements at arbitrary times 

or continuously. Then Eq. (4.3) must hold for all times: 

(4.4) 

An observable that satisfies Eq. (4. 4) we call a continuous QND observable. 

An observable that satisfies Eq. (4. 3) only at carefully selected times we 

call a stroboscopic QND observable. Examples of stroboscopic QND observables 

are the position and momentum of a harmonic oscillator (stroboscopic measure-

ment; see Sec. II.F.2). Because of their importance, we restrict our attention 

to continuous QND observables for the rest of this section~ 

The simplest way to satisfy Eq. (4. 4) is to choose an observable which 

is conserved in the absence of interactions with the external world: 

cIA 
0 = - = 

dt 

" 
1 [A,H 1 + aA 
-tl 0 dt 

(4.5) 

For example, the continuous QND observables we have considered for a harmonic 

"' " " " oscillator- x
1

, x
2

, and N -are conserved. Note that the free Hamiltonian H 

is always a QND observable (provided ()H /at = 0). 
0 

It is harder to find · nontrivial examples of nonconserved continuous 

0 

QND observables. One system which has such observables is a mass m on a 

"' "2 1 2 ,...2 
"negative spring"-i. e., a mass with Hamiltonian H

0 
= p "/2m-

2 
mtJJ x • For 
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such a system the observables ~ + (p/mw) are QND ohservables, but they are 

not conserved. 

It is useful to note here an important commutation property satisfied 

" by any continuous QND observable A: 

[i(t),i(t')] = 0 for all times t and t' • (4.6) 

This property follows inunediately from the QND condition (4.4). Equivalent 
A 

to (4.6) is the statement that A commutes with all its derivatives-i.e., 

n 

r 
£=0 

(- i)n-£(n) [o.eA " J(n-£)] 
11 £ ot£ ' Ho , 

(l+. 7) 

for n = 1 2 3 ' _, ' ... , 
where 

" c n = 0 (n) ' 
[e,n) -

[ [ ... [ rc,n], n], . . -} nJ ' n = 1, 2, ?: 
;::,, 

n D's 

The latter equality in Eq. (4.7) can be obtained (provided dll /at 
0 

using the operator equations of motion in the Heisenberg picture. 

.(lt. 8) 

0) by 

Unruh (1979) has recently considered the problem of nondemolition 

measurement. He discusses many of the issues considered in this section, 

but from a somewhat different point of view. He has proposed that Eq. (!1. 7) 

(or, equivalently, Eq. 4.6) be used to characterize QND observables. 

[Actually, Unruh considers only observables with no explicit time-dependenc~ 

a serious restriction which rules out such very important obs e rvables as the 

A 

x
1 

of an oscillator. Because of this restriction, Unruh's quantum non-

demolition condition is 
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for n = 1 , 2 , 3 , • • • , (4.7') 

which is the specialization of (4.7) to the case 3A/3t = O.J 

The motivation for Unruh's definition is discussed in Sec. IV.B, but 

for now it is important to note that, although Eq. (4.7) is an irmnediate 

consequence of the QND condition (4.4), the implication cannot be reversed. 

The observables satisfying Eq. (4.7) constitute a more general class than 

the QND observables; we call such observables generalized (continuous) QND 

observables. 

Examples of observables which satisfy Eq. (4. 7), but not Eq. (4.h), can 

be obtained by considering a system suggested by Unruh (1979): a charged 

-> ~ 

particle (charge e, mass m) moving in a uniform magnetic field B == B e and 
0 z 

an elec t ric field E = ( eB~8m)V(x2 + y2 
- 2z2 ). If the vector potential is chosen 

to be A=~ B0(-y~x+x~y),_ then px and py (x- and y-components of the particle's 

canonical momentum) form a pair of generalized QND observables, but they do not 

satisfy the QND criterion (4.4). [For this system the observables~ - (px/m)t 

and y - (pyfm)t form another pair of generalized QND observables.] 

Any generalized QND observable A does obey an evolution constraint simi-

lar to the QND constraint (4.4). Successive differentiation of Eq. (4.7) 

sh1Jws that all derivatives of A mutually commute, and a Taylor expansion of A 
,., 

about some initial time t
0 

shows that the free evolution of A must have the 

form 

(4.9) 

where the Hermitian operators Bi corranute with one another and with A(t
0
). In 

A 

writing (4.9), it is assumed that none of the operators Bi can he written as 

a function of A(t0 ) and the other Bi's; otherwise, the functional dependence 

of A(t) could be simplified. Note that if A(t0) has no degeneracies, the 
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only operators which commute with it are functions of itself; hence, a non-

degenerate generalized QND observable is automatically a QND observable. 

Generalized QND observables can be compared most tellingly with QND ob-

servables by using Eq. (4.9). The key difference is the following: A sys-

tern which begins in any eigenstate of a QND observable remains in an eigen-

state of that observable; this is true for a generalized QND observable only 

"' "' if the initial eigenstate is a simultaneous eigenstate of A(t
0

) and the B
1
's. 

An equivalent manifestation of this difference is that, in a sequence of 

measurements of a generalized QND observable, the result of a given measure-

ment cannot be predicted solely from the result of the preceding measurement. 

However, it can be predicted from the results of several preceding measure

ments - enough to specify the values of A(t
0

) and each of the Bi's. In prac

tice generalized QND observables may prove to be as useful as QND observables, 

but the distinction between the two must be kept in mind. 

Having defined QND measurement, we now consider its application tci the 

problem of monitoring a classical force F(t). The procedure for monitoring 

F(t) is to make a sequence of measurements of a QND observable and to detect 

the force by the changes it produces in the precisely predictable values which 

would be measured in the absence of the force. 

One would like to do more than simply "detect" the force: Ideally, one 

would like to monitor its time-dependence with arbitrary accuracy; and if 

the force is arbitrarily classical, there is no reason in principle why one 

"' cannot do so. In fact, a sequence of measurements of the observable A can 

reveal with arbitrary accuracy the time evolution of F(t) if and only if the 

following conditions are satisfied: (i) The measuring apparatus and its 

coupling to the measured system (HM and HI of Eq. l•. l) must be chosen so as 

to produce instantaneous and arbitrarily precise measurements of A (see Sec. 
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IV.B below). (ii) The measurements must be made at arbitrarily closely-

spaced times. 
I 

(iii) The result of the (k+l) th measurement at time tk must be 

uniquely determined by the result of the initial measurement at time t
0 

plus 

the time history F(t') of the force between t
0 

and tk. This is possible if 

and. only if A is a continuous QND observable in the presence of the driving 

force F (Eq. 4.4): 

for t < t' < t , 
0 

(t •• lOa) 

where A(t) is the Heisenberg-picture evolution of A under the action of 

"' "' "' H = H + DF. 
0 

Here f is a function of A(t
0
), t, and t

0
, and is a functional 

"' of F(t'). (iv) From the time history of the measured values of A(t) one 

must be able to compute uniquely the time history of F(t). The measured 

values will be 

where A
0 

is the (arbitrary) eigenvalue of A( t
0

) obtained in the first measure

ment. Thus condition (iv) is equivalent to the demand that 

A(t) = f[A
0
;F(t');t,t

0
] must be a uniquely invertible 

functional of F(t'), for every eigenvalue A
0 

that is 

a possible result of the first measJrement of A(t
0
). (!1. lOb) 

Of these conditions only Eqs. (4.lOa,b) are constraints on the choice 

A of the observable to be measured. Thus, for a given system and a given 

"' "' "' coupling to the classical force F (i.e., for given H = JI + DF), conditions 
0 

(4.10) are necessary and sufficient to permit in principle measurements of 

"' A that reveal with arbitrary accuracy the time evolution of F(t). To such 

"' an observable A we shall give the name "QNDF". Because a QNDF observable 

is QND in the presence of the force F, it will necessarily satisfy Eq. 

(4.6)- [A(t),A(t')]=O-and also the first equality of Eq. (4.7). Tiiese 
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same two equations are also satisfied by "generalized QNDF observables" ---

i.e., observables for which the functional f of Eqs. (4. lo) depends also 

" on a set of mutually commuting Hermitian operators B. which all commute 
1 

The distinction between QND and QNDF observables arose earlier in com-

"' paring quantum-counting measurements and measurements of x
1 

as ways of monitor-

ing a force acting on a harmonic oscillator (see Sec. II.D, E). Measurement s 

"' of x1 can be used to monitor an arbitrarily weak force F(t) with arbitrary 

accuracy, in principle; quantum counting can "detect" an arbitrarily weak force, 

but it cannot provide good accuracy in monitoring the force's precise t ime-

"' dependence. The fundamental reason for this difference is that x
1 

is a QNDF 

"' observable, while N is not. 

In his recent treatment of nondemolition measurement Unruh (1979) has 

also drawn attention to the important distinction between QND and QNDF 

observables (QNDR and QNDD, respectively, in his notation). 

Up to now we have neglected the details of the measuring apparatus 

" which is actually used to measure a QND observable A. We now rectify this 

omis~ion. Our main concern is to demonstrate our earlier assertion that the 

interaction between the system and the measuring apparatus need not degrade 

the quality of a QND measurement at all, in principle. The analysis in this 

subsection is restricted to continuous observables, but it can easily be 

modified to handle stroboscopic observables . 

In a real experiment the measuring apparatus consists of a series 

of components. Each component is coupled to the preceding component, and 

only the first stage in the series directly "contacts" the system. 
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Fortunately, we need not concern ourselves with this entire complicated 

structure; its complexities can remain buried in the measuring apparatus 
,... 

Hamiltonian ~· We need only consider the first stage of the measuring 

apparatus and its interaction with the system - an interaction whose mathe-

"' matical manifestation is the .interaction Hamiltonian HI. 

" The measuring apparatus must actually respond to A, and this demand 

A A 

means that HI must depend on A and on one or more variables of the first stage 

of the measuring apparatus. In addition, the measuring apparatus ought not 

"' to respond to observables of the system other than A, and this desj re means 

"' "' that A ought to be the only observable of the system appearing in HI. The 

simplest interaction Hamiltonian of this form is 

KAQ (4.11) 

A 

where Q is some observable of the measuring apparatus and K is a coupling 

constant. This is the type of interaction Hamiltonian which was used in Secs . 

" II.F.l and III.B to analyze continuous measurements of x
1

• 
A 

If A contains explicit time-dependence, the coupling between the system 

and the measuring apparatus must be modulated so as to supply the proper time-

A 

dependence in HI. The modulation must be provided by an external, classical 

"clock." Unruh (1979) has pointed out that any "clock" is an inherently quantum 

mechanical device whose quantum properties cannot be ignored a priori; however, 

the "clock" can always be excited into a highly energetic, essentially classi--

cal state, where uncertainties due to its quantum mechanical nature are unim-

portant. This issue is discussed in the context of meastirements of x
1 

in 

Appendix B .1. c. 

We now turn to the main concern of this subsection - to demonstrate the 

following fundamental property of QND observables. The evolution of a con-

tinuous QND observable A (in the Heisenberi picture) is complt:_!_~naffocted 
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by the interaction with the measuring apparatus (in the absence of a classi.-
A 

cal force), provided that A is the only observable of the sys tern which appears 

in the interaction Hamiltonian.
10 

The proof of this property relies on only 
A 

one feature of A- that it satisfies Eq. (4.6) in the absence of the interac-

tion with the measuring apparatus. Thus the property holds for generalized 

QND observables, and for QNDF observables even in the presence of the classical 

force. 

Proving the property is not difficult, but it is sufficiently important 

that it is worthwhile to sketch the proof in some detail. We consider the 

case of a QND observable 'in the absence of a classical force, and we now let 

" A denote the QND observable in the Schrodinger picture. The total Hamiltonian , 

now considered to be written in the Schrodinger picture, is given by Eq . (4.1) 

" A 

with the classical-force term deleted. We let U
0
(t,t

0
), UM(t,t

0
), and 

A A A A 

U( t, t
0

) be the unitary time-development operators for 11
0

, HM, and H, respec-

tively (cf. Eq. 2.19). The assumption about the nature of the interaction 

A 

means that HI has the form 
1 

HI= HI[A(t);Q1 ,··· ,Qn;t] (4.12) 

" where the operators Qi ar~ observables of the measuring apparatus. 

The two operators of interest are the interaction-picture and Heisenberg-

picture forms of the QND observable: 

~Ct) _ u:ct,t0) ACt)u
0
ct,t0 ) 

~Ct) _ utct,t
0

) ACt)uCt,t0 ) 

"' 

(4.13a) 

(4.13b) 

The interaction-picture operator ~(t) gives the evolution of the QND obser-

vable in the absence of the interaction with the measuring apparatus; thus 

it is the operator which satisfies the QND condition (4 .4) and which, i n par-

ticular, also satisfies Eq. (4.6). TI1e Heisenberg-picture op e rator ~1 (t) 
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gives the evolution of the QND observable in the presence of the measuring 

apparatus. The object of the proof is to show that ~1 ( t) = ~ (t). 

A A 

The operators ~(t) and ~(t) are related by 

~(t) 

where 

The solution for U(t,t
0

) can be written as 

i{(t,t0) • T exp [- ~] if1 (t')dt'J 

to 

(4.14) 

(4.15) 

(4. 16a) 

U•. 16b) 

( 4.17) 

where T means that all products are time-ordered (see e . g., Sec. 18 . 7 of 

Merzbacher, 1970). The fact that ~(t) satisfies Eq. (4.6) guarantees that 

[A
1

(t),f{(t,t
0
)] = O, which with Eq. (4.14) implies that ~(t) = ~(t) . As 

claimed, the QND observable is completely isolated from the measuring appara-

tus. A trivial extension of this argument proves the result for QNDF obser-

vables in the presence of the classical force. 

The meaning of this fundamental property should be emphasized. The 

property says that the evolution of a QND observable, calculated using the 

equations of motion in the Heisenberg picture, is unaffected by interaction 

with the measuring apparatus. This means that the expectation value and 

variance of A evolve during a measurement exactly as they would have had the 
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measuring apparatus been disconnected. "Noise" in the measuring apparatus 

does not feed back onto A and increase its variance. However, a complete 

description of a measurement requires more than just a calculation of the 

quantum mechanical evolution : At some time the measurement must end, the 

quantum mechanical evolution equations must be suspended, and the quantum 

state of the coupled system and measuring apparatus must be "reduced" to be 

consistent with the results of the measurement. 

A 

If the system begins the measurement in an eigenstate of A, it remains 

A 

in an eigenstate of A throughout the measurement, and the "reduction of the 

wave function" leaves it in the same eigen:~tate. This is an immediate conse-

quence of the above fundamental property. However, in any real measurement 

A 

the probability distribution of A has some variance, and at the time of 

A 

"reduction" the expectation value of A "jumps" a distance which can be as 

large as the variance. In this sense the measuring apparatus does affect the 

QND observable. However, these "jumps" are a consequence of the fact that 

the measuring apparatus is not making absolutely precise measurements; they 

do not affect our conclusion that in principle the measuring apparatus need 
A 

not degrade the predictability of a sequence of measurements of A. For a 

" detailed analysis of this issue in the context of measurements of x1 , see 

Appendix C. 

It is now clear why the details of the interaction with the measuring 

apparatus could be ignored in Sec. IV.A. There we assumed infinitely strong 

coupling so that precise measurements could be made instantaneously. For a 

realistic interaction, the coupling strength is finite, and a certain amount 

of time is required to achieve a desired measurement precision. However, no 

matter what the coupling strength T'1ay be and how long the measurement may last:, 
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a QND observable is completely unaffected by the coupling to the measuring 
,... 

apparatus if HI has the required fonn. Indeed, for any measurement time one 

can achieve any des ired accuracy by making the coupling strength large 

enough - i.e., the measurements can be arbitrarily quick and arbitrary accu-

rate. Of course, it may be difficult in practice to design an interaction 
,... 

which is sensitive only to A; and if other observables of the system appear 
,... ,... 

in H1 , the time a measurement can take before it disturbs A significantly 

may be limited. 

It is interesting to note here that if the right kind of interaction 

can be designed, a QND observable is isolated not only from "quantum noise" 

but also from "classical noise" in the measuring apparatus (thermal noise 

in resistors, shot noise in amplifiers, etc.). In this sense any QND meas-

urement is a "back-action-evading" measurement, because the measured obser-

vable evades the back-action noise from the measuring apparatus. 

As mentioned earlier, Unruh (1979) has proposed that Eq. (4.7') be used 

to characterize nondemoli tion measurement. He considers only observables 

with no explicit time dependence, he assumes an interaction Hamiltonian of 

the form (4.11), and he characterizes nondemolition measurement by the demand 

that the measured observable be completely isolated from the measuring appara-

tus. As we have shown, any generalized QND observable meets this demand. 

Thus it is not surprfsing that Unruh's QND ·condition is Eq. (4. 7') - the con-

dition for a generalized QND observable with no explicit time dependence. 

C. Comments and Caveats 

The discussion of nondemolition measurement in this section has been 

presented in the formal language of nonrelativistic quantum mechanics, and 

the description of the measurement process has been highly idealized. The 
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reader can be forgiven for asking whether these idealized descriptions have 

anything to do with real experiments. We think so , and the best evidence 

for our affirmative answer is in Paper II, where specific, practical schemes 

for making nondemolition measurements on harmonic oscillators and free masses 

are discussed. All of these practical schemes are founded firmly on the 

fundamental principles outlined in this section. Perhaps the best thing we 

can do here is to indicate in a very general way the relevance of these fun

damental principles to real experiments. 

The objective of this section was to develop a simple, unambiguous cri

terion for identifying those observables of any system which, in principle, can 

be measured repeatedly with no mcertainty in the results. The QND condition (4. 3) 

provides that criterion. Given this criterion, the experimenter faces a 

clear-cut choice. If he chooses to measure an observable other than a QND 

observable, he knows that, as he imp·roves the precision of his measurements, 

he will eventually run "smack-dab" into an impenetrable barrier - impenetrable 

because it is constructed from quantum mechanical uncertainties dictated by 

the uncertainty principle. On the other hand, if he chooses to measure a 

QND observable, he knows that nonrelativistic quantum mechanics erects no 

such barrier. The real value of the principles outlined in this section is 

that they do this job of clarifying what quantum mechanics allows. 

Once the QND observables of a given system have been identified, the 

experimenter has a variety of options. If he is ambitious, he might try to 

design a measuring device which couples nearly exactly to a particular QND 

observable, as in continuous measurements of x
1 

(see Sec. II.F.1). This 

task might prove to be quite difficult, so the experimenter might rein in 

his ambition and choose instead to design a measuring device which couples 
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to the QND observable only in a time-averaged sense, as in single-sensor, 

back-action-evading measurements of x1 (see Sec. II.F.3 and Paper II). The 

essential point is that all these options flow from the fundamental princip l es 

of nondemolition measurement. 

Powerful, simple , clear-cut~these are words that describe the QND condi

tion (4.3). Yet these virtues are purchased at the expense of certain assump

tions about the measurement process, and under some circumstances these 

assumptions may make the QND condition too restrictive. Despite our belief 

in the utility of the QND condition , it is important to register here a couple 

of caveats which warn against using it carelessly. 

Caveat 1. The definition of QND measurement is formulated in tenns of arbi

trarily precise measurements. No real experiment can achieve such perfect 

measurements, so the QND criterion (4.3) is always more stringent than neces

sary. The virtue of QND observables is that, for any desired measurement ac

curacy, a QND observable can do the job in principle; the caveat is that it 

may be possible to find an observable other than a QND observable which can 

also do the job. 

Caveat 2. The strict operator constraint (4.3) follows from Eq. (4.2) 

only if one assumes that the experimenter has no control over the state of 

the system before the initial measurement . In most experiments this is not 

the case; the experimenter usually prepares the system in some way before 

beginning his measurements. The second caveat is that, if the experimenter 

does have some control over the possible initial states of the system, the 

QND condition (4.3) need only hold in the subspace of states which the 

system can actually occupy. For a simple system such as a harmonic oscillator 

this caveat is probably unimportant, but for more complicated systems it 
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may make a difference. 

If these caveats are kept in mind, the experimenter should be able to 

apply the QND condition to arbitrary systems. He can then face the experi

mental future free from uncertainty - about quantum mechanical uncertainties. 
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APPENDIX A 

CAPACITORS WITH NEGATIVE CAPACITANCE 

In the text of this paper one occasionally encounters the concept of a 

capacitor with negative capacitance. The physical structure of such a 

capacitor and the details of its noise are discussed in this Appendix. 

We present three models for such a capacitor. The first utilizes a 

mechanical spring. It will please theorists because it can be analyzed 

fully quantum mechanically; but it will annoy experimenters because it 

may not be realizable in practice. The second and third will please 

experimenters because they are constructed from standard electronic com

ponents; but they will annoy theorists because one (the third) functions as 

a negative capacitor only over a very narrow band of frequencies, and the 

other (the second) uses an amplifier whose internal structure is unspecified 

and gives a noise performance not as good as that of the first model. 

In Sec. 1 we present our first "spring-based" model capacitor; in 

Sec. 2 we show that in principle it can function perfectly, introducing 

absolutely zero noise into the gedanken experiments of Sec. III of the text; 

and in Sec. 3 we present several alternative viewpoints about the nature and 

role of this negative capacitor. In Sec. 4 we present our second, "amplifier

based" model capacitor; we derive an expression for the spectral density of 

its voltage noise; and we show that its noise is too great to do the job 

required in Sec. III. In Sec. 5 we present our third, "narrow-band " negative 

capacitor -- which also cannot do the job required in the gedanken experiments 

of Sec. III, unless one alters them by inserting a frequency upconversion. 

Our first "spring-based" model capacitor is shown in Fig. 7(a). It 

consists of three parallel plates with arbitrarily large areas. The top 

and bottom plates are rigidly fixed. The middle plate has negligible mass, and 
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is free to move in response to the combined action of springs (total spring 

constant k) and electrostatic forces. Two batteries produce a potential differ

ence 2V0 and an electric field vcf n between the outer plates. When a charge 

+ Q moves onto the central plate from terminal A, the central plate gets 

pulled adiabatically upward a distance z = v0Q/kD; and terminal A thereby 

acquires a potential ( -v0
2/kD2 )Q relative to terminal B. Thus, the system 

functions as a capacitor with negative capacitance, -CN' where 

(A. l) 

(The charge Q = ± kD2/v
0 

, which is sufficient to drive the 
max 

central plate into contact with the upper or lower plate, can be made arbi-

trarily large in principle while holding CN fixed.) 

This capacitor has two possible sources of noise: noise in the batteries, 

and noise in dynamical motions of the central plate. 

The battery noise can be made zero in principle. Figure 7(b) shows a 

model for a noiseless DC battery. It consists of two parallel plates with 

finite separation D', infinitely large areas a' and charges± Q', and finite 

surface densities of charge, a'==± Q'/a' ::o ± Vc/4rrJJ'. Any finite charge Q 

that flows through terminals A' and B' produces zero fractional change in 

the plate charges (Q/Q' = 0 since Q' =co), and therefore produces zero 

change in the battery voltage v
0

• (Here, as throughout this paper, we ignore 

relativistic effects such as speed-of-light limitations on how fast the 

electrons can redistribute themselves on the plates near the terminals.) 

Dynrunical motions of the central plate of our capacitor are a delicate 

issue. We shall analyze them with care, first giving a heuristic semi-

classical analysis and then (in Sec. 2) giving a fully quantum mechanical 

analysis. In our analysis initially we make the area a of the capacitor 

plates finite but large; the capacitance c
0 

::=.= 2(a/lt-1lD) of the central 
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plate relative to the outer plates, finite but large; and the mass µ of the 

central plate, finite but tiny. The motion of the central plate is described 

by the dynamical variable z( t) -- (height above central position); the charge 

that sits on the central plate is deno ted by the dynamical variable Q(t). The 

entire system shown in Fig. 7(a) is then described classically by the Lagrangian 

•2 i 2 VO 
.l = ! µz - 2 kz + D Qz + (A.2) 

This Lagrangian serves two purposes: (i) its Euler-Lagrange equations 

o.f_/oz = 0 describe the motion of the central plate; and (ii) the voltage 

of terminal A relative to terminal B is given by 

(A.3) 

We now simplify our Lagrangian by making the plates infinitely large 
1 

(c
0 

+ex>); we replace v
0
/n by (k/CN)2 (cf. Eq. A.l); and we make the replace-

ment 

2 
k = µn , 

where n is the very high natural frequency of oscillation of the central 

plate. The Lagrangian then reads 

1 ·2 .l = 2 µz 

and the Euler-Lagrange equation of z becomes 

2 2 l 
z + n z = (n /µcN )2 Q. 

(A.J+) 

(A.5) 

(A.6) 

We assume that n is extremely large compared to the rate at which Q changes. 

Then the central plate moves nearly adiabatically in response to changes of 

Q: 

(A. 7) 



115 

Here we include a correc t ion term z to account for nonadiabatic effects na 

due to finite n : 

z /z -+ 0 na 
as n+oo; (A.8) 

and we include a term zf£ to account semiclassically f or fluctuations of 

the central plate demanded by quantum theory. 

The voltage drop between t erminals A and B, as computed from Eqs. (A.3) , 

(A.5), (A.7) , is 

2 -1 
= - (µn /cN) 2 z 

= - Q/cN + vna + vf £ • 
(A.9a) 

The first term is that for a perfect negative capacitor. The second, non-

adiabatic term vanishes in the limit n ->- oo: 

v I (VA - VB) := z I z + 0 na na 
as n + oo. (A.9b) 

In the following section we shall show rigorously that, for the gedanken 

experiments of Sec. III, the quantum fluctua tions Vf£ produce no charge flow 

in the circuit, Qf£ -> o, in the adiabatic limit i1 ->- oo. The following argu

ment explains, heuris t ically, why this is so: The zero-point oscillations of 

the central pl ate have a magnitude 

1 

I zf£ I - (~/µn)2 , (A.10) 

corresponding to an energy ~-n r.. These produce a fluctuating voltage 

(A.9c) 

The characteristic frequency i1 of these fluctuations is far higher than the 

natural frequencies of the circuit to which our negative capacitor is hooked 

up. Therefore, these fluctuations have great difficulty driving oscillations 
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of the circuit: 

Qf£ ~ [(natural frequencies)/n]
2 

vf£ 

(A.11) 

as n _,.. co. 

In sunnnary, our heuristic argument shows that the model negative capacitor 

of Fig. 7 functions perfectly (no noise) in the gedanken experiments of 

Sec. III. However, this is so only in the idealized limits that (i) the 

area of the capacitor's plates is infinite (a->- oo, c
0

-+ CD); (ii) the 

natural oscillation frequency of its central plate is infinite (o.2 
=-= k/11 -> ro); 

and (iii) one ignores relativistic corrections, issues of strengths of materials, 

etc. 

2. Gedanken Ex eriment to Measure the Momentum of a Free Mass 

We now sketch a fully quantum mechanical analysis of one of the gedanken 

experiments of Sec. III, replacing the ideal negative capacitance of Sec. III 

by the spring-based model negative capacitance of Fig. 7 (a). The gedanken 

experiment we choose is the measurement of the momentum of a free mass (Sec. 

III.A.2). The reader can perform a similar calculation for the gedanken 

experiment to measure the x1 of an oscillator (Sec. III. B). The result will 

be the same: In the adiabatic limit n ~co, the negative capacitor produces 

zero noise. 

The physical setup of our momentum-measuring experiment is that of 

Fig. 6a with (i) the noisy amplifier (dashed part) removed; (ii) the capacitance 

C set to infinity; and (iii) our negative capacitor (Fig. 7 ) inserted at the 

location of the dotted arrow. The Lagrangian of everything except the nega-

tive capacitor is Eq. (3.3); the contribution of the negative capacitor is 

Eq. (A.5); and the value of the negative capacitance which we require to 
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convert our velocity sensor into a momentum sensor is 

2 
-CN = -1/rriK • 

(See sentence preceding Eq. 3.9.) 

. 
KmxQ + Fx 

The total Lagrangian then becomes 

1 ·2 + 2 µz 
2 2 2 2 l t µn z + (mµK n )2 Qz. 

(A.12) 

(A.13) 

We shall see that, in the limit n ->-co, this Lagrangian gives the same quantum 

" mechanical results for the measurement of the momentum p, and force F·:, as 

did the Lagrangian (3.9) which contained a perfect negative capacitor 

-C = -l/IDK
2

• 
N 

The canonical momenta for the Lagrangian (A.13) are 

p = c.t_/-a;. = mx - KmQ, 

. . 
TI = o.t_/oQ LQ 

0£/oz . 
1t' = = µz. 

. 
The Hamiltonian H = px + ITQ + 1t'Z - .t_, after quantization, is 

A A A 2 2 l_ AA 

- Fx + K p Q - ( mµK 0 ) 2 Q z • 

This Hamiltonian will give the same results, when n ->- oo, as did the 

Hamiltonian (3 . 10) with a perfect negative capacitor. 

The Heisenberg equations for the Hamiltonian (A.15) are. 

(A. ll~) 

(A.15) 
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dp/dt = F 

a.X/ dt = p/m + KQ 

1 

d~/dt 2-" ( r 2)2 A -µn z + mµ n Q 

(A.16) 
d'i./dt = ~/µ 

1 

dll/dt " mK.2Q + (mµK20.2)2 ; = -Kp -

d{$./dt = fi/L. 

These equations describe coupled, driven hannonic oscillators. They can be 

decoupled by the change of variables 

" z -
1 

"' z , 

[ (m/µ) 2K/n] Q • 
(A.17) 

" Here y
1 

has eigenfrequency zero, and in the adiabatic limit (n-+ ro) it 

" " becomes Q; y
2 

has eigenfrequency 

(A.18) 

and in the adiabatic limit it becomes z. " By changing variables to y
1

, 

y
2

, then solving the Heisenberg equations, and then rewriting the solution 

in tenns of Q and z we obtain 

"' "' p(t) = p
0 

+Ft, (A.19a) 
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Q( t) (mµ) 2 K A no 
1 ] ["' Ln 2

0 + -r: + 

] [ 

,... 1 .... 
2 rr ··- ,r 

.-.. mlC o (mµ) 2 K o 
z cos at+ - - - -] 

0 Ln2 L Ln 11 . 

sin ot 
0 

· - - - p t + - Ft K [1 ,... 2 1 3] 
L 2 o 6 

z(t) 

,... 

K mK
2 

·[ po - -- - (1 
L 1(12 a2 

F 
- cos ot) + 2 

a 

' 

cos er t + _..._£ _ m µ) 2 
K ~ sin o t [ ~ < I _1_ n ] 

µ n L er 

(m/µ)~ K "' ] 
n Qo 

+ mK
2 

'ro + (m/µ) 2 K ~o t 
[ 

,.. 1 "J 
LD.2 µ n L 

(A.19b) 

I 
A. 2 

(m µ) 2 K 
+ Ln [ 

po 
er2 (1 - cos at) 1 3J I - 6 Ft • 

(A.19c) 

The remaining variables can easily be computed from these using the Heisenberg 

equations (A.16). In these solutions a subscript "o" means the value at 

t = O: 

p = p(O), Q ~ Q(O), etc. 
0 0 

(A.20) 

The solution (A.19b) for Q( t) illustrates, fully quantum mechanically, 

the phenomena sketched semiclassically in the last section: (i) In the exact: 
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adiabatic limit n + 00' the charge Q( t) that flows in the circuit is identical 

to that obtained with a perfect, noiseless negative capacitor 
1 

A.19b and 3.12). (ii) When n is finite but n >> (rriK.2/L)°-;!-

(compare Eqs. 

(natural 

frequency of circuit without negative capacitor), there are corrections in 

"' Q( t) due to nonadiabatic behavior; but these corrections vanish as n -+ co. 

Quantum mechanical fluctuations in Q(t) show up when one computes the 
,... 2 1.. 

variance ~Q( t) = ((Q - (Q)) ) 2 in terms of the variances at time t = O. 

Because Q(t) reduces to the "perfect-capacitor" form (Eq. 3 . 12) when n + oo , 

we are guaranteed that 6Q(t) will reduce to the perfect-capacitor variance 

(Eq. 3.14) when n + oo . Thus, in the adiabatic limit, quantum fluctuations 

of the central plate have no effect on the charge (Q(t)) that flows, or on 

its variance 6Q(t). Our negative capacitor does its job perfectly and 

noiselessly. 

We have argued in the text (Sec.III.A.2) that, in monitoring the.motion 

of a mechanical system, a momentum sensor is equivalent to a velocity sensor 

plus a negative capacitor. Similarly (Appendix B.2), in monitoring an 

electromagnetic system, a sensor for generalized momentum is equivalent to 

a sensor for generalized velocity plus a negative spring . 

In designing practical variants of spch sensors, it may be useful to 

keep in mind several different viewpoints about negative capacitors and 

negative springs. One viewpoint is that embodied in the phrases "capacitor 

with negative capacitance" and "spring with negative spring constant." Two 

other viewpoints are presented in this section. 

Our second viewpoint on negative capacitors is this (the extension to 

negative springs should be obvious): A velocity sensor is equivalent to 
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a momentum sensor plus a restoring force in the sensor's circuit (term 

~ rriK.
2Q2 

in the Hamiltonian of Eq . 3.5) . The stronger is the coupling of 

the velocity sensor to the mechanical mass (coupling constant K), the 

stronger is the restoring force in the sensor's circuit. If one wishes to 

measure the mechanical momentum more accurately than the standard quantum 

limit, one must make K so strong that the restoring force causes the circuit 

to oscillate through several cycles during the measurement time -r. Because 

of these oscillations, the effects of the driving signal (voltage -Kp) do 

not accumulate monotonically in the circuit. Consequently, the signal-to-

noise ratio is debilitated, and the measurement cannot beat the standard 

quantum limit ( cf. Eq. 3.8). To rectify the situation one must modify the 

sensing circuit so that it contains a low-frequency (f < 1/-r) normal mode 

in which the signal can accumulate monotonically. Our so-called "spring-

based negative capacitor" accomplishes just this. It gives the readout 

circuit two dynamical degrees of freedom instead of one; and when it is 

properly tuned to the rest of the sensor (kD
2/v0

2 = l/rriK.
2

; Eqs. A.l and 
1 

A.12), one of the degrees of freedom (y
1 

= Q + [(mµ)2 K/Ln]~) has zero eigen-

frequency. The signal builds up monotonically in this degree of freedom 

giving, in principle, an arbitrarily large signal-to-noise ratio. 

Our third viewpoint on negative capacitors builds on this second view-

point. When our "spring-based negative capacitor" is included in the sensor, 

then the sensor circuit has two normal modes. It is essential that one of 

the normal modes have a low enough eigenfrequency, f :S 1/-r, for the signal 

to accumulat e monotonically. However, it is not essential that the other 

normal mode have such a high eigenfrequency that it decouples from the 

rest of the system (n ->- oo; adiabatic limit; situation assumed in all pre

vious discussion). For example, we might let n, the natural frequency of 
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2/ _l_ the central plate in the "negative capacitor," be of order (mIC J,) 2 , the 

natural frequency of the circuit in the absence of the negative capacitor: 

2 1 
n ~ (rnK /L)2 (A.21) 

Then, it turns out, the mechanical motion of the central plate, ~(t), is 

influenced sufficiently by the zero-frequency normal mode, y
1
(t), that one 

can read out from that motion the signal contained in y
1
(t) . More specific

ally, for the gedanken experiment of Sec •. lII.A.2, with initial conditions 

"' "' (~o) (z0 ) = o, " (IIo) = (Qo) = = (Po) = Po ' 

1 1 

tJIO = (nr./2-r) 2 
' 1:>.Qo = (rn/2L) 2 , (A.22) 

1 1 

b:rc 
0 

= (liµ/2-r) 2 
' l:>.zo = (ri-r/2µ) 2, 6P 0 

o, 

no correlations of above variables, 

the expectation value and variance of the central plate's position at time 

Tare (Eq. A.19c) 

(A.23a) 

(A.23b) 

Here use has been made of Eq. (A.21), and for simplicity the classical 

driving force has been omitted (F = 0). One can attach a pointer with a 

scale to the central plate, and in principle one can read out z(-r) from 

that pointer with probable error ~z(-r). From the result one can infer the 

free-mass momentum p to within probable error 
0 



123 

' 
(A.24) 

where again Eq. (A.21) has been used. For a given T, if the coupling is stronger 

2 I 2 than K = L mT , then the measurement can be more accurate than the standard 
l 

quantum limit [op < (hm/T)2 ]; and if K ~co, then the measurement can be 
0 

arbitrarily accurate. 

In this variant of the experiment the "spring-based negative capacitor" 

functions as a readout device ("charge meter") which is carefully tuned 

2 2 2 
(kD /V

0 
= 1/mK ; Eqs. A.1 and A.12) to the rest of the sensing circuit. The 

pointer attached to the central plate gets displaced by an amount (~(T)), which 

is proportional to the charge that has flowed onto the central plate - and 

thence proportional to the momentum p of the free mass. A person adopting this 
0 

"third viewpoint" should realize that the careful tuning (k.D2/v
0

2 
== l/mK2 ) 

is required to produce a zero-frequency mode in which the signal can accumu-

late ("viewpoint two"), but he need not be aware that his charge meter is 

functioning, in effect, like a negative capacitor ("viewpoint one"). 11 

4. An Amplifier-Based Negative Capacitor 

Figure 8(a) shows a model negative capacitor constructed from standard 

electronic components, including a voltage amplifier with infinite input 

impedance. The amplifier has arbitrarily large amplification at all 

frequencies of interest, and its equivalent voltage and current noise 

sources V (t) and I (t) have spectral densities constrained by the quantum 
n n 

limit 

(A.25) 
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(Heffner, 1962; Eq. 3. 7 of this paper). (For sir.iplicity we assume zero 

correlation between the voltage and current noises.) The capacitors c
1 

and 

c2 act as a vol t age divider. When a voltage V is applied to A, the ampli

fier forces a negative charge -c
0

(c
1

Jc
2
)v to flow in at terminal A and 

onto the capacitor c
0

• Thus, the system exhibits a negative capacitance 

-C given by 
N 

(A.26) 

It is straightforward to show that the voltage-current relation for 

this device is 

-
v = i 2~f s, - vn (i + ~~) + i

1

~nf ( c~ + gl ) (A. 2 7) 

00 

where a tilde denotes Fourier transform at frequency f [A(f) = f A(t) eiZTrftdt}. 

-oo 

This is identical to the voltage-current relation for the "Thevenin equivalent 

circuit" of Fig. 7(b). The voltage noise source for that circuit, VN(t), has 

spectral density which we can read off Eq. (A. 27): 

( 
c )2 s ( f) ( )2 

SV (f) = 1 + / SV(f) + I 2 ~. + t-
N 1 (2nf) -N 1 

(A. 28) 

This noise is minimized for fixed CN by setting c
1
Jc

2 
-> 00 , c1/~ + 00 , and 

by impedance-matching the amplifier so that s
1 

/SV = (2Trf CN) 
2

• (In principle 

the impedance-matching can be achieved at any chosen frequency by a trans-

former that immediately precedes the amplifier input.) Then the spectral 

density of the equivalent noise source VN becor.ies 

(S S )1/2 
V I (A.29) 



125 

The quantum limit (A.25) for the amplifier then implies 

(A. 30) 

This is the very best noise performance that the model ne~ative capacitor 

of Fig. 8 can possibly achieve. It is instructive to compare this noise, 

which has a white spectrum, with that of our spring-based model for a 

negative capacitor (Eq. A.9c), which is concentrated at t11e very high fre-

quency n . 

Unfortunately, the noise performance (A. 30) is too poor to permit use 

of this negative capacitor in the "arbitrarily quick and accurate" gedanken 

experiments of Sec. III. For example, in the momentum measuring experiment 

2 
of Sec. III.A.2 we require CN = l/m.T( , where m is the mass of the "free mass" 

being measured, and K is the coupling constant in the transducer. In "DC" 

measurements of duration T our model capacitor would superimpose on the 

transducer output a fluctuating voltage with variance 

/':,V :::: S - > -- = K ~ 
( 

1 )1/2 ( 211 )1/2 ( 215.m)l/2 
N VN 2T - s~ T T 

(A. 31) 

For comparison, the signal voltage produced by the transducer is V = -Kp 
s . 

(cf. Eq. 3.11. with V = dII/dt), where p is the momentum to be measured. 
s 

Evidently the voltage noise VN of the negative capacitor produces an un-

certainty 

1/2 
op:::: (2flm/T) 

in one's measurement of p, and a corresponding uncertainty 

(A. 32a) 

(A.32b) 
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in one's knowledge of any classical force acting on the free mass. These 

uncertainties are equal to the standard quantum limit for a free mass. 

Thus, the noise of our second negative capacitor [Fig. 8(a)] is too great 

to permit its use in measurements designed to beat the standard quantum limit. 

5. A Narrow-Band Negative Capacitor 
------------------------------------

When one is performing measurements in a narrow band of angular frequencies 

!J.w around a high "carrier" frequency n, one can use an inductor as a nega-

tive capacitor. Aside from fractional corrections of order !J.w/~, an induc

tor with inductance L = (n2cN)-l has the same impedance in this band as a 

negative capacitor -~ : 

z -i 2Tif L 
1 

-i2Tif(-C) 
N 

In principle such a "narrow-band" negative capacitor can be noiseless. 

(A.33) 

The "arbitrarily quick and accurate" gedanken experiments of Sec. III 

require a negative capacitor that operates over a broad band of frequencies, 

O < f ~ l/2T. Thus, an inductor cannot do the required job. However, one 

can invent a more complicated version of those gcdanken experiments, i.n 

which, for a measurement of the momentum of a free mass, the output of the 

velocity transducer is multiplied by cos nt with n >> l/T. Similarly, for 

a measurement of the x
1 

of an oscillator, the outputs of both the coordinate 

and velocity transducers can be multiplied by cos nt. Then the readout is 

at frequencies ~ Q in the band /J.w ~ n/T, and a narrow-band negative capacitor 

(i.e., 3.n inductor) does an adequate job of converting the velocity transducer 

into a momentum transducer. Such a measurement can determine the momentum of 

a free mass with accuracy op
0 

"" (~h)-l/ 2 (nmh/12 , or t:hP- x
1 

of an oscilla

tor with accuracy oX
1 

"" (wT)-l/2 (rh)-l/Z (fl/2nw) 112 . Th ls trick of "upcon-

version" of the signal to a carrier frequency Q is discussed in detail in 

Paper II. 



127 

APPENDIX B 

PHYSICAL REALIZATIONS OF THE HA.1'1ILTONIAN (3.16) FOR 

ARBITRARILY QUICK AND ACCURATE MEASUREMENTS OF x
1 

In this Appendix we describe gedanken apparatus by which, in principle, 

one could make the "arbitrarily quick and accurate" measurements of X de-
1 

scribed abstractly in Sec. III.B. Our objective is not to describe practical 

apparatus for real experiments. (Practical issues are discussed in 

Paper II.) Rather, we seek to demonstrate, in the manner of a mathe-

matician proving a theorem, that in principle there can exist apparatus 

governed precisely by the Hamiltonian of Sec. III.B (Eq. 3.16). 

Section 1 of this Appendix describes apparatus for measuring a mechanical 

oscillator, and discusses the relationship between classical generators to be 

used in that apparatus and quantum nechanical generators. Section 2 describes 

apparatus for an electromagnetic oscillator. 

1. Mechanical Oscillator 

Figure 9 shows a physical realization of the coupled oscillator am:t 

measuring apparatus which were described abstractly in Sec. III. B. In this 

figure our mechanical oscillator is drawn with very thick lines. It consists 

of a mass (stippled square) coupled by a spring to a rigid wall. 

Our electromagnetic generator circuit is drawn with lines of medium 

thickness. It is an LC circuit with a single lumped inductance L and with 
g 

total capacitance C split up among three capacitors in series - two at the 
g 

top of the diagram; the third at the lower right. This generator will be 

excited into a highly classical, coherent state, thereby producing voltages 

proportional to cos wt across its capacitors, and a current proportional to 
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- sin Wt through its inductor. These voltages and this current will provide 

the sinusoidal couplings for our position and momentum transducers. 

The meter of Sec. III.B (a circuit with self-inductance L but no net 

capacitance) and the transducers which couple the meter to the mechanical 

oscillator are drawn with thin lines. The position transducer is the three-

plate balanced capacitor labeled C in the upper part of Fig. 9. 
0 

The outer 

plates will be biased with voltages± (constant)•cos wt by the generator's 

capacitors 3C ; and as a r esult the central plate, which is attached rigidly 
g 

to the oscillator, will acquire a voltage proportional to x cos wt. The 

momentum transducer consists of two parts: a velocity transducer [mutual 

inductance MK between L and L which, because of the generator current 
g 

I ~ sin wt through L , will produce a voltage across L that is proportional 
g g 

to d(x sin wt) /dt = x ·sin wt + wx cos wt]; and a complicated system of 

compensating capacitors which convert the velocity transducer into a momentum 

transducer [net output voltage proportional to (p/mW)sin Wt+ x cos Wt]. We 

adjust the relative strengths of the couplings in our position and momentum 

transducers so that the total signal voltage in the meter (thin-line circuit 

of Fig. 9) is K·[x cos wt - (p/mw)sin wt] = K·X1 . 

The readout system measures the total charge Q that the signal voltage 

KX
1 

has driven through the meter circuit. In the limit of very strong coupl

ing, we can put the quantum/classical cut between the meter and the readout 

system, and we can forego any detailed mathematical description of the readout 

system; cf. Sec. III.B and Appendix C.2. 

b) Derivation of the Hamiltonian 
---------------------------------

Initially we analyze the system of Fig. 9 in the Lagrangian formalism 

of classical mechanics; then we compute the Hamiltonian and quantize it. 
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In the Lagrangian formalism the mechanical oscillator is characterized 

by its mass m, frequency w, and time-dependent position x(t). The electro-

magnetic generator, which produces the sinusoidal couplings, is character-

ized by its total capacitance C and inductance L , and by the current 
g g 

Q(t) = dQ/dt which flows in it. The eigenfrequency of the generator is 

identical to that of the mechanical oscillator: 

L C = l/w
2 

g g 

The meter is characterized by its self-inductance L and its current 

Q(t) = dQ/dt. 

(B.l) 

From the constant ~ ~hich characterizes the coupling of the oscillator 

to the meter, and from the mass m and frequency w of the oscillator, we can 

construct a characteric length scale s: 

2 2 
s = mw /K (B.2a) 

We shall choose the generator's capacitance C to be huge compared withs; 
g 

and we shall introduce the small dimensionless parameter 

E = s/3C 
g 

(B.2b) 

Before each measurement the generator, regarded quantum mechanically, will 

be excited into a coherent state with 

..... 
(Q) = Q cos wt , 

0 
(B.3a) 

(B, 3b) 

,... 
The mean number of quanta in the genera tor, <N> :: N , and the fractional width 

0 

of its wave packet will then be 
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<N> = N 
0 = 

Q 2/2c 2 o g _ 3 m(ws) 
11.w - 2 2"' 

E uW ' 
(B.3c) 

,, / _ .!. N - l/ 2 6 '.LJ Qo - 2 o (B.3d) 

In the limit £ + O, the generator will contain an infinite number of quanta, 

N
0 

+ 00 , and it will become fully classical, f'::.Qj~ + O • We shall keep c 

finite but small in our analysis, until we have obtained our Hamiltonian. 

Then (Sec. c below) we shall take £ + O, thereby bringing our Hamiltonian 

into the fonn (Eq. 3.16) studied in Sec. III.13 and Appendix C. 

We now construct the Lagrangian for our system, choosing the magnitudes 

of various parameters along the way so that in the limit £ ->- 0 the correspond-

ing Hamiltonian will reduce to (3.16). 

The mechanical oscillator (thick lines in Fig. 9 ) has the familiar 

Lagrangian 

1 • 2 
.l = - mx 

0 2 
1 2 2 
2 rnw x (B.4) 

The generator's inductance L is fixed in inertial space. The meter's 
g 

inductance L is partly attached to the mechanical oscillator, and partly 

attached to inertial space - with the details of the attachments designed 

to produce a mutual inductance between L and L which is proportional to 
g 

the oscillator's displacement x. The proportionality constant Mis chosen 

to be 

3/2 ( )-2 M = £ ws (B.5) 

The resulting Lagrangian associated with the inductances is 

-£1 = ~ Lfl + ~ LgQ
2 

+ MxQQ (B.6a) 

- .!_ Le? + _!. L Q2 
- 2 2 g + Kx(Q/w)(Q/ wQ) 

.o 
(B.Gb) 
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Consider next the circuitry above the mechanical oscillator in Fig. 

9 - i.e., the position transducer, plus two-thirds of the .generator's 

capacitance. The two capacitors labeled 3C are fixed in inertial space, g . 

as are the outside two plates of the capacitor C • The central plate of 
0 

C . is rigidly attached to the mechanical oscillator, so that its separa
o 

tions from . the outside plates are -2
1 D ± x. We define C to be the 

0 0 

capacitance between the outside plates at a moment wh~n there is no charge 

on the c.entral plate . (Q = 0). We set 

C 
,, I 3/4 

- s £ ' 0 
(B.7) 

so that. in the limit e: + O, ( .i) the plate separation D gets arbitrarily 
0 . 

large, leaving plenty of room for the oscillator to move, and (ii) the 

linear size of the plates, (DC )
1

/
2 

« e:-
5 /a, gets far larger than their 

0 0 . 

separation, D « E-l/
2• The total energy in the capacitors, expressed in 

0 

terms of Q,. Q, and X; is equal to minus the Lagrangian, -~c' of the capaci

tors. A straightforw~rd computation gives 

..t_ = 
c 3C (1 + 2C /3C ) g 0 g 

2QQx/D 
. 0 

- 3C ( 1 + 2C /3c ) . g . 0 g 

2 ·[ 8~0 . 1 

2C 
0 

+ 3C 
g 

(B. 8a) 

By using Eqs. (B. 7), (B . 2b), and (B.3b), and discarding all contributions to 

.£ which vanish in the limit e; ~ 0, we bring this into the form 
c 

..t_ 
·c 

Q.2 
= - _3_C_( l--"'+~2E....,l,_../,,_4_) 

g 
- 2KxQ (O:) · (B.8b) 
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(Eqs. B.2 and B.3 imply 2 2 1/4 Q /c oc 1/E , which forces us to keep E cor-o g 

rection in B.8b). 

The mutual inductance of Eq. (B.6) produces a time-dependent velocity 

coupling. As in Sec. III.A.2, so also here, a negative capacitor is needed 

to convert this velocity coupling into a pure momentum coupling - but now 

the negative capacitance must be time-dependent. It is achieved by the com-

pensating capacitors at the bottom of Fig. 9 • These include (i) a con-

stant negative capacitance -s, which has the internal structure discussed in 

Appendix A.l and which contributes 
r 1· 

1 2/ ..ts = + 2 Q 8 

to the Lagrangian; and (ii) the variable positive capacitor "c
1
". 

(B.9) 

The left 

plate of c
1 

is fixed in inertial space and the right plate of c
1 

is attached 

rigidly by an insulator to the movable left plate of the generator's capacitor 

' "3C " - which in turn is attached by insulated springs (total spring con-
g 

stant k) to the right plate of 3C • This arrangement enables the generator 
g 

to modulate the plate separation of c
1 

and thereby modulate its capacitance. 

The total mass of the movable plates is vanishingly small (eigenfrequency of 

vibration infinitely large) so that, like the central plate of the model nega-

tive capacitor in Fig. ]a, they move adiabatically and they inject zero 

noise into the electrical system. When no charge is on the capacitors, the 

movable plates have position y = 0 and the capacitances are 3C and Cl. When 
g . 

charges Q and Q are applied, the equilibrium position is 

1 ( Q 2 
y = k 6C D 

. g g 

We set 

(B.10) 
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k = l_ (.-3/2 2 
D 

-5/8 
mw € s 

2 g 
-1/8 (. s 

Dl (. 
1/4 

s (B .11) 

so that in the limit t:.-+ 0 the plates' linear sizes become large compared to 

their equilibrium separations and large compared to their displaced separa-

tions: 

(D - y) D 
g 

(C D )1/2 
g g 

-+ 0 , _ _.g..._____.,._ -~ 0 , 
(CD )1/2 

g g 

Dl 

(C D )1/2 
1 1 

-+ 0 , 
Dl + y 

-----,-. ... 0 • 
(C D )1/2 

1 1 

A straightforward computation gives for the Lagrangian of these two variable 

capacitors (equal to minus the energy in the springs and capacitors) 

-£ - o_2 (1 -2- Q2 ) Q2 (1 1 Q2 ) = - -
VC 6C 12 Kc D 2 2C

1 4 kClD12 g 
g g 

1 Q2Q2 
( B. 12a) - 12 kClDlCgDg 

Using Eqs. (B.11), (B.2), and (B.3b), and discarding terms in .t that vanish 
vc 

when E + O, we bring this into the form 

(The £
3 / 4 correction must be kept here because Q 2/c ~ l/t:.

2
.) 

0 g 

The total Lagrangian is the sum of Eqs. (B.4), (B.6b), (n.8b), 

(B.9), and (B.12b): 

1 •2 1 2 2 1 ·2 - Q2
[1+(2/3)t.

1
/

4 
.e.=-mx --mwx +-LQ I 

2 2 2 g 2Cg l + 2£1 4 

1 
6 

(B .12b) 

(B .13) 
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The terms multiplying -Q2
/2C produce only a slight renormalization of the 

g 

generator frequency and a slight anharmonicity in its oscillations - and 

these effects vanish in the limit E ~ O. Therefore we may discard these 

terms, thereby bringing our Lagrangian into the form 

i · 2 i 2 2 1 n2 Q 2 
:I., = 2 mx - 2 mw x + 2 Lg~ - 2C 

g 

1 • 2 Q2 
+ -2 LQ -1 2 s 

A slightly prettier form can be obtained by the change of generator coor-

dinate 

~ld 
K 

= ~ew - 0 L w2 xQ 
"o g 

(B .15) 

- a change which becomes Qold = ~ew in the limit E: -+ 0 (Q_
0

/Cg ->- oo). By 

making this change of coordinate, and by discarding terms in :I., which vanish 

as E: -+ O, we bring our Lagrangian into the final form 

(B .16) 

We next introduce the generalized momenta 

mX - !.Q. (_j_) 
w w~' 

II . 
aq 

LQ · KQx I, Q - -
2
- , (B.17) 

g w Q 
0 

compute the Hamiltonian H = px + ITQ + gQ-:1.., discard terms that vanish as 

£ -+ O, and quantize. The result is 
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,,.,2 
.. 

"'2 "'2 

[(~J "' p 1 2 .... 2 n +~ (~)2 - i] H =- + -nwx + 2L + 2m 2 2s 

"'2 "'2 KQ(x/ "' 

~) L + _g_ + + _£_ (B .18) + 2L 2C mw g g 0 

c) Quantum Generator Compared with Classical Generator 
------------------------------------------------------

Equation (B. 18) is the Hamiltonian of our oscillator plus measuring 

apparatus, with the generator treated quantum mechanically. W. G. Unruh (1979) 

has pointed out the importance of treating the generator quantum mechanically 

rather than classically in any fully rigorous analysis of measurements of x
1

, 

and he was the first person to write down the Hamiltonian (B.18) for such a fully 

rigorous analysis. 

We now show that the quantum generator can be replaced, in principle, 

by a classical generator without loss of accuracy in our analysis - thereby 

justifying our use of classical generators throughout the text of this paper. 

Specifically, before any measurements begin the quantum generator is prepared 

in the coherent state (B. 3), which has a mean number of quanta N , and has 
0 

"' "' 
~;::; cos wt ~~ - sin 

w 
0 g 0 

6Q. 69_ 1 
Q: := LgU1~ 2N. i/2 ' 

0 
0 

< (Lg~JJ + (Q~)2 1) " 

{(LA) 2 
+ (f}- iJ, 

1 
m 

0 

1 
N 1/2 

0 

wt 

Comparison of Eqs. (B.19) and (B.18) shows that, in the limit 

I 

(R .19) 

N · > 00 (i.e., 
0 

e: -+ O), the generator behaves completely classically and is not loaded at all 
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by the rest of the system - i.e., it is governed by the uncoupled Hamiltonian 

"' H 
g ; 

(B. 20) 

and it always remains in the infinitely-sharply-peaked coherent state of 

(B.19). The Hamiltonian for the rest of the sys tern, when N -+ oo, is oh tained 
0 

by removing the decoupled generator Hamiltonian (B. 20) from (IL 18), and by 

replacing Q/Q and j/L wO by their sharp classical values, cos wt and 
0 g ""b 

- sin wt • The result, 

..... 2 ..... 2 
"' p 1 2 ..... 2 IT q"'(~ H = 2m + 2 mw x + 2L + I<! x cos wt 

"' 
..l sin wt) 
mw ' 

(B.21) 

is identical to the Hamiltonian (3.16) with classical generator, which was 

analyzed in Sec. III.B of the text. 

Suppose that the generator is not fully classical, Le., that N is 
0 

finite. Then to what extent will a measurer.i.ent of x
1 

be marred by quantum 

fluctuations in the generator and by loading of the generator by the experi-

mental apparatus? The answer, when the exact Hamiltonian has the form 

(B.18), can be computed by a perturbation-theory analysis of the gedanken 

experiment of Sec. III. B. Such a computation reveals the following, for 

the case where one wishes to measure x
1 

with accuracy better than the 

standard quantum limit, (11/2mw) 
112

, and with measurement time -r: 

Let µ be the fractional distance below the standard quantum limit which 

the experiment could achieve with a perfect, classical generator: 

(B.22) 

A 

(cf. Eq. 3. 21); if the probability distribution of x
1 

before the experiment 

begins is peaked about a value £;, near zero, with halfwidth z: = a(-h/2mw) l/2 
0 
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where a < µ, then the measure!'lent (i) can determine [, with a probable~ 
0 . 

error 

order( 4 
1 

2 µ (wT) N 
0 

1 1 )~ 1/2 
, 4 , 2 2 ' 
µ (wT)N Jl a N 

0 0 

and (ii) increases the variance of x
1 

to 

(
-ft )1/2 [ ( ] = a 200,. 1 +terms of order 

4 
µ (wT)N 

0 

(B. 23a) 

(B .23h) 

Evidently the quantum properties of the generator cause neligible error in the 

experiment if the generator is excited in a coherent state with mean number of 

quanta 

(N) = N >> max / 1~ 1 
2 0 µ (on) 21 2} 

µ a 
(B. 24) 

Note that for measurements near the standard quantum limit (µ r-J a,..., 1) in 

times not much shorter than one cycle (WT ? 1), the generator does not need 

to be highly excited. 

Unruh (1979) has pointed out that one can design a quantum mechanical 

generator which is protected entirely from loading (back action) by the ex-

perimental apparatus, even when the level of generator excitation is finite. 

To achieve such a "loading-free" generator one uses not a hannonic oscillator 

(H = 92 /2L + Q.2 /2Cg; [ Q., g] = ifi), but rather the following system with 
g g 

two dynamical degrees of freedom: 

A 

H 
g 

A2 AA 
= ;___ + ·l L w2QA2 - s!_+ Lgw2 J-:' QA 

2L 2 g L 
g g 

[q .~] iil ' i-tl , all other commutators vanish. 

(B. 25a) 

(B. 25b) 

Equation (B.25a) is the Hamiltonian of a charged particle in a suitable con-

stant magnetic field with a quadrupole electric field to cancel the quadratic 
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A2 A2 • 
j and q terms in the magnetic Hamiltonian [cf. the example between Eqs. 

(4. 7') and (4.9), with the change of notation m ->- l/(L w2), _!_ell -+ l/(L w), 
g 2 0 g 

x-+ ~' P -+ Q., Y -+ L wJ, p -+ 91L w]. If such a generator is used in our x . g y g 

gedanken experiment (replace J2
/2L + Q2/2C in B.18 by B.25a ), the re-

g g 
" ,.. 

sulting Heisenberg equations for 9 and Q will be precisely those of a free 

harmonic oscillator: 

A 

9/L g 
(B. 26) 

This shows the complete absence of loading of Unruh' s generator by our ex-

periment, independent of the state of the generator. However, quantum 

fluctuations are still present in Unruh's generator and can affect the ex-

periment - unless one puts Unruh's generator into a state with arbitrarily 

small variances of Q and 9 (possible because [Q,91 = 0). Such a special 

state, 

(Q) = ~cos wt , L CJJ6Q.= const _,. 0, 
g 

(B. 2 7) 

is the analog of the arbitrarily energetic coherent state (Q -+ 00 ) which 
0 

our generator requires in order to avoid quantum fluctuations. Our genera-

tor's coherent state has an arbitrarily large expectation value and variance 

for its energy: 

(H ) = (N + ..!)nw -+ oo 
g 0 2 

6H = N 
112-nw 

g 0 
(I3.28a) 

Unruh's special state (B.27), in principle, can have a finite mean energy 

"' (H ); but its energy variance is arbitrarily large and, in fact, for given 
g 

Q and 6Q is of the same magnitude as our variance: 
0 
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~H ~Q 2: ;1 ([Q_,ii ]) I= 2~ I<.?> I = i -llw~ I sin wt I 
g g g 

6Hg6~ ~tl<[9,H~)I =t1'iLgw
2 !(Q)I = tfiw(Lgw~)lcos wt! , 

whence 

(B.28b) 

Unruh's generator (charged-particle system described by Eq. B.25) 

was mentioned in Sec. IV .A as an illustration of the concept of a "generalized 

A A 

QND observable." The observables Q and ~ are a pair of such observables, and 

it is precisely this fact that allows Unruh 's generator to avoid back action 

(loading) from the experiment. 

Unruh's generator is important because it shows that in principle one 

can design a generator which is completely free of back action. However, it 

is not clear how one could realize physically the desired coupling of Unruh's 

generator to our experiment. 

~: Electromagnetic Oscillator 

We now turn to a physical realization of the Hamiltonian (3.16) for the 

case of an electromagnetic oscillator. Such a realization was given in our 

Physical Review Letter (Thorne et al., 1978) and is reproduced with minor 

changes in Fig. 10. 

The oscillator whose x
1 

is to be measured is an "LC circuit" consist-

ing of the two coils (total self-inductance m) near the bottom of Fig. 10, 

and the four capacitor plates A, A', B, B1 near the top. The oscillator 

is coupled, via coordinate (charge x) and momentum (magnetic flux p) transducers 

to a torsion pendulum {vertical central rod in Fig. 10, and paraphernalia 

attached to it). The coupling produces a torque -KX
1 

on the torsion pendu

lum, causing it to swing through an angle Q. The coupling to 
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requires a sinusoidal voltage V (t) ~cos wt 
0 

in the coordinate (charge x) transducer, and a sinusoidal current I {t) o:sin wt 
0 

in the momentum (magnetic flux p) transducer. The sinusoidal voltage and ·cur-

rent are produced by an electromagnetic generator analogous to that in the 

preceding section, which is excited into an arbitrarily energetic, coherent 

state. As sketched in the last section, this generator produces a perfect, 

classical output. For simplicity we here ignore its details and replace it 

by ideal, classical voltage and current sources V (t) and I (t). 
0 0 

We now describe the gedanken apparatus in greater detail. The LC 

oscillator (coils m and capacitor A-B-A'-B' in Fig. 10) is described mathe-

matically by the charge x on plate A, the currerit 

. 
x that flows through the coils,. the total self-inductance m of the coils, 

the total capacitance C between plates A and A' (via B,B', and the zero-

impedance voltage source connecting them), and the eigenfrequency 

w = (l/mc) 1/ 2 of the circuit's oscillations. The coordinate (charge x) trans-

ducer consists of plates Band B', to which are applied a sinusoidal 

voltage difference V - -(b/a) K cos wt, and which are mechanically 
0 

attached to the torsion pendulum. This voltage, together with the oscil-

lator' s charge x, produces a torque r = -Kx cos t.Jt 
. 2 2 2 
- (K /mw ) Q cos wt 

on the pendulum. The, velocity (current) transducer consists of the thin wire 

loop at the bottom of Fig. 10, through which a sinusoidal current I = (K/Mw) 
0 

sin wt is driven. The loop is attached to the central rod so that its 

mutual inductance with the oscillator, MQ, is proportional to the angular 

displacement Q of the torsion pendulum. Current in the oscillator produces a 

torque r = K(x/ti.>)sin wt on the pendulum. The torsion pendulum (consisting 

of the central rod and paraphernalia attached to it and the torsion fiber 

that suspends it) is characterized by its moment of inertia L, torsional 
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spring constant LQ
2

, natural frequency (in the absence of couplings) n, 

and generalized coordinate (equal to angular displacement) Q. 

The complete apparatus - LC oscillator plus transducers plus torsion 
i 

pendulum - is described by the classical Lagrangian 

- K [x cos wt - (~/w) sin wt] Q (B.29) 

The generalized momenta of the oscillator and pendulum are p ~ o.ejd~ = 

~ + (K/w)(sin wt)Q and TI= oL/oQ = LQ; and the Hamiltonian, after 

quantization, is 

,.., ,..,2/ 1 2,..,2 ,.., ~ ~2/ 1 L -;::.2Q2 H = p 2m + 2 mw x + KX1 Q + TI 21 + 2 H (B.30) 

Here the eigenfrequency n of the pendulum is shifted from its natural value 

n by coupling to the coordinate and momentum sensors: 

The frequency renonnalization (B.31) comes from two sources: First, the 

velocity (current) transducer used in the apparatus is equivalent to a 

momentum [ p = mic + (KQ/w) sin wt] transducer plus a positive spring on the 

torsion pendulum with spring constant (K
2/m1.}) sin

2 
wt. (This is the 

analog, for measurements of electromagnetic oscillators, of our "velocity 

sensor equals momentum sensor plus positive capacitance" in Secs. III.A.2 

and III. B.) Second, the "concentric- tin-can" shape of our capacitor-plus 

coordinate-transducer (Fig. 10) is carefully designed to produce on the 

2 2 2 
torsion pendulum a restoring torque with spring constant (K /mw ) cos wt. 
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This was done so that the net renormalization of the pendulum's eigenfre-

quency would be time independent. 

The Hamiltonian (B.30) will have the desired form (Eq. 3.16) for a quick 

and accurate measurement of x
1

, if we set TI2 = 0. This requires that the 

natural eigenfrequency Q of the torsion pendulum be imaginary 

(B. 32) 

i.e., that the pendulum possess a noiseless spring with negative spring 

2 2 constant -K /mw • This negative spring is the analog of the negative capaci-

tors needed in the preceding section; cf. also footnote 11 in Appendix A. 

Figure 11 shows an idealized example of such a noiseless, negative spring. 
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APPENDIX C 

ARBITRARILY QUICK AND ACCURATE BACK-ACTION-EVADING MEASUREMENTS OF x
1

: 

A DETAILED QUANTUM MECHANICAL ANALYSis12 

This Appendix builds upon and expands the discussion given in Sec. 

III.B; the objective is to give a detailed quantum mechanical analysis of 

a sequence of measurements of the x1 of a harmonic oscillator. The analysis 

is exact quantum mechanically, and it should satisfy a theorist's desire for 

rigor. However, this rigor is purchased at the price of a highly idealized 

description of the measurement process, and this idealization may make an 

experimenter uneasy. He may prefer the more realistic, but semiclassical, 

measurement analyses given in Paper II. 

Presenting two different analyses to appeal to two different constitu-

mcies may seem more like politics than physics, but we plead principle as 

well as pragmatism for the practice. We give an exact quantum mechanical 

analysis of a simple, idealized version of a real measurement. We then ask 

whether a semiclassical treatment of a similar, simple system gives the same 

results. If it does, we gain the confidence to apply semiclassical tech-

niques to complicated, realistic measuring systems - systems so complex that 

an exact quantum mechanical treatment would be exceedingly difficult. 

The key word in this Appendix is sequence, Section 111.B of the body of 

this paper described apparatus for measuring x1 and analyzed a single measure

ment of x1 using this apparatus. The analysis proceeded by calculating the 

free evolution of the coupled oscillator-meter system (Eqs. 3.17-3.19), and 

it demonstrated that x1 can be measured arbitrarily quickly and arbitrarily 
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accurately (Eq. 3.21). In this Appendix we string together a sequence of 

measurements of the type considered in Sec. III.B. To analyze ~he sequence, 

we must do more than just calculate the free quantum mechanical evolution of 

the system; we must also have a rule for carrying the quantum state from one 

measurement to the next. That rule is the "reduction of the wave function" 

at the end of each measurement (see Eq. C.28 below). Free evolution and reduction 

of the wave function - together these two allow us to follow changes in the 

state of the oscillator from measurement to measurement, and with this know-

ledge we can investigate the behavior of the oscillator during a sequence of 

measurements. 

One important issue is the question of how xl changes during a sequence. 

Two results of our analysis bear on this issue. The first is that between 
,.. 

measurements the expectation value of x1 can change, with the expected change 
,.. 

always less than or equal to the variance of x1• The second is that the 
,.. 

variance of x
1 

always decreases from one measurement to the next, for the 

type of measurement we analyze. Putting these two results together, we 

show that the expected change in the expectation value of SC 1 during a 
,.. 

sequence of measurements is approximately the variance of x1 before the 

initial measurement. 

Another, perhaps more important, issue is the question of how x2 changes. 
,.. 

In each measurement of the type in Sec. III.B, the expectation value of x2 

"' receives a large "kick" because the meter coordinate Q gets displaced a 

large distance from zero (cf. Eqs. 3.17-3.19). These kicks accumulate from 
,.. 

one measurement to the next, and the expectation value of x2 runs away. 

However, these "expectation-value kicks" are essentially classical and pre-

dictable, so one might think that the resulting "classical runaway of x2
11 

could be avoided by applying a "feedback force" to the meter ---' a force whose 

purpose is to keep the meter coordinate close to zero. We investigate this 
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issue using a model for the feedback, and we show that feedback can indeed 

" keep the expectation value of x
2 

from running away. However, only part of 

each kick is classical. The feedback, no matter how good it may be, cannot 

eliminate the huge, unpredictable, quantum mechanical kick given x
2 

by each 

precise measurement of x1 - a kick whose size is determined by the uncertainty 

principle (2.9a). One 'might expect these "uncertainty principle kicks" to add 

randomly, thereby causing x2 to random walk. We verify the existence of this 

"random walk of x2
11 by showing that, during a sequence of measurements, the 

" variance of x2 increases as the square root of the number of measurements. 

We choose to ignore the classical driving force F(t) in this Appendix. 

Its effect on the oscillator could be included in the analysis. However, 

Sec. III.B has already shown that the classical force can be measured arbi-

trarily quickly and arbitrarily accurately. In addition, the classical force 

is irre.levant to the issues addressed in this Appendix. Its inclusion would 

only complicate the analysis without adding any new insights. 

2. Description of the Measuring Apparatus 
-------------------------------------------

We now turn our attention to a detailed description of the measurement 

process. We begin by describing the physical system, which is nearly the 

same as that in Sec. III.B. The oscillator to be measured is characterized 

"' "' by the variables of Eqs. (2.1)-(2.5), including coordinate x, momentum p, 

" " complex amplitude x1+iX2, mass m, and frequency w. The oscillator is coupled 

to a measuring apparatus which consists of three parts: a generator, a meter, 

and a readout system. The generator provides the sinusoidal coupling in the 

interaction Hamiltonian. The meter is a one-dimensional quantum mechanical 

"free mass" with generalized coordinate Q, generalized momentum n, and 

A 

generalized mass L; the meter is coupled by the generator to x
1 

of the 
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oscillator. The readout system is coupled to the meter in such a way that 

at designated moments of time it "reads out" a value for the meter's co

ordinate Q and that at all times during each measurement it applies a constant 

"feedback force" to the meter. The feedback force is included to prevent 

the classical runaway of x
2

• 

Of the three parts of the measuring apparatus, only the meter will be 

treated quantum mechanically. As is discussed in Appendix B.l, the generator 

can be treated classically if, before the initial measurement in the sequence, 

it is prepared in a coherent state of arbitrarily large amplitude. Then the 

generator is completely unloaded by its coupling to the rest of the system, 

and it produces perfect "cos wt" and "sin wt" terms in the Hamiltonian. 

The readout system will also be treated classically - i..e., we place 

the "quantum-classical cut" of our analysis between the meter and the read-

out system. This choice is legitimate if inclusion of all or part of the 

readout system in the quantum mechanical analysis would not substantially degrade 

the calculated accura~y of the measurernQnt. For example, the readout system 

can in principle be a device which is so strongly coupled to the meter that 

it makes arbitrarily precise, essentially instantaneous measurements of the 

meter coordinate (see discussion in footnote 6). This is the model we shall 

adopt. Then a "readout" of Q by the readout system is described as follows: 

The readout system determines a value for the meter coordinate Q at a particu

lar instant, thereby localizing the meter precisely at the measured value; 

formally this means that the quantum state of the oscillator-meter system is 

"reduced" to an eigenstate of Q whose eigenvalue is the measured value {see 

Eq. C.28 below). 

In practice the readout system will not make infinitely precise measure

ments of the meter coordinate. We shall consider the case of a finite

precision readout system in Sec. 7 of this Appendix, where we sketch 
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a density-matrix analysis of a sequence of measurements of x
1

• 

Finally, we also treat the feedback force classically. 

3. Foundations for the Analysis 
--------------------------------

The Hamiltonian for the coupled oscillator-meter system has the form 

(3.16) with the addition of a term describing the feedback force: 

fi fi " " (c.la) = + 1\.i + HI , 
0 

" "2/ 1 2 "2 (c. lb) H = p 2m + 2 mw x , 
0 

~ = n2
/2L , (c.lc) 

(C. ld) 

Here H
0 

is the Hamiltonian of the free oscillator, ~ is the Hamiltonian 

of the meter, _and K is a coupling constant. The interaction Hamiltonian 

~ consists of two terms: a term Ki1~ which describes the coupling of the 

oscillator to the meter via the classical generator, and a term -KaQ which 

describes the classical feedback force on the meter. The size of the feed-

back force is determined by the parameter 0: ("force" =Ko:). The feedback 

is under the control of the experimenter; in general, a will change from 

measurement to measurement in the sequence. Designs for physical systems 

which are governed in principle by the Hamiltonian (c.l) are considered in 

Appendix B. Here we do not concern ourselves with any specific physical 

system. The Hamiltonian (C.l) is the starting point of the analysis, which 

applies to any system governed by that Hamiltonian. 

The analysis in Sec. III.B uses the Heisenberg picture. It is the most 

convenient picture for calculating the evolution of the expectation value 
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and variance of Q (Eqs. 3.19), and those are the only results really necessary 

for that analysis. In this Appendix we work exclusively in the Schrbdinger 

picture. This is not because the Heisenberg picture could not be used; rather, 

it is because the Schr~dinger picture is more convenient and more natural for 

analyzing a sequence of measurements. In particular, the reduction of the 

wave function can be handled more easily in the Schrodinger picture. 

In the Heisenberg picture the complex amplitude of a free harmonic 

oscillator is conserved (Eq. 2.7). In the Schrodinger picture the operators 

" " x
1 

and x2 are time-dependent, and whenever it is necessary, we shall indicate 

explicitly the time at which they are evaluated: 

" x cos wt - (p/mw) sin wt, (C.2a) 

~2 (t) = x sin wt+ (p/mw) cos wt. (C.2b) 

The corresponding Heisenberg operators for a free harmonic oscillator are 

given by (xj)H(t) = u!(t,to) Xj(t) uo(t,to), where uo is the time-development 

operator for the free oscillator: 

(C.3) 

Hence, conservation of the complex amplitude of a free oscillator translates 

into the following identity in the Schrodinger picture: 

(c.4) 

Equation (c.4) holds for arbitrary times t and t 0 • 

In the Schrodinger picture the information about the state vector 

l"'{t)) of the coupled oscillator-meter system is conveniently expressed in 

terms of an evolving "wave function," which is defined by projecting 11lr(t)) 
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onto appropriate basis states. For the meter the choice of basis states is 

obvious. Since we are interested in the behavior of the meter coordinate, 

we choose the eigenstates jQ) of Q with delta-function normalization: 

" QIQ) = QIQ) . 
' (QIQ') = B(Q -Q') . . (C.5) 

For the oscillator the most convenient basis states are eigenstates ~f x
1
(t). 

To define such states we begin with the delta-function normalized eigenstates 

. 
' (s,oli;',o) = a(i;- s'). (C.6) 

We then define new states 

(c. 1) 

These new states have delta-function normalization, and as one shows using 

Eq. (c.4), they are also the desired eigenstates of x1(t): 

. 
' 

(C.8) 

An important property of these states is that 

" li;,t) = U
0
(t,t0)li;,t0 ) • (C.9) 

A complete set of states for the oscillator-meter system can be obtained by 

taking the tensor product of the states ls,t) and IQ): 

(C.10) 

Given this complete set, we can define a wave function corresponding to the 

state vector lw(t)) by 

( c. 11) 
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The wave function has the usual interpretation: 

the probability at time t of simultaneously finding the meter coordinate 

between Q and Q+dQ and the oscillator with x1 between~ and ~+d~. 

In the Schrodinger picture the evolution of the state vector ji.v(t)> 

" is determined by the unitary time-development operator U(t,t
0

) [not to be 
,.. 

confused with U
0
(t,t

0
)] - i.e., 

(C.12a) 

,.. 
where U(t,t

0
) satisfies the Schrodinger equation 

' 
(C.12h) 

For the Hamiltonian (C.l), the solution for 0(t,t
0

) can be obtained using the 

techniques employed to solve for the time-development operator of a forced 

harmonic oscillator (Eqs. 2.20). We omit the details and simply give the 

solution: 

where 

e 

x 

x , i ,.. ..... I expL - (t-t ) K[X (t ) - a.]Q (-ti 0 10 
x 

,... I 2 K[Xl ( tO) - a.] ,.., " 
( t-to) 21 II UM(t' to) x \ i 

exp (-t1 

-i< t-t >ii Jn 0 M 

is the time-development operator for the meter Hamiltonian. 

(C.13) 

(C.14) 

The abstract operator equations (C.12) and (C.13) governing the evolu-

tion of the state vector can be translated into an equivalent equation for 
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the evolution of the wave function. In the case of interest to us the oscil-

lator and meter are in states Ix> and !<I>>, respectively, at time t 0 ; the 

corresponding wave functions are X(~) = <~,t0 !x> and <I>(Q) = <Ql<I>>. The ini

. tial state vector is '*(t0)> = Ix>©!¢>, with associated wave function 

-ian/-6 
*(~,Q;t0) = X(~)4>(Q). Since e is the displacement operator for the 

meter (see, e.g., Sec. 14. 7 of Herzbacher, 1970), it is easy to show that 

(C.15) 

where vis any real number. Using Eqs. (C.S), (C.8)-(C.13), and (C.15), one 

can derive the following equation for the evolution of the wave function: 

[ 

2 2 
W(~,Q;t) = exp - ~ (t-t

0
) 3 K <~;a) 

(C.16a) 

Here 4> (Q,t) is the wave function which gives the evolution of a "free 
free 

mass" whose initial state is l<I>>, i.e., 

41free(Q,t) - I dQ' !I( free(Q,Q' ;t,to) ¢(Q') (C.16b) 

where 

!I( free(Q,Q' ;t,t0) = <Q!fr11(t,t0 ) IQ'> (C.16c) 

is the kernel of the free-mass Schrodinger equation. The explicit form of 

!I( is given in many standard quantum mechanics text books; see, e.g., 
free 

Eq. (8.91) of Merzbacher (1970). 
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The wave function (C.16) shows particularly clearly the effect of the 

interaction on the meter. The probability distribution of the meter coordin-

ate at time t is 

P(Q) = J l~<s,Q;t>l 2 ds = f PCQ1s>lx<r.>1 2
dt. ' (C.17a) 

2 

I ~ ~Q + <t-t >2 K<s- a.> t) I 
- free\ 0 21 ' 

P(Q!s) (C.17b) 

Here P(Qjt;) can be regarded as a conditional probability distribution~ i.e., 

the probability distribution of Q given that X
1 

= t,;. The important feature 

of P(QI s) is this: It has the same shape as the probability distribution for a 

"free mass," but it is displaced a distance 2 
-K([,- a.)(t-t

0
) /2L - precisely 

the displacement produced by a classical force -K(s - a.). 

4. Analysis of a Single Measurement 
------------------------------------

We are now ready to analyze a single measurement in detail - the first 

task in constructing a sequence of measurements. For generality we let the 

particular measurement under consideration be the nth in the sequence. The 

measurement process can :be described in general terms as follows. Before the 

nth measurement the meter is prepared in an appropriate initial state, and 

the oscillator is in some state left over from the preceding measurement. At 

time t 
1 

the interaction is turned on, and the oscillator and meter are 
n-

allowed to interact freely for a time T. At time t = t 
1 

+ T · the interaction 
n n-

is turned off, the readout system makes an infinitely precise "measurement" 

of the meter coordinate, and the wave function is reduced. (We shall call 

this precise "measurement" of Q a "readout" to avoid confusion with the 

"measurement of X " which las ts from t 
1 

to t . ) The reduct ion of the wave 
1 n- n 
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function is the link that connects this meas urernent to the next one. It al-

lows us to identify the state of the oscillator after the measurement--a 

state which becomes the initial oscillator state for the next measurement. 

Two aspects of this process deserve special attention. The first is 

that the oscillator-meter coupling is on only during the interval from t 
n-1 

to t 
n 

The interaction is turned on abruptly at time t 
1 

and turned. off 
n-

abruptly at time t (functional form of K for nth measurement: K = O for 
n 

t < t 
1 

and t > t n- n K = constant :f 0 for t 
1 

< t < t ) • The step-function n- n 

form of K is not the important issue; less abrupt forms for K could be used 

without changing the results significantly. The important point is that prep-

aration of the meter is done with the interaction turned off. In a real ex-

periment one would probably leave the interaction on while the meter is prepared. 

One could do so without affecting x
1

, because x
1 

is completely isolated from 

the meter; however, x
2 

would be affected (cf. Eqs. 3.17). Since one of our 

objectives is to investigate the behavior of x2, we choose to prepare the 

meter with the interaction turned off. Then x
2 

is unaffected by meter prepara

tion. Indeed, while the interaction is turned off, the oscillator's x
1
-wave-

function is constant. 

The second important aspect is that we regard each measurement in the 

sequence as beginning at the instant when a readout terminates the preceding 

measurement. This is purely a matter of convenience. If the reader wishes 

to insert a time interval between measurements to allow for meter preparation 

or any other activity, she can do so. Our results will not be affected, be-

cause the oscillator's x
1
-wave-function is constant while the interaction is 

turned off. 

All quantities characteristic of the time interval tn-l ..$. t < 

be denoted by a subscript n-1 --e.g., state vector liJr 1 (t)> , wave 
n-

t will 
n 

function 
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W 1(s,Q;t), feedback parameter a 1 . The values measured at time t will 
n- n- n 

be denoted by a subscript n. 

We now consider in turn each of the four components of the nth measure-

ment: specification of the initial state, free evolution of the coupled oscil-

lator-meter, readout of the meter coordinate, and reduction of the wave func-

tion. 

At time t 1 the oscillator is in some state Ix 
1

> with wave function n- n-

Xu-1 ( s) = <s,tn_1 1X>; except for the first measurement, this state is left 

over from the previous measurement. The associated expectation value and 

" variance of x1 (tn-l) we denote <x1> n-l and (6X1)n-l; similarly, for 

x2 (tn_1), <x2>n-l and (6X2)n_1 • The meter is prepared in a Gaussian (minimum

uncertainty) wave-packet state 14>> with wave function 

4>(Q) 

" This state has <Q> = 

(6TI) = (~L/2T)l/2 -
0 

"' <n> = o • 

(C.18) 

We choose the variances (6Q) = (~T/2L) 1 1 2 , 
0 

" a choice which minimizes the variance of Q at time t • 
n 

The initial state vector is l'lrn-l (tn-l)> = 1Xn_1> ® 14>> , with wave function 

'l!Fn_1 (s,Q;tn-l) = Xn_1 (s) 4>(Q). Finally, the experimenter must also choose a 

value a 
1 

for the feedback parameter. 
n-

The interaction is turned on at time t 
1

, and the coupled oscillator
n-

meter evolves freely for a time T. The evolution of the wave function during 

this interval can be obtained by specializing Eqs. (C.16) to quantities 

characteristic of the nth measurement. Integration of Eq. (C.16b) using the 

particular form (C.18) for 4>(Q) yields 

4>f (Q,t) ree 
-1] (1 + i ~} ' 

(C.19) 
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where u = t~t 1• The effect of the interaction is to produce a strong corn-

relation between the states of the meter and oscillator: At time t 
n 

the expectation value of the meter coordinate gets displaced to 

and its variance becomes 

t 
1

+T 
n-

(C. 20a) 

(C. 20b) 

Equations (C.20) can be calculated directly from the probability distribution of 

the meter coordinate (Eqs. C.17 and C.19) or, perhaps more easily, from a 

Heisenberg-picture analysis of the free evolution of the oscillator-meter sys-

tern (cf. Eqs. 3.17-3.19). 

At time t the readout syste1'1 reads out a value Q for the meter coordin-
n n 

ate, and using Eq. (C. 20a) the experimenter infers a value 

~ = a - (2L/KT2)Q 
~n n-1 n (C.21) 

The probability distribution of ~ , obtained directly from the proba
n 

bility distribution of Q (Eqs. C.17), is given by 

where 

2 3 1/2 
a - (4flL/K T ) 

(C.22) 

(C. 23) 

This probability distribution refers to an ensemble of identical systems which 

begin the nth measurement in the Sar.le state. The mean and variance of ~n 

(averages over this ensemble) are 

~ = a - (2L/KT2
)<Q>(t ) 

n n-1 n 
<X > 

1 n-1 
(C. 2lia) 
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Note that if lxn_1 (s)l
2 

is a Gaussian, then P(sn) is also a Gaussian. 

Equations (C.24) tell us that the nth measurement can determine the ex-

pectation value <x1> n-l with probable error ~sn. The error is minimized when 

1~_1 (s)l 2 
is highly peaked about its mean value [(~Xl)n-l <<a]; in this 

situation it makes sense to talk about x1 having a particular value--a value 

which can be determined with error 

2 3 1/2 
~ a = (4fiL/K T ) (C.25) 

Since (~Xl)n-l can be arbitrarily small, a is the fundamental measure of the 

accuracy of x
1
-measurements of duration T, made with a meter of "mass" L 

which is perfectly coupled to x1 with coupling constant K. 

No matter how small T may be, a can be made as small as one wishes (in 

principle) by choosing K2/L large enough; the measurements of x
1 

can be 

arbitrarily quick and arbitrarily accurate. 

This situation is to be contrasted with, for example, a measurement of 

the position of a free mass. There the feedback of momentum uncertainty onto 

position prevents a measurement of duration T from having an accuracy better 

than (-tiT/m) 1/ 2 (standard quantum limit for free-mass position; Eq. 3.2). 

A useful dimensionless characterization of the accuracy of x1-measurement 

is provided by the ratio ~ of the standard quantum limit for amplitude-and-

phase measurement (Eq. 2.16) to a: 

= .!. ( .:£)1/2 
n - a \2mw 

2 
n = (C.26) 

n -l is the factor by which measurements with given K, L, and T beat this stand-

ard quantum limit. 
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When the readout determines a value Q for the meter coordinate at time 
n 

t , it localizes the meter at Q = Q • This localization is described formally n n 

by projecting the state vector 11jr 
1
(t )> onto the eigenstate corresponding 

n- n 

to the measured value (reduction of the wave function). He define a projec-

tion operator 

@cq> = IQ><QI = J dsls,Q;t ><.;,Q;t I cc.21> n n 

which projects the meter onto the eigenstate jQ>. The state vector of the 

oscillator-meter system immediately after the readout is 

lw>=a@cq>lw l(t)> a n n- n 

= · [a J ds I .; , t > iir 1 < s , Q ; t > J ® I Q > n n- n n · n 
(C. 28) 

[wave function 1jr (s,Q) =aw l(s,Q ;t) o(Q-Q )], where a is a normaliza-
a n- n n n 

tion constant. (a also contains an unknown, but irrelevant, phase factor which 

· we shall ignore.) The stat.e vector (C. 28) splits cleanly into oscillator and 

.meter states. The oscillator state after the measurement becomes the initial 

state IX > for the (n+l)th measurement; its wave function is 
n 

This wave function can be put in the fonn 

~ (s) = B~-l (.;) 

(C.29) 

(C. 30) 

(Eqs. C.16, C.19, C.21, C.23, C.26), where Bis another normalization con-

stant. 
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Equation (C. 30) is the fundamental equation of our analysis. It tells 

us how the oscillator wave function changes from one measurement to the next, 

and from it all our results will flow. One innnediate consequence of Eq. 

(C.30) is the following: If the oscillator begins the nth measurement in an 

eigenstate of xl clxn-1> = l~',t>, ~-1(~) = o(~-~')], then it remains in 
,.. 

an· eigenstate of x
1 

with the same eigenvalue after the measurement. As is 

discussed in Sec. IV, this is the essential feature of quantum nondemolition 

measurement. 

S. Analysis of a Sequence of Measurements 
-------------------------------------------

Having completed our analysis of a single measurement, we turn next to 

analyzing a sequence of measurements and, in particular, to investigating 

the behavior of x
1 

and x
2 

during a sequence of measurements. To do so re

quires specifying a particular form for X 1 (~). The form we choose is 
n-

(~ - <x > )2 
1 n-1 

+ h mw(an-lS - µn-1 S ) ' i 2 ] 

(C.31) 

where an-l and µn-l are real constants. If. µn-l = O, Xn-l (S) is a minimum-
A 

uncertainty wave packet. Using the fact that in the ~-representation x
2 

is 

equivalent to (.fi'/imw)(a/a~), one can readily evaluate the expectation value 

"' and variance of x
2 
(tn-l) associated with the wave function (C. 31): 

<X > 
2 n-1 

2 
(l:IX2) n-1 

(C. 32a) 

(C.32b) 

The reason for the choice (C.31) should be clear. As a glance at Eq. (C.30) 
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shows, the form (C.31) for the initial oscillator wave function is preserved 

from one measurement to the next in a sequence; the only things that change 

are the constants characterizing the wave function: 

<X > 
1 n 

(ilX1)2 
11 

<Xl> 1 ~ ___ n_-_ +-n 
(tix )2 02 

1 n-1 

a = a + n2 (3~ 4 
a ) n n-1 · n - 3 n-1 

(C. 33a) 

(C.33b) 

(C. 33c) 

(C. 33d) 

The first of these equations has a couple of inunediate consequences. 

The first 

proceeds, 

is that (ilX
1

)n ~ (ilX
1

)n_
1 ; hence, as a sequence of measurements 

2 -
Ix (~)I becomes more and more highly peaked. The second is that 

n 

if the oscillator is in a state with ~x1 >>a, one measurement is sufficient 

to prepare it in a state with L1X
1 

~ a. 

By manipulating Eqs. (C.33) with the help of Eqs. (C.24), one can show 

that the change in the expectation value of xl. in the nth measurement is 

This expression for the change in <x
1
> is exact, but it depends on the value 

actually measured in the nth measurement. More useful for discussing the 

behavior of x
1 

would be · some sort of expected value for the change in <X
1
>. 

Indeed, throughout the rest of this Appendix, we shall want to deal with such 

expected changes between measurements and with expected changes over an en ti re 

sequence of measurements. 
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Defining such expected changes requires introducing a new type of average, 

which we shall denote by a superposed bar . A superposed bar was used pre-

viously in Eq. (C.24a) to denote the mean value of s . There it meant an 
n 

average over an ensemble of identical oscillators which began the nth 

measurement in the same state; such an average is, of course, equivalent to 

an expectation value. In all other applications throughout the rest of this 

Appendix, a superposed bar will denote an average over an ensemble of iden-

tical oscillators which begin in the same state before the initial measure-

ment in a sequence; this "b.arred average" is a generalization of the usual 

notion of expectation value. 

One must keep in mind that the mean value ~ is not an average over 
n 

this second type of ensemble; rather, each oscillator in the ensemble has i t s 

own value of ~ --a value which depends on the results of previous measure
n 

ments for that particular oscillator (see Eq. C. 40 below). On the other hand, all 

oscillators in the ensemble do have the same set of values for the uncer-

tainties (~Xl)n (Eq. C.33a) and the measurement errors ~Sn (Eq. C.24b) . This 

makes it easy to apply the barred average to the differences (s - ~ ); n n 

these differences are statistically independent quantities wi th mean zero 

and with correlation matrix 

(C.35) 

We can now return to Eq. (C. 34) and apply the concept of a barred 

average. We first note that the mean change of <X1> in a given measur ement 

is zero (<X
1

>n - <X
1

>
0

_
1 

= O). However, the change does have an rms-value, 

which can be thought of as the expected magnitude of the change in <X1>: 
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0 2 J -1/2 

( llX ) 2 ( C. 3 6) 
1 n-1 

(cf. Eq. C.24b). Note that (oX
1

) < (6X
1

) 
1 

- i . e., the expected change in 
n - n-

<X1> is always less than or equal to the variance of x
1 

at the beginning of 

the measurement. If (6X1)n-l? a, then (ox1)n ~ (6X1)n-l; however, if 
7 

(6x1)n-l << a, then (ox1 )n ~ (t.x1)~_1 /o << (6X1)n-l" 

To make further progress, we must specify the oscillator state lx
0
> 

before the initial (n = 1) measurement in the sequence. We choose a state 

of the form (C.31): a minimum-uncertainty state with <x
2
>

0 
= 0 (a = µ = 

0 0 

with (t.Xl)O >> a' and with <x
1

>
0 

arbitrary. A good example of such a state 

is a coherent state [(6Xl)O = c.::ix2> o = (1i/2mw) 112 >> a if n >> l] . The 

oscillator can be prepared in a coherent state using high-precision 11 ampli-

tude-and-phase" techniques (see discussion in Sec. II. B). Throughout the 

following we neglect terms of order o/(6X1)
0

. 

The first measurement in the sequence serves essentially as a "state-

0) ' 

preparation measurement. 11 Its result is highly uncertain, but it leaves the 

oscillator in a state with <X > = s and (6X1) 1 =a (Eqs. C.33). We assume 1 1 1 

there is no feedback during the firs~ measurement (a0 = 0). 

Subsequent measurements are the ones of real interest . Equations 

(C.33) can be iterated to obtain the constants describing the oscillator 

state after the nth measurement: 

(6Xl)n = a//;,. 

<x > 
1 n 

2 
a = n 

n 

1 = -n 

5 2 
µn = 6 n n 

n 
l 

k=l ~ 

(C.37a) 

(C. 37b) 

(C.37c) 

(C.37d) 
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(n ~ l); Eq. (C.24b), together with (C.37a), gives the likely error of the 

nth measurement : 

t:.t,, = cr-~ n Jl/2 
n n-1 

n 2_ 2 ( C. 38) 

and Eqs. (C.37) applied to Eqs. (C.32) give the expectation value and vari-

"' ance of x
2 

after the nth measurement: 

4 2 n 
<X2>n =-n l (f,,k - °k-1> 3 k=l 

(C. 39a) 

(b.X2)n = -..f34n (~)1/2 
3 n 2mw (C.39b) 

(n ~ 1). 

6. Discussion of Results 

Equations (C. 37)-(C. 39) provide a complete description of the sequence 

of measurements; our task now is to discuss their implications. 

We first note that the variances of x
1 

and x
2 

change in a completely 

deterministic way, independent of the actual measured values . On the other 

hand, the changes in the expectation values are entirely dependent on the 

"' measured values. Indeed, the expectation value of x
1 

after a given measure-

ment is simply the arithmetic mean of all previously measured values. This 

last statement means that the experimenter knows in advance the expected 

result of each measurement after the first--i. e., 

n-1 
f,, = <X > = _l_ l 

n 1 n-1 n-1 k=l 
( C.40) 

This is the finite-coupling analog of the situation analyzed in Sec. IV.A. 

There we assumed infinite coupling, and the experimenter could predict exactly 
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the result of each measurement after the first. Here we have finite coupl-

ing, the experimenter knows the expected result of each measurement, but 

the actual result is likely to differ from the expected by an amount fl,~ ~ o. 
n 

Equation (C.40) also describes the situation one wants for measuring a clas-

sical force, because one detects the force by looking at the difference 

between the actual measured value and the (known) expected result (cf . Sec. 

III.B). 

Given a set of measured values, one can calculate the changes in the 

" expectation value of x
1 

using Eq. (C.37b). Exact this may be, but enlighten-

ing it is not. To gain insight we look at expected changes in <x
1
>, and to 

do that we begin by writing Eq. (C.34) in the form 

(C. 41) 

The expected change in <x
1
> is 

(ox
1

) = L'.~ In= o//n(n-1) (C.42) 
n n 

The expectation value of <X
1

> "jumps" at each measurement. The "jwnps" add 

randomly, but their expected size decreases so rapidly that after many meas-

urements <x
1

> is likely to have wandered only a distance (tix
1

)
1 

= a from 

its value after the first measurement--i.e., 

(C.43) 

(cf. Eqs. C.41, C.35, and C.38). This means that the results of all measure-

ments after the first cannot determine <X
1

>1 more accurately than (L'.X
1

)
1

• 

[One can easily show that the jumps prevent measurements after the nth from 
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This behavior of x1 can be summarized as follows: After the first 

measurement the oscillator is in a state with <X
1

> 
1 

= F,;
1 

and (~X1) 
1 

= a. For 

the next few measurements <X
1

> jumps around within a region s1 ± (a few) x a, 

while ~x1 gets smaller at each measurement. As the sequence proceeds the 

jumps of <X1> become smaller and smaller, <X
1
> "zeros in" on some particular 

value <X1>
00

, ~x1 goes to zero, and the probability distribution !X(F,;)! 2 

approaches a delta-function at <X > • 1 00 

within the region ~l ± (a few) x o. 

The fin al value <X
1

> 
00 

is likely to be 

We now turn to the behavior of x
2

, and we begin by noting that one can 

associate with x
2 

a characteristic "quantum step size" "' cr-1 Efl/2mw) = 

n(~/2mw) 1/2 , obtained from the basic accuracy o of x
1
-measurement and the un-

certainty principle (2.9a). 

"' The expectation value of x2 changes at each measurement, and the change 

is given by 

These "kicks" to x
2 

are essentially classical. Indeed, Eq. (C.44) is precisely 

the classical displacement of x2 , which .our measurement system would produce 

in a classical oscillator with x1 = F,;n' during the time interval between 

tn-l and tn = tn-l + -r; cf. Eqs. (C. l) viewed classically, together with 

Q(tn-1) = IT(tn-1) = o, and Eq. (C.26). In the absence of feedback , the kicks 

(C.44) accumulate and <X2> runs m.tay. However, feedback can eliminate this 

"classical runaway of X2' " because the measured value F,; of xl tells one pre-
n 

cisely the kick given <x > 
2 

during the nth measurement. The simplest feedback 

is to let an = F,;
11

; then the feedback between tn and tn+l cancels the kick given 

X
2 

l.• n the nth measurement. 

One can do much better by choosing the feedback so that at each measure-

ment it not only cancels the previous kick but also attempts to cancel the cur-

rent kick. The feedback cannot cancel the current kick precisely, because to 
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do so would require knowing the result of the measurement. However , one can 

try to guess the result, and the b.est guess is the expected result (C . 40 ) . 

The resulting feedback has the form 

Cl. 
n 

n > 1 

,... 
With this feedback the expectation value of x

2 
after n measurements is 

a displacement with mean zero and with rms value 

[ 
2~1/2 <x > 

2 n 
4 2 

::;: - Tl 6[, 
3 n 

::;: ~ (_E_\ 1/2 (L\ 112 
3 n-1} Tl 2IrLU} , n~2 

(C.45) 

{C. 46) 

(C.47) 

The effectiveness of the feedback is evident from its ability to keep <X
2
> 

within one "quantum step" of zero. 

Effective though the feedback may be, it cannot prevent the huge, un-

predictable, quantum mechanical kicks given x2 by precise measurements of 

x
1

. As Eq. (C.39b) shows, the effect of these kicks appears in the variance 

of x2' which grows as ru ·- behavior which suggests that of a classical random

walk variable. The step size is (/34/3)n(11/2mw) 112 , in agreement with what 

one predicts from the uncertainty principle. This "random walk of X " means 
2 

that the energy in the oscillator grows as the sequence proceeds: 

" <H > 
o n 

~ 21 mw2(6X2)n2 17 2 = 
18 

n ntiw (C.48) 

(Eqs. 2.2 and 2.6). The source of the energy is the generator. Interaction 
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with the generator can add energy to or remove energy from the oscillator, 

but on the average energy is added. Practical implications of the r andom 

walk of x
2 

are considered in Paper II. 

The analysis in this Appendix has emphas i zed the possibility of making 

quick measurements of x1 , but nothing restricts the analysis to this case . 

It applies equally well to measurements of x
1 

which, because of weak cou

pling, require a long time to achieve good accuracy . This point is made clear 

by introducing a new constant 

which is a dimensionless measure of the coupling strength. Written in terms 

of £, the fundamental accuracy becomes 

(C.50) 

If £ >> 1, a measurement much shorter than a period can beat the standard quantum 

limit (2 .. 16); 13 but if £ « 1, beating the standard limit requires a measure-

ment many periods long. Regardless of how small £ may be , the basic accuracy 

(C.50) can be made as small as one desires (in principle) by choosing L large 
,... 

enough. Long measurement times yield arbitrarily good accuracy because x
1 

is completely isolated from noise in the measuring apparatus (cf. Sec. IV.B). 

The constant £ plays an important role in Appendix D, and it and its rela-

tives are considered extensively in Paper II. 

7. Analysis of Imprecise Readout Systems 
----------------------------------------

One possible objection to the above analysis is its treatment of the 

readout system. We have assumed that when the readout determines a value 
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for the meter coordinate, it localizes the meter coordinate precisely at 

the measured value. Of course, no real readout system can achieve such ar-

bitrarily good precision. One way to handle this difficulty is to do a better 

job of analyzing the readout: Specify in detail the design of a realistic 

readout system, and include all or part of the readout in the exact quantum 

mechanical analysis. The resulting analysis is likely to be difficult, if 

not impossible. 

Fortunately, there is an easier and more general approach. In this 

approach the imprecision of the readout system is described by a (classical) 

conditional probability distribution W(Q IQ ) . 
n 

The distribution W(Q!Q ) can 
n 

be thought of as giving the probability W(QIQ )dQ that, when the readout de
n 

termines a value Q for the meter coordinate, the meter is actually located 
n 

between Q and Q+ dQ. 

The introduction of W(QI Q ) can be justified by considering a simple 
n 

model for the readout system. The first three-quarters of this section 

(through Eq. C.59) will present that model and will show how it gives rise 

The last one-quarter will assume a simple form for W(QIQ ), and 
n 

from it will derive results for the measurement errors and variances in a 

sequence of measurements with an inprecise readout system. 

In · our simple model for the readout system, the first stage is a 

"readout meter": a one-dimensional, quantum mechanical " free mass" with gen-
A A 

eralized coordinate Q, generalized momentum 9>, and generalized mass M. The 

readout meter is coupled to the meter by coordinate-coordinate coupling; hence , 

the total Hamiltonian for the oscillator , the meter, and the readout meter is 

,,.._ A AA "'2 
HT = H(Eqs. C.l) + kQQ + ~ /2M (C.51) 

where k is a coupling constant. ~\e shall include the readout meter in the 
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quantum mechanical analysis. The readout meter is coupled to subsequent 

stages of the readout system in such a way that , at designated moments of 

time, the subsequent stages can "read out" a value for the readout-meter 

coordinate. We shall idealize these readouts of Q as arbitrarily precise, 

essentially instantaneous measurements. Then we need not treat the subse-

quent stages of the readout system quantum mechanically - i.e . , we can place 

the quantlllll-classical cut of our analysis between the readout meter and the 

subsequent stages of the readout system. 

The scenario envisioned for the nth measurement divides neatly into two 

parts. During the first part, las ting from t 1 to t 
1 

+ T, the oscillator n- n-

and meter interact via the interaction Hamiltonian K(X1 - an_
1

)Q (Eq. C.ld) 

just as in the previous analysis. During the second part, lasting from 

-t 
1

+ T to t = t 
1 

+ 'T + 'T (note that t is defined differently than in t he 
~ n ~ n 

previous analysis), the meter and the readout meter interact via the interac-

"'"' tion Hamiltonian kQQ. (Eq. C. 51). (The coupling "constants" have the follow-

ing functional form for the nth measurement: K = k = 0 for t < t and 
n-1 

t > t • 
n' K = constant # 0, k = 0 for tn-l < t < tn-l + T; K = O, 

k = constant # 0 for t +T<t<t.) 
n-1 n 

At time t the subsequent stages 
n 

of the readout system read out a value of Q, from which the experimenter 

infers a value of Q (and x
1
). The three operations of (i) interaction between 

meter and readout meter, (ii) readout of Q, and (iii) inference of a value 

for Q, together constitute what was called the "readout of the meter coor-

dinate" in the previous analysis. After the nth measurement the meter is 

thrown away; a new meter is used for the next measurement. 

The discarding of the meter at the end of each measurement is an impor-

tant feature of our analysis. Unless we keep track of the states of the 



169 

meters discarded in previous measurements, it will turn out that the entire 

system cannot be described by a pure state; instead it must be described by 

a mixed state. Thus the analysis is most conveniently carried out using den

sity operators. During the nth measurement the state of the total system -

oscillator, meter, and readout meter - is specified by a density operator 

"' pT(t) with associated density matrix pT(.;,.;';Q,Q' ;Q.Q' ; t) = 
{:.;,Q,Q.;t!PT(t)!.;' ,Q' ,Q' ;t) , where the states !CQ,Q;t) are the obvious gen

eralization of the states I S,Q; t) . The density matrix has the interpretation 

that PT(.;,.;;Q,Q;Q,Q;t) d.;dQ dQ is the probability at time t of simultaneously 

finding the readout meter between Q. and Q + dQ, the meter between Q and Q + dQ, 

and the oscillator with x
1 

between .; and .;+ d.;. The total density operator 

A A A At A 

evolves according to pT(t) = UT(t,t0)pT(t0)uT(t,t0), where UT(t,t
0

) is the 

time-development operator for the total Hamiltonian (C . 51). 

During the first part of the nth measurement ( t 
1 

< t < t 
1
+ T), we 

n- n-

need only be concen1ed with the state of the oscillator and meter. Their 

state is specified by a density operator pn_
1
(t), which evolves according to 

A . A A At 

Pn_1 (t) = U(t,tn_1)pn_1 (tn_ 1)u (t,tn-l) (cf. Eq . C.13), and which has density 

matrix p 
1

c.;,.;';Q,Q';t) = (.;,Q;tlP 1 (t)IC',Q ' ;t). n- n-

We now analyze the components of the nth measurement in greater detail. 

The oscillator begins the measurement (at time tn-l) in a state wi th density 

matrix T 
1

(.;,.; 1
), arid the meter is prepared in the (pure) Gaussian state 

n-

( C. 18). The initial density operator pn~l(tn-l) has density matrix 

P 
1

(.;,.;';Q,Q';t 
1

) = T 
1

(.;,.;') ¢(Q) <P*(Q'). The oscillator and meter 
n- n- n-

interact as in the previous analysis for a time T; the evolution of p 
1 

during 
n-

this time can be inferred from the evolution of the corresponding wave function 

(Eqs. C.16 and C.19). 
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At time t 
1

+ T the readout meter is prepared in a (pure) state with 
n-

wave function ®(Q), which has (Q) = (fJ>) = O. For the moment we leave 

the precise form of ®(Q) unspecified. The total density matrix at time 

tn_1 +T is Pr(t;,t;';Q,Q';Q.,Q';tn-l+T) = pn_1 <s . s';Q,Q';tn-l+T) ®(Q) ®*(Q'). 

The expectation value and variance of Q at time tn-l +T are denoted (Q)i and 

(~Q)i; they are given by Eqs. (C.20). During the subsequent interval of 

-duration T (t 
1

+ T < t < t 
n- n tn-l + T + T), the meter and the readout meter 

interact; the total Hamiltonian is given by Eq. (C.51) with K = O. We make 

three assumptions about the evolution of the system during t hls time: 

Assumption 1. T << T 

Assumption 2. 

Assumption 3. (1iT /M) 1/2 ~ (t:.Q) . << (1iT /M) 1/2 [ (LM/k2T4) (T Fr>] 1/2 ' 
l. 

Here the subscript "i" denotes the value at t 
1 

+ T. These assumptions 
n-

guarantee that the meter coordinate remains essentially undisturbed by the 

evolution of the entire system during the time T. Assumption 1 guarantees 

that the meter does not evolve significantly under the influence of its own 

Hamiltonian. Assumptions 2 and 3 guarantee that the "back-action" of the 

readout meter onto the meter coordinate is negligible. 

Assumptions 2 and 3 can be viewed in another way. They imply that the 

readout meter does not do a very good job of measuring the meter coordinate -

i.e., the readout meter is far from being a "quantum-limited measuring device." 

Assumption 2 guarantees that, in measuring Q, the best accuracy the readout 

- 1/2 
meter can achieve is far worse than the standard quantum limit (i'lT/L) 

(cf. Eq. 3.2). Assumption 3 allows (~Q)i and (MJ')i to be much greater than 
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the optimum uncertainties for a measurement of duration T. Thus we do not 

place stringent demands on the performance of the readout meter. That this 

is intimately connected with the absence of back-action onto Q should not be 

surprising. 

With assumptions 1-3, the evolution of the total system is precisely 
,. 

analogous to the evolution of the meter coupled to x
1 

of the oscillator (Eqs. 

C.16). The total density matrix is given by 

x exp{-~ [f(Q,Q,t)-f(Q',Q',t)l} X 

2 ) 2 
X @ ( Q_ + k_V Q t @,'< ( Q_' + _kV_ Q 1 t) 

free 2M , free 2M , , (C. 52a) 

2 3 
f(Q,Q, t) :: f\~ Q

2 + kvQQ (C.52b) 

where v :: t - t 
1

- T, and where 9£ (Q_, t) gives the evolution of a free readout 
n- ree 

meter with initial state 8(Q) (analogue of Eqs. C~l6b,c). 

During the interval T the readout meter "swings" due to its interaction 
,... 

with the meter. At time t the expectation value and variance of Q become 
n 

( Q)(t ) = -(k.1:2 
/2M) (Q )_ 

n 1 

[ 
2 -2 2 2]1/2 

b.Q_(t ) == (b.Q_)f (t ) + (fn /2M) (LiQ)i n ree n ' 

where (b.Q)f (t ) is the variance of a free readout meter. 
ree n 

(C.53a) 

(C.53b) 

At time t the subsequent stages of the readout system read out a value 
n 

~ for the readout-meter coordinate. Using Eq. (C.53a) the experimenter infers 

a value 

~2 
-(2M/k.T )~ (C.54) 
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for the meter coordinate. In the terminology of the previous analysis ~ Qn 

is the result of the "readout of the meter coordinate." From Q the experi
n 

menter infers a value f,;n for x1 just as before (Eq. C. 21). The probability 

distribution of sn (referred to an ensemble of identical systems which 

begin the nth measurement in the same state) is easily obtained from the 

probability distribution of Q.: 

P(sn) = (kK~2 -r2 /4ML) J dsdQ pT(t,:,f,;;Q,Q;°-u,Q.n;t
0

) 

= (2Ticr
2
)-

112 J dsdQTn_
1
(s,s) x 

x exp {-[s - a.,_ 1 + (2L/KT
2

)Q)
2/2a2

)11(QIQn) 

( C.55) 

(cf. Eq. C.22), where the conditional probability distribution W(QIQ ) is 
n 

defined by 

W(Q!Q ) has mean Q and variance aw 
n n 

The mean and variance of s (averages over the ensemble) are 
n 

~ = <x1> 1 n n-

[ 
2 2 2 2 2 ]1/2 

6sn = (21/K-r ) crw + cr + (6x1)n-l 

(C.56) 

(C.57a) 

(C.57b) 

(cf. Eqs. C.24). The measurement error 6f,; is the same as in the previot~ 
n 

analysis, except that it is augmented by a term which accounts for the 

imprecision of the readout meter. Even if the readout meter i.s extremely 
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l 

imprecise [crW » (ti•/L)2], it is still true that the measurement of x
1 

can be arbitrarily accurate when K is made arbitrarily large. 

When the subsequent stages of the readout system read out the value 

~' they localize the readout meter precisely at ~· This "reduction of 

the wave function" means that immediately after the readout the density 

matrix of the oscillator-meter system is 

(C.58) 

where C is a normalization constant. After the readout we throw the meter 

away, and we prepare a new meter for use in the next measurement. Through-

out all subsequent measurements in the sequence, we shall not be interested 

in computing any expectation values which involve observables of the dis-

carded meter. To compute any other expectation value we must "take the 

trace" of the density matrix on Q. Therefore, insofar as any future 

expectation values of interest are concerned, we can take the trace on 

Q now~ i.e., we can replace the density matrix (C.58) with a density 

matrix that describes only the oscillator: 

(C.59) 

' 

where a is another normalization constant. Equation (C.59) gives the 

initial oscillator state for the (n + l)th measurement (cf. Eq. C.29). 

The key results of our analysis of an imprecise readout system are 

Eqs. (C.55) and (C.59). They justify our claim that the imprecision of 

the readout can be described by a classical probability distribution: 
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Eq. (C.55) shows how the readout imprecision contributes to the measure-

ment error, and Eq. (C.59) shows how the readout imprecision "smears out" 

the "reduction of the wave function." In the limit that the readout meter 

is arbitrarily precise [W(QjQ) = 5(Q - Q )], Eqs. (C.55) and (C.59) reduce n n 

to the corresponding equations of the previous analysis (cf. Eqs. C.22 and 

C.29). Indeed, this analysis justifies our previous treatment of an 

arbitrarily precise readout system - i.e., it justifies the procedure 

of "reducing the wave function" after each arbitrarily precise readout. 

Two features of this analysis deserve special emphasis. The first 

is that we have made assumptions which guarantee that the meter coordinate 

is essentially undisturbed by the interaction with the readout meter. 

Formally, this means that the total density matrix (C.52) splits cleanly 

into a product of two terms: (i) a density matrix for the free oscillator-

meter system; and (ii) a function which depends only on the meter coordinate 

and the readout meter coordinate. The second feature is that we throw 

away the meter after each measurement. Both these features are necessary 

for defining W(QIQ ); and it is the loss of information that occurs when 
n 

the meter is discarded which allows us to identify the oscillator state 

after the measurement, and which converts an initial, pure oscillator 

state into a mixed state. 

We must specify a particular form for W(QIQ ) in order to use Eq. 
n 

(C.59) to analyze a sequence of measurements. A reasonable form is a 

Gaussian with mean Qn and variance ow = y(l-12)-l/2 (n•/L) 1/ 2 (0 ~ y < 1). 

This is the form W(QIQ ) would have if 8(Q) were a Gaussian wave packet. 
n 

2 When y = 0.5 the readout imprecision contributes about the same amount to 

the measurement error as the meter uncertainty (cf. Eq. C.57b). Using 
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this Gaussian for W(Q!Q ), we have integrated Eq. (C.59) to obtain 

n 

Tn(S,S') = 6 Tn_1(S,S') exp!- 4~2 [<1+4/)(s2+s• 2) - 10;r2ss• 

2 .l . 2[ 2 
- 2(1- )' )sn(s + s' )J + ~ mw'fl 3sn(l - )' )(i; - s') 

- ~a <s- s') - 5 
(1 - ~ Y

2Hs2
- s• 2>]) 3 n-1 6 5 ' (C.60) 

where B is a normalization constant. This equation is a generalization of 

the fundamental equation (C.30); it simplifies to (C.30) when :>' ~ O. 

Equation (C.60) can be used to analyze a sequence of measurements. 

In particular, it can be used to analyze a sequence in which the oscillator 

begins in the same (pure) state as in the previous analysis. The results 

for the expectation values (x
1
)n and (x2)n are the same as before (Eqs. C.37b 

and C.39a); but Eq. (C.38) for the measurement error becomes 

for n 2: 2 , (C.61) 

and Eqs. (C.37a) and (C.39b), which give the evolution of 6X1 and 62<2, 

are changed to 

' 
(C.62a) 

(C.62b) 

(n ~ 1). For reasonable values of )' (r2 = 0 . 5), the decrease of 6X
1 

and the 

growth of 62<
2 

are not markedly different from the results of the previous 

analysis. 
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APPENDIX D 

SINGLE-TRANSDUCER, BACK-ACTIO::i-EVADING MEASUP.EHErITS OF x
1

: A FULLY 

QUANTUM MECHANICAL ANALYSIS 
11~ 

1. Introduction 

In this Appendix we give a fully quantum mechanical analysis of a single-

transducer, back-action-evading measurement of the x
1 

of a harmonic oscilla

tor (see Sec. II.F.3). We consider a simplified version of a real measur-

ing apparatus, analyze the measurement process quantum mechanically, and 

thereby demonstrate that in principle such single-transducer measurements 

can beat the standard quantum limit ~x1 = (1i/2mw) 112 (Eq. 2.16). 

Single-transducer, back-action-evading measurements are considered ex-

tensively in Paper II, where they are analyzed using semiclassical techniques. 

Those semiclassical analyses are to be preferred in almost every way over the 

analysis given here: They are more realistic and more adaptable, and they 

provide more detailed information. However, the reader might harbor linger-

ing doubts about the validity of applying semiclassical techniques to measure-

ments which purport to beat the standard quantum limit. The purpose of this 

Appendix is to remove such doubts by analyzing quantum mechanically a simple 

example of a single-transducer, back-action-evading measurement. 

The analysis we give here is similar to the analysis in Sec. III . B and 

Appendix C. In particular, the measuring apparatus is the same. It consists 

of a generator, which provides the time-dependence in the interaction Hamil-

tonian; a meter, which is a one-dimensional quantum mechanical "free mass" 

coupled to the oscillator by the generator; and a readout system, which reads 

out the position of the meter. Only the meter will be treated quantum mechan

ically. 
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The difference between here and Sec.III.B lies in the way the meter 

is coupled to the oscillator. In Sec. III.B the meter was perfectly coupled 

" " to x
1

; here the meter is coupled to x
1 

only in a time-averaged sense. The 

total Hamiltonian for the oscillator coupled to the meter via the classical 

generator is given by Eqs. (3.16), except that in the interaction Hamiltonian 

the momentum coupling is omitted: 

" "" HI = KQx cos wt 1 "'" " = 2 KQ[X1 (1 +cos 2wt) + x
2 

sin 2wtJ (D. l) 

(cf. Eq. 2.42a). Systems which in principle are governed by the Hamiltonian 

(3.16) are considered in Appendix B. They can be modified easily to have the 

Hamiltonian considered here; essentially, the modification consists of delet-

ing the momentum transducer. 

The motivation for considering single-transducer, back-action-evading 

measurements is the problem of weak coupling. In Sec. III .n and in Appendix 

" C we showed that back-action-evading measurements with perfect x
1
-coupling 

can achieve arbitrarily good accuracy in an arbitrarily short time. However, 

such quick measurements (short compared to an oscillator period) require 

that the measuring apparatus be strongly coupled to the oscillator. In 

Appendix C we introduced a constant 

(D.2) 

(cf. Eq . C.49), which provides a dimensionless measure of coupling strength 

for a simple "free-mass" meter coupled to an oscillator. Quick measurements 

require £ >> 1. If £ < 1, beating the standard quantum limit (2 . 16) requires a 

measurement time longer than a period. 

In real experiments it is often quite difficult to achieve strong cou-

pling. If one is stuck with weak coupling (E << 1), then the required long 
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A 

measurement time allows one to avoid coupling perfectly to x
1 

and permits 

" one instead to couple to x1 in a time-averaged sense. In particular, one can 

omit one of the two transducers (position or momentum) required for perfect 

coupling, with a consequent simplification in the design and construction of 

the measuring apparatus. One modulates the output of the remaining trans-

ducer so that at some frequency the modulated output carries the desired in-

formation about x
1 

with very little contamination from x
2 , and one then runs 

the modulated output through a filter which picks out the desired frequency . 

(See Paper II for details; and see Thorne et al., 1979, for a semi-realistic 

example.) The Hamiltonian (3.16a-c), with interaction term (D.l), is the 

simplest example of this procedure: The momentum transducer is omitted, 

the modulation of the position transducer is a sinusoid at the. oscillator 

frequency, the desired x
1
-signal is at zero frequency, and the meter ~ a 

zero-frequency harmonic oscillator~ serves as a filter at zero frequency. 

Since single-transducer measurements are useful only in the case of 

weak coupling, we assume £ << 1 throughout this Appendix. 

The analysis proceeds by solving for the evolution of the appropriate 

operators in the Heisenberg picture . The Hamiltonian (3.16a-c), with inter-

action term (D.l), yields the following Heisenberg equations of motion: 

" " dX/dt = (K/2mw)Q sin 2wt (D. 3a) 

" 
,.. 

dX2/dt = -(K/2mw)Q(l+ cos 2wt) (D. 3b) 

" "' dQ/dt = Il/L (D . 3c) 

"' 1 "' "' dII/dt = - 2 K[X1(l+cos 2wt) + x2sin 2wt] (D. 3d) 
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The crucial difference between these equations and those for perfect X -
1 

"' coupling (Eqs. 3.17) is that x1 is not completely isolated from the measur-

ing apparatus. 

Equations (D.3) cannot be solved exactly with any ease, but when e is 

small a good approximate solution can be obtained. The key to the approxi-

mation is the realization that the operators of Eqs. (D.3) are nearly peri-

period rr/w. the approximation by writing xl, " odic with We implement x2, and 

" Q as "Fourier series" with slowly-varying "Fourier coefficients": 

00 

"' l 
,.. 2inWt 

X
1

(t) = b (t) e (D. 4a) 
n=..co n 

00 

"' l "' 2inWt x
2
(t) = c ( t) e (D. 4b) 

n=-oo n 

00 

"' l "' 2inWt 
Q(t) = d (t) e (D.4c) 

n=-oo n 

Of course, these expansions are "quasi-unique" only for times greater than an oscil-

lator period (wt > 2TI) , but we are interested in the solutions only for such 

"' " ..... ,... ,..-r 
times. Hermiticity of x1 ~ x2, and Q implies that b = b etc., and as we 

-n n' 

show below, the assumption of slowly varying Fourier coefficients is satis-

" " fied because db /dt ~ £Wb , etc. (see Eqs. D. 7). 
n n 

To proceed, we plug the expansions (D.4) into Eqs. (D.3) and equate 

terms with the same rapid time dependence. The result is a set of coupled 

differential equations for the Fourier coefficients. We then simplify 

these equations. by neglecting time derivatives in all equations except the 

n = 0 equations-a step justified by the slowly varying character of the 

Fourier coefficients. TI1e resulting coupled equations are all algebraic, ex-

ccpt the n = 0 equations. 
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Little would be gained by the expansions (D.4) if we had to consider 
I 

all terms in the expansions. Fortunately, we need not do so. We are inter-

ested only in the largest terms in each expansion; and beyond the first term 

or two, each expansion becomes a power series in the small quantity £. Indeed, 

using the coupled equations for the Fourier coefficients, one can easily show 

" n-1 " n ,.. " n,.. 
that, for n ~ 1 and for urr >> 1, bn,...., £ bo, en £ co, and dn ~ £ do· 

Consequently, the only coefficients of interest are those with n = O and 
,., 

n = l; and the n = 1 terms can be neglected in the expansions for x2 and Q, 

but they must be retained in the expansions for x
1 

and IT. The n = 1 equations 

can then be used to write the remaining n = 1 coefficients in terms of n = O 

coefficients. Putting all this together, one finds that, at this level of 

approximation, 

(D. Sa) 

(D.Sb) 

(D. Sc) 

(D.Sd) 

" ,.. " where the operators b
0

, c
0

, and d
0 

satisfy the coupled equations 

(D. 6a) 

(D.6b) 

(D.6c) 

,., ,.. 
In Eqs. (D.5d), (D.6b), and (D.6c) terms proporti_onal t:o b

0 
and d

0 
have 

been omitted because they are negligible. 

Equations (D.6) can be solved easily. When the solutions are written 

in terms of appropriate initial values at t = 0, they have the form 
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Note that the characteristic time scale of these solutions is (£w)-1 , so 

the Fourier coefficients do indeed vary slowly in time. The reader might be 

bothered by the exponential instability of these solutions, but she should 

not be. As we show below, any real measurement will not last longer than 

-1 a time T ~ (Ew) • 

Equations (D.5) and (D.7) give the free evolution of the coupled oscil-

lator-meter system, and they can be applied to analyzing a measurement. The 

measurement process we consider is similar to that described in Sec. III.B and 

Appendix C. The measurement begins at t = O; the oscillator and meter interact 

via the interaction Hamiltonian (D.l) for a time T; and at the end of this 

time the readout system reads out a value for the meter coordinate, from whi.ch 

the experimenter infers a value for xl. 

To analyze the measurement, we must first specify the initial (t O) 

states of the oscillator and meter. Our objective in this Appendix is to find 

the best possible performance of single-transducer, back-action-evading 

measurements, so we shall choose the initial states to optimize the measure-

ment accuracy. We assume that at t = 0 the oscillator is in a Gaussian 

" "' (minimum-uncertainty) wave-packet state (in x
1

) with <X
1

(0)> = ~o and <X
2

(0)>= O. 

The meter is prepared in a Gaussian wave packet (in Q) with <Q(O)> = <IT(O)> = 0. 

The initial variances (~X1 ) 0 and (~Q) 0 are chosen to minimize the variance of 

the meter coordinate at t = T~ 

(D. 9a) 

(D.9b) 

where 
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A - "1sinh £WV1 T + v
2
sin £WV2T , (D. lOa) 

B -
2 

"2 cosh £UlVlT + 2' 
"1 cos £WV

2
T (D.lOb) 

c - \)3 
1 sinh £WV1T \)3 

2 
sin E:WV

2 
T (D.lOc) 

D = cosh E:WVl 1: - cos E:WVZ T (D, lOd) 

(Eqs. D.5c and D. 7c). 

The oscillator and meter interact for a time T, during which the expec-

tation value of the meter coordinate gets displaced to 

"' <Q(T)> = - ( 4mw
2 

/K/3) ~ D 
0 

(D. lla) 

and the variance of the meter coordinate grows to 

(D. llb) 

(Eqs. D.5c, D. 7c, D.9, and D.10). At time T the readout system reads out a 

value Qm for the meter coordinate. Using Eq. (D.lla) the experimenter infers 

a value 

(D.12a) 

for x
1

• In a set of measurements on an ensemble of identical systems, the 

mean of this inferred value is ~ , and its variance is 
0 

The measurement can determine ~ with probable error f),.~ • In Eqs. (D.llb) o m 

and(D.12b) the first term on the right comes from the initial uncertainty in 

the meter coordinate and the second from the initial uncertainty in x1• 
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3. Discussion 

Interpretation of Eqs. (D.11) and (D.12) is obscured by their compli-

cated dependence on T. Their meaning is made a great deal clearer by looking 

at their form for short and long measurement times. For short measurement 

times (ewT << 1 but on>> 2n) the meter displacement (D.lla) and the prob-

able error (D.12b) are 

,.. 2 
(Q(T)) = -(KT /4L)S 

. 0 ' 
(D.13a) 

(D.13b) 

(One can verify from Eqs. D.3 that these expressions are also valid to within 

factors of order unity when WT,...., 2n.) The probable error (D.13b) is due en-

tirely to uncertainties in the meter; for short measurement times minimiza-

tion of the uncertainty due to the initial oscillator variances is unimportant. 

Indeed, as long as (6X1 )~ is somewhat greater than its optimum value 

[(6x
1

)
0 

> (wT)-l/2 (h/2nw) 1/ 2; cf. Eq. D.9a], the probable error has the form 

(D.13c) 

If this measurement of x1 is to be repeatable to within the error 6s~ 

then the condition 6X1(T) ~ 6sm must be satisfied; otherwise, at the time 

" of the readout of Q, the expectation value of x1 will "jump" an unknown 

distance greater than 6S • That this condition holds for T ~ (ew)-l can 
m 

be easily verified using Eqs. (D.5a) and (D.7). 

The important feature of Eqs. (D.13a) and (D.13c) is that they are 

virtually identical to the comparable equations for measurements with per-

" feet coupling to x
1 

(cf. Eqs. 3.19a and 3.20b) • . The only difference is a 

factor of two in each equation; and this factor can be traced to the fact 

that, with the momentum coupling omitted, the mean force on the meter is cut 

" in half (cf. Eqs. 3.17d and D.3d). Just as in the case of perfect x1-coupling, 
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single-transducer, back-action-evading measurements beat the standard 

quantum limit when WT ~ e-
2

/ 3 • Conclusion: For short measurement times 

T << (ew)-l (but T ~ W-l) the imperfection of coupling to Xl has no signif-

icant effect on the measurement accuracy, because there has not been time 
,.. 

for "noise" in the measuring apparatus to "feed back" onto x
1 

and disturb 

it significantly. 

The difference between single-transducer and perfectly coupled two-

transducer, back-action-evading measurements shows up at long measurement 

times (EWT >> 1), when the meter displacement (D.lla) and measurement error 

(D.12b) become 

(D.14a) 

(D.14b) 

In the case of a perfectly coupled measurement, one can choose the initial 

" variance of x
1 

as small as desired (in principle); then the measurement becomes 

more and more accurate as T increases (Eq. 3.20b). However, for a single-

transducer measurement, the accuracy does not continue to improve; instead it 

. 1/2 1/2 . -1 hits a "floor" at approximately £ (11/2mw) for times T ?: (i::w) , because 

xl no longer successfully evades "back-action" noise from the measuring appara

-1 
tus. Note that for long measurement times T >> (ew) , the measurements are 

not repeatable because t.X1(•) >> 6Sm (cf. Eqs. D.5a and D.7). 

The dependence of the measurement accuracy (D.12b) on T can be conveni-

ently summarized by using only the small and large T forms: 

{ ·£-l(WT)-3/2 ~/Zmw)l/2 € $ £WT < 1 (D. lSa) -6f,, ~ 

m 
£1/2~/Zmw)1/2 £WT > 1 (D.lSh) 
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This behavior is similar to what one expects for amplitude-and-phase measure-

ments. The accuracy of an amplitude-and-phase measurement should improve as 

T increases, but it must eventually hit a floor at the standard quantum limit 

t.r./2mw) l/Z. Th fl b h d d ~1 e oor must e at t e stan ar quantum limit because x
1 

and x
2 

are measured with equal precision, so they are equally affected by back-action 

noise. The accuracy floor for single-transducer, back-action-evading measure-

ments is lower because xl is partially shielded from back-action noise. 

Up to now we have operated under the assumption that the coupling con-

stand £ is fixed, and we have investigated the dependence of the measurement 

error on T for fixed £. One can adopt a different point of view--that the 

coupling strength is under the control of the experimenter. Given this free-

dom, the experimenter will choose the value of £ (by choosing L) to optimize 

-1 the measurement accuracy for a given measurement time T (~ w ). The choice 

he will make is £ ~ (wT)-1 , and the measurement error (D.15) will be 

(D.16) 

.This is the optimum performance for a single-sensor measurement of the simple 

type considered in this Appendix (cf. Eq. 2.43). 

So far in this Appendix we have considered a meter with no "restoring 

force." In practice this is not usually the case; in a typical design such 

"'2 as that in Appendix B.l, the meter is an LC-circuit (term Q /2C added to meter 

Hamiltonian, where C is the total capacitance in the circuit including that 

associated with the position transducer). In this situation the analysis 

given in this Appendix will apply approximately for measurement times smal

ler than the characteristic time of the circuit -- i.e., ~ ~ T = {Lc) 1
/
2. 

If ~ ~ (Ew)- 1, i.e., K2c/srrw2 ~ l! the effect of the capacitor can essen-

tially be ignored, because the preceding analysis applies for times long 
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enough to hit the accuracy floor. However, in practice it may be diffi-

cult to make the capacitance large enough, and one may be stuck with the 

_ . < )-1 . 2 I 2 -case T << ew , i.e., KC 8mw <' 1. 

To analyze this case in detail requires a more sophisticated model for 

the measuring apparatus than we have used here. We consider more sophis-

ticated measuring systems in Paper II, and we analyze their performance 

using semiclassical techniques. However, we can get a good idea of the 

potential performance from the preceding analysis. 

f d - h - ,.-l("'-T)-3/2(""'/2mw) 1/2. A measurement o uration T as accuracy ~ ~ 11 A 

measurement of duration T ? T can be regarded as a sequence of measurements 

of duration T• Before the initial measurement in the sequence, the oscil-

lator is prepared in a Gaussian wave-packet state (in x1). Appendix C 

analyzed a sequence of measurements with perfect coupling t:o x
1

• In that 

analysis the variance of x
1 

always decreased during the sequence. Here, 

"' with imperfect coupling, we expect the variance of x1 to decrease until 

it is approximately equal to the optimum value for measurements of dura

tion T: (6X
1

)
0 

~ (wT)- 1/ 2 (n/2mw) 1/ 2 (cf. Eq. D.9a). Thus we shall choose 

" the initial variance of x
1 

to be this optimum value; then the variance 

should not change significantly during the sequence. 

The results of all the measurements in the sequence are used to determine 
A 

the initial expectation value of x
1

• The accuracy of this determination im-

proves as the square root of the number of measurements. Thus the measurement: 

error for a sequence of total duration T > T is given approximately by 

(D.17) 

where 8 is a dimensionless coupling constant defined by 

- 2 2 2 B ~ (EWT) = K C/8mw (D. 18) 
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The improvement in accuracy of Eq. (D.17) does not continue forever, 

because the expectation value of x1 changes during the sequence. In particular, 

"' the expectation value of x1 "j tmps" at the time of each readout; the detailed 

analysis in Appendix C suggests that the expected magnitude of each jump is 

2/[ -1( -)-3/2 1/2] - 1/2 1/2 approximately (llX1)
0 

e: un Ei1/2lil(u) :::e:(wT) (-tl/2mw) (see Eq . C.36 

A 

and accompanying discussion). [The expectation value of x
1 

also changes during 

each measurement in the sequence because of the imperfect coupling to x
1 

(Eqs. 

) - ( )-1 D.5a and D.7; but these changes are negligible for'<< e:m , provided that 

one uses a "feedback force" on the meter like that in Appendix C. J The jumps 

" add randomly, so that after a ~ime T ~ ~' the expectation value of x
1 

will have 

e: (UJ-.-) l/2(.h/2mw) 1/2. wandered a distance ::: , The measurement accuracy improves 

as in Eq. (D.17) only until the distance wandered becomes comparable to the 

measurement error. Thus the accuracy hits a floor at approximately 

(UJ;)-1/2(~/'"'-···)l/2 for . , 11 cmw measurement times 'T > :r/f3. The accuracy floor is 

approximately equal to the initial variance of xl ~i.e., the entire se

quence allows one to determine the initial expectation value of xl with an 

error of order the initial variance. 

The dependence of measurement error on 'T can be surmnarized as follows: 

(SwT)-112 (T/T)(n/2mw) 112 T < :r (D.19a) -
(SwT)-l/2(fl/2m.u)l/2 - T/B Lis !:::'. T < T < (D.19b) 

(wT)-1/2 ("6./2mw)l/2 T > T:/s (D.19c) 

Note that Eqs. (D.19) simplify to Eqs. (D.15) when B ~ 1. 

Just as in the previous case CB> 1), so in this case (S ~ 1), the optimum 

-performance is achieved by adjusting T (adjusting L) to obtain the best accuracy 

for a given T. The optimum choice is ST :5 T :5 T, and the resulting optimum 

accuracy is 
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(D . 20) 

It should now be clear that Sis the really important . measure of coupling 

strength for this type of single-transducer, back-action-evading measurement. 

For 8 ~ 1 the optimum performance is given by Eq. (D.16); for B ~ 1, by Eq. 

(D.20). 

The constant B is an example of a Gibbons-Hawking (1971) coupling con-

stant. In Paper II we give an exact definition of the Gibbons-Hawking 

constant for an arbitrary measuring system coupled to an oscillator; we pre-

sent a semiclassical derivation of the limiting accuracy (D.20) for such a 

system; and we generalize that accuracy to the case where the system contains 

an amplifier with noise temperature greater than the quantum limit 

(-11 -+- kT /w); cf. Thorne et al. ( 1979). 
n 
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FOOTNOTES 

1. "Less is more" is an aphorism popularized in this century by architect 

Ludwig Mies van der Rohe. It appears earlier in Robert Browning's poem 

Andrea del Sarto (1855), 1. 78. Wyler (1974) has used "less is more" 

and related ideas as fundament~l conceptual tools for exploring the 

frontiers of modern physics and cosmology. 

2. Hollenhorst (1979) has suggested that the idea of such back-action-evading 

measurements has been known at least since the analysis by Takahasi (1965) 

of the degenerate parametric amplifier. We do not understand Hollenhorst's 

suggestion: A degenerate parametric amplifier takes the input signal 

r( ) -iwt} Real l v
1 

+ iV
2 

e from an ideal voltage source, and preferentially 

amplifies the real part of the complex amplitude while attenuating the 

imaginary part; the amplifier's output is AV1 sin wt - (v2/ A) cos wt. While 

this is analogous to a back-action-evading measurement of the real part 

x
1 

of the complex amplitude x
1 

+ iX
2 

of an oscillator, it is by no means 

the same. For example, if one simply attaches a capacitive position 

transducer to a mechanical oscillator, and follows it by a degenerate 

parametric amplifier, the amplifier will act back on the oscillator through 

the transducer to driv~ directly the x1 oscillations which it seeks to 

measure. Such a measurement, instead of evading the amplifier's back 

action, actually enhances the back action! On the other hand, this en-

hancement is of a nonstochastic nature, and one might therefore be able 

to find a way to compensate for it. For comments on the related issue 

of "phase-sensitive detection" and its relationship to "back-action 

evasion," see Sec. II.F.3. 

3. A more careful discussion would pay attention to the back-action kick 

(2. lOb) which occurs ?u_·~5EJ? the initial qu:i.ck measurement: of x. That: 
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kick modifies the initial measurement error (2.lOa) to rea<l 

The discussion in the text implicitly assumes that the second term is 

much smaller than the first. 

Later (Sec. III. A. l) we shall discuss the case where the two terms 

are of comparable size. This case leads to an absolute minimum value for 

the error in our ini"tial quick measurement: 

(cf. Eq. 2.11). 

4. For a discussion of difficulties with making rigorous the quantum mechanical 

concept of the oscillator's phase t see, e.g., Carruthers and Niet~ (1965). 

We circumvent these difficulties by working with the real and imaginary 

A A 

parts of the complex amplitude, x
1 

and x2 , instead of the amplitude and 

the phase. 

5. Relativistic quantum theory is not so kind. It places firm constraints on 

the precision with which certain observables can be measured. For example, 

the position of a particle (or the x1 of a harmonic oscillator) cannot be 

measured with a precision better than the Compton wavelength h/mc. Roughly 

speaking, the reason for this constraint is the following: If one tries 
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to localize a particle within a region smaller than its Compton wavelength, 

then its momentum unc;:ertainty will be so large that its kinetic energy 

will be of order its rest mass, and particle-antiparticle pairs will be 

created. For the x1 of an oscillator the situation is similar: Tf one 

( -43 . tries to localize x1 within a ~ompton wavelength 2 x 10 cm if m = 

1 ton), then x2 will be so uncertain that the oscillator's energy will be 

of order its rest mass. Clearly, this constraint is completely irrelevant 

for the macroscopic systems considered in this paper. 

6. These two requirements on the measuring apparatus - preci.se coupling to 

the measured observable and arbitrarily strong coupling - are also the 

basic assumptions behind a controversial general "theorem" which asserts, 

"Nonrelativistic quantum theory pennits arbitrarily accurate, instantaneous 

(often called impulsive) measurements of the first kind for any observable .• " 

[A measurement of the first kind (Pauli, 1958) i.s one for which, if the 

system is in an eigenstate of the measured observable at the instant of 

the measurement, the result of the measurement is equal to the eigenvalue, 

with arbitrary accuracy; and regardless of the system's initial state, 

the measurement leaves it in an eigenstate of the measured observable with 

the measured eigenvalue.] For a concise review of the literature on this 

"theol:'.em," see Aharanov and Petersen ( 1971). 

This "theorem" is implicit in the viewpoint of Bohr, and it has been 

championed in recent years by David Bohm. Bohm discusses and gives a 

proof of the "theorem" in his textbook; see Sec. 22.5 of Bohrn (1951). lie 

regards the "theorem" as an inunediate consequence of the two requirements on 

the measuring apparatus. However, one can question the generality of nohm's 

proof because of his neglect of the measured system's free Hamiltonian H 
0 

during the course of the measurement. In particular, by means of strong 
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forces embodied in the interaction Hamiltonian, the measuring apparatus 

acts back on variables which do not conunute with the measured observable 

A A ~ 

A. These variables then drive A via H , and the resulting disturbance 
0 

of A might preclude (for some observables) arbitrarily accurate measure-

me1'tS even in the limit of zero measurement time. 

To prove the "theorem" in a particular case, one must include the 

A 

effects of H and one must show that the measurement error goes to zero 
0 

in an appropriate limit where the coupling strength goes to infinity and 

the measurement time goes to zero. In general, the error can be made to 

go to zero only in the limit of an instantaneous measurement. Fort·unately, 

for the observables considered in this paper {such as the position of a 

free particle or harmonic oscillator) the theorem is undoubtedly true. 

Indeed, for "quantumnondemolition observables" the theorem holds in the 

stronger fonn given in the text for xl {arbitrarily accurate measurements 

even for nonzero measurement times). 

The "theorem" has long been controversial because it implies (in its 

stronger fonn) that the energy of a system can be measured arbitrarily 

quickly and accurately, in violation of a common misinterpretation of 

the energy-time uncertainty relation. [For a specific gedanken experi-

ment that proves the possibility of arbitrarily quick and accurate energy 

measurements, see Aharanov and Bohm (1961, 1964). The latter is a valid 

special case of Bohm.'s {1951) proof of the general "theorem."] The 

misinterpretation of t:£ .t\t .G 11 has generated so much confusion in the 

physics community that even Von Neumann (1932; Sec. V.l) regarded it as 

a counter-example to the "theorem." 

7. To achieve a Hamiltonian of the form (3.16), the measuring systems described 

in Appendix B must incorporate a negative capacitor or a negative spring, 
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which converts a velocity sensor into a momentum sensor (cf. Sec. III.A.2). 

For these systems the free meter is a "mass on a negative spring"; the 

coupling to the oscillator converts the meter into a "free mass." 

8. The ideas and prose of this section are due entirely to Carlton M. Caves, 

and constitute a portion of tbe material submitted by him to the California 

Institute of Technology in partial fulfillment of the requirements for the 

Ph.D. degree. 

9. One might wish to require that there exist a one-to-one correspondence 

between the possible measured values at t = t
0 

and t ~ t
1

, in which case 

f 1 must be invertible. 
,.. 

10. The assumption about the nature of H1 is sufficient, but it is not always 
,.. 

necessary. For example, if A is conserved in the absence of interactions, 
,.. ,.. 

.HI can drpend on any observable of the system which commutes with A. 

11. In our original Physical Review Letter (Thorne et al., 1978), we discussed 

a gedanken experiment for an arbitrarily quick and accurate back-action-

evading measurement of the x1 of an electromagnetic oscillator {cf. 

Appendix B.2 of this paper). In that discussion we asserted that a torque 

r in the sensing system could be read out with precision N' ~ (Pn/ l» l/2 • 

We had invented the required "torque-balance readout system" at the time 

of our Letter (though we did not describe it in the Letter). Our view-

point on that torque balance was the third viewpoint described above; 

and we were unaware that our balance was functioning, in effect, like a 

negative spring. 

The reason we presented in Thorne ~al. (1978) a ge<lanken experiment 

for measuring an electromagnetic oscillator, rather than a mechanical 

oscillator, was that we had not yet invented the "negative-capacitor" 

readout system of Fig. 7. 
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12. The ideas and prose of this Appendix are due entirely to Carlton M. 

Caves, and constitute a portion of the material submitted by him to 

the California Institute of Technology in partial fulfillment of the 

requirements for the Ph.D. degree. 

13. For quick measurements (~ ;S w-l) it is more reasonable to compare the 

accuracy a to {li~/m) 1/2, the standard quantum limit for measurements 

of free-mass position (Eq. 3.2). Beating this standard limit requires 

even stronger coupling than is required to beat the standard quantt)lll 

limit for amplitude-and-phase measurements. 

14. The ideas and prose of this Appendix are due entirely to Carlton M. 

Caves, and constitute a portion of the material submitted by him to 

the California Institute of Technology in partial fulfillment of the 

requirements for the Ph.D. degree. 



200 

FIGURE CAPTIONS 

Fig. 1. The "error box" in the phase plane for a quantwn mechanical oscillator. 

This error box is an ellipse, with centroid at the expectation value 

((i), {p/mw)) of the position and momentum. The principal axes of 

the error ellipse are the eigendirections of the variance matrix 

, 

and the principal radii are the square roots of the corresponding 

eigenvalues. Here ~xp ~ {l/2mw) ((~ - (~))(p - {p)) + (p - {p))(~ - (~})). 

This error box has the property 

• ~ ~ ..!. (area of box) :2: ~ 
mw ~ 2mw , 

Ll'X1 • & 2 :2: ~ (area of box) :2: ~w 

{as one can verify by elementary calculations). Here x
1 

and x
2 

are the 

real and imaginary parts of the complex amplitude, and the (x1,x2) co

ordinates of the phase plane are related to the (x,p/mw) coordinates 

by a simple time-dependent rotation 

. / (x ·x ) -iwt x + ip mw = 1 + l. 2 e 

Fig. 2. A simple example of an oscillator coupled to an amplifier. Part (a) 

{to left of dashed line) is the oscillator, an LC circuit; part (b) 

{to right of dashed line) is a zero-impedance charge amplifier whose 

"Thevenin equivalent circuit" is shown in the figure. See text for 

discussion. 
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Fig. 3. Error boxes for various types of measurements of a hannonic oscil

lator. (a) The error box characterizing the results of a "quick 

measurement" of position. After the measurement the error box 

rotates clockwise in the phase plane with angular velocity w, which 

means that it remains fixed as seen in the "rotating" (x
1
,x

2
) co

ordinates. (b) The error box for "amplitude-and-phase measurements" 

as seen in the (x
1
,x

2
) coordinate system. (c) The error annulus 

(5N = 1) for "quantum-counting measurements." (d) The error box 

for a "back-action-evading measurement" of x1• 

Fig. 4. A harmonic oscillator, initially in an energy eigenstate with N = 30 

quanta, is driven by a classical. force for a time T. The integrated 

strength of the force is characterized by the dimensionless number 

ja(T,o)l (Eqs. 2.20b and 2.22b). Here we show the probability 

P(30 ~ N';T) that after the force acts the oscillator is in an 

eigenstate with N' quanta (Eq. 2.26). The various probability 

distributions are labeled by the strength la( t",0) I of the wave. 

Notice that, if one makes a quantum-counting measurement and dis

covers a transition from N = 30 to N' = 29, one cannot with confidence 

determine the strength of the force that acted. One can only conclude 

that 0.05 ..:S la(T,o)I .$ 0.3. 

Fig. 5. (a) A classical harmonic oscillator is described by a single "system 

point," which moves about in the complex amplitude plane in response 

to an external driving force (Eq. 2.21). (b) A quantum mechanical 

oscillator in a coherent state is described by a minimum-uncertainty 

wave packet. In the absence of measurements the center of that wave 

packet moves about in the complex amplitude plane, in response to 
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an external driving force, with precisely the same motion as the 

system point of the classical oscillator (Eq. 2.21'). However, it 

is impossible to measure that motion more precisely than tiX
1 

= 
,,,., 1/2 

6X2 = ( u1 2mw) • (c) Two quantum mechanical oscillators, one in 

~ A 

an eigenstate of x
1

, the .other in an eigenstate of x
2

, are described 

by two orthogonal error lines in the complex amplitude plane. Under 

the action of an external driving force the intersection of the two 

error lines moves in exactly the same manner as the system point of 

a classical oscillator. In principle, this motion can be measured 

with complete precision, and without perturbing the error lines, by 

means of back-action-evading measurements. 

Fig. 6. (a) An idealized velocity sensor. The "free mass" m has a wire 

(dark vertical bar) rigidly attached to it. The wire is hooked up 

to an LC circuit; and it passes through a region of uniform magnetic 

field (stippled region). '!he velocity x of the mass produces an 

emf B~c in the LC circuit. During a measurement one either attaches 

a voltage amplifier in parallel with the capacitance C (dashed part 

of figure) and makes C as smaU. as possible (open circuit) 1 or one 

attaches a charge or current amplifier in series (not shown) and 

makes C as large as possible (short circuit). In any case, to 

achieve minimum noise one makes the stray inductance L as small as 

possible. As discussed in Sec. III. A.2, one can turn this velocity 

sensor into a momentum sensor by inserting a negative capacitance 

I 2 2 2 
-CK = -1 mK = -me /(aB) at the location indicated by a dotted arrow. 

(b) Equivalent circuit for the velocity sensor of Fig. (a); see text 

for discussion. 
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Fig. 7. (a) A model of a spring-based capacitor with negative capacitance. 

(b) A model for the perfect, noiseless batteries that appear in 

part (a). For details see text. 

Fig. 8. (a) A model of an amplifier-based capacitor with negative capacitance. 

(b) The Thevenin equivalent circuit for this model negative capacitor. 

For details see text. 

,., 
Fig. 9. Idealized physical realization of a system for measuring the x

1 
of 

a mechanical oscillator arbitrarily quickly and accurately. See 

text for discussion. 

,., 
Fig. 10. Idealized physical realization of a system for measuring the x

1 
of 

an electromagnetic oscillator arbitrarily quickly and accurately. See 

text for discussion. 

Fig. 11. An idealized example of a negative spring attached to a torsion pendu-

lum. A DC bias voltage -V is applied to the upper plate P, and a 
0 

voltage +V to the lower plate P', of a parallel-plate capacitor. The 
0 

middle plate R is held at ground potential by the wavy wire, and is 

physically attached by a lever arm of length b to the central shaft 

S of the torsion pendulum. When the shaft rotates through a small 

angle Q from equilibrium, plate R moves upward by a distance bQ; and 

the batteries V drive a charge q == (bQ/ d)CV onto R. (Here C = 2a/l~rr.d 
0 0 

is the capacitance of plates P - P' relative to plate R, and we assume 

bQ << d.) The charge q couples to the electric field V / d in the 
0 

capacitor, producing an anti-restoring torque 

2 2 r == bqVofd = (b/d) CV
0 

Q. 
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CHAPTER 4 

GRAVITATIONAL RADIATION AND THE ULTIMATE SPEED IN ROSEN'S 

BIMETRIC THEORY OF GRAVITY 

This chapter is a paper which has been submitted for publication 
to Annals of Physics. It was supported in part by the National 
Science Foundation [AST76-80801] and the National Aeronautics and 
Space Administration [NGROS-002-256]. 
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1. INTRODUCTION 

Several years ago Nathan Rosen [l] proposed a new theory of gravity, 

the "bimetric" theory -- the two metrics being the physical metric ~JV and 

1 a flat, "background" metric n . · The theory is perhaps better described 
µv 

as a two-tensor, metric theory (see [2] for discussion). It is a metric 

theory in the sense that the physical metric obeys the Einstein Equivalence 

Principle~ in the local, freely falling frames of gµv the nongravitational 

laws of physics redu.ce to those of special relativity. One immediate con-

sequence is local conservation of nongravitational stress-energy T -- the 
µv 

matter-response equation: 

(1.1) 

The auxiliary, symmetric two-tensor n can be thought of as a second metric; it µv 

is constrained to be flat and is used in constructing the field equations for 

the physical metric (see Section 2B). In a series of papers Rosen and others · 

have analyzed various consequences of the theory, including the maximum mass 

of neutron stars [3], cosmological models [4], equations of motion [S], 

gravitational radiation [6], and other topics [7]. 

The traditional testing ground for such a theory is the solar system, 

where observations at today's accuracies probe the theory's predictions to 

post-Newtonian order (see [8] for a review). Lee~ al. [9] have calculated 

the post-Newtonian limit of Rosen's theory and shown that it is the same as 

that of general relativity, except for the preferred-frame PPN parameter ct
2

• 

[For a discussion of the Nordtvedt-Will Parametrized Post-Newtonian (PPN) 

Formalism and a description of the meaning of the PPN parameters, see chapter 

39 of [ 10]; in particular, Box 39. S. J The values of a
2 

and the Newtonian 
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gravitational "constant" G are determined by the distant matter in the 

Universe, which reaches into the solar system through boundary conditions 

applied far outside it. An a~propriate adjustment of the cosmological 
I 

boundary values brings the theory into agreement .with present limits on 

~ and on the time rate of change of G. Put the other way around, these 

limits place constraints on the possible boundary values. One way to test 

the viability of the theory is to construct cosmological models and ask 

whether the models can be made consistent with these constraints. In this 

paper I point out a new set of observations which yield particularly 

stringent constraints on the cosmological models in Rosen's theory. 

The two metrics in Rosen's theory play different roles. Gravitational 

radiation propagates along "light" cones of the flat metric, while light 

propagates along "light" cones of the physical metric. The two "light" 

cones need not coincide, so the speed of gravitational radiation is, in 

general, different from the speed of light. Lee !:_t al. [9] showed that the 

speed of gravitational radiation, as measured by an observer at rest in the 

universal rest frame far from any local concentration of matter, is deter-

mined solely by the cosmological boundary values. 

related to a
2 

by 

v2 = (1 + a2)-l 
gc 

This speed v gc is 

(1.2a) 

In the vicinity of a local source of gravity with · (dimensionless) Newtonian 

potential U << 1 (U > 0) 1 the Speed of gravitational radiation increases 

to 

v = v (1 + 2U) 
g gc (l.2b) 

(see Section 2B). It is possible for v to be less than the speed of light. 
g 
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I show here (Section JD) t~at as a particle of nonzero rest mass is 

accelerated through the gravitational "light" cone, it emits an infinite 

amount of energy in gravitational radiation. It follows that, j_f v < 1,. 
g 

the speed of gravitational radiation is the ultimate speed for such par-

ticles; they cannot escape the gravitational "light" cone. As a result,. 

observation of a relativistic particle with Lorentz factor y provides a 

lower bound for v at the point of observation: 
g 

1 -2 
1-vg<zy (1. 3a) 

If .the Newtonian potential at the point of observation is known, one also 

obtains a lower bound ~or v • This lower bound can be re-expressed as an 
gc 

upper bound on the value of a 2 ~ 2(1 - vgc): 

(1. 3b) 

Equations (1.3) are the basis for obtaining observational constraints on v 
g 

and a
2 

(see Section 4). 

In this paper I analyze the gravitational radiation emitted by par-

ticles moving at speeds near the speed of gravitational radiation. This 

analysis leads to the conclusion that, in Rosen's theory, particles of 

nonzero rest mass cannot exceed the speed of gravitational radiation. This 

conclusion is likely to have far wider applicability than just to Rosen's 

theory. The detailed analysis presented here does not depend critically on 

any special feature of Rosen's theory; one can make a strong case that a. 

similar analysis holds in any theory of gravity which permits the speed of 

gravitational radiation to differ from the speed of light {see [ll] for a 

brief review of such theories). Indeed, it seems likely that the "gravita-

tional speed limit" is a feature of all such theories. 

Another crucial test of Rosen's theory comes from observations of the 
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change in orbital period of the binary pulsar [12 J. Unless the two compon-

ents of the binary system have identical ratios of gravitational binding 

energy to inertial mass> Rosen's theory predicts that the system will emit 

dipole gravitational radiation and that the radiation will carry away 

negative energy [13]. Observations of the binary pulsar are now good 

enough that Rosen's theory can be ruled out -- unless the two ratios are 

the same to within less than a percent [14]. 

Section 2 develops the formalism for analyzing gravitational radia-

tion emission from weak-field systems in Rosen's theory. Section 3 builds 

upon this foundation to justify the claim that a particle of finite rest 

mass cannot exceed the speed of gravitational radiation. Section 3A calcu-

lates the energy spectrum of gravitational Cherenkov radiation emitted by 

a particle moving with uniform velocity v > v , and Sectiort 3B analyzes the 
g 

energy emitted as a particle is accelerated through the gravitational "light" 

cone. The result of these considerations is Eqs. (1.3)> which Section 4 

uses to obtain observational limits on v and a 2 (v ) . Sect ion 5 argues 
g gc 

that these constraints apply to any theory of gravity with a variable speed 

of gravitational radiation. 

2. FOUNDATION FOR ANALYZING EMISSION OF GRAVITATIONAL RADIATIO~ 

This section lays the foundation for analyzing emission of gravita-

tional radiation from weak-field., linearized systems in Rosen's theory. The 

foundation will be laid in two pieces: the first piece is construction of 

coordinates which take into account matching to houn<lary values provided by 

an external gravitational field; the second piece is construction of equa-

tions governing generation of gravitational radiation and specifying the 

amount .of energy the radiation carries. 
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A. Isolated Sources and Preferred Coordinates 

Below I shall deal with "isolated" sources of gravity, such as the 

solar system or one of the ultrarelativistic particles of Section 3. Since 

such sources are not actually alone in the Universe, it is necessary to 

describe briefly what is meant by ao "isolated" source. 

The key feature of an isolated source is that the gravitational field 

can be split into two pieces: the field of the isolated source (the local 

field), which applies near the source; and the field of the rest of the mat-

ter in the Universe (the external field), which applies far from the source. 

To understand the conditions necessary for such a split, consider the 

length scales characteristic of the source and the external field. The source 

is characterized by two lengths: its physical size Rand the length Gm cor-

responding to its mass m. The external field is also characterized by two 

lengths: a typical radius of curvature a and the length I. over which the 

external field varies appreciably. Let r be the distance from the source at 
0 

which the curvature produced by the source becomes comparable to the external 

curvature: 

(2 .1) 

To get a clean split between the local and external fields, the source must 

be buried deep insider (R << r ), and r must be much smaller than the ex-
o 0 0 

ternal scales (r << min{a,L}). These two conditions translate into 
0 

Gm/R3 >> a-2 

Cm << min{ a, L(L/a) 2} 

(2. 2a) 

(2 . 2b) 

The curvature produced by the isolated source is a large, but small-scale 

"bump" in the large-scale external curvature. 
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When Eqs. (2.2) are satisfied, the region around the source can be 

broken up into three parts, which provide a natural split of the grav.ita-

tional field: 

(i) the local-field region, in which the curvature of the isolated 

source dominates: 

r < r 
- 0 

where r is distance from the source; 

(2 . 3a) 

(ii) ·the transition region, in which the external curvature dominates" 

but which is small enough that the external field is nearly homogeneous: 

r < r < r = e: • min{a,L} 
0 - - 1 

(2. 3b) 

where e: is a suitably chosen factor less than one; 

(iii) t;;he external-field region: 

(2. 3c) 

The nearly flat transition region splits the gravitational field into local 

and external fields. The only connection between the two fields is the re-

quirement that they match smoothly in the transition region; from the point 

of view of the local field, the external field establishes boundary condi-

tions in the transition region. 

The boundary conditions are made explicit by choosing a specific 

coordinate system. A particularly convenient set of coordinates can be 

constructed as follows. Consider the external gravitational field in the 

absence of the isolated source. Let an observer falling freely in this 

field construct Fermi normal coordinates {xa} :: {t,xj} in th e vicinity of 

his world line [ 15]. In thesf-~ coordinates the two 1:ietrics can be expandt>d 

about the observer's world l:lnc: 
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(2. 4a) 

(2.4b) 

where g~~) is Minkowsk.ian, i.e., II g~~) II = diag(-1,+l,+l,+ 1) , 

is the Riemann tensor derived fron the physical metric. Now introduce the 

isolated source in the vicinity of the fiducial world line and use these 

coordinates to solve for its local field. The flat metric retalns the form 

(2.4b), and the physical metric retains the form (2.4a) in the transition 

region outside the source. 

Equations (2.l•) display explicitly the boundary conditions to be applied 

in the transition region. In general relativity, which has only a physical 

metric, the external field influeaces the isolated source only through the 

Riemann and higher-order terms in Eq. (2. 4a), which represent tidal and 

higher-order multipole forces on the isolated source. The situation is clif-

ferent in Rosen's theory because of the presence of the flat metric. Although 

the region around the source has been split cleanly into local and external 
! 
; 

parts, nap cannot be adjusted independently in the two re~ions; rather, thP. 

external field determines the form of nar) in the transition region, and a 

particular choice of coordinates together with its flatness then determines 

n in the local-field region. (The above choice of coordinates insures that 
o.B 

naS is nearly constant in the local field region.) In general, the external 

field prohibits finding coordinates such that both ga!3 and naS are nearly 

Ninkowsk.ian in the transition reglo.-i.. This lack of irmeshing" allows the ex-

ternal field to reach into the vicinity of the isolated source and affect 

local gravitation physics. (Will [2, Section 5.3) gives a general discussion 

of the manner in which auxiliary tensor fields in metric theories of gravity 
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couple local gravitation physics to an external field. ) 

Gravitational radiation emitted by the source is analyzed in the tran

sition region. In order to separate the radiation fro!'!l the external curva

ture, the wavelength A of the radiation must be much smaller than external 

scales: 

A << min{a,L} (2. 5) 

a requirement which also guarantees that the wave zone of . the radiation ex

tends into the transition region. In Section 3 I will be interested in 

calculating gravitational radiation emission in the linear approximation. In 

this limit another consequence of (2.5) is that, in Eqs. (2.4), one can 

ignore both the tidal terms in ga.f3 and the spatial and temporal deri.vatives 

of na.B; these terms cannot affect radiation at wavelengths much smaller 

than their own characteristic lengths. 

As a result, in calculating the gravitational radiation emitted by an 

isolated source in the linear approximation, one can always use coordinates 

with the following two properties: 

Property 1. The physical metric ga.B is asymptotically Hinkowski.an in 

the transition region far from the source. 

Pr<:Jperty 2. The flat metric naS is a nearly constant matrix in the 

the local-field and transition regions; its slowly changing values 

are determined by the external field, and its temporal derivatives 

can be ignored. 

I shall refer to a coordinate system which satisfies these tuo properties as 

a preferred coordinate sys tern. Such coordinates are particularly useful for 

analyzing gravitational radiation emission: Property 1 insures that the 

coordinates provide a good reference frame for an observer. in the transition 
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region monitoring the emitted radiation; and Property 2 insures that the 

field equations and gravitational stress-energy assume a particulat"ly simple 

form (see Section 2B). Properties 1 and 2 do not uniquely specify the coor-

dinates; instead, they specify a family of preferred coordinate systems, 

the members of which are related by arbitrary Lorentz transformations and 

translations. Throughout the following I shall use preferred coordinates. 

Now restrict attention to the sources considered in Sections 3 and 4 --

ultrarelativis tic particles moving in a typical astrophysical environment. 

For such sources, the external field must include both the smoothed-out 

cosmological solution and the fields of nearby, large-scale density enhance-

ments. A typical source might be a cosmic-ray proton near the Earth; then 

the nearby density enhancements include the Virgo cluster, the Local Group, 

the Galaxy, the solar system, and the Earth. To sufficient accuracy the 

gravitational fields of the large-scale density enhancements can be treated in 

the weak-field, slow-motion approximation. If the Universe is homogeneous and 

isotropic (assumed henceforth), the solution for the full external field - in-

eluding the cosmological boundary values and nearby density cnhancemen~s - is 

that given in reference [9]. In the universal rest frame - the frame in \vhich 

the cosmological fluid is at rest - the two metrics are given by 

g
00 

= -1 + 2u 

gOj = 0 

gjk = ojk(l + 2U) 

-1 -1 -1 -1 = diag(-c
0 

,c
1 

,c
1 

,c1 ) 

(2. 6a) 

(2.6b) 

(2. 6 c) 

(2. 6d) 

where c
0 

and c
1 

are determined by the cosmological solution, and U is the 

Newtonian potential due to those nearby density enhancements which produce a 

significant deviation from the cosnological solution. The gOj components have 

been neglected, since they are much smaller than U for slow-motion sources. 
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The external field (2.6) is used to construct preferred coordinates 

appropriate for analyzing an isolated source. For many purposes the most 

convenient set of preferred coordinates is obtained by using a (freely falling) 

fiducial observer who is initially at rest in the universal rest frame. In th~ 

resulting preferred coordinates ga~ is asymptotically Minkowskian in the transi

tion reg~on (Property 1), and 'h~ is given by 

-1 
n

00 
= - c0 (1 + 2u) (2.7a) 

= 0 , (2 . 7b) 

(2. 7c) 

where U (= constant) is evaluated in the vicinity of the isolated source. 

These preferred coordinates will be called the local universal rest (LURF); 

they will be used for all the calculations in Section 3. 

B. Linearized Field Equations and Gravitational Stress-Energy 

It is not necessary to give the full, nonlinear Rosen field equations 

here; only the linearized version will be needed. For the full equations 

the reader is referred to the original papers of Rosen [1] and to [9]. 

For a weak-field source, the physical metric in a preferred coordinate 

system is nearly Minkowskian in both the local-field and transition regions. 

In the usual way, define the metric perturbation h to be the deviatton of µv 

g from Minkowskian: 
µv 

g(B) ~ diag(-1,+l,+l,+l) 
µv 

and let h be the trace-reversed metric perturbation: 
µv 

where h 

h µv 
h 1 (B) h 

- µv - 2 gµv , 

(B)µvh 
- g µv The indices of h µv and h are raised and lowered µv 

(2. 8) 

(2. 9) 
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To linear order in the metric perturbation, the field equations in 
I 

any preferred coordinate system are given by 

a S-
n \1v,a.S = -16n (-g/-n) 1/ 2 GT 

o µv (2. lOa) 

Here ~a~ is the inverse of ~a~; g and ~ are the determinants of gµv and '\iv' 
respectively; and G is a coupling constant with dimensions of the Newtonian 

0 

gravitational constant {see [9]). In LURF coordinates, Eq. {2.lOa) becomes 

(l/v2) h 
g µv,00 

-16n GT 
µv 

1/2 
Here G = (c

0
c

1
) G

0 
is the gravitational "constant" at the epoch of 

(2.lOb) 

interest (as measured, e.g., by a Cavendish experiment perforned far away 

from any local density enhancements), and v -- the speed of gravitational 
g 

radiation in the LURF -- is given by Eqs. (1. 2). Equation (1. 2a) uses the 

2 
results of [9] to relate v too.... [v = c

1
/c

0 gc L. gc 

The linearized matter-response equations are obtained from Eq. (1.1): 

0 (2.11) 

Just as in general relativity or any other metric theory, gravitational ef-

fects disappear from the matter-response equations at linear order; the 

linear approximation is valid only so long as the motion of the source is 
I 

governed by nongravitational forces. 

To analyze gravitational radiation emitted by a source, one must be 

able to calculate the energy and nomentum carried by the radiation. Rosen 

[] 1 f 1 0 v . 
1 has demonstratec the existence o · a stress-energy comp ex which J.s 

µ 

conserved with respect to the flat metric: 
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ov 
µ Iv 0 (2.12a) 

0 v = (-g/-n)l/2 (T v + t v) 
µ µ µ (2.12b) 

The tensor tµ" is interpreted as the gravitational stress-energy; it is a 

quadratic expression in first derivatives of g with respectton (g I ). 
µv µv µv a 

To lowest order in the metric perturbation, it is given in any preferred 

coordinate system by 

where 

tµv = __ l_ 
321TG 

0 

h (B)µ\r.-h 
- g µv 

> 

(2 .13) 

Equations (2 .12) can be integrated to oh ta:in conservation laws for the 

total 4-momentum. In a preferred coordinate system, the 4-momenttun P of the 
a . 

source is defined by 

(2.14) 

P transforms like a 4-vector under Lorentz transformations aP.Jong the pre
a 

f d d . d . . d . . <l d 1 d . (B) N erre coor 1nates, an 1ts 1n ices are raise an ow ere using !)iv . ow 

surround the source with a closed 2-surface S which lies in the transition 

region, and let n be the unit outward normal (with respect to g(B» to S • µv 

The conservation law (2 .12) relates the change of 4-mornentum inside S t:o a 

flux of 4-momentum through S : 

Here the 

dPa = - I ( Taj + 
dt 

s 
first index of t v 

µ 

taj)n. dA 
J 

has been raised using g~~). 

(2.15) 

The important quantity for calculating energy loss due to gravitational 

o· 
radiation is t J, the energy flux in the radiation. Its form (to lowest 
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order in the metric perturbation) is particularly simple in LURF coordinates : 

= - _L (h-yo 
32 ... 0 h " . 1TG • , ye, J h 0 h . ) , ,] 

( 2 .16) 

Note that the field equations (2.lOa) and the gravitational stress-energy 

(2.13) are not invariant under infinitesimal coordinate (gauge) transforma-

tions. This lack of invariance reflects the fact that a gauge transformation 

destroys Property 2 of the preferred coordinates , i.e., naf3 does not remain 

constant on local scales. In such coordinates, s~~~y I 0 and terms con-

taining g~~~y (B) 
and gaB!yo appear in the linearized field eq11ations and in 

the gravitational stress-energy • 

. 3. GRAVITATIONAL RADIATION AND 11lE GRAVITATIONAL SPEED LIMIT 

In Rosen's theory the speed of gravitational radiation i s determined by 

the combined effects of the cosmological gravitational field and the gravitn-

tional fields of nearby, local concentrations of matter [Eqs. (1.2)). 

Although the latter always tend to increase v , the cosmological field can 
g 

force v to be less than the speed of light. It is this case -- v < 1 --
g g 

that I consider in this section; in particular, I investigate the gravita-

tional radiation emitted by particles moving at speeds near v . 
g 

The motivation for doing so is provided by an analogy with electromag-

netism. A charged particle, moving through a material medium at a speed 

faster than the speed of light in the medium, e1:iits electromagnetic Cherenkov 

[16) radiation. In any real medium dispersion restricts the rad i ation to a 

finite range of frequenci~s; however, for an idealized, dispersionlcss medium, 

the energy emitted diverges. Similarly, in Rosen's theory, a particle which 

exceeds the speed of gravitational radiation ought to emit _&.E_?vltational 
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. Cherenkov radiation. Noreover, the gravitational "medium" is dispersion-

less (at least at high frequencies}, so the electromagnetic analogy sugges ts 

that the energy emitted ought to diverge. If so, this result would suggest 

that particles cannot exceed the speed of gravitational radiation. 

These ideas were first considered in a different context by Aichelburg, 

Ecker , and Sexl [17]. They considered a particle whose equation of motion 

apparently allows it to exceed the speed of light, but which is coupled to 

a field that propagates at the speed of light. They argued that radiation 

reaction prohibits accelerating the particle to speeds greater than the 

speed of light. They showed, for example, that if such a particle is 

charged, the electromagnetic radiation it emits diverges as it is acceler-

ated through the light cone. The situation considered here is similar, and 

the analysis is patterned after their work. I shall first consider the 

gravitational Cherenkov problem and then analyze the power radiated in 

gravitational radiation as a particle is accelerated through the gravita-

tional "light" cone. 

A. Gravitational Cherenkov Radiation 

Consider a particle with rest mass m moving with uniform velocity v 
0 

relative to the LURF; let v > v • In the case of interest, v is very 
g g 

close to the speed of light. Adopt LURF coordinates and solve for the gravi-

tational field in the linear approximation. The solution of the field equa-

tions (2. lOb) proceeds exactly as in the analogous electromagnetic problem 

(see, e.g., [18], Section 14.9). The metric perturbation h forms a shock 
µv 

front along a cone which extends back from the instantaneous position of the 

particle (see Fig. l); the angle OC between the velocity~ and the normal to 
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the cone is given by cos Ge (v /v). Outslde the cone hµv vanishes; 

inside the cone, 

c 
o 

8Gym 
hoo<~,t) = _______ o_ 2 2 1/2 

- I j[l (I ) . ] ~-~t - vvg sina 

hOj = -hoo ~· 

hjk Fioo 
. k 

= VJV 

( 3. la) 

(3. lb) 

(3. lc) 

where a is the angle between the observation point x and the velocity v, and 

- (1 2)-l/2 · l . 1 ' L f y = - v is t1e partic e s orentz actor. The field ( 3.1) represents 

gravitational Cherenkov radiation propagating in the direction normal to the 

Cherenkov cone. By evaluating the energy flux using (2 .16) and then following 

the procedure used for electromagnetic Cherenkov radiation, one obtains the 

energy d
2

E radiated into an angular frequency interval dt1l as the particle 

moves a distance di: 

for v > v 
g 

(3.2) 

This expression is similar to the Frank-Tamm [19) result for electromagnetic 

Cherenkov radiation. 

Equation (3.2) does not, of course, hold for all frequencies, and it 

is important to determine its region of validity. In using the formalism 

of Section 2, the above analysis neglects variations in the external gravi-

tational field. However, since the particle is assumed to radiate for an 

infinite amount of time, these variations cannot be ignore d; their effect is 

to modify Eq. (3.2) at low frequencies. To estimate the frequency at which 

such modification becomes important, consider a particle which radiat e s for 



231 

only a finite time T ~ (r
1

/v) [see Eq. (2.3b)]. Then the particle's motion 

and the radiation it emits can be analyzed within the transition region, 

where the formalism developed in Section 2 is applicable. The emitted radia-

tion is a pulse which lies just inside the Cherenkov cone (see Fig. 1). It 

is easy to show that, when the radiation is analyzed at a distance ~ r
1 

from 

the particle's trajectory, the pulse has a duration 11t ~ [ (v/v ) - l] (T/8). 
g 

Thus the energy spectrum will be given by Eq. (3. 2) for frequencies 

w ~ W - (l/~t). The wavelength corresponding to the critical frequency w 
c c 

is 

1 -2 -2 2 E: (yg -y ) • min{a,L} (3.3) 

where y :: (1 - v2)-l/Z. I have confirmed this result by a detailed analysis 
g g 

of the radiation emitted by a particle which moves faster than v for only a 
g 

finite time. 

Variations in the external gravitational field can be regarded as procluc-

ing "dispersion" in the propagation of gravitational radiation. This <lisper-

sion modifies the Cherenkov spectrum at frequencies below (J) • Note that, as 
c 

v approaches v , w increases and dispersion affects more of the spectrum. 
g c 

Even when y is not close to y , the critical wavelength A. is typically rather 
g c 

small. For example, for a particle near the earth, the relevant external 

scale is of order the radius of the earth: L ~ 109 cm. Using the smallest 

value of v allowed by the limits obtained in Section 4 [see Eq. (4.2b)] 
g 

-2 -11 2 
and choosing E: = 10 , one finds A. ~ (10 cm) [ 1 - (y /y) J •. 

c g 

The importance of the preceding analysis lies not so much in estimating 

the size of A. , but rather in demonstrating that, as long as v > v > there is 
c g 

a finite critical frequency above which the eravitational "medium" is 
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dispersionless and Eq. (3.2) applies. In the purely classical analysis 

given above, the validity of Eq. (3.2) extends to arbitrarily high frequen-

cies, and the spectrum diverges as w -+ 00 • However, quantlll!l mechanics often 

eliminates classical divergences, and one might expect a proper quantum-

mechanical treatment to modify the classical spectrum at very high frequen-

cies. In particular, conservation of energy might seem to require that the 

spectrum be cut off at a frequency w = (ym /.Jfi) corresponding to emission 
ma.'< o · 

of a graviton whose energy is equal to the particle's energy . Applying this 

cutoff to Eq. (3. 2) (and assuming w >> w ) , one finds an energy loss rate 
max c 

dE 
di 

Gm4 
0 l0-16 eV - -1 

cm for protons . 

This energy loss rate is so small that, if there is a cutoff at cu , the 
max 

effects of gravitational Cherenkov radiation are negligib lP- even on galactic 

distance scales. 

However, the existence of the cutoff is by no means certain. The 

uncertainty arises because it is not clear that Rosen's theory, even in itg 

linearized version, can be quantized; the linearized field equations (2.lOa) 

are not those of a canonical field theory. The difficulties that thereby 

arise are perhaps most apparent in an exami.nation of plane gravitational 

waves in Rosen's theory: 

(i) The Riemann tensor derived from an arbitrary plane wave has six 

independent polarizations the nost general polarization structure allowed 

in a metric theory. Even in the case v == 1 where the theory is Lorentz-g , 

invariant, these six polarizations form a nonunitary representation of the 

inhomogeneous Lorentz group; they cannot be associated with massle ss quantn 

of definite, Lorentz-invariant h e licity (see [20] for a g e neral discussion 

of these issues). 
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(ii) The time-averaged energy density in an arbitrary plane wave 

(v ~ 1), evaluated using (2.13), can be regarded as a quadratic form in 
g 

the amplitudes of the ten independent potentials h . (None of these ten 
µv 

potentials can be removed from the energy density by a gauge transformation; 

see Section 2B.) When this quadratic form is diagonalized, one finds 

that four of the eigenvalues are negative. In other words, four of the ten 

degrees of freedom in the wave carry negative energy. The presence of 

negative-energy radiation has been noted previously in analyses of radiation 

emitted by binary systems in Rosen's theory [13]. In a theory with such 

negative-energy radiation, the stability of the vacuum is uneertain. 

Any attempt to quantize Rosen's theory must confront these two prob-

lems. Even if they can be overcome, the presence of negative-energy radia-

tion removes the raison d'etre for a cutoff at w . The classical Cherenkov 
---- max 

radiation (3.1) is made up of both positive- and riegative-energy parts, the 

total energy emitted being a balance between the two. Quantum-mechanically, 

this Cherenkov emission might well be represented by multi-graviton pro-

cesses in which both positive- and negative-energy gravitons are emitted. In 

such processes, conservation of energy imposes no restrictions on the fre-

quency of the emitted gravitons. 

Another potential quantum-mechanical cutoff is the Planck frequency 

- (Gn)-1/2. If the Cherenkov spectrum (3.2) is cut off at tu , the 
p 

energy loss rate becomes 

dE 
dQ, 

ym 
0 

3 -14 
y (5 x 10 cm) 

for protons . (3. 5) 

Just as for the cutoff at w , it is not clear that this cutoff should be 
max 

imposed. However, even if it is, the loss rate (3. 5) is large enough that 
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the limits obtained in Section tf are not affected. 

The classical analysis of gravitational Cherenkov ra<li ation hints 

at a serious problem in Rosen's theory. The divergence of the spectrum as 

w ~ oo means that the energy emitted is infinite (and positive). This result 

strongly suggests that particles cannot exceed the speedof gravitational radi-

ation. It is not clear that a quantum-mechanical treatment will eliminate 

the divergence, nor indeed that such a treatment can be given. Even as a 

purely classical analysis, the above calculation has serious difficulties:. 

it is clearly inconsistent and, just as clearly, the linear approximation 

is not valid. However, there is little point in trying to patch up these 

difficulties. If particles cannot exceed the speed of gravitational radia-

tion, a consistent calculation of gravitational Cherenkov radiation is not 

possible. More realistic and more relevant would he an exar:iination of what 

happens as a particle is accelerated up to the speed of gravitational radia-

ti on. 

Before turning to this problem, it is interesting to ask about the 

Cherenkov radiation emitted by photons and other zero rest-mass particles. 

The best that can be done using the above calculation is to model a free 

photon as the limit v+l, y-+ 00 , ym -+constant. Applying this limit to Eq. 
0 

(3.2), one finds that free photons apparently do not produce any gravita-

tional Cherenkov radiation. 

B. Acceleration through the Gravitational "Light" Cone 

Now consider a particle with rest mass m which has velocity v(t) 
0 

in LURF coordinates. The particle is being accelerated hy interactions 

with other matter and nongravitational fields. The objective is to 

evaluate, in the linear approxiQation, the energy emitted in gravitational 
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radiation as v approaches v . In doing so, one must remember that the total 
. g 

stress-energy is conserved [Eq. (2.11)]. This means that one cannot, in 

general, neglect the radiation emitted by the matter and nongravitational 

fields as they "recoil" from the interaction. However, I shall argue that 

in the case of interest here, this "recoil" radiation can be neglected. 

Imagine the following scenario for accelerating the particle -- a 

scenario similar to those often envisioned for accelerating cosmic rays [21]. 

The particle is accelerated by a series of "collisions" with local concen-

trations of stress-energy. These "blobs" of stress--energy have masses r.mch 

larger than m
0

, and their velocities -- both center-of-mass and internal ~

relative to the LURF are small. In each collision, the momentum exchanged 

is small compared to the particle's momentum. The subsequent motion of 

the "blob" occurs on time scales much longer than the collision time; 

clearly, the radiation emitted by the "blob" does not di verge. Now consider 

the final stage of the acceleration process, when after many collisions 

the particle has attained a velocity so close to v that one more collision 
g 

can push its velocity above v . From the point of view of the particular 
g 

"blob" involved, this collision is no different from the prececl:lng ones. 

However, the radiation produced by the particle in this collision is beamed 

in the direction of its velocity, and the radiation diverges in that <lirec-

tion as v approaches v • Therefore, in analyzing the final stage of the 
g 

acceleration process, one can neglect the "recoil" motion and calculate 

the radiation emitted by considering only the particle's motion. 'fl1e 

results obtained will be valid when v is very close to v • 
g 

The field equations (2.lOb) for a single-particle source can be 

solved in the same way as in electromagnetism (see, e.g., [18], Sec. Jl1. l). 

The h have the same form as the Lienard-Hiechert potentials. The energy 
µv 
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flux is evaluated using Eq. (2 . 16), and an integral over a sphere in the 

transition region gives the power radiated: 

dE 
-= 
dt 

2 3[ 6 . ? 2 -4 1 4. 2 2 -~ ,.. Gm v .2Y (v.v)-(1- µ ) + -
3 

y v (1- µ ) 
0 g - - -

(3.6) 

where µ :: Y /y , and where the last express ion contains the leading-order 
g 

terms in the limit v ~ v • As anticipated, the power radiated diverges. 
g 

In a real situation, of course, the power radiated cannot diverge; instead, 

radiation reaction diverges and prevents the particle from exceeding the 

speed of gravitati.onal radiation. 

This calculation suffers from some of the same difficulties as the 

Cherenkov calculation. The particle radiates substantial amounts of energy 

only at very high frequencies where quantum corrections might well he i1!1-

portant. For the reasons given earlier, the effect of these corrections 

is uncertain, and I shall ignore them. A perhaps more serious obj ectJon 

is that the linear approximation is not valid; however, it seems unlikely 

that the nonlinear tenns in the field equations can eliminate the diver-

gences that have cropped up in both the preceding problems . 

Despite its uncertainties, the analysis of Rosen's theory in this 

section leads one to the following tentative conclusion: if v < 1, the 
g 

speed of gravitational radiation is the ultimate speed for particles of 

nonzero rest mass -- a "speed limit" enforced by the emission of gravi ta-

tional radiation. Hence, observations of relativistic particles can be 

used to place limits on the speed of gravitational radiation [Eq. (1. 3a) J 

and on the cosmological bounda ry values [Eq. (l.3b)]. 
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4. OBSERVATIONAL CONSTRAINTS 

The highest-energy particles in the vicinity of the earth are ultra-

high-energy cosmic rays, which have been detected at energies exceeding 

20 
10 eV (see [22] for a review of the observations). At these very high 

energies, cosmic rays are not observed directly; rather, they are detected 

by the air shower they produce as they enter the atmosphere. The energy 

assigned to the primary particle in a given event is somewhat uncertain, 

since it is derived from a model for the shower. However, an energy of 

3 x 1019 eV seems reasonably firm. 

This energy estimate, even if correct, is not a measurement of veloc-

ity. One obtains a velocity by using the familiar relation E = ym . How
o 

ever, one might expect this relation to fail in Rosen's theory, because a 

particle's gravitational binding energy might diverge as v approaches v 
g 

Indeed, an analysis using the linear approximation suggests that the energy 

of a particle, as measured by an observer at rest in the LURF, di verges 

logarithmically: 

E = ym + yq Q log{2v [l - (y/yg)z]-l/Z} 
0 0 g 

(4 .1) 

where n is the gravitational binding energy when the particle is at rest 
0 

in the LURF, and q is a dimensionless quantity which depends on the structure 

of the particle. This divergence is one more reason why particles cannot 

exceed the speed of gravitational radiation. 

The logarithmic divergence (4.1) is slow enough that it does not 

interfere with interpretation of the cosmic-ray observations. t.f a particle's 

speed is so close to v that the binding-energy term in ( '• .1) dominates, 
g 

then Eq. (3. 6) predicts that the particle will radiate away almost all its 
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energy as gravitational radiation. It will not produce the observed shower 

of particles. 

A more serious uncertainty results from the inability to identify the 

primary particle. The most likely candidates are protons or, perhaps, alpha 

particles; however, the possibility of heavier nuclei -- perhaps nuclei near 

iron -- has not been ruled out. For a proton at 3 x io19 
eV, the limit (1. 3a) 

on the speed of gravitational radiation near the earth today is 

1 - v < 5 x 10-22 
g 

(4.2a) 

For an iron nucleus at the same energy, the limit is a bit weaker : 

1 - v < 1 x 10-18 
g (l1. 2b) 

Since v increases toward the galactic center, these limits also apply at 
g 

any point closer to the galactic center than the earth. 

Equations (4.2) actually hold not only at the earth ht1t also in those 

regions traversed by the cosmic rays after their initial acceleration. 

Unfortunately, the point of origin of ultra-high-energy cosmic rays is un-

certain. Their Larmor radii in the galactic magnetic field are much larger 

than the thickness of the galactic disk. This, together with the lack of 

anisotropy in the observed events [23], means that, if they are galactic in 

origin, they must come from a distance less than the thickness of the disk 

("' 200 pc). It seems more likely that they are extragalactic, in which 

case Eqs . (4.2) probably apply out to a distance of at le2st 100 Mpc. 

Earth-based observations of relativistic particles also provide an 

upper bound on the value of a 2 (vgc) today [Eq. (l.3h)]. This limit is 

considerably less stringent than the limit on v because it is determined 
g 

by the Newtonian potential at the earth, which is dominated by Lhe ealactic 
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potential U 
1

• 
ga 

Any particle 
3 

with y ;:: 10 -- a medium-energy cosmic-ray 

proton or electron, a positron or electron produced in a high-energy colli-
1 
I 

sion at Fermi Lab or CER..~ or circulating :tn a storage ring at SLAC or DESY --

yields the same limit: 

a21 < 
today 

4 3 x lo-6 u 1 '\, ga 
(4. 3) 

Here I hav..:! used a galactic mass of 1. 4 x 10
11

M at a distance of 10 kpc. 
e 

For positive values of a
2

, this lioit (valid only in Rosen's theory) is 

almost three orders of magnitude better than the best previous limit, ob-

tained by searching for anomalous earth tides [24). 

There is a possibility that the Newtonian potential of the Virgo clus-

ter at the earth is as large as the galactic potential. However, there is 

considerable uncertainty in estimating the mass of the Virgo cluster, and 

the two potentials are comparable only for the largest estimates. In any 

case, including the potential of the Virgo cluster is not likely to degrade 

the limit (4.3) by more tha:i a factor of two. 

Compact radio sources at substantial red shifts provide information 

about the speed of gravitational radiadon in the past. They emit a power-

law radio spectrum which is thought to be incoherent electron-synchrotron 

radiation; the spectrum has a low-frequency turnover attributed to synchro-

tron self-absorption. The Lorentz factor of the electrons can be estimated 

from the brightness temperature Tb at the tu-mover frequency: y "" (kTb/me), 

where m is the rest mass of an electron. Jones, O'Dell, and Ste in (25] 
e 

have developed a detailed model for compact, nonthernnl sources, including 

the effects of synchrotron self-absorption and synchrotron self-Compton 

radiation. Burbidge, Jones, and O'Dell [26) have applied the 111oclel to 
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several compact sources, some of which have more than one component (see 

their Tables 1-3). For nine of the ten sources in their sample, they pro-

vide (for one or more of the components) a red shift, an angular diameter 

determined by VLBI, a size determined from the angular diameter by placing 

the source at its red-shi.ft distance, and a Lorentz factor determined by 

the model. To estimate a Newtonian potential for each component, I have 

9 
assumed a mass of 10 H - a mass larger than or of order those usually thought 

0 

to be associated with active galactic nuclei; and I have assumed a constant 

(nonevolving) gravitational constant G. As an example, consider the source 

with the largest red shift in their sample - PKS 2134 + 00.4 at z = 1.936. The 

estimates for one of its two components are l,...., 590 and U ,..., 1x10-5, which 

4 -5 
implies a

2
< xlO (Eq. (1.3b)]. Similar considerations for the other 

sources provide upper bounds on a2 at a variety of red shifts; considering 

all these limits together, one can conclude that 

for 0:5z:52 (4 -'~) 

No other observation provides information about the value of a2 (v ) in the gc 

past. 

There are considerable uncertainties in estimating the Newtonian poten-

tials which go into the limit (4.4). The masses and radii of the sources are 

uncertain; in addition, the gravitational "constant" does· evolve in Rosen's 

theory, so that its value in the past depends on the cosmological model. 

Because of these uncertainties, the limit (4.4) has been chosen conservatively; 

with the above assumptions, all but one of the six sources at z > 0.1 provide 

a limit at least an order of magnitude stronger than (1+.4). 

5. CONCLUSION 

Rosen [27] has recently modified his "bimetric" theory. In the modi-

fied version, the "background" metric \v is no longer required to be flat; 
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instead, it is required to be a space of constant curvature. Cosmological 

models are affected by this modification, but local gravitation physics 

is not, except insofar as it is influenced by cosmological boundary values. 

The analysis in Sections 2 and 3 remains the same, and the limits obtained 

in Section 4 apply to the new version of the theory. 

The analysis in this paper has been restricted to Rosen's theory, but 

the results obtained are likely to have far wider applicability. There are 

numerous metric theories of gravity which predict different speeds for 

gravitational radiation and light. Typically in such theories, the differ-

ence in speed is produced just as in Rosen's theory: light propagates 

along "light" cones of the physical metric, while gravitational radiation 

propagates along "light" cones of a flat, "background" mt:!tric. In all such 

theories, one expects the speed of gravitational radiation to have a form 

similar to that in Rosen's theory: v = v (1 + U)l), where v is deter-
g gc gc 

mined by cosmological boundary values and [, is a constant of order unity. 

The important question is whether emission of gravitational radiation re-

s tricts particles to speeds less than v • 
g 

Although detailed calculations 

are necessary in each theory, one can give a general argument, based on·· 

the analysis in Rosen's theory, for the existence of the "gravitational 

speed limit." 

Whenever a particle exceeds the speed of propagation of a "radiation" 

field to which it is coupled, one expects a shock wave to form. One can 

think of numerous examples, such as the shock wave produced by supersonic 

motion in an acoustic medium and electromagnetic Cherenkov radiation. In 

these familiar examples, the radiation does not diverge because the shock 

front is not absolutely sharp; it is spread out over some length d charac-

teristic of the medium through \.'h ich the radiation .is propaga ting . This 
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"blurring" of the shock front cuts off the radiation at frequencies > v jd. - wav 

In the gravitational case, the "medium" is space time its elf. or more ac-

curately, the "background" structure on spacetime which determines the 

speed of gravitational radiation. The gravitational "medium" has no small-

scale structure to blur the shock front. Thus, there is no high-frequency 

cutoff (unless quantum mechanics introduces one), and the radiation does 

diverge. 

This argument makes it seem quite likely that any theory with a 

variable speed of gravitational radiation must confront the limits obtained 

in Section 4. If so, Eqs. (4.3) and (4.4) can be used to constrain the 

cosmological boundary values in any such theory. [In general, the ~ of 

these limits is not a PPN parameter; it is simply a parameter related to v gc 

by Eq. (l.2a).] In addition, Eqs. (4.2) provide a general, theory-independent 

lower bound on the speed of gravitational radiation near the earth. 
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FOOTNOTES 

Throughout I use the summation convention, Greek indices running from 0 to 

3 and Latin indices from 1 to 3. The signatures of the metrics are +2. A 

semicolon (;) denotes a covariant derivative with respect to gµv' a vertical 

bar <I) a covariant derivative with respect ton , and a comma an ordinary µv 

partial derivative. Units are chosen so that the speed of light c = 1. 
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FIGURE CAPTION 

Figure 1. A "snapshot", taken at time t, of the Cherenkov cone produced by 

a particle moving with uniform velocity v = 2v along the z-axis. The 
g 

particle is at the apex of the cone. The angle ec between the normal 

to the cone and the z-axis is given by cos 8C = (v g/v). The shaded 

region is the pulse of Cherenkov radiation produced by a particle which 

radiates from t = 0 to t = T • 
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