Visual Input for Pen-Based Computers

Thesis by

Mario Enrique Munich

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

2000
(Submitted January 21, 2000)

ii

© 2000
Mario Enrique Munich

All Rights Reserved

iii

A mis padres,

a Pili,

a Mirena,

a mis hermanos,

a Lela, Nina y Pita.

v

Acknowledgements

Writing a thesis was just the final, albeit long and painful, step of the process of
earning my Philosophy Doctorate in Electrical Engineering. I am very grateful to
many people that helped me obtain my degree.

I wish to start by thanking my parents. They gave me the freedom to envision
new horizons and the encouragement to pursue my dreams even if it meant to be
separated and far away from each other. Without their initial momentum and their
continuous support, it would have been impossible for me to get where I stand. I want
to mention also my brothers Pili and Rulo that were always there for me. Although
we were far apart, they always believed in me and they were always ready to help me
in any way possible.

I would like to show my deepest gratitude to my dear wife Pili. She has been my
most important support at Caltech, my guiding star in the dark nights, giving me
the strength to keep going; she has filled all these years with fun, love and joy, and
she has given me the most important gift on earth, the light of my eyes, my daughter
Mirena Ainara.

I particularly wish to thank my advisor Pietro Perona. It was long ago that I
walked into his office looking for a piece of advice and ended up convincing him that
I would be a good addition to his research group, not to mention to his culinary
delights. He introduced me to the wonders of Computer Vision and to the enjoyment
of scientific research. His continuous support, his advice and his guidance have made
an important difference in my work. I really enjoyed being part of his research group
as well as interacting with him at both the professional and the personal level.

I would like to mention my great friends and lab-mates Jean-Yves Bouguet, Luis
Goncalves and Enrico Di Bernardo. They made fun and enjoyable many sleepless
nights of homework and paper preparation. They were also great collaborators and an

excellent source of advice and ideas. They were always ready to listen and to discuss

v
any problem, no matter what the problem was. We gave birth to a very special group
of friends, a.k.a. “The Agency,” along with Wayez Ahmat, Muruhan Rathinam, Chris
Moser, George Barbasthasis, Dieter Koller, Gudrun Socher and Alberto Pesavento.
“The Agency” accomplished many difficult and quite fun missions all around the
globe under the lead of the fearless Commander Wayez.

I want to make a special mention of my roommate, Muruhan Rathinam, who
showed me the marvels of vegetarian cooking. He was also extremely kind in accepting
that Pili, my-wife-to-be, would live together with us. I also enjoyed all the enriching
discussions that we had on topics ranging form food to politics to academics.

The vision group has been a great source of inspiration and stimulation, as well
as a fun place. T enjoyed collaborating with all the past and present members of the
group: Stefano Soatto, Mike Burl, Marco Tartagni, Enrico Ursella, Markus Weber,
Max Welling, Alan Bond, Arrigo Benedetti, Xiaolin Feng, Yang Song, Silvio Savarese.
I will truly miss the group-meetings on the beach, the group asados, and the enjoyable
and fruitful atmosphere of the vision lab.

During these years, I had the pleasure of meeting so many interesting and won-
derful people whose friendship was invaluable to make me feel at home at Caltech.
I had the pleasure and the privilege of joining them in many activities such as the
organization of “Club Latino” and “Semana Latina,” uncountable asados, retreats,
trips, etc. I would like to mention them in a random order and I would like to
thank to everyone whose name have slipped from my memory at this moment, Dou-
glas Varela, Karina Montilla, Fernando and Malena Paganini, Jorge Tierno, Weng-Ki
Ching, Diego Dugatkin, Oscar and Maria Elena Lovera (also Nati, Brian and Sergio),
Alex Backer, Eva Peral, Federico Spedalieri, Ruben Krasnapolsky, Julian Chaubell,
Adrian and Patri Lew, Raul and Flavia Radovitzky, Eduardo Repetto, Javier Gon-
zalez, Maria Eugenia Hernandez, Pablo Parrillo, Melissa Saenz, Rogelio Addobatti,
Alberto and Maria Jose Cerpa, Christine and Kurt Schenk, Martin Basch, Xavier
Cartoixa, Alvaro Gonzalez, Anna Johansen, Alfredo Martinez, Roberto Zenit.

I would also like to thank the other members of my committee, Professors Yaser

Abu-Mostafa, James R. Arvo, Demetri Psaltis and Dr. Michael Burl, for their help

vi
and support. I wish to thank Professor Slobodan Cuk for having believed that I would
be a good Caltech student. I want to mention Professors R. D. Middlebrook, P. P.
Vaidyanathan, C. Mead, and Y. Abu-Mostafa for having taught me his philosophycal
view of electrical engineering rather than a simple curricular content.
Finally, I wish to thank all the people that willingly participated in my experi-

ments. Their collaboration was extremely important in the development of the thesis.

vii

Abstract

The development of computer technology has had a parallel evolution of the interface
between humans and machines, giving rise to interface systems inspired by human
communication. Vision has been demonstrated to be the sense of choice for face
recognition, gesture recognition, lip reading, etc. This thesis presents the design
and implementation of a camera-based, human-computer interface for acquisition of
handwriting. The camera focuses on the sheet of paper and images the hand writing;
computer analysis of the resulting sequence of images enables the trajectory of the pen
to be tracked and the times when the pen is in contact with the paper to be detected.
The recovered trajectory is shown to have sufficient spatio-temporal resolution and
accuracy to enable handwritten character recognition.

Signatures can be acquired with the camera-based interface with enough resolution
to perform verification. This thesis describes the performance of a visual-acquisition
signature verification system, emphasizing the importance of the parameterization
of the signature to achieving good classification results. The generalization error of
the verification algorithm is estimated using a technique that overcomes the small
number of example signatures and forgeries provided by the subjects.

The problem of establishing correspondence and measuring the similarity of a
pair of planar curves, in our case a pair of signatures, arises in many applications
in computer vision and pattern recognition. This thesis presents a new method for
comparing planar curves and for performing matching at sub-sampling resolution.
The analysis of the algorithm as well as its structural properties are described. The
performance of the new technique is evaluated for the problem of signature verification
and compared to the performance of the well-known Dynamic Programming Matching

algorithm.

viii

Contents

Acknowledgements

Abstract

Introduction
1.1 Human-Machine interfaces using vision

1.2 Outline of the thesis

Vision System for Pen Tracking

2.1 Preliminaries Lo
2.2 System descriptiono L Lo
2.2.1 [Initialization and preprocessing
2.2.2 Pentrackingo o
2.2.3 Filtering
2.2.4 Missing frameso Lo
2.2.5 Ballpoint detection oL L
2.2.6 Stopping acquisitiono oL
2.3 Penupdetection Lo
2.3.1 Local ink detection o000
2.3.2 Local pen up/down modeling
2.3.3 Trajectory segmentation
2.3.4 Stroke classification 0oL 0oL
2.3.5 Real-time implementation
2.4 Experimental results L.
2.4.1 System specifications L0000

2.4.2 Pen up detection experiments

iv

vii

ix

243 Discussiono 47

3 Signature Verification 51
3.1 Introduction L L 51
3.2 Algorithm for signature comparison 54
3.2.1 Preliminaries oo 54
3.2.2 Curve Matching using Dynamic Programming o6

3.3 Signature parameterizationo L0 69
3.3.1 Preliminaries Lo 69
3.3.2 Euclidean and affine arc-length 70

3.4 Evaluation of the performance of the verification system 73
341 Errorrates. Lo o o 73
3.4.2 Duplicated examples L. 75

3.5 Experiments 0L 76
3.5.1 Datacollection 0. 76
3.5.2 Preprocessing oo 79
3.5.3 Distance measuresl 81
3.54 Trainingo e 82
3.5.0 Testing L 84

3.5.6 Experiment 1: Performance using different parameterizations
of the signature oL 86

3.5.7 Experiment 2: Performance using different parameterizations

of the signatureo oL 86

3.5.8 Experiment 3: Performance using duplicate examples 87

3.5.9 Experiment 4: Performance using different distance measures . 88

3.5.10 Discussion Lo 90

4 Subsample Curve Matching 94
4.1 Introduction Lo 94
4.2 Continuous Dynamic Programming Matching 95

4.2.1 Analysis of a single step of the CDPM recursion 97

X

4.2.2 Analysis of the CDPM algorithm 106
4.2.3 Computational complexity of the CDPM algorithm 109
4.2.4 Pairwise comparison of cumulate distance functions 114
4.2.5 Asymptotic behavior of pairs of cumulated distance functions 121
4.2.6 Interval range propagation 139
4.2.7 Summary of the CDPM algorithm 144

4.3 Experiments 150
4.3.1 Experiment 1: Comparison of CDPM with DPM for synthetic

4.3.2
4.3.3

datao 150
Experiment 2: Comparison of CDPM with DPM for signatures 152
Experiment 3: Experimental evaluation of the computational

cost of CDPM and comparison of the computational time of

CDPM and DPM 153

4.3.4 Experiment 4: Application to signature verification 156

4.3.5 Discussion 161

5 Conclusion and Future Work 165

Bibliography

xi

List of Figures

2.1

2.2

The first two columns show the first and last frames of two different
sequences. The third column displays the handwritten trajectories
obtained via manual tracking of the pen tip. The fourth column shows
only the strokes that left an ink trace on the paper. We observe that
after discarding the strokes that corresponds to movements above the
paper (no pen contact with the paper), the handwritten sequences are
clearly legible. All coordinates are measured in pixels.
(a) Block Diagram of the system. The camera feeds a sequence of
images to the preprocessing stage. This block initializes the algorithm
and selects the template to perform the tracking of the pen tip. The
tip tracker obtains the position of the pen tip in each image of the
sequence. The filter predicts the position of the pen tip in next image.
The ballpoint detector finds the position of the very end of the pen tip,
i.e., the place where the pen is in contact with the paper when the user
is writing. Finally, the last block of our system checks for the presence
of ink on the paper at the positions where the pen’s ballpoint was
found. (b) Experimental setup. The image captured by the camera
is shown on the screen of the computer to provide visual feedback to
the user. The system does not require any calibration. The user has
the flexibility of arranging the relative positions of the camera and the
piece of paper in order to write comfortably as well as to provide the

system with a clear sight of the pen tip.

2.3

24
2.5

2.6
2.7

xii
(a) Image provided by the camera with the rectangular box overlaid.
The user is placing the pen inside the rectangular box. (b) Result of
image differencing when the pen enters the tip acquisition area. (c)
Output of Canny’s edge detector used for extracting the boundary of
the pen tip. The cross indicates the centroid of the boundary points.
(d) Orientation of the edge elements obtained with Canny’s detector.
(e) Clustering of the edge elements into the four quadrants and lines
indicating the mean orientation in each of the quadrants. (f) Detection
of the boundary edge that was missing, using the estimated position of
the centroid of the pen tip and the orientation of the other edge. (g)
Boundary lines obtained by accumulating the information provided by
the edge detector across different frames. Pen tip axis extracted as the
mean of the boundary lines. Position of the tip, finger and centroid
along the axis. (h) Profile of the image across the estimated pen tip
axis, that is used to find the positions of the ballpoint and the finger by
performing a 1D edge detection. (i) Template of the pen tip extracted
automatically.o oo
Pen tip model assumed for the initialization.
Given the predicted location of the pen tip in the current frame, the
most likely position of the pen is obtained by finding the place that
has maximum correlation with the previously stored template of the
pen tip. e e e
Signal model described by equation 2.3..o

Augmented signal model (adapted from reference [2]).

12
13

19

2.8

2.9

xiii
(a) Image of the pen tip displaying the various elements used to detect
the ballpoint. The cross '+’ in the center of the image shows the
centroid of the pen tip obtained with correlation. The points marked

I

with a star "*’ show the places where the pen boundaries were found
using edge detection. The lines on the sides of the pen tip are the
boundary edges and the line in the middle is the pen tip axis. The
other two crosses 'x’ show the estimated positions of the ballpoint and
of the finger. (b) Image profile along the axis of the pen tip and the
corresponding positions of the ballpoint and of the finger. (c) Result of
correlating the image profile with a derivative of a Gaussian function.
(d) Blow-up of the region between the dotted vertical lines in (c).
Parabolic fit of the peak identifies the position of the ballpoint. The
vertex of the parabola is plotted with a cross ’x’ and it corresponds to
the estimated sub-pixel position of the ballpoint.
Block diagram of the pen up/down classification subsystem. We detect
when the pen is up or down using a bottom-up approach. At the local
level, the brightness of each point in the trajectory is measured and
compared with the brightness in its surroundings. A Hidden Markov
Model (HMM) estimates the likelihood of being at state Pen Up or
state Pen Down for each individual point given the measured bright-
ness. The full trajectory is segmented into strokes and each stroke is
classified as pen up or pen down aggregating the likelihoods provided

by the HMM. . . oot e

26

2.10

2.11

2.12

2.13

2.14

2.15

Xiv
Example that illustrates the difficulties in detecting the ink trace. The
first plot shows one sequence acquired with the visual tracker. The dots
indicate the position of the sample points. The second plot displays a
portion of the last frame of the sequence showing the corresponding ink
trace deposited on the paper. The third plot shows the recovered se-
quence overlaid on the image of the ink trace. The sample points land
over the ink trace most of the time, and the exception is at the begin-
ning of the sequence (shown on the right side of the image). The last
plot shows the profile of the image brightness along lines that passes
through each sample point and are perpendicular to the direction of
motion. The profile of image brightness is measured at eleven sample
points using the interpolation method described in [42]. The profile
is shifted so that the detected ballpoint position appears in sample 6
(row 6 of the plot). Lo
(a)The center cross corresponds to the position of the pen’s ballpoint.
The other points show the surrounding pixels where the brightness is

measured. (b) Histogram of the measured brightness. The vertical line

shows the value of brightness corresponding to the ballpoint’s position.

Different HMM topologies (a) Left-to-right-1, (b) Left-to-right-2, (c)
Left-to-right-3, (d) parallel, (e) generalized, (f) generalized with states
used in our system.
Resulting HMM that models the transitions between pen up and pen
down states and the ink presence confidence measure.
Several examples of trajectories acquired with the interface and the
corresponding strokes obtained after segmentation. Successive strokes
are indicated alternately with solid and dashed lines.
System configuration: The hardware architecture comprises a commer-

cial camera, a frame grabber, and a Pentium IT 230MHz.

30

32

2.16

2.17

2.18

2.19

2.20

2.21

3.1
3.2

XV
This image shows the GUI (Graphical User Interface) of the windows-
based application that implements our system. The biggest window is
a Dialog Box that allows the user to input parameters and run com-
mands. A second window is used to show the image that the camera
is providing to the system and the last window shows the output tra-
jectory after having done the pen up/down classification.
Examples of sequences used to estimate the static and dynamic reso-
lution of the system.,
Examples of sequences captured with the real-time system. We col-
lected examples of cursive writing, block letters, printed letters, draw-
ings and mathematical symbols.o
Portions of the example sequences shown in figure 2.18. The dots
represent the actual samples acquired with the interface.
Three examples of test sequences are shown on the first row. The plots
of the second row have the thickness of the segments proportional to
the mean of the confidence measure of ink presence of the segment
endpoints. The result of thresholding this confidence measure is shown
in the third row. The fourth row shows segments whose extrema are
classified as pen down by the HMM.
The first row shows the segmented trajectories, where the different seg-
ments are plotted with either solid or dashed lines. In the second and
fourth rows the thickness of the strokes is proportional to the confi-
dence measure obtained in the two cases mentioned above (aggregation
of local ink measurements and voting based on HMM states). The third

and fifth rows show the strokes after performing a hard classification.

Signature verification system. 0oL
Signatures acquired with the visual interface and corresponding image
captured by the camera after finishing the acquisition. We observe

that the pen-up strokes are as consistent as the pen-down ones.

40

42

44

45

49

a0

33

o7

3.3
3.4

3.5

3.6

3.7

3.8

3.9

3.10

xXVi
Correspondence between the two curves Cy and Cy.
(a) Matching process displayed on the “warping plane.” The dashed
line shows the linear correspondence between the curves while the solid
line shows the optimal matching obtained as a solution of the equa-
tion 3.6. (b) Corresponding warping functions ¢, and sg.
Different possible portions of warping path ending at node (ng,n,)
proposed in the literature. L.
Extreme example of unconstrained minimization of equation 3.3. The
lower curve is the same in both cases. Given the correspondence be-
tween samples shown in the figure, the distance between the curves is
the same in both cases. o L.
The first row shows signatures from a subject that does not sign con-
sistently. The middle loops are added, deleted and distorted quite a
bit from one signature to the other. The second row shows signatures
from a much more consistent subject, although there is some distortion
between signatures. Lo
Local continuity constraint and the corresponding matching between
samples of curves Cy and Co. L.
The shaded region is the allowed region of the warping plane that the
warping path can traverse due to global constraints.
Example of dynamic programming matching applied to compare the
2D shape of two realizations of the same signature. The first column
shows the horizontal coordinate z(t) of both signatures before and
after matching; the second column shows the vertical coordinate y(¢)
of both signatures before and after alignment. The upper plot of the
third column shows the two examples of the signature. The lower plot
of the third column shows the optimal time warping path compared

with a linear time matching path.

3.11

3.12

3.13

3.14
3.15
3.16

3.17

3.18

3.19

xvii
The first plot shows a signature acquired with our system and therefore

parameterized in time. The second and third plots display the same

signature parameterized in Euclidean and affine arc-length respectively. 72

Curves of FRR and FAR as a function of the classification threshold
and the corresponding error trade-off curve. 0.
The first plot shows the original signature captured with the visual
tracker. The second plot displays the position of the new samples when
performing the time origin shifting. The third and fourth plots show
the result of applying an affine scaling to the original signature, in the
horizontal and vertical coordinates respectively. The maximum and

minimum value of scaling to be applied is estimated from the training

One signature from each of the subjects in the database.
All signatures from subjects s030 and s066.
There are four true signatures and one skilled forgery in each row. Do
you want to make a guess? Solutions in the last page of the chapter. .
The signatures in the first and third rows are the original ones captured
with the visual tracker and the signatures on the second and fourth
rows are the corresponding ones after rotation normalization. The
normalization works quite well for subject s024’s signatures and fails
for subject s004’s signatures.
Several examples of signatures in our database. On the first column
we display signatures captured with the visual tracker, on the second
column we show the corresponding prototype signature, and on the
third column we display one of the intentional forgeries.
Performance of the system without rotation normalization. The first
row corresponds to the first signature set and the second row corre-
sponds to the second signature set. The circle shows the equal error

rate condition. L.

75
7
78

80

81

85

3.20

3.21

3.22

3.23

3.24

3.25

4.1

4.2

4.3

xviil
Performance of the system with rotation normalization. The first row

corresponds to the first signature set and the second row corresponds to

the second signature set. The circle shows the equal error rate condition.

Performance of the system with duplicated examples. The first row
corresponds to the first signature set and the second row corresponds
to the second signature set. The circle shows the equal error rate
condition.
Performance of the system with multiple distances. The first row cor-

responds to the first signature set and the second row corresponds to

the second signature set. The circle shows the equal error rate condition.

Individual equal error rates achieved using multiple distances. The
first row corresponds to the first signature set and the second row
corresponds to the second signatureset.
Error rate curves for the different distances used in the experiment, for
affine arc-length parameterization.
Cases for which the algorithm has biggest error. The three first se-
quences are from set 1 and the three last are from set 2. We show
a signature from the set, the prototype signature extracted from the
training set, a falsely rejected signature, and a falsely accepted skilled

forgery. L

Correspondence between the two curves C'y and C5. The dots indicate
actual samples and the crosses indicate inter-sample points.
(a) Matching of two curves using DPM. (b) Matching of two curves
using CDPM. The crosses show matching points that are not samples.
(c) and (d) corresponding warping planes and matching functions. . .

Curve parameterization used in COPM..

88

89

90

91

92

93

95

96

4.4

4.5

4.6

4.7
4.8
4.9

4.10
4.11

Xix
(a) Local continuity constraints imposed onto DPM. (b) Generalization
of the constraints for CDPM. Note that in (a) only samples are allowed
to match while in (b) samples on one curve can be matched to inter-
sample points on the other curve and vice-versa.
Notation used to identify points on one of the squares of the grid of
the warping plane.o Lo
Different matching cases that are possible at each step of the algorithm.
The first column shows the segments on the warping plane. The second
column displays the point correspondence. The third column demon-
strates the calculation of the elementary distance d((tx—1, sk—1), (tk, Sk))
using the cosine law.o L Lo
Optimal correspondence for the first match with case 1.
Optimal correspondence for the first match with case 3.
(a) f'(«") and ¢'(z') are two quadratic functions corresponding to each
of the input sides of the square of the grid at node (3,j). After the
propagation of these functions with the four possible correspondence
cases, we have four different quadratic functions, two for each output
side of the square. We observe that the number of cumulate distance
functions doubles at each step of the recursion. (b) Combinatorial
explosion in the number of cumulated distance functions needed to
be stored at each step of the algorithm. Each segment that joins two
different sides of a square corresponds to the propagation of a cumulate
distance function.o oL Lo
Number of cumulated distance functions.
Propagation of three quadratic functions through four iterations of the
algorithm. We observe that the parabola plotted with a solid line that
does not belong to the minimum envelope in the first plot is later on

the parabola that provides the minimum cost.

98

98

100
103
105

110
111

4.12

4.13

4.14

4.15
4.16

4.17

4.18

XX
Propagation of two quadratic distance functions through two iterations
of the algorithm. We observe that the position of the intersection of the
parabolas at the initial condition corresponds to two different points
after propagating the parabolas.
Cases of intersection between two parabolas: (a) no points of intersec-
tion, (b) two points of intersection and (c)-(d) one point of intersection
((c) corresponds to tangent parabolas and (d) corresponds to parabolas
with the same quadratic coefficient).
A generic path through the warping plane consists of transitions of
type 1, 2 and type 3, 4; therefore, the two extreme cases of allowed
paths are the ones that consist only of transitions of type 1 (or 2) and
only of transitions of type 3 (or4).
Different possible locations of 1, and zo,.
The first 3 plots shows the results of DPM, DPM with oversampling
and CDPM applied to a synthetic pair of curves. The last plot displays
the warping plane and the corresponding warping paths for each of the
algorithms. oo
Detail of the matching between the curves of figure 4.16. In each row,
we show two different portions of the curves and the corresponding
matching obtained using the three methods under comparison. The

last plot of each row displays the corresponding portion of the warping

Signature matching using DPM and CDPM. The first two plots show
the correspondence provided by the matching. The third plot shows the
signatures and the fourth plot shows the corresponding warping paths
and the warping path for DPM applied on an oversampled version of

the signatures. oL

113

114

122
129

151

152

4.19

4.20

4.21

4.22

4.23

XXi
Detail of the matching between the two signatures shown in figure 4.18.
In each row, we show two different portions of the curves and the

corresponding matching obtained using DPM and CDPM. The last

plot of each row displays the corresponding portion of the warping path.154

Plots of the computational time required for each algorithm as a func-
tion of the length of one of the signatures under comparison, for dif-
ferent warping plane constraints. The computation time for DPM is
displayed with 'x’ (lower curve), the time for DPM with oversampling
is plotted with o’ (middle curve) and the time for CDPM is shown with
'+’ (upper curve). The lines represent a linear fit in semilogarithmic
space of thedata.
Plots of the maximum storage required for CDPM as a function of the
computation time used by the algorithm, for the four different warping
plane constraints. The solid line represents a linear fitting of the data
in logarithmic space. We note that the corresponding fitting functions
are power laws with an exponent that is very close to one, i.e., the
functions are almost linear functions.
Several examples of signatures in our database and corresponding ref-
erence functions obtained with DPM and CDPM. In the first column
we display signatures captured with the visual tracker, in the second
and third columns, we show the corresponding reference signatures of
the training set obtained with DPM and CDPM, and in the fourth
column we display a forgery provided by the subjects.
Effect of sub-sampling the signatures. The first column shows several

examples of signatures in our database. The second and third column

155

156

157

display the corresponding signatures sub-sampled by a factor of 2 and 4.158

4.24

4.25

4.26

4.27

4.28

4.29

4.30

xxii
Effect of adding noise to the signatures. The first column shows several
examples of signatures in our database. The second column displays
the corresponding signatures after having added a zero mean Gaussian
noise with a standard deviation equal to five times the spatial resolution
of the visual tracker presented in chapter 2. The third and fourth

columns show a detail of portions of the signatures with and without

Error trade-off curves for CDPM and DPM evaluated on our databases
of signatures. The distance after matching is used for classification.

Error trade-off curves for CDPM and DPM evaluated on our databases
of signatures. The harmonic mean of all the distances proposed in
chapter 3 are used for classification.
Error trade-off curves for CDPM and DPM evaluated on our databases
of signatures after sub-sampling the signatures by a factor of two. The
distance after matching is used for classification.
Error trade-off curves for CDPM and DPM evaluated on our databases
of signatures after sub-sampling the signatures by a factor of two. The
harmonic mean of all the distances proposed in chapter 3 are used for
classification.o Lo L Lo
Error trade-off curves for CDPM and DPM evaluated on our databases
of signatures after sub-sampling the signatures by a factor of four. The
distance after matching is used for classification.
Error trade-off curves for CDPM and DPM evaluated on our databases
of signatures after sub-sampling the signatures by a factor of four. The
harmonic mean of all the distances proposed in chapter 3 are used for

classification.,

159

160

160

161

161

162

4.31

4.32

4.33

4.34

xxiii

Error trade-off curves for CDPM and DPM evaluated on our databases
of signatures after adding to the signatures zero mean Gaussian noise
with a standard deviation equal to five times the spatial resolution of
the visual tracker presented in chapter 2. The distance after matching
is used for classification.o o000
Error trade-off curves for CDPM and DPM evaluated on our databases
of signatures after adding to the signatures zero mean Gaussian noise
with a standard deviation equal to five times the spatial resolution of
the visual tracker presented in chapter 2. The harmonic mean of all
the distances proposed in chapter 3 is used for classification.
Comparison of the equal error rates for DPM and CDPM for different
sub-sampling factors. The first column shows the error rates obtained
using the distance after matching as the classification parameter and
the second column displays the error rates obtained using the harmonic
mean of several similarity measures as the classification parameter.

Comparison of the equal error rates for DPM and CDPM with and

without noise added to the signatures.

163

163

164

XXiv

List of Tables

2.1
2.2
2.3
24

2.5

Computation time of each module of the system.. 39
Static and dynamic resolution of the system. 42
System parameters used in the real-time implementation. 43

Comparison of the error rates of point-wise ink detection obtained using
the local measurements and the HMM model. 45
Comparison of the error rates of stroke classification obtained using

the ink presence confidence measure and the HMM model. 46

Chapter 1 Introduction

1.1 Human-Machine interfaces using vision

Over the past few decades, we have witnessed the birth and development of the
computer industry. Along with the evolution of computer technology, there has been
a corresponding evolution of the interfaces between humans and machines. In the
early days, the user (or operator) had to activate certain switches in a particular
sequence in order to achieve a desired action. Later, the input was provided with
punch cards and the output was extracted with paper tapes. As machines evolved,
they were connected to keyboards, CRT’s and monitors to provide “real-time” text
input and output. More recently, advances in memory, video and microprocessor
technology have allowed computers to enter in the era of graphical interfaces involving
a whole set of pointing devices (like mice, digitizing tablets, joysticks, touch-screens
and track-balls) and graphical user interfaces.

Technological advances in miniaturization of electronic devices in the last few years
have opened a new market for portable computers. Laptop and notebook computers
as well as Personal Digital Assistants (PDA’s) like the popular “Palm Pilot” are in
wide use nowadays. Cellular phone manufacturers are adding computing power in
their new generation of phones, e.g., Sprint started offering Internet access using a
cellular phone in mid-1999, Qualcom is advertising a device that is a PDA and a
cellular phone at the same time, etc. The trend indicates that more computing power
will be packed inside smaller and easier to carry devices. The ultimate portability
would be achieved with so-called “wearable computers.” These computers would be
worn, much as eyeglasses or clothing are worn, and would interact with the user
based on the context of the situation. Part of the success of such computers would
depend on the user feeling comfortable and getting accustomed to wear them. One

successful example of people adapting to wear a “computer” is provided by mechanical

2

and electronic watches. These devices have made their way into the everyday life
of millions of people who depend on them and wear them without even noticing.
Another question that will affect the success of wearable computers is how simple is
the interaction with the device? The human-machine interface as it presently exists,
i.e., based on keyboards and screens, is becoming a miniaturization bottleneck since
the resolution of the human eye limits the size of the screen, and the dimensions
of the fingers limit the minimum size of keyboards and mice. Therefore, there is
a need for humans to communicate with computers in alternative ways, that are
more intuitive and involve smaller hardware (ideally smaller than 1 cm®). There are
already some attempts to overcome this interface miniaturization bottleneck. Sony
is advertising a computer in the form of a monocle headset, in which a mini-monitor
detaches from the headset and covers one eye. The computer screen is displayed on
this monitor while a joystick-type device is used to provide input. Many PDA’s use
a stylus instead of a keyboard as input device, reducing the computer’s size at some
expense in the throughput of the input element. Data is acquired by the computer
by tracking the motion of the stylus on a flat touch-sensitive display which provides
immediate graphical feedback to the user. These PDA’s accept input in the form of
characters and pen gestures and their performance heavily relies on a character/pen
gesture recognition engine.

The development of novel and friendly human-machine interfaces is crucial for
extending the use of computers to all segments of society and to all cultures (especially
to the ones that do not have a suitable alphabet for entering text via a keyboard).
Also, new interfaces will allow the acquisition of mathematical formulas, hand-drawn
figures, sketches, etc. Humans acquire information from the exterior world by using
their senses (audition, vision, olfaction, tactile, and taste). However, social interaction
among humans is carried out mainly through the audio channel (audition) and the
visual channel (vision). Speech and music are the main components of the audio
channel, while hand, face and body gesturing, handwriting and drawing are the main
components of the visual channel. Humans learn to use these communication channels

from their very childhood and depend on them in their daily life. In some sense, one

3

could think of these communication channels as a built-in resource to be used in the
design of intuitive and simple to use interfaces.

Cameras and microphones are becoming ubiquitous in desktop computer systems.
These devices can be made as small as 1 cm?x 1 mm with current VLSI technology
and can be easily integrated into PDA’s. Techniques based on these types of inputs,
in particular computer vision, have a significant role to play in the development
of the interfaces of the future. Vision has been demonstrated to be the sense of
choice for human face detection [9, 10, 11] and recognition [75, 17], facial expression
interpretation [46, 22, 15], lip reading [25, 47, 43, 6], head orientation detection [14],
eye gaze tracking [14, 29, 16|, three-dimensional finger pointing [13], hand tracking [53]
and gesture interpretation [61, 73, 55], and body pose tracking [32, 4, 5, 33].

Face detection will allow machines to determine whether a user is present in the
field of view of the camera while face recognition will permit machines to identify
each user without the need for explicit passwords. This will be particularly useful in
systems designed for cooperative work, where multiple users share an electronic and
physical workspace, or for access control to a particular resource like an automatic
teller machine, restricted areas of a company, a credit card purchase, etc. Facial
expression interpretation will play a big role in “affective computing” [56], allowing
machines to detect the emotions of a user and respond appropriately. For example,
by providing more assistance when the user looks puzzled or frustrated, or by playing
a favorite tune when the user is sad, etc. Head tracking and detection, and facial
expression could provide a very useful computer interface for the physically impaired,
some of whom can only communicate using head gestures. Eye gaze, in the same
manner as finger pointing, may be useful as a pointing device to substitute for the
mouse. Gaze aside, the head orientation can be used to guide a remote, synthesized
“clone” face for low bandwidth video conferencing. Lip reading provides an additional
channel of information for speech recognition that will facilitate the development of
robust speech recognition-based computer interfaces. Lip reading interfaces may also
prove effective as interfaces for the speech impaired. Models developed for repre-

senting facial expression and lip movement may also be used to build multimedia

4
documents which are able to represent emotions. Body pose tracking will facilitate
the development of immersing virtual reality systems [27, 44]. Users may move freely
within environments, reach out and touch objects, interact with avatars, virtual hu-
mans and other agents, etc. Body tracking will also allow building models of human
motion to be used for realistic character animation [31].

Handwriting on paper is one very important way of communication among hu-
mans. People send postcards or letters in order to keep in touch with friends and fam-
ily. They use tiny post-it notes to remember certain duties or large pads of flip-chart
paper to save ideas during brainstorming meetings. They read books, newspapers and
memos. Chances are that you are reading these words on paper. Therefore, despite
the claims about the “paper-less” office, in which information on paper is replaced by
information on the screen of a computer, we find that paper is used as much, if not
more than before. However, electronic documents provide a number of properties that
are lacking in paper documents, such as spelling correction, electronic mail, keyword
searching, numerical calculation, time-stamping, and language translation.

An alternative to the replacement of one type of document by the other is to
augment the physical world with computers. The Digital Desk [80, 79] developed at
Xerox PARC merges physical objects (paper and pencils) with their electronic coun-
terparts using computer vision and video projection. A computer screen is projected
onto a physical desk using a video projector, while a camera is set up to watch the
workspace such that the surface of the projected image and the surface of the image
area coincide. A tablet digitizer or a finger tracked by the camera [17, 18] is used to
input mouse-type of information into the system allowing one to select or highlight
words on paper documents, cut and paste portions of text, draw figures, etc. The
Liveboard [23] developed by Xerox is similar in concept to the digital desk. This
device is the replacement for the pads of flip-chart paper used in meetings. A com-
puter screen is projected onto a whiteboard and a cordless pen is used as input. The
same image could be displayed onto boards placed at different locations and the input
from each of these boards overlaid on all of them, allowing in this way for remote

collaboration. The Digital Desk and the Liveboard are steps towards the integration

5

of paper documents into the computing environment and towards the development
of handwriting-based human-computer interfaces.

The development of an interface that automatically acquires handwriting using a
video camera and computer vision techniques has not been addressed in the literature.
This interface would be very small since it would only require a camera as input device,
reducing the clutter usually added to desktop computers by tablet digitizers and full-
page scanners. This interface would allow the user to write on a piece of paper with a
normal pen, eliminating the requirement of writing with strange stylus on a slippery
plastic surface. A complete pen-based interaction with the computer could be devised
with this interface since in addition to handwriting mouse-type commands, passwords
in the form of signatures, drawings, etc., could be acquired.

In the first part of this thesis, we present the design and implementation of a
human-computer interface for acquisition of handwriting using a single camera. The
input interface consists of a camera, a piece of paper, and a normal pen. The camera
focuses on the sheet of paper and images the hand writing; computer analysis of the
resulting sequence of images enables the trajectory of the pen to be tracked and the
times when the pen is in contact with the paper to be detected.

Tracking the position of the pen tip instead of taking a still picture of the ink
trace left on the paper serves two purposes. First, more information is provided to
the handwriting recognition engine since the dynamics of writing is captured along
with the handwritten trajectory. Second, recognition could be performed as the user
writes providing better man-machine interaction and a simpler setting for correcting
recognition errors.

The second part of this thesis is devoted to developing an automatic identification
system using the camera-based interface for handwriting capture. A signature or a
string of characters would be captured by the interface for performing verification
of the claimed identity. Signatures are regarded in the literature [41] as the result
of a ballistic action, without any visual feedback involved. Hence, we use signatures
in our automatic identification system since signatures would be more stable and

more difficult to imitate than a sequence of characters. This system would be one

6

component of a complete visual pen-based computer environment, where the signature
could replace the password for logins into computer systems or personal Internet
accounts. Measuring the similarity between signatures in order to detect forgeries
involves the comparison of two two-dimensional curves. Part of the contribution of
this thesis is the development of a novel technique for curve comparison that is able

to work at subsample resolution.

1.2 Outline of the thesis

Chapter 2 describes the design and development of a human-machine interface for
acquisition of handwriting using a single camera. The various components of the
interface, its real-time implementation, and the trade-offs faced in the design are also
described.

Chapter 3 presents the development of a signature verification system built around
the camera-based interface for handwriting acquisition. Two different databases of
signatures were collected with the visual interface and used to assess the performance
of the signature verification system. We describe the application of the well-known
method of Dynamic Programming Matching to compare the acquired signatures. We
also discuss the effect of the parameterization of the signatures on the performance as
well as the method used to evaluate the performance and estimate the generalization
error of the system.

Chapter 4 introduces a novel algorithm for matching planar curves and its ap-
plication to signature verification. The algorithm is based on the general method of
Dynamic Programming and is able to match planar curves at subsample resolution.

Finally, in chapter 5 we summarize our contributions and findings, and discuss

directions for future research.

Chapter 2 Vision System for Pen
Tracking

2.1 Preliminaries

This chapter describes the design of a system that captures both the spatial and
temporal aspects of handwriting using a standard consumer-quality video camera as
input device. Conventional interfaces for handwriting capture include tablet digitizers
and touch-sensitive screens. Tablet digitizers come in several sizes ranging from 10
cm x 12 ¢cm to 30 cm x 45 cm with weights ranging from 0.5 kg to 4 kg. Their typical
temporal sampling frequency is 200 Hz and their cost ranges from $100 to $400.
Sensitive screens are manufactured using a different type of technology. The sensitive
area is usually customized to fit the desired screen size and adds $200 to $300 to a
monitor’s price. Cameras are ubiquitous in current desktop computer systems due to
the drop in pricing and advances in manufacturing technology. Thus, there would be
no need to buy additional hardware for the implementation of the visual interface for
handwriting.

The cutoff frequency of handwritten strokes is below 20 Hz as shown in refer-
ences [78, 69, 41] (different researchers propose different cut-off values depending on
the level of energy used as a threshold of significance). Typical cameras have spatial
resolution of 480x640 pixels (rows x cols) and frequency of 30 Hz. Most cameras are
interlaced, so the actual images have a maximum resolution of 240x640 pixels at a
frequency of 60 Hz. Given that the cut-off frequency of handwriting is below 20 Hz,
working at 60 Hz, we are well above the Nyquist frequency of handwriting.

Our first experiment was intended to verify that a legible handwritten trace could
be obtained by tracking the position of the pen tip in a sequence of images. We video-

taped a subject writing on a piece of paper and we manually identified the position of

“Agent" first frame “Agent” last frame “Agent” full sequence “Agent" points corresponding to the ink path
00,

w A
m oty

100 200 300 400 500 600 100 200 300 400 500 600 0 20 40 60 80 100

"Software" first frame "Software"” last frame "Software" full sequence "Software" points corresponding to the ink path

70 70
60 60
50 50 U\f
40 40
30 30
20 20

100 200 300 400 } 00 600 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

Figure 2.1: The first two columns show the first and last frames of two different se-
quences. The third column displays the handwritten trajectories obtained via manual
tracking of the pen tip. The fourth column shows only the strokes that left an ink
trace on the paper. We observe that after discarding the strokes that corresponds
to movements above the paper (no pen contact with the paper), the handwritten
sequences are clearly legible. All coordinates are measured in pixels.

the pen tip in each image of the sequence using a mouse. The first sequence named
“Agent” was traced at 30Hz and the second sequence named “Software” was traced
at 60Hz. Figure 2.1 shows the handwritten trajectories obtained with this manual
tracking.

We observe that the trajectories are a bit noisy, especially the one tracked at
30Hz. The pen tip position is collected for all the images of the sequence, including
frames in which the pen is actually writing on the paper and frames in which the
pen is traveling above the paper. Full trajectories of the pen tip, as shown in the
third column of figure 2.1, are somewhat difficult to read. However, after taking
away the strokes that correspond to the pen moving above the paper and leaving
only the strokes that correspond to the pen down on the paper, the trajectories are
clear enough to enable one to easily read what was written. This simple experiment
proves that there is sufficient information in a video sequence to reconstruct the pen
trajectory. Therefore, we will describe in this chapter a system that automatically
captures handwriting by following the position of the pen tip in a sequence of images

provided by an off-the-shelf video camera. The experiment also revealed an important

9

difference between this type of system and conventional handwriting capture devices:
the continuous trajectory that we obtain by tracking the position of the pen tip in
each of the images in the sequence must be divided into strokes corresponding to ink
trace (pen down) and strokes corresponding to movement above the paper (pen up).
With tablet digitizers the state of the pen (up or down) is mechanically sensed.

The remainder of this chapter is organized as follows. Section 2.2 describes the
various components of the interface, section 2.3 presents the method developed for

detecting pen up strokes, and section 2.4 shows the experimental results.

2.2 System description

Figure 2.2 shows the block diagram of the system and the experimental setup. The
image captured by the camera is shown on the screen of the computer to provide
visual feedback to the user. The system does not require any calibration. The user
has the flexibility of arranging the relative positions of the camera and the piece of
paper in order to write comfortably as well as to provide the system with a clear sight
of the pen tip.

The camera feeds a sequence of images to the preprocessing stage. This block
performs initialization of the algorithm, i.e., it finds the initial position of the pen
and selects a template (rectangular subregion of the image) corresponding to the pen
tip. In subsequent frames, the preprocessing stage has only the function of cutting
a piece of image around the predicted position of the pen tip and feeding it into the
next block. The pen tip tracker has the task of finding the position of the pen tip
in each frame of the sequence. The ballpoint detector finds the position of the very
end of the pen tip, i.e., the place where the pen is in contact with the paper when
the user is writing®. The filter is a recursive estimator that predicts the position of
the tip in the next frame based on an estimate of the current position, velocity and

acceleration of the pen. The filter also estimates the most likely position of the pen

*The term ballpoint is loosely used to indicate the actual ballpoint of pens and the pencil lead
of pencils.

10
tip for missing frames. Finally, the last block of our system checks for the presence

of ink on the paper at the positions where the pen’s ballpoint was detected.

(a)

Camera
' Initialization & Pen Tip Filter/
/ Preprocessing Tracker Predictor

[~ 1

Pen up / down Ballpoint

ME M Classifier Detector

Figure 2.2: (a) Block Diagram of the system. The camera feeds a sequence of im-
ages to the preprocessing stage. This block initializes the algorithm and selects the
template to perform the tracking of the pen tip. The tip tracker obtains the position
of the pen tip in each image of the sequence. The filter predicts the position of the
pen tip in next image. The ballpoint detector finds the position of the very end of
the pen tip, i.e., the place where the pen is in contact with the paper when the user
is writing. Finally, the last block of our system checks for the presence of ink on the
paper at the positions where the pen’s ballpoint was found. (b) Experimental setup.
The image captured by the camera is shown on the screen of the computer to provide
visual feedback to the user. The system does not require any calibration. The user
has the flexibility of arranging the relative positions of the camera and the piece of
paper in order to write comfortably as well as to provide the system with a clear sight
of the pen tip.

2.2.1 Initialization and preprocessing

The first problem to be solved is to detect and localize the position of the pen tip

in the first frame and to select the template to be used for detection in subsequent

11

frames. There are two possible scenarios:

1.- The user writes with a pen that is familiar to the system.

2.- An unknown pen is used.

The familiar-pen case is easy to handle: the system may use a previously stored
template representing the pen tip and detect its position in the image by correlation.

There are a number of methods to initialize the system when the pen is unknown.
Our initialization method is a semi-automatic one that requires a small amount of
user cooperation. We assume that the user is writing with a dark-colored pen on a
light-colored piece of paper. We display the image captured by the camera on the
screen of the computer. A rectangular box is overlaid on this image as shown in
figure 2.3(a). The user is required to place the pen tip inside the displayed box, ready
to start writing. The system watches for activity within this box, which is measured
by image differencing between frames. When the number of pixels activated by image
differencing is big enough as shown in figure 2.3(b), the system assumes that there
is an object that entered the box and it then starts a waiting period until the object
remains quiet. The user has, in this way, the possibility of placing the pen within
the box and taking a comfortable position before starting to write. After the activity
within the box has returned to low for a period of time (bigger than 200 ms), the
system acquires the pen tip template, sends an audible signal to the user, and starts
tracking.

Figure 2.4 shows a sketch of the pen tip, which is assumed to be roughly conical
(true for most commercial pens). Hence, the projection of the pen tip onto the image
plane will be a triangle. One of the borders of this triangle corresponds to the edge
between the pen tip and the user’s finger and the two other boundaries correspond to
the edge between the pen tip and the piece of paper. Detection and extraction of the
pen tip template is reduced to finding the boundary points of the pen tip, computing
the corresponding centroid and cutting a portion of the image around the centroid.

The edges between the pen tip and the paper have bigger contrast than the edge

12

¢ estimated
" 'edge

2nd quadrant

Finger

2nd most
voted quad.

(h) Ballpoint -

most voted quad.

« Finger

Ballpoint

Figure 2.3: (a) Image provided by the camera with the rectangular box overlaid. The
user is placing the pen inside the rectangular box. (b) Result of image differencing
when the pen enters the tip acquisition area. (¢) Output of Canny’s edge detector
used for extracting the boundary of the pen tip. The cross indicates the centroid of
the boundary points. (d) Orientation of the edge elements obtained with Canny’s
detector. (e) Clustering of the edge elements into the four quadrants and lines indi-
cating the mean orientation in each of the quadrants. (f) Detection of the boundary
edge that was missing, using the estimated position of the centroid of the pen tip
and the orientation of the other edge. (g) Boundary lines obtained by accumulating
the information provided by the edge detector across different frames. Pen tip axis
extracted as the mean of the boundary lines. Position of the tip, finger and centroid
along the axis. (h) Profile of the image across the estimated pen tip axis, that is
used to find the positions of the ballpoint and the finger by performing a 1D edge
detection. (i) Template of the pen tip extracted automatically.

13
between the pen tip and the finger, thus, we only look for these two boundaries in

the detection and extraction of the template.

Pen tip

Ballpoint—

Finger

Figure 2.4: Pen tip model assumed for the initialization.

The boundaries of the pen tip are located using Canny’s edge detector [12] as
shown in figure 2.3(c). Sub-pixel resolution in the location of the edge elements is
achieved by fitting a parabolic cylinder to the contrast surface in the neighborhood
of each pixel. Since detection and extraction of the pen tip from a single frame is not
very reliable due to changes in illumination, the system collects information about the
pen tip for a few frames before extracting the template. The algorithm is summarized

as follows:

1.- Compute the difference between current image and previous image within the
rectangular box until a sufficient number of pixels have a difference value bigger

than a predefined threshold (see figure 2.3(b)), then go to step 2.

2.- Compute image difference between current and previous images within the rect-
angular box until there is no activation for a number of frames, then go to step

3.

3.- Apply Canny’s edge detector to the neighborhood of the image inside the men-
tioned box. Fit a parabolic cylinder to the contrast surface in the neighborhood

of each pixel.

4.- Select only the pixels of the neighborhood that have sufficient contrast and whose

corresponding parabolic cylinder has its axis close enough to the center of the

14
pixel (see figure 2.3(c) and (d)).

5.- Get the centroid of these activated pixels (see figure 2.3(c)).

6.- Group the orientation of the activated pixels into the four quadrants’ and get
the mean orientation and the number of activated pixels per quadrant (see

figure 2.3(e)).
7.- Repeat steps 3-6 for several frames and then go to step 8.
8.- Compute the mean position of the centroids computed in 5.

9.- Consider the most voted quadrant (which represents the boundary of the pen
tip detected most reliably) and compute the corresponding mean orientation
across frames. If the most voted quadrant does not have enough votes, abort
the extraction of the pen tip and emit a sound signal to let the user know of

the error condition.

10.- Consider the second most voted quadrant (which represents the second strongest
detected boundary of the pen). If it does not have enough votes, recompute
its position and orientation using the current image and the results of 8 and 9.
Given the mean centroid position and the estimated orientation of one of the
boundaries of the pen tip, the profile of the image is searched perpendicular to
this orientation in order to find points with maximum contrast. These points

are used to estimate the location of the other boundary of the pen tip (see

figure 2.3(f)).

11.- Calculate the pen tip’s orientation as the mean of the orientations obtained in
steps 9 and 10 (see figure 2.3(g)). The mean orientation is computed taking
into consideration the quadrant information of steps 9 and 10 in order to avoid

problems with the inherent wrap-around [0, 360°] of angular quantities.

tThe term quadrant refers to any of the four sections in which a plane is divided by rectangular

coordinate axes lying in that plane. The first quadrant includes orientations between 0 and T, the

second quadrant comprehends orientations between § and , the third quadrant involves orientations

between 7 and 37”, and the fourth quadrant includes orientations between 37” and 27.

15
12.- Get the profile of the image along a line that passes through the centroid ob-
tained in step 6 with the orientation calculated in step 9 (see figure 2.3(h)).

13.- Find the position of the ballpoint and the finger in this profile by performing a
1D edge detection on the image profile. Recompute the position of the centroid

as the mean of the locations of the finger and the ballpoint (see figure 2.3(g-h)).

14.- Extract the template of the pen tip by selecting an area of the image of adequate

size around the centroid computed in step 11 (see figure 2.3(i)).

The acquisition of the pen tip template is performed only at the beginning of the
acquisition. The function of this module in subsequent frames is only to extract a
region of interest centered around the predicted position of the pen tip. This region
of interest is used by the following block of the system to detect the actual position

of the pen tip.

2.2.2 Pen tracking

The second module of the system has the task of computing the position of the pen
tip in the current frame of the sequence. The solution of this task is well known
in the optimal signal detection literature [74, 28]. Assuming that the signal to be
detected is known exactly except for additive white noise, the optimal detector is a
matched filter, i.e., a linear filter that looks like the signal one is trying to detect. In
our case, the signal consists of the pixels that represent the pen tip and the noise has
two components: one component is due to noise in the acquisition of the images and
the other one is due to changes in the apparent size and orientation of the pen tip
during the sequence of images. The acquisition noise is the result of a combination
of many factors like changes in illumination due to light flickering or automatic gain
of the camera, quantization noise, changes in gain of the frame grabber, etc., where
not all these factors are additive. Changes in the apparent size and orientation of the
pen while the user is writing significantly distorts the image of the pen tip, as shown

in figure 2.5. Clearly neither component of the noise strictly satisfies the additive

16

Portion of the image
extracted in order to

compute carrelzion The most likely position of

the pentip isgiven by the
location of maximum correlation

. Corréelation

Pen tip template L ocation of Predicted ppsition
Predicted position maximum of the pentip
of the pen tip correlation

Figure 2.5: Given the predicted location of the pen tip in the current frame, the
most likely position of the pen is obtained by finding the place that has maximum
correlation with the previously stored template of the pen tip.

white noise assumptions of the matched filter; however, as a first approximation we
will assume that the pen tip can be detected in each frame using the matched filter.
The detection of the position of the pen tip is obtained in our system by locating the
maximum of the normalized correlation between the pen tip template and an image
neighborhood centered on the predicted position of the pen tip, as shown in figure 2.5.

The spatial resolution of the interface is defined by the localization accuracy during
the computation of the maximum correlation. Sub-pixel resolution is achieved by
fitting a paraboloid to the correlation surface in the neighborhood of the pixel with
maximum correlation value.

The system also analyzes the values of maximum normalized correlation to detect
whether the pen tip is not within the predicted image neighborhood. If the value of
maximum correlation is lower than a threshold, the system emits an audible signal
and continues to look for the pen tip in the same place, waiting for the user to realize
that tracking has been lost and that the pen tip must be returned to the proper image
neighborhood. The system waits for a few frames and if the pen tip does not return

to sight, the tracking stops.

17
2.2.3 Filtering

The filter predicts the most likely position of the pen tip on the following frame based
on the current predicted position, velocity and acceleration of the pen tip and on the
measured location of the pen tip provided by the pen tip tracker. The use of the
filter reduces computations since having a prediction of the position of the pen tip in
the next frame allows us to decrease the size of the neighborhood used to calculate
correlation. The measurements will be acquired faster and the measured trajectory
will be smoothed by the noise rejection of the filter. A Kalman Filter [38, 8, 37, 30, 2]
is a recursive estimation scheme that is suitable for this problem. We tested several
different first- and second-order models for the movement of the pen tip on the image
plane. The model that provided the best performance with the easiest tuning was
a simple random walk model for the acceleration of the pen tip on the image plane.

The model is given by equation 2.1.

t

"

(t)
v(t)
4 (2.1)
a(t)

(t)

<

V]

t

= x(1) +ny(?)

<

where x(t), v(t) and a(t) are the two-dimensional-components of the position, velocity
and acceleration of the tracked point, and n,(¢) and n,(¢) are additive zero-mean,
Gaussian, white noise processes. The output of the model y(¢) is the position of the
pen tip corrupted by additive noise. Equation 2.1 describes a continuous model, but
our system is discrete by nature since we perform measurements at discrete instants

of time. The corresponding discrete equations for the model are as follows:

18

x(k+1) = x(k)+v(k) + sak)
vik+1) = v(k)+a(k) (2.2)
a(k+1) = a(k)+ng(k)

) = x(h) (k)

where we made a small abuse of notation by using the same name for the continuous
and discrete noise processes (for more information on obtaining the discrete-time
formulation for a continuous-time system, see chapter 3 of reference [30] or appendix
C.13 of reference [2]). Calling A the transition matrix and C' the output matrix of
the system, the equations for the discrete model in matrix form are presented in
equation 2.3 and the corresponding signal model is depicted by the block diagram of
figure 2.6.

X(k+1) = AX(k)+nx(k)
y(k) = CX(k)+ny(k)

(2.3)

where

x(k) 0
X(k) = |v(k) ny(k) = 0
a(k) n, (k)
-1 01 0 0.5 0—
0101 0 0.5
A= 0010 1 O _ 100 00O
0001 0 1 01 00O0O0
0000 1T 0
0 000 O 1

19

k)
X (k1) X(K) Xy

+
nX(k)—>(++)—> Delay C

Figure 2.6: Signal model described by equation 2.3.

Before writing the equations for the recursive estimator, we must introduce some
notation. Let us call e(k) = y(k) — C X(k|k — 1): the innovation of the fil-
ter, R(k) = E{ny(k)n](k)} the covariance matrix of the output noise, Q(k) =
E{nx(k)nk(k)} the covariance matrix of the state noise, R.(k) = E{e(k)el (k)}
the covariance matrix of the innovation, X (k|lm) = E{X(k)|y(0),y(1),---,y(m)}
the estimate of the state X at time k using the measurements up to time m and
P(klm) = E{(X(k) — X(k|m))(X(k) — X(k|m))T} the corresponding covariance ma-

trix of the estimation error. The equations for the Kalman filter are:
Measurement update equations:

) = X(klk—1)+ K;(k) e(k)
(k) = y(k)—CX(klk—1)
R.(k) = R(k)+C P(klk—1)C"
(k) = P(klk—1)CT R;'(k) (2.5)
) = P(klk—1)— P(k|k — 1) CT R:'(k) C P (k|k — 1)

Time prediction equations:

X(k+1k) = AX(klk)

(2.6)
Pk+1lk) = AP(klk) AT + Q(k)

20

Initialization:

X(0]-1) = X(0)
P(O]—1) = P(0)

(2.7)

In the case of our system, both R(k) and Q(k) are assumed to be time-invariant
and diagonal, i.e., the measurements are assumed to be uncorrelated and the compo-
nents of the state are assumed to be uncorrelated. Given the model for the system
shown in equations 2.2 and 2.3, the only components of the state with noise are the
accelerations. Assuming that the vertical and horizontal accelerations of the pen tip
are uncorrelated is a bit unreal since the muscular group that generates the hand-
written pattern on the paper does not move the pen tip in z and y independently
but rather as a whole. Also the assumption of uncorrelated measurements is unreal
since we use a paraboloid fit of the correlation surface to obtain sub-pixel accuracy,
and therefore, the horizontal and vertical coordinates of the maximum of correlation
are linked through the fitting. However, the uncorrelated assumption provides a first
order model of the actual dependences with a small number of parameters. In fact, R
and () provide the parameters that need to be tuned in order to achieve a particular
convergence of the filter. We have four tuning parameters in these two matrices, two

variances corresponding to n, and two variances corresponding to n,.

2.2.4 Missing frames

The algorithm described in previous sections detects the position of the pen tip in
each of the frames of the sequence. Unfortunately, some intermediate frames could be
missing due to problems in the acquisition, or, in the case of the real-time implemen-
tation, due to problems with the synchronization of the PC with the frame grabber.
Since it is desirable to sample the handwritten trajectory at a constant rate, there is
a need for estimating the most likely position of the pen tip for the missing frames.
Various methods can be used to perform this estimation. Working in batch mode,

the pen tip position for the missing frames could be estimated by spline interpolation

21

of the acquired trajectory. Working on on-line mode, the position could be estimated
by using the prediction of the Kalman filter. These two approaches represent the
extreme cases of a range of possibilities that depend on the number of data points
used to estimate the position of the pen tip for missing frames. One of the design
premises of the interface is real-time operation; therefore, it is desirable to estimate
the position of the pen tip for missing frames as the acquisition is taking place. The
predicted position of the pen tip provided by the recursive estimator is the most
likely location of the pen tip given the past history of the movement of the pen
tip, i.e., the prediction summarizes all the available information on the state of the
system up to the last measurement. Clearly this prediction does not include any
information on future measurements, so a better estimation of the position of the
pen tip for a missing frame would be obtained by merging the information given by
the prediction and the information provided by future measurements. We estimate
the position of the pen tip for the missing frames using the prediction given by the
Kalman filter and the measurement obtained after the missing frame. This estimation
can be performed as soon as the new measurement is captured since it only requires a
few extra computations. The interface provides in this way a constant-rate stream of
data that could be used by a handwriting recognition engine to perform recognition
as the acquisition is taking place, increasing the possibility of interaction with the
user.

Assuming that frame k£ — 1 is missing, given that we have measurements at time
k — 2 and at time k, we need to estimate the most likely state and the output of
the system at time & — 1. The Kalman smoother [2, 30] is the proper scheme to
solve this estimation problem. The Kalman smoother is derived from the Kalman
filter by augmenting the signal model as shown in figure 2.7. The state equations for
the augmented signal model are presented in equation 2.8. This new signal model
generates estimates of the state that involve more measurement samples than in the
conventional Kalman filter at the expense of an increase in the complexity of the

estimator.

ny (k)

X(k) T y(k)
Delay C

X(k +1)

nx(k‘) —+

Delay

XM(k) =X(k—1)

Delay
| X (k) = X(k-2)

Figure 2.7: Augmented signal model (adapted from reference [2]).

X(k+1) A0 0] | X(k) ny (k)
XOE+1)| = [1 0 of [XDE)|+]| 0
X®(k+1) 0 I 0f [X@(k) 0
X (2.8)
X (k)
y(k) = [C 0 0} XD (k)| + ny(k)
\ X (k)

From figure 2.7 and equation 2.8, it is clear that X! (k+1) = X(k) and X®) (k+1) =
X(k — 1). Therefore, assuming that we have measurements {y(0),y(1),---,¥y(k)},

(1)

X (k+1) = E{XY(k +)y (0),y(1),--- . y(k)}} = X(k|k)

Xk + 1) = B{XO(k + 1)|{y(0),y1), - ,y(k)}} = X(k — 1[k)

where X (k—1|k) is the estimate that we need, in the case in which y(k—1) is missing.

23
The increase in complexity of the estimator is reflected in the covariance matrix of
the estimator error since there are new sub-matrices that represent the covariance

between the estimation error at different points in time, as shown in the following

equation:
(X(k+1) — X(k+1]k)) (X(k+1) — X(k+1]k)) :
P(k + 1/k) :E{ (XD (k+1) - 5(()(k+1\k)) XO&+1) — Xk + 18)) }
Xk +1) = XPEk+16)| |(XOE+1) = XP &+ 1]k))

P(k+1lk) PO (k+1|k) PO"(k+1|k)
= |PO(k+1|k) POY(k+1lk) PV (k+1[k)
PA(k+1|k) PEY(k+1]k) P2 (k+1lk)

where we have identified PO (k + 1|k) = E{(X(k +1) — X(k + 1|))(X®D(k +1) —

X“’(k +1[k))"} and PG (k + 1\k) E{XO(k +1) — X7k + 1/k) (XD (k +1) —

x" (k + 1]k))T}. Given that X (k +1|k) = X(k — i|k), the diagonal terms of
P(k+1|k) are PO+LH0 (k +1|k) = P(k —i|k). Applying the Kalman filter equations

to the augmented system and decoupling the different terms, we have:

X(k+1lk) = AX(klk—1)+ K,(k) e(k)
XY E+1k) = X(EE=1)+ KO k) e(k)
} <@ (1) @ (2.9)
XPk+1k) = XV &k 1)+ K2 (k) e(k)
e(k) = y(k)—CX(klk—1)

Ve

) = R(k)+C P(klk—1)CT

<) = AP(klk—1)CT R;\(k) (2.10)
) = P(klk—1) CT R (k)

) = POk —1) CT R-\(k)

24

P(k+1lk) = AP(klk—1) AT + Q(k) — K, (k) Re(k) KT (k)
POk +1[k) = (k\/f—l)(Ky(k) C)*
§ PO®k+1lk) = POk[k—1) (A— K,(k) C)" (2.11)
PUD(k+1k) = Pklk—1)— P(klk —1) T KV (k)
PeA(k+1k) = POY(klk—1) — POk —1) T K" (k)

The equation that we are looking for is the one corresponding to X(k — 1|k) =
x? (k+1|k), given that we have no measurement at time £ — 1. From equation 2.10,
it is clear that X(k — 1k) = X(k — 1|k — 1) + K2 (k) (y(k) — C X(k|k — 1)), but the
problem is that we cannot get X (k — 1|k — 1) since we do not have a measurement at
k —1. Using the measurement update equation 2.4 for the Kalman filter, X(k —1|k -
1) =X(k—1/k—2)+P(k—1k—2) CT R'(k—1)(y(k—1)—C X(k—1]k—2)). One
way to overcome this problem is by assuming that there is a measurement at £—1 that
has infinite variance. Therefore, the innovation covariance R.(k — 1) goes to infinity
(or, better, its inverse R;'(k — 1) goes to zero), and X(k— 1|k —1) = X(k— 1|k —2).
Also, X(k|k —1) = AX(k — 1]k — 1) = A X(k — 1|k — 2). In fact, given that we do
not have any measurement at kK — 1, the most likely state of the system at £ — 1 is
provided by the prediction from time k£ — 2 and the predicted state at time & is given
by applying the transition matrix onto the most likely state at time £ — 1. Finally,

the equations for computing X (k — 1|k) are as follows:

X(k—1k) = X(k—1]k—2)+ K2 k) (yk) — C AX(k - 1]k — 2))
KP(k) = P(k—1lk—2)(A— K,(k—1) C)T CT (R(k) + C P(k|k —1) CT)~
¢ Ky(k—1) = AP(n—1n—2)CT (R(k—1)+C P(k— 1]k —2) CT)~
Pklk—1) = APk—1k—2) AT+ Q(k—1)—
\ Ky(k—1) (R(k — 1)+ C P(k — 1k — 2) CT) KT (k — 1)

(2.12)

25
After estimating the state of the system for the missing frame at time k£ — 1, the
measurement update step of the Kalman filter for the current frame £ is performed
using equations 2.4 and 2.5 with the only caveat that X (k|k —1) = A X(k — 1|k — 2)
and P(k|k — 1) is the one computed with equation 2.12.

2.2.5 Ballpoint detection

The previous block of the system finds the most likely position of the centroid of the
pen tip, a point that will be close to the center of gravity of the triangular model of
the pen tip. The position of the ballpoint is obtained using a similar algorithm as the
one used in the initialization. The main difference from the initialization algorithm
is that the pen is now moving, so we need to compute one ballpoint position for each
frame and only a part of the steps of the initialization algorithm are used.

Using Canny’s edge detector, we find the position and the orientation of the
boundary edges of the pen tip, i.e., the sides of this triangle. Using the values of the
orientations of the boundaries in the previous frame, the distance from the ballpoint
and the finger to the centroid of the pen tip as well as the current position of the
centroid, we calculate the expected current position of the boundaries of the pen. A
few points on these boundaries (in the case of the experiments, we use five points) are
chosen as the centers of the edge detection windows. The edge detector is only applied
to small windows in order to save computations and to speed up the processing of
the current frame. We look for points in each window that have maximum contrast.
The edges are found by interpolating lines through these points. Then, the axis of
the pen tip is computed as the mean line defined by the pen boundary edges. The
profile of the image through the pen’s axis is extracted in order to find the position
of the writing end. The position of the finger along the axis of the pen tip is also
extracted in order to complete the representation of the projection of the pen tip on
the image plane.

Figure 2.8 shows the image of the pen tip, its boundary edges, its axis, the image

profile, and the positions of the ballpoint and the finger. The positions of the ball-

26

(b) Ballpoint —

Ballpoint — Finger

Figure 2.8: (a) Image of the pen tip displaying the various elements used to detect the
ballpoint. The cross '+’ in the center of the image shows the centroid of the pen tip
obtained with correlation. The points marked with a star *’ show the places where
the pen boundaries were found using edge detection. The lines on the sides of the
pen tip are the boundary edges and the line in the middle is the pen tip axis. The
other two crosses 'x’ show the estimated positions of the ballpoint and of the finger.
(b) Image profile along the axis of the pen tip and the corresponding positions of the
ballpoint and of the finger. (c) Result of correlating the image profile with a derivative
of a Gaussian function. (d) Blow-up of the region between the dotted vertical lines
in (c). Parabolic fit of the peak identifies the position of the ballpoint. The vertex of
the parabola is plotted with a cross 'x’ and it corresponds to the estimated sub-pixel
position of the ballpoint.

point and the finger are computed with sub-pixel accuracy by correlating the image
profile with a derivative of a Gaussian function (1D edge detection) and then fitting
a parabola to the corresponding peak values. Figure 2.8 (c) shows the result of the
correlation between the image profile and the derivative of a Gaussian function and
Figure 2.8 (d) displays the parabolic fit to the corresponding peak and the estimated
position of the ballpoint.

27
2.2.6 Stopping acquisition

We have mentioned that the system automatically stops if the value of maximum
correlation is very low, since this would imply that the pen tip has moved outside
the search window (or that there was such a change in illumination that the pen
tip no longer matches the template). The user can exploit this behavior to stop the
acquisition by taking the pen tip away from the search window. There is another
stopping possibility offered to the user. The system checks whether the pen tip has
moved at all between consecutive frames and counts the number of consecutive frames
in which there is no movement. If this number reaches a predefined threshold, the
system stops the acquisition. Thus, if the user wants to finish the acquisition at the
end of a desired piece of handwriting, he/she can hold the pen tip still and the system

will stop the acquisition.

2.3 Pen up detection

The trajectories obtained by the tracking blocks of the system are not suitable for
performing handwriting recognition using standard techniques since most of the recog-
nition systems to date assume that their input is only formed by pen down strokes.
Our interface has only one camera from which we cannot detect whether the pen
is touching the paper or not, as mentioned in section 2.1. The addition of another
camera that would form a stereo system with the first would allow one to compute
the distance between the pen and the paper. However, a stereo system would bring
more problems than benefits. We would need another camera, increasing the cost of
the interface; we would need to process two images instead of one and also establish
correspondence between them, doubling the required number of computations; finally,
we would need to set up a calibration procedure to be performed each time that the
interface was going to be used, imposing a further burden on the user. Hence, the
detection of the times when the pen is lifted and, therefore, not writing, is accom-

plished in our system by using the additional information given by the ink path on

28

(=]

Stroke
Classification

(L/Mi \IUW \‘\state sequence
Trajectory .
Segmentation O G
Hidden Markov Model
M@M that estimates the likelihood
=" of being in state pen up (V)

or pen down (D)
4

™. Most ikely

Trajectory

Ink presence
confidence measure

Local Ink

Image
Measurement

Figure 2.9: Block diagram of the pen up/down classification subsystem. We detect
when the pen is up or down using a bottom-up approach. At the local level, the
brightness of each point in the trajectory is measured and compared with the bright-
ness in its surroundings. A Hidden Markov Model (HMM) estimates the likelihood of
being at state Pen Up or state Pen Down for each individual point given the measured
brightness. The full trajectory is segmented into strokes and each stroke is classified
as pen up or pen down aggregating the likelihoods provided by the HMM.

the paper.

The system checks for the presence of ink in the places where the pen’s ballpoint
was found. The detection of ink using image brightness is tricky. The image bright-
ness at any given place varies with illumination, the writer’s hand position, and the
camera gain. Moreover, the image contrast could change from frame to frame due
to light flickering and shadows. So, the detection of ink must be done using local
measurements for each point. Figure 2.9 shows a block diagram of this subsystem.

The existence of ink on the paper is checked locally for each ballpoint position.
A measure of confidence of the presence of ink is obtained from local measurements
of brightness. A Hidden Markov Model is used in order to model the transition of
the confidence measure between the states of pen up and pen down. Using the local
confidence measure and the estimated HMM state sequence, the system classifies each
particular point of the trajectory as pen up or pen down. However, the measure of

ink presence is quite difficult and prone to errors, so it is better to divide the complete

29
handwritten trajectory into strokes and aggregate the point-wise classification into a
stroke-wise classification. The following sections describe each of the blocks presented

in figure 2.9 in more detail.

2.3.1 Local ink detection

Given a particular position of the ballpoint, we need to find out whether there is
an ink trace on the paper at this place or not. The local detection of the ink trace
on the paper is quite difficult, as we illustrate with the example of figure 2.10. The
first plot of the figure shows the recovered sequence, the second plot displays an
image of the ink trace left on the paper and the third plot presents the overlay of the
sequence onto the image of the ink trace, where the little dots represent the sample
points. The image of the ink trace is a portion of the last frame of the sequence (we
can see part of the pen tip on the left side of the image). The ink trace appears
upside-down on the image since the camera is aimed to the hand of the writer from
the front side (then, the camera sees the writing being done from right to left and
from bottom to top). We note that the ink trace takes only a few pixels of the
whole image and that there is quite a distortion on the strokes due to the pixelization
of the image. We also observe that the overlaid sequence fits quite well to the ink
trace except at the beginning of the sequence (shown on the right side of the image).
This happens because there might have been a displacement of the paper generated
by one of the strokes (probably the long horizontal stroke between samples 20 and
40). We measure the brightness profile of the image along a line perpendicular to
the direction of movement that passes through each sample point. The values of
brightness measured are presented as an image in the last plot of figure 2.10. The
profile is measured at the position of the ballpoint and on five pixels on each side of
the ballpoint, along the mentioned perpendicular. We note that the ink trace is not
always found at the ballpoint position (pixel number 6 on the vertical axes). We can
see the ink trace being a few pixels off the ballpoint pixel at the beginning of the
sequence (samples 1-20), then stabilizing on the ballpoint (samples 20-35) until the

30
pen tip appears on the profile (samples 35-40) and later disappearing because of a
pen up stroke (samples 40-55).

We can get several observations from this simple example. The local ink mea-
surement should be performed as soon as possible in order to have a good fit of the
sample points on top of the ink trace. However, the measurement has to be done
after the pen tip moves away, otherwise, the pen tip will obstruct the paper and the
ink trace. The value of brightness corresponding to the ink trace varies quite a lot
within the same image (and it is expected to vary even more across images), so we

need to detect the ink trace in a robust and local way.

130

1501
134

1451 1
138
1401 1142

146
135- 1

150

-360 -340 -320 -300 300 320 340 360

1
Rl 60 90 10 150 180 200

Sample point &

Figure 2.10: Example that illustrates the difficulties in detecting the ink trace. The
first plot shows one sequence acquired with the visual tracker. The dots indicate the
position of the sample points. The second plot displays a portion of the last frame
of the sequence showing the corresponding ink trace deposited on the paper. The
third plot shows the recovered sequence overlaid on the image of the ink trace. The
sample points land over the ink trace most of the time, and the exception is at the
beginning of the sequence (shown on the right side of the image). The last plot shows
the profile of the image brightness along lines that passes through each sample point
and are perpendicular to the direction of motion. The profile of image brightness is
measured at eleven sample points using the interpolation method described in [42].
The profile is shifted so that the detected ballpoint position appears in sample 6 (row
6 of the plot).

31

Figure 2.11 shows how the local ink detection is performed. The center cross of
figure 2.11(a) shows the position of the ballpoint. We observe that there is an ink
trace at the ballpoint’s position. The ink trace is not straight due to the pixelization
effect produced by the digitalization of the image. The local detection of the ink trace
is quite difficult since the ink trace is only 1 to 3 pixels wide; therefore, if the position
of the ballpoint is off by 1 pixel, the local detection would be wrong. We perform the
detection locally by comparing the brightness of the pixel where the ballpoint was
found with the brightness of the pixels on a surrounding circle centered at the ballpoint
position. This circle is shown in figure 2.11(a). The brightness at each position
marked with a plus '+’ is obtained by interpolation using the method described
in [42]. Figure 2.11(b) shows the histogram of the brightness values measured on the
circle and the brightness measured at the ballpoint’s position (vertical line).

We assume the brightness of ink-less pixels to be a Gaussian-distributed random
variable. We estimate the mean and variance of this probability density function
using the brightness values measured on the circle, assuming that all these positions
correspond to ink-less pixels. The ink presence confidence measure is computed as
the probability of the brightness found at the ballpoint given the paper without ink
(this probability correspond to the area below the Gaussian pdf between —oo and
the brightness value found at the ballpoint). If there is ink present at the ballpoint
pixel, this measure is low, close to zero. Otherwise, the measure is high, close to
one. The selection of this particular confidence measure is very convenient since it
provides automatic scaling between zero and one.

The brightness measurements cannot be obtained until the pen tip has left the
measurement area; otherwise, the ink trace will be covered by the pen tip and/or the
hand of the user. The system assumes a simple cone-shaped model for the area of the
image covered by the pen and the hand of the user. The ballpoint is located at the
vertex of the cone, the axis of the pen tip defines the axis of the cone, the position of
the finger has to be inside the cone, and the aperture of the cone is chosen to be 90
degrees. This simple model allows the system to determine if the user is left handed

or right handed and whether a particular ballpoint position is within the cone. The

32

335 340 345 350

Figure 2.11: (a)The center cross corresponds to the position of the pen’s ballpoint.
The other points show the surrounding pixels where the brightness is measured. (b)
Histogram of the measured brightness. The vertical line shows the value of brightness
corresponding to the ballpoint’s position.

system waits until the cone is sufficiently far away from the area of interest before

doing any brightness measurements.

2.3.2 Local pen up/down modeling

The ink presence confidence measure could be used to decide whether a particular
sample point corresponds to pen up or pen down. However, making hard decisions
based on a single measurement is very likely to fail due to noise and errors in bright-
ness measurements. A soft-decision approach that estimates the probability of each
individual point being a pen up or a pen down is more robust. A further improve-
ment is provided by modeling the probability of transition between these two states
(pen up or pen down), given the current measurement and the previous state. A
Hidden Markov Model (HMM) with two states, one corresponding to pen up and the
other corresponding to pen down, is a suitable scheme to estimate these probabilities.
The HMM learns the probabilities of moving from one state to the other and the

probabilities of rendering a particular value of confidence from a set of examples.

33
Hidden Markov Models

The HMM models a doubly stochastic process governed by an underlying Markov chain
with a finite number of states and a set of random functions each of which is associate
with one state. At discrete instants of time, the process is in one of the states and
generates an observation symbol according to the random function corresponding to
the current state. The model is hidden in the sense that all that can be seen is a
sequence of observations. The underlying state which generates the symbol is hidden.

In principle, the underlying Markov chain may be of any order and the observations
may be multivariate random processes having some continuous probability density
function. In this application, however, the Markov chain is restricted to be of order
one, i.e., those for which the probability of transition to any state depends upon
that state and its predecessor. Also, the observation sequence is limited to be drawn
according to probability distribution functions associated with the states.

The HMM may have different structure, i.e., different topology of interconnection
of nodes. Depending on the application, it is possible to constrain an HMM such that
only certain desired state transitions are allowed. Figure 2.12 shows several possible
topologies. For applications in speech recognition and handwriting recognition, left-
to-right HMMs give the best results since they encode in the topology the causality of
phoneme or letter generation. For our present application, a generalized model with

two states is the most suited.

Elements of an HMM An HMM is characterized by the following elements (with
the same notation used by Rabiner [63, 62]):

N : the number of states of the model. Although the states are hidden, for many
practical applications there is some physical significance attached to the states
or to sets of states of the model. We denote the individual states as S =

{S1, S, ..., Sn} and the state at time ¢ as ¢;.

M : the number of distinct observation symbols per state, i.e., the discrete alphabet

size. The observation symbols correspond to the physical output of the systems

34

e [008

Figure 2.12: Different HMM topologies (a) Left-to-right-1, (b) Left-to-right-2, (c)
Left-to-right-3, (d) parallel, (e) generalized, (f) generalized with states used in our
system.

being modeled. We denote the individual symbols as V' = {vy, vg, ..., vpr}-

A : the state transition probability distribution, A = {a;;}

Where a;; = P(qi41 = Si | ¢t = S;j) , 1 <14,j < N. For the special case where
any state can reach any other state in a single step, we have a;; > 0 for all 7, j.
For other types of HMMs, we would have a;; = 0 for one or more (z, j) pairs.
For example, for the left-to-right models, a;; = 0 for ¢ > j, i.e, A will be an

upper triangular matrix.

B : the observation symbol probability distribution in state j, B = {b;(k)}

Where b;(k) = P(vgatt|g=S;), 1<j<N,1<k<M.

IT : the initial state probability distribution, = = {m;}

WheremzP(qlei), 1SZSN

A complete specification of an HMM requires the definition of two model parame-
ters (N and M), the observation symbols, and three probability measures A, B and 7.
For convenience, we use the compact notation A = (A, B, 7) to indicate the complete

parameter set of the model since NV and M are embedded in the sizes of A, B and 7.

35
There are three common scenarios in which HMM’s are useful in real-world appli-

cations:

1 : Given the observation sequence O = 0105 - - - Or, and the model A = (A, B,),
how do we efficiently compute P(O|)), the probability of the observation se-

quence, given the model?

This scenario corresponds to the evaluation problem, namely given a model
and a sequence of observations, how do we compute the probability that the
observed sequence was produced by the model. This problem is sometimes

called the “classification” problem.

2 : Given the observation sequence O = 0103 ---Or, and the model A = (A, B, 7),
how do we choose a corresponding state sequence) = ¢iqo---¢gr which is

optimal in some meaningful sense (i.e., best “explains” the observations)?

This scenario is the one in which we attempt to uncover the hidden part of the

model, i.e., to find the correct state sequence in some meaningful sense.

3 : How do we adjust the model parameters A = (A4, B, 7) to maximize P(O|\)?

This scenario is the one in which we attempt to optimize the model parameters
in order to best describe the generation of a given observation sequence. The
observation sequence used to adjust the model parameters is called a training
sequence since it is used to train the HMM. The training problem is the cru-
cial one for most applications of HMMs, since it allows us to optimally adapt
model parameters to observed training data, i.e., to create best models for real

phenomena.

There are standard procedures described in the literature in order to solve each
of the mentioned problems, namely the forward-backwards algorithm [63, 62] for
scenarios 1 and 3 and Viterbi’s algorithm [26, 63, 62] for scenario 2.

The HMM used in our system has the topology presented in figure 2.12(f). The

observation of the model is the ink presence confidence measure, an intrinsically

36
continuous variable as it was defined in section 2.3.1. The HMM output is a set of
discrete symbols, so we need to quantize the value of the confidence measure in order
to define the output symbols. The confidence measure is a probability, so it is scaled
between zero and one. The interval [0,1] is divided into sixteen equal intervals in
order to quantize each confidence measure value and to translate it into observation
symbols. We use the forward-backward algorithm in order to train the HMM using
a training set of handwritten sequences collected with the system. The training
set consists of examples of cursive handwriting, block letters, numbers, drawings,
signatures and mathematical formulas in order to sample the variability of the pen
up/down transition for different types of writing. Figure 2.13 shows the resulting
HMM after training, where the bar plots displays the output probability distribution
of each state. The most likely state of the system at each point in the trajectory is

estimated using Viterbi’s algorithm [26, 62].

0.27
073() ()093
- " Ink presence ¥ .
O S 08 .08 Confidence K S B R
M easure

Figure 2.13: Resulting HMM that models the transitions between pen up and pen
down states and the ink presence confidence measure.

2.3.3 Trajectory segmentation

The previous two sections describe local measures used to classify each sample of
the handwritten trajectory as either pen up or pen down. The measurement of
ink presence is subject to errors, so the performance may be improved by dividing

the handwritten trajectory into different strokes and aggregating the sample-wise

37
classification into a stroke-wise classification.

The handwritten trajectory is segmented into strokes using two features, the curvi-
linear velocity of the pen tip and the curvature of the trajectory. Selection of these
two features was inspired by the work of Viviani [76, 77] and Plamondon [57, 59]
and by the intuitive idea that on the limit points between two different handwriting
strokes the velocity of the pen is very small and/or the curvature of the trajectory is
very high. The set of segmentation points is the result of applying a threshold on each
of the mentioned features. Figure 2.14 shows several examples of trajectories and the
corresponding strokes after segmentation. The threshold in curvilinear velocity was
chosen to be 0.75 pixel, so points that remain within the same pixel in two consecutive

frames are discarded. The threshold in curvature was heuristically chosen to be 0.05.

2.3.4 Stroke classification

Having divided the trajectory into strokes, we proceed to classify the strokes as either
up or down. We have experimented with two approaches, one based on the ink
presence confidence measure and the other using the state sequence provided by the
HMM. In the first approach, the mean of the ink presence confidence measures for
each sample in the stroke is used as the stroke confidence measure. In the second
approach, a voting scheme assesses the likelihood of a particular stroke being a pen
up or pen down, this likelihood provides the stroke confidence measure. If needed,
hard classification of each stroke as pen up or pen down can be obtained by applying
a threshold on the stroke confidence results. The hard classification, as well as the
likelihood of pen up/down, are the stroke descriptors that our interface provides to a

handwriting recognition system.

2.3.5 Real-time implementation

Figure 2.15 shows a block diagram of the hardware used for implementing the sys-
tem. The hardware consists of a video camera, a frame grabber, and a Pentium II

230MHz PC. The camera is a commercial Flexcam ID, manufactured by Videolabs,

30

25

20

15

10

70

60

50

40

30

20

10

50

40

30

20

10

35

5
50

100

150

200

250

50

100

150

200

250

100

150

200

38

40

30

20

10

50

40

35

20} 4
\

50

100

150

200

250

s S

10 !

50 100

Figure 2.14: Several examples of trajectories acquired with the interface and the
corresponding strokes obtained after segmentation. Successive strokes are indicated
alternately with solid and dashed lines.

equipped with manual gain control. It has a resolution of 480x640 pixels per inter-
laced image. The frame grabber is a PXC200 manufactured by Imagination. The
input camera image is digitized by the board and even and odd fields of the image
are separated for future processing at 60 Hz and transferred to memory through the
PCI bus. The frame grabber uses a double buffer scheme that allows the computer
to process one frame while a new one is being acquired. All further computations are
performed with the PC. Most of the modules of the system have been implemented in
the real-time application with the exception of the pen up/down classifier that only

performs sample-wise classification using local measurements instead of stroke-wise

39
classification (see 2.3).

Camera

@ Host Computer
Pentium |1 230MHz

PCI-Bus

Frame Grabber E

Figure 2.15: System configuration: The hardware architecture comprises a commer-
cial camera, a frame grabber, and a Pentium II 230MHz.

Table 2.1 shows the computation time required on average by each of the modules
of the system. The total processing time is 12.1 ms per frame. We observe that
half of this processing time is used for displaying the image on the screen to provide
visual feedback to the user. The other half of this processing time is used for actual
computations. Both the transference of the new frame from the frame grabber to the
memory of the PC, and the transference of the display image from the memory of the
PC to the video card are performed through the PCI bus. Hence, there is a collision
between two processes at the PCI bus that is the reason for the apparently important

display time.

Module Time (msec.)

Frame acquisition 16.67

Processing time 6.1
‘ Pen tip tracking with correlation ‘ 3.5 ‘
| Filter | 0.3 |
‘ Ballpoint detection & ink meas. ‘ 2.1 ‘
‘ Additional checks in the program ‘ 0.2 ‘
‘ Image inversion and display ‘ 6 ‘
‘ Total computing time ‘ 12.1 ‘

Table 2.1: Computation time of each module of the system.

In figure 2.16 we show the graphical user interface (GUI) of the windows-based

application that runs our program. We have three windows: one is a dialog box

40
that allows the user to communicate with the application, the second displays the
image captured by the camera in order to provide visual feedback to the user, and
the third shows the acquired trajectory after having done sample-wise pen up/down

classification with a hard threshold.

NTSC Video Format
DSP: [Serial No: [i9551
Frame 3 ~lpuic Tiring
& ProcTime [E20£304
. Width [3ZD— Channe 0 rocTime
™ € Chemne 1
2521141
€ Chenne 3
: Tracking plot =53] L
Blighiness
I -
« W Conrast
o Ve V- | Il | [
9 o
.
Grab | Canfinuous | peset |

Figure 2.16: This image shows the GUI (Graphical User Interface) of the windows-
based application that implements our system. The biggest window is a Dialog Box
that allows the user to input parameters and run commands. A second window is used
to show the image that the camera is providing to the system and the last window
shows the output trajectory after having done the pen up/down classification.

2.4 Experimental results

2.4.1 System specifications

As a part of the specification of the interface, temporal and spatial resolution are key
parameters that define the performance of the system. As we have mentioned before,
the maximum working frequency provided by the camera is 60 Hz, so the temporal
resolution of the system is at most 16.67ms. Since the total processing time per
frame is 14ms, the system is able to work at maximum frame rate. However, there
are frames that are missed due to a lack of synchronization between the CPU and the
frame grabber. There is a block in the system that estimates the most likely state

of the system in the case of missing frames. This scheme is useful if the number of

missing frames is small, otherwise, the system would drift according to the dynamics

41
of the model of equation 2.1. We have used the system for acquiring hundreds of
handwritten sequences in real time, experiencing a missing frame rate of at most 1
out of every 200 frames.

The experiments of chapters 3 and 4 are based on signatures acquired in real time
with our system. Signatures are written at higher speeds than normal handwriting
and, therefore, a bigger image neighborhood has to be searched in order to find the
pen tip. We acquired signature sequences by enlarging the search area and turning
off the pen up detection block of the system. In these experiments, we experienced a
missing frame rate of at most 1 out of every 400 frames. We observe that the system
occasionally loses track of the pen tip when the subject produces an extremely fast
stroke. This problem of losing track of the pen tip could be solved in the future
by using a more powerful machine or dedicated hardware (able to process a larger
search area). Nevertheless, after a few trials, the user learns how to utilize the system
without exceeding its limits.

In order to evaluate the spatial resolution of the system, we performed two simple
experiments. In the first experiment, we acquired a few sequences in which the pen tip
was fixed at the same location, so any differences in the acquired positions were due
to noise on the image acquisition and on the computation of correlation. We repeated
this experiment ten times placing the pen at different positions and using different
illumination. The static resolution of the system was estimated by computing the
average standard deviation of the positions acquired in each of the sequences.

In the second experiment, we acquired ten sequences of a subject drawing lines
of different orientations with the help of a ruler. The line were carefully drawn to be
straight, so any differences from a straight line would be due to noise in the image
acquisition and on the computation of correlation. We fit a line through the acquired
points and computed the distance between these points and the fitting line. The
dynamic resolution of the system is estimated by computing the average standard
deviation of the mentioned distance in each of the sequences. Figure 2.17 shows
examples of one sequence used to compute the static resolution and one sequence

used to compute the dynamic resolution. Table 2.2 shows the resulting estimated

42

resolution of the system.

Sequence used for static resolution computation Sequence used for dynamic resolution computation
—149.4
A wf 20
-149.45¢ E a2 ﬁ; .
+ +., ... + QH - —40
-149.51 +
ﬂtﬁ* +#‘:» *, 60
+
-149.55¢
N iy 4..,,?4‘# ++#** ~80
_ L 1..+ # +++ R
149.6 gyl 100
At
-149.65} ", *__‘,. _120
-149.71 + -140
-149.7
180.7 100.75 100.8 100.85 100.9 100 150 200 250

Figure 2.17: Examples of sequences used to estimate the static and dynamic resolution
of the system.

horiz. resolution (pixels) | vert. resolution (pixels)
static 0.0195 0.0627
dynamic 0.0423 0.0611

Table 2.2: Static and dynamic resolution of the system.

We note that the vertical resolution is almost the same for the two experiments but
the horizontal resolution varies by a factor of two from one experiment to the other.
This difference is possibly due to the subject holding the pen mostly in a vertical
writing position for the static resolution experiment. In any case, we observe that
the system has quite a good resolution of roughly one-twentieth of a pixel. Table 2.3
summarizes all the parameters used in the implementation of the real-time system.

Figure 2.18 shows several examples of complete handwritten sequences acquired
in real time with our system, and figure 2.19 displays a more detailed part of some of
these sequences. We collected examples of cursive handwriting, block letter, printed
letters, drawings, signatures, and mathematical formulas. Comparing the automat-
ically acquired examples presented in figure 2.18 with the manually obtained ones
shown in figure 2.1, we observe that the level of noise in the automatically acquired

examples is lower than in the manually acquired ones.

43

Parameter

Value

Pen tip template size

25x25 pixels

Correlation window size

15x15 pixels

Output noise covariance matrix (R)

diag(10%, 107%)

State noise covariance matrix (Q)

diag(0,0,0,0,10 %, 10~ %)

Initial estimation error covariance matrix (Fp)

diag(1,1,10 2,10 2,10 5,10)

Initial dead time (given to the user to move
the paper and find a clean area where to write)

2 sec. (120 frames)

Image difference threshold

15 (3 bits of noise)

Number of pixels required to detect movement 20
Number of pixels required to detect 30
lack of movement

Time of no pen tip movement waited before
acquring pen tip information

Time used to acquire info. on the pen tip

200 ms

1 sec. (30 frames)

Contrast threshold (used with Canny’s 0.7
edge detector)

Distance from parabolic cylinder axis 0.5

to center of pixel threshold

(used with Canny’s edge detector)

Maximum correlation value considered 0.75
as a match

Maximum velocity denoting pen not moving 0.5 pixels

0.5 sec (30 frames)
150 samples

Time waited before stopping
Minimum number of points in a sequence

Table 2.3: System parameters used in the real-time implementation.

2.4.2 Pen up detection experiments

Only the pen tracking and the local ink detection module’s of the system have been
implemented in the real-time application. In order to evaluate the performance of
the complete pen up detection subsystem, we collected 20 sequences comprising var-
ious types of handwriting (cursive, block letters, printed letters, numbers, drawings,
signatures, and mathematical formulas). We used half of these sequences for training
the HMM and the other half for testing. We obtained ground truth by classifying
by hand each of the points of the test sequences as a pen up or pen down. We also
classified by hand each of the segments in which the test sequences were divided by

the segmentation algorithm. Two types of error measurements are used to evaluate

44

30 30
30
25 25
25
20 E
20 20
15 E
15 15
10 10] 10
5 5
50 100 150 200 50 100 150 50 100 150 200
45¢
35 70
40+
30 60
350
25 30t 50
20 25 40
20 30
15
15t 20
10 10
10
"6 80 100 120 140 160 5 60 80 100 120 140 160 40 60 80 100 120 140 160

Figure 2.18: Examples of sequences captured with the real-time system. We collected
examples of cursive writing, block letters, printed letters, drawings and mathematical
symbols.

the performance, one is the false acceptance rate (FAR) which measures the per-
centage of pen up points (segments) that were classified as pen down by the system,
and the false rejection rate (FRR) which provides the percentage of pen down points
(segments) that were classified as pen up by our system. Figure 2.18 shows examples

of sequences that we used for training the HMM.

Point-wise classification results

In this experiment, we compare the performance of point-wise pen up detection ob-
tained by using local ink confidence and by using the HMM. We compute the FAR
and FRR for the case in which the local ink confidence measurement is used to classify
each point as pen up or pen down. A sample point is classified as pen down if the
confidence measure is lower than 0.5; otherwise, it is classified as pen up. We also
compute the FAR and FRR for the case in which each point is classified as pen up
or pen down depending on the most likely sequence of states obtained with Viterbi’s

algorithm. Table 2.4 shows the error rates.

45

28 20
26 19 2
24 18 22
22 17
20
20 16
18] 15 18
16 14
16
14 13
l330 132 134 136 138 140 1%5 70 75 leO 160 170 180 190 200
26 35
24
24 -
22 30
20
20
18
25
18
16
16
14 20
14
12
12
10 15
10
3
45 50 55 60 65 70 75 80 45 50 55 60 65 70 75 130 135 140 145 150

Figure 2.19: Portions of the example sequences shown in figure 2.18. The dots repre-
sent the actual samples acquired with the interface.

local measurements (%) | HMM modeling (%)
FAR 28.6 28.6
FRR 5.33 5.33

Table 2.4: Comparison of the error rates of point-wise ink detection obtained using
the local measurements and the HMM model.

Figure 2.20 depicts the application of these two approaches to three test sequences.
The original sequences are plotted on the first row of the figure. The thickness of each
segment in the sequences displayed on the second row is proportional to the mean of
the confidence measure at the segment endpoints. On the third row, a segment of a
sequence is plotted if the confidence at both endpoints is bigger than the threshold of
0.5. We see that there are several segments that appear in areas where there should
be no ink trace on the paper. This misclassification is due to a bad measurement of
the confidence of ink presence. On the plots on the last row, a segment is plotted if
both extrema are classified as pen down by the HMM. We observe no difference in
the error rates obtained with these two approaches, indicating that presumably there

is no gain in using the HMM. As we pointed out before, we have to wait until the

46
pen tip is out of sight in order to measure brightness. So, many “pen up” points that
correspond to a stroke that passes above a segment of ink trace were misclassified as

“pen down.” This is the main reason for the apparently big value of the FAR.

Stroke classification results

In this section we evaluate the performance of pen up stroke classification. We com-
pute the FAR and FRR for the case in which we aggregate the local ink confidence
measurement in order to classify each stroke as pen up or pen down. A stroke is
classified as “stroke down” if the stroke confidence measure is smaller than 0.25, oth-
erwise, it is classified as “stroke up.” We also compute the FAR and FRR for the
case in which each stroke is classified as “stroke up” or “stroke down” using a vot-
ing scheme based on the most likely sequence of states of the HMM obtained with
Viterbi’s algorithm. A stroke is classified as “stroke down” if the resulting vote is
bigger than 0.8; otherwise, it is classified as “stroke up.” Table 2.5 shows the error

rates.

local measurements (%) | HMM modeling (%)
FAR 13.17 11.22
FRR 11.82 8.82

Table 2.5: Comparison of the error rates of stroke classification obtained using the
ink presence confidence measure and the HMM model.

Figure 2.21 shows the results of these two approaches on the same test sequences
that were classified point-wise. The segmented sequences are shown in the first row of
the figure. The thickness of the strokes plotted on the second row is proportional to
the stroke confidence measure. The third row shows the classification of the strokes
as either stroke up or down using the previously mentioned threshold. The thickness
of the strokes plotted on the fourth row is proportional to the voting results obtained
with the HMM. The last row shows the hard classification of the resulting votes. We
observe that the use of the HMM improves the performance of stroke classification

even though it seemed to make no difference at point-wise level. We note that in

47
most of the cases in which the stroke-up classification fails, it is due to an incorrect
segmentation, like the “C” in the sequence “PEDRO MUNICH?” or the crossing stroke

of the “x” in the mathematical formula.

2.4.3 Discussion

This chapter has presented the design and implementation of a novel human-computer
interface for handwriting. A camera is focused on the user’s hand while he/she is
writing with a normal pen on a piece of paper. We have shown that the handwriting
trajectory is successfully recovered from its spatio-temporal representation given by
the sequence of images. This trajectory is composed by handwritten strokes and pen
movements between two strokes. The detection of the points in which the pen is
traveling over the paper and not writing is obtained by using local measurements of
the brightness of the image at the location in which the writing end of the pen was
detected.

Several modules of the interface are susceptible of improvement. We used only
one pen tip template for the whole sequence acquisition. This template could be au-
tomatically updated once the peak value of correlation fell below a certain threshold.
Since the information about the boundaries of the pen tip, its axis, as well as the
position of the ballpoint and the finger are computed for each frame by the ballpoint
detection module, the automatic extraction of a new pen tip template involves no
extra computational cost.

The region of interest used to detect the location of the pen tip has constant size
in the current implementation of the system. The size of this region could be driven
by the uncertainty on the predicted position of the pen tip, i.e., the size could depend
on the covariance of the predicted location of the pen tip. Smaller regions would be
required in cases of low uncertainty, reducing in this way the computational cost of
performing correlation between the region of interest and the pen tip template.

The ballpoint detection is performed using the values of orientation of the pen tip

and its boundaries obtained in the previous frame. We could improve the robustness

48
of this detection by modeling the change of these orientations from frame to frame. A
recursive estimation scheme could be used to predict the desired orientations, allowing
to reduce the size of the windows used to perform edge detection and to decrease the
number of computations.

We used a Gaussian model for the brightness of ink-less pixels. The estimation of
the model parameters was performed using the brightness of points lying on a circle
centered at the ballpoint position, assuming that all the circle points are ink-less
points. Clearly, this model is not strictly adequate for a random variable which takes
values on the interval [0,255], and the assumption is not completely valid since some
circle points could correspond to the ink trace. This model could be improved by
using a probability density function suitable for representing a random variable that
takes values on a finite interval. However, as a first order approximation we have
shown that this model provides good results in pen up/down detection.

The detection of the points in which the pen is moving above the paper is based on
local measurements of brightness. A few other local measurements such as the local
orientation of the ink at position of the ballpoint, the correlation of this orientation
with the local direction of the pen tip’s trajectory, etc., could be used in order to
improve the detection rates. These local measurements of direction would decrease
the FAR since a sample would be classified as “pen down” only if an ink trace with
the corresponding direction is found at the sample’s location. These different mea-
surements could be naturally included in the system by increasing the dimensionality
of the HMM’s observation.

The set of examples used to estimate the HMM parameters and to evaluate the
pen up/down performance included examples of different types of writing provided by
only one subject. More example sequences provided by different subjects should be
acquired in order to estimate the pen up/down performance in a writer-independent

setting.

49

40 60t 90
35 80
sor 70
30
400 60
25
50
20 80 40
15 20t 30
10 20
) 10 10
50 100 150 200 250 50 100 150 200 50 100 150 200 250
40 60" 90
35 80
sor 70
30
400 60
25
50
20 301 20
15 20k 30
10 20
. 10 10
50 100 150 200 250 50 100 150 200 50 100 150 200 250
40 60t 90 Nl CH
5 & O MU
50t / R
. - 3 DD
400 60
25
B 50
20 80 40 l
15 20t 30
10 ‘l 20 \
) 10 10
50 100 150 200 250 50 100 150 200 50 100 150 200 250
40 60" 90 Nl (" H
5 &0 O MU
50 7/ R
. - “PED
40F 60
25
B 50
20 sor 40 l
15 20k 30
10 ‘l 20 \
) 10f 10
50 100 150 200 250 50 100 150 200 50 100 150 200 250

Figure 2.20: Three examples of test sequences are shown on the first row. The
plots of the second row have the thickness of the segments proportional to the mean
of the confidence measure of ink presence of the segment endpoints. The result of
thresholding this confidence measure is shown in the third row. The fourth row shows
segments whose extrema are classified as pen down by the HMM.

40
35
30 {?
251 4
20 (/
R
L /
15 :' 20 E 30|
10 20
10 10
c
50 100 150 200 250 50 100 150 200 50 100 150 200 250
40 60 £l
35 80|
50 70
30
[40 60|
25
50
20 %0 40
15 20 30
10 20
10 10
50 100 150 200 250 50 100 150 200 50 100 150 200 250
40 60 90

: 43 e MY
ph | 5&*2 PED

25
/N 50
20 %0 40
15 20 30
10 20
10 10
%50 100 150 200 250 50 100 150 200 50 100 150 200 250
40 60 £l
35 I 80)
- 70
[40 60
25 o
20 %0 40
15| 20 30
10 20
10 10
c
50 100 150 200 250 50 100 150 200 50 100 150 200 250
40 60f —— 90| Nl M
3 % “z/o MU
50
. 3 sa))
f 40 ‘J_ 60
25
/N {\ 50
20 0 40
15 20 30
10 20
10 10
50 100 150 200 250 50 100 150 200 50 100 150 200 250

Figure 2.21: The first row shows the segmented trajectories, where the different
segments are plotted with either solid or dashed lines. In the second and fourth rows
the thickness of the strokes is proportional to the confidence measure obtained in the
two cases mentioned above (aggregation of local ink measurements and voting based
on HMM states). The third and fifth rows show the strokes after performing a hard
classification.

o1

Chapter 3 Signature Verification

3.1 Introduction

As we discussed previously, the scientific and technologic advances achieved during
the twentieth century have brought dramatic changes in life quality. Automatic ma-
chines ranging from a simple mixer to all sorts of computer and computerized devices
were introduced to the common everyday life, resulting in an incredible increase in
interaction between humans and machines. Many machines are also used to control
access to resources. Individuals have to show proof of identity in order to be allowed
to use a particular asset. There are many examples in our everyday life in which we
are required to prove that we are who we claim we are; we use a PIN number at a
teller machine to get cash, we sign a credit card slip to make a purchase, we present
appropriate credentials to gain access to a particular place, etc.

The most common personal identification methods fall within the following four
categories: physical entities that are of known origin (e.g., an identification card, a
passport), information known on a restricted basis (e.g., PIN number, password),
specific individual activity pattern (e.g, signature, voice-print) or recognizable and
unique physical characteristics of an individual (e.g., fingerprint, hand geometry, iris
pattern).

The techniques in the two first categories are already widely in use in our society.
However, these techniques may cause common security breaches since identification
cards are easily forged and passwords or PIN numbers are easily stolen, lost or for-
gotten. This is the main reason for developing methods for authentication falling into
the two last categories. These methods rely on biometrics, defined by the Association

for Biometrics as:

“A measurable, physical characteristic or personal behavioral trait used

52
to recognize the identity, or verify the claimed identity, of a person whose

reference data is on file.”

The biometric measurements can be subdivided into physiological biometrics, i.e.,
biometrics characterized by a physical characteristic (fingerprint, iris pattern, etc.),
and behavioral biometrics, i.e., biometrics characterized by a behavioral trait that is
learned and acquired over time (signature, keystroke dynamics, etc.).

Given a biometric sample from an individual, there are two different classification
possibilities. Authentication or Verification is the one-to-one process of comparing the
sample against the biometric reference template of a single enrollee whose identity is
being claimed, to determine whether it matches the enrollee’s template. Identifica-
tion is the one-to-many process of comparing the sample against all of the biometric
reference templates on file to determine whether it matches any of the templates and,
if so, the identity of the enrollee whose template was matched.

There are many approaches to automatic identification using biometrics. Among
the vision-based ones, we can mention face recognition [72, 75, 82], fingerprint recog-
nition [36], iris scanning [19] and retina scanning. Voice recognition or signature
verification are the most widely known among the non-vision based ones. Signature
verification is a behavioral biometric that analyzes the way an end user signs his/her
name.

In most systems, signature verification requires either the use of electronic tablets
or digitizers for on-line capturing [40] or optical scanners for off-line conversion [71].
These interfaces are bulky (they need to have at least the minimum area required to
sign) and involve the presence of dedicated hardware. Cameras, on the other hand,
are much smaller and are becoming ubiquitous in the current computer environment.
We have demonstrated in chapter 2 the feasibility of using a visual interface that can
be built with video technology and computer vision techniques to capture handwriting
in general and signatures in particular, and we now propose the use of this interface
for signature verification.

Automatic signature verification systems involve two processing modes. In the

53
training mode the user provides signature samples that are used to construct a model
that statistically represents the characteristics of the signer. In the testing mode the
user provides a new signature along with the alleged identity and the system judges
the likely authenticity of the presented sample with respect to the alleged class model.

Figure 3.1 summarizes the process.

New signature

True signature

L] _ or forgery?
Comparison

J]
|

J]
!

| V Prototype

Training set

Figure 3.1: Signature verification system.

The literature on signature verification is quite extensive (see [40, 41, 58| for very
comprehensive surveys) and is divided into two main areas of research, off-line and on-
line systems. Off-line systems deal with a static image of the signature, i.e., the result
of the action of signing, while on-line systems have available the dynamic process of
generating the signature, i.e., the action of signing itself. The system described in
this chapter falls within the category of on-line systems since the visual handwriting
tracker captures the timing information in the generation of the signature.

On-line signature verification methods may be classified into two principal groups
depending upon the features used to perform classification. On one group, complete

signals (position, speed, acceleration, pressure, etc., versus time) are considered as

54
mathematical functions whose value constitute the feature set. On the other group,
global parameters (e.g., total duration, number of components, overall dimension,
etc.) and local parameters (e.g., maximum values, peak curvatures, etc.) are com-
puted from the measured signals to constitute the features. Each approach provides
benefits and imposes problems on the design of the system. A successful signature
verification system ideally should make use of both types of features [40, 50].

This chapter is organized as follows. Section 3.2 describes the method used to
perform the comparison between signatures, section 3.3 discusses the different pa-
rameterizations of the signatures used in order to improve performance, section 3.4
shows the method used to evaluate the performance of the verification system and

section 3.5 provides the experimental results.

3.2 Algorithm for signature comparison

3.2.1 Preliminaries

Signatures can be regarded as planar curves, i.e., the locus of points C'(p) = [z(p), y(p)]
R?, with p € [0,1]. Given two different curves, the straightforward method to mea-
sure their similarity is linear correlation. However, this method is not suitable for
signature comparison. Signatures vary in length, even if they are generated by the
same writer. Besides, there are random variations that create additions and deletions
of portions of signals, non-linear time axis compression or expansion and gaps due to
pauses or hesitations of the writer.

Different methods have been proposed in the literature in order to determine the
best correspondence between two signature samples and provide a measure of their
similarity. Dynamic Programming Matching (DPM) is a technique that finds for
each sample in one of the signatures, the corresponding sample in the other signa-
ture that is closest to the original sample using some predefined metric. Given this
correspondence, it is possible to calculate a “distance” between the signatures under

comparison.

55

DPM belongs to the class of dynamic programming [3] algorithms that were
proposed and extensively studied by Bellman and collaborators in the ’50s-’60s.
The use of DPM for comparison of time functions was initially proposed in the
field of Speech Recognition by Sakoe and Chiba [64] and it is described in full
extent in the book of Rabiner and Juang [62] with the name of Dynamic Time
Warping. DPM has been successfully used for signature verification by many re-
searchers [35, 24, 34, 45, 48, 49, 50, 54, 65, 81| and it is the technique that we use to
compare signatures acquired with our visual pen tracking system.

Sato and Kogure [65] proposed to use DPM in order to align the shape of sig-
natures, consisting only of pen-down strokes, after having normalized the data with
respect to translation, rotation, trend and scale. They further used the result of DPM
in order to compute the alignment of the pressure function and to compute a mea-
sure of the difference in writing motion. Finally, they perform the classification based
on the residual distance between shapes after time alignment, the residual distance
between pressure functions and the distance between writing motions.

Parizeau and Plamondon [54] evaluated the use of DPM for signature verification
by aligning either horizontal or vertical position (z(t), y(t)), horizontal or vertical
velocity (vg(t), vy(t)), or horizontal or vertical acceleration (ay(t), a,(t)). In their
work, they used the complete signing trajectories, i.e., pen-down and pen-up strokes.

Hastie et al. [34] obtain a statistical model of signatures that allows for variations
in the speed of writing as well as affine transformations. DPM is used to find the
correspondence between speed signals of pairs of signatures, and the distance measure
provided by the DPM in the speed domain is used as a classification parameter. The
signature with lowest distance to all others is chosen as the reference. The speed signal
of the reference pattern is used to segment this signature into letters. After segmenting
all the signatures by using the correspondence provided by DPM, a template signature
at the letter level is extracted and used for the final comparison and classification.

Huang and Yan [35] presented the use of DPM for matching signature strokes
by finding a warp path that minimizes the cost of aligning the shape, velocities and

accelerations of the individual strokes all at the same time. Pen up strokes are

56
considered in the preprocessing phase of their algorithm, in order to be merged with
the pen down strokes.

Nalwa [50] parameterized the pen-down strokes of the signature along its arc
length and then compute a number of characteristic functions such as coordinates
of the center of mass, torque, and moments of inertia using a sliding computational
window and a moving coordinate frame. He performed a simultaneous dynamic pro-
gramming matching over arc length of all these characteristic functions for the two
signatures under comparison. A measure of the similarity of the signatures is used
for classification.

Our implementation of DPM for signature verification attempts to perform the
best time alignment of the 2D shape of the signatures using a translation-invariant
measure of curve similarity, i.e., we find the time warping function that has the
minimum cost of aligning the planar curves that represent signatures. We note that
the pen-up strokes drawn by each subject were as consistent as the pen-down strokes,
as shown in figure 3.2. This observation agrees with the evidence [41] that signatures
are produced as a ballistic or reflex action, without any visual feedback involved.
Therefore, we use the full signing trajectory in our experiments. We do not perform
any type of normalization on the signatures since we consider that users are very
consistent on their style of signing; they write their signatures with a similar slant,

in a similar amount of time, with similar dimensions, and with a similar motion.

3.2.2 Curve Matching using Dynamic Programming
A translation-invariant measure of curve similarity

Given two two-dimensional curves C; = {X(i),i =1,---,N;} and Cy = {Y(j),j =
1,---, Ny} as in figure 3.3, and assuming that we have a warping or correspondence
map ¢ = (¢, s) between Cy and Cy, such that a point X(#;) € C; corresponds to a point
Y(si) € Cy, for k € {1,--- N}, t, € {1,--+ , Ny}, s, € {1,---,N,}. Let us define
the elementary distance d((tx_1, Sk_1), (t, sx)) [67] of having X (¢;) in correspondence

with Y(sx) and X(¢x_1) in correspondence with Y (sx_1) as

(S
3

Signature 5018008 Signature 5018009 Signature 5018007 Signature 018007
80 70
70
60
60
50
50|
0
40
N 30
20 20
10] 10]
o o
100 120 40 160 180 00 120 140 160 200 100 120 140 160 180 100 120 140 160 200
Signature 5021009 Signature $021009 Signature 5021008 Signature 5021008

&

150 200 250 200

Signature $029009 Signature 5029000 Signature 5029008 Signature s029008
50 50|
1 40
20 30
20 20
10 10]
o o
80 100 120 140 160 180 80 100 120 140 160 80 100 120 140 160 80 100 120 140 160
Signature 5043000 Signature 043009 Signature 043008 Signature 5043008
40 40
30 30
20 20
10] 10
o o
100 120 140 160 180 200 220 100 120 140 160 180 100 120 140 160 180 200 22 100 120 140 160 180
Signature s046009 Signature $046009 Signature s046008 Signature 5046008
9 9
- 30
2 20
10] 10]
o o
100 120 140 160 180 200 220 100 120 140 160 180 200 220 100 120 140 160 180 200 220 100 120 140 160 180 200 220

Figure 3.2: Signatures acquired with the visual interface and corresponding image
captured by the camera after finishing the acquisition. We observe that the pen-up
strokes are as consistent as the pen-down ones.

N

d((t 1,55 1), (s 5)) = | XE) Y (55) — Xt 1) Y (55 1)1 (3.1)

where ||.||? is the Euclidean norm. Let us define the similarity measure between the

two curves given ¢ as

o8

M-

Dy(Cr, Co) 23 d((te 1,51 1), (b 51)) = S 1K (B0) Y (58) — X(tx 1) ¥ (55 1]

Bl
||
I\

IX(tk) = Y(sk) = X(te—1) + Y (sp-1)I”

M=

Bl
[|
N

I (X(t) — X(te1)) = (Y(sr) = Y(sp-1)) II”

- - 7

M=

Bl
||
I\

TV v
velocity X velocity Y

(3.2)

where the two curves are assumed to be sampled at a constant sampling rate. It is

easy to see that the distance defined in equation 3.2 is invariant with respect to any

translation of C; and C,.

Y (sk) Curve 2

Figure 3.3: Correspondence between the two curves C; and Cj.

Having defined the distance between curves given the warping function ¢ = (¢, s),
the actual problem to solve is: Find the function ¢ that minimizes D,(C}, Cs) and

report the resulting minimum distance between the curves. In other words,

D(Cl, 02) =min D¢(01, 02)
¢ (3.3)

Solve
¢ = (t,s) = argmin Dy(Cy, Cy)
¢

where ¢ has to satisfy a set of requirements (to be presented below).

59

The matching process could be visualized on the “warping plane” of figure 3.4
where t;, will be represented on the x-axis and s, will be represented on the y-axis.
The set of sample points on C; and Cy defines a grid on the warping plane. The
correspondence function ¢ joins different nodes of the grid and defines a curve or a
path on this plane. If the warping path crosses one vertex (i, j) of the grid, it means
that point X(i) € C; corresponds to Y(j) € Cy. This warping path is parameterized
by k € {1,---, N} as shown in figure 3.4.

The simplest case of correspondence between the two curves is the one in which
the rates of production of the curves are constant and proportional to the duration of
the curves. The individual warping functions are then related by a linear relationship
ty = %—;sk. The corresponding warping path is a diagonal straight line as shown
in figure 3.4. In the case of signatures, practical experience indicates that it is not
possible to get two signatures that are exactly the same (in fact, if this happens, one of
the signatures is certain to be a forgery) since it is quite difficult for humans to repeat
precisely the same pattern at the same rate. In general, two signatures from the same
subject are quite similar but present local shape deformations and local differences in
rate of production. Therefore, we need to obtain two warping functions ¢, and s, that
define a warping path that takes into account these local differences. The generation
of signatures is implicitly a causal process, so the matching between two signatures
has to preserve this temporal ordering. This constraint means that the functions ¢

and s, have to be monotonically nondecreasing as depicted in figure 3.4(b).

Dynamic programming matching (DPM)

The solution of the high-dimensional minimization presented in equation 3.3 has in
general combinatorial complexity in the number of samples. However, given that
the functions ¢, and s, have to be monotonically nondecreasing in order to preserve
the temporal ordering on the generation of the signatures, the matching between the
signatures has to be a causal process. Under these conditions, Dynamic Program-
ming allows one to perform the full minimization as a sequence of one-dimensional

minimizations by applying Bellman’s principle of optimality [3, 20]:

60

t
5 | Optimal correspondence Ne
Ny X 2t k=N
Curve 2 o
Re k
1
*- 1 N
J p
s
7 N,
FOE ; 6
k=3 &=
k=2 ’ 2N
4 = t
14 ' o2
1 .. 1 Curve 1 N, B k
(a) Linear correspondence (b) 1 N

Figure 3.4: (a) Matching process displayed on the “warping plane.” The dashed
line shows the linear correspondence between the curves while the solid line shows
the optimal matching obtained as a solution of the equation 3.6. (b) Corresponding
warping functions #; and s.

“An optimal sequence of decisions in a multistage decision process problem
has the property that whatever the initial stage, state, and decision are,
the remaining decisions must constitute an optimal sequence of decisions
for the remaining problem, with the stage and state resulting from the

first decision considered as initial conditions.”

Let us put the principle of optimality in mathematical terms in order to obtain an
algorithm. Let us assume that (¢1,s1) = (1,1) and (tn, sn) = (N, Vy), i.e., the first
and last points of C; and C5 are in correspondence, then we can rewrite equation 3.3

in terms of N, and N, as

N

D(Ny, Ny) =min > d((te—1, sk-1), (t, 5k)) (3.4)

t,s

2

D(C, Cy)

Similarly, the minimum cumulated distance along a warping path starting at

(t1,51) = (1,1) and ending at (tn+, snr) = (g, ny) is

61

N
D(ng, ny) = min ;d((tk_l’ Sk-1), (k> Sk)) (3.5)

Let us assume that we have D(n;,n;), the solution of equation 3.5 up to node
(ng,n,) in the grid of the warping plane. Using the principle of optimality, we
want to express the minimization up to point (n,n,) in terms of D(n;,n,). Let
us call {((ny,n,), (nz,ny)) the cumulated local distance for the portion of the warp-
ing path between points (n;,n;) and (ng,n,), that is composed of L segments. Then,
E((nls), (s 1)) = 3o A((EN—m 1558 -m1)s (N1 s S50 -m)) Where (Enr, 531) =
(ns,ny) and (tn'_r,sn-1) = (n},n,). The shape and the number of segments of the
portion of the warping plane between points (n;,n;) and (ng,n,) are defined by the
local constraints imposed onto ¢ that are discussed later in this section. Figure 3.5
shows different possibilities for the portion of the path joining nodes (nj,n;) and
(ng,ny) that are proposed in the literature. Using the principle of optimality, we can

write the following recursion to solve the minimization of equation 3.3

D(ng,ny) = min, {D(ng,ny) +E((ng,ny), (ne; 1))} (3.6)

(nfmy)

where (n;,n,) represent all possible nodes that can be joined with node (n,,n,) by

a portion of the path that satisfies the constraints imposed on the minimization.

Matching constraints

Unconstrained minimization in equation 3.3 may conceivably result in a near-perfect
match between any two different signatures, thus making the comparison meaningless
for recognition purposes. Figure 3.6 shows an extreme example of this problem. The
lower curve is the same in both cases and plays the role of the reference signature.
Given the correspondence between samples shown in the figure, the distance between

the curves in both cases is the same.

62

(Ng, ny)

(N, ”y)

(na, ny) : : (na, ny)

Figure 3.5: Different possible portions of warping path ending at node (ny,n,) pro-
posed in the literature.

The solution of the minimization of equation 3.3 can be obtained with the dynamic
programming algorithm with mathematical precision. However, for the matching pro-
cess to be meaningful in terms of time normalization for different realizations of a
signature, some constraints on the warping functions are necessary. These constraints
have a heuristic nature since they are based upon intuition and are not motivated
by analytical results. Typical time warping constraints that are considered reason-
able for dynamic programming matching include endpoint constraints, monotonicity

conditions, local continuity constraints, global path constraints and slope weighting

Figure 3.6: Extreme example of unconstrained minimization of equation 3.3. The
lower curve is the same in both cases. Given the correspondence between samples
shown in the figure, the distance between the curves is the same in both cases.

63

(see [62] for a more extensive treatment of the subject).

Endpoint constraints Signatures are a short piece of handwriting that have a
well defined beginning and ending, so it seems reasonable to constrain ¢ such that
the first and last points of C; and C5 be in correspondence. These conditions have

the following expression:

beginning point #; =1 s1=1
g gp 1 1 (3.7)
ending point tn=N; sy=DNo

Monotonicity conditions The generation of a signature is a sequential process
whose final product is a parameterized 2D curve. The matching algorithm has to

maintain the temporal order while assigning sample correspondences; it is therefore

reasonable to impose the following monotonicity constraints on ¢

tet1 = Ty
(3.8)

Sk+1 = Sk

This constraint eliminates the possibility of reverse warping along the time axis,
even within a short time interval. This constraint implies that any path on figure 3.4

cannot have negative slope.

Local continuity constraints Signatures can have random variations that pro-
duce additions and deletions of portions of the written trace as shown in figure 3.7.
Local continuity constraints are designed to provide the flexibility needed to cope
with these situations while, at the same time, ensuring proper time alignment with
minimum potential loss of information.

These constraints define the possible ways of computing the cumulated local dis-

!

tance of a portion of the warping path £((n}, n;

); (nz, my)) that joins nodes (ny,,ny)

and (ng,ny)) of the warping plane of figure 3.4. The local continuity constraints can

Signature 5026006 Signature s026007 Signature s026008 Signature s026009

100 120 140 160 180 100 120 140 160 180 110 120 130 140 150 160 170 110 120 130 140 150 160 170

Signature s007017 Signature s007022 Signature s007023 Signature s007027

90 100 110 120 %0 100 110 120 £ 100 110 120 80 90 100 110 120 130

Figure 3.7: The first row shows signatures from a subject that does not sign con-
sistently. The middle loops are added, deleted and distorted quite a bit from one
signature to the other. The second row shows signatures from a much more consis-
tent subject, although there is some distortion between signatures.

take many forms as shown in figure 3.5 (see Rabiner and Juang [62] for a detailed
list of the constraints proposed in the literature). Sakoe and Chiba [64] proposed the

following ones:

for — 1 > 1
= (3.9)

Sky1— Sk > 1
The constraints are difficult to visualize using equations, so it is more convenient
to show them in terms of incremental path changes on the warping plane. Figure 3.8
pictorially shows the local continuity constraints described by equation 3.9 and the
corresponding matching between samples of curves C; and Cs.
Given the local continuity constraints of equation 3.9, {((n},n,), (14, ny)) is com-

posed by only one segment and it is computed as follows:

65

X(i-1) \

i-1,j-1) ! (i, j1) \
(i-1,j-1) (,7-1) 6D \

X(i-1) \ X(i-1) 2

Figure 3.8: Local continuity constraint and the corresponding matching between
samples of curves C; and Cs.

Global path constraints The local continuity constraints define a region of the
warping plane that the optimal path can traverse. Using the constraint depicted in
figure 3.8, all nodes of the warping plane could be reached. However, other local
constraints may restrict the reachable nodes to the ones belonging to a certain region
of the warping plane. For example, using the local constraint shown in the upper-
right plot of figure 3.5 restrains the warping path to have a slope ranging from 0.5
to 2. Global constraints can be imposed on ¢ that also limit the allowed region of
the warping plane. Constraints on the gradient of the warping function restrain the
possibility of unrealistic correspondence between a very short pattern in a signature
and a relatively long pattern in the other. If the maximum and minimum possible

slope for the warping path are fixed to be M,,,, and Mim’ the global constraints

imposed on ¢ are as follows:

1+ 4L <5y <14 Moo (e — 1)

(3.10)

tr — N,
Ny + Mmaw(tk - Nw) S Sk S Ny + Iﬁwmaz

66

5 s=2(t—1)+1 s=t+No
(1, Ny) Zas (Nz, Ny)
H:s:t—No
5= 0.5(t — Nz) + Ny s=05(¢t—1)+1
(1, No +1)
THiA t

(1,1) (No4+1,1) s =2(t — Ng) + Ny (Ng,1)

Figure 3.9: The shaded region is the allowed region of the warping plane that the
warping path can traverse due to global constraints.

where the first equation specifies the range of points (7, j) of the warping plane that
can be reached starting from the point (1,1) and the second equation specifies the
range of points that have a legal path to the ending point (N, N,). Constraints on
the maximum timing difference between the two signatures are also desirable since
they restrict the possibility of accepting a forgery that was obtained by tracing a real

signature at a slow pace. Sakoe and Chiba [64] proposed the following one

|tk - Sk| S N() (3.11)

where Ny is the maximum allowable absolute deviation between any two samples
in each signature. Figure 3.9 shows the available region of the warping plane after
applying the above global constraints (M., = 2).

Using the recursion equation 3.6 and all the mentioned constraints, obtaining the
optimal path is straightforward. For each node (7, j) within the allowed region of the
warping plane, the minimum cumulated cost is computed sequentially column-wise
or row-wise. The previous node that provides the minimum cost is stored in memory.
Finally, the last column or row is searched for the node with minimum cost and then
the optimum warping path is found by backtracking the stored nodes.

Let us summarize the Dynamic Programming Matching algorithm using all the

67
constraints. In order to backtrack the warping path after obtaining the minimum
distance, the algorithm needs to recall the parent node of each point (7, j) within the

allowed region of the warping plane. Let us store the parent one of point (i,7) in

¢ 4)-

1 Imitialization:

D(1,1) =0
¢(1,1)=(1,1)

2 Recursion: for 1 < i < N, 1 < 5 < N,, such that 7 and j stay within the

allowed grid and follow the monotonicity constraints, compute:

D(i—1,5) +d((i - 1,7), (i,5))
D(i,j) =min{ D@i—1,j—1)+d((i-1,j—1), (i, 7)) (3.12)
D(i,j — 1) +d((i,5 — 1), (i,5))

D(i—1,7) +d((i — 1,5), (3,5))
C(t,J) =argming D(@i—1,5—1)+d((i—1,7—1),(,5))
D(i,5 — 1) +d((i,5 — 1), (4, 7))

3 Termination:

D(Cy, Cy) = D(Ng, Ny)
d)l = (Nac: Ny)

4 Path Backtracking:

68

do ¢i1 = ((¢5) until ¢;11 = (1,1)

The resulting function ¢ is ordered backwards, i.e., starting from the last match-

ing points, so it should be reordered if desired.

Figure 3.10 shows an example of dynamic programming matching applied to com-
pare the 2D shape of two signatures. The first column shows the horizontal coordinate
z(t) of both signatures and the second column shows the vertical coordinate y(t) of
both signatures, before and after matching. The upper plot of the third column shows
the two signatures under comparison and the lower plot of the third column shows
the warping path. We note that the matching is quite good regardless of the differ-
ences in the shapes of z(¢) and y(¢). The remaining mismatch between these signals
accounts for the differences in shape of the signatures.

The algorithm presented for curve matching has two components, the dynamic
programming minimization that is mathematically exact and the minimization con-
straints that are heuristically motivated. Therefore, the warping path obtained with
the algorithm provides the best correspondence in terms of curve distance, under the
mentioned constraints. If C'; and Cy are two examples of the same signature, this
warping function represents the best correspondence between the curves after com-
pensating for local shape deformations and local differences in the rate of production
of the signatures. However, if C; and C, are two completely different signatures, the
optimal path is not really meaningful, except as the solution of the dynamic program-
ming process, because establishing correspondence between two completely different

curves is not a well defined concept.

69

x(t) for two signatures in the set s030 y(t) for two signatures in the set s030 Two signatures in the set s030

160

140

120

4GO 50 100 150 200 10GO 50 100 150 200

X(t) for two signatures in the set s030 after DTW y(t) for two signatures in the set s030 after DTW Alignment path between the signatures

200)
160)

120)

“0 — optimal time alignmel
-+ linear time aligment

0 40 80 120 160 200

Figure 3.10: Example of dynamic programming matching applied to compare the 2D
shape of two realizations of the same signature. The first column shows the horizontal
coordinate z(t) of both signatures before and after matching; the second column shows
the vertical coordinate y(¢) of both signatures before and after alignment. The upper
plot of the third column shows the two examples of the signature. The lower plot of
the third column shows the optimal time warping path compared with a linear time
matching path.

3.3 Signature parameterization

3.3.1 Preliminaries

In most of the previous work, a time-based parameterization of the functions to be
compared was used, even though there is no clear reason for using this parameter-
ization other than the convenience of being automatically provided by the capture
device. To our knowledge, only Nalwa [50] used an arc-length parameterization of
the signatures for computing the distinctive functions proposed in his paper. The
arc-length parameterization of the signature is loosely dependent on time and on the
dynamics of signing, even though it keeps the causality of the signature’s generation.
This weak dependence on the dynamics of signing seems contrary to the traditional
idea that pen dynamics is a key element in detecting forgeries. However, the use

of the arc-length parameterization is a first step towards achieving invariance with

70

respect to Euclidean transformations of the signatures. Going one step further, we
could use a parameterization that provides a certain degree of invariance with respect
to affine transformations of the signatures. This parameterization has been described
in the literature [7] and has been called affine arc-length by Pollick and Sapiro [60].

Several studies (see [60, 77, 76, 39] and references therein) show that the generation
and perception of planar movements by humans have a direct relationship between
the tangential velocity of the hand and the radius of curvature of the planar curve.
Experimental results show that the tangential velocity decreases as the curvature

increases. A mathematical fitting of these results gives rise to a power law in which

1
3

the tangential velocity is proportional to the ; power of the radius of curvature.
While the relationship between these two quantities is very intuitive, there is no clear
explanation for the exact factor § in the power law. Pollick and Sapiro [60] show that
this power law precisely implies motion at a constant affine velocity. This means that
curves with equal affine length will be drawn in equal time. The main question is why
affine parameters seem to be embedded in the representation of planar motion. One
possible explanation presented in [60] notes that affine transformations are obtained
when a planar object is rotated and translated in space, and then projected into the
eye via parallel projection. This approximated model for the human visual system is
valid when the object is flat enough and away from the eye, as in the case of drawing

and planar point motions. These observations are the main motivation for using affine

arc-length in our experiments.

3.3.2 Euclidean and affine arc-length

Let’s define the relations used to re-parameterize the signatures on Euclidean and
affine arc-lengths. A planar curve may be defined as the locus of points C(p) =

[z(p), y(p)] € R?, with p € [0,1]. Different parameterizations p define the same curve

but give rise to different velocities along the curve %—g. Given an increasing function

q(p) : [0,1] — [0, 1], the curve defined by C(¢q) = C(¢(p)) will be the same as the one

ac 4 ac

defined C'(p), even though the velocities along the curve will be different 3= # -

71
One of the most well-known parameterizations is the Euclidean arc-length v defined
such as the curve is traveled with constant velocity, i.e., [|[4¢|| = 1. Given our curve
C, parameterized with an arbitrary parameterization p, in order to re-parameterize

it in Euclidean arc-length, we use the relation

/ =~ || dt (3.13)

where it is easy to see that since C(v) = C(v(p)), then, 2 = %—g%, and || & = 1.
Given a curve with Euclidean arc-length parameterization and two points vy and 14

on the curve, the Euclidean length between them is

L(vo, 1) 2 / d (3.14)

0

The Euclidean arc-length parameterization defines a length that is invariant with
respect to rotations and translations (Euclidean transformations).

If we allow for affine transformations rather than Euclidean ones, the Euclidean
length v is not invariant any more. A new parameterization s on affine arc-length
is defined such that the resultant affine length is invariant with respect to affine
transformations. As in the case of the Euclidean arc-length, given the curve with an

arbitrary parameterization p, the re-parameterization in affine arc-length s is

oc 0°C
/ | X o |3dt (3.15)

Based on this parameterization, the affine length between two points sy and s; of

the curves is

72

S1
le(so,sl)é/ dv (3.16)

0

which can be shown to be invariant with respect to affine transformations [7, 60].
The curve C(s) = C(s(p)) parameterized on affine arc-length satisfies the following

relation

oCc 9*C

—x—]=1 3.17

| 0s x 0s? ‘ (3.17)
which means that the area of the parallelogram defined by the vectors %—f and %279 is

constant.
Figure 3.11 shows an example of a signature acquired with the visual tracking sys-
tem and the corresponding re-parameterizations on Euclidean and affine arc-length.

Signature from set s001 parameterized in time Signature from set s001 parameterized in arc-length Signature from set s001 parameterized in affine arc-length
80 80 80
70 70 70

60 60 60
50 50 50
40 40 40
30 30 30
20 20 20
10 10 10

0| 0| 0|
100 120 140 160 100 120 140 160 100 120 140 160

Figure 3.11: The first plot shows a signature acquired with our system and there-
fore parameterized in time. The second and third plots display the same signature
parameterized in Euclidean and affine arc-length respectively.

73
3.4 Evaluation of the performance of the verifica-

tion system

3.4.1 Error rates

Signature verification can be thought of as a two-class pattern recognition problem,
one class consisting of genuine signatures and the other consisting of forgeries. A
great deal of variability can be observed in signatures from the same individual ac-
cording to country, age, time, habits, psychological or mental state, and physical and
practical conditions. The only certainty in this domain is that when two signatures
are identical, one of them is a forgery.

The performance of a verification system is generally evaluated according to the
error representation of a two-class pattern recognition problem, that is, with Type I
and Type II error rates. The Type I error rate (or False Rejection Rate (FRR)),
measures the number of genuine signatures classified as forgeries as a function of the
classification threshold. The Type II error rate (or False Acceptance Rate (FAR)),
evaluates the number of false signatures classified as real ones as a function of the
classification threshold.

Clearly, we can trade-off one type of error for the other type of error. As an
extreme example, if we accept every signature, we will have a 0% FRR and a 100%
FAR, and if we reject every signature, we will have a 100% FRR and a 0% FAR. The
curve of FAR as a function of FRR, using the classification threshold as a parameter,
is called the error trade-off curve. It provides the behavior of the algorithm for any
operating regime and it is the best descriptor of the performance of the system. In
practice, this curve is often simplified into a scalar, the equal error rate, i.e., the error
rate at which the percentage of false accepts equal the percentage of false rejects. This
equal error rate provides an estimate of the statistical performance of the algorithm,
i.e., it provides an estimate of its generalization error. Figure 3.12 shows the curves
of FRR and FAR as a function of the classification threshold and the corresponding

error trade-off curve.

74

FAR (Typell FRR (Type 100%
100% (Typell) (’y_p_l
U E— % .
Rejected! Accepted)/ =
/ =
o (]
2 S
] e
= 4
S T
i

j'
Decision Threshold FRR (Typel) % 100%

Figure 3.12: Curves of FRR and FAR as a function of the classification threshold and
the corresponding error trade-off curve.

Depending on the testing conditions and on the availability of data, a signature
verification system can be validated with different types of forgeries as discussed in

the literature [58]. The two most common types of forgeries are the following:

Random Forgery : where the forger uses his own signature instead of the signature

to be tested.

Skilled Forgery : where the forger tries and practices imitating as closely as possible

the static and dynamic information of a signature.

The comparison among different signature verification systems that have been
presented in the literature is quite difficult since it is hard to replicate the conditions
of the experiments. Signatures are a behavioral biometric, so the generation of a
signature is influenced by the state of mind of the signer. In other words, if the
signer is well motivated, he would make an effort to provide good samples of his
signature. Otherwise, if the subject does not concentrate on signing properly, the
set, of signatures could present quite a bit of unusual variability. The same can be
said for the case of forgers. The use of random forgeries for evaluating a signature
verification system provides artificially lower error rates and should be used as an
initial sanity check, since a system that does not work well when tested with random

forgeries most probably will not work properly with skilled forgeries.

75
3.4.2 Duplicated examples

One common problem of many on-line systems for signature verification is the lack
of examples needed to build a reliable model for a signature and to assess the perfor-
mance of the algorithm. This problem is inherent to the application since it is not
feasible to ask a subject for all possible examples of his signature. Thus, we have to
build a model of the signature that performs well in practice and we have to infer the
generalization error of the algorithm, all with very few examples. If we know that the
model that we are building should be invariant with respect to some transformation
of the examples, we could increase the number of examples in both the training and
test set by using Duplicate Examples as described by Y. Abu-Mostafa [1]. In our
particular case, one possible example of this transformation is time origin translation
since our system should be insensitive to the particular instant of time in which we
started acquiring the signature. Another possible transformation is given by global
affine deformation of the signatures, provided that the acceptable range of the pa-
rameters of this affine deformation could be estimated from the examples. This affine
deformation of the signatures arises by modification of the position of the camera
from acquisition to acquisition. Figure 3.13 shows a signature captured with the
tracking system and a set of virtual examples obtained by time origin shifting and

affine deformation.

Signature from set 001

100 120 140 160

Figure 3.13: The first plot shows the original signature captured with the visual
tracker. The second plot displays the position of the new samples when performing
the time origin shifting. The third and fourth plots show the result of applying
an affine scaling to the original signature, in the horizontal and vertical coordinates
respectively. The maximum and minimum value of scaling to be applied is estimated
from the training set.

76
3.5 Experiments

3.5.1 Data collection

We collected two set of signatures in order to evaluate the performance of the signature
verification system. The first data set consists of signatures from 56 subjects, 18 of
them were women and 4 were left handed. Each of them was asked to provide 25
signatures, 10 to be used as the training set and the other 15 to be used as the test set.
The second data set consists of signatures from 49 different subjects (no intersection
with the first set); 14 of them were women and 6 were left handed. All subjects were
between twenty years old and sixty years old. Each of them was asked to provide 30
signatures, 10 to be used as the training set and the other 20 to be used as the test
set. The first set was used throughout the development of the system so the resulting
performance on set 1 could have been compromised by this fact. In other words, the
resulting algorithm could have over-fitted the first signature set. The second set was
kept unused until the system was fully developed and the performance on set 2 was
computed only once in order to get the results presented in this chapter. Figure 3.14
shows one signature from each of the subjects in the databases. Figure 3.15 shows all
the signatures for subjects s030 and s066 of the first database.

The data was collected in three sessions that took place on different days in order to
get a sample of the variability of the subject’s signatures while avoiding the distortion
produced by the boredom of the repetitive task of signing. We should point out that
the camera was not placed at a fixed position and height; it was changed from subject
to subject and from session to session.

We also asked five of the signers to provide forgeries for each of the subjects in
the database, as the ones shown in figure 3.18. Each set of forgeries for a particular
subject was collected in one session. The naive forger was shown the ink trace of a set
of real signatures and given enough time to practice the signature to be forged until
feeling comfortable writing it. The set of forgeries was collected in two groups of 5
signatures each, giving the forger some rest in between. The visual tracker was set

up such that the signer could not remain still in the same place for more than a few

SN HREAERNANAER
NN 2SS AR 2N
BN R X NEIN AN S
R NEE R NN R R =
SANRE AN AN
NN AN SRR RERS

Figure 3.14: One signature from each of the subjects in the database

78

a
o 40f
40 a0
a0} 3 30}
3 30
a0
2 20|
2 20
20}
19 10
19 10 o
o o o o o
& s e w0 1 % & w0 1o %@ 1m0 T 10 &% @ w0 10 & s 8 w0 w0 T
50 s0f 5
50l 40]
4o 40} 2
4o
m 3
30] 30 30
20f 20} 20] 20| 2
10] 10| 10] 10| 10
o o o o o
50 6 70 8 90 100 110 S 0 70 0 s 100 1i0 W 6 E] T0 120 0 6] B 10 1% S 6 70 8 9 100 i
40f o sof
30 50
a0}
30}
% 25 M
2 a0}
20 0|
20 1
20}
1 2
19 10}
N 10} 10f
0] of of ol of
W % Eg 0 W E] E] 00 1% W w0 0 10 1% 6] B w0 120 o E3 Eg 100
50f
50 sof
ol 50
a0
4o a0} 40
a0}
%) a0} 0 a0}
20)
20| 20} 20 2
10] 10] 1of 10) 10|
0] of 0f of o
S e 70 80 90 100 10 ry % £ T I E] %m0 10 % W o 1o E) % %0 ™
aof
7ol
50 aof 0]
50| b
30|
40 30} 50/
4o
%) 20| a0}
20} %) o
20
10} 10 2 20}
19
19 1
o o o o o
% e 10 1 S 6 70 8 8 100 10 e s w0 Do T % @ 10 Do I % w0 o w0
100 100]
o a0} a0
) 8
& eof ool
60 50
a0} a0
40§ 40 40f
20f 20 20/ 20| 20f
o o o o o
% 10 10 10 10 0 10 1o 160 180 0 10 10 10 180 B 100 120 10 10 180 8 10 10 10 160 180
100 129
100] 100
100y 109
a0}
&) a0}
o)
60 e 60 el 60
40 4of 40f 0] 4of
2 20} 20} 2 2
o o o o o
% 10 120 140 160 8 10 10 w0 160 B 100 120 10 160 B 100 10 1o 0 1 % 100 10 10 10 1
100] 100f 120/
a0}
100]
50l l w0l
eof a0}
60 o o
o0}
a0}
4o 0] 4
a0
2 20
20} 20 20|
o o o o o
o 10 10 w0 10 10 G w0 o T 1o 180 % 10 o o 10 10 &% w0 o o 10 10 F T VT
100
100) 100] 70| o
8 50 o}
80| 80y 50 50}
&0
50 o} P a0}
30|
wl 4 P 30
20 20}
2
2 20} 19 10
o} 0f 0f 0] 0
% w0 @ w0 1% ™o @ w0 w0 I % w0 @m0 o 10 % 10 10 w0 10 180 % 100 20 [0 10 10
80 aof 120
ool 50
0] 70r 100|
60f 50 60r
60 a0}
50 l sof
4o a0
a0} ol e}
%) a0
20| 0]
20 20} 20
10] 1 10} 20
o o o o o

100 120 140 160 1

H

120 140 160 180

100 120 140 160

0 100 120 140 160

Figure 3.15: All signatures from subjects s030 and s066.

79
hundred milliseconds, not allowing the forger to copy the signatures at a very slow
speed but rather forcing him/her to produce it at normal signing pace. The forger
knew that the system was acquiring the full signing trajectory and he/she was given
feedback on the success of his/her attempt. Figure 3.16 shows four signatures and
one skilled forgery from eleven different subjects in the databases. The reader can
make a guess on which signatures are actually forgeries. The answer is on the last

page of the chapter.

3.5.2 Preprocessing

When acquiring the signatures, the position of the camera was only constrained to be
such that the signatures would be captured properly and such that the signer would
be comfortable. Since different signers have diverse writing manners and different pen
holding style, the camera was moved from session to session. Therefore, signatures
from the same subject captured in different sessions could be rotated with respect to
each other. The distance defined for performing DPM is not invariant to rotation,
so we need to normalize each signature with respect to rotation. In order to do
so, we computed the axis of maximum and minimum inertia of the signature and
then rotated the signature so that the axis of maximum inertia coincided with the
horizontal axis. Experiment 1 and 2 compare the performance of the verification
system with and without normalization for rotation. This normalization is not always
successful since it assumes that the signatures have a clearly defined axis of maximum
inertia. Figure 3.17 shows examples of a subject for which the rotation normalization
works quite well and another subject (the only one in our two sets of signatures) for
which the rotation normalization fails.

Subject s004 is the only one in our two sets of signatures for whom the rotation
normalization fails. The individual equal error rates for this subject are 6% for inten-
tional forgeries and 10% for random forgeries. These error rates are quite high due to
the fact that several authentic signatures are rejected since the rotation normaliza-

tion makes them quite different from the training set prototype. Apart from rotation

80

AR PR
SEEN RN

NERAF R R TS
SNYAESNENY
A E R N

N E
R

Figure 3.16: There are four true signatures and one skilled forgery in each row. Do
you want to make a guess? Solutions in the last page of the chapter.

81

5024003 $024008 $024019
60| 80|

50 70
60

40
50
30 40
20 30
20
10
9 0

0 100 150 60 80 100 120 140

40 60 80 100 120 140 5

= N w
=)) S]

=

)

s024003 normalized 024008 normalized s024019 normalized
40

40
30

30
20

20
10
0

0 20 40 60 80 100 0 20 40 60 80 100

$004007 s004015 s004020
50| 50]

40| 40|

30 30

20 20|

10

0| 0
20 30 40 50 60 20 30 40 50 60 K

10 20 30 40 50 60 10

= N W IS

=) =) S S S
=

=3)

0 20 40 60 80 100

= N @ IS
=) 1) S S S
.
)

0

s004007 normalized 004015 normalized 004020 normalized
30y 40

25
30
20
15 20|
10
10
ol 0
0 10 20 30 40 5 0 10 20 30 40 50 60

0

o
BN oW A
s S & 3

o

10 20 30 40 50 60

Figure 3.17: The signatures in the first and third rows are the original ones captured
with the visual tracker and the signatures on the second and fourth rows are the
corresponding ones after rotation normalization. The normalization works quite well
for subject s024’s signatures and fails for subject s004’s signatures.

normalization, no other preprocessing was performed on the signatures.

3.5.3 Distance measures

The distance defined in equation 3.2 is the parameter used for classification in ex-
periments 1, 2 and 3. However, once DPM between two signatures is performed, we
have correspondence between the samples of the signatures and many other measures
of similarities could be employed. In experiment 4, we describe the performance of

the system using three different similarity measures that are boiled down to a single

82
parameter by the use of the harmonic mean, as proposed by Nalwa [50]. Given two
distances called d; and do, the weighted harmonic mean of di; and dy is defined as

follows:

1 1 1
= 1
d O!ldl + O!ng (3 8)

where o and as are the weighting factors. The harmonic mean is similar to perform-
ing an OR operation between the distances (assuming that a low distance corresponds
to a logic 1 and a high distance corresponds to a logic 0). In practice, the harmonic
mean is a simple way of “averaging” distances calculated using two models of which
at least one of them is applicable, but not both models are necessarily applicable.

Using the definition of weighted harmonic mean in equation 3.18, it is possible to

1

generalize to more than two distances as 3

> %dz The weighting factors normal-
ize the different distances to comparable values. In our system, we use the reciprocal
of median absolute deviation of the corresponding distances computed in the training

set as the normalizing factors.

3.5.4 Training

The time required by a biometric system to make an authentication decision could
be critical for some applications. For a typical access control application, the system
needs to make a decision in real-time. For forensic applications, however, the verifica-
tion time may not be such a strict requirement. The authentication decision consists
of determining whether a new signature belongs to the claimed class or not. This
class is represented by the training set. There are two possible approaches in making
this decision. One possibility is measuring the similarity between the new signature
and each of the signatures in the training set and make a decision based on the set
of all similarity measures. Another possible approach that is less time consuming at
verification time, would be the one of extracting a reference signature from the train-

ing set and make a decision based on the similarity between the new signature and

83
this reference one. Given the our particular application of the verification system,
i.e., access control in a fully pen-based system, we chose to take the latter approach
in the development of the verification algorithm.

During training the system must learn a representation of the training set that will
yield minimum generalization error. The dynamic programming matching algorithm
provides the correspondence function between two signatures, so computing the mean
signature of the two original ones along the warping path provides a more robust
representative for the class since the inherent noise in capturing the signatures is
averaged. In the case in which there are more than two examples in the training set,
there is no clear way of aligning all of them at the same time. In principle, one could
think of performing the simultaneous alignment of all the examples, working on an N-
dimensional tensor instead of a matrix. The disadvantage of this approach is that it
is difficult to define the elementary distance associated to the arc joining two nodes of
this tensor. We propose a sub-optimal training procedure. We perform only pairwise
alignment in order to find all the pairwise mean signatures out of all the possible pairs
of elements in the training set. The mean signature that yields minimum alignment
cost with all the remaining signatures in the training set is the one chosen to perform
the final matching. All signatures are placed in correspondence with this particular
pairwise mean signature. The prototype that represents the training set is computed
as the mean of the aligned signatures.

Given the matching constraints mentioned in previous sections, we observe that
the warping path could be non-invertible. In other words, we could have many samples
of one signature in the training set that are in correspondence with only one sample
of the reference signature, and vice-versa. Given this particular characteristic of
the matching process, it is not possible to achieve a full correspondence among all
signatures in the training set, making the computation of the prototype a bit difficult.
In our system, we take all the samples from all the signatures in the training set that
are in correspondence with each particular sample of the reference. The mean of all
these samples provides the corresponding sample of the prototype and the standard

deviation of all these samples gives the weights to be used later when computing the

84

weighted correlation measure between signatures. This particular way of extracting
the prototype from the training set is not optimal since it could happen that several
different samples from the same signature are used to compute one sample of the
prototype, and also, it could happen that the same sample from a signature is used
to compute several samples of the prototype. Figure 3.18 shows several prototypes
extracted using this method. Some of these prototypes are quite noisy in part due to
the particular method used to compute the prototype and in part due to the variability
of the signatures in the training set as well as the quantization effect produced by the
time sampling of the signatures.

The prototype and the weighting function summarizes the local statistics of the
matching process among signatures in the training set. The individual residual dis-
tances between each of the signatures in the training set and the prototype signature
are collected in order to estimate the global statistics of the alignment process. We
extract the median and the median absolute deviation of these distances in order
to use them for classification. In figure 3.18 we show several examples of signatures
collected for our database, their corresponding training prototypes and one of the

forgeries.

3.5.5 Testing

The error rates are evaluated first, for each individual subject and, second, for the
whole dataset. Each subject’s test set allows us to compute the FRR. We computed
the FAR using random and skilled forgeries where the signatures from all other other
subjects were used as random forgeries.

Nelson et al. [51, 52] proposed a complete set, of global measurements to be used in
order to discard gross forgeries before performing any matching. Only time duration
is used in our system in order to do a screening of gross forgeries and speed up the
experiments. The time duration of the signatures in the training set is stored along
with the prototype. The time duration of all signatures under test is checked to be

within three standard deviations of the mean duration for the corresponding subject

85

Signature from set s025 Reference signature for set 025 Forgery in set s025

20 40 60 80 100 120 140 160 180

)

90 100 110 120 130 140

Signature from set s027 Reference signature for set 027 Forgery in set s027
60 50
40

50
40)

40| 30
30

30 20
20
20
10

10 10

40 60 80 100 -20 0 20 40 80 100 120 140 160

Signature from set s037 Reference signature for set 037 Forgery in set s037

30 35

50|

25 30
40| 25
20

20|

30|
15 15

20| 10| 10

10 5 5|

Figure 3.18: Several examples of signatures in our database. On the first column we
display signatures captured with the visual tracker, on the second column we show
the corresponding prototype signature, and on the third column we display one of
the intentional forgeries.

(in fact, we work with robust statistics, so the median and the median absolute
deviation are used instead of the mean and the standard deviation). Signatures that
fall outside this bound are rejected as forgeries while signatures within bounds are
matched to the prototype using DPM. This gross screening reduces the number of
DPM comparisons to be performed by 40% approximately and does not generate any
false rejection.

Once the matching is performed and the corresponding distances measured, the
equal error rate per subject is calculated by intersecting the FAR and FRR curves,
considering them to be piecewise linear. In order to show the performance of the
system, we need to compute the error trade-off curves for the full set of signatures.
The distances obtained per subject have to be normalized in order to obtain the full
error trade-off curves. This normalization seems to be performed in the different

systems described in the literature, but it is not clear how it is done. In our case, we

86

use the global statistics per subject collected during training in order normalize the
test distances. Each subject’s test distances are normalized in two steps. The test
distances are divided by the median absolute deviation of the subject’s distances in
the training set, and then the value of the threshold corresponding to the subject’s
equal error rate is subtracted from the result. After the normalization, all subject’s
test distances are merged together in order to compute the overall error trade-off
curves.

As described in section 3.4.2, we use duplicate examples in order to estimate
the generalization error of the algorithm. Since the distance defined for DPM is
translation-invariant and the signatures are normalized for rotation, the duplicated
examples are generated using only time origin shifting and affine scaling. The perfor-

mance of the system using duplicate examples is shown in experiment 3.

3.5.6 Experiment 1: Performance using different parameter-

izations of the signature

Figure 3.19 compares the performance of the system for the different parameteriza-
tions without rotation normalization of the signatures. We only show the portion
of the error trade-off curve that is most informative. The curves present a staircase

pattern since the number of test examples is very small.

3.5.7 Experiment 2: Performance using different parameter-

izations of the signature

Figure 3.20 compares the performance of the system with rotation normalization of
the signatures for the different parameterizations. The equal error rate values are
smaller than the ones presented in experiment 1, i.e., the rotation normalization
improved the performance of the system since most signatures have a clearly defined

axis of maximum inertia.

87

FAR vs. FRR for setl (skilled forgeries) no axis alig.

FAR vs. FRR for setl (random forgeries) no axis alig.
10 T

— : : . : . 3— : .
! — time param. - EER = 5.00% B l — time param. - EER = 1.61%
or 3 --- Eucl. arc-len. - EER = 3.21% || ' E --- Eucl. arc-len. - EER = 0.59%
8l 3 - - aff. arc-len. - EER = 5.29% . - -~ aff. arc-len. - EER = 0.48%
: : | .
7 5 B 2t !
~ 6f ! i 7 ~ ! 1
S [A gl
x 5 T \ x|t
< ! " < | v
W gt o o bkmmmmmm e = w 1 '
. : -
A % iy
2r 3 Beee- '% """"""" - Tfii_l"g_?_"_":"_"_'_"_":"_T_""_"Z"_T_"_'_'"_"_T_'_"I"_"_T_'
1 | | ¥
0 : : : S 0 X
0O 1 2 3 4 5 6 7 8 9 10 0 3
FRR (%) FRR (%)
FAR vs. FRR for set2 (skilled forgeries) no axis alig. FAR vs. FRR for set2 (random forgeries) no axis alig.
10 T T 3 T
t | — time param. - EER = 2.60% ' — time param. - EER = 1.05%
or 1 | --- Eucl. arc-len. - EER = 3.53% || ! --- Eucl. arc-len. - EER = 0.93%
8t ' | -- aff. arc-len. - EER = 4.16% i ---- aff. arc-len. — EER = 0.83%
7r E ;i_ ol : E
g9 R g i
< I b ~]
% 5r |_' - % i
e PR w "
———————————— >NH 1F
3r R \ - iiii’:é.?' Co oI IITIT S IITI LT
peelTTimTIIIITITI o !
2r i : tm--- =T i
1 L i 3
1 ! ! 1
O L L ! L O L
0o 1 2 3 5 6 7 9 10 0 3
FRR (%)

FRR (%)

Figure 3.19: Performance of the system without rotation normalization. The first row

corresponds to the first signature set and the second row corresponds to the second
signature set. The circle shows the equal error rate condition.

3.5.8 Experiment 3: Performance using duplicate examples

We generated duplicate examples both for training and for computing the FRR. We
used two transformations in order to produce the duplicate examples. One was time
origin shifting, i.e., we re-sampled the signatures using linear interpolation, as if the
time origin would have shifted from its original position to a point inside the inter-
sample interval. The other was small scaling in x and y, where the range of scaling
factors in each coordinate was estimated from the training examples. We generated
19 examples for each signature or forgery provided by the subjects. We did not use
duplicate examples to generate random forgeries since we have enough to estimate
the FAR reliably. Figure 3.21 shows the performance of the system with rotation
normalization, for each of the parameterizations. We observe that the error rates

are bigger than the error rates of experiment 2. This increase in the error rates is

88

FAR vs. FRR for setl (skilled forgeries) axis alig. FAR vs. FRR for setl (random forgeries) axis alig.

T = ; : - ; 4 ; -
'-I ' — time param. - EER = 4.21% ' : — time param. - EER = 2.00%
7 ! ! --- Eucl. arc-len. - EER = 3.15% | : Tl --- Eucl. arc-len. - EER = 0.77%
.. [-- aff. arc-len. - EER = 3.76% : : - - aff. arc-len. - EER = 0.43%
6r H 3t
v [
_5t e,]!
IS e SEERE
At R w2
< - LTS P < | 1
w gF~ Tttt 9. e w !
C oo
2f v 1t
| i i 2 e B R
1} Lo P SN B
oo [
0 L ! L 0 ! L L L
0 1 5 6 7 8 0 3 4

3 4 2
FRR (%) FRR (%)
FAR vs. FRR for set2 (skilled forgeries) axis alig. FAR vs. FRR for set2 (random forgeries) axis alig.

8 T 4—
:: — time param. - EER =2.71% R — time param. - EER = 0.87%
7+ W --- Eucl. arc-len. - EER = 2.29% § : --- Eucl. arc-len. - EER = 0.73%
H --- aff. arc-len. - EER = 3.02% 1 --- aff. arc-len. - EER = 0.58%
6 u] 3r !
e :
_5r [N — f
& sl S
x 4r 1 i x2
£ Pk £
K ittt atiatiutins -\ I SRR
of T R F PN ML [T
' ! e T i 20 1 |
1t e B A ettty
bl .
0 : ‘ 0 ‘
0 1 3 4 5 6 7 8 0 2 3 4
FRR (%) FRR (%)

Figure 3.20: Performance of the system with rotation normalization. The first row
corresponds to the first signature set and the second row corresponds to the second
signature set. The circle shows the equal error rate condition.

expected since we have a bigger set of examples that provides a better statistical
characterization of the problem. We should point out that the error rates are of
the same order as in experiment 2, indicating that we did not introduce any wildly

distorted example and that the algorithm seems to perform acceptably well.

3.5.9 Experiment 4: Performance using different distance

measures

We use three different similarity measures in this experiment. The first one is the
resulting distance after DPM of the prototype and the test signature. The second
one is the weighted correlation between the prototype and the test signature. The
weighting function represents the stability of each point of the prototype when aligned

with each of the signatures in the training set, and it is computed as the reciprocal

89

FAR vs. FRR for setl (skilled forgeries) FAR vs. FRR for setl (random forgeries)

10 T T T T T T T 5 T : : :
W, | — time param. — EER =5.16% i — time param. - EER = 2.54%
or “Q:; --- Eucl. arc-len. - EER = 4.54% || i ! --- Eucl. arc-len. - EER = 1.22%
gt 1 -- aff. arc-len. - EER = 4.52% || a3 - - aff. arc-len. — EER = 0.94%
7t b, 5
0
g 6r . ;\5\3' : '
< N [H
o 5f S % Y
< X 1
gt ot LN
3r N,
2t G| R I
1 } b Rt SITItiacsaan.
1 1 T ——
O L 1 L L L 0 LI L L L
o 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5
FRR (%) FRR (%)
FAR vs. FRR for set2 (skilled forgeries) FAR vs. FRR for set2 (random forgeries)
10 T 5 A
W — time param. - EER = 3.36% H — time param. - EER = 1.27%
o i\ | --- Eucl. arc-len. - EER = 3.28% | 0 --- Eucl. arc-len. — EER = 1.06%
al Vil |-~ aff. arc-len. —-EER=3.81% | at ---- aff. arc-len. - EER = 1.00%
7t ' o
'
—~ - —~3+ e
g° S
x 51 @ t
< < H
[y wol 4
A
\
|3
EEER 0y
N
" TN RIrirsrETIEIE—
0— S 0 L
0o 1 2 3 7 8 9 10 0 1 5

4 5 6 2 3
FRR (%) FRR (%)

Figure 3.21: Performance of the system with duplicated examples. The first row
corresponds to the first signature set and the second row corresponds to the second
signature set. The circle shows the equal error rate condition.

of the standard deviation of the points of the training set that correspond to a point
of the prototype. The third distance is the correlation between the prototype and
the test signature after having performed a Procrustes transformation [70, 21] on
them. This Procrustes transformation provides the optimal, in the least squares sense,
translation, rotation and scaling between the prototype and the test signature, given
the correspondence between their samples. The harmonic mean of these different
distances is used as the classification parameter and the performance is shown in
figure 3.22, for each of the parameterizations. We observe that the best performance is
achieved by using affine arc-length parameterization of the signatures. The individual
equal error rates achieved using the harmonic mean as the classification parameters
is presented in figure 3.23. Given the error rates obtained with random forgeries, we

could conclude that our verification method could be used for recognition since it has

90
quite good discrimination capabilities. Figure 3.24 shows the error rate curves for
each of the distances used in the experiment, for affine arc-length parameterization.

We observe that the use of the harmonic mean of the various distances provides quite

an improvement in performance.

FAR vs. FRR for setl (skilled forgeries)

FAR vs. FRR for setl (random forgeries)
5 T " T
; % [— time param. - EER = 2.90% ' —— time param. — EER = 0.88%
. | --- Eucl. arc-len. - EER = 2.40% u --- Eucl. arc-len. - EER = 0.28%
at I - - aff. arc-len. -EER=1.89% | % - - aff. arc-len. - EER = 0.12%
\\‘ ‘K : 1A
. . i
—al \ L
S S H
< . ~ L
P . SR N 9. x [\
< N N g .
wol X , T w [
”””””” Q- RN toL
| 1. _ RET 1 N
; i el L ! Y
i N | [N
1t ; ! Fodemmdom e
| | 1 [P T
1 ! 1 1
o S e
0 : — : ‘ 0 ‘
0 1 2 3 4 5 0
FRR (%) FRR (%)
FAR vs. FRR for set2 (skilled forgeries) FAR vs. FRR for set2 (random forgeries)
5 . : : : :
: :| — time param. - EER = 1.27% V[— time param. — EER = 0.28%
! ¢ | --- Eucl. arc-len. - EER = 1.73% i | --- Eucl. arc-len. - EER = 0.35%
ab ! v | -~ aff. arc-len. —-EER = 1.11% || Y | --- aff. arc-len. - EER = 0.22%
1 1 1
I
' i 1 I
. ' s _ 1
S ! & 1
24 , @ : '
< < |
o . = |t
Fmmm el - == = Q‘“».‘ i K
: b !
1~ 7 k.0 e 1 E— T ik LT
| e ——— Tt B> FeT Ty
| b T e 1 :
; e - Vo
0 : : 0 ‘
0 1 2 3 5 0
FRR (%)

FRR (%)

Figure 3.22: Performance of the system with multiple distances. The first row cor-

responds to the first signature set and the second row corresponds to the second
signature set. The circle shows the equal error rate condition.

3.5.10 Discussion

The error rates presented in figure 3.22 show that the second set of forgeries have lower
error rates than the first set. This difference could be due to the fact that the second
set has fewer subjects than the first one, or it could also be due to less-motivated
forgers in the case of set 2, or perhaps less-motivated signers in set 1. Of course,
these kinds of speculations arise because we are dealing with a behavioral biometric

and the only way of actually determining the performance of the system would be by

91

Individual equal error rates for setl (skilled forgeries)
30 . . ! !

Individual equal error rates for setl (random forgeries)

: : 15 : :
+ time param. + time param.
O Eucl. arc-len. ° O Eucl. arc-len.
25(x aff. arc-len. 1 x aff. arc-len.
+
+
20t 10
S S
150 + o
5 + + x@ % o
w + w + x
10t 5 + 4
o © +
o + +0 °
0 [akal
1 10 20 30 40 50 56
Subject # Subject #
Individual equal error rates for set2 (skilled forgeries) Individual equal error rates for set2 (random forgeries)
30 ; ; ; 15 T ! .
+ time param. + time param.
O Eucl. arc-len. O Eucl. arc-len.
25 x aff. arc-len. x aff. arc-len.
20t 10r
15 o
i i
w o L
10 Q 1 5@ i
+
5@ 0: % o ® O |
x X * o o
+&o % & o o * q + o + (o]
OMM 0 Ceespeaness : : Posslesser
1 10 20 30 40 48 1 10 20 30 40 48
Subject # Subject #

Figure 3.23: Individual equal error rates achieved using multiple distances. The first
row corresponds to the first signature set and the second row corresponds to the
second signature set.

running a long experiment involving hundreds, if not thousands, of subjects providing
a couple of signatures per day over the course of several weeks. In any case, the error
rates achieved by our system are comparable to the best performances presented in
the literature [40, 41, 58, 35, 24, 34, 45, 50, 54, 65, 81].

Figure 3.25 shows examples from the two data sets for which the algorithm has
an equal error rate greater than 5%. In this figure we show one of the original
signatures, the prototype signature, a signature that is falsely rejected and a falsely

accepted skilled forgery. We observe that higher error rates correspond to signatures

that are very simple, and therefore, easy to forge.

Solution of the game of figure 3.16 There is only one forgery per row of the
figure. We identify the row with a number and the column with a letter, i.e., 3e

corresponds to the figure on the third row and the fifth column. The forgeries are

92

FAR vs. FRR for setl (skilled forgeries)

FAR vs. FRR for setl (random forgeries)
8 A i i : : ; 21 :
' 3] — harmonic mean - EER = 1.89% —— harmonic mean - EER = 0.12%
7t Y --- DPMdistance - EER =4.52% --- DPM distance — EER = 0.94%
'\| -- weighted correl. - EER = 2.96% -- weighted correl. - EER = 0.20%
6r S Procrustes dist. ~EER=360% n |} | Procrustes dist. - EER = 0.51%
' S : '.‘
el Yo T K R
< S
B L S e
i
0 L
3 4 5 6 7 0 1 2
FRR (%) FRR (%)
FAR vs. FRR for set2 (skilled forgeries) FAR vs. FRR for set2 (random forgeries)
8 2
' —— harmonic mean - EER = 1.11% —— harmonic mean - EER = 0.22%
7HY: --- DPM distance - EER = 3.81% --- DPM distance — EER = 1.00%
I ---- weighted correl. - EER = 1.50% --- weighted correl. - EER = 0.43%
6r1 Procrustes dist. ~EER=1.96% 5 | | | Procrustes dist. - EER = 0.31%
',, \ v
=50 — \
[a 4 - ; - [a B e ‘? 7
< : < ‘
[al [.
|
21\ - L
1F i
- I
0 L ' L L L L n n 0 L
0 1 2 3 4 5 6 7 8 0 1 2
FRR (%) FRR (%)

Figure 3.24: Error rate curves for the different distances used in the experiment, for
affine arc-length parameterization.

located in the following position: 1c, 2e, 3a, 4b, ba, 6d, 7c, 8e, 9c, 10a, 11c.

93

Signature from set s019 Reference signature for set s019 False Reject in set 5019 Forgery falsely accepted in set s019
40f 39
40f 501 2
30 40
20 20
20| 30 15
20|
20| 10
10
10
10| 9
9
0| 0 0|
40 50 60 70 8 9 100 0 10 20 0 4 50 6 70 8 9 100 7100 10 120 130 140 150
Signature from set s025 Reference signature for set 025 False Reject in set s025 Forgery falsely accepted in set s025
0 80|
ol o 50|
40
50| 60| 40
30 50|
40 30l
M 40|
20 N 20
9 20
10 10
10 10
0 9 o 0
9 100 110 120 130 0 20 40 60 80 % 100 110 120 130 140 100 120 140 160 180
Signature from set 5041 Reference signature for set s041 False Reject in set 041 Forgery falsely accepted in set s041
20
35 40f
30 18] 49
2 30
i 30|
20 10
15 2 20
10 K
10 10
9 0
9 9 0
6 80 100 120 140 160 20 40 60 8 100 120 0 60 0 00 120 100 120 140 160
Signature from set 001 Reference signature for set s001 False Reject in set 001 Forgery falsely accepted in set S001
80 30|
i 2| 89 40
60)
50 60 30)
1
40 9 2
0 10 40|
20 5 20 10
10 o]
0 9
100 120 140 160 - 0 20 40 6 8 80 100 120 140 160 80 100 120 140 160
Signature from set s027 Reference signature for set 027 False Reject in set 5027 Forgery falsely accepted in set s027
100]
40|
80
30|
60
20|
40
10|
2
0
0
100 120 140 160 180 80 100 120 140 160 180 200
Signature from set s035 Reference signature for set s035 False Reject in set 035 Forgery falsely accepted in set 5035
60
- 60 40
50
50
20| 30|
40 40|
15
30 30 20|
10
20 20
5 10
10 10
0
0 9 9
100 120 140 160 20 0 60 0 100 110 120 130 140 150 160 100 120 40 160

Figure 3.25: Cases for which the algorithm has biggest error. The three first sequences
are from set 1 and the three last are from set 2. We show a signature from the set,
the prototype signature extracted from the training set, a falsely rejected signature,
and a falsely accepted skilled forgery.

94

Chapter 4 Subsample Curve Matching

4.1 Introduction

Chapter 3 described the application of the visual handwriting acquisition interface to
the development of a signature verification system. The comparison between signa-
tures was performed using Dynamic Programming Matching (DPM). Although this
method provides reasonably good performance, it has some disadvantages. Where
the sampling is sparse the matching distance is susceptible to large errors because the
algorithm matches only discrete samples rather than continuous curves. One possi-
ble solution for this problem is to oversample the curves using, for example, spline
interpolation before matching them. This oversampling would provide the desired
resolution; however, it would also increase the computational cost of the matching
proportional to the square of the oversampling factor, and it is not clear how to choose
this oversampling factor in a principled way. Also, depending on the local constraints
imposed on DPM, the resulting correspondence function between the curves might be
non-invertible. In the case of extracting a prototype from a training set, it is desir-
able to put all the examples in full correspondence to extract the mean representative
from the set. The correspondence map being non-invertible makes it impossible to
establish full correspondence between the examples and makes it difficult to extract
the prototype.

This chapter describes an algorithm based on the general method of Dynamic
Programming [3] that overcomes the mentioned disadvantages of DPM by using a
continuous formulation. The algorithm is allowed to find correspondence not only
from sample points in one curve to sample points in the other curve but also from
sample points in one curve to inter-sample points in the other and vice-versa, as
shown in figure 4.1.

To our knowledge, the only existing previous work that has a similar formulation

Curve 1

Figure 4.1: Correspondence between the two curves C'; and C5. The dots indicate
actual samples and the crosses indicate inter-sample points.

is the one of Serra and Berthod [67, 68, 66]. They worked on matching curves or
contours extracted from sequences of images or from stereo image pairs. They also
proposed a continuous dynamic programming technique in order to obtain sub-pixel
matching of the contours, and, therefore, better estimation of the three-dimensional
structure of the scene. Our algorithm is based on a similar choice of distance between
curves (see equation 3.2) as the one described in [67], but it is quite unrelated to the
one presented in [68, 66]. The algorithms developed by Serra and Berthod rely on
the use of several heuristic approximations to limit the complexity of the algorithm.
In our case, we are able to derive several properties that exploit the structure of the
problem and enable the spatial complexity of the algorithm to be decreased.

This chapter is organized as follows. Section 4.2 describes the continuous algo-

rithm for matching planar curves and section 4.3 presents the results of experiments.

4.2 Continuous Dynamic Programming Matching

Continuous Dynamic Programming Matching (CDPM) is the continuous generaliza-
tion of Dynamic Programming Matching (DPM). Figure 4.2(a) and (c) shows an
example of curve matching using DPM and the corresponding matching map on the
warping plane, where each sample on one of the curves is only allowed to match an-

other sample on the other curve. The continuous generalization of DPM allows each

96
sample point in one of the curves to match a point in-between two samples in the
other curve as shown in figure 4.2(b). In other words, the warping path is allowed
to go through points between the vertices of the grid as shown in figure 4.2(d). The
recursion equation will be the same as the one of equation 3.6, with the condition
that if t; takes values on {1,---, N}, then s is allowed to take non-integer values,
and vice-versa (see figure 4.2(b)).

Curvel X(3)

X(3.5)

.) s Optimal continuous correspondence
8 Optimal discrete correspondence =N
N, =N Ny [
Y //_
/'//'
L/
/
s
. k=5 itz 4
J k=3 k=6 k=5 k=6
= MESL A4
k =P t k=2 t
1%=1 K 1% =1 !
(c) 1 ' Ne (d) 1 i N,

Figure 4.2: (a) Matching of two curves using DPM. (b) Matching of two curves
using CDPM. The crosses show matching points that are not samples. (c¢) and (d)
corresponding warping planes and matching functions.

The generation of these intermediate matching points assumes a particular in-
terpolation model for the curves. We assume a linear interpolation model between
sample points since it allows us to derive the correspondence equations in closed and
simple form. Figure 4.3 shows the parameterization of the curves and the notation
used in the derivation of CDPM. Arc-length parameterization is the most convenient
way to describe the curves using the linear interpolation model. The curvilinear co-
ordinate is denoted by x and y in correspondence with the notation X for points of
C: and Y for points of C5. The equations for the coordinates of points belonging to

the piece-wise linear segments of C; and Cs will be the following:

97

C, - Uy = ug(i — 1) + AA%Z’ - uy = uy(j — 1) + yAAIZJ
vy = V(0 — 1) —i—acAAZil vy =vy(j — 1) + yAAz;yj
z € [0,A,] y €10, Ay,]
Aug, = ug(i) — ug(i — 1) Auy, = uy(j) — uy(j — 1)
Avy, = v,(1) — vy — 1) Avy, = v, (J) —vy(5 — 1)
Ay = /Aug? + Av,,? Ay = /Auy? + Avy,?

Y(j—1+ZL)_[Aﬂj]

v?}(j - 1)+y Ayyj

Figure 4.3: Curve parameterization used in CDPM.

4.2.1 Analysis of a single step of the CDPM recursion

Due to the recursive nature of the dynamic programming method, a single step of
the algorithm is the basic building block to be studied. This single step involves the
matching between two segments, one from each curve, and it is governed by the local
continuity constraints imposed onto the minimization of equation 3.6. As mentioned
before, the samples on each of the curves impose a grid onto the warping plane as
shown in figure 4.2(c)-(d). This single step corresponds to a segment of the warping
path joining two sides of one of the squares of the grid. Figure 4.4(a) shows the local
constraints used for DPM (see figure 3.8 and section 3.2 for a detailed explanation)
and figure 4.4(b) displays the corresponding generalization of the local continuity

constraints for CDPM. We identify each square of the grid with the coordinates of

98
its upper-right corner, e.g., the squares shown in figure 4.4 (a)-(b) are identified with
node (i, 7).

(i___la_jz

Figure 4.4: (a) Local continuity constraints imposed onto DPM. (b) Generalization
of the constraints for CDPM. Note that in (a) only samples are allowed to match
while in (b) samples on one curve can be matched to inter-sample points on the other
curve and vice-versa.

Consider the four possible matching cases of figure 4.4(b). Assume the sides of the
square corresponding to points of coordinates (7,7 — 1+ ﬁ) and (i — 14 <%, j) to be

J T4
the “output” sides of the square and the sides corresponding to points of coordinates
(i—1,7—1+ %) and (1 — 1+ A“”—',j — 1) to be the “input” sides of the square (this
J Z4

assumption makes sense since we explore the warping from left to right and from
bottom to top) as shown in figure 4.5. We use a quote ' on the curvilinear variables
x,y to differentiate between “input” and “output” sides of the square.

(i—1+5-9)

| Output
i ﬁmdes
(i—1,5): 'Q
(i—1,5—1+ y;. :
(1-771+A

Input’i -1+ A“m'i »j—=1)
sides

Figure 4.5: Notation used to identify points on one of the squares of the grid of the
warping plane.

In section 3.2.2 we defined the elementary distance d((tx_1, Sx—1), (tx, Sx)) of having

99

X(tx) in correspondence with Y(sx) and X(#x_1) in correspondence with Y(s;_1) as

\

d((te1, 55-1), (s 51)) = | X(E) Y (55) — X(te1) Y (55_1) 1

where ||.||? is the Euclidean norm. This elementary distance can be extended in a
straightforward way to the case of inter-sampling matching once the correspondence
between pairs of points has been established.

The four possible correspondence cases are depicted on figure 4.6. The first col-
umn of the figure exhibits portions of the matching path in the warping plane. The
second column of the figure displays the correspondence between sample and inter-
sample points. The calculation of the elementary distance d((tgx_1,Sk_1), (tk, Sk)) is
demonstrated on the third column of the figure, where X (¢;) and Y'(s;) are super-
imposed in order to provide the geometrical interpretation of the distance, that is
represented by the dashed line.

The distance d((tg_1, Sk—1), (tk, Sx)) is calculated using the cosine law as follows:

Case 1: d i—l—i—Am—;,j—l 0,J — AL — ') cosb;;

|I
A

I
8
— =
N

I
[\
<
—~
[

8

2 —2z(Ay, —y') cos by
Case 3: d

((

Case 2: d((i—1,j—1+
((i (2 — ') cos By
((

)
)): + Ay —y
J i—1+ 5> ,J))
Case 4: d i—l,j—l—i—Ay—,z,j—l—i-AL)) 2 —2A,,(y — ') cos b;;

(4.1)

where cosf;; is the cosine of the angle defined by the vectors X (i —1)X (i) and
Y(j —1)Y(j) as shown in figure 4.6. We see that case 2 is the dual of case 1, and
case 3 is the dual of case 4, so all the properties presented in the following section are
going to be demonstrated only for cases 1 and 3. The use of a linear interpolation
in the curves gives rise to elementary distances that are quadratic in the variables of
interest x and y.

In section 3.2, we presented the recursion equation 3.6 that is used in order to

g/ Curve?2
| |
S
| Ty
. ! LAy
—14----e P B
j—1 ‘
|z 1
Ba; t
T T

Curve 2

J bt

i=1
t

i—1 i curvel

1
:

Figure 4.6: Different matching cases that are possible at each step of the algorithm.

The first column shows the segments on the warping plane.
displays the point correspondence. The third column demonstrates the calculation of

100

X ()

=)

X(i—1)

f:/' Curve2 y Y (5)

Y@ -1 Y6 -1+ 5)
J

X -1+ A“;i)

Curvez\\\ \\Y(j)
.éé

YG -1 Y(G-1+ 5
J

Case 3 Curvel

R D

X({i—1)/
/

Curve 2
Y(@G-1) Y ()

Y(— 1)y Curve2 :Y(j)
d

Y(z'—1+Ayy

J

d((tk—1,8k—1), (tr> k)
y

d((tp—1>5k—1), (tr>5%))

d((tp—1>5k—1), (tr>sk))
Ay

WG =14 50

d((tp—1,5K—1), (tr>5k))

the elementary distance d((tx_1,Sk_1), (t, Sx)) using the cosine law.

The second column

101
find the optimal matching with DPM

Do) = i { Dl) + €01, (1)}
(n%my)
where (15, ny) and (nj,, n;,) were nodes of the grid on the warping plane and £((n},, ny,), (ng, 1y))
was defined by the local continuity constraints. This equation is still valid as the re-
cursion for CDPM by an adequate choice of (ng, ny), (ng, n,), and ((n,, ny,), (nz, ny))
and a proper arrangement of the minimization. (n.,ny) and (n;, n;) respectively cor-
respond to coordinates of points on the input and output sides of the square of the grid
under consideration. Given the local continuity constraints for CDPM that are shown
in figure 4.4(b), £((ni,, ny,), (s, ny)) consists of only one segment that joins two sides of
the square of the grid on the warping plane and the value of £ is given by equation 4.1.
For example, for case 1, £((ny, ny,), (g, ny)) = E((1—1+ A“—;i,j— 1), (4,5 —1+ AL%)) =
d((i—1+F,5-1),(,5—1+ ﬁ)) and the recursion equation takes the following
x; j
form (see the first row of figure 4.6):

. . z . y
D(z,])(y) = min {D(i—l,j—l)(x,) + d((Z -1+ A—’j - 1)a (/La] -1+ A—))} (42)

x! Yj

where the D; ;)(y) is now a function of a continuous variable y and the minimization
is performed with respect to another continuous variable z’. Depending on the corre-
spondence case under analysis, the cumulated distance is noted as Dy; j)(y) or Dy, ;) (),
where the curvilinear coordinates x,y point out the output side of the square of the
grid that Dy, ;)(-) refers to. The index (i, j) indicates the points in the two curves up
to which the cumulated distance is stored in D(; ;)(-). We see that, at each step in
the algorithm, the cumulated distance function D(..y(-) is a function of a continuous
variable instead of a single number, as we had in DPM. This continuous function

will propagate from one step to the following via the recursion equation. Given the

simple expression for the elementary distances shown in equation 4.1, it is easy to

102
show using mathematical induction that the cumulated distance function D..(-) is

a quadratic function of the continuous curvilinear coordinates x, y.

Property 4.2.1 The cumulated distance Dy.)(-) is a quadratic function of the curvi-

e

linear coordinate of interest at every step of the algorithm.

Proof: We develop the proof for cases 1 and 3 separately. We use induction.
Case 1: The first step of the induction corresponds to the matching between the
first segments of each curve. Looking at the first row of figure 4.6 and considering

1 = j = 2, the recursion equation 4.2 takes the following form:

!
Doy (4) = min {a((1+ 51,21+ 20}
- (4.3)
= min {y2 + (Ag, — ') — 2y(A,, — ') cos 022}

Taking the first derivative of d((1+ Am—', 1), (2, 1—|—ﬁ)) with respect to 2’ and equating
z2 2

it to zero, the solution of the minimization is the following:

' = A —ycosby

(4.4)
D(2,2) (ZU) = 92(1 — cos® 922)

In fact, the optimal matching value z’ for a given value of y is just defined by
the projection of Y (1) onto the segment X (1)X(2) once X(2) and Y (s; = 1 + ALW)
are superimposed. The cumulated distance Dy 2)(y) is the distance from Y'(1) to
the segment X (1)X(2) and it is a quadratic function of the variable y, as shown in
figure 4.7.

Assuming that the cumulated distance for 7 > 1,57 —1 > 1 is a quadratic function
of o', say Dij_1)(2') = Apa'® + 2Bya’ + Cyp , then the cumulated distance for (i,)

is computed as follows:

Figure 4.7: Optimal correspondence for the first match with case 1.

Diijy(y) = min { (Agz’” + 2By’ + Cp) + 42 + (Ag, — 2')? — 2y(A,, — 2') cos 0
(4:4) i i]

x!

= min {(Awf + 1)z + 2(By — Ay, + ycos)z’ + (Cor + A2 — 27y cosb;; + yz)}

Z"

Ayr+1—cos? ;; (A1 Ay, +B,1)cos b8y
— » © y2 o z! 2T z l]y + (Cw/ _+_ Ai -
Am/-f—]. Am/-f—]. ¢ Az/—{—l

= Ay° + 2By + C,

(Bm’ _Awq;)2

A = Ay + 1 —cos® 0;; B — (Ap Ay, + By) cos 0

U Awl+1) y— Awl+1)

_ 2 (Bac’ — Azl) r . —YCos oij + (Awl - Bcc'
G=Cot e~ "1 ¥= A1

(4.5)

Having a sequence of elementary matches that consist of only correspondences with
case 3 (or 4), the cumulated distance is a constant as will be shown in equation 4.9.
Assuming that the cumulated distance for ¢ > 1,j—1 > 1 is a constant function of z’,

say D(i;j-1)(a') = Cy , then the cumulated distance for (7, j) is computed as follows:

104

Di' Yy) = min Cw’+y2+ sz—$12_2y A:B'_x’ COSOZ"
(J) i i ¥

x!

= min {x'2 +2(ycosb;; — Ay,)x' + (Co + A2 — 21,y cos 0, + y2)}

II

= (1 — cos®0;;)y* + Cy
= Ay’ + 2By + C,

A, =1-cos’b;; B, =0
Cy=Cy x' = —ycosb;; + Ay,
(4.6)

Therefore, the cumulated distance Dy; ;)(y) is a quadratic function of the variable y.
Case 3: The first step of the induction corresponds to the matching between the
first segments of each curve. Looking at the third row of figure 4.6, the recursion

equation 3.6 takes the following form:

T T

D(2,9)(x) = min {d((l—i— I 1), (1+ ,2))}

Ay, Ay,
‘ (4.7)
= min {A;2 + (z — 2')? = 2A,,(z — 2") cos 022}

x

Taking the first derivative of d((1+-2-, 1), (1+5%, 2)) with respect to 2’ and equating
2 z2

@

it to zero, the solution of the minimization is the following:

I
' = x— Ay, cosby

(4.8)
Dagy(r) = A7 (1 — cos®by)

In fact, the optimal matching value z' for a given value of z is just defined by
the projection of Y'(1) onto the segment X (1)X(2) once Y(2) and X(¢; =1+ =)

are superimposed. The cumulated distance D(;3)(x) is the distance from Y'(1) to the

Figure 4.8: Optimal correspondence for the first match with case 3.

segment X (1) X (2), as shown in figure 4.8, and it is a constant function of the variable
x; in fact, it is a degenerated quadratic function of the variable .

Assuming that the cumulated distance for ¢ > 1,7 — 1 > 1 is a constant function
of &', say D(; j_1)(2') = Cy, then the cumulated distance at step £ + 1 is computed

as follows:

xl

= min

x!

D(;jy(z) = min {C’w: + A2 4 (z —2")? = 24, (z — 2') cos 0,-]-}
{x’2 +2(Ay, cos by —)a’ + (Cor + A — 27, 2" cos 05 + x'2)}

= Cw + A7 (1 - cos”0)

Cp = Cp + A (1 — cos®0)
v’ =1 — Ay, cos by

(4.9)

Given that the cumulated distance for 7+ > 1,7 — 1 > 1 is a constant, then the
cumulated distance for (4,) is also a constant. This situation arises by a sequence of
elementary matches consisting of only correspondences with case 3 (or 4). We have
shown in equations 4.5 and 4.6 that the cumulated distance after a correspondence
with case 1 (or 2) is a quadratic function of the curvilinear variable z (or y). Therefore,
in the general setting we have to assume that the cumulated distance forz > 1,5—-1 >
1 is a quadratic function of 2, say Dy; ;_1)(z') = Apx? 4 2By1’ + Cp, and compute

the cumulated distance for (i, j)

106

D(; jy(z) = min {(Awrx'Q +2Byz’ + Cy) + Azj + (z —2')> = 2A,(z — ") cos Oij}

x!

= min {(Aw, + 1)z + 2(By + Ay cos 0 — z)z’ + (Cy + Af/j — 2As2 cos 0;; + xz)}

)

:L./
A, B, —A_ 1Ay cos b (B '—|—Ay-C050ij)2
— z x2_+_ = g Jj $+(Cw’+A§_m+
Ayl A+l !

= A,2? + 2B,z + C,

Ag+1

A - Ay . B — B, — jllw,ijlcos 0;;
z Zw’ + £ o+
_) (By + Ay, cos 0,~j)2 , _ ©—Ay cosbty — By
C$_C$’+ij_ Azli|—1 = j4ml+1

(4.10)

Therefore, the cumulated distance Dy; j)(x) is a quadratic function of the variable z.

The induction is complete. |

4.2.2 Analysis of the CDPM algorithm

The above equations show how the cumulated distance functions propagate through
the warping plane. Given the four possible correspondence cases at each step of the
recursion, it is easy to see that there are a number of cumulated distance functions
that are propagating through the warping plane. Each of these functions corresponds
to one possible series of elementary matchings. These cumulated distance functions
compete in order to provide the minimum distance between the curves. This compe-
tition is materialized in the final step of the recursion where the minimum value of all
these functions is obtained, providing the minimum distance between the curves. The
corresponding matching function is given by the back-propagation of the value of the
curvilinear coordinate that provides the minimum. This back-propagation through
the warping plane is very simple since at each step of the algorithm, there is a linear
relationship between the corresponding curvilinear coordinates z,y and z',7'. We

showed that the cumulated distance is either a constant or a quadratic function of

107

the curvilinear coordinate x,y. The situation in which the distance is a constant
occurs only for a very particular warping function that consists only of elementary
matches with cases 3 or 4. Given that the distance is a constant at one particular
iteration, we showed in equations 4.9 and 4.10 that the distance would continue being
a constant or it would become a full quadratic function. Also, given that the distance
is a quadratic function, we showed in equations 4.5 and 4.6 that the distance would
continue being a quadratic function.

The CDPM algorithm performs single step matching at each node of the grid
on the warping plane, proceeding from left to right and from bottom to top. After
reaching the last node of the grid, the minimum distance is computed. There is also
a final backtracking step in order to find the point correspondence that provides the
minimum distance. As presented in section 3.2, only part of the warping plane is
explored in order to find the correspondence function that minimizes the distance
between curves. The allowed region on the warping plane is defined by global con-
straints. These constraints limit the number of nodes that are evaluated during the
recursion, decreasing the computational complexity of the algorithm from o(N,N,)
to o(#of nodes inside the allowed region).

In order to summarize the CDPM algorithm, we need a few auxiliary variables
in order to recall the information required for the backtracking step. At each node
(¢,7) of the grid, we have a number of parabolas D j)(y) and Dy j)(z), where the
curvilinear variables x and y specify the output side of the square of the grid that
the parabola corresponds to. We need to recall the parent parabola for each parabola
D ;) (y) and Dy, j)(x) and also the side of the square to which the parent belongs. Let
us store the parent index of parabola k at square (7, j) in Cég)(k) and the parent’s side
on wzg)(k), where the super-index z or y indicates the correspondence of auxiliary

variables with D(; ;)(-). The CDPM algorithm is as follows:
1 Initialization:

a) Compute the two parabolas Dy 9)(y) corresponding to the first iteration
C h bolas Dy, di he first i i
of cases 1 and 4. Cé,?)(l) = Cé,z)(Q) =1, 1/1%’2’2)(1) =z, and ¢%’2,2)(2) =y.

108

(b) Compute the two parabolas D) (x) corresponding to the first iteration
of cases 2 and 3. (5 (1) = (55 (2) =1, ¥, (1) =y, and ¥, (2) = =.
(¢) Fori=2and 2 < j < N,, such that ¢ and j stay within the allowed grid,

i. Compute D(12 »(y) using the equations for the first iteration of case 4.
C(yzj)(l) =1 and 77/1(2,]')(1) =Y.

ii. Compute Dy, ;(x) using the equations for the first iteration of case 2.
(1) = 1 and 95 (1) = y.

iii. Propagate all parabolas D (j-1)(@), k=1,2--- to Df;’l)() using the

equations for case 1. C(QJ (k+1) =k and wé (k+1)=

1) =
iv. Propagate all parabolas D (2,j—-1) z), k=1,2--- to Dg]l)(x) using the
equations for case 3. (§, y(k+1) =k and ¥, ;,(k +1) = .

(d) For 2 <i < N, and j = 2, such that ¢ and j stay within the allowed grid,

i. Compute D(lm) (y) using the equations for the first iteration of case 1.

iy (1) =1 and 9}, (1) = .

ii. Compute D(li 2)(2) using the equations for the first iteration of case 3.

(Go)(1) =1 and ¢f 5 (1) = z.

iii. Propagate all parabolas 'Dﬁ._l %) y), k=1,2--- to DT (y) using the

@:2)\Y
=k and wym (k+1)=uy.
x), k=1,2- Dﬁ’;(x) using the
=k and ¢f 5 (k+1) = y.

equations for case 4. (f;,(k +1

iv. Propagate all parabolas 'D(Z 1.2)

/A/A

equations for case 2. C(zm) (k+1

2 Recursion: for 3 < i < N, 3 < j < N,, such that 7 and j stay within the

allowed grid,

(a) Propagate all parabolas D(” y(@), k=1,2--p; to 'Dﬁ () using the
equations for case 1. C(i »(k) =k and ¢ ”)() = x.

(b) Propagate all parabolas D(” n(@), k=1,2---p; to D@,j) (x) using the
equations for case 3. (f; (k) = k and ¢, ; (k) = =.

109
(c) Propagate all parabolas D@._l,j) (y), k=1,2---p, to Dé‘l‘;’)’ﬁ (y) using the

equations for case 4. (y(k + ps) = k and o] ; (k + ps) = .

(d) Propagate all parabolas Dfi—l,j) (), k=1,2---p, to Dﬁt")’m (x) using the

equations for case 2. (f; y(k + pz) = k and Yf; ; (k + ps) = .

3 Termination:

Find the minimum of all parabolas Dy,,,)(y) and D(x,,n,)(#). The minimum
value is the remaining distance after matching. The corresponding curvilinear
coordinate = or y that provides the minimum distance needs to be propagated

back through the warping plane to obtain the correspondence function.

4 Path Backtracking:

Propagate the curvilinear coordinate x or y that provides the minimum distance
using the equations for a single step shown in the previous section and the parent

information stored in the variables (7% (k) and ¥, (k).

4.2.3 Computational complexity of the CDPM algorithm

The computational complexity of the CDPM algorithm is composed of two parts,
one is the temporal complexity, i.e., the number of steps needed to compute in order
to achieve the final result, and the spatial complexity, i.e., the number of variables
needed to store in order to calculate this result. The temporal complexity of the above
algorithm is given by the number of nodes of the grid within the allowed region of the
warping plane. The maximum temporal complexity is (N;NV,) which occurs when all
the nodes of the warping plane are explored during the computation. Therefore, the
temporal complexity is o(/N; N,), polynomial in the number of samples on each curve.

The spatial complexity of the algorithm is more complex than the temporal one.
Figure 4.9(a) shows the quadratic cumulated distances f'(z') and ¢'(y’) corresponding
to each of the input sides of the square at node (4, j) of the grid. Since there are four
possible correspondence cases, two for each output side of the square, each quadratic

function on the input sides gets propagated into two different quadratic functions at

110
the output sides. In other words, for each output side we have two cumulated distance
functions corresponding to the propagation of the quadratic functions at each of the
input sides. Then, the number of cumulated distance functions doubles at each step
of the recursion, resulting in a combinatorial explosion in the number of cumulated
distance functions to be stored at each step of the algorithm and, therefore, in a spa-
tial complexity that grows combinatorially. Figure 4.9(b) depicts the combinatorial

explosion in the number of cumulated distance functions.

F(=)

g(=)

(a) = (b) 1

Figure 4.9: (a) f'(2') and ¢'(z") are two quadratic functions corresponding to each
of the input sides of the square of the grid at node (7,). After the propagation of
these functions with the four possible correspondence cases, we have four different
quadratic functions, two for each output side of the square. We observe that the
number of cumulate distance functions doubles at each step of the recursion. (b)
Combinatorial explosion in the number of cumulated distance functions needed to be
stored at each step of the algorithm. Each segment that joins two different sides of a
square corresponds to the propagation of a cumulate distance function.

In fact, if no global constraint is imposed on the minimization of equation 3.6, the

following property holds:

Property 4.2.2 Consider the square of the grid on the warping plane corresponding

to node (i,7), then the number of cumulated distance functions for each output side

(i—1+5-1)!

1S =

111

Proof: We use induction. Let us call N(i,7) the number of cumulated distance

functions for each output side of the square corresponding to node (i, j) of the grid.

N(@i+1,5)

(d)

Figure 4.10: Number of cumulated distance functions.

From figure 4.10(a), we see that N(2,2) =2 = % Assume that N(2,j) =

% = 7, from figure 4.10(b), we see that N(2,j +1) =j+1 = %
Assume that N(i,2) = % = 4, from figure 4.10(c), we see that N(i + 1,2) =
i+1= (i+1-142-1)!

D Let us assume that the property holds for ¢ > 1 and 7 > 1, then

we have the following (see figure 4.10(d)):

N(z‘,j+1)=N(i,j)+N(i—1,j+1)=(iﬂ_2)+< - '
N(@+1,7)=N(,j) + N@i+1,j-1)= (“j_Q) + (Hj'_2) N (Hj'_1>
N@Gi+1,j+41)=N@G,j+1)+NG+1,j) = (i—i-j.—l)—l-(

it+j—1 itj—1 i+7) _ (i+7)
=) +) =) = —
J j—1 J lg!

The induction is complete. |

Enforcing global constraints on the minimization would reduce the spatial com-
plexity of the algorithm, although this spatial complexity would remain exponential
in the number of iterations. In order to make the algorithm computationally efficient,
we need to find conditions for bringing this spatial complexity down to a reasonable
value (e.g., polynomial growth in the number of iterations). As mentioned before, we

have a number of parabolas that are competing for providing the minimum matching

112

distance. Each parabola corresponds to a possible series of elementary matchings,
i.e., it is associated with a particular warping path. Since we are only interested in
the matching function that provides the minimum distance between the curves, it
should be possible to keep at each iteration only those parabolas that have a chance
to give this minimum distance. In other words, we need to find properties that allow
us to discard a whole set of parabolas at each iteration, while making sure that the
parabola that provides the minimum distance is among the retained set.

Serra and Berthod [67, 68] proposed the use of heuristic constraints in order to
limit the spatial complexity of the algorithm. They divided the range of excursion of
x,y into a set of intervals, each of them corresponding to a particular distance function
that is the minimum of all distance functions for this interval. At each iteration,
they only kept the distance functions that belonged to the minimum envelope of all
parabolas.

They assumed in their algorithm that, at all iterations, the parabola that provides
the minimum matching distance had to belong to the minimum envelope of the set of
parabolas in the interval [0, A]. Figure 4.11 shows a counter-example to this assump-
tion. We show the propagation of three different parabolas through four iterations of
the algorithm. We see that the parabola plotted with solid line, that does not belong
to the minimum envelope in the first plot, is the one that provides the minimum cost
a few iterations later. We also see that after three iterations, the three parabolas are
very similar, only displaced vertically, as if the coefficients A and B were the same
and the difference between the C' coefficients would be constant. We will describe

this convergence of the coefficients of the parabolas in the following sections.

Figure 4.11: Propagation of three quadratic functions through four iterations of the
algorithm. We observe that the parabola plotted with a solid line that does not belong
to the minimum envelope in the first plot is later on the parabola that provides the
minimum cost.

113

Serra and Berthod further assumed that the intersection points of different parabo-
las would be in correspondence as the algorithm proceeds. In other words, given two
parabolas at one iteration and given the corresponding parabolas after propagation,
then the intersection points of the latter pair of parabolas corresponds to the prop-
agation of the intersection points of the first pair of parabolas. In figure 4.12 we
show a counter-example to this assumption. What goes wrong is that each distance
function has different propagation equations as shown in equations 4.5, 4.6, 4.9, 4.10
and, therefore, the intersection point of the two parabolas at one iteration does not

correspond to the intersection point of the two parabolas after propagation.

4.5 5.5

4 5

Figure 4.12: Propagation of two quadratic distance functions through two iterations of
the algorithm. We observe that the position of the intersection of the parabolas at the
initial condition corresponds to two different points after propagating the parabolas.

From figures 4.12 and 4.11, we observe that the relative position and the shape
of the parabolas change from one iteration to the next. Therefore, we need to find
properties that describe an order relationship between parabolas that is preserved
through the iterations. In other words, we need properties that assure that a partic-
ular parabola is below some other parabola(s) on the interval [0, A] for all iterations.
These properties allow us to perform comparisons between the parabolas in order
to keep only the parabola that may provide the minimum matching distance. Con-
sidering a pair of parabolas, there are three different cases of intersection between
them; they could either have no intersection or have one or two intersection points.
Figure 4.13 shows these three possible intersection cases. The case in which the two
parabolas intersect in only one point happens when the parabolas either are tangent

to each other or have the same quadratic coefficient.

114

Figure 4.13: Cases of intersection between two parabolas: (a) no points of intersection,
(b) two points of intersection and (c)-(d) one point of intersection ((c) corresponds
to tangent parabolas and (d) corresponds to parabolas with the same quadratic co-
efficient).

In the following sections we describe two sets of properties that are used to de-
crease the spatial complexity of the algorithm. These properties focus on pairwise
relationship between parabolas, in particular, on properties corresponding to cases
(a) and (b) of figure 4.13. A pair of parabolas would compete and therefore would be
compared whenever the associated warping paths coincide on the same square of the
grid on the warping plane. The first time in which this comparison is performed would
be considered as the initial condition. The first set of properties refers to the case of
a pair of parabolas that do not intersect at the initial condition. We show that these
two parabolas do not intersect at any further iteration, allowing one to discard the
parabola that is biggest at all points (e.g., parabola 1 of figure 4.13(a)). The second
set of properties refers to a pair of parabolas that intersect at the initial condition.
We show that these two parabolas intersect at all further iterations. We demonstrate
that the quadratic and linear coefficients of these two parabolas converge to the same
value and that the zeroth order coefficient converges to a constant difference after a
few iterations. Finally, we prove that the intersection points between the parabolas
move towards infinity, allowing us to keep only the parabola that is smallest for all

points on the interval of interest (e.g., parabola 1 of figure 4.13(b)).

4.2.4 Pairwise comparison of cumulate distance functions

The relationship between two cumulated distance functions and the changes in this

relationship generated by the propagation of these distances through the warping

115
plane are studied in this section.
The following property describes the behavior of the quadratic coefficient of the

cumulated distance function through the iterations.

Property 4.2.3 At every step of the algorithm in which the cumulated distance is a
quadratic function of x,y, the quadratic coefficient of the parabola A is 0 < A < 1.

Proof: We use induction. Let us call A; the value of A after k iterations of the
algorithm.

For the first step of case 1, we showed in equation 4.4 that A; = 1 — cos? §. Since
0 < |cos?f| <1, then 0 < A; < 1. A= 0 happens for # = 0 or # = 7, a borderline
situation between cases 1 and 3, in which the resultant cumulate distance is 0 and
that can be analyzed in the same fashion that we analyze the first step of case 3.
Thus, for 6 # 0,7, we have 0 < A; < 1.

For the first step of case 3, we showed in equation 4.8 that the cumulated distance
is a constant, and we showed in equation 4.9 that the cumulated distance remains
a constant if the elementary matching occurs with case 3 (or case 4). However,
equation 4.6 shows that A = 1 — cos?# if the matching happens with case 1 (or case
2). As before, § = 0 or § = 7 is a borderline situation between cases 1 and 3 that we
regard as being case 3 since the cumulated distance continues being a constant. We
consider the first matching in which the cumulated distance is a quadratic function,
as the first step of the induction. Then, for # # 0, 7, we have 0 < A; < 1. The result
holds for n = 1.

Assuming that 0 < Ay <1 for £ > 1. For case 1, we have from equation 4.5 that

_ Ap+(1—cos?0)
Ak+1 = T, then

116

0<Ak<1:>1<1+Ak<2:> §1+—A<1

0<cos?’f <1=0< (1~ cos? 0)<1:Ak§Ak+(1—cos20)§1+Ak=>
= 1;451,9 > Ak+§+A 1+A

i< ma = 7 < ik Aksli‘z<Ak+1s1

:>0<Ak+1§1

For case 3, we have from equation 4.9 that Az, = then

1+A ’

0<Ak<1:>1<1+Ak<2:> §1+—A<1:> _1+A

= Ap1 < Ag

The induction is complete. |

Given two parabolas, we study their relationship by looking at their difference
function and the propagation of this function through the computation. The following
properties are stated considering case 1 and 3 since the other two cases are the dual
ones. We abuse the notation by writing D(z) instead of D; j)(z) and we use a quote
" to denote distance functions before propagating them using the formulas presented
in section 4.2.1. We suppress the subscripts on A, and cos# since the properties are

demonstrated for a generic iteration of the algorithm.

Property 4.2.4 Let D'V (2') = A\z"*+2B2'+C! and D' (') = ALz'*+2Ba’ +C}
be two cumulate distance functions at a certain iteration of the algorithm. Let’s call
DU (y) = A1y?>+2By+Crand D (y) = Ayy®+2Boy+Cy the corresponding distance
functions after propagating with case 1. Let us call f'(z') = D'V (z') = D'P(2') =
AA'Z”? + 2AB's + AC" and f(y) = DY (y) — DA (y) = AAy? + 2ABy + AC the
corresponding difference functions. Then, having A} = AA' + A, B} = AB' + B},

117
Cl = AC' + Cl,

_ AA'cos’ 6
A= T AN A
AB = — (A; — Bj)AA'cos AB'cosf
1+A,+ AAY(1+ A4) (1+A,+AA)
_ , (By — A)?°AA 2(By— A,)AB' + AB”
AC = AU G A T AL 1 A T+ AL+ AX)

(AB” — AA'AC") cos® 0

AB2 - AAAC - T 7 T
() 1+ AL+ AAN(1 + A)
Proof:
_ _ AL+AA 41-cos?0 Ah41-—cos?f AA cos? 8
AA=A - A= +A+AAT T AT T (I+AHAAN(1+A))
AB =B, — By = (A4 +AA) A+ By +AB') cos § " (ALAz+Bb)cosd
1+AL+AA Ap+1
(Az AA'+AB'+AYAB'— By AA") cos 0 (Az—BL)AA cos AB' cosf
(1+AL+AA)(1+A4)) (1+AL+AA)(1+A4)) (1+AL,+AA"
(Ay—By—AB')? (Az—Bj)?
AC=C—Co=0C - =2 _Ch 422
1+ AL+AA 1+ A4,
(By—Ag)2AA 2(By)—Az)AB +AB'?
=AC' + -
14+ AL +AAN(1+ A 1+AL+AA!
2 2 2

Going through the algebra,

(AB” — AA'AC")cos0

AB? — AAAC) =
() (1+ A, +AA)(1 + AY)

Corollary 4.2.1 Ifcosf # 0 then

1 If two parabolas intersect in two points at a certain iteration in the algorithm,

118

then they will intersect in two points after propagating with case 1.

2 If two parabolas do not intersect at a certain iteration in the algorithm, then

they will not intersect after propagating with case 1.

Proof: These two corollaries follow directly from properties 4.2.1, 4.2.4, given that
0 <cos?0 <1,and 0 < A <1 as shown in property 4.2.3. |

Corollary 4.2.2 If D'V (z') > D'P(2'), V&', then DV (y) > DD(y), Vy, after prop-

agating with case 1.

Proof: Given that D'V(z') > D'®(2'), Va!, the function f'(z/) = D'V (') —
D' (z') is strictly positive and is either a parabola or a constant. In the case of
f'(z') being a parabola, if cos? § # 0, then from corollary 4.2.1(2) and from the fact
that AA keeps its sign after propagation as seen from property 4.2.4, the parabola
fy) = DO (y) — DA (y) has its opening pointing upwards and does not intersect
the horizontal axis after the propagation, then D™ (y) > D (y), Vy. In particular,
f(0)=AC > 0.
If cos26 = 0, then A; = Ay = 1, By = B, = 0 and AC = AC' 4 P2l 24

+ (1+A’ TAAN(FAL) T
’_ / 12
Q(Bz(ﬁjf‘?ﬁi:,)AB ; thus, f(y) = AC is a constant. The value of AC is independent

of the value of cos?f. We proved in the previous paragraph that AC > 0; therefore,
f(y) > 0.

In the case in which f'(z') is a constant, we have A| = A}, B} = B), and
= f'(«') > 0. Using the propagation equations of property 4.2.1, we have
Ay = Ay, By = By, and AC = AC’ > 0; therefore, f(y) = AC > 0. }

Property 4.2.5 Let D'V (2) = A2 +2Bla' +C} and D' (2') = Ahz*+2BLa' +C)
be two cumulate distance functions at a certain iteration of the algorithm. Let’s call

DW(z) = A12?+2B115+C) and D? (x) = Ayx?+2Byz+C, the corresponding distance

119
functions after propagation with case 3. Let us call f'(z') = D'V (') — D' (') =
AA'Z”? + 2AB's" + AC' and f(z) = DV (z) — D (z) = AAz® + 2ABz + AC the
corresponding difference functions. Then, having A} = AA"+ A,,, B] = AB' + B},
C; = AC' + CY,

_ AA
Ad = (1+ A5+ AAN (1 + A)

AB — (By — Ay cos0)AA’ n AB'
I+ A+AAN(I+A) (1+ A+ AA)

AC = AC'+ (By+ Aycos§)’AA" 2(By+ Aycosf)AB' + AB"”
(1+ A5+ AA)(1+ AY) (1+ A5+ AA")

- _ (AB? - AA'AC)
(AB® = AAAC) = g T AL+ A}

Proof:

AL+AA Al AA
AA=A — Ay =22 - =
1 27T THALFAA T THAL T (1A,)1+ Ab,)

AB =B, — By = BL+AB' —(ALY+AA") Ay cos 8 B,—AL Ay cos b _ AB'—AyAA’ cos 0+ AB' A, —BLAA’

1+AL+AA 14A) (1+AL+AA(1+A))
(BY—Ay cos)AA’ AB’

(1+AY+AA)1+AL) (1+AL+AAT)

AC = Cl _ C’2 — Ci . (By+AB'+A, c059)2 B Cé n M

14 A+ AN 14 A,
2
. , (BY+Ay cos8)2AA 2(BhY+Ay cos)AB' +AB’
=AC+ (14 AL +AA)(1+AL) (14 AL +AA)
2 2 2

Going through the algebra,

- _ (AB? — AA'AC
(AB* = MAC) = 4 A1 + Ay D

120
Corollary 4.2.3

1 If two parabolas intersect in two points at a certain iteration in the algorithm,

then they will intersect in two points after propagating with case 3.

2 If two parabolas do not intersect at a certain iteration in the algorithm, then

they will not intersect after propagating with case 3.

Proof: These two corollaries follow directly from properties 4.2.1, 4.2.5, given that

0<cos?f <1,and 0 < A < 1 as shown in property 4.2.3. |

Corollary 4.2.4 If D'V (z') > D' (), V2!, then DD (z) > D@ (z), Yz, after prop-

agating with case 3.

Proof: Given that D'V(2’) > D' ('), V', the function f'(z/) = D'V (') —
D' (') is strictly positive and is either a parabola or a constant. In the case of f'(z')
being a parabola, then from corollary 4.2.3(2) and from the fact that A A keeps its sign
after propagation as seen from property 4.2.5, the parabola f(z) = D" (z) — D®(x)
has its opening pointing upwards and does not intersect the horizontal axis after the
propagation.

In the case in which f’(z') is a constant, we have A} = A, B} = B}, and
AC" = f'(«') > 0. Using the propagation equations of property 4.2.1, we have
Ay = Ay, By = By, and AC = AC'" > 0; therefore, f(z) = AC > 0. |

The above properties allow us to compare all the quadratic distance functions
pairwise and discard the ones that are “minimized” by another parabola for all the
real line. These properties provide a way to break down the combinatorial explosion

of the spatial complexity of the algorithm, as we will show in the experiments.

121

4.2.5 Asymptotic behavior of pairs of cumulated distance

functions

The previous section described properties referring to pairs of non-intersecting cumu-
lated distance functions. These properties allowed us to discard one of the cumulated
distances of the pair. The remaining cumulated distances correspond to quadratic
functions that intersect at all iterations. The coefficients of these quadratic functions
have to be propagated throughout all iterations and determine the remaining spatial
complexity of the algorithm. The study of the propagation properties of these coef-
ficients provides grounds to further reduce the spatial complexity of the algorithm.
Let us focus on the propagation of two of these quadratic functions throughout the
warping plane. Let DU (r) = A;r? + 2Byr + Cy and D@ (r) = Ayr? + 2Byr + O, be
two quadratic functions at a particular iteration in the algorithm, where r generically
represents either z,y. Let’s call f(r) = DM (r) —=DP(r) = AAr?2+2ABr+ AC. This
section describes the behavior of the coefficients of f(r) as the algorithm progresses
through the warping plane. Let us call iteration 0 when the two functions are com-
pared for the first time (i.e., when the associated warping paths coincide at the same
square of the warping plane grid for the first time). Let us call AA,, AB, and AC,
the coefficients of f,(r), the difference function after n iterations of the algorithm.
We also call cos 8, and A,, accordingly.

A generic path through the warping plane consists of transitions of type 1, 2 and
type 3, 4; therefore, the two extreme cases of allowed paths are the ones that consist
only of transitions of type 1 (or 2) and only of transitions of type 3 (or 4), as shown
in figure 4.14. The asymptotic behavior of any path falls between the behavior of
these two extreme cases and we study them separately.

The equations for a path that consists only of transitions of type 3,4 are simpler,

so we present them first.

Property 4.2.6 A, = TAT%AE

122

s /“only case 3

N
°
©
L
1
>
=
o]

N
N
\\\\\\\\\\%\\\\\\
ANH RIS
T hhg ‘%N&N&\\&\\\
&‘-‘-'—‘-‘-'-‘-‘--

Figure 4.14: A generic path through the warping plane consists of transitions of type
1, 2 and type 3, 4; therefore, the two extreme cases of allowed paths are the ones that
consist only of transitions of type 1 (or 2) and only of transitions of type 3 (or 4).

Proof: We use induction. From equation 4.10, we have that A, = An— , then

TrAT
A = The result holds for n = 1. Assume that it holds for £ > 1. Therefore,

1+A

A — _Ar _ _Ao 1+kAg Ag
E+1 = 134, 1+kAg 1+kAo+Ao T+(k+1)A

= The induction is complete. |

_ AAy

Property 4.2.7 AA,

Proof: We use induction. From property 4.2.5, we have that AA, =

AAp— _ AA _
(1+An71+AAnfi)(1+An71)’ then AA;, = (1+A0+AA2)(1+A0)' The result holds for n = 1.

Assume that it holds for £ > 1. Therefore,

AA AAg (1+kAp) (1+kAo+kAAp)
Ady,, = —
(1+Ak+AAk)(l+Ak) (1+kA0)(1+kA0+kAAO) (1+kA0+A0) (1+kA0+/CAAO+A0+AAO)

AAg
(14+(k+1)Ag) (14 (k+1) Ao+ (k+1) A Ao)

The induction is complete. |

3 AB2 — AAAC,

Property 4.2.8 AB? — AA,AC,

123
Proof: We use induction. From property 4.2.5, we have that AB? — AA,AC, =

AB?2 | —AA,_1AC,_1 2 _ AB2-AA9AGy
(1+An711+AAn71)(1+An71)’ then AB; — AAAC) = (1+A0(3|‘AA0)(1+A0)' The result holds

for n = 1. Assume that it holds for £ > 1. Therefore,

AB2-AALACy

(1+Ak +AAk)(1+Ak)
ABS*AA(]AC() (1—|—kA0) (1+kA0—}—kAAO)

ABZ,, — AAy 1 ACyy: =

(1—|—kA0)(1—|—kA0—|—kAAO) (1+(k—|—1)A0) (1+(k+1)A0+(k+1)AAO)
AB%—AA()AC()

(1+(k+1)Ao) (1+(k+1) Ao+ (k-+1) AAg)

The induction is complete. |

_ BO n—1
Property 4.2.9 B, = 1 ey i nAO > ico Ajcosb;
Proof: We use induction. From equation 4.10, we have that B, = lfj}l;il -
Ancifno1@Shiot then By = ;85 — Ao The result holds for n = 1. As-
sume that it holds for ¥ > 1. Therefore, By,1 = %ﬁf“kcos‘% = %j‘fak +
1+kA B k—1 _ B
1+(k+1)0A0 (1—|—k(140 - 1—|—kA0 Z A COSQ) - 1+(k_|_01)A0 - k_|_1)A0 Z] 0 A COSH The
induction is complete. |
Property 4.2.10
n—1
AA Z Ajcos b
AB AB nBoAAO o j=0
Proof: From property 4.2.9 we have that B, = li"% — 1+nA0 Z" IA cos b,
Bo+AB Ag+AA -1

then B, + AB,, = 1+n((£t)—|—A0Ao) - 1+n&;+A‘140) Z;'l:o Ajcosf;. Therefore, AB, =

Bo+AB B A Ap+AA -1 _ ABo+n(AgABy—BoAAg)
(l—l—n(OAo—l—Avo) - 1—|—n0A0)+(1—|—n0AO - 1+n((140+A(140)) Z;L 0 A j COS 0.7 - (lﬁ?nAo)(lo—I—nxgo—l—noAA(?) -

AAg n—1
(14nAp)(1+nAg+nAAg) Z A COSG I

124
Property 4.2.11

n—1 n—1
(nBy+ Y _Ajcost;)?AAy nAB] +2nByABy +2ABy » A cos;
= =0 — i=0
AC, = ACy+ (1+nAo)(1+nds+ nAA) 1+ nd, + nAAy)

Proof: We use induction. From property 4.2.5, we have that AC,, = AC,_; +
(Bp—1+An_1c080,_1)2AA,_1 2(Bn—1+An_1c088y,_1)ABy, 1+AB2_

1 —
U+ Ap 1 +8A, 1) (1+An_1) (T An 1 +AAn_1) , then AC; = ACy +
(Bo+Ag cos 0g)2AA 2(Bo+Ag cos 8g) ABo+AB2 _ .
(Ao A A (T As) — — (idotads) - Lhe result holds for n = 1. Assume that it

holds for k£ > 1. Therefore,

(Bk-f—Ak COS@]C)QAA]c 2(Bk+Ak cosak)ABk+A32
ACy1 = ACE + .

(I+AR+AAR)(1+A) (1+Ar+AAR)
AC n (kBo—f—Ei-c:_Ol A; cos Oi)2AA0 kABg—f—ZkBoAB(H—ZABO Ef_ol A; cos b;
= 0

(1+]CAO)(1+/€A0+1€AAO) (l—l-kAo—I—kAAo)
(Br+Ag COS@k)QAAk 2(Bi+Ay Cosak)ABk—l—AB]%

(1+Ap+AAR)(1+Ag) (1+Ap+AAg)
(kB()—FEI?:_l A; cos ei)zAAo kAB2+2kBOAB0+2AB(] Zk:_l A; cos §;
. AC _+_ =0 0 =0

(1—|—kA0)(1—|—kA0—|—kAAO) (l—I—kA(H—kAA())

k-1
B A b1 AB AAg(kBo+X2 o Ajcos Gj)
(T9rag ~ THaag 2jm0 Ay cosbj+Ak cos0x)* Ao (rpagthady) ~ (TFRAg (T hAgTraAg))
1+(k+1)Ag+(k+1)AA
(14+(k+1) Ao-+ (k+1) A Ag) (1+ (k+1) Ao) e

k-1)
2(B0_— Ao SE—L A o591 Ay cos) ABg _ AAg(kBo+352, Aj cosbj)
T¥kAg 1+kAg 2-j=0 = TRk N\ FRAg+hAAY) ~ (1+kAQ)(I+kAgFkAAG))
(1+(k+1)Ag+(k+1)AAg) -
(T+kAgThkAAQ)

AC, + ((k4+1)Bo+3F_ Aicos 8;)2A A9 (k+1)AB34+2(k+1)BoABo+2ABo Y8 A; cos 6;
= 0

(1+(k+1) Ag) (1+(k+1) Ao+(k+1) AAg) (1+(k+1) Ao +(k+1)AAg)

The induction is complete. |

From the expressions for AA, and AB,, it is clear that AA,, — 0 quadratically

n—o0

and AB,, —> 0 linearly. From the expression for AC,,, we see that |AC,| is bounded.

n—o0
B A 2|AA AB2Z42n|Bg||ABo|+2n|ABo| A
In fact, [AC,| < [ACy| + éﬂﬁﬁﬁﬁlﬁlw’l) + mest n(|1-|(—)7|z|A0—|(—)7|jAZ(|)) e n_)oo’
(|Bo|+Amaz)?|AAo| AB2+2|Bo||ABo|+2|ABo|Amaz
|ACO‘ + Ao(Ao+AAg) + (Ao+AAy))

Let us call z; 5 the zeros of f(r) = DW(r) —D@(r). The corresponding equations

. AB| | VABZ A :
are r{ = — s1gn(AB)(‘AA| + ABAAAAAC) and zo = — Slgn(AB)‘ABH\/AABC;_AAAC'

125
The zeros of f(r) define the interval in which DM (r) < D@ (r), if AA > 0 (or the
interval in which DM (r) > D@ (r), if AA < 0), so if the position of x1 5 diverges with

n, it is possible to find out which parabola provides the minimum cost.
Property 4.2.12 |r,,| — oo, |r3,| — o0 if [AC,| = 0
n—oo n—oQ n—oo

_ |AB| VABZ-_AAAC

Proof: For |z, |

|AB,| A/AB.2—AA,AC, S VAB2—AA,AC,

T, | = Z
" |AA,| |AA,| |AA,|

= /%Agowo\/a +nAo)(1+ndo +nAAg) — o0

|ACh|
|ABp|+v/ABn2—AA,AC,
separately. The denominator of |z,,| is as follows:

For |zy,| = , we study the numerator and the denominator

ABy nBoAAg—AAg "4 A, cos b;
IAB,| + VAB,2 — AA,AC, = - =0 9
(14+nAo+nAAp) (14+nAo)(1+nAp+nAAp)
N AB AAACH _ l ABy B BoAAo—AAo(: Y123 Ajcosb;)
(14nAp)(1+nAg+nAAp) n || L+A0+4a4 (2+40)(2+A40+AAy)

N ABy2—AAGAC)
(1+A40)(E+A40+AA)
The denominator of |zo, | is composed of two factors; one of them is %, that tends

to zero as n — oo, and the other is a quantity that tends to a constant as n — oo.

This second factor tends to a constant since Ay > 0 and Ay + AAy; > 0 as shown in

property 4.2.3 and the term %Z;;& Ajcosf; is bounded between 0 and A, due
to the fact that 0 < |cos6;| < 1,Vj and 0 < A; < Apes, Vj. Moving the n in the
factor % from the denominator to the numerator, we have a resulting numerator of the
form n|AC,|, leaving the denominator with an expression that tends to a constant
as n — oo. Since |AC,| is bounded for all n, the resulting numerator n|AC,,| — oo

n—oo

unless |AC,| — 0. Therefore, |z5,| — oo if [AC,| - 0. 1
n—o0 n—o0 n—00

126

Let us explore the conditions for |AC,| — 0. Let us call &, = Z?:_OI A; cos b;,
n—,oo

then the expression for AC,, is the following:

(nBo+&n)2AAg nABZ+2nBoA Bo+2A Boé,
AC, = |AC) + - — 9 -
(1—|—’ILAO)(1—}—TLAO—|—7LAA()) (l—l—nA()—{—nAA())

[(14+mA0)(1-+nAg+nA Ag)ACo—nA By —2nBoABo)+n? B3 A Ao | +2€n(nBoAAg—(1+nAg) ABo)+ AAE2

(1—|—TLAO)(1+nA0+nAA0)

The equation for AC),, has a numerator that is a quadratic equation on &,, so let
us find the values of &, that makes the numerator of AC,, equal to zero. The solution

is the following

1. AB
S

(AB2 — AAgACy)
A A2

1 1
+ \/(AO + —)(Ag+ AAy + —)
n n

(4.11)

For this particular value of &,, the denominator of |z, | takes the following value:

ABo(L+40)—BoAAo

(2+A40)(L+40+AA)

1 1
w+A0) (5 +A0+AAg)

2_
(AB,|+ VAB2 — AAAC, = [\/ (ABo*—AAgACy
n

0

AB2-AAQAC
Ado (—Bo+(Ao+,{)ﬁiﬂi\/(}ﬁAo)(hAwAAo)(OMZ,OO)) u

2 ABy2—AAgACy
(#+40)(3 +40+AAo) NV (5+A0)(5 +A0+AAo)

The factor ABy?>—AAyAC, # 0 since these properties correspond to a pair of parabo-
las that intersect. The denominator of |z, | is different from zero and the numerator
of |x9, | is equal to AC,, = 0 for this particular value of &,; therefore, |z5,| = 0, Vn.

The particular value of &, given by equation 4.11 is defined by having AC,, = 0.

127
Let us find out whether there is a different condition on &, such that |AC,| — 0.
n—00

Let us write the equation for AC), having several terms re-arranged

AC, = |AC, + (nBo+&n)2AAg B nABZ+2nByABy+2A By,
(14nAp)(14+nAp+nAAyp) (14+nAp+nAAg)
(Ao(Ao-i—AAO)ACO+B3AA0—A0AB§—2AOBOABO)+2%(BOAAO—AOABO)-i—AAOfL—%
B (2+A0)(2+A0+AAo)
(ACO(2A0+AA0)—AB(2)—QBOABO)_ZABO%+A762*0
+ n n n
(L+A40)(2+A0+AA)

Let us call £ = lim,,_, %ﬁn. Since 0 < |cosf;| < 1,Vjand 0 < Aj < Apas, V5,
the value of [£] is bounded 0 < [£| < Aj4.. Therefore, the three first terms of the
above expression converge to a constant value as n — oo while the last three terms
converge to zero as n — 0o. The questions is whether the first three terms cancel out
making |AC,| —_ 0. Let us find out the condition on &, that make the sum of these

terms equal to zero for all n. We need to solve the following quadratic equation on

€n-

AAGE: + 2n&y (BoAAg — AyABy)
+n?(Ag(Ag + AAY)ACy + BiAAy — AgAB] — 2A¢ByABy) =0

The solution for &, is the following:

AB Ao(Ag + AAG)(AB — AAA
& ,=n|—By+ A Oi\/ o(o + 840) (A5, 04Ch) (4.12)

"2 A4, AA?

For this particular value of &,, the denominator of |z, | takes the following value:

128

AB()(%—FA())—B()AAO
(L4 40)(L+A40+AAo)

pmm+vﬁaf—A%A@=1[
n

AAg (—Bo-I-Ao 2B i\/AO(AOJFAAOxABS—AAoACo)

Ado a4g >+ \/ ABy>~AAgACy
(
1
n

(3 +40) (5 +Ao+AAo) »+A0)(5 +Ao+AA)
For this particular value of &,, the numerator of |z, | takes the following value:

2201/ A0(Ao+AAg)(AB—AAgACy)
(2+A40) (2 +A40+AA)

" ABy?2—AA¢ACy
(2+40)(L+A40+AAy)

AAg n

AC, =+
n

[(240+AAQ)(AAGAC) —ABO2):F\/A0(A0+AA0)(A38 —AAQACH) L A0,]

(2+A40)(L+40+AA)

The multiplicative factors ~ in the numerator and the denominator of |z, | cancel
out, leaving an expression for |z,,| that tends to a constant as n — oo. The value
of this constant is defined by the initial conditions Ay, By, Cy, AAy, ABy, and AC).
Therefore, depending on the value of &,, the zero |zo, | tends to infinity, to a constant
or is equal to zero.

The conditions imposed on &, by equations 4.11 and 4.11 are quite restrictive since
there is no a priori information on the values of Ay, By, Cy, AAy, ABy, ACy, cosb;
and A,; other than cos 6; ~ 1 for similar curves, 0 < Ay < 1, and ABy?—AA AC, # 0.
Therefore, it is reasonable to expect that in general &, # &,, ,, and the value of n|AC,|
diverges as n — oc.

We showed that |z, | and |z9, | diverge as n — oo, but we do not know whether
they had the same sign or not. The first plot of figure 4.15 shows the case of the
two zeros having different sign and the last two plots of the figure show the case of
the two zeros having the same sign. In the first case, the parabola that provides the
minimum cumulated distance is D®(r) while in the last two cases the minimum is
achieved by DM (r).

A

= 252, 50 the sign of £52 tells us whether

T AAYY

The product of the two zeros is z1, z2,

129

D2, ()

T1,

D1y (1)

Figure 4.15: Different possible locations of x;, and z,,.

the two zeros have the same sign or not. From property 4.2.7 we see that the sign of
AA, is the same for all iterations, thus the sign of AC,, carries the information about
the sign of the zeros.

We observe that depending on the value of &,, AC),, could be either positive or
negative and could switch signs from iteration to iteration. Looking at figure 4.15,
it would be possible that in one iteration the parabola that provides the minimum
would be DM (r) while in the following one it would be D®(r); therefore, it would
not be possible to make an optimal decision.

The value of %" =1 Z;‘;& Ajcosf; is bounded 0 < |%“| < Apez since 0 <

T n

lcosf;| < 1,¥j and 0 < A; < Apag, Vi I [=Apnagy Anag] C [22, £22], Vi, then
&n € [€nyyEny], Yn, and the sign of AC, would be opposite to the sign of AA, for
all the iterations; therefore, the signs of x5 would always be different and the
situation would correspond to the first plot of figure 4.15 and we could make an
optimal decision. Since the values of &, , depend only on the initial conditions of
the two parabolas, the check for the above condition could be done at the very first
iteration and then make the decision on which parabola to keep later, whenever the
coefficients of the two parabolas have converged.

For the extreme case of a path consisting only of transitions of type 1,2, the
equations are a bit more complicated. There is a particular case if cos?6,, = 1 Vn,
in which the equations simplify and resemble the equations for the extreme case of
a path consisting only of transition of type 3,4. It can be shown that the following

properties hold:

130

— _ 4o
An T 14nAg
— A4y
AA” - (1—|—nA0)(1+nA0+nAA0)

ABZ _ AA AC _ AB(Z)—AA()ACO
n n n =

1+’I7.A0)(1+'FLAO +’ILAAO)
B o= _% I (=)"IA; | (—1)7 B,
n 1+nAg 1+nAyp
AB . (71)“‘ABO + (71)"+1nB0AA0 o AAO Z;L:_Ol(_l)n_jAj (413)
n 14+nAp+nAAg (1+nA0)(1+nA0+nAA0) (1—|—’ILAO)(1—}—TLAO—}—HAAO)

(1+nA0)(1+nA0+’nAAO) (1+nA0+'nAAO

C, = AC,y + (nBo—Y" (—1)'A)?AAy nAB2+2nBoABo+2ABg T (~1)IA,
AC, = A
|1, — o0

n—r00

|zo, | — o0 if AC,| -» 0
n—0o0

n—oo

In the general case, cos? 6, # 1 for most n since it would be very unlikely to be
matching exactly the same curve; in fact, even if the two curves are the same, the
noise in the acquisition provides a random variability on the position of the samples
that make cos? 6, # 1 with high probability, although cos? §,, would be very close to
1 in this case. Then, the following properties hold:

2 .
Property 4.2.13 AA, = AA, H;:Ol § +Ai)(cloi— ﬁz AL

Proof: We use induction. From property 4.2.4, we have that AA,, = T AnA_’fj‘Al ::il)g?ﬂ: T

then AA; = T Aﬁf%ﬁi;gg o) The result holds for n = 1. Assume that it holds for
_ A Ay cos? _ k 29, .
k > 1. Therefore, AAg,, = (1+Ak+kAAk)(1k+Ak) = AA], (l’i‘Ai)((:(l)j‘Ai‘f'AAi). The in-

duction is complete. i

131
Property 4.2.14 B, =Y [(-1)" 7 A4;A; <H;‘L_j1 %) +(=1)"By (Hg;; %)

_ (An—1An—1+Bn—_1)cosbn— 1

Proof: We use induction. From equation 4.5, we have that B,, =

1+An 1
then B, = —Alﬁzzse" - B‘l’j‘jjoeo. The result holds for n = 1. Assume that it holds for
_ ApApcos8, Bpcosb, _ ApApcosfp
k > 1. Therefore, By = TiA, A= TiA,

k—1 — k— 1 COS0 k-1 COSei J—
e (S COMIAN T w3y + CVFB I, §%45) =

S o (=) AA (T (gffj) + (1) By (IT7-o $255) . The induction is com-

plete. i

Property 4.2.15

= cos 0; AB, - i—1 cos? 0,
= J -1\ n 1

ABn—AAo<j1;[0(1+Aj+AAj)> (1" 3z, * BOZI+A (JH e)

n—2 i— n1 i1 \

; cos 6 1 cos” b,

Z(_l)”“AiAi(H 7’") Z 7(7) N

i=0 meo (L Am)) S T+ A; 2 (14 A)?

nl i—1

A cos 0,
—1)*¢) _Cosu;
2T (H (1+Aj>>

_ _ ABp_1cosfp_1
- (1+An 1+AA, 1)

The

Proof: We use induction. From property 4.2.4, we have that AB,,

(Anfl_anl)AAnfl cos b, 1 _ cos g ABO
(1+An—1+AA,—1)(1+An-1) ’ then AB, = AAO(1+Ao+AAo)(Ado T (1+A0)

result holds for n = 1. Assume that it holds for £ > 1. Therefore,

(1+A))

132

(Ak — Bk)AAk COS Qk ABk COS Ok

ABpy = — -
Frt 1+ A+ A4+ Ay (14 Ay + AAy)

=AA k LHJ’ [-1 Ay 1?71 cos 0;
o0) (Y o W=) +
k—1
i A cos? 6; ; cosf; B cos? 6;
-1 k=i 70 k_l J Z__l—J -1 k=0 k.:—l
ZZO() 144, (H]:Z (1+Aj)2) (H]:O (1+Aj)) + () 1+A4y, (HJ 0 (1—|—A)2) +

-1
1 _ 29; AB
_1)kBO (H;c:é Cos™ Uy)+(_1)k+1 0 +
imo ‘T4

(1+4;)? AAg
k—2 o5t -1 24
_1 cosfm 1 cos” Om
()lc zA A (J)]
- (1+Am = (14+Am)?
1=

n—1
n— cos §; nABo e i_1 cos29;
=AA0(H-;—)[<—1> () IBOEjj(H-:—H
i=0 ’

770 (144;+04;) A4 =0 (144,

n—2 n—1 2
Z()n 1— zA A (H —1 cosbm) Z 1 (Hi;:lz cos? O) "
' j=it1

P 0 (144,) 1+A; (1+Am)?
n—1
- Ay ; cos 8
_1 n—e ? Z.:l J i|
g() 1+4; <HJ‘O(1+Aj))

The induction is complete. |

R NAY) AL) 2
Property 4.2.16 AC, = AC, +ZZ‘;01(((B; — A)*AA; 2(B; AZ)ABH—ABZ)

1+ A)1+ A4 +A4) (1+A+A4)

Proof: We use induction. From property 4.2.4, we have that AC,, = AC,,_1 +

(Bno1—An_1)?’AAn 1 2(Bp_1—An_1)ABn_1+AB, 12 _ (Bo—Ag)?AAg
(TFAn 1 TAAn D)1+ An 1) (T An 1 A4, 1) , then ACT = ACo+ g T8 A0 (1+40)

B O(Ifg)oﬁiosz o’ The result holds for n = 1. Assume that it holds for £ > 1. There-

(Br—Ag)2AA 2(Br—Ag)ABy+AB? _ k (B;—A;)2AA;
fore, ACk11 = AC,+ 1+A,’§+A,’Zk)(1+’i4k) k(1+f;k+AkAk) - _ACO+Z¢:O((1+Ai)(1+Ai+AA,-)_

2(B;—A;)AB; —|—AB
(l—I—Ai—}—AAi)

). The induction is complete. |

As we observe from the previous properties, the asymptotic behavior of the co-
efficients of f,(r) depends upon the behavior of [[7_o(1 + A;). Let’s call P, =
H?:o(l + A;), then P, > P,_; since P, = (1+ A,)P,_; and 0 < A < 1. Thus, P, is

133

a monotonically increasing function of n.

Property 4.2.17 P, behaves according to the following difference equation P, —
2Pn—1 + (1 — SiIl2 en—l)Pn—Z =0.

n—1+sin?8,_1

Proof: From equation 4.2.4 we have that A4, = 2 . It can be shown by

1+An71
3 ; _ n—1 sin? ; P;_; Ao _ sin?8q Ao _ sin®00P_1 | Ag
induction that A, =) ", Pt In fact, A, = AT = e R
3 — 3 : _ Ak+sin2 O, k sin? 0;P;_1 Ay
with P_; = 1. Assuming valid for k > 1, A1 = A= Do B i

Now, let us look at P, = [[;_(1+A4;) = (1+Ay)Py—1, then replacing by the equa-
tion for A, described in the previous paragraph, P, = P, 1 + Ay + Z?:_ol sin? 6;P,_,
with the initial condition that P_, = 1. Thus, AP, = P,—P,_; = Ag+Y17 sin? 6, P;_,
and AAP, = (P, — Po_1) — (Po_1 — Pu_g) = Y0 sin? ;P — Y1 sin ;P =
sin? 6,,_1 P,_5. Finally, P, — 2P,_1 4+ (1 —sin?6,_1)P,_, = 0. |

Let us analyze a few solutions of the differential equation for P,. As we pointed
out before, the case in which sin?#, = 0, Vn, i.e., cos’6, = 1, Vn, simplifies the
problem as seen in equation 4.13. The difference equation for P, has two equal roots
and the solution is simply P, =1+ (n+ 1)Ag. Therefore, P, diverges linearly in this

case. Let us solve for P, when sin?#6, is a constant different from zero.

Property 4.2.18 Forsin®6, =y # 0, Vn is P, = (22 + 4(1 + %))(1 + /)" +
(S = 1+)1~)

Proof: Ifsin?#, = # 0, Vn, then the difference equation for P, is the following:

Pn—QPn_1+(1—’)/)Pn_2:O
P_1:1
P0:1+A0

The solution of the above difference equation is of the type P, = o™ that gives

rise to the following quadratic equation on «, o? — 2a+ (1 —) = 0, whose solu-

134
tions are ayp = 1+ /7y = 1 £ [sinf|. The general form of the solution for P, is
P, = ciaq + coas where the coefficients ¢; and ¢y are defined by the initial conditions:
P,=1= clal_l + czaz_l and Py =1+ Ag = ¢ + ¢o. The solution of this system of
two equations on two unknowns is ¢; = 14 +§(1+%) and ¢, = 140 — 4(1%—%),

that completes the proof. il

The behavior of P, for large n in this case is defined by the evolution of the term
(14~)™ that diverges exponentially. The rate of divergence is directly associated with
the value of . In practical terms, having sin?#6,, = v # 0, Vn is quite unlikely, unless

we match one curve against a version of itself rotated by an angle equal to sin™" (/7).

Property 4.2.19 Forsin?6, =1, Vn is P, = 2".

Proof: If sin?#, =1, Vn, then A, = 1, Vn and, therefore,
Po=TI,(1+4) =T ,1+1)=2"1

From the previous solutions for P,, we infer that its general behavior is bounded
by an increasing linear function and an exponential function of type 2. The case of
the linear solution corresponds to having sin?#, = 0, Vn, but in practical situations
it is quite difficult to get this case since the noise in the acquisition would make it
quite unlikely since measuring the same coordinates for the same point has probability
zero. Besides, it is also quite unlikely to have many segments for which sin?#,, = 0;
therefore, it is reasonable to expect that sin?6, # 0 for almost all n. In the case
in which sin?6,, = 0 a few times, the following properties describe the asymptotic
behavior of P, after the last n for which sin?6,, = 0.

Let us analyze the case in which sin?6, > 0, Vn. The two cases analyzed in
properties 4.2.18, 4.2.19 are the extreme possible behaviors of P,. In general, P,
should behave in between these two extreme cases, still diverging exponentially but

at an unknown rate.

Property 4.2.20 Assume that sin® 6, > 0, Vn, say sin®6, > ¢, Vn, let us call P

135
the solution for P, when sin® 6, = ¢, Vn, then P, > P¢, Vn.

Proof: We use induction. The initial conditions for P, and Py are P_; = P¢; =1
and Py = P§ = 1+ Ap. Take sin?fy > ¢, then P, = 2Py — (1 — sin®6p)P_; > 2P§ —
(1 —€)P¢; = Pf. The result holds for n = 1. Assume that it holds for & > 1. Thus,
P, > Pf and Py | > Pf_,. Take sin?), > ¢, then —(1 —sin®)P, 1 > —(1 — €)Pf_,
and Py = 2P, — (1 —sin®6y) Py > 2Pf — (1 — €)P¢_;, = Pf,;. The induction is

complete. |

Let us study the asymptotic behavior of AA, AB, and AC. Property 4.2.13 shows

that Ad, = AA Ty rrayiaTany and, therefore, A4, — 0 exponentially.

The following properties describe the behavior of AB,, and AC,.

Property 4.2.21 |AB,| — 0
n—r00

Proof: Let us assume that A, < App, V0, P, = [[1_,(1+ A;) > Ko™, ¢ > 1 and
P =TI o1+ A;+ AA;) > Kje™, €' > 1. Let us recall that 0 < |cos6;| <1, Vi and
0 < A; <1, Vi. Then,

n—1) n—1
! cos8; | |ABo| 1 T2 cos? 9, 25| cos 8yl
AB,] < [Ady| = By e Y +
|AAO| i—0 1+A; Pi71 i—0 1+A; P;_4
n—2 Hi_l | O] n—1
14 —o | cos
E ()" AN T E (H scos?O,) | <
X P4 — 1—|—A P2
1=0 Jj=i+1
B n—1 -1 n—2 n—1
|AA0‘ 1—n+1 |ABO| |BO‘ _22 Amaz Amam —(i—l) _Q(j_i)
a: o Z D DL DL
K AA K
0 &40l 0 =0 =0 i=0 j=it1
< |AAO‘ 8,,n+1 |AB()| + |Bo‘€ 1—g—2n + Amaz 1—7™
T K} |AAg| K 1-¢72 Ko 1—¢g7!
Amam 672_674_878_'_679_677171+57n73+672n76_572n77 O I
—
Ko (1—e~1)(1—£72)2 n—00

Property 4.2.22 |AC,| — constant
n—r0o0

136

Proof: Let us assume that A, < Ap.p, Vn, P, =[], (1 + A4;) > Ko™, € > 1 and
P =TI o(1+A;+ AA;) > Kje™, €' > 1. Let us recall that 0 < |cos6;| <1, Vi and

0 < A; <1, Vi. Then we need bounds for |B;| and |AB;| since

n—1
i+A1)%|A4; 5| +A)|AB;|+AB?
|AC,| < IACo|+Z((Bitdu) 1 Adil | 20Bil+A)IABi+ B,>
imo \(1HA)(A+A+AA) (1+Ai+AA;)

—

71—

Bi = 3 (1) 9 A3 (T €08 0) 270 4 (< 1) Byt

- m=) Pi_l Pi_l
J

Il
)

i—1 '
|BO‘ Amaz i1 |B()| (i1 _set—1
+ E el = —=¢ (i-1) + Amaw‘f % —

K e—1
3=0 0

= |B;| <

P P;_1

‘BO| —(i—1 I Amaz €|Bo‘
—¢ =) + Amcwlc = + (

A i .
J— mam)a) — Nl +N25 1
Ko e-1 e—1 Ko e—1

[AAo| ,—j+1||ABo| = |Bolel-e7% Apag 1-e7
AB;| < —— ¢ +
| < Ky |AAo| K2 1—g2 Ko 1_e-1

Amaz 5_2_5_4—5_8+E_9—5_i_1+E_i_3+5_2i_6—5_2i—7

Ko (1—e~1)(1——2)2

M16lfi—{—M2(€I€)_i +M3(€'62)_i

137

[A Ao

IAC,| < |ACy| + Z((N1 + Nape ™% + Apae)(€'e) 7 +

2™ 1(N1 + Noe™t + Amax)(Mls'_i + My(e'e) ™ + Ms(e'e?) ™) +

0

_1(M18/—i +M2(8,8)_i +M3(€/82)—i)2> —

Ado| , Amas 1A _ L (ele)—n
ACy| + (' A o, +2¢! 1N2M1> -
KoK}y 1-e71 1—e! 1—(e'e)~ 1
AAg| Amas E’ilA 2\—n
(2N2| o Bres 4oy © 4 2e” 1NQMQ) e
KoK} 1—e1 1—e™ 1—(e'e?) !

1.3 /_1 _-n _(2Y—n
2]\72 |AAo| n 26'_1N2M3 —(e'e’)™" n 2M1 Amaz 1-¢' +6/—1M121 (e'")
KoK} 1—(e'e3)~1 1—e=1 1-¢/7! 1—(e'?)~!
—(e'%e2)n 1 1—('2et)—n -1 1—(e'%e)m
M2 2M{M3)—— MR ————— 4+ 2T M My————
(+ ! 3) 1—(¢ 52) 1 ¢ 3 1—(5’254)_1 +ee ! 21—(6/26)_1
(%)

— constant l
1—(e"2e3)"1 n—oo

28171M2M3

Let us call z; 5 the zeros of f(r) = DW(r) —D@(r). The corresponding equations
. A / — .
are I = — s1gn(AB)(‘A§| + YREAARG) and @y = — Slgn(AB)\ABH—\/AABC; AAAC

The zeros of f(r) define the interval in which DM (r) < D@ (r), if AA > 0 (or the
interval in which DM (r) > DA (r), if AA < 0), so if the position of z;, diverge

as the algorithm goes through the iterations, it would be possible to find out which

parabola provides the minimum cost.

Property 4.2.23 |z, | — 00 and |z, | — 00 if |AC,| = 0.

Proof: Let us assume that P, = [[[_,(1 + 4;) > Koe", ¢ > 1 and P, =[]/ (1 +

A; + AA;) > K™, ¢ > 1. Let us recall that 0 < |cos6;| < 1, Vi. For |z, | =

|AB| + VvVAB2Z—AAAC

AA A we have

138

2 2
2y, | = ABy| n VABL2—AALAC, S VAB2—AALAC, > Jamisanc [p_ pr
- - —xaz — _
" AAy| |AA| |AA,| V AAG n

2 -
> / ABgy LZAOACO \/K()&"_IK(')E”L 1 00.
0 n—00

AC,]
|ABn|+v/ABa2—AALACy,
tor separately. From property 4.2.22 we have that |AC,,| — constant. For the

n—0oQ

For |zy,| = , we study the numerator and the denomina-

denominator, we have

|AB, |+ VAB,? — AAAC, < Mie' ™ + My(e'e) ™ + Ms(e'e?) " +

Therefore, |z, | — oo if [AC,| - 0. 1
n—oo n—oo

The equations corresponding to a warping path consisting only of transitions of
type 1,2 are much more complicated than the equations corresponding to a warping
path consisting only of transitions of type 3,4. In the latter case, we have closed
form solution for all the expressions and we found a condition relating the initial
conditions of the parabolas and A,,,, that makes sure that x;, and z,, have different
sign throughout the iterations. In the present case, it is much more difficult to derive
such a condition. However, we proved that |[AC| tends to a constant exponentially
fast, so we can check at each step in the algorithm whether AC' is reaching a limit,
oscillating or tending to zero and then proceed to make the corresponding decision.

Whether there exists a theoretical bound on the average of the maximum number
of parabolic functions that need to be stored for a given set of curves is still an open
research area. However, we found experimentally that this bound exists and it is a
function of the number of samples in each of the curves and the constraints imposed

on the warping plane, as we will shown in the experiments.

139

4.2.6 Interval range propagation

The equations derived in section 4.2.1 describe how to propagate different cumulated
distance functions throughout the warping plane. These equations are derived con-
sidering that the warping function is defined for all real numbers. However, the range
of the curvilinear variables z,y is restricted to [0,A,;,] and we need to derive the
propagation equations under these restrictions. We describe the equations for cases

1 and 3.

e First step, case 1: we have shown in equation 4.4 that D59 (y) = y*(1—cos? bs2)
and ' = A,, — ycosfsy, but considering the above restrictions, the equations

are the following:

1. costyr <0: Dpay(y)=y* yel0,4,], ' =47,
2. cosfyy >0:
(a) Ay, — Ay, o805 >0: Diygy(y) = (1 — cos®)y,
y€[0,4,], ' =A,, —ycosby
(b) Ay, —Ay,cos6 <0: D (y) = (1 — cos?)y,
y €0, =2 o' = A,, — ycos b

? cos f22

o First step, case 3: we have shown in equation 4.8 that Dy 9)(z) = AZ(1—cos” f,)
and =’ = x — Ay, cos b, but considering the restrictions, the equations are the

following:

1. cosbp =0: Dpglx)=A, z€[0,A,,], 2’ ==

Y22

2. cosfyy <0:

(a) Ay, + Ay, cos65 <0:
D2y (x) = 2% — 2(Ag, + Ay, cos)z + (A7, + A2 + 208 0320,,4,),
x €[0,AL], ¥ = A,

(b) Ay, + Ay, cosy >0
Dgy(x) = (1 — cos? Oy2) A2, z € [0, Ay, + Ay, cos O],

[
' =1x — Ay, cos by

140

3. cosfy >0:

(a) Az, — Ay, o862 <0:
Dy (z) = 2% — 2y, cos O + A?jz’ z €[0,A,], ' =0

(b) Az — Ay, cosby >0:

Dia)(x) = (1—co8® b32) A2, € [Ay co8 b, Ay,], ' = x—Ay, cos by

o General step, case 1: we have shown in equation 4.5 that D ;(y) = Ayy* +

. _ A 1+1—cos? 0;; _ cos 03 (A1 Ay, +B,r) _ 2
2Byy + Cy, with Ay = QEAT’ By = — Aw/-l—ll y Cy = Cwl + sz —
(B —Ag,)? ; _ —ycosBij+(Ag,—B,r) .

e, and 2’ = ywEs] . Given that y € [0, A,,], then
A...—B Ay, —B_1—Ay.cosb;; .
' ' . xll = (fxz,ﬂml) xIQ = il —l—?ij = if cos eij <0
xr e [xla 1:2]: with “ b1
o) = Dm BBy c0s0ii gy (Aey—Ba) if cos6;; > 0
1 Am/-l-l 2 Am/-l-l)

The restriction of the excursion of the curvilinear variables from previous it-

erations is such that 2’ € [I;,I5]. Then the corresponding values of y are

_ (Az;—B,)—(Ay+1)zy _ (Ag;—By)—(Ay+1)ah
= cos 055 » Y2 = cos ;5

, if cos 0;; # 0. The propagation

equations taking in consideration the restrictions on x’' and y are the following:

1.2y >1:
D(i,j) (y) = y2 — Qy(AM — 12) cos (gz'j + (Ai — 12)2 + Amllg + 2By Ry + Cyr,
Y € [O,ij], .’L',:IQ

2. 11§$Il<_[2 /\.’13I2>_[22

(
y€[0,y2], if cos 0;;<0

_ 0i;+(Ag,— B,
D(Z’J) (y) = Ayy2 + 2Byy + Cya fL‘I = y cos Bi; +(i—B)

A 41 ye[yQ,ij], if cos 6;; >0

\yE[O,ij], if cos 0;;=0

141

.\ <h Nah>1y:

YE([y1,y2], if cos 0;;<0

—ycos i +(A1—B)

Dy (y) = Ayy2 +2By +Cy, 2’ = A +1 \ velvawa], if cosbi;>0

\ yE[O,ij], if cos 0;;=0

4. .’Ell<11 /\]1<£E’2§]22

ye[yl,ij], if cos 0;;<0

—Y COS Oij —|—(A1me/)

D(z',j) (y) = Ayy2 + 2Byy + Cya xl = A+l < y€[0,y1], if cos 8;;>0

yE[O,ij], if cos 0;;=0

5. 20 >0 N xh<Iy:

— 0;;i+(A1—B_,
Diij)(y) = Ay’ + 2By + Cy, o' = === fgill =)’ y €[0,Ay]

6. .’L'IQ S Il :
D(z,])(y) = y2 — Q(Al — Il)yCOS 01_7 + (A% —_ 11)2 + 1411112 + 2Bmlll —|— Cz/,
v =1, y€[0,A,]

o General step, case 3: we have shown in equation 4.10 that D, j)(z) = Azz® +

. _ Am’ . BZ.I—AZ.Iij cos Gij _ 9 (Bm’ —|—ij cos Bij)z
2B$$+Cx, Wlth A:E = m, Ba; = Ax’+1 y CJ; = Cwl-i—ij—T,
—Ay. cosb;;—B,
) TRy ij — Dy . ! 1ot .
and z' = ————5—. Given that z € [0,A.,], then 2’ € [z},)], with
—Ay.cosb;;—B_; Ay, —Ay.cosb;;—B_;
R Yj] T ! Zq Yj 2] 2 L .
e Wrs et e AT . The restriction of the excursion

of the curvilinear variables from previous iterations is such that =’ € [I3, [5].
Then the corresponding values of x are z; = A, cosfy + By + (Ay + 1)1,
Ty = Ay, cos by + By + (Aw + 1)I5. The propagation equations taking in con-

sideration the restrictions on z' and x are the following:

1. .Tll 2 IQ .
D(i,j) (.T) = .1‘2 — 2([2 -+ ij COS (9”)33 + (Al-/ + 1)[22 + 2(le + ij COS 0@')[2 +

142
Cz’ + Azja
S [O, Amz], = 12

2. 11§$11<12 VAN .T12>IQ:
m—ij cos 0i;— B,

D(Za]) == AJ):CQ + 2B$$ + CZ? T E [07 ./EQ], ./,C, = A$’+1

.zl <h Nxh>1I:
x—Ay,; cosbij—Bys

D j)(x) = Aga® +2Byx + Cy, © € [21, 2], ' = A+l

4. .Tll<11 A Il<$12SIZ:
x—Ay. cosbij—B
D jy(x) = Aga® + 2Bz + Cy, @ € [21,4,,], o' = —
5. .TIIZIl A xéSIZ:

D jy(x) = Apx? 4+ 2Bz + Cyy x € [0,A,)], 2' =

z—Ay; cosbij—Bys

A+l
6. .TIQ S Il :
D jy(x) = 2> —2(L1 4+ Ay, cos 0;)x + (A + 1) 17 + 2(By + Ay, cos 0;5) I +
Ca:’ + Aza
J

S [0, Aml], = 11

Having derived the propagation equations that incorporate the constraints on the
excursion of the curvilinear coordinates, the remaining question is whether corollar-
ies 4.2.2 and 4.2.4 hold, and therefore, whether it is possible to discard cumulative
distances in the case in which the constraints in the excursion of the curvilinear co-
ordinates alters the normal propagation of the cumulative distance throughout the
warping plane. Given a distance function D'(r') at certain step in the algorithm,
where 7' is corresponds to either ' or y', and given that the curvilinear coordinate
r' is constrained to a certain interval [I, I3, the equations described in this section
show that there are three possible cumulative distances after propagation; one corre-
sponding to the normal propagation equations derived in section 4.2.1 and other two
corresponding to having fixed ' = I; or v’ = I, when ' “saturates” at the extrema
of the interval. The following properties describe the relationship between these three

distance functions.

Property 4.2.24 If DY (r) > DA (r) Vr and D (r) > DO (r) Vr then DY (r) >

143
DO (r) Vr

Proof: Assume 3 I = [ry,75] such that DO (r) < DO (r) Vr € [ry,r5]. Take r* € I,
DO (r*) < DO (r*) and DY (r*) > DA (r*), then D@ (r*) < DO)(r*); that is a con-
tradiction.

Property 4.2.25 Given a cumulative distance D'(r'") at certain step in the algorithm,
the corresponding cumulative distance after propagation using the equations derived
in section 4.2.1 is D(r). Assuming that the curvilinear coordinate 1’ is constrained to
a certain interval [I1, I5], then the corresponding cumulative distances when r' is fized

at the extrema of the interval are DN (r) and D@ (r). Then DM (r) > D(r), Vr.

Proof: Let’s call fi5(r) = D(r) — D@ (r) = AA; 5724+ 2AB; o7 + AC; 5. We need
to show that fi.(r) <0 Vr.

Considering case 1, we have the following:

_ Ag+l—cos?8 9 —(Ay 1Az +B,1)cos b 2 (B —Az)?
D(y) o Ag+1 Y + 2 Ay +1 Y + C"El + AZ‘ - Ay+1

DDA (y) = y? — 2(A, — L1 5)ycosf + (A2 — I;5)? + Amlli2 + 2Byl 9+ Cy

therefore,

_ A /+1—C0520 _ —cos? 0
AAI,Q - £ Aml—I—l - 1 - Aml—I—l
_ —(A 1Az+B /)0050 _ —(B /-|-(A I+1)Il,2_Ax)COS6
A WES] +(Bg = f1p) cosf = ————=-5
B +(Ay+1)110—Ag)?
ACl 9 = _(T T s
B Aw/-f—l

AB1,22 - AAI’QACLQ - O

Thus, fi2(y) is a quadratic function that has its opening pointing downwards and
its vertex on the horizontal axis. These two conditions imply that fi.(y) < 0 Vy,
and, consequently, D13 (y) > D(y), Vy.

144

Considering case 3, we have the following:

_ Ay 9 B —A_1Aycosd 2 (By+Aycosh)?
D(z) = Y S R Ay s B Cw + Ay A 11

DM (z) = 22 — 2(I15 + Ay cos0)z + (Ay + 1) 17, + 2(By Ay cos 0)I1 5 + Cor + A2,

therefore,

Adjp = 5o — 1= =L

Ay +1 A+1
_ Bw/*Aw/Ay cos 8 _ Bw/—}—(Aw/—f-l)Il,Q-f—Ay cosf
AB;, = B s (I1,2 + Aycosh) = yEs]
_ (B /—|—(A /—|—1)11,2+A (:OSG)2
AC]_,2 - = ‘ N Am’+1 ¢

AB1,22 - AALQACLQ == O

Thus, f12(z) is a quadratic function that has its opening pointing downwards and
its vertex on the horizontal axis. These two conditions imply that fi.(z) < 0 Vz,

and, consequently, DM@ (y) > D(y), vy. I

Corollary 4.2.5 If D'V(r') > DI ('), V¢!, then DY (r) > DO(r), Vr, indepen-

dently of any interval constraint in r' that alters the normal propagation of D’ (1)(7°').

Proof: The proof follows from the two previous properties and corollaries 4.2.2

and 4.2.4. 1

4.2.7 Summary of the CDPM algorithm

We have described the CDPM algorithm in full detail in previous sections. Let us

summarize the main characteristics of the algorithm.

The algorithm finds the matching between two curves at inter-sample resolution

such that a distance between curves is minimized.

145

The distance between curves is translation-independent.

The curves are parameterized in arc-length, assuming a linear interpolation model
between samples in order to calculate the inter-sample points. This linear model
gives rise to a distance between curves that is quadratic in the curvilinear co-

ordinate.

The algorithm can be expressed in a recursive fashion, using the Dynamic Program-

ming paradigm.

The cumulate distance between curves at each iteration of the recursion is a quadratic

function of the continuous curvilinear variable.

The number of cumulative distance functions needed to be stored grows exponen-

tially with the number of iterations.

These cumulative distance functions compete in order provide the correspondence

between curves that minimizes the total distance.

The number of cumulative distance functions can be reduced using two different sets

of properties based on pairwise comparison between these functions:

If two cumulative functions do not intersect at a certain iteration of the algo-
rithm, they will never intersect. The parabola that is below will be kept

and the other will be discarded.

If two cumulative distance functions intersect at a certain iteration, they will
always intersect. After a few iterations of the algorithm the two distance
functions will converge to be almost the same parabola, only displaced
vertically. Upon convergence, the parabola that is below will be kept and

the other will be discarded.

Each cumulative distance function has a corresponding interval of validity that has to
be propagated through the warping plane. This interval of validity makes sure
that the back-propagation of the correspondence function gives rise to points

located between samples.

146

Let us summarize the Continuous Dynamic Programming Matching algorithm
using all the derived properties. We refer to parabolas generically, including also in
this denomination the constant functions that arise in the first iterations. In order
to backtrack the correspondence function after obtaining the minimum distance, the
algorithm needs to recall the parent parabola for each parabola Dy; j)(y) and Dy; ;) ()
and also the side of the square ((i — 1,75) or (¢,5 — 1)) to which the parent belongs.
The algorithm needs to store the linear function that maps the curvilinear coordinates
before and after propagation of each parabola in each square of the grid of the warping
plane. The notation Dy, ;)(-) uses the curvilinear variables z and y to clarify the
output side of the square of the grid to which the parabola belongs to. We use
a super-index z or y to indicate the correspondence of all the following auxiliary
variables with Dy; ;)(-). Let us store the parent index of parabola & at square (4, j) in
C(fg)(k) and the parent’s side on ¢8§’)(k) Let us store the coefficients of the linear
function corresponding to parabola k at square (4,) in M (k) and H% (k). All
these variables stores the information required to perform the backtracking of the

optimal correspondence map after having found the minimum matching distance.
1 Initialization:

(a) Compute the two parabolas D, 2)(y) corresponding to the first iteration

of cases 1 and 4. Calculate the corresponding values of M?Z?) and H?(IZJ)’
C(yQ,Q)(l) = C€2,2)(2) =1, ¢’?2,2)(1) =z, and 1/’?2,2)(2) =Y.

(b) Compute the two parabolas D(;)(x) corresponding to the first iteration
of cases 2 and 3. Calculate the corresponding values of M, 5, and H{, 5,
C(mz,z)(l) = C&z)@) =1, 1/}?2,2)(1) =y, and wzﬂz,g)@) =Z.

(c) Fori=2and 2 < j < N,, such that ¢ and j stay within the allowed grid,

i. Compute Dy, (y), MY, ;)(1), and H{, (1) using the equations for the

first iteration of case 4. Cé’j)(l) =1 and 1/1%’%.)(1) =y.
ii. Compute D(12,j
first iteration of case 2. (f, ;(1) =1 and ¢, ;,(1) = y.

)(:r), M(EQ’J.)(I), and HfQ,j)(l) using the equations for the

1ii.

1v.

V1.

147

Propagate all parabolas Dzj y@), k=12 to Df;j)() using
the equations for case 1. Compute My, (k + 1), and Hf, ; (k + 1)
accordingly. (¢, ;i (k+1) =k and ¢p, (K +1) = .

Propagate all parabolas Df,; (2), k = 1,2+ to Df;j)(x) using
the equations for case 3. Compute M‘(CQ,j)(k + 1), and HE‘Q,j)(k +1)
accordingly. (%) (k +1) =k and ¢, ;) (k + 1) = z.

Perform pairwise comparison between all parabolas D(2])(y) in order
to keep only the ones that belong to the minimum envelope or intersect
the parabolas in the minimum envelope. Check for pairwise conver-
gence of the coefficients of the kept parabolas. Upon convergence of

the coefficients, i.e., |AA| <€, |AB| < € and |[0AC| < ¢, choose the

parabola to discard by looking at sign(2%).

Perform pairwise comparison between all parabolas 'DfQ J)(x) in order
to keep only the ones that belong to the minimum envelope or intersect
the parabolas in the minimum envelope. Check for pairwise conver-
gence of the coefficients of the kept parabolas. Upon convergence of
the coefficients, i.e., |AA| <€, |AB| < € and |[0AC| < ¢, choose the
parabola to discard by looking at sign(2%).

(d) For 2 <i < N, and j = 2, such that ¢ and j stay within the allowed grid,

i.

il.

iil.

1v.

Compute D 2)(), M{; (1), and H; (1) using the equations for the
first iteration of case 1. (f,(1) =1 and ¢}, (1) = =.
Compute D 2y(@), M{; 5)(1), and HE, , (1) using the equations for the
first iteration of case 3. ({5 (1) =1 and ¥f; , (1) = .

Propagate all parabolas Df;_, ,(y), k = 1,2+ to Df;;() using the

equations for case 4. Compute M, ,,(k+1), and H, , (k + 1) accord-
ingly. C(i,z)(k +1) =k and 1/)(1.72)(+1)=y.

Propagate all parabolas Df_, . (z), k = 1,2+ to Dé”%(:v) using
the equations for case 2. Compute M, (k + 1), and K, (k + 1)
accordingly. (7, (k +1) = k and ¢f; , (kK +1) = y.

148
v. Perform pairwise comparison between all parabolas DZ.,Z) (y) in order
to keep only the ones that belong to the minimum envelope or intersect
the parabolas in the minimum envelope. Check for pairwise conver-
gence of the coefficients of the kept parabolas. Upon convergence of
the coefficients, i.e., |AA| < ¢, |AB| < € and |[0AC| < ¢, choose the

parabola to discard by looking at sign(2%).

vi. Perform pairwise comparison between all parabolas Dfm) (x) in order
to keep only the ones that belong to the minimum envelope or intersect
the parabolas in the minimum envelope. Check for pairwise conver-
gence of the coefficients of the kept parabolas. Upon convergence of
the coefficients, i.e., |[AA| <€, |AB| < € and |§AC| < ¢, choose the
parabola to discard by looking at sign(3%).

2 Recursion: for 3 < i < N,, 3 < j < N,, such that 7 and j stay within the

allowed grid,

(a) Propagate all parabolas D” y(@), k=1,2--p; to D@ () using the
equations for case 1. Compute M?(’i’j)(k), and ’H:'(/”)(k) accordingly. C e J)()=
k and ww)() =x.

(b) Propagate all parabolas D(“ y(@), k=1,2--p; to Df j(2) using the
equations for case 3. Compute MG, .\(k), and A, ;, (k) accordingly. (G ;,(k) =
k and o7, (k) = .

(c) Propagate all parabolas Déci—l,j) (y), k=1,2---p, to D(“)’m() using the

equations for case 4. Compute M%Z j)(k—l—p;c) and 7-[(” (k+pz) accordingly.
GGk + pe) = k and 9 5, (k +) = y.

(d) Propagate all parabolas D(Z 1y(@), k=1,2---p, to Dé?;’)’“ (x) using the
equations for case 2. Compute Mfi,j)(k—i-pw) and 1, (k+p;) accordingly.
GGy (b + Pa) =k and Y5 (k + pa) = y.

(e) Perform pairwise comparison between all parabolas ’Dé“i’j)(y) in order to

keep only the ones that belong to the minimum envelope or intersect the

149

parabolas in the minimum envelope. Check for pairwise convergence of the
coefficients of the kept parabolas. Upon convergence of the coefficients, i.e.,

|AA| <€, |AB| < € and [0AC| < ¢, choose the parabola to discard by

AC

looking at sign(35)-

k. .

(f) Perform pairwise comparison between all parabolas Dy ;

y(2) in order to
keep only the ones that belong to the minimum envelope or intersect the
parabolas in the minimum envelope. Check for pairwise convergence of the
coefficients of the kept parabolas. Upon convergence of the coefficients, i.e.,

|AA| < ¢, |AB| < € and [0AC| < ¢, choose the parabola to discard by

AC

looking at sign(35)-

3 Termination:

Find the minimum of all parabolas D, n,)(y) and Dy, n,)(2). The minimum
value is the remaining distance after matching. The corresponding curvilinear
coordinate = or y that provides the minimum distance needs to be propagated

back through the warping plane to obtain the correspondence function.

4 Path Backtracking:

If the minimum matching distance is provided by a parabola D(y,,n,)(¥), then
o = y; otherwise, 0 = x. Let us call 7ota the index of the parabola that gives the
minimum distance, p the value of x or y corresponding to the minimum distance,

and X,)Y the corresponding matching points. The resulting correspondence

172
function and the matching points arrays X',) are ordered backwards, i.e.,
Sk

starting from the last matching points, so they should be reordered if desired.

150

do
ifo =z,
th i— 142 ug (i = 1) + pF=
then = e A G At | YE) =Y()
Sk 7 Uw('L —].) —+ pA—:;
Aty
else [k-l = [-I X(k) = X(i), Y(k) = [’ Aqu;j.
[skJ lj —1+ ALJ [vy(j —1)+p Ay;

p= M((Ti,j)(L)p + %(Ui,j)(b)

L= C&,j)(b)

0 =Pz
ifo=x,thenj=75—1,elset=7—-1

untilz=1or j=1

4.3 Experiments

We evaluate the performance of the continuous dynamic programming matching al-
gorithm (CDPM) in comparison with DPM with and without oversampling. We use

synthetic data as well as real signatures to perform the comparison.

4.3.1 Experiment 1: Comparison of CDPM with DPM for

synthetic data

Figure 4.16 shows the matching results for DPM, DPM with oversampling, and CDPM
on synthetic data. The first plot corresponds to DPM without oversampling, the sec-
ond plot corresponds to DPM with oversampling of the more coarsely sampled curve
with a factor such that both curves have a similar number of samples, the third plot

corresponds to CDPM, and the fourth plot shows the warping functions correspond-

151
ing to each of the algorithms. We observe that the warping path corresponding to
the continuous case is smoother than the warping path obtained with DPM. The
case of DPM with oversampling provides a reasonable result in terms of matching,
even though the correspondence map is still not invertible. This problem appears
because the re-sampling of the curve is uniform and independent of the position of
the samples of the other curve; therefore, many new samples may be allocated in a
region in which the other curve has few samples. The continuous algorithm instead,
by its very nature, adapts to the number of samples in each of the curves, providing
in this way a better matching between the two curves. In figure 4.17, we zoom into
two different portions of the matching between the curves in order to compare the

three different correspondence methods as well as the three different warping paths.

DPM matching DPM matching with oversampling

R
N
\
_o--B--p. \
1 o/ e '
R 1
/ \
y)
g ¢ 1
Y 4 Q v
et/ \
o ¢
7 A S 7)
i
a
¢

16

14f

12

10r

- DPM

-- DPM w/ oversamp.
[—— CDPM

-15 -1 -05 0 0.5 1 1 5 10 15 20 25 30 35 4043

X t

Figure 4.16: The first 3 plots shows the results of DPM, DPM with oversampling and
CDPM applied to a synthetic pair of curves. The last plot displays the warping plane
and the corresponding warping paths for each of the algorithms.

152

Detail of DPM matching Detail of DPM matching with oversampling Detail of CDPM matching Detail of the corresp. functions

0.8 0.8]

0.3]

0.3

-0.2 -0.2)

L S
0 -2 -15 -1 -05 0 15 16 17 18 19 20 21 22 23 24 25
X t

Detail of DPM matching Detail of DPM matching with oversampling Detail of CDPM matching Detail of the col f

15 = DPM
-x- DPM w/ over
—— CDPM

14} --

»13F--

12f--

1

05 30 31 32 33 34 35 36 37 38 39 40
t

Figure 4.17: Detail of the matching between the curves of figure 4.16. In each row, we
show two different portions of the curves and the corresponding matching obtained
using the three methods under comparison. The last plot of each row displays the
corresponding portion of the warping path.

4.3.2 Experiment 2: Comparison of CDPM with DPM for
signatures

Figure 4.18 shows the correspondence between sample points obtained using DPM
and CDPM for two signatures in the data set. The correspondence map provided by
CDPM is more dense than the one obtained with DPM and is also invertible. The
correspondence functions are displayed in the last plot of the figure, where we have
also added the correspondence function obtained for DPM with the two signatures
oversampled by a factor of 5. We observe that the three warping functions are almost
indiscernible in this plot. Figure 4.19 shows in detail the matching of two portions of
the signatures as well as the corresponding warping paths. We note that the warping
paths corresponding to DPM with and without oversampling are almost the same.
The warping path corresponding to CDPM is almost an interpolating function of the

warping path for DPM.

153

DPM matching CDPM matching

-100 -100

—120F -120r
-140r

140}

-160r A -160f b

40 70 100 130 40 70 100 130

-100

200f -~ - - - e 7

160 - e e s A -
10l | | | |

1200 -~~~ R R o s -1

-140¢f 80 ------ [[[-
| el |-~ DPM]
7 i DPM w/ oversamp,
-160r U/ v /| — CDPM
: : Y 40 80 120 160 200
40 70 100 130 t

Figure 4.18: Signature matching using DPM and CDPM. The first two plots show
the correspondence provided by the matching. The third plot shows the signatures
and the fourth plot shows the corresponding warping paths and the warping path for
DPM applied on an oversampled version of the signatures.

4.3.3 Experiment 3: Experimental evaluation of the compu-

tational cost of CDPM and comparison of the compu-

tational time of CDPM and DPM

In this experiment we evaluated the computational performance of CDPM in com-
parison with DPM with and without oversampling. We took two example signatures
from each of the subjects in the databases and we matched them using each of the
three methods. The matching is computed for four different values of maximum devi-
ation from linear warping: 10, 20, 30, and 40 samples. For the oversampling case, we
re-sampled the signatures by a factor of five using linear interpolation. We measured
the time required for each algorithm to run as well as the maximum storage required

for CDPM.

154

Detail of DPM matching Detail of CDPM matching Detail of correspondence functions

-120 -120

-130 -130

-1400

-0l gt A

-~ DPM
-=- DPM w/ oversamp.
I 1| — cbPM
_ - 80 85 90
15%0 100 120 15%0 100 120 t

Detail of DPM matching Detail of correspondence functions

174, T

172f -

-110 -110] 170r -

1681 -

p 166} -
-115 -115F oA -
164 -

162r -

DPM
' DPM w/ oversamp.
"1 — CDPM

166 168 170 172 174 176
t

-120 -120]

100 110 120 100 110 120

Figure 4.19: Detail of the matching between the two signatures shown in figure 4.18.
In each row, we show two different portions of the curves and the corresponding
matching obtained using DPM and CDPM. The last plot of each row displays the
corresponding portion of the warping path.

Figure 4.20 shows the computation time required for each algorithm as a function
of the length of one of the sequences under comparison. Each plot corresponds to
a different warping plane constraint. We see three different sets of points in each
figure. The lower set corresponds to DPM, the middle one corresponds to DPM with
oversampling and the upper one corresponds to CDPM. We note that CDPM is three
orders of magnitude slower than DPM. However, if the signatures are oversampled,
the computation time for DPM increases. The middle set of points in each plot
correspond to DPM after oversampling the signatures by five. We found that the
computation times of CDPM and DPM with oversampling are similar if the signatures
are oversampled by a factor of 25 approximately. We observe that the computation
time of the three algorithms follows a roughly linear relationship with the length of
the sequences. The lines in each of the plots show a linear fitting of the data in
semilogarithmic space and the corresponding functional dependence is presented in
the legend. All three lines have a very similar slope, for each of the warping plane
constraints. Therefore, all three algorithms have a similar growth of the computation

time with the length of the sequence, showing in this form that the properties derived

155

for CDPM effectively limit the combinatorial complexity of this algorithm (otherwise,
the computation time would have grown with slope much bigger than the slope of
DPM). The difference between the computation times of DPM and CDPM is shown in
the expression for the fitting functions by the multiplicative factor. The big factor for
CDPM represents the overhead in computations required to carry around, propagate
and prune a whole set of quadratic functions, that is not present in DPM. The fitting
functions are such that they can be approximated by a low order polynomial (linear
or quadratic would be enough). In fact, the computation time varies linearly with
the signature length for the case of unconstrained DPM, so it is reasonable to get a
fitting function that can be approximated by a low order polynomial.

Computation time vs. sig. length - Wj=10 Computation time vs. sig. length — Wj=20

107 10
+ +
+
+ +
1] + o | 1] ’.»»:‘,*r - " *
810 S PRI . 810 P e ST
@ IR -2 Fare . @ DRt PR
) SR e e °
p o .
210° (>t : 95500 °] 210" 5%, 5%° ©f
E M v 5 M o
o o =} o
107t _9] 8107t -9
1071 .-gs 1071 .-p7%
o oe R L T =3 Qoo ety
g e AL g },a-hlﬂl-' - B
O 192 O 1092 M
10 _F_;‘,y,i" — = 1720 0003 07 T — = 3.271 €003
S -+ y=0.034 200 SR --+ y=0.037 20
ool ‘ |7 y=0002e>%% 107 * ‘ |77 y=0002e%%%
100 200 300 400 500 100 200 300 400 500
signature length (# samples) signature length (# samples)
) Computation time vs. sig. length - Wj=30) Computation time vs. sig. length - Wj=40
10° — ———— ‘ 10° — T ‘
. * + F st
+ + T+ A x R
~10" | W2t : re e #4 * ~10"F . . f’»’ " SRR
g N AR A 2 g e 1
o, 0| * P .o * -
£10 oS00 o €10 | ag," 500 °
E Mq& - 5 Mo"a’&” .
5= o 5= o
= = o
§101—,;-—g>-: [§101) e
a %°9 T a e
1S P e 1S o xR
8,2 A?’”“"” 8,2 " ;‘.?“”“’ﬂ
W0 — y=3866 000 W07 b — y= 4057 200
ot ST y=0.039e> " ST y=0.041e>
" == y=0.003 e " - y=0.003 %00
10 i i i 10 i i i
100 200 300 400 500 100 200 300 400 500
signature length (# samples) signature length (# samples)

Figure 4.20: Plots of the computational time required for each algorithm as a function
of the length of one of the signatures under comparison, for different warping plane
constraints. The computation time for DPM is displayed with 'x’ (lower curve), the
time for DPM with oversampling is plotted with ’o’ (middle curve) and the time for
CDPM is shown with *+’ (upper curve). The lines represent a linear fit in semiloga-
rithmic space of the data.

156
Figure 4.21 shows the relationship between the maximum storage required for
CDPM and the computation time required by the algorithm for the four different
warping plane constraints. The solid line represents a linear fit of the data in loga-
rithmic space. We note that the corresponding fitting functions are power laws with
an exponent that is very close to one, i.e., the functions are almost linear functions.

) Comp. time vs. Max. Storage for CDPM - Wj=10) Comp. time vs. Max. Storage for CDPM - Wj=20

10 10 i
|— y=0062 X2 | |— y=0.030x |
4
m m
(9] (9]
2 2
[} [}
£ £
oAl oAl
§107 §107
< <
5 5
Q. Q.
£ £
o o
(@] (@]
+ ”
0 L L 0 L L
10 10° 10° 10 10° 10°
Maximum storace Maximum storace
5 Comp. time vs. Max. Storage for COPM — Wj=30 5 Comp. time vs. Max. Storage for COPM — Wj=40
10 T ; 10 . %
m m
[} [}
& &
[} [}
E E
oAl oAl
T T
5 5
Q. Q.
£ IS
o o
(@] (@]
- .t
0 L L 0 L L
10 10° 10° 10 10° 10°
Maximum storaae Maximum storace

Figure 4.21: Plots of the maximum storage required for CDPM as a function of
the computation time used by the algorithm, for the four different warping plane
constraints. The solid line represents a linear fitting of the data in logarithmic space.
We note that the corresponding fitting functions are power laws with an exponent
that is very close to one, i.e., the functions are almost linear functions.

4.3.4 Experiment 4: Application to signature verification

This experiment was performed on the two databases of signatures described in chap-
ter 3. In figure 4.22 we show several examples of signatures collected for our database,
their corresponding training reference obtained with DPM and CDPM and one of the
forgeries in the database. We observe that the prototype obtained with DPM is much

157
noisier than the one obtained with CDPM, due to the fact that DPM computes the
prototype only with the given discrete samples while CDPM calculates the reference

signature with inter-sample points.

Signature from set s025 DPM Reference signature for set s025 CDPM Reference signature for set s025 Forgery in set s025

50
40 40|
30 30|

20 20

Signature from set 5027 DPM Reference signature for set s027 CDPM Reference signature for set s027 Forgery in set s027

90 100 110 120 130 140 0 20 40 60 80 0 20 40 60 100 120 140 160 180

50
40
30|

20

10 10

40 60 80 100 -20 0 20 40 -20 0 20 40 60 80 100 120 140 160

Signature from set s037 DPM Reference signature for set s037 CDPM Reference signature for set s037 Forgery in set s037

Figure 4.22: Several examples of signatures in our database and corresponding ref-
erence functions obtained with DPM and CDPM. In the first column we display
signatures captured with the visual tracker, in the second and third columns, we
show the corresponding reference signatures of the training set obtained with DPM
and CDPM, and in the fourth column we display a forgery provided by the subjects.

Figure 4.23 shows the effect of sub-sampling some signatures in our database. The
first column displays the original signatures, the second and third column presents the
signatures sub-sampled by factors of 2 and 4 respectively. Given that the sampling
rate is 60 Hz, the plots of the second and third column of the figure correspond to
sampling rates of 30 Hz and 15 Hz respectively. We note that the differences between
the signatures sampled at 60 Hz and 30 Hz are barely noticeable. However, there is
a very noticeable distortion introduced by sampling at 15 Hz since the sampling rate
is already below the Nyquist frequency for handwriting mentioned in chapter 2.

Figure 4.24 shows the effect of adding noise to each sample point of some signatures

158

Signature from set s025 Signature from set 5025 subsampled by 2 Signature from set 5025 subsampled by 4

80 80 80

60 60 60

40| 40 40

20 20 20

90 100 110 120 130 140 90 100 110 120 130 140 90 100 110 120 130

Signature from set s027 Signature from set s027 subsampled by 2 Signature from set s027 subsampled by 4
60

50| 50 50
40| 40 40|
30 30 30
20 20 20

10 10 10

40 60 80 100 40 60 80 100 40 60 80 100

Signature from set s037 Signature from set s037 subsampled by 2 Signature from set 5037 subsampled by 4

50 50 50|

40 40 40|

30 30 30

20 20 20

Figure 4.23: Effect of sub-sampling the signatures. The first column shows several
examples of signatures in our database. The second and third column display the
corresponding signatures sub-sampled by a factor of 2 and 4.

from our database. The noise is zero mean Gaussian with a standard deviation equal
to five times the spatial resolution of the visual tracker calculated in chapter 2, i.e.,
with a standard deviation roughly equal to a quarter of a pixel. The first column of
the figure displays the original signature and the second column shows the signatures
after adding noise. Given the scale of the plot and the standard deviation of the noise,
we barely notice any change in the plot of the signature. A blow up of a portion of
the signatures with and without noise is presented in the third and fourth row of the
figure, showing that there is a visible distortion introduced by the addition of noise.

The following figures show the error trade-off curves for CDPM and DPM, calcu-
lated using our databases of signatures. The performance of the DPM and CDPM
algorithms are compared under different conditions of sampling rate and noise level.
We only plot a section of the curve that is most informative.

Figure 4.25 presents the performance of DPM and CDPM using the distance after

matching as the classification parameter. Figure 4.26 shows the performance using the

159

Signature from set s025 Signature from set s025 with noise added

— original signature — original signature
-+ signature w/ noise

80 80 -+- signature w/ noisg

o 0 SN
90 100 110 120 130 140 90 100 110 120 130 140 Tos 110 115 Tis 120 125
Signature from set s027 Signature from set s027 with noise added
60 60y P . . .
sof |~ original signature — original signature
50 50 -+ signature w/ noise " signature w/ noise

-3 70 75 80

40 60 80 100 40 60 80 100

Signature from set s037 Signature from set s037 with noise added

85

so-|— original signatur
-+ signature w/ nois

Figure 4.24: Effect of adding noise to the signatures. The first column shows sev-
eral examples of signatures in our database. The second column displays the corre-
sponding signatures after having added a zero mean Gaussian noise with a standard
deviation equal to five times the spatial resolution of the visual tracker presented in
chapter 2. The third and fourth columns show a detail of portions of the signatures
with and without noise.

harmonic mean of all the distance measures described in chapter 3 for classification.

Figures 4.27 and 4.28 present the performance of DPM and CDPM after sub-
sampling the signatures by a factor of two, i.e., the resulting sampling rate is 30
Hz.

Figures 4.29 and 4.30 present the performance of DPM and CDPM after sub-
sampling the signatures by a factor of four, i.e., the resulting sampling rate is 15 Hz.
This sampling rate is already below the Nyquist frequency for handwriting mentioned
in chapter 2, so the performance decreases by a big factor since the signatures are
highly distorted.

From figures 4.25, 4.27, and 4.29, we observe that CDPM outperforms DPM using
the distance after alignment as the classification parameter. However, by adding the

distances proposed in chapter 3 in order to improve the performance, figures 4.26, 4.28,

105

FAR vs. FRR for setl (classif. with matching dist.)

3 4 5
FRR (%)

160

FAR vs. FRR for set2 (classif. with matching dist.)

s s
N \.| — DPM - EER = 452% N — DPM-EER=381%
7 \ --- CDPM - EER=452% 7 | -- CDPM - EER=3.41%
6 6 \,
‘\
=5 =5 \
S IS S
xé R x4 '
£ P 9,
3 3 :
[N
2 2
1 1
0 0
0 1 6 7 8 0 1 6 7 8

3 4 5
FRR (%)

Figure 4.25: Error trade-off curves for CDPM and DPM evaluated on our databases
of signatures. The distance after matching is used for classification.

FAR vs. FRR for setl (classif. with mult. dist.) FAR vs. FRR for set2 (classif. with mult. dist.)

— DPM - EER = 1.89% — DPM - EER=1.11%
-- CDPM-EER=2.12% -- CDPM - EER = 1.50%
3 3 1
a2 > a2 5
< B .. < R
o ! cel o N,
e e e e ‘o-..
| !
1 1 R
| .
|
|
|
00 2 3 4 00 2 3 4
FRR (%) FRR (%)

Figure 4.26: Error trade-off curves for CDPM and DPM evaluated on our databases
of signatures. The harmonic mean of all the distances proposed in chapter 3 are used
for classification.

and 4.30 show that DPM has a better performance than CDPM.

Figures 4.31 and 4.32 present the performance of DPM and CDPM after adding
noise to the signatures. The noise is zero mean Gaussian with a standard deviation
equal to five times the spatial resolution of the visual tracker presented in chapter 2.
We observe that the performance of both algorithms decreases and that CDPM no
longer performs better than DPM when using the distance after alignment as the
classification parameter.

Figure 4.33 presents the comparison of the equal error rates for DPM and CDPM
for different sub-sampling factors. We note that CDPM performs better than DPM
when using the residual distance between the curves after matching as the classifica-
tion parameter. However, DPM outperforms CDPM when the harmonic mean of the

similarity measures defined on chapter 3 is used as the classification parameter.

FAR vs. FRR for setl (classif. with matching dist.)
0

161

FAR vs. FRR for set2 (classif. with matching dist.)

10 10 3
— DPM - EER = 5.40% \ — DPM - EER = 4.39%
9 --- CDPM - EER = 4.86% 9 5 --- CDPM - EER = 3.86%
8 8
7 7
;@ 6 ;@ 6
o Sf------iooiaooo- ®, x 5
g g ~
4 .. Af e ®.,
3 T 3 |
2 ™ 2 ; T
1 1 '
0 0
0o 1 2 3 7 8 9 10 0o 1 2 3 8 9 10

4 5 6 4 5 6
FRR (%) FRR (%)

Figure 4.27: Error trade-off curves for CDPM and DPM evaluated on our databases
of signatures after sub-sampling the signatures by a factor of two. The distance after
matching is used for classification.

FAR vs. FRR for setl (classif. with mult. dist.) FAR vs. FRR for set2 (classif. with mult. dist.)

5
\ — DPM - EER = 2.14% — DPM - EER = 1.34%
-- CDPM - EER = 2.39% -- CDPM - EER = 1.55%
4 . 4
K
g~3 . R §3
[. N, S - 4
< 8- <
Ty e, Ly N,
,,,,,,,,,,,,,,,,,,,, N -
1 1 PN
00 2 3 5 00 2 3 5
FRR (%) FRR (%)

Figure 4.28: Error trade-off curves for CDPM and DPM evaluated on our databases
of signatures after sub-sampling the signatures by a factor of two. The harmonic
mean of all the distances proposed in chapter 3 are used for classification.

Figure 4.34 shows the comparison of the equal error rates for DPM and CDPM
for different noise levels. We note that the effect of the addition of noise on the
performance of DPM and CDPM is unclear since the values of the equal error rates
increase, decrease or are the same, depending on the database used for testing and

depending on the similarity measures used for classification.

4.3.5 Discussion

The previous section presented the experimental evaluation of the performance of the
CDPM algorithm. We have shown that the algorithm is computationally tractable
when applying the different properties that we have derived previously. The compu-

tational time required by CDPM is three orders of magnitude greater than the time

162

FAR vs. FRR for setl (classif. with matching dist.) FAR vs. FRR for set2 (classif. with matching dist.)

— DPM - EER = 7.63% — DPM - EER = 6.38%
--- CDPM - EER = 6.86% --- CDPM - EER = 5.22%
12 y 12
'
10, K 10,
s < <8
O ? g
5
o6 e oce “a,
N
a T 4 b
iy bl
' Sl
2 2 [e e T]
0 0
0 2 6 8 10 12 14 0 2 6 g8 1 12 14
FRR (%) FRR (%)

Figure 4.29: Error trade-off curves for CDPM and DPM evaluated on our databases
of signatures after sub-sampling the signatures by a factor of four. The distance after
matching is used for classification.

FAR vs. FRR for setl (classif. with mult. dist.) FAR vs. FRR for set2 (classif. with mult. dist.)

—— DPM - EER = 3.09%
-- CDPM - EER = 3.68%

— DPM-EER=271%
-- CDPM - EER = 2.86%

a0

FAR (%)
~

w3 =] S —— O
~~~~~~ N
20 TN T 2 | .
P
1 A4 T
% 1 3 4 6 7 % 1 3 4 6 7
FRR (%) FRR (%)

Figure 4.30: Error trade-off curves for CDPM and DPM evaluated on our databases
of signatures after sub-sampling the signatures by a factor of four. The harmonic
mean of all the distances proposed in chapter 3 are used for classification.

required by DPM. However, the growth of the computational time with signature
length is similar for both CDPM and DPM, meaning that the mentioned properties
effectively limit the computational complexity of CDPM. The comparison of the per-
formance of DPM and CDPM for signature verification shows that CDPM is better if
the residual distance after matching is used as the classification parameter, but DPM
is still superior to CDPM when several similarity measures are used for classification.
Looking at the reference signatures obtained with DPM and CDPM, there is a clear
improvement in terms of smoothness provided by CDPM, although this improvement
in smoothness is not directly translated into better performance. It is possible to con-
clude that the error rates achieved with DPM are so small that it would be difficult

to improve them with CDPM, and in fact this latter results in a small increase. It is



163

FAR vs. FRR for setl (classif. with matching dist.) FAR vs. FRR for set2 (classif. with matching dist.)
i . [— DPM - EER = 4.82% i : —— DPM - EER = 3.49%
8 \ | --- CDPM - EER = 4.83% 8 -- CDPM - EER = 3.44%
N
7 N 7
6 X 6 3
s 85 \
Z Z )
g4 . g4
~. | o+ X
3 T 3
2 20 T
1 L1 S
00 1 2 7 8 9 00 1 2 7 8 9

4 5
FRR (%)

Figure 4.31: Error trade-off curves for CDPM and DPM evaluated on our databases
of signatures after adding to the signatures zero mean Gaussian noise with a standard
deviation equal to five times the spatial resolution of the visual tracker presented in
chapter 2. The distance after matching is used for classification.

FAR vs. FRR for setl (classif. with mult. dist.) FAR vs. FRR for set2 (classif. with mult. dist.)
0

5
— DPM - EER =2.16% — DPM - EER=1.11%
kN -- CDPM - EER = 2.43% -- CDPM - EER = 1.35%
4 4
\
g ST
s s \
O N 9 14 Y
< < 5
&2 &2 \
....... ',A
******** o 0w
1 1 ‘ ...
[ e
0 0
0 2 3 5 0 2 3 5
FRR (%) FRR (%)

Figure 4.32: Error trade-off curves for CDPM and DPM evaluated on our databases
of signatures after adding to the signatures zero mean Gaussian noise with a standard
deviation equal to five times the spatial resolution of the visual tracker presented in
chapter 2. The harmonic mean of all the distances proposed in chapter 3 is used for
classification.

also possible to conclude that the similarity measures used in our experiments do not
take full advantage of the matching at inter-sample resolution provided by CDPM,

and therefore, this is the reason for not obtaining a better performance with CDPM.



164

EER vs. subsamp. fact.(classif. with matching dist.) EER vs. subsamp. fact.(classif. with mult. dist.)

-6- setl - DPM
-©- set2 - DPM

4
-6 setl - DPM i i
-©- set2 - DPM |

7l == sett-coPm | 4o ____ /. [ 35| = setl-CDPM [~~~ """~~~ oo
o |L-x-_set2 - CDPM S || -x- set2-CDPM
S|t IS
2 2
g £
5 52,

Wy u
© ©
E] E]
o o
w w

I

w

2 2
Subsampling factor Subsampling factor

Figure 4.33: Comparison of the equal error rates for DPM and CDPM for different
sub-sampling factors. The first column shows the error rates obtained using the
distance after matching as the classification parameter and the second column displays

the error rates obtained using the harmonic mean of several similarity measures as
the classification parameter.

EER vs. noise level(classif. with matching dist.) EER vs. noise level(classif. with mult. dist.)
j . * /
g45 : h g * ;
o ! —o~ setl - DPM P R R bbbt kb
& ! -e- set2 - DPM 8 ‘ —o— setl - DPM
[ S —%— setl = CDPM |- 5 ! -©- set2-DPM
= I -x- set2 - CDPM = I —»— setl - CDPM
u ‘ u 1 - - set2 -~ CDPM
El 1 S15----- O GEEEEEEEEE R -
=3 | T R '
i35 S e *
‘ i §rosssannooneeeaoe e 9
3 . .
3 0 1 1 0 1

Noise Level Noise Level

Figure 4.34: Comparison of the equal error rates for DPM and CDPM with and
without noise added to the signatures.



165

Chapter 5 Conclusion and Future Work

This thesis has presented a novel human-computer interface for handwriting. A cam-
era focuses on the user’s hand while the user writes with a normal pen on a piece of
paper. The handwriting trajectory is successfully recovered from its spatio-temporal
representation given by the sequence of images. This trajectory is decomposed into
handwritten strokes and pen movements between two strokes. The detection of the
points in which the pen is traveling above the paper and not writing is obtained by
using local measurements of the brightness of the image at the location in which the
writing end of the pen is detected.

The interface is based on consumer hardware and computer vision techniques,
and it has been shown to work in real-time at 60 Hz. The pen tip template is
automatically acquired once the user places the pen within a predefined region of
the image. The position of the pen tip is obtained by correlation with a template of
the pen tip. A recursive estimation scheme is used to predict the next position of
the pen tip, allowing the size of the search neighborhood to be reduced. Each point
of the recovered trajectory is classified as “pen down” or “pen up” based on a local
comparison of the brightness value at the ballpoint with the surrounding background.
This measure is converted into a probability value. The acquired trajectory is divided
into strokes and a measure of the confidence of each stroke being a pen down is
provided by integrating the information of the point-wise decisions.

Several parts of the interface are open to improvement. For example, enabling the
pen tip to be automatically detected and tracked from the time it enters the field of
view of the camera would make the interface simpler to use and more user-friendly.
The recursive estimation scheme could be improved by including a more accurate
model of the dynamics of handwriting generation. The pen up/down detection could
be enhanced by adding a few other measurements, such as the local orientation of

the ink at position of the ballpoint, the correlation of this orientation with the local



166
direction of the pen tip’s trajectory, etc. These various measurements can be naturally
included in the system by increasing the dimensionality of the HMM’s observation.
Finally, the error rates of pen up and pen down classification could be decreased by
performing a better segmentation of the acquired trajectory.

From the experiments, we note that the user needs some minimal training in order
to get accustomed to and master the interface. In particular, the visual acquisition
system occasionally loses track of the pen tip in the presence of extremely fast strokes
when acquiring signatures since they are usually written at a faster pace than normal
handwriting. The use of more powerful machines or the implementation of our track-
ing algorithm in hardware using FPGA’s would eliminate this problem since bigger
search regions could be explored, allowing users to sign at normal speed.

This visual interface for handwriting is the initial step in order to devise a full
pen-based computing system in which not only text but also mouse-like commands
would be provided with a pen.

The camera-based interface is able to capture signatures to be used for personal
identification. The system does not require any special hardware, unlike fingerprint
verification, iris or retina scanning systems. It is comparable to face recognition sys-
tems in terms of hardware since it uses a camera for tracking the signature. In this
thesis, the performance has been evaluated for a signature verification system that
acquires the signatures with the visual interface for handwriting capture. The com-
parison between signatures is performed by using dynamic programming matching.

The experimental results show that the parameterization of the signatures is quite
critical for achieving good verification performance. The best results are obtained by
parameterizing the signatures with affine arc-length, using the harmonic mean of
several similarity measures as the classification parameter. It can be inferred that
shape similarity and causality of the signature’s generation are more important than
matching the dynamics of signing. This dynamics is not stable enough to be used
for signature verification since the subject is trying to reproduce a shape rather than
a temporal pattern. However, the causality of the signature, i.e., the order in which

parts are produced, is still valuable and is used in the DPM paradigm. This causality



167
is the added information that our on-line system is using to outperform systems that
do comparison from still pictures of signatures.

The use of duplicate examples has been shown to provide a better estimate of
the generalization error, given that the algorithm has to be invariant with respect
to a certain class of transformations. In our experiments, we used only time origin
shifting and small scaling in x and y directions as the transformation class. A full
affine transformation could be used to generate duplicate examples provided that a
reasonable range of the parameters of this transformation could be estimated from
the data.

The very good performance of the system when tested with random forgeries
indicates that the algorithm is able to discriminate whether a signature belongs to
a certain class (or, in other words, to a certain subject) and provides grounds to
conclude that the algorithm could be used for signature recognition.

The signature verification algorithm could be made more robust by adding more
global descriptors of the signatures that would allow the system to discard coarse
forgeries. One problem that is unsolved with the present scheme is dealing with
dramatic changes in scale and it is one of the areas of further research, as well as the
development of a better similarity measure.

Comparing signature verification with a physiological biometric technique for per-
sonal identification, such as fingerprint verification, we could observe that a forger
with enough information about the true signature and enough training could deceive
the algorithm. This weakness is inherent to all behavioral biometrics and may or may
not be important depending on the particular application.

Signature verification could be employed to replace the use of computer passwords.
In this case, the daily use of the system could make people sign more consistently
and could provide them with a figure that quantifies the variability of the signature.
It would also be possible to have a system in which the user signs with an ink-less
pen, leaving no trace of the signature in order to block possible forgers from knowing
it. This system would overcome the mentioned weakness of the method, but it would

make the user feel a bit awkward since there would be absolutely no visual feedback



168
when signing.

Dynamic programming matching (DPM), the leading conventional method for sig-
nature matching, is only able to establish sample-to-sample correspondence between
signatures. This thesis has presented a novel algorithm for establishing sample-to-
inter-sample correspondence between signatures. This algorithm is the continuous
generalization of DPM and belongs to the general class of dynamic programming algo-
rithms. The properties of the continuous dynamic programming algorithm (CDPM)
are described in full detail, in particular those that allow one to limit the spatial
complexity of the algorithm. The experimental results show that by using these
properties, the growth of the computational time with signature length is similar for
both CDPM and DPM, meaning that the mentioned properties effectively limit the
computational complexity of CDPM. However, whether there is a theoretical bound
on the spatial complexity is still a subject of research.

The performances of CDPM and DPM are compared on both synthetic and real
data. DPM was used with and without oversampling of the signatures in order to
provide better matching spatial resolution. In terms of computational time required
to perform the matching, CDPM is three orders of magnitude slower than plain DPM,
being equivalent to DPM with an oversampling factor of 25 (approximately).

The performances of CDPM and DPM are compared on signature verification,
showing that both algorithms achieve similar results, although DPM outperforms
CDPM. The reference signature extracted from the training set is shown to be much
smoother when using CDPM to compute it, so, in principle, the performance of
CDPM might be improved by using a better set of similarity measures for classi-
fication, that take advantage of the matching at subsample resolution provided by
the algorithm. The development of a better set of similarity measures as well as the
extraction of a better reference signature from the training set are all subjects for

further work.



169

Bibliography

1]
2]
3]
[4]

[5]

[6]

[7]

8]

[9]

[10]

Y.S. Abu-Mostafa. Hints. Neural Computation, 7:639-671, 1995.
B.D. Anderson and J.B. Moore. Optimal Filtering. Prentice Hall, Inc., 1979.
R. Bellman. Dynamic Programming. Princeton Univ. Press, 1957.

E. Di Bernardo, L. Goncalves, and P. Perona. Monocular tracking of the hu-
man arm: Real-time implementation and experiments. In Proc. 18" Int. Conf.

Pattern Recognition, pages 622—-626, Wien, August, 1996.

E. Di Bernardo, L. Goncalves, and P. Perona. Computer Vision for Human-
Machine Interaction. R. Cipolla and A. Pentland eds., chapter “Monocular
Tracking of the Human Arm in 3D”, pages 155-169. Cambridge University
Press, 1998.

C. Bregler, H. Hild, S. Manke, and A. Waibel. Improving connected letter recog-
nition by lipreading. Proceedings of the International Conference on Acoustics,

Speech, and Signal Processing, 1993.

A .M. Bruckstein, R. Holt, A. Netravali, and T. Richardson. Invariant signatures

for planar shape recognition under partial occlusion. CVGIP: Image Understand-

ing, 58(1):49-65, 1993.

R.S. Bucy. Non-linear filtering theory. IEEE Transactions on Automatic Control,
1965.

M. Burl, T. Leung, and P. Perona. Face localization via shape statistics. In Proc.

Intl. Workshop on automatic face and gesture recognition, pages 154-159, 1995.

M.C. Burl and P. Perona. Recognition of planar object classes. In Proc. IEEE
Comput. Soc. Conf. Comput. Vision and Pattern Recogn., San Francisco, 1996.



[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

170
M.C. Burl, M. Weber, and P. Perona. A probabilistic approach to object recog-
nition using local photometry and global geometry. In Proc. 5" Europ. Conf.
Comput. Vision, H. Burkhardt and B. Neumann (Ed.), LNCS-Series Vol. 1407-
1408, Springer-Verlag, June 1998.

J. Canny. A computational approach to edge detection. IEEE Trans. Pattern
Analysis and Machine Intelligence, 8:679-698, 1986.

R. Cipolla and N. Hollinghurst. Human-robot interface by pointing with uncal-
ibrated stereo vision. Image and Vision Computing, 14(3):171-178, 1996.

R. Cipolla, N. Hollinghurst, A. Gee, and R. Dowland. Computer vision in inter-
active robotics. Assembly Automation, 16(1):18-24, 1996.

A. Colmenarez, B. Frey, and T.S. Huang. A probabilistic framework for embed-
ded face and facial expression recognition. In Proc. IEEE Comput. Soc. Conf.

Comput. Vision and Pattern Recogn., pages 592-597, 1999.

C. Colombo and A. Del Bimbo. Real-time head tracking from the deformation
of eye contours using a piecewise affine camera. Pattern Recognition Letters,

20(7):721-730, 1999.

J.L. Crowley. Vision for man-machine interaction. Robotics and Autonomous

Systems, 19(3-4):347-358, 1997.

J.L. Crowley, F. Bernard, and J. Coutaz. Finger tracking as an input device for
augmented reality. International Workshop on Face and Gesture Recognition,

pages 195200, 1995.

J.G. Daugman. High confidence visual recognition of persons by a test of a sta-
tistical independence. IEEE Trans. Pattern Analysis and Machine Intelligence,
15(11):1148-1161, 1993.

S.E. Dreyfus. Dynamic Programming and the Calculus of Variations. Academic

Press, 1965.



[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

171
L.L. Dryden and K.V. Mardia. Statistical shape analysis. John Wiley & Sons,
Ltd., 1998.

ILA. Essa and A.P. Pentland. Facial expression recognition using a dynamic
model and motion energy. In Proc. 5" Int. Conf. Computer Vision, pages 360
367, Boston, June, 1995.

S. Elrod et al. Liveboard: a large interactive display supporting group meetings,

presentations and remote collaboration. In CHI ’92, pages 599-607, 1992.

M.C. Fairhurst. Signature verification revisited: promoting practical exploitation
of biometric technology. FElectronics and Communication Engineering Journal,

pages 273-280, 1997.

K.E. Finn and A.A. Montgomery. Automatic optically-based recognition of
speech. Pattern Recognition Letters, 8(3):159-164, 1988.

G.D. Forney. The Viterbi algorithm. Proceedings of the IEEE, 61(3):268-278,
1973.

B. Frohlich, G. Grunst, W. Kruger, and G. Wesche. The responsive workbench - a
virtual working environment for physicians. Computers in Biology and Medicine,

25(2):301-308, 1995.
K. Fukunaga. Statistical Pattern Recognition. Academic Press, 1990.

A. Gee and R. Cipolla. Determining the gaze of faces in images. Image and

Vision Computing, 12(10):639-647, 1994.
A. Gelb. Applied Optimal Estimation. The MIT Press, 1974.

L. Goncalves, E. Di Bernardo, and P. Perona. Reach out and touch space (motion
learning). In Proc. of the Third International Conference on Automatic Face and

Gesture Recognition, pages 234—239, Nara, Japan, April 14-16, 1998.



32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

172
L. Goncalves, E. Di Bernardo, E. Ursella, and P. Perona. Monocular tracking of
the human arm in 3d. In Proc. 5" Int. Conf. Computer Vision, pages 764770,
Boston, June, 1995.

I. Haritaoglu, D. Harwood, and L. Davis. Who, when, where, what: A real time
system for detecting and tracking people. In Proceedings of the Third Face and
Gesture Recognition Conference, pages 222-227, 1998.

T. Hastie, E. Kishon, M. Clark, and J. Fan. A model for signature verification.
In Proc. IEEE Conf. on Systems, Man and Cybernetics, pages 191-196, 1991.

K. Huang and H. Yan. On-line signature verification based on dynamic segmen-
tation and global and local matching. Optical Engineering, 34(12):3480-3487,
1995.

A K. Jain, L. Hong, S. Pankanti, and E. Bolle. An identity-authentication system
using fingerprints. Proceedings of the IEEE, 85(9):1365-1388, 1997.

A.H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press,

1970.

R.E. Kalman. A new approach to linear filtering and prediction problems. Trans.

of the ASME-Journal of basic engineering., 35—45, 1960.

F. Lacquaniti, C. Terzuolo, and P. Viviani. The law relating the kinematic and

figural aspects of drawing movements. Acta Psychologica, 54:115-130, 1983.

F. Leclerc and R. Plamondon. Automatic signature verification. International

Journal of Pattern Recognition and Artificial Intelligence, 8(3):643-660, 1994.

G. Lorette and R. Plamondon. Dynamic approaches to handwritten signature

verification. Computer Processing of Handwriting, pages 21-47, 1990.

B.D. Lucas and T. Kanade. An iterative image registration technique with an
application to stereo vision. Proceedings of the 7th International Joint Conference

on Artificial Intelligence, 1981.



[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

173
J. Luettin and N.A. Thacker. Speechreading using probabilistic models. Com-
puter Vision and Image Understanding, 65(2):163-178, 1997.

P. Maes, T. Darrell, B. Blumberg, and A. Pentland. The alive system: Wireless,
full-body interaction with autonomous agents. Multimedia Systems, 5(2):105—

112, 1997.

R. Martens and L. Claesen. On-line signature verification by dynamic time-

warping. In Proc. 18" Int. Conf. Pattern Recognition, pages 38—42, 1996.

K. Mase. Recognition of facial expression from optical flow. IEICE Transactions,

74(10):3474-3483, 1991.

K. Mase and A. Pentland. Automatic lipreading by computer. Trans. Inst. Elec.
Info. and Comm. Eng., 73(6):796-803, 1990.

M.E. Munich and P. Perona. Visual-based ID verification by signature tracking.
In Proc. 2" Int. Conf. Audio- and Video- Based Person Authentication, 1999.

M.E. Munich and P. Perona. Visual signature verification using affine arc-length.
In Proc. IEEE Comput. Soc. Conf. Comput. Vision and Pattern Recogn., pages
180-186, 1999.

V.S. Nalwa. Automatic on-line signature verification. Proceedings of the IEEE,

85(2):215-239, 1997.

W. Nelson and E. Kishon. Use of dynamic features for signature verification. In

Proc. IEEE Conf. on Systems, Man and Cybernetics, pages 201-205, 1991.

W. Nelson, W. Turin, and T. Hastie. Statistical methods for on-line signa-
ture verification. Inter. Jour. of Pattern Recognition and Artificial Intelligence,

8(3):749-770, 1994.

P. Nesi and A. Del Bimbo. A vision-based 3-d mouse. International Journal of

Human-computer Studies, 44(1):73-91, 1996.



[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

174
M. Parizeau and R. Plamondon. A comparative analysis of regional correlation,

dynamical time warping and skeletal tree matching for signature verification.

IEEE Trans. Pattern Analysis and Machine Intelligence, 12(7):710-717, 1990.

V.I. Pavlovic, R. Sharma, and T.S. Huang. Visual interpretation of hand gestures
for human- computer interaction: A review. IEEFE Trans. Pattern Analysis and

Machine Intelligence, 19(7):677-695, 1997.
R. W. Picard. Affective Computing. MIT Press, 1997.

R. Plamondon and B. Clément. Dependence of peripheral and central parameters
describing handwriting generation on movement direction. Human Movement

Science, 10:193-221, 1991.

R. Plamondon and G. Lorette. Automatic signature verification and writer iden-

tification, the state of the art. Pattern Recognition, 22(2):107-131, 1989.

R. Plamondon and F.J. Maarse. An evaluation of motor models of handwriting.

IEEE Transaction on systems, man, and cybernetics, 19(5):1060-1072, 1989.

F.E. Pollick and G. Sapiro. Constant affine velocity predicts the 1/3 power law
of planar motion perception and generation. Vision Research, 37(3):347-353,

1997.

F.K.H. Quek. Eyes in the interface. Image and Vision Computing, 13(6):511-525,
1995.

L. Rabiner and B. Juang. Fundamentals of Speech Recognition. Prentice Hall,
Inc., 1993.

L.R. Rabiner. A tutorial on Hidden Markov Models and selected applications in
speech recognition. Proc. of the IEEE, 77(2):257-286, 1989.

H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoustics, Speech, Signal Processing, 26(1):43-49,
1978.



[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

175
Y. Sato and K. Kogure. On-line signature verification based on shape, motion

and writng pressure. Proc. 6th Int. Conf. on Patt. Recognition, pages 823-826,
1982.

B. Serra. Reconnaissance et localisation d’objets cartographiques 3D en vision

aérienne dynamique. PhD thesis, ’Université de Nice - Sophia-Antipolis, 1996.

B. Serra and M. Berthod. Subpixel contour matching using continuous dynamic
programming. Proc. IEEE Comput. Soc. Conf. Comput. Vision and Pattern
Recogn., pages 202-207, 1994.

B. Serra and M. Berthod. Optimal subpixel matching of contours chains and

segments. Proc. 5™ Int. Conf. Computer Vision, pages 402-407, 1995.

B. Simard, B. Prasad, and M.K. Sinha. On-line character recognition using

handwriting modelling. Pattern Recognition, 26(7):993-1007, 1993.
C.G. Small. The statistical theory of shape. Springer-Verlag, Inc., 1996.

C.C. Tappert, C.Y. Suen, and T. Wakahara. The state of the art in on-line
handwriting recognition. IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 12:787-808, 1990.

C.J. Taylor, T.F. Cootes, A. Lanitis, G. Edwards, and P. Smyth et al. Model-
based interpretation of complex and variables images. Philosophical transactions

of the Royal Society of London, 352(1358):1267-1274, 1997.

A. Tomita, T. Ebina, and R. Ishii. A gui-interaction aiding system for cut-and-
paste operation based on image processing for the visually impaired. IEICE

Transactions on Information and Systems, E81D(9):1019-1024, 1998.

H.L. Van Trees. Detection, Estimation and Modulation Theory: Part 1. John
Wiley & Somns, Ltd., 1968.

M. Turk and A. Pentland. Eigenfaces for recognition. J. of Cognitive Neurosci.,
3(1):71-86, 1991.



[76]

[77]

78]

[79]

[80]

[81]

82]

176
P. Viviani and G. McCollum. The relation between linear extent and velocity in

drawings movements. Neuroscience, 10(1):211-218, 1983.

P. Viviani and C. Terzuolo. Trajectory determines movement dynamics. Neuro-

science, 7(2):431-437, 1982.

J. Vredenbregt and W.G. Koster. Analysis and synthesis of handwriting. Philips
Tech. Rev., 32(3/4):73-78, 1971.

P.D. Wellner. Adaptative thresholding for the digitaldesk. Technical Report
EPC-1993-110, 1993.

P.D. Wellner. Self calibration for digitaldesk. Technical Report EPC-1993-109,
1993.

B. Wirtz. Stroke-based time warping for signature verification. In Proc. Int.

Conf. on Document Analysis and Recognition, pages 179-182, 1995.

L. Wiskott, J.M. Fellous, N. Kruger, and C. Von der Malsburg. Face recogniton
by elastic bunch graph matching. IEEE Trans. Pattern Analysis and Machine
Intelligence, 19(7):775-779, 1997.



